
Gauge invariance and current algebra in nonrelativistic many-body theory

JCirg Frohlich hand Urban M. Studer*

lnstitut fOr Theoretische Physik, ETH-Honggerberg, 8093Zurich, Switzerland

The main purpose of this paper is to further our theoretical understanding of the fractional quantum Hall
effect, in particular of spin effects, in two-dimensional incompressible electron fluids subject to a strong,
transverse magnetic field. As a prerequisite for an analysis of the quantum Hall effect, the authors develop
a general formulation of the many-body theory of spinning particles coupled to external electromagnetic
fields and moving through a general, geometrically nontrivial background. Their formulation is based on
a Lagrangian path-integral quantization and is valid in arbitrary coordinates, including coordinates mov-

ing according to a volume-preserving flow. It is found that nonrelativistic quantum theory exhibits a fun-

damental, local U(1) XSU(2) gauge invariance, and the corresponding gauge fields are identified with
physical, external fields. To illustrate the usefulness of their formalism, the authors prove a general form
of the quantum-mechanical Larmor theorem and discuss some well-known effects, including the Barnett-
Einstein-de Haas effect and superconductivity, emphasizing the implications of U(1) X SU(2) gauge invari-
ance. They then consider two-dimensional, incompressible quantum fluids in more detail. Exploiting
U(1) X SU(2) gauge invariance, they calculate the leading terms in the effective actions of such systems as
functionals of the U(1) and SU(2) gauge fields, on large-distance and low-frequency scales. Among the ap-
plications of these results are a simple proof of the Goldstone theorem for spin waves and the linear-
response theory of two-dimensional, incompressible Hall fluids, including a Hall effect for spin currents
and sum rules for the response coefficients. For two-dimensional, incompressible systems with broken
parity and time-reversal symmetry, a particularly significant implication of U(1) X SU(2) gauge invariance
is a duality between the physics inside the bulk of the system and the physics of gapless, chiral modes
propagating along the boundary of the system. These modes form chiral u(1) and sQ(2) current algebras.
The representation theory of these current algebras, combined with natural physical constraints, permits
one to derive the quantization of the response coefficients, such as the Hall conductivity. A classification
of incompressible Hall fluids is outlined, and many examples, including one concerning a superfluid He-
A /B interface, are discussed.
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I. INTRODUCTION

This paper has its origin in attempts to arrive at a
better theoretical understanding of the integer and frac-
tional quantum Hall effects. These truly remarkable
effects, found in two-dimensional interacting electron
gases subject to a strong, transverse, external magnetic
field, were discovered by von Klitzing, Dorda, and
Pepper (1980) and by Tsui, Stormer, and Gossard (1982),
respectively. Soon thereafter, Laughlin (1981, 1983a,
1983b; see also Halperin, 1982), in his pioneering theoret-
ical work, realized that the following two properties of
such systems play a fundamental role:

First, in a fixed, external magnetic field, a two-
dimensional interacting electron gas exhibits incornpres-
sibility at special values of its electron density (filling fac-
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tor) . Put difFerently, at such values of the filling factor
there are no dissipative processes in the system and hence
its longitudinal resistance vanishes. (This observation
has led to the term "incompressible quantum Hall Quid"
for such a system. )

Second, nonrelativistic quantum mechanics exhibits a
fundamental U(1) gauge invariance connected to elec-
tromagnetism, as recognized by Weyl already in 1928 (see
also Weyl, 1918).

These two properties form the cornerstones of our in-

vestigation of the quantum Hall effect. In the first works
of Laughlin (1981, 1983a, 1983b, 1984, 1990), Halperin
(1982, 1983, 1984), Haldane (1983, 1990a), and others
(Arovas, Schrieffer, and Wilczek, 1984; Trugman and
Kivelson, 1985), the spins of the electrons in an in-

compressible quantum Hall Quid were neglected since,
for example, in the lowest Landau level, the Zeeman en-

ergy is minimized by aligning all spins in the direction
opposite to the external magnetic field. As early as in

1983, however, Halperin argued that, for larger electron
densities, spin effects can be important. Further evidence
for spin effects has been found in recent experiments
(Willett et al. , 1987; Eisenstein et al. , 1988; Clark,
Haynes et al. , 1989, 1990; Eisenstein, Willett et ah. ,

1990; Eisenstein, Stormer et al. , 1990a, 1990b; see also
Haug et al. , 1987; Syphers and Furneaux, 1988a, 1988b)
and in numerical studies (e.g. , Chakraborty and Zhang,
1984a, 1984b; Rasolt, Perrot, and MacDonald, 1985;
Yoshioka, 1986b; Maksym, 1989; and references therein).
This has led to one of the questions motivating the
present work: What is the most general form of gauge
invariance in nonrelativistic quantum many-body systems
composed of particles with spin? What are characteris-
tic properties of such systems resulting from their spin
degrees of freedoms

Our answer to the first part of this question is dis-
cussed in Secs. II and III. In Sec. II, we find a
U(1), XSU(2),~;„gauge invariance of nonrelativistic,
one-particle quantum mechanics based on the Pauli equa-
tion. The U(1) and SU(2) gauge transformations act on
the wave function (two-component Pauli spinor) of a par-
ticle by local phase transformations and local spin rota-
tions, respectively. Related observations have been made

by Anandan (1989, 1990).
In Sec. III, extending the findings of Sec. II, we devel-

op a general framework for describing, in arbitrary (but
volume-preserving) moving coordinates, many-body sys-
tems of spinning particles coupled to external elec-
tromagnetic fields and constrained to move in some
geometrically nontrivial background. This framework is
based on a discussion of the geometry of the background
(see Sec. III.A) and on the second-quantized Lagrangian
formalism convenient for the description of' many-body
systems (see Sec. III.B). We show that, in arbitrary coor-
dinates, the action functional governing such systems ex-

hibits a fundamental U(1) X SU(2) gauge invariance. We
then present a systematic identification of the associated

gauge fields with physical quantities. We find that the

U(1) gauge field is given in terms of the electromagnetic
scalar and vector potential and the velocity field generat-

ing the moving coordinates .The SU(2) gauge field con-
sists of terms describing spin-orbit interactions, Thomas
precession, and the coupling of the spin degrees of free-

dom to the geometry and to the vorticity of the velocity
field generating the moving coordinates. At the end of
Sec. III.C, we formulate and prove a general quantum-
mechanical version (including spin degrees of freedom) of
the Larmor theorem.

In Sec. IV, we describe some well-known effects in

quantum mechanics from the point of view of its
U(1)XSU(2) gauge invariance. Examples are different
realizations of the Aharonov-Bohm and the Aharonov-
Casher effects, the Barnett and Einstein —de Haas effects,
and the London and Landau-Ginzburg theories of super-
conductivity. In Sec. IV.E, we present a brief introduc-
tion to the quantum Hall effect, summarizing basic facts
and some experimental data and illustrating the
significance of U(1) gauge invariance. In particular, we

describe an intimate connection between U(1) gauge in-

variance and the existence of chiral electric edge currents
in two-dimensional, incompressible quantum Hall Auids,

a connection that is basic for the analysis presented in

Sec. VI.
In Sec. V, we propose a precise formulation of in-

compressibility in general two-dimensional quantum
Auids in terms of clustering properties of their connected
(time-ordered) current Green functions. Assuming in-

compressibility and exploiting the U(1) X SU(2) gauge in-

variance of nonrelativistic quantum mechanics in the
form of Ward identities, we then calculate the "scaling
limit" of the effective action (i.e., of the logarithm of the
partition function) of a two-dimensional, incompressible

system, as a functional of the external U(1) X SU(2) gauge
fields. By "scaling limit" we mean that only those terms
in the effective action are retained which are relevant for
physics at large-distance scales and low frequencies. The
technical details of our calculations are presented in Ap-
pendix A.

As applications of our results we find a simple proof of
the Csoldstone theorem for spin waves, the linear-

response theory of general two-dimensional, incompressi-
ble quantum fiuids (including a Hall effect for spin
currents), and sum rules for linear-response coefficients

such as the Hall conductivity for the electric current, or
the magnetic susceptibility, see Sec. V.B. Moreover, in

Sec. V.C, we discuss some aspects of the theory of chiral
spin liquids and propose a mechanism for spin-singlet
electron pairing in an antiferromagnetic or a resonating
valence-bond background.

For two-dimensional, incompressible quantum Auids,

or more generally, for two-dimensional systems exhibit-

ing a strong form of parity and time-reversal symmetry
breaking, a particularly powerful implication of
U(1) XSU(2) gauge invariance is a form of "boundary-
bulk duality" implying that many bulk properties of such

systems are in one-to-one correspondence with properties

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



J. Frohlich and U. M. Studer: Gauge invariance and current algebra. . . 735

of their boundary excitations. The tool instrumental in
establishing this duality is an analysis of (gauge) anomaly
cancellation.

In Sec. VI, we first derive and then apply this duality.
It naturally introduces chiral u(1) and A(2) current
(Kac-Moody) algebra into the discussion of Hall fiuids.
Physically, these current algebras describe gapless, chiral
electric and spin currents circulating at the edges of the
systems. Combining the results of the representation
theory of current algebras with some basic physical prop-
erties of Hall fiuids, we derive the (integer or fractional)
quantization of the linear-response coefricients found in
Sec. V.B and provide a list of quantum numbers [(frac-
tional) charges and (anyonic) statistical phases] of possi-
ble finite-energy excitations (quasiparticles) in such sys-
tems. We construct the theoretical basis for a
classification of incompressible quantum Auids in terms
of universality classes. We wish to emphasize that our
analysis allows for an understanding of the integer and
fractional quantum Hall effect on the same footing.
Many examples of Hall Auids are discussed. Some
mathematical details used in this section are derived in
Appendix B.

Work resembling that presented in Sec. VI has also
been carried out by Wen and collaborators (Wen, 1989,
1990a, 1990b, 1990c, 1991a, 1991b; Block and Wen,
1990a, 1990b; Wen and Niu, 1990), by Stone (1991a,
1991b) and others (Biittiker, 1988; Beenakker, 1990;
MacDonald, 1990; Haldane, 1990b; Balatsky and Frad-
kin, 1991);Balatsky and Stone, 1991;Balatsky 1992), and
by Frohlich and Kerler (1991) and Frohlich and Zee
(1991).

In the last section, Sec. VII, we apply the results of
Sec. VI to a detailed discussion of Hall fIuids with Hall
conductivities of the form crH=[2/(4l +1)](e /h),
I =0, 1,2. We show that these Hall fIuids are good candi-
dates for observing a quantum Hall effect for spin
currents. Finally, in Sec. VII.B, the same methods are
applied to the study of a particular type of superAuid
He-A/8 interface with (strongly) broken parity and

time-reversal invariance. We are led to propose an even-
denominator quantum Hall effect for this system.

We feel that the perspective offered in this paper, em-
phasizing the U(1) XSU(2) gauge invariance of quantum

mechanics, is somewhat novel. Furthermore, some of the
results in Secs. VI and VII are new and have not previ-
ously been published.

II. THE PAULI EQUATION AND ITS SYMMETRIES

A. Gauge-invariant form of the Pauli equation

We first consider the Dirac equation in three space di-
mensions. The Dirac spinor 4, describing a relativistic
electron/positron in an external electromagnetic field,
with electromagnetic potentials @ and A= ( A &, A 2, A 3 ),
satisfies the Dirac equation

i' 0'= ca —V+ —A +Pmoc —eCa i e 2

c
(2.1)

where —e and mo are the charge and (vacuum) mass of
the electron, c is the velocity of light, A is Planck's quan-
tum of action, and a and P denote the usual four 4 X 4
Dirac matrices. Expanding the Dirac equation according
to the Foldy-Wouthuysen scheme (Foldy and
Wouthuysen, 1950; see also Bjorken and Drell, 1964,
Hunziker, 1975, and Gesztesy, Grosse, and Thaller, 1983,
1984), we find the following equation for the 2-spinor
(Pauli spinor) g of the 4-spinor %=(r~), up to terms of
fourth order in 1/mo:

In this section we describe nonrelativistic electrons and
other nonrelativistic spinning particles in an external
electromagnetic field. In a one-particle language, the
wave functions of these particles satisfy the Pauli 'equa-

tion. We show that the Pauli equation exhibits a basic
U(1), X SU(2), ;„gauge symmetry. This symmetry is a
cornerstone of our subsequent analysis of incompressible
quantum Auids. In order to provide a first illustration of
the general usefulness of this symmetry in quantum
theory we include, at the end of this section, brief discus-
sions of the Bloch spin resonance, the Aharonov-Bohm
effect, and its SU(2), ;„cousin, the Aharonov-Casher
effect. Further applications to basic quantum-
mechanical effects will be discussed in Sec. IV.

B.rrq+ II q+. [II (cr XE)+(o XE) II]g+ divEQeA 1 2 eW eh

dt 2moc 2mo 8m c 8m oc

+ (E —B )g— II + (II (B )+(B )II ] /+0( 0 )Q,1 eA

8m oc 8m oc C
(2.2)

where the canonical momentum operator II is defined by

eII= —.V+ —A .
C

(2.3)

The 2-spinor g is the wave function of a low-energy
electron. We recall the meaning of the different terms on
the right-hand side (rhs) of Eq. (2.2). The first term is the

I

rest energy of the electron, and the second term is its po-
tential energy in the electrostatic potential @. The third
term describes the Zeeman splitting in a magnetic field
8=curl A; o. is the vector formed by the three Pauli ma-
trices. The fourth term is the kinetic energy of the elec-
tron in an electromagnetic field corresponding to the vec-
tor potential A.. The fifth term, abbreviated by h p Q Qrblt,
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describes spin-orbit interactions in the electric field
E= —VN —(1/c)(B/()t) A. We recall that, for static
fields with a centrally symmetric potential N, we have
that eE=VN=(r/r)( 3(/()r)4&(r), and, introducing the
spin operator S=()rt/2)o, we find that

1 8
h, ;„„b;,~S.(EXp) ~ — (Ii(r)S L, with p= —.V .

This is a more familiar form of the spin-orbit interaction
in a centrally symmetric potential @. The orbital angular
momentum operator is given by I.=r X p.

The term proportional to divE is the so-called Darwin
term, a higher relativistic correction proportional to the
background charge density p=divE= —AN. In the fol-
lowing we shall absorb the Darwin term in a one-body
potential term. All the other terms are corrections of
even higher order (we shall briefiy comment on them
below). Neglecting the rest-energy term (an additive con-
stant) and all the terms of order 0 (1/mo), we find that
Eq. (2.2) turns out to be the well-known Pauli equation
for an electron in an electromagnetic field.

In order to describe nonrelativistic particles of arbi-
trary spin s, mass m, and charge q, we have to generalize
Eq. (2.2). In particular, we have to find the correct Zee-
man and spin-orbit terms. We recall that Bargmann,
Michel, and Telegdi have found a relativistic description
of the motion of a classical spin S in a (slowly varying)
external electromagnetic field (E,8). Expanding their re-
sult in powers of U/c, one obtains the equation of motion
already found by Thomas (1927; see also Jackson, 1975),

2
dS q g g 1 vSX —B— ————XE +0 U

dt mc 2 2 2 c C

where v is the velocity of the spinning particle (with
respect to the laboratory frame) and g is its gyromagnetic
ratio. We note that the spin-orbit term [second term in
Eq. (2.4)] consists of two contributions: The terms pro-
portional to g/2 describe the precession of the spin (or
magnetic moment) in the magnetic field in the particle's
rest frame. The remaining term describes the purely
kinematical efFect of the Thomas precession, which is a
consequence of the acceleration a charged spinning parti-
cle experiences in an electric field. Recalling the Poisson
bracket relations, IS, ,SJ ] =E;JkSk, for a classical spin S,
we find that Eq. (2.4) is a Hamiltonian equation of
motion corresponding to the Hamilton function

g(s)q@g(s)pBg(s)+112'($)1

fjt Pspin' 2m

. II p, ;„— S XE
2mc 'P'" 2mc

p,„,„—q S XE 11 y",
2mc

I
——g" SI spin (2.7)

and, in the spin-s representation, the spin operator S is
given by

S— I (~) = (L (s) L (8) L (5)
)1 ~ 2 ~ 3 (2.8)

Here, (L„")~ =) are Hermitian generators of the Lie alge-
bra su(2) in the spin-s representation, normalized such
that I.z' ' =o. ~, where o.

&,
o.2, and o.

3 are the usual Pauli
matrices. Furthermore, for charged particles,
p =qA/2mc. In particular, for the electron,

p=e—A'/2m =—)Ms=5. 79X10 eV/Cx, the Bohr mag-
neton, and Eq. (2.6) agrees with Eq. (2.2) if we set g =2.
This is a celebrated prediction of the l3irac theory. Oth-
er examples are the neutron and the proton, where
p=ei)i/2mc with m the corresponding mass, and the g
factors are given by g =5.59 and g = —3.83, respective-
ly.

Next we show that by "completing the square" in the
Pauli equation (2.6) we obtain an equation with an aston-
ishingly rich symmetry, namely, with a local
U(l), X SU(2), ;„symmetry. Since the modification
needed is a term of order 0(1/m ), this symmetry
should really be viewed as a fundamental property of
nonrelativistic quantum mechanics. [This is borne out by
its Galilei invariance (Piron, 1990).]

Let x =ct and x =(x")=(x,x), where
x = (x ',x,x ) H K (the three-dimensional Euclidean
space). We introduce the covariant derivative in the )M

direction by setting

D = +ia (x)+p„(x), )M=O, . . . , 3,
ax~

(2.9)

where the real-valued functions a„are given by

(2.6)

where the (intrinsic) magnetic moment of the particle is
defined by

H, 1
= —S. —"XE . (2.5)

rnc 2 mc 2 2 c
ao(x)= +(x) and a„(x}=-q q

fic Pic

If we accept Eq. (2.4) as the appropriate nonrelativistic
Heisenberg equation of motion for the (quantum-
mechanical) spin operator S (in the spin-s representation),
then the wave function P" of the particle, a (2s +1)-
component complex spinor, satisfies the following Pauli
equation:

3

p„(x)=i g p„„(x)L~", p=0, . . . , 3 .
3=1

(2.11)

The coefticients p„~ are given by

k =1,2, 3, (2.10)

and where the su(2)-valued functions p„are defined by
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and

p()„(x)= — B~ (x), A = 1,2, 3,gp
2Ae

—
2~ +, X &k~a&a(x»gp
2Ac 4mc'

A, k =1,2, 3,

(2.12)

(2.13)

This action functional and generalizations thereof pro-
vide a convenient starting point for a functional-integral
formulation of nonrelativistic many-body theory.

We propose to illustrate the formalism described so far
by reviewing some basic effects in nonrelativistic quan-
tum mechanics from the point of view of its U(l) X SU(2)
gauge symmetry.

where ek„ii is the sign of the permutation (LAB) of (123).
With the help of the covariant derivative D„, we are

able to write the Pauli equation (2.6) in the compact form

(5) — ~ (&)ikcDog"(x)= — g DkD), g"(x),
k=1

(2.14)

U(1), : a„(x)~xa„(x)=a~(x) +(c)~)(x),
q(s)(x ) xq(s)(x )

—e
—i)t(x)y(s)(x )

(2.15)

where g is an arbitrary, real-valued function on space-
time IXZ, and

SU(2), ;„: p„(x)~gp„(x)= g (x)p@(x)g '(x)

+g(x)(B„g ')(x),
(2.16)

~/)'(x) gy" (x)=g (x)y"(x),
where g is (the spin-s representation of) an arbitrary
SU(2)-valued function on R X Z . Note that, for constant
gauge transformations g, p„ transforms according to the
adjoint action of SU(2) (on its Lie algebra su(2)) which,

by (2.12) and (2.14) (in an active interpretation) corre-
sponds to global rotations of the vector fields E and B in

physical space. For space-time-dependent gauge trans-
formations, there appears an additional inhomogeneous
term in (2.16). A full geometrical interpretation of the
SU(2) gauge symmetry will be given in the next section.
See also the work by Anandan (1989, 1990) for related
observations.

We note that Eq. (2.14) can be thought of as the
Euler-Lagrange equation corresponding to the following
U(1) X SU(2) gauge-invariant action functional:

S (y(s)e q(s). a )

where a term of order O(p ) has been added. For an

electron it can be seen to be equal to half of the term
e A' /(8moc )E P in Eq. (2.2), which can be absorbed
into a one-body potential acting on ii).

The form (2.14) of the Pauli equation shows that non-

relativistic quantum mechanics has a basic
U(1), XSU(2), ;„gauge symmetry. The gauge transfor-
mations are defined as follows:

B. Bloch spin resonance

The Bloch spin resonance is an effect caused by the
Zeeman term in the Pauli equation. We consider a parti-
cle of spin s and magnetic moment p,„;„%0[see Eq. (2.7)],
in the external magnetic field

B=B(t)=(Bicoscot, B,sina—)t,Bo), (2.18)

which is a superposition of a constant background field

80 in the z direction and a rotating radio-frequency field

in the (x,y) plane, with 8, ((80. From Eqs. (2.12) and

(2.13) we find that pk„=0 and p()„= (gp/2fic)8—„.
With the help of a purely t-dependent SU(2) gauge trans-
formation g, we can achieve gpo=gpog '+gBog '=—0,
with decoupled components of gP"=g g", each satisfy-

ing the same one-dimensional Schrodinger equation for a
spinless particle in the external magnetic field (2.18). The
appropriate gauge transformation g is given by

g '(t) =T exp i dr(B coscorL"
2A o

1

—B,sin~rL(;) +B,L(;) )

=exp iL(3'co —exp i [L3'(coo co)+L'('co—(]—

where "Texp" denotes a time-ordered exponential, and
we have introduced the frequencies a); =(gp/fi)B;,
i =0, 1.

If we consider a spin- —, particle and assume its 2-spinor

sitj to be proportional to g, &
=(o) at time t =0, then the

probability for the spin to be Ripped at time t is given by

2i

P&(t)=~( I(&),g('(t) it)&)~
= (1—cosset),

2Q

where Q=[(a)0—co) +a)(]'~ . Looking at the maximum

curve of P i ( t), we find the well-known resonance
behavior for co=coo. On resonance, the spin Hips with

certainty, absorbing or emitting an energy quantum %coo

from or to the radio-frequency field, periodically in time.

= f dt d x iA'cP"'(x)(DO/")(x) C. Aharonov-Bohm effect

g2 3

2'
(2.17)

A key effect reAecting Weyl's U(1), gauge principle
realized in quantum theory is the Aharonov-Bohm effect
(Aharonov and Bohm, 1959): Consider the scattering of
quantum-mechanical particles at a magnetic solenoid.
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(The wave functions of the particles are required to van-
ish inside the solenoid. ) Then, the difFraction pattern
seen on a screen depends nontrivially on the magnetic
fIux @ through the solenoid. The dependence is periodic
with period hc/q, where q is the charge of the particles.
This is a consequence of the fact that the vector potential
A outside the solenoid cannot be gauged away globally,
in spite of the fact that there is no electromagnetic field,
thus leading to nonintegrable U(1) phases of quantum-
mechanical wave functions which change interference
patterns.

In formulas, we have E„=B„a —0 a„=0 outside
the solenoid. Thus, locally, a„=B~, with
y(x)=( —q/Ac) f"„A.dI, where d1 denotes the line ele-

ment along some path of integration from an arbitrary
point e to x. The phase factors affecting the interference
patterns are then given by exp [2iri (q /hc) g A dl ]
=exp[2iri(q&b/hc)], where I is a closed path enclosing
the solenoid.

We note that the Aharonov-Bohm effect explains the
possibility of fractional (or 0 or Abelian braid) statistics
of anyons (Leinaas and Myrheim, 1977; Goldin, Meni-
koff, and Sharp, 1980, 1981, 1983; Wilczek, 1982a, 1982b;
for a review, see Frohlich, 1990) in two-dimensional sys-
tems. Anyons are particles carrying both electric charge

q and magnetic flux 4 ( =o.H'q, where o H is a "Hall con-
ductivity") and hence give rise to Aharonov-Bohm
phases, which one can interpret as statistical phases; see
Sec. V.C.

D. Aharonov-Casher effect

One might wonder whether there is a similar interfer-
ence effect due to the SU(2), ;„gauge symmetry of non-

relativistic quantum mechanics. The answer is yes: It is
the Aharonov-Casher effect (Aharonov and Casher,
1984). Consider a system of quantum-mechanical parti-
cles with spin s, electric charge 0, but with a magnetic
moment p,~;„%0, moving in a plane or in three-
dimensional space. (The particles could be neutrons, or
neutral atoms, etc. ) Following Aharonov and Casher, we
want to study the inAuence of a (static) external electric
field on the dynamics of such particles. As a consequence
of relativistic effects, the moving particles will, in their
rest frame, feel a magnetic field that interacts with their
magnetic moment. Up to order 0 (U/c) this is taken into
account by the spin-orbit term in the Pauli equation (2.6);
see also Eq. (2.4).

In the formalism developed above, this effect should be
described as follows: The SU(2) gauge potential p is
defined in Eqs. (2.11)—(2.13), and we find that

does not vanish on full-measure sets of space, and so we
are not surprised to find that the electric field E causes
nontrivial spin-orbit interactions. However, if we consid-
er a system of particles confined to the (x,y) plane in K
which move in the electric field of a charged wire placed
along the z axis, with constant charge Q per unit of
length, we encounter an SU(2) version of the Aharonov-
Bohm effect: Here, the electric field E is given by
E(x) =(Q/2rrr )(x,y, 0), where r =(x +y )'~~. With
Eq. (2.19), we find

p(x)—:(p»(x), p~3(x)) = (y, —x),gI Q
4~Acr

(2.20)

and p, , =p,2—=0 for ~' =1,2. Note that p3~ —which does
not vanish for 2 = 1,2—does not enter the dynamics of a
system confined to the (x,y) plane. one then easily
checks that, for a two-dimensional system confined to the
(x,y) plane, the only component of the SU(2) curvature
that does not vanish identically is given by

G'„(x)=—g" Qn(x) .

The function 61z is supported at the origin, i.e., the
SU(2) connection p is "Rat" outside the wire. Thus, lo-
cally, it is possible to write p as a pure gauge, i.e.,
p„=gBkg ', with g =exp[ i J "p d—l L'3'], where dl is

as above. However, the scattering of the particles at the
charged wire depends on its charge per unit length, Q,
because, although p is Bat except at the origin, it cannot
be gauged away globally. Therefore p gives rise to
"nonintegrable SU(2) phase factors" in the wave func-
tions of the particles which affect their interference
patterns. These phase factors are given by
exp[i fg dl]=exp[2iri(gp/2hc)Q], where 1 is a path
enclosing the wire, and the patterns are periodic in Q
with a period given by 2hc /gp.

This effect was first described by Aharonov and Casher
(1984) in a somewhat more classical language. A general
discussion of this effect, much along the lines of thought
sketched above, can be found in Anandan (1989, 1990).'

We recall that the Aharonov-Bohm effect explains why
two-dimensional quantum theory can describe anyons
with fractional statistics, namely, particles carrying
charge and Aux. It is natural to ask whether the
Aharonov-Casher effect also has something to do with
exotic statistics in two-dimensional quantum theory. The
answer is yes! The Aharonov-Casher effect is closely re-
lated to the existence of particles in two-dimensional

3

Gpv ~pPv~ r)vPpa 2 X swacPI aPvc
B,C =1

3 =1,2, 3 and p, v=0, . . . , 3,

po„(x)=0 and pk~(x)= — g Ek~iiE~(x),gp
B=1

A, k =1,2, 3 . (2.19)

For general electric fields, the SU(2) curvature, defined by
1We thank L. Stodolsky for bringing this work to our atten-

tion.
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quantum theory with non-Abelian braid statistics
(Fredenhagen, Rehren, and Schroer, 1989; Frohlich and
Gabbiani, 1990; Frohlich, Gabbiani, and Marchetti,
1990; Frohlich and Marchetti, 1991). Such particles have
topological interactions that can be described by some
SU(2) Knizhnik-Zamolodchikov connection (Knizhnik
and Zamolodchikov, 1984; Tsuchiya and Kanie, 1987).
Consider, for example, a two-dimensional chiral spin
liquid made of particles with spin so 1 (if such systems
exist). An incompressible chiral spin liquid of this type
will most likely exhibit excitations of arbitrary spin
s =

2
. . ~ Sp ~ The claim is that an excitation of nonzero

spin s (sp exhibits non-Abelian braid statistics, as point-
ed out by Zhang, Hansson, and Kivelson (1989) and
Frohlich, Kerler, and Marchetti (1991). This will be dis-
cussed further in Sec. V.C.

Since we are interested in time-dependent many-body
systems, it will be convenient to work in a Feynman-
Berezin path-integral formalism (see, for example, Negele
and Orland, 1987; Fradkin, 1991;and Feldman, Knorrer,
and Trubowitz, 1992). We show that the action function-
als governing such systems are U(l) X SU(2) gauge invari-
ant. This gives rise to powerful Ward identities, which
will be central in our subsequent treatment of incompres-
sible quantum Auids in two dimensions and their general-
ized Hall effects. At the end of this section we present a
quantum-mechanical version of Larmor's theorem, in-
cluding spin degrees of freedom. Further applications of
the general formalism developed in this section to basic
effects in quantum many-body theory will be given in Sec.
IV.

III. GAUGE INVARIANCE IN NONRELATIVISTIC
QUANTUM MANY-PARTI CLE SYSTEMS

In this section we build upon, and generalize, the for-
malism outlined in the preceding section. It is our aim to
describe nonrelativistic quantum-mechanical systems in
(one), two, and three space dimensions, composed of par-
ticles with arbitrary spin coupled to external electromag-
netic fields, variable background metrics, and affine spin
connections on spaces of nonvanishing curvature and tor-
sion and "tidal" gauge fields.

Considering quantum mechanics in the presence of
(strong) gravitational fields, then, in geometrical terms,
the energy-mass distribution of the background gives rise
to curvature (torsion is assumed to vanish in gravity).
Torsion and curvature can also provide an effective
description of crystalline backgrounds with dislocations
and disclinations. Such a geometric description of the
background is reasonable, provided the energy of the
moving particles is so small that the lattice structure of
the background cannot be resolved, and the background
may be treated as a "smooth" manifold, i.e., provided the
typical wavelength of the particles is much larger than
the crystal lattice spacing. Furthermore, nontrivial back-
ground metrics can account for off-diagonal disorder in
the systems and for a variable effective mass. The "tidal"
gauge fields allow for a quantum-mechanical description
of Coriolis forces and spin precession in moving coordi-
nates.

We begin this section by reviewing a geometrical
framework that is well suited to describe all these phe-
nomena (for more mathematical background, see, for ex-
ample, Eguchi, Gilkey, and Han son, 1980; Bleecker,
1981; and de Rham, 1984; for a brief summary of basic
notions in differential geometry, see also Sec. 2 in
Alvarez-Gaume and Cxinsparg, 1985). Apart from
describing possible physical effects related to curvature
and torsion, the purpose of the general formalism
developed here is to elucidate the geometrical meaning
and origin of the U(1), X SU(2),„;„gauge invariance of
nonrelativistic quantum mechanics.

A. Differential geometry of the background

For an easy reading of this subsection and the begin-
ning of the next one, the reader is expected to be some-
what familiar with basic notions of differential geometry.
We wish to emphasize, however, that, in later sections,
these notions will not be used. As stated above, the main
reasons for introducing the following geometrical frame-
work are an elucidation of the geometrical meaning of
the U(1), XSU(2),„;„gauge invariance of nonrelativistic
quantum mechanics and a preparation for treating such
systems in "moving coordinates"; see Sec. III.C.

Under the condition of low energy described above,
physical space is a (d =2 or 3)-dimensional manifold M,
with a possibly time-dependent Riemannian metric, and
space-time is given by % =R XM. The system is confined
to the interior of a space-time cylinder AC:X. The inter-
section of A with a fixed-time slice is denoted by Q„
where t is time. In local coordinates, points in M are
denoted by x, y, . . . points in X by x =(t,x),
y =(t,y), . . . . The Riemannian metric on M is denoted
by g, (t, x) and space-time N carries the "Lorentzian"
metric q (x ), where goo(x) = 1, bio; (x) =g;0(x) =0,
g,~(x)= —g J(t, x), where the indices range over
i,j = 1, . . . , d and p, v=0, . . . , d. In the tangent space at
a point x EM we also have the Aat Cartesian metric 5 ~~,
with A, B =1, . . . , d. [Similarly, in the tangent space at
a space-time point x E.% we have the usual "Minkowski-
an" metric g &, with a,P=O, . . . , d.] If the dimension of
M is two, we imagine that M is a surface embedded in a
three-dimensional Riemannian manifold L with metric
also denoted by g; (t, x), and the metric on M is the in-
duced one.

Since, in nonrelativistic quantum mechanics, time is
merely a parameter, we temporarily omit it from our no-
tations and focus our attention on the description of the
"spatial" geometry of M or L, respectively. In order to
be able to describe particles of arbitrary spin
s =0, —,', 1, . . . moving in M, it is necessary to make use of
the (co)tangent-frame or dreibein formalism. This for-
malism, involving local bases in the (co)tangent spaces
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gj(x)=5„~e; (x)e)~(x) . (3.1)

If dimM =2, we choose local coordinates on I. in a
neighborhood of M such that the metric on M at a point
x is given by

(orthonormal frames), naturally incorporates two local
symmetry groups: the group of coordinate reparametri-
zations of the manifold (diffeomorphisms) and the group
of local frame rotations (SO(3) gauge transformations).
Wave functions of particles of half-integral spin will
transform under spinor representations of the frame rota-
tion group.

In the cotangent bundle to L, T*(L), we choose
(smooth) sections of l-forms, (e ")„„with the property
that they form an orthonormal basis (or orthonormal
frame) in each cotangent space T,*(L), x&L. The com-
ponents of the orthonormal frame (e (x))„, in the
coordinate basis (dx~), of T„*(L)are denoted by e;"(x)
and are called dreibein (fields). If dimM =2 we choose
(e (x))z i such that, for x&MC:L, e (x) is orthogonal
to T„*(M) in the metric of T„*(L). The metric on L can
be expressed in terms of the dreibein as follows:

F«m Eq. (3.1) it follows that the dreibein e;" is a
"square root" of the metric (g;. ). This "square root, "
however, is not unique. It is only defined up to local
frame rotations. [Note that the dreibein e,. has nine in-
dependent components while the metric (g; ) has onlyEJ

six. It is the group of local frame rotations which ac-
counts for the mismatch: dim SO(3)=3.] Thus on every
cotangent space T„*(L), x&L, we have a three-
dimensional (spin-1) representation, R (x)CSO(3), of the
rotation group. The rotations R (x) act on the dreibein
e; (x) as "gauge transformations" in the following way:

e; (x)~ e,"(x)=R (x)"~e,. (x)

or

e(x)~ e(x)=R (x)e(x) .

(3.7)

In order to define parallel transport on I. in the
(co)tangent-frame formalism, one introduces the notion
of an aKne spin connection ~ z. This connection is an
so(3)-valued 1-form on L [where so(3) is the Lie algebra of
SO(3)], and it can be expanded in the coordinate basis
(dx') or in the orthonormal frame (e (x)) of T„*(L):

2

g;.(x)= g 5~~e;"(x)e~ (x), i j =1,2,
A, B =1

(3.2) pic( ); (x)dx =co (x)e (x)

i.e., the coordinate x is transversal to M. In the follow-
ing we focus on the geometry of I, thinking of the "back-
ground manifold" M as being identified with L (for
d = 3), or as being a proper submanifold of L (for d =2)
embedded in L in the way just explained.

The inverse of the dreibein e;"(x) is given by

(3.8)
Notice that, with the help of the dreibein and its inverse
[see Eqs. (3.5) and (3.6)], the indices of any tensor can be
changed at will from coordinate indices i,j, . . . to frame
indices A, B, . . . . Geometrically, the connection co z
determines the amount by which the frame e rotates
under a displacement by an infinitesimal vector g =(g'),

6"„(x)=5~~g'~(x)ej (x), (3.3)
e "(x)~e"(x+g)=e (x)+co "~(gx)e (x), (3.9)

where (g'J(x) ) is the inverse matrix of (g;.(x) ). Clearly,

6'~(x)e; (x)=5„and g'~(x)=5" 8'„(x)8~(x) . (3.4)

To summarize, the dreibein e;"(x) is the matrix that
transforms the coordinate basis (dx') of 1-forms in
T„*(L) to an orthonormal basis of 1-forms (e "(x)), in
T„*(L),i.e.,

where co "~(g;x)=co "~,(x)g'(x).
A tensor important in characterizing the afFine spin

connection co "z is the torsion 2-form V'", associated with
e and co z. It is defined through Cartan's first structure
equation,

(x)= T";J(x)dx ' h dxi

e "(x)=e;"(x)dx' and g'J(x)e, "(x)e (x)=5"~ . (3.5) =de "(x)+co "~(x)he~(x), (3.10)

Similarly, 8'z(x) transforms the basis (8/Bx') of vector
fields in T„(L) to an orthonormal basis of vector fields
(6'„(x)), in T„(L),i.e.,

6 „(x)=6'„(x),—= 8'„(x)B;
Bx

(3.6)

where d denotes exterior differentiation [given in local
coordinates by d =dx'(8/Bx')] and h stands for the (to-
tally antisymmetric) exterior product; see, for example,
Eguchi, Gilkey, and Hanson (1980); Bleecker (1981);and
de Rham (1984).

