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Over the past seven years, many examples of periodic crystals closely related to quasicrystalline alloys
have been discovered. These crystals have been termed approximants, since the arrangements of atoms
within their unit cells closely approximate the local atomic structures in quasicrystals. This colloquium
focuses on these approximant structures, their description, and their relationship to quasicrystals.
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I. INTRODUCTION

The discovery of the icosahedral alloys (Shechtman
et a/. , 1984; Shechtman and Blech, 1985) has generated a
great deal of excitement, as well as confusion, in many
scientific circles. These intermetallic alloys belong to a
growing class of materials known as "quasicrystals, "
which may be defined as structures with long-range
aperiodic order and crystallographically forbidden rota-
tional symmetries (e.g. , fivefold, eightfold, tenfold, and

12-fold rotation axes). The observation that certain in-
termetallic compounds produced sharp diffraction peaks
displaying the "noncrystallographic" icosahedral rota-
tional point group at first appeared to challenge the basic
tenets of crystallography. This is, in fact, not true, since
the traditional crystallographic classification schemes
deal only with the periodic arrangements of atoms and
the consequent allowed space groups. Quasicrystalline
structures simply fall outside these boundaries. In a re-
cent series of interesting reviews, however, crystallo-
graphic classifications have been recast into a broader,
less restrictive framework that treats periodic and
aperiodic crystals on an equal footing (Rabson et al. ,
1991;Mermin, 1992).

Early debates over the interpretation of diffraction
data from quasicrystals, led by Linus Pauling (1985),'

raised several interesting issues that have become active
areas of quasicrystal-related research. Perhaps the most
fundamental of these relates to the limits of our ability to
distinguish between a true quasicrystal and periodic crys-
tals (possibly twinned) with complex large unit cells.
Over the past seven years, structural similarities between
known crystalline phases, such as a(A1MnSi), and relat-
ed quasicrystalline phases, [e.g., icosahedral i(A1MnSi)]
have been explored in detail. Furthermore, many new
examples of periodic crystals closely related to quasicrys-

~See the several responses to Pauling's arguments in Nature
319, 102 (1986).

~The designation a(A1MnSi) refers to one of several phases of
the Al-Mn-Si ternary alloy.
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FIG. 1. Stereographic projection of the I3 5 point group and accompanying TEM di|t'raction patterns from rapidly quenched Al-Mn
taken perpendicular to a (a) a threefold axis, (b) a fivefold axis, (c) a pseudo-twofold axis, and (d) a twofold axis.

talline phases have been discovered. Termed "approxi-
mants, " because the arrangements of atoms within their
unit cells closely approximate the local atomic structures
in quasicrystals, these alloys have played an important
role in efforts to describe the atomic scale structure of
quasicrystals, their formation, stability, and physical
properties.

While icosahedral quasicrystals have received the most
attention, other classes of quasicrystals also exist. Axial

uaslcI ystalllnc st1 uctul cs Rl c apcl 1odic 1n a plane pcI'-
pendicular to an axis along which there is translational
periodicity. The decagonal phase of Al-Mn was an-
nounced within a few months of the discovery of
icosahedral Al-Mn (Bendersky, 1985; Chat topadhyay
et al. , 1985). Octagonal and dodecagonal quasicrystal-
line phases in transition-metal Si alloys have also been re-
ported (Ishimasa et al. , 1985; Wang et al. , 1987; Chen
et a/. , 1988). All of these quasicrystals have crystalline
counterparts that are closely related in composition and
local atomic structure. While some references will be
made to these other quasicrystals in this review, much of
our discussion wi11 be 1imited to the icosahedral alloys
and their approximants.

There is now a vast literature on quasicrystals, and
several recent review articles and reprint collections have
summarized developments and issues in the field (DiVin-
cenzo and Steinhardt, 1991; Goldman and Widom, 1991;
Guyot et al. , 1991; Kelton, 1992). With some discussion
of the key features of quasicrystal structure, this colloqui-
um focuses on the related approximant structures, their
description, and their relationship to quasicrystals.

II. QUASICRYSTALS AND APPROXIMANTS

A. Quasicrystals

It is well known that periodic arrangements of objects,
such as atoms, admit only certain rotational operations
about an axis which bring the arrangement back into re-
gistry with the unrotated assembly. For three-
dimensional periodic crystals the allowed operations in-
clude twofold, threefold, fourfold, and sixfold rotations
about appropriately chosen axes. Taken together with
other operations such as translations, rejections, and in-
versions, these point-group operations define all of the
230 space groups. Space groups that include fivefold,
sevenfold, and higher-order rotational operations are ex-
plicitly excluded.

If we insist that only periodic arrangements of atoms
can produce Bragg diffraction peaks, the patterns ob-
tained from a rapidly quenched alloy of Al-Mn, shown in
Fig. 1, cause a dilemma. The sharp diffraction spots in
Fig. 1(b) clearly lie in a reciprocal space plane perpendic-
ular to a fivefold axis. The set of angular displacements
between twofold, threefold, and fivefold axes in Fig. 1

demonstrates that the alloy has the forbidden icosahedral
point-group symmetry.

Under the heading of translations, we include translations
that are not in the Bravais lattice in order to account for non-
symmorphic space groups which include operations involving
screw axes and glide planes, for example.
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The resolution of this dilemma begins with the realiza-
tion that Bragg diffraction does not require long-range
periodic translational order, but rather long-range posi-
tional order, which may or may not be specified by a
periodic function in three dimensions. In this sense,
quasicrystals may be viewed as incommensurate struc-
tures. Quasicrystals, however, differ from traditional in-
commensurate structures because they have noncrystallo-
graphic rotational symmetries. A careful inspection of
the sequence of diffraction spots along any axis of the
patterns in Fig. 1 shows that the ratio of distances from
the origin to any two bright spots is an irrational number
within reasonable experimental error. For icosahedral
quasicrystals, this irrational number is some power of the
golden mean r [x=2 cos(m /10) = (1+&5)/2], which
arises from the geometries of icosahedra, pentagons, and
decagons. A related interesting property of the
difFraction patterns in Fig. 1 is that while they do not
have translational symmetry, they do have inflation sym-
metry. That is, the diffraction patterns in Fig. 1, for ex-
ample, can be expanded or contracted by a factor of ~ to
yield patterns indistinguishable from the originals. The
fact that Bragg diffraction is possible from aperiodic
structures is no longer the subject of greatest interest.
The key issue is what do these diffraction patterns imply
about the underlying structure of a quasicrystal?

The absence of periodicity confounds many of the im-
portant ideas and methods that are used to describe the
structure and properties of ordered solids. While, as we
shall discuss later, atomic motifs or clusters that are
found frequently in quasiperiodic structures exist, the
concept of a fundamental "unit cell" is lost. In the same
vein, calculations of electronic and vibrational properties
of periodic crystals are vastly simplified by the concept of
a Brillouin zone, which, again, is inappropriate for quasi-
crystals. It is worth emphasizing here, however, that
quasicrystalline alloys should not be viewed as disordered
or glassy materials. Indeed, if the peak widths measured
in x-ray-diffraction experiments are taken as a measure of
the range of positional coherence, there are several exam-
ples of quasicrystals that are as well ordered as typical
crystalline intermetallic alloys (Bancel, 1989; Cxuryan
et al. , 1989).

