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Although skeptical of the prohibitive power of no-hidden-variables theorerns, John Bell was himself re-
sponsible for the two most important ones. I describe some recent versions of the lesser known of the two
(familiar to experts as the "Kochen-Specker theorem") which have transparently simple proofs. One of
the new versions can be converted without additional analysis into a powerful form of the very much
better known "Bell's Theorem, " thereby clarifying the conceptual link between these two results of Bell.
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Like all authors of noncommissioned reviews he thinks
that he can restate the position with such clarity and
simplicity that all previous discussions will be eclipsed.

J. S. Bell, 1966

I ~ THE DREAM OF HIDDEN VARIABLES

It is a fundamental quantum doctrine that a measure-
ment does not, in general, reveal a preexisting value of
the measured property. On the contrary, the outcome of
a measurement is brought into being by the act of mea-
surement itself, a joint manifestation of the state of the
probed system and the probing apparatus. Precisely how
the particular result of an individual measurement is
brought into being —Heisenberg's "transition from the
possible to the actual" —is inherently unknowable. Only
the statistical distribution of many such encounters is a
proper matter for scientific inquiry.

We have been told this so often that the eyes glaze over
at the words, and half of you have probably stopped
reading already. But is it really true'? Or, more conser-
vatively, is it really necessary? Does quantum mechan-
ics, that powerful, practical, phenomenally accurate com-
putational tool of physicist, chemist, biologist, and en-
gineer, really demand this weak link between our
knowledge and the objects of that knowledge? Setting
aside the metaphysics that emerged from urgent debates
and long walks in Copenhagen parks, can one point to
anything in the modern quantum theory that forces on us
such an act of intellectual renunciation? Or is it merely
reverence for the Patriarchs that leads us to deny that a
measurement reveals a value that was already there, prior
to the measurement?

Well, you might say, it's easy enough to deduce from
quantum mechanics that in general the measurement ap-

paratus disturbs the system on which it acts. True, but
so what? One can easily imagine a measurement messing
up any number of things, while still revealing the value of
a preexisting property. Ah, you might add, but the un-
certainty principle prohibits the existence of joint values
for certain important groups of physical properties. So
taught the Patriarchs, but as deduced from within the
quantum theory itself, the uncertainty principle only
prohibits the possibility of preparing an ensemble of sys-
tems in which all those properties are sharply defined;
like most of quantum mechanics, it scrupulously avoids
making any statements whatever about individual
members of that ensemble. But surely indeterminism,
you might conclude, is built into the very bones of the
modern quantum theory. Entirely beside the pointf The
question is whether properties of individual systems pos-
sess values prior to the measurement that reveals them;
not whether there are laws enabling us to predict at an
earlier time what those values will be.

What, in fact, can you say if called upon to refute a
celebrated polymath who confidently declares that "Most
theoretical physicists are guilty of. . . fail[ing] to distin-
guish between a measurable indeterminacy and the ep-
istemic indeterminability of what is in reality deter-
minate. The indeterminacy discovered by physical mea-
surements of subatomic phenomena simply tells us that
we cannot know the definite position and velocity of an
electron at one instant of time. It does not tell us that
the electron, at any instant of time, does not have a
definite position and velocity. [Physicists] . . . convert
what is not measurable by them into the unreal and the
nonexistent" (Adler, 1992, p. 300).

Are we, then, arrogant and irrational in refusing to
consider the possibility of an expanded description of the
world, in which properties such as position and velocity
do have simultaneous values, even though nature has
conspired to prevent us from ascertaining them both at
the same time? Efforts to construct such deeper levels of
description, in which properties of individual systems do
have preexisting values revealed by the act of measure-
ment, are known as hidden-variables programs. A fre-
quently offered analogy is that a successful hidden-
variables theory would be to quantum mechanics as clas-
sical mechanics is to classical statistical mechanics (see,
for example, A. Einstein, in Schilpp, 1949, p. 672): quan-
turn mechanics would survive intact, but would be under-
stood in terms of a deeper and more detailed picture of
the world. Efforts, on the other hand, to put our notori-
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ous refusal on a more solid foundation by demonstrating
that a hidden-variables program necessarily requires out-
comes for certain experiments that disagree with the data
predicted by the quantum theory, are called no-hidden-
variables theorems (or, vulgarly, "no-go theorems").

In the absence of any detailed features of a hidden-
variables program, quantum mechanics is incapable of
demonstrating that the general dream is impossible. ' lf
the program consists of nothing beyond the bald asser-
tion that such values exist, then while quantum physicists
may protest, the quantum theory is powerless to produce
a case in which experimental data can refute that claim,
precisely because the theory is mute on what goes on in
individual systems. A hidden-variables theory has to
make some assumptions about the character of those
preexisting values if quantum theory is to have anything
to attack.

John Bell proved two great no-hidden-variables
theorems. The first, given in Bell, 1966, is not as well
known to physicists as it is to philosophers, who call it
the Kochen-Specker (or KS) theorem because of a ver-
sion of the same argument, apparently more to their
taste, derived independently by S. Kochen and E. P.
Specker, 1967. I shall refer to it as the Bell-KS theorem.
The second theorem, "Bell's Theorem, " is given in Bell,
1964, and is widely known not only among physicists,
but also to philosophers, journalists, mystics, novelists,
and poets.

One reason the Bell-KS theorem is the less celebrated
of the two is that the assumptions made by the hidden-
variables theories it prohibits can only be formulated
within the formal structure of quantum mechanics. One
cannot describe the Bell-KS theorem to a general audi-
ence, in terms of a collection of black-box gedanken ex-
periments, the only role of quantum mechanics being to
provide gedanken results, which all by themselves imply
that at least one of those experiments could not have
been revealing a preexisting outcome. Bell's Theorem,
however, can be cast in precisely such terms. Indeed the
hidden-variables theories ruled out by Bell's Theorem
rest on assumptions that not only can be stated in entire-

~David Bohm (Bohm, 1952j has, in fact, provided a hidden-
variables theory that, if nothing else, serves as a proof that an

unqualified refutation is impossible. I will return to Bohm
theory in Sec. IX, merely noting here that it does exactly what
Mortimer Adler wants, while remaining in complete agreement
with quantum mechanics in its predictions for the outcome of
any experiment.

As mathematics, both results are special cases of a more
powerful analysis by A. M. Gleason, 19S7.

In spite of the earlier publication date, Bell's Theorem was
proved after Bell proved his 1966 theorem. The manuscript of
Bell, 1966, languished unattended for over a year in a drawer in
the editorial oKces of Reuietus ofModern Physics

4Several such formulations of Bell's Theorem are given in

Mermin, 1990a.

ly nontechnical terms but are so compelling that the es-
tablishment of their falsity has been called, not frivolous-
ly, "the most profound discovery of science" (Stapp,
1977).

