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A summary is presented of the statistical mechanical theory of learning a rule with a neural network, a
rapidly advancing area which is closely related to other inverse problems frequently encountered by physi-
cists. By emphasizing the relationship between neural networks and strongly interacting physical systems,
such as spin glasses, the authors show how learning theory has provided a workshop in which to develop

new, exact analytical techniques.
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If a thing is worth doing, it is worth doing badly.
Chesterton, 1910

I. INTRODUCTION

A superb example of the power and versatility of sta-
tistical mechanics is the field of neural networks, to
which the tools of physics have been applied with such
spectacular success. Here we describe what is perhaps
the most interesting area for nonspecialist physicists, the
learning of a rule by a network, a problem which not
only has direct analogies to the physics of strongly in-
teracting complex systems, but is also related to the in-
verse problems of imaging and generalized computation.
Statistical mechanics is continuing to solve problems
which have been known to engineers for many years, and
we expect the new tools and insights developed in this
field to make a considerable contribution to conventional
physics.

In a sense the theory of neural networks has come full
circle. Neural networks were originally proposed as an
alternative to conventional computers to perform the
task of processing input data into output data (McCul-
loch and Pitts, 1943). Here we call the input data a ques-
tion and the corresponding desired output data the
answer, where the answer is derived from the question by
a rule. Whereas a conventional computer consists of a
single processor performing complicated functions of its
reservoir of data, a neural network instead has many pro-
cessors, the nodes or neurons (we use these words inter-
changeably), connected together as, for example, in Fig.
1. The output of a neuron is called its state and is sent to
be an input to the other nodes; thus node 1 in Fig. 1 re-
ceives inputs from neurons 2 and 4 and sends its output
to be an input to nodes 2 and 3. Each node performs a
simple function of its inputs, and the hope is that since
all these processors will be working at once, the whole
computation will be performed very quickly. This is the
foundation of parallel distributed processing or connec-
tionism (Rumelhart and McClelland, 1986). Engineers
were left with the considerable task of deciding which
connections between neurons should be made and how
neurons should be programmed.

Hopfield (1982) realized that if the state of each node

FIG. 1. A network of four neurons.

Rev. Mod. Phys., Vol. 65, No. 2, April 1993

takes just two values, if certain stringent conditions are
placed upon the details of the connections and the func-
tion of its inputs which each node performs, and if neu-
rons change their states one by one in a random order,
then the dynamics of the whole network can be investi-
gated using statistical mechanics, because it is possible to
define an energy for the network which obeys detailed
balance. The functions which the neurons perform may
be adjusted (within the constraints of the Hopfield model)
so that prechosen configurations of the network are fixed
points of the network dynamics; it is speculated that
these fixed points are related to memories in real, biologi-
cal networks—hence our use of the word “neuron.”

Although storage of memories continues to be an area
of active interest (for reviews see Amit, 1989; Geszti,
1990; Ritter et al., 1990; Domany et al., 1991; Miiller
and Reinhardt, 1991; Peretto, 1991; Weisbuch, 1991), it
is only loosely connected to computation, the subject of
this paper, since Hopfield’s network does not take input
data (except as the initial states of all the nodes), and
since the networks we shall study obey neither Hopfield’s
constraints nor any of the subsequently devised alterna-
tive sets of constraints which make an analysis of the
fixed-point structure possible (Peretto, 1984; Derrida
et al., 1987; Anlauf and Kuhlmann, 1992; Watkin and
Sherrington, 1992). Instead our subject will be networks
in which some nodes, the input nodes, are fixed in a
configuration corresponding to a question, and other
nodes, the output nodes, are naturally set by the dynamics
of the network to a configuration of states corresponding
to the question’s answer. This is the architecture used in
most engineering applications.

The natural method of programming a conventional
sequential computer is a list of instructions, which is a
severe limitation in problems such as speech recognition,
for which the rule is not exactly known. Schemes exist,
however, to teach a neural network from examples, that
is, pairs of questions and correct answers. In a sense this
is an imaging problem, because an unknown rule is
reconstructed from the data it generates, but our inten-
tion is not specifically to infer the rule but to answer new
questions correctly. Learning in this fashion is called su-
pervised learning, because it requires a teacher network
providing . the correct answers to the questions from
which our student network must learn.

Neural networks have achieved many successes, but
their underlying theory remains notoriously difficult to
formalize. Even the most advanced statistics which has
been applied, VC theory (Sec. II.LE), has been unable to
do much more than place weak bounds on their success,
and then only for the simplest networks. As a result,
most practical network research is carried on in a trial-
and-error fashion. Frequently “tricks” are tried to im-
prove learning efficiency, but these tricks are usually
motivated either by an appeal to intuition or by using
only the simplest principles of information theory.

During the past few years, however, a theory of learn-
ing has been proposed which uses statistical mechanics.
Instead of weak bounds, the new theory is able to make
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exact predictions in idealized problems and has thus
solved problems which have been outstanding in the
machine-learning community for many years. More im-
portantly, statistical mechanics gives real insight into
practical applications. New techniques for learning may
be motivated by exploiting advanced statistical physics,
particularly that of spin glasses.

This article summarizes the statistical mechanics of
learning.

Section II defines the concepts of a network and a rule
more precisely and thus sets up the problem to which sta-
tistical mechanics is applied in subsequent sections. As
an illustration, we develop, in parallel, an example of a
simple network, the perceptron (Rosenblatt, 1962), on
which the majority of analysis has centered, and fully an-
alyze learning from examples by a simple algorithm. In
this case geometrical insight alone may avoid a complex
statistical-mechanics formulation. We then explain the
recent information-theoretic Bayesian approach to learn-
ing. Although we keep Bayesian sections separate from
the rest of Sec. II, we believe that Bayesian insights are
particularly important. They have an intimate connec-
tion to the most recent engineering advances. Bayesian
theory allows us to define in principle the optimal way in
which generalization can be performed (Sec. II.F.2) and
the optimal way to train a neural network (Sec. I1.G.2).

Section III shows that statistical mechanics is a useful
tool for analyzing learning for two different reasons. One
is that many algorithms are stochastic and correspond
exactly to Langevin or Glauber dynamics on a noisy en-
ergy landscape (Sec. III.A.2). The behavior of these algo-
rithms may be analyzed using statistical mechanics, and
this allows us to infer how other algorithms would
behave. Another reason for using statistical mechanics is
that learning is essentially a problem of statistical in-
terference and fits naturally, as we shall see in Sec.
II1.A.3, into the same mathematical framework.

The examples we have to learn from will inevitably be
chosen from some distribution and, once they are, will
constitute a static ‘“quenched” disorder. The effects of
quenched disorder have been studied in many areas of
condensed-matter physics, and a mean-field theory has
been developed to analyze them. Section III.A develops
a simple, but exact, neural network example, which gives
a flavor of the techniques involved.

Section III.B shows how insights into the problem let
us design more sophisticated learning algorithms for a
perceptron. In Sec. III.C, we summarize a number of ex-
actly solved models, whose features have turned out to be
generic. In some, a rich structure of metastable states
may exist, just as in other disordered systems, and this is
of vital interest for the convergence times of algorithms.

As Sec. IV shows, it is sometimes possible to analyze
completely the approach to the minimum of the energy
landscape: exact dynamical solutions in noisy, nonequili-
brium situations.

Further richness appears in practical applications, as
emerges in Sec. V. If constraints exist on the complexity
of the network with which we are allowed to learn and if
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a rule is too complicated to be learned exactly within
these constraints, then it will generally be impossible to
answer correctly all the examples we are given. Incom-
patible examples lead to frustration, in direct analogy to
spin glasses, but insight may help us to avoid its unfor-
tunate consequences (Sec. V.A). We study the case of
noisy examples in Sec. V.B. It is possible also to conceive
of an intelligent student who asks questions depending
upon what has already been learned; this interrogative
approach to information extraction has clear implica-
tions for other inverse problems and remains an area of
active study (Sec. V.C). Conversely, we describe a situa-
tion in which examples of the rule are unlimited and
learning must be performed with as little computational
effort as possible (Sec. V.D). We consider, more general-
ly, how prior information about the type of rule being
learned lets us intelligently design neurons to perform a
more complicated function (Sec. V.E). Section V.F
shows that in some realistic problems, it may be
worthwhile to choose a definition of energy so as to sculpt
the energy surface on which the network evolves.

Section VI describes how much of this theory applies
to multilayer networks (MLN), which are the type al-
ready in common engineering use. It is a measure of how
quickly this subject is developing that most of the statisti-
cal mechanics described in this section appeared in pre-
print form while our article was being written. Many of
the open problems we listed in the first edition had been
solved in time for the second edition.

Section VII discusses the usefulness of the statistical-
mechanics approach to learning and points out the direc-
tions in which new statistical mechanics is expected to
lead.

In summary, the structure of the physical ideas
presented in this paper is as follows: Sec. II, formulation
of the problem; Sec. III, relation of the problem to that of
spin glasses, introduction to the replica method and its
physical significance; Sec. IV, analysis of disordered dy-
namics using the eigenvalue spectrum of a random ma-
trix and ergodicity breaking without replica symmetry
breaking; Sec. V, generalization of the basic model, in-
cluding information extraction by interrogation and
design of energy landscapes; Sec. VI, analysis of learning
in more realistic multilayer networks; Sec. VII, the areas
in which new physical insight is required.

Although this article is written for general physicists,
its secondary purpose is to stimulate new research.
There still exists, for example, great scope for new work
in more complicated networks where, as shown in Sec.
VI, although certain simple results have been derived,
there is so far no general insight. In these problems it is
to be expected that systematic procedures will be
developed to avoid the difficulties of the empirical ap-
proaches adopted by most previous researchers.

Il. THE FORMALISM OF LEARNING

In this section the concepts of a neural network and a
rule are carefully defined. We show how naturally the
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two may be combined and develop, in parallel, a straight-
forward example, perceptron (Rosenblatt, 1962; Minsky
and Papert, 1969).

A. The definition of a network

1. Formal definition

A neural network, in its most general form, is a system
of neurons or nodes, each of which is associated with a
real numerical value, the state of the neuron. Frequently
the values are restricted to 31, so that each node is like
an Ising spin (Ising, 1925).

Connections exist between the neurons so that the
state of one neuron may influence the state of the others.
Consider, for example, the network of six nodes in Fig.
2(a), where neurons are labeled by the numbers 1-6.
Neuron 4 receives inputs from nodes 1 and 2 (that is, the
information about which state nodes 1 and 2 are in) and
sends information about its own state, its output as an in-
put to nodes 1 and 5. Notice that loops exist in this net-
work: 1 sends its output to 4, which sends its output back
to 1; such a network is called recurrent. Figure 2(b),
however, shows a nonrecurrent network: no loops of in-
formation exist, although information may still pass from
one point to another by different routes, e.g., from 3
directly to 6 or via node 4.

The network in Fig. 2(b) is also layered (Domany

(a)

1
2
3
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; j
(b)
; 4
5

w

(c)

1 4
2 6
3 5

(d)

1 L
2 >
3

(e)

FIG. 2. Networks of six neurons: (a) recurrent; (b) layered; (c)
layered and recurrent; (d) feed-forward; (e) treelike.

o
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et al., 1986); neurons 1, 2, and 3 form the first layer; neu-
rons 4 and 5 are layer 2; and neuron 6 is in layer 3. Each
layer can only influence higher layers or the same layer.
Notice that a layered network may still be recurrent; in
the net in Fig. 2(c), neuron 4 sends signals to 5, which
signals back. The first layer of a layered network is often
called the input layer, and the last is the output layer.
Layers in between are frequently called hidden layers.

A feed-forward network [for example, that in Fig. 2(d)]
does not even allow signals between neurons in the same
layer. It does, however, allow information to pass from
the first layer to the last by different routes. A network is
called treelike if its structure is like that in Fig. 2(e): in-
formation about the state of neurons in layer 1 may reach
node 6 in layer 3 in exactly one way.

How does a neuron react to its inputs? Consider a
neuron which we shall call 4, whose state we call S,
and which receives inputs from the set of k neurons we
shall call { 4 j 1, j=1,...,k. The states of these neurons
we label {S 4, }. Generally we might allow the state of 4

to be set to any function F, of the inputs it receives, that
is,

Sa—Fa({S4)), 2.1)

where we have pointed out that the function may depend
upon A. Once the initial state of every neuron has been
set and the function it performs is known, we may move
around the network updating neurons according to their
function. The dynamics of such networks has been stud-
ied intensively (for a review see Amit, 1989). For a feed-
forward network, however, we may consider the states of
the neurons in the input layer to be fixed, use the func-
tions (2.1) to set the states of neurons in layer 2, and so
on until the state of every neuron in the network is deter-
mined. It is this second case which we shall be consider-
ing in this paper.
Usually the functions a neuron may perform are re-
stricted to the form
S 4—F,

k
> J 4, AjSAj (2.2)

j=1

That is, the state is set to a function (which may depend

upon A) of the weighted sum of the inputs to 4, where

the set {J, 4 } are the weights. Setting these weights is
)

the principal task of learning theory. This form of updat-
ing function was originally motivated by biological mod-
els in which the weight vectors represented the strengths
of synoptic connections between neurons (Hebb, 1949); so
functions of the form Eq. (2.2) are called ‘“‘synaptic emu-
lation.”

Usually we shall assume that there is only one neuron
in the output layer, node o, whose state is S,. Similarly,
we shall assume that there are N nodes in the first layer,
labeled by i, where i =1, ..., N, so that the states of the
input nodes are the components of an N-vector S. The
function which the network performs on its input to pro-
duce its output is called N. Thus S, =MN(S).
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We shall call the space of all networks we are allowed
to build—including the number of nodes, their connec-
tions, the functions each node performs, and the order in
which they are updated —the student space.

2. Example: the perceptron

Consider the network in Fig. 3(a), the perceptron
(Rosenblatt, 1962). Since there are no hidden layers, we
can simplify our notation and write the function per-
formed by the network as

S,=f [2 J,.S,.] , (2.3)

where the {J;} are the weights between the input nodes
and the output node. Here the sum is over all N values of
i, and this notation is used for the perceptron throughout
this paper. If the states of neuron o are restricted to *1,
we might choose the function f so that

S, =sgn(VNJ-S—1) . (2.4)

Here v is a constant threshold and we have defined the
scalar product of two N-vectors a and b as
a-b=T3,a;b,/N. Equation (2.4) contains a factor of V"N
for a convenience which will appear below. The vari-
ables ¥ and {J;} completely define a perceptron’s action;
so J is called the perceptron vector.

This system, in which S, is restricted to *1, is called a
binary perceptron. Choosing f(x)=x, so S, may take
any real value, makes the system a [linear perceptron
(Hertz et al., 1991). If each component of the vector J
can take any real value (such that the whole J vector has

2
I 0
.l 3
s
L]
N
(a)
J
-
7
-
-
e
a\Y
-
S ~
P
e
D

(b)

FIG. 3. The perceptron: (a) architecture of N input nodes la-
beled by i, sending signals weighted by J; to output o; (b) section
of the N-dimensional input space, showing the perceptron vec-
tor J perpendicular to hyperplane D. D is displaced by 9 from
the origin @, and its projection into the plane of the diagram is
shown as the dashed line. Input S gives output +1.
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a constant normalization, as explained below), we call the
perceptron spherical; if it is restricted to *1, the resulting
perceptron is called Ising. Thus, for example, an Ising
binary perceptron has a *1 output, and the components
of the J are also 1. Our article will use this nomencla-
ture consistently, although within the literature there ex-
ists some confusion of terminology. The spherical and
Ising constraints are the upper and lower extremes of J-
space freedom; of the two the Ising case is perhaps the
most instructive, because, in a real network, engineering
restrictions are likely to lead to quantized couplings.
Kurchan and Domany (1990) have also analyzed more
general constraints on the J-space.

Notice that the output S, of the binary perceptron is
invariant under the transformations

J;—AJ; foralli, (2.5)
S;—vS; foralli, (2.6)
Y—VAY 2.7

for any positive values of A and v. These are the gauge
freedoms of the perceptron. We normally fix the A gauge
so that

JJ=1, (2.8)

and take ¥ to be positive or zero. The space of possible
spherical J’s is therefore the unit N-sphere, so that in this
case the student space is the product of the unit N-sphere
and the set of positive real numbers 3. If the perceptron
is Ising, then J lies on one of the corners of a unit N-cube.
Similarly we shall fix the v gauge by taking every com-
ponent of every question to be drawn from a distribution
with (S?)=1. S vectors, in which every component is
drawn randomly and independently from a distribution
which is independent of J, will have an overlap with J
which is the result of a random walk. Thus V'N J-S is of
order 1, which explains the factor of V'N in Eq. (2.4).

An easy way to visualize the action of a perceptron is
from a schematic diagram, Fig. 3(b), of the N-
dimensional input space, which is all the possible
configurations of the nodes in the input layer. The vector
J is shown in this space and is perpendicular to the
(N —1)-dimensional hyperplane 2, which is displaced
from the origin O by a distance . Only input
configurations, such as S, which fall on the same side of
D as the direction of J, have a positive VN J-S—1 and
will cause S, to be set to +1. Usually (and throughout
the rest of this paper) the perceptron is further restricted
to =0, so that D passes through the origin and the stu-
dent space is just the unit N-sphere.

Neural networks have frequently been studied in the
context of storing memories—that is, random, prechosen
configurations of the states of all neurons in the
network—by designing the weight strengths so that the
memories are fixed points of the network’s dynamics
(Amit, 1989). In a highly recurrent network this is a con-
siderable task; but in a feed-forward network, such as a
perceptron, it simply means that if the states of the input
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neurons are set to the corresponding digits of the
memory configuration, then the dynamics of the network
must set the states of the output neurons equal to the rest
of the memory. As explained in Sec. II.C, storage of
memories is very different from learning a rule.

B. Definition of a rule

1. Formal definition

A rule associates a question and an answer. Here the
question is a vector of (usually) high dimension; the
answer is a vector (usually of much smaller dimension)
which is determined by the question. In most of this pa-
per we shall assume that answers are one dimensional, al-
though multidimensional answers are a straightforward
extension. One example of this formalism would be the
recognition of speech: the high-dimensional frequency
spectrum of a slice of time must be transformed into one
of a list of words. Writing a question as r and the
answer as 77, we say that they are associated by rule V so
that

R=V(r). (2.9)

Thus r is an element of the question space, R of the
answer space, and V of the rule space.

For the purpose of framing statistics, we shall suppose
that the rule we have to learn has been drawn randomly
from some statistical distribution P(¥V). Thus P(V) is
the measure of the space of rules. Of course, in practice,
P (V) is unknown, even hypothetical; but this usually
turns out not to be a problem. Some results can be found
which apply to any underlying rule (Sec. VI.D); many
others are true for all rules of given “complexity.” There
is an alternative Bayesian interpretation of P(V), which
is discussed in Sec. IL.F.1.

Unfortunately, many neural network papers use the
word “rule” with a different meaning: as an algorithm for
building a network. We shall use our meaning of “rule”
throughout this article.

Suppose that we have p example questions {&¢},
u=1,...,p, for each of which we know the answer {&hy.
The known question-and-answer examples of the rule
form the training set. Each example places a constraint
upon the places in rule space where the true ¥ must lie,
so that after seeing p examples the region in which V
must lie is reduced to V. In artificial intelligence
literature, V7' is called the version space (Mitchell, 1982).

2. Example: a linearly separable rule

We define a linearly separable rule as one of the form
R=V(r)=sgn(VNB-r—4¢), (2.10)

where B is any vector. Here #==1. By analogy with
Fig. 3(b), we can draw Fig. 4(a), showing a schematic
two-dimensional section of the N-dimensional space con-
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[Le1]
N

FIG. 4. Learning a linearly separable rule: (a) A section of the
N-dimensional question space, containing B, which is perpen-
dicular to hyperplane €. The projection of @ into the plane is
marked dashed and it is displaced from the origin by distance
¢. (b) Both examples &, and £, are answered + 1, so B must lie
between planes D, and D,. (c) Schematic “top view” of the situ-
ation, looking along the negative B direction. Planes D;-D,
constrain B to the version space. Plane D5 adds no information.

taining vector B, which is normal to plane @ displaced by
¢ from the origin @. Questions falling onto the same side
of @ as the positive B direction, such as question r, will
be answered by +1, and others, such as r,, will be
answered — I, so that question space is divided by a plane
(hence the name linearly separable).

Except in Sec. V.A.1, we shall take ¢=0, so that only
the direction, and not the magnitude, of B is relevant; we
conventionally assume that the magnitude of B is nor-
malized to 1, (B-B=1), so that the rule space is the unit
N-sphere. In the rule space of linearly separable rules, B
defines the rule; so P(V) is equivalent to P(B), the sta-
tistical distribution of B over the surface of the sphere.

The linearly separable rule, Eq. (2.10), without a
threshold (¢=0) is defined by B, an element of the N-
dimensional rule space. Since there are only two possible
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output results, Z==1, the answers to examples in the
training set are §4==1. Referring to Fig. 4(b), questions
&' and &2, perpendicular to the hyperplanes D, and D,,
are also marked; both answers, £} and &2, are +1. Thus
from the answer to these questions we can infer that B
lies in the region between D, and D,. This region is the
version space.

Figure 4(c) is a schematic diagram of the situation
looking towards the origin along the negative B direc-
tion. The four planes D, D,, D5, and D, are constraints
on B from examples 1-4, and each is shown forcing B to
lie on the unshaded side of the plane. Notice that plane
Ds, from some example §5, adds no new information,
since planes D, -2D, already constrain B to an area agree-
ing with example 5: example 5 has not reduced the ver-
sion space.

C. Learning a rule with a network

1. The problem

The purpose of learning is to design a network such
that if the states of nodes in the input layer are set equal
to a question, the states of the nodes of the output layer
will become equal to the correct answer. For this prob-
lem to be well posed, the possible states of input and out-
put neurons must be the same as those of the components
of the questions and answers, respectively.

This problem is quite different from that of storing
memories (Sec. II.A) because questions are related to
answers by a rule (whereas memories are usually uncorre-
lated), and because we are trying to deduce the answers
to new questions, rather than just recall the answers to
old ones. The learning of rules has many more engineer-
ing applications.

There are two distinct tasks of learning: One is, know-
ing rule ¥, to construct a network which will reproduce
it. The other is to design a network just from question-
and-answer pairs. So far it is this second case which has
received the attention of statistical mechanics. This is
called supervised learning, because it requires a teacher,
knowing the rule, which gives the correct answer to the
example questions.

Why does this work? Why, indeed, should teaching a
network some examples help it predict the answers to
others? The answer is that it will only if the rule space
and the student space perform similar functions of their
inputs, so that the constraint of correctly answering the
training set forces the student network to resemble in-
creasingly the teacher. Otherwise, learning from exam-
ples will be completely unsuccessful, as we shall see in
Sec. V.A.3, when a perceptron tries to learn the parity
problem. Notice that it is the restrictions on the student
space which make learning possible. We shall see a fas-
cinating implication of this observation in Sec. VI.C.1.

A rule for which a network in student space exists
which gives the correct answer to all possible questions is
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called learnable. Conversely, a rule which no network in
the student space can learn exactly is called unlearnable.

2. Formalism

As above, the function performed by our network is
characterized by the symbol N. In order to measure the
deviation of the network output N(S) from the teacher
rule V(S), we introduce an arbitrary error measure
e[N(S),V(S),S], which is zero if teacher and student
agree on the answer to S and larger than zero when
they disagree. The most obvious choice for e is
the binary measure (e€{0,1}). The error measure
e[N(EH), V(E*),E#] may be considered a function of the
discrepancy of N on the uth question with respect to the
correct answer &%, in which case, knowing the question
and answer and whether NV agrees, e is observable; alter-
natively, e can be considered the disagreement on the uth
example between N and the unknown rule V.

Similarly we may define extensive energies, where ex-
tensive means scaling with the number of examples,
which we shall denote using the letter E. If energies are
observables —that is, not functions of the unknown
rule—they may be used in algorithms. One such energy
we shall use frequently is the training energy

E\(N, {8"],{65))=2X e(N,65,6") ,

"

(2.11)

which is a measure of the number of examples in the
training set which /N answers wrongly.

However, the quantities we shall mainly want are ex-
pectation values of the performance, which will be calcu-
lated naturally in terms of variables which are functions
of ¥V, and therefore not observable. These we shall denote
by €. For example, the average disagreement between N
and V is the generalization function

e/ (N, V)= [du(S)eW,V,8) , (2.12)

where du(S) denotes the normalized distribution from
which the questions S are chosen, so that integrating over
it simply means performing the average over the distribu-
tion of questions. €,(N, V) is the measure of the quality
of network W in reproducing rule V.

We shall shortly consider algorithms to construct net-
works. Some algorithms give a particular W, others give
an N drawn from some distribution. In either case we
shall denote the average over the networks produced by
the algorithm by ( - ). If the underlying rule is V,
the network we build using the algorithm has “badness”

eg(V:{g#’gloL}):(ef(-N’ V)>./V .

Notice that this error measure is still a function of (i) the
unknown underlying rule and (ii) the training set. Since
the answers in the training set are defined by the ques-
tions, this is equivalent to saying that Eq. (2.13) is a func-
tion of the underlying rule and the questions of the train-
ing set: two independent forms of disorder.

(2.13)
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It turns out, however, that if the questions and rules
are drawn from any of a large class of distributions, then
the value €,(V, {£"}) is self-averaging, which means that
almost any realization of the underlying rule and any set
of questions give the same result. Thus for a given distri-
bution of training set questions, the quantities of interest,
such as €,, are functions only of the algorithm generating
N, the number of examples from which we have to learn,
and the distribution from which the questions are taken.

The value can be found by calculating

e, =&V {E")) )¢
= (LN )

where we are using the exterior brackets { - - - ), to indi-
cate the average over the space of all rules, and the
brackets { - ), to indicate the average over sets of
questions. That is, these brackets together denote the
average over realizations of the quenched disorder.
Similarly we may define the average training error as

6,=<<%(E,(./\/, V,§“)>N>V>§

In Sec. II.D we give a simple example of the use of this
formalism. In Sec. III.A.2 we shall show that statistical
mechanics is a natural way to calculate quantities such as
€, for more advanced algorithms.

(2.14)

(2.15)

D. Hebbian learning with a perceptron—an example

It is clear that a perceptron, Eq. (2.4), can learn a
linearly separable rule, Eq. (2.10), without a threshold,
since if we set =0 and J=B, then S, =V (S). Learning
can be illustrated from Fig. 5(a), a sketch showing the
two-dimensional subspace of the input space containing
vectors B and J [i.e., the (B—J) plane]. The vectors B
and J both lie on the surface of the unit N-sphere and are
normal to the (N —1)-dimensional hyperplanes € and D,
respectively; they are at an angle 0 (i.e., B-J=cosf0). The
projectrons of @ and D into the (B—J) plane are labeled
lines. From Eq. (2.10), the correct answer to a question is
-+ 1 if its projection into the space of B and J lies on the
same side of plane @ as B, and — 1 otherwise. The per-
ceptron will wrongly answer questions whose projection
into the plane falls into areas E or F.

Consider questions whose components are taken in-
dependently from a distribution whose first moment is
zero and second moment is @(1); for example, each com-
ponent might be randomly +1. If, similarly, each com-
ponent of B is also chosen from such a distribution and J
has similar properties, then we may treat examples as fal-
ling randomly onto the N-sphere, and their projections
into the (B—1J) plane have a random direction away from
origin. The generalization function, the chance that such
questions are answered wrongly, is thus the proportion of
the (B—1J) plane in areas E and F,

20 _ 1

€7(J,B)==">=—cos" '(B-J),

2.1
27 T 2.16)
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FIG. 5. Learning a linearly separable rule with a perceptron:
(a) The B-J plane in question space. J and B are perpendicular
to hyperplanes planes D and @, respectively. D and € intersect
at the origin @, and two of the volumes enclosed by them are la-
beled E and F. (b) Line 1 shows the generalization error of the
Hebb algorithm against a, and line 2 shows the optimal result
which can be achieved (Sec. III.C.1). Line 3 shows the Hebb
algorithm’s training error.

where we have used the fact that the perceptron is
specified by J to write J for W, and the fact that V is
specified by B to write B for V.

