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The role played by dynamic symmetries and supersymmetries in nuclear physics is described and inter-
preted with experimental examples. Implications for other fields of physics are reviewed brieAy.
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thc concept was Used to describe other sitUations, as
those occurring in kinematic (or fundamental) sym-
metries. Examples of these symmetries are Poincare in-
variance in relativistic quantum field theories and rota-
tioIlal invaliancc 1Il nonI'clativistlc quantum IIlcchaIlics.
In addition, there are permutational symmetries, gauge
symmetries, etc. Here, I review only one type of symme-
try, dynamic symmetry. This is a situation represented
by the following.

(a) The Hamiltonian describing the system can be con-
structed in terms of the elements of a Lie algebra,
(called the spectrum-generating algebra).

A Lie algebra is a set of operators X;E'0 satisfying the
commutation relations

T4c str'uctUI'c of nuclei, cspcclally medium-mass Rnd
heavy nuclei, is rather complex. An important tool in its
study is provided by symmetry, a wide-reaching concept,
used in physics in a variety of ways. The symmetries that
arc particularly UscfUl ln nUclcar physics arc those called
dynamic symmetries. This article reviews the concept of
dynamic symmetry briefIIy and discusses its use in the
study of nuclear structure, based on the "interacting bo-
son model. " An account of this model is given by Iachel-
lo and Arima (1987).

In the last 15 years, the concept of symmetry has been
further enlarged with the introduction of supersym-
metries (or graded symmetries). The use of supersym-
metry for the study of odd-even nuclei thr'ough the "in-
teracting boson-fermion model" will also be described
bricAy. An account of this Inodel is given by Iachello
and van Isacker (1991). The type of supersymmetry
found in nuclei is the only one that has been experimen-
tally verified so far. Since the supersymmetric partners
are nucleons (fundamental fermions) and correlated pairs
of nucleons (bosons), we shall speculate briefly on wheth-
er or not this type is the only one that can be realized in
physics.

[X;,X, ]=pc;,"X„, (2.1)

together with the Jacobi identities. (For a review of Lie
algebras and Lie groups, see Wybourne, 1974.) Quite
often the Hamiltonian H is a polynomial in the elements
Xf

H=Eo+ge;X, + QU; X,X + . (2.2)

The expansion of H into the elements of an algebra is
called algebraic theory.

(b) The Hamiltonian H does not contain all elements of
9 but, oIlly special combinations of them called invari-
ant" (or "Casimir"') operators of a chain of algebras,

An invariant operator C of an alge-
bra 9 is an operator that commutes with all the elements
of 0,

[C,X;]=0 for any i .

If the Hamiltoman H is a polynomial in the elements X;,

Thc woId symmetry, from the Greek 0'Upp&'Epos,
meaning well-ordered, well-proportioned, is used in phys-
ics in Inany ways. Originally it applied to the geometric
structure of physical systems, such as moleculcs, or crys-
tals, as illustrated in Fig. I. The geometric structuI'e of
the molecule in this figure is invariant under the group
C3 (rotations of 120' around the horizontal axis). Later,

FKx. 1. H3-C-C-C13. The geometric structure of this molecule

is invariant under rotations of 120 around the horizontal axis.
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dynamic symmetry is the situation in which 0 is a poly-
nomial in thc CasiIIliI' opcI'RtoI's

II= aC(Q)+ a'C(Q')+ a"C(Q")+ (2.4)

Functions morc coIYlplicatcd than polynoIIliRls CRI1 bc
(and have been) constructed, as it will be mentioned in
the following section in the case of the hydrogen atom.
Since the Casimir operators are linear combinations of
the elements of the algebra, X, , and their products, dy-
narnic symmetry is a special case of algebraic theory.

