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Breaking of spatial homogeneity and the emergence of spatio-temporal order and disorder are striking
phenomena abundant in nature. One possible origin for such ordering and disordering processes and for

the transition between them is discussed.
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I. INTRODUCTION

Nature is full of complex phenomena, yet very many of
them have long evaded the grasp of the human intellect.
The governing equations for such phenomena, are avail-
able in many cases, usually in the form of nonlinear par-
tial differential equations. These equations, however, are
difficult to work with and have made for slow progress in
our understanding of complex phenomena. The past two
decades have seen an upsurge of interest in understand-
ing the qualitative contents of these equations, under the
name of “chaos.”

In the physical sciences, important advances have been
further stimulated by the interplay between theory and
experiment. From the experimental side, oscillating phy-
sicochemical reactions have been the subject of fairly ex-
tensive research efforts. They exhibit very rich dynami-
cal behavior including chaos; they also have certain im-
plications for biological systems. Here we consider this
phenomenon from a semi-empirical point of view in or-
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der to gain insight into the nature of the chaos involved.
The study of physicochemical oscillations has wider ap-
plications, as we shall see, to many other physical situa-
tions. We first briefly outline the experimental facts on
these chemical reactions.

A. Physicochemical oscillations:
experimental facts

Belousov (1959) reported that a well-stirred homogene-
ous solution containing bromate ions, malonic acid, sul-
furic acid, and a small amount of catalysis, cerous ion,
and iron will undergo temporal oscillation. If one chemi-
cal component is represented by red and the other by
blue, the whole solution turns alternately from red to
blue and back again, say, every five minutes. This
“chemical clock” behavior was surprising, as it certainly
appeared counterintuitive.

Various scientists have since reported the ability of
such a solution to form spatial patterns. For example,
when the reaction proceeds in a long thin, vertical tube,
horizontal bands may appear corresponding to alternat-
ing high-concentration regions of the chemicals (Busse,
1969). This is an instance of a spatially inhomogeneous
mixture in a single dimension.

If a system remains closed and the raw materials neces-
sary for the reaction are exhausted, its oscillations even-
tually die out. In the usual open reactors, in the form of
long narrow horizontal cylinders, raw materials are con-
stantly supplied and then washed away after use. Chemi-
cal reactions in such open systems can present striking
features of self-sustained spatio-temporal oscillation, in-
cluding chaos. Understanding the characteristics of
chaotic oscillations has been a central issue during the
past decade (Epstein, 1983; Roux et al., 1983).
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B. Theoretical framework

Chemical reaction-diffusion (Nicolis and Prigogine,
1977) and many other physical phenomena are governed
by macroscopic equations of the type

C,—DC, =F(C), (1)

where the particle density vector C represents the con-
centrations (¢, . ..,c,) of n constituents. This equation
relates the nonuniformity of a concentration gradient to
diffusion through the second-order space derivative. The
mixture is assumed to be so dilute that the diffusion
coefficients D;; are constant and no couplings occur be-
tween fluxes of different components i and j, yielding a
diagonal matrix D of constant diffusion coefficients. The
function F describes general nonlinear phenomena. We
further assume there that no convection results from the
mass flow,! so that the function F describes the overall
rate of production of ¢; purely from the chemical reac-
tions. In such a case the F; will be nonlinear polynomial
functions of the {c;} reflecting the products of densities
relevant to collision frequencies.

Consider a system that admits a steady uniform solu-
tion C, for which the nonlinear term F(C,) identically
vanishes. Now add to C; a small perturbation c, so that
the system is homogeneous in space but oscillating in
time with a characteristic frequency w,. The situation
may be expressed as C=Cy+c, where c,~=a0elw°t,
ay << |Cyl, with w, determined by the system. Any fric-
tion in the system may cause the fluctuation to die out.
Suppose we now furnish a ‘“vitamin” to the fluctuation,
which then starts to grow at a certain critical rate R,.
Here R may denote a catalysis, or temperature, called in
general a “control parameter.” Thus at R =R,, the
linear growth rate & of a, (~e*) changes from negative
to positive. But if R continued to grow, the nonlinear
term F would become important, bringing the system
into the nonlinear regime, which we do not know much
about.

Just above the critical threshold, however, we may still
understand the behavior by writing a new solution as
¢ =a0¢elm°t, where 1 presumably describes the possible
modifications of the homogeneous phase. For
definiteness, let € be the order of magnitude of the fluc-
tuations, a,~e¢€, and we express the post-critical regime
in terms of R as R =Ry(1+0(€?)). The relevant long

f there is a mass flow v, its time rate dv/dt =9v /3t +(v-V)v
naturally involves the quadratic nonlinear convective term
(v-V)v, which complicates the reaction phenomenon. Here
mass transport is restricted to be possible only through the
diffusion mechanism of the second-order space derivative term.
In experiments, a porous gel medium is used as a substrate to
remove convection.
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time and large length scales that follow accordingly are?
7=¢%, E=er. The introduction of the smallness parame-
ter € can then be exploited to single out the dominant
term of Eq. (1). The precise form of the equation for the
slowly varying amplitude function ¥(£,7) reduces to
(Kuramoto and Tsuzuki 1975)

e AL (2)

where a, is real, while B=8,+if3; and y =y, +iy,; are in
general complex. For example, 3, and [3; are expressed
for a two-component system in terms of the diffusion
coefficients of the constituents as 8, <(D,, +D,,) and
B; < (D, —D,,). We have thus extracted from the set of
rather complicated dynamical equations the only part
physically relevant to dynamical phase transitions.

