
What is a spin glass? A glimpse via mesoscopic noise'

M. B. Weissrnan

It is an open question whether the slow dynamics of spin glasses is more accurately described by a model
based on rather compact droplets which can Aip thermally, or by a picture of more disuse sets of flipping
spins with properties described by hierarchical dynamics. Techniques have been developed for analyzing
spontaneous fluctuations in mesoscopic samples which can directly address this question. In a well-known

spin glass, CuMn, the experimental results are better fit by the hierarchical picture. Previously unex-

plored properties of the space of metastable configurations are directly measurable by these mesoscopic
methods.
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I. INTRODUCTION

Thc cxpcllnlcIltal work and much of tllc theoretical %o1k de-
scribed here was performed principally by N. E. Israeloff and
G. 8, Alers.

~See Binder and Young (1986), Dotsenko et al. (1990), and
Fischer and Hertz (1991) for excellent reviews. %"hen some
reference seems called for but none is given, turn to these re-
views. Many references to specifIc works relevant to the meso-
scopic experinlents may be found in Weissman et a7. (1992),
wllich also 1ncludcs ITlany cxpcrlnlcntal and thcorct1cal details.

Spin glasses are often taken to be the most experimen-
tally and theoretically accessible realization of systems
with quenched {i.e., time-independent) disorder. Spin
glasses difFer from structural glasses in an important
respect: the spin-glass Hamiltonian already contains ran-
dom 1ntcI'RctloIls, whereas randomncss 1Q 8 stl Uctural
glass is quenched-in kinetically as the glass is formed.
Thus it has been hoped that spin glasses would be easier
to understand than ordinary glasses. Nevertheless, as the
standard opening cliche goes, despite many years of in-
tcnsc cavort, some of thc Inost basic fcRtUr'cs of thc sp1Q-
glass state (or states) remain obscure.

A spill glass has 8 lalgcly random-look1ng IIl1xturc of
ferromagnetic and antiferromagnetic interactions. For
example, 1Il dllUtc so11d solutions of magnetic Rtonls 1Q

nonmagnetic metals {such as CuMn, AuFe, and many
others of the best-studied classes of spin-glass materials),
the spins interact via their oscillatory polarization of the

conduction elect1'OIls (at llalf tile FeI'1111 wavele11gtll, slII11-

lar to Friedel oscillations). The random locations of the
magnetic 1ons with Icspcct to each, other then give thc
random mixture of interaction signs.

It is, of course, impossible to satisfy simultaneously all
the 1nteractions in such a complicated jumble. Although
systems with compctlIlg 1Iltc1act1GIls Rrc Ilot Qcccssarlly
complex, even without randomness it is often very hard
to determine the ground state of large systems with such
competing interactions. In fact, for spin glasses it
remains an open question whether a unique or nearly
UIl1qUc glound state cx1sts.

I shall take as the definition of 8 spin glass an empirical
description of the phenomena that lead us to call a ma-
terial a spin glass, rather than a formal Hamiltonian
description. %hen the real part of the ac susceptibility of
a material [g'(co) =Re(y(co) ) ] follows a roughly
paramagnetic tcmpcratUI'c dcpc1ldcIlcc down to some
temperature TG ~ Rt wh1ch 8 sharp CUsp occurs~ thc ma-

terial is a candidate to be a spin glass. It is important
that the deviations from paramagnetism of y'(co) above

TG not be large enough for a ferromagnetic, ferrimagnet-
1c, GI' Rntifcrromagnctic tI'Rns1tlon to occUr Rt TG. SG1Tlc

(generally unidentified) degrees of freedom freeze at TG

(at least on the time scale 1/m), but these involve spin-
sp1Il coupllIlgs with Rppl oxlmatcly IRndom slglls. Thc
out-of-phase susceptibility y"(co) = Imp(co) is essentially
zero well above T&, starting to rise just above TG to a
broad peak just below TG (see Fig. 1). Notice that I have
not specified thc frequency m; except for slight shifts of
TG, these phenomena are independent of m for any m well

below 8 microscopic sp1Q-Iclaxat1GIl I'Rtc. Thc typ1cal
range of f=co/2' in actual measu—rements is 10 Hz to
10 Hz. Thus the spin glass shares with ordinary glasses
a broad range of characteristic relaxation rates below a
rather sharply dc6ncd temperature.

The spcci6c heat of spin glasses does not show any
sharp feature at TG or elsewhere, afFording no easy
identification with standard phase transitions. However,
sharp features, apparently divergences at TG, have been
found in nonlinear susceptibilities, implying divergent
corrclat1on lcIlgths foI' spill-sp1Il coI'Iclat1on fUDct1GIls of
order 4 and higher, sUch Rs thc mean-square coITclatlon
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f=200 Hz (from Mulder et al. , 1981).

There have bccIl 1TlaDy thcorctica1 RppI'o aches to
describin spin-glass states. I shall not attempt here to
dcscl'1bc them completely, bUt shall 1ntI'odUcc scvc181
that give a feel for the range of these theories. Two
p1ctUI'cs —thc dI'oplct thcoI'y Rnd 8 pictUIc of hierarchi-
cal kinetics —will be presented in just enough detail to
provide motivation for the experiments reported in Sec.
IV.

The earliest theory for anomalous properties of dilute
magnetic atoms in transition metals is due to Overhauser
(1959). He proposed that the host metal forms a spin-
density wave (SDW) with a q vector whose magnitude is

Of Spin pR1I'S.

The materials that show spin-glass phenomena include
not only metals with dilute magnetic solutes, but also
some concentrated disordered magnetic metals (such as
amorphous I'eZr) and partially disordered magnetic insu-
lators (such as Eu Sri „S).(In some cases the spin-glass
state forms as a ferromagnetic state is further cooled, re-
quiring some modification of our definition). Although in
811 cases both raIldoITlncss RIl«i coITlpllcatcd compct1ng 1Il-

tcractlons RI'c present~ thc cxtcnt, to which thcsc d1Fcrcnt
materials have similar spin-glass order is not known.

