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In this paper, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible
and immiscible displacement processes in reservoir rocks are reviewed and discussed. Both macroscopi-
cally homogeneous and heterogeneous rocks are considered. The latter are characterized by large-scale
spatial variations and correlations in their effective properties and include rocks that may be characterized
by several distinct degrees of porosity, a well-known example of which is a fractured rock with two de-
grees of porosity —those of the pores and of the fractures. First, the diagenetic processes that give rise to
the present reservoir rocks are discussed and a few geometrical models of such processes are described.
Then, measurement and characterization of important properties, such as pore-size distribution, pore-
space topology, and pore surface roughness, and morphological properties of fracture networks are dis-
cussed. It is shown that fractal and percolation concepts play important roles in the characterization of
rocks, from the smallest length scale at the pore level to the largest length scales at the fracture and fault
scales. Next, various structural models of homogeneous and heterogeneous rock are discussed, and
theoretical and computer simulation approaches to flow, dispersion, and displacement in such systems are
reviewed. Two different modeling approaches to these phenomena are compared. The first approach is
based on the classical equations of transport supplemented with constitutive equations describing the
transport and other important coefBcients and parameters. These are called the continuum models. The
second approach is based on network models of pore space and fractured rocks; it models the phenomena
at the smallest scale, a pore or fracture, and then employs large-scale simulation and modern concepts of
the statistical physics of disordered systems, such as scaling and universality, to obtain the macroscopic
properties of the system. The fundamental roles of the interconnectivity of the rock and its wetting prop-
erties in dispersion and two-phase Aows, and those of microscopic and macroscopic heterogeneities in mis-
cible displacements are emphasized. Two important conceptual advances for modeling fractured rocks
and studying flow phenomena in porous media are also discussed. The first, based on cellular automata,
can in principle be used for computing macroscopic properties of How phenomena in any porous medium,
regardless of the complexity of its structure. The second, simulated annealing, borrowed from optimiza-
tion processes and the statistical mechanics of spin glasses, is used for finding the optimum structure of a
fractured reservoir that honors a limited amount of experimental data.

CONTENTS

I. Introduction
A. Problems involving porous media
B. Continuum versus discrete models of flaw phenome-

na
II. Percolation Processes

A. Historical background
B. Definitions and percolation thresholds
C. Generation of percolation clusters on a network
D. Percolation quantities
E. Universal scaling laws for percolation quantities
F. Percolation in finite systems and finite-size scaling
G. Percolation in random networks and in continua
H. Fractal diffusion
I. A note on the history of application of percolation

theory to porous-media problems
III. Rock Formation, Characterization, and Properties

A. Diagenetic processes and the formation of rocks
B. Geometrical models of diagenetic processes
C. Pore-space geometry and pore-size distribution and

their measurement
1. Mercury porosimetry and percolation
2. Adsorption-desorption phenomena and percola-

tion
3. Small-angle scattering method
4. Nuclear magnetic resonance

'Present and permanent address.

1395
1395

1395
1397
1397
1397
1398
1398
1399
1400
1400
1401

1402
1403
1403
1404

1406
1407

1412
1413
1414

D.

E.

F,

IV. Mo
A.

B.

C.

Topological properties of porous media and their
measurement
Fractal, self-similar, and self-a5ne properties of
porous media and their measurements
1. The box method
2. Adsorption methods
3. Chord-length measurements

a. Chord-length measurements on fracture sur-
faces

b. Chord-length measurements on thin sections
4. Correlation function method
5. Small-angle scattering methods
6. Spectral methods
Fractal properties of heterogeneous and fractured
rocks
1. Diagenetic processes and formation of fractured

rocks
2. Morphological and fractal properties of fracture

networks
3. Fractal patterns in fault systems

dels of Reservoir Rocks
Models of macroscopically homogeneous porous
media
1. Spatially periodic models
2. Bethe lattice models
3. Network models
4. Modeling of pore surface roughness
Models of heterogeneous porous media
1. Random hydraulic conductivity models
2. Fractal models
3. Multifractal models
Models of fractured rocks

1417

1420
1420
1420
1421

1421
1423
1423
1425
1426

1427

1427

1428
1430
1430

1430
1431
1432
1432
1433
1434
1435
1435
1435
1436

Reviews of Modern Physics, Vol. 65, No. 4, October 1993 0034-6861/93/65(4}/1393(142)/$19. 20 1993 The American Physical Society 1393



1394 Muhammad Sahimi: Flow phenomena in rocks

Continuum models: Derivation of Darcy's law

Calculation of the permeability and electrical con-
ductivity of rocks
1. Exact results and rigorous bounds

2. Effective-medium approximations and derivation

of Archie's law

3. Position-space renormalization group and renor-

malized EMA
4. Field-theoretic and perturbation methods

5. Percolation methods
6. Random-walk methods and network simulations

7. Relation between permeability and electrical
conductivity

8. Relation between permeability and nuclear mag-

netic resonance
9. Dynamic permeability

A.
B.

drodynamic DispersionVI. Hy
A. The phenomenon of dispersion

Mechanisms of dispersion processes
The convective-diffusion equation
Dispersion in a tube
Dispersion in spatially periodic media

Models of dispersion in macroscopically homogene-

ous porous media
1. Statistical-kinetic models
2. Fluid-mechanical models

3. Continuum models: Volume-averaging methods

4. Network models

Long-time tails: Dead-end pores versus disorder

Dispersion in short porous media

Dispersion in fractal porous media and percolation
networks
Dispersion in heterogeneous porous media
1. Continuum models: Large-scale volume-

averaging techniques
2. Continuum models: Stochastic-spectral methods

3. Monte Carlo methods
4. Fractal models

Dispersion in fractured rocks
1. The double-porosity and related models

2. Fracture network models

Dispersion in stratified porous media

B.
C.
D.
E.
F.

H.

K.

L.

VII. Miscible Displacement Processes
A.
B.
C.
D.

E.

F.

Factors affecting miscible displacement processes
Viscous fingering
Miscible displacements in Hele-Shaw cells
Miscible displacements in porous media
1. Continuum approaches to miscible displace-

ments in porous media
2. Linear stability analysis of miscible displace-

ments in porous media
Discrete models of miscible displacements
1. Diffusion-limited aggregation
2. The dielectric breakdown model
3. Gradient-governed growth model
4. The two-walker model
5. Probabilistic models that include the effect of

dispersion
6. Deterministic models that include the effect of

dispersion
Relation between miscible displacements and
diffusion-limited aggregation

1. Multiporosity models
2. Network models of fractured rocks
3. Simulated annealing

V. Single-Phase Flow and Transport in Reservoir Rocks

1436
1437
1439
1440
1440

1442
1442

1443

1447
1449
1450
1453

145S

1456
1457

1457
1457
1458
14S8
1459
1460

1460
1461
1461
1463
1463
1464
1465

1466
1469

1469
1470
1472
1473
1474
1474
1474
1475

1475
1476
1477
1478
1481

1482

1482
1484
1484
1486
1486
1487

1489

G. Crossover from fractal to compact displacement at
finite mobility ratios

H. Miscible displacements in heterogeneous porous
media

VIII. Two-Phase Flow and Immiscible Displacement Process-

es

A. Wettability and its measurement

1. Contact-angle measurements

2. Amott method
3. U.S. Bureau of Mines method

B. Dependence of dynamic contact angle and capillary

pressure on capillary number
C. The effect of surface roughness on contact angles

D. Fluid distribution on fractal surfaces: Hypodiffusion

versus hyperdiffusion

E. Effect of wettability on capillary pressure
F. Immiscible displacernent processes

1. Spontaneous imbibition
2. Quasistatic imbibition
3. Imbibition at constant flow rates
4. Dynamic invasion at constant flow rates
5. Displacement of blobs: Choke-off versus pinch-

off
G. Models of two-phase flow and displacement

1. Continuum equations and relative permeabilities
2. Measurement of relative permeability
3. The effect of wettability on relative permeability

H. Percolation models of capillary-controlled two-

phase flow and displacement
1. Random-percolation models
2. Random site-correlated bond percolation mod-

els

3. Invasion percolation
4. Random percolation with trapping
5. Crossover from fractal to compact displace-

ment
6. Roughening and pinning of fluid interfaces: Dy-

namic scaling of rough surfaces
7. Finite-size effects on capillary pressure and rel-

ative permeability: Devil's staircase
8. Immiscible displacements under the influence of

gravity: Gradient percolation
9. A phase diagram for displacement processes

10. Scaling laws for relative permeability and

dispersion coefficients
11. Comparison of invasion and random-

percolation models
I. Network models of immiscible displacements at

finite capillary numbers
J. Stability of immiscible displacements in porous

media
K. Two-phase flow in heterogeneous and stratified

rock; continuum models and large-scale averaging
L. Two-phase flow in fractured rocks

IX. Advances in Computational Methods
A. Cellular automaton and lattice-gas simulation of

fluid flow

B. Cellular automata and lattice-gas simulation of
single-phase low in porous media

C. CeHular automaton and lattice-gas simulation of
two-phase flow in porous media

X. Conclusions

Acknowledgments

References

1490

1491

1492

1492
1493
1493
1494

1494
1495

1495

1496
1498
1499
1499
1500
1500

1500
1501
1501
1502
1502

1503
1503

1505
1505
1506

1507

1510

1510
1511

1512

1512

1512

1515
1518

1518

1519

1520

1521

1521

1522

Rev. Mod. Phys. , Vol. 65, No. 4, October 1993



Muhammad Sahimi: Flow phenomena in rocks 3 395

I. INTRODUCTION

A. Problems involving porous media

Flow, dispersion, and displacement processes in natu-
ral porous media or industrial synthetic porous matrices
arise in many diverse fields of science and engineering,
ranging from agricultural, biomedical, construction,
ceramic, chemical, and petroleum engineering to food
and soil sciences and powder metallurgy. Fifty percent
or more of the original oil-in-plane is left in a typical oil
reservoir by traditional (primary and secondary) recovery
techniques. This unrecovered oil is a large target for
enhanced or tertiary oil recovery methods now being
developed. However, oil recovery processes constitute
only a small fraction of an enormous, and still rapidly
growing, literature on porous media. In addition to oil
recovery processes, the closely related areas of soil sci-
ence and hydrology are perhaps the best-established to-
pics. The study of groundwater Qow and the restoration
of aquifers that have been contaminated by various pollu-
tants are important areas of research on porous-media
problems. Classical research areas of chemical engineer-
ing that deal with porous media include filtration, centri-
fuging, drying, and multiphase Qow in packed columns.
Morrow (1991) gives a long and interesting list of prob-
lems involving porous media, a few of which are men-
tioned here. For the construction industry, transmission
of water by building materials (bricks, concretes, etc.) is
an important problem to consider when designing a new
building. Wood is an interesting porous medium whose
properties have been studied for a long time. Some of the
phenomena involving wood include drying and impreg-
nation by preservatives. Civil engineers have long stud-
ied asphalts as water-resistant binders for aggregates,
protection of various types of porous materials from frost
heave, and the properties of road beds and dams with
respect to water retention. Some porous media whose
pore-space morphology and wetting behavior are of phys-
iological interest are skin, hair, feathers, teeth, and lungs.
Other examples of porous media that are of widespread
use are ceramics, pharmaceuticals, contact lenses, explo-
sives, and catalysts.

In all of these phenomena one has to deal with the
complex pore structure of the medium and how it affects
the distribution, Qow, or displacement of one or more
fluids, or dispersion (i.e., mixing) of one Quid in another.
Each process can, in itself, be very complex. For exam-
ple, displacement of one Quid by another can be carried
out by many different mechanisms, which may involve
heat and mass transfer, thermodynamic phase behavior
and phase change, and the interplay of various forces
such as viscous, buoyancy, and capillary forces. If the
solid matrix of the porous medium is deformable, its
porous structure may change during Qow or any other
phenomenon. If the Quid is reactive, or if it carries solid
particles of various shapes, sizes, and electrical charges,
the pore structure of the medium may change due to the
reaction of the Quid with the pore surface, or the phys-
icochemical interaction between the particles and the

pore surface.
In this paper, we review and discuss various experi-

mental, theoretical, and computer simulation approaches
to Qow, dispersion, and displacement processes in reser-
voir rocks. We do not consider other types of porous
media, such as catalysts, woods, porous composite ma-
terials, etc. , although Inost of our discussions are equally
applicable to such systems. We discuss Qow phenomena
only in a static porous medium, i.e., a medium whose
morphology does not change during a given process.
Thus deformable porous media, as well as those whose
morphology changes due to a chemical reaction or to
physicochemical interactions between the pore surface
and a Quid are not discussed here. The interested reader
is referred to Sahimi et al. (1990) for a complete discus-
sion of transport and reaction in porous media and the
resulting changes in the structure of the media.

The outcome of any given phenomenon in reservoir
rock depends on several length scales over which the
porous medium may or may not be homogeneous. When
there are inhomogeneities in the system that persist at
different length scales, the overall behavior of the system
is dependent on transport processes such as diffusion,
conduction, and convection, the way the Quids distribute
themselves in the medium, and the morphology of the
system. Often, the morphology of the system plays a role
that is more important than that of other inQuencing fac-
tors.

Two classes of disordered porous media are considered
here. In the first class are porous media that are micro-
scopically disordered but macroscopically homogeneous.
Provided that they are large enough, such porous media
are characterized by well-defined and unique pore-space
properties, such as porosity and pore-size distribution,
and size-independent transport properties such as
diffusivity, conductivity, and permeability. We shall
refer to such systems as homogeneous porous media.
Porous media that are macroscopically heterogeneous, in
the sense that there are large-scale spatial variations in
their properties as one samples different regions of their
pore space, are in the second class, and will be referred to
as heterogeneous porous media. Multiporous media, i.e.,
those characterized by several distinct degrees of porosi-
ty, or several distinct families of transport path, are in
this class of porous media. For example, a reservoir with
large fractures and comparatively small pores is a well-
known example of a double-porosity medium. The
effective transport properties of such a reservoir are dom-
inated by the fractures, whereas most of its porosity is
provided by the pores. We shall show that, despite
significant differences between homogeneous and hetero-
geneous media, there are several concepts and tools that
can provide a unified approach to various phenomena in
both types of rock.

B. Continuum versus discrete
models of flow phenomena

The analysis of Qow, dispersion, and displacement pro-
cesses in rock has a long history in connection with the
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production of oil from underground reservoirs. Howev-
er, it is only in the past Mteen years that this analysis has
been extended to include detailed structural properties of
the media. These studies are quite diverse in the physical
phenomena that they consider. In this review we shall
classify the models for Qow, dispersion, and displacement
processes in reservoir rocks as continuum models and
discrete models. Continuum models represent the classi-
cal engineering approach to describing materials of com-
plex and irregular geometry, characterized by several
length scales. The physical laws that govern Quid trans-
port at the microscopic level are well understood, with
the exception of ultramicroporous structures. Leaving
aside that case, one could in principle write down
difFerential equations for momentum, energy, and mass
and the associated initial and boundary conditions at the
Quid-solid interface. However, as the interface in typical
rocks is very irregular, practical and economical tech-
niques are not available for solving such boundary-value
problems —even in the unlikely event that one knows the
detailed morphology of the medium. Determination of
the precise solid-Quid boundary in anything but the sim-
plest rocks is, and will probably remain, a very difficult (if
not impossible) task; the boundary (even if known) within
which one would have to solve the equations of change
would be so tortuous as to render the problem mathemat-
ically intractable. Moreover, even if the solution of the
problem could be obtained in such great detail, it would
contain much more information than would be useful in
any practical sense. Thus it becomes essential to adopt a
macroscopic description at a length scale much larger
than the dimension of individual pores or fractures.