Once ¢ is determined from Eq. (2), the general solu-
tion, expressing 9= |1|e’®, can be written up to the order
of €, as

ci(x,t;€,7)=2¢|tb|cos(wet +@) , (3)
¢, (x,t;&,7)=2€lal|y|cos(wpt + O+ ¢) , 4)

where |a| is generally a complex constant and
tang=Ima /Rea. Thus the different variables become in-
terlinked through v as they grow. On the other hand,
Eq. (2) admits a spatially homogeneous but temporally
oscillating solution,

iy, A%r —_—
WET)=Age 0, Ag=Via, /v, . (5)
This solution, when incorporated into Eq. (3), shows how
the initially infinitesimal c relaxes to temporal oscillation
with a relatively large amplitude in the post-critical re-
gime, thus explaining the spatially uniform bulk oscilla-
tory ‘“‘chemical clock” behavior observed by Belousov
(1959).

This homogeneous state, however, can be unstable to
particular types of fluctuating spatial inhomogeneity
whose amplitudes may grow into a nonlinear pattern. In
this Colloquium, we limit ourselves to discussing reac-
tions in a homogeneous phase, where breaking of spatial
homogeneity and the emergence of spatio-temporal order

2For this post-critical regime of R =R (1+0(e€?)), the linear
growth rate must be {~AR ~ O(€?*). This suggests that fluctua-
tions will grow in time on the scale 7=¢€%* =0(1). In many
physical systems, only a single characteristic mode becomes un-
stable at R =R, while the neighboring modes become unstable
as R increases above R =R, yielding dR /dk Iko =0at R =R,.

The linear growth rate ¢ of the neighboring mode with a wave
number k=kyo(1+O0(€)) then becomes E~AR~3J*R/
k2| kO(Ak)2~62, consistent without initial setting of the post-

critical regime as R =R (1+0(€?)). The effect of wave-
number disturbance becomes important when (Ak /ky)x(~ex)
becomes O(1), which naturally introduces a relevant large
length scale £=ex=0(1).
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are most striking. We thus aim here to describe the
dynamical phase transitions in terms of a universal func-
tion .

Il. THE UNIVERSAL FUNCTION
FOR POST-CRITICAL PHENOMENA

Equation (2) is a universal evolution equation pertain-
ing to the post-critical regime for many physical systems,
whose macroscopic governing equations are of the type
(Newell, 1974).

L(3/0t,0/0x ;R)p(x,t)=MPN¢ , (6)

where L, M, N are linear operators and R is a control pa-
rameter. Significantly, the Navier-Stokes equations of
motion for fluids fall into this group. The acceleration of
the fluids, dv/dt =9v /3t +(v-V)v, naturally involves the
quadratically nonlinear convective term, and its control
parameter R is the Reynolds number, namely, the prod-
uct of the system’s mean velocity and of its characteristic
length divided by the molecular viscosity. Consequently
Eq. (2) appears in various phemomena involving hydro-
dynamics.

Various authors have derived Eq. (2) in different con-
texts. We note among others that the equation was origi-
nally considered by Ginzburg and Landau in the context
of superconductive phase transitions (Lifshitz and Pi-
taevskii, 1980), and independently by Newell and White-
head (1967) in the context of Bénard convection® and by
Kuramoto and Tsuzuki (1975) in chemical reaction-
diffusion.

The dynamics of Eq. (2), however, depends quite sensi-
tively on its coefficients. When all of these are real posi-
tive, as in the phase transitions of superconductivity and
in Bénard convection, energy is constantly supplied at
large length scales through the a, term. Physically, this
supply can be represented by boundary conditions, for in-
stance, by keeping two points of the system at different
temperatures. The energy is then dissipated at small
length scales through the f3, term for example, in the
form of heat flow. In the absence of space-dependent ma-
terial properties, the nonlinear damping term y, would
alone damp the energy inflow. The situation here is high-
ly dissipative, flattening out any spatial inhomogeneity.

Another limit arises when the coefficients are all imagi-
nary, effectively representing an energy-conserving Ham-
iltonian situation. Equation (2) then reduces to the wide-

3Bénard convection is another example of the instability of a
stationary state’s giving rise to a phenomenon of spatial pattern
formation. In this system the fluid is contained between hor-
izontal, thermally conducting plates heated from below. When
the imposed temperature gradient reaches a threshold value, the
stationary state becomes unstable to perturbation, forming con-
vective rolls. Here i denotes the strength of the rolls.
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ly known nonlinear Schrdodinger equation describing,
among others, the electric field modulation in a medium
whose refractive index depends on the amplitude (Kelly,
1965), as well as deep-water gravity waves (Benjamin and
Feir, 1967). Here the [3; term provides the wave disper-
sion (“spreading”) effect while y; yields the steepening
or focusing effect. Combination of these two terms can
produce large-scale wavelike structures in the medium.