I plan first to introduce qualitatively some diverse
spin-glass models, including the we11-known droplet mod-
el and models of hierarchical kinetics. Then I shall dis-
cuss thc simplest 1Tlcsoscopic pI'c«iictloIls of «iI'oplct. Rn«i

hierarchical models. With the introduction of the mea-
surcmcnt tcchIllquc RIld 1Illt181 results, wc shall scc that
the simplest droplet pictures are inapplicable. Then
some Ilcw hlghcI-oI'«ic1 sca11ng tcchn1qucs w111 bc 1QtIo-

duccd to dlst1Qgulsh bctwccIl morc complicated «iI'oplct

pictures and generic hierarchical pictures. Finally, being
unable to describe the results in a droplet picture, I shall
give some of their implications in a hierarchical frame-
work. Along the way some extra bits of infoI'mation,
such as dynamical coherence sizes, will emerge.

dctcrmlned by thc coDduct1OIl"clcctroD FcI'IIl1 sUI'face.
Thc magnetic atolTls RllgIl w1th thc SOW, providing thc
IlcgRtlvc fIcc cIlclgy I'cqU1I'cd foI' thermodynamic stab111-

ty. It is unclear in several recent descriptions of this
model whether the ground state would be a single SDW
with which each local moment aligns or if the random
placements of the local moments would favor breakup
into SD%' domains to increase the resulting polarization
at the magnetic atoms (Mydosh, 1988; Werner, 1990).
O«idly enough, although this theory has fallen into dis-
favor, it is the only one supported by direct evidence, in
that IlcUtlon scattcI'1Ilg on CQMD Rnd AgMD shows thc
pI'esence of a set of SDW-like components with wave vec-
tois 1IlcoITllTlcnsU1atc with. thc 1Rtt1cc and with cohcI'cncc
lengths of roughly 4 nm (Mydosh, 1988; Werner, 1990).
%'e shall see that mesoscopic experiments on a 50-nm
scRlc I'cillfoI'cc thc stI'ong lmprcsslon g1vcn by flnltc-slzc-
effect measurements (Sandlund et al. , 1989; Gavrin
et aI., 1990) that this coherence length is much shorter
than the spm-glass dynamical correlation lengths.

Feigel'man and Ioffe (1984) predicted that a "hierarch-
1cal sUpcI'paramagnet with sp1Il-glass-like pI'opcI't1cs
should form if each spin interacts with a large number of
1ts Qclghbo1s„as oDc would cxpcct, foI' 1IltcI'actloIls V18 1Il-

cip1cnt SDw s. whcthcI thc h1cfRI'ch1CR1 klIlctics to bc
described below has anything to do with the hierarchical
superparamagnet is beyond my current understanding.

A highly accessible picture, known as droplet scaling,
explicitly focuses on spatial correlations among spins as
the key to understanding the slow dynamics, as well as
the critical behavior, of spin glasses (Bray and Moore,
1987; Fisher and Huse, 1988a,1988b). In this picture, the
ground state 1s UI11quc cxccpt foI' Rny obv1ous syIDITlctI1cs
of the Hamiltonian, as is any pure state at any low tem-
perature. Because spin-coupling terms in the Hamiltoni-
an are random, the typical energy required to turn over
RIly compact blob of spiIls «iocs Qot scale Rs 1ts sulfacc
area (as in a conventional ordered phase) but as some
lower power of the linear dimension I,. One might at
first gUcss that, s1Qcc thc interactions bctwccIl splns hRvc
random sign, this interaction energy mould scale as the
square root of the surface area. Ho~ever, since the
lowest-energy surface of a thermally flipped. blob will not
be a randomly picked surface but rather one that mini-
1Tlizcs thc cncI'gy cost of Aipping thc blob, th.c actual scal-
ing exponent turns out to be lower than this simple guess.
Morc importantly, th1s typlcRl cncrgy scale only sets thc
width of 8 dlstI'1bUtlon of cncIg1cs wh1ch. goes sITloothly
to 8 finite dcDsity Rt zero sp11tting. ThcI'cfoI'c, thc pI'oba-
bility of ending large blobs that can turn over at a cost of
less than about kT {at finite temperature) goes to zero
oIlly Rs 8 powcI' of I . ThcI'c 1s 11ot RQ cxpollcllt181
freezing-out of finite-size droplets, such as would be
found for Qonrandom 1IltcI'Rct10Ils.

If one adds the plausible assumption that the Ar-
I'hcn1Us RctlvatloIl cDcrgy, 1.c., thc cIlcI'gy barI'1cI' dctcl-
mining the rates of the droplet fmips, also shows scaling in
L„oneobtains a wide spectrum of relaxation times. The
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essence of the droplet explanation for this spectrum is
that slow events come from big droplets, while fast events
come from small ones.

The droplet approach relies crucially on the finite
range of the interaction and on the presumed spatial scal-
ing of the characteristic energies. An opposite approach
(Sherrington and Kirkpatrick, 1975) is to simplify the
Hamiltonian by completely ignoring all spatial proper-
ties, letting every pair of spins interact with equal proba-
bility. That simplification, of course, raises the distinct
possibility that the solution will miss important real-
space correlations in the actual states. With this
simplification, the spin-glass problem has actually been
formally solved (at least within certain approximations)
by Parisi and co-workers, as described previously in this
journal (Binder and Young, 1986) and elsewhere (Mezard
et al. , 1987).

The most striking feature of the Parisi solution is that
infinitely many states, unrelated by any simple sym-
metries, are found for an infinite system. ("State" here is
meant in the sense of a pure thermodynamic state —a set
of configurations in thermal equilibrium with each other. )

Since any two distinct states differ by an infinite number
of spins, the time required to convert from one to the
other is infinite, just as the time required for a ferromag-
net to Aip spontaneously from spin-up to spin-down is
infinite. It is the fluctuations within an individual state
among long-lived configurations, differing by a large but
not infinite number of spins, that give measurable slow
dynamics. [So far, approximate theoretical attempts to
analyze these intrastate dynamics in the Parisi theory in-
dicate that their spin-fluctuation spectrum should be
closer to co

' than to co ', in contradiction to all exper-
imental data (Sompolinsky and Zippelius, 1982)]. There-
fore any connection between the unusual space of states
and the observed dynamics can only be indirect.