The main advantage of dynamic symmetries is that,
whenever one such symmetry occurs, all properties of the
system can be given in closed form in terms of quantum
numbers. These closed forms are very useful in analyzing
experimental data, especially in complex situations such
as those encountered in the spectroscopy of nuclei. Since
the Casimir operators ar'e diagonal in the basis provided
by the representations of 9& 0' &9",the eigenvalues
of 0 of Eq. (2.4) are given by

E =a& C(Q) &+a'& C'(9') &+a"& G(Q") &+ . , (2.5)

where & C( Q) & denotes the expectation value of C( 9) in
the appropriate representation of Q. [For explicit expres-
sions of thc cigcIlvalucs of thc Casimir operators C, scc
Wybourne (1974), Chap. 15.] The energy formula (2.5)
implies a splitting, but not mixing, of the representations
of Q.

(a) the closed form (3.2) of the energy eigenvalues which
produces a regular pattern of energy levels, as shown in
Fig. 2, and (b) the occurrence of degeneracies in addition
to those dUc to rotational invariancc.

Although known for at least 60 years, dynamic sym-
metries did not receive considerable attention in physics
Until the '60s, when they were introduced in particle
physics. Cabell-Mann (1962) and Ne'eman (1961) suggest-
ed that the internal degrees of freedom of hadrons be de-
scribed in terms of the Lie algebra SU(3). This algebra is
now called flavor" SU(3) in order to distinguish it from
other SU(3) algebras that play a role in hadronic physics
(such as the "color" algebra). Furthermore, it was sug-
gested that a dynamic symmetry exists corresponding to
the chain of algebras,

SU(3) DSUI(2)Ur(1) DOI(2)SUr(1), (3.3)

and evaluating the expectation value of (3.4) in the repre-
sentation described by the diagram

where SUI(2) is the isospin algebra and Ur(1) the alge-
bra of hypercharge. By writing the mass operator M
(which replaces for relativistic situations the Hamiltonian
operator) describing the mass of the hadron as

M=M +aC, (U (I))+b[C (SU, (2))——,'C, (U„(1))]

(3.4)

III. DYNAMIC SYMMETRIES IN ATOMIC
AND PARTICLE PHYSICS

Thc oldest cxaITlplc of R dynaITlic symlTlctry is provided
by the spectrum of the nonrelativistic hydrogen atom.
Pauli (1926), Fock (1935), and Bargmann (1936) showed
that thc SchrodIngcr equation for thc hydIogcIl RtoITl has
a larger symmetry than rotational invariance. The Ham-
iltonian H can be written in terms of one of the Casimir
operators of an algebra, O(4), whose elements are the
three components of the angular momentum J and the
three components of the Runge-Lenz vector A, as

me /iii

2(C2+ 1)

Here C2 is the first quadratic Casimir invariant of O(4).
(In this article, following common practice„capital letters
will be used to denote both algebras and groups. ) An ac-
count of the O(4) symmetry of the hydrogen atom is
given in Chap. 21 of Wybourne (1974). By noting that
the eigenvalues of C2+1 are n (n =0, 1, . . . ), one ob-
tains the Bohr formula

SU(3) D SUi(2) S U) (1) D OI(2) Ur(l)

(A, ,p) I
(3.5)

where X, p, I, Y, I3 RI'c thc qUantUIn Ilu1Tlbcrs that label
thc I'cpI'cscntatioIls, oIlc obtaiIls thc Gcll-Mann —Qkubo
mass formula (Okubo, 1962)

O
CD

CQ

Q»

LLI

me 4/A'E(n)=— 72 =1»2». . .
2'

(3.2)

As one can see from Eq. (3.1), in this case it is actually
1/H Rnd Ilot H that is liIlcar i11 thc invariants. This is
due to the special nature of the Coulomb interaction.
The presence of a dynamic symmetry manifests itself in

FIG. 2. A portion of the level diagram of the nonrelativistic hy-
drogen atom showing the regular pattern of energy levels and
the occurrence of additional degeneracies.
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l.8—

1.6—

algebra 0 in its subalgebras, QD 0'& 0"& . Since we
want states to be characterized by good values of the an-
gular momentum, the angular momentum algebra O(3)
must always be contained in the chain of subalgebras of
Q. There are three, and only three, such chains:

l.2

I.O—

,U(5)&O(5)~O(3)&O(2) (I),
U(6) —SU(3) DO(3) DO(2) (II),

O(6)~O(5)&O(3)~O(2) (III) .
(4.3)

FIG. 3. Level diagram of the baryon decuplet. The energy lev-
els are computed using the mass formula (3.6).

