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The review begins by grouping the fundamental nuclear reactions into two classifications, namely, the usu-
al binary processes and few-particle processes. In the few-particle processes, the possibility of electron-
screened cold fusion is remarked. The special features of dense plasmas rest in the enhancement of reac-
tion rates over these fundamental processes due to internuclear many-particle processes. The many-
particle processes arise from a modification of the short-range correlations between reacting nuclei and
are the effects related closely to differences between Coulombic chemical potentials before and after the
nuclear reactions. Quantum statistical-mechanical formulation of the enhancement factors is presented.
Thermodynamic functions for various realizations of dense plasmas, pertinent directly to the reaction-rate
theories through the screening properties and free energies, are summarized. Those analyses are then ap-
plied to the estimation of nuclear reaction rates in specific examples of dense astrophysical plasmas, name-
ly, the Sun, brown dwarfs, giant planets, white-dwarf progenitors of supernovae, and helium burning on
the degenerate stars, as well as in those dense laboratory plasmas that are found in the inertial
confinement fusion experiments, in metal hydrides such as PdD and TiD,, in cluster-impact fusion experi-
ments, and in ultrahigh-pressure liquid metals. The essential similarity between the nuclear fusion reac-
tions in supernovae and those projected in the ultrahigh-pressure liquid metals is particularly emphasized.
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tively on the changes in the microscopic, macroscopic,
and thermodynamic states of the environment in case it
consists of condensed matter. The rates of nuclear reac-
tions in dense plasmas can thus differ drastically from
those expected in vacuum, due to strong, many-body
correlation effects, or the statistical-mechanical effects,
inherent in such a condensed-matter system.

This article therefore intends to elucidate the present
stages of understanding with regard to those effects of
enhancement in the rates of nuclear reactions, expected
from the correlation and thermodynamic effects, in vari-
ous realizations of the condensed plasmas both in the as-
trophysical and laboratory settings. Consequently, the
contexts of the review are concerned rather with the as-
pects of statistical condensed-matter physics than with
those of nuclear reaction physics per se. This review is
here viewed as a forum in which the interplay between
nuclear physics and statistical physics may be studied
usefully through the concept of correlation functions.

The review thus begins with the classification of the
fundamental nuclear reactions in two elements according
to process, namely, binary processes and few-particle pro-
cesses. The binary processes are those that are expected
without the effects of the environment, and include the
celebrated Gamow rates (Gamow, 1928; Gurney and
Condon, 1929) of thermonuclear reactions. In the few-
particle processes, one includes possible effects of screen-
ing, or modification of internuclear forces, by light parti-
cles such as electrons; the possibility of electron-screened
cold fusion is remarked.

The nuclear reaction rates are related to the short-
range behavior of the pair-correlation functions, where
the quantum-mechanical effects are essential. The special
features of nuclear fusion in dense plasmas rest in the
enhancement of the reaction rates over those fundamental
processes due to internuclear many-particle processes. The
many-particle processes arise from modification of the
short-range correlations between reacting nuclei and are
the effects related closely to differences between Coulom-
bic chemical potentials before and after the nuclear reac-
tions. In these connections, we describe recent develop-
ments in the Monte Carlo (MC) simulation study as well
as those in statistical theories of the short-range correla-
tions in various realizations of dense plasmas.

At high densities such as those in the interior of degen-
erate stars, the plasma may undergo a freezing transition
into a solid state (e.g., Ichimaru, 1982). The nuclei in
such a dense plasma then form a quantum solid in its
ground state, and they perform zero-point vibrations
about their equilibrium sites. The reaction rates, propor-
tional to the square of the ground-state wave function or
the contact probability between a nearest-neighbor pair,
thus depend very sensitively on the density via the
nearest-neighbor separation, but are independent of the
temperature (Cameron, 1959; Salpeter and Van Horn,
1969). Rates of such pycnonuclear reactions in binary-
ionic mixtures (BIMs)—plasmas consisting of two
different types of ions immersed in a neutralizing electron
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background —are analyzed through a combination of
compositional scaling arguments and examinations of
MC simulation results for the interparticle separations
(Ogata, Iyetomi, and Ichimaru, 1991; Ichimaru, Ogata,
and Van Horn, 1992).

As the aforementioned effects of correlations and freez-
ing transitions may have illustrated, the nuclear reaction
rates in dense plasmas are intimately related to the ther-
modynamic functions through the screening properties
and the Coulombic chemical potentials. The thermo-
dynamic properties of various plasmas are thus summa-
rized in Appendix A.

Those analyses are then applied to the estimation of
the nuclear reaction rates and enhancement factors in
specific examples of dense astrophysical and laboratory
plasmas: Astrophysical condensed plasmas (Van Horn,
1991) under present consideration include the solar inte-
rior (SI), the interior of a brown dwarf (BD), the interior
of a giant planet (GP), a white-dwarf (WD) progenitor of
a supernova, and surfaces of accreting white dwarfs and
neutron stars. Examples of the condensed plasmas in la-
boratories are those found in the inertial confinement
fusion (ICF) experiments, in metal hydrides (MH) such as
PdD and TiD,, in cluster-impact fusion experiments, and
in ultrahigh-pressure liquid metals (PM). In many cases,
the computed results presented in Sec. V have been newly
obtained for this review and therefore replace some of the
existing calculations. The essential similarity between
the nuclear reactions in supernovae and those projected
in the ultrahigh-pressure liquid metals will be particular-
ly emphasized.

B. Astrophysical condensed plasmas

Interiors of main-sequence stars such as the Sun are
dense plasmas constituted mostly of hydrogen. The Sun
has radius Rg~6.96X10'° cm and mass Mg~1.99X10%
g; its mass density is 1.41 g/cm> on average (e.g., Allen,
1973). The total luminosity is Lg~3.85X 10?® W and the
average luminosity per mass is Lg/Mg~1.93X1077
W/g. The central part of the Sun has a mass density of
approximately 1.56X10? g/cm?, a temperature of ap-
proximately 1.5X 107 K, and a pressure of approximately
3.4X10° Mbar. The mass fractions of hydrogen are 0.36
near the center and 0.73 near the surface. Rates of nu-
clear reactions, photon transport and opacities, conduc-
tivities, atomic states, and their miscibilities are all essen-
tial elements in setting a model for the Sun (Bahcall
et al., 1982). These solar luminosities are to be account-
ed for, in particular, by the rates of proton-proton reac-
tions (Salpeter, 1952a).

Very low-mass stars (0.08My <M <0.3Mg) dominate
the solar neighborhood (<10 pc)! and constitute the
most numerous stellar component of the Galaxy (Kumar,
1963; Liebert and Probst, 1987; Burrows, Hubbard, and

11 pc (Parsec)=3.26 light per year =3.08 X 10'® cm.
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Lumine, 1989). Brown dwarfs (D’Antona and Mazzitelli,
1985; Kafatos, Harrington, and Maran, 1986; Lumine,
Hubbard, and Marley, 1986; D’Antona, 1987; Burrows,
Hubbard, and Lumine, 1989; Stevenson, 1991) may be
defined as those astrophysical objects having masses
insufficient for achieving thermal equilibrium through
hydrogen burning (M <0.08M ), but with masses
sufficiently large to be supported primarily by thermal or
electron degeneracy pressure (M > 0.01My; Nelson, Rap-
paport, and Joss, 1986). Because of the absence of hydro-
gen burning, expected surface temperatures of the brown
dwarfs are low (7 <2000 K), so that these would possibly
be observed in infrared. Although the observational evi-
dence for their existence still remains to be confirmed
(e.g., Forrest, Skrutskie, and Shure, 1988; Fienberg,
1990), the issues of brown dwarfs carry astrophysical
consequences of considerable interest: A possibility has
been suggested that these objects may make up a
significant fraction of the local missing mass in the
Galactic disk (Kafatos, Harrington, and Maran, 1986;
Stevenson, 1991). An observation of a brown dwarf
would provide useful cluses as to the formation of plane-
tary systems. Central temperatures and mass density of a
brown dwarf may range (2-3)X10% K and 10%>-103
g/cm?, respectively. Equations of state, opacities, and
rates of nuclear reactions are essential elements in
theoretical prediction for the critical masses, structures,
and evolution of brown dwarfs (Stevenson, 1991).

The materials inside Jovian planets (Jupiter, Saturn,
Uranus, Neptune) offer important objects of study in the
dense-plasma physics (e.g., Hubbard, 1980, 1984;
Stevenson, 1982). Typically, Jupiter has a radius
R;=0.103Rg=7.14X10° cm and a  mass
M;=0.95X10">Ms=1.90X10* g. The mass density,
temperature, and pressure of its interior (outside the cen-
tral “rock”), consisting of hydrogen plasmas with a few
percent (in molar fraction) admixture of helium, are es-
timated to range 2-5 g/cm3, 5000-20000 K, and 3-30
Mbar, respectively.

Jupiter has been known to emit radiation energy in the
infrared range at an effective temperature of approxi-
mately 130 K, approximately 2.7 times as intense as the
total amount of radiation that it receives from the Sun
(Hubbard, 1980). By observation through terrestrial at-
mospheric transmission windows at 8—14 um (Menzel,
Coblentz, and Lampland, 1926) and 17.5-25 um (Low,
1966), Jupiter was known to be an unexpectedly bright
infrared radiator. This feature has been accurately
reconfirmed quantitatively by a telescope airborne at an
altitude of 15 km (Armstrong, Harper, and Low, 1972)
and through flyby measurements with Pioneers 10 and 11
(Ingersoll et al., 1976). For Jupiter, the effective surface
temperature determined from integrated infrared power
over 8—300 um was 12914 K, while the surface tempera-
ture calculated from equilibration with absorbed solar ra-
diation was 109.4 K (Hubbard, 1980); the balance needs
to be accounted for by internal power generation.

To account for the source of such an excess infrared
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luminosity, theoretical models such as ‘“adiabatic cool-
ing” (Hubbard, 1968; Graboske et al., 1975; Stevenson
and Salpeter, 1977), “gravitational unmixing” (Smolu-
chowski, 1967; Stevenson and Salpeter, 1977), and ““latent
heat due to metallization” (Saumon et al., 1992) have
been considered. Theoretical predictions on evolution,
internal structures, and gravitational harmonics (Hub-
bard and Marley, 1989) for such giant planets depend to
a great extent on thermodynamic, transport, and optical
properties of dense plasma materials. It is essential in
these connections to explore possible nuclear reactions of
deuterons, which may remain in a Jovian planet at an
atomic abundance of approximately 0.003% (Anders and
Grevesse, 1989).

The white dwarf (e.g., Schatzman, 1958; Van Horn,
1971; Liebert, 1980; Shapiro and Teukolsky, 1983)
represents a final stage of stellar evolution, corresponding
to a star of about 1 solar mass compressed to a charac-
teristic radius of 5000 km and an average density of 10°
g/cm?. Its interior consists of a multi-ionic condensed
matter composed of C and O as the main elements and
Ne, Mg, ...,Fe as trace elements. Condensed-matter
problems in white dwarfs include the assessment of the
possibilities of chemical separation, or the phase dia-
grams, associated with the freezing transitions of the
multi-ionic plasmas (Stevenson, 1980; Barrat, Hansen,
and Mochkovitch, 1988; Ichimaru, Iyetomi, and Ogata,
1988; Van Horn, 1990; Ogata et al., 1993). These are re-
lated to internal structure, cooling rate, and evolution of
a white dwarf (Clayton, 1968; Mochkovitch, 1983;
Winget et al., 1987), as well as the rates of nuclear reac-
tions (Salpeter and Van Horn, 1969; Ogata, Iyetomi, and
Ichimaru, 1991) and detailed mechanisms of the superno-
va explosion and of possible formation of neutron stars
(Canal and Schatzman, 1976; Canal, Isern, and Labay,
1982; Bethe, 1990; Nomoto and Kondo, 1991).

As a progenitor of a type-I supernova, a white dwarf
with an interior consisting of a carbon-oxygen mixture
can be considered a kind of binary-ionic mixture with a
central mass density of 10’-10'° g/cm® and a tempera-
ture of 107-10° (Starrfield et al., 1972; Whelen and Iben,
1973; Canal and Schatzman, 1976). Thermonuclear ru-
naway leading to supernova explosion is expected to take
place when the thermal output due to nuclear reactions
exceeds the rate of energy loss. Assuming that neutrino
losses are the major effects in the latter, one estimates
(e.g., Arnett and Truran, 1969; Nomoto, 1982a; Itoh
et al., 1989) that a nuclear runaway should take place
when the nuclear power generated exceeds 107°-10"%
W/g. These values give approximate measures against
which the rates of nuclear reactions in white dwarfs are
to be compared.

Helium burning is one of the major reaction processes
in stellar evolution (Salpeter, 1952b) and in accreting
white dwarfs and neutron stars in close binary systems
(Nomoto, Thielemann, and Miyaji, 1985). In the latter
cases, helium burning is so explosive as to give rise to re-
markable astronomical phenomena, such as x-ray bursts
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in neutron stars (Lewin and Joss, 1983) and type-I super-
novae in white dwarfs (Nomoto, 1982a, 1982b).

The neutron star (e.g., Baym and Pethick, 1975;
Shapiro and Teukolsky, 1983), another of the final stages
in stellar evolution, is a highly degenerate star corre-
sponding approximately to a compression of a solar mass
into a radius of ~10 km. According to theoretical model
calculations, it has an outer crust, consisting mostly of
iron, with a thickness of several hundred meters and a
mass density in the range of 10*~10” g/cm?®. When the
mass density p,, exceeds a critical value near 107 g/cm?®
for electron captures, neutron-rich “inflated”” nuclei be-
gin to emerge. At p,, =4X 10! g/cm?, the neutron-drip
density, the estimated atomic and mass numbers for such
nuclei are Z =36 and 4 =118; at p,, ~2X 10" g/cm?,
which defines the inner edge of an inner crust, one calcu-
lates Z =201 and 4 =2500 (Baym, Pethick, and Suther-
land, 1971).

Over the bulk of the crustal parts, the nuclei are con-
sidered to form a Coulomb solid. A neutron star may be
appropriately looked upon as a ‘“‘three-component star”
consisting of an ultradense interior of neutron fluids, a
crust of Coulomb solids, and a thin surface layer of
“ocean” fluids. Nuclear reactions are expected in these
surface layers on accreting neutron stars in close binary
systems (Lewin and Joss, 1983; Day and Tawara, 1990).

C. Dense laboratory plasmas

The states of those plasmas at the focus of inertial
confinement fusion research (e.g., Motz, 1979; Hora,
1991) are similar to those in the solar interior already
mentioned. The projected temperatures in the ICF plas-
mas need to be on the order of 10’-10® K. Those materi-
als that drive implosion of the fuel consist of high-Z ele-
ments, such as C, Al, Fe, Au, Pb, ..., which after ion-
ization form plasmas with charge numbers substantially
greater than unity. The atomic physics of those high-Z
elements is influenced strongly by the correlated
behaviors of charged particles in dense plasmas.

Laboratory realization of condensed plasmas includes,
in addition, those produced by shock compression (e.g.,
Fortov, 1982; Fortov et al., 1990), in pinch discharges
(e.g., Pereira, Davis, and Rostoker, 1989), and through
metal vaporization (Mostovych et al., 1991). Ultrahigh-
pressure-metal physics studied in shock-compression ex-
periments (Nellis et al., 1988) aims at detection of
changes in the equation of state through transitions be-
tween electronic states in the compressed metals (Al, Cu,
and Pb). Another scheme of ultrahigh-pressure experi-
ments utilizing the diamond-anvil cells (Mao, Hemley,
and Hanfland, 1990) strives for the ultimate realization of
metallic hydrogen through insulator-to-metal transitions
(Wigner and Huntington, 1935) by compression to mul-
timegabar pressures (Hemley and Mao, 1991).

Metals and alloys (solid, amorphous, liquid, and
compressed) are the most typical examples of condensed
laboratory plasmas (e.g., Mott and Jones, 1936; Ashcroft
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and Stroud, 1978; Endo, 1990). Conduction electrons in
metals form quantum plasmas, where the wave nature of
the electrons as fermions plays an essential part (e.g.,
Pines and Nozieres, 1966). At room temperatures, their
number densities range from 10?2 to 10** cm ™3 for most
of the simple metals such as Al, Li, and Na. In these
density regimes, effects arising from exchange and
Coulomb coupling between electrons become significant;
thus conduction electrons in metals are referred to as
strongly coupled (e.g., Ichimaru, 1982, 1990) quantum
plasmas. Owing to the presence of the core electrons, the
ion-ion and electron-ion interactions are described by the
pseudopotentials, deviating away from the pure Coulom-
bic form. The strong-coupling effect between the con-
duction electrons has a strong influence on the deter-
mination of those pseudopotentials (e.g., Singwi and Tosi,
1981; Hafner, 1987).

Certain metals such as palladium, titanium, and vana-
dium possess a remarkable ability for absorbing sizable
amounts of hydrogen (Alefeld and V4lkl, 1978). Nuclear
reactions between hydrogen isotopes trapped in a metal
hydride, such as palladium deuteride (PdD) and titanium
deuteride (TiD,), offer a unique opportunity for studying
reaction processes in microscopically inhomogeneous me-
tallic environments of regular or irregular (e.g., due to
defects) lattice fields produced by the metal atoms. Ex-
periments are usually carried out in nonequilibrium situ-
ations such as electrolysis and absorption-desorption pro-
cesses; no fusion yields have been confirmed as yet. (For
examples of earlier experiments, see Gai et al., 1989;
Jones et al., 1989; and Zielger et al., 1989).

The flurry of interest produced by the announcement
of cold fusion rapidly polarized the scientific community
into two groups: diehard enthusiasts and extreme skep-
tics. The initial experimental reports on power produc-
tion through cold fusion have now been dismissed by al-
most everyone. However, it is important not to go to the
extreme of rejecting all possibilities uncritically. Here we
assess the fusion rates in metal hydrides in order to help
provide an objective assessment of these possibilities
(Leggett and Baym, 1989; Ichimaru, Ogata, and Nakano,
1990).

In a context somewhat similar to that of the aforemen-
tioned fusion in metal hydrides experiments on cluster-
impact fusion were performed recently (Beuhler, Fried-
lander, and Friedman, 1989): deuteron-deuteron fusion,
detected via the 3-MeV protons produced, was shown to
occur when singly charged clusters of from 25 to 1300
D,0 molecules, accelerated to 200 to 325 keV, impinged
on TiD targets, with high fusion rates observed at ap-
proximately 1-10 s~!/D-D; experimental confirmation
followed (Bae, Lorents, and Young, 1991; Beuhler et al.,
1991). A theoretical account for the high fusion yields
was proposed on the basis of a “thermonuclear” model
(Carraro et al.,, 1990) at an elevated effective density
(Echenique, Manson, and Ritchie, 1990) or temperature
(Kim et al., 1992) of deuterons. An experiment was then
reported (Vandenbosch et al., 1991) which showed that
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the enhanced fusion rates fell off rapidly with cluster size.
Very recently, the possibility appeared to be confirmed
that traces of high-velocity beam contaminants (artifacts)
could account for the experimental results [Beuhler,
Friedlander, and Friedman, 1992(E)].

Pressurized liquid metals offer another interesting en-
vironment in which to study nuclear reactions (Ichimaru,
1991). It will be shown that d (p,y)*He and "Li(p,a)*He
reactions can take place at a power-producing level on
the order of a few kW/cm?, if such a material is brought
to a liquid metallic state under an ultrahigh pressure on
the order of 10°—10° Mbar at a mass density of 10—10?
g/cm® and a temperature of (1-2)X 10* K, slightly above
the estimated melting conditions for hydrogen. Such a
range of physical conditions may be accessible through
extension of those ultrahigh-pressure-metal technologies
(e.g., Nellis et al., 1988; Mao, Hemley, and Hanfland,
1990; Ruoff et al., 1990; Hemley and Mao, 1991).

D. Basic parameters of dense plasmas

The contact probabilities between reacting nuclei de-
pend crucially on the states of dense plasmas, which may
be characterized by a number of physical parameters. In
this section, we summarize such fundamental quantities
for plasmas. In Appendix A, thermodynamic functions
for various dense plasmas are described in terms of those
basic parameters.

We begin by modeling a plasma as consisting of atomic
nuclei (which will be called ions) with electric charge Ze
and rest mass M (= Amy ), and of electrons with electric
charge —e and rest mass m. Physical quantities associat-
ed with these separate constituents are distinguished by
the suffixes i and e. The atomic mass number is denoted
by A and my represents the average mass per nucleon.

In some cases, salient features of plasma can be under-
stood through investigation of the properties of a one-
component plasma (OCP). A OCP is a model consisting
of a single species of charged particle embedded in a uni-
form background of neutralizing charges. Conduction
electrons in the jellium model of metals (e.g., Pines and
Nozieres, 1966) offer an example of such an electron
OCP, where all effects of lattice periodicity in the space-
charge distribution of the ions are ignored. Another ex-
ample is an outer-crustal matter of a neutron star, where
one neglects polarizability of the dense, relativistic elec-
trons and treats the Fe?*' nuclei approximately as form-
ing an ion OCP.

