
RMP Colloquia
This section, offered as an experiment beginning in January 1992, contains short articles intended to
describe recent research of interest to a broad audience of physicsts. It will concentrate on research
at the frontiers of physics, especially on concepts able to link many different subfields of physics.
Responsibility for its contents and readability rests with the Advisory Committee on Colloquia, U.
Fano, chair, Robert Cahn, S. Freedman, P. Parker, C. J. Pethick, and D. L. Stein. Prospective au-
thors are encouraged to communicate with Professor Fano or one of the members of this committee.

Electron-scattering studies of correlations in nuclei
O. Benhar" and V. R. Pandharipande

Oepartment of Physics, University of Illinois, Urbana, Illinois 61801-9080

Steven C. Pieper

Physics Oivision, Argonne National Laboratory, Argonne, Illinois 60439-4849

The authors review theoretical estimates of spatial, spin, and isospin correlations among the nucleons in
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Interparticle forces induce correlations among the con-
stituents of a many-body system. Atomic liquid He,
whose atoms are kept apart by the strong repulsive core
in the interatomic potential, and whose correlations have
been analyzed successfully by neutron scattering, is
viewed here as a prototype. The probability of finding
two atoms simultaneously at r& and r2 is expressed as

p g ( r, 2 ), where p is the density of the liquid, g ( r ) is the
paiv distvibution function, and r,z=r, —rz. The g (r)
equals 1 in the absence of any correlations, but in liquid
He it is essentially zero at small ~, as shown in Fig. l.

The g (r) is determined by the interatomic potential v (r),
also shown in Fig. 1, and by the density of the liquid.
The Fourier transform of g (r) determines the liquid
structure function:

S (q) = 1+pg (q),

which has been measured for liquid He by neutron
(Svensson er al. , 1980) and x-ray (Hallock, 1972) scatter-
ing. The function g(r) has been calculated with the
Green's-function Monte Carlo (GFMC) method by Kalos
et al. (1981) using realistic models of U(r) obtained by
Aziz et al. (1979), yielding close agreement between
theory and experiment. Correlations generate high-
momentum components in the wave functions of liquids,
whose e8'ect on the neutron scattering has been studied.
The g (r) and the momentum distribution of atoms in the
Fermi-liquid He have also been studied experimentally
as well as theoretically. A book edited by Silver and
Sokol (1989) contains recent reviews on the momentum
distribution of atoms in helium liquids and their mea-
surement by neutron-scattering experiments.

This colloquium reviews the more difBcult problem of
studying the correlations among nucleons in atomic nu-
clei, specifically for small nuclei up to ' 0 and for nuclear
matter (NM). The nucleon-nucleon (NN) interaction has
a strong dependence on the spins and charges of the in-
teracting pair. The nucleon charge has only two values,
1 for proton and zero for neutron; it is represented by an
isotopic spin variable ~ similar to the spin operator o.. All
nucleons are considered as identical fermions with four
possible spin-isospin states. Nuclear forces induce both
spatial and spin-isospin correlations, which are
inAuenced by the size of the nucleus. The theoretical
predictions of correlations in nuclei are reviewed in Sec.
II. Sections II.A and II.B describe models of nuclear
forces and the ground states of nuclei, while the pair and
momentum distribution functions of nucleons in, nuclei
are discussed in Sees. II.C and II.D.

The spectral function PI, (k, e) describes the probability
of a nucleon in the nucleus having momentum k and en-
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ments are reviewed in Sec. III, and we end with a brief
summary presented in Sec. IV.

II. THEORETICAL ESTIMATES OF CORRELATIONS
IN NUCLEI

A. Models of nuclear forces
The nonrelativistic nuclear many-body theory, based

on the Hamiltonian

H= — g V', + g U(ij)+ g V(ijk), (2.1)
@2

i i&j i &j&k

has served extensively in studies of nuclear ground states
(Pandharipande, 1990; Wiringa, 1993). The long-range
part of U(ij) consists of the one-pion-exchange potential
~ (/j):

FIG. 1. The U(r) of Aziz et al. (1979) shown by the solid line
and left scale, and the g (r), calculated by Kalos et al. (1981),in
liquid He at equilibrium density, shown by the dashed line and
the right scale. 3 3 e

X; (r;.~m)= o; o.)+ 1+ + S,
prlj p rj. p"Ig

(2.2)

ergy e. High-energy ()GeV) electrons essentially see the
nucleus as a collection of nucleons distributed according
to Pz(k, e). Thus the spectral functions are useful in the
study of electron-nucleus scattering, and correlation
effects in the Pz(k, e) are discussed in Sec. II.E.

In the qualitatively successful simple shell model of nu-
clei, the nucleons in a nucleus move in the single-particle
orbitals of an average potential. Some aspects of this
simple picture are valid even when there are significant
correlations between the nucleons. The single-particle or
hole states of the shell model have to be reinterpreted as
quasiparticle states, and there is an associated probability
Z, called the quasiparticle normalization constant, with
which the quasiparticle acts as a single particle. Several
electron-scattering experiments are sensitive to the value
of Z, whose theoretical estimates are discussed in Sec.
II.E

Nuclear correlations are experimentally studied by ob-
serving the scattering of electrons by nuclei, but this task
is more difficult than the corresponding studies of helium
liquids by neutron scattering. The kinetic energy of
atoms in helium liquids is of order 10 K (10 eV), and
neutrons with energies of order 1000 K (0.1 eV) are typi-
cally used. The first excited state of the helium atom has
a much larger energy (20 eV); hence helium atoms appear
inert to the neutron. In contrast, the kinetic energies of
nucleons in nuclei are of order 30 MeV, and the first ex-
cited state of the nucleon, the 6 resonance, has an excita-
tion energy of only —300 MeV. Effects of internal exci-
tations of the nucleons have thus to be considered in the
analysis of high-energy (typically 0.5 to 10 GeV) electron
scattering by nuclei; relativistic effects are often not
negligible. In addition to the "inclusive" scattering ex-
periments, in which the final state of the nucleus is not
observed, scattering to specific final states is also studied.
In contrast, only inclusive neutron-scattering experi-
ments have been performed on helium liquids.