M(I, I3, F ) =Mo+a Y+ b [I(I+I ) —Y /4] . (3.6)

In the diagram (3.5) the direct product sign S is used in-
stead of the direct sum sign e of Eq. (3.3), since the wave
functions are products rather than sums. Equation (3.6)
provides an excellent description of hadronic spectra, as
shown, for example, in Fig. 3. In this example the mass
(or Hamiltonian) operator is linear and quadratic in the
Casimir opcI'atoI's.

IV. DYNAMIC SYMMETRIES
IN NUCLEAR PHYSICS

Thc best and n1ost complctc cxan1plc of dyIlRmic sym-
metries to date is provided by nuclear physics. Dynamic
symmetries here are based on the interacting boson mod-
el (Arima and Iacheilo, 1976, 1978, 1979), which de-
scribes nuclei with an even number of neutrons and pro-
tons as aggregates of X bosons with angular momenta
J =0+ or J =2+. The bosons represent correlated
pairs of neutrons and protons. In order to construct the
Hamiltonian and other physical operators of the interact-
ing boson model, it is convenient to introduce creation
and annihilation operators for s (J =0) and d (J =2) bo-
sons, s, d„", s, d„(p=O, +1,+2), denoted generically b,
b (a= 1, . . .6). There are six of these operators, since
the s boson has one single component, while the d boson
has five components corresponding to the five projec-
tions of its angular momentum along an axis. The bilin-
ear products of the boson operators

G 13=btbP, a,P=1, . . . , 6, (4.1)

are the elements of the Lie algebra U(6). All operators
are constructed from the operators G & (algebraic
theory). For example, the Hamiltonian H is written as

In general, each nucleus (i.e., all its low-lying states) is
dcscrlbcd by a sct of parameters E~I3, Q~I3&~, and thc pl"ob-

lem of finding the eigenvalues of H must be solved nu-
merically. However, for some nuclei, the values of the
parameters are such that the Hamiltonian H can be writ-
ten in terms only of ihe Casimir operators of a single
chain in (4.3). For example, for chain III,

H'""=E + A e (O(6))+Be (O(5))+Ce (O(3)),

(4.4)

whel'e C2(Q) dello'tes tile quadratic lllvallallt of tile alge-
bra 9, and A, B, and C are arbitrary coefficients (parame-
ters) not determined by symmetry. By evaluating the ex-
pectation values of H in the appropriate representation,
one can then obtain the eigenvalues of H in terms of
quantum numbers labeling the representations. In the
case of chain III, the representations are labeled by the
dlRgl am

U(6) D O(6) D O(5) & O(3) D O(2)

X cr r(v~) L ML

(4.5)

Rnd onc obtmns

E '=E +Ho(o+4)+Br(r+3)+CL(L+I) . (4.6)

In the diagram (4.5), X, o, r, vz, L, and MI denote the

quantum nun1bers that characterize uniquely the states.
These are obtained by studying the representations of
U(6) and its branchings into representations of the
subalgebras [see Wybourne (1974) for a description of
branching rules]. Repeating the same procedure for oth-
cl chalIls, orle can obtalIl thc full sct of dyIlan11c symnlc-
try formulas,

E"'(N, n„,u, n ~,L,MI )

=ED+end+and(nd+4)+Pu(u+3)+yL(L+ I ),
(4.2)

The algebra Q=U(6) is thus the spectrum-generating
algebra of this problem. The knowledge of the
spectrum-generating algebra allows one to study in a
straightforward way its dynamic symmetries. These are
obtained by a n1athematical pr'ocedure, known as the
branching rule, which studies all possible breakings of an

=Eo+z( A 1+p2+ Ap+ 3A, +3p ) +~'L (L + I ), (4.7)

E'""(X,o, r, v, ,L,M, )

=Eo+ Ao (o.+4)+Br(r+3)+CL(L+1) .