The intrinsic incommensurability of the icosahedral
phase complicates the description of both its structure in
physical space and the reciprocal space distribution of in-

4Well-ordered structures can arise from the application of
rules governing the sequence of operations used to build the
structure. An example of this in one dimension, the Fibonacci
sequence, is described in Sec. III.

5Incomrnensurate structures lack periodic translational order
because two or more elements of translational symmetry that
are mutually incompatible are present.

A unit cell is the smallest structural element of a periodic
crystal that, when translated through the vectors of the Bravais
lattice, reproduces the crystal structure.

FIG. 2. Stereogram of an icosahedron and a set of possible
basis vectors for indexing icosahedral quasicrystals. A 3D im-

age can be viewed by staring at a point between the two
icosahedra and slowly crossing your eyes.
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where the e; are the basis vectors mentioned above, the
n; are integers, and go is a constant that sets the scale of
the diffraction pattern. Because of the inAation symme-
try, no single fundamental length (go)can be chosen ab
initio. For periodic crystals, a fundamental length scale
is dictated by the unit-cell edge lengths [e.g. , for cubic
crystals, the (100) refiection is found at wave vector 2m/a
along the h00 axis, where a is the lattice constant]. For
quasicrystals, the concept of a quasilattice constant is not
as clearly defined by the diffraction pattern.

7An alternative indexing scheme has been presented by Cahn,
Shechtman, and Gratias (1986).

tensity in scattering measurements. For example, an at-
tempt at indexing the diffraction patterns in Fig. 1 in
terms of the three Miller indices (hkl) used for conven-
tional crystalline structures leads to irrational indices
rather than integer values. As implied by the icosahedral
symmetry of the diffraction patterns, the appropriate
basis set for indexing icosahedral quasicrystal diffraction
patterns is defined by the six unique vectors that point
from the center to the vertices of an icosahedron, as
shown in Fig. 2. This means that each reciprocal-lattice
vector (diffraction peak) requires six indices for integer
indexing (Bancel et al. , 1985; Elser, 1985a). The fact
that six indices are required for indexing the diffraction
patterns of icosahedral alloys is also intimately related to
the proper approach for obtaining a description of the
real-space structure using conventional crystallographic
techniques. For icosahedral quasicrystals, one definition
of the reciprocal-lattice vectors is given by

6
~II =g y Iz dwell
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Two types of icosahedral quasilattices have been ob-
served. For simple icosahedral (SI) structures, such as
those found in Al-Mn, Al-Li-Cu (Ball and Lloyd, 1985;
Sainfort et a/. , 1985), Ga-Mg-Zn (Chen and Inoue, 1987),
and Ti-Mn-Si (Kelton et a/. , 1988), the indices are unre-
stricted (each n; may take on any integer value), in analo-

gy with simple cubic crystals. For face-centered
icosahedral (FCI) structures, such as Al-Cu-Fe, Al-Cu-
Ru (Tsai et a/. , 1988), and Al-Pd-Mn (Tsai et a/. , 1990),
the indices must have the same parity (n, all even or all
odd), in analogy with face-centered-cubic crystals. In-
terestingly, there are striking differences in the stabihty
and degree of disorder between these two classes of alloys
that appear to be related to an enhanced degree of chemi-
cal order in the FCI alloys. Structural differences be-
tween FCI and SI alloys have been the subject of intense
scrutiny over the past three years.

B. Prototypical crystalline approximants

If the goal is to understand the structure of quasicrys-
tals (in particular the icosahedral phase), why study crys-
talline approximants? The many reasons include the
facts that (1) quasicrystals typically form at compositions
near those of crystalline approximant phases; (2) the ap-
proximants provide a we11-defined starting point for mod-
els of the local atomic structure of quasicrystals; and (3)
both quasicrystalline and approximant phases have simi-
lar physical properties. Those of the approximants may
be easier to understand theoretically, since all of the cal-
culational mechanisms established for periodic crystals
may be applied more readily to them. All of these points
are, of course related. The compositional similarities be-
tween quasicrystals and their respective approximants,
for example, suggest a similarity in their local atomic
structures substantiated by similarities in physical prop-
erties. Approximants are important for studies of forma-
tion and stability, since they are more amenable to estab-
lished theoretical tools, such as band-structural calcula-
tional techniques. Reversible transformations between
quasicrystals and related crystalline approximant struc-
tures have been observed and studied in some detail over
the past two years. Furthermore, in some samples, the
quasicrystalline and approximant phases often coexist in
orientational epitaxy. In a real sense, then, crystalline ap-
proximants are the missing link between quasicrystals
and periodic crystals. In this section we describe the
structure of two prototypical crystalline approximants to
the icosahedral phase alloys.

Many complex crystalline structures contain large
clusters of atoms that are arranged in a near-perfect
tetrahedral coordination. These clusters are frequently
connected by other polyhedral atomic clusters. Perhaps
the simplest example of this is the body-centered-cubic
(bcc) structure of MoAli2 (see Pearson, 1972) containing
identical icosahedral clusters centered at the origin and
body center of the unit cell, linked by an octahedron that
shares opposite faces with both. In MoA1 &2 these

icosahedra contain 12 Al atoms on the vertices and one
Mo atom at the cluster center. A nearly identical con-
struction is found in a(AIMnSi) (Cooper and Robinson,
1966), a simple cubic phase that is closely related to the
icosahedral phase (i-phase) in Al-Mn-Si alloys. Here,
however, the basic structural unit is the 54-atom Mackay
icosahedron (Mackay, 1962), shown in Fig. 3. It consists
of an empty core surrounded by 12 Al atoms at the ver-
tices of an icosahedron, 12 Mn atoms beyond the original
12 Al atoms, and 30 Al atoms sitting on the twofold posi-
tions (icosahedron edge centers) defined by the Mn sites.
As in MoA1, 2, the Mackay icosahedra at the corners of
the cube are connected to those at the body center along
the threefold axes of the icosahedra by octohedra of Al
atoms from the edges of two opposing triangular faces
(Fig. 3). In reality, the icosahedral clusters in a(AIMnSi)
are distorted by the cubic environment, clusters at the
corners and body center being slightly different, and ad-
ditional Al atoms being found between second-nearest-
neighbor clusters along the ( 100) directions. A bcc ver-
sion of this phase, a(TiCrSi) (Libbert et a/. , 1992), is re-
lated to the i-phase in Ti-TM-Si alloys, where TM=V,
Cr, Mn, or Fe.