It is customary to decompose the affine spin connec-
tion into two parts:

g;J.(x)e'„(x)@Jib(x)=5„~ . co "ii(x)=A, "ii(x)+a ~(x), (3.1 1)

Throughout this work, if not stated explicitly, the Einstein
summation convention over repeated indices is understood.

where k z is the Levi-Civita connection and ~"& is the
so-called contorsion field. The Levi-Civita connection
plays a prominent role in general relativity; hence it is
important if we wish to study quantum mechanics in a
curved space-time. On any Riemannian manifold (L,g;~ ),
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it is uniquely determined by requiring that its torsion
vanish, i.e., if one replaces co"e by A, e in Eq. (3.10) the
resulting expression has to vanish. The components A, ~;
can be expressed purely in terms of the dreibein e;, its
derivatives, and its inverse 6 ~ (Eguchi, Gilkey, and Han-
son, 1980; Alvarez-Gaume and Ginsparg, 1985):

A, "ii, (x)=—,'[ 6~(x)(Bke;"—8;ek")(x)

+5 5sD@c(x)(B;eP d„—e, )(x)

+ 5~c5DEe, (x)A's(x)BC(x)

a,, (x)=E;" B„B„u,(x),
the density of disclinations (or rotational defects) by

(3.16)

(3.17)

metric 5;J ) into a space L containing defects or, from a
geometrical point of view, into a manifold with nonvan-
ishing curvature and torsion.

Densities of different types of defects in L can be ex-
pressed in terms of (derivatives of) the distortion field
u;(x) as follows. The density of dislocations (or transla-
tional defects) is given by

&& ( Bk e&
—

8&et, )(x ) ] . (3.12)
and the general defect density by

The contorsion field v z contains additional information
about the geometry of L. This information is relevant if
one considers the motion of spinning particles in L„' see
Sec. III.B.

As a last geometrical notion we introduce the curva-
ture 2-form % "~{x)of the connection co s on L. It is

defined through Cartan's second structure equation,

'il j(x)=—,'E;""E "Bi,B (Bku„+B„uk)(x) . (3.18)

% "~(x ) =%"~„(x)dx ' h dx J

=de s(x)+co"c(x)hco ~(x) .

It is easy to deduce from Eqs. (3.10) and (3.13) how co

and % transform under the gauge transformations (3.7)
of the dreibein:

(3.19)g„{x)=5,, —(a, u, +a, u, ){x)

and

Note that these expressions are nonvanishing, in general,
because the distortion field u, (x) is singular! In the pres-
ence of a single defect line I, the dislocation and dis-
clination densities are both proportional to a 6 function
along the line I", see Kleinert (1989).

The geometric properties of the manifold L are coded
into its metric g,~(x) and contorsion field Kjhk(x). In

(3.13) terms of the distortion field u;(x) they are given, in linear
approximation, by

co(x)~ co(x)=R (x)co(x)R (x)+R (x)dR (x),
W(x)~ %(x)=R(x)%(x)R (x),

(3.14)

+Oh(B)uj, +Bku )(x)], (3.20)

x,„„(x)=—,'[B„(B,u„ —8 u, )(x)—B,(B u„ +B„u„)(x)

where a superscript T denotes transposition of a matrix.
Furthermore, from Eq. (3.14) and from the decomposi-
tion of co into the parts A, and a given in Eq. (3.11), the
following transformation properties follow:

A(x)~ A(x)=R(x)A(x)R (x)+R(x)dR (x),
(3.15)

a{x)~~a(x)=R (x)a(x)R (x) .

We note that the contorsion field ~ transforms homo-
geneously under gauge transformations, i.e., according to
the adjoint action of the gauge group.

We end this subsection with some remarks about the
physical relevance of the geometrical notions introduced
above in connection with crystalline backgrounds exhib-
iting dislocations and disclinations. %'e summarize re-
sults contained, for example, in Kleinert (1989; see also
Katanaev and Volovich, 1992), where more details can be
found.

Let y„&K denote the lattice sites of a perfect crystal-
line background. If the crystal suffers some distortion,
the original lattice sites get shifted to x„, where
x„=y„+u(x„),and defects may form. In order to study
these defects in the framework of differential geometry,
one assumes that the crystalline background can be treat-
ed as a continuous (isotropic) medium. Then u(x) is
called the total distortion field. It describes a singular
infinitesimal transformation of Euclidean space Z (with

where icj&k =5„ce~ ei, K iij, ', see Eqs. (3.1) and (3.11).
This allows for a comparison of the defect densities of

L, given in Eqs. (3.16)—(3.18), with the expressions for
torsion and curvature of the manifold L; see Eqs.
(3.10)—(3.13). The following relations hold:

u,, (x)=8;""~hi (x)

8; (x)=A; (x)——,'g; (x)A(x),

(3.21)

(3.22)

and

il;, (x)=A; (x)——,'g; (x)A "c(x), (3.23)

where %; =%";J~ =6 ~ e; A e k is the Ricci tensor and
A =g'~A; is the scalar curvature of the affine spin con-
nection co ~ . Similarly, A; and A denote the Ricci
tensor and scalar curvature, respectively, of the Levi-
Civita connection k ~., the torsion-free part of the a%ne
spin connection; see Eq. (3.11).

Finally, for quantum-mechanical particles moving in a
crystalline background with defects, the following as-
sumption appears to be reasonable: If the energy of the
particles is so small that the lattice structure of the back-
ground cannot be resolved, then a (metrically nontrivial)
Riemannian manifold provides an effective description of
the background when studying the orbital motion of
the particles. (Technically, the Laplacian in the
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Schrodinger-Pauli equation will be replaced by the
Laplace-Beltrami operator associated with the Riemanni-
an metric on the manifold. ) Moreover, the formalism
presented above is well adapted to describing the orbital
motion of particles confined (e.g. , by some potential) to a
curved surface in IE . The question of the motion of the
spin degrees of freedom, however, is more subtle and will
be addressed in the next section.

B. Systems of spinning particles coupled to external
electromagnetic and geometric fields

We start this section by showing how to describe sys-
tems of spinning particles moving in a geometrically non-
trivial background and coupled to an external elec-
tromagnetic field. We assume that the manifold L, admits
a spin structure. Then we may introduce spinor bundles
over L (associated with the cotangent bundle T'(L) over
L). Let s =0, —,', 1, . . . denote the spin of the particles,
i.e., 2s +1 is the dimension of an irreducible representa-

tion of SU(2)=SO(3) with spin s. The fiber of the spin-s
spinor bundle, E"(L), over L is isomorphic to the
(2s + 1)-dimensional Hilbert space 2)", carrying the
spin-s representation of SU(2). Sections of the spin-s spi-
nor bundle are denoted by g"(x). From now on, we
choose the gauge transformations R (x) to be SU(2)
valued. The action of these gauge transformations on the
cotangent bundle T*(L) is given by their adjoint (spin-1)
representation, also denoted by R (x); see Eq. (3.7). Un-
der a gauge transformation R (x), a section g"(x) of
E"(L) transforms as follows:

i/ "(x) i/~"(x) = U"(R (x))i/ "(x) (3.24)

where U" is the spin-s representation of SU(2). The
transition functions of the spin-s spinor bundle
E"(L)—which must be specified if the topology of the
base manifold L is nontrivial —are inherited from the
transition functions of the cotangent bundle T*(L) by
lifting them to the spin-s representation of SU(2). ISince
we have assumed that L has a spin structure this is possi-
ble even if s is half-integer!]

Physically, what is meant by "spin up" or "spin down"
is now a local notion, depending on the point x&L at
which the spin is located and determined by the local
frames (e "(x)) z i', see Sec. III.A.

The spaces of wave functions in nonrelativistic one-
particle quantum mechanics are Hilbert spaces of sec-
tions of these spinor bundles. In nonrelativistic quantum
mechanics, wave functions are complex valued. We
therefore tensor the fiber space 2)"—real when s is an
integer —by C. The structure group of the resulting
complexified bundle, denoted by E~c'(L), is then
U(l) X SU(2). The factor U(l) Ia phase transformation of

i/j"] is connected to electromagnetism, as recognized by
Weyl more than 60 years ago (Weyl, 1928; see also Weyl,
1918).

In order to keep our notations simple, it is advanta-
geous to formulate quantum mechanics of many-particle
systems in the language of second quantization. The sec-
tions i/

' (x) of E'c~(L) over L are then interpreted as
operator-valued distributions acting on Fock space and
subject to canonical equal-time commutation or anticom-
mutation relations,

I
i/j"(x), i/rp"*(y)]+= & P5(x —y),1

&g (x)

(3.25)

where a, /3=1, . . . , 2s + I; I, ]+ denotes the anticommu-
tator and I, ] the usual commutator; i/ "~=i/" or i/"*;
i/"*, the creation operator, is the adjoint (on Fock space)
of i/", the annihilation operator; and g(x) denotes the
determinant of the metric (g;.(x)) on L. The usual con-
nection between spin and statistics is to choose anticom-
mutators in Eq. (3.25), corresponding to Fermi statistics,
when s is half-integer, and commutators, corresponding
to Bose statistics, when s is integer; see, for example,
Negele and Orland (1987) and Feldman, Knorrer, and
Trubowitz (1992).

Our purpose is to specify some nonrelativistic dynami-
cal laws governing the time evolution of the operators
i/"" in the Heisenberg picture. Let i/j""(x)=i/' '~(t, x)
denote the Heisenberg picture creation and annihilation
operators with initial conditions i/' ~(0, x) =f " "(x).
Geometrically, these operators are sections of a trivially
extended spin-s spinor bundle, E~z'(RXL), over the
space-time manifold IRXL. In order to formulate local
dynamical laws for i/""(x ), we need to be able to
di6'erentiate these fields in t and x. This necessitates in-
troducing the notion of parallel transport in E~c'(R XL).
Parallel transport in the spinor bundle Ec' (IRXL) is
defined with the help of a U(1) X SU(2) connection, i.e., by
a vector potential with values in 1K@su(2), where su(2) is
the Lie algebra of SU(2). Once such a connection is fixed,
derivatives of sections i/""(x) are defined as covariant
derivatives. Setting x =ct and x =(x")=(x,x), where
x HL„we find that the covariant derivative in the p direc-
tion is given by

+ia„(x)+w„"(x), p=0, . . . , 3, (3.26)
Bx"

where the real-valued 1-form a =a„(x)dx" is the U(1)
connection, and the su(2)-valued 1-form w "=w „"(x )dx ~

is the SU(2) connection in the spin-s representation of
su(2), i.e.,

(3.27)

There is little danger of confusion. where we have adopted the same notation as in Eq.
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(2.11): (L„")„ i are Hermitian generators of su(2) in the
spin-s representation, normalized such that Lz ~ '=o. A,
where 0.1, o.2, and o 3 are the standard Pauli matrices.

%'e shall argue shortly that we can identify a with the
electromagnetic vector potential (up to multiplication by
physical constants). This is no surprise, given the obser-
vations in Sec. II.A [see Eqs. (2.9) and (2.10)]. What
about m"'7 First, from a geometrical point of view, it is
clear that the aKne spin connection co B, introduced in
Eq. (3.8), enters the definition of w", since the spinor
bundle Ec(' (EXL) is associated with the cotangent bun-
dle T (IRXL), i.e., it inherits the geometrical structure
of T*(IRXL). Second, based on the observations in Sec.
II.A [see Eqs. (2.9) and (2.11)—(2.13)], we expect the in-
teraction of the external electromagnetic field with the
magnetic moment carried by the particles (Zeeman and
spin-orbit couplings) to be described by an additional
term, p"=p„"(x)dx", in the SU(2) connection w".
Since the sum of co and p" must be an SU(2) connection,
p" has to transform under SU(2) gauge transformations
according to the adjoint action of the gauge group. %'e
use the following notations:

w" (x)=co"(x)+p"(x)P P p

where

(3.28)

L(s)( ) y E
BC A (x)L(s)

p 2 A Bp C
A, B,C=1

(3.29)

3

p„"(x) = i g p„~ (x )L g" .
A=1

(3.30)

All notions introduced in Sec. III.A—defined over space
L and its cotangent bundle T"(L)—can easily be extend-
ed to space-time, R XL„and its cotangent bundle,
T*(EXL)=EXT*(L). In a nonrelativistic setting, the
space-time metric i7„„(x) has the property that

go,.(x)=O=g, o(x) [see the beginning of Sec. III.A], and,
as a consequence, most "temporal" components of the
different geometrical fields introduced in Sec. III.A van-
ish. In Eq. {3.29), co "i);(x), i =1,2, 3, is given by Eqs.

E~ =E„i)c is the sign of the permutation (ABC) of
(123), and

(3.8), (3.11), (3.12), and

BO(x [~ ~BD@C(x)~0 k {x) @B( )~0ek {x)]

(3.31)

Under an SU(2) gauge transformation R (x), i.e., under
local frame rotations in the cotangent bundle T*(EXL)
[see Eq. (3.7)], the different terms of the SU(2) connection
m" transform as follows:

co"(x)~ co"(x)= U"(R (x))co"(x)U "(R(x))*
P P P

+ U "(R (x) )B„U"(R (x) )*,
which can be inferred from Eq. (3.14), and

p(s)(x ) &p(~)(x )

= U"(R (x))p"(x)U"(R (x))*,

(3.32)

(3.33)

where e denotes the adjoint of a matrix.
If the metric on L is time independent, coI)'(x) van-

ishes; see Eqs. (3.29) and (3.31). After a time-dependent
SU(2) gauge transformation, however, it may be different
from zero. Furthermore, the p" part of the SU(2) con-
nection w" will, in general, be different from zero.
Geometrically, it corresponds to an additional contorsion
field yielding nonvanishing torsion; see Eq. (3.10). The
physical interpretation of the co" part of the SU(2) con-
nection w", as well as the precise identifications with

physical quantities of the p" part of w" and of the U(1)
connection a, will be given below. (The material in Sec.
II.A will serve us as a guide. )

Having introduced a U(1) X SU(2) connection and
defined covariant diff'erentiation of the sections g"", we
are now in a position to formulate local dynamical laws.
It is convenient to use the Lagrangian formalism, but we
could also work in the Hamiltonian formalism; see
Frohlich and Kerler (1991). Let us consider a system of
nonrelativistic particles of fixed spin s, and, to simplify
our notations, we drop the superscript (s) from the field

operators P"" and the SU(2) connection w"=co"+p".
Our ansatz for the action of the system is an obvious gen-
eralization of the action (2.17) found in Sec. II.A. It
reads [with x =(ct,x)]

SA(g*, g;g, a, w)= f v g (t, x)dt d x[ih'cf*(x)(2)op)(x) —()rt /2m)g '(t, x)(2)k)tj)*(x)(X))p)(x)—U(g*,g)(x)], (3.34)

where the covariant derivatives are given in Eq. {3.26), m is the efFective mass of the particles (sometimes also denoted

by m; in common situations of solid-state physics it can be considerably smaller than mo, the mass of the particles in

the vacuum), and U(g*, g)(x) is a U(1) X SU(2)-invariant functional of g and itj*, e.g. [y =-(ct, y) ],

U(g*, g)(x) =U (x)g*(x)P(x)+—' f V'g (t, y)d y:[P*(x)g(x)—n] V(t, x, y)[g*(y)g(y) n]: . — (3.35)

The double colons indicate %'ick ordering, v is a possibly
time-dependent one-body background potential (depend-

ing on the background and on the scalar curvature % of
M), Vis some two-body potential [e.g. , for charged parti-
cles a (possibly screened) Coulomb potential, or for neu-

tral atoms or molecules a van der Waals potential], and n

is approximately equal to the background density of the
system (proportional to its chemical potential). We recall
that At RXM is a cylindrical region in space-time. At
fixed time t, we impose Dirichlet boundary conditions at
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the boundary BQ, of the region 0, to which the system is
confined.

The field equation (or Euler-I. agrange equation) for g
or P' follows by setting the variation of S~ with respect
to g* or g, equal to zero. The resulting equation is a gen-
eralization of the Pauli equation (2.14) to a system of
spinning particles in a geometrically nontrivial back-
ground.

In order to illustrate these matters, let us consider a
simple situation: We choose space M to be given by Z
(the x,y plane in L =K ) or by K; g, (t, x)=5,J for all
times t and all x EM, A =R X Q, where Q is some time-
independent open set in M. The field equation for g, ob-
tained by varying the action SA defined in Eq. (3.34) with
respect to g', then reduces to the Pauli equation (2.14).
This equation coincides with the usual form given in (2.6)
[up to a modification of order 0 (1/mm 0); see Sec. II.A]
provided we make the same identifications as in Eqs.
(2.10)—(2.13): The components of the U(1) connection a
[with respect to the coordinate basis (dx") of the co-
tangent space T*(RXL)] are given by the electromag-
netic potentials N and A:

po„(x)= — 8~ (x),gp
2fic

(3.37)

where 8„(x) is the A component of the magnetic field
B(x) in the basis (e (x)) of T„*(RXL),and

+, Z "»(x)~,(x),gp q
2Ac 4'fpgc

(3.38)

where Eii(x) is the 8 component of the electric field

E(x), and the symbol ek» (x) is defined by

ek»(x) k (x)ECABC (3.39)

where Ec» is the sign of the permutation (CAB) of
(123). In Eqs. (3.37) and (3.38), the magnetic moment of
the particles enters via gp; see Eq. (2.7). Although the
orthonormal frames e "(x) could be chosen to vary, it is
simplest, in the present situation, to choose them as
e„(x)=5„".Then the "geometrical" part co of the SU(2)
connection w clearly vanishes.

In a general situation, when the background of the sys-
tem has the structure of an arbitrary Riemannian spin
manifold M, the physical interpretation of the connec-
tions a and w is straightforward: The U(l), connection
a is still expressed in terms of the electromagnetic poten-
tials, as in Eq. (3.36). The SU(2), ;„connection w has
been given in Eq. (3.28) with the "geometric" part co be-
ing specified in terms of the affine spin connection ~ z
on RXL; see Eq. (3.29). Its p part (describing Zeeman

ao(x) = C&(x) and ak(x) = — Ak(x), (3.36)
Ac Ac

where q is the charge of the particles. Furthermore, the
components of the p part of the SU(2) connection w are
expressed in terms of the electromagnetic field (E,B) as
follows:

and spin-orbit couplings of the particles' magnetic mo-
ment to the external electromagnetic field) always con-
tains the terms in Eqs. (3.37)—(3.39). The only difference
is that, on a general Riemannian manifold it is not possi-
ble to choose the dreibein e„"(x) to be constant on all of
RXL.

Remark. Here we wish to comment on the physical
status of the a~ part in the SU(2) connection w. In the
study of gravitational fields, the affine spin connection ~
is torsion free. It is given by the Levi-Civita connection
A, , which is canonically associated with the gravitational
metric field g; see Eq. (3.12). Hence, if we consider a
quantum-mechanical system in a (strong) external gravi-
tational field, then m enters into the description of the
motion of the spin of the particles as a fundamental phys-
ical field.

At the end of Sec. III.A, we argued that the geometri-
cal framework of Riemannian manifolds provides an
effective description for the orbital motion of low-energy
particles in a crystalline background with defects (or of
particles confined to a curved surface in K ). Given the
Levi-Civita, connection A, , in terms of the metric (3.19)
and the contorsion field ~, as specified in Eq. (3.20), we
must ask whether the corresponding affine spin connec-
tion co=A, +~ [see Eq. (3.11)] might provide an effective
description of the interaction of the spin of the particles
with the crystalline background through which they are
moving. In general, this is not likely to be so! For exam-
ple, let us consider a spinning particle with vanishing
magnetic moment, which moves in a crystalline back-
ground. Then, from the point of view of basic one-body
quantum mechanics (see Sec. II.A), we do not expect that
the dynamics of the spin of the particle is coupled to the
effective metric associated with the background. (In this
situation, the spin can be viewed as an internal degree of
freedom. ) More generally, in one-body quantum
mechanics (in the absence of gravitational fields), the dy-
namics of the spin of a particle (moving in some back-
ground or constrained to a surface in K ) is completely
determined by the Zeeman eftect and by spin-orbit
coupling, including the kinematical effect of the Thomas
precession. The p part of the SU(2) connection w fully
accounts for these effects, and co can be transformed to 0
in a suitable SU(2) gauge.

We wish to emphasize that the main reasons for intro-
ducing the geometrical framework have been to eluci-
date, from a geometrical point of view, the meaning and
origin of the SU(2) gauge invariance (i.e., the introduc-
tion of an SU(2) connection and of local rotations) and to
prepare for the description of quantum-mechanical sys-
tems in moving coordinates. " This will be the subject of
the following section.

We finally recall that with the help of the dreibein e;
and its inverse 6'z the components of the electromagnet-
ic field and its vector potential can easily be changed
from the form they take in orthonormal frames to the
form they take in local coordinates [see Eqs. (3.5) and
(3.6)], e.g. ,
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C. Moving coordinates and the quantum-mechanical
Larmor theorem

We now imagine that the background of the system is

moving on the manifold M according to some classical
fiow P(t, ). Here P(t, y) is the position in M of a point
particle at time t starting at position y at time 0. Then,
in the x coordinates ("laboratory coordinates" ) fixed to
EXM, the one-body potential v (x) and the electric and

magnetic fields E(x) and B(x) created by the background
are time dependent. This implies that, in the (time-
independent) x coordinates on EXM, the Hamiltonian of
the system is time dependent, which complicates the
mathematical analysis of the system. In particular, it
complicates the analysis of its thermal equilibrium prop-
erties. It is quite clear, physically, that approximate
thermal equilibrium in such a system will be reached lo-

cally in regions moving with the background according
to the fiow P(t, ). Thus we ought to formulate quantum
mechanics in "moving coordinates" (y ',y, y ), where

x=P(t, y),

that is,

y=P '(t, x) .

(3.41)

In accordance with our nonrelativistic treatment of quan-
tum theory, time will not be transformed, and in our cal-
culations only terms to order 0(flc) are taken into ac-
count, where f is the modulus of the velocity field of the
moving background (see below). We shall see that the
geometrical formalism introduced in the first part of this
section allows for a natural description of the transfor-
mations to "moving coordinates, " since, from the outset,
it incorporates the local symmetry group of coordinate
reparametrizations of the manifold, i.e., diffeomorphisms.
For a different account of quantum mechanics in moving
coordinates (or in noninertial reference frames), see
Schmutzer and Plebanski (1977).

In the new coordinates (y ',y, y ) the one-body poten-
tial U(t, y) and the background fields E(t, y) and B(t,y)
may be expected to be (approximately) time independent
In this situation, the Hamiltonian for spinless particles
(s =0) will be (approximately) time independent, and we

can apply the rules of Gibbsian statistical mechanics to
study thermal equilibrium.

&~(x)=&~(x)&k(x) and Ak(x)=ek(x)Ac(x) . (3.40)

Note that Eqs. (3.37) and (3.38) are consistent with the
transformation law (3.33) of p~' under SU(2),z,„gauge
transformations. Moreover, defining U(1), gauge trans-
formations as in Eq. (2.15) (with y an arbitrary, real-
valued function on EXL), we prove from the discussion
above [see, in particular, Eq. (3.34) for the action SA]
that nonrelatiuistic quantum mechanics of charged spin
ning particles, which move in an external electromagnetic
field and in a geometrically nontriuial background, is
U(1), X SU(2),~;„gauge inuariant

Unfortunately, for spinning particles (s =
—,', 1, . . . ),

the situation is not quite as neat, because, in the y coordi-
nates, the dreibein e,. (y) is time dependent:

ek (y)=e "(t,P(t, y)) k PJ(t, y)k

ax~—= e,"( t, P( t, y) )- (3.42)

In order to eliminate as much of this undesirable time
dependence as possible, we attempt to And a suitable
SU(2) gauge transformation of the new dreibein ek(y);
see Eq. (3.7). What is the optimal choice? The answer is,
perhaps, somewhat ambiguous in general. But the fol-
lowing choice tends to be quite optimal. Let (f~(t, x)) be
the velocity field generating the fiow P(t, ~ ), i.e.,

axj a
c = P~(t, y)=f~(t, P(t, y)), j=1,2, 3 .

ay 0 at
(3.43)

R "e(t, x) = T exp y f dt'Q(t', x)
0

(3.45)

where "Texp" denotes a time-ordered exponential and y
is a real constant to be chosen later. (Its physical mean-
ing will become clear at the end of this subsection; see
also Sec. IV.C.) The rhs of Eq. (3.45) can be defined, for
example, by a convergent Dyson series if Q(t, x) is uni-
formly bounded in t We now de. fine [see Eq. (3.7)]

"„"(y)= „"(y)=&"s(t,P(t, y))e„(y), (3.46)

where e; (y) is given by Eq. (3.42). We also define the fol-
lowing transformed quantities:

P(t, y)= U~'(t, y)g(t, P(t, y)), (3.47)

ay ay
g "'(t,y) = . . g "(t,P(t, y) ),ax' ax J

(3.48)

axj
ao(t, y)=ao(t, g(t, y))+ ai(t, P(t, y)),P J 7

axj
ak(t, y)= „ai(t,P(t, y)) .

k

(3.49)

Furthermore,

Then the infinitesimal rotation of an orthonormal frame
carried along by the fiow P( t, ), at the point x EM and at
time t, is given by

Q (t, x) = —,'[(8 f ")(t,x) —5 5 (8 f )(t,x)], (3.44)

where 8„=6 ~ (x)(BIBx') and f "(t,x) =e "(x)fJ(t,x);.
see Eq. (3.6) and the remark after (3.8). The vector
Q(t, x) dual to the antisymmetric matrix (Q "s(t,x)) is

called the Uorticity or circulation of the vector field f(t, x)
and is the local angular velocity of the rotation induced

by P(t, ) of a frame at the point x at time t.
We define a rotation matrix (8 "ii(t,x) ) by setting
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x~
&o"(t,y)= U"(t, y) Io~" (t, p(t, y))+ Io "(t,p(t, y)) U"(t,y)*+U"(t, y) U"(t,y)*,

&P'(t, y)=U"(t, y) kio,"{t,g(t, y)) U"(t,y)"'+U"(t, y) k
U"(t, y)*,

(3.51)

Our aim is to rewrite the action S~ introduced in Eqs. (3.34) and {3.35) in moving coordinates y, using the transfor-
mations (3.46) —(3.51). By Eqs. (3.47) and (3.51),

g{t,x)= U"(t, P '(t, x))"f(t, P '(t, x))

=U"(R(t, x))'ltj(t, p '(t, x)) .

Hence [with B/Bx =(1/c)(B/Bt)=B/By ]

(3.52)

U"(R (t, x)) g(t, x) = g(t, y)+ U"(t, y) U"(t, y)*g(t, y)
Bx' ~,=&~„~ By' By'

f (t, y—) „g(t,y)+ U"(t,y) ~
U"(t, y)*g(t, y)

3

, g(t, y) f"(t,y—) —
k It(t, y) -g— E& & "II(t,y)L~"f(t, y), (3.53)

~3' c ~X ~~ w, z, c=&

, +ia&(y)+&o'(y) P(y)
Bgx =(ct, p(I., y))

where —f"(t,y)= —(By /Bx~)f J{t,{t(t,y)) is the kth component of the vector field generating P '(t, ~ ) in the y coordi-

nates, alld (0 II(t y) ) 1s tllc voltlclty of tllc gcIiclatlIlg vcctol field 111 'thc y cooidlIlatcs wltll Icspcct to tllc ortlloliol'nial

frame (e (t, y)), given in Eq. (3.46). By comparing Eq. (3.53) with (3.49) —(3.51) we find that

U"(R (x)) +iao(x)+Ioo" (x) Itt(x)

f"(y) +iai, (y—)+&~~'(y) P(y) .
k

(3.54)

%c dcfmc th.c transformed covallant dcnvatlvcs

2)0= o +lao(y)+ &o (y)
3'

k +ia&(y) i fi(y)+ &—k'(y),
By

where f„(y)=g„,(y)f '(y), and the transformed one-body potential

u(t, y ) =U (t, P(t, y ) ) fk(y)f"(y)——i——— „[~/g(y)f"(y)],
2 2 Qg(y)

as well as the transformed two-body potential

V(t, y, y')= V(t, g(t, y), P(t, y')) .

AftcI thcsc plcparations, onc caslly verifies thc following thcorclTl.

In moving coordinates the action of the system takes the form

~~(4' 0 g a ~)=~-(f' 0 g a f &)

(3.56)

(3.57)

=I lv g(y)dt d'y i«@'(y)(2)0@)(y)— g"'(y)(&k@)'(y)(&lltr)(y) —U(@*,@)(y)
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m f(x) ~ —A(x) .
c

(3.59)

The vector potential A(x) gives rise to the Lorentz force
in the classical limit. The Lorentz force has the same
form as the Coriolis force if one replaces (q/c)B(x) by
2mQ(x), where Q(x) is the local angular velocity, which
is precisely half the curl of the vector field f(x); see Eq.
(3.44). Thus f(x) is the vector potential that gives rise to
the Coriolis force in the classical limit.

By Eqs. (3.53) and (3.54), the action S~ contains a term

(3.60)

where Q(y)= —,
' curlf(y), in y coordinates. It has the

same form as the Zeeman term

(3.61)

which, by (3.50), (3.37), (3.30), and (3.28), also appears in

S~. Recall that the magnetic moment of a particle with

spin s has been defined by p,~;„=(gp/2)L"; see Eq. (2.7).
Thus (gp/A')B is precisely the angular velocity of spin
precession in the magnetic field B.

Next, we analyze the one-body potential U in moving
coordinates. By (3.56), v is complex-valued, unless

(3.62)

i.e., unless the vector field f is divergence free. A
divergence-free vector field generates a volume-
preserving flow P( t, ), hence

g(y) =det(gk&(t, y)) =g(t, P(t, y)) . (3.63)

Thus, for volume-preserving (i.e., incompressible) flows,
and only for such flows, v is again real-valued. [This is
because if volume is preserved by P(t, ) then, by (3.63),
the quantum-mechanical time evolution in the moving
coordinate system preserves probabilities with respect to
the volume element [g(t, P(t, y))]'~ d y and hence is gen-
erated by a Hermitian (self-adjoint) Hamiltonian!] But v

contains an additional term, —(m /2)fkf, that was not

where in the definition of U(f*,f) the potentials v and V
of Eqs. (3.56) and (3.57) are used, and
A= I(t, y)~(t, x=g(t, y))HA].

To prove theorem (3.58), one expands the rhs of (3.58)
kin powers of f", integrates by parts, and compares

the resulting expression to Eqs. (3.54), (3.34), and (3.35),
using (3.55) through (3.57) and the fact that
( U(s)y)s( U(s)q) yey

Let us pause to interpret the result (3.58). By (3.55),—(m/h)fk(y) enters the action S~ as a contribution to
the U(1) connection. By (3.36), mfk(y) and (q/c)A&(y)
play analogous roles, i.e. (in x coordinates),

present in the original one-body potential [see Eq. (3.56)].
What does it correspond to physically? It is the potential
of the centrifugal force, because (m/2)(B/By' )(fkf") is

precisely the 1th component of the centrifugal force at
the point y, at time t. [Note, incidentally, that
( m l2 )fkf" is the classical kinetic energy of the particle
in the time-independent frame, which must be subtracted
in the y coordinates. ]

In conclusion, we find that quantum mechanics in
moving coordinates is Hamiltonian, with a Hermitian
(but possibly still time-dependent) Hamilton operator, if,
and only if, the flow P(t, ) defining the moving coordi-
nate system is volume preserving, or incompressible.
Henceforth this property is usually assumed. It is
worthwhile recalling that in tao space dimensions, in-
compressible flows are automatically symplectic (Hamil-
tonian) flows, because the vector fields generating them
are divergence free and hence are dual to the gradient of
some (scalar) Hamilton function. (This is the basis of a
mathematical analysis of the two-dimensional Euler
equations. )

An interesting consequence of formulating quantum
mechanics in moving coordinates is a quantum-
mechanical version of Larmor's theorem, in which the
spin degrees of freedom of particles moving in a (vari-
able) external magnetic field are also taken into account.

For definiteness, let us consider a system of particles
with efFective mass m, charge q, spin s, and magnetic mo-
ment p,„;„[where p, , ;„=(gplfi)S, with p=qfil(2moc),
and mo is the mass of the particles in the vacuum; see Eq.
(2.7)]. Furthermore, for simplicity, we choose the back-
ground manifold M to be Euclidean space 1E or K, i.e.,
the metric takes the form g,"(x)=5,", and all geometrical
contributions to the SU(2) connection w(x) are absent;
see Eqs. (3.28) —(3.30). We now suppose that the system
is under the influence of a (variable) external magnetic
field B(x) and assume that there is no external electric
field; E(x)=0. As we shall see shortly, it is convenient to
work in a U(1) gauge where div A(x) =0 (Coulomb
gauge). The quantum-mechanical Larmor theorem then
states the following: For the system just described, the
effect of an external magnetic field B(x) can be
eliminated to first order by choosing to work in
moving coordinates generated by the velocity field
f(x)= —(q/mc) A(x) and by performing an SU(2) gauge
transformation U"(R (x)) where the local frame rotation
R (x) is given by (3.45) with y=g (m/mo).

Note that the vorticity field Q(x)—:—,
' curlf(x)

= —q/(2mc)B(x) of the velocity field f(x) is precisely
the so-called Larmor angular velocity. Choosing the vec-
tor potential A(x) in the Coulomb gauge renders the
flow generated by f(x ) divergence free (i.e., volume
preserving)!

The proof of this theorem is straightforward. We re-
call that w I'(x ) =0=ao(x ) by (3.28) —(3.30), and
(3.36)—(3.38). Then, adopting the identifications given in
the theorem, it follows from Eqs. (3.55) and (3.56), using
(3.49) and (3.50), that in moving coordinates
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2)0= +0 max lfl (y), „B (y)ay'

pressing this gauge invariance turn out to play an impor-
tant role in establishing certain universal properties of
such systems; see Frohlich and Studer (1992a—1992d)
and Sec. V.

Dk=
k +0k „B (y)k

f(y)=QXy= yXBO .
2mc

(3.65)

Hence, in this situation, terms of order 0( (i)/i'")8l(y) )
are absent from Eq. (3.64), and 0(lfl (y))=0(IBol ).
Before we turn to some applications of the formalism
presented in this section, we wish to emphasize, once
again, that it applies equally well to (one-), two-, and
three-dimensional systems.

It often happens in solid-state physics, e.g., in two-
dimensional heterostructures used in measurements of
the quantum Hall effect, that the system exhibits an ap-
proximate internal symmetry described by some compact
group G. The spinors i/t"» then transform according to
some nontrivial representation ~ of G. A breaking of 6
might be described as the effect of coupling i/r"» to an
external gauge field in the representation ~, of the Lie
algebra of G. Let us denote this gauge field by z. By
modifying the covariant derivatives given in Eq. (3.26),

g)„~g)„'=2)„+z„(x), (3.66)

we may easily extend the entire formalism developed in
this section to systems with gauged internal symmetries.
This can be important in applications.

Note that, in this situation, the action Sz introduced
in Eq. (3.34) is U(1) XSU(2) XG gauge invariant, i.e., it
does not change if, for an arbitrary real-valued function

y, an SU(2)-valued function R and a G-valued function g,
all defined over space-time RXM, the following substitu-
tions are made:

i/r '(x)t—+e 'x' 'U"(R (x))4377(g (x))1/ "(x),

a„(x)+ f„(x)~a„(x)+ f (x)+8~(x), (3.67)

w '(x)~ U"(R (x))w" (x)U '(R(x))*

+ U ' (R(x))B„U"(R (x))*,
and

z„(x) ~(g (x))z„(x)vr(g (x))*+sr(g (x))B„vr(g(x))* .

Thus, barring gauge anomalies, which actually cannot ap-
pear in systems of finitely many nonrelativistic particles,
the nonrelativistic quantum mechanics of such systems is
U(1) X SU(2) X G gauge invariant. Ward identities ex-

U(y) = U (t 4(t y) )+0( I
f l'(y) )

[see also Eqs. (3.60) and (3.61)]. Note that, if the external
magnetic field is constant (in the moving coordinates),
B(y) =Bo, then the "tidal vector potential" f(y) may be
written as

IV. SOME KEY EFFECTS RELATED TO THE U(1) X SU(2)
GAUGE INVARIANCE OF NONRELATIVISTIC
QUANTUM MECHANICS

Before we turn to our main topic, the analysis of two-
dimensional, incompressible quantum Auids and their re-
lation to one-dimensional chiral current algebras, we
wish to describe some effects in quantum mechanics from
the point of view of its U(1), +„d„XSU(2), ;„gauge in-
variance. We continue and expand the discussion started
at the end of Sec. II. Most of the material reviewed here
is well known, but our perspective, emphasizing gauge in-
variance, may be somewhat novel.

A. "Tidal" Aharonov-Bohrn and "geometric" Aharonov-
Casher effects

After what we have learned in Sec. III.C on the U(1)
vector potential of the Coriolis force, present in moving
coordinates [see Eq. (3.59)], it is clear that there must ex-
ist a "tidal" Aharonov-Bohm effect: Consider a mass-
current-conducting superAuid in a large container
penetrated by some straight cylindrical tube that ex-
cludes the quantum Quid. Now, set the fiuid into circular
motion around the axis of the tube with velocity field f,
where

l
f(r)

l
=v/(2nr) at a distance r from the axis of the

tube, and ~ is a quantity of dimension cm /sec, the total
vorticity or circulation: sc = f f dl. (Note that
i~.=2~1., /XM, where M is the mass of the particles con-
stituting the quantum Quid, I., is the expectation value of
the component of the total angular momentum operator
parallel to the tube in the given state of the system, and X
is the number of particles in the system. ) Small mass
currents excited in this system, scattered at the tube, will
exhibit an Aharonov-Bohm effect depending periodically
on i~, with period h /m, where m is the mass of the parti-
cles in the scatter'ing currents; compare to Sec. II.C.