Results of selected electron-nucleus scattering experi-

(2.3)

f and p, are the pion-nucleon coupling constant and pion
mass; o.; and ~; are nucleon spin and isospin operators;
and S, is the tensor operator:

(2.4)

The operator U (ij) is dominated by its tensor part, and
its short-range singular part needs to be regularized,
since nucleons are finite-size bound states of quarks. An
accurate determination of f, with ( l%%uo error, has been
made recently by Stoks, Timmermans, and de Swart
(1992); however, most models of U (ij) use older values of
f, which are up to B%%uo larger.

The long-range part of the three-nucleon interaction
V(ijk) consists of the two-pion-exchange interaction
V (ijk),

V (ijk)= g A2 (tX;,X~I Ir; r, r rkI.
cyc

+ —,'[X, ,X,„I[r, r, , r, rk]), (2.5)

summed over three terms obtained by cyclic permuta-
tions of i, j, and k. Its strength A z is not uniquely
known (Gibson and McKellar, 1988). The rest of the in-
teractions, v (ij) and V (ijk), are not yet well under-
stood. Detailed phenomenological models of U (ij) have
been obtained by fitting the significant amount of avail-
able NN scattering data. We shall discuss results ob-
tained with the "Urbana" (Lagaris and Pandharipande,
1981) and "Argonne" (Wiringa, Smith, and Ainsworth,
1984) models of U(ij ); other models are also in use.
These models indicate that the U (ij) has a strong repul-
sive core and an intermediate-range attraction indepen-
dent of spin and isospin. These components are often at-
tributed to effective vector and scalar meson-exchange in-
teractions. The U (ij) also has important components
dependent on spin orbit, spin-isospin, and momentum. A
simple V (ij k) of strength Uo, independent of spin-
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II(1+U,(jlk)) S II (1+U(ij))
IT j&j

(2.6)

where U3(ijk) represent three-nucleon correlation opera-
tors with the same spin-isospin structure as V(ijk), and
the label IT (independent triplets) restricts the products
of U3's, in the expansion of II (1+Ul ) in powers of Ul,
to those having independent triplets ijk, Imn, . . . . This
restriction avoids treating the nonvanishing commutators
[Ul(ijk), Ul(ilm)] of these less important correlations.
The U(ij) consist of two-body correlation operators:

U(ij ) =u (r, )o, cr +"u., (r,, )S,"+uLS(r, )I.S"
+ju, (r,")+u,(r; )o., o, +u„(r;, )S;.

+uIS,(r; )I. S]r, .r (2.7)

The sum-product notation SII in Eq. (2.6) denotes a
symmetrized product of the noncommuting operators
U(ij ), U(ik) . . . The . function f, (r; ) in Eq. (2.6)
represents central, spatial correlations induced mostly by
the repulsive core in u (ij ), and @ stands for an antisym-
metric product of single-particle states. In ihe case of
NM, N indicates the Fermi-gas wave function, while in
0 and Ca it represents a Slater determinant appropri-

ate to the shell model. In these systems we assume the
limiting values f, (r;I~ )=1, and U(r; ~oo )=0. In
contrast, for H, H, He, and He, N represents a spin-
isospin state with no spatial dependence, and f,
(r;~ ~ ~ ) must vanish for bound states. The calculations
for finite nuclei are more advanced; they utilize Monte
Carlo methods to evaluate expectation values with the
complete %'~ described above. The presently available
NM calculations rely on chain summation methods and
on a %', shorn of three-body correlations; the relatively
poor quality of the NM 4, is partly compensated by cal-
culating corrections to variational results derived by
correlated basis perturbation theory (Fantoni, Friman,
and Pandharipande, 1983).

lsosplll ls assllllled 111 the Urbana models of V(1'jk)
[Schiavilla, Pandharipande, and Wiringa (1986)). At
present rather few observables can be calculated accu-
rately with the Hamiltonian (2.1), limiting us to simple
models of V (ij k) with only two parameters, A 2 and Uo.

B. Nuclear ground states
Thc ground states of H Rnd Hc have been calculated

essentially exactly with Faddeev's method (Friar, 1991);
almost exact calculations have also been performed for
nuclei with A ~ 5 with the GFMC method (Carlson,
1991). Exact calculations for A ) 8 seem to be impracti-
cal with the presently available methods and foreseeable
computers. The variational method (Wiringa, Fiks, and
Fabrocini, 1988; Wiringa, 1991; Pieper, Wiringa, and
Pandharipande, 1992) has been used to study H, H,
lHe, 4He, 1 0, Ca, and nuclear matter (NM) in a unified

way with variational wave functions of the form

TABLE I. Results of variational calculations with Argonne

U(ij) and Urbana Inodel VII V(ijk) in MeV.