We shall now illustrate a simple way in which a spheri-
cal perceptron may be trained to learn a linearly separ-
able rule. We do this using a training set {£&*,&%}, con-
sisting of p examples of the rule [that is,
E=sgn(V' N B-£*) for u=1,...,p]. As in other algo-
rithms, the number of questions required typically scales
with N, because O(N) bits of information are required
approximately to constrain the (N —1) degrees of free-
dom of B, so that defining a from p =aN, the interesting
limit is ¢ remaining constant as N — 0.

Vallet (1989) set J by the Hebb algorithm,

1
——zg’ég”»
YVN %4

J= (2.17)

where ¥ is a constant chosen to normalize J. From Figs.
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4(a) and 5(a) it is clear that the components of examples
in the direction B will add constructively to J, since Eq.
(2.17) means that questions are added to J with a sign
equal to that of their component in the B direction. If we
label the distribution of the projection of examples in any
random direction Z as x; =V N £-Z, then we observe it
is a random walk of N steps, so that x, is Gaussian dis-
tributed,

Prob(x,=y)= 1 exp(—y?/2) . (2.18)

V2w

Thus the component of J in the B direction is
p{Ixgl)/(yVNVN)=aV2/(yV'w). Components of
the p questions in the other N —1 input space directions
add to J randomly, as a random walk of p steps of aver-
age length ({x2))'/? in an (N — 1)-dimensional space, so
that the component of J perpendicular to B is
(P{x2?2/(yVN—1)=V'a/y as N— . Thus the J
given by Eq. (2.17) is such that the distribution of its
overlap with the true B is sharply peaked, so that

cos '(J-B)=tan"'(Va/aV2/7) . (2.19)
Therefore, from Egs. (2.14) and (2.16), we can write
€= —l—tan“ Wr/2a) . (2.20)
T

This easy derivation was pointed out by Watkin, Rau,
Bollé, and van Mourik (1992), and the curve is plotted as
line 1 in Fig. 5(b).

Before we have any examples, @ =0 and the generaliza-
tion error must be 4, because B could be any vector; so r
might equally well lie on either side of it and the chance
that we guess wrongly is . As a rises the generalization
error for the Hebb algorithm falls to zero. As a measure
of the quality of the algorithm, Fig. 5(b) also shows, as
dashed line 2, the generalization error which can be
achieved by the best possible learning algorithm, as
demonstrated in Sec. II1.C.1.

The Hebb algorithm is simple, but the J it generates
has a finite training error, because the noise on the ran-
dom questions is allowed to interfere: from Eq. (2.17) we
can write

1 vV £V
v [are S e

vEp

£t g = 2.21)

where the first term in the parentheses is the signal and
the second term is a noise. For those questions for which
the noise is greater than 1 (and of the opposite sign to &%),
J will, from Eq. (2.4), give the wrong result. An argu-
ment similar to that given above shows that the training
error, first derived by Vallet (1989), has a self-averaging
value of

ul/a/7r+—1—_.

, 2.22
V2a ( )

o0
€=1— f Du erf
0

where Duzzdu e 2N 2 and erf(x)=2/
Vi [sdye™ =2fg‘/§Du; €, is plotted as line 3 in Fig.
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5(b). It rises from zero to a peak at a=~4, but then tends
to €,, and together they tend to zero as a— « (when
J—B).

Note that taking the large N limit in the argument
above has shown that the distribution of the overlap be-
tween J and B is very sharply peaked. This shows that
almost all rules which could have produced the
examples—i.e., all the rules in version space—have the
same overlap with the Hebb J. Thus, as discussed in Sec.
I1.C, the result is self-averaging. The generalization abil-
ity of the Hebb algorithm is a function only of the num-
ber of examples asked and their distribution. -

From Eq. (2.20), one finds that €, scales as 1/Va as
a— . For example, in a network of N = 10® neurons, it
would require of the order of p =10° examples to make
the generalization error from the Hebb algorithm
~1073; so, clearly, it is worth finding more efficient algo-
rithms. We shall see also, Sec. V.A.3, that the Hebb al-
gorithm may fail to learn much harder rules altogether.
Nor is it possible to implement the Hebb algorithm on a
perceptron with Ising couplings (which should be used if
we knew that the components of B were +1), except by
an unnatural clipping operation (van Hemmen, Grensing,
Huber, and Kiihn, 1988) in which a spherical J is forced
to obey the Ising gauge constraint by truncating each
component of J to be equal to its sign. Nor is it obvious
what the analog of the Hebb algorithm is for more com-
plicated networks. It is therefore well worth investigat-
ing more advanced constructions. On the other hand,
Hebb learning is very simple (hence computationally
cheap); so we shall investigate some variants of it in Sec.
V.D.

How generic are these results? In fact, all known
learning schemes have €, <¢,, as observed here for Hebb
learning; networks do better on the training set than on
new examples. In addition, as a— , €,— €, in general.
Like the algorithms we shall meet in Sec. III, it does not
matter whether the components of questions in the train-
ing set are *1 or are drawn from a Gaussian distribution,
provided that the central limit theorem can be applied to
the overlap between questions and B. However, the rise
and fall of €, is not typical of other algorithms; typically
E, either remains zero (for learnable rules) or rises mono-
tonously.

E. A brief introduction to VC theory

We have now introduced enough tools to make possi-
ble a comparison between the statistical-mechanics ap-
proach to learning, the topic of this paper, and an alter-
native approach which is well known in computer sci-
ence: probably almost correct (PAC) learning, which is
also called Vapnik-Chervonenkis (VC) theory. This sec-
tion is a brief review of VC theory and is independent of
the rest of the paper. Other brief reviews are by Abu-
Mostafa (1989) and Hertz et al. (1991); more detailed in-
troductions are given by Vapnik (1982) and Parrando and
Van den Broeck (1992).
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VC theory stems from the anxiety that although a net-
work may perform satisfactorily on the training set, it
may perhaps perform differently on all possible questions;
ie., (1/p)E,(WN) (which is observable, since it is just the
behavior of our student on the training set) may not be
similar to ef(./\/, V) (which is not observable, since V is
unknown). How large must the training set be before
these two are close?

Using advanced probability theory and assuming that
questions are always drawn from some constant distribu-
tion, Vapnik and Chervonenkis (1971) were able to prove
that for any network (in a student space such that the
rule is learnable) the probability that the discrepancy be-
tween the performance on the training set and the perfor-
mance on new questions will be greater than a value p
falls off very quickly with p. More formally,

P <4m(2p)e ~PP/3 |

>p

max
N

%E,(N)—efw, V)

(2.23)

for any V.

The function m is a measure of the size of the student
space. Technically m (p) is defined as the total number of
different Boolean functions which can be performed by
members of the student space on the p examples in the
training set. For example, if the student space were so
large that it contained all Boolean functions, then m (p)
would be the number of different Boolean functions
which can be performed on p examples, that is, m =2°%.

Remarkably, it has been shown (Vapnik and Cher-
vonenkis, 1971) that, for any student space, m (p) is 2” for
p less than some constant dyc. For p >dy, it is bound-

ed from above by (ep /dyc) 'C, where e is the base of nat-
ural logarithms. In the second case, Eq. (2.23) tends to
zero exponentially quickly as p — o, so that all networks
in the student space must soon behave in the same way
on the training set as they would on all possible ques-
tions.

In particular, this means that if we generate a network
N which makes E,(WN) zero, then its generalization error
€, is bounded so that

Pley>p)<4m(2p)e PP/
<4exp[dyclnlep/dyc)—p°p /8], (2.24)

Thus we have a guarantee that a network which learns
the training set will be able to generalize with an error
less than gp for any p and g which make the right-hand
side of Eq. (2.24) small. For example, to have a 98%
confidence in generalizing with an error of less than 1%,
we must find a network in the student space which learns
P patterns given by

25 <4exp{dycln(ep /dyc)—p/[8(100)*]} . (2.25)

Clearly, dy is a critical measure of the size of student
space, and it is called the Vapnik-Chervonenkis dimen-
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sion of the space. Roughly, it measures the number of
degrees of freedom in a student space. For a spherical
binary perceptron (Sec. II.A.2), for example, the VC di-
mension is just N (this is demonstrated, in passing, in Sec.
VI.B.1).

We may now make a few comparisons between the VC
approach and the statistical-mechanics one.

Statistical mechanics, as in Sec. II.D, often makes ex-
act predictions for the success of learning schemes. VC
theory merely places bounds on their success, and the
bounds are often weak. Contrariwise, it may be argued
that the VC bound is rigorous, while the statistical result
is only extremely likely to be true.

It has been found that there are many more intelligent
strategies for learning than the minimization of E, (cf.
Sec. II1.B), so that the agreement between E, /p and € is
not the only important quantity. Other learning stra-
tegies fit very naturally into a statistical-mechanics for-
mulation, but it is not immediately clear that the VC ap-
proach may be similarly extended.

VC theory, unlike statistical mechanics, gives very lit-
tle insight into the student space, and for example, does
not tell us how easy networks with zero E, are to gen-
erate. We shall see that just this sort of information may
be extracted from statistical mechanics.

A great strength of VC theory is that it applies to any
network and indeed to any computational task, in con-
trast to statistical mechanics, which must be solved indi-
vidually for any given network architecture. Unfor-
tunately, the VC dimension of multilayer networks is
very hard to calculate, and so far only bounds on the VC
dimension are known (Baum and Haussler, 1989). Re-
cently attempts have been made to estimate dyc by ex-
periments (Levin et al., 1992; Vapnik, 1992), but it is not
yet entirely clear whether this strategy has been success-
ful.

In summary, the statistical-mechanics formulation of
learning a rule may be applied, usually exactly, to all
those problems for which a VC solution is available. The
predictions made by the statistical-mechanics approach
are more reliable in an average sense (they are
overwhelmingly likely to be true) and also more informa-
tive. Of course, the real test of the usefulness of either
theory is how useful it is in practice, and this is still un-
known. Both techniques are presently under investiga-
tion; so their relative merit remains an open question. As
we shall argue in Sec. VII.C, an important direction of
future research is to reconcile them.

F. The Bayes algorithm

In this section we develop an information-theoretic ap-
proach to learning using Bayesian probability theory.
This allows us to define the optimal way of generalizing
from examples. The formalism is developed further in
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Sec. II.G, where we shall be able to define the optimal
way of learning a rule with a network.

1. Bayesian probability

Probability may be framed in two self-consistent but
inequivalent ways. Firstly, and most commonly, the
probability of an event A4 occurring given a set of cir-
cumstances B, which we write as P(A4/B), may be
defined as the relative frequency of occurrences of A4
after B in a large number of trials. For example, an un-
biased coin has probability 1 of coming up heads (out-
come A) if it is tossed (situation B). In Sec. II.B we intro-
duced P(V) in just this way: V is a single rule drawn
from a hypothetical distribution P (V).

An alternative Bayesian definition of probabilities is
that they represent our knowledge or degree of belief in
hypotheses (this idea is discussed in much greater detail
by Jeffreys, 1939, and Jaynes, 1983). For any hypothesis
A and any prior knowledge I, a numerical value between
0 and 1 represents our confidence that A4 is true. For ex-
ample, if an unfamiliar coin is tossed, we have no
knowledge of whether it will fall as “heads” or *tails.”
By symmetry there is “half a chance” that the coin will
come up heads, because even if it is biased there is an
“equal chance” that it is biased towards heads or tails.
Thus the Bayesian probability that the coin will fall as
heads next time (hypothesis A4) given only that it is being
tossed (information I) is P( 4 /I)=1, which may be quite
different from the unknown ‘relative frequency of
heads.”

A self-consistent system of “‘probabilities” can be con-
structed in Bayesian terms with no reference to relative
frequencies. Bayesian probabilities combine according to
the same algebraic rules as frequentist probabilities [in
fact, frequentist probabilities may be seen as a special
case of Bayesian ones (Jaynes 1983)].

Bayesian probabilities can be updated by new evidence.
Suppose that we have k hypotheses, labeled by a variable
J» {4;}, j=1,...,k. Label our initial knowledge again
by I, which gives us, just as in the case of the coin, a de-
gree of belief in the truth of each proposition of P( 4;/I)
(which is called the prior probability of A;). Note that
the total belief in all hypotheses must add up to 1:
Sk P(A4;/D=1.

What is the effect on our beliefs of new data D? Sup-
pose that hypothesis 4; would produce result D with
probability P(D/A;,I); then Bayes theorem is that the
degree of belief we should have in 4; after data D has ar-
rived (the posterior probability of A;) is

P(D/A,,I)P(A;/D

k b
S P(D/A4;,DP(A;/I)
j=1

PP(A;/D,I)= (2.26)

where the denominator is present to ensure that the sum
of the posterior probabilities remains normalized:
Sk_1P(A4;/D,D=1.
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Example: A bag contains two balls, each of which may
be red or white. A ball is removed, found to be red, and
replaced. What is the probability that the bag contains
two red balls?

We can define three hypotheses 4, 4,, and 4;. A4,
is that the bag contains no red balls, 4, is that it con-
tains one, and A; is that both balls are red. We are told
that each ball is either red or white (prior information 1),
so that it is easy to see that P(A4,/I)=P(A;/I)=1
while P(A4,/I)=1. The data in this case are the obser-
vation that one randomly chosen ball is red (data D).
The chances of this happening if one of the hypotheses is
true are P(D/A,,I)=0, P(D/A,I)=%, and

P(D/Aj3,I)=1. Thus, using Bayes theorem [Eq. (2.26)],
we obtain the posterior probability P(A4;/D,I)=1,
which is the answer to the problem.

Bayesian ideas have made a substantial contribution to
physics, particularly in the formulation of statistical
physics without reference to the ergodic hypothesis
(Jaynes, 1957, 1983).

In learning theory, the hypotheses are the rule we be-
lieve has generated the data. We take our prior informa-
tion I as the knowledge that a rule is a member of a given
rule space. For example, we might know that the rule is
linearly separable [i.e., that it can be written as Eq.
(2.10)]; by symmetry, the B that defines the rule is equally
likely (without further knowledge) to be anywhere on the
sphere. Thus the prior probability of a rule, P(B/I), is
uniform. Henceforth we shall assume that we are work-
ing in a given rule space and for simplicity omit the I
from our equations. The setting of P(¥) in more ad-
vanced and realistic rule spaces is discussed further in
Sec. VILA.

Let us now consider the meaning of ‘“‘expectation
values” under the frequentist and Bayesian definitions of
probability.

Under the frequentist formulation, expectation values
of numerical quantities are exact predictions of the mean
observation in a very large number of trials—for exam-
ple, the mean number of spots shown in many spins of an
unbiased die will tend to 3.5, as the number of trials
tends to infinity. Thus working out averages over P(V),
as in Eq. (2.14), means finding the mean behavior in
learning many rules taken from P (V). In practice, this is
not really a problem because almost all realizations of V
taken from a given P (V) turn out to give the same values
of interesting phenomena, which are said to be self-
averaging (as argued in Sec. III.A.2). That is, fluctua-
tions are small; so phenomena found while learning any
single rule closely resemble the mean phenomena.

Under the Bayesian formulation, the ‘“expectation
value” of a quantity is the sum over hypotheses of the
value of the quantity if a hypothesis is true weighted by
our belief in the hypothesis. We shall see in learning that
such sums are dominated by hypotheses which give the
same value for the interesting quantities; i.e., fluctuations
are small. This means that the knowledge we have leads
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us to make very firm predictions about observations in a
single experiment.

In summary, the techniques we develop in this paper
may be formulated in conventional frequentist terms or
in Bayesian terms. In either case important quantities
will be firmly predicted by expectation values. However,
we shall show in the next sections how Bayesian ideas
can be used to extract extra information about generali-
zation.

2. The principle of the Bayes algorithm

There is an optimal, information-theoretic prescription
for predicting the answer to a new question from known
examples. Using Bayes theorem, Eq. (2.26), we can cal-
culate the posterior probability of any given rule having
generated the training set. The data D in this case is the
training set {&*,&4}. If the data are noiseless, then
P(D/V)=]],8(V(E"),), where we are using the
Kronecker delta 8(a,b), which is 1 if a =b and zero oth-
erwise. Then, using Bayes theorem, the posterior proba-
bility of a rule is

P(D/V)P(V)

PP /D)= i
J[dav P /vP(V)

(2.27)

Suppose we have a new question r to answer. How
should we do it? Clearly the answer depends upon our
belief in a hypothesis such as “the true answer to r is R,”
which for simplicity we call hypothesis 2. Clearly, too,
our belief in this hypothesis is the sum of our belief in all
the rules which would answer r by /2. That is,

PP°S‘(7{/D)=dePP°S‘( V/D)8(V(r),R). (2.28)
Substituting Eq. (2.27) into Eq. (2.28) gives
Cv(p)dVP( V)6(V(r), R)
PP R )= (2.29)

f dvV P(V)
Ly(p)

This is the proportion of the version space (weighted by
the prior distribution of ¥) which would give the answer
R, that is, the chance that the answer is 2.

The information-theoretic (Bayesian) prediction of the
answer to the new question r is the 52 which has the max-
imum posterior probability. The chance that the Bayes
algorithm answers r wrongly, €*(r), is the chance that
the true V lies in one of the regions of version space with
a different /2. The average Bayesian generalization error,
€2%, is the average of €?(r) over the distribution of r.

3. Statistical mechanics of the Bayes algorithm—
an example

This example builds on the situation of a perceptron
learning a linearly separable rule introduced in Sec.
II.B.2. The first two examples on Fig. 4(d) had reduced
the version space to the region between D, and D,.

If the new question asked is r, which is marked on Fig.
6(a) perpendicular to plane 2,, and the prior distribution
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FIG. 6. Bayes algorithm for a linearly separable rule: (a) ques-
tion space, with a new question r added, perpendicular to hy-
perplane D, (b) optimal, Bayesian generalization error, ez
against a.

of B is uniform, the posterior probability of the answer
being +1 is the proportion of the version space between
D, and D, since any B vector in this region answers r by
+1. Similarly, the posterior probability for —1 is the
proportion of the version space between D, and D,. No-
tice that there are some choices for question r which
make one of these posterior probabilities equal to zero.
In Fig. 6(a) it appears that the posterior probability of
+1 is the larger; so the Bayes algorithm predicts Z=1.

Here €52¥*(r) is the proportion of version space which
would answer r by 2= —1; that is, €?¥*(r)=PP'(R
= —1). The variable egayes is the averaged chance that
the true B belongs to the part of the space which gives
the opposite answer to the Bayes algorithm,

E?ayeszfd,u(r)EBayes(r) , (2.30)

where du(r), as in Eq. (2.12), denotes the measure of the
distribution of questions.

Assuming only that the overlaps between the questions
and B are distributed with zero mean overlap and in such
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a way that the central limit theorem (see, for example,
Bronstein and Semendjajew, 1985) can be applied, which
would be the case, for example, if every component of B
and of every question were randomly +1, and that the
questions are independent, Opper and Haussler (1991a)
have shown (using the method of replicas, which is ex-
plained in its more usual context in Sec. III) that asymp-
totically, as N — o,

egayeszicos~1(\/;) , (2.31)
T

Here g is the average overlap B”-B® of two rules B? and
B?, chosen randomly in the version space in proportion
to the prior probability P(B). If, in addition, the prior
distribution of rules is uniform, the value of q has been
calculated as a function of p (Gyorgyi and Tishby, 1990).
We can therefore plot e?ayes against a as line 1 in Fig.
6(b); for large a, €, ~0.44/a.

Although this sort of calculation gives the
information-theoretic upper limit for the generalization
ability, it should be emphasized that it does not itself cor-
respond to a realistic learning process. The F-space is
usually a very large one, and the boundaries of V¥
formed by random examples are too complicated for an
exact calculation of posterior probabilities to be reason-
able.

G. Optimal learning

1. Bayesian reformulation of learning

Ideally, we would like the network we build to imple-
ment the Bayes algorithm described in Sec. IL.F since this
minimizes the average generalization error. Such a net-
work, however, would require a considerably more com-
plex structure than the rule, since it would need to be
capable not just of learning the rule V, but also of encod-
ing the whole structure of version space (defined above as
all the rules consistent with the examples we have been
given). Indeed, as we shall see in Sec. VI.C, even imple-
menting the Bayes algorithm exactly for a linearly separ-
able rule requires a two-layer committee machine with a
number of neurons in the hidden layer rising to infinity.
In practice the rule is likely to be more complex than the
student network we are allowed to build. That is, the
student space may not even have a member which exact-
ly learns V. How, then, should .V be chosen?

To answer this question, we must take a Bayesian view
of the formalism of learning. In Sec. II.F.2 we were able

eg(18881)0 0= (3 Pla/ (8D e WV ad)

to calculate the posterior probability of any rule, Eq.
(2.27), while the generalization function, Eq. (2.12), is a
measure of the “badness” of any network N given the
true rule V. By combining these results, we are able to
define a measure of the badness of any network N in
which our ignorance of the underlying rule has been in-
tegrated out. The result is called the network error,

(M= [dV e, (N,V)PP(V /D) . (2.32)

In the case of noiseless examples, so that the posterior
probability of rules is only nonzero in the version space,
this reduces to

Gn(N):(Gf(-/V,V)>cv, (2.33)

where ( - - - )q simply indicates the average over version
space. In either case, €,(/N) is the expectation generali-
zation error in answering new questions (Watkin, 1991,
1993).

We may thus construct a Bayesian form of the average
generalization error of networks produced by an algo-
rithm,

€ ((£48))=(e, (M)

=<<fd,u(S)e(N,V,S)> )
VI N

For a given realization of the training set, €, is the expec-
tation error made by a network in answering new ques-
tions.

Equation (2.34) is observable, since the dependence
upon unknown variables has been integrated out.
€, ({&",0}) is a function only of the training set. This is
different from €,(V, {£"}), defined by Eq. (2.13), which is
a function of the unknown rule.

€. ({£",£L}) determines how well an algorithm general-
izes for a given training set. But we can also work out
the a priori likelihood of a given training set being gen-
erated. This means that we can calculate from first prin-
ciples the expectation values of how well we would be
able to generalize, if we were given p examples of the
rule.

For a given realization of the set of questions {&*} we
can decompose the rule space into regions which answer
the questions in the same way. Let us, in this section, la-
bel one possible set of answers by a ={&#}. The “likeli-
hood” of this set of answers occurring is the proportion
of rule space giving this set of answers,
P(a/{&"}))= [dV P(V)I],8(V (£"),E4). The average
over the whole rule space is the weighted sum of the
averages over these regions; thus the expectation value of
our ability to generalize from p examples is

(2.34)

=<2P(a/{§“})dePP°St( V/{§”},a)<ef(N,V)>N>§,

where, once again, ( - - - )g denotes the average over the set of questions. But substituting PPY(V /{£*},a) from Eq.
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(2.27) results in the denominator of PP°* canceling with P(a /£*}), leaving

(e, ({6488} )a)§=<de[2P(a/V,q) P(V)e;W, V))N>§

The term in the round brackets is just 1; so
(Ceg({E4E1),) =L Lef (N D) ) s

which is clearly the same as Eq. (2.14).

Thus after the average over quenched disorder has
been carried out, the generalization error defined by these
two procedures can meaningfully be compared. In fact,
we can exploit the self-averaging nature of the situation
and say that almost all training sets of the same size give
an equal ability to learn. Thus in Sec. III.A.3 we shall
frame statistical mechanics as calculating typical proper-
ties of a version space. This will let us easily find values
for how well an algorithm would learn from p examples.

(2.36)

2. Optimal learning

Watkin (1991, 1993) pointed out that for a given train-
ing set the optimal learning algorithm is to construct NV,
which minimizes €,(N) within the student space, since,
from Eq. (2.34), this algorithm would minimize the ex-
pectation values of generalization error, €,({£",&0}).
This strategy is optimal learning for any network learn-
ing any rule from any data, since by definition it mini-
mizes the expectation generalization error.

How are we to implement it? In principle we could try
to minimize an extensive energy

E (N)=pe,(N)=p(es(N,V))q , (2.37)

which is observable, since the dependence on the un-
known ¥V has been integrated out by the average over V;
but this is a very difficult quantity to observe: we must
calculate the whole complex structure of the version
space to evaluate it. However, Watkin (1991, 1993) gen-
eralized a method first devised by Opper and Haussler
(1991a) to solve a different problem (which is described in
Sec. VI.C.1) and sketched an algorithm to find E,,(N)
which requires only sampling of the version space and
which, in principle, would work for any network learning
any rule. The optimal network may then be found either
by minimizing E,(N) or, in simple cases, by construc-
tion. We give an example of this algorithm in the context
‘of perceptron learning in Sec. I11.B.2.

3. An amusing paradox

An amusing paradox, which also illustrates some of
the power of the tools developed above, was pointed out
by Seung (private communication, 1991). Suppose that
student space contains only three elements N, N,, and
N, and that the whole space of questions has Q elements
labeled by ¢ =1,...,Q. Let the answer that N, makes
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(2.35)

f

to the gth question be a, and suppose that every question
has only two possible answers, the alternative
being b,. Thus the answers N, gives to the set of ques-

tions are (ay,ay,...,a9) Let W, give
answers (a;,b,,bs,..., by), and WN; give answers
(by,ay,as,...,ap). Now let us suppose that the true

rule we are learning, ¥, happens to agree with WV, on all
examples. Then €,(N}, V)=0, €,(N,, V)=1—(1/Q), and
€,(N;,¥V)=1/Q, which in each case is the proportion of
questions each network gets wrong. Since we have not so
far been given any examples, N, N,, and N; are the
three degenerate minima of E, and are equally likely to
be generated. Since on all questions two of the three get
the answer to each question right, the average error is 1,
runs the argument.

We are now presented with the correct answer a,; to
question 1, which Wj, of course, gets wrong. Thus N
and N, are two degenerate minima of E, and are equally
likely to be generated by an algorithm which just mini-
mizes E,. They disagree, however, on all the (Q —1) oth-
er questions; so the average error is (Q —1)/(2Q), which
is approximately  for Q large. This is larger than 1, the
argument concludes, so would it not have been better to
ignore the example altogether? In Sec. III.A.5 we shall
call this using a high training temperature.

The fallacy in the paradox is exposed by looking more
closely at the formalism above. Since we are not given
the underlying rule, the only reasonable strategy is to
minimize €,({£",£5}), which contains an average over
the version space: it is not correct to arbitrarily take ¥ as
agreeing with W;. Given no information, the prior prob-
ability of a rule gives equal weight to all Boolean func-
tions on the Q questions. All three networks therefore
have a network error of €, =1, and if each is equally like-
ly to be produced, € =%. Given, in addition, the answer
to the first question, the remaining version space is all
Boolean functions which answer the first question by a;;
since the two degenerate minima of E,, N; and WN,,
disagree on the answer to all the (Q —1) other questions,
the €, produced by choosing a network to minimize E, is
(Q —1)/(2Q), which is lower than J. Thus the paradox
is resolved. Ignoring the first example, so that N, N,,
and W; are equally likely to be generated, would mean
that the net would also have § of a chance of answering
question 1 incorrectly.

Of course, if we had prior information that W, learned
V perfectly, then optimal learning would not be to mini-
mize E, (if we knew the answer, why are we learning at
all?). A case is presented in Sec. V.A.4 in which prior in-
formation about the rule being learned means that op-
timal learning generates an NV which is not a minimum of
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E,; so it may indeed be better to use a nonzero training
temperature.

lll. LEARNING AS A STOCHASTIC PROCESS

Here we shall show how statistical mechanics has been
applied to the problem stated in Sec. II of calculating
average generalization errors, and how closely the conse-
quences are related to the phenomena of disordered phys-
ics. To give the reader a flavor of a typical calculation,
we summarize the general formalism and develop in
parallel the example of the binary spherical perceptron,
which was introduced in Sec. II.