Such an indirect connection has been proposed on the
basis of a guess that a very special topology found for the
Parisi-state space might also apply to the space of long-
lived spin configurations within any particular state. The
topology of the set of states can be described using a sim-
ple metric based on the "Hamming distance" D (Rammal
et al. , 1986). D is simply the fraction of spins that must
reorient to convert one state to another. Surprisingly,
with this metric the distances between low-lying states in
the Parisi picture can be represented by a tree on which
the states are the end points, as in Fig. 2. The distance
between any two such points is represented by the height
to which one must go on the tree to connect those points.
Spaces on which the metric has such a representation are
called ultrametric (Rammal et al. , 1986). This ul-
trametric topology is a special property, absent in generic
metric spaces. A similar metric, proportional to the
(finite) number of spins that must fiip to convert one
configuration to another, may be used on configuration
space, but the resulting topology is unknown.

The ultrametric structure of the Parisi-state space has
led some theorists (e.g. , Ogielski and Stein, 1985; Paladin

FIG. 2. A bifurcating hierarchical tree. The actual spin states
are represented by the end points of the lowest branches. The
Hamming distance D between any two states is represented by
the height of the highest vertex in the lowest path connecting
the states. The state overlap q is greatest between states with
the least D. The barrier height between any two states is
presumed to be a finite monotonic increasing function of D.
Thus on the time scale of a given experiment only part of the
hierarchy, e.g., that shown in thick lines, will be explored. Bi-
furcations are shown only for simplicity.

et al. , 1985; Schreckenberg, 1985; Bachas and Huber-
man, 1986; Maritan and Stella, 1986; Sibani, 1987) to
wonder about what sort of dynamics might be observed
in spaces with hierarchical (i.e., ultrametric) structure.
Again, such hierarchical kinetic pictures would describe
dynamics among metastable configurations, not among
the pure states described by Parisi. Such hierarchical ki-
netic descriptions can also be motivated by pictures other
than the Parisi solution. As Ogielski and Stein point out,
a variety of systems describable by rough energy
landscapes might show hierarchical kinetics, with higher
vertices corresponding to higher barriers.

The central point of this paper is that the dynamics on
ultrametric spaces has characteristic measurable signa-
tures distinct from the dynamics of, for example, collec-
tions of droplets. The trick is to find the right dynamical
properties to measure.

In order to make a sensible, simple kinetic theory, one
assigns to each vertex on the tree some characteristic
time ~ for transitions between the clusters of states des-
cending from that vertex. Vertices connecting distant
clusters, i.e., high-D vertices, should correspond to long
times.

Theorists have explored a variety of plausible mono-
tonic maps from D to ~. The simplest such map assigns
to each tree vertex an Arrhenius barrier height propor-
tional to D. The typical value for D between the starting
and final state then grows logarithmically with time,
D (r) ~ ln(r). Ogielski and Stein, in particular, calculated
both D (r) and how the probability P (r) of being in the
initial state (or branch) would decrease as a function of
time. We shall see that both D (r) and P(r) are measur-
able in mesoscopic experiments. (The reader should
beware the occasional reference that casually assumes
that these two functions are closely related. )
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A word of caution is in order. If the mesoscopic spin-
glass dynamics turns out to show the properties of a ki-
netic hierarchy, we shall not be justified in assuming a
simple map from that hierarchy to the Parisi-state space
which loosely inspired the hierarchical picture. Certain-
ly, if we are to speak of the fraction D of spins that
reorient in some event, we must mean the fraction of
some finite set. Further hypotheses, such as the existence
of some large but finite volumes within which long-lived
configurations show hierarchical kinetics, might be re-
quired.

Both the droplet picture and the hierarchical kinetics
picture predict a broad range of characteristic relaxation
rates. The precise form of the distribution in the droplet
picture depends on some scaling exponents, as well as on
any deviations from asymptotic scaling that real materi-
als with nonrandom distributions of interactions might
show. For hierarchical pictures, the form of the distribu-
tion depends on several factors, including the poorly un-
derstood map from D to ~. Within the theoretical error
bars, since neither picture is meant to be taken unduly
literally, both predict g"(co) independent of co over a
wide range or, equivalently, that the frequency spectrum
of fiuctuations in the magnetic moment, SM(f), is ~ 1/f.
For both types of theory, that form arises simply because
~ depends exponentially on the barrier height, and these
barriers have a reasonably broad distribution (Weissman,
1988). Thus conventional measures of linear-response
functions or of Auctuation spectra are poorly suited for
answering the qualitative question of which approach is
more suitable.

As a result, it has been possible for experimenters sim-

ply to choose which type of approach should be used to
design experiments or interpret data. Roughly speaking,
the Parisi approach has been followed in continental Eu-
rope and the droplet approach in English-speaking coun-
tries. So long as the models remain pictured in entirely
different spaces, and their followers remain separated by
at least a channel, there seems little danger of either ap-
proach failing an awkward experimental test.