H He 'He

(Eo/A) Expt.
(E, /A) Calc.
&E„,„gw )
&u /A)
&u" /& )

V21/fg )
& VRZ»

—1.11
—1.11

9.6
—11.2

0.5
0
0

—2.6
—2.7

17.1
—15.9
—3.6
—0.8

0.2

—7.1

28.7
—28.2
—6.1
—33

1.1

—8.0
—7.7
34.4

—30.7
—9.7
—4.6

2.1

16
—15

45
—39
—17

3.9

f„(r;,)=u„(r;, )f,(r;, ) (2.8)

for H, He, ' 0, and NM are compared in Fig. 2. The
tensor correlations f, have little A dependence; the r (1
fm part of f,(r), determined principally by the repulsive

0.5

0

f,.(xrj

0
r(fm)

FICx. 2. The f, (r) and f, (r) in H, He, ' 0, and NM.

The binding energies of H, H, He, ' 0, and NM thus
obtained utilizing Argonne u (ij ) and Urbana model VII
V(ijk) are listed in Table I. We note that the difference
between the variational energies and experiment is rather
small, particularly in comparison with the expectation
values of kinetic and potential energies. From compar-
isons with available exact results obtained by the Fad-
deev and GFMC methods, the error in E, is known to be
0, 0.1, and 0.3 MeV per nucleon in H, H, and He (Wi-
ringa, 1991). In the absence of exact results, the errors in
the E, of ' 0 and NM are difficult to estimate, but they
are likely to be -0.5 and 1 MCV per nucleon, respective-
ly. Thus it appears that the present %', contains the main
corrclatlons lnduccd by thc assumed lntclactlons.

The most important correlations are generated by the
u, (rj. )S~r; r in U(ij ); they are induced by the u and
enhanced by V . Without these the U" and V" give
small contributions to the nuclear binding energies, and
the nuclei become unbound. The f, (r,~ ) correlations are
also equally important; without them the repulsive core
in v (ij) gives a large positive contribution leading to un-

bound nuclei. If all the other correlations were to be
switched oA; nuclei would still be bound. Thus one
should look first for experimental information on the

f, (rj) and u„(rj )S~r; r correlations.
The functions f, (r; )and.
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core in U (ij), is also similar in all nuclei. The differences
at large r reAect mostly the different boundary conditions
on f,(r~ ~ ) in light (2 +4) and heavy (A & 16) nuclei.
The conventional S and D components of the deuteron
wave functions ud and wd are simply related to the u's

and f, :

ud(r)=v [1—3u, (r)+u (r) —3u, (r)]f,(r), (2.9)

O. I5

O. I

E

w~(r) =r&8[u, (v) —3u„(r)]f,(r) . (2.10) 0.05

The deuteron elastic-scattering form factors A (q), B (q),
and Tzo(q) are functions of ud(q) and used(q); the observed
data are fairly explained by the ud and md calculated
from the Argonne model of vNN (Carlson, Pandhari-
pande, and Schiavilla, 1991).

00 2
r (fm)

C. Pair distribution functions

The density p(r) represents the probability of finding

one nucleon at r. In a similar way the two-nucleon densi-

ty pNN(ri, rz) stands for the probability of finding two nu-

cleons simultaneously at r1 and r2. We obviously have

FIG. 3. The p» (solid lines) and ppp (dashed lines) in He, ' 0,
and NM shown along with the p» (dot-dashed lines) and p»
(dotted lines) obtained from the Slater determinant N for ' 0
and NM.

f d rp(r)=A,

f d rzp(r„rz)=(A —1)p(r, ),
(2.11)

(2.12)

(2.18)

=1,6
Otg —1)~, .~J)o-; OJ)o.; o) ~, ~) )Sj)Si~~r ~) ~

d r2 p r1 p r&
—p r, , r2 =p r, (2.13) (2.19)

Generally, P(r„rz)(P(r, )P(rz) for r, -rz to satisfy the
above condition. The difFerence p(r, )p(rz) —p(r„rz) is
often called the correlation hole, which surrounds each
particle in a many-body system. The average pNN(r, z) is
defined as

with

1
PNN( 12) d +12PNN( 1 r2)

1
R,z =——(r, +rz) .

2

(2.14)

In NM, as well as in spherically symmetric nuclei,
pNN(r, z) is a function of lr, zl, and its theoretical predic-
tions are shown in Fig. 3 for He, ' 0, and NM. The
average two-proton p (r) is also shown in these figures.
Both p NN(r) and pzz(r) are sensitive to the function f, (r)
and differ significantly from those obtained with Slater-
determinant wave functions (Fig. 3).

We define the normalized pair distribution function

gNM(p, r) as

The pNN(v) [Eq. (2.14)] equals PNN~(r) for the unit opera-
tor. These densities reveal spin-isospin correlations in
the nucleus and give the expectation value of a two-body
operator 8:

8= g g 8 (;.)0;. ,
p i(j

('pal&11110) =2~2 g f r dr B~(r)pNN (r) .

(2.20)

(2.21)

—-O. I

E

The p» «and p» « ~ssoc~at~d with operators
o.; o. .~; ~ and S,"~;.~j, calculated with the variational
ground state, are shown in Fig. 4. They are quite large,

gNM(P ")=PNN(P v)~P—
where pNN(p, r) is the average two-body density in NM at
density p. A local-density approximation,

P12(rl r2) ( Pl)r( Pz)rNgM(+ ( Pl)Pr(r2)

is believed to be reasonable and useful (Pieper, Wiringa,
and Pandharipande, 1985).