The comparative obscurity of the Bell-KS theorem
may also derive in part from the fact that the assump-
tions on which it rests were severely and immediately cri-
ticized by Bell himself: "That so much follows from such
apparently innocent assumptions leads us to question
their innocence. " We shall return to his criticism in Sec.
VII.

A less edifying reason for the greater fame of Bell' s
Theorem among physicists is that its proof is utterly
transparent, while proving the Bell-KS theorem entails a
moderately elaborate exercise in geometry. Physicists are
simply less willing than philosophers to suffer through a
few pages of dreary analysis to prove something they nev-
er doubted in the first place. So although all physicists
know about Bell's Theorem, most look blank when you
mention Kochen-Specker or Bell-KS. Now, however,
these particular grounds for such ignorance have been re-
moved. Within the past few years new versions of the
Bell-KS theorem have been found (Mermin, 1990b) that
are so simple that even those physicists who regard such
efforts as pointless can grasp the argument with negligi-
ble waste of time and mental energy. Besides making the
argument so easy that even impatient physicists can en-
joy it, one of the new forms of the Bell-KS theorem can
also be readily converted into the striking new version of
Bell's Theorem invented by Greenberger, Horne, and
Zeilinger, thereby shedding a new light on the relation
between these two results of Bell.

II. PLAUSIBLE CONSTRAINTS
ON A HIDI3EN-VARIABLES THEORY

I now specify more precisely the general features of a
hidden-variables theory. Quantum mechanics deals with
a set of observables A, 8, C, . . . and a set of states
~+), ~4), . . . . &f we are given a physical system de-
scribed by a particular state, then quantum mechanics
gives us the probability of getting a given result when
measuring one of the observables. More generally, if we
have a group of mutually commuting observables, quan-
tum mechanics asserts that we can do an experiment that
measures them simultaneously and gives us the joint dis-
tribution for the values of each of the observables in that
mutually commuting set.

We wish to entertain the heretical view that the results
of a measurement are not brought into being by the act of
measurement itself. This heresy takes the state vector to
describe an ensemble of systems and maintains that in

5Greenberger et al. , 1989. I have given a concise version of
the Greenberger-Horne-Zeilinger argument in Mermin, 1990c
and 1990d. An expanded discussion of their original argument
can be found in Greenberger et al. , 1990.
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each individual member of that ensemble every observ-
able does indeed have a definite value, which the mea-
surement merely reveals when carried out on that partic-
ular individual system. The quantum-mechanical rules,
applied to a given state, give the statistics obeyed by
those definite values in the ensemble described by that
state. The uncertainty principle is not a restriction on
the ability of observables to possess values in individual
systems, but a limitation on the kinds of ensembles of in-
dividual systems it is possible to prepare, stemming from
the unavoidable disturbance the state-preparation pro-
cedure imposes on the system. If two observables fail to
commute, then the uncertainty principle does not prohi-
bit both from having definite values in an individual sys-
tem. It merely insists that it is impossible to prepare an
ensemble of systems in which the values of neither ob-
servable fluctuate from one individual system to another.

To this kind of talk the well-trained quantum mechani-
cian says "Rubbish!" and gets back to serious business.
But is it possible to offer a better rejoinder? Is it possible
to demonstrate not only that the innocent view is at odds
with the prevailing orthodoxy, but that it is, in fact,
directly refuted by the quantum-mechanical formalism it-
self, without any appeal to an interpretation of that for-
malism? A no-hidden-variables theorem attempts to pro-
vide such a refutation. It is only an attempt because any
such theorem must make some assumptions on the na-
ture of the hidden variables it excludes, which a per-
sistent heretic can always call into question. Here is
what I hope you will agree is a plausible set of assump-
tions for a straightforward hidden-variables theory.

Given an ensemble of identical physical systems all
prepared in the state ~4& ) described by observables
A, B,C, . . . such a theory should assign to each individu-
al member of that ensemble a set of numerical values for
each observable, U(A), U(B),v(C). . . , so that if any ob-
servable or mutually commuting subset of observables is
measured on that individual system the results of the
measurement will be the corresponding values. The
theory should provide a rule for every state ~4) telling
us how to distribute those values over the members of the
ensemble described by ~

4& ) in such a way that the statis-
tical distribution of outcomes, for any measurement
quantum mechanics permits, agrees with the predictions
of quantum mechanics.

Some of the constraints quantum mechanics imposes
on the values are independent of the state

~

@) we are ex-
amining. In particular, quantum mechanics requires that
the result of measuring an observable be an eigenvalue of
the corresponding Hermitian operator. Therefore only
the eigenvalues of A can be allowed as values U ( A ).
Quantum mechanics further requires that if A, B,C, . . .
is a mutually commuting subset of the observables then
the only allowed results of a simultaneous measurement
of A, B,C, . . . are a set of simultaneous eigenvalues.
This correspondingly restricts the set of values
v ( A), U(B), v (C), . . . possessed by an individual system.
In particular, since any functional identity

f (A, B,C, . . . )=0 (1)
satisfied by a mutually commuting set of observables is
also satisfied by their simultaneous eigenvalues, it follows
that if a set of mutually commuting observables satisfies a
relation of the form (1) then the values assigned to them
in an individual system must also be related by

f(v(A), U(B), U(C), . . . )=0 . (2)

Remarkably, some no-hidden-variables theorems ar-
rive at a counterexample by considering only Eqs. (1) and
(2), without even needing to appeal to the further con-
straints on the values imposed by the statistical proper-
ties of a particular state. The Bell-KS theorem is such a
result. Others, of which Bell's Theorem is the most im-
portant example, require the properties of a special state
to construct counterexamples. We shall examine in Sec.
VII why it might be necessary for the scope of the coun-
terexample to be restricted in this way. But before we be-
gin, let us first look at a famous false start.

III. VON NEUMANN'S SILLY ASSUMPTION

Many generations of graduate students who might
have been tempted to try to construct hidden-variables
theories were beaten into submission by the claim that
von Neumann, 1932, had proved that it could not be
done. A few years later (see Jammer, 1974, p. 273) Grete
Hermann, 1935, pointed out a glaring deficiency in the
argument, but she seems to have been entirely ignored.
Everybody continued to cite the von Neumann proof. A
third of a century passed before John Bell, 1966,
rediscovered the fact that von Neumann's no-hidden-
variables proof was based on an assumption that can only
be described as silly —so silly, in fact, that one is led to

But in Sec. VII we will come back, with Bell, to criticize one
of them, so look them over carefullyl At this point I deliberate-

ly refrain from calling the elusive culprit to your attention. It is

my hope that you will find the assumptions sufficiently harmless
to be curious whether any hidden-variables theory meeting such

apparently benign conditions can indeed be ruled out by hard-
headed quantum-mechanical calculation, rather than merely be-

ing rejected because it is in bad taste.
7Whether, and in what way, those values depend on new pa-

rameters or degrees of freedom is a detail of the particular
hidden-variables theory and plays no role in what follows, ex-
cept for the two-dimensional example of Bell described below.