A. The general formalism and its application
to the perceptron

1. Introduction

In the previous sections we have introduced a number
of cost functions and given the suggestive name of ‘“‘ener-
gies.” The simplest is the training energy E,(N), which
measures the number of known examples of the underly-
ing rule which a network W gets wrong, Eq. (2.11). Since
we want a network to be able to generalize properly, an
obvious strategy is to build one which at least gets the
known examples of the rule right, that is, N for which
E,(N)=0. This strategy is very widespread in engineer-
ing practice (see Rumelhart and McClelland, 1986, for
reviews).

The two methods which are most commonly used to
construct such an N are backpropagation (Sec. VL.B.3),
which is essentially gradient descent on the landscape
given by E,(N), and constructive algorithms, in which
new nodes are added to a network until it is large enough
to learn the training set easily (Sec. VI.LE). Both methods
have disadvantages. Backpropagation, like other gra-
dient descent algorithms, is liable to become trapped in
local minima of the energy surface and so rarely finds a
network with zero training energy. Constructive algo-
rithms, on the other hand, do make E,(N)=0, but often
produce a network which is very much more “complex”
than the rule being learned, which leads to poor generali-
zation. Further insight into learning is required for mak-
ing systematic progress in either case.

It turns out that backpropagation and constructive al-
gorithms are both difficult to analyze directly. A solution
is to study how a stochastic algorithm would behave on
the landscape defined by E,, an idea formulated by Car-
nevali and Patarnello (1987), Patarnello and Carnevali
(1987), Denker et al. (1987), and Levin et al. (1989), in
the hope of understanding the landscape itself. Exact
statistical mechanics to calculate the success of stochastic
algorithms was then carried out by Tishby et al. (1989),
Gardner and Derrida (1989), Hansel and Sompolinsky
(1990), Gyorgyi (1990a), Gyorgyi and Tishby (1990),
Opper et al. (1990), and Sompolinsky et al. (1990). This
will be discussed in Sec. ITI.A.2.
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A second justification for introducing statistical
mechanics is discussed in Sec. III.A.3: to work out typi-
cal properties of the version space (Opper and Haussler,
1991a; Watkin, 1993). Either justification leads to the
same mathematical problems, which can be resolved us-
ing the method of replicas, familiar from spin-glass
theory.

Section III is the only one to contain any algebra. We
have included it to give the reader some flavor of
research in the field. All other sections describe con-
clusions which can either be deduced from the results of
this calculation or which are straightforward variations.

2. Dynamic approach

The approach which is clearest for most physicists is
one in which the algorithm which generates networks
resembles the dynamics of physical systems evolving ac-
cording to an energy. For simplicity we shall specialize
here to networks which, like the perceptron, may be de-
scribed by a single vector J, so that, for example, we can
write the training energy as E,(J).

The space of couplings can be explored by considering
a stochastic learning process using any observable energy
E. This may be the extensive energy E,(N) defined in
Sec. II.C, or E,, introduced in Sec. I1.G.2, or another
energy, Eya, which will be defined in Sec. III.B.1. For
continuous J and a differentiable energy, we allow the
couplings to evolve according to a Langevin dynamics
(Langevin, 1908; Itzykson and Drouffe, 1989), which has
the same form as the dynamics of a physical system in
the limit of high viscosity (Parisi, 1988), or on a velocity-
dependent energy surface.

S ——v,E0+F0) 3.1)
where F(¢) is white mnoise, with the property
(F;(t)F;(¢'))=2T8,;,8(t —t'), and T is the effective tem-
perature (here, and throughout this paper, the units are
chosen so that Boltzmann’s constant is 1). Seung, Som-
polinsky, and Tishby (1992) pointed out that possible
constraints on the J-space can be enforced in Eq. (3.1) by
including a component in the energy which does not de-
pend upon the examples; henceforth we shall assume that
this has been carried out so as to enforce the gauge con-
straint we are imposing on the system, which for a spher-
ical perceptron is Eq. (2.8).

For Ising J or for a nondifferentiable energy function,
one can use a Metropolis Monte Carlo spin-flip dynamics
(Kohler et al., 1990; Horner, 1992a, 1992b), a method re-
viewed by Binder and Heerman (1988).

Either stochastic dynamics—when certain specific
constraints are fulfilled—generates a Gibbs distribution
in J-space, that is, couplings whose probability of oc-
currence, measure, is

duon) =28 e —or gL, (3.2)
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where du(J) is the normalized a priori measure on the J-
space, and Z is the partition function

Z= [dud)e PED (3.3)

Thus for a J which is equally likely to be in any direction
and whose magnitude is simply fixed by Eq. (2.8), the
measure on the weight space is just du(J)=dJ 8(J-J—1).
Similarly for Ising weights, if any combination of weights
is equally likely, it is du(J)=dJT];[16(J;—1)+18(J;
+1)]. The inverse temperature (3, introduced in Eq.
(3.2), determines the extent to which J is allowed to ex-
plore the weight space: B— o« forces J into the minimum
of E; 3—0 opens up the whole phase space. In general, 8
determines the energy we tolerate. A nonzero training
temperature is particularly important when trying to
learn unlearnable rules (Sec. V.A). Note that if the ener-
gy E used in this formulation is the training energy E,,
then, in the limit of B— 0, Z is the fraction of the stu-
dent space with E,(N)=0.

Based on ‘this framework we can now use the tools of
statistical mechanics to calculate the corresponding
thermal averages. For example,

d
E(N)) y=——=InZ . 34
(E(N))y a8 n (3.4)
We could also introduce an additional, auxiliary term
into the energy:

E—E+he N, V), (3.5)

where the auxiliary field 4 will later be set to zero. Then,
for a given underlying realization of V and the set of
questions,

B

B dh h=0=(€f(.N,V)>N. (3.6)

Obviously, we could work out the expectation value of
any quantity by changing the coefficient of 4.

Inserting Eq. (3.6) into Eq. (2.14) shows that the in-
teresting quantities are obtained by calculating deriva-
tives of

FE——-;—,((an)V)g. 3.7

Why should we expect such quantities to be self-
averaging?

Energy landscapes which depend upon the realizations
of random variables (in our case the training set) are fa-
miliar in many other fields of physics. A well-known ex-
ample is the field of spin glasses, spin systems in which
every pair of spins has a random ferromagnetic or anti-
ferromagnetic interaction [an enjoyable and remarkably
concise introduction to the theory is given by the series
of articles by Anderson (1988—-1990)].

In these systems it is usually assumed that values of ex-
tensive quantities do not depend critically upon the reali-
zation of the quenched variables—almost all realizations
of quenched disorder generated by the same microscopic
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distribution lead to the same macroscopic quantities,
which are therefore said to be self-averaging. For a given
realization of the quenched variables, one extensive quan-
tity is the free energy, —(1/3)InZ, whose derivatives give
us observable quantities. If the free energy is self-
averaging, then almost all realizations of the quenched
variables give a free energy equal to the average free en-
ergy F=[—(1/B)InZ],,, where the square bracket indi-
cates the average over quenched disorder; and so we can
make correct predictions of real observations using F.

We shall expect, and also be able to show (assuming
the validity of the replica method), that most interesting,
macroscopic quantities are self-averaging. For example,
it will be possible to show for a spherical perceptron
learning a linearly separable rule, that

1 _
[eg]a‘,Z;cos NI{B-T) i) - (3.8)
Later in Sec. III we shall calculate [{(B-J) 4],, for a num-
ber of algorithms which construct J from a training set;
we shall therefore have calculated the average generaliza-
tion error.

3. Bayesian approach

The previous section provided one description of the
place of statistical mechanics in neural network theory:
in determining how a stochastic algorithm generates a
network. Here we shall discuss an alternative approach:
using statistical mechanics to tell us about the typical
behavior of version space, without reference to a network
trying to learn the rule.

The posterior probability of a rule, Eq. (2.27), can be
rewritten as

—BE,(V,{§“,§’;I>P(V)
Z b

PP /&1 EL) )= Jim ¢ (3.9)

where E, is the training energy, defined by Eq. (2.11), and

—BE,(V, {&" £))

z=[ave P(V). (3.10)

Using Eq. (3.9) we could construct many different mea-
sures of our knowledge about the underlying rule. For
example, we could work out the distribution of the over-
lap of two points in rule space chosen randomly accord-
ing to Eq. (3.9). Just as in the stochastic approach, the
numerical value of any such measure could be found
from derivatives of InZ.

These derivatives tell us the information we would
have about V if we had the training set {£*,£*}. Thus
the expectation values of properties of the version space,
if we have p examples, are given by derivatives of the
average of InZ over possible training sets. A trivial argu-
ment, similar to the one which proved Eq. (2.36), shows
that this is the same as the average of InZ over P(¥) and
over questions,

((InZ)y), . (3.11)



Watkin, Rau, and Biehl: The statistical mechanics of learning a rule 515

Expression (3.11) is formally proportional to the aver-
age free energy of the dynamical approach, Eq. (3.7), pro-
viding that four conditions are met: (a) Rule space equals
student space, so that the integral over WN-space in Eq.
(3.3) is the same as that over V-space in Eq. (3.10); (b) the
energy used in Eq. (3.3) is E,; (c) P(V¥) is uniform in the
rule space; and (d) the training temperature of Eq. (3.3) is
zero. We shall see in Sec. V.B that Bayesian analysis us-
ing noisy examples is formally equivalent to stochastic
training at finite temperature.

Either the Bayesian or the dynamic approach (Sec.
II1.A.2) leads to the same mathematical problem, the
evaluation of the average of a logarithm. We shall spend
the rest of ‘Sec. III.A solving this problem. Since each
node in a large network has many inputs, the network is
essentially infinite dimensional and mean-field theory will
be exact (Fisher and Gaunt, 1964; Brout, 1965; Stanley,
1971). Our treatment will be within the language of the
first, dynamic approach.

4. Method of replicas

The technique commonly used to perform the average
over examples is the replica method, which was first de-
vised by Kac (1968), reinvented for the analysis of rubber
elasticity by Edwards (1970), and applied to spin glasses
(Edwards and Anderson, 1975; Sherrington and Kirkpa-
trick, 1975) and neural networks (Amit et al., 1985).
Gardner (1987, 1988) reapplied it to the analysis of the
student space of networks. It is used in cases for which
performing an average of the partition function Z is easy
but that of InZ is not, and it exploits the identity

[InZ],,= lim ~([Z"],,—1) . (3.12)

n—0 R
The expression Z" is equivalent to a partition function of
n identical systems, replicas, labeled by y=1,...,n,

J [TLaw

Y

dr exp [—BE O(—AY) ]<H8[)»7—\/7V_(J”-é‘)sgn(r)]S(r —V_I\?B'é’)>§ ,
¥ ¥

which do not interact. However, performing the average
over the quenched disorder couples different replicas.
For example, if the energy E used is E,, then

<exp

=de[n du(J7)
Y

(zMye=[ [H du(J7)
14

—BSe()7,) ‘)Vg

124

P(V)e PRI (3.13)

where 7, the effective Hamiltonian in the replicated
space, is given by

W({J”})E—%ln fd,u(S)exp [-BE e(J7,8S) ] ] ,

Y

(3.14)

and, as in Eq. (2.12), du(S) means the normalized distri-
bution from which the questions S are chosen. This ap-
proach allows one to interpret the average of observables
of systems with particular sets of questions in terms of
corresponding observables of an effective replicated sys-
tem, where all specific dependence on the questions has
been removed.

Example: Suppose that we are analyzing the learning
of a learnable rule by a binary spherical perceptron
(Gyorgyi and Tishby, 1990; Seung, Sompolinsky, and
Tishby, 1992). The natural error measure is
e(J,B,£")=O(—N(B-£*)(J-£")), where the function
O(x) is the usual Heaviside function: ©(x)=1, if x >0,
and zero otherwise. Therefore, since the questions are
distributed independently, we can write

<exp —B% e(J7,€) ]>§]P .

The quantity in the square brackets is

e TPPH = (3.15)

(3.16)

where, as in the rest of this paper, unless otherwise stated the upper and lower limits of integrals are + o0 , respectively.
We use the well-known integral representation of the 6 function, so that Eq. (3.16) is

dr dr _ oy
o ex B3 O(—AY)

Y

<exp

arnrdzy
f [H o= p

Y

S iRT{(AY—V'N [I7-Esgn(r)]} +iP(r —V'N B-£)
Y

> RNCRY,
£

. . iA - .
The average over £ may now be performed straightforwardly, noting that, for any 4, (e' i )g_ =¢~4"/2 4o first order in

A2, Then the 7 variable is integrated out to give

I [H dRrdAY

Y ’Dr exp

14
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—B3 O(—AN)+ S ik"AY =i |r AV (B-I)— L3 RVAV[I7- 3V —(B-JV)(B-JV)]
14 Y Y

) (3.18)

VY
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which contains the overlap of different replicas, implying
that they have become coupled. We shall show in Sec.
II1.A.7 how this analysis carries on.

Before analyzing the full theory, we present two sim-
plifying approximations.

5. High-temperature limit

If, again, E is just E,, then the leading term in an ex-
pansion of the Hamiltonian #, Eq. (3.14), in powers of 8
is the nonrandom part of the training energy, which does
not couple different replicas (Sompolinsky et al., 1990).
Hence in the high-temperature limit (neglecting other
terms) the Gibbs measure reduces to

dug()=4 Z(J) e NPV (3.19)

which has no dependence on the example set. This ex-
pression makes it clear that, for S—0, the limit is only
defined in a proper way if a— o, leaving af3 constant.
This can be easily understood: with increasing tempera-
ture the resulting dynamical noise can only be compen-
sated for by a number of examples scaling with the tem-
perature. Sompolinsky et al. (1990) introduced a res-
caled number of examples &=afS. When the tempera-

d

1-B3 | [Drdk" [~
Y

by a well-known identity. Here H (x)= [ *Du. Howev-
er, the limit as p tends to infinity of [1+(A4/p)}? is
exp(4) for any A; so taking the p-— oo limit, with
B=Na/p, implies that

(2= | [aumeNermoT BT g
which is the partition function of » independent systems,
each with an energy which is p times the generalization
function of a binary perceptron, Eq. (2.16). Note that in
moving between Egs. (3.21) and (3.22) we have implicitly
taken the limit T— o before taking N— . A more
careful calculation gives the same result with the other,
more natural, order of limits.

Following Eq. (2.14), we should also average (Z"),
over P(B); but actually this is unnecessary. All realiza-
tions of B give the same result. This is because we have
analyzed the special case in which the distribution of
question vectors is uniform around the origin, and simi-
larly du(J) is uniform on the unit sphere. That is, all
directions are equally easy to learn.

Notice that this would not be the case if questions were
correlated, or if du(J) were not uniform. In these cases
the ease of learning does depend upon B, and P (B) must
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AY - N
5 exp{iA7[AY+|r|(B-I)]— AV P[1~(BI'P) | =1-B3 [DrH
Y

ture is high, the number of examples is large; so they
form a representative sample of all possible questions.
The details of which examples are actually given are ir-
relevant, and thus the replica calculation is avoided,
greatly simplifying the mathematical analysis, as is
shown in Sec. III.C.1. For the same reason, in the high-
temperature limit, the training error equals the generali-
zation error.

In the high-temperature limit the dynamics effectively
minimizes a free energy per weight f given by

Bf=ae;—s , (3.20)
where s is the entropy per weight of the system, which we
shall define more carefully in Sec. III.C.1. High-T learn-
ing can be understood as a dynamical process with an
effective energy pes(T, V) which is smoother (i.e., it has
fewer local minima) than E,(J), since it is averaged over
the whole question space and not just over the training
set.

Example: When Eq. (3.18) is expanded to first order in
B, that is, exp[ =B, 0(—A")]=1—B3,O(—AY), the in-
tegrations over A imply that all terms which contain
mixed replicas disappear. Thus Eq. (3.18) reduces to

|7](B-J7)
V1—(B-J7)?

B

Ecos (B-J), (3.21)
o

Y

[

be averaged over. Further analysis of this expression is
very elegant, but is deferred to Sec. III.C.1.

6. The annealed approximation

One useful approximate method is the so-called an-
nealed approximation: (InZ), is approximated by
In{Z ),. From Eq. (3.2) we can see that the annealed ap-
proximation is equivalent to representing the average of a
quantity 4 (N, V), thatis, ({{ A(N, 1)) 4} )¢, by

J AN A (W, P)e —PEW
<< VA >V>§

JduNCC AW, e PEN)Y ),
= ((2),),

Falk (1975) has pointed out that the annealed free en-
ergy is a lower bound for the correct free energy, but the
minima of the annealed and correct (quenched) free ener-
gies are not always at the same place, i.e., both ap-
proaches do not always lead to the same equilibrium re-
sults. However, we shall give some examples below for
which this approximation gives qualitatively correct
answers. :
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The annealed approximation is equivalent to treating  trary temperature.
questions in the training set as annealed (rather than The analysis can be continued by introducing the
quenched) variables, such as J. This means, as Seung, order-parameter matrix ¢?"' ={{(J7-J"') B) ¢ for y#y',
Sompolinsky, and Tishby (1992) have pointed out, that a where the superscripts ¥ and ¢’ refer to different replicas
Langevin dynamics, Eq. (3.1), takes place in both the of the system and are taken from the set {1,...,n}.

space of interactions and of examples. Here ( ---) p just means the thermal average over the
At high temperatures the annealed approximation be- Gibbs distribution for the replicated system. Similarly,
comes exact and equivalent to the high-T theory. How- R7"={((J"-B) B) ¢ measures the overlap with the teacher
ever, the work of Seung, Sompolinsky, and Tishby (1992)  of the yth replica from the Gibbs distribution.
suggests that the annealed approximation is invalid for Since # is invariant under permutations of the replica
low temperatures and makes qualitatively incorrect pre- indices, we usually assume the same applies to ¢??, so
dictions for the case of some unlearnable rules (Sec. that the replica-symmetric (RS) approximation, that
V.A.4). q""'=gq for y#v’, would be exact.
7. The “quenched” theory and the zero-temperature limit
Having outlined these two simplifying approaches, we Example: Continuing with the example of the binary
now return to the full analysis of the problem at an arbi- perceptron, { Z") may be rewritten, using Eq. (3.18), as
|
f [Hdu(J")dR” ] [ I d¢97" ]eNaM{q”'i,{R”}) 1 8(g”" —¥7-3")[] (RY—B-J7) (3.23)
4 y<v' Y<vy' 14
where 4 is defined from
XYY ~ ~ PPN . ,
e'=[ |11 % ‘Dr exp | =B O(—AN+i SATAT—i S AT RT—L S ARV (g" —RTRY) | . (3.24)
14 14 4 Y 143

If we assume replica symmetry, g7 =g for y77’ and R"=R for all y, it is possible to evaluate A explicitly as a func-
tion of g, R, and n. Similarly, we may write the 8 functions as the integrals

f%—zd% exp [iNZﬁ(R —B-J")+iN 3 q(g =337 . (3.25)
14 r<vy'
I

The J¥ are now integrated out. At this stage B disap- der the stochastic dynamics becomes disconnected and
pears from the equations, and we do not need to average ergodicity is broken. Since the replicas are independent
over it. This is for the reason given in Sec. III.A.5: for systems subject to the quenched noise, different replicas
uniform du(J) and a uniform distribution of questions, may become trapped in different regions, pure states, of
all B-vectors are equally easy to learn. The # —0 limit is the J-space. The average overlap of two replicas in the
now taken and the free energy F is evaluated using the same pure state is different from that of two replicas in
saddle-point equations for ¢, §, R, and R as N> different pure states. In the one-step replica-symmetry-
(Gyorgyi and Tishby, 1990). The generalization error breaking ansatz the n Xn order-parameter matrix g"?
may then be found from R as function of a using Eq. acquires a special block structure of m Xm submatrices,
(3.8). Thus learning has been completely and exactly shown shaded in Fig. 7. The shaded blocks have diago-
solved; the results are given in Sec. III.C.1. nal elements 1 and off-diagonal elements of the order pa-

What is the physical interpretation of g? Noting that rameter g;, which measures the overlap of pure states
the replicas are independent systems evolving stochasti- with themselves. The order parameter q,, which forms
cally on the same energy landscape, it is usually argued all the elements of the off-diagonal blocks in Fig. 7,mea-
(see Binder and Young, 1986) that g ={(J)z(J)z), sures the overlap of two different pure states. The vari-
which is a measure of how well constrained F’s chosen ables g, 4;, and m, as well as R and R, must be deter-
from the Gibbs distribution, Eq. (3.2), are by a typical set mined self-consistently from the free-energy saddle-point
of examples. equations.

At low temperatures, as for spin glasses, the coupling As in spin glasses (de Almeida and Thouless, 1978), re-
of different replicas, as in Eq. (3.18), leads to mathemati- plica symmetry breaking is often indicated by one of the
cal subtleties (Mézard et al., 1987, is an excellent re- eigenvalues of the Hessian matrix (the matrix of second-
view). The symmetry group of 7 —here the permutation order changes in the free energy for fluctuations of the
group of replicas—may spontaneously break into a sub- order parameters) becoming negative, which implies that
group, which is called replica symmetry breaking (RSB). replica symmetry is unstable.

Its interpretation is that the space in which J evolves un- We shall only present results of RSB in one case, Sec.
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1 m
m 2
n 3

310

FIG. 7. Structure of the ¢7?" matrix with one-step replica sym-
metry breaking. The (n/m) submatrices are m Xm blocks.
Their diagonal elements are 1 and their off-diagonal elements
are all g;. Outside these blocks all elements are g,.

II1.C.1, since it can usually be shown that RS is exact (as
in the case of the spherical binary perceptron in the ex-
ample above) or at least a good approximation. Exactly
correcting the results for RSB is believed to be always
possible, but the calculation is usually very involved.
Using Egs. (2.14), (2.13), (3.14), Seung, Sompolinsky,
and Tishby (1992) gave an explicit form for €,, namely,

eg=li1n(Z”_1fd,u( (J)e ~FED),
—hmf [Hd,u ")

(Ih)e ~PHUTD (3.26)

From the definitions of €, and €,, one can show (Seung,
Sompolinsky, and Tishby, (1992) that for all @ and 7,
€, = €, and that for large @, both approach the minimal
value of the generalization error.

B. Sophisticated learning theory for
a binary perceptron

In the preceding section we studied, as an example,
learning with a binary perceptron by stochastically
minimizing E, at high and low temperatures. Before we
present results, however, we shall describe two learning
techniques which exploit the knowledge that the rule is
linearly separable. Since in this case the rule space and
student space are identical (both are the unit N-sphere),
we may speak carelessly of a J which has successfully
learned all the examples as lying in the version space, by
which we mean that a B vector which equals J is in the
version space.

1. The maximum stability algorithm

The contribution to the training error, E,(J), from ex-
ample p is 1 if and only if J gets the example wrong.
However, it is possible to make this contribution more
sophisticated by relating it to a physical quantity which
measures “the certainty with which the student gets the
question right,” by which we mean the overlap
At=V'N ELY-E#. Making E,(J)=0 simply means making
all the set { A#} positive; so the J which it generates may
lie anywhere in the version space. Referring to Fig. 8(a),
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D,

(d)

FIG. 8. Placing J within the version space: (a) A schematic di-
agram in the manner of Fig. 4(a). The version space is bounded
by planes D,-D,. The perceptron vector J lies in the version
space but far from the true rule B. A, is the distance between J
and plane D,. (b) Planes D,~2, again a layer of thickness k. (c)
Samplers B! to B’ are generated randomly in version space, and
J is set to be their mean. (d) A two-dimensional section of the
question space in which the version space happens to be narrow
isosceles triangle, height b and width a. JM54 is ~a /2 from the
base and J°*' is ~b /3 away, near to far more of the triangle’s
area.
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we see this is a little unfortunate, because a J near one
side of the version space will have a low overlap with a B
which happens to lie on the other side. However, A* in
this diagram is the distance between J and the plane D,
perpendicular to &¥; so to force J towards the center of
the space we insist that the value A* for every u is as
high as possible, or, to be more exact, that the J which is
generated has even the Jowest value of A* greater than a
value k. Graphically, this means that J is at least k away
from the plane to which it is closest. Thus, as shown in
Fig. 8(b), all the planes gain a “layer” of thickness k,
pointing in the direction of the version space, pushing J
into a reduced volume in the middle. Clearly, as the
value of k rises, the size of the space available to J de-
creases until at some value of « it shrinks to a point: the J
vector with maximum stability «,,. If «,,>0, then J
has correctly learned all given examples. This is the
maximum stability algorithm (MSA); it is clearly an ad
hoc approach to placing J within the version space, but
as we shall see it is better than placing J there randomly
(Opper et al., 1990). It was inspired by a similar tech-
nique developed for the different problem, mentioned ear-
lier, of storing memories in networks (Gardner, 1987,
1988).

The MSA could be implemented in the formalism
above by minimizing an energy,

Eypsa(J,6)=3 O(k—V'N ELJ-£#) ; 3.27)
I

but it is equivalent in the zero-temperature limit to re-
turn from the canonical ensemble treatment (Gardner
and Derrida, 1988) to the microcanonical formulation in-
itiated by Gardner (1988) and analyze explicitly the frac-
tional volume of the student space embedding every
input-output configuration with a stability larger than k,
that is, -

J auOI1,0(A*—x)
frac fd,u(])

which shrinks to zero as « rises to k,,,. Since this is the
fractional volume in an N-dimensional space, we expect
that, as N — oo, the self-averaging quantity will be the ex-
tensive one, In(¥, ). As in the macrocanonical ap-
proach, we require the method of replicas to perform the
average of a logarithm.

Meir and Fontanari (1992) have recently extended this
analysis to minimizing energies of the form

E, =3 (k—A")O(k—A*), r=0,1,2.
m

’ (3.28)

(3.29)

For r =0, this reduces to Eysa, Eq.(3.27). They find
that, always selecting the best value for «, €, (a) decreases
faster as r is increased beyond 0.

2. Optimal learning

Optimal learning, explained in Sec. II.G, is a more
efficient way to exploit the prior information that the rule
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is linearly separable. It finds the J which agrees with as
many rules in version space as possible on as many exam-
ples as possible. It may be generated by minimizing ener-
gy E,p> Eq. (2.37), by the techniques of Sec. IIL.A or, as
pointed out by Watkin (1991, 1993), since the rule space
and version space coincide, by temporarily introducing m
sampler points in version space, defined by vectors B’,
r=1,...,m. Each sampler is constructed independent-
ly by minimizing E,(B’), so that all lie randomly in the
version space. We can then exploit the identity

€,(1)=(e(J,B) )= lim i ﬁ €(J,B"), (3.30

m— r=1

showing that optimal learning is to generate J°P!, the J
which minimizes the right-hand side of Eq. (3.30). This
result is useful both as a way of generating the optimal J
and as a tool for analyzing its success.

Replica symmetry is stable in zero-stability learning, so
two randomly chosen networks which minimize E,(N)
have a self-averaging overlap. It follows that two
samplers, which are also points chosen randomly in the
version space, have the same self-averaging overlap. No-
tice that this argument is using the second, Bayesian
justification of statistical mechanics (Sec. III.A.3) as a
way of measuring the size of version space. Using the
self-averaging overlap of different samplers, it is easy to
show (Watkin, 1993) that Eq. (3.30) may be rewritten

m
&= |1, | tim L 3B (3.31)
m-— o

r=1
€, is a decreasing function of the product of its argu-
ments; SO

Jopt: i § B’
Y r=1

in the spherical case (where ¥ is introduced as a normal-
izing constant), or such that J?P'=sgn(3,B/) in the Ising
case. In the limit of large m, but still O(1) (i.e., not rising
with ), the optimal J is generated by construction, lying
approximately in the centroid of the version space, Fig.
8(c). The samplers may now be discarded: they were
used simply to train the perceptron optimally. Analo-
gous constructions are used again, however, in Sec.
VI.C.1, where they form part of a more complex network
being built (Opper and Haussler, 1991, 1991b).

The justification for the optimal rule is much the same
as for the maximum stability rule; the J generated lies as
close as possible to as much as possible of version space.
However, we can see that optimal learning is superior
from Fig. 8(d), which shows a certain cross section of ver-
sion space. In this cross section the version space hap-
pens to be bounded by three planes which form a narrow
isosceles triangle, whose shortest side has width a and
whose perpendicular height is 5. Maximum stability pro-
duces a J only about a/2 from the base (the furthest
point from all three sides), while the optimal rule pro-
duces one about b/3 up the triangle, close to far more
possible rules.