When the coefficients are complex, any asymptotic
behavior hinges on the overall balance of energy gains
and losses as well as on steepening and smoothening
effects. This situation arises variously in fluid as well as
in plasma physics. In chemical reaction-diffusion sys-
tems, in which «,, B,, v, are all positive, new raw materi-
al is constantly supplied through the «, term, through
the boundary condition of steady matter inflow. The
molecules are constantly diffused at small length scales
(B, term) and then washed away, effectively preventing
the formation of small-scale structures.

Even with the same hydrodynamic origin, the
coefficients depend on the boundary conditions as well as
on the different elements of molecular diffusivity. For ex-
ample, 3; vanishes in Bénard convection (Newell and
Whitehead, 1967), where thermal diffusion is the only
mechanism. On the other hand, for thermo-haline dou-
ble diffusive systems, relevant to ocean convection in
which heat and salt are the two components with
different diffusion rates, we again recover 3;70 (Brether-
ton and Spiegel, 1983). In this context, we note that, for
two-component chemical systems, 3, and 3; are explicitly
expressed in terms of the diffusion coefficients of each ele-
ment as B, <D;+D,, B;<(D;—D,). The important
roles played by these terms will be pointed out later. We
merely mention here, that equality of D; and D, leads to
a single diffusive system with 3, =0, as in Bénard convec-
tion

A. Modulational instability

The spatially homogeneous state of Eq. (5) becomes in
fact unstable to a particular type of fluctuating spatial in-
homogeneity, whose origin can be addressed as follows.
Suppose we have a nearly monochromatic wave packet
with a narrow bandwidth of the order of €. In a linear
situation, the modes within the packet simply spread out,
moving with their own individual phase velocities. In
most practical situations, however, they are not indepen-
dent from each other, but undergo nonlinear interactions
among themselves. For simplicity, we approximate the
wave packet as consisting of just three wave-number
components: kg, k,, k;, where k, is the central mode
and k,, k; are neighboring upper and lower sidebands
with k, —ky,=0(€e). We represent the three waves as

i(kyx —wgyt ilk,x ~o,t) ilkyx—w;t)
age , a,e , ae , where the am-
plitude a is small, the amplitudes a,, a; are even small-
er, and the wave number and frequencies satisfy
k;+k,=2ky,0;,+o,=2w, We assume that the original
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system has quadratic nonlinearity as in Eq. (6), causing
the second harmonic of the central component,
2 2i(kgx—awnyt) . . .
age , to interact with the upper sideband, pro-
ducing
2, o/l2ko—kx =Qay—0,)M]_ 5

i(k;x—w;t)
apa,e 04y¢€ ’

@)

whose parameters match those of the lower sideband.*
Similarly, the interaction between the second harmonic
and the lower sideband produces a term proportional to
the upper sideband. The presence of both the upper and
lower sidebands thus combines with the second harmon-
ic, bringing about a mutual reinforcement. This resonant
mechanism has been known as the “modulation instabili-
ty” (Benjamin and Feir, 1967). Indeed, this instability
provides the physical foundation for many cooperative
processes in plasma and laser physics and in chemical
reaction-diffusion systems.

B. Linear stability analysis

The long-time evolution of the resonance mechanism
described above is represented conveniently in terms of
the universal amplitude function ¥. For convenience, we
normalize the equation through the transformations

v=v'v,/a,¥, T=a,7, X=V'a,/B,£.

Setting now ¢;=f;/B,, ¢, =v;/Y,,» we see that the new
state variable W(X,T) satisfies the following dimension-
less equation:

V=W (1+icy )Wyy —(1+ic,)|W|?W . (8)

The spatially hor_noygeneous solution of Eq. (5) reduces
then to ¥, (T)=e “ntUALT =0, we assume it to include
upper and lower sidebands of the type (7),

W(X,0)=Y (0)+8(eX+e4%) §<<1, 9

where g is the sideband wave number corresponding to
the large length scale X; g ~(k, —ky)/e=0(1).