While this efFect may be somewhat difficult to test ex-
perimentally, it is important theoretically: Consider a
superAuid film with manifestly (e.g., through rotation) or
spontaneously broken time-reversal and rejections-in-
lines (i.e., two-dimensional parity) invariance. The for-
mation of such films at a particular superAuid He-2 /B
interface has been discussed by Salomaa and Volovik
(1989). Such a two-dimensional super(luid will, in gen-
eral, exhibit vortex excitations of vorticity v=n (h/M),
n H Z, where M is the mass of the constituent particles in
the superAuid, and fractional mass (rather than fractional
charge) oH ~, where o.H =o (M /h) is a "tidal Hall con-
ductivity. " Such excitations give rise to Aharonov-Bohm
phases and hence are anyons if o is not an integer, i.e., if
the superAuid shows a fractional "tidal" quantum Hall
effect; more details on this effect will be given in Sec.
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VII.B. Such excitations may be observed experimentally
by measuring fluctuations in the longitudinal resistance
of superAuid current conduction. See Simmons et al.
(1989) and Hwang et al. (1992) for an analogous experi-
ment in two-dimensional electronic systems exhibiting
the fractional quantum Hall effect.

A remarkable experimental observation of a "tidal"
Aharonov-Bohm effect has been provided by Werner,
Staudenmann, and Colella (1979). Using a neutron inter-
ferometer they have detected a quantum-mechanical in-
terference effect due to the rotation of the Earth. For a
brief theoretical comment on this interference experi-
ment that is close to our discussion in Sec. III.C, see
Sakurai (1980).

Other interesting systems where mixed "tidal" and
electromagnetic effects play a role are, for example, rotat-
ing superconductors. Following an analysis by Semon
(1982; see also Schmutzer and Plebanski, 1977), an exper-
iment performed by Zimmerman and Mercereau (1965)
can be interpreted as the realization of a thought experi-
ment proposed by Aharonov and Carmi (1973): Given a
(uniformly) rotating sample that is not simply connected,
the "tidal" forces (Coriolis and centrifugal force) felt by
the particles in the moving system (all of the same
charge-to-mass ratio) can be cancelled by an electromag-
netic field whose vector potential does not cancel the "ti-
dal" vector potential completely everywhere; see Eq.
(3.59). This uncancelled "tidal" vector potential then
leads to a quantum-mechanical interference effect. "

In Sec. II.D we have discussed the Aharonov-Casher
effect as an SU(2) version of the Aharonov-Bohm effect.
Furthermore, in Sec. III.B, systems in geometrically non-
trivial backgrounds have been described by including a
"geometrical" term in the SU(2) connection w; see Eqs.
(3.28) —(3.31) and (3.11). Here, we combine these findings

and discuss a "geometrical version" of the Aharonov-
Casher effect: We consider a two-dimensional system of
particles with nonzero spin on a cone with the tip at
I=0. Then, although p =0 if there are no electromagnet-
ic fields, the SU(2) connection w determined by co ~, the
affine spin connection on the cone, cannot be gauged
away globally, although co ~ is fiat for x&0. The SU(2)
connection m has the same form as the electromagnetic
part p given in Eq. (2.20), but Q now denotes the defect
angle of the cone. Scattering of particles at the tip of the
cone will yield interference patterns depending on the de-

fect angle Q. This effect is perhaps better known than its
electromagnetic cousin. It has attracted attention, for
example, in connection with quantum mechanics and
quantum field theory in the presence of cosmic strings
(Deser and Jackiw, 1988, 't Hooft, 1988; Kay and Studer,
1991).

Do spinless particles "see" the tip of the cone, or is

spin important? The answer depends on our choice of a

4We thank F. Jaroslav for bringing the references of this para-
graph to our attention.

quantum-mechanical state space: We must impose some
"boundary conditions" on the wave functions, i.e.,
g(r, y+2a Q—)=e' g(r, y), where tp is the polar angle,
and |9 is some phase to be specified, plus some boundary
condition at r =0. But no matter how we choose 0, we
can make the tip of the cone "invisible" to spinless parti-
cles by threading a magnetic Aux through x=0. If the
particles have spin and a nonzero magnetic moment
then, in addition, we would have to put a charged wire
through x=0, in order to make the tip "invisible. "

Finally, we remark that there is also an analog of the
Aharonov-Casher effect in which SU(2) is replaced by a
gauged internal symmetry group G. This effect can,
perhaps, be tested in inhomogeneous heterostructures. It
is related, both physically and mathematically, to the ex-
istence of particles in two-dimensional quantum theory
with topological pair interactions described by a G-
Knizhnik-Zamolodchikov connection that, just as in the
case of SU(2), may give rise to non-Abelian braid statis-
tics; see Sec. V.III.

B. Flux quantization and SU{2}monopoles

A superconductor exhibits the Meissner-Ochsenfeld
effect: A magnetic field cannot penetrate into the bulk of
a superconducting material. However, in a type-II super-
conductor, thin magnetic-field tubes can thread through
the bulk. They have the property that they carry a mag-
netic Aux N which is an integer multiple of hc/q, where q
is the charge of the particles in the condensate (e.g. ,

q = —2e, for BCS pairs of electrons). These tubes are
called Abrikosov vortices. The quantization of N is ex-
plained by requiring that, outside an Abrikosov vortex,
the superconducting state of the system remain undis-
turbed. From what we have said about the Aharonov-
Bohm effect in Sec. II.C it follows that this requirement
is fulfilled precisely if @ is an integer multiple of hc/q.
Experimentally, this effect has been established first in
Deaver and Fairbank (1961) and Doll and Nabauer
(1961; for a review, see, for example, Chap. 6 in Tilley
and Tilley, 1986).

The discussion of the "tidal" Aharonov-Bohm effect
above makes it clear that the Meissner-Ochsenfeld effect
and fiux quantization in Abrikosov vortices have their
counterparts in the theory of superAuidity: Consider a
superAuid in some container. Now set the container into
uniform rotation. The superAuid inside the container
abhors angular velocity which could destroy its
superAuidity and does not, therefore, follow the rotation
of the container's walls. However, just as there can be
Abrikosov vortices in a type-II superconductor, the
superfluid can eventually be set into motion, and the
motion is generated by a velocity field f, whose circula-
tion (or vorticity) Q= —,

' curlf [see Eq. (3.44)] is localized

along thin tubes. The "tidal" Aharonov-Bohm effect
then predicts that the total circulation in such a tube is
quantized in integer multiplies of h/M, where M is the
mass of the particles (e.g. , He pairs) constituting the
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superfluid. (This can also be understood by appealing to
the quantization of orbital angular momentum. ) If, in
such a Auid, one can excite mass currents of quantum-
mechanical particles, "dopants" of mass I & M, one may
be able to test the "tidal" Aharonov-Bohm eAect.

Our conclusions agree with another theoretical
analysis given by Pines and Nozieres (1989). Experimen-
tally, the first verification of the quantization of circula-
tion (in superfluid He II) was given by Vinen (1961; for a
review, see, for example, Chap. 6 in Tilley and Tilley,
1986). The phenomena described here may be relevant in
the astrophysics of rotating neutron stars (pulsars), which
appear to be superfluid (see, for example, Tsakadze and
Tsakadze, 1980).

Now that we have discussed "topological" field
configurations connected to the U(1) gauge invariance of
quantum theory (i.e., vortices with associated quantiza-
tion of flux or circulation), we may ask whether there are
corresponding configurations related to the non-Abelian
SU(2) gauge invariance of quantum theory.

For this purpose we recall that Abrikosov vortices can
be thought of as critical configurations of a Landau-
Ginzburg functional for the free energy of a type-II su-
perconductor which have finite energy per unit length. If
we restrict our attention to a plane K intersecting the
bulk of a superconductor transversally to an applied
magnetic field penetrating the bulk in the form of vortex
tubes, then vortex configurations are characterized by the
winding number of the phase of the "order parameter" P,
i e., by the winding number of the map [x= (x i, x2 ) C IE ]

pole number, with [P] the homotopy class of the map-
ping

: Si, ~S =SU(2) /U( 1 ),x /x/=ii~~
(4.2)

1 1 1

2 sinhr r '" r
(4.3)

aild

1 1 1P~(x)=+-—
2 tanhr r r

with the SU(2) connection 1-form given by
w=lg gM g(x)ogdx

Physical systems where configurations of this type
might arise are (3+1)-dimensional quantum spin liquids
that are characterized by an order parameter P trans-
forming under the adjoint representation of SU(2) and
that involve coupling to an SU(2) gauge field w.

where Sz is a 2-sphere of radius R in physical space K
(Jaffe and Taubes, 1980). If the parameters in the SU(2)
Higgs model assume particular values (Bogomol'nyi lim-
it), explicit solutions to the corresponding field equations
are known with [P]=+1. These (static) solutions are
called Prasad-Sommerfield monopoles. If "located" at
the origin (r = lx~ =0) they are given by

wo„(x)=0,

P(x) : S~~S1 1

P(x)I
(4.1)

which maps a circle Si'i of radius R (~ ~ ), in the cross
section K through the superconductor to the circle
S'=U(1). We recall that, for configurations of finite en-

ergy per unit length, the winding number —which is an
integer —equals the magnetic Aux through the vortex
tubes threading the superconductor, in units of hc/q.
This provides a "topological" explanation of the quanti-
zation of the Aux through vortex lines in a superconduc-
tor. We note that, from a field-theoretic point of view,
the restrictions of the above vortex configurations to a
planar cross section coincide with "static, finite-energy"
configurations of a U(1) Higgs model in 2+ 1 dimensions
(see, for example, Jaffe and Taubes, 1980).

Next, for non-Abelian Higgs models in 3+1 dimen-
sions, "topological" configurations are also known to ex-
ist. They are called monopoles. Let us take a closer look
at these configurations in the example where the gauge
group is SU(2) and where the "order parameter" (i.e. , the
Higgs field) P takes its values in the Lie algebra su(2):
/ =i g& P& cr &, with cr z, 2 = 1,2, 3, the three Pauli ma-
trices. Under gauge transformations P transforms ac-
cording to the adjoint representation of SU(2). Again,
"static, finite-energy" configurations are classified by a
topological index [P]&~2(S )=Z, the so-called mono-

C. Barnett and Einstein —de Haas effects

itj*Q.—o.1t,
2

(4.4)

where A=const is the angular velocity of the rotation
[see Eq. (3.60), where we have set @=1, i.e., by Eqs.
(3.44) —(3.46), the orthonormal frame in the (co)tangent
space ("spin space") rotates with the same angular veloci-
ty as the rotating coordinate system]. Note that, in Eq.
(4.4), Q plays the role of the magnetic field B in an iner-
tial frame. Furthermore, the Hamiltonian contains a ti-

A.
dal vector potential f =Q Xy in the covariant derivatives

The Barnett and Einstein —de Haas effects (see, for ex-
ample, Landau and Lifshitz, 1960) find a very natural ex-
planation in the light of the quantum-mechanical Larmor
theorem discussed at the end of Sec. III.C. Consider a
cylinder of iron or some other ferromagnetic material
suspended at a wire in such a way that it can freely rotate
around its axis. Let us suppose that, initially, the
cylinder is at rest and demagnetized. Now, imagine that
the cylinder is set into rapid rotation around its axis. As
explained in Sec. III.C, the quantum mechanics of the
electrons in this material should now be described in a
uniformly rotating coordinate system fixed to the cylin-
drical background. In this coordinate system the elec-
tronic Hamiltonian will be time independent, but it now
contains a Zeeman term
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2)k, and a potential —(m/2)~QXy~ of the centrifugal
forces; see Eqs. (3.55) and (3.65), and (3.56), respectively.
All the additional terms can be combined into the term

f*Q Jq, (4.5)

where J=S+I, is the total angular-momentum operator
(see also Kerman and Onishi, 1981). The effect of cen-
trifugal forces will be balanced by the chemical potential
of the background. Thus the electronic Hamiltonian is
essentially equivalent to the one for a cylinder at rest but
in a magnetic field B= (gp~ /vari) 'Q. The result, in both
situations, is that the cylinder is magnetized, because the
spins of the electrons will align with Q or B, respectively.
This is the Barnett effect.

Conversely, in the Einstein —de Haas effect, one turns
on a magnetic field B antiparallel to the spontaneous
magnetization of a magnetized piece of iron at rest,
thereby increasing the free energy of the system. The
system reacts to this perturbation by starting to rotate
around the axis of the external magnetic field so as to
offset the effect of B on the electrons by rotation. It
thereby returns to a state corresponding to a local
minimum of the free energy. By Eqs. (3.60) and (3.61),
the angular velocity of this rotation, 0, is given by
Q =(gp~/iii)B, which is precisely the angular velocity of
spin precession in the magnetic field B. A similar effect is
observed when one tries to magnetize a paramagnet. It
would appear interesting to test a local version of this
effect in a "ferroAuid. " If the magnetic field acting on a
highly mobile ferroAuid, locally in thermal equilibrium, is
modified locally the Auid reacts by starting to Aow with a
velocity field that optimally offsets the change in the
magnetic field so as to restore local equilibrium. The par-
ticle and magnetic current densities induced are given by
n f and M f, respectively, where f is the velocity field, n

the particle density, and M the magnetization density. A
somewhat analogous effect for quantum Hall fluids will
be discussed in Sec. V.B.

There is another variant (Bell and Leinaas, 1983, 1987)
of the Barnett effect: Consider a beam of nonrelativistic
particles, e.g. , heavy ions, with spin, moving in a storage
ring with some mean angular velocity Q. Then they ex-
perience a "tidal" Zeeman effect, given by Eq. (3.60), in
addition to the usual magnetic Zeeman effect, given by
Eq. (3.61). After relaxation to a steady state, the "tidal"
Zeeman energy obviously affects the ratio of "spin-up" to
"spin-down" ions in the beam! Similar considerations are
important, e.g. , in the study of electronic spectra of rotat-
ing molecules in the Born-Oppenheimer approximation
(Kerman and Onishi, 1981).

D. Meissner-Oehsenfeid eSect, London, and Landau-
Ginzburg theories of superconductivity

Consider a superconducting condensate of charged bo-
sons (e.g. , electron pairs) of charge q and mass M, in equi-
librium. Imagine that a (weak) magnetic field B, is
turned on inside the bulk of this system, resulting in an

f= — ~ A,',Mc

where A, is the vector potential of B, in the Coulomb
gauge (i.e., div A, =0). Thus the system exhibits a super-
current density J, given in our approximation by

2
IIqJ =qn f= — A

Mc
(4.6)

where n, is the density of the condensate. Of course, this
supercurrent J, will given rise to an additional vector po-
tential A, , determined by Maxwell's equation:
5 A, = —(1/c)J, . Adding this potential to the rhs of Eq.
(4.6), we obtain the equation

2
g n

J, = — A
Mc

(4.7)

where A = A, + A, is the total vector potential of the
external magnetic field B, and the magnetic field created
by the supercurrent. This is the London equation
characterizing the superconducting state! Relating the
external magnetic field B, to an external current density
J, via Maxwell's equation 6 A, = —(1/c)J„and assum-
ing that the external current J, does not enter into the
bulk of the superconductor, i.e., J, =0 inside the super-
conducting region, we see that the London equation (4.7)
immediately implies the equation

g l1hA= A
Mc

(4.8)

which shows that, in a stationary state, currents and
magnetic fields in superconductors can exist only within
a surface layer of thickness A=(Mc /q n, )', the so-
called London penetration depth (see, for example, de
Gennes, 1966). This is the Meissner-Ochsenfeld effect.
Note that by Eq. (4.7) a supercurrent J, is really a sign
for the presence of a vector potential A and thus can be
used for experimental tests of the Aharonov-Bohm effect.
However, if g A dl=n(hc q/), n&Z, for any closedr
curve I contained in the superconducting phase, then the
Aharonov-Bohm phase factors of the charged bosons are
trivial (see Sec. II.C), and no supercurrent results. This is
the phenomenon of Aux quantization.

The expulsion of a magnetic field from the interior of a
superconductor is related to the fact that, inside a super-
conductor, "photons are massive, " i.e., one observes the
phenomenon of the Anderson-Higgs mechanism. We

increase of the free energy of the system (a weak form of
the Meissner-Ochsenfeld effect). Then the condensate
reacts to the field B, by starting to How according to a
velocity field f in such a way as to cancel B, in the mov-
ing coordinate system. For, in this way, the free energy
in regions of the system moving with the Aow is minimal.
Neglecting the centrifugal potential —(m/2) f f and (in
a first step) the magnetic field created by the resulting
current, it follows from Eqs. (3.58), (3.59), and (3.62) that
the optimal velocity field f is given by
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now show that, in a superconductor, the presence of a
"mass term for the photons" can also be inferred directly
from the London equation (4.7): Since the electric
current density J and the free energy F( A) of a system in
the presence of a (static) electromagnetic field with vector
potential A = ( A „Az, 3 3 ) are related by where

(x)dx" h dx h dxi',=1
p~»p

(4.16)

In electrodynamics (in 3+ 1 dimensions) it is natural to
interpret the electric current density as a 3-form,

5F( A)J(x)= —c (4.9) d„„(x)=E J (x), (4.17)

it follows from Eq. (4.7) that, in the bulk of a supercon-
ductor,

F( A)= d x A (x) A (x)+1

2A
(4.10)

where A; (x)=[5;—a;b, 'a~]A (x), with 6 the three-
dimensional Laplacian, and the ellipses stand for higher-
derivative terms. Notice that Eq. (4.10) is a nonlocal
functional of A, which is manifestly invariant under U(1)
gauge transformations, A~A+ Vy. It provides a
"mass term for the photons" in the bulk of a supercon-
ductor.

There is an SU(2) analog of these effects in superfluid
condensates of neutral bosons with magnetic moments,
e.g. , superAuid He in the B phase, where the bosons are
pairs of He atoms in spin-triplet states. One then en-
counters an "SU(2) Anderson-Higgs mechanism. "

Next, we show that the London equation (4.7) can be
interpreted as the Euler-Lagrange equation correspond-
ing to an action functional. As a first step towards
finding this action, we have to look for an extension of
London theory describing time-dependent phenomena.
The right modification of Eq. (4.7) is given by

and c „ is the totally antisymmetric c tensor.
Mathematicians write this as

(4.18)

=ga+ (x)dx hdx'hdx hdx =0 . (4.19)

If the system is confined to a convex region in space-time,
then Eq. (4.19) can be integrated. The solution is

(4.20)

where the "potential" b =
—,
' g„b,dx" P, dx' is a 2-

form, i.e., an antisymmetric, second-rank tensor field
(just like the electromagnetic field tensor). The general-
ized London equation (4.11) then reads

where ~ is the so-called Hodge e operation, which asso-
ciates to a p form a "dual" (4—p) form, p =0, 1, . . . , 4;
moreover, we recall that, in 3+ 1 dimensions,
e e =( —1)i' when acting on a p form. The continuity
equation (4.15) now reads

d d =—g a cF„(x)dx h dx" h dx ' h dx~=1
p)»p

J"(x)= r)" A, (x),
edb =—

A
(4.21)

where g =1, i1"=—1, r)" =0, for pWv, and 2, is
defined in such a way that 0 2 =0. Thus the Fourier
transform A (k) of A is given by

d Od& — Fc
A

(4.22)

Taking the exterior derivative of Eq. (4.21), we find that

k6 —kk
ko —co(k)

(4.12)
where

F =
—,
' g F„,(x)dx" hdx

In a superconductor with a gapless Goldstone mode we
have with

p, , v

0 E3
co(k) =—ski, (4.13) —E 1 0 —B3 B2

for k=0. We renormalize wave vectors in such a way
that n =1 and neglect terms of order ~k~ in co(k). The
Fourier transform of Eq. (4.12) then reads

~„(x)=([s„"—a„-'a ]~.)(x), (4.14)

with x =(ct, x) an arbitrary space-time point. Inserting
Eq. (4.14) in (4.11) we find that J" satisfies the continuity
equation

—E2 B3
—E —B B3 2

—B1

(4.23)

S(b;A)=
3 Jdbhedb+ J

dbms

A,A 1

2c c
(4.24)

Equation (4.22) is analogous to Maxwell's equations,
but is an equation between 2-forms (rather than 1-forms).
It is the Euler-Lagrange equation derived from the action

a„J"(x)=0,
as it should.

(4.15) where

db h*db = g a(„b )( )a("b ~)( )d
1M' v~P
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with the brackets [ ] indicating antisymmetrization in the
corresponding indices and

db h A =P ~ d b, (x)A (x) .

In quantum mechanics J" is an operator-valued distri-
bution. Therefore we have to quantize the 2-form poten-
tial b of the electric current density. For the time being,
however, we shall treat the vector potential A as a classi-
cal, external field. Since the action S(b; A) is quadratic
in b, Feynman path-integral quantization is convenient.
The quantum mechanics of the 2-form potential b is de-
scribed, in London theory, by the functional measure

property and gauge invariance imply that, per wave vec-
tor k, b describes one degree of freedom. We conclude
that the quantum-mechanical current operator J" cou-
ples the ground state of the system to a scalar, gapless
mode. This mode can be interpreted as the U(1) Gold-
stone boson of a type-I superconductor. Within the ap-
proximation of London theory, this Goldstone boson is
apparently noninteracting.

Equilibrium states of the system at positive tempera-
ture T are described by the measure

(4.31)

Z(A) 'exp —S(b; A) 2)b, (4.25) where

where the partition function Z( A ) is chosen such that
the integral of (4.25) is unity. It is easy to see that this
implies that

S (b; A)= f dr f d x (B(„b }8("b i'})(r,x)
0 2c

Z(A)=exp —S' (A) (4.26)

+ &""i' —(B„b, A )(r, x)
C

(4.32)

where

S' (A)= 1
A (x) A "(x)d x .

2A'c

It follows from Eqs. (4.24) and (4.25) that

5A„(x)

(4.27)

(4.28)

with P= 1/kT, and periodic boundary conditions are im-
posed in the r direction. In Eqs. (4.31) and (4.32), the
vector potential A must be assumed to be time indepen-
dent, as long as it is treated as an external field.

It is interesting to ask how the theory must be modified
to account for the quantum dynamics of the electromag-
netic field. The action of the electromagnetic field in the
absence of rnatter is given by

where ( ) denotes the quantum-mechanical expectation
value for a system that starts its history in its ground
state; see also Sec. V. Plugging Eq. (4.27) into (4.28), we
find that

S' (A)= f dA h edA,
2e

or, at positive temperature T, by

(4.33)

(Ji'(x)) = A""(x) .
A

(4.29) S ( A ) = f d'r f d x(B(„A,}B("A'})(r,x) . (4.34)
2e

b'=b+dy, (4.30)

that is,

b„' (x)=bz (x)+B(~,}(x),
where g is an arbitrary 1-form, then

db'=db,

since d(dg)=0. The action (4.24) is obviously invariant
under the gauge transformations (4.30). Furthermore,
the term ( A /2c )f db h e db in S ( b; A ) vanishes for

every b which is a pure gauge, i.e., b =dg and can take
any positive value, for an appropriate choice of b. Thus
the 2-form potential b describes gapless modes. This

Hence we have recovered the London equation (4.11).
Next, we should ask what kind of quantum-mechanical

system is described by the functional measure (4.25), with
S(b; A) given by Eq. (4.24). We start by noticing that
Eq. (4.20) determines the 2-form potential b only up to
gauge transformations: If we define b' by setting

This action will have to be added to Sr(b; A) given in
Eq. (4.32).

What we are after is really to understand the
significance of dynamical Abrikosov vortices (typically,
small vortex rings) in a type-II superconductor. Thus we
must incorporate the idea of Aux quantization in our for-
malism. We set

A =A, +a,
where A, is the vector potential of a time-independent,
external electromagnetic field and a is a dynamical vector
potential, but with quantized magnetic Aux. In order to
be able to do explicit calculations, we must regularize the
theory by introducing a short-distance cutoK A con-
venient regularization is to put the theory on a space-
time lattice I T=Z&XZ, where X is proportional to
/3=1/kT and periodic boundary conditions are imposed
in the ~ direction. In the lattice description, we assign a
real variable A&, the lattice vector potential, to every link
I & I T and a real variable bz, the lattice 2-form potential,

Rev. Mod. Phys. , Vol. 65, No. 3, July 1993



J. Frohlich and U. M. Studer: Gauge invariance and current algebra. . .

+—g (db), (() Ai
I(- r~

+ g (dA)
2e pcrT

(4.35)

where (db), =g ~& b, with the orientation of p & Bc in-

duced by the orientation of c, and, similarly,
(dA) =gl~s 3&. The first two terms on the rhs of Eq.

(4.35) represent the lattice approximation to the action
ST(b; 2) defined in Eq. (4.32), while the last term is the
lattice approximation of the action ST ( A) of Maxwell's

theory given in Eq. (4.34).
We now recall that A = 3, +a, where 2, is the vector

potential of a classical, external electromagnetic field of
which we assume that it is time independent and has a
vanishing 0 component, and a is a dynamical vector po-
tential. The phenomenon of magnetic flux quantization
described in Sec. IV.B is incorporated in our formulation

by imposing the constraint

(da)~ =n hc (4.36)

for every plaquette p in the lattice I z-. The constraints
(4.36) can be fulfilled by requiring that ai H(hc/q)Z (up
to gauge transformations).

The model with action (4.35) and constraint (4.36) is
known to be equivalent (more precisely, "dual" ) to a
model in the universality class of the classical xy model
on the space-time lattice I z (see, for example, Frohlich
and Spencer, 1983). This model is a regularization of the
Landau-Ginzburg theory of superconductivity. It is
known to have a continuous phase transition from a su-

perconducting phase with broken U(1) symmetry and a
gapless Goldstone boson to a U(1)-symmetric high-
temperature phase with rapidly decaying, connected
Green functions. The same phase transition can be
driven at fixed temperature T ~ 0 by varying the London
penetration depth A. (The transition from the normal to
the superconducting phase occurs when A is decreased. )

The phase transition described above could only be ob-
served in superconducting systems of bosons that cannot
disintegrate. In a realistic BCS superconductor, howev-

er, the transition from the superconducting to the normal
phase is driven by the breakup of Cooper pairs.

Let us summarize the main findings of this section.

to every plaquette p of the dual lattice I'T, with the con-
vention that 3 = —3&, b = —b, where l denotes

P
the link l with reversed orientation and p denotes the
plaquette p with reversed orientation. By c we denote a
three-dimensional unit cube in PT, moreover, if I is a link
in I' T, c (I) denotes the unit cube in I T dual to l.

The total action for the regularized theory is then
given by

AS"'(b.A) = g (db)
2c ccr~

E. Quantum Hall effect

Just as the Aharonov-8ohm effect refiects the U(1),
gauge invariance of quantum theory, so does the quan-
tum Hall effect for the electric current, as emphasized by
Laughlin (1981; see also Halperin, 1982). In the same
vein, the Aharonov-Casher effect and the quantum Hall
effect for the spin current refiect the SU(2), ;„gauge in-
variance of nonrelativistic quantum theory, as em-
phasized by Frohlich and Studer (1992a, 1992c). In this
section, we review some basic facts concerning the in-
teger (von Klitzing, Dorda, and Pepper, 1980) and frac-
tional (Tsui, Stormer, and Gossard, 1982) quantum Hall
effect; for comprehensive reviews see Chakraborty and
Pietilainen (1988), Morandi (1988), Prange and Gervin
(1990), and also Wilczek (1990). The purpose of this re-
view is to set the stage for Secs. V and VI, where we at-
tempt to unravel the universal aspects of the quantum
Hall effect in two-dimensional, incompressible quantum
Auids.

Experimentally, the quantum Hall effect is observed in
two-dimensional systems of electrons subject to a strong
(uniform) transverse magnetic field 8, . For definiteness,
we choose a Cartesian coordinate system, with the Hall
system confined to a region 0 in the (x,y) plane and the
magnetic field 8, = (0,0,8, ) along the z axis. We take 0
to be a rectangle with dimensions I and l in the x and y
directions, respectively. By measuring the voltage V in
the x direction (the difference in the chemical potentials
of the electrons at the two edges in the x direction) and
tuning the total electric current I in the y direction per-
pendicular to the applied voltage, one finds that the ratio

V
AH= (4.37)

We have first derived the London equation (4.7) by as-
suming a very weak form of the Meissner-Ochsenfeld
effect. We have then shown that the generalized London
equation (4.11) can be derived from an action principle,
with the action given by Eq. (4.24). This enabled us to
quantize the electric current density; see Eq. (4.25). The
quantum theory turns out to describe the quantum
mechanics of noninteracting, gapless U(1) Goldstone
modes. By regularizing the theory at short distances we
have been able to incorporate the effects of dynamically
generated Abrikosov vortices with quantized magnetic
fiux. The resulting theory turns out to be in the univer-
sality class of the Landau-Ginzburg theory of supercon-
ductivity, whose phase diagram and quasiparticle spec-
trum (including the phenomenon of charge screening in
the superconducting phase) is understood extremely well
(see, for example, Frohlich and Spencer, 1983, and refer-
ences therein). For a discussion of superconductivity
within the framework of algebraic statistical mechanics
(also emphasizing the powerful consequences of gauge in-
variance), see Sewell (1992).
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Pxx
E=p I, with p=

PH Pyy
(4.38)

where the components of the resistivity tensor p are
given as follows: p =RL l» /I, p»» =RL l„/I», and

p~=RH, where RL is the longitudinal resistance due to
dissipative processes in the system (RI is proportional
to the mean free time of the charge carriers) and RH is
the Hall resistance as defined in Eq. (4.37). In classical
physics one easily finds that

V
2

(4.39)

where 8, is the strength of the magnetic field in the z
direction, n is the density of conduction electrons (minus
the density of holes), e is the elementary charge, h is
Planck's quantum of action, and the dimensionless quan-
tity

n (hc/e)
B,

(4.40)

is the filling factor. Note that v ' equals the amount of
magnetic fiux, in units of the fiux quantum hc/e, per
electron.

Since the magnetic field can be varied and the density
n can be tuned by varying the electric field in the z direc-
tion (gate voltage), the law (4.39) predicted by classical
physics can be tested experimentally. Experiments at
very low temperatures and for pure heterostructures
yield the following very surprising data:

(Dl) o =(h/e )cr~=(hie )R~' has plateaus at ra-
tional heights, i.e., o =p/q, with p, q integers (see, e.g. ,
Chakraborty and Pietilainen, 1988; Prange and Cxervin,

the so-called Hall resistance, is a constant for a fixed
value of the magnetic field B„afixed density of electrons
and at a constant temperature T close to absolute zero.

Two-dimensional systems of electrons (and/or holes)
are realized, in the laboratory, as inversion layers. Such
layers are formed at the interface between a semiconduc-
tor and an insulator or between two semiconductors,
with one of them acting as an insulator (e.g., in a so-
called metal-oxide-semiconductor field-effect transistor
(MOSFET) or in a heterostructure made of
CraAs/Al Gai As). In the direction perpendicular to
the interface an electric field is applied, which attracts
electrons from the semiconductor to the interface. The
electronic motion perpendicular to the interface (i.e., in
the z direction) is quantized, and the energy of quantiza-
tion is sufficiently large so that the electrons remain
bound to the interface (i.e., in the z direction the elec-
trons sit in a potential well). Hence, at temperatures near
absolute zero, a nearly ideal, two-dimensional system of
electrons is formed at the interface.

In classical physics, the connection between the elec-
tric field E=(E,E ) in the plane of the system and the
electric current density J=(J„,J» ) is given by the Ohm-
Hall law,

1990). Typically q is odd (Tao and Wu, 1985), but lately
plateaus at o =—', (Willett et al. , 1987; Eisenstein et al. ,
1988; Eisenstein et al. , 1990) and cr =—,

' (Eisenstein et al. ,
1992; Suen et al. , 1992) have been observed. The pla-
teaus at integer height occur with an astronomical accu-
racy (measurements are precise to one part in 10!).

(D2) When (v, cr ) belongs to a plateau, the longitudinal
resistance RL very nearly vanishes, i.e., in plateau regions
the system is dissipationless. Inverting the resistivity ten-
sor p [see Eq. (4.38)] to obtain the conductivity tensor
o.=p ' yields the result that the diagonal part of cr van-
ishes on a plateau.

(D3) The precession of the plateau quantization is in-
sensitive to details of sample preparation and geometry,
hence is a "universal" phenomenon.

(D4) More recently, it has been found (Clarke et al. ,
1988; Chang and Cunningham, 1989; Simmons et al. ,
1989; Clark et al. , 1990; Hwang et al. , 1992) that, when
(v, cr ) belongs to a plateau at noninteger height, then the
system exhibits fractionally charged excitations (the frac-
tions of e being related to the value of o ).

(D5) Recent studies in "tilted magnetic fields" provide
evidence that, when (v, cr) belongs to a plateau at height
cr =—', (Willett et al. , 1987; Eisenstein, Willett et al. ,
1988, 1990), —', (Clark et al. , 1989; Clark et al. , 1990), —',
(Eisenstein, Stormer et al. , 1989, 1990a), or —', (Clark
et al. , 1990; Eisenstein et al. , 1990b), then the ground
state of the system can be spin unpolarized. For certain
plateaus it might be a spin-singlet state; see also the dis-
cussions in Haug et al. (1987), Syphers and Furneaux
(1988a, 1988b), and Sec. VII.A of the present work.

Next, we propose to study what the Ohm-Hall law
(4.38) tells us about a two-dimensional system of elec-
trons in an external magnetic field when (v, o. ) belongs to
a plateau. As noted in (D2), experimentally one finds
that, in this situation, the longitudinal resistance RL van-
ishes. This is interpreted as absence of dissipative pro-
cesses. The absence of dissipative processes could be ex-
plained if one succeeded in showing that the spectrum of
the many-electron Hamiltonian of the system exhibits an
energy gap b, )0, above the ground-state energy (or, at
least, that states of very small energy above the ground-
state energy are localized). To exhibit a positive energy
gap for certain values of the filling factor v, physically in-
terpreted as incompressibility of the system, poses
dificult analytical problems. Some recent ideas about
how to establish incompressibility at particular filling
factors can be found in the following papers: studies of
Laughlin states are given in Haldane (1983, 1990a),
Halperin (1983, 1984), Laughlin (1983a, 1983b, 1984,
1990), Arovas, Schrieffer, and Wilczek (1984), and Trug-
man and Kivelson (1985); off-diagonal long-range order
and Chem-Simons-Landau-Ciinzburg theory in fractional
quantum Hall Auids have been studied by Girvin and
MacDonald (1987), Read (1989), Zhang, Hansson, and
Kivelson (1989), Lee and Zhang (1991), Frohlich (1992),
Frohlich, Kerler, and Marchetti (1992), and Zhang
(1992); finally, for some numerical studies concerning the
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question of incompressibility see, for example, Pano, Or-
tolani, and Colombo (1986), Yoshioka (1986a), Chakra-
borty and Pietilainen (1987, 1988), Rezayi (1987), and
d'Ambrumenil and Morf (1989). What is easier to show
is for which values of the parameter o =(b/e )RH ' a
positive energy gap 5 cannot occur; more precisely, to
prove a "gap-labeling theorem. " Such a theorem is de-
scribed in Secs. VI.B and VI.C [see also remark (iii) at the
end of this subsection].

Thus, if the system is incompressible, in the sense that
RL =0, then we have the following form for the Hall law:

oa

with (4.46)

(+„)=
Q

—E„O —B

and the 2-form 8 dual to the current density (J,J), i.e.,

dx" h dx, with P„=e„J~. (4.47)

Then Eqs. (4.41) and (4.45) can be combined into one
equation,

J=o.E, with cr =p —1 (4.41) d= —o. FII (4.48)

where o.H=RII . This is a phenomenological law valid
at low frequencies and on large distance scales. More
fundamental are the following two laws: Charge conser-
vation,

while current conservation (4.42) is expressed as

d d =
—,
' g 8 d„dx h dx" h dx "=0, (4.49)

J +V J=O,1 3 o

c Bt
(4.42)

and Faraday's induction law (4.43) becomes

OF=0 . (4.50)

B+VXE=O,
c Bt

where B denotes the component of the magnetic field per-
pendicular to the plane of the system, and E is the elec-
tric field in the plane of the system. We note that the dy-
namics of charged, spinless particles confined to a plane
depends only on the component of the magnetic field per-
pendicular to the plane of the system and the com-
ponents of the electric field in that plane. Combining
Eqs. (4.41) through (4.43), we find that

J =oII B.8 0 (3

at at
(4.44)

(continuity equation), where J is (c times) the electric
charge density, and Faraday's induction law, Equations (4.48) —(4.50) are compatible with each other if

and only if o-~ is constant. If the values of o 0 along the
two sides of a curve I differ from each other —which
happens, for example, at the boundary of the system—
then an additional current 2, not described by Eq. (4.41),
is observed in the vicinity of I, in order to reconcile
charge conservation with the induction law. [For time-
independent fields one finds that V $=(VcrH)XE; see
also Halperin (1982) and Sec. VI.]

Note that Eqs. (4.48) —(4.50) are generally covariant
and independent of metric properties of the system.
Equations (4.49) and (4.50) can be integrated by introduc-
ing the 1-forms (or "vector potentials" ) A and b, with

Equation (4.44) can be integrated with respect to time
t. By J =J«, —nec we denote the difference between the
total electric charge density J„,and the uniform back-
ground density nec of a system in a uniform background
magnetic field B,. Likewise, B denotes the difference be-
tween the total magnetic field B«, and the uniform back-
ground field B,. Then Eq. (4.44) implies that

(g=db, that is, 8
drab

B b~

F=dd

Equation (4.48) then reads

db = —o.II dA .