The Frank-Kasper phases (Frank and Kasper, 1958,
1959) are a particularly interesting class of structure,
since they are tetrahedrally close packed containing only
tetrahedral interstitial sites. Their structures are layered,
with four layers per lattice repeat distance along one
direction —two main layers and two subsidiary layers of
lower atomic density. The main layers consist of penta-
gons and/or hexagons and triangles; the subsidiary layers
consist of squares or rectangles and triangles. These
phases are typically found in transition-metal alloys.
Generally, the smaller atoms occupy the icosahedral sites
and the larger atoms sit in sites of nonicosahedral coordi-
nation, accommodating the frustration that arises from
packing icosahedra. The Bergman phase, Mg32(A1, Zn)49
(Bergman et a/. , 1957), and the isomorphic A15CuLi3
(Cherkashin et a/. , 1963; Guryan et a/. , 1988) structures
(bcc, space group Im3) are Frank-Kasper phases that are
closely related to the icosahedral phases that form in
those two alloys. Both of these structures are character-
ized by bcc packings of Pauling triacontahedral clusters
of atoms, as shown in Fig. 3. In contrast to the distribu-
tion of atomic sites in a(AIMnSi), virtually all of the
atoms in the cubic unit cell are found in these clusters.

C. Structural similarities
between the icosahedral phase
and cubic approximants

A preponderance of evidence suggests strong structur-
al similarities between these crystalline phases and their
respective quasicrystals. The most intense peaks in the
crystalline approximant diffraction patterns, for example,
correspond to the locations of prominent peaks of the re-
lated quasicrystal. Furthermore, quasicrystals frequently
form with compositions near those of approximants. For
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example, the "best" i(AIMnSi) composition is

A174Mn20Si6, yielding sharp diffraction peaks, more uni-
form contrast in transmission electron microscope (TEM)
images, and a crystallization temperature almost 200'C
higher than at other compositions (Chen and Chen,
1986). This composition is very near to that of
a(AIMnSi), A17$ 5Mn, 7 4Sii03. One of the most success-
ful approaches to finding new quasicrystals, in fact, is to
search for crystalline approximants. The first quasicrys-
tal discovered in an alloy with no transition metals,
i(AIMgZn), was found by quenching an alloy at the com-
position of the Bergman phase. (Ramachandrarao and
Sastry, 1985; Mukhopadhyay et al. , 1985).

One of the most convincing pieces of evidence for
structural similarity is the frequent occurrence of the i-
phase and the crystal approximant growing coherently
together in the same sample. Figure 4(a), for example,
displays a diffraction pattern taken from an i(AIMnSi) al-
loy that also contains cubic a(AIMnSi) (Koskenmaki
et al. , 1986). The planes perpendicular to a fivefold axis
of i(AIMnSi) and the (350) zone axis of the cubic
a(AIMnSi) approximately overlap. Diffraction
patterns taken along other zone axes demonstrate the
alignment of prominent crystallographic directions:
( 100 )b„/twofold i-phase, and ( 111)b„/threefold i

phase. Coherent phase boundaries can be found fre-
quently in TEM images of the phase mixture, as demon-
strated in Fig. 4(b) for i(TiVSi) (Zhang and Kelton, 1991).
Similar orientational relations have also been reported
for i(TeFeSi) and a bcc phase now known to be nearly
isostructural with a(AIMnSi) (Dong et al. , 1987), and
between the i-phase and the Bergman phase in Al-Mg-Zn
alloys (Audier et a/. , 1986).

III. DESCRI SING THE STRUCTURE
OF QUASICRYSTALS
AND THEIR CRYSTALLINE APPROXIMANTS

As is true for any solid, the structures of quasicrystals
can be described by an atomic density p(r), which can be
expanded as a Fourier series:

p(r)=gpgexp(ig r) .
Q

For periodic three-dimensional crystals, the wave vectors
(Q) in the expansion can be taken as the lattice vectors of
the reciprocal lattice, resulting in an atomic density
periodic in three dimensions. For an icosahedral quasi-
crystal, the set of basis vectors pointing from the center
to the vertices of an icosahedron are chosen, resulting in
a density function periodic in six, rather than three, di-
mensions. This description is not a truly novel innova-
tion, since such higher-dimensional treatments of incom-
mensurate structures have been used for many years (see,
for example, de Wolff, 1974 and Janner and Janssen,
1977). One of the most active areas in quasicrystal
research over the past five years has been crystallography
in six dimensions, using standard crystallographic tech-

niques to describe the atomic basis in higher dimensions.
The problem remains that quasicrystals and their crys-

talline approximants are inherently three-dimensional
structures. Indeed, much can be learned about the local
atomic configurations in quasicrystals by studying the oc-
currence of various local environments in the related ap-
proximant phases. To illustrate their close relationship
on a more global scale, however, we shall use a technique
termed cut and projection, which makes use of the
higher-dimensional description of quasicrystalline struc-
ture (de Bruijn, 1981; Kramer and Neri, 1984; Bak,
1985a, 1985b; Duneau and Katz, 1985; Kalugin et ah. ,
1985; Elser, 1986).

A. Aperiodic structures and periodic
approximants in one dimension
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FIG. 5. Generation of a Fibonacci sequence by the rule (l —+Is;
s ~l). The Fibonacci numbers on the right-hand side count the
number of members in a particular generation.

The 2D to 1D projection, described below, provides a
useful illustration of the cut and projection formalism, as
well as a means for describing the structure of experi-
mentally observed 1D incommensurate structures that
are closely related to quasicrystal approximants. One-
dimensional "quasicrystals" have been reported in Al-
Cu-Co, Al-Ni-Si, and Al-Cu-Mn (He et al. , 1988). The
in-plane structure of these layered materials is periodic,
while the planes themselves are stacked aperiodically in a
Fibonacci sequence, which is a series that can be generat-
ed by the simple inflation rule illustrated in Fig. 5. Each
successive generation of the sequence is constructed from
the concatenation of the previous two generations or,
equivalently, long segments (l) and short segments (s) in
each generation become (ls) and (l) segments, respective-
ly, in the next.

The closely related crystalline z phases are a series of
vacancy-ordered CsC1 structures with repeat distances
along the(111) directions that approximate a Fibonacci
sequence (Chattopadhyay et al. , 1987). In Al-Ni-Cu, for
example, T2 ~3 ~5 ~8 ~13 ~21 and '734 variants have been
identified (Amelinckx et al. , 1990), where the subscript
denotes the number of layers in the repeat unit. These
numbers are members of the Fibonacci sequence defined
by the recursion relation F„+1=F+F 1 ~ The one-
dimensional Fibonacci structure may be denoted by ~„in
the limit n ~~.