Modeling for a dense plasma under different cir-
cumstances may call for consideration of cases contain-
ing multiple species of ions, or multi-ionic plasmas, the
constituents of which will be distinguished by such sub-
scripts as i and j; the BIM is an example of such a multi-
ionic plasma. Thus, for the macroscopic neutrality of
electric charges, the number densities »n; and n, are as-
sumed to satisfy

> Zn;,=n, . (1.1)
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A dimensionless parameter characterizing a system of
electrons is (e.g., Pines and Nozieres, 1966; Ichimaru,

1982)
-173
S R

It is the Wigner-Seitz radius of the electrons

3
4mn,
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1/3 me2 _ ne
# 1.6X10* cm™

1/3
3
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and depends only on the electron density.

The Fermi wave number of the electrons in a paramag-
netic state, with an equal number of electrons in the two
spin states, is given by

3.63x10® cm ™!

kp=Q37n, ) P= (1.5)

s

A parameter characterizing relativistic effects is defined
by the ratio

Hkp
Xp=

-~ =1.40X10" 2,1 . (1.6)

Fermi energy of the electrons is then given by

Ep=mc*V 1+x2—1)

=mecX(V 1+1.96X107%2—1), (1.7)

with inclusion of the relativistic effect. Relativistic
effects are significant in the high-density regime such that
r, <0.1.

Degrees of Fermi degeneracy for electrons at tempera-
ture T are measured by the ratio

kgT
——, (1.8)

F
with kp denoting the Boltzmann constant. When

® <0.1, the electrons are in a state of complete Fermi de-
generacy; thermal effects are small. 0.1 <® <10 corre-
sponds to a state of intermediate degeneracy; quantum
and thermal effects coexist. When ® > 10, we may regard
the system of electrons being in a nondegenerate, classi-
cal state; quantum-mechanical interference effects are
negligible, except in short-range collisions.

Relativistic effects are negligible in most of the elec-
tron gases at finite temperatures, that is, those with
®20.1. The thermodynamic functions for such a nonre-
lativistic electron gas can then be expressed in terms of
the Coulomb coupling parameter for the electrons,

62

re= it (1.9)

and the degeneracy parameter ®. A useful relation is
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2/3

s

- . (1.10)
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Let us consider several parameters characterizing

dense semiclassical multi-ionic systems. The Wigner-
Seitz radius for an ion of the i species,
3Z, 1/3 it
a;= dla
! 4rn,

is called an ion-sphere radius. An ion-sphere radius be-
tween i and j is then given by

a;ta;
T

a (1.11b)
In dense plasmas where the density of electrons may be
assumed constant, Eq. (1.11b) offers an appropriate scal-
ing for the internuclear spacings. Such will be referred to
as the constant electron-density, ion-sphere scaling.

The ratio between a thermal de Broglie wavelength
and the ionic spacing,

A= PVom
Y aij\/Zp,.jkBT
measures the degrees to which wave-mechanical effects

enter a description of the ion fluids. For a OCP, Eq.
(1.12a) may be expressed numerically as

—-5/6

’ (1.12a)

=172
T

10’ K

12

A=0.21

173
m
10 g/cm? ]

(1.12b)

where p,, designates the mass density. As Eq. (1.12b) il-
lustrates for a WD material, A; <1, a condition for a
classical fluid, is satisfied in most of the cases treated
here.

In an ion fluid with Ay << 1, the wave-mechanical
effects are negligible; the Coulomb coupling parameter
for such a classical plasma is given by

r, = 22 (1.13a)
For a OCP, we compute Eq. (1.13a) as
7z 2 4 -1/3 1/3 T —1
r=36|=| |= S
ls } ‘12 10° g/cm? 10’ K
(1.13b)

A weakly coupled plasma corresponds to the cases with
I;; <<1, where the Coulomb interaction can be treated
perturbation-theoretically. A strongly coupled plasma
refers to the cases with I';; =21, where a perturbation
theory is no longer valid and the system begins to exhibit
features of microscopic correlations characteristic of
liquids.

At still higher densities and lower temperatures, a
OCP undergoes a freezing transition into a bcc crystal-
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line state (Wigner, 1934, 1938; Brush, Sahlin, and Teller,
1966). It has been shown by a Monte Carlo simulation
method (Slattery, Doolen, and DeWitt, 1980, 1982; Oga-
ta and Ichimaru, 1987, 1989; Ogata, 1992) that a dense
classical OCP freezes into a crystalline solid as the
Coulomb coupling parameter exceeds a critical value,
I',, =180. Here it is necessary, in general, to deal with a
quantum-mechanical Coulomb solid (Wigner, 1934, 1938;
Carr, 1961; Coldwell-Horsfall, and Fein, 1961; Iyetomi,
Ogata, and Ichimaru, 1993); the quantum effects are mea-
sured through an Einstein frequency w, of the Wigner-
Seitz model (e.g., Pines, 1963) in its dimensionless form,

4mn;(Ze)? i

3IM

_ hwo _ #
" kyT  kgT

Y (1.14)

Thus far we have considered the basic parameters
characterizing the individual constituents, electrons, and
ions of a plasma. In an ultradense plasma with r; <0.01,
the Fermi energy of electrons is relativistically high [cf.
Eq. (1.7)], so that their coupling with ions is indeed weak.
The kinematic effects of relativistic degenerate electrons
(e.g., Landau and Lifshitz, 1969) soften the electrons
against compression and thus act to enhance their polar-
izations (Ichimaru and Utsumi, 1983) to an extent quali-
tatively different from those in nonrelativistic predic-
tions.

In nonrelativistic plasmas near the boundaries of
metal-insulator transitions, effects of strong coupling be-
tween electrons and ions become pronounced, giving rise
to interesting facets in plasma-physics problems inter-
linking with atomic and molecular physics. Noteworthy
among these is an emergence of incipient Rydberg states
(IRS) for the short-range, electron-ion correlations in the
metallic (plasma) phase (Tanaka, Yan, and Ichimaru,
1990), accounting for their mutual scattering beyond the
Born approximation. The IRS acts to modify the short-
range interionic potentials as well, and may influence the
nuclear reaction rates in dense plasmas through such a
modification.

Il. ELEMENTS OF NUCLEAR REACTIONS

A. Contact probabilities

The reaction rate (in units of reactions/cm®/s) between
nuclei of i and j species at number densities n; and n;
with a relative kinetic energy E is calculated as
2S,~j(E)r."~‘n<n.

St |\I/,-j(rN)‘2 . (2.1)

Ry B = T +s,)m

Here ¥,;(ry) refers to the wave function of scattering at

the nuclear reaction radius 7y, and

*— #

rf=——— (2.2)
Yoou;ZZe?

corresponds to the nuclear Bohr radius, with u;; denoting
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the reduced mass between i and j. Kronecker’s delta §;;
enters Eq. (2.1) to account for the cases with i =j. The
wave function in Eq. (2.1) is normalized so that

[ dramr?|¥ (nP=0 (2.3)
Q

over a spherical volume Q with a radius 2a;;, an average
nearest-neighbor distance between i and j. Equation (2.1)
differs from the rate cited in Salpeter and Van Horn
(1969) and in Ogata, Iyetomi, and Ichimaru (1991) by a
factor of 4r; its derivation, as well as the origin of this
discord, is explained in Appendix B.

The nuclear cross-section factor S;;(E) is related to the
cross section of nuclear reactions via

S;i(E)
0, (E)=—"—exp| —m(Es/E)'"?], 2.4)
where
Z,Ze?
Eg=—7— (2.5a)
T

2L::
=50(Z;Z; 22 (kev) (2.5b)

my
is the Gamow energy.

The controlling factor in the analysis of the scattering
event is the effective potential between the nuclei in the
short-range domain, where the potential may be regarded
as isotropic. The calculation of reaction rates [Eq. (2.1)]
is then facilitated by the observation that the major con-
tributions to ]\I/,rj(rN)I2 arise from the s-wave scattering
acts between the reacting nuclei. The observation stems
from the fact that the wave function of scattering in a
spherically symmetric potential with the azimuthal quan-
tum number / is proportional to r' in short ranges (e.g.,
Schiff, 1968). Since one can generally assume that

ry <rji<<a;, (2.6)
the s-wave scattering gives the major contribution to the
reaction rate, and 7y =0 may be taken as far as the calcu-
lations of the contact probabilities are concerned.

The s-wave scattering with relative kinetic energy E is
described by the Schrodinger equation

#  d?
—————+W;(r)—E [r¥Y,;(r)=0, (2.7)
2uy; dr? j ij
where W;;(r) is the effective potential of scattering.

In analyzing the nuclear reactions in dense plasmas, we
single out “reacting (R)” nuclei i and j and name all oth-
ers as ‘“‘spectator (S)” nuclei. In addition to those “R”
and “S” nuclei, the system contains electrons (and/or
muons). The contact probabilities I‘I’,~j(0)l2 averaged
over the motion of the center of mass for the reacting
pairs and over the states of ““S” nuclei coincide with the
joint probability densities g;;(0). The reaction rates at
temperature T are finally obtained through an average:

R(T)=(R;(E))g (2.8)
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over the states of “R” nuclei. ,

The central quantity in the theory of nuclear fusion in
dense plasmas is therefore g;;(0), the joint probability
density at zero separation. It is an equal-time, two-
particle distribution function evaluated in an equilibrium
ensemble; the reaction rates depend on the static correla-
tions. In the usual statistical treatment (e.g., Ichimaru,
1992), such a correlation function is expressed in terms of
the static and dynamic structure factors, S(k) and
S (k,w), via the sum-rule integrations as

1 _dk
0)=1+— S(k)—1
8(0) nf(21r)3[ =1l
—q4Lldk |1 - _
_1+nf(2m3 ~J  doske)-1] .

Since the dynamic structure factor represents the power
spectrum of the density-fluctuation excitations in the fre-
quency and wave-vector space, all the dynamical process-
es are duly taken into account through the sum-rule in-
tegrations in the calculation of such a static correlation.
In most cases it is therefore incorrect to evoke an addi-
tional account of ‘““dynamical” or ‘“nonequilibrium” pro-
cesses (Salpeter and Van Horn, 1969; Itoh, Totsuji, and
Ichimaru, 1977; Mitler, 1977; Carraro, Schifer, and Koo-
nin, 1988; Schramm and Koonin, 1990) in a calculation
of the reaction rates. The reason favoring an equilibrium
calculation may be traced to the fact that nuclear reac-
tions are extremely rare events as compared with other
scattering and relaxation processes. All the dynamical
effects have been incorporated in a correct evaluation of
the joint probability density via the sum rule.

B. Binary processes— The Gamow reaction rates

In a tenuous plasma, the effects of the “S” particles
and of the electrons are negligible in the thermonuclear
reactions of the “R” pairs; the reacting pair may be as-
sumed to interact via the bare Coulomb potential,

Z,-Zje2
W,.j(r)=W0(r)=—-——r—~ . (2.9)
Equation (2.7) is solved with the “cusp” relation,
dIn¥;(r)
fim ——2 = 1 (2.10)
r—0 dr 2ri;f

which sets a rigorous boundary condition for the wave
function in the short-range limit. The contact probabili-
ties are then obtained as (e.g., Schiff, 1968; Ogata, Iye-
tomi, and Ichimaru, 1991)

. 7™ Ez/E
|w,;(0)[2= A (2.11a)
exp(mV/ Eg/E )—1
172 172
er 1B e | | B
“"E P E
(Eg>>E). (2.11b)
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The Gamow rate R of thermonuclear reactions for an
i nucleus is thus calculated by substituting Eq. (2.11b) in
Eq. (2.1) and by carrying out the average in Eq. (2.8) with
the Boltzmann distribution of E at temperature T; the re-
sult is (Gamow and Teller, 1938; Thompson, 1957)

16S;,(T)gr7s;
=—————n.n.exp(—7;), (2.12)
O 3 (s n T T
where
2/3 1/3
E
w G
=3 | 2.13
=315 kT 2.132)
2'u“ 1/3 T —1/2
=33.81(Z,2))** | = s :
my 10° K
(2.13b)

and S;;(T)g is a thermal average of S;;(E).

In the derivation of Eq. (2.12), it has been assumed that
E;>>kyT, consistent with Eq. (2.11b), implying that
Tij >>1. In these circumstances, the integration leading
to Eq. (2.12) contains in its integrand a product between
a steeply rising term, exp( — 7/ Eg /E), and a steeply de-
creasing Boltzmann factor, exp(—E /kyT), as functions
of E. The product thus exhibits the Gamow peak at the
energy

Egp=1r,ksT . (2.14)

The thermal average of S;;(E) should therefore be per-
formed with such a distribution taken into account. The
radius 7% of classical turning point for a colliding pair
with the Gamow peak energy is thus given by

(0)
tp __ 3 r
a;; Tij

i (2.15)
The Gamow reaction rate, Eq. (2.12), contains a factor
exp(—7;;) that decreases steeply as the temperature is
lowered [cf. Eq. (2.13b)]; the decrease is steeper for a pair
with a larger reduced mass. These are typical features in
thermonuclear reactions with bare Coulomb repulsion.

C. Few-particle processes— Screened cold fusion

The presence of electrons or other light particles such
as muons may act to modify the internuclear potential

from Wy(r) to

W(r)=Wq(rS,(r) . (2.16)

Here the function S,(r) describes the screening action of
the light particles, which can follow the motion of the
nuclei adiabatically. Such a screening function for the
Coulomb potential between nuclei may exist, irrespective
of whether the reacting nuclei are in itinerant (i.e., fluid),
molecular, or cluster states.

For concreteness, we confine ourselves to the cases of
screening effects of electrons, free or bound, in condensed
materials in the balance of this section. As Eq. (2.16) im-
plies, such a screening action stems from the density vari-
ation out of uniformity, or polarization, of the electrons
due to the presence of distinctive nuclear charges. This
should therefore be clearly distinguished from the screen-
ing potentials, to be introduced in Sec. III [cf. Eq. (3.6)],
due to the internuclear many-particle correlations that
can arise even when the electrons are regarded as uni-
form background charges, i.e., in the OCP or BIM mod-
els of dense plasmas. Salpeter’s (1954) ion-sphere model,
for instance, belongs to these; hence it would be a misno-
mer physically to call such an ion-sphere model a case of
strong electron screening. The screening potentials in
uniform background of electrons will be treated in Sec.
IV.A and IV.B; interplay between the internuclear corre-
lations and the electron screening will then be considered
in Sec. IV.C.

Since S.(r) should take on unity at » =0, one expands

,
S(N=1=3 -+ (2.17)
so that
Ws(r)=Wo(r)—E,+ - (2.18)
with
Z,Ze*
E =0 (2.19a)
D —1
=144.0Z,Z; | —5— (eV). (2.19b)
1077 cm

The expansion Eq. (2.17) defines the short-range screen-
ing distance D;. Equation (2.7) may then be solved for
the contact probabilities by replacing E with E +E in
Eq. (2.11) as (Salpeter, 1954)

™ E./(E+E,)
v, (0)*= LA (2.20a)
exp[mV Eg/(E +E;)]—1
E 172 E 1/2
7 E+GE exp | —m E+GE ] (E;>>E +E,) . (2.20b)
5 s
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In performing a thermal average for the “R” pairs, it is
useful to introduce the critical temperature of screening
determined from Egp=E,; i.e.,

172

_2|r Z,Z;e?
Tcs-—; 'D—S m“ (2.21a)
—1/2
=5.7x10"/Z,Z, | 2L
my
D, -3
10 om (K). (2.21b)

Relative to this temperature, the strength of the
electron-screening effects on nuclear reactions may be
classified.

In a high-temperature regime (i.e., Egp > E;) such that

T>T,, (2.22)

effects of the electron screening are weak; these can be
treated perturbation-theoretically. Substituting Eq.
(2.20) in Eq. (2.1) and averaging the result by the
Boltzmann distribution yields

16S(T)yeritrs;

= (e) —
Rys 3 20(1+8, nin; Aysexp(—7;) , (2.23)
with the classical turning point at
(0)
'rp _ rrtpP
a; a; (2.24)

Here S;;(T)y, is another thermal average of S;;(E) ap-
propriate to the weak screening conditions, and the
enhancement factor 4.8 due to the electron screening is
calculated as

3E

s

T;ikg T

ES
kBT

A= |1— exp . (2.25)

If, on the other hand, the condition for a strong elec-
tron screening, that is,

T<T, (2.26)

is satisfied, we find that Eq. (2.23) is replaced by
(Ichimaru, Ogata, and Nakano, 1990)

o = L38y(Dur E; |\
ss (1+8ij)ﬁ ninj Es eXp

172
EG

E

s

T

(2.27a)

where S;;(T)y is a thermal average of S;;(E), different
generally from either S;;(T)g or S;(T),, arising from
the strong electron-screening conditions. The classical
turning point is now at

(s) —
rrp =D;

(2.28)

1 _ S
2T a; |’
almost independent of the temperature in dense plasmas.
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Contrary to the Gamow rates [Eq. (2.12)] or their
weakly electron-screened counterparts [Eq. (2.23)], the
reaction rates of Eq. (2.27a) depend weakly on tempera-
ture only through S;;(T), and possibly E;, and may in-
crease rather steeply with the electron density via D;. It
is in this context that Cameron (1959) coined the term
“pycnonuclear reactions” from the Greek pyknos, “com-
pact, dense,” to describe nuclear reactions under the
strong electron-screening conditions that the rates de-
pend more sensitively on density than on tcmperature.
These analyses are applicable irrespective of whether the
“R” nuclei are in a fluid, molecular, or cluster state, as
long as condition (2.26) is satisfied.

It is instructive also to rewrite Eq. (2.27a) in the form
of Eq. (2.23); that is,

165D riTs

ss’ ij

332m(1+8,)#

nin; Adexp(—7;) .
The enhancement factor 4. due to the strong electron
screening is then expressed as

172
exp

172

E
¢ +7

E

s

1.277
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I
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E

s

(e) — —
Ass - T ij

(2.29)

Table I lists some of the parameters pertinent to
electron-screened nuclear fusion reactions in examples of
dense astrophysical and laboratory plasmas. The screen-
ing distances are estimated here through the random-
phase-approximation (RPA) calculations (e.g., Pines and
Nozieres, 1966; Ichimaru, 1992) described in Appendix A
[see Egs. (A42) and (A74)]; the screening distances for the
cases of MH and PH will be considered in Secs. V.E and
V.G.

We remark that the first four astrophysical examples
(WD1, WD2, BD, and GP) have turned out to be cases of
weak electron screening, while the last two terrestrial ex-
amples (MH and PM) describe strong electron screening.
This is somewhat ironic, since Cameron’s idea of pyc-
nonuclear processes was advanced originally for interiors
of degenerate stars such as the WD. In these stars, how-
ever, the actual temperatures are usually higher than the
critical temperatures of electron screening; hence the
enhancement due to electron screening is relatively weak.
Huge enhancement in the nuclear reaction rates expected
in those degenerate stars stem principally from the
screening potentials produced by internuclear many-
particle processes without electron screening, as we shall
see in subsequent sections (cf. 4. and A4 in Table IX
below).

In an ultradense stellar matter, a different sort of
density-sensitive, but temperature-insensitive, nuclear re-
action is expected when the plasma freezes into a crystal-
line state. Here one usually finds Y >>1 [cf. Eq. (1.14)],
so that the zero-point oscillations prevail over the
thermal motion of the nuclei. We shall consider this sort
of pycnonuclear reaction in Sec. IV.D.
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TABLE I. Electron-screening effects in nuclear reactions. Mass densities and temperatures (T) are
those assumed for the reacting nuclei. 4 ' corresponds to either Eq. (2.25) or Eq. (2.29).

Case: WD1 wWD2 BD GP MH PM
Reaction: 2C-2)C  “He-*He p-p d-p d-d Li-p
Mass density (g/cm?) 2X10° 1x10° 1X10° 5 0.23 30
zZ,,Z, 6,6 2,2 1,1 1,1 1,1 3,1
Ay, A, 12,12 4,4 1,1 2,1 2,2 7,1
7 0.0014  0.0038 0.14 0.93 2.9 0.71
D, (107° cm) 0.042 0.11 1.3 32 2.0 2.1
E, (eV) 12X10° 5.1X10° 114 45 72 203
Eg (keV) 7.8X10° 32X10° 50 66.7 100 788
T 229 62.8 23.4 137 636 847
7V Eg/E, 250 78.5 65.7 121 117 195
T, (K) 1.1X107 1.5X10° 4.0X10* 8.6X10° 1.4X10* 2.4x10*
T (K) 5%107 1X107  3X10° 2X10* 300 1000
log;o 4 12.1 2.4 0.19 11.0 222 280

Strong enhancement of nuclear reactions by electron
screening is definitely in effect for dense laboratory plas-
mas such as MH and PH, where a term such as
“electron-screened cold fusion” seems more appropriate.
Huge numbers predicted on 4 are misleading, howev-
er, since these stem in part from the magnitude of 7;; the
basic thermonuclear reaction rates (2.12) are therefore
extremely low.

Those elementary fusion reactions, with or without
electron screening, are still binary as far as the internu-
clear processes are concerned. Enhancement of the reac-
tion rates due to internuclear correlation processes is, in
fact, the principal feature of dense plasmas. Effects of
such many-particle effects depend in turn on the nature
of binary interactions, with or without electron screen-
ing. We shall elucidate these many-particle processes in
detail.