8While giving a physics colloquium on these matters I was tak-
en to task by an outraged member of the audience for using the
adjective "silly" to characterize von Neumann's assumption. I
subsequently discovered that, like many penetrating observa-
tions about quantum mechanics, this one was made emphatical-
ly by John Bell: "Yet the von Neumann proof, if you actually
come to grips with it, falls apart in your hands! There is noth-
ing to it. It's not just flawed, it's sillyl . . . . When you
translate [his assumptions] into terms of physical disposition,
they' re nonsense. You may quote me on that: The proof of von
Neumann is not merely false but foolish!" (Interview in Omni,
May, 1988, p. 88.)
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wonder whether the proof was ever studied by either the
students or those who appealed to it to rescue them from
speculative adventures.

A particular consequence of Eqs. (1) and (2) is that if A

and 8 commute then the value assigned to C=A+8
must satisfy

A =ao+a.a,
where ao is a real scalar and a, a real three-vector. A set
of observables A, B,C, . . . is mutually commuting if and
only if the vectors a, b, c, . . . are a11 parallel. The eigen-
values of A, and hence the allowed values v ( A), are re-
stricted to the two numbers

v(C)=U (A)+U(8), (3)
U(A)=ao+a, (7)

as an expression of the identity C —A —8 =0. Von
Neumann's silly assumption was to impose the condition
(3) on a hidden-variables theory even when A and 8 do
not commute. But when A and 8 do not commute they
do not have simultaneous eigenvalues, they cannot be
simultaneously measured, and there are absolutely no
grounds for imposing such a requirement. Von Neu-
mann was led to it because it holds in the mean: for any
state I@&, quantum mechanics requires, whether or not
A and B commute, that

where a is the magnitude of the vector a. The simultane-
ous eigenvalues of a set of mutually commuting observ-
ables are given by choosing one sign in Eq. (7) for those
observables whose vectors point one way along their
common direction, and the opposite sign for those whose
vectors point the other way. Because each observable A
takes on only two values, the distribution of those values
in a given state is entirely determined by the mean of A,
which is given by

&@I&+8I+&=&& I&lc'&+&+'181@& . (4) & 1„I Al 1 „&=a, +a.n .

But to require that U ( 2 +8)= v ( A)+U (8) in each indi-
vidual system of the ensemble is to ensure that a relation
holds in the mean by imposing it case by case —a
sufhcient, but hardly a necessary condition. Sillyf

That the results of quantum mechanics are incompati-
ble with values satisfying this condition is easy to see
even in the two-dimensional state space that describes a
single spin —,'. Let A =o.„,8 =o. . The eigenvalues of
the Pauli matrices are +1, so the values U(A) and v (8)
are each restricted to be +1. Thus the only values
v(A)+U(8) can have are —2, 0, and 2. But A +8 is
just &2 times the component of cr along the direction
bisecting the angle between the x and y axes. As a result
its allowed values are v(A +8)=+&2. Therefore a
hidden-variables theory of this simple system cannot
satisfy Eq. (3). But there is no reason to insist that it
should! Indeed, having exposed the silliness in the von
Neumann argument, Bell went immediately on to con-
struct a hidden-variables model for a single spin —,

' that
satisfies all the nonsilly conditions specified above. I now
give this construction, but include it only to emphasize
the nontriviality of the impossibility proofs we shall then
turn to. Readers not interested in the details of Bell' s
counterexample can skip to Sec. IV.

In a two-dimensional state space every state is an
eigenstate of the component o „of the spin along some
direction n:

A rule associating with each observable one of its ei-
genvalues will yield simultaneous eigenvalues for mutual-

ly commuting observables if it always specifies the oppo-
site sign in Eq. (7) for commuting observables associated
with oppositely directed vectors. We require, in addi-
tion, for each state

I
T „&, that the rule specify a distribu-

tion of those values yielding the statistics demanded by
Eq. (8). Here is a rule that does everything. ' Given a
particular individual system from an ensemble described
by the state

I 1„&,pick at random a second unit vector m
(which plays the role of the hidden variable) and assign to
each observable A the values

U„(A)=ao+a, if (m+n) a)0,
U„(A)=ao —a, if (m+n) a(0. (9)

dQ
U„A =ao+a n . (10)

IV. THE BELL-KOCHEN-SPECKER THEOREM

Having thus given an absurdly simple example of what
had solemnly been declared impossible for the past three

An elementary integration confirms that the mean over a
uniform distribution of directions of m of the value (9) of
any observable in the state

I
1'„& is indeed given by the

quantum-mechanical result (8):

and every observable has the form

This is because every state can be related to
I t, ) by a unitary

transformation, but in a two-dimensional state space any uni-
tary transformation, being a member of SU(2), represents a ro-
tation.

~OIt is a little simpler than the one Bell gives. One can extend
the rule to cover the case (m+n)-a=O, but since this has zero
statistical weight, I do not bother. Note that the values as-

signed to noncommuting observables do not satisfy von
Neumann's additivity condition in individual members of the
ensemble, although their average over the ensemble does, which

is all quantum mechanics requires.
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decades, Bell proceeded to show that the trick could no
longer be accomplished in a state space of three or
more" dimensions'; i.e., he gave a new no-hidden-
variables proof that did not rely on the silly condition. I
now give the full proof of this Bell-KS theorem, but here,
too, I include it only to emphasize the much greater sim-
plicity of the new versions that follow in Secs. V and VI,
to which readers with no interest in the early history of
the subject may jump without conceptual loss.