Figure 6(a) details the prescription for obtaining an
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b)

FIG. 6. Constructing a Fibonacci sequence by cut and projec-
tion. (a) The line segments represent atomic surfaces at sites of
a two-dimensional square lattice. The intersections of the atorn-
ic surfaces with the one-dimensional physical space X~~ place
atoms in a Fibonacci sequence. The dashed line represents a
rigid shift of the X~~ axis along the X direction. (b) An alterna-
tive scheme constructs a Fibonacci sequence of atoms in one di-
mension. The heavy lines represent the boundaries of an accep-
tance domain. All sites in the 2D lattice within the boundaries
are projected onto X~~. The horizontal and vertical dashed lines
project onto I and s segments along the X~~ axis. (c) An expand-
ed view of the Fourier transform of the Fibonacci sequence is
obtained by placing the Fourier transform of the surfaces in (a),
or the acceptance domain in (b), at the sites of a two-
dimensional lattice reciprocal to those of (a) and (b). The inten-
sity of a diffraction peak is proportional to the square of the am-
plitude of the transforms where it intersects the gl axis.

aperiodic array of atoms in one dimension from a period-
ic square lattice in two dimensions. We introduce a
second set of axes rotated by some angle 8 with respect to
the axes of the square lattice. The axis of most immedi-
ate interest, the physical space where our one-
dimensional atomic array appears, is labeled as X~~, while
its orthogonal partner is denoted by X ~ In order to pro-
duce pointlike atoms in the physical space, the atomic
basis in two dimensions can be represented by extended
objects, such as the heavy line segments of length I, per-
pendicular to X~' shown in Fig. 6(a). The intersection of
the basis with the X axis locates the position of atoms in
the physical space. The physical space, then, represents a
one-dimensional cut through the two-dimensional period-
ic lattice.

An alternate, but less general, construction that is use-
ful in many cases ignores the details of the atomic basis,
choosing instead an acceptance domain such that all of
the lattice points inside the acceptance domain are pro-
jected onto the physical space X~~. This is illustrated by
the heavy lines in Fig. 6(b), which define an acceptance
domain of width I. with the same orientation (0'=0) as
the X~I axis. Incommensurate stuctures in one dimension
result if cot(0 ) is an irrational number. For instance, if

cto(0')=r, as shown for Fig. 6(b), the atomic density
along Xl is described by a Fibonacci sequence of long (l)
and short (s) interatomic spacings that result from the
projection of the horizontal and vertical dashed lines in
the acceptance domain.

The diffraction pattern IFig. 6(c)] resulting from this
sequence can be computed through the Fourier trans-
form of the atomic basis in Fig. 6(a), or the acceptance
domain in Fig. 6(b), locating the points of intersection be-
tween the two-dimensional structure factor and the phys-
ical reciprocal space axis Q ~. These points of intersection
are the reciprocal-lattice vectors 6~~. Each di6'raction
peak has associated with it a value of G" and G (the
component of the 2D reciprocal-lattice vector orthogonal
to the physical space). In this simple example, the
Fourier transform of the basis, or acceptance domain, re-
sults in a set of 5 functions along the Q" axis (at specific
values of G~') with an intensity given by
[si (GnI. )/G I.] .

Although the Fibonacci lattice constructed here is
more properly classified as incommensurate rather than
quasicrystalline (since the signature of a quasicrystal is
the occurrence of noncrystallographic rotational sym-
metries), the cut and projection scheme illustrates the
essential relationship between quasicrystals and crystal-
line approximants. Consider the situation depicted in
Fig. 7. Here, the angle 0=cot '(r) between the X axis of
the two-dimensional lattice and the rotated X~~ axis di6'ers
from the angle 9'=cot '( —,') that describes the orienta-
tion of the acceptance domain. By defining cot(9)=r,
the lengths of the l and s segments are constrained to be
the same as those found for the apenodic sequence con-
structed before. Projecting the points within the new ac-
ceptance domain onto the X~~ axis, we find that the result-
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FIG. 7. A 3/2 rational approximant to the Fibonacci sequence,
obtained by defining the angle of inclination of the acceptance
domain so that cot(0')=3/2. The periodic unit cell is com-
posed of the sequence (lsl/s) projected from the sequence of hor-
izontal (h) and vertical (U) dashed lines in the acceptance
volume (hUhhu).

ing structure is a periodic sequence of the same segments
found in the Fibonacci sequence with a repeat distance of
(lslls). This structure is the —,

' rational approxirnant of
the aperiodic Fibonacci sequence. We need not stop
here. Periodic approximants to the Fibonacci sequence
of larger and larger unit-cell dimensions may be pro-
duced with cot(9') equal to any rational approximation
of T F + & /F„,where the F„arethe Fibonacci numbers.
The diffraction patterns from these approximants will be
similar to those of the Fibonacci sequence. The higher
the order of the approximant, the larger the unit cell, and
the more dificult it becomes to distinguish it from an
aperiodic structure.

So far we have concentrated mainly on the physical-
space axes of the rotated coordinate systems X" and Q'~.

Displacements of the structure along the X direction
correspond to displacements or translations in physical
space. The hydrodynamic modes associated with these
displacements are simply phonon modes. Distortions in
the unit-cell dimension (physical strain) result in
diffraction peak broadening that increases with 6 l~.

What about displacements of the structure, or accep-
tance domain, along the orthogonal X direction in Figs.
6(a) and 6(b). A rigid translation of the X" axis in Fig.
6(a), or of the acceptance domain in Fig. 6(b), along the
X direction will still result in a one-dimensional Fi-
bonacci sequence along X . As the dashed line in Fig.
6(a) shows, however, the arrangement of the l and s seg-
ments has changed. The diffraction pattern from this
new structure is identical to the original one. The rigid
shift along X has simply shifted our view of the struc-
ture by some distance along the X~l axis. It is well known
that incommensurate structures have additional degrees
of freedom associated with the relative phases of the den-
sity waves (in a Landau description) that are not found in
periodic crystals. These modes, associated with the dis-
placements along the X axis, are termed phason modes
(Bak, 1985a, 1985b; see also Lubensky, 1988).

Many of the models for quasicrystalline structures are
differentiated by the description of the acceptance
volume in higher dimensions. For example, two- and
three-dimensional Penrose tilings result from projections
of perfectly smooth, properly oriented acceptance
domains [analogous to that of Fig. 6(b)] embedded in 5D
and 6D hypercubic lattices, respectively. Penrose tilings
were the first class of models employed to describe the
structure of icosahedral alloys (Levine and Steinhardt,
1984, 1986).

The relative phase (phason) degrees of freedom for in-
commensurate structures are intimately connected to the
relationship between quasicrystals and their crystalline
approximants. We have already seen that rational ap-
proximants to the Fibonacci sequence may be generated
by "locking in" the slope of the acceptance domain to a
rational approximation of ~. Other possibilities exist if
the acceptance domain is allowed to meander through
the higher-dimensional periodic lattice, as shown in Fig.
8.