Thcsc foIITlulas dcscI'lbc 111 111any cases thc cxpcI'lrl1cntR1
data very well (Figs. 4, 5, and 6). For example, for sym-
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E
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FIG. 4. U(5) dynamic symmetry (chain I) in nuclei: 48 Cd92.
On the left is the experimental spectrum, on the right the spec-
trum predicted by the energy formula (4.7), I.

FIG. 6. O(6) dynamic symmetry (chain III) in nuclei:,'8 Pt»8.
On the left is the experimental spectrum, on the right the spec-
trum predicted by the energy formula (4.7), III ~

metry (III), there are two free parameters a and ~'. With
these parameters one can correlate the energies of 20 lev-
els, as shown in Fig. 5, with an accuracy of a few percent.

It must be said that the interacting boson model does
much more than just describe some nuclei with dynamic
symmetry (the aspect described in this article). If, in-
stead of using special values of the parameters e, u, . . . ,
such that the Hamiltonian is a sum of Casimir operators,
one uses the full set of parameters, then one is able to de-
scribe all collective low-lying quadrupole states of nuclei.
There are six parameters that describe this most general
situation. This can be seen from Eq. (4.7) by counting
the number of independent terms for all chains. Since
the rotational term L(L+1) is common to all three
chains, there are just six independent terms in (4.7).

Since its introduction in 1974, the interacting boson
model has been extended to include proton-neutron de-
grees of freedom, through the algebra U (6)e U (6),
called the "interacting boson model 2" (Arima et al. ,
1977; Otsuka et al. , 1988). In a further generalization,
necessary when protons and neutrons occupy the same

shell, proton-neutron pairs both with isospin one and
zero have been introduced (interacting boson models 3
and 4; Elliott and White, 1980; Elliott and Evans, 1981).
The dynamic symmetries of these more complex models
have also been analyzed and some experimental examples
found.

It should also be remarked brieAy that, in addition to
the particle interpretation of the bosons given above
(correlated pairs), it is possible to give another (classical
or geometric) interpretation. This is done through the
the introduction of a coherent (or intrinsic) state

~N, a„)= s +pa„d„~O), p=O, +1,+2, (4.8)

where the a„'s are classical variables (c numbers). The
variables a„can then be associated with the shape of an
object described by the surface

R =Ro I+pa„Y2 (9,$) (4.9)

leading to a description of collective states in terms of

E
(Mev)

I 56
64Gd92

( 24, 0) (20,2)

E xp. Th.

(16,4) (I8,0) (24,0) (20,2) (I6,4) {Ie,o)

IO—

I — 8
+6—
+42—0—

+6~5~+ 44 —c-
+2—

0

2~ "+—4+—
04=2 0 +IO—

+-- 8—
+6—
+4+2—

0+

+6—+
+ +5—

+
4 + +5—

4 —4~ 4—
2+ 0+0+—2

SU(3)

FIG. 5. SU(3) dynamic symmetry (chain II) in nuclei: 64 Gd92.
On the left is the experimental spectrum, on the right the spec-
trum predicted by the energy formula (4.7), II. FIG. 7. Nuclear shape corresponding to symmetry II.
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shape variables (Bohr and Mottelson, 1975}. The three
dynamic symmctrlcs, Eq. (4.3), provide thcll a
classification of shapes of nuclei in terms of symmetry
groups: (I) spherical shape, (II) axially symmetric de-
formed shape, (III) nonaxially symmetric deformed shape
(y-unstable shape). Figure 7 shows the shape corre-
sponding to symmetry II. The classification of shapes of
nuclei in terms of syrnrnetry groups is similar' to the
classification of shapes of crystals in terms of point
gl oups.