Just as it is convenient to use the algebra of spin —,
' to

describe a two-dimensional state space, it is also con-
venient to describe the three-dimensional state space in
terms of observables built out of angular momentum
components for a particle of spin 1.' The observables we
consider are the squares of the components of the spin
along various directions. Such observables have eigen-
values 1 or 0, since the unsquared spin components have
eigenvalues 1, 0, or —1. Furthermore the sums of the
squared spin components along any three orthogonal
directions u, U, and m satisfy

S„+S,+S =s(s+1)=2,
since we are dealing with a particle of spin 1 (s = 1). Fi-
nally the squared components of the spin along any three
orthogonal directions constitute a mutually commuting
set. '4

Suppose we are given a set of directions containing
many different orthogonal triads, and the corresponding
set of observables consisting of the squared spin corn-
ponents along each of the directions. Since the three ob-
servables associated with any orthogonal triad commute,
they can be simultaneously measured, and the values
such a measurement reveals for each of them, 0 or 1,
must satisfy the same constraint (11) as the observables
themselves. Thus two of the values must be 1 and the
third, 0. We would have a no-hidden-variables theorem
if we could find a quantum-mechanical state in which the
statistics for the results of measuring any three observ-
ables associated with orthogonal triads could not be real-

His argument focuses on a space of exactly three dimensions,
which can, however, be a subspace of a higher-dimensional
space; the same remark applies to the new arguments in four
and eight dimensions given in Secs. V and VI.

Peculiar to two dimensions is the fact that all observables
that commute with any nontrivial observable A necessarily
commute with each other.

3Bell actually works with orthogonal projections, but the
correspondence is entirely trivial: S =1—P, etc. I find it
more congenial to follow Kochen and Specker in using spin
components, though the version of the argument I give is Bell' s,
not theirs.

~4This is not a general property of angular momentum com-
ponents but it does hold for spin 1, as is evident from the
correspondence with orthogonal projections noted in the
preceding footnote.

ized by any distribution of assignments of 1 or 0 to every
direction in the set, consistent with the constraint.

The Bell-KS theorem does substantially more than
that: it produces a set of directions for which there is no
way whatever to assign 1's and 0's to the directions con-
sistent with the constraint (11), thereby rendering the sta-
tistical state-dependent part of the argument unneces-
sary. This is accomplished by solving the following prob-
lem in geometry: Find a set of three-dimensional vectors
(i.e., directions) with the property that it is impossible to
color each vector red (i.e., assign the value 1 to the
squared spin component along that direction) or blue
(i.e., assign the value 0) in such a way that every subset of
three mutually orthogonal vectors contains just one blue
and two red vectors.

The unpleasantly tedious part of the solution consists
of showing that, if the angle between two vectors of
diff'erent color is less than tan '(0. 5)=26.565 degrees,
then we can find additional vectors which, with the origi-
nal two, constitute a set that cannot be colored according
to the rules. Since all that matters is the direction of
each vector, we can choose their magnitudes at our con-
venience. We take the blue vector to be a unit vector z
defining the z axis and take the red vector a to lie in the
y-z plane: a=z+ay, 0 & o, &0.5.

We now make several elementary observations:

1. Since z is blue, x and y must both be red. '

2. Indeed, any vector in the x-y plane must be red,
since one cannot have two orthogonal blue vectors. In
particular c=px+y must be red, for arbitrary p. Partic-
ularly interesting values of P will be specified shortly.

3. Similarly, since a and x are red, any vector in their
plane, and, in particular, d =x/p —a/a must be red. '

4. Because a=z+ay, d is orthogonal to c=Px+y.
Since both c and d are red, the normal to their plane
must be blue, and therefore any vector in their plane, in
particular, e=c+d must be red.

5. But adding the explicit forms of c and d we see that
e=(p+p ')x —z/a.

6. Since a is less than 0.5, 1/0. is greater than 2. Since
~P+P '~ ranges between 2 and oo as P ranges through all
real numbers, we can find a value of P such that e is along
the direction of f=x—z. Changing the sign of P gives
another e along the direction of g= —x —z.

7. Since e is red whatever the value of P, f and g must
be red.

8. But f and g are orthogonal. The normal to their

~5As I mention each new vector, add it to the set.
If you happen to be interested in counting how many vectors

are in the uncolorable set we end up with, then whenever we

add a red vector v in the plane of two orthogonal red vectors
you should also add to the set, if they are not already present, a
second red vector in that plane perpendicular to v, as well as a
blue vector perpendicular to the plane.
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plane is therefore blue and any vector in their plane is
necessarily red.

X 1S9. But x= —
—,

—
—,g is in= ——' f——' '

the plane of f and g, and x
blue.

the set cannot be10. Contradiction! Therefore e
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~ ~
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' ' —117 of them —which cannot be co oreset of directions — o
in to the rules. Clearly the Bell argument as s a-according to t e ru es.
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Vg

;p. /

FJQ. 2. The tower on the left of
C. Escher's engraving

"Waterfall. " M. C. Escher/
Cordon Art, Baarn, Holland.
The ornament atop the tower
consists of three superimposed
cubes. One of the cubes has all
its edges horizontal or vertical.
The other two are given by ro-
tating this one through 90 de-
grees about each of the two per-
pendicular horizontal lines that
connect the midpoints of oppo-
site vertical edges. The 33 un-
colorable directions used in the
proof of the Bell-KS theorem in
Peres, 1991, lie along the lines
connecting the common center
of the cubes to their vertices and
the centers of their edges and
faces.

M. C. Escher / Cordon Art —Baarn —Holland.

record holders are J. Conway and S. Kochen' with 31,
but Asher Peres, 1991,has found a prettier set of 33 with
cubic symmetry, which can be exploited to give a proof
of the no-coloring theorem that is more compact than
Bell' s. Roger Penrose has pointed out that Peres's set of
33 directions can be described as follows: take a cube
and superimpose it with its 90-degree rotations about two
perpendicular lines connecting its center to the midpoints
of an edge. Peres's directions point to the vertices and to
the centers of the faces and edges of the resulting set of

S. Kochen, private communication.

three interpenetrating cubes. This very figure occurs as a
large ornament atop one of the two towers in M. Escher's
famous drawing of the impossible waterfall, the relevant
portion of which is shown in Fig. 2 (Escher, 1960).

V. A SIMPLER BELI -KS THEOREM
IN FOUR DIMENSIONS

I now turn to the version of the Bell-KS theorem that
works in a four-dimensional space. ' Our task is exactly

This argument was inspired by an earlier version by A.
Peres, 1990, that uses an even smaller number of observables,
but applies only to an ensemble prepared in a particular state.
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the same as Bell, Kochen, and Specker faced in the
three-dimensional case: we must exhibit a set of observ-
ables A, B,C. . . for which we can prove that it is impos-
sible to associate with each observable one of its eigenval-
ues, v ( A ), U (B),U ( C), . . . in such a way that all function-
al relationships between mutually commuting subsets of
the observables are also satisfied by the associated values.
The only difference is that now we can do the trick with
many fewer observables and an entirely trivial proof.