For anyone perversely tempted to challenge this com-
fortable arrangement, the two obvious experimental ave-
nues for discriminating between the theories would be to
find creative uses of nonlinear perturbation experiments
or of higher moment non-Gaussian statistics of Auctua-
tion experiments. The Saclay and UCLA groups have
shown that combined temperature-field perturbation ex-
periments have a natural interpretation in terms of a
hierarchical picture (e.g. , Lederman et al. , 1991). How-
ever, in part because the droplet scaling picture has been

2In the experiments to be described, the use of mesoscopic
samples provides a natural excuse for letting the number of
coherent spins be finite. However, this excuse should not be
seized upon too readily, since there is no indication that the
average dynamics in mesoscopic and macroscopic samples is
much different.

shown (e.g. , Bray and Moore, 1987) to imply that equilib-
rium spin-spin correlation functions change chaotically
as a function of temperature for distant spins, it has been
difficult to calculate just what the droplet picture predicts
for such experiments. (David Huse tells me that similar
complications are present for the infinite-range model. )

III. QUALITATIVE FEATURES
OF MESOSCOPIC FLUCTUATIONS

Having spent some time working out statistical analy-
ses of 1/f noise in mesoscopic systems to show how non-
Gaussian statistics can distinguish between different ki-
netic models that give identical spectra, it was natural for
my group to look at the possibility of examining the fun-
damental pattern of spin-glass dynamics via noise tech-
niques (Weissman, 1988). Here, by "mesoscopic, " I do
not mean anything about quantum coherence lengths,
just that a sample is small enough for non-Gaussian sta-
tistical effects to be measured but large enough for the
physical effects to resemble those of bulk samples.

The central expectation for the simplest Ising droplet
picture, in which the droplets form noninteracting two-
state systems, is that in a given mesoscopic sample at a
given temperature only a finite set of droplets will be
present. Fluctuation spectra (e.g., of the magnetization),
like those of other collections of noninteracting two-state
systems, would then consist of the superposition of
discrete components, each with a characteristic frequen-
cy, co, , corresponding to the relaxation rate of an indivi-
dual two-state system. In the simplest case each com-
ponent is a Lorentzian, co;/(co +co,. ). Large deviations
from a 1/f spectrum would then be apparent, accom-
panied by slightly non-Gaussian fluctuation statistics
(Weissman, 1988).

Qualitatively, a hierarchical picture would give very
different Auctuation statistics. At a given time the spin
glass would be in some state represented by an end point
of the tree. If many successive measurements are made,
the spin glass will be found to fluctuate back and forth
between several states connected by vertices whose
height is determined by the characteristic time scale of
the measurements. For example, the system might Auc-

tuate among the eight states represented by the darkened
portion of the tree in Fig. 2. There are seven vertices in
that part of the tree, representing seven different relaxa-
tion rates —as expected for a system that must be in one
of eight states. Thus for a while a set of characteristic
rates, not especially different from those that might be
found for a collection of droplets, should appear in the
spectrum.

If the same measurement is made repeatedly, the sys-
tem will have a chance to leave the initially accessible re-
gion of the tree by slow transitions over higher vertices.
The fine structure of these newly accessible branches,
which gives the detailed fluctuation spectrum in the
analysis range, will have nothing in common with the
original branches. The old set of relaxation rates and
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amplitudes will be replaced by a new set. Thus the spec-
tral shape will wander in time, giving significantly non-
Gaussian Auctuation statistics.

If spectral wandering is found, however, one cannot
rule out the possibility that interacting droplets are
present. A droplet whose characteristic rate falls within
the observed spectral range may occasionally be created
or destroyed, or have less drastic modifications of its
effective Hamiltonian, by the Gipping of a larger droplet
that is nearby or even overlapping. Thus interacting
droplets can produce spectra that change in time. The
distinction between hierarchical pictures and
interacting-droplet pictures will be described later.

Thus I believed that mesoscopic fluctuation experi-
ments could in principle distinguish between simple
droplet-like kinetics and hierarchical kinetics. Because
of the dubious relevance of the assumptions leading to
the hierarchical kinetics picture, and because of my per-
sonal lack of understanding of the derivation of the ul-
trametricity of the Parisi solution, I approached the
mesoscopic Auctuation experiments with a bias in favor
of a droplet interpretation. However, I was somewhat
pessimistic as to whether in a realistic case of interacting
droplets we could unambiguously rule out hierarchical
interpretations. Experiments on CuMn required the
modification of my expectations that the droplet picture
would basically work and that the results would be un-
comfortably ambiguous.

Although magnetization is the obvious variable to
measure in a spin-glass-fiuctuation experiment (Ocio
et al. , 1986; Reim et al. , 1986), the current generation of
SQUID detectors did not seem to be quite sensitive
enough to allow mesoscopic measurements of spin-glass
noise. Thus some suitable mesoscopic probe was needed.
Inspired by the SDW picture of the spin-glass state in
CuMn and an analogy to resistivity noise in the SDW of
Cr, we (meaning Nate Israeloff, with me as a discourag-
ing bystander) measured resistivity fiuctuations in CuMn.
To my surprise, the spin Auctuations were the principal
source of I /f noise in the spin-glass regime. However,
unlike the magnetization noise, the resistivity noise con-
tinued to grow as the samples were cooled below their
respective TG's, as shown in Fig. 3 (Israeloff et al. , 1989).

The explanation of the large low-T noise lay in a previ-
ously published theory (Al'tshuler and Spivak, 1985;
Feng et al. , 1987). Since the Mn spins affect the poten-
tial seen by the conduction electrons, interference terms
in the static spin scattering make the conductivity sensi-
tive to the relative orientation of the Mn spins. The ap-
proximate magnitude of the relevant scattering term may
be inferred from TG, since this same effect on the conduc-
tion electrons leads to the principal spin-spin coupling in
CuMn and related materials. The most important in-
terference terms are the multiple-scattering effects that
give rise to the "universal" conductance fluctuations
(UCF's). These grow at low temperature as the
inelastic-scattering time grows and the thermal smearing
of the Fermi level is reduced. Thus the noise magnitude

IO
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lo 40
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can and does increase at low temperature even as the
number of fiuctuating units (spins in this case, structural
defects in others) decreases. The UCF theory, although
rough in spots, predicted the absolute magnitude of the
noise to within about a factor of 3 and also approximate-
ly gave its temperature dependence (Israeloff et al. ,
1989). Any SDW-like anisotropy in the resistivity tensor
turned out to be too small to matter. More recent experi-
ments have directly shown that frozen spin
configurations can give UCF magneto-fingerprints (de
Vegvar et aI , 1991)..