The presence in (5.2) of anticommutators makes the alge-
bra a superalgebra. [A normal Lie algebra is defined only
in terms of commutators, Eq. (2.1}.] The importance of
dynamic supersyrnmtries is that the eigenvalue problem
for the Hamiltonian of a mixed system of bosons and fer-
mions can be written explicitly in terms of quantum num-
bers, thus providing a simple classification scheme that
can be checked easily by experiment. The eigenvalues of
(5.1) are in fact obviously given by

E=a*(c(9')}+a'*(e(Q'*)}+a"*(e(9'"*))+
V. DYNAMIC SUPERSYMMETRIES

In rcccrlt years thc concept of symmetry has bccIl crl-

larged even further with the introduction of supersym-
rnetries or graded symmetries. Supersymmetries were
originally introduced in elementary-particle physics (Mi-
yazawa, 1966; Ramond, 1971) in an attempt to provide a
unification of par'ticle properties. In contrast with nor-
mal symmetries, where the symmetry operations trans-
forrn bosons into bosons or fermions into fermions, in su-
persyrnrnetry ther'e are also operations that transform bo-
sons irlto fermions and vice versa. As in the case of nor-
mal symmetries, there are several types of supersym-
metries (for example "kinematic" supersymmetries; Wess
and Zumino, 1974). Here only "dynamic" supersym-
metrics wi11 be discussed.

Dynamic supersyrnmetries can be characterized in the
sRInc way Rs IlorInR1 dynaIQ1c syIQmctr1cs:

(a) The Hamiltonian describing the system is con-
structed in terms of the elements of a Lie supery, lgebra
9* (called the spectrum-generating superalgebra).

(b) The Hamiltonian can be written in terms only of in-
variant (Casimir) operators of a chain of superalgebras,

, i.e.,

(5.4)

where (C(Q*)) denotes the expectation value of C(Q*)
in the appropriate representation of 0*.

Vl. DYNAMIC SUPERSYMMETRIES
IN NUCLEAR PHYSICS

The use of dynamic supersymmctries in nuclear phys-
ics is based on the interacting boson-fermion model
(Iachello and Scholten, 1979; Iachello and Kuyucak,
1981). This model is a generalization of the interacting
boson model and. introduces, in addition to bosons
describing the correlated pairs, fermions describing un-
paired particles. The simplest example of nuclei ~here
one must consider situations of this type is provided by
nuclei with an odd number of protons and an even num-
ber of neutrons, or vice versa. In these nuclei, at least
OIlc particle must bc urlpaircd. Thc fundamental in-
gredients in constructing operators that describe these
situations are a set of fermion creation and annihilation
opcIRtol's, EE;, EE; (E = 1, . ~ ~, I). Tllc clcIIlcIlts of t11c LIc
superalgebra can be written explicitly in terms of these
operators as

H =a'C ( 9*)+a'*C ( 9'*)+a"*C( 0"")+ (5.1)

where 8(9*) denotes a Casimir operator of the su-
peralgebra 0*.

This definition of a dynamic supersymmetry is identi-
cal to that of a dynamic symmetry g1vcrl 1Il Scc. II, ex-
cept for the appearance of superalgebras. The main
di6'erencc between a normal and a super Lie algebra is
that in the super'algebras there appear two sets of opera-
tors, bosonic G (a = 1, . . . , n), and fermionic F,
(I —1, . . . , I), sa'tlsfylIlg thc IclRtloIls

Gj=a; a-,
(6.1)

where 6 f3 and 6;& are bosonic operators and F~; and I;
are fermionic operators.