Macroscopic properties such as effective transport
coeKcients are defined as averages of the corresponding
microscopic quantities (see, for example, Slattery, 1967,
1969; Whitaker, 1967). The averages must be taken over
a volume V that is small enough compared to the volume
of the system, but large enough for the equation of
change to hold when applied to that volume. At every
point in the medium one uses the smallest such volume
and, thereby, generates macroscopic field variables obey-
ing equations such as Darcy's law of Qow or Fick's law of
diffusion. The reasons for choosing the smallest suitable
volume for averaging are to allow in the theory supra-
pore variations of the porous medium and to generate a
theory capable of treating the usual macroscopic varia-
tions of effective properties. In this review we shall en-
counter several situations in which the conditions for the
validity of such an averaging are not satisfied. Even
when the averaging is theoretically sound, the prediction
of macroscopic properties is often dificult because of the
complex structure of rock. In any case, with empirical,
approximate, or exact formulae for the transport
coefficients and other effective properties, the results of a
given phenomenon in a porous medium can be analyzed
with the macroscopic theory.

Past theoretical attempts to derive macroscopic trans-
port coefficients from the microstructure of the rock en-
tailed a simplified representation of the pore space, often

as a bundle of capillary tubes (Scheidegger, 1974). In this
model, the capillaries were initially treated as parallel
and then, later, as randomly oriented. These models are
relatively simple, easy to use, and suIIIIiciently accurate,
provided that the relevant parameters are determined ex-
perimentally and the interconnectivity of the pore space
does not play a major role.

Having derived macroscopic equations and suitable
effective transport properties, one has the classical
description of the system as a continuum. We shall
therefore refer to various models associated with this
classical description as continuum models. These models
have been widely applied because of their convenience
and familiarity to the engineer. They do have some limi-
tations, one of which was noted above in the discussion
concerning scales and averaging. They are also not well
suited for describing those phenomena in rock in which
the connectivity of the pore space or a Quid phase plays a
major role. Such models also break down if there are
long-range correlations in the system.

The second class of models, the discrete models, are
free of these limitations. These models have been ad-
vanced to describe phenomena at the microscopic level
and have been extended in the last few years to describe
various phenomena at the macroscopic level. Their main
shortcoming, from a practical point of view, is the large
computational effort required for a realistic discrete
treatment of the system. They are particularly useful
when the effect of the pore-space interconnectivity or
long-range correlations is strong. The discrete models
that we shall consider here are mostly based on a net-
work representation of the rock. The original idea of
network representation of a pore space is rather old
(Owen, 1952; Patt, 1956), but it was only in the early '80s
that systematic and rigorous procedures were developed
(Mohanty, 1981; Lin and Cohen, 1982) to map, in princi-
ple, any disordered rock onto an equivalent random net-
work of bonds and sites. Once this mapping is complete,
one can study a given phenomenon in porous media in
great detail.

However, only in the past fifteen years have ideas from
the statistical physics of disordered media been applied to
flow, dispersion, and displacement processes in porous
rocks. These concepts include percolation theory
(Stauffer and Aharony, 1992; Sahimi, 1993b), the natural
language for describing connectivity effects, diffusion-
limited growth processes (Meakin, 1988), which describe
fundamentally nonequilibriurn growth processes, fractal
concepts (Mandelbrot, 1982; Bunde and Havlin, 1991),
which are the main tool for describing the self-similarity
and self-affinity of the morphology of a system and the
effect of long-range correlations, and universal scaling
laws, which describe how and under what conditions the
effective macroscopic properties of a system may be in-
dependent of its microscopic details. What we intend to
do here is to review the relevant literature on the subject,
de6ne and discuss relevant ideas and techniques from the
statistical physics of disordered media and their applica-
tions to the processes of interest in this paper, and review
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the progress that has been made as a result of such appli-
cations. In particular, we emphasize the important efFect
of the connectivity of the pores or fractures of the system
on the phenomena of interest and point out how scaling
and fractal concepts provide powerful tools for describ-
ing Qow, dispersion, and displacement processes in reser-
voir rocks.

This review is divided roughly into two parts. In the
first part of the paper we discuss mainly those phenome-
na that involve one Quid and one Quid phase. Hence, in
the next section we discuss the concepts of percolation
theory as a prelude to describing various properties of
porous and fractured rocks. We then review and discuss,
in Sec. III, reservoir rock properties and characteristics
and how they are measured, correlated, and interpreted.
Models of porous media, both homogeneous and hetero-
geneous, and fractured rocks are discussed in Sec. IV. In
Sec. V single-phase Aow and transport in porous media
are discussed. The second part of the paper starts with
hydrodynamic dispersion processes, which are reviewed
and discussed in Sec. VI. Next, we study miscible dis-
placement processes and discuss in Sec. VII various mod-
els of such phenomena. In Sec. VIII, two-phase Aow pro-
cesses are introduced, and various forms of displacements
and instabi1ities are discussed. Finally, Sec. IX contains
a discussion of recent computational advances for the
study of Qow phenomena in reservoir rocks. In particu-
lar, we review and discuss cellular automata approaches
to Qow phenomena in porous media. The final version of
this review was completed in December 1992.

II. PERCOLATION PROCESSES

In this section we discuss the ideas and concepts of
percolation theory that we shall use in the rest of this re-
view. As we shall show, such ideas and concepts are in-
valuable tools for understanding rock properties and
transport therein.

A. Historical background

Percolation processes were first developed by Flory
(1941) and Stockmayer (1943) to describe how small
branching molecules react and form large macro-
molecules. This polymerization process may lead to gela-
tion, i.e., to the formation of a network of monomers
connected by chemical bonds, spanning the whole sys-
tem. However, Flory and Stockmayer did not call their
theory a percolation process; they also developed their
theory of gelation for a special kind of network, namely,
the Bethe network, an endlessly branching structure
without any closed loops.

In the mathematical literature, percolation processes
were introduced by Broadbent and Hammersley (1957).
They originally dealt with the concept of the spread of a
hypothetical Quid through a random medium. The terms
Quid and medium were viewed as totally general: a Auid
could be a liquid, vapor, heat Qux, electric current, infec-

tion, solar system, and so on. The medium in which the
Quid is carried could be the pore space of a rock, Quid
phases of an interspersion, an array of trees, a distribu-
tion of permeable regions in an impermeable background,
or the universe. Generally speaking, the spread of a Quid
through a medium may involve some random elements.
But one has to realize that the underlying mechanism of
this randomness might be of two very different types. In
one type, the randomness is dictated by the fluid: this is
the classical diQusion process. In the other type, the ran-
domness is imposed by the medium: this was the new sit-
uation that was considered by Broadbent and Ham-
mersley (1957). They decided to call it a percolation pro
cess, since they thought that the spread of the Quid
through the random medium resembled the Aow of coffee
in a percolator~

B. Definitions and percolation thresholds

We first discuss percolation processes on networks and
lattices (discrete systems) and then briefly discuss them
for continua. The classical percolation theory centers on
two problems. In the bond percolation problem, the
bonds of the network are either occupied (i.e., they are
open to Aow, diffusion, and reaction, they are conducting
elements, etc.), randomly and independently of each oth-
er with probability p, or they are uacant (i.e., they are
closed to Qow or current or have been plugged, they are
insulating elements, etc.), with probability 1 —p. For a
large network, this assignment is equivalent to removing
a fraction 1 —p of all bonds at random. Two sites are
called connected if there exists at least one path between
them consisting sole1y of occupied bonds. As shown in
Sec. III, in porous media applications sites are equivalent
to pore bodies, while bonds are equivalent to pore
throats. A set of connected sites bounded by vacant
bonds is called a cluster. If the network is of very large
extent and if p is sufFiciently small, the size of any con-
nected cluster is likely to be small. But if p is close to 1,
the network should be entirely connected, apart from oc-
casional small holes. At some well-defined value of p,
there is a transition in the topological structure of the
network; this value is called the bond percolation thresh-
old p,b. This is the largest fraction of occupied bonds
below which there is no sample-spanning cluster of occu-
pied bonds.

Similarly, a site percolat&on problem can be defined. In
this case, sites of the network are occupied with probabil-
ity p and vacant with probability 1 —p. Two nearest-
neighbor sites are called connected if they are both occu-
pied, and connected clusters on the network are again
defined in the obvious way. As before, there is a site per-
colation threshold p„above which an infinite cluster of
occupied sites spans the network. Note that the percola-
tion phenomenon as defined above is a static process; that
is, once a percolation cluster is generated, its
configuration is in "equilibrium" and does not change
with time. Dynamic percolation processes have also been
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1
pub pcs z (2.1)

where Z is the coordination number of the lattice. We
compile the current estimates ofp,& and p„(and their ex-

act values if they exist) for three common two-
dimensional lattices in Table I, while the currently ac-
cepted values of p,b and p„for four common three-
dimensional lattices are compiled in Table II. Also
shown in these tables is the product B,=Zp, b and, as can
be seen, this quantity is almost an invariant of percola-
tion networks.

C. Generation of percolation clusters on a network

invented and will be brieQy discussed below. It is always
possible to convert a bond problem to a site problem on a
diferent lattice and, therefore, in some sense site percola-
tion problems are more fundamental. However, depend-
ing on the specific application of percolation theory to a
problem of interest, many variants of the classical per-
colation processes have been developed. For example,
one may think of a correlated percolation process in
which whether a bond or site is occupied depends on its
environment. The interested reader is referred to
Stauffer, Coniglio, and Adam (1982) or to Sahimi (1993b)
for a list of variants of the classical percolation problem
and their applications.

The derivation of the exact values of p,h and p„has
been possible to date only for certain lattices related to
the Bethe lattice and for a few two-dimensional lattices.
For the Bethe lattice Fisher and Essam (1961) showed
that

TABLE II. Numerical estimates of bond percolation threshold

p,b, site percolation threshold p„,and 8, =Zp, b for four com-
mon three-dimensional networks.

Diamond
Simple Cubic
BCC
FCC

z
4
6
8

12

Pub

0.3886
0.2488
0.1795
0.119

1.55
1.49
1.44
1.43

pcs

0.4299
0.3116
0.2464
0.199

and considers them occupied and adds them to the clus-
ter if random numbers r, attributed to the sites, are less
than the fixed value p. The perimeters (the nearest-
neighbor empty sites) of these sites are found and the
process of occupying the sites continues in the same way.
If a selected perimeter site is not occupied, then it
remains unoccupied forever. The generalization of this
method for generating clusters of occupied bonds is obvi-
ous. Since the growth of the cluster can continue
indefinitely, this can be considered as a sort of dynamic
percolation.

An important task in computer simulations of per-
colating systems is to count the number of clusters of a
given size. For example, during displacement of a Q.uid
2 by another immiscible Quid B we may need to know
the number of islands or blobs of Quid A of a given size
which are completely surrounded by B, which is
equivalent to knowing the number of clusters of a given
size within the context of a percolation model. An algo-
rithm due to Hoshen and Kopelman (1976) can perform
this task very efhciently. This algorithm is described in
detail by Stauffer and Aharony (1992), who also give a
computer program for counting the clusters.

TABLE I. Values of bond percolation threshold p,b, site per-
colation threshold p„,and B,=zp, b for three common two-
dimensional networks.

Network

Honeycomb
Square
Triangular

'Exact result.

Z Pcb

1 —2 sin(m/18) =0.6527' 1.96
1/2' 2

2 sin(m/18) =0.3473' 2.08

pcs

0.6962
0.5927

1/2'

Generating a percolating lattice by randomly removing
sites or bonds is not totally suitable for engineering appli-
cations, because in addition to the sample-spanning clus-
ter, this method also generates isolated finite clusters. In
most applications one works only with the sample-
spanning cluster (or the process of interest starts with a
single cluster) and, therefore, we must first delete all iso-
lated clusters from the system. Alternatively (and more
simply), we can use a difFerent method due to Leath
(1976) and Alexandrowicz (1980) that generates only the
sample-spanning (or the largest) cluster. In this method
one starts with a single occupied site, which is usually
selected to be the center of the lattice. One then
identifies the nearest-neighbor sites of the occupied site

l3. Percolation quantities

In addition to the percolation thresholds, the connec-
tivity of percolation clusters, and hence transport pro-
cesses therein, are characterized by several other quanti-
ties. In this section we introduce and discuss these. Per-
colation quantities of interest are

(i) the percolation probability P (p), which is the proba-
bility that, when the fraction of occupied (conducting)
bonds is p, a given site belongs to the infinite (sample-
spanning) cluster of occupied bonds;

(ii) the accessible fraction X (p), which is that fraction
of conducting bonds (or sites) belonging to the infinite
cluster;

(iii) the backbone fraction X (p), which is the fraction
of conducting bonds in the infinite cluster with actually
participate in conduction (or carry flow or current), since
some of the bonds in the infinite cluster are dead-end and
do not carry any current (flow), and therefore
X (p) ~X (p);

(iv) the correlation length g' (p), which is the typical ra-
dius of the connected clusters for p &p, and the length
scale over which the percolating network is macroscopi-
cally homogeneous for p &p, . Thus, in any Monte Carlo
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simulation of percolation processes, the linear size I. of
the network must be larger than g'~ for the results to be
independent of L„

(v) the average number of clusters of size s (per lattice
site) n, (p), which is an important quantity in some of the
problems of interest here because it corresponds, for ex-
ample, to the number of finite islands or blobs of Auids of
a given size that are formed during the displacement of
one Quid by another, if the displaced Auid is incompressi-
ble (see below);

(vi) the effectiue conductivity g„which is the conduc-
tivity of the network in which a fraction p of bonds (or
sites) are conducting and the rest are insulating. In a
similar way, the effective diffusivity D, and hydrodynam-
ic permeability k of the system can be defined. Figure 1

shows the typical behavior of some of these properties for
a simple cubic network in site percolation. Also shown is
X (p), the fraction of isolated occupied sites, which at-
tains its maximum at p„.
E. Universal scaling laws for percolation quantities
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Similar to the behavior of various thermodynamic
properties near a critical temperature, the behavior of
many percolation quantities near the percolation thresh-
old is insensitive to the lattice structure and to whether
the percolation process is a site or a bond percolation
problem. The quantitative statement of this apparent
universality is that critical exponents, characterizing the
nonanalytic structure at or near the percolation thresh-
old of certain quantities, depend only on dimension d of
the system. Even long-range, but finite, correlations do
not change this universality.

Near the (site or bond) percolation threshold p„we

have the following scaling laws:

&(p)-(p —p, ) ',P

X (p) —(p —p0) P,

X (p)-(p —p, )
Pg

g, (p)-(p —p, )" .

(2.2)

(2.3)

(2.4)

(2.6)

The scaling behavior of the effective diffusivity D, is re-
lated to that of g, (p). According to Einstein's relation,

g, -n, D„where n, is the density of the electrons. Al-
though a particle can diffuse on all clusters, only diffusion
on the sample-spanning cluster contributes significantly
to D, (except at p„'see below), in which case, n, -X"(p),
i.e., g, (p)-X "(p)D, (p), and therefore

D, (p)-(p —p, ) (2.7)

n, -s 'f [(p —p, )s '], (2.9)

where ~ and o. are two more universal critical ex-
ponents and f (x) is a scaling function such that f(0) is
not singular. These exponents are not all independent.
For example, one has r =2+P cr and vd =P + I/cr
and in fact knowledge of v and another exponent is
sufhcient for determining most of the percolation ex-
ponents. The implied prefactors in Eqs. (2.2) —(2.9) do de-
pend on the type of lattice and are not universal. If two
phenomena are described by two different sets of critical
exponents, the physical laws governing the two phenome-
na must be fundamentally different. Thus critical ex-
ponents can help one to distinguish between different
classes of problems and the physical laws that govern
them. As we shall see, some of the problems of interest
here may not even belong to the universality class of ran-
dom percolation. In Table III the values of the critical

TABLE III. Values of the critical exponents of percolation.
The exponents at d=2 and for the Bethe lattice are exact. The
values of p for d=2 and 3 are numerical estimates.