The sample size needed to observe mesoscopic effects
can be guessed a priari. Finite-size-effect measurements
(Sandlund et al. , 1989; Gavrin et al. , 1990) show that TG
is substantially lowered by reducing any of the sample di-
mensions much below 50 nm, so it is hard to call smaller
samples mesoscopic in the sense defined above. From the
linear specific heat, we know that at temperatures up to
TG the density of states of elementary excitations cannot
be so large as to make the noise statistics Gaussian in
samples with dimensions of the order of 15 nm. Our first
samples had dimensions of roughly 50 nmX50 nmX150
nm, which proved adequate. These samples contained
roughly 10 atoms in the bridge, or about 10 spins, since
the Mn concentration was 9 at. %.

Glen Garfunkel developed a two-dimensional step-edge tech-

nique, which he calls "a poor man's nanolithography, " for mak-

ing small enough samples via optical lithography (Garfunkel
and Weissman, 1990). Israeloft' further modified the technique
so that the nanobridges between macroscopic pads could be
made after ordinary deposition on a Aat substrate. This
modification is useful for any film, but particularly useful in

other experiments in which, for example, mesoscopic bridges in

epitaxial films are desired. Other experimental techniques are
described in our more technical papers (Israeloff et al. , 1991;
Alers et al. , 1992; Weissrnan et al. , 1992).

FIG. 3. Values of a(T), a dimensionless measure of the size of
the resistance noise (Weissman, 1988), shown for several con-
centrations, x, of Cu& Mn„ in macroscopic samples. The inset
shows that the magnetic transition temperatures and the noise-
increase tefnperatures closely track each other as a function
of x.
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The mesoscopic samples show noise spectra similar to
those of larger samples, although their Tz is a bit lower
than in bulk, presumably an effect of increased surface
area. Averaged over enough time and over several cool-
downs, the resistance noise spectra, S (f), were still of the
form f ~, with y= 1.00. The noise intensity increased
to about the same level in the mesoscopic samples as in
the larger samples (with a conventional volume normali-
zation, see Weissman, 1988). Above TG the mesoscopic
samples were somewhat noisier. Glenn Alers showed
that on rapidly cycling the temperature to above TG and
back, the resistance R changed by a random amount
close to the UCF prediction, confirming sketchy earlier
results.

Some of the initial noise spectra are shown in Fig. 4.
Each spectrum is obtained from 40 min of data. They
are taken consecutively, with no change of conditions
during or between spectra. The dramatic differences be-
tween different spectra are not a result of a monotonic
drift, such as that found in macroscopic aging effects.
(Alers found a small systematic drift by averaging several
data sets, but it becomes lost in the random wandering
after a few hundred seconds. )

At this point, without any fancy analysis and without
any ambiguity, we can Aatly state that the CuMn spin
glass in the experimental regime cannot be described by a
noninteracting-droplet model. The spectrum wanders,
rather than settling into a sum of fixed components from
the difFerent droplets. Qualitatively, this spectral
wandering is similar to our prior expectations for
hierarchical kinetics. More than qualitative impressions
are needed, however, to decide whether the details of the
noise statistics are better described by a truly hierarchical
model or by a model of interacting droplets.

Before entering into that tricky question, it helps to
view some traces (Fig. 5) of 5R (r), which show some
clearly identifiable discrete events. The UCF theory pro-

1 0:
~ ~ % ~ ~ % ~ ~ I ~ m s ~ s s Nag I ~ 5 ~ II ~ 5 \

1 3

I 1 I I
25K

0.01
f (Hz)

FIG. 4. Measurements of the resistance noise spectrum at
T =25 K and at about 12 K for a Cuo»Mno (39 sample contain-
ing about 2X 10 spins with TG =24 K. Each spectrum is a 40-
minute average derived from 100 Fourier transforms. A 1/f
spectrum appears as a horizontal line in this representation.
The set of error bars shows the calculated Cxaussian standard
deviation. The 12-K spectra are labeled by the order in which
they were taken, with many omitted to avoid clutter.

400 sec

FIG. 5. Records of 6R(t) from a sample containing about
6X10 spins taken at 17 K. A few well-defined events can be
discerned.

vides a way of calculating about how many spins
coherently Aipping are likely to be required to produce
an event of this size. That number is about 10 for the
events illustrated. A more sophisticated analysis uses the
net size of the non-Gaussian spectral wandering, which is
inversely proportional to the density of independent sets
of spins contributing to the spin dynamics in a given fre-
quency range. The known y" gives the density of spins
contributing to the dynamics in that same range. To-
gether, these numbers give a value for the number of
spins per coherently Gipping set, slightly larger than 10 .
That these large numbers of spins act as a unit is not too
surprising within either a droplet picture or a hierarchi-
cal one, but does confirm the presence of coherent units
much larger than the apparent SDW domains. An addi-
tional implication is that the total entropy associated
with all the slow modes (i.e., those in the 1jf regime, up
to about 10 Hz) is much less than one per spin. Thus
the low-temperature specific heat does not reAect these
slowly fluctuating modes, in sharp contrast to the situa-
tion in structural glasses.

The 5R (t) traces also show something surprising.
When switching between discrete resistance levels can be
identified, we observe that it does not usually repeat
many times, although about 100 switches occurred once
before the switching ceased. This behavior contradicts
expectations for two-state droplets (even ones with some
degree of interaction) and also seems surprising for a sim-
ple bifurcating hierarchical tree, for which any vertex in
the ascending tree from the current state represents a
mode of switching between two clusters of states. Leav-
ing the region of the tree which descends from some ver-
tex requires a transition over a higher vertex, which
should not happen too frequently. We shall return to
this point.
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IV. STATISTICAL ANALYSIS
OF MESOSCOPIC FLUCTUATIONS

The simplest droplet picture, in which the droplets
would be noninteracting two-state systems, makes
definite predictions that are Aatly contradicted by the
data. Hierarchical models also make specific predictions,
one of which we had figured out prior to the experiments.
The measured variable (magnetization or conductance) is
not completely randomized by configuration changes
with small D. In fact, the mean squared difference in R
between any two states should grow linearly with their D
up to some saturation point. The fine structure of a tree
branch, however, has, so far as anyone knows, no reason
to have any more in common with a nearby branch than
with a distant one. Even minor changes in barrier
heights are enough to make a spectrum look entirely
different. Therefore the memory function which de-
scribes how the resistance or magnetization forgets its in-
itial random value has a long-time tail longer than the
memory function describing how the detailed shape of
the Auctuation spectrum forgets its initial random value.
This difference is explicitly calculated for some models by
Ogielski and Stein (1985).