1Il. ENHANCEMENT BY MANY-PARTICLE
PROCESSES

A. Historic remarks

In his pioneering work, Schatzman (1948) pointed out
that potential barriers between reacting nuclei might be
significantly lowered in dense stellar matter (p,, > 108
g/cm®), so that the probabilities of wave functions tun-
neling through the barrier would be greatly enhanced.
The effects of this enhancement on supernova processes
were also considered in Schatzman’s work.

Cameron (1959) argued that at very high densities elec-
tron shielding would cut off nuclear Coulomb potential
barriers quite close to the nuclear surface (cf. Sec. I1.C).
Under these circumstances the classical turning points of
low-energy ions are very insensitive to the bombarding
energy [cf. Eq. (2.28)]. Nuclear reaction rates thus be-
come very insensitive to temperature but very sensitive to
density. Nuclear reaction rates as functions of tempera-
ture and density were calculated by double numerical in-
tegration of the barrier penetration probability as a func-
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tion of bombarding energy for a number of nuclear reac-
tions, including the triple a reactions: 3a—!2C. Pyc-
nonuclear reaction rates for low temperatures and high
densities were calculated for reactions of heavy ions such
as 1?C with themselves.

Salpeter (1954) originally presented an analytic treat-
ment of the weak screening effect in a low-density, high-
temperature plasma such that I" <1, and introduced the
ion-sphere model to describe the effects of interionic
correlations in the strong-coupling regime, I'>1. Sal-
peter and Van Horn (1969) then derived general expres-
sions for nuclear reaction rates appropriate to various
stellar-interior conditions. “Correction factors” or
enhancement factors due to the weak or strong screening
over the ordinary thermonuclear reaction rates (cf. Sec.
II.A) were thereby evaluated.

From the point of view of a general statistical-
mechanical theory, a significant development took place
when Widom (1963) showed how certain thermodynamic
functions, and also the radial distribution functions (.e.,
the joint probability densities), could be expressed in
terms of the potential-energy distribution in a fluid.
DeWitt, Graboske, and Cooper (1973) then advanced a
theory to describe the effect of weak and strong plasma
screening on nuclear reactions. These authors used the
Monte Carlo simulation data, pioneered by Brush, Sah-
lin, and Teller (1966), to analyze the effect of strong
screening on nuclear reactions in dense plasmas. Gra-
boske et al. (1973) used the cluster-expansion theory to
treat intermediate screening on nuclear reactions.

These statistical-mechanical theories were subsequent-
ly refined by Jancovici (1977) and by Alastuey and Jan-
covici (1978) through careful examination of the short-
range behavior of the internuclear correlation functions.
The quantum pair-correlation functions appropriate to
the calculation of nuclear reaction rates were formulated
by treating the many-body quantum effects through a
perturbation theory and by using a semiclassical approxi-
mation based on path integrals.

The physics of nuclear fusion in dense plasmas is there-
fore intimately related with the physics of strongly cou-
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pled plasmas with I';; > 1 (Ichimaru, 1982). The study of
correlations and thermodynamic properties in such a
plasma has progressed significantly in recent years
through advancements in the analytic theories (Rosenfeld
and Ashcroft, 1979; Iyetomi and Ichimaru, 1982; Iye-
tomi, Ogata, and Ichimaru, 1992) coupled with accumu-
lation of Monte Carlo simulation data for the OCP
(Brush, Sahlin, and Teller, 1966; Hansen, 1973; Slattery,
Doolen, and DeWitt, 1980, 1982; Ogata and Ichimaru,
1987; Ogata, Iyetomi, and Ichimaru, 1991), for the BIM
(Ichimaru, Iyetomi, and Ogata, 1988; Ogata, Iyetomi,
and Ichimaru, 1990, 1991; Ogata et al., 1993), for the
electron-screened OCP (Ichimaru and Ogata, 1991), and
for deuterons in metals (Ichimaru, Ogata, and Nakano,
1990).

The nuclear reaction rates are related to the short-
range behavior of the pair-correlation functions, where
the quantum-mechanical effects are essential. For those
dense plasmas where the reacting pairs are in fluid states,
however, the thermal de Broglie wavelengths are usually
shorter than the internuclear spacings (i.e., A;; <1); clas-
sical treatments are applicable here. It has thus been
recognized that such an interplay between short-ranged
quantum correlations at nuclear distances and
intermediate- to long-ranged classical correlations at in-
ternuclear distances offers a unique feature of study in a
statistical-mechanical theory of nuclear reactions in
dense plasmas.

B. Quantum-mechanical correlation functions

1. General approach

We consider a OCP of N particles in a volume ¥ with
Hamiltonian #. Particles 1 and 2 are designated as the
“R” pair; the rest, “S” nuclei. The relative coordinates
and those of the center of the “R” pair are expressed as r
and R. The joint probability density of the “R” pair at

|

372172 3 2
2 0= 220100 <°l<“s”l°"pt_’3 {K+(Z:)

In the framework of these approximations, the quan-
tum many-body problem has been reduced to a quantum
one-body problem, which, however, involves a complicat-
ed potential W(r, “S”) depending on the coordinates of
N —2%S” particles. In principle, one must first compute
the matrix element in Eq. (3.3) for every value of the set
of parameters “S” and afterwards perform the integra-
tion upon “S”. Alastuey and Jancovici (1978) have
shown a way to accomplish this through a systematic
method of successive approximations, in which the ma-
trix elements may be evaluated through a path-integral
approach (Feynman and Hibbs, 1965).

In the case of an infinitely dilute plasma, the case treat-
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+W(r;“S”)l ]

265

zero separation is then given by (Alastuey and Jancovici,
1978)

5 £00]{“S”’|exp(—BF)|“S”)|00)
(rR|< “S”Iexp( —‘ﬁﬂ” “S”)'rR) .

Here B=1/kyT, and integrations over the respective
coordinates are implied when r, R, or “S” is left in the
bracket notation. Assuming a translational invariance of
the system (i.e., fluid), we have set R=0 in the numerator
of Eq. (3.1).

In the range of parameters that we study, the thermal
de Broglie wavelengths are small enough for the thermo-
dynamics of the system to be described by classical sta-
tistical mechanics (cf. Appendix A.3). This means that
those configurations that contribute a non-negligible
weight to the denominator of Eq. (3.1) are classical. This
denominator can be replaced by Q/(Aa)*", where a =a;
and Q is the classical configuration integral

g0)=V

(3.1)

Q= [dr, - dryexp[ —BV(r;*S”)] . (3.2)

We express the total potential energy as

2
V(l', “S”)z _(Z_re) + W(r; “S”) R

where W (r; “S”) is the sum of all interactions except the
one between the “R’ pair.

The numerator of Eq. (3.1), however, is dominated by
configurations in the neighborhood of r=0, where the
potential is very steep, and thus quantum effects are
essential for the relative motion between the “R” pair.
Most of the motion of its center of mass, and of “S” par-
ticles, on the other hand, occurs in regions of
configuration space where the potential is smooth, and
these motions can be considered classical. It is therefore
sufficient to keep the kinetic energy K associated with r
and the total potential energy explicitly in the Hamiltoni-
an #f; one thus finds

5o}

ed in Sec. II.B, g (0; W) becomes g (0;0) and is obtained
by using Eq. (3.3) with @ =¥V" and W =0. An enhance-
ment factor of the reaction rate due to many-nuclear pro-
cesses is therefore defined and calculated as

(3.3)

f

_8oW)
g(0;0)

p? (
_ “Sn
Q

S '_So
#

exp (3.4)

“S”> .

Here the action S for a particle with mass M /2 is
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s = f“ﬁdt +W(r;“s”) | (3.5)

dr } 4 (Ze)?
r

4 | dr

along the trajectory r(¢) that minimizes S; the trajectories
are to be taken from the origin back to the origin, in a
time #f3, in the potential with the reversed sign. The ac-
tion S, is a quantity analogous to Eq. (3.5), in which
W =0 is set. If only the classical trajectories are kept,
the calculation will correspond to using the WKB
method (Salpeter and Van Horn, 1969; Itoh, Totsuji, and
Ichimaru, 1977; Alastuey and Jancovici, 1978) to solve a
Schrodinger equation at the energy of the Gamow peak,
Eq. (2.14). Ogata, Iyetomi, and Ichimaru (1991) have ad-
vanced a method by which the path-integral average can
be performed through an exact numerical solution to the
Schrodinger equation (2.7).

2. Enhancement factors

From the complicated many-body potential W (r; “S”’),
one constructs a two-body potential H (r) defined by
2
eXp[/a’l‘l(r)]:%( “S”|exp[ —BW (r;“S”)][“S”) . (3.6)

This function is called the screening potential and is relat-
ed to the classical radial distribution function g'°(#) via

] . (3.7

The screening potentials are analogously defined for
multi-ionic and/or electron-screened plasmas, as we shall
consider in Sec. IV.

In terms of the screening potentials, the enhancement
Jfactors due to many-particle processes are now expressed
from Eq. (3.4) in a compact form as

A=exp[B{H())g], (3.8)

—H(r)

(Ze)?
¥

)(r)=exp [——/3

where { - - - ) means a path-integral average with respect
to the penetrating wave functions W(r) from » =0 to the
classical turning point, Eq. (2.15), (2.24), or (2.28), and
back. The wave functions are calculated from a solution
to the Schrodinger equation (2.7) without accounting for
the screening potentials. This is justifiable when the ma-
jor contributions to (H(r))y stem from the vicinity of
=0, since the steep nuclear potentials dominate the fluc-
tuating many-body potentials near r=0. Decoupling be-
tween the “S”” and “R” averages is thus completed.
If the classical turning point is far shorter than the in-
ternuclear spacings, i.e.,

rop <<a ,
then the enhancement factors are further simplified as
A =exp[BH(0)] . (3.9

It is through these formulas that we establish an intimate
connection between the nuclear reaction rates and the
thermodynamic functions in dense plasmas.
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C. Chemical potentials

The screening potentials in multi-ionic electron-
screened plasmas are defined in terms of the classical ra-
dial distribution functions g/¢’(#) and the screened binary
potentials, Eq. (2.16), as

H,j (r)= W(r)+kBT1n[g,] (] . (3.10)

These are the crucial quantities in the theoretical esti-
mates for enhancement factors of the nuclear reaction
rates in dense plasmas. Explicit evaluation of such a po-
tential calls for a careful analysis combining the Monte
Carlo simulations and solutions to appropriate integral
equations; these will be treated in Sec. IV.

The screening potentials have the short-range expan-
sion in power series of r2, due to Widom (1963). It has
been proved, in particular, that H;;(0) corresponds to the
increment in the excess chemical potentials for the “R”
pair before and after the reactions (Hoover and Poirer,
1962; Widom, 1963; DeWitt, Graboske, and Cooper,
1973; Jancovici, 1977). Let FE™(N|,N,) denote the ex-
cess free energy of a BIM consisting of N, ions with
charge number Z and N, ions with charge number 2Z.
The OCP screening potential at » =0 is then given by

H(0)=F3™M(N,0)—FBM(N —2,1) . (3.11)
Since in the notation of Eq. (A56)
BFEM(N  N,)=(N,+N,)fB™(T,,x;Z,2Z)
=N, fOP (T )+ N, fOF(T,,)
+(N1+N2)AfBIM r,,x;Z,2Z),
(3.12)
one finds
BH(O):: OCP fOCP(25/2F)
AfBIM T.,x;Z,2Z)|, - (3.13)

Salpeter (1954), in his ion-sphere model (e.g., Ichimaru,
1982), set

OCP —
€x

—0.9T ,
AfBM(T,,x;Z,2Z)=0,
to find
BH (0)g=1.057T . (3.14)
Jancovici (1977) then derived a formula,
BH (0);=1.05311"+2.2931I''/4#—0.55511InI"'—2.35 ,
(3.15)

on the basis of f9F(T") obtained from the OCP simula-
tion data (Hansen, 1973; Hansen, Torrie, and Vieillefosse,
1977). Recent simulation results, Egs. (A48) and (A57),
may likewise be used in Eq. (3.13) for an evaluation of
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BH (0). These evaluations compare quite favorably with
the direct Monte Carlo determination to be presented in
Sec. IV.A; degrees of agreement increase in a latest work.
This shows the importance of the departure from the
linear-mixing law, the last term in Eq. (3.13), in the cal-
culation of enhancement factors.

It is instructive further to consider the application of
Eq. (3.11) to an evaluation of SH (0) for hydrogen in met-
als. We first note that the short-range screening dis-
tances D, of the metallic electrons give rise to an addi-
tional source of excess free energy (in units of kz T,

fai=— B(Ze)? ’

2D, (3.16)

per an ion with electric charge Ze [cf. Egs. (A69) and
(A71)]. We also note that the electron-screened Coulomb
coupling parameters of hydrogen nuclei take on reduced
values [cf. Eq. (A86)],

2

r,=82 s @ . (3.17)
These result in the evaluation

BH (0)=pBH,;(0)+BH(0) , (3.18)
with

2
BH,,(0)=B2e (3.19)
'DS
BHi(ie)(O) — zfgCP( rs )_fg)XCP(25/3I-\S )
~ 9 BIM(1,,x;1,2)|, —¢ - (3.20)

ax ex

Equation (3.19) is the effect that Leggett and Baym
(1989) have considered as the difference in binding ener-
gies between an a particle and two deuterons in metals.
These effects, in fact, belong to the few-particle processes
treated in Sec. II.C and give rise to a reaction rate of Eq.
(2.27) under conditions (2.26) of the electron-screened
cold fusion. As we shall see numerically in Sec. V.E, the
expected reaction rates stay below the exact upper
bounds set by these authors.

Equation (3.20) represents the internuclear many-body
processes, derived through Eq. (3.10), leading to further
enhancement of the reaction rates by an approximate fac-
tor of exp[BH\(0)]. Since the force fields of deuterons
are screened rather strongly by metallic electrons, and
effective coupling constants, Eq. (3.17), take on substan-
tially reduced values. For calculations of possible nu-
clear reaction rates in metal hydrides, however, Eq. (3.20)
is not applicable directly, since it has not taken into ac-
count the inhomogeneous lattice fields produced by metal
atoms. Monte Carlo analyses of correlations between
deuterons in such a lattice field were carried out
(Ichimaru, Ogata, and Nakano, 1990) and have shown
the possibility of substantial enhancement in the reaction
rates due to the many-particle processes (cf. Sec. V.E).
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IV. CORRELATION FUNCTIONS
AND ENHANCEMENT FACTORS

A. Classical one-component-plasma

1. Monte Carlo screening potentials

Interparticle correlations in strongly coupled plasmas
have been studied using Monte Carlo (MC) simulation
methods (Metropolis et al., 1953; James, 1980). The ra-
dial distribution function? g (r) represents the probability
density of finding another particle at a distance r away
from a given particle, normalized so that it approaches
unity as #— oo. These functions have been sampled ac-
curately by the MC methods. Figure 1 plots the MC
data of the OCP radial distribution functions at various
values of " (Iyetomi, Ogata, and Ichimaru, 1992a). The
radial distribution functions obtained in Fig. 1 clearly ex-
hibits the effects of strong Coulombic repulsion at short
distances, creating the excluded Coulomb holes around
given nuclei. Physically, these Coulomb holes and the
ion-sphere models (Salpeter, 1954) are similar in content
and represent the consequences of internuclear correla-
tions without participation of electron screening.

The screening potentials may then be sampled through
the relation (DeWitt, Graboske, and Cooper, 1973; Itoh,
Totsuji, and Ichimaru, 1977)

_ (Ze)?
r

H(r)

+kpTIn[g(r)] . 4.1)
Examples of recent sampling (Ogata, Iyetomi, and
Ichimaru, 1991) are exhibited in Figs. 2 and 3. The
screening potentials cannot be derived directly from MC
simulation data in the short distances, however, since the
strong Coulomb repulsion makes it impossible to sample
g(r) at r=0. One therefore studies the short-range
values of H (r) by a different method.

It has been proved (Widom, 1963) that H(r) has a
short-range expansion in a power series of 7 /a as

2
_+_h(2)

4

L + L (42)

r

BH (r)=h©—hV

The coefficient 4!’ is known to take on a value

p=1

4
in a OCP (Jancovici, 1977).

The coefficient # ‘% is related to a mean-square value of
the microscopic forces acting on a given test particle with
charge 2Ze (Widom, 1963; Ogata, Iyetomi, and
Ichimaru, 1991). Let ®(r) be the Coulomb potential (in

(4.3)

2Here and hereafter, the radial distribution functions are con-
sidered only in the classical evaluations; the superscript (¢) will
thus be omitted.
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FIG. 1. Radial distribution functions of OCP fluids obtained by
MC simulations with N =1024 at various values of I". The
number of MC configurations generated for each run was
7X10% g(r) was calculated with 200 bins in the range
O0<r<L/2, half of the cubic MC cell with size L =16.2a.
From Iyetomi, Ogata, and Ichimaru (1992).

units of kz7T) acting on that test particle at r from all
other N particles forming the OCP with charge Ze. The
coefficient /'’ is then calculated in the ensemble of MC-
generated configurations as

h<2>:a_4< de |'_
384

dr,
where r; represents one of the Cartesian components of
r, with the statistical average - -+ ) carried out over
2.5X 10° configurations in the MC sequences. The values
of #? so calculated in accordance with Eq. (4.4) are tab-
ulated in Table II. For confirmation on the accuracy of
the MC averaging, a quantity

=3 (|42 >
2 ’

dr,
which should be exactly unity for a OCP, is likewise com-
puted and listed in Table II. Within the accuracy of the
j

2 2 2
zd_ﬂ - e

dr? 327

A;—B?—1x? for x <2B,,
BH(r) _ | .
r A,—Bx +~;exp(C1\/x —D,), for 2B,

Here x =r /a, and the fitting parameters are given by

A4,=1.356—0.0213InT", B,=0.456—0.013InT" ,
4.7)
C,;=9.29+0.79InT", D,=14.83+1.311nT .

In Figs. 2 and 3, comparison is made between the MC
values and the fitting formula (4.6); agreement is excel-
lent.

It should be noted that 4,, B;, C;, and D, for OCP
fluids contain dependence on InI". These, together with
departures of Eq. (4.6) from linearity in the intermediate
regime (2B, <x <2), are the features unknown in the
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FIG. 2. Screening potential of OCP fluid at I'=10, with the
number of MC particles, N =432, and the number of MC
configurations generated, 2.5X10%. The maximum extent of
uncertainties in the MC sampling points is 10* unless explicit-
ly shown by vertical bars. From Ogata, Iyetomi, and Ichimaru
(1991).

MC sampling, one thus concludes that

h? /T ~0.0010.01; (4.5)

the computed values, smaller in magnitude than the ex-
tent of errors, are far smaller than 4. We remark that
Eq. (4.5) is the result of first-principles calculations; the
recent choice of #‘?'/I"'=0.03 made by Rosenfeld (1992)
is irrelevant.

The evaluations in Egs. (4.3) and (4.5) enable one to ex-
trapolate the MC data on BH (r) accurately toward r =0.
Combining these short-range analyses with the MC sam-
pling of BH (r) in the intermediate distances, Ogata, Iye-
tomi, and Ichimaru (1991) have derived a parametrized
equation for the screening potential in a strongly coupled
OCP fluid (5 <T" = 180):

4.6

<x<2.

[
earlier analyses (DeWitt, Graboske, and Cooper, 1973;
Itoh, Totsuji, and Ichimaru, 1977) and constitute new
findings in these elaborate MC analyses.

Finally, combining Eqgs. (4.6) and (4.7), one obtains MC

TABLE II. Monte Carlo values of #*) and I.

r h(2) I

10 0.0060.088 0.989+0.000 98
40 —1.2x1.4 0.9921+0.000 17
80 —5.3+5.4 0.9910=+0.000 089
160 10.1+21.3 1.0077+0.000 069
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FIG. 3. Screening potential of OCP fluid at I'=160, with the
number of MC particles, N =432, and the number of MC
configurations generated, 1.0X10%. The maximum extent of
uncertainties in the MC sampling points is 10~ unless explicit-
ly shown by vertical bars. From Ogata, Iyetomi, and Ichimaru
(1991).

values of the screening potential at zero separation as
BH (0)=1.148T —0.009 44T InT"—0.000 168" (InT")? .
(4.8)

In light of Eq. (4.5), estimated errors in these evaluations
are on the order of 0.1%.

2. Bridge functions

Correlation functions in classical fluids may be studied
through the methods of integral equations (e.g., Hansen
and McDonald, 1986). In a theoretical treatment of
dense OCP fluids, the hypernetted-chain (HNC) scheme
(van Leeuwen, Groeneveld, and De Boer, 1959; Morita,
1960) provides an accurate description of interparticle
correlations and thermodynamic functions (Ichimaru,
Iyetomi, and Tanaka, 1987). The HNC approximation
ignores the bridge functions and the contributions arising
from the bridge diagrams, in the logarithm of the radial
distribution function, that is, the potential of mean force
(Hansen and McDonald, 1986). The HNC scheme is
good at portraying long-range correlations in a Coulom-
bic system, while the bridge functions account for strong
correlations at short distances.