When we set §~e?’, Eq. (8) implies that o becomes
positive real for 0 < g <gq,, with a threshold wave number
g, expressed in terms of ¢; and ¢, provided 1+c,c; <O.
The fluctuation thus builds up within the range
0<g<gq,,, whereas the initial state becomes unstable.
Figure 1 plots the linear growth rate o as a function of
the sideband wave number ¢ for ¢; =35, ¢, = —4, leading
to the instability threshold g,, =1.209 beyond the peak
growth rate o0 =2.4 at ¢ =0.8. The choice of ¢;=35,
¢, = —4 is well suited for a. two-component chemical sys-
tem, but, for the sake of generality, we monitor the situa-

#Notice the coefficient in Eq. (7), a3a,, which is cubic in char-
acter. Even though the governing nonlinearity of the original
system is quadratic, the first nontrivial nonlinearity in the post-
critical regime in generically cubic.
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FIG. 1. Stability diagram as a function of sideband wave num-
ber g. Here we consider the shaded unstable region, which
ranges from the instability threshold g¢,,=1.21 to ¢=0.9

(0=2.3), practically the most unstable region. The maximum
growth rate is 0 =2.4 at ¢ =0.8.

tion in terms of the stability diagram. In this study, we
deal with the phenomena taking place in the hatched un-
stable region.

I1l. BEYOND THE THRESHOLD OF INSTABILITY

A. The emergence of spatio-temporal order

Figure 2 summarizes the evolution near the instability
threshold (Moon, 1991). For 1.1<¢<g,,=1.209, a
steady state with permanent spatial form evolves. As ¢
drops below 1.1, a new state develops exhibiting re-
current pulses, called “ticks,” further into this state a
tick is followed by a “tock,” namely by a pulse suddenly
shifted to neighboring sites. A tick is followed by a single
tock with clocklike precision, displaying the phenomenon
of spatial oscillation.

In the context of chemical reaction-diffusion, c, is now
normalized as c¢; < (D, —Dy,)/(D;;+D,,) for a two-
component system. As mentioned earlier, a complex ¢,
term yields a spreading dispersive effect corresponding to
a restoring force akin to the tension on a string. Two
components of different molecular diffusivities thus yield

(b)

FIG. 2. Emergence of spatio-temporal order in a plot of
|W(X,T)|: (a) A steady spatial structure at 1.1<g<g,,; (b) a
recurring sequence of pulses, which we call ‘ticks,”
1.0<g <1.1; (c) a state exhibiting spatial oscillations; a tick is
followed here by a pulse space-shifted orthogonally (out of
phase), which we call a “tock,” 0.985<¢q <1.0.
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a pair of modes that work cooperatively to block the
creation of small-scale structures but also compete for
the role of the restoring force. This restoring force (origi-
nating from diffusion) and the nonlinear driving force
(from the chemical process) contribute jointly to the gen-
eration of macroscopic patterns.

The first two patterns of Fig. 2 show the formation of a
high-concentration range of the X coordinate. However,
they pursue different temporal dynamics. The first pat-
tern is steady,5 while the second pattern exhibits an oscil-
lating population of molecules, showing a Jocal “chemical
clock” behavior. In the context of deep-water gravity
waves, the behavior of Fig. 2(b) has been referred to as
the FPU (Fermi-Pasta-Ulam) recurrence phenomenon®
(Yuen and Ferguson, 1978). Finally, the band of high
concentration can flip-flop, exhibiting spatial oscillation
between two neighboring sites. These problems have not
found a satisfactory answer until recently.

B. Double-well potential in the medium

We now look for the origin of the spatio-temporal or-
der. Let us view the behavior of the concentration as a
motion on a string. A linear sinusoidal vertical oscilla-
tion of the string at a local point is completely under-
stood by studying the displacement and its velocity,
which parallel the motion of a particle moving near the
bottom of a parabolic well. Correspondingly, one may
define (Moon, 1990)

A(T)=|w(0,T)|—1, B(T)=dA(T)/dT , (10)

where A4 (T), taken at the origin, denotes the concentra-
tion measured from the unperturbed homogeneous refer-
ence state and B (T) is its rate of change in time. The un-
perturbed homogeneous state, for example, is represented
by the origin of coordinates in this two-dimensional
phase space. The three phase paths, corresponding re-
spectively to the three patterns of Fig. 2, are drawn and
labeled q, b, c in Fig. 3.

Notice that the phase-space orbits thus obtained can
also represent the motion of a particle in the double-well
potential shown in the inset, assuming 4 now denotes the
distance of the particle and B its velocity. The locally

SBut it requires a constant supply of new raw materials to re-
tain its shape because molecules constantly diffuse away in re-
gions of density gradient.

6An important assumption of classical mechanics has been
that “small nonlinearities” lead to equipartition of energy. Fer-
mi, Pasta, and Ulam tested this assumption by studying the vi-
bration of 64 masses connected by nonlinear strings. The re-
sults were surprising. No tendency toward thermalization was
observed. Energy originally put in the lowest-frequency mode
returned almost entirely to that mode after a while. A fairly ex-
tensive literature has since developed to understand what has
become known as the FPU problem.
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bounded motion of energy E =E, corresponds to the or-
bit b, while the locally unbounded motion (E =E) yields
the large orbit c¢. The ridge potential (E =E) separates
a locally bounded motion from a broader-ranging
motion, thus affording a long-range order. The summit
of the potential barrier corresponds to the saddle point
denoted by “-+” in the phase space. The phase path
along the ridge potential, called a ‘“‘separatrix,” passes
through this singular point, showing the double-well po-
tential structure of the field |W(X, T)|.