%'e thus need quantitative measures of the spectral
wandering. These can be provided by a set of measures
that we call the second spectra, obtained as follows. The
resistance noise spectrum S (f ) in Fig. 4 is not measured
by an ideal ensemble average but rather by taking
discrete data points (usually sets of 1024), Fourier-
transforming, and squaring them to obtain 512 discrete
spectral points. (The number of variables is reduced by
half in squaring the complex transform. ) Since any one
of the resulting spectral points has a large uncertainty,
due to effects of sampling any random signal, and since
1/f noise has no interesting structure on scales less than
about an octave (Weissman, 1988), we then sum these
points by octaves (of which at most nine are usable).
This procedure reduces the set of numbers with which we
must deal and also reduces their fractional uncertainty.
Now a new set of 1024 data points may be taken and re-
duced to nine new octave sums. The entire procedure
can be repeated to obtain a large (e.g. , 1024 points) time
series of sets of octave sums.

G-iven a time series, the obvious thing to do is to
Fourier-transform and square it (obvious, at least, to any-
one who does that for a living). The square of the
Fourier transform of the time series of octave sums taken
in an octave around f, normalized by the square of the
mean value of that series, gives the second spectrum
Sz(fz,f). That is,

S (f,f)= ( l&(0(f, t))l &/z(0(f, t) & ,
z

where 0 (f, t) is the integral of S (f) over an octave
around f taken from data measured near time t, and F is
the Fourier operator. An integral of Sz(fz, f) over fz
(e.g., a second octave sum) is a dimensionless number,
since it is a fourth moment divided by the square of a

second moment of the variable.
It helps to remember that Sz(fz, f) is the Fourier

transform of the autocorrelation function of the time
series of the noise power in an octave around f,
(0(f,t)0(f, t+r)&. Thus, at least for small fz, the
dependence of Sz(fz, f) on fz is simply obtained by
Fourier-transforming the memory function describing
the long-time persistence of features in S(f).

Physically, this second spectrum is just a (conveniently
normalized) spectrum of the wandering of the ordinary
noise power near f. The size of Sz(fz, f) tells us some-
thing about how much wandering there is, while its
dependence on fz tells us how the memory of the spec-
tral shape decays in time. In a hierarchical scheme, for
example, this combination provides information about
the density (versus log time) of vertices (see Fig. 2 again)
and about whether the entire sample acts as a single
hierarchy. In a droplet interpretation, Sz(fz,f ) provides
information on the density of droplets within the interac-
tion range of any particular droplet.

One can also obtain the normalized cross spectra be-
tween two different octave-sum time series, centered on
frequencies f, and fb, which we denote Sz(f„f„fb).
For equilibrium systems, only the real part of such cross
second spectra has a nonzero expectation value; but for
driven dynamical systems, its imaginary part should pro-
vide information on energy Aow between different fre-
quency scales.

These cross second spectra tell us whether, in the slow
wandering of the spectral shape, the noise powers near f,
and fb wander together or independently. That informa-
tion, in turn, can tell us whether the individual units that
temporarily contribute to the ordinary spectrum do so
through Lorentzians (like simple two-state systems) or
through broader spectra (like those of multistate sys-
tems).

Now we can restate our prior predictions and work out
some new ones in terms of 52. For noninteracting two-
state systems, Sz(fz, f) is white, i.e., independent of fz
(Weissman, 1988). For generic hierarchical pictures,
Sz(fz, f) has a low-frequency slope rejecting the long-
time tail of the probability of returning to the initial
branch. Returning to our starting point about the
difference between that memory function and D(w) for
hierarchical kinetics, but now in Fourier space, we now
expect the slope —8 ln[Sz (fz,f) ] /8 lnf z to be smaller
than —8 lnS(f)/8 lnf. In a simple Ogielski-Stein model,
the likelihood of being in the initial state asymptotically
decays as r ~, where P is proportional to the density of
vertices on each branch and inversely proportional to
temperature; thus Sz(fz,f ) should be proportional to
p —(1 —P)J 2

We can immediately check some of the second spectra
(Figs. 6 and 7). They are, of course, not white, as was im-
mediately apparent when we found S(f) to wander slow-
ly. They all also turn out to be slightly flatter than 1/f
(which appears horizontal on these plots); their degree of
flattening, P, grows with T, as one would guess from very
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simplified models. Hierarchical pictures thus have at
least a chance to describe the data.

Wc now turn to a dlffcrcnt type of sca11ng: the dcpcIl-
dence on f of Sz(fz, f) and of other mesoscopic eff'ects.

Remember that a central point in extracting dynamics
from the droplet picture was the idea that big droplets
are slower than fast ones. The lower-frequency noise
then comes from a smaller number of larger elements,
while the higher-frequency noise comes from a larger
number of smaller elements.

One way to determine the density of independent Auc-
tuatlIlg UIlits pcI octave 1s to COIIlpalc Ilo1sc spcctx'R takcIl
over a complete ensemble. The greater the density of
Auctuating elements, the smaller the deviations from the
ensemble average. This ensemble vaI'iance can be ob-
tained by coIIlpaI'1Ilg spectra takcll below TG after suc-
cessive cycles to above TG. (In an equilibrium droplet
picture, one would expect to obtain the same detailed
spectrum on each cycle, but droplets stuck in metastable
minima might give something like the same variability
expected for hierarchical pictures. ) Qn first inspection,
the fractional variance in S (f) over the ensemble seemed
to be a decreasing function of f, so that a finite scaling
exponent relating droplet size to barrie height could be
found. However, this analysis failed to take into account
the spectral wandering. In efFect, spectra taken over a
Axed time 1ntclvR1 RvcI'agc thc high-frequency data morc
than the low-frequency data. Data, averaged over times
inversely proportional to f showed no indication of a
dependence of this fractional variance on f (see Fig. 6).