Bridge functions are collections of closely connected
Mayer diagrams (Hansen and McDonald, 1986). Rosen-
feld and Ashcroft (1979) assumed that the bridge func-
tions as such would not depend on details of the potential
and thus should have a nearly universal functional form.
The bridge functions of the OCP were thereby replaced
by those of hard-sphere systems, which were short
ranged and stayed negative (repulsive) over the whole
range of interparticle separations. The bridge functions
for the OCP, a system with a softest interparticle poten-
tial, thus provide a crucial test for such a universality hy-
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pothesis. Breakdown of the universality ansatz in the vi-
cinity of the first peak of the radial distribution function
g (r) was earlier demonstrated through a calculation of
the lowest-order bridge diagrams in the OCP (Iyetomi
and Ichimaru, 1983). Evaluation of the bridge functions
therefore plays an essential part in any attempt to im-
prove on the HNC scheme, and thereby provides an ac-
curate description of short-range correlations essential
for the rates of nuclear reactions.
The radial distribution functions of the classical OCP
fluids are formulated as (Hansen and McDonald, 1986)
(Ze)?

g(r)=exp | ————+h(r)—c(r)+B(r)| .

4.9
kgTr “.9)

Here c (7) is the direct correlation function, related to the
total correlation function

h(r)=g(r)—1 (4.10)
" through the Ornstein-Zernike relation,
h(n=c(r)+n [drc(t—r'Dh () . (4.11)

The B(r) in Eq. (4.9) is the bridge function representing
all the bridge-diagram contributions. Physical contents
of B(r) have been elucidated in terms of correlation for-
malisms based on the density-functional theory (Iyetomi
and Ichimaru, 1983; Ichimaru, Iyetomi, and Tanaka,
1987).

Equation (4.9), coupled with Eq. (4.1), constitutes a
basic set of equations for the correlation functions in the
theory of liquid structures. One of the closure schemes
for these sets of equations, the HNC approximation,
adopts

B(r)=0 (4.12)

in Eq. (4.9). The HNC scheme provides an accurate
description for an OCP with I" <5.

In a strongly coupled plasma, where the enhancement
of nuclear reaction rates by many-particle processes is
significant, the bridge functions need to be appropriately
taken into account for the analysis of interparticle corre-
lations. One can use the set of relations, Egs. (4.9) and
(4.11), for a rigorous determination of B(r) once g(r) is
known by some means. To achieve this end, Iyetomi,
Ogata, and Ichimaru (1992) have carried out MC simula-
tions for g (7) in the OCP fluids at four levels of Coulomb
coupling: I"=10, 40, 80, and 160. The number of parti-
cles confined in the cubic MC cell of size L was N =1024,
so that L =16.2a. The long-range nature of the
Coulomb potential has been accounted for through a
combination of the periodic boundary conditions with
the Ewald sum technique. For each run, 7X10°
configurations were generated and g (#) was sampled with
200 bins in the range of 0 <r < 1L.

The bridge functions are related to the screening po-
tentials via

B(r)=BH(r)—h(r)+c(r). (4.13)
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The MC simulation data alone are not sufficient to deter-
mine B (r) over the entire regime of interparticle separa-
tions, however, because of the finiteness in MC-cell size
and strong repulsion at short distances. Issues of ‘“‘ex-
tracting” the bridge functions therefore ensue (Poll, Ash-
croft, and DeWitt, 1988).

Such an issue has been given a solution in a complete
form by Iyetomi, Ogata, and Ichimaru (1992). Extrapo-
lation to short ranges has been achieved by the Widom
expansion, Eq. (4.2). In the long ranges, these authors
noted the compressibility sum rule for the Fourier trans-
form ¢(k) of the direct correlation function (Ichimaru,
Iyetomi, and Tanaka, 1987), i.e.,

47e’B
k 2

Ko

lim |¢c(k)+ (4.14)
k—0

:_l_
n

Kr

Here « and k, are the isothermal compressibility [cf. Eq.
(A43)] and its ideal-gas value (=f/n) of the OCP.

The bridge functions so extracted have been expressed
in an analytic formula as

Blir) =(—by+c;x*+ecyx+cyx¥exp ——%:)—xz ,
(4.15)
with the parameters
b0=0.258—0.06121nF+O.0123(lnF)2—% ,
b,;=0.0269+0.0318 InT"+0.008 14(InT")? ,
¢,=0.498—0.2801nT" +0.0294(InT")? , (4.16)

¢,=—0.412+0.219In['—0.002 51(InT")? ,
¢3=0.0988—0.0534 InT"+0.006 82(InT")? .

The accuracy of Eq. (4.15) is confined nearly within the
computational errors inherent in the MC simulations
over the entire regime of the interparticle separations in
the parametric domain 5 <T" =< 180.

3. Improved hypernetted-chain schemes

Once the bridge functions have been evaluated, they
can be used for improvement of the HNC scheme. The
analytic formula (4.15) with Egs. (4.16), substituted for
B(r) in Eq. (4.9), completes the set of equations leading
to such an improvement of the HNC approximation.
Since all the parameters in the bridge functions have been
predetermined, the numerical complexity in a solution to
the improved HNC (IHNC) scheme will not exceed that
in the original HNC scheme.

The validity and accuracy of the IHNC scheme have
been confirmed through various points of examination:
the correlation functions, the thermodynamic functions,
and the compressibility sum rule (Iyetomi, Ogata, and
Ichimaru, 1992). Figure 4 shows that the screening po-
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FIG. 4. Screening potential H(r) for an OCP at T =160. The
solid curve represents Eq. (4.6); the dots represent IHNC values
and the crosses represent the MC values. From Iyetomi, Ogata,
and Ichimaru (1992).

tential with the IHNC scheme excellently reproduces the
MC and Widom-expansion values.

4. Enhancement factors

Let us proceed to consider the enhancement factor,
Eq. (3.8), of thermonuclear reaction rates in a strongly
coupled OCP. The path-integral average has been car-
ried out as usual with the classical trajectories, where the
WKB approximation is applicable for a solution to the
Schrodinger equation (Salpeter and Van Horn, 1969;
Itoh, Totsuji, and Ichimaru, 1977). Alastuey and Jancov-
ici (1978) developed a perturbation-theoretic method by
which quantum corrections beyond the WKB approxi-
mation could be evaluated.

With the screening potential given by Eq. (4.6), Ogata,
Iyetomi, and Ichimaru (1991) were able to calculate the
path-integral averages in Eq. (3.8) through an exact nu-
merical solution to Eq. (2.7) with cusp condition (2.10).
Over 120 parametric combinations between E and I', Eq.
(2.7) with W,;(r)=(Ze)*/r and that with

2
W, (r)=-Ze)S _
r

ij H(r),

(4.17)

have been solved numerically for the contact probabili-
ties. The results are parametrized in an analytic formula,
which is then subjected to a thermal average with respect
to E over the Boltzmann distribution. The enhancement
factor so calculated is expressed as

A =exp(Q),

where

(4.18)
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2
Q=c0r—§55r 1+(C1+C21n1“)£
+c, |2 4.19)

with

Co=1.148—0.009 44 InT" —0.000 168(InT")? ,

C,=1.1858 ,

(4.20)
C,=—0.2472 ,

C,=—0.07009 ,

and 7 given by Eq. (2.13) with i =j. This fit is applicable
for 5<I" =180 and 3T" /7 <2. Maximum departure of the
fitted values from the computed values does not exceed
unity.

The first term Cy,I' of Eq. (4.19) corresponds to the
classical contribution, Eq. (4.8). With the lowest-order
quantum corrections taken into account, one finds

2
Qlig=BH(0)— 2T : @.21)

3r

an equation first derived by Jancovici (1977).

B. Classical binary-ionic-mixture fluids

1. Monte Carlo screening potentials

We consider a classical BIM fluid [cf. Eq. (1.12)] with

Ay<l, (4.22)

characterized by the parameters of Appendix A.4. Inter-
particle correlations in such a BIM fluid has been studied
using MC simulation methods (Ichimaru, Iyetomi, and
Ogata, 1988; Ogata, Iyetomi, and Ichimaru, 1991; Ogata
et al., 1993).

Figures 5 and 6 show examples of the radial distribu-
tion functions g;;(r) sampled in dense BIMs. The MC
screening potentials defined as

Z.

,Zje2
H-~(r)=f+kBTln[gij(r)]

i

(4.23)
are likewise exhibited in Figs. 7 and 8.
2. lon-sphere scaling

As in the cases of dense OCP fluids, the functional
form of the screening potential can be accurately deter-
mined through a combined analysis between the MC
sampling at intermediate distances (0.4 <r/a;; <2) and
the short-range Widom (1963) expansion as (Ogata, Iye-
tomi, and Ichimaru, 1991)

E{II?—(—— h 2 for x < —;—% s
H,; (r ij ij
B F ’ 1 1 B (4.24)
ij A;—Byx +;exp(Cij\/x —D;;), for 37‘]— <x<2.
[
Here x =r/a;;, and (Z13+Z173)3
5 hy=———— (4.26)
BH (0) — 4 1 Bj 4.25) J 16(Z;+2Z;)
i 4 : . .
T, ij 4 hy The values of the fitting parameters are listed in Table III
3 I 2,
2 151
= | - I
o> = 1r
1+ 2 N
i 05
O L : | R
0 %
r/a r/a
FIG. 5. Radial distribution functions g;;(#) in BIM with Z, =6, FIG. 6. Radial distribution functions g;(#) in BIM with Z, =1,
Z,=8, x=0.5, and TI';=163.5; a=(Z)"%a, with Z,=3, x=0.1, and TI;=20; a=(Z)"%a, with
(Z)=(1—x)Z,+xZ,. The number of MC particles is (Z)=(1—x)Z,+xZ,. The number of MC nparticles is

N =1024, and the number of MC configurations generated is
7X10°. (a) g;1(7), (b) g12(7), and (c) gy, (7).
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N =1000, and the number of MC configurations generated is
7X 105, (a) g;,(7), (b) g12(r), and (c) g4, (7).
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FIG. 7. Screening potentials H;;(#) in BIM under the same con-
ditions as those in Fig. 5. The open circles are MC sampling
values; the solid curve, fitting formula (4.24).

as the “Fluid” case.

Since the interparticle distances r in Eq. (4.24) are
scaled by a;; of Eq. (1.11), the dense BIM fluids are said
to obey the constant electron-density, ion-sphere scaling
(Salpeter, 1954; Itoh et al., 1979). Parametrized values
of Eq. (4.24) are also exhibited and compared with the
MC values in Figs. 7 and 8. The ion-sphere scaling ap-
pears to hold reasonably well. Effects of small but non-
negligible deviations from such an ion-sphere scaling on
reaction rates have been considered by Ogata et al.
(1992).

3. Enhancement factors

Enhancement factors 4;; for the rates of nuclear reac-
tions between i and j are then calculated from the screen-
ing potentials, Eq. (4.24), in accordance with Eq. (3.8).
Setting

A;=exp(Qy;) , (4.27)
2
- 5 30,
Qij‘ﬁHij(O)—?z‘Fij ™
ry;
X 1+(1.1858——O.24721nI‘,-j)—
Tij
3Ty, |
—0.07009 | —— . (4.28)
Tij
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FIG. 8. Screening potentials H;;(r) in BIM under the same con-
ditions as those in Fig. 6. The open circles are MC sampling
values; the solid curve, fitting formula (4.24).

C. Electron-screened one-component-plasma
and binary-ionic-mixture fluids

1. Screening potentials

The short-range screening effects of relativistic degen-
erate electrons, appropriate to WD and neutron star inte-
riors, on Coulomb repulsion between the reacting nuclei
were elucidated by Ichimaru and Utsumi (1983) with the
aid of the relativistic free-electron polarizabilities (Jan-
covici, 1962) and the local-field corrections of the degen-
erate electrons (Ichimaru and Utsumi, 1981). It has been
shown that the kinematic effects of relativistic degenerate
electrons (e.g., Landau and Lifshitz, 1969; see also Ap-
pendix A.1) soften the electrons against compression and
thus act to enhance the screening and thereby the rates of
nuclear reactions. Salient results of these analyses are
summarized in Appendix A.6.

To supplement such an analytic calculation, Ichimaru
and Ogata (1991) conducted a MC simulation study of
the screening potential for carbon matter at p,, =2 X 10°
g/cm’ and T =108 K, assuming that the interparticle po-
tential was given by

(Ze)?

Ws(r)=——r—exp z

D,
with Z =6 and D, /a =3.2, as in Eq. (A74). The screen-
ing potential H'®(r) defined in Eq. (3.10) has been sam-
pled over 5X 10® MC configurations generated with 500
particles in the periodic boundary conditions; the result
is plotted in Fig. 9.

The MC data are then fitted with analytic formulas as

) (4.29)

TABLE III. Parameters in the BIM screening potentials.

Case

Ay

By

Cy

D,

Fluid

Solid
(C-O
(C-0)
(0-0)

1.356—0.0213InT";;

1.83—0.035V'x
1.166
1.183

0.456—0.1301nT';;

9.29+0.79InT;

14.83+1.31InT;

0.350—0.015V'x 13.2—10.2vVx 22.1—14.4V'x
0.340 13.2 _ 22.5 .
0.350 34.0—20.8V'x 51.3—29.2V'x
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H'“(r) _ ]0.8252—0.2312(r/a)?, for r/a <0.8427 ,

(Ze)/a

—1.048+2.071 exp[ —0.228(r /a)], for 0.8427<r/a <2 .

The expression for intermediate range, the second line of
Eq. (4.30), stems from an actual fit of the MC data as
shown in Fig. 9.

The first line, on the other hand, derives from a short-
range expansion:

2
a
D
where r;;=|r; —r; |. The statistical average in the second
term can be evaluated by the MC sampling in a test-
particle system in which the test particle “1” interacts
with other 498 [ particles via a potential 2W (r), while
the 498 | particles interact with each other through the
potential W, (r). The coefficient 0.2312 in the second
term of Eq. (4.30) has been obtained through an evalua-
tion of the statistical average in Eq. (4.31) over 3X10°
MC configurations generated in such a system. With this
coefficient determined, the first term of Eq. (4.31), 0.8252,
stems from a smooth extrapolation towards the short-
range domain. Parenthetically, the OCP value of the
coefficient in the quadratic term of Eq. (4.31) has been
known identically to be 0.25 [cf. Eq. (4.3)], which can be
confirmed by such a MC method as well.

In the absence of electron screening, Eq. (4.8) yields

H(0)/[(Ze)?/a]=1.110 for the carbon OCP under con-
sideration. Hence one has

(Ze)?

H(e) — H(e) _
(r) (0) a

s
2

,
! . (431

D,

7

a

><<E —a—exp

=1 Tu

2
H(O)—H(e’(0)=0.285% .

On the other hand, an application of Salpeter’s ion-
sphere model, Eq. (3.14), in Eq. (3.20) yields

n

0 05 1.0 15 20

r/a

FIG. 9. Screening potential in a carbon matter with the
electron-screened potential Eq. (4.29) and D;/a =3.2. The
maximum extent of uncertainties in the MC sampling points is
1073, unless explicitly shown by vertical bars. From Ichimaru
and Ogata (1991).
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(4.30)
[
H90)=1.057 | 1—exp | — -2 | | {Z&)
H(0)—H'(0)=1.057 |1—exp D, .
2
:0.284————(25) , (4.32)

a value in good agreement with the MC value.

2. Enhancement factors

The screening by electrons acts in two ways to
influence the rates of nuclear reactions. First, as we have
considered in detail in Sec. II.C and revisited briefly in
Egs. (3.16) and (3.19), the binary repulsive potentials be-
tween reacting nuclei are reduced by electrons, resulting
in an enhancement of the reaction rates; these are the
short-range screening effects (Ichimaru and Utsumi,
1983). The reduction in particle interactions by the
screening, in turn, affects the many-body correlation pro-
cesses and generally acts to lower the values of resultant
enhancement factors, as compared with those in many-
body processes without electron screening, as Eq. (4.32)
illustrates. These long-range effects of electron screening
(Ichimaru and Utsumi, 1984; Ichimaru and Ogata, 1991)
therefore counteract the gain obtained in the short-range
processes. Thus the net gain due to electron screening
may not be as large as the direct-screening calculations in
Sec. II.C might imply.

For generality, we present a calculation of the extra
enhancement factors in dense BIM fluids arising from
electron screening; transfer of the result to the electron-
screened OCP cases is straightforward. In such a calcu-
lation, one can assume that the electron-screening effect,
though finite and thus non-negligible, may be treated as a
weak perturbation; hence the WKB approximation may
be applicable in the evaluation of the enhancement factor
due to the electron screening. The contact probabilities
|w;;(0)|? are then proportional to the WKB penetration
probabilities P;;( E) between reacting nuclei:

P, (E)=exp

22
____ﬁ__ifowdrv W,(r)—E } . (4.33)
Here the effective potential of scattering is

I'V,-j(r)=—r—exp

} —H{(r) (4.34)

D

s

with the screening potential
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(4.35)

for 0.8427 < <2 .

2
0.8252—0.2312 | | for ——<0.8427 ,
H{(r) i %y
i A
ZiZje /ai; | _1.048+2.071 exp | —0.228—
a;;

The radius of classical turning point is determined from

VVij(er):E .

(4.36)

The penetration probabilities Pl-(je)( T) at temperature T
with inclusion of the electron screening are consequently
evaluated through thermal averages of Eq. (4.33) over the
Boltzmann factor; that is,

P = 2B [ 4B VE expl—BEIP,(E) . 4.37)
i v Jo P LA

aij

terms on the right-hand side of Eq. (4.34), i.e., un-
screened BIM cases. The enhancement factors due to the
electron screening are thus defined and calculated as

PP(T)
Al =exp(Qff)=—=

= = (4.38)
) (0)
P;7(T)

In order to derive a parametrized expression for the
enhancement factors (4.38), Ichimaru and Ogata (1991)
have carried out the relevant WKB integrations (4.37) for
12 cases of the combination a,{Z )!/*/D,=0.2, 0.4, and
0.6 and 3T";; /7;;=0.5, 1.0, 1.5, and 2.0, where

Analogously, we define the penetration probabilities ZV=(1—x)Z+ +xZ 43
P{P(T) without electron screening, which may be ob- (Z)=0=2)Z,+xZ, . *.39)
tained by ignoring the electron-screening effects in both The result takes the form
J
a D a;; r,; 3T
QF'=(Z ) —11-1.057— |1—exp |~ I';+ |0.342—0.354exp | —0.228— | |T,;,—
D, a;j s Tij Tij
2 2.923 1.897
3 13 %e 3Ty 139 3ry;
—=1(Z — | Ty +0.091 |{(Z e r;|—= 4.40
: [< P p | T (z) v |7 (4.40)

The enhancement factor (4.38) thus increases rather
steeply with {(Z ) and the mass densities. Enhancement
of nuclear reactions due to the electron screening be-
comes significant in high-Z materials such as carbon and
oxygen at high densities near ignition.

For the nuclear reactions in plasmas with modest den-
sities, such as those in SI, ICF, and possibly BD, one
finds I" <1 and ® > 0.1; both correlation effects between
the nuclei and screening effects by electrons may be
looked upon as weak. In these circumstances, the classi-
cal turning points are located far shorter than the inter-
nuclear spacings, and thus the enhancement factors are
given by Eq. (3.9).

In these weak-screening regimes, dominant effects in
the enhancement of nuclear reaction rates arise from the
screening of internuclear forces by electrons (Salpeter
and Van Horn, 1969; Ichimaru, Tanaka, and Iyetomi,
1984); hence the enhancement factors over the Gamow
rates, Eq. (2.12), are given by Eq. (2.25). A crucial prob-
lem in the evaluation of such an enhancement is the as-
sessment of the short-range screening distance D, which
enters Eq. (2.25) via Eq. (2.19). Here it has been recog-
nized (Tanaka, Yan, and Ichimaru, 1990) as essential to
account for the effects of short-range scattering in a way
that goes beyond those described by the Born approxima-
tion. The IRS, mentioned in Sec. I.D and described in
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Appendix A.7, can account for such an effect and leads
to a prediction,

Lo 4K ALK, — 4,

D. (4.41)

with the aid of Eqs. (A80)—(A85).

Enhancement factors arising further from many-body
correlations between electron-screened ions are then eval-
uated by the use of Eqgs. (4.18) and (4.19) where C,I', T,
and 3I'/7 are to be replaced by 1.057T exp(—a /D),
Texp(—a/D,), and the actual radius of the classical
turning point divided by a.

D. Crystalline solids

1. Monte Carlo lattice potentials

The body-centered-cubic (bce) crystalline structures
are known to have the lowest values in the Madelung en-
ergies of the Coulombic crystals (e.g., Mott and Jones,
1936); hence one usually assumes a bcc structure for a
dense Coulomb solid. The lattice potential Wiljf(r) of such
a bece crystalline plasma is defined as the effective poten-
tial between two particles in nearest-neighbor sites, at an
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interparticle separation r. The screening potential H,if(r)
for a Coulomb solid is then calculated in accordance with

2

Z.7Z.e
u/,§<r)=—‘7’~—11é(r) . (4.42)

ij
We remark that the major contributions to I\I/ (0)|? arise
from the s-wave scattering acts between the reactmg nu-
clei, for which the angular-averaged lattice potential in
Eq. (4.42) is valid. The factor that crucially controls such
a scattering event and the resulting contact probability is
then the effective potential between the nuclei in the
short-range domain, where the screening potential may
likewise be regarded as isotropic. The use of angular-
averaged potentials therefore constitutes an accurate ap-
proximation in the treatment of nuclear reactions in
solids.