Average two-body densities associated with operators
OPj are defined as

—0.2

r(fm)

FIG. 4. The p»„(solid lines) for He, ' 0, and NM shown

along with the p» for ' 0 (dashed line) and the p~&, calcu-
lated from the N for ' 0 (dot-dashed line).
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and hence the (U ) is also large (Table I). The Slater
determinant @ givesP&~„(r)=0 and a large p~z (r)
due to exchange correlations, as shown in Fig. 4.

I

IO

D. Momentum distribution of nucleons

The momentum distribution of nucleons in the ground
state IO) of a nucleus is given by

10
E

~IO—

IO

n (k) = (OI a j,a„IO), (2.22)
-5

IO

where ak and ak are annihilation and creation operators
for a nucleon with momentum k. Here we suppress
spin-isospin indices for brevity. The n(k) is generally
calculated from the wave function %'0 of the ground state:

IO

k(fm-I )

n (k) = ~, , %o(r'„rz, . . . , r„)e

(2.23)

FIG. 6. The n(k) per nucleon in H, He, ' 0, and NM.

shows a significant increase in the high-momentum com-
ponents; on the other hand, the n (k~ ao ) of "H, ' 0,
and NM appear to be similar.

Short-range correlations imply the existence of high-
momentum components in the ground state, as can be
clearly seen from Fig. 5 (Pieper, Wiringa, and Pandhari-
pande, 1992), in which the n (k) obtained by approximat-
ing the ground state +o of ' 0 by the Slater determinant
@o, the Jastrow wave function VJ= [Ilf, (r,")]N, and the
full variational wave function 4, [Eq. (2.6)] are com-
pared. We note that the f, (r; ) factors of %z generate a
rather small fraction of n (k) at k) 2 fm '; most of the
high-momentum distribution of nucleons stems from the
tensor correlations introduced in 4, .

The momentum distributions of nucleons in H, He,
' 0, and NM are compared in Fig. 6. The results for H,
He, and ' 0 have been obtained with the Argonne U (ij )

and model VII V(ij k), while those for NM (Fantoni and
Pandharipande, 1984) have been obtained with the Urba-
na U (ij) with density-dependent terms that simulate the
effects of V(ijk) The comp. arison of He with deuteron

10

E -2

3
k(rm )

FIG. 5. Momentum distribution of nucleons in ' 0 calculated
from the full 4, (solid line), %J (dot-dashed line), and @ (dotted
line).

E. Spectral functions

The hole-spectral function Pi, (k, e) for removing a par-
ticle of momentum k from the ground state IO) of a nu-
cleus with A nucleons is defined as

P„(k,e)= g I(I a„IO) I
5(e+E —E ),

I
(2.24)

J Pi, (k, e)de =n(k) . (2.25)

The electrons in e, e'p reactions primarily interact with
only one nucleon in the nucleus. The interactions of that
nucleon, after it is struck by the electron, on its way out
of the nucleus, are called final-state interactions (FSI).
When FSI are neglected, the electron-scattering cross
section is proportional to the spectral function
Pi, (p, e ), where p =q —p is the missing momentum,
em =co—

ez is the missing energy, m, q are the energy
momentum transferred by the electron, and e,p are
those of the ejected nucleon. Hence the spectral func-
tions are very useful in the study of electron-nucleus
scattering.

The Ph(k, e) of He and He have been calculated with
the Faddeev (Meier-Hajduk et al. , 1983) and variational
methods (Morita and Suzuki, 1991). It is also possible to
estimate these Ph (k, e) from the momentum distribution
of nucleons, deuterons, and H in He and He (Ciofi de-
gli Atti et al. , 1991; Benhar and Pandharipande, 1993).
The spectral functions of NM have been calculated with
the Urbana U (ij ), with added density-dependent terms to
simulate effects of V(ij k), using correlated basis theory
by Benhar, Fabrocini, and Fantoni (1991). Their results

where II) are the eigenstates of the (A —1) nucleons
with energies EI. The Pi, (k, e) is regarded as the proba-
bility of finding a nucleon with momentum k and energy
e in the nucleus, and it obeys the sum rule

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993
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are shown in Pigs. 7 and 8 for k & kF and k & kF. The
Pz (k., e) is sensitive to correlations in the system; for com-
parison, that for the uncorrelated Fermi gas (FG) is given
by

l

k=2.2 fm

2
Pi, (k &kI;, e,FG)=o e — k2 (2.26)

Pq(k )kF, e,FG)=0 . (2.27)

Correlations contribute to the Pz(k, e) of NM a back-
ground term for both k &kF and k &kF which stretches
over a wide range of e. The Ph(k &kF, e) has an addi-
tional quasihole peak whose width repI'esents the lifetime
of the hole. This quasihole peak becomes sharper and
more distinct as k approaches kz froIn below. Its
strength is denoted by Z(k), and Migdal (1957) has
shown that in normal Fermi liquids the Z (k -k~) equals
the magnitude of discontinuity of n (k) at k~, i.e.,

Z(k-kF)=n (kF E) —n(kF—+e), lim .
g —+O

The gI'OUIld and a few low"eIleIgy excited states 1Il nU-

clei like He, ' 0, and Tl can be considered as a
quasihole in the doubly closed-shell nuclei He, ' 0, and

Pb. They have zero width, since decay by strong in-
teractions is not possible. %'ave functions of quasihole
orbitals are given by