In four dimensions it is convenient to represent observ-
ables in terms of the Pauli matrices for two independent
spin- —,

' particles o.„' and o. . The relevant properties of
these observables are the familiar ones: the squares of
each are unity, so the eigenvalues of each are +1; any
component of o „' commutes with any other component of
o. ; when p and v specify orthogonal directions, 0' an-

ticommutes with 0' for i =1,2; and o' o' =i o.,' for
i =1,2. Consider, then, the nine observables shown in
Fig. 3, which it is convenient to arrange in groups of
three on six intersecting lines that form a square. To
prove that it is impossible to assign values to all nine ob-
servables we merely note that

(a) The observables in each of the three rows and each
of the three columns are mutually commuting. This is
immediately evident for the top two rows and first two
columns from the left; it is true for the bottom row and
right-hand column because in every case there is a pair of
anticommutations.

(b) The product of the three observables in the column
on the right is —1. The product of the three observables
in the other two columns and all three rows is + 1.

(c) Since the values assigned to mutually commuting
observables must obey any identities satisfied by the ob-
servables themselves, the identities (b) require the prod-

uct of the values assigned to the three observables in each
row to be 1, and the product of the values assigned to the
three observables in each column to be 1 for the first two
columns and —1 for the column on the right.

But (c) is impossible to satisfy, since the row identities re-
quire the product of all nine values to be 1, while the
column identities require it to be —1.

I maintain that this is as simple a version of the Bell-
KS theorem as one is ever likely to find ' and that it be-
longs in elementary texts on quantum mechanics as a
direct demonstration, straight from the formalism,
without any appeal to decrees by the Founders, that one
cannot realize the naive ensemble interpretation of the
theory on which the attempt to assign values is based. It
is nevertheless susceptible to the same criticism that Bell
himself immediately brought to bear against his own ver-
sion of the theorem. Before turning to that criticism,
however, I describe a comparably simple version of the
Bell-KS theorem which works in an eight-dimensional
state space that we shall find is capable of evading Bell' s
criticism in a way that the four-dimensional version is
not. The eight-dimensional argument provides a direct
link between the Bell-KS theorems and their illustrious
companion, Bell's Theorem, when Bell's theorem is
presented in the spectacular form recently discovered by
Greenberger, Horne, and Zeilinger, 1989.

VI. A SIMPI E AND MORE VERSATILE
BELL-KS THEOREM IN EIGHT DIMENSIONS

We construct our eight-dimensional observables out of
three independent spins —,', and consider the set of ten ob-
servables shown in Fig. 4, which it is now convenient to
arrange in groups of 4 on five intersecting lines that form
a five-pointed star. To prove that it is impossible to as-
sign values to all ten observables note that

2
CTy

2 1 1 2~~~y Oz~z

FIG. 3. Nine observables leading to a very economical proof of
the Bell-KS theorem in a state space of four or more dimen-
sions. The observables are arranged in six groups of three, lying
along three horizontal and three vertical lines. Each observable
is associated with two such groups. The observables within
each of the six groups are mutually commuting, and the prod-
uct of the three observables in each of the six groups is + 1 ex-
cept for the vertical group on the right, where the product is
—1

These are simply to be viewed as a convenient set of opera-
tors in terms of which to expand more general four-dimensional
operators; we need not be talking about two spin-2 particles at
all.

(a) The four observables on each of the Ave lines of the
star are mutually commuting. This is immediately evi-
dent for all but the horizontal line, where it follows from
the fact that interchanging the observables in each of the
six possible pairs always requires a pair of anticommuta-
tions.

(b) The product of the four observables on every line of
the star but the horizontal line is 1. The product of the

~ Peres, 1991, recasts the argument as a no-coloring theorem
for a set of 24 directions in four dimensions, thereby making it
complicated again. The advantage of the four-dimensional ar-
gument over the traditional one in three dimensions is just that
no such analysis is necessary.

~~That the three-spin form of the Greenber ger-Horne-
Zeilinger version of Bell's Theorem could be reinterpreted as a
version of the Bell-KS theorem was brought to my attention by
A. Stairs.
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FIG. 4. Ten observables leading to a very economical proof of
the Bell-KS theorem in a state space of eight or more dimen-
sions. The observables are arranged in five groups of four, lying
along the five legs of a five-pointed star. Each observable is as-
sociated with two such groups. The observables within each of
the five groups are mutually commuting, and the product of the
three observables in each of the six groups is + 1 except for the
group of four along the horizontal line of the star, where the
product is —1.

four observables on the horizontal line is —1.
(c) Since the values assigned to mutually commuting

observables must obey any identities satisfied by the ob-
servables themselves, the identities (b) require the prod-
uct of the values assigned. to the four observables on the
horizontal line of the star to be —1, and the product of
the values assigned to the four observables on each of the
other 1ines to be +1.

Condition (c) requires the product over all five lines of
the products of the values on each line to be —1. But
this is impossible, for each observable is at the intersec-
tion of two lines. Its value appears twice in the product
over all five lines, and that product must therefore be
+1.

This hardly more elaborate eight-dimensional version
of the theorem has an additional virtue that the four-
dimensional version lacks. To see this and to see the con-
nection with Bell's Theorem we turn, finally, to Bell's ob-
jection to his own argument.

VII. IS THE BELL-KS THEOREM SILLYV

In all these cases, as Bell pointed out irnrnediately after
proving the Bell-KS theorem, we have "tacitly assumed
that the measurement of an observable must yield the
same value independently of what other measurements
must be made simultaneously. " In Bell's three-
dirnensional example and in both the four- and eight-
dirnensional examples we required each observable to
have a value in an individual system that would give the
result of its measurement, regardless of which of two sets

of mutually commuting observables we chose to measure it
with. But since the additional observables in one of those
sets do not all commute with the additional observables
in the other, the two cases are incompatible. "These

difFerent possibilities require difFerent experimental ar-
rangements; there is no a priori reason to believe that the
results. . . should be the same, The result of an observa-
tion may reasonably depend not only on the state of the
system (including hidden variables) but also on the com-
plete disposition of the apparatus" (Bell, 1966).

This tacit assumption that a hidden-variables theory
has to assign to an observable 3 the same value whether
A is measured as part of the mutually commuting set
A, B,C, . . . or a second mutually commuting set
A, I.,M, . . . even when some of the I,M, . . . fail to
commute with some of the 8,C, . . . , is called "noncon-
textuality" by the philosophers. Is noncontextuality, as
Bell seemed to suggest, as silly a condition as von
Neumann's —a foolish disregard of "the impossibility of
any sharp distinction between the behavior of atomic ob-
jects and the interaction with the measuring instruments
which serve to define the conditions under which the
phenomena appear, "as Bohr put it7

I would not characterize the assumption of noncontex-
tuality as a silly constraint on a hidden-variables theory.
It is surely an important fact that the impossibility of
embedding quantum mechanics in a none ontextual
hidden-variables theory rests not only on Bohr's doctrine
of the inseparability of the objects and the measuring in-
struments, but also on a straightforward contradiction,
1IldcpcIldcnt of oIlc s philosophic point of view~ between
some quantitative consequences of noncontextuality and
the quantitative predictions of quantum mechanics.