C. An application to optical communication

The wave patterns of Fig. 2(b) and Fig. 2(c) still exist in
the Hamiltonian limit, o, =, =y, =0, of Eq. (2) (Moon,
1990). The double-well potential structure still occurs,
but does not allow the steady state of Fig. 2(a). In optical
communication through glass fibers, we encounter the
same equation except that the roles of X and T are inter-
changed, so that the horizontal X axis in Fig. 2 now
refers to time (pulse width), while the vertical axis indi-
cates the distance traveled along the fiber.

It was proposed that the tick pulses of Fig. 2(b) would
provide an extra-high-bit-rate optical communication;
experiments did demonstrate that one could produce
such pulses by applying a sideband modulation with a
high repetition at the fiber input of an incoming mono-
chromatic light wave (Tai et al., 1986). One problem of
long-distance transmission, however, lies in the gradual
power loss along the distance traveled. Currently, long-

B Ec
1.0 E,
Ep

FIG. 3. Phase paths in the two-dimensional phase space
spanned by A4 (T)=|(0,T)|—1 and B(T)=dA(T)/dT. The
paths denoted by a,b,c correspond, respectively, to the three
patterns of Fig. 2. The orbit d on the left is obtained when
A(T) is measured at a site, displaced to the left by a half wave-
length. Notice that the same trajectories are followed by a par-
ticle moving in the double-well potential shown in the inset.
The locally bounded motion with energy E =E, corresponds to
the orbit b, while the locally unbounded motion (E =E,) yields
the large orbit ¢. The ridge potential (E =E) separates the lo-
cally bounded motion from the unbounded motion, thus
affording a long-range order. The summit of the potential bar-
rier corresponds to the saddle point denoted by + in the phase
space. The phase path of the ridge potential passes through this
singular point. The concentration therefore evolves in the
double-well potential field.
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distance transmission is considered feasible with the use
of optical amplification. It was soon realized, however,
that repeated amplification degrades the signal-to-noise
ratio in proportion to the number of amplifications, thus
presenting a severe limitation to exploiting such pulses
(Hasegawa and Tai, 1989).

The pulse dynamics in the fiber are governed by the di-
mensionless equation’

Vy=[—n+Csin® (X /L)Y +iV 0 +i | V|2, (11)

where 7 denotes the gradual power loss and the & term
represents the periodic power amplification. The specific
form sin?(wX /L) is proposed here to represent the
amplifiers spaced at intervals L. L =10, n =2 are
chosen. At the input of the fiber the incoming light is
modulated as W(0,7)=1+40.01cos(wT) with the repeti-
tion frequency w=1; this is the frequency at which
linearity is most unstable. For weak loss and
amplification, represented by 7=0.005 and {=0.002,
Fig. 4 displays a possible signal distribution along the
fiber, where the three different stages are denoted by I, II,
II1, respectively. In the first stage, we observe tick pulses
only. Ideally, one would hope to see only tick pulses
throughout to achieve good quality of communication.
At the second stage, however, a tick is suddenly time-
shifted orthogonally. In the double-well potential picture
of Fig. 3, these pulses arise by crossing the ridge potential
from the right to the left well and staying in the left well,
a stage characterized by the phase orbit “d” in Fig. 3.
The third stage indicates another crossing of the ridge
potential from the left well to an unbounded higher-
energy state, where a tick is followed by a tock. The re-
sult would be just catastrophic if such crossings occurred
irregularly. Clearly care is required not to upset the
ridge potential in exploiting tick pulses for optical com-
munication.

IV. APPROACH TO CHAOS

Figure 4 illustrates how the ridge potential, which
affords a long-range order, can also become self-
destructing in the presence of weak perturbations of the
system. Indeed, the ridge potential is often a harbinger
of chaos in dissipative systems. We first discuss the
chaos found at ¢ =0.92 in the initial condition of Eq. (9).

A. Deterministic chaos

Figure 5(a) displays the chaotic wave field at g =0.92,
exhibiting irregular spatio-temporal oscillations. How

7The dimensionless variables are related to the physical vari-
ables as W= ¢/e, T xe(t —x /v,), X=€*x /A, where ¢ is the
electric-field amplitude of the pulse envelope, ¢ is the time, x is
the distance of transmission, A is the wavelength of the carrier
wave, and v, is the group velocity.
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FIG. 4. Wave propagation in an optical fiber with weak
power-loss and amplification. Only “tick pulses” occur in the
first stage denoted by I. At the second stage II, all ticks are
time-shifted orthogonality, according to the double-well poten-
tial model of Fig. 3, passing from the right well into the left,
where each tick remains. This tick propagation corresponds to
the phase path d in Fig. 3. The third stage is the result of cross-
ing from the left well to the locally unbounded higher-energy
state, where a tick is followed only by a tock. Each crossing is
indicated by an arrow. Note that the ridge potential, which
afforded the long-range order, is now a source of disorder in the
presence of weak perturbations.