These potentials can be analyzed through MC sam-
pling methods in a way analogous to the fluid cases.
Here one deals with the joint probability densities be-
tween those pairs of particles located in the nearest-
neighbor sites of the bcc lattice (Ichimaru and Ogata,
1990; Ogata, Iyetomi, and Ichimaru, 1990, 1991), since
only those can, in fact, constitute the reacting pairs. Fig-
ure 10 illustrates such a screening potential for an OCP
solid at I'=200. Extrapolation into the short-range
domain is executed analogously with the aid of Eq. (4.2).

Salpeter and Van Horn (1969), on the other hand, ad-
vanced the following model calculation of the lattice po-
tential: One picks a pair of nearest-neighbor particles in
a bece crystal (with the lattice constant b and the nearest-
neighbor distance d), and then calculates the electrostatic
energy as a function of the interparticle separation » with
the center of mass fixed. In their fully relaxed approxi-
mation, these authors subsequently adjusted the resultant
screening potential near » =0 in accordance with the
ion-sphere model of Salpeter (1954). The screening po-
tential for a OCP solid obtained in such a relaxed lattice

]
BH;;(0) B
——L———hisz for x = <12 ,
BH(r) Ly 2 hy
Ly a 1 o 1 Bz]
Y A’]—Bl.]x +;exp(cu\/x _DU) for E—
Here x =r /a;;, and
BH;(0) (0) 1 B,%
i 4.44
rij ij 4 hij ( a)
_(z}7P+z]7)

= 4.44b
Y 16(Z;+2Z;) ( )
The values of Ay, By, Cyj, and Dy; are listed in Table III
for C-O bcec crystals. The cases of an OCP solid can be
recovered with these formulas in the OCP limit of either

x=0or x =1.
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(Ze)Fa .
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Solid (r=200) |

0.8

[ — Fitting
0.6 - SVH
L * MC
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FIG. 10. Screening potential between pairs of the first nearest-
neighbor particles for a OCP solid at I'=200. The maximum
extent of uncertainties in the MC sampling points is 1074, un-
less explicitly shown by vertical bars. SVH refers to Eq. (4.43);
Fitting, Eq. (4.44). From Ogata, Iyetomi, and Ichimaru (1991).

model was expressed as

HSVH( r)

= 1.1547+1.1602(1—y)—1.0394(1—p)?
(Ze)* /b y y

+2.5690(1—y)*—1.6971(1—y)* (4.43)

where y =r /d. This potential is also exhibited in Fig. 10
for comparison with the MC values; a reasonable similar-
ity is observed between the two potentials.

The carbon-oxygen (C-O) BIM screening potentials, an
important case for the supernova study and determined
through those MC and extrapolation procedures, are ex-
pressed in parametrized forms as (Ogata, Iyetomi, and
Ichimaru, 1991)

(4.44)

It should be remarked that the short-range screening
potentials, Eq. (4.44), between C-C are here found to de-
pend on x, the molar fraction of oxygen. As x increases,
the screening potential is therefore predicted to decrease
in the short ranges, implying a blocking effect of oxygen
against the pycnonuclear reactions of carbon, to be treat-
ed in the mnext section. Analogous composition-
dependent effects in the short-range screening potentials
between C-O and between O-O, however, have not been
found, to the extent and accuracy of the simulation study
thus far carried out (Ogata et al., 1993).
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2. Pycnonuclear reaction rates in C-O solids

For nuclear reactions in C-O BIM solids, one can show
(Ogata, Iyetomi, and Ichimaru, 1991) that a condition for
pycnonuclear reactions,

Y>1,

is satisfied either for carbon or for oxygen. The nuclei
forming quantum solids are thus in the ground state at
their equilibrium lattice sites, performing zero-point vi-
brations. The principal problem then is the evaluation of
contact probabilities I‘I’ij(O)l2 for the reaction rates in
such a quantum solid.

This problem is approached through a solution to Eq.
(2.7) in which Eq. (4.42) is substituted for W;;(r) (Ogata,
Iyetomi, and Ichimaru, 1991). Thus E in Eq. (2.7) corre-
sponds to the ground-state energy of a particle trapped
around the potential minimum of W}(r) at r,, =1.76a;.
Equation (2.7) has been solved by numerical integration
starting from r ~0 to r =2a;;, with the boundary condi-
tions (a) “cusp” Eq. (2.10), and (b) a self-consistent
ground state, where W;;(7) take on maxima at r,, with the
values E equal to the expectation values of
—(#/2p,)d*/dr’+Wi(r) over the volume Q. The
solution is therefore exact without resorting to the con-
ventional WKB approximation.

The contact probabilities I‘I/,-j-(0)|2 are thus computed
in 45 cases for the combinations of C-C, C-O, and O-O in
BIM solids over the range of mass densities,
(2X10%)-10'"! g/cm?. The results are then parametrized
in analytic formulas as functions of the molar fraction x
of oxygen with fitting errors in In[¥,;(0)] less than 6%.
Finally, the pycnonuclear reaction rates in the C-O BIM
solids are obtained from Eq. (2.1) as

Kpg K, +K,Vx
PYC —1y—
R;™ (s7)= 15 S*P —T
ij
—K;—K,Vx (4.45a)

Here py means the mass density in units of 10® g/cm?; the
parameters «, K, K, K,, K3, and K, are listed in Table
IV. In the determination of K, the values of the cross-
section parameters (Fowler, Caughlan, and Zimmerman,
1967, 1975) Soc=8.83X10', S o=1.15X10%, and

S00=2.31X10%, in units of MeV b, have been used.
The blocking effects of oxygen on the pycnonuclear reac-
tions enter through the x dependence represented by the
coefficients K, and K,; these do not vanish with C-C re-
actions. The reaction rates (4.45a), independent of tem-
peratures, increase steeply with the mass density.

The pycnonuclear reaction rates in OCP solids were
calculated by Salpeter and Van Horn (1969) in the WKB
approximation. With the relaxed-lattice model potential
of Eq. (4.43), their carbon-reaction rates read

263.3

RSVH (s71)=1.11X10%p7"2exp AV
8

(4.45b)

Numerical agreement between Egs. (4.45a) and (4.45b)
appears almost perfect, despite differences in the screen-
ing potentials (cf. Fig. 10) and in the ways the
Schrodinger equation was solved.

Recently, Schramm and Koonin (1990) revisited the
Salpeter—Van Horn calculations of pycnonuclear fusion
rates and attempted to improve these calculations by tak-
ing additional account of what they called the dynamic
polarization effects of the surrounding lattice. For the
reason mentioned in the last paragraph of Sec. IL.A, it is
irrelevant to evoke an additional account of such a dy-
namic process in the calculation of the reaction rates.

3. Pycnonuclear reaction rates
in binary-ionic-mixture solids

In a BIM solid, the distance between two neighboring
nuclei—which are the only ones capable of participating
in pycnonuclear reactions—is approximately equal to the
sum of the ion-sphere radii of the two nuclei, 7,, ~a; +a;.

To examine the accuracy of this ion-sphere scaling,
Ogata et al. (1993) have performed a series of MC sam-
plings for the joint probabilities g;;(7) between i and j nu-
clei in ground-state BIM solids for 20 different cases, with
combinations of the parameter values x =2, 1, 4, 2 and
Z; /Z;=R;=4%,3,2,3,4. Generally, in BIM solids, the
ground-state configurations deviate significantly from the
simple periodic bcc lattice structure, mainly because
aﬁ&aj for Z,-?&Zj. In fact, for R; = 3, it has been ob-
served that ground states are characterized more ap-
propriately as aperiodic glassy solids. Under these cir-

TABLE IV. Parameters in Eq. (4.45a) for the pycnonuclear reaction rates.

Parameter C-C Cc-0 0-0
1—x Vx(1—x) x
. e 1.11X 103 ———== 1.42 X104

a 0.397 0.421 0.455
K, 257.486 327.132 414.706
K, 2.636

K, —15.114 —15.940 —16.192
K, —0.560
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cumstances, the exact MC nearest-neighbor separation
7,;; May be determined from the observed peak position
of g;;(7); the results are then expressed as the sum of the

ion-sphere-scaling  contribution and a deviation
therefrom:
i = 1.76a,-j+Arm,,~j . (4.46)

The deviations Ar,, ;;, characterizing the extra distor-
tions in the particle configurations due to the charge
disparities in the BIM solids, have been measured in the
MC data; the results can be summarized in the following
parametrized forms as functions of molar fraction of x of
the j species for 0<x <1and 1R, <4.5:

rm’u_ (Rz—l)(2.3'~'Rz) 1.3
=0.44 ; x13, (4.472)

apy VA
Ar R,—1

. =—o.043~‘/—~5~~1~3 , (4.47b)
ap, 1+100x ™
Ar (R;—1)(2.3—Ry)

22— 01T ——— 21— . @4Tc)
axn Rz

A number of observations are in order concerning
these results: (1) The corrections to the ion-sphere scal-
ing are small but non-negligible. (2) For the relative
magnitudes of the deviations, one has
[A7,, 11| > A7y, 0| >> A7, o] (3) Ar,,, and Ar,, 5, are
opposite in sign. (4) Ar,, |, is positive for Rz <2.3, corre-
sponding to the “blocking effect”” of nuclear reactions
discovered for C-O solids. When R, is not excessively
large, the phase-space reduction effect of the heavier (i.e.,
higher-Z) nuclei is likewise small; these heavier nuclei
simply act as obstacles for reactions between the lighter
(i.e., lower-Z) nuclei. (5) For R;>2.3, on the other
hand, Ar,, ;; takes on negative values, implying enhance-
ment in the pycnonuclear rates for the lighter species.
This enhancement stems from a “catalyzing action” of
the heavier elements, which reduces the effective volume
available to the lower-Z nuclei, thus reducing the inter-
nuclear separations. This catalyzing action is a new
feature discovered in these MC simulation studies of
BIM solids.

The pycnonuclear rates of the previous section are now
generalized to cover various combinations of nuclear
species in BIM solids (Ichimaru, Ogata, and Van Horn,
1992); the reaction rates per cm’ per second are ex-

pressed as
Ri= 1.314—?81--032 2?(2 ZA)J.Z) SuP
ij i\lA; 4
X A 3%exp(—2.460A; %) , (4.48)
where
A'ij=<%)l/2_ri;—_ , (4.49)

m,ij

S;; are the cross-section factors (in MeV barns) for the

Rev. Mod. Phys., Vol. 65, No. 2, April 1993

BIM, p,, is the mass density, and A; and X, are the mass
number and mass fraction of the i species.

E. Hydrogen in metal hydrides

1. Monte Carlo simulations in metallic lattices

Observation of nuclear fusion reactions between
itinerant hydrogen in metal hydrides (MH, ) claimed in
recent experiments (e.g., Jones et al., 1989) has created a
challenge to condensed-matter physics, calling for a
theoretical account of how two hydrogen nuclei can
come to fuse by overcoming the Coulombic repulsive
forces in such a metallic environment. Other experi-
ments (e.g., Gai et al., 1989; Ziegler et al., 1989) con-
ducted under analogous settings, however, have not
shown any significant observation of nuclear reactions.
One therefore speculates that the rates of nuclear reac-
tions should depend extremely delicately on the states of
reacting pairs at short distances.

The itinerant hydrogen in metal differs from that in ei-
ther stellar interiors or the ICF plasmas in two important
aspects: Hydrogen nuclei are strongly screened by
valence electrons and by nearly localized electrons in hy-
bridized states (Alefeld and Volkl, 1978; Ichimaru,
Nakano, Ogata, Tanaka, Iyetomi, and Tajima, 1990).
The metal atoms situated at periodic or aperiodic (due to
defects) lattice sites create inhomogeneous fields which
act to trap (or to localize) the hydrogen nuclei and there-
by to alter microscopic features of the short-range corre-
lations. Owing to these influences of the screening elec-
trons and the inhomogeneous lattice fields, the hydrogen
in a metal hydride bears a dual character of itinerant and
trapped particles (Ichimaru, Ogata, and Nakano, 1990).

The lattice fields of metal atoms in which hydrogen nu-
clei “move” are constructed so that the following ob-
served features may be taken into account: In densely
hydrated phases, both Pd and Ti assume a face-centered-
cubic (fcc) structure with lattice constants d =4 and 4.4
A, respectively. In a Pd lattice (Drexel et al., 1976;
Alefeld and Vo6Ikl, 1978), hydrogen sits around the octa-
hedral (O) sites, where the potential assumes local mini-
ma with curvature ®"'~1.1 eV A2 Barrier height be-
tween the minima, A®=~0.23 eV, is inferred from
diffusivity. The separation between nearest-neighbor O
sites is 2.8 A. In a Ti lattice (Pan and Webb, 1965; Korn
and Zamir, 1970; Alefeld and Volkl, 1978), the
tetrahedral (T) sites are the local minima with curvature
®"~5.1 eVA~2 barrier height A®~0.51 eV, and the
nearest-neighbor separation 2.2 A.

Since the heights of the potential barriers substantially
exceed the room temperatures, the bulk of the hydrogen
nuclei would be in trapped states around O or T sites. As
finiteness of diffusivity implies, a small fraction of the hy-
drogen remains in itinerant states. In a nonequilibrium
situation, this fraction may take on a larger value, ap-
proaching unity.
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FIG. 11. Equipotential contours for deuterons
in eV on the {110} plane of fcc Pd lattices.
The zero level is taken at the octahedral sites
(with dark shadow) in a periodic lattice (left);
potential in a lattice with defect is on the right.
From Ichimaru, Ogata, and Nakano (1990).

For a construction of Pd and Ti fields with the features
mentioned above, model potentials of the following equa-
tions between metal and hydrogen were proposed
(Ichimaru, Ogata, and Nakano, 1990):

22.2 eVA r
Vpyy(r)=———exp | — = s (4.50a)
Pd-H r P17 042 A
31.8 eVA r
V() =" ——
Ti-H r 0.51 A ]
10.57
,
1.095 A ]
-
Xexp | ———— . (4.50b)
0.23 A

The equipotential contours on the {110} planes of the fcc
lattices so calculated for Pd and Ti with and without
missing atoms (defects) are portrayed in Figs. 11 and 12.
As expected, a broad potential minimum appears around

a defect, which may further trap one or more hydrogen
atoms.

The model potentials ¥y y(7) of binary interaction be-
tween hydrogen in PdH and TiH, were calculated in
terms of the charge form factors derived for the s-d hy-
bridized electrons and by taking account of dielectric
screening due to the valence electrons (Ichimaru,
Nakano, Ogata, Tanaka, Iyetomi, and Tajima, 1990).
The result was expressed as a summation between the
repulsive and attractive parts,

Viun(N=Ve(N+V ,(r), @.51)
which were parametrized as
Vo= exo | = | |2 Vexp | =
R €7 P D, R p D; ’
(4.52)
e? ! r
Vv, (r)=— o Z exp _—DA l . (4.53)

FIG. 12. Same as Fig. 11, but for fcc Ti lat-
tices. The zero level is taken at the tetrahedral
sites. From Ichimaru, Ogata, and Nakano
(1990).

Ti Ti
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TABLE V. Parameters in Egs. (4.52) and (4.53) for the model
potentials describing electron-screened hydrogen-hydrogen in-
teraction in metal hydrides.

Parameter PdH TiH,
€. 1.25 1.36
D, (A) 0.19 0.28
re (A) 1.04 1.00
Dy (A) 0.18 0.17
rqe (A) 0.74 0.61
D, (A) 0.23 0.25
p 8.9 10.0
q 2.7 2.9

The adopted values (Ichimaru, Ogata, and Nakano, 1990)
for the core-electron dielectric constant €., the short-
range screening length D, and other parameters in these
formulas for PdH and TiH, are listed in Table V.
Between Egs. (4.52) and (4.53), the repulsive part Vi (r)
represents the major contribution in short ranges, where
the nuclear reactions are most effectively influenced by
interparticle correlations. The screening potential associ-
ated with such a repulsive part may then be defined as

He(r)=Vg(r)+kpTIn[gg(r)] . (4.54)

Here gy (r) refers to a joint probability density for a (ficti-
tious) system of hydrogenic nuclei interacting via Vg (r)
in the inhomogeneous lattice fields of Fig. 11 or 12.

Such a correlation function can likewise be sampled
through a MC simulation method designed appropriately
for the hydrogen-in-metal cases (Ichimaru, Ogata, and
Nakano, 1990). Periodic lattice fields for the MC simula-
tion were determined by placing 500 metal atoms at fcc
sites in a MC cell with periodic boundary conditions.
Fields with defects were produced by removing eight
metal atoms randomly so that no pairs of defects occu-
pied nearest-neighbor sites. The corresponding numbers

FIG. 13. Joint probability densities between deuterons in Pd
for the repulsive potential, Eq. (4.52). Solid circles are for the
case of the periodic lattice; open circles, a lattice with defects.
From Ichimaru, Ogata, and Nakano (1990).
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FIG. 14. Same as Fig. 13, but in Ti.
and Nakano (1990).

From Ichimaru, Ogata,

of hydrogen atoms, 500 for PdH and 1000 for TiH,, were
placed in the cell at random. A sequence of MC
configurations was then generated through the random
displacements of hydrogen positions, in the Metropolis
algorithm (Metropolis et al., 1953) with the canonical
distribution for the sum of interaction energies between
metal and hydrogen and between hydrogen atoms.
Several runs of such simulations were performed to cover
various cases of metal hydrides at temperatures of 300,
600, and 1200 K. Each run consisted typically of
(1-3) X 10* configurations per hydrogen atom to ensure
an equilibrated metastable state in the system.

The joint probability densities gz (7) were sampled in
the statistical ensemble of particle configurations generat-
ed by such a simulation. As Figs. 13 and 14 illustrate,
the lattice fields act to develop humps in gz (7) at short
distances inside the major humps corresponding to the
nearest-neighbor O or T sites. Those short-distance

FIG. 15. Repulsive screening potentials between deuterons in
Pd and their short-range fitting by the formula
A +Bexp(—Cr). Solid circles and lines are for the periodic
lattice; open circles and dashed lines are for lattice with defects.
From Ichimaru, Ogata, and Nakano (1990).
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r(A)

FIG. 16. Same as Fig. 15, but in Ti. From Ichimaru, Ogata,
and Nakano (1990).

humps are the consequences of the potential “dimples” in
the lattice fields, which induce effective attraction be-
tween hydrogen atoms in trapping sites.

Figures 15 and 16 show the values of Hy(r) resulting
from Figs. 13 and 14 via Eq. (4.54). The ““visible” short-
range parts can be fitted quite accurately by a functional
form, Hg(r)= A + B exp(— Cr), so that extrapolation of
such a fit to » =0 would yield Hz(0)= 4 +B. Table VI
lists the values of SH (0) so determined.

2. Enhancement factors

Hydrogen nuclei (protons, deuterons, or tritons) in
metals are strongly screened by metallic electrons, so that
the fundamental reaction rates are given by R in Eq.
(2.27). Enhancement factors A,-(]M) (i,j =p,d,t) over these
fundamental rates are then calculated with the screening
potentials Hy () and the short-range screening distances

TABLE VI. Values of BHz(0) determined by the Monte Carlo
sampling method for hydrogen atoms in metals. [L] means a
case with periodic lattice fields; [ D] means a case with defects.

Metal hydride T (K) BHZ(0)
PdH [L] 1200 5.8
600 12.6
300 27.1
PdH [D] 1200 4.4
600 8.7
300 11.6
TiH, [L] 1200 9.6
600 21.6
300 48.2
TiH, [D] 1200 16.6
600 38.1
300 81.5
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D, in the manner elucidated in Secs. IV.B and IV.C.
Writing thus

A =exp(QM), (4.55)
Ichimaru, Ogata, and Nakano (1990) find
2
0= BHy(0)— T 3—:2:—)
’ 30
X | 14(1.1858—0.2472 InT'{}")—7-
() )2 ’
~0.07009 | — 2 (4.56)
i
with
I{M~0.94BHg (0) , (4.57)
W =a(D;/r})"*—In[m(D, /r})?] . (4.58)

Equation (4.56) stems from Eq. (4.28), in which Eq. (4.57)
is set by the use of Salpeter’s ion-sphere model (3.14) in
Eq. (3.20); and Eq. (4.58) is derived from comparison be-
tween Egs. (2.15) and (2.28). Equations (4.57) and (4.58)
are therefore approximate evaluations for hydrogen in
metal, affecting the quantum correction terms in Eq.
(4.56).

V. RATES OF NUCLEAR FUSION REACTIONS

The analyses for the many-body enhancement factors
on reaction rates, presented in the previous sections, are
applied to an estimation of the nuclear reaction rates in
specific examples of dense astrophysical and laboratory
plasmas in this section: Astrophysical condensed plas-
mas under consideration include the solar interior (SI),
the interior of a brown dwarf (BD), the interior of a giant
planet (GP), a white-dwarf (WD) progenitor of a super-
nova, and surfaces of accreting white dwarfs and neutron
stars. Examples of the condensed plasmas in the labora-
tories are those found in the inertial confinement fusion
(ICF) experiments, in metal hydrides (MH) such as PdD
and TiD,, in cluster-impact fusion experiments, and in
ultrahigh-pressure liquid metals (PM).