(3.32)



520 Watkin, Rau, and Biehl: The statistical mechanics of learning a rule

FIG. 9. The B-J plane. J and B lie on the unit N-sphere, cen-
tered at the origin @. D is the hyperplane of all vectors whose
overlap with B is R, and the projection into the plane of its in-

tersection with the N-sphere is shown as in the solid part of line
D.

C. Results for perceptron learning
1. Learning a binary rule with a binary perceptron

a. The spherical perceptron

To illustrate the great mathematical ease and elegance
of the high-temperature learning analysis, which was be-
gun in the example of Sec. III.A.5, the rest will be ex-
plained in some detail. In Eq. (3.20) the variable on the
right-hand side, which we have not yet calculated, is the
entropy s. Figure 9 shows the projection of the N-
dimensional space onto a two-dimensional hyperplane
containing J and B, which lie on the unit N-sphere cen-
tered at the origin. The hyperplane O, composed of all
N-vectors whose overlap with B is R, intersects the unit
N-sphere on an (N —1)-dimensional sphere, whose pro-
jection into the plane of the diagram is the solid part of

the line P. It is clear from the diagram that the radius of
the small sphere is just sin 8. To within a constant the
entropy per weight in the spherical case, s, is the loga-
rithm of the (N —2)-dimensional surface area of this
sphere and is given by

N—-2

sp(R)= In(sinf)—1In(1—R?), (3.33)

as N —oo. Thus the free energy to be minimized reads

szgcos_l(R)-%ln(1—R2) ) (3.34)

a function possessing exactly one minimum which moves
towards R =1 as @ increases. Thus learning has been ex-
actly solved. The generalization error decreases as 1/&
for large @.

Zero-stability learning, the example developed in Sec.
II1.A.7 which placed J randomly in the version space,
has been analyzed at zero temperature by Gyorgyi and
Tishby (1990) and Sompolinsky et al. (1990). As we have
said, it is equivalent to placing J randomly in the version
space. Their solution is in terms of two physically mean-
ingful order parameters g and R, which, as explained,
may be calculated from Eq. (3.24): R(a), which mea-
sures the average overlap between J and B, and g (a),
the overlap between two replicas, which is interpreted as
the average overlap between two independent random
choices of J in the version space; however, since B and all
the replicas, {J¥}, are equally likely to lie anywhere in
the version space, by symmetry R (a)=gq(a) (a result
which can be verified from the thermodynamics). The re-
sulting generalization error may be calculated from R («)
using Eq. (2.16) and is shown as line 1 in Fig. 10.

The maximum stability algorithm was analyzed by

L O S s B S B B B B LA A I A B
€q ’ 4
: |
i 7
i 7]
- ] .
0.4 " . -
/ Line &
B / \\/ 7]
L ~ / \ -
B ~- \ |
03 — N\ — FIG. 10. Generalization error
= \ T against a as a result of learning a
[ \\ . linearly separable rule with a
N ) 7 spherical perceptron with zero
02 C o Line 1 N stability (line 1), using the MSA
il I~ i (line 2) and optimally (line 3).
B I~ B The pseudoinverse rule is shown
| ==~ _ dashed as line 4.
0.1} , _ =
- Line 2 T .
B Line 3 ]
0 Lo o b v b by Ce L ]
0 1 2 3 I 5 o 6
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Opper et al. (1990), and optimal learning by Watkin
(1991, 1993). As explained in Sec. III.B.2, the m
samplers used in Eq. (3.32) to generate optimal learning
are trained independently using the zero-stability tech-
nique, so that they have an overlap with B and with one
another of the same g (a) found by the zero-stability cal-
culation above. Calculating J°P'-J°P' using Eq. (3.32)

therefore gives us the normalizing constant
y=[m +m (m —1)q]'/?; thus, from Eq. (3.31),
m m
e, =(1/m)cos™! [(1/my) |3 B |- |3 B
r=1 r=1
—(1/m)cos [ Vg(a)] (3.35)

as m becomes large [but still O(1)]. Remarkably, the op-
timal perceptron generalizes for the linearly separable
rule as well as the Bayes algorithm, described in Sec.
ILF, because the proportion of examples on which they
differ is vanishingly small. This means that in the large N
limit a spherical perceptron can learn a linearly separable
rule as well as any other possible network.

The results of these algorithms are shown in Fig. 10 as
lines 2 and 3, respectively. In all cases the average gen-
eralization error decreases as 1/a, but with a lower con-
stant for the maximum stability approach and a still
lower one for the optimally taught perceptron. In all
these models replica symmetry is stable against small
fluctuations (Gyorgyi and Tishby, 1990) and the solutions
are therefore thought to be exact for all  and 7.

Simulations lend strong support for all these analytical
conclusions. Instead of explicitly minimizing E g, , it is
faster to use an equivalent algorithm, for example, the
MinOver algorithm (Krauth and Mézard, 1987) or the
Adatron algorithm (Anlauf and Biehl, 1989), which
iterates any random vector towards the maximally stable
J. Interestingly, if the generalization error is calculated
at each stage of the process, it actually falls below the re-
sult predicted for the MSA by thermodynamics, before
rising back eventually to the thermodynamic prediction
as the number of iterations becomes large (G.-J. Bex,
private communication, 1992). This is an example of
overfitting, discussed in Sec. VI.C.3.

Optimal learning was recently successfully simulated
by Watkin (1993) using m =25; in this simulation a trick
was employed to generate samplers more quickly than by
independent stochastic minimization of E,(B").

We might mention that other functions of {A*} have
been used as error measures. The pseudoinverse rule
(Personnaz et al., 1986; Vallet et al., 1989) tries to give
all the A* the same constant value p. This is possible for
a =1, and in this range a unique J is generated by making
p as high as possible. The process may be generalized for
higher a by minimizing an energy which is the sum over
the training set of the quadratic deviation of {A#} from
P> EpseudEEH(A“-—p)Z; again there are a unique p and J
which minimize this expression. The zero-temperature
analysis of such a rule for the spherical perceptron has
been performed (Opper et al., 1990), and the results are
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shown in Fig. 9 by dashed line 4. At a=1, there is
strong overfitting: the only J which has the same overlap
with all examples has no correlation with B; thus J de-
pends entirely upon the random details of questions in
the training set. As a— », €~ 1/V a, like the Hebb al-
gorithm, Sec. II.D. In fact, a cost function linear in the
A* just leads to the Hebb algorithm, Eq. (2.17), for T =0
(Wong and Sherrington, 1990).

b. The Ising perceptron

The high-temperature analysis for the Ising perceptron
is equally straightforward (Sompolinsky et al., 1990) for
learnable problems (those in which every component of B
is 1). The corresponding entropy can be obtained using
a simple counting argument: if B-J=R, then any given
component i of the weight vector must have chance
(1+R)/2of B;=J; and (1—R)/2 of B;=—J;. Thus

si(R)=—3 p)lnp,
A

__ |1+R | |1+R
2 2
1—-R 1-R
S |5 | (3.36)

where A labels the possibilities for each node. As long as
¥ <@y, ~1.69, the resultant free energy has two minima,
one at R =1 and a lower one at 0<R <1. For a> &,
the minimum at R =1 is the global one, but the minima
are still separated by an energy barrier scaling with N.
Thus, starting without initial information (R =0), the
student would evolve to the minimum at O<R <1 and
then take exponentially long to reach the minimum at
R =1. However, for @ greater than a spinodal value of
0y, ~2.08, the minimum at 0 <R <1 disappears and the
system converges fast to the state at R =1. It is remark-
able that this first-order transition to perfect generaliza-
tion exists even at high temperatures, but this was
confirmed in simulations by Sompolinsky et al. (1990), as
shown in Fig. 11(a), where the solid line shows the high-
temperature prediction and the small boxes show the re-
sults, and error bars, of a simulation using N =75 and
T =5. The vertical dashed line is at &,;,, where the net-
work with perfect generalization becomes the global
free-energy minimum. The results from the annealed ap-
proximation are qualitatively similar to those of the
high-T approach.

It is worth pointing out here that finite-size effects
mean that at high temperatures a barrier between two
free-energy minima may be climbed if the stochastic dy-
namics is given a long enough time in which to evolve
(which would not be possible as N — oo, which makes the
barrier infinitely high). This effect has been observed in
simulations by Kocher and Monasson (1991) and by
Schwarze, Opper, and Kingel (1992) and will be referred
to again in Sec. VI.C.1.
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At zero temperature and zero stability the annealed
approximation and the replica-symmetric approach were
analyzed by Gyorgyi (1990b). A more comprehensive
analysis was performed by Seung, Sompolinsky, and
Tishby (1992). We first report on the replica-symmetric
results. For a <a,,~1.245 the RS free energy has two
minima—a result first derived by Gardner and Derrida
(1989)—one at R =1 and one at 0 <R < 1. The solution
at 0<R <1 has the lower free energy and is therefore the
equilibrium solution. For a <ay, there are many states
with zero training error, and most of them have an over-
lap with the teacher of O<R <1. As a is increased
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beyond ay,, the solution at R =1 becomes the absolute
minimum; however, the solution at 0 <R <1 persists un-
til the spinodal point of az‘psz 1.49 is reached. For
ay, <a<agy stochastic algorithms which iterate from a
random initial configuration (R =0) will not converge to
the global minimum of free energy, but become stuck in
one of the metastable states. This part of the phase dia-
gram is interpreted as a spin-glass phase (Mézard et al.,
1987) rich in metastable states.

Since a system with a finite number of discrete states
cannot have a negative entropy, the line in the a-T space,
indicating where the entropy becomes negative, provides
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a lower bound for temperatures below which the RS as-
sumption is incorrect. Indeed, it was negative entropy
which gave the first clue that replica symmetry was
sometimes untrue for spin glasses (Sherrington and Kirk-
patrick, 1975). If answers are uncorrelated with ques-
tions (the storage of memories), the zero-entropy line is
exactly the line on which replica symmetry breaking
occurs (Krauth and Mézard, 1989). Following their ap-
proach, Seung, Sompolinsky, and Tishby (1992) have an-
alyzed the first-step replica symmetry breaking in accor-
dance with the Parisi theory (reviewed by Mézard et al.,
1987, and described in Sec. III.A.7). For small enough
temperatures there is a metastable spin-glass phase. The
thermodynamic transition at zero temperature is still at
a,,~1.245, whereas the spinodal line indicating the
disappearance of the spin-glass phase is shifted to
as®~1.63. The predictions of generalization error are
shown on Fig. 11(b), which indicates the three different
predictions of the value of a at which the transition to
perfect generalization occurs.

The interpretation of these results is that the student
space for the Ising perceptron becomes disconnected
with a central region, in which ergodicity is unbroken
and which contains a network which generalizes perfect-
ly (R =1), surrounded by regions in which ergodicity is
broken. The sheer bulk of the outer regions, rising as
exp[Ns(R)], means that in these regions will be net-
works such that small changes to the network within the
student space always increase the number of questions in
the training set which are answered incorrectly. These
networks are the metastable states associated with RSB.
Passing between the fully ignorant network, R =0, and
the highly taught network R ~1, is liable to become ex-
ponentially slow because the dynamics leads J through
one of the outer regions. Metastable states are far more
rare for spherical perceptrons than for Ising ones, be-
cause for the former the student space is continuous and
so allows far more freedom of movement; therefore repli-
ca symmetry is unbroken.

Recently Derrida, Griffiths, and Priigel-Bennett (1991)
investigated the finite-size effects of learning with binary
Ising perceptrons. By numerically enumerating all the
possibilities for J, they observed that, for finite N
(N =~20), learning from examples in which each com-
ponent of the questions is chosen from a Gaussian distri-
bution differs strongly from the case in which com-
ponents of the questions are randomly =*1, although, as
pointed out in Sec. II.D, for N — c« the two cases give
the same result (since in both cases the central limit
theorem applies to the overlap between B and questions).
They find, in addition, that the critical number of pat-
terns beyond which a sudden transition to perfect gen-
eralization occurs depends strongly and in a nonlinear
way upon N, which makes it very difficult to extrapolate
numerical results to the infinite N limit. Using a solvable
“toy”” model, however, they derive an exact upper bound
for the thermodynamic transition, namely, af~1.45,
which is obviously in agreement with the result of the re-
plica method, a,,=1.245.
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2. Learning a linear rule with a linear perceptron

Here we apply learning from examples to a linear per-
ceptron whose output is given by N(S)=V'N B-S. The
questions {£”} and answers {£%} of the training set are
related via the rule £=V'N B-£*. In Eq. (2.11) each pat-
tern which is not correctly answered makes a contribu-
tion to the training error of 1, but in this case it is more
natural to use the quadratic deviation between student
and teacher output as error measure e(J,B,S). The gen-
eralization function thus becomes (Hertz et al., 1991)

ef(J,B)’—“((N/2)(J-S—B-S)2> , (3.37
s

which equals (1—R), where R =J-B, if J is normalized
by Eq. (2.8) and, again, components of questions are as-
sumed to be drawn independently from a distribution in-
dependent of B and J.

a. The spherical perceptron

The problem of learning form examples in a linear
spherically constrained perceptron was first solved by
Krogh and Hertz (1991), who derived the whole dynam-
ics of learning (see Sec. IV). The equilibrium solution
was comprehensively analyzed by Seung, Sompolinsky,
and Tishby (1992). At zero temperature the solution of
the problem is straightforward, since it reduces to the
solution of a set of linear homogeneous equations.
Replica-symmetric theory is exact for all T and a and
yields a linear decrease of € from 1, for a=0, to €,=0
for a=1, reflecting the fact that N linearly independent
equations of the form V'N B-£=¢£, determine B. At any
finite temperature, however, this transition does not exist
and the asymptotic result for smooth networks is
€, ~ T /2a (cf. Sec. VL.D).

The annealed approximation leads to the correct
asymptotic behavior of €, for T>0. For T =0, however,
it predicts €, ~(2—2a)/(2—a), which is obviously not
in agreement with the RS prediction reported above.

b. The Ising perceptron

In the case of the linear Ising perceptron (Seung, Som-
polinsky, and Tishby, 1992), the values of B; and J; are
constrained to be 1. In the high-T limit the average
generalization error decreases exponentially quickly, i.e.,
€,~2e 22 At zero temperature, using the same nota-
tion as for the binary Ising perceptron, we find a,;=0
and af;szo.48. The result a,; =0 suggests that for any
macroscopic number of examples the free energy has a
global minimum at R =1, and the spinodal point agy in-
dicates the disappearance of metastable solutions at
O0<R <1. Monte Carlo simulations seem to support the
results for temperatures as low as 7=0.2, although
finite-size effects result in slight deviations from the
analytical theory.

The results reported here were obtained within the
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framework of replica symmetry, but the position of the
zero-entropy line shows that they are incorrect for low
temperatures; it is expected that full RSB will shift the
position of the spinodal line.

For the linear perceptron it is possible to calculate the
density of local minima, which are separated by barriers
of finite height but may still strongly influence the zero-
temperature dynamics. Developing the work of Gardner
(1986), Seung, Sompolinsky, and Tishby (1992) have cal-
culated an upper bound for the number of local minima
as a function of R. They find that there are no local
minima in the neighborhood of the R =1 solution, imply-
ing that the energy function must be smooth there. With
increasing a the dynamical attractor radius increases un-
til at @=2.39 all local minima disappear, suggesting that
even at T =0 the learning dynamics will be fast.

IV. DYNAMICS OF LEARNING

To make use of neural networks we need to know not
just that there is a network which learns the rule, but also
that we can find it on a realistic time scale. After all,
many optimization problems are NP, which stands for
nondeterministic polynomial. This means that no algo-
rithm can find the solution in a time scaling less than ex-
ponentially with the size of the system—which is clearly
not much use. A mathematically more rigorous intro-
duction to combinatorial optimization problems is given
by Garey and Johnson (1979) and Mézard et al. (1987,
pp- 307-335). We first discuss an example of learning
which is definitely not NP and for which the speed of al-
gorithms may be calculated exactly. Then briefly we dis-
cuss learning in situations which are conjectured to be
NP.

Even more importantly for physicists, this theory is
applicable to disordered physical systems, since, as ob-
served in Sec. III.A, gradient descent maps to zero tem-
perature Langevin dynamics on a noisy energy landscape
in the limit of high viscosity (Parisi, 1988), or on a noisy
velocity-dependent energy surface. There are also close
relationships to the dynamics of spin glasses, still an area
of research (for example, Hammann et al., 1992). While
NP problems correspond to exponentially slow relaxa-
tion, the other case is exactly solvable noisy dynamics.

A. Exactly solved dynamics: the linear perceptron

Krogh and Hertz (1991) studied the dynamics of learn-
ing of a linear perceptron, introduced in Sec. II.A.2,
whose error measure e was the quadratic deviation of the
student answer to inputs and the correct answer, so that,
for example,

E()=13J-&—g)? . 4.1)
uw

Gradient descent using E,(J) means the noiseless ver-
sion of Eq. (3.1), which is called Adaline learning
(Widrow and Hoff, 1960). If the components of J are al-
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lowed to take any real value, a simple gradient descent
can be guaranteed to find the global minimum of this
convex function,

%:—= —V,E,(J)=A(B-1J), 4.2)
where the elements of the N X N matrix 4 are given by
Ajp=3,878k/N. Defining the vector D=B—J, Eq.
(3.37) shows that (e;)y,=1+D(¢)-D(z), where
( **+ ) means the average over the network generated
by this algorithm after a time ¢. Equation (4.2) gives
0D /dt = — AD, the diffusion equation. Writing the nor-
malized eigenvectors of 4 as {x;}, where I=1,...,N,
and its eigenvalues as {A;}, we can decompose
D(t)=3,y,(t)x;, where y,(t)=D(¢)-x;, which implies
that ef(t)ZEIy,z(t)/Z and the differential equations be-
come 9y,(¢)/0t= —A;y,(t). Thus the components of €,
relax independently and exponentially, with a time con-
stant 2A;. If the initial J, B, and A4 are uncorrelated,
then each y,(0) will be Gaussian distributed with
(y;(0))=0 and (»3(0))=2/N. As N becomes large we
may therefore convert the sum over eigenvalues into an
integral and write

(€ (N pin= [ dAp(MIexp(—241) , 4.3)

where p(A) is the eigenvalue spectrum of 4. To find
€,(t) we only need average over the questions, so deter-
mining (p(A)), Hertz, Krogh, and Thorbergsson (1989)
calculated this quantity by a diagrammatic expansion,
but we shall present the alternative approach of Opper
(1989) and Kinzel and Opper (1991), which uses the tech-
nique of Edwards and Jones (1976) for calculating the
spectrum of large, symmetric, random matrices. It uses
the identity

1 . 1
—u)=—Im {lim |——— | | . 4.4
S(A=w) ﬂIle—rR) Atie—p @4
Thus we can write
(M=—~Im llim S [-—L1—
PN T 0% | Atie—A,
= 2 1m lim 2 nZ(A+ie) 4.5)
N e—0 OA ’ ’
where
Z(A)= [H(x—x,)]—l/z
1
=(det[A]— A])"!/?
N/2
=|L fdxe_""'[M“A]"‘, (4.6)
T

by a well-known identity, where I is the identity matrix.
It is now possible to recognize Z as the partition function
of a system at an imaginary temperature. Section III.A
showed how to calculate (InZ ) & 80 it is straightforward
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to obtain the average eigenvalue spectrum, which is
sketched in Fig. 12: a 8 function peak at zero of magni-
tude (1—a)®(1—a), which represents the asymptotic
value to which €, relaxes as t — o (see Sec. II1.C.2) and a
continuum of values between 7, and 17,, given by
N, =(1FVa) The  long-time  behavior  of
€,(#)—¢€,(0) is given by the smallest nonzero eigenvalue
of A, that is, n,. For any a1, the error relaxes ex-
ponentially, whereas for a— 1, which implies 7;—0, the
relaxation time diverges like (V'a—1) 72, which is critical
slowing down of the dynamics at the transition to perfect
generalization. These results were rederived by Le Cun
et al. (1991).

Krogh and Hertz (1991) considered various
modifications of the training procedure, Eq. (4.2), by, for
example, imposing onto the components of the weights a
tendency to decrease (weight decay):

A 4B—1)—«T. .7
ot
Taking k>0 removes the divergence of the relaxation
time, but implies that relaxation of € is never to zero.
The asymptotic generalization error remains nonzero for
any finite a.

Static noise on the weights or the output has also been
incorporated in the model (Krogh and Hertz, 1991;
Krogh, 1992 ). Adaline learning may also be solved in
some regimes for a binary spherical perceptron (Opper,
1989; Kinzel and Opper, 1991), and this analysis has also
been extended to more complex, nonlinear perceptron-
learning schemes by Biehl, Anlauf, and Kinzel (1991).

Numerical algorithms do not run in continuous time,
so it is necessary to invent a discrete version of the dy-
namics in Eq. (4.2):

J(t+1)=¥(t)—yV;E (J(1)), (4.8)

where the parameter Yy measures how large a step is
made. Equation (4.8) implies that D(z+1)=[I
—y A]D(t), so that the bracket is an operator represent-
ing one update of the network. Thus decomposing D
once more into eigenvectors of 4, we obtain after 7 time
steps that y,(7)=(1—vyA,;)7y(0), which falls to zero ex-
ponentially for 7 large, providing that [1—yA,| <1; thus
we obtain the same exponential decay.

Since the eigenvalue spectrum derived above contains
no values greater than O(1), for |1—yA,|™ to converge to

p D

/\ x
0 M M2

FIG. 12. The average eigenvalue spectrum of Sec. IV.A,
(p(L)), showing a 8 peak at zero and a continuum of values be-
tween 77, and 7,.
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zero y may still be chosen to be @(1) (Opper, Diederich,
and Anlauf, 1988; Opper, 1989; Kinzel and Opper, 1991).
Unfortunately, if the questions we must learn are partial-
ly correlated (which will be true in practical applica-
tions), an additional eigenvalue O(N) appears in the spec-
trum (Edwards and Jones, 1976; Wendemuth, 1991). For
the algorithm to converge, ¥ must be chosen to be
O(1/N), which seriously slows down learning. Even a
pattern correlation 3 ;£4£% of O(V'N ) for u#p’, which
is the magnitude of correlations we would expect to
occur naturally if the questions are uncorrelated, gen-
erates this eigenvalue (Wendemuth, 1991); so in any prac-
tical problem one should take Yy ~1/N, or use the
sequential version of Adaline learning (Diederich and
Opper, 1987), which has similar dynamics.

B. A dynamic mean-field theory approach:
the binary Ising perceptron

Horner (1992a, 1992b) has presented an interesting
dynamical approach to the problem of learning a rule
and storing memories (random input-output configur-
ations) in a binary Ising perceptron. His dynamic mean-
field theory is based on the dynamical approach to disor-
dered systems, which is a well-known alternative to the
replica method (De Dominicis, 1978).

The process of learning a rule is analyzed directly as a
random walk in student space according to a training en-
ergy E, [Eq. (2.11)], in which the error measure has been
generalized to

e (N, 80, 6")=(—A")YO(—AH) (4.9)

where, as previously, A¥=V'N £“J-£*. The parameter r
can take all non-negative values. Setting » =0 just gives
the energy used to train a binary Ising perceptron in Sec.
ITI.C.1.b; however, because the landscape is locally flat
for r =0, simulated annealing always leads to a freezing
of the system and r =0 is therefore not used in this sec-
tion.

Figure 13 shows the phase diagram for r =1. The

0.15

0<R<1
0.10 -

0.05 -

oy

FIG. 13. Phase diagram for stochastic learning of an Ising
linearly separable rule with an Ising perceptron using a
smoothed energy (»r =1). The solid lines show the results of an
exact thermodynamic calculation, and the dashed lines show
the results of an exact dynamic one.
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solid lines show the results of the thermodynamic calcu-
lation, closely resembling those for » =0, which was dis-
cussed in Sec. III.C.1.b. To the left of line 1 thermo-
dynamics predicts a value of R just greater than zero; re-
plica symmetry is stable and the perceptron is unfrozen;
for zero temperature the network is predicted to be in a
state with E,(J)=0. To the right of line 2 the perceptron
has an R ~1 and gives R —1 at T—0. Crossing line 3
there is a discontinuous transition: R jumps from a small
value to one near to 1. For all > 2.07, R rises smoothly
to 1 as T—0. There is also a spin-glass phase with first-
step RSB between lines 1 and 2, and in this region ther-
modynamics suggests that first-step RSB is exact. Thus
at zero temperature and rising a the perceptron moves
from an unfrozen O <R <1 solution into a frozen RSB
solution at line 1 (at a value of a which, as in the » =0
case, coincides with a,;), and then at the RSB spinodal
point of aﬁ,SB= 1.53, freezes discontinuously into R =1.
All this agrees fairly well with the thermodynamic results
for r =0.

Unfortunately, it seems that these results are incorrect
in several ways. The principal conclusion of Horner’s ex-
act dynamical treatment (1992b), strongly supported by
numerical simulation (Horner, 1993; Patel, 1992), is that
if a system at a given value of « is annealed to a low tem-
perature, it experiences ergodicity breaking when it
enters the larger region marked with the dashed line 4.
This nonergodic phase is characterized by the existence
of infinite relaxation time scales, when the system size be-
comes infinite. The resulting anomalous contributions to
the response functions are related to correlation func-
tions by some quasi-fluctuation-dissipation theorem.
This scenario is analogous to first-step RSB.

At a lower temperature still, the system enters the re-
gion marked with the dotted line. There the entropy of
the marginally stable solution vanishes, which can be
considered as the temperature where first-step RSB be-
comes unstable and additional diverging time scales ap-
pear. These results indicate that although thermodynam-
ics predicts that a Gibbs process at 7=0 will produce
states with zero energy for a <a, simulated annealing
will fail for large systems for all a <a,.

The explanation for this phenomenon seems to be
(Horner, 1992b) that thermodynamics is demonstrating
existence proofs for zero-energy solutions, while the dy-
namics theory tells us what is actually observed in a simu-
lation. Note that the » =1 energy function is smoother
than r =0, so one might expect RSB effects to be even
greater for the r =0 case, where no dynamic solution is
available. The moral seems to be that thermodynamics
must be carefully applied; it may not be as successful as
has been suggested at predicting ergodicity breaking.
Horner (1992a) has conjectured that the maximum of the
free energy determines the existence of perfect solutions,
whereas the minimum yields information about the per-
formance of a polynomial-time algorithm.

Note that both the dynamic and the thermodynamic
solution predict that at least for a>1.245 there is a
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unique J with zero energy—and this J must be B. Dy-
namics and thermodynamics also agree that a stochastic
process will not converge to this solution until a~1.53.
Horner (1992b) has therefore conjectured that for a
slightly greater than «,, learning is a NP problem: no
polynomial-time algorithm can converge to the unique
right answer. However, as « rises to aﬁ,SBz 1.53, the sto-
chastic algorithm does converge in polynomial time; so
the problem is certainly not NP. Is there therefore, we
might speculate, a transition for 1.25 <a <1.53 at which
“NP-ness” disappears, arising because there is a single
known solution into which enough examples will force J?
This question is particularly interesting, since all NP
problems are in a sense equivalent (Garey and Johnson,
1979). The question of which sets of a data give NP
difficulty is an open one in computational science, and
this problem may suggest that a stochastic approach is
appropriate.

Finally, Horner (1992b) has observed an interesting
hysteresis effect. As observed, stochastic dynamics start-
ing from high temperature experiences freezing on cross-
ing the dashed line. However, if we begin at 7 =0 and
R =1 (i.e.,, J=B) and raise the temperature, the percept-
ron only becomes unfrozen at a temperature higher than
the one where it crosses the dashed line.

