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A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is
presented, with emphasis on comparisons between theory and quantitative experiments. Examples include
patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-
Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, os-
cillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set
of deterministic equations of motion, typically in the form of nonlinear partial differential equations.
These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for
macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim
of theory is to describe solutions of the deterministic equations that are likely to be reached starting from
typical initial conditions and to persist at long times. A unified description is developed, based on the
linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of
the characteristic wave vector qo and frequency coo of the instability. Type I, systems (coo=0, qo&0) are
stationary in time and periodic in space; type III systems (coo%0, q0=0) are periodic in time and uni-

form in space; and type I, systems (coo%0, qo@0) are periodic in both space and time. Near a continuous

(or supercritical) instability, the dynamics may be accurately described via "amplitude equations, "whose
form is universal for each type of instability. The specifics of each system enter only through the
nonuniversal coefficients. Far from the instability threshold a different universal description known as the
"phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many sys-
tems appropriate starting equations are either not known or too complicated to analyze conveniently. It is
thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude
equations near threshold, and which may be solved analytically or numerically in the nonlinear regime
away from the instability. The above theoretical methods are useful in analyzing "real pattern effects"
such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures.
An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is
known about systems with a small number of degrees of freedom displaying "temporal chaos, "where the
structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees
of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of
analysis need to be developed. In addition to the general features of nonequilibrium pattern formation dis-
cussed above, detailed reviews of theoretical and experimental work on many specific systems are present-
ed. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, elec-
trohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders,
parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and
dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A conclud-
ing section summarizes what has and has not been accomplished, and attempts to assess the prospects for
the future.
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l. INTRODUCTION

A. General remarks

This article reviews recent progress in our understand-
ing of spatial pattern formation in nonequilibrium fluid
systems such as Rayleigh-Benard convection or Taylor-
Couette flow, and seeks to compare and contrast these
with other pattern forming systems encountered in solid-
state physics, nonlinear optics, chemistry, and biology.
The study of pattern formation in fluids has greatly
benefited from recent careful and controlled experiments
as well as the development of new concepts and new ana-
lytic and numerical tools. This shifted focus was inspired
by developments in the mathematical study of dynamical
systems on the one hand, and by recent progress in sta-
tistical mechanics of condensed matter on the other. Our
aim is to review the work in fluid dynamics in such a way
as to make it accessible to a broad audience of both spe-
cialists and nonspecialists. In addition, we discuss pat-
tern formation in chemical and biological systems, in or-
der to display the well-known analogies with patterns in
fluid systems in some detail, and in order to provide an
introduction accessible for physical scientists to the vast
literature in these fields. Finally, we also touch on a to-
pic that does not concern pattern formation per se, but
rather the destruction of patterns, namely spatiotemporal
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chaos, since it rnanifests itself in all the systems under
study.

Our basic point of view is that nonequilibrium spatial
patterns may be classified according to the linear instabil
itres" of an infinite spatially uniform system. These in-
stabilities arise when the system is brought away from
thermal equilibrium by increasing a control parameter.
The interesting linear instabilities are divided into three
broad classes according to the values of the characteristic
wave vector qo, and/or the characteristic frequency coo

which appear at the instability threshold.
Patterns with wave vectors and/or frequencies cen-

tered around these values grow beyond threshold and are
in general found to saturate to finite amplitude. Near the
instability the system may often be described theoretical-
ly by simple equations having a universal form, which go
under the name of amplitude equations (Newell and
Whitehead, 1969; Newell, 1974). Further above thresh-
old, in the strongly nonlinear domain, it is sometimes
possible to derive simple phase equations by perturbing
about an ideal periodic structure (Pomeau and Manne-
ville, 1979; Cross and Newell, 1984). It is also often use-
ful to describe the system using phenomenological model
equations (Swift and Hohenberg, 1977; Greenside and
Cross, 1985; Haken, 1987) that have the same linear in-
stabilities as the experimental system, but are analytica11y
or numerically more tractable than the starting equa-
tions. The focus on linear instabilities, on amplitude and
phase equations and on simple models illustrates the
similarity between pattern formation in widely different

systems. The degree of universality of the phenomena is
more or less the degree to which they are adequately de-
scribed by such simple theoretical models.

Throughout our article, we will emphasize the role of
quantitative experiments which serve to guide the theorist
in choosing models and approximations, as well as to test
the theoretical results obtained. The experimental in-
terest in pattern formation shown by Quid dynamicists
has certainly been a key contributor to the recent pro-
gress in that field.

In the rest of this Introduction we wish to highlight
some of the concepts we will encounter in the subsequent
sections.

B. Phenomena

We will primarily concern ourselves with systems un-
der constant nonequilibrium external conditions. In such
systems it is possible to have macroscopic spatial struc-
ture in steady state, a phenomenon that goes under the

names of dissipative structures' (Nicolis and Prigogine,
1977), synergetics (Haken, 1983), and self-organization
(Krinsky, 1984). From a theoretical point of view, since
we are not near equilibrium there is no a priori reason to
suppose that we have a Gibbs ensemble or a free energy
functional whose rninirna yield the patterns obtained un-

der given external conditions. We must therefore discuss
the system in terms of some appropriate set of starting
equations which we term "microscopic. " By this we do
not mean that the equations necessarily involve atomic
degrees of freedom, just that they represent the elernenta-

ry building blocks from which our analysis starts. For
Quid systems these are generally the Navier-Stokes and
other equations of Auid dynamics; for chemical systems
they are appropriate reaction laws.

Since "microscopic" equations are typically nonlinear
partial differential equations, the reliable information we
can extract from them theoretically is quite limited. We
place ourselves under conditions that are natural from a
theoretical physics perspective though somewhat
artificial in many practical cases; namely we consider a
spatially infinite' uniform system near equilibrium. We
then increase a parameter R, called the control parame-
ter, that takes the system further from equilibrium. Sup-
pose that at some threshold value R =R, the system be-
comes unstable to infinitesimal perturbations with wave
vector qo and frequency coo (either of which may be zero).
For R & R, we expect a pattern centered around qo and
coo to grow and in many cases to saturate to a macroscop-
ic amplitude proportional to some power of R —R,
When coo=0 we speak of stationary patterns and when

coo A 0 we have Oscillatory patterns.
The mechanism of the instability is expressed in the

starting equations and depends on details of the system.
Nevertheless, since spatial pattern formation usually
arises due to the existence of a nonzero qo, it is useful to
identify generic mechanisms for finite wave vector insta-
bilities. One class of mechanisms arises from the ex-
istence of constraints and conservation laws. It is best il-
lustrated by the example of Rayleigh-Benard convection
of a Quid placed between horizontal plates, where the
buoyancy force attempts to lift the whole mass of the
Quid (conservation of mass) and the top plate provides a
constraint against this motion. Then the most unstable
mode turns out to be on a spatial scale qo

' -—d, where d
is the plate separation. Another mechanism for finite
wavelength instabilities is provided by competing interac-
tions between elementary units. This mechanism, we11

. The general connection between spatiotemporal pattern for-
mation in macroscopic systems and linear instabilities was to
our knowledge first emphasized in the seminal paper of Turing
(1952).

We shall consider almost exclusively systems where dissipa-

tion is important.
The system need not be infinite in all three dimensions.

When we speak of the dimensionality of a system, or of spatial

extension, we refer only to those dimensions in which the sys-

tem is large. In practice, a system is d-dimensional if it has

linear dimension Lqp » 1 in d directions, where qp
' is the

characteristic instability length (see below).
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known in magnetic materials where it leads to antifef-
romagnetism, is also ubiquitous in chemical and biologi-
cal systems where it is referred to as "local excitation
combined with lateral inhibition" (Oster, 1988).

A detailed understanding of the instability mechanism
and of its dependence on systen1 parameters can only be
Rchlcvcd lf thc systcn1 ls well characterized by thc micro-
scopic equations. Sometin1es the phenomena are not well
enough understood to allow a prediction of the exact lo-
cation and parameters of the instability, but the charac-
teristic wave vector qo and/or frequency coo can never-
thclcss bc estimated RIid lclatcd to pI'opcItlcs of thc sys-
tern. It is then useful to classify the patterns that grow
beyond threshold in terms of the values of qo and coo. %C
distinguish three types of instabilities:

e Type I, (qo A 0, 6)0=0) instabilities are periodic in
space and stationary in time. Because of the richness of
periodic structures in two or three-dimensional space,
D1any dlffcrcnt ldcal pRttcins n1Ry Rppcar Rbovc thresh-
old, the simplest one being the so-called roll state charac-
terized by a single wave vector q. Other regular patterns,
such as squares or hexagons in two dimensions or cubes
in three dimensions can be formed by superposition of
elementary rolls. The differcnt structures can be ana-
lyzed with respect to their linear stability, and it usually
turns out that only one type of structure is stable, but a
continuous band of wave vectors q near qo is permitted.
The region in the (R,q) plane where staMe patterns exist
is known as the "stability balloon. "

~ Type III, (qo =0, coo W 0) instabilities are uniform in
space and oscillatory in time. The ideal state does not
display RDy spatial pattern, just a uniform pcI'lodlc oscil-
lation whose frequency m varies with R and is equal to mo

at threshold. States with spatial dependence can also ap-
pear, but we consider them as defects of the ideal struc-
ture (see below).

~ Type I, (qo A 0, coo A 0) instabilities are periodic in
space and oscillatory in time. The simplest ideal patter~
ln this case involves a traveling Nave train with a disper-
sion relation co(q). These nonlinear waves are sustained
by a competition between the drive (i.e. R —R, ), the
dispersion and nonlinearity in the medium, and the dissi-
pation. A subclass of such waves occurring in nondissi-
pative (Hamiltonian) systems is the so-called solitary
wRvcs whcI'c IloI111DCRIlty balances dispersion Rnd the
waves propagate in the absence of a drive. In the general
case, however, effects of driving and dissipation are just
as important. Nonlinear waves (also called "autowaves"
in the Soviet literature, see, e.g., Krinsky, 1984a) have
many distinctive properties. For example, unlike the
linear case, when two wave trains collide they do not in-
terfere. They form a domain boundary, or shock which
may remain stationary or may consume one or the otheI'
wave. Another posslblllty that occUI's even ln onc-
dimensional systems, is a superposition of right- and left-
traveling waves to form a standing wave. The relative
stability of standing and traveling waves depends on the

parameters of the system. In two and higher dimensions
all the richness of the type I, systems (different struc-
tures, stability balloons) is added to the basic dynamics of
nonlinear waves, and a complete analysis of even the
ideal structures becomes quite involved.

In attempting to apply these ideas to real patterns (ei-
ther experimental or computational) it is important to
undeI'stand the limitations inherent in considering an
ideal pattern, that is, an infinite spatially periodic struc-
ture. The two most important "real pattern" efFects we
consider are boundaries and defects. Although finite sys-
tems are often thought to be simpler than infinite ones
from the point of view of bifurcation theory, our focus is
on large systems with many degrees of freedom, and we
consider the boundaries' to be a perturbation. The
most i1Tlportant cfFcct of boUndaIlcs ls to I'cndcl dlscI'ctc
the previously continuous band of wave vectors inside
the stability balloon. There are, however, more subtle
effect such Rs further IcstI'lctloIis of thc allowed wave
vcctoI' band oI' preferential oI'lcntatlon of degenerate pat-
terns. Defects can be defined as any departure from the
ideal pattern, but the most useful limit is to consider a lo-
calized structure, embedded in an otherwise ideal pattern.
Defects may be stationary or they may move, and their
structure often reAects topological characteristics of the
ideal patterns in which they are immersed. They play an
essential role in pattern dynamics, eitheI' in selecting a
particular regular pattern or in the steady-state evolution
of an irregular or chaotic patteI'n.

The problem of pattern selection arises because under
given external conditions there often exist many stable
solutions of thc cquatloIls of n1otloIl, for cxan1plc Rll

states in the wave vector band. defined by the stability
balloon at a given R. From a mathematical point of view
we know that for autonomous deterministic equations
the state found at long times depends uniquely on the ini-
tial conditions. Experin1entally it is found that often thc
state observed is insensitive to the preparation condi-
tions, so we would like to know if one can formulate rules
or criteria for predicting which state will be observed.
Traditionally, a rule of thumb has been that one should
select the state that grows fastest near the (linear) insta-
bility. Although this rule may work under certain condi-
tions, on closer inspection it is found to be too simple-
minded. Instead, we define various mechanisms for pat-
tern selection that restrict the available states. Examples
of static mechanisms are boundaries (as stated above), pa-
rameter inhomogeneities, or distortions of the ideal pat-
tern, Dynan1ic mechanisms may arise either from exter-
nal noise or from the dynamics of the creation of the pat-
tern itself. For exan1ple it is found that if a roll state

~-4Just as we consider a system to be d-dimensional if it is large
in d directions, 'boundaries" and "finite size" here refer to the
directions in which the system is large.
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grows via a front advancing into an unstable uniforID
state, then if. has a unique wave vectox and velocity in-
dependent of initial conditions, rather fhan a continuous
baIld. Cxcnerally spcaklng, 8 primary mechanism foI pat-
tern selection is through the motion and interaction of
defects, since these provide a way fox a region of space
with an "unfavorable*' pattern to give way to a more
favorable one. Notice that near thexmal equilibrium the
above discussion could be greatly simplified by consider-
ing a coarse-grained free energy and selecting the pattern
which minimizes this quantity. In general no such free
energy (or other so-called Lyapunov potential) can be
defined for Qoncquilibrium systems, though there are not-
able cxccptlons.

A characteristic feature of the systexns we are consider-
ing is the possibility of chaotic states, namely irregular
behavior that persists to long times even under constant
external conditions. This irregularity is a manifestation
of instability in a deterministic system, not of the pres-
ence of external noise. In studying chaotic behavior we
have found it usefu1 to distinguish various regimes de-
pending on the relationship between the size of the sys-
tem I. and a characteristic correlation length g for chaotic
fluctuations. For small systems, with g ~ L the fluctua-
tions are spatially correlated in the system and the dy-
namics may be described by a Inodel with few modes. In
the opposite case, I. )) g, the system is "large" and it
may be thought of crudely as consisting of cells of
volume g', whose number (L/g)", is a measure of the
number of CS'ective degrees of freedom for the dynamics.
For large systems we may hope to use a statistical
description of the chaotic states, borrowing concepts
from equilibrium statistical mechanics, e.g. defining
difFerent phases by the long-distance properties of their
correlation functions. In this way we may find phase
transitions as a function of external parameters, and in
particular critical points where correlations have power-
law f811-off. A typical size of the correlation length away
from cxitical points would be the basic instability length

qo, or perhaps a characteristic dimension of 8 dynami-

cally significant defect. Systems that are neither small

(g ~ 1.) nor large (g && I.) are generally the most difficult
to analyze. There is some hope of describing them using
collective coordinates defined on the scale g, but little
concx'ete progress has been made in developing this idea.

C. Theoretical methods

As stated above, oUI' RpproRch bcglns by assuming 8
sct of cquatlons of IDotlo11, thc so-called micI'oscoplc
equations, for which wc assume that a uniform solution
exists, and an instability to a spatially dependent solution
arises for certain parameter values. %"e will consider as
microscopic equations either more or less realistic
descriptions of the phenomena, or mathematical models
chosen so that their linear instabilities and iong-time
solutions IDimic those of the system. under study. The in-
stability of the uniform state is established by a /inear

analysis, which can be carried out even for complicated
starting equations, and reveals the basic physical mecha-
nism lcadlng to pattcI'Il fox'IIlatlon. IIIlIDcdlatcly above
the lineax' threshold perturbation. theory in the nonlinear-
ity typically leads to a simplified description in terIDs of
an amplitude equation (Newell and Whitehead, 1969;
Segel, 1969)„whose form is universal and whose numeri-
cal paxameters reQect the details of each physical system.
Here we use the word "universal»» more or less in its
technical meaning in critical phenomena, i.e. that there
are classes of systems 811 of which lead to the same equa-
tion (see, e.g., Privman et al. , 1991, and references
therein). An interesting point is that the simplified mi-
cI'oscoplc IDodcls mentioned above lead to thc sQI8 RID-

plltUdc cquRt1011s Rs thc 1callstlc cquatlons they arc
Q1caIlt fo II11IDlc. FUl ther away fIoIIl tllrcshold 8 different
type of perturbation expansion is sometimes useful,
naxnely an expansion in sIDall and slow distortions of a
fully nonlinear ideal periodic solution. This type of ex-
pansion leads to phase equations (Pomeau and Manne-
ville, 1979; Kuramoto, 1984a,b; Cross and Newell, 1984),
which also possess an eleIDent of universality, though
their foxm reAects the starting periodic state somewhat
Q10re closely.

Anothcl gcIlclal method of RIlalysls Uses thc qua11tR-
tive theox'y of

differential

equations to find general
features of the solutions. This approach is geometrical
Rnd topological Rnd lt ca11 bc Rppllcd either Rt thc lcvcl of
the micx'oscopic description, or to analyze the amplitude
Rnd phase equations that are themselves diScult to solve.

Apart from perturbation theory and qualitative
methods it is sometimes possible to find restricted classes
of nontrivial exact solutions, especially in the case of
Inodel microscopic equations. These solutions can be
very revealing, as they provide firm exaxnples of specific
types of behavior whclc othcx'wlsc only appx'oxllTlRtc I'c-

sults are known. %'e caution, however, that usually the
full dynamical significance of the exact solutions is not
known, e.g. their stability or their basin of attraction, so
their physical interpretation remains a dificult task.

Finally, in reviewing the di8'erent theox'etical methods
available, we mention numerical calculations, which one
turns to inevitably in the study of nonlinear equations.
A1though there have been many improvements in numer-
ical work on the fundaIDcntal equations of Quid dynam-
ics, optics, or chemistry, thc types of questions we are
asking involve long times and large distances, Rnd are
therefox e particularly demanding in computer time.
ThUs far» fcw qucstlons lnvolvlIlg pattcrIls 111 large aspect
ratio convection cells, for example, have been reliably
answered by direct simulation of the Navicr-Stokes and
heat equations. This ls one reason why we introduce
model systems whose pattern formation properties are
designed to be as close as possible to those of the original
system, but which are significantly easier to simulate nu-
IIlCI'1C ally.

Anothex advantage of Inodel systems is that they allow
us to examine diKCU1ties one at a time, so to speak. For
example, as we shall see below convection patterns in a
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large Rayleigh-Benard cell at A —R, =38„say, are
inffuenced (i) by the two-dimensional degeneracy of the
orientation of the local roll wave vector, a source of de-
fects in the periodic structure; (ii) by the absence of an
exact LyapUnov functloIl whose mln1mlzatlorl coIltI'ols
the dynamics (though an approximate one can be
defined); (iii) by the possibility of disparate time scales for
certain parameter values (e.g. if the Prandtl number
o &( l; see below); (iv) by subtle boundary eff'ects, such
as heated sidewaHs or slightly nonparallel horizontal
plRtcs. Each oIlc of thcsc effects can bc c1thcr' 111scltcd OI

taken out by appropriate choice of "microscopic" model,
and their relative importance for diQ'erent physical situa-
tions can be assessed more easily and reliably in this way
than by attempts at bx'ute force simulations of the cox'rect
hydrodynamic equations for this system.

D. Experimental systems

The prototypical experiment we wish to start from is
that of a large system in d dimensions with control pa-
rameter R that can be varied through the first threshold
R„where the uniform state becomes unstable. Such a
situation can be approximated more or less well experi-
mentally in the di6'ercnt areas we discuss, typically best
of all in simple hydrodynamic experiments. Then the
CQects of dimensionality and finite size on regular and
chaotic patterns can be studied systematicaHy.

As mentioned earlier, the bulk of our review will be fo-
cused on hydrodynamic systems which have significant
advantages: the basic equations and parameter values are
weH understood, controlled quantitative experiments can
bc carried oUt, RIld a body of 1Iltu1tlon RboUt Quid Aow
has been built up over the years. We shall see, however,
that some of this traditional "Quid dynamics" intuition
can be usefully supplemented by bringing in concepts
from condensed matter and statistical physics. By far the
most attention mill be devoted to thermal convection in
what follows, since this is the system where a large part
of the recent progress in understanding non-
equilibrium patterns has occurred, and also since both of'

the authors have worked primarily in this area. Besides
pure-ffuid (Rayleigh-Benard) convection, interesting vari-
ants involve binary-Auid convection, surface-tension
driven (Benard-Marangoni) convection, and electrohy-
drodynamic convection in nematic liquid crystals. Con-
vection is historically the system in which many of our
basic notions of pattern formation were developed, e.g.
the stability balloon, the di6'erent mechanisms for wave
vector selection, classification and dynamics of defects,
and smaH versus large chaotic systems. For all these to-
pics important information came to us from carefully
designed experiments, which motivated and in turn were
inAuenccd by the theoretical developments.

Another hydrodynamic system that played an impor-
tant historical role is Taylor-Couette How between con-
centric x'otating cylinders. Both experiment and theory
have exploited the analogies with convection, as well as

the sirnplif1cations arising from the axial geometry. Be-
sides convection and Taylor-Couette flow we also discuss
parametric surface waves, since this system provides a
rich field for study of large nonequilibrium patterns,
though so far most experiments have been on srnaH sys-
tems, and it is not cleax' how weH the external conditions
can be controHed in extended geometries. There axe
many other hydrodynamic systems whex'e regular pat-
terns arise from linear instabilities, such as fIow between
adjacent rotating cylinders, Row down an inchned plane,
and various magnetohydrodynarnic and geostrophic
Rows. Only our lack of knowledge of the work in these
fields and the necessity to stop somewhex'e has led to theix
exclusion from this review.

Tulning now to norlhydIodyIlamic systcIns, wc have
chosen to discuss patterns in chemistx'y, biology, and
nonlinear optics, as well as crystaHization patterns in
solids, but to leave out for somewhat arbitrary reasons
patterns in Aame fronts„ in semiconductors, or in col-
loidal aggregates, to cite only a few of the possible areas
wc might have 1IlclUdcd.

Instabilities and patterns in nonlinear optics are cen-
tral to the study of lasers and many other optical devices,
but the main emphasis of fundamental studies has tradi-
tionally been on temporal chaos in systems where a few
spatial modes are excited, an understandable bias in view
of the above mentioned device applications. Apart from
the nonlinear Schrodinger equations used to describe
pulse pI'opagatioIl 1n opt1cal fibers, most of thc models
employed in studies of chaos and instability were variants
of the famous Lorenz model, where only three modes in-
teract. It is only relatively recently that experimentalists
and theox'eticians have turned their attention to systems
with many degrees of fr'eedorn, by relaxing transvex'se
constraints, and bringing in additional modes of a given
cavity. It appears that many of the phenomena that have
been studied in hydrodynamic systems, e.g. pattern selec-
tion, defects, and spatiotemporal chaos, wiH also appear
1n this physical coIltcxt.

Thc chcrn1cal systcIn wc d1scuss almost cxclus1vcly 1s

the Belousov-Zhabotinsky (BZ) oscillatory reaction, since
this system has been intensively studied experimentally as
well as theoretically, and it bears the closest analogy to
osciHatox'y hydrodynamic systems. The BZ reaction
presents an additional theoretical difhculty, howevex',
namely the presence of two vastly different time scales for
the principal pattern-forming constituents. As a conse-
quence the amplitude equation approach has no domain
of quantitative applicability, and alternative methods of
anRlys1s RI c Ilcccssa1 y. Inter cst1ngly thc qualltRtlvc
properties of the observed patterns, particularly the
behaviox' of the characteristic target and spiral defects in
two dimensions, are very similar to those deduced from
the corx'esponding amplitude formalism. This is an ex-
arnple of "qualitative universality, " a notion that is
dificult to make precise, but that operates here in a con-
crete way. We also brieAy mention the recent success in
the long-sought goa1 of finding stationary Turing patterns
in a chemical reaction.
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The biological patterns we discuss are of two types:
those arising in morphogenesis, i.e. during the growth of
an organism (Turing, 1952), and patterns created by the
dynamics of living systems (Murray, 1989). Our purpose
in including these topics in our review is not to claim that
the vast and supremely difticult problems of biological
pattern formation can be reduced to the corresponding
questions in hydrodynamics or chemistry. The fact is,
however, that most of the literature on biological pattern
formation employs the same mathematical models and
concepts that we have considered in the rest of this re-
view! Under these circumstances it seems to us appropri-
ate to place the mathematical analysis of these models
into a broader context, and to see which of the advances
brought about by recent developments in hydrodynamics
or chemistry might elucidate the behavior of the biologi-
cal models, if not the biological systems. The main
difficulties with this program are that (i) the models often
lack a secure phenomenological base since the systems
they are supposed to describe are highly complicated,
and (ii) controlled, quantitative experiments are extreme-
ly dificult to perform, especially in our "physicist's lim-
it" of a large system under constant external conditions,
which might indeed be quite absurd in some cases. Nev-
ertheless, we believe that the perspective we bring to the
problems of biological pattern formation may be useful in
further developments of the field. In a sense we attempt
to solve the easy problems, understanding the basic pat-
tern forming properties of the models used in the field,
and how these fit into a broader theoretical context. In
this way the biologists can concentrate on the difFicult

problems of elucidating the pattern forming mechanisms
and choosing appropriate models. It is fair to say that
the distinction we are making here between the "easy"
and the "hard" problems have not always been appreciat-
ed by workers in the field.

The literature on nonequilibrium patterns is so vast
that it is dificult for us to give a general list of articles or
books related to ours. For each topic discussed we have
attempted to give references to the pertinent literature.
We do not assume any prior knowledge of pattern forma-
tion on the part of the reader, though our paper is not
meant to be strictly introductory. The reader may wish
to consult Swinney and Gollub (1981),Manneville (1990),
Haken (1977, 1983a, 1987), Mikhailov (1991), Mikhailov
and Loskutov (1991),Gaponov-Grekhov and Rabinovich
(1990, 1991), Kuramoto (1984b), Winfree (1987), and
Murray (1989), for general discussions of the topics, some
of them from a different point of view than ours. There
are also innumerable conference proceedings related to
the topics we cover, which the reader may wish to con-
sult. The following is a partial list: Ben Amar et al.
(1991), Bishop et al. (1986), Busse and Kramer (1990),
Coron et al. (1991), Coullet and Huerre (1990), Engel-
brecht (1989), Frehland (1984), Gaponov-Grekhov et al.
(1989), Graham and Wunderlin (1987), Giitinger and
Dangelmayr (1987), Haken (1980, 1981a,b, 1985), Holden
et al. (1990), Kai (1992), Krinsky (1984a), Lam and
Morris (1990), Markus et al. (1988), Meinkohn (1990),

II. BASIC PHENOMENGI GGY

A. Rayleigh-Bernard convection

In its idealized form Rayleigh-Benard convection in-
volves a Quid placed between Qat horizontal plates. that
are infinite in extent and are perfect heat conductors.
The Quid is driven by maintaining the lower plate at a
temperature AT above the upper plate temperature. For
small driving the Quid remains at rest, and a linear tem-
perature profile is set up interpolating between the upper
and lower plate temperatures. This is the "conducting"
or "uniform" solution. Due to the thermal expansion,
however, the Quid near the lower plate is less dense; an
intrinsically unstable situation in the gravitational field.
Of course the Quid cannot rise as a whole since there
would be no place for the Quid above it to go. Thus, due
to a conservation law (mass in this case), we encounter an
instability at a finite wavelength —a fundamental pre-
cursor of pattern formation. This instability occurs when
the driving AT is strong enough to overcome the dissipa-
tive effects of thermal conduction and viscosity. The
control parameter describing the instability, the Rayleigh
number R, is the dimensionless ratio of the destabilizing
buoyancy force pocxghT to the stabilizing dissipative
force v~po/d

ag ATd (2.1)

where po is the average mass density, a the thermal ex-

pansion coeScient, g the acceleration of gravity, v the ki-
nematic viscosity, ~ the thermal diffusivity and d the
plate separation. The instability occurs at the value
R =R, = 1708, independent of the Quid under considera-
tion (see Chandrasekhar, 1961). The wave vector qo of
the instability is of order d ', since d is the only length
scale available in the ideal problem. We thus arrive at
the picture of an instability toward a pattern in which
the fluid rises in some regions and falls in others with a
characteristic horizontal length scale d. For Rayleigh
number R slightly above R, the growth of this pattern is
limited because convective Qow transports part of the
heat applied, thus decreasing the temperature gradient
and the buoyancy force. At some point there is a balance
between the applied temperature gradient and the reduc-
tion due to convective motion, and in general the Quid

settles down to a stationary Qow regime near threshold.
The simplest example of such a Qow is the familiar con-
vective roll pattern shown schematically in Fig. 1, but su-

Pacault and Vidal (1979), Perez-Garcia (1992) Sirovich
(1991), Stein (1989), Tirapegui and Villarroel (1987,
1989), Walgraef (1987), Walgraef and Ghoniem (1990),
Wesfreid and Zaleski (1984), Wesfreid et al. (1988).

An early bibliography of nonequilibrium phenomena
was assembled by Hohenberg and Langer (1982). A more
recent bibliography, going far beyond the subject of
chaos in its title, may be found in Zhang (1991).

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



860 M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium

FIG. 1. Schematic picture of Rayleigh-Benard convection
showing Quid streamlines in an ideal roll state.
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FIG. 2. Schematic stability diagram for Rayleigh-Benard con-
vection showing the Rayleigh number R vs the wave vector q.
Dashed line: instability of uniform conducting state to growth
of convecting solution with wave vector q (neutral stability, N).
Solid lines: various secondary instabilities of the nonlinear con-
vecting state. Near threshold the Eckhaus (E) and zig-zag (Z)
instabilites are common to many systems. The solid line bounds
the domain of stable spatially periodic ideal nonlinear solutions.
For a more accurate representation see Fig. 32 below.

perpositions of rolls forming hexagons or squares are also
possible.

The critical Rayleigh number R, is the minimum value
of R at which the conducting state becomes unstable to
disturbance of the velocity U of the form

5v -exp(iq. x),
for some wave vector q in the horizontal plane. As men-
tioned above, the value iq~ =q =qo at which the instabili-

ty at R, occurs is of order of the inverse plate separation
(specifically, q0=3. 117/d). The instability of the con-
ducting state to disturbances with q&qo occurs for larger
R. Indeed, when q & qo the rolls are Aat and involve ex-
cess horizontal motion with a dissipative contribution to
R, (q) proportional to q at small q. For q)qo, the
rolls are tall and thin and the excess vertical shear and
horizontal temperature gradient lead to a critical Ray-
leigh number R, (q) growing as q . It is useful to
represent the domain of stability of the conducting state
in terms of the function R, (q) as in Fig. 2 (dashed curve).
For R )R, (q) a convecting solution grows, and it turns

out that stationary solutions exist in general for R not
too large. The existence of stationary convecting states
does not, however, guarantee their physical relevance;
they must also themselves be stable to infinitesimal dis-
turbances. Under rather general physical conditions it
may be shown (see Busse, 1978) that near threshold hexa-
gons and squares are unstable to rolls, and periodic roll
solutions remain stable inside a smaller domain, delimit-
ed by the solid curve in Fig. 2. The region of stable roll
convection is often referred to as the "Busse balloon, "
named after F. Busse who identified the many secondary
instabilities, beyond which different types of convecting
states are seen; either more complicated stationary roll
patterns or time-dependent states which may be periodic
or nonperiodic. A simple example of a secondary insta-
bility occurs when the convective Row reduces the tem-
perature gradient in the central portion of the cell, leav-
ing boundary layers near the top and bottom plate which
experience a strong gradient. The thinner layers may
themselves be the source of an instability to convective
rolls at a shorter wavelength, which are generally orient-
ed perpendicular to the original ones.

Figure 2 refers to a laterally infinite system in which a
continuum of periodic states, labelled by the wave vector
q, can be defined. For a finite system, of lateral width L,
the solutions must satisfy specific lateral boundary condi-
tions which greatly complicate any concrete calculation.
Roughly speaking, however, we can say that the effect of
the lateral boundaries is to quantize the wave vectors in
units of ~/L, i.e., the continuum of solutions is reduced
to a discrete set.

The spatially periodic stationary roll states we have
discussed up to now are of particular interest because of
their relative theoretical simplicity. Experimentally, or-
dered states are only obtained under special conditions,
e.g. for R just above threshold, or in containers of
prescribed shape. In particular, rolls tend to align per-
pendicular to the sidewalls, so parallel rolls are most easi-
ly obtained in cells which are long and thin. A system
which avoids even the small distortion due to the short
sidewalls is an annular geometry, which is well represent-
ed by a one-dimensional model. In contrast to the above
cases, "natural" patterns which arise spontaneously when
R is suddenly raised above R, are spatially disordered.
In Fig. 3 we show examples of such structures obtained
in experiments and in numerical simulations. Some of
these patterns can be thought of as being made up of
domains of periodic structures pieced together by
different kinds of interfaces or defects. Other cases are so
disordered that they bear very little resemblance to a
periodic roll structure. We will see in subsequent sec-
tions that defects play a crucial role in determining both
the dynamics of pattern formation and the structure of
the patterns which are obtained at large times under
steady external conditions.

From a physical point of view, an appealing feature of
hydrodynamic instabilities in general, and convective
Aow in particular, is that once quantities are expressed in
terms of dimensionless numbers, such as the Rayleigh
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FIG. 3.~ 3. Horizontal spatial atterpa terns in convection with late3. a ter i ateral boundaries' (a) and (b) mp ments of Gollub et aL (1982); (c)
e e a. (1983);and d- scmu ations of the Swift-Hohenberg model equation (3.27) by
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qo=c, (E /Kf)'~ (2.4)

(c, =3) in the thick-plate limit, leading to a pattern with
a single fiat roll (see Sec. VIII.F.1 below).

where L, is. a lateral dimension ' (e.g. the radius for a cy-
lindrical cell). Roughly speaking the largest aspect ratio
L is equal to the number of rolls in the pattern. An im-
portant distinction exists between small and large sys-
tems, according to the number of rolls they contain (gen-
erally a system with L S3—5 is defined as small). The
distinction is relevant in considering the dynamics of
convection outside the region of stable rolls, namely
chaotic dynamics. For small L one can model the system
in terms of a discrete number of degrees of freedom in-
teracting among one another, a situation which is known
to lead to a variety of chaotic scenarios which have been
well studied in recent years (see, e.g. Berge et al. , 1987;
Manneville, 1990). For large systems, on the other hand,
the continuum of states available above threshold must
be taken into account, and the dynamics involves a large
number of active degrees of freedom. The chaotic
behavior of such spatially extended systems is not well
understood at present, but Rayleigh-Benard convection is
an attractive physical example in which to investigate
this problem (see Secs. VII and VIII.E below).

If the horizontal plates are made of poor thermal con-
ductors (with conductivity K~ small compared to the
conductivity Kf of the fiuid) the critical Rayleigh num-
ber curve R, (q) is modified (Busse and Riahi, 1980). Its
minimum becomes R,'"'=720 for K ((Kf, and the criti-
cal wave vector behaves as

tia1 periodicity to create traveling wave states whose non-
linear behavior shows remarkable properties. Among
these we cite interactions between traveling and standing
waves, spatial confinement, and interesting defect struc-
tures involving waves of different velocities. Moreover,
the existence of time dependence near the onset of con-
vection means that this system offers the possibility of
studying chaotic dynamics in a region where nonlinear
effects might be small enough to be calculable analytical-
ly (see Sec. IX.A).

2. Electrohydrodynamic instabilities
in nematic liquid crystals

It is possible to destabilize a nematic liquid crystal by
applying an electric field, the electric force p E acting in a
manner similar to the buoyancy force in thermal convec-
tion (see Dubois-Violette, et al. , 1978). The charge p is
coupled to Auctuations in the curvature K =8 n, of the
director, with the Qow velocity following adiabatically in
typica1 regimes. In order to prevent static charge build-
up at the electrodes an a.c. field is usually applied, and
depending on the amplitude and frequency of this field
different regimes of convection are found. The main ad-
vantages of electrohydrodynamic convection are the abil-
ity to control the Qow by electromagnetic means, and the
small spatia1 scale of the rolls which makes it easier to
study large systems, with 1000 rolls, say. This system is
discussed further in Sec. IX.C.

3. Bernard-Marangoni convection

B. Other convecting systems

3. Convection in fluid mixtures

In a mixture, concentration changes are coupled to
density variations via the quantity p (Bp/Bc ) T, which
is analogous to the thermal expansion p '(Bp/BT)~, but
can have either positive or negative sign. There is thus
an additional mechanism which can either favor or
suppress convection. Since the dynamics of the concen-
tration variable is associated with an independent time
scale governed by the diffusivity D„orthe Lewis number
X=D, /z, the behavior of convective mixtures can be
quite rich indeed (Platten and Legros, 1984). The most
interesting new aspect is the appearance, for certain pa-
rameter values, of temporal oscillations at the convective
threshold. This time dependence combines with the spa-

The original experiment of Benard (1900) was carried
out in an open dish, and the Qow pattern he found was a
regular tesselation of hexagons with Quid rising at the
center and falling along the sides as in Fig. 4. The
theory developed by Rayleigh (1916) to explain this
phenomenon involved a driving force due to differential
buoyancy in the bulk of the Quid, but it was later
discovered (Pearson, 1958) that the hexagon pattern re-
sulted from a surface instability caused by a temperature
dependent surface tension. Indeed, if we imagine a Quid
heated from below, and a horizontal temperature Quctua-
tion 6 T at the surface, there is an induced change 5X in
the surface tension X which causes Quid to Qow along the
surface toward the point where the fluctuation occurred,
and to sink into the bulk at that point. To compensate
this Qow, warm Quid must rise in adjacent portions of the
cell, thus increasing the temperature difference and caus-
ing instability. The driving force is now
—(hT/d ) (BX/BT)) 0, and the control parameter is
the Marangoni number

ET(d /po)( —BX/BT)M= (2.5)
Since we usually express all lengths in units of the plate sep-

aration we do not distinguish between the aspect ratios and the
lateral dimensions, and will henceforth use the same symbol I
for both.

which does not involve the acceleration of gravity g.
Comparing the Marangoni and Rayleigh numbers, Eqs.
(2.5) and (2.1), we see that for a given hT the Marangoni
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FIG. 4. Early experiment showing convection
cells in silicone oil under an air surface. Visu-
alization with aluminum powder. Dark lines
indicate vertical motion. Bright areas indicate
predominantly horizontal motion. (Kos-
chmieder, 1974).

instability at M =M,o-—80 is reached before the Rayleigh
instability at R =R, = 1708 for thin layers, since

(hT)M —1/d whereas (b, T)z —1/d .
It turns out that for convection with a free surface

even the buoyancy driven instability leads to a hexagonal
pattern, so the appearance of hexagons does not guaran-
tee a surface tension driven instability. A more careful
analysis of the response of the surface reveals that in the
case of a buoyancy driven instability the rising fIuid at
the center of the hexagons is associated with a bump,
whereas it leads to a trough in the Marangoni case. In
practice both mechanisms are operative, and the surface
remains Qat when they exactly compensate, which occurs
for d = [4 ( BX/dT)/apog ]'—~ (see Sec. VIII.F).

Taylor-Couette Qow provides another good laboratory
example for studying "one-dimensional" pattern forma-
tion. Eventually, as the rotation rate is increased, a
secondary instability occurs to a time-dependent Qow in
which first one and then a second wavy modulation of the

C. Taylor-Couette flow

The Taylor-Couette system is another hydrodynamical
example analogous to Rayleigh-Benard convection, ex-
cept that the buoyancy force is replaced by the centrifu-
gal force due to rotation (see DiPrima and Swinney,
1981). The apparatus consists of two concentic circular
cylinders with Quid confined to the gap between the
cylinders. If the outer cylinder alone is rotated, an az-
imuthal shear Qow is set up that is stable. If the inner
cylinder is rotated instead, however, the larger centrifu-
gal force near the rotating cylinder leads to an instability
above a critical rotation rate, towards circulating rolls
(called Taylor vortices) perpendicular to the axis of the
cylinder (Fig. 5). The radial coordinate is analogous to
the vertical coordinate in convection, and the azimuthal
and axial directions correspond to the horizontal direc-
tions in the Rayleigh-Benard system. Note, however,
that there is no symmetry between these two directions in
the Taylor-Couette case: the first instability is to a state
of azimuthal rolls, with no spatial variation around the
cylinders. Until this azimuthal invariance is destroyed,

FIG. 5. Schematic picture of the Taylor-Couette system, show-

ing fluid streamlines in the Taylor-vortex state when the inner

cylinder is rotated at a rate 0 & 0, .
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Taylor vortices travel around the cylinder at independent
velocities. The behavior is even richer if the outer
cylinder is rotated in the reverse direction to the inner
cylinder: now the first transition may be to a spiral
(barber's pole) pattern with the rolls simultaneously trav-
eling up (or down) and around the cylinder, analogous to
the waves in binary-ffuid convection (see Sec. IX.B).

D. Parametric waves

The excitation of waves via nonlinear processes pro-
vides another class of pattern forming systems. Again a
spatially uniform driving —now time dependent —leads
via the nonlinear interaction between the wave excita-
tions of the system to an instability toward states with
spatial structure. The simplest situation is where exter-
nal driving at a frequency co excites waves at wave vector
q, given approximately by the resonance condition

1
co, (q) =—co, (2.6)

with co, (q) the spectrum of the waves in the linear ap-
proximation. For experiments on finite systems we re-
place the plane waves by the linear eigenmodes of the
system consistent with the boundary conditions. The
mathematics of these parametric instabilities is simply
displayed in the much studied Mathieu equation.

One simple experimental realization is known as
"Faraday's crispations, " after the early experiments
(Faraday, 1831). A shallow disc of liquid is rigidly oscil-
lated in the vertical direction. The acceleration periodi-
cally modulates the effective gravity (i.e. one of the pa-
rameters of the wave equation). At sufficiently large driv-
ing a surface wave instability occurs with frequency one
half the driving frequency. The spatial pattern which is
usually seen initially corresponds to the linear mode most
closely resonant with this subharmonic frequency. (The
details depend on the strength of the coupling to the uni-
form driving, on damping eff'ects, and on geometry. ) In-
teresting pattern competition effects occur close to the
frequency at which two modes simultaneously go unsta-
ble.

This type of parametric wave instability has a number
of attractive features for studies of pattern formation; for
example the length scale of the pattern is easily tuned by
varying the drive frequency and may often be made small
compared with the system size, so that a great many spa-
tial periods inay be investigated. On the other hand dis-
sipative effects play a secondary role in these systems ex-
cept very near threshold, so that the attraction in phase
space to simple dynamical behavior is relatively weak,
and complicated dynamical eff'ects often occur (see
Sec. IX.D).

An analogous system is the parametric excitation of
magnetization waves in ferromagnetic bodies (often
ytrium-iron garnet spheres) by the spatially uniform
pumping of an oscillating magnetic field. However, the

spatial structure of the resulting state is hard to detect
experimentally, and attention has mainly focused on the
sequence of dynamic phenomena (see L'vov and Prozoro-
va, 1988). This system is treated briefiy in Sec. XII.C.

E. Reaction-diffusion systems

Forces and Bows are central to Quid systems; chemical
systems are dominated by reaction and diffusion. In a re-
markable paper Turing (1952) showed that these two sim-
ple ingredients could lead to a wide range of pattern
forming instabilities. This paper opened up an enormous
range of study spanning the fields of developmental biolo-
gy (Turing's main interest), laboratory chemistry, applied
mathematics, and engineering.

The important feature of these systems for our pur-
poses is the competition between different temporal
growth rates and spatial ranges of diffusion for the
different chemicals in the system. For example the very
simple linear equations for the concentrations ui(x, t)
and u2(x, t) of two reacting and diffusing chemicals in
one dimension,

B, , =D,B,+, , —b, u2

a, ,=D,a. ,—,,+b. . .2

(2.7a)

(2.7b)

1go=
1

a2

D2
(2.8)

In chemical and biological systems the above expressions
have been interpreted in terms of the interaction of an ac-
tivator u

&
and an inhibitor u2, since for positive a; and b;

the growth of u
&

stimulates further growth of u
&

and u2,
whereas the growth of u2 leads to decay of u i and uz (see
for example Murray, 1989). The diffusion constant D,
defines a decay length 8,=(D, /a, )'~, and similarly for
D2. The criterion for the existence of a finite-
wavenumber instability of the uniform state u

&

=u2 =0 is
seen from Eq. (2.8) to be 8, (Zz, which means that the
inhibitor has a longer range than the activator. This con-
dition has been expressed as the "principle of local ac-
tivation with lateral inhibition" (Oster, 1988) which is
found to occur in many models studied by theoretical
biologists (see Sec. XI).

For other parameter values the reaction diffusion equa-
tions (2.7) have an instability to a time-periodic state
[coo&0] which is spatially uniform (q0=0). The oscilla-
tory instability occurs when there is a large
cross coupling between activator and inhibitor
[b, b2 & —,'(a, +a@) ], and when the activator growth
exceeds the decay of the inhibitor (a, & a&). Such an in-
stability occurs in the oscillatory chemical reaction
discovered by Belousov and Zhabotinsky (see, for exam-
ple, Winfree, 1974; Ross et al. , 1988). The simplest state
immediately above threshold consists of a uniform oscil-

lead to an instability toward a time-independent state
with a wave number

1/2
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lation with no spatial structure. Experimentally, interest-
ing patterns are seen in this system, and they may be un-
derstood as defects in the uniform medium, which are nu-
cleated by imperfections or externally imposed sources.

For chemical and biological systems, the reaction-
diffusion equations (2.7) represent some sort of superficial
description of a complicated set of reactions. For exam-
ple, we have not discussed the mechanism for the pro-
duction of u& and u2. Moreover, a closed chemical sys-
tem, just as a closed Auid system, ultimately must come
to equilibrium. Nonequilibrium phenomena of interrest
to us either occur as a transient —maybe over long times—or in response to some external chemical pumping.
We discuss oscillatory chemical reactions in Sec. X.

F. Solidification patterns

The regularity of the shapes produced by crystals
growing into a supercooled or supersaturated environ-
ment is a well known phenomenon. The beautiful feath-
ery patterns with the hexagonal symmetry of ice, photo-
graphed in selected snowAakes, are one example; another
is the disordered pattern of metallic alloys formed from
the melt, whose microstructure is the determining factor
in the resulting material properties.

The tendency towards pattern formation in solid-
ification is demonstrated by the instability of a plane
front of the solid phase growing into the supercooled
liquid. This instability, known as the Mullins-Sekerka in-
stability, can be understood from the enhanced difFusion
in front of a bulge of the surface into the diffusion field of
temperature or impurity concentration that limits the
growth rate. This enhanced diffusion results in a local in-
crease in the growth velocity and in turn to further
growth of the perturbation. In the case of the free
growth of an interface into a supercooled region the in-
stability does not saturate at small amplitudes, so that an
analysis based on the Mullins-Sekerka instability is only
qualitatively useful, for example in identifying charac-
teristic lengthscales. Instead, the resulting state often
consists of needles, known as dendrites, moving out along
crystal symmetry directions. The growth velocity, the
size of the needles (e.g. the tip radius) and the shape of
the dendrites, including question of sidebranching, have
been the focus of much study. In this situation the sur-
face tension serves to control the instability at short
length scales so that regular patterns are observed. On
the other hand in growth processes where the only
short-scale cutoff is the discrete size of the particles, the
random arrival sequence is important and much more ir-
regular structures are observed. These may be fractal in
nature, at least at intermediate length and time scales.
Such growth processes are modelled by the numerical
procedure of "diffusion limited aggregation" or DLA.
We will restrict our attention to regular patterns, and
refer the reader to Vicsek (1989) for a review of DLA
type processes.

An experimental geometry in which the growth of the

Mullins-Sekerka instability is controlled, known as direc-
tional solidification, was developed by Jackson and Hunt
(1965). In this system the growth rate of solid from a
liquid mixture is limited by the diffusion of the impurity
species away from the interface. The position of the in-
terface is in addition controlled by an imposed tempera-
ture gradient 0, and the growth velocity is determined by
physically advancing the solid-hquid system at a 6xed ve-
locity v between hot and cold thermal reservoirs. The
values of U and 9 provide additional control parameters,
and may be used to saturate the instability at small am-
plitudes (in some cases as small as desired). The resulting
cellular pattern across the interface is analogous to the
periodic roll pattern in convection, and many of the same
theoretical ideas can be applied in this case and studied
experimentally.

The literature on solidification and other growth pro-
cesses is vast and we shall only touch on a corner of this
field in order to illustrate the analogies with the other
pattern forming systems which are the focus of this re-
view and to mention some differences. There are in turn
other Auid systems that show strong analogies with
solidification, for example the invasion of a viscous Auid
by a less viscous one, which may be systematically stud-
ied in the Saffman-Taylor geometry. We will not review
this work.

G. Nonlinear optics

Intense electromagnetic waves propagating in various
types of media can have interesting instabilities, the most
famous of which is the lasing instability occurring for ex-
ample in a cavity containing a gas of two-level atoms.
Typically, the laser is operated in such a way that only
one spatial mode of the electromagnetic field is excited in
the cavity, so the interesting variation is in time rather
than in space. Nevertheless, under some circumstances
parameters can be adjusted so that more spatial modes
come into play and spatial patterns also appear.

Besides a laser cavity, one can also consider intense
electromagnetic fields propagating along a glass fiber,
whose nonlinear response leads to a cubic propagation
equation for the envelope of the wave, in the form of a
"nonlinear Schrodinger" equation. This system is known
to possess localized propagating pulse solutions called
solitons in the ideal dissipationless case. Such solitons
are a prototype for many other localized solutions found
in nonlinear optics as well as other systems to be con-
sidered below. The coupling of electromagnetic waves to
atomic degrees of freedom via the Maxwell-Bloch equa-
tions offers many examples of nonequilibrium instabilities
and patterns, which will be brieAy discussed in Sec. XII.B
below.
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III. GENERAL FEATURES OF PATTERN FORMATION

A. Dynamics and stability

1. Dissipative dynamics and attractors

We will consider dynamical systems, defined by a time
evolution equation for the system variables (see Guck-
enheimer and Holmes, 1983). A typical example is a set
of nonlinear ordinary differential equations (ode's) '

B, U(t)=f(U;R),
for the n components of the state vector

U(t)= tu, (t)] =u, (t), . . . , u„(t),

(3.1)

(3.2)

where in general f( U;R ) is a set of nonlinear functions
of all the variables (3.2), depending on a control parame
ter R, which could be a set of parameters
R =R&, . . . , R . The instantaneous state of the system
at fixed values of R can be represented by a point in the
ri-dimensional phase space with coordinates given by
(3.2), and the time evolution by a trajectory in that
space. It is sometimes useful to consider in place of the
continuous time evolution (3.1), discrete dynamics given
by

trajectories of all the points in a subvolume 5V of phase
space, then 5V will in general be distorted as time
progresses, but its volume will remain constant. Another
type of dynamical system, the so-called dissipative ones,
are of particular relevance to the macroscopic descrip-
tion of physical phenomena. These systems have the
property that arbitrary subvolumes in phase space shrink
to zero at long times. This means that points eventually
end up on a lower-dimensional set called an attractor,
which has zero volume in the original phase space. Not
all points will necessarily end up on the same attractor,
of course. If the system has di6'erent attractors then each
one has its own basin of attraction, which is the set of ini-
tial points whose trajectories eventually end up on the at-
tractor in question. As we discuss further in Sec. VII
below, attractors come essentially in two types: regular
attractors correspond to laminar motion and possess a
simple geometrical shape such as a fixed point, a closed
curve (limit cycle), or a torus; the second class of attrac-
tors, the so-called irregular or "strange" attractors, cor-
respond to chaotic motion and possess unusual geometri-
cal properties. It may be noted that even regular attrac-
tors can have basins with very complicated geometrical
structure.

2. Stability and bifurcations

U(m +1)=f[U(m);R ], (3.3)

with m an integer. Such mappings often arise as approxi-
mations to the continuous dynamics in (3.1). A natural
extension of (3.1), which incorporates the notion of spa-
tial dependence and leads to spatial patterns, is to consid-
er a continuous set of state variables that depend on a
spatial coovdinate x, in addition to the time t. Then
(3.1) becomes a set of partial differential equations (pde's)

a, v(x, t) =G[v, a„v,. . .;R ], (3.4)

where the right-hand side of (3.4) depends on the gra-
dients and higher spatial derivatives of U. The phase
space is then infinite dimensional, though the trajectory
is still a curve in this space.

An important class of dynamical equations consists of
conservative or Hamiltonian systems that have the prop-
erty of preserving volume in phase space (Guckenheimer
and Holmes, 1983). This means that if one follows the

. For notational convenience we shall use the symbol 8 for all
derivatives, both partial and total. In cases where a confusion is
likely we will write the derivatives out explicitly, e.g. BU/Bt or
d U/dt.

For a pictorial introduction to phase space dynamics see
Abraham and Shaw (1983).

In the present section we write x in ordinary type though it
is in general a vector in d-dimensional space. In later sections,
when the distinction is important, we will use boldface type for
spatial vectors.

Given a solution Uo(t) of the equations of motion (3.1),
we can examine the stability properties of that solution.
We will distinguish three types of stability (or instability).
To define linear stability we consider a solution Uo(t) and
apply a small perturbation

U(t)=U, (t)+5U(t) . (3.5)

Inserting (3.5) into (3.1), and linearizing the equation
with respect to 5Uwe find

d, 5U=Df 5U, (3.6)

where Df is the Jacobian derivative off evaluated at Uo.

(Df); =5f;l5u
0

(3.7)

Then if all the eigenvalues of the matrix Df are negative

5U(t) decays at long times and Uo is said to be linearly
stable. The linearization leading to (3.6) is appropriate
for infinitesimal initial disturbances 5U. For finite 5U we
are dealing with nonlinear stability, which involves more
complex issues (see for example Sec. II of Normand
et al. , 1977). The solution Uo(t) is (nonlinearly) stable if
any solution that starts sufficiently close to Uo remains in
a finite neighborhood of Uo for all time. Thus Uo can be
stable by this definition without being on an attractor. If
at long times U(t) tends back to Uo(t) then the fixed
point is said to be asymptotica/ly stable and Uo(t) is an
attractor. generally speaking understanding the non-
linear stability of a solution involves characterizing its
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basin of RttractloIl. FoI' complicated tlIIlc dcpcndcncc
(e.g. chaotic motion) the linear stability properties are
nlost caslly summarized by the I/&au fEOU exponen tS
which will be discussed in Sec. VII.

For spRtlally cxtcQdcd systems the same concepts ap-
ply if we consider linear disturbances satisfying the same
physical boUQdary coI1ditlons 1Il thc fiQltc I'cgloQ. Often
we might want to consider an ideal infinite region, to re-
move complications of aI'bitrarily shaped boundaries. In
a translationally invariant system it is then natural to
consider the stability of Fourier modes '

|I U(x, r)-tl U (I) e''I",

which represent delocalized disturbances. It is also in-
structive to consider infinitesimal disturbances Uo(x)
which Rrc localized 1Il space. If such R solUtlon, Initially
localized around xo, say, grows large at xo then Uo(x ) is
said to be absolutely unstable. If, on the other hand, the
solution grows in amplitude but Q1oves away from xo,
such that its vRluc Rt RIly fixed spRtlal posltlo11 cvcntuRlly
dccRys to zcI'o, wc say that thc systcn1 ls con, UecfEUelg uPf-

stable (see Landau and Lifshitz, 1959, p. 111).
Thc Rbovc coIlccpts of stRblllty Rnd Instability have

been discussed here in a qualitative way to give the
reader an intuitive grasp of the richness of behavioI'
which occurs in dynamical systems. Standard texts on
di6'erential equations should be consulted for precise
de6nitions of stable and unstable manifolds (Arnol'd,
1988; Guckenheimer and Holmes, 1983) and of difFerent
stablllty cI'ltcI'la.

As the control parameter R is varied, changes may
occur in the qualitative structure of the solutions for cer-
tain parameter values. These changes are called bifurea
lions RIld they lnvolvc changes 1Il thc number of solutloIls
as well as their stability. The simplest bifurcations of
fixed-point solutions which depend on a single control
parameter R are of four types, exen1plified by the follow-
ing equations (Cxuckenheimer and Holmes, 1983):

SBddle-node TI BASCl ltICBI

Pitchfork
SUpel'Cf'Itic&I SubCritiCBI

(3.10)

If, as the control parameter varies, one goes continuously
from oIlc stable braIlch to t4c ot4cI' thcll onc speaks of a
supercritical bifurcation. If there is a loss of stability the
bifurcation is subcritica/. The pitchfork bifurcation is su-
percritical for g & 0 and subcritical fol g & 0 [see
Figs. 6(c) Rnd (d)]. Ill thc lallguagc of phase tl'Rnsltlolls
these correspond to second-order oI' continuous transi-
tions Rs opposed to fiI'st-oldcl oI' dlscont111uous tlaIlsl-
tlons, Icspcctlvcly. '

Certain perturbations of the equations will change the
bifurcation from one type to another. To the extent that
the perturbation is small, the original bifurcation is still

saddle-node: 8,u =R —u

tI'RnscI'ltlcal: 8,u =Ru —u

pitchfork: B~u —Ru gu

Hopf: B,u, = —uz+Ru I
—(u II+u 2 ) u I,

ul+RuZ —(ul +u&) u2 .

(3.9a}

Imper fect Pitchy ark

The first thI'ee examples involve fixed points only. The
Hopf bifurcation has a fixed point which loses stability
for R & 0, and a limit cycle (periodic solution) which
appears at A =0 and is stable for A & O. The stability
plopcrtlcs of tllc sollltlolls to Eqs. (3.9) Rl'c illustrated ill
Fig. 6.

The difFerences between the various bifurcations arise
bccaUsc of difFcrcnccs IIl thc spmmetIJ of t4c equations.
Thc p1tchfork blfurcatlon [Figs. 6(c) Rnd 6(d)] ls ublqul-
tous in physical systems, but it depends on the absence of
a quadratic term on the rhs of (3.9c), or more generally

FIG. 6. Simple bifurcations from a time independent state.
Curves show how the solution evolves as a control parameter
(varying along the abscissa) is changed. Solid lines denote
stable solutions, dashed lines unstable solutions. The dotted
line in (e) shows the continuous growth of the amplitude of the
limit cycle.

3.~Supercritical and subcritical bifurcations are also sometimes
referred to as "forward" and backward".
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approximately present, and one speaks of an "imperfect"
bifurcation. For example, generic perturbations of the
pitchfork bifurcation change Eq. (3.9c) to

(3.11)

which has two characteristic forms, shown in Figs. 6(f)
and 6(g). In the first case [for example for p =0, Ii & 0,
Fig. 6(f)] one is left with a smooth transition (no bifurca-
tion), plus a saddle-node. In the second case [for example

& 0, p & 0, p & h /27, Fig. 6(g)] one is left with
three saddle nodes and hysteresis, i.e. a subcritical bifur-
cation.

Tel, 1986, 1990a,b). It is a single-valued functional in
phase space @[U] that is constant on any attractor and
decreases in any dynamics away from the attractors. It is
defined formally as the solution of a complicated
Hsmlltonlan- Jacobl cqUatloIl RIld has Rn 1IltcI'estlIlg 1Il-

terpretation in terms of the probability distribution of the
system under the infiuence of weak external noise (see
subsection III.A.4 below). The main difFerences between
the potential @ and the functions V and 9 defined above
are that (i) 4 is a highly singular function (only piecewise
difFerentiable), and (ii) @ does not determine the dynam-
ics. On the contrary, it is usually necessary to know the
solutions U{t) in order to construct @[U].

3. Potential motion and Lyapunov functions

A ccrtaln subclass of dyIlaIIllcal systeQ1s, IlRIIlcly pOI;ePs-

tial or gradient systems, are of particular interest because
their behavior is simpler than the genera1 case, and be-
cause they are frequently encountered ln approximate
treatments of physical systems. For a gradient system
Eq. {3.1) takes the form

B,u;(t)=— 5
6u;

(3 12)

wliei e 9[U] is a (scalar) function of the vector
[Hirsch and Smale, 1974, pp. 199II]. More generally, a
system with an attractor Uo is said to have a Lyapunov
function V for this attractor if this function satisfies the
conditions

4. Deterministic versus stochastic dynamics

In thc fol cgoing wc have consldcI'cd deteI'Pl I,fllstEc
equations such as (3.1) and (3.4), where in principle the
solution is uniquely specified by the initia1 conditions.
Physical systems, on the other hand, are often best
represented by stochastic equations, where the dynamical
variables U are coupled to a set of random variables g
that are specified by their probability distribution rather
than by their equations of motion (see Van Kampen,
1981;Gardiner, 1983; Moss and McClintock, 1989). The
random force represents a bath of degIees of freedom
which are not contro11ed in the experiment. These cou1d
involve either noise on a Inolecular scale, or various
forms of macroscopic noise associated with the ap-
paratus. The prototype equation has the form

V(UO) = 0, (3.13)
i},U=f ( U;R )+g(t), (3.15)

0 for UW Uo,dt
{3.14)

In the mathematical literature systems defined by Eq. (3.12)
are called "gradient*' systems, but we shall fo11ow the practice
among physicists and use the terms gradient" and "potential"
interchangeably. Gradient systems are also sometimes referred
to as "variational".

and V is a smooth function of U in some neighborhood
of Uo (Hirsch and Smale, 1974). A gradient system,
satisfying (3.12), has a global Lyapunov function if V is
bounded below. For gradient systems the dynamics con-
sists of relaxation toward the minimum in X This means
that such functions aI'e strictly only defined when the
corresponding attractors are fixed points and there is no
chaos noI' cvcIl RIly pcllodlc motion Rt 10Ilg tlIIlcs. As
discussed further below, Eq. (3.12) can be generalized to
spatially continuous systems and it provides important
examples of pattern forming systems.

Graham and co-workers have introduced a "nonequili-
brium potential" that is forInally similar to R Lyapunov
function but can be de6ned for an ar'bitrary dynamical
system of the form (3.4) (Graham, 1989; Graham and

where g(t) represents a set of n random variables. A
similar set of equations apply for the continuum system
(3.4). More general forms have also been introduced, in
which the noise g depends on the variable U, but we shall
not consider them further here (see Hortshemke and
Lefever, 1984.)

Thc pI'cscIlcc of a stochastic foI'cc gI'catly comp11catcs
the mathematical problem of finding solutions to (3.15),
but we shall primarily be concerned with the qualitative
CAects of apoise. First of a11, we can cite the consequences
for the geometry of attractors, both in smearing out the
singular structure of strange attractors {Graham, 1989),
SIld ln pI'ovldlng RI1 clgodlc pI'obablllty IIlcasUlc Rs dis-
cussed in Sec. VII.B below. Another important C6'ect of
nolsc occUI's ill thc case whcIc thc deterministic paI't has
the gradient form (3.12), and the stochastic force can
cause the system to surmount potential barriers and to
move from one loca1 minimum to a lower one. Such pro-
ccsscs RI'c UblqUltoUs 1Il systcIIls ncsI cqui1lb'1lull UIldcr
the infiuence of thermal noise (see Hohenberg and Halpe-
rin, 1977). Although considerable theoretical work has
been devoted to the CBects of noise on noncquilibrium
systems (see Hortshemke and Lefever, 1984; Moss and
McClintock, 1989) the problems are difIicult both
mathematically and physically. In particular, the form
and magnitude of the noise in Eq. (3.15) depend on the
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5. Bifurcations versus phase transitions

Sharp b1furcations occur for ordinary d16'erential equa-
tions (ode's) or partial differential equations (pde's) on
finite spatial doIDains when parameters in these equations
are varied. If a constant term, such as h in Eq. (3.11), is
added to the right-hand side the bifurcation is rendered
imperfect, i.e. the transition is smeared over a region
determined by the magnitude of h. Thermodynamic sys-
tems, on the other hand, are known to display sharp
phase transitions only in the thermodynamic hmit of an
infinite volume V~ 00. For finite V the free energy is an
analytic function of the thermodynamic fields T, H, etc.

In order to reconcile the two dN'crent situations let us
consldcI' a simple thcrmodyIlamic system such as aIl Is1Ilg
model. From the point of view of dynamics the Gibbs
ensemble can be obtained as the stationary probability
Ineasure of a stochastic equation of the form

B,u;= +g;,5
5Q I-

(3.16)

where V[ju;] ] is a free energy functional and g is a
thermal noise term with (g ) —T (see Hohenberg and
Halperin, 1977). This systein has an imperfect bifurca-
tion for any finite volume, due to the sInearing caused by
g. A sharp phase transition [(u ) =0 for T ~ T„(u )WO

for T( T', ] occurs only in the limit V~~, where the
thermal noise g does not lead to an imperfect bifurcation.
The mean-field approximation replaces the system (3.16)
by a homogeneous deterministic equation for a single de-
gree of freedom, which has a sharp bifurcation (Binder,
1973). Besides finite-size efY'ects coupled to thermal fiuc-
tuatlons, phase tIanslt1ons caIl also bc smeared by imper-
fections. For macroscopic bifurcation phenomena, on
the other hand, thermal noise is usually negligible (see
Sec. VI.D below), so transitions are of the mean-field

type, i.e. they remain shaI'p in finite systems and smear-
ing is only caused by imperfections in that case. This dis-
tinction has not always been appreciated by workers in
the field.

B. Linear instabilities and basic nonlinear states

1. Linear instabilities

We start from a system consisting of n partial
diff'erential equations (pde's)

B,U=G[U, 8 U, . . . , R], (3.17)

for the functions U=ui(x, t), . . . , u„(x,t). We suppose
that the uniform state U=Q is a solution for all values of

details of each system under study, and. they are dificult
to determine reliably. We shall discuss the CA'ects of
external noise on pattern selection in Sec. VI.D below,
and the connection between such extrinsic stochasticity
and chaos in Sec. VII.E.

the control parameter R. In order to define the problem
mathematically we must also specify boundary condi-
tions on the domain of definition x H V of (3.17) and ini-

tial values at t =0, say. We will classify systems in terms
of thc IcspoIlsc to s1nglc FouI'1cr mode distulbanccs 1n

the ideal infinite system. The basic instability of (3.17) is

found by linearizing G[ U] about U=0 and studying the
evolution of modes of given wave vector (see fotenote 3.3)

u-(x t)=u e'~" (3.18)

The ensuing II',near equations

0 U=D ~ U (3.19)

D;J. =5G;/5uj, (3.20)

have a set of eigenvalues o (q), and we choose to focus
on the one with the largest real part, which we denote as
o(q). It is interesting to remark that in most pattern
forming systems the wave vector q lies in a space of re-
stricted dimension (1 or 2). For example in convection
the periodicity is in the hoIizontal plane: the vertical
structure is completely determined by the boundary con-
ditions at the plates. Similarly in biology, pattern forma-
tion largely seems to occur on surfaces or membranes.

Now suppose that the dependence of 6 on the control
parameter R is such that for R & R„R&re(q) &0, and
for R =R„Reo (q =qo)=0 for some qo. We introduce
the reduced control paraineter

c.=(R —R, )/R, ,

(assuniing R, A 0), and show in Fig. 7 the dependence of
Reo (q) on q and s. For s & 0 the uniform state is stable
and Reo & 0, whereas for e.=0 the instability sets in
(Reer =0) at a wave vector q =qo. For s & 0 there is a
bond of wave vectois q & q ( q~ (iii the iilfiiiite sys-
tems we are considering), for which the uniform state is
unstable. The instability of Fig. 7 I can be of two types:
either stationary if Imo (qo ) =0, or oscillatory if
lmo(q, ) —= ~, a Ofors=-O.

Another class of instability occurs if for some reaso~
(usually a conservation law) Reo (q =0)=0 for all c,. We
then have the situation depicted in Fig. 7 II. The critical
wave vector is qo =0, and the unstable band for c, ) 0 is
0 ~ q ~ q+, with q+ -c' or c., so that the pattern
occurs on a long length scale near threshold. Once again
there are two possible cases, steady [Imo(q=O)=0) or
oscillatory [Imcr(q =0)=ego A 0].

In the case depicted in Fig. 7 III both the instability
and the maximum growth I'ate occur at qo=0. Here
there is no intrinsic length scale. The structure will
presumably occur on a scale defined by the systeID size,
or by the dynamics. As in the other two cases, this situa-
tion can correspond to either a steady [Im o =0] or an
oscillatory [Im o. A 0] instability.

We may thus divide pattern forming systems into
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&0 &0

e&O

6'&0

=0

FIG. 7. Schematic representation of the linear growth rate
Re a as a function of the wave vector q, for various values of
the reduced control parameter e, showing the classification into
types I, II, and III.

change of sign of the field variables, U —+ —U.
We refer to patterns as "ideal" if they retain certain

symmetry elements of the full system, in particular at
least discrete translational symmetries. Ideal patterns are
fundamental to a qualitative understanding of more com-
plicated states. They may be analyzed by group-theoretic
methods, and are identified as being isotropic under some
subgroup of the full symmetry group of the system, as is
found in the Landau theory of phase transitions (Landau
and Lifshitz, 1958). We will briefly describe these
methods in Sec. IV.B below, but for now we proceed heu-
ristically, describing the ideal patterns which appear at
the various types of instabilities.

different classes according to the nature of the linear in-
stability of the spatially uniform state. There are three
types, depending on the value of the most unstable wave
vector qo near threshold: type I is spatially periodic with

qo =0 (1), type III is uniform with qo =0, and type II is
intermediate with an unstable band 0 ( q & q+,
q+ -c' or c. For each type there are two subtypes de-

pending on the temporal instability: stationary if coo=0
and oscillatory if coo=0(1). Since type II can often be
scaled to resemble type I we will concentrate on three
sub classes:

~ Type I„stationary periodic (coo 0 qo W 0),
~ Type I„oscillatory periodic (coo W 0, qo W 0),
~ Type III„oscillatory uniform (coo A 0, qo =0).
The case III, (coo=0, qo=0) does not involve pattern

formation in an essential way and will not be considered
in what follows.

2. Ideal patterns

In this section we give a qualitative discussion of the
basic nonlinear states, i.e. those characterized by certain
simple symmetries rejecting the nature of the transition
in the laterally infinite system. In Sec. IV we discuss per-
turbation methods to calculate the properties of these
simple states, and in Secs. V and VI we study the more
complicated patterns encountered in realistic situations.

Since we are interested in pattern forming systems i.e.
systems that spontaneously form spatial structure not im-
posed by external constraints, we will assume the system
to have translational symmetry, in one, two, or rarely
three dimensions. The patterns breaking this symmetry
beyond the instability will then be characterized by a spa-
tial periodicity with a wave vector q. Other symmetries
may also be present depending on the system. There may
be a continuous spatial rotational symmetry, in two or
three dimensions, as in ideal Rayleigh-Benard convec-
tion, which has rotational symmetry in the plane. The
Taylor-Couette system has two translational symmetries
(axial and azimuthal) but these are not related to each
other by a rotational symmetry. In addition, there may
be discrete symmetries such as parity x —+ —x, or invari-
ance of the equations under "inversion", i.e. under a

a. Saturation of the linearinstability

A basic role of nonlinearity is to saturate the exponen-
tial growth of the unstable mode proportional to
exp(iqx). In addition, since the principle of superposition
no longer holds, the nonlinearity may select between
different combinations of symmetry-related states which
grow equally rapidly in the linear regime. For stationary
instabilities the unstable mode may saturate into a state
which is spatially periodic (see footnote 3.3)

U (x, t)=U„(qx) . (3.22)

This state has a discrete translational symmetry which
can be represented by a phase variable P =qx,

U (P) = U„(/+2~) . (3.23)

The ideal convective roll state or the Taylor vortex state
are canonical examples of periodicity in one direction. If
rotational symmetry is present in the system, we may
construct a saturated nonlinear state from the growth of
superimposed small amplitude roll solutions with equal
wave numbers but different directions. Spatially periodic
patterns in the form of squares or hexagons, which may
develop from the growth of equal amplitudes of rolls at
angles of vr/2 or 2vr/3, are commonly discussed [see
Fig. 8]. Rhomboid states, with two sets of rolls that are
not perpendicular seem possible, but have not received
much attention. The hexagonal pattern is particularly
interesting since several different possible local structures
may be formed with complicated cellular organization.
In addition, unlike the roll or square solutions, there is a
breaking of inversion symmetry ( U~ —U), and the
maximum positive values at the center points are larger
than the most negative values around the edges of the
cell. (The alternate pattern reversing the result is of
course also possible. ) Small symmetry breaking perturba-
tions in the system may strongly favor one or the other of
these patterns, changing the transition from pitchfork to
transcritical and making hexagons the preferred state
(over rolls, squares, etc.) near threshold. Thus the hexag-
onal pattern is commonly observed in many systems lack-
ing inversion symmetry, for example convection in non-
Boussinesq fluids or under time-dependent heating (see
Sec. VIII.F).
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(a) rolls (b) squares (c) hexagons

FIG. 8. Ideal states of type I systems, with solid lines denoting positive maxima (e.g. Quid upgrow) and dotted lines negative maxima
(e.g. Quid downflow): (a) roll state; (b) square state formed from nonlinear saturation of two superimposed roll states at angle m. /2; (c)
hexagon state formed from three sets of rolls at angles + ~/3. Maximum downAows in hexagon state occur along the dashed line
which delineates the boundaries of the hexagonal cells.

For oscillatory instabilities the simplest saturated state
is the traveling wave train (or rotating wave)

tions may occur to states of lower symmetry, e.g. quasi-
periodically modulated states.

U ~(x, t)= U (qx cot) . — (3.24)

[Type III, systems admit the special case of a spatially
uniform oscillation U (x, t)= U„(cot).] Note that a time
delay At is equivalent to a spatial translation
~bx

~
=v~z b.t, with v&I, the phase speed co/q. This means

that as well as maintaining a discrete spatial translational
symmetry, the system continues to show a continuous
symmetry under a combined space-time translation. One
consequence is that spatial averages will be time indepen-
dent in the ideal infinite system. The wave trains are
characterized by a dispersion relation co(q ), which will in
general depend on the nonlinearity.

If the q and —
q instabilities occur together, then

standing waves may develop at threshold and continue to
exist for stronger driving. Standing-wave solutions
which are of the general form

U(x, t) = U„(qx,cot) (3.25)

have only discrete translational symmetries along the
direction of the wave vector and in time,

x ~ x+2rrIq, t ~ t+2vr/co . (3.26)

In addition, standing waves possess the discrete sym-
metries of parity (x ~—x), and the combined symmetry
of time translation through half a period (t ~ t+m/co), r

and inversion (U ~—U). Note that in general there will
not be any x and t for which all U are zero simultaneous-
ly. For example, in binary-Quid convection equal-phase
wave fronts oscillate up and down in the z direction, and
the Quid velocity is never simultaneously zero at all z for
any x or t.

The selection between the various nonlinear states in
both stationary and oscillatory situations is determined
in part by stability considerations, but there often exist
regions of multiple stability. Near threshold the calcula-
tions are easily carried out using the amplitude equations
developed below. Away from threshold further transi-

b. Stability balloons

We can also ask about the magnitude of the wave vec-
tor q in the states that exist beyond the instability, for ex-
ample in the simple roll or wave states. Near threshold,
spatially periodic nonlinear states can typically be found
over the whole band of wave vectors inside the curve
R, (q) of instability of the uniform state, as may be ar-
gued from general principles of bifurcation theory. How-
ever, the band of observable or useful wave vectors is fur-
ther restricted by the stability of the corresponding
states. For the example of stationary convection, the
linear stability analysis of the nonlinear steady states has
been carried out in some detail (Busse, 1967a, 1978).
Away from threshold, where numerical methods are
needed, Busse and co-workers have found a large number
of characteristic instabilities, leaving however a finite
band of stable wave vectors for Rayleigh numbers not too
far away from threshold (Fig. 2). Two instabilities are
quite generally seen in such systems, and survive to limit
the band near threshold (Newell and Whitehead, 1969).
These are the Eckhaus instability, a long-wavelength lon-
gitudinal (compressional) instability, and the zigzag insta-
bility, a long-wavelength transverse instability. Long
wavelength here means that the instability first occurs as
a distortion over arbitrarily long length scales. Further
from threshold the instabilities found by Busse (knot, os-
cillatory, etc.) have short wavelengths and are specific to
the physics of the fiuid system (see Sec. VIII.A below).

C. Model Equations

1. Motivation

The physical, chemical, and biological systems de-
scribed in Sec. II which we wish to study are often quite
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complicated and thc equations Rnd boUIidary conditioIls
dcscllbiDg them RI'c not always known pI'cciscly. EvcIl
when they arc known, as 1s thc case foI' IDany hydro-
dynarnic instabilities, a linear analysis already requires
numerical evaluation and a direct analytic approach is
impossible beyond threshold. The perturbation methods
described below are a partial response to this situation,
though calculation of the appropriate coe%cients can be
difBcult even if the starting equations are known precise-
ly.

It turns out, however, that full solutions of Iealistic
equations are not usually needed to gain an understand-
mg of thc spatial pattcI'Ds displayed 1D thcsc systems.
Indeed, Inany different systems show similar patterns, so
it is reasonable to attempt to extract from each system
those features which control pattern formation, and to
incorporate them into model equations which will be
simpler than the more realistic starting equations. We
might, for example, attempt to reproduce the stability
balloon of the ideal nonlinear solutions. One way to ac-
complish this is to find a simpler "microscopic" model
which reduces to the same amplitude and phase equa-
tions (see below) as the original model. In this way the
long-wavelength stability properties will be preserved.
Another way to construct a IDodel is by some
mod16cations of thc original U systcID, foI example re-
placing realistic boundary conditions by artificial, simpler
ones to yield a separable system. The models thus ob-
tained are easier to study both analytically and numeri-
cally, and they display interesting pattern-foI'ming prop-
erties, e.g. defects, boundary effects, slow relaxation and
chaos. Such properties are thought to be independent of
the detailed m.echanisms leading to the instability, and
are therefore shared between realistic equations and ap-
propriately chosen models. In the field of thermodynam-
ic critical points the careful study of simple models to
predict certain properties of real systems is an applica-
tion of the concept of universality. By this we do not
mean that all systems behave in the same way, but that
certain properties, in particular those involving long-
range effects, are common to a class of systems, and can
therefore be understood by studying a simple member of
that (universality) class. For critical-point phenomena
this notion is highly quantitative (see, e.g., Privman
et a/. , 1991 and references therein), whereas it is unclear
Rs yct how faI' thc concept may bc pUshcd to study QoDc-

uilibl ium pattcI'n formation.

3 6As mentioned in the Introduction, me refer to staIting equa-
tions such as (3.4) as "microscopic" equations to denote the fact
that all length and time scales of interest are included in the
description. This is in contrast to simpler equations such as am-

plitude or phase equations, obtained from the original ones by a
coarse-graining procedure. Of course the term microscopic is
relative, since the U-model may itself be the result of averaging
some more basic description. We merely use the wvord to indi-

cate that all length and time scales have been defined by the
model.

The models that have been studied in recent years fall
into two classes which we consider in turn: the first con-
sists of partial diiferential equations (@de's) which are
similar to the I'ealistic 6eld equations of physics and
chemistry; the other class comprises various discretiza-
tions of field equations, in which one can discretize either
space (coupled ode's), or space and time (coupled maps),
or space, time, and the field (cellular automata). Of
course any numerical solution of a partial differential
equation 1nvolvcs dlscrctlzatlon, bUt this 1S only R calcu-
lational tool and it is necessary to verify that all results
are independent of the discretization to the accuracy
claimed for the calculation. For discrete models on the
other hand, only the universal properties are supposed to
be insensitive to the particular discretization, and even
this insensitivity may be qualitative rather than quantita-
tive. Clearly, the choice of models and their interpreta-
tion require insight and experience in order to determine
which are the essential features and which are expend-
able.

2. Partial dlft'erentlal equations

Here we list some of the simple models whose pattern
forming properties are frequently studied. Many other
IYlodcls have bccn coDsidcI'cd foI' special applications Rnd
some of these will be mentioned in later sections.

a. The Swl'ft Hohenberg -(SH) equation andits variants

This model is of the form (Swift and Hohenberg, 1977;
Pomeau and Manneville, 1980)

(3.27)

7= Id"x I
—

—,
' eu + —,

' [(V' +1)u]2+—,'u4] . (3.28)

An interesting nonpotential variant is the model intro-
duced by Pismen (1986)

B,u =c, u —(V' +1) u+3(Vu) 7' u, (3.29)

which has the same type I, linear instability as (3.27) and
IIlany siIDilaf nonlinear properties.

b. The KuI amoto-Sivashinsky equation

Another equation which was motivated by the study of
amplitude and phase expansions, but which is now stud-
ied in its own right as a "microscopic" model, is the
Kuramoto-Sivashinsky (KS) system (Kuramoto and
Tsuzuki, 1976; Sivashinsky, 1977)

8 $= —V P —V P ——(VP)
1 (3.30)

where u (x, t) is in general a real field in d-dimensional
space. Complex generalizations are sometimes con-
sidered, as well as asymmetric variants (with addition of
a quadratic term on the right-hand side). The model is
potential [see Eq. (3.12)] with the potential
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This equation is often generalized to include a linear term
and written (in one dimension} as an equation for u =c)„P
in the form

B]Q — 'gQ B~Q B~Q QB~Q (3.31)

c. Reaction-dIffusion equations

The original (nongeneralized) KS equation has g=0,
which implies a "Galilean symmetry" [u ~ x Ut, —
u —+ u+U]. This nonpotential model displays a type I,
instability at q=1/4, and interesting chaotic behavior
which we discuss in Sec. VII.D below, for ri & 1/4. Al-
though present interest focuses on the chaotic properties
of Eq. (3.31), it had been studied many years earlier Rs a
model for nonlinear waves (see the references in Greene
and Kim, 1988).

go under the naIIle of amplitude equations . CQIl-

sidered in their own right as model dynamical systems we
will refer to them as Ginzburg-I. andau models, a pro-
totype of which is

a, A=(b, +ic, )V'A+f, (IAI') A, (3.35)

f& =fi, +if'; (3.36)

is an arbitrary complex function of its argument
I
A I,

RIld bi and ci Rre Ical constants. In one dimension we
will also consider the generalized equation

B, A =(b)+ic()B„A+ f)(IAI )A

+B„[f(I Al )A] + [cl„f(IAI )]A,
(3.37)

The reaction-diffusion equations introduced in Sec. II
above as a description of chemical reactions can be con-
sidered as abstract models of pattern forInation. The
general form is (Murray, 1977; Fife, 1979)

B,U=f(U)+DV U,

for various functions f and constant matrix D. Of course

Eq. (3.32) does not restrict the behavior significantly, and
examples of all the types of instability we have con-
sidered can easily be found by suitable choices of f and
D. If we generalize Eq. (3.32) to

f)(p) = e (b3 lc3)p (bg ic5)p f2=f3 =o

a, A =(b, +ic, )a„'A+EA

where f2 and f3 are complex functions. There are clear-
ly many variants of the above equations, with anisotropic
derivatives in higher dimensions, or with other fields cou-
pled to A. Some of these will be encountered in what fol-
lows.

A frequently encountered one-dimensional example of
the complex Ginzburg-Landau model (3.37) is (see, for
example, van Saarloos and Hohenberg, 1992)

(3.33) —(b3 —ic3)IAI A —(b~ ic5)l A—
l

A . (3.39)

with a constant matrix r then the SH model (3.27) is ob-

tained from a two-component equation of form (3.33)
with r)) =1, r)z='p2)='T22=0, f ) =(E 1)u) u ) 2uz,
fz=u2 Diz= —1»i= —1 Dii=Dz2=0

A reactioIi-difFusioIi system which has received consid-
erable attention is the so-called "A,—co model" (Howard
and Kopell, 1977), B, A =ic&B„A+ic3IAl A, (3.40)

[Often the quintic term is not present, i.e. b5 = c5 = 0.]
When b3 & 0, the model (3.39) has a supercritical bifur-
cation at c.=0, and when b3 & 0 it has a subcritical bi-
furcation (when b3 & 0 we assume bs & 0 for stability).
The special case b& = e = b3 = b5 = c5 = 0, is the non-
linear Schrodinger equation

B,u, = A(u )u, —co(u )uz+V u, ,

B,u2 = co(u )u, +A(u )u2+V u2,

(3.34a)

(3.34b)

and the case with c5 A 0 we will call the quintic-cubic
Schrodinger equation

where u = u, +u2, and co(u ) and A,(u ) are smooth
functions. If co(0) A 0, the model has a type III, insta-
bility when A,(0) goes through zero. The amplitude equa-
tion discussed in Eq. (4.49) below, for type III, instabili-
ties, is a special case of the A, —co model for which
A,(u )=E—gou and co(u')= —c,u . On the other hand
(3.34) corresponds to (4.49) with c, =—0, so in a sense the

co model ls also a special case of the amplitude equa-
tion, since (3.34) has a diagonal di6'usion matrix.

d. Ginzburg-Landau models

In perturbative analyses of the microscopi. c equations
for various systems one encounters complex pde's which

B, A =ic&d„A + ic3IAI A + ic5I Al A . (3.41)

A model that has been studied in the plasma litex'atule ls
the "derivative nonlinear Schrodinger" equation

b) =f ) =f3=0, f2(l AI')=so + sil AI',

8, A = ic, c)'A+c) [(so+sgIAI')A] .

(3.42)

(3.43)

The name derives from the formal similarity with the
Ginzburg-Landau (1950) theory of superconductivity, though
the latter did not concern itself with dynamics. The earliest am-
plitude equation in space and time with complex coefficients
seems to be that of Stewartson and Stuart (1971).
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%'e also can define a case we call the "generalized deriva-
tive Schrodinger" equation, obtained from (3.37) by as-
suming

bi=fi. =f2 =f3 =o (3.44)

B, A =ic,B„A+ifi;(I&I') &

+B„[f„(I&l) &]+[&„f„(I~I')f~ (345}

It is important to note the role of these Ginzburg-
Landau equations as model equations. It is true that
many properties of noncquilibrium systems are encoun-
tered in these equations, and indeed many hard problems,
such as the existence and interaction of defects and
coherent structures (Sec. V), or the appearance of chaos
(Sec. VII), may profitably be addressed in the simple
framework provided by these equations. However, it is
only as a perturbative expansion valid in a small region
near threshold that they provide a quantitative descrip-
tion of real experimental systems, and results may be
even qualitatively misleading if applied far from thresh-
old. More technically (as will become clearer below) we
may say that far from threshold only the phase of the
complex A survives as a slow degree of freedom, since it
describes a symmetry of the system. The magnitude

I
A I,

on the other hand, only becomes slow near threshold,
and far away it is just one of many fast degrees of free-
dom so there is no reason to expect a simple description
in terms of a Ginzbur'g-Landau model to be quantitative-
ly valid.

together there can be an interplay between the local dy-
namics of a single Inap and possible instabilities which
Rr1sc fl om tllc coUpllng. A system analogous to
reaction-diffusion models which has been studied widely
in recent years takes the form

u„+i(i)=f(u„(i))+—g, g u„(i+/)—2d u„(i)I
2

(3.47)

where g is a coupling constant, i ranges over a d-
dimensional hypercubic lattice and (i+/) denotes a
nearest neighbor of i. A linear stability analysis can be
carried out foI' th1S model 1Il Rnalogy to thc onc dcscr1bcd
in Eq. (3.19), and the diff'erent types of instabilities found
there can be recovered (see Oppo and Kapral, 1986).

c. Cellular automata

The main appeal of coupled lattices is the relative ease
with which their behavior can be simulated numerically.
The same holds to an even greater degree for cellular au-
tomata, for which also the dynamical variable u„(i)takes
on only a discrete set of values (see Wolfram, 1986). In
addition to thc1x' numerical coIlvcn1cncc ccllUlal automa-
ta are simple enough so that a rather complete
classi6cation of their dynamical behavior can be given.
These systems are therefore potentially useful as simple
models with nontrivial dynamics, for which exact results
could be proven.

3. Discrete models

a. Systems of ordinary differential equatIoni

b. Coupled maps

A S1Ilg1c Qon11IlcRI' mapping sUch Rs the log1st1c map

u„~,=Au„(1—u„}= f(u„), (3.46)

has nontrivial bifurcations and dynamics (see Collet and
Eckmann, 1980}. When a set of such modes is coupled

Systems consisting of a small number of coupled non-
linear Ode's have been of central importance in the study
of temporal chaos, since the seminal work of Lorenz
(1963). If a large or even infinite number of modes are
coupled together with short-range coupling, then we
have R d1scI'ctlzcd form of R pd8 wh1ch caQ d1splay 1Q-

teresting spatial patterns. Although such models have
been considered in the literature (see, e.g., Aranson
et al. , 1986), the usual practice is to discretize time as
well, and study coupled maps (Kaneko, 1985; Crutchfield
and Kaneko, 1987).

In this section we wish to describe some general ana-
lytic approaches to the problem of pattern formation„
concentrating on gcncI'Rl methods of solUtloQ that RIc ap-
plicable to most of the systems under consideration.

A. Perturbative methods

Since finding analytic solutions to nonlinear @de's is
impossible in general, it is important to devise shortcuts
to solTlc UIldcI stand11lg of thc bchavlor. Onc sUch
shortcut is to go to a limit where the solutions may be
calculated perturbatively. There are two main situations
which have some generality for a diverse range of sys-
tcIIls, Rnd wc will emphasize these situations herc.

Near threshold. Here the nonlinearities are weak
and the spatial and temporal modulations of the basic
pattern become slow. The balance between these C6'ects
is described by "amplitude equations" for the envelope
function of the basic state. These equations come in a
small number of universal forms, largely dictated by the
linear instability classification of Sec. III.B, and they
serve to carry this classification into the weakly nonlinear
regime. The approach has been rediscovered in many
diff'erent contexts (Landau, 1944; Stuart, 1960; Newell
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and Whitehead, 1969; Segel, 1969; Stewartson and Stuart,
1971; Newell, 1974; Haken, 1977) and bears a strong
resemblance to the mean-field Landau theory of equilibri-
um phase transitions (Landau and Lifshitz, 1958).

o Weak distortions. Even arbitrarily far from thresh-
old, weak distortions of a regular pattern, involving spa-
tial modulations over distances large compared to the
basic period, can be treated perturbatively yielding
"phase equations" (Pomeau and Manneville, 1979; Cross
and Newell, 1984; Kuramoto, 1978, 1984a,b; Pismen,
1989; Brand, 1988; Bernoff, 1988). Again there is a simi-
larity of form and general behavior among the phase
equations for different systems displaying a particular
type of instability, but as might be expected there is more
freedom in functional dependences, reflecting the detailed
nonlinear behavior which must be calculated separately
for each system. Whatever universality is left from the
broad classification scheme at onset is reflected in the
form of the phase equation.

These methods share the common philosophy of elim-
inating fast modes, which adiabatically follow the slow
modes of interest (a procedure referred to as "slaving" by
Haken, 1977). Near threshold the slow modes include
the magnitudes of the marginally unstable band of solu-
tions, as well as symmetry modes described by phases.
Further away from threshold the magnitude and "shape"
of the ideal nonlinear solutions join the other fast modes,
and we are only left with slow phase modes. A recent re-
view emphasizing fluid dynamical applications has been
presented by Newell et al. (1993).

1. Amplitude equations

a. Type /, :Stationary periodic

(i) General form of the amplitude equation

the complex conjugate. A complex amplitude is chosen
since a phase change then corresponds to a spatial
translation of the unstable mode. For an isotropic sys-
tem the function 2 (x,y, t) satisfies the equation

rpB, A =EH+/ [8 (—(/2q )8 ] 2

=rp '[s—gp(k + k /2qp) ], (4.4)

where we have kept the lowest order terms in each of k
and k» in expanding ~qpx+ k~ —

qp for small ~k~ . Note
that the difference in scaling in the two directions reflects
the inherent symmetry breaking of the instability, which
was here chosen with wave vector in the x direction.
Equation (4.3) is recovered by the substitution
o. ~ B„k~ —iB, and k —+ —iB . The constants v.

o
and gp are directly given from the linear instability spec-
trum through Eq. (4.4)

(4.3)

There are several ways of deriving Eq. (4.3) from particu-
lar microscopic equations. These include the introduc-
tion of multiple scales to formally separate the fast and
slow dependences (Newell and Whitehead, 1969; Segel,
1969), or the use of mode projection techniques (Cross,
1980; Haken, 1977), which emphasizes the slaving idea.
However the form of the equation is quite general,
reflecting the symmetries of the type I, instability. The
detailed properties of the individual systems are entirely
contained in the real constants 10 gp qp and gp which
set the scales of variation in time, space, and amplitude.

In fact the form of Eq. (4.3) can be written down by in-
spection. The linear terms are prescribed by the growth
rate of the linear instability, and represent the real space
form needed to reproduce the growth rate cr(q) of a
plane-wave disturbance at wave vector q=qox+k

o(q)=qp '[s—
gp(q

—qp) ]

Let us consider the plane-wave growing solution above
threshold for a type I„stationary-periodic instability

[qp W 0, cop=0]. For concreteness we consider a two-
dimensional system and represent the most unstable
mode as

7

q =qo, c=O

1 8 cr(q)
0 0 2 Qq q =q&, c=p

(4.5a)

(4.5b)

(4.1)

For values of the control parameter close to threshold
(~E~) (( 1), the structure on short length scales will be
insensitive to c., but a slow modulation in space and time
is possible making use of the band of unstable solutions,
and the linear growth is likely to saturate due to non-
linear effects. This behavior can be analyzed by writing

U(x, t)=[U0A (x,y, t)e ' +c.c. ]+O(E), (4.2)

where we have assumed a two-dimensional pattern
(x=x,y) consisting of one-dimensional rolls perpendicu-
lar to the x direction, with any dependence on the third
spatial dimension being included in Uo, and c.c. denotes

Newell (1974) has presented a derivation of amplitude
equations iri various situations incorporating this idea
more formally.

The nonlinear terms may again be obtained by inspec-
tion: the cubic term is the first one that feeds back on the
unstable mode, and this is the only term that preserves
the invariance of the equation under a phase change
A —+ A e'~, which simply corresponds to a spatial shift
of the pattern. (Derivative nonlinear terms would be of
higher order in the expansion parameter

~
E

~

' .) Some-
times other symmetry properties (e.g. , A ~ —A), can be
used to eliminate certain hypothetical nonlinearities. In
more complicated situations, such as degenerate bifurca-
tions, the method of "normal forms" provides a sys-
tematic way of generating the complete set of nonlinear
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terms (see subsection IV.B below).
Equation (4.3) correctly describes the variations of the

pattern on the slow time scale c.t, and slow spatial scales
c.' x perpendicular to the rolls and c.' y parallel to the
rolls. To emphasize these scales, and the common form
of the equation we can rescale coordinates and ampli-
tudes, assuming go & 0,

x= IEI'"x/g, ,

/4y(q /g)1/2

T=
I
E

I
t /ro,

A =(Ig, I/Iel)'" A,
to give a universal form

a, A =+ A+(a ,' —ia—',)'A —
I
A 'A,

(4.6a)

(4.6b)

(4.6c)

{4.6d)

(4.7)

&OB, A =— (4.8)

with the potential functional VI A, A ] given by

7= f f dx dy[ —e A
I +(go/2) A

I

where + refers to c.~~0. When go ( 0, the sign in front
of the cubic term is positive and a quintic term in the ex-
pansion leading to (4.3) must be added, as well as other
possible terms (see Sec. V.B).

An important property of Eq. (4.3) is that the time evo-
lution has the gradient form [see Eq. (3.12)],

a, A =+A + (a'+a', )A —IA I'A . (4.12)

We thus have the somewhat paradoxical situation that
the amplitude equation {4.3) for the isotropic system is
anisotropic, whereas for the anisotropic system it can
take on an isotropic form. The reason for this is that the
roll pattern breaks the rotational symmetry in the isotro-
pic system so transverse and longitudinal variations are
qualitatively different, whereas in the anisotropic system
they can be made the same by a simple scale change.

(ii) Spatially periodic solutions and their stability

In the rest of this section we shall assume go & 0 and
rescale x, t and A, (x ~ x/go, qo ~ qogo, t ~ tire,
A ~go A) in order to eliminate the constants go, ro,
and go, so that Eq. (4.3) reads '

a, A =EA + (a —(i/2qo)a ) A —
I Al A . (4.13)

instead of (4.3), with different coherence lengths g and

g» in x and y directions {we have chosen coordinate axes
along the principal directions to eliminate a„a terms).
This situation occurs in electrohydrodynamic instabilities
in nematics (Sec. IX.C), where the nematic director pro-
vides the microscopic anisotropy, and in the Taylor-
Couette system (Sec. IX.B), where axial and azimuthal
directions are clearly not equivalent. Equation (4.11)
may be rescaled and put into the isotropic form

+
I go(a (i /2q—o )a ) A I ] .

The equation of motion (4.3) then implies that

a, V= —2,f f dx dyla, A I' ~ 0,

(4.9)

(4.10) Ak(x)=ak e'" (4.14)

[Unless otherwise noted we adopt the units of Eq. (4.13)
as our standard scaling. ] Then a simple nonlinear steady
state solution of the amplitude equation for c & 0 is

,a, A =E A+g.'a„'A+@a,'A —g, l
A I'A, (4.1 1)

so that V is a Lyapunov function, as discussed in Sec.
III.A. This considerably aids in the analysis of Eq. (4.3).
On the other hand the validity of the amplitude equation
is clearly seen to be restricted to the range of driving for
which persistent motion is absent.

Another important limitation of the amplitude equa-
tion is that it only describes situations in which the rolls
are everywhere almost normal to a particular direction,
labeled the x direction [more precisely, the roll orienta-
tion may only vary by an angle of 0 (e' )]. The slow re-

orientation of the rolls over large angles commonly ob-
served in experiments and numerical simulations cannot
be accounted for by the present theory. We may howev-
er use the amplitude equation to describe many proper-
ties near threshold, such as the stability and competition
of ideal patterns, as well as more complicated states in-

volving boundary effects, defects, etc. We will discuss
the application to ideal patterns here, and will defer the
more complicated situations to Sec. V.

We Anally remark that if the system is not invariant
under rotations in the plane the amplitude equation takes
the form

with amplitude

ak =(s—k )'r (4.15)

q=qo+k . (4.16)

Note that adding a y component to the vector k would
yield a rotation of the pattern wave vector q away from
qox by an angle proportional to k, as well as a change in

magnitude proportional to k, for small k . We choose
our reference state along the x direction, so that ky 0.
It is a straightforward matter to calculate the linear sta-
bility of Eq. (4.14) by inserting the solution

A (x, t)= Ak(x)+5A(x, t),
5A(x, t)=e'" [5a+(t)e'~ ' "+5a (t)e '~ "],

(4.17)

(4.18)

4 iTo return to dimensional variables in the formulas below,
rescale all wave vectors by k ~ k/0 and all growth rates by
G' ~ 0 1O.

which corresponds to a spatially periodic solution of the
original problem with a modified wave number q=q x of
magnitude
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and

p =6 k

Up=[(k+ Q ) +Qy/2qo] —k

with k=kx, and linearizing in 5a+(t) to obtain

8,5a+ = —(p + U+ ) 5a+ —p 5a

8,5a = —p 5a~ —(p +U ) 5a

with

(4.19a)

(4.19b)

(4.20)

(4.21)

Notice that Q,„~0 for k ~ ks, i.e. the instability
occurs first at long wavelengths. As we shall see, in this
limit the instability may also be calculated by considering
just the dynamics of the phase of the complex amplitude
(see below). The importance of the fastest growing mode
in the actual development of an Eckhaus unstable system
has been studied theoretically by numerical integration of
the amplitude equation (4.13) (Kramer et al. , 1988a), and
experimentally in nematic convection (Lowe and Gollub,
1985a). Finally, the zigzag boundary Z (Fig. 9) given by
(Newell and Whitehead, 1969),

The growth rate o.k(Q) defined by 5a+ -exp [o'z(Q)t] is
then

(4.27)

ok(Q)= —p ——(U++U )
1

1/2

corresponds to a growing transverse modulation with
wave vector along the rolls, Q=Qy. In this case the
maximum growth rate occurs for

+ p +—(U+ —U ) (4.22) Q,„=2qolkl

with a value

(4.28)

The ensuing "stability balloon, " given for each k by the
condition o k(Q) ( 0 for all Q is shown in Fig. 9 with its
three stability boundaries.

The neutral stability curve X with

(4.23)

marks the onset of the nonlinear solution (4.14) and the
limit of stability of the uniform solution 3 =— 0. The
Eckhaus boundary E (Eckhaus, 1965) corresponds to a
longitudinal instability Q =Q x, and is given by

k@=(1/3) k~=e/3 . (4.24)

For k ) kE we can calculate the wave number Q of the
fastest growing mode and its growth rate by maximizing
o k(Q). This gives (Newell and Whitehead, 1969)

crk(Q,„)=3k (4.29)

(iii) Superposition ofplane wave sol-utions:

Squares and hexagons

Again Q,„~0 at the boundary of the instability and
the behavior is captured by a phase dynamics analysis.

When the scales ro, go, and go are restored, it is found
that the instability boundaries take on a scale-
independent universal form if they are expressed in terms
of k& in this near-threshold limit. They are therefore
typical of all rotationally invariant type I, systems and do
not reAect the details of the underlying microscopic equa-
tions.

and
Q,„=(3/4)(k —e/3) (s+k~) k

ok(Q, „)=(9/4)(k —s/3) k

(4.25)

(4.26)

In Eq. (4.2) the assumption of a single roll solution was
made. We can also look for the growth of solutions that
are superposition of n sets of rolls at various orientations,

U=UO g A;(xy, t)e ' +c.c. +O(E), (430)
i=1

with ~q; ~
=qo. If we leave out spatial variation of the A;

then in general (4.13) is replaced by a set of n equations
(Newell and Whitehead, 1969)

(4.31)

where the constants g; depend on the angles

q; - q. =cosO;.

(4.32)

FIG. 9. Stability boundaries from amplitude equation (4.13),
showing reduced control parameter vs deviation of wave vector
from its critical value, k =q —qo. N neutral; E Eckhaus; Z
zig-zag. Hatched region is stable to small perturbations.

Q(8=0)= —Q(8~0) .
1

2
(4.33)

The above equations can be used, for example, to in-

with Q(0) = 1. Actually Q(0) is not a smooth fun: tion of
0 due to mode interference occurring exactly at 0; =0.
This yields
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vestigate the competition between rolls and other regular
solutions (Schliiter, Lortz, and Busse, 1965) consisting of
waves with equal amplitudes at angles m7r/n around the
circle, where n and m are integers. Then n =2 gives
squares, and n =3 gives hexagons. For example squares
are described by two equal amplitudes 2, = A2= Az.
The solution of Eq. (4.31) is then

I && I'= [I+&(~/2)]-' E, (4.34)

compared with the amplitude for rolls A, = A~, A2 =0
with

I &, I'= [a(0)]-' ~ . (4.35)

If we look at perturbations about the square solution, i.e.,
A

&

= As+5, and A 2
= 2++52, and linearize (4.31) we

find

a, 5, = —2I~, I'5, —2~(~/2) I~, I'5, ,

a, 5,= —2S(~/2) I ~sI'5g —2I ~sI'5p,

with growth [5, 2-e '] at rates

~= —2[1+ e(~/2)]l &&I'

(4.36a)

(4.36b)

(4.37)

Thus squares are stable with respect to rolls [i.e.,
5, = —52, leading to the negative sign in (4.37)] for

Q(~/2) & 1, (4.38)

(4.39)q~+q2+q3
an additional quadratic nonlinearity occurs and the am-

plitude equation in the absence of spatial variation be-
comes (see, e.g., Ciliberto et al. , 1990)

(j, gi =Eg( —yg2&3
—[ I

~ I'+g ( I
~ I'+

I
~ I') ]~, (4.40)

with g, = Q(2m/3), and similar equations for Az and

A3. If the coefficient y is nonzero the quadratic non-

linearity dominates near threshold. This situation is gen-
eric in the absence of the inversion symmetry A,. —+ —A,

and it is easy to see that rolls are stable with respect to
squares in the opposite limit. Notice that in this simple
calculation the stable solution is the one with the greater
mean-square amplitude g,".

, I 3; I

= n I 2, I, which also
gives a lower value of the potential (4.9). An example
where squares are in fact the preferred solution is convec-
tion between poor conductors (see Sec. VIII.F). The case
of rhomboids (two sets of rolls at an angle 8% ~/2) has
been considered by Malomed and Tribel'skii (1987). It
should be noted that the regular solutions of Eq. (4.30)
for n & 3 yield patterns that are not a periodic lattice,
but rather analogous to a quasicrystal, with quasiperiodic
spatial dependence along any direction. Such states have

recently been produced experimentally in the parametric
surface wave system (Sec. IX.D) by Christiansen et al.
(1992) and by Edwards and Fauve (1993).

A particularly interesting case is that of three wave

vectors mutually at an angle of 2~/3. Then, since

(i.e., U ~ —U in the original equations). The hexagon
solution A, = A z

= A 3
= AH then undergoes a transcriti-

cal bifurcation (see Sec. III.A). Near threshold both
branches of the hexagon solution are unstable; however,
all other branches developing at the transition (e.g., rolls)
are unstable towards the hexagon solution, so that the
latter is preferred (it has the maximum growth rate near
threshold. ) If the symmetry breaking coefficient y is 0 (1)
there are no small amplitude stable solutions and nothing
can be said rigorously about the ultimate steady non-
linear state from the amplitude equations, although cer-
tainly in many cases the backwardly bifurcating hexagon
branch will turn around and become the stable solution.
If y is small the behavior is universal and can be calculat-
ed from the amplitude equations (Busse, 1967b), as shown
in Fig. 10. The quantities c~, cz, and c~, which define
the saddle-node bifurcation, the upper limit of stability of
the hexagons and the lower limit of stability of the rolls,
respectively, are given in terms of the coefficients of the
amplitude equation (4.40) by

E~ = —y /4(1+2g, ),

E~ =y'(g, +2)/(g, —1)',
(4.41a)

(4.4 lb)

(4.41c)

0
l

l
I
I

FIG. 10. Amplitude of roll state f Aa f and hexagon state f AH I

as function of control parameter c, following from Eq. (4.40).
Solid lines denote stable states, dashed lines unstable states.
The limits of stability e&, c,&, and cz are given in Eq. (4.41).
(From Ciliberto et al. , 1990.)

Although it took many years for the situation depicted in
Fig. 10 to be clarified, it should be emphasized that a
hexagonal pattern is generically preferred close to thresh-
old unless the inversion symmetry U —+ —U is present in
the system (Pismen, 1980). Note that Eq. (4.40) and the
permuted ones form a potential system (Bestehorn and
Haken, 1984) a feature which remains true when spatial
derivatives are added as in Eq. (4.13). Terms of the form

y 3 zQ A
&

considered by Brand (1989) are explicitly of
higher order for y (( 1, and are among the many such
nonpotential terms encountered even in Boussinesq sys-

tems.
Having considered the existence of nonlinear solutions

consisting of superpositions of different roll states we

IA, I

H
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must also consider the instability of the rolls to such per-
turbations. The linear growth of a roll solution at wave
vector q2 making an angle 8 with q&

= (qo+k)x, in the
presence of the nonlinear saturated solution A, k(x), is
again given by linearizing Eq. (4.31). (The maximum
growth is for q2 = qo, so we do not need to include the
spatial derivatives in the equation for Az. ) The equation
is

~2 = ~0~

which gives a positive growth rate when

k ' & kc~ =k~ [1—I /Q(8) ] .

(4.42)

(4.43)

Thus extra instability lines, again varying as k ~ c'
and corresponding to "cross-roll" instabilities, may be
added to the stability diagram. Depending on the cou-
pling constant Q(8) the cross-roll instability may preempt
the Eckhaus instability and be important in limiting the
band of solutions. Note that when Q(8) & 1 a superim-
posed solution is unstable to a single-roll solution, so the
ultimate state in this case will be a new single-roll state
with the critical wave number but at a rotated angle.

Up to now all the examples in this subsection have
concerned two-dimensional systems. Recently De Wit
et al. (1992) have discussed three-dimensional solutions
of the amplitude equation and the relative stability of
hexagonal prism, lamellar, and bcc lattice structures.

(Iv) Chiral symmetry; Hamiitonian versus dissipative systems

We are usually interested in the case where "chiral
symmetry, " 0 ~ —0, applies. In the presence of exter-
nal rotation, or for systems in a magnetic field, this syrn-
metry is broken, so that Q(8) A 9( —8). Also in some
systems (we are thinking particularly of the parametric
wave instabilities) dissipative effects are weak and nondis-
sipative wave interactions dominate the nonlinear terms.
In this case there is nearly a "Harniltonian" syrnrnetry

Q(8)= —9( —8) . (4.44a)

Thus a number of symmetry combinations are possible:
(a) Dissipative system, chiral symmetry: The canonical

case considered above, as applies for example to
Rayleigh-Benard convection.

(P) Dissipative system, no chiral symmetry: If Q(8) ( 1

for some 0, then the original set of rolls is unstable to the
development of a superimposed set of cross rolls at the
angle 0, which then grows at the expense of the original
set. We expect the first set of rolls to be replaced by rolls
at the angle 0, which are in turn unstable to a third set,
again rotated through the angle 0, etc. Thus no stable
steady state is predicted by the amplitude equation. This
phenomenon was predicted to occur in convection in a
sufficiently rapidly rotating system by Kiippers and Lortz
(1969) (Sec. VIII.F.6).

(y) Near-Hamiltonian system, chiral symmetry: In the
Hamiltonian approximation Eq. (4.44a) holds, whereas

chiral symmetry implies Q(8) = 0( —8), so the nonlinear
coefficient is identically zero at this order. Saturation
must occur either through the weak nonlinear dissipative
eff'ects at this order, or at higher orders in the amplitude
expansion (e.g. through nonlinear frequency detuning in
parametric wave systems, see Sec. IX.D). The interplay
of these two competing small e6'ects may lead to interest-
ing transitions as the control parameter is increased.

(5) Near-Hamiltonian, no chiral symmetry: In this case
we expect large values of Q(8) = —Q( —8), so that the
instability in (P) will always occur. As in (y) there are no
nonlinear saturating eft'ects of a single roll state in the
Hamiltonian approximation. Thus one might expect a
dynamical state with saturation to occur only at higher
orders in the amplitude expansion. This is the starting
point for more sophisticated theories of the ferromagnet-
ic parametric spin-wave instabilities discussed in
Sec. XII.C below.

(e) Special case: Q(8) = go, independent of 8. In this
case the nonlinear saturation occurs through the term

(4.44b)

with j summed over all modes around the critical circle.
There is a dynamical degeneracy amongst all states satis-
fying g. ~

A
~

= c./go; this set contains single roll states
with arbitrary orientation, superimposed roll states, as
well as states in which the mean square amplitude is dis-
tributed continuously around the critical circle, which
would not correspond to a definite spatial pattern. In ad-
dition, the degeneracy leads to extreme sensitivity to ex-
perimental imperfections such as extrinsic noise (see
Sec. VIII.F.6 below). In his original analysis of the trans-
versely pumped ferromagnetic resonance system Suhl
(1957) arrived at this special case by supposing that the
only important nonlinear damping was that of the uni-
formly precessing mode. Anderson (1981) and Stein
(1979) used this example to suggest that systems out of
equilibrium do not show robust pattern formation. How-
ever we see that this conclusion only applies to the spe-
cial case represented by Eq. (4.44b), which is not expect-
ed to be widespread. In fact a more detailed analysis of
the ferromagnetic resonance equations (Sneddon and
Cross, 1982) shows that Eq. (4.44b) is not strictly satisfied
in this case, although as we have seen in (5) a dynamic
state may still be anticipated due to the weakly dissipa-
tive nature of the system.

We remark that the nonlinearity (4.44b) is nonlocal
when expressed in real space. Implications of this prop-
erty for spatial patterns in the ferromagnetic system have
been studied by Elmer (1987).

b. Type II,:Stationaryinstability ~ith q, =0

For the stationary instability in a system with a conser-
vation law, the growth rate 0.(q) vanishes at q =0 and
qo —E' (see Fig. 7). We call this a type II, instability.
In that case a real amplitude is sufficient
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U= Uog(x, y, t) . (4.45) (i) Simple solutions

If the nonlinear terms of the basic equations are also zero
at q=0 a consistent long-wavelength expansion of the
equations can be made (Cxertsberg and Sivashinsky,
1981). The most general amplitude equation then takes
the form

Let us write down simple solutions of the amplitude
equation (4.49) for this case, and discuss their stability.
In addition to the spatially uniform nonlinear oscillating
solution

a 0=«'0 —lv'0+g)v . (vW)'v4)
—iQotA(x, t)=ao e (4.50)

+g (Vf) V g], (4.46a) ao2= 0= C3C, (4.51)

a, 1(=~a,'@—a,'@—(a,@)', (4.46b)

and describes transverse fluctuations of plane interfaces
normal to the x direction. When the diffusion constant a
becomes negative the system has a linear instability, and
is known as the Kuramoto-Sivashinsky equation, intro-
duced in Eq. (3.30) above.

where we have assumed a situation with inversion sym-
metry so that quadratic nonlinearities are absent.
Equation (4.46a) with g2 identically zero, describes con-
vection between in6nitely poorly conducting plates. In
this case the equation is potential, whereas in general it is
not. A one-dimensional equation without inversion sym-
metry has quadratic nonlinearities

Eq. (4.49) admits traveling wave solutions

i(k ~ x —Qkt)
Ak(x, t)=ak e

a„=(E—k ),
Qk = —c3E + (c, +c3)k

(4.52)

(4.53a)

(4.53b)

(ii) Stability ofplane wave solut-ions

These solutions are known as rotating waves in the chem-
ical literature. Although standing waves are also possible
nonlinear solutions, they are always unstable towards
traveling waves if the real part of the cubic term in Eq.
(4.49) has the correct (negative) sign to yield saturation
above onset.

c. Type ill, :Oscillatory uniform

The same expansion about threshold can be carried out
for the other classes of linear instability. Again, in these
simple cases the results can be written down by inspec-
tion. We will describe just some of the more useful ones
here, beginning with type III,.

For this case we need a complex amplitude whose
phase describes that of the basic oscillator (see Kuramo-
to, 1984b)

U( tx)=[U Ao(x, y, t) e '+c.c. ]+O(s),
where

(4.47)

CO —
COO COG (4.48)

is the oscillation frequency of the uniform system (q = 0)
for c ) 0. The amplitude equation has the form of a
complex, time-dependent Ginzburg-Landau equation (in
dimensionless units)

1

2
(q)+q2) =q 1

2
—(CO)+CO~) —Co . (4.54)

For q&, q2 close to q it becomes a long-wavelength modu-
lational instability, and is then more easily analyzed us-
ing the phase equation (see subsection IV.A.2 below).

The analysis of the one-dimensional situation was dis-
cussed by Newell (1974) and in more detail by Stuart and
DiPrima (1978) starting from the amplitude equation
(4.49). The approach is straightforward in principle but
algebraically complicated. Restricting ourselves to one
dimension, we assume a base state of a traveling wave

(x) a ei(kx —nt)
k I

and seek an instability in the form

(4.55)

The important instability in nonlinear wave systems is
the Benjamin-Feir instability (Benjamin and Feir, 1967;
Newell, 1974; Stuart and DiPrima, 1978), which corre-
sponds to a wave at (q, c0) becoming unstable by resonant
excitation of sidebands with wave vectors q&, q2 and fre-
quencies co&, co2 satisfying

a, g =&~ + (I+tc, ) v'~ —(1—tc, ) l~l'~ (4.49)
5 2 ( t) i(kx —Qt) [5a (t) eigx

In the limit, c& ', c3 ' ~ 0, i.e. when the imaginary
terms in Eq. (4.49) dominate, the amplitude equation
reduces at short times to the nonlinear Schrodinger equa-
tion. This differential equation corresponds to a conser-
vative (Hamiltonian) dynamical system which is integra-
ble in one dimension and has been studied in some detail
(see Sec. V.B below).

+5a (t) e '~ ], (4.56)

with Q the wave number of the perturbations, and linear-
ize in 5a+(t) In many wa. ys this "Benjamin-Feir" insta-

bility is the analogue of the Eckhaus instability in the sta-
tionary case, although because of the larger parameter
space a full analysis becomes quite complicated. In addi-
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tion, the instability is more potent, rendering all plane
wave solutions near onset unstable for

1 C)C3 & 0 (4.57a)

(Newell, 1974). The above condition involves a balance
between diffusive and dispersive terms. We will refer to
it as the Newell criterion though it is often called the
Benjamin-Feir criterion. Before this full instability limit
is reached, a band of stable solutions is found with

s 8 s [8„—(i/2q )Q +(1/2q )BB
—(t. /8q3) a4], (4.60)

are involved we can reduce Eq. (4.59a) to the complex
Ginzburg-Landau equation (4.49) by introducing a mov-
ing frame x=x —sot, and the analysis of subsection
IV.A. 1.c then applies.

The full two-dimensional equations are obtained from
Eq. (4.59) by the replacements (Brand et al. 1986a,b)

k & k~F —A~Fk~, (4.57b) on the left-hand side and

where k&=c is the neutral stability limit. Here A~F is a
complicated function of parameters (Stuart and DiPrima,
1978; Malomed, 1984; van Saarloos and Hohenberg,
1992; Brand and Deissler, 1992). For many, but not all
values, the instability first occurs for long-wavelength
disturbances Q ~ 0, in which case it may be calculated
from the phase equation quoted in (4.85) and (4.86)
below. It is the limit k = k&F which we call the
Benjamin-Feir instability, though this one is often re-
ferred to as the Eckhaus instability, a term we reserve for
the stationary case (4.24). For transverse perturbations
varying as e' the criterion is always (4.57a), and so
these are never more unstable than the longitudinal per-
turbations.

a2 (a. —(i/2q, ) a,')', (4.61)

on the right-hand side. Again these rather complicated
looking expressions are given simply by expanding the
dispersion relation for q=qox+k in small k and then
making the replacement m ~ iB„k~ —i 3,
k» ~ —iB». Note however that there is no simple re-
scaling of time, length, and amplitude to remove the
small parameter c from these equations as is possible in
Eq. (4.49). It is therefore not clear how to balance the
various terms, and the solutions of the equations may not
in fact always vary on the slow scales necessary for the
amplitude equation approach to be valid.

d. Type I,:OscII/atory periodjc

Near a type I, instability [coo% 0, qo A 0) the analo-
gue of (4.47) is

i(qox —co t)
U(x, t)= Uo[AR(x, y, t)e

+AL(x,y, t)e ' ' ]+c.c. + O(E),

(4.58)

where Az and AL are right- and left-traveling wave am-
plitudes, respectively. The one-dimensional case is a sim-

ple generalization of the complex Ginzburg-l. andau
equation (4.49),

(i) Superposition of solutions:
Traveling versus standing waves

AR =a exp( i Qt+ p), —AL =0, (4.62)

A major question for wave instabilities is the nature of
the spatially homogeneous solutions: traveling or stand-
ing. At the linear instability these are equally good solu-
tions, and they may be related by linear superposition,
but beyond threshold the nonlinear terms give a competi-
tion (Coullet et al. , 1985). Let us first look at solutions
at the critical wave vector qo and with frequency
co =coo+ Q. Equations (4.59) then yield (i) traveling
waves:

=Ed + (1+ic ) 8 2 —(1 ic3) I &R I'wR

—gi(1 —tc2) I AL I AR, (4.59a)

with a =c and 0= —c3c, corresponding to waves travel-

ing to the right, or the alternate solution with Az and

interchanged, corresponding to left-moving waves;
and standing waves:

AR = AL =a exP( iQt+P), — (4.63)

= EEL +(1+ic,)B„At—(1 ic, ) I AL I
AL—

—g, (1—ic, )l ~R I'~g . (4.59b)

Compared to Eq. (4.49) there is an extra advective term
with so the linear group speed Bco/Bq I, and a com-

plex coupling of the right and left moving waves. Again
the coefficients of the linear terms are directly given by
the linear instability spectrum; the nonlinear terms give
amplitude saturation and nonlinear frequency pulling. If
only a single wave (e.g., AR) is present and no boundaries

with

~« =ak exp[i (« —
flak t) ]; (4.64)

ak =g —k2 — 2 (4.65)

with a = s(1+gi )
' and 0= —E(c3+czgi )/(1+g, ).