I

QZ,
X% g(r), . . . , rg )d r) ' ' d pg

k = l.226 tm
tO

~ lO

0)

lO
CL

IO

-P.OO -lOO
e (MeV)

FIG. 7. Hole-spectral function for k=1.226 fm ' in NM at
equilibrium kz = 1.33 fm

where %'z is the ground-state wave function of the
double-closed-shell nucleus, and 4'~ 1 is the wave func-
tion of the ( A —1)-nucleon quasihole state with angular
momentum (j, —m). The Z. is required in order to nor-
malize the g. , and it is the strength of the 6 function in
the spectral function P&(jm, e) of the nucleus A, calculat-
ed with quasihole opeI'ators a instead of the plane wave

IO
-600 -400 -200

e(MeV)

FIG. 8. Hole-spectral function for k=2.2 fm ' in NM at equi-
11brluIn kp = 1.33 fDl

III. CORRELATION EFFECTS
IN ELECTRON-NUCLEUS SCATTERING

The electrons can interact with the nucleons in various
ways. At small momentum transfer the electron-nucleon
interaction is essentially elastic in the electron-nucleon
center-of-mass frame. The interaction vi.a the Coulomb
force is mostly with the protons, while that due to ex-
change of transverse photons can be with the magnetic
moment of either protons or neutrons, or with the proton
current. At large momentum transfers the electron-
nucleon interaction becomes predominantly inelastic,
leading to excited states of the nuc1eon and pion produc-
tion. In e1ectron-nucleus scattering experiments, the
transfer of energy and momentum is carefully chosen to
study difFerent aspects of nuclear structure, and the
Rosenbluth sepaI'ation is used to isolate the Coulomb
part.

The Coulomb interaction between a point positive
chaI'ge and the electroIl 111 mom{ ntum space 1S given by—e jq . The proton, however, has a finite size, and its
Coulomb interaction with the electron is given by

ak in Eq. (2.24).
If we approximate the nuclear wave functions by Slater

determinants, as in the shell model, then the quasihole
orbitals are the same as the P of the Sinter determinant
and Z~ = 1. CQI'Ielat1ons, spatial as weH as spin"1sospln»
reduce the value of Z and Inake the quasihole orbitals

more surface peaked. The P of large nuclei have
not been calculated with realistic nuclear interactions,
but they have been estimated by jLewart, Pandharipande,
and Pieper (1988) in helium liquid drops with the varia-
tlollal wave fUIlctloIls.

The normalizations Z of the ls —,
' state in He and of

the state with momentum k~ in NM have been studied
with Ieallst1c 1nteIactlons; their calcUlated valUes aIe Z
(ls—,', He) =0.81 and Z (kF,NM) =0.71. The surface
efFects in nuclei may decI'ease the normalization Z below
its value in NM; for example, Z(3s —,', Pb) is estimated
to be -0.6+0.1 (Pandharipande, Papanicolas, and Wam-
bach, 1984). A measure of all the correlations ln a
nucleus —short range, spin-isospin, and long range —is
pI'ovlded by 1 Z.

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993
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—Gg(q, co)e /q, where Gg(q, co) is the proton charge
form factor. The 6nite-size effects on the interaction of
nUclcoIl magnetic moments w1tli thc clcctI'on RI'c slmllar-
ly described by magnetic form factors GM'~(q, co). These
form factors are empirically known from electron-
IlUclcon scattering experiments~ however~ tlicI'c RIc 1RI"gc

uncertainties in the sma11 neutron-electric form factor
GE.

A. The Coulomb sum

Thc cross section for the scattering of unpolarized
electrons by nuclei is gi.ven in the Born approximation by
the Rosenbluth formula:

cT~ ' RI {q, co )

P

+ — +tan —R T(q, co)
1 Q z8

whex'e o~ is the Mott cross section for electron-proton
scattering, Q =q —co is the square of the four-
momentum transfer, 0 is the scattering angle, and E.I
RIld R T arc thc longitUd1nal and tI'Rnsvcf sc IcspoIlsc
functions. At q «600 MeV/c, the internal excitations of
the nucleon do not contribute to the longitudinal part;
however, they do contribute to RT(q, co} [Batzner et a/.
(1972)]. Thlls RL (q, co) is pliliiai'ily due to tile Coiiloinb
interaction between the electron and the protons and is
given by

R (q, co)= y ~&I~p (q)~0&~'

X5(Eo+ co E )i1Gg (q, —)c~o, (3.2)
e

p~(q) = Q e ' —(1+hz(i)) .
i =I, A

Here ~I ) are the eigenstates of the A nucleons with ener-

gy EI, and (1+~,(i) )/2 is the proton projection operator.
The Coulomb sum SL (q) is defined as

experimental data is not, possible, because the RJ (q, co)

has bccIl measured only Up to R maximum value 6)~~„.
The residual integral (3.4) from co „to ~ is obtained
from estimates of RI (q, co&co,„) that satisfy energy-
weighted sum rules calculated theoretically. Charge-
exchange nuclear interactions like the U [Eq. (2.2)]
enhance the energy-weighted sum of RI ( q, co )

significantly above its quasifree value q /2m; its calcula-
tion 1s thus nont11vlal. In thc light IlUclc1 R rcasonablc
agreement between the theory (Schiavilla, Pandhari-
pande, and Fabrocini, 1989) and experiment (Marchand
et a/. , 1985; Dow et a/. , 1988; Dytman et a/. , 1988) is
obtR1Ilcd Rs lllustlatcd 1n Flg. 9. Thc opcIl circles 1n this
figure, labeled SL „,show the integral of the experimental
data up to ~,„, and the solid circles show the complete
integral SL with theoretically extrapolated R I (q, co

&co,„). The dashed lines show values of Sz(q) in He
and Hc, disregarding thc coI'Iclatlons bctwccIl thc two
protons. Clearly the efFect of correlations on the SL(q) is
rathcI small, Rnd best established fo1 Hc.