A. Solar interior and inertial confinement
fusion plasmas

Cne of the proton-proton (p-p) chains consists in

H(p,e "v,)*D(p, v *He(*He, 2p)*He , 5.1
which altogether yields
4p >a+2et+2v,+26.2 (MeV) . (5.2)

The cross-section parameters S;; and the Q values, the

nuclear energy released by the reaction, are (Bahcall and
Ulrich, 1988)
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S,, =4.07X107% (keV b),

(5.3a)
Q(p—p)=1.442 (MeV),
S4p=2.5X10"* (keV b),

(5.3b)
Q(d —p)=5.494 (MeV),
Sy =5-15X10° (keV b),

(5.3¢0)

O (*He->He)=12.860 (MeV) .

The chain (5.1), starting with 'H(p,e *v,)?D, involves a 8
process and thus is extremely slow; the rate is controlled
by these slow processes.

In Table VII, two cases of fusion rates and enhance-
ment factors associated with p-p reactions in the central
parts of the SI are treated; case SI1 corresponds to condi-
tions near the center, and SI2, those at » =0.2R,. The
mass densities and temperatures are the values appropri-
ate to hydrogen. The enhancement factors A& and 4!
are calculated with Eq. (2.25) and as described in the last
paragraph of Sec. IV.C.2. The net reaction rates are thus
given by

R=4EAUR; . (5.4)

The enhancement 4! due to weak electron screening
near the center is approximately 2.2%, and that 4 due
to many-body correlations in electron-screened protons
amounts to 4.8%.

In the calculation of the local densities P of fusion
power generated by p-p reactions per unit mass (including
other elements as well) in Table VII, we have taken the
effective Q value at 13.1 MeV on account of (5.2). Those
values in the central parts exceed naturally the average
value 1.93X 1077 W/g of the solar luminosity per mass
cited earlier.

In Table VII we also list examples of calculations for
ICF plasmas. Here, reactions ¢ (d,n)*He with parameters
(Jackson, 1957)

S,;=1.7X10* (keV b),
Q(t—d)=17.6 (MeV)

(5.5)

are considered in a mixture of deuterium and tritium
with equal molar concentrations. Enhancement due to
electron screening and ion-ion correlations is negligible in
such a relatively dilute and high-temperature plasma.

B. Interiors of giant planets and brown dwarfs

For examination of the rates of p-p reactions and of
possible deuteron burning, we consider a hydrogen plas-
ma with an admixture of deuterons at a molar fraction of
3X107°. In addition to p-p and d-p reactions, two
branches, d(d,n)’He and d(d,p)t, of the d-d reactions
are analyzed with a total-cross-section parameter and an
average Q value (Krauss et al., 1987):

S;=103 (keVbarns), Q(d—d)=3.6 (MeV). (5.6)

The cases of BD and GP satisfy the conditions for weak
electron screening (2.22) (cf. Table I); calculations of
enhancement factors and reaction rates are analogous to
those in the cases of SI and ICF. Table VIII lists the re-
sults of such calculations for examples of BD and GP
plasmas.

We note that enhancement factors arising from com-
bined effects between electron screening and ion-ion
correlations in the assumed BD conditions take on a fair-
ly large magnitude of 2.4; such an enhancement should
be properly taken into account in the estimation of criti-
cal masses for hydrogen burning in the very low-mass
stars and BDs. Deuteron burning is quite efficient in
such stellar objects, with characteristic times of reaction
on the order of a few minutes; hence deuterons should
have burned away in the initial stages of stellar evolution.

Despite a substantial enhancement by 10 to 11 orders
of magnitude due to electron screening, rates of deuteron
burning in Jovian planets remain miniscule. The estimat-

TABLE VII. Reaction rates and enhancement factors in SI and ICF plasmas. Mass densities (p,,) and
temperatures (T') are those assumed for the reacting nuclei.

Case: SI1 SI2 ICF1 ICF2
Reaction: p-D p-p t-d t-d
pm (g/cm?) 56.2 24.9 30.0 2.0
T (K) 1.5x 107 9.3x10° 5.0%x107 1.0x 108
T 13.7 16.1 12.3 9.75
log,oRg (s71) —17.69 —18.93 7.40 7.13
r, 0.072 0.076 0.010 0.002
Ay 0.023 0.023 0.0049 0.0014
@ 2.23 3.21 31.8 387
D, (107° cm) 3.97 5.48 11.9 20.0
T, 0.044 0.047 0.0079 0.0014
log,0 4. 0.010 0.012 0.000 0.000
logoA4 2 0.020 0.022 0.004 0.000
logoR (s71) —17.66 —18.90 7.41 7.33
log,oP (W/g) —5.56 —6.80 19.23 18.96
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TABLE VIII. Reaction rates and enhancement factors for hydrogen plasmas in BD and GP. Mass
densities and temperatures assumed for BD cases are 10° g/cm® and 3X 10° K; those for GP cases, 5
g/cm?® and 2X 10* K. In both cases the molar fraction of deuterons is assumed to be 3 X 107>,

Case: BD1 BD2 BD3 GP1 GP2

Reaction: p-D d-p d-d d-p d-d
T 23.4 25.8 29.5 137 157
logioRg (s71) —20.20 —3.18 —4.07 —52.36 —60.25
| 0.76 0.76 0.76 19.4 19.4
Ay 0.14 0.12 0.003 0.25 0.006
® 0.010 0.010 0.010 0.023 0.023
D, (107° cm) 1.30 1.30 1.30 3.21 3.21
T, 0.43 0.43 0.00 5.07 0.00
logo4 % 0.162 0.164 0.167 10.94 11.01
logoA4 ! 0.197 0.197 0.000 2.32 0.000
log R (s71) —19.84 —2.82 —3.90 —39.10 —49.24
log,oP (W/g) —17.75 4.38 3.11 —31.91 —42.23

ed power production rates are far smaller than average
Jovian luminosity per unit mass, 2.4X 10713 W/g (Hub-
bard, 1980), and thus cannot take part in accounting for
the excess infrared luminosity.

C. White-dwarf progenitors of supernovae

1. Dense C-O mixtures

Nuclear reaction rates in dense BIMs of carbon (C)
and oxygen (O) are essential quantities governing the evo-
lution and ignition in white-dwarf progenitors of type-I
supernovae (Barkat, Wheeler, and Buchler, 1972; Gra-
boske, 1973; Couch and Arnett, 1975). Phase diagrams
associated with freezing transitions in such BIMs have
been elucidated (Barrat, Hansen, and Mochkovitch,
1988; Ichimaru, Iyetomi, and Ogata, 1988; Ogata et al.,
1993). The short-range correlations responsible for nu-
clear reactions in dense matter are influenced strongly by
such phase properties as well as by the quantum and clas-
sical many-body effects.

First-principles calculations of nuclear reaction rates
in dense C-O BIMs were performed by Ogata, Iyetomi,

and Ichimaru (1991) in the fluid phases as well as in bce
crystalline phases. In so doing, we extended the quantum
statistical treatment, developed originally by Jancovici
(1977) for OCP, to the BIM situations. Salient features
of the theory were described in Secs. IV.B and IV.D. In
Table IX, results of calculations for reaction rates and
enhancement factors are presented. The fundamental re-
action rates are given by the Gamow rates of Eq. (2.12).
The enhancement factors 4, of 23 to 39 orders of mag-
nitude are obtained by the use of Eqgs. (4.27) and (4.28).

Let us note that these high enhancement rates have
been obtained under the condition that the density distri-
butions of the electrons remain uniform and constant.
The enhancement stems solely from the many-particle
correlation effects between ionic nuclei elucidated in Sec.
I1I; electrons do not participate in the act of screening in
the derivation of A,-(]»O). It is therefore physically a misno-
mer to call those the cases of strong electron screening, as
in some of the astrophysical literature.

2. Screening by relativistic electrons

The short- and intermediate-range screening effects of
relativistic degenerate electrons on enhancement of nu-

TABLE IX. Reaction rates and enhancement factors for dense carbon-oxygen matter in WD. Mass
density and temperature are assumed to be 4X 10° g/cm® and 10® K; the molar fraction of oxygen, at

50%. The degeneracy parameter of the electrons is ®@=2.1X10"% their screening distance
D,=3.4X10"" cm.

Reaction Cc-C Cc-O 0-0
S;; (MeVb) 8.83X 10 1.15X 10%! 2.31Xx10%
Q (i —j) (MeV) 13.931 16.754 16.541
Ty 181.827 230.294 293.691
logioRg (s71) —43.35 —59.96 —81.47
ry; 56.6 71.9 91.5
Ay 0.47 0.42 0.37
I 41.4 51.7 64.7
log o4 23.49 29.95 38.34
1og10A,§e) 1.18 1.57 2.08
logioR (s71) —18.69 —28.44 —40.96
log,o,P (W/g) —8.01 —17.68 —30.31
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clear reactions have been elucidated in Sec. IV.C. Effects
of electron screening are weak. It has nonetheless been
pointed out that enhancement of nuclear reactions due to
the electron screening becomes significant in high-Z ma-
terials such as carbon and oxygen at high densities near
ignition (Ichimaru and Ogata, 1991).

The extra enhancement factors resulting from the elec-
tron screening, applicable to the WD cases, have been
formulated in Eqgs. (4.38)—(4.40). The electronic enhance-
ment factors A,&e’ computed for the WD cases of Table
IX amount to 1.2 to 2.1 orders of magnitude. The net re-
action rate is thus calculated as

R=A4Q AR . (5.7)

As an example of application for the reaction rates and
enhancement factors, we exhibit in Fig. 17 the carbon ig-
nition curves, that is, the loci of the points on the
density-temperature plane for which the 2C-'2C energy
release equals the neutrino loss, for the cases with and
without consideration of the electronic screening effects.
Following the conventional treatments (Arnett and
Truran, 1969; Nomoto, 1982a), we have assumed the rate
of such an energy release to be approximately 3X10'7
erg/g, and have used the neutrino-loss rates compiled by
Itoh et al. (1989). It is found that the WD1 case corre-
sponds to near the ignition conditions, due mainly to the
huge enhancement factors A, stemming from the
many-particle processes.

D. Helium burning— Triple a reactions

Helium burning is one of the major processes of nu-
clear reactions in stellar evolution. The triple a reactions
(Salpeter, 1952b; Hoyle, 1954) take place in three steps:

‘He+*He®Be—0.092 (MeV) , (5.8a)

9 T L T
i ro = 0.9

=
&
a0
3
750 T/To = 1.43\ s
T/Tc =1 O
7 1 7 a7 .
6 7 8 9 10

logyo pm (g/cm®)

FIG. 17. Carbon ignition curves in C-O BIM fluids with elec-
tron screening (solid curves) and without (dashed curves). T is
the freezing temperature of a carbon OCP, and x is the molar
fraction of oxygen. From Ichimaru and Ogata (1991).
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8Be+*He«>12C*—0.278 (MeV) ,
2c* 5 12047.644 (MeV) .

(5.8b)
(5.8¢)

Here '2C* denotes a '>C nucleus in its second excited
state, and the energy differences are taken from
Ajzenberg-Selove and Busch (1980) and Ajzenberg-Selove
(1984). Since the first two reactions in (5.8) are endoer-
gic, it is essential that these processes take place as reso-
nant reactions; the 3a rate becomes exponentially small
for temperatures less than about 10® K, at densities typi-
cal of normal stellar interiors (e.g., Clayton, 1968).

Helium burning is expected to be one of the major re-
action processes also in white dwarfs and on neutron
stars accreting in close binary systems (Nomoto,
Thielemann, and Miyaji, 1985). The density and temper-
ature conditions in which helium burning would occur in
compact stars may differ widely from those in normal
stars. In some cases, helium burning is so explosive as to
give rise to x-ray bursters in neutron stars (Lewin and
Joss, 1983) and to type-I supernovae in white dwarfs
(Nomoto, 1982a, 1982b).

Accumulation of helium thus eventually leads to igni-
tion of helium. The ignition conditions depend mainly
on the accretion rate (e.g., Sugimoto and Miyaji, 1981;
Nomoto, Thielemann, and Miyaji, 1985). For slower ac-
cretion, the temperature in the accreted matter is lower
because of slower compressional heating relative to radia-
tive cooling; as a result the ignition is delayed to higher
density. Cameron (1959) pointed out that the 3a reaction
at temperatures as low as T << 10® K is no longer a reso-
nant but rather a nonresonant reaction; the Gamow peak
energy [e.g., Eq. (2.14)] falls far below the threshold ener-
gy of resonance.

The rates of resonant 3a reactions have been given in
Fowler, Caughlan, and Zimmerman (1975) and in Harris
et al. (1983), which made use of the latest experimental
information. Nomoto (1982a) and, subsequently, Nomo-
to, Thielemann, and Miyaji (1985) presented approximate
analytic formulas for the rates of a+a and ®Be+a using
updated nuclear data. Denoting

(ij =0 V2E /u;; )& (5.9)

in the notation of Sec. II.A, one thus obtains for the non-
resonant a+a and %Be+a rates as (Nomoto,
Thielemann, and Miyaji, 1985)

(aa)*=6.914X10" 5Ty 23 exp(—13.489T; /%)
X(140.031T +8.009T3% +1.732T, .
+49.883T4/3 +27.426T3%) (cm3/s),
(5.10)
(a®Be)=4.167X 107 1"T 523 exp(—23.567T5 1/3)
X(140.018T}3 +5.249T3/3 +0.650T,
+19.176T4* +6.034T37%) (cm3/s) .

(5.11)
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Here T, denotes the temperature in units of 10° K, and
the asterisk in Eq. (5.10) means that the rate {aa) has
been calculated by including the E-dependent part of the
a width for ®Be.

Another significant advancement in the treatment of
3a reactions was hastened by Fushiki and Lamb (1987),
who presented an S-matrix calculation of the reaction
rates with approximate inclusion of the screening poten-
tials. These authors likewise used experimental values
for the widths of the nuclear states and obtained reaction
rates in good agreement with those of Nomoto,
Thielemann, and Miyaji (1985) in those cases where the
effects of screening were neglected. They presented a
treatment of the pycnonuclear regime where in their
definition the screening potential was greater than the
Gamow peak energy. A physical distinction between
electron screening and nuclear many-body effects, howev-
er, has remained unclear in their treatment.

The enhancement factors A4 (3a) in 3a reactions have
been formulated by Ogata, Ichimaru, and Van Horn
(1992) through the following argument: The lifetime

The = ~1071¢ (s), (5.12)

VBe
with the half-width of Be, y5.=6.8 eV (Ajzenberg-Selove
and Busch, 1980). Relaxation times for reacting *He and
®Be may be estimated through the ion-sphere cross sec-
tions, ~wa}, as

T =107 Bpg 13757172 (5) . (5.13)

One thus finds 7, <<Tg, in the density-temperature re-
gime of interest. Correlations between “He and ®Be nu-
clei may thus be treated as those in equilibrated “He-*Be
BIMs. The 3a reaction rates are proportional to the
product of the “He-*He and *He-*He contact probabili-
ties, i.e., g4He4He(0)g4HegBe(0); it is not necessary to con-
sider the triple correlations under these circumstances.
The enhancement factors are therefore calculated as

ABa)= eXp( Q4He4}{e + Q4He8Be +Q S“i’»;e“IFIe +Q E‘;;egBe )
(5.14)

where Q,; and Q}je) have been given by Egs. (4.28) and
(4.40).

E. Metal hydrides—PdD and TiD,

The analyses presented in Sec. IV.E have shown that
the Coulomb fields around deuterons in PdD and TiD,
are heavily screened by the metallic electrons within a
screening distance D; (cf. Table V). The critical tempera-
ture Eq. (2.21) of electron screening for d-d reactions is
far greater than ambient temperatures, so that the basis
reaction rates are given by R in Eq. (2.27). The
enhancement factors A4 i(]-M ) over these basic rates due to
the many-particle processes of the screened deuterons
have been formulated as in Egs. (4.55)-(4.58).

In thermodynamic equilibrium, only a fraction of
deuterons are in itinerant fluid states in metal deuterides
(Ichimaru, Ogata, and Nakano, 1990). The fraction f;;,
of such itinerant deuterons is estimated as

fitin=exp{ —B[A®— 35V (D" /my)]} , (5.15)

where m, refers to the mass of a deuteron; A® and ®”
are inhomogeneous lattice-field parameters given in Sec.
IV.E.1.

Table X lists the values of the reaction rates, the
enhancement factors, and the fractions of itinerant deute-
rons, computed for lattice cases of PdD and TiD, at two
different temperatures. A number of observations are in
order: (1) The electron-screened cold-fusion rates R are
independent of temperature; the values are well below the
upper bounds set forth by Leggett and Baym (1989). (2)
The electron screening is more efficient and consequently
R, takes on a magnitude larger in Pd than in Ti. (3) This
efficient electronic screening, in turn, shaves off the

TABLE X. Reaction rates and enhancement factors for deuterons in metal deuterides. Mass densities
(pm) and temperatures (7T) are assumed parameters; n, is the number density of deuterons; fi;, is the
fraction of itinerant deuterons in equilibrium.

Case: MH1 MH2 MH3 MH4
Material: PdD TiD,
Pm (g/cm?) 11.3 4.1
ng (cm™3) 6.25X% 10% 9.4 10%?
T (K) 300 600 300 600
Ay 0.45 0.32 0.52 0.37
E, (V) 75.79 51.43
logioRss (s~ 1) —37.04 —51.38
Ty 356.3 178.2 408.3 204.1
. 0.09 0.05 3.1 1.6
logio A 10.90 5.39 17.71 9.09
logioR (s71) —30.14 —35.65 —33.67 —42.29
log P (W/g) ~20.63 —26.14 —23.54 —32.17
logiofitin —3.76 —2.43 —17.08 —4.09
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Coulomb fields around deuterons more effectively and
thereby results in a smaller value of the many-body
enhancement factor 4 ,.(jM) in Pd than in Ti. (4) Being a
statistical-correlation effect, the enhancement factor de-
creases steeply as the temperature increases. (5) The mi-
croscopic lattice fields act to trap deuterons more
effectively in Ti than in Pd. (6) The largest reaction rate
in the table is R =~7.2X107*! (s7!) in PdD at T=300 K
with an assumption that f};, =1 (meaning in a nonequili-
brium state). This rate implies approximately one to two
d-d reactions per year per unit volume (cm®) of PdD.

F. Cluster-impact fusion

The analyses presented in the foregoing sections can be
applied to an estimation of the reaction rates expected in
the cluster-impact fusion experiments [Beuhler, Fried-
lander, and Friedman, 1989, 1992(E); Bae, Lorents, and
Young, 1991; Vandenbosch et al., 1991]. Let us suppose
that N-molecule clusters (D,0), impinge on a titanium-
deuteride target with a kinetic energy E ., per cluster,
break up into deuterons and oxygen ions, and thermalize
with atoms in the target. The resultant effective tempera-
ture of the deuterons may be estimated as

E cluster

 —Cluster 5.16
30Nk .16

Teff

Deuterons with such a temperature can approach each

other classically against the mutual Coulomb repulsion to
a distance

D, = .
o k B Teﬂ'

(5.17)

The Coulomb fields around deuterons in Ti, however, are
screened by the metallic electrons within a distance Dy,
which has been estimated as 2.8X107° c¢cm in Table V.
Hence the estimated maximum density that those
thermalized deuterons may attain is given by

3

nm xz b
* 4wD3,,

(5.18)

where D ;. takes on the smaller value between D and
D,.

One can substitute these density-temperature estimates
to calculations of the reaction rates and possible enhance-
ment factors using the formulations described in Secs.
II-IV. In the ranges of parameters used in the experi-
ments, the weak electron-screening condition of (2.22)
applies; the d-d reactions here can be treated in a way
analogous to the BD3 and GP2 cases of Table VII. For
example, at E ... =250 keV, the Gamow reaction rate
Rg (s7!) and the total enhancement factor 4 = A4 4
as functions of N take on the values R;=1.1X10"2
A=3.0 (N=50); Rg=3.1X10"7, 4=3.2 (N=100);
Rg=1.1X10"%, 4 =63 (N =500). It does not appear
that these values can account for the “cluster” effects im-
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plied in the earlier experiments. The recent finding of the
traces of high-velocity beam contaminants [artifacts;
Beuhler, Friedlander, and Friedman, 1992(E)] should be
the cause of the apparent enhancement.

G. Ultrahigh-pressure liquid metals

The nuclear reactions in PM cases differ in an essential
way from those in the MH cases in that the reacting nu-
clei are in metallized, fluid states where a substantial
enhancement of the reaction rate due to the many-
particle processes is expected, as in the SN cases
(Ichimaru, 1991). In the metallized d-p mixtures, the
electron-screened internuclear potential is expressed as

2
Vip(r)=<-5.(r), (5.19)

where S,(r) is the screening function given by Eq. (A84).