In Fig. 8(a), the slope of the acceptance domain fluctu-
ates about an average value equal to ~ '. The Auctua-
tions are bounded and result in a structure that is a Fi-
bonacci sequence, on average, with some local defects.
The diffraction pattern from such a structure consists of
Bragg peaks at the same positions as those of the Fi-
bonacci structure along with some diffuse scattering from
the defects. This description forms the basis of
"random-tiling" models for quasicrystals (Elser, 1985b;
Henley, 1988; Strandburg et al. , 1989; Widom et al. ,
1989).

The disorder produced by the meandering acceptance
domain in Fig. 8(b) is much more severe. These fluctua-
tions are unbounded (i.e., grow as X~~ increases) and can
produce rand'omized sequences of l and s segments.
Disordered structural models for the icosahedral alloys,
such as the "icosahedral-glass" model (Shechtman and
Blech, 1985; Stephens and Goldman, 1986; Elser, 1987;
Robertson and Moss, 1991), may be described in this
manner. More generally, the disorder generated in this
manner has been termed phason strain (Socolar and
Wright, 1987; Lubensky, 1988). The diffraction patterns
from such structures will consist of relatively sharp peaks
with line shapes, widths, and positions depending upon
the details of the fluctuations. The signature of phason
strain in a quasicrystal is the observation of shifts in the
position and/or broadening of diffraction peaks which
are independent of Gl~ but increasing with 6 . Almost
all of the quasicrystals studied before 1988 exhibit some
degree of phason strain (Horn et al. , 1986; Heiney et al. ,
1987).

Finally, in Fig. 8(c) we illustrate a "faceted" accep-
tance domain that produces a real-space structure that is
not aperiodic, but consists of a set of microcrystalline ap-
proximants to the aperiodic structure. It is particularly
illuminating to compare Figs. 8(b) and 8(c), since one can
anticipate increasing difficulty in discriminating between
phason-strained quasicrystals and such microcrystalline
approximants as the order of the approximant increases.
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A careful examination of many apparently quasicrystal-
line diffraction patterns reveals spot shifting and spot an-
isotropy; further, low-intensity peaks frequently develop
in the diffraction patterns of annealed quasicrystals.
While these effects are often explained in terms of phason
strain, they can also be characteristic of high-order ra-
tional crystalline approximants. These two approaches

are in many ways equivalent; arguments favoring one or
the other often enter the realm of philosophy.

B. Quasicrystals and approximants in two
and three dimensions

Extending the discussion in Sec. II.A to higher dimen-
sions is straightforward but dificult to visualize. Imagine
starting with a periodic lattice of points in five dimen-
sions. If a two-dimensional plane representing the two-
dimensional physical space is oriented perpendicular to
the body diagonal of the five-dimensional cube, the cube
edges will project onto five line segments of the same
length, equally spaced around a circle. The resulting full
projection is actually a 2D Penrose tiling, which pro-
duces a pattern of Bragg diffraction spots that rejects the
symmetry of the 5D lattice. In particular, the body diag-
onal of the five-dimensional cube is a fivefold symmetry
axis, just as the body diagonal of a three-dimensional
cube is a threefold axis. Consequently, the diffraction
pattern also has fivefold symmetry.

For the icosahedral alloys, characterized by six fivefold
axes, the 3D structure results from the projection of
points of a 6D hypercubic lattice that are contained in a
3D acceptance domain appropriately oriented (see below)
with respect to the 6D lattice. The analog of the accep-
tance strip of width L in the X direction for the 2D to
1D projection is a triacontahedron in the 3D space (X )

orthogonal to the physical space (Xl). The analogs of
the l and s segments that result from the projection of
points in the acceptance strip for the 2D to 1D projection
are oblate and prolate rhombohedra. The edge length of
these rhombohedra az, plays a role analogous to the lat-
tice constant for periodic crystals and is therefore called
the quasaattice constant for the tiling (Elser, 1985a).

As discussed in Sec. III.A, rational crystalline approxi-
mants can be constructed by generalizing the projection
scheme (Elser and Henley, 1985; Kulkarni, 1989; Torres
et al. , 1989; Mukhopadhyay et al. , 1991). Changing the
orientation of the acceptance domain with respect to the
6D hypercubic lattice yields a large cubic unit-cell crys-
talline phase that approximates locally the structure of
the icosahedral phase. For the icosahedral phase, the
orientations of the acceptance domain and the physical
space are specified by a 6 X 6 orientation matrix given by
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FIG. 8. Schematic of other possible structures for quasicrystals
using the cut and project method. (a) A meandering, but
bounded, acceptance volume produces a structure which, on
average, is a Fibonacci sequence with some defects (random-
tiling models). One defect is found in the shaded circle [com-
pare with Fig. 6(b)]. (b) A meandering, unbounded acceptance
volume produces a heavily disordered sequence (icosahedral-
glass or phason-strained quasicrystal). (c) A faceted acceptance
domain, with commensurate slopes„can produce regions of mi-

crocrystalline approximants.

0 1

(3)

8The scaling constant go introduced in the indexing scheme
described in Sec. III.A is given by ~/aR.
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The upper three row vectors give the 6D coordinates of
three vectors that span the physical space (X'), and the
lower three rows are the vectors spanning the orthogonal
space (X ). The columns of X" and Xi give the 3D coor-
dinates of the 6D basis vectors in the physical and or-
thogonal subspaces, respectively.

A cubic rational approximant is obtained when ~, in
the lower three rows of the orientation matrix, is re-
placed by an integer ratio q/p that approximates w. A
particular set of crystalline approximants, the Fibonacci
rational approximants, are obtained if q and p are re-
placed by two consecutive members of the Fibonacci
series:

6
II

Gq/p P +iei, q/p
e/p i =~

(5)

the 3D Penrose lattice or, equivalently, the projection of
the basis vectors of the 6D hypercubic lattice onto the
3D physical space.

To emphasize the correspondence between the
diffraction patterns from crystalline approximants and
the icosahedral phase, the prominent reAections for the
crystalline approximants can be written in terms of a set
of distorted basis vectors [see Eq. (I)], e,. /„as

q/p: 1/1, 2/1, 3/2, 5/3, 8/5, 13/8,

21/13, 34/21, . . . .
' q/P

( 2+ 2) 1/2

0 p q

q 0 —p
We emphasize that the rational ratio is not restricted to
the Fibonacci series, since non-Fibonacci rational ap-
proximants have been observed experimentally (see Sec.
III.C).

Elser and Henley (1985) first demonstrated that the cu-
bic u(AIMnSi) and Bergman structures can be obtained
by a 1/I rational projection from the same atomic
decoration of the 6D hypercubic lattice used to define the
icosahedral phases. They also made the first quantitative
assessment of the similarities between these bcc [or al-
most bcc in the case of a(AIMnSi)j phases and the struc-
ture of the icosahedral phase, demonstrating that the
atomic structures of the crystal phases can be construct-
ed from the same building blocks assumed for the
icosahedral phases. These building blocks may be taken
either as the icosahedral clusters of atoms described in
Sec. II.B, or as a set of two types of rhombohedral bricks,
described above, which may also be derived from the
decomposition of the icosahedral clusters.