Furthermore, there are features of quantum mechanics
that seem strongly to hint at an underlying contextual
hidden-variables theory as the only availablc explana-
tion. " Most strikingly, although it is indisputable that
measuring A with mutually commuting 8,C, . . . re-
quires a difFerent experimental an angement from
measuring it with mutually commuting I.,M, . . . when-
ever some of L„M, . . . fail to commute with some of
B,C, . . . , it is nevertheless an elementary theorem of
quantum mechanics that the joint distribution
p(a, b, c, . . . ) for the first experiment yields precisely the
salllc nlRlglllRl dlstllblltloll p (a) Rs docs tllc ]oint dlstl'I-
bution p ( la, .m. . ) for the second, in spite of the
difFerent experimental arrangements. If we do the experi-
ment to measure A with 8,C, . . . on an ensemble of sys-
tems prepared in the state 0' and ignore the results of the
other observables, we get exactly the same statistics for A
as we would have obtained had we instead done the quite
difFerent experiment to measure A with L,,M, . . . on that

~ N. Bohr in Schilpp, 1949 and cited in Bell, 1966. Bell's invo-
cation of Bohr, to whom any hidden-variables theory would
have been anathema, in order to dismiss the implications of his
own no-hidden-variables theorem, thereby maintaining the via-
bility of the hidden-variables program, was aptly characterized
by Abner Shimony as "a judo-like maneuver. "

24An "only available explanation" is one to which the only al-
ternative is the claim that no explanation is required.
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same ensemble. The obvious way to account for this,
particularly when entertaining the possibility of a
hidden-variables theory, is to propose that both experi-
ments reveal a set of values for A in the individual sys-
tems that is the same, regardless of which experiment we
choose to extract them from. Putting it the other way
around, a contextual hidden-variables account of this fact
would be as Inysteriously silent as the quantum theory on
the question of why nature should conspire to arrange for
the marginal distributions to be the same for the two
different experimental arrangements.

Of course if the method of measuring A with mutually
commuting B,C, . . . consists of successive filtrations-
first measore A, then B, then C, etc.—and successive
filtrations are also used to measure A with mutually com-
muting L,M, . . . , then if A is the first observable tested
in either case, the resulting statistics for A alone will
necessarily be the same in both cases, since we need not
even decide which case to proceed with until after we
have acquired the result of the A measurement. But this
merely shifts the puzzle raised by the noncontextuality of
quantum-mechanical probabilities to a new form: why
should the statistical results of a sequential measurement
of a set of mutually commuting observables be indepen-
dent of the way we order them? Even more puzzling,
why are those statistics unaffected if we change to quite a
different way of determining them? We could, for exam-
ple, measure three mutually commuting observables A,
B, and C, each with eigenvalues 1 or 0 (like the squared
spin components in the original Bell-KS argument) by
measuring the single observable 4A +2B +C, the three-
digit binary form of the result giving precisely the values
of A, B, and C. If one is attempting a hidden-variables
model at all, it seems not unreasonable to expect the
model to provide the obvious explanation for this striking
insensitivity of the distribution to changes in the experi-
mental arrangement —namely, that the hidden variables
are noncontextual.

There is, however, one class of no-hidden-variables
theorems in which noncontextuality can be replaced by
an even more compelling assumption, which brings us,
finally, to Bell's Theorem (Bell, 1964).

Vill. LOCALITY REPLACES NONCONTEXTUALITY:
BEl L'S THEOREM

Suppose that the experiment that measures commuting
observables A, B,C, . . . uses independent pieces of
equipment far apart from one another, which separately
register the values of A, B,C, . . . . And suppose that the
experiment to measure A with the commuting observ-
ables L,M, . . . , not all of which commute with all of
B,C, . . . , requires changes in the complete apparatus
that amount only to replacing the parts that register the
values of B,C, . . . with different pieces of equipment that
register the values of L,M, . . . And suppose that all
these changes of equipment are made far away from the
unchanged piece of apparatus that registers the value of

A. In the absence of action at a distance such changes in
the complete disposition of the apparatus could hardly be
expected to have an effect on the outcome of the A mea-
surement on an individual system. In this case the prob-
lematic assumption of noncontextuality can be replaced
by a straightforward assumption of locality.

Can we prove a Bell-KS theorem in which we assume
noncontextuality only when it can be justified by locality?
I know of no way to accomplish this trick that works for
arbitrary states, but if one is willing to settle for a proof
that works only for suitably prepared states, then it can
easily be done. This was first accomplished in Bell' s
Theorem, which in its original form applies to a pair of
far apart spin- —,

' particles in the singlet state. An analo-
gous theorem can be established by a very minor
modification of the eight-dimensional version of the Bell-
KS theorem. This new version of Bell's Theorem
makes it clear that the use of a particular state is required
to provide the information that is lost when one permits
the assignment of noncontextual values only when non-
contextuality is a consequence of locality.

To convert the eight-dimensional version of the Bell-
KS theorem into a form of Bell's Theorem, we interpret
the three vector operators u', until now merely a con-
venient set from which to construct more general observ-
ables, as literally describing the spins of three different
spin- —,

' particles, localized far away from one another.
An examination of the ten observables appearing in Fig.
4 reveals that all but the four appearing on the horizontal
line of the star describe spin components of a single iso-
lated particle. Setting aside the four nonlocal observ-
ables, each of which is built out of the product of spin
components of all three particles, we are left with six ob-
servables belonging to four sets, each containing three lo-
cal observables, lying on the four nonhorizontal lines of
the star. Each observable associated with a single parti-
cle appears in two of these sets, which differ in the selec-
tion of the pair of observables associated with the two
faraway particles. For any of these six local observables,
the assumption that the value assigned it should not de-
pend on which pair of faraway components are measured
with it is justified not by a possibly dubious assumption
of noncontextuality, but by the condition of locality.

By dropping the noncontextual assignment of values to
the four nonlocal observables, however, we break the
chain of relations that led to a contradiction in the Bell-
KS argument. We can rescue the argument by noting
that because all four nonlocal observables commute with
each other, they have simultaneous eigenstates. In an en-
semble of individual systems prepared in such an eigen-
state, the nonlocal observables all have definite values for
valid and conventional quantum-mechanical reasons.