Equation (3.2) gives only the leading term contributing
to the RL (q, co). In addition to it are small terms of order
q /m that represent relativistic corrections and two-
body charge operators. These terms have been studied
x'ecently by Schiavilla, %'iringa, and Carlson, and seem to
I'cdUcc thc small systcmat1c d16crcncc between thc calcU"
lated and observed SL (q) for He.

B. Nuclear transparencY to
protons from e, e'p reactions

When co-q /2m, the scattering can be considered as
quasifree; the electron imparts momentum q to a single
IlUclco11. Thc t1RIlsparcIlcy T of R IlUclcUs 1S dcfiIlcd as
the average probability that the stx'uck nucleon will
emerge from the nucleus without colliding with other nu-
cleons. This parameter has been Ineasured by Garino
et a/. (1992) for protons of mean kinetic energy of 182

SI (q)= —I dcoRI (q, co)/iGg(q, co)(

where Z is the number of protons in the nucleus (not to
be confused with the normalization factor Z). The lower
hmit ~,&

excludes the elastic electron-nucleus scattering
contribution. The SI (q) is related to the Fourier trans-
forms of one- and two-proton densities p~(r) and p~~(r)
[Eq. (2.14)]:

SI(q)=1+p„{q)—~p (q)~ /Z . (3.5)

In extended liquids the p(q) vanishes for q%0, and the
above equation reduces to the relation (1.1) between
structure and pair distribution functions. In finite sys-
tems, like nuclei, p (q) remains nonzero at q&0.

Direct comparison between the theoretical SL (q) and

—0.8

—0.6
—0.4
—0.2

0
l50 500 450 600 750

k(MeV/c)

FICk. 9. Coulomb sum in 8, 8, He, and He.
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T =—Id'» p~(r)&&(r),
1

(3.6)

MCV ejected from a number of nuclei. In the correlated
Cxlauber approximation (CCxA), T is given by

eff'ects with the local-density approximation (2.17).

gJN(r r )=&pNNM(+P(r)p(r ) Ir (3.9)

where p„(r) is the proton density, and

pr(r) =exp, —I dz'[cr~„(q, p(r') )j~„(r,r')
Z

This g & is (I at small Ir —r'I, showing how spatial
correlations increase the transparency. The present
theory seems to explain the observed data quantitatively.

C. Scattering of GeV electrons by nuclei

+o (q, p(r'))g „(r,r')] '

1ndicatcs thc p1obRb111ty that a pIoton stI'Uck at r wi11
emerge without further scattering. Here the z axis is
chosen parallel to the momentum q of the proton, so that
the x and y components of r and I' are identical. The
eff'ective pX (X =p or n) scattering cross sections cruz de-
pend upon q and on the density of rnatter at r', and

Relativistic effects as we11 as internal excitations of nu-
cleons play an important role in the scattering of GcV
clcctI'Gns by Iluc1cl. Thc 1ncluslvc CI'oss scctlon, which
includes both the Coulomb and the transverse photon-
exchange interaction of the electron, is proportional to
the nuclear tensor defined as

g ~(r„r')=p ~(r, r')/p (r)—:g ~(r, r')p~(r') (3.8)

indicates the probability of finding a nucleon at r' given
that there is a proton at r. At small Ir —r'I it is appropri-
ate to use g~~(r, r') as defined in Eq. (3.8), since the
strUck pI'otoIl 1s YIlov1ng much fastcl' thaIl GthcI' IluclcoIls.
At larg~ values of lr —r'I, g~~(r, r')- I, and the appro»-
mation is inconsequential.

The transparencies calculated by Pandharipande and
Pieper (1992) for 182 MeV outgoing protons are com-
pared with the experimental data in Fig. 10. The dotted
curve, showing results obtained with g &

= 1 and the ob-
served o.

z& in vacuum, lies far below the data. Pauli
blocking and CQ'ective-mass corrections reduce the
scattering cross sections in matter significantly; the tran-
sparencies calculated with g ~=1 and most plausible
efFective o~&(q, p(r')), shown by the dashed line, are
closcI to thc dRta. Thc so11d CUI'vc 1nc1Udcs cGI'I'c1Rtlon

(3.10)

where J„(q) are four-dimensional current operators. The
tensors 8'& (q, co) for free nucleons are known from ex-
periments on protons and deuterons (Bodek and Ritchie,
1981). In the plane-wave impulse approximation
(PWIA), the interaction of the struck nucleon with the
residual 3 —1 nucleon system is neglected. and the Ham-
iltonian H is approximated by Hz ]+Ho, where Ho is
the Hamiltonian of a free struck nucleon, and Hz &

is
that of the residual system. This approximation calcu-
lates 8' from the 8' and from the spectra1 function
PI, (k, e) [Eq. (2.24)] of nucleons in nuclei:

W„",I~ (q, co)

= Jdkde[ZPg(k, e) JYJ„' (q, co;k, e)

0.7— +( ~ —Z)&P(k, e) W„" (q, ro;k, e)] .