At an ambient temperature and below, the metallic hy-
drogen forms a quantum solid rather than a semiclassical
fluid. Protons and deuterons perform zero-point vibra-
tions around their lattice sites, and their nuclear reaction
rates are determined as in Eq. (4.48) from the contact
probabilities between adjacent nuclei. A calculation
along these lines has shown (Ichimaru, 1991) that the
pycnonuclear reaction rate in D-H matter with p,, =5
g/cm? takes on a minuscule magnitude of 107%7 s,

For exploitation of the enhancement factors arising
from the many-particle processes of Sec. III, at least one
of the reacting nuclear species needs to be in a fluid state.
A melting temperature derived from a criterion of Lin-
demann type (e.g., Pines, 1963) for hydrogen may be
written as

T ~— K (5.20)
™ 180a;kp k2 +K2%

with
k2 =3(6mny)*"> (5.21)

the mean-square value of phonon wave numbers in hy-
drogen. Here K, is a screening parameter calculated as
Eq. (A80) in which n, is replaced by n, (i.e., X =0), the
total number density of the free electrons; nyg in Eq.
(5.21) denotes the number density of hydrogen.

As we choose the temperature in the vicinity of Eq.
(5.20), A;; parameters in the PM cases of Table XI take
on values near unity. Quantum effects in the “S” nuclei
should begin to play a role here. These are problems that
remain to be investigated.

The critical temperatures, Eq. (2.21), of electron
screening for PM1 and PM2 cases of d-p BIM fluids in
Table XI exceed 10* K, so that the basic reaction rates
before the enhancement by many-particle processes are
given by R of Eq. (2.27). Since E; /D, in the exponen-
tial decay factor of R is proportional to ;> the reduced
mass of the pair of reacting nuclei, it is advantageous
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TABLE XI. Reaction rates and enhancement factors for ultrahigh-pressure liquid metals. Mass densi-
ties (p,, ) and temperatures (7T) are assumed parameters; P, is the total pressure of the conduction elec-
trons. In each case, the molar fraction of the BIM is assumed to be 50%.

Case: PM1 PM2 PM3 PM4

Reaction: d-p d-p "Li-p Li-p
Pm (g/cm?®) 2.5 8.5 16.0 140
T (K) 650 1200 700 2000
P, (Mbar) 17.2 148 80.9 3375
Ay 0.95 1.05 0.88 1.07
7y 1.17 0.78 0.87 0.43
D, (10™° cm) 3.85 3.21 2.24 1.75
logoR,s (s71) —53.28 —49.75 —77.53 —66.58
r; 413.8 337.1 514.5 371.1
re 68.19 87.30 118.5 133.5
logio 4 29.41 36.44 52.55 56.15
logioR (871) —23.87 —11.32 —24.97 —10.43
log;oP (W/g) —12.63 —0.07 —13.66 0.89

from the point of view of nuclear fusion to choose one of
the species as proton and thereby to minimize such a de-
cay. For metallic hydrogen, the combination of d and p
may thus be preferred.

The enhancement factors due to many-body correla-
tions in the electron-screened nuclei are then expressed as

AP =exp(Q) (5.22)
where
5 rs |
(i) — (s) __ 2 ps) | 21X
§'=1.0570()— =T} a
ri
X | 1+(1.1858—0.2472InT")) | ——
ij
2
rih
—0.07009 , (5.23)

& and D, have been given by Egs. (2.28) and (4.41).

PMI1 exemplifies a case in which a detectable level of
reactions is predicted, while a power production is ex-
pected in PM2. Significant levels of reaction rates are ob-
tained in both cases owing to enhancement by approxi-
mately 30 to 37 orders of magnitude arising from many-
particle processes. The values of electronic pressures
(calculated with the electronic equations of state in Ap-
pendix A.2) and temperatures in the table may suggest a
possible experiment for d-p reactions by shock compres-
sion of liquid metallic hydrogen.

As far as the fusion study is concerned, lithium hy-
dride under ultrahigh pressure appears to offer another
system of interest, though the ranges of temperatures and
pressures required for significant reactions are substan-
tially greater than those in the cases of liquid metallic hy-
drogen.

Here one considers reactions,

"Li(p,a)*He , (5.25a)
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with parameters (Bahcall and Ulrich, 1988),

S1y;, =52 (keV b)),

Q ("Li-p)=17.347 (MeV) .

(5.25b)

It is an interesting system because lithium hydrides are
stable compounds under laboratory conditions, and be-
cause the reaction products in (5.25a) are a particles,
which are easier to handle. The reduced mass between Li
and H is about the same as that between D and H. The
nuclear charge Z;; =3, however, acts to reduce the reac-
tion rate considerably; consequently, higher mass densi-
ties, temperatures, and pressures are required.

A lithium atom has the ionization potentials of 5.39 eV
(first) and 75.64 eV (second, denoted as E,,; see, e.g., Al-
len, 1973). Cases PM3 and PM4 of ultrahigh-pressure
LiH in Table XI may be looked upon as BIMs consisting
of Li*, p, and the corresponding number of free elec-
trons. Taking into account the two 1s electrons bound in
Lit as well as of the screening parameter K, of the free
electrons, we write the electron-screened internuclear po-
tential between lithium and proton as (Ichimaru, 1991)

3e?
VLi_p(r):TSLi_p(r)

(5.26)
with

Stip(P)= A exp( —K,or)+( A4, + A, rlexp(—Kyor)

(5.27)
where
K4
a=1-2___20 (5.282)
3 (Kjo—K5p)
4, =Ko (5.28b)
’ 3(K§0—K320)2 ’ ‘
K3
A, = 50 (5.28¢)
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and
V/8mE,,
Kb(): —ﬁ_ .

The electron-screened Coulomb-coupling parameter for
the ions is given by

(5.29)

L =Texp(—Koa;;) , (5.30)
and
1
F:Asto"' ApKypo— A, . (5.31)
s

PM3 represents a case in which a detectable level of re-
actions is expected, while fusion power may be generated
in PM4. Here again, these significant levels of reaction
rates are obtained owing to enhancement by approxi-
mately 52 to 57 orders of magnitude due to many-body
correlations in the systems of electron-screened nuclei.
The values of electronic pressures and temperatures im-
plied in the table are high. It is hoped that an extension
of current high-pressure experimental techniques may
make such an experiment possible in the near future. A
detection of such a nuclear reaction in ultrahigh-pressure
liquid metal will then make the first laboratory demon-
stration of the nuclear processes in supernovae and may
lead to an examination of the validity of extrapolating
cross sections, such as Eq. (2.4), into regimes of extreme-
ly low energies on the order of 0.1 eV.

VI. EPILOGUE

We have thus far reviewed theories and applications of
the rates of nuclear reactions and the factors of enhance-
ment arising from electron screening and/or internuclear
many-body correlations in dense plasmas. The physical
origins of the latter two mechanisms of enhancement are
clearly distinguished. It has been shown that the reac-
tion rates are intimately related to the thermodynamic
functions of dense plasmas through the screening proper-
ties and the Coulombic chemical potentials. Nuclear re-
actions in supernovae and those projected in ultrahigh-
pressure liquid metals share a feature in common in that
both depend on huge enhancement factors resulting from
strong internuclear correlations.
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APPENDIX A: THERMODYNAMIC FUNCTIONS
FOR DENSE PLASMAS

Rates of nuclear reactions in dense plasmas depend in
a number of crucial ways on their thermodynamic func-
tions. Enhancement due to internuclear many-particle
processes is described in terms of increments in the ex-
cess chemical potentials before and after nuclear reac-
tions. Screening distances of internuclear potentials are
likewise described by the compressibilities of electron
gases. In this appendix, we summarize thermodynamic
properties in various realization of dense plasmas. Basic
parameters characterizing those plasmas have been
defined in Sec. I.D.

1. Relativistic electron gases in the ground state

The electron gas under consideration is a kind of OCP
in which the average charge densities are fixed at values
specified by the densities of the uniform neutralizing
charges. The Helmholtz free energy is therefore an ap-
propriate thermodynamic potential under these cir-
cumstances (e.g., Landau and Lifshitz, 1969). Let the
Helmbholtz free energy per unit volume be expressed as a
sum of the noninteracting and exchange-correlation
parts:

F=F,+F,, (Ala)

=F,+F,+F, . (A1b)

The ground-state energy is the value of the free energy at
T =0 (Salpeter, 9161).

For ®<0.1, which amounts to consideration of the
ground state, one finds

Fo= Z:;; [1xp(2x2+ 1)V x2+1—1x2—Lsinh~'x,] .
(A2)
In the nonrelativistic case xy << 1,
Fo= 3;’5:2 (3n, 27 . (A3a)
In the extreme relativistic case xp >>1,
_nefe (37*n, )13 . (A3b)

0 4

The exchange and correlation energies in the ground
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state are evaluated in the dielectric formulation. ‘Jancovi-
ci (1962) has derived a relativistic (longitudinal) dielectric
function €'(k,w) in the random-phase approximation
(RPA) (e.g., Pines and Nozieres, 1966; Ichimaru, 1992),
relative to the dielectric function €y(k,w) of the vacuum,
with which

© Yk.i 2me’n,
Fo=3 | [7 dem Sl (A4)

k%0 €o(k,iz) k?

In the high-density r, expansion, one thus finds

2 4.4 —
x———%;;;[(sinh‘lxp—xF\/l-Fx%)z
—4x3V/ 1+xZsinh ™ x
+2(1+x2)In(1+x2)—3xp—2x2],
(AS)
e2me? —
F,= (1—1In2)x2V/ 1+x2lnr, . (A6)

¢ 3mtH
In the nonrelativistic case x; <<1, these expressions take
on values,

2/3 2 2
3 n.e n.e
Fo=—3 |2 ~—0.4582 , (A7)
21 a, a,
4
_ mee
FC_—»;TTﬁ—Z_(I—IHZ)lnrs . (A8)

The most accurate evaluations for the ground-state en-
ergy in nonrelativistic electron gases thus far have been
those due to Ceperley and Alder (1980) using the
Green’s-function Monte Carlo (GFMC) method (e.g.,
Ceperley and Kalos, 1979). The values of the correlation
energy so calculated at r, =1, 2, 5, 10, 20, 50, and 100 are
listed in Table XII.

These values have then been interpolated by Vosko,
Wilk, and Nusair (1980) through a Padé approximant
technique in a formula,

dE (7,) 1+y;x (A98)
r = . a
5 drg Yo 1+y,x +y,x2+y,x3
Here
2 2
Edlr)=- eﬁm F, (A10)
e

TABLE XII. Correlation energies (mRy) of electron gases at
T =0 in the GFMC, STLS, and RPA schemes.

7 GFMC STLS RPA
1 —119.6 —124 —157
2 —90.2 —92 —124
5 —56.33 —356 —85
10 —37.22 —36
20 —23.00 —22
50 —11.40
100 —6.379
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is the correlation energy per electron in rydbergs.

4
Ry=2"1=13.6058 eV ; (Al1)

2%

x=1r,, and

$0=0.0621814, y,=9.81379,
y,=2.82214, y,=0.736411 .

Integration of the differential Eq. (A9a) is performed
with the small-r; (i.e., high-density) boundary condition
(Gell-Mann and Brueckner, 1957; Onsager, Mittag, and
Stephen, 1966),

ESB(r,)=y,lnr,—0.09329 . (A12)
The result takes the form
E (r,)=y, [lnX,L(i)—-luzéltan_1 2xQ+b

_ bxg (x —x¢)?
X(xq) X(x)
2(b22x0)ta“ ‘sz+b l ] ’
(A9b)

where

X(x)=x2+bx +c, Q=V'4c—b>. (A13)

The best-fitting parameters x,,b,c were found to be
—0.409 286, 13.0270, and 42.7198 for the paramagnetic
case, and —0.743 294, 20.1231, and 101.578 for the fer-
romagnetic case, respectively (Vosko, Wilk, and Nusair,
1980).

2. Electron liquids at finite temperatures

The electron is a fermion with spin quantum number
4. The quantum states, designated by the momentum
p=7%k and spin o, are occupied by the electrons accord-
ing to the Fermi distribution (e.g., Landau and Lifshitz,

1969)

1
(#k)?/2m — g

fo(p)= (A14)

exp +1

Here p, is the chemical potential of the noninteracting
electron gas, which is determined from the normalization

dp
—_ ( ):n ,
J Gl P=n,
where n, denotes the number density of the electrons
with spin o. For the electrons in a paramagnetic state,
n,=n, /2, half of the total number density of the elec-
trons.

(A15)
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In the treatment of a free-electron gas at finite temper-
atures, it is useful to define the Fermi integrals

tV

exp(t —a)+1 ° (al6)

I (a)= fowdt

The normalization condition (A 15) is then expressed as

I pla)=20732, (A17)
where
a= k“"T . (A18)
B

The Fermi pressure Py of the free-electron gas is likewise

expressed as
P

nkgT

:®3/213/2(a) . (Alg)

The Helmholtz free energy per unit volume F, of the
ideal-gas part is then calculated as

FO - PF
nekBT nekBT ’

(A20)

Useful fitting formulas for the chemical potential and
the Fermi pressure are

Ho 3 4
= —= +1 —
%y T 2lnG') n3‘/7r
—(b+1) —(b+1)/2
+ 49 +B(?b ) (A21)
1+ 406
with 4 =0.259 54, B =0.072, and b =0.858; and
P —(y+1) —(y+1)72
L4 2X6 Y0 . (A22)
nkpT 5 1+X07”

with X =0.272 32, Y =0.145, and y =1.044. Maximum
deviations of Eq. (A21) from the exact values determined
from Eq. (A17) are about 0.19% at ® =0.05; those of Eq.
(A22) from the exact values determined from Eq. (A19)
are about 0.26% at @ =5.

In the classical limit, i.e., when ® >>1, the Fermi in-
tegrals may be expanded as (e.g., Pathria, 1972)

I(a)=T(v+1) 3 (—1)*lexp(sa)s ~ 1, (A23)
s=1
where
r&)= [ “dr 5 lexp(—1t 2
(&)= [ “dr 15 lexp(—1) (A24)
is the gamma function. In this limit one thus has
Ho 3 4
—=—= +1 =
KT > In®+1In o (A25a)
Py ‘
ndgT 1. (A25b)

In the quantum limit of strong degeneracy, i.e., when
0«1,
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v+1

1+ § 2(1—217%)¢(2s)

s=1

_a
I (a)= 1

where
ce)= ;ﬁ E>1) (A27)
is Riemann’s zeta function. Hence
wo=Eg , (A28a)
Pp=3%n.Ep . (A28b)

The exchange and correlation parts of the thermo-
dynamic functions for interacting electron gases, which
may more appropriately be called the electron liquids, are
calculated in the dielectric formulation, where the
strong-coupling effects beyond the RPA are described by
the local-field corrections (e.g., Ichimaru, 1992). The in-
teraction energy u,. per unit volume in units of kT, cal-
culated as the statistical average of the interaction part of
the Hamiltonian, is expressed as a function of I', and ®.
The exchange-correlation free energy per electron in the
same units is then calculated through the coupling-
constant integrations (e.g., Fetter and Walecka, 1971) as

F U, (x,0)

r
XC e ’
=f dx———— .
0

f3(Te, @) nkyT x

(A29)

If

The excess part of pressure is thus given (e.g., Ichimaru,
Iyetomi, and Tanaka, 1987) by
P, _ u(T,,0) 20 3y

Palle®=77 =3 3 00 |r,

(A30)

The Hartree-Fock energy, representing the first-order
exchange effects, has been accurately evaluated and
parametrized by Perrot and Dharma-wardana (1984) as

ulF(T,,0)=—ays(®)T, , (A31)
with
(97/4)!3 ag 1
e — —_— 2
ayp(®) - p tanh— , (A32)

ay,=0.75+3.043 6302—0.092 270>+ 1.70350*,
(A33a)

a,;=1+8.310510%+5.1105@* . (A33b)

The interaction energy in the RPA has been evaluated
at finite temperatures by a number of investigators (Mon-
troll and Ward, 1958; Englert and Brout, 1960; Gupta
and Rajagopal, 1980; Dharma-wardana and Taylor,
1981). The RPA may not be valid for those strongly cou-
pled electron liquids at metallic densities, for example,
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with 2=<r,<6. Here we employ a static local-field
correction (e.g., Ichimaru, 1992) due to Singwi, Tosi,
Land, and Sjolander (STLS) (1968), and derive explicit
expressions for the thermodynamic functions applicable
to such an electron liquid at finite temperatures (Tanaka
and Ichimaru, 1986; Ichimaru, Iyetomi, and Tanaka,
1987).

The exchange-correlation energies calculated in the
STLS scheme have been parametrized in analytic formu-
las as :

by,=0.341308+12.070 873@2+1.148 889@* ,
b,=1+10.4953460%+1.326 6230* ,

c(®)= [0.872496+0.025 248 exp —é e(®),
(A38)

— 1 dy
d(®) ®tanh Ve |4, (A39)

dy=0.614925+16.996 05502+ 1.489 056@* ,

u
uEZLS(re,®)=—reu—° , (A34)
! d,=1+10.109 3502+ 1.221 840* ,
uy=a(®)+b(®)VT,+c(OT,, (A35a) .
_ 1 0
u;=1+d(@®)VT,+e(O)T, , (A35b) ¢(®)=6tanh ;5| (A40)
with €0 =0.539409+2.52220602+0.178 4840* ,
a(®)=aup(®), (A36) e, =1+2.5555010%+0. 146 3190* .
b(®)=Vv®tanh b bo , (A37) The coupling-constant integration of Eq. (A29) is per-
Vo |b; formed with Eq. (A34) to yield
J
STLS - Cpn _ 2|, _cd +_1 _< 4 cd
fe (L ®) ere e b e VT, e e e b e
— 2 c d? cd
r,+ r,+ij+——|dla— |+ |2—— | |b——
XlnleT, +d VT +1] eV'de —d? e € ] { € H
2¢V/T,+d d
X [tan7! | ——=—— |~tan"! | ———e (A41)
Vide —d? Vide —d?
[
The condition that 4e —d? > 0 is satisfied for any ©.
Spin-dependent correlations and thermodynamic func- P on, _ 1 (A43)
tions for electron liquids at arbitrary degeneracy and spin T n . OP v , OF
polarization have been investigated through a solution to ne n,an, v

another self-consistent set of integral equations in the
modified-convolution approximation (MCA; see Tago,
Utsumi, and Ichimaru, 1981). Analytic expressions for
the thermodynamic functions, analogous to Egs. (A34)
and (A41), have been derived; phase boundary curves,
arising from divergence of the isothermal compressibility
and of the spin susceptibility, have been thereby obtained
(Tanaka and Ichimaru, 1989).

These thermodynamic functions for electron liquids
play the central part in the estimates of the screening dis-
tances D; considered in Sec. II.C. In a treatment based
on a generalization of the Thomas-Fermi approximation
(e.g., Pines, 1963), the screening parameter, i.e., the re-
ciprocal of Dy, in the electron liquid is given by

K,= 1 =V 4n(n,e)«, ,

=D. (A42)

where
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is the isothermal compressibility of the electron liquid. If
the ideal-gas contributions, such as Eq. (A2), (A20), or
(A22), are used, Eq. (A42) will yield the Thomas-Fermi
parameter for ® <<1 and the Debye-Hiickel parameter
for ® >>1.

3. Dense semiclassical one-component-plasma
fluids of ions

The thermodynamic functions for a weakly coupled
OCP (I' <<1) have been calculated rigorously by the
giant-cluster expansion method (Abe, 1959). Thus, ex-
pressing the internal energy per ion (in units of k3 T) as a

sum of an ideal-gas part (=3 ) and the excess,
u=3+ulPE(), (A44)

one finds
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ugBE(r)=—?rm—3r3[%1n(3r)+(y/2)—§] ,

(A45a)

where ¥ =0.577 21. . . is Euler’s constant. The first term
on the right-hand side of Eq. (A45a) is the Debye-Hiickel
(1923) contribution.  Equation (A45a) accurately
represents the excess internal energy for I"' <0.1.

In the strong-coupling regime 1=I <180 the excess
internal energy has been evaluated by computer simula-
tions (Slattery, Doolen, and DeWitt, 1982; Ogata and
Ichimaru, 1987), with the result

u9T)= —0.898 004" +0.967 86I"!/*

+0.2207037" " 1/4—0.86097 . (A45b)

In the intermediate-coupling regime 0.1=<TI <1 the ex-
cess internal energy has been calculated (Slattery,
Doolen, and DeWitt, 1980) through a solution to the
hypernetted-chain integral equations (e.g., Hansen and
McDonald, 1986). Using these HNC values, one finds a
formula connecting Eqgs. (A45a) and (A45b),

u 5P (D) +(3x 10> 7u 3H(T)
1+(3x10°)r*’

U, (D)= (A46)

This formula is therefore applicable for a classical OCP
with T" < 180.

The Helmholtz free energy per ion in units of kz T is
again expressed as the sum of the ideal part [Eq. (A20)
with Egs. (A25a) and (A25b)] and the excess, the latter of
which may be obtained by a coupling-constant integra-
tion of Eq. (A45) or (A46), as in Eq. (A29); in the weak-
coupling regime, one thus has

f=fo+famE

=In"—— = — [ 3n(3L)+y— 4] .