A similar effect has been observed in high-temperature
learning by Kocher and Monasson (1991; and by
Schwarze, Opper, and Kinzel (1992), whose results will
be presented in context in Sec. VI.C.1). In high-T learn-
ing, the hysteresis effect is due to the competition of two
local minima of the free energy at different values of the
order parameter R. As discussed in Sec. III.C.1.b, start-
ing from a random state (R =0) and no examples in the
training set, J evolves randomly. If new examples are
added, and at every stage J is given time to evolve, then
at a certain value of & =@a,,, as explained in Sec. III.C.1,
the high-R solution becomes the global free-energy
minimum, but the freezing transition, in which the low-R
free-energy minimum disappears and there is a transition
to the R =1 solution of perfect learning, occurs at a
higher value of @=ag,. If @ is decreasing, however,
which corresponds to the somewhat unphysical case of a
stochastic dynamics continuing while the training set is
reduced, the reverse transition, from the R =1 solution
to the low-R one, occurs when the high-R free-energy
minimum disappears, which is at a lower value of & than
@.,. Thus there is a memory effect.

This phenomenon is expected to occur in other situa-
tions with a first-order transition in learning (Sompolin-
sky and Tishby, 1990; Watkin and Rau, 1992b). Section
VI.C points out that it is associated with interesting
finite-size effects.

V. INCORPORATION
OF PRACTICAL CONSIDERATIONS

While the results of Secs. III and IV are elegant and
useful for gaining an insight into learning, we are
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unaware of any practical situation in which their con-
clusions apply exactly. Here we describe four major
ways in which practical problems are richer than these
bare results and demonstrate how the theory may be suit-
ably adapted.

A. Unlearnable rules

Since linearly separable rules form a very small class of
all possible rules, it is of great interest, as Gutfreund and
Toulouse (1992) have pointed out, to understand how
perceptrons generalize in unlearnable problems. Nabu-
tovsky and Domany (1991) have recently proposed an al-
gorithm which converges to the right answer, if one ex-
ists, or detects linear inseparability in a finite number of
steps. Since perceptrons divide the input space by a hy-
perplane, it is only reasonable to use them to learn rules
which have approximately this structure: a small number
of regions in input space separated by boundaries which

o
—

are approximately hyperplanes. Watkin and Rau (1992b)
have divided unlearnable rules into three categories: (i)
rules in which there remains a unique B direction to be
learned and the rule is monotonic in the overlap between
examples and this direction (explained below), but there
is a mismatch of thresholds; (ii) rules in which there
remains a unique direction to be learned, but the rule is
not monotonic in the overlap between examples and this
direction; and (iii) rules in which there are several special
directions in input space. For Ising perceptrons there is
a further class of unlearnable problems: those in which
the components of B vectors may take any real value,
which is called mismatched weights (Seung, Sompolin-
sky, and Tishby, 1992). Since this problem is equivalent
to an Ising perceptron learning to mimic a spherical per-
ceptron, the problem is also called one of mismatched ar-
chitecture.

An example of the first of these unlearnable rules is il-
lustrated in Fig. 14(a), the learning of a linearly separable

L1 1 L

-1.0 -08 -0.6 -0.4 -0.2

FIG. 14. Unlearnable rules: (a) The B-J plane, following Fig. 5(a), except that hyperplane @, perpendicular to B, is displaced by ¢
from the origin; (b) The reversed-wedge problem. The correct answer to a question may be worked out by finding the position of the
question’s projection into the B-J plane and taking the sign marked in this diagram. J and B disagree on the answers to questions fal-
ling in areas E, F, G, and H. (c) The plane of the three teachers B,, B,, and B;, in the parity machine, perpendicular to the planes D,
D,, and D;, respectively. The signs in the diagram show the correct answers to questions. (d) Solid lines show the generalization
function €, against R for five values of A in the reversed-wedge problem. The dashed line shows —Sp» minus the entropy for the
spherical perceptron. The vertical scale is different for all lines. (e) The three-dimensional space containing J and the set of teacher

vectors.
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rule, Eq. (2.10), with a threshold ¢, being learned by a
perceptron with no threshold. Examples are answered
R =+1 if they fall on the positive B side of plane @,
which is normal to B and displaced by ¢ from the origin
0.

Figure 14(b) shows an example of the second class of
unlearnable rule. A question r with a high overlap with
B, Br>A/VN, is answered +1, and one with
B-r<—A/V'N is answered — ; but there exists a region
centered on the origin where positive B-r gives a negative
R, and vice versa. We call this region a reversed wedge;
the output A is not a monotonic function of B-r.

The rule shown in Fig. 14(c) is one of the third class of
problems,

V(r)=sgn[(B;-r)(B,'r) - - (B,1)], (5.1)

where B|,B,, . . ., B, are k unit teacher vectors. Such a
rule is called a parity machine (see Sec. VI.A). If the rule
vectors are at right angles to each other (for k > 1), or if
k — o, then the problem is completely unlearnable by a
perceptron; every direction of J gives the same generali-
zation function, €(J, V)= 1.

Here we shall restrict k& to be odd and the teacher vec-
tors to be equally spaced out on a semicircle around the
origin on a single two-dimensional plane, so that the an-
gle between B, and B, is w/k for 1 <y <k —1. This is
illustrated for k£ =3 in Fig. 14(c). Examples falling into
the “+” region are answered + 1. Note that there is
more than one special direction; in particular, B, is
equivalent to B; and to —B,.

All these rules have been analyzed (Watkin and Rau,
1992b) at high temperature for Ising or spherical J, but at
low temperature only for spherical J, due to the
difficulties, explained in Secs. III and IV, of interpreting
an Ising analysis.

1. A rule with a threshold

We consider first high-temperature learning (Sec.
III.A.5). Since the first two categories of problems still
have a unique direction to be learned, the entropy
remains the same function of the only order parameter
R =J'B, that is, Eq. (3.33) in the spherical case and Eq.
(3.36) in the Ising case. Only €,(J,B), which is the pro-
portion of examples falling into areas E and F in Fig.
14(a), is different. It can be easily calculated in a manner
similar to that which gave Eq. (2.16), from the observa-
tion that the projection of random examples into any ran-
dom direction has a Gaussian distribution given above by
Eq. (2.18).

Learning at high temperatures with a spherical per-
ceptron yields a smooth evolution towards the optimal
result, although of course the minimum €.(J,B) is
greater than zero. The Ising perceptron also finds the
state with the minimum ¢,, as in Sec. III.C.1 although
the first-order transition is not to B at once, but only into
the region of B, that is, R=~1. R—1 only as &— .
Surprisingly, for thresholds greater than ¢=0.22, the
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first-order transition disappears.

The zero-temperature maximum stability result for a
spherical perceptron also converges smoothly to the
correct answer, although for some value of a (dependent
upon ¢) the value of «,,, changes sign. This is because,
since not all examples can be perfectly learned, the per-
ceptron must be allowed to get certain examples wrong
before the energy function, Eq. (3.27), can be made zero.
In other words, whereas in Fig. 8(b) taking « to be posi-
tive forced the J into the center of the version space, here
it must be allowed to become negative so that the space
where E g4 (J) is zero has nonzero volume: examples are
allowed to lie —«k outside the central region of Fig. 8(b).
Note that for ¢==Fo answers are uncorrelated with
questions, so that learning becomes equivalent to storing
random input-output configurations (memories). This
problem, mentioned in Sec. II, is equivalent to having no
rule at all and has been fully studied in the neural net-
work literature (for a review see, for example, Gutfreund
and Toulouse, 1992). It is well known that a perceptron
may store exactly 2N uncorrelated question-and-answer
pairs (Winder, 1963; Cover, 1965; Venkatesh, 1986;
Gardner, 1988), and thus as ¢— =+, k changes sign at
a=2

It was shown by Gardner and Derrida (1988) that re-
plica symmetry breaking occurs in the storage of un-
correlated patterns when « changes sign. This is not a re-
sult of frustration, since we have written our energy func-
tion so that all constraints on J can be satisfied; rather,
the space of all J which make Eq. (3.27) zero becomes
disconnected. The same result applies to learning the
threshold problem for ¢ =1 o0, where the sign change of
k itself implies that the problem is unlearnable. It has yet
to be shown how great the effects of RSB are, but it rare-
ly produces a qualitative difference in results. Nor is it
yet known for general ¢ whether replica symmetry is al-
ways broken when « changes sign. Might this be a gen-
eral result of unlearnable problems?

2. The reversed-wedge problem

For A— e and A=0 the reversed-wedge problem be-
comes linearly separable, although for A— « J should
become aligned to —B. For intermediate values, howev-
er, the perceptron could learn either the central region or
the outer one. Watkin and Rau (1992b) worked out
€,(J,B) by a calculation very similar to that for the
threshold problem, and the result is plotted in Fig. 14(d)
for five values of A. It is easy to see why the minimum at
positive R moves away from R =1 as A rises from zero,
since, considering Fig. 14(b), we see that the perceptron
answers questions in regions E, F, G, and H wrongly.
For A#0 we can make large reductions in F and G by
making R a little less than 1, only increasing regions E
and H, which are a long way from the origin and where
few examples fall.

The dashed line in Fig. 14(d) shows the value of
—sg(R) for spherical perceptrons [Eq. (3.33)]. Clearly
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for small @, where the high-temperature results are dom-
inated by the entropy, minima with small |R| are pre-
ferred, which for intermediate A means the one at posi-
tive R, even though this is not the global minimum of €,
for A>0.818. Once we have reached it a higher number
of examples will not help us to escape, because there is an
infinite energy barrier to overcome to reach R =—1 (as
N — ). Thus J is trapped in a spurious minimum. It is
better to begin learning after a finite value of o has been
reached, so that the free-energy surface guides the per-
ceptron at once to the global minimum of €,.

Zero-temperature learning is even more problematic.
The MSA, as explained in Sec. II1.B.1, finds the J which
gets its worst example most right (or least wrong), in the
sense of making £4J-&* most positive (or least negative).
As a— o there will be many examples falling in the
outer region for any value of A; a J which learns the outer
region will get only those examples which fall in the
inner region wrong, and so it will have k= —A, while a J
learning the inner region will get all the outer examples
wrong and so have k < —A. Thus the maximum stability
rule always learns the outer region perfectly: R —1 as
a— . Since we see from Fig. 14(d) that for A0 the
minimum of € r is at R <1, this implies an overlearning of
direction B. For large A, eg(a) > 1 for high a, which is
worse than a random choice for J. It seems that in un-
learnable problems the MSA is the wrong one to use.

A possible solution is to keep k=0 and just minimize
E,, the number of wrongly classified examples by the
techniques of Sec. III. The numerical analysis of the
saddle-point equations is difficult, but it seems likely that
no overlearning is present and that the system converges
smoothly to the best possible solution. However, it seems
likely as well that there will be replica symmetry break-
ing, because for high ¢, the minimum E, >0 which im-
plies that all the constraints on J cannot be met and there
is frustration, which in spin glasses is commonly associat-
ed with RSB, and the presence of many metastable states
which are a hazard for any learning algorithm.

Of course prior information about the form of the rule
gives us much better learning algorithms. Watkin (1991)
has shown that for some values of A, optimal learning
with a spherical perceptron (taking into account the form
of the rule) gives a J with the minimum generalization er-
ror for finite a, if A%*0. This is in contrast even to reli-
able high-temperature learning, for which €, tends to its
minimum only as @— .

3. The parity machine

In Sec. I1.D, €, was calculated for a perceptron learn-
ing linearly separable problems using the lengths of arcs
on the unit circle in the two-dimensional space contain-
ing J and B. Entropy was calculated in Sec. III.C.1 from
the intersection of the circle with a line. For the parity
machine, by analogy we require a sketch of the three-
dimensional space containing J and the plane of the set
{B"}, Fig. 14(e). € (3, V) is calculated (Watkin and Rau,
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1992b) from areas of spherical triangles on the surface of
the unit sphere, and entropy from the intersection of the
sphere with a plane; it turns out that the contribution to
the entropy of the polar angle of J in the B-J space does
not scale extensively and may be ignored. Thus for
high-T learning, the only order parameter is the projec-
tion of J into the plane of the {B"}, R, and for any R the
polar angle will automatically be such as to minimize
€ f(J ’ V).

Although €,(J,¥) decreases smoothly from R =0 to
R =1, the free energy f always has two minima, one at
R =0 and another at a value of R, which tends to 1 as
&— . Even with unlimited examples, a Monte Carlo
algorithm will not be able to overcome the energy barrier
between the minima—even though it becomes very small
as @— . To. converge to the answer with minimum
€ f(J , V), we must begin the simulation inside the basin of
attraction of the high-R solution, which means that we
require some prior information about the teacher vectors,
no matter how many examples we have (or else we must
rely on finite-size effects; see Sec. VI.C.1).

Maximum stability fails again in this situation; again it
finds the J with the largest generalization error. Simply
minimizing E,(J) is liable to result in the same problems
as high-temperature learning, as well as the problems
which the technique encountered in the reversed-wedge
problem.

Hebb learning, Eq. (2.17) in Sec. II.D fails completely
for this rule, since, because of the symmetry of the teach-
er plane, there will be no constructive component of the
sum over examples in any direction. Optimal learning of
this rule should be straightforward, but has not so far
been analyzed.

The main conclusion (Watkin and Rau, 1992b) is that
the MSA is very unreliable for unlearnable problems,
since the J it constructs is determined by examples which
cannot be learned, not from those which can. Minimiz-
ing E, is little better, since the frustration it necessarily
produces probably causes replica symmetry breaking. In
general, without prior information the high-temperature
algorithm is most suitable if sufficient examples are avail-
able, but judicious use of prior information may
significantly enhance performance.

4. Binary perceptron learning with mismatched weights

The final type of unlearnable rule is the case in which
the gauge constraints on the weight space and rule space
are different. Seung, Sompolinsky, and Tishby (1992)
have analyzed the case of an Ising perceptron learning a
spherical perceptron (we shall report only the results for
perceptrons with binary outputs). Each of the com-
ponents of B is drawn from a Gaussian distribution of
width 1 and mean zero, which means that on average B is
constrained to lie on the N-dimensional unit sphere. The
student’s weights are taken to be {J;==1}, so that J is
one of the vertices of an N-dimensional hypercube and
there is an error between every component of the teacher



530 Watkin, Rau, and Biehl: The statistical mechanics of learning a rule

and the student. Thus the minimum generalization func-
tion is larger than zero, €/(J,B)Ze€y;,=(1/7)
cos (V2/m)=0.21.

For any fixed temperature, minimizing E, yields, ac-
cording to RS theory, an asymptotic dependence of €, on
the number of examples as €, —€,;,~1/ V'a, which is as
slow as Hebb and pseudoinverse learning of learnable
rules (described in Secs. II.D and III.C.1, respectively).
In this instance the annealed approximation fails com-
pletely, predicting €, — €, ~a %

Below T =1, numerical simulations show substantial
deviations of the training error from the quenched result

for values of a below the zero-entropy line of the RS -

theory, where RS should be exact (although this may be
due to problems in properly equilibrating the system).
On the other hand, the generalization error in simula-
tions does agree with the theory (at least for training tem-
peratures greater than zero).

As explained in Sec. II.G, minimizing the training er-
ror is not always optimal if we have some prior
knowledge about the rule; and, in fact, in this case, if E,
is used as the energy, €, does not have a monotonic
dependence upon training temperature. Seung, Sompo-
linsky, and Tishby (1992) showed that the best tempera-
ture is zero below a=1.27 and increases above this value
as Topt(a)~a3/ 5 for large @. If one employs the best
temperature at each value of «, then learning becomes
asymptotically faster, €,,—€,~a */> turns out to be
true at any low temperature. The zero-temperature pre-
diction for generalization error is shown as line 1 in Fig.

15. The zero-temperature prediction for training error is
line 2.

Watkin (1993) analyzed optimal learning of the prob-
lem. Since the rule space is the same in this problem as
in the problem in Sec. III.B.2, the network error €,(J) is
given by the same formula (3.30), and identity (3.31) also
applies. J°P! is therefore the Ising vector with the maxi-
mal overlap with 3 ,B’, where the { B’} are again random
spherical samplers in the version space of spherical rules.
Thus JP'=sgn(3,B/). The sharp peak in the distribu-
tion of the overlap of samplers [at B"-B" =¢(a) for r#r’,
where g (@) is the overlap of two points in a version space
of spherical vectors, as calculated in Sec. III.A] easily
gives the optimal generalization ability €,=(1/7)
cos Y([2q(a)/7]'/?), which has the asymptotic behavior
€,(JP)—ePi"~q~2 as a— 0. Simulations are very
easy, since they just involve ‘“clipping” the optimal
spherical J obtained in Sec. III.C.1. The results are
shown in Fig. 15: the solid line 3 is the theoretical predic-
tion, and the means and error bars are from 200 indepen-
dent runs using N =50 and 25 samplers.

Modern integrated circuits are invariably designed by
computers of much greater power. It is therefore not un-
realistic in advanced applications to consider a learning
process in which inference is performed assuming a rule
space which is continuous. A network of discrete cou-
plings could then be constructed to agree with samples of
the continuous space. Thus construction of the network
would be performed in a discrete space in which the
dependence on the disordered training set has been

05
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1
03 -
3
j /
FIG. 15. Learning the mismatched weight
02 problem. Lines 1 and 2 show ¢, and ¢, for sto-
chastic minimization of E,. Line 3 shows ¢,
for optimal learning, with means and error
bars from 200 independent simulations using
N =50 and m =25 (Watkin, 1993).
01
2
0 I | 1 |
0 2 4 6 10
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smoothed out. If, as seems generally true, discrete spaces
are much more prone than continuous ones to ergodicity
breaking in the presence of quenched disorder, then di-
viding the construction of a network into these two steps
may be very efficient in computer time, as well as for giv-
ing better generalization.

B. Noisy examples

Elsewhere in this paper we work with noiseless exam-
ples: perfect data produced by the underlying rule. In
many applications, however, the data will be corrupted,
and here we briefly describe what is a straightforward ex-
tension to the theory.

Noise in the examples has been formulated in two
ways. In the first (Gyorgyi and Tishby, 1990) the ques-
tions of the training set are corrupted: a set of questions
{€"} was used to produce a set of correct answers {£4},
and we learn from {£%} and a corrupted version of the
questions. An alternative way to introduce noise assumes
that answers are corrupted: we are given a set of ques-
tions {&"} and answers {£%} of which a random fraction
X are corrupted, i.e., £V (&*) for a random fraction
of the examples (Opper and Haussler, 1991b).

The first case was studied by Gyorgyi and Tishby
(1990) under the approach of Sec. III.A.2: a spherical
binary perceptron learns a linearly separable rule by a
stochastic process in the space of networks on a
landscape given by E, at temperature 7. In contrast to
the noiseless case, the following effects were found

(i) RSB occurs at low temperatures. This is because
noisy examples lead to incompatible constraints on J, and
hence to frustration.

(ii) For a given level of noise, there is a value of a
above which the generalization error is not a monotonic
function of T. It can be better to use a nonzero tempera-
ture (to avoid overfitting incorrect data).

The same effects are observed, too, if answers are cor-
rupted instead of questions (Penney and Wendemuth,
private communication, 1992).

Opper and Haussler (1991b) considered noisy examples
within the Bayesian approach to learning. If a random
fraction )} of the examples are corrupted, then
P(£*|V,E), the probability that question &” is answered
by &4 given that the underlying rule is V, is (1—y) if
Eh=V(E&") and y if E45=V(E"). Thus, given a training
set, we can calculate the posterior probability of the un-
derlying rule being ¥ as

P(V/{ ) )_ H#P(é"o‘/V,g")P(V)
e [avII P& /v,e9pP(1)
N

where
P(EL/V,EF)=(1—x)8(V(EH),E)
+x[1—=8(V(E*),EM)] .

But this can be rewritten as
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—BE,(V,{£",£0])
Pv/ign g =t 53)
where E, is the training error, defined by Eq. (2.11),
z=[ave PEVES py) (5.4)

and B=In[(1—y)/x] (Opper and Haussler, 1991b). That
is, our knowledge of the rule is described by a partition
function, with a Gibbs distribution over rule space at a
natural temperature.

All the Bayesian machinery developed in Secs. IL.F
and II.G remain valid for this generalized situation, and
it is easy to show the following:

(i) the generalization ability of the Bayes algorithm for
a given number of examples falls monotonously as y rises
to 3 (Opper and Haussler, 1991b). In fact, Eq. (2.31)
remains valid for all y, where g is the (self-averaging)
overlap of two rules selected from the posterior probabili-
ty distribution.

(i) in the large N limit, the optimally taught binary
perceptron generalizes as well as the Bayes algorithm for
all . In this case, the samplers (Sec. III.B.2) are pro-
duced by a stochastic process at the natural temperature
B given above.

C. Selected examples

1. A simple selection procedure for the perceptron

Elsewhere in this paper the questions in the training
set are chosen randomly and independently, but a mecha-
nism has been proposed (Kinzel and Rujan, 1990; Baum,
1990) in which the distribution of new examples depends
upon what has already been learned. This interrogative
approach to learning may have wider applications in the
extraction of information from experiments. We noted
above that the plane Ds in Fig. 4(c) places no new con-
straint upon B. The smaller the version space becomes,
the fewer the examples which will give any new informa-
tion about B. From Fig. 4(b) we can see that to constrain
B in a small region (i.e., to minimize the version space),
we would like examples to fall close to plane @. These
examples carry greater information, as can be seen from
Fig. 16(a), which shows a schematic “top view” in the
manner of Fig. 4(c). The plane D is perpendicular to an
example (not marked) which is perpendicular to B. This
plane must therefore divide the version space into two.

Of course, we do not know B to begin with, but if after
p examples we have by some algorithm generated a best
guess for B of J*), then we could choose the next question
&7 *1 to0 learn from such that '

VNIP.grtl=0 (5.5)

to first order in N.
We define 67’ as the angle between J®’ and B, from
cos(6'”’)=J).B, and observe that since the component
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0 1 2 3 4 o 5

FIG. 16. Selecting examples: (a) A schematic diagram, follow-
ing Fig. 4(c), shows B constrained to the version space by planes
D,-Ds, and the projection of hyperplane £ which is perpendic-
ular to an example (not marked) perpendicular to B. (b) Gen-
eralization error €, against a. Line 1 shows the results using
Hebb learning, with data points from a simulation using N =50
(Kinzel and Rujan, 1990). Line 2 is a reminder of the Bayesian
optimal result using unselected examples. Line 3 is the MSA re-
sult with selected examples, compared to data points from a
simulation (Kinzel and Ruja, 1990), as explained in the text.
Line 4 shows the result of choosing new questions to be perpen-
dicular to all previous ones (for a<1) and learning with the
MSA.

of B perpendicular to J is sin( 6'”), the variable
xP+tD=1/N g *1.B is normally distributed with

1 x (P +1)2
—'_——_-e -_———
Varsin(0?) P | T 2 sinX(6?)

(5.6)

Prob(x? T1)=

If such questions are used in the Hebb algorithm, Eq.
(2.17), it is straightforward to derive a recursion relation
for 621 in terms of 0'”’ and thus a differential equation
for €,(a). This argument assumes that only correlations
between the {£*} in the direction of B are of significance,
so the average over &*'! with constraint Eq. (5.5) is
equivalent to the average with constraint Eq. (5.6),
despite the fact that Eq. (5.6) does not itself imply Eq.
(5.5). This ansatz, made explicit by Watkin and Rau
(1992a), is very natural, however, because the hyperplane
perpendicular to B is an (N —1)-dimensional subspace in
which the component of J perpendicular to B varies
widely as p increases. Similarly, the hyperplane perpen-
dicular to J'”, from which £ *! is randomly chosen, is
(N —1) dimensional. The solution is plotted as line 1 in
Fig. 16(b), with the average results of five runs of a simu-
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lation using N =50 shown dotted for comparison (Kinzel
and Rujan, 1990). The curve is lower than the Hebb re-
sult for unselected examples, line 1 on Fig. 5(b) in Sec.
I1.D, but still higher than the optimal perceptron for un-
selected examples, Sec. III.C.1, which, as a remainder, is
shown dashed as line 2 on Fig. 16(b).

Of course, what we would like to do is apply the same
procedure to perceptrons taught with a more sophisticat-
ed rule, and numerically, using the MSA, this does
indeed seem to be much better (Kinzel and Rujan, 1990).
Simulations suggest, in fact, that the decay of €, is ex-
ponential in ¢, as is intuitively reasonable: from Fig.
16(a) each new example reduces the volume of the space
by a factor which might be expected to become constant
for high a. An exact analysis of the situation is some-
what difficult, however, because it amounts to solving a
dynamical process. We must follow J on its journey to-
wards B to find out what correlations exist between the
examples generated in the process. The ansatz pointed
out above, however, converts the problem back to one of
statics.

Watkin and Rau (1992a) thus derived saddle-point
equations similar to the solution with unselected exam-
ples (Opper et al., 1990), and the difference has an ap-
pealing physical interpretation. A term which had been
recognized as a Gaussian noise decreases in width as a
increases (instead of remaining of constant width as for
unselected examples), which corresponds to placing a
more stringent constraint per example on B as a in-
creases.

The numerical solution of the equations, line 3 in Fig.
16(b), agrees with the average results of seven runs of a
numerical simulation using N =50, which are also shown
dotted, to within the accuracy of both.

2. More general selection techniques

Recently, Seung, Opper, and Sompolinsky (1992) have
proposed a more general method of selecting examples.
They observe that the value of a new question can be
determined by considering how samplers (see Sec.
II1.B.2) placed randomly inside the version space answer
it: a question on whose answer many samplers disagree is
a good one to ask. Thus the “query-by-committee” algo-
rithm selects a question which half the samplers in ver-
sion space answer by +1 and the other half by —1. As
the number of samplers rises to infinity, every selected
example divides the version space into two equal halves,
yielding the maximal information gain of 1 bit per ques-
tion.

Seung, Opper, and Sompolinsky (1992) pointed out
that the Shannon information gain of a new example is a
helpful tool for understanding the efficiency of selecting-
examples algorithms. Here the entropy per site s is
(1/N)In(Vol), where Vol is the volume of the version
space. For example, if a linearly separable rule defined
by a spherical B is learned by a spherical binary percept-
ron using random questions, then
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s~In(e,) (5.7)

for large a. The information gain per question, defined
as I(a)=—09s/da, can be shown to be proportional to
€,. As a rises, I(a) falls to zero, agreeing with the obser-
vation that random examples provide less and less new
information.

A statistical-mechanics analysis of the query-by-
committee algorithm is subject to the same technical
difficulties described in Sec. V.C.I: a dynamical process
has to be solved in which ‘“‘time” corresponds to the
number of examples. Seung, Opper, and Sompolinsky
(1992) use the replica method and make the assumption
that the typical overlap of two perceptron vectors at
different times ¢ and ¢’ is equal to the typical overlap of
two vectors at the earlier time: J(z)-J(¢')=g(minf{z,¢'}).
Using this approximation they can show that the asymp-
totic information gain I () for a— o is finite. Assum-
ing the validity of Eq. (5.7) gives

eg~e_"‘”°°) . (5.8)

The learning curve obtained lies slightly below line 3 in
Fig. 16(b), and numerical simulations agree well with
these predictions.

One drawback of the query-by-committee algorithm is
that the time needed to select a question providing max-
imum disagreement diverges as 1/€,. Simple, direct al-
gorithms, such as the one of Kinzel and Rujan (1990), are
much faster, though they are not so easy to generalize to
multilayer networks as query-by-committee.

Incidentally, we can show that selection of examples in
accordance with Eq. (5.5) or with the query-by-
committee algorithm is not optimal by suggesting the fol-
lowing scheme for the perceptron: we insist that exam-
ples be chosen to divide version space into equal halves
which should also be ‘“as convex as possible,” with the
justification that, since the rule B lies randomly in one
half, its average overlap with the other points in that half
would then be maximal; the student J should then be set
using the maximum stability algorithm. For a <1 this
manner of selecting examples is equivalent to insisting
that new questions be perpendicular to all previous ques-
tions. The generalization error may therefore be calcu-
lated geometrically [eg(a)=cos“1(\/2a /m)/7] and is
marked as line 4 on Fig. 16(b), which lies below line 3 and
also below the query-by-committee result. In fact, for
a=1, it lies as far below line 3 as line 3 lies below the
maximum stability result for unselected examples (line 2
on Fig. 10). This manner of selection of examples is
probably optimal for the perceptron, but its consequences
are trickier to calculate for a > land so far have not been
analyzed. It is also not clear how it might be generalized
to the selection of examples for more complex networks.