(4.51)

(4.52)

J =o~B . (4.45)

It is convenient to introduce the electromagnetic field
tensor, which is a 2-form, F, given by

+=
—,
' g +„dx"h dx

Equation (4.52) is the Euler-Lagrange equation derived
from an action principle. The action SA(b; A), with
A =R X Q the space-time domain to which the system is
confined, is given by

S,(b;W)=,' J be, db+, f a ndb+B. T.(xl&&, bl&&)
2c OH A

y
—1 P + g P +B

2c'o-H c
(4.53)
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d Pz(b)=ZA(A) 'exp SA(b—; A) X)b, (4.54)

where the partition or generating function Zz(A) is
chosen such that (formally) fd P„(b)=1. This implies

that

where B.T. stands for boundary terms, which depend
only on the restrictions A~&A and b~s~ of A and b to the
space-time boundary I}A [see the remark after Eq. (4.55)
below]. Moreover, SA(b; A) shall be varied with respect
to the dynamical variable, that is, with respect to b (the
vector potential A of the electromagnetic field is a tun-
able, external field).

Why is the result (4.53) interesting? It is interesting
because an equation of motion, such as (4.52), that can be
derived from an action principle can be quantized easily,
e.g. , by using Feynman path integrals. Clearly, the
current density 8 of a system of electrons must be inter-
preted as a quantum-mechanical operator-valued distri-
bution. Hence (4.52) must be quantized. We note that,
in the present example, Feynman path-integral quantiza-
tion has a mathematically rigorous interpretation (see,
for example, Negele and Orland, 1987; Feldman,
Knorrer, and Trubowitz, 1992). In formal, "physical"
notation, Feynman's path space measure is given by

section.
Given the expression (4.55) for the partition function

Z~( A), we may ask whether there is a simple way of re-
covering the action SA(b; A ) as a functional of the vector
potential b of the conserved current density 8, as given in
Eq. (4.53). The answer is yes. It is provided by the fol-
lowing functional Fourier transform identity

exp SA—(b; A)

=const Jg)a exp — ' Ia h db Z~( A +a),
A'c

(4.57)

where we again omit a suitable gauge-fixing term for the
integral over a. We note that, at least heuristically, one
can show that Eq. (4.57) holds in general for two-
dimensional quantum-mechanical systems of charged
particles coupled to an external electromagnetic field
with vector potential A „„=A, + A (where V X A, =B,
is fixed); see Frohlich and Kerler (1991).

Let us conclude this section with a few remarks:
(i) Defining the effective action S~ (A) of a two-

dimensional electronic system by

ZA( A ) =Zo exp I f A hdA +B.T. (AiSA)
2Ac

S~ ( A ) = —.ln ZA ( A ) (4.58)

(4.55)

where Zo is a constant independent of A. [In Eq. (4.54),
we have omitted a gauge-fixing term for the integration
over the field b ]At this . point, we wish to emphasize
that a nontrivial boundary term B.T.( A~a~) in Eq. (4.55)
is a necessity forced upon us by the U(1), gauge invari-
ance of quantum mechanics; see Sec. III: Under a U(1)
gauge transformation, A»A +dy, the Chem-Simons
term in (4.55) transforms according to

(4.56)

i.e., there is a gauge anomaly localized at the boundary
BA. Hence, in order for the partition function Zz( A) to
be U(1) gauge invariant, the presence of a boundary term
B.T.( A ~SA) exhibiting a gauge anomaly canceling the one
ill Eq. (4.56) ls Indispensable. Wc sliall scc tllat tllc
anomalous part of B.T.(A~S~) turns out to be the gen-
erating functional of the connected Green functions of
chiral current operators generating a u(1) current (Kac-
Moody) algebra, which physically corresponds to chiral
charge-density waves circulating at the edge of the quan-
tum Hall sample. Section VI wi11 be devoted to an inves-
tigation of this current algebra as well as (non-Abelian)
extensions thereof for general two-dimensional, in-
compressible Hall fIuids. This analysis will lead to a
complete list of the possible (quantized) values of the
response coefficients in these systems, such as the Hall
conductivity o.H; see also relnark (iii) at the end of this

[see also Sec. V], our circle of arguments can be closed
from Eq. (4.55) back to the starting point of the Hall law
(4.41) [and (4.45)] by noting that

5S~ (A)
J/ c2 w KIJE (4.59)

where E =8 . 30
—Bz3, for j = 1,2.

Equations (4.59), (4.58), and (4.57) make it clear that
one approach leading to an understanding of the quan-
tum Hall effect is to derive from "first principles, " for a
quantum Hall Quid at particular values of the filling fac-
tor, the eff'ective action Sz (A) corresponding to Eq.
(4.55). In the next section, we show that gauge invari-
ance of nonrelativistic quantum mechanics and the single
assumption of incompressibility of quantum Hall fluids
are sufficient to uniquely determine their effective action
S~ (A) in the "scaling limit" and thereby to derive
(4.55). Hence the phenomenology of quantum Hall sys-
tems at low frequencies and on large distance scales, in-
cluding the quantization of the Hall conductivity o.H [see
remark (iii) below], can be derived from gauge invariance
and incompressibility. This shows that a proof of in-
compressibility of electronic systems at particula. ." values
of the filling factor really is the essential problem in the
theory of the quantum Hall effect in need of further in-
vestigation.

(ii) It can be seen directly from the Ohm-Hall law
(4.38) that the incompressibility of quantum Hall fiuids is
a crucial property which allows for a description of these
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systems in terms of an effective action formalism: Only
for dissipationless systems, i.e., for systems with an an-
tisymmetric conductivity tensor o., is it possible to func-
tionally integrate the first relation in (4.59) in order to ob-
tain an effective action. In other words, for electronic
systems with dissipation, one cannot formulate the Ohm-
Hall law (coming from transport theory) within an
effective action formalism.

(iii) Clearly, we must require that the quantum theory
with action SA(b; A) given by Eq. (4.53), defined by the
Feynman path integral (4.54), describe localized, particle-
like excitations with the quantum numbers of the elec-
tron or hole, i.e., with electric charge +e and Fermi
statistics. Investigating in detail the boundary term
B.T.( 3 ~sz) in Eq. (4.55) and making use of the represen-
tation theory of chiral u(l) current algebra in 1+1 di-

mensions, we shall see in Sec. VI that the above require-
ment implies that, for consistency of the theory, the con-
stant o =(h/e )oH must be a rational number. For a
derivation of the quantization of o. in the simplest situa-
tion, where there is only one band of chiral edge currents,
see Sec. V.C. [An alternative derivation of the existence
of algebras of chiral edge currents in incompressible Hall
Auids, starting from quantized Chem-Simmons theory
and adopting results given in Frohlich and Marchetti
(1988), Elitzur et al. (1989), Frohlich and King (1989),
Moore and Seiberg (1989), and Witten (1989), can be
found in Frohlich and Kerler (1991).]

V. "SCALING LIMIT" OF THE EFFECTIVE ACTION
OF A TWO-DIMENSIONAL, INCOMPRESSIBLE
QUANTUM FLUID

In this section we study the partition or generating
function (at T =0 and for real time) of a two-dimensional
nonrelativistic quantum system confined to a space-time
region A=EX' and coupled to external electromagnet-
ic, "tidal, "and possibly geometric fields,

Z~(a, w)= f2)/*X)/exp SA(P*,g;a, ui—) (5.1)

where the gauge potentials a and m have been introduced
in Eqs. (3.26) —(3.31) and S~(g*,g;a, io) is the action of
the system given in Eqs. (3.34) and (3.35); see also Eqs.
(3.55)—(3.58). The integration variables P* and g are
Grassmann variables (i.e., anticommuting c numbers) for
Fermi statistics, and complex c-number fields for Bose
statistics.

We have not displayed the metric g," on the back-
ground space M explicitly, since it will be kept fixed, and

usually M =K with g,"=6;, for simplicity. We realize

that, for the study of the stress tensor, pressure and den-

sity fluctuations, and curvature and torsion effects, we

would have to choose a variable external metric (or, at
least, a variable conformal factor in g;,. ). This would be

important for an understanding of density waves, in par-

ticular surface density waves (which are interesting in
two-dimensional quantum fiuids), and of critical phenom-
ena. We note, however, that curvature and torsion
effects can be studied by analyzing the dependence of
ZA(a, w) on w, which contains the affine spin connection
co s, see Eqs. (3.28) and (3.29), as well as the remarks at
the end of Sec. III.A and after Eq. (3.39).

Calculating the partition function (5.1) for an arbitrary
(two-dimensional) nonrelativistic quantum system is sure-
ly a major task. In the first part of this section, we show
how the calculation can be carried out for incompressible
systems, provided one passes to the scaling limit. Once
we have an explicit expression for the partition function
of a system, many of its physical properties can be de-
rived. For incompressible systems, this is the topic of the
rest of this paper. Since we are working in the scaling
limit, our emphasis is on universal properties of such sys-
tems (i.e., properties independent of the small-scale struc-
ture of the system).

A. "Scaling limit" of the effective action

In this subsection we define the scaling hmit of a sys-
tem and sketch how one calculates, for incompressible
systems, the "scaling limit" of the effective action [see
Eq. (5.5) below] associated with the partition function
(5.1). One of our main motivations for studying two-
dimensional, incompressible quantum Auids comes from
the phenomenology of the quantum Hall effect; see Sec.
IV.E. In discussing quantum Hall Auids, it is often as-
sumed that the magnetic fields transverse to the samples
are so strong that the Zeeman energies are large enough
for the systems to be totally spin polarized. Moreover,
spin-orbit interaction terms are expected to be negligible
in quantum Hall Auids. One might therefore ask why,
when studying quantum Hall fluids, one should worry
about the dependence of the partition function ZA(a, tv)

on the SU(2) connection w, thereby taking into account
Zeeman and spin-orbit interaction effects? To answer
this question, one first might argue that it is of principal,
theoretical interest to know how to incorporate the spin
degrees of freedom in a consistent way into the descrip-
tion of two-dimensional electronic systems.

Second, as pointed out first by Halperin (1983), in
GaAs, for example, the g factor of the electron is —,

' of the
value in the vacuum, and the effective mass m of the elec-
tron is about ]pp of the mass m o in the vacuum. Thus in

GaAs the Zeeman energies are only approximately —' of
the cyclotron energy (i.e., the splitting between Landau
levels). Furthermore, they are of the same magnitude as
the quasiparticle energies of the fractional quantum Hall
states in magnetic fields of the order of IO T. One ex-
pects therefore that, at some values of the filling factor v,
the ground state of the system will contain electrons with
reversed spins. Experimental evidence that spin-
unpolarized quantum Hall Auids exist has been given in
the works cited in (D5) in Sec. IV.E. We emphasize that
unpolarized (or partially polarized) quantum Hall fiuids
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j (x)=p'(x)g(x),
(5.2)

g "'(x)

[(Dig�)*(x

)g(x ) —g*(x )(&ig)(x )],
2mc

jk(x )—

and the spin and spin current densities, s~ (x) and sz(x),

can arise in two fundamentally different ways: either
through the presence of two (or more) independent, but
oppositely polarized bands, or through the formation of
spin-singlet bands; see Sec. VI.C and Frohlich and
Thiran (1993).

Third, the gauge potentials a and w (and, for that
matter, any potential corresponding to a gauged internal
symmetry) provide a kind of "mathematical microscope"
revealing universal properties of quantum Hall Auids.
We show in Sec. VI how one can infer from the form of
Z~(a, w) what kind of (gapless) boundary excitations
(chiral edge currents) can be observed in quantum Hall
Auids. This will lead to a classification of these systems
in terms of "universality classes. "

Fourth, we sketch below, in Sec. V.B, how one can
derive from Zz(a, w) the linear-response theory of quan-

tum Hall fluids describing, among other effects, a quan-
tum Hall effect for spin currents. For a discussion of pos-
sible Hall systems where this effect might be tested exper-
imentally see Sec. VII.A.

We define the electric charge and current density,

j (x) and j(x), by

configuration (a, w) (with "ground-state asymptotic con-
ditions, " as t —++~, to be specified), and T indicates
time ordering. At coinciding arguments, Eq. (5.4) is
modified by Schwinger terms (but their precise form will

not be of importance in our analysis, and therefore we do
not display them).

We define the effective action of the system by

S~ (a, w)= —.lnZ~(a, w) .
l

(5.5)

and

a ~xa, with xa„(x)=a„(x)+8~(x), (5.6)

w~ w,

The idea is to try to calculate the "leading terms"' in

SA (a, w) which, via Eq. (5.4), will provide us with infor-
mation on the current Green functions. By "leading
terms" we mean those terms which dominate at large-
distance scales and low frequencies. The calculation of
the leading terms in Sz (a, w) might appear to be an in-

tractable problem. Actually, making a single assumption
on the excitation spectrum of the system, incompressibili-
ty, and using the U(1)XSU(2) gauge invariance of non-
relativistic quantum Inechanics, we can find them explic-
itly.

Let g be a real-valued function and R an SU(2)-valued
function on space-time. Consider the gauge transforma-
tions in Eq. (3.67), i.e.,

sz (x)=g*(x )L„"g(x),

sz (x) = — g"'(x)[ (g)lg)*(x)L„"g(x)
2mc

—g*(x )L„"(2),f)(x )],

(5.3)
with

w„(x)= U"(R (x)}w„(x)U"(R (x)}*

+ U"(R (x)}B U"(R (x)}* .
IM

(5.7)

where (L", ,L ~&', L ~3' ) are the three generators of the spin
s representation of su(2) [see Eq. (3.27)], and 2)& denotes
the covariant derivative in the I direction, as specified in

Eq. (3.26). Similarly, one defines currents associated with
internal symmetries. The electric cnrrent is conserved
[i.e., the continuity equation holds; see Eq. (4.42)], but
the spin current is, in general, not conserved, because it
couples to a non-Abelian gauge potential. It is, however,
covariantly conserved; see Eq. (5.12) below.

It is straightforward to infer from Eqs. (5.1), (3.34),
(5.2), and (5.3) that the connected, time-ordered current
Green functions of the system are given, at noncoinciding
arguments, by

T Q j '(x;) + s„'(y, )
i=1 a, w

Changing integration variables,

g(x)~x' P(x) =e 'x' 'U "(R (x)}P(x) (5.8)

in the functional integral (S.l), and using the gauge in-
variance of SA (P*,P; a, iJ ) under the transformations
(5.6)—(5.8) and the fact that the Jacobian of (5.8) is unity,
we find the Ward identity

g' (xa w) =g' (a, w) (5.9)

for all y and R. For a system of finitely many particles in
a bounded region 0 of space, Eq. (5.9) can be proven
rigorously (Frohlich and Studer, 1992b). The identity is
stable under passage to limits, for y's and B„R's of com-
pact support.

By differentiating (5.9) in g or R and setting y=0,
R =1, we find, using Eq. (5.4) for n +m =1, that

~ n+m
n g m

lnZ~(a, w),
QP X).

1 W~
and

a„(&g(x)(j"(x)),„}=0,1

g(x)
(5.10)

(5.4)

where ( ) " denotes the connected expectation func-
tional of the system in an external gauge-field

(2)„(&g(x)(s~(x) ), })„=0, A = 1,2, 3,1

g(x)
(5.11)
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that is,

&„(&g(x)(s"(x) ), )
g(x)

—2E~Bcw ~(x)(sc~(x) ~, =0 (5.12)

for arbitrary a and w. These infinitesimal Ward identities
play an important role in determining the general form of
S~ (a, w). They can be generalized, in an obvious way, to
systems with internal symmetries.

We now proceed to determine the form of Sz (a, w) "in
the scaling limit. " We need to consider ever larger sys-
tems and ever slower variations in time. Let 1 ~ 0 ( ~ be
a scale parameter. We set

g;~(x)—:g, '(x)=y;, (8 'x) and A=A' '=8A0, (5.13)

where y;~ is a fixed metric on M [e.g. , },. =5, ] and

A0C X =1RXM is a fixed space-time cylinder;

may then (functionally) expand SeA (a' ', w' ') to third

order in a' '(x) and w' '(x), with a fourth-order
remainder term. Among the terIns thus generated we
shall retain only the leading terms in 0, namely, those
scaling with a non-negative power of 0, which are com-
monly called relevant and marginal terms. The sum of
these terms will be denoted by SA (a, w), a functional

0

that we call the "scaling limit" of the eQectiue action
Using identity (5.4) and (5.5) to find the Taylor

coefficients of S&A (a' ~, w ), plugging Eqs. (5.16) and
0

(5.17) into the resulting expression, and finally passing to
(g, g') coordinates [cf. Eq. (Al) in Appendix A], we find

that the coefficient of the term of nth order in a(g) and of
mth order in w(g) in Se~ (a' ', w' ') is given by a distri-

bution

)n & m 4. ni .

x =(x =ct,x)=8(g, g)=8(,

hence

(5.14)

(5.15)

q'"& -„—(a„w„.k, n),
which, at noncoinciding arguments, is given by

~ n+m+lg n m

T + [8j '(g', )] Q [8 s ' (8' )]n!m! i=1

(5.19)

We propose to study the reaction of the system to a
small change in the external gauge potentials a and w.

We choose fixed background potentials a, and w, defined

on all of space-time X and set

aIld

a„' '(x) =a, „(x)+8 'a„(8 'x )

w„' '(x) =w, „(x)+8 'w„(8 'x ),

(5.16)

(5.17)

where a„(g) and w„(g) are fixed functions defined on Ao.

[From now on we drop the superscript (s) from the com-
ponents of the SU(2) connection w; cf. Eq. (3.27).] If m is

the effective mass of the particles and p is the quantity
determining their magnetic moment [see Eq. (2.7)] in

physical (t, x) coordinates, then the mass m' ' and the
strength of the magnetic moment p in rescaled coordi-
nates (r =(g /c ), g') are given by

(5.20)

in accordance with the circumstance that, in 2+ 1 space-
time dimensions, the scaling dimension of currents is 2.
[Note, for example, that f, „j (ct, x)d x is a dimen-

sionless conserved charge. ]
We may now formulate our basic assumption of in

compressibility: We assume that, for certain choices of
the background potentials a, and w„ the excitation spec-
trum of the system above its ground-state energy is such
that (in the bulk) the connected Green functions of its
currents have "good" cluster properties (better than in a
system with Goldstone bosons). More precisely, we as-
sume that the distributions given in (5.19) exhibit the fol-
lowing behavior, for 0—+ cc:

5=0

m'"=em and p'"=0 'I, (5.18) +B.T."-'~(a„w„'(,ri)+o (8 ),
as follows from Eqs. (3.34), (3.37), and (3.3g). (That is, in

the rescaled systems, the particles are heavy and have
small magnetic moment. Moreover, the range of the
two-body potential in the rescaled systems becomes
shorter and shorter, as the scale parameter 0 becomes
large. )

One basic assumption underlying our analysis is that

SeA (a' ', w' ') is four times continuously (Frechet)

differentiable in a„' '(x) =8 'a„(8 'x) and w„' '(x)
—= 8 'w„(8 'x) at a~ '(x)=0—w„' '(x), for a suitable

choice of background potentials a, „(x) and w, „(x)
=co, „(x)+p,„(x), and for a„(g) and w (g) =co„(g')

+p„(g) constrained to suitable function spaces A. and
'N, of perturbation potentials, to be specified later. We

=n +m —3+6HZ, (5.22)

with 6 the number of derivatives present in the corre-
sponding local distribution. The upper limit X in the
sum on the rhs of Eq. (5.21) is chosen such that D& ~0.
Finally, B.TP -„(a„w,;g, g) are distributions (not neces-
sarily local ones) that are completely localized on the
space-time boundary BA0 of the rescaled system in A0.

(5.21)
where gt, ~(a„w„g, il) are local distributions, i.e., sums
of products of derivatives of 5 functions, and the scaling
dimensions D& are given by

Dt, = —2(n +m)+3(n +m —I)+b,
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These terms will not be discussed in this section; they
form the subject matter of Sec. VI. [For a different way
of formulating the incompressibility of a system, see the
discussion in Sec. IV.E on the quantum Hall effect. ]

This incompressibility assumption is by no means a
mild or minor assumption. It tends to be a hard analyti-
cal problem of many-body theory to show that, for a con-
crete system, it is satisfied. [For some recent ideas about
how to establish it for quantum Hall Auids at certain
filling factors, see the references given after (D5) in Sec.
IV.E.] What we propose to do here is to use it to calcu-
late the general form of S~ (a, w ), the "scaling limit" of
the effective action of the system, thereby elucidating the
universal properties of two-dimensional, incompressible
systems. %'e only sketch som. e ideas; for the details see
Appendix A and Frohlich and Studer (1992b).

The calculation is based on the following four princi-
ples.

(P 1) Incompressibility: For all n and m, with
2 ~n +m ~4, the distributions y' '"—'-„(a„w„'g,il) "con-
verge" (in the bulk), for 8~ ~, to local distributions, as
specified in Eq. (5.21).

(P2) U(l) XSU(2) gauge invariance: Ward identities
(5.9)—(5.12).

(P3) Only relevant and marginal terms are kept in
S~ (a, w).

(P4) Extra symmetries of the system, e g. , for
w, „„(x)=5g3w „3(x) [and hence, by Eq. (3.38), for
a, „(x) such that E, 3(x) =0], global rotations around the
3-axis in spin space are a continuous, global symmetry of
the system with an associated conserved Noether current
s 3 (x ); or translation invariance in the scaling limit
(g~ oo );. . . , are exploited to reduce the number of
terms.

From (Pl) and Eqs. (5.16) and (5.17) it immediately fol-
lows that all terms contributing to SeA (a' ', w' ') of or-

der 4 or higher in a(g) and w(g) are irrelevant, i.e., they
scale like 0, with D )0. In particular, a fourth=order
remainder term does not contribute to SA (a, w ) [princi-

ple (P3)]. We now present the final result in the special
case of a system that is incompressible for a choice of
w (x) satlsfylilg

wc ps( x) fi~3wcy, 3(x) ~ (5.23)

or, in view of Eqs. (3.28)—(3.30), (3.37), and (3.38), for a
background electromagnetic field (E,(x),B,(x)) with

E,(x)=(E, ,(x),E, 2(x),0),
B,(x)= (0,0,8,(x)), (5.24)

and possibly for some aKne spin connection co of the fol-
lowing form [see Eqs. (3.29), (3.11), (3.12), and (3.31), as
well as the remarks about the physical relevance of co at
the end of Sec. III.A and after Eq. (3.39)]:

(co»(x)) = —cv„(x)

0

co„(x) 0

0 0

0 0

(5.25)

relative to some orthonormal frames (e'(x), e (x),e (x)).
[It is natural to work in an SU(2) gauge, which respects
our convention of choosing e (x) perpendicular to the
cotangent plane T„*(M) at x &M, for all times t; see the
discussion preceding Eq. (3.1). E.g., if M were the (x,y)
plane in Z, we would choose e (x) to coincide with dz.
Hence the choice of the electromagnetic background field
specified by Eq. (5.24) corresponds to an electric field E,
that is tangential to the sample and to a magnetic field
B„which is perpendicular to it.] In this situation, the
"scaling limit" of the effective action is given by

——S~ (a, w)= j,"a„dv + m3w„3du
p

' Ap~ Ap

2 2

+ g f ri w„„w~du+ g f &2'ezra w~w iidu+ f tr(w hdw+ —', w hw hw)
A, B=1 4m &p

+ f a Ada+ f a hdw3+ f w3hdw34~ Ap 2~ Ap 4~ ~p

3

f z„g,g,„m.,m, ,d +B.T. ( ~„, l„),
A, B,C=1

(5.26)

where jt'(g) is an electric and mi3 (g) a magnetic (super-)
current circulating in the system when a(g)=0=w(g);
re' (g) is a function symmetric in iu and v, while &2 (g) is
antisymmetric in iu and v; the function g~gc(g} is sym-
metric under interchanges of (pA), (vB), and (pC) and
vanishes if two or more of the indices A, B,C are equal to
3; dv =[@(g)]' d g', where y(g)=det[y;~(g)] is the
volume element on the space-time cylinder Ao [see Eq.

(5.13)];o, g„o„and k are real constants; w (g) is the to-
tal SU(2} connection, given by

w(g)=w, ' '(g)+w(g), with w,' '(g)=Ow, (g') (5.27)

[see Eq. (5.17)]; and B.T.(a~sA, w~sA ) denotes boundary

terms depending only on the gauge potentials a~sA, w~&~,
p p

restricted to the boundary BAD of the space-time cylinder
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Ao. They will be studied in Sec. VI. Moreover, on the
rhs of Eq. (5.26} we are using the notation

strained by the infinitesimal Ward identities (5.10) and
(5.12). According to Eqs. (5.4) and (5.5)

(5.28)

2 2

a = g a„(g)dP, da = g (B„a,)(g)dP hdg",
p=O p, v=O

2 2 3

te3= g w„3(g)dp, tU=i g g tU~„(g)L~ dp,
p=O p=O 3 =1

5S~ (a, tU)
+ (5.29)

where 8„=8/BP whenever we are working in rescaled g
coordinates. Finally, we note that the terms in Eq. (5.26)
are ordered according to their scaling dimensions, which
are implicit in their coefficients; see Appendix A. In Sec.
VI, we shall use results on chiral u(1) and SQ(2) current
algebras to determine the possible values of the constants
o., y„o.„and k.

Here, we wish to point out that the functions j,", m~3,

H&, H2, and il~zg& are not all independent, but are con-
I

1
5S~ (a, to)

(s",(g)) „. ..,
= —— +

~ &-„.(g)
(5.30)

The ellipses stand for contributions from irrelevant terms
in the effective action. We calculate the rhs of these
equations by using Eq. (5.26) and plug the result into Eqs.
(5.10) and (5.12). As a result we obtain the following con-
straints (Frohlich and Studer, 1992b):

(i) B„(&yj,")(g)=0 .

(ii) B„(V'ym~3)(g)=0 .
} (g) "

2 2

(iil) g Eye [m 3 (g) 2ri (g)w~ O3(g)]LU&ii(g)+260& o3(g) g rp (g)LU&~ (g) —0&
B=1

2 =1,2.

2 2

( ) a„&}e —,„+&y y .„,W -„(g)=—2 y .„,e (g)m„(g) —e (g)-., (g) -„,(g)
Y(k) 8=i B=i

2 3—3 g E~ii g v1a~PD($)w, 'o3(g)m~c(g)w~D(g), A =1,2 .
B =1 C, D=1

(5.31)

Constraints (i) and (ii) just express the conservation of the
(super-) currents j," and m 3 when a =0=w; see also Eqs.
(A9) and (A12) in Appendix A.

If we impose constraints (iii) and (iv), for arbitrary
smooth perturbation potentials S, then it follows that

m3(g)=re' (g)=re (g)=0 for all p, v=0, 1,2, (5.32)

in particular, the system cannot be magnetized (m3 =0)
and cannot support persistent spin currents. This may
seem rather strange, because we would expect that if
p Q3

= —(gp l2Ac)B, [see Eq. (3.37)], for some large
background magnetic field 8, =(0,0,8, ), then the system
would be magnetized in the 3 direction. What has gone
wrong7 The point is that the assumed properties —that
Sz~ (a' ', io' ') is four times continuously diferentiable

in a and w and that the system remains incompressible in
an arbitrary function-space neighborhood of (a„tc, ) of
sufficiently small diameter —must fail for magnetized
systems! The reason is that an arbitrarily small perturba-
tion field K which oscillates rapidly in time can destroy
the incompressibility of the system, and hence our esti-
mate of the fourth-order remainder term in the Taylor
expansion of S&A (a ' ', w ' ') breaks down!

We thus assume, for example, that, for a time-
independent background field w, satisfying Eq. (5.23), the
system remains incompressible and SeA (a' ', iJ' ') is

four times continuously diferentiable in (a, w ) on the set
of function spaces

A = tata (r, g)=il(r)f„(g), f„(g)eS],
'll =

I te lw„w(r, g)=ri(r)gi, „(k), g„a(g)e&],
(5.33)

00( g)
'9AA3(k) =

(e)3u'c o3

for 2 =1,2, (5.35)

where il(r) describes an adiabatic process of turning on
and of the perturbations: ii(r)=1 for rE[r„rz], some
finite interval in (rescaled) time, and il(r) =0 for r ((r,
or ~)&~2, while smoothly interpolating in between; and
S in some Schwartz space neighborhood of 0. Then con-
straints (iii) and (iv) in Eq. (5.31) imply that

m3(g}
(g)=, r, '(g) =r'j(g) =0,

2w,' o'3 (g)
(5.34)

r2 (g)=0
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all other g"„'gc(g) vanish. Hence (m~3) =(m 3,0). Under
somewhat more restrictive assumptions on 'N, for exam-
ple, imposing relations of the form (3.37) and (3.38) on
w =co+p which couple w and a, a nonzero spin current
m3=(m3, m3) is possible, too. For a more detailed dis-
cussion, see Frohlich and Studer (1992b).

A corollary of our derivation of SA (a, w ), using gauge
0

in variance and incompressibility, is the Goldstone
theorem (Goldstone, 1961; Goldstone, Salam, and Wein-
berg, 1962). Recalling that tv, O3

= —(glJ, /2Ac)B„ if
coo=0 [see Eqs. (3.37) and (5.25)], and denoting by
JM, =(gp/2)m 3 the magnetization in the background fieid

B, [see Eq. (5.52) below], one finds, by Eq. (5.34), that,
for an incompressible system, the following identity must
hold:

JR(f)= — v, (g)B,(g) .
g p

Hence, with ~r, ~

& ~, one finds that, if JR does not tend
to 0, as the background magnetic field B, tends to 0, then
the system cannot be incompressible at B,=0, i.e., there
are gapless extended modes, the Goldstone bosons, cou-
pled to the ground state by the spin current (Frohlich
and Studer, 1992b). We note that our proof also works
for systems with continuous non-Abelian internal sym-
metries.

Remark. In Eq. (5.26) for the "scaling limit" of the
effective action SA (a, w ) of a two-dimensional, in-

compressible quantum Quid we have, as explained above,
retained only relevant and marginal terms, i.e., terms
scaling as 0 for 0~Do, with D —1 and D =0, re-
spectively. Although, in this paper, we are mainly in-
terested in the physics corresponding to the relevant and
marginal terms in the efFective action Sez (a' ', tv' '), we

display here the most important subleading order terms.
These are the unique terms that are of second order in

2

+ g lI~~' f tr[ho;]dv+l~ f tr[h &2]dv, (5.36)
i=1

where f„,=B&a —B~„ is the U(1) curvature (or field

strength), and likewise h„=B w. —8 w„+ [w„,w, ],
where w, given by Eq. (5.27), is the SU(2) curvature.
Moreover, g ~l', g~, I ~~', and I~ are constants of dimension
cm. Rotation invariance in the scaling limit would imply
that g

ll

=g
Il

——
gl~ and I

ll

= I
ll

=—l~~. A bl.lef discussion
of the consequences of the U(1) curvature terms can be
found in Frohlich and Studer (1992b). For an application
of the SU(2) curvature terms to a spin-pairing mecha-
nism, see the end of Sec. V.C.

B. Linear-response theory and current sum rules

We briefiy discuss the linear-response equations (5.29)
and (5.30) that follow from our (universal) expression
(5.26) for the "scaling limit" S~ (a, tv ) of the effective ac-

tion of systems characterized by the conditions (5.23) and
(5 33) (5.35). It is a simple exercise to verify that

V y(g)( J (g) & +y(g)j (g)+

+ P ~(B tv )(g)+Xg
v p3 (5.37)

the perturbation potentials a and w and of scaling dimen-
sion D =1, the so-called Maxwell terms. Added to the
rhs of Eq. (5.26) they take the form

2

gI~ f f0;dv +gg f f )2dv
Ao Ao

&y(g)(s"„(g)&. = &y(g)5, 5(m', (g)+5„, ' e" ~(a,a, )(g)+S„, ' eI"(a,e„)(g)232 p A3 2 v p3

(5.38)

a (x)= — A (x)— f (x), (5.39)

where the ellipses stand for terms coming from irrelevant
terms in the effective action or from terms of second or-
der in w (e.g., a term proportional to rP~~c), which are of
little interest in linear-response theory. Furthermore, we
recall that w„~ = w,' „'z +I ~; see Eq. (5.27).

In order to understand the physical contents of these
equations, we should recall the physical meaning of the
connections a and w elucidated in Sec. III.B. From Eqs.
(3.36), (3.55), and (3.59) we know that

where A is the electromagnetic vector potential, q is the
charge, m is the effective mass of the particles in the
quantum fiuid (for electrons we have q = —e), and f is a
divergence-free velocity field generating some incompres-
sible superfiuid Qow. Furthermore, by Eq. (3.36),

ao(x) = @(x),
Ac

(5.40)

where N is the electrostatic potential.
We recall that, for our study of two-dimensional, in-

compressible quantum Auids on a surface M embedded in
IE, it is natural to choose an SU(2) gauge with the prop-
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erty that e (t, x) is orthogonal to the cotangent space M
at x, for all times t; see Eqs. (5.23)—(5.25) and the discus-
sion at the beginning of Sec. III.A. Then, by Eq. (5.25), a
possible affine SU(2) connection cd„" has the form

+„(g)=—i/y(g)s„'(g),

and the spin current density by

(5.46)

Cd '(X)=l Cd (X)1. 'P P (S.41) 4'„(g)= &)'(g)s„'(g) . (5.47)

It then follows from Eqs. (3.28)—(3.30), (3.37), (3.55), and
(3.60) that

Then Eq. (5.37) for the (@=0)component reads

wpg(x)= Bg( x) +5gg [Q(x)+cdp(x)]gP
2Ac

(5.42) &p(g) &. = p, (g) — &,(g) — „Q(g)

where, by Eq. (3.44), Q(x) =(O, O, Q(x)) =
—,
' curlf(x) with

respect to the orthonormal frame (e (x))„,at x, and
the magnetic moment of the particles is determined by p
[for electrons we have p, = —pii; see Eq. (2.7)]. More-
over, by Eqs. (3.28)—(3.30), (3.38), (3.SO), and (5.41),

r

V.E(()— A(g) +
4hc 2m

(5.48)

where the Hall conductivity (for the electric current) is
given by

w ~(x)= — + g Ei,„ii(x)Eii(x)
4&le ~a=

I,
~~ (S.49)

+5~3[Cd, (x)+ . ], (5.43)

where the ellipses correspond to terms proportional to
derivatives of Q(t', x), t'(t [and are generated by the
SU(2) gauge transformation U"(R) with R defined in

Eq. (3.45)].
Finally, we define, in physica1 units, the charge-density

(operator) by

qgp
2hc

(5.50)

E(g) =(E, (g), Ei(g) ), and the operator V = (B„c}2)
=(c)/Bg', c)/Bg ), %(g) =curled(g') is the scalar curvature
of M at g, and the ellipses stand for contributions from
irrelevant terms. It will turn out that

p(g) =qi/y(g)j'(g),

the electric current density by

8'(g) =qcV'y(g) j'(g),
the spin density by

(5.44)

(5.45)

is the magnetic susceptibility of the system in the 3-
direction normal to the surface. In Eq. (5.48) and the fol-
lowing formulas the tildes indicate contributions from
the perturbation potentials a and w (we have absorbed
the afFine spin connection co into S, but without decorat-
ing it with a tilde). Next, one verifies that

& ai'(g) &. = +,'(g) —„"E,(g)+ " f, (g)
B7

q ~ E'~C) 8 (g') — E"C) Q(g) +y q ~ E'(g) qE" A, (g—') +
2S 4hc B~ 2~

(5.51)

where v =g /c is the rescaled time variable.
From Eq. (5.38) we find, for example, that for p=O and A =3 [i.e., for the spin density along the 3-direction in the

spin or (co)tangent space]

~ &S,(g')&, =JR, (g)+cry" g~ V E(g) —2JY(g) +k ~ V E,(g)+y, 8,(g) — Q(g) + . -. (5.52)

where JR, is the magnetization of the system in the background field (a„w, ) given by Eqs. (S.23)—(5.25), yi is the mag-
netic susceptibility at (a„w, ) given in Eq. (5.50), and

spin RP k RP
4m. 8~ (5.53)

is the Hall conductivity for the spin current. As Eqs. (5.52) and (5.26) show, oP" is a pseudoscalar. Next, for
p = i = 1,2 and A = 3 [i.e., for the spin current density in the i-direction in the surface M and polarized along the 3-
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direction in the spin or {co)tangent space],

(5.54)

(5.55)

These are three equations for one and the same quantity
c7. The equation for (pvp) =(012) is

c7=2~i f (s —t){T[j '(t, x)j (s, )y]) „" sdd y, (5.56)

which is just the Kubo formula (in "mathematical"
units); compare, for example, Fradkin (1991). The other
two equations are an automatic consequence of U(1)
gauge invariance.

Thouless and co-workers {Thouless et al. , 1982; Niu
and Thouless, 1984, 1987; Kohmoto, 1985), and followers
(Avron, Seiler, and Simon, 1983; Avron and Seiler, 1985;
Dana, Avron, and Zak, 1985; Avron, Seiler, and YaC'e,

1987; Kunz, 1987), have derived from the Kubo formula
that

C7= Ci
np

(5.57)

where np is the ground-state degeneracy and c& is the
first Chem number of a vector bundle over a 2-torus of
magnetic ffuxes (@&,Nz). Thus c, is an integer. It can be
identified with the number of electrons % created when
one turns on a local magnetic field of total Aux np, see

where the ellipses stand for terms proportional to coo(g)
and further irrelevant and higher-order terms. Similar
equations hold for the remaining su(2) components of
(S~z(g') ), „,but we refrain from displaying them explic-
itly and refer the reader to the discussion in Frohlich and
Studer (1992b).