. (A47)
In the strong-coupling regime 1 <T <180 one likewise
obtains from Eq. (A46)

Sfex(T)= —0.898004T" +3.871 441174
—0.882812I' " 1/4—0.86097 InI"

—2.52692 . (A48)

As A increases in a OCP with higher densities and
lower temperatures, quantum corrections in free energies
arise from Wigner-Kirkwood expansions (e.g., Landau
and Lifshitz, 1969; Hansen and McDonald, 1986) in
powers of #? as

F=fO4 iy @y . (A49)
Here
FO=fo+f., () (A50)

is the classical term as given by Eqgs. (A47) and (A48),
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2
f(”=l“11;—ﬁ , (AS51)
fP=—[12J(D)+9K () +1]I2 At , (A52)
384072
with
J(r)=—“i<§ l6> : (AS3a)
3N i#j Fij
61 X (11 )? 1
K<r)=i’—< O L >; (A53b)
9N i jEk rij'ri?c "5"'3(

ry=lr;l=Ir;—r;|, N represents the total number of
ions, and ( - - ; refers to a statistical average. These
quantities have been evaluated as

J(I')=0.13573+0.173 62 /T''/24+0.92707/T
—0.09740/I3/2+1.7824 /T*+1.9878 /T3
(A53c)

and K(I')= —0.091964 (Hansen and Vieillefosse, 1975;
Iyetomi, Ogata, and Ichimaru, 1992b).

4. Classical binary-ionic-mixture fluids

The thermodynamic functions for dense BIM fluids
have been investigated extensively for construction of the
phase-separation diagrams (Stevenson, 1980; Barrat,
Hansen, and Mochkovitch, 1988; Ichimaru, Iyetomi, and
Ogata, 1988) associated with freezing transitions in the
interiors of white dwarfs. Substantial progress has been
achieved since then, due primarily to advancements in
MC simulations (Ogata, Iyetomi, and Ichimaru, 1991;
Ogata et al., 1993) and the analytic theories (Iyetomi,
Ogata, and Ichimaru, 1992). Here we summarize the
principal results on the thermodynamic functions, which
enter Eq. (3.13) for an estimate on enhancement of nu-
clear reaction rates.

We consider a BIM fluid in a volume V containing N,
and N, particles of species “1” and ‘2” with charge
numbers Z, and Z, (=R;Z; R, > 1), respectively. The
number density of electrons is then given by

N,Z,+N,Z,
e _—V_ ’
and Egs. (1.9) and (1.13a) define various plasma coupling

parameters, which we assume to be greater than unity.
Let x denote the atomic fraction of “2” species, so that

__ M
N +N,

n (A54)

b (A55)

The excess Helmholtz free energy per ion (in units of
kg T) for the BIM fluid is expressed as
a (Lpyx32Z1,Zy)= (1=x)f G (T ) +xf 3P (Ty)
+AfBM(T,,x3Z,,2Z,) . (A56)
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Here fOCY(T) is the excess Helmholtz free energy for the

OCEP given by Eq. (A48).

If AfBIM(T,,x;Z,,Z,)=0, then Eq. (A56) is said to
satisfy a linear-mixing law for the BIM free energies
based on the constant electron-density, ion-sphere scaling
(Salpeter, 1954), characterized by Eq. (1.11). Though
small in magnitude, deviations from the linear-mixing

V'R;—1(xR;—0.11)(x*>+2X1073)
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law do exist (Ichimaru, Iyetomi, and Ogata, 1988) and
have been analyzed quantitatively through a series of MC
simulation studies (Ogata et al., 1993). The simulations
were performed for 37 cases with 0.01=<x <0.5,
5=I'£200, and Z,/Z,=4%, 3, and 5; over these para-
metric domains, the simulation data are expressed in an
analytic formula as

Af?)}M(Fe’x ;Zlazz):‘ 032

(Ry— 1) (1—x)
1+ 1.12(R; —1)x

+0.0551

It is notable that the first term on the right-hand side,
the principal term in Af8™(TI',,x;Z,,Z,), changes its
sign near x =0 (i.e., for x <0.11/R ) as a function of x.
The deviations are quantities essential for analyses of the
possibilities of phase separation as well as for estimates of

the enhancement in nuclear reactions.

5. Quantum-mechanical one-component-plasma
solids of ions

In a quantum-mechanical Coulomb solid, the
Helmholtz free energy per ion in units of kzT is ex-
pressed as the sum of the bcc Madelung-energy term and
the harmonic and anharmonic contributions:

f=-0.895929T + fruns + F ant - (A58)

In the semiclassical regime Y <<1, the harmonic and
anharmonic contributions have been evaluated with in-
clusion of the quantum corrections up to #* terms by
Hansen and Vieillefosse (1975):

2
Gk =—0.845 88+31nY+YT—(1.9O38X10_3)Y4 ,

(A59)
10.84 , 176.4 . 5.980X% 10*
CL — __
AR r T
2
8Y0 1.21393 61;52 (A60)

The first term on the right-hand side of Eq. (A60) was
due to Dubin (1990).

The ground-state energy (7T —0) of a bcc Coulomb
solid has been obtained by Carr, Coldwell-Horsfall, and
Fein (1961):

r

M =1.3286——, (A61a)
V'R,
f%%’=—0-365£— , (A61b)
s
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(R;—0.22)(x"74+5%1077)

1
x(1—x) |[1——
'y J
(T >1). (A57)
I
where
. 1/3
3 M(Ze)?
R = Al
s 47n; #2 (A62)

The free energies of bcc Coulomb solids at arbitrary
values of Y have been calculated by Iyetomi, Ogata, and
Ichimaru (1993) using a path-integral Monte Carlo
method (e.g., Creutz and Freedman, 1981). The harmon-
ic term takes the form

Sfuv=3In{2sinh[(¥Y/2)g(V)]} , (A63)

with

_ 0.7543+0.09245Y>+0.003 386Y*
1+0.1046Y2+0.003 823Y*

g(y) (A 64)

The computed values of f for 48 combinations of Y and
R, are then used in a derivation of a parametrized equa-
tion for f5y; we find

__9T'Y P(£)—0.08167P(E)Y*+Q(E)Y*

fan= 4 14+0.085Y2+R(£)Y*
X coth? TY] . (A65)
Here
£=T tanh>2> | (A66)
Y
_ 1.204 | 19.60 , 6.644X%10°
P(&)= & + z + & , (A67a)
0(6)= 0.00512805 + 0.083507 +0.009 444P(£) ,
(A67b)
R (£)=0.08532£%2Q(¢) . (A67c)
Note that
lim £&=T and lim =8V/R, . (A68)
Y—-0 Y —> o

The formulas (A63) and (A65) reproduce both the semi-



Setsuo Ichimaru: Nuclear fusion in dense plasmas 293

classical and ground-state results, Egs. (A59)-(A61), in
the respective limits.

6. Screening by relativistic electrons

Thus far we have investigated the thermodynamic
properties for the individual constituents, electrons and
ions, of a plasma. In an ultradense plasma with »; <0.01,
appropriate to the interiors of degenerate stars, the Fer-
mi energy of electrons is relativistically high [cf. Eq.
(1.7)], so that their coupling with ions is indeed weak.
The kinematic effects of relativistic degenerate electrons
(e.g., Landau and Lifshitz, 1969) soften the electrons
against compression and thus act to enhance their polar-
izations. A standard method for treating these polariza-
tion effects has been the Thomas-Fermi approximation
[e.g., Eq. (A42)].

The dielectric formulation (e.g., Pines and Nozieres,
1966; Ichimaru, 1992) offers an alternative method for
deriving the excess interaction energy due to the polar-
ization. Let the wave-number- (k-) and frequency- (w-)
dependent, longitudinal dielectric function of the elec-
trons be €(k,w). The energy increment per ion in units of
J

kg T due to polarization of electrons is then given by

_ (Ze)? 1 1
upol 2’17’szdeka [ G(k,O) 1{. (A69a)
Setting
(Ze)
Upol = — m , (A69b)

we define and calculate an effective distance D, of screen-

ing as
ae
D

18

17.2

1/3 1

“dt[1—————

fO 6( kFt, 0 )

A free energy corresponding to Eq. (A69) can be obtained
through a charge-strength integration as

. (A70)

s

(Ze)*

. A7l
2Dk, T (A7D

f pol =
The RPA static dielectric function for the relativistic

electrons in the ground state has been obtained by Jan-
covici (1962),

kg 92— 2xpx* — 1+x2—3x2x? 1+x
elk,0)=1+ | —= ?\/l—f-x%- sinh“Ixy+1 1+x2 ix -
F
1—-2x3x?  ——— |V 1+x2x2+xV 1+x2
- —ZF—— V' 1+x2x%n T — L (A72)
6xFx V1+x2x2—xV 1+x2
T
Here x =k /2k and comparison, one notes that the relativistic Thomas-Fermi
— length, (4/97)'*V w#ic /4e?, takes on 5.4, a similar mag-
- eV/ 12mmn, (a73)  nitude. Effects of the electron screening may thus remain
TF #ikp considerable in dense stellar materials.

is the (nonrelativistic) Thomas-Fermi wave number. In
the nonrelativistic limit xz—0, Eq. (A72) reduces to the
static (w=0) values of the Lindhard dielectric function
(Lindhard, 1954).

The screening length, Eq. (A71), has been evaluated by
Ichimaru and Utsumi (1983) with the Jancovici screening
function (A72); the result has been parametrized as

a

D‘* =0.1718+0.092 83R +1.591R*—3.800R 3

s

+3.706R*—1.311R"> , (A74)

where R =10r,. This formula reproduces the computed
values over the domain 0=r;  =<0.1 with digressions of
less than 0.7%. '

It is noteworthy that the screening length (in units of
a,) takes on a finite value 5.8 in the limit of high densities
(r,—0), while the nonrelativistic Thomas-Fermi length
(kyga,)”! diverges in the same limit. This finiteness is
obviously a consequence of relativistic effects. For a
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7. Dense electron-ion two-component plasma:
The incipient-Rydberg-state model

We now summarize salient features in the thermo-
dynamic and correlation functions for nonrelativistic
electron-ion two-component plasmas (TCPs) with em-
phasis on the effects of strong coupling between electrons
and ions. The results are relevant for a description of mi-
croscopic states in liquid metallic plasmas.

The binding energy of an electron in a ls state of an
atom with a nuclear charge Ze is given by

_ Ze?
with the Bohr radius,
hZ
Ry= . (A76)
B mze?

A ratio between E, and a relevant kinetic energy mea-
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sures the degree to which the strong electron-ion cou-
pling affects the properties of a dense TCP. The strong
Coulomb coupling beyond the RPA in the plasma may be
accounted for by the local-field corrections in the dielec-
tric formulation (e.g., Ichimaru, 1992).

Strong interparticle correlations in dense plasmas near
metal-insulator transitions have been analyzed using an
integral equation approach, which adopts the HNC ap-
proximation for the classical ion-ion correlation and the
MCA for the quantum-mechanical electron-electron and
electron-ion correlations (Tanaka, Yan, and Ichimaru,
1990). The results have clearly revealed the emergence of
“incipient Rydberg state (IRS)” for the electron-ion
correlations in the metallic (plasma) phase near the
metal-insulator boundaries. The IRS is a way of account-
ing for those effects of strong ion-electron correlations
beyond the RPA and of mutual scattering beyond the
Born approximation; the true bound states of electrons
are not considered in the IRS model. The IRS acts
significantly to modify the equation of state and to
enhance the rates of electron scattering for a TCP in the
metallic state.

We proceed to construct an IRS model (Ichimaru,
1993) for describing the thermodynamic properties of an
electron-ion TCP. We shall formulate the model for gen-
eral cases of the TCP with Z = 1. An explicit comparison
of the model predictions with the results of microscopic
calculations (Tanaka, Yan, and Ichimaru, 1990) is
presently possible only for a hydrogen plasma (Z =1).
The IRS description of the TCP with Z > 1 appears phys-
ically plausible, but is proposed here as a working hy-

pothesis.
The IRS may be characterized by the parameter
5 1/2 172
: T
X, = [ertanh # W nl”3 ] . (A77)

When the electrons are in a state of complete Fermi de-
generacy ® << 1, one finds

2/3
/ Eb
EF ’

97
4

4=

Xp (A78a)

where Ep is Eq. (1.7) in a nonrelativistic case. In the
classical limit ® >> 1, one has

E,

4 __ 1/3
Xy (36m) kBT .

(A78Db)

In the sense stated above, x[,‘ thus characterizes the
strength of Coulomb coupling between electrons and ions
in the TCP.

Let us introduce a parameter,

Xp
X = ,
T+x, (A79)

meaning a fraction of the electrons in the IRS;
ny=(1—X)n, designates the number density of electrons
in ordinary ‘“free” states, while n, =Xn, denotes that in
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the IRS corresponding to those parts of free-electron
behavior in the strong coupling. The latter thus de-
scribes the effects beyond the Born approximation in
scattering between electrons and ions (Tanaka, Yan, and
Ichimaru, 1990).

We define characteristic screening parameters associat-
ed with those free and IRS electrons:

67Tnfe2 172
K= |—— , (A80)
Ef
8+12RzK
=2 B (A81)
rg (2+RzK,)
where
with
(#ik )
f0: 2m ’ (A83a)
ky=Q3mn;)'"3, (A83b)
T (A83c)
—_— ) c
f EfO
2
3z 13 C 1 C
vzy=—=—|1+—F 77— ——z | —r>r
(Z) 2 15 Zl,75+CZ 52 21'75+CZ ’
(A83d)

and C =0.488. The function U(z) stems from the iso-
thermal compressibility for the ideal-gas electrons. Con-
sequently, K, turns into the Thomas-Fermi screening pa-
rameter when @ <<1 and into the Debye-Hiickel screen-
ing parameter when ©@ , >>1.

The electrons, in both free states combined, then con-
tribute a screening function to the ion fields as

S.(r)=A,exp(—K;r)+(A,+ Asr)exp(—K,r) , (A84)
where
A, =1—-X Ky (A85a)
! (KZ—K2? *
A =X——K; (A85b)
> T(KR-KP
3
x Kj
A= ———
3 ) K3~K3 (A85c)

The electron-screened Coulomb coupling parameter for
the ions is given by

y=IS.(a)=Texp

LEE (A86)

s

where D, is given by Eq. (4.41). The validity of such a re-
duced coupling parameter has been verified by Monte
Carlo simulations (Ichimaru and Ogata, 1991) and by
solutions to liquid integral equations (Ichimaru, Nakano,
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Ogata, Tanaka, Iyetomi, and Tajima, 1990).
In the IRS model, the normalized interaction energy
may be defined and decomposed as follows:

Uint
Vnn kT
=vV'n,/nu,
+v'n, /n(u; +u,+8u,;) .

ULDT,0;Z)=

(A87)

Here U,,, is the total interaction energy in a unit volume;
U, U;, and u,; are appropriately normalized interaction
energies between electron-electron, ion-ion, and
electron-ion; and &u, is a classical, weak-coupling
correction to u,;. The normalized excess free energy and
pressure are then calculated in accordance with Eqgs.
(A29) and (A30). In reference to Eqgs. (A34) and (A46),
these interaction energies are calculated as

u,, =uSs(r,,,0), . (A88)

uii =uex( Fs ) ’ (A89)
uei=(1—X)u,§+Xu£ s (A90)
Su, =[(V2—1DulBE(Ir,)—(1—X)ul +(V3/2)r3?]

Xexp(—T32—3001/%), (A91)
with
F . (ZePK
uf=—0.94[140.16exp(—O /%) ] ———, (A92)

kpT
172 2

B_ 21T 1/3 (Ze) Kb
)= — — A
ug tanh |7 mkyT e 2%, T (A93)

Table XIII compares the theoretical (Tanaka, Yan,
and Ichimaru, 1990) and the IRS model values for the
normalized interaction energy u., in liquid metallic hy-
drogen (Z =1) at 34 selected combinations of I" and ©.
Except for the extremely degenerate case with I’ =43.441

TABLE XIII. Normalized interaction energy u., = U;,, /n;kp T for hydrogen plasmas at selected com-
binations of I and ®. uIY'is that due to Tanaka, Yan, and Ichimaru (1990); XS is from Eq. (A87);

and Au,, =ulY! —ulRS,

r 0 i8S Mt
0.05 10 —0.0272 —0.0251 —0.0021
0.1 10 —0.0756 —0.0724 —0.0032
0.2 10 —0.2184 —0.2371 0.0187
0.3 10 —0.4588 —0.5001 0.0413
0.35 10 —0.6919 —0.6694 —0.0225
0.1 5 —0.0750 —0.6969 —0.0053
0.2 5 —0.2077 —0.2007 —0.0070
0.3 5 —0.3907 —0.3963 0.0056
0.4 5 —0.6519 —0.6593 0.0074
0.5 5 —1.0950 —0.9909 —0.1041
0.1 1 —0.0757 —0.0807 0.0050
0.3 1 —0.3320 —0.3320 0.0000
0.5 1 —0.6690 —0.6580 —0.0110
0.7 1 —1.0809 —1.0597 —0.0212
0.9 1 —1.5843 —1.5454 —0.0389
1.0 1 —1.8822 —1.8218 —0.0604
1.1 1 —2.2299 —2.1213 —0.1086
0.2 0.27151 —0.1802 —0.1917 0.0115
1.0 0.27151 —1.3345 —1.3178 —0.0167
1.6 0.27151 —2.4290 —2.3864 —0.0426
2.0 0.27151 —3.2654 —3.2083 —0.0571
2.5 0.27151 —4.4818 —4.3713 —0.1105
0.5 0.1 —0.5119 —0.5344 0.0225
1.0 0.1 —1.1662 —1.1805 0.0143
2.0 0.1 —2.6454 —2.6263 —0.0191
3.0 0.1 —4.2885 —4.2498 —0.0387
4.0 0.1 —6.0860 —6.0553 —0.0307
5.0 0.1 —8.0595 —8.0561 —0.0034
5.3401 0.1 —8.9749 —8.9808 0.0059
5.3401 0.01 —6.8544 —6.9012 0.0467

10.0 0.01 —13.2900 —13.2739 —0.0161
16.29 0.01 —22.5731 —22.5054 —0.0677
30.0 0.01 —44.2590 —44.6475 0.3885
43.441 0.01 —67.5204 —69.4036 1.8833
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and ®=0.01, digressions remain negligibly small so that
[Au,, | <<1, far below the level of thermal energy kpT.
In the extremely degenerate cases, one has |uex| >>1, so
that digressions |Au,, |~ 1 are likewise acceptable.

The strong electron-ion coupling in the liquid metallic
hydrogen affects in a number of ways the degrees of ion-
ization for the “impurity” atoms immersed in it
(Ichimaru, 1993). The effects include (a) modification in
the equation of state for the hydrogen plasma; (b) shifts
(shallowing) of the impurity atomic levels by screening;
and (c) interaction between impurity atoms and hydrogen
plasma. Solutions to these problems bear important
consequences for opacities and for internal structures and
evolution in various stellar objects, including giant pla-
nets, brown dwarfs, and the Sun.

The IRS descriptions on strong electron-ion coupling
can be extended straightforwardly to the cases of
electron-screened BIMs. Such an analysis leads to
modified predictions of the rates of electron-screened
cold fusion (cf. Sec. II.C) and the enhancement due to
many-particle processes (cf. Sec. IT) for nuclear reactions
in metallic substances, through screening functions such
as Eqgs. (A84) and (A 86).

APPENDIX B: DERIVATION OF EQUATION (2.1)

We consider scattering between nuclei 1 and 2 with rel-
ative velocity v and reduced mass p via the Coulomb po-
tential Z,Z,e?/r; we define k=pv/%# and
N=Z,Z,e*/#v.

The usual boundary condition in the treatment of
scattering problems assumes an incident plane wave in
the z direction. The asymptotic (r— ) form of the
Coulomb wave function is then calculated (e.g., Schiff,
1968) as

2
N ; ; _ _n
Y(r)— explikz +inlnk(r —z)] 1+iK(r—z)
.(0)
+ / expli(kr —nln2kr)], (B1)

e

where f.(0) is the angular function of the scattered wave
and 7 represents the radial coordinate with respect to the
scattering center.

With the normalization, such as Eq. (2.3), the wave
function takes on the value at the origin,

;\1/<0)|z:__.2.7171___ (B2)
exp(27n)—1

and the incident flux (z— — o) is
A (Ve — WV =0 . (B3)
2ip .

With the aid of the Coulomb cross section, Eq. (2.4), ex-
pressed for OCP, the reaction rate is calculated as

R, =0(E) =2S(E)r*|¥(0)|*/m# . (B4)
This equation leads to Eq. (2.1).
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If, on the other hand, the boundary condition of
scattering is such that only the s waves are considered,
the wave function is expressed as a superposition of in-
cident and outgoing contributions:

W(r)i%(w(+)ei"0_w(*)e_i'r’O) , (B5)
i
where

no=argl(1+in) (B6)

and asymptotically (r — o)
\I/(i)(r)=%exp[i(i:cr —inln2kr)] . (B7)

The normalization (2.3) and the Coulomb relation (B2)
hold in this case as well, and the incident and outgoing
fluxes are calculated in accordance with Eq. (B3) as 47v
and —4mv, respectively. With these s-wave boundary
conditions, one then finds

R, =0 (E)mv =8S(E)r* |W(0)|2/% . (B8)

This evaluation therefore is larger by a factor of 47 than
Eq. (B4) and leads to the reaction rate cited in Salpeter
and Van Horn (1969) and in Ogata, Iyetomi, and
Ichimaru (1991). .

Since the cross section is measured experimentally
with the plane-wave boundary conditions, and since the
Coulomb scattering in plasmas involves partial wave con-
tributions other than / =0 as well, we regard Eq. (2.1),
derived from Eq. (B4), as a fundamental formula for the
rate of nuclear fusion.
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