Traveling waves are stable and standing waves unstable
for g, ) 1; the reverse is true for —1 & g, & 1, and
there is no saturation for gj & —1.

We may also look for solutions with wave vectors away
from critical. Traveling waves are given by
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Q„=sok—c3e+ k (c, +c3) . (4.66)

plying through by e ' ~'. The real part gives the
adiabatic amplitude change

In addition, standing waves given by A~k, AIk W 0, and
mixed waves Azk, A~k, k W k, can be constructed
(Coullet et al. , 1985). Finally, we note that superim-
posed traveling wave states, e.g. traveling rectangles,
have been studied theoretically by Malomed and Gedalin
(1989).

(ii) Stability ofplane wave -solutions

Once again the important instability is the Benjamin-
Feir instability. For a single wave present
(A& W 0, AL = 0) and in one dimension we may trans-
form to the frame moving with speed sp and reduce the
equation to (4.49) studied in subsection IV.A. l.c. above.
The criterion for the longitudinal Benjamin-Feir instabili-
ty (Stuart and DiPrima, 1978) goes through unchanged.
A theoretical and experimental study of traveling wave
stability was recently carried out by Janiaud et al. (1992).
For transverse perturbations varying as e' the diffusive
restoring forces are absent, and the condition for the crit-
ical wave number to be unstable is simply c3$p ) 0
(Brand et al. , 1986a,b; Ohta and Kawasaki, 1987). This
instability corresponds to a long-wavelength bowing of
the wave fronts.

a„5a= —k B,5$, (4.68)

where we may neglect time and space derivatives of 6a
and also higher-order derivatives. The imaginary part
gives the phase variation

B,P=[B„Q+(klqo)B„/+2k'}5a lak] . (4.69)

Eliminating 6a we can derive a single equation for the
phase dynamics of slow, long-wavelength perturbations

i), Q=D~~(k)B P+Di(k)B P, (4.70)

s —3g k

&o E —/ok 2 (4.71)

4o

7 p qp
(4.72)

(ii) Far from threshold

where we have restored the constants go and ro of the
original amplitude equation (4.3). This "phase diff'usion"
equation was first derived in the context of convection by
Pomeau and Manneville (1979).

2. Phase equations

a. Stationary systems (type i,)

(i) Near threshold

The amplitude equation (4.13) for a type I, instability
describes the dynamics of both the magnitude

~
A

~
and

phase P of the complex amplitude. Consider a small per-
turbation of the solution Ak(x) = akexp(ikx) describing
a periodic state of wave vector q =qp+ k in one dimen-
sion,

A (x)= (ak +5a )e'""+ ~' (4.67)

with ak =e k Fr—om .(4.13) we see that the perturba-
tion 6a in the magnitude relaxes in a time of order E

which is a slow rate near threshold, but one that remains
finite for a fixed control parameter. On the other hand a
spatially uniform phase perturbation 5P does not relax at
all —it is simply a uniform shift of all the rolls in the x
direction. A very slow perturbation, e.g., 5$
=5$ocos(Qx ) with Q ~ 0, will relax arbitrarily slowly,
on a time scale typically of order Q . For long-
wavelength perturbations (with Q (( c.'r ) we can as-
sume that after an initial transient the magnitude adia-
batically follows any phase variation (actually any phase
gradient or wave-number variation). We implement this
assumption by substituting (4.67) into (4.13) and multi-

From the above discussion it should be clear that the
validity of the phase equation is not restricted to the vi-
cinity of the threshold, but is in fact a fortiori true away
from threshold. Here magnitude perturbations (i.e. per-
turbations of the local structure) relax on a rapid time
scale, and long-wavelength phase perturbations again re-
lax arbitrarily slowly. The phase variable can now be
defined more generally (Cross and Newell, 1984). Let us
consider a perfectly periodic stationary solution with
wave vector q

Uz(x, t) = U„(q x), (4.73)

U(x, t) = U [P(x, t)]+0 (ri), (4.74)

VP(x, t) =q(x, t), (4.75)

and gradients of q are 0 (g). With this general definition
we are no longer restricted to small perturbations 5$: the
solution can describe the variation of the direction of the
rolls through large angles, provided this takes place slow-
ly, i.e., over many of the basic periods 2m/qp. The for-
mulation of the problem in terms of a phase variable
defined by Eq. (4.75) is reminiscent of the WKB ap-

with U„(P)=U„(/+2~), and let g be an independent
small parameter. Then we introduce the phase function
P(x, t) such that the solution with slow changes (on a
scale q ') in the magnitude or direction of the local wave
vector q(x, t) is
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r(q) &,P= —V . [qB(q)],
q=VQ,

(4.76a)

(4.76b)

where r(q) and B(q) are functions of the wave number
that depend on the specific system under study. For
small perturbations from uniform rolls Eqs. {4.76) reduce
to (4.70), yielding expressions for the difFusion constants,

D~~(q) = — (q} (d/dq ) [q B(q)],
DL (q) = —~ '(q)8 (q) .

(4.77a)

(4.77b)

Thc instabilities of straight roll patterns described in
subsection IV.A. 1 above that correspond to long-
wavelength perturbations are contained in the phase
equation. In fact, the stability requirement for the solu-
tion with wave vector q is simply D~~(q) & 0,
D j ( q ) & 0. The passage of D

~~

through zero signals the
EckllRiis iilstability (4.24), Rnd DI passilig 'thioiigli zci'0
gives the zigzag stability boundary (4.27). Thus
Eqs. (4.77) reproduce the earlier results near threshold,
and they continue them i.nto the strongly nonlinear re-
gime once I(q) and 8(q) are known. In this way the
Eckhaus and zigzag instabilities are seen to have some
universality even away from threshold. Other instabili-
ties which occur at short wavelengths depend more sensi-
tively on the details of the system.

(iii) More complicated situations

The general form of the phase equations (4.70) or (4.76)
will be changed if other slow modes exist, i.e., if there are
other quantities that may vary independently on the slow
time scale of interest in the phase dynamics. The s1ow
phase equation must then be coupled to the dynamical
equation for the additional mode, leading to equations
that are higher-order in the time derivatives, and often
yielding propagating rather than diffusive solutions
(Brand and Cross, 1983; Coullet and Fauve, 1985; Fauve,
1987). This may occur, for example, if we have an addi-
tional conserved physical quantity, such as the horizontal
momentum for convection between free-slip boundaries
(Siggia and Zippelius, 1981b). Alternatively, it may be
due to an additional broken symmetry as occurs for
modulated waves in Taylor-Couette Sow (Brand and
Cross, 1983}. Another example is the long-wavelength
dynamics of a spatially periodic solution of the phase

proach ln nonllncaI waves first 1IltI'odUccd by %hlthalIl
(1974) and subsequently used by Howard and Koppell
(1977). Tlic derivation fol slow distortions of R station-
ary periodic state was discussed by Cross and Newell
(1984) for various model equations, and is reproduced in
Appendix B. As was true for the amplitude equation, the
phase equation often takes a universal form when ex-
panded to lowest order in q, reflecting the symmetries of
the problem and, certain smoothness assumptions. For
disturbances of a stationary, locally periodic, rotationally
degenerate pattern the result is

equation (4.76), written as $0(qx+go), with the new
phase go giving translations of the pattern. There are
now two spatially uniform perturbations that do riot re-
lax (i.e., are at zero frequency),

iI) =$0(x)+5/,
g= $0+5/,

(4.78a)

(4.78b)

RIid coupled dynam1cs foi slowly VRI'yiilg 5$ Rnd g IIiiist
be considered. An alternative scheme for this problem is
to introduce a derived "velocity" field u =B„P.Then we
have

B,u=8 (B,P)=8~ f(u, B„u,. . . ), (4.79)

Although this extra Galilean invariance leads to propa-
gating dynamics (Coullet and Fauve, 1985; Shraiman,
1987) it is not necessary: only the conservation equation
(4.79) is needed. Galilean invariance does however give
additional restrictions on the parameters of the coupled
equations, e.g. , in the equation

(4.81)

the coeScient 0, is unity if Galilean invariance holds.
The introduction of the field u =I) p bears a strong anal-
ogy to the definition of the superAuid velocity U, ~ VP
in the theory of superAuidity, where P is the phase of the
Bose condensed wave function (see, e.g., I.ifshitz and Pi-
taevsky, 1981). Again U, need not be a true (i.e., Galilean
covariant) velocity; it is not, for example, in the case of
superAUidity ln a poloUs medium. HowcvcI, slncc lt ls
defined as the gradient of a phase it plays the role of a
conserved quantity in the dynamical equations (Bergman
et al. , 1974).

It turns out that for our canonical Quid system,
Rayleigh-Benard convection, and other similar systems
the smoothness assumption used in deriving the general
form {4.76) breaks down (Cross, 1983). In fact for a per-
turbation 5$-5gocos(Q ~ x) the expansion in the small
wave vector Q of the distortion depends on quantities
such as Q„/Q that are not analytic as Q —+ 0. A simple
way of incorporating this effect is to include a coupling to
a "mean drift" horizontal How v~ which depends on the
vertical coordinate (but gives an integrated Aow). This
field is averaged over a unit cell of the basic periodic pat-
tciI1 Rnd so vaiics 0Iily s'lowly (witli thc pattciil) II1 thc
horizontal direction. It leads to an additional advection
term in Eq. (4.76)

where f does not depend on i}t itself, only on its deriva-
tlvcs Q, B~Q, . . . . Thc qUant1ty Q ls thcI'cfolc con-
served" (i.e. a constant u does not relax), and coupled
equations for u and g are considered as in our previous
example. Note that the need for coupled. equations is
simply implied by the consclvatloIl of Q. If thc field Q

were also a physical velocity this would imply Galilean
lnvaI'lance,

(4.80)
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B,P + V. VP= r—'(q) V [qB(q)], (4.82)

with V a horizontal velocity given by a z average of va
weighted by a function that depends on the local struc-
ture of the rolls and V the (two-dimensional) horizontal
gradient. The nonanalyticity arises because va is driven
both by distortions of the pattern and by an additive
pressure Ps(x,y), also varying only slowly in the horizon-
tal direction, which in turn must be eliminated by the in-
compressibility condition

d
V f dz vD(x, z)=0 . (4.83)

b. Oscillatory systems (types I, and III,)

In general Eq. (4.83) is a complicated nonlinear Poisson-
like equation for P&. Since the z-integrated mean Qow is
divergence free, it can be expressed in terms of a stream
function g or derived from a vertical vorticity A„and
the singular structure of the perturbation theory can al-
ternatively be controlled by working with these variables,
rather than with Pz itself. Formally the breakdown of
the smoothness assumption can be traced back to long-
range efFective forces arising from incompressibility. (If
compressible Quid equations were used the effect would
presumably arise from eliminating the "slow" sound
mode for the time scales of interest in the phase
difFusion. ) Recently the full structure of the phase equa-
tions including mean drift have been worked out from
the Quid equations for convection, and this will be de-
scribed in Sec. VIII.A below. Similar behavior should be
found in many fiuid systems (see, e.g., Hall, 1984), and it
is important to be on the lookout for analogous effects in
other cases as well. The breakdown of analyticity has
many important consequences. For example with its in-

clusion a new long-wavelength phase instability which is
neither purely transverse (Q =Q y) nor longitudinal
(Q=Qx) is found (Cross, 1983). In convection this is
known as the skew-varicose instability (Busse, 1978).

Dii =(1—c,c3) [s—k (3—c,c3 + 2c3 ) (1—c,c3) ']

X(E—k ) (4.86b)

Dy = c3sp/2qp + (k/qp) ( 1 cgc3 +spc3/2qp ) .

(4.86c)

The zeroes of D
~~

and D~ again delineate the stability
boundaries, here the Benjamin-Feir instability (see
above). We see that the whole band becomes longitudi-
nally unstable for c

& c3 & 1, the classic balance of disper-
sive and diffusional effects. The transverse instability at
k=0 simply requires c3sp & 0, and may preempt the
more familiar longitudinal instability (Ohta and
Kawasaki, 1987; Brand et al. , 1986a,b).

Away from threshold the analogue of (4.73) for an
ideal plane-wave solution is (Kuramoto, 1984b)

U(x, t)= U (q x cot—), (4.87)

B,/+co(q) = —r '(q)V [qB (q)] (4.88)

where r(q) and B(q) are functions of the plane-wave
state. Again one should be concerned about singular
terms coming from mean drift effects. These are poten-
tially even more important than in the I, case, since the
steady uniform wave may itself induce mean drifts. Then
the vertical vorticity might include terms

Q, =z q X V[f(q)], (4.89)

which are one order lower in the slow gradients than in
the type-I, case.

In the oscillatory uniform case (type III,), the equation
for slow variations of the uniform state near threshold is
the phase equation (Kuramoto, 1984b)

with a dispersion relation co(q) which is characteristic of
the fully nonlinear plane-wave state. An Ansatz of the
form (4.74) now leads to the phase equation (Biktashev,
1989)

We can introduce phase equations for oscillatory sys-
tems near threshold in the same way as in the previous
subsection, starting from the amplitude equations (4.49)
and (4.59). For a single traveling-wave solution in the os-
cillatory periodic case (type I ) we use the analogue of
Eq. (4.67)

d, /+cop=aV P P(VP)—

COp= EC3

a=(1 —c&c3),

p=(c, + c3),

(4.90)

(4.91a)

(4.91b)

(4.91c)
3 (x, t)=(ak+5a) exp[i(kx Qkt+5P)], —(4.84)

with Qk the frequency of the plane-wave solution (4.53).
Magnitude perturbations can be eliminated, with more
algebra, as in the stationary case, and we arrive at an
equation for small phase variations on long length scales» E of the form

where we have kept all terms up to second order in the
slow variation including nonlinear terms. Away from
threshold the phase equation takes the same form, with
cop, a, p dependent on the fully nonlinear solution. Note
that p is just given by the dispersion. In one spatial di-
mension, this equation becomes more familiar in the
form

8,5(P+s d„5$=Dt~~d 5P+D d 5$, (4.85)
BtQ O.'8 0 +QB Q =0 (4.92)

with

sp=sp+2k (ci + c3) (4.86a)
(with u =2p B„p) which is the Burgers equation
(Burgers, 1948).
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c. Higher-order phase equations a,y=aa y y—a y+p(a y)a y+ (4.94)

If a coe%cient of the lowest order diffusive terms in the
phase equation passes through zero into the unstable re-
gime it becomes necessary to add higher-order terms to
control the dynamics. (The dynamics may not however
always remain within the range of validity of the phase
equations, in which case a more complete description
would be needed). The higher order equations depend
more specifically on the problem addressed than the
lower order ones. Often it is not convenient to maintain
the rotationally invariant description, since a different
scaling of the spatial derivatives is needed to give a suit-
able balance. Kuramoto (1984a) has presented a
classification of higher-order equations for small devia-
tions from plane-wave states, either steady or oscillatory
(see also Fauve, 1987). The symmetries implied by the
different cases may be used to restrict the possible terms.
In addition, relationships exist between some terms that
are nonlinear in the phase gradients and the linear disper-
sion relation. The higher-order equations involve a bal-
ance between nonlinear terms and higher-order gradient
terms when the coefFicient of the diffusion term becomes
small. The choice of balancing terms, given by suitably
scaling space and nonlinearities amongst possible
"higher-order" ones is not always unique —often numer-
ical work is needed to test whether the evolution remains
within the domain of validity of the chosen scaling, or is
robust to the addition of ignored terms (e.g., adding dissi-
pative terms to otherwise conservative equations could
change the long-time behavior). Analysis along these
lines remains in its early stages. In certain simple cases
the equations reduce to we11 studied models.

A simple example arises from the phase equation near
the threshold for the stationary periodic I, instability. If
our reference state is at the critical wave number [k =0
in (4.16)], the state is zigzag unstable and the coefficient
of the 8 term disappears. It is straightforward to repeat
the derivation of Eq. (4.70) keeping higher-order terms.
If we continue to restrict ourselves to a linear equation
we find

with a ~ 0 signaling the diffusive (Eckhaus) instability.
For a & 0, a simple rescaling leads to the equation

a, y= —a'„y—a', 4 + (a„(())a„'y . (4.95)

(4.96)

which however is not bounded above or below, so that
higher-order terms may be needed to control the dynam-
ics. Empirically the dynamics subsequent to the Eckhaus
instability is "catastrophic, " i.e., it evolves outside the
slow variation assumed, eventually "unwinding" the
phase to give a new wave number. On the other hand the
addition of a term proportional to (a„p) a„p to Eq.
(4.95) leads to a stabilizing (a P) term in the potential V,
which can then be used to describe spatially inhomogene-
ous nonlinear states (Brand and Deissler, 1989; Riecke,
1990).

The oscillatory-uniform (type III,) system is invariant
under x —+ —x by itself. Thus we expect an equation of
the form

a,y= a y ya„y p(—a„y) +— (4.97)

Note that the nonlinear coefficient is given by the linear
dispersion relation co=coo+pq . Beyond the diffusional
instability, i.e. for a & 0, the above system yields the
Kuramoto-Sivashinsky equation (3.30). The same result
is expected for transverse y variations in the stationary
periodic case, as discussed in Eq. (4.93) above.

The oscillatory-periodic phase equation (type I,) has
no symmetry restrictions and is

a, y =aa„'y+~a„'y p(a, y)', — (4.98)

after using a Galilean transformation to eliminate the
term in a„p.For a ) 0 and small this equation may be
transformed to

Interestingly, this equation derives from a potential
(Fauve, 1987)

9'= —J dx [ —(a p) + —(a p) + (a p) ],=1 1

a,p= a p+(klqo)a~/ ——qo ay/Q y 4 0 (4.93)
a, u —a„'u—u a.u =O(a'") . (4.99)

where we are assuming 8 -q, 8 -g', k -g. The non-
linear terms in this equation have been given by Cross
and Newell (1984).

Other examples come from studying the variation in
one spatial dimension along the basic wave vector q =qx,
for our three major classes of instability. [Kuramoto
(1978) has also considered transverse y-variations. ] To
specify the symmetries we will assume that the funda-
mental equations are symmetric under x ~—x. Since
we are usually dealing with dissipative systems, no time
reversal symmetry is assumed.

The stationary-periodic system (type I,) is invariant un-
der (P ~—P, x ~—x). This allows the equation

Equating the left-hand side to zero gives the
Kortveg de Vries equation, which balances the dispersive
and nonlinear terms. The O(a'~ ) diffusive correction
terms will destroy the integrability of the lowest-order
equation (see Kivshar and Malomed, 1989).

All of the above results rely on the apparently innocu-
ous assumptions of symmetries and smooth expansions in
slow spatial gradients (compared with the characteristic
length scales of the unperturbed pattern). However, as
we have already seen in the lowest-order phase equation,
these assumptions may break down as a result of the dy-
namics. Moreover, to make progress it is assumed that
the higher-order terms have the "right sign" to saturate
the dynamics within the weakly nonlinear, slowly varying
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realm for which the equation is valid. In speci6c situa-
tions one must be aware of these restrictions and of the
possibility of their breakdown.

d. Control-parameter ramps

An application of the idea of phase equations is to a
system with a slow spatial variation ("ramp") of a param-
eter p in the microscopic equations that contributes to
the control paI'ameter c.. A particularly interesting case
is where p is a function of one space dimension x, and
p(x) interpolates slowly between a value yielding a con-
trol parameter E(x) below threshold for x & 0, to a con-
stant value p+ giving c, + & 0 above threshold for large
pos1t1vc x. Us1ng thc saIIlc methods Rs 1Il dcI'1v1Ilg thc
phase equation, Kramer et al. (1982) showed how to ob-
tain an equation for the spatial dependence of the wave
vector q of the stationary solution for slow ramps,

states, i.e., the boundaries of the stability balloon. Again
it is possible to classify the instabilities by theiI spatial
symmetries and temporal behavior, and to develop ampli-
tude equations describing the evolution of the unstable
modes, now expanding in the small increase in the con-
trol parameter above the secondary instability thI'eshold.
We have already discussed the higher-order phase equa-
tions that are valid when the instability is at long wave-
lengths. Since secondary instabilities occur in already
complicated states, the range of possible classes is larger

3Il Rt thc pI'1nlaI'y 1nstabllity threshold. %'c will illus-
trate the idea for type I, systems, concentrating on a par-
ticular example known as the "drift instability. "

A secondary instability in R type I, system occurs in a
spat1Rlly pcI'10d1c systcIIl. Thus thc UIlst able mode has
the form of a Bloch wave (analogous to the Floquet
analysis in a temporally periodic state, see Iooss and
Joseph, 1980)

fi{q.p»)~ q+f2{q*p)~ p=o (4.100) II= U(q x+p)+ AU&(qx+p)e'& "e'"',
where f 1 and f2 are functions that can be calculated for
each particular' system and for any quantity p. Integrat-
ing Eq. (4.100) from the linear state for x & 0 where a
unique solution U=0 exists, we find a precise wave num-
ber q~(E+) in the constant region. For spatial variation
of a given quantity p contributing to e(x) the wave num-
ber q(E+ ) is unique, independent of the functional form
of p{x) for slow enough spatial variation. However
difFerent quantities p yield diferent selected wave num-
bers for the same final c+, as demonstrated explicitly by
Hohenberg et al. (1985). Thus ramping the control pa-
rameter slowly to subthreshold values provides a precise
and selectable wave number, as opposed to the wide band
consistent with stability in a periodic system (see
Scc. VI.A below). Prcclsc wRvc-vcctol' sclcctloI1 was fllst
found by Eagles (1980) in his study of convection with
1RIilpcd plRfc scpRIRt1011 VRIylilg 01'1 RI1 0 (e ) length
scale.

An interesting correction to the perfect selection by
slow ramps Rr1scs 1f thc vallatlon of thc coIltrol parame-
ter is not everywhere smooth. It has been shown by
Cross (1984) and by Riecke (1986) that abrupt variations
in control parameter act as "pinning centers" which lead
to nonadiabatic corrections to the phase equation (4.100)
(see subsection IV.A.4 below), and to a finite band of
states 5q. Analytic calculations of this efFect have been
carried out on models by Riecke (1988), and they agree
well with numerical work and qualitatively with experi-
ments on Taylor-Couette Row.

3. Seconda+ instabilities

We have classified systems by the natuI'e of the bifurca-
tion from the uniform state (types I, II, and III, either o
or s). The classification leads directly to difFerent ampli-
tude and phase equations. We may further consider the
various secondary instabilities of the ideal nonlinear

wh«e Uo(qx+p)» the nonhnear state with wave vector
qx with thc pllase p sllifting the pattern as a whole.
second tcl"111 ls 'tllc perturbation (with U+ also a period
function of wave vector qx), Q is the Bloch wave vector
which may be taken in the range {the first Brillouin zone)

1 1——q&Q & —q,2 2

and A is the frequency, nonzero for a Hopf bifuxcation.
Different types of behavior occur for Q =0 (no breaking
of the translational periodicity), Q =

—,'q (wavelength
doubling), or Q incommensurate with q, as well as for 0
zcl'0 01 Iloilzcl 0 (s'tRt1011R1 y 01 Hopf), and Qy fllll'tc 01
zero. In addition, discrete symmetries may be broken;
fol' cxRlllplc, wllcll Qx =0 01 Q~ =

2 q fhclc ls flic qllcs-
tion of whether the parity symmetry (which we assume to
be present in Uo) is broken. This wide range of possibili-
ties is already manifest in the analysis by Bussc and co-
wolkcl's (scc Bllssc, 1978) of tllc secondary llistabllltlcs ill
Rayleigh-Bcnard convection discussed further in
Sec. VIII.A below.

A point not evident from the early work on convection
is the importance of the coupling to the phase variable P
of the basic pattern, describing the free translation of the
structure: the instability may cause the whole pattern to
drift. Coullet and Iooss (1990) have classified all the pos-
sible types of behavior for one-dimensional type I, and I,
systems, RIld have wI'ittcIl dowIl coupled cquat10ns foI'
the amplitude A of the new unstable mode (real or com-
plex depending on Q and Q) and the phase P of the basic
pcrlod1c paftcl'll, defined 111 Eq. (4.101).

Consider for example the case of a parity breaking,
Q =0, stationary bifurcation (Coullet et al. , 1989d). This
is characterized by a real amplitude A coupled to the
phase p. Syminetry restrictions lead to the equations (in
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scaled variables)

B, A =Bz A. +g, (B„Q)3 + eA —g A + . (4102)

d, p=Dd„p + g2A, (4.103)

with go g&, gz, D real constants. The second equation
reAects the fact that in a nonequilibrium system, break-
ing the parity will typically lead to the drift of the whole
pattern. (Time reversal symmetry would forbid such a
motion at an analogous equilibrium transition. )

AIl IntcI cstlng wave-number sclcctIOQ phenomenon
occurs in the case of a subcritical bifurcation, go ( 0 {we
insert a high-order term A to stabilize the system). A
bubble (or pulse) of the broken parity phase above thresh-
old will propagate in one direction or another depending
on the sign of A, and grow for e, & Ei= —(3/16)go.
Analysis of Eq. (4.103) shows that the propagating, grow-
ing bubble leaves behind a uniform state with a shifted
wave vector. Passage of successive bubbles changes the
wave vector to B„P= —k given by setting the effective
control parameter governing the growth rate equal to c.

&

E+g)k =Ei (4.104)

at which point the bubble no 1onger expands. These re-
sults seem to correlate well with experimental observa-
tions in directional solidification (Coullet et al. , 1989d)
and in convection in a narrow annulus.

As is clear from ihe stability balloon in convection dis-
cussed in Sec. VIII.A below, the secondary instabilities
often reAect subtle details of the micI'oscopic equations,
and little can be said in general about which finite-Q in-
stabilities will be present. (We have seen that the long-
wavelength instabilities have a wider universality. ) Pro-
gress can however be made near a degenerate primary bi-
furcation (e.g., a codimension-2 point, see subsection
IV.B below). Then the secondary instability may be un-
derstood in terms of the competition between the
difFerent states at the degenerate bifuI'cation, and may
often be captured, either approximately or systematical-
ly, by thc paI"tlculaI' amplitude equations va11d 1Il this Ic"
gion. Examples occur near the degeneracy point of pri-
mary bifurcations at q and 2q (Malomed and Tribelsky,
1984; Fauve et a/. , 1990; Paap and Riecke, 1990; Levine
et al. , 1991; Rappel and Riecke, 1992; Riecke and Paap,
1992), in the weakly damped parametric wave system
(Paap and Riecke, 1990; Milner, 1991), and for Taylor-
Couette modulated waves (Chossat and Iooss, 1985).

4. Nonadiabatic effects

Amplitude and phase equations describe the slow evo-
lution of variations of a periodic pattern. They may be
derived as smooth equations in a slow scaled spatial coor-
dinate (e.g., X=e' x in the amplitude equation), and the
derivation involves a perturbation expansion. The fast
underlying spatial variation does not appear in the
final answer e.g. Eq. (4.3). An important physical

phenomenon that Is Ilot captuIcd by thcsc cxpRIls1ons,
even if taken to higher order, is the Ioeking of coherent
structures, or regions of spatial variation, to the underly-
ing periodic structure in type I systems. Thus for exarn-
ple the propagation of fronts, or the glide of dis1ocations
(see Sec. V.B.3 below) may cease altogether for small
enough driving. This coupling to the fast spatia1 degrees
of freedom is generally put under the heading of "nonadi-
abatic effects" (Pomeau, 1984), and will be discussed fur-
ther in subsection V.B.2.b.vi.P below, in the context of a
stationary front in the Swift-Hohenberg equation.

5. Rotationally invariant order parameter equations

The phase equation is valid over 8 wide range of con-
trol parameter values and for arbitrarily large reorienta-
tions of the ro11s, provided the rate of spatial variations is
small compared with the local wave number. The whole
approach is based on the shou variations of a patteIn
which locally has a periodic spatial structure. This
Qlcthod docs Ilot g1vc 8 complctc dcscI'1ption of thc pat-
tern in typical situations, since defects —where no local-
ly periodic structure can be identified —are common.
The RInplitude equation on the other hand allows for
more general modulations of the pattern, including am-
plitude variations. For example, as discussed in detail in
Sec. V.B below, the properties of dislocation defects may
be completely studied near threshold using the amplitude
equation (Siggia and Zippelius, 1981a), and boundary
efFects are easily included. However, large changes in the
direction of the wave vector aI'e not permitted. The ques-
tion arises: can we find a treatment that includes both op-
tions~

Near threshold the "order parameter" equation intro-
duced by Swift and Hohenberg (1977) seems a possible
candidate. Although we have already discussed this
equation as an example of a microscopic model in Sec.
III.C, we now wish to consideI' it as an approximation to
a morc fundamental microscopic description such as the
full Quid equations of convection. The form of the equa-
tion can be motivated by returning to the characteristic
spectrum of the linear instability I, of Fig. 7. Starting
from a microscopic system (3.4) we define g to be simply
the full amplitude of the plane wave eigenvector at q. To
get the correct spectrum Eq. (4.4) must be satisfied in the
linear regime. The nonlinear terms may be developed
perturbatively by assuming that the modes away from the
critical wave number qo adiabatically follow the slow
time dependence (Haken, 1977). The equation becomes

rod, f,=t 8 k(e —eo)'l 0, —

+ X g(qi q»q3)P, iP,A,» (4 1o5)
qlq2q3

q&+q&+q3 =q

where g is 8 complicated fUIlction wh1ch CRQ bc calcUlat-
ed in specific cases (Cross, 1980). We now define a real
order parameter IQ space as
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g(x}=g f e'q (4.106)

(q qo—)'0 =(4qo} '(q' qo—)'0,

~(4qo) '(V +qo) i)'j(x) . (4.107)

and Fourier transform Eq. (4.105) to give an equation in
real space. This procedure encounters three difhculties:
the first is that the (q —qo) term does not give a con-
venient expression, and we transform it to

(4.108) are instructive models for understanding pattern
formation, it should be emphasized that they do not re-
sult from any systematic expansion of more fundamental
equations. In particular, the order-parameter equations
derived by Haken and co-workers for a large number of
systems (see Bestehorn and Haken, 1990a,b, and refer-
ences therein) involve uncontrolled approximations, since
some but not all of the corrections to the amplitude equa-
tions resulting from the fast spatial modes are retained.

Secondly, the nonlinear terms give a short-range, but
nonlocal interaction. In specific cases physical argu-
ments may suggest various local approximations (e.g. , see
Manneville, 1983a; Bestehorn and Haken, 1990a,b).
However, as emphasized below, these are not in general
systematic approximations, and the importance or unim-
portance of the effects left out has not been tested in gen-
eral. A case where a systematic approximation leads to a
local interaction is the type II, instability (subsection
IV.A. l.b above). The full structure is quantitatively im-
portant when considering super positions of singly-
periodic states as in subsection IV.A. l.a above [it affects
Q(8)], but we shall for simplicity replace the nonlinear
term proportional to g by a local interaction go hatt (x)
with a constant go. Thirdly, the full effect of boundaries
is not included in the projection onto the unstable eigen-
vector, since "fast" spatial modes are forced by the
boundary conditions. With these caveats in mind we are
thus led to a simple description given by the Swift-
Hohenberg equation

&odt 4= &4 (ko~4q o )(V—'+ q o )'0 go4'—
together with the boundary conditions

g=n V /=0,

(4.108)

(4.109)

where n is the normal to the boundary. This equation
does indeed reduce to the amplitude equation (4.3) for
nearly parallel rolls and reproduces the correct boundary
conditions on the amplitude A to lowest order in E (Cross
et al. , 1983a}. Moreover it describes more general pat-
terns containing defects and other large distortions of the
roll structure, as discussed in Sec. V below. Often the
variables are rescaled to eliminate unnecessary constants,
leading to the simple form (3.27).

Near type I, instabilities complex order parameter
equations have been obtained by Ohta and Kawasaki
(1987) and more recently by Bestehorn and Haken
(1990a,b). The simplest equation is of the form

rod, g = sf+ so(V +qo)hatt

—(go/4qo)(1+ic, )(V +qo) g
—go(l+ic3)~g~ lij, (4.110)

where now g is a complex field (its real part is the physi-
cal field). More complicated nonlinear terms involving
derivatives are of course also possible, as in the real case.

Although rotationally invariant equations such as

B. Qualitative methods

In the previous section we have mainly been concerned
with quantitative perturbation methods. Throughout our
discussion we have seen that the role of symmetry is cru-
cial in pattern forming systems, for example in the
definition of ideal patterns and in the derivation of ampli-
tude and phase equations. In this section we brieAy treat
symmetry from a more formal point of view. We then in-

troduce an expansion scheme known as normal forms, "
which systematizes and in some ways extends the ampli-
tude equation approach. This scheme yields qualitative
rather than quantitative information, and it shows its real
power in complicated situations with symmetric or de-
generate bifurcations. (Note however that normal forms
are usually restricted to ideal, spatially periodic solu-
tions. ) These aspects of bifurcation theory have recently
received considerable attention from mathematicians,
and we cannot hope to do the subject justice. Our main
aim here is to provide a crude translation between these
formal developments and our more heuristic approach.
The reader is referred to recent books and reviews
(Guckenheimer and Holmes, 1983; Golubitsky and
Schaeffer, 198S; Crawford, 1991; Crawford and Knob-
loch, 1991) for a fuller account. Finally we discuss the
qualitative implications of the symmetry analysis for the
existence of defects in ideal patterns.

3. Formal methods of bifurcation theory

a. Norma) forms and nondegenerate
bi furcatjons

As mentioned above the method of normal forms is
similar in approach to the use of amplitude equations,
but with rather different aims. The idea is again to derive
a reduced dynamical description near the bifurcation
point by projecting the dynamics onto a lower-
dimensional space (the center manifold). For small am-
plitude solutions this is the space spanned by the margin-
al eigenvectors, i.e., those with eigenvalue passing
through the imaginary axis at the critical value of the bi-
furcation parameter. The center manifold is however
continued into the larger amplitude regions. The em-
phasis of the approach is on reproducing qualitative
features of the dynamics; the expansion is continued to
whatever order is needed for the full qualitative behavior
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Btu =Ru u (4.111)

corresponding to an exchange of stability at a transcriti-
cal bifurcation. If equations have inversion symmetry
(corresponding to u ~—u) the quadratic nonlinearity
must be absent and the simplest representative is as in
Eq. (3.9c)

B,u=Ru + u (4.112)

corresponding to a pitchfork bifurcation. This simple ex-
ample demonstrates certain results that are characteristic
of more complicated situations:

(i) An alternative choice of coordinates u =u+up
with uo a constant would lead to a more complicated,
nonstandard form.

(ii) The amplitude of the new solution scales in a
characteristic way with the bifurcation parameter,
u —~R ~

for Eq. (4.111)and u —~R ~' for Eq. (4.112).
(iii) Depending on the sign of the cubic term in Eq.

(4.112) the transition may be either supercritical or sub-
critical. There is a prescribed and simply calculated rela-
tionship between the stability of the small amplitude
solutions and the nature of the transition [subcritical ~
unstable; supercritical ~ stable, at least in this subspace].

(iv) It may well happen that the original equations only

to be displayed, rather than to a definite order in some
systematic expansion parameter. Furthermore, although
the original expansion might be developed in powers of
the mode amplitudes, a systematic procedure of both
linear and nonlinear transformations is used to reduce the
equations to a simple canonical form, with variables that
usually bear a complicated relationship to the original
variables. This canonical form is then analyzed to make
qualitative statements about all (or at least typical) sys-
tems with a given type of bifurcation. For example it is
often possible to connect the nature of the bifurcation
(supercritical or subcritical) with the stability of the ensu-
ing solutions.

A somewhat related technique, known as the
Lyapunov-Schmidt reduction, examines periodic or
steady state solutions beyond the bifurcation point by
solving a reduced, time-independent equation. Although
less general than the method of normal forms, the
Lyapunov-Schmidt technique provides a rigorous ap-
proach to a smaller class of solutions (i.e., the periodic
ones) near a Hopf bifurcation.

We will introduce the method of normal forms in the
case of nonde generate bifurcations from a time-
independent state, repeating in somewhat more formal
language the discussion in subsection III.A.2 above. In
the absence of special symmetry or degeneracy the bifur-
cation can occur in two ways: a real eigenvalue of the
linear stability analysis passes through zero (type s); or a
COIl1plex pa1I' F1 0 2 0 pRss thI'ough the 1maglnary Rxls
Reo =0 (type-o; a Hopf bifurcation). Near a type s insta-
bility the center manifold is one-dimensional and the sim-
plest normal form in the single variable u is as in
Eq. (3.9b)

have quadratic nonlinearities. A simple projection onto
the marginally stable eigenspace would then not produce
the cubic term in Eq. (4.112). To obtain this term one
uses an iterative procedure: calculate the amplitude of
the stable eigenvectors driven by the nonlinearity, and
then feed these back into the marginal space. This adia-
batic elimination, or calculation of the "slaved modes" in
the standard amplitude formalism, can be thought of as
calculating the curvature corrections to the center mani-
fold when it is extended into the nonlinear regime.

The full power of these methods becomes apparent
when considering bifurcations with symmetry or degen-
erate bifurcations, which we now discuss.

b. 8ifurcations with symmetry

In R system with symmetry, many symmetry-related
modes may become unstable together and the standard
nondegeneracy restrictions of simple bifurcation theory
are not satisfied. The theory must be reinvestigated using
symmetry analysis. The natural mathematical tool is
group theory, and there is a large body of work systemat-
ically generalizing the simple bifurcations considered
above to situations with particular symmetry groups.

The first step is to construct the group I 0 containing
all symmetry elements of the system. The fundamental
symmetry in pattern forming systems is translational.
Since, in the ideal situation, we are looking for spatially
periodic solutions, it is often mathematically convenient
to restrict the translations to a compact group by taking
periodic boundary conditions over periods I.,-, i = 1, . . . , d
in a d-dimensional space (so that translations T, and
T;+I., are identified). Note however that the assump-
tion of periodic boundary conditions is not consistent
with continuous rotational symmetry in space. The
Taylor-Couette system is an example of a physical situa-
tion with such boundary conditions (in the azimuthal
direction). Each translational symmetry is then iso-
morphic to that of a circle, and is often described in the
mathematical literature as S, or SO(2) symmetry. Spatial
parity symmetry (x ~—x) would enlarge the group to
O(2). Thus the important case of wave instabilities (type
I,) with parity symmetry can be described as a Hopf bi-
furcation with O(2) symmetry.

To perform a symmetry analysis for Hopf bifurcations
it is useful to incorporate the time dependence in the
symmetry description. The original autonomous system
(3.4) is invariant under all time translations. If we are
seeking periodic solutions of period r (to be determined)
it is again convenient to consider time translations T,
modulo ~. This corresponds to another S& symmetry.
The Hopf bifurcation leads to a solution breaking this
symmetry, the operation of T, on a solution translating
the phase of the oscillator. Thus the Hopf bifurcation
with one-dimensional translation and parity symmetry
can be described by the full group I"p=O(2) X S&.

In a pattern forming bifurcation there is a transition to
a state of lower syInmetry, which is the phenomenon of
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ZI
8, =(p +iq)

Z
$ +(r +is) 5

Z2

z]
z 2

(4.113)

spontaneously broken symmetry. The symmetry of the
new state will be represented by an "isotropy group" I,
that is a subgroup of I 0 (i.e., contains fewer symmetry
elements). The question of which subgroups of I 0 can
typically characterize the new state seems hard to answer
in general (Golubitsky and Schaeffer, 1985). Subsequent
bifurcations can lead to further reductions in symmetry,
so that a chain of possible groups is formed, called the
"isotropy lattice" [Fig. 11(a)], with successively smaller
numbers of elements, each one a subgroup of the higher
level group (at least to within a "conjugacy, "see Golubit-
sky et al , 19.88). The symmetry analysis is often
sufticient to produce a nondegenerate bifurcation scheme
for which the usual theorems hold. The reduced symme-
try state can be analyzed using the method of normal
forms, which must now respect the remaining symmetry.
The polynomial expansions are continued to high enough
order so that solutions showing this minimal symmetry
may be found —often low-order truncations lead to solu-
tions with artificially high symmetry. Nondegeneracy
conditions, i.e., the assumption that coeKcients in the
normal form will not be zero typically, may rule out cer-
tain candidates in the isotropy lattice. For compact
groups the expansion to any order is given by combina-
tions of a finite number of low-order polynomials. Again,
general results may be found linking, for example, the na-
ture of the bifurcation to the stability of the new solu-
tions.

An example of the formalism is the Hopf bifurcation
with Q(2) symmetry considered by Golubitsky and
Stewart (1986). The symmetry elements of the full group
I O=Q(2) X SI are displacements in space through T„
and spatial parity P [the O(2) symmetry], plus transla-
tions in time through T, (the S, symmetry). The isotropy
lattice is shown in Fig. 11(b). States above the transition
may be represented by two complex numbers z& and z2.
(These are just the wave amplitudes A~ and AL in the
notation of subsection IV.A. l.d). The state with symme-
try SO(2) is either z, =0 or z2 =0: this is just the travel-
ing or rotating wave case, and the symmetry is a com-
bined translation in space and time. The state with sym-
metry Z2XZ2 is i

= z2=U, and is the standing wave
with inversion symmetry, plus the symmetry Z2 which is
a change of sign of the amplitudes z, , z2 ~ —z„—z2,
together with a time translation through half a period.
These are the only two oscillatory modes that typically
appear. The state with residual symmetry Z2 is the gen-
eral mixed-wave state (z„zz)and only occurs in degen-
erate cases (Golubitsky et al. , 1988, p. 341). The normal
form equations are the amplitude equations of subsection
IV.A. l.d. , with spatial dependence neglected. These can
be rewritten in the form

(b) 0(2)xs,

so(2)
IT =6;T, = bI

C

Z2XZ2
II, PIxli, (T = vr; T, =sr)(

Z2

)i, (T =~;T, =~)I

FIG. 11. Isotropy lattice for bifurcations with symmetry. (a)
Schematic representation of the isotropy lattice showing succes-
sive symmetry breaking bifurcations, starting from the original
symmetry group I o and passing through a number of possible
chains, through lower symmetry states represented by groups
I &, I &, etc. The end point is the identity I. (b) Isotropy lattice
for the Hopf bifurcation with O(2) symmetry of spatial transla-
tions and parity, showing its decomposition into the subgroups
SO(2), the two-member group Z2 (or Z2), and products
Z2 X Z2. The symmetry elements shown in the figure are pari-
ty P, the identity I, translation through space by an amount
5 (T =5), and translation in time by an amount 6 (T, =6),
with 6=2~ corresponding to a complete period.

c. Oegenerate bifurcatfons

It is possible to tune system parameters so that a num-
ber of eigenvalues, not related by symmetry, become un-
stable together. These are known as co-dimension-n de-
generate bifurcations if n system parameters must be
tuned. Now the center manifold is higher-dimensional
and the normal form equations must be developed as po-
lynomials in the amplitude of all the marginal modes.

with 5 = ~zz~
—~z, ~, and p, q, r, s functions of the two

invariants X= ~zi ~

+ ~z2~ and b, =6 . Depending on
signs and ratios of the coefficients r(0) and pIv(0) the
different bifurcations in Fig. 11(b) are possible
[r(0)=r(+=0,~=0) and p„(0)=(apxaX)„=,=,]. It
is easy to see that for either rotating waves or standing
waves to be stable both must branch supercritically, and
then one is stable and the other is unstable.
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Symmetry classification again plays an important simpli-
fying role. The behavior as the system parameters are
varied slightly away from the codimension-n point can be
investigated using the normal forms (the universal un-

folding). The full behavior is often complicated, depend-
ing on various signs and ratios of coefFicients in the nor-
mal forms, which may vary from system to system.

2. Phase variables and topological defects

W=(1/2m) J VP d8=1 . (4.114)

We can ask whether such a variation is consistent with a
slow variation of P everywhere. The answer is clearly no,
since if the contrary were true we could smoothly shrink
our integration contour always through regions of slow
variation, and the integer winding number W could not
change. Eventually a 2m. phase winding would occur
over an arbitrarily small loop, contradicting the assump-
tion of slow variation. Thus an integer winding number
generated by the behavior in regions where the phase
variation is slow, necessarily implies the existence of at
least one point defect, where the assumption of slow vari-
ation, and hence the phase description, break down. (An

The symmetry classification of a bifurcation provides a
useful way of generalizing the idea of phase variables
(see, e.g. , Coullet et al. , 1987, 1989b, 1991). Consider a
state with broken symmetries beyond a particular bifurca-
tion. Some symmetry elements of the system are no
longer symmetry elements of the solution. The action of
one of these elements on a solution will give a difFerent
state, but one that is entirely equivalent. The class of
difFerent equivalent states generated by all the continuous
symmetry elements must be distinguished by parameters

P; such that action by the group elements changes these
variables. We will call the P; phase Uariables, since they
are a natural generalization of the phase generated by
translations, discussed in subsection IV.A.2. A spatially
uniform change of any of the P; corresponds to produc-
ing a new equivalent solution, so such a change does not
lead to any dynamics. A slowly varying change P;(gx),
g «1, would therefore be expected to relax slowly at a
rate cr-alt', with p ) 0 and typically equal to 2. Thus
the generalized phase variables will describe the dynam-
ics of slow spatial variations of the basic state.

The introduction of phase variables has implications
beyond dynamical equations. The global constraints re-
sulting from the requirement that the phase field should
lead to a single-valued microscopic U field can be used to
give a topological classification of possible patterns. Let
us consider the case of a two-dimensional roll system
with phase variable P corresponding to q ~ x in the
undistorted pattern as in subsection IV.A.2. Now con-
sider a pattern in which over some large closed loop C
the phase varies slowly, but accumulates a total "phase
winding" of 2m over the loop, leading to a winding num-
ber

amplitude equation or a fully microscopic description
would still be valid, however. ) This construction is famil-

iar from the definition of the Burgers vector of a disloca-
tion in a crystal, or of a vortex in a superAuid. The ex-
istence of these "topological defects" depends both on
the space of phase variables (order parameter space), and
on the spatial dimension of the pattern. Defects exist if
there is a nontrivial mapping of the contour in physical
space (the loop C above) onto the order parameter space
(the circle 0 to 2m for the phase variable P above). De-
fects are mathematically characterized by the homotopy
theory of such maps. [A review in a condensed matter
context is given by Mermin, 1979.] In addition to point
defects, defined by a surrounding sphere in three dimen-

sions, a circle in two dimensions and a pair of points
(x =+ oo) in one dimension, we may look for higher-
dimensional defects, e.g. , a line in three dimensions. We
will discuss simple examples in Sec. V without using the
mathematical formulation explicitly. The importance of
topological methods increases with the complexity of the
patterns, and they have played a useful role, for example
in the study of wave instabilities in excitable media dis-
cussed in Sec. X.

Although the topological classification of defects is a
useful exercise, the importance of regions of slow phase
variation allowing such a classification in real patterns is
not clear in many situations. The main difFerence with
condensed-matter systems, as discussed by Mermin for
example, is the absence of a Lyapunov function for
dynamical equations. A condensed system near equilibri-
um seeks to minimize the free energy of various field
configurations, and thus favors slowly varying phases
over most of the system. The core of a defect usually
represents a higher energy state, but its elimination in-
volves overcoming a macroscopic energy barrier. Thus
topological stability often implies dynamical stability.
For dynamical systems on the other hand, topological
stability is neither necessary nor sufhcient for dynamical
stability, though topological defects often appear as per-
sistent features of solutions. An example of a topologi-
cally stable defect which disappears will be encountered
in our discussion of traveling waves in Sec. V.B. It is a
kink pair formed of right- and left-traveling waves for a
convectively unstable system. Conversely, an example of
a stable defect with no topological stability is a stationary
pulse in an oscillatory state, which may exist over a
broad region of parameter space (see Sec. V.B). Finally,
topological defects may be created spontaneously in spa-
tial regions where the phase description breaks down, ei-
ther near boundaries or in the bulk as a consequence of
instabilities, and unlike near-equilibrium cases, there is
no way to assign an "energy cost" associated with this
creation process.

V. ELEMENTS OF REAL PATTERNS

Having described the ideal patterns that exist above

threshold for the difFerent classes of instabilities, we now
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wish to study the main modifications brought about by
"real" conditions. One important deviation from the
ideal state arises from the presence of boundaries.
Another obvious feature of real patterns is the existence
of local structures or defects, either inside domains of
roughly ideal states or at the boundaries between such
domains. We review these subjects here, and then at-
tempt to combine them in Sec. VI.

A. Effects of boundaries

geneous. These boundary conditions render the bifurca-
tion imperfect (Sec. III.A). Since the evolution of the
small amplitude state near the ideal system bifurcation is
very sensitive to such small imperfections the transient
evolution is strongly affected. If the control parameter is
increased slowly through threshold often a unique solu-
tion will develop, corresponding to the smoothly develop-
ing branch in Fig. 6(f).

For large systems a small imperfection may be treated
using the amplitude equation (4.13) (in one dimension for
simplicity)

1. Type l,: Stationary periodic

Let us consider a type I, instability in a rotationally in-
variant system whose ideal state consists of parallel rolls.
We shall introduce the various types of boundary condi-
tions through their effects on the linear threshold, and
then discuss in considerable detail the constraints on
nonlinear solutions arising from what we will call "rigid"
boundary conditions.

a. Threshold effects

(i) Periodic boundary conditions

The simplest boundary conditions to discuss are ones
that are consistent with a subset of the ideal solutions of
the laterally infinite system. For example, periodic
boundary conditions over a rectangular box of dimen-
sionsl, X M

U(x+L) = U(x ),
U(y +M) = U(y ),

(5.1a)

(5.1b)

(ii) Inhomogeneous boundary conditions

If the boundary conditions are not consistent with the
spatially uniform solution U=O, we call them inhomo-

are consistent with spatially periodic solutions, the only
difference being that the wave vectors are restricted to
the discrete set q=(2rrP/L, 2mm/M) for Z, m integers.
If L and M are small enough there may be very few, or
even a unique 8 and m, giving a wave vector q within the
band of stable states: in this case strict wave-number
selection may occur by a rather trivial mechanism. The
same set of solutions may also be consistent with other
boundary conditions, e.g. , no Aux (or Dirichlet) condi-
tions, which simply require zero normal gradients of the
solution at the boundary. In this particular case the solu-
tions extend to the nonlinear regime: the boundary condi-
tions merely select a discrete set of the nonlinear ideal
solutions. Although these boundary conditions may be
natural from the microscopic physics, they are not gener-
ic in systems yielding instabilities at finite wave numbers.

(5.2)

with an inhomogeneous boundary condition (see Cross
et al. , 1983a, and references therein)

A(x)=a+, x=O, L, (5.3)

and a+ complex numbers. For small systems a useful ap-
proach (Shaeffer, 1980) is to "switch on" the imperfection
with a parameter 0 & g & 1. For small g the passage from
an ideal bifurcation to an imperfect one may be analyzed
in detail. The qualitative behavior may then be the same
even for larger imperfections, q~I. This approach is
particularly useful in determining the choice between de-
generate or almost degenerate solutions (e.g., between the
3 and 4 roll states in a system of size 3.5, see Sec. IX.B
below).

(iii) Rigid boundary conditions

U(x)=0, VU(x)=0, . . . (5.4)

(depending on the order of the pde one may need condi-
tions on higher derivatives). The instability threshold
R, (L ) will be shifted from its value R, in the infinite
system as a result of the rigid boundary conditions (5.4),
by an amount

E, = [R,(L)—R,"]/R, (5.5)

We say that the system is small if Lqo=0(1), and

Typically, the lateral boundary conditions will not be
consistent with the structure of the ideal solution: it will
not be possible to satisfy all boundary conditions by a
choice of the one free variable —the phase of the ideal
solution at the boundary. Homogeneous boundary con-
ditions (those consistent with the uniform state U=O)
will therefore usually shift the onset of the instability.
We can identify two different classes of boundary condi-
tions depending on whether the instability is enhanced or
suppressed.

Perhaps most commonly we might expect the boun-
daries to suppress the instability. This is the case for
Rayleigh-Benard cells where the sidewalls impede the
Quid Row through viscous effects. Let us consider a sys-
tem described by the general pde (3.4) in a box of size
L XL with "rigid" boundary conditions consistent with
U:—0
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large if I.qo&)1. For large systems we expect that
c., &(1, and rigid boundary conditions can be treated
within the amplitude equation (5.2). For example in a
one-dimensional situation the incompatibility of (5.4)
with the ideal solutions U induces a boundary condi-
tion of the form (Ahlers et al. , 1981;Cross et al. , 1983a)

675

A(x)=0, x=o, L, (5.6)

on the amplitude A. The onset solution is then [Fig.
12(a)]

A =a sin(n.x/L),
leading to a threshold suppression proportional to I

s, =n. /L

(5.7)

(5.8)

655
1Q 15 2Q 25

with L the system size measured in units of go. More
generally, for arbitrary L Eq. (5.2) no longer applies. One
finds an overall increase in the suppression as I. de-
creases, but with modulations periodic in I. with period
m/qo, corresponding to the fitting of discrete numbers of
periods into the finite geometry as discussed for example
by Charlson and Sani (1971) and shown in Fig. 13. For
small systems [Lqo=O(1)] we expect E., =O(1) also.

The second possibility is that the boundary conditions
enhance the instability. In a small system this will simply
lead to a lower critical value of the control parameter R, .
For large systems a surface instability develops, leading
to a solution localized near the boundaries and decaying
in the bulk, for control parameter R, less than the value

R, of the ideal bulk instability. Typically ~E, ~
will be

O(1), i.e., the surface solution develops far below the
bulk instability. As R is increased to approach R, the
surface solution may drive the bulk solution, in a manner
similar to the inhomogeneous boundary conditions de-
scribed above: the bifurcation which occurs at R, in the
ideal case has now become imperfect [Fig. 6(f)]. Howev-

(a)

0

(b)

FIG. 13. Threshold Rayleigh number R, for onset of convec-
tion in a one-dimensional system of size L for the model of
free-slip convection. The boundary conditions at the ends inter-
polate from free-slip thermal insulators (bottom line) to rigid
good thermal conductors {top line). (From Y.-Y. Chen, 1992.)

er, any of the symmetry related solutions may occur, de-
pending on the symmetry breaking at R, . For R )R,
the solution will be like the ideal solution in the bulk,
with amplitude scaling as c' for not too small c,, but it
will already have grown to 0 (1) at the boundaries. Kra-
mer and Hohenberg (1984) have called these type II solu-
tions, in contrast with type I solutions which suppress
the instability.

Although the second class of solutions is less common
in physical systems, examples are easily found in model
equations. Kramer and Hohenberg investigated the
Swift-Hohenberg model (3.27) with general homogeneous
boundary conditions, and found that depending on the
values of parameters in the boundary conditions, either
type I or type II solutions were stable, but never both.
Hohenberg et al. (1985) subsequently extended the study
to a reaction-difFusion system (3.32) and found similar re-
sults. From this study we may see that no-Aux boundary
conditions for reaction-difFusion systems are the special
point just intermediate between the two cases of
suppressing and enhancing boundaries, and in this sense
they are nongeneric. They will produce the periodic shift
in onset with I., but not the overall trend growing as I.
when L decreases. The lower envelope of the R, (L)
curve which touches the minima will remain at c., =0 in
this case, as shown for example in the lowest curve in
Fig. 13. Rotating convec."ion is an experimental system
showing an enhanced instability to a boundary mode
(Kuo and Cross, 1993).

0
b. Constraints on nonlinear solutions: Rigid boundaries

FIG. 12. Amplitude A(x) in one-dimensional system for the
amplitude equation (5.2) with boundary conditions
A (x =0)= A (x =L)=0. (a) Very close to the shifted threshold
c—c, « c, . (b) Further away from shifted threshold c—c, ~ ~, .

Rigid boundary conditions have a strong effect on pat-
terns, both in perturbing solutions of the infinite system
and in selecting particular solutions. In large systems
these effects can be studied near threshold using the am-
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plitude equation with the appropriate boundary condi-
tions. Many conceptual questions are most easily under-
stood in this framework. Very close to threshold the re-
stricted nonlinear solutions are conveniently calculated
using a mode expansion. Beyond this very restricted re-
gion the full differential amplitude equation must be
solved. Here we are particularly interested in the selec-
tion of the wave number in one-dimensional systems, and
orienting effects in two dimensions.

(i) Mode expansion

A =g A „sin(n vrx /L ), (5.9)

in terms of the linear solutions satisfying the appropriate
boundary conditions. The constraints on the nonlinear
solutions are thereby automatically included. Two re-
gimes may be distinguished (Ahlers et al. , 1981):

~ Very near threshold E —c,, 5 E, (remember E,, (& 1 by
assumption). In this regime the expansion is dominated
by the lowest mode of amplitude A, -(E—c., )'~2,

A(x) =&2 A, (t)sin(vrx/L )+O(c.—8, ) . (5.10)

A Landau equation for the transient evolution of 2, can
be derived by substituting (5.10) into the amplitude equa-
tion and projecting onto the sin(~x /L ) mode:

(5.11)

with g = (4/L ) f o sin (vrx /L )dx =3/2. Note that there
is a unique steady state solution A, =[(E—c, )/g]'r ex-
cept for an overall phase factor. [In fact the continuous
phase symmetry is removed by higher-order terms in the
amplitude equation, see subsection (ii) below]. Small in-
homogeneous boundary effects or other forces rendering
the bifurcation imperfect may be included through a
term f, (t) on the right-hand side of Eq. (5.11). This
force may be static, time dependent but determined by
the details of the experiment, or stochastic (Ahlers et al. ,

1981). In each case f, (t) is arrived at by again projecting
the local forcing f(x, t), which is added to Eq. (5.2), onto
the first unstable mode.

~ Further away from threshold, c. ~ c„but still with
c &(1. As c increases a larger number of linear modes
come into play, and the saturated solution changes from
a sine function to a "top hat" shape with

~
A (x) l

constant
over most of the range, as in the infinite system
[Fig. 12(b)]. The number of linear modes needed grows
rapidly, and the expansion in Eq. (5.9) loses its simplicity.
Instead the full partial differential amplitude equation
must be solved.

For simplicity we will consider a one-dimensional sys-
tem (5.2) of length L, with boundary condition (5.6),
which changes both the character and the number of
solutions compared to the infinite system. The solutions
may be expanded in the form

(ii) Wave number selectionin one dimension

It turns out that the reduced amplitude near the boun-
daries imposed by rigid boundary conditions leads to a
vastly reduced set of nonlinear solutions (as compared to
the infinite system) in the bulk of the cell, far from the
boundaries. In this region the solutions can be character-
ized by the local wave number, and only a narrow band
of wave numbers exist as steady state solutions, much
narrower than the ideal stability band. '

The simplest case in which to demonstrate this effect is
a semi-infinite system in one dimension, i.e., the region
x ~0 with a single boundary at x=0, say. Then as
shown by Cross et al. (1980, 1983a) the continuous band
of solutions with ~q

—
qo~ ~e' which exists in the

infinite system collapses to a much smaller band

[q qof + cE (5.12)

A (x =0)=A, E' (5.13)

5.~The e6'ect of rigid boundaries in restricting the wave-
number band was first noticed numerically for the Swift-
Hohenberg and Kuramoto-Sivashinsky equations by Pomeau
and Manneville (1980), but these authors mistakenly concluded
that the selection was perfect, as did Pomeau and Zaleski
(1980). The restriction to a linear band quoted in Eq. (5.12) was
first obtained by Cross et al. (1980, 1983a) for the free-slip mod-
el of convection as well as for the order-parameter models treat-
ed by Pomeau and Manneville (1980). The model results were
then derived in a simpler fashion by Pomeau and Zaleski (1981).

where c depends on the details of the system. This large
reduction in the band of wave numbers affects the
behavior avbitravily far fvom the boundavies. Continuity
with the laterally infinite system is maintained not in the
existence of steady state solutions, but in the time scale
for these solutions to be established. Thus if the bound-
ary conditions are changed suddenly from no-Aux say, to
rigid, then the restricted range of solutions is established
in a region a distance L from the boundary only after the
time necessary for the inhuence of the change to propa-
gate over this distance. For type I, systems this time is
L /D with D an appropriate diffusion constant. We em-
phasize again that the stationary solutions are severely
constrained compared with the infinite system.

Since this somewhat surprising result answers the old
question of how a long system approaches the ideal
infinite system, and also provides a wave-number selec-
tion mechanism to be discussed in Sec. VI.A below, we
will analyze the problem in some detail here. We again
start from some arbitrary microscopic U equation (3.4)
with a stationary (type I,) instability. We initially restrict
ourselves to a semi-infinite system. Near threshold an
amplitude equation exists in general, so we first illustrate
the effect using the static form of Eq. (5.2) (i.e. 8, A =0)
and the phenornenologica/ inhomogeneous boundary con-
dition

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



M. C. Cross and P. C. Hohenberg: Pattern formation outside of equiiibrium

—X E'~'/v'2&k &Xs'"/~/2 . (5.14)

This restriction can be easily understood by constructing
two "adiabatic invariants" for the x integration (Cross
et al. , 1980; Pomeau and Zaleski, 1981)

(5.15)

E=—(t) a) +Q /2a +—Ea ——a
2 2 4

(5.16)

W(x)=a(x) e'&' '.
%'e can bound E using the point in the cell where a
Icachcs 1ts minimum value Q~:

E)Q /2a +—sa ——a2 2 l 2 l 4'
m 2 m 4 m (5.18)

Analogously, if aM is the maximum value of a, Eqs. (5.15)
and (5.16) yield

Q &aMa s ——(a +aM) & —a s ——a2( 2 z & z 2 ~& 2 & z
PT

with A, a small parameter. Equations (5.2) and (5.3)
may be solved perturbatively in A. (Cross et al. , 1983a)
though in fact exact analytic solutions exist (Kramer and
Hohenberg, 1984). The magnitude

~
A

~
approaches satu-

ration for ~x ~

)s ' . The allowed wave numbers
k =q —

qo of 3 fall in the restricted band

As discussed above, rigid boundary conditions of the
form (5.4) on the U equation lead to the condition
A (0)=0, Eq. (5.6), on the O(s'~ ) amplitude. This corre-
sponds to A, =O in Eq. (5.13), so the wave-number band
obtained from this calculation is

This means that the O(c, '~
) Eckhaus stable band is com-

pletely eliminated by the boundary condition! On the
other hand taking A, =O(E'~ ) suggests a band of width
O(s). To calculate this band the amplitude expansion
has to be taken to higher order and stationary solutions
sought. The general form at next order is (Cross et al. ,
1983a)

0=a.'~+.~ —
~
~ ~'~ i.b, s—a„~ m, a—.'~

+i(b, +b, )~ ~~'a. ~

+i(b3+bs)A 8~A*+0(s ), (5.22)

with b; (i =1, . . . , 5) numerical constants which depend
on the details of the system. The boundary condition be-
comes

(5.23)

where the complex numbers a and P depend on the
boundary conditions for the U equation. The solutions of
(5.22)—(5.23) turn out to have bulk wave numbers restrict-
ed to the band (Cross et aL, 1983a)

=a /i/2 for a « ak, (5.20)

(5.19)

where the last inequality is obtained by maximizing with
respect to aM. Finally, we evaluate k =B P in the bulk
where a =ak =s'i (1—k ) so that

k &k &k+,

k = ——
~p~ (q+1) E,1

2

rI =(1m a —y)/~P~,

y =—( 2b t +b 2
—2b s b4 b5 ) .— —=I

2

(5.24)

(5.25a)

(5.25b)

(5.25c)

showing that thc wave numbc1 1s bounded by thc smallest
amplitude occurring anywhere in the cell, Physically this
1s reasonable~ slncc thc mln1mum amplitude I'cpI'cscIlts a
weak spot in the cell and allows the phase to unwind if
the "stress" from k%0 somewhere in the cell is too great.
The behavior for k outside the band can be followed by
integrating the evolution equation (5.2) in time. It is
found (Cross et al. , 1982) that the periods are indeed el-
iminated in the small a region near the boundary. This
local relaxation (analogous to the mechanism of the Eck-
haus instability) eventually affects the wave number
everywhere.

5 ~V@'th homogeneous boundary conditions on the U equation
the amplitude A(0) at x =0 in fact turns out to be O(c). Thus
small A, may be used to understand the behavior, although for
X=0(c'/ ) terms neglected in arriving at Eq. (5.2) become im-
portant.

In a finite system the boundary conditions (5.13) or
(5.23) must be applied at both ends of the sample. For
convenience we let the sample length be 2I., with bound-
ary conditions at x=+1,. Specifically, the boundary
condition (5.23) becomes

0= A —a+8„A—P+B A *, x =+I. , (5.26)

53The perturbative procedure of Cross et ul. (1983a) can be
more formally (and elegantly) justified in terms of a normal
form expansion (Iooss et a/. , 1990). The variable x may be con-
sidered as a "time" coordinate and the degenerate bifurcation
unfolded at c,=0. In fact a suitable nonlinear transformation
yields a much simpler, but completely general, equation. How-
ever in actual calculations on physical systems it is probably
easier to maintain a simple relationship of A(x) to the micro-
scopic variables U, so that the b;, a, and P in Eqs. (5.22)—(5.23}
can be calculated explicitly.
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with a+ = —a =a, P+ = —P* =/3. It should be noted
that P contains a phase factor exp(2iqoL), so that the
equations "know" about the quantizing of solutions at
this (but not lower) order. Then for a large system
[L ~ e '] the wave number is still restricted by the con-
ditions (5.24) and (5.25), but the additional condition at
x= —I. has the effect of quantizing the solutions to a
finite set of values inside the band, separated by amounts
of order m/L. Because of the dependence of P on qoL the
dependence of the discrete wave vectors on control pa-
rameter c obtained in a finite system is rather complicat-
ed (see Cross et al. , 1983a). The important point,
though, is that this complex behavior occurs entirely in-
side the 0 (E) band given by (5.24) (see Fig. 14).
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FIG. 14. Allowed wave vectors in the bulk of a one-
dimensional system of size 2L near threshold given by solving
Eqs. (5.22) and (5.26). The reduced Rayleigh number e is plot-
ted vs the deviation k of the wave vector from its critical value

qo. Solid and dashed lines correspond to different solution
branches. The dashed branches are unstable, the solid branches

stable (Daniels, 1984). Dash-dotted lines are k+ from Eq.
(5.25). Note that the allowed wave vectors in the finite system
fall between these bounds derived for the semi-infinite system.
The parameters used correspond to free-slip convection with
Prandtl number o.=0.78 and perfectly insulating rigid sidewalls
in (a), and perfectly conducting rigid sidewalls in (b). (From
Cross et al. , 1983a.)

The effect of finite geometry on the Eckhaus boundary
(4.24) has been studied by Tuckerman and Barkley
(1990). These authors showed that in a finite system the
neutral and Eckhaus curves are no longer tangent, but
are parabolas that intersect at two points with the Eck-
haus line below the neutral one. Experimental manifesta-
tions of these effects are noted in Sec. IX.B.2.c below.

(iii) Orientatlonal effectsin two dimensions

In large two-dimensional geometries we must also con-
sider the direction of the local wave vector, and in partic-
ular how it is affected by the boundaries. Empirically in
Rayleigh-Benard convection a rather strong tendency is
observed for the rolls to come in normal to the walls (i.e.,
q parallel to the wall). This result may be partly under-
stood from the linear analysis of the onset in a rectangu-
lar box, since with rigid boundaries the first unstable
mode has rolls perpendicular to the long side of the box
(Davis, 1967). The argument may be extended to the
weakly nonlinear regime by considering how the ampli-
tude approaches zero at a plane boundary. Cross (1982b)
showed that any angle of approach of the rolls is possible.
However the healing length near the wall over which the
rolls are suppressed is E

' cos8 (for 8 not too near m. /2)
with 0 the angle between q and the normal s. If we
define a surface contribution to the Lyapunov potential
(4.9) for the amplitude equation, this quantity is mini-
mized when the healing length is shortest, i.e., by
O~vr/2. [In this limit the healing length depends only
on the fourth order y derivatives in Eq. (4.13) and be-
comes O(E 'r ).] However since variation of 8 affects the
state arbitrarily far away from the surface it is not obvi-
ous that this motion will occur until we consider the pat-
tern as a whole. Pomeau and Zaleski (1981) showed that
for rolls parallel to a plane boundary there is a linear in-
stability towards nucleation of a normal set of rolls in the
boundary layer, but again in a finite system this may be
suppressed by other sidewalls or by the curvature of the
surface. This brings us to the global question of pattern
selection in two dimensions, which we defer to Sec. VI.

Both of the above arguments (the linear analysis and
the Lyapunov function) rely on general features that fol-
low from the symmetry of the system, rather than on any
detailed properties of the equations. In each case the
crucial element is that near threshold rapid spatial varia-
tion is preferred along the rolls rather than perpendicular
to them. In addition, in these limits a global meaning
can be given to the statement "the rolls want to approach
the wall normally, " using either the lowest linear mode
or the I.yapunov function. Further away from threshold
it is not clear that either of these concepts still apply, and
the preference for normal rolls relies in the end on evi-
dence from experiment and numerical simulations.

An extra complication that has not been fully incor-
porated into our arguments was found by Zaleski et al.
(1984) who noted that solving the amplitude equation in
the O(E'r ) healing layer near normal incidence yields a
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curvature to the rolls in this region, so that the optimum
approach angle for the rolls in the bulk difFers from m/2
by an amount of ordex' c'~ . Thex'e is pex'haps some evi-
dence for this in numerical simulations of the Swift-
Hohenberg equation by Greenside and Coughran (1984)
and in experiments by I.eCial (1986) shown in Fig. 41
below, but the general applicability of this result is not
understood.

2. Type ill, : Oscillatory uniform

Little theoretical work has been done on boundary
effects for the oscillatory uniform case. In part this is
due to the paucity of controlled studies of boundaries in
the corresponding experimental systems (chemical waves,
excitable biological media). Boundaries can act as
sources, sinks or re6ection sites for waves and defects (see
Sec. V.B below). The only study we are aware of which is

bRscd on Rrrlplltudc or phase cquat1ons 1s thc wol k of
Riecke and Kramer (1985) who considered Eq. (4.90) for
x & 0 with the surface boundary condition

cx/sp i (kx —Qk t)~g(x~t)=ay e
—e,x/sp i t, —kx —Q~ g)~I (x, t) =aL e

with Az and AL related at the ends + I, by

(5.30a)

(5.30b)

AI (L)=r e ' A~(L),
21gpI

Az( L)=r—e ' AL( L) . —
(5.3 la)

(5.3 lb)

This leads to Eq. (5.29) together with az =+ aL and an
expression for k=O{L ') given by a phase matching
co ndltlorl

solute, as discussed by Zaleskl er Ql. (1985). [These au-
thors used the linearized amphtude equation but with
boundary conditions Az = AL =0 to determine e, ]
Equation {5.29) gives the leading term in L ', but there
will also be quadratic corrections for smaller L,.

The onset mode in a large system can be easily found
by using the amplitude equations (4.59). Since the
diffusive tern1s play a secondary role in the structure of
the solution we may write (Cross and Kuo, 1992)

Q„P=—G/a „x=0 . (5.27)

Then depending on the»gn of G13 [wh«e 13 is the
coe+cient appearing in Eq. (4.90)] they found either a
disturbance propagating into the bulk (for Gp & 0), or a
weak disturbance localized near the surface (for GP & 0).

2(qo+k)L+P„=nm,

a& =aL, n even,

az = —aL, n odd,

(5.32)

(5.33a)

(5.33b)

3. Type l,: Oscillatory periodic

2e L/so
(5.28)

with so the group velocity of the waves and L/so the
traversal time. Equation (5.28) gives

The effects of boundaries turn out to be very ixnportant
in type I, systems because the instability, at least at a su-
percritical bifux'cation, is always convective in the infinite
system due to the propagation of disturbances at the
group velocity sc (see Sec. III.A.2). It is therefore only
the rejecting properties of the boundaries that cause a
perturbation in the finite system to grow locally in this
regime. Let us characterize the boundaries by a
FCAection coefficient r for linear waves, defined as the ra-
t10 of amplitudes of a rejected wave to that of Rn 1ncoIYl-

ing wave of constant magnitude and critical wave num-
ber at threshold (Cross, 1986b). Then we can estimate
thc thr'cshold of the 1Qstab111ty E 1Q R finite systcn1 by
balancing the growth of the disturbance with the growth
rate c,, over one traverse of the length 2I. of the cell, with
the loss in amplitude due to reliection (we assume I r

~
& 1)

where P„is the phase of r. The shift in wave number k
will lead to a change in the onset frequency and O(L 2)
cox'rections to a„whose calculation however requires the
reinstatement of the diffusive terms in the amplitude
equation. The discrete set of k defined by Eq. (5.32) will
usually lead to a single mode with the smallest c, which
is seen from Eqs. (5.30) to be in the form of counterpro-
pagating txaveling waves, with the amplitude of right-
moving waves large in the right-hand end of the system.
and left-moving waves dominant in the left half. For par-
ticular values of I. two modes will be degenerate at
threshold, and their superposition will lead to a beating
phenomenon (Kolodner et al. , 1989).

It should be noted that this calculation has sidestepped
the difficulties in the type I, amplitude equation dis-
cussed below Eq. (4.61), since the short healing length re-
gion near the ends is not described in Eqs. (5.30) but rath-
er is parametrized by the FCAection coefFicient r.

To obtain an estimate of the reAection coefficient from
the amplitude equation we generalize the type of bound-
ary conditions used in the stationary case, assuming
again that the sidewalls suppress the instability. In a
one-dimensional s1tuatioIl thc gcncr'Rl horrlogcQcous
linear boundary conditions consistent with the sym-
metries x —+ —x, A~ +-+ AL are

E, =s~(2L) ' ln (1/i ri ), (5.29)

i.e., a shift for large L which is O(L ') rather than
O(L ) as in the stationary case, Eq. (5.8). Also, this re-
sult gives e, cliverging as Irl~0. Actually we would
then expect c,, =O(1), where the instability becomes ab-

13+d ~L, =0—
x =+I

(5.34a)

(5.34b)
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898 M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium

with a+, f3+ dependent on the underlying microscopic
boundary conditions. It is easy to solve the linear prob-
lem of an incoming right-moving wave of unit magnitude
and an outgoing left-moving wave at x = +L, near
threshold. Setting

AL =r,
g, =(1+ic,)Iso,

(5.35a)

(5.35b)

(5.35c)

where the second term in (5.35a) represents a correction
with amplitude a&, localized at the endwall, we find the
reAection coe%cient

r =soP (1+ic, ) (5.36)

for small a+, /3+. However we emphasize that unless so
is small, so that g, is much larger than the basic length
scale of the problem, treating the boundary region within
the amplitude equation formalism is not consistent. If so
is not small we have a complicated problem at the bound-
ary (with both nonlinearity and rapid spatial variation)
which has not yet been solved, although the linear prob-
lem has been studied for the free-slip case by Cross and
Kuo (1992).

As in the type I, system a mode truncation scheme

may be used very near threshold. At lowest order this

simply yields the nonlinear saturation of the counterpro-
pagating waves represented by Eqs. (5.30). This calcula-
tion yields (Cross and Kuo, 1992) la+ l

= laL l
=a with

(5.37)

Notice that if instead we had assumed an inverted bifur-
cation in the infinite system, the coefficient (1+g, ) in

(5.37) would become (g, —1) '. Thus if g, ) 1 the insta-

bility will be supercritical in the finite geometry, even

though it is subcritical in the infinite geometry. This is

clearly related to the strong standing wave component of
the onset solution in the finite geometry.

The mode truncation may be extended to dynamic
states in particular simple limits. Dangelmayr et al.
(1991) have studied the limit of small group speed
so=0(L ), perturbing in the small reAection ampli-

tude. Dangelmayr and Knobloch (1991) perform a nor-

mal forms analysis of the resulting coupled ode's. Knob-
loch and de Luca (1992), on the other hand, look at the
limit r —+ 1. An interesting feature of these calculations
is the extreme sensitivity of the periodic or chaotic states
to the system size via the parameter Lqo, reminiscent of
the beating states in the linear analysis.

structures or "defects" in or at the edges of regions that
otherwise approximate quite well an ideal pattern. These
local structures may have a topological origin, as out-
lined in Sec. IV.B, in which case topological arguments
are useful to motivate the search for solutions with par-
ticular geometries and to suggest their stability. On the
other hand, as mentioned earlier, many important local
structures do not have topological significance. Since the
theory and phenomenology of both types of local struc-
tures follow similar lines we will consider them together.
The defects we will study are often referred to as
"coherent structures, "a term which emphasizes the local
perturbation rather than the background in which it is
embedded.

We will divide the discussion into two parts. First
(subsection V.B.2) we discuss the structure of stationary
defects, or of uniformly moving defects for which we can
make the replacement 0, ~v V. In these cases the prob-
lem reduces to the solution of an ordinary differential
equation (ode) in one dimension, or to a purely spatial
partial differential equation (pde) in higher dimensions.
We then (subsection V.B.3) discuss the motion of defects
caused by various perturbations. (The above division is
not a clean one, since sometimes it is convenient to calcu-
late uniformly moving defects perturbatively starting
from the stationary solutions. )

An important feature of the search for local defect
solutions (stationary or uniformly moving) is that their
existence places constraints on the background pattern
arbitrarily far away from the defect, where the latter pro-
duces negligible distortions from an ideal state. Thus, for
example, demanding a stationary dislocation in a type I,
pattern such as a Rayleigh-Benard roll structure fixes the
background wave number of the ideal pattern far away.
Defects may therefore provide an important pattern
selection mechanism, as discussed in Sec. VI below.

2. Structure of defects

We first briefIy review the principles of calculation of
the structure of defects, leaving the details to the discus-
sion of specific examples.

a. Calculation methods

(i) Far field caiculations-

As discussed earlier, topological defects may be
characterized by a winding number in a generalized
phase variable:

B. Defects and coherent structures f Vg.d/ =2nm, (5.38)

1. Introduction

An important element in the structure and formation
of real patterns is the existence of well-defined local

where C is any contour surrounding the defect, If C is
taken at large distances where the deviations from the
ideal pattern are on a slow spatial scale, this equation to-
gether with the phase equation may be used to fully cal-
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culate the far field of a stationary or uniformly moving
defect. The dislocation defect discussed in subsection
V.B.2.c below provides a good illustration of this
method. The phase description breaks down at small dis-
tances, however, where Eq. (5.38) implies rapid varia-
tions, and a more complete description is in principle re-
quired. Often this core region can be parametrized sim-

ply in terms of a core size r, .
It should be clear that this approach is only useful for

defects in a continuous symmetry variable: defects result-
ing from a discrete broken symmetry (such as parity) are
not characterized by a phase variable.

(iii) Special solutions

Calculating the structure of defects may be easier in
special limits or at special points in parameter space
where there are extra symmetries or additional conserva-
tion laws which make a reduced analysis possible. An ex-
ample of a special limit is the calculation of dislocations
in the lowest-order amplitude equation. Special points
are also a useful tool for understanding fronts and pulses
in the generalized complex Ginzburg-Landau equation
discussed in subsection V.B.2.b.(v) below.

(ii) Phase space me-thods

In systems that are effectively one dimensional, the cal-
culation of defect solutions can be formally reduced to a
problem in dynamics, where the "time" is the continuous
dimension of spatial variation. Examples are point de-
fects in one spatial dimension, line defects in two dimen-
sions, or point defects in two dimensions in cases where
one direction can be eliminated by symmetry (e.g. , for an
axisymmetric defect only the radial coordinate need be
considered). In such cases the defect solution appears as
an orbit in a phase space defined by a finite set of ordi-
nary differential equations, whose number is determined
by the order of the starting partial differential equation in
the spatial variable (see Howard and Kopell, 1977; Ko-
pell and Howard, 1981). Besides the obvious
simplification of reducing a pde to a finite set of ode s,
this reformulation allows use of powerful qualitative
methods from dynamical systems theory to obtain vari-
ous results without numerical calculation. As illustrated
below, phase space methods are particularly useful when
the ideal states appear as fixed points, and defects are
heteroclinic or homoclinic orbits joining these fixed
points. The real and complex Ginzburg-Landau equa-
tions (4.13) and (4.49), as well as their generalizations
(Sec. III.C.2.d) are notable examples where this is the
case, and a rather general enumeration of the types and
multiplicities of simple defect solutions can be given for
these systems (see subsection V.B.2.b below). Besides
such simple defects one can look for limit cycles of the
ode which may represent periodic patterns or nonlinear
wave trains, characterized by a dispersion relation co(q),
or chaotic orbits which represent spatially disordered
states.

A severe drawback of these methods, on the other
hand, is that the stability of the solutions under the
(physical) time evolution of the original pde is not tested,
so that a great deal of effort may be expended calculating
appealing but unstable, and therefore physically ir-
relevant, solutions. The questions of stability and acces-
sibility under the physical dynamics (i.e., the basin of at-
traction) must always be considered in discussions of pos-
sible solutions obtained from phase-space methods.
Some information on stability can be obtained using per-
turbative methods.

(i v) Perturbation methods

When a particular solution to an equation is known it
is often possible to calculate nearby ones using perturba-
tion methods. For example, perturbing away from the
dislocation solution of the lowest-order amplitude equa-
tion by adding the next order terms in c,

' yields the
structure and wave number selected by the stationary
dislocation at order c., which turns out to be nontrivial.
For example the case of (Darcy-Rayleigh) convection in a
porous medium for which qo =~ was calculated by
Pomeau et al. (1983) who found

qd =qo+ac, a=1.04 . (5.39)

b. One-dimensional defects

(i) Classification of defect solutions: Coherent structures

We have seen in Sec. IV that pattern forming systems
possess finite amplitude "ideal" solutions which are
characterized by a wave vector and/or a frequency. In
one dimension defects can be created by the spatial juxta-
position of different types of ideal solutions and of the
zero amplitude solution. We shall define three classes of
such coherent structures which can be considered ele-

5.4These authors had a different definition of c. We have
rewritten their expression with c= (R —R, )/R„R,=4m .

The methods used for this type of calculation will be dis-
cussed in the section on dynamics (subsection V.B.3.a).

Another example occurs in the Ginzburg-Landau
model, which leads to an integrable dynamical system in
certain limiting cases. Then the defects or coherent
structures can be found analytically and they form a con-
tinuous family indexed by their velocity and/or their fre-
quency. Perturbing away from these limits we find a
discrete set of solutions, which can often be divided into
a stable and an unstable subset. A well-known example
of this phenomenon is the perturbation of the nonlinear
Schrodinger equation by small dissipative terms (see, e.g, ,
Kivshar and Malomed, 1989).
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mentary defects, treating first systems where the uniform
U=O state plays a special role (see van Saarloos and
Hohenberg, 1992 and references therein).

o Fronts, which consist of a finite amplitude ideal state
at one end (x ~ —ac, say) and the zero amplitude state
at the other (x ~ + ~).

~ Pulses, which have the zero amplitude state at both
ends and nonzero amplitude in a localized region.

o Domarn boundaries, formed by the juxtaposition of
two finite-amplitude states.

For moving fronts one distinguishes between "posi-
tive" and "negative" cases depending on whether the
nonzero-amplitude state invades the zero-amplitude state
or vice versa. For domain boundaries whose ideal states
have group velocities of opposite sign one distinguishes
between "sources" with outgoing velocity vectors, and
"sinks" with incoming ones. In two dimensions, when
the solutions on either side are stationary periodic states
of diC'erent orientations, the domain boundaries are
called grain boundaries, In this case there is also y varia-
tion (periodic or quasiperiodic), but it is usually easily de-
scribed.

In the absence of symmetry the zero amplitude state is
not singled out, and the above distinctions between
difFerent types of structures are less sharp. We will call a
front a structure joining two states of unequal amplitude,
at least one of which is uniform. A pulse, on the other
hand, has uniform states of roughly equal amplitude on
either side, while sources and sinks involve periodic wave
states.

For the one-dimensional case with symmetry it is con-
venient to begin with the generalized Ginzbnrg-Landau
model introduced in Sec. III.C.2 above.

(a) The dynamical system

Let us restrict ourselves to a particular class of solu-
tions of Eq. (5.40), the so-called "uniformly translating"
solutions, given by the ansatz

A(x, t)=e ' 'A(g),
g=x vt,
A (g) =a(g) e'~'~'

(5.42a)

(5.42b)

(5.42c)

(5.43a)

(5.43b)

(5.43c)

which takes the form (see van Saarloos and Hohen-
berg, 1992, and references therein)

Bp =ma,

Bp =6 (a, q, )1~,

B&a.=%'(a, q, a),
with

Q = b i co+ c i v Ic b i vq 2Kq

+c, [f&„+2(fz„+f3„)Isa +f2„lr f2; q]-
—b)[f ),. +2(f2,. +f3, )aa +f2;K+fz„q],

c, rv b&vs—c~vq——I~ +—q

(5.44a)

(5.44b)

(5.44c)

(5.45a)

where v and co are arbitrary real constants. Insertion of
(5.42) into (5.40) leads to a system of ode's for the vari-
ables

(ii) The generalized Ginzburg Landau mode-l

Consider the equation

b) [f), +2(f—2„+f3„)Isa +f2,a f;q]—
—c, [f„.+2(f 2, +f', )«'+f„a+f2„q]

b, = b(b, +ci) ', c, =ci(b +c )

(5.45b)

(5.45c)

+t) [f ((A
~ )A]+[a„f(~ 3( )] A, (540)

where

fr(y)= fr„(y)+ifr;(y), 8= 1, 2, 3, (5.41)

are complex functions of their argument, which are arbi-
trary for the moment (we typically will consider low-
order polynomials). This includes the type I, amplitude
equation (5.2) as a special case. For the sake of uniformi-
ty we will refer to the ideal states as "waves. "

f, =E, —(b3 ic3)a ——(b5 ic5)a—, f2=f3=0,
in (5.45), for which

(5.46)

The coupled set (5.44) can be considered formally as a
dynamical system in the pseudo-time variable g. Fixed
points and trajectories in the phase space of this dynami-
cal system will correspond to diferent uniformly translat-
ing solutions of the original @de (5.40). Most of our dis-
cussion will refer to the complex Ginzburg-Landau equa-
tion obtained by setting

55The nomenclature for one-dimensional defects is quite in-
consistent in the literature: fronts are sometimes called kinks or
shocks, pulses are referred to as solitons or s-waves, and domain
boundaries are known as fronts, pulses, shocks, sources, targets,
sinks, holes, or kinks.

5.6The parametrization in terms of the three variables a, sc, q be-
comes singular for solutions in which a{/} has zeros. In that
case a four-variable system, involving Re A, Im A, ReB A,
Im 8 A, say, should be used (see Landman, 1987).
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6= —b, (ro+vq+c3a +c5a )

+c,(vs+a. —b~a —bsa ) 2—vq,
b—, (vlr+c b—3a b—5a )

c,—(rv+vq+c3a +c5a )+q

(5 47a)

(5.47b)

We first consider fixed points, which are determined by
the conditions

Bp =Bgq =Bta=O . (5.48)

These are of two types. First, finite amplitude solutions,
which we refer to as "nonlinear, " and are characterized
by

a~ =const, q~ =const, ~~ =0, (5.49)

i [q~x —(co+q~v)t]Al'x, t j=a& e (5.50)

where a& and q& are easily calculated as functions of the
parameters. This N fixed point corresponds to a plane
wave in the original equation (5.40), namely

The condition for the existence of a heteroclinic trajec-
tory is that the stable and unstable manifolds of the fixed

points in question should join up. Applying this condi-
tion we find predictions for the multiplicity of defect solu-

tions as cu and v are varied for fixed parameter values,
i.e., predictions of n-parameter continuous families or
discrete sets of solutions. It should be emphasized, of
course, that such arguments do not prove the existence
or nonexistence of solutions, only the possibility of
finding nearby solutions if one is known to exist. We
shall illustrate the power of counting arguments in para-
graph (iii) below.

Besides fixed points and heteroclinic orbits there are
also more complicated trajectories such as limit cycles or
chaotic orbits (Holmes, 1986; Landman, 1987). Certain
limit cycles correspond to nonlinear waves in the ori.ginal
equation (5.40) whose wavelength A, is determined by the
period of the limit cycle. If the limit cycle passes near a
pair of fixed points the nonlinear wave can be thought of
as the spatial juxtaposition of an infinite set of pulses or
domain boundaries.

Second, zero-amplitude or "linear" solutions of the form
(iii) MultipIioity of solutions

qL =const, ~I =const, al =0, (5.51)

which correspond to evanescent waves in the original
equation.

(P) Coherent structures

We now wish to analyze the dynamical system (5.44) in

various special cases in order to show how the stability of
the N and I. fixed points determines the multiplicity of
defect solutions.

One-dimensional defects can now be constructed by
finding (heteroclinic) trajectories in the phase space of
(5.44), i.e., trajectories that join the various fixed points.
The three types of simple defects defined above can now
be identified (see Fig. 15).

~ Fronts joining 1V and I. fixed points.
e Pulses joining different L, fixed points.
~ Domain boundaries joining different N fixed points.

(a) Fronts

t)p+vBp+Ea —a =0, (5.52)

Let us begin with the real amplitude equation, namely
(5.40) and (5.46), with ci =c3=cs =b5 =0 and b3 )0.
This means we may choose b& =b3 =1. Restricting our-
selves first to real solutions, which requires picking co=0,
we obtain

(a) FRONT (b) PULSE

for uniformly translating solutions. The phase-space
equations are

IAI IAI Bp =a.a,
B&v= —vv —c.+a —sc

2 2

(5.53a)

(5.53b)

(c) SOURCE

IAI g
(cI)

IAI g

SINK

x~=0,
(5.54a)

(5.54b)

and the linear fixed points I.
& 2 for v )v*=2'' by

i.e., the wave vector q does not appear. The nonlinear
fixed point X exists for c & 0 and is given by

FIG. 15. Schematic sketch of various one-dimensional coherent
structures: (a) front; (b) pulse; (c) and (d) domain boundaries of
source and sink type, respectively. The quantity Ug is the group
velocity of the nonlinear state in the frame moving with the
structure [see Eq. (5.62a)].

1
L, : aI =0, aL, = —(

—v —+v —4s),

1L, : a~=0, aL, =—( —v++v' —4E),

(5.55a)

(5.55b)

corresponding to the two possible exponential decay rates
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in the tails. The phase plane structure is illustrated in
Fig. 16(a) for fixed c, )0, and v.

We now need to ask whether it is possible to find a tra-
jectory that leaves X and arrives at L, or L, 2, i.e., how
many parameters (v, c,, . . . ) must be tuned for this to hap-
pen. Clearly, from Fig. 16(a) the trajectory must leave N
along the unique direction of the unstable manifold.
Since L, 2 has no unstable directions, we would expect this
trajectory to approach L2 without tuning parameters.
Thus for U &0* we find a continuum of front solutions
corresponding to a heteroclinic trajectory leaving N
along the single unstable direction and arriving at the at-
tractive fixed point L2. In addition the phase space
method allows for a particular or discrete set of velocities
U, with U adjusted so that the unique trajectory leaving X
approaches L, along its stable manifold. (This requires
tuning the amplitude of the unstable eigenvector in the
trajectory approaching L& to zero, i.e., a one-parameter
tuning, here v. ) The discrete set turns out not to exist for
Eq. (5.52), but it exists and plays an important role in
modified equations, e.g. , the equivalent one for a subcriti-
cal bifurcation treated below. For U (U' the linear fixed
points are complex, i.e., they involve the variable q, but
the dynamical system (5.53), as well as its extension to in-
clude q(g), does not describe the real front solutions of
(5.52) that exist in this range [see subsection (iv) below].
In view of the continuum of front solutions with u )U*,
which are obtained by our arguments, the question natu-
rally arises as to which front is selected in the common
experimental situation where the stable a =c state in-

(a)

e&0

vades the unstable a =0 state starting from a localized
perturbation. This important selection question has been
the subject of an enormous amount of work, and it will
be discussed in Sec. VI.B below.

It is interesting to study the existence of front solutions
as extra complications are added. We consider first the
real equation for a subcritical bifurcation (i.e., we change
the sign in front of a and add an a stabilizing term) and
we still restrict our attention to real solutions,

82@+v ap+Ea+a' —a'=0 . (5.56)

The fixed-point structure has the same form as in
Fig. 16(a) for E )0, but now for e & 0 it takes the form
shown in Fig. 16(b). Since L i and L2 now both have one
unstable direction the continuous family of fronts disap-
pears, and there is a unique front (or a discrete set) corre-
sponding to the specific value or values of U for which the
unstable manifold of N joins the stable manifold of L

&

(this is the fixed point relevant for a positive front where
N invades L and ~ &0). As E is raised through zero this
discrete set of fronts continues to exist, and in addition
the continuous family develops in the same way as for the
supercritical case shown in Fig. 16(a).

If we now look for complex solutions we must allow for
a nonzero frequency co. For complex solutions of the real
cubic amplitude equation [(5.40) and (5.46) with
c, =c3

=b ~
=c~

=0] we can seek fronts producing states
with finite wave number q& = —~/U. This case was con-
sidered by Ben Jacob et al. (1985) who found that the
continuous family that exists for co=0 persists when
co W 0, so that the real equation with complex solutions
in fact has a two parameter family of front solutions
determined by v and co (or q~).

The generalization of the above arguments to the corn-
plex Ginzburg-Landau equation has been worked out by
van Saarloos and Hohenberg (1992), specifically for the
case of a subcritical bifurcation where (5.46) becomes (for
b, =b3=b5=1, a choice which is always allowed by ap-
propriate scaling of the equation)

FIG. 16. Phase-plane structure in the a, a plane for the real am-
plitude equations (5.52) and {5.56), showing a nonlinear fixed
point N, two linear fixed points L&,L2 and their stable and un-
stable directions. (a) E, )0, Eq. (5.52). (b) Same as in (a) but for
the subcritical case (5.56) and for c. & 0.

(5.57)

It turns out that the counting arguments based on the
stability of the X and L fixed points allow a rather large
multiplicity of front solutions. The basic idea remains
that the fronts associated with L2 form a continuous
family (with 1, 2, or 3 parameters), and the fronts associ-
ated with L& form a discrete set. Clearly, with such a
large allowed multiplicity of front solutions one must ask
which ones are realized as orbits of the dynamical system
(5.44), and more importantly, which ones are realized as
persistent solutions in the dynamics of the @de (5.57).
This selection problem is once again deferred to Sec VI.B.
At this stage we may merely remark that some informa-
tion about stability already follows from the properties of
the X state created behind the front. Indeed, if this state
is itself unstable, to Eckhaus or Benjamin-Feir instabili-
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ties (see Sec. IV.A. l.c), then the front will not be a uni-
form1y translating solution. Nevertheless, a time-
dependent front may well be found, with a time-averaged
velocity whose value is well approximated by U. Another,
more subtle instability of the front due entirely to the
properties of the X state occurs if the group velocity of
that state (in the moving frame) is positive I.n that case a
small disturbance far behind the front will eventually
outrun the leading edge (see van Saarloos and Hohen-
berg, 1992). The condition for a positive group velocity
[see Eq. (5.59) below] is related, but not identical, to the
Benjamin-Feir criterion (4.57).

(P) Pulses

(y) Sources and sinks

We begin by discussing domain boundaries in the gen-
eralized Ginzburg-Landau model (5.40) with arbitrary
f, (~ A

~ ) but f2=f3=0 (van Saarloos and Hohenberg,
1992; see also Malomed, 1984). The N fixed-point param-
eters are given by

b, qN
—f,„(aN) =0,

cv+vqN ciqN fi (aN)=0 .

(5.58a)

(5.58b)

Let us confine ourselves to the stable branch of (5.58a),

More precisely, we can state that if a stationary (v =0) pulse
exists for one value of the parameter c, in Eq. (5.56), it will in
general persist as a stationary pulse in a neighborhood of that
parameter value. Moving pulses (v WO), on the other hand,
have a velocity whose value in general depends on E. For Eq.
(5.57) which has more parameters, the same remarks apply to
the dependence of v on any of the parameters.

Since pulses are represented by L ~L orbits of the
dynamical system the counting argument does not
differentiate between Eqs. (5.52) and (5.56) since it only
involves the linear part of the equation. The orbit must
originate at a fixed point with Irl )0 (for g —&

—~) and
end at one with IrL & 0 (g ~+ ~), so in the real equation
it can only exist for a&0 [see Fig. 16(b)]. Moreover, in
order for the orbit to end up at L

&
a parameter must be

adjusted, so pulses only exist for discrete velocities. By
symmetry it can be shown that if a pulse with velocity v

exists then there is also one with velocity —v, so in gen-
eral the stationary (v =0) pulse belongs to the discrete
set "

For the complex Ginzburg-Landau equation (5.57) van
Saarloos and Hohenberg (1992) show that a pair of linear
fixed points L, 2 with ~1, & 0, ~L2 & 0 exists for c & 0 also.
Thus counting allows a discrete set of pulses for both
s & 0 and E )0, and the stationary pulse (v =0) is again in
general allowed by symmetry (see footnote 5.7).

i.e., assume that this equation can be inverted to give

aN=f, „'(b,qN) . (5.58c)

v +2c i qN 2b i qN f i; /f i„ (5.59)

where the prime denotes the derivative with respect to
the argument a . Consider an orbit X& —+N2 joining two
X fixed points. From Eqs. (5.58a) and (5.58b) we find, as-
suming q»&qN2,

"=ci(q»+qN2)
fi;(aNi) —f];(aNp)

(5.60)
A i ~x2

Equations (5.59) and (5.60) thus express v and v in terms
of the wave vectors q» and q~2 of the fixed points alone.
For the cubic case

f, =c(b3 —i.c—3) a (5.61)

we find

(cl +b lc3/b3) (qN1+qN2)

v, =(ci+b, c3/b3)(qNi 'qN2)= vg2 .

(5.62a)

(5.62b)

It follows that for this case any domain boundary is ei-
ther a source (V~z ) 0, ~~), a sink (v z & 0, ~+—), or
a homoclinic structure where the nonlinear states on ei-
ther side are identical [~~, q» =qN2, vs, = vg2, but
Eq. (5.62) does not hold]. In this case it can be shown
that for small v sources form a discrete set and sinks a
continuous family. For the general case represented by
(5.59) and (5.60) there are (moving) domain boundaries
that are neither sources nor sinks, nor homoclinic struc-
tures, i.e., they have unequal group velocities with the
same sign. For example, in the quintic equation it can be
shown that domain boundaries are again necessarily ei-
ther sources or sinks for small enough '

~v~, and that
sinks form a continuous family indexed by U, and sources
form a discrete set. For larger ~v~ on the other hand,
there is a possibility of families of sources also, as well as
more general domain boundaries with

~ vs, ~
X

~ vs@~ .
To conclude this discussion of the use of stability con-

siderations to determine the multiplicity of solutions of
the dynamical system, we note that generally speaking
these arguments provide an upper limit for the number of
solutions. This is because the counting only considers
the restrictions placed on the orbit by its end points and
not by the intermediate parts of phase space. In applying
this rule, however, it is important to take proper account
of symmetries and conseruation laws which may not be

The limits on
~
v~ can be calculated from the parameters, see

van Saarloos and Hohenberg (1992).

Then we define the group velocity of the waves in the
frame moving with velocity U by

v =(t)co/t)qN),
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(a)

U

U U
0

U U

f
(c)

U

U U U

FIG. 17. Illustration of various forms of f lu}
and the associated V{u) for the nonlinear
diffusion equation (5.64). Arrows in (a), (c),
and (e) show stability of fixed points u+ Qo Q

corresponding to spatially independent solu-
tions. Trajectories in (b), (d), and (f) (dashed
lines) correspond to coherent structures of the
@de (5.63).

(e)

U

U

readily apparent in the stability analysis. An example
was provided above in the counting of pulses, where the
value u =0 (stationary pulse) results from inversion sym-
metry. As we shall see in subsection (v) below, continu-
ous symmetries and conservation laws lead to families of
solutions once a particular solution is known to exist.

We now turn to special cases where information is
available on the whole phase space trajectory, and where
more detailed results on the existence and multiplicity of
coherent structures can be obtained.

(i v) Fronts and pulses in the nonlinear diffusion equation

The real equations discussed above are examples of the
nonlinear di8'usion equation, for which a more complete
analysis of fronts and pulses is possible. This gives some
insight into the strengths and weaknesses of the counting
arguments. Let us consider the equation

(S.63)

where for the Ginzburg-Landau case u = A„and
f ( A„)=f&„(A„)A„but more generally f need not have
any symmetry. We call Eq. (5.63) the nonlinear diffusion
equation. The dynamical system (5.44) for uniformly
translating solutions u (x, t) =u (x —ut) becomes

cal particle of unit mass with damping constant u (either
positive or negative) moving in the potential (Ben Jacob
et a/. , 1985)

Q

V(u)= f f(y)dy . (5.65)

Let us consider a function f(u) with three zeros and
no symmetry, as in Fig. 17. The points u+ that are stable
equilibria of (5.64) are maxima of the potential V, and the
unstable equilibrium u =uo is a minimum of V. A
front is represented by an orbit that begins at a max-
imum of V (u =u+, say) and ends up at u =uo
[Figs. 17(a) and 17(b)]. For large u the damping is large
and the particle leaving u =u+ will come to rest at
u =uo without overshoot. This corresponds to a mono-
tonic front between u+ and uo. Below some damping
U =U, there will be an overshoot before returning to uo.
We may also define a critical damping v' below which
the approach to the minimum is underdamped, i.e.,
occurs through an infinite number of decaying oscilla-
tions, and the leading edge of the front is oscillatory. For
some value U =U;„&v, the particle will precisely reach
the other maximum at u =u [Figs. 17(c) and 17(d)] and
this orbit represents a front solution between the two

r)&u + u r}&u +f( u ) =0, (S.64)

where the function u, in contrast to a =
~
u ~, can be both

positive and negative. Equation (5.64) describes a classi-

59Since Eq. {5.64) has no symmetry we use the term front to
denote a structure joining any two uniform states of different
amplitudes [see subsection (i) above].
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stable fixed points u =u+. The sign of the velocity v;„
is determined by the relative magnitude of V(u+ ) and
V(u ), i.e., by the quantity

& = f f(y)dy (5.66)

f(u)=fi„(u )u=su+u —u (5.67)

i.e., f is odd. For s & 0 this leads to a potential as in Fig.
17(b) and 17(d) which is symmetric about u =0, and we

find v;„=0.In this case there is a family of fronts with
0 & v & ~, and also a stationary front between u+ and

u, i.e., a domain boundary in our classification. A
pulse solution is an orbit beginning and ending at
u =u p

=0, and it is clear that for c)0 none exists, since
u =0 is a minimum of the potential V( u ).

Turning now to a&0, V(u) has three maxima since
u =0 is now a stable solution of Eq. (5.64). If we consider
only orbits for u ) 0 they may again be represented as
in Fig. 17 but now with u =0 and u+ the positive
stable solution of Eq. (5.64). A front between a zero and
finite amplitude state is represented by an orbit joining
these two maxima. There is no longer a family, but rath-
er a unique velocity v~ for such an orbit. Its sign is again
determined by a quantity as in Eq. (5.66)

such that for J+ & 0, v;„)0, and u+ invades u, while
for J+ &0 the opposite is true. For v &v;„the orbit
goes ofF to u = —Do, so it does not represent a finite solu-
tion of Eq. (5.64). (Depending on the form of f (u), v

Inay be larger than v; in this case v* is not relevant to
the properties of fronts, although it may appear in the
fixed-point analysis. ) We thus have a one-parameter fami-
ly of fronts between u+ and the unstable state up with
velocities v;„&v & ~, and a single front with velocity
v;„between u+ and u

An interesting special case arises at a saddle-node bi-
furcation where one of the stable states disappears as a
parameter is varied, e.g., u and u p collide as in
Fig. 17(e). For this particular case there is a continuous
family of fronts from u+ to up with v & v;„where v;„is
the limit of the unique u+ to u front velocity men-
tioned above. Discrete fronts, e.g., those corresponding
to Fig. 17(d) are sometimes known as "trigger" fronts,
whereas those belonging to a family, e.g. Fig. 17(f), are
known as phase fronts (Fife, 1984a,b; Reusser and Field,
1979).

In the subcritical Ginzburg-Landau model (5.56) we

have

only for c& & c & 0 where c,
&

is the value such that
V(u =0)= V(u =u+ ). For s= —3/8 a saddle-node bi-

furcation occurs as in Fig. 17(f) and a continuous family
of fronts with v & v ~ exists.

It is also interesting to consider the asymmetric exam-
ple

f(u) =su +u —u

V(u)= —eu +—u ——u
1 2 1 3 1 4

2 3 4

(5.69a)

(5.69b)

u(g)-Ci(v) e ' + Cz(v) e
I &Lll g 1KL21 g (5.70)

with
~ ILL i ~

&
~ xL 2 ~, and C2 ( v ) passes through zero at

v=v . Thus v is the velocity v, where the solution first
experiences an overshoot. It will turn out (see Sec. VI.B
below) that the front with v =v plays an important role
in the selection problem.

For c & 0, the phase-space argument correctly predicts
the existence of a discrete front, as well as discrete pulses,
but it does not specify their multiplicity: only stationary,
v =0, pulses exist, and only for c., & c & 0.

and to compare the actual multiplicity of fronts and
pulses found here to the results of the counting argu-
ments of subsection (iii) above. It may be verified (Ben
Jacob et al. , 1985) that v;„=1/&2,and v*=2E' . For
s) 0, V(u =0) is a minimum and the mechanical model
shows that there is one front (between u =u+ )0 and
u =0) for each v in the range v;„&v & ~. For s & 1/8
and v &v* the approach to u=0 is oscillatory with
v* & v;„,Figs. 18(a) and 18(b), whereas for 0&v & 1/8
the asymptotic approach is exponential, although over
the whole range 0 & c & v~=2 there is overshoot for
v & v (s) (Fig. 18). On the other hand the counting argu-
ments of subsection V.B.2.b.iii give a continuous family
for any c & 0 and v & 0, plus a discrete set.

Thus the counting argument overestimates the multi-
plicity of solutions since it predicts fronts in the range
0&v &v;„where none exist. In addition there is only
one front for each v )v;„,not a family plus a discrete
front. The latter is embedded in the family, at v = v ~, and
represents a solution connecting smoothly to the family.
The anomaly at v =v only appears when one plots the
asymptotic decay rate aL (v), as in Fig. 18, which experi-
ences a discontinuity at v =v ~. This occurs because the
solution has the asymptotic form

(5.68)
(v) Exact solutions

such that for J+ )0, v &0 and u+ invades u =0, while
for J+ &0 the opposite is true. Similarly, there is a
unique pulse orbit and it has v =0, since the trajectory
leaving u =0 must return to u =0. Moreover it exists

In this section we describe a number of special cir-
cumstances which allow us to obtain analytic informa-
tion about the solutions of the generalized Ginzburg-
Landau equation (5.40).



906 M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium

O
LL

V

/
I
I

/
/

/
I

/
/

/
/

r /

V t

—,&a&a'=2
I

I
/

/
/

/

0 &6'& 8 --, &a&0

II
I

I

I

/
/

V

Asymptotic decay rate }/c, l

FIG. 18. Velocity v vs asymptotic spatial de-
cay rate ~I of fronts in the asymmetric non-
linear di6'usion equation (5.69), for various
values of control parameter c,. Full lines show
the range of velocity for which front solutions
exist. Dashed lines show other solutions for
the exponential approach given by a linear
analysis about u =0 that are not, however, the
asymptotic approach for nonlinear fronts.
Solutions with v )v* correspond to exponen-
tial decay of u(x), while fronts with v &v*
have oscillatory decay {in which case le l is
the asymptotic decay rate of the envelope).
For 0 & s & st =2 [panels (b) and (c)] the veloci-
ty v is the value at which the curve a'I (v) is
discontinuous, and it corresponds to a discrete
front linking the fixed points 1V and L, in
Fig. 16. For ——'&e&0 [panel (d)] only this
front exists, and for c, & —

4 there are no
fronts. For c, =0, v;„=v

*= v ~ and there exist
"phase fronts" for all v & v;„,corresponding
to the situation in Figs. 17(e,f). Similarly, for
c= —4, Eq. (5.69) has a saddle-node bifurca-
tion and phase fronts exist for v & v;„.In
each case the solid point indicates the front
which turns out to be selected according to the
arguments of Sec. VI.B, and the open circle
corresponds to a "missing" front.

(a) Symmetries, conservation laws,
and "integrable" systems

1992). For example, van Saarloos and Hohenberg (1992)
have shown that the equation

For special points in parameter space a pde such as
(5.40) may obey additional symmetries or conservation
laws. [The well-known connection between the two, ex-
pressed by Noether's theorem (see, e.g. , Hill, 1951),
presupposes a variational principle which is not in gen-
eral present in the equations we are considering. ] A
consequence of continuous symmetries is the existence of
families of solutions, obtained, e.g. , by applying the sym-
metry transformation to a particular solution. A
di6'erent method of finding families is to examine the
dynamical system (5.44). For special cases this system of
ode's may be integrable and may therefore yield exact
front or pulse solutions. Unless there are restrictions on
u and co this procedure will in general yield families.
Note that the above integrability involves only the partic-
ular subclass of uniformly translating solutions (5.42),
and it is of course quite diferent from the integrability of
the pde, which refers to a general solution.

(p) Perturbing around exact solutions

Having obtained families of exact pulse or front solu-
tions in special cases of Eq. (5.40), it is interesting to ask
how these are modified when more general terms are add-
ed as small perturbations (see Newell, 1978; Doelman,
1989; Kivshar and Malomed, 1989; Fauve and Thual,
1990; Hakim and Pomeau, 1991; Dewel and Borckmans,

t), A ='t) A+i f„(lAl )A+~) [f „(lAl )3] (5.71)

(where f„andf2„arearbitrary real functions) leads to
an integrable dynamical system (5.44) with an exact dou-
ble family of pulses indexed by u and co, and a single fami-
ly of fronts indexed by u. When the dissipative perturba-
tion

(5.72)

is added to the r.h.s. of Eq. (5.71) the conservation laws
of this equation are broken and a selection of a discrete
set of pulses and fronts ensues. For small bj this is
achieved by showing that the dynamical efFect of the per-
turbation on the family of solutions of (5.71) is to induce
a drift of the parameters U ( T), co( T), according to the
slow time variable T=b, t, towards definite fixed-point
values. This type of perturbative calculation therefore
does not simply ask how the full manifold of front and
pulse solutions is modified, but also which solutions will
be stable under the perturbation (5.72). Although there
certainly are solutions of the perturbed system that are
not obtained in this way, those which are will have cer-
tain selection properties to which we shall return in
Sec. VI.B.
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(y) Particular solutions
of the complex Ginzburg-Landau equation

Even when there are no special symmetries, conserva-
tion laws, or integrability conditions it is sometimes pos-
sible to find particular exact solutions of the dynamical
system (5.44), (5.47). An important one for the selection
problem treated in Sec. VI.B below is the so-called "non-
linear front" solution obtained by van Saarloos and
Hohenberg (1990, 1992) from the ansatz

q(a )=q&+eo(a —az),
v(a )=e&(a —ag),

(5.73a)

(5.73b)

with constants qz, a~, eo, e, to be determined. Insertion
of this ansatz into the ode's (5.44), (5.47) leads to two
quadratic polynomial equations in the variable a (g).
Requiring that these relations be satisfied identically, one
finds six relations (from the coefficients of a, a, and a
in the two equations) for the six quantities q&, a~,
eo, e &, cu, and u. From these one can in general find expli-
cit expressions for the velocity U~ and the decay rate
aL = —e, ag in terms of the parameters [b;,c;,e] of (5.47)
(there are either 0, 1, or 2 solutions). This particular
solution, which was derived independently by Klyachkin
(1989), is the discrete N~L, front predicted by the
counting arguments of subsection V.B.2.B.iii. It will play
an essential role in the selection process discussed in
Sec. VI.B below.

The existence of "integrable orbits" of the nonin-
tegrable dynamical system, or of particular nontrivial
solutions of the pde (5.57), has been related to Painleve
conditions by Florjanczyk and Cxagnon (1990) and by
Powell et al. (1991). In particular, Powell et al. apply
the truncated Painleve expansion of Weiss et al. (1983) to
the @de directly in order to find the nonlinear front solu-
tion (5.73). So far the appeal to this more general frame-
work has not led to new results, but one might hope that
further work along these lines wi11 provide additional in-
sights.

Bekki and Nozaki (1985) have presented a family of
exact solution of the cubic Ginzburg-Landau equation
(4.49) which they call "hole" solutions, and which are
domain boundaries in our classification. It was noticed
by van Saarloos and Hohenberg (1992) that these solu-
tions in fact represent sources, which are predicted to
have discrete multiplicity according to the counting ar-
guments of subsection V.B.2.B.iii, rather than existing as
a family. Since the phase space counting usually overes-
timates the multiplicity this violation is unexpected, and
has tentatively been attributed to a "hidden symmetry"
by van Saarloos and Hohenberg (1992).

often referred to as "targets" (outgoing waves) and
"shocks" (incoming waves). Targets are important as
point defects in two-dimensional situations and will be
considered in subsection V.B.2.c.iii belo~. If the wave
vectors of the two domains are close together a rather
complete analysis is possible using the phase equation.
We will call these weak sources (sinks).

For the type III, instability, or in the moving frame for
a single type I, wave, we may use the phase equation
(4.90)

B,g=aV P —P(VQ) (5.74)

which is valid more generally than the amplitude equa-
tion (4.49) [in contrast to (4.90) we here suppress the con-
stant term mo]. A. complete sink or shock solution of Eq.
(5.74) may be found analytically in one dimension
(Kuramoto, 1984a,b; Murray, 1989). The transformation

u=2PB P

changes Eq. (5.74) into a Burgers equation

B,u =0. B„u—uB u .

(5.75)

(5.76)

Alternatively, the Cole-Hopf transformation (Whitham,
1974)

/= exp( —pp/a)

converts (5.74) to the linear equation

(5.77a)

(5.77b)

which can be solved to yield

u (x, t) = u 0+u, tanh[ —(u, /2a) (x —u Ot )], (5.78a)

or

1 u
&
(x —uot)/2a——u (x —u t)+ln[e

P 2 0 0

—u
&
(x —uot ) l2a

(5.78b)

where uo and u
&

are arbitrary constants. The expression
in Eq. (5.78) represents a shock front moving with veloci-
ty

U u0~ (5.79)

q+x co+t (5.80a)

with

in a medium whose overall phase is given asymptotically,
asx —++ ~, by

(vi) Other one dimensional defects-

fa) Weak sources and sinksin the phase equation

co~=pq+,

q+ =
u0 /2P +

i
u i i /2P .

(5.80b)

(5.80c)

In oscillatory systems (types I, and III,) the domain
boundaries we have called "sources" and "sinks" are

The above results can be interpreted simply by noting
that (5.80b) is the dispersion relation for nonlinear waves,
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and (5.80c) is obtained from the synchronization condi-
tion

(5.81)

Note that Eq. (5.80c) is equivalent to Eq. (5.62a) above,
with the scaling b, =b3=1, and p=c, +c3, as in Eq.
(4.91.c).

As a special case of Eq. (5.80) we first consider station
ary sinks, with u=O. These have q+= —

q and group
velocities v, so they correspond to a pattern of incoming
waves

u += ug
= /ui/(0. (5.82)

Note that the signs of the wave vectors q+ (or phase ve-

locities) depend on the sign of the dispersion coefficient p,
which can in principle be either + or —.For the usual
case of p & 0 the wave vectors are also incoming
(q+ = —

q &0), but for p&0 we have q+ = —
q &0.

In either case the solution corresponds to a stationary
sink at which two equal and opposite waves collide.

For moving sinks we have in general u A 0, and Eqs.
(5.80)—(5.8 1) imply

a~+ —ru =u(q+ —
q )= —u[u, l/p . (5.83)

u vs+ /(ci +c3& i /&3 ) (5.84)

Then for a sink (u~+ ( 0), with normal dispersion
(c, +c3b, /b3 & 0), AN+

—coN &0 implies u (0; i.e., the
higher frequency state overtakes the lower frequency one.
The situation is reversed for negative dispersion, as well
as for sources.

Let us now ask under what conditions (5.78b)
represents an appropriate solution of the amplitude equa-

Thus the direction of motion of the shock depends on the
sign of the dispersion: for the usual case of positive
dispersions (p&0), the higher frequency wave entrains
the lower frequency one (co+ & co —+u &0), and for p(0
the opposite is true.

Note that we obtained a result similar to (5.83) in the
complex Ginzburg-Landau model (5.61), but there it was
not restricted to weak shocks. Indeed, Eq. (5.62) ex-
pressed in terms of cu&+ =co + Uq~+ implies

~N+ ~N — (c 1 +c3b 1 /b3 ) (qN+ qN —)
2 2

tion (4.49). The condition of validity of the phase equa-
tion (5.74) is ti a ~0, which corresponds to small
differences q+ —q, i.e., weak shocks. This condition
implies q «c' near threshold, and when it is violated
we have strong shocks, for which amplitude variations
must be taken into account, as discussed in subsection
V.B.2.b.iii above (see also Bernoff, 1988). Another point
to note is that there are no one-dimensional source or tar-
get solutions of the phase equation (5.74) representing
outgoing waves, i.e. waves with u~+ = —u &0. It turns
out that within the phase equation formalism targets only
exist if the medium is inhomogeneous, i.e. the targets are
"extrinsic" (Kuramoto, 1984b). Intrinsic targets that
arise in a homogeneous medium require amplitude varia-
tions, as discussed in subsection V.B.2.b.iii above, and in
subsection V.B.2.c.iii below for the two-dimensional case.

(p) The Swift Hohen-berg model; nonadiabatic effects

For the Swift-Hohenberg model (3.27) in one dimen-
sion the phase-space methods discussed above would lead
to a rather high-order dynamical system and they are
more dificult to implement. Nevertheless, the existence
of a two-parameter family of moving fronts has been
proved rigorously for this model at small e by Collet and
Eckmann (1990), and a number of numerical studies have
been carried out (see Sec. VI.B). In the subcritical case
localized pulse solutions can be found numerically, not
only in one dimension but in higher dimensions as well
(see subsection V.B.2.d below).