The Hamiltonian of the interacting boson-fermion
model can be written as

[G,Gp] =gcrpG

[G,F;]=pc~,F

[F„F,j =pc,,G

(5.2}

(6.2)

where Hz describes the bosons, H~ the fermions, and
V~F their iIlteraction. Each individual piece can be writ-
ten in terms of the elements (6.1) of the superalgebra as

together with the Jacobi identities. In Eq. (5.2) the
square brackets denote commutators, while the curly
brackets denote anticornmutators,

(5.3)

H~=FoE:+X&,G, + ,'&&,kEG,GkE—
ij ij kh

VRF = g w p; G p G; +Q w p; F;F p . .

apij apij
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If one includes only s and d bosons and single particles in
a shell with degeneracy Q, the spectrum-generating su-
peralgebra of (6.3) is the unitary superalgebra U(6/0).

Since there are three possible subalgebras of U(6) and
many subalgebras of U(Q), depending on the actual de-
generacy of the shell, a vast number of possibilities can

I

occur, several of which have been investigated in detail.
Here only the case in which the single particle occupies a
shell with j=3/2, 0=2j+ 1 =4, will be discussed
(Balantekin, Bars, and Iachello, 1981a, 1981b). The cor-
responding supersymmetry is U(6/4). By breaking the
superalgebra into its maximal Lie subalgebra,

U(6/4) OU(6)e U(4) DO(6)$ SU(4) &Spin(6) &Spin(5) &Spin(3) &Spin(2), (6.4)

one can then construct a dynamic supersymmetry. The eigenvalues of the Hamiltonian constructed in terms of invari-
ants of (6.4) in the representation

U(6/4) D U(6) I3 U(4) & O(6) I3 SU(4) )8 Spin(6) & Spin(5) D Spin(3) D Spin(2)

A' M X I) K2) N3 rl) r2) (Vh) J MJ
(6.5)

are given by

E(JV)N)M)X)o „o2,o3, „2, ~) )

=Eo+E,N+E2N + AX(X+4)+ A '[o,(o, +4)+o2(o 2+2)+o 3]+B[r,(r, +3)+r2(ran+1)]+ CJ(J+ 1) . (6.6)

Here X, o.
&,

o.2, o.3, . . . are the quantum numbers that
characterize uniquely the states of this complicated sys-
tem of bosons and fermions and A, 3 ', 8, and C are pa-
rameters not determined by supersymmetry. The formu-
la (6.6) describes several nuclei (a supermultiplet), charac-
terized by a given number of bosons plus fermions, A;
To each supermultiplet there belong five nuclei with
N=Ã, M=O; N=JV —1, M= 1; N=A 2, M=2-;
N=JV 3, M=3; —N=JV—4, M=4. The quantum num-
ber M does not appear explicitly in Eq. (6.6), since it can
be eliminated using the condition N+M=A' and thus
absorbed into Eo, E„and E2. Typical supermultiplets
are shown in Fig. 8. The predicted spectra of a pair of
nuclei (even-even and even-odd) are shown in Fig. 9(a).
They can be compared with the experimental spectra
shown in Fig. 9(b). Several other examples of supersym-
metry have been found in the same region and in other
regions of the periodic table.

Again, it must be said that the interacting boson-

— (a)
E

(Mev)
190
760S

I 14

.($ 2)--I5/2+

81
Ty Icl 14 Th

(3,0)
6+

(2,0)

(1,0)
2

(0,0) (0- ' —p+

4+

p+

22

-(2 a),

--I3/2+
--I I/2

5/2+

I

fermion model does much more than describe spectra of
odd-even nuclei with supersymmetry (the aspect dis-
cussed briefly here). The model provides a complete
description of these spectra even in situations when there
is no supersymmetry; i.e., the coefficients e, u, . . . in the

E — (b) eoOs
(Mev) 76 114

191
77 lr114 Exp

(3,0)
-(-'-')

-- I5/2+

-- I I/2

--13/2+

(1,0)
I

2
(0,0)g

3/2+

0
(2,0)

-~4 +
=('-')

--V/2+

9/2+
--9r2+

--5r2+
3/

I/2

5/2

FIG. 8. U(6/4) supermultiplets in the Qs-Ir region.