(3.11)

T 05 —
)

l2

0.2

40C

90z
l I

4
l/2

&r & (fm)

FIG. 10. Average transparency T of nuclei plotted against their
rms radius. The data points are from Garino et al. (1992), and
the theoretical curves are discussed in the text.

The bound nucleons are ofF' shel1; i.e., their e —k does
not equal m . The 8' for e —k Wm has to be extra-
polated from the known 8' for nucleons on the energy
shc11.

Once the struck hadron has scatteI'ed against a nu-
cleon in the residual system, it is unlikely that the J„(q)
operator can revert the state to IO) when q is large.
Thus it is hoped that the main efFect of the final-state in-
teractions (FSI) of the struck hadron with the residual
system can be included via an attenuation factor a (t);
a (t) gives the probability that the struck hadron will not
have scattered by FSI up to time t. In this approxima-
tion,
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8'",(q, co) =f e a (t)(OI Jt (k)exp( —i [H& i+Ho]t)J, (k) IO)
2m'

6) 8 @~1~ q, h) E AP QP

dtF(co)=Re e' 'a(t) .
0 2'lT'

(3.12)

This folding function method is similar to that used by
Silver and co-workers (Silver and Sokol, 1989) to estimate
the effects of FSI on the scattering of neutrons by helium
liquids. We estimate a (r) by approximating the interac-
tion of the struck hadron with the residual system by an
optical potential V(r) whose real part is negligible; i.e.,

we take V {r ) as purely imaginary. The Glauber approxi-
Q1atlon sets

the PODIA and CGA results. In H the e6'ects of FSI are
small and the observed cross section at co (coqf provides
a measure of the Ph (k, e), or, equivalently, the momen-
tum distribution of nucleons in the deuteron. The deep-
inelastic contributions associated with nucleon excitation
dominate the region at m & m f. At large values of q, typ-
ical in the scattering of multi-GeV electrons, relativistic
klnemat1cs gives

a(t)=exp i V—(r +~r)d~0 (3.14) (3.17)

V(r) =f d r'g&&(ro, r') W'(r —r'), (3.15)

where r0 indicates the position of the struck hadron at
time t=0, and ~ is its velocity. The V(r) can be written
as

In all nuclei other than H, the FSI effects are
significant at u&mqf, and the data indicate their being
overestimated in the CGA. It has been suggested that
QCD etFects reduce the interaction of the struck hadron
with other nucleons belo~ that estimated from free XX
scattering, for a time called the hadronization length:

where 8'(r r') is the im—aginary part of the nucleon-
nucleon interaction, and i& =2+m +q /b, M (3.18)

f W(r —r')d r'= cr~~Ie—I
. (3.16)

The function 1V(r—r') is assumed to be a Gaussian fitted
to the imaginary part of the XXscattering amplitude. At
GeV energies the XN scattering is mostly inelastic and
W(r —r') has a range of -0.5 fm. Equation (3.7) can be
obtained from Eqs. (3.14)—(3.16) by neglecting the range
of 8'(r —r').

The results obtained for H, He, He (Benhar and
Pandharipande, 1993), and NM (Benhar, Fabrocini, and
Fantom, 1991;Benhar, Fabrocini, Fantoni, Miller, et aI.,
1991), with PWIA and the correlated Glauber approxi-
mation (CGA) described above, are compared with the
data in Figs. 11—14. Generally the data are in between

o ~~(z) =S(z)o.~~(free),

9(k,'}
CO

zS(z)= —1—
Ip

+ 0(lh —z)
g CO

(3.19)

(3.20)

with (k„')'~~=350 MeV. This efFect can be easily in-

cluded in the calculation of a(t) by ins«ting th«ac«r
S(I~I~) in the integrand of Eq. (3.14).

where 5M -0.7 GeV . This color transparency (CT)
e6'ect causes the cross section for the scattering of the
struck hadron by the other nucleons to depend upon the
distance z = i~le. Following Farrar et al. {1988),we set

IG

-p
IO

p 10

b IO

I I j I
I

I ~ E l
I

I

fQ

v) IQ

IQ3

IQ

I I l

I

I ( I I I

I
I I I I

I I I I l l l l 4 I I

I l.5 2
energy loss ~(GeV)

I
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l i i ~ i l t r r t I

l.0 l.5 2.0 2 5
energy loss ~(GeV)

FIG. 11. Experimental (Rock et aI., 1982) and theoretical cross
sections for the scattering of 9.79 GeV electrons by 10 from H.

FICx. 12. Experimental (Day et al. , 1979) and theoretical cross
sections for the scattering of 10.954 QeV electrons by 8 from
He.
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tained with the CGrA+CT effects seem to be in reason-
able agreement with the data in Figs. 11—14, except pos-
sibly for He.

D. Exclusive reactions

FIG. 13. Experimental (Day et aI., 1987) and theoretical cross
scctioIis fol the scattcliIig of 3.595 G'cV electrons by 30 from
'He.
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TABLE II. Values of Q observed in inelastic electron scattering
froIn Pb and Pb. The columns give the energy, spin, and
parity of the final state and the initial and final quasiparticle or-
bitals. The Q values are from Heisenberg et al. (1982), Lichten-
stadt et al. (1979, 1980), and Papanicolas et al. (1980) and have
an error of -0.05.