The Swift-Hohenberg model is also convenient for il-
lustrating nonadiabatic effects discussed briefly in Sec.
IV.A.4. Let us consider a stationary front, and make use
of the Lyapunov potential to give a simple analysis, al-
though calculations using only the dynamic equations
can also be carried out (Bensimon et al. , 1988). A front
centered at x =0 is described by a real amplitude A(X)
with X= s'~ x in the reduced amplitude equation (4.7), so
that

u =E'"W (E'"x)2cos(q, x+y)+ (5.85)

where p gives a shift in the position of the rolls, and we
do not need to consider higher-order terms. The poten-
tial (3.28) is

V=E f dx I
—2A (c, '~ x)cos (qox+P)+42 (E'~ x)cos (qox+P)+Sqo [E 'r 8 A(E'r x)] sin (qox+P)] . (5.86)

We would usually evaluate this expression by first ignor-
ing the slow variation of A and replacing the oscillating
functions by their averages (cos —+ —,', sin ~—,', cos ~—', ),
leaving the integration over the slow variable to obtain

V=E r f dXI —A (X)+4qo[BXA(X)]2+—', A (X)] .

Clearly this integral is independent of the position of the

b.V=e f dx [—A (e'~ x)cos2(qox+P)] . (5.88)

Since this is just the Fourier transform at wave number
2qo of a function smoothly varying over a scale c,

this integral is exponentially small. In fact

aV-e-'~' (5.89)

front relative to the rolls. However we have ignored
terms such as
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where a and the prefactors depend on the details of the
shape of A (x). However, most importantly, hV will de-
pend on P, i.e. on the relative position of the front and
the rolls.

Formally this correction is "smaller than any power of
c," however for any nonzero value of c such a locking
term may be important. Physically it simply corresponds
to a preference of the center of the front to sit on top of
or between the rolls. The consequences in the Swift-
Hohenberg model will be rather harmless until c, becomes
sizable and perturbation theory is not applicable. For ex-
ample, the periodic corrections to the potential will lead
to a small modulation of the linear front velocity
v*=2m, ', to be discussed in Sec. VI.B below. However
in other situations, where the amplitude or phase equa-
tions predict a smooth passage of a propagation velocity
(relative to the periodic structure) through zero, the
modulation will give rise to a locking of the velocity to
zero over a finite parameter band (Bensimon et al. ,
1988).

(y) Grain boundaries

A class of one-dimensional defects arises in a two-
dimensional system in the region where two patches of
rolls of difFerent orientations come together. In analogy
with crystal physics these defects are called "grain boun-
daries" and they are the line topological defects associat-
ed with the rotational symmetry of type I, patterns; they
may also be thought of as fronts between two nonlinear
states. We can consider symmetric grain boundaries,
where the rolls on either side make an angle + 0 to the
direction of the boundary. More common, however,
seem to be perpendicular grain boundaries where one set
of rolls is perpendicular, and the other parallel, to the
boundary. This structure is presumably favored for the
same reasons that rolls tend to terminate normally at a
sidewall (see Sec. V.A. l.b.iii). Also, as mentioned earlier,
rolls parallel to a long sidewall are unstable to perpendic-
ular rolls.

The structure and dynamics of grain boundaries have
been studied in some detail using the amplitude expan-
sion near threshold (Cross, 1982a; Manneville and
Pomeau, 1983; Tesauro and Cross, 1987; Malorned et al. ,
1990). We now need two coupled amplitude equations,
for the two sets of rolls, as in Eq. (4.31). This system
could be analyzed using phase space methods as in sub-
section V.B.2.b.iii above, albeit in higher dimensions
(variables a„sc„q„a2,a2, q2), but this has not been pur-
sued in the literature. The interaction parameter Q(8),
Eq. (4.32), which determines the stability of one set of
rolls to superimposed rolls at an angle 8, controls the
properties of the structure. Cross (1982a) has considered
symmetric grain boundaries and evaluated the extra con-
tribution to the potential (4.9) of the amplitude equation
corning from the suppressed amplitudes at the interface.

The perpendicular case, shown schematically in
Fig. 21(g) below, has received wider attention since it

provides a mechanism for wave-number selection. We
consider the geometry of rolls along the x and y axes with
the grain boundary along the y axis. Within the lo~est-
order amplitude equation, arguments based on the
Lyapunov function and direct analysis show that a sta-
tionary grain boundary only occurs for q =q =qo
(Tesauro and Cross, 1987). In an earlier work Manne-
ville and Pomeau (1983) had suggested a one-parameter
family, but this was due to their neglect of the phase
unwinding of the x rolls that can occur, much as at a rig-
id lateral boundary. The calculation of the spatial depen-
dence of the amplitudes of the stationary grain boundary
is quite delicate because of the different characteristic
length scales (s ' and E '~

) for the variations of the
two amplitudes within the boundary, leading in fact to an
O(s '

) boundary layer for they rolls (and not s '~ as
suggested by Tesauro and Cross).

In general the situation has close analogies with front
propagation (subsection V.B.2.b.iii.a). For a general
value of q (consistent with stable y rolls), we expect a
unique propagation velocity producing a set of x rolls
with a determined wave number, since this is analogous
to the situation of a front connecting two stable states. If
q is tuned to reduce the propagation speed, then we ex-
pect nonadiabatic effects [see subsection (P) abo ve],
whereby the front envelope is locked to the x rolls them-
selves, over a band of qz which, however, is exponentially
small near onset. The position of the front which is
locked to the x rolls can then still relax, but now by
stretching the wave number of the x rolls, presumably to
a unique selected value for each q in the band. Notice
that for nonzero front velocity the magnitude and phase
of the x rolls are evolving separately, whereas in the
stretching motion they are locked together. This picture
was tentatively confirmed by Tesauro and Cross (1987)
using perturbative calculations on the amplitude equa-
tion, and a direct numerical simulation of model equa-
tions, although in the latter it was not shown conclusive-
ly that transients had been eliminated.

c. Point defectsin two dimensions

(i) Oislooationsin type I, systems

A dislocation defect is a point in the cell where a pair
of rolls terminates, as shown in Fig. 19. It is the topolog-
ical defect associated with the discrete translational sym-

rnetry of the ideal system, as discussed in Sec. IV.B. The
motion that takes an isolated dislocation through symme-

try related states occurs in a direction parallel to the rolls
and is called climb. Since climb has the effect of increas-
ing or decreasing the average wave number of the whole
system (for motion up or down in Fig. 19, respectively),
we might expect the climb velocity to be related to the
background wave number, i.e. the wave number far away
from the core where perturbations due to the dislocation
are not important. Indeed, there is a particular wave
number q& for which the climb velocity is zero and in

subsection V.B.3. below we will investigate the depen-
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FIG. 19. Dislocation defects in a type I, system. Ph
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dence of the velocity on wave number, u (q —
qd ). Motion

along the direction norma1 to the rolls is called glide and,
contrary to climb, it does not involve only symmetry-
related states because of the underlying periodic struc-
ture. In general the dislocation will be pinned to a par-
ticular position relative to this structure and a nonzero
perturbation will be needed to drive the motion, though
this effect does not show up in the amplitude or phase
equations, since it is "nonadiabatic. "

/=tan ' (Y/X) . (5.91)

For nonzero v this same expression applies close in
(VR « 1), whereas far away (VR )) 1) the result is more
complicated and is most easily stated in terms of a gra-
dient related to the tilt angle

Br/= [( Ver)' X/2R ] exp [ —V( Y+R )/2] . (5.92)

A feature of this solution that has important implications
for the interaction of defects is the exponential decay of
the phase perturbation in front of the uniformly moving
defect (X=O, Y ) 0), rather than the power law decay
behind the defect (X=O, Y & 0), or for the stationary
case (V=O). This is a consequence of the difFusive propa-
gation of the phase, and leads to a short-range interaction
between defects moving towards each other with a range
set by the velocity, a result 6rst obtained by Siggia and
Zippelius (1981a) (see subsection V.B.3.b below).

When the dynamics is derivable from a potential V
(e.g. near threshold), the above equations continue to
hold for anisotropic systems. For isotropic systems, on
the other hand, the analysis breaks down since the sta-
tionary defect solution has q =q where q minimizes V,
and Di(q ) =0. We must then include higher-order gra-
dient terms in the phase equation, which near threshold
becomes (restoring the scales gp and rp)

In general the far 6eld of a stationary or uniformly
climbing dislocation is given by solving the phase equa-
tion (4.76) linearized about the background wave number
q. Specifically, let us write P =qx+P, so that

u 8 (j—D)~(q) B„P—Di(q) By/

=27r D~~(q) 8 5(x —xd ) e (y —yd), (5.90)

where (xd, yd) is the position of the defect in the moving
frame and e is the Heaviside function. (Actually we
could formally choose v in any direction by a simple re-
scaling of the equation, but as mentioned above only
climb is expected to be uniform. ) The term on the right-
hand side maintains the required phase winding by intro-
ducing a 2~ jump along x =xd, y &yd. We will assume
that the diffusion constants D~~(q), Di(q) are both
nonzero (see below). It should be noted that the velocity
v is actually Axed by the background wave number q,
though this does not come out of the phase equation
analysis. Indeed, Eq. (5.90) may be solved for any (u, q),
so it remains unclear to us how the selection is manifest-
ed in an analysis based on the phase equation alone. It
appears likely that in general u (q) will depend on the de-
tails of the defect core structure where (5.90) breaks
down due to the rapid spatial variation (Tesauro and
Cross, 1986), so we shall consider u(q) to be given in
studying Eq. (5.90).

This equation may be readily solved (Bodenschatz
et al. , 1988a). Introducing scaled coordinates

x /D I/2 Y y /D i/2 V u /D i/2 R (X2+ Y2)1/2
tl

we have for v =0 simply
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(&,/P) a, y= ( r,U/g,') a,y+a,'y

+(k/qo) () P
—(1/4qo) () P

—2m. B„5(x —xd ) 6 (y —
yd ), (5.93)

with k =q —qo. In order to eliminate k and qo from this
equation we introduce the following scaled variables

x =2k x,
y =2 (kqo)'~ y,
t=4(kgo) t/~ o,

U =(2qoko) (kko) (&OU/ko)

=(ro/go)(+2qo/k ~
) U,

(5.94a)

(5.94b)

(5.94c)

(5.94d)

in terms of which Eq. (5.93) for P(x,y, t, U ) becomes

a, y= 2 '"U—a, -y+a'qY+a2y a4y—
—2m() 6(x —xd) e(y —yd) . (5.95)

The linearized equation is easily solved by Fourier trans-
forms for any value of the parameter u (which Siggia and
Zippelius, 1981a called 13), so the velocity is arbitrary at
this level. In the limit U =0, the solution is

case (4.11) the amplitude equation takes a simpler form,
the core structure is axisymmetric in the scaled coordi-
nates (x/DI~, y/D~ ) and a simple ode for the radial
dependence can be solved numerically (Bodenschatz
et al. , 1988a). It should be emphasized that the ampli-
tude A (x,y) is completely smooth: the singularity in the
phase variable implied by the winding condition (5.38) is
relaxed smoothly (over the core size) by ~

3 l going to zero
at a point.

We have calculated the structure of moving or station-
ary defects, but have not yet described how U(q) is deter-
mined. This will largely be discussed in subsection V.B.3
below, on dynamics. However an important point is that
there is a unique background wave number q =

qd (or
conceivably a discrete set) such that U =0 and the dislo-
cation does not climb. The evidence for this assertion
comes from experiment (Pocheau and Croquette, 1984),
from numerical work on amplitude equations (Siggia and
Zippelius, 1981a) and on model equations (Tesauro and
Cross, 1986), and from perturbation expansions of the
amplitude equation to higher order in E. (Pomeau et al. ,
1983). However we do not yet have a direct derivation of
the existence of the function U(q) starting from the basic
properties of a dislocation, namely the phase winding
condition and an equation for phase dynamics (with
corrections at small distances).

P=(m. /2) sgn(x ) [erf (y/2)/x )+ 1]

=(m. /2) sgn(x)[erf(qo~ y/V2x )+1], (5.96)
(ii) Oisclinations

close in (y 8 1, x ~ 1), but it goes over to

P = tan '
(y /x ) = tan ' [(y /x )(qo /k )

'~ ], (5.97)

far away (x, y & 1), where the ()» terms become negligi-
ble (for k ~ 0 only the small x, y regime remains). Ac-
tually the neglect of the nonlinear terms in the phase
equation in arriving at Eq. (5.95) is not everywhere
correct (Siggia and Zippelius, 1981a), but introduction of
these terms does not destroy the scaling given in Eqs.
(5.96) and (5.97). In particular, Meiron and Newell
(1985) have constructed a similarity solution

/=PM&(y/+x ) of the nonlinear phase equation for the
stationary dislocation (V =0), with P~~ obtained by nu-

merically solving a nonlinear ode; they find good agree-
ment with a numerical simulation of a particular model
equation.

In the region close to threshold we can obtain informa-
tion about the core structure using the full amplitude
equation (4.3). We will restrict the analysis to U=0,
which occurs for q

—qo=k =0, i.e. for k at the minimum
of the potential (4.9). For the isotropic case the situation
is complicated by the difFerent ways x and y derivatives
appear in Eq. (4.3). Thus we would expect the amplitude
to be depressed to zero at the defect position, with the re-
gion of depressed amplitude extending over a range scal-
ing as c. ' in the x direction and c,

' in the y direc-
tion. Because of this anisotropy the problem still re-
quires solution of a spatial pde. Numerical results are
available from Pomeau et al. (1983). For the anisotropic

Disclinations are the point topological singularities as-
sociated with the rotational symmetry of the roll wave
vector in a rotationally invariant system. They are com-
monly seen in Rayleigh-Benard convection, for example,
and can be understood as resulting from the tendency of
the rolls to approach the boundary normally. Indeed, if
this is taken as a constraint, and there are only point de-
fects in the cell, then disclinations are a necessary conse-
quence.

Disclinations may be characterized by their winding
number, which is the number of 2~ rotations swept out
by the wave vector as the defect is circled. Figures 20(a)
and 20(b) show a (+1) disclination, and Fig 20(c) .a
(—1/2) defect. Notice that the magnitude of the wave
vector necessarily varies over a considerable range in Fig.
20(b) even far from the disclination point, and such dis-
tortions will only occur if they do not lead to local insta-
bilities. Sometimes the distortion will be relieved by a
line of dislocations or by a grain boundary. Qnly the
(+1) and (+1/2) defects can be constructed with a con-
stant wave number. The structure in Fig. 20(a) is often
seen in circular domains, and also in other geometries
where it is partially obscured by the boundaries such as
in Fig. 20(d). This particular disclination is also called a
focus singularity.

The focus singularity provides an important wave-
number selection mechanism. For a stationary focus
singularity there is a unique wave number asymptotically
far away from the core, as can be seen quite simply from
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have been observed in convection experiments (Cro-
quette, 1989).

(iii) Target patterns

The analogue of foci in oscillatory patterns is the ax-
isymmetric target. It is the two-dimensional version of a
source or a sink in one dimension. The question of
whether intrinsic targets (i.e. ones that do not depend on
an externally applied imperfection at the core) exist in
various oscillatory systems remains a controversial one.
In addition extrinsic targets, such as might be initiated
for example by a dust particle in a chemical reaction,
have also been investigated. This issue will be discussed
further in Sec. X below.

Weak extrinsic targets in type III, systems can be un-
derstood from the phase equation if we assume an exter-
nal perturbation at some point in space that raises the
frequency of the medium locally. We start from the
phase equation in two dimensions (Kuramoto, 1984b)

(c) a,y=~ v'y —p(vy)' —g(x), (5.99)

FIG. 20. Schematic diagram of disclination point defects: (a)
Focus singularity (strength +1). (b) Alternate +1 defect. (c)
Defect of strength —1/2. (d) Disclination on lateral sidewall.
The full lines denote phase contours (rolls), the dashed arrows
are the normals to the rolls. X=exp ( —pp/a)

linearizes the phase equation to

(5.100)

where g(x) )0 is centered at x=0 and is assumed to van-
ish for r ) ro [we denote the circular coordinates for x by
(r, 8)]. We first assume p ) 0. The use of the Cole-Hopf
transformation as in (5.77)

the phase equation (4.76). If we first consider the axisym-
metric case, the solution is

~,x= [~ v'+(p«) g (r ) j x .

Setting

(5.101)

q B(q)=c/r, (5.98a) x(r, t)=e 'x(r), (5.102)

where c is an integration constant. Since c can be shown
to be O(l) from the short-distance behavior, we have

q —+qf at large r, where

we have a time-independent Schrodinger equation

—«'x+ v(r) x=~x (5.103)

8(qf)=0 . (5.98b)

Note that this result is unchanged by the mean-Aow
effects discussed in Sec. IV.A.2, since no radial mean
Aows can occur by the constant density assumption. For
the non-axisymmetric case, however, the result carries
over only for situations where no mean fiows exist (Cross
and Newell, 1984), and then the asymptotic wave number

qf is at the border of the zigzag instability. These results
depend only on the assumption of a smooth phase gra-
dient expansion, and so should have widespread applica-
bility in type I, systems. How closely q approaches qf
depends on how large r can be made, and also how soft
the core structure is (i.e. how small c is).

In the axisymmetric case the full core structure can be
investigated near threshold using the amplitude equation
in radial coordinates (Brown and Stewartson, 1978;
Pomeau et al. , 1985). The question is rather delicate,
though, since solutions exist with the amplitude diverg-
ing at the center. Flows corresponding to these solutions

for a particle of energy A, in a bounded attractive poten-
tial V(r ) = (p/a)g(—r) & 0. In two dimensions it is
known that there is always at least one bound state A, &0,
with a positive eigenfunction [a necessary condition in
view of (5.100)]. The asymptotic form of the wave func-
tion for r ))ro is

x(r)-(qr) ' ' e (5.104)

where q =( —
A, /a)' . Returning to the phase function P

the solution far from the center is

P(x, t ) = —cot +qr,
pq

q = —Aa/P )0.

(5.105a)

(5.105b)

(5.105c)

Thus the effect of the perturbation g(x) is to pick out a
particular wave vector (5.105c) from the continuous fam-
ily (5.80c), and to entrain the wave solution to the fre-
quency (5.105b) which is positive [i.e. larger than the fre-
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quency co(0) of the uniform state, omitted from (5.99)]. If
g(x) were negative Eq. (5.103) would have no bound
states and no target pattern solution of Eq. (5.99) would
exist.

A typical target pattern only extends out a finite dis-
tance from the center, at which point there is an abrupt
transition to the uniformly oscillating medium. This can
be achieved for the solutions of (5.99) with r »ro, by ter-
minating the target at a shock front at r=r, (t), with
to=co(0) and q=0 for r &r, (t) [we have restored the
background frequency omitted from (5.99)]. According
to Eq. (5.80), this implies that the outer rim of the target
pattern will move at the velocity

u, =pq =(—aA, )'r (5.106)

Inside the target, in the region ro & r & r, (t), the waves
move outwards with the phase velocity

utah
=co/q =[co(0)+fjq ]/q, which is larger than the ve-

locity v, of the rim, so that waves periodically annihilate
on the rim. Finally, we note that two different target pat-
terns, centered at x& and x2, say, can have their outer
rims collide, and the ensuing structure is a shock front or
sink as discussed in subsection V.B.2.b.vi above; the pat-
tern having the higher frequency consumes the other one,
a feature which corresponds to the experimental behavior
discussed in Sec. X below.

It is instructive to recast the shock solution (5.78) into
the language of the Schrodinger equation (5.101). Ac-
cording to Eqs. (5.104) and (5.105c) we have q =Pq/a, so
a shock (5.80) with q+ = —

q &0 corresponds to a one-
dimensional wave function g- exp ( ~ q ~

r ) with exponen-
tial growth. Such a solution is considered unphysical as a
wave function g, but it corresponds to a legitimate phase
function P, which describes shocks. As in the one-
dimensional case a major difference between targets
(sources) and shocks (sinks) is that the former exist for a
discrete set of wave vectors and frequencies, whereas the
latter are a continuous family (5.80).

The preceding discussion of targets was predicated on
the assumption of normal dispersion P&0. In fact, the
entire derivation also goes through for P & 0: targets exist
only if g(x) &0, i.e. if the local frequency is reduced at
the center and it entrains the pattern (to =Pq & 0).
Indeed, the potential V(r)= —(P/a) g(r) is still nega-
tive, and a bound state A, &0 exists with decaying wave
function (5.104) with q =( —k/a)'r &0. The corre-
sponding phase function P, Eq. (5.105a), now has a nega-
tive wave vector (q =aq/P&0) corresponding to incom-
ing phase waves, but the structure is still a target pattern
since the group velocity u =Pq &0 is outgoing. [As not-
ed earlier the shock structure (5.78) for P &0 has incom-
ing group velocity but outgoing phase velocity and it
again corresponds to a wave function g with incoming
waves. ]

In the absence of the external perturbation g(x), the
phase equation (5.99) does not support targets. We there-
fore first consider the complex amplitude equation (4.49)
in two dimensions and search for solutions of the form

P(x, t ) = rot +g( r),
a(x, t)=a(r) .

(5.107a)

(5.107b)

The derivation of the amplitude equation (4.90) is now
modified to account for the spatial variation of a
(Kuramoto, 1984b)

B,g=aV P P(V—Q) +2aa ' Va . VP . (5.108)

)((r, t)=a exp( —ala)=e (5.109)

where y satisfies the Schrodinger equation (5.103) with
the potential

V(r;a ) =(1+P /a ) a ' V a .

If we assume the asymptotic behavior

a(r)=aQ+aI, r", r 0,
a(r)=a +a, r ', r~ oo,

we see that

(5.110)

(5.111a)

(5.111b)

a k rkV(r;a)-
ao+Qkr

V(r;a)-(a &/a )r, r~oo .

(5.112a)

(5.112b)

It is likely that ao =0, so that the potential has a univer-
sal r repulsion near the origin. At large distances,
however, we find an attractive tail, so long as the ampli-
tude falls below its asymptotic value, i.e. so long asa, &0. It is thus plausible that the Schrodinger equa-
tion (5.103) should admit a bound state with the potential
(5.110), from which it follows that (5.108) has a target
pattern solution. The analysis of Koppell and Howard
(1981) also showed the existence of axisymmetric intrin-
sic target solutions in the A,

—co system, Eq. (3.34), in two
dimensions, though these were shown to be unstable by
Ermentrout and Rinzel (1980).

(i v) Spiral patterns

Spirals are the generalization of targets to a case where
the pattern is no longer circularly symmetric. In terms
of the Schrodinger analysis of the phase equation (5.108)
they correspond to bound states with nonzero angular
momentum. We define an m-armed spiral as a solution
of (5.108) or (4.49) of the form

P(x, t) = —cot —m8+P(r),
a(x, t)=a(r) .

(5.113a)

(5.113b)

We may see immediately that there are no spirals with
uniform amplitude a =const, since the transformation
(5.109) leads to an additional centrifugal term in the po-
tential of the radial equation (5.103), of the form

The last two terms can be thought of as a perturbation of
the local frequency co(x). The Cole-Hopf transformation
(5.100) is now generalized to
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V (r)= —m /r (5.114)

which is infinitely attractive as r —+0, and leads to an
infinite binding energy (Kuramoto, 1984b). It is therefore
necessary to consider a spatially varying amplitude,

a(r) — a~r
r~O

(5.115)

leading to a potential (5.110) that cancels the singularity
in (5.114). At large distances the amplitude still has the
form (5.11b) and it is reasonable to suppose that a bound
state will exist in general, since it is expected that
a ) (0.

Hagan (1982) has explicitly constructed spiral solu-
tions in the A,

—ro system, which (for simple nonlinearity)
is equivalent to the complex Ginzburg-Landau model
(4.49) with c, =0. Note also that for the construction of
periodic solutions the amplitude equation has an addi-
tional scaling property: a solution with parameters cI,C3

can be related (Bodenschatz et al. , 1991c) to the solution
of a second amplitude equation with parameters c', , c3,
provided

C) +C3
1 C)C3

C) +C3

1 C)C3
(5.116)

Thus the choice c', =0, c3 =(c,+c3)/(1 —c,c3) may be
used to transform Hagan's solution valid for c, =0 to the
general case (4.49). (Length and time scales are also re-
scaled. ) Hagan constructed solutions both by perturba-
tion in small c, +c& (i.e. about the dislocation solution
for the real equation), and numerically (see also Koppell
and Howard, 1981). He argued that only the lowest
(m =1) spiral will in general be stable since higher-order
ones can break up into lower-order ones. This argument
is based again on perturbing about the potential c3 =0
case. [We remark that stability is not transferable
through the scaling (5.116) so there is no direct informa-
tion on stability for general c„c3.] Once again spirals ex-
ist for a unique value of q and co, satisfying the far field
dispersion relation analogous to (4.53b). Bodenschatz
et al. (1991c)performed more extensive numerical calcu-
lations in the case c, =c3. For c, =c3 &0.63 they find
that the selected wave number is unstable to the finite-q
Benjamin-Feir instability (which they call the Eckhaus
instability). Spiral solutions have also been obtained nu-
merically by Aranson et al. (1989) in a complex generali-
zation of the Swift-Hohenberg model. For further ana-
lytic and numerical investigations of spiral waves in mod-
el systems we refer the reader to Chap. 12 of Murray
(1989), to Aranson and Rabinovich (1989), to Sakaguchi
(1989), and to Winfree (1991).

It is amusing to note that a spiral solution of the en-
velope equation, when applied to a type I, system, yields
a dislocation defect in that system [although the solution
of the amplitude equation (4.13) corresponding to the ro-
tationally invariant system has not been calculated]. This
dislocation is drifting at the group speed so within the
amplitude equation, whereas the waves themselves are

U„=v +DARIC, (5.117)

where K is the local curvature of the line (assumed
small), and Di is a constant which has dimensions of a
diffusivity. In Eq. (5.117) the sign of K is such that a cur-
vature towards the direction of propagation is positive.
The eikonal equation represents an expansion in the cur-
vature of the wave front and, as written, it neglects the
infiuence of nearby waves (e.g. other arms of the spiral)
on the velocity U. The curvature expansion can also be
applied to a plane-wave train whose velocity depends on
its frequency or wavelength, and in lowest order the
dispersion relation u(co) of the undistorted wave train ap-
pears in the eikonal equation. The applicability of Eq.
(5.117) to a specific model will be considered in Sec. X
below.

Let us suppose that the line defect has a free end and
begins to curl up around it. A description of the mecha-
nism for this curling up has been given by Meron and
Pelce (1988), but we defer a discussion of this effect to
Sec. X. At this stage we focus on the steady-state shape
of the spiral, as described by the eikonal equation (5.117),
which must be supplemented by boundary conditions at
the core and in the far field. It is convenient to define the
spiral parametrically in terms of the coordinates of the
rigidly rotating pulse, i.e. take m =1 in Eq. (5.113a) and
describe the coordinates of the point / =0 as

x=r cos[8(r) cot], y—=r sin [8(r) cot], —(5.118)

where r is the radial coordinate and the unknowns 8(r)
and co determine the shape and frequency of the spiral,
respectively. The boundary condition at the core is as-
sumed to be

(5.119)

i.e. the spiral is assumed to intersect the circle r =r, radi-
ally, with the radius r, taken as a phenomenological pa-
rameter. In the far field we have

8„8=q =co/u, (5.120)

representing a pulse train undistorted by curvature. If
the pulses are sufficiently far apart (i.e. if the frequency is
low enough), the velocity u will be independent of fre-
quency in the far field. In that case it can be shown from

moving with the phase speed.
Another approach to spirals is to consider the curling

up of a line defect which is the two-dimensional exten-
sion of a single one-dimensional pulse traveling in the x
direction, say. In its ideal unperturbed state the struc-
ture is a straight line parallel to y, moving with the pulse
speed U. Under small deformations of the shape of the
line, the change in normal velocity U„ is assumed to be
given by the eikonal equation (Keener and Tyson, 1986)
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pure geometry (Keener and Tyson, 1986) that (5.118) im-

p lies5 10

and

( 1+y)1/2

x= " +
(1+q2)3/2 (1+y2)1/2

(5.121a)

(5.121b)

where

P=r B„8.
The eikonal equation (5.117) then becomes

rB„tt=—(1+/ ) [(rv /D3 ) (1+/ )'

(ru/Dj )—r +f],

(5.122)

(5.123)

/=0 for r =r, =r, u/D3, (5.126a)

which can be viewed as an eigenvalue equation for the
frequency co. Let us rescale the coordinate, setting

r =(u/D3 ) r, q =(D3/u) q„=roD3/u, (5.124)

whence Eq. (5.123) depends on the single parameter q

rB„Q=(1+—f ) [r(1+/ )'/ q„r—+g], (5.125)

with boundary conditions

deriving Eq. (5.123) means that we neglect dispersion, i.e.
we fix v to be the pulse velocity Up, which is appropriate if
the pulses in the far field do not overlap significantly.
The velocity U, and frequency co, of the spiral solution

Usp =Vp,

co,~ =(u~/Dj ) Q(r, v~/D~),

(5.130a)

(5.130b)

8(r) =q „r, (5.131)

which implies

r, =0 . (5.132)

The second approximation is an involute spiral, obtained
by neglecting the curvature correction in the eikonal
equation, i.e. by setting D3 =0 in (5.117). The constant
phase lines in this case are

thus obtained will be self-consistent for any r, such that
Eq. (5.129) is satisfied. Qf course, the length r, must bear
some relationship to the microscopic lengths in the sys-
tem for the solution to be physically meaningful.

The solution of the eikonal equation (5.125) also pro-
vides a detailed shape of the equiphase lines 8(r), ob-
tained by integrating up f(r ) according to (5.122). It is
interesting to compare this numerical solution with two
limiting cases, the first being an Archimedean spiral ob-
tained by assuming 8(r) to be linear everywhere. The re-
sult is

and

P ~ q r for r~ oo (5.126b)
with

8(r ) =s(r )
—tan 's(r ), (5.133)

The solution of Eq. (5.125) with boundary conditions
(5.126) leads to an eigenvalue relation of the form s (r)=r q

—l=r q
—1, (5.134)

q„=Q(r, ),
or equivalently

to=(u /Dj ) Q(r, u/D3 ) .

(5.127a)

(5.127b)

from which it follows that

tt/(r ) =(q r 1)'/—
and [cf. Eq. (5.127a)] the core radius is given by

(5.135)

The numerical solution for Q is well represented by the
expression

Q(x) =0.331—0.097 x (5.128)

u »Dz/r, , (5.129)

or x »1 in (5.128). Moreover, treating u as a constant in

which provides a relation between the frequency and the
velocity, with r, as a parameter.

Let us ask if the above scheme is self-consistent. The
validity of the curvature expansion near the core requires

r q =rq =1. (5.136)

d. Three-dimensional defects

Note, however, that the curvature K becomes arbitrarily
large as r —+r, for the involute, so the approximation
(5.133) is not self-consistent. Keener and Tyson (1986)
have shown in their Figs. 9—11 that the shape function
calculated from Eq. (5.125) agrees rather well with the in-
volute spiral for q„=0.02, whereas it is close to the Ar-
chimedean spiral for q =0.14, and disagrees with both
for q =0.33.

(i) The Swl'ft Hohenberg model-

There are sign inconsistencies in Tyson and Keener (1988)

[compare, e.g. , their Eq. (16} and their Fig. 7], so that their

equations differ slightly from ours, which agree with Keener

and Tyson (1986).

As mentioned above, localized solutions can be found
for type I, systems in two and three dimensions. For ex-

ample, Aranson et al. (1989) have considered the Swift-
Hohenberg model with a subcritical bifurcation
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B,u = —u+Pu —u +(V +qo) u,

as well as a complex generalization

(5.137) governed by a potential. We will briefly review these
methods in a general context, before discussing speci6c
examples.

a, y= q—+pl@I'y I@—l'y+(V +q ) p, (5.138)

and have numerically found localized solutions in two
and three dimensions over a range of the rea1 parameter
p. The existence of stable droplet solutions in models
with a Lyapunov function might at first seem surprising,
since no such solutions are found in the simpler
Ginzburg-Landau model (4.13). It turns out, however,
that for the fourth-order system (5.137) the Lyapunov
potential has minima associated with variation on the
scale qo ', so a bubble of the u W 0 phase can become
trapped in the u =0 phase. This is an example of a nona-
diabatic effect (see Sec. IV.A.4) which is lost in the ampli-
tude equation (4.13) associated with the "microscopic"
model (5.137).

(i) Perturbative calculations

If we assume the solution U= Ud(x —xd ) for a station-
ary defect to be known, the dynamics is often given by a
solvability condition (see Appendix A). Confining our-
selves to stationary (type I,) systems for the moment, we
write an ansatz for the moving defect in the form

U(x, t)= Ud[x —xd(t)]+il U$( x, t), (5.139)

where g is a small parameter introduced as a measure of
the small perturbation causing the motion, Ud is a
prescribed distortion of Ud whose form depends on the
perturbation (see below), and U, is an unknown correc-
tion. Substituting the ansatz (5.139) into the general
equation of motion (3.4) we find

(ii) Scroll waves

Target and spiral solutions can also be constructed in

three dimensions. Since the coherent oscillatory state in-

volves a complex order parameter it is analogous to the
ordered state of superAuid He, say, and the three-
dimensional defect states will have line singularities, rath-
er than point singularities (Mermin, 1979). These struc-
tures have been called scroll waues by Winfree (1984a).
The dynamics of these defects when the ends of the line

join to form a loop has recently been treated by Keener
(1988) and will be discussed in Sec. X below.

3. Defect dynamics

i) XG ( Ud ) U, = —v ~ V Ud
—ii 5 G,

where

V =B]Xd

66
i)XG ( Ud ) U, = i) U )U= Ud

=6[Ud+71U]) —6[Ud]

=6[Ud+il U, ],
i.e., Xo is the linearization of 6 about Ud, and

r156—:6 ( Ud ) —6 ( Ud ) =6 ( Ud ) .

(5.140)

(5.141)

(5.142)

(5.143)

a. Calculation methods

We may next look at the dynamics of the defects
driven by different types of perturbations. These may
arise from other distant defects (then we are calculating
the interaction between defects) or may be imposed exter-
nally, e.g. by compressing the rolls and thereby increas-
ing the wave number or by changing the value of a con-
trol parameter. A perfectly periodic structure tends to be
a rigid object, whereas the presence of defects allows the
whole system to distort. It is then not surprising that the
motion of defects is empirically an important feature of
the dynamics of spatial patterns, both in transients lead-
ing to a final steady state (Siggia and Zippelius, 1981a)
and in persistent dynamics. Although the time evolution
of ensembles of defects is very complicated, considerable
progress has been made in the study of the dynamics of
isolated or weakly interacting defects, which will primari-
ly concern us here.

Two methods to calculate the dynamics of defects have
been used: perturbation theory from an assumed known
stationary defect, and nonperturbative methods in those
systems (or low-order approximations) whose dynamics is

[In (5.142) and (5.143) we have used the fact that
6(Ud)=0, i.e. that Ud is the stationary defect solution. ]
Equation (5.140) is formally soluble for the unknown
function U, as long as the operator XG does not have a
zero eigenvalue. We are interested in the case where this
zero eigenvalue would correspond to the translation of
the defect through symmetry related states, and then the
corresponding eigenvector is VUd. It follows that v is

given along this symmetry direction s by the standard
solvability condition (see Appendix A)

J [(s . VUd) 56]dx
V S= fj' I [(s ~ VUd) (s VUd)] dx

(5.144)

There are two difhculties with this expression: one is that
the zero-eigenvalue adj oint eigenvector, schematically
written as (s VUd ) may not be easy to calculate (and is
not in general the derivative of the adjoint defect solu-
tion); the second difficulty is that the integral in the
denominator may not be 6nite, an indication that the per-
turbation scheme has broken down. In very simple situa-
tions it may be straightforward to guess the appropriate
cutoff to be imposed. However in most interesting cases,
such as systems of many interacting defects, a more so-
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phisticated approach is necessary (see subsection
V.B.3.b.iii below).

Let us present some examples of the distortion Ud that
appears in Eq. (5.143). We first suppose that the driving
force is a compression or dilatation of the background
wave vector from q=qdx which characterizes the far-
field of Ud, to q'=qd(1+ii) x. Then the distortion Ud is
given by

Since the right-hand side of Eq. (5.149) is already O(u ) it
may be possible to use the stationary defect solution Ud
for U„but this does not always yield a finite integral,
and then the full moving solution must be used.

b. Examples

Ud = Ud(x(1+ii) x—d(t), y yd—(t)), (5.145)
(i) Dislocations

i.e. it is the stretched stationary defect solution. Similar-
ly, if the driving force comes from a change in control
parameter 5c., the above scheme app1ies with
q'=qd(E+5e). Alternatively if the defect is driven by N
other defects with fixed positions x (j= 1, . . . , N) then
we take

Ud = U„(x—x„(t))+g [Ud(x —x, )
—U„(qd x)],

(5.146)

where

U = lim Ud .
Ix —xdl ~ ~

(5.147)

Notice that this simple ansatz only applies when the
asymptotic state U is the same for all the defects in the
region of interaction. This is not true for example in the
case of interacting sources or spirals, where the asymp-
totic states between the defects correspond to waves trav-
eling in opposite directions. In some cases one might try
to allow for a slowly varying phase field between the de-
fects (see subsection V.B.3.b.iii below).

(ii) Potential systems

For potential systems an alternative, more direct
method is available (Siggia and Zippelius, 198la). One
equates two expressions for the time evolution of the po-
tential [we use Eq. (4.9) for concreteness]. The first is

V v (5.148)

where Vd = V( Ud ), and the effective force d Vd /dxd de-
pends on the perturbation. The second expression is

a, V= 2r, f la, U„I'd—x

2&0f i—v ~ VU„i dx, (5.149)

with

u = —v ' e ~ d Vd /d xd,

v=2vo f ie VU, i dx .

(5.150)

(5.151)

where U„is the moving defect solution. Equating these
two expressions we find for motion in a direction e the
expression

(a) Climb

5V= —[8 V„(q)](q+ —
q ) L„5y„, (5.153)

where V„(q)is the dependence of the potential of the
ideal state on the wave number q. Now (q+ —

q ) L„is
simply the phase winding 2m, and using the explicit ex-
pression for V in the amplitude equation (4.3) we find

d V, /dy„= —2~a, V„=4~g',
~
~ „(l) ~'k, (5.154)

with ~A (k)~ the magnitude of the ideal solution with
wave number q=(qo+ k )x. It turns out that the drag
term is dominated by the far region where

(5.155)

and we must use the moving defect solution P to obtain
finite answers.

For the isotropic case we use Eqs. (5.152), (5.155), and
(5.94) to obtain an equation for u which reads

u =4&2~ f f dxdy [8 P(x,y, u)] . (5.156)

Since the nonlinear phase equation has not been solved
the above result has not been adequately tested, but an
approximation was obtained by Siggia and Zippelius
(1981a) who inserted the P obtained from the linear phase
equation (5.95). Their result is u =1.47, which compares
reasonably well with the value 0 =0.84 they extracted
from a direct numerical simulation of the amplitude

Much of the formalism for considering the dynamics
of defects was developed in the context of dislocations in
type I, systems. We first consider the climb of an isolated
dislocation near threshold, where we can make use of the
potential. Using Eq. (4.9) and the scheme outlined in
Eqs. (5.150)—(5.151) above we find for the climb velocity

d Vd /dydU= (5.152)
2r, f /a, ~, /'

This result can be thought of as a Peach-Kohler force di-
vided by an effective drag v which depends on the direc-
tion of motion. To evaluate the force we consider the
change in Vd from a displacement 5yd of the defect in a
system of extent L„in the x direction (which we will put
to infinity at the end). The only change in the evaluation
of Vd after a displacement 5yd is that an area of the cell
I. 6yd has effectively had the wave number
q+ =q(y —+ + oo ) replaced by q =q(y ~ —~ ). Thus
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a, 7= 7+(a'+a', ) 2—
~

7('2, (5.157)

they find for k, V —+ 0

equation. Thus, although the numerical value of U has
not been accurately calculated from (5.156), the result
that u-const, i.e. u ~k =(q —qp) ~ (independent of
e) is a definite prediction. This unusual scaling can be
traced back to the fact that D~ ~0 at the wave vector of
the stationary defect.

The anisotropic case was treated by Bodenschatz et al.
(1988a). Here using the stationary solution (5.91) in Eq.
(5.152) leads only to weak logarithmic divergences. For
the conveniently scaled equation

v ——I (a, U, )'(a, U„), (5.161)

where (8 Ud) is the zero-eigenvalue adjoint eigenvector
(adjoint to the translation mode 8 Ud), and now 56
arises from the O(i)) terms produced by the replacement
8 —& ( 1+i) ) 8„in the evolution operator G. In the

denominator we again try replacing Ud by its value in the
large-distance region

with i)=(q —qd)/qd. The general procedure outlined in

Eq. (5.144) above then gives

u=ilv ' f (8 Ud) 56 (Ud), (5.160)

with

V=2 k/ln (3.29/V), (5.158)

Ud= Ud ((1+ii)x, y ut), —(5.159)

in a very large system where the velocity provides the
cutoF at long distances (cf. subsection V.B.2.c.i above).
In a system of scaled size L with L (& V ' the velocity
cutoff in the logarithm is replaced by a number propor-
tional to L. It may be remarked that due to the isotropy
of the amplitude equation, this same result applies to
climb (V in the Y direction driven by a wave number

change k =Bxg) and to glide (V in the X direction driven

by a tilt of the rolls k =Bi,g), as well as to intermediate
cases. Physically, we again expect that for small enough
k or for increasing control parameter, glide will be
affected by pinning to the underlying periodic rolls, but
these effects are not captured by the amplitude equation.

Using the same method it is easy to include the in-

teraction between defects. It is then important to
remember the anisotropic distribution of the phase dis-

tortion of a moving defect displayed in Eq. (5.92), so that
the interaction falls off exponentially in some directions,
unlike the stationary defect which yields a power-law fal-

loff.
Away from threshold in general no potential exists,

and the velocity of climb has only been calculated pertur-
batively. [Also away from threshold we expect glide
motion to be quenched, at least for small driving
strengths accessible to perturbation theory, by the pin-

ning, see Sec. IV.A.4 above. ] The starting point of the
calculation is to assume the stationary defect solution to
be known, including of course the background wave

number qd selected by the stationarity condition. As far
as we can see the value of qd is fixed by the details of the
core structure on O(1) length scales, and in general we

have no way of finding it except numerically or through
some other perturbation scheme (Pomeau et al. , 1983).
In general we expect Di(qd ) A 0, so that the far field is

given by Eqs. (5.91) and (5.92).
If the stationary defect solution Ud is assumed known,

then it is relatively easy to investigate the climb velocity
induced by a change in the background wave number, at
least formally (Kawasaki, 1984a,b; Tesauro and Cross,
1986). The ansatz (5.145) becomes

Ud(x, y) = Up(qd x+P), (5.162)

where Uo is the ideal periodic solution with wave number

qd =qdx, and in this approximation Ud satisfies a self-

adjoint equation so that

(a, U„)'=q„'[a„U,-(q, x ) ] a, y =a, U„.
The eff'ective damping (5.151) is then

v=(qd [B„Ud(qdx)] ) I (8 P)

(5.163)

(5.164)

where ( ) denotes an average over the periodic solu-

tion. If P is evaluated for the stationary solution, i.e.
(5.91), the integral in v diverges logarithmically, so we

need a long-distance cutoff either from finite system size

or from the velocity itself'. In the latter case the result is

u ~ (q qd )/111 (u/up) (5.165)

where Uo represents a short-distance cutoff. The analogy

to Eq. (5.158) should be clear and the result basically

stems from the assumption Di(qd) W 0. In numerical

simulations of nonpotential model systems (Tesauro and

Cross, 1986) the linear dependence on (q —qd) has been

verified (there the system was quite small, and finite size

provided the long-distance cutoff, in contrast to results

indicating a (q —qd) law for a potential model, where

D~(qd ) =0.

(P) Glide

P=c xy (5.166)

with c a constant. %'e may again evaluate the change in

the potential from a displacement 5xd of the dislocation.

This is done most easily by transforming the integral to a
contribution from the change in the length of the 2m cut

Near threshold, dislocation glide in the isotropic sys-

tem can also be studied by calculating the effect on the

potential. The relevant term replacing (5.154) is now due

to curvature, i.e. —(1/Sqp) ~A„~ (V ~ k) . It is clear

that glide in a constant curvature cannot change the po-

tential, so instead we must look at a background phase of
the form
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as the dislocation is displaced (Kawasaki, 1984a,b),

59'/5xd =(m/2q2o)l A l' a, (v k) . (5.167)

(iij Interaction ofpulses

Localized defects such as pulses or fronts (kinks) have
been extensively studied in reaction-diffusion systems
(see, e.g. Rinzel and Terman, 1982; Gurevich and Mints,
1984; Mornev, 1984; Vasiliev et al. , 1987; Cxurevich
et al. , 1989; Murray, 1989; Ohta et al. , 1989). The
specific problem of the interaction of pulses in a one-
dimensional excitable medium provides a fertile example
of the methodology we have outlined (Elphick et al. ,
1988, 1990b, 1991; Elphick and Meron, 1990). The sys-
tem considered is a general reaction-diffusion system

a, U=2)a U+XU+JV(U), (5.169)

with 2) a diff'usion matrix, X a linear operator, and A' a
nonlinear operator. In particular the simple Fitz-Hugh-
Nagumo model in one dimension

BfQ) —B~Q)+3Q( Q ) Q2
2 3

a,uz=a (ui b), —

(5.170a)

(5.170b)

can be used for illustration. For consistency with our
general notation we will define u

&

=Q
&

—b,
u 2

=u z
—(3b b) so that the qui—escent state is

u
&
=Q2=0. Since we are dealing with real solutions of a

real equation an analysis in terms of the variables
u&, Q'„Q2 is appropriate, and the quiescent state corre-

Thus the Peach-Kohler force takes the form
r X V(V ~ k) with v the circulation of the phase around
the defect (in the + z direction depending on the sign of
the winding number). The drag term now takes the form

v= f la„a„l'=la„l'f (a„y)', (5.168)

and this integral is finite even when the solution for a sta-
tionary defect is used. Shraiman (private communica-
tion) has proposed an additional term in the Peach-
Kohler force in potential systems proportional to
V (V ~ k), which leads to glide in an axisymmetric situa-
tion (V k=qo/r) No.te that in this case the direction of
motion is independent of the sign of the dislocation.

Very little is known about glide motion of dislocations
away from the threshold region, where the amplitude
equation no longer applies. Pomeau et al. (1983) showed
that glide may be caused by a constant curvature (i.e.,
P=qx+yy ) in a nonpotential system, again by balanc-
ing these distortion terms with the higher-order ampli-
tude equation terms in the solvability condition (5.144).
However the integrals in the numerator diverge, and the
authors suggested a nonanalytic dependence of the glide
velocity, varying as y'~ . Again we remark that pinning
should quench the motion for small driving forces, so
that the validity of this perturbative approach is not
clear.

sponds to the I. fixed point ui =u, =u2=0 (subsection
V.B.2 above). A pulse solution corresponds to a homo-
clinic orbit starting at and returning to I.. For some
values of the parameters a, b the stability analysis about I.
yields a complex pair of eigenvalues, as mell as one real
eigenvalue, so that the approach of the variables u&, u2
to zero in the trailing edge is oscillatory. In this situation
spatial chaos is typical (see Sec. VII.E.6 below).

If Ud(g) with g=x —vt is the single pulse solution cen-
tered around the origin satisfying

(2) a„'+va.+X) U, +W(U, ) =0, (5.171)

we seek a solution for a collection of defects in the co-
moving frame

U(g, t)=g U„(g—g;(t))+U, (g, t) .
l

%'e assume that the defects are well separated,
, ))1, so that the time dependence of the posi-

tions g'; is slow and the correction term U, is small, with
an exponential dependence on the separation. (We will
not explicitly introduce the small parameter g to display
these small quantities. ) This is still of the general form
(5.146), except that we have made use of the fact that
Ud (g' ~ + Oc ) =0. Thus we have, following the analysis
of subsection V.B.3.a. above,

(5.172)

f [a~Ud(g —
g, )] 5G dg

f [agU„(g—g;)] [agU (g —g;)]dg
with 6G determined by the defect interaction through the
nonlinear terms

(5.173)

Equations (5.173) and {5.174) have a very different form
from those of Elphick et al. , (1988) who have a B&U term in the
denominator. This comes from their unorthodox parametriza-
tion with Ud[t —x/vo —r, (x)] in place of (5.172). Our results
do agree with those of Elphick and Meron (1990b).

56=A'[g Ud(g g&)]
—Q JV [Ud—(g gj )], (5.1—74)

J J

and (a&Ud) is the zero-eigenvalue adjoint eigenvector,
adjoint to the translation mode "

B&Ud. It is clear that
5G is of order exp ( —

A, gd ) where A, is the exponential de-
cay of the tails of the pulses (we assume front and back
have comparable values) and gd is the typical separation
of the defects. In general 5G contains contributions from
the overlap of the tails of the jth defect with the core re-
gion of the (j+1)st defects, and also from the overlap of
the tails of the j and (j+1)st and the j and (j—1)st de-
fects in the intermediate region g —

g —+ 1/2 g'd. The
adjoint eigenvector a&Ud(g —

g; ) presumably also decays
exponentially away from g; with similar decay rates.
Thus a number of terms may be identified that are
0[exp( —

A, g'd )]:because of the a&Ud term, in the present
case they all arise from the overlap of the tails of the
(i+1)st defect with the core of the ith defect rather than
the overlap of two tails in the intermediate region. We
find terms
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f (B~U„);5G= f (B(U );
aw

'

aU„ (5.175)

where (BJV/BU& ); is the Jacobian of the nonlinear term with respect to Uz evaluated for the ith defect solution [e.g. if
JV= U, (BJV/BU&); =3U&(g —g;)]. The expression in Eq. (5.175) is more general than that of Elphick et al. (1988),
who do not need the first term in square brackets for the special case they consider. Independently of the details we
therefore arrive at the equation of motion

B,g, =C, exp [
—ii, (g;+, —g, )]cos [qi(g;+, —

g, )+P, ]+C2exp [ —i~2(g,
—

g, , )] cos [q2(g; —g;, )+$2], (5.176)

B,R =R 'Bz [e " cosvR], (5.177)

where p and v are constants characterizing the asymptot-
ic behavior of the single pulse solution. Recently,
Malomed and Nepomnyashchy (1990) have calculated
the interaction of pulses in the complex Ginzburg-
Landau equation (4.49) by perturbative expansions near
the nonlinear Schrodinger (c i, c3 ~ oo ) and relaxational
(c i c3 ~ 0) limits. They find evidence for bound states in
both cases. Numerical work on this system has been car-
ried out by Brand and Deissler (1989) and Deissler and
Brand (1990, 1991).

(iii) Interaction of dislocations and spirals
in the complex Ginzburg-Landau model

A long sought goal is the development of a complete
"phase field plus defect" dynamical description of a di-
lute system of defects involving equations of motion of
the defect positions xk, driven by and in turn modifying
the slow phase field P (see, e.g. Cross and Newell, 1984).
The effort in this direction has advanced furthest for the
Ginzburg-Landau equation. Although the final goal has
not yet been reached, the work does illustrate the general
problems and potential solutions.

Following the approach of Kawasaki (1984a) and
Tesauro and Cross (1986), Rica and Tirapegui (1989) and
Elphick and Meron (1991)have used an ansatz for a mul-
tidefect solution

A (x, t) =(a' '+a'") e'~'"" (5.178)

where a' ' is an ansatz for the magnitude analogous to
Eq. (5.145), a ~ ~ is the small correction due to the interac-

where K~ + iqj are the eigenvalues of the L fixed point
(see subsection V.B.2.b above), and C and P depend on
performing the detailed integrals. For the specific model
(5.170) the trailing edge of the pulses may be oscillatory
(i.e., q, &0), whereas the leading edge is not (q2=0).
Then Eq. (5.176) yields an asymmetric interaction in the
forward and backward directions, and the equivalent of
the Peierls-Nabarro "force" does not satisfy Newton's
third law.

A similar formalism has been developed by Aranson
et al. (1989) to describe the interaction of localized pulse-
like solutions in three dimensions. The equation of
motion for the distance R between two pulses is

tion, and P is the full phase field. (We use a slightly
different notation than Rica and Tirapegui. ) Based on the
solvability conditions with respect to the zero eigenvec-
tors represented by translations of the defects, and on
phase symmetry, they propose the coupled equations

B,x =2m z X VP'"' +2c, VQ'"'
k k

(5.179)

together with the usual phase equation (4.90)—(4.91)

B,P=(l c,c )V—P —(c, +c )(VP) +c (5.180)

The effect of the defect on the phase is given by the phase
winding condition around each defect, e.g. , for a contour
surrounding just the kth defect at xk

f Vg.dd =2~m„. (5.181)

In (5.179) P'"' is given by subtracting the phase field of
the kth defect from the full phase field P. This clearly il-
lustrates the type of result desired. Unfortunately, as far
as we can see, this result is only correct in the special
case of ~c, +c3~((1, but not c, =c3=0 (i.e. the real
case). Two difficulties arise.

e The complex case: interacting spirals. As pointed
out by Aranson et al. (1991) (see also Rica and Tira-
pegui, 1991a; Pismen and Nepomnyashchy, 1992), in the
general complex case the asymptotic wave vectors of the
two spirals at a point between them have O(1) magni-
tude q„(c„c3),but are in opposite directions, so that a
shock develops; this happens unless q —+0, which
occurs when ~c, +c3~~0. (This special case has been
treated in detail by Rica and Tirapegui, 1991b.) Aranson
et al. treat the shock for small ~c, +c3~ within the non-
linear phase equation (5.180), applying the Cole-Hopf
transformation (5.77a) to obtain a linear system. Then
superposition and the exponential falloff in the Cole-
Hopf variables immediately lead to an interaction (and a
velocity B,xk) which decrease exponentially with the sep-
aration between defects. This effect corrects the r
dependence in the earlier work (Rica and Tirapegui,
1989; Elphick and Meron, 1991),where a linear superpo-
sition of the phase fields of the two defects, not allowing
for the nonlinear shock, was erroneously assumed. Al-
though it is expected that the exponential form, including
the estimate of the decay rate aq [with a = (c, +c 3 ) /
(1 —c,c3)], will persist even for ~c, +c3~ =O(1), in this
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VP= —v VP, (5.182)

since other time derivatives are O(vP). Expansion of the
solution of Eq. (5.182) about the defect position in small
r =

l
x—x& l yields

case the shock is strong [see subsection V.B.2.b.(vi)
above] and so it cannot be quantitatively captured by the
phase equation (5.180). Presumably a complete calcula-
tion must also involve the dynamics of the shock line de-
fect (which need not necessarily be midway between the
point defects as assumed by Aranson et al. , 1991), to-
gether with equations such as (5.179) and (5.181). More-
over, the subtraction involved in calculating P'"' from the
full phase field seems to remain a delicate question in
general (see Pismen and Nepomnyashchy, 1992). Despite
these subtleties, the physically important basic result, i.e.
the exponential decay of the interaction between spirals
at large distances, was confirmed by numerical calcula-
tions of Aranson et al. (1991a,b). These authors also find
the possibility of bound states at small separation.

~ The real case. For the real case c, =c3=0, we have
seen in Eq. (5.158) above that there are in fact logarith-
mically divergent coefficients in relating the velocity B,xk
to the local phase gradient, and these are not apparent in
Eq. (5.179). Recently various authors (Neu, 1990; Pis-
men and Rodriguez, 1990) have shown how to incorpo-
rate the logarithmic cutoffs by a careful treatment of the
delicate subtraction involved in going from P to P'"', in
which the stationary solution for the defect cannot be
used. We will describe the version by Neu since his ap-
proach is analogous to the one discussed earlier, and it
seems better suited for generalizations to more compli-
cated cases.

The crucial elements in Neu's analysis involve match-
ing a phase expansion and a core expansion in an overlap
region where both are valid, and using an integral expres-
sion which is a generalization of the solvability condition,
but is evaluated over a finite region so that divergences
are eliminated. For a point defect moving with velocity v

in a dilute ensemble of other defects the phase equation
near the chosen defect is to lowest order in the expansion
parameter g (e.g. the inverse of the defect spacing)

(5.186)

in a matching region where
l Ao l

~ 1 but the small-r ex-
pansion (5.183) of the phase is still valid.

The standard solvability condition is derived from

(5.187)

= fRe(u B„w—w*B„u) dE,
BD

(5.188)

valid for arbitrary functions u and w, with D the disk of
radius ro centered on the defect, BD the boundary of this
disk taken to be in the matching regime, and B„aderiva-
tive normal to the boundary. Taking e to be an arbitrary
direction Neu makes the choices

u =e.VAo so that X u =0, (5.189)

and

w= A, so that Xw= —v.VAO .

The first part of the identity in (5.188) gives

I= —
m (a+logro) e v+

with

(5.190)

(5.191)

fp

a= lim f [(dl gaol /dr) +r
l Aol ]rdr logro, —

o

(5.192)

representing a core integral independent of ro and of the
perturbations. The second part of the identity gives

I= —n.(l orgo+1) (e v) —2n. e.z X K . (5.193)

where by (VAO) we mean the zero eigenvalue eigenfunc-
tion of X . Since this expression has a logarithmic diver-
gence at large l

x l, Neu writes a modified solvability con-
dition on a finite domain D, by making use of the identity

I—:f Re(u'Xw —w'Xu ) dx
D

1P(r)=$0(r)+ —(log r)v r+K r+ . (5.183)
On equating these two expressions, the logarithmic terms
cancel to yield the relation

XA, = —v V Ao,

where X is the linearized operator

(5.184)

(5.185)

Matching to the phase equation we obtain

where Po is the unperturbed phase and K is not given by
the expansion but is to be determined by matching to the
far field. The core expansion must involve the full ampli-
tude A =do+A& with Ao the unperturbed core solu-

tion, and A
&

the perturbation satisfying in analogy with

Eq. (5.140) above,

(1—a) v= —2z X K, (5.194)

replacing Eq. (5.179) which is wrong as it stands for the
real case. The calculation of the motion of the defect
thus reduces to the evaluation of the quantity K, given
by the prescription of solving the phase equation (5.180)
with the moving defects as sources, and then performing
the subtraction at each defect required by the definition
of P'"'. Since the subtractions involve the unknown ve-
locities and since the phase field and velocities must be
mutually consistent, this procedure, although defined in
principle, may be quite difficult to carry out in practice
for a general situation of many interacting defects. Neu
illustrates the method for a single defect in the presence
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of a constant background phase gradient q and finds

K=q+ —logivi z X v,1

2
(5.195)

which, with (5.194), yields an implicit expression for the
velocity and reproduces the results of Bodenschatz et al.
(1988a) for this simple situation. Here clearly the veloci-
ty v provides the long distance cutoff. In other situations
somq combination of u and variations in the phase gra-
dient field presumably play this role. It would appear
straightforward to generalize the above calculation to
other simple situations, such as two defects approaching
each other from infinity, initially driven by a uniform
phase gradient q. The full solution for an arbitrary dilute
defect field remains to be demonstrated. For further dis-
cussion of this problem see Pismen and Rodriguez (1990),
Pisinen and Nepomnyashchy (1991),and Pismen and Ru-
binstein (1991).

(i v) Scroll wavesin three dimensions

where derivatives of the twist P and of R, as well as the
correction U&, are assumed to be small. If N and 8 are
unit vectors normal and binormal to the curve R, and T
is the tangent vector, then three-dimensional space can
locally be represented along the three orthogonal direc-
tions T, N, and B. The basic ansatz is that the curvature
E =N 8,T and torsion ~= —N ~ B,B of the curve X=R
are small, and that the curve moves slowly in space. The
lowest-order phase equations are then

(5.197a)

(),Q=B B,N+(T B,R)(0+p,B,(v —a, (o —y, l(.

(5.197b)

(5.197c)

(5.197d)

In a three-dimensional system that develops spiral line
singularities, the lines may connect to form various loop
defects which are dynamic due to the mutual interaction
of portions of the loop. Keener (1988) has developed a
description of this dynamics starting from an assumed
known spiral or target solution Uz(r, 8) for a two-
dimensional model, such as a reaction-diffusion equation
(5.169). The new idea, beyond our discussion of defects
in the plane, is to allow for a slow variation of this solu-
tion in the third dimension. The centers of the 2d spirals
may now lie on a slowly varying curve R(s, t) in three-
space, called the filament of the scroll wave (s is the arc-
length along the filament), and the phase P of the spiral
may twist going along this curve. An approximate solu-
tion is sought in the form

U(r, t ) = Uz ( ~r —R(s, t) ~, 8+/(s, t) (vt )+ U, ,—

(5.196)

where the coefficients a, , p, , y; are expressed in terms of
the two-dimensional solution U2, as well as the solution
of an adjoint problem, as in Eq. (5.144) above.

From these general equations the following results are
obtained in special cases.

Untwisted scroll ring: For an untwisted filament in a
plane, P is independent of position and the torsion r can
be taken to zero, so the equations become

N (),R=p2E,
B B,R=y3K,

a,y= —y, SC .

(5.198a)

(5.198b)

(5.198c)

Vl. PATTERN SELECTION

The problem of pattern selection arises because the
equations we are considering have many solutions above
threshold for given external conditions, whereas observed
patterns constitute a much more restricted set. Thus,
among the allowed (i.e. linearly stable) solutions some
seem to be preferred over others, and we would like to
understand the selection process.

The question divides naturally into two parts. First,
what is the multiplicity of real solutions, and how does it
compare with the multiplicity of ideal solutions? To be-
gin to answer this question we will incorporate the "ele-
ments of real patterns" of the previous section into our
description of ideal patterns. Second, if real patterns
show multiplicity, is there any ordering between them,
such that one solution is preferred over the other? In
equilibrium thermodynamic systems this is a familiar
concept, with the free energy providing the ordering
principle. Although we will see that an analogous ap-
proach using the Lyapunov potential may be useful in a
restricted range near threshold, in general we find no evi-
dence for such a global organizing principle to apply in
nonequilibrium system. We might then consider that one
state is "preferred" over the other if it has a larger basin
of attraction for typical initial conditions, or if it evolves
from an initial condition where the two states coexist side
by side. This then directs our attention to the dynamics

If all the diffusion constants in Eq. (5.169) are equal
[2)=D 1 j, then y, =y3=0, p2=D, and a planar filament

stays in the same plane and moves with normal velocity
proportional to DK. A ring collapses at a rate propor-
tional to its curvature 1/r. For unequal diffusion con-
stants, y3 A 0 and there is a drift perpendicular to the
plane of the filament. Moreover in this case one can have
p2 (0 which implies that a ring expands.

Twisted scroll rings: In (5.197) the equation of motion
for the twist P is a difFusion equation with diffusion con-
stant Pi, so that nonuniform twist will tend to smooth
out (assuming p, )0). A ring with constant twist will
collapse or not, depending on the sign of a2p2, and the
perpendicular drift wi11 also be affected by the twist. The
reader is referred to Keener (1988) for further discussion.
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leading to the final steady state rather than to properties
of this state itself.

In addition to these general considerations, the final
pattern may depend on the specific way in which the con-
trol parameters reach their final values, and on the par-
ticular dynamics leading to the steady state. For exam-
ple, if the pattern grows from a uniform state it is very
sensitive to small forces as it grows from zero amplitude,
and there must be some forcing to make the pattern grow
since in the ideal system with no forcing the uniform am-
plitude state remains a valid solution for all times. Thus
quite delicate features may have a substantial efFect on
the final steady state. This is often useful in biological
models where a small source term is added to favor a
desired final state (see Sec. XI). Also in Rayleigh-Benard
convection the e6'ects of forcing on the subsequent pat-
tern evolution have been investigated quite carefully both
experimentally and theoretically (see Sec. VIII.D).

We therefore divide our discussion of pattern selec-
tion ' in type-I, systems into two parts: selection via con-
straints and selection via dynamics. The distinction is
not meant to be rigid; it is introduced primarily for
pedagogical purposes and seems to disappear for oscilla-
tory systems. We will find it useful to distinguish be-
tween "prepared patterns" which are geometrically sim-
ple and result from carefully prescribed conditions and
growth protocols, and "natural patterns" which are more
complicated and typically arise in large systems with less
controlled initial conditions.

A. Type I,:Stationary patterns

1. Selection via constraints

We first focus on the most elementary example of
selection, the local wavelength or distribution of wave-
lengths in regular stationary roll patterns. This means
that we wish to know how the ideal stability balloon of
Sec. IV.A is modified by adding the real pattern elements
likely to be found in practice. This area has been widely
studied over the past two decades, and we now have a
rather complete understanding of the phenomena. The
more general question of disordered patterns in two di-
mensions, which we turn to next, is much less well under-
stood. The theoretical knowledge we do have is largely

6 Getling (1991) has advocated a different usage for the term
"selection. " He distinguishes between a "preferred pattern"
which is reached under "natural" conditions, and a "realized
pattern" obtained under specific constraints which he terms
"antiselective. "As discussed below, there is some ambiguity in
the definition of "natural" conditions, but even if the criterion
could be made unambiguous, we see no compelling reason to
choose a particular mechanism as leading to the preferred pat-
tern.

based on numerical studies of simple models such as the
Swift-Hohenberg equation.

a. One dimension: I%ave-vector selection

The ideal system —in an infinite geometry or with
periodic boundary conditions —has considerable rigidi-
ty: any solution with wave vector in the stable band is a
good solution because the dynamical trajectory in phase
space connecting states with two nearby wave vectors in-
volves large excursions. It is clear from the discussion of
Sec. V that this is no longer true in real systems, where
both boundaries and defects may relax the constraint of a
fixed number of wavelengths. We will thus see that there
exist situations which lead to simple essentially one-
dimensional patterns, perhaps with one or a few defects,
but where the wave vector is selected to a unique value,
or a narrow band, by some constraint. We now list ex-
amples of such wave-number selection mechanisms.

(i) Rigid sidewalls

We have seen that rigid sidewalls provide a means
whereby the wave number in the bulk of the system (far
from the wall) can adjust its value by the creation or the
destruction of rolls in the region near the walls where the
amplitude of the pattern is suppressed. As discussed in
Sec. V.A. 1.b, near threshold the bandwidth of allowed
states is proportional to c, in contrast to the ideal system
where the width goes as c' . It should be noted, howev-
er, that we are assuming that the rolls are parallel to the
sidewall, whereas often in the absence of other con-
straints rolls tend to approach the walls perpendicularly.
Also, the relaxation mechanism occurring within a
coherence length c ' of the wall can become pinned
when this length approaches the basic period, so that the
reduction in the wave-number band may well be confined
to a narrow region near threshold.

(ii) Control parameter ramps

"Soft" boundaries set up by imposing a spatial ramp in
the control parameter select a unique wave number in the
bulk (Sec. IV.A.2.d). Note that for an arbitrarily slow
ramp in a giuen physical quantity (fiuid depth or plate
temperature in convection for example) the wave number
far away is uniquely determined for fixed bulk parame-
ters. However, for ramps in diQirent physical quantities
leading to the same control-parameter variation E(x), this
selected wave number may vary. Ramps therefore pro-
vide a useful experimental tool for precise tuning of wave
numbers in the bulk (Kramer et al. , 1982; Pomeau and
Zaleski, 1983; Hohenberg et al. , 1985).

(iii) Concentric rolls with focus singularity

The barriers to the creation or destruction of spatial
periods become small near the center of a concentric roll
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pattern, and this provides another mechanism allowing
the wave number to relax. We have seen in Sec. V.B.2
that at a large distance r away from the center the wave
number approaches the unique value qf given by the con-
dition B(qf ) =0, Eq. (5.98b), with corrections of 0(1/r)
(Pomeau and Manneville, 1981; Cross and Newell, 1984).
This mechanism will still operate even if only portions of
the concentric rolls are within the cell, and the center is
on or close to a boundary; such a situation often occurs
in the corner of rectangular cells [e.g. Fig. 3(e)]. Howev-
er, once there is no longer axisymmetry mean Aow effects
may occur in Quid systems, so that the asymptotic wave
number is no longer qf. In the absence of mean fIow
effects the phase equation is smooth, and the argument
for the unique wave number qf does not rely on axisym-
metry (Cross and Newell, 1984). The analysis goes
through essentially unchanged with Eq. (4.76) now in-
tegrated along the trajectory orthogonal to the roll, and
the increasing equiphase distance between nearby orthog-
onal trajectories playing the role of r on the right-hand
side of Eq. (5.98a).

(vi) Competing selection mechanisms

One of the most interesting questions regarding wave
number selection is to ask whether the various mecha-
nisms select the same wave number, so that one can truly
speak of a "preferred state, "or whether each mechanism
for relaxing the rigidity of the ideal solution produces its
own wave number. The study of model equations (Cross
et al. , 1986, see Sec. VIII.C below), calculations on
Rayleigh-Benard convection (Buell and Catton, 1986a,b),
and theoretical and experimental results on control pa-
rameter ramps in Taylor-Couette flow (Riecke and Paap,
1987, Ning et al. , 1990) show that in general different

(iv) Dislocations

A single dislocation, as in Fig. 19, provides a competi-
tion mechanism between the wave number q& in the bulk
below the core and the wave number q„above. It is thus
reasonable to say that if the dislocation moves up, for in-
stance, the wave number q& is "preferred" over q„by
this mechanism. Indeed, after the dynamics has ceased
the whole region will have wave number q&, and one spa-
tial period will have been added or lost. If successive
dislocations are injected into the system, eventually q& „

will be such that the defect is stationary and the pre-
ferred wave number qd must lie between q& and q„.For
a sufficiently large system these wave numbers become
arbitrarily close together, and the optimal wave number

qd can be determined accurately as discussed in
Sec. VIII.C belo~ for Rayleigh-Benard convection. In
order for this mechanism to be effective for finding the
preferred wave number we must either assume a
sufficient preexisting density of dislocations or some
creation mechanism for dislocation pairs.

(b)

I

I

I

I

I

I
'

I

I

I I

I I

I I

I I

I I

I

I 1

(e)

(v) Grain boundaries

We have seen in Sec. V.B that the perpendicular grain
boundary configuration of Fig. 21(g) provides a mecha-
nism for the wave number of the central rolls to smoothly
adjust, yielding a selected wave number which may de-
pend on the wave number of the cross rolls. It is interest-
ing that this mechanism provides a means additional to
(i) above for a rigid boundary to relax the bulk wave
number, through the nucleation of cross rolls in the
boundary region.

FIG. 21. Schematic of possible patterns in Rayleigh-Benard
convection and other type I, systems. Solid and dashed lines
represent roll boundaries (e.g. upgrow and downAow, respective-
ly). In (d) and (i) only a coarse grained representation of the roll
boundary directions is shown, and there are many dislocations
on a finer scale not shown, which permit the large scale distor-
tions.
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selection mechanisms yield different wave numbers. Only
in the case of potential systems can one identify a single
preferred wave number, which is the one minimizing the
potential, but even for that case it appears that front
propagation selects a different value (see below). Since
we expect typical nonequilibrium systems to be nonpo-
tential this means that in general each mechanism will
select a different wave number, though it is clearly neces-
sary to investigate this question in specific systems. In
particular, control parameter ramps e(x) created by vari-
ation of different physical parameters provide a useful
test case.

If there are indeed different selected wave numbers, it
is natural to ask what happens if two mechanisms are
operating simultaneously. In general we expect no steady
solution to exist in these cases, but rather the continual
creation of rolls by the mechanism favoring the larger
wave number, and the corresponding destruction by the
mechanism favoring the smaller one. In the simplest sit-
uation the time dependence is periodic, but more com-
plex dynamics is also possible.

This phenomenon can be analyzed quite completely us-
ing the phase equation if the two mechanisms operate at
well separated locations, for example two different con-
trol parameter ramps with a large bulk region in be-
tween. We will study the one-dimensional case, but the
axisymmetric situation follows quite analogously. For
simplicity we neglect the wave-number dependence of
D

~~
(q ), and seek a temporally periodic solution of the

phase equation (4.70) in one dimension, with frequency co

the Swift-Hohenberg equation near threshold, with
confirming evidence from numerical simulations. Fur-
ther away from threshold our understanding is even more
schematic, and is based on the phase equation and on nu-
merical simulations.

(i) Near threshold

As we have seen the Swift-Hohenberg equation (4.108)
is a canonical model for type I, instabilities, and near
threshold it can be used as a rotationally invariant gen-
eralization of the amplitude equation which holds for any
system. Since the equation is governed by a potential
which is an integral of local quantities over the whole
domain, we can indeed obtain a global description of the
system by piecing together elementary contributions. As
the potential necessarily decreases in any dynamics, we
can never arrive at a final state whose potential value is
higher than that of the initial state: in this sense lower
potential solutions may be considered "preferred, " and
we may consider the importance of the various elements
discussed in Sec. V according to their relative contribu-
tion to the potential (Cross, 1982a).

In the limit

1 ~1y2 L ))1 (6.3a)

there is a separation of length scales between the roll
spacing qo

' =O(1), the healing length g'=goo. '~~, and
the system size L such that

a,y=~=D~~a. q, (6.1) qo
' «g «L (6.3b)

which yields a linearly varying wave number. Also, the
frequency is fixed by the requirement that the wave num-
ber approaches the selected wave numbers q, 2 in the vi-

cinity of each mechanism separated by a distance L,

In that case one can isolate separate contributions to the
potential

2

9'= f dx — Ef'+, [(—V'+q02)g]'+
qo'

co=(D~~(/L ) (q, —q2) . (6.2) (6.4)

Note that for L large enough co is small and the individu-
al wave-number selection mechanisms will not be per-
turbed. The motion consists of the steady drift of rolls
between the two regions. Examples of such situations are
two incompatible ramps (Cross et al. , 1986; Kramer and
Riecke, 1985), or the competition between center (focus)
and boundary selection in axisymmetric patterns (Cross
et al. , 1986; Tuckerman and Barkley, 1988; Barkley and
Tuckerman, 1989).

b. Two dimensions: general considerations

For large two-dimensional systems the roll direction
can vary by large amounts even if the rate of spatial vari-
ation is slow, so that the range of possible patterns is
much larger than in one dimension. What we would like
to do is to put together the various important elements
identified in Sec. V, to reach some theoretical under-
standing of the whole pattern. So far this goal has only
been achieved at a semiquantitative level, by analysis of

coming from the surface and the bulk.
The orientational effect of a rigid boundary was dis-

cussed in Sec. V.A: the suppression of the magnitude
over a distance of order goE

'r (n s) [with n the roll
normal (q = qn) and s the boundary normal] leads to a
boundary contribution to the potential

Vs=(2&2/9go)foe ~ n s, (6.5)

V~=(PO/3go) f d xe[(1/4qo) (V q)~+(5q)~], (6.6)

per unit length of boundary. This is minimized for
n s=0, corresponding to rolls approaching the boundary
normally. [More precisely, in this limit n s=O(e'r ),
and Eq. (6.5) breaks down due to the neglect of fourth-
order derivative terms, the correct answer being
V, =O("").]

The bulk term consists of two parts, one arising from
slow changes of the roll direction and variations of the
wave number, and the other from defects. In the absence
of defects the bulk contribution is
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with

E=c.—go[(5q) +(1/4qo) (V q) ]=E . (6.7)

In addition there is a constraint (arising from the ex-
istence of a phase)

(V X n), =qo '(n X V 5q), , (6.8)

relating the "bending" of the rolls (in liquid crystal par-
lance) to spatial variations of the wave number. Now,
since 5q & c' from stability considerations, there is only
an O(e'/ ) reorientation of n contributing to (V X n),
over the whole system, so we may put 6q =0 in predicting
possible patterns. We then find

Vz—-(s/12go)go f d x (V ~ n) (V X n), =0 .

((V X n), ) =2m qo
' pD(r), (6.10)

with an associated extra defect contribution to the poten-
tial

O'D=(qo/2m. ) ((V X n), ) 7, , (6.11)

where V, is the contribution from the suppressed magni-
tude of the order parameter over the core of area

g2e
—3/4

(6.12)

with y an O(1) constant which requires numerical evalu-
ation.

Another way the rolls may reorient is via line singular-
ities or grain boundaries, which were discussed in
Sec. V.B. They contribute an amount to the potential per
unit length

Voii = (1/3go )e Jocose fGB(8), (6.13)

in the symmetric case, with 0 the angle between the roll
normal and the grain boundary normal, and fGB a func-
tion of the nonlinear coupling parameter Q(0), Eq. (4.32).
In the perpendicular case Voii is also O(E ), and in or-
der to determine the coefficients it is important to replace
the point nonlinear kernel of the Swift-Hohenberg model
with the full nonlocal but short-range kernel, thus yield-

(6.9)

[Note that the contribution of 5q to Vii is large, of order
s L even for 5q=0(E' ), so that we must first reduce
this term in order to minimize X In measuring V from
experiment, on the other hand, it is important to keep the
(5q ) term [see Sec. VIII.D.3].

The constraint on the bend in Eq. (6.8) places severe
restrictions on possible patterns. For example, in a circu-
lar cell it is not possible to minimize the boundary contri-
bution everywhere and at the same time satisfy the con-
straint. Instead, the latter can be relaxed by allowing de-
fects in the cell. In fact a distribution of isolated disloca-
tions of density pD(r ) leads to a coarse-grained bend as in

Figs. 21(d) and (i).

ing the correct representation of Q(0). This should not
affect the potential aspects of the equation. Since the
scaling with c and system size is the same as for the
boundary terms, there may be changes in the pattern de-
pending on the details of g(g) [e.g. the cases shown in
Fig. 21 in a square domain].

Having evaluated the major contributions to the poten-
tial we may compare its value for various patterns, to
predict which ones are likely to occur. Different contri-
butions scale with different powers of e and I, and their
relative importance varies with these parameters. For
example, in a large circular cell it is immediately ap-
parent from Fig. 21 that a pattern of straight rolls (a),
essentially ignoring the geometry of the boundary, is pre-
ferred over the axisymmetric pattern (b). The compar-
ison is more diFicult in the case where radial rolls form at
the boundaries (c). Considering the radial rolls as a per-
pendicular grain boundary, we find a contribution to the
potential of the same order as in (a); which one is lower
then depends on numerical factors. The solution with
distributed dislocations and the rolls approaching the
boundary normally (d) always has a higher potential(- E / L) for small E than (a) (- s L), and in general
this scaling would suggest that a bending of the pattern
due to distributed dislocations over the whole cell will
not occur for small c.. This result breaks down in special
geometries, e.g. an annulus (e) for e&(5L/L) with 5L
the difference of the radii, where the dislocation solution
wins out over a straight roll pattern. In a square cell the
defect-free concentric roll solution (I) is preferred over
the distributed defect state (i), but if all the dislocations
are collapsed onto the diagonal to give a line of defects
(h), the comparison with (f) and (g) depends on the details
of the interaction function Q(8).

I.et us mention some of the limitations of the above ap-
proach. In any real experiment or simulation the asymp-
totic state reached need not be the lowest minimum of V,
but merely a local minimum which is stable to whatever
perturbations are present. Very near threshold the bar-
riers between different minima of V are expected to be
small, but as one raises c the minima proliferate and the
barriers grow. Moreover, the analytic comparison we
have attempted of the potential values for various pat-
terns depends on asymptotic scalings in certain combina-
tions of the limits v~0, L —+ ~, which may be unrealis-
tic in many situations. For example, the restriction
5q & c' « I may be violated quite rapidly as c is raised,
so that large-angle bending of n without defects, as well
as the creation of disclinations, become possible. The ex-
istence of a potential and the expression for it in Eq. (6.4)
may or may not remain a good approximation. Its
derivation depends on the condition E' «1, and so
there is no justification for the use of a potential when 5q
becomes of order qo. Similarly, the estimated difference
between various contributions is often very small, for ex-
ample the factor of c' between the opposing defect and
surface contributions may be swamped in practice by nu-
merical prefactors. Nevertheless some of the broad
trends and specific patterns predicted by the above argu-
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ments are confirmed experimentally and numerically [e.g.
(a) in cylinders, (h) in squares]. An attempt at a quantita-
tive investigation of the potential (6.4) will be discussed
in Sec. VIII.D.

The Swift-Hohenberg equation was studied numerical-
ly in large systems by Cireenside and Coughran (1984).
Natural patterns were investigated starting from random
initial conditions, in a cell of aspect ratio 29 X 19 to
match the experiments of Gollub et al. (1982), and in a
square cell of size 16 X 16. The results shown in
Figs. 3(d), 3(e), and 3(f) are instructive from the point of
view of pattern selection. In frame (e), after about 2 hor-
izontal diffusion times, the small-scale structure has
largely annealed out, leaving large patches of coherent
rolls that approach the sidewall normally, joined some-
times by grain boundaries and sometimes by sharp kinks,
as well as a small number of isolated dislocations. This is
quite consistent with our qualitative expectations and is
somewhat reminiscent of the experimental pattern in Fig.
3(a), which was a steady state. However Fig. 3(e) contin-
ues to evolve in time, by the gliding of dislocations away
from the high-curvature regions. Eventually, on very
long time scales, the pattern simplifies to frame 3(f),
which consists of two patches of largely circular arcs
joining smoothly, together with small regions of cross
rolls near the short boundaries. Remarkably similar re-
sults were found using different random initial condi-
tions, and even a different model equation which was
nonpotential. However for higher c. the simplification at
long times was much less dramatic. Simulations for a
square shape at small c. consistently led to a rather simple
symmetric final state [Fig. 3(d)], reininiscent of the pre-
diction in Fig. 21(h). Again, higher e led to a pattern re-
taining more of the randomness of the initial conditions
and less of the geometry.

(ii) A way from threshold

Further away from threshold we have a much less
complete picture. We could perhaps still use the Swift-
Hohenberg potential as some guide, but this system be-
comes very rigid, with apparently many small barriers
preventing relaxation to simple states, and such behavior
does not seem to be generally observed experimentally.
Cross and Newell (1984) considered the problem of ap-
proach to a steady state based on the phase equation, tak-
ing as given a boundary condition that the rolls approach
the sidewalls normally. In particular, they studied a situ-
ation with focus singularities on the boundaries or in the
corners, as suggested by this boundary assumption. They
suggested that if the motion on the 0(L ) horizontal
diffusion time scale relaxes towards a steady state, this
state would generally consist of domains of rolls centered
on the foci. The diffusional motion would then relax the
wave number in the domains that are close to the focus,
to the selected wave number qf given by B(qf)=0. In
fact Cross and Newell showed that the motion on the
horizontal time scale is governed by a potential and thus

relaxes to a steady state, but only with the probably un-

realistic restriction that n s=0 everywhere, and the as-
sumption that there are no line defects, no rapidly mov-

ing defects, and not too many [~0(L)] slowly moving
defects. Since dislocations with the background wave
number qf typically climb with 0(1) velocity [assuming
in general q& W qd, see above] the second restriction may
be particularly unreasonable. In the absence of a proof of
relaxational dynamics, it must again be taken empirically
that this dynamics ceases on the 0(L ) time scale. How-
ever the system may not have reached a steady state due
to the behavior of boundaries between the domains. The
subsequent motion of the domain boundaries remains
poorly understood. For smooth phase equations the
wave vector in the domains, qf, satisfies Di(q&)=0. If
we naively assume a scaling with the characteristic length
scale L (which may now be taken as the domain size)
given by the remaining higher (fourth) order derivative
terms in the phase equation, we estimate an 0(L ) relax-
ational time scale. This is consistent with recent numeri-
cal simulations in a periodic geometry by Elder et al.
(1992). Since this argument depends crucially on the re-

lation Di(qf )=0, it would be interesting to investigate

the expected breakdown on adding mean-drift effects,

where this relation no longer holds. Note that the argu-

ment of Cross and Newell (1984) for an 0 (L ) time scale

resulting from the dynamics of the domain boundary re-

gions is incorrect: the spatial variation on the 0 (L 'r
)

scale of a small-angle (phase) domain boundary con-

sidered there leads back to the 0(L ) dift'usive time

scale, and not to 0(L ) as suggested The . motion of
dislocation defects may also be important. The expres-

sion for the glide velocity is different for potential and

nonpotential systems (see Sec. V.B.3.b.i.P), so the time

scales would be expected to be different in these two cases

if glide is an important mechanism. In addition, a strong

dependence on the control parameter might be expected
in this case, since glide may become pinned when the

nonlinearity grows stronger. Clearly predicting the

long-time relaxation depends on a better understanding

of defect dynamics, with all the difhculties discussed in

Sec. V.B.3.

2. Selection via dynamics

a. External forcing

Suppose the control parameter is raised from a sub-
threshold value to above threshold. We must then ask
what perturbation initiates the growth of the pattern, and
how this affects its detailed evolution. This may depend
on specifics of the system (e.g. imposed sources in
reaction-diffusion equations, or not quite parallel plates
in convection), but some types of forcing may be com-
mon to diverse systems.
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(i) Boundary forcing

Often the lateral boundaries may force the growth of
the pattern (see the discussion in Sec. V.A and in Ahlers
et al. , 1981). This can then be treated by solving the in-
homogeneous amplitude equation, at least near thresh-
old. If the geometry is simple, e.g. a cylinder, the grow-
ing pattern will have the symmetry of the boundaries.
The subsequent fate —whether the pattern saturates in
the simple geometry or breaks up into a more complicat-
ed one —depends on the type of considerations discussed
in subsection VI.A. 1 above.

(ii) Stochastic forcing or stochastic initial conditions

In the absence of the forcing described above, intrinsic
thermal Auctuations could initiate the growth. The size
of these is very small in macroscopic phenomena such as
convection (see the estimates in subsection VI.D below)
but will be relatively larger as the spatial scale of the
basic instability decreases. In addition there must always
be other sources of fluctuations coming from noise in the
apparatus. A numerical study of pattern evolution in the
Swift-Hohenberg model with rather large noise was re-
cently carried out by Elder et al. (1992).

For large deterministic systems it is natural to ask how
patterns evolve starting from stochastic initial conditions
of small amplitude (Newell et a/. , 1970). In fact Getling
(1991) has dined the preferred wave vector as the most
probable value of the distribution resulting from just
such a process (see footnote 6.1). Often it is assumed that
the fastest growing mode dominates the evolution under
these conditions. However, since the competition be-
tween different modes only takes place in the nonlinear
regime, this idea is usually too simplistic. For example in
a two-dimensional system, stochastically initiated pat-
terns often grow to saturate to a highly disordered non-
linear state. There may then follow slow relaxation to a
simpler, more ordered state, whose final configuration de-
pends on the details of the deterministic nonlinear relaxa-
tion. Another objection to the fastest growing mode hy-
pothesis is that the initial spectrum of fluctuations may
not be independent of wave number (i.e. "white"), and
may bias the system towards some other length scale.
Indeed, in a careful numerical study of the one-
dimensional Swift-Hohenberg equation, Schober et aI.
(1986) observed that the final wave vector depended on
the magnitude and peak position of the initial wave-
vector distribution. These results also cast doubt on the
notion mentioned above, that stochastic initial conditions
provide a way to define an intrinsically preferred pattern
(see footnote 6.1). We return to the problem of stochastic
and deterministic forcing in Sec. VIII.D below.

will not be important, since only the first mode which
goes unstable will initially grow. Murray (1989) has in
particular pointed out the importance of the precise
route by which the threshold value is reached. For sim-
plicity we consider a one-dimensional system with
periodic (or no-fiux) boundary conditions, as described in
Sec. V.A. Then we can imagine passing through thresh-
old either by increasing the driving strength c. at fixed
system size, or by increasing the system size at fixed e.
(Other combinations are of course possible, and indeed in
some systems a natural definition of the control parame-
ter may lead to an intermediate path. ) In the first case
(fixed system size) the mode q =

qo develops and will typi-
cally persist as c. increases since large perturbations are
needed to change the number of periods. On the other
hand at fixed c the wave number of the mode formed ini-
tially will be reduced as the system size increases at fixed
number of periods, until a stability boundary (typically
the Eckhaus boundary qE) is reached. Thus in this case
the wave number of the final state will tend to be reduced
from qo towards qz, although its exact value will depend
on the details of the dynamics of the instability.

c. Front propagation

In a large system held above threshold the nonlinear
state may grow by the propagation of a front away from a
localized perturbation. Far enough away from the per-
turbation the spatial structure will often depend on the
intrinsic properties of the front, rather than on details of
the initial conditions. As we have seen in Sec. V.B, in the
Ginzburg-Landau system (5.57) a continuous family of
uniformly translating fronts exist as dynamic solutions
interpolating between the stable nonlinear and the unsta-
ble uniform states; the family is characterized by the ve-
locity of propagation and by the wave number (or fre-
quency) of the nonlinear state produced. On the other
hand if we ask which fronts can develop from localized
initial conditions, often a unique one is chosen, propaga-
ting with a fixed velocity, and producing a unique wave
vector (for each value of control parameter).

This "front selection" question has been much dis-
cussed since the 1930s, and even in the simple case of no
pattern formation when the velocity of the front is the
only variable to be determined (e.g. the nonlinear
diffusion equation), the problem continues to attract at-
tention. Since front propagation occurs in both station-
ary and oscillatory systems we shall discuss this question
for types I„III„andI, in a unified way.

B. Front and pulse selection

b. Threshold protocol

If the control parameter increases very slowly through
threshold then the details of what initiates the growth

1. The nonlinear diffusion equation

B,u =B„u+f(u), (6.14)

For the case of the simple nonlinear diffusion equation
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in one dimension with u 0, the initial value problem has
been solved completely starting from the classic work of
Kolmogorov et al. (1937), and culminating in the
rigorous analysis by Aronson and Weinberger (1975,
1978). Let us consider a function f (u) with three zeroes
as depicted in Fig. 17. Then as discussed in Sec.
V.B.2.b.iv the system has a one-parameter family of uni-
formly translating fronts with velocities v;„&v & ~,
where v;„is the unique velocity of the kink joining the
two stable states u+. We now ask what will happen if we
prepare the system in the (unstable) u =0 state and insert
a positive localized perturbation with u A 0 at some
point. Then Aronson and Weinberger have proved that a
unique front will develop at long times, whose velocity is
obtained by considering the set of all fronts with no
overshoot (no change in sign of u) and picking the one
with the lowest velocity. This selection will hold so long
as the initial disturbance has a faster asymptotic spatial
decay than the selected front.

The above result is extremely simple to state but its
proof requires a sophisticated analysis which depends
crucially on the simplicity of the model (a real equation
producing a spatially uniform solution). It is therefore
useful to rephrase the result and the arguments leading to
it in such a way that they might be generalizable to more
complicated situations. One reformulation, made by
Ben-Jacob et al. (1985) is in terms of a concept they call
"stability in the moving frame": If a front u(x ut) is-
perturbed slightly in its leading edge, it is stable if it
outruns the perturbation and unstable if the perturbation
persists at long times. The result of Aronson and Wein-
berger is then equivalent to the statement that the stable
front with the lowest velocity is selected.

Another way to state the same result, emphasized par-
ticularly by van Saarloos (1989, 1990), is in terms of the
u(aL ) curve shown in Fig. 18. The selected front is the
one with the fastest spatial decay rate, i.e. the maximum

[Note that with our convention the leading edge
decays as exp (aL g) for g~ ~, so ~L & 0.] This means
that for c)et=2, the selected front has v =2c' and

i.e. it belongs to the N~L~ family (see
Sec. V.B.2.b above), whereas for 0&E &a the selected
front has v ) u ',

~ vI ~
)

~ ~L ~, and it is the discrete
N —+I. I front. In what follows we attempt to generalize
what is known from this soluble example in order to
make predictions for arbitrary type I„I„and III, sys-
terns.

pear to propagate at a speed u =o /~~~ ~ ~ . This sim-

ply points out the need for considering restricted initial
conditions, and, in particular, localized or suEciently
rapidly decaying ones in order to create a propagating
front. It should be clear that the idea of stability is quite
delicate in this situation of rapidly growing disturbances,
where we are interested in various asymptotic limits, e.g. ,
x, t ~ ~, U —+0. It is also useful to distinguish between
a stable solution, and an attracting one, since the type of
perturbation of an ideal state that can be considered
"reasonable" is different in the two cases. For example,
consider the v) v*=2m, ' front solutions of the non-
linear diffusion equation (6.14), which have exponential
tails decaying more slowly than the selected v* front. If
we perturb the tail region by adding a small localized dis-
turbance, then the v ) v * fronts may be considered stable
as they will outrun the perturbation. On the other hand
the example of a small perturbation consisting of a trun-
cation of the front far in the tail (e.g. a "localized" initial
condition that is "almost" a u ) v * front) shows that the
v )v* fronts are not attracting if one starts from a local-
ized initial condition, since eventually the v = v * front
will take over. Notice that in the latter case the pertur-
bation of the v )v* front is itself delocalized, but it
represents a localized initial condition. Conceivably, in
some systems these different notions of stability could
correspond to differing predictions for front selection de-
pending on the physical situation. For example we can
consider propagation from a localized initial condition in
a perfectly uniform medium (the usual formulation); then
we are concerned with the attracting nature of solutions
amongst a class, each member of which is defined by an
appropriate set of initial conditions. On the other hand
we can consider propagation in a medium with small
nonuniformities, where dynamic stability to a particular
class of perturbations is the sensible criterion. Finally it
is worth pointing out that generalizations of the
Aronson-Weinberger result are, to date, purely heuristic.
There is no completely convincing derivation of the selec-
tion results to be presented below. The arguments are
usually phrased in terms of Gedanken experiments,
which do not correspond to realistic dynamics in typical
physical situations. Nevertheless, there are now rather
complete and precise predictions, and these can be tested
by numerical calculations and by experiments.

3. Linear front selection

2. General remarks

We consider first a general equation of the form (3.4)
and take c)0, i.e. assume that the U =0 state is unstable.
It follows that a given initial condition will appear to
propagate faster, the more extended its shape. To be
more precise, if a Qat initial condition grows with some
rate o, a small disturbance decaying spatially as e
with x —&0 will grow essentially as exp(at —~~~x)
[neglecting the 0(a) corrections to o], and will thus ap-

The simplest approach is the stationary phase argu-
ment dating back to Kolmogorov, Petrovsky and
Piskunov (1937). A slightly more careful version is the
"pinch point" analysis (Lifshitz and Pittaevskii, 1981),
both of which are entirely linear. Let us for simplicity re-
strict ourselves to an equation in one spatial dimension
with a single field U(x, t)=u(x, t) and a small localized
initial condition u (x, t)=uo(x), but retain the general
form (3.4). The solution far in the tail at a later time is
given by superposition (linearity assumed. ). If we look at
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[Qv —«Q)] =0 (6.16a)

1.e.

dQ(g)
dg

(6.16b)

a complex equation for the position of the complex sad-
dle point Q =g *. The leading order dependence of the
integral is then

u -exp Ii[g'v —Q(Q")] t], (6.17)

and the propagation speed of the front is the value U = U
'

for which ~u(x = u't, t)~ neither grows nor decays in
time, i.e.,

Re i [Q*v*—Q(Q")]=0, (6.18a)

or

Q;(Q')
(6.18b)

All other arguments discussed below based on a linear
analysis lead to results equivalent to Eqs. (6.16) and
(6.18). Of course, it is not at all obvious why a linear
analysis of the whole problem is relevant. Nevertheless
the current understanding of the front selection question
is that this is the correct answer, except when an intrinsi-
cally nonlinear front wins out over the U front. Under-
standing the precise conditions under which this will

happen adds content to this otherwise empty statement
(see below). Also, it is apparent that the predicted u*

based on a purely linear analysis may not be consistent
with a uniformly translating nonlinear front. In that case
v* is expected to be an average of a periodic or even a
chaotic velocity.

a position x =vi we have

u(x =ut, t)= I dx'uo(x') I exp[ —igx']d
2&

Xexp[i [Qu —Q(g)]t],
(6.15)

where initially the wave-number integral is along the real
axis, and Q=Q„+iQ, is complex. For large t we argue
that the Q integral is conveniently evaluated by extending
the contour into the complex plane Q=g„+iQ, . Note
that Q is related to the variables of Sec. V.B via Q„=qL,
Q; = —aI . After suitably deforming the contour, the in-

tegral is dominated by the stationary phase point

The linear selection conditions (6.16) and (6.18) are
thought to apply to both real and complex equations. In
the real case the wave vector qf~ of the state created by
the front is obtained by arguing that each node of u (x, t)
formed in the leading edge persists in the fully developed
pattern behind the front. It follows that this wave vector
is given by

qf =Q„(g*)/u*—Q„*. (6.19)

dQ
dg

BQ; =0
Bq

(6.20)

says that for given ~I the real part of the wave vector

Notice that we have assumed that no additional nodes
are created in the nonlinear region behind the leading
edge, i.e. that there are no phase slips and that nodes do
not propagate in the saturated pattern. For the complex
Ginzburg-Landau equation (5.57) the velocity v* and the
frequency ~* can easily be calculated and the wave vec-
tor q~ is determined by the fixed-point equations (5.58)
(see subsection VI.B.6.a below). As shown by
van Saarloos and Hohenberg (1992), these equations only
possess solutions in certain regions of the parameter
space IE, c;] [they always do for the cubic equation
(4.49)], in which case a uniformly translating front will
create the corresponding nonlinear state (qg, ag). For
other parameter values no uniformly translating front ex-
ists and the state created behind the front cannot be pre-
dicted.

As mentioned earlier, the above results coincide with
those obtained from the various marginal stability" ar-
gument presented in the literature. For example, Ben-
Jacob et al. (1985) have obtained (6.16) by requiring that
a perturbation of the front should neither grow nor decay
in the frame moving with the front speed. It then turns
out that all fronts with U & U* can be considered stable
and those with U & U* unstable, with respect to localized
perturbations in the moving frame. Implicit in these ar-
guments is a restriction to the one-parameter family of
uniformly translating fronts obtained from an equation
such as (6.14). More generally, however, the complex
dispersion relation Q(g)=Q„(qL,&L ) + iQ;(qL, ~L) can
be expected to define at least a two-parameter family of
complex fronts connecting a nonlinear saturated state U&
to the U=0 state. Van Saarloos (1989, 1990) has formu-
lated the "marginal stability" approach to the front selec-
tion problem in this case. He shows that Eqs. (6.16) and
(6.18) can be interpreted as containing three diFerent
statements. (i) The imaginary part of (6.16)

According to the Cauchy relation for the complex analytic

an
function Q(Q) = Q(qL, ,xI ) we have

d BqL

We warn the reader that we are denoting the stationary
phase point as Q*; this does not signify complex conjugation!

an,+l
BgL trL

an,
KL qL

BQ„+ i
qL
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qL (I~I ) is chosen to maximize growth rate Q, , yielding
Q;(ILL )=Q;(ql (~L ), aL }. (ii} Applying Eq. (6.18b) to
the wave vector g =ql —i at one finds

v(a.L ) — Q;(x.l )/aL (6.21)

i.e. a one-parameter family of front velocities character-
ized by their asymptotic spatial decay rate aL . (iii} Final-
ly, the real part of (6.16b) implies that the selected veloci-
ty v*, Eq. (6.18b), is chosen to minimize v(aL ). Indeed,
the real part of (6.16b) implies (see footnote 6.3)

BQ; d 0; BA; dqLU- +
BKL, q d Kl. BqI d KI

dQ;

dKL
(6.22)

where (6.20) has been used. Then differentiation of (6.21)
leads to

dU

dKL

Q;(al ) dQ;
(6.23)

O0
'U

II
rrrrr

r
r

The physical interpretation of the above relations given
by van Saarloos (1989) is as follows: Out of the two-
parameter family of fronts Q(ql, a'I ) only the ones satis-
fying Eq. (6.20) [i.e. ones whose decay rate is at a max-
imum with respect to qI ] are "stable" for given aL. This
condition leads to a one-parameter (aL) family of fronts
with velocity given by Eq. (6.21). Out of this family he
argues that it is the one with the minimum velocity [Eq.
(6.23)] that will develop from localized initial conditions,
in analogy to the survival of the slowest growing facets in
crystal growth (see his Fig. 3). In this way the minimum
velocity v* on the branch (6.21) of Fig. 22 is chosen.

4. Nonlinear front selection

We have seen in Sec. V.B.2.b.iv in studying the non-
linear difFusion equation that in certain cases the aL(v)
curve is not smooth (see Fig. 18). Within the framework
of the phase-space counting arguments of Sec. V.B.2.b.iii,
the smooth family v (at ) corresponds to the N~L2 or-
bits, whereas the front v~, Kl, where the discontinuity in
v(al ) occurs, is a discvete N ~L, orbit. Quite generally,
for a front advancing into an unstable uniform state
(E ) 0) van Saarloos and Hohenberg (1990, 1992) have
formulated the following (linear and nonlinear) selection
conjectures:

The linear front velocity v* and decay rate KL can be
calculated from Eqs. (6.16) and (6.18). This front will be
selected unless there exists a front v, K~ satisfying the
two conditions

v~) v*, (6.24a)

Recently Powell et al. (1991)have attempted to under-
stand the selection of v * by examining the transient dy-
namics through which the pde attains this solution. They
suggest that the less localized stable v )v* fronts are
inaccessible from localized initial conditions, so that the
system arrives at the selected front by moving through
the unstable front states with v (v *, to arrive at the mar-
ginally stable v=v front at long times. The approach to
v

* from below had already been pointed out by
van Saarloos (1989), and Powell et al. (1991) have at-
tempted to connect this transient evolution to the minim-
ization of a Lyapunov functional. In our view, however,
this minimization principle is unconvincing, and the nu-
merical evidence on the behavior of transients is at
present somewhat limited. Moreover, for the complex
equation (5.57) van Saarloos and Hohenberg have found
examples where the approach to v* is from above.

We know of two ways in which the linear selection cri-
terion (6.16, 18) can fail. The first one is obvious from
the previous discussion: if the initial condition is not
sufBciently localized, i.e. if its spatial decay rate satisfies
~lcL ~

( ~KL ~, then it is the front with velocity v(aL ) )v*
that is selected (assuming dvld~a'I (0 as depicted in
Fig. 22). The second violation of linear selection is more
interesting, and we turn to it next.

I

t
PCL K'g

Asymptotic Decay Rate

FIG. 22. Front propagation speed as a function of the asymp-
totic small-amplitude decay rate ~~L ~

far in advance of the
front. Dashed portion corresponds to a value of ~a.L ~

obtained
by a linear analysis which however is not the asymptotic decay
of a nonlinear front, except at a discrete point marked by a solid
circle, at v, ~al ~. (The open circle then corresponds to a
discrete missing value on the other branch. ) The cross marks
the values v, ~aL ~ given by the linear selection criterion.

(6.24b)

in which case the latter (nonlinear) front will be selected.
Moreover, for the complex Ginzburg-Landau equation
(5.57), this front is the discrete N~L, orbit obtained
from the ansatz (5.73).

In general we expect linear selection at large c, and we
can define a value c. (which may be zero) such that linear
selection holds for s) c. , while nonlinear selection holds
for 0& c, (c . The threshold e. is found to be nonzero at
a subcritical bifurcation, i.e. nonlinear selection always
holds near a=0 in that case (see Fig. 23). Note also that
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the competition between linear and nonlinear selection
requires both conditions stated in (6.24). In particular if
Eqs. (5.73) have a solution with ~~1 ~

& ~~L ~, but vt & v*,
it is argued that this front will be unstable in the same
way as the other v & v* fronts. There is limited numeri-
cal con6rmation for this latter expectation, but it should
be said that examples of fronts satisfying the conditions
jaL ~

) ~al ~
and U & U* have only been found in a small

range of the parameter space in Eq. (5.57) (see
van Saarloos and Hohenberg, 1992).

The front selection conjectures predict the velocity v

and wave vector qfz of the nonlinear state created in the
system as a result of the instability of the u =0 state. In
order to complete the picture we must ask whether the

a a = 0 ( P ', NONLINEAR
,
'LINEAR MARG INAL

SELECTION i STABILITY
I

I I I

nonlinear state is itself stable, a question which can usu-
ally be answered from the knowledge of v and qf .
Van Saarloos and Hohenberg (1992) have found, for ex-
ample, that when qf is in the Benjamin-Feir unstable
band the front is not uniformly translating at long times,
though its average velocity agrees well with the value
predicted by the selection conjecture.

5. Selection below threshold: Pulses and fronts

The above discussion referred to an unstable U=O
state being invaded by a stable UAO state, and is thus ap-
plicable for c )0. It answers the selection problem posed
by the existence of a family of fronts. For c. &0, we have
seen in Sec. V.B above that there may or may not be fam-
ilies of fronts depending on the model, but pulses exist in
general at least for complex equations, and one would
like to know when a perturbation of the (stable) U=O
state will produce a front, when it will produce a pulse,
and when it will decay back to U=O. Since the linear
family v(vl ), Eq. (6.21), no longer exists for E &0, the
question involves nonlinear pattern competition. The
front selection hypothesis discussed above was extended
by van Saarloos and Hohenberg (1992) to this case in the
following way:

If a discrete front (U, xl ) exists with U )0 (i.e. the
UWO or N state invades the U=O or L state) then this
front is selected. If no such front exists or if it has v &0,
then either a pulse will be formed, or the perturbation
will decay to zero (we cannot say which will occur a
priori nor can we predict whether the pulse will be stable.
The state obtained often depends on initial conditions in
this case). Typically, fronts are found for e3 & e & 0 and
pulses for c.2&v. &c.3, though both c.3 and c2 may be zero.
In cases where v can be calculated c3 is thus known
analytically. The selection conjectures are summarized
in Fig. 23.

6. Examples

a. Complex Ginzburg-Landau model

FIG. 23. Front and pulse selection in the complex Ginzburg-
Landau equation (5.57) for a sub critical bifurcation. (a)
Schematic bifurcation diagram showing the amplitude a vs con-
trol parameter c. The solid line marked a&0 is the amplitude of
the q& =0 plane wave solution bifurcating subcritically at c=0.
The line marked a~ represents the amplitude of the state creat-
ed behind the linear marginal stability front which is selected
for c & c~; the line marked a& is the amplitude of the state creat-
ed behind the nonlinear front, selected for c3 & c & c . In the
range c2 & c & c3 pulses are expected to be stable, and for c & c2 a
localized perturbation of the A =0 state is expected to decay
back to A =0. (b) Front velocities for the linear (U*) and non-
linear (U~) fronts vs control parameter e. In both (a) and (b) the
selected front is represented by a solid line and the other one by
a dashed line. (From van Saarloos and Hohenberg, 1992.)

Q(Q) = i(1+ic,—) Q +ie=co+vQ, (6.25)

from which it is easy to see that (6.20) implies
(Q =q i~)—

q (6.26a)

xl = ——U(1+c, )
1 2 —1 (6.26b)

and then (6.21) yields

U(KI ) = (1+C i ) KI e/Kl (6.26c)

Let us consider Eq. (5.57) which holds for a subcritical
bifurcation. Then

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium 933

which together with (6.23) gives

u
e =2 El/2(1+c ) /

~* = —E' (1+c )

(6.27a)

(6.27b)
—( —1+&1+6.)'/2,1

2&3
(6.29b)

u*= (2+v'1+6E) (
—I+'t/1+6e)', (6.29a)

4
3&3

The frequency cu can then be found from Eq. (6.25) to be

CO = C)C, (6.27c)

b. The Swift-Hohenberg equation

and a uniformly translating front will only be created if
Eqs. (5.58) for qg and ag have a solution for the given
values of v and co. Otherwise, the wave vector of the non-
linear state formed by the front cannot be predicted. As
mentioned above, the discrete front (u, IcL) is precisely
the one resulting from the nonlinear front ansatz (5.73)
discussed in Sec. V.B, which can be obtained analytically
as a function of the parameters (c,, c„c3,c5). Therefore
the selection conjectures summarized in subsections 4
and 5 above can be tested in detail, and as shown by
van Saarloos and Hohenberg (1992) the results agree with
direct simulations of the @de. For c. (0, the threshold c3
for the appearance of pulses (when s is decreased) can be
found analytically from the relation u (E3)=0. The au-
thors also showed that for c. & c3 the nonlinear front is ob-
tained with the predicted velocity u "(c,) )0, whereas for
82 (8 (E 3 pulses were found. For c. & c.2 a perturbation
decayed back to 2 =0.

Another test of the behavior of fronts and pulses can
be made in the perturbative regime near the Hamiltonian
limit of the quintic-cubic Schrodinger equation (3.41),
corresponding to lc, l, lc3l, lc5l —&ac in Eq. (5.57). In
particular, for c3/c, = —c5/c, = 1, the limits of existence
of pulses c2 & c3 & 0 were evaluated perturbatively by
van Saarloos and Hohenberg (1992), and more important-
ly, these authors showed analytically that for c3&c&0
the discrete front (5.73) with velocity u )0 is indeed
selected. Thus the behavior of fronts and pulses is well
accounted for by the conjectures of subsections VI.B.4
and VI.B.5 above.

and the wave vector selected behind the front is, accord-
ing to Eq. (6.19),

3(3+&1+6E )

8(2+&I +6s)
(6.29c)

with

b3= —P, bq =10/9 . (6.31)

In this limit we may thus predict E, ~1 (e,p), and
u (c., p) for sufficiently small values of p, from the gen-
eral formulas discussed in Sec. V.B. The results, ob-
tained by van Saarloos (1989), are shown in Fig. 24, from

0.36—

KL

0.32—

0.28—

/
/

/
/

/

/

It should be noted that this wave vector is diQevent from
the one minimizing the Lyapunov function (3.28), a point
which argues against the proposal of Getling (1991, 1992)
to use front propagation to define a natural "preferred"
wave number (see footnote 6.1).

In general we do not know how to find a discrete front
solution for this fourth-order equation, but for p «1 we
can obtain an amplitude equation for (6.28) (see Cross
et al. , 1983a; van Saarloos, 1989) and reduce the problem
to the real Ginzburg-Landau model, for which the non-
linear front ansatz (5.73) can be used. Specifically, for
s, p « 1, Eq. (6.28) leads to the amplitude equation

(6.30)

t), u = —($2+1)2u+su+pu —u (6.28)

The linear marginal stability prediction for this system
was found to be

For the Swift-Hohenberg equation (3.27) the phase
space methods that form the basis for our conjectures
have not been implemented directly, except near the bi-
furcation point where an amplitude expansion is valid.
On the other hand, as mentioned earlier, the existence of
a double family of fronts has been proved rigorously by
Collet and Eckmann (1990) for this system.

For the supercritical case front propagation was stud-
ied in this model by Dee and Langer (1983) and by Ben-
Jacob et al. (1985). We shall consider the equation with
a subcritical bifurcation (van Saarloos, 1989)

/
/

p

0 20
0 0 0

l

1.0 1.5

FICx. 24. Decay rate lsl l
for fronts in the Swift-Hohenberg

model (6.28) with a subcritical bifurcation, vs the coefficient p
of the cubic term, for s= I/4. The lines marked lsl*l and laL l

are the analytic predictions based on the amplitude equation
(6.30), valid for small c.. Solid points are results of a numerical
simulation of Eq. (6.28). The error bars at low p arise from the
difficulty of estimating the asymptotic decay rate when the solu-
tion is the sum of two exponentials with nearly equal decay
rates. (From van Saarloos, 1989.)
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which it is seen that even for relatively large p, where the
amplitude equation no longer is a good approximation,
the departure from linear marginal stability is large and
in reasonable agreement with the prediction of the non-
linear selection criterion.

C. Type I,: Oscillatory periodic

1. Convective versus absolute instability

s = s $010/go, (6.32a)

where for clarity we have restored the scales ro and go,
the condition for absolute instability becomes

s(e, ) =E, ' soro/$0=2(1+c, )'~ (6.32b)

For 0 & c. & c., the system is convectively unstable but
absolutely stable; for c. ) c,, the instability becomes abso-
lute.

2. Effects of boundaries

Lateral boundaries have a strong e6'ect on the spatial
structures observed in the nonlinear propagating wave
systems resulting from type I, instabilities. The study to
date has concentrated on the one-dimensional problem of
waves traveling down a long rectangular cell, and already
in this case rich behavior is found. As mentioned in Sec.
V.A the importance of the endwalls is immediately un-
derstood, since it is only the presence of rejecting
endwalls that allows the instability to grow locally in the
range of parameters for which the instability is convec-
tive. The wide range of spatial structures observed nu-
merically and experimentally can be thought of as the
nonlinear consequences of these properties of the linear
state.

Our theoretical analysis will be based on the coupled
amplitude equations (4.59a) and (4.59b) together with the

The type Ip instability point R, is calculated as the on-
set point for growth of a plane wave disturbance in a la-
terally infinite system. If the group speed
so = (Bco/Bq)~ ~ is nonzero, on the other hand, a

q —qo

small localized disturbance will propagate away at this
speed, while only growing at a rate that goes to zero as
R ~R, (a~0). Thus the instability at R, is always
convective (see Sec. III.A.2), and the system remains ab-
solutely stable at this point. The stationary phase
analysis of subsection VI.B.3 above yields a precise esti-
mate for the point of absolute instability, as the value of
the control parameter for which the propagation velocity
U*, Eqs. (6.16) and (6.18), away from a localized initial
condition goes to zero. For the type I, amplitude equa-
tion (4.59) the criterion for the value of the control pa-
rameter c, at which this occurs is that the U* of equa-
tion (6.27) modified by the addition of the group speed so,
should become zero (Deissler, 1985, 1989). In terms of a
convenient scaled group speed s(E)

boundary conditions (5.34a) and (5.34b) (Cross, 1986b,
1988b). If we first look for solutions in which the magni-
tudes

~ A~ ~
and

~ AI ~
are time independent, three quali-

tatively difFerent spatial patterns may be found as the pa-
rameters are varied. These are shown in the top 4 panels
of Fig. 25, i.e. (a), (b), (g), (h)]. The calculation is based
on Eqs. (4.59) with all c; =0, i.e. the only effect of propa-
gation comes from the group velocity, and only the con-
trol parameter c is being varied.

The first pattern immediately above threshold (a) con-
sists of counter-propagating traveling waves with right-
moving waves strong in the right-hand end of the system,
and left-moving waves strong in the left-hand end (we as-
sume so)0). This structure is easily understood as a
weak nonlinear saturation of the linear onset solution: a
small disturbance of, say, right-moving waves grows in
time, but simultaneously prop agates with the group
speed towards the right, producing the characteristic ex-
ponential spatial envelope. ReAection at the endwall pro-
duces left-moving waves, which in turn grow, simultane-
ously propagating to the left.

In the more strongly nonlinear regime a remarkable
asymmetric pattern is observed [25(b) and 25(g)], which
was called the "confined state" by the experimental
group who first observed such a structure in binary-Quid
convection (Steinberg et al. , 1987). For example in the
structure of (g) some fraction of the system (which de-
pends on nonlinear parameters but is asymptotically in-
dependent of the system size if both endwalls are present)
contains essentially the unstable quiescent state, while
the remainder of the cell contains nonlinear saturated
traveling waves, either right-moving waves at the right-
hand end of the cell, or left-moving waves at the left end
of the cell. Once again, of course, the structure can be
understood in terms of the convective instability. Indeed,
a small disturbance of, for example, right-moving waves
in the quiescent region of Fig. 25(g) will grow but at the
same time it will propagate to the right, leading to large
amplitude waves in the right-hand portion of the system.
ReAection will produce left-moving waves which are first
nonlinearly suppressed by the large amplitude right-
moving waves, and then grow once they enter the region
of weak right-moving waves. Finally, reAection at the
left endwall produces the exponentially growing envelope
of right-moving waves, and a self-consistent steady state
is established. It should be noted that this steady state
depends crucially on the low amplitude waves produced
by reAection of the strong waves. In large systems the
amplitude of these waves becomes exponentially small
near the center of the cell, and the system may become
sensitive to external noise (Deissler, 1987b, 1989). This
would then be readily observable as a fluctuation in the
rise position of the strong waves.

Finally, for stronger nonlinearity a confined to filling
transition occurs, and a state appears (h) in which only
one set of waves are evident throughout the whole cell
(although there may again be low amplitude reflected
waves). The difference between (g) and (h) may be
identified as a sharp transition by considering the limit of
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a semi-infinite system. Then for parameters correspond-
ing to (g) there is no self-consistent nonlinear solution of
right-moving waves. As we have seen a disturbance
propagates to the right and reQection at an endwall is
essential to maintain a steady disturbance. On the other
hand for parameters corresponding to (h) refiection at an
endwall for large x is not necessary, and a steady non-
linear solution may be maintained. The transition
(g) ~ (h) results from a reduction in the propagation
effects; in fact the parameter values at which the transi-
tion occurs seem to correspond exactly to the change
from convective (g) to absolute (h) instability in the linear
problem [Eq. (6.32)]. This was first suggested for the spe-

cial case of real parameters [c; = 0 in Eqs. (4.59)] by

Cross (1986b) based on numerical work, and the generali-

zation to the complex case (c; %0) was conjectured by

Fineberg et al. (1988a,b). The result can be derived

analytically using phase plane trajectory methods (Cross
and Kuo, 1992).

In fact the states [(a), (b), (g), (h)] with time-

independent magnitudes do not exhaust the possible solu-

tions observed numerically for the complex amplitude

equations. The appearance of new states depends strong-

ly on both the scaled system size I.// =I E'~ /go and the

scaled group speed s, Eq. (6.32), as well as on the details

of the boundary condition parameters K+=a+c', and

1.0-
c =12-0

I

0
0

0
0
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FIG. 25. States predicted near threshold for a traveling wave instability in a one-dimensional finite geometry using the amplitude
equations (4.59a,b) with real coefficients (c;=0) and boundary conditions (5.34a,b). Solid lines show the magnitude

~ Aa ~
of right-

moving waves, and dashed lines the magnitude
~ Al ~

of left-moving waves. Panels (a)—(h) correspond to fixed values of the group
speed so, the system size I. and boundary parameters a+, P+. for increasing control parameter e) 0 as marked, with e, the shifted
value of onset in the finite geometry. In panels (c)—(fj the state is dynamic, and two traces for each amplitude are shown, correspond-
ing to the extreme values in the cycle, roughly a half period out of phase (see text for details). (From Cross, 1988b.)
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P+ =P+e' of Eqs. (5.34). Other states observed are ones
in which the envelopes also oscillate in time, typically on
the long time scale L /so. This oscillation may be a small
amplitude modulation of the rise position of the confined
state ["modulated state" Fig. 25(c)] or a complete to and
fro motion in which first large amplitude right-moving
waves are seen at the right end of the container, to be re-
placed half a cycle later by the symmetry-related state of
large amplitude left-moving waves at the left end of the
container ["blinking state" Fig. 25(d)]. The phase dia-
gram as a function of L /g and s for a particular choice of
the parameters a+ and /3+ is shown in Fig. 26. It should
be noted that an experimental regimen of increasing the
control parameter c at fixed L and so corresponds to a
hyperbolic trajectory on this diagram. It can be seen that
the dynamic states are only evident for large system sizes.