For a hierarchical picture, this dependence of the en-
semble fractional variance of S(f) on f is determined by
how the average density of vertices on a branch changes
with D, R more detailed feature than we wish to use ini-
tially to distinguish between generic pictures. However,
R remarkable prediction emerges when we turn to the
scRlllig pl'opcl"ties of Sz(fz,f). Tllc to'tR1 fiRctlollR1 val'I-

ance of S(f) [i.e., the integral over fz of Sz(fz,f)] will
be inversely proportional to the density of vertices (per
branch) at f, just as it would be inversely proportional to
the droplet density. The frequency distribution (in fz) of
that variance depends on the distribution of rates for
switching among branches. Thus the fraction of that
variance that will be found in Sz(fz, f) in an octave
around fz will be linearly proportional to the density of
vertices at fz. Therefore, the density of vertices drops
out if we take the limit of the low-frequency part of
Sz(fz,f) as fz approaches f (which does not require too
liiuch cxtl apolatloli). To a good Rpploxlllla'tloll,

Sz(fz, f) should depend only on fz jf, not on the scale f,
cxccpt fol vcly 1Rlgc logal"ItllIIilc differences bctwccI1 fz

and f, regardless of whether the hierarchy itself is scale
1IlVRI 1RIlt, .

What happens to the scaling of Sz(fz, f) for an
interacting-droplet model'? As with the hierarchical pic-
ture, the number density of the droplets will drop out to
first order. However, the probability that two droplets
will interact enough to show up in the time dependence
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of the spectrum will depend on their size. Natu. rally, two
large droplets are more likely to interact than two small
ones. For droplet scaling to account. for the broad range
of relaxation times, Sz(fl, f) should be a decreasing
function of f at constant fI If.

Thus wc find a gcnu1Ilc difFcrcncc bctwccrl gcIlcI'a11zcd
droplet and hierarchical pictures. Physically, the essen-
tial point is that in a droplet picture the smaller droplets
are afFected by bigger droplets with a probability depend-
ing on their actual sizes. In a hierarchical picture, the
smaller branches are systematically embedded in the
bigger branches, independently of scale. Thus the drop-
let picture predicts scaling with a finite exponent, while
the same exponent is zero for the hierarchical picture.

Taking a look at some real data in Figs. 6 and 7, we
find S2(f2,f) to be nearly scale invariant. Although the
data in Fig. 7(b) deviate from scale invariance, the sign of
the deviation is opposite to the prediction for interacting
droplets. 4

We have thus compared the dependences of S2(f~,f)
on f with the scale-invariant hierarchical prediction and
wltll an 1Iltclactlng-droplet pr'cdlction 1n whlcli thc dcvla-
tion from scale in variance is calculated from the
difFerence in spectral exponents between the first and
second spectra. The hierarchical fit is reasonable, but we
just cannot fit the droplet picture. Therefore I shall give
up trying to describe these data in terms of droplets.

V. lMPLICATIONS WITHIN
A HIERARCHICAL FRAMEWORK

The illustrative pictures of either the Parisi or kinetic
ultrametric trees idly dragon by theorists usually show
mainly bifurcating vertices, with an occasional trifurcat-
ing vertex. %'hile our experiments were under way, Is-
raelofF would occasionally complain that he could not fit
the white tail of the second spectra with a bifurcating
tree. As he put it, something was wrong with the "folia-
tion" of the tree. Naturally, I paid no attention to that
kind of talk, since it scarcely seemed possible that we
could even tell if there was a tree. However, he was right
about fitting S2. Furthermore, if the tree was bifurcat-
ing, where were the two-state random telegraph signals
in 5R (t)7 P was small enough, particularly at low T, to
afford repeated chances for most vertex events to occur
before the next-higher vertex event. The detailed set of

fIuctuations available had a way of partially forgetting its
initial value on a short time scale, before it was likely to
be lost in transitions over higher vertices.

The only way we could explain this fast loss of memory
was by postulating that each vertex in Fig. 2 usually
should have more than two descending branches. Then
usually on a given time scale M (I) would switch be-
tween enough states to make it hard to pick out two-state
systems. This postulate, if true, would have a further im-
plication. When an active vertex is temporarily lost or
gained by transition over a higher vertex, the set of
characteristic Auctuation rates lost or gained would not
be a single delta function, but would corltain several
different rates —one less than the number of descendent
branches. Although these rates ~ould be comparable,
since each would correspond to the same D, it would
hardly be realistic to expect them all to be exactly equal.
The low-frequency part of S2(f2,f„fI,), produced by
higher vertex events, should then be more correlated for
bigger values of ~ln(f, Ifb )

~
than it would be if two-state

systems with Lorentzian spectra were the units being
gaiIlcd or' lost. So those stlangc cross sccoIld spectra,
SI(f2,f„fb),that you thought I would not mention
again have returned. As Fig. 8 shows, their low-
frequency part extends to bigger values of

~
ln( f, Ifb ) ~

than it would in a bifurcating picture.
This argument, however, only pertains to the changes

in S(f) produced by losing or acquiring an active vertex
by transitions over a higher vertex. If our picture is
correct, the white part of the second spectrum comes
from dy11RIIllcs Rssoclatcd wl'tll R slllglc vcltcx. Qualita-
tively, we guessed that these Auctuations in S(f) should
show less correlation between separated f's than would
independent Lorentzians, since they correspond to swap-
ping different characteristic times within the set provided
by one vertex. The state cannot simultaneously be on a

1.0:

0.6

0.2

4W'e have a guess as to why these data are further from the
scaling prediction than the other two sets. The first two sets
were taken while we were learning the ropes and involved sums
of several sets of data taken with interruptions for He transfers,
etc. The third set was taken with smoother experimenta pro-
cedures and represented just one data set at fixed temperature.
It is probably better to average over several cooIdowns to ap-
proach an ensemble average, rather than sampling just one re-
gion of phase space, with inevitable random deviations from
scaling.