Similarly, we can write down a scaling law for the per-
meability k of a percolation network near p„

k(p)-(p —p, )' . (2.8)

For lattice models, e =p. However, for percolation in
continua, e can be significantly different from p (see
below).

For large clusters near p„n,(s) obeys the scaling law

0 0.2 0.4 0.6
I

Q.8 1.0

FICx. 1. Typical behavior of some percolation quantities as a
function ofp, the fraction of occupied sites in a simple cubic lat-
tice.

Exponent

7p

Op
V

5/36
0.47

187/91
36/91
4/3
1.3

d=3

0.41
1.0S
2.18
0.45
0.88
2.0

Bethe lattice
(d +6)

1

2
5/2
1/2
1/2
3
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exponents in two and three dimensions are compiled.
For comparison, the mean-field values of the exponents,
which are valid for d ~ 6, are also given.

As mentioned earlier, the correlation length g has the
physical significance that for length scales L larger than

g~ the system is macroscopically homogeneous. Howev-
er, for length scales smaller than g, the system is not
homogeneous, and the macroscopic properties of the sys-
tem depend on L. In this regime, the sample-spanning
cluster is statistically self-similar at all length scales less
than g, and its mass M (its total number of bonds or
sites) scales with g~ as

(2.10)

where D is the fractal dimension of the cluster. Howev-
er, D is not a totally new quantity and is given by

(2.11)

so that Dz(d =2)=91/148=1.9 and D (d =3)=2.5.
Similarly, for L & gz, the backbone is a fractal object and
its fractal dimension D~z is given by

PI -L ~f (u), (2.13)

where f ( u ), which is a function of the variable
u =L' (p —p, )-(L/g~)' ', is a nonsingular function.
If in the limit L —+~ one has a scaling law such as
P„-(P—p, ), then one must have y=5/v. Therefore
the variations with L of PL (p) in a finite network at p,
can be used to obtain information about the quantities of
interest for an infinite network near p, . This method has
been used successfully by many authors to obtain accu-
rate estimates of quantities of interest from simulation of
finite systems. The finite size of the network also causes a
shift in the percolation threshold (Levinshtein et al. ,
1976; Reynolds et a/. , 1980),

of a thermal system on its critical properties near the
critical temperature and developed a theory for it, which
is usually called finite-size scaling. His analysis can be
adopted for percolation processes. In a finite system, as

p, is approached g eventually exceeds the linear size L
of the network, in which case L becomes the dominant
length scale of the system. Therefore, following the
finite-size scaling theory of Fisher (1971), the variation of
any property I'I of a system of size L is written as

D~~ =d— (2.12) (L ) L —i /v (2.14)

The pore volume and pore surfaces of many reservoir
rocks are also fractal, as will be discussed in the next sec-
tion. Pfeifer and Avnir (1993), Avnir et al. (1985) and
Katz and Thompson (1985) have demonstrated the
relevance of fractals and fractal dimensions to hetero-
geneous surfaces and rocks. Note that if L &g„one
should replace g in Eq. (2.10) by L. Note also that at

p =p, the correlation length is infinite, so that then the
sample-spanning cluster and its backbone are fractal ob-
jects at any length scale.

Once it is established that a system is a fractal, many
classical laws of physics have to be significantly modified.
For example, Fick's law of diffusion with a constant
diffusivity is no longer appropriate for describing
diffusion processes in fractal systems. Instead, the
diffusion coe%cient is a time- and length-dependent
quantity; this is called anomalous (Cxefen et al. , 1983) or
fractal difFusion (Sahimi et al. , 1983b). Therefore, when
interpreting experimental data, one has to make sure that
one is not in the regime of anomalous diffusion; other-
wise, the interpretation of the data in terms of a constant
diffusivity may be seriously in error. This is discussed
below.

F. Percolation in finite systems and 4nite-size scaling

So far we have restricted our attention to percolation
processes in disordered systems of infinite extent, How-
ever, percolation in finite systems deserves discussion,
since both in practical applications and in computer
simulations one usually deals with a system of a finite ex-
tent. Fisher (1971) investigated the effect of the finite size

In this equation p, is the percolation threshold of the
infinite system, and p, (L) is an effective percolation
threshold for a finite system of linear dimension L. How-
ever, we should note that even Eqs. (2.13) and (2.14) are
valid for large values of L. In practice, very large sys-
tems cannot easily be simulated and, therefore, an equa-
tion such as (2.13) is modified to

PL, -L [a i+aug, (L)+a~g~(L)], (2.15)

where g& and g2 are two correction-to-scaling terms that
are particularly important for small and moderate values
of L, and where the a's are constant. For transport prop-
erties, gi =(lnL) ' and gz=L ' often provide an accu-
rate estimate of y (Sahimi and Arbabi, 1991).

G. Percolation in random networks and in continua

Although percolation in regular networks has routine-
ly been used for investigating transport in disordered sys-
tems, percolation in continua and in topologically ran-
dom networks are also of great interest, since in most
practical situations one has to deal with such systems.
There are at least three ways of realizing a percolating
continuum. In the first method, one has a random distri-
bution of inclusions, such as circles, spheres, or ellipses,
in an otherwise uniform system (Pike and Seager, 1974;
Haan and Zwanzig, 1977; Gawlinski and Stanley, 1981;
Elam et al. , 1984; Thorpe and Sen, 1985; Sen and Tor-
quato, 1988; Sevik et al. , 1988; Torquato et al. , 1988;
Xia and Thorpe 1988). In such systems percolation is
defined either as the formation of a sample-spanning clus-
ter of the paths between untouching inclusions or as the
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formation of a sample-spanning cluster of touching or
overlapping inclusions. In the second method, one gen-
erates a percolating continuum by dividing the space into
regular or random polyhedra (Winterfeld et al. , 1981), a
fraction of which is conducting, while the rest of the
polyhedra are insulating. Finally, in the third method,
one distributes at random conducting sticks of a given as-
pect ratio, or plates of a given extent, and studies trans-
port in such systems (Balberg et aI., 1983, 1984; Balberg
and Binenbaum, 1983, 1985; Charlaix et al. , 1984, 1987a;
Robinson, 1984a, 1984b), which are relevant to transport
in fractured systems reviewed in this paper.

One of the most important discoveries for continuum
percolation (Scher and Zallen, 1970) is that a critical oc-
cupied volume fraction P„which is defined as

(2.16)

where fi is the filling factor of a lattice when each site of
the lattice is occupied by a sphere in such a way that two
nearest-neighbor impermeable spheres touch one another
at one point, appears to be almost an invariant of the sys-
tem, with a value of about 0.17 for three-dimensional sys-
tems. Shante and Kirkpatrick (1971) generalized this
idea to permeable spheres and showed that the average
number of bonds per sites 8, at p, is related to P, by

port in granular porous media. This system can also be
mapped onto an equivalent random network, which is in
fact the dual of the Voronoi network. Jerauld et al.
(Jerauld, Hatfield, et al. , 1984; Jerauld, Scriven, and
Davis, 1984) showed that the geometrical critical ex-
ponents for such random networks are the same as those
for regular networks. Moreover, they established that, as
long as the average coordination number of a regular net-
work and a topologically random one (for example, the
two-dimensional Voronoi and triangular networks) are
about the same, many transport properties of the two
systems are, for all practical purposes, identical.

H. Fractal diffusion

The scaling law (2.7) is valid if the linear size L of a
system is much larger than g . However, if L «g, then
one has anomalous diffusion in which D, is a time-
dependent quantity. Since the mean-square displacement
(r (t) ) of a diffusant at time t is related to its effective
diffusivity D, through (r (t) ) =2dD, t, where d is the
dimensionality of the system, the behavior of D, can be
inferred from that of (r (t)). If r, =[(r (t))]'
then

(2.18)
$, =1—exp( 8,/8)— (2.17)

and that the continuum B, is the limiting value of p„Z
when Z —+ Oo. It is clear from Table II that, in three di-
mensions, 8, =1.5. It has been established (Haan and
Zwanzig, 1977; Gawlinski and Stanley, 1981;Blam et al. ,
1984; Balberg and Binenbaum, 1985) that the geometrical
exponents, defined by Eqs. (2.2) —(2.5) and (2.9), are the
same for lattice and continuous systems.

However, transport in percolating continua can be
quite different from that in discrete networks. Consider,
for example, the "Swiss cheese" model in which spherical
inclusions are punched at random in an otherwise uni-
form system. If transport takes place through the chan-
nels between the nonoverlapping spheres, then the system
can be mapped onto an equivalent problem on the edges
of a Voronoi network (Kerstein, 1983), which is a ran-
dom network. The Voronoi network was used by Jerauld
et al. (Jerauld, Hatfield, et al. , 1984; Jerauld, Scriven,
and Davis, 1984) to study transport in a random net-
work. Its average coordination numbers are about 6 and
15.5 in two and three dimensions, respectively. Halperin
et al. (1985) and Feng et al. (1987) used a scaling
analysis and showed that the critical exponents p, and e„
defined for the conductivity and permeability of this
model, are quite different from p and e defined above. In
particular, they showed that, in a three-dimensional
Swiss cheese system, p, =p+ 1/2 and e, =p+ 5/2,
whereas for the two-dimensional system p, =p and

ec p+ 3/2
The model in which the matrix is insulating, but the

spherical inclusions are very good conductors, was em-
ployed by Batchelor and O' Brien (1977) to study trans-

where d is called the fractal dimension of the walk and,
2/d —1

therefore, D, (t)-(r (t) )/t —t —+0, as t ~ oo.
Equation (2.18) is the manifestation of what is called
anomalous or fractal diffusion (Gefen et al. , 1983; Schimi
et al. , 1983b). If difFusion takes place only on the
sample-spanning cluster, then (Gefen et a/. , 1983)

2+ p
V

(2.19)

whereas if diffusion takes place on all clusters one has

2v+ p —
Pz

2v —P
(2.20)

These results demonstrate clearly the significant role of a
macroscopic length scale for homogeneity of a system
(which, for percolating systems, is g ). It is obvious that
Eqs. (2.18)—(2.20) provide a means of estimating p by
random-walk simulations, and this has been exploited by
several authors (see Pandey et al. , 1984, and Roman,
1990, and references therein). For pure diffusion in per-
colating systems and r, «g~, d„)2. However, in the
presence of a drift, or random driving forces (for exam-
ple, random velocity fields), one may encounter situations
in which d & 2, i.e., one has superdi+usion. This
phenomenon has been observed in hydrodynamic disper-
sion in geological systems and will be discussed later in
this paper.

If a diffusion process is characterized by Eq. (2.18),
then it cannot be described by the classical continuum
equation of diffusion with a constant diffusivity. For this.
case, it has been proposed that the concentration C of the
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diffusant (or the probability of finding it) at a point r at
time t is given by (Guyer, 1985; see also Harris and
Aharony, 1987)

C(r, t)-t ' exp[ —(~r~/t ) "], (2.21)

—d, /2 d
C(r, t)-t ' exp( —

~r~ /t) . (2.22)

Both Eqs. (2.21) and (2.22) are approximations, and the
problem of the exact form of C(r, t) is still unsolved. For
a complete discussion of this issue see Sahimi and
Hughes (1993). Equation (2.18) also gives rise to a cross-
over time t„such that for t ))t„the diffusion process is
Gaussian, but for t ((t„diffusion is described by Eqs.
(2.18) and (2.21) [or Eq. (2.22)]. It is clear thatt„-g/D„and therefore

—p —2v+P
t, —(p —p, ) (2.23)

so that t„diverges as p, is approached. Many other as-

pects of fractal diffusion are reviewed by Havlin and
Ben-Avraham (1987).

I. A note on the history of application of
percolation theory to porous-media problems

Before closing this section, it may be interesting to give
a brief review of the history 'of application of percolation
theory to modeling of porous-media problems. Even be-
fore Broadbent and Hammersley (1957) discussed the ap-
plication of percolation theory to flow in random media,
Fatt (1956) had used two-dimensional networks to model
two-phase flow in porous media, which is a percolation
phenomenon (see Sec. VIII). But despite the fact that
Broadbent and Hammersley expressed the hope that
their theory would someday be used for solving some
practical problems involving porous media, explicit use
of percolation processes for describing flow phenomena
in porous media gained popularity only in the 80s. Since
"who was the first to use it" has been a matter of some
contention and controversy, it may be interesting to re-
view the history to see who said what and when, at least
according to the published papers in the open literature.

To the best of this author's knowledge, Torelli and
Scheidegger (1972) were the first to recognize the useful-
ness of percolation theory for modeling flow and disper-
sion phenomena in porous media. These authors were in-
terested in hydrodynamic dispersion in porous media (see

where d, =2D /d„and v =d /(d —1). Equation
(2.21) is very different from a Gaussian distribution, the
solution of the classical diffusion equation. Klafter et al.
(1991) have argued that Eq. (2.21) is valid if

1/d
g=~r~/t ))1. However, if /&&1, then numerical
simulations indicate that the following equation, pro-
posed by O'Shaughnessy and Procaccia (1985), is approx-
imately correct:

Sec. VI) and pointed out that percolation theory, if ap-
propriately modified and applied, might provide some
useful insights into the behavior of the phenomenon.
However, they did not actually use percolation and, in
fact, they did not even report any results in their paper.

Melrose and Brandner (1974) suggested that the en-

trapment of oil in reservoir rocks is similar to percolation
processes and proposed that an approach based on per-
colation might yield deeper insight into the problem.
Again, these authors did not actually calculate anything
using their idea. Davis et al. (1975), who studied trans-
port processes in composite media, remarked at the end
of their paper that, "Although, to our knowledge, no
quantitative work has been done on the subject, we be-
lieve that two-phase oil-water flow in oil fields is a per-
colation process in which the connectivity of each phase
determines the relative permeability of that phase. " But
these authors also did not report any result.

Larson (1977) and Larson, Scriven, and Davis (1977)
suggested that percolation theory might be useful for
describing entrapment of one Quid phase by another in
porous media. To demonstrate the usefulness of their
idea, they calculated the percolation cluster-size distribu-
tion for various coordination numbers and made a quali-
tative comparison between the results and relevant exper-
imental data (see Sec. VIII). Almost simultaneously,
Chatzis and Dullien (1977) published a paper in which
they calculated several percolation properties for various
two- and three-dimensional networks and pointed out
how they might be used for simulating two-phase flow in
porous media. They compared their predictions with the
measured capillary pressure curves. This will be dis-
cussed in the next section.

Shortly after these two papers, de Gennes and Guyon
(1978) also suggested that two-phase fiow problems in
porous media might belong to the class of percolation
processes. They used visualization of mercury poro-
simetry (see Sec. III) as an example and proposed
methods of using percolation concepts for modeling this
phenomenon and other processes in porous media. They
also pointed out how permeability and cluster-size distri-
bution in porous media may be calculated using percola-
tion.

Finally, two papers in 1980 further established the ap-
plicability of percolation for modeling of two-phase flow
in porous media. Lenormand and Bories (1980) proposed
a percolation model, now popularly known as invasion
percolation (see Sec. VIII), for modeling a drainage pro-
cess, i.e., a process in which a nonwetting fluid displaces
a wetting fiuid from a porous medium. Golden (1980)
discussed the application of percolation theory for study-
ing two-phase fiow and the hysteresis (history-dependent)
phenomena that are routinely observed in many two-
phase fiow problems in porous media (see Sec. VIII).

After the publication of these original papers, there
was an explosion of new ideas and methods for the mod-
eling of porous-media problems using percolation theory.
We shall review these concepts and methods in the ap-
propriate sections of this paper.
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III. ROCK FORMATION, CHARACTERIZATION,
AND PROPERTIES

Before we discuss rock characterization, it may be use-
ful to review the processes that give rise to its present
structure. These are diagenetic processes, and what fol-
lows is a brief description of them.