There are more possibilities if the I, bifurcation in the
infinite system is subcritical. This means that the sign in
front of the

~ A~ ~ Az term in Eq. (4.59a) is positive, and
additional quintic terms must be subtracted to saturate
the growth in the infinite system. In addition, for con-
sistency, nonlinear gradient terms such as

~ ~z l 0 A~, a

nonlinear correction to the group velocity, must be in-
cluded. Clearly there are now even more parameters to
be fixed and a systematic search through this parameter
space has not been carried out, but two striking results
have been discovered. First, it has been found that the
hysteresis present in the transition in the infinite system
may be strongly reduced or eliminated (Sullivan and
Deissler, 1989). Indeed if the sign in front of the first cu-
bic term in Eq. (4.59) is positive and g, ) 1, then there en-
sues a continuous transition to the same small amplitude
counter-propagating traveling wave state [Fig. 25(a)] as
found at the forward bifurcation. This occurs because
this state has a considerable standing wave component,
which stabilizes the system for g, )0 (Cross and Kuo,
1992). Sullivan and Deissler (1989) studied a range of pa-
rameters with all c; W 0 and found quite complicated
phase diagrams.

The second new type of behavior is the existence of
self-sustaining pulse solutions in the bulk, for the case
with c; W 0, as discussed in Sec. V.B.2 above. The in-
teraction of these pulses with boundaries remains to be
studied in detail, although states with localized pulses
stationary at one end (the end towards which the waves
in the pulse are moving) have been found, even when only
mouing pulses exist in the infimte system (Cross, unpub-
lished). We will discuss applications in Sec. IX.A below.

10 15 20 25

FIG. 26. Phase diagram of states above the threshold of a trav-
eling wave instability showing the reduced group speed
s =s oe 1 p/gp as a function of the scaled system size L /g, for
the amplitude equations (4.59a,b) with c;=0 and boundary con-
ditions (5.34a,b). The coefficients a+, P+ are chosen to yield a
reAection coefficient r =0.08 at the endwalls. Numerical calcu-
lations were performed at points represented by solid circles.
The di6'erent regimes are: symmetric oscillations corresponding
to panel (d} of Fig. 25; asymmetric oscillations [panels (c), (e),
and {f}];asymmetric stationary states [panels (b), {g), and {h)];
and symmetric stationary states [panel (a)]. Full lines show
transitions where the symmetry changes; dashed line indicates
the crossover between confined [e.g. panel (g)] and filling [panel
(h}] states, which is not a sharp transition in a finite system.
(From Cross and Kuo, 1992.)

3. External forcing

In type Io systems the stable ideal states often consist
of either right or left traveling waves in one dimension,
so the parity symmetry is broken. It has been shown by
Riecke et al. (1988) that a uniform temporal modulation
can stabilize standing waves, i.e. restore the left-right
symmetry, provided the modulation frequency is reso-
nant with the original waves, a prediction which has been
verified experimentally by Rehberg et al. (1988b). A
similar efFect was obtained by Walgraef (1988b) who con-
sidered steady spatial modulation. In two dimensions a
richer set of possibilities exists, and both temporal (Wal-
graef, 1991) and spatial (Pismen, 1987; Coullet and Wal-
graef, 1989) modulation have been considered.

In a system with endwalls a stable structure can be
maintained in a convectively unstable (but absolutely
stable) region by reflection at the walls (see
subsection VI.C.2 above). It is also of interest to consider
the case where, due to variation of the control parameter
over the system, an absolutely unstable region sends dis-
turbances into a convectively unstable or even a stable re-
gion, leading again to a stable nonlinear state. This type
of situation is particularly relevant in open flow systems
with a spatially developing How, such as wakes, jets, and
boundary layers, as discussed in Sec. IX.E below.

We start from the amplitude equation (4.59) where
now the control parameter 8=8(x) is a function of posi-
tion

8, A+scB A =e(x)A+(1+ c, ) iB„A

(6.33)
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(We only consider one set of waves, here the right-
moving ones. ) Two situations have been studied in detail:
the case

where Q(k, E(x)) is the dispersion relation with k and x
extended into the complex plane. Then x, is the closest
saddle point to the real axis. in the complex x plane.

E(x)=so+a,x, (6.34)
D. Effects of external noise

where analytic solution is possible (Chomaz et al. , 1988),
and the case B„s/E« 1, where a WKB approach may be
used (Chomaz et al. , 1991).

The major qualitative results are illustrated by the
linear control parameter case. Chomaz et al. use Eq.
(6.34) in the domain x )0 with E, & 0 and take the bound-

ary condition A =0 at x =0. The search for a linear in-
stability to self-sustaining solutions at frequency co is
equivalent to the search for bound states in a potential
for the Schrodinger equation. Since there is a single ad-
ditional boundary condition as x ~ ~ (of exponential de-

cay of solutions if this region is stable or of only outgoing
waves if it is convectively unstable but absolutely stable),
as in the Schrodinger case there are solutions only for a
discrete set of frequencies ~„.Chomaz et al. find that
for Eo& E, =4so(1+c, ) there is no region of absolute in-

stability and no self-sustained structure is possible. Such
a structure does not develop until there is a finite spatial

region of absolute instability, which occurs at a control
parameter value

One of the more dificult aspects of the problem of pat-
tern selection is a proper assessment of the role of extrin-
sic noise. The problem divides naturally into two parts:
(i) How does one represent the stochastic forces acting on
a system, i.e. can one derive a canonical model. (ii) Can
one solve the model, even approximately?

1. Thermal versus nonthermal noise

Any physical system is subjected to random forces
coming from the molecular structure of its constituent
parts. Clearly, the importance of these effects depends on
the scale of the phenomena under consideration. Typi-
cally, for microscopic phenomena such as phase transi-
tions or molecular transport processes, thermal noise
plays an essential role. A useful model for discussing dy-
namic properties near critical points, for example, is the
stochastic equation (Hohenberg and Halperin, 1977)

Eo = E, = E, + I5, I ls, l (1+c, )' cos[ —,
' tan 'c, ],

(6.35)

a, q=r, +g,

where

(6.38)

with 5& the first zero of the Airy function. Here there is a

supercritical Hopf bifurcation to an oscillatory state,
sending waves into the convectively unstable region
which are eventually damped out in the stable region
x~~. (The authors call this a "global bifurcation. ")
For cp& c, the linear theory predicts a discrete set of ex-

ponentially growing modes, but the nonlinear competi-
tion between these modes has not been investigated. An

important feature of this result is that a finite portion of
the absolutely unstable spatial region, of extent

xT= —5i( —E, )
' (1+c, ) cos[ —,

' tan 'c, ]

=O(le, l-'"), (6.36)

is necessary before self-sustained oscil1ations will occur.
For 0 & cp & 6 although there are no self-sustained os-

cillations, the system will be highly sensitive to externally
imposed disturbances, either intentionally added periodic
disturbances or noise. In particular, large amplitude sa-

turated states may be maintained in a convectively unsta-
ble region down stream of a small noise source (Deissler,
1985, 1987b, 1989; Chomaz et al. , 1991).

An interesting result for a general shape of spatial
dependence of the control parameter s(x), but in the lim-

it of slow variation where a WKB analysis applies, is that
the (complex) frequency of the fastest growing global
mode is given by the saddle-point condition

V= f d'x [r, l@l'+u, lql4+g', Iv@1'], (6.39)

and g is a Gaussian white noise with zero mean (g) =0
and correlation

(g(x, t) g(x', t ))=2r,'k, T5(x —x') 5(t —t'), (6.40)

with T the temperature. Within the framework of the
above model the condition that the system relax to the
equilibrium (Gibbs) distribution,

& [0]-e
is the (detailed balance) relation

(6.41)

Ip=Ip. (6.42)

C&(x ) = (g*(x,t) g(0, t) ) (6.43)

[this function is independent of t at equilibrium]. For ex-

ample, as a function of rp the function C& can go from
exponential decay at large distances

[Note that the white-noise form of the spectrum (6.40) is
an approximation, which is typically valid only for calcu-
lating the long-wavelength correlations of the g field. ]
This model and its variants are useful for describing con-
tinuous phase transitions, which may be thought of for-
mally as qualitative changes in the behavior of the corre-
lation function

an (k„s(x,) ) = (k„e(x,) )=0,BQ (6.37) C (x) — ex- "o+Ipc ~ (6.44a)
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to a nondecaying form

C~(x) — m
oc

ro (ro (6.44b)

characteristic of long-range order. Such phase transi-
tions often occur as a result of a competition between the
deterministic term 5V/5$* and the stochastic term g in

Eq. (6.38), or more physically, from the competition be-
tween energy and entropy. It follows that the noise term
must typically be "of order unity" on the scale of 9 since
it a11ows for many rearrangements of the system between
the different valleys of V in phase space. We shall ex-
press this idea crudely by the relation

4T-f ohio (6.45)

(g~ (x, t) g„(x',t')) =2F„goro5(x—x') 5(t t'), —

(6.47b)

taking fo ro-—I/I to be a typical energy density in the
system.

Our discussion so far has been based on a particular
model of critical dynamics, but the ideas are quite gen-
erally applicable in the microscopic domain near equilib-
rium (Hohenberg and Halperin, 1977). Turning now to
the types of macroscopic pattern-forming systems we
have been considering, we can still for the present discus-
sion represent them in the form (6.38) with thermal noise
(6.40) [or perhaps the more general form (3.15) since the
assumption of a potential P is too restrictive]. The point
here is that for macroscopic systems the typical length
and energy scales are such that Eq. (6.45) is rarely
satisfied, i.e. the thermal noise is usually negligible com-
pared to the deterministic forces.

To make these notions more precise, let us suppose
that we start from the microscopic equations

8, U= f( U;R )+g(t),
where the noise satisfies (6.40). Then if the deterministic
part [Eq. (6.46) with (=0] has a bifurcation at R =R„it
leads to an amplitude equation (4.3) in a type I, system.
It is then interesting to ask what the effect of the noise
term g will be on the amplitude equation. The simplest~
answer is to take g into account at the linear level, i.e. to
project g onto the critical mode (4.2) and to add this pro-
jection to Eq. (4.3). Such a program has been carried out
for the case of Rayleigh-Benard convection, as explained
in Sec. VIII.D below. It is found (Graham, 1974; Swift
and Hohenberg, 1977; Hohenberg and Swift, 1992) that
Eq. (4.3) becomes

~,a, ~ =.~+@[a. (i /2~,—)a,']' ~ —g, I
~ I'~+g„,

(6.47a)

As explained in Sec. VIII.D below this ratio is usually
extremely small, Fz —10, for a typical convection sys-
tem with go-(1—10) mm since it represents the ratio of a
microscopic to a macroscopic energy (see Ahlers, 1994).
Similar estimates can be made for the other systems we
are considering, though it is not always clear what the
characteristic energy in Eq. (6.47c) should be [see e.g. Eq.
(10.37) below].

In view of the smallness of thermal noise for most mac-
roscopic phenomena of interest we must ask whether
there are not other sources of noise acting on the system.
These would represent degrees of freedom that are not
under control or observation, be they associated with the
apparatus or with unknown components of the system
under study. Clearly, there is little one can say in general
about the correct way to represent stochastic effects, ei-
ther at the level of "microscopic" equations such as (6.46)
or at the level of simplified models or amplitude and
phase equations. There is no reason that the form (6.46)
should be preferred over other hypotheses; in particular
it is expected that besides additive noise there will be
multip/icatiue noise, e.g. an extra term g'„Aon the right-
hand side of (6.46) representing a fluctuating control pa-
rameter (see Hortshemke and Lefever, 1984). Moreover,
the noise correlations need not have a white spectrum, ei-
ther in time or in space. It is thus clear that the relative-
ly simple phenomenology of microscopic stochastic phe-
nomena near equilibrium need not be relevant to macro-
scopic nonequilibrium systems. Nevertheless, in view of
the difficulty of finding plausible alternative models, sto-
chastic equations such as (6.46) or (6.47) are often used to
model pattern formation, with Fz taken as a phenome-
nological parameter (see Moss and Mcclintock, 1989). It
should be remembered however that there is no general
physical justification for such a model and the results
must be viewed with some skepticism.

2. Effects of noise on bifurcations

For simplicity we will confine our discussion to addi-
tive white noise, and brieAy consider its effect on bifurca-
tions. There is in fact an enormous literature on this
problem (see e.g. Gunton and Droz, 1983; Brand et al. ,
1989), since the kinetics of ordering and coarsening near
phase transitions are often represented by models such as
(6.38). We shall discuss the stochastically forced Swift-
Hohenberg model and then a single-mode amplitude
equation.

a. The Swift-HohenbeIg madel

Consider the stochastic type I, system in two dimen-
sions

with Fz given by the ratio of the thermal energy k~ T to
a typical dissipative energy in a volume go,

a,V=e V (V'+q,')'V e'+—C, —

(g(x, r) g(x'r') ) =2F 5(x—x') 5(t t') . —
(6.48a)

(6.48b)

F~ —ka T /f ohio' . (6.47c) The static ordering properties of this system were dis-
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cussed in the original paper by Swift and Hohenberg
(1977; see also Hohenberg and Swift, 1992). The critical
behavior, applicable to an infinite system in d = 2 dimen-
sions, turns out to be quite subtle due to the large degen-
eracy of the broken-symmetry state, and a proper
renormalization-group description of the transition has
never been worked out. For finite systems, on the other
hand, the bifurcation is rounded on a scale

been worked out by Ahlers et al. (1981) and by Swift
et al. (1991), based on ideas developed by Suzuki
(1987a,b). The approximation, valid for small noise
(F « 1), involves an interpolation between exact solu-
tions of the linear stochastic equation for e(t) , &0 and
0 & e (t) « 1, and the nonlinear deterministic equation for
s(t)=O(1). The formula is cumbersome to write down,

2Q $ I I / $ $ I I I

~2/3
Eg (6.49) (b)

i.e. it is imperfect with additive noise.
Pattern formation in the stochastic model is a compli-

cated phenomenon which depends critically on the size of
the noise g. Very little is known in detail, though the
concepts of coarsening and domain growth developed for
phase transitions (see e.g. Gunton and Droz, 1983) are
certainly applicable here. From a quantitative point of
view only the linear problem (go = 0) can be calculated
exactly. For an arbitrary time-dependent control param-
eter E(t), e.g. a sweep from below to above threshold, the
average order parameter is given in linear approximation
by (Hohenberg and Swift, 1992)

(y', (t)&=L, -' f ~ x(f'( x, )t&=(L(,' (0)&

O

CL
LLJ

P(A)

0.5
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(6.50a)

0
0 0.3

A
0.6

0
0 0.5 I.G

A
I.5

Qq(t)= f ds [e(s)—(q —qo)'] .
0

(6.50b) f L I

IO (e)
400

We shall discuss an approximate formula for (g (t) &

that takes into account nonlinearity in the next section.

P(A)
P(A)

200

6 Single-mode amplitude equation

A nonlinear stochastic model for which some quantita-
tive information is available is the single-mode equation
for the real variable A (r)

Q
1.0 1.3

A

400'

0
0.004 0.008

~,a, A =.(r) A —g, A'+g,

(g(t) g(t') & =2F ~, o(t t') . —
(6.5 la)

(6.51b) 200

500—

P(A)

250-
This equation might be applicable to a small system in
which only one mode is excited [as in Eq. (5.11) above],
or it might be thought of as a crude approximation to the
time dependence of the spatial average in Eq. (6.48a),
(g (t) &

= ( A (r) &. In that case the relation between F
and F can be shown to be approximately (Ahlers et al. ,
1981; van Beijeren and Cohen, 1988; Hohenberg and
Swift, 1992)

(6.52)

The response of a system such as (6.51a) when its con-
trol parameter is swept through the bifurcation has been
studied systematically for deterministic equations with,
for example, a constant g (see Cxrossman and Mikhailov,
1990; Erneux et al. , 1991). In the stochastic case an ap-
proximate formula for ( A (t)& for arbitrary c,(t) has

0
0 0.002

0
0 0.00 I

A
0.002

FICx. 27. Probability distribution P(A) vs A at various times
for the stochastic amplitude equation (6.51) with rp=0. 055,
gp =0.85 E=5 X 10 and E( t) given by a sinusoidal modula-
tion, Eq. (8.101) below, with op=0. 2, co=5, 5=2, as shown in
(a). The times in parts (b)-(h) (in units of the period) are
cot/2m. =0.1250, 0.1719, 0.2188, 0.2734, 0.7075, 0.7520, and
0.7822, respectively, as shown by solid dots in part (a). The thin
solid lines in (b)—(h) are the analytic approximation of Swift
et al. (1991),and the jagged line comes froxn a numerical simu-
lation of the stochastic equation. Since the theory has no ad-
justable parameters the agreement with the simulation can be
considered quite satisfactory. (From Swift et al. , 1991.)

Rev. Mod. Phys. , Vol. 65, No. 3, July )993



940 M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium

so we refer the reader to the paper of Swift et al. (1991)
for a precise statement, but we note that it provides an
analytic approximation to the stochastic equation, whose
validity has been verified by comparing it to numerical
simulations, as illustrated in Fig. 27. A more systematic
treatment has recently been given by Caceres et al.
(1991).

The above scheme has also been used by Hohenberg
and Swift (1992) to provide an approximate solution of
the stochastic Swift-Hohenberg model (6.48), and applied
to an analysis of experiments in Rayleigh-Benard convec-
tion where the system is ramped through the threshold
(see Sec. VIII.D).

%'e sha11 have occasion to refer to various models of
stochastic behavior in the subsequent discussion of
specific systems. Moreover, similar models have been
used to represent the effect of chaotic small-scale degrees
of freedom on the large scales in determinE'stic systems, as
explained in Sec. VII.E. On the whole it must be said
that we have little firm knowledge concerning the effects
of stochastic forces on nonequilibrium pattern selection,
though the problems are important and are being actively
studie'd (see, e.g. , Moss and McClintock, 1989; Vasiliev
et al. , 1987).

Vll. CHAOS

A. General features
Chaos is the name given to intrinsic randomness, i.e.

random behavior arising in a deterministic system. The
existence of chaos was known to Poincare and others
(see, e.g. , Miles, 1984c; Jackson, 1989;Gaponov-Grekhov
and Rabinovich, 1992), but it was Lorenz (1963) who first
clearly identified the phenomenon in dissipative systems,
and he and Ruelle and Takens (1971) who first appreciat-
ed its significance for understanding Quid How. This sim-
plest form of chaos occurs in systems of three or more
coupled nonlinear ordinary differential equations, and
also in discrete mappings. The temporal behavior of
such systems is in many cases random, i.e. describable by
continuous Fourier spectra, positive Lyapunov ex-
ponents, and strange attractors with fractal structure (see
below). The physical significance of this behavior of sim-
ple mathematical models arises from the experimental
observation that certain real systems, for example
confined hydrodynamic fIkows, show similar temporal
behavior. The first convincing experimental demonstra-
tions of this phenomenon are due to Ahlers (1974) and
Gollub and Swinney (197S).

The basic question we wish to ask is "what is the rela-
tionship of the above-mentioned chaotic phenomena to
spatial patterns?" This question can be divided into three
parts: (i) How does one understand the fact that physical
systems which consist of an infinity of (molecular) de-
grees of freedom, or a continuum of hydrodynamic
modes, have temporal behavior well described by models
with a few degrees of freedom? (ii) How can one under-
stand the temporal behavior of physical systems that are
suKciently extended in space so that the low-dimensional
description does not hold (e.g. infinite systems). (iii)

1. The characteristic lengths

Following Hohenberg and Shraiman (1989) we distin-
guish three lengths to characterize the dynamics of a spa-
tia11y extended nonequilibrium system; these are associat-
ed with dissipation, excitation, and correlation, respec-
tively. The dissipation length ED is the characteristic
length at which energy is dissipated. The modes on
shorter scales are passive or "slaved", and can be treated
by elementary methods. The excitation length Ez is the
length at which eIiergy is injected into the system. For a
system near a linear instability there is an excitation
range around the most unstable wavelength EE = qo '.
External stirring will also typically occur on some length
scale which we define as Ez. The correlation length g is
more difFicult to define, since its specification requires a
rather complete knowledge of the solutions of the
dynamica1 equations. The simplest definition is in terms
of a correlation function

C, (r, r2)=((u, (r. i, t) (u;—))(u (ri—, t) —(u })),(7.1)

where the angular brackets denote an average over time t
or an average over the attractor, as discussed below. If
the large distance behavior has the form

C, (r) — exp( —r/g),
7"~ 00

(72)

then we define g as the correlation length for u; and uj.
Of course, the behavior may be considerably more com-
plicated than in (7.2), but for the moment we will assume
that one or more correlation lengths can be defined in the
system. Finally, we need to consider the (linear) system

What can one say about order and disorder in spatial pat-
terns themse1ves, independent of the dynamics which
leads to these patterns'7 We are thinking here of analyz-
ing instantaneous spatial configurations, or the patterns
obtained as stationary (but not necessarily stable) solu-
tions of dynamical equations.

In what foHows we will attempt to provide a brief over-
view of our understanding of these questions which, it
must be admitted, is quite sketchy. The most interesting
question is the second one mentioned above, but the sub-
ject of spatiotemporal chaos is only beginning to be stud-
ied at present. We shall begin by presenting a phenome-
nological and heuristic picture based on defining charac-
teristic lengths which form the basic framework of our
picture of spatiotemporal dynamics. Then we shall at-
tempt to identify the important questions which need to
be answered to understand chaotic phenomena, and list
some examples of numerical and experimental studies of
model systems. The need to distinguish between small
system "temporal" chaos and "spatiotemporal" chaos in
1arger systems first became apparent through the pioneer-
ing experiments of Ahlers and Behringr (1978a,b) and
Berge and co-workers (Berge, 1979; see also Monin,
1978). For other discussions of spatiotemporal chaos see,
for example, Aceves et al. (1986), Akhromeyeva et al.
(1989), Grassberger (1989), and Rabinovich and Sushchik
(1990).
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size L, or system volume L, where d is the (Euclidean)
dimensionality ' of the system.

2. Small versus large systems
Having introduced the notions of dissipation length

8D, excitation length Pz, correlation length(s) g, and
linear system size L, we will now give a schematic
description of temporal and spatiotemporal chaos, and of
"small" and "large" systems. In a uniform stable state
all modes of excitation are damped out. At the threshold
for pattern formation a small band of modes is excited
near the characteristic scale ZE-qo, which is also typi-
cally of the same order as the dissipation scale ED. In
our discussion of regular patterns in the previous sections
we distinguished between small and large systems accord-
ing to the value of the quantity Lqo. Let us now imagine
increasing the control parameter R until the system be-
comes chaotic. We then wish to distinguish two limiting
cases for describing chaotic states.

~ Small systems: L -FD. When the system size L is of
order ED the number of excited modes is severely con-
strained by geometry. Since these modes can interact
strongly a chaotic state can ensue, and this state will be
described by an attractor in a low-dimensional phase
space. The correlation length g also remains comparable
to L, so the spatial dependence is dynamically irrelevant
and we refer to the system as "small", i.e. it has a small
number of (active) degrees of freedom.

~ Large systems: L ))ED. When L is much larger
than PD the system has many degrees of freedom and
any description of the chaotic state must take this multi-
plicity into account. In general we expect the attractor
dimension to be correspondingly large in this case.

From this point of view the simplest way to reach the
large-system limit is to increase the system-size L at fixed
control parameter R. One can then consider the system
to be made up of coherent regions (whose size remains to
be determined), that are more or less strongly coupled
among themselves. We call this limit (fixed R, large L)
the regime of "spatiotemporal chaos, " and expect that
for sufficiently large L a coarse-grained statistical
description will be appropriate.

A second way to achieve a large-system limit for a
chaotic state is to fix L and increase R. Although, as we
shall see, this scenario is less general than the previous
one, we expect that for many systems the number of ex-
cited modes will increase with R, thus leading to an at-
tractor in a high-dimensional space. For example in sys-
tems described by hydrodynamics the control parameter
is given by a ratio of excitation to dissipation. Since the

'The term "dimension" is used in the study of dynamical sys-
tems to denote the dimension of the phase space, i.e. the num-
ber of e6'ective degrees of freedom in the system. In statistical
mechanics on the other hand, the term denotes the number of
(Euclidean) directions in which the system is infinite Usually.
the context makes the distinction clear, but in case of ambiguity
we shall use "dimension" for the first meaning and "dimen-
sionality" for the second.

latter increases with the square of the wave vector q,
while the excitation generaHy increases more slowly,
large R is associated with a decreasing dissipation scale

A prominent example of the above is strong tur-
bulence in fluids where high Reynolds number creates a
scale separation between excitation and dissipation
(PE ))ZD), all at fixed L (see subsection VII.E.5 below).

For either scenario a number of questions arise which
we would like to elucidate. Can one define one or more
correlation lengths g and how do they behave as one goes
from a small to a large system by either route? What is
the nature of the attractor, in particular what is its frac-
tal dimension df (see below) in the asymptotic limits
R ~~ or L —+ ~? Our conjecture is that in both cases
we have

or

lim df(R)-R',
g —+ oo

lim df(L)-LI ~oo

(7.3)

(7.4)

B,u;=f;(U), i =1, . . . , N, U=Iu, I . (7.5)

As discussed in Sec. III.A, for autonomous systems at
long times motion takes place on an attractor which may
be a fixed point, a limit cycle, or an m torus, all of which
involve regular behavior in the sense that the motion at

but in the second case we expect b =d, d being the Eucli-
dian spatial dimensionality of the system. Equation (7.4)
leads to a different definition of correlation length than
(7.2), i.e. a length gf such that for L ))gf the system is
made up of cells of volume gf", and their number (L /gf )

gives the fractal dimension df(L) of the attractor. We
refer to the limit (7.4) with b = d as extensiue chaos.

In line with our focus on pattern forming instabilities
we shall primarily consider systems at moderate R as a
function of L ("spatiotemporal chaos" ). We shall have
little to say about the other limit, of R ~ Dc ("strong tur-
bulence"). Indeed, many of the models and systems we
consider do not have a physically interesting large-R lim-
it, either because they possess artificial short-length
cutoffs (in the models), or because the systems themselves
change their character at large excitation.

B. SmaII systems
Although our main interest is in systems displaying

spatial dependence it is useful for us to summarize briefly
the considerable knowledge which has been gained in re-
cent years on chaos in small systems. This is first of all
because most of what is known firmly about chaos comes
from such studies, and secondly because even in large
systems it is possible to make local measurements and to
evaluate the same quantities as in small systems (time
series, Lyapunov exponents, phase space reconstruction).
This then provides a starting point for the study of spa-
tiotemporal chaos.

1. Characterization of chaos
Let us consider a dissipative dynamical system consist-

ing of a finite number of coupled degrees of freedom,
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one time is correlated with the motion at any subsequent
time. Alternatively, the motion may be irregular or
chaotic, in which case we say the motion takes place on a
chaotic or strange attractor. [Our discussion of chaos is
necessarily rather sketchy and imprecise. The interested
reader can find further elaboration for example in Hao
(1984, 1987, 1988), Schuster (1984), Eckmann and Ruelle
(1985), Mayer Kress (1986), Berge et al. (1987), Manne-
ville (1990)].

Since our main concern will be with the long-time
properties of systems under constant external conditions
it is useful to define a probability measure for the attrac-
tor, which remains invariant with time. Given a measure
p( U) we can take averages of any function P( U) over the
attractor, by integrating in phase space

((()= f dUp(U) y(U) . (7.6)

The measure p(U) is ergodic if the average in (7.6) can
also be obtained by integrating over an arbitrary trajecto-
ry

j T

f dUp(U) P(U)= lim —f dt P(U(t)), (7.7)
T~QO T

where Eq. (7.7) is supposed to hold for any initial condi-
tion U(t =0), except for a set of p-measure zero (Eck-
mann and Ruelle, 1985). It turns out that many different
invariant measures can be constructed for most dynami-
cal systems, but a particular one has physically appealing
robustness properties with respect to small perturbations.
This measure is obtained by adding to Eq. (7.5) a stochas-
tic function 8' representing external noise

B,U=f(U)+ri W(t) . (7.8)

The stochastic process (7.8) has a unique stationary mea-
sure p„,in terms of which the physical measure, which
presumably corresponds to experimental time averages, is
defined by the relation

pphys 1im p (7.9)
y—+0

The above definitions are applicable to regular as well as
chaotic attractors, and they can presumably be general-
ized to the case of spatially continuous systems (see
Bromberg and Rechester, 1988).

The distinction between regular and chaotic motion
can be expressed in terms of the power spectrum of the
dynamieai variables. Let us consider the temporal
Fourier transform u;(co) of a dynamical variable u;(r),
and form the quantity ~u;(co)~ whose average

s, (~)= ( lu, (~) I' &, (7.10)
defines the power spectrum of u;. Then for regular
motion it will consist of a set of sharp delta functions as
in the top panel of Fig. 28, whereas for chaotic motion
the spectrum has a smooth component as shown in the
lower panels. In terms of the time dependence of u;(t),
we can say that the chaotic signal corresponds to a corre-
lation function

C, (t) — e (7.12)
g~ oo

(Correlation functions between u; and u can also be
defined. ) The existence of chaos is thus usually associat-
ed with a decorrelation of the motion in a finite time 7 p„.
The average indicated by the brackets in Eq. (7.11) is
with respect to the measure p defined above.

Another quantity characterizing the dynamics is the
Lyapunou exponent, which describes the separation of or-
bits in phase space that start out infinitely close to each
other. Let us consider two initial values I u; (0 ) j and

t u;(0)+5u;(0) j at t =0. Then for a chaotic orbit we ex-

pect the difference 5u; to grow exponentially in time at
early times. More precisely we define the Lyapunov ex-
ponent as the iong-time limit along the orbit of the rate
of separation of points in the tangent motion, i.e.

A,&= lim t ' in((DE')~&,

carr

(7.13)

where

(DF'); =Bu;(t)IBu (0) (7.14)

is the Jacobian matrix evaluated on the orbit U(t). The
notation

~
A

~ z denotes the 8th eigenvalue of the matrix
A, ordered in such a way that

~
A ~~, ~

~
A

~ &
~

~
A

~ z+, .
As defined in Eq. (7.13) the exponents A.~ appear to de-
pend on the initial point u;(0) of the orbit in phase space,
but for most chaotic systems it can be shown (Eckmann
and Ruelle, 1985) that the same set l A,z j is obtained for
almost all points Iu;(0) j in the basin of the attractor,
since the limit in Eq. (7.13) averages over long orbits.
The set of Lyapunov exponents A,~, with

characterize the stability of the motion in phase space. If
A,

&
&0, all A, are negative, i.e. an infinitesimal perturba-

tion decays and the attractor is a fixed point. If A, &=0
the attractor is a limit cycle, whereas a positive exponent
corresponds to diverging orbits, or chaos. Such motion,
which is said to take place on a strange attractor, is per-
manently unstable in the directions along the attractor
Q, )0), but stable in directions transverse to the attrac-
tor (A. (0). A positive Lyapunov exponent is at the ori-
gin of the sensitiUe dependence on initial conditions that is
a characteristic feature of chaos.

A useful characterization of strange attractors is in
terms of generalized dimensions which roughly speaking
count the number of independent degrees of freedom on
the attractor (see, e.g. , Farmer et al. , 1983). Among the
many different types of generalized dimension, one of the
simplest is the capacity dimension d„„,defined by

ln N, (ri)d„=lim (7.16)
0 ln 1/q

where N, (g) is the minimum number of hypercubes of
size g needed to cover the attractor. For a Euclidean set
the above definition reproduces the Euclidean dimension

C;(t) = ((u, (t) (u; })(u;(0)—( u; )—) ),
which decays at long times, typically as

(7.1 1)
7- For continuous time dynamics there is always a vanishing

exponent (Haken, 1983b), unless the attractor is a Axed point.
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(7.18)

II= g (7.19)
8=1

which only sums the positive Lyapunov exponents. It
turns out that with the definitions given above exact ine-
qualities can be derived between the various dimensions
(see for example Farmer et al. , 1983). In many cases the
actual values obtained for the different quantities agree to
within numerical or experimental uncertainties.

An important point to note is that all of the above
definitions of dimension, plus the multitude of other simi-
lar quantities (Farmer et al. , 1983), refer to a global
property, which is far from providing a complete charac-
terization of the fractal sets encountered in nonlinear dy-
namics. It is only for scale invariant structures that one
could hope to find a full characterization via a single ex-
ponent or even a finite set of exponents. It turns out that
the chaotic attractors encountered even in simple map-
pings necessitate an infinite number of dimensions, which
can sometimes be represented by a smooth function.
Such sets have been given the name "multifractals, " and
their properties have begun to be elucidated both theoret-
ically and experimentally in recent years (Mandelbrot,
1974, Frisch and Parisi, 1985; Jensen et aI. , 1985; Halsey
et al. , 1986; McCauley, 1990). The simplest way to un-
derstand the necessity for many exponents is to general-
ize the correlation dimension (7.17) to higher moments,
thereby defining the qth order "Renyi" dimension
(Hentschel and Procaccia, 1983)

Me will use the term "fractal dimension" to denote any
noninteger dimension characterizing a set and denote it as df,
as in Eqs. (7.3) and (7.4) above.

d, and for more complicated sets the dimension d„can
take nonintegral values, in which case one speaks offrac
tal sets, and fractal dimension. Another generalized di-
mension which is used frequently because it is easier to
evaluate numerically is the correlation dimension d„„,
given by (Grassberger and Procaccia, 1983)

in(p(g; U) ) Ud„„=lim (7.17)
g~0 lng

where p(g; U) is the density of points on the attractor in
a ball of radius q centered at the point U in phase space.
Here the angular bracket denotes an average over points
U on the attractor.

There exists yet another important definition of dimen-
sion, the so-called I.yapunov dimension which is directly
related to the Lyapunov exponents defined above. This is

k

dL =k — g A~ (A,k+, )
8=1

where k is the largest integer such that g&, A, &~0.
The Lyapunov dimension dL increases when the number
n of positive exponents increases, since we always have
dI )n~. In fact, dL can be thought of as the (fractional)
dimension of the parallelipiped which on average neither
grows nor decays along the orbit (Manneville, 1985).
Another quantity of interest is the Kolmogorov-Sinai en-
tropy,

ln(p(g, U)~ ')
U

11m (7.20)
q

—1 ~-o ln g
(We follow Hentschel and Procaccia in denoting the ex-
ponent by q, though it should not be confused with a
wave vector. ) It is clear that the correlation dimension
d„„definedin Eq. (7.17) is d2, but one can also show
that do =d„&[Eq. (7.16)], and that dz (dz for q )q'. In
a scale invariant systeIn one might expect the pair-
correlation function to determine the higher correlations,
so that d would have a simple functional dependence on
q. For chaotic (multifractal) attractors this is generally
not the case, and the whole function d is an intrinsic
characterization of the dynamics. For different values of
q (which can have arbitrary sign) portions with higher or
lower density in phase space are weighted differently in
Eq. (7.20). A transformation analogous to the Legendre
transform of thermodynamics leads to the function f(a):

f(a)=q a(q) —(q —1)d~, (7.21a)

a(q) = (d /dq) [(q —1 )d ], (7.21b)

(Feigenbaum et a/. , 1986; Halsey et al. , 1986; Mori
et al. , 1989). It can be shown that the function f (a)
represents the density of singularities on the attractor
that are associated with the scaling exponent a (Halsey
et al. , 1986). This function can be determined directly by
analysis of numerical or experimental data, and it consti-
tutes a kind of signature of the statistical properties of
the strange attractor (see Glazier and Libchaber, 1988;
Barkley and Cumming, 1990, and references therein).
Although it is clear that the functions d~ and f (a) pro-
vide a fuller characterization of chaos than is obtained
from the fractal dimension df, it is not known whether
this chalactcllzatlon 1s 1n any sense complete. In partic-
ular, the question of the universality of chaotic dynamics
beyond the onset of chaos is still not completely clarified,
even for the simplest examples, and sophisticated
methods have been developed for analyzing this problem
(see, e.g. , Argoul et al. , 1988; Auerbach and Procaccia,
1990).

In summary, motion on a strange attractor is charac-
terized by positive Lyapunov exponents (sensitive depen-
dence on initial conditions), a continuous frequency spec-
trum for observables, and an attractor with (multi)fractal
structure. Although these properties are not mathemati-
cally equivalent, they usually occur together, and make
up what we refer to as temporal chaos in small systems.

2. Reconstructing the attractor from time series

The definitions of Lyapunov exponents and dimensions
discussed above were all formulated in terms of the equa-
tions of motion of the system (7.5), which determine the
trajectories in phase space. Since for most experiments a
suitable set of equations (involving a finite number of
modes. ) is not known, it is not clear a priori how useful
these concepts might be for analyzing experiments. It
turns out, however, that observation of a single variable
u;(t) allows one to estimate the complete orbit in phase
space and therefore to obtain approximate expressions
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d.I 1m~. wI„)Lli l. .idly tl,

~5

FIG. 28. Power spectrum of temperature fluctuations in a small
aspect ratio (L =2.08) convection cell. Ordinate is the loga-
rithm of the power spectral density of 6T/6T, in Hz ' as a
function of frequency f. Here AT is the temperature difference
across the cell, hT, its value at the onset of convection, and the
heat How through the cell is maintained constant. The number
in each panel is the mean value of b T/hT, . (From Ahlers and
Behringer, 1978b.)

for the exponents and dimensions. The method used in-
volves a remarkable reconstruction technique (Takens,
1981, 1985; Packard et a/. , 1980) which consists in the
following: the motion on a d&-dimensional attractor in an
1V-dimensional phase space is parametrized by taking m
displaced values of one of the variables, say u

„

v, (t)=u, (t), vz(t)=u, (t+r), . . . ,
(7.22)

vt, (t) =u, (t+(k —1)r),
The reconstruction technique depends on the statement
that for almost all values of the time interval ~, the orbit
in the space tv„(t)l (k =1, . . . , m) is a faithful projec-
tion of that in the original space Iu;(t)I (i =1, . . . , N),
so long as m )2d&+1, where dI is the dimension of the
attractor. It is important to realize that although the
above statement rests on some mathematical theorems
(quoted on p. 627 of Eckmann and Ruelle, 1985), the
quantitative aspects of the reconstruction method are not
entirely clear. For example, it is not known in general
how accurately u, (t) needs to be measured to obtain the
attractor of the original tu;(t)I to a given accuracy.
Similarly, the total number of data points needed for the
reconstruction grows with the dimension of the attractor,
but it is not precisely known how fast. Furthermore, the
validity of the method depends on a proper choice of the
time delay w, which must be long enough so that each
v&(t) represents new information, but short enough so as
not to lose information [see Fraser and Swinney, 1986
and Fraser, 1989 for discussions of these points]. In gen-
eral, our understanding of the reconstruction method
comes both from numerical tests on models whose equa-
tions of motion are known, and on applications to experi-
ments where physically plausible answers are obtained.
An early careful study of the reconstruction technique
was carried out by Eckmann et al. (1986), who evaluated
the largest Lyapunov exponents for the Lorenz model
and for a chaotic Rayleigh-Benard cell, over a range of
values of the control parameter. In the former case they
were able to check their results against a direct calcula-
tion of the exponents from the equations of motion.
There is by now a gigantic literature on the evaluation of
fractal dimensions, either from the starting equations or
via reconstruction techniques (see e.g. Mayer-Kress,
1986; Gershenfeld, 1988, 1992; Abarbanel et al. , 1993),
but it is often dificult to assess the reliability of the re-
sults obtained (see Guckenheimer, 1984; Ruelle, 1990).
Nevertheless, it turns out that in a large number of cases
the exponents and dimensions obtained by these tech-
niques yield a reasonably consistent picture of chaotic
behavior and the method is clearly of practical value. It
should be noted, however, than an important physical
limitation of any reconstruction method based on mea-
surements at a single point in a real system is that the
motion must in some sense be fully correlated in space.
In spatially extended systems such as the ones we consid-
er below, the required input information will necessarily
involve data at diferent points in space. We shall discuss
this point further, but for the moment we merely note
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that some a priori criterion should exist to decide wheth-
er single-point information suftices, i.e. whether we are
truly dealing with a "small" system.

3. Onset of chaos

A remarkable discovery made a few years ago (Feigen-
baum, 1978, 1979) is that the transition from regular to
chaotic behavior can show universal properties, which
are formally similar to those found near a thermodynam-
ic critical point. In particular, renormalization group
techniques have been applied to such systems and univer-
sal scaling exponents derived. The two most studied ex-
amples of universal routes to chaos are the infinite
period-doubling cascade and the transition from quasi-
periodicity to chaos; in both cases nontrivial exponents
have been calculated and measured. An interesting as-
pect of the transition is that external noise plays the same
role as an ordering field at a thermodynamic critical
point, i.e. it smears the transition over a range deter-
mined by a new critical exponent (Crutchfield et al. ,
1981; Shraiman et al. , 1981). Besides the period-
doubling and quasiperiodic transitions, there are routes
to chaos involving "intermittency" or "crises," but they

C. Infinite systems: Extensive chaos

1. Characterizing spatiotemporal chaos

We shall primarily consider the extreme limit of an
infinite system, and attempt to make the notions of spa-
tiotemporal chaos and correlation length more precise in
this fixed-R large-L limit, since we believe it is conceptu-
ally simplest. For infinite systems we cannot hope to pro-
do not seem to possess the same scaling properties or
metric universality as the other cases (see Eckmann,
1981). For example the famous transition to chaos
discovered originally by Lorenz (1963) is not associated
with any simple critical exponent or scaling structure.

4. Continuum models and real systems

Let us now suppose that we are dealing with a continu-
um model, e.g. the partial differential equations (3.4),
which have an infinite number of degrees of freedom. As
discussed earlier, since the system is dissipative it is
reasonable to expect on physical grounds that there is a
length scale PD below which all modes are damped, so
that a d-dimensional (see footnote 7.1) system of length L
would have an attractor with at most 0 [(L/8D) ] de-
grees of freedom. With increasing forcing, more modes
are expected to be excited, which means that 8D de-
creases as R increases (we use the terms "modes" and
"degrees of freedom" interchangeably).

The above picture has been partly validated mathemat-
ically both by general theory (Temam, 1988) and by nu-
merical studies (Moon et al. , 1983; Doering et al. , 1987;
Rodriguez and Sirovich, 1990; Sirovich et al. , 1990). For
a given partial differential equation the attractor is typi-
cally a complicated multidimensional set with fractal
structure. For mathematical purposes it has been found
convenient to embed the attractor in a finite-dimensional
smooth set called theinertial manifold, which is invariant

(i) Decay of correlation function

For notational simplicity in this section we consider an
equation for a single field u (x, t)

B,u=G[u, Vu, V u, . . . ], (7.23)

under the dynamics and is in some sense the minimal
smooth set containing the attractor (see Temam, 1990
and references therein). The existence of such an inertial
manifold has been proven for models such as the complex
Cxinzburg-Landau (4.49) and the Kuramoto-Sivashinsky
(3.31) equations, but not yet for the Navier-Stokes equa-
tion, though approximate inertial manifolds have been
found for this case (Temam, 1989). For various systems
rigorous bounds have been given for the dimension of the
invariant measure, as well as that of the inertial manifold
and of the attractor, as a function of either system size or
control parameter, (Eckmann and Ruelle, 1985; Temam,
1989).

To the extent that the above program can be carried
out, this provides a mathematical explanation of the ex-
istence of "small" systems, i.e. of the observed fact that
certain continuum systems have dynamics well described
by low-dimensional models (Abraham et al. , 1984).
vide a detailed theoretical picture of the dynamics, so we
adopt a statistical point of view (Hohenberg and Shrai-
man, 1989; Kraichnan and Chen, 1989). To the extent
that we wish to describe chaos this is no restriction, since
even in small systems chaotic motion can only be ana-
lyzed statistically. Moreover, the traditional description
of strong turbulence in Quids is also expressed in terms of
statistical correlations (see Monin and Yaglom, 1975).

We will take as our basic definition of spatiotemporal
chaos the property of large attractor dimension men-
tioned in Eq. (7.4) above. Quite generally, a system ex-
hibits spatiotemporal chaos if the attractor dimension
diverges with system size. It follows from Eq. (7.18) that
the number of positive Lyapunov exponents also
diverges. We shall have more to say on the specific
dependences of these quantities on L below, but first we
discuss various definitions of the correlation length.
Clearly, there are an infinite number of possible choices,
but most of them will either be physically equivalent or
altogether uninteresting. Nevertheless, it is not clear a
priori how many distinct physically relevant correlation
lengths there might be in a given system, so it seems to us
worthwhile to explore various possible definitions.

a. Correlation length

We consider a translationally invariant system which is
infinite in d directions and is in a statistically stationary
state. This means that we can define averages that de-
pend only on differences of space-time coordinates. We
wish to elucidate the nature of spatial correlations and to
define one or more correlation lengths to characterize the
dynamics. Rather than seek to guess the unique
definition that will fit all cases, we shall list a number of
possible candidates. To the extent that the different
lengths are qualitatively different this might tell us some-
thing significant about the dynamics.
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the average being over the measure p of Eq. (7.6) or
equivalently over the time t with fixed t —t'. The corre-
sponding Fourier transforms are given by

C(q, co)= f dx dt e 'q" "C(x,t) . (7.25)

An important property of correlation functions is their
long-range decay, as in the form given in Eq. (7.2) above,
which defines a decay length g. The actual behavior may
be more complicated than simple exponential decay, or a
different correlation function than (7.24) may be ap-
propriate, for example if the spatial average of u has
periodic time dependence. Alternatively, the correlation
function may not decay exponentially, but only algebrai-
cally, in which case we say that the corresponding corre-
lation length is infinite. This situation will be discussed
further in subsection VII.E.2 below. For the present dis-
cussion we assume for simplicity that we are dealing with
systems having finite correlation lengths.

(ii) Statistics of fluctuations

The existence of a finite correlation length implies that
quantities measured inside a correlation volume will have
nontrivial statistics. In contrast, quantities that depend
on data spread out over many correlation volumes will
have a Gaussian distribution. For example the Fourier
transform

u(q)= f dx u(x) e
Q

(7.26)

has a Gaussian distribution if the volume Q=L con-d

tains many correlation volumes (I. ))g'), even if q
' ((g.

In practical cases one is often interested in more local
quantities, such as u (x ), or a wave packet inside some
volume 5Q which may be smaller or larger than g' .

We can use the statistics of fiuctuations to define a
correlation length by examining the transition between
Gaussian and non-Gaussian statistics. Specifically, let us
consider the quantity (Kaski et al. , 1983)

&(au)'&,
K(Z)=

3 (bu)
where

& A &r= f dx A(x)

(7.27)

(7.28)

is an average over a volume Q(c' )-8, and

bu(x)=u(x) —&u &r . (7.29)
(For simplicity we assume here that all moments exist. )

For c' ))g we expect the statistics of u to be Gaussian so
K(8)~0, but for t' ((g, K (8) has some nonzero value.
We can thus define g as the value of c' at which K (8) be-
comes small when E.grows large. Generalizations of the
quantity defined in Eq. (7.27) to higher powers of b, u can

and introduce the correlation function

C (x —x', t t—')
=

& (u (x, t) &u—& )(u (x ', t') —
& u & ) &, (7 24)

be considered, and it is interesting to ask how the corre-
sponding g's will depend on the precise moment under
consideration. There may of course be systems with a
number of intrinsically different correlation lengths and
the above simple scheme will not apply.

As a result of the Gaussian nature of correlations in a
large system we expect each Fourier transform variable
u (q, co) to be governed by a probability functional

(iii) Other definitions

Besides the decay of correlation functions and the
statistics of moments, other lengths can be considered as
measures of spatial correlations. Kaneko (1989, 1990a)
has defined Fourier transforms over finite spatial
domains and obtained a correlation length from the
dependence of the spatiotemporal correlations on the
domain size. A more physical definition arises when the
system itself possesses a domain structure, for example
when there exist alternating laminar and turbulent re-
gions (see subsection VII.E.2.a below). Then one can
define a distribution function P(P) as the fraction of lam-
inar domains with characteristic dimension 8 and obtain
a correlation length from the decay of P(F) at large 8
(see Chate and Manneville, 1987). A set of correlation
lengths can also be defined from purely dimensional con-
siderations by taking ratios of averages of spatial deriva-
tives (or moments in Fourier space), for example (Stassi-
nopoulos et al. , 1990)

&(u —&u &)'&

&(a„.)'& (7.32a)

&(a„.)'&
&(a' )'&

'

and so forth. Of course, it is not clear that the lengths so
defined wiH reAect the long-range correlations in the sys-
tem, though some evidence that they do has been
presented by Stassinopoulos et al. for a simple coupled-
map model.

Another possible set of correlation lengths will arise
when we discuss Lyapunov exponents and dimensions for
extended systems. We will see in the next section that
the spatial extent of a Lyapunov vector defines a charac-
teristic length that is presumably some measure of spatial
correlation in the system. Also, the length scale over
which pointwise measures of the dimension of the attrac-
tor are correlated can be used to define a correlation
length (see below).

PIu( q, co)J -exp[ D(—q, co)lu(q, co)l ], (7.30)

whose Gaussian measure is directly related to the dynam-
ic structure factor

C(q ~)= & lu(q ~)l &= D '(q, ~) ~ (7.31)2 —1

The Gaussian nature of (7.30) does not contradict our
earlier statement that local variables have non-Gaussian
statistics, since in inverting the Fourier transform
higher-order correlations between different Fourier
modes come into play.
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A, = lim —1n~DF'~
1

(7.33a)

where

DF'=5u (x, t) l5u (x', 0) (7.33b)

6 Exponents and dimensions

The definitions of exponents and dimensions discussed
in subsection VII.B for small systems can be carried over
to the infinite case as well. The Lyapunov exponents are
defined by a generalization of Eq. (7.13) to a continuum
case

sumed that the results are independent of the initial
values u (x, O) and 5u (x,O). In this way 5u(x, t) will be-
come proportional to the corresponding eigenvector
u (x, t) at large t and the maximum eigenvalue A, will
emerge. In principle one would have to vary the initial
conditions but we will assume that this is not necessary.

In a numerical study of the Kuramoto-Sivashinsky
equation (3.31), Manneville (1985) has confirmed that the
Lyapunov exponents remain bounded as the system size
grows. It is their density 2)(A, ) which grows with size
(Ruelle, 1982), as shown in Fig. 29, where

is the Jacobian matrix corresponding to the dynamics
(7.23). (The notation

~
A

~
still denotes the ath eigenval-

ue of the matrix A, which is now infinite dimensional. )

Corresponding to each eigenvalue A, there is an eigen-
vector u (x, t). For the largest exponent A, , Eq. (7.23)
has the more transparent form

1 . 1 (b(t)=—lim —ln (7.34a)

P(t)= f dx ~5u(x, t)~ (7.34b)

where 5u satisfies the equation

a, 5u(x, r) = 5u(x, t) . (7.34c)

which is a linearization of Eq. (7.23) about the orbit
u (x, t). In writing Eq. (7.34) we have for simplicity taken
a single component equation as in Eq. (7.23) and also as-

i (A, ) = f 2)(A, ')dA, ', (7.35)

is plotted for various system sizes. The curves for
different sizes are not very different, only the density fills
in for larger systems. From these data it is possible to
evaluate the Lyapunov dimension, defined in Eq. (7.18),
and the result is quoted in Eq. (7.53) below.

As mentioned above, the Lyapunov vector u (x, t) as-
sociated with a particular exponent k can be used to
define a correlation length g' by the relation

(7.36)
[f d"x u'(x, t)]' —gdf dxu (xt)

Although this length is formally still a function of time t
it is expected that for an extended eigenvector in an
infinite system the spatial integral will have the effect of
averaging over time. For a localized eigenvector or a
finite system the quantity g (t) could be averaged over

X

VYZ X
V

V VqX
Xvg ~~X"+ ~g a

VZ

(iN

0.2 0-1

FIG. 29. Number i of Lyapunov exponents larger than the value A,;, scaled by the number %~ of non-negative Lyapunov exponents,
plotted vs A,; for the Kuramoto-Sivashinsky model (3.31). Results are shown for sizes L = 100, 200, and 400, showing the intensive na-
ture of the Lyapunov density. (From Manneville, 198S.)
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time. The length defined in this way is analogous to the
"participation ratio" defined in the theory of electron lo-
calization (see Wegner, 1980; Kaneko, 1986a): if g turns
out to be finite for an infinite system this means the eigen-
vector u is localized, otherwise it is extended. Another
correlation length can be obtained from the large dis-
tance behavior of the correlation function for the positive
density u

X Q~ X+7' Q~ X
C (r)= fdxu (x)

(7.37)

We expect that C (r) will decay exponentially at large r
for localized states, though with a length g'Wg in gen-
eral. For extended states C (r) remains finite for r +ao, —
and at the "mobility edge" we might have a power-law
falloffof C .

As mentioned in subsection VII.A above, whenever an
attractor dimension is obtained we can ask how it scales
with system size L, and thereby define a correlation
length. In typical cases for large L, df is extensive (i.e.
proportional to volume) and we can define a correlation
length gf by the relation

lim df(L)=(L/gf )" .
L, ~oo

(7.38)

dcorr (7.39)

though the coefficient of proportionality is not in general
the same as for a closed system.

In the above discussion we have assumed that the
equations of motion are known, and that the dimensions
and exponents were obtained from these equations. As
discussed earlier, however, in many experiments an ap-
propriate theoretical model is not available and it is use-
ful to obtain information from experimental data direct-
ly. The natural question to ask is, does the reconstruc-
tion method described in subsection VII.B.2 above apply
to attractors in large systems? The answer to this ques-
tion is in large measure unknown even for the simplest
models. We may conjecture, however, that a natural
generalization of the reconstruction method of subsection
VII.B.2 is to divide the system into cells of size g and to
measure a vector u(t)=Iu' '(t)I, with u' '(t)=u(x, t)
and x placed in cell a. Then the reconstructed vector
would be vti(t) = u' '(t +Pr).

If data at two points a distance 8 apart are used to es-
timate the dimension, then a simple conjecture might be

All of the dimensions defined in subsection VII.B.1 for
low-dimensional systems can in principle be calculated
for spatially extended systems as well, albeit with large
requirements of computer capacity. An interesting ques-
tion raised by Grassberger (1989) concerns the possibility
of defining the fractal dimension of a subsystem of
volume Q' embedded in a large system (volume
0 » 0'). In particular he showed for a system of cou-
pled logistic maps (see below) that the correlation dimen-
sion d„„,Eq. (7.17), of the subsystem was also intensive

(Pomeau, 1985)

d(E)=pf g",
d(8)=2 pf g",

(7.40a)

(7.40b)

since the measurements in Eq. (7.40b} represent two in-

dependent samples. The dimension density pf can then
be estimated for a linear system (dimensionality d = 1) as

d(P) —d(0)
Pf (7.41)

in the interpolation region. Similar formulas can be
found for systems of higher dimensionality (d =2 or 3).
In proposing the above scheme, Pomeau has suggested
that the correlation length g in Eq. (7.40) will depend on
the measurement precision g and should be replaced by
glni) . A preliminary attempt at numerical implemen-
tation in a coupled-map model was undertaken by
Mayer-Kress and Kurz (1987), but so far the results have
been rather inconclusive. Grassberger (1989) has ques-
tioned the validity of the above proposal, suggesting that
the crossover assumed in Eq. (7.40) will not be observed.

Attractor reconstructions and dimension estimates
have been undertaken in a number of spatially extended
systems, both numerical and experimental (see Grappin
et al. , 1986; Mayer-Kress, 1986; Brandstatter and Swin-

ney, 1987; Ciliberto, 1987; Aranson et al. , 1988; Gromov
et al. , 1987). Clearly, the quantity of data required for a
precise description grows rapidly with the size of the sys-
tem, and it is not at present clear how much information
can be extracted from this type of analysis.

2. Response and transport

It may be useful to borrow some ideas from linear
response theory (Forster, 1975; Hohenberg and Shrai-
man, 1989). For that purpose let us introduce an exter-
nal perturbation h (x, t) into the dynamical equation for
the field u (x, t), Eq. (7.23), and define the response func-
tion R as

(
p

)
5 (uxt+7. )

5h x', t
(7.42)

A(z)=(1/0) I dr e
0

2
5u(x, t +r)dx dx 5h(x', t)

(7.43)

where the average is once again over t. The response
function quantifies the rate of relaxation to the "equilibri-
um" measure given by P tu I, Eq. (7.30). Then the relax-
ation rate for a given spatial mode with wave vector q is
determined by the nearest pole of the Laplace transform
of R with respect to ~.

Another interesting object first used by Sompolinsky,
Crisanti, and Sommers (1988) is the quadratic response
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where Q-I." is the volume of the system. This function
can be used to define the spectral density n(A, ) of the
growth (or susceptibility) exponents

A(z)= f dA, (7.44)

These exponents are similar, but except for the largest
one not exactly equivalent, to the Lyapunov exponents.

One interesting issue is to understand the relation be-
tween the correlation and response functions defined
above. For example, for the case of dynamics near
thermal equilibrium there exists a fluctuation-dissipation
theorem which in the classical regime has the form (see,
e.g., Hohenberg and Halperin, 1977)

C(q, co) =(2T/co)lm R (q, co), (7.45)

where T is the temperature. Note that in equilibrium
Eq. (7.45) holds for all q and co. In the present case we
can introduce a function

AC(q, co)

2ImR (q, co)
(7.46)

whose low-frequency long-wavelength limit (if it exists)
defines an effective temperature

To= lim T(q, co) .
q —+0

(7.47)

Another effective temperature can be obtained from the
equal-time correlation function and the static response
R, (q)

C(q, t =0)
q o R(q) (7.48)

In equilibrium T(q, co) is independent of q and co and the
equality of T0 and T, follows from the dispersion relation

de ImR (q, co)R, q =I' (7.49)

where P denotes the principal value. Hohenberg and
Shraiman (1989) proposed using Eqs. (7.47) and (7.48) to
characterize the spatially extended chaos, and to use the
difference between To and T„orthe co, q dependence of
T(q, co) as a measure of the departure from equilibrium.
However an important ingredient of the derivation of Eq.
(7.49) in equilibrium systems is that the field used to
define the response function is introduced into the Ham-
iltonian, and not into the dynamical evolution equation
as we are forced to do in the dissipative chaotic systems.
Even for an equilibrium system the function T(q, co)
defined by Eq. (7.46), with R the response function to a
field added to the dynamical equations, is not simply re-
lated to the thermodynamic temperature, and it may
have a complicated dependence on q and co. The simpli-
city of the usual equilibrium result derives from adding
the field through a term in the Hamiltonian H, which
then has a direct effect on the probability measure, e.g. ,
exp[ l3H ]. This measu—re determines both the new
mean value (the response) and the fiuctuations (the corre-

lation functions). Qn the other hand the independence of
T(q, co) on co for smal/ q may result from the long-
wavelength Langevin description of extended chaotic sys-
tems (see subsection VII.E.1 below), so that equality be-
tween T, and T0 might not in itself signify that the sys-
tem is close to equilibrium.

One can also attempt to define effective transport
coeKcients from the Fourier transform R(q, co) of the
response function R, using the analogue of Kubo rela-
tions familiar from statistical mechanics near equilibrium
(Forster, 1975). Such an approach is close to the phe-
nomenological point of view adopted in the study of
strong turbulence [see, e.g., Monin and Yaglom, 1975;
Dwoyer et al. , 1985), where the eddy viscosity is a funda-
mental ingredient in many approximate treatments. It
would be interesting to study the response to determinis-
tic and stochastic forces in chaotic states, and perhaps a
connection can be found between exponents and dimen-
sions on the one hand, and transport and response on the
other. An attempt at a thermodynamic characterization
of extensive chaos has been presented by Cihberto and
Caponeri (1990).

3. Chaos and turbulence

The terms chaos and turbulence are used to denote a
number of different phenomena, and considerable debate
and confusion have arisen concerning the "proper" use of
these words. In discussing this issue here our aim is not
to legislate one more set of definitions, but rather to clari-
fy the different types of behavior involved, as well as the
terms used by difFerent authors to refer to them (see, for
example, Newell, 1986; Bohr, 1989; Busse, 1989). What
is generally meant by chaos is any type of random
behavior resulting from deterministic equations with reg-
ular initial conditions. Since we defined temporal chaos
by the existence of a finite correlation time, Eq. (7.12), we
could similarly consider spatI otemporal chaos to be
defined by both a finite correlation time and a finite
correlation length. The term "turbulence, "when used in
Quid dynamics, traditionally signifies disordered Aow,
particularly Aow involving the generation and transport
of vorticity (Monin, 1978). In this usage the question of
deterministic or stochastic origin of the phenomenon is
not central to the terminology, since it refers to observed
phenomena rather than to their explanation. Recently
the word turbulence has come to be used more widely,
sometimes as a synonym for chaos, but more particularly
for what we have called spatiotemporal chaos.

The chaos that occurs near threshold in models such as
the complex Cxinzburg-Landau (4.49) or Kuramoto-
Sivashinsky (3.31) equations for large L is referred to as
"weak" or "phase" turbulence (Kuramoto, 1984). This is
in contrast to "amplitude" or "defect mediated" tur-
bulence, which occurs further away from threshold and
involves the motion of phase singularities (see, e.g., Shrai-
man et al. , 1992). It is unclear whether there is a precise
distinction between these regimes, or indeed between this
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type of turbulence and "strong turbulence, " which
occurs in real Auids for large R. The term "spatiotem-
poral intermittency" refers to a particular scenario for
the onset of weak turbulence, where laminar and chaotic
attractors coexist at the onset point (see Kaneko, 1985;
Pomeau, 1986; Chate and Manneville, 1987, 1988b; and
subsection VII.E.2.a below). Zakharov defines weak tur-
bulence to be the state of a nonequilibrium system con-
sisting of propagating and dispersive waves with weak in-
teractions. In this case the statistical properties of the
system can be calculated approximately by means of a ki-
netic equation. Zakharov calls all other types of tur-
bulence in spatially extended systems "strong tur-
bulence" (see Zakharov, 1984; Goldman, 1984; Dyachen-
ko et al. , 1990).

Oono and Yeung (1987) have proposed a mathematical
distinction between chaos and turbulence in terms of a
quantity they call P entropy. Although their treatment is
rather abstract, it appears that their definition of tur-
bulence requires the propagation of disturbances and the
transmittal of information from one spatial point to the
other. It would be interesting to attempt to formulate
these notions in terms of response and correlation func-
tions, and to apply them to experimental systems. A nu-
merical study of information transport in a system with a
local source of chaos was carried out by Vastano and
Swinney (1988).

4. Open systems: Convective instability

The discussion given above does not apply directly to
open systems (see Sec. IX.E), in which the assumption of
translational invariance and of a statistical steady state
are not valid. Some of the same ideas can be applied,
however, and in simple cases correspondences can be set
up between open and closed systems (Deissler, 1987b,
1989; Bohr and Rand, 1991). Since in a convectively un-
stable system the unstable eigenvector corresponds to a
propagating disturbance, Eq. (7.34) must be calculated in
a moving frame if it is evaluated on a finite domain. This
yields the velocity-dependent Lyapunov exponents of
Deissler and Kaneko (1987). Note, however, that Eq.
(7.34) would also give the correct answer in the rest
frame if it were evaluated in an infinite domain, as it
must be since the leading eigenvector is not localized in
the rest frame. The velocity-dependent exponent is mere-
ly a calculational device to transform to a reference
frame in which the Lyapunov vector is localized, and the
calculation in Eqs. (7.34) can be performed in a finite
domain (Deissler, 1989).

D. Examples of spatiotemporal chaos

Although there are innumerable studies of extended
chaotic systems we will discuss primarily those which
focus on the statistical concepts introduced above.

1. The complex Ginzburg-Landau equation

A basic source of chaos in the complex Ginzburg-
Landau equation (4.49) is the Benjamin-Feir instability
(4.57), i.e. the interplay between spatial and temporal
dispersion. In one dimension interest originally focused
on intermediate-sized systems, i.e. on the chaotic dynam-
ics of coherent structures such as confined states, fronts,
and pulses (Cross, 1986b; Deissler, 1987a, 1989; van Saar-
loos and Hohenberg, 1992). More recently Shraiman
et al. (1992) carried out a numerical study of a large sys-

tem (L —10 ) and identified two different chaotic states,
one with "space-time defects" (places where the field A

vanishes at a single time) and one with only phase fluc-

tuations and no defects. The authors found that correla-
tion functions behaved rather diff'erently in the two cases,
but were unable to show conclusively that there is a
sharp transition, rather than a smooth crossover, be-
tween the two regimes. A related model, consisting of a
discrete chain of coupled oscillators in the form

i), A. = A —(1—
ic3 ) ~

2
~ Aj +so(1+ico )( A~

—2, )

+ D(1+ic, )(A +, + AJ, —2A ),
j= 1, . . . , iV, (7.50)

has been studied by Aranson et al. (1985, 1986). These
authors gave analytic and numerical estimates for the
dependence of the dimension of the attractor on X, so,
and D, as well as on the nature of the boundary condition
at j= 1 which is important for cases where the system is
convectively unstable. For the subcritical case Schopf
and Kramer (1991), following earlier work of Bretherton
and Spiegel (1983), have carried out a numerical study of
Eq. (5.57) without the stabilizing fifth order terms, and
have found chaotic as well as stationary and time-
periodic solutions.

In two-dimensions the model is particularly rich since
the point defects described in Sec. V.B (targets and
spirals) participate in the chaotic dynamics. This prob-
lem has been studied numerically by Brand et al.
(1986a,b) and Coullet et al. (1987), and also in a discrete
form by Bohr et al. (1990a,b). At long times a steady
state is reached with some average density of defects
which was found to depend on the parameters c

&
and c3

relevant to the Newell criterion (4.57a). The precise na-
ture of the onset of the defected state has not yet been
elucidated, however. Dimension estimates for a small
two-dimensional system have been given by Bartuccelli
et al. (1989) for arbitrary ci and c3. These authors note
that the attractor dimension is uniformly bounded by a
linear function of E., whereas the dimension of the inertial
manifold is bounded by an exponentially growing func-
tion of s in the limit of large c, and c3 (near the nonlinear
Schrodinger equation). This difference arises due to the
influence of wave collapse in two dimensions (see also
Landman et al. , 1988; Bartuccelli et al. , 1990; Zakharov,
1991; Dyachenko et a/ , 1992). Much .work remains to
be done in elucidating the role of the diff'erent types of
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perturbations to the nonlinear Schrodinger limit (3.40)
(see Bretherton and Spiegel, 1983; Bartuccelli et al. ,
1989; Kivshar and Malomed, 1989). A two-dimensional
Ginzburg-Landau model of plasma turbulence, which has
added forcing and dissipation acting on diFerent scales,
has been discussed by Newell et al. (1988) with primary
focus on the role of coherent structures in turbulent
transport and dissipation.

2. The Kuramoto-Sivashinsky equation and its extensions

Let us consider the damped version of this model,
(3.31) (Chate and Manneville, 1987)

B,u (x, t)= —gu —8~ u —B,u —uB„u, (7.51)

where g is the control parameter and x E [0,L ], with
periodic boundary conditions. We will be interested in
the L —+ao limit. The stability of the quiescent state
u =0 is analyzed by linearizing Eq. (7.51). The rate of
growth cr of the Fourier mode q is

nounced peak near qo and a shoulder at low q. This spec-
trum has been calculated approximately by Toh (1987),
using a statistical model of interacting pulses. The tem-
poral power spectrum for local fiuctuations ( ~u(co)~ )
exhibits a power-law rise at low frequencies, although the
precise value of the exponent is not known. Finally,
Pumir (1985) has shown that the distribution function for
static fiuctuations of u (q ) approaches a Gaussian as L in-
creases. For large L the chaotic state is expected to
display short-range order corresponding to the peak in
the structure function at q =qo, and long-range disorder
represented by the Aat behavior at small q. The onset of
chaos in the large system has been studied numerically by
Chate and Manneville (1987) who considered the damped
equation (7.51), and varied the parameter rj from the on-
set of the spatially periodic state at g=1/4 down to the
value g=0 where the chaos is most pronounced. The au-
thors suggest that for L ~ ~ the onset of chaos as g is
varied occurs via a continuous transition which they
termed "spatiotemporal intermittency, " as illustrated in
Fig. 30. This figure represents a space-time plot of

o.(q) = —g+q —
q (7.52)

r = 0.84

dL =2.04 (Lqo/2~) —2.70,
H=0. 05 (Lqo/2~) —0.09 .

(7.53a)

(7.53b)

The spectrum of static fluctuations ( ~u(q) ~ ) studied for
rI=O by Pomeau, Pumir and Pelce(1984), has a pro-

For g& 1/4 the quiescent state is unstable with the
fastest growing mode at q=qo=1/&2. The bifurcation
is stationary (type I,) and leads to a spatially periodic
structure u =uz(x) with wavelength A, = 2m/qo. In
fact, away from the threshold q=1/4, one expects a
band of linearly stable cellular solutions. For a system of
finite size the band will be reduced to a discrete set. The
stability and uniqueness of the cellular solutions is a com-
plicated matter (Hyman et al. , 1986) and depends on
both q and L. It is known, however, from the work of
Frisch, She, and Thual (1986) that for g=0 cellular solu-
tions with A, H [A, , A,~] are linearly stable, which implies
that for L large enough (so that L =nAcan b,e satisfied
for some integer n, and k in the stable range) there exists
at least one linearly stable cellular structure. We expect
this to be true also for 0&g&1/4. However, a typical
numerical simulation of Eq. (7.51) near g=O exhibits
only chaotic behavior, characterized by stationary statis-
tics and revealing no convergence towards the time-
independent cellular state. Nevertheless, we will argue
below that the system is quite close to the cellular state
locally much of the time.

Let us summarize some properties of the chaotic state
which was studied by a number of authors, starting with
the early work of Manneville (1981). As mentioned
above, Manneville (1985) has shown that for g=O this
state possesses a spectral density of positive Lyapunov
exponents, a Lyapunov dimension dL and an entropy H
proportional to L (i.e., they are extensive). His results
may be expressed in the form

r = 0.76

r = 0.70

r = 0.68

FIG. 30. Transition to extended spatiotemporal chaos via the
intermittency route. Pictures show a space-time plot of chaotic
regions (white) identified as regions where u ) u

&
for the

damped Kuramoto-Sivashinsky equation (7.51), where u
&

is
some chosen threshold value, and laminar regions (black) where
u (u &, for different values of the control parameter r, related to
g in Eq. (7.51) by r =1—4g. As r approaches r, =0.688 from
below (g~g, =0.078 from above) laminar regions acquire
macroscopic size (i.e. approach the system size). For r ( r, only
isolated chaotic regions remain. (From Manneville, 1990.)
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u (x, t) in which the continuous field u has been discre-
tized into two values, "laminar" (in black) and "tur-
bulent" (in white). The criterion distinguishing the two
regimes is somewhat arbitrary but the scaling results dis-
cussed below do not depend on the precise cutoff u, ,
within the accuracy of the calculation. Ch ate and
Manneville found that when the control parameter g is
varied, there is a change in the behavior of interfaces be-
tween laminar and chaotic regions. For g&g, =0.078
the laminar regions invade the transient chaotic regions
which could arise from disordered initial conditions. For
q(q, the chaotic regions win out, but they are them-

selves made up of chaotic and laminar subdomains. As
mentioned in subsection VII.C.1.a above, the distribution
P(8 ) of sizes of laminar subdomains defines an exponen-
tial correlation length g which is finite for i) (i), and

diverges at r)=i), [For. r) )r)„P(8)appears to have a
power-law dependence, which corresponds to g = oo .]
The transition occurring at g=g, is of a type that was

conjectured by Crrassberger (1982) and by Pomeau (1986)
to be in the universality class of directed percolation, but
the analogy appears to be qualitative rather than precise
in this case (see subsection VII.E.2.a below).

An extension of the Kuramoto-Sivashinsky model,
known as the Kolmogorov-Spiegel-Sivashinsky equation,
involves the addition of a cubic nonlinear term to Eq.
(7.51); it is usually written in the integrated form (Chate
and Nicolaenko, 1990)

The additional unfolding parameter 6 leads to a shift of
the threshold for the appearance of chaos i), (5), as well

as an apparent modification of the character of the tran-
sition. In particular long-lived defect states appear in the
transition region, and the bifurcation to chaos becomes
strongly subcritical (discontinuous). The qualitative
behavior of Eq. (7.54) in the parameter space (i),5) has
also been obtained using coupled maps (Chate and
Manneville, 1989b), so there is some hope that it may
provide a generic example.

Many of the theoretical ideas that have been proposed
to understand spatiotemporal chaos were either
developed for the Kuramoto-Sivashinsky equation or ap-
plied to it early on. These include stochastic methods,
defect-mediated chaos, and analogies to percolation and
other critical phenomena. We shall describe these
theoretical approaches briefly in subsection VII.E below.

3. Coupled map lattices

Since any partial differential equation can be discre-
tized into a system of coupled maps there is no sharp
difference between the two classes of models. Neverthe-
less, in the two continuum equations discussed above the
chaos had its origin in instabilities such as the Benjamin-
Feir instability (4.57), where the coupling between nearby
points in the system leads to a negative diffusion con-
stant. For coupled maps what has generally been con-

f(u)=r u, O~u & I/2,
f(u)=r(1 —u), I/2~ u ~ 1,
f(u)=u, u )1,

(7.55)

and the coupled model links these maps diffusively, as in
Eq. (3.47). Chate and Manneville have shown that this
system displays a transition to chaos via spatiotemporal
intermittency as a function of the coupling constant g for
fixed r )2. In view of the simplicity of the dynamics it
was possible to characterize the transition more precisely
than for the Kuramoto-Sivashinsky case, and to measure
critical exponents with reasonable accuracy for this su-
percritical bifurcation.

Let us also mention a particular coupled map lattice
constructed by Bunimovich and Sinai (1988), for which
they were able to prove that the steady state is chaotic
with exponential decay of space and time correlations, in
the weak-coupling limit. Further numerical work at

sidered are systems that are already chaotic in the ab-
sence of coupling. The ensuing spatiotemporal dynamics
of the coupled systems displays enormous variety, and
these models have been widely studied due to the relative
ease of generating large amounts of data. Alternatively,
coupled map lattices can be considered as coarse-grained
versions of continuum systems, but the correspondence
between the instability mechanisms in the two types of
models is often obscure. For early work on coupled maps
see Kaneko (1985), Oppo and Kapral (1986), and refer-
ences therein, and Kuznetsov and Pikovsky (1986).

Systems of coupled logistic maps have been particular-
ly popular, since the chaotic behavior of the individual

elements is so well understood. Kaneko (1987, 1990a), in
particular, has identified many different phases in the sys-
tem, ranging from ordered patterns, to disordered frozen
ones, defect dominated phases, and what he calls "fully
turbulent" phases. The types of diagnostics he has used
include space-time spectra and Lyapunov exponents as
well as different types of entropy functions and "pattern
distribution functions" (see also Crutchfield and Kaneko,
1987, and Keeler and Farmer, 1986). A careful study of
the Lyapunov exponents and their density (7.35) has been
carried out for this system by Everson (1989). In particu-
lar, he studied the dependence of these quantities on the
relative magnitude of the diffusive and convective cou-
plings [analogous to the parameters so and D in Eq.
(7.50)], which determines whether the instabilities are ab-
solute or convective [see Sec. III.A]. The propagation of
disturbances has also been studied by Brindley and Ever-
son (1989).

As mentioned above, Chate and Manneville (1988a,b)
have introduced a coupled map system to model the tran-
sition to chaos via spatiotemporal intermittency original-
ly found in the damped Kuramoto-Sivashinsky equation
(7.51). The local map consists of two states, a chaotic
one generated by a tent map, and a laminar state
represented by a fixed point, with chaotic transients. A
simple example of such local dynamics is the map
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larger coupling has been carried out by Bunimovich
et al. (1990) and by Livi et al. (1990). More recently
Rand and co-workers have considered various concrete
examples in the weak couphng h'mit in some detail. They
were thus able to discuss in a precise way many of the
ideas we have introduced heuristically in our earlier dis-
cussion. These include thermodynamic limit, natural
measure, limiting distribution of characteristic ex-
ponents, spatial entropy, exponential decay of correla-
tions, phase transitions, geometric structure of attractors
(Gundlach and Rand, 1992a,b,c; Campbell and Rand,
1993). Finally, we note that models consisting of coupled
oscillators have attracted growing attention due to their
relevance to chemical and biological phenomena (see,
e.g. , Kuramoto, 1984a; Strogatz and Mirollo, 1988; Som-
polinsky et al. , 1991).

E. Theoretical approaches

In this section we summarize some of the theoretical
approaches that have been proposed to obtain statistical
information on systems displaying spatiotemporal chaos.
These approaches all involve some attempt to go beyond
a pure simulation of the dynamics in order to calculate
the correlation and response functions discussed in sub-
section VII.C above. Sometimes the proposal involves
replacing one model by a simpler one, where the latter
may still require numerical solution. A question to be
answered is: in what way is the system under study
different from an infinite collection of independent de-
grees of freedom? An important element at the present
rather primitive stage of development of the field is the
search for circumstances where the system has scaling
properties in space and time (see subsection VII.E.2).

1. Stochastic models

a. Stochastic dynamics

As mentioned earlier, stochastic models are often used
to represent systems interacting with external noise, be it
of thermal or other origin (see, e.g., van Kampen, 1981;
Gardiner, 1983). The same types of equations can also
arise as coarse-grained models representing the long-
wavelength, low-frequency dynamics of deterministic sys-
terns displaying spatiotemporal chaos. The basic idea
usually involves an assumption of separation of scales,
whereby the unstable short-range degrees of freedom are
replaced by a stochastic force with correlations of range
PE, assumed small. This force acts on the macroscopic
degrees of freedom which satisfy a stochastic equation
whose deterministic part is obtained by coarse graining
the starting equations. The resulting model is thought to
reAect the essential features controlling the macroscopic
correlations, and must take proper account of the sym-
metries and conservation laws of the original model (see,
e.g. , Le Berre et al. , 1990). The above program has been

with short-range noise correlations [Yakhot, 1981;
Yakhot and She, 1988; Zaleski, 1989]. The diffusive form
of Eq. (7.56) is already suggested by the starting equation
(7.51) for g = 0; the main difference between the two
models is that the negative difFusion constant of (7.51),
which leads to chaos, is renorrnalized at long wavelength
into an effect diffusion constant v assumed positive, plus
a short-ranged noise g (see also Goldenfeld et al. , 1990).
The stochastic model has an upper wave-vector cutoff

q, ~ qo and the noise correlations are supposed to be on
the scale q, '. The validity of Eq. (7.56) as a representa-
tion of the slow dynamics of Eq. (7.51) has been partially
checked by Zaleski (1989) in one dimension but it cannot
yet be considered to be firmly established.

More generally, let us write a stochastic equation in
the form

a, U=G [U]+g(x, t), (7.57)

where G [ U] is some nonlinear function of U and its gra-
dients (U is in general an n-component vector), and the
noise correlations are given by

=(2m. )"5(co+ co') 5(q + q')2)0(q, co), (7.58)

where the function 2)0(q, co) is regular as q, ai ~ 0 for
short-ranged noise correlations. Models of the above
form have been used by many authors to study nonequili-
briurn systems. For example, Forster, Nelson, and
Stephen (1977) studied long-time tails in Auids and the
breakdown of hydrodynamics in two dimensions, using
techniques borrowed from the theory of dynamic critical
phenomena (Hohenberg and Halperin, 1977; see also
Bonilla, 1988; Medina et al. , 1989; Cardy, 1992).

It is natural to ask whether renormalization group
methods can also be used to study the short-scale
behavior of fluids, say. For an equation such as the
Navier-Stokes equation at high Reynolds number this is
the interesting regime of strong turbulence. Forster
et al. (1977) investigated this question and not surpris-
ingly found that the models Rowed to strong coupling at
small distances, thus invalidating a strict perturbative ap-
proach. We shall briefIy return to the question of
describing strong turbulence within a renorrnalization
group framework in subsection VII.E.5 below.

When studying stochastic dynamics various authors
have discussed the question of the stability of phases, in
analogy to the corresponding question in thermodynam-
ics (e.g. Bennett et al. , 1990). For example, a solution
uo(x, t) of the deterministic equations (7.23) will be tested
for stability by adding a Gaussian white noise source
g(x, t) as in Eq. (7.57), but of infinitesimal strength
(Do —+0). Then the "phase" represented by uo(x, t) is

partially implemented for the Kuramoto-Sivashinsky
equation which becomes a stochastic Burgers equation
(in one dimension)

(7.56)
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said to be stable if the disturbances introduced by g are
negligible in the large-system limit (I. ~ ~), i.e. if per-
turbations do not propagate out to infinity. This notion
of stability, which we might call "phase stability, " is
different from simple linear stability of the solution
uo(x, t) of the deterministic equations. On the one hand
phase stability is more dificult to achieve since although
the noise strength Dp is infinitesimal on average, the
Gaussian nature of g implies that there are rare perturba-
tions of arbitrary strength. On the other hand phase sta-
bility is less stringent than linear stability, since the dis-
turbance must survive the thermodynamic limit L, ~ ~
in order to destabilize uo(x, t). An infinitesimal distur-
bance that remains localized will not destroy phase sta-
bility even if it grows large, though such a disturbance
would render uo(x, t) linearly unstable. It remains to be
seen whether this notion of phase stability is a useful
characterization of large nonequilibrium systems.

b. Quenched randomness

An interesting limit occurs when the time scale of the
external random force becomes very long, i.e. when the
randomness is quenched. An experimental example
might be convection in a cell with rough boundaries.
Models with quenched randomness are frequently intro-
duced to study the critical behavior of disordered mag-
nets or other solids. One example consists of a set of cou-
pled oscillators with random internal frequencies (see,
e.g., Kuramoto, 1984a),

Q, P,. =co, +g J; sin (P; —P~ ),
J

(7.59)

where the cu; are independent random variables with a
fixed probability distribution. Another model, represent-
ing collective transport in sliding charge density waves or
phase separation of binary Quids in porous media, has the
form

d, P; = —h;sin(P, —
13, )+g J," (P; Q, )+1-

J

(7.60)

where now the randomness is introduced in the phases
I3;. In each case the average frequency

(7.61)

can be defined for each oscillator, and the distribution of
these frequencies P(Q, ) over the whole ensemble can be
examined. A particular phenomenon of interest is collec-
tiue locking, i.e. when all or a finite fraction of the modes
have the same frequency 0 (Kuramoto and Nishikawa,
1987; Bonilla, 1988; Strogatz et al. , 1989; Lumer and
Huberman, 1991).

2. Critical points

Among all the chaotic states in a large system perhaps
the most interesting ones are those associated with long-
range spatial or temporal correlations. We have seen
that in certain model systems the transition to chaos ap-
peared to be continuous, and to have many properties in
common with critica1 points of thermodynamic phase
transitions, in particular an infinite correlation length.

a. Spatiotemporal intermittency

As mentioned in subsection VII.D.2 Grassberger
(1982) and Pomeau (1986) had suggested that the onset of
chaos via spatiotemporal intermittency might be analo-
gous to a process of directed percolation. This process is
most simply expressed as a probabilistic cellular automa-
ton with 2 states per site. The essential characteristic lies
in the asymmetry between the two states, one of them be-
ing absorbing and the other one not. The absorbing state
remains unchanged if its neighbors are also absorbing,
whereas the other (active) state has a nonzero probability
of remaining active or changing to absorbing, depending
on the state of the neighbors. As this probability changes
its value one can have a propagation of active sites over
the whole system. The directed percolation transition
has been studied in some detail; it is continuous and the
universal critical exponents (independent of the detailed
rules) have been determined in one and two dimensions
(Kinzel, 1983). In the dynamical system the laminar
state corresponds to an absorbing site and the chaotic or
turbulent state to an active one. At the onset of spa-
tiotemporal intermittency a chaotic fm.uctuation can prop-
agate to infinity. The order parameter for this transition
can be defined as the density of turbulent (or active) sites
in steady state. Below threshold chaotic fluctuations
have a finite lifetime so the homogeneous absorbing state
is the steady state configuration and the order parameter
is zero.

As discussed above, numerical simulations of various
models based on pde's, coupled maps, and cellular auto-
mata have confirmed the above picture qualitatively, but
the precise nature of the transition and its critical ex-
ponents were in some cases shown to differ from those of
directed percolation. The situation has been consider-
ably clarified by Grassberger and Schreiber (1991), who
note that the analogy is only precise if the laminar state
is unique and nondegenerate (e.g. not a modulated
phase). Moreover, there can be subtle long-range corre-
lations in the laminar state which introduce additional
length scales and thus destroy universality. The reader is
referred to the paper by Grassberger and Schreiber (1991)
for a more complete discussion (see also Stassinopoulos
and Alstrgm, 1992).

We note that above the intermittency threshold, when
there is a finite density of active or chaotic sites one can
study the steady state patterns from the point of view of
ordinary percolation of chaotic domains in space and
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time. This has been done by Chate and Manneville
(1988c) for the coupled maps based on Eq. (7.55), and
they found agreement with the percolation exponents in
two dimensions (one space and one time), though the
reasons for this are not understood.

b. Self-organized criticality

iff h (j, t) h(j+l, t—))5, (7.62)

otherwise h remains unchanged. The quantities hQ and
are assumed to satisfy hQ & 2 and 6)2h Q but are other-
wise arbitrary. The boundary conditions are
h (O, t)=h(l, t) (the j = 0 end is closed) and
h (L + l, t) = 0 (the j = L end is open). The transport is
initiated by dropping sand at a slow rate

J;„=pL, (7.63)

at random points in the system. (Injection at the bound-
ary has also been studied. ) Bak et al. and many subse-

Besides transition points associated with specia1 pa-
rameter values, there might be systems in which the
chaotic state has long-range correlations (e.g. spatiotem-
poral power laws) over a wide parameter domain. This
phenomenon has been denoted "self-organized criticali-
ty" by Bak, Tang, and Wiesenfeld (1987) who have stud-
ied a number of models displaying self-similarity, and
have emphasized its ubiquitous nature in nonequilibrium
systems as diverse as earthquakes, galaxy formation, Quid
turbulence, or 1/f noise in conductors. They suggest
that scaling behavior is a natural outcome of nonequili-
brium dynamics, in particular that long-range correla-
tions develop spontaneously as a result of the time evolu-
tion, without any special tuning of parameters (see also
Tang et al. , 1987). Originally intended as an explanation
of 1/f temporal noise, the paper of Bak, Tang, and
Wiesenfeld has generated enormous interest in spatiotem-
poral scaling phenomena, but it is fair to say that most of
the issues raised remain to be clarified.

For illustrative purposes Bak and co-workers con-
sidered a pile of sand on a Bat surface, which is being fed
from above by slowly dropping grains of sand. The slope
gradually builds up to a critical value at which the sys-
tem is marginally stable. If the slope becon1es larger the
pile will collapse, creating an avalanche, until it reaches
the critical state once again. The concept of a self-tuned
critical state was introduced by Beam (1962) to describe
collective transport in type-II superconductors, and the
analogy to a sandpile was already discussed by de Gennes
(1966). To model their system Bak et al. introduced a
simple cellular automaton which in the one-dimensional
case has the following form [we use the generalization of
Kadanoff et al. , 1989]: In a chain of length L, associate
with each site j and time t an integer height variable
h (j, t). The evolution rules may be written as

h(j, t + 1)=h(j, t) —ho

h(j+ 1, t + 1)=h(j+ 1, t) + h,

quent authors performed simulations of this sandpile
model and found a power-law distribution of cluster
sizes, as well as 1/f frequency spectra for avalanche
lifetimes. The state reached by the sandpile at long times
is the prototype for what Bak et al. call self-organized
criticality.

In our view, the essential questions concerning this
phenomenon are as follows: (i) Can one define it precise-
ly? (ii) Can one understand what theoretical models and
mechanisms will produce it7 and (iii) Do these phenome-
na appear in nature, and how ubiquitous are they?

(i) Definition

Let us first define "generic scale invariance" (Grinstein
et a/. , 1990) as the appearance of power-law spatial
correlations in an extended system, over an open range of
parameters (i.e. without special tuning). It may turn out
that this is a su5cient definition of self-organized critical-
ity, but the heuristic picture presented by Bak et al. im-

plies in addition the existence of large events or
"avalanches, " and the evolution of the system to a mar-
ginal state in which a small localized perturbation can
produce a large response extending over the whole sys-
tem (they refer to this state as one of local minimal stabil-
ity). For want of a better term we shall call this an
"avalanche state, " though we must stress that a precise
definition is lacking. Self-organized criticality is then the
spontaneous evolution of a system to an avalanche state
exhibiting generic scale invariance.

(ii) Models and mechanisms

We begin by listing theoretical mechanisms for pro-
ducing generic scale invariance.

~ Conservation laws. It is known from equilibrium sta-
tistical mechanics that conservation laws, which are at the
origin of hydrodynamics, lead to power-law correlations
in many cases. The important point for the present dis-
cussion, which has been emphasized by Hwa and Kardar
(1989), Grinstein et al. (1990, 1991), and especially Gar-
rido et al. (1990), is that this is euen more true outside of
equilibrium. Consider, for example, the anisotropic
sandpile model of Hwa and Kardar in d dimensions, a
continuum variant of (7.62),

atu + V. j=atu+ Vl jl+alljll=o,
j= DiV iu —[D

II
BIIu

——(A, /2) u ] xII,

(7.66a)

(7.66b)

a, =DIIaII +D V —(A, /2) BII( )+g, (7.64)

with white-noise correlations

(g(x, t) g( tx') ) =2 [ I + I i Vi + I
II Bll]

X 5(x—x') 5 (t t '), (7.65)—
where Vi refers to the (d —1) components transverse to
the "downhill' direction xll. The deterministic system
satisfies the conservation law
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or of isotropy where the right-hand sides of Eqs. (7.64)
and (7.65) are functions of V =Vi+8~~ only, some of the
correlation functions (e.g. , the spatial ones) may become
short-ranged despite the existence of a conservation law,
but it is this equilibrium behavior that one might regard
as nongeneric. When these conditions are not satisfied,
i.e. in most nonequilibrium systems, the conservation law
(7.66) leads to power laws, i.e. to generic scale invariance.

Hwa and Kardar (1989, 1992) have applied the dynam-
ic renormalization group method to the stochastic system
(7.64) and (7.65), and have found the scaling relation