Henley (1986) argued that icosahedral alloys can be
classified, based on structural differences in their crystal-
line approximants, by the ratio of their quasilattice con-
stant a~ to the typical interatomic spacings d determined
from the appropriate approximant. If az /d =2.0, the i
phase belongs to the (Al, Zn)Mg class; if a2E /d =1.65, it
belongs to the (A1MnSi) class. Using this method, most
quasicrystals appear to fall into the(A1MnSi) class, in-
cluding i(PdUSi), i(AICuV), i(TiMnSi), and i(AlCuFe);
i(AILiCu) belongs to the (Al, Zn)Mg class. A similar
classification scheme has been proposed by Yang (1988).

The lattice parameters of approximants increase with
the order of the rational approximant; they are deter-
mined readily by projecting the 6D vectors that define
the edges of the 3D unit cells using the orientation ma-
trix for the approximant. For a cubic 6D lattice and in-
tegers p and q,

2(p +qr)a~
q/P (2+ )

l /2

where, again, az is the quasilattice constant defined as
the edge length of the rhombohedral cells constituting
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FIG. 9. Calculated diffraction patterns along the fivefold axis
for successive Fibonacci approximants to the icosahedral phase:
(a) q /p =~/1, a "perfect" quasicrystal; (b) q /p = 1/1; (c)
q/p =2/1; (d) q/p =3/2; (e) q/p =5/3.

These basis vectors point to the vertices of a distorted
icosahedron. For the undecorated lattice, the diffraction
pattern can be calculated in a manner analogous to the
prescription in Sec. II.A for the acceptance strip used for
the 2D to 1D projection. The intensities of the
diffraction spots are determined by the Fourier transform
of the acceptance domain.

Figure 9 shows calculated diffraction patterns taken
along the pseudo-fivefold direction for different values of
q/p. The size of the spots corresponds directly with their
intensities, taken to be inversely proportional to the
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values of 6 & . For comparison, the fivefold diffraction
pattern calculated for the icosahedral phase is also
shown. Diffraction patterns from the lower-order ap-
proximants, such as the 1/1 and 2/1, clearly display the
periodicity of the Bravais lattice; they are distinct from
the patterns of the i-phase. As the order of the approxi-
mant increases, however, this distinction becomes less
clear. The 3/2 approximant is distinguishable from the
icosahedral phase by the elongation of the inner circle of

spots in the pseudo-fivefold pattern and the distortions of
the small pentagonal arrangements of spots. The
pseudo-fivefold diffraction pattern from the 5/3 approxi-
mant in Fig. 9 is nearly indistinguishable from the five-
fold pattern of the icosahedral quasicrystal.

A more quantitative assessment of the shifts in
diffraction spot positions between a quasicrystal and its
rational approximant has been described in detail by
Mukhopadhay et al. (1991). Denoting the reciprocal-
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lattice vector of a reAection from the icosahedral phase
by G), and that from the rational approximant by Gq~/~,

they show that

AG=Gf —G" /
= Gt . (6)

From Eq. (6) one sees that b,G~O as the ratio q/p ~r,
and that the magnitude and direction of the displacement
depends upon the Cx of the icosahedral peak; peaks with
larger G values are shifted more. Quite frequently, the
diffraction peaks from crystalline approximants appear to
be asymmetric distortions of the icosahedral peaks in
TEM patterns, similar to the effect of phason strain. In
order to distinguish clearly between the two patterns,
high-resolution x-ray-diffraction measurements of the
peak positions are required.
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C. Observed rational approximants

Subsequent to the first observation that a(A1MnSi) and
the Bergman (Al, Zn)Mg crystal structures could be ob-
tained by a 1/1 rational projection, similar phases have
been identified in a wide variety of alloys, including Ti-
Fe-Si (Dong et al. , 1987), Ti-Mn-Si (Holzer et al. , 1989),
TiCrSi (Libbert et al. , 1992), Ti-V-Si (Zhang and Kelton,
1991), Ga-Mg-Zn (Spaepen et al. , 1990), Al-Li-Cu
(Marcus and Elser, 1986), and Al-Cu-Ru (Shield et al. ,
1992).

The 2/1 cubic approximant reported in Ga-Mg-Zn,
shown in Fig. 11(c)„was reported by Spaepen et al.
(1990). 3/2 cubic approximants have also been observed,
first in Mg-Al-Zn (Mukhopadyay et al. , 1991) and more
recently in Ti-Zr-Ni alloys (Zhang and Kelton, 1992),
giving identical diffraction patterns in both cases. The
diffraction patterns for 3/2 (Ti-Zr-Ni) are shown in Fig.
10. Despite their similarity to the diffraction patterns
from the i-phase, they clearly have a lower symmetry.
The fivefold symmetry [Fig. 10(a)], for example, has been
reduced to a twofold symmetry due to small shifts in the
spot positions. The first circle of spots around the center
has been distorted into an ellipse [in agreement with the
3/2 calculated pseudo-fivefold pattern shown in Fig.
9(d)]. Similar distortions are also evident in the twofold
and threefold patterns. Because of the lower cubic sym-
metry, only eight of the 20 icosahedral threefold zones
can be aligned parallel to cubic ( 111) directions; only six
of the icosahedral twofold zones are then parallel to cu-
bic ( 100 ) directions. There are therefore two ine-
quivalent pseudo-icosahedral twofold zones [Figs. 10(c)
and 10(d)]. Those patterns taken along the (100) direc-
tions show the spots shifted along twofold directions;
spots are shifted along fivefold directions in the other
patterns. Similarly, threefold patterns lying along the cu-
bic ( 111) directions have true threefold rotational sym-
metry; those lying along the other directions have only a
twofold symmetry [Figs. 10(e) and 10(f)]. All of these
patterns can be indexed to a cubic structure; this is
demonstrated in Fig. 11(b) for one quadrant of the

FIG. 11. Icosahedral fivefold and pseudo-fivefold diA'raction

patterns of the i-phase and three crystalline approximants in
Ga-Mg-Zn: (a) i-phase; (b) 3/2-2/1-2/1 side-centered ortho-
rhombic phase along the [110] zone axis; (c) 2/1 cubic phase
along the [058] zone axis; (d) 2/1 rhombohedral phase along the
[001] zone axis. The marker in the figure corresponds to 1 A
(from Spaepen et al. , 1990).

pseudo-fivefold pattern.
As already mentioned, the ratio of integers that define

the approximant need not be members of the Fibonacci
series. Other cubic rational approximants have been re-
ported in Al-W-Fe by, for example, Mukhopadyay et aI.
(1992). The concept of rational approximants can be gen-
eralized even further to include projections from noncu-
bic 6D lattices, such as tetragonal, orthorhombic, and
rhombohedral. Spaepen et al. (1990) have identified
3/2-2/1-2/1 side-centered orthorhombic and 2/1 rhom-
bohedral approximants in conventionally solidified
GaMgZn alloys, shown in Fig. 11. Hexagonal, ortho-
rhombic, and 1/1 cubic lattices have been reported in an-
nealed Ti-Mn-Si alloys, resulting from a transformation
of the i-phase in the quenched samples. From TEM stud-
ies, those titanium transition-metal phases appear to be
constructed from identical icosahedral units packed in
different arrangements (Levine et a/. , 1992).