We encourage the reader to notice how neatly our for-
mulas summarize the laws of the Hall e6ect, including
effects due to tidal forces coming from (superfluid) flow
and effects due to curvature. (We believe that the tidal
terms might be relevant in the study of the transition
from one plateau of crit to the next in very pure samples. )

Let us briefly comment on the relation of our definition
of the Hall conductivity cTH=(e /h)cr as the coefficient
of a Chem-Simons term (o/4n. ) I'A a. h da in the effective

action Sz ( canto) [see Eq. (5.26)], of an incompressible

quantum Hall Quid to the more conventional definition
via the Kubo formula (see, for example, Fradkin, 1991).
It follows easily from Eqs. (5.4), (5.5), and (5.26) that cT

appears in the following current sum rules: For every
choice of a permutation (pvp) of (012),

c72m'i sgn(pvp) f (y — )x"(T[j (x)jt'(y)]) „"d3y .

Eq. (5.65) below. Does our formulation "know" that no
is the degeneracy of the ground state'? Yes, it does! This
follows, for example, from the material in Sec. VI and
has been noted by Wen (1989, 1990a) and Wen and Niu
(1990).

Bellissard (1988a, 1988b) and Avron, Seiler, and Simon
(1990, 1992)) have also given a definition of o as an index.
Their definition is equivalent to ours, too, and the proof
follows from the material in Sec. VI; see also Sec. 6 in
Frohlich and Kerler (1991).

Finally, we note that from Eqs. (5.4), (5.5), and (5.26) it
also follows that crP"=(gp~/8m)o, (for k =0, i.e., fully
spin-polarized quantum Hall ffuids) is given by a Kubo
formula involving spin currents,

o, =2vri sgn(pvp) f (y —x)~( T [s'(x)&~(y)] ) "d'y,

(5.58)

and it can then be shown to be proportional to a erst
Chem number of a vector bundle over a two-dimensional
torus of electric charges per unit length ( g &, Qz ). We
refer the reader to Frohlich and Studer (1992b) for a
more systematic study of current sum rules and "proofs. "
Here, we merely give a last example by expressing the
magnetic susceptibility y~= —(qgp/2hc)y, in the form
of a (mixed) sum rule,

g, =2' sgn(pvp) f (y —x)"{T[j~(x)g~3(y)])' "d3y

(5.59)

C. Quasiparticle exeitations and a spin-singlet electron
pairing mechanism

In this subsection we present a first analysis of quasi-

particle excitations above the ground state in a two-

dimensional, incompressible quantum fluid, whose "scal-

ing limit" of the effective action is given by the action

S~ (a, w) presented in Eq. (5.26). A systematic, general
0

analysis of quasiparticle excitations in electronic quan-

tum Hall fluids is given in Sec. VI based on an analysis of
the so-far mysterious boundary terms "B.T." in Eq.
(5.26). At the end of this section we describe a natural
mechanism for spin-singlet pairing of electrons that are
moving in some two- or three-dimensional, antiferromag-
netic background.
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1. "Laughlin vortices" and fractional statistics

For simplicity, we begin our analysis by considering a
Aat, two-dimensional system of charged fermions with
vanishing magnetic moment (p=O) so thai the SU(2)
connection w vanishes identically in an appropriate SU(2)
gauge [the local frames e '(x), e (x), and e (x) are chosen
to be time independent, so that there is no tidal Zeeman
term; see Sec. III]. We suppose that, in a small neighbor-
hood of a suitably chosen background potential a, (typi-
cally a, p=0, b, =B&a, z

—02a, &=const and of suitable
magnitude), the system is incompressible. Then the
"scaling limit" of the action is given by

——S~ (a)= f j,"a„dv+ f a Ada,
0 7T 0

(5.60)

up to boundary terms. The first term on the rhs is unim-
portant in the following discussion, and we set j,"=0.

Let us produce a "Laughlin vortex" (Laughlin, 1983a,
1983b, 1990) in this system by turning on a (perturbing)
magnetic field b =B,az —Bza, in a small disk. (Actually,
b could be a vorticity field of a superfluid Aow if, instead
of an electronic quantum Hall Quid, we consider a
superAuid film; see Sec. VII.B. We shall, however, use
"magnetic language" in the following discussion. ) From
our discussion of the Aharonov-Bohm effect in Sec. II.C
we know that this excitation only disturbs the system lo-
cally, and thus may have a finite energy difference from
the ground-state energy, if

state of the system is fully spin polarized (as is the case
for filling factors v= —,', —,

' (say) in electronic quantum Hall
fiuids). Supposing that a magnetic fiux no (in units of the
elementary fiux quantum hc/e) produces a state of N
electrons, we infer, from Eq. (5.63), that

np
(5.65)

If X is odd, this state is composed of N fermions and
hence describes a fermion, so that, by Eq. (5.64),

i ~Nn0
e = 1 (5.66)

IIp
with np odd . (5.67)

This is the famous odd-denominator rule (see, for exam-
ple, Tao and Wu, 1985). [See also Eq. (6.90) in Sec.
VI.B.] An excitation associated with a magnetic fiux (or
vorticity) 1 (in units of hc/e) then has fractional charge
Q = 1/no (in units of e) and is an anyon for no ) 1.

Note that the vector potential a, created by a pointlike
excitation of charge Q located at g'=0, is given by

2 pj
a;(t f)= ——g E;, , i =1,2, (5.68)

Thus np must be odd too. In fact, one may show that if
X and np have no common divisor then np is odd. In
particular, for N = 1, we conclude that

1 f b(t, g)d g=n, with n EZ .
2&

By Eq. (5.37) for @=0 [see also Eq. (4.45)], we have

b(g),

(5.61)

(5.62)

as follows from Eqs. (5.61) and (5.63), for
(j (t, g)), =Q5(g). This is the "U(1) Knizhnik-
Zamolodchikov connection. "

and hence the charge of this excitation (in units of e and
with the background charge normalized to 0) is given by

Q = f (j (t, g)), d /=on. . (5.63)

If o is not an integer, then Q will be fractional, in gen-
eral. Now consider two such excitations localized in two
disjoint small disks and interchange them (adiabatically)
along some path oriented anticlockwise. According to
Sec. II.C, the Aharonov-Bohm phase picked up in this
process is given by

ei iI0 —e imgn ei m. o n 2
(5.64)

where we have normalized the statistical phase 0 such
that 0=1 (mod 2) corresponds to Fermi statistics, 0=0
(mod 2) corresponds to bosons, and 8%0, 1 (mod 2) corre-
sponds to anyons (Leinaas and Myrheim, 1977; Goldin,
Menikoff; and Sharp, 1980, 1981, 1983; Wilczek, 1982a,
1982b; for a review see Frohlich, 1990). Thus Laughlin
vortices are anyons, unless o.n is an integer.

Among the excitations that one can produce in this
fashion there should be the particles constituting the sys-
tem, namely, electrons (or holes). Let us suppose that the

2. Spinon quantum mechanics

1, k——S~ (w)= tr(w hdw+ —,'w hw hw),+0 4~ A0
(5.69)

up to boundary terms. Under rejections in lines,
transforms as a vector, wp as a pseudoscalar, and k as a
pseudoscalar. Let us consider an excitation created by
turning on an SU(2) gauge field w with curvature (or field
strength) h, given by

Next, we consider another "in vitro" system, namely, a
"chiral spin liquid. " (It is not entirely clear that such
systems exist in nature, but they might appear as subsys-
tems of superfiuid He layers. ) A chiral spin liquid is a
system of neutral particles of spin sp) 0 with nonzero
magnetic moment (i.e., pWO), having a spin-singlet
ground state for some constant magnetic field 8, . It is
assumed here to be incompressible and to exhibit break-
ing of parity (refiections in lines) and time reversal, but
no spontaneous magnetization. In our formalism, the
"scaling limit" of the effective action of such a system is
given by
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h (g) =dw (g)+ w (g) h w(g)

g h„„(g)1.„'dP hdP,
p, v=O 3 =1

(5.70) (5.77)

where hz ~ =()&w „—()„w„~ 2e—wacw„aw c [see also
the discussion following Eq. (5.36)]. For example, we
may choose h to be given by

hp; ( g ) —= ( h p; i ( g ), h p;p ( g ), h p; 3 ( g ) ) =0

(5.71)

and

2== a

asap
'

(5.78)

h, 2( g) = —nh()( g),

k k= ——h)2(k) =n —hp(k» (5.72)

so that the expectation value of its total spin operator,
S=())i/2)L" [in the spin-s representation; see Eq. (2.8)],
is given by

—&L"&.=&S).=n fh, (g)d'g . (5.73)

Such an excitation is commonly called a "spin on.
"

Quantum-mechanically, spin is quantized:
S S=s (s + 1))ii, with s H —,'Z. Consider a spinon of spin s
localized at the point g=g', . Then Eq. (5.72) says that
h, 2 has to solve the equation

(5.74)

An SU(2) connection w =i g„w„L"dg" for the field
strength h satisfying Eq. (5.74), with hp; =0, is given by

where n is some unit vector in R and ho is a time-
independent function. By Eq. (5.38), the spin density of
this excitation is given by

These are the covariant derivatives associated with the
celebrated Knizhnik-Zamolodchikov connection (Kni-
zhnik and Zamolodchikov, 1984; Tsuchiya and Kanie,
1987). For "two-spinon quantum mechanics" with paral-
lel transport given by Eq. (5.78) to be consistent with uni-
tarity, it is necessary that

k =+(a.+2), ~=1,2, . . . . (5.79)

This follows from results in Belavin, Polyakov, and Za-
molodchikov (1984), Knizhnik and Zamolodchikov
(1984), Kohno (1987, 1988), and Tsuchiya and Kanie
(1987). Recalling what we have said in Sec. II.D about
the Aharonov-Casher efFect, we observe that the "phase
factor" arising in the parallel transport of a quantum-
mechanical spinon in the field excited by a classical spi-
non with spin orthogonal to the plane of the system is an
"Aharonov-Casher phase factor. "

Consider an exchange of the positions of two
quantum-mechanical, pointlike spinons along some
anticlockwise-oriented path. Then the "Aharonov-
Casher phase factor" multiplying the wave function is
given by a matrix

R (a') . ~(s)~(s') ~(s')~(s)
$$

and

wp(g) =0

(5.75)

which is the braid matrix for exchanging a chiral vertex
of spin s with a chiral vertex of spin s' in the chiral
Wess-Zumino-Novikov-Witten model (Belavin, Po-
lyakov, and Zamolodchikov, 1984; Knizhnik and Zamo-
lodchikov, 1984; Tsuchiya and Kanie, 1987; see also
Gawedzki, 1990) at level i(. It is given by

Suppose we now create a second spinon of spin s' mov-
ing in the background gauge field w excited by the first
spinon. Its dynamics is coupled to w through the covari-
ant derivatives [see Eqs. (3.26) and (3.27)]

(5.76)

with w as in Eq. (5.75). Let us imagine that it makes
sense to do "two-spinon quantum mechanics" on a Hil-
bert space & ' 13&', with

where 2)" carries the spin-s representation of SU(2). By
Eqs. (5.75) and (5.76), the covariant derivatives on
&"(3)&(' ' are then given by

(5.80)

where A( ' is the universal R matrix of the quantum
group U (s12), with q =exp[in/(a+2) ], a.nd T is the Rip
(transposition of factors). All this can be extended to
"n-spinon quantum mechanics. " The matrices (R,' )

determine an exotic quantum statistics described by non-
Abelian (for a ) 1 and s,s'(a. /2) representations of the
braid groups (more precisely, the groupoids of colored
braids) which is commonly called non-Abelian braid
statistics (Fredenhagen, Rehren, and Schroer, 1989;
Frohlich and Gabbiani, 1990; Frohlich, Gabbiani, and
Marchetti, 1990; Frohlich and Marchetti, 1991). We
wish to note that s and s' are forced to be ~sc/2, i.e.,
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there are no spinons of spin )K/2. One might call this
phenomenon "spin screening. " If the particles of spin sp

constituting the chiral spin liquid appear as spinon exci-
tations above the ground state and $0 is half-integer, then

K 2$p

since these particles carry spin $0. One can argue that
the statistics of these particles must be Abelian braid
statistics, i.e., they are anyons. In fact, ii then follows
that they are semions (8=—,

' ). Now, for a given level a,
the matrices (R,' ) define an Abelian representation of
the braid groups if and only if 2$ =K. Thus it follows
that, for a chiral spin liquid made of particles of spin $0,

K 2$0 ~
(5.81)

any spinon excitation of spin $ ($0 exhibits non-Abelian
braid statisticst

The reader may feel that our "derivation" of spinon
quantum mechanics from the effective action SA (w)

given in Eq. (5.69) is based on idealizations —see Eq.
(5.74)—and jumps in the logics —reasoning between

(5.76) and (5.78)—that might make it appear to be quite
problematic. Actually, it turns out that our conclusions
concerning spinon statistics, in particular Eqs. (5.80) and
(5.81), are perfectly correct. This follows from an
analysis of the boundary terms "B.T." in the effective ac-
tion (5.26); see Sec. VI.

In order to understand electronic quantum Hall fluids
with spin-singlet ground state, one must glue the Laugh-
lin vortices described in Eqs. (5.61)—(5.66) to the spinons
discussed above. One checks that for o.=2/n o, n o

odd, and K =2$0 = 1, a Laughlin vortex of vorticity n
= —no/2 (!) glued to a spinon of spin s = —,

' is an excita-
tion of charge Q = —1, spin —,

' and Fermi statistics; see
Frohlich and Kerler (1991)and the discussion in Sec. VI.
These are the properties of an electron. In an electronic
quantum Hall fluid (without any very exotic internal
symmetries) one does not find any excitations with non-
Abelian braid statistics. However, if one could manufac-
ture a quantum Hall Quid made of charge carriers of spin
sp =

& 2
. ~ . with a spin-singlet ground state, it would

display excitations with non-Abelian braid statistics
(Zhang, Hansson, and Kivelson, 1989; Frohlich, Kerler,
and Marchetti, 1992). It may appear difficult to build
such a system in practice. But, perhaps, one can think of
incompressible superAuid films of particles of higher spin,
with broken parity (reflections-in-lines) and time reversal,
which would also exhibit excitations with non-Abelian
braid statistics. The analysis sketched above extends, in
a straightforward way, to systems with continuous inter-
nal symmetries and corresponding gauge fields; see the
discussion in Sec. VI.C.

It may be worthwhile emphasizing that in quantum
Hall Auids with nonvanishing magnetic susceptibility
(spin-polarized Hall fluids) the fractional statistics of

Laughlin vortices always appears as a consequence of a
combination of the Aharonov-Bohm and the Aharonov-
Casher effect (but notice that, for spin-polarized quantum
Hall Auids, the Aharonov-Casher phase factors are au-
tomatically Abelian). This is a consequence of the fact
that electrons have a nonvanishing magnetic moment
and follows from Eq. (5.26).

3. Spin-singlet electron pairing mechanism

In this subsection we describe a mechanism for spin-
singlet pairing of dopant electrons (or holes) moving in
an antiferromagnetic or a resonating valence-band (RVB)
background. Our mechanism may be related to the
"spin-bag mechanism" (Schrieffer, Wen, and Zhang,
1988). For definiteness, we consider two-dimensional sys-
tems, but our arguments can easily be extended to sys-
tems in three dimensions.

The magnetic properties of the system are described by
an order parameter p transforming under the adjoint rep-
resentation of SU(2), ;„. We assume that, after coupling

P to an external SU(2) gauge field w, the system is an
SU(2) diamagnet. Integrating out the order parameter P,
at a fixed temperature T &0, we obtain the free energy
FT(w) = —kT 1nZT(w) as a functional of the gauge field
M.

For an antiferromagnet or a system with a resonating
valence-band ground state, described, for example, by a
Landau-Ginzburg-type Lagrangian in which P is coupled
minimally to w, the free energy Fr(tU) is expected to be
smooth in w in a neighborhood of w =0. This is in con-
trast to the behavior of FT(w) in a system with ferromag-
netic ordering. In a ferromagnetic system, the order pa-
rameter is the spin density, which is the time component
of the spin current density. The spin current density is
the variable conjugate to the SU(2) gauge field w; see Eq.
(5.4). Thus if the expectation value of the total spin
operator in an equilibrium state of the system at some
temperature T is nonzero, then the free energy FT(w)
must have a cusplike singularity at w =0. But in systems
with an antiferromagnetic or RVB magnetic structure,
the order parameter P is not given by a component of
some current density. Viewing SU(2), ;„as an internal
symmetry group of the system, we see that P turns out to
be a scalar field transforming under the adjoint represen-
tation of the internal symmetry group. In this situation
it is consistent to assume that FT(w) is quadratic in w at
m =0.

We shall assume that, in the scaling limit, the system
does not break parity or time-reversal invariance and is
rotation and translation invariant. It then follows from
the assumed smoothness of FT(w) near w =0, from SU(2)
diamagnetism, and from the invariance of FT(w) under
time-independent SU(2) gauge transformations, that
FT(w) is given by
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FT(w)= —
—,
' f tr[wp(g)]d g

1

1+, g f tr[(w; ) (g)]d g'

l~, (T) + J tr[hpz, (g)]d

+li(T) J tr[h, z(g)]d g + (5.82)

&s'(g) ).=—
& S).&(g —g, ) —=&,&(g—g, ) .=2

If ltt and l are positive constants, the solution of Eqs.
(5.83) and (5.84) is given by

(5.84)

wp(g) = X
II

and wj(g)=0, j =1,2,
(5.85)

Here w is a time-independent, external SU(2) gauge field,
and our conventions have been chosen such that the
traces in Eq. (5.82) are negative; see Eq. (3.27). The third
and the fourth term on the rhs of Eq. (5.82) are the
"Maxwell terms" discussed in Eq. (5.36) [note that, be-
cause of rotation and translation invariance, we have
lI(" =lI~ '=l~~ and g;.(g)=5;. in Eq. (3.27)]. In the first
and second term on the rhs of Eq. (5.82), I and I' are con-
stants of dimension cm, and the "transversal" gauge field

w;, i =1,2, is defined by w; =[5J 2);b,,+~—]w~, with
b,„„=2)XV, where 2). has been defined in Eqs. (5.11) and
(5.12). Note that the first term is invariant under time-
independent SU(2) gauge transformations (5.7), and the
second term respects the SU(2) Ward identity (5.11) [i.e.,
it respects infinitesimal (time-independent) SU(2) gauge
transformations], but it is nonlocal. In fact, this term is
the non-Abelian analog of the term we have encountered
in the free energy (4.10) of a superconductor. Its pres-
ence mirrors the fact that we do not require the system to
be incompressible. SU(2) diamagnetism implies that I~~,

Ii, l, and l' are non-negative. (For a system with a RVB
or VBS ground state, the nonlocal term is expected to be
absent. ) Finally, the dots in Eq. (5.82) stand for terms of
higher order in m or involving higher derivatives acting
on M.

Cxiven the free energy (5.82), we can study how the sys-
tem responds to turning on an (external) SU(2) gauge field
m. Choosing some w with the property that w. =0,
j = 1,2, we find, similarly to Eqs. (5.38) and (5.72), that

5FT( w)
&s (g)) = = —l~~Awp(g)+ —wp(g)+

gawp

(5.83)
where 6 is the two-dimensional Laplacian.

In order to create a spin- —,
' excitation (a dopant elec-

tron) localized at g=g'„ the three SU(2) gauge-field com-
ponents of wp have to solve Eq. (5.83) for a lhs of the
form

where l*=(l~~I)', and K is a function with the following
asymptotic behavior:

K(x)=&1/xe [a+O(1/x)], if x ))I, (5.86)

with a a positive constant.
We now consider a second dopant electron moving in

the background gauge field m excited by the first one; see
Eq. (5.85). Recalling the form of the coupling in (5.76),
we expect the motion of the second electron to be subject
to a force resulting from a "Zeeman term" given by
2e~o S2, ~he~e S~ denotes the spin operator of the
second electron. Classically, we find a contribution to
the energy of the two-electron system of the form

Z„=ac, Z
X1.X2

(5.87)
It

where X2 is the expectation value of the spin operator S2
of the second electron, which we assume to be localized
at g=gz. A similar expression to (5.87) is obtained in a
"more symmetric" treatment: One solves Eq. (5.83) for
several dopant electrons localized at points g'„. . . , g'„

and considers the interaction term in the free energy
FT(w) corresponding to the resulting SU(2) gauge field w.

The form of the energy Eiz in (5.87) suggests that a
term of the form

J(gi gz)Sg 'S

must be included in the Hamiltonian of the dopant sys-
tem, where J(g) is some positive function with

J(g)-e ~ ' for tg'~ —+00.
To summarize, when we consider two dopant electrons

moving in an antiferromagnetic background character-
ized by the free energy (5.82), then Eq. (5.87) implies that,
as a result of the collective response of the background,
the two electrons experience a mutual attraction if their
spins are "antiparallel" and a mutual repulsion if their
spins are "parallel. " This interaction could yield binding
of dopant-electron pairs in spin-singlet states (i.e., with
"antiparallel spin orientations") and hence could result in
a superconducting state for the dopant electrons.

VI. ANOMALY CANCELLATION AND ALGEBRAS
OF CHIRAL EDGE CURRENTS IN TWO-DIMENSIONAL,
INCOMPRESSIBLE QUANTUM FLUIDS

The purpose of this section is to discuss the origin of
the quantization of the constants o., y„o.„and k, which
appear as the coefficients of the Chem-Simons terms in
the "scaling limit" of the effective action of two-
dimensional, incompressible quantum ft.uids; see Eq.
(5.26). From the linear-response equations displayed in
(5.48) through (5.54) we recall that these constants com-
pletely determine the response (on large-distance scales
and at low frequencies) of such quantum fiuids when per-
turbed by small external electromagnetic "tidal" and
geometric fields. In particular, they specify the Hall
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effect for the electric and for the spin current. We show
how the rationality of the constants o., g„o.„and k fol-
lows from a consistency analysis of the theory presented
hitherto. This analysis rests on a more thorough inspec-
tion of the so-far mysterious boundary terms "B.T." on
the rhs of Eq. (5.26). By the requirement of anomaly can-
cellation we find, among these boundary terms, gauge-
anomalous contributions which turn out to be the gen-
erating functionals of the connected, time-ordered 6-reen
functions of chiral current operators which generate u(1)
and sQ(2) current (Kac-Moody) algebras. Some basic,
physical requirements on the spectrum of (finite-energy)
excitations in incompressible quantum fIuids, together
with some elements of the representation theory of
current algebras, enter this consistency analysis. Our
analysis naturally leads to a complete list of possible
quantum numbers [such as (fractional) charges and (frac-
tional) statistical phases] of physical excitations that one
expects to find in such quantum fluids.

For the sake of concreteness, we restrict our attention
to two-dimensional, incompressible quantum Auids com-
posed of electrons (or holes). For a difFerent example of a
physical system in which we can apply similar ideas, see
the discussion of superAuid He-3 /B interfaces with bro-
ken parity and time-reversal invariance given in Sec.
VII.B.

The plan of this section is as follows. First, we review
the physics at the boundary of incompressible quantum
Hall Auids by following some basic ideas of Halperin
(1982). Extending these ideas by making use of some
facts concerning chiral u(1) current algebra and intro-
ducing the idea of anomaly cancellation, we present a
very natural explanation of the integer quantum Hall
effect. The purpose of this first part is to illuminate the
physical basis and provide a concrete illustration of the
basic ideas underlying the more technical material in
Secs. VI.B and VI.C where the general implications of
G( 1) and sQ(2) current algebras describing the boundary
excitations of a Hall sample are investigated. In these
subsections we sketch a classification of (electronic) quan-

tum Hall fluids in terms of universality classes. We dis-

cuss many examples, including the recently discovered
two-layer systems with Hall plateaux at 0.= —,'. More ex-

amples can be found in Sec. VII.A, where, based on the
results in Sec. VI.C, we present a detailed analysis of Hall
fiuids with cr =2/(4l +1), l =0, 1,2, which turn out to be

good candidates for an observation of the Hall effect for
spin currents.

Independent work on current algebras in incompressi-
ble quantum Hall Auids that resembles ours, as presented
in this section and in Frohlich and Kerler (1991),
Frohlich and Zee (1991),and Frohlich and Studer (1992b,
1992c), has been carried out by Wen and collaborators
(Wen, 1989, 1990a—1990c, 199la, 1991b; Block and Wen,
1990a, 1990b; Wen and Niu, 1990). Additional work

vaguely or closely related to Wen's and ours can be found

in Biittiker (1988), Beenakker (1990), Haldane (1990b),
MacDonald (1990), Balatsky and Fradkin (1991), Balat-

sky and Stone (1991),and Stone (1991a, 1991b).

A. Integer quantum Hall effect and edge currents

Let us consider an electronic system confined to a
two-dimensional domain II in the (x,y) plane. We
choose 0 to be an annulus and denote by BQ the bound-
ary of Q. In our example, BQ consists of two connected
components C, and C2, which are circles of radii R, and

R2, respectively. We imagine that there is a (uniform)
external magnetic field B,=(0,0,8, ) (with vector poten-
tial A„ i.e., 8, =curl A, ), perpendicular to the plane of
the sample. Note that the magnetic field B, breaks time-
reversal and parity (refiections-in-lines) invariance.

In Sec. IV.E, we mentioned that if the Hall conductivi-
ty of the system is on a plateau the longitudinal resis-
tance RI vanishes and the system is dissipationless, or in-

compressible. In the preceding section we showed that
the bulk physics of such a system then exhibits universal
features. In this subsection we intend to study the phys-
ics at the boundary of the sample in a similar manner. (If
RL is nonvanishing, the physics of the electronic system
is complicated, and simple concepts of universality fail to
capture the basic properties of the system. )

Classically, in the absence of an external electric field,
there are no currents in the system. Quantum mechani-
cally, however, the picture is different, as has been em-
phasized by Halperin (1982). In the absence of an exter-
nal electric field, currents supported by the system are lo-
calized within approximately one cyclotron radius of the
boundary BQ, and they are expected to persist even in the
presence of a moderate amount of random disorder in the
sample. Because of the presence of the external magnetic
field B, the edge currents are chiral, i.e., the electrons
drifting in the field B, can move in only one direction
along the boundary components C& and C2 of BQ. We
can choose the orientation of the annulus 0, and there-
fore of C& and C2, such that the chirality of the edge
current localized near C; is given by the orientation of
C, , i =1,2.

In order to be more explicit, we temporarily assume
that there is no disorder in the system, and the electrons
are moving in a confining one-body potential V, which is
constant in the bulk and rises steeply at the boundaries of
the sample, i.e., at ~x~ =R „R2. Furthermore, we assume
that electron-electron interactions are turned off (in-
dependent electron approximation), so that the many-
electron states of the system can be constructed by filling
up one-electron states g&&&, in accordance with the Pauli
principle. The one-particle wave function g&&& describes
a two-dimensional, charged scalar fermion [i.e., a fermion
with a fixed spin polarization "up" (1') or "down" (1)].
It satisfies the Schrodinger equation

a
iA gtqg(t, x)

r '2
. eA9+i A, (x) + Vt~)(x) ll t~t(t, x),

2m C

(6.1)
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where

gPaVtii(x)= V(x)+ B, .
2

The second term in V&&& is the Zeeman energy (pii )0),
whose sign depends on whether the spin of the electron is
parallel ( 1) or antiparallel ( 1) to the magnetic field B,.
We assume that the effective electron mass m* is less
then the vacuum mass mo, so that all Landau bands in
the common spectrum of the two Hamiltonians in Eq.
(6.1) have different energies. Hence each Landau band of
one-electron states is fully spin polarized.

Because of the rotational symmetry of the annular
domain Q, the eigenvalues I E.Z of the z component I.,
of the orbital angular-momentum operator are good
quantum numbers for the one-electron states. For a
given Landau band, a one-electron state with magnetic
quantum number I is localized, in the radial direction,
within about one cyclotron radius r, =(AcleB, )'~, from
some mean radius r, with r =r, (m/m. )', provided
that Ri &r &R2 and ~R; —r

~
))r, for i =1,2. In the

presence of a confining one-body potential V( ~x~ ), the en-
ergies 6' (in units of fico„where co, =eB,/I c is the cy-
clotron frequency) of one-electron states as a function of
their angular momentum m (i.e., of the square of their
mean radius r ) qualitatively look as indicated in Fig. 1

(Halperin, 1982).
In Fig. 1 the quantities m; are determined by setting

r =R, , i =1,2. The magnetic quantum numbers m;
t

i =1,2 are determined by requiring that all one-particle
levels up to the Fermi energy E be filled in the Landau
band indexed by v= (n, s), where n H Xo, and s = f or $.
[Note that the assumption of the incompressibility for
the system is reAected by the requirement that, in the
bulk region (i.e., for m, «m «m2), the Fermi energy
E lies between two Landau bands. ] States correspond-
ing to values of m well between I

&
and m2 carry no net

electric current. However, states with m below, but close
to, rn, or above m2 carry gapless, chiral currents local-

empty states ~

ized within approximately one cyclotron radius of the
boundaries C, and Cz, respectively (Halperin, 1982).

To summarize, we find that the gapless electronic exci-
tations near the Fermi surface of a given filled Landau
band are charged, chiral, scalar fermions propagating
along the boundary of the sample. In order to describe
the dynamics of these chiral fermions (chiral Luttinger
model) in more detail, we introduce the one-dimensional
momenta

and

PI, V

I —m,

l

l =1,2

(6.2)

v=(n, s)EN0X I 1', J, I,
and we redefine the energy of the one-electron states rela-
tive to the Fermi surface, i.e. , we write E = 6' E. L—et
us set R; =Or;, with r, fixed, i =1,2, 0(8( ao. We scale
space and time coordinates as in Eq. (5.14), i.e.,
( t, x ) =0( r, g'), where ( r, g ) belongs to a fixed space-time
domain Ao=RXQ~. Then, as 0 grows, we are interested
in that part of the spectrum of the edge excitations,
E =E(p; ), which belongs to an ever smaller interval
around p, =0; see Fig. 1. Note that, by Eq. (6.2), p;
scales with 0 '. Thus, for the rescaled systems in Qo, the
spectra of the edge excitations associated with a given
Landau band converge towards the linear energy-
momentum dispersion law of a massless, chiral "relativis-
tic" Fermi field propagating along a circle of radius r, ,
i =1,2; see Fig. 2. More details on this point and about
the (chiral) Luttinger model can be found in Heidenreich,
Seiler, and Uhlenbrock (1980, and the references therein).

Before we turn to a description of relativistic Fermi
fields, we note that, in order to observe the quantum Hall
effect experimentally, it is necessary to perturb the elec-
tronic system. This can be achieved, for example, by ap-
plying a low voltage between the inner and outer edges of
the annular sample, thereby changing the chemical po-
tentials of the electrons at the two edges. More general-
ly, we shall couple the electronic system to an additional,
external electromagnetic vector potential 2, where
3 = A„,—A, is a small perturbation and 2, is the vec-

3/2— occupied stat
I

pty states

I/2—
= I'2v

m,
my pg. ..

m2
~ ~ o m2 pg occupied states

FIG. 1. One-electron energy levels @ (in units of fi~, ) in an an-

nular sample as a function of angular momentum m (neglecting
disorder and electron-electron interactions, but for a g factor
&2).

FIG. 2. Energy-momentum dispersion law in the scaling limit
(0~ ~ ) of chiral edge excitations circulating at r2 and associat-
ed with some filled Landau band indexed by v.
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tor potential corresponding to B,. Our next step is thus
to recall the description of a massless, chiral relativistic
Fermi field circulating along one component C0 of the
boundary of the (rescaled) system and coupled to A l „0

(the restriction of A to I D=RXCOC:BAD).
We introduce some notation: It is convenient to use

"light-cone" coordinates on the (1+1)-dimensional
boundary space-time I 0. We set

u+= (g+g )=— — vr+0 ) II. L,
v'2 V'2 2m

where q&[0,2n) is an angular variable along Co (whose
length is given by L), w is (rescaled) time, and the con-
stant U physically corresponds to the propagation speed
of charge-density waves at the edge of the sample. (The
value of the velocity U does not matter in the following.
The calculation of this physically interesting quantity is
the subject of a more complete microscopic analysis. )
We write

where o.
&, cr2, o.

3 are the standard Pauli matrices. More-
over, we define by g=g*y the conjugate of the Dirac
spinor g and identify its left-/right-handed component
with

"~Lzz ( 01.zIi PL, zii
' A

l r, )

=' fr WLgii(0)+( Alr, )it'I. yii (0)d 0~"

where the Dirac operator D ( A
l „)is defined by

0

(6.8)

itj ~ (g)= —,'(1+@,)f(g) .

Our aim is to write down an action for a massless,
chiral fermion gL&z coupled to the vector potential A

l r,0
and to calculate an effective gauge-field action,
I I &~( A l„), by integrating out the chiral fermion de-

0

grees of freedom located at the edge of the sample.
Naively, one might try to start with an action of the form

Alr =A+(u)du++A (u)du
0

(6.4) D(Al r)=y" j3 +i A„lr (g) —=8+i A lr (g) .

where

1A+(u) = —( Ao lr (g)+ A
& Ir (g))lg=g(~) ~

—2 B~B (6.5)

where 8 =0/BU
In 1+1 dimensions, a relativistic Fermi field (fermion,

for short) is described by a two-component Dirac (i.e.,
complex) spinor P. We choose the chiral representation
of Dirac matrices

0—
y = —io2, and y5=y y =o.3,1= 0 1— (6.6)

with u =(u+, u ) and g=(g, g'). The (1+1)-
dimensional d'Alembertian, =00—B,=(1/v )(8 /Br )

(2~/I. ) (8 /B—q ), is given in "light-cone" coordinates
by

(6.9)

However, it is not possible to compute the effective action
of a massless, chiral fermion coupled to Alr by a fer-

0

mionic (Berezin) path integral based on the action (6.8).
Put differently, it is not possible to calculate the deter-
minant of the Dirac operator D ( A „)restricted to the

0

subspace of either only left- or only right-handed field
modes. This is because of the simple fact that the Dirac
operator D ( A

l r ) maps left-handed to right-handed
0

modes and vice versa, i.e., the chirality subspaces are not
invariant under the action of D ( A

l r ); see, for example,
0

Alvarez-Gaume and Ginsparg (1984). Using Eqs. (6.4)
and (6.7) we can rewrite the standard action of a mass-
less, two-component Dirac field P on I 0 in terms of its
components gL and ij'ji, . We find that

i j g(g)D(Al )g(g)d (=i 2J„f* B +i A Q +Q* & +i A f„(g)d g . (6.10)

(The equation of motion for ltL &z following from Eq. (6.10) reads [i)++i(e/A'c) A + ]QL &z =0. Hence, in 1+1 dimen-
sions the left-/right-handed modes are actually left-/right-moving excitations, provided A+ =0. ) By inspecting the
coupling structure of A + to gLzz in Eq. (6.10), we are led to the following expression for the effective gauge-field action
of a massless, chiral (left-/right-moving), relativistic Fermi field coupled to the external vector potential A

l r ..

2

—I q (LAil )=r[l dentD(Al )]r~ 0+ I A+(u)A (u)d u
0 + 4m AC ~0

—= lndet 8+i A lr —,'(1+@,)
Ac

(6.11)

see Jackiw (1985) and Jackiw and Rajaraman (1985). In Eq. (6.11), the determinant of the Dirac operator D( A lr ) is
0

calculated on the full mode space of a (1+1)-dimensional, two-component Dirac field, and its evaluation goes back to
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Schwinger (1962). In the second term a is an arbitrary real constant. This term stands for a finite renormalization am-
biguity and mirrors the fact that one cannot invoke U(1) gauge invariance as a guiding principle in the calculation of
chiral efFective actions (Jackiw and Rajaraman, 1985; Leutwyler, 1986 and references therein). Chiral eff'ective actions
are anomalous, a fact that we shaH exploit shortly. We set a =1, which is a particularly convenient choice for the sub-
sequent discussion (see also Jackiw, 1985), and find that

2 2—I Li~(Air )= f A+(u)A (u) —23+(u) A+(u) d u .
4m Ae I 0

+ + U
(6.12)

Let us define the left-/right-handed current (operator) jgz~ by

JE'pit (0)=:4(k)r™~(1+)'sW(k)- (6.13)

where:: indicates normal ordering. Then, using Eqs. (6.10) and (6.11), we observe that the eff'ective action
I"I &~ ( 2

~ r ) ~ „0is the generating functional for time-ordered, connected Green functions of jg&~. Both currents jg
and jg independently generate a chiral u(1) current algebra. This will be discussed in more detail in the next section.
We note that the choice of the left- or right-handed current, jg or jg, depends on the physics of a given system, namely,
on the sign of the external magnetic Geld and on whether the physical edge currents are carried by electrons or holes.