A. Diagenetic processes and the formation of rocks

In order to understand reservoir rock properties, one
has to have an understanding of the diagenetic processes
that lead to the formation of rocks. Reservoir rock for-
mation starts with deposition of sediments and is fol-
lowed by compaction and alteration processes that can
cause drastic changes in the morphology of the reservoir.
Consider, for example, sandstones, which are assem-
blages of discrete grains with a wide variety of chemical
compounds and mixtures. If the environment around the
sandstone changes, the grains start to react and produce
new compounds. The mechanical properties of the
grains also change. The chemical and physical changes
in the sand after its deposition constitute diagenetic pro-
cesses. The main features of diagenetic processes are (i)
mechanical deformation of grains; (ii) solution of grain
minerals; (iii) alteration of grains; and (iv) precipitation of
pore-filling minerals, cements, and other materials.
These features have a key inhuence on the volume of the
content of the reservoir because they control the porosity
of the rock.

Immediately after deposition diagenesis starts; it con-
tinues during burial and uplift of the rock until outcrop
weathering reduces it again to sediment. These changes
produce an end product with specific diagenetic features,
whose nature depends on the initial mineralogical corn-
position of the system and also on the composition of the
surrounding basin-fil sediments. Given a system with a
particular mineralogical composition, its diagenetic his-
tory depends on several factors, including time-
dependcnt exposures to varying temperatures and pres-
sures and the chemistry of the pore fluid. All of these
factors constitute the historical aspects of a reservoir and
aFect its quality. Therefore the ability of reservoir rocks
to produce, say, oil, is closely related to their diagenetic
history. If appropriate relations between diagenesis and
petrophysical properties of reservoir rocks can be found,
one can use such relations in the analysis of reservoirs to
predict their potential for producing oil or any other ma-
terial that they may contain.

Porosity of reservoir rocks, i.e., the volume fraction of
their open space, has either a primary or a secondary ori-
gin. Primary porosity is due to the original pore space of
the sediment, whereas secondary porosity is due to the
fact that unstable grains or cements have undergone
chemical and physical changes through reaction with the
formation water and have partially or entirely passed
into the solution. Therefore, if the pore space is restored
through dissolution of authigenic minerals, then the orig-
inal porosity that had been protected from precipitation

by deposition of minerals is converted into secondary
porosity. According to Schmidt and McDonald (1979),
solution pores provide more than half of all the pore
space in many sedimentary rocks. The significance of
secondary porosity in carbonate rocks has been recog-
nized for a long time, but the importance of secondary
porosity in sandstones has only recently been appreciated
(Hayes, 1979).

As discussed by Schmidt and McDonald (1979), there
are five classes of secondary porosity in sandstones,
defined according to their origin: (i) fracturing; (ii)
shrinkage, (iii) dissolution of sedimentary grains and ma-
trix; (iv) dissolution of authigenic pore-filling cement; and
(v) dissolution of authigenic replacive minerals. Five
diFerent kinds of pores can contain secondary porosity,
namely, (i) intergranular pores; (ii) oversized pores; (iii)
moldic pores; (iv) intraconstituent pores; and (v) open
fractures. Of these, fractures are distinctly diFerent from
the other four types of pores and therefore are discussed
separately in this paper. The existence of secondary
porosity can sometimes even be recognized with the
naked eye. Other indications of the occurrence of secon-
dary porosity include oversized or elongated pores, cor-
roded and fractured grains, and several others.

The diagenetic processes discussed above lead to dis-
tinct morphologies for reservoir rocks. Pores can take on
essentially any shape or size, and they can also be highly
interconnected. Patsoules and Cripps (1983) used scan-
ning electron microscopy (SEM) to study rock and ob-
tained information about the shapes, sizes, and connec-
tivity of the pores and the roughness of their surface.
They reported that their rock, which was upper creta-
ceous chalk from East Yorkshire and the North Sea, con-
tained highly interconnected pores. Some of the ring-
shaped pores of the chalk were connected to at least
25 —30 other pores. These pores remain connected even
when the porosity of the system is very low, and there-
fore one important eFect of the diagenetic process is to
keep the pore space highly interconnected. As discussed
above, rock formation involves compaction and altera-
tion processes. During these alteration processes corn-
plex phenomena such as nucleation on the surface of the
pores and mineral crystal growth take place. These are
time-dependent phenomena, which reduce the porosity
and permeability of the rock. If the permeability of the
medium is reduced, the Aow rate also decreases, which
means that the rate of nucleation of mineral crystals in-
creases. However, the crystals cannot grow indefinitely
because they are limited by the growth rate at the time
they are nucleated. Moreover, the growth of new
mineral crystals inhibits that of the older ones. Thus
there is competition between nucleation of new mineral
crystals and the growth of the older crystals, which
determines the distribution of the crystal sizes.

Since diagenetic processes are similar for many
diFerent rocks, and since there appear to be many simi-
larities between the geometries of various rocks, one may
hope that many fundamental elements of pore formation
processes are uniuersal, independent of many microscopic
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properties of rocks. If so, one may be able to develop a
general model of pore formation and growth processes
that can explain, at a fundamental level, many features of
various rocks. If such a model can be developed, its gen-
erality may be comparable to that of diffusion-limited ag-
gregation (DLA) models, first proposed by Witten and
Sander (1981, 1983), which are the prototype models of
nonequilibrium growth processes. Indeed, Fowler et al.
(1989), who studied igneous rocks formed from lava of
the Archaean era, which usually contain disequilibrium-
tortured crystals characterized by spherulitic, branching,
or dendritic morphologies, found that over a finite range
of length scales some of the disequilibrium textures are
scale invariant (have a fractal structure) and can be de-
scribed by a variant of the DLA model.

B. Geometrical models of diagenetic processes

How can we model diagenetic processes'7 A study of
the literature shows that there are essentially two ap-
proaches to this problem. The first approach, which we

ca11 chemical modeling, relies on the continuum equa-
tions of transport and reaction. It ignores ihe morpholo-

gy of the pore space and its time variations and attempts
to characterize the process by aoerage macroscopic prop-
erties. The details of the kinetics of the surface reactions
are usually included in the model, which contains seveIal
parameters, e.g. , the diffusivity of each species, which has
to be estimated independently or measured experimental-
ly. This approach has been developed by several authors
(Palciauskas and Domenico, 1976; Wood and Surham,
1979; Wood and Hewett, 1982; Walsh et a/. , 1984;
Lichtner et al. , 1986; Novak et al. , 1989). Since this ap-
proach is essentially the continuum solution to transport
and reaction in a dynamic porous medium, we shall not
review or discuss it here, but refer the interested reader
to Sahimi et al. (1990).

The second approach, in which the details of reaction
kinetics and mass transfer are ignored, is what we call
geometrical modeling. The diagenetic process is modeled

by starting from a model of unconsolidated pore space
and making several simple assumptions about the rate of
change of grains and pores. This approach can take into
account the effects of connectivity and percolation of
pores and grains. Two such models for granular media,
such as sandstones, are those due to Wong et al. (1984)
and Roberts and Schwartz (1985).

In the model of Wong et al. (1984) one starts with a
random resistor network on a simple cubic lattice. Each
resistor R,. represents a cylindrical Quid-filled tube with
radius r;. To mimic the consolidation process and the
reduction in the porosity and permeability of the system
during the diagenetic process, a tube is selected at ran-
d.om and its radius is reduced by a fixed factor x

shaped particles in an irregularly shaped pore, or that of
thin lubricating films of Quid which, if present, inhibit
grain contact. However, the model has two attractive
features, namely, (i) that it preserves for any x) 0 the
network connectivity, even when the porosity has almost
vanished; and (ii) that the amount of change in the pore
radius r; at any step of the simulation (time) depends on
the value of r,. at that time. Wong et al. (1984) used this
model qualitatively to explain empirical laws such as
Archie's law and the Kozeny equation for permeability of
a porous medium. These will be discussed later in this
paper. Note that the limit x =0 approaches a percolation
process.

The second geometrical model for diagenesis of granu-
lar media is due to Roberts and Schwartz (1985); it was
studied further by Schwartz and Kimminau (1987). In
this model, one starts with a dense pack of spherical
grains of random radii E.. The coordinates of the centers
of the spheres follow the Bernal distribution (Bernal,
1960; Bernal et al. , 1970; Alben et al. , 1976); see Fig.
2(a). The radii of the particles are then allowed to in-
crease simultaneously, as a result of which the system's
porosity and permeability decrease. In the region where
the spheres overlap, the grains are troncated; see Fig.
2(b). This can be continued to yield a series of porous
media with various values of permeability and porosity;
see Fig. 2(c). The percolation threshold (the critical
porosity) of the system is P, =0.03+0.004, shown in Fig.
2(d). Given that the initial porosity of the system with
the Bernal distribution is 0.364, this algorithm generates
models of porous media whose porosities span more than
one order of magnitude. They also resemble natural

g ~PI[

/gr
l~

,
E

IE QQ

(~)

r; ~xr;,
where 0&x&1. Of course, this simple model cannot
really simulate the effect of deposition of irregularly

(d)

FIG. 2. Four stages of the development of the grain-
consolidation model of Roberts and Schwartz (1985).
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sandstones, an example of which is shown in Fig. 3. Be-
cause the porosity of sandstones and similar rocks is usu-
ally less than 0.4, this algorithm provides a reasonable
model of the diagenetic process. Schwartz et al. (1989a)
also considered a model in which the initial grains were
not spherical, in order to simulate anisotropic or layered
media.

Two points are worth mentioning here. First, if in-
stead of the Bernal distribution one starts with a simple
cubic lattice in which spherical grains of unit radius are
placed at its nodes and follow the same algorithm, then
the percolation threshold or the critical porosity of the
system is 0.349, which is close to that of the random
sphere packing. If one starts with a body-centered-cubic
lattice of spheres, then one obtains P, =0.0055, one order
of magnitude smaller than what can be achieved with the
Bernal distribution. This indicates the relative flexibility
of the model for obtaining the desired porosities.
Secondly, the sedimentation and diagenetic processes
that give rise to many sedimen. tary rocks such as sand-
stones tend to favor a distribution of particles that are
roughly equal in size (Pittman, 1984). In this region, the
algorithm of Roberts and Schwartz (1985) is much more
efficient than one in which the porosity is reduced by
adding additional spheres with smaller and smaller radii
to progressively fill the pore space of the original pack-
ing. To obtain a comparable porosity range by this
method, one has to use spheres whose radii vary over
many orders of magnitude, but the final configuration
would bear little resemblance to most naturally occurring
porous materials.

The two algorithms described above have been useful
in developing a unified framework for the description of
many properties of granular media such as sandstones.
Such porous media possess pore or solid phases that have
many simplifying characteristics. However, other porous
media, e.g., carbonate rocks (such as those of Iran), are
more complex and their pore and solid phase geometries

are not as simple as those of granular porous media such
as sandstones. The major differences between carbonate
and sandstone reservoirs, as discussed by Pittman (1984),
are (i) mineralogy; (ii) origin of grains; (iii) size and shape
of grains; and (iv) influence of early diagenesis on car-
bonate rocks. For example, most minerals in carbonate
rocks are relatively soluble carbonate materials, whereas
sandstone s grains originate through erosion of existing
rocks with transportation of the minerals by fluid Qow to
site of deposition, as discussed above. The grains in car-
bonate rocks pack more loosely than those in sandstones,
and they are usually large with shapes like twigs, rods,
and flakes. The pores of carbonate rocks tend to be
sheetlike, rather than cylindrical or tubelike. Early
diagenesis had a much stronger effect on carbonates than
on sandstones. It is, therefore, clear that carbonate rocks
have a more complex heterogeneous pore system than
sandstones. The diagenesis of carbonate rocks such as
crystalline dolomite usually starts with a high-porosity
packing of CaCO3 grains (Wardlaw, 1976; Blatt et al. ,
1980). The initial grain sizes are in the range 1 —10 pm.
Nucleation at random sites of CaMg(CaCO3)2 rhom-
bohedral crystals starts the dolomitization process.
These centers are usually at the surface of the CaC03
grains and, after several million years, grow into grains
whose sizes are of order of tens of microns. Gradually,
CaCO3 is replaced by CaMg(Ca03)z, where Mg ions
come from the brine that saturates the pore space. This
replacement introduces intercrystalline porosity, while at
the same time the original porosity is decreased by com-
paction and cementation processes similar to those dur-
ing diagenesis of sandstones. At the end of diagenesis,
the solid matrix is made of random CaMg(CaO3)z
"rhombs, "with a broad pore-size distribution.

To model this process, Crossley, Schwartz, and Bana-
var (1991)proposed the following model. One starts with
a three-dimensional random number array Io(x,y, z), dis-
tributed uniformly over (0, 1). This initial "config-
uration" is then smoothed by convolving with a kernel
Kr(x, y, zI w) with a correlation length w:

f f «(x —x',y —y', z —z'Iw)

&Io(x',y', z')dx'dy'dz' .

To generate a pore structure similar to those in carbonate
rocks, Crossley et al. (1991) showed that the Gaussian
distribution

(b)
FICx. 3. Heavily cemented Devonian sandstone from Illinois
observed (a) with cathodoluminescence to show the original
round sand grains, and (b) with ordinary light to show the angu-
lar forms of the grains after cementing, for which the grain-
consolidation model of Fig. 2 is intended (from Roberts and
Schwartz, 1985).

Kr(x,y, zIw)-exp[ —(x +y2+z2)/w2]

leads to pore structures similar to those in crystalline
dolomites. After I(x,y, z) is obtained, it is binarized by
setting a threshold to distinguish between pore and solid
phase voxels. The size of the pores is controlled by m. A
pore can be rendered with higher resolution if w in-
creases. This process is much more time consuming than
that used for generating a model of sandstones described
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above. Figure 4 shows a comparison between a thin-
section optical photo of crystalline dolomite and an im-
age of it generated by the above algorithm. Note that the
gaussian convolution described above mimics the disor-
dered nucleation and growth of CaMg(CaCO3)2 rhombs.
The critical porosity for this system was found to be
about 0.1.

We have now completed our review and discussion of
diagenetic processes. At the end of these processes one
obtains the present porous media, whose morphological
properties are now discussed.

C. Pore-space geometry and pore-size
distribution and their measurement

In this section, we review and discuss geometrical
properties of reservoir rocks. The geometry of rock de-
scribes the shapes and sizes of its pores or fractures.
Various experimental methods are used for measuring
such properties. However, the interpretation of the data
is not straightforward and requires proper modeling.
Thus we also review and discuss the models that have
been developed for interpreting such data.

In a porous medium consisting of particles, the spaces
between the particles are called voids, whereas if the par-
ticles themselves are porous, then the void spaces in the
particles are called pores. Careful examination of natural

porous media reveals that what are usually referred to as
pores can in fact be divided into two groups. In the first
group are pore bodies, where most of the porosity resides,
while in the second group are pore throats, which are the
channels that connect the pore bodies. One usually as-
signs e+ectiue radii to pore bodies and throats, which in
reality are nothing but the radii of spheres that have the
same volume. Thus pore bodies and pore throats are
defined in terms of approximate maxima and minima of
the largest-inscribed-sphere radius. In a network repre-
sentation of the pore space, the pore bodies are represent-
ed by the sites or nodes of the network, and the pore
throats are represented by its bonds. All of the volume of
a pore body can be assigned to the corresponding node;
alternatively it can be apportioned among the network
bonds, which is what is done in most network modeling
of transport processes in porous media. Dullien (1979)
discussed in great detail various definitions of the
effective sizes that one can assign to pore bodies and pore
throats.