FIG. 9. U(6/4) supersymmetry in nuclei: (a) excitation spectra
predicted by Eq. (6.6); (b) experimental spectra of the pair of nu-
clei ' Os-' 'Ir.
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Hamiltonian (6.2) are not such that H can be written
purely in terms of Casimir operators. For these cases,
the algebra U(6/0), or U(6) when there are no unpaired
particles, plays the same role as Racah algebra plays for
angular momentum states. (For a review of Racah alge-
bra, see Fano and Racah, 1959.) The strikingly success-
ful implementation of this approach in nuclear spectros-
copy can be viewed as an extension of Racah's methods
to a larger set of operators.

Vll. DYNAMIC SUPERSYMMETRIES
IN PARTICLE PHYSICS

Dynamic supersymmetries of the type described above
have also bccIl colls1(iclcd In elementary-particle physics.
Indeed, the original suggestion of Miyazawa (1966) was
for a supersymmetry of this type. Recently, Catto and
Cxiirsey (1985) have suggested that the internal degrees of
freedom of hadrons be described in terms of the su-
peralgebra U(6/21). In this case, 6 is the dimension of
the fermionic sector and 21 that of the bosonic sector.
The supersymmetric partners are quarks and their associ-
ated pairs (diquarks). The fundamental supersymmetric
multiplct is

g
(7.1)

within which properties of nuclei can be described. In
this article, only the symmetry aspects of the models
have been reviewed briefly. Their relationship with the
microscopic structure of nuclei (in particular the nuclear
shell model) has been discussed in a previous review arti-
cle (Iachello and Talmi, 1987). In view of its relation
with the collective model (Bohr and Mottelson, 1975),
mentioned brief1y at the end of Sec. IV, and to the nu-
clear shell model, the interacting boson model combines
both collective and single-particle aspects into a single
theoretical framework. It is for this reason that it has
proven to be very useful in the analysis of the complex
situations encountered in nuclei.

The methods of spectrum-generating algebras and dy-
namic symmetry have recently been applied to the study
of molecules (Iachello, 1981; Iachello and Levine, 1982),
where they have proven also to be useful, especially in
the study of polyatomic molecules (Iachello and Oss,
1992). From all these applications, it appears that alge-
braic methods provide a general framework for attacking
many quaIltum-mechanical problems ln physics and
chemistry.
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where q denotes a quark and D an antidiquark. By con-
structing the Inass operator in terms of Casimir operators
of the appropriate algebras, one can obtain mass formu-
las that describe simultaneously baryons and mesons.
These mass formulas account for the observed spectra
quite well. One of the consequences of the supersym-
metric mass formula is that the slopes of the Regge tra-
)cctorics foI' mcsons and baryons aIc cxpcctcd to bc
equal, as experimentally observed.

Both supersymmetries described above are based on
fundamental fermions and their associated pairs. Nambu
(1985) has suggested that these form a general class of su-
persymmetries that could eventually be applied in other
situations, such as those cncouIltcIcd In thc clcctIoIl gas
oI' liquid He. One can further speculate whether or not
this type of supersymmetry is the only one that can be
realized in physics. The experimental situation at the
pI'esent time is in support of this speculation, since no ex-
aInple has been found so far of fundamental supersym-
mctrics.

VIII. CGNCLUSIGNS

I have briefly reviewed here applications of the concept
of dynamic symmetry (and supersymmetry) to several
areas of physics, with particular emphasis on applications
to nuclear physics. The applications to nuclear physics
are based on the interacting boson (Iachello and Arima,
1987) and boson-fermion (Iachello and van Isacker, 1991)
models. These models provide a unified framework
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