Next, we exploit the fact that efFective actions for chiral fermions are breaking U(1) gauge invariance, i.e., that they
are anomalous Wh. en we perform a U(1) gauge transformation, A ~A +dg, the explicit expression for the chiral
efFective action I I &z ( A

~ r ) given by Eq. (6.12) implies that

I—I"L~~([A +dy]~i- )=—I'Lq~(A~r )+ f [A+(u)B y(u) A—(u)B+y(u)]d u .2 (6.14)

Thus the chiral anomaly of the efFective action produced by the quantum-mechanical degrees of freedom located at the
edge of the sample takes the form

f [&+(tt)& y(ti) —& (ti)&+y(u)]d u =+ f dyh A .
Ac 4m AC ~0

(6.15)

g",'(&l,,l=Q Q e p —I {A~ )
j=o I 0CBA0

(6.16)

Remember that a Landau band gives rise to an algebra
of chiral edge currents at each connected component Co
of the boundary Mo of the sample; see Fig. 1. Hence the
total chiral effective boundary action resulting from a
given Landau band is obtained by simply adding up the
contributions of the form (6.12) for the diff'erent connect-
ed components of BQo. We Iecall our assumption that, in
the bulk, the Fermi energy E lies well between two Lan-
dau bands (incompressibility) and that there are
X =0, I,2, . . . filled Landau bands below the Fermi ener-
gy, each of fixed spin polarization (i.e., all the electrons
can be treated as scalar fermions). Then, in the scaling
limit, all the quantum-mechanical degrees of freedom lo-
calized near the boundary BQo of the sample together
give rise to the boundary contribution ps~ ( 2

~ &A } to the

total partition function Zz ( A) of the electronic system:
0

anomaly cancellation: In Secs. II and III we have seen
that nonrelativistic quantum mechanic»s U(1) gauge in-

variant, which means that the total partition function
ZA ( 2) of the electronic system is U(I) gauge invariant!

0

In other words, the total chiral anomaly (6.17) due to the
degrees of freedom localized at the boundary has to be
cancelled by an anomalous term in the total efFective ac-
tion associated with the degrees of freedom in the bulk of
the system, The term with the required anomaly under
U(1) gauge transformations is the (by now familiar Abeli-
an) Chem-Simons term,

(6.18)

Thus, to leading order in the scale parameter (9, the total
partition function ZA ( A ) of a (disorder-free, nonin-

0

teracting) quantum Hall Quid with % =0, 1,2, . . . filled
Landau bands coupled to a small perturbing vector po-
tential A takes the form

From Eq. (6.15) it follows that the total chiral anomaly
of the boundary contribution (6.16) is given by

+ f dphil. (6.17} Xexp +i — 3 Adg +G.I.e
4~ AC ~0

%'e are now in a position to describe the basic idea of (6.19)
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where "G.I." stands for possible U(1) gauge-invariant
bulk terms. As we have seen in Eqs. (4.55) and (4.59), it
is the Chem-Simons term (6.18) in the total (bulk plus
boundary) effective action which reproduces the basic
response equations (4.41) and (4.45) of the Hall effect. In
particular, comparing Eqs. (4.55) and (6.19), we identify
the coefficient of the Chem-Simons term (6.18) with the
Hall conductivity o.II of the system, i.e.,

=+ 'oH=+N, N =0, 1,2, . . . . (6.20)

These considerations yield a natural description of the
physics underlying the integer quantum Hall effect, pro-
vided the system is free of disorder and consists of nonin-
teracting electrons.

Let us briefly comment on these two assumptions: One
can argue that the picture of chiral edge excitations given
above, and hence the form of the anomaly, still hold
when the system is perturbed by a small amount of disor-
der. A chiral Luttinger liquid perturbed by a weak ran-
dom potential will not exhibit Anderson localization, be-
cause there is no interference between left- and right-
moving waves. This is in contrast to what happens in the
bulk, where a moderate amount of disorder leads to plen-
ty of localized states (we then require that the Fermi en-
ergy E lie in a region of localized states, in order to con-
clude incompressibility of the Iluid). In fact, we recall
that Anderson localization in the bulk is crucial in order
for the (integer) quantum Hall effect to be observable ex-
perimentally (Halperin, 1983; Morandi, 1988; Prange,
1990; and the references therein). More precisely, the
width of a Hall plateau depends on the amount of disor-
der in the system —which determines the density of lo-
calized states —and, in the thermodynamic limit, would
tend to 0 as the strength of the disorder tended to 0.

Finally, taking electron-electron interactions into ac-
count, the form of the anomaly will not change, because
it is universal. However, the value of the Hall conduc-
tivity O.II can and will change.

In the following sections, we discuss two-dimensional,
incompressible electronic systems that do not necessarily
have integral filling factors v due to electron-electron in-
teractions; see Eq. (4.40). In our discussion we also in-
clude the spin degrees of freedom of the electrons.

In contrast to the logic of this subsection, we start
from the universal form SA (a, w) given in Eq. (5.26),

0

which the effective action for the bulk degrees of freedom
takes in the scaling limit. We recall that Eq. (5.26) of
S~ (a, w) takes the spin degrees of freedom into account

0

and that it does not exclude any effects of electron-
electron interactions that respect U(1) X SU(2) gauge in-
variance and are compatible with incompressibility of the
electron Iluid. We identify those terms in SA (a, w)

0

which exhibit anomalous behavior under U(1) and SU(2)
gauge transformations not vanishing at the boundary
BAO. The idea of anomaly cancellation then leads to the
study of the dynamics of degrees of freedom at the

B. Edge excitations in polarized quantum Hall fluids

In this section we consider interacting, spin-polarized,
two-dimensional, incompressible quantum Hall fluids.
Here "spin-polarized" means that the spin degrees of
freedom are "frozen. " Moreover, as a first step, we
neglect the magnetic moments of the electrons. (For a
treatment of spin-polarized Hall fluids including the
effects of the magnetic moments of the electrons see the
general discussion in Sec. VI.C.) For such systems, the
universal form of the "scaling limit" SA (a ) of the

effective action is thus obtained by discarding all terms
depending on the SU(2) gauge fields w or w in expression
(5.26). We find that

——S~ (a)= J j~(g)a (g)d'g
0

+ a R, da+B.T. a &z4~ A0 0
(6.21)

where B.T.(a ~s~ ) stands for boundary terms depending
0

only on the restriction of the perturbing, external vector
potential a to the boundary of the system. [Note that we
have returned to working in "mathematical units"; see,
for example, Eq. (3.36). Moreover, we consider a Eu-
clidean background metric y; =5;J; see Eq. (5.13).j So
far, the coefficient o. of the Chem-Simons term on the rhs
of Eq. (6.21) can be an arbitrary real constant.

The particular situation in which o. takes integral
values was identified in the preceding section as basic in
describing the integer quantum Hall effect. The main
purpose of this section is to understand the more general,
fractional quantization of the values of the constant o.

that arise in systems where electron-electron interactions
cannot be neglected. We recall that, by Eq. (5.49), o
determines the value of the Hall conductivity
o.H =o e /h, which completely specifies the (linear)
response properties of incompressible quantum Hall
fluids, provided we neglect the spin degrees of freedom;
see Eqs. (5.48) and (5.51). Hence, in this section, we de-
velop a complete picture of the universal aspects of the

boundary of the system compensating the gauge nonin-
variance of some of the bulk terms in Sz (a, w ). As

above, we find bands of charge and spin carrying chiral
edge currents forming u(1) and A(2) current (Kac-
Moody) algebras, respectively. We show how the repre-
sentation theory of these current algebras nicely captures
the universal features of systems exhibiting a fractional
quantum Hall effect for the electric and for the spin
current. In Sec. VI.B, we discuss the properties of
"chiral boundary systems" [u(1) current algebraj formed
in fully spin-polarized quantum Hall fluids, and in Sec.
VI.C we study the additional features of systems when
spin [sQ(2) current algebra] and possibly internal sym-
metries [g current algebra associated with some compact
Lie group 6 j must be taken into account.
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fractional quantum Hall effect in spin-polarized, two-
dimensional electronic systems.

We make use of the ideas elaborated in Sec. VI.A: As
a first step, we wish to implement the idea of anomaly
cancellation in the direction opposite to that explained in
Sec. VI.A, i.e., we start from the bulk terms. As ex-
plained in Frohlich and Studer (1992b, 1992d), SA (a)
must be invariant under U(1) gauge transformations

a ~+a =a+de, (6.22)

—S~ (a+de)= —S~ (a)+ f (ej, )y
0

+ f dacha —B.T.([a+dy]l&~ )

+B.T. (a lsA ), (6.23)

where ej, =
—,
' Q„E„j, (g)dP Ad/ is the (Hodge)

dual of the persistent current j, g„=j,„(g)dg".
We note that SA (a+de) would be equal to SA (a ),

and hence we could set B.T.(ala~ )=—0 (up to gauge-
0

invariant terms at BAo), if

0j, leg =
4

da laA (6.24)

since f sA dy h a = —f s~pda. However, j, is a per-

sistent current supported by the Hall Quid when a =a,
(i.e., a =0), and a is the potential of a small but arbitrary
external perturbation. Therefore Eq. (6.24) cannot be im-
posed.

Experimentally, for a Hall Quid in a heterostructure or
MOSFET, the boundary BAD of the sample is such that
there is no leakage of electric charge through BAO, which
means that the normal component of j," at BAO has to
vanish, or equivalently,

*j,1 aA, =0 . (6.25)

In this case, the second term on the rhs of Eq. (6.23) van-
ishes, and, requiring the total eff'ective action SA (a) to

0

be U(l) gauge invariant, one obtains the following func-
tional equation for the boundary terms:

in spite of the fact that a is the vector potential of a per-
turbation of the electromagnetic field (i.e. , a =a —a, is
the difference of two connection 1-forms)! We recall that,
for a trivial U(1) bundle, relevant for our choice of
space-time domains R XOo, the associated space of con-
nections (vector potentials) is a real Vector space. In par-
ticular, any gauge transformation of a sum of connec-
tions can be rewritten as the result of gauge-transforming
each summand in the sum separately. Note that this is in
contrast to the situation encountered for non-Abelian
gauge fields. Performing a gauge transformation (6.22)
on a, with y not vanishing at BAD, we find from Eq. (6.21)
that

B.T.([a+de]lsp ) B.T. (also )= f&„dy&a,

air = 3+(u)du++ A (u)du
Ac +

mc

—:a~(u)du~+a. (u)du (6.27)

From Eqs. (6.14) and (6.15) it follows that the solution to
Eq. (6.26) is given by

1B.T. (alqA )=al. g 11(~lr )
I CGA

+a, g —r, (~l, )+1-.1.(al„),1

r,ca~, &

with

(6.28)

(6.29)

where I L&ii(Al„) is as in Eq. (6.12), ol and crii are
0

non-negative constants, and "G.I." stands for manifestly
gauge-invariant terms supported at the boundary space-
time BAD. We recall from Eq. (6.14) that the contribu-
tions to the total anomaly of the two terms I"I ( A

l „)and

I ii( A l „)are of opposite sign, which explains Eq. (6.29).
0

We do not need to discuss the terms in G.I. any further
and hence omit them in the following discussion.

In Sec. VI.A, we saw that, for err &Ii
=N a (positive) in-

teger, there is a straightforward interpretation of the
boundary terms in Eq. (6.28) in terms of X bands of
noninteracting, chiral (left-/right-moving) fermions prop-
agating along the different connected components of the
sample boundary BOO. In order to understand the more
general, fractional quantization of the values of the con-
stant o., we have to generalize this physical picture to
coupled bands of boundary excitations. For this purpose,
we use bosonization techniques always available in two
space-time dimensions. First, we derive an expression for
I I zii(dli- ) [see Eq. (6.11)] in terms of one chiral Bose

0

field. Then this bosonic expression is generalized to one
describing several coupled bands of excitations at the
boundary.

In the following we assume, for simplicity, that the to-
pology of the sample Ao is that of a disk, i.e., the bound-
ary BOO consists of but one connected component Co, the
general situation being given by simply adding up the
contributions from the different connected components
of BOO.

(6.26)

which has to hold for arbitrary a and g.
From the discussion in the previous subsection we can

immediately infer the solution to Eq. (6.26). Introducing
"light-cone" coordinates on each connected component
I o of the (1+1)-dimensional boundary space-time BAo
[see Eq. (6.3)], we have, as in Eq. (6.4),
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Let us first suppose that the external gauge field
a —=a ~s~ is set to 0. In Eq. (6.13) we have introduced the

0

currents

Bi~(0)= ,' Ij "-(0)+J 5 (4)] (6.30)

of a massless Dirac spinor P. Recalling the equation of
motion satisfied by the left-/right-handed component of
1t [see Eqs. (6.7), (6.6), and the remark after (6.10)], we see
that j"and j15 are conserved currents, i.e.,

ing will become apparent shortly. Integrating Eq. (6.37)
we find that

277 —2minu+ /I
y, (u+ ) =q+ pu++ y —a„e, (6.38)

l~ + n+0

with q some real integration constant. Since PL is a real
quantum field, the operator u „ is the adjoint of a„, i.e.,
a „=(a„), n HZg [0]. Moreover, the Fourier
coefficients in Eq. (6.38) are subject to the commutation
relations

a~~(g)=0=any(g) .

The general solution to the equations in (6.31) is

(6.31)
[q,p]=i and [a,a„]=m5 „, m, n HZg [0] .

(6.39)
j"(g)=&2/' a p(g)

j5 (0)=&2E" aA'~(0»

where P and P~ are scalar fields and E
' = —E'o = 1. How-

ever, in 1+1 dimensions, it follows from Eqs. (6.13) and
(6.6) that j~=j' and j5=j . Thus j5 = —&2a"P, and
Eq. (6.31) implies that

Equation (6.38) and the relations (6.39) define the cele-
brated u(1) current (Kac-Moody) algebra (at level ~); see,
for example, Goddard and Olive (1986), Buchholz, Mack,
and Todorov (1990), Ginsparg (1990), and also Frenkel
(1981) and Kac (1983). The vacuum (charge-0) sector of
this quantum field theory is the Fock space built from the
vacuum state, lo), which is defined by

a„o)=0, n )0
a„a~{t(g)= y(g)=o, (6.33) (6.40)

i.e., P is a free, massless, relativistic Bose field. Any solu-
tion to Eq. (6.33) has the form [see Eqs. (6.3) and (6.5)]

P(g(u))=PL, (u+ )+P~(u ) . (6.34)

a+4(P 0'+L) =a+4(0' 0') . (6.35)

In terms of the chiral components Pl and Pz of the Bose
field P we can define the chiral currents Jl and Jz,

Moreover, since j"and j~5 are currents propagating along
the boundary aQo, P has to satisfy the periodicity condi-
tions

p~o&=o

by applying polynomials in the creation operators a
n =1,2, . . . , to iO&.

These constructions are well known in string and con-
formal field theory. We describe more details below.
First, however, we derive a general expression, in terms
of Bose fields, for the boundary term B.T., given in Eq.
(6.28).

In the path-integral formulation, a free, massless Bose
field p, propagating along the boundary aQo of the sam-

ple, is described by a Gaussian action
2' 0
l

+)—=a+y, (u+)= —S(P)= I a $(u)a+/(u)d u, (6.41)

(6.36)

J~(u ) = —a P~(u )=jg(g(u)),

1 1 —2ninu+ /t=—p+ pa„ea- V'~ „~0
(6.37)

where v is a positive normalization constant whose mean-

where l =L/&2, with I. the length of the boundary aAo
[see Eq. (6.3)]. Clearly a+ JI &R =0. We emphasize that
Eqs. (6.30)—(6.36) hold at the level of quantized fields.

They are at the origin of Abelian bosonization in two
space-time dimensions.

The currents Jl and Jz both generate a chiral u(1)
current algebra as follows: We can decompose the
current JI (and similarly Jz ) into its Fourier modes:

IJl (u+ ) = a~pl (u+ )
27K

a P(u)=0 or a+/(u)=0 . (6.42)

Next, we wish to couple P to an external gauge poten-
tial a =—a

~ s~ . We present a formal argument allowing us
0

to identify the correct way of coupling P to a and provid-
ing a path-integral derivation of the fermion-boson
equivalence in 1+ 1 dimensions. The state sum (a diver-
gent constant) for a free, chiral (left-moving), massless
Bose field reads

ZL = J2)p exp —S(p) 5(a p), (6.43)

where d u =du hdu+ is the (oriented) space-time mea-
sure on BA0 and ~ is the same normalization constant
that appeared in Eqs. (6.37) and (6.38) {on the question of
normalizations, see Appendix B). If we consider but one
chiral component of the field P we have to supplement
the action (6.41) by a chirality constraint
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where S ( P ) is given by Eq. (6.41). Since the field P is an angle variable, we may shift it according to
P~~P=P+( I/a)gIsA . Using the fact that the integration measure is gauge invariant, i.e., 2PQ=X)P, we find, after

partial integration, that
r

Z =exp S(y) J 2)/exp —S(P)+ J a $(u)a y(u)d u 5 a P+ —a
AK fz 2~A &&. + (6.44)

Let us choose y such that a gIs~ = —Qa, with Q a real constant. Then Eq. (6.44) and the expression for the action
0

functional I I (a) given in Eq. (6.12) imply that the following identity holds:

r

exp I I (a) = 2)P exp —SwzNw(4'a)
iQ 1 i Q (6.45)

ZL K

where

1 K j a y(u)a, y(u)d'u

a+p(u)a (u) — a p ——a (u)a+(u) d'u+ I a (u)a+(u)d'u, (646)
7T 0 K 4@1~ s&0

with a+ specified in Eq. (6.27). We note that the a+
term in the second line of Eq. (6.46) vanishes because of
the constraint in (6.45). It has been added for symmetry
reasons which will be discussed below. Moreover, the
third term on the rhs of Eq. (6.46) is independent of P. It
has been added in order for the lhs of (6.45) to coincide
with the expression given in (6.12).

The field theory with action (6.46) is known as the
gauged, Abelian Wess-Zumino-Novikov-Witten
(WZNW) model; see, for example, Ciawedzki (1990) and
for related considerations also Floreanini and Jackiw
(1987), Sonnenschein (1988), and Harada (1990a). We
emphasize that the chirality constraint in Eq. (6.45),

a y(u) ——a (u)=0,
K

is invariant under gauge transformations

p(u)~zp(u) =p(u)+ —
yI&A (u),

a~za =a+ dy I a~ .

(6.47)

(6.48)

By Eqs. (6.14) and (6.45), the theory specified by the rhs
of (6.45), with an action as given in Eq. (6.46), gives rise,
under a gauge transformation (6.48), to the anomaly

2

f dacha, with o =
a~0 IC

(6.49)

It is clear from Eq. (6.46) that, physically, Q specifies the
charge of the left-moving component of the Bose field P
in units of the electronic charge —e; see Eqs. (6.27) and
(6.36). If Q /a=1, then Eq. (6.45) can be used to prove
the equivalence of the theory of one chiral fermion, given
in (6.11), to the theory of one chiral boson, given in
(6.46).

Notice that replacing L by R on the lhs of Eq. (6.45)
corresponds to interchanging + and —and replacing Q

P(u)=a, P, (u)+ . +~~/~(u), (6.50)

where pi, . . . , p~ are distinct, free, massless Bose fields

I

by —Q, and ir by —x on the rhs of (6.45). [Interchanging
+ and —,we find that the measure d u goes over into
—d u. In order for this symmetry property to become
evident, we have included, on the rhs of Eq. (6.46), an a+
term that vanishes upon imposing the constraint (6.47).]
Clearly, the resulting anomaly then has the opposite sign
to that given in Eq. (6.49). Physically, this symmetry
property of (6.45) corresponds to replacing electrons (L)
by holes (R) as the elementary charge carriers for the
edge currents along the boundary of the sample. It mir-
rors the fact that, for a given external magnetic field 8„
electrons and holes will circulate in opposite directions.
From this it follows that we can continue our discussion
by considering only the left-moving excitations along the
boundary BOO, the corresponding equations for the
right-moving ones following by applying this symmetry.

Before turning to a generali. zation of the action (6.46)
we wish to mention yet another way of deriving expres-
sion (6.46): We start from the Chem-Simons
term exp[ —(io/4') f& a hda] and perform a gauge

transformation, a ~+a =a +d y. Then, integrating
the gauge-transformed Chem-Simons term
exp[ (io/4m—)f z ~a hd+t2] over all gauge transforma-

0

tions cp satisfying the boundary condition 8 y —a =0,
wh«e a:& IsA, we reproduce the same expressions as in

0

Eqs. (6.45) and (6.46) by setting y=(a/Q)P. This pro-
cedure can also be applied in the non-Abelian situation
considered in the next section.

In order to generalize Eqs. (6.41)—(6.49) to a situation
in which we have X( ~ 1) "coupled bands (or subbands)"
of excitations at the boundary of the sample, we use the
fact that any sum of free fields is still a free field. Thus
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P, (u)

P(u) =
iv(u)

(6.51)

and K] ~ ~ . K~ are arbitrary, real normalization con-
stants, is a free field. We set

Of course, we could diagonalize K (since K is positive and
hence symmetric) and study N independent, free Bose
fields. However, we shall see below that it pays to keep a
general K.

The generalization of the remaining terms of the action
given in Eq. (6.46) is obvious. Let us introduce the vec-
tors

and the generalization of the Gaussian action (6.41) is
given by

g(y)= ' f a y(u) Ka, y(u)d'u,
4~ a~0

(6.52)

where K is some positive XXX matrix and
et b =g; i a, b;. We call K the "band-coupling matrix. "

giai

Qxax

Qi

and Q=
gÃ

(6.53)

where Q„.. . , Q~ are real constants and ai, . . . , a& are
the restrictions of gauge potentials to the boundary
space-time BAD; cf. Eq. (6.27). The generalized, gauged,
Abelian WZNW model then reads

—SwzNw(g, a)= f 8 P(u) KB+/(u)d u — f [0+/(u) a (u) —(d P K'a —)(u) a+(u)]d uwzNw & 4 gp
— + aa0 +

+ f a (u).K 'a+(u)d u .
4~ aA0

(6.54)

The chirality constraint generalizing Eq. (6.47) can be in-
ferred from the second term in (6.S4). It is given by

8 P(u) —K 'a (u)=0 . (6.55)

Clearly, Fq. (6.55) is invariant under the generalized
gauge transformations

By Eqs. (6.21) and (6.58), the "scaling limit" Z& (a ) of
the total partition function of a two-dimensional, in-
compressible quantum Hall fluid [whose elementary
charge carriers are electrons (L)], confined to a space-
time domain Ao and coupled to an external vector poten-
tial a =a, +a, is given by

p(u)~rp(u)=p(u)+K 'glsA (u),

a~~a=a+djls~
(6.56) Z~ (a ) = exp i f j,"(g)a„(g)d g+ f a h da

0

where the vector y is given by

QiXi(k)

x(k) =
Qxx~(k)

(6.S7)

4a~,(a) = f&0 e"p ~wzNw(4'a)

(6.58)

with Qi, . . . , Q& the same constants as in Fq. (6.53) and

g, , . . . , y& arbitrary real-valued functions on Ao.
Physically, the quantity Q, is the charge (in units of

—e) of the left-moving component of the Bose field P;,
i =1, . . . , N; see also the remark after Eq. (6.49). Hence
the vector Q is called the "charge vector" of the system.
A system of Bose fields Pi, . . . , P~ which describes N
bands of edge excitations at BAo and whose dynamics is
specified by the action (6.54) and the chirality constraint
(6.55) is called a "chiral boundary system. " A chiral
boundary system is characterized by the two quantities K
and Q, and its partition function is given by

x0a~ (a=QalaA, ) . (6.59)

Performing a U(1) gauge transformation (6.22) which, at
the boundary BAO, corresponds to a gauge transformation
of the form (6.56), with y=gylsA, and using the gauge0
invariance of the integration measure in (6.58), i.e.,
2PP=l)P, one verifies that the total partition function
Z~ (a ) is U(1) gauge invariant if and only if

o=gK 'Q. (6.60)

This equation generalizes the relationship found in (6.49).
We note that if we choose Q = (1, . . . , 1) E IR (where

T denotes transposition) and if we set K equal to the iden-
tity matrix in N dimensions, Eqs. (6.58)—(6.60) provide a
description of an integer quantum Mall fluid with cr =N
in the bosonized language.

Again we note that replacing L (electrons) by R (holes)
in Eq. (6.59) corresponds to interchanging + and —and
replacing Q by —Q and K by —K on the rhs of Eq.
(6.58). One easily verifies that the sign of o changes,
which is consistent with Eq. (6.60). A unified description
of Hall Auids in which both types of elementary charge
carriers are present, electrons and holes, will be given at
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the end of this subsection.
So far, the coupling matrix K is an arbitrary real, posi-

tive N XN matrix and Q is an arbitrary real
component vector. Next, we show that there are natural
constraints on these two quantities coming from the rep-
resentation theory of u(1) current algebra and some basic
requirements on the spectrum of physical excitations in a
Hall Quid. As a consequence of these constraints we shall
find that o. has to take rational values.

The basic objects in the representation theory of chiral
u(1) current algebra are the chiral vertex (Weyl} opera-
tors. We recall some basic properties of these operators.
(They play the role of Clebsch-Cxordan operators. ) It is
convenient [see (6.37) and (6.38)] to introduce the coordi-
nates

2niu + /I 2miu /Iz=e +, z=e (6.61)

In terms of the left-moving Bose field PL given in Eq.
(6.38), we define the chiral vertex operators

in'~(, z)V„(z)=:e:, with n HR, (6.62)

V„(z)V (w)=e —'+" ~ 'V (w)V„(z), zWw, (6.63)

where the sign + or — depends on the sign of
(argz —argw) relative to a fixed choice of a "point at oo ";
see Appendix B.

In the presence of an external gauge field a the charge
operator Q (in units of —e) is defined by

6= It) J (z) ——a, (z)Q dz

~z~ =const K 2miz
(6.64)

where a, =a+Bu+/Bz. Note that this operator is mani-
festly gauge invariant. Recalling Eqs. (6.37) and (6.39),
we find that

[6,V„(z)]=—V„(z) (6.65)

Thus the chiral vertex operator V„(z) creates a left-
moving excitation of charge q =n /~ (in units of —e). It
follows from Eq. (6.64) that, in order for the charge of
the system to be changed by an amount n /~, the magnet-
ic Aux penetrating the system has to be changed by an
amount n (in units of —hc/e).

Equations (6.62) —(6.65) are easily generalized to the
chiral boundary system (6.58) composed of N chiral Bose
fields P„.. . , P& and characterized by the band-coupling
matrix K and the charge vector Q. We introduce the
chiral vertex operators

n)
e-yL (z)

Vs(z) =:e:,with tt =: E IR (6.66)

where:: denotes normal ordering of moving all a„with
n )0 to the right of a with I & 0, and p to the right of
q. Applying the commutation relations (6.39), one ob-
tains the basic exchange (or Weyl) relations of chiral ver-
tex operators,

Then the exchange relations (6.63) generalize to

V„(z)V (w)=e+' "' V (w)V„(z), zAw; (6.67)

see Appendix B. From the obvious generalization of Eq.
(6.65) to N bands we conclude that a chiral vertex opera-
tor Vs(z) changes the charge in the ith band by an

amount q;=g+, (X ');Jnj (in units of —e) for
i =1, . . . , X. We write

(6.68)

and note that, in order for the charge in the ith band to
be changed by an amount q; =g+, (K '); n for
i =1, . . . , X, the magnetic Aux penetrating the system
has to be changed by an amount nj (in units of —hc/e)
in the jth band for j =1, . . . , X. Hence states generated
by chiral vertex operators applied to the ground state are
characterized by the "magnetic-fiux (or vorticity) vec-
tors" &, or, equivalently, by the "electric charge vectors"

'tt.
Next, we require that the states generated by the chiral

vertex operators (6.66) applied to the ground state exhibit
properties consistent with two basic assumptions, (Al)
and (A2} below, concerning the physics of two-
dimensional, incompressible quantum Hall Auids whose
elementary charge carriers are (spin-polarized) electrons.

(Al) Each of the N bands admits excitations with the
quantum numbers of a (scalar) electron. That is, for
i = 1, . . . , N, there are states of the system corresponding
to a charge vector of the form
Q,", =(0, . . . , 0, 1,0, . . . , 0), where 1 stands in the ith
place, and obeying Fermi statistics.

The choice of the electric charge vectors for the elec-
trons, q,'I', i =1, . . . , N, given in assumption (Al) is con-
sistent with a charge vector Q given by

Q=(l, . . . , 1) (6.69)
1V

see Eq. (6.53). The electric charge Q(tt', i') (in units of
—e) of an electron specified by the fiux vector 6",I'=Xq,'I'
can be written as

1 =Q ( 8',I') =Q K '8', I' =Q .Q',I' . (6.70)

Remark. The choice of q', I' in assumption (Al) and of
Q in Eq. (6.69) corresponds to a particular choice of a
basis in R . An invariant way of formulating (Al) would
be merely to require the existence of X linearly indepen-
dent vectors, Qi, . . . , q&, and a charge vector Q such
that the excitations corresponding to q„. . . , Q& are fer-
mions of charge 1 [see Eq. (6.70)]. At this point, howev-
er, it is convenient to work in the particular basis corre-
sponding to assumption (Al) and Eq. (6.69); see also Eq.
(6.84) below and Frohlich and Thiran (1993).

By Eq. (6.67), the chiral vertex operators V ~;~, with~(t)&

tt",I'=Kq,'I', creating electrons anticommute if, and only
if,
E=q".Kq"'

=&".K '0"~2No+1 for '=1, . . . , N . (6.71)
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=8''.K 8 EZ for alii j=1, . . . , % . (6.72)

Moreover, electrons are excitations that are relatively lo-
cal to each other (meaning that microscopic electronic
wave functions are single valued). Hence a vertex opera-
tor creating an electron in the ith band must commute or
anticommute with a vertex operator creating an electron
in the jth band, for all pairs of i,j F [1, . . . , N]. By Eq.
(6.67) this will be the case if, and only if,

K =y"'Kq'&'

Eqs. (6.58)—(6.60)]. Such chiral boundary systems are
characterized by a band-coupling matrix K and a charge
vector Q. Describing the elementary excitations, elec-
trons and/or holes, as in (Al), we find that the charge
vector Q can be chosen to take the form

Q =Q, Q. =(1,
V

I

corresponding to l bands of electrons and r (=N —l)
bands of holes. The band-coupling matrix E is a regular,
symmetric XXXmatrix with coeKcients satisfying

We note that if we assume that the vertex operators
creating electrons in the ith and jth band commute then

and

K;;E2Z+1 for i =1, . . . , X (6.77)

K~ E2Z for iAj, i j =1, . . . , N . (6.73)

R".K 'R=q"REZ for i =1, . . . , N . (6.74)

Recalling the form of Q,'i' [see (Al)], we infer that the fiux
vectors corresponding to finite-energy excitations are
given by

eeZN . (6.75)

Finally, we recall the symmetry properties of chiral
boundary systems under the replacement of electrons by
holes (i.e., of I. by R, z by z, Q by —Q, and K by —K)
that we mentioned after Eq. (6.60). If holes are the ele-
mentary charge carriers, then relations similar to Eqs.
(6.66)—(6.75) hold, up to changes of signs. By forming K
matrices of block-diagonal form (with positive and nega-
tive blocks along the diagonal; see below) we can de-
scribe, in a unified way, systems with bands of electrons
and holes. We find the following general characteriza-
tion of two-dimensional, incompressible quantum Hall
Quids with spin-polarized edge current bands.

(i) The large-distance and low-frequency physics of
such systems can be discussed completely in terms of
chiral boundary systems of electrons and/or holes [see

In order not to violate the Pauli principle, electrons in
different bands must then be distinguishable (e.g. , by
their spins, "up" or "down, " or by some other quantum
numbers).

Next, we wish to find the spectrum of "finite-energy
excitations" in an incompressible quantum Hall Quid that
has a band-coupling matrix K satisfying Eqs. (6.71) and
(6.72) [or possibly (6.73)] and whose charge vector is
given by (6.69). If an electron in the ith band is trans-
ported around a dynamical excitation of the system of
finite energy (above the ground-state energy), it should
not pick up a nontrivial statistical (or Aharonov-Bohm)
phase factor, because electronic wave functions are single
valued. Thus we expect that

(A2) Every finite energy ex-citation of the system is rela
tively local to the electrons in all X bands.

At the boundary of the system, a finite-energy excita-
tion can be described by applying some chiral vertex
operator V„(z), RHR, to the ground state. By Eq.
(6.67), it follows that, in order for assumption (A2) to
hold, the corresponding Aux vector & has to satisfy

K; EZ for i', i j =1, . . . , N; (6.78)

see Eqs. (6.71)—(6.73). Actually, in the basis of chiral
Bose fields where the vector Q takes the form (6.76), the
matrix X assumes the following block-diagonal form:
E =KL, SK+, with a positive l Xl submatrix KL and a
negative r Xr submatrix Ez, where r =N —l. The gen-
eral expression for the Hall constant cr is given by

~=Q K 'Q=K KL, 'QL, +Qz KR 'Qz ' (6.79)

N
o= g (K '); (6.80)

where a is positive for systems of electrons and negative
for systems of holes (for a fixed sign of B,).

(ii) The chiral vertex operators Vs (z, z )
= V (z) V (z), creating left- and right-moving finite-

n& 8&

energy excitations at the boundary of the system, are
specified by Aux vectors 6'= O'L + 8'&, which form the sites
of the "fiux lattice" 4=Z =Z'sZ"; see Eqs. (6.66) and
(6.75). The electric charge vectors Q specifying the
charges created by these vertex operators in the N bands
of the system are given by q =K 'R', see Eq. (6.68). They
form the sites of the "charge lattice" I =E '4. Note
that, in accordance with our convention for the charge
vector Q in Eq. (6.76), the charges q; created in the ith
band, i = 1, . . . , N, are given in units of —e (the charge
of an electron) for bands of electrons and in units of e
(the charge of a hole) for bands of holes. Hence the total
charge Q(R') of a finite-energy excitation created by the
vertex operator V„(z,z), with R'=RL SRi, E@,applied to
the ground state is given by

Q(R')=Q. K 'R=Q q . (6.81)

In order to determine the possible charges of finite-
energy excitations (so-called quasipartt'cles), we note that
the charge lattice I contains the sublattice I;„,=Z, cor-

see Eqs. (6.60) and (6.29). From this equation and Eqs.
(6.76)—(6.78), it clearly follows that o. is a rational num-
ber. Hence the Hall conductivity o ~ =ere /h is a ration-
al multiple of e /h. In particular, if we consider a situa-
tion in which we have only electrons or only holes as ele-
mentary excitations, we find that
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responding to excitations with integer charges (i.e., to
multielectron and multihole excitations). The informa-
tion about the possible fractional charges of quasiparti-
cles is encoded into the quotient space I /I;„,. More ex-
plicitly, it is contained in the set

P= [Q(R)iRee]/Z; (6.82)

see also Frohlich and Zee (1991). It follows from this
equation and Eqs. (6.81) and (6.75) that the possible frac-
tional charges of quasiparticles in an incompressible
quantum Hall fluid are fully determined by the pair
(K, Q) of the associated chiral boundary system. The
question of uniqueness of the pair (K, Q ) will be ad-
dressed below.

By generalizing Eq. (6.67) to the case of bands of elec-
trons and holes, we finally see that the statistics phase
vr8(&) of a finite-energy excitation specified by the fiux
vector O'HN is given by

8(R')=R K 'R' (mod 2) . (6.83)

The results in Eq. (6.76)—(6.79), can be interpreted as a
"gap-labeling theorem": Assuming incompressibility of a
two-dimensional quantum Hall fiuid (whose spin degrees
of freedom are "frozen out"), we have proven that its
Hall conductivity o.~ has to be a rational multiple of
e /h. Conversely, if crIi is not a rational multiple of
e /h, the corresponding two-dimensional electronic sys-
tem cannot be incompressible, i.e., there cannot be a posi-
tive energy gap above the ground-state energy in the
spectrum of the many-body Hamiltonian of this system.

Next, we ask whether, for a given rational value of
o. =o.~h/e, there exists a unique chiral boundary sys-
tem, characterized by a pair (K, Q ) of a band-coupling
matrix K and a charge vector Q, that explains this value
of o' via the formulae (6.79) and (6.76)—(6.78). The
answer is clearly no. A given rational value of o. corre-
sponding to a plateau of the Hall conductivity can, in
general, be reproduced by infinitely many difI'erent chiral
boundary systems specified by distinct K matrices and Q
vectors. This might be viewed as an intrinsic weakness of
our general approach. In order to find out which chiral
boundary system is the most likely candidate correspond-
ing to a given plateau of the Hall conductivity, one must
invoke additional information on the quantum Hall fluid.
In particular, one might investigate stability properties of
the system against small perturbations, something that,
in general, would require more analytical or numerical
work, or one might study symmetry properties of the sys-
tem. Below, and in Sec. VI.C, we illustrate these ideas by
some examples.

As a first step towards reducing the plethora of possi-
ble pairs (K, Q) explaining a given plateau of the Hall
conductivity o.II, we propose to study what kind of in-
Uariant information is coded into a pair (K, Q ). From the
scalar-product form of Eqs. (6.79), (6.81), and (6.83) for
the physically interesting quantities o., Q (R'), and 8( & ), it
clearly follows that all these quantities can be reproduced
by a whole "orbit" of pairs (K, Q ).

More specifically, if S is some integral XXX matrix of
determinant +1, i.e., SEGL(X;Z), then S, S ', S, and
(S )

' map the fiux lattice 4=Z and the sublattice
I;„,=Z C. I" of charges of multielectron and multihole
excitations onto themselves. Defining 8' =S 8' and
Q'=S 'Q, it follows that two chiral boundary systems
specified by the pairs (K, Q ) and (K', Q'), with

K'=S KS and Q'=S Q, (6.84)

K
( ) ( )p for lyj 1p ~ ~ ~ (6.85)

where vr denotes an arbitrary permutation of [1, . . . , &].
Together with the conditions (6.77) and (6.78), this im-
plies that

describe equivalent incompressible quantum Hall fluids.
Here "equivalent" means that the systems exhibit the
same Hall conductivity o H [see Eq. (6.79)], the same set
of charges Q(R') and statistics phases 8(&) for finite-
energy excitations [see Eqs. (6.81) and (6.83)], and the
same set V of fractional charges for quasiparticles [see
Eq. (6.82)). The only difference lies in the assignment of
electric charges to the fields P„.. . , P& forming their
respective chiral boundary systems [see Eqs. (6.63),
(6.54), and (6.59)], and a different choice of basis in the
flux lattice.