The pore-size distribution is defined as follows: It is
the probability density function that gives the distribution
of pore volume by an effective or characteristic pore size.
Even this definition is somewhat vague because, if the
pores could be separated, then each pore could be as-
signed an effective size, in which case the pore-size distri-
bution would become analogous to the particle-size dis-

Quartzitic Sandstone
[

'" '""""""'— ""'~
,Ak.

A

Grain Consolidation

It

I

(b) Crystalline Dolomite Gaussian

FIG. 4. Comparison of the models and the actual porous media. (a) Left-hand and middle panel show a thin-section optical photo
and the corresponding binary (pore=black, grain=white) representation. Right-hand panel shows a section based on the consolida-
tion of densely packed spherical grains. The model porosity has been adjusted to equal that of the sandstone. (b) Left-hand and mid-
dle panels are the same as those in (a), except that they are for a crystalline dolomite. Right-hand panel shows a single plane from a
Gaussian smoothed 3d model. The model porosity has been adjusted to equal that of the dolomite section {from Crossley et al. ,
1991).
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tribution. But, because the pores are interconnected, the
volume that one assigns to a pore can be dependent upon
both the experimental method and the model of pore
space that one employs to interpret the data. Four
methods of measuring pore-size distribution are mercury
porosimetry, adsorption-desorption experiments, small-
angle scattering (SAS), and nuclear magnetic relaxation
methods. The Grst two methods have been used exten-
sively, while the latter two are newer and seem to be
more accurate.

1. Mercury porosimetry and percolation

In this method, the porous medium is evacuated and
immersed in mercury. The pressure is then increased and
the volume of mercury injected into the porous medium
is measured as a function of the applied pressure. The
pressure is usually increased either incrementally or con-
tinuously. Larger and larger pressures are needed to
penetrate progressively smaller pores. Very high pres-
sures can even damage the internal structure of the medi-
um, but we ignore them here. The pressure is then
lowered back to atmospheric pressure, as a result of
which the mercury is retracted from the pores. During
this process there is a characteristic shift, or hysteresis,
between the injection and retraction curves. There is also
some mercury that stays in the medium. Typical injec-
tion and retraction curves are shown in Fig. S. This tech-
nique was first developed by Ritter and Drake (1945) and
has remained popular ever since. It is usually used for
pores between 3 nm and 100 pm.

A precise apparatus for measuring mercury injection
curves is described by Thompson et al. (Thompson,
Katz, and Krohn, 1987; Thompson, Katz, and Rashke,
1987). It consists of four components; (i) a mercury
reservoir positioned on an elevator raised by a stepper-
motor-driven screw; (ii) a sample holder on a pan balance
connected to the reservoir by stainless steel tubing; (iii)

stainless steel electrodes located on the top and bottom of
the cylindrical sample; and (iv) electronics for measure-
ment of the ac resistance, the temperature, and the at-
mospheric pressure. The experiment is automated by
computer control. Before injection is started, the pore
space is evacuated to a pressure of 10 Pa. During mea-
surement, the elevator height is changed by typically
0.1 —10 mm and the sample weight is monitored until
equilibrium is reached. The typical experimental sensi-
tivities are 10 cm for volume, O.S Pa for pressure, and
0.1 pQ for resistance, which result in resolutions of better
than 1 part in 10 for all parameters of interest. A typi-
cal experiment consists of 30000 observations taken at
3-sec. intervals.

%'hile mercury porosimetry is a relatively straightfor-
ward experiment, the interpretation of the data is not
simple. The data are usually interpreted using an equa-
tion due to Washburn (1921)

2~mvI', = cos(e+y),r (3.4)

1/2
e k

cr „cos8 (3.5)

where P, is the applied pressure, often called the capil-
lary pressure, o.

„

the interfacial tension between mercu-
ry and the vacuum, 0 the contact angle between mercury
and the surface of the pores, and cp the wall inclination
angle at which the pore radius is r, with r, ~ r ~ rb, where
r, and rb are the pore throat and the pore body radii, re-
spectively. Equation (3.4) results from a capillary force
balance on a cylindrical tube. Up until 1977, the inter-
pretation of porosimetry was based on modeling of the
pore space as a bundle of nonintersecting capillary tubes.

Leverett (1941) defined a reduced capillary pressure
function, which is usually used for correlating data and is
defined by
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This function was named the Leverett J function by Rose
and Bruce (1949). It has been found that the J function is
successful in correlating capillary pressure data originat-
ing from a specific lithologic type within the same forma-
tion, but it is not of general applicability. The reason for
this lack of generality is perhaps that (klan)' is not an
adequate scale factor for taking into account the indivi-
dual differences between pore structures of various
porous media. Capillary pressure curves have been re-
ported by a large number of authors, a long list of which
is given by Dullien (1979).

As Fig. 5 indicates, there is hysteresis between the in-
jection and retraction curves. At the end of retraction,
mercury can be reinjected into the medium and a second
injection curve can be obtained. In some cases the hys-
teresis depends on the history of the system or the way
the experiment has been carried out. Thus in some cases
hysteresis can be eliminated by performing the experi-
ment very slowly, while in other cases it cannot be elim-
inated. This type of hysteresis was called permanent hys-
teresis by Everett (1967).

Although we are discussing capillary pressure curves
for mercury porosimetry, the phenomenon is more gen-
eral and is used for characterizing any two-phase How
system. In general, if a nonwetting Quid (in this case
mercury), one for which the contact angle is larger than
105, is to displace a perfectly wetting Quid, one for
which the contact angle is nearly zero, it must overcome
a capillary pressure at the pore throat,

P, =P„—P„=2 (3.6)

where P„andP are the pressures in the nonwetting and
wetting phases, respectively, and O.

„

is the interfacial
tension between the phases. Similarly, for the wetting
phase to displace the nonwetting phase in the pore seg-
ment, the capillary pressure must be

(3.7)

Thus in general capillary pressure curves depend on the
contact angles, and their shapes can therefore be charac-
teristic of the wettability of the pore space. This will be
discussed in Sec. VIII, where we review two-phase Bow
and wettability in porous media.

Although the effect of pore-space interconnectivity on
mercury porosimetry, or more generally, the capillary
pressure curves for any two-phase Aow problem in
porous media, had been appreciated for a long time, it
was only relatively recently that the connection between
this phenomenon and percolation was recognized and ap-
preciated. Chatzis and Dullien (1977), Larson (1977), de
Gennes and Guyon (1978), Larson and Morrow (1981)
and Wall and Brown (1981) were among the first to
recognize the possibility of developing a percolation
model for mercury porosimetry and capillary pressure
phenomena in porous media. Androutsopoulos and
Mann (1979) used two-dimensional networks of intercon-

nected pores to model these phenomena, although they
did not mention percolation explicitly. All of these au-
thors recognized that a bundle of nonintersecting capil-
lary tubes is inadequate for interpreting mercury poro-
simetry data. Interconn ectivity of the pores greatly
affects the injection and retraction processes. Meyer
(1953) had already recognized this efFect 40 years ago
when he stated that, "There may, for example, be large
pores which one would expect to fill at a low pressure,
which have no connection with the mercury except
through smaller pores. The effect of these ink-bottle
pores is to assign too small a portion of the pore space to
the large pores and too large a part to the small pores, if
the mercury injection data is taken at its face value. "

As discussed by Larson and Morrow (1981) and Wall
and Brown (1981), pores that are close to the external
surface of a porous medium can be reached more easily
than those in the middle of the medium, since if a pore in
the interior of the medium is to be penetrated by the mer-
cury, a connection with the external surface via the
penetrated pore bodies and pore throats has to be estab-
lished. If this effect is not taken into account, one ob-
tains a wrong pore-size distribution. This was nicely
demonstrated by Dullien and Dhawan (1975), who com-
pared pore™size distributions obtained by photomicro-
graphic techniques with those inferred from mercury
porosimetry data interpreted with the above assump-
tions. Qf course, one way of decreasing the effect of inte-
rior pores is to use thin or small samples. This also
reduces the measurement time. However, before this is
done, one has to establish that the pore-size distribution
obtained with small or thin samples is in fact representa-
tive of the actual and much larger porous medium. Lar-
son and Morrow (1981) developed a model that could
take into account the effect of sample size.

Once one recognizes the importance of interconnectivi-
ty and pore accessibility, then the application of percola-
tion concepts to mercury porosimetry seems natural.
Many authors have used such concepts to calculate the
capillary pressure curves of porous media (Larson and
Morrow, 1981; %'all and Brown, 1981; Conner et al. ,
1984, 1988; Conner and Lane, 1984; Neimark, 1984a;
Chatzis and Dullien, 1985; Heiba, 1985; Lane et al. ,
1986; Ramakrishnan and Wasan, 1986). Some recog-
nized that, although mercury porosimetry is a percola-
tion process, there are certain differences between this
process and the random percolation described in Sec. II
(see, for example, Lane et al. , 1986). Some used two-
dimensional networks, which are actually not suitable for
simulating mercury porosimetry, since this is a two-phase
Row problem, and no two-dimensional bicontinuous
structure exists, while others (for example, Larson and
Morrow, 1981) represented the pore space with a Bethe
lattice to take advantage of the analytical expressions for
the percolation properties of Bethe lattices derived by
Fisher and Essam (1961). Tsakiroglou and Payatakes
(1990) developed a more general three-dimensional net-
work simulator in which percolation was not explicitly
used.
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Ca= ~'
Omu

(3.8)

where U is the average Quid velocity and g the average
viscosity, then one must have Ca« I in order to fulfill
this criterion.

The porous medium is represented by a three-
dimensional network in which each site represents a pore

Before describing a percolation model of mercury
porosimetry, let us first mention a few earlier works
which, although they did not use the terminology of per-
colation theory explicitly, were more or less percolation
models and hence took into account the effect of pore in-
terconnectivity. The earliest work appears to be that of
Ksenzhek (1963), who used a cubic lattice of pores to in-
vestigate the penetration of a porous Inedium by a
nonwetting liquid. The pores were assumed to be capil-
lary tubes of a given radius. The pore radii were distri-
buted according to a probability density function. By
making a few simplifying assumptions, Ksenzhek derived
several formulae for various quantities of interest. In
particular, a quantity essentially equivalent to the per-
colation probability was calculated and its dependence on
the network size was investigated. Topp (1971) noticed
that, in the early theories of hysteresis phenomena
developed by Everett (1954) and others, only the shapes
of the pores determined the shapes of the curves and the
sequence by which pores are filled by the penetrating
Quid, whereas in reality both pore geometry and the state
of neighbort'ng pores should be important. This is also
what Meyer (1953) had stated 18 years earlier, but the
significance of Topp's work is that he developed integral
convolutions of the pore-size distribution and a quantity
that is essentially equivalent to the accessibility function
of percolation discussed above. Like Ksenzhek (1963),
Topp made several simplifying assumptions, but it seems
that he clearly recognized the significance of both the
pore-size distribution and the pore-space accessibility.
Pis'men (1972) developed elegant integral expressions
describing capillary equilibrium, which included the
effects of branching of bifurcating pores and pore distri-
bution. Finally, Chatzis and Dullien (1977) used percola-
tion concepts to calculate capillary pressure curves, and
Androutsopoulos and Mann (1979) used network simula-
tions, without mentioning percolation, to achieve the
same end. Complete details of the work of Chatzis and
Dullien (1977) is given in their 1985 paper.

Let us now use percolation concepts and describe a
simple model for mercury porosimetry. We should first
note that a percolation model for describing any two-
phase Qow phenomenon in porous media is appropriate if
the capillary pressure across a meniscus separating the
two Auids (e.g., Hg and the vacuum) is greater than any
other pressure difference in the problem, e.g. , that due to
buoyancy. The second condition is that frictional losses
due to viscosity must be small compared to the capillary
work. If we define a capillary number Ca by

body and each bond represents a pore throat. For now,
we ignore the size of the pore bodies and consider a
"pore-size distribution" f (r) for the pore throats. For
simplicity, we ignore the inclination angle y in Eq. (3.4).
The penetration of the pore space by mercury is the same
as the invasion of the pore space by a nonwetting Quid,
for which the contact angle 0 is larger than 90'. During
this process and the reverse process of withdrawal or re-
traction, the subdistributions of the pore space, accessible
to and occupied by mercury, are different. Consequently
the "pore-size distribution" of the subset of pore space
occupied by mercury differs from the overall pore-size
distribution. Thus during injection of mercury into the
pore space, the fraction of pores that are allowed to re-
ceive it is (Heiba et al. , 1982, 1992)

(3.9)

where r;„is the minimum pore radius into which Hg
can penetrate. The fraction of those pores that are acces-
sible to and thus occupied by the mercury is X"(X,. ),
where X is the percolation accessibility function defined
above. Therefore the distribution f;(r) of the pore radii
that are occupied by the mercury is (Heiba et al. , 1982,
1992)

(3.10)

At each stage of the process, the corresponding capillary
pressure can be calculated from Eq. (3.4). The idea
behind Eqs. (3.9) and (3.10) is that, during injection of the
mercury, the largest pores will be occupied [which can be
understood by examining Eq. (3.4)].

Consider now the retraction process during which the
mercury is expelled from the pore space. During this
process, as the pressure is lowered the mercury is first ex-
pelled from the smallest pores [see Eq. (3.4)]. The al
lowed fraction of such pores is (Heiba et al. , 1982, 1992)

X„=f f (r)dr+ 1—
Q

(3.11)

where rQ is the radius of the pore at a given capillary
pressure P, such that the mercury is expelled from all
pores for which r ~ ro, X, , =X,(r;„,), and r;„,is the
pore radius at the end of the injection process. The first
term on the right side of Eq. (3.11) is clearly the fraction
of pores from which the mercury is expelled, if at the end
of injection there were no pores that were accessible
to it. However, at the end of injection a fraction
1 —X (X;,)/X;, of the pores could not be reached by
the mercury and, consequently, the second term on the
right side of Eq. (3.11) is the fraction of pores that were
not invaded by the mercury at the end of injection.
Hence the size distribution of the pores from which Hg is
expelled is given by (Heiba et al. , 1982, 1992)
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X"(X,, )
r &ro,

f ( ) f ( r ) X"
(X;, )

f(r)
+ + +min, t

r

X (X„)
1 ——

X„ ~min, t + ~ + ~O (3.12)

It is essential to specify clearly all of the assumptions that
are made in order to arrive at these formulae. (i) The
pore space is infinitely large. (ii) The entire process can
be described by random bond percolation. (iii) Entrap-
ment of Hg in isolated clusters is ignored. The first as-
sumption is essential if we are to use the results for per-
colation on infinitely large lattices. However, finite-size
scaling, discussed in Sec. II, allows one to investigate sys-
tematically the eff'ect of sample size. For the Bethe lat-
tice, the accessible fraction X can be calculated analyti-
cally for a given lattice size, which is why this lattice was
used by some authors.

The second assumption is not, strictly speaking,
correct. While it is true that the injection process is con-
trolled by the radii of the pore throats and therefore can
be considered as a bond percolation process [see Eq.
(3.6)], the same is not true about the inverse process of re-
traction. This process is controlled by the sizes of the
pore bodies [see Eq. (3.7)], and therefore retraction is a
sort of site percolation process. Therefore a correct mod-
eling of mercury porosimetry should involve a mixture of
bond and site percolation, with size distributions for both
pore bodies and pore throats, whereas the above formu-
lae are derived assuming a size distribution for the pore
throats and ignoring that of the pore bodies. The as-
sumption that the entire process is a classical random
percolation phenomenon is also, strictly speaking, not
correct, since in practice the pore space is invaded by the

mercury from its external surface, and therefore the
phenomenon is an inuasion percolation process, which is
discussed in Sec. VIII. However, as discussed there, the
error caused by this assumption is often small and can be
neglected. Finally, although the third assumption is not
completely correct, the resulting error is not large. Al-
though one has to consider a percolation problem in
which trapping of clusters of one kind is allowed, if they
are completely surrounded by clusters of another kind, a
problem that was first studied by Sahimi (1985) and
Sahimi and Tsotsis (1985) in the context of catalytic
pore-plugging, computer simulations (Dias and Wilkin-
son, 1986) showed that, for three-dimensional networks,
the eff'ect of trapping is so small that it can be neglected.