D. Online learning

This paper has developed an information-theoretic ap-
proach to learning in which the best use is made of the
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training set. In many problems, however, the number of
examples is practically unlimited, so that our primary in-
terest is in minimizing the computational effort of the
learning algorithm.

One such approach is online learning or real-time
learning, which is computationally cheap and even does
without storage of the training set. Suppose that the ex-
amples we are learning from are presented in a sequence.
Online learning means that at every moment the network
is adapted simply in response to the newest example,
which is then forgotten.

Clearly, Hebb learning, which was discussed in Sec.
I1.D, may be regarded as online learning, since,

J(p+1):J(p)+%§g+1§P+l (5.9)

(disregarding the normalization constant y). Here we
shall briefly mention two other interesting examples of
online learning

1. A modified Hebb algorithm

Kinouchi and Caticha (1992) presented a modified ver-
sion of the Hebb algorithm for a binary spherical per-
ceptron. Equation (5.9) is generalized to

1
J(p+1)=J(p)+NW(Xép+l),x}p+l))§p+1§ﬁ+l ,

(5.10)
where xf V=V NB-&*! and xpP+tV=vVNJ.£2*.
We can now calculate the success of learning in a way
similar to that used in Sec. IL.D. The result is a formula
for the generalization error as a function of o and as a
functional of W. They then optimized with respect to W
to find the optimal W*(xgz,x;). Of course, in a real ex-
periment x§ is not known—only sgn(x$))=£"1 is
given. Kinouchi and Caticha (1992) therefore suggest us-
ing

J(p+1):J(p)+%W§g+1§p+l , (5.11)
where W is W* averaged over the posterior probability
density of x’ given just & " and x 7,

W= [dxPw*(xif,xPIPP(xP|e L x ) . (5.12)
They found a generalization error significantly smaller
than with the Hebb algorithm.

Departing from the philosophy of online learning, Ki-
nouchi and Caticha (1992) then considered learning the
same set of examples again using Eq. (5.10). Doing this
several times, they found numerically that generalization
approaches the optimal learning result (Sec. III.C.1.a).
This algorithm is faster than the method of samplers, but
requires a knowledge of the distribution of questions to
find W. It is also not clear how to extend the modified
Hebb algorithm to more complicated networks.

Kinouchi and Caticha (1992) also applied this formal-
ism to learning from examples which have been selected
in a way such that V'N J®?-£7*1=0, asin Sec. V.C.1. In
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this case the optimal W yields a generalization error

—a/T
b

6g~ie a>1, (5.13)
T

and W is just V'2/mexp(—a/m). This is better than any

known algorithm using random examples and is compu-

tationally cheaper than the MSA procedure suggested by

Kinzel and Rujan (1991).

2. Atime-varying rule

One can conceive of a rule to be learned which is not
static. For example, the rules governing the evolution of
the stock market are subject to changing legal restric-
tions or technological advances. Within the VC theory
(Sec. ILLE), Helmbold and Long (1991) studied the “track-
ing of drifting concepts using random examples” on an
abstract level independent of the specific form of the rule,
and derived rigorous bounds on the generalization error
that can be achieved, given a certain amount of drift.

Recently Biehl and Schwarze (1992) considered learn-
ing a time-dependent linearly separable rule, in which the
teacher vector B evolves by a random walk (on the unit
N-sphere), so that if we call B'? the rule after the training
set contains p examples, then BP.B?+V=1—(5/N).
Recent examples of the rule give more information than
older ones, so the learning rule must weight recent exam-
ples more strongly. This can be achieved by introducing
weight decay into the learning rule,

A

1— %
N

J(p)+_1‘W(xl(;p+1),x}p+1)§g+1§p+l .

J(p+1)=
N

(5.14)

Weight decay had already been studied in the context
of attractor neural networks working as “forgetful
memories” (Mézard, Nadal, and Toulouse, 1986; Derrida
and Nadal, 1987; van Hemmen, Keller, and Kiihn, 1988;
Biehl, 1989; Kinzel and Opper, 1991). Biehl and
Schwarze (1992) found that no online scheme of type
(5.14) could keep track of the evolving rule perfectly for
nonzero 7).

E. Multiclass classification

Practical learning problems to which neural networks
have been applied generally have many more than two
possible answers to questions, and the components of the
questions, too, may naturally take more than two values.
Many scientific applications exist, such as the
classification of phonemes (Kohonen, 1988), or recogni-
tion of text (Schmitz et al., 1990), or the prediction of
the secondary structure of proteins from the local se-
quence of amino acids (Bohr et al., 1990).

Of course many values can be encoded as combinations
of binary outputs, but this introduces an unwelcome arbi-
trariness in the output representation and introduces re-
lationships between answers which will not in general ex-
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ist. It also requires more neurons, connections, etc. We
would rather each output neuron performed a more com-
plicated function of the states of its input nodes.

Recently Watkin, Rau, Bollé, and van Mourik (1992)
suggested that since, in general, the Q' possible answers
to questions will be equivalent (which is the natural as-
sumption without a priori knowledge), the natural solu-
tion is a perceptron with an output node whose Q' output
states obey the “Potts symmetry,” familiar from equilib-
rium statistical mechanics (for a review see Wu, 1982).
The states are equivalent, like the Q' vertices of a
(Q'—1)-dimensional tetrahedron. The states of the input
nodes, too, take Q equivalent values. This system is
called a multiclass perceptron or a Potts perceptron.
Potts neurons have been used before (Kanter, 1988; Bollé
and Dupont, 1990; Bollé et al., 1991; Bollé et al., 1992)
in the very different problem of storing patterns in a
highly recurrent neural network, which implies that
Q =Q’. Their structure, and in particular their remark-
able gauge invariances, were investigated by Nadal and
Rau (1991).

Watkin, Rau, Bollé¢, and van Mourik (1992) analyzed
Hebb learning for the Potts perceptron by considering
which components scaled constructively and which did
not, the same arguments which were discussed in Sec.
I1.D for the binary perceptron. This is a great deal easier
than a conventional statistical-mechanics formulation,
which rapidly becomes very involved. The analysis may
be further simplified by exploiting the gauge invariances
of the Potts perceptron, giving smooth convergence to
the perfect answer, with €, ~1/ V/a, as in the binary case.

It seems, in fact, that, reassuringly, the main results of
binary perceptron learning will be preserved in their mul-
ticlass analogs. Multiclass analogs of the Ising percept-
ron, for example, show sudden transitions to perfect gen-
eralization for high-temperature learning. However, no
zero-temperature analogs of maximum stability algo-
rithms have so far been investigated, and it is well known
that frustrated Potts systems show quite different low-
temperature behavior from Ising ones, with, for example,
quite different schemes of RSB (Sherrington, 1986). We
shall briefly meet multiclass perceptrons again in Sec.
V.F.

It should be pointed out that there do exist rules for
which the answers are in some way structured, and with
this prior knowledge a choice of perceptron whose
answers also possess this structure might be even more
efficient. In quality control, for example, the answers
might have a ladder structure with levels of quality; for
these the output node should be a graded response neu-
ron, whose states have a definite order (Kihn et al.,
1991).

F. The proximity problem

A fundamentally different form of rule was studied by
Del Giudice et al. (1989) and by Hansel and Sompolin-
sky (1990), the proximity or prototype problem. Instead
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of a teacher B, we begin with p, random, uncorrelated
N-vector prototypes {9*}, u=1,...,p,, each of which
has a random Ising output {7*}. Hansel and Sompolin-
sky (1990) studied the interesting case of an extensive
number of prototypes, po<N. The correct answer for
any input S is the correct output of the prototype closest
in Hamming distance to S. The rule is learned from p ex-
amples of each prototype {§’” }, I=1,...,p, chosen at
random but with the constraint that 9*-€*=m. For an
extensive p, this problem is clearly unlearnable by a per-
ceptron, since no plane can divide the input space to
correctly answer every possible input; so this problem is a
good model for rules very much more complicated than
linearly separable ones. Hansel and Sompolinsky (1990)
minimized the training error E,(J) within the student
space through the techniques of Sec. III.LA and con-
sidered the limit of m small, which implies large p, since
p must be rescaled as p=m?p /(1—m?), which remains
of order 1. For p less than a critical value p., a J may be
found which makes the training energy zero; in this
range the consequent generalization error [marked as line
1 in Fig. 17, which shows the example of
Po=1.6Nm?/(1—m?)] falls from 1 as p rises, but then
climbs slightly as p—p., since the only J which correctly
learns all examples has overfitting (see Sec. III.C.1). For
P >DP,, the training error rises smoothly (line 2) and the
generalization error falls; both tend to the same value
€min{M,pg) as p— . Training with a finite training er-
ror (equivalent to a finite temperature) eliminates the
problem of overfitting, and the asymptotic behavior of
the generalization error is €, — €y, ~P ~1 as shown in
€, —€min~P ', as shown in Fig. 17, line 3.

It is possible to map this learning problem to a
different one previously studied in the neural network
literature (Wong and Sherrington, 1990), where a large
network with very few random connections is taught to

0.5 T T T T T T T T
€g
0.4

0.3

0.2

Line 2
011

10? [

10-! 100 10"

FIG. 17. Error against p in the proximity problem using
Po=1.6Nm?*(1—m?), after Hansel and Sompolinsky (1990) and
Watkin, Rau, Bollé, and van Mourik (1992). Line 1 shows the
€, found by simply minimizing E,; €, tends to 0.21 as p— co.
Line 2 is the respective training error. Line 3 shows the gen-
eralization error if the training error is fixed at 0.21. Line 4
shows the optimal Hebb algorithm, compared to a single simu-
lation using N =5000 and m =0.1.
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reach ‘“memory” fixed points starting from initial
configurations of complete networks, which are noisy
versions of the memories to be learned. A basin of attrac-
tion is the region of network state configurations around
each memory such that if the network begins in the
basin, it evolves to the fixed point. The network was
trained using examples of the memories at the same level
of noise, and a search was made for the energy function
g (x), such that training the network by minimizing an
energy

E(J)=3 g(V' N E*J-£*) (5.15)

©w

would give the largest basins of attraction. For low noise
the best g generates the MSA (Sec. II1.B.1), but for high
noise (i.e., low m), remarkably, the best g is linear, which
generates the Hebb algorithm, Eq. (2.17). For intermedi-
ate values of noise the optimal g(x) must be found nu-
merically from a Maxwell construction (Huang, 1987).

The same analysis applies to the proximity problem,
with prototypes taking the place of memories to be re-
trieved (Watkin, Rau, Bollé, and van Mourik, 1992). The
choice of energy function leads to a sculpture of an “ener-
gy surface” in input space, where basins of attraction
correspond to areas of input space around prototypes
which give the correct answer. The maximum stability
rule generates narrow, deep valleys in the energy surface
around each example presented; so they are well stored.
A Hebb rule, by contrast, generates wider, shallower val-
leys, so that although each example is not stored perfect-
ly (e, is finite), its influence affects a wider region. If
noise is high (the case principally studied by Hansel and
Sompolinsky, 1990), the second rule is preferable (Wat-
kin, Rau, Bollé, and van Mourik, 1992), so that a wide
valley evolves around each prototype. This is demon-
strated by line 4 in Fig. 17, where the prediction for the
Hebb algorithm is calculated by a simple geometric
method in the manner of Sec. II.D. The points show the
results of a single numerical simulation using N = 5000
and m =0.1. The optimal choice of an energy function
may be a technique with much application in other op-
timization problems. In fact, it is possible to show by a
simple geometrical argument (Watkin, 1991) that for low
m the Hebb algorithm is optimal learning, under the
definition in Sec. II.G. In this case version space and stu-
dent space have almost nothing in common.

The multiclass analog of the proximity problem, in
which prototypes are associated with several answers,
has been shown (Watkin, Rau, Bollé, and van Mourik,
1992) to be solved more efficiently by a single multiclass
perceptron than by the simplest combination of binary
perceptrons, which has the same number of possible out-
put states. This is in accordance with the general philo-
sophy of Sec. V.E.

VI. MULTILAYER LEARNING

We have now summarized the theory of perceptron
learning. Engineering applications of neural networks



536 Watkin, Rau, and Biehl: The statistical mechanics of learning a rule

usually require multilayer networks, however, because
the real rules they are supposed to learn are not linearly
separable. In this section we describe extensions of the
statistical theory of learning to multilayer networks
(MLN). This is presently the most important direction of
new research.

A. Architectures

The simplest generalization of a perceptron has an ar-
chitecture with one hidden layer. Two such networks are
shown in Fig. 18. Each network has K hidden units la-
beled by the variable k €{1,...,K}. Using the nomen-
clature of Sec. II.A, we can say that the network in Fig.
18(a) is treelike, because no two hidden units receive sig-
nals from the same input neurons. The hidden units are
said to have nonoverlapping receptive fields. The kth hid-
den unit receives signals from input neurons
i€[N(k—1)/K]+1,...,Nk/K. In the network of
Fig. 18(a) N =9 and K =3.

By contrast, the network in Fig. 18(b) is only “feed-
forward”, because its hidden units have overlapping re-
ceptive fields. All K hidden units receive inputs from all

FIG. 18. A committee machine: (a) a treelike network. Each of
the K hidden units receives inputs from three input neurons; (b)
a fully connected network.
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N input neurons. Such a network is also called fully con-
nected. Under many learning strategies the connections
to different hidden units will become correlated; so such a
network will be more difficult to analyze.

Clearly, the possibility of hidden layers leads to an
enormously enlarged student space. In fact, it has been
shown that a system with one output mode but arbitrari-
ly many nodes in a single hidden layer can perform any
Boolean function of its inputs, if all the neurons have a
binary output (De Figueiredo, 1980; Hecht-Nielsen,
1987), and can perform any real function of the inputs if
all the nodes have continuous outputs (Denker et al.,
1987).

The networks in Fig. 18 have two distinct types of con-
nection: from the input layer to the hidden layer, and
from the hidden layer to the output. In many learning
applications all of these connections may be adjusted, but
the term ‘“machine” has been coined for networks in
which the function which the output layer performs of
the hidden layer is fixed. Thus the only degrees of free-
dom in machines are the connections between the input
layer and the hidden layer.

One such network is the committee machine. This has
K odd, and the output neuron is set to agree with the ma-
jority of the hidden units,

K

S, =sgn (6.1

k=1

Thus, for a committee machine with nonoverlapping re-
ceptive fields, Fig. 18(a),

K Nk/K
S,=sgn | ¥ sgn > JeiSi || » (6.2)
k=1 i=[N(k—1)/K]+1

where, following Sec. IL.A, Ji,; is the strength of the
weight from the ith input to the kth hidden unit.
For a machine with overlapping receptive fields, Fig.
18(b),
S, =sgn

K
> sgn (6.3)

k=1

N
E Jk,iS[ ]
i=1

Function Eq. (6.1) is of the form Eq. (2.2), so the output
neuron performs “synaptic emulation” with all the
weights between the hidden layer and the output set
equal to +1.

Any function which can be performed by a two-layer
network of binary neurons with Ising weights and
without thresholds can also be performed by a committee
machine with Ising weights, since, if in any network with
these kind of states and weights and the architecture of
Fig. 18, the weight J,, between a hidden-layer node k
and an output node o were — 1, then the state of the out-
put node would be invariant under the transformation
Jo k1 and Jy ;+—>—J; ; for all i. Thus the committee
machine is the most general two-layer machine of Ising
weights in which every neuron performs synaptic emula-
tion.

A slightly different machine is the parity machine
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(Mézard and Patarnello, 1989; Mitchison and Durbin,
1989). In this case the output is set equal to the parity of
the hidden units

S, =

K
I1 S: 1 : (6.4)
k=1

Note that in this case the output neuron is not perform-
ing synaptic emulation, Eq. (2.2).

Another possible machine is the “AND machine”
(Zollner et al., 1992), in which the output neuron is only
+1 is all the hidden units are +1.

We might wonder how much our network will be re-
stricted if we make it a “machine” by fixing the weights
between the hidden layer and the output. If K << N, then
one might expect that this restriction will be small, be-
cause only K degrees of freedom are removed, leaving of
order N. The problem seems to be a difficult one, howev-
er, and is still under investigation (Grossman and
Domany, 1992, private communication).

Does a simple analog exist for multilayer networks of
the (B-J) space diagram, used in Sec. I.LD? We can see
from Egs. (6.2) and (6.3) that each of the hidden units in a
committee machine divides the input space by a hyper-
plane. The output neuron then selects certain regions of
the resulting partition and gives these regions cutput + 1.
We can represent this schematically as in Fig. 19, which
shows the input space of a network with three hidden
units. Each of the three hyperplanes marks the division
of the input space into the region where one hidden unit
is Sy =-+1 and the region where that hidden unit is
Sy =—1. In this diagram the output of the committee
machine is marked (as *1) in each region of the input
space. Clearly this is a more complex partition than that
made by a perceptron.

Unfortunately, unlike the (B-J) diagram of Sec. IL.D, it
is difficult to draw this diagram so as to extract quantita-
tive information. In reality it should be drawn in more
than two dimensions, because the vectors of connection
strengths to the hidden units span a K-dimensional space,
and important directions to be learned will add further
dimensions.

For multilayer networks there is a new fundamental
concept. Although a given example of a rule sets the
states of the input and output nodes, it does not itself

- / B \1

-/ _ +
FIG. 19. Schematic diagram of how the committee machine
with K =3 partitions input space. Each hidden unit has a posi-
tive state for a question on the + side of one hyperplane. In

each region of input space, the output of the machine is marked
aslor —1.
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place restrictions on the corresponding states of nodes in
the hidden layers. The state of these “internal’’ nodes in
a network WV for each possible state S of the input nodes
is A’s representation of S. Clearly any two inputs which
are supposed to be mapped to different outputs must be
represented by different configurations of states on every
hidden layer. Such a representation is called faithful
(Mézard and Nadal, 1989).

B. Storing memories in multilayer networks

Elsewhere in this article we have concentrated on the
problem of learning a rule with a network. Historically,
however, the first neural network problem to which sta-
tistical mechanics was applied was that of “storing
memories.” By this we mean designing a network which
will memorize a set of input configurations, so that when-
ever one of these configurations is applied, the network
will give a prearranged answer.

Presently there is little understanding of how a multi-
layer network learns a rule, which we believe to be the
most important open question in the field. This section
of the paper therefore seeks to develop some intuition by
describing recent work on storing memories in multilayer
networks.

To emphasize the difference between the concepts in
this section and the concepts in the rest of the review, we
shall label all quantities which are analogous to those in
learning theory by a superscript line. For example, we
shall be considering how a network can memorize p
memories.

Formally, storing memories means finding a network
N, such that when any of the p configurations {y*},
u=1,...,p, is presented as input, the network will give
the respective output 4. Thus N(x*)=x* for all u.

This problem is quite different from that of learning a
rule: we do not need to find the answers to new questions.
When we are just storing memories there is no underly-
ing rule to be found, and in fact it is usual to assume that
the inputs Y* and outputs % are uncorrelated.

First, we make a short excursion from the main topic
of the article to review how geometrical arguments can
be used to place rigorous bounds on the number of
memories which may be stored in a network of a given
architecture (Winder, 1963; Cover, 1965; Venkatesh,
1986; Mitchison and Durbin, 1989). This is included be-
cause we know of no other easy explanation of the re-
sults. However, it should perhaps be omitted on a first
reading of the paper.

In Sec. VI.B.2 we discuss how statistical mechanics
solves the same problem.

1. The geometrical approach—an excursion

We define a dichotomy as any division of the set of
memories into two groups by a hyperplane through the
origin. For example, in Fig. 20(a), four questions y!-x*
are marked in a two-dimensional space. A hyperplane in
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any space is (N —1) dimensional, so in this case it is a
straight line. The hyperplane also has a positive and a
negative side. One dichotomy is marked in Fig. 20(a), di-
viding the memories so that pattern 1 is on the positive
side of the plane, while the rest are on the other side. We
call the resulting partition {x'};{x%x%x*}. We count
{x%x%x*); {x'} as a different dichotomy. Having all the
points on the same side of the hyperplane is a dichotomy
(if it can be achieved), and all the points on the other side
is another dichotomy. It is easy to see that there are
eight possible dichotomies of the four memories in this
two-dimensional space.

In general, we call the number of dichotomies of p
memories in N dimensions C(p,N). Clearly, in the exam-
ple above, C(4,2)=38, and this does not depend upon
where the memories lie in the two-dimensional space
(provided that no two memories lie in the same direction
from the origin). In general, C(p,N) is the same for any
set of memories, provided that no !/ memories (with
I = N) are linearly dependent.

Of course, if we want to memorize a response for each

(b)

FIG. 20. Counting dichotomies: (a) A dichotomy of four
points. (b) Each of hyperplanes H; and H, produce the same
dichotomy of the first p planes, but different dichotomies when
the (p +1)st pattern is added. Hyperplane H, is parallel to
x”*!. His perpendicular to y?*'.
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of these memories, we must find a dichotomy such that
all the memories with the answer +1 are on one side of
the hyperplane, and all the memories with answer — 1 are
on the other side. Since the total number of possible
divisions of p patterns into two sets is 27, the chance that
one of the C(p,N) dichotomies we can produce is the one
we want is f=C(p,N)/2°. We shall now show that
f =4 for p=2N.

We do this by induction. We have C(1,N)=2, because
in any number of dimensions one point can lie on either
of two sides of a hyperplane. Similarly, C(p,1)=2 be-
cause in one dimension the only possible hyperplane is
the origin itself, and a set of memories along the x axis
can be regarded as having two possible orientations about
this point.

Now we consider all the dichotomies which may be
formed of the first p memories in N dimensions and cal-
culate how many more may be formed when the (5 +1)th
memory is added.

Figure 20(b) shows a schematic diagram of two hyper-
planes H, and H,, which produce the same dichotomy D
of the first p patterns (the figure shows p=3). Pattern
x? 1 however, lies on different sides of the two planes,
so that the planes produce a different dichotomy of the
set of p+1 memories. It is clear that there exists a hy-
perplane H, which also produces a dichotomy of the first
P memories and which is parallel to ¥ ™. It is easy to
see that C(p+1,N)=C(p,N)+T, where T is the num-
ber of dichotomies which can be formed of the first p pat-
terns by hyperplanes parallel to y? 1.

Now consider projecting this diagram onto the hyper-
plane H perpendicular to ¥’ *!. The projection of H,
forms a dichotomy of the projection of the first p
memories in this (N —1)-dimensional space. Therefore it
is easy to see that I is just C(p,N —1).

Thus we have

C(p+1,N)=C(p,N)+C(p,N—1) . (6.5)

This, and the values C(1,N) and C(p,1) given above, is
enough to prove that

N—1 <p— ])

Cp,N)=2 3 . . (6.6)
j=o N\ J

It follows that f=C(p,N)/2? is the sum of the first N

terms of the p terms in the binomial expansion of

(£+1)”~! Thus f=1 when p=2N.

In fact, as N becomes large, f effectively changes from
being 1 to 0 when @=p /N moves through a range of
values of width ~1/V'N about &=2. Therefore a large
spherical perceptron can memorize two memories per
synapse (Winder, 1963; Cover, 1965; Venkatesh, 1986).

Note, in passing, that Eq. (6.6) can be shown to be 27
for p <N, and less than 27 for higher 5. This proves the
fact, stated in Sec. II.E, that the VC dimension of a per-
ceptron (defined in Sec. IL.E) is N.

How far is it possible to generalize this argument to
multilayer networks? Using Egs. (6.2) and (6.3) we can
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consider each of the hidden units as making a linear par-
tition of the input space. Is it possible to generalize the
concept of a dichotomy?

The difficulty is illustrated in Fig. 21. If we consider
the six memories shown in a two-dimensional space in
Fig. 21(a), then any three points a, b, and ¢ can be parti-
tioned from the others by two hyperplanes. However, if
the six points are arranged in a hexagon, then there are
some sets of three points which cannot be divided from
the rest by two hyperplanes, as illustrated in Fig. 21(b).
We conclude that for spaces divided by many planes,
there is no obvious analog of C(p,N) which does not de-
pend upon the positions of the memories; for multilayer
networks, we can only measure the average number of
patterns which can be stored when patterns are drawn
from some distribution. This is the thermodynamic ap-
proach considered in the next section.

However, it is possible to use simple arguments to
place bounds on the number of examples which can be
stored (Mitchison and Durbin, 1989). Suppose we are
trying to memorize patterns in the network of Fig. 18(a)
in which the hidden units have nonoverlapping receptive
fields. We can define I({x*,x%},K,N) as the number of
ways in which a multilayer network can divide a certain
set of p patterns into two sets. Then, using the argument
developed for the perceptron, the chance that the net-
work can learn a given output for this set of patterns is
f=I({x"x*},K,N)/2?, which is one-half for a critical
number of patterns p,., which we call the capacity. We
define @, as p,. /N.

Each hidden unit has N /K inputs so it can implement
C(p,N/K) dichotomies of p patterns. Thus an upper
bound on the number of ways in which the K planes can
partition p patterns is C(5,N/K)X.  Therefore
I({x*x*},K,N)<C(p,N/K)X.

P
®0
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o1
o1 ®o
(a)
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° .
0e o1
o [ )
1 0
(b)

FIG. 21. Partitioning six points: (a) Any set of points in this
arrangement can be partitioned from the others by two hyper-
planes (lines). An example is given. (b) No two hyperplanes
(lines) can partition the six points, so that those marked O are
separated from those marked 1.
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Barkai et al. (1992) have pointed out that C(p,N /K)
can be expressed as an integral, which can then be evalu-
ated for large N by the saddle-point method, to give

C(p,N/K)=(aKP(@K —1)P~N/K 6.7)

Substituting this into the condition for p, above gives an
upper bound on &, as the solution of the equation

aK=(a,—1!'"VeEEhk 6.8)

This gives @, =5.43 for K =3. As K— 0, we obtain
a, = O(InK).

We can generalize this argument to the case of the net-
work in Fig. 18(b) with overlapping receptive fields. In
this case the hidden units perform dichotomies of the p
patterns in N dimensions; but otherwise the arguments
are the same, and the upper bound for I({x*,x%},N,K)
becomes (C(p,N))X. This leads to upper bounds for the
critical capacity which are just K times as high as the
ones for overlapping receptive fields. That is, &, =<16.29
for K=3, and as K — o, @ < O(K InK) (Mitchison and
Durbin, 1989; Barkai et al. 1992).

2. A statistical-mechanics approach

To calculate exactly the storage capacity of a multilay-
er network, it is necessary to turn from geometrical argu-
ments to algebraic ones.

We noted in Sec. III.A.2 that in the zero-temperature
limit (8— o) the partition function Eq. (3.3) becomes
equal to the fraction of the student space which correctly
stores all examples of a rule. Similarly, in the problem of
storing memories it is natural to consider the part of the
student space which correctly remembers all the
memories. Let us call it the “parrot space” 7. In the
case of the perceptron, 7 is a fraction

Z= [du(d) [1 ©V'N x:T-x*) (6.9)
I

of the student space.

This is a volume in an N-dimensional space, so it is ex-
ponentially large. Different choices of examples make Z
different by a large factor, and so that average of Z over
the sets of memories which could be stored, which we
denote by (Z) y» Will be dominated by exponentially un-
likely sets of examples which make Z largest. It is neces-
sary to study instead (InZ ),.

The calculation of (InZ ), may be performed in the
same way as that presented in Sec. III.A (Gardner, 1988).
The only difference is that outputs {Y%} are uncorrelated
with the inputs {x*}, instead of being related through a
rule. In this case a parameter q”"? measures the correla-
tion, J7-J7', of two perceptron vectors J* and J¥' chosen
randomly in 7. If the student space consists of all spheri-
cal J vectors, the parrot space is connected and convex,
since it is the part of the continuous space obeying p
linear constraints and the normalization condition. Thus
we expect that replica symmetry is obeyed: ¢""7 is sharp-
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ly peaked at a single value g(&); this result was derived
by Gardner and Derrida (1988).