( [u ( x, t ) —u (0,0) ] )-x
~~
~C ( t /x

~~~,
x i /x

II ) . (7.68)

The exponents have their bare values for spatial dimen-
sion d &4

z =z0=2, y=yo=(2 —d)/2, P = $0= 1, (7.69)

but for d &4 the nonlinearity A, in Eq. (7.64) is relevant,
and the exponents take on the nontrivial values

z =6/(7 —d), y=(1 —d)/(7 —d), /=3/(7 —d) .

(7.70)

(See also Grinstein and Lee, 1991.)
~ Goldstone modes. Another mechanism for power

laws is a symmetry which may or may not be broken, but
nevertheless leads to a type of Goldstone mode in the
long-wavelength dynamics (Obukhov, 1990). For exam-

ple, the interface model

a, u ——vV'u + f[(Vu)']+ g(x, t), (7.71)

of Medina et al. (1989) with arbitrary function f(a),
does not conserve u in general, yet the equal-time corre-
lation functions have power-law behavior for short-range
temporal correlations of the noise g. [Of course, there is
an underlying conservation law, namely for v=Vu, but
the field u itself is not conserved]. In the special case of a
quadratic function, f=

—,
'

A,(Vu ), the model possesses an

additional Galilean symmetry

u'=u +a x,
x'=x+ A,at,

(7.72a)

(7.72b)

(7.72c)

for arbitrary a, which leads to exact exponent identities
for the correlation functions (Medina et al. , 1989).

Next we ask whether there is any precise theoretical
basis for distinguishing the avalanche state referred to
above from generic scale invariance. Although we do not
have a satisfactory answer to this question, we note that
Carlson, Chayes, Grannan, and Swindle (1990a,b) have

and in general the full system (7.64) is expected to have
power-law correlations in space and time. In the special
cases of equilibrium, given by the detailed balance condi-
tion [see Eq. (6.42) above],

(7.67)

analyzed a simplified version of the sandpile model, and
have proven that the dynamics drives the system to a
critical point with diuerging diffusion constant. They
have also verified numerically that the same holds true
for the original sandpile model (7.62) of Bak et al. (1987),
as well as for variants thereof. Carlson et ah. consider
the above effect to be an essential element of self-
organized criticality, in that the average slope of the
sandpile is brought to its critical value by the dynamics.
In the model (7.64) of Hwa and Kardar (1989), on the
other hand, u represents the fluctuations of the height
about an arbitrary steady state, and there is no apparent
mechanism for tuning to criticality. Although this point
of view on the distinction between the avalanche state
and generic scale invariance is appealing to us, it falls
short of a precise definition of the avalanche state, and a
number of specific points still need clarification.

First, the field-theoretic model (7.64) also leads to an
infinite diffusion constant whenever there is
"superdiffusive behavior, " i.e. z &2 in Eq. (7.68) or by
virtue of (7.70), d &4. What is the difference between the
criticality of Carlson et al. (1990a,b), and that encoun-
tered in (7.68) when z & 2?

A second question concerns the tuning of parameters.
In the original sandpile model (7.62), the sand is deposit-
ed at a sufficiently slow rate p, Eq. (7.63), so that
avalanches of arbitrarily large size can take place before
the next grain is dropped. This would correspond to a
noise source in Eq. (7.64) which depends on the dynami-
cal state of the system and has extremely low frequency
correlations. Carlson et al. replace (7.62) and (7.63) by a
model in which the sand is dropped at unit rate, but the
deterministic rearrangements take place according to an
interaction y(j) with power-law dependence on space
y( j)—j . Criticality then only ensues for sufficiently
long-range interactions, i.e. for 0(o. 3, and the critical
exponents are determined by o.. It may thus be argued
that in the model of Carlson et al. there is a nontrivial
dynamic tuning to a critical state (i.e. the infinite
diffusion constant), but it is not "self-organized. " It is
rather a dynamic response to the long-range interaction
assumed in the starting model (o & 3).

Finally, we note that Hwa and Kardar (1992) have sug-
gested a rather different interpretation of the distinction
between the avalanche state and the scale invariant state
described by the field-theoretic model. They propose
that the avalanche state is obtained for the lowest values
of the deposition rate p in the sandpile model (7.63), and
that it corresponds to an ensemble of independent
avalanches. The scale invariant state (7.68) on the other
hand, corresponds to 0Uerlapping avalanches, and it is
found for higher values of p and lower frequencies. Hwa
and Kardar have presented numerical evidence based on
simulations of (7.62) and (7.63) to substantiate their pro-
posal.

From the above discussion we thus arrive at the fol-
lowing theoretical questions: Assuming that we under-
stand the phenomenon of generic scale invariance as de-
scribed by models such as (7.64), can one give a precise
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definition of an avalanche state which is different? If so,
can this state be produced by purely dynamical means,
without assuming long-range interactions in the model,
or the tuning of a parameter? Finally, can generic scale
invariance with or without the avalanche property be ob-
tained without assuming conservation laws or a continu-
ous symmetry? Concerning this last issue it is important
to note that numerical simulations of many models
without conservation laws yield scaling behavior over a
number of decades (Bak et al. , 1989, 1990; Feder and
Feder, 1991; Christensen and Olami, 1992; Olami et al. ,
1992). Although as far as we know all of these models
tune an external parameter analogous to the dropping
rate p, Eq. (7.63), to zero, and some of the simulation re-
sults have been shown to change when larger systems are
investigated (Bennett and Bourzutschky, 1991;
Grassberger and Kantz, 1991), it is still fair to say that
the appearance of large power-law scaling ranges in the
dynamics of these systems remains an important unex-
plained effect. Moreover, tuning a dropping rate or a
current to zero seems more natural than simply setting a
parameter to its (finite) critical value.

(iii) Natural phenomena

The notion of self-organized criticality was motivated
by the observation of power-law distributions in many
static and dynamic natural phenomena (Mandelbrot,
1983). In laboratory experiments, on the other hand,
such as the ones mentioned in subsection VII.F below,
spatiotemporal chaos only rarely exhibits scaling
behavior, and if it does it is the result of parameter tun-
ing. For example, the inertial range of strong turbulence
(subsection VII.E.S) arises because the Reynolds number
is chosen large (R, ' ~ 0). A chaotic state of convection
in a large box, on the other hand, is expected to have ex-
ponentially decaying correlations, except at special pa-
rameter values. Also there are laboratory examples of
avalanche phenomena (soap froth coarsening, Stavans
et al. , 1991; magnetic bubble domains, Babcock and
Westervelt, 1989) where the steady-state distribution
does not involve true power laws. Thus the existence of
fractals and large avalanche phenomena in nature seems
to be the result of some inherent separation of scales in
the systems under consideration, and we do not have
good theoretical or experimental models as yet to fully
understand the origin of these effects.

where k& is the largest Lyapunov exponent and the con-
stant U, which has dimensions of a velocity, is bounded
for L~~. We note that according to Eq. (7.73) a
diverging correlation length is necessarily associated with
a Vanishing Lyapunov exponent, i.e. the disappearance
(or marginality) of chaos. For the case of diffusively cou-
pled logistic maps, Rasmussen and Bohr (1987) originally
proposed the relation g ~ A, , ', but Kaspar and Schuster
(1986) showed that g ~ A,

&

'~ near the onset of chaos; in
either case the result satisfies (7.73).

Similarly, Bak et al. (1990) and Chen et al. (1990) have
evaluated Lyapunov exponents in the self-organized criti-
cal state reached in a number of models, and have found
that orbits in phase space diverge algebraically rather
than exponentially, corresponding to A, &=0. This obser-
vation led the authors to state that "turbulence is not
chaotic, " by which they mean that there are no positive
exponents in the turbulent state since the latter is "criti-
cal" (see also Crutchfield and Kaneko, 1988; Bohr et al.
1992).

It should be noted that in this regard there may be im-
portant differences between deterministic and stochastic
models, but even in the deterministic case it is clear that
the inequality (7.73) cannot be generally valid though
some relation might be found to express dynamic scaling
properties near continuous transitions to chaos. The
problem lies in the meaning of g. If g is "the length
beyond which the motion is basically uncorrelated" as
stated by Bohr (1989), then it is also the correlation
length for regular (nonchaotic) motion. In that case a
counter-example can be constructed by means of a
coupled-map lattice each element of which is chaotic (so
that A, , )0), but which undergoes a phase transition as a
function of coupling from a regime with short-range
correlations to one with Iong-range order. Such a model
was alluded to in the paper of Bohr et al. (1987), and
universal properties of ordering transitions in nonequili-
brium systems were already studied by Grinstein et al.
(1985). A particularly simple deterministic example, due
to Miller and Huse (1993),has the form

u (j, t + 1 ) = ( 1 g)f( u (j, t ) ) + (g /z—)gf( u (j +5, t ) ),

(7.74)

where 5 joins j to its z nearest neighbors, and the map
f (u) is given by

f(u)=3u, 0&u &1/3,
f(u)=2 —3u, 1/3« u &1, (7.75)

c. Correlation-lengthinequalities f (u)= f (
—u), ——1&0 &0.

g& v/A, (7.73)

Bohr and collaborators (Bohr et al. , 1987; Bohr, 1989)
have argued that for deterministic chaotic systems with
short-ranged interactions the correlation length should
always be finite, by virtue of the conjectured inequality

Since f (u) is odd, the system has "Ising symmetry" and
can therefore show Ising-type order for suitable values of
the coupling g. On the other hand, f (u) is a chaotic map
with largest Lyapunov exponent A, &=ln 3=1.1 for g =0,
and the exponent for the coupled system varies smoothly
with g. Miller and Huse have simulated the system (7.74)
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in two dimensions and find that long-range order (g= oo)

appears for g =0.82, at which point k, = 0.53, in viola-
tion of the inequality (7.73). [Note that the maximum ve-
locity v of signals is unity for the system (7.74).] Thus an
inequality such as (7.73) can only be correct if g refers to
spatial correlations of temporally chaotic motions, with
the correlations of the average being subtracted out. It is
not clear to us precisely how to define such a length.
Another counter example was presented by Aran son,
Golomb, and Sompolinsky (1992), who considered a
coupled-map lattice with asymmetric coupling,
representing an open system, in which they showed that
stable long-range coherence can coexist with temporal
chaos.

In discussing the scaling of attractor dimension with
system size we introduced an exponent b, Eq. (7.4), and a
characteristic length gf, Eq. (7.38). It is interesting to
ask whether exact inequalities could be obtained for b
and gf. Analogous results are known to exist for the in-

variant measure associated with the Navier-Stokes or
Ginzburg-Landau equations (see Eckmann and Ruelle,
1985; Temam, 1989). In the absence of exact information
we may conjecture the exponent inequality

b~d .

3. Defect-mediated turbulence

An interesting proposal for understanding spatiotem-
poral chaos is that its onset is due to the spontaneous ap-
pearance of defects and that the macroscopic behavior
can be modeled by a system of interacting defects, with
or without a stochastic force. For example in the
Kuramoto Sivashinsky system, Shraiman (1987) has ar-
gued that the dominant excitations are viscoelastic waves
which collide to form space-time dislocations. From this
picture it follows that for a finite system of length L the
chaos is transient but the relaxation time to the laminar
(periodic) state grows exponentially with I., a result that
Shraiman verified in a numerical calculation, albeit with
rather small systems (L/2' 13). Another example is
the defect state identified in the one-dimensional complex
Ginzburg-Landau model by Shraiman et al. (1992) (see
subsection VII.D.1).

The chaotic state of the two-dimensional complex
Ginzburg-Landau model can also be viewed as an ensem-
ble of defects. It has been proposed (Occelli et al. , 1983;
Walgraef et al. , 1983) that the spiral excitations form a
vortex gas and undergo a phase transition of the
Kosterlitz-Thouless type, as found in two-dimensional
superfluids or magnets (Kosterlitz and Thouless, 1978).
Although some aspects of this picture may be valid, it
should be remembered that the Kosterlitz-Thouless tran-
sition comes from a balance between the energy and en-
tropy of the vortex gas, for which thermal noise (see Sec.
VI.D) plays an essential role. For the systems under con-
sideration here there may be chaotic degrees of freedom
acting on the defects (e,g. via phase turbulence), but the

chaos does not necessarily have white noise character
and we see no reason why the critical behavior should be
the same as in the thermodynamic case.

Eckmann and Procaccia (1991) (see also Eckmann
et al. , 1991)have attempted to relate their results on spa-
tial chaos of stationary solutions (see subsection VII.E.6
below) to the appearance of defect-mediated turbulence.
They conjecture that spatiaHy chaotic states are impor-
tant in the dynamics, in that the typical time evolution
will approach such states on their stable manifold and
remain close for some time. We are not aware of any
concrete signature of this phenomenon in numerical
simulations or in experiments. For further work on de-
fect mediated chaos see Elphick et al. (1988, 1990a,b,
1991).

4. Mean-field dynamics

N

B,P;=co;+—g sin(P, —P.),
j=1

(7.77)

N

B,P; = —h; sin(P, —
/3,. )+—g (P, —P )+F,

j=1
(7.78)

respectively. Thus, each mode in (7.78), for example, in-
teracts with the other modes only via the mean field

p(t)=X ' g p;(t), (7.79)

and the primary di%culty in solving the dynamical model
is to enforce the self-consistency condition (7.79). For
the collective transport model (7.78), the noninteracting
system with J=0 is a simple driven pendulum

B,P= —h sinP+F, (7.80)

whose average frequency 0, Eq. (7.61), has a bifurcation
at a particular value of F, such that

Q=O, F &F, ,

Q=QO [(F F, )/F, ]~, F)F—, ,

(7.81a)

(7.81b)

with g = 1/2. In the interacting case J W 0, Fisher

A simplified limit of systems with large numbers of de-
grees of freedom is obtained when each mode interacts
with all the others. This case, which we refer to as the
"mean-field" limit, has no spatial dependence or patterns,
but it presents some of the mathematical properties of
large systems, such as the possibility of extensive chaos.
One might also hope to expand about this limit to treat
more realistic systems. The limit of a long-range interac-
tion can be considered for most of the models introduced
previously, since these are made up of interacting ele-
ments (Houlrik et al. , 1990; Kaneko, 1990c; Strogatz
et al. , 1989; Golomb et al. , 1992). For example the sys-
tems (7.59) and (7.60) with quenched randomness become
(Fisher, 1985; Kuramoto and Nishikawa, 1987).
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(1985) has shown that the mean-field system displays per-
fect locking and has a bifurcation of the form (7.81) but
with

/=3/2 . (7.82)

au, = —u, + y J,, g(u, ), (7.83a)

with

This example shows that even an elementary Hopf bifur-
cation changes its character when it involves an infinite
number of degrees of freedom.

An interesting mean-field model has been analyzed by
Sompolinsky, Crisanti and Sommers (1988). It consists of
X real degrees of freedom Iu;(t) I i = 1, . . . , K, coupled
together by a quenched random interaction

sion (e.g. d ~ 5) appear to show many features associated
with mean-field dynamics rather than the spatiotemporal
complexity discussed above for systems with d ~ 2.
These authors have obtained evidence that in d =4 and 5,
for example, the coupled map based on (7.55) executes
coherent collective motion over distances much larger
than the interaction range (say 10—15 times larger).
These observations have been in part confirmed by Gallas
et al. (1991) who carried out simulations on larger sys-
tems, but obtained conQicting evidence on the stability of
the periodic and quasiperiodic states. Of course, it is
dificult to simulate systems of large linear size in high di-
mension, but there appears to be a qualitative difference
between low and high dimension, which merits further
study.

g(u) =tanh(yu ), (7.83b)
5. Strong turbulence

a nonlinear gain function, and a random coupling given
by

J;.; = 0, (J, ) =0, (J;.Jk~) =5,k5.~ J /N . (7.83c)

In the mean-field limit, 2V~ ao, the dynamics can be re-
duced at long times to a single self-consistent equation

a, u = —u+g(t), (7.84a)

with

(g(t)g(t +r) ) =J'C(r), (7.84b)

8, u =G [u(t), u (t —r)], (7.85)

where G(u, v) is some simple function. The system is
strictly speaking infinite dimensional for any delay ~, in
the same sense as for a partial differential equation on a
finite interval, since in both cases the models can only be
integrated exactly with initial data given by a continuous
function, here u(t) for to & t & to+r, and any to. The di-
mension of the attractor, on the other hand, is expected
to be of order r so the system (7.85) is only large in the
sense of subsection VII.A.2 for ~~Do. This case has
been studied by Farmer (1982), who found a Lyapunov
dimension roughly linear in ~, though interestingly the
entropy, Eq. (7.19), remains constant as r increases (see
Figs. 12 and 13 of Farmer, 1982).

It has been noticed by Chate and Manneville (1991)
that coupled-map lattices in high but not infinite dimen-

and C(r) can be calculated by solving a second-order ode.
The interesting result obtained by the authors is that for
yJ( 1 the dynamics leads to a fixed point, but for yJ & 1

the system becomes chaotic. The largest Lyapunov ex-
ponent has also been calculated, using an analogy to the
spectrum of the Schrodinger equation for a particle in a
potential. The authors have also investigated the case of
large but finite X numerically, and they find intermediate
periodic phases for yJ=0 (1).

A model that has some features of mean-field dynamics
is the differential-delay equation

Let us consider fIuid Qow above the onset of chaos.
The short-scale behavior of correlations (8 «PE) de-

pends critically on the control parameter R which here is
the Reynolds number R, =L v /v, where v is a typical
velocity and v is the kinematic viscosity. For R, not too
large, the dissipation scale P~ introduced in subsection
VII.A. 1 is of the same order as the excitation scale EE, so
all modes with 8 well below EE are dissipated. For sys-
tems such as the Navier-Stokes equation the dissipation
scale shrinks. with growing control parameter and the
short-distance behavior is highly nontrivial (see, e.g. , Mo-
nin and Yaglom 1975; Frisch and Orszag, 1990; Nelkin,
1992). The phenomenological theory of isotropic tur-
bulence (Kolmogorov, 1941) introduces in addition to the
excitation scale PE a rate of energy dissipation c,. The
main assumption of the theory is that the velocity corre-
lation function depends on this single parameter K, which
governs (i) the rate at which energy is injected at large
scales EE, (ii) the (constant) rate at which energy is
transferred down to smaller scales by the nonlinear terms
in the Navier-Stokes equation (the "cascade"), and (iii)
the rate at which energy is dissipated at the smallest
scales PD. At large Reynolds number the lengths PE
and Pi, are well separated, and scaling is assumed to
occur in the inertial sub-range

PE ))8 »8D (7.86)

and the dissipation scale PD is obtained from the condi-
tion that the Reynolds number corresponding to that
scale should be unity, which yields

(7.88)

Thus the condition for a substantial inertiaI range
FD &(EE is just R, »1. The equal-time velocity corre-

The Kolmogorov theory follows from the above physical
assumptions and dimensional analysis. The Reynolds
number is given by

(7.87)
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lation function C(q) is conventionally written in terms of
the energy spectrum

E(q) = q 'C(q),

which in the Kolmogorov theory has the form

E(q)- e q

(7.89)

(7.90)

in the inertial range. Since strong turbulence theory
focuses primarily on this range of scales, one generally
assumes L =PE, and there is no correlation length in the
problem as long as scaling strictly applies.

Recent modifications of Kolmogorov's picture (see
Frisch and Orszag, 1990; Nelkin, 1992) recognize the ex-
istence of coherent structures within the inertial range,
but since these can exist on all scales there is still no
well-defined correlation length. Indeed, the statistical
theory retains the notion of scaling in the inertial range,
though it is no longer assumed that the rate of energy
transfer is constant throughout the cascade. Thus the
scaling exponents are unknown quantities which depend
on the order of the correlation function. Specifically, we
can define the pth moment of the velocity u

M~(x) = ( [u(x ) —u (0)]~), (7.91)

which in real space has the short-distance scaling ex-
ponent

M (x)-x ~ .P
P (7.92)

In the Kolmogorov theory Eq. (7.90) implies P2=2/3,
and it can be shown that for general p the Kolmogorov
theory corresponds to

P~ =p/3 . (7.93)

The presumed failure of the Kolmogorov theory has been
parametrized by the nontrivial dependence of p on the
index p. This dependence is quite analogous to the
dependence of the Renyi dimension of a strange attractor
d~ on its index [Eq. (7.20)], and indeed the multifractal
nature of strong turbulence was posited before strange at-
tractors had been investigated (Mandelbrot, 1974). For
dynamical systems what is studied is the fractal nature of
the probability measure of a point in phase space,
whereas turbulence focuses on the fractal distribution of
equal-time velocity (or vorticity) fluctuations in real
three-dimensional space. Fractal structure depends on
the existence of a scaling range, which arises from the
presence of arbitrarily low frequencies in the spectrum of
chaotic dynamical systems, or from the condition R, »1
required for the existence of an inertial range in space for
strong turbulence in Auids. An attempt has been made to
extend the analysis of turbulent correlations beyond the
inertial range, to the dissipative range 8 PD. The
correlation functions were found to obey "multiscaling, "
which amounts to scaling with logarithmic variables,
rather than power laws (Wu et a/. , 1990). As shown by
Jensen et al. (1991) multiscaling is a natural, though ap-
proximate, consequence of the assumption of a lower

cutoff for probabilities in a multifractal. The description
of strong turbulence in terms of multifractals is an active
area of research (see Meneveau and Sreenivasan, 1987;
McCauley, 1989; Meneveau et al. , 1990; Sreenivasan,
1991). For an opposing point of view, however, see Mill-
er and Dimotakis (1991).

It should be noted that, contrary to the equal-time ve-
locity correlations in space which are expressible entirely
in terms of E within the Kolmogorov theory, the velocity
correlations in time at a point in space have been suggest-
ed to be of the form

E ( )
—2/3 —2/3 —5/3 a) (u /PD, (7.94)

where u = [(u ) ]'/ is the mean-square velocity which is
dominated by large scales (Nelkin and Tabor, 1990).
Thus even within the Kolmogorov theory it is important
to distinguish which correlation functions can be ex-
pressed universally in terms of the cascade and which
ones involve the nonuniversal large scales (Chen et al. ,
1989).

As mentioned above, there have been many attempts
to apply renormalization-group techniques to strong tur-
bulence (see Dwoyer et al. , 1985). Following up on early
work of De Dominicis and Martin (1979), Yakhot and
Orszag (1986) have proposed a renormalization-group e
expansion for the Navier-Stokes equation with additive
correlated noise Do(q, co)-q ' [see Eq. (7.58)]. The
theory displays the Kolmogorov energy spectrum (7.90)
for c.=4, and a one-loop calculation of the effective
viscosity to linear order in c. yields a universal amplitude
(known as the Kolmogorov constant), as well as other
similar amplitudes, in good agreement with experiment.
The success of this procedure is somewhat puzzling and
the program has been criticized by a number of workers
(Kraichnan, 1987; Bhattacharjee, 1988b).

6. Spatial chaos

A number of authors have focused on the purely spa-
tial aspects of nonequilibrium systems by analyzing the
disorder that exists in the dependence of stationary solu-
tions on the coordinate x. For one-dimensional systems
in particular, the stationarity condition for Eq. (7.23)

G[u, B„u,B u, . . . ]=0, (7.95)

is an ordinary differential equation which can formally be
considered as a dynamical system with pseudo-time x as
in Sec. V.B. Diffusive systems are then frequently Hamil-
tonian in character and they display the chaotic proper-
ties of Hamiltonian dynamical systems (KAM surfaces,
Arnol'd diffusion, etc.; see, e.g., Guckenheimer and
Holmes, 1983). The corrections to this behavior arising
either from non-Hamiltonian terms or from the effects of
higher dimensions in the spatial coordinate x, have been
considered by Coullet and Elphick (1987), Coullet et al.
(1991),and by Eckmann and Procaccia (1991). Although
this type of analysis can often be pushed quite far it must
be remembered that a solution of the stationarity condi-

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



M. C. Cross and P. C. Hohenberg: 'Pattern formation outside of equilibrium 961

tion (7.95) need not have any dynamical significance in
terms of the original system (7.23). Indeed, a stationary
state is only physically important if it is stable (or at least
long-lived) and if it is reachable, i.e. if its basin of attrac-
tion includes physically relevant states. Such considera-
tions have often been overlooked in treatments of spatial
chaos.

An example of the application of ideas from dynamical
systems theory to spatial chaos arises in the system of in-
teracting pulses in the Fitz-Hugh-Nagumo model (Sec.
V.B.3.b.ii). Elphick et al. (1988) have derived the
dynamical equation for the position g,. of the ith defect

B,g',. =Ciexp[ —a' t(g;+i gt )—] cos[qi(g;+i —
g; ) + P]

U2

/

/

U

Pulse solution

/
/

/
/

+C~exp[ —a~(g; —
g, , )] . (7.96)

To look for time independent solutions they set B,g; =0
and find

cos[q, (g, +, —g;) + P]

C2 exp[ —a2(g; —g;, ) ]

C, exp[ —a.,(g;+, —g; )]
(7.97)

This equation will have many solutions, with g;+i —g; of
order 5 say, but differing by multiples of 2~/q&, such
solutions may be chosen to be spatially chaotic and they
exist providing the right-hand side of Eq. (7.97) is smaller
than unity. In the large separation limit, 6))1, this con-
dition reduces to a condition on the fixed-point eigenval-
ues

Kp) K (7.98)

F. Experimental studies

In this section we wish to review briefly experimental
work aimed at understanding the large-scale properties of
chaotic systems, and to suggest some possible directions
for research. Hydrodynamic experiments involve either
visualization techniques (shadowgraph) or point measure-
ments of velocity or temperature. Roughly speaking the
large-scale properties begin to appear when
I, »max(PE, Z~, g), say L/m xa(Pz, P Dg) =50-100.
For experiments in hydrodynamic systems, e.g. Taylor-
Couette or Rayleigh-Benard Qows or parametric waves,
this implies an aspect ratio 50—100, and R not too near

As we have seen in Sec. V.B.3.b.ii, a single pulse corre-
sponds to a homoclinic orbit leaving the fixed point along
the eigenvector corresponding to the real eigenvalue ~2
and returning along a combination of the eigenvectors
with complex eigenvalues a'i + iq, (Fig. 31). In dynami-
cal systems theory it has-been proven that in this situa-
tion there are many nearby chaotic orbits, providing a
condition on the eigenvalues is satisfied, which turns out
to be precisely (7.98). This is known as the Sil'nikov
mechanism for chaos (Guckenheimer and Holmes, 1983),
and we see that it has a direct manifestation in the spa-
tially chaotic array of pulses.

FIG. 31. Trajectory of a pulse solution for Fitz-Hugh-Nagumo
model (5.170) in the u, (g), u ', (g), u2(g) phase space. Dashed
line corresponds to a single pulse solution leaving the linear
fixed point at the origin along the unstable direction corre-
sponding to eigenvalue ~2, and returning to the linear fixed
point along a direction in the plane spanned by the pair of
eigenvectors corresponding to the complex eigenvalues ~,+iq, .
Nearby trajectories wi11 be chaotic, and lead to spatial chaos in
the pde (5.170).

threshold. (If there are large coherent structures, i.e.
g » Zz, ED, then the requirements could be more
stringent. ) In general, such experiments are certainly
feasible and a number have been undertaken, starting
with the pioneering studies of Ahlers and Behringer
(1978) on large aspect-ratio Rayleigh-Benard convection.
More recent work on this system has focused on quasi
one-dimensional geometries (Ciliberto and Bigazzi, 1988;
Berge, 1989; Daviaud et al. , 1989). Some other experi-
mental systems where large geometries can be obtained
are electrohydrodynamic convection in nematics (Nasuno
and Sawada, 1989; Rehberg et al. , 1989a,b; Braun et al. ,
1991), parametric waves (Tuffilaro et al. , 1989), Taylor-
Couette liow (Hegseth et al. , 1989), flow between two
cylinders (Rabaud et al. , 1989) and convection in binary
Iluid mixtures (Steinberg et al. , 1989; Kolodner et al. ,
1990), or convection under rotation (Bodenschatz et al. ,
1992).

We shall describe some of these experiments as part of
the discussion of specific systems in the following sec-
tions, but we can already state that so far only sketchy in-
formation is available concerning long-range correlations
in space and time. It is our hope that more studies of
these questions will be undertaken.

In the case of strong turbulence, experiments have pri-
marily focused on point measurements of velocity or tem-
perature, though some visualizations of the overall Aow
and correlation function measurements have also been
undertaken (Croldburg et al. , 1989; Sreenivasan, 1991).
For open systems the Taylor hypothesis allows conver-
sion of temporal information at a point to spatial infor-
mation, from which the scaling properties discussed
above have been inferred (see Anselmet et al. , 1984).
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The validity of this hypothesis has been tested under
some circumstances, but its applicability to the study of
large-scale correlations is not established. Moreover, for
strong turbulence the large range of scales in the inertial
subrange (7.86) provides many challenges, but it might
also be interesting to study correlations on scales outside
of this range, in particular for scales longer than Pz (Wu
and Libchaber, 1992). Is there a response on long scales
E))PE coming from the cascade? In the spirit of the
stochastic approach discussed for the Kuramoto-
Sivashinsky model in subsection VII.E.1, one might say
that this case represents a system with "infinitely
colored" noise since the noise correlations extend over a
large range.

An interesting suggestion for an experimental probe of
turbulence via ultrasound was recently made by Lund
and Rojas (1989). The method has been implemented by
Baudet et al. (1991).

VIII. RAYLEIGH-BENARD CONVECTION

A. General features

Investigations of Rayleigh-Benard convection have
played a vital role in developing ideas of pattern forma-
tion in nonequilibrium systems, and this system is often
used as the canonical example. It has a number of ad-
vantages over other systems: first the basic equations un-
derlying the phenomena are well known, and second
there is a close connection between theory and experi-
ment which has permitted detailed tests of many theoret-
ical concepts. There are, of course, approximations in-
volved in arriving at a tractable theory but these are con-
trolled and well understood and can be improved upon if
necessary. The experiments are also well controlled: the
apparatus construction depends mainly on geometrical
considerations (liat plates, etc.) and the maintenance of
uniform temperatures. The thermal properties are most
precisely controllable in low temperature experiments us-
ing helium as the fluid. However flow visualization has
not been carried out at these temperatures and so the
spatial structure, our main interest here, has not been
determined. We refer to Behringer (1985) for a review of
this work. For general convection experiments the value
of the control parameter is determined by fixing the tem-
perature. The spatial structures are conveniently
displayed by noninvasive Qow visualization techniques on
short time scales compared with typical characteristic
times, for the moderate Rayleigh numbers which we are
primarily concerned with. In addition, very precise
quantitative measurements are possible, involving the in-
tegrated heat flux across the cell, as well as point quanti-
ties such as local How velocities (laser Doppler velo-
cimetry) or the local temperature (using dyes or bolome-
ters at the plates).

There are of course some disadvantages. The intrinsic
time and length scales are rather long, at least in liquids.

In principle both can be reduced by reducing the separa-
tion of the plates, but since the control parameter varies
as the third power of this separation and should be accu-
rately uniform across the cell, there are practical limits to
this approach. This restriction becomes particularly
severe for the slow evolution of the spatial structure in
large systems, where characteristic time scales may be on
the order of weeks. Another complication of convection
is that the easily measured quantities are nonlocal func-
tions of the basic variables, such as averages over the
depth of the cell, or nonlinear averages across the cell as
in the lensing effect used in shadowgraph visualizations
(Croquette, 1989). Careful design of the experiment and
appropriate calibration of the probes does however allevi-
ate these problems and allows a determination of abso-
lute intensities, at least in principle.

In this section we will review more quantitatively the
basic features of Rayleigh-Benard convection introduced
qualitatively in Sec. II.A. Since our discussion is by no
means complete we refer the reader to other reviews for
more details; see, for example, Koschmieder (1974, 1993),
Palm (1975), Normand et al. (1977), Busse (1978, 1981),
Ahlers (1989, 1991),Croquette (1989), Manneville (1990),
Getling (1991), Newell et al. (1993). Our primary em-
phasis will be on spatial patterns and the comparison be-
tween experiment and theory.

1. Basic equations

The microscopic equations describing Rayleigh-Benard
convection are the Navier-Stokes equation for the veloci-
ty field (Landau and Lifshitz, 1959)

(a, + u V) (p u)= —VP+V o' —pgz,
with

~„=q[a,u, +a, u, —-', s„a.,u, t+ gn, ,a,u, ,

mass conservation

(8.1a)

(8.1b)

a, p+V. (pu)=0,
and the conservation law for heat

(8.1c)

(a, +u V) (C~ T) =V.(KV T), (8.1d)

where we have neglected the heat produced by the
viscous dissipation in the last equation. The variables in
Eqs. (8.1) are the density p( x, t ), the velocity
u(x, t) =(u, U, w), the pressure (Ptx) and the temperature
T(x, t), and the parameters are the shear viscosity il, the
bulk viscosity g, the constant-pressure specific heat C,
the thermal conductivity K, and the acceleration of grav-
ity g. To close the equations the dependence of the pa-
rameters il, g, a. on temperature and density, and the
equation of state P(p, T) must be known. The approxi-
mations leading to these equations are well understood
and essentially rest on the large ratio between the length
scales of the spatial variations and the mean free path of
the constituent molecules. As mentioned in subsection
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VIII.D.1.c below, extra residual effects of the small-scale
degrees of freedom appear as stochastic forcing of Eqs.
(8.1) with an intensity depending on temperature and
given by the fluctuation dissipation theorem (Landau and
Lifshitz, 1959; Graham, 1974; Swift and Hohenberg,
1977). Due to simple averaging these terms are small on

the scales typical of convection, but they may conceiv-
ably be important at bifurcations such as the onset of
convection, where the system is very sensitive to small
effects.

We are interested in the situation where a temperature
difference 5T is maintained between two horizontal
plates. In general the parameters g, C, and K will de-
pend on temperature and density and therefore position,
and very complicated equations result. The "Boussinesq
approximation" (see Normand et (d , 197.7; Busse, 1978)
includes these temperature dependences only in the all
important buoyancy term

Experimental realizations approximate this condition
very well by making the plate conductivity of order 10
to 10 times that of the Quid. At a rigid boundary all
components of the velocity are zero

u=O, 1Z=+
2

(8.4c)

I.=L/d, (8.5)

where L, is a lateral dimension of the container, e.g. the
radius for a cylindrical container. For later reference we
also define the idealized free-slip boundary conditions,
which lead to considerable simplification in the analysis
of the instability

We will take these conditions as defining the ideal sys-
tem. In practice of course sidewalls leading to lateral
boundary conditions must also be present. This defines
the aspect ratio or dimensionless lateral size

p=p [1 —a (T T)]— (8.2) 1uq=m =0, z =+ d
2

(8.6)

(with p, T reference values and a the thermal expansion
coefficient), and otherwise assumes an incompressible
Quid. The Oberbeck-Boussinesq equations are

((), + u V) u= V(Plp)—+vV u+ga Tz, (8.3a)

((), + u V) T=i(V T,
V-u=O

(8.3b)

(8.3c)

T(z = —d/2)=T„+AT,
T(z = d /2) =T„.

(8.4a)

(8.4b)

with v=illp the viscous diffusivity (kinematic viscosity)
and i(=IV /C the thermal diffusivity. Notice that now the
pressure term occurs only in the equation of motion for
the velocity u, and no longer implicitly through the
dependence of density on pressure via the equation of
state. The incompressibility condition (8.3c) effectively
replaces the equation of state, and indeed taking the
divergence of (8.3a) and using (8.3c) we obtain a Poisson
equation for the pressure, which can then be eliminated
in favor of u and T. (We have dropped the bars signify-
ing reference quantities on these equations and have also
absorbed some constants into the pressure term. ) The ap-
proximations made in going from Eqs. (8.1) to (8.3) are
quantitatively justified for most fluids (Busse, 1967, 1978).
However Eqs. (8.3) turn out to have an additional inver-
sion symmetry over Eqs. (8.1) in the Rayleigh-Benard
geometry, so that small "non-Boussinesq" symmetry-
breaking terms may be qualitatively important in certain
regions of parameter space. An example is the roll-
hexagon competition discussed in subsection VIII.F.3
below.

The dynamical equations (8.3) must be supplemented
by boundary conditions on the Qow variables. The ideal
system is considered to be infinite in lateral extent, with
perfectly conducting top and bottom plates so that the
temperature may be assumed fixed

where u~ and w are the 2D horizontal and vertical com-
ponents of u, respectively.

In the absence of Qow in the ideal system we have the
conducting solution

T= To(z) =T„+bT (1/2 —z ld), (8.7)

and also P =Pa(z) to balance the buoyancy force. To
study deviations from the conducting solution it is con-
venient to subtract off this reference temperature and
pressure

8= T To(z), —

p=P Po(z) . —
(8.8a)

(8.8b)

Finally, dimensionless variables are introduced. We shall
use the characteristic thermal difFusion time d /i( across
the depth of the cell as the time unit, d as the length unit
and the Rayleigh number

ag ATd
(8.9)

(7 '((), + u V) u= —Vp+Oz+V u,
(a, + u. V) e=~~+V'e,
V. U=O

U=O=O, Z =+
2

(8.10a)

(8.10b)

(8.10c)

(8.10d)

where again some pure gradient terms have been ab-
sorbed in the pressure. These equations depend on two
parameters: the dimensionless driving strength R, the
Rayleigh number, and the ratio of thermal and viscous

as the dimensionless temperature difference. The dimen-
sionless heat current can be expressed in terms of the
Nusselt number JV defined as the ratio of the total heat
current to the conducted heat current at the same AT.
Equations (8.3) and (8.4) then become
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diffusivities

o.=v/v, (8.10e)

known as the Prandtl number. Notice that o. gives the
relative importance of time derivatives and nonlinearities
for the temperature vs. the velocity. Equations (8.10) are
the starting point for most theoretical work on convec-
tion. It should be reemphasized that the approximations
leading to these equations are well understood (and im-
proved ones can be made if necessary): they provide a
secure basis for theory.

Theoretical work on this problem has been in three
phases. The linear stability analysis was the focus of at-
tention from the work of Rayleigh (1916) on the free-slip
model, to the calculation of Pellew and Southwell (1940)
on the realistic model defined by Eqs. (8.4). This work is
described in detail in Chandrasekhar (1961). The ideal
nonlinear states and their stability to small perturbations
were studied by Busse and co-workers in the 1960s and
1970s (see Busse, 1967a, 1978). [It should be noted that
the calculation of the nonlinear states in the appendix of
Chandrasekhar (1961) is incorrect. ] More recently atten-
tion has shifted to the more complex states we have
called "real patterns, " and the methods of amplitude and
phase equations, as well as the study of models.

2. Linear instability and ideal solutions

The linear instability of the conducting solution
(u = 0 = 0) is fairly straightforward. It was proven (see
Joseph, 1976) that in the ideal system it is stationary i.e.
type I,. This considerably simplifies the calculation. It is
also then clear that the Prandtl number drops out of the
calculation of the critical Rayleigh number, the critical
wave vector (which must therefore be of order d ' with
no dependence on the Iluid parameters) and the onset
solution at threshold. It is straightforward to look for
onset solutions varying as e'~ and these can be found in
essentially closed form (see the Appendix of Manneville,
1990). The critical Rayleigh number is

R, = 1707.76,
at a critical wave vector

(8.11a)

qp =3.117 (8.11b)

Note that qo is very close to m., so that the roll size (half-
wavelength) is very close to the thickness.

Theoretical work on the nonlinear states in a perturba-
tion expansion near threshold was initiated by Gor'kov
(1958) and Malkus and Veronis (1958) for convection and
by Stuart (1958) for the Taylor-Couette system. It was
subsequently developed systematically by Schluter,
Lortz, and Busse (1965) who studied ideal roll solutions
and also nonlinear superpositions of rolls in the form of
squares, hexagons, and other regular patterns (Sec.
IV.A. 1). They calculated the interaction parameter
equivalent to Q(8) of Eq. (4.32) as a function of Prandtl

number and found that rolls are the stable solution near
threshold in the ideal system, for all Prandtl numbers.
As we have seen, small effects that break the symmetry
(u, 8)—+( —u, —0) render the transition subcritical by
strongly coupling to the hexagonal solution.

In a long series of papers Busse and co-workers numer-
ically solved for the nonlinear solutions using a truncated
(Galerkin) expansion (see Normand et a/. , 1977; Busse,
1978)

U =g U „cos(mqx ) u„(z), (8.12)

with u„(z)some convenient basis functions satisfying the
Quid boundary conditions. The parameters U „(R,o)
are determined by requiring the Quid equations to be
satisfied when projected onto the mn basis vectors.

3. Stability balloon

The stability analysis of these ideal nonlinear solutions
is formulated as a Bloch wave analysis, i.e. the perturba-
tion takes the form

5u(x, y, z;Q)=e " ' 5U (x,z;Q) e
i(Q x+Q y) ~ (Q)&

(8.13)

where 6U is periodic in x with wave number q and the
Bloch wave vector Q can be restricted to the range

(8.14)

without loss of generality. (The growth rate cr~ should
not be confused with the Prandtl number o..) The insta-
bilities can be characterized further by the symmetries of
6U under parity operations. Busse and co-workers cal-
culated the o~(Q) using the Galerkin expansion (8.12).
The stability analysis is converted into an mn X mn ma-
trix eigenvalue problem for each q and Q, and then the
positive (unstable) o (Q) are maximized as a function of
Q to give the most unstable wave vector and the stability
boundaries. This process must be repeated for each wave
vector q, and each Rayleigh number and Prandtl number
desired. There are many possible instabilities with
different symmetries. Based on their visual appearance
Busse gave colorful names to the various instabilities (e.g.
knot, oscillatory, skew-varicose, cross-roll) and calculat-
ed the stability boundaries. The region of (q, R, o) space
of stable solutions bounded by these instabilities forms
the "Busse balloon" (Fig. 32), which has provided enor-
mous insight into the dynamics of convection, and makes
this the best characterized nonlinear pattern forming sys-
tem. A great deal of the detailed physics of the Quid-heat
system is contained in this stability diagram, and it is
often possible to arrive at an intuitive understanding of
the various instability mechanisms (shear layer instabili-
ties at low Prandtl numbers, thermal boundary layer in-
stabilities at high Prandtl numbers, etc.). However since
we are here mainly interested in how well the system is
characterized as a canonical example, we will not discuss
these details. The reader is referred to the review by
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Fg+. 32. Stability diagram for ideal roll states in Rayleigh-Benard convection (a) Prandtl number o =0.71; (b) o.=7.0. Diagram
shows range of Rayleigh number p and wave vector q for which the ideal roll states are stable (hatched regions), as well as the various
instabilities of the roll states: E Eckhaus; Z zig-zag; SV skew-varicose; K knot; 0 oscillatory; CR cross-roll. The dashed line labeled

is the neutral stability line giving the instability of the conducting state to a convection state at wave vector q. (Adapted from
Busse and Whitehead, 1971, and Busse and Clever, 1979.)

Busse (1978), to the recent work of Clever and Busse
(1987, 1989), and to a more pedagogical discussion by
Manneville (1990) for further reading.

A. precise experimental test of the predicted stability
diagram is not easy to carry out since the ideal geometry
of the theory cannot be realized, but the predictions are
borne out at least semiquantitatively, both in the approxi-
mate location of the stability boundaries and in the na-
ture of each instability (i.e. the form of the eigenvectors).
There are two classes of experiments. Busse and White-
head (1971) used very large aspect ratio systems with a
transient ideal state established by thermal imprinting.
The instabilities were then investigated in the time win-
dow after the nonlinear state was established but before
the influences of the lateral boundaries were felt over the
interior of the system. These very large systems are
probably not spatially homogeneous, and as a result the

parameters at which the instabilities occur are modified,
as is also the long-time development of the system (e.g.
whether the instability leads to a restabilization of the
pattern at a new wave vector within the stable band, or
leads to persistent time dependence).

A second class of experiments has studied the instabili-
ties in smaller systems by investigating well established
steady-state patterns, but both the patterns and the per-
turbations may be quite strongly influenced by the lateral
boundaries. Gollub, McCarriar, and Steinman (1982)
worked with Prandtl number 2.5 and aspect ratios 20—30,
to study the onset of time dependence in spatially disor-
dered states. Kolodner, Walden, Passner, and Surko
(1986) studied the evolution of simple states, but in quite
small geometries (aspect ratio 10 X 5) at Prandtl num-
bers between 2 and 20 (see also Nasuno et al. , 1988).
Croquette (1989) has reviewed work at low Prandtl num-
bers in aspect ratios (7—20). In general the conclusion
from this work is that the behavior is qualitatively con-

sistent with the theoretical predictions but with consider-
able shifts in the stability boundaries due to finite
geometry, as might be expected. Typically the instabili-
ties are shifted to higher values of the Rayleigh number,
with the exception of the cross-roll instability which is
often driven downward by the side walls parallel to the
dominant roll direction.

4. Amplitude equations

The convection system, albeit with artificial boundary
conditions (see below), is the one in which the spatially
dependent amplitude equation was first introduced in the
study of fluid instabilities (Newell and Whitehead, 1969;
Segel, 1969). As we have seen, ironically this "simple"
model is actually a situation where the standard ampli-
tude equation breaks down (except in the limit of infinite
Prandtl number), due to mean flow effects that are un-
damped by the free-slip boundaries (see below).

For the experimentally realized rigid boundaries the
lowest-order amplitude equation does take the general
form for a type I, instability: its form is therefore dictated
by general symmetry arguments. For a single set of rolls
nearly parallel to the y axis the equation for the complex
amplitude A (x, t) is (Cross, 1980)

(8.15)

Given this form, individual parameters may be picked
out for evaluation by comparison with other calculations
(Wesfreid et al. , 1978). For example ro ' is simply
Ocr(qo )/Bs, the derivative of the linear growth rate at the
critical wave number with respect to the reduced Ray-
leigh number (Behringer and Ahlers, 1977). Similarly,
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the full Prandtl number dependence of gp, for a given
normalization of the amplitude in terms of the Auid vari-
ables, may be evaluated from the work of Schliiter et al.
(1965), who considered spatially independent amplitudes.
A systematic derivation of Eq. (8.15) for the rigid bound-
ary case was given by Cross (1980) using mode projection
techniques. In Appendix A we derive the amplitude
equation using the original multiple scales perturbation
technique of Newell and Whitehead and Segel, going far
enough to illustrate the application of the method to this
general (nonseparable) example, but without displaying
the complicated algebra necessary to evaluate the
coefficients.

The parameters appearing in Eq. (8.15) are found to be

19.65 o.

cr + 0.5117

go=0. 148,

(8.16a)

(8.16b)

and

gp =0.6995 —0.0047o. ' + 0.0083o (8.16c)

where we have normalized the amplitude A so that the
convective heat transport per unit area is

(JV—1 ) ( R /R, ) = ( w 8 ) /R, =
i A

~
(8.17)

(8.18a)

(8.18b)

where the Prandtl number dependence is given by

g (cos8) = A (cos8)+B(cos8)o. ' + C(cos8)cr

(8.18c)

and A, B,C can be interpolated from Table 1 of Cross
(1980). (There A is called go, B is g „andC is g 2.)

From these results, of course, the boundaries of the
stability balloon may be calculated for small E [i.e.
q

—qo=0(c, ' )], reproducing the results of the numeri-
cal Galerkin calculations in this limit. Interestingly, for
o. ~ 1 the "cross-roll" instability —the instability of one
set of rolls to the growth of another set at some angle t9—preempts the universal Eckhaus line as the bounding
instability for q & Qp ~ The universal transverse zigzag in-
stability qz=qo at O(E'~ ) forms the boundary on the
small wave-number side.

It should be remarked that in spite of what may appear
from Eqs. (8.15) and (8.16) it turns out that the amplitude

where JV is the Nusselt number and the bracket denotes a
spatial average. For the situation of superimposed rolls
the interaction parameter Q(8) of Eq. (4.32) was evalu-
ated by Cross (1980) from the calculations of Schliiter
et al. (1965). It is convenient to write Q(8) in terms of
another function g (cos8) (which also depends on
Prandtl number )

2g (cos8)+2g ( —cos8)+2g (
—1)

g (1)+2g (
—1)

equation is quite smooth as o.—+0, once the viscous
timescale d /v rather than the thermal timescale d /~ is
used to render the quid equations dimensionless. Even in
this limit complications such as mean Aow effects or the
onset of the oscillatory instability only appear at higher
order in c.

For one-dimensional patterns in a geometry with re-
stricted transverse aspect ratio L Daniels and Ong
(1990) have evaluated the coefficients ro, go, and go of the
one-dimensional version of Eq. (8.15) as a function of L»
and o, for realistic boundary conditions.

5. Phase equations

Pomeau and Manneville (1979) first pointed out the im-
portance of the phase equation (4.70) in the context of
Rayleigh-Benard convection, although since they derived
the equation for c—+0 from the amplitude equation, their
results apply quite generally to type I, systems; in partic-
ular their expressions (4.71) and (4.72) for the dift'usion

constants D~~ and Dj in terms of go and ro are generally
valid.

The specific features of the convective system arise at
the next order in c. In particular Manneville and
Piquemal (1982) calculated Dj to O(e), which yields the
slope of the zigzag boundary (qz —qo)/E, and its strong
Prandtl number dependence. In fact, as was mentioned
in Sec. IV.A.2 above, the phase equation for convection
has nonanalytic behavior due to mean drift effects at any
order in E beyond the lowest one (Cross, 1983). This
arises because, due to the incompressibility of the Quid,
only VP enters (and not P via the equation of state), so
adding a constant Pz to the pressure makes no difference.
However if the added pressure is now made a slowly
varying function Pz(x,y) of the horizontal coordinates,
the gradients of Pz will drive a horizontal How which fur-
ther distorts the convective pattern. The final link in the
chain of arguments is that slow distortions of the convec-
tive pattern do indeed induce a slowly varying Ps(x,y)
which must be determined by the incompressibility con-
dition. Thus Pz(x, y) constitutes an independent slow
field determined by a nonlocal (static) constraint.

The importance of the mean Aow in reduced descrip-
tions of convection was discovered by Siggia and Zip-
pelius (1981b) in their study of the amplitude equation
for free-slip convection (Sec. VIII.B.2 below). There, a
horizontal mean flow, constant across the depth of the
cell, is undamped and must be included as an indepen-
dent mode in the slow dynamics. These authors also sug-
gested a phenomenological extension to the rigid-
boundary case, where the horizontal How is damped by
viscous coupling to the top and bottom plates. Although
now formally of higher order in c. in an amplitude equa-
tion approach, the mean Aow is important to include in
the phase equation description since it leads to
nonanalyticities at small q, as noted by Cross (1983) and
by Cross and Newell (1984), who carried out a perturba-
tive calculation in the weak nonlinearity near threshold.

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium 967

1

Vz. f dz vD(x, y, z) =0 .
0

(8.20)

The technical difficulties of a full calculation starting
from the Boussinesq equations for convection away from
threshold are formidable, and the complete calculation
relying only on the assumption of slow spatial variations
has only recently been accomplished (Newell et al. ,
1990a,b, 1991, 1993). We clearly cannot present this full
calculation here, but since the general phenomenon
should be quite widespread in Quid systems we will out-
line what we believe to be the content of the theory, al-
though Newell and co-workers use a different choice of
variables.

The starting point is the observation that a horizontal
How, varying slowly with x and y, is driven by distortions
of the pattern and by gradients of Pz, by symmetry it
must take the form

vD(x, y, z) = [f&
1+f2qq]. V~Ps+ [f3 1+f4qq] V j q

+f~q(V. q» (8.19)

where the functions f; = f,.(q, z) depend on the full non-
linear structure of the rolls, and V'z is the horizontal gra-
dient. Notice that because the pressure Pz is driving the
How in a medium effectively made anisotropic by the
rolls, there are complicated anisotropy factors in Eq.
(8.19). In particular the flow is not in general along VjPs
and it does not have the z dependence of Poiseuille How,
although these simplifications do occur in the perturba-
tive calculation near threshold. The incompressibility
enforces an important constraint on the mean Aow

B,P + V q = —r '(q)V [qB(q)], (8.24a)

with

V= [b6(q) 1 + b7(q)qq] VjP~, (8.24b)

1

f dz vz(xz, z)=V& X z g(xj )

0

(8.25)

where x~ = (x,y). They then control the singularities by
writing the horizontal velocity as

and Ps determined by Eq. (8.21). The task of the full cal-
culation is then to determine the parameters b; (q), i = 1

to 7 (in fact only the combination b6 + b7 is needed for
i = 6, 7), r '(q) and B(q), as functions of the control pa-
rameter R, and the Prandtl number o..

We note that since the velocity field vD is not simply a
uniform Aow, the mean drift is not equivalent to trans-
forming to a moving frame of reference. As well as
translating the pattern, the drift vD will also distort the
local structure of the rolls. Thus the effect cannot be re-
lated to a "gauge invariance" of the original equations, as
Pocheau (1988) attempts to do, except at the lowest order
of the expansion where the resulting phase equation does
show this extra symmetry.

Newell et al. (1990a,b, 1991) have chosen to imple-
ment this calculation in a slightly different way which
brings out more clearly the relationship to the dangerous
vertical vorticity mode in the free-slip calculation of Sig-
gia and Zippelius (1981b). Since the integrated mean
drift f odz vD(x, y, z) is divergence free, it can be written

in terms of a stream function g

This determines P& through an anisotropic Poisson-like
equation, uj =f(z) Vi X z g(x) + uI, (8.26)

V~ [(b, l +b~qq) ViPs

+(b31+b4qq) Vq + b5q(V. q)] = 0, (8.21)

where u~ has zero mean Aux

fu,'dz=0, (8.27)
with b; now functions only of q (and control parameters),

b;(q) =f dz f, (q, z) .

Finally the How vD advects the pattern, giving

(8.22)
and f (z) is an arbitrary function with mean 1,

f f (z) dz= 1 . (8.28)

ay ay+vq,
with

1

V(x,y) = f dz UD(x, y, z) g(z),
0

(8.23a)

(8.23b)

where g (z) is a weighting function again depending on
the full nonlinear structure of the rolls. This means that
V is not simply the integrated How. Notice that the last
two terms in Eq. (8.19) for vD, when inserted into V q
give terms in the phase equation which are of the same
form as those already present on the right-hand side, and
they may be absorbed into these terms. Thus the new
effects of the pressure Pz and induced "mean drift" V
may be summarized by the equation

B,P B,P+y(q) V q, (8.29)

where y(q) is a weighting function, and a rather compli-

Of course different choices of f (z) lead to different
"correction" terms uz,' Newell et ah. choose a Poiseuille
form for convenience. The quantity u~ must be calculat-
ed through an iteration procedure, but since it has zero
net Aux, the calculation does not depend on Pz, although
it does depend on the (as yet unknown) g. Finally g is
determined by eliminating Pz from the horizontal
momentum equations averaged over the fast horizontal
variation. This formulation gives an extra advection in
the phase equation by the solenoidal velocity field
V=Vi Xz g,
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cated diff'erential equation for g ensues:

VJ X qa(q)(qX V,g) z —V, [qP(q)q Vip]

=z Vi X [crqVi (qA (q)) —qr '(q)Vi (qB (q))]

P=qx+P, cos(Q xi), (8.31)

—Vi [q( V, X q&p(q) ) z],
where a(q), P(q), B (q), B&(q), r '(q), and y(q) in Eqs.
(8.29) and (8.30) are all functions of q, as well as Prandtl
and Rayleigh numbers, which Newell et al. explicitly
calculate. Note that in the first term on the right-hand
side the authors separate out a term involving the real
amplitude A (q) of the ideal solution (defined with some
convenient normalization), which they also tabulate.
This is for convenience of approaching R ~R, where the
earlier calculation of Cross and Newell (1984) applies;
elsewhere this term could be subsumed in a redefinition
of 8

An important application of the phase equation (8.24)
is to display the long-wavelength stability boundaries of
the Busse balloon. This is accomplished by considering
small deviations from a straight roll pattern of wave vec-
tor q which we take in the x direction

tion Newell et al. are able to quantitatively reproduce
the results of Busse (1978) for the Eckhaus, zigzag and
skew-varicose instabilities.

B. Convection models

We have introduced the idea of studying model equa-
tions in Section III.C, motivated by the impracticality of
numerically solving the full microscopic equations in the
large systems showing the phenomena of this article.
[For recent work that actually solves the full Boussinesq
equations, but without attempting to reach quantitative
numerical convergence, see Arter, Bernoff, and Newell
(1987) and Arter and Newell (1988).] In this section we
introduce specific models that have been used to under-
stand convection. These fall into two classes: order-
parameter models which are generalizations of the
Swift-Hohenberg equation, and free-slip convection
where the full Boussinesq equations (8.10) are used, but
simplifying unphysical boundary conditions are imposed.
A particular truncation of the free-slip equations, known
as the Lorenz model (Lorenz, 1963), played a crucial role
in the early development of ideas on chaos.

with Q «1 the wave vector of the perturbation and P,
small. The mean drift V may now be found explicitly in
terms of P„and an expression for the growth rate of the
perturbation is found,

o (Q) =D
~~

( Q„/Qy ) Q' + Di(Q„/Qy ) Qy' (8.32)

The effect of the mean drift is thus to make D~~ and D~
functions of the ratio Q„IQ~ (i.e. the direction of the
wave vector of the perturbation), so that o(Q) is no
longer analytic in Q„and Q when Q~O. Of course

D~~, D~ also depend on the wave vector q of the rolls, as
well as on Prandtl and Rayleigh numbers, and they may
be calculated in terms of the b, of Eqs. (8.21) and (8.24),
or the equivalent parametrization of Newell and co-
workers. The instabilities are given by cr(Q)=0. Note
that for D~~, Di independent of Q„IQ~ the instability
boundaries are either purely longitudinal Q„WO, Q =0
(i.e. Eckhaus) or transverse Qx=0, Q %0 (i.e. zigzag).
However once the full dependence is taken into account
it is found that a new instability preempts the Eckhaus
instability on the large wave-vector side, which is neither
purely longitudinal nor purely transverse, i.e. it has both
Q %0 and Q %0. (This is true for all Prandtl numbers,
although the difference from Eckhaus is small for large
Prandtl numbers. ) This instability is the skew-varicose in-
stability found previously in the Galerkin analysis (Busse,
1978). It may now be understood (Cross, 1983) as a
modification of the long-wavelength Eckhaus instability,
in which the transverse modulation causes a circulating
mean drift, forbidden in a purely longitudinal instability,
thus enhancing the instability. On the other hand mean
drift effects tend to suppress the zigzag instability. From
their expressions for the parameters in the phase equa-

1. Order-parameter models

The Swift-Hohenberg equation was originally intro-
duced to investigate noise-induced fluctuation phenome-
na very close to threshold E «1 (Swift and Hohenberg,
1977), and we have discussed its role as a rotationally in-
variant order parameter equation near threshold in Sec.
IV.A.5. Since the equation incorporates the three basic
features of type I, pattern forming systems (onset at a
nonzero wave number, growth, and nonlinear saturation),
the same equation but. with E=0(1) is useful as a model
system of pattern formation in general two-dimensional
systems, including Rayleigh-Benard convection (this in-
terpretation is originally due to Pomeau and Manneville,
1980, and Cross, 1982a). Let us write the model in the
form

r,a, y = Eq —P(V'+q,')'q g,y', —(8.33)

and determine the parameters by requiring that the am-
plitude equation derived by the method of Appendix A1,
should agree with Eq. (8.15) valid for real convection. A
convenient choice is

so=co, qo=qo, c, =(R —R, )/R, =c, ,

ko = ko/4qo go = go/3
(8.34)

d, /=ed —(V + 1) g —g (8.35)

with

where ro, qo, go, and go are as in Eqs. (8.11b) and (8.16).
Alternatively, Greenside and Coughran (1984) measured
lengths in units of qo and eliminated the other con-
stants by rescaling time and f to write Eq. (8.33) as
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7 = (4/q op'0)e = 2.78E . (8.36)

There are a number of ways, however, in which the
Swift-Hohenberg equation fails to model convection even
qualitatively: (i) the model has a Lyapunov function
(3.28), so persistent dynamics, periodic or chaotic, is not
possible; ( ii) the stability diagram shows qualitative
differences with the Busse balloon, for example failing to
reproduce the general trend of the stable band towards
longer wavelengths (smaller q) as the Rayleigh number is
increased; (iii) the skew-varicose instability is absent.
There may of course be other less obvious Aaws. This
has led to the search (Manneville, 1983; Greenside and
Cross, 1985) for generalizations to remove a number of
these imperfections.

The first class of generalizations may be written in the
form

a, q a, q+(v v) q, (8.39)

where V is a solenoidal mean drift defined in terms of a
vertical vorticity potential g(x,y, t)

v=(v„,v, )=(a,g, —a„g). (8.40)

The potential g is in turn driven by distortions of the or-
der parameter field

wavelength expansions so they do not yield the skew-
varicose instability. Following Siggia and Zippelius
(1981b) and Cross (1983) who analyzed the importance of
long-wavelength vertical vorticity or "mean drift" effects,
Manneville (1983) and Greenside and Cross (1985) sug-
gested adding an extra advection term caused by the
mean drift. Specifically, they took (see the discussion in
subsection VIII.A.5 above)

a, 1t =[.—(v'+1)'] q —q' g, y(v—q)'+ g,q'v'q,
V g=y[v(v g) X Vg], , (8.41)

(8.37)

+(3—g ) (a;g) (a f) a;a g, (8.38)

is motivated by the work of Gertsberg and Sivashinsky
(1981) on Rayleigh-Benard convection between poorly
conducting plates. These authors carried out a systemat-
ic expansion in deviations from infinitely poor conduc-
tors in the one-dimensional case where the two nonlinear
terms in Eq. (8.38) are identical and g3 drops out. We
might thus hope that the characteristic nonlinearities of
the fiuid equations [all involving spatial derivatives aris-
ing from the advection term u V in Eqs. (8.10)] are better
modeled by Eq. (8.38) than by (8.35). Indeed, the general
trend of the stable band to longer wavelengths with in-

creasing driving is reproduced. Note that the case g3 =1,
which was shown to correspond to the case of convection
between poorly conducting plates in two dimensions, is
potential and leads to square cells for small c,. For g3%1
the system is nonpotential and g3=3 is a convenient
value to use for nonpotential studies. However for c & 1

the q =0 mode grows without bound, so this limits the
range of study.

Both of these classes of models have smooth long-

where the extra nonlinear terms allow more flexibility.
For example in the Swift-Hohenberg equation the cross-
roll instability occurs at a particular wave number qcR(e)
which will not match convection even for small c. The
extra parameters g, or g2 could be used to tune this
boundary. For g2= —

g& the equation remains potential:
altering this relationship could be used to investigate in-

creasing deviations from this condition. Manne ville
(1983) and Bestehorn and Haken (1990) have suggested
that the choice g, = 1, g2 = 0 gives a better description
of the Quid nonlinearities, although there is no controlled
expansion which justifies this choice over Eq. (8.33)
whichhasg, ——g, =0.

A second class of models that generalize Eq. (8.33),

a, P=[e —(V +1) ] f+g, v g(vg)

a, f+ (V ~ V) f=[e—(V +1) ] /+3 V g(vf)
(8.42a)

V=V X (gz),

V g=yF [V(V g) X VQ], ,

(8.42b)

(8.42c)

where F is an operator that suppresses high Fourier com-
ponents (for a specific representation see Greenside and
Cross, 1985). We show the stability balloon for this mod-
el in Fig. 33, and this should be compared with the one
for convection with Prandtl number o =0.7 in Fig. 32(a).

with y a coupling constant. This rather complicated
looking expression correctly reproduces the behavior de-
rived in the amplitude equation to lowest order in c. by
Cross (1983). Since the importance of mean drift effects
grows as the Prandtl number is decreased, the value of y
should be a decreasing function of o.. For large y the
short wavelength components of the vertical vorticity
given by Eqs. (8.39)—(8.41) seem to be too large to model
low Prandtl number convection (for example the knot in-
stability is enhanced more in the model than in the real
system), so Greenside and Cross (1985) also considered
models in which these high Fourier components are
suppressed.

Clearly as the complexity of the model grows, the
justification of the approach becomes more critical.
Greenside and Cross suggested that a sensible way to
discriminate between different models was to choose the
one whose stability diagram most closely approximated
the Busse balloon. In particular for pattern formation
studies one might try to first reproduce the long-
wavelength instabilities (Eckhaus, zigzag, and skew-
varicose) and the general trend to smaller wave vector as
c. increases. In this regard the second class of models,
(8.38) with g3=3, and the added mean drift term seems
to be the optimal choice, namely
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1.0

0.8

0.6

A 84T0229 introducing the advection (V ~ V) (e ' A) = V„iqoA, so
that B, A ~(B,+iqoV„)A. The amplitude equation then
becomes

~ (8, + iq V )2 =sA+g [8 (—i /2'q )8 ] A

(8.44a)

0.4
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0
0.5 0.6 0.7 0.8 0.9 I.O I.2

FIG. 33. Stability boundaries for a model of convection given
in Eq. (8.42), with y =10. (The reduced control parameter c is
denoted r in the figure. ) The instability lines are labeled as in
Fig. 32. The dashed line inside the stable region is the wave
number selected in an axisymmetric pattern (see
Sec. VIII.C.2.a). The + and —symbols near the lines indicate
instability and stability, respectively. The similarity with
Fig. 32(a) should be noted. (From Cxreenside and Cross, 1985.)

2. Free-slip convection

A widely used model system consists of the full Quid
equations (8.10), but with the physical no slip boundary
conditions (u=0) at the upper and lower boundaries re-
placed by "no stress" or free slip, as in Eq. (8.6) above.
This is at first sight an innocuous physical change, and it
allows considerable analytic progress since the linear sta-
bility problem is separable and the eigenfunctions are
simple sines and cosines, for example

8(x,z) o- cos (m. z ) sin (vrx /&2), (8.43)

i.e. qo =m /&2, with a critical Rayleigh number

R, =27 n /4=657 5. Many c.alculations have first been
performed in the framework of this much simpler prob-
lem, including the original derivation of the amplitude
equation by Newell and Whitehead (1969) and Segel
(1969). The calculation is presented in Appendix A and
yields $0= 8/3', ra=(2/3m )(o + 1)/o, and for the nor-
malization (8.17), go= —,'. As first pointed out by Siggia
and Zippelius (1981b), however, this change in the
boundary conditions is far from harmless, and has enor-
mous consequences for the qualitative behavior. The
reason for this is clear from the discussion in Sec.
IV.A.2.a.iii above: the free-slip boundary conditions in-
troduce an extra conserved quantity, the mean horizontal
momentum, and this drastically changes the long-
wavelength slow dynamics. Since the Qow is divergence
free by the incompressibility assumption we need only
consider the transverse part, i.e. we must include an addi-
tional slow vorticity mode, leading to a transverse veloci-
ty field that advects the convection pattern. This
modifies the amplitude equation, even at lowest order, by

together with the equation for the vorticity 0 = —V g
from which V„=8 g can be deduced,

(yB, —V ) 0 = g, B„[A'(8„—(i/2q )8 )A + c.c.],
(8.44b)

with y=o ' and gi =3m /cr (T.he extra terms we have
included, compared to Siggia and Zippelius may be for-
mally of higher order but they display the physics more
clearly; we have also used a different scaling, so the pa-
rameters y and g& take on different values than quoted
there. ) As noted by Siggia and Zippelius (1981b), for the
rigid boundary problem the corresponding corrections to
the phase equation are given by putting a damping term
into Eq. (8.44b), i.e. yB, —V' ~g, ir.

The stability analysis, performed near threshold by
Siggia and Zippelius (1981b) and later corrected by Busse
and Bolton (1984), has quite difFerent results in the free-
slip case. For example for o. (0.543 all states are unsta-
ble immediately above threshold, and states at the critical
wave number are unstable just above threshold for all o..
Clearly the behavior near threshold of rigid boundary
convection is not well described by the free slip model,
since for rigid boundaries the cr —+0 limit is completely
smooth. On the other hand o.—+0 is a complicated singu-
lar limit for the free slip case. Nevertheless Siggia and
Zippelius suggest that the free slip model may qualita-
tively describe low Prandtl number convection between
rigid boundaries away from threshold. The idea is based
on the observation that in the strongly nonlinear regime
boundary layers develop isolating the interior from the
rigid boundaries (Jones et al. , 1976; Proctor, 1977, Clev-
er and Busse, 1981). It is not clear, however, if this idea
can be made the basis of a quantitative analysis. As in
subsection VIII.B.1 above its validity can perhaps be
judged by comparing the stability boundaries of free slip
convection away from threshold (Bolton and Busse, 1985;
Schnaubelt and Busse, 1989) with those for low Prandtl
number rigid convection.

3. The l orenz model

For completeness we mention here the Lorenz model
(Lorenz, 1963) which was motivated by the problem of
Rayleigh-Benard convection. Although the model was
extremely important in demonstrating the existence of
chaos in coupled ordinary diFerential equations (cf. Sec.
VII.B), we now know that the phenomena displayed by
the equations have little quantitative overlap with actual
phenomena in convection. The model is arrived at by a
lowest nontrivial truncation in a Galerkin expansion of
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LUii =2V 3 ir X(t) cos qox cos re,
8» =9&3 m' Y( t) cos qox cos m.z,

(8.45a)

(8.45b)

and the nonlinear temperature mode that couples to
these linear modes through the Boussinesq equations,

the Boussinesq equations for free slip convection.
Periodic lateral boundary conditions are assumed over a
distance L„=m2n/qo, with qo=m/&2, and with no
spatial variation in the y direction. The modes retained
are the linearly unstable temperature and vertical veloci-
ty modes (the horizontal velocity is then given by the in-
compressibility condition)

this means L = O(1).] Such systems are described by
one-dimensional amplitude or phase equations, and by
one-dimensional models, though from the point of view
of the hydrodynamic equations (8.10) they of course cor-
respond to three-dimensional solutions.

1. Verification of the amplitude and phase equations

Various experiments have been carried out to test or
demonstrate the predictions of the perturbative methods
described in Sec. IV.A.

802=(27m. /4)Z(t) sin 2irz . (8.45c) a. Amplitude equation

It is a curious feature of the free slip case that there is no
coupling to any of the other possible quadratic nonlinear
modes, so that a truncation at this order leads to three
coupled nonlinear ode's for rescaled variables X(t), Y(t),
Z(r)

a,x=~(Y —X),
8, F=rX —F —Xz,
B,Z = b(Z —X—Y),

(8.46a)

(8.46b)

(8.46c)

C. One-dimensional patterns

We begin by discussing one-dimensional patterns, by
which we mean systems for which the transverse dirnen-
sion is su%ciently small so that the dependence on the
transverse coordinate is uniquely prescribed. [Usually

with r=R/R„b=8/3. Since the derivation is just a
second-order Galerkin truncation, in general such an ap-
proach will lead to equations that systematically include
no more of the physics than the lowest order amplitude
equation. In fact the possibility of slow phase and ampli-
tude modulations is not allowed by Eqs. (8.45) so that the
model should be qualitatively best in very small systems
(m = 1). However because the free slip equations are
separable, in this particular case the truncation leads to
equations that correctly reproduce the full linear
behavior of the unstable modes even at high frequencies,
whereas the amplitude expansion is predicated on the as-
sumption of slow time behavior even at the linear level.
This makes the Lorenz model a useful semi-quantitative
tool to investigate modulated convection (subsection
VIII.F.5).

The interesting chaotic phenomena (Lorenz, 1963) ap-
pear in the Lorenz equations for r ~ 28, where the
second-order Cralerkin expansion is certainly not valid as
a representation of convection. Indeed it has been shown
(Curry et al. , 1984) that if sufficient modes are retained
for numerical convergence, but still restricted to no y
spatial variation, then the chaos disappears. Low-order
truncations including y variations were investigated by
McLaughlin and Martin (1975).

The amplitude equation has the form of a Ginzburg-
Landau equation at a thermodynamic phase transition,
and predicts characteristic mean-field critical effects for
length, time, and velocity scales. Each of these has been
studied independently.

(i) The time scale for the amplitude to respond to a
perturbation (e.g. a small change in e) is r=ro ~e~

(Behringer and Ahlers, 1977; Wesfreid et al. , 1978).
(ii) The first harmonic of the velocity or temperature

field varying as cos(qox ) grows as e'~ for e &0 (Wesfreid
et aI. , 1978), and the convective heat current grows as E

(Behringer and Ahlers, 1977). The pth higher harmonics
should vary as d', and this has been shown to lesser ac-
curacy (Dubois and Berge, 1978).

(iii) The length scale for magnitude changes varies as
This was verified for e(0 by studying the

spatial decay of convection induced by an imperfect
sidewall, and for c&0 by studying the suppression of
convection over the length g near a perfect rigid sidewall
(Wesfreid et al. , 1978). Since this is a dramatic
confirmation of the predictions of the amplitude equation
approach with wide consequences in pattern formation,
we show the results in Fig. 34. Notice that the important
fact that the envelope A ~0 at the boundaries [Eq. (5.6)]
is also confirmed.

It should be remarked that quantitative agreement is
typically obtained both for the power law dependences
and also (to the 10%%uo accuracy of the experiments) for the
prefactors, which are well known from theory.

b. Phase equation

P(x, t) =go exp (
—m, ~x

~
) cos (m2 ~x

~
cot ), —(8.47)

The dynamics of long-wavelength perturbations of the
positions of the rolls should be governed by the phase
equation. Wesfreid and Croquette (1980) tested this in a
cell of aspect ratio 30 X 5 and Prandtl number o. =492.
The straight roll pattern was perturbed by periodically
injecting and extracting Quid through slots on the upper
and lower plates in the middle of the cell. The spatial
dependence of the longitudinal modulation of the phase
was fit to the form
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around the annulus to be modifIed to

B,P+ VB Q=D()(q)B P, (8.49)

~~00
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Distance from BoUndary x (mm)

FICx. 34. Suppression of convection near a sidewall: compar-
ison of predictions of amplitude equation with experiment, for
two values of the reduced control parameter c.. Solid points
represent measured values of the magnitude of the horizontal
component of the Quid velocity at the mid-plane. The lines
drawn through the points are guides to the eye to display the
roll structure. The dashed lines are the predictions of the ampli-
tude equation A = Ao tanh(x/&2g) with g=s '~~go and
$0=0.385, with the asymptotic amplitude Ao fit to the data.
(Adapted from Wesfreid et al. , 1978.)

where V is determined from Eq. (8.24b), with Ps now the
contribution from the externally applied pressure, and
small deviations from a uniform background wave num-
ber q have been assumed. Since this V involves a compli-
cated overlap integral between the Poiseuille flow and the
convection eigenfunctions, it is strictly speaking not the
simple mean velocity U used by Pocheau et aI. in their
analysis, although the two quantities are proportional.
For stationary patterns Eq. (8.49) predicts a linear varia-
tion of the wave number around the annulus, compressed
towards the outflow and stretched near the inflow, and
this was clearly observed for small U. If U is increased
the inhomogeneity grows (Fig. 35), and eventually time
dependence occurs when the local wave number at the
extreme points becomes Eckhaus unstable. The stability
boundary agrees well with the predictions. In addition,
measuring U directly from the initial advection of an un-
modulated pattern allowed a determination of D~~(q),
again giving good agreement to the 10%%uo accuracy of
the experiment. Croquette et al. (1986a,b) have also

where the phase diifusion equation (4.70) yields
m, =mz=(co/2D~~). The experiments were consistent
with these forms, and gave a value of D~~ consistent with
theoretical expectations.

Pocheau et al. (1987), instead of looking at the fre-
quency response, studied the decay of a spatial modula-
tion with wave vector Q = (Q, Q ) on a straight roll pat-
tern of wave number q. The initial pattern was set up by
thermal masking techniques. An exponential decay of
the modulation is expected with a decay rate

-2. 1 17

qo Qz
qp

(8.48)

where Eq. (4.72) for Di near threshold has been used, so
mean-drift effects do not enter at this order. Although
the precision was rather low (-30%) the quadratic
dependence on Q and the linear dependence on the back-
ground wave number q were verified, and the measured
values of D~~ were consistent with theoretical expecta-
tions.

c. Forced phase drift by mean flows
-2. 1 17

Since spontaneously generated mean flows are expect-
ed to play an important role in the phase dynamics of
convective rolls (cf. subsection VIII.A. 5), it is interesting
to attempt to measure their effect directly. Pocheau
et al. (1987) accomplished this by imposing an externally
driven flow, injecting and removing fluid at a constant
flow rate at diametrically opposed points in an annulus.
We expect the one-dimensional equation for the phase

FIG. 35. Roll compression forced by an imposed Quid Aow.

Local wave vector q (labeled k in the figure) at position x
around an annulus for a series of How rates. The arrows

marked in and out indicate filling and outAow holes. (a) Experi-
ment, for c =0.517 and velocities (increasing from bottom trace
to top trace): U =0.084 mm/s, 0.336, 0.588, 0.840. (b) Theoreti-
cal results obtained from Eq. (8.49), for e =0.5:
U=0.075 mm/s, 0.275, 0.500, 0.716. (From Pocheau et al. ,
1987.)
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identified the mean flows in non-axisymmetric convection
(see below), by following the motion of a line of tracer
dye.

2. Wave-vector selection

The general ideas on wave-vector selection discussed in
Sec. VI.A have been tested in considerable detail for Quid
convection by experiment, by calculations on model
equations and by quantitative calculations of specific re-
sults for the full fluid equations. Although certain gaps
in our knowledge remain, a rather clear and coherent
picture has emerged, with generally good agreement be-
tween theoretical expectations and experimental or nu-
merical results. %'e can now say that the fundamental
question of wave-vector selection in simple patterns is
well understood.

a. Axisymmetric convection

Perhaps the most ideal "one-dimensional" situation in
convection is an axisymmetric pattern in a cylindrical

geometry, where there is dependence only on the radial
horizontal coordinate. The conditions for this situation
to be stable in large geometries are rather complicated,
and will be discussed in subsection VIII.D.l.a below.
Theoretically, axisymmetric patterns in large geometries
are predicted to possess a unique radial wave number qf
asymptotically far away from the center. If there is a
smooth gradient expansion this wave number is the value
for which D~ =0, which is also the boundary of the zig-
zag instability. If mean drift efFects are important this is
no longer the case. These general conclusions were
confirmed by numerical work on the model equations
(8.33) and (8.38) by Cross et al. (1986).

For the specific case of convection, quantitative predic-
tions were made by Manneville and Piquemal (1982) for
the slope near onset (qf —qo)/E for E —+0, and by Buell
and Catton (1986a) for qf(E) at general e. The results for
difFerent values of the Prandtl number are compared with
experiment in Fig. 36(a). There is considerable hysteresis
in the experimental data, indicating deviations from the
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FIG. 36. Wave vector selection in Rayleigh-Benard convection. (a) Wave vector selected in axisymmetric convection as a function
of reduced control parameter. Lines are prediction of Buell and Cation (1986a) for various Prandtl numbers o. indicated next to each
line (unlabeled lowest line is neutral stability). Points are experimental data: triangles o.=6.1 (Steinberg et al. , 1985); circles
o =511—916 (Koschmieder and Pallas, 1974); squares o.=14 (Croquette and Pocheau, 1984). Notice that all the data are at rather

high Prandtl numbers and are consistent, within the scatter, with the o.= ao result. The predicted strong dependence on low Prandtl
numbers remains untested. (From Buell and Catton, 1986a.) (b) Wave vector selected by defects in Rayleigh-Benard convection
(o.=70). Circles, zero dislocation climb velocity (mean of wave vectors above and below the stationary defect); squares, same as cir-
cles but zero velocity point determined from fit to v (q) curves; crosses, wave vector of central set of rolls bounded by two grain boun-

daries. The solid line shows the initial slope of the zig-zag instability line qz(e), and the tilted dashed line the initial slope of the wave

vector selected in axisymmetric convection qf(c, ). The vertical dashed lines indicate the wave vectors for integer numbers of rolls

shown on the top scale. (From Pocheau and Croquette, 1985.)
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limit of an asymptotically large system, particularly in
the smaller cell of Steinberg et al. (1985) (the midpoint of
the measured values is plotted). Nevertheless the agree-
ment must be considered very satisfactory, except for the
early experiments of Koschmieder and Pallas (1974). Ini-
tial inferences by Croquette and Pocheau (1984) that
agreement was less good resulted from comparison of
c.—1 results with the small-c calculation of Manneville
and Piquemal (1983). From the more general calcula-
tions it turns out that the initial slope is much more sen-
sitive to Prandtl number in the range 3 (o.( ~, than the
curves for large c. The dramatic dependence predicted
for small Prandtl number has not been tested experimen-
tally, and to do so will require a scheme to eliminate the
instability that breaks axisymmetry (e.g. a hot wire at the
center).

b. Selection by sidewalls

ri=(32 &3) ' (5 + 21 cr '+40cr )

X(1+4p+ 6p )

ipse =[(I + 4p+ 6p )/6m ]'i
(8.50a)

(8.50b)

where

p=(1 + 2p/~)

p = (K /Kf ) ~ tanh (vrt ),
(8.50c)

(8.50d)

L„andEf are the wall and Quid thermal conduetivities
and t is the thickness of the wall.

The constants b; and a,p are more easily evaluated for
various model equations (Cross et al. , 1983a; Kramer
and Hohenberg, 1984; Hohenberg et al. , 1985), but no
numerical simulations have been done to test the-predic-

In general, if convection rolls approach a sidewall in
the parallel orientation, the amplitude of convection is
suppressed near the sidewall. This "weak spot" allows
the number of convective rolls in the system to relax and
provides a wave-number selection mechanism as dis-
cussed in Sec. VI.A. Near threshold the predictions of
the extended amplitude equation (5.22) is that the wave
number will be confined to a reduced band given by Eqs.
(5.24) and (5.25), where a and p characterize the effect of
the Quid boundary conditions on the amplitude, and the
parameters b, (i = 1 to 5) are numerical coefficients in the
higher-order amplitude equation. Cross, Daniels,
Hohenberg, and Siggia (1980, 1983a) calculated the con-
stants b; for free slip horizontal boundaries and a and P
for the same model, but with rigid sidewalls (zero veloci-
ty boundary conditions) of arbitrary thermal conductivi-
ty E„and thickness t. To date these already laborious
calculations have not been extended to the realistic no-
slip case, and so only predictions of unknown reliability
can be made. The free slip calculations lead to the re-
striction of the band of wave numbers given by Eq. (5.25)
with

tions of the perturbation analysis of Cross et al. (1983a),
or its range of applicability. Numerical work on the full
Quid equations with rigid boundaries, but with the Qow
restricted to be two dimensional (i.e. one "slow" dimen-
sion) has been carried out by two groups. Mitais et al.
(1986) investigated aspect ratio L =15 and Prandtl num-
bers 0.71 and 0.071, and both thermally insulating and
conducting sidewalls, and Arter et al. (1987) studied
I.= 16, o. =2.5 with insulating sidewalls. The qualitative
picture of a restricted band of wave numbers delineated
by roll gain or loss near the sidewalls is confirmed. Mi-
tais et ah. find a much narrower band for conducting
than for insulating sidewalls as was also found by Cross
et al. , but little dependence on the (low) Prandtl number.
From the results for those aspect ratios the linear c.

dependence of the bands predicted by the perturbation
theory cannot be discerned. Mitais et al. also general-
ized the calculation to three dimensions in a fairly small
box (aspect ratios 6 X 3) and found the band of solutions
further restricted by three-dimensional instabilities.

The only experiment that has been done on Rayleigh-
Benard convection in this connection is by Martinet
er al. (1982, 1984) in air (cr = 0.7) with containers of as-
pect ratios 18 X 6 and 12 X 6 having good conducting
sidewalls. One problem that arises in comparing with the
theory is that the assumption made in the calculation of a
one-dimensional spatial variation may never be justified
in rectangular geometry. Indeed, in narrow ceBs the spa-
tial variation of the amplitude in the y direction may not
be neglected, although a one-dimensional amplitude
equation with different coe%cients may be used for the
structures in the x direction (Daniels and Ong, 1990), and
in wide cells roll curvature especially near the endwalls,
or the cross-roll or skew-varicose instabilities, may be-
come important. Indeed Martinet et al. found that on
increasing c the change in the number of rolls was medi-
ated by three-dimensional disturbances, although on de-
creasing E. the Qow remained close to two dimensional.
The experiment does, however, show a restricted band of
solutions near threshold (E & 1), which is in fact remark-
ably consistent with the estimates from free slip convec-
tion by Cross et al. , but apparently not consistent with
the 20 numerical work of Mitais et a/. Probably three-
dimensional effects are important and the agreement with
Cross et aI. is fortuitous, but clearly more work on cells
of various sizes is needed for a quantitative comparison.
Perhaps the best geometry for experimental investigation
is the cylindrical one, where the wave number of station-
ary axisymmetric patterns (if they can be stabilized!)
should be consistent with the predicted band at large ra-
dii, or a narrow rectanguIar container where however the
theoretical predictions will be harder to calculate.

c. Dislocation climb

The role of dislocation climb in an otherwise one-
dimensional pattern of rolls was discussed in Sec. VI.A. 1.
In some elegant experiments Pocheau and Croquette
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(1984) (see also Croquette, 1989) investigated this
phenomenon in convection cells (Fig. 19). They estab-
lished a single dislocation in an otherwise parallel roll
system in a rectangular cell using thermal imprinting, by
shining an intense beam of light through an optical mask
onto the sensitive, slightly subcritical system, and then
raising the Rayleigh number to allow the pattern to
grow. [This method was pioneered by Chen and White-
head (1968) in their study of a line of dislocations. ] Po-
cheau and Croquette also had a thermal wire at the longi-
tudinal sidewalls to eliminate the cross-roll boundary in-
stability. For a range of roll numbers n and n+1 in the
bottom and top half of the cell, the velocity of the dislo-
cation climb up or down the rolls was measured as a
function of the Rayleigh number. This yields discrete
values of qd(E) where qd is taken as the mean wave num-
ber (i.e. for n + 1/2 rolls) and E is the value at which the
dislocation is stationary. In addition the climb velocity
could be measured as a function of the deviation from
the stationarity condition. Similar experiments were car-
ried out numerically on model equations (8.35) and (8.42)
by Tesauro and Cross (1986).

Theoretically, it is expected that near threshold the
wave number is given by

may however depend on the wave number q of the rolls
normal to y. This latter efFect was not investigated exper-
imentally, and Croquette et al. obtained a selected qgb(e)
for Prandtl number 70 that was, within their resolution,
identical to the wave numbers selected by dislocation
motion [see Fig. 36(b)].

Tesauro and Cross (1987) investigated the phenomena
for the models introduced in subsection VIII.B.1 above.
For the Swift-Hohenberg model (8.35) and for s (0.5 a
stationary solution was obtained only for q„=1.0,
q~=1.0. The value of q is consistent (within errors)
with the value minimizing the potential. For Eq. (8.38)
with g3 = 3 a stationary state was obtained for
q„=1.00—0.53m, , consistent with the amplitude equation
result of q„=l—e/2 for this model, and q~= 1 —0. 12',
although the data were also consistent with a small sta-
tionary band in q (of width up to 0.02) as expected from
the pinning efFect of the front discussed in Sec. IV.A.4.
Note that the selected value of q is quite difFerent from
the value selected by dislocations for this model. A com-
plete investigation of the dynamics was precluded by the
very long computer runs needed, and it was not clear that
the long-time asymptotic limit was ever reached.

qd(e) —q, =0 X c,
' +qd c+

qc
(8.51) e. Ramps

qd —-qo (1 —c, /4 ), (8.52)

which was consistent with the simulation results. The
exact dependence of the climb velocity on deviations
from the stationarity condition qd(E) was hard to extract,
either from the numerics or the experiments, but the two
were at least qualitatively consistent.

A scheme for calculating qd was proposed by Pomeau
et al. (1985), but it has not been implemented for
Rayleigh-Benard convection. The values of qd(c, ) mea-
sured by Pocheau and Croquette (1984) for Prandtl num-
ber o =70 are shown in Fig. 36(b). In subsequent mea-
surements Coquette (1989) has found a shift to smaller q
at o. = 0.7. The analogous tendency was seen in the nu-
merical work of Tesauro and Cross, where a shift to
smaller q was observed as the coupling to the vorticity
fIow was increased. Also in that work when the vorticity
coupling was zero an analytical calculation of qd gave

Wave-number selection by slow ramps in the Rayleigh
number has been studied both theoretically (Eagles, 1980;
Kramer and Riecke, 1985; Buell and Catton, 1986b) and
experimentally (Rehberg et al. , 1987). Buell and Catton
implemented the theoretical scheme of Sec. IV.A.2.d for
ramps in the temperature of rigid upper and lower boun-
daries to calculate the unique selected wave number
q„(E,cr). This is important work since it shows a clearly
resolved difFerence with the same authors' calculation of
axisymmetric convection, thus conclusively demonstrat-
ing the nonuniqueness of wave-vector selection, although
the overall trends are quite similar for both mechanisms.
Kramer and Riecke calculated the selected wave num-
bers for various difFerent combinations of temperature
and thickness ramps in the free slip model, and showed
that any wave number in the Eckhaus stable band could
be selected by a suitable choice of ramps.

f. Front propagation

G!a/n 60Undafles

A wave-number selection mechanism by perpendicular
grain boundaries was proposed and implemented experi-
mentally by Croquette et al. (1983). The required pat-
tern (see Sec. VI.A. 1) was again imposed by a thermal
mask. As discussed in Sec. V.B.2 the situation is really
quite complicated, depending on whether new y rolls may
be produced by the motion or only continuous stretching
occurs. In the latter case a unique wave number q of
the rolls normal to the x direction is expected, which

The velocity of front propagation in Rayleigh-Benard
convection has been investigated experimentally by Fine-
berg and Steinberg (1987) and numerically by Getling
(1983) and by Liicke et al. (1987a,b) In the e.xperiments
convection was initiated at the ends of a long (aspect ra-
tio 27) cell. (The long sidewalls had fins attached so that
convection was not directly forced there. ) The measured
velocity near threshold (E & 0. 1) was U/E' =2.01
+0.02, in excellent agreement with the linear selection
predictions from the amplitude equation quoted in Eq.
(6.27a) (note, here c, = 0). Similar agreement was found
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in the numerical work. However the measured wave
number of the rolls produced behind the front was clear-
ly different from the critical wave number qo even for
m~0, and then showed a decrease proportional to c,

'

This should be contrasted with the general theoretical ex-
pectation of a linear dependence on c on approaching the
critical wave number at threshold, as obtained for exam-
ple from Eq. (6.29c) above.

g. Competing mechanisms

The general conclusion from the body of work de-
scribed in subsections a—f is that, except in the special
case of potential systems, different wave-number relaxa-
tion mechanisms lead to different selected wave numbers:
there is no "preferred" wave number. This is clearly true
in the model calculations of Cross et al. (1986) shown in
Fig. 37. For the actual Rayleigh-Benard system the con-
clusion rests on the numerical work of Buell and Catton
(1986a,b) mentioned above, who show that different wave
numbers are selected by a control parameter ramp and by
an axisymmetric geometry for all Prandtl numbers (in-
cluding o ~ ac). Experiments have not yet been precise
enough to completely resolve the different selected wave
numbers, but this is not surprising based on the rather
small differences found theoretically for the two mecha-
nisms.

As we have seen in Sec. VI.A. l.a.vi, if two wave-

number relaxation mechanisms leading to incompatible
wave numbers are both operating, then a persistent dy-
namics is expected, corresponding to a drift of rolls from
the local region selecting the smaller wave number to the
region selecting the larger one. This phenomenon has
been seen in convection in two different one-dimensional
situations, and has also been proposed as the mechanism
behind the persistent dynamics in a more complex pat-
tern in a numerical simulation. Rehberg et al. (1987) ex-
perimentally demonstrated the persistent phase dynamics
forced on a parallel roll state by two different control pa-
rameter ramps. The wave numbers selected by the indi-
vidual ramps were not measured, so no quantitative com-
parison with theory could be made, but a periodic motion
corresponding to the steady (or unsteady if the ramp had
a sharp corner) drift of the rolls was seen. Tuckerman
and Barkley (1988) and Barkley and Tuckerman (1989)
observed a similar state in their numerical simulations of
the full Quid equations constrained to axisymmetry in a
cylindrical cell of aspect ratio 5. For Prandtl number 10,
and with good conducting sidewalls, a periodic state was
seen with rolls drifting towards the center and annihilat-
ing there. Interestingly, no such state was found for insu-
lating sidewalls. We would interpret the dynamics as
arising from the incompatibility of the wave number
selected by the focus and the band selected by the outer
sidewalls. We note that the latter is indeed narrower for
conducting sidewalls in the free slip model calculation al-
though a larger aspect ratio might be necessary for the
asymptotic phase dynamics analysis to be valid quantita-
tively. This motion had previously been predicted for
free slip convection by Pomeau et al. (1985) and was also
found in a numerical simulation of Eq. (8.38) with g3 = 0
by Cross et al. (1986). Experimental realization of the
above effect will depend on the delicate question of the
stability of axisymmetric convection to non-axisymmetric
perturbations.

D. Two-dimensional patterns

0.6 0.7 0.8 0.9

FIG. 37. Wave vector q selected in a model of convection [Eq.
(8.42), y=0] as a function of control parameter e. Heavy lines
show results for focus selection qf and for the midpoint q& of
the band selected in a one-dimensional geometry by ends with
boundary conditions Q=B„Q=O. The wave vector q„selected
by zero dislocation climb velocity is denoted by solid circles,
and the wave vector q~b selected by zero grain boundary motion
is denoted by crosses. The values of q& and qf were calculated
analytically. The circles and crosses were obtained by nurneri-
cal simulations. Dashed lines are drawn through the numerical
points and the small e analytically calculated asymptotic slopes.
E and N label the Eckhaus and neutral stability boundaries, re-
spectively. (From Cross et al. , 1986.)

1. Simple versus natural patterns:
The effects of forcing

In a given two-dimensional geometry for a convection
experiment, often many different possible steady state
and stable patterns are found, some of them simply
refIecting the symmetries of the container, and others
possessing many defects and a more disordered appear-
ance (i.e. what we have called natural patterns). In addi-
tion we would like to know how the convecting solution
grows from the uniform state which remains a solution
for all times in the ideal system. The physics responsible
for initiating the growing nonlinear solution, and the re-
sulting pattern selection, have been studied carefully and
systematically in convection, particularly in intermediate
aspect ratio cylinders (L = 5 to 10). This is a study of
how very delicate phenomena can drastically affect the
nonlinear state due to the extreme sensitivity of the sys-
tem to small perturbations in the vicinity of the bifurca-
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tion. For example in these cylindrical geometries we may
have concentric roll patterns, largely straight roll pat-
terns, or quite disordered states.

a. Imperfect bifurcations and static forcing

The condition for a perfect bifurcation at the (shifted)
critical Rayleigh number in a finite geometry is that the
zero velocity conducting state remain a solution even
when the physical boundary effects at the lateral
sidewalls are included. A moment's thought shows that a
horizontally uniform vertical temperature gradient does
not require that the thermal conductivity of the sidewalls
be exactly matched to the fiuid (which would be difficult
to arrange): instead a sharp bifurcation demands only
that the sidewalls should be of uniform thickness,
thermally well attached to the top and bottom plates that
are perfect conductors, and should lose no heat to the en-
vironment outside. (The system should also of course be
geometrically perfect, i.e. Oat upper and lower plates and
vertical sidewalls. )

Modifying any of these constraints will lead to an im-
perfect bifurcation: typically, thermal imperfections will
lead to thermal inhomogeneities near the side walls,
which are then inconsistent with zero Aow. On the other
hand in experiments where reproducible cylindrical rolls
are desired, thermal imperfections such as a hot wire run-
ning around the outer wall may be deliberately added.
The growth of the convecting solution near threshold is
then described by the amplitude equation with an inho-
mogeneous boundary condition. For axisymmetric states
it turns out that the appropriate representation is (Brown
and Stewartson, 1978)

U=r ' A(r) Uo(z) e

with the amplitude equation

(8.53)

(8.54)

The effects discussed above may be described by the inho-
mogeneous boundary conditions (see Sec. V.A. 1)

A (r =L)=a, , (8.55)

on the amplitude satisfying the radial equation (8.54),
with a

&
determined by the strength of the imperfection. .

Close enough to threshold a one-mode projection can be
made, and in view of the inhomogeneous boundary con-
dition the analogue of Eq. (5.10) may be written as

and go is the nonlinear coefFicient. ' In evaluating the
driving force f we have only retained the most important
term coming from a, . Equation (8.57) leads to an imper-
fect bifurcation, with small amplitude convective heat
Row for c ~ E, . These equations may be solved for the
evolution of the axisymmetric solution, forced by a

&
via

fo, as it grows to large amplitudes when s is raised
through c,, [see for example Ahlers et al. (1981) for nu-

merical solutions of Eq. (8.57)]. Presumably for large L
the pattern would be established in the interior by front
propagation from the region of convection near the
sidewall existing below c,

The thermal imperfection of course remains in the
nonlinear state in this case. Although small imperfec-
tions will not appreciably change coarse features such as
the convective heat How, they may well influence stability
properties. Thus thermal sidewall forcing may be used to
maintain a stable axisymmetric pattern where it would
otherwise be unstable to cross rolls near the sidewall and
lead to more complicated patterns. It is also now be-
lieved that (unplanned) thermal imperfections were re-
sponsible for the concentric rolls observed by
Koschmieder and Pallas (1974) for parameters where
more recent experiments find nonaxisymmetric states.
Note however that in experiments of Steinberg et al.
(1985) every effort was made to achieve ideal sidewalls,
yet steady state axisymmetric convection was observed
for 0. 16 & c, & 8, so that this may in fact be a stable state
for some parameter values.

b. Transient forcing

Even when the imperfections discussed in the preced-
ing subsection are absent, so that the bifurcation is per-
fect for static measurements, forcing of the pattern may
occur as a transient in real experimental situations, when
the control parameter is raised through threshold at a
(necessarily) finite rate. If the lateral sidewalls in the con-
vection apparatus have a difFerent thermal diffusivity
than the liquid, then the transient conducting thermal
profile when the Rayleigh number is increased will no
longer have a uniform spatial dependence on the horizon-
tal coordinate, and will not be consistent with the ideal
u = 0 state. Again we may obtain the amplitude equa-

2 (r)=air/L+ 3 i(t) cos(err/2L) .

It follows that

B, A, =(s —s, ) A, —go A, +f (t),
where

8 =~//4L
f(r ) =f0

=sa i (2/L )I dr r cos(mr/2L ), .

(8.56)

(8.57)

This is actually rather tricky in a cylindrical geometry, since
the fields apparently diverge as r for the solution (8.56)
when r (&L, and this leads to g0=2go f dr r '[ c(os'.r 2/L ]l

-(2golnL). This means that the heat Aux —A
&

is suppressed

by a term of order (lnL) ' for this mode, and goes to zero in the.
large L asymptotic limit. In this case the second mode
A —A2sin(nr/L) would yield the erst observable convection.
However for the values of L of order 5 to 10 used it is probably
the mode with large amplitude at the center that is seen (see
Ahlers et al. , 1981).
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f(t)=fo+f,P(t), (8.58a)

tion in the one-mode simplification, where now for slow
variations of the control parameter we have

k~T

pdv

20 gp

korP.
(8.63)

where

p=dE/dt, (8.58b)

c. Stochastic forcing

As mentioned in Sec. VI.A.2 intrinsic stochastic forc-
ing will arise from the thermal fluctuations left out of the
hydrodynamic equations we have been considering. An
appropriate theoretical framework for studying this forc-
ing is provided by adding Langevin noise sources to the
hydrodynamic equations (8.3) {Landau and Lifshitz,
1959)

B,u+u Vu= V(P/p)+v V—u gaTz+ V. —s,

f, is a parameter which may be estimated by projecting
the transient conduction solution onto the unstable mode
(Ahlers et al. , 1981), and fo is the same term as in Eq.
(8.57) to account for static imperfections. [Equation
(8.58) is an expansion in p. The term retained can be
considered to be the first correction to the adiabatic slav-
ing of the fast modes used in deriving the amplitude
equation. ]

~oB, A =E(t) A —A + f(t),
(f(t)f(t') ) =2Fwo5(t t')—,

(8.64a)

(8.64b)

with F given by Eq. (6.52).

This result is essentially the one found by Graham (1974)
and Swift and Hohenberg (1977) for free-slip horizontal
boundaries (with correction of minor errors), and re-
markably it is also identical to the value found by van
Beijeren and Cohen (1988) for the rigid case (see Hohen-
berg and Swift, 1992 for details). The order of magnitude
of the noise strength F,h is set by the small parameter
k~T/pv d = 10, which represents the ratio of the
typical energy k~ T of a thermal Auctuation to the dissi-

patiue energy pv d in one convective cell {i.e. a kinetic en-

ergy density pv /d times the volume d ). As discussed
in Sec. VI.D, it is the smallness of this ratio, due to the
macroscopic scale of the convection phenomenon, which
makes thermal Auctuation effects particularly dificult to
observe (Zaitsev and Shliomis, 1970; Graham, 1974; Swi-
ft and Hohenberg, 1977). As mentioned in Sec. VI.D, the
stochastic Swift-Hohenberg equation (6.48) can be rough-

ly approximated near threshold by a one-mode model
(Ahlers et al. , 1981;Hohenberg and Swift, 1992)

BtT + u VT=~V T —V q

(8.59a)

(8.59b)

(qT;(x, t)qT (x', t'))
X (5;~5 +5; 5.q), (8.60a)

= (k~ T /C, )2~5(x —x') 5(t t') 5.. . —(8.60b)

and assuming the noise to be Gaussian with correlations

{sj(x,t) s& (x', t') ) =(ks T/p)2v5(x —x') 5(t —t')

d. Experimentalinvestigations

The relative importance of the various forcing terms in
subsections a—c, and their effect on the selected pattern
were investigated by Ahlers et al. (1981) and later by
Meyer et al. (1987, 1988, 1991) (see the review by Ahlers,
1994). The earlier experiments were carried out in cryo-
genic helium in a cylindrical geometry of aspect ratio 4.7,
without the benefit of Row visualization. Various proto-
cols were used for raising c through threshold; linear
variation in time

where C, is the constant volume specific heat per unit
volume. These terms provide a noise source in the corre-
sponding Swift-Hohenberg equation (8.33), which be-

comes (Swift and Hohenberg, 1977; Hohenberg and

Swift, 1992)

e(t) Eo (=E, ,

e(t) =so+pt,
t&0,
t&0,

'with a range of ramp rates p, and jumps

(8.65a)

(8.65b)

rod, jb(x, t)=sf (g /4q )(V' +q—) P
—(go /3) P'+ g(x, t), (8.61)

s(t) =Eo(s, ,

s(t)=s, )E, ,

t&0,
t&0.

(8.65c)

(8.65d)

where the Gaussian noise (given by projecting the noise
in Eqs. (8.59) onto the unstable mode) has correlations

(g(x, t) g(x', t'))

=2Fthro (go/2qo) 5(x—x') 5(t —t'), (8.62)

with

The Nusselt number was measured as a function of time,
and fit to numerical solutions of the amplitude equation
with either the deterministic forcing (8.58) or the stochas-
tic forcing (8.64), whose overall strength was in each case
a fit parameter. The solutions showed two quite well
separated parts of the dynamics: a "linear" portion where
the Nusselt number grows exponentially to a perceptible
value driven by whichever small forcing is present and
where the nonlinear terms are unimportant, and a "non-
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linear" portion where the growth saturates [or follows
the still ramping e(t) adiabatically]. The onset time t,

„

for the initial growth is quite well defined, not depending
much on the reference value of Nusselt number chosen to
label the end of the linear regime. For a ramp 8=pt the
onset time obtained from the deterministic forcing (8.58)
f(t) =f,P is

t,"„—[(~0/p) 1n(2~0/mpf, ) ]'~

and from the stochastic forcing (8.54) it is

t:„-[(~,/P) ln(~g/4~~) ]'" .

(8.66a)

(8.66b)

The experimental data for the Nusselt number were then
fitted to t,„andin this way the parameters f i and Fwere
determined [both of the forcings (8.58) and (8.64b) gave
comparably good fits when used with Eq. (8.64a)]. We
should remark that the time evolution of the Nusselt
number shows rather complicated behavior in the non-
linear regime. Ahlers et al. (1981) ascribed this behavior
to a nonlinear competition between different patterns;
possibilities might be between rolls and hexagons (as was
assumed by the authors), or between axisymmetric rolls
driven by deterministic forcing at the walls [see subsec-
tion VIII.D. l.a] and a straight roll pattern which
emerges as the nonlinearities begin to dominate the forc-
ing. As we have seen, pattern selection is a difficult ques-
tion, and in the absence of visualization assigning pat-
terns from the measured Nusselt number is fraught with
uncertainty. Indeed the subsequent work by Meyer et al.
(1987, 1991) in a similar but not identical system (aspect
ratio 10), which however allowed pattern visualization,
reports similar features for the time dependence of the
Nusselt number in the nonlinear regime, but without
changes in the form of the pattern. Thus the explanation
of the quantitative time dependence of the Nusselt num-
ber remains a mystery. This uncertainty does not, how-
ever, affect the estimates of t,„orof the order of magni-
tude of the forcing.

In addition to the ramp protocol, Meyer et al. (1987)
investigated modulated convection i.e.

[R (t) —R, ]/R, =E(t) =so+5 coscot . (8.67)

A fuller discussion of modulated convection is given in
subsection VIII.F.5 below. For our purposes here we can
usefully consider (8.67) (for small co) as the repeated cy-
cling of the system through threshold, to investigate the
forcing phenomenon and pattern selection. In addition
this protocol investigates the destruction by noise of the
persistence of a small convection amplitude in the e. (0
portion, which subsequently grows back to large ampli-
tudes on the e ) 0 portion of the cycle.

%'e now summarize the results of these studies.
(i) For sidewalls of thermal diffusivity different from

that of the fIuid the results for ramps and steps are quite
consistent with the deterministic forcing (8.58), at least
for p~0. 2, with a small static imperfection fo and a
value of f i consistent with a first principles estimate by

Cross, Hohenberg, and Liicke (1983b). The pattern visu-
alization experiments by Meyer et al. (1987) showed con-
centric rolls developing, consistent with the symmetry of
the forcing [Fig. 38(a)]. The strength of the forcing is ex-
tremely small here, f, =2.70 X 10, yet it clearly
determines the nonlinear pattern of O(1) amplitude. The
small static component fo, estimated from the fit to
(8.58) for difFerent rates should produce an imperfect bi-
furcation with a rounding width 6c-0.005, and a round-
ing of roughly this size was indeed found in separate stat-
ic experiments (Ahlers et al. , 1981).

(ii) For sidewalls with matching thermal diffusivity
the situation was quite different. Here it was determined
that stochastic forcing was dominant. This was shown

by the random spatial appearance of the growing solu-
tions, Fig. 37(b), and the lack of reproducibility of the de-
tails of the pattern from run to run. The strength of the
stochastic forcing determined by the fit to Eq. (8.64)
given in Fig. 38(b) was I'=5 X 10 . [This tiny value is
still a factor of 10" larger than the thermal noise corre-
sponding to Eq. (8.63), and its precise origin is unknown. ]
The nonlinear evolution led to a characteristically disor-
dered state shown in Fig. 38(b): thus the delicate com-
petition between the two different, tiny forcing mecha-
nisms has an enormous effect on the emerging patterns.

(iii) For modulated convection with matching sidewalls
the strength of the stochastic forcing is measured by its
effect on the very faint pattern of exponentially decaying
amplitude which persists in the sub-threshold portion of
the cycle. (An initial condition of essentially straight
rolls was established by thermal imprinting. ) Near the
threshold for appearance of a convective pattern, it was
either coherent from period to period and equal to the in-
itial straight roll pattern, or incoherent with an apparent-
ly random spatial configuration, depending on the modu-
lation parameters Eo and 5 of Eq. (8.67). In particular, a
characteristic boundary Eo=EO, (5) could be defined such
that the pattern was coherent for co & co& and incoherent
for Bp(EO&. [Note that Eo, ))so„where Eo, is the (small)
shift in convective threshold due to modulation; in addi-
tion, the hexagon region was unobservable in these exper-
iments since the frequency was low, see subsection
VIII.F.5 below. ] The boundary Eo, between coherent and
incoherent motion from cycle to cycle was calculated by
Swift and Hohenberg (1988) using the stochastic single-
mode amplitude equation (8.64). The parameter I' was

A number of experimental methods have been devised to
provide a good thermal match between the convecting Quid and
the sidewall. One method involves the use of a light porous
wall material which becomes filled with the Auid. Alternatively
a horizontal fin placed midway between the plates creates a
"wall material" which is precisely the same fluid as in the interi-
or of the cell, but with a plate separation d/2 and a critical
Rayleigh number larger by a factor of 8. This material is thus
nonconvecting.
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FIG. 38. Shadowgraph images of the emerging pattern and data for the convective heat Aux J""'as a function of time for a linear

ramp in the applied heat current with ramp rate P=0.27 i'see Eq. (8.58b)]. (a) Cell with polyethelyne sidewalls; solid circles corre-

spond to points where images (a)—(d) were taken. (b) Same as (a) but with "nonforcing" sidewalls of matching thermal diffusivity (5%
polyacrylamide gel). The emerging pattern has the geometry of the sidewalls in case (a) and is disordered in case (b). (From Meyer
et al. , 1991.)

fixed from the onset time experiments, so that Eo, (6)
could be predicted with no adjustable parameters; it was
found to agree well with the experiment, thus demon-
strating the consistency of the stochastic description
based on Eqs. (8.61) or (8.64) with adjustable noise
strength. As mentioned above, the physical origin of this
force is not understood, however, and so far no systemat-
ic dependence of F on other experimental parameters has
been uncovered.

2. Simple two-dimensional patterns

One of the most graphic early examples of pattern for-
mation in nonequilibrium systems was the photograph of

concentric convection rolls in a cylindrical container by
Koschmieder and Pallas (1974). [That pattern resembled
the one in Fig. 39(c).] The symmetry of this geometry
leads to a number of simple patterns, which have been
studied in some detail, and which we will now discuss.

At ideal sidewalls, rolls that are normal or nearly nor-
mal are often observed. Sometimes radial rolls extending
only a small distance into the cell, leaving axisymmetric
rolls in the bulk, may be seen as in Fig. 39(d), and anoth-
er common pattern is the "Pan Am" texture of Fig.
39(b). Very close to onset the solution consists essentially
of straight rolls (a), with very little regard to the cylindri-
cal boundaries: clearly the criterion of normal rolls at
boundaries is not a strict one (see Kirchartz et al. , 1981;
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FIG. 39. Simple two-dimensional patterns in a cylindrical geometry obtained for diferent values of Prandtl number cr, Rayleigh num-
ber R, aspect ratio L and different sidewall conditions, showing (a) nearly straight rolls in argon gas with o.=0.7, L =7.66,
R /R, =1.05 (with R, the critical Rayleigh number in the actual geometry); (b) more curved rolls in the same system (Pan-Am tex-
ture) at a larger Rayleigh number (R /R, =1.12); (c) concentric rolls in CO2 gas for L =86 with sidewall forcing; (d) convection in

CO& gas for L =41 with very little or no sidewall forcing; (e) off-center pattern (convection in methanol, o.=7, R /R, =7.3); (f) spiral
pattern (convection in C02 gas, R /R, =1.15, L =86). Both (e) and (f) are stabilized by sidewall forcing. [(a), (b), and (e) from Cro-
quette (1989); (c) and (f) from Bodenshatz et al. (1991,and unpublished); (d) from Hu et al. (1992).]
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Croquette and Pocheau, 1984; Croquette et a/. , 1986a).
Ahlers et al. (1981) suggested that the straight roll pat-
tern may be preferred over the axisymmetric one based
on evaluating the Lyapunov function for the amplitude
equation description of each state. (They used the second
axisymmetric mode of Eq. (8.54), but in large systems the
logarithmic terms ' that appear in the analysis of the
first mode also favor the straight roll pattern. )

As the control parameter is raised the tendency of the
rolls to approach the sidewalls normally grows, and the
curvature of the rolls consequently increases [Fig. 39(b)].
This leads to a compression of the rolls in the center of
the cell, a feature that has been associated with the tran-
sition to chaotic time dependence by defect nucleation
(see subsection VIII.E.2.b below). At low Prandtl num-
bers the mean Aow efFects driven by roll curvature be-
come important in these simple textures.

An intriguing instability occurs in axisymmetric rolls
(with the tangential alignment at the sidewall stabilized
by a hot wire): the axisymmetry is broken, with the
center of the roll structure moving off the center of the
cylinder [Fig. 39(e)]. The displacement may saturate at a
finite value, or a dislocation pair may be nucleated and
then move to the boundaries leading to a change in the
number of rolls. Croquette and Pocheau (1984), Stein-
berg et al. (1985), and Croquette et al. (1986a) indeed ob-
serve this as a mechanism for wave-number change in
this geometry on increasing the control parameter. Po-
cheau (1989) has suggested that this instability is caused
by the mean Aows that develop in the off-center pattern
[Fig. 40(a)], and Newell and co-workers have developed
an analysis of the instability based on the phase equations
including mean-drift effects (Newell et al. , 1990a,b,
1991). Drift Qows are also expected in the Pan Am tex-
ture, again serving to enhance the roll curvature [Figure
40(b)] and roll compression at the center, forcing the lo-
cal wave number out of the stable band.

Pocheau (1989) has constructed a phenomenological
model for coupled phase and mean-Aow fields and has
evaluated the spread in wave vector of the pattern as a
function of Rayleigh number. He obtained good agree-
ment with experiment by making the phenomenologicah
assumption that the curvature of the rolls increased rap-
idly with R, immediately above threshold and saturated
at a value of curvature of order L ' for c.=c., =0.2. The
difhculty of an a priori theory, and of a general prediction
of the onset value c,,(L,cr) thus lies in the sensitivity of
the effect to the precise constraints on roll curvature im-
posed by the sidewalls, which are not understood away
from threshold.

An ingenious experiment to support the above theoret-
ical interpretation was devised by Daviaud and Pocheau
(1989), who built a cell of aspect ratio L =12.5 with a
sidewall boundary which is permeable to large-scale
Rows. In this case they observed that the crossing point
of the maximum wave vector q with the skew-varicose
instability line, and the consequent onset of defect nu-
cleation, occur at c, = 0.5 rather than E, =0.2 as in the

FIG. 40. Sketch of possible large scale mean drift Rows in three
simple situations. The lines without arrows correspond to the
roll boundaries and the lines with arrows to the large-scale How
streamlines. (a) Off-center target pattern [cf. Fig. 39(e)]; (b)
"Pan-Am" texture [cf. Fig. 39(b)]; (c) Dislocation [cf. Fig. 19].
(From Croquette, 1989.)
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usual impermeable case. An adaptation of the calcula-
tion of Pocheau (1989) to this case confirms the larger
value of c., for the onset of time dependence when the
large-scale Aow is unconfined.

Finally, let us mention an interesting system in which
the roll pattern can be controlled externally, namely con-
vection in mercury in the presence of a horizontal mag-
netic field (Fauve et al. , 1984). The eff'ect of the field 8 is
determined by the Chandrasekhar number

Q=oB d /pv, (8.68)

3. Natural two-dimensional patterns

Figures 3(a,b) show two natural patterns at the same
system parameters in a rectangular geometry and Fig.
41(a,b) shows an interesting comparison of natural pat-
terns in a large rectangular convection cell and in a nu-
merical simulation of the Swift-Hohenberg model (8.35).
There has been considerable experimental work on
characterizing steady natural patterns, the transient ap-
proach to steady state, as well as the breakdown to per-
sistent time dependence. At present our understanding is
mainly descriptive and piecemeal, isolating particular
features (Cross, 1982a). A full theory is lacking and we
are not even sure of the correct questions to ask. Any

where o. is the electrical conductivity and p the density of
the fiuid. For sufliciently large Q the magnetic field
aligns the roll axes and suppresses the instabilities occur-
ring near threshold for this low Prandtl number Auid

(o -0.02 —0.04). Studies of chaotic convection in this
system will be mentioned in subsection VIII.E.2.

global understanding that we have is based largely on
comparing with results or expectations from simple mod-
el equations, particularly the Swift-Hohenberg model.
We will first attempt to summarize the qualitative
features as distilled from a large body of work, and then
discuss attempts at more quantitative conclusions.

Let us remark at the outset that we are describing re-
sults on "large" systems, with aspect ratios between say 5
and 20. For the experiments we discuss considerable
care was taken to approximate an ideal system, i.e. con-
stant external conditions and as perfect a geometry as
could be constructed. This is dificult to accomplish in
larger cells since transient times become prohibitively
long. As will be seen, the steady state patterns ultimately
obtained reAect the scale of the system. Indeed, although
there may be regions of the pattern where a local roll
structure cannot be identified, there are typically also
large ordered regions of size comparable with the system
size, containing straight rolls or rolls with a radius of
curvature also comparable with the size of the system.
Thus these system sizes have not reached an asymptotic
limit where the size and geometry of the lateral boun-
daries are no longer important —and perhaps no such
limit exists for a truly steady state solution. In the
language of Sec. VII.A, the coherence length (as deter-
mined empirically from the solution, not the value

go estimated from the amplitude equation) remains
of order the system size. It might be expected that under
such conditions a complete understanding of the struc-
ture would indeed be hard to find. Interestingly, the
asymptotic large system limit may arise more easily in
simulations of the Swift-Hohenberg model where c. can

~ . ~

I
r~

I

QC

FIG. 41. Comparison of an experimental convection pattern with a numerical simulation of a model equation. Part (a) was obtained
by Le Gal (1986) using a shadowgraph method, and part (b) is a calculation by Greenside and Coughran (1984) based on the Swift-
Hohenberg model (8.33), for a similar aspect ratio. Note that both patterns are stationary.
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be raised, thereby increasing barriers to the evolution of
the pattern to simpler configurations, without the danger
of persistent time dependence developing. In real con-
vection, by contrast, for values of Rayleigh number at
which steady state solutions are obtained, the patterns
found at long times still seem to reAect the system size
and geometry.

We now summarize the main qualitative results for
steady state, natural patterns.

(i) There exists a multiplicity of stable steady state
solutions, even when the preparation conditions were
nominally the same, for example the patterns in Figs. 3(a)
and 3(b).

(ii) Transients leading to the steady state are often very

long, sometimes longer than the natural horizontal
diffusion timescale roL (Heutmaker et al. , 1985; Ahlers

et al. , 1985a). Cross and Newell (1984) suggested that a
longer timescale could be anticipated from the smooth
phase equation (4.76) (see Sec. VI.A. l.b.ii). They pro-
posed local domains in which the wave number evolves

to the value qf selected by focus singularities correspond-

ing to a zero perpendicular diffusion constant, and hence
a longer time scale than given by diffusion over the hor-
izontal scale. Note, however, that D~(qf ) is not expected
to vanish at low Prandtl numbers where mean drift
effects are important. (The experiments of Gollub et al.
were at Prandtl number 2.5.) Other sources of long time
scales might be relaxation effects analogous to those
occurring in glasses, due to the high initial complexity
(Siggia and Zippelius, 1981a), or "barriers" to defect
motion which is necessary for the pattern to evolve, al-

though it is not clear how to formulate this notion pre-
cisely in a high-dimensional phase space with no poten-
tial in the dynamics.

'

(iii) There is a tendency for the rolls to approach the
lateral boundaries at right angles, as for example in Fig.
3. As mentioned earlier, this is not a strict requirement
or boundary condition (cf. Sec. V.A. 1), but it agrees with

the conclusions of amplitude and model equations. The
tendency becomes stronger as the Rayleigh number, and
hence the curvature of the rolls, increase in these com-
plex patterns, as they do in simple patterns [Figs. 39(a)
and 39(b)].

(iv) There are often defects or defected regions in the
cell. This is in fact a necessary consequence if the rolls

approach the sidewall normally and the roll wave num-

ber is fairly constant. Cross (1982a) suggested that the
necessary distortions of the rolls could be accomplished
by many [O(1.)] isolated dislocations. Such defects are
indeed sometimes seen [see the box in Fig. 3(c)], though
more typically one finds disclinations [Figs. 3(b) and (c)],
grain boundaries, or complicated defect areas where no
simple geometry can be discerned [Fig. 3(a)]. As we have

seen, most disclinations can only occur if there is a con-
siderable ( —50%) spread of wave numbers, or if there is

a line of dislocations. However a theoretical description
is then harder than for isolated dislocations.

(v) There is typically a spread of local wave numbers,

with an overall tendency towards smaller values as the
Rayleigh number increases. This statement is part of the
general folklore of convection (Koschmieder, 1974) and
has been investigated by Heutmaker et al. (1985), Stein-
berg et al. (1985), and Heutmaker and Gollub (1987).
These groups used fluids with Prandtl numbers of 2.5 and
6.1 respectively, so that the conclusions seem to have
some generality. The results of Heutmaker and co-
workers for the wave-number distribution, are shown in
Fig. 42. (The wave number is defined as m times the in-
verse of the distance between zeroes of the fluctuations of
the shadowgraph intensity. This was found to be a more
useful characterization than the Fourier transform
method of Gollub and McCarriar, 1982.) It is interesting
to note, as Newell et al. (1990b) point out, that the wave
number of the maximum of the distribution follows the
wave number selected by an axisymmetric focus (see sub-
section VIII.C.2.a), although it is not understood why
this selection mechanism should operate in disordered
patterns, in a system where mean-How effects are impor-
tant. Steinberg et al. (1985) also state that the mean
wave number in natural patterns followed a trend to
smaller values similar to the axisymmetric selected wave

J
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q,
FICr. 42. %'ave-vector distribution P{q) in convection patterns
in a cylindrical cell of aspect ratio L =14 at several values of
the control parameter c, for Prandtl number o.=2.5. The stable
wave-vector band as predicted by Busse and Clever (1979) for a
laterally infinite system is shown by the horizontal arrows, as
well as the instability predicted at the edge of the band (see
Fig. 32). I'(q) lies within the stable band at moderate c, but par-
tially outside it at low and high c. (From Heutmaker and Gol-
lub, 1987.)
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FIG. 43. Wave-vector distribution in time-dependent natural
convection patterns in a cylindrical cell of aspect ratio L =20 at
low Prandtl number (o.=0.7). Horizontal dotted lines indicate
range of wave vectors observed in the pattern at fixed Rayleigh
number. The typical instability at each end of the range is la-
beled as in Fig. 32 (except for the "marginal" stability line M,
which is labeled N, "neutral", elsewhere). Full lines are predic-
tions by Busse (1978) for the stability boundaries of the infinite
system. (From Croquette, 1989.)

number. It was noted by Heutmaker and Gollub that if
the observed wave numbers lie approximately within the
stable band of the ideal system the state is usually steady,
whereas if the observed wave numbers stray significantly
outside the stable band the state usually has persistent
time dependence. This result is consistent with the no-
tion that the ideal stability analysis applies approximately
(presumably with small shifts of the boundaries) to local
regions of rolls without too great curvature. This is par-
ticularly likely to be true for the short length scale insta-
bilities (oscillatory, cross-roll); the long wavelength insta-
bilities may depend more on large regions of the How.
On the other hand the phase diffusion equation allows a
good theoretical analysis of the stability boundary shifts
due to finite size effects in the latter case. An estimate of
the effect of finite system size in the longitudinal and
transverse directions on the Eckhaus instability has been
carried out by Bodenschatz and Kramer (1987), and the
same sort of analysis could be done for a local distortion
of a large straight roll region. The skew-varicose insta-
bility, involving large-scale mean Qows is trickier, and
finite size effects have not been analyzed in detail for that
case.

Experimental results for low Prandtl number (o = 0.7)
convection with natural patterns are shown in Fig. 43.
These are actually dynamic patterns, and the band of
wave numbers observed is plotted, together with the type
of instability that typically limits the band (Croquette,
1989). Again, small shifts of the boundaries from the
ideal predictions are seen. The physics controlling the
center and width of the wave-number bands in natural
patterns has not been elucidated in this case. Plausible
mechanisms are the one-dimensional wave-number selec-

tion mechanisms of subsection VIII.C.2, or truncation of
a wide spread of wave numbers induced by the geometry
or the initial conditions. Such a truncation would be
caused by the instabilities themselves, and could then
lead either to a steady state solution with local wave
numbers inside the band, or to persistent dynamics.
There are however no predictions for the onset of time
dependence as a function of Prandtl number. Note that
for 0 ~ 0.7 the selection mechanisms and the stability
balloon both tend to smaller wave number as c is in-
creased, and both of these effects are consistent with the
experimental trend. It would be instructive to do experi-
ments for o. ( 0.5 where the known mechanisms select
larger wave numbers [see Fig. 36(a), and Buell and Cat-
ton, 1986a,b] whereas the center of the stable band con-
tinues to tend to smaller wave numbers.

Heutmaker and Crollub (1987) have attempted a quan-
titative characterization of natural convection using the
potential constructed by analogy with the Swift-
Hohenberg equation (Cross, 1982). Although this ap-
proach involves a crude approximation, the method is

important since it is the only global characterization of
patterns available. The authors reconstruct the wave-

vector field at a large number of points in space, and cal-
culate from their data the bulk [Eq. (6.6)] and surface
[Eq. (6.5)] contributions to the potential, as well as a
rough estimate of the defect contribution (6.11), using a
core size r, somewhere between one and two times
s '~

go. They then follow the variation of the potential
V and of the various contributions as the pattern evolves
in time. Typically V is dominated by the bulk and defect
terms, with smaller contributions from the surface. Near
threshold (e 52) the evolution of P is consistent with a
monotonic decrease, as expected for the Swift-Hohenberg
model. For s )2, on the other hand, the evolution of P is

definitely not monotonic: it displays large jumps associat-
ed with the spontaneous nucleation of defects, signaling
that simple modeling in terms of potential motion is no
longer applicable. Although this analysis is pedagogical-
ly attractive, it is not actually clear how much is being
tested. Since essentially all contributions to V tend to de-

crease in time, many other decreasing functionals could
be written down (the inverse Nusselt number would prob-
ably work for example). The essential dynamics is the
steady simpHfication of the pattern, and although the po-
tential captures and even predicts this trend it does not
necessarily control the dynamics. It should also be point-
ed out that the Swift-Hohenberg equation itself, when
simulated for analogous values of c to those used in the
experiment [see Eq. (8.36)], shows patterns that are held

up in complicated metastable minima (Cxreenside and