Despite such assumptions, shortcomings, and criti-
cism, the above percolation picture has been relatively
successful in describing Inercury porosimetry. Figure 6
shows the predicted capillary pressure-saturation curves
(saturation of a phase is the volume fraction of the pore
space occupied by that phase) if one uses a Bethe lattice
of coordination number Z=4 and f (r) =2r exp( r). If-
we compare this figure with Fig. 5, which is the measured
capillary pressure curve for Becher dolomite with a
porosity of 17.4%, we see that all of the main features of
the experimental results are reproduced by the percola-
tion model, even though the pore-space model (the Bethe
lattice) or the pore-size distribution may not seem very
realistic. The reason for this apparent success is that per-
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FIG. 6. Typical mercury porosimetry curves
as predicted by random-percolation theory
(from Larson and Morrow, 1981).
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X (X) f, f()V()d
SHg= min

f f (r) Vz(r)dr
(3.13)

where V (r) is the volume of the pore throat of radius r.
As the first step of extracting the pore-size distribution, a
functional form for V„(r)and hence a pore shape have to
be assumed. Next, one has to calculate the accessibility
function of the pore space, which means that either the
average coordination number Z of the pore space has to
be known from measurements (or it has to be assumed),

colation effects, which to a large extent control the pro-
cess, have been taken into account, and the pore-size dis-
tribution that was used mimics that of the porous medi-
um (which is presumably a unimodal pore-size distribu-
tion with a maximum). Note that in both Figs. 5 and 6
we show the injection and retraction curves, as well as
the reinjection and retraction curves, which start at the
end of the first retraction and second injection, respec-
tively.

What is the effect of sample size on capillary pressure
curves? The main effect is increased accessibility of pore
space, which causes reduction in the sharpness of the
injection-curve knee. Injection curves for unconsolidated
packings indicate rather strong dependence on sample
thickness for systems up to about 10 particle diameters or
about 30 pore-throat diameters. For thicker media, the
dependence is relatively weak, and if the thickness
exceeds 20 particle diameters, no appreciable sample size
can be detected. Figure 7 shows the effect of sample size
based on the percolation model (Larson and Morrow,
1981).

How can we extract a pore-size distribution from the
mercury porosimetry data'? Consider, for example, the
injection process during which the mercury saturation
SH is given by

or it must be treated as an adjustable parameter of the
system in order to fit the percolation model to the data.
Later in this section we discuss how a combination of a
percolation model and adsorption-desorption isotherms
in porous media can be used for estimating Z. Alterna-
tively, Z may be estimated from serial sectioning of the
porous sample. Both SHs and P, (from which r;„is cal-
culated) are measurable quantities. Thus, assuming an
f (v) as an initial guess, Eq. (3.13) is iterated many times
until a satisfactory f (r) can be found. Normally, a par-
ticular form of f (r), with one or two adjustable parame-
ters, is assumed and the parameters are varied until a sa-
tisfactory Gt is found. However, note that since for
p (p„X=0, one cannot obtain the complete pore-size
distribution: no information about the largest pores
penetrated by the mercury can be obtained. On the other
hand, if we use the measurements during the retraction
process, we obtain information about the size distribution
of the pore bodies, but this information is again not com-
plete. One way of resolving this difhculty is to do the
measurements in small samples, so that the effective per-
colation threshold is small and, as a result, more informa-
tion can become available. Care should, however, be tak-
en to ensure that the small sample is representative of the
true porous medium.

At this point, we should mention the dissenting view of
Thompson et al. (Thompson, Katz, and Krohn, 1987;
Thompson, Katz, and Rashke, 1987) regarding a percola-
tion picture for mercury porosimetry. These authors
made high-precision measurements of mercury injection
into three sandstones and a sintered glass-bead pack, and
measured mercury pressure and volume as well as the
sample resistivity. They found that the pore-by-pore
filling process gives rise to a stepwise resistance curve
with a power-law step distribution covering several or-
ders of magnitude; this is shown in Fig. 8. They also
found that the steps are irreversible, that the exponent in
the power-law distribution depends on the ratio of gravi-
tational to capillary forces, and that the results are con-
sistent with a percolation picture of mercury geometry,
but they stated that, "the mercury injection involves hys-
teretic volume changes of erst-order character. " They
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FIG. 7. EfFect of sample size on capillary pressure curves, as
predicted by random-percolation theory [from Larson and Mor-
row (1981)].

FIG. 8. Resistance of a porous medium during mercury poro-
simetry (from Thompson, Katz, and Rashke, 1987b).
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further stated, "We conclude that percolation concepts
can be applied to the mercury geometry but the injection
process itself is not second order and should not be
modeled by. . .percolation transitions. " They drew these
conclusions based on Fig. 8. However, this behavior is
mainly a finite-size effect, which would disappear as
larger and larger samples were used, so that in the limit
of large systems the resistivity curve would become
smooth, typical of second-order phase transitions. We
shall return to this point in Sec. VIII, where we discuss
two-phase fIow in porous media.

sorption. Typical adsorption-desorption isotherms are
shown in Fig. 9. The International Union of Pure and
Applied Chemistry (IUPAC) has classified the various
hysteresis loops that can be observed experimentally as
types H1, H2, H3, and H4, shown in Fig. 10. According
to the report of Sing et al. (1985) to IUPAC, at least for
types H1, H2, and H3 the connectivity plays an impor-
tant role.

As in the injection stages of mercury porosimetry,

2. Adsorption-desorption phenomena and percolation

Another method of determining the pore-size distribu-
tion of a porous medium is using adsorption-desorption
isotherm data (Barrett et al. , 1951). Normally, liquid ni-
trogen is used in such an experiment, although in princi-
ple one can also use gases. Let us consider first nitrogen
adsorption in a single pore. During the adsorption ex-
periment the pressure is increased, as a result of which an
adsorbed film of nitrogen forms on the pore walls, whose
thickness increases with increasing pressure. At conden-
sation pressure P„the pore is filled with a (liquidlike)
condensed phase which results in a step increase in the
adsorption isotherm. The condensation pressure is given
by the Kelvin equation, which, for a pore of radius r, is
given by

25

a5
'

Pco
=exp[ —2cri, VL /(RTr)],

0
(3.14)

0.35
I
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I

0.65

relat&ve vapour pressure, I jpo

I

0.75 0.85

in which P0 is the saturation pressure, o.(, the liquid-
vapor surface tension, R the gas constant, T the tempera-
ture, and VL the molar volume of the liquid. Thus, using
Eq. (3.14), for any value of P„/Po the adsorption process
can be uniquely parametrized by an effective radius,
which from here on we denote by r, . Hence adsorption
or desorption processes correspond to an increase or de-
crease, respectively, in r, . During adsorption, all pores
are equally accessible, vapor condenses in all pores of size
r & r„and the liquid nitrogen fills the pores. For r & r„,
the first-order phase transition disappears and the pores
fill rapidly and continuously with nitrogen. Thus, during
this process, often called pvimary adsorption, connectivity
of the pores plays no role. All that matters is the
efFective size of the pores.

Consider now the primary desorption process. At the
beginning, as the pressure is reduced„ the desorption iso-
therm does not retrace that of adsorption but, as in mer-
cury porosimetry, forms a hysteresis loop before rejoin-
ing the adsorption isotherm. However, unlike the pri-
mary adsorption process, here the geometry and inter-
connectivity of a pore do matter. A pore with an
e6'ective radius r is allowed to desorb (to contain vapor) if
r & r, and if it has access to either the bulk vapor, in pri-
mary desorption, or the isolated vapor pockets, in secon-
dary desorption, which occurs after the secondary ad-
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FIG. 9. Typical absorption-desorption isotherms in porous
media. In both figures various curves correspond, from top to
bottom, to primary adsorption (desorption), secondary adsorp-
tion (desorption), and so on. Numbers refer to the experiment
number (from Mason, 1988).
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where the quantity p, given by

pj =
J' p p, J =p&~pt (3.19)

Hl

P/Pp

H2
P/Pp

f fL b(r) V~b(r)dr
SL~ —(1 X~b

—) f f b(r)V b(r)dr
0

(3.20)

is simply the fraction of pore bodies or pore throats that
have a radius greater than r, . The corresponding liquid
saturation during desorption is

H3

P/P p

H4
P/Pp

FIG. 10. Various types of hysteresis curves that can occur dur-
ing adsorption (upper curve)- desorption (lower curve) phenom-
ena.

desorption is controlled by pore throats. Thus, iff, (r) is
the size distribution of the pore throats, since desorption
starts at the percolation threshold at which a sample-
spanning cluster of pore throats containing vapor is
formed, the onset of primary desorption is defined in
terms of a radius r; such that

f "f„(r)dr=p,b, (3.15)

because the left-hand side is simply the fraction of pore
throats with effective radii larger than r;. On the other
hand, adsorption is controlled by the pore bodies. Now,
if V~b(r) is the volume of a pore body and f~b(r) its size
distribution, then it is clear that, since percolation and
connectivity play no role during the primary adsorption,
the saturation SLA of the liquid during adsorption is
given by

br Vbrdr
SLA =1-

pb l Vpb l dl"
0

(3.16)

fj(r)!(1—XJ ), r (r, ,

fI&(r)= . (3.18)

fj(r)(1—XJ. /pj)l(1 —XJ ), r )r, j=pb, pt

Note the similarity between Eqs. (3.13) and (3.16).
Primary desorption begins at the end of primary ad-

sorption. During this process, a pore filled with liquid
vaporizes if r & r, and if it is accessible to a sample-
spanning vapor phase. Thus the fraction of pore bodies
or throats that are actually occupied by the vapor is
given by

X.=X", j =pb, pt, (3.17)

where X" is the percolation accessibility function defined
earlier. The size distribution of the liquid-filled pores is
simply given by

%'e emphasize again the similarities between these
equations and those for mercury porosimetry. It is clear
that Eqs. (3.18) and (3.20) provide a method of determin-
ing f„b(r) We. have to assume a functional form for
V~b(r), and have a priori knowledge of the average coor-
dinate number Z of the porous medium so that the acces-
sibility function X. can be determined. It is of course
the desorption process which is sensitive to the morphol-
ogy of the pore space, and if we ignore pore bodies and
attribute everything to the pore throats, then the above
equations can be used for obtaining a pore-size distribu-
tion for the pore space. Note that if we assign effective
sizes to both pore bodies and pore throats, then since the
effective radii of all pore throats connected to the same
pore body must be smaller than that of the pore body it-
self, the size distributions of the pore bodies and pore
throats must obey certain restrictions (Parlar and Yort-
sos, 1989). The same is true for mercury porosimetry.
Moreover, the accessibility function X. for the general
case of a mixed problem of pore bodies and pore throats
(mixed site and bond percolation) is different from that of
random site or bond percolation discussed above.

The above picture of desorption was exploited by
several authors to extract information on the pore-size
distribution of porous media (Wall and Brown, 1981;
Mason, 1982, 1983, 1988; Neimak, 1984b; Zhdanov
et al. , 1987; Parlar and Yortsos, 1988, 1989). Mason,
and Parlar and Yortsos used Bethe lattices to take advan-
tage of the analytical expressions for the accessibility
function. Zhdanov et al. (1987) assumed that the radius
of any pore body is greater than all pore throats in order
to simplify the problem. Wall and Brown (1981) used
Monte Carlo calculations and a simple cubic network of
pore bodies and pore throats. Finally, Parlar and Yort-
sos (1988, 1989) also investigated the effect of heterogene-
ous nucleation on adsorption-desorption processes in
porous media.

3. Small-angle scattering method

Mercury porosimetry is applicable in the range 3 nm
to 100 pm and is of limited accuracy in the small-pore-
size range. Adsorption-desorption methods can provide
pore-size distributions in the range 1 —60 nm. However,
as we discussed above, the isotherms show hysteresis, and
it is not guaranteed that a pore-size distribution calculat-
ed from primary desorption will agree with that obtained
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q =4m.A, 'sin(8, /2), (3.21)

where A, is the wavelength of the radiation scattered by
the sample through an angle 0, . One then assumes a
pore shape, e.g., a sphere, a cylinder, or a sheetlike struc-
ture. Suppose that the efFective size of a pore (e.g. , its ra-
dius) is r with a number density n Then. , according to
Vonk (1976), one has

n

I (q) =p g n~ VP SF(qr) ~

i=1
(3.22)

where V is the volume of a pore of effective radius r.
Here p is the difference in scattering amplitude densities
between the solid matrix and the pore space, and S~(qr)
is a form factor which depends on the shape of the pores.
For pores of any shape, one must have Sz-1 as q —+0,
and S+~0 as q becomes sufficiently large. Thus one
measures I(q), assumes a pore shape, fits the measure-
ments to Eq. (3.22), and calculates n~ by a constrained
least-squares fitting procedure.

Using this idea and SAXS and SANS, Hall et al.
(1986) measured the pore-size distributions of eight
different rocks. Three of them were fractured rocks,
while two of them were sandstone. Figure 11 shows their
typical results, obtained with SANS and compared with
the results obtained with mercury porosimetry and
adsorption-desorption isotherms. The rock studied was a
shale outcrop from Eastern Kentucky with very low
porosity (about 4%%uo). In general, the pore-size distribu-
tions obtained by scattering methods tend to agree with
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FICx. 11. Comparison of cumulative pore-size distribution of an
oil shale, obtained by small-angle neutron scattering, with those
obtained by adsorption-desorption and mercury porosimetry
(from Hall et al. , 1986).

from the secondary adsorption. Moreover, in both mer-
cury porosimetry and adsorption-desorption methods one
needs to have some information on the connectivity or
the average coordination number of the pore space. In
this subsection we discuss a method that appears to be
free of such limitations. The method is based on SAS
methods, either small-angle x-ray scattering (SAXS), or
small-angle neutron scattering (SANS).

The basic idea is as follows. One measures the scatter-
ing intensity I(q), where q is the scattering vector given
by

those yielded by secondary adsorption isotherms. Note
that adsorption and desorption isotherms show
significant hysteresis, resulting in significantly different
cumulative pore volumes, and that mercury porosimetry
results are in between adsorption and desorption results.
This figure also reveals a basic dilemma for anyone who
wishes to measure the pore-size distribution of a given
rock: What method should one use and when? How can
one know a priori which method of measuring the pore-
size distribution yields the most accurate and realistic re-
sults. There are questions that, despite their significance,
have not yet found definitive answers. While both mer-
cury porosimetry and adsorption-desorption methods
suffer from the fact that a priori knowledge of the con-
nectivity of the pore space and pore shapes is essential to
their success, and while it is also true that these methods
cannot yield the complete pore-size distribution of the
pore space, unless thin samples are used, the scattering
method, as described by Eq. (3.22), also has its own
shortcomings. First of all, it contains the unknown shape
factor SF, the specification of which requires specifying
the pore shape, and secondly, even if the pore shape is
specified, the resulting pore-size distribution appears to
be sensitive to the pore shape. The conclusion is that all
of the above methods of determining the pore-size distri-
bution have their own strengths and weaknesses. It is the
opinion of the author that, at present, scattering and ad-
sorption methods seem to be more reliable, although the
range of pore sizes that can be detected by the former
method seems to be broader than that of the latter
method.