Although we have not discussed the quasicrystallogra-
phy of other aperiodic structures, we point out that crys-
talline approximants to other quasicrystals also exist.
The most impressive example forms in slowly cooled Al-
Cu-Co alloys as an approximant to the decagonal phase,
a quasicrystal that is periodic in one dimension and
quasiperiodic in the other two. Figure 12 shows an en-
larged view of one quadrant from a pseudo-tenfold pat-
tern of this approximant, where the intensity modula-
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FIG. 12. Magnified region of a portion of the pseudo-tenfold selected area diffraction (SAD) pattern from decagonal Al«Co2zCu, 4
showing the periodic array of diftraction spots, corresponding to a repeat distance of about 100 A (from Daulton and Kelton, 1992).

tions give rise to a striking, nearly tenfold pattern.
Closer inspection, however, reveals a rhombic array of
finely spaced periodic diffraction spots (indicated in
white), with a spacing that corresponds to a unit-cell di-
mension of over 100 A (Daulton et al. , 1992). Earlier in-
dications of this phase were found in bright-field TEM
photographs (Launois et al. , 1990). While the existence
of intermetallic crystalline phases with unit-cell edge
lengths between 50 and 100 A was undreamed of only a
few years ago, they now appear to be quite common,
especially in aluminum and titanium transition-metal al-
loys.

IV. USING CRYSTALLINE APPROXIMANTS
TO MODEL THE STRUCTURE
OF QUASICRYSTALS

Having established the close structural relationships
between icosahedral quasicrystals and their respective
approximants, we now

briefly

describe some of the

methods employed to model quasicrystalline structures
using the known structure of the crystalline approxi-
mants. Structural units, such as the Mackay icosahedra
or prolate and oblate rhombohedra, are assumed to be
the fundamental units in quasicrystals and crystal ap-
proximants. The decorations of these clusters are deter-
mined by fitting x-ray-diffraction patterns taken from the
crystalline phases. Following the methods of standard
crystallography, the atomic structures of quasicrystals
are defined by constructing a tiling network (somewhat
equivalent to a Bravais lattice) and decorating that net-
work with the clusters. Two tiling/cluster-based ap-
proaches are popular. The first approach is based upon
the aperiodic packings of two inequivalent tiles. There
are two equilibrium binary tiling models that employ ob-
late and prolate rhombohedra that have been mentioned
in Sec. III.A. Penrose tiling models minimize the enthal-
pic contribution to the free energy by imposing rigid
matching rules for the tiling. The random-tiling models
minimize the free energy by maximizing the entropic
contribution at nonzero temperature. Which tiling pro-
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vides the more appropriate description of quasicrystalline
structures is still a matter of debate.

An alternative, nonequilibrium tiling- or cluster-based
approach is indicated by the considerable evidence for
the existence of icosahedral clusters in un der cooled
liquids and glasses, as well as in the crystalline approxi-
mants. If a liquid were cooled su%ciently fast, these clus-
ters would have insufhcient time to pack into the periodic
arrangement of the approximants. Instead, they may
pack with the correct local symmetry but with reduced
coordination number, forming an orientationally ordered
but translationally disordered random-cluster packing,
first called the icosahedral glass. For some icosahedral
phases (especially the titanium-based quasicrystals), the
icosahedral glass model is likely a good one. Interesting-
ly, Henley (1991) has argued that, as the environmental
constraints are increased further, a random tiling results,
suggesting a continuum of possible atomic structures for
quasicrystals. Following the methods for the binary til-
ings, the atomic decoration of such structures is obtained
by identifying fundamental clusters within the crystal ap-
proximants and assuming that their integrity is main-
tained with different packings.

Finally, an alternate approach employing the cut and
project method, described in Sec. III, uses the atomic
decoration of clusters found in the approximant phases
to define the atomic basis of the 6D hypercubic lattice.
The quasicrystalline structure in 3D is then determined
by reorienting the acceptance domain and projecting the
structure back into three dimensions. Taking a(AIMnSi)
to be a I/I projection, Cahn et al. (1988a, 1988b) and
Gratias et al. (1988) determined the atomic decoration of
the hypercubic lattice from a Patterson map constructed
from scattering studies of that phase. Using that decora-
tion and changing the window orientation to that for the
quasicrystal, the atomic structure of i(AIMnSi) was ob-
tained. Although reasonable agreement with measured
diffraction intensities was demonstrated, the resultant
structure contained many unphysically short atomic sep-
arations. The proper choice of polyhedral atomic sur-
faces in 6D, instead of the spherical ones first assumed,
avoids many of these problems, giving reasonable atomic
distances, the correct density, and a local structure simi-
lar to that of a(AIMnSi), containing a large number of
Mackay icosahedra (MI) (66.6% of the atoms reside in
MIs as opposed to 78.3% in the a phase). This method
and its refinements (see, for example, Qiu and Jaric, 1990)
have also been applied to the structural determination of
several quasicrystalline systems. Presently, this seems to
be the best technique available for determining the local
atomic structure of the icosahedral phase in something
approaching an unambiguous manner.

of rational approximants (see, for example, Chatto-
padhyay and Mukhopadhyay, 1987; Zhang and Kuo,
1990). As discussed in Sec. III.A, long-wavelength
phason

fluctuations
in quasicrystals modify the local

atomic configurations. These can lock into special values
to produce periodic approximants to the quasicrystal.
All possible phason-induced structural modifications ex-
pected for the icosahedral phase were recently enumerat-
ed by Ishii (1989). These include space-group
modifications resulting in the approximants discussed
above.

Transmission electron microscope investigations of
i(AICuFe) (Audier and Guyot, 1990) provide the best evi-
dence for a reversible structura1 transformation to a
lower-symmetry crystalline phase at 670 C. The x-ray-
scattering intensity of the high

~
G

~
peaks increases

dramatically with annealing, suggesting a soft-phason
mechanism analogous to the more familiar phonon
softening mode for some phase transformations in crys-
talline structures. Transmission electron microscope
studies show an increased spot anisotropy below the tran-
sition temperature [Fig. 13(a)] that can be explained as a
transformation to a fine-grained rhombohedral approxi-
mant phase. As illustrated by a comparison of Figs. 13(a)
and 13(b), the twinned periodic structure below the tran-
sition temperature (T, ) can be distinguished from the

4 I W %55

F I i

e a.:.~

V. PHASE TRANSITIONS BETWEEN
APPROXIMANTS AND QUASICRYSTALS

It has been suggested that upon annealing, some quasi-
crystals crystallize by transforming through a succession

FIG. 13. Comparison of the electron diffraction patterns and
high-resolution micrographs of the same area of an Al-Cu-Fe
sample: (a) crystalline rhombohedral phase below 670 C; (b)
icosahedral quasicrystal above 670 C (from Audier and guyot,
1990).
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icosahedral structure above T, in the TEM and high-
resolution electron microscopy (HREM) images.