These observations pose the problem of finding and
characterizing equivalence classes of chiral boundary sys-
tems subject to the equivalence relation (6.84). The solu-
tion of this problem turns out to be mathematically in-
volved. It is discussed in detail by Frohlich and Thiran
(1993). So far, we have been considering spin-polarized,
incompressible quantum Hall fluids. We wish to men-
tion, however, that the classification of Hall fluids in
which the spin degrees of freedom are taken into account
turns out to proceed along the same lines of reasoning.
The difFerence is that the pairs (K, Q) have to satisfy
some additional symmetry properties. This will be dis-
cussed by means of examples in the following section.
The general discussion is given in Frohlich and Thiran
(1993).

We now turn to the question of symmetries in in-
compressible quantum Hall fluids. We ask what kind of
additional constraints on the E matrices can be inferred
from symmetry requirements. For simplicity, we restrict
our attention to Hall fluids whose elementary excitations
are electrons; see Eqs. (6.71)—(6.73). [For systems with
holes as elementary excitations the discussion is the
same, up to changes of signs, and for systems with bands
of electrons and holes the discussion is easily generalized;
see Eqs. (6.76)—(6.79).]

(A3) A natural symmetry one might expect of an "ele-
mentary" Hall fluid is invariance under arbitrary permu-
tations of the bands formed by Pi, . . . , Pz [provided we
are describing the system in a "symmetric" basis, where
the charge vector Q is of the form Q =(1, . . . , 1); see
Eq. (6.76)].

This symmetry implies that
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E,, =21+1 for i =1, . . . , N,

K,"=p for i', i,j =1, . . . , N,

(6.86)

(6.87)

with difFerent blocks K&, . . . , K„of the form (6.91) along
the diagonal (Frohlich and Zee, 1991; see also Wen and
Zee, 1992). We then find that the Hall constant is given
by

for some IE:No and some pEZ, both independent of i
and j (and such that K is positive). Thus we may write

21 +1 p
21 +1

= (21 + 1 —p)1~+pNP~, (6.88)

where 1& is the unit matrix in N dimensions and P& is
the orthogonal projector onto the diagonal in R, i.e., P&
is the N XN matrix all of whose components are given by
1/N Usin.g the fact that P~ is an orthogonal projector,
one easily verifies that

1 pN
2l+1 —p 2l+1+p(N —1)

Recalling identity (6.80) for the Hall constant cr, this
equation yields

N
2l +1+p (N —1)

(6.90)

0
+ r (nN)P„~, (6.91)

If we want to impose the constraint (6.73) we must as-
sume that p is an even integer. This reproduces the odd-
denominator rule (see, for example, Tao and Wu, 1985).
In general, the odd-denominator rule holds only for an
odd number of bands.

We may define "second-generation states" of an in-
compressible quantum Hall fIuid as states of a system
with a charge vector Q =(1, . . . , 1) EIR" and an
( nN) X ( nN) band-couphng matrix K& given by

o& —o& + ' +o&
h 1 n

(6.94)

Requirements on the pair (K, Q ) characterizing a
chiral boundary system with a unitary symmetry are dis-
cussed in the next section. We conclude this section by
considering some examples of fractional quantum Hall
fIuids covered by our theory.

The simplest examples correspond to N =1, Q =+1,
and K =+(2l+1), with I&No. For l =0, this is an in-
teger quantum Hall fIuid with o.=+1. This is the sim-
plest example of the situation discussed in Sec. VI.A.
For I = 1 we find Laughlin's fluid (Laughlin, 1983a,
1983b) with o =+—,'. Experimentally, a fractional quan-
tum Hall Quid corresponding to 1 =2, i.e., to o.=+—,', has
been observed only recently (Jiang et al. , 1990). Experi-
mental evidence for fractional quantum Hall Auids corre-
sponding to l = 3 and 4 (o =+—,

' and cr =+—,
'

) is only par-
tial (e.g. , Williams, 1992 and the references indicated
therein). There are no known quantum Hall fluids corre-
sponding to 1 ~ 5.

Actually, one anticipates that, for two-dimensional
electronic systems with a filling factor v~ —,

' [see Eq.
(4.40)], the formation of a triangular Wigner crystal is
favored over that of an incompressible quantum Hall
fluid. By forming an electron crystal the system loses its
incompressibility. Moreover, one expects that random
impurities pin the electron crystal to the background
and, as a result, such two-dimensional electronic systems
become insulators. For a more detailed discussion of
these issues and experimental results, see Jiang et al.
(1991).

The charges of finite-energy excitations in a quantum
Hall fluid with a =K=+(2l +1—) are determined by the
(one-dimensional) charge lattice I = [ I /(2l + 1)]Z. Thus
the Auid is expected to exhibit quasiparticle excitations
with fractional charges (in units of + e) given by

naz
7'no ~+ 1

1
ox =

r + ( I /n ox.). (6.92)

We can go on in this vein and define "third-generation
states" etc. We can also consider K& matrices of the
form

0

(6.93)

0

where the first matrix on the rhs is block diagonal and
built from n copies of an NXN matrix K of the form
(6.88), and r is an even integer. For the Hall constant
o.z of this system we find

h

for n =1, . . . , 21 .21+1 (6.95)

For experimental signatures of fractional charges in

quantum Hall fluids see Clark et al. (1988), Chang and
Cunningham (1989), Simmons et al. (1989), Clark et al.
(1990), and Hwang et al. (1992). By Eq. (6.65), the mag-
netic fluxes (in units of + bc/e) associated with these ex-
citations are determined by an integer n mod 21+1.
Equations (6.95) and (6.63) then tell us that these quasi-
particles are anyons.

At the end of Sec. V.B, we mentioned that, in the con-
ventional approach to the quantum Hall effect (starting
from the Kubo formula), the denominator no=+(2l +1)
of the Hall constant o. is interpreted as the degeneracy of
the ground state of the fractional quantum Hall Quid; see
Eq. (5.57) and the references given there. In our ap-
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proach this has a straightforward explanation: The alge-
bra of the chiral edge current [see Eqs. (6.37)—(6.39)] of a
quantum Hall fiuid with o =+1/(2l + 1) [N = 1,
Q =+1, a =K =+(2l + 1)] has 2l + 1 inequivalent repre-
sentations labeled by magnetic fiuxes n =1, . . . , 2l+1,
corresponding to electric charges q =+1/(2l + 1),
+2/(2l + 1), . . . , +1 [see Eqs. (6.62)—(6.65)]. In the
thermodynamic limit, approached when the scale param-
eter 0 tends to ao, every one of these representations cor-
responds to a ground state of the fractional quantum
Hall Quid with a one-component boundary. In this limit,
these 2I +1 distinct ground states have the same energy
per electron and hence are degenerate.

Finally, we note that if a vortex of strength n =2l + 1

is created in the bulk of a quantum Hall Quid with
o.=+1/(2l + 1) and a one-component boundary, then, in
the thermodynamic limit (8~ ~ ), the total charge of the
fiuid changes by K '(2l + 1)=o (2l + 1)=+1, as follows
from Eq. (6.64). More precisely, a charge of +1 is
transferred from the place where the vortex is created to
the boundary of the system; see Sec. 6 in Frohlich and
Kerler (1991) for more details. This result relates our
definition of the Hall conductivity oH =a.e /h to one in
which o H is defined as an index (Bellissard, 1988a, 1988b;
Avron, Seiler, and Simon, 1990, 1992).

The results reviewed above for the simple fractional
quantum Hall fluids with X = 1, Q =+1, and
K =+(21+1),where l &NO, have straightforward exten-
sions to fIuids corresponding to more general chiral
boundary systems consisting of K ( ) 1) bands (or sub-
bands) and characterized by a general pair (K, Q ), as dis-
cussed above; see also Frohlich and Thiran (1993). We il-
lustrate the general situation by an example: We consid-
er two-dimensional electronic systems exhibiting a frac-
tional quantum Hall effect with o. = —,', as discovered re-

cently by Eisenstein et al. (1992) and Suen et al. (1992).
Since, experimentally, these systems consist of two layers,
we expect the following chiral boundary system (K, Q) to
provide a natural explanation for this effect: We set
N =2, corresponding to two bands or layers. Working in
a basis in which the charge vector is given by Q =(1,1)
and assuming invariance under permutations of the two
bands, as discussed in assumption (A3) above and Eqs.
(6.85)—(6.88), we propose a K matrix of the form

p
2l+1

for some l END and some p&Z. The simplest realiza-

tions of such a matrix is given by

3E=
1 3

see also Wen and Zee (1992). For this system we predict
the existence of quasiparticles with fractional charge
Q =—,', —,', —'„as follows from Eq. (6.82)! [Actually, within
the framework given above, one can prove that any ex-
planation of an even-denominator quantum Hall Quid
(o =n /d, d even) has the property that the minimal frac-
tional charge Q* exhibited by quasi-particles is a fraction
of 1/d (Q*=1/Ad, with A, ~2); see Frohlich and Thiran
(1993).] We note that other explanations, e.g. , with
(l,p)=(2, —1), (3, —3), (4, —5), . . . , predict the same
fractional charges, but the number of independent, frac-
tionally charged, anyonic excitations is 1arger in the these
systems. [This number is actually given by detK. ] One
feature to which we draw the reader's attention is that
for all these explanations p is odd. Recalling Eq. (6.73),
this is consistent with the assumption that the electrons
in the two bands or layers are indistinguishable. In par-
ticular, they must have the same spin polarization. Phys-
ically, this indistinguishability suggests that, in addition
to interlayer Coulomb interactions, tunneling of electrons
between the two layers is important in producing a pla-
teau at o =

—,'; see Eisenstein et al. (1992) and Suen et al.
(1992).

In the following subsection we generalize our analysis
to incompressible quantum Hall fluids in which the dy-
namics of the spins of the particles (and possibly of
(gauged) internal degrees of freedom) are taken into ac-
count. These generalizations are important for an under-
standing of quantum Hall fluids with unpolarized ground
states, e.g. , for a= —', (Eisenstein, Stormer, et a/. , 1989,
1990a) or the unpolarized, even-denominator Hall fiuid
with o =—,

' (Willett et al. , 1987; Eisenstein, Willett, et al. ,
1988, 1990).

C. Edge excitations in unpolarized quantum Hall fluids

The purpose of this section is to extend the discussion
presented in the two preceding sections to two-
dimensiona1, incompressible quantum Hall Auids where
the dynamics of the spin degrees of freedom is taken into
account. For convenience, we recall from Eq. (5.26) the
universal form of the "scaling limit" S~ (a, w) of the

effective gauge-field action for such systems:

Xg Os+ f tl(w Adw+ 3W Aw AW)+ f Q AdQ+ f (0 AdW3+dQ Aw3)+ f w3 Adw3
Ap 4m. Ap 4~ Ap 4m Ap

3

+ X f, ~~Sew„~w.~w, cdv +B T (o ~s~ w ~s~, »
3 BC=1 P

(6.96)

2 2——SA (a, w)= f (ej, )ha+ f (em3)hw3+ g H w„zw ~dv+ g f r2 s~~w„~w ~dvAo '
A c

Ap
r4 1

Ap
7
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where a =a, +a =+„a„(g')dP' is the vector potential
of the total, external electromagnetic field ( E,B )

acting on the system [see Eq. (3.36)], w =w, +w
=i g„~w„„(g)o.„dg" is the total SU(2) connection
[see Eqs. (5.27) and (3.28)], with o.„oz, and o 3 the three
Pauli matrices. (Recall that we are considering electronic
systems constituted by electrons and/or holes, i.e., sys-
tems of spin- —,

' particles). The gauge field w determines
the motion of the spins (magnetic moments) of the parti-
cles in the electromagnetic field (E,B) [see Eqs. (3.30),
(3.37), and (3.38)] and, possibly, in some geometrical field
specified by Eq. (3.29). We recall that a and w describe
small perturbations of the external electromagnetic field
around some background field (E„B,), specified (in a
suitable SU(2) gauge) in Eqs. (5.23)—(5.25). The quanti-
ties j„m&, v, a=1,2, and il"„"gc have been discussed
after Eq. (5.26). Finally, o, y„o„and k are real con-
stants, and B.T.(a~&A, w~s~ ) denotes boundary terms de-

O' O

pending only on the restriction of the gauge potentials to
the boundary BAO of the system.

In this section, we choose time-independent coordi-
nates and an SU(2) gauge such that there are no "tidal"
terms contributing to a and w; see Sec. III.C. An exam-
ple in which "tidal" terms are relevant is provided in Sec.
VII.B, where we discuss the physics of a superfluid He-
A /B interface with broken symmetries.

The aim of this section is to explain the quantization of
the values of all the constants o., y„o.„and k for in-
compressible quantum Hall fluids. Again, we make ex-
tensive use of gauge invariance and the idea of anomaly
cancellation.

For this purpose, we recall the action of U(1) XSU(2)
gauge transformations on the Abelian and non-Abelian
gauge potentials. The action of U(l) gauge transforma-
tions on the perturbation potential a was explained in Eq.
(6.22); see also the discussion following that equation.
Let g denote an SU(2)-valued function on Ao (with dg not
necessarily vanishing at BAD). Then the total SU(2) con-
nection w transforms according to

W~ W=gWg +g dg (6.97)

whereas the perturbation potential w =w —w„which is
the difference of two SU(2) connections w and w„ trans-
forms homogeneously (i.e., under the adjoint representa-
tion of the gauge group),

w~ w —gwg (6.98)

see also the remark after Eq. (6.22).
The "scaling limit" S~ (a, w ) of the efFective action is

U(1)XSU(2) gauge invariant under gauge transforma-
tions for which (y, dg) has support in the interior of the
space-time region Ao and g is in the component of the
identity; see Sec. V.A and Appendix A. [We infer from
Appendix A or Frohlich and Studer (1992b) that the
quantities m3, r"', a=1,2, il"„gc, y„and o., are, in fact
(components ofl vectors or tensors transforming under
SU(2) gauge transformations according to the adjoint

Then, by SU(2) gauge invariance of nonrelativistic quan-
tum mechanics, the generating function

Z (a (),w(())) =exp Seff (a(()), w ()

=exp —SA (a, w) (6.100)

(see Sec. V.A) must be invariant under gauge transforma-
tions (6.97) satisfying (6.99). Asymptotically, as 8~oo,
the only gauge variance of Z()~ (a' ', w' ') comes from

the SU(2) Chem-Simons term in Eq. (6.96). In order to
see this, let us consider the factor

ik
zk(w)=exp — tr(w hdw+ —'w Aw hw)4~ s' 3

(6.101)

contributing to the partition function Zsz (a( ), w( )). In

Eq. (6.101) we are integrating over S because, for Ao a
cylinder, the topological nature of the Chem-Simons
term (i.e., its independence from metric properties of Ao)
and the choice in Eq. (6.99) allow for an identification of
Ao with S . Since, topologically, SU(2) is the 3-sphere, as
well, there exist SU(2) gauge transformations g [satisfying
Eq. (6.99)] with nontrivial winding number

n (g) = J,tr(g 'dg hg 'dg hg 'dg) EZ1

(6.102)

[recall that rr3(SU(2))=Z]. A straightforward calcula-
tion then shows that

zk(gw) =zk(w) exp[ 2~ik n (g)] . — (6.103)

Hence, by Eqs. (6.102) and (6.103) and the fact that there
is no other term in S~ (a, w) cancelling the factor

0

exp[ 2vrik n (g)] in —(6.103), we infer the famous con-
straint

(6.104)

representation or some tensor product thereof. This
guarantees the aforementioned gauge invariance. The
specific form (6.96) of the effective action refers to an
SU(2) gauge in which the background field w, is given by
Eqs. (5.23)—(5.25).]

For the SU(2) gauge invariance to hold, the constant k
has to be an integer. This can be inferred by the follow-
ing well-known "winding number argument" (Deser,
Jackiw, and Templeton, 1982a, 1982b; Witten, 1984; see
also Novikov, 1982): Let g be an SU(2) gauge transfor-
mation with the property that

g(g, g)~1 continuously

as (g, g')~BAO or g ~+oo . (6.99)
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——S~ (a, w3)=cs a Ada
o

' 4~ Ao

+ ' f (a hdw3+da hw3)
X$

4~ Ao

+ f w3hdws .
4m Ao

(6.105)

These terms are anomalous under U(1) X SU(2) gauge
transformations that are nontrivial at the boundary BAo.
The anomaly of the first term on the rhs of Eq. (6.105)
under U(1) gauge transformations y, defined in Eq. (6.22),
has been displayed in Eq. (6.23). In the following, we
present an analysis of SA (a, w3) as a whole.

0

As mentioned above, SA (a, w) assumes the form
0

(6.96) in an SU(2) gauge where the background field w,
takes the form specified in Eqs. (5.23)—(5.25); and under
SU(2) gauge transformations g, the quantities y, and o,
are components of quantities transforming as an su(2)
vector and as a second-rank su(2) tensor, respectively.
However, in order to determine the possible values of the
constants y, and o„it suffices to study those SU(2) gauge
transformations which leave the form of Eq. (6.96) or, for

We recall that, by (5.53), k enters the Hall conductivity
ot" for the spin current. Below, we shall discuss the
Hall effect for spin currents in systems with vanishing
and with nonvanishing values of k. We shall see that k
counts the number of spin-singlet (edge current) bands in
the corresponding Hall Quid.

Next, we study U(1)XSU(2) gauge transformations
which are nontrivial at the boundary BAO. What can be
inferred from them about the boundary terms,
B.T.([a, +a]l&A, [w, +w]l&A ) in Eq. (6.96)'? Or, more

specifically, what can be inferred about the constants o.,
y„and o.,? In order to answer this question, we ela-
borate on the ideas of Sec. VI.B, where those terms in Eq.
(6.96) depending only on a have already been discussed.

(i) Concerning the terms involving m3, ri', a=1,2,
and i?~gz, we note that full SU(2) gauge invariance of the
partition function (6.100) implies boundary constraints
on these quantities of a similar nature to the constraint
on j, discussed after Eq. (6.23). We do not discuss these
terms further, since they do not constrain the values of o.,
+s& and 0 s'

(ii) We now turn to the Abelian Chem-Simons terms
on the rhs of Eq. (6.96), which we collectively denote by

that matter, of (6.105) invariant. This is the case for
SU(2) gauge transformations corresponding to local rota-
tions around the 3-axis in spin (or tangent) space, i.e., to
transformations of the form g ( g ) =cosit( g') 1

i—sink, (g)o&. These transformations form an Abelian
subgroup of U(l), ;„gauge transformations. By the re-
mark following Eq. (6.22), we must therefore study the
transformation properties of S~ (a, wz ) under gauge

0

transformations of the form

w3~ w3 =W3+dA, , (6.106)

where w3 is the su(2) 3-component (a real 1-form) of the
perturbation part w of the total SU(2) connection
w =w, +w.

Hence, denoting by y a U(1) gauge transformation as
in Eq. (6.22) and by A, a U(1), ;„gauge transformation as
in Eq. (6.106), we find the following anomalous gauge
behavior of the Abelian Chem-Simons terms in Eq.
(6.96):

+„' f, dXhw, . (6.107)

From the discussion in Sec. VI.B we can immediately
infer the form of boundary terms in Eq. (6.96) which can-
cel the total anomaly in (6.107). Let
Q =Ql Qi, E-R'em" be the charge vector given in Eq.
(6.76), and let IC =It I 6Kz be a real, symmetric
(l +r) X(l+r) matrix with a positive and negative block
along the diagonal, as explained after Eq. (6.78). We
denote by 5=5L5R an arbitrary vector in R'IR'. The
physical meaning of this vector is discussed below. Fi-
nally, we denote by gzz (Ki ', a) the partition function of

0

a chiral boundary system [of left-moving excitations cou-
pled to arbitrary U(1) gauge potentials a„.. . , a&], as
given in Eqs. (6.58) and (6.54), with positive K =KL; and
we denote by g&~ (ICz', a) the partition function of a

0

chiral boundary system [of right-moving excitations cou-
pled to arbitrary U(1) gauge potentials ai, . . . , a„],
determined by Eqs. (6.58) and (6.54), with K =Xi, nega-
tive and + and —interchanged. Then it is a straightfor-
ward calculation to show that the factor

cs—SA (a+de, wz+dX)= —SA (a, w&)+ dachao fi 4~ aAo

+ f (dyhw, +dk ha)XS

4~ a~o

ZA (a, w3)=exp —'SA (a, w3) gzA (KL,'a=QI a lz~ +5L wilsA, ) gsA (K~;a=Q„a lap, +5zw~ lsd ) (6.108)

of the total partition function (6.100) is U(1) XU(1),z,„
gauge invariant [see Eqs. (6.22) and (6.106)], provided
that alld

'Q 4'I:L 'K+&~ &~ 'Q~—

u, =5.K- 15=5L.KL-15L+5R.KR-15R

(6.110)

(6.1 1 1)

a=Q ~-'Q=Q, .~, 'Q. +Q'&. 'Q. . [In the calculation one uses the fact that the measure in
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786 J. Frohlich and U. M. Studer: Gauge invariance and current algebra. . .

the path integral for gsA (KL&i, ', a) is invariant under

U(1) X U( 1 )&,„gauge transformations (g, A, ), i.e.,
'/=2)(b, where 'z 'P=P+IC~q'ti(y~s~ +A, ~sA ), with

y=QL&~y and R=SL&i, k.] Equations (6.109)—(6.111)
generalize Eq. (6.79). However, we emphasize that, so
far, we have not argued for any constraints on K similar
to Eqs. (6.77) and (6.78).

We note that if k =0, i.e., if there is no non-Abelian
anomaly, then the result in Eq. (6.108) is the complete
solution to the problem of anomaly cancellation in
SA (a, w). Moreover, in this situation, the discussion of

0

Sec. VI.B applies, and the constraints (6.77) and (6.78)
must be satisfied by (K, Q ). A consistent choice of 5 as
an integral vector will be discussed shortly. Hence
[modulo the equivalence discussed in Eq. (6.84)] the con-
straints (6.77) and (6.78) and the equations
(6.109)—(6.111) and (6.81)—(6.83) provide a complete
characterization of the universal properties of "Abelian"
quantum Hall Auids. In particular, o., g„and o, take ra-
tional values.

We still need to provide a physical interpretation of
the "polarization vector" 6. To this end, we recall the
linear-response equation (5.51) and specialize it to a static
system in the absence of a persistent current d, and of
"tidal" fields f and Q. We find that

direction in response to an external perturbation by an
electric field Ei in the 1-direction and a magnetic field B3
in the 3-direction.

I.et us confront Eq. (6.114) with the experimental pro-
cedure of measuring the Hall conductivity, denoted here
by 00 p Experimental ly, one tunes the total electric
current I2 in the 2-direction. Then one measures the
voltage in the 1-direction. One really measures a
difference qV, between the chemical potential p,z, at
g'i =0 and the one at pi = l i . Finally, one defines

I2
~II,exp

1

(6.115)

P h (k) l@(k) P'3+3(k)

(6.116)

V, =P,h,~(gi = l i ) —Pchern(gi =0) .

Comparing Eqs. (6.114)—(6.116), we find that

(see also Sec. IV.E). Denoting by p3 the "mean" 3-
component of the magnetic moments of the particles
forming the edge current band of the system (actually,
@3='d/l, 3IBN~, where A, s is the 3-component of the total
magnetization of the band and X is the total number of
particles in the band), we obtain the chemical potential

p,I„associated with this band,

Cq
o H, exp and p3 ——

OH
(6.117)

with

2

(6.113)
Recalling the definitions in Eq. (6.113), as well as Eqs.
(6.109) and (6.110), we infer that, for Q =+1,

where q is the charge of the particles constituting the sys-
tem and gp specifies their magnetic moments; see Eqs.
(2.7), (5.49), and (5.50).

For definiteness, we consider a rectangular sample in
the (1,2) plane of Euclidean space K of dimensions l, and

I2 in the 1- and 2-directions, respectively, and with the
background magnetic field 8, along the 3-axis, as de-
scribed in Sec. IV.E. Moreover, we temporarily assume
that the system exhibits one edge current band of
charged particles with spin (electrons or holes). Intro-
ducing the electrostatic potential @,corresponding to the
electric field E (i.e., E~ = —i) N, j=1,2. ), we can in-
tegrate Eq. (6.112), e.g., for i =2, along the 1-axis from

g, =0 to g, =l, . We find that

g, =+50. with 5 =p3 (6.118)

Hence 5 specifies the "mean" polarization of the particles
constituting the band of the system.

This picture is easily generalized to the situation of an
incompressible quantum Hall fiuid with N (edge current)
bands. In a basis where the charge vector Q is given by
Eq. (6.76) we assign to fully spin-polarized bands (or sub-
bands) the values 5=+1, where the sign depends on the
orientation of the spins (parallel or antiparallel to the
magnetic field B, ). Examples will be provided in Sec.
VII.

(iii) Finally, we have to investigate the properties of the
non-Abelian Chem-Simons term on the rhs of Eq. (6.96),

Xzc—
4(g, =0)+ B3(g,=0)

OB
(6.114)

where I2 is the total electric current Rowing in the 2-

——S~ (w)= I tr(w hdw+ —', w hw hw), (6.119)
7T 0

under arbitrary SU(2) gauge transformations g which are
nontrivial at the boundary BAO. Similarly to (6.103), one
calculates the full anomaly of S~ (w) to be given by
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—SCA (sw)= —S~ (w) — f tr(g 'dghw) —2~k n(g;Ao)
7T Q

=—SA (w) — tr[(g '8 g)(u)w+(u) —(g '8+g)(u)w (u)]d u 2—hark n (g;Ao),~0 4~ a~0
(6.120)

where w has been defined in Eq. (6.97) and n (g; Ao) denotes the term in Eq. (6.102) with the difference that, here, we in-

tegrate over the space-time Ao instead of the 3-sphere S [we do not require (6.99) to hold]. Moreover, as in Eq. (6.27),
w+ is defined by

wlaA =w+(u)du++w (u)du (6.121)

Next, we determine an appropriate boundary term B.T.(wlaA ), whose SU(2) gauge anomaly cancels that in Eq.
0

(6.120). In a first step, we outline a general construction, which is a straightforward generalization of the discussion in
Sec. VI.B [see Eqs. (6.45)—(6.49)] to the non-Abelian situation. In a second step, we show that there is a unified way of
treating the problem of Abelian and non-Abelian anomaly cancellation in terms of one chiral boundary system whose K
matrix satisfies some additional constraints, besides the one discussed in Sec. VI.B [Eqs. (6.77) and (6.78)].

First, let h be an SU(2)-valued function supported on the boundary BAo, and let h be a smooth extension of h to the
entire space-time Ao. Then the gauged SU(2) Wess-Zumino-Novikov-Witten model at level k (see, for example,
Gawedzki, 1990) is defined by the action

1
SWZNw(h; w 1aA, ) =

(6.122)

" f tr[(h '8 h)(u)(h '8 h)(u)]d u 2vrkn(—h;A )
4m ~~o

+ f tr(w (u)[(h 'a, h)(u) —w, (u)]+w (u)[(ha h -')(u)+(hw h -')(u)])d'u
2~ aAQ

+ f tr[w (u)w+(u)]d u,
aAQ

h (u)B h '(u)+h (u)w (u)h '(u) =0 . (6.123)

We note that Eq. (6.123) is invariant under SU(2) gauge
transformations

h ~gh =hg

w~ w=gwg +g dg
(6.124)

where h =h a~. The partition function gA (kI,'wlaA )
0 0 0

of the (left) chiral, gauged SU(2) WZNW model at level k
is given by

l
kaA, (k~wlaA, )=f &h exp &SwzNw(h'wlaA, )

X5(hB h '+hw h ') . (6.125)

We note that the chiral current J+(w+ =0)

with notations as above. [Note that, for different exten-
sions h of a given h, the terms n (h; Ao) differ at most by
an integer corresponding to a winding number difference
[see Eq. (6.102)] of the two extensions (Witten, 1984; see
also Novikov, 1982). This observation actually leads to
another proof of the integral quantization of k. ]

Similarly to the Abelian situation in Sec. VI.B, we have
to consider only the left-chirality or the right-chirality
sector of the theory specified in Eq. (6.122) if we wish to
cancel the anomaly in Eq. (6.120). What is the correct
non-Abelian chirality constraint generalizing the one in
(6.47)? By the form of the action (6.122), we are led to
the constraint

f tr[(g '~3+g)(u)(h B h ')(u)]d u,
Q

(6.126)

where

1(h)= f tr[(h '8 h)(u)(h 'i} h)(u)]d2u
0

+2m n (h; Ao) . (6.127)

Finally, as for the Abelian situation in Sec. VI.B, there
is a symmetry between the left- and right-moving degrees
of freedom in the SU(2) WZNW model (6.122). Hence
replacing k by —k and + by —on the rhs of Eq. (6.125),

=(I/2m)h '8+h of the theory (6.125) generates a chiral
sQ(2) current (Kac-Moody) algebra at level k denoted by
SQ(2)k, see Knizhnik and Zamolodchikov (1984), Witten
(1984), Gepner and Witten (1986), Felder, Gawedzki, and
Kupiainen (1988), Salomonson and Skagerstam (1989),
and Harada (1990b).

Using the gauge invariance of the Haar measure in Eq.
(6.125), i.e., 2Ph =2)h, one verifies that, under SU(2)
gauge transformations (6.124), the chiral effective action
(iri/i)lngaA (k;wla~ ) associated with Eq. (6.125) exhibits

an anomaly of exactly the same form as in (6.120) but of
opposite sign. In the proof one makes use of the
Polyakov-Wiegmann identity (Polyakov and Wiegmann,
1984; see also Gawedzki, 1990):

I (gh) = I (g)+I (h)
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l
ZA (w)=exp —SA (w) Paw, (kL, wlaw, ) ka&,(4'w aw, )

(6.128)

in the total partition function (6.100) is SU(2) gauge in-

variant, provided that

k =kI —k~ (EZ) . (6.129)

we find the partition function pa~ (k; wlaA ) of the (right)

chiral, gauged SU(2) WZNW model at level k. This time
the anomaly is of the same sign as that in Eq. (6.120).

Thus, for two integers kL, k~ &0, we infer from the
discussion above that the factor

K =1~+2INP~ (6.130)

for some i&No', see Eq. (6.88) for notations. By Eq.
(6.90), the corresponding Hall constant is given by

systems exhibiting a full unitary group U(N) of sym-
metries permuting Xbands of edge currents such that the
algebra of edge currents contains a current subalgebra
sQ(N) at level 1. Clearly, the unitary symmetry we are
requiring here is much larger than the permutation sym-
metry we considered in assumption (A3) [see Eqs.
(6.85)—(6.88)]. Correspondingly, the K matrices of chiral
boundary systems compatible with this larger symmetry
are more constrained. In a symmetric basis where

Q = (1, . . . , 1), they are of the form

In the remaining part of this section we concentrate on
the left-moving degrees of freedom with dynamics
specified by Eq. (6.125); the discussion for the right-
moving ones is implied by the symmetry above.

From the representation theory of (chiral) current
(Kac-Moody) algebra we recall that, for k ) 1, there are
representations of sQ(2)k [see Eq. (6.125)] which exhibit
excitations obeying non-Abelian braid statistics
(Fredenhagen, Rehren, and Schroer, 1989; Frohlich and
Gabbiani, 1990; Frohlich, Gabbiani, and Marchetti,
1990; Frohlich and Marchetti, 1991; see also the remarks
about spinon quantum mechanics in Sec. V.C). This
raises the question whether such representations can be
realized in (electronic) quantum Hall fiuids. A consisten-

cy analysis of this question, which also accounts for the
possibility of internal symmetries (see the remark at the
end of Sec. III.C), suggests that, in quantum Hall fiuids,

only representations generated by U(1) currents, i.e.,
given in terms of the vertex operator construction, are
realized (Frohlich and Thiran, 1993).

We recall that, by the vertex operator construction
(Frenkel, 1981; Goddard and Olive, 1986), it is possible
to give an explicit realization of a (chiral) sQ(N) current
algebra at level 1 in terms of X —1 free, massless chiral
Bose fields, y, , . . . , y~

Given this fact, we may ask whether there is a unified

way of treating the problem of Abelian [see Eqs.
(6.108)—(6.111)] and non-Abelian [see Eqs. (6.128) and

(6.129)] anomaly cancellation in terms of one chiral
boundary system of the form given in (6.108). We
proceed in two steps: First, we establish the form that
the K matrix of a (left) chiral boundary system has to
have in order for the system to exhibit an sQ(N) current
algebra at level 1. Second, for the particular situation of
%=2, we give an explicit description of the coupling
structure of the corresponding chiral boundary system to
the external SU(2) gauge field wlaA for it to generate the

0

same non-Abelian anomaly as the model system present-
ed in Eq. (6.125) (in addition, of course, to the Abelian
anomaly arising from the coupling of the system to the
Abelian gauge field a=ga la~ +5w3la~ ).

A discussion of the first step can be found in Frohlich
and Zee (1991). It amounts to studying chiral boundary

2'+ 1
(6.131)

In order to prove that the presence of an A(N), current
algebra implies Eq. (6.130), it is useful first to show that
there is a matrix SHGL(N;Z) (S has components 1

along the diagonal, —1 along the first upper off-diagonal,
and 0 elsewhere) such that

2I +1 —1 0 0

K'=S KS =

0

(6.132)

where (K,~ );, 2 is the Cartan matrix of su(N), i.e.,

K;+i,j+~ =0 ' l3, &,j=1, . . . , N —1, where the P+J's

are the simple roots of su(N). Second, one determines
X —1 linear combinations g, m =1, . . . , N —1, of the
N chiral Bose fields P'I &, . . . , PL & [forming the basis in

which (6.132) holds] by solving
N —1

P ~'y(u+ )= g P'~'y (u+ )=(K'$1 ) +,(u+ )

=&' ' pL(u+) . (6.133)

Then one verifies that the Fourier(-Laurent) coefficients
of the currents (l/2')d+y, m =1, . . . , N —1 [see
Eqs. (6.37) and (6.38)], generate the Cartan sub-
algebra of SQ(N) „moreover, one verifies that the

(J), +lA j
chiral vertex operators P': e —P 'x~:~ e+n( j)'
j = 1, . . . , W —1, create finite-energy excitations and
that, up to some constant "cocycles, " their
Fourier(-Laurent) coefficients provide the remaining step
operators in the current algebra sQ(N), (Frohlich and
Zee, 1991; see also Goddard and Olive, 1986). We em-
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phasize that the chiral vertex operators V„(,)„

j = 1, . . . , N —1, do not generate charge, i.e.,
Q (R'~') =0; see Eq. (6.81). This refiects the fact that the
chiral Bose fields y, m =1, . . . , X —1, do not couple to
the U(1) gauge field a ~&A, see, for example, Eq. (6.135)

below.
The construction above may be summarized as follows:

Given the integral Aux lattice 4=Z, equipped with the
quadratic form (Ri, &2)~R'& K 'R'2, where K is of the
form (6.130), we have shown that there exists a neutral
sublattice XC@, i.e., Q(R')=0, for all REX, generated
by R'J'=(S ) 'R'1', j= I, . . . , X —1, which forms the
root lattice of su(X), i.e., R' "K 'R' ' '=P "P' ',

i,j =1, . . . , X—1. This point of view provides a natural
starting point for a systematic discussion of symmetry
properties of chiral boundary systems. For a detailed
analysis along these lines, see Frohlich and Thiran (1993).

We note that, in connection with quantum Hall fluids,
the matrix K' in (6.132) first appeared in Read (1990).
Furthermore, quantum Hall fluids with K matrices of the
form given in (6.130) correspond to Jain's states (Jain,
1989a, 1989b).

Next, we turn to the question of how to couple chiral
boundary systems to Abelian and non-Abelian external
gauge fields. For definiteness, we treat a two-band (left)
chiral boundary system characterized by (K', Q', 5'),
which we couple to the external U(1) gauge field a ~s~0

and to the full SU(2) gauge field w ~&A . According to the
0

discussion above we choose

2I +1 —1
—1 2 p

(6.134)

Ql
2

That the polarization vector 5' [ =S 5, with

1 —1

o

see Eq. (6.118)] is chosen correctly can be seen by calcu-
lating the j3 value of electronic excitations in the first
and second bands of the system, q,',"= (1,0)
(=S 'Q,'&'), and Qc&'=(l, l) (=S 'gc&'), respectively;
see Eq. (6.84) and assumption (Al) in Sec. VI.B. The
analysis above shows that the chiral current algebra
SQ(2), exhibited by the system is generated by

J+ =(1/v'2)(l/2')B+g and J+ =J++iJ+ =.e —'

+ g(1)iy~=:e:=V ~~~„with R '=( —1,2) . Then the j
value of an excitation created by the chiral vertex opera-
tor V+&„with 8' E O' =Z, is given by
2j3=R"' K' 'R'=R"' Q' Hen. ce 5&=2j3(g,'i' )= —1

and 52 =2j, (q,', ' ) = 1.
Now we define the partition function,

gsA (K';a ~&A, w~sA ), of a (left) chiral boundary system

coupled to a ~&~ and to w~&~ .