The cross sections for some inelastic electron-
scattering reactions may be simply related to the normal-
ization Z of quasiparticle states [Eq. (2.28)]. For exam-
ple, the Pb(e, e') Pb' reaction to low-energy
quasihole states of Pb can be considered as a single-
quasihole transition. Its observed form factor F(q) may
be expressed, mostly through its momentum-transfer
dependence, as the sum of' a quenched single-particle
contribution and a background term:

F(q) =QF,&(q)+Fbs(q) .

The quenching factor Q is given by

Q =QZ(j;)Z(j~),

(3.21)

(3.22)

10

~ 10

3
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I I I I
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1 I I I
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1
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energy loss ~(GeV)

FIG. 14. Extrapolated (Day et al. , 1989) and calculated cross
sections (per nucleon) for the scattering of 3.595 GeV electrons
by 30 from NM.

whclc J& RIld Jy arc the RIlgular momcnta of the qURslholc
in the initial and final states (Pandharipande, Papanico-
las, and Wambach, 1984). The observed transitions in

Pb and Pb and the extracted values of
QZ(j; )Z(jy) are listed 1n Table II. It appears from this

d~=a~„[y„(p.=p —q)['Z(h, ~), (3.23)

where K is a constant determined from the reaction kine-
matics, o., is the electron-proton scattering cross sec-
tion, q is the momentum transfer, and p is the momen-
tum of the outgoing proton. The data are usually
presented in the form of the reduced cross section (der ):

The distortion of the outgoing proton wave is very
slgn16cant, RIld 1I1 heavy IlUclcl thc dlstoItloIls of clcctloIl
waves are also important. Theoretical techniques to cal-
culate do. (p ) including effects of proton and electron
wave distortions have been developed by Boisei, Giusti,
and Pacati (1993). This theory can satisfactorily explain
the dependence of do. on p, as illustrated in Fig. 15,

ff)
l 02

lG
C3

1

10— 5/2 1/2
I I I i I

-2GG 200 -200 0 2OO
p (MeV/c)

FIG. 15. Rcduccd CIoss scctIoIis do(p ) for the Ca(g, e p)
reaction to the 1d—and 2s& quasihole states. The data are for
100 MCV outgoing protons with momenta parallel to q (Kra-
mer, 1990). The results of DWIA calculations are from Lapikas
(1991).

0

analysis that the average value of the normalization Z of
low-energy quasiparticle states in Pb is -0.6+0.05.

The cross section of the A (e, e'p)(A —I)& reaction,
where 3 is a double-closed-shell nucleus and ( 3 —1)„ is
a qUaslholc state, ls scnsltlvc to both thc quaslpRrtlclc oI'-
bital gi, and Z (h, A ). Its PWIA cross section reads
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FIG. 16. Values of Z in double-closed-shell nuclei obtained
from the analysis of e, e'p experiments conducted at NIKHEF.

IV. SUMMARY

and extract values of Z (h, 3 ) from the data.
The NIKHEF group (Nationaal Instituut voor

Kernfysica en Hoge-Energiefysica, ' van der Steenhoven
and de Witt Huberts, 1991) has studied a number of
A (e, e'p)( 3 —1)t, reactions; Z (h, 3 ) values extracted
from their data are shown in Fig. 16. Their average
value for the Z in ' 0, ~ Ca, Ca, and 2 Pb is -0.65,
which is consistent with that obtained from inelastic elec-
tron scattering for Pb and Pb.

brocini, and Pandharipande, 1987) energy-weighted sums
suggest that there may be only -20%%uo strength in the
unobserved high-energy tail of the response, leaving
—10/o unexplained. Second, the preliminary analysis of
the recent SLAC NE18 experiment (Milner, 1993) to
measure nuclear transparency for multi-GeV protons
ejected in e, e'p reactions has not shown the CT effect es-
timated by Benhar et al. (1992) using Eqs. (3.18)—(3.20).
In the present approach the CT effect is needed to ex-
plain the observed inclusive e, e' cross sections (Figs.
12—14), suggesting that the QCD modifications of the
struck nucleon's FSI may be more complex than de-
scribed by Eqs. (3.18)—(3.20).
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The spatial correlations between nucleons in nuclei are
not very strong, since the repulsive-core radius of the NX
interaction (-0.5 fm) is much smaller than the average
interparticle distance ( -2 fm) in NM. They, according-
ly, have a small effect on the Coulomb sum and on the
transparency in e, e'p reactions. Qualitatively an effect of
the predicted magnitude is seen in the observed data, but
quantitative comparisons are not yet possible. Errors in
the data, and those introduced by simplifying assump-
tions in the analysis, implicit in the use of CGA, for ex-
ample, may not be very much smaller than the correla-
tion effect.

The tensor correlations between nucleons have a large
effect on the spectral function and momentum distribu-
tion of nucleons in nuclei. The large observed cross sec-
tion at co(coqf in the scattering of multi-GeV electrons
by nuclei certainly indicates the presence of significant
correlations. Final-state interaction efFects are small in
H, and hence the predicted high-momentum corn-

ponents in the deuteron wave function seem to be
confirmed by observations. On the other hand, the FSI
effects are large in other nuclei.

The overall strength of correlations in nuclei, indicated
by the normalization Z of quasihole states in double-
closed-shell nuclei, appears to be in reasonable agreement
with theory; but the effect of the nuclear surface on the
Z's is large and in need of quantitative understanding.

At least two additional concerns remain in this field.
First, in larger nuclei, of which Fe is the most studied
(Chen et al. , 1991), the Coulomb sum obtained from the
observed longitudinal response is —30% less than ex-
pected at q) 300 MeV/c. The theoretical (Schiavilla, Fa-
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