4. Nuclear magnetic resonance

Application of nuclear magnetic resonance (NMR) for
determining the pore-size distribution of a rock seems to
have been pioneered by Cohen and Mendelson (1982).
We should, however, mention the work of Brownstein
and Tarr (1979), who used the method to study proton-
spin relaxation in water in biological cells, and delineated
the separate inQuences of diffusion and surface relaxitivi-
ty (see below). In this method, the porous medium is first
saturated with a suitable Quid such as water. An ap-
propriate pulse is then applied and the magnetization re-
laxation with time is measured. Magnetization relaxa-
tion is caused by the interaction of the solid surface of
the pores with the Quid near the surface, as well as with
that in the bulk. Therefore the relaxation rate can pro-
vide direct information about the surface-to-volume ratio
and, hence, an effective pore size. If the porous medium
is characterized by a porc-size distribution, and if there
are regions of the pore space that are separated by more
than one diffusion length (by which the molecules move
in the pore space), then such regions can be distinguished
in the relaxation data. If the pore space of the medium is
too complex, NMR relaxation may not be able to reveal
all of its complexities. Moreover, if the ratio of signal to
noise is finite, then extracting a pore-size distribution
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BM, =y (MXH), —M, —M BM,
+D,

1 az
(3.23)

where H is the magnetic field, y the proton gyrometric
ratio, D, the diffusivity, T& some relaxation time, and
M the equilibrium magnetization.

In a pore of effective radius r, the magnetic field gra-
dients between the surface and the bulk are smoothed by
diffusion in a time

td=
S I

6D, Vp
(3.24)

where Sz and Vz are the surface and pore volumes, re-
spectively. Each pore is characterized by a relaxation
time t . If td & t, then one will observe an averaged sig-
nal for that pore. However, if td )t, one will observe a
complex signal because of the spatial inhomogeneities.
Thus there is a critical pore radius r, such that if r & r,
one will observe an averaged signal, whereas for r &r,
one will obtain a complex or multicomponent signal.
Therefore, for pores with r &r„the average relaxation
time t„is given by

1 Sp I /Vp S—
~ l /Vp'+ (3.25)

and by measuring t„for a given pore one can obtain
S /V.

So far we have discussed only diffusion within a pore.
One should also consider diffusion between the pores,
which depends on the distance I. between them. For
rocks of spherical pores of radius r, this is given by
I. -rP '~, where P is the porosity. If diffusion between
pores totally dominates the rock response, only one relax-
ation time is observed for the entire rock. Normally,
however, diffusion between pores is not significant, and
the porous medium behaves as a collection of isolated

may be too dificult. Despite these difficulties, NMR re-
laxation has been used for probing the pore space of vari-
ous rocks and other porous media and obtaining their
pore-size distributions. Let us now describe how the
NMR data are analyzed for determining the pore-size
distribution. To do this, we follow Cohen and Mendel-
son (1982) and Schmidt et al. (1986).

One assumes that each pore contains two kinds of
Quid. One is a layer of thickness d, adsorbed on the pore
surface with relaxation time t„and the other is the Auid
in the bulk away from the surface with relaxation time tb.
In the presence of a Quid applied from the surface, t, is
shorter than tb because the applied field hinders the
diffusion of the fluid. The ratio t, /tb depends on the na-
ture of the adsorbent and the surface geometry. NMR
relaxation, together with diffusion, acts to smooth any
spatial gradient in the magnetization which exists be-
tween the adsorbed and bulk fluids, as well as between
Quids in adjacent pores. The governing equation for the
magnetization M is

pores. In this situation, each pore has its own relaxation
time, which depends on its surface-to-volume ratio.
Thus, if one groups pores of the same effective radius to-
gether, one can write

M, (t)=M +(Mo —M„)f P (to)e 'de,
min

(3.26)

M, (r )=M
~max

e ''P, ( to).
i min

(3.28)

Note that P (co) is normalized, and therefore
P(co;)=1. Equation (3.28) is then solved for~min

I+2 unknowns and X data points, where the interval
(co;„,co,„)has been divided into m subintervals of
length hto=(co,„—to;„)/m. If N ~ m +2, then Eq.
(3.28) is used to calculate S~ /V~ for pores with frequency
co;. If a pore shape is assumed, the effective size of the
pore can then be calculated.

This method is based on the assumption that diffusion
between pores is not important and hence the pores can
be treated independently. Cohen and Mendelson (1982)
and Mendelson (1982) discussed the conditions under
which this assumption is valid for an NMR experiment.
One geometrical requirement for the validity of this as-
sumption is that the pore throats be relatively narrow,
because then diffusion between pores will be severely re-
stricted. For some porous media this assumption is valid,
while for some others it is not. In the latter case, one can
still obtain a pore-size distribution, but the effective sizes
that are obtained are only rough estimates of the true
values. Since a pore shape has to be assumed anyway,
which is an approximation in itself, the calculated pore-
size distribution will be based on two approximations.
Latour et al. (1992) presented some data on the tempera-
ture dependence of decay of the spectra as evidence for
the concept of isolated or uncoupled pores. McCall
et al. (1991) actually implemented the method of Cohen
and Mendelson (1982) and showed how the spectrum of
decay narrows as the diffusivity increases. Mendelson
(1986) extended the above analysis to a fractal pore
space.

The NMR method was used by Schmidt et al. (1986),
Lipsicas et al. (1986), and Bilardo et al. (1991) for
measuring the pore-size distributions of various sand-
stones. Schmidt et al. (1986) compared their results with
those obtained by mercury porosimetry and showed that
the NMR technique is more sensitive to the pore struc-
ture and can also reveal a bimodal pore-size distribution,
if there is one. Note that, while mercury porosimetry

where to=T& ' is the frequency of relaxation and P(co)
the fraction of Quid that resides in pores with relaxation
frequency co. Equation (3.26) can be rewritten as

M, (t)=M„—J P, (co)e 'dao, (3.27)
min

where P, (oo) =(M„—Mo)P . Because one measures
M, (t) at various discrete times r (j= 1,2, . . . , N), Eq.
(3.27) is written in a discretized form
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and adsorption-desorption methods depend critically on
the interconnectivity of the pore space (and hence on per-
colation concepts), NMR and SAS methods are indepen-
dent of this effect and thus are more fIexible and presum-
ably more accurate.

Given the pore-size distribution of a reservoir rock,
what can we learn from it? Pittman (1984) gives a de-
tailed discussion of various forms of pore-size distribu-
tions and the kind of information that one can deduce
from them. For example, Fig. 12(a) shows the measured
pore-size distribution for Nugget sandstone, which is the
major reservoir in the overthrust play of Utah and
Wyoming. A mercury injection test shows that the Nug-
get sandstone has large pore apertures, because the mer-
cury entry point is approximately 50 pm. Figure 12(b)
shows the pore-size distribution for Baker dolomite, a
carbonate rock with intercrystalline porosity. The mer-
cury injection curve shows that the entry point of the
mercury is about 11 pm, with well-sorted apertures be-

tween 4 and 11 pm. The fact that the curve has a hump
means that the pore system is bimodal. The effective ra-
dii of the micropores are between 0.25 and 1 pm. The to-
tal porosity of the sample was about 20%, of which
12.5% was contributed by the macropores. Figure 12(c)
presents the pore-size distribution for Tuscarosa sand-
stone of Appalachian provenance. The total porosity of
the system is about 10%. The pores are poorly connect-
ed, resulting in a low permeability. The mercury injec-
tion curve is indicative of the presence of small pore
apertures. It also indicates that only 58% of the pores
are penetrated by mercury at the end of the injection pro-
cess. The aperture of the largest pores is only about 1

pm. Finally, Fig. 12(d) shows the pore-size distribution
for the Drum limestone of Kansas, which is a carbonate
reservoir. This reservoir contains oolites, peloids, and
skeletal grains, which are seen in the figure. The pore
system is very heterogeneous. The mercury injection
curve for this limestone shows a wide range in sizes with
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FIG. 12. Pore-size distribution of various rocks. Insets show the properties of the rocks (from Pittman, 1984).
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only a few percent of large pores whose apertures exceed
5 pm. More than 85% of the pore apertures are less than
0.5 pm. As a result, the permeability of the system is
very low. The above comparison between sandstones and
carbonate rocks shows clearly the major differences be-
tween the two types of reservoirs. It also shows how the
measured pore-size distribution, no matter how incom-
plete it may be, can shed light on the pore structure of
reservoir rocks and thus explains why mercury poro-
simetry and the resulting pore-size distribution, even
when vaguely defined, have always been of great interest.

of a pore space, which is based on the percolation model
of adsorption-desorption phenomena di.scussed above. In
what follows, we describe Seaton's method and comment
briefly on Mason's technique, which is closely related to
Seaton's.

Seaton s method is based on finite-size scaling analysis,
discussed in Sec. II, according to which we can write

(3.29)

Equation (3.29) can be rewritten as

ZX "(p)=L ' f [(Zp B,—)L' ], (3.30)

D. Topological properties of
porous media and their remeasurement

Any reservoir rock consists of a pore space and a solid
matrix. Parts of the pore space may be isolated and inac-
cessible from the external surface of the reservoir,
whereas the solid matrix is mostly connected and accessi-
ble. The solid matrix and the pore space are separated by
a pore wall, which is essentially an oriented surface. One
of the simplest concepts for characterizing the topology
of a rock is the coordination number Z, which is loosely
defined as the number of pore throats that meet at a
given point or pore body of the medium. For regular
pore structures, such as cubic arrays of spheres, it is easy
to determine Z, whereas for an irregular pore space es-
timating Z is usually dificult and often ambiguous. One
has to define an average coordination number Z, and this
average value has to be taken over a large enough sam-
ple. For microscopically disordered, macroscopically
homogeneous media, Z is independent of sample size.
Moreover, topological properties of porous Inedia are in-
variant under any deformation of the pore space and
solid matrix.

How can we determine the average coordination num-
ber and other topological properties of a porous medium?
Stereology (Underwood, 1970) and serial sectioning
(Pathak et al. , 1982; Lin and Hamasaki, 1983; Koplik
et aI., 1984; Yanuka et aI., 1984; Lin et al. , 1986;
Kwiecien et al. , 1989) have been used in the past to
deduce the three-dimensional structure of porous media.
In particular, Kwiecien et al. (1989) developed computer
programs that take data, analyze them, and generate a
computer image of a porous medium and its various
properties, such as pore-body and pore-throat size distri-
bution and the average coordination number. However,
neither of these methods is used routinely at present.
More popular are indirect methods by which only statis-
ticaI information about the structure of the system is ob-
tained. Some of the indirect methods are NMR, poros-
imetry, and sorption experiments, already discussed,
which may yield parts or all of the pore-size distribution,
and if the true average coordination number of the pore
space is treated as an adjustable parameter, it can also
simultaneously be estimated with the pore-size distribu-
tion. Mason (1988) and Seaton (1991) developed a direct
method for estimating the average coordination number

using 8, =Zp, b. Accurate values of X "(p ) were obtained
by Kirkpatrick (1979) for a simple cubic network for
various sizes L, and can be shown to follow Eq. (3.30).

Consider now, as an example, the H2 loop in Fig. 10.
The desorption curve has three segments indicated by 1,
2, and 3 in the figure. In the 1 —2 interval, the isotherm is
almost linear and occurs because of decompression of the
liquid nitrogen in the pores. In the corresponding per-
colation network, p, the fraction of open pores (i.e., those
in which the nitrogen pressure is below the condensation
pressure), increases, but X is still zero because a
sample-spanning cluster of open pores has not yet been
formed. At point 2, the network reaches its p„a
sample-spanning cluster of open pores is formed, and the
metastable liquid nitrogen in the pores of the cluster va-
porizes. If one decreases pressure further, the number of
pores containing metastable nitrogen and the number of
pores whose nitrogen has vaporized both increase. At
point 3, almost all the pores in which the nitrogen pres-
sure is below their condensation pressure can also vapor-
ize, and therefore X =p. Note that in a finite percola-
tion network one has a smeared out percolation, in which
the discontinuity in the desorption isotherm causes a rap-
id increase in the slope and can even be detected in prac-
tice. A similar analysis can be used for interpreting the
H1 loop.

Thus Seaton's method consists of two steps: (i) X "(p)
is determined from the adsorption-desorption data; and
(ii) Z and L are determined by fitting Eq. (3.30) to X (p).
At this point, as in the other methods, it is necessary to
assume a relation between pore radius and length. For
example, one may assume that the length and the radius
of a pore are uncorrelated. Note that X "(p)/p, which is
the ratio of the number of pores in the percolation cluster
and the number of pores below their condensation pres-
sures, can also be written as Np/Xb where Nb is the
number of moles of nitrogen which would desorb if all
the pores containing nitrogen below its condensation
pressure had access to the vapor phase, and Xp is the
number of moles of nitrogen which actually have
desorbed at that pressure. Now, if Nz is the number of
moles of nitrogen present in the pores at a given pressure
during the adsorption experiment, 'XD the number of
moles of nitrogen present in the pores at that pressure
during the desorption experiment, and Xz the number of
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moles of nitrogen which would have been present in the
pores at that pressure during the desorption experiment
if no nitrogen had vaporized from the pores which con-
tain nitrogen below its condensation pressure, then it is
clear that X~=NF —XD, and Xb XF X~, and there-
fore

(3.31)

1.5
5'cb =

Z
(3.33)

and because for a Bethe lattice of coordination number
Zb, p,~ =(Zb —1) ' [see Eq. (2.1)], then if we fix p,„ona
Bethe lattice and its "equivalent" three-dimensional net-
work, we find a relation between Z and Zb

so that X"(p)/p is written in terms of measurable quanti-
ties. The final step is to determine p, so that X"(p) can
be calculated from Eq. (3.31). But this is straightfor-
ward, because if f (r) is the normalized distribution of
pore numbers of pore radius r, then for a given pressure
P one has [cf. Eq. (3.19)]

p= J f(x)dx, (3.32)
T

where r is the pore radius in which nitrogen condenses at
P . Therefore, given the pore-size distribution f (r)
determined from mercury porosimetry, desorption iso-
therms, or any other method, p and hence X"(p) can be
determined.

Conceptually, Mason's method (1988) has many simi-
larities with Seaton's. However, Mason (1988) adopts the
Bethe lattice as the network model of the pore space, and
although this enables him to write down several analyti-
cal formulae for his theoretical adsorption-desorption
isotherms, it is not clear how his estimate of Z can be re-
lated to the average connectivity of the pore space, since
a Bethe lattice is not expected to be a reasonable model
of any pore space. However, one can establish an ap-
proximate relation between his Z and that of an
equivalent three-dimensional network. Since for three-
dimensional networks one has (Shante and Kirkpatrick,
1971;see Table II)

precise definition requires considerable knowledge of to-
pology. According to Barrett and Yust (1970), "The nth
Betti number p„ofa complex. . . (is). . . the maximum
number of homologically independent n-cycles, " which is
a quite complex statement! For our present purpose
though, we need only the first three Betti numbers. The
zeroth Betti number po is the number of isolated clusters
in a structure. In other words, po is the number of
separate components that make a structure. For exam-
ple, the grain space of a single, finite sandstone has po= 1.
Thus po ) 1 may indicate that the structure contains iso-
lated porosity. The first Betti number p, is the number of
holes through a structure, or the maximum number of
nonintersecting closed curves that can be drawn on the
surface of the structure without separating it. It is given
by P, =E Ni + 1,—where E is the number of edges and

the number of vertices (sites) of the network
equivalent of the pore space. For example, if a torus is
cut along a closed curve, the resulting solid can be de-
formed into a cylinder, whereas if the cylinder is cut
along a closed curve, it separates into two disconnected
clusters. Thus the first Betti number of the torus is one,
whereas that of the cylinder is zero.

The notion of the genus of a surface is also used for
characterizing the topology of a complex system. Also
called holeyness, the genus 6 and the first Betti number
are equal, for graphs lying on surfaces in complexes. One
can use a genus per unit volume Gz by normalizing it
over the volume over which it is measured. For large
systems pi —E —Xi„—and therefore Gi =pi /Xi
=(E/Ki, ) —1. Note that for graphs or a network
equivalent of a porous medium, Gz is half of the coordi-
nation number, but the notion of genus and genus per
unit volume are more general than the coordination num-
ber. It is clear that the first Betti number or genus is also
a measure of multiplicity of independent paths in a struc-
ture.