~~The modification converts it into the model of Greenberger,
Horne, and Zeilinger, in the version I gave in Mermin, 1990c,
1990d.
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These values play the same role in the new argument as
the noncontextual values assigned them played in the
earlier version, being related to the values of the ap-
propriate sets of three local observables in exactly the
same way. The only difference is that because we now
consider systems in an eigenstate of all four nonlocal ob-
servables, those four simultaneous values cannot fIuctu-
ate among the eight possible sets they might in general
possess, but are fixed to a particular set of values. This
further constraint does not alter the conclusion that there
is no consistent way to assign values to all ten observ-
ables and thus no consistent assignment of values to the
six local observables.

The eight-dimensional model of three spins —,
' therefore

provides a conceptual link between the two theorems of
John Bell that was not evident in their original forms.
The difference between the two eight-dimensional argu-
ments is that the Bell-KS version rules out the assign-
ment of noncontextual values to arbitrary observables,
while the Bell's Theorem version rules it out even when
noncontextuality is restricted to cases in which it can be
justified on the basis of locality. While both theorems
demonstrate that the assignment is impossible, the
demonstration based on locality is the more powerful re-
sult, since it applies even under a restricted use of non-
contextuality.

Because the Bell-KS version applies to no-hidden-
variables theories that are allowed to assign noncontextu-
al values to a more general class of observables than in
the Bell's Theorem version, the Bell-KS version does not
need the properties of a particular state. In Bell's origi-
nal versions of these theorems, where the arguments
could not be set side by side, this appeared to be a com-
pensating strength of the Bell-KS argument. In the new
version, however, it is seen to be merely a technical
consequence of the fact that by making a broader assign-
ment of noncontextual hidden variables the Bell-KS ar-
gument can dispense with one of the stratagems the more
powerful argument of Bell's Theorem requires to produce
its counterexample.

It is instructive to see why we cannot convert the
four-dimensional version of the Bell-KS theorem into an
argument based on locality In that. argument (see Fig. 3)
there are four local and five nonlocal observables that we
now interpret as describing two far apart spin- —, particles.
Each local observable can be measured with either of two
other local observables that fail to commute with each
other, associated with the other faraway particle. If we
wish to make the assumption of noncontextuality only
when it is required by the weaker assumption of locality,
then we cannot assign noncontextual values to the five

For example, if cr„', o. , and o „are measured in an eigenstate
of o' o. o with given eigenvalue, orthodox quantum mechanics
requires the product of the three results to be equal to that ei-
genvalue.

nonlocal observables and need some other way to com-
plete the chain leading to a contradiction. But in con-
trast to the eight-dimensional argument, the nonlocal ob-
servables do not all commute. It is thus no longer possi-
ble to assign values to all five by considering an ensemble
of systems prepared in a simultaneous eigenstate. The
theorem cannot be converted into a version of Bell' s
Theorem.

Note that locality can be used not only to justify the
condition of noncontextuality but also to motivate fur-
ther the attempt to assign values to the local observables
in the first place. For in an ensemble of systems de-
scribed by a simultaneous eigenstate of the nonlocal ob-
servables, the results of measuring any one of the local
observables on an individual system can be determined
prior to the measurement, by first measuring far away an
appropriate set of two other local observables. Because
the results of the measurements of the three local observ-
ables must be consistent with the eigenvalue of the ob-
servable that is their product, any two such results deter-
mines the third. As noted long ago by Einstein, Podol-
sky, and Rosen (Einstein et al. , 1935), in the absence of
spooky actions at a distance it is hard to understand how
this can happen unless the two earlier measurements are
simply revealing properties of the subsequently measured
particle that already exist prior to their measurement.

IX. A LITTLE ABOUT BOHM THEORY

Bell's favorite example of a hidden-variables theory,
Bohm theory (Bohm, 1952), is not only explicitly contex-
tual but explicitly and spectacularly nonlocal, as it must
be in view of the Bell-KS theorem and Bell's Theorem.
In Bohm theory, which defies all the impossibility proofs,
the hidden variables are simply the real configuration-
space coordinates of real particles, guided in their motion
by the wave function, which is viewed as a real field in
configuration space. The wave function guides the parti-
cles like this: each particle obeys a first-order equation
of motion specifying that its velocity is proportional to
the gradient with respect to its position coordinates of
the phase of the iV-particle wave function, evaluated at
the instantaneous positions of all the other particles. It is
the italicized phrase which is responsible for the "hide-
ous" nonlocality whenever the wave function is correlat-

7This is noted in Bell, 1966, in which Bell raises the question
of whether "any hidden-variables account of quantum mechan-
ics must have this extraordinary character. " (Remember, this
was written before Bell, 1964)) Bell, 1982, reprinted as Chap. 17
of Bell, 1987, gives a more detailed discussion of Bohm theory
from this perspective. Chapters 14 and 15 of Bell, 1987 give an
exceptionally clear and concise exposition of Bohm theory.

28I describe only spinless particles, but spin can also be han-
dled.
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ed. One easily proves that if the wave function obeys
Schrodinger's equation, then a distribution of initial
coordinates of the particles given by ~Vo~ will evolve un-

der these dynamics into ~4, ~
at time t.

If two particles are in a correlated state then, because
the field guiding the second particle depends on the tra-
jectory of the first, if a field is suddenly turned on in a re-
gion where the first particle happens to be, the subse-
quent motion of the second particle can be drastically al-
tered in a manner that does not diminish with the dis-
tance between the two particles. Since measurements on
each of a collection of noninteracting particles can be de-
scribed by the action of just such fields, this gives non-
contextuality with a vengeance.

X. THE LAST WORD

John Bell did not believe that either of his no-hidden-
variables theorems excluded the possibility of a deeper
level of description than quantum mechanics, any more
than von Neumann's theorem does. He viewed them all
as identifying conditions that such a description would
have to meet. Von Neumann's theorem established only
that a hidden-variables theory must assign values to non-
commuting observables that do not obey in individual
systems the additivity condition they satisfy in the
mean —a result already evident from the trivial example
of 0 z +0 y The Bel1-KS theorems establish that in a
hidden-variables theory the values assigned even to a set
of mutually commuting observables must depend on the
manner in which they are measured —a fact that Bohr
could have told us long ago (although he would have
disapproved of the whole undertaking). And Bell' s
Theorem establishes that the value assigned to an observ-
able must depend on the complete experimental arrange-
ment under which it is measured, even when two ar-
rangements differ only far from the region in which the
value is ascertained —a fact that 8ohm theory
exemplifies, and that is now understood to be an unavoid-
able feature of any hidden-variables theory.