Coughran, 1984), contrary to what is seen experimental-
ly.

E. Chaotic convection

Convective systems have historically provided some of
the most important examples of chaos, due to the ease
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with which different types of spatiotemporal conditions
can be set up and controlled. Nevertheless subsequent
experimental studies have not succeeded in providing
simple examples that might be understood in detail. We
shall divide our discussion into the different categories
defined in Sec. VII, namely according to the number of
modes involved in the dynamics.

~ 0 ~ Op
~o

1. Small systems
CL

O

C7

—= 4.62R

RC

As mentioned earlier, the first clear experimental evi-
dence of chaos was found by Ahlers (1974) in accurate
measurements of temperature for a small (I.= r /d
=5.27) cylindrical container at R/R, =2. Since then
many important advances in the elucidation of temporal
chaos have resulted from experiments in convection. Ex-
amples are the first observations of the period-doubling
cascade (Gollub and Benson, 1980, and especially Lib-
chaber and Maurer, 1980, 1982), measurements of the
fractal dimension of reconstructed attractors (Malraison
et al. , 1983), and the observation of the complicated
tongue structure of the quasiperiodic route to chaos for
convection in mercury (Glazier and Libchaber, 1988). In
all of these cases the main advantages of the convective
system are the control and stability of external condi-
tions, the sensitivity of measurements of the dynamical
behavior, and the ability to visualize the Aow in real time.
On the other hand, precisely because of the universality
of small system chaos the results reveal little about the
specifics of convective flow. The interesting behavior of
the system is similar to what is seen in many other hydro-
dynamic systems, as well as in optical or electronic de-
vices (see Mayer-Kress, 1986; Abraham et al. , 1984,
1989). We will thus turn to systems with nontrivial spa-
tial dependence to reveal some of the features of chaos
that are more specific to convection.

One experimental aspect of chaotic convection in small
containers which does not seem to have a simple explana-
tion in terms of low-dimensional dynamical systems is
the high-frequency form of the power spectrum illustrat-
ed in Fig. 44. As first pointed out by Ahlers and Behr-
inger (1978b) and then observed by many workers, the
fall-off at high frequencies obeys a power law co & with
/=2 —5. For a deterministic system with a small number
of modes it is expected that the behavior will be exponen-
tial when co)&co „,where ~

„

is the highest charac-
teristic frequency of the modes in the system. As pointed
out by Greenside et al. (1982) the experimental behavior
is most easily interpreted in terms of a stochastic model,
though of course it could also be explained by some high
characteristic frequency in the low-dimensional model.
It might be interesting to explore an alternative deter-
ministic explanation invoking the continuum of modes of
a real fluid. It is possible that the concept of a dissipation
length (see Sec. VII.A), which we used to argue that a
fluid can be represented by a model with a small number
of modes, is too simplistic and that a "short-time tail"

lOglO f

FIG. 44. Power spectral density of temperature fluctuations

hT/AT, in Hz ' across a small aspect ratio cylindrical convec-
tion cell (L =4.72) maintained at constant heat flux, as a func-

tion of frequency in Hz ' on a log-log plot. The R.ayleigh num-

ber and Prandtl number are R/R, =4.62 and o.=0.7, respec-
tively. Note the power-law falloff at high frequencies. (From
Ahlers and Behringer, 1978.)

persists from interactions with large-q modes. We are
not aware of any mathematical studies of this question.

2. Intermediate systems: Defect mediated chaos

Most of the studies of chaotic convection have been in
the intermediate-size regime, i.e. aspect ratios in the
range 5 & L (50, where the system consists of a few de-
fects embedded in domains of regular (ideal) convection.
Attention has primarily focused on the onset of chaotic
time dependence, i.e. on the influence of defects on stabil-
ity. Very little is known precisely about the chaotic state
itself, for example the contribution of each defect to the
dimension of the chaotic attractor, or the precise way in
which defects influence spatial correlations. As discussed
in Sec. VII, these questions are probably very difFicult to
address in the regime of intermediate sizes where only a
few defects are present. We have therefore suggested
that it is more promising to consider the large system
limit considered in subsection VIII.E.3 below, and to de-
velop a statistical mechanics of defects, though there are
certainly technical difficulties in gathering sufficient data
to provide meaningful statistical information.

In the present section we summarize what is known
about the onset of chaos for systems of intermediate size
where the behavior is strongly dependent on Prandtl
number.
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a. Large Prandtl number: o- & 1 (a)

At high Prandtl number convective patterns near
threshold are observed to be stationary and to have rela-
tively small variation in local wave vector. Thus we ex-
pect an analysis of stability based on the Busse balloon to
be appropriate. According to our earlier discussion the
roll system will be stable until the wave number crosses
the balloon boundaries, and this usually occurs via a
cross-roll instability for o. & 1. In this case three-
dimensional convection sets in, to form a more or less
disordered cellular pattern. The onset of time depen-
dence is then analogous to the melting of this defected
solid. %'e are not aware of any quantitative studies, ei-
ther experimental or theoretical, of this phenomenon.

b. Low Prandtlnumber: o-~ f

For low Prandtl number the skew-varicose instability
is the primary boundary of the Busse balloon, so this
mechanism plays a central role in the onset of time
dependence (Gollub et al. , 1982; Croquette, 1989). An
important additional point, though, is the appearance of
large-scale Rows at low Prandtl number (see subsection
VIII.A.5), which deform the roll pattern and lead to a
broadened blaue-number distribution near onset. What
usually happens, roughly speaking, is that the local wave
number-crosses the balloon boundary at some point in
space, thus leading to the nucleation of a defect (typically
a dislocation). The subsequent time dependence can be
either periodic (with regularly spaced nucleation and de-
struction events) or, more typically, chaotic. The win-
dows of periodic behavior are sensitive to aspect ratio,
Prandtl number, and Rayleigh number, and appear to be
difticult to predict. Careful measurements as a function
of aspect ratio and container shape have been carried out
by Behringer and co-workers in liquid "He over a limited
Prandtl number range (0.5 & cr & 1), but no visualiza-
tions are possible in these cryogenic experiments (see
Behringer, 1985; Motsay et al. , 1988).

The above defect scenario has been documented by Po-
cheau, Croquette, and Le Gal (1985) in a careful experi-
mental study in high-pressure argon gas (o = 0.7) in a
cylindrical container with L =rid =7.66. The onset of
time dependence was found to be at v=0. 13, and was
clearly shown to arise from nucleation of a dislocation
pair at the center of the Pan Am pattern [Fig. 45(b)].
Greenside, Cross, and Coughran (1988), simulated the ex-
periment using the model in Eq. (8.42) above, which
closely reproduces the Busse balloon of argon gas (see
Figs. 32 and 33). As in the experiment, a dislocation pair
nucleated in the portion of the Aow where the rolls were
compressed, and the defects subsequently climbed toward
the walls of the container, thus producing chaotic motion
[Fig. 45(a)]. The authors estimated the onset to be at

FIG. 45. Comparison of time evolution in an intermediate as-
pect ratio cell for (a) model equation (8.42) (from Greenside,
Cross, and Coughran, unpublished), and (b) an experiment in
pressurized argon gas (o.=0.7) (from Croquette et al. , 1986a).

c., =0.036 for I.=7 and 8, =0.011 for I.=14, which
apart from a large discrepancy in absolute magnitude
represents a stronger dependence on I. than seen experi-
mentally [E, =0.13 for L =7.66 and E, =0.085 for
L =20, as reported by Croquette, 1989]. The fractal di-
mension of the chaotic attractor near c, could also be es-
timated from the simulation, and was found to be
df =2.9, suggesting that the dislocations provide
eQ'ective degrees of freedom for the dynamics. Another
interesting aspect of these calculations is that they also
showed chaos in a rectangular container (in agreement
with the experiments of Motsay et al. , 1988), but not in a
domain with periodic boundary conditions.

For higher Rayleigh number the pattern becomes in-
creasingly disordered, more defects are created and be-
come mobile. Most of these events can, at least qualita-
tively, still be associated with instabilities of the Busse
balloon (see Sec. 6.5 of Croquette, 1989) but no quantita-
tive theory seems possible in this regime. The behavior is
sensitive to geometry and to boundary conditions, as has
been demonstrated by a variety of experimental studies
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(see Ahlers and Behringer, 1978a,b; Heutmaker et al. ,
1985; Steinberg et ar. , 1985; Heutmaker and Gollub,
1987; Motsay et aI., 1988; Croquette, 1989). An analysis
of the chaotic transition at low Prandtl number has also
been carried out by Zaleski (1989).

Finally, we note that in the low Prandtl number Quid
mercury experiments mentioned in subsection VIII.D.2
above, Fauve et al. (1984) have used a horizontal mag-
netic field to produce different routes to chaos as the
Rayleigh number was raised. For small Chandrasekhar
number Q [Eq. (8.68)], the fluid went into a turbulent
state immediately above threshold, while for large Q
(Q ~700R/R, ) the pattern was one-dimensional and no
chaos was observed in the Rayleigh number range inves-
tigated (R 5 4R, ). At intermediate Q (300R /R, ~ Q
5700R/R, ) the fluid behaved like a small system with
characteristics of temporal chaos (oscillations, period
doubling, intermittency).

3. Large systems: Extensive chaos

A small number of experimenta1 studies of convection
with large aspect ratio have been carried out, attempting
to explore the behavior of the infinite system (see Sec.
VII.C). The pioneering investigation of Ahlers and Behr-
inger (1978a,b) found the remarkably small onset value

E, ~0. 1 in cryogenic He (o =1), which was quite baflling
at the time. We now believe it to be due to the defect nu-
cleation mechanism discussed in subsection VIII.E.2 for
argon gas, but we do not know precisely how E, scales
with o. or with L for large systems. It is likely that there
are many different types of behavior, dependent on
minute details of the system. Most investigations have
concentrated on conditions where the onset appears to be
clearly away from zero even for large L„such as systems
displaying an oscillatory instability. It would neverthe-
less be interesting to find a system where the onset can be
studied in a controlled fashion as a function of L and
where it is possible to test how c,, scales for large L.

Experiments on chaotic convection in cells of various
geometries have been carried out by Ciliberto and
Simonelli (1986), Ciliberto (1987), and Motsay et al. ,
(1988). The most complete studies of large-system con-
vective chaos are experiments on spatiotempora1 inter-
mittency in an annular cell, first carried out by Ciliberto
and Bigazzi (1988), and later refined and extended by
Daviaud and co-workers (Daviaud et al. , 1989; 1990).
The system used by Ciliberto and Bigazzi was a long thin
annulus with aspect ratios L = 2, L = 44, with an os-
cillatory onset of time dependence at a high value of re-
duced Rayleigh number (E = 200, for Prandtl number
o = 7.5). The initial time-dependent state consisted of
periodic displacements of the roll axes about their mean
position. As c was raised the amplitude of the oscillation
increased and gave rise to localized turbulent defects
caused by the merging of two rolls. Initially these tur-
bulent spots had finite lifetime, but at higher a their spa-
tial entent and their lifetime grew, and eventually they

4. Large Rayleigh numbers

Thermal convection provides a convenient closed sys-
tem in which Bows with large Reynolds numbers can be
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FIG. 46. Distribution P(x) of "laminar" domains of length x
for convection in a long thin annulus. (a) At reduced control
parameter a=240 the line shows algebraic decay with exponent
1.9. (b) As in (a) but for a=309, now showing an exponential
decay with decay length /=0. 1. (From Ciliberto and Bigazzi,
1988.)

"percolated" throughout the system. This phenomenon
is remarkably similar to the one first observed by Chate
and Manneville (1987) in their simulation of the
Kuramoto-Sivashinsky equation discussed in Sec.
VII.D.2. As in the simulations, the experimental data
were digitized into "turbulent" or "laminar" domains ac-
cording to various criteria, and the statistics of these
domains were analyzed along the lines suggested by
Chate and Manneville. Figure 46 presents the histogram
P (X) of the lengths of laminar domains at and above the
onset value for spatiotemporal intermittency, showing
the crossover from power-law to exponential behavior of
the distribution function. In the exponential region
above onset the rate of spatial falloff defines a correlation
length g, which was subsequently shown by Daviaud
et al. (1989) to have a broad maximum g,„=3.3 A, o
around the transition point and then to fall off at higher
E (A,o is the average wavelength of the laminar state).
Thus, both the experimentally observed transition and
the one found numerically in the Kuramoto-Sivashinsky
equation have some features of a critical point, but they
do not appear to be sharp in either case, and the round-
ing seems difficult to account for by finite-size effects
alone. More work is necessary to elucidate the nature of
the transition to chaos in this system.
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achieved. (For a recent review see Siggia, 1994.) As first
noted by Threlfall (1975), in helium gas at low tempera-
tures Rayleigh numbers can be varied over up to 14 or-
ders of magnitude by changing the pressure. Interesting-
ly, the Prandtl number remains of order unity, varying
roughly between 0.5 and 1.5. Early experiments (Threl-
fall, 1975) found a power-law dependence of Nusselt
number JV on Rayleigh number R

(8.69)

with P=0.28. An exponent /3= 1/3 had been obtained in
a theory involving the instability of a thermal boundary
layer near the bottom plate (see Priestley, 1954; Malkus,
1954; Howard 1966, and other references in Castaing
et al. , 1989). More recently a careful experimental study
of this system was undertaken by the Chicago group (see
Castaing et al. , 1989), in an effort to characterize both
the overall scaling of global quantities such as JV, and the
local properties of the Aow, e.g. the statistics of tempera-
ture Auctuations at different points in the cell, or the na-
ture of boundary layer instabilities and the emission of
thermal plumes. The system studied was a cylindrical
cell of aspect ratio L =r/d =0.5, and the Nusselt num-
ber measurements indeed led to a power law as in Eq.
(8.69), but the authors distinguished two different re-
gimes. The first, which they termed "soft turbulence"
occurs in the range 10 & R & 4. 10' and is consistent with
the exponent P= 1/3. For larger R, namely in the range
4. 10'&R &10", which they referred to as "hard tur-
bulence, " the exponent changes to P=0.282+0.006,
with JVO=0. 23+ 0.03. The distinction between the soft
and hard regimes coincides with a change in the distribu-
tion of local temperature Auctuations as measured by a
probe placed in the center of the cell. For soft turbulence
the distribution was found to be Gaussian, whereas it has
an exponential tail in the hard turbulence regime. These
and a number of other observations have been interpret-
ed by Castaing et al. (1989) in terms of a phenomenologi-
cal theory which modifies the classical picture of Malkus
and Howard by introducing an additional "mixing zone"
between the thermal boundary layer and the bulk of the
fiuid. This theory produces the exponent 13=2/7
=0.286, in good agreement with the experiment. Fur-
ther experimental work has been carried out by Sano
et al. (1989), Wu et al. (1990), Chilla, et al. (1991), Solo-
mon and Gollub (1991),and Wu and Libchaber (1992).

An interpretation of the experiments in terms of stan-
dard turbulence phenomenology has recently been
offered by Shraiman and Siggia (1990). They identify two
nested boundary layers with thicknesses ET and 8„
representing thermal and viscous processes, respectively,
and satisfying the inequality

(8.70)

The thermal layer is stabilized by the shear Aow in the
viscous sublayer, which in turn matches the coherent
large-scale Aow via a turbulent boundary layer. In that
case the Nusselt number is related to the shear rate ~ by

(8.71)

The shear rate is given in terms of the large-scale Rey-
nolds number R, and the viscous layer thickness by an
empirically verified scaling relation for turbulent bound-
ary layers

1/3 g —2/3
U

8, =o R, (2.51nR, + 6)

(8.72a)

(8.72b)

where o. is the Prandtl number. Combination of Eqs.
(8.71) and (8.72) yields the function A'(R, ). In order to
relate JV to the Rayleigh number R, the authors use an
exact energy balance relation

(8.73)

and estimate the kinetic-energy dissipation by the empiri-
cal relation valid for turbulent shear layers

((Vv) ) —1008, , (8.74)

from which, finally, the scaling relation

~- 0.27 ~ '"R- (8.75)

follows. The domain of validity of this scaling is limited
at low Rayleigh numbers by the requirement that the
viscous boundary layer be turbulent [so that Eqs. (8.72)
should apply], and at high Rayleigh numbers by the nest-
ing condition (8.70). These conditions yield the inequali-
ties

5. 10 o ~ R ~ (10' —5. 10' )o (8.76)

for the validity of Eq. (8.75). The specific Prandtl num-
ber dependences in Eqs. (8.75) and (8.76) are new predic-
tions of Shraiman and Siggia which can be tested experi-
mentally. The inequality (8.76) emphasizes the point that
the experiments under discussion are not in the asymp-
totic large R regime of strong turbulence.

The spatial and temporal scaling properties of the tem-
perature and velocity remain controversial. There is
some evidence from Sano et al. (1989) and Wu et al.
(1990) for a k ~ spatial power law for the temperature,
which Procaccia and Zeitak (1990) and L'vov (1990) have
attempted to explain in terms of the sealing theory of
Bolgiano (1959) and Obukhov (1959). However, Shrai-
man and Siggia (1990) have pointed out that the buoyan-
cy dominated scaling theory of Procaccia and Zeitak and
L'vov is inconsistent. Indeed, it also predicts a k
decay for velocity correlations which cannot persist to
high k since it is insufficient to dissipate the necessary en-
ergy, according to the exact relation (8.73). Finally, we
mention that Pumir, Shraiman, and Siggia (1991) have
presented a phenomenological model to explain the ex-
ponential probability distribution of temperature found
by Castaing et al. (1989).

Convection in a small cell at large R is a prime exam-
ple of large-system chaos as discussed in Sec. VII.C, since
there is nontrivial space dependence, and the attractor
dimension can be expected to grow with R. However,
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since the system is highly inhomogeneous in space, and
the statistical properties of the Row are very different on
small and large scales, the system retains many of the
difhculties associated with systems of intermediate size,
i.e. it does not display extensive chaos. It is conceivable
that high-R convection at large aspect ratio might reveal
a simpler phenomenology, so it would be interesting to
pursue such experiments (see Wu and I.ibchaber, 1992).

F. Special topics

1. Convection between poor conductors

Interest in convection between poorly conducting top
and bottom plates arises in part because the linear onset
problem is analytically soluble in closed form (Sparrow
et al. , 1964), even for realistic no-slip Quid boundary con-
ditions (the only case we will discuss). From our point of
view the system is worth special mention because the on-
set pattern, taking into account lowest-order nonlineari-
ties, is predicted to be squares rather than the familiar
roll pattern (Busse and Riahi, 1980; Chapman and Proc-
tor, 1980). In addition, the weakly nonlinear behavior
can be derived via a systematic expansion in slow varia-
tions of the How field, since the onset wave number tends
to zero in the limit of very poor conductors (Gertsberg
and Sivashinsky, 1981). This is therefore a type II, sys-
tem in the nomenclature of Sec. III.B. The resulting or-
der parameter equation provided the basis for the model
equation (8.38) studied by Greenside and Cross (1985).

In the limit of infinitely poor conductors the solutions
for the velocity u and temperature perturbation 0 near
onset become

plates via the relation

0,0=+Bg, (8.82)

Then defining the reduced Rayleigh number measured
from R,' ' as

R (0)
C

slow horizontal length scales X, F and time scale T

X=&OF x P=&oc g T= boy
—1/2 —1/2 1 2—2

(8.83)

(8.84)

Q=bo 'E ' q, b0=231/17,

and a scaled temperature field 4
0 (x,y, z; t ) = (0.59/bo )E qI (X, Y, T)+ 0(E}, (8.85)

where the control parameter r is given by.=1 —4a iSo2-" . (8.87)

This equation has a threshold at r =0, Q= 1 leading in
the original units to

E =(8, —R,' ')/R' '=(2/bo)8' (8.88)

Gertsberg and Sivashinsky show that the convection
equations (8.10) can be systematically reduced, using the
slow horizontal gradient expansion V, V» =O(E' }.
They obtain a single equation for the real function
%(X, Y, T)

BTq/=r 4 —(V + 1) ~II+V [(Vq/) V%'], (8.86)

iq(O'x
O=e

u"'=V X (V X zy'"),
(8.77)

(8.78)

and a wave number

(2b )i/2 g 1/4 (8.89)

with the stream function

1 iq"'x
y(0) (

2 1/4)2 e o

24
(8.79)

(R/R, )(JV—l)=b, B'"(1 r) '" &(vf//)'—), (8.90)

Note that r = 1 corresponds to E = oo, so the whole
range of nonlinearity of Eq. (8.86) is 0 ~ r ( l. In the
convecting state the Nusselt number A' is given by

leading to a critical Rayleigh number

R, '= 720, (8.80)

E =K /Ef, (8.81)

and a critical wave number qo '~0. Subsequent devel-

opment is based on perturbing around these solutions us-

ing the small parameter

with b, =(119/33)'/ /20. [To derive this result it is
necessary to calculate the O(E) term in 8.]

The relationship of the phenomenological parameter S
to the conductivity ratio E introduces further complica-
tions. If the plates have a thickness 5 with constant tem-
perature prescribed at the outside surfaces, the boundary
condition for a perturbation with horizontal wave num-
ber q becomes

d, 8=+(IC q coth q5) 8 . (8.91)
where L and Ef are the thermal conductivities of the
plates and Auid, respectively.

Instead of using the parameter K explicitly, we follow
Gertsberg and Sivashinsky (1981)and introduce the finite
plate conductivity in terms of the Biot number B, which
defines the boundary condition of the thermal field at the

In the thin plate limit, q 6((1 for all q of interest, this
gives 8 =If/5. Busse and Riahi (1980) also consider the
thick plate limit, q5 && 1, where the effective Biot num-
ber is

(8.92)
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g(g)= —(1+2cos 8), Q(0)=l .=2
3

(8.93)

The general discussion of Sec. IV.A. 1 then shows that
roll states are unstable and the most rapidly growing per-
turbation is for a square pattern, so the latter is expected
to be stable near threshold for poor conductors. In fact
Eq. (8.86) derives from a potential which is minimized for
a square. This analysis applies for all Prandtl numbers o.

in the limit K~O. The full range of (IC, o)for which.
squares are expected was investigated by Jenkins and
Proctor (1984).

Surprisingly, there does not seem to be any experimen-
tal work showing square patterns near threshold in pure
Rayleigh-Benard convection between poor conductors.
Square patterns were observed in silicone oil between
glass conductors (Le Gal et al. , 1985), but contrary to ex-
pectations the wavelength was not long. Moreover, oscil-
latory dynamic behavior was observed, in contradiction
to the dynamics predicted by Eq. (8.86) which is purely
relaxational. This observation was later explained by
Moses and Steinberg (1986b) in terms of binary fiuid con-
vection elfects (the oil was a mixture). Interestingly,
there too for some positive values of the separation ratio

g (see Sec. IX.A below) the onset is predicted to occur at
long wavelengths, and would be described by the same
equation (8.86). Unfortunately the weakly nonlinear
theory is only valid in a tiny range for most binary Quid

mixtures because of the slow particle diffusion, and ex-

i.e. it depends on the wave number q. The onset wave
number in turn scales as B' so that for this model
B-E and qo-K' . For the nonlinear problem we
must also include the induced modes at q=0, for which
different boundary conditions must be used in the thick
plate case. This makes the problem more complicated: in
general for 6~q ' we must add nonlocal terms to Eq.
(8.86) to incorporate the extra length scale of the temper-
ature field in the plates. In fact Proctor (1981) shows
that the problem may be solved in terms of a two-
dimensional order parameter equation similar to Eq.
(8.86) with an additional coupling to the three-
dimensional diffusion equation for the temperature inside
the plates. Since the thin plate limit seems easy to realize
experimentally we will restrict our attention to this case.

For Eq. (8.86) it is easy to derive the coupled ampli-
tude equations for superimposed rolls at an angle 0, Eq.
(4.31). This leads to an amplitude equation of the form
(4.31) with

perimental observations are outside the range of applica-
bility of this simple theory.

2. Oscillatory instability

The oscillatory instability is important in low Prandtl
number convection where it limits the maximum Ray-
leigh number for stationary convection rolls. The insta-
bility is periodic in time as implied by the name, has a
nonzero wave number along the rolls, and at least initial-
ly introduces no extra spatial dependence perpendicular
to the rolls. It is therefore an example of a type I, insta-
bility and we will discuss it in this context, concentrating
on one-dimensional spatial patterns.

The oscillatory instability was first discussed by Busse
(1972). For the physically artificial free-slip case it
occurs at long wavelengths and, at low Prandtl numbers,
arbitrarily close to threshold. It can therefore be cap-
tured analytically by various perturbation techniques.
The important degrees of freedom are the translation of
the rolls coupled to the mean drift Qows discussed in sub-
section VIII.A.5, which are undamped for free-slip boun-
daries. The instability has been discussed by convention-
al perturbation theory (Busse, 1972), amplitude equations
(Siggia and Zippelius, 1981b) and phase equation ap-
proaches (Fauve et al. , 1987).

For rigid boundaries the oscillatory instability occurs
at a finite, albeit small, distance above threshold no
matter how small the Prandtl number, and at nonzero
wave numbers. No systematic expansion scheme has yet
been developed to calculate its properties analytically.
Fauve et al. (1987) phenomenologically modified their
phase equation approach by introducing a finite damping
on the mean How, and found quite good agreement with
the numerically calculated linear instability curves of
Clever and Busse (1974), although systematic deviations
are clearly apparent. For quantitatively accurate param-
eters the numerical Galerkin calculation of Clever and
Busse must be used (see also Fauve et al. , 1987). A cal-
culation of effects nonlinear in the oscillatory mode am-
plitude is even more difficult, and we see no reason to ex-
pect even qualitatively reliable results from the geometri-
cal arguments of Fauve et al.

Experimentally, it turns out that at least for some pa-
rameter values (Prandtl number, roll wave number) the
oscillatory instability is continuous (supercritical). The
behavior near onset is then described by the standard
type I, amplitude equations which we write in the
unscaled form as

r (8, +s 8 )A =E(1+ic ) A + g(1+ic, ) B A —[g (1 ic )~A
~

+—g, (1 ic )~A
~ j

—A (8.94)

with a similar equation for AL given by R ~ I. and
so~ —so. We have neglected spatial variation along the
roll normal (which we continue to label x so that the
wave propagation is in the +y direction). Unlike many
other realizations of type I, instabilities (such as binary-

fiuid convection) which are subcritical, this system pro-
vides a direct way to investigate the effect of propagation
on weakly nonlinear states, and in particular to test the
effects of convective instability and the analysis of Sec.
V.B.
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Croquette and Williams (1989) and Chiffaudel et al.
(1989) have carried out such experiments. We shall dis-
cuss the former since their setup allowed visualization of
the pattern. They used a rectangular cell of aspect ratio
24 X 32 containing high-pressure argon gas, which
yields the low Prandtl number necessary to observe the
oscillatory instability, and also permits visualization.
The rolls in the convective state were arranged to be
parallel to the short side by hot-wire thermal forcing
along the walls, and the wave number of the rolls was
cleverly manipulated into the right range by the con-
trolled introduction of dislocations which served to
reduce the wave number from its threshold value by their
climb motion. The oscillatory instability appears without
much spatial dependence along the roll normal so that
for the central few rolls at least, the one-dimensional
treatment given by Eq. (8.94) should be adequate. By
measuring the oscillations forced by a small loudspeaker
below threshold Croquette and Williams measured the
linear parameters of the instability to be,

In addition, the shift in threshold from the infinite system
value (estimated by extrapolating the growth rate to
zero), E, =0.058, yields an estimate of the reliection
coefficient of the waves at the long sidewall via Eq. (5.29),
~r~ = 0. 183. Note that at threshold the scaled group
speed (6.32) is s=6. 5 + 2, so that s(1+ ci) '/ =3.0,
and the experiment is well within the "convectively un-
stable" range (see Sec. VI.C.1).

Unfortunately the nonlinear parameters gp, g&, c2, and
c3 are di%cult to measure; Croquette and Williams esti-
mate go ~ 2, and also c3 = 1. [This latter value is incon-
sistent with the one based on the work of Fauve et al.
(1987), but as we have seen this theory is not expected to
be quantitatively reliable. ] Also only the combination of
boundary parameters a+, P+ of Eq. (5.34) that appears in
~r

~
is determined. Thus several parameters needed for a

comparison with theory are not known. Fortunately, the
results are not too sensitive to these parameters, and with
reasonable choices Cross and Kuo (1992) obtained a re-
markably good account of the experiments, as illustrated
in Figs. 47 and 48.qp=2. 3 + 1, cop=19.8+ 1,

so=5.02+0.5, g'o=0. 52+0. 15,

1 p
=0. 163 + 0.05 cp = 1 ~ 57 + 0.3

ci = —0.83+0.3 .

3. Non-Boussinesq effects(8.95)

As discussed in Sec. IV.A, hexagonal patterns are ob-
tained near the threshold of a type I, instability when the
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I I I FIG. 48. Comparison of mean squared amplitudes of right and
left moving waves as a function of reduced control parameter c,
(a) from solution of amplitude Eq. (8.94); (b) from the experi-
ment shown in Fig. 47. Solid circles denote right-moving
waves, open circles left-moving waves. The actual quantity
plotted is proportional to ((1—c s2onx L/)

~ Aii L ~ ) for
0~ x ~ I., to reduce the sensitivity to the end regions where the
experimental measurements were less reliable. For small values
of c, the mean square amplitudes of right- and left-moving waves
are equal. For c & 0. 11 the symmetry is broken and one set be-
gins to dominate. For c. ~0. 15 (not shown) a dynamic state
occurs as in Fig. 47(c). Parameters used in the numerical simu-
lation were L /$0=45. 6, socio/go= 1.6, ci = —0.8 obtained from
independent experimental measurements; boundary condition
parameters were a= —0.22, P=0.44, consistent with the mea-
sured reflection coefficient ~r~=0. 18. In addition the values

g& =2, c3= —1.15, which were not determined experimentally,
were used. (From Cross and Kuo, 1992.)

c)
0.1:—

0 '

-0.4 -O. 2 0.4 X/L„0.2

FIG. 47. Amplitude of nonlinear waves near the onset of oscil-
latory convection, deconvoluted from experimental traces of the
roll displacement. Full line is the amplitude of left-moving
waves, dashed line that of right-moving waves. (a)
R/R, =4.036, symmetric state; (b) R/R, =4.222, left-moving
waves dominate; (c) R /R, =4.349, time-dependent "blinking"
state, with the two lines corresponding to opposite phases of the
modulation. These results should be compared with Fig. 25.
(From Croquette and Williams, 1989.)
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inversion symmetry A —+ —2 is broken in the system.
For Boussinesq convection the A —+ —3 symmetry is a
consequence of the z —+ —z, w —+ —w, 0~ —0 symmetry
of Eqs. (8.10). For convection, any asymmetry in the
boundary conditions at z = + 1/2 breaks the z ~ —z
symmetry, and would be expected to break the A —+ —A

inversion symmetry of the amplitude equation. However,
Schliiter et al. (1965) showed that in the case of rigid
boundary conditions on one plate but free on the other,
the coefficient y of Eq. (4.40) is identically zero in the ab-
sence of other non-Boussinesq effects, although higher-
order asymmetric terms in the amplitude equation (e.g.,
of order A ) would not be expected to have zero
coefficient. Thus with these particular asymmetries in
the boundary conditions there is no subcritical bifurca-
tion to hexagons. The case of an asymmetry in the
thermal boundary conditions does not seem to have been
investigated, though such a situation often occurs experi-
mentally when optical access is desired through the top
plate. Presumably if both top and bottom plates are
much better conductors than the Quid the size of the
effect (as measured by y) will be small.

The inversion symmetry is simply broken when the
physical properties of the Quid depend on temperature,
and therefore on the vertical coordinate (Palm, 1960).
This effect is left out of the Boussinesq equations (8.3)
since it is generally small, but it can be taken into ac-
count perturbatively. Following Busse (1967b) we intro-
duce the parameter

4

Q=g );P;,
i=0

(8.96)

y (Q)=(3/R, go)' Q,
gi =go '(0.2913+0.0815 o '+0.0893 a ),

(8.97a)

(8.97b)

and go given in Eq. (8.16c). According to the analysis of
Sec. IV.A we therefore obtain the characteristic bifurca-
tion diagram in Fig. 10, showing a subcritical bifurcation
to hexagons, followed by a region E~ & c & c.~ of
hexagon-roll bistability, and a roll region for c&c~ due
to an instability of hexagons at c~. The basic validity of
this theory was verified by Walden and Ahlers (1981) in
experiments in liquid He. More recently Ciliberto, Pam-

where y = —(pq —p„)/p, y, =(a~ —a„)/2a, y =(v~
vu )/vo p3 (Kt K )/ICo y4=(Cr Cu )/Co and

the quantities p, a, v, E,C are the density, thermal expan-
sion, kinematic viscosity, thermal conductivity, and heat
capacity, all of which determine the convective threshold
via Eqs. (8.9) and (8.11a). The subscripts 8, u, and 0
refer to evaluating the quantities at the temperatures of
the lower and upper plates and at the midplane, respec-
tively. The P; are O(1) coefficients which depend on
Prandtl number and have been calculated by Busse for
o. —+ ~ in the rigid case, and estimated for finite o.. For
purposes of describing pattern formation near threshold
it suffices to say that a nonzero value of Q leads to the
amplitude equation (4.40) with coefficients

polini and Perez-Garcia (1988) performed visualization
experiments in water in a cell with aspect ratio
I.= r /d = 18. The authors made a spatial Fourier
analysis of the patterns and were able to measure Bragg
peaks with considerable accuracy. From the ratio of the
peak strengths associated with hexagons and rolls, re-
spectively, they studied the hysteretic transition between
the two types of patterns. Moreover they verified quanti-
tatively that the experimental bifurcation diagram agrees
with the predictions of Busse (Fig. 10) when an overall
correction is made for the threshold shift due to the finite
aspect ratio. In particular, the ratio of slopes (JV'—1)/E
for hexagons and rolls agrees with theory, and the ratio
(Rz —R, )/(Rz —R, ) agrees to within 15%. Ciliberto
et al. observed the effect of sidewalls on the patterns, as
well as the detai1ed behavior of defects in the bistable re-
gion. These observations have been discussed theoreti-
cally by Walgraef (1991). Very recently Bodenschatz,
DeBruyn, Ahlers, and Cannell (1991a) carried out experi-
ments in a cylindrical cell of aspect ratio I.=86, and
were able to obtain a bifurcation diagram unaffected by
finite size and to resolve the small quantity c.~. At larger
c-values they found the remarkably regular hexagonal ar-
ray shown in Fig. 49(a).

Defects in the hexagon-roll system offer an elegant ex-
ample of the usefulness of the amplitude equations for
describing spatial patterns. Within this approach the
hexagonal pattern and its defects are completely deter-
mined by the amplitudes of three sets of rolls. In the
core one thus expects to see local realizations of roll solu-
tions that are unstable in the bulk. One such example,
which has been demonstrated experimentally by Ciliberto
et al. (1990) is a point dislocation in the hexagon struc-
ture, otherwise known as a "penta-hepta pair. " Let the
ideal hexagon structure be made up of the triplet of rolls

3 =a (x)e
E'p. ( x)

(8.98a)j= 1~2~3

with Vd( =q, ,

q&+ q2+ q3 =0, (8.98b)

and let there be a dislocation at x = (xo,yo ). Ciliberto
et al. measured the pattern shown in Fig. 50(a) by sha-
dowgraph methods, and using Fourier transform decom-
positions and filtering, were able to determine the local
values of the three amplitudes and phases. Then as
shown in Figs. 50(e) and (f), they demonstrated that the
amplitudes ai(x) and a2(x) had a zero at (xo,yo),
whereas a3(x) remains large. The corresponding phases

P, and Pz had a singularity, whereas P3 remains smooth.
This demonstrates that the unstable roll solution
a3 exp(i q3.x ) is present in the core of this defect ~ Anoth-
er similar example (not shown here) is a grain boundary
between three stable roll states with wave vectors also
satisfying Eq. (8.98b). In the core of the defect a, and a2
are large whereas a3 vanishes, and all three phases are
smooth. This is an example of the presence of an (unsta-
ble) mixed state, with two nonzero amplitudes.

These examples illustrate how general symmetry argu-
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FIG. 49. Patterns in non-Boussinesq convec-
tion in an aspect ratio 86 cylindrical cell of
gaseous CO&. (a) Hexagonal pattern seen near
threshold, c=0.06: notice the remarkably reg-
ular hexagonal cells except in a thin layer near
the boundary where the cylindrical ~alls in-
duce circular rolls. (b) Roll state for slightly
larger v=0. 15: the rolls here form a two-
armed spiral which slowly rotates with a
period of 2400 vertical diffusion times. Note
that only a portion of the pattern is shown.
(From Bodenschatz et al. , 1991.)
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ments can predict the details of rather complicated spa-
tial patterns. It should be remembered, however, that
the analysis relies on the specific amplitude equations
used, and a simple description of the core states would
not be expected to apply to defects in experiments away
from threshold, or in calculations using the Swift-
Hohenberg equation, for example. In that case the size
of the core is O(1) and the rapid spatial variation may
lead to large deviations from a local roll structure.

Lastly, we mention an interesting experiment by Har-
tung, Busse, and Rehberg (1991) in which a non-

cs2

Boussinesq layer of Quid with sinusoidal lateral variation
of the temperature showed a time-dependent transition to
convective Aow.

4. Effect of surface tension: Bernard-Marangoni convection

As mentioned in Sec. II.B convection in a container
with a free surface is driven by both surface tension and
buoyancy, the competition between the two mechanisms
being governed primarily by the thickness d of the layer.

0
o

0

kx/ko

~ rP

~P

x(mrn) y(mm)

FIG. 50. Defect in a pattern of hexagons: penta-hepta pair. (a) Isotherms of the convective temperature ye]d T(&,y) &n a small area
the cell a«=0.02. (h) Spatial Fourier spectrum of the field in (a). (c) Equiphase lines of pi Eq. (8.98a) (d) Equiphase lines of p,(e) Cross sections of the amplitudes R, [denoted a, in Eq. (8.98a)] with j= 1 —3, along the line labeled CS1 in (a). (f) As in (e) but the

cross sections are taken along CS2 in (a). For further explanation see text. (From Ciliberto et a/. , 1990.)
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Again up-down symmetry is broken and a hexagonal pat-
tern is expected. The onset of convection depends on the
Marangoni number M, Eq. (2.5), and the Rayleigh num-
ber R, Eq. (8.9), and is given to good approximation
(Nield, 1964) by

Now it can be shown quite generally (Ahlers et al. ,
1985b) that for any periodic e(t) the time average of A

over many periods depends only on the average of c, i.e.

( 3') (t, 5)= lim —1 A'(t, 5) dt =( A') (t, O) .
T —+ 00

R, M,+ 1R„ I„ (8.99) (8.102)

with R„=695 when the top surface is free, and
M„=90. [The value of M„depends on the properties
of the surface via the Biot number B defined in Eq. (8.82)
above, which is generally small (Normand et al. , 1977).]
The nonlinear properties have been studied by Rosen-
blatt et al. (1982a,b) and by Cloot and Lebon (1984). The
corresponding amplitude equation will have the form
(4.40), but the coefficients y, go, and g „areonly partially
known as functions of X and B. The most interesting as-
pect of this system from our point of view is that large
hexagonal patterns have been observed (Cerisier et al. ,
1987; Perez-Garcia et al. , 1988), and their evolution as a
function of size I. and control parameter can be mea-
sured. In particular, defects in the hexagonal lattice ap-
pear spontaneously in the system and it would be in-
teresting to study their role in melting the lattice, if large
enough systems could be obtained. Moreover, the evolu-
tion of the characteristic wave vector, as deduced from
the size of the hexagons, has been measured near thresh-
old (Cerisier et al. , 1987), and it should be amenable to
theoretical analysis.

5. Modulated convection

We have already discussed in subsection VIII.D. 1 ex-
periments using a slow periodic modulation of the Ray-
leigh number through threshold to investigate the small
forcing and its dramatic effect on pattern selection. For
Inore rapid modulation there are two new interesting
effects. First the threshold is shifted (see Ahlers et al. ,
1985b, and references therein; Liicke, 1987; Donnelly,
1990), and second an asymmetric modulation of the tem-
peratures of the upper and lower plates induces a hexago-
nal pattern (Roppo et a/. , 1984; Hohenberg and Swift,
1987; Meyer et al. , 1988, 1992).

Thus according to Eq. (8.102) the bifurcation of ( A )
must occur at co=0, independent of 5.

On the other hand, the linearized hydrodynamic equa-
tions can be analyzed for sinusoidal variation of the
lower plate temperature, say

Tr(t)=Tr, (1 + 5 coscot), (8.103)

(B —B"")/It""=s =5'M(~ o ) (8.104)

where M( co, cr ) is an 0 ( 1 ) function such that
M(O, cr)=MORO and M(co, o)~0 for co~~. The ex-
istence of a threshold shift in the low-frequency limit is
associated with the fact that although we are considering
modulation of arbitrarily long period, the response is
averaged over many periods [i.e. co~0, r—+ oo, d'or)) 1 in
Eq. (8.102)].

In the presence of modulation even the linear problem
can only be solved analytically in certain limits, so it is
useful to seek approximate treatments of the threshold
shift and the near-threshold behavior. A simplified
theory based on the Lorenz truncation (8.45), which ig-
nores the spatial variation of the roll amplitudes, was
proposed by Ahlers, Hohenberg, and Liicke (1985b). The
equations are essentially those of the Lorenz system
(8.46), except that the control parameter r is replaced by

r(t) = 1+E(t) = 1+ED+ 5 cos cot, (8.105)

and the coe%cient b has the value b =2 for rigid horizon-
tal boundaries. The linear problem then reduces to

and the bifurcation studied as a function of the average
Rayleigh number R„based on T&, —T„.It is found in

general that the convection threshold shifts as a result of
the modulation (see Davis, 1976; Ahlers et al. , 1985b).
Analytic expressions are available in various limits, par-
ticularly for small modulation amplitudes 5(&1, where
the shift is given by

a. Threshold shift m a, A+a, A —E(r) A =0, (8.106)

with

8, A =s(t) A —A

E(t) =so+5 cosset

(8.100)

(8.101)

(we suppress the spatial dependence of A for simplicity).

If we assume that the only effect of modulating the
plate temperatures is to provide a time-dependent re-
duced Rayleigh number s(t) and no change in pattern,
then near threshold the system is most simply described
by the amplitude equation

i.e. a damped parameterically driven oscillator, or Hill's
equation with I a constant depending on o. It is then
easy to show that in general the bifurcation threshold
E„(c0,5) is nonzero, and it can be calculated exactly for
the special choice of a stepwise constant control parame-
ter E(t) =ED+ 5s (cot/m), with s(x) =+ 1 for 2n &x
&2n + 1, s(x)= —1 for 2n+1&x &2n+2, n an in-
teger. The threshold shift calculated from the Lorenz
model has been compared with calculations based on the
hydrodynamic equations (8.10) with T given by Eq.
(8.103), in limits where these are available, and the agree-
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ment is good for both rigid and free boundaries. In addi-
tion, the nonlinear behavior can be calculated rather sim-

ply in the model (this has only been done very recently
for the full equations, see Schmitt and Liicke, 1991) and
the comparison with experiment is again satisfactory,
provided a time-dependent forcing term such as (8.58) is
added to Eq. (8.46a) for X(t). The theoretical predictions
of Ahlers et al. (1985b) concerning the threshold shifts
have been confirmed experimentally by Niemela and
Donnelly (1987) and by Meyer et al. (1992).

y(t) which is linear in g and a parameter
sz =(R~ —R, )/R, proportional to g (Krishnamurthy,
1986). An asymmetric modulation pz(t) =o coscot,
P„(t)=0, on the other hand, leads to E~ -6 for small 5
(Hohenberg and Swift, 1987). Some predictions of this
theory have been verified quantitatively in experiments of
Meyer et al. (1988) in a cylindrical cell of aspect ratio
L =11, where a clear hexagonal pattern was obtained
(see Fig. 51). In particular, the transition points
E„=(Rz—R, )/R, and E~=(Rz —R, )/R, were in good

b. Hexagonal pattel ns

In the simple model discussed above it is assumed that
the pattern consists of a single set of parallel rolls and
X(t), Eq. (8.45a), [or A(t)] is their amplitude. When the
time dependence of the plate temperatures is asymmetric
with respect to the top and bottom plates, the Quid

response creates an asymmetric temperature profile
which favors hexagonal convection near threshold (Rop-
po et al. , 1984) (it is an example of a non-Boussinesq
effect discussed in subsection 3 above). This effect can be
incorporated into the Lorenz model by including three
sets of rolls making angles of 2m/3, plus the higher spa-
tial harmonics that govern their coupling in lowest order
(Hohenberg and Swift, 1987). This hexagon-roll system
consists of 13 coupled first-order ode's with time-
dependent coefficients. In the limit of large Prandtl num-
ber and low modulation frequency the threshold shift
vanishes, and the model reduces to three coupled ampli-
tude equations of the form (4.40) for the three roll direc-
tions, with coefficients that depend on time. The asym-
metry parameter y(t) arises from a spatial average of the
conduction profile, and it has the form (Swift and Hohen-
berg, 1989)

(8.107)

where c2 is a known O(1) coefficient and P~ „(t)are
time-dependent upper- and lower-plate temperatures in
dimensionless form

X

Tp „(t)= T~ „+R,Pq „(t), (8.108)

(T& „aretime-averaged temperatures for the lower and
upper plates). More general formulas valid at arbitrary
frequency and Prandtl number have also been obtained
by Swift and Hohenberg (1989), and the asymmetry again
involves a parameter like y(t). A bifurcation diagram
analogous to the one in Fig. 10 can once again be calcu-
lated from the equations of motion, without any adjust-
able parameters. Note that according to Eq. (8.107) the
asymmetry parameter y, which scales all hexagon effects,
vanishes if the upper and lower plate are exactly out of
phase [Pz = —P„].For in-phase modulation on the oth-
er hand, it turns out, somewhat surprisingly, that hexa-
gons are still obtained if P(t) is not purely sinusoidal.
For example, according to Eq. (8.107), a linear variation
[Pz(t)=P„(t)=gt] produces an asymmetry coefficient

FIG. 51. Hexagon pattern in modulated convection. (a) Sha-
dowgraph image of a hexagonal convection pattern achieved
with modulation parameters co=1.5, 5=1.97, and co=0.20 in
Eq. (8.101). The bright regions show downflow at the center of
the hexagons, while the dark regions show upgrow along their
outer boundaries. (b) Low-wave-vector portion of the Fourier
transform of the image in (a), demonstrating the sixfold symme-
try of the pattern. (From Meyer et a/. , 1988.)
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agreement with theory, but no hysteresis was observed in
the bistable region. A number of the predictions of Swift
and Hohenberg (1989) concerning modulation of upper
and lower plates still await experimental tests, and the
spatial dependence of the patterns (defects and interfaces)
lies completely outside the scope of their simple model.

6. Rotating convection

In a rotating system the Coriolis force may have a
significant effect on Quid convection driven by the usual

temperature gradient. There are obvious geophysical
motivations for studying this phenomenon. The linear

instability problem for the onset of convection in a rotat-
ing system was studied by Chandrasekhar (1953), and the
nonlinear problem with free-slip boundaries by Veronis
(1952). From the perspective of this review, our interest
in this system goes back to the analysis by Kiippers and
Lortz (1969) who used the amplitude equation to consid-
er the instability of a nonlinear convective roll state as
the rotation rate 0 is increased at fixed temperature gra-
dient. (The analysis was extended to the regime away
from threshold by Clever and Busse, 1979.) As discussed
in Sec. IV.A. 1.a.iv, at a critical rotation rate 0, a set of
rolls becomes unstable to a second set rotated at some an-

gle 0, relative to the first set, which in turn become un-

stable to a set rotated through a further angle H„etc., so

that no steady state solution is expected. Furthermore,
since the nonlinear coupling constant Q(8) in the ampli-

tude equation is no longer symmetric under 0 —+ —0, the
coupled equations are not potential. Thus a dynamic
state is expected arbitrarily close to threshold. (Note
that we are imagining sitting in the rotating frame, and
looking at dynamics relative to the steady state rotation. )

An early analysis of the dynamic state by Busse and
Heikes (1980) was based on the closeness of 0, to 60' for

a wide range of Prandtl numbers. They used a model

consisting of three spatially uniform coupled amplitudes
A 2 A 3 for rolls mutually at 120 . For real ampli-

tudes the equations of motion become

Q, A, = eA, —[A, +g+ A~+g A3]A, , (8.109a)

B, A2 = eA2 —[A2+g+ A3+g A, ]A2, (8.109b)

B, A3 = EA3 —[A3+g+ A, +g Az]A3, (8.109c)

where g+ = Q(120)/Q(0) and g = 0( —120)/g(0), and
the condition for the Kuppers-Lortz instability is g+ ) 1

and g ( 1, or vice versa. These equations, which were
earlier studied by May and Leonard (1975) in a different
context, have the interesting property that the orbit con-
tinually approaches the heteroclinic orbit connecting the
unstable roll fixed points: ( A O, O, O) ~ (0, A o, 0)
—+ (0,0, Ao) ~ ( AO, O, O), where (A &, A2, A3) is the vec-
tor of amplitudes, and Ao = e/(1+g+ +g ). The orbit
spends longer and longer in the vicinity of the fixed

points, and so the return time diverges at long evolution
times. Busse and Heikes suggested that in practice noise

would eventually limit the closeness of approach to the
fixed points, yielding some finite mean return time fixed

by the noise strength (see also Busse, 1984). The detailed
time dependence of the macroscopic variables is
unpredictable due to the extreme sensitivity of the orbit
to the noise very close to the fixed points. Experiments
by Heikes and Busse (1980) seemed to confirm some as-

pects of the model, although already in this work the im-

portance of spatial domains was apparent. Niemela and
Donnelly (1986), using cryogenic helium cells, showed
evidence of sensitivity to added noise, although no Row
visualization was possible in their experiment. More re-
cently the spatial pattern forming aspects of this system
have come under investigation. The importance of de-
fects near the edges of the cell at the onset of time depen-
dence was noted by Zhong et al. (1991b) in a cylinder of
aspect ratio I, = 10 containing water. Bodenschatz
et al. (1992) in a larger cell (L =23), using dense CO2 as
the Quid, see clear evidence for the motion of grain boun-
daries between patches of rolls oriented at approximately
120'. The motion in both experiments is apparently
chaotic, but presumably a length scale set by the system
size or the domain size plays the role of the imperfection
that keeps the dynamics from converging to the ideal-
system infinite period orbit. This system is clearly of
great interest for studying the combination of pattern
formation and temporal chaos just above onset (Tu and
Cross, 1992). The development of the defects or domains
into the vortices typical of the high c, state is also of in-
terest (Zhong et al. , 1991a).

IX. OTHER FLUID SYSTEMS

A. Convection in fIuid mixtures

Convection in binary-Quid mixtures is a well-studied
example of a I, system where space and time scales are
roughly as in pure Rayleigh-Benard convection (see Plat-
ten and Legros, 1984 for a general introduction). Since
the bifurcation can be oscillatory it immediately leads to
a rich phenomenology even in its simplest incarnation,
the complex Ginzburg-Landau model. Unfortunately,
besides the Hopf bifurcation, there are two other features
of the system that complicate the behavior: a subcritical
bifurcation to convection and the existence of an addi-
tional small parameter, the Lewis number X representing
the ratio of time scales for thermal and solute diffusion,
respectively. The last property is not a necessary con-
comitant of binary fluids since gases have X = 0(1), but
for gases the Dufour effect is important and it suppresses
the oscillatory instability to unrealistic parameter values
in most cases (Hort et al. , 1992). Thus all experiments to
date have been on liquids with X 5 10 . The subcritical
bifurcation and the small Lewis number imply that
theories based on small perturbations of the conducive
state will necessarily fail quantitatively in most cases,
though it might be hoped that many of the qualitative
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features will survive. The situation is somewhat analo-
gous to that encountered in the Belousov-Zhabotinsky re-
action in chemistry (Sec. X). For that case a singular
perturbation theory exploiting the small parameter has in
fact been developed as an alternative to the standard am-
plitude and phase equations.

Early theoretical work focused on the linear instability,
but usually involved unrealistic models such as free-slip
permeable boundaries, or the so-called thermohaline
model which neglects the Soret effect (see below). Alter-
natively, attempts were made to describe the realistic rig-
id impermeable situation, but even at the linear level un-
controlled approximations were made (e.g. Gutkowicz-
Krusin et al. , 1979). The nonlinear behavior was de-
scribed for the free-slip or thermohaline models (e.g.
Knobloch and Proctor, 1981; Coullet and Spiegel, 1983)
by deriving amplitude equations that showed the interest-
ing feature of a codimension-two bifurcation where the
stationary and oscillatory bifurcations meet (Brand
et al. , 1983, 1984). The codimension-two point was stud-
ied experimentally by Rehberg and Ahlers (1985) in a
cryogenic He- He mixture Aowing through a porous
medium, and by Ahlers and Rehberg (1986) in a bulk
He- He mixture. Although many of the theoretical pre-

dictions were verified, a number of discrepancies
remained, and the absence of fIow visualization compli-
cates the interpretation of the experiments (see also Sul-
livan and Ahlers, 1988a,b). Interestingly, although the
papers of Brand, Hohenberg, and Steinberg (1983, 1984)
motivated most of the recent experimental interest in this
system, it and all of the early work on the problem (ex-
cept that of Bretherton and Spiegel, 1983) missed the im-
portant distinction between standing and traveling
waves, presumably because the implicit assumption was
made that lateral walls would stabilize standing waves in
a small geometry. Although oscillatory states with no
overall oscillation of Nusselt number were first observed
by Caldwell (1974), it was only after the pioneering ex-
periment of Walden et al. (1985) showed clear evidence
of traveling waves above threshold, that the attention of
the community was drawn to this system as an example
of pattern formation that is intrinsically different from
pure Rayleigh-Benard convection (i.e. type I, vs I,).

We shall discuss the basic hydrodynamic equations for
binary-Auid convection, as well as the various approxi-
mations and numerical methods which have been used to
understand this system. Then we shall describe some of
the key experiments that test the theory, including ones
which are not understood at present.

(8.3) must be supplemented with an equation for the evo-
lution of the concentration field c(x, t). The buoyancy
force arises from the density change [cf. Eq. (8.2)]

p=p [1—a(T T)—+P(c —c)], (9.1)

with P the new expansion coefficient. We shall scale the
concentration with the ratio of expansion coefficients,
defining

c =(13/a) c, (9.2)

so that bp~h(T —c). The equation of motion for the
concentration is then given by (Platten and Legros, 1984;
Landau and Lifshitz, 1959)

a,c+

j, = D, (V—c+QVT)+uc,

(9.3a)

(9.3b)

with D, the concentration diffusion coefficient. In
Eq. (9.3) the separation ratio

itj= —c (1—c) ST P /a, (9.4)

(proportional to the Soret coefficient ST) provides the im-
portant coupling between temperature and concentration
variations. (The corresponding extra term in the heat
current driven by a concentration gradient, the Dufour
effect, is negligible in liquids. ) The physical boundary
condition on c is that of impenetrable walls

n V (c+QT)=0 . (9.5)

Thus the imposed temperature gradient in a Rayleigh-
Benard geometry, Eq. (8.4), also implies a linear concen-
tration profile

c=co(z)=c+gb, T(z —d /2) . (9.6)

This concentration gradient is destabilizing for g) 0 and
stabilizing for P(0. The time scale in Eq. (9.3a), relative
to the thermal diffusion time is governed by the Lewis
number

(9.7)

mentioned above. As in Sec. VIII.A we now subtract oS
the reference concentration profile co(z), introduce di-
mensionless units, as well as the auxiliary field

g= c —co(z) +$8, (9.8)

to give the dimensionless equations for the perturbation
of the linear conducting profiles,

cr ' (i), +u V) u= —Vp+ [8(1+/) —g]+V u, (9.9a)

1. Theory

a. Basic hydrodynamic equations

(a, +u v) e=~~+v'e,
(a, +u v) g=z v'g+yv'e,
V-u=0,

(9.9b)

(9.9c)

(9.9d)

For miscible binary Auids there is an extra contribu-
tion to the buoyancy force coming from concentration
perturbations, and the Oberbeck-Boussinesq equations

with boundary conditions on u and 0 as in Sec. VIII.A. 1,
and in addition the condition of no solute Aux for
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impenetrable boundaries

1
a,g=O, z=+ —.

2
' (9.10)

(co~()~) = —l((1+%)(o +X )(1+cr+cTQ)

(9.12c)

b. Linearinstability

An approximate analysis of this system was carried out
some time ago by a number of authors (see, e.g. , the
references in Brand et al. , 1984), but it is only recently
that the linear problem was treated exactly. For /&0
the stationary instability is suppressed to larger values of
R =R„.However for negative enough P (depending on
X) the stationary instability is preempted by an oscillato
ry instability at R„.An analysis of this instability with
the realistic rigid impermeable boundary conditions must
be carried out numerically to give R„,qo, and the fre-
quency coo which all depend on o. , g, and X. Let us
de6ne the reduced Rayleigh number as

These results differ from the correct ones for rigid im-
permeable boundaries by factors that are of order unity
for realistic ranges of ltd, X, and cT (Knobloch and Moore
1988). However certain features are qualitatively
difFerent, for example the critical wave number remains
at po, =m / &2 for free-slip permeable boundaries,
whereas in the rigid impermeable case qo depends on the
fluid parameters, and there is a true codimension-two
point with no jump in parameters in the free case.

c. Nonlinear states

The linear stability analysis is done about the conduc-
tive state where the Soret effect and the very slow particle
diffusion produce a linear concentration gradient. Above

(9.11)

where R,' ' is the critical value for a pure Quid. In Fig. S2
we show the dependence of r„=R„/R, ' ',

r„=R„/R, ' ' and the threshold frequency con on l( for
representative values of lt and X. It is seen that the first
instability is stationary for g) it@ and oscillatory for

g & Pz & 0, the point of intersection $2 being a
codimension-two bifurcation point ' where coo=0. The
numerical procedure is made more difticult by the small
Lewis number. Actually, an easier X=0 calculation
gives sufficiently accurate results for the values of X usu-

ally found (X = 10 ), except for g very near zero. A
theoretical study of the linear instability has been carried
out by Cross and Kim (1988a,b) and by Knobloch and
Moore (1988), improving on earlier work of Zielinska and
Brand (1987).

Because of the difhculty of displaying the full parame-
ter dependence for the rigid-permeable case, sometimes it
is convenient to make use of the results for the unrealistic
free-slip, permeable boundary (c = 0 at z = + 1/2) mod-

el, which is separable and yields analytic expressions (see
Brand et al. , 1984)
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rP=(1+/+/A ') (9.12a)

r~~ =(I+X)(1+%+o +Acr ')( I+cr+o g)

(9.12b)

with a frequency

The nature of the codimension-two bifurcation is complicat-
ed by the fact that there is a jump in optimal wave number at
g=g2, between the stationary and oscillatory branches (see
Cross and Kim, 1988a,b).

FIG. S2. Critical Rayleigh number and linear instability fre-
quency in a binary Auid mixture with Lewis number /=0. 1

and Prandtl number o.= 10, as a function of the separation ratio
(a) The parameter r is R, /R, ' ' with R,' '=1708 the critical

Rayleigh number for pure Quid convection. The dashed line is
the continuation of the stationary bifurcation line above the os-
cillatory instability. The intersection with the full line marks a
codimension-2 degenerate bifurcation point at g= $2 & 0. Note
that l(2 is indistinguishable from zero on the scale of the figure
since it is O(L ). (b) Frequency of the onset state correspond-
ing to (a). Note that for f & Pz the instability is to a state with a
nonzero frequency, whereas for g) gz it is to a stationary state.
The value %=0.1 is used for illustrative purposes. For values
typical of liquids {X=10 ) the dashed line in part (a) ap-
proaches the vertical.
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threshold the Quid motion would be expected to rapidly
mix this concentration gradient, leading to a uniform
concentration Geld over most of the depth, with narrow
boundary layers of thickness proportional to the small
Lewis number X to which the concentration gradient is
confined. Since the concentration gradient away from
the boundaries is responsible for the oscillations, we
would expect their frequency to decrease rapidly with in-
creasing amplitude of Quid motion, and eventually a tran-
sition to stationary convection to take place. Indeed, as
discussed below, in experiments in an annular geometry
the transition was found to be strongly subcritical for
sufficiently negative g, leading at R„to a large ampli-
tude state which is close to the pure Quid convection
state (e.g. as measured by the Nusselt number), and con-
sisted of very slow traveling rolls (co ~ coo/10) or, depend-
ing on the value of f, of stationary rolls sometimes called
"stationary overturning convection. " Only for very
small ~f~ -X is the transition expected to become super-
critical.

d. Amplitude equations

According to the general discussion of Sec. IV.A we
expect an amplitude equation with real coefFicients near
the stationary instability and one with complex
coefficients near the oscillatory instability. The
coefficients have been calculated up to cubic order as

functions of P, X, and o (Cross and Kim, 1988b; Schopf
and Zirnmerman, 1989, 1993). Since the sign of the real
cubic coefficient is positive rather than negative as in Eq.
(4.59) over most of the oscillatory range, the bifurcation
to traveling wave convection is in general subcritical, and
the amplitude expansion is not quantitatively reliable. It
is reasonable, however, to try a phenomenological fifth-
order equation of the form (5.57) for a semiquantitative
description, at least for small ~g~ where the jump at the
subcritical bifurcation becomes small. As mentioned
above, a separate difficulty involves the smallness of the
Lewis number X, which restricts the amphtude expan-
sion even for the supercritical case. Representative
values of the coefficients of the amplitude equation are
shown in Table I. Since many unknown higher-order
terms are expected to contribute for small X it is prob-
ably preferable to use a Gfth-order amplitude equation
with Qtted coefficients as a phenomenological model.

As discussed in Sec. V.A.3 the endwalls are crucial in
allowing the instability to develop in rectangular
geometries. End walls are naturally incorporated
(Cross, 1988b) by adding the boundary conditions (5.34),
although the caveats in Sec. V must be remembered, and
the approach should be considered phenomenological.

e. Other theoretical methods

In view of the difficulties with the amplitude expansion
near threshold, it is natural to search for other methods.

TABLE I. Parameters of the amplitude equation (4.59) for binary-Quid convection for several difFerent
values of the Lewis number X, the Prandtl number cr and the separation ratio 1(. Also shown are the
critical Rayleigh number R„,wave vector qp, frequency cop, and parameter cp de6ned in Eqs. (4.58) and
(4.48). In addition the value of p at the codimension-2 point f2 and at the tricritical point 1(z (where
the real part of the cubic nonlinearity vanishes) are given for each X and cr. [From Schopf and Zim-
mermann, 1990, adapted to our notation. j

X = 0.02 o. =17

Q~= —1.374 X 10

ter= —1.95 X 10

L=0.04 a. =0.75

P~= —8.71 X 10

ter= —12.59 X 10

L =0.5 0.=1

Q~
= —0.081

fz = —0. 1363

Co

COp

Sp

ko

7p

Cp

C)

C2

C3

—1.55 X 10

1726.67

3.105

0.072

—0.14

0.149

0.103

—2.67

—2.50

—2.52

—260

158

—0.2

2176.74

3.127

9.86

3.08

0.147

0.102

0.448

0.114
—14.9

3.00
—0.093

—0.001

1769.88

3.069

0.162

—0.28

0.152

0.168

—2.26

—1.77

—2.26

—210

135

—0.2

2087.30

3.149

7.51

1.95

0.147

0.166

0.373

0.056
—6.70

5.98

—0.50

—0. 11

2601.12

2.721

—0.52

0.187

0.143

—0.73

—0.101

—1.09
—43.9

41.6

—0.3

3216.46

2.759

8.544

2.28

0.180

0.141

0.099
—0.117
—1.03

4.71

—2.66
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(i) Lorenz models

As already discussed in Sec. VIII.B this method in-
volves the expansion of the hydrodynamic variables in a
small number of appropriately chosen modes. The ensu-
ing coefficients satisfy ode's, which are supposed to be
valid, at least approximately, beyond threshold.

For the separable free-slip permeable model it is
straightforward to generalize the original Lorenz trunca-
tion (8.45). We must include extra modes for the concen-
tration variable, and in addition allow for the phase
motion of the traveling roll state by taking the ampli-
tudes of the linear modes to be complex numbers

w =i/3n [X(t) e'q" +c.c. ] cosrrz,

8=(9i/3 m. /2) [Y(t)e'~"+c.c. ] cosmz

+(27m. /4)Z(t) sin2nz,

g=(9i/3 vr /2)[U(t) e''i +c.c. ] sinn'z

+ (27m/4) V(.t) sin2rrz,

(9.13a)

(9.13b)

(9.13c)

with X, Y, U complex and Z, V real. This leads (Cross,
1986a) to the extended Lorenz equations

t},X= —cr [(X—(1+/) Y'+ U],
8, Y= —Y+rX —ZX,

a„U= XU—qY —VX—,

t},Z = —b (Z —XY*—X*Y),
t}, V= —b (X V+HZ —XU*—X*U},

(9.14a)

(9.14b)

(9.14c)

(9.14d)

(9.14e)

where here we define r=R/R„, 8 =8/3, and we have
taken for the critical wave number qo =m. /t 2. Solutions
of these equations were investigated by Cross (1986a) and
by Ahlers and Liicke (1987). They turn out to have a
strange degeneracy which is not easily detected by exam-
ining the form of the equations: the oscillatory traveling
wave solutions exist only at the threshold Rayleigh num-
ber r„,and there they may have a range of amplitudes
and frequencies in nonlinear steady states. Above r„
only steady solutions are found. To remove this spurious
degeneracy and to reproduce correctly the bifurcation
structure of the free-slip permeable model [which, it
should be remembered, itself has nongeneric features]
Knobloch and Moore (1990) have proposed a "minimal"
model with six complex and three real mode amplitudes.

- The earlier Lorenz-like models missed this crucial point (see
e.g. Knobloch and Proctor, 1981).

. The definitions of U and V used by Cross (1986a) were in
terms of c instead of g in Eq. (9.13c), so the corresponding
Lorenz equations were somewhat different. It is a simple
matter to transform from one set of definitions to the other.

Linz and Liicke (1987), on the other hand, suggest that
it is important to include the impermeable boundary con-
dition (9.5), and they have investigated in some detail an
intermediate model of free-slip but impermeable boun-
daries. The linear problem is no longer separable, and
the choice of modes even at the linear level is uncon-
trolled as it was for modulated convection, Sec. VIII.F.5.
They used the same choice of modes as in Eq. (9.13), ex-
cept that they took for the concentration field

I [U(t) e'~"+c c ]. +. V(t) v'2 cos(irz)I . (9.15)

(ii) Expansion about the pure fluid

For low solute concentration we have g —+0, and it is
useful to expand the equations about the (fully nonlinear}
equations of pure-Quid Rayleigh-Benard convection at
the same Rayleigh number. In the regime of small ~g~

away from the codimension-two point g2 o- —X, i.e. for

X'«[@i«1, (9.16)

(a regime that exists for X « 1), Bensimon et al. (1989b)
have analyzed the convective state using a boundary lay-
er method. In the nonlinear region of saturated traveling
waves the characteristic scale for the velocity of convec-
tive Aow is set by the thermal diffusivity ~, whereas the
phase velocity of the waves is determined by the much
smaller molecular diffusivity D, In the limit . (9.16) the
mixing due to the flow has a stronger effect on the con-
centration than on the temperature, so that a sizeable
temperature gradient is maintained in the bulk, whereas
it is the concentration and not its gradient that is nearly
constant. The concentration gradient required by the
value of the Soret coefficient occurs in boundary layers of
dimensionless thickness X near the top and bottom
plates. From the nonlinear solution with boundary layers
the authors predicted the phase velocity u, of the travel-

ing waves, and in particular the critical Peclet number

The resulting equations have the same form as (9.14) but
with slightly difFerent coefficients. (Linz and Liicke also
calculated these for general q. ) The degenerate features of
the simple model are removed, for example the critical
wave number does indeed show a jump at tP2 as in the full
equations, and the degeneracy at r„nolonger occurs.
However the truncated model contains none of the
boundary layer structure expected for small X, so that
quantitative predictions in this limit cannot be expected
to be reliable. In addition, some important features are
qualitatively inconsistent with results from the full equa-
tions with realistic boundary conditions, for example
there are apparently no stable nonlinear traveling roll
solutions below the tricritical g (where the real part of
the cubic nonlinearity vanishes), whereas these solutions
are certainly conspicuous features of both experimental
work and the full theory. Thus this model does not yield
a reliable general guide to the experimental phenomena,
although judiciously chosen features may be simply in-
vestigated.
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P, =u, d /D, , (9.17)

(9.18)

where the function f (x) was evaluated numerically, and
had the asymptotic form

f(x)-(16.98x) r, x~oo . (9.19)

(iii) Expansion about the codimension two po-int

At the codimension-two point ll2 four eigenvalues pass
through zero. Nearby, the "unfolding" of this degen-
erate bifurcation leads to a rich range of possible
behavior, including traveling and standing waves, sta-
tionary rolls and in addition modulated wave states with
two temporal frequencies. Knobloch and co-workers (see
Knobloch and Moore, 1990, and references therein) have
suggested that this structure may be used to understand
qualitatively the various states and transitions in spatially
homogeneous binary-Quid convection even far away from
the codimension-two point, much as we have used the
behavior at the nondegenerate bifurcation to understand
general nonlinear patterns throughout this work.

Unfortunately the "unfolding of the Takens-Bogdanov
bifurcation with O(2) symmetry" (Dangelmayr and
Knobloch, 1987) is very complicated, and contains many
possibilities depending on parameter values. In addition
as we have seen, for small Lewis number there are other
bifurcations very nearby, such as the traveling wave tri-
critical point and the stationary roll saddle node, and
these must be included by hand on top of the generic
codimension-two behavior to obtain the experimentally
relevant behavior. Thus it is hard to make predictions
based on this approach (beyond local consequences of
various types of bifurcations). Near enough to the
codimension-two point the degenerate bifurcation theory
does provide a rather complete description, and predicts
some interesting behavior. If we first ignore spatial inho-
mogeneities and assume rolls at a fixed wave number qo
the behavior near the codimension-two point is summa-
rized by a higher-order amplitude equation. We define a
complex amplitude A (t) in the usual way

U-[A(t)e ' +c.c. ]Uo(z), (9.20)

so that A satisfies an equation of the form

at which the velocity v,„vanishes, and the nonlinear con-
vection becomes stationary (u, is the convective fiuid ve-

locity, which depends on R and can be evaluated from
the pure-fiuid case). The result for P, is

(9.21)

U-[A(x, t)e " +c.c. ]UO(z) . (9.22)

We are then led to a single higher-order amplitude equa-
tion in one dimension (Cross and Kim 1988b) which is
obtained from Eq. (9.21) by the replacement

(9.23a)

(9.23b)

[Note the first-order spatial derivatives implied by Eq.
(9.23a) that were missed in the earlier work of Brand
et al. (1984).) The parameters appearing in Eqs. (9.21)
and (9.23) have all been calculated for binary fiuid con-
vection (Cross and Kim, 1988a,b; Zimmerman et al. ,
1988; we warn the reader that no consistent notation ex-
ists for the various coefficients), and properties of the
solutions have been investigated by Zimmermann et al.
(1988). This gives in principle a rather complete descrip-
tion of the codimension-two region, but so far only quali-
tative comparison with experiment has been possible due
to the minuscule range of applicability in experiments
with liquids.

(i v) Order parameter equations-

Here a=P=O defines the codimension-two point, aAO,
P=O gives the stationary instability, a=O, PRO gives
the oscillatory instability, and g&, g2, g3 are coeKcients of
the independent nonlinear terms. The addition of spatial
derivative terms, allowing varying wavelengths, is rather
complicated. In complete generality we expect the criti-
cal wave numbers minimizing the onset Rayleigh num-
bers for stationary (qo, ) and oscillatory (qo, ) instabilities
to be different at the codimension-two point defined by
R„(qo,)=R„(qo,). It is not then possible to extract a
single fast spatial dependence exp(iqox) leaving slowly
varying amplitudes for both oscillating and stationary
rolls. Instead, it is necessary to define two independent
amplitudes —one for waves near qo, and one for station-
ary rolls near qo„ leading to the standard amplitude
equations (4.13) and (4.59) except for additional nonlinear
coupling terms (Brand and Zielinska, 1986). In binary-
fiuid convection qo,

—
qo, =O(X) is typically small, so

that one may define a single amplitude A (x, t) giving
both instabilities through the relation

As mentioned above, earlier work (Knobloch and Proctor,
1981; Coullet and Spiegel, 1983; Brand et al. , 1984) had missed
the possibility of traveling waves and had derived an equation
for a real amplitude describing the standing-wave to
stationary-roll codimension-two point. Equation (9.21) has an
extra term, with coefFicient g3, compared to the earlier work
which included the Z2(q ~ —q) symmetry but not the 0(2)
phase symmetry.

Bestehorn and collaborators (Bestehorn et al. , 1989a,b;
Bestehorn and Haken, 1990b) have used a phenomeno-
logical equation, which is a complex generalization of the
Swift-Hohenberg model containing nonlinear gradient
terms, to describe binary-Quid convection. The
coefficients are chosen so as to fit the function Q(8),
Eq. (4.32), obtained from an amplitude expansion in the
free-slip permeable case. The model then takes the form
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g3(1 tc3)i~it'l 0 &4 (I ic4) 0'(~e) ~

(9.24)

Thc authors hRvc simulated this model numerically in
var1ous two-dlmcnslonal geometries Rnd have found a
number of features that are qualitatively similar to what
is seen experimentally. It must be noted, however, that
the values of g2, g3,g4 obtained from the calculation on
thc fI'cc-slip model do not lcRd to a real nonlinear satUra-
tion term for traveling waves in the amplitude equations.
It would therefore be interesting to repeat their calcula-
tions varying these values to give either a subcritical or
supercritical bifurcation to traveling waves. An order-
parameter equation such as (9.24) appears to be a
mlnlmal model necessary to dcscr1bc two-dlmcnslonal
patterns, but even in one dimension it could shed light on
the interaction between the fast and slow spatial modes,
an efFect left out of the complex Ginzburg-Landau equa-
tion.

(v) Numerical work

Recently a number of groups have made direct numeri-
cal s1mulatlons of thc hydrodynamIc cquatlons. Thcsc

fall into two classes: calculations on the free-slip perme-
able model and calculations for rigid-permeable boun-
daries. The former are relatively easy (at least for
moderate X where boundary layers are not too thin) and
can be carried out in fairly large geometries (e.g. L = 16,
Knobloch et al. , 1986). These investigations of the effect
of finite geometries complement thc amplitude cqURtion
work, but do not have any quantitative applicability to
experiment. For the rigid-permeable case the algorithms
are less efBcient. It is fairly straightforward to study spa-
tially periodic states, since then a small system with only
a single period is sufficient. Knobloch and Moore (1990)
studied these solutions at small g where once again
boundary layers are not too tight. However the most
complete investigation is that of Barten et al. (1989).
Their results display the properties of the nonlinear states
described above (see Fig. 53), as well as a complex range
of behavior depending on the relative magnitudes of the
Rayleigh numbers for the traveling-wave saddle node, the
oscillatory instability, and the bifurcation point of travel-
ing waves to stationary rolls. The authors investigated
mean fIow CAects and passive particle transport as well.
More I'ecently they extended their calculations to large,
albeit one-dimensional, systems to study spatial struc-
tures, in particular pulse solutions (see subsection
IX.A.2.a below).

(b)

~ I
i

Vi

1 0 soc

ill

rTw ~osc

4= -0.25

i~a i
i

SOC

phase-
p I Ills & d
SOC

--- 4=0

4

l

2.0

PICi. 53. Properties of the ideal nonlinear
states in binary Quid convection between real-
istic (rigid) plates, obtained numerically for a
Quid with Lewis number X=0.01, Prandtl
number 0.= 10, and separation ratio
P= —0.25. (a) Frequency of nonlinear oscilla-
tory state. (b) Convective heat current mea-
sured in terms of the Nusselt number
(denoted X in the figure). Abscissa is the re-
duced Rayleigh number r =R /R, ' ' with

R,' '=1708, the critical Rayleigh number for
pure Quid convection. Solid circles, traveling
waves with periodic boundary conditions;
squares, stationary rolls (denoted "stationary
overturning convection"); triangles, stationary
rolls stabilized by adding to the periodic
boundary conditions the requirement of zero
horizontal velocity, thus e6'ectively quenching
the motion of the 1oils ( p1Illllng bouIldaI y
conditions"). The dotted line shows the
Nusselt number for pure fIuid stationary con-
vection at the same Prandtl number; note how
the binary Quid results rapidly approach this
curve as r increases. The label r„,denotes the
linear instability; r* is the bifurcation point
between traveling and stationary rolls, where
the frequency goes continuously to zero; r&~ is
the saddle-node bifurcation point without pin-
ning, and r,'„the same bifurcation with pin-
nin. (From Barten eI; QI., 1990.)
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2. Experiment

a. One-dimensional patterns

(i) Summary of experimental facts

The possibility of constructing long narrow cells with
either annular or rectangular geometry offers a unique
opportunity to measure the properties of a one-
dimensional I, system near threshold, where the dynami-
cal behavior is expected to be rich, yet one might hope to
have a quantitative theory. It turns out, however, that
the observed phenomena are quite varied and complicat-
ed, so we begin by a brief summary of experimental re-
sults (see Surko et al. , 1986; Heinrichs et al. , 1987; Stein-
berg et al. , 1987, 1989; Bensimon et a/. , 1989a; Kolodner
et al. , 1989; Niemela et al. , 1990; Anderson and Behr-
inger, 1991;Steinberg and Kaplan, 1991).

~ Immediately above threshold the system develops
right- and left-propagating waves of /om amphi tude,
which can be investigated by dynamically adjusting c. to
prevent their amplitude from growing or decaying.
These states correspond to the unstable branch below the
subcritical bifurcation point.

~ When c is raised above the linear threshold a number
of difFerent nonlinear states are seen, depending on g, on
geometry and on experimental protocol. The nonlinear
states can be broadly divided into cell-filling and confined
states, and the confined states themselves can be divided
into pulses (of fixed small size) and extended states, for
which the region of convection has varying, and in prin-
ciple arbitrary, size. Another distinction which appears
primarily for larger ~f~ (it & —0. 1) is between fast waves
whose phase velocity is on the order of the linear velocity
coo/qo, and slow waves with much smaller velocity. The
fast waves are seen in confined states and the slow waves
primarily (but not always, see below) in cell-filling states.
We shall first discuss experiments that can be at least
qualitatively understood via the complex amplitude equa-
tion and then turn to those that cannot.

(ii) Experimentsinterpretable by the
complex amplitude equation

A fully quantitative experimental test of the amplitude
equations has not yet been possible. For large negative g
the transition is strongly subcritical, and the weakly non-
linear theory is not applicable. The best hope for a quan-
titative test is to work in the range —1 « f« —X (e.g.
$-0.01) where there is theoretical and experimental evi-
dence that the transition becomes only weakly subcriti-
cal. Even here, however, the amplitude equation is not
strictly valid because of the small value ofX. Considered
as an approximate description it has unknown
coefBcients, most notably the stabilizing fifth-order terms
which must be added if go is destabilizing. In addition
the e in Eq. (4.59) is measured from the infinite system

threshold, which may not be well known experimentally.
Finally, for experiments performed in rather wide
geometries (e.g. L~ )4) two-dimensional distortions may
become important, and for those carried out in narrow
geometries where this is not important there are no
theoretical results for the coeKcients of the amplitude
equation.

Two novel features which are predicted from the type
I, amplitude equations have been investigated experimen-
tally. The first is the set of extended states with spatial
structure and dynamics discussed in Sec VI.C. Here the
important features are propagation effects and reAection
at the endwalls, with the dispersive terms and the nature
of the transition (sub- or supercritical) playing a
secondary role. The theory predicts states with spatial
structure (e.g. confined states) on the scale of the length
of the system, with static or dynamic fronts between
different regions and widths determined by the correla-
tion length. The second novel feature predicted by
theory is the existence of pulse solutions over a range of
parameter values (see Sec. V.B). Here the dispersion and
the subcritical nature of the bifurcation are vital, with
endwalls being a complication and propagation effects be-
ing, as we shall see, a point of discrepancy between
theory and experiment. The spatial scale of the pulses is
set by intrinsic correlation lengths, and should be essen-
tially independent of the length of the system. In partic-
ular experiments, one or the other of the above features
may be dominant, and sometimes both may be compar-
ably involved, so that without quantitative predictions
the comparison between theory and experiment remains
somewhat inconclusive.

The spatial structure of nonlinear states for small g has
been investigated by Kolodner et al. (1989) for
(f = —0.021), by Steinberg et al. (1989) (concentrating
on g = —0.014 and —0.058) in rectangular geometries,
and by Heinrichs et al. (1987) at somewhat larger magni-
tudes (g = —0. 12 and —0.21) originally in rectangular
geometries and later (Niemela et a/. , 1990) in an annulus
where there are no endwall effects. Bensimon et al.
(1989a) had earlier examined annular geometries for still
larger ~g~.

(a) Rectangular cells

The results in rectangular geometries for small ~P~ are
quite consistent between different experiments, and seem

to largely follow the predictions of Sec. VI.C based on
the importance of propagation and reflection, although
the role of dispersive etFects is evident at larger ~itt

~
. The

major results are sketched in Fig. 54. The im:aortant
features are the following:

~ The existence of a weakly nonlinear branch AB of
"fast" rolls with frequency of order coo (more closely at
3, which is nearer r„than at the end 8). The Nusselt
number is also reduced from the corresponding value in

pure convection. Inasmuch as the frequency is close to
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A

I
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FIG. 54. Schematic diagram summarizing experimental results
on binary-Quid convection in a rectangular geometry, plotting
Nusselt number vs normalized Rayleigh number. The linear in-
stability occurs at r„.The state that develops may be a low
amplitude "fast" state, with frequency quite close to the linear
onset frequency along AB, or a "slow" higher amplitude state
along DC, with lower frequencies. Various spatial patterns that
do not fill the cell may be traversed reversibly along AB. At r~
a hysteretic decay of convection occurs. At r~ a discontinuous
jump to a slow filling state on the branch CD takes place. For
larger r a transition to a stationary state (not shown) takes place
on this branch. At D a hysteretic jump down to the conduction
state occurs. The value of r„depends on the reQection proper-
ties of the endwalls, and in some geometries may be greater
than r& so that the branch AB is not observed.

mo, one might hope that a weakly nonlinear theory might
be appropriate for these states.

e The linear onset r„depends on properties of the
endwall, as well as on the Quid properties, consistent with
the importance of reAection. At r„there is a jump to
the finite amplitude state which is usually the fast branch
AB, although the size of the jump seems to become
smaller as $~0, and the hysteresis r„rzbecomes i—m-
measurable in this limit. The dependence on aspect ratio
is (Steinberg and Kaplan, 1991),

r„(L) r„(ao)-L— (9.25)

as expected [see Eq. (5.29)] and not the L dependence
characteristic of pure-fiuid (type I,) convection.

e The values of rz and r~, the ends of the fast branch,
seem independent of the endwall conditions. Thus for
some parameter values and certain endwalls we may have
r„&rz, so that the fast branch AB is not seen. The hys-
teresis r„—rz also depends on the endwall properties.

The nature and sequence of states along AB is large-
ly consistent with the behavior in Figs. 25 and 26, valid
for a supercritical bifurcation if we assume that the eQ'ect
of the subcritical bifurcation is to eliminate the low am-
plitude states. We note in particular the following
features: a nonlinear "counterpropagating wave" state,
reminiscent of Fig. 25(a), at the smallest ~g~; the "blink-
ing" or "sloshing" states of Steinberg et al. (1989) and

Kolodner et al. (1989), reminiscent of Fig. 25(d); the sta-
tionary confined state filling about one half of a large cell
(L = 24) at small ~itj~ (Moses et al. , 1987), reminiscent of
Fig. 25(g). Figure 55 displays results of Kolodner et al.
(1989) on an asymmetric blinking state, with the time
dependence of the left and right wave envelopes obtained
by demodulation techniques from the experimental data:
the similarity with results from the Ginzburg-Landau
simulations displayed in Fig. 25(d) is striking. At large
~g~, however, the stationary confined states may be more
akin to the pulses described below (Steinberg and Ka-
plan, 1991).

~ The value of rz, the end of the confined states, is con-
sistent with a constant value s~ of the reduced group
speed s=(soE '

) (ro/go), although this value is around
1.6 whereas theory predicts s + 2 in the large system lim-
it, depending weakly on g in the range studied. Numeri-
cal simulations of the amplitude equation by Cross and
Kuo (1992) find a reduced value of ski as the size of the
system decreases (see dashed line in Fig. 26), although a
precise identification of the confined to filling transition is
difficult for the supercritical bifurcation assumed in that
work. Fineberg et al. (1990) have suggested that the
reduction in value of sz can be ascribed to a nonzero am-
plitude of the counterpropagating wave at the boundary
of the confined state, and with this single parameter they
obtain a good fit to the modulation period of the blinking
state as the Rayleigh number is reduced. It should be
remembered, however, that the character of the state
(e.g. its frequency) is significantly different at ra from the
onset solution. Moreover, the transition observed is
discontinuous and it is a transition to the "slow" highly
nonlinear state, so that the quantitative reliability of the
Ginzburg-Landau prediction for sz is doubtful. In larger
aspect-ratio systems Kaplan and Steinberg (1992) show
that the transition from confined to filling appears to be
triggered by the amplification of fluctuations in the con-
vectively unstable small-amplitude region, much as in the
annular geometry (see below), and they study the cross-
over between the two mechanisms.

In the model of Cross (1988b) used to explain the
above observations it is essential that one consider cou-
pled right- and left-travehng waves, as well as the efFects
of the sidewalls. In contrast to those confined states,
which in general fill a large portion of the cell, another
class of states was observed by Steinberg et al. (1987) and
by Heinrichs et al. (1987). These new states were of
much smaller extent and apparently less dependent on
geometry, though they were localized near the endwall.
These observations were explained by Thual and Fauve
(1988) in terms of the pulse solutions of a single wave, as
discussed in Sec. V.B.2.b.iii.f3. We now turn to experi-
ments in annular geometry, where those ideas can be test-
ed more convincingly.

(P) Annular geometry

The explanation of Thual and Fauve (1988) was strik-
ingly confirmed by experiments of Niemela et al. (1990)
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in an annular cell, which demonstrated that the pulse
states were indeed stable without lateral boundaries, and
could be quantitatively At by a simple exact pulse solu-
tion of the Ginzburg-Landau equation, albeit with adjust-
able parameters. This work, and a number of subsequent
experiments by various groups (see, Kolodner and Gla-
zier, 1990; Ahlers, 1991; Anderson and Behringer, 1991;
Kolodner, 1991a—d; Steinberg and Kaplan, 1991),
conArmed that pulse solutions were stable under a variety
of experimental conditions, but there remained two quali-
tative discrepancies between experiment and the simple
model. First, the theoretical pulses arising from the sim-

pie Ginzburg-Landau equation (5.57) are at rest in a
reference frame moving with the linear group velocity so
of the waves, whereas the observed pulses were found to
be at rest in the lab frame. Second, the pulses were found
to remain stable above the linear threshold, even though
the conducting fluid away from the pulses was (convec-
tively) unstable. It turns out that both discrepancies can
be plausibly accounted for by corrections to the simple
Ginzburg-Landau model. It was first found numerically
by Brand and Deissler (1989), and subsequently shown
analytically by van Saarloos and Hohenberg (1992), that
a nonlinear derivative term s2[B ~

A
~ ]A as in Eq. (3.37)
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FIG. 55 "Sloshin " or "blinking" state in experimental binary Quid convection. The top trace is the intensity of an optical signa
measuring the Aow at a single point. The column of pictures on the left is a sequence of shadowgraph images taken at times indicate
in the top trace. To the right of each image is the corresponding amplitude computed by demodulation of the optical signal. Fu
l ht-moving waves; dashed lines, left-moving waves. Note the similarity with patterns observed in numerical simulations ofines, ng
the amplitude equations shown in Fig. 25(d). (From Kolodner et al. , 1989.)
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FIG. 56. Drifting pulse in annular convection cell of dimensionless circumference I.=92, containing an alcohol-water binary mix-
ture with separation ratio g= —0. 12. Space-time plot of the envelope of the shadowgraph signal representing a localized pulse o)
convection embedded in a conducting background. The pulse drifts slowly to the left. (From Kolodner, unpublished).

changes the pulse velocity from so to a nontrivial value

U„(s2,E, c; ), which depends on all the parameters in the
model. Of course this does not explain why the observed
velocity was precisely zero, rather than some variable
quantity. The numerical simulations of the full hydro-
dynamic equations by Barten et al. (1991), on the other
hand, led to a nonzero pulse velocity, albeit a very small
one v /so-0. 01—0.03.

This qualitative discrepancy was removed in a beauti-
ful experiment by Kolodner (1991c),who took particular
care to make the control parameter E constant along the
cell. As illustrated in Fig. 56, Kolodner found a moving
pulse with a slow velocity, and in a careful series of mea-
surements was able to show that previous observations
could be explained by assuming that the pulse stopped at
a point where the local velocity vanished in a slightly
nonuniform cell. Although the relationship between an
assumed spatial variation c,(x) and the ensuing U (x) is no
doubt rather subtle, this basic interpretation seems rather
convincing to us. Indeed, Kolodner also found that v

depends on parameters, e.g. the average control parame-
ter e, as well as the separation ratio P (see Fig. 57 and
Kolodner, 1991d).

From the point of view of the Ginzburg-I andau model
(3.37), even with a nonlinear derivative term, the small-

ness of v /so is nevertheless rather puzzling. An in-

teresting modification of the model which attempts to
take into account the slow timescale of solute diffusion,
has been presented recently by Riecke (1992). Approxi-

0.06—

0.04—

(D

0.02—

I

—0.01 0.01
I

0.02

FIG. 57. Pulse velocity U~ normalized by the linear group ve-

locity so vs control parameter e, for pulses such as the one in
Fig. 56 and diff'erent binary-Quid mixtures. The reduced veloci-
ty is seen to be very small in magnitude and to depend on the
Auid parameters. (Adapted from Kolodner, 1991d.)
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a, C = d, a.'C+d, C+ d, a„lAI',

with the scaling

d2-X/s = O(l) .

(9.26a)

(9.26b)

(9.27)

The above equations possess pulse solutions even in the
real case (c; = 0), and Riecke shows numerically that for
small d2 the pulse velocity (equal to so when do = 0)
remains very small for a range of sp. This calculation
provides a natural explanation of the observed slowness
of the pulse velocity, in terms of the drastic effect of cou-
pling to the slow concentration mode on pulse propaga-
tion, even in a model which neglects the thin boundary
layers associated with rigid impermeable horizontal
boundaries (see subsection IX.A. l.d.ii above).

The second major discrepancy between experiments on
pulses and the simple model involves the stability of
pulses for E, ) 0. An explanation was already offered ear-
ly on by Niemela et a/. (1990), Barten et a/. (1991), and
Glazier and Kolodner (1991), who noted that in a finite
annulus the linear waves created by the convective insta-
bility can be reabsorbed by the pulse before they have
time to destroy the conducting state. On the other hand
the instability mechanism discussed by van Saarloos and
Hohenberg (1992) (cf. Sec. VI.B), whereby the pulse ex-
pands due to the creation of two outwardly propagating
fronts, does not seem to be strongly affected by finite
geometry, so the detailed stability properties of pulses
remain to be clarified.

A number of experiments have also been carried out
on pulse interactions (bound states and scattering) as well
as on the effect of low amplitude waves impinging on sta-
tionary or moving pulses, and the consequent modifi-
cations of pulse stability (see Kolodner and Glazier,
1990; Kolodner, 1991a,b). Most of these effects appear to
be qualitatively understood but we are far from a quanti-
tative theory.

mating the horizontal boundary conditions as free slip
and permeable, Riecke arrives at the coupled amplitude
equations

B, A + s 8 A =(1+i c, )B„A+(c+dC)A

—(1 i—c3)(A( A —(1 i—c5)~ A( A,

increases, and found quantitative agreement with the su-
percritical bifurcation predicted theoretically by Bensi-
mon et a/. (1989b). Earlier experiments by Walden et a/.
(1985) and Moses and Steinberg (1986a) had seen a sub-
critical bifurcation, which might be explainable by the
rectangular geometry used in that work.

The early experiments in annular geometry at
P = —0.25 by Bensimon and co-workers (Kolodner
et a/. , 1988; Bensimon et a/. , 1989a) found a whole range
of fast confined states, in particular convecting states of
arbitrary (large) size bounded by stationary fronts. The
existence of such fronts over a range of E. values remains
a mystery, since it is inconsistent with the selection argu-
ments of Sec. VI.B, based on the simple Ginzburg-
Landau model (5.57). The observations were confirmed
both experimentally (Surko et a/. , 1991) and numerically
(Barten et a/. , 1991) for a particular value of Rayleigh
number but the dependence on c and 1/, and the relation
of these large structures to the (small) pulses observed at
larger g remain to be clarified.

All these different experiments both at large and small
negative i/j have a common feature which is not under-
stood: states in which the convecting rolls essentially fil
the container show a low basic frequency (typically
0. le@0), whereas states of confined rolls show a higher fre-
quency which approaches the linear frequency cop close to
onset, although it may decrease significantly (typically to
0.5coo or less) as the nonlinearity increases. Stable slow
states usually are cell-filling, though they can be observed
as confined states, if the (unstable) trailing edge is pinned
by a boundary in rectangular geometry, or by a source
defect in annular geometry (Kolodner, 1990). Fast states,
on the other hand, have never been observed to fiH the
cell. The primary mystery, in our opinion, concerns the
nature of the stable fast states. The only fast states un-
derstood theoretically are the unstable traveling wave
states below threshold for a subcritical bifurcation in an
infinite system. If a qualitative understanding of the fast
states could be achieved we believe that the main features
of the one-dimensional system near threshold would be
understood.

b. Two-dimensional patterns

(i) Traveling rolls for g & 0

(iii) Other one-dimensional experiments

Experiments at more negative g emphasize the
discrepancies with the complex amplitude equations. In
rectangular geometries no weakly nonlinear states with
co=up are seen, and the system immediately jumps to the
slow state (Surko et a/. , 1986). In annular geometries
(Bensimon et a/. , 1989a) both fast confined states, with co

not too far from cup, and slow filling states, are seen.
Ohlsen et a/. (1990) made careful measurements of the
slowing down of the filling states as the Rayleigh number

Bop a/A/
BE

(9.28)

If the transverse aspect ratio is made greater than
about 4 or 5, the behavior becomes more complicated
and essentia11y nothing is understood theoretically. In
general the ordered structure across the system breaks
down as the lateral aspect ratio is increased, to give more
complicated structures often with chaotic dynamics.
This tendency to lateral breakup is not surprising if we
consider the possibility of the transverse Benjamin-Feir
instability. A natural estimate of the instability criterion
at a subcritical bifurcation is
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[This is arrived at by allowing more complicated (e.g.
fifth order) nonlinear terms but not changing the spatial
derivative terms as in Eq. (5.57); the effect of higher-
order derivative terms is unknown at present. ] The above
instability criterion is typically satisfied in nonlinear
binary-Auid convection where the frequency decreases as
the amplitude grows with increasing c.

The types of behavior observed in two-dimensional sys-
tems include (i) a periodic or chaotic "zipper" state in
which waves in each half of the cell (lengthwise) propa-
gate from opposite corners, leaving a zipper-like pinching
off and rejoining of rolls where the two domains meet
down the midline (itj = —0.6, I.=6 X 4) (Walden et al. ,
1985); (ii) traveling waves confined in both dimensions in
domains that evolve chaotically throughout the cell
(g = —0. 1, L = 20 X 9) (Steinberg et aI. , 1987); (iii)
traveling waves in various directions largely Ailing the
cell, which again evolve chaotically (P = —0.3,
I. = 20 X 9) (Steinberg et al. , 1987); (iv) pulse states
resembling the one-dimensional ones (Bodenschatz et al. ,
1992).

The numerical work of Bestehorn et al. (1989a,b) on
their generalized Swift-Hohenberg model shows structure
that is visually strikingly similar to the results (ii) in the
preceding paragraph. As mentioned before, however,
this model is strongly chaotic even when restricted to one
dimension due to the absence of any saturating (real)
nonlinearity (Bretherton and Spiegel, 1983). It would be
interesting to consider a similar model with and without
longitudinal and transverse Benjamin-Feir instabilities to
elucidate their relevance to the structures observed (see
also Bestehorn and Haken, 1990b).

(ii) Squares and rolls for g & 0

For positive separation ratio both the temperature and
the concentration gradients are destabilizing and the
linear theory predicts a dramatic decrease in the station-
ary convection threshold. If we define a Rayleigh num-
ber associated with the concentration as

Pgd bZ
D, v

(9.29)

[see Eq. (9.2)] then we have Rs =R P /X))R, and we

expect the concentration to be destabilized before the
temperature. In view of the no-Aux boundary condition
(9.5), the threshold is analogous to that for thermal con-
vection in the presence of insulating boundaries discussed

. in Sec. VIII.F. We thus expect to see a square pattern
with a long wavelength immediately above threshold
(Moses and Steinberg, 1986b, 1991; Knobloch, 1989,
1990). Note, however, that since in that case qo ~B'r
[see Eq. (8.89)], the wave vector may rapidly evolve to
qo-O(1) as the efFective Biot number increases. Since
heat transport is of secondary importance in this state
the convected heat is expected to be very small,
(A —1)—10 to 10 for small Lewis number, and
difficult to detect experimentally. This regime, dominat-

ed by concentration effects, is known as the Soret regime.
On the other hand at a Rayleigh number of order the
pure Auid critical Rayleigh number R,' ' a rapid cross-
over to thermally dominated convection is expected, with
a much larger Nusselt number (JV—1)—(R —R,' ')/R, ' '.

The experiments of Moses and Steinberg (1986b, 1991)
in an ethanol-water mixture with $-0.02 —0.2 agree
semi-quantitatively with these ideas. A large-scale Aow is
first resolved at a small Rayleigh number r-0. 16 with
wave vector q -qoz /8 (where qoz

= 3.117),with a clearly
defined square structure visible when q has reached
qo /2. The wave vector then evolves to q-qo as r in-
creases towards unity. Interestingly, the transition to the
roll state for r ) 1 occurs via a supercritical Hopf bifur-
cation manifested as an oscillatory competition between
the two sets of rolls forming the square pattern. More re-
cently, Bigazzi, Ciliberto, and Croquette (1990), have
studied a mixture of methanol with carbon tetrachloride
that achieves a separation ratio of order $-0.35. These
authors analyzed the shadowgraph im.age by a spatial
Fourier transform method and used the strength of the
Bragg peak as the order parameter for the convective
state. In the Soret regime the convection is weak but
shows a stationary square pattern, in agreement with
theory. The wave vector is of order qo /2 at roughly
2R „(thelowest value of Rayleigh number where the pat-
tern could be detected). Some evidence has been present-
ed by Lhost and Platten (1989) that a large roll appears at
onset, but their study does not reveal the square to roll
transition seen at higher R. Bigazzi et al. thus conclude
that a determination of the precise pattern at onset for
square-roll convection remains an open (and difficult) ex-
perimental problem.

At larger Rayleigh numbers Bigazzi et al. also studied
the square to roll transition, and did not And the oscilla-
tory behavior found by Moses and Steinberg (1986b) at
lower itj. Instead, the rolls gradually invaded the squares,
and also showed time dependence (a traveling-wave insta-
bility) as well as an extreme sensitivity to the appearance
of defects.

A theoretical analysis of this system was carried out by
Miiller and Liicke (1988) and by Linz et al. (1988; see
also Liicke, 1988) using a truncated Galerkin expansion
with 10 modes, and a sidewall forcing term as in Sec.
VIII.D. In the absence of this forcing the model gives
stable rolls immediately above threshold in the "Soret"
regime, but a nonzero forcing parameter stabilizes
squares. We do not expect the forcing to be an important
feature of the experiment, so that the absence of squares
without forcing seems to reAect a flaw in the model. At
larger R there is a subcritical Hopf bifurcation to a pat-
tern of oscillating rolls and squares, whose frequency de-
creases with increasing R, until a bifurcation occurs to a
state of stationary rolls. This state is itself then predicted
to undergo a Hopf bifurcation to a traveling-wave roll
state, a feature observed by Bigazzi et aI., though the ob-
served bifurcation was supercritical rather than subcriti-
cal as predicted.
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3. Chaos and noise

Binary-fiuid convection is a promising system for
studying spatiotemporal chaos since the latter is expected
to appear immediately above threshold under certain
conditions.

amplification of noise, whose magnitude was shown to be
consistent with the expected value quoted in Eq. (8.63).

B. Taylor - Couette flow

1. General discussion

a. Theory

Chaos in the complex Ginzburg-Landau model was
discussed in Sec. VII.D. The early work of Bretherton
and Spiegel (1983) in one dimension identified a number
of parameter regimes with different chaotic patterns.
More recently, Schopf and Kramer (1991) and Shraiman
et ai. (1992) have studied these chaotic states in various
regions of the parameter space of the model. In particu-
lar, for the subcritical system appropriate to binary-Quid
convection, Schopf and Kramer have shown that the
dispersive terms in Eq. (5.57) stabilize a chaotic attractor
even in the absence of any quintic terms.

The two-dimensional case has been considered by
Brand et al. (1986a,b) and by Coullet et al. , (1987) and in

a discretized form by Bohr et al. (1990a,b). A two-
dimensional complex order parameter equation was stud-
ied by Bestehorn and Haken (1990b), but they did not
carry out a detailed investigation of the chaos.

b. Experiments

In the early work of Fineberg et al. (1988b) and Ko-
lodner and Surko (1988) in one-dimensional rectangular
geometries, a "blinking" state was observed somewhat
above threshold. Although some of the properties of this
state were captured by the nondispersive model of Cross
(1986b), Steinberg and Kaplan (1991) have shown that
the temporal behavior is close to that found in the
G inzburg-Landau equation with complex coeKcients.
Similar observations were made by Kolodner et al.
(1990) in an annular container. These authors found a
state they caHed "dispersive chaos, " where pulses would
grow and collapse in random positions. No detailed
analysis of these chaotic states has yet been undertaken,
but we consider it to be a candidate for a controlled situ-
ation where spatiotemporal chaos might be quantitatively
understood.

The two-dimensional system also seems to us to merit
further study since very little quantitative experimental
work has been done to date. The early experiments of
Surko et al. (1986) and Steinberg et al. (1987) in wide
rectangular containers showed "zipper states" and other
transverse instabilities associated with two-dimensional
chaos. It remains to be seen if these phenomena can be
analyzed and clarified.

Finally, we note that Schopf and Rehberg (1992) have
observed Quctuating patterns in the convectively unstable
regime of a binary mixture just above the oscillatory
threshold. They interpreted these as arising from

5U —expi (m 8—co,r)+ harmonics. (9.30)

Even in this simple regime there are many possible states
characterized by different values of m and different num-
bers of vortices in the cylinder for each set of system pa-
rameters. Coles (1965) dramatically illustrated this diver-
sity of states in a massive experimental study. His chal-
lenge to explain in detail the range of solutions and the

The important parameters defining the Taylor-Couette
system are geometric —the radius ratio g = a /b with a
and b the inner and outer cylinder radii, and the aspect
ratio L =L /(b —a) with L the length of the fiuid column

and driving parameters conveniently chosen as the
inner and outer cylinder Reynolds numbers
R;=a(b —a)Q;/v and R, =b(b —a)Q, /v, with 0;(0, )
the angular velocity of inner (outer) cylinders and v the
kinematic viscosity. In addition the end conditions play
a significant role.

Most of our discussion will focus on the case where the
outer cylinder is stationary, but we will also brieQy de-
scribe the variety of states obtained with both cylinders
rotating. %e will not discuss in detail the dependence of
results on g, but the small g limit provides a useful
simplification for theoretical analysis. An early review
was given by DiPrima and Swinney (1981), which the
reader should consult for references to the older litera-
ture (see also, Donnelly, 1991). A complete bibliography
has been compiled by Tagg (1992).

With the outer cylinder stationary, the first instability
when R; is increased occurs at R;, and leads to the Tay-
lor vortex state of stationary, azimuthal vortices, with
complete cylindrical symmetry. As discussed in Sec. II
this state is analogous to the roll state of Rayleigh-
Benard convection, but the two directions (axial and az-
imuthal) are no longer rotationally equivalent. In many
situations the cylindrical symmetry remains unbroken
and the system provides a good experimental apparatus
for investigating one-dimensional pattern formation,
analogous to a long thin Rayleigh-Benard cell. For the
Taylor-vortex case the Qow is strictly two-dimensional
and the theoretical analysis is somewhat simpler. This
case will be discussed in subsection IX.B.2.c.

A secondary instability occurs typically at R;/R;,
rather close to unity ( =1.1 for ri=0. 89) and it leads to
the wavy vortex state, in which a wavy disturbance of the
vortices propagates around the cylinder at a speed that is
some fraction (depending on q) of the inner cylinder rota-
tion speed. This wave has a coherent phase on the
different vortices, and is characterized by an m-fold
periodicity in the azimuthal direction
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transitions between them as system parameters are
changed remains largely unanswered. The wavy vortex
state is characterized by two slow phase variables, g cor-
responding to translations of the rolls in the axial direc-
tion, and P corresponding to translations of the waves in
the azimuthal direction. Brand and Cross (1983), assum-
ing a smooth gradient expansion, obtained coupled phase
equations which predict propagating rather than diffusive
phase dynamics, as well as a long healing length for the
perturbation of the wave number by the ends. Hall
(1984) has suggested corrections to this theory due to
mean flow effects, analogous to those encountered in
Rayleigh-Benard convection.

Typically the next transition as R,. is increased is to the
modulated wavy vortex state which shows a quasiperiod-
ic frequency spectrum, i.e. two incommensurate frequen-
cies '

co, and co&. Remarkably, the two frequencies (the
wave frequency and the modulation frequency) do not
lock as R; varies, even when they pass through small ra-
tional ratios. Rand (1982) explained this as a result of the
time evolution of the waves passing through states relat-
ed by azimuthal symmetry (cf. Sec. IV.B). Crudely, his
argument is that co, is not a "real" frequency of the flow
since it is changed by observing from a rotating frame.
The modulated wavy state may be characterized as two
waves —the original one with I periods and the modu-
lation with n periods —rotating at independent rates;
this state was analyzed from a symmetry point of view by
Gorman et al. (1981)and Gorman and Swinney (1982).

Further increase in R; leads to a chaotic state. The ob-
servation by Gollub and Swinney (1975) of the onset of
chaos as a definite transition to chaos from a two-
frequency state, without intervening many-frequency
states, was historically a crucial experimental verification
of the applicabi1ity of ideas of low-dimensional chaos and
strange attractors to real fluid systems. This transition to
chaos was later made quantitative by Brandstater et al.
(1983) who measured the largest Lyapunov exponent, the
metric entropy and the attractor dimension in the chaot-
ic regime, using the phase space reconstruction methods
discussed in Sec. VII.B above.

If the inner and outer cylinders are allowed to rotate
independently, a wide range of flow states are found, as
shown in Fig. 58(a) and reviewed by Andereck, Liu, and
Swinney (1986). For the counterrotating case with 0,.
suSciently negative, the first transition from uniform
Couette flow is to spiral states

+ (im0 —

idiot)

+ iqz and e+—'q'. (9.32)

The authors investigated all the symmetry-allowed states
near R,', R,*, and obtained results with symmetries cor-
responding to many of the states observed in experi-
ments. Of course, the range of stable states near the
codimension-two point depends on signs and ratios of un-
known constants in this approach. Nevertheless, for cer-
tain choices of these "nondegeneracy" parameters it is
possible to reproduce the sequences of transitions ob-
served on increasing R;, i.e.

Couette ~ vortices ~ wavy vortices. . . ,

(9.33a)

Couette ~ spirals ~ wavy spirals. . . ,

R (R*. (9.33b)

ing to the situation discussed in Sec. VI.C. Indeed, single
dominant spirals, interpenetrating spirals and different
spatial regions of upwards and downwards moving
spirals with stationary or periodically moving boun-
daries, have been observed by Andereck et al. (1986) and
Tagg et al. (1989). Their results are quite consistent with
predictions based on two coupled complex amplitude
equations shown in Fig. 25 above, but no detailed com-
parison with that theory has been made, although the
linear coefticients of the relevant amplitude equation
have been calculated (Tagg et al. , 1990).

The ideal Taylor-Couette system (idealized by periodic
boundary conditions in the axial direction) has many
symmetries: translations and parity in the axial direction,
translations (but no parity) in the azimuthal direction
[O(2) X SO(2) in the notation of Sec. IV.B]. Mathematical
symmetry arguments are therefore important in qualita-
tively understanding the rich variety of states, dating
back to the arguments of Rand (1982) described above.
Chossat and Iooss (1985) have investigated the primary
and secondary bifurcations at general points in the R;,
R, diagram. Unfolding the behavior around special de-
generate points in the R;, R, plane provides further in-
formation if symmetry arguments are used. For example
Golubitsky and Stewart (1986) and Golubitsky et al
(1988) studied the behavior near the codimension-two
point R,*, R,*, where the onsets of spiral and Taylor vor-
tices coincide [point P2 in Fig. 58(b)]. Here there is a six-
fold degenerate bifurcation for fixed axial wave number q
and azimuthal quantum number m, with eigenvectors

+ ikz + i ( m 0—cot ) (9.31)

For fixed 0 we again have waves traveling in the +z
directions, or a standing wave superposition, correspond-

It is intriguing that the wavy vortex state observed for
R, = 0 can be qualitatively understood in this unfolding
within the six-dimensional space defined by Eq. (9.32).
However there does not seem to be any small parameter
allowing a quantitative calculation at R, = 0. Indeed, al-

5In the experiments of Gollub and Swinney (1975) cited
below, a third frequency appears for some range of R;; they
called this mode co2, and the modulated wave frequency co3.

These authors use a different counting scheme, and label

this a codimension-one point.
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though states similar to many of the observed ones can be
constructed, without further calculation of the unknown
constants and even unknown functions, it is not clear
how much predictive power this method has. Presumably
it is fairly straightforward to classify all states that can
actua11y occur at the codimension-two point marked P2
on Fig. 58(b). In particular, one can calculate the widths
associated with the difterent tongues which appear when

one circles this point, i.e. w„—~5R„~". In general, how-

ever, the secondary bifurcations typically occur in a re-
gime which is quite nonlinear, so that even qualitative
predictions are dificult to obtain reliably.

Langford et al. (1988) have embarked on the task of
calculating the relevant parameters, initially for the
linear instabilities, from the full Quid equations. These
authors particularly concentrate on degenerate points
where the onset of states with diferent azimuthal sym-
metries m and m' coincide.
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FIG. 58. Diversity of Aow regimes observed in the Taylor-Couette system with independently rotating cylinders. (a) R; and R, are
the Reynolds numbers, proportional to the rotation rates, of the inner and outer cylinders, respectively (from Andereck et al. , 1984).
(b) Schematic expansion of the region around the codimension-two point P, at R; = —100, R, =200, analyzed by Chossat and Iooss
(1985).
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2. One-dimensional patterns
0.2—

~0
~ ~

a. General considerations

Long Couette cylinders described by amplitude or
phase equations backed up by quantitative calculations
on the full Quid equations, provide a fertile area for de-
veloping and testing ideas on one-dimensional pattern
formation. The early work of Pfister and Rehberg (1981)
demonstrated the applicability of the spatially dependent
amplitude equation for this system. Later, Ahlers and
co-workers (Ahlers et al. , 1986; Ahlers, 1989) have ex-
ploited the azimuthally symmetric Taylor vortex state to
demonstrate quite subtle features of pattern selection and
competition. This work provides perhaps the most com-
plete quantitative comparison of experiment and theory
in the area of nonequilibrium patterns, where often the
connection remains at best qualitative.

The first question which naturally arises, that of pat-
tern selection, can in the present case be formulated as
the problem of finding the number of vortices in a system
of fixed length as the Reynolds number is varied. The
characteristic wavelength of these vortices is an impor-
tant parameter on which further properties of the Qow,
such as the net torque on the cylinders or the boundaries
of secondary instabilities, strongly depend.

It is important to note that the ends of a Couette sys-
tern provide a significant perturbation of the ideal
Couette Qow which would otherwise occur at low rota-
tion speed. Typically rigid plates, co-rotating with the
inner or outer cylinder, are used at least at one end.
These do not match the Couette Qow which characterizes
the ideal infinite cylinder,

l
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FIG. 59. Ekman pumping by the ends of a Taylor-Couette
cylinder. The axial velocity component (denoted U in the
figure) is shown vs axial position (in units of the gap) in a
cylinder of aspect ratio 1.=21.27, for different values of the
control parameter c=R/R, —1, with R, the onset Rayleigh
number of an infinite cylinder, (a) e= —0.011, (b) c, = —0.003,
(c) 4E:=0.023. Note that strong circulation near the ends occurs
even for c & 0, and grows into the bulk as c increases through
zero. (From Ahlers et al. , 1986.)

Vs(r) = Ar +Sir, (9.34)

with A and B fixed by matching to the rotation rates of
the cylinders. Consequently, considerable attention has
been devoted to finding a proper description of the ap-
proach to the ideal situation as the cylinder length is in-

creased. First, the end perturbation leads to an imperfect
bifurcation (see Sec. III.A). The boundary condition
drives a strong Taylor vortex near the ends even well

below the infinite-system threshold, a phenomenon
known as "Ekman pumping. " Moreover, as the rotation
rate is increased the Taylor vortex state spreads from this
localized disturbance (Fig. 59) and the boundaries per-
turb the vortices near the ends significantly. Finally,
even in long cylinders the strong Taylor vortex at the end
affects the possible wave numbers of the vortices in the
bulk, i.e. far from the boundaries. An effect of arbitrarily
distant lateral boundaries on wave-vector selection was

already encountered in the Rayleigh-Benard case
(Sec. VIII.C), but the details are somewhat different here,
since the Ekman vortex pins the phase, rather than al-

lowing it to adjust.
The problem of determining the number of vortices

present under given conditions separates naturally into
two parts. For short cylinders one studies the bifurca-

tions that occur when the system changes its vortex num-
ber upon raising or lowering the angular velocity. For
long cylinders the amplitude equation gives an excellent
description of the allowed states and their stability as we
shall see.

b. Short cylinders

For short cylinders a question of interest is how the
Taylor vortex state, which has evolved smoothly from
Couette Qow via an imperfect bifurcation, changes from a
2n vortex state to a 2n+2 state as the length is in-
creased. (Ekman pumping strongly favors an even vortex
state in small cylinders. ) This problem was first posed in
a precise manner by Benjamin (1978), who studied the 2
to 4 vortex competition. Since the theoretical analysis
for n ) 1 is more straightforward we will describe the
later investigation of the 4 to 6 vortex competition by
Mullin and Cliffe (1986); the effects are qualitatively the
same for both cases.

The experimental results in the region where states
with different numbers of vortices first appear are sum-
marized in Fig. 60(a). The crosses correspond to bifurca-
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FIG. 60. Bifurcations in a finite Taylor-Couette cell. (a) Results for the competition between four and six rolls on a plot of aspect ra-

tio L vs Reynolds number R; of the inner cylinder. Full lines indicate a numerically calculated path of bifurcation points [corre-

sponding to the dots in (b)—(f)] with an assumed symmetry. Crosses are experimentally observed bifurcations. For small L the sym-

metry assumed in the theory is broken in the experiment. The dashed line is a numerical calculation of the locus of this symmetry-

breaking bifurcation. (b)—(I) Schematic sketch of the growth of the amplitudes I Al for "four" and "six" roll states as the Reynolds

number R; is increased, for the aspect ratios L j to L, indicated in (a). Stable branches are denoted by full lines, unstable ones by

dashed lines. The dots are the bifurcation points shown by the solid lines in (a). They are saddle-node bifurcation, except at the de-

generacy points at L2 and L4 [corresponding to points B and C in (a)]. Note that as the aspect ratio changes from L, to L, the state

growing continuously from the zero amplitude state changes from four rolls at L& to six rolls at L, . At intermediate aspect ratios

(e.g., L3) hysteretic jumps are necessary. (From Mullin and Cliffe, 1986.)

tions between states usually diftering by one pair of Tay-
lor vortices, which are observed when the rotation rate is
varied at fixed aspect ratio. The solid lines are from a nu-
merical simulation of the Quid equations, restricted to
z —+—z symmetric solutions. The qualitative evolution
is shown for various aspect ratios in Figs. 60(b)—60(fl,
where the solid dots denote the bifurcation points shown
in Fig. 60(a). For large R; two of the states can be clearly
identified as 4 and. 6 vortex states, but close to onset the
solutions are mixed. Note how the smoothly developing
solution changes from the 4 to the 6 vortex state as the

A symmetry breaking occurs in the experiment for L ( L
„

and was not allowed for in this simulation (solid line), thus ac-
counting for the discrepancy in this domain.

aspect ratio increases from L, to 1.5. The lengths L, 2 and

L~ yield degenerate bifurcations [at the cusp 8 and the
minimum C of Fig. 60(a)]. Also note that hysteretic
jumps occur, for example in the evolution of the 6-vortex
state at I.3.

The full quantitative theoretical prediction in

Fig. 60(a) required the massive numerical computation of
Mullin and Cliffe (1986), because of the strong Ekman
vortices near the ends. Shaeffer (1980) had earlier per-
formed a qualitative analysis which led to the results in

Figs. 60(b)—(f). He introduced a parameter 0 & r & 1

characterizing a continuous change of the boundary con-
ditions from ideal (r=0), where there are perfect bifurca-
tions to the 2n and 2ri +2 vortex states, to realistic
(r= 1), where the bifurcations are strongly imperfect. In
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the ideal case, ~=0, the bifurcations evolve with length,
passing through a degenerate point I.=L, ' and
R;*=R;,(L*), where the onset rotation rates coincide.
Shaeffer then unfolded the degenerate case perturbative-
ly, treating ~, I.—I. = h and R; —R;* = c as small pa-
rameters via the equations

0.8—

A„+g„A„+,A„—(E+h) A„—a„r=O, (9.35a) 0.6—

A„'+,+g„+,A„'A„+,—(E —h) A„,—a„,r=O,

(9.35b)

with g„,g„+„a„,a„+,O(1) coe@cients and A„,A„+,
the amplitudes of 2n and 2n+2 vortex states. This
"universal unfolding" and the perturbative inclusion of
the qualitative effects of the complicated end conditions
in the cylinders yield essentially all the results in Fig. 60.
Coupled to the experimental data in the figure these pro-
vide a striking example of the power of the qualitative
methods introduced in Sec. IV.B.

c. Long cy/inders

The wave number of Taylor vortices in long cylinders
has been studied in a series of experiments by Ahlers,
Cannell, Dominguez-Lerma, and Heinrichs (1986). With
conventional (nonrotating) ends the Ekman vortex
prevents the number of rolls from changing via relaxa-
tion at the ends, contrary to the situation in Rayleigh-
Benard convection with rigid sidewalls (Sec. VIII.C).
The experiments of Ahlers et al. then investigate the
rolls far from the ends, where they can be considered as
good approximations to states of the infinite system. The
wave number of the rolls near the center can be varied
over a well-defined band by changing the length of the
cylinder at fixed roll number. Eventually, when the wave
number reaches extreme limits, time dependence devel-
ops, first in the central rolls. This occurs via an instabili-
ty which initially is well approximated as the Eckhaus in-
stability of the infinite system. The stable band so ob-
tained agrees beautifully with the theoretically calculated
Eckhaus boundary as calculated by Riecke and Paap
(1986, 1987) and shown in Fig. 61. Notice that the am-
plitude equation prediction in Eq. (4.24), shown as the
dashed line, is good only for very small values of
s=(R; —R,, )/R;, . The sharp upturn on the low-q side is
due to a nonlinear resonance of the states at wave num-
bers q and 2q, both of which become unstable at this
point. This resonance phenomenon was studied earlier
by Meyer-Spasche and Keller (1985).

There are of course finite size corrections, which were
investigated quantitatively by Ahlers er al. (1986) using
the amplitude equation. The boundary condition to be
applied is not clear a priori, since the Ekman vortex leads
to a large [O(1) not O(s'~ )j fiow amplitude near the
ends. Hall (1980) and Graham and Domaradzki (1982)
investigated this question, and from their work Ahlers
et al. used

0.4 — ,

0.2—

0
0 0.2

(q-q. ) ~q.
0.4

FIG. 61. Comparison between theory and experiment for the
wave vector of the Eckhaus instability and the wave vector
selected by a control-parameter ramp (created by a slowly vary-
ing outer cylinder radius) as a function of reduced control pa-
rameter c. Solid circles, experimental results for Eckhaus insta-
bility; solid line, numerical results; dashed line, prediction based
on amplitude equations. Triangles and vertical bars give the
band of wave numbers selected by a ramp in the outer cylinder
with angles a=0.030 and 0.015, respectively; dash-dotted line
gives theoretical prediction for wave number selected by ramp
with ca~0. (Adapted from Ahlers et al. , 1986; Riecke and
Paap, 1986, 1987.)

A (0)= A (L)= A, » E'i', (9.36)

with Ab a fixed number (chosen to be 1). It is easy to see
from Eq. (5.2) that in steady state we have

/A/ 8,@
= /A/ q=const, (9.37)

as in Eq. (5.15). Thus variations in q (z) =2m/A, (z) are
most evident just below threshold where the amplitude is
strongly varying in space. Experimental data corre-
sponding to this limit are shown in Fig. 62, from which it
is indeed seen that Eq. (9.37) is obeyed, except at the ends
due to the strong perturbations caused by the Ekman
vortex. This figure shows in particular that the wave-
length of the central vortex (where the amplitude is least)
becomes most strongly perturbed away from k, for c &0.
Detailed measurements of the dependence of the central
wave number on R; for fixed wave number, and of the
onset of time dependence in a finite cylinder, have been
compared to numerical predictions from the amplitude
equation, and excellent agreement was found. A particu-
larly interesting point involves the onset of the Eckhaus
instability in a finite cylinder near threshold. If the only
effect of finite size were to quantize the wave vectors then
in general the system would have a wave vector different
from the critical value q, and it would enter the Taylor
vortex state through the Eckhaus unstable region near
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0.8

0.6—

0.4—

0.2—

e = -0.011

cylinder length L (see Fig. 63). Figure 61 shows the
dramatic reduction compared to the bandwidth in the
unramped case as well as the dependence on ramp angle
predicted by the theory of Kramer et al. (1982). The in-
creasing bandwidth at small c. can be understood as aris-
ing from pinning of the vortices at the corner of the
ramp: this effect was modelled by Cross (1984) through
the addition to the amplitude equation of a forcing term
localized at the corner,

I
—0.2
0.2—

g 8,'&+a& Rol ~
I

&+f(z)=0

f (z)=hg05(z),

(9.38a)

(9.38b)

-0.2
O. I— V V ~ V V

—01—

0 44
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AX I AL POS I T ION

FIG. 62. Local wavelength (vortex-pair width) of Taylor vor-
tices in a system of aspect ratio L =21.27 containing 10 vortex
pairs, as a function of axial position, for three values of the re-
duced control parameter e, . The solid circles in the top panel
represent the Ekman vortex adjacent to each boundary. The
solid lines follow from Eq. (9.37). (From Ahlers et aI., 1986.)

with h proportional to the ramp angle. The solution of
this equation with the single fit parameter h leads to
agreement with the bandwidth at small c shown in Fig.
61, as well as the dependence of the wave number on
length, including hysteretic transitions, displayed in
Fig. 63. The increasing bandwidth at large c seen in
Fig. 61 is attributed to higher-order terms which are
beyond the scope of the amplitude equation. This has
been demonstrated in model equations by Riecke (1988).
The unique wave number found by extrapolation to zero
ramp angle agrees with the predictions based on calcula-
tions of the Navier-Stokes equations by Riecke and Paap
(1987) for the whole range of measured E values. This is
one example where a unique wave number is predicted by
a general argument, quantitatively calculated, and mea-
sured experimentally. As mentioned earlier, a fascinating

threshold. Indeed, the modification of the Eckhaus insta-
bility by the finite system size calculated by Kramer and
Zimmermann (1985; see also Tuckerman and Barkley,
1990) implies that exactly one Eckhaus stable state will
exist arbitrarily close to threshold. This result was first
noted by Ahlers et al. (1986) who also verified it experi-
mentally. These experiments therefore provide a rather
complete test of our understanding of the one-
dimensional solutions of the Quid equations as well as
their stability properties, and lead to quantitative agree-
ment between experiment and theory.

2.00

1.96

l.92—

C3

w
~ 2.04—0

2.00—

d. Ramped boundaries l.96—

The Eckhaus instability still leaves a wide band of pos-
sible states in long cylinders above threshold. The actual
state obtained must depend on initial conditions and on
the experimental protocol. Systems in which this in-
determinacy is eliminated, and where a unique wave
number is determined by the system parameters, are of
particular interest. As we have seen in Sec. IV.A, a slow
enough ramp in the control parameter is predicted to
yield a unique wave number in a region sufticiently far re-
moved from the ramp. Cannell et al. (1983) implement-
ed this idea by axially varying the gap between the
cylinders with various small ramp angles a (e.g. a=0.015
radians) (for more recent experiments see Ning et al. ,
1990). They then measured the local wave number of the
vortices well away from either end, as a function of the

I.92—
I I

17 18
ASPECT RAT IO

I

l9

FIG. 63. Wavelength of rolls in the straight supercritical sec-
tion of a Taylor-Couette system, selected by a control parame-
ter ramp, plotted as a function of aspect ratio L, defined in
terms of the length of the straight portion. The control parame-
ter reaches subthreshold values due to an outer cylinder wall
sloping at an angle a=0.03 at one end of the cylinder. Solid
circles were measured with increasing aspect ratio, open circles
with decreasing L; dashed arrows correspond to the observed
hysteresis. Solid and dashed lines are theoretical predictions of
Cross (1984) based on Eq. (9.38) with the pinning strength h
used as a fit parameter. The values of c shown correspond to
the control parameter in the straight portion. (From Ahlers
et QI., 1986.)
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prediction is that the wave numbers selected depend on
the specific origin of the ramp (inner or outer cylinder
ramped, etc). Riecke and Paap (1987) found that if the
two cylinders are ramped, at different angles, the unique
wave number selected by the ramp should become Eck-
haus unstable for some Reynolds numbers, leading to a
periodic destruction of vortices, an efFect which was
again quantitatively confirmed experimentally. Numeri-
cal simulations of model equations by Riecke and Paap
(1991)suggest that the instability may also lead to chaot-
ic dynamics. Similarly, different ramps at either end may
be used to prepare a dynamic state where the vortices are
created at one end, drift along the cylinder, and are des-