VI. ELECTRONIC AND El ECTRON-TRANSPORT
PROPERTIES OF QUASlCRYSTALS
AND APPROXIMANTS

Initial studies of electron transport in the icosahedral
phase indicated metallic glasslike behavior, with large re-
sidual resistivities (po of order 100 pQ cm) and small neg-
ative temperature coeScients, presumably rejecting the
structural disorder indicated by peak broadening in x-
ray-diffraction patterns (Berger et a/. , 1986; Kelton and
Holzer, 1988). In more recent studies of Al-Cu-Fe and
Al-Cu-Ru alloys, however, in which stable, virtually
defect-free icosahedral phases can be formed, the resis-
tivity is enormous, increasing to over 10000 pQcm as
the degree of structural order increases (Higgs et a/. ,
1990; Mizutani et a/. , 1990; Klein et a/. , 1991). Never
before have such large resistivities, approaching the
minimum metallic conductivity (Mott, 1987), been re-
ported in good metal alloys. Furthermore, the resistivity
decreases at high temperature, reminiscent of' what is ob-
served in heavily doped semiconductors. Anomalies have
been observed in other probes of transport properties, in-
cluding the Hall effect, thermopower, and in the low-
temperature specific heat (see Poon, 1992). All of these
features suggest the presence of a gap (or pseudogap) in
the electronic density of states near the Fermi energy.

Do these unusual transport properties arise by scatter-
ing from the quasilattice, or do they result from the local
icosahedral structural order common to the i-phase and
crystalline approximants? Annealed (and hence well-
ordered) samples of a(A1MnSi) have high room-
temperature and residual resistivities tp( 300 K)
=3100 pQcm with p(0. 5 K)/p(300 K) =2], and large
low-temperature Hall (RH ) and thermoelectric power (S)
coefficients with anomalous temperature dependences
(Poon, 1992). Small values for the low-temperature
specific heat (@=0.6 mJ/g-at. K) indicates a low density
of carriers. Similar features are also found in rhom-
bohedral Al-Cu-Fe, corresponding well with those found
in the i-phase.

Questions of electronic structure are typically centered
around questions of formation and stability. The funda-
mental question remains unanswered: Why is icosahedral
order so strongly preferred in many cases? The answer,
of course, must come from considerations of atomic size,
strain, and kinetic and electronic effects. One approach
(Villars et a/. , 1986; Rabe et a/. , 1992), based on the iso-
lation of certain structures to regions of multidimension-
al diagrams of phenomenological variables constructed
from electronegativity data, atomic valences, atomic
sizes, etc. , has proved useful although it is not c1ear that
this method is more predictive than considerations of
similar crystalline structures, for example.

A more fundamental approach is the study of the sta-
bility of local atomic configurations. Since Bloch's

theorem is inapplicable for quasicrystals, interferences
must be drawn from calculations on small clusters and
crystal approximants. Fujiwara (1989) first calculated
the electronic density of states (DOS) for a(AiMnSi);
similar calculations have also been made for R(AlLiCu),
A1MgZn, and the decagonal approximant A1,3Fe4. These
show that the Mackay icosahedron and the truncated
Icosahedl OIl, p1 eseIlt 1Il the 1/1 approximants aIld
presumably present in the higher-order rational approxi-
mants, and the icosahedral phase are particularly stable
units, supporting their use in structural models.

While Brillouin zones, as such, cannot be constructed
for aperiodic crystals, some experimental and theoretical
studies of electronic and vibrational properties of the
icosahedral phase indicate the existence of "quasizones"
(Benoit et a/. , 1990; Niizeki and Akamatsu, 1990; Gold-
man et a/. , 1992; Poon, 1992). A Hume-Rothery mecha-
nism, where a pseudogap develops in the DOS (arising
from the Fermi surface touching the quasi-Brillouin-zone
boundary), increases the cohesive energy and may then
stabilize the crystalline or quasicrystalline structures.
This works most efficiently in icosahedral quasicrystals,
because the quasizones are almost spherical. The high
resistivities observed are consistent with the Hume-
Rothery mechanism. The unusual behavior of S(T) and
R~ and the dramatic changes in these quantities and in

p( T) with small (near 1 at. %%uo )compositiona 1 variation s in
i(A1CuRu), i(A1CuFe), and i(A1CuRuSi) also suggest a
low concentration of carriers at EF. In addition, soft-x-
ray spectroscopy studies in quasicrystals and high-order
approximants indicate the presence of a deep minimum
in the DOS; the pseudogap is wider and deeper in the
quasicrystal than in the approximant (Belin and Danhka-
zi, 1992).

As well as providing a means for understanding quasi-
crystal and crystal approximant formation, these obser-
vations suggest that the unusual transport properties, in-
cluding the tendency toward a metal-insulator transition,
do not arise from scattering effects of the quasilattice, but
result from a reduction in the carrier concentration
caused by the opening of the pseudogap in systems with
local icosahedral order. It appears that electronic and
transport properties unique to the quasicrystal arising
solely from its quasiperiodicity have yet to be discovered.
These points are discussed in more detail in the several
review articles written recently on these subjects
(Carlsson and Phillips, 1991; Fujiwara and Tsunetsuga,
1991;Kimura and Takeuchi, 1991;Poon, 1992).

Vll. CONCLUDING REMARKS

In the seven years of intense study since their
discovery, quasicrystals have evolved from their initial
position as a laboratory curiosity to, perhaps, the most
thoroughly studied class of intermetallic compounds. In
fact, instead of forming rarely under only highly ideal-
ized conditions, quasicrystals occur frequently. In many
ways, however, the field of research has come full circle.
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In 1985, most researchers in the field found themselves
defending the very existence of quasicrystals against the
position that they were merely large unit-cell, possibly
twinned crystals. Now, many of those same researchers
have turned to the study of complex crystalline struc-
tures, so closely similar to quasicrystals that only ex-
tremely precise measurements can distinguish the two
structures, in order to gain additional insight into the
structure, properties, and formability of the quasicrystal-
line phase.

These crystalline approxirnants have provided a wealth
of information on such questions, serving as good start-
ing points for structural determinations and calculated
vibrational and electronic structures for quasicrystals.
Due to their large unit-cell sizes, however, even these cal-
culations are more dificult than those usually attempted
and will require new techniques and insight for their
solution. Such studies must be fueled by experimental
measurements of the electrical, structural, and mechani-
cal properties of both crystalline and quasicrystalline al-
loys. Clearly, this field is sti11 in its infancy; exciting
discoveries and further insights into the rules employed
by nature to form condensed-matter phases are yet
ahead.
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