(b)

(@)

0.061 0.33

n Yo+t

0.032 0.23 i

0.23 Y, 0.33 0.23 Y, 033

FIG. 5. Successive stages of evolution: (a) Emergence of disor-
der at ¢ =0.92. The spatial pattern is transformed into the
Fourier 3D phase space spanned by X=la,|, Y=la,l,

|a2q |, where |a, | is the amplitude of the Fourler component

with wave number k. (b) the phase-space trajectory is drawn
schematically. A Poincaré surface of section X =~ (X ), where
(X ) is the time average of X, is placed across the direction of
the flow, generating a sequence of points [ Y(z,),Z(¢,)], where
t, is the time of the nth piercing of the section. The linear ar-
rangement of the set of crossing points indicates that the trajec-
tory lies on a strip. (c) a plot of the set of points shown in Fig.
5(b). (d) by plotting Y, ., vs Y,, one effectively reduces the 3D
dynamics into the 1D dynamics Y, .;=G(Y,). A well-defined
functional form G appears. Arrows are inserted to show itera-
tion of G. For convenience, a line is drawn at a 45° angle.
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can this evolution be truly chaotic, when it arises from a
purely deterministic system? To answer this question, we
need to look at the system’s dynamics in the three-
dimensional phase space spanned by X =|a,l, Y=la,l,
Z=la,,|, where |a;| is the amplitude of the Fourier
mode with wave number k. The axes represent the ener-
gy of the steady mode, of the upper sideband, and of its
second harmonic term, respectively. Notice that the
wave-field amplitude |W(X,T)| displayed in Fig. 5(a) is
the result of cooperative processes among the various
Fourier components. When the motions were simple
enough, as shown in Fig. 2, a two-dimensional phase
space sufficed to describe the dynamics. Here the situa-
tion is more complex, requiring at least a three-
dimensional phase space.

The phase-space trajectory corresponding to the evolu-
tion of Fig. 5(a) is drawn schematically in Fig. 5(b). A
popular method of analyzing trajectories in a 3D phase
space is to place a Poincaré surface of section across the
direction of the flow as shown in Fig. 5(b), thereby gen-
erating a succession of points at which the trajectory
traverses the plane. We chose the plane X ~{X ), where
(X ) is the time average of X, and obtained a sequence of
points [Y(¢,),Z(¢t,)], where t, is the time of the nth
piercing of the section. Figure 5(b) presents the schemat-
ic drawing of the Poincaré surface section and also the
set of crossing points on it. Notice that the points are
aligned on a finite segment of line. With the notation
Y(t,)=Y,, Fig. 5(c) displays an enlarged picture of
the cross section schematically drawn in Fig. 5(b), defin-
ing a two-dimensional discrete function, (Y, ,Z, )
=P(Y,,Z,), n=1,2,.... Notice how the functional
form of P is a truly finite line. The linear structure in the
enlarged cross section implies that the trajectory in the
3D phase space contracts onto a surface in the form of
the finite strip at the place where the section is inserted®
in the schematic drawing of the trajectory in Fig. 5(b).
At this point, we may further reduce the dynamics into a
one-dimensional representation, plotting, say, Y,
versus Y,, as drawn in Fig. 5(d). We find that the func-
tion G in Y, ;=G (Y,) has a definite functional form,
which is not derived theoretically but dug out of a mass
of seemingly erratic data. As we shall see, this form
affords an understanding of the whole dynamical history
of |W(X, T)|.

The reduction of very complex original systems to 1D
maps, first reported by Lorenz (1963), has now become a
basic tool of the laboratory (Roux et al., 1983). An
easier way to iterate a discrete one-dimensional function
is the following: Starting from an initial Y, (1) move
vertically to the graph of G (Y), then (2) move horizontal-

8Dissipative systems have the property that an evolving en-
semble of states occupies a region of phase space whose volume
decreases with time, eventually having zero volume. A surface
has a zero volume.
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ly to the 45° line of Fig. 5(d), and repeat steps 1 and 2.
This process is illustrated by the arrows in Fig. 5(d).

The first piece of information from the functional form
G is that its slope |G’(Y)| has magnitude greater than
one everywhere (except at its singular maximum), gen-
erating disorder as follows. Starting from any arbitrarily
close pair of points, Y;,Y;+86,8 <<1, an iteration gives
the next points at Y;,; and Y, ;+G'(Y;)5. These two
points are now separated by a greater distance, since
|G'(Y)| is greater than unity, and the separation grows
exponentially as the iteration progresses. All sequences
are therefore unstable to small modifications. In other
words, the dynamics now depends sensitively on initial
conditions, a property foreign to periodic states.