troyed at the other end (Paap and Riecke, 1991).

e. Front propagation

Ahlers and Cannell (1983) also investigated the devel-
opment of the Taylor vortex state by front propagation
into the unstable region. In a cylinder of aspect ratio up
to 15, they set up an initial state with a localized initial
condition corresponding to Ekman vortices at
R;/R;, =0.8. They then jumped up the rotation speed to
R;/R;, = 1+a and observed a front between Taylor vor-
tices and Couette How propagating into the unstable re-
gion with an asymptotically constant velocity. For small
c, the phenomenon should be describable by the ampli-
tude equation, and in particular Eqs. (6.27a) and (6.26a)
should apply with c

&

= 0, yielding

(9.39a)

q =q, +O(s) . (9.39b)

These scalings were indeed found, but Uro/goE' was
measured to be = 1 instead of 2. (The values of go and ro
were calculated from the linear stability analysis of
Couette ffow. ) Subsequent numerical calculations based
on the full fiuid equations (restricted to azimuthal sym-
metry) by Lucke et al. (1984, 1987b) and especially Nik-
las et al. (1989b) were found to be consistent with Eq.
(9.39), and therefore disagreed with the experiment. The
discrepancy was plausibly explained by Niklas et al. as
resulting from a surprisingly long transient which was
not captured by simulations of the amplitude equation
with positive initial conditions carried out by Ahlers and
Cannell. Thus the experiment did not measure the
asymptotic velocity reached at long times, but rather a
(lower) transient value (such an eff'ect was noted indepen-
dently by van Saarloos, 1989, 1990). The selected wave
number was shown by Liicke et aI. (1987b) to be close to
the one obtained from the criterion of fastest growth
from the uniform state. However the accuracy of the
simulations is at present insufhcient to distinguish be-
tween this result and the prediction (6.29c) from the
Swift-Hohenberg model, say, so the question of wave-
vector selection in front propagation remains open.

C. Electrohydrodynamic instabilities
in nematic liquid crystals

1. General features

Nematics are liquids, usually formed of long anisotrop
ic molecules with properties characterized by a single an
isotropy axis, the director n. For example the dielectri(
constant has the form

(9.40,

and as a consequence electrical forces may be used tc
couple to the Quid Row. In addition electrical conduction
is important, together with bulk forces p, E acting on the
volume charge buildup p, . These effects lead to elec-
trohydrodynamic instabilities, which are flow instabilitie»
producing roll structures analogous to the Rayleigh
Benard instability, but driven by electrical forces. Suck
forces can be made much stronger than gravitationa.
buoyancy forces, so that the characteristic length anc
time scales of electrohydrodynamic instabilities are typi.
cally much shorter (e.g. , lengths from 5 to 200 pm). Thii
allows the experimental study of very large aspect ratic
systems —up to several hundred —and we will concen-
trate on this feature of the system. For an introductioz
to instabilities in nematics see Dubois-Violette et al,
(1978), Manneville (1990), and Zimmermann (1991).

The geometry we will focus on consists of a thin layer
of nematic between two parallel plates separated by
10—100 pm, across which a voltage may be applied. This
is usually an a.c. voltage to eliminate ion segregation
effects. The plates are treated to favor the alignment of
the director in some particular orientation which is in the
plane of the plates in the most common configuration (we
will pick this as the x axis). (Perpendicular alignment,
known as the homeotropic case can also be considered. )

The quiescent state consists of the director n aligned uni-
formly in the x direction and no Quid Qow. The instabili-
ty develops when the voltage exceeds a critical value
which turns out to be independent of the layer thickness
in simple limits. The most familiar instability is to a spa-
tially periodic roll state normal to the x direction known
as "Williams domains. " In this state there is Quid circu-
lation coupled to a tilt of the director in the x-z plane.

This electrohydrodynamic system presents a number of
advantages in the study of pattern formation. As we
have said, the time and length scales are more favorable
than in Rayleigh-Benard convection. The patterns are
easily observed optically, since the distortions of the
director orientation produce modulations in the index of
refraction. The elimination of the rotational symmetry in
the plane simplifies the study of large systems which in
some cases are well represented by a one-dimensional ap-
proximation. There are many physically accessible con-
trol parameters, such as the voltage, the frequency, or an
applied magnetic field. Moreover there is a rich spec-
trum of linear instabilities from the quiescent state as pa-
rameters are varied (e.g. , to stationary normal rolls de-
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2. Linear instability mechanism

As mentioned above, the basic equations of motion are
complicated, and we will not write them down complete-
ly (see for example Bodenschatz et al. , 1988b). Besides
the Navier-Stokes equation there are electric current
equations of the form

V. j+B,p, =O,

j=crE+p, v .

(9.41a)

(9.41b)

scribed above, but also to oblique or traveling rolls) as
well as interesting instabilities in the nonlinear regime.

The major disadvantage is that the dynamical equa-
tions are exceedingly complicated, and the many material
properties involved are not always well characterized, so
that a full theoretical understanding from the microscop-
ic equations is hard to reach: indeed there remain
discrepancies between the linear stability analysis and ex-
perimental observations despite a great deal of work
(Kramer et al. , 1989).

An interesting feature of the dissipative electrohydro-
dynamic instabilities is that they can be tuned continu-
ously into nondissipative regimes, where the instability
criterion is given by energy balance arguments and there
is no fiuid fiow in the distorted state (Bodenschatz et al. ,
1988b). Examples are the Freedericksz transition, as well
as the "splay-twist" transition (Lonberg and Meyer,
1985), which produces a periodic structure with wave
vector normal to the alignment direction. This provides
the intriguing possibility of following the change in
behavior as the nonequilibrium effects become more im-
portant while remaining in a fully nonlinear state.

It should be remarked that many other instabilities
have been investigated in nematics, where the liquid an-
isotropy leads to a rich set of phenomena, including
thermally driven and shear driven instabilities. We will
not touch on this area, but refer the reader to the review
by Dubois Violette et al. (1978).

The stability analysis seeks deviations from the quies-
cent state —zero Quid velocities, n uniformly aligned in
the x direction, forced by an a.c. electric field E, of fre-
quency co coming from the voltage V between the
confining plates. An example of the types of instabilities
encountered is shown by the experimental results in
Fig. 64.

The simplest instability is toward convective rolls with
normal parallel to the preferred orientation of the direc-
tor. The onset is divided into two well differentiated re-
gions: at high frequencies (above 470 Hz in Fig. 64) a
"dielectric regime" dominated by the oscillating reorien-
tation of the director and consequent dielectric electrical
forces; at lower frequencies a "conduction regime'* where
oscillating charge densities and electric currents dom-
inate. In the absence of Aexoelectric effects these instabil-
ities are characterized by different parity symmetries
(Bodenschatz et al. , 1988b). In addition at very low fre-
quencies, below a critical frequency called the Lifshitz
point (120 Hz in the experiments of Rehberg et al. ,
1989b), the first instability is actually to an oblique roll
state with rolls making an angle 8 with the alignment
direction. Since +0 and —8 give equivalent states,
domains of each orientation often coexist in the experi-
ment, leading to a zig-zag pattern. The angle 8 grows
continuously below the Lifshitz point and the analysis of
the region near this point is an interesting application of
the amplitude equation formalism. The above types of
linear instabilities are reasonably well accounted for by
theory (Kramer et al , 1988b.; Bodenschatz et al. , 1990),
with quantitative comparison apparently limited mainly
by uncertainties in Quid parameters. One discrepancy
shown in Fig. 64, involves a small range of frequencies
(350&co &470 Hz) in which the transition is to a travel
ing roll state throughout the system, indicated by a
nonzero relative frequency. In addition over a wider
range of frequencies the transition is found to be weakly
hysteretic, and although the small amplitude nonlinear
state at onset is stationary, the transients leading to this

The field E consists of the externally imposed field, the
field due to the volume charge p, and in addition a "Qex-
oelectric" contribution from the polarization

P=e, n(V n)+e3 (n ~ V)n . (9.42)

In addition there is a "torque balance" equation giving
the dynamics of n in terms of the dielectric anisotropy
energy, the liquid crystal elastic bending energy density
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+E33 (n X V X n) ], (9.43)

and a viscous torque coupling n to shear and rotation in
the Quid. Finally the Navier-Stokes equation is supple-
mented with extra terms in the stress coming from the
volume electrical forces and also from the spatial deriva-
tives of the director n.

FICx. 64. Example of an experimental linear stability diagram
of electrohydrodynamic convection. Pulses show the applied
rms voltage of the oscillating drive needed to produce an insta-
bility, as a function of the frequency of the driving. Triangles
show the relative frequency at onset of the traveling roll pattern
(right-hand axis) that develops for a drive frequency between
350 Hz and 470 Hz. (From Rehberg et a/. , 1989b.)
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state are oscillatory, suggesting that the linear instability
is in fact oscillatory over this wider range (Rehberg
et al. , 1991). In other experiments Joets and Ribotta
(1988) observed traveling waves near threshold in the
form of spatially confined pulses. The mechanism behind
these traveling waves is not yet completely understood.
Finally, Rehberg et al. (1989b) observed a linear growth
of the oblique roll angle 0, whereas a square-root depen-
dence is expected at the linear threshold on quite general
grounds.

3. Nonlinear states

a. Normal rolls

In the weakly nonlinear regime the normal rolls are de-
scribed by a complex amplitude A(x, y, t) introduced by
writing

at angles + L9 to the nematic alignment direction

U=Uoe '" [A+ e '~ + A e " ]+c.c. ,

with tan O=qo~/qo and

(9.47)

r a, A =EA +[(„'a„'+pa,' + 2g.g, aa. a, ]A

—(giI A+ I'+g& A+ I') A+, (9.48)

with IaI ( 1. For either A+ or A separately the
derivative term can be put into the standard form
B~+B~ by a suitable rotation and scaling of the coordi-
nate axes, again leading to Eq. (9.46), although X is no
longer along the nematic alignment direction.

Near the Lifshitz point where the coefBcient of 8 in

Eq. (9.48) goes to zero a new scaling yielding higher-
order derivative terms is appropriate. Defining Y-c' y
and eliminating constant factors, Bodenschatz et al.
(1990) find

U=Uo(z) A e ' +c.c. ,

which satisfies the equation

(9.44) A=[a2 —i'aa a +pa —a +1—IAI ]A, (9.49)

boa, A =EA+g„a„A+/a A —goI A
I

A . (9.45)

As mentioned in Sec. IV.A, this equation can be rescaled
to read

a, A =+A+(a'+a', ) A —IA I'A, (9.46)

so that the anisotropic system (no rotational symmetry in
the plane) gives rise to a simple, rotationally invariant
(scaled) amplitude equation, whereas rotationally invari-
ant systems such as Rayleigh-Benard convection lead to a
more complicated anisotropic form (4.7). The simplicity
of Eq. (9.46) means that a quantitative comparison be-
tween theory and experiment in complicated situations is
often easier than in Rayleigh-Benard convection (Kramer
et al. , 1986). One example is in the dynamics of disloca-
tion defects, which we discuss below. In addition the
elimination of the rotational degeneracy allows "one-
dimensional" questions to be investigated more easily.
An example of this is the experimental study by Lowe
and Gollub (1985a) of the development of a straight roll
pattern after the onset of the Eckhaus instability, and
quantitative comparisons with predictions of Kramer
et al. (1988a) derived from the amplitude equation.

b. Oblique rolls and the Lifshitz point

The onset of the oblique roll instability is signaled by
$~~0 in Eq. (9.45). Since the coefficient of a lowest-
order derivative term is going to zero, in analogy with a
similar phenomenon in equilibrium phase transitions this
point (E =0, g ~0) has been called a Lifshitz point
(Hornreich et al. , 1975). In the electrohydrodynamic
case the oblique roll instability occurs as the driving fre-
quency is reduced. The instability is described by two
coupled amplitude equations, given by modulating rolls

where p parametrizes the distance from the linear
Lifshitz point p=0, and a is a numerical constant.

Finally, since the oblique roll instability sets in at long
wavelengths, the instability in the nonlinear regime can
be analyzed in terms of a higher-order phase diffusion
equation

a,y=~ a,'y —a, [a,'y —(a,y)'], (9.50)

where g —+0 signifies the instability, and numerical con-
stants have been eliminated by appropriate scaling. (We
have also ignored x derivatives; for the more general case
see Sasa, 1990.)

Equations (9.49) and (9.50) have been used to study the
onset, development, and instability of the oblique roll
state by Bodenschatz et al. (1990). In addition, Pesch
and Krarner (1986) have analyzed the phenomena in an
anisotropic version of the Swift-Hohenberg equation.
One interesting question is whether the instability, which
may begin as a transverse undulation at nonzero wave
number, saturates at a finite amplitude giving a stable un-
dulating or zig-zag solution such as has been observed ex-
perimentally (Ribotta et al. , 1986), or whether it grows
catastrophically to give a uniform reoriented oblique roll
structure, with domain boundaries between "zig" and
"zag." An analysis of the amplitude equation (9.49) near
the Lifshitz point yields small regions of stable undulat-
ing roll solutions. However, to explain the widely ob-
served zig-zag states it is probably necessary to solve the
coupled amplitude equations away from the Lifshitz
point, and to include the nonadiabatic effects locking the
oscillatory decay of the amplitude of the "zig" (say) into
the neighboring "zag," to the underlying periodic struc-
ture of the rolls. As discussed in Sec. VII.E.6 spatially
chaotic solutions would also be expected in this situation.
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4. Convection with spatially periodic forcing

B, A =E A —
~
A

~

A +B„A+a ( A *)" ' e'""", (9.51)

with a proportional to the strength of the driving [note
this parameter is unrelated to the a in Eq. (9.49)].

We have emphasized the importance of external forc-
ing on bifurcations, considering mainly small, localized
imperfections. External forcing becomes particularly in-
teresting when it is spatially periodic with a period reso-
nant or nearly resonant with the critical wave number of
the instability. As well as rendering the bifurcation im-
perfect (Kelly and Pal, 1978) the driving leads to delicate
competition in the nonlinear regime between the exter-
nally imposed periodicity and the "natural" wave num-
ber of the pattern.

In a series of experiments Lowe and co-workers (Lowe
et al. , 1985, 1986; Lowe and Gollub, 1985b) investigated
this phenomenon for the electrohydrodynamic instabili-
ty, with external forcing imposed by a grid of electrodes
on one of the plates. This particular system was chosen
for experimental reasons —the large aspect ratios and
easy control of the spatially periodic forcing being impor-
tant considerations —but the specific mechanism of the
instability is not important. The intrinsic anisotropy is
however important, since it leads to a simple one-
dimensional situation for strong anisotropy. [For weak
anisotropy more complicated effects occur; in particular
a one-dimensional modulation produces a two-dimen-
sional pattern. ]

The results for the one-dimensional situation (electrode
grid perpendicular to anisotropy axis) are displayed in
Fig. 65 for c, =0.057, as a function of the ratio of compet-
ing length scales 80/8, (So=2m/qo being the critical
wavelength and 8, the period of the spatial forcing) and
of the strength of the periodic driving a. There is consid-
erable complexity in the results summarized in the figure,
and we refer the reader to the original work of Lowe
et al. (1985, 1986) for a very readable full description.
The important competition is between commensurate
states (in which an integral number n of rolls are distort-
ed to match I periods of the spatial forcing, with
Pol/, =n/m a small rational number), and incommen-
surate states, in which the mean roll period 8 does not
form a simple ratio with 8& and, more importantly,
varies continuously as parameters are changed. [See
Fig. 65(b).] Furthermore, the incommensurate states may
be described in terms of local almost undistorted regions
of rolls of period Po separated by regions of considerable
distortion (referred to as solitons by Lowe et al. ) as
shown by the phase plot in Fig. 66(b).

Many of the features of the experiment can be qualita-
tively reproduced by a one-dimensional amplitude equa-
tion description (Coullet, 1986; Coullet and Huerre,
1986). In addition to the usual terms there is one aris-

ing from the nearly resonant forcing. Writing

mq& =n(q +ko) with k small, the appropriately scaled

amplitude equation is
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FIG. 65. Electrohydrodynamic convection with spatial forcing.
(a) Phase diagram representing the strength of the periodic driv-

ing a as a function of the ratio of competing length scales
8o/8 j, for c, =0.057. The commensurate regions are represent-
ed by the shaded areas. The incommensurate regions are
unshaded. (b) Variation of the inverse of the mean wave num-
ber 8 vs the unperturbed roll wavelength 80, both expressed in
units of the wavelength 8& of the periodic forcing, for +=0.065
and c, =0.057, see Eq. (9.51). Commensurate regions are indi-
cated by plateaus, incommensurate regions by a continuous
variation of 8 with 80. (From Lowe et al. , 1986.)

(9.52)

Presumably this form is only appropriate for n ~ 4,
since for n )4 the extra term is formally of higher order
in c than other terms in the equation. Note that the reso-
nant case k =0, n = 1 leads to a direct forcing of the criti-
cal mode as investigated by Kelly and Pal (1978), and
often used experimentally to imprint patterns. Higher-
order resonances leave the bifurcation perfect, but may
shift the threshold (n =2) or make the bifurcation sub-
critical (n =3).

At the present level of approximation, Eq. (9.51)
derives from a potential as usual but with the extra term

(am/ii) f [( A )n e
—

inkx+( A e )n einkx]
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which expresses the tendency of the period of the pattern
to lock to the imposed period (8 ~ 8,). The theoretical
treatment now reduces to minimizing the combined po-
tential, and analogous problems in statistical mechanics
are well known to lead to commensurate-incommen-
surate transitions. The analogy becomes particularly
clear when k is so small that a phase treatment is valid

(9.53)

(a)
0.70,

D.SO--

N

0
0.30--

I'(C)= f [ —~ 'a I~ I" 'cos(ne)

+—,
' (8 4&) —k(B &0)] dx . (9.54)

at which point the calculation reduces to minimizing the
phase potential 010 '

0
(b)

00 ™
600 1200 1800 2400

Position (p,m)
3600

This potential is the same as the continuum limit of the
Frenkel-Kontorova model (see Aubry, 1983; Pokrovsky
and Talapov, 1984), the canonical statistical mechanical
model of commensurate-incommensurate transitions, for
which results qualitatively analogous to Fig. 65 are well
known. The analysis of Eq. (9.54) leads to a continuous
transition from the locked commensurate states +=0 to
incommensurate states with a periodic array of phase
slips which are analogous to sine-Gordon solitons, when
the mismatch k exceeds a critical value. Since the period
of the phase slip array is unrelated to q „

this corresponds
to an incommensurate solution: the average period 8 of
the rolls is not in general rationally related to the im-
posed period 8, and varies continuously with 80/8, . As
we have seen, many features of the experiments are cap-
tured by this simple analysis, for example the shape of
the phase variation for small cx depicted in Fig. 66. How-
ever some features are not: the locking to higher-order
commensurate states including phase slips, and other
quasiperiodic or disordered locking phenomena, are not
predicted. Presumably these involve locking of the posi-
tion of the phase slips to the underlying period through
nonadiabatic efFects (Sec. IV.A.4). Also the change to a
discontinuous commensurate-incommensurate transition
is not predicted, although other similar systems often
show this type of behavior too (see Aubry, 1983).

It is interesting to remark that the theoretical under-
standing of the experiments of Lowe et al. (1985, 1986) is
based entirely on potential models: the theory essentially
reduces the problem to equilibrium statistical mechanics,
where it is safe to talk about the competition between a
"preferred" wave number qo and an imposed periodicity.
It is worth pondering on the implications of the observa-
tion of similar phenomena in the more nonlinear regimes,
where reduction to a potential description is not
guaranteed and often not expected.

5. Motion of dislocations

The simplicity of the amplitude equation (9.46) has al-
lowed a rather complete theoretical treatment of the stat-
ics and dynamics of dislocation defects in the electrohy-

—D.S"

—1.0 ~

27t

—1 S"

—2.0--
0 600 1200 1800 2400 3000

Position (pm)
3600

drodynamic instability, as well as a direct comparison
with experiment (Bodenschatz et al. , 1988a, 1990, 1991b;
Coron et al. , 1991; Weber et al. , 1991). The amplitude
function defining an isolated stationary defect solution of
(9.46) is

A =F(R) e'~, /=tan '(Y/X), R =(X2+ Y2)'~2,

(9.55)

where P(R)—+0 at the core center R =0, and approaches
1 outside the core region in a way that must be calculated
numerically [the core size is O(1) in scaled units]. Note
that the background wave vector g must be zero (i.e.,
q = qd) for a stationary defect (see Sec. V.B.3).

Perturbations of the background wave number, i.e.,
i (Q~X+Qy Y)A-e (9.56)

cause motion of the dislocation. The interpretation of
this motion depends on whether one is considering
oblique rolls as in Eq. (9.48) or normal rolls. In the latter
case, where no coordinate rotation is involved in going
from (x,y) to (X, Y), motion in the X(x ) direction is climb
and is driven by roll compression with wave number Q»,
whereas motion in the Y(y) direction is glide and is
driven by a small rotation of the rolls [58=a'~ Qr/

FIG. 66. Spatially forced electrohydrodynamic convection. (a)
Roll size (in units of the wavelength 8

&
of the forcing) as a func-

tion of the position across the cell. Note that over large regions
the pattern is nearly commensurate at 8=8

& /2, with
compressed regions in between. (b) Variation of the phase of
the complex amplitude across the sample. The solid line is a 6t
to Eq. (9.54). (From Lowe et al. , 1986.)
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(qog~ )]. As in Rayleigh-Benard convection, glide will be
affected by nonadiabatic effects not included in the ampli-
tude equation.

As we have seen in Sec. V.B.3 the speed V of isolated
defects perpendicular to the wave-vector change Q may
be calculated from potential arguments near threshold to
give [see Eq. (5.158)]

8

exp.
exp. $, ,(~,To

V =2Q/ln( 3.29/ V), (9.57)

where we have assumed that the finite velocity V cuts off
the logarithmic divergence in the denominator. If defect
pairs get close enough together their interaction will add
an extra driving force. It should be remembered that the
phase distortion in front of a moving dislocation falls off
exponentially with a length scale —go/Vro, and so the
interaction between defects moving together will be very
small until this separation is reached.

Dislocation motion has been investigated experimen-
tally by Goren et al. (1989) and by Rasenat et al. (1990);
these authors followed a few dislocation pairs remaining
from complicated initial conditions, on their way to an-
nihilation. The essential features noted were as follows.

~ There exists a regime with a constant relative veloci-
ty U, of the defects. The dependence of U, on the wave-
number distortion was measured.

~ There exists a crossover distance r * below which the
motion accelerates.

~ This crossover distance varies as 1/u, .
These features are all predicted by the above theory.

Indeed, the constant velocity is presumed to arise from a
compression or rotation of the pattern u, cc Q (neglecting
small logarithmic corrections). The crossover distance is
then the distance at which the phase distortion in front of
the defect becomes felt by the second defect. Equation
(5.92) predicts r' —u, ', as measured. We believe there is
no merit to the theory developed by Goren et al. (1989)
to explain the data, which were well accounted for by the
prior conventional theory. This is brought out by Kra-
mer et al. (1990), who show a comparison of the original
theory, using predicted values of g, g», and 'Tp with mea-
surements (Fig. 67). It is interesting that glide motion
was also observed and showed clear steps, evidence of
nonadiabatic pinning effects (Sec. IV.A.4). More detailed
measurements of the glide motion have been made by
Braun and Steinberg (1991) and await a full theoretical
understanding.

—0.01
0.00

0.01 0.02
I

0.03 0.04

tions below threshold, and have fitted the measured
correlation function to the predictions of Eq. (8.61)
above, with a fitted noise strength F=2.6 X 10 close
to the a priori estimate F,h = 1.8 X 10

Finally, we mention that defect mediated chaos has
been observed by a number of workers, and this seems to
be a promising system for quantitative investigations of
extensive chaos (see Nasuno et al. , 1989b; Nasuno and
Sawada, 1989; Braun et al. , 1991).

D. Parametric surface waves

As mentioned in Sec. II.D the parametric excitation of
surface waves provides a rich field for pattern formation
studies. Although research on this phenomenon has an
ancient history, attention has mainly focused on systems
with few degrees of freedom, and comparatively little is
known about the behavior of the large-system limit. We
shall primarily concentrate on this latter case, referring
the reader to the literature for studies of small systems
(see, e.g., Miles, 1984a; Meron and Procaccia, 1986a,b;
Simonelli and Gollub, 1987; Feng and Sethna, 1989;
Miles and Henderson, 1990).

Aq t p.en'
FIG. 67. Climb velocity v, of a single dislocation in convection
rolls in a nematic as a function of the deviation b,q of the wave
vector from critical. Triangles are experimentally measured
points (Goren et al. , 1989). Dashed line is theoretical predic-
tion based on Eq. (9.57), using theoretically calculated values of
go and ro to return to physical units. There are no adjustable
parameters and the agreement is remarkable. (Solid line is ob-
tained using values of $0 and 'Tp estimated from independent
measurements. ) (From Kramer et al. , 1990.)

6. Fluctuations and chaos

In his early estimates of the effect of thermal Auctua-
tions on the convective instability, Graham (1974, 1975)
suggested that electrohydrodynamic convection in
nematics would be a favorable system to investigate.
Indeed, the characteristic noise strength parameter F,h in
Eq. (8.63) can be enhanced by a small dissipative
coefficient and by use of a thin layer. Recently, Rehberg
et al. (1991) have reported observing convective Auctua-

1. Theory

a. Basic equations

h(x, t) = aq(t) cos(q.x), (9.58)

We begin with the wave equation for oscillation of the
free surface of a laterally infinite Auid, whose height is
given by h (x, t) (see Benjamin and Ursell, 1954). Setting
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we have a wave equation

B,a +yB,a~+co, (q)aq = 0,
with y a phenomenological damping constant, and

co, (q) =q tanh(qh )[g+Xq /p],

(9.59)

(9.60)

b,, =y/cop,

or, in terms of the control parameter

5p =Atop/2 yp =y /2

with dimensions of frequency, 6, pp.

(9.67)

(9.68)

g ~g ( t) =g ( 1+b cos2cot ),
so that Eq. (9.59) becomes for q =qp,

B,a+yB, a+co, (qp) [1+2bcos2cot]a = 0,
b, =—K [1+(X/pg ) qp ]

(9.61)

(9.62a)

(9.62b)

and qp is defined by the resonance condition

co, (qp) =co . (9.63)

For a small container where a single mode hp(x, y)
with frequency cop is excited we set

h ( xt) =a(t) hp(x, y), (9.64)

and Eq. (9.62a) becomes the Mathieu equation (Landau
and Lifshitz, 1976)

B,a+yB, a+cop [1+2hcos2cot]a = 0,
whose solutions of the form

a(t)=ape '+cc. (9.65)

(9.66)

have unstable growth (Re o ) 0) inside tongues as shown
schematically in Fig. 68. The lowest mode to appear is
n =1 and its frequency is centered around co=~p, with a
threshold (see below)

1

i ~ n
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FIG. 68. Neutral stability curves in the driving strength 5p vs

frequency co plane for the Mathieu equation (9.65) with parame-
ters defined in (9.68) (only the first and the nth tongues are
shown). Instability occurs above the full curves for nonzero
damping yp. For yp=0 the instabilities occur above the dashed
lines.

the linear dispersion relation of (unforced) surface waves,

g being the acceleration of gravity, X the surface tension,

p the mass density, and h the average height of the sur-
face above the bottom of the container. Under paramet-
ric forcing the acceleration of gravity is modulated at fre-
quency 2' according to

b. Boundary conditions, real fluid effects

In a large but finite system the analysis leading to Eq.
(9.65) holds rigorously only for the unphysical lateral
boundary condition that the surface should remain hor-
izontal, i.e. perpendicular to the sidewall. A more realis-
tic boundary condition, even for a surface at rest, is that
there is a meniscus with some contact angle 0, and a
width given by the capillary length

—(y/ g )1/2 (9.69)

h(x, t)—:0, (9.70)

even under modulation (for not too large amplitudes). &
difhculty arises, however, because the dissipation
coefficient y, as well as its nonlinear generalizations (see
below), are sensitive both to the Qow near the boundaries
and to large-scale flows caused by the boundary condi-
tion (9.70) (see Douady, 1990).

Milner (1991) has suinmarized the different contribu-
tions to the damping constant y and estimated their mag-
nitude for large systems. There are essentially four im-
portant damping mechanisms:

(i) Bulk viscosity, which has contributions from the full
surface and leads to a damping constant given by
Vb &qp '

2

(ii) Wall damping, whose relative magnitude is reduced
by the ratio of perimeter to surface area, and leads to a
coefficient y -toZD/L, where PD=(2v/to)' is the dis-
sipation length and I, is the system size.

(iii) The moving meniscus [when condition (9.70) does
not hold].

(iv) Dissipation due to contaminants at the surface,
which can be quite large since it is proportional to the
area and since the mechanical properties of the interface
can be significantly different from those of the fluid.

beyond which the stationary surface heals to its bulk po-
sition. In the presence of dissipation (y A 0) and under
modulation (9.61), the boundary condition is difficult to
describe precisely, but one effect of the boundary is to
generate a parasitic surface wave at the excitation fre-
quency 2', which may propagate inward for a large dis-
tance. We are not aware of any quantitative study of this
phenomenon. References to the literature on the proper-
ties of the meniscus may be found in Miles and Hender-
son (1990).

It has been suggested by Benjamin and Scott (1954)
that if the fluid completely fills the container the surface
can become pinned to the upper edge, thus leading to the
boundary condition
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Estimates of the last two contributions to the damping
in terms of the Quid parameters and the two-dimensional
bulk modulus of the contaminant layer are quoted in
Milner's paper.

c. Amplitude equations

a (t) = A (t) e '"'+c.c. (9.71)

The amplitude equation has the form

co —co Q)o,

(9.72a)

(9.72b)

together with the equation for A', where y3 is a non-

linear damping constant and c3 a nonlinear detuning pa-
rameter. These coefFicients can in principle be calculated
by solving for the Qow in the finite container.

The linear spectrum is A (t) -exp(o t ) with

(9.73)

For co%0 the dependence of the eigenvalues on 5o is

shown in Fig. 69. The amplitude equation (9.72) is a
faithful representation of the dynamics of Eq. (9.65) pro-
vided both eigenvalues cr+ are small (compared to other
frequencies in the problem). The actual instability occurs
when o.+ passes through zero at

(p2+c2 )1/2 (9.74)

Close enough to this instability we can further reduce the
description to a single amplitude equation for the real
amplitude of the oscillation, appropriately phased to
draw energy from the pumping

In the single-mode limit (9.65) we may obtain an am-

plitude equation for sma/I damping (y/a)o « 1) and near
resonance (leo —

cool « coo) by expressing a (t) in terms of
a slow modulation of the subharmonic mode, FIG. 69. Path of the complex linear eigenvalues cr+ [Eq. (9.73)]

as the driving strength 50 increases. The eigenvalues are a com-
plex pair for 50(co, and collide at o.+= —

yo when 50=co.
Further increasing 50 leads to the instability o.+=0, where 50
takes on the value 5, given in Eq. (9.74), at which point
0. = —2yo. Note that for small damping yo the o. eigenvalue
remains small, and the dynamics of the corresponding eigenvec-
tor may remain important for 50 & 5, .

o~~B ~B goB (9.75b)

~ ( ) A
i(qox cot ) — i (qox+ cur )—

(9.76)

which corresponds to Eq. (9.71), but now includes the de-
generate +qo modes defined by the resonance condition

It should be noted that to arrive at the single amplitude
equation (9.75b) we are assuming lo. +l « lo l, so that
now the o. mode is eliminated as "fast." This delicate
interplay between the coupled "near Hamiltonian" am-
plitude equations (9.72) and the single "unstable mode"
amplitude equation (9.75b) is a recurring feature of para-
metric instabilities in weakly damped wave systems.

For the laterally infinite system, amplitude equations
analogous to those of Newell and Whitehead (1969) and
Segel (1969) were only studied quite recently. The sim-
plest case is a one-dimensional geometry, considered by
Thual et al. (1989) and by Douady et al. (1989b). They
made the ansatz

A=Be' (9.75a) co, (qo) =co . (9.77)

{the phase a depends on the detuning and is —m. /4 for
co =0). This amplitude equation takes the simple form

For small damping we may neglect the wave-vector
dependence of the damping and arrive at the amplitude
equations for traveling waves:

a, A, +s,a„A,= —y, A, +ic,a„'A, i 5 A* ——[(y ic )lA,—l
+(y„—ic )lA

l ]A, ,

&, A, —,&„A,= —y, A, +,&,' A —&,A *,
—[(y,—,) I A, I'+ (y,—„)I A, I'] A, .

(9.78a)

(9.78b)

Again near threshold, 5o—
yo «yo, it is more con-

venient to rewrite these equations in terms of the
standing-wave amplitude B (x, t), which is now complex.
Equations (9.78a) and (9.78b) can be reduced using the
general procedure outlined in Appendix A. This yields

A ) =B—(so/2yo) r) B+ (9.79a)

A2 =iB*—(iso/2yo) r)„B*+
and the amplitude equation with real coefficients of the
usual form (see Riecke, 1990)
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rod, B=eB+g'oB B —gplBl B, (9.80)

with rp ——yo ', gp
= sp/&2yp, and go = (y3+y4)/yp,

E=(gp —yo)/yo. The phase of B arises from the spatial
translation of the standing-wave pattern. The other com-
bination (D= Ai+iA2 to lowest order) decays to zero
for small c since it is out of phase with the drive, i.e. un-
form parametric pumping excites a single standing wave
at threshold. For larger e, Eqs. (9.78) can be shown to
have a secondary bifurcation which, depending on the
coefficients, is either a drift instability [see Sec. IV.A.3]
or a type I, oscillatory bifurcation (Douady et al. ,
1989b).

For an infinite two-dimensional system Ezerskii et al.
(1986) derived an amplitude equation assuming a square
pattern, treating the detuning as an adjustable parameter

I

h(x, t)=g A (x, t) expi(q x .. co—t)+c.c. , (9.81)

with

lqJ I qo ~ (9.82)

and using the high-frequency limit of (9.60)

co,'(qo)=(X/p) qp =co (9.83)

Milner derived the following amplitude equations:

and neglecting nonlinear damping. Quite recently,
Milner (1991) attacked the problem from first principles
and in a careful analysis obtained a consistent set of am-
plitude equations near threshold. Starting from the gen-
eralization of Eqs. (9.58) and (9.71),

t~p~ z (3co/2qo) (qj V) AJ+(3ico/4qo)V 3 —(3ico/8qp2) (q V)~A.

—g [[y,",' —te,")] l &, l'w, +[y,",' ie,",']—a, a, a,.*}, (9.84)

where the linear damping is
I

with

c». e =q qr (9.86)

gp 2' p (9.85)

and the nonlinear damping and dispersion y'"&, c'.
& are

polynomials in the angle
and

E=(~o ro)/r—o

~j,E 7j,tt'+7j, —8+7j,E+ Vj, —8
(3) (3) (4) (4)

(9.90)

(9.91)

c),E=—2vp Jd x (V' P) (9.87)

where E is the energy and P is the potential of the ideal
(undamped) fiow in the bulk.

The complex amplitude equation (9.84) constitutes
Milner's basic result. It holds for an arbitrary set of am-
plitudes Aj, all of whose vectors q have magnitude qp
given by the resonance condition (9.82). Equation (9.84)
represents an expansion of the hydrodynamics near reso-
nance and for weak damping to order A . In order to
determine the preferred pattern it is again useful to make
the further expansion of this equation, valid in the im-
mediate vicinity of the threshold as in the one-
dimensional case (9.80) treated above. Equations (9.79)
are generalized by the replacements

, Az ~ A . , c)„B—+ (q~.V)B~, (9.88)

and the group speed so becomes (3co/2qp). This yields
the real amplitude equation (Milner, 1991)

r '2

(q V) B,.+ j, 3'
2 2+pgp

given in Eqs. (46), (47), (21), (57), and (58) of Milner's pa-
per. The damping coefFicients yp, y'"& were obtained un-
der the assumption, valid at high frequencies and for a
clean surface, that the dissipation occurs in the bulk of
the Quid and is given by

+y
2/p

(9.92)

which may be used to find the preferred pattern near
threshold. Indeed, let us assume a solution consisting of
an n-sided polygon, so that (9.92) becomes (for a constant
B=B„)

V- nsB„+—n yp
—I „B„,2 ~ —1 4 (9.93)

[Presumably there should also be terms in the spatial
derivatives transverse to qj analogous to the B~ terms in
Eq. (8.15), but Milner did not include these. ] From Eq.
(9.89) we can identify the coefficient go of Eq. (4.3) as
gpqp -co/yo )) 1. This system is therefore different from
the other type I cases we have encountered, in that the
coherence length go is necessarily large in the frequency
domain where the theoretical analysis applies (small
damping). This means that a system may have a large as-
pect ratio as determined from the parameter I.qp && I,
but nevertheless be small in terms of the quantity
L/(o «1.

As usual the amplitude equation derives from a
Lyapunov function

2

2 = Jdxg —elBJI + — (qt. V)BJ
2 2fpg p

pro 'I;—~lB~ l'B, (9.89)
with I „=gI J ~. By evaluating the coefficient I

„

for

various n, Milner shows that squares (n =2) are the pre-
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ferred pattern, and also that they represent a local
minimum of the potential (9.92) with respect to distor-
tions away from 8~ & =~/2.

It is also possible to test the square pattern for secon-
dary instabilities. Solutions of Eq. (9.89) at nonzero wave
vector

ik x.
BJ=Bk e

lead to a detuning

(9.94)

P=ro, (qo) —ro, (qj+k) =(3co/2qo)[ ~q, +k~ —qo],

(9.95)
0

I

0
which parametrizes the band of solutions above thresh-
old. Inserting these into the amplitude equation (9.89)
Milner finds the usual longitudinal (Eckhaus) boundary,
as well as a transverse instability at /3) 0, just as for the
Newell-Whitehead case treated in Sec. IV.A. He notes,
however, that squares are also a solution of the
traveling-wave equations (9.84), and tests their stability
with respect to more general disturbances where 3 and
A * are no longer phase locked as in (9.88). The result
is a new transverse amplitude modulation instability at a
nonzero wave vector p I (q +k~ ), with

p =(4qo/3') C'B +P, (9.96)

where C' is a function of the c'& calculated by Milner,
and /3 is the detuning appropriate to the wave vector
q~+kj . The locus of this instability in the (E,p) was also
found by Milner, and is shown in Fig. 70.

In principle the amplitude equations (9.84) and (9.89)
can be investigated using more general patterns than the
regular superpositions of waves that lead to (9.93), but
this has not been done. In any case, it is reasonable to as-
sume (just as in convection) that near threshold the pre-
ferred pattern in an ideal system is regular, and in that
case squares are found.

Milner has attempted to find an "optimal" wave vector
by restricting his attention to standing wave patterns
with a definite wave vector q =qj +k, q Wq o, and there-
by finding higher-order terms in the Lyapunov function
(9.92). Minimization of this function then yields an op-
timal detuning P*(e) and thus an "optimal" wave vector
k "(E) which turns out to be destabilized by the trans-
verse amplitude modulation instability at a particular
value of c. In our opinion, however, this procedure is un-
reliable since the actual competition between solutions
with diFerent wave vectors involves inhomogeneous (de-
fect) states which are explicitly excluded from the ap-
proximate higher-order Lyapunov function. Thus the
notion of a preferred wave vector is no better justified
away from threshold in this problem than in pure
Rayleigh-Benard convection.

P~/v'
FIG. 70. Stability boundaries for square patterns of standing
surface waves as a function of the control parameter e and the
detuning parameter P which is a representation of the wave vec-
tor q [see Eq. (9.95)]. Solid line (N), neutral stability boundary;
dotted line (E), Eckhaus boundary; dashed line (TAM), trans-
verse amplitude modulation; dash-dotted line (SN), saddle-node
point for subcritical bifurcation. (From Milner, 1991.)

tems (low frequencies) where a few modes are excited. It
is then interesting to study in detail the pattern stability
and pattern competition as a function of the modulation
parameters, and to make comparisons with theoretical
models. In line with our primary interest in nontrivial
spatial dependence, however, we shall confine our discus-
sion to experiments on large systems, i.e. those carried
out at high frequencies leading to qol. »1. As men-
tioned above, however, none of the experiments carried
out thus far achieve the true large system limit L /go ))l.
To do this one must abandon the weak damping limit
and use highly viscous Auids, a situation about which
very little is known theoretically (W. S. Edwards, private
communication).

a. One-dimensional systems

The only studies of one-dimensional parametric waves
we are aware of are the early experiments by Keolian
et al. (1981) and the more recent work by Douady (1990)
in annular containers. The latter experiments observed
the standing-wave state at a particular wave vector q„as
well as its limits of stability in the (5o, ro) plane. These
limits involve Eckhaus-like instabilities (q„~q„+i)
when co is varied at fixed 5o, and the drift and secondary
oscillatory instabilities mentioned above, when 50 is
raised at fixed ~. These are qualitatively in accord with
expectations based on the amplitude equations (9.78), but
no detailed comparisons have yet been made. The author
states that it is dificult to obtain reproducible results,
since the requirements of uniformity and stability of
external conditions are particularly severe.

2. Experimental studies h. Two-dimensional patterns

As mentioned above, the most extensive experiments
on parametric waves have been carried out on small sys-

Douady and Fauve (1988) have performed a series of
experiments in square cells with wave vectors in the
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range 12 &qoL Im & 18. They state that in order to see
patterns with different spatial symmetries it was neces-
sary to pin the meniscus at the edge of the cell by filling it
to the top [see Eq. (9.70)]. In this way they avoided the
strong perturbations of the pattern coming from the
waves at frequency 2' generated at the lateral boundaries
by the motion of the meniscus. With the filled cell they
found a large multiplicity of regular patterns above
threshold, which they analyzed according to the modes

h „(x,y)=sin(mn. x/L) sin(nay/L ), (9.97a)

with

qo=(m +n ) (m IL ) . (9.97b)

By symmetry in a square cell there must also exist the
mode h„(x,y), but it need not coexist with h „.A sym-
metric pattern with wave vector qp is formed by superpo-
sition

h, =h „+h„ (9.98)

whereas a symmetry-breaking pattern is h „(orh„)
alone. The square pattern has n =m, and the symmetric
pattern h, for m Wn consists of two square patterns tilted
at some angle. Douady and Fauve observed essentially
all the (m, n) combinations allowed by the resonance con-
dition (9.97b), but found that there was a clean separa-
tion between the sets that led to symmetric patterns
[which had 0 & tan '(m In ) & m /8] and the ones that
broke the square symmetry [m/8 & tan '(m/n) & rr/4].

An interesting hexagonal pattern was also observed at
rather large excitation 5p and for a high-viscosity Quid
where qpPD)&1. The authors noted that this pattern
could be interpreted as arising from an accidental degen-
eracy between asymmetric modes (m„n,) and (mz, nz),
such that m, +n

&
= m z+n z, with mz &&nz, say. Then

if we take m i )n
&

it can happen that the angle between
the vector q', +' mix+niy and qz+' mzx+nzy is close
to n. /3. Since in the particular ansatz (9.97) we also have
the vectors q', ' m, x —n iy and qz

' mzx —nzy, we
finally end up with an equilateral triangle formed from
q', +', qz+', and q& ', say, which leads to a nearly hexago-
nal pattern. It would be interesting to understand the
sidewall effects that lead to these pattern selection prop-
erties, since we note that according to Milner (1991)none
of the states with mAn (either symmetric or asymmetric)
should be stable in the laterally infinite system. However,
Milner did not explicitly consider canted pairs of square
patterns, so it is conceivable that these would be stable in
his theory, thus explaining the experimental observa-
tions. A more likely possibility is that the theory only
applies to a truly infinite system with Lg/)o1), which
was not the case in the experiment.

The experiments of Ezerskii et al. (1986) and especially
those of Tufillaro et al. (1989) seem to approximate the
large-system limit reasonably well, with an aspect ratio
Lqo/2m -40 in the latter case (see Gollub and Ramshan-
kar, 1991). The initial pattern did not appear uniformly

c. Large systems: Spatiotemporal chaos

When c. is increased beyond the transverse amplitude
modulation instability eventually the system loses spatial
coherence and makes a transition to a chaotic state. This
was already observed in the experiment of Ezerskii et aI.
(1986), and was investigated quantitatively by Tufillaro
et al. (1989) and by Gollub and Ramshankar (1991). As
shown in Fig. 71, the autocorrelation function obtained
from the shadowgraph image has an exponential correla-
tion length which decreases dramatically above a value
c, =0. 1 (slightly higher than E ). The authors also mea-
sured correlation spectra in the chaotic state, both spatial
and temporal, but so far no theoretical understanding of
the data has emerged.

It has recently been suggested by Ciliberto et al (1991).
to use as a diagnostic of chaos in large systems the aver-
age acceleration of the surface

( 8,h (x, t ) ) = A (t) cos2cot, (9.99)

where the brackets denote a spatial average over the
whole surface. Then the authors claim that at constant
input power, the time dependence of A(t) is correlated
with Auctuations in the position of the surface. This is
analogous to the fluctuations of Rayleigh number at con-
stant heat current in convection, and the suggestion is
that in both cases one can extract information concern-
ing spatiotemporal chaos from such a diagnostic.

d. Oefects

The first observation of a defect in parametric surface
waves was by Wu et al. (1984) who found a nonpropagat-

in the whole cell, so it was probably forced by spatial in-
homogeneities more than by sidewalls, and when it did
fill the cell it was not aligned by the sidewalls but rather
inclined at an angle which depended on the control pa-
rameter as well as weakly on time. Nevertheless, to a
good approximation both sets of experiments saw a sta-
tionary square pattern near threshold, and a modulation-
al instability at higher forcing, in agreement with the
theoretical result of Milner (1991). A quantitative com-
parison between the work of Tufillaro et aI. and Milner's
prediction of the destabilization of the preferred pattern
by the modulational instability gave rather good agree-
ment for p, P, and h,„without adjustable parame-
ters, and rather worse agreement for c . Milner notes
that E depends on the square of the nonlinear damping
y "', and a contribution to y'"' from surface contamina-
tion [neglected in Eq. (9.84)], could well account for the
discrepancy. In view of the doubts we expressed above
on the reliability of the prediction of P'(e) we do not
take the absolute prediction of P seriously, but the rela-
tion between p, P, and E is a nontrivial test. Here
again, however, we must reiterate our reservations re-
garding the value of L /go.
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FIG. 71. Spatial correlations in parametrically forced surface
wave patterns. (a) Correlation function of square pattern, mea-
sured from the optical contrast, for three values of the reduced
control parameter c,, as a function of distance measured in units
of the wavelength A, (c,=0.07, squares; c=0.15, triangles;
a=0.35, circles). (b) Correlation length g derived from data
similar to part (a) as a function of control parameter c,. (From
Tufillaro et al. , 1989.)

ing pulse in a narrow one-dimensional channel (they refer
to it as a soliton). A theory for this defect was developed
by Larraza and Putterman (1984) and by Miles (1984b),
based on a perturbed nonlinear Schrodinger equation.
More recent treatments, which closely resemble our dis-
cussion in Sec. V.B were given by Elphick and Meron
(1989), and by Fauve and Thual (1990).

In the one-dimensional situation near threshold the
amplitude equation (9.89) admits kink solutions joining
the symmetry-related states +B. Such structures have
been observed by Douady (1989) using a stroboscopic
method to distinguish between the phases +B and —B.
However, these solutions are unstable within Eq. (9.89)
since the m phase change in the kink can unwind through
complex values of 8, so the observations remain unex-
plained. Further from threshold, when the complex am-
plitude equations (9.78) hold, one expects a large variety
of pulse, front and domain boundary defects, but no de-
tailed experimental study has yet been made.

In two dimensions various authors have made visual
observations of dislocation and grain boundary defects,
but once again a quantitative study is lacking.

an observation region containing bodies of various
shapes. This of course is the geometry of wind tunnels
and many other technologically important systems. Al-
though the main focus of work in this area is usually the
development of strongly turbulent Aows at high Reynolds
numbers, we can also ask whether phenomena exist at
lower Reynolds numbers (smaller flow rates), which are
analogous to the ones we have been considering. It turns
out that these analogies have been the subject of careful
experimental investigation in recent years.

Several classic geometries have been studied. We can
distinguish geometries that are spatially uniform in the
streamwise direction, such as Poiseuille Aow in a circular
pipe or plane Poiseuille flow between parallel sheets (in
both cases the Aow is induced by a constant pressure
across the system}, and geometries in which the base flow
develops spatially in the streamwise direction, such as
Row past a circular cylinder, the boundary layer that de-
velops for flow incident on the edge of a plate (the Blasius
velocity profile), or jets.

The characteristic instability of these situations is the
formation of vorticity rolls transverse to the Aow direc-
tion. The simplest example, which can be motivated by
an inviscid theory, is the Kelvin-Helmholtz instability of
the infinitesimally thin region of Quid shear between two
regions of flow in opposite directions (Fig. 72). The in-
creased Aow velocity over a protuberance into the Aow
induced by a sinusoidal perturbation of the interface
leads to a reduced pressure in the region by the Bernoulli
effect, which enhances the growth of the perturbation
and causes the interface to roll up into vortices. Viscosi-
ty acts as a stabilizing effect. Instabilities in systems such
as wakes and jets, where the velocity shear has an
inAection point, may be understood in terms of the
Kelvin-Helmholtz effect. Instabilities in situations where
there is no inAection point of the shear, on the other
hand, such as Poiseuille and pipe How, involve the viscos-
ity in an essential way and are more dificult to under-
stand physically (see Tritton, 1988).

u+du

E. Open-flow systems

1. General remarks

An important class of problems in fluid dynamics arise
when a carefully prepared uniform Aow passes through

FIG. 72. Schematic of the Kelvin-Helmholz instability showing
(a) unperturbed shear boundary, (b) perturbed shear boundary,
with arrow length denoting modulation of the velocity u.
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Except in the symmetric situation of Fig. 72 there is
typically a net How which will advect the spatially
periodic state of vortices (in a streamwise uniform situa-
tion). Thus the instabilities are typically of type I„and
in this case the difference between convective and abso-
lute instabilities becomes crucial (see Sec. VI.C).

In principle, the type of theoretical analysis we have
advocated can be applied to these systems. This involves
a linear stability analysis to identify the spatial structure
that might develop and the band of possible wave num-
bers, a nonlinear analysis to produce a saturated state
with this spatial structure, and a stability analysis of the
nonlinear state to identify the secondary instabilities that
might lead to a turbulent Bow, via long-wavelength insta-
bilities given by a phase dynamics approach. In practice
this procedure typically turns out to be extremely
dificult or even impossible to carry out (for a recent re-
view see Drazin and Reid, 1981). Often the instability of
the uniform Aow is predicted to occur at rather high
Reynolds numbers (infinite in the case of pipe flow) and is
strongly subcritical, so that the nonlinear states cannot
be captured by a weakly nonlinear theory (in some cases
they may not have a simple spatial or temporal struc-
ture). The secondary instabilities of the nonlinear period-
ic states that may exist far below the point of the initial
linear instability must then be attacked purely numerical-
ly. For a recent review of this type of work see Bayly
et al. (1988). The added complication of a spatially de-
veloping base state in the fIow over bodies makes these
systems even more difficult to understand quantitatively,
and often a quasiuniform approximation is made.

Correspondingly, although quite regular patterns of
drifting vortices are an obvious feature of experiments on
open Aows, and indeed yield some of the classic pictures
of pattern formation in nonequilibrium systems
(Van Dyke, 1982), there exist few experiments where a
quantitative comparison with a controlled theory of the
nonlinear pattern can be achieved. To conclude this sec-
tion we will brieAy describe experiments on two systems
where comparison with small amplitude theories does
seem possible.

2. Plane Poiseuille flow

The transition in uniform plane Poiseuille fIow is
strongly subcritical. The linear instability has been inves-
tigated experimentally by Nishioka et al. (1975) and re-
sults agree well, at the rather low precision of the mea-
surernents, with the linear theory. Although saturated
nonlinear states of two-dimensional traveling rolls may
be constructed theoretically (see Bayly et a/. , 1988) these
are unstable to three-dimensional disturbances (Orszag
and Patera, 1980) and no periodic nonlinear state is ex-
pected or seen experimentally.

On the other hand Schatz et al. (1991) have shown
that if a periodic array of cylinders is placed in the Bow a
supercriticaI (convective) instability occurs, which is well
described by an amplitude equation and is also quantita-

tively reproduced by numerical simulations (Fig. 73).
particular for the parameters of Fig. 73 the authors mea-
sure a critical Reynolds number R, = R, = 128.5 at
which an imposed disturbance begins to grow as it propa-
gates downstream. The behavior of the maximum in the
pulse is found to be well described by the amplitude equa-
tion
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FIG. 73. Channel Aow with spatially periodic perturbations.
(a) Growth rate cr as a function of Reynolds number, denoted R
in the figure, below the transition and (b) saturation amplitudes
of the first two Fourier components Ao and A& as a function of
reduced Reynolds number e above the transition in periodically
perturbed plane Poiseuille How. Triangles are from experimen-
tal measurements of the velocity component u at x =3.9 down-
stream from cylinder number 18 and y=0. Solid circles are
from the velocity component U at x =1.6666 and y= —0.5 in
numerical simulations. The growth rate measurements o. are
consistent with the expected linear dependence on Reynolds
number o. ~ (R —R, ), yielding estimates for R, =128.5 (experi-
ment) and R, = 136 (simulation). The dependences of the ampli-
tudes are consistent with Ao ~ c', 2

&
~ E. (c) geometry of the

experiment: 21 cylinders of separation L =6.66 {defined in units
of the channel half depth h) and diameter 0.40, are placed offset
from the center by y = —0.50. The spanwise dimension z per-
pendicular to the figure is 40 in the experiment, and is taken to
be infinite in the simulations. (From Schatz et aI., 1991.)
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&o~~ Ao =~ Ao go A o
3 (9.100)

with E=(R, —R, )/R„i.e. the amplitude Ao scales as
A p

—s' and the amplitude of the next harmonic A, —c.

as expected. Here R, is the critical Reynolds number for
the conoeetive instability, since Ao is measured moving
with the pulse, not at a fixed point. (At a fixed point the
disturbance eventually decays in time after having passed
by. ) The spatial derivative terms and complex (frequency
shift) coefficients of the full type I, amplitude equation
were not investigated in the above work.

3. von Karman vortices

The periodic appearance of vortex rolls ("vortex
street" ) behind a circular cylinder in a uniform flow is a
familiar example of pattern formation. If we consider the
instability as occurring in the spatially developing wake
behind the cylinder, then the ideas discussed in Sec. VI.C
are qualitatively informative: the instability occurs as a
global Hopf bifurcation when the region of absolute in-
stability in the vicinity of the cylinder becomes large
enough to support a local mode which acts as a source
for vortices advected downstream. There are no quanti-
tative calculations of the linear instability based on this
idea, however full numerical simulations yield an onset
Reynolds number of R, = 46 for an infinitely long
cylinder, with a dimensionless frequency (known as the
Strouhal number ) cod /2m. v =0.14, with d the cylinder di-
ameter and U the fluid velocity (Jackson, 1987, and refer-
ences therein).

Recent experiments have investigated this transition in
detail, showing that it is indeed a supercritical Hopf bi-
furcation and confirming the applicability of the complex
amplitude equations for the oscillating mode.

z,a, A =eA —g, (1—ic, ) I
Al'A, (9.101)

(Provansal et al. , 1987; see also Strykowski and Sreeniva-
san, 1990). Provansal et al. measure both the growth
rate of a disturbance above threshold and the decay of
imposed disturbances below threshold, and confirm the

' dependence of the time scale. This allows an accu-
rate determination of the critical Reynolds number
R, =47, agreeing well with the most recent theory.
Moreover, the amplitude of the mode above threshold
scales as e' . The data show little effect of the non-
linearity on the frequency of the oscillations, so that c3
must be small. In addition the authors studied forced os-
cillations for various frequencies close to the critical fre-
quency, both above and below threshold.

studied convection experimentally, while Miiller et al.
(1989, 1992) and Brand et al. (1991) investigated this sys-
tem theoretically, using numerical methods as well as
amplitude equations. Tsameret and Steinberg (1991a,b)
and Babcock et al. (1991, 1992) investigated the Taylor-
Couette system.

In an imposed Aow the type I, linear instability is con-
verted to type I„with the rolls drifting in the direction of
the Aow at a velocity proportional to the Aow velocity for
low speeds (i.e. small Reynolds numbers, denoted R, ). In
both the Rayleigh-Benard and Taylor-Couette systems
the threshold is suppressed by the imposed Aow, propor-
tional to R, for small R, . More importantly the first in-
stability is conueetiue (Deissler, 1985), and is described by
the amplitude equation

ro(B, A +so8„A) = 8 A +go(1+ic, )B~ A

—go(1 —ic3)lAl A, (9.102)

for type I, systems. Note here however that there is only
one wave, moving in the direction of the Aow, so that the
reAection phenomena described in Sec. IX.A will not
occur. The parameters ro sp go and c, have been calcu-
lated from a linear stability analysis, and numerical simu-
lations and experiments confirm the basic validity of
Eq. (9.102).

In the convectively unstable region 0 & c & c,,
=(soro/2') (I+c, )

' there is no disturbance in the
Auid if the noise in the inAow is small enough, but experi-
mentally a disturbance is usually evident far down the
Aow, where any small perturbation in the inAow has had
sufticient time to grow as it propagates down the cell.
This disturbance, even though it may be of large saturat-
ed amplitude, shows phase noise, reAecting its origin in
the noisy inflow (Deissler, 1985, 1987b, 1989). As
passes through the point of absolute instability c, there is
a sharp transition from this noise-sustained structure to a
nonlinear solution which shows only very small Auctua-
tions. This solution is analogous to the "filling" states in
the binary-Auid case, although the distance from the
inAow to where the amplitude becomes large grows as c,
is approached from above. It is predicted (Cross and
Kuo, 1992) to diverge as (so, —so) '~ in the absence of
noise, and this behavior is consistent with experiments at
small Aow rates.

The sharp disappearance of the noise provides a pre-
cise measure of the threshold c,, (Babcock et al. , 1991,
1992; Tsameret and Steinberg, 1991b). To understand
the experiment we note that the quantity s in Eq. (9.102)
is given by

4. Type I, fluid systems with an imposed flow

E = [R —R, (R, )]/R, (R, ), (9.103)

Rayleigh-Benard convection in a narrow channel in an
imposed Aow, or the Taylor-Couette system with im-
posed axial Aow, provide easily controlled experiments to
investigate open flow phenomena. Luijkx et al. (1981)

where R is the Rayleigh number as usual, and R, (R, ) is
the shifted convective instability threshold in the pres-
ence of the flow (R, %0). We may also define reduced
Rayleigh numbers referred to the threshold in the ab-
sence of Aow
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e = [R —R, (0)]/R, (0),
c,, = [R,(R, ) —R, (0)]/R, (0),

Y,, = [R,b, (R, ) —R, (0)]/R, (0),

(9 104a) X. PATTERNS IN CHEMICAL REACTIONS

(9.104b)

(9.104c)

Systems undergoing chemical reactions show many
different pattern forming phenomena which combine hy-
drodynamics with the molecular reactions taking place in
chemistry. Many of the traditional spatial patterns
occurring in hydrodynamics and in thermodynamic
phase transformations are strongly inAuenced by chemi-
cal processes (Mikhailov and Uporov, 1984). As exam-
ples we may cite Liesegang patterns (see Dee, 1986),
diffusive instabilities in photochemical reactions (Dewel
et al. , 1983), and various types of catalytic reactions
(Barelko, 1984). The above-named examples involve
known pattern forming mechanisms in which chemistry
plays a part, but whose basic features can be studied in
systems with no chemistry, which are simpler to charac-
terize and to model. We have chosen to concentrate
rather on oscillatory chemical reactions since they show
distinctive pattern-forming properties and are susceptible
to detailed theoretical and experimental study. The
theory of wave propagation in chemical media has been
reviewed recently in a number of articles and books (see
Vasiliev et al. , 1987; Tyson and Keener, 1988; Murray,
1989; Winfree, 1991; Kawczynski et a/. , 1992; Meron,
1992) to which we refer the reader for further details.
Our aim here is to present an elementary review of the
basic ideas, to relate the work to our general discussion,
and to examine the state of comparison of theory and ex-
periment.

so that

&a ~c (1+c )2' (9.105)

The values of c,, and c,, measured by Babcock et a1. are
shown in Fig. 74. Since both may be calculated by an
analysis of the equations for the linear instability (Y., is
obtained from the stationary phase point using the
dispersion relation o(q) in the complex q plane, as in
Sec. VI.B) there are reliable theoretical predictions for
these quantities. The agreement found by the authors be-
tween experiment and theory with no adjustable parame-
ters is remarkable. Similar results were found by Tsam-
eret and Steinberg (1991b). [Earlier measurements by
these authors (Tsameret and Steinberg, 1991a) showed
less good agreement for R, ) 1.2, due to the infiuence of
noise on the onset position in this regime. ] Babcock et al.
also find that Eq. (9.105), which follows from the ampli-
tude equation (9.102), is quite accurately verified. This
excellent agreement argues in favor of using models
based on the amplitude equation to investigate in detail
the stochastic properties of the inAow.

0.10
A. The Belousov-Zhabotinsky reaction
and the Oregoriator model
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FIG. 74. Stability diagram for axisymmetric rolls in a Taylor-
Couette cylinder with axial Aow; 'E is the reduced azimuthal
Reynolds number defined in Eq. (9.104a) and R, the Reynolds
number of the axial flow (R, = ( w )d/v with ( w ) the mean axi-
al velocity, d the gap and v the kinematic viscosity). The lower
points (experiment) and solid curve (theory) are for the onset of
convective instability Z„the upper points are the absolute insta-
bility Z, identified experimentally by the disappearance of phase
noise as Z is raised. The corresponding theoretical predictions
for the point of absolute instability are shown by the solid line
(hydrodynamic equations) and the dot-dashed line (amplitude
equation). (Adapted from Babcock et aI., 1991.)

1. Basic experimental facts

Although experimental observations of sustained oscil-
lations in chemically reacting systems date back to the
early part of the century, the real growth of interest in
the subject occurred in the past 25 years. This growth
was sparked by the classic experiments of A. M. Zhabo-
tinsky and co-workers on a metal-ion catalyzed oxidation
of organic compounds by bromate ions, an oscillatory re-
action which had been discovered by B. P. Belousov in
1951 and now bears the name Belousov-Zhabotinsky (BZ)
reaction. (For a history see Field and Burger, 1985, and
Winfree, 1984b.) The early work of Zaikin and Zhabo-
tinsky (1970) already revealed the existence of chemical
waves in an unstirred reactor, and it is primarily this
spatio-temporal aspect of the phenomena that will con-
cern us. The literature on chemical oscillations, and on
the BZ reaction in particular, is considerable and it con-
tinues to grow [the 1985 book by Field and Burger al-
ready has roughly 1000 references!] We shall briefly de-
scribe the principal experimental facts and then present a
simplified model, the "Oregonator, " which has the
reaction-diffusion form (3.32). This model accounts
quantitatively for the chemical kinetics in the stirred sys-
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tern (no diffusion), and semiquantitatively thus far for the
observed wave phenomena in the unstirred case. %'e
shall not inquire into the chemical justification for the
model but rather refer the reader to the monograph of
Field and Burger (1985). The principal experimental
facts about the BZ reaction are as follows:

(i) The stirred system under certain conditions shows
spontaneous oscillations with periods on the order of
minutes. These oscillations can be made dramatically
visible if ferroin is used as the catalyst, since there is an
alternation between the reduced state Fe + which ap-
pears orange and the oxidized state Fe + which appears
blue.

Under different experimental conditions of average
concentrations, temperature etc., the system is stable in
either the oxidized or the reduced state. Alternatively
the system can be bistable, so that for fixed average pa-
rameter values it can go to either state depending on ini-
tial conditions. In both the stable and bistable cases,
however, the system is excitable, which means that cer-
tain initial conditions decay rapidly to the stable state,
while others lead to large deviations before the system
eventually reaches a stable state.

(ii) If the unstirred system is in a steady state it is possi-
ble to initiate a local disturbance which propagates out at
a constant velocity and with constant shape, in the form
of a circular pulse. If the steady state is red, say, the
pulse appears as a blue disturbance which decays back to
red behind the pulse. Structures such as these, which
propagate with constant shape and speed in dissipative
media, are referred to in the Soviet literature as "au-
towaves" (Krinsky, 1984; Vasiliev et al. , 1979, 1987).

(iii) Even more dramatically, there exist target patterns
in which the above-mentioned pulses are emitted periodi-
cal/y from the same "leading center" (also called a
"pacemaker"). The different targets are observed to have
variable frequencies but produce pulses with rather uni-
form velocities. If the medium outside the target is oscil-
latory, the frequency of the targets is higher than the fre-
quency of the medium, so that waves are annihilated at
the outer rim of the target. This rim itself is expanding
at a speed slower than the velocity of the waves.

When two targets meet they do not penetrate each oth-
er. Rather, they annihilate and form angular structures
(see Fig. 75). Moreover, the target with the higher fre-

quency consumes the lower-frequency one. There is ex-
perimental evidence that most targets are nucleated on
extraneous perturbations such as dust particles. Never-
theless it appears that under certain conditions target
patterns may exist in a homogeneous medium (see below).

(iv) If a single expanding pulse is broken at a point it
begins to curl up around the ends and produces opposite-
ly rotating spira/ patterns. Besides their geometry, these
waves di8'er from target patterns in that the frequency of
rotation, and thus the pitch of the spiral, does not vary
from spiral to spiral (Fig. 76). There is thus no tendency
for the domain of one spiral to grow at the expense of the
other. Spiral patterns are sometimes referred to as "ro-
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FICx. 75. Target pattern observed in a thin layer of an oscillat-
ing Belousov-Zhabotinsky reaction. (From Vidal et a/. , 1986.)

tors, " or "reverberators. " They have the form of rotat-
ing plane waves over most of their area, except near the
core, r (r„where the chemical compositions and tem-
poral behavior have a different character. (The word
"rotor" is sometimes used to denote just the core of the
spiral. )

It is possible to perturb the core by replacing it by a
hole of perimeter 8 in the medium. Then the spiral will
rotate at a rate co =2m u/8, where u is the wave velocity
far from the hole. In this way spirals of arbitrary fre-
quency can be created and their interactions studied
(Krinsky and Agladze, 1983). It is also possible to create
multiarmed spirals by initiating a number of them
around a hole in the medium and gradually letting the di-
ameter of the hole shrink to zero (Krinsky and Agladze,
1982). These authors found that multiarmed spirals have
lower frequency than single-armed ones, and they are en-
trained by the latter, but the stability of the multi-armed
structures was not demonstrated.

(v) The spatial structures described above have mostly
been seen in very shallow Petri dishes, so they can be
thought of as two dimensional. There is some experi-
mental evidence, primarily from Winfree and co-workers
(Winfree and Strogatz, 1983, 1984; Winfree, 1985), for
the existence of three-dimensional "scroll waves" consist-
ing of spirals whose cores form a line, as well as spherical
waves emanating from a point.

2. The Oregonator model

Although we have seen I Sec. V.B that targets and
spirals are a generic feature in the oscillatory-uniform
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FIG. 76. Spiral patterns in excitable media. (a) Belousov-Zhabotinsky reaction photographed in blue light. g o
spirals

di eter with 1 mm depth of reageant. {From Winfree and Strogatz, 1983.) (b) Dark Geld photograph o
D t o telium discoideum cells. The contrast is produced by the difFerent refractive properties of the cells respond' g o p
difFusing chemical adenosine monophosphate (cAMP) Spirals are evident They rotate every 5 minutes The dish is 90 mm in diam
eter. (From Newell, 1983.)

B,u, =g ' f(u„u2)+DERV ui,
B,u~ —g(u„u2)+D2V u2,

(10.1a)

(10.1b)

where we shall use the functions f and g of Tyson and
Fife (1980)

f(u&, u2)=u, (1—u, ) —bu2(u, —a) /(u, + a), (10.2a)

g(u], u2)=u) u2 (10.2b)

For a typical choice of chemical concentrations the pa-
rameters take on the values g=10, a =2X10, b =3,
D& = 1, D2 =0 (1); the spatial and temporal units chosen
to fix D& =1 are 1.7 mm and 20 s, respectively. Equa-
tions (10.1) play the role of the microscopic equations for
the BZ system, though of course the many approxima-
tions that have been made in arriving at this simple form
are much less we11 controlled than in Quid-dynamical sys-
tems (see Tyson, 1985). Nevertheless it is hoped that
these equations, with the parameters fixed by other ex-

(type III,) case, the most successful models that account
for the above mentioned observations quantitatively are
of the reaction-diffusion type, for example the Oregona-
tor (Field, Koros, and Noyes, 1972; Tyson, 1985). In its
simplest version this model retains only the concentra-
tion u

&
of the autocatalytic species HBrOz and the con-

centration u 2 of the transition ion catalyst in the oxidized
state Ce + or Fe +. The large number of other inter-
mediate substances have faster time scales and their con-
centrations are absorbed in the constants of the model.
In dimensionless units a simplified version of the model is
given by

3. Oscillatory, bistable, and excitable dynamics

It is useful to first set the diffusion coeKcients to zero
and study the pure reactions.

B,u, =g 'f(u»u2),

B,u2=g(u»uz) .

(10.3a)

(10.3b)

periments, will provide a reasonably accurate description
of pattern formation in this system. We will see below
that more work is needed to provide a definitive test of
the validity of the model.

Throughout this section we will consider a model of
the form Eq. (10.1), with f and g of O(1) with nullclines
having the qualitative shape shown in Fig. 77. For con-
crete applications we will often make specific reference to
the Oregonator model Eq. (10.2). Notice the small pa-
rameter g in Eq. (10.1): this describes the very diFerent
reaction rates for the two species u

&
and u z. A perturba-

tive description will be built based on this small parame-
ter. Notice also in the Oregonator model Eq. (10.2) the
existence of an independent small parameter a, which
tends to make the radius of convergence of the expansion
small. For early studies of wave patterns in reaction-
diffusion systems we refer the reader to Koppell and Ho-
ward (1973, 1981), Ortoleva and Ross (1974, 1975); and
Shyldkrot and Ross (1985). For reviews of the early So-
viet literature see Vasiliev et al. (1979, 1987). More re-
cent references include Walgraef (1988), Ohta et al.
(1989), Ohta and Mimura (1990), and Davydov et al.
(1991).
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)
U 2

U2

U2

FICx. 77. Schematic plot of the nullclines f(u„u2)=0 and
g(u&, u2)=0 in the phase space of chemical concentrations u&

and u 2 for the Oregonator model of the BZ reaction,
Eqs. (10.1)—(10.2). (For typical parameters the bends are actual-
ly much sharper due to the various small numbers appearing. )

The intersection of the nullclines at (u &, u2) yields a stationary
solution. The signs of the reaction rates f and g are shown for
small deviations of the concentrations from the respective null-
clines, leading to the motion towards or away from the null-
clines as indicated by the arrows. Since the u, nullcline f=0
yields a double-valued function of u&, it is convenient to intro-
duce u 2

=h+ ( u
& ) and u 2

=h ( u
& ) to label the branches indi-

cated. The points u & and u 2 label the values of u2 at the max-
imum and minimum of the u

&
nullcline.

The above equations show the different types of dynami-
cal behavior of the stirred system discussed in (i) above,
depending on how the nullclines f (u„u2)=0 and

g (u &, uz ) =0 intersect. For illustration purposes we
show a number of cases in Fig. 78, which might occur as
we modify certain parameters in the functions f and g
[e.g. the constants a and b of Eqs. (10.2)]. The qualitative
orbits are easily mapped out by observing the regions of
positive and negative B,u &

and B,u2 bounded by the null-
clines.

The case shown in Fig. 78(a) corresponds to a Hopf bi-
furcation, as discussed in Sec. III.A, where the fixed
point u„u2 has an oscillatory instability with a stable
limit cycle in its immediate vicinity. Note, however, that
because of the disparity in time scales introduced by the
small parameter ti in Eq. (10.1), there is only a small re-
gion in parameter space where the limit cycle can be con-
sidered to be close to the fixed point and the motion har-
monic [this region is typically of order (a —a) /a & g,
(b —b ) I b & t), where a and b are the parameter values
where the Hopf bifurcation occurs]. In the general case
shown in Fig. 78(b) the limit cycle will have large ampli-
tude and the motion will be highly anharmonic, corre-
sponding to a relaxation oscillator. This behavior can be
understood by noting that because of the small parameter
g, a trajectory starting at point B, say, will go rapidly to

the vicinity of the attracting branch h+ (u2) of the null-
cline f=0, and then move slowly up this branch until it
reaches u 2 . At that point the system jumps to the neigh-
borhood of the other attracting branch h (uz) and
moves slowly down that branch until it reaches u 2, when
it jumps back to h+. In this way the system reaches a
large amplitude limit cycle with alternating fast and slow
variations.

Another typical case, shown in Fig. 78(c), represents a
bistable situation with two different stable fixed points,
each one having its own basin of attraction. Finally, in
Fig. 78(d) we show a case with a single stable fixed point,
which can be assumed to be globally attracting. Note,
however, the different transient motion of a trajectory
starting at 3 which is near the fixed point, and one start-
ing further away, at B, say. The first trajectory decays
rapidly to the fixed point, whereas the second one makes
a large excursion to the vicinity of h+ (u2) before eventu-
ally ending up at the fixed point. This type of behavior is
an example of excitable dynamics, and it plays an impor-
tant role in many other examples drawn from chemistry
and biology. In fact similar behavior is expected in the
other cases shown in Fig. 78, where the system can make
large excursions before settling down to its limit cycle or
fixed points. We shall usually reserve the term "excit-
able" for the specific situation in Fig. 78(d), though it is
sometimes used for all the cases shown in Fig. 78. Since
the kinetics of u

&
causes excitability in the system and

the interaction of u
&

and u z causes recovery, u j is some-
times referred to as the "trigger" variable and u2 as the
"recovery" variable. According to Tyson and Fife
(1980), the Oregonator model (10.3-2) with g « 1 is excit-
able for b ~ 1/2 or b ~ 1 —a, and oscillatory for
1/2&b &1—a.

4. Front and pulse propagation

The interesting question to ask from our point of view
is what happens to the system described in the previous
section when we add diffusion. The answer turns out to
be amazingly rich and varied, and we shall only be able
to mention some of the phenomena obtained (see e.g.
Fife, 1984a,b; Vasiliev et al. , 1987; Tyson and Keener,
1988; Murray, 1989). From what we know in general
about the behavior of spatially extended systems close to
a Hopf bifurcation (cf. Sec. V.B) we would expect to find
propagating plane wave solutions, as well as target and
spiral defects in two dimensions. However, as we have
seen, a consequence of the small parameters appearing in
the model of the actual chemical system is that the sys-
tems are strongly nonlinear and thus rarely, if ever,
operating close to the instability point. In this regime the
simplest and most basic consequence of diffusion is the
existence of propagating pulse solutions which travel
through the system without attenuation. An analysis of
these solutions in terms of fronts based on the small pa-
rameter g provides a tractable approach to predicting

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



1036 er: Pattern formation outside of equilibriumM. C. Cross and P. C. Hohenberg: a em

U2)$ U, h (b)

02 -'

U2

U1

22

f=O

U

ble behavior. Although a com-
d' ted b the dashed lines may

to oscillatory or excita e e av'

a beries u (t), u (t) indicate y

FIG. 78. Schematic of various p

h 11 1 S blh
uantitative analysis, some ea

t re ions bounded by t e nu c '

xed oint and small amplitude osciilla-

p ete un

en dots. (a) Unstable fixed point an
g

1 ns (fixed points) are repre sented by u o

th t i t o h
o a ation osci ations,

so utions

1 ondto B dTh h d h dl' ' fle fixed point. The s or-
oints. A large pertur a ion

oge
with two sta e an o

h fixed oint is sta e obl to small perturbation .g.

the imi cy . '
w1' 't cle. (c) Bistable case w'

d f h fi d
'

hto the neighborhoo o e
b f re the concentrations ultimately re ax acslightly larger perturbations (e.g. to B) ea o a

which is globally stable.

=X —Ut, (10.4)

ves tar ets an spd spirals in the stronglyp p o g
here the presence of a opnonlinear state, w-ere p

and the medium8 . V.B is unnecessary, an eas assumed in ec.
be excitable rather than oscillatory.

The simplest examp smle ofsuc as
l that occurring in a sing e varia

uation, was discusselinear diffusion equa ', d
f E s. (10.1) in-now turn to the case o qs.V.B.2.b.iv. Let us now

and the parame-ed variables u
&

and uz an e pvolving the coupled va
l u is also re-nd D . The trigger variab e u, isters g«1 and 2.

. The recovery vari-" ro a ator" species. e rferred to as the p p g
imes called the "contro er sable u2 is sometimes c

s the wave speed andll see its value determines t e wave

s of E s. (10.1) can be put into the
n direction (Fife,

ropagating solutions of Eqs. . cpr
=u (~), whereform u, =u, (g), u2=uz

and

Tj' (u )8 u + gUB~u, + f(u„u2 =0,
D 3 u + uB&u2+g(u„u2 =0.2 g 2

(10.5a)

(10.5b)

eter to zero in Eq. (105.a)First setting the small parameter q o
=0 which has stable solutionswe obtain f(u „u2= w ic

u, =h+ (u2), (10.6)

for

u2 &u2&u2 (10.7)

Let us now consider a solution where

, =h ( )f g g. Whfor ) 0 and u&= u2
(10 5 ) annot be igk=40

'
e terms in Eq. . a c
west-order solution is iscon

'
nored since the lowes - ' '

gascon

In t is regionion there is a boundary layer o wi

Rev. Mod. Phys. , Vol. 65, No. 3, yJul 1993



M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium 1037

scribed by the scaling

g=g/&v], U =U &q, (10.8)

near the special point u2=uz where

V(u,' ) =0, (10.12)

in terms of which Eqs. (10.5) becomes
2

B-u, + VB&u, +f(ui, uz)=0,
2

DzB&uz + VB&uz+i) g(ui, uz)=0 .

(10.9a)

(10.9b)

To leading order in g we have u2=const. , and Eq.
(10.9a) is precisely of the same form as Eq. (5.64), which
has a trigger front solution with a unique velocity
U(uz) =O(1), in the band

V )U(uz)) U (10.10)

where U =V(u z ) (see Fig. 79). When u z
= u z or

u2 =u 2 there is a family of phase fronts with velocities
v U and u + U, respectively, as discussed in Sec.
V.B.2.b.iv.

From the above discussion we see that in general Eqs.
(10.9) have propagating front solutions with velocity
V=O(1) or v =O(iI ' ). In terms of physical variables
the wave speed (in dimensional units) is

Ud, =U(uz) Qk, D, , (10.11)

where U is the O(1) velocity in Eq. (10.10), and ki and

D, are the effective rate constants and diffusion
coefficient, respectively, of the propagator species u&.
Equation (10.11), which is known as Luther's law gives
an excellent order of magnitude estimate of wave speeds
in an amazing variety of excitable and oscillatory media
(see Tyson and Keener, 1988, and Sec. X.A.B.6 below).

It should be noted that the velocity V is O(1) except

which is sometimes called the "stall" solution [see Fig. 79
and Kessler and Levine, 1990a). The value of uz is ob-
tained implicitly from relation (10.9a), as

a+ ~u2' i

f f(u„uz ) du, =0,
(M2 )

(10.13)

since B&u &
vanishes at the end points. We shall see below

that in the limit g((1 waves with high frequency and
low velocity have u2=uz, in which case the scaling
adopted here ceases to be appropriate.

Given the relation v(uz) for wave fronts, a solitary
pulse solution can be constructed in an excitable medium
by patching together a wave front (np-jump) with uz =uz
(the stationary point of the medium, see Fig. 77), and a
wave back (down-jnmP) with u z

=uzb, such that

U(uz ) = —U(uzb ) = U (10.14)

where U is the pulse velocity. This situation is illustrat-
ed schematically in Fig. 80(a), where it is seen that the
up-jump and down-jump of u& indeed occur at u2 and
u2b, respectively. Between the two fronts the variable u2
satisfies Eq. (10.1b), which we may write as

U Bguz =g(h+(uz ),uz), (10.15a)

and behind the second front it reaches its stationary
value u2 =u2 according to the equation

U8guz —g(h (uz), uz) (10.15b)

We have neglected the diffusion of u2 since according to
our previous argument U(uz) =O(z) '~

) ))1. Notice
that the down-jump front may be either trigger or phase
(Sec. V.B.2.b.iv), depending on whether U (uz )~~

~
U

5. Periodic wave trains

2

FIG. 79. Schematic of reduced velocity U, defined in Eq. (10.8),
as a function of concentration u 2 of the controller species, for a
front in the concentration u& of a reaction-difFusion system
characterized by nullclines such as in Fig. 77. For each value of
u2 in the range u2' &u2 &u2 (see Fig. 78) there is a unique
propagation velocity corresponding to Figs. 17(c) and (d). Such
fronts are often called trigger fronts. For u2 at the ends of this
range there exists a family of fronts with speeds 0'&0', for
u2 = u 2, or v & U for u2 =u ', corresponding to Figs. 17{e)and
(f). Such fronts are known as phase fronts.

2b dQ2

g(h+(uz), uz)
Q2f

(10.16a)

The solitary pulse considered above can be stimulated
by a local disturbance of the medium at a point. Suppose
that instead of a one-time stimulation, we excite the sys-
tem periodically in time in some localized region of space,
in order to create a (one-dimensional) wave train. The
main difference with the solitary pulse is that the medium
in front of the pulse is no longer in a stationary state,
thus requiring adjustment of the wavefront value
u zf A u z and a corresponding change in the wave back
uzb, as illustrated in Fig. 80(c). In the present approxi-
mation these values are determined by the implicit rela-
tions given by integrating Eqs. (10.15) (Tyson and Fife,
1980)
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(b)

2b '

LI Ll

=0

X

2b
u;u, i

2f

U

U
X

FIG. 80. Propagating pulse (a) and (b) and wave trains (c) and (d) in excitable chemical system. Parts (b) and (d) show the spatial

dependence of the propagator species u
&

and parts (a) and (c) map this dependence onto the (u, u&) phase plane, with the fronts and

backs of the pulses shown as dashed lines, and the joining regions as heavy lines superimposed on the f=0 nullcline. In the regions

marked P+ and P in parts (c) and (d) the dynamics of the u, variable is governed by Eq. (10.15).

du,
P =f

g(h (u2), u2)
Q2b

(10.16b)
In the derivation of Eqs. (10.16) we used Eqs. (10.15)

which neglect the diffusion of the controHer species u2.
This approximation is valid if

P =P+ +P =2~/co

U(u2f ) U(upi )

(10.16c)

(10.16d) D2 ((v /q, (10.18)

co —co(q ), g —co/U (10.17)

obtained by eliminating u2b and u2f from Eqs. (10.16). A
plot of the dispersion relation obtained by Keener and
Tyson (1986) from the above approximations for the Ore-
gonator model is shown in Fig. 81(a). Notice that for
large periods the medium has sufhcient time to relax back
to the quiescent value u2, and the propagation velocity
approaches a maximum value equal to the velocity of a
solitary pulse.

where I' =2m/~ is the period of the external stimu1ation,
and Eq. (10.16d) determines u2b when u2f is known. In
general the above relations have a discrete set of solu-
tions, for given period I', which determine different
branches of the dispersion relation

u*, (g)=u, (g; u2 ), (10.19)

where u 2 is determined from Eq. (10.12). We set

and breaks down for low velocities which also implies
short wavelengths [see Fig. 81(b)]. [This has been clearly
shown by Kessler and Levine (1990a) for a model in

which the nonlinear terms in Eqs. (10.1) are replaced by a
piecewise linear form. ] In the low-velocity limit a new

scaling first introduced by Fife (1984b) becomes appropri-
ate. We can estimate the small-velocity scale for which
the diffusion of u 2 becomes important, by calculating the
slow-front solution in an expansion about the stationary-
front (stall) solution of Eqs. (10.9)
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(o)
rAo x

the perturbation we find

2 a
BA ui+ 5ui

UB-u
y

~ 6u
Bu Qi —Qi2

(10.24)

max

P„ P
where we can assume that the partial derivatives evalu-
ated at u,*,u2 as well as the derivative with respect to g
are O(1). Equation (10.24) leads to a solvability condi-
tion with respect to the translation mode of u &, which
states that the appropriate average of the rhs vanishes, so
to within factors of order unity we have

v -5u2 (10.25)

Putting together Eqs. (10.21)—(10.23) and (10.25) we find

v (D )1/3

D 2/3 —i /3

v—
2 I

D 2/3 1/6

co-v /g5$ -v /5$- Dz '

(10.26a)

(10.26b)

(10.26c)
=0

u, =u i (g)+5u, (g),
u~=u~ +5u2(g),

(10.20a)

(10.20b)

and assume that each term in Eq. (10.9b) is of the same
order. Then D2 will be important for

v5$ /D2 =O(1) (10.21)

and

V5u2 /5g-gg(u*, , uz )-q, (10.22)

assuming

g(u,*,uz )=O(1) . (10.23)

Inserting (10.20a) into (10.9a) to obtain an equation for

FIG. 81. Various schematic representations of the dispersion
relation of chemical wave trains, calculated numerically from
Eqs. (10.1)—(10.2), showing the interdependence of the temporal
period P, the scaled propagation speed 8, wavelength A, , and
wave vector q. Curves for three di6'erent values of q are shown.
The g=0 curve is given by the equations of the asymptotic
theory (10.16); the q=10 ' curve is consistent with the new
predictions for small U based on the Fife scaling (10.26); the
g= 10 curve shows significant deviations from these asymp-
totic predictions, even for this quite small value. Full lines are
stable branches, dashed lines unstable. (Adapted from Tyson
and Keener, 1988.)

Thus if D2=0(1) we see that the dispersion relation
(10.17) for plane waves breaks down for v =O(g'/3), i.e.
for slow waves with high frequency and large wave vec-
tor. Although this scaling was derived from the condi-
tion that diffusion of the controller species should be-
come important for a p/anar front, we can see that it is
also the appropriate scaling for the case where the curva-
ture correction IC-g '-g '/ to the propagation of a
curved u, front becomes comparable to the velocity
v -q '/6 [see Eq. (5.117)]. Thus when the Fife scaling is
appropriate, the diffusion of both u, transverse to the in-
terface and u2 are in general important. It turns out that
the above argument holds strictly only if g is numerically
very small since it requires

(10.27)

In that case a new scaling of Eqs. (10.5) can be intro-
duced and the dispersion relation can be obtained numer-
ically, for various forms of the functions f and g. An ex-
ample of the modification of the dispersion relation by
controller diffusion D2 at small velocity (i.e. small wave-
length and period) is shown with parameter value

q = 10 in Fig. 81 for the Oregonator model (Dockery
et al. , 1988; see also Kessler and Levine, 1990a). The
main effect of the diffusion coefficient D2 is to introduce a
minimum wavelength A,„andperiod I'„,i.e. a maximum
frequency co„for plane-wave trains. There is also, in Fig.
81(b) a bifurcation at wavelength A, =A.

„

from stationary
pulses (v = 0) to traveling waves (v ) 0).

A numerical evaluation of the dispersion relation using
slightly higher (and apparently more realistic) values of
g, e.g. the value g=10 which does not satisfy the con-
dition (10.27) as stringently, was performed by Keener
and Tyson (1986), and is also shown in Fig. 81. This case
still shows a minimum frequency and wavelength, but no
longer has the continuous bifurcation from stationary
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pulses to traveling waves. Moreover, the authors have
shown that waves with low velocities become linearly un-
stable, as indicated by the dashed lines in Fig. 81. [They
do not comment on the stability of the dispersion relation
for r)=10 .] We shall see below that the detailed prop-
erties of low-velocity waves are of some importance phys-
ically, since real spiral patterns probe this region in their
core, and in general have high frequencies and wave vec-
tors determined by the parameters g and D2.

Dispersion relations have also been obtained by Dock-
ery et al. (1988) for situations where Dz «1 or Dz ))1,
in which case there is a subtle interplay between the
small parameter g and either D2 or D2 '. It should also
be noted that although we have generally assumed excit-
able dynamics in the preceding discussion, the behavior
of the uniform system (10.3) does not enter most of the
arguments in a sensitive way. Indeed, unlike the case for
solitary pulses, in a wave train the system does not have
time to reach the steady state between pulses. Thus all of
the cases depicted in Fig. 78 are expected to show similar
dispersion relations except perhaps near co =0. The
essential ingredients are the bistable nature of the f
function and the separation of time scales coming from
the small parameter q.

6. Higher-dimensional patterns

In the previous section we have seen that except for
the region of low velocities, one-dimensional wave trains
have fronts confined to a spatial region of width g'
which propagate through the medium as a result of the
interplay of reaction and diffusion of the propagator
species u&, at a velocity determined by the level of the
controller species uz. In two spatial dimensions, the
wave front is a line, again of width g', but the propaga-
tion velocity also depends on the shape of this line, in
particular on its local curvature K (see Sec. V.B.2.c).

Denoting by v„ the normal velocity of the front we

may rewrite Eq. (10.5a) as

gB&u, +g (U„—X) B&u, + f (u„u2)=O(g ), (10.28)

U„=V (u~f )+K (10.29)

where the coeKcient D~ of Eq. (5.117) is just the
diffusivity D, = 1.

As long as the controller concentration u2f is known,
and is far from the stall value u 2, Eq. (10.12), the velocity
v ( u 2f ) is large [0 ( rl

'
) ], so the curvature correction in

Eq. (10.29) is small. Equation (10.29) is applicable for ex-
ample to the case of a curved solitary pulse in two dimen-
sions, for which the effect of controller diffusion D2 was

where g is now the coordinate locally perpendicular to
the front. Comparing Eqs. (10.5a) and (10.28) we con-
clude that for a fixed controller concentration u2f at the
front, the normal velocity of curved waves is related to
the velocity of periodic wave trains by an eikonal equa-
tion analogous to Eq. (5.117) (Keener, 1986)

also shown to be small. We shall see below, however,
that spiral waves have low velocities and short wave-
lengths, so that both controller diffusion and curvature
are important, and u2f cannot be inferred from the prop-
erties of plane-wave trains.

a. Target patterns

Since the early observations on targets showed these to
have variable periods and to disappear almost completely
when the system was purified, most quantitative theories
proposed thus far have assumed a heterogeneous medium,
with a local area of radius rp, called a pacemaker, " as-
sumed to have oscillatory dynamics with a frequency
co=2rr/I' determined by an unknown external mecha-
nism (Tyson and Fife, 1980; Fife, 1981; Agladze and
Krinsky, 1984). This local oscillation then produces ex-
panding concentric waves which form the target pattern.
Far from the center, where curvature effects are negligi-
ble, the pattern consists of a periodic wave train with fre-
quency co and speed U(co), Eq. (10.17). We thus expect a
continuous family of targets whose frequencies and
speeds are determined by the external forcing (a similar
result was found in Sec. V.B.2.c). From the curves in
Fig. 81 it is seen that for long periods P most targets will
have roughly the same speed U,„=U(u2 ), and wave-
lengths proportional to the period. The main effect of
curvature is to set a minimum for the size rp of the
pacemaker region,

I'p )Tp =D&/v, „=5X10 cm (10.30)

for the BZ reaction. [In the strict limit g' «1, condi-
tion (10.30) is less restrictive than the condition
q &q„=g ', which limits the domain of existence of
planewave trains; see Fig. 81(c).]

Tyson and Fife (1980) have explicitly constructed tar-
get solutions of the Oregonator model (10.1)—(10.2), as-
suming the parameter b to vary in space such that b =b p

for r &rp, and b=b for r &rp, where bp and b corre-
spond to oscillatory [Fig. 78(b)] and excitable [Fig. 78(d)]
dynamics, respectively. The passing front then has a
form analogous to the one shown schematically in Fig.
80(b), and corresponds to abrupt blue wavefronts (h+)
propagating in a sea of red (h ), and relaxing slowly
back to red. A qualitative prediction of the theory is the
possibility of reducing waves appearing when the medium
is in a quiescent oxidized state. This corresponds to a sit-
uation as in Fig. 78(d), but where the stable fixed point is
on the u, =h + ( u 2 ) branch with a larger value of u 2.

Target patterns in a homogeneous medium were con-
structed in Sec. V.B.2.c above, based on the amplitude
equation and the A, —co model. More realistic models
such as the Oregonator might also be expected to pro-
duce intrinsic targets, but they apparently require either
three dynamical variables or a nonmonotomic velocity
dependence v(u2) in Fig. 79. In one such model (Fife,
1981) the third variable is a dynamical version of the pa-
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rameter b whose variations produced the extrinsic target
discussed above. A number of different 3-variable models
of intrinsic targets have been presented by Soviet work-
ers. The interested reader is referred to the book by
Vasiliev et al. (1987).

(a)

2f

25

b. Spiral waves 2f 2f
U

In Sec. V.B.2.c we discussed spiral solutions to the am-
plitude equation for type III, patterns, and observed that
in contrast to targets these patterns only exist for discrete
wave-vector values. Let us now consider spirals in a sys-
tem with excitable or bistable dynamics (Winfree, 1991).
The simplest way to understand spirals qualitatively is to
consider the procedure outlined in Sec. V.B, by which
they are actually formed in the BZ system (Fife, 1985).
We focus on one of the pulses in a planewave train,
which is made up out of a wave front with velocity
Uf U(Q'if ) )0, and a wave back with U&

= u(u2& )
= —u (u2f ), as depicted schematically in Fig. 82(a). The
pulse consists of a region of excited state (h+) propaga-
ting in the rest state (h ). We then imagine perturbing
the pulse by bringing it back to the rest state (h ) locally.
After a short time, we have approximately the situation
shown in Fig. 82(b), where the controller variable varies
more or less smoothly along the pulse, and passes
through the "stall" value u2=uz, U(uz )=0, somewhere
near the tip. As a result the pulse no longer propagates
forward uniformly, and it is seen that there is a tendency
for each tip to initiate a curling motion which turns
clockwise on the left and counterclockwise on the right.
Of course, as the spiral curls up the portion near the tip
experiences curvature and the simple description in terms
of the function v(u2) will no longer hold. Meron and
Pelce (1988) have investigated a simple model of this
phenomenon more quantitatively.

Let us now assume that the above procedure has led to
a fully developed steady spiral, shown schematically in
Fig. 82(c), with a given rotation frequency co. We wish to
know if a band of frequencies is possible, as in the case of
targets. Far from the core the pattern is just a plape-
wave train, i.e. curvature effects are negligible and the
wave vector is determined, once the frequency is known,
from the dispersion relation of the one-dimensional case
(10.17). In the core the curvature of the front defines a
length scale, and the simplest assumption is that this is
not a new length, i.e. that the wave vector q far from the
core, the curvature of the front in the core, and the in-
verse size of the core itself are all of the same order of
magnitude. The condition that this be so might then be
expected to fix a unique frequency co and wave vector q
(or at least a discrete set). As mentioned above, if this is
the case controller diffusion will in general be important
in the core region as well as in the plane-wave region far
from the core. The width of the propagator front is,
however, always negligibly small for small g, so the ap-
propriate framework to establish the full spiral structure
is a free boundary calculation with the front acting as a

2b 25

(c)

FICx. 82. Schematic illustration of spiral pattern dynamics. {a)
and (b) Formation of a spiral by breaking a propagating pulse.
Regions of high u

&
concentration are shown hatched. {c)

Completed single spiral. See text for details.

source of the diffusing u2 field, and moving in this field
according to the eikonal equation (10.29) (Keener, 1986;
Kessler and Levine, 1990b). This difficult calculation has
not yet been carried out for D2 = 0 (1).

There has been considerable progress for small D2,
however, leading to the conclusion that only a discrete
set of spiral solutions exist, as already found. from the
amplitude equation. Pelce and Sun (1991) numerically
solved the eikonal equation (10.29) coupled to a dynamic
controller field uz in the diffusionless limit [Dz = 0 in Eq.
(10.5b)]. They assumed a smooth spiral solution as in
Sec. V.B.2.c.iv above, but now with the core radius deter-
mined self-consistently, rather than taken to be an arbi-
trary parameter as in the earlier work. Karma (1992)
subsequently showed that these solutions are valid small-

y) solutions of the original pde's (10.5) only in the special
"weakly excitable" limit where the value of u2 in the rest
state is close to the stall value u z. In this case he showed
that a full spiral solution including a smooth core can be
constructed with length and velocity as in the Fife scal-
ing, but with co ~ 0 corresponding to the degenerate case
of q„~0 [see Eq. (5.120)]. More recently, the general
small D2 problem, together with the assumption of small

q as in the original formulation, has been completely
solved in two limits, il'~ && D2 && 1 (Bernoff, 1991)and
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D2 = 0 (Karma, 1992; Kessler et a/. , 1992). We will de-
scribe the singly diffusive case D2 = 0 since it is easier to
present. Karma (1992) first constructs the solution out-
side a core region assuming the Fife scaling so that the
fronts are near to the stall solution and the length and
frequency scales are as in (10.26). (In this region a D2 in
the range assumed by Bernoff is also negligible, so the
solution is the same in that case. ) The uz equation be-
tween the fronts reduces to

coBau2 =g(h+(u 2 ), u 2 )+O(5u2), (10.31)

with 0 the polar coordinate, and where the last term is
negligible since co- ri

'~ . Integration of Eq. (10.31)
leads to a consistency requirement independent of the ra
dial coordinate

g(h )

g(h+ ) + g(h )
(10.32)

(u2 —uz )= —(u2 —uz )

g(h+ )g(h )

g(h+ ) + g(h )
(10.33)

with 8+(r), 8 (r) the angles defining the leading and
trailing fronts of the spiral [Eq. (5.118)], and u2, uz the
controller concentrations on these fronts which are con-
stant along each front. Since now, quite nontrivially, the
eikonal equation (10.29) is accurate with U the constant
velocity defined by the values of u 2 and u z (which, how-

ever, is not the asymptotic large separation velocity), the
eigenvalue equation (5.125) derived in Sec. V is an accu-
rate description of the spiral ~ It is then further assumed
that the core size should be chosen as zero on the Fife
scale i)'~, so that the expression reduces to Eq. (5.127b)
with r, =0. For any given set of nullclines all the con-
stant factors may be evaluated to give quantitative pre-
dictions for co/g ', q g', etc. Karma evaluates

these expressions for the FitzHugh-Nagumo model
(5.170), and finds very good convergence to numerical re-

sults of Winfree for q(10 . Karma notes that on the
length scale of the analysis there is a finite angle

discontinuity 0+ —0 between the fronts at the origin,
and that uz is also discontinuous. These discontinuities
must be resolved on a smaller (e.g. i)' ) lengthscale for
the D2=0 model. This region was studied by Kessler
et al. (1992) who showed that indeed a smooth core on
the O(ri'~ ) length scale can be constructed, without fur-

ther restrictions on the far-field solution. A remarkable
feature of the core solution is a large O(1) azimuthally
constant change in the concentration of the u2 species
which balances the strong diffusion of the u

&
species on

the g' length scale. For the case of small D2 Bernoff
finds a core of size O(Dz~ ) and a correction to the

Dz ~ 0 frequency by a factor [1 + O(Dz )]. If
D2=0(1) it is expected that the singularity will instead
be resolved on the g' length scale.

For a larger value of ri, [e.g. i) = 10 as in Eqs.
(10.1)—(10.2)] there is no obvious scaling which will sim-

plify the equations, and the phenomenological approach
of Keener and Tyson (1986) discussed in Sec. V.B is a
useful first step. The core radius r, is taken to be a pa-
rameter of the theory, although taking r, to zero still
yields a finite result. The eikonal equation (10.29) has the
form of Eq. (5.117) (with Di =D, = 1), so long as we con-
sider the velocity

U(usaf

) to be a given constant. This as-
sumption will be valid if the nonlocal interaction between
various arms of the spiral can be neglected, so that
U(u2f ) is equal to the pulse velocity v . Then the argu-
ment of Sec. V.B determines the spiral frequency co, ac-
cording to the curvature relation (5.127), which now
reads

co, = U Q ( r, /U ) . (10.34)

l

0
(D

Period P

I

10

FIG. 83. Dispersion relation for the scaled velocity U, Eq.
(10.8), vs temporal period P for the Belousov-Zhabotinsky reac-
tion. Full line shows P(P) predicted by the Oregonator model
(10.1)—(10.2). Dashed lines show a second relationship for
waves produced by a spiral in the Keener-Tyson approximation,
Eq. (10.34), for values of the core radius r, ranging from 0.5
(top) to 0.1 (bottom). If r, were known, the intersection of the
appropriate dashed curve and the full curve would give a pre-
diction for the period and corresponding velocity of waves pro-
duced by spirals. The diamond is the result for spirals produced
by a numerical solution of the original model equations
(10.1)—(10.2). The crosses are experimental measurements of the
dispersion relation of planar wave trains mapped onto the
scaled coordinates using the parameter values of Keener and
Tyson (1986). The dots are the same data mapped onto the
scaled coordinates using parameters chosen to fit the maximum
velocity. (Adapted from Keener and Tyson, 1986 and Tyson
and Keener, 1988.)

Since v and the function Q(x) are known, the above
equation determines co, as a function of r, . Keener and
Tyson (1986) have attempted to improve upon Eq. (10.34)
by replacing U by the dispersion relation of planewaves
co(U) of Fig. 81, i.e. they determine co, as the intersection
between (10.34) and co(v). The results are shown in Fig.
83 for different values of r„and they show that the
effects of dispersion are by no means negligible for the r,
values considered. Since D2 was taken into account in
the dispersion relation co(v ) but not in finding U(u2f ) in
the eikonal equation, the procedure of Keener and Tyson
is not systematic, but it appears to capture a good part of
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the physics of this difficult problem. Indeed, the authors
have tested their theory against a full numerical simula-
tion of the starting model (10.1)—(10.2), which leads to
the solid diamond in Fig. 83. This point is close to the
result of the phenomenological theory for the choice of
core radius r, =0.3. Interestingly, the authors report
that in the numerical solution the tip of the spiral did not
remain stationary in the rotating frame, but carried out a
meandering motion which was con6ned to a circle of ra-
dius r = 0.3 (see below). The stability of spirals was con-
sidered early on by Krinsky and Malomed (1983) and by
Keener and Tyson (1986). More recently the transition
to meandering motion, which corresponds to a two-
frequency oscillation in the laboratory frame, was studied
in more detail numerically (Barkley et al. , 1990; Karma
1990; Jahnke and Winfree 1991; Barkley 1992), and
analytically in the small D2 limit considered by Bernoff
(Kessler et al. , 1992).

c. Three-dimensional patterns

We have seen in Sec. V.B that two-dimensional targets
and spirals can be generalized to the third dimension by
assuming that the core is centered on a line which varies
slowly in space (Keener, 1988; Keener and Tyson, 1990,
1991). This theory applies not only to the amplitude
equations considered in Sec. V.B, but equally well to
reaction-diffusion models such as (10.1)—(10.2), for which
the two-dimensional patterns are not described by pertur-
bation theory (see also Brazhnik et al. , 1987). The
shrinking and drifting of scroll rings discussed in Sec.
V.B has been simulated numerically by Jahnke et al.
(1988), and the structure was seen to vanish abruptly
when its radius reached a size comparable to the core ra-
dius (see also Panfilov et al. , 1989). A topologically more
stable scroll ring containing a twist was also simulated by
Panfilov and Winfree (1985), but little is known theoreti-
cally about its motion. A number of intriguing qualita-
tive experiments and numerical simulations have been
carried out over the years by Winfree and collaborators
(see Winfree and Strogatz, 1983, 1984; Nandapurkar and
Winfree, 1989).

B. Comparisons with experiment

Quantitative experiments on unstirred chemical reac-
tions are difficult to perform, because first of all under
usual circumstances the conditions of the experiment
have a secular change in time as the reactants become
depleted, and secondly it is difficult to measure and con-
trol the concentrations of all of the chemicals participat-
ing. In the Oregonator model these concentrations enter
as parameters and normalization constants, as well as
dynamical variables u „u2.Despite these difficulties con-
siderable effort has been devoted to quantitative measure-
ments of the properties of waves in the BZ reaction, and
some nontrivial tests of the theory exist (see Field and

Burger, 1985; Ross et al. , 1988b). Moreover, as dis-
cussed below, experiments have recently been undertaken
in open (unstirred) reactors where the chemicals do not
deplete, though few quantitative results have yet been re-
ported.

1. Stirred dynamics

The temporal behavior of the stirred BZ system has
been studied in great detail and there is now good agree-
ment between experiments and models containing 7 or
more modes (see Richetti et al. , 1987). The two-variable
Oregonator model (10.1)—(10.2) can be tested by measure-
ments of the reaction rates and the concentrations of the
slow reactants. These make up the parameters b and a,
and the normalizations of the variables u i and u2. Given
those quantities one can both calculate and measure the
time dependence of the variables u, (t) and uz(t), for
different initial conditions. For example in the oscillato-
ry state the period, the amplitude and the shape of the
oscillation can be obtained. Generally speaking (Tyson,
1985) absolute agreement between experiment and theory
is no better than a factor of 2, a result which is not too
surprising in view of the existence of rather large
differences in scales expressed by the smallness of the pa-
rameters g=10 and a =10 . A similar situation ob-
tains for the bistable and excitable cases.

2. Pulse propagation

The simplest approximation for the front in a quies-
cent medium is obtained by neglecting the coupling b in
Eq. (10.2a) and yields the dimensionless (Fisher) value
(Sec. VI.B)

U =2 (10.35a)

This translates into the physical expression (Tyson, 1985)

Ud;~ =2 [ k3 xgxHD) ]

=0.05 (x~xH )'~ cm/s mol,

(10.35b)

(10.35c)

U =U(u2)=1. 7, (10.36a)

which translates to

ud; = 0.04 ( x~xH )' cm/s mol . (10.36b)

where k3 = 40 s '(mol) is a measured reaction rate
for an intermediate reaction, Di = 1.5 X 10 cm s
is the measured diffusion constant of HBrO2, and x~ and
xH are the concentrations of Br03 and H+ respectively
(in moles), which were used to obtain the dimensionless
u, and u z in the starting model (10.1)—(10.2).

As discussed above, when the coupling b to u2 in Eq.
(10.2a) is taken into account, the actual pulse velocity in
the excitable case depends on the quiescent value u2 of
the controller variable, and it turns out (Tyson, 1985)
that for the above conditions
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FIG. 84. Profile of a propagating pulse in the Belousov-
Zhabotinsky reaction. (A) shows the spatial profile measured at
an instant of time by light transmission. {8) shows a similar
measurement, but at a fixed point as a function of time. The su-

perposition (C) demonstrates that the pulse is indeed propaga-
ting with a constant shape and velocity. (From Wood and Ross,
1985.)

Experiments by Showalter et al. (1979) and by Wood and
Ross (1985) have confirmed the square-root dependence
on x~xH and have found a prefactor of 0.04 —0.05, in
good agreement with Eq. (10.36b).

As regards pulse shapes, measurements have been car-
ried out by Wood and Ross (1985), by Agladze and Krin-
sky (1984) and by Muller et al. (1987) but to our
knowledge no quantitative comparison with theory has
yet been carried out. However the constancy of pulse
shape during propagation was dramatically demonstrated
by Wood and Ross (1985), who measured the spatial dis-
tribution of reactant at one instant of time [Fig. 84(a)], as
well as the time dependence at a particular spatial point
[Fig. 84(b)], and showed that the two measurements su-
perposed precisely [Fig. 84(c)].

3. Wave trains and target patterns

Successions of pulses are produced periodically in tar-
get patterns, the outer regions of which form periodic
wave trains which can be compared to the one-
dimensional theories discussed in Sec. X.A.5 above. On a
qualitative level, the characteristic shape derived by
Tyson and Fife (1980) from the Oregonator model, i.e.
the succession of sharp wave fronts and diffuse wave
backs, agrees well with observations by Wood and Ross
(1985), Bodet et al. (1987), Miiller et al. (1987), and
Pagola and Vidal (1987). Moreover, the existence of "re-
ducing waves" observed by Smoes (1980) in a system
which is in the oxidized state at equilibrium is another
qualitative confirmation of the Tyson-Fife theory.

On a more quantitative level, one can set up waves of
varying frequencies and attempt to check the calculated
dispersion relation. Somewhat surprisingly, a quantita-
tive comparison was carried out only rather recently, in
experiments by Pagola, Ross and Vidal (1988), whose re-
sults are shown in Fig. 83. The two sets of data actually
represent the same measurements, the differences being
due to uncertainties in the scaling factors necessary to
convert the experimental points to dimensionless units.
Specifically, the crosses were obtained using the values of
Tyson and Keener (1988), and the circles correspond to
an equally plausible set of scale factors adjusted to fit the
maximum velocity. The agreement between experiment
and theory, which for the crosses involves no adjustable
parameters, is in our view encouraging, though the
remaining uncertainties associated with the precise rela-
tionship between the simple model and the complicated
chemistry appear dificult to overcome. This means that
Inany of the subtleties associated with the details of wave
propagation in this system are unlikely to be tested quan-
titatively by experiment. On the other hand, the mea-
sured dispersion relation is in good semiquantitative
agreement with the theory based on the Oregonator mod-
el and certainly different from the perturbative result ob-
tained from the simple phase equation (4.90). This means
that we are far from the limit of nearly harmonic waves
discussed in Sec. V.B, for which the frequency is almost
constant and the velocities vary significantly.

Target patterns have been observed in both excitable
and oscillatory reagents. A quantitative experiment in
the oscillatory case was performed by Vidal et al. (1986),
who measured the histogram of wave speeds and periods
for a distribution of roughly 100 targets, and found
reasonable agreement with the theoretical expectation of
constant speed and varying periods (see Tyson, 1987; Vi-
dal, 1987).

Apart from the dispersion relation of the targets, one
can ask for the details of the core structure, but this is
dificult to observe, since the characteristic core size
turns out to be r, —(D

&
/U ) -0.2 mm, as compared to the

wavelength A, =2~V/co which is roughly 2 mm. An in-
teresting suppression of amplitude at the center of a tar-
get on a scale of 2 mm= 10 r„was observed by Pagola
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and Vidal (1987). Although the explanation for this
effect is not certain, it has been suggested by the authors
that it results from the finite thickness of the system,
which leads to curvature in the third dimension and
could distort the optical measurements of wave intensity.

The most interesting question which has been raised
about target patterns concerns their origin as excitations
of the system. For excitable reagents it has been found
that filtering the medium essentially eliminates spontane-
ous formation of targets, so it is reasonable to infer that
targets are caused by extrinsic dust particles, as discussed
above. For certain oscillatory reagents, on the other
hand, Vidal et al. (1986) reported that filtering did not
suppress the appearance of targets, which makes an ex-
planation in terms of spontaneous Auctuations, or noise,
more plausible. This noise can itself be either extrinsic to
the chemistry, for example thermal noise as suggested by
Walgraef et al. (1983) and Aguado and Sagues (1990), or
intrinsic, i.e. noise caused by chaotic dynamics (Coullet
et a/. , 1987). The strength of thermal noise may be es-
timated by a formula analogous to Eq. (8.63) for convec-
tion

F,h =k~ T ipED (10.37)

where 8 is a characteristic core size, D is a diffusion con-
stant and p the mass density of the chemicals. Inserting
the values 8 = 0.2 mm, D = 10 cm /s, p = 1 g/cm
and T = 300 K we find F,h-—0.02, an intriguingly large
value. Chaos, on the other hand, seems ruled out experi-
mentally since the subsequent propagation of the struc-
tures is highly regular. Of course, no detailed study ex-
ists of the effect of noise on realistic targets based on the
Oregonator, but the stochastic mechanism bears further
investigation.

An amusing explanation of the appearance of targets
has been proposed by Tyson (1987):since it is easier to in-
itiate a target in an oscillatory medium (all that is needed
is to increase the frequency locally) there may be dust
particles which will be effective in an oscillatory mixture
but ineffective in the excitable case. If these particles
were too small to be properly filtered in the experiment of
Vidal et al. (1986) this would explain the persistence of
targets in the oscillatory medium. There is a simple and
elegant test of this catalytic-particle hypothesis, which
was suggested originally by Winfree and Tyson, and was
attempted by Agladze and Krinsky (1984). In a system
containing filtered oscillatory reagent in which targets
have spontaneously appeared, one can erase these struc-
tures by creating a high-frequency wave train by external
stimulation. When this external source is turned off it
leaves behind a phase-gradient which will oscillate at the
frequency coo of the medium, with perhaps some spatial
structure due to the gradients. If the original targets
were created by catalytic particles they should reappear
in roughly the same locations and with the same frequen-
cies as before' The experiment of Agladze and Krinsky
did find evidence that the targets reappeared in the same
place, but the authors did not discuss their frequencies,

nor did they specify whether the solution was filtered. A
more careful experiment in filtered oscillatory medium
should, however, provide important clues concerning the
origin of targets.

4. Spirals and the effects of curvature

Spiral patterns offer perhaps the best test of the theory,
since as discussed earlier the core structure determines
the frequency and speed of the pattern which can be mea-
sured accurately at large distances. Also, spirals are easi-
ly created (in pairs) by breaking a wave crest at a point.
Miiller et al. (1987) have obtained a detailed picture of
the core of a spiral pattern by measuring the light ab-
sorption due to the ferroin component, in a direction per-
pendicular to the sample. The result is shown in Fig.
85(b) next to a numerical simulation of the Oregonator
model presented in part (a). The corresponding point on
the dispersion relation agrees well with the solid diamond
shown in Fig. 83, within the uncertainties of the transfor-
mation from physical to dimensionless units. No quanti-
tative comparison has been made of the experimental and
theoretical core structures, but it seems clear from Fig.
85 that the agreement is at best semiquantitative.

Muller and co-workers also measured the overall shape
of their spiral and compared the results to the Ar-
chimedean spiral, Eq. (5.131), which has r, =0, as well as
to the involute spiral, Eq. (5.133), with r, =q '. In both
cases the fit turns out to be quite good, but the resolution
in the core region is insufhcient to determine the phe-
nomenological parameters as was done by Keener and
Tyson (1986) in the model calculations.

Another test of the eikonal equation (5.117) was de-
vised in an ingenious experiment by Foerster et al.
(1988). These authors studied the high curvature region
where two circular waves collide and annihilate. The
rate of advance of the cusp thus produced can be mea-
sured and also calculated using the eikonal approxima-
tion. Using time-lapse photography the authors mea-
sured the curvature K and rate of advance U„ofthe cusp,
obtaining the data shown in Fig. 86. A fit to Eq. (5.117)
produced a slope D~=2 X 10 cm /s and an intercept
U =0.95 X10 cm/s, in excellent agreement with the
bulk values of diffusion constant and velocity for this
reagent. However, the linearity of the data out to
K= —0.6(pm) is rather surprising, since one would
expect corrections when the spatial scale reaches the core
size r, = 2 X 10 cm = 200 pm.

5. Further experiments on chemical reactions

A combination of hydrodynamic and chemical
influences on patterns has been demonstrated by Agladze
et al. (1984) in an experiment in which they prepared a
pair of spirals in a closed dish, and then opened the sys-
tem to the ambient air. After a short time, the waves in
the spirals become perturbed and disordered and eventu-
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FIG. 85. Spiral core in the Belousov-Zhabotinsky reaction. Comparison of' numerical simulations (a) and experimental observation
(b). (From Tyson and Keener, 1988.)
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ally break up into a chaotic set of small spiral patterns
which are continuously created and destroyed. The au-
thors attribute the phenomenon to the interaction of the
BZ spirals with stationary cellular convective structures,
due to surface-tension driven hydrodynamics instabilities
in the Quid formed by the chemical reagents.

One of the main limitations of current experimental
work on spatial patterns in chemical reactions stems
from their operation as closed systems, which therefore
run down in finite time (typically less than 100 periods of
oscillation). Recently, this problem was overcome by a
number of groups (see Castets et al. , 1990, and references
therein). In particular Noszticzius et al. (1987) and Tam
et al. (1988) constructed a novel type of unstirred open
reactor in which the chemical reaction occurs in an an-
nular inert gel fed with reagents at the inner and outer
rim. In a variant of this original system Skinner and
Swinney (1990) were able to make long-time measure-
ments of tip motion in a spiral pattern, and to observe
transitions from simple to compound rotation (periodic
to quasiperiodic time dependence) as a control parameter
1s varied.

A goal that for a long time had eluded experimentalists
is the seemingly simple one of finding chemical systems
with stationary periodic (I,) structures (Borckmans et al. ,
1987). As we have seen earlier, the simplest way to ob-
tain such patterns is to choose two substances with
sufficiently different diffusion constants [cf. Eq. (2.8)].
Since this appears dificult to accomplish in practice, al-
ternative schemes have been investigated, whereby spa-
tially varying solutions stemming from nonlinear instabil-
ities of a uniform state are obtained in systems with equal
diffusion coefficients (Vastano et al. 1990). Alternatively,
instabilities can be found in systems with macroscopic
gradients. Patterns along the gradient are compatible
with equal diffusion coefficients of the species (Elezgaray
and Arneodo, 1991), but patterns transverse to the gra-
dient (e.g. along an interface separating low- and high-
density regions) require a nonscalar diff'usion matrix
(Boissonade, 1988). General conditions for the appear-
ance of stationary patterns in the presence and absence of
gradients have been given by Pearson and Hortshemke
(1989), Pearson (1992), and Pearson and Bruno (1993).

On the experimental side considerable progress has re-
cently been achieved, either by creating macroscopic con-
centration gradients, or by finding methods to enhance
the contrast in diffusion constants. Ouyang et al. (1989,
1991) reported the observation of a stationary Turing
structure in an open chemical reactor in which a macro-
scopic one-dimensional gradient was imposed externally.
The pattern forming stationary instability then occurs
along the gradient, and it does not require chemical
species with differing diffusion constants. The authors
used a "Couette reactor" for which the active chemicals
are placed between concentric rotating cylinders, so that
the diffusion constant is enhanced by factors of 10 —10
through turbulent mixing, and the characteristic instabil-
ity length 8-(D/a)'~ [see Eq. (2.8)] is correspondingly

6. Nonlinear dissipative waves in other systems

The Oregonator model of Eqs. (10.1)—(10.2) is a proto-
type for a number of other type-III, systems with oscilla-
tory or excitable dynamics. Various examples from biol-
ogy, ecology, and chemistry, taken from Tyson and
Keener (1988), are listed in Table III. The basic parame-
ters determining the speed of wave propagation are, ac-
cording to Luther's law, Eq. (10.11),

vd; —(k, D, )'~ (10.38)

where k& is a first-order rate constant and D& is the
diffusion constant of the propagator species. In Table III
we list these parameters for various examples of non-
linear dissipative wave phenomena occurring in nature,
whose speeds range over a factor of 10! A more exten-
sive discussion may be found in Vasiliev et al. (1979).

Finally, let us cite some references to the extensive
literature on purely numerical simulations of chemical
and biological patterns based on reaction-diffusion equa-
tions and on discretized models, e.g. Pertsov et al.
(1984), Ermakova et al. (1989), Lugosi (1989), Tainaka
(1989), Barkley et al. (1990), Gerhardt et al. (1990), Wu
et al. (1991).

XI. BIOLOGICAL PATTERNS

The theoretical models used to study biological self-
organization are often identical to those discussed in the
rest of this article, so it is appropriate to include biologi-
cal patterns in our review. We are of course dealing with
a gigantic topic with a long history of results and conjec-
tures and a host of open questions. Our aim is to eluci-
date the principal mathematical concepts used by biolo-

enhanced. The chemical gradients, on the other hand,
are along the cylinder axis so they may be controlled in-
dependently.

Following suggestions by Borckmans et al. (1987) and
Boissonade (1988), Castets et al. (1990) have recently
constructed a different type of unstirred open reactor in
which a difFerence of diffusion constants for the chlorite-
iodide-malonic acid reaction is achieved by immersing
the chemicals in porous substances (a gel and vycor glass)
which affect the diffusion of the constituents differently
(see Lengyel and Epstein, 1991). Although their system
contained a significant concentration gradient the pattern
was transverse to the gradient, and its appearance result-
ed from the difference of diffusion constants, not from the
gradient. Indeed, Ouyang and Swinney (1991a,b) subse-
quently constructed a reactor without macroscopic gra-
dients and were able to obtain the stationary Turing pat-
terns shown in Fig. 87, with reproducible transitions be-
tween uniform, striped, hexagon, and mixed patterns as a
function of temperature and concentration. These re-
markable recent achievements signal the advent of a new
controlled system for the study of spatiotemporal pat-
terns (see Barras and Walgraef, 1992).

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993
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~ I

FIG. 87. Stationary Turing patterns in a continuously fed reactor. (a) and (b) hexagons; (c) stripes; (d) mixed state. Light and dark
represent the yellow and blue colors of an indicator for the I3 concentration in a chlorite-iodide-malonic acid reaction. Patterns (a)
and (d) coexist for the same parameter values, whereas (b) and (c) are given by different reactant concentrations. (From Ouyang and
Swinney, 1991a; reprinted with permission from Nature, Copyright 1991 Macmillan Magazines Limited. )

gists, and to present a number of examples of applica-
tions of these concepts to specific systems.

The study of biological patterns involves two basic in-
gredients: developing a model which incorporates the
main mechanisms and properties under consideration,
and analyzing the behavior of the model as a function of
its parameters. Due to the complexity and richness of
the systems studied, the first phase is by far the most
challenging and important one for biology, but it is in
large measure beyond the scope of our discussion. We
will focus on the second step, since it turns out that at
least on an elementary and semiquantitative level the
relevant behavior can be inferred by analogy with the
preceding discussions of hydrodynamic and chemical
models. We will thus for the most part accept the equa-

tions that have been proposed in the literature to describe
biological phenomena (see, e.g. Jager and Murray, 1984;
Levin and Segel, 1985; Perelson et al. , 1988; Murray,
1989), without inquiring into their justification at the
molecular or cellular level. It should be noted, of course,
that even if a model accounts reasonably well for the ob-
served phenomena, the molecular picture on which it is
founded could be quite incorrect, since the cooperative
behavior is often insensitive to the underlying mecha-
nisms. At the somewhat superficial level at which we
wish to describe the phenomena this universality is ad-
vantageous, but we do not wish to minimize the impor-
tance of a detailed molecular understanding of the sys-
tems under study.

We will discuss two broad classes of phenomena in-

TABLE II. State variables of some representative excitable media.

System

Neuromuscular tissue
Belousov-Zhabotinsky reaction
Dictyostelium discoideum
Epidemics

Propagator
(trigger variable)

membrane potential
bromous acid
cyclic AMP
infectious agent

Controller
(recovery variable)

ionic conductance
ferroin
membrane receptor
level of immunity

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993
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Table III. Characteristic parameters.

System

BZ reaction
Squid giant axon
Cardiac action potentials
Cyclic AMP waves in Dictyostelium
Spread of rabies epidemic by foxes

Rate constant
k,

0.2/s
3 X 10/s
3X 10/s
10 /
160/year

Diftusion constant
D]

2 X 10' cm2/s
34X10 cm/s
0.6cm /s
4X10 cm /s
200 km~/year

Wave speed
U=(k, a, )'"

4X 10 cm/s
10 cm/s
13 cm/s
2 X 10 cm/s
180 km/year
=1 cm/s

volving spatial patterns: stationary (or slowly varying)
patterns that occur in morphogenesis, and time-dependent
patterns involving propagating waves.

A. Morphogenesis

1. General features

Morphogenesis is the development of structure during
the growth of an organism. Nowadays, it is widely be-
lieved that morphogenesis proceeds sequentially, with
finer stages of differentiation laid down on broader
features of previous processes. Nevertheless, at the earli-
est stages of development there arises the question of how
spatial difFerentiation arises in a featureless medium. A
mathematical form of this question concerns the break-
ing of a symmetry: one end of a symmetric egg wi11 be-
come the head and the other the tail. As with any bro-
ken symmetry, chance, i.e fIuctuations, can determine
which is which, but this choice is only binary —the head
will not appear in the middle of the embryo. As the or-
ganism grows different parts will develop quite different
functions, despite the fact that the material of the em-
bryo is rather homogeneous, at least at the level of the
molecular chemistry controlling development. It is true
that on its full scale, the embryo is not spatially uniform
due to its finite size, and ultimately this limitation will

play a vital role. The question remains of how this mac-
roscopic nonuniformity is communicated to the sma11er
scales.

To explain how this positional information is estab-
lished in the developing organism the existence of cherni-
cals called morphogens has been postulated. The local
concentration of these morphogens determines cellular
development. The basic mechanism was proposed 40
years ago by Turing (1952), who pointed out that if the
morphogens obey reaction-diffusion equations they may
undergo symmetry breaking transitions, producing states
with spatial structure which might explain the initial
stages of development. We shall discuss a number of ex-
amples of such patterns below, but we note at the outset
that the chemical identification of the morphogens has
proved elusive, so that the theories are essentially phe-
nomenological and contain little information on cellular
processes.

One argument in favor of the reaction-diffusion mecha-
nism is that with chemically reasonable reaction rates
and diffusion constants the length and time scales of the
patterns turn out to have the right order of magnitude.
This might at first seem surprising, since the lengths ob-
tained are not of molecular size, but rather on the order
of microns or larger. According to Crick (1970) the
answer lies in the slowness of the diffusion process, which
involves large molecules and constrained motion, or hop-
ping over barriers and across membranes. Since we do
not, however, wish to further examine the chemical and
biological basis for the models used, we will consider the
variables and parameters as phenomenological quantities,
whose interpretation need not be tied to any particular
mechanism. Indeed Turing himself suggested the impor-
tance of other mechanisms, and more recently there have
been attempts to construct detailed models that reAect
known facts about embryonic cells and tissue. The main
added ingredient is consideration of mechanical forces
brought about by shape changes in the growing organism
and by transport processes within the medium. The en-
suing models are considerably more complex than those
involving pure reaction and diffusion, but they presum-
ably incorporate more biological information and they
can be tested in more detail (Perelson et al. , 1986).

It has been emphasized by Oster (1988), that nearly all
models of biological pattern formation involve the inter-
play between local activation and lateral inhibition. From
our point of view, this may be interpreted in terms of the
condition (2.8) for a type I, instability in a two-variable
reaction-diffusion system, namely

2qo —a, /D] —a, /D, =P, '—P, ') p.

As mentioned in Sec. II.E this condition states that the
diffusion length 8, for the activator is less than that for
the inhibitor, Fz. Of course within the model (2.7) the