0.0 L-
0.0 1.0 2.0 3.0 4.0

FIG. 8. Correlation coefBcient C for Auctuations of the noise
power at two frequencies, f, and fb, with ln(f, /fb)=r. The
solid curve, r/sinh(r), is predicted for independent I.orentzian
contributions to S&. The "18 K" points include mainly slow
fluctuations in the noise power, and the "11K+23K, scaling"
data include only slow Auctuations. The "11K, white*' data in-
clude only fast fluctuations.

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



M. B. Weissman: What is a spin glass'2 A glimpse via mesoscopic noise

faster equilibrating branch and a slower equilibrating
branch, so there should be a negative correlation, as com-
pared with our simplest case of independent Lorentzians.
In fact, the white part of S2(f2,f„fb ) does fall off more

~rapidly with lln( f./f, )l than it would if two-state sys-
tems with Lorcntzian spcctIR wcIc IIldcpcndcDtly being
gained oI' 1ost.

We argued before that in a hierarchical picture
Sz(f2,f) does not depend on the density of vertices as f2

approaches f. Does it then depend on anything'? There
are some small dependences on the tree topology, i.e., on
the number of br'anches from each vertex. However,
since that Dumber is approximately measured, we then
have a prediction for the absolute value of S2(fz,f) for a
hierarchy. The data do not 6t that prediction, the mag-
nitude of S2(fz,f) falls short of expectations for a single
hierarchy by a factor of 4 to 12. An ad hoc fit can be
made simply by assuming that 4 to 12 hierarchies operate
in parallel, averaging out all the non-Gaussian CAccts.
This assumption, in retrospect, is highly reasonable, sirlce
ouI' experimental sarnplcs RIc not cubes bUt I'cctallgUlai
solids, which become CA'ectively two dimensional on
scales of roughly 50 nm and one dimensional on scales of
about 100 nm. Since the lower critical dimension of a
spin glass is supposed to be between 2 and 3, loss of
cohcIcrlt behavior QcaI thc CI'ossovcI' lcIlgth scRlc Is Qot
surprising.

Thc opcI'RtioIlal meaning of thc cohclcncc voluITlc ITlay

Qot bc cntiI'cly obvioUs. Within that cohclcrlcc volUIIlc,
the rearrangement of any group of spins changes the
dynamical properties of all the smaller possible spin rear-
rangements. It is the independence of that volume on
frequency that implies a systematic embedding of the
faster modes within the slower modes.

II1 ouI experiments wc measure pI'opcI'ties of states
that are long-lived collections of configurations, ap-
parently related by a kinetic hierarchy. Using only this
presumed hierarchical arrangement, we may determine
some properties of P(q), the probability density of
fiIlding two such states with ovcI'lap q. Thc pIobRbility
density function for ending a vertex with more than one
descendant with appreciable Boltzmann ~eight at some
overlap q is, roughly speaking, P(q)/y(q), where y(q)=f 'P(q')dq'.

Since the parameter /3 in the second spectrum depends
linearly on the density of vertices in log-time (or log-
frequency) space, it provides a measure of P(q)/y (q), so
long as one knows dq /d ln( f ) approximately. This
derivative, i.e., the typical loss of overlap versus log time,
Is glvcrl by thc Auctuatlon-dlsslp ation thcorcrn Rrld

y"(f), as long as one assumes a mean-square change of
magnetization linear in D. Thus we can put together the
measured values of P with known values of y" to obtain
values for P(q)/y (q) at several difFerent values of q and
T. Howcvcr', siIlcc thc particular frcqUcrlcy wlIldow of
the experiments is strongly constrained, we cannot in-
dependently vary q much at fixed T. We found in two
s~~ples P( )q/(y )q= 53for 0.4TG & T &0.8TG.

If the pure states of the Parisi theory map in a simp1C
fashion onto the rnetastable states of the mesoscopic sys-
tem, a compar1son of olii iiieasiii'ed P (q)/y (q) witli tlie
picdictiorl of the PRI'Isl theory woUld bc in order. OUI'

result is more than an order of magnitude larger than ex-
pected from mean-field theory (Young, 1983). However,
Rt least orle theoretical woI'k had prcdictcd that in firlltc
dimensions the extent of replica symmetry breaking [and
hence P(q)/y(q) j would be greater than in mean-field
theory (Georges et al. , 1990).

Qur results should not by any means be taken to imply
that droplet approaches should be abandoned as theorists
turn their attention to calculating loop corrections to the
mean-field theory. In fact, as the standard closing cliche
goes, our resuIts raise as many questions as they answer.

If the hierarchical interpretation of our results makes
sense, are the parameters, such as the coherence volume
and the vertex density, consistent with values needed to
interpret nonlinear macroscopic measurements'? Can the
finite-size-effect measurements also be interpreted in
some not too dr'astically modified hierarchical picture' ?

Can the set of spin-spin correlations appearing in the
universal conductance fluctuations (UCF's) be well
enough elucidated to provide another handle on the lack
of compactness of the coherent droplets, or on the dis-
tances over which these correlations are scrambled on
thermal cycling'? Under what circumstances do the
spin-dependent UCF s sulvivc Uncharlgcd UrldcI' cycling
to large fields, as found by de Vegvar et al. (1991)but not
by us? Why are no efFects of thermal chaos found in the
UCF's*? (Alers et al. , 1992). We have addressed some of
these questions elsewhere, but only tentatively.

Our measurements were made on a single material
within a moderately large temperature regime. What
happens at lower temperatures'? What would happen at
longer times, if anybody figured out how to do the mea-
surements'? Do materials, especially insulators, with only
short-range interactions show similar c6'ects'? Are the in-
cipient SOW's in Cu important in creating an unusually
long-range interaction'? What role does the unusually
weak anisotropy of CuMQ play in determining the meso-
scopic behavior? AIlswci illg thcsc qUcstions will IcqUIrc
more experiments.
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