When no memories are stored (& =0), the parrot space
is all normalized J vectors; thus g (@=0)=0. As « rises,
the parrot space shrinks, and as @—2, g(@)—1: the par-
rot space shrinks to a point. Thus the maximum number
of memories which may be learned by a perceptron is 2,
in agreement with the geometrical argument of Sec.
VL.B.1.

— )4 K P Nk /K
Z=[dum 1 © {x* 3 sgn |VK/N S
u=1 k=1 i=[N(k—1)/K]+1

where the measure on the weight space is

K Nk/K K Nk /K
duM= I I . I
k=1i=[N(k—1)/K]+1 k=1 i=[N(k—1)/K]+1

Equation (6.10) reduces to (6.9) in the case of K =1, be-
cause a committee machine with one hidden unit is just a
perceptron. The analog of (6.10) for a parity machine
differs only in that the sum over hidden units inside the ®
function is replaced by a product over hidden units.

As before, we shall calculate {InZ >)(; hence we repli-
cate the system and consider (Z ”)X. After averaging
over the memories, in the manner of Sec. III.A.7, the ex-
pression for (Z "), contains the order parameter

) K Nk/K )
q,zyz«F s J,{,.J,g,.> > , yEY . (6.12)

i=[N(k—1)/K]+1 Bl x

where ( - -+ ) 5 means the average over the parrot space.
g}'" is the average overlap of the connections to the kth
committee member in two different replicas. Two sym-
metries may be present: replica symmetry (g}7 =g,
VYy+#y’) and committee symmetry (g} ¥ =q"" Yk). Un-
der both assumptions Z " may be written as a function of
& and of just one order parameter g, which is found from
the saddle-point equations.

Both for the committee machine and for the parity
machine the function g (&) rises from 0, at &=0, to g =1
at a critical value @_., which is the capacity of the net-
work. Barkai et al. (1992) and Engel et al. (1992) show
that for the committee machine with K =3, & ~4.02,
while Barkai et al. (1990) show that for the parity
machine and K =3, @,~10.3. The second of these re-
sults violates the rigorous upper bound obtained in Sec.
VLB.l. For both machines RS gives @ ~K'/? as
K — oo, which also violates the upper bound.

How can we understand this? Suppose that we have
chosen a representation R of the patterns; that is, for
each y*, we have chosen what states all the K units in the
hidden layer will take. Since R defines a set of p input-
output relations which each of the K hidden units must
memorize, the vector of connection strengths to a given
hidden unit must be part of a connected region. Thus the
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a. Memory storage in machines with nonoverlapping
receptive fields

This calculation has been extended to storing
memories in a committee machine (Barkai et al., 1992;
Engel et al., 1992) and in a parity machine (Barkai
et al., 1990). The analog of (6.9) for a committee
machine, Eq. (6.2), with nonoverlapping receptive fields
is

Jiixt |t (6.10)
2 _N
JE; X l ) (6.11)

space of networks which give representation R is the
product of these connected regions, a bubble in student
space.

Different bubbles correspond to different representa-

tions. Note that the bubbles may be of different sizes,
and indeed it may be true that some internal representa-
tions try to make a single committee member store a set
of input-output relations which cannot be memorized.
For such a representation, the volume of the bubble will
be zero.

Since the student space is disconnected, replica sym-
metry is strongly broken. Two randomly chosen net-
works may be in the same bubble (in which case they will
be highly correlated), or in different bubbles. Barkai
et al. (1992) and Engel et al. (1992) analyzed first-step
replica symmetry breaking in the committee machine and
found that replica symmetry is stable only for @< 1.76,
while the corrected critical capacity is @ 88 ~3.0. In the
large K limit, the capacity @&5B scales as InK, which
agrees with the bound of Sec. VI.B.1.

For the parity machine, @ X%8~5.0 for K =3 (Barkai
et al., 1990). For the case of K >>1, first-step replica
symmetry breaking may give the exact capacity for the
parity machine, since Z may be written in a form resem-
bling the partition function of a spin glass with multispin
interactions, for which first-step RSB is known to be ex-
act (Derrida, 1981; Gross and Mézard, 1984).

Kanter (private communication, 1992) has also given a
simple explanation of why the storage capacity of a pari-
ty machine is greater than that of a committee machine.
Storing a memory in a committee machine requires a rep-
resentation in which the majority of the hidden units
have state /. By contrast, the representations in a pari-
ty machine need only have the product of the states of
the hidden units equal to Y%, which is a much weaker
constraint.

Note also that in Fig. 19 large fractions of the planes
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are redundant, in the sense that the output of the
machine is the same for questions on different sides of the
plane. By contrast, in the parity machine, every plane al-
ways divides regions of input space which give different
outputs. The parity machine therefore makes a more
efficient partition of input space (Mitchison and Durbin,
1989).

b. Memory storage in machines with overlapping
receptive fields

The storage of memories in a committee machine with
overlapping receptive fields is considerably more complex
than in the nonoverlapping case. Since all hidden units
receive signals from the same input nodes, they become
correlated during the process of learning.

Note that the parrot space possesses an interesting per-
mutation symmetry. The output of the committee
machine is invariant with respect to permutations of the
hidden units. Thus if 2 is a K XK permutation matrix
and if {J; ;] is a point in the parrot space, then so is
{Jr,:}, where Jy ; =J 5, ; for all k.

Some progress has been made by Barkai et al. (1992)
and Engel et al. (1992) in analyzing this model. The
volume of the parrot space is

] ,

Z=[dam [1 ©

u K 1 N
— Y
Xo ESSgn V/Aer%JkIX’

p=1 k=1
(6.13)
where the measure on the weight space is
K N K N
dpM=TI [1d/, [18|3 J,f’i-—N] . (6.14)
k=1i=1 k=1 |i=1

An analysis of (Z "), gives a result in terms of three
significant order parameters

gl =TTy
Crow=JILTL gy »
and
DL =TT )y

If we assume that all these parameters are replica sym-
metric (that is, the replica indices can be neglected), they
can be interpreted, using Sec. III.A.7, as meaning,

qi = ( (Jk >123))( ,

Crow =TT )y
and

Dy =5 ) )y -

Barkai et al. (1992) have shown that for small &, solu-
tions which are related by permutation symmetry are in
the same connected space of solutions, and thus in the
same ergodic component. Therefore for every realization
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of the patterns, {J; )z is the same for all hidden units and
g =D. This is called the permutation-symmetric (PS)
phase.

As @ rises, however, the parrot space shrinks, and
there is a second-order transition in which permutation
symmetry is broken and g and D diverge. Both the PS
phase and the PS-breaking phase have been observed by
measuring the temporal correlations of a zero-
temperature Monte Carlo simulation inside the parrot
space. -

Engel et al. (1992) have shown that as & rises further
to a critical value of @, =~34.5, g rises to 1. Thus this &,
is taken to be the replica-symmetric capacity of the net-
work. Unfortunately, the capacity is more than twice the
rigorous upper bound obtained in Sec. VI.B.1; so replica
symmetry, as well as permutation symmetry, must be
strongly broken in this model. The numerics for first-
order replica symmetry breaking seem to be very
difficult, so that so far the best estimates we have for the
storage capacity are obtained by simulation, using algo-
rithms described in the next section. For K =3, the best
known algorithm is able to achieve a storage capacity of
&, ~3X(2.82+0.02) (Barkai et al., 1992).

Although replica symmetry is broken in this model, we
expect many qualitative features of the solution to be val-
id for the RSB result. In particular, the RS solution
shows that as @—&,, D and C both tend to 1/(1—K),
which implies that the committee members become nega-
tively correlated. This result can easily be understood
(Engel et al., 1992): at &, most patterns have internal
representations with (K +1)/2 of the hidden units equal
to x¥, and (K —1)/2 opposite. If we select two hidden
units from the K, the chance that they have different
outputs is 2X[(K +1)/2K]X[(K —1)/2(K —1)]=(K
+1)/2K, which is greater than . This gives rise to an
anticorrelation of two different committee members of
order of 1/K. D <0 demonstrates that there is a division
of labor among the hidden units: each hidden unit at-
tempts to learn the patterns which have not been learned
by the others.

As K — o, C and D tend to zero, so that the correla-
tions between hidden units become negligible. &, for the
fully connected network is then just K times &, for the
treelike one. This means that, in this limit, the capacity
per synapse given a network with overlapping receptive
fields becomes equal to that of one with nonoverlapping
receptive fields (Engel et al., 1992).

3. Backpropagation and other memorizing algorithms

The stochastic formulation of Sec. III.A.2 applies, as
was pointed out, to any fixed network architecture which
can be completely described by a vector J. However, sto-
chastic algorithms are very slow, and in practice it is al-
ways preferable to minimize energies by a gradient des-
cent search of student space. In multilayer networks the
derivatives of a differentiable energy E(J) with respect to
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the weights in a certain layer are, by the chain rule, func-
tions of the weights in later layers (closer to the output).
Therefore if the energy used is the training energy, Eq.
(2.11), errors are said to be “propagated back” when the
network is trained; hence the algorithm is known as
backpropagation (BP). This is by far the most common
approach to training multilayer networks (Bryson and
Ho, 1969; Le Cun, 1986; Rumelhart and McClelland,
1986; Lippman, 1989). It has been used in numerous ap-
plications, such as data compression or encoding (Ackley
et al., 1985; Cottrell et al., 1987), pronunciation of writ-
ten text (Sejnowski and Rosenberg, 1987), speech recog-
nition (Waibel et al., 1989), and robotics (Eckmiller,
1989). .

To increase the speed of learning, more sophisticated
minimization procedures can be applied, for example,
conjugate gradient methods (Kramer and Sangiovanni-
Vincentelli, 1989; Mackram-Ebeid et al., 1989) or quasi-
Newton algorithms (Watrous, 1987). A problem com-
mon to all these approaches is the many local minima in
an energy landscape such as that defined by Eq. (2.11).
Any descent method can get trapped in a local minimum,
which may occur at a rather high value of E,(J). When
such trapping occurs can often be predicted using statist-
ical mechanics, by considering when the stochastic algo-
rithms of Sec. III.LA.2 experience replica symmetry
breaking. Convergent learning algorithms are usually
known in the region of phase space characterized by re-
plica symmetry, while no learning algorithm is known to
converge in a bounded learning time in the region with
replica symmetry breaking.

The absence of wide flat regions in the energy surface
makes learning significantly faster. Such well-formed en-
ergy functions (Wittner and Denker, 1988) have been
studied by, for example, Solla et al. (1988) and Fahlmann
(1989).

In an attempt to overcome this difficulty, one may in-
troduce noise to the learning process (e.g., Sietsma and
Dow, 1988; von Lehmann et al., 1988); and thus allow
increases of E(J) in order to overcome the energy bar-
riers of a local minimum. Alternatively, a momentum
may be introduced so that J has an inertia and a high-
energy barrier is required to deflect its motion (Plaut
et al., 1986; Jacobs, 1988; Vogl et al., 1988).

No example of such learning has been solved using sta-
tistical mechanics. However, Eisenstein and Kanter
(1992) recently presented an interesting partly analytic
and partly numerical study of backpropagation for a tree-
like parity machine. They used an energy E that is a
smoothed form of the training energy, but also such that
E(N)=0 only when all memories are correctly stored.
For @ <1/(2K) they were able to show that no spurious
local minima of the energy function exist, and for higher
a simulations show that either no local minima exist or
their number and size is small.

The capacity of the parity machine with K =3 calcu-
lated by thermodynamics using an energy E, is @=3.9,
with two steps of RSB. Numerically, it seems that this
capacity is saturated. This raises two possibilities: either
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backpropagation is able to converge in an RSB region
(suggesting that even if there is RSB, there are no local
minima), or else using a smooth energy function has re-
moved RSB without altering the capacity of the network.

The convergence time ¢, of the BP algorithm
diverges as a—a, as t,=a(N)a,—a) % with a(N)
being almost independent of N, rendering a convergence
time which is not exponential with N.

We should also mention that besides backpropagation
a number of other algorithms exist for storing memories
in multilayer networks, even though none approaches the
theoretical storage capacity. In addition, these algo-
rithms cannot be framed as a stochastic process.

One algorithm especially appropriate for the parity
machine is the least action algorithm (LAA; Mitchison
and Durbin, 1989), in which we try to make the network
correctly memorize one pattern at a time by altering the
connections to one hidden unit (the hidden unit whose
connections have to be altered least to memorize the pat-
tern). By repeating this process we try to minimize the
number of misremembered patterns.

For networks of binary neurons, several schemes have
been proposed (Grossman et al., 1989; Grossman, 1990;
Krogh et al., 1990; Nabutovsky et al., 1990; Rohwer,
1990; Saad and Marom, 1990), which seek optimal repre-
sentations, rather than focusing on the connections them-
selves. Of course, once a representation is chosen, the
nodes have been decoupled, in the sense that since the
desired reaction of each node to its inputs is now
specified, the functions nodes perform can be trained in-
dependently. For example, the CHIR algorithm (choice
of internal representation), proposed by Grossman et al.
(1989), selects a certain internal representation of the
training set and tries to adjust the weights of inputs to
each node using the simple perceptron algorithms (Sec.
III). If this attempt fails, another internal representation
is selected, so that eventually the number of wrongly
mapped patterns is minimized.

C. Learning a rule in multilayer networks

This article is concerned with the ability of neural net-
works to generalize. Since most learning problems are
not linearly separable, it is of great importance to under-
stand how multilayer networks perform this task.

In this subsection we describe how MLN learn certain
rules. We start by considering MLN used to learn linear-
ly separable rules and proceed to more complex rules
which can only be implemented on networks with at least
one hidden layer.

1. MLN learning a linearly separable rule

Recently two examples of MLN learning linearly se-
parable rules have attracted attention. Opper and
Haussler (1991a) have shown that the Bayesian optimal
algorithm can be implemented exactly by a large commit-
tee machine. Schwarze, Opper, and Kinzel (1992) ana-
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lyzed a committee machine learning a linearly separable
rule, corroborating a notion analogous to Occam’s razor
that the best network to use is the simplest one capable of
learning a specific rule.

a. Implementing the Bayes algorithm

As noted in Sec. III.C.1, the Bayes optimal generaliza-
tion can be implemented exactly by a single perceptron
student learning a linearly separable rule in the limit of
high N. Opper and Haussler (1991a) have pointed out
that even for N small, Bayes algorithm can be implement-
ed by a committee machine in which each node of the
hidden layer has been treated as a perceptron and its con-
nections from the input layer trained independently by
the method of Sec. IIILA, so that each committee
member on its own is inside the version space of the rule.
In the limit of infinitely many committee members, the
entire version space is explored and the output of the
committee machine equals the Bayesian prediction.

The committee members in this case are analogous in
function to the samplers used in Sec. II1.B.2 to train the
optimal perceptron, since they sample the version space
(although in this case they are part of the network being
built, not artifacts of a possible learning algorithm). As
explained in Sec. III.C.1, the Bayes algorithm and the op-
timally trained perceptron differ on a vanishingly small
proportion of random questions as N — co.

b. The oversophisticated student

The converse problem to learning unlearnable rules,
Sec. V.A, is the case in which the student network is
more complex than the teacher, so that many points in
student space reproduce the rule exactly. Recently
Schwarze, Opper, and Kinzel (1992) analyzed the high-
temperature generalization behavior of a fully connected
committee machine trained from examples of a linearly
separable rule. Since a perceptron is capable of learning
this kind of rule, this is another example of a mismatched
architecture (Sec. V.A.4).

It turns out that the natural order parameters of the
system are P,.=J,-J;,, the overlap between two
members of the committee (where J, means the N-vector
of weights of inputs to the kth committee member), and
R, =7, -B, the overlap between members of the commit-
tee and the rule to be learned. €,({Py},{R;}) and
s({Py+},{Rr}) may be straightforwardly calculated,
whether the J; are spherical or Ising (Ising weights to the
committee members might be used if the components of
B were Ising). High-temperature learning, explained in
Sec. III.A.S, may therefore be applied, simply minimizing
Eq. (3.20).

With the simplifying ansatz of committee symmetry
(R; =R for all k, and P;;.=P for all k5*k’), Schwarze
(1991) found that the generalization error is always
higher for a larger number of hidden units. This is an im-
plication of the point made in Sec. II.C, that it is the re-
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strictions on a network which lead to learning. In this
case, forcing the committee machine to reproduce the
given examples still allows it too much freedom to
disagree with the rule on other questions. This suggests
the principle that the best network to use is the simplest
capable of learning a rule, where the discussion of Sec.
II.C suggests that the definition of “simplest” should be
in terms of minimizing the excess of student space over
rule space (rather than, for example, making a tradeoff
between minimizing the number of nodes and the total
number of connections).

For the case of Ising J, and K =3, the possibility was
studied of a breaking of committee symmetry, where one
of the committee members, say k =1, becomes perfectly
aligned with the rule. Thus the order parameters become
R,=1, P,=P;3;=R,=R;=R, and P,;=P. For
@ >a,;~3.15, this state is the global minimum of the free
energy, though the symmetric state persists as a local
minimum until &=&;~8.60. This behavior is shown in
Fig. 22(a), where dotted line 1 is the generalization error
of the state without the breaking of committee symmetry
and dotted line 2 is the state with one committee member
aligned. At a value of @=a,~4.77 the global minimum
of the free energy becomes a solution with two of the
committee members equal to the teacher: R,=R,
=P,,=1and P;=P,; =R, the only remaining order pa-
rameter; but the solution with only one committee
member aligned to the teacher seems to persist until, at
least, a very high &. Therefore in the limit of an infinite
system it will take infinite time to escape from this solu-
tion. Since two agreeing members of a three-member
committee are enough to determine the committee
machine’s output, the state with two committee members
aligned to the teacher has perfect generalization, €, =0,
and however large & becomes, the third member will nev-
er learn the rule.

Figure 22(a) shows these theoretical predictions
(marked as dotted lines) against the results of Monte Car-
lo simulations performed as explained in Sec. III.A by a
single spin-flip dynamics, using N =75 weights at T =5
and with a labeled number of Monte Carlo steps (MCS)
per spin. The open symbols (with error bars) show the
results with @ increasing, and the solid ones with @ re-
ducing. In this simulation the finite size of the system
means that once its present state stops being the global
minimum of the free energy, it will be able to climb over
the free-energy barrier between the local and global mini-
ma (which, as pointed out in Sec. III.C.1, would not be
the case if N — o0, because the barrier rises extensively).

We notice the hysteresis, explained in Sec. IV.B, the
difference between the rising @ and the falling & results.
However, because of the finite-size effects, the hysteresis
may be avoided by allowing the algorithm a longer time
to converge for each value of &, which will mean that the
system always reaches the global free-energy minimum,
whether or not @ is rising. This result is confirmed by
Fig. 22(b), which shows numerical results with two
different numbers of Monte Carlo steps allowed for the
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stochastic dynamics. For more steps the first-order tran-
sition becomes sharper. The conclusion is that for finite-
size systems, the transition between two states occurs at a
value of & between the value of & at which the position of
the global free-energy minimum changes and the value
where the local minimum in which the system began
disappears.
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2. MLN learning nonlinearly separable rules

Two examples of MLN learning nonlinearly separable
rules have so far been studied. Both examples were cases
in which the teacher’s network was identical to that of
the student; i.e., the rule is learnable.

Schwarze and Hertz (1992a, 1992b) and Mato and Par-
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FIG. 22. The committee machine with K =3 and Ising couplings between the input layer and the hidden layer, learning a linearly se-
parable rule at high temperature: (a) The dashed lines show the theoretical predictions explained in the text, but the simulation with
N =75 was dominated by finite-size effects. Open symbols show the results with & rising, and the solid symbols show & falling. The
number of Monte Carlo steps allowed per spin is marked on the top right corner. (b) An expanded section of the same diagram, but

allowing the stochastic algorithm different numbers of steps.
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ga (1992) analyzed a committee machine learning a com-
mittee machine, by which we mean learning a rule whose
functional form is identical to that of a committee
machine. Hansel et al. (1992) considered a parity
machine learning a parity machine.

a. A committee machine learning a committee machine

Schwarze and Hertz (1992a) considered a committee
machine with nonoverlapping receptive fields and a large
number K of hidden units (K >>1, through still much
less than N) learning at 7 =0 a rule generated by a net-
work of identical architecture. Their analysis proves re-
sults similar to those of a spherical perceptron learning a
linearly separable rule.

The order parameters have a meaning close to that of
Sec. IIL. We use g2°" =K ({J}-J{ ) ), i.e., the (proper-
ly normalized) overlap of the N/K inputs to the kth
hidden wunit in two different replicas, and R}
=K ({J}'By )p) the overlap of the inputs to the kth
hidden unit in the yth replica with the kth hidden unit of
the teacher. Schwarze and Hertz (1992a) assume that all
these parameters are independent of k.

Many of the formulas for the perceptron calculation of
Sec. ITILA carry through if one applies the following
transformation to the order parameters g and R:

q-—»lsin_lq, R—2sin 'R . (6.15)
T T

Let us, for example, work out the generalization function
of the committee machine. A simple way to do this is by
considering again the argument which gives us €, for a
perceptron (defined by J) learning a linearly separable
rule (defined by B; Sec. IL.D). For a random question S,
we can define the variables xp=V'NB-S and
x;=V'NJ-S. Since J and B are normalized and have
overlap R, xp and x; are Gaussian distributed for ran-
dom questions with (x3)=(x})=1 and (xzx;)=R.
We showed in Sec. II.D by geometry that the generaliza-
tion function, €/(J,B)=(O(—xpx,;));, is equal to
(1/m)cos ™~ Y(R).

Returning now to the committee machine, we note, us-
ing the result for the perceptron, that the chance on a
random question that the kth hidden unit of the student
will disagree with the kth hidden unit of the teacher is
(1/m)cos (R, ). Let us assume symmetry of the hidden
units, so that R, =R for all k. We can now define two
quantities: A, which is (1/V'K ) times the sum of the
hidden units of the teacher when question S is applied,
and 7, which is (1/VK) times the sum of the hidden
units of the student. Since the committee machine has
nonoverlapping receptive fields, both A and 7 are the
sum of K independent terms. Thus by the central
limit theorem they are Gaussian variables
with (A2)=(%?)=1, but they are also correlated
so that (An)=(1/m)cos {(R) —[1—(1/m)cos” (R)]
=(2/m)sin"Y(R). The generalization function is
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(®(—An)); therefore we can simply deduce, using the
result of the previous paragraph, that for the committee
machine with nonoverlapping receptive fields,

! . (6.16)

isin”’R
T

ef(R)=—7%_—cos_

For spherical couplings the generalization error de-
creases for large o as €, ~1.25/a, which is twice the re-
sult of the perceptron. For Ising couplings the results
from the perceptron carry over in a similar way. There is
a thermodynamic transition to perfect generalization at
a,(K >>1) forming the lower a bound for the existence
of a large metastable region bounded from above by the
spinodal a (K >>1).

It is remarkable that although o, (K >>1) <a,(K=1),
ap(K >>1)>a,(K =1). Asin the case of the Ising per-
ceptron (Sec. III.C.1.b), the replica-symmetric spinodal
line is incorrect, and RSB should be considered. Howev-
er, this effect is likely to increase Qg still further.

Mato and Parga (1992) considered the same model as
Schwarze and Hertz (1992a), but at high temperatures
(Sec. III.A.5), which allowed them to extract results for
an arbitrary number of hidden units K.

For K >>1 they found the same invariance property
(6.15) as Schwarze and Hertz (1992a). The freezing tran-
sition has the same structure as the one outlined above.
They showed that, in general, &,(K) is an increasing and
&,,(K) a decreasing function of K. The existence of a
freezing transition is supported by Monte Carlo simula-
tions. They also verified numerically permutation sym-
metry of the order parameters.

Mato and Parga (1992) extended their analysis to com-
mittee machines with more than one hidden layer, for the
special case in which the number of hidden units in the
ith hidden layer K; is much larger than the number of
hidden wunits in the (i+1)th hidden layer K.,
(K;>>K; ). They found for the freezing transition that
&,(L) is a decreasing function of the number of layers L,
bounded from below by &, (L — «)~=~1.38. However,
the spinodal point diverges like dsp(L)~(7r/2)L as
L-—o.

Schwarze and Hertz (1992b) have also studied, for
K >>1, a fully connected committee machine under the
annealed approximation (Sec. III.A.6). For Ising weights
they find that, as for the Ising binary perceptron, (Sec.
III.C.1), there is a slow improvement in generalization
followed by a first-order thermodynamic transition to
perfect generalization at a=q,,, which scales with K.
However, unlike the Ising binary perceptron, the meta-
stable solution persists for all a: no spinodal point is
reached. As a— o, the generalization error of the meta-
stable state tends to a nonzero value. In this model, the
metastable state has unbroken committee symmetry (Sec.
VI1.B.2), while the student with perfect generalization, of
course, has the connections to its hidden units aligned
with those of the teacher.
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Schwarze and Hertz (1992b) also consider continuous
weights. For low a, the system adopts a committee sym-
metric phase. At a critical a=a,, there is a thermo-
dynamic transition to a phase with broken committee
symmetry, in which students have an overlap ~1/K.
Once again, however, the metastable state persists for all
a.

b. A parity machine learning a parity machine— memorization
without generalization due to internal symmetries

In a different multilayer problem, Hansel et al. (1992)
recently found results which have general implications.
They were studying a parity machine with nonoverlap-
ping receptive fields and two hidden units, learning at
T =0 a rule generated by a network of identical architec-
ture. From Eq. (6.4), we see that the model considered
has a Z, symmetry; i.e., if we label the set of N connec-
tions into two hidden units by the single N-vector J, the
error associated with a network state J is the same as the
one associated with J'= —1J.

Assuming replica symmetry of the order parameters g
and R, Hansel et al. (1992) found that up to a critical «,
memorization without generalization takes place, eg:%.
In this phase J and J' are in the same ergodic component.
Above a=a, the saddle-point equations of the free ener-
gy have two solutions: one with ¢ =R =0, which is un-
stable with respect to RSB, and a stable solution in which
Z, symmetry breaks and J and J' cease to belong to the
same ergodic component. As a result of this the generali-
zation error of the stable phase starts to decrease from +
for a>a,. Numerical simulations, performed using the
least action algorithm, lend some support to the theory.

Retarded generalization due to internal symmetries
had already been observed in simpler models, such as in
the analysis of the unlearnable problem of a perceptron
(student) trying to learn a parity machine (teacher); see
Sec. V.A.3 and Watkin and Rau, 1992b), but the wider
significance of the result was not realized. It can easily
be interpreted using a Landau-Ginzburg argument (Han-
sel, private communication, 1992). Retarded generaliza-
tion was also observed using the high-temperature ap-
proximation (Sec. III.A.5) for a parity machine with
K =2 and Ising weights (Hansel et al., 1992).

We may conjecture that retarded generalization occurs
in any student space with an internal symmetry such that
a network which is the mean of a set of networks related
by the symmetry operation is uncorrelated with the
teacher. Thus in the parity machine, the mean of J and
—1J is the null vector, whose overlap with the teacher
vector B is zero. Notice that the committee symmetry of
a fully connected committee machine does not fall into
this category; so there is no contradiction with the work
of Schwarze and Hertz (1992b) described above.

3. Overfitting

Neural networks have a very large number of free pa-
rameters which have to be adjusted. When the number
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of internal parameters is too large, the learning process
results in overfitting, giving undue significance to indivi-
dual examples. Since this is a real concern for machine
learning with multilayer networks, and one which we feel
deserves more investigation, we shall mention it here, al-
though little statistical mechanics has so far been applied.

One of the key problems in the training of neural net-
works is that the complexity of the network needed to
implement an unknown rule cannot, in general, be known
in advance. If the architecture is too simple, the network
will not be able to perform the desired task, whereas, as
shown in Sec. VI.C, too complex a student leads to poor
generalization (as well as inefficiency). Therefore a search
for the optimal architecture should be part of a good
learning strategy.