The second message is that the function G has a single
maximum, falling at both ends. This tells us that the tra-
jectory stays in a finite region where it traverses the Poin-
caré section, despite the fact that any two nearby trajec-
tories stretch out exponentially from each other. It thus
implies global stability of the strip of contracted surface,
whose cross section is shown in Fig. 5(c). Since any two
nearby trajectories are stretched exponentially away from
each other, stability of the strip requires that the trajecto-
ry be folded back onto itself somewhere on its way to the
strip. No two trajectories, however, may intersect, since
one initial condition (the point of intersection) would
then give rise to different trajectories, contradicting the
deterministic nature of the description.’ This difficulty
can be resolved only if the surface actually consists of
infinite layers of sheets spaced arbitrarily close, so that
any pair of almost crossing trajectories can stay on
different layers. This is why we needed at least a 3D
phase space. Conversely, the functional form G results
from this multilayer structure. In conclusion, the one-
dimensional dynamics based on G implies that the
phase-space trajectory corresponding to the evolution
shown in Fig. 5(a) represents a deterministic chaotic
motion within a finite but very complicated structure.'°

B. Cascading instabilities

The question follows naturally, what makes chaos and
how? Let us start with the periodic state of Fig. 2(c) ob-
served for a finite range of g, 0.985=¢ =1.0. For a ¢
value smaller than 0.985, the state becomes unstable, and
a new state emerges. To trace the steps of this transition
we shall once again examine how a 1D map arises from
3D trajectories. This time we choose the surface of sec-
tion that contains the maxima of Y, that is, the surface

9Except at a singular saddle point where two orbits can merge
or emanate. Actually, the nondifferentiable’ edge shape max-
imum is the manifestation of the presence of the ridge potential.

10Such a region has been named a chaotic or strange attractor
(Ruelle and Takens, 1971).
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FIG. 6. Further aspects of evolution: (a) Approach to chaos as a function of the sideband wave number g. The point state denoted
by i corresponds to the dynamic state shown in Fig. 2(c). At this reduced level, a “point” corresponds to a mode-locked state, which
is destroyed as the value g changes further. The final state denoted by f corresponds to the fully chaotic state of Fig. 5(a); (b) the ap-

proach to chaos in the “tent map” x,,,=A(1—2|x,—1/2|), n=1,2,3....

The parameter A is varied from 1/2 (state i) to 1/V2

(state f). The transition patterns (a) and (b) are identical, implying that the tent map approach to chaos is universal.

defined by dY/dt=0.'! From this plane of the section,
we again obtain a one-dimensional dynamics by plotting
M, ., versus M,, n =1,2,..., where M, is the nth max-
imum of Y.

For the periodic state of Fig. 2(c), all M, coincide be-
cause the corresponding trajectory in the 3D phase space
is a closed circular loop, which necessarily crosses the
section at one point. This initial state is denoted by i in
Fig. 6(a). The dynamics of Figs. 2(a) and 2(b) also display
a single point. Thus, upon further reduction, the details
of the dynamics of the three states of Fig. 2 are washed
away, and only one common feature is left in the form of
a point. Since the axes X, Y, Z represent the three
predominant waves, their common dynamic feature lies
apparently in their mode locking.

This mode-locking status is destroyed when the value
of the g is decreased. The state i splits into two points at
the resolution of the figure, and then into a state
represented by four small bands, further into a state with
two bigger bands, and finally into one mapped into a sin-
gle big band. The final state denoted by f corresponds to
the chaotic state of Fig. 5(a). Notice that the final map
structure is the same as that obtained from the X =~{(X)
plane of Fig. 5(d). No single state is ever stable within
the range 0.920 < g <0.985, exhibiting cascading instabil-
ities until it becomes fully chaotic at ¢ =0.92.

C. Universal nature of the approach to chaos

Astonishingly, the transition thus described turns out
to match that of the following algebraically defined “tent

!1This approach has been popular for selecting a surface sec-
tion. The section chosen in Fig. 5(b) was chosen for purposes of
simple illustration.
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map’’ (Moon, 1993):
X, 1 =M1—2|x,—1/2]), (12)

defined for 0=x =1, with a nonlinearity parameter A.
We plot the transition sequence of the tent map in Fig.
6(b) for comparison with Fig. 6(a). The parameter A has
been varied from A=1/2 to 1/V2. The initial state
denoted by i corresponds to the parameter value A=1/2.
This state becomes unstable and changes continuously as
A increases, and the final state denoted by f corresponds
to A=1/V2. The transitions to chaos in both cases fol-
low paths that are identical in all respects.

The system seems to forget all of a sudden its original
equations, following the transition pattern dictated by
the totally different tent map. This result seems to imply
that the details specific to any system may be irrelevant
at the onset of chaos. On this subject, one can give the
following general argument. Given a physical system
whose dynamics can reduce to one-dimensional dynamics
in the form of x, ; ;=F (x,, ), we know that F should have
a maximum in order to confine its trajectories within a
finite region of phase space. One may then classify the
functional form F into two groups depending on the
differentiability of the maximum. The smooth-maximum
group may be represented by the quadratic map

X, +1=4Ax,(1—x,) , (13)

defined on 0=x =1 with a nonlinearity control parame-
ter A, OSA=<1. This map exhibits the well-known
period-doubling transition route to chaos (May, 1976;
Feigenbaum, 1978). In the past two decades, it has been
observed repeatedly that any system reducible to a
smooth functional form invariably follows the approach
to chaos of the quadratic map. This property has been
termed “‘universality’”’ (Feigenbaum, 1978). The present
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study appears to broaden the class of universality, raising
the possibility that the tent map approach to chaos is
universal.