(K', ~s, ~s )= f2)P', p (K'„,')f——a Pi( )8 P', ( )d'

a+y', (u)a (u)d u+ (K' ')» f a (u)a+(u)d u .
2m ~~0 4~ a~o

X5(B P', —(K' ')„a )

X f2)yexp f 8 g(u)B g(u)d u

[w+ (u):e ' r:(u)+w (u):e' z:(u) I
2m ~&0 l

+V2w3 (u)B g(u) d u

f tr(w (u)w+(u))d'u 5(B y — 2w' )
4m ~~0

l=exp —SaA (a~sA ) exp —SaA (w~sA ) (6.135)

where w", A =1,2, 3, are the su(2) components of w [see Eq. (6.121)],and w: =w' +iw
Recalling that Eq. (6.135) is expressed in a basis P'„Pz where Eq. (6.134) holds, and that &2y= —P', +2$z, we notice

that, for w: =—0, the partition function in (6.135) reduces to that considered in Eqs. (6.58) or (6.108). Hence, under the
U(1) gauge transformations defined in Eqs. (6.22) and (6.106), the theory in (6.135) reproduces the required Abelian
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ductivity) the same, but increasing the Zeeman energy for
the constituting particles. By the electron-hole symmetry
discussed in Eqs. (6.108)—(6.111), (6.128), and (6.129), we
may discuss the Hall e6'ect at o.=—', =2——', and the ob-
served phase transition by considering spin-unpolarized
and spin-polarized quantum Hall Auids at o.=—'„a value
contained in the list (7.1).

Below, we present di6'erent realizations of quantum
Hail fluids with cr =2/(4l + 1) consistent with spin-
unpolarized or fully spin-polarized ground states. %'e
show that these different realizations display quantita-
tively distinct quantum Hall effects for their spin
currents. For diferent points of view on such quantum
Hall fluids showing spin-unpolarized ground states, we
refer the reader to Halperin (1983), Chakraborty and
Zhang (1984a, 1984b), Rasolt, Perrot, and MacDonald
{1985),Yoshioka {1986b),and Maksym (1989).

First, we present. a realization of a Hall Auid with
cr =2/(4l +1) consistent with a spin singlet-ground state.
According to the discussion above, the simplest (left)
chiral boundary system allowing for spin-singlet excita-
tions is given in Eq. (6.135), with E', Q', and 5' as in Eq.
(6.134), i e , in. a. "symmetric" basis, we consider a system
with band-couphng matrix

21 +1 21

21 Zl +1

charge vector Q = (1,1), and polarization vector
8=( —1, 1) . By Eq. (6.136), a characteristic of the Hall
fluid described here is the presence of an SU(2) Chern-
Simons term with coeScient k =1 in its effective action
(6.96).

Second, with the same choice of K and Q as above, but
with 8=(1,1) and k =0, we find a description of a quan-
tum Hall Quid with cr =2/(41+ 1) and fully spin
polarized ground state. This Auid exhibits a A(2),
current algebra due to an internal SU(2) symmetry (not
connected to spin).

Third, another description of a Hall Quid with
o =2/(4l+1) and fully spin polarized gr-ound state is as

follows: The system exhibits two independent, polarized
edge current bands, i.e.,

7= I ~/(41 +1)l~ =1 4l I; (7.2)

see Eq. (6.82).
Next, we sketch some physical implications of the re-

sults in Table I. From Eqs. (5.50) and (5.52), we recall
that g, determines the magnetic susceptibility of the

in a basis where Q =(1,1) and S=(1,1} .
Fourth, we may also consider another realization of a

spin unpol-arized Hall Quid with sr=2/(41+1) that is
very similar to the one just given for the polarized situa-
tion: a two-band system with the same K matrix as
above, consisting, however, of two oppositely polarized
bands, i e., the polarization vector is given by
6 = ( —1, 1) . In this realization, the ground state hap-
pens to be unpolarized because the 3-component of the
total spin of all the "spin-up*' electrons in one band is
compensated by that of all the "spin-down" electrons in
the other band of the system; i.e., the ground state is un-
polarized due to an "occupation-number" symmetry.

Clearly, from a dynam1cal point of view, the two leali-
zations of a polarized/unpolarized ground state at
o =2/(4l+1) discussed above diS'er in essential ways.
This brings us to the question of whether we can find
measurable quantities that allow for an experimental dis-
tinction between the two fIuids. To answer this question,
we recall the linear-response equations (5.48) —(5.54) de-
scribed in Sec. V.B and Eqs. (6.109)—(6.111) and (6.136}
for the constants o, y„o„and k determining the
response of a quantum Hall Quid quantltatlvely. In Table
I, the predictions for these quantities are presented for
the four inequivalent realizations of a quantum Hall Quid
with o =2/(4l + 1) discussed above.

For all four realizations, the spectra of possible frac-
tional charges of quasiparticles are given by

TABI,E I. Linear-response parameters for difFerent realizations of incomp«s»bie quantum Hall tlu&ds with o'H I.2/(4i + 1)~(e /h).

Ground state

Unpolarized

(spin singlet)

Unpolarized
4l+1

0
0

4l+1

Polarized
(internal

symmetry)
4l+1

2
4l +1

Polarized
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ground state of the system (in the direction normal to the
plane of the sample). Hence the vanishing of y„ for a
spin-singlet ground state or an unpolarized ground state
with an occupation-number symmetry, is expected. Por
both polarized Hall fluids, however, our discussion pre-
dicts a rationahhy quantized magnetic susceptibility.

A more interesting prediction can be inferred from the
linear-response equation (5.54). For definiteness, let us
consider a two-dimensional Hall system confined to the
(1,2) plane in IE that is incompressible in some uniform
background field B, perpendicular to the sample (3-
direction) and that shows a plateau in the Hall conduc-
tivity at height a~=[2/(4l+1)](e /li). If we perturb
this system by aIl inhomogcncous magnetic field
B=(8i,8z,83), then Eqs. (5.54) and (5.53) and their ana-
logs for the su(2) components A =1,2 (Frohlich and
Studer, 1992b) predict the following quantum Hall effect
foI' spin currents:

for i, A =1,2, (7.3)

( gag) ) —~sgm yj=I

o P'"= ( 2k o,)—gPa
Sm

For example, if a.$'"%0 then, by Eq. (7.4), there exists, in
regions of the (1,2) plane where the 3-component of the
perturbing field B3 varies, a nonvanishing spin current
(density) polarized along the 3-direction and Aowing in .

the direction perpendicular to the (two-dimensional) gra-
dient of 83. [For a straightforward, semiclassical deriva-
tion of Eq. (7.4) see Frohlich and Studer (1992b).]

Equations (7.3)—(7.5) and Table I imply the following
results: Por an incompressible quantum Hall fluids with
o.=2/(41+1) and spin-singlet ground state, the quan-
tum Hall efFect for the 3-component of the spin current
(7.4) is absent (k =1, o, =2), while Eq. (7.3) predicts an
integer (k =1) quantum Hall effect for the (A =1,2)
components of the spin current. This is in contrast to the
bchav101 of thc Hall Auld exhibiting a spiIl-uIlpolaI'1zcd
ground state with an occupation-number symmetry.
Here, we expect an integer quantum Hall effect for the 3-
component of the spin current, while there is no effcct for
the other components of the spin current (k =0, o., =2).
Finally, in the two incompressible quantum Hall fluids
with o =2/( 4l + 1 ) realizing a fully spin-polarized
ground state, Eqs. (7.4) and (7.5) predict a fractional
quantum Hall effect for the 3-component of the spin
currents, while there is again no similar effect foI the oth-
er su(2) components of the spin currents (k =0,
o, =2/(41+1)). It would prove very interesting if an
experimental observation of these predictions became

possible!
In conclusion, we note that one straightforward gen-

eralization of the results above is obtained by combining
them accord1ng to thc 111crarchy constI'uct10Il g1vcIl 1n

Eqs. (6.93) and (6.94). We refer the reader to Frohlich
and T1iii'ail (1993) foi dlscusslons of many more exaiii-
plcs.

B. Even-denominator quantum Hall e5ect
in a ~He- A /B interface with broken symmetries

M
a„(x)= — (u (x), u, i(x), u, 2(x)), (7.6)

where u denotes the chemical potential of the system and
M~ is the mass of the (quasi-)particles constituting the
superAuid. Since the supcrfluid state of He is formed, at
very low temperatures ( & 3 mK), by Bose-Einstein con-

In this section we study a superAuid Hc-A/B inter-
face realizing a superffuid film in which (two-
dimensional) parity (P) and time-reversal symmetry (T)
are broken. We argue that such a superAuid film may
represent another example of a system (besides electronic
quantum Hall tluids) in which the techniques of Secs.
VI.B and VI.C yield results. In particular, we describe a
fractional "tidal" quantum Hall cffect for the mass
current in this system. An integer quantum Hall effect
for the mass and spin current in a superAuid He-A film
of diff'erent origin has been discussed by Volovik (1988)
and by Volovik and Yakovenko (1989).

A recent analysis by Salomaa and Volovik (1989) of
some NMR experiments performed by Hakonen and
Nummila (1987) provides strong evidence for the follow-
ing phenomenon: Consider a rotating cylindrical vessel
filled with superAuid He-B at a particular pressure and
temperature and subject to a magnetic field B, directed
along the axis of the cylinder. One finds that, if the rota-
tion is performed in such a manner that the bulk of the
superAuid remains free of vortices, an interesting surface
structure forms at the wall of the vessel. Namely, be-
tween the wall of the cylinder and the He-8 bulk, a thin
Glm of superAuid He-2 with broken P and T invariance
forms.

In order to elucidate some properties of such a He-
A /8 interface (surface structure), we describe this (essen-
tially two-dimensional) system in moving coordinates, as
explained in Sec. III.C. Por simplicity, we consider a
sample of such a superAuid film to be confined to a rec-
tangular region Z in the (1,2) plane of Euclidean space
IE . We denote by v, =(u,', u, ) the velocity field describ-
1Ilg thc Aow of thc supcrAuid filnl I'clatlvc to thc fixed
coordinates (x ',x ) of the (1,2) plane. Then the transfor-
mation to coordinates adapted to the Qow of the
superfiuid film is generated by the (two-dimensional) vec-
tor field f=v, ; see Eq. (3.43).

According to the discussion in Sec. III.C [see, in par-
ticular, Eq. (3.55)], the two-dimensional superffuid system
is then coupled to an effective U(1) gauge field a given by
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densation of Cooper pairs of He atoms, we set M equal
to the mass of a He pair. [Note that since the constitu-
ent He pairs are neutral there are no electromagnetic
terms in Eq. (7.6).)

Furthermore, we recall that, in superAuid He, the
spins of two He atoms forming a Cooper pair arrange in
a spin-triplet state. For some general references on
superfluid He, see Leggett (1975), Vollhardt and Wolfle
(1990), and Volovik (1991). Given the fact that the con-
stituent Cooper pairs of superAuid He are bosons with
nonzero spin, we may also consider the superAuid con-
densate to be coupled to some external SU(2) gauge field
w. This gauge field is a function of the superAuid Aow v,
and of the magnetic field B, coupling to the magnetic
moments of the He pairs. The explicit expressions for
the components of w depend on the orientation of B, rel-
ative to the sample and on the particular choice of basis
(orthonormal frames) in spin (or tangent) space. Because
we do not need these expressions, we do not display them
explicitly. Actually, we emphasize that the mere possi-
bility of coupling the system to an SU(2) gauge field is
sufficient for the following discussion.

Attempting to describe such a He-3/B interface by
specifying its effective action as discussed in the previous
sections, we make one basic assumption: Denoting by
Sf,r(a, w) the P and T-breaki-ng terms in the effective ac-
tion of the system, we assume that the bulk contributions
to SfT(a, w) are given by Chem-Simons terms in a and w,

i.e., we assume that

Sf,T(a, w)= J a Ada
4m

M
(p (x) ), =o curlv, (x), (7.8)

Mp(d' (x)), =o e'iB~u(x) . (7.9)

+ I tr(whdw+ —3whwhw)4~

+B.T. (a I s„w I s~), (7.7)

where A denotes the space-time domain R XZ, and
B.T.(alsA, wlsA) stands for the by now familiar boundary
terms localized at the edge of the rectangle Z (required
by anomaly cancellation). These terms describe mass and
spin currents circulating at the edge; see Sec. VI and the
discussion below. [It would be interesting to investigate
whether, under the conditions satisfied in the experi-
ments mentioned above, such He-3/8 surface struc-
tures exhibit incompressibility in the sense specified in
Sec. V.A. This would be a first step towards justifying
our ansatz for the P- and T-breaking terms given in Eq.
(7.7).]

Defining the mass current density (p, 8 ) as in Eqs.
(5.44) and (5.45), replacing the charge q by the pair mass

M, we find, similarly to Eqs. (5.48) and (5.51), that the
following linear-response equations hold ("tidal" Hall
effect):

By integrating Eq. (7.8) over the rectangle Z, we infer
that through soine (localized) perturbation of the
superAuid Aow, v, ~v, +v„one may produce an excita-
tion in the system of mass m given by

(7.10)

where P= f zcurlv, d x, and Po=h/M is the circulation

quantum in our system; see Sec. IV.B. Similarly, in-

tegrating Eq. (7.9), for i =1, along the 2-axis, one finds

that

M
Im —0 629 (7.11)

where I is a mass current Aowing in the 1-direction, as
a result of a difT'erence 62u between the chemical poten-
tials at the rectangle's lower and upper edges in the 2-
direction.

Our next task is to find the possible (quantized) values
of the Hall constant o. and of the constant k. For this
purpose, we present a consistency analysis of the system
described by the action (7.7) that parallels the one for
electronic quantum Hall Auids presented in Sec. VI.

The basic physical requirement on the model system
corresponding to Eq. (7.7) is that it exhibit an excitation
spectrum which contains (i) bosonic excitations of mass
M describing the constituent He Cooper pairs and (ii)
spin- —,

' excitations of mass M~/2 that may be identified

with He atoms. As we have shown in Sec. VI, the possi-
ble excitation spectrum of the model system (7.7) can be
found by studying chiral boundary systems that give rise
to boundary terms B.T.(al&z, wlsA) which cancel the
gauge anomalies of the Abelian and non-Abelian Chern-
Simons term in Eq. (7.7).

Here, we discuss the simplest chiral boundary systems
fulfilling requirements (i) and (ii) above. We note that,
since we wish to describe both bosonic [s =0 (mod 1)]
and fermionic [s =

—,
' (mod 1)] excitations, we need to

consider chiral boundary systems that exhibit an SU(2)
symmetry [or, equivalently, we require k %0 in the
effective action (7.7)]. The simplest system realizing this
is a two-band system whose 2X2 coupling matrix K and
"mass vector" 1k [instead of the charge vector Q; com-
pare Eqs. (3.36) and (7.6)] are of such a form that the
algebra of edge currents contains an sQ(2) current alge-
bra at level k =1. We now determine the form of the
pair (IC, 1&) by following, for two-dimensional, P and T-
breaking superAuid systems, the discussion given after
Eq. (6.133) for two-dimensional, incompressible electron-
ic systems.

We start with a positive 2X2 matrix E. Then the
euenness of the diagonal elements K;;, i =1,2, is a conse-
quence of the fact that the constituent particles in the
superfluid film ( He 'pairs) are bosons This is in cont. rast
to the situation in Secs. VI.B and VI.C, where we con-
sidered fermions (electrons/holes) as the elementary exci-
tations in the system which led to odd K;,-. The integrali-
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ty of K,2 follows as in Eq. (6.72). Next, we denote by 4
the "circulation lattice" of finite-energy excitations, i.e.,
of excit'ations that are relatively local to the constituent
He-pair excitations in the two edge current bands of the

system. Similarly to Eqs. (6.74) and (6.75), one finds that
@=X . We recall that characterizing a finite-energy exci-
tation by a "circulation vector" O' H@ [see the discussion
after Eq. (6.68) and compare with (7.10)], its mass (in
units of the He-pair mass M„) is given by

M(R)=M K 'R=M m (7.12)

[compare with Eq. (6.81)], and its statistics phase is given
by

8(R)=R K 'R'—:m Km (mod 2) ' (7.13)

1 0

see Eq. (6.83).
In the remaining discussion, it is convenient to work in

a basis (of fields forming the chiral boundary system)
where the mass vector M takes the form M=(1,0) .
[Notice that the evenness of the diagonal elements of K is
invariant under GL(2; Z) equivalence transformations
(6.84).]

Setting %22 =2, one allows for the existence of a
"massless" (one-dimensional) sublattice X C:4, which
forms the root lattice of su(2); i.e., for n EX, we have
M (R ) =0. Moreover, X is generated by the circulation
vector a=R =(K,2, 2), with a.K 'a=2; see the dis-
cussion after Eq. (6.134).

Finally, acting on K with GL(2;Z) equivalence trans-
formations S that leave the above mass vector M invari-
ant [see Eq. (6.84), with

M(R, )=
2p

0(R', )= (n,', +pn,', )=1 (mod 2),=1 (7.15)

8I +2 0
0 2 (7.16)

where l is a non-negative integer. Similarly to Eq. (6.79),
this implies, for the Hall constant o, a fvactionally quan-
tized value given by

2j3(R', )=n, 2=1 (mod 2) .

These equations have no solutions unless p =4l+1, for
some l &NO. Now, for p =4I +1, the circulation vectors
characterizing He atom excitations in the first and
second edge currents are given by &',"= (p, —1) and
R'~'=n,"' +ca=(p, 1), respectively; see Fig. 3.
~e note that, at level k = 1, the current (Kac-Moody)

algebra sb(2) has two (integrable, irreducible highest
weight) representations, which are characterized by their
spins s =0 and s = —,', respectively (see, for example, Feld-

er, Gawedzki, and Kupiainen, 1988 and Gepner and Wit-
ten, 1986). By the identifications given above, He-pair
excitations belong to the spin-0 and He atom excitations
belong to the spin- —,

' representation of sQ(2), .
To summarize, we have found chiral boundary systems

that are consistent with basic physical properties of a
superfluid film, i.e., our model systems exhibit excitations
that can naturally be identified with He pairs and atoms,
respectively. The systems are characterized by a mass
vector M and a band-coupling matrix K of the form

2ji(R)=a K 'R':—(x m,
and requiring consistency with the fact that He pairs are
bosons [j3=0 (mod 1)], we are forced to set K,&=0.
Hence, in a basis where M=(1,0), the band-coupling
matrix K can be chosen to take the form

(7.14)

2p ot
0 2

where z HZ], one infers that Kiz can be restricted to the
values 0 or 1. In order to determine K,2, we may
proceed as follows: Let us choose, similarly to the dis-
cussion after Eq. (6.134), the "mass vectors" (m =K 'R)
of He-pair excitations in the first and second edge
current bands to be given by m'"=(1,0) and
m' '=(l, l), respectively. Then recalling that the j3
value of an excitation with 6'EN is given by

o =~ + ~~=, l=0, 1,2, . . . .81+2 ' (7.17)

(2j,)
n2

xr
Q

) kg n
'~(2)

"(2) P
Ila

~~ n (2M)r & (0,0)
P

nn,

i Yx iT~

Recalling Eq. (7.10), we see that the total circulation of

for some positive integer p.
The last consistency constraint on K originates from

the requirement that the system exhibit excitations that
may naturally be identified with He atoms. Denoting
the circulation vector corresponding to a He atom exci-
tation by R'„one infers from Eqs. (7.12)—(7.14) that

FIT+. 3. The circulation lattice N=Z (solid lines) and its sub-
lattice N, of "spin-mass-confined" excitations (dashed lines) for
a superAuid film with o.=

2 (1=0). 8'~" describes a He pair
and &", a He atom in the ith band, i =1,2; a is the root vector
of su(2);, bosonic (s =0) excitations; 4, fermionic (s =

2 ) ex-
citations.
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a perturbation of the superQuid Qow, corresponding to an
excitatioil of mass 3f (8 ), ls given by

describing the physical excitations of the system; see Fig.
3.

4«)= 4o. (7.18)
It would be interesting to test the quantum Hall effect

for a He-2 /8 interface discussed in this section experi-
mentally.

In particular, it follows from the identifications given
above [see the remarks preceding Eq. (7.14) and following
Eq. (7.15)] that, in all systems determined by (7.16), the
total circulation associated with a He pair equals
twice that associated with a He atom:
y(e")=2/(R',"}=(Hi+2)y,i =1,2.

We conclude our discussion by observing that if a
finite-energy excitation specified by some O'H@ is re-
quired to be relatively local not only to the "elementary"
He pair but also to the He atom, one Ands that 8' has to

satisfy the constraints

n&
—n2&2Z and n&+n2&2Z . (7.19)

Then, denoting by N, the subset of circulation vectors
obeying (7.19), we note that there are no massless spin- —,

'

excitations in N, [i.e., there is no 8'H@, such that
M(8')=0 and 2j3(8')=1 (mod 2}]. This implies that if
there is no spin-mass separation in the superQuid Nm
then one must consider the sublattice N, C N as the one
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APPENDIX A

In this appendix we summarize the basic steps in the
calculation of SA (a, m ), the "scaling limit'* of the

effective action of a two-dimensional, incompressible
quantum Quid, whose form we have displayed in Eq.
(5.26). For more details the reader is referred to Frohlich
and Studer (1992b).

Adopting the notations given in Eqs. (5.13)—{5.20), we
expand the etfective action SOA (a' ', iu( ') in a Taylor

series, around a, and ~„to third order in a and 8
with a fourth-order remainder term 8 (a, +a, iu,
+~;a(ff', m(ff'), where a=a a(ff' and cu=X m(s', with
0&A, , A, &1:

gefr (a(8) ~(9)) jef'
( )

g(n+m)gefF
1 OAO

(&+o)"+ 5a„(xi ) . 5a„(x„)5(u „(yi ) . 5(u, „(y )

«„",'(x, ) a„'"(x„)m',"„(y,) m',", (y )du, (x, ) . du, (y )

+R (a, +u, iu, +co;a(ff', m(0')

3—
~ffA, (" ~.)+ X I,„.+ "~,. . . ~.(a, ~„ki . k. ni,

n, m=1 0

Xa„,(gi) a„(g„)m, z (gi) m, „(ri )du(g, ) . -. du{g )

where de(x) =&g (x)d'x and du(g) =du (g)
=&y(g)d g denote the volume elements on A =8AO and
Ao, respectively. Note that, by Eqs. (5.13) and (5.14),
du (8$)=8 du (g), and recall that a„' '{8$)—:8 'a„(g)
and m&'(8g)=8 'm„(g), where the scale parameter 8
satisAes 1 & 0 & ~. Moreover, the distributions
(p( '"—'-'„(a„iu, ;g, g) have been identified in Eqs. (5.19) and
(5.20).

In the remaining part of this appendix, we determine
the leading-order terms (scaling like 8 with D ~0, for
8~0o ) of the distributions g' '("- -„(a„iu,;g, ri). We ex-

ploit the four principles (P 1)—(P4) given in Sec. V.A.
By principle (Pl), we have to calculate the locai distri-

butions

gi„~'~(a„(u, ;g, ri)= g 8 +~'~(a„iu„g', g),
5=0

(A2)

suppers". ."-'~(a, ~„k,n) = [ki,

By pr»ciple (P3), we consider only terms with Dz ~0
(relevant and marginal terms) on the rhs of Eq. (A2).
particular, by Eq. (5.22), this implies that we have to
determine only the local distributions q&IffiE

& (a„iu, ;g, q)
with n+m ~3.

Next, principles (P2) and (P4) provide enough con-
straints on these local distributions that they can be
determined explicitly. First, U(1) gauge invariance and
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tllc fact that thc spRcc of collilcctlolls (vcctoi po'tclltlals)
011 R tI'lvlal U(1) bundle ls R leal vcctol' spRcc lIIlply that

for all
' = 1, . . . , n, in the sense of distributions on Ao+

see the remark following Eq. (6.22) and Frohlich and
Studer (1992b). In Eq. (A3) the divergence operator is

defined by V'„=[ I /Qy(g; ) ](8/&g; '
) [y(g; ) ]' '.

Second, we investigate the constraints due to SU(2) and
U(1), ;„gauge invariance: It is important to note that the
local distributions»p», '"—' z (a„wc,' f, I}) are not SU(2)
gauge invariant. Thc foI'ITls they take dcpcnd on thc
choice of gauge in which we describe ~ =m, +K; see Eqs.
(3.7},(3.32), and (3.33).

Explicitly, let g be an SU(2) gauge transformation.
Then gm, =gm, g +g dg and similarly for the total
gauge field m. Moreover, the perturbing Beld S trans-
forms homogeneously according to N ~gS =gag
which may also be written as

3
N„~(~$)„=g R„~(g)SII for A =1,2, 3, (A4}

8=1

wllcl'c lT) ~ denotes the su(2) components of g, i.c.,
ta =i g~ =, S„L„"(and similarly for gS), and R (g) is
the SO(3) rotation representing the element: g of SU(2) in
the adjoint representation.

Till'1111lg to thc locR1 dlstrlbutlons {A2), Olic vcilflcs by
a change of variables in the path integral {5.1) (g~g 'f}
that their behavior under an SU(2) gauge transforniation
g 1s g1VCIl by

(6)p, 1 m g(~c» ~c»(»'91»» 'Vm )

R„ II (g(I},)). . .R~ II (g(I} ))y,' '"'II' I7 (-a„w'„'g, I}&, . . . , rl ), (A5)

where the matrix R (g) has been deffned in (A4).
Provided the external electromagnetic, "tidal" (and

possibly geometric) background fields are of a form that
allows for an SU(2) gauge where

Cv3~ K3=$3+di, . (A7)

Similarly to Eq. (A3), the corresponding U(1),„;„gauge
invariance implies that

(6))+ Vj» ~ » V ' ~ » ~ V~
V P)oc—'I 3 3 (CIc»~c»g»'gl» . » '9y»» 'Qm )

the11 the spin current s~3 is conserved; sec Eq. (5.12)
explicit realization of such background fields, corre-
sponding to a standard experimental situation in two-
dimensional condensed-matter physics [8, perpendicular
to the sample and pointing along the 3-axis in spin or
(co)tangent space, and E, tangential to the sample], has
been given in Eqs. {5.24) and (5.25). Note that, for con-
sistency with Eq. (A6), the electromagnetic vector poten-
tial a, has to be of such a form that E, 3=0; see Eq.
(3.38). In the following we assume Eq. (A6) to hold [prin-
ciple (P4)]. The SU(2) gauge transformations leaving the
form (A6) invariant are the local rotations around the 3-
axis in spin space. They form a U(1),»„gauge (sub)group.
As in the U(1) situation, the vector-space nature of the
space of connections on a trivial U(1) bundle [see the re-
mark following Eq. (6.22)] naturally leads to an ("inho-
mogeneous") action of U(1),„;„gauge transformations on
the su(2) 3-component of the perturbing field N. It is
glvcn by

oI all j —l». . . » I» and agaIIl 1Il thc scIlsc of distr lbu
tloIls on Ao

We are now ready to display all the leading-order
terms possibly contributing to Sz (a, S), the "scaling

limit" of the eff'ective action S&& (a' ', to ). We present

the result in an SU(2) gauge and for background fields
such that condition (A6) holds. For physical interpreta-
tions of the difFerent terms, we refer the reader to Secs. V
and VI.

Since, in all our considerations, the constant term
Sg„(a„w, ) plays no role, we omit it from SA (a, S ).

(a) Terms involving only a:
(») y' '": By Eqs. (5.19) and (5.19}we have

where by Eq. (A3)

7'pt'(a„w„'g) =0 . (A9)

where a(a„m, ) is a constant depending on the back-
ground fields. This leads to the marginal (D =0) Chern-

Hence there is a relevant (D = —2) term contributing to
SA (a, te),

I j,"(a„i',;g)a (g)du{/)= f (ej, ) ha . (A10)

(a2) yI„' '. Exploiting Eqs. (A2) and (A3) one finds
that

(9)p),p2 (a„w, ;g„g2)

~(+c»~c ) P P P 8 (I)2
Q ( )v'} (g, )v'y(g, )
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Simons term

a(a„to, )f s"' "'a„,(g)&~a„,(g )d'g

o(a„to, ) f ahda .
4m ~0

(Al 1)

If m, corresponds to a magnetic field in the 3-direction
[in spin or (co)tangent space), as is assumed in Eq. (A6),
then we expect that

m z (a„to„g )=5 & &m 3 (a„ur„il ),
and by U(1), ;„gauge invariance, i.e., by Eq. (A3),
m 3 (a„w„'g) satisfies

V',m3(a„w„'il)=0 .

Furthermore, we notice that, by Eq. (A5),

m g ( ac, tvc,"g ) =R g g( g ( rl) )m 3 (ac, loc , 71)'
This makes the relevant (D = —2) contribution

(A12)

(a3) yIcc
' ' '. There are no local distributions (in

1+2 dimensions) that are compatible with (A3) and that
have non-negative scaling dimensions D. Thus there is
no term of third order in a present in SA (a,I ).

(w) Terms involving only ur and io:
(w 1) q&I„'z .. As in (al) we have

yI~, ~(a„to„g)=8 (s„{8q)), =—mg(a„to, ;g) .

f m, hdm, ,
o

(A15)

k(a„w, ) f tr(to R dtv+ —,'to R ur R w )
4m. &o

for some constant k (a„to, ) and

(A16)

o, (a„w, )f (p3to3) R d(p3tv3) = f t03 R dm3 . (A17)

In an SU{2) gauge where (A6) holds, P3=P3(a„tU, ) is a
constant. Moreover, under SU(2) gauge transformations,
p3(a„ iU, ) transforms according to

5&3p3(a„to, )~p„(a„~to„il) =R ~3{g (il) )p3(a„tv, ),

and there is no third-order term in $3. Second, we
remember that, as a functional of the total SU(2) gauge
fiel to, SA (a, to ) must be SU(2) gauge lllval'iailt [pllllci-

ple (P3)], where we recall that, in rescaled variables, the
total gauge Geld ur is of the form

w„„(il)= io,'„'~ (il)+ w„z (rl) =Oi—o, zz (Og)+io„~ (g);
see Eqs. (5.27) and (5.17). Now, the idea is that if we re-
strict the gauge field io in SA (a, to) to be of the form

w =(w,'3'+$3)L~3' [see Eqs. (A3) and (A14)] then the
second-OI'deI' term in 183 has to I'educe to one pI'opoltioIl-
al to Eq. (A15). The relevant and marginal (D = —1 and
0) terms in ut and io having the required properties are
the two Chem-Simons terms,

f m,"(a„to,;il)w, (q)du(q)= f (em, ) Rw,3 c~ c~ v
Ao

(A13)

compatible with SU(2) gauge invariance; see also Eq.
(A4).

(0)vl, v2 (8)v(, v2, v3
(w2) y&«z' '„and y&„z' z „.The procedure for

determining these distributions comprises the following
steps: First, we temporarily restrict our attention to per-
turbing SU(2) gauge fields ur of the same form as to, given
in Eq. (A6), i.e.,

Then, according to what we have seen above in Eqs.
(A6) —(A8), the theory is a U(1), ;„gauge theory, and the
calculation of the second- and third-order terms in $3
contributing to SA (a,I ) proceeds along the very same

lines of reasoning as presented in (a2) and (a3) above.
The result is given by the second-order term

which ensures the SU(2) gauge invariance of the term in
(A17); see Eq. (A5). Finally, a winding number argu-
ment, which shows that, by SU(2) gauge invariance, the
coefficient k (a„w, ) of (A16) has to be an integer, is given
in the text; see Eqs. (6.99)—(6.104).

Next, we show that, in addition to the terms in (A16)
and (A17), there can be further relevant and marginal
terms in I that contribute to S~ (a, io). The reason for
this is that we have the transformation properties (A4)
and (A5) and the fact that the constraint (A8) has to hold
only for the su{2) 3-components of the local distributions
we are considering. Hence, applying this and exploiting,
in particular, invariance under global rotations around
the 3-axis in spin space [principle (P4) in the situation of

(0)v), v~(A6)], one finds that for q&&„z' z (a„w„'g„g2) the most

general expression reads

~a~. .. k(a„to, )
VlocAi, A~ c~ c~ 91~ 92(a, io;, ) = v

1 v2P (3)

1

o.,(a„w, )

4 V'y(il )V'y(q )

(A19)+~[(1—
&~,3»~, ~,ri' '(a„~,*ni)+s~, ~,3 ~~' '{a, ~„ni)]&'"(ni—n2),

vg v2 vl v2where v, (a„io„g,) is symmetric and r2 (a„to„il,) is antisymmetric in v, and v2. In the expression (A19), the first
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two [marginal and relevant (D = —1)] terms correspond to (A16), the third (marginal) term to (A17), and the last two
terms give rise to an additional [relevant (D = —1)] contribution of the form

2
V Vg f r, ' '(a„w, ;rj)w „(rl)w „(il)du(il)+ g f s„„3r2' '(a„w, ;q)w, „(il)w z (il)du(il),

1' 2

(A20)

where we have absorbed the scale factor 0 into ~)' ' and ~2' '. For further constraints on ~i' ' and ~q' ', if the system
displays, for example, rotation invariance in the scaling limit (0—+ co ) [principle (P4)], see Frohlich and Studer (1992b).
Finally, all possible third-order terms in K are summarized by

k(a„w, )

'Y '9i 'Y '92 )' '93

+a~', , 'i, ', ~,«, w, ni)5"'(ni —n3)5"'(ni —n3»

where il~' ~ 'z (a„w„'il, ) is symmetric under permutations of (v, A, ), (vzdz), and (v333). Moreover, it vanishes if

two or three of the indices A „Az, A3 take the value 3 simultaneously. The first term on the rhs of Eq. (A21) gives a
contribution that is contained in (A16). Again the restoration of rotation or translation symmetry jn the scaling hmit
can be used to imply further constraints on the resulting marginal contribution to S~ (a, w ),

X f, n~', , ~,', ~,(a, w, n)w. , ~, (n)w. ,~, (~)w.,~, (n)dU(n) .
A), A2, 33=1

(A22)

(aw) Mixed terms in a and w:

(awl) bio,'" z. By invariance under global rotations
around the 3-axis in spin space [principle (P4)]

y,'„'~' ~(a„w„g,il) has to vanish unless A =3. In addi-

tion, exploiting U(1) and U(1),~;„gauge invariance, i.e.,
imposing Eqs. (A3) and (AS), one concludes that

v ~ (3)' '" "(a w g il)=y (a w )5 E"'i'- 5' '(g —il)

and (6.67), which play a crucial role in the discussion of
Sec. VI.

We consider the Euclidean path-integral formulation
of the theory of a free Bose field in two dimensions and
recall the form of the corresponding two-point function:

(P(z, z)P(w, w)) = 5 5
5J(z,z) 5J(w, w)

X ln exp —5& + J,
where y3(a„w, ) is a constant in an SU(2) gauge where
(A6) holds. Under SU(2) gauge transformations

y3(a„w, ) transforms like f33(a„w, ); see Eq. (A18).
Hence there is a mixed marginal term contributing to
SA (a, w ) that takes the form

where

& J,y& =fJ(z,z)y(z, z)dz Rdz,

(Bl)

y, (a„w, )
y3(a„w, ) da Rw3 da Rw3

A0 2m' &0
(A23)

the constraint (A3) that these local distributions must
have scaling dimensions D 1, and hence they give rise
to irrelevant terms which we discard in S~ (a, w ).

0

This completes the calculation (in the bulk) of the most
general (universal) form of the "scaling limit" S~ (a, w)

that is consistent with principles (Pl) —(P4) given in Sec.
V.A. For a compilation of the terms discussed in
(al) —(aw2) above, see Eq. (5.26).

(P(z, z)P(w, w ) }= ——ln~z —
w~ .2

(B4)

writing p(z, z)=QL(z)+pz(z), similarly to Eq. (6.34),
one obtains

Ss($)= — fP(z, z)ci, B,Q(z, z)dz Rdz, (B3)

with ii positiue Sz(P) is the E.uclidean form of the action
(6.41), and z and z are the analytic continuations of the
variables (on the unit circle) defined in Eq. (6.61); note
that z=z in the Euclidean domain. Evaluating the
Cyaussian integral in (Bl) by recalling the fundamental
solution of the Laplacian 6, =8 B„one finds that

APPENDlX B (P (z)P (w)}= ——ln(z —w),1

The purpose of this appendix is to collect a few basic
facts about Gaussian models in two dimensions. Thereby
we fix our normalizations and verify the identities (6.63) (Ps(z)PJi(w)) = ——ln(z —w) .I
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Given two operators 3 and B that are linear in
harmonic-oscillator creation and annihilation operators,
one easily verifies the general identity (see, for example,
the Appendix of Chap. 7 in Green, Schwarz, and Witten,
1987)

(. A. . B. ) e( AB) (87)

Hence, by Eqs. (85) and (87), we infer that the vacuum
expectation value of two (left) chiral vertex operators as
in Eq. (6.62) is given by

( inst (z) immit (w)
) ( )nmyn (88)

It is straightforward to generalize these results to the
situation of N Bose fields, (b„. . . , P)v, coupled by a posi
tive matrix K; see Eq. (6.52). The generalization of Eq.
(85), for example, is given by

(pL;(z)pL (w)) = —(K ')~iln(z —w), i j =1, . . . , N,
(89)

which leads to an obvious generalization of Eq. (88).
Now, starting from the mode expansion of a free chiral

Bose field [see Eqs. (6.38) and (6.39)], one finds that

V„(z)V (w)=:e::e
=(z —w)™':e ' ': if ~z ) ~w;nm y~ i [n~L (z) ™~L(w)]

(810)
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