condition (11.1) is necessary, but not sufficient: it is also
necessary that the system be above threshold, which for
(2.7) means that the cross-couplings b, and b2 not be too
large. Moreover, (11.1) is by no means a general neces-
sary condition for a type I, instability. For example, the
Swift-Hohenberg model can be interpreted in terms of an
off-diagonal diffusion matrix [see Sec. III.C.2] for which
Eq. (11.1) does not apply. In our view, therefore, al-
though the notion of local activation and lateral inhibi-
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tion is intuitively appealing, it is somewhat restrictive.
We prefer the more general concept of type I, instability.

There are many reviews of theoretical models of mor-
phogenesis, to which we refer the reader (Meinhardt,
1982, 1992; Belintsev, 1983; Segel, 1984; Malacinsky and
Bryant, 1984; Perelson et al. , 1988; Murray, 1989). Here
we wish to place some of these ideas into the framework
developed in the previous sections. We will first focus on
general principles of methodology, and then study the
behavior of specific models which have appeared in the
literature. We will attempt to distinguish between results
that are robust to small changes in the model, and those
that depend more specifically on the detailed assumptions
and approximations.

2. Theoretical concepts

a. I osi tiona/information

In forming a complex organism different levels of
subtlety can be hypothesised for the pattern formation
and for subsequent interpretation of a morphogen. A
simple gradient of concentration, formed as the diffusion
field of a source and sink, could lead to complex segmen-
tation if the subsequent development depended very sen-
sitively on the concentration level of the morphogen.
However, such a mechanism seems particularly suscepti-
ble to perturbations (Oster, 1988), so the alternative of a
Turing mechanism with a true (type I,) finite-wavelength
instability seems more plausible. Of course, if only a sin-
gle half period of the pattern is present in the organism
this again leads to a simple gradient, with subtle interpre-
tation needed to give complex structure. On the other
hand, many periods of the pattern and a simpler interpre-
tation rule may apply. An example is the black-white in-
terpretation of complex morphogenic fields in the theory
of animal coat markings or shell patterns discussed in
Sec. XI.A.5 below.

b. Length scajes

The primary feature of the Turing instability is the
determination of a length scale fixed by the parameters of
the reaction-diffusion system. This has a natural applica-
tion in explaining a variety of patterns obtained by fitting
a fixed length scale phenomenon into varying domain
sizes. However, there are immediate problems in ac-
counting for the apparent scale invariance of other mor-
phogenetic processes where the pattern does not change
but merely expands for larger domain sizes. In the hydra
studied in Sec. XI.A.4 below, changing the overall size
does change the resulting development somewhat. This
"allometric shift" has been modelled (MacWilliams,
1982) using standard reaction-diffusion equations, but the
requirement that similar results be obtained when the
length scale is changed by a factor of five places severe,

perhaps untenable constraints on the model. Othmer and
Pate (1980) have proposed an ingenious scheme within
the reaction-diffusion framework for achieving scale in-
variance. They propose that the diffusion coeKcients of
the morphogens are no longer constant but are propor-
tional to the concentration w (x, t) of an additional
diffusing species. This species has a uniform source den-
sity but does not otherwise react, and has a zero value on
the boundaries (i.e., the boundaries are absorbing or
leaky). It is then clear that in the steady state w is pro-
portional to L, where L is a typical linear dimension of
the domains. Diffusion constants for the morphogens
proportional to L then produce scale-invariant patterns.
Less precise scale invariance can be achieved, if desired,
by modifying the boundary conditions on w. It seems un-
likely, however, that this specific mechanism could pro-
vide a universal solution to the problem of scale invari-
ance and there seems to be no direct experimental
confirmation. Nevertheless, the scheme does demon-
strate the possibility of exact or approximate scale invari-
ance within reaction-diffusion systems.

c. Boundary effects

Biological systems are generally quite small
(Lqo = 1 —10), and the patterns are therefore strongly
influenced by boundary conditions. As we have seen in
Sec. V.A boundary effects are important in a number of
ways. Often no-Aux boundary conditions are assumed
for the diffusing substance, since they are intuitively
reasonable from the chemistry, but they are rather spe-
cial from the point of view of pattern formation. In par-
ticular, the resulting behavior is quite analogous to that
resulting from idealized periodic boundary conditions in
that there is no systematic shift in threshold as the size is
reduced (see Sec V.A. 1). Also, pattern selection is partic-
ularly weak since for each linearly unstable solution with
wave number q there is a corresponding nonlinear solu-
tion near threshold, and so for L,q ) 1 there are typically
many possible nonlinear steady-state solutions. This
leaves unanswered the dificult question of the selection
of a unique pattern from the many possibilities, presum-
ably a requirement for robust development.

As we have seen, more general boundary conditions
will reduce the choice of solutions, so it is important to
distinguish the different roles the boundaries may play.
First, boundary constraints may select patterns, reducing
the number of steady-state solutions. Second, inhomo-
geneous boundary conditions, inconsistent with a spatial-
ly uniform solution, may drive the growth of a particular
mode, yielding a preferred solution by changing the tran-
sient euolution (see below) Arcuri a.nd Murray (1986)
have investigated one-dimensional reaction-diffusion
equations with both inhomogeneous and rigid boundary
conditions, and indeed find a greater selectivity in the
former case. Their results can perhaps be usefully ana-
lyzed in terms of the above two effects.
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d. initial conditions and transient evolution

If the static analysis of models with the usual no-Aux

boundary conditions does not yield a unique solution, we
must look to the dynamics of the system to understand
pattern selection. The evolution will then depend on
small effects that initiate the growth from the homogene-
ous solution U=O. One can distinguish the following
broad classes of growth conditions:

~ An initial condition U(x, O)= Uo(x ) is specified on
the full spatial domain Q, with a function Uo(x ) which
might be regular or disordered. This procedure corre-
sponds to the usual one in dealing with physical systems.

~ A pattern is produced in part of the domain Q and
then allowed to expand in successive steps. Examples are
aggregation or front propagation models, or row by row
growth of an organism (e.g. a mollusk, see Sec. XI.A.5.d
below).

~ A natural procedure for biological systems is to con-
sider the spatial domain Q to be a function of time Q(t).
Then the dynamics of the difFerential equations wi.ll be
supplemented by the stretching of the domain. In the
simplest case one might assume that the time scale for
variation of Q(t) is slow, but nevertheless the final pat-
tern obtained might be very different from the one which
would be produced by specifying an initial condition on
the fully grown domain Q(ts„,&). We are not aware of
any systematic studies of the inhuence of preparation
protocols on the final pattern.

o A source term may be added to the equations, thus
making the bifurcation imperfect (see Sec. III.A). This
may either be through inhomogeneous boundary condi-
tions, or via a distribution of sources of the morphogens
within the material. Typically these terms are small and
they only determine the evolution when the solution am-
plitudes are themselves small, while not strongly perturb-
ing the shape of the final nonlinear solution they select.
Since to favor the growth of particular modes the sources
must break the symmetry and spatial homogeneity, one is
then left with the problem of explaining what lays down
the pattern of sources. Nevertheless, models with
sources have been widely studied, an example being the
hydra model discussed below.

3. Modeling the phenomena

The usual procedure adopted in the literature when
studying pattern forming models is to choose a particular
set of equations with specified parameters and to solve
these equations numerically, modifying the parameters
until the pattern obtained is a reasonable representation
of experiment. It is often dificult to know which aspects
of the model are essential and which could be dispensed
with or modified. In line with our earlier discussion we
would advocate a somewhat more systematic study
which seeks to clarify the following issues:

~ What is the pattern forming behavior of the model
under ideal conditions, i.e. in an infinite geometry with

no sources? Specifically we are thinking of the bifurca-
tion structure as different parameters are varied.

o Is the system near enough to a threshold so that
linear instabilities are relevant to the observed patterns?

o How do boundaries and sources modify the
behavior?

o What is the effect of discretizing space and/or time?
Is this a mathematical approximation or does it have bio-
logical significance?

~ What is the effect of the growth protocol (see above)?

4. Transplantation and regeneration in hydra

Gierer and Meinhardt (1972) have presented a simple
one-dimensional reaction-diffusion model to explain ex-
periments on regeneration and transplantation in hydra
after amputation. The hydra is a favorite system for ex-
perimentation because its structures regenerate rapidly,
frequently within hours. Examples of findings on hydra
are these [see Segel (1984)]: (a) If the head is removed,
and a small region from just below the head is grafted
onto the body, then a head region regenerates. (b) If the
grafted piece extends somewhat farther toward the basal
disk (i.e. , if the graft is less "headlike"), then two heads
regenerate. (c) If the graft of (b) incorporates yet more
head material, then again only one head regenerates. (d)
If a head is amputated and transferred to the anterior
portion of the gastric region, then a new head regen-
erates. (e) If a head is adjoined to the posterior gastric re-
gion and the original head is later removed, then no new
anterior head regenerates.

The Gierer-Meinhardt model consists of coupled
reaction-diffusion equations for an activator a(x, t) and
an inhibitor h (x, t),

B,a =p, (x)(c, +c a Ih) —p, a+D, 8 a,

B,h =pq(x)cq a pqh+Dq 8 —h,

(11.2a)

(11.2b)

p(x) =p, (x) =pI, (x) (11.3)

assumed by Gierer and Meinhardt, and the ensuing solu-
tions a (x), h (x) they obtained numerically for the nor-
mally configured organism. A high concentration of the
activator, which occurs near x =0 is assumed to lead to

with no-Aux boundary conditions on the domain
O~x ~I.H. The activator is produced by an external
source whose density is c,p, (x), where p, (x) is the densi-

ty of activator producing cells, and c, a rate constant
which is then enhanced by the activation/inhibition term
ca /h. Similarly the inhibitor is produced by cells of
density pI, (x) at an activated rate cuba . The densities

p, (x) and pz(x), usually taken to be equal, give a preex-
isting spatial inhomogeneity to the organism, as men-
tioned earlier.

In Fig. 88(a) we show the source function
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the growth of a head. Figure 88(b) then shows how a
short segment from the center (gastric) region regen-
erates a head, since it leads to a peak in the activator a.
More complicated structures involving grafts are also
shown in the figure. For example, it is possible to gen-
erate two heads, to inhibit growth of one of them, or to
transplant the head from one end of the organism to the
other. In each case the only assumption is that the
source density p(x), which is external to the model, is
preserved during the various manipulations. To under-
stand this behavior it is convenient to rescale the vari-
ables, defining

x'=x I+D, /p, ,

u, =a/[phc/p, ch],

2 =&/[C Ph /ChP ]

(11.4a)

(11.4b)

(11.4c)

s (x ') = (ch c, Icph )p(x), t' =p, t, (11.4d)

to give (dropping the primes on x' and t'),

B,u, =s(x)+p(x)u f/u2 —u&+8 u&,

a, u, =Q [p(x)u 2, —u, +R a2u, ],

(11.5a)

(11.5b)

Q =Ah/Pa (11.5c)

L ' I dx p(x)=1, (11.6)

which is always possible with proper choice of the con-
stants c, c„and ch in Eqs. (11.2). The extrinsic spatial
inhomogeneity of Eqs. (11.5) is given by the functions
s(x) and p(x) —1, which are not necessarily small com-
pared to unity (see below). These two source functions
are linked in the original model by Eq. (11.4d), but we
will consider them as independent in (11.5). Apart from
the source functions the parameters of the system (11.5)
are R, Q, and L, as well as the number N of "cells," if a
discretization is employed where the derivatives are re-
placed by nearest-neighbor coupling. Often Eqs. (11.5)
have been discretized with an artificially small N to sim-
plify the nuinerics. Then any X dependence is a spurious
e8'ect, and can certainly be eliminated with modern day
computers, by going to larger X. The time variable is

the domain of definition being 0 & x (L =LH(p. ID. )
'I

with no-Aux boundary conditions at the ends. The im-

portant control parameter is now R, which represents the
square of the ratio of inhibitor to activator decay lengths.
The parameter Q =ph /p, affects only the time evolution,
not the steady states (rather like the Prandtl number in
convection). Note that we have adopted the scalings of
Segel (1984), except that we have chosen a different con-
centration scale so that the source term s may be chosen
small. Finally, we normalize p(x) such that

s (x )= 1.5 p( x ) =0.27 exp( —0. 16x ) . (11.7)

Solving Eqs. (11.5) with the sources (11.7) numerically,
starting from spatially uniform initial conditions, we find

the solutions shown in Fig. 91, which have the sought-
after one-humped structure. If we now turn ofF the
sources (i.e. set s =0, p= 1), the subsequent relaxation of
the solutions, also shown in Fig. 91, is rather small and
does not spoil the qualitative shape. Thus it is the sources
s(x) and p(x) —1, which are not small in any sense, that
allow one to achieve a solution with characteristic wave
vector q& =~/L starting from uniform initial conditions.
This wave vector is considerably smaller than the most
unstable wave vector, which according to Fig. 89 lies be-
tween q2 and q3. In this way, however, subsequent runs
with more uniform sources and smaller domains, as in
Fig. 88(b) or (i) for example, will still lead to a one-
humped structure, albeit with a larger characteristic
wave vector.

From these remarks we can come to the following con-
clusions concerning the Gierer-Meinhardt model: The
symmetry-breaking character of the type I, Turing insta-

continuous in either case, and any dependence on
discrete time stepping should of course be eliminated.

To place the numerical work in context we will consid-
er the usual linear stability analysis of Eqs. (11.5) for.
s(x)=0, p(x)=1. The homogeneous solution, stable to
long-wavelength perturbations is u, =u 2

= 1. The linear
instability is of type I, and leads to the instability curve
R (q) shown in Fig. 89, with onset parameters

R, =(3—2&2) '=5.83 and qo=(&2 —1)' =0.64. For
the hydra solutions of Fig. 88 the parameters are
RH=11.7 (=2 R, ) and the initial length [Fig. 88(a)]
gives L =13.7, so that the number of full periods which

may be contained in the system at onset is

(Lqo/2n) =1.4. The wave number for maximum growth
rate q gives a similar number. For this value of R the
limits of the linear instability are q =0.325 and

q+ =0.900. The uniform homogeneous solution [with
p(x)=1 and s(x)=0] is unstable to two wave numbers
for L = 13.7, namely q2 =2~/L, =0.46 and

q3 = 3m /L =0.69, leading to four possible final nonlinear

solutions, as shown in Fig. 90. Note that according to
Fig. 89 the mode with q, =rr/L =0.23, which would

grow into the one-humped structure as in Fig. 88(a), de-

cays in the linear stability analysis for R =11.7. It does
not develop from a small perturbation of the homogene-
ous solution in the absence of a spatially dependent
source. Such a solution can, however, be formed by ap-
plying a large amplitude initial perturbation with wave
number q, . Therefore in the absence of preexisting inho-

mogeneities the reaction-diffusion system (11.5) would

lead to strange looking hydra!
Let us now consider the system with the sources s (x)

and p(x) —1 employed by Gierer and Meinhardt which,
according to Eq. (11.4d) and the parameters listed in the
caption to Fig. 88, turn out to be
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FIG. 88. Gierer-Meinhardt model of hydra. Top figure shows schematic representation of hydra with different sections labeled.
Panels (a)—(j) represent predictions for various section and grafting experiments. The assumed source distribution is denoted by the
jagged solid line and the resulting concentrations are shown by the solid line (activator, a) and the dash-dotted line (inhibitor, h), re-
spectively. A head is assumed to form in regions of high concentration of activator. (a) Normally configured organism. (b) Short sec-
tion from center regenerates head. (c) Graft of additional section 1 onto body formed of sections 1234 (we will denote this as 1/1234):
head forms only at front end. (d) Graft of additional 12 sections onto 1234 body (12/1234): a secondary head is predicted. (e) Graft
H12/1234: H inhibits secondary head formation. (f) Graft H123/123: H does not inhibit secondary head formation. (g) Graft of head
onto back end: secondary head develops. (h) Second head is grafted onto back end. (i) Original head in (h) is cut after 10 hours: no
second head develops at l. (j) Section 234 cut from (i) develops head at 2. [Parameters used in Eqs. (11.2) were c, =7.5 X 10
c=0.05, p, =0.0035, D, =0.03, cz =0.025, ph =0.0045, Dz =0.45. Source distributions p, (x)=pz(x)=p(x) are shown with full
scale corresponding to p= 3.2.] (From CNerer and Meinhardt, 1972.)
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the wave vector q(R) of the fastest growing
mode. R& is the control parameter value used
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with the parameters used by Gierer and
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FIG. 91. Solutions for scaled activator concentration u
&

and in-
hibitor uz as a function of position, in the presence of inhomo-
geneous source terms used by Gierer and Meinhardt (1972), Eq.
(11.7) (full lines). The dashed lines show the relaxation if the
source terms are subsequently eliminated [i.e., s (x)~0,
p(x) ~1].

the ones that grow faster in the homogeneous system.
(Once the solution is obtained its subsequent relaxation
after turning off the source is quite small, just as it was
with the Gierer-Meinhardt equations. ) We conclude that
the MacWilliams model is primarily useful to describe
the regeneration and transplant experiments, but it does
not account for the symmetry breaking and spatial inho-
mogeneity, which are essential for growing a normally
configured organism.

Finally we mention a model by Kemmner (1984) with
the important new feature that the inhomogeneous distri-
butions are now active chemicals which react with rates
controlled by the diffusing activator and inhibitor con-
centrations (but do not themselves diffuse). No inhomo-
geneity is imposed externally, and so this model aims to
account for the fundamental symmetry breaking of the
development, in addition to the regeneration. The model
is unfortunately quite complicated, with rates depending
on concentrations at various earlier times, so we refer the
reader to the original paper for a detailed description.

5. Other phenomena

a. Two-dimensional patterns

bility is not playing any role in the hydra simulations in
Fig. 88; there are strong, externally imposed symmetry
breaking effects represented by the inhomogeneous
source density p(x). The reaction-difFusion system is
essentially used to amplify and smooth out this extrinsic
inhomogeneity so as to reproduce the regeneration exper-
iments. The critical length in the model is rather larger
than the naive estimate. The length 1. of the normally
configured organism is considerably larger than the
characteristic length ~/qo which gives a simple gradient
solution in the absence of sources. This choice was
presumably forced on the model to allow for the gradient
solution in the hydra of reduced size in Fig. 88(b).

MacWilliams (1982) has presented a refinement of the
Gierer-Meinhardt model which has somewhat different
local chemistry, and only a small inhomogeneous addi-
tive source s(x) «1, p(x)=1. Although the model con-
tains more parameters than Eq. (11.5), these have been
estimated rather accurately by fitting to various tran-
splant experiments. The model was then tested on six
further experiments and, according to MacWilliams, the
results were quite satisfactory. We have also carried out
a linear stability analysis of this model and find that the
qualitative behavior is similar to that of the Gierer-
Meinhardt equations. Specifically, even though the
external source is small, the mode selected in the normal-
ly configured organism, analogous to the one in Fig.
88(a), corresponds once again to a wave vector at the
edge of the unstable band, a factor of 5 smaller than the
critical wave vector qo. The source term is therefore
again very important in favoring the right solution over

Meinhardt (1982) has also solved Eqs. (11.5) on two-
dimensional domains, for a case which corresponds to
parameter values Q=1.33, R =37.5=6R„L=43,
L, =59 and a discretization with N=19X26 cells. From
Fig. 89 we see that the fastest growing mode in the
infinite medium is q =0.44 for R =37.5. The pattern
he obtains is surprising at first sight since it consists of an
irregular array of sharp peaks rather than the regular
hexagon pattern expected above a type I, instability.
Indeed, Haken and Olbrich (1978) have derived an
order-parameter equation starting from the Gierer-
Meinhardt model, and find quadratic and cubic nonlinear
terms. Their simulations of this equation then lead to
hexagonal patterns. It seems likely to us that the main
source of the disorder in the pattern found by Meinhardt
is the rather coarse discretization of the numerical calcu-
lation. We have solved this model in one dimension, first
with a fine mesh (%= 100), and then with a coarser one
(%=20), starting in each case from small-amplitude ran-
dom initial conditions. The results, displayed in Fig. 92,
show that the system with coarser discretization is con-
siderably more disordered, due to pinning of the non-
linear peaks by the finite mesh. Of course, if the biologi-
cal system has discrete structure on the scale of the pat-
tern, then the pinning effects are real and dominate the
pattern formation, which is then not usefully modelled as
a Turing instability.

Another point studied by Meinhardt (1982) is the
difference between random initial conditions and a
growth algorithm in which the pattern advances into the
unstable homogeneous state. The author found that the
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The details of the proposed instability are not known
at present. For example, is the control parameter very
close to critical, so that only one mode is unstable for any
given domain size L (as assumed here), or is the driving
stronger so that many modes are simultaneously unstable
and nonlinear competition must be taken into account?
Direct evidence for a reaction-difFusion mechanism as
usual does not exist, except for the correct order of mag-
nitude of the length and time scales. %'e note that here

again the atypical no-Aux boundary conditions are cru-
cial for the simplicity of the model. As discussed in Sec.
V.A, rigid boundary conditions lead to large threshold
shifts for Lqo=O(1), so the above scheme would either
require tuning the control parameter to follow the
threshold shift with I, or it would lead to a highly non-
linear situation at the larger sizes if the control parame-
ter is fixed at the threshold value for the smallest size.
Also, for rigid boundaries the eigenmodes are no longer
the eigenvectors of the Laplacian, but instead depend on
the full equations. Perhaps this is one example where the
naturalness of the no-Aux boundary conditions favors an
explanation in terms of a reaction-diffusion mechanism.

q, ~ q, q, q~q, q,

c. Mammalian coat markings: The variety ofpatterns

Pattern forming instabilities have been invoked to ex-
plain the external coloration of various organisms, e.g.
mammalian coat markings (Murray, 1981a,b, 1989) or
the rich variety of shell patterns (see Sec. XI.A.5.d).
Comparing the results of model equations with the pat-
terns observed in nature makes it hard to resist the idea
that simple finite-wavelength instabilities may indeed ac-
count for the phenomena. On the other hand, one must
be aware that the results are not unique to the model, or
even to the class of models (e.g. reaction-diffusion), al-
though particular details may be highly dependent on ar-
bitrary features of the equations in ways that are not well

understood. In this section, rather than assessing the ap-
plicability of particular models, we will use the results to
display some of the variety of patterns that have been
produced.

Murray (1981a,b) in particular has emphasized the im-
portance of the size of the system relative to the basic
length scale of the instability in producing different pat-
terns from a single model. The production of mammali-
an coat markings is modelled via a finite-wave-number
(type I,) instability occurring at some stage in the embryo
development. The equations used by Murray are

Bgu) =y[u$0 u) g(u], u2)]+V u), (11.8a)

(e)
B,u2=y[a(u2o —u2) —g(u„u2)]+PV u2, (11.8b)

with g(u„u2)=pu, u2(1+u, +au
& ) ', and a, P, y, p, x,

FICx. 93. Sequential compartment formation in Drosophila. (a)
and (b) Schematic of growth rate o.(q) as a function of wave vec-
tor in an infinite system, and discrete modes labeled by q for
two difFerent system sizes. (c) Zero-contours of successive
modes that go unstable as the system size increases. (d) Cumu-
lative sequence of compartments resulting from sequence in (c).
(e) Experimentally determined subareas of Drosophila wing
disc. The topological similarity between (d) and (e) should be
noted. (Adapted from KaufFman et al. , 1978.)

u, o, and u2O real constants. The details need not concern
us, except to note that changing y changes the length
and time scales of the problem, in particular qo ~ y'
As stated in Sec. IV.A the generic pattern in a laterally
infinite system is a regular cellular array with hexagonal
symmetry. Geometry effects for system sizes comparable
to the basic period [Lqo =0(1)]can strongly perturb the
pattern. For example a small rectangular geometry
might favor other cellular patterns as in Fig. 94(h); a thin
geometry favors stripes perpendicular to the long direc-
tion [94(a)]; a small enough geometry restricts the solu-
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FIG. 94. Model results and natural examples
of mammalian coat patterns formed in restrict-
ed geometries. Parts (a)-(c) and (h) show non-
linear results from numerical solution of Eqs.
(1 $.8) with random initial conditions, and
a=1.5, K=0. 1, p=18.5, u ){)=92, u2{) =64,
and P=10 (giving steady state values u, =10,
u 2

=9). (a) y =9, dark regions u
&

& u &. (b)
@=15, dark regions u& &u&. (c) @=25 dark
regions u ) (u ). (h) g = 15, dark regions
u

&
& u &. Note that qo ~ &y. Parts {d)—(g)

show drawings of zebra [(d) and (e)] and leo-
pard [(f) and (g)] coats. Note the similarity be-
tween (e} and (h) and between (a) and (f), (g}.
(From Murray, 1981b}.

(e)

(h) y= ~&

)~am )~P

FIG. 95. Mammalian coat patterns formed in
complicated geometries as a function of the
scale factor y, obtained from Eq. (11.8). Pa-
rameters are a = 1.5, ~=0.125, p = 13,
u &o

= 103, u 20
=77, steady state values

u, =23 u2=24, and P=7, for (a) ) =0.1, (b)

y =0.5, (c) y =250, (d} y = 1250, (e) y =3000,
and (f) y = 5000. (From Murray, 1981b.}

ra=
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tion to be spatially uniform, and more complicated
shapes may produce a mixture of patterns. Figures 94(b)
and 94(c) show the effect of tapering the domain on the
transition between a cellular (spotted) and striped pat-
tern. Figures 95(a) and 95(b) show the transition between
a uniform and a simple "gradient" pattern, and Fig. 95(c)
shows the coexistence of cellular patterns in the large
areas with a spatially constant solution in the restricted
regions. "' Here again, the patterns obtained depend on
the assumption of no-Aux boundary conditions, though it
might be hoped that the general trends would persist un-
der more general boundary conditions as well.

It is clear from the figures that the crucial ingredient in
the theory is the relationship of the size of the system to
the pattern forming length scale, and Murray has investi-
gated the size of the embryo in various mammals at the
time of laying down the prepattern. He concludes that
the available information on fetal growth leads to a
roughly consistent picture of the variability of coat mark-
ings among different animals. Of course, the subsequent
evolution of the embryo, when the pattern forming
represented by Eqs. (11.8) is no longer operative, may
further change the pattern ultimately observed, but the
assumption is that the broad features of the patterns are
laid down at a time when the model is applicable.

d. Pigment patterns on mollusk shells

diffusion system with two or three reactants (Meinhardt
and Klinger, 1987) and the other a discrete model based
on secretory cells stimulated by neural impulses (Ermen-
trout et at. , 1986; Oster, 1988). Both classes of models

(~)

lg

A A
V V V V

Y/8/PY/8/PP/YX8

WX///PW/lPXA

A vivid example of pattern formation during growth

may be seen on the shells of mollusks. The biological
significance of these pigment patterns for the animal it-
self is unclear since in many cases the animal is active at
night or lives burrowed in the sand. The presumed ab-

sence of selective value for the organism is thought to fa-
cilitate the generation of diversity.

The most interesting aspect of mo11usk she11 patterns,
from our point of view, is that they are generated one
row at a time, during growth, so that the two-
dimensional pattern on the shell surface represents a
space-time record of a one-dimensional solution of the
model equations. Patterns appear in the form of lines,

stripes or patches of pigmentation with different orienta-
tions with respect to the growth direction.

Two different classes of models have been proposed to
describe these phenomena, one a standard reaction-

X

X

"It should be noted that the model in Eq. (11.8) with the pa-
rameters used by Murray is rather far from its linear instability
and the patterns obtained are highly hysteretic, i.e. dependent
on the initial conditions. Moreover, Murray gives no details of
the numerical procedures used, so it is dificult to assess the reli-
ability of the calculations. In particular, it is surprising that an
increase in qo by a factor of &500=22 in going from Fig. 95(b)
to 95(c) does not lead to a more fine-grained pattern.

FIG. 96. Types of one-dimensional instabilities and corre-
sponding space-time patterns yielding possib1e mollusk shell

patterns. In each figure the type of linear instability is indicated
schematically in the lower portion, and the corresponding pat-
tern laid down by sweeping this one-dimensional pattern
through time is shown in the upper portion, with regions of pos-
itive signal shaded, and negative ones unshaded (see bottom
right-hand panel). (a) Type I,; (b) type I„single traveling wave;

(c) type I„standing wave; (d) type III„uniform oscillation; (e)

type I, with two oppositely moving traveling waves emanating
from a source. In oscillatory cases the solid and dashed curves
difter by one half period.
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have instabilities which, depending on parameter values,
are of either types I„III„orI,. In ideal cases their
space-time solutions lead to the patterns shown in Fig.
96. Corresponding patterns are often observed in mol-
lusks, as illustrated in Fig. 97, where patterns similar to
those in Figs. 96(a) and 96(b) are evident. Abrupt
changes in the pattern, such as the one seen in Fig. 97(a),
might be caused by changes in parameters during the
growth process. Although there is almost no direct bio-
logical evidence in favor of either class of models, this ap-
plication of Turing's ideas seems to us to be particularly
striking from a pedagogical point of view, illustrating as
it does the different classes of patterns we have identified
in our general discussion.

e. Visual hallucination patterns

It has been shown that the early stages of drug-induced
visual hallucinations are characterized by the appearance
of simple geometric structures which are apparently
context-free and independent of previous experiences (see
Ermentrout and Cowan, 1979; Murray, 1989). These
structures have been classified into "form constants":
grating or lattice, cobweb, tunnel, funnel, and spiral. Er-
mentrout and Cowan have interpreted these structures in
terms of a type I, instability of neuronal activity in the
cortex. The remarkable feature of this example is the ex-
istence of a mathematical transformation from rectangu-
lar cortex coordinates (x,y) to polar retinal coordinates
(r, O) of the visual field. This transformation is a confor-
mal projection which has been shown to take the form

x=(4k/7rs)'~ lnI [,e'~ r +( wo2+rs)2'~~] /2woI,

y =(4&/mE)'~' rO/(wo2+sr')'~',

(11.9a)

(11.9b)

where k, wo, and c. are measurable constants. Let us now
inquire what cortical patterns are produced by various
retinal patterns under the transformation (11.9). It turns
out that the lattice and cobweb retinal patterns (not
shown) transform to the simple cellular structures shown
in panels (a) and (b) of Fig. 98 and the tunnel, funnel, and
spiral retinal patterns on the left in panels (c), (d), (e), go
to roll structures that are vertical, horizontal and diago-
nal, as shown on the right in panels (c), (d), (e), respec-
tive1y. In all cases it is seen that the cortical patterns
which correspond to simple retinal form constants are
the regular structures found earlier as ideal solutions of
type I, systems.

Ermentrout and Cowan then introduce a model con-
sisting of a neural network with couplings that are long-
ranged in space and retarded in time. Although this
model is more complicated than a system of reaction-
diffusion equations, it contains the basic elements of local
excitation and lateral inhibition, and its linear stability

FIG. 97. Patterns on natural mollusks. (a) emerita turrita; (b)
Bankivia fasciata (Photos pro.vided by J. Campbell. )

analysis leads to the desired type I, instability with
qo W 0, coo=0. The authors then find various condi-
tions" which will lead to the different cortical patterns,
and by the inverse of the transformation (11.9) to the reti-
nal form constants of Fig. 98.

In particular, in order to find roll solutions at all near
threshold, it must be assumed that quadratic terms are absent
from the equations of motion, though this does not correspond
to a symmetry of the starting equations.
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Cortex

FIG. 98. Visual hallucination patterns on retina and cortex. Panels (c), (d), and (e) show characteristic "form constants" reported in
hallucinations interpreted as retinal patterns (left side), and the corresponding cortical patterns given by the transformation (11.9)
(right side) for (c) tunnel, (d) funnel, and (e) spiral. Panels (a) and (b) show only the cortical patterns corresponding to grating (or lat-
tice) and cobweb (the corresponding retinal patterns are not shown). Note that for the cortical patterns the axes are labeled with
large-distance forms of the coordinates of Eq. (11.9), x -logr, y —0. (From Ermentrout and Cowan, 1979.)
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f. Mechanical models

As mentioned earlier, a number of authors have intro-
duced mechanical models as an alternative to reaction-
diffusion equations for describing pattern and form gen-
eration in the development of organisms (see Oster, 1988,
and Ch. 17 of Murray, 1989). These models are
hydrodynamic-like and incorporate much more of the
basic physiology of living cells, concentrating on the bal-
ance of mechanical forces and their relation to the
biochemistry. The fundamental variables are the cell
density n (x, t ), and the density p(x, t ) and displacement
u(x, t) of the extracellular matrix in which the cells are
embedded. These variables satisfy a set of three non-
linear equations incorporating cell motion, traction, ag-
gregation and mitosis, as well as the attendant deforma-
tion of the extracellular matrix. A simplified version of
the model [Eqs. (17.22)—(17.24) of Murray, 1989] still has
9 parameters, and only a linear stability analysis and a
few numerical simulations have been carried out so far
on this model. The most distinctive feature of the results
is the appearance of complicated linear dispersion rela-
tions with diverging growth rates at certain q values
which depend on the choice of parameters. As noted by
Murray, these singularities must be smoothed by the ad-
dition of extra terms to the model, which will act as
singular perturbations. If it turns out that such disper-
sion relations are indeed a necessary feature of biological
pattern formation, then the point of view we have adopt-
ed of classifying systems according to their linear insta-
bilities seems to have little relevance. In particular, the
frequent appearance of growth rates that diverge at large
wave vectors (see Fig. 17.9 of Murray, 1989) seems to
cast doubt on the whole hydrodynamic analysis, and the
proliferation of parameters necessary to obtain a sensible
theory is a discouraging feature of the approach. It must
be said, however, that as far as we are aware no evidence
has been presented that the singular dispersion relations
correspond to any observable phenomena, so it is too ear-
ly to tell what the impact of these models will be on our
understanding of morphogenesis.

B. Time-dependent patterns: Nonlinear waves

Many biological processes involve periodic activity and
transmission of signals via wave motion. Thus the non-
linear wave phenomena described in Secs. V, VI, and X
have a number of important applications in biological
systems, some of which will be summarized below.

1. Pulse propagation in nerves

Among the earliest examples of the use of reaction-
diffusion equations were models for pulse propagation
along a nerve fiber. In this case the active medium is the
membrane, which uses chemical energy to create a non-

equilibrium distribution of various ions (Na, K
Ca, etc.), and sustains voltage pulses that serve to
transmit information in the nervous system. The empiri-
cal model of Hodgkin and Huxley (1952; see also Scott,
1975) has a reaction part with four variables representing
currents and potentials for the ionic species, plus the usu-
al derivative terms coming from difFusion. The model
was simplified by FitzHugh (1961) and Nagumo et al.
(1962), who eliminated the two fastest variables and were
left with a system, quoted in Eq. (5.170) above, whose
nullclines are essentially the same as those of the Orego-
nator, shown in Fig. 77. Here also, different parameter
values take the system from excitable, to periodic, to bist-
able dynamics, and much of the theoretical work of the
past few years on pulse propagation was in fact carried
out with reference to the FitzHugh-Nagumo model and
with applications to nerve conduction processes in mind
(see Ermentrout et al. , 1984; Murray, 1989; Elphick
et al. , 1990a).

2. Excitations of heart muscle

The most natural theoretical approach to the study of
cardiac dynamics is to analyze the time-dependent sig-
nals obtained from electrocardiograms. It is the detailed
shape of these signals that defines the different regimes of
normal and abnormal heart function (e.g. arrhythmias
such as tachycardia or ventricular fibrillation). These
signals have been analyzed from the point of view of non-
linear dynamics, and correlations have been found be-
tween heart function and bifurcations or attractor dimen-
sions (see, e.g. Glass and Mackey, 1988; Kaplan et al. ,
1988; Jalife, 1990). It should be remembered, however,
that the cardiogram signal represents a complicated spa-
tial average of the electrical activity of the medium, and
as such it is somewhat analogous to the Nusselt number
in convection. Just as more detailed information than
the average heat transport is useful in characterizing spa-
tiotemporal convection patterns, it is also important to
focus on the spatial organization of electrical activity in
the heart (see Glass and Mackey, 1988; Glass and
Hunter, 1990 Jalife, 1990; Glass et al. , 1991).

The cardiac conducting system consists of a large num-
ber of cells of different types, where coupling in the inter-
cellular medium is apparently governed by ion currents
and special substances called "mediators. " Under nor-
ma1 conditions synchronization of the contractions of the
heart cells is due to propagation of electrical waves of ex-
citation in a pattern which resembles the targets dis-
cussed for the BZ chemical reaction in Sec. X. Indeed,
the excitation originates rather locally, in the cells of the
"sinus node" whose characteristic dynamics is of the os-
cillatory type [see Figs. 78(a), 78(b)] with a period of
roughly one second. Outside this region the cells of the
myocard are excitable [Fig. 78(d)], and they transmit the
outgoing waves produced periodically in the sinus-node
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(the "core").
The earliest attempts to model cooperative excitation

effects in the heart were those of Wiener and Rosenblueth
(1946), who introduced a discrete automaton model
(called the "axiomatic model" ) of coupled elements as a
description of fibrillation. [Early Soviet work is de-
scribed in Vasiliev et al. (1987), pp. 67ff.) In recent years
rather detailed kinetic equations have been derived for
this system by detailed experimental study of individual
cells and groups of cells (Hodgkin and Huxley, 1952;
Beeker and Reuter, 1977). The resulting theory is quite
complicated, containing up to eight coupled equations
(much like the BZ reaction); to our knowledge these have
not been analyzed from the point of view of spatial pat-
tern formation. Instead, simpler phenomenological mod-
els, such as the FitzHugh-Nagumo equations mentioned
earlier in connection with nerve pulse propagation, have
been employed. The analysis and results parallel those of
the Oregonator model quite closely, so we can draw on
the discussion given in Sec. X. Cellular automaton mod-
els have also continued to be studied (see Kaplan et al. ,
1988 and references therein).

As mentioned above, the excitations in a normally
functioning heart are represented by a target solution
centered at the sinus node. In certain pathological situa-
tions other structures may be created which disturb the
normal function. For example, if a sma11 region exists
with different dynamical characteristics the excitation
wave may be perturbed in passing through that region
and it may break apart, leaving two free ends (Krinsky,

1984b). As we saw in Sec. X these ends tend to curl up
into spirals [called "reverberators" in the Soviet literature
(Krinsky, 1984a)j which have a higher frequency than the
targets. This means that the target will be annihilated by
collisions with the growing spiral, and eventually the
heart tissue will oscillate at the much higher frequency of
the spiral. This effect is thought to cause a heart disorder
called "paroxysmal tachycardia, "where the frequency of
the heart beat increases by a factor of ten. In Fig. 99 we
show a spiral pattern obtained from multiple probes
placed on an isolated rabbit cardiac tissue that has been
submitted to external stimulation. The period is shown
to be of order 100 ms, as compared with a normal heart
beat of 1 s. Numerical modeling of such patterns has
been undertaken using a variety of simple equations, and
comparisons between in vitro experiments, numerical
simulations and analytic theory have yielded encouraging
results (see Krinsky, 1984a; Tyson and Keener, 1987;
Jalife, 1990; Davidenko et al. , 1991).

In contrast to tachycardia, in which a single coherent
structure takes over the dynamics, fibrillation is thought
to involve many different structures vibrating asynchro-
nously. Although no quantitative description of fibrilla-
tion has been presented, a natural mode1 to use is that of
an inhomogeneous excitable medium in which excitation
waves break up to form spirals, which in turn emit high-
frequency waves (Krinsky, 1984b). A recent important
development is the mapping out of electrical activity in
the cardiac medium in real space-time, obtained through
multiple implanted probes, and the correlation of the re-
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FIG. 99. Rotating spiral waves experimentally induced in a rabbit heart (left atria) muscle: the numbers represent times in mil-
liseconds. Each region was traversed in 10 ms with a complete rotation in 105 ms. On the left panel the transmernbrane potentials
are shown with the lettering corresponding to the points in the heart muscle on the right. The lines separating different shaded re-
gions in the right-hand panel correspond to the position of the pulse at the times indicated on the periphery. (From Allessie et al. ,
1977; Copyright 1977 American Heart Association. )
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suits with the cardiogram signal (Pogwizd and Corr,
1990). Such experiments provide a fertile field for
theoretical interpretation, and many of the issues we
have raised in the preceding chapters concerning non-
linear wave propagation arise in attempts to elucidate
different aspects of cardiac dynamics (see Glass and
Hunter, 1990; Jalife, 1990; Glass et al. , 1991). In partic-
ular, the following questions may be posed:

~ How important is it to have a realistic microscopic
picture of the ionic conduction mechanisms, as opposed
to "generic models" of excitable media (Chialvo, 1990)?

o Is the spiral defect that is thought to be at the origin
of tachycardia caused by extrinsic inhomogeneities in the
medium, or can it also arise through suitably timed local
stimulation of a homogeneous (healthy) tissue (Allessie
et al. , 1990; Winfree, 1990)?

~ Is ventricular fibrillation chaotic? How does one
reconcile different diagnoses of chaos coming from local
and global measurements (Pogwizd and Corr, 1990)?

~ Can one modify the parameters of the medium so as
to make the creation of spirals more difticult, e.g. by in-
creasing the intrinsic core size so that spirals will no
longer be produced (Zykov, 1990)?

o How reasonable is the model of a homogeneous
medium for representing either the healthy or the abnor-
mal heart tissue? Can one understand the effects of
heterogeneity, of anisotropy (due to the structure of mus-
cle fibers), of finite size and of random disorder due to
lesions, as perturbations of a basic homogeneous excit-
able medium (Allessie et al. , 1990; Winfree, 1990)'?

It should be clear that the potential payoff in the
search for an accurate representation of cardiac dynam-
ics is enormous. The specific goals are first predictive:
i.e., to understand the patterns of excitation that are like-
ly to lead to arrhythmias such as tachycardia or fibrilla-
tion. Secondly, the goals are clinical; namely, the im-
provement of techniques of degbvillation, whereby an
external stimulus is supplied to the heart in order to
make a transition from a state of fibrillation back to a
normal sinus rhythm. Such devices are in use at present,
but they are rather crude and based primarily on empiri-
cal rules. Theoretical analysis aims to find more reliable
schemes for defibrillation using significantly lower power
levels, and success in this effort would be of enormous
practical value.

3. Slime-mold aggregation

The amoebae of dictyostelium discoideum are organ-
isms that begin to aggregate in response to a depletion of
their bacterial food supply. This motion is controlled by
a signaling substance —cyclic adenosine monophosphate
(cAMP) —which the cells secrete more or less rapidly
depending on other parameter values. A simple
reaction-diffusion model, quite analogous to the Oregona-
tor (10.1)—(10.2), has been proposed for this system, in
which u& represents the intracellular concentration of
cAMP, and u2 the concentration of an inhibitor sub-

stance. The amount of food reserves is considered to be
slowly varying and in the model it merely determines the
shape of the functions f and g.

It was remarked by Hagan and Cohen (1981) (see also
Belintsev, 1983, 1984) that as the food supply diminishes
the system goes gradually from an excitable mode with
low cAMP concentration, through an oscillatory state, to
an excitable mode with high cAMP concentration.
These authors have correlated this evolution with the
various stages of development: pulse relaying, spiral and
target pattern aggregation, directed locomotion, and tis-
sue buckling, observed in experiments on slime molds. In
particular, when the nullclines resemble those for the
Oregonator (Fig. 78), we can expect to be able to form
target and spiral patterns (Tyson et a/. , 1989). This is
indeed the case, as illustrated in Fig. 76(b) showing an ex-
perimental set of spirals that are indistinguishable from
those shown in Fig. 76(a) for the BZ reaction. The same
model has also been used to describe the aggregation pro-
cess and the transformation of the spatial shape of the ag-
gregate from a hemispherical mound to an elongated mi-
grating slug (Hagan and Cohen, 1981; Belintsev, 1983).
Recently, Levine and Reynolds (1991) have considered
the coupling of the reaction-diffusion mechanism to cell
motion via chemotaxis. Based on their simple model
they conclude that the target and spiral patterns are un-
stable to a streaming instability which causes them to
break up.

Numerous other examples of pattern formation exist in
biological systems; these include other nonlinear wave
phenomena (Vasiliev et al. , 1979; Belousov, 1984; Krin-
sky, 1984a; Murray 1989), aggregation and precipitation
patterns (Oster, 1988; Lauffenburger, 1984), as well as
patterns in ecology and epidemiology (for a review see
Levin and Segel, 1985).

Xll. OTHER SYSTEMS

A. Solidification patterns

Solidification patterns provide an interesting example
of the phenomena and methods we have described else-
where in this article, as well as a link to a much broader
class of pattern forming problems where interface growth
and diffusion are the dominant processes (for example
"diffusion limited aggregation, " see Viscek, 1991). In
this section we will brieAy review this area to establish
these links, without any attempt at completeness. Recent
reviews of this field include Langer (1987a), Kessler et al.
(1988), Brener and Mel'nikov (1991),and Flesselles et al.
(1991).

The basic physical phenomenon is the growth of a
stable phase of a material (usually the solid phase at a
solid-liquid phase transition but sometimes the ordered
phase at a nematic-isotropic liquid crystal phase transi-
tion) into the unstable liquid phase, usually prepared by
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supercooling. This type of system is of course enormous-
ly important in materials preparation. A common exper-
imental protocol is to seed a supercooled liquid with a
crystal to nucleate the growth. The process that limits
the growth rate is the diffusion away of the latent heat li-
berated by the solidification or, in the case of the
solidification of mixtures, the diffusion away of the com-
ponent of the mixture that has a lower concentration in
the solid, i.e. the "solute. "

1. Solidification of a pure supercooled liquid

a. Propagatinginterface

The quiescent or uniform state upon which pattern for-
mation might be built is the planar solid-liquid interface
propagating into the supercooled liquid. We will seek
spatial structure in the x coordinate that is parallel to the
interface and transverse to the growth direction z.

The dynamical field is the temperature T which may be
put into dimensionless form according to

~ ~interface d0 + (12.5)

where K is the curvature of the interface and do is the
capillary length defined in terms of the surface tension X
via

d() =X T~C /I (12.6)

exp( —2$/8) —1, for g
&' 0, liquid

0, for g ~ 0, solid (12.7)

The interface propagation problem, between two
linearly stable states, is analogous to the discussion in
Sec. V.B and we might expect a discrete family of steady
state planar solutions parameterized by the propagation
velocity U. An extra physical constraint in the present
problem, however, is that the heat is conserved, so that
there is a constraint of unit undercooling 5=1 on the
control parameter for steady state growth. This means
that the latent heat released is just sufficient to warm the
supercooled liquid to the melting temperature, and
steady state growth may proceed. For 6=1 there is a
front for any velocity v, with

where T~ is the equilibrium melting temperature, I. the
latent heat, and C the specific heat of the liquid phase.
The value of u =u =6 in front of the interface is the
control parameter and is called the dimensionless under-
cooling. The equation of motion for u is diffusion in solid
and liquid phases. We have in the liquid

B,u +D T2u =0, (12.2)

where D is the thermal diffusivity of the liquid, and the
same equation in the solid but with the solid thermal
diffusivity D' replacing D. For simplicity D is often put
to zero, i.e. thermal diffusion in the solid is neglected (the
"one-sided model" ) or sometimes the case D'=D is stud-
ied (the "symmetric model" ). The interface is coupled to
the diffusion field through the latent heat which acts as a
source of u with a strength proportional to the interface
velocity, so that if the normal velocity of the interface is

U„wehave

where g=z Ut is the co—ordinate normal to the interface
measured from the position of the interface, and the
difFusion length

h Linearinstability

The characteristic linear instability of diffusion con-
trolled planar interfaces, the Mullins-Sekerka instability
(Mullins and Sekerka, 1964; Langer, 1980), is to a trans-
verse undulation of the surface at wave vector q, as illus-
trated in Fig. 100. The instability may be understood by
considering a bulge of the surface which steepens the
thermal gradient in front of the interface, thereby
enhancing the rate at which the latent heat is diffused

$o lid
I

', Liq
I

UICi ',

(12.8)

gives the decay of the temperature field in front of the in-
terface.

U„=D[13Vu i„„d—Vu i„„;~]n,
where n is the normal to the interface and

(12.3)

P=D'C'/DC (12.4)

with C' the specific heat of the solid phase. Finally, the
temperature at the interface is given by the Gibbs-
Thomson condition' ' ' (neglecting chemical kinetic
effects)

This equation applies in two dimensions i.e. in a thin film.
In three dimensions there are two principal components to the
curvature tensor. Also in anisotropic systems X will depend on
the orientation n, and some care is needed in its definition.
Throughout this section we are considering the growth of a
rough interface, i.e. without faceting.
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FIG. 100. Mullins-Sekerka instability: full line shows solid-
liquid interface and dashed lines temperature contours in the
liquid for (a) unperturbed and (b) perturbed system.
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a~ =qu t 1 —
—,'(1+P) doPq ] . (12.9)

The growth rate is maximized at a wave vector
qo

—(dod) ', i.e. a length scale that is the geometric
mean of the capillary and diffusion lengths. Note that qo
depends on the velocity v through P.

The calculation can be generalized to the quasisteady
situation of a sphere growing into a supercooled liquid
with arbitrary undercooling A. The same type of expres-
sion is obtained with q -m /R, where m is a mode num-
ber, R is the instantaneous sphere radius, and

v =B,R =(D/R) (b, 2do/—R ) (12.10)

is the corresponding velocity which slowly changes in
time. Note that now there is a unique solution (in the
class considered) for arbitrary undercooling, and the role
of b as the control parameter becomes apparent.

away and so increasing the growth rate and the size of
the perturbation. The surface tension stabilizes the sys-
tem via Eq. (12.S), and acts most strongly at large wave
vectors. The expression for the growth rate is then deter-
mined by the competition between the diffusion and the
surface tension and is given approximately' by

length do determined by the surface tension, and we

would expect this to set the basic scale of the structure,
namely the tip radius p or the side-branch spacing,
perhaps modified by the dimensionless control parameter
6, i.e.

p=do f, (b, ) . (12.11)

The velocity would then be set by dN'usion at this scale
as well as the control parameter b, [cf. Eq. (12.10)], i.e.

v=(D/p) f2(&) . (12.12)

u =u (x,g), v =const. (12.13)

A discrete set of possible solutions may be found with p
and u consistent with the scalings (12.11)—(12.12). In-
terestingly, however, no solutions are found if the surface
tension is assumed isotropic. A small crystal anisotropy
(e.g. 4-fold), parameterized by a strength a leads to a sin-

gle stable steady state dendrite with tip radius

The mathematical treatment of this problem en-
counters some formidable technical hurdles, which we
will not detail here. In the two-dimensional situation at-
tention has focused on steady state needle solutions with
no side branching, of the form (g=z —ut)

c. Nonlinear state: The dendrite problem p=c]doa 0' (12.14)

From our point of view the great difference between
this solidification problem and the type of systems we
have been considering is that the instability is catastroph-
ic, with no saturation at small amplitudes by the non-
linearities. The final growth pattern is far from the pla-
nar interface or growing sphere. Experimentally it has
been observed (see Fig. 101) that the morphology consists
of a growing needle with a parabolic tip but with side
branches developing away from the tip. To experimental
accuracy, at small undercooling b the tip has been shown
to move with a constant velocity u (Dougherty and Gol-
lub, 1988) uniquely determined by the undercooling b,

and other system parameters. For larger undercooling
the side branches approach closer to the tip and an oscil-
latory component to the velocity is sometimes seen (Raz
et al. , 1989). This phenomenon as an example of pattern
formation has attracted a great deal of attention and con-
siderable progress has been made toward understanding
the steady state tip velocity. A full theory of the develop-
ment and subsequent coarsening of the side branches
remains however a major theoretical challenge.

The basic characterization of the growing dendrite is
already contained in the formulas discussed above. The
only intrinsic length scale in the problem is the capillary

[c, is an O(1) constant], as well as a discrete infinity of
unstable solutions. (More precisely, the single solution is
distinguished as the only one that is absolutely stable in
the moving frame of the tip. ) We see from Eq. (12.14) that
the tip radius is set by the basic scale do. However, for
small undercooling and anisotropy there are two large di-
mensionless factors on the rhs so that p ))do. Because of
this, one might expect surface tension to have a small
effect on the shape of the needle.

In fact the experimental shape in the tip region can be
very well fit by an "Ivantsov solution" calculated in the
absence of surface tension. Indeed the mathematical for-
mulation has proceeded in terms of adding surface ten-
sion as a "small" perturbation to the zero surface tension
problem. %'e note that although this is an appropriate
and successful mathematical procedure there are neces-
sarily considerable technical difhculties, since the only a
priori length scale do is not present in the zeroth-order
problem and the character of the solutions (discrete set
or family) is different in the two cases.

The solution of these problems has required the recent
mathematical advance of "asymptotics beyond all or-
ders" (see Kessler et al. , 1988; Pelce, 1988; Segur et al. ,
1991). The result of the calculation is expressed by two
equations. The first is a relation between the "Peclet
number"

~The "quasi-static approximation" has been used here. See
Sec. III.A of Langer (1980) for a discussion and references to a
fu11 calculation.

P =pv /D,
and the undercooling 5, given by

b. =v ~P e erfc (&P ) .

(12.15)

(12.16a)
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in terms of the existence of a steady state propagating
needle that is absolutely stable in the moving frame. The
side branching, which is so obvious experimentally has
not been predicted from the original equations. Howev-
er, since the tip is convectively unstable in the moving
frame, one suggestion for the side branches is that they
are sustained by thermal noise in the tip region whose
effect propagates backwards. Another idea is that the
long-range diffusion field may provide a feedback from
the region of large side branches to the tip, again supply-
ing an effective (but now deterministic} noise at the tip.
There is experimental evidence for the stochastic nature
of the side branching from the absence of correlation be-
tween the side branches on either side of the tip. The
characterization of the large amplitude side branches
away from the tip and their coarsening remain complete-
ly open.

Despite some obvious successes this picture of the
two-dimensional problem remains controversial. The
relevance of the steady state solution to the experimental
situation, where complicated dynamics (away from the
tip) is always seen, is not universally accepted. In fact
the mathematical theory depends sensitively on features
of the steady state solution far down the needle where it
is completely different from the observed behavior, a
point that leaves some workers in the field uneasy. The
most obvious successes are quantitative predictions for p
and U which are consistent with experiments carried out
thus far, and which may be tested more stringently in the
future. On the other hand the three-dimensional prob-
lem remains open since no steady state solutions are
known in that case.

HOT
Liquid

zh

COLD

FIG. 102. Directional solidification geometry. Two micro-
scope slides containing a thin film of the material are drawn at a
constant velocity v between a hot oven at temperature Tz and a
colder oven at temperature T„bracketing the transition tem-
perature between ordered and disordered phases.

2. Directional solidification

a. Fropagatinginterface

Directional solidification is similar to pure liquid
solidification described above except that solute diffusion
is the rate limiting process, and an imposed linear tem-
perature gradient serves to limit the instability. This
means that patterns c1ose to the planar configuration
may be investigated.

The experimental geometry is shown in Fig. 102, and a
typical phase diagram which defines the parameters of
the problem is shown in Fig. 103. The parameters that
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FIG. 103. Phase diagram of eutectic system used in directional solidification experiment, showing phases as a function of the temper-
ature and concentration of the mixture. The two ordered (e.g. solid) phases are denoted a and P. Horizontal lines are two-phase re-
gions consisting of an equilibrium between the phases at the ends of the lines. The eutectic concentration is cE. In the expanded box
co denotes the concentration in the liquid far in front of the interface as well as that of the solid phase, and co is therefore the concen-
tration in the liquid at the Aat interface. The liquidus and solidus curves are denoted c,q(T) and c,'q(T), respectively. They may be
approximated as straight lines over this small region.
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are readily varied in experiments are co the solute con-
centration far in front of the interface, the mean tempera-
ture gradient 0 and the velocity of pulling v, which is
also the mean velocity of the interface relative to the
Quid. Typically v is used as the control parameter. In
steady state the solute concentration in the solid must
also be co, and this determines the melting temperature
of the planar interface To and thus the position zo of the
planar interface in the linear temperature gradient. '

This argument takes the place of the unit undercooling
condition for the pure planar interface discussed above.
An alternative experimental system replaces the solid-
liquid transition by the nematic to isotropic transition in
a liquid crystal. As we will see, largely due to the weaker
first-order nature of the transition and the smaller
diffusion constant it has considerable advantages for
comparing theory and experiment.

The coupled equations are essentially as before, but
with u now given by the chemical potential p of the
diffusing solute (made dimensionless by dividing by
(Bp/Bc ) Aco, with b.co the miscibility gap at To. The full
details (Langer, 1980) are complicated because of the
dependence of parameters on the local temperature, and
will not be discussed here. One major difference with the
pure case is that the source strength for the diffusing field
u for unit interface velocity is no longer a constant (the
latent heat), but is instead given by the miscibility gap b,c
at the perturbed temperature of the interface'

Various simplifications are often used to make the
theory more tractable, and these may be good approxi-
mations in specific systems. It is usually assumed that
the diffusion of the latent heat away from the interface is
suKciently rapid and that the thermal properties of the
two phases are the same, so that the temperature gra-
dient is uniform and independent of the position of the
interface. In the one-sided model diffusion of the solute
in the growing phase is neglected, a good approximation
in the solid-liquid system. On the other hand in the sym-
metric model the diffusion constants in the two phases
are assumed to be equal and ~ is also taken to be unity so
that hc, Eq. (12.18), becomes constant. This approxima-
tion is better in the liquid crystal system where both
phases are liquid and the first-order transition is quite
weak so that properties do not change very much at the
transition. In the symmetric model the equations of
motion can be summarized in a single integrodifferential
equation

1 —doe(x, t) g(x, t)ET '—

= f dt' f dx'[2+8, g(x', t')]G(x x', t t—'), —

(12.22)

where 6 is the Green s function of the diffusion equation,
and lengths and times are scaled with 8=2D/v and
8 /D, respectively.

hc =b,co [1—( 1 ~)g// T ]—, (12.18)

with g the displacement of the interface, v the general-
ized partition coefficient

b. Linearinstability

dc cq

dT
dccq

dT (12.19)
The analogue of the Mullins-Sekerka stability analysis

leads to a growth rate for a transverse perturbation of
wave vector q (Langer, 1980) given by

(see Fig. 103), and ET a length set by the imposed
thermal gradient and defined by

o =q [u DET' Ddoq ], — — (12.23)

Aco

dc cq

dT (12.20)

The surface tension length scale is defined by

d =X[(bc ) (Bp/Bc)] (12.21)

and the diffusion length 8—D /u is now another external-
ly controlled length scale.

where D =D in the one-sided model, D =2D in the sym-
metric model and we will define the diffusion length as
8=D/u. Expression (12.23) is derived in the quasistatic
approximation valid for small cr and not too large veloc-
ity, and we have written down the form valid for qP ))1.

Equation (12.20) immediately shows that the thermal
gradient Q ~ ET stabilizes the interface, so that the pul-
ling velocity v must be increased above a critical value v„
defined simply by /=ET, for the instability to grow.
Then Eq. (12.23) may be written

o. =qu, [E—(doZT) q ] (12.24)

. For simplicity it is assumed that the thermal conductivities
in liquid and solid phases are identical so that the temperature
gradient is uniform and simply determined by the temperatures
of the ovens.

i . Langer also introduces a correction to Ac due to the curva-
ture, but this term does not play an important role and is often
put to zero.

with E=v/v, —1.
Equation (12.23) displays the complexity of the prob-

lem since there are three characteristic length scales do,
FT, and 8 set by the experimental parameters. Further-
more for typical solid-liquid systems do/ET-10 to
10 and this small parameter complicates the analysis,
for example restricting the range of validity in E of the
amplitude equation. For the nematic-isotropic liquid
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o,=~o, =,~-u/T'«o (12.25)

with cr -U(ZTdo) ', the maximum growth rate for
e=O(1), setting the scale for typical growth rates away
from q =0. This more complete analysis predicts a type-
I, instability at a slightly modified value of U„and at a
critical wave vector qo given by (Langer, 1980)

qoF'-(8/do)' (12.26)

On the other hand the characteristic wave-vector scale
q above threshold (as set by the wave vector at max-
imum growth rate or by the width of the wave-vector
band of growing solutions) is seen from Eq. (12.24) to be
given by

q 8 —(8/do)' e=O(1) . (12.27)

For typical solid-liquid systems we have 8/do —10, so
that q /qo-5, and the wave-vector scale increases rap-
idly above threshold. Clearly, already at this linear level,
the validity of the amplitude equation will be restricted
by the small parameter do/7 to a small range of c,.
Again for the liquid crystal system the ratio q /qo is

closer to unity, and we might expect a wider range of ap-
plicability of the amplitude expansion.

For large velocities u ))U„the planar interface restabi-
lizes. The velocity v,

' at which this occurs is unreason-

ably large in solid-liquid systems, but quite attainable in
the liquid crystal. Interestingly, here the instability for U

slightly less than U,
' occurs on a length scale large com-

pared to the diffusion length. Cxhazali and Misba (1992),
following Brattkus and Davis (1988), have exploited this
to develop a local, long-wavelength expansion of the in-

stability analogous to the Sivashinsky-Gertsberg equation
for poor conductors (Sec. VIII.F), although the equation
is considerably more complicated.

crystal system on the other hand, this ratio is larger, of
order do/ZT-10

Equation (12.24) leads to the impression that we are
considering a type III, instability. However a more care-
ful analysis shows that at small q Eq. (12.23) breaks
down, and in fact the interface is weakly stabilized at
q =0 (the imposed temperature gradient breaks transla-
tional invariance so that o 0 is not necessarily zero)
leading to a decay of perturbations at a rate (for q F'« 1)
given by

tion is experimentally found to be strongly subcritical
with a highly nonlinear state of a grooved cellular pat-
tern developing immediately above onset [Fig. 104(a)]: a
weakly nonlinear theory does not seem appropriate in
this case. On the other hand, for the symmetric model
relevant to liquid crystals, go is positive and a supercriti-
cal bifurcation is predicted. This was indeed seen by
Oswald et al. (1987) with a sinusoidal perturbation of the
interface growing continuously for v ) v, [Fig. 104(b)],
and with U, and qo agreeing well (within the uncertainties
of Quid parameters) with the predictions of the linear
analysis. Much of the recent experimental and theoreti-
cal attention has focused on this system.

Brattkus and Misbah (1990) have calculated the one-
dimensional phase equation for the fully nonlinear state
appropriate to liquid crystals, from the integrodifferential
formulation of the symmetric model. From this they cal-
culate the position of the Eckhaus instability characteris-
tic of the type I, pattern. Their results, for do/FT
= 10 (giving U, =2.50D/PT and qo= 1.5 ET ') are
shown in Fig. 105. Although the results agree with the
amplitude equation predictions for small enough c,, devia-
tions rapidly become apparent (e.g. of order 35% for
a =0.04), consistent with the small range of convergence
expected for small do/ET. Also evident in Fig. 105 is the
strong effect, on the small-q side of the Eckhaus bound-

ary, of the "q-2q" resonance as also found in the
Taylor-Couette system (Fig. 61). Although the Eckhaus
instability has been observed in this system (Simon et al. ,
1988) no careful comparison between experiment and the
detailed predictions of the theory has yet been presented.

An interesting instability is observed for c.—2 —3
where domains of an asymmetric state nucleate and then

(a) Solid-liquid

(b) Nematic-isotropic

c. Nonlinear states

The type I, amplitude equation for the weakly non-
linear states at small E=(U —

U, )/u, can be derived from
the full expression for the linear growth rate cr (Langer,
1980) and the nonlinear coefficient go has been calculated
by Wollkind and Segel (1970) for the one-sided model and
by Langer and Turski (1977) for the symmetric model.
In the one-sided case and for parameters relevant to
solid-liquid systems go is negative and indeed the transi-

FIG. 104. Cellular states in directional solidification. (a)
Solid-liquid interface showing a highly nonlinear state resulting
from a subcritical bifurcation. (b) Nematic-isotropic liquid
crystal system showing a more weakly nonlinear state. Hatched
region is the ordered phase (solid or nematic).
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3.5--
~ ~
O0) 3.0

which a weakly nonlinear solution can be constructed,
and a fully nonlinear theory of the coupled interface and
di8'usion equations must be developed. We refer the
reader to recent literature for a discussion of this work
(Karma, 1987; Kassner and Misbah, 1991a,b).

B. Nonlinear optics

~ 5
10 20 30

Wavevector q

FIG. 105. Stability diagram of velocity vs wave vector for
directional solidification in a liquid crystal system. Solid line,
neutral stability curve (Mullins-Sekerka); dashed line, Eckhaus
instability from amplitude equation; open circles, Eckhaus
boundary from numerical simulation of full equations; dash-
dotted curve, most unstable mode. (From Brattkus and Misbah,
1990.)

Through the discovery of the laser high intensity
sources of electromagnetic radiation became available,
and many nonlinear phenomena including instabilities
were explored. In this section we will focus on systems
involving many modes, and briefly indicate some of the
analogies that exist with the instabilities and patterns we
have studied in the rest of our review. A more detailed
treatment can be found in Moloney and Newell (1990,
1992).

1. Basic equations

both grow and move through the system. This instability
was interpreted by Coullet et al. (1989d) in terms of a
subcritical secondary bifurcation to a state that breaks
the x~ —x symmetry (see Sec. IV.A.3). The dynamics
of these domains is seen to yield a wave-number selection
mechanism as described there. The existence of the drift-
ing parity-broken state and its bifurcation from the sym-
metric state have been calculated from the full equations
for the symmetric model by Levine and Rappel (1990)
and also in the local model valid for large velocities by
Kassner et al. (1991). Both calculations predict a super
critical bifurcation to the uniform tilted drifting state,
rather than the subcritical bifurcation assumed by Coul-
let et al. Recently Caroli et al. (1992) (see also Riecke
and Paap, 1992) have shown that, due to the feedback of
the local wave number on the amplitude of the tilt distor-
tion for spatially localized tilt regions (where the wave
number can adjust), elimination of the phase degree of
freedom may lead self-consistently to a subcritical bifur-
cation to tilt domains even when the transition to the
uniform state is supercritical. Kassner et al. (1991) also
predict a zone-boundary Hopf bifurcation (i.e. at Q =q/2
with q the wave vector of the unperturbed state), as well
as chaotic dynamics.

3. Eutectic solidification

We start with Maxwell s equation for the electric field
E in a dielectric,

V'E —'
a', E— '

a', P — a, E=O,2 t 2 2 (12.28)

where c is the speed of light and co the dielectric constant
in vacuum, P is the polarizability of the medium, and ~
(which traditionally has dimensions of frequency!) the at-
tenuation constant of the cavity. The polarizability of
the medium is obtained from the Bloch equation for the
quantum-mechanical density matrix p&

dpi'

'( ~ )p~

+(1~&)E.X(p~,p, p, p—~, ) gr~—,p,
J J

(12.29)

P=~. p(pi2+pf2)

and population inversion

(12.30)

where p& is the matrix element for the transition from
state 8 to j, whose frequencies are co& and ~J, respective-
ly, and y&. is an absorptive coefficient. For a medium
consisting of two-level systems with density n, we define
the polarization

If instead of a small solute concentration co a concen-
tration close to cz is used, and if also the temperature of
the cold contact T& is less than TE, then the solid formed
behind the interface will be a mixture of a and f3 phases
(Fig. 103). For small pulling velocities the solids are de-
posited as alternate lamellae of a and P phases forming a
periodic spatial structure with obvious analogies to direc-
tional solidification patterns. Many questions similar to
the ones we have been addressing, such as wave vector
selection and secondary instabilities, arise. In this sys-
tem, however, there is no spatially uniform state about

(P22 P11) (12.31)

P =coy E,
or the refractive index n,

E+Eo 'P=(1+y) E=n E .

(12.32)

(12.33)

In general, of course, both g and n are functions of the
field E as well as the frequency co. It is only in the linear

In a dielectric medium we also may relate the polariza-
tion to the field via the susceptibility
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domain that g and n are independent of E.

2. Pulse propagation in a dispersive medium

a,P+i(~„~—,) P i—(P'/g) ED+y,P=O,

B,D —(2i/fi) (E*P E—P*)+y~~(D —D ) =0,
(12.42a)

(12.42b)

n(co, E)=no(co)+n2(co) ~E~ (12.34)

In a purely dispersive medium the refractive index is
real and it is usually sufficient to retain two terms in an
expansion in E

with m~ =m, —co2 the excitation frequency of the two-
level system. For a single-mode cavity with frequency co,

we may make the replacement cd, E=i(co, coo—)E, so

Eq. (12.41) becomes

B,E+i (co, coo)—E—(ic/qo) V~E
We may then make the familiar Ansatz of a slowly vary-
ing envelope

(—icoo/2EO) P+sE =0 . (12.42c)

—i (coOt —qoz)E(x,z, t)=E(x,z, t) e ' ' +c.c. , (12.35)

where z is the propagation direction, x is the set of trans-
verse directions and qp is the wave vector of a linear
wave in the medium, satisfying the dispersion relation

q o ( co0 ) =n o ( coo ) coo /c (12.36)

Neglecting the cavity loss sc, we find upon expanding in E
and its gradients

d, E+q od, E (i /q—o) VfE

+(iqo /2)B, E (iqon2—/no) ~E~ E=O, (12.37)

d, E=ic,d, E+ic ~E~ E,
where

(12.38)

with V~=V„and qo=dqo/dcoo, etc. In the absence of
transverse variation (i.e. neglecting the third term in the
above equation) we can change to a moving reference
frame (z ~ z, t ~ t —qoz) to obtain the familiar non-
linear Schrodinger equation

Let us first consider the usua1 case where the trans-
verse degrees of freedom are clamped, V~ —+0. Then Eqs.
(12.42) become three coupled ode's with second-order
nonlinearity. For the resonant case

QPp
—6) =6) g (12.43)

this system is identical to the Lorenz model (8.46) with
iE ~X, P ~ Y, D ~Z, and the control parameter I ~Dp.
As is well known (Lorenz, 1963) this model has a station-
ary bifurcation at r = 1, a Hopf bifurcation for

r )cr(r+b+3)/(o b —1),— (12.44)

and chaos at larger r. The condition for chaos, o. & 6+1
requires sc) y»+y~, which implies a "bad" cavity, i.e.
large cavity losses. Considerable work has been done to
explain the temporal behavior of single-mode lasers and
we refer the reader to the literature for further informa-
tion (Bowden et al. , 1984; Chrostowski and Abraham,
1986; Bandy et al. , 1988).

Let us ask what happens when the transverse modes
are not neglected. As noted by Coullet et al. (1989c), the
original model (12.42) has a symmetrytl

C) ~qP ~ C3 ~Pl2 (12.39)
E~e'~E, P ~e'~P, D ~D, (12.45)

Note, however, that the roles of space and time are in-
verted from the usual ones [e.g. Eq. (4.49)]. It was no-
ticed by Hasegawa and Tappert (1973) that for normal
dispersion qp )0 this equation supports solitons if
sufficient intensity can be reached, while for qp (0 dark
solitons will propagate. There is considerable interest,
both scientific and technological, in the details of soliton
propagation, particularly in understanding the damping
and regeneration of pulses (Hasegawa, 1989; Kumar,
1990).

which may be broken at the Hopf bifurcation. An expan-
sion of the system near the threshold

DO=DO, = 1+(co,—co„)/(~+yi), (12.46)

8, A = A+(b, +ic, ) V A —(1—ic ) ~ A~ A,
with the transverse coordinate defined as

(12.47)

leads to a complex Ginzburg-Landau equation which we
write as

3. Laser equations
y =x/I. ~, (12.48)

Let us return to Eqs. (12.28)—(12.29) and set
I.j being the transverse dimension of the cavity; the con-
stants are

712 Yl ~ 'F22 (12.40)

and add a pump parameter Do to Eq. (12.29). Then for a
two-level system Eqs. (12.28)—(12.29) become in the en-
velope approximation (12.35)

a,E+ca,E (ic/q )V E (t co—/2s ) P+vE—=O',

b~ =[2rrFT(1+q)] '=c[qo+L~(1+g)]

c, = —2b, 8og(1+g) [1+g+80(l—g) ]

c3 = —8O(1 —g)(1+g)

g=~/y, , 8,=(~, ~„)/ , y,
—T=~L,~~/c .

(12.49a)

(12.49b)

(12.49c)

(12.49d)

(12.41) The important parameter which controls the magnitude
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of the transverse variations via b
&

is the Fresnel number

F=L H p /2vrL ~~, (12.50)

where L~~ is the longitudinal dimension of the cavity. A
large value of I leads to a small b&, i.e. the possibility of
many transverse modes.

As noted by Coullet et al. (1989c), the complex
Ginzburg-Landau equation in two dimensions has spiral
solutions which are also expected to arise as pat-
terns of the original system (12.42). These authors in
fact obtained a spiral in a numerical solution
of (12.42) with b, =4 X 10, q=0.04, Op=0. 6,
yJ /y~~ 1 (Dp Dp )/Dp = 1.2

4. Optical bistability

An interesting nonlinear effect, first demonstrated ex-
perimentally by Gibbs, McCall, and Venkatesan (1976), is
optical bistability of a nonlinear dispersive medium in a
Fabry-Perrot interferometer placed inside a ring cavity.
Then Gibbs et al. showed that according to Eq. (12.37)
the effect of nonlinear dispersion is to provide the follow-
ing relation between the incident and transmitted fields:

~Et/Ep~'=f(~ET/Ep '),
f(a)=a[1+ A(l —a) ],

(12.51)

(12.52)

with

2 =(1—T) 9 /T

Ep L ~~qpn2l T6 ~pnp~&0

(12.53)

(12.54)

5. Self-induced transparency

Let us consider a medium made up of two-level sys-
tems but now tune close to resonance assuming inhomo-
geneous broadening of the lines. Then neglecting homo-
geneous broadening (y~=y~~=0) and difFraction effects,

where 0 is the detuning of the cavity, T the transmission
coefficient of the mirrors at the ends of the interferometer
whose length is L,

~~,
and n2 the nonlinear dispersion of

the medium. It is easy to verify that for 3 & 3 the func-
tion f in Eq. (12.52) becomes double-valued, and
differential gain and hysteresis ensue. Since 3 can be
tuned by optical means, the necessary condition for ob-
serving bistability is that Ep should be large enough so
that EI /Ep and ET/Ep are of order unity.

The relation (12.51) between the incident and transmit-
ted fields is obtained from Eq. (12.37) neglecting any
transverse variation. For media with large Fresnel num-
ber (12.50) there is the possibility of obtaining spatial pat-
terns due to the transverse Laplacian in Eq. (12.37).
Transverse instabilities of both stationary and oscillatory
type are attracting increasing attention (see Abraham
and Firth, 1990). Experimental evidence for spatiotem-
poral chaos in a ring cavity was recently presented by
Arecchi et al. (1990, 1991).

we may replace P in Eq. (12.42a) by its average (P ) over
a distribution of frequencies resulting from a Maxwellian
distribution of atomic velocities. Equations (12.42) now
become

a,E+ca,E —(t~, /2s, )(P ) =0,
&, (P ) —(&p2/X) ED =0,
a,D —(2i/~) (E*(P) —E(P*)) =0 .

(12.55a)

(12.55b)

(12.55c)

so that Eqs. (12.55b)—(12.55c) are automatically satisfied
and Eq. (12.55a) becomes

(3, +cB ) B,u+ysinu =0,
p —Q)(p D i /2cpA

(12.57a)

(12.57b)

This equation may easily be transformed into the sine-
Gordon equation

B,P —8P+ sing =0, (12.58)

which has a family of 2~-solitons, as well as a set of
breather solutions. The former are nonlinear pulses
which travel unattenuated through an absorptive medi-
um. They were first discovered experimentally and de-
scribed theoretically by McCall and Hahn (1969), who
called the phenomenon self-induced transparency. In-
terestingly, it has recently been suggested by Branis et aI.
(1991) that the existence of a family of such pulses is an
artifact of the envelope approximation used to arrive at
Eqs. (12.55). When the original Maxwell-Bloch equations
(12.28-29) including the fast modes are used instead,
these authors find a discrete set of velocities. Moreover,
the discrete set does not appear in any order of perturba-
tion theory when fast-mode corrections are added to
Eqs. (12.55).

C. Parametric spin-wave instabilities

Parametric wave instabilities analogous to the surface
wave instabilities discussed in Sec. IX.D also arise in the
case of spin waves in a ferromagnet, and indeed were first
studied in this system (Bloembergen and Damon, 1952).
Here a spatially uniform oscillating magnetic field drives,
above some amplitude threshold, finite wave-vector "spin
wave" modes in which the local magnetization precesses
with a spatially dependent phase. In the early experi-
ments the oscillating field was applied transverse to the
static field and equilibrium magnetization, driving a spa-
tially uniform precession of the magnetization, which in
turn drove the parametric instability at nonzero wave
vector. Later it was found (Morgenthaler, 1960;
Schlomann et a/ , 1960) that a s.impler geometry, with
the oscillating field parallel to the static field, also leads

This system turns out to be integrable, as can be seen by
making the substitution

E= —(Ai/2p) d, u, (P) =(pD&/2) sinu, D=D&cosu,

(12.56)
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to parametric spin wave instabilities, and this geometry
has been favored more recently.

Since it is dificult to diagnose the spatial structure of
the nonlinear state beyond threshold, most attention has
focused on the complex dynamics that evolves. Also the
dissipative effects are weak, as in the Quid surface wave
system, so that the quasi-Hamiltonian nature of the sys-
tem is expected to lead to a highly dynamic state down to
driving values very close to threshold. For these reasons
spin waves do not provide a good system to demonstrate
the phenomena that are the main interest of the present
article, and we wish only to make some comparative re-
marks on the theoretical developments.

Even though the domain of convergence is small, it is
convenient to phrase the discussion in terms of the
Fourier space amplitude equation analogous to
Eq. (4.105)

rP, P, = [E—4(e qo )'l0, — (12.59)

gqq =go (12.60)

independent of q q', so that Eq. (12.59) reduces to

&o4, = lE —ko(e —eo)' —go& I g, I']P, . (12.61)
q'

As a result the nonlinear saturation only depends on the
mean square amplitude (intensity) of excited modes

and not on the distribution of this intensity
around the critical circle. This led Suhl to propose a
fluctuating nonlinear state, in which no single mode be-
comes macroscopically excited. The system therefore

Here g is the amplitude of the parametrically excited
standing spin wave mode at wave vector q. As usual the
phase gives the position of the nodes of the standing
wave. The critical circle q~=~q~~ =qo is in the plane
transverse to the static field which we take in the z direc-
tion. [Actually, there may be two degenerate critical
modes at a given q~ =(q„,q ), corresponding to two pos-
sible signs of a nonzero q, (Suhl, 1957). We will not dis-
cuss the case with two critical circles, but will only write
down expressions for the case q, =0.] We note in passing
that ferromagnetic spin waves are rather complicated
even at the linear level, since the frequency of long-
wavelength modes depends on the shape of the system
(though not its size) due to the dipole form of the interac-
tion, so that actually calculating the parameters of
Eq. (12.59) is a formidable task.

In the theoretical analysis of the transverse pumping
case, Suhl (1957) proposed that the major dissipative
effect leading to saturation of the instability was the
suppression of the uniformly precessing mode (at zero
wave vector) by the feedback of the parametric modes
through the spin-wave interaction terms. Since this feed-
back is insensitive to the direction of the wave vector q of
the wave mode on the critical circle, this immediately
leads to the conclusion that in the effective amplitude
equation (12.59) we have

does not possess a well-defined spatial structure, but in-
stead the intensity is distributed amongst all the critical
modes, with a distribution that fluctuates in time,
responding to some residual noise, perhaps thermal. An-
derson (1981; see also Stein, 1980) chose to identify the
transversely pumped ferromagnet as the canonical exam-
ple of pattern forming nonequilibrium systems. He then
used the Suhl result to argue that such systems will not
form ideal periodic spatial structures. As we have seen,
however, the parametric wave systems are atypical cases
since they are only weakly dissipative. This means that
the dynamics might indeed not be expected to be attract-
ed to a fixed point representing a steady spatial structure.
It turns out, moreover, that the Suhl result of a Auctuat-
ing nonlinear state depends critically on the assumption
(12.60) of a constant mode interaction vertex, which is a
result peculiar to the form of dissipation Suhl identifies as
dominant. Thus we do not find the Anderson-Stein argu-
ment convincing as a general statement on nonequilibri-
um pattern formation.

The actual nonlinear state of the transversely pumped
spin-wave system remains an interesting open question.
In a more careful analysis starting from Suhl's dynamical
equations, Sneddon and Cross (1982) showed that in fact
Eq. (12.60) is not correct. They showed that one can, in
general, split g ~ into a part arising from the nondissipa-
tive Hamiltonian terms g'"', and a part arising from the
nonlinear dissipation g'"' so that

(h) ~ (d)
gqq' gqq' ' gqq (12.62a)

Furthermore, symmetry arguments dictate the relation

(h) — (h) (12.62b)

and weak dissipation implies

g (&) ))g (d) (12.63)

Note that Eq. (12.62b) implies g' '—:0 in systems in
which clockwise and anticlockwise directions around the
critical circle are equivalent. This is not the case here,
because of the uniform magnetic field.

An immediate consequence of Eqs. (12.62) and (12.63)
is that, as in the case of rotating Rayleigh-Benard con-
vection discussed in Sec. VIII.F.6, a nonlinear state con-
sisting of a single excited standing wave with q=qon, is
unstable to a standing wave with q'=qon ' and n ' rotated
through some angle 0 relative to n; this state is in turn
unstable, and so forth. Thus although the approxima-
tions used by Suhl leading to Eq. (12.60) and the dynamic
state predicted by him are not correct, the nonlinear state
may well be time dependent because of the near Hamil-
tonian nature of the dynamics.

Since the dissipation is weak in both transverse and
longitudinal pumping, Zakharov et al. (1975) developed
an alternate theory of the nonlinear state, which they
called the "S-theory, " focusing mainly on the parallel
pumping case (see also L'vov and Prozorova, 1988).
They propose neglecting the nonlinear damping which
leads to the term g' ' in Eq. (12.62a) and to saturation,
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since it depends both on the small damping and on the
small nonlinear terms. Instead the saturation is caused
by a "dephasing" of the parametric mode with respect to
the pumping. This occurs via terms that are higher-
order in g ~

than those retained in Eq. (12.59), but are
nondissipative and so do not involve the small dissipation
coeKcient. The S-theory is based on a random phase ap-
proximation where ~g~ ~

is nonzero near the critical cir-
cle, but the phase of g (i.e. the translational position of
the mode) is treated as random, either due to thermal or
deterministic noise. This theory again leads to a dynam-
ic, fluctuating state but now with

~2 0- El/4 (12.64)

rather than the c' dependence resulting from Eq.
(12.61). Clearly, close enough to threshold the nonlinear
damping must be reintroduced, however over the accessi-
ble experimental range Zakharov et al. suggest that the
S-theory should be a good approximation.

D. Further pattern forming systems

XIII ~ CONCLUSION

We conclude by briefly reviewing what we believe has
and has not been accomplished, and by indicating some
useful directions for future research.

In this section we list selected references to pattern
forming systems we shall not discuss, but which show
many of the phenomena we have described in our review.
It should be stressed that neither the list of topics nor the
cited references have any pretense of being complete.

~ Fluid systems:—Saffman-Taylor problem (Bensimon et al. , 1986).—Double-layer convection (Rasenat et al. , 1989).
Taylor-Couette Aow with partially filled cylinders

(Mutabazi et al. , 1988, 1990).—Film Aow (Liu and Gollub, 1993).
Printer s instability (Rabaud et al. , 1991; Cummins

et al. , 1993;Pan and de Bruyn, 1993).—Vortex arrays (Willaime et al. , 1991).—Ferrofluids (Bercegol et al. , 1987; Silber and Knob-
loch, 1988).

Nematics in a rotating magnetic field (Migler and
Meyer, 1991).

~ Other systems:
Flame fronts (Sivashinsky, 1983; Clavin, 1985;

Schnaufer and Haken, 1985; Zel'dovich, 1985).
Dynamics in ferromagnetic domain walls (Coullet

et al. , 1990b).—Beam buckling (Boucif et al. , 1991).—Patterns in catalytic reactions on solid surfaces (Ertl,
1991).—Flow of granular materials (Baxter and Behringer,
1989; Douady et al. , 1989a; Jaeger et al. , 1989; Nagel,
1992).

A. What has been accomplished

(i) We have analyzed a large array of pattern formation
phenomena from a unified point of vieiv, which has its
origin in the linear instabilities of a homogeneous state.
This classification provides a framework for describing
seemingly unrelated systems, and suggests useful analo-
gies in theoretical analysis and in the design of experi-
ments. It must be recognized, however, that the
classification scheme is most useful in the immediate vi-

cinity of the instability, and it restricts the systems and
phenomena under consideration. From a mathematical
point of view, the description is expressed in the form of
universal amplitude equations which are strictly valid

only near the bifurcation, but which provide semiquanti-
tative information above threshold as well. Within their
range of validity these amplitude equations yield a corn-
plete description of the effects that are crucial in pattern
formation outside of equilibrium. These are growth of a
disturbance with spatial structure, nonlinear saturation,
nonlocality through diffusion and, in the case of dynamic
instabilities, propagation and dispersion of waves. On
the other hand amplitude equations are simple enough so
that important but mathematically subtle questions, such
as the effects of finite size in restricting ideal patterns, or
the dependence of the final state on the protocol of estab-
lishing the external conditions, may be analyzed with rel-
ative ease.

(ii) In the strongly nonlinear regime above threshold, a
complete description of the dynamics must rely on nu-
merical simulation of the starting equations. Some
dynamical states of the system, namely those involving
slow distortions of an ideal pattern, can be accurately de-
scribed by the vastly simpler phase equations which are
consequences of the broken symmetry occurring at the
linear instability. A more accurate description in general
needs to include defects, which are isolated singularities
in the phase equation but smooth solutions of the full
equations. It is an attractive idea to imagine a descrip-
tion in terms of coupled dynamics of phase and defect de-
grees of freedom, both in approaching a steady state and
in producing persistent dynamics. At the time of writing,
the program to establish such a description is almost
complete, with most of the technical difhculties over-
come, and it will be interesting to see the application to
concrete problems in the near future.

(iii) Another way to push the analysis beyond thresh-
old is by inventing model equations, designed to incorpo-
rate selected pattern forming properties of the starting
equations. A necessary (though not sufficient) criterion
for the appropriateness of a model is that it should lead
to the same amplitude and phase equations as the origi-
nal system.

This approach is useful to investigate qualitative effects
which are beyond the scope of the perturbative ampli-
tude equations. An example is the inAuence of lateral
boundaries in producing large reorientations of the wave
vector on long length scales in type I, systems, which the
amplitude equation based on small distortions from a
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uniform wave vector is not powerful enough to describe.
Another example is persistent dynamics, which is absent
from the lowest-order amplitude equation since it is of
gradient form in type I, systems. The approach also
gives a way of isolating different features of the full mi-
croscopic equations to investigate their inhuence on the
phenomena by judiciously building appropriate model
systems. Indeed in the case of chemical reaction-
diffusion systems for example, the equations on which
much analytic and numerical effort has been expended
should properly be thought of as model systems, with a
few variables used to describe many complicated reac-
tions, since no systematic justification of the equations
has been given. Even in our canonical Rayleigh-Benard
system many new phenomena have historically been pre-
dicted from calculations with artificial free-slip boundary
conditions. These calculations have the appearance of
respectability since they use the full Quid equations for
the behavior away from the boundaries, but they are in
our view even less controlled than the truncated models
we have introduced, since the latter are tuned appropri-
ately by comparing with known results. Indeed the free-
slip calculations often produce results which do not qual-
itatively reAect the behavior of the physical system, as we
have remarked at various points throughout the text.

(iv) Armed with the above three classes of approximate
equations we have analyzed physically interesting situa-
tions (e.g. boundaries, defects) which we call "real pat-
tern" effects. These enter into the problem of pattern
selection, namely understanding which of the multiplicity
of allowed states of a system will actually be found for a
given experimental protocol. We do not mean to imply
that we have a general solution to the pattern selection
problem, only that concrete information is available for a
number of physical situations. In discussing real pattern
effects it is important to be able to analyze successively
more complicated models, in order to elucidate the origin
of what are often highly complex phenomena in the real-
istic equations.

(v) Questions about uniuersality and the similarities be-
tween different systems are in our view most usefully dis-
cussed in terms of the three levels of approximate
description mentioned above. The degree of universality
of a phenomenon depends on the applicability of one or
another of the "universal" approximate equations.

(vi) Among the subjects we have treated, the least well

understood is spatiotemporal chaos. We have included it
in our review partly because it is the main mechanism
which disorders nonequilibrium patterns, and partly for
its intrinsic interest. We have attempted to confront the
questions specific to spatiotemporal chaos which do not
arise in studies of systems with a small number of degrees
of freedom (temporal chaos). However we do not yet
have simple analytic approximations, such as an ampli-
tude expansion, for distortions of a spatiotemporally
chaotic state.

(vii) The above theoretical concepts have applicability
to a large number of experimental systems. Throughout
our review we have emphasized the correspondences be-

tween experiment and theory, and the possibility of de-
tailed quantitative comparisons. The range of systems
for which the theory has at least some relevance is very
large indeed, and in certain cases a significant body of
agreement has accumulated. We believe that the tight
coupling between theories based on well understood ap-
proximations and precise experiments on controlled sys-
tems has been vital in developing the growing body of un-
derstanding, albeit somewhat piecemeal, of nonequilibri-
um phenomena. This joint importance rejects to some
degree the lack of satisfactory general principles that
might make such a pragmatic approach unnecessary (see
below).

In summary, we can say that our review attempts an
inventory of those pattern formation phenomena that are
at least partially understood from our point of view. In
this way as new systems are investigated one can distin-
guish the "easy" problems which have received some at-
tention in analogous systems, from the "hard" ones
which demand a fresh and original attack. Before at-
tempting to list some fruitful directions for future
research we wish to comment on "what has not been ac-
complished, " namely on some hoped for general princi-
ples which in our opinion fall short of being broadly ap-
plicable in the systems considered in this review.

B. What has not been accomplished

(i) A long sought goal of nonequilibrium physics is to
find a useful' ' extremum principle such as minimization
of the free energy in equilibrium applicable, say, to non-
equilibrium steady states reached at long times.
Glansdorff' and Prigogine (1971, p. 108) state explicitly
that ". . . the search for a universal kinetic potential has
proved to be unsuccessful . . . ,

" though they have pro-
posed more specialized variational principles, as well as a
"universal evolution criterion" in the form of an inequali-

ty involving generalized thermodynamic forces. Lan-
dauer (1978, 1988), in particular, has emphasized that the
relative occupation of competing states is not determined
solely by local properties of these states, but depends on
the details of the trajectories joining them. In recent
years efforts to find general minimization principles have
frequently employed the so-called "maximum entropy
formalism" (see Levine, 1987 and references therein, and
Landauer, 1981), but we are not aware of new physical
results on nonequilibrium pattern formation resulting
from this work. Another recent proposal is that of Ross
et al. (1988a, 1992) focusing on chemical systems, but
here again the Lyapunov functional can in general only
be found once the equations of motion have been solved.

By "useful" we here mean one that replaces and simplifies
the dynamics. As explained in Sec. III.A, the nonequilibrium
potential of Graham and coworkers (Graham, 1989) reformu-
lates the dynamics rather than replacing them. We do not mean
to imply that it is not useful under certain circumstances, just
that it does not correspond to what we have in mind here.
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(ii) As mentioned in Sec. VII.E above, the claim'32
that dynamical systems with many spatial degrees of free-
dom naturally evolve into a self-organized critical state,
is also not supported by our detailed studies. Indeed,
states with power-law correlation and distribution func-
tions are the exception, not the rule in the experimental
systems we have considered. Although scaling phenome-
na do exist in nature, they apparently result from special
circumstances which remain to be fully elucidated.

(iii) Finally, let us mention some more technical issues
concerning the proper mathematical description of mac-
roscopic nonequilibrium phenomena. In our view, an ap-
propriate starting point is usually a set of deterministic
evolution equations representing the forces acting on the
system, on a length and time scale appropriate to the
phenomena under study. These equations are sometimes,
but by no means always, supplemented by stochastic
terms representing thermal or instrumental noise. It is
important to remember, however, that such external
noise is typically extremely small, or at least very
different from the Gaussian white noise often assumed
for convenience. Because the starting equations are usu-

ally di%cult to solve in the large geometries of interest
for pattern formation, simplifications are sought, the
main ones being perturbation theory near a linear insta-
bility (amplitude equations), or expansions about an ideal
ordered state (phase equations). Within their domain of
validity such equations yield quantitative information on
the structure of patterns, which could be obtained (with
more difficulty) directly from the starting equations.
Outside of this strict domain of applicability, amplitude
and phase equations as well as various extensions of
these, provide at most semiquantitative information, and
results must be interpreted using physical intuition.
These remarks apply to the various (phenomenological)
order parameter equations we have discussed (see
Secs. III.C and IV.A.5), as well as to Ginzburg-Landau
models based on symmetry and topology (see, e.g., Coul-
let and Fauve, 1985). Finally, normal forms (Guckenhei-
mer and Holmes, 1983; Crawford and Knobloch, 1991)
are an elegant reformulation of amplitude equations
which usually neglect spatial variations, and thus provide
a less complete description of patterns.

C. Prospects for the future

It should be clear that even with our somewhat re-
stricted aim of understanding the nonequilibrium states
that are related to modes appearing at linear instabilities,
much remains to be done. First of all one could hope to
improve and extend the work described here. There are
as yet only rather few reliable quantitative experiments
whose results are fully understood theoretically without
resort to ad hoc assumptions or adjustable parameters.

See the abstract of Bak et al. (1987)

We believe that incremental progress in analytic theory,
numerical simulations, and laboratory experiments can
clarify and deepen our understanding of most of the sys-

tems we have discussed. In addition, there no doubt are
many new systems and phenomena with similar behavior,
some of which will turn out to be amenable to precise ex-

periment and theory. Throughout this review we have
attempted to identify open questions and unresolved is-

sues and we hope that a sizeable number of them can be
clarified by further work. As was already mentioned ear-
lier, the subject of spatiotemporal chaos seems to us to
require the most far-reaching new insights since our un-

derstanding is at present rather rudimentary.
Since the remarkable paper by Turing (1952), a long-

held dream has been to extend the ideas of pattern forma-
tion developed for relatively easily understood chemical
or physical systems, to the development of regular struc-
tures in biological organisms. We have briefly reviewed
work in this direction in Sec. XI, but make no claim to
resolving the fundamental issues raised by this research.
Answers must rely on careful experimental investigations
and on a critical probing of the modeling of the biologi-
cal phenomena. We might hope, however, that a
thorough awareness of the full range of behavior found in

chemical and physical experiments and explained by re-

lated simple equations, may help in assessing the success
of the modeling at a more sophisticated level than has
been evident in the past.

Apart from improvements in the systems and concepts
that we have presented, we can ask whether progress can
be made in understanding nonequilibrium systems that
are not related in any obvious way to linear instabilities.
Examples which come to mind are dendritic patterns,
other kinetic phase transitions, fractal growth phenome-
na, or strong turbulence, to cite only systems where a sta-
tistical mechanics approach might still be applicable.
Another direction for further work is to analyze the non-
linear models that have been proposed to account for
natural phenomena (atmospheric and oceanic Ilows, geo-
logical evolution, physiology, ecology) or to describe
technological devices (electronic components) and pro-
cesses (materials synthesis, corrosion, fracture, etc).
Many of these models bear a strong formal and some-
times physical resemblance to the ones we have studied.
We should also concede that there may be some striking
new principle or law valid for nonequilibrium phenomena
which goes well beyond the concepts we have discussed.
Apart from waiting for a bolt from the blue, the most
likely method we know of for finding such a general prin-
ciple is to continue investigating specific systems and
phenomena, and testing theoretical ideas by careful ex-
periments.

Finally we will make some remarks on the controver-
sial question of the relevance of our elementary ideas on

the nature of nonequilibrium spatial structures to the

larger issue of the development of highly complex struc-

tures, such as the emergence of life. As a first step to-
wards addressing such questions, Anderson (1981)has fo-

cu.sed on the phenomenon of spontaneously broken sym-
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metry, i.e. the existence of states of a system that do not
have the full symmetry of the microscopic equations.
This concept has unified many diverse phenomena in
equilibrium systems, involving the formation of ordered
structures such as lattices, superAuids and magnets. An-
derson questions the existence or relevance of this
phenomenon in dissipative nonequilibrium situations,
and argues against the appearance of more complicated
emergent properties in this framework. The full impor-
tance of the concept of broken symmetry arises in situa-
tions where the symmetry involved is a continuous rather
than a discrete one. The formation of a regular spatial
structure in a previously spatially uniform system is ex-
actly such a situation, and so it is interesting to address
Anderson's ideas by bringing to bear the theoretical, and
particularly experimental, advances that have occurred
in the years since his provocative statements were made.

The existence of states that break translational symme-
try seems to us well documented now. Of course this
idea must usually represent an idealization in a finite ex-
perimental system, though the annular geometry in con-
vection could be thought of as an exception to this state-
ment. Simply from the relative physical scales, the ideali-
zation of an infinite system is better for a collection of
10 atoms on a 1attice in an equilibrium system, than for
10 —10 convection cells in a "large" nonequilibrium
structure. Nevertheless, impressive examples in non-
equilibrium systems now exist, as exemplified, in particu-
lar, by the structures in Figs. 49(a) and 87. In the former
a pattern of hexagonal convection cells in a cylindrical
geometry is shown. Certainly the rotational symmetry is
broken, but we also see that the hexagonal pattern seems
to exist in spite of the boundaries, not because of them.
Near the boundary one or two circular rolls are seen, but
this disturbance dies out in the bulk, leaving a regular
hexagonal lattice. Moreover, when the control parame-
ter is raised slightly, a completely different broken sym-
metry state appears, in the form of a spiral shown in
Fig. 49(b). Figure 87 shows a small portion from a sta-
tionary hexagonal pattern in a chemical reaction-
diffusion system, confirming Turing s original intuition.
This system is particularly noteworthy since the lattice
scale is determined entirely by internal parameters (the
diffusion and reaction rates, actually both molecular
quantities) rather than by geometrical factors such as the
height in Rayleigh-Benard convection (this point was
made many years ago by Walgraef et ah. , 1981, before
stationary Turing structures had been realized experi-
mentally). It is perhaps surprising that we invoke hexag-
onal patterns in our argument, when much of our article
has concerned roll states. In fact roll states are much less
suited to showing regular structures which are indepen-
dent of boundary effects and defect free, but this is also
true in equilibrium, where the analogous system —a
smectic liquid crystal —is notorious for its irregular
configurations with many defects (focal conies).

There are of course special situations where regular
spatial patterns may not form; for example the type I, in-
stability when the coefficients are such that the state just

above onset is unstable by the Newell criterion (4.57a).
As we have pointed out in Sec. XII.C, the parameteric
spin-wave instability in ferromagnets quoted by Ander-
son (1981)and Stein (1979) is another example where this
is true. However the idealization of the Suhl analysis fol-
lowed by these authors, leading to a stochastic distribu-
tion of the mean-square amplitude amongst many modes,
does not survive a more careful analysis. It is amusing to
note that the discussion of Sec. IV.A. 1.a.iv shows that
regular spatial pattern formation does not occur in that
system because it is not dissipative enoughf More typi-
cally, in dissipative systems the nonlinearities will favor a
concentration of the amplitude in a single or a few
modes, i.e. a regular pattern in space.

Perhaps more important than simply the existence of
broken symmetry states is a unifying set of new proper-
ties implied by their presence (Anderson, 1981). We will
attempt to point out experimental demonstrations of
these same properties in nonequilibrium systems.

o New dynamics: the existence of low-frequency
modes, often denoted Goldstone modes, reAecting the ab-
sence of restoring forces for uniform displacements. In
the language of this review this is the phase dynamics,
which as we have seen is well verified in experiments, for
example in convection (Sec. VIII.C). often this dynamics
is di+usiue, i.e. a nonoscillatory relaxation with time scale
~(Q)-Q for a disturbance of wave vector Q, whereas
usually (but by no means always) it is propagating in
equilibrium systems. Propagating phase dynamics may
also be found in nonequilibrium systems, e.g. the phase
dynamics of the wavy vortex state in the Taylor-Couette
system recently demonstrated experimentally by Wu and
Andereck (1991).

~ Generalized rigidity: action at a distance or long-
range forces. This feature is well demonstrated by exper-
iments on the Taylor-Couette system with ramped
sidewalls over a portion of the length. Here the nature of
the ramp may be used to control the steady-state "lattice
spacing" (i.e. the roll width) arbitrarily far away
(Sec. IX.B.2.d).

~ Topological defects which relax the generalized rigi-
dity. We have discussed this point in detail in Secs. V.B
and VIII.C. A particularly nice experimental demonstra-
tion is the climb of dislocations relaxing the wave vector
in the experiments of Pocheau and Croquette (1984)
shown in Fig. 19.

These examples demonstrate the same physical conse-
quences of broken symmetry as in equilibrium systems,
and there are many other examples throughout this re-
view where ideas motivated by broken symmetry con-
cepts have been tested experimentally in laboratory situa-
tions.

The robustness of the spatial structures in nonequili-
brium systems is however less clear, and requires some
further discussion. Certainly in the absence of principles
of time reversal invariance and of global minimization,
the range of phenomena leading to a breakdown of spa-
tial order is richer than in equilibrium systems. As a gen-
eral rule regular structures therefore only survive for
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some finite range of control parameter near threshold.
Sometimes, particularly in systems with roll type symme-
try, the parameters must be chosen quite delicately to
yield a stable stationary structure. On the other hand the
Taylor-vortex roll structure is found to survive into the
strongly chaotic regime, with remarkably clear del-
ineation of the large-scale rolls in a Quid which is strong-
ly chaotic on the small scales. Also we have suggested
that, as in equilibrium systems, cellular structures are
more robust than striped ones.

Thus, at the laboratory scale we find that the existence
of spontaneously broken continuous symmetries, and the
relevance of this idea to experimental phenomena (i.e.
"Broken Symmetry, " not just "broken symmetry" in the
language of Anderson, 1981), can be considered to be es-
tablished.

This conclusion does not address the larger question of
whether these structures appearing from nowhere in a
dissipative system are an appropriate first step in model-
ing more exotic (and more interesting!) phenomena such
as the emergence of life from the primordial soup. As we
have tried to make clear in this review there is no evi-
dence for the existence of any global minimization princi-
ples controlling the structure, except as a perturbative
statement near threshold. Such a principle would make
it easier to generalize from the small scale phenomena of
the laboratory (in the sense of number of unit blocks) to
the large-scale phenomena of biological complexity. As a
modest contribution to the debate we have reviewed tools
and ideas which may be relevant to the building blocks of
such phenomena. It seems plausible to us (although by
no means demonstrated) that reaction-diffusion type
mechanisms, perhaps augmented with other phenomena
such as forces and Aows, may provide a mechanism for
communicating information encoded at the molecular
level up to the cellular level. It is encouraging to note
that parameters set by molecular scales can lead natural-

ly to macroscopic length scales, through energy barriers
appearing in exponential activation expressions that are
large for large molecules. As in many branches of phys-

ics, however, it is simply not clear how many conceptual
leaps are involved in putting together these building

blocks to make the full satisfying edifice.
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complete this project. They are particularly indebted to
the Aspen Center for Physics for providing a fruitful en-
vironment for this collaboration. MCC was supported in

part by the NSF under Grants No. DMR-8412543 and
DMR-9013984.

APPENDIX A. DERIVATION
OF THE AMPLITUDE EQUATION

1. The Swift-Hohenberg equation

We first illustrate the multiple scales approach used to
derive amplitude equations on a particularly simple ex-
ample where the answer can almost be guessed without
calculation. We consider the Swift-Hohenberg model
(3.27) in two dimensions,

B,u =Eu —(V' +qo) u —u (A 1)

where for clarity we introduce the scale qo in the original
equation. Near the bifurcation, i.e. for ~E~ &&1, we wish

to separate fast and slow scales for x and t. We therefore
define

X=c' x Y=c' y, T=t-t, (A2)

anticipating the anisotropic scaling for roll systems in

Eq. (4.3). We will consider u(x, t) to be a product of
functions of fast and slow variables. From the chain rule
for differentiation we therefore must make the replace-
ments

+E ~x, ~y~~y+& ~x ~, ~ ~t+

(A3)

etc. , where on the right-hand side 0, i3, and 8, now only
act on the rapid dependences. The differential operator
in Eq. (Al) becomes

(V +qo)~I3„+2E'~B„B~+eB~+E'~Br+qo, (A4)

where we assume no rapid y dependence, i.e. we are ex-

panding about a roll state with wave vector along x. Let
us now set

ACKNOWLEDGEMENTS 0 =C QO+E, Qi+6 Q2 (A5)

The authors have benefited from conversations and

collaborations with many colleagues, too numerous to
and insert (A4) and (A5) into Eq. (Al). Collecting orders
of E' we find

1/2. =p (A6a)

(c}2 +q ) u, = —2(2a. a +a', )(a„'+q',) u, , (A6b)

3/2. (a„'+q,')'u, = —2(2a.a +a', )(a„'+q,')u, —[a,—I+u', +(2B 8 +B ) +28 (8 +q )]u, . (A6c)
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The first two equations are solved by setting

uo(x, t)=AD(X, Y, T)e ' +c.c. ,

u, (x, t)= A, (X, Y, T) e ' +c c.

since Eq. (A7a) implies

(8„+qo ) uo =0,

(A7a)

(A7b)

(A8)

is self-adjoint and its zero eigenvectors are exp(+iqox ).
The Fredholm theorem thus requires that the coefficients
of these terms on the rhs of Eq. (A6c) should vanish iden-
tically, i.e. Ao should satisfy the solvability condition

[c} —1+3l 3
l +(2iq 3 +8„)] 3 =0 . (A12)

Returning to unscaled units

MV=G . (A9)

so that the rhs of Eq. (A6b) vanishes identically. The last
equation (A6c), has a nontrivial rhs so the linear operator
on the left must be inverted. Since this operator has van-
ishing eigenvalues we must impose a solvability condition,
requiring that the vector on the right should not drive
any eigenvector with zero eigenvalue (Stakgold, 1979).
The simplest example of such a condition occurs for a
matrix equation

A(x, t)=e'i Ao(X, Y, T), (A13)

we have the general amplitude equation (4.3)

r,a, ~=.~+@[a.—(i/2q )8 ] ~ gol~l'~, (A14)

with

~o= 1, $0=4qo, go=3 . (A15)

[The value of go depends on the arbitrary normalization
in Eq. (A7a). ]

Let Co be an eigenvector of the adjoint M with zero ei-

genvalue. Then clearly
2. The Kuramoto-Sivashinsky equation

(Co, MV)=(M Co, V)=(CO, G)=0, (A 10)
Let us consider the damped KS model (3.31) in one di-

mension

Xo=(B„+qo ) (A 1 1)

i.e. 6 is orthogonal to Co. The Fredholm theorem states
that Eq. (A10) is also a sufficient condition, i.e. Eq. (A9)
has a solution for V if and only if 6 is orthogonal to all
zero eigenvectors of M . This theorem also holds if M is

replaced by a difFerential operator.
For Eq. (A6c) the operator

a, u = —gu —0'. u —a4u —ua. u, (A16)

which we rewrite as

B)u =Eu (B~+qo) u uBxu (A17)

with E= 1/4 —g, qo = 1/2. The equations corresponding
to (A6) are

1/2,

3/2 .

(8 +qo) uo=0,

(8 +q ) u, = —4B 8 (8 +q )u —u 8 u

(a„+q ) u = —4a„a (a +q )u,
—[BT—1+ 4B„Ox+28~(B +qo)] uo —uoB u) —u)B uo —uoB~uo .

(A18a)

(A18b)

(A18c)

These equations are solved by setting

uo(u, t)= Ao(X, T) e ' +c.c. ,

u, (x, t)= A, (X, T) e ' +B&(X,T) e ' +c.c. , (A19b)

u2(u, t)= A2(X, T) e ' +Bo+B2 e ' +B3e ' +c.c.

(A19c)

[BT—1 —4q20a~2+(9q2O) ' la, l'] g, =0, (A21)

which leads to the general amplitude equation (A14) with

E=1/4 —g, ro=l, go=4q0=2, go=(9q ) '=2/9 .

(A22)

The function B&(X,T) can be calculated by setting the
coefficient of exp(2iqox ) in Eq. (A18b) to zero, yielding

B,= i (9qo) ' Ao —. (A20)

~ith these choices Eqs. (A19a) and (A19b) are satisfied
identically, and Eq. (A19c) once again requires a solvabii-

ity condition, which is obtained by setting the coefficient
of exp(iqox ) on the rhs to zero. The result is

3. Rayleigh-Bernard convection

A much more involved calculation is necessary to
derive the amplitude equation (A14) from the hydro-
dynamic equations (8.3) for Rayleigh-Benard convection.
We will once again use the method of multiple-scales per-
turbation theory. An alternative approach, perhaps
more familiar to physicists, is the mode expansion or pro-
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Vi9+V to=a ' [B,V w —B,Vi [(ui. Vi)ui+wB, u]

+Vi [(ui . Vi) w+ mB, w ] l . (A23b)

We have grouped together terms on the lhs that are in-
volved in the linear threshold calculation. Terms on the
rhs are zero in this limit; we will treat these terms by per-
turbation theory, as well as expanding the operator on
the lhs about threshold. In addition to Eqs. (A23) there
is an equation for the vertical vorticity Q, =(V X u), .
Once w and Q, are known at each order, u may be calcu-
lated from the continuity equation (8.10c). For rigid top
and bottom boundary conditions, to the order of the ex-
pansion we will need, 0, =0. In the original derivation
of the amplitude equation for the free-slip model (Newell
and Whitehead, 1969; Segel, 1969) this same assumption
was made. As discussed in Sec. VIII.A, Siggia and Zip-
pelius (1981b) showed that if B~ W 0, and for finite
Prandtl numbers, this is in error even for the lowest-
order amplitude equation, since the vertical vorticity is
not damped in the case of free-slip boundaries.

For pedagogical purposes we will use the infinite
Prandtl number limit o.~~. For the rigid boundary
case this is purely for convenience of exposition, since the
many terms on the rhs of (A23b) are eliminated: retaining
these terms in an actual calculation simply makes the
bookkeeping harder, there is no difficulty of principle.
For the free-slip case this assumption eliminates the
difficulty of including the vertical vorticity, since Q, —= 0
when o. ~ ~. We will carry the calculation far enough
in the rigid case to make the formal procedure clear.
Evaluating the expressions is best done numerically, al-
though closed form expressions can be obtained. For the
free-slip case we evaluate the expressions explicitly.

We first solve the linear threshold problem, and look
for the neutrally stable mode (growth rate zero)

8(x,z)=8 (z) e'q",

w(x, z)=w~(z) e'q

u(x, z)=u (z) e'q

(A24a)

(A24b)

(A24c)

where the q-dependent onset Rayleigh number R =R, (q)
is given by solving

(8,' —q') R, (q)

($2 2)2

Oq(z)

w (z)
=0, (A25)

together with the boundary conditions at z =0, 1

jection technique, also known as slaving (Haken, 1983;
Cross, 1980). As for the previous models, we will investi-
gate the situation of a single set of slowly varying rolls
close to an ideal pattern of straight rolls parallel to the y
axis (wave vector along x).

It is convenient first to eliminate the pressure field
from Eq. (8.10a) for the velocity field u = ( ui, w )
= (u, U, tU ), and rewrite Eqs. (8.10) in the forin

V 0+Rw =B,O+(ui Vi) 8+wB, &,

e, (z) =Z, (z) =a, m, (z) =0, r1gld )

0 (z)=wq(z)=B, i' (z)=0, free-slip .

(A26a)

(A26b)

For the free-slip case we readily find (with an arbitrary
overall normalization),

8 (z)=(4i/2/m )(q +m ) sinvrz, (A27a)

w (z) = (4&2/~ ) q sin~z, (A27b)

u (z) = ( 4i—&2/m)q c. osvrz, (A27c)

and for rigid boundaries the solutions may be found in
Pellew and Southwell (1940) and Schliiter et al. (1965).
We choose the value of q=qo that minimizes R, (q) and
will write L9, w, u as 00, w0, u0 at this value. For free-
slip, qo=~/&2, R, (qo)=R,o=27~ /4 and for rigid
boundaries, q0 =3. 114, R,0 —-1708.

We now expand Eqs. (A23) consistently in s'~, with
c, = (R —R,o)/R, o,

O= ~'"e0+~e, +
W =E W0+EW1+

9 —6 00+80 i +
At O(E' ) we have

9O= Ao(X, Y, T) e ' Oo(z)+c. c. ,

no=Ho(X, Y, T) e ' wo(z)+c. c. ,

(A28a)

(A28b)

(A28c)

(A29a)

(A29b)

a, e+(u, V, )e+~ a, e

0

where X has the expansion

X=Xo+E'~ X,+EX2 +
with

(A30)

(A31)

0

a,'+a.'
a

R 0

—(8, +8 )
(A32a)

0
(2B„B+8 ), (A32b)

X Z

0
a2—2( Q2 +Q2 )

0 R,0

0 (28 8 +8 )
(A32c)

On the rhs of (A30) it turns out that the only terms we
need are

uo= Ao(X, Y, T) e ' uo(z)+c c. (A29c)

where we allow the amplitude of the threshold solution
A0 to vary with the slow space and time scales intro-
duced in Eq. (A2) above. As before, these scalings with E

are formally determined by the ultimate consistency of
the expansion, and in particular the balance of terms
found in Eq. (A48) below. They are also readily obtained
by inspection of the growth rate o(q, E), Eq. (4.4).

We rewrite Eqs. (A23) (remember o ~ ~ ) as
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B,e+(ui Vi)e+w8, 8=E
I uoB eo+woB, eo]

+"~'I a,e,+(u, a„e,+u, a„e,)+(w, a, e,+w, a, e, )]+o("")+o("), (A33)

where the O(E ~
) terms not displayed lindependent of x

or proportional to exp(+ 2iqox)] are not needed to the
order we will go. At O(e) we have

o u, a. I9o+ woO. eo
(A34)

w,

and we would like to invert this equation to find (8&, w, ).
As above, in order to do this we require that the rhs of
Eq. (A34) be orthogonal to all zero eigenvectors of Xo.
Since Xo is self-adjoint, we know one such eigenvector,
namely the onset solution (eo, wo). The nonlinear terms
on the rhs of (A34) depend on the fast variable x as
exp(+ 2iqox), or are independent of x, and they are au-
tomatically orthogonal to (eo, wo) ~exp(iqox) On. the
other hand the linear terms in Eq. (A34) do involve the
dangerous exp(+ iqox) factors and we might expect a sol-
vability condition at this order. However, it turns out
that since we are expanding about the minimum qo of
R, (q), this condition is identically satisfied. Indeed, we
may write

&o
w)

uoa„go+woa, eo

0 (A36)

This result depends on the identity, obtained by
differentiating Eq. (A25) with respect to q,

B~ qo
2

R o

($2 q2 )2

eo(z)

w, (z)

where eo(z), wo(z), and uo(z) are defined as
B 8 (z)

I ~, etc. Then the functions e„w,satisfy the

same equation as O„w„exceptthat the linear terms are
absent

eo(z)

w] = w) +(2qo) '(2B Ox+Bi ) Ao wo(z) +c c

1 0
2go —1 —2(B,—qo)

eo(z)

wo(z)
=0. (A37)

uo(z)

(A35)
Equation (A36) is now nonsingular and may be inverted
to yield

w(

f ) (z) . eo(z)
+A, ef2(z) ' wo(z)

f3(z)
+cc. +Idol f ( )

(A38)

with the f;(z) determined below. Similarly, the replace-
ment of u, by u, in Eq. (A35) has the eff'ect of eliminat-
ing terms in Bxuo from the O(s) continuity equation,
which simply becomes

0 ui+B, w, =0 . (A39)

f, (z)=f, (z)=f (z)=0, (A40a)

(Note that the above procedure was not necessary in the
simple examples of Secs. A. 1 and A.2, because there uo
was zero. )

The elimination of a solvability condition at order c
works for any type I, system. For the free-slip case the
term on the rhs of (A36) reduces to 72m Idol sin2vrz,
and the inversion of (A36) yields

f3(z)= —18msin2mz . (A40b)

02

o =6,

where G contains many terms. The requirement that G
should not drive the zero-eigenvalue eigenvector of Xo
yields at this order a nontrivial solvability condition,
which finally gives us the amplitude equation. Again we
need only collect the terms in exp(+ iqox ), to find

The functions f, (z) can also be obtained, with somewhat
larger effort, in closed form for the rigid case. The
second term in Eq. (A38) is the complementary function,
with A, unknown at this stage. Using the expressions
for (8&, w&, u, ) from Eqs. (A35) and (A38), we can iterate
to the next order, O(s ), obtaining
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W2

1 0
—1 —2(B +i3, )

0o

Mp
[2B B~+Bi )A, +B~Ap] e ' +c.c.

0
—2(a.'+ a,')

0p

Wp
(2a.a +a', )'a, e ' +c.c.X X Y P

0pR,pdp
lgpX

0 (2B Ox+Br) Ap wp

0p+ ~p~. 0~+ w 1~,0p+ wp

0
2lgpX 3lgpX

+ +Bp+B2 e +B3 e +c.c. . (A42)

In Eq. (A42) the symbol ( )+ denotes picking out terms varying with the fast variable x as exp( iqpx). As in Eq.
qp

(A34) the first term on the rhs of (A42) contains the factor

1 0
—1 —2(82+82)

0p

COp

EgpX
e (A43)

so this term may be subtracted out as in (A35)—(A38).
In the present case, for both free-slip and rigid boundaries, the operator Xp is self-adjoint under the scalar product of

the vectors V, =(O„w,), Vi, =(0&,wb)

( Vg ~ Vb ) =I dxidz [(ViOg )*'(V~Ob ) +R~pwg*w~ ] (A44)

so that we may simply require orthogonality of G (under this definition of scalar product) to the zero eigenvalue mode
(Op, wp). The free-slip case is particularly simple because the fourth term on the rhs of Eq. (A42) reduces to

gp

w pc) 0] —72&2~'~Ap~'Ape"' +c.c.
(A45)

Also in view of (A27) we have

&p(z)

2qp wp(z)

3'
1

sing (A46)

Thus the solvability condition reduces to the scalar product

3m'

(L9p(z), wp(z)),
'

0 (2iqpB~+Br) Ap+
7T' 0

0pR,pAp

(2lqpB~+By) wp
2 2 — +

72 &2 ir'~ Ap ~'W p

0 =0

(A47)

where we define the scalar product in the same way as in Eq. (A44), except that 7'i is replaced by iqp, which eliminates
the xz dependence, leaving only the z integral. This finally yields

(2/3~')a, ~,=~,+(8/3~ )[8 +(1/2iq )8 ] ~ —(8/3m )~Ap~ Ap, (A48)

i.e. Eq. (A14) with

rp=2/3m. , gp=8/3~, gp=8/3m2 . (A49)

coeKcient to

(A51)

Note that with the choice of normalization defined by
(A27)—(A29) the Nusselt number is given by

(JV—1)R/R, =(wp9p&/R, =(16/3~')l WpI' . (Aso)

We may rescale Ap to eliminate the factor of (16/3m ) in
accordance with Eq. (8.17), which changes the nonlinear

In the rigid case, although the inversion of Eq. (A36)
has been carried out analytically for pure-Quid convec-
tion by Schliiter et al. (1965), a numerical calculation is
generally necessary to find the f;(z) of Eq. (A38). Simi-
larly, the solvability condition resulting from Eq. (A42)
involves scalar products of known functions, which may
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be evaluated numerically. For cases where Xo is not
self-adjoint (e.g. the stationary bifurcation in binary-fiuid
convection) the adjoint of Eq. (A25) must be solved and
the appropriate adjoint eigenvector used.

Notice also that in the calculation of u, from Eq.
(A39) necessary to evaluate the rhs of Eq. (A42) we used
the fact that the vertical vorticity Q, =O at this order.
As mentioned above, this relation is correct for rigid
boundaries, but only in the limit cr = oo for free-slip. If
cr & oo in the free-slip case, then Q, is a slow mode which
must be included as a separate mode in a consistent am-
plitude equation involving y variation. This was missed
in the original derivation of Newell and Whitehead
(1969) and Segel (1969},since the difficulty does not be-
come apparent until one calculates terms that are formal-
ly of higher order, even though the e6'ect of vertical vor-
ticity enters at the lowest order. As mentioned above,
this point was first elucidated by Siggia and Zippelius
(1981b).

where the diffusive q scaling of the time is justified a pos-
teriori by the nontrivial equation obtained below with
this assumption. The small parameter g is a bookkeeping
parameter which organizes the perturbation expansion.
Its inverse specifies the long length scale over which pat-
tern reorientation occurs, for example g

' might be tak-
en as the system size L.

The phase variable is defined according to
X

q(X, T)=V/( xt); P(x, t)= I q(X, T) dx . (B5)

These expressions are somewhat clumsy, involving a mix-
ture of fast and slow coordinates. To eliminate this it is
convenient to introduce a scaled phase variable N

'@(X,T), (B6)

VP =Vx@(X,T)=q(X, T)=0 (1), (B7)

where derivatives of 4 with respect to its arguments, the
slow coordinates, are assumed to be 0 ( 1 ). Now clearly

APPENDIX B. DERIVATION OF THE PHASE EQUATION

As an example of the derivation of the phase equation
we will use the model of Eq. (3.29)

a, u =su —(V +1) u+3(Vu) V u, (Bl)

in two spatial dimensions, x=(x,y). Since we will study
a state in which the direction of the local wave vector
varies over large angles, we write the ideal solution in a
way that does not single out a preferred coordinate axis
by introducing the phase variable P

u;d„,(x)=u' '(P; q), (b=q x . (B2)

Here u' ' is the fully nonlinear ideal solution which usu-
ally can only be obtained numerically. It is important to
remember that u ' ' has a parametric dependence on q, in
addition to the dependence on P. For illustration pur-
poses we may consider a one-mode Galerkin approxima-
tion to u' '

with Vx signifying gradients with respect to the slow
coordinates Vx = (a+,a z). Higher derivatives Vx acting
on 4& are 0 (1) corresponding to gradients of q which are
0 ( g ) as desired.

We now expand the solution to (Bl) in powers of g:

u =u ' '(P, X, T)+flu'"(P, X, T)+ (B8)

with each u" periodic in the variable P with period 2'.
Derivatives act according to the rule

Vf(P, X, T)=qaQ+ rjvxf,
a,f(Q, X, T)=rl(a 4)(aP)+q a f .

(B9)

(B10)

We will also need the following results derived from (B9):

(Vf ) =q (ag) +2g(ap)(q V ) f+0(q2), (Bl1)

V f=q'a~g+& [2(q.Vx)+(V„q}](ag}+0(&').
(B12)

u' '(P, q)=a cosP,

a~ =(4/3)q [c,—(q —1) ], (B3)
We now substitute (B8)—(B12) into (Bl) and collect terms
at each order in rI. At 0(qo) we obtain

X=gx, T=g t, (B4)

which is a surprisingly good approximation for Eq. (Bl).
We now allow the wave vector to vary slowly in space

and time by introducing scaled coordinates q=q(X, T)
with

(q2a2+ 1 }2]u~0~(p)+3q4(a u ) (a u )=0,
(B13)

which defines the ideal solution u' '(P, q). At 0(g') we
have

[E—(q a~+1) ]u'"+3q a~[(a~u' ') (a~u"')]

=(q a&+1)[2q.vx+(V q)](a&u' ')+[2q Vx+(Vx q)](q a&+1)(a&u' '}

—6q~(a&u )(a&u )(q.V&)u —3q (a&u ) [2q V&+(V& q)](a&u )+(a&u ) aT(p, (B14)
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where it must be remembered that q depends on the slow
coordinates, as does u ' ' through its dependence on q.

The details of the right-hand side of Eq. (814) are not
important for pedagogical purposes. Let us write this
equation as D~~ =t) [qDt] . (822)

with g3 = 1, the only change is that the coeKcient of the
last term in Dt, Eq. (818), becomes 1 in place of 3. In
that case

The important point is that the operator on the lhs, act-
ing on u "' which is to be determined by Eq. (814), has a
zero eigenvalue eigenvector which is simply the transla-
tion mode B&u' '. This result follows quite generally
from the translational invariance of the system, which is
the symmetry leading us to seek a slow phase dynamics.
This again leads to a solvability condition requiring that
the rhs not drive this translation mode. For the particu-
lar example (81)X, is self-adjoint under the simple scalar
product

(a, b)=(2rr) ' f a(tb) b(P) dP= (ab ),

(818)

D~~(q) = t) [2q(q (c) u' ') —(t)&u' ') )+q ((t)&u' ') ) ].
(819)

Then r(q), B(q) of Eq. (4.76a) may be evaluated using
Eqs. (4.77a,b). We have therefore now derived the non-
linear phase equation with coefticients that depend on the
ideal nonlinear solution u ~ '. In general Eqs. (818)—(819)
must be evaluated numerically. For the one mode ap-
proximation to (81) we have

Dt=(q —1)a + —,'q a

D~~ =B~[q(q —l)a + —,'q a ], (821)

with aq defined in (83).
For the potential analogue of Eq. (81), i.e. Eq. (8.38)

so the solvability condition reduces to orthogonality of A'

to B&u' '. This gives

&(a,u'")'», C =2Vx [q&q'(~'u"')' —(»"')'&]
+q V [q((c)&u ' ')" ) ]

+2q (Vx q)((t)&u' ') ) .

Equation (816) may clearly be written in the form

BT@=ft(q)Vx q+f2(q)(q Vx)q,

consistent with the general form of the phase equation
(4.76). The functions f&, f2 depend on q, and on aver-
ages involving the ideal nonlinear solution u' ' and its
derivatives, all of which also depend on q.

From these expressions it is straightforward algebra to
derive the diffusion constants D~~ and Dt of Eq. (4.7O)

which we will quote explicitly,

D (q) = 2(q (t3 u' ') —(t) u' ') &+3q &(c) u' ')"
&
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