To avoid overfitting, one can, as mentioned above, try
to reduce the number of superfluous hidden units or con-
nections. Superfluous here means that their removal has
the least effect on the training error. Algorithms based
on the backpropagation of error have .been proposed
where unnecessary weights (Le Cun et al., 1990) or neu-
rons (Sietsma and Dow, 1988) are removed from the sys-
tem. After each such change of architecture all the
remaining neurons have to be retrained (this is termed a
strong nonlocality). Of course, one problem with this
method is that while removing superfluous parameters
some important ones may also be removed; so the net-
work would no longer possess enough flexibility.

Example: Utans and Moody (1991) recently presented
an application of the methods described above to select
the architecture of a neural network trained to predict
the corporate bond rating on Wall Street. They used a
two-layer network, whose number of hidden units they
optimized by considering essentially the number of hid-
den units which minimizes the training error as a func-
tion of the number of hidden units of a network architec-
ture which is otherwise fixed.

Having selected the number of hidden units, they
proceed by reducing the number of weights using the
method of optimal brain damage (Le Cun et al., 1990).
The quality of the prediction of this network exceeds by
far that of previously existing methods, such as linear re-
gression.

Another approach, well known from statistics, is regu-
larization. In this case one does not minimize the train-
ing error in a gradient descent algorithm, but instead the
training error plus a term which includes the absolute
value of the weights so that gradient descent encourages
the weights to decay to zero (e.g., Hinton, 1986; Hanson
and Pratt, 1989). The size of the second term is
parametrized by a constant 7 and a formula for choosing
this parameter may be justified by a variety of arguments
(MacKay, 1992; Moody, 1992). Alternatively 17 may be
chosen by a process called ‘“cross validation” (Hertz
et al., 1991).

Sjoberg and Ljung (1992) showed that performing a
limited number of gradient descent iterations when
searching for a minimum of the training error has the
same effect as regularization. They also derived criteria
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for when to stop the training process. Applying their
method to the modeling of the dynamics of a hydraulical-
ly controlled robot arm, they could indeed show that the
overfitting previously present in a gradient descent algo-
rithm had been removed.

4. Edge and patch detectors

Recently Sympolinsky and Tishby (1990) studied the
learning of a fundamentally different form of rule: one
with an intrinsic dimensionality. The question is a string
of +1 and —1 digits and the answer is the number of
domains in the question. That is, how many lengths
there are in which all digits are +1 and how many in
which they are all —1.

This task may be performed by a committee machine
whose architecture is given in Fig. 23, where a solid cir-
cle represents a neuron in state +1 and an open circle a
neuron in state —1. The N +1 input nodes, {S;}
(i =0,...,N), are set to be the digits of the binary ques-
tion, and the K =N hidden layer nodes, whose states are
{Si}, each receive inputs from the input nodes i =k and
i =k —1, with strengths of weights J,;_,=-+1 and
Ji,i=k—1=—1. The hidden layer nodes each perform
synaptic emulation, Eq.(2.4), and have a threshold so that
Sy =sgn(S; _, —S;—=; —;—1), which implies that a hidden
layer node k only has S; =1 if S;_; is in a domain of +1
digits and S;_; _; is in a domain of—1 digits. Nodes of
the hidden layer therefore just detect this kind of domain
boundary. This is shown in Fig. 23, for N =5, where, for
example, S; —, is +1 because S;_;=—1 and S;_,=+1.
The output node o is linear: S, =(N +1+3,S,), which
equals the total number of domains (although there may
be an error of *1 at each end of the string, which can be
avoided if we use cyclic boundary conditions in the input
string, S;—o=S;=n)-

The training from examples of a network with this ar-
chitecture and with Ising couplings was analyzed using
the annealed approximation (Sec. III.LA.6), and the
analysis may be simplified by noting that the problem has
a relationship to the nearest-neighbor Ising model, whose
solution is well known (Baxter, 1982). For all finite tem-

Si=N

FIG. 23. A committee machine performing edge detection, as
explained in the text. Solid circles indicate neurons in the +1
state and open ones are in the — 1 state.
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peratures (7T >0) the average generalization error for
large a decreases exponentially quickly, €, ~2e 22 1t is
worth noting that the annealed approximation, which is
usually only valid at high temperatures, seems to provide
results in agreement with Monte Carlo simulations for
temperatures as low as 7=0.3. For temperatures
T <0.4 the annealed approximation predicts a first-order
transition in which €, drops to a low but finite value,
which is in fact observed in Monte Carlo simulations.

A related, well-known problem—the contiguity
problem—is to identify the number of domains larger
than a given threshold. It, too, may be solved, using a
very similar architecture (Tishby et al., 1989); Schwartz
et al., 1990; Sompolinsky and Tishby, 1990). The learn-
ing process is discontinuous for all temperatures and
leads to perfect generalization beyond a certain «,.

Kocher and Monasson (1991) have considered the re-
lated problem of counting the number of white patches
on a black and white two-dimensional square lattice.
One can easily construct a two-layer network with 2N2
neurons performing this task approximately. Within the
annealed approximation the analysis of learning is sub-
stantially simplified by noting its relationship to the ex-
actly solvable two-dimensional Ising model (Onsager,
1944; Baxter, 1982).

D. General behavior

In this section we describe two types of information
applying to wide classes of network which can be extract-
ed using statistics. The first relies upon the annealed ap-
proximation, but has often been used in practical applica-
tions. The second is exact prediction of asymptotic
behavior.

In one of the seminal papers in the field, Levin et al.
(1989) showed that within the annealed approximation, it
is possible to write the generalization error which a sys-
tem would have after correctly learning p examples of a
rule, as a function only of quantities which can be ob-
served for many fewer examples. In this way it has often
been possible to tell whether learning with a network is a
reasonable option (Solla, private communication, 1992).

What follows is a simplified version of the general ar-
gument, to which the reader is referred.

The generalization error we would obtain in learning a
single rule V from p examples is the quantity
(e, (N, V) ) where ( - ), again means the aver-
age over networks built using the training set by a certain
algorithm. In this case we are not interested in learning
how a “typical” rule does, and then relying upon self-
averaging behavior. We want to know how this rule
does; so we shall not average over P (V).

For zero-temperature, zero-stability learning, we can
write ( (€;(N,¥)) x )¢ as

<fdp(./\/)ef(./\/, V) T1,, 8(N(EM), V(EM))
Z

where, as earlier, f du (N) means the integration over

> (617
13
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the measure of student space.
However, using the annealed approximation and not-
ing that

(BINEM), V(EN) g=1—€,(N, V),
we can approximate this as
[ dun—e (3, v+
Jdumn—e,(3,v))

(6.18)

To understand the meaning of this expression, let us
introduce a function ¢(g), which is just the proportion of
student space having generalization function 1—g. That
is,

$(g)= [duMdlg—[1—e (N, M) .

Using this definition, it is thus clear that

[ldggr'g(g)
eV pde=1— , (6.19)
J g
which is the ratio of the pth and (p +1)th moment of

é(g).

The reason why this result is interesting is that ¢(g)
can be observed, at least approximately, using a small
training set. We simply generate networks at random in
the student space, work out the training error on a small
training set, and use the definition of ¢(g).

Despite the annealed approximation and the approxi-
mate nature of our knowledge of #(g), this has been use-
ful in several applications in order to predict how large a
training set is required for successful generalization.

Levin et al. (1989) also pointed out that the asymptot-
ic behavior for large p is determined by the value of ¢(g)
near g =1. If ¢(g)~g? for g—1, then €,~(d+1)/p,
which is 1/a decay, as observed in Sec. II1.C.1.

This consideration brings us to the second part of the
section. What asymptotic behavior can be extracted
from thermodynamics?

Seung, Sompolinsky, and Tishby (1992) gave results
which apply to any ‘“smooth” network, defined as one
with continuous weights and in which e(WN,V,S) is at
least twice differentiable with respect to those weights.
An example of such a network is the linear spherical per-
ceptron (Sec. III.C.2). At large a, the free energy is dom-
inated by the network (defined by J*) for which the gen-
eralization error is minimal, eg’i“. For large, finite a, it is
possible to expand around this solution. They introduced
two matrices,

Uy = [ du(8)8,9;e(3*,V,8) (6.20)

and
W,.jsfd,u,(S)[aie(J*,V,S)][aje(J*,V,S)] , (6.21)

where 3; means the derivative with respect to the ith
component of J.
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Seung, Sompolinsky, and Tishby (1992) can then show
that, provided a stochastic algorithm converges at all,
learning by minimizing E,(N) at a temperature T gives

1

— _mi 1 -1
eg(T,a)——eg“"-i- T+-A7TrWU e

1

€,(T,a)=€l"+ l——JIVTrWU" 0

with a correction of order 1/ az.in both cases. In the spe-
cial case of a learnable rule, €;'"=0; and it is also possi-
ble to show that U;;=0. Then

1
2

(6.22)

At zero temperature, the leading term disappears, as do
all higher terms, implying that as « rises there must be a
transition to perfect learning.

Amari and Murata (1991) have been able to show a
similar result for a different class of networks using con-
ventional statistical techniques. However, their analysis
only applies to stochastic networks in which the output is
not a deterministic function of the input.

E. Constructive algorithms

A different class of training algorithms actually con-
structs the network while learning, with the simple goal
of producing a network with zero training error (Gallant,
1986). Very little statistical mechanics has been per-
formed on constructive algorithms, but we have included
a brief summary here because it is a field of considerable
practical importance.

Rather than removing degrees of freedom from too
complicated a structure, constructive algorithms add
neurons or layers of neurons if a given network fails to
learn the training set. This has to be one such that the
representations of the training patterns remain or become
faithful. Learning is performed locally for the most re-
cently added neuron by use of perceptron algorithms.
Convergence is guaranteed if the input values are re-
stricted to +1 or —1; that is, any binary classification
can be implemented of a set of binary input patterns, and
most of the procedures (and the convergence proofs) can
be generalized to bounded, continuous input variables.
However, the number of neurons needed for specific
problems may be very large (in the worst case rising in
proportion to the number of examples in the training set).

The tiling algorithm by Mézard and Nadal (1989), for
example, first tries to realize the correct mapping with a
single master neuron, shown as neuron D in Fig. 24(a). If
this attempt fails because the problem is not yet linearly
separable, so-called ancillary units, such as neurons E
and F, are added to this layer [cf. Fig. 24(b)] until the
internal representation becomes faithful, which requires a
lower number of neurons than the total in the first layer.
The whole process is then repeated, starting with master
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FIG. 24. Constructing a network: (a) The hidden layer’s master
neuron D receives inputs from all neurons in the input layer. (b)
Nodes E and F are added to the second layer until the represen-
tation is faithful. G is the master neuron of the third layer.

neuron G in the third layer, with the first hidden layer
taking the place of the input layer. The process contin-
ues until a layer is reached in which the master neuron is
able to correctly classify all the patterns. The problem
has then been solved.

Nadal (1989) studied a variation of this procedure in
which only master neurons are added—connected to the
input layer and all previous master neurons. In this case
the search for a faithful representation can be omitted,
since each master neuron is connected to the inputs itself.

By contrast, only ancillary neurons are added to the
neural tree suggested by Sirat and Nadal (1990). This
network has the advantage that it is not necessary for
every neuron in the network to perform its function: the
network’s answer to a certain input is determined by
propagation down a binary decision tree according to the
states of some neurons, and other neurons need not be
consulted. Frean (1990) independently proposed the
upstart algorithm, which constructs a hierarchically or-
ganized network. In fact, this architecture can be
mapped into the neural tree and vice versa (Hertz et al.,
1991).

Marchand et al. (1990) considered a network with
only one hidden layer. Neurons are added one by one
within this layer until it is certain that the output neuron
only has to perform a linearly separable function to
correctly classify all examples in the training set.

Biehl and Opper (1991), and independently Martinez
and Esteve (1992), introduced the concept of tilinglike
learning using a parity machine (Sec. VI.A). The growth
of the network is restricted to adding neurons to the one
hidden layer, and the most recently added neuron is
trained to correct as many as possible of the errors the
machine made before it was added. Again the number of
errors decreases successively.

Many other construction schemes, which are beyond
the scope of this review, exist [see, for example, Bichsel
and Seitz (1989); Rujan and Marchand (1989); Fahlman
and Lebiere (1990); Golea and Marchand (1990); Knerr
et al. (1990); and Zollner et al. (1992)].
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Vil. DISCUSSION AND OUTLOOK

In this section we first discuss the usefulness of the
statistical-mechanics theory of learning a rule which we
have developed in this paper. We present another line of
research which seems to us to require a deeper under-
standing, and we suggest directions in which we expect
future research to lead.

A. The value of a statistical-mechanics
approach to learning

The great interest during the past few years in the sta-
tistical theory of learning a rule may be motivated from
three different points of view: in terms of its usefulness in
understanding mathematical tools used frequently in
physics; as a solvable instance of the very common prob-
lem of inference from noisy data; and, of course, in order
to advance understanding of neural networks. We shall
treat these topics in order.

A good example of the first point—the usefulness of
this theory in understanding the tools of physics—was
discussed in Sec. IV.B. Learning in the discrete student
space of an Ising binary perceptron has been solved using
a dynamic mean-field theory and using the method of re-
plicas, and although both methods are ‘“believed to be ex-
act,” the results are contradictory. The obvious explana-
tion is that the full meaning of the method of replicas is
still to be discovered: either some principle of RSB is
lacking, or, more interestingly, this model may demon-
strate that replica symmetry breaking is not equivalent to
ergodicity breaking.

Learning a rule is just one example of inferring under-
lying structure (in this case a rule) from “experimental
data” (the training set). A second justification of the sta-
tistical theory of learning is therefore to introduce the ad-
vanced methods of statistical mechanics with a quenched
disorder into the important field of statistical inference.
The same questions we can answer for neural networks
may be significant elsewhere: How much can be expected
of noisy data? Can one discover, without writing a long
program, how long a reconstruction algorithm will take
to run? How should the reconstruction be performed in
principle?

Of course, one reason why neural networks have been
so easily tackled using statistical mechanics is that their
high connectivity implies that mean-field theory is exact.
Many other inference problems have a much lower
dimensionality. For example, lines are fitted from data
values measured along a one-dimensional axis. Images
often have to be reconstructed from blurred and noisy
data, but images are intrinsically two dimensional. Exact
solution of inference problems might be of interest, but it
is hard to see how practical use might be made of the sort
of information which can be extracted from low dimen-
sional statistical physics (critical exponents, etc.). This re-
stricts the usefulness of statistical mechanics to unusual
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inference problems in which, for some reason, models
may be solved. One example of this is calculating the
efficiency of coding algorithms for information transmis-
sion (Sourlas, 1989).

The main point of neural network theory remains, of
course, understanding neural networks. Statistical
mechanics provides a natural formalism within which
disparate approaches may be connected, from simple
backpropagation to sophisticated Bayesian techniques.

Statistical mechanics differs from the other theory of
network learning, VC theory, in that a specific form is as-
sumed for the network, for the distribution of examples,
and for the prior probability of rules, P( V). Within these
assumptions exact predictions for the success of learning
can often be made.

In advanced engineering problems, such as speech
recognition, what would P (¥) be, and how could we pos-
sibly know it? One obvious claim is that in the limit in
which we have no prior information about V, P(V) is
constant over all the space of Boolean functions which
could connect questions and answers. The version space
consists of all Boolean functions which agree with the ex-
amples we learned from. In this limit, of course, P(V)
does not correlate the answers to questions of the train-
ing set with the answer to different questions, and so the
expectation of our ability to generalize should be zero.

However, neural networks are successful in practice,
applied to problems such as speech recognition, where
correlation between examples is expected to occur. P (V)
must therefore be biased towards those rules with “more
regularity” than the random Boolean function—it in
some sense encodes our intuition that the problem we are
trying to learn is a relatively “simple” classification. Re-
cently attempts have been made to rigorize the rather
diffuse concept of a function’s ““complexity”; but it is still
far from obvious how to proceed and this remains an im-
portant project for the future.

The fact that the predictions made by the statistical
theory of learning depend upon P(V) may be turned to
advantage, however. Consider, for example, learning a
rule with a two-layer network of a certain size. We
might believe that this network is complex enough to
learn the rule perfectly—that is, we make an assumption
that P (V) is only nonzero for rules which can be written
in the same functional form as the network. Having
made this assumption, we can compare the results ob-
served in practice to predictions made using statistical
mechanics. If there are departures from the theoretical
prediction, this demonstrates that our assumption about
P(V) was incorrect, and to learn the rule perfectly we
shall need a more complex network. Presumably the size
of the discrepancy between theory and experiment is a
measure of the inaccuracy in our estimation of P(V¥), and
thus an estimate of how much more complex our net-
work must become. This sort of test, in which a model
(in this case for V) is rejected without comparison with a
different model, is called an alternative-free test. It has
the advantage that we do not need to know the true P(V)
in order to apply it.
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An alternative justification for the statistical theory of
learning a rule is as a means of gaining an insight into a
field which is famously hard to rigorize, and so improve
learning algorithms. An obvious example is how statisti-
cal mechanics lets us design the cost function to be mini-
mized, for example, by simulated annealing or backpro-
pagation. In the noisy prototype prrblem, for example,
we find that a smooth energy function is far more
efficient than a discontinuous one, since it reduces the lia-
bility of overfitting the training set.

Another justification for the theory might be in deter-
mining how much information can in principle be ex-
tracted from a given amount of data. Suppose again that
we are learning a certain rule, and we have devised a sim-
ple algorithm to do this, for example, just a minimization
of the training error by backpropagution. As we have ar-
gued above, if a statistical prediction agr :es with the ex-
perimental results, then this is good evidence for the
“complexity” of the rule; and so a curve can be produced
theoretically showing the success of the optimal algo-
rithm. By the discrepancy between the generalization er-
ror our simple algorithm produces and the minimum
generalization error, we can judge how worthwhile it is
to search for a better learning algorithm. For example, as
we have seen, maximum stability learning of a linearly se-
parable rule gives the generalization ability shown in Fig.
10 as line 2, while the optimal result is line 3. Only if it is
really worthwhile, in a given engineering situation, to ob-
tain the result of line 3 instead of line 2 is it worthwhile
to search for a better algorithm than maximum stability
learning [happily the contrast between simple algorithms
and optimal ones is greater for more difficult problems
(see Sec. V.A.4)].

Lastly, we have seen that it is possible to gain useful in-
formation from statistical mechanics by relating un-
known but interesting quantities to observable ones (Sec.
VI.D).

B. The complexity of a rule

Here we shall mention a fundamental but relatively
unexplored avenue of research which has been suggested
by physicists, but does not quite fit into the main statisti-
cal theory of learning a rule.

Carnevali and Patarnello (1987) considered all the
210=65 536 Boolean functions, that is, rules, which raay
be performed on four two-state inputs and all the 4X 10'°
possible networks which may be constructed out of four
logic gates, each of which performs any logical function
of just two inputs. They counted the number of networks
performing each function and found that slightly
different Boolean functions are performed by enormously
different numbers of networks. Van den Broeck and
Kawai (1990) obtained similar results by randomly con-
structing 107 networks out of up to 200 logic gates and
checking which Boolean function each performs. They
found that the probability P (&) that a randomly chosen
Boolean function will be implemented by § networks is
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P(f)=g™® (7.1)

with a@=0.7, which they took as evidence for an underly-
ing fractal structure for the space of Boolean networks.
The work of Parisi and Slanina (1992) suggests that im-
portant features such as the ease of generalization may
depend only upon rules, and not upon the choice of ar-
chitecture we have made. This suggests the possibility of
defining the complexity of a rule in a way independent of
the network architecture. Although some of these papers
are formulated in terms of thermodynamics, little analyt-
ical work has been performed and the most important
questions remain unanswered.

C. Outlook

This article has argued that statistical mechanics is a
powerful alternative to VC theory, but we believe that an
important topic of new research will be to reconcile the
two approaches. For example, recently attempts have
been made to evaluate the VC dimension of a multilayer
network by comparing how it learns two different train-
ing sets (Levin et al., 1992; Vapnik, 1992). This sounds
like a problem it would be possible to tackle using statist-
ical mechanics, by calculating fluctuations in measurable
quantities for different realizations of the quenched disor-
der.

The most fundamental open question in the field con-
cerns an understanding of the mappings multilayer net-
works make between the spaces of questions and answers.
In Sec. VI, we presented the early attempts to introduce
statistical mechanics into the problem, but clearly our in-
tuition is still very poor.

Instead of dividing input space by a hyperplane, multi-
layer networks make a much more complex partition,
shown schematically in Fig. 25(a). The + and — signs
represent the answers to given questions, which a certain
network answers correctly by giving the answer —1 to all
questions in the shaded areas. In this case the partition
has produced disconnected areas in input space, but
clearly the topology of the partition is not unique; the
partition of Fig. 25(b) also learns all the training set per-
fectly. For good generalization, the partition must
resemble the one made by the rule, and our intuition
would prefer the network we design to make as smooth a
partition as possible [Fig. 25(a) rather than Fig. 25(b)].
This is in accordance with the common lore of inverse
problems (Karl, 1989). An understanding of the relation-
ship between an architecture and the topology of parti-
tion it produces may give us a more powerful criterion
for the construction of a multilayer network than simply
ensuring that it produce a training error of zero. It may
well be worth adding more neurons with more con-
straints to obtain student spaces with the correct topo-
logical freedoms. This approach would also be useful in
incorporating prior information about the topology of
the rule.

In Sec. VI.B.3 we discussed attempts to relate RSB to
the failure of backpropagation schemes. As we showed,
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(b)

FIG. 25. Schematic diagrams of two partitions of the question
space which correctly answer all the training set. The shaded
area in each diagram is that to which a possible network would
answer — 1, and the training set in each case is illustrated here
by the + and — signs. In (a) the partition is simple, but discon-
nected. In (b) the partition is connected, but complicated.

there are still important open questions. Is backpropaga-
tion able to converge in RSB regions, or is RSB very
dependent upon the smoothness of the energy landscape?
Answering these questions would help us to design train-
ing energies to ensure convergence of training algo-
rithms.

The problems we have chosen to discuss in this paper
seem to us to capture features of realistic network pro-
gramming. However, all too few have been studied as
part of a project to solve a real problem. We believe that
such work is important, forcing us to incorporate
features of real learning problems, at least approximately.

Several applications of neural networks have been
hardly touched upon in this review, because there is al-
most no statistical mechanics to describe them. The
most important is the modeling of chaotic time series,
such as the prediction of stock market prices. Neural
networks are all too often treated as “black boxes” in
such applications, so that we are unable to quantify the
reliability of their predictions (except by observation),
nor to improve them systematically.

In Sec. VILE we mentioned that rather than consider-
ing the layers already constructed to be fixed, we could
perform a stochastic growth algorithm using an energy
cost function incorporating the appropriate definition of
“simple” —for example, the number of nodes—so that
the network could grow and shrink spontaneously.
Quenched noise would arise from the examples we are
learning from (again) and the distribution from which the
rule to be learned is chosen. The method of replicas has
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been successful in the past (Gardner et al., 1989) at
showing when the student space becomes disconnected,
which would give us some insight into the spurious train-
ing energy minima to which, as pointed out in Sec. VL.B,
multilayer networks are subject, and perhaps even a clue
for avoiding them.

From a physical point of view, we can consider the
construction of multilayer networks as an aggregation
problem; new neurons are added to an enlarging struc-
ture. The statistical mechanics of some aggregating sys-
tems has recently been investigated (for example, Derri-
da, Hakim, and Vannimenus, 1991) and shows a strong
non-self-averaging dependence of the final result upon
the initial pattern of growth. In growing a network,
there are two differences: there is a rule to be learned
after which growth ceases and therefore there are a
(presumably infinite) number of fixed points for the dy-
namics; also, according to the learning algorithm used,
the energy function governing growth may be complex
and long range.

Viil. CONCLUSION

We have shown that advanced statistical mechanics is
a valuable tool in the analysis of learning rules with neur-
al networks, and conversely that new insights have been
generated for use in conventional physics. The problem
is especially interesting as a class of strongly interacting
complex systems, many of whose properties may be
solved exactly in the thermodynamic limit.

The value of statistical mechanics derives from its suc-
cess in analyzing the self-averaging quantities of interest
in the presence of quenched disorder: the examples we
must learn from. As we have seen, this allows a novel
treatment of information-theoretic inference. This surely
has implications in many situations where physicists
deduce underlying structures from experimental data sets
corrupted by quenched noise. Predictions should be op-
timally placed within the version space of theories con-
sistent with the data—the hypothesis space (Jaynes,
1983).

Networks learning rules are closely related to spin
glasses: examples to be learned correspond to pairs of
spins which must, or must not, be aligned. In both
disordered systems it is the free energy which is the self-
averaging quantity, and its average may be calculated us-
ing the method of replicas. The ergodicity breaking of
spin glasses gave rise to anomalously long relaxation
times, which first made them of interest for physicists; in
neural networks, the same effect implies that the space in
which networks evolve under a stochastic dynamics may
become disconnected, leading to exponentially long
learning times. Replica symmetry breaking in a spin
glass is associated with frustration—it may be impossible
to align all the spins so that all bonds are satisfied. Simi-
larly, a neural network may reach a state in which all ex-
amples have not been learned and yet any small perturba-
tion of the network within the student space leads to a
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larger training error; many valleys of the energy
landscape exist around points which get different selec-
tions of the training set right. This is despite the fact
that, for learnable rules, a network with zero training er-
ror does exist in a different area of student space where
ergodicity is unbroken.

Luckily this strange behavior disappears when we have
more examples to learn from and, for networks of con-
tinuous weights, often does not occur at all. Having seen
in Sec. V.F that it is possible to choose the energy func-
tion so as to sculpt the energy surface, it is important to
know the extent to which the slowing of the dynamics
may be reduced, a question with important implications
for other optimization problems.

The network of Sec. IV.A is a rare example of a
strongly interacting system whose approach to the
minimum of a noisy energy landscape can be analyzed
exactly from a knowledge of the eigenvalue spectrum of a
noisy matrix. Inspired by the question of the previous
paragraph, could we choose our energy function here to
reduce (or avoid) the critical slowing down expldined in
Sec. IV.A?

Frustration will always occur of course, if the rule is
unlearnable: the student space does not contain a net-
work which reproduces the rule. Since practical prob-
lems are expected always to fall into this category, it is
important to understand how these affect the picture
presented in Sec. III. High-temperature learning of the
rule in Sec. V.A.2, for example, suggests that when Ising
perceptrons learn unlearnable problems, their first-order
transition is at first only into the region of minimal gen-
eralization error. What is the zero-temperature analog of
this result and what is its interpretation? Does it change
if optimal learning is employed, incorporating our
knowledge of the form of the rule?

The question remains of whether any of the learning
schemes which have some biological counterpart, al-

though it seems that all but the simplest (Sec. IL.D) in-
volve nomnlocal learning rules (one component of the

weight vector is set according to a complex function of
other components of the questions), which is said to be
biologically implausible (Amit, 1989). A deeper insight
into the growth of real networks, however, may lead to
new classes of learning schemes.

Finally, we point out again that the next breakthrough
in learning can be expected in multilayer networks,
which are already in common engineering use. Here
there are two distinct questions: What is the minimal size
of network required to learn a rule? How should such a
network be taught from examples? An answer to either
question seems to require an insight into the mappings
multilayer networks make between their input and out-
put spaces which does not yet exist. Analysis of learning
complicated rules drawn from some distribution again re-
quires statistical mechanics, as will the analysis of sto-
chastic multilayer algorithms, with networks growing
and shrinking to meet the demands of new examples.
The high degeneracy in the number of networks which
can reproduce a given rule exactly may cause problems in
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finding the minimal architecture, as will spurious solu-
tions with a low but nonzero generalization error.

The learning of rules by neural networks is a fascinat-
ing ongoing problem, with cross-disciplinary implications
for conventional physics, information theory, biology,
and engineering. It is an excellent area in which to ap-
ply exactly the techniques of statistical mechanics and in
which to develop new ones, in order to gain some insight
into other strongly interacting complex systems.
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