To those for whom nonlocality is anathema, Bell' s

Theorem finally spells the death of the hidden-variables

program. ' But not for Bell. None of the no-hidden-

variables theorems persuaded him that hidden variables

were impossible. What Bell's Theorem did suggest to

Bell was the need to reexamine our understanding of
Lorentz invariance, as he argues in his delightful essay on
how to teach special relativity (Bell, 1987, p. 12) and in

Dennis Weaire's transcription of Bell's lecture on the
Fitzgerald contraction (Bell, 1992). What is proved by
impossibility proofs, " Bell declared, "is lack of imagina-
tion. "

ACKNOWLEDGMENTS

This work was supported by National Science Founda-
tion under Grant No. PHY 9022796. This is a revised
and expanded version of the text of the Bell Memorial
Lecture given at the XIXth International Colloquium on
Group-Theoretic Methods in Physics, Salamanca, July,
1992. (The earlier version is to appear in the proceedings
of the Salamanca conference. ) My treatment of these is-
sues evolved through half a dozen general physics collo-
quia, given during the academic year 1991—1992, and has
benefited from the thoughtful responses of skeptical
members of those audiences. Many people contributed to
my formulation and discussion of the new versions of
both Bell theorems, with clever ideas, wise criticisms, or
instructive failures to grasp points I foolishly thought I
had made with transcendent clarity. I am especially in-
debted to Harvey Brown, Robert Clifton, Anthony Gar-
rett, Kurt Gottfried, Daniel Greenberger, Jon Jarrett,
Roger Penrose, Asher Peres, Abner Shimony, and Alan
Stairs.

This essay is dedicated to the memory of my brother
Joel Mermin (1939—1992), who loved to take long walks
and simplify theorems.

REFERENCES

Adler, Mortimer J., 1992, "Natural Theology, Chance, and
Clod, " in The Great Ideas Today {Encyclopedia Britannica,
Chicago), pp. 288 —301.

Bell, J. S., 1964, "On the Einstein-Podolsky-Rosen Paradox, "
Physics 1, 195—200.

Bell, J. S., 1966, "On the problem of hidden variables in quan-
tum mechanics, "Rev. Mod. Phys. 3S, 447 —452.

Bell, J. S., 1982, "On the impossible pilot wave, " Found. Phys.
12, 989-999.

Bell, J. S., 1987, Speakable and Unspeakable in Quantum

If the wave function factors, then the phase is a sum of
phases associated with the individual particles and the nonlocal-
ity goes away.

This is the way Bell presents Bohrn theory. Bohm prefers to
take another time derivative of the equation of motion for the
particles to make it look more like I' =ma, which he gets, with
corrections to the classical force arising from what he calls the
"quantum potential. "

Many people contend that Bell's Theorem demonstrates
nonlocality independent -of a hidden-variables program, but
there is not general agreement about this.

Bell, 1982. Although I gladly give John Bell the last word, I
will take the last footnote to insist that he is unreasonably
dismissive of the importance of his own impossibility proofs.
One could make a complementary criticism 'of much of contem-
porary theoretical physics: What is proved by possibility proofs
is an excess of imagination. Either criticism undervalues the
importance of defining limits to what speculative theories can
or cannot be expected to accomplish.

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



N. David Mermin: Hidden variables and the two theorems of John Bell 815

Mechanics (Cambridge University, Cambridge).
Bell, J. S., 1992, "George Francis Fitzgerald, " Phys. World 5,
No. 9, 31—35. (Lecture at Trintiy College, Dublin, 1989, as
transcribed by Dennis Weaire. )

Bohm, D., 1952, "A suggested interpretation of the quantum
theory in terms of 'hidden variables, ' " Phys. Rev. 85, 66—179
(Part I};85, 180—193 (Part II).

Einstein, A. , B. Podolsky, and N. Rosen, 1935, "Can quantum-
mechanical description of physical reality be considered com-
plete?" Phys. Rev. 47, 777—780.

Escher, M. , 1960, The Graphic Work ofM. C. Escher (Hawthorn
Books, New York), Plate 76, ornament atop the left tower.

Gleason, A. M., 1957, "Measures on the closed subspaces of a
Hilbert space, "J. Math. Mech. 6, 885 —893.

Greenberger, D. M. , M. A. Horne, A. Shimony, and Z. Zeil-
inger, 1990, "Bell's theorem without inequalities, " Am. J.
Phys. 58, 1131—1143.

Greenberger, D. M. , M. Horne, and A. Zeilinger, 1989, Going
beyond Bell's theorem, " in .Bell's Theorem, Quantum Theory,
and Conceptions of the Universe, edited by M. Kafatos
(Kluwer, Dordrecht), pp. 73-76.

Hermann, G., 1935, "Die naturphilosophischen Grundlagen der
Quantenmechanik (Anzug), " Abhandlungen der Freis'schen
Schule 6, 75 —152.

Jammer, M. , 1974, The Philosophy of Quantum Mechanics (Wi-

ley, New York), p. 273.
Kochen, S., and E. P. Specker, 1967, "The problem of hidden

variables in quantum mechanics, "J. Math. Mech. 17, 59—87.
Mermin, N. D., 1990a, Booj'urns All the 8'ay Through (Cam-

bridge University, New York), Chaps. 10—12.
Mermin, N. D., 1990b, "Simple unified form for the major no-

hidden-variables theorems, "Phys. Rev. Lett. 65, 3373—3377.
Mermin, N. D., 1990c, "What's wrong with these elements of
reality?" Phelps. Today 43(6},9.

Mermin, N. D., 1990d, "Quantum mysteries revisited, " Am. J.
Phys. 58, 73:l—734.

Peres, A. , 1990, "Incompatible results of quantum measure-
ments, "Phys. Lett. A 151, 107—108.

Peres, A. , 1991, "Two Simple Proofs of the Kochen-Specker
Theorem, "J. Phys. A 24, L175—L178.

Redhead, M. , 1987, Incompleteness, Xonlocality, and Realism
(Clarendon, Oxford).

Schilpp, P. A., Ed., 1949, A. Einstein, Philosopher Scientist (Li-
brary of Living Philosophers, Evanston, Ill).

Stapp, H. , 19f7, Nuovo Cimento 408, 191 (1977).
von Neumann, J., 1932, Mathematische Grundlagen der

Quanten mechani-k (Springer-Berlin). English translation:
Mathematical Foundations of Quantum Mechanics (Princeton
University, Princeton, N.J., 1955).

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993