V. CONCLUSIONS

We have discussed the phenomenon of spatial symme-
try breaking, of the emergence of order and disorder
when a dynamical system enters into a nonlinear stage.
In such a critical regime, the original set of nonlinear
equations reduces to a much simpler form. In the reduc-
tion processes, many properties specific to individual sys-
tems are bound to be eliminated. The final form there-
fore is believed to hold a common dynamical essence
shared by diverse physical systems. For this reason, Eq.
(2) becomes important in optics, fluid dynamics, plasma
physics, and chemical reaction-diffusion. Specifically, a
simple change in the interpretation of ¥ might permit the
description of diverse phenomena such as optical pulses
and physicochemical patterns.

The concentration variables expressed as
c;=c;(x,t,&,7) signify the presence of two different
scales, in space and in time. This fact cannot be overem-
phasized, because the presence of two different scales can
be a source of great confusion epistemologically. Fur-
thermore, the span of ranges is very broad. For example,
the small and large time scales of a pulse in an optical
fiber are, respectively, of the order of 1072 and 1 ps,
while in chemical reaction-diffusion they are of the order
of a minute and of several hours.

The “‘chemical clock” behavior, whether bulk or local,
the Fermi-Pasta-Ulam recurrence phenomenon, and the
spatial oscillations of molecular populations are all de-
scribed within the context of our universal function V.
In addition, they are not independent of each other but
globally coupled through the double-well potential struc-
ture.

The ridge potential of the double-well potential in a
continuous medium is the source of the long-range self-
organization. In dissipative systems, however, it can also
become a source of disorder at the onset to chaos. It thus
exhibits a duality that seems contradictory by underlying
both long-range order and chaos.

Finally, we point out that the dynamics described by ¥
further reduces to one-dimensional dynamics at the onset
to chaos. For the reasons stated above, this reduced
form is believed to hold the dynamic essence of diverse
systems. In fact, it shows that the approach to chaos fol-
lows all of a sudden a common channel set by the simple

Rev. Mod. Phys., Vol. 65, No. 4, October 1993

tent map, implying the universality of the approach to
chaos.

ACKNOWLEDGMENTS

The author wishes to thank M. V. Goldman, P.
Huerre, J. I. Kim, M. J. Kim, L. G. Redekopp, and J.
Toomre, for many valuable discussions. He would like
especially to thank U. Fano, S. Freedman, and D. Stein,
for both criticism and encouragement. This work was
supported by the Korea Science and Engineering Foun-
dation.

REFERENCES

Belousov, B. P., in Sb. Ref. Radiat. Med. (Collection of
abstracts on radiation medicine) (Medgiz Moscow, 1959), p.
145.

Benjamin, T. B., and J. E. Feir, 1967, J. Fluid Mech. 27, 417.

Bretherton, C. S., and E. A. Spiegel, 1983, Phys. Lett. A 96, 152.

Busse, H. G., 1969, J. Phys. Chem. 73, 750.

Epstein, I. R., 1983, Physica D 7, 47.

Feigenbaum, M. J., 1978, J. Stat. Phys. 19, 25.

Fermi, E., J. Pasta, and S. Ulam, 1965, in Collected Papers of
Enrico Fermi, Vol. 2, edited by E. Segré (University of Chi-
cago), p- 978.

Hasegawa, A., and K. Tai, 1989, Opt. Lett. 14, 512.

Kelly, P. L., 1965, Phys. Rev. Lett. 15, 1005.

Kuramoto, Y., and T. Tsuzuki, 1975, Prog. Theor. Phys. 54,
687.

Lifshitz, E. M., and L. P. Pitaevskii, 1980, Statistical Physics,
Vol. 2 (Pergamon, Oxford).

Lorenz, E. N, 1963, J. Atmos. Sci. 20, 130.

May, R. M., 1976, Nature 261, 459.

Moon, H. T., 1990, Phys. Rev. Lett. 64, 412.

Moon, H. T., 1991, Phys. Fluids A 3, 2709.

Moon, H. T., 1993, Phys. Rev. E 47, 772.

Newell, A. C., 1974, Lect. Appl. Math. 15, 157.

Newell, A. C,, and J. A. Whitehead, 1969, J. Fluid Mech. 38,
279.

Nicolis, G., and I. Prigogine, 1977, Self-Organization in Non-
equilibrium Systems (Wiley, New York).

Roux, J.-C., R. H. Simoyi, and H. L. Swinney, 1983, Physica D
8, 257.

Ruelle, D., and F. Takens, 1971, Commun. Math. Phys. 20, 167.

Tai, K., A. Hasegawa, and A. Tomita, 1986, Phys. Rev. Lett.,
59, 135.

Yuen, H. C., and W. E. Ferguson, 1978, Phys. Fluids 21, 1275.