Finally, the second Betti number p2 is a measure of the
sidedness of a structure. For example, a Mobius strip
shown in Fig. 13(a) is one-sided, because if a normal vec-

Z= —,'(Zi, —1), (3.34)

(a)
so that the average coordination number of the actual
porous medium will be larger than what Mason's method
predicts. For large values of Zb, the difference between
Z and Zb can become significant.

A more precise method of characterizing the connec-
tivity of a pore space relies on Betti numbers. These
numbers were discussed by Barrett and Yust (1970) for
metallurgical systems, and by Lin and Cohen (1982) and
Pathak et al. (1982) for porous rocks. A fundamental
theorem of topology (see, for example, Alexandroft; 1961)
states that two structures are topologically equivalent if
and only if their Betti numbers are aII equal. For a given
structure one can define many Betti numbers, and their

ISOLATED
SPHERICAL

PORE

FIG. 13. Sidedness of (a) a Mobius strip, which is a one-sided

surface, and (b) a hollow sphere, which has two boundary sur-

faces, one inside the other (from Pathak et al. , 1982).
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tor pointing to one side is moved around the strip, it is
pointing to the opposite side when it returns to the point
it started from. By the same reasoning, a hollow sphere
shown in Fig. 13(b) is two sided, and a solid structure
containing n isolated pores is n sided.

These Betti numbers can be defined for both the solid
matrix, Po, P&, and Pz, and for the pore space P~, P,', and
g. However, a duality theorem relates these numbers as

20—
60 p, Nominal Dia.

Spherical

yhedral

gular

@=1+132,

Pi=0't =G

Po= 1+@,

(3.35)

(3.36)

(3.37)

and therefore

13'o+@=&o+P'2 (3.38)

0
0.6

I

0.7
I

0.8
I

0.9 1.0

(aG)= Jads .
$

(3.39)

which means that the topologies of pore space and solid
matrix are conjugate, and one need measure only one of
them. For a microscopically disordered rock, the Betti
numbers have to be averaged over a large enough sample.
Although, as mentioned above, one may also use topolog-
ical measures per unit volume, these measurements suffer
from the disadvantage that they depend on the unit
chosen for volume. For example, a heavily consolidated
rock with many large, irregular grains that have many
contacts with one another n1ay have the same genus per
unit volume as a lightly consolidated rock that consists of
small, well-rounded grains with few grain-to-grain con-
tacts.

Topology and geometric shapes are related through
the Cxauss-Bonnett theorem (see, for example, Kreyszig,
1959). The local Gaussian curvature of a surface IrG is
given by ~G =~,~2, where ~, and ~2 are the local principal
curvatures of the surface. KG is negative if the surface is
saddle shaped and positive if the surface is convex or
concave. One defines the integral Gaussian curvature
(aG) by

FIG. 14. Genus per unit volume Gz of sintered copper cores as
a function of porosity P (from Pathak et al. , 1982}.

tioning, they measured the genus per unit volume Gz and
surface area per unit volume Sz of their porous media.
Figure 14 shows how G~ varies with the porosity P for
the three different porous media, while Fig. 15 presents
the variations of Sv with P. As Fig. 14 indicates, with in-
creasing sintering the initial rough surface and edges of
the original powders are smoothed out; the surface areas
per unit volume no longer depend on the original shape
and show a universal dependence on P.

Lin and Cohen (1982) studied six different Berea sand-
stones and measured by serial sectioning and image
analysis several of their topological properties. Only for
the main pore subsystem 13, was measured: its minimum
was 91, whereas its maximum was found to be 280, while

Po was measured to be about 23, indicating large amounts
of isolated porosity. Also measured were the number of
contacts per pore section, which had a broad distribu-
tion. The connectivity of the pore or grain system of
Berea was found to be lower than the connectivities of

According to the Gauss-Bonnett theorem, one has

(aG ) =4m.(1—G~) . (3.40)
500—

60'. Nominal Dia.

Spherical

Reservoir rocks are highly porous and have high genus.
They also have large negative (a.G). Therefore they
must be riddled with the pore wall areas that are saddle
shaped.

These topological quantities were measured by Pathak
et al. (1982) for artificial porous media. They sintered
three different copper powders: (i) spherically shaped
grains in the range 30—90 microns; (ii) electrolytically
prepared grains of less regular shape in the range 30—90
microns; and (iii) electrolytically prepared grains in the
size range 250—300 micr ons. The sintering process
parallels, in many important aspects, the diagenesis of
sedimentary rocks described above. By using cold
compression of spherical grains, Pathak et al. also
prepared polyhedral-shaped particles. Using serial sec-

400-
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let) 200—

100—

0
0.6
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FIG. 15. Surface area per unit volume 5& of sintered copper
cores as a function of porosity P (from Pathak et al. , 1982).
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regular monosized sphere packs with similar porosities
and the same mean grain diameter.

To summarize, all of these studies indicate that for
sandsiones an average coordination number between 4
and 8 is a reasonable estimate (Lin and Cohen, 1982; Ko-
plik et al. , 1984; Yanuka et al. , 1984).

E. Fractal, self-similar, and self-affine properties of
porous media and their measurements

In the last section we reviewed and discussed the pore-
size distribution and connectivity of reservoir rocks. The
average coordination number of a sedimentary rock can
vary anywhere from 4 or 5 to 15. Many other types of
porous media, e.g., catalyst particles, coals, and mem-
branes can also have an average coordination number
roughly in the same range. Therefore what distinguishes
a reservoir rock from other types of porous media is its
geometry, that is, the shapes and sizes of its pores and its
possible fractal properties. In the last several years, frac-
tal properties of reservoir rocks have attracted consider-
able attention, and many theoretical, computer simula-
tion, and experimental studies have been undertaken in
an attempt to understand them. These properties can be
of geochemical (diagenetic) or geomechanical (fracture)
origin. Thompson, Katz, and Krohn (1987), and Thomp-
son (1991)have presented lucid discussions of some of the
fractal and self-similar properties of porous media. In
this section, we discuss and review some of these issues
and attempt to address questions and issues that were not
discussed by them. We follow Thompson et al. , first re-
viewing the methods of measuring fractal properties of
reservoir rocks and then discussing the implications of
the results. There are six basic methods of measuring
fractal properties: the box method, adsorption studies,
chord-length measurements, correlation function Inea-
surements, small-angle scattering, and spectral methods.

M(6F, q)= g p't (5~),
m=1

(3.42)

and recognize the special cases q=0 and q=1 as corre-
sponding to the box counting method and to the conser-
vation of mass„respectively, in which case we have
M (5F,O) =N -5z and M (6z, 1)= I -5z Th.erefore
one expects the general scaling law

—~f (q)
M(6~, q)-6E f (3.43)

Knowledge of 1f(q) for —~ (q (+ ~, which can be in-

terpreted as a generalized fractal dimension (hence the
name multifractal), allows the calculation of all moments
and therefore the complete statistical characterization of
the system. For example, D =rf(0) is the largest fractal
dimension, while the limits q &( —1 and q &)1 yield in-
formation about the regions where a given property has
low and high probabilities, respectively. Geometrically
speaking, a multifractal object is a fractal system in
which, if broken into many pieces, each piece is also a
fractal whose fractal dimension is not the same as that of
the whole set. Various phenomena in turbulence have
been shown to possess multifractal properties (Meneveau
and Sreenivasan, 1987). For our purpose, the most im-

portant systems with multifractal properties are
diffusion-limited aggregates, which are used for the mod-
eling of viscous fingers, as discussed in Sec. VII. By con-
trast, simple self-similar fractals have the property that

plest of which is the above fractal dimension. We ofFer
an illustration below; the interested reader is referred to
Stanley and Meakin (1988) for a more detailed discussion.
We consider the partition of a given object or set, which
may not necessarily be fractal, into X cells of size 5E, and
take a measure, for example, in terms of the probability
p;(6E ) that cell i of the partition has a certain property.
We then define the general moments M(5z, q),

1. The box method

rf(q)=(1 q)D . — (3.44)

To characterize a fractal set, one must estimate the
fractal dimension D. The simplest method of measuring
D is the so-called box counting method, which can be de-
scribed as follows. The fractal set is completely covered
by non-overlapping spheres (in a general sense) of Eu-
clidean size 5E. The number N(5E) of such spheres re-
quired is then plotted and the following relation is used,
in the limit 6E~O:

2. Adsorption methods

In a pioneering work, Avnir et al. (1983) measured,
using gas adsorption methods, pore surface properties at
the nanometer scale. The monomolecular coverage n,
e.g., moles/adsorbent weight, for various species of
di6'erent molecular weight, and hence difFerent surface
coverage per site o.„wasfound to satisfy the relation

N (5E )-5~ —D —D /2S~O S (3.45)

Equation (3.41) may be valid over only a fnite range of
scales, above, below, or between certain cutofFs. In vari-

ous applications, one may use percolation clusters,
difFusion-limited aggregates, etc. to model the pore space
or a certain transport process therein. Many such struc-
tures possess multifractal properties that necessitate con-
sideration of an infinite family of dimensions, the sim-

Under the assumption that surface coverage per site o., is
uniquely determined by the adsorbed gas species, we
recognize D, in Eq. (3.45) as the fractal dimension ob-
tained with the box method discussed above, and there-
fore it may be seen as the surface fractal dimension of the
pores. Surface fractal dimensions almost up to 3 were
obtained for various surfaces. Avnir et al. (1983, 1985)
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extended the range well beyond molecular sizes by study-
ing adsorption properties of fractal surfaces in larger par-
ticles and by considering their scaling with the Euclidean
particle size R~. In contrast to Eq. (3.45), a single species
was used. The following equation is then expected to
hold:

D —3n-R
p (3.46)

Dif we assume that the surface area is proportional to R
and that the particle weight varies with the volume as
8 . In order to measure D„onesieves the system under
study into several fractions. For each fraction the ap-
parent monolayer value n is determined by any con-
venient method, e.g. , adsorption from solution. If D, is
very close to 3, which is indicative of very wiggly porous
material, then n becomes independent of R . One can
also express Eq. (3.46) in terms of an apparent surface
area S,

D, —3S,pp
=%no., —R (3.47)

where X is Avogadro's number. The range of self-similar
and fractal behavior can also be found with this method.
If a fractal dimension D, is found from the measurements
of monolayer values of sieved fractions of particle diame-
ter from R;„to R,„,with a probe molecule of cross-
sectional area o'o, then cr,„=cro(R,„/R;„),and the
range of self-similarity is

~O —s —~max (3.48)

It is clear that, in order to get maximum information on
the molecular size geometry of the surface, one should
select o.

p to be as small as possible. This is the case in
practice, since nitrogen or argon is usually used. Note
that o.

p dictates the finest resolution in probing a surface
and therefore, if a large o.

o is used, self-similarity below
0 p can only be speculated.

The measurements of Avnir et al. (1983, 198S) re-
vealed interesting results. Six carbonate rocks were
found to have fractal pore surface with 2.16~D, ~2.97,
seven types of soils with 2.19~D, ~2.99, and a number
of crushed rocks from nuclear test sites with fractal di-
mensions in the range 2.7 +D, ~ 3. These results will be
compared with those obtained by other methods in the
subsections that follow.

Adsorption methods are not free of limitations or po-
tential problems. If, as discussed by de Gennes (1985),
chemical disorder on the pore surface is important, or if
molecular conformation and orientation are functions of
the structure of the pore surface, then adsorption
methods can yield estimates of D, that are biased. More-
over, if D, is close to 3, which is indicative of a very
rough surface, some parts of the surface can shadow
neighboring surfaces. This leads to incomplete adsorp-
tion and a lower bound to D„rather than its true value.
However, while such problems may be important when
one studies porous media such as catalysts and coal parti-
cles, they do not seem important as far as reservoir rocks

are concerned, since for them adsorption methods have
yielded estimates of D, that are in general agreement
with those obtained by other methods. Aside from these
issues, one major shortcoming of adsorption methods is
that the size range of the adsorbates is very narrow, usu-
ally from 0.2 to 1 nm. One could use probes with high
molecular weights, but this can involve problems of con-
formation and orientation of the molecules, as mentioned
above.

3. Chord-length measurements

There are two basic methods of measuring chord
lengths, namely, on fracture surfaces and on thin sec-
tions. A description of each method follows.

a. Chord-length measurements on fracture surfaces

y
(II

Position (number of pixels) 512

Position (number of pixels) 512

D
E

E

Feature Size (number of pixels) 51.2

FIG. 16. The size distribution of surface features of a sandstone
(from Krohn and Thompson, 1986).

This method was described in the papers of Krohn and
Thompson (1986) and Krohn (1988a), which we summa-
rize. At the outset, however, we should mention that
these authors do not distinguish between a fractal pore
surface (fractal dimensionality D, ) and a fractal pore
space (fractal dimensionality D). In fact, Katz and
Thompson (1985) argued that for sandstones D, =D.
This will be discussed below. One counts features in a
large number of horizontal lines (e.g. , a hundred or more)
across a digitized image of a fracture surface (see Fig.
16). The counting is then repeated for a number of
magni6cations and locations. One starts by selecting a
highly structured location on the surface and digitizing
the images at several diA'erent magni6cations. A con-
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stant resolution for feature detection is then set using a
digital low-pass filter. Features sizes, defined as the dis-
tance between local maxima, are then measured. This
generates a histogram, which is linearized and placed on
a log-log plot. That this can be done is because the prob-
ability of detecting a feature at each magnification is
known. The effects of various factors on the construction
of the histograms and the resulting plots were thoroughly
investigated by Krohn and Thompson (1986) and Krohn
(1988a). For example, they showed that the same fractal
measures are obtained whether one uses an analog or a
digital filter, that the results are independent of the filter
frequencies, and that signal-to-noise ratios do not have
any important effect on the result. One sets an amplitude
threshold to make sure that features that correspond to
noise are not counted. This threshold sets a cutoff for the
resolution, which sets a limit to the high frequencies that
are counted. However, to ensure a constant frequency
cutoff, the threshold must be set as a fraction of the sig-
nal size at each magnification. The signal size is mea-
sured by counting the features using a constant threshold
and measuring the average amplitude difference between
neighboring minima and maxima for features of a size
less than the cutoff of the filter. The amplitude is usually
measured for features with sizes between 15/S12 and
20/512 of the field of view.

This technique does not depend on the delineation of
the pore or grain space. This is an automatic method,
which statistically measures structural features using
scanning electron microscopy (SEM) images of the sur-
face. A change in contrast in the secondary electron in-
tensity of the SEM that results in a local maximum in in-
tensity is defined as the edge of a feature. The technique
makes it possible to decide whether features of a given
size dominate the geometry of the pore space. Ehrlich
et al. (1980) and Orford and Whalley (1983) also used
SEM measurements of grain roughness to analyze the re-
sults in terms of fractal concepts. However, they mea-
sured the roughness of individual grains by analyzing the
outline of the grains in a grain mount, whereas fracture
surface technique measures the pore-gain interface
without isolating individual grains. As a result, while the
fracture surface technique yields a single fractal dimen-
sion for all lengths, the fractal analysis of Orford and
Whalley (1983) does not.

The next step is to analyze the feature distribution.
For fractal behavior, the number of features counted per
centimeter N, (i) for features of size i can be expressed

N (l)-l

representing the digitized data, where J is a pixel ranging
from 1 to 512. If one edge of a feature is at J1 and the
other is at J2 then the feature size l is J2 —J, . For each
image the width in centimeters of the field of view is
12/Ma, where Ma is the magnification. Therefore

N, (l)=a (121/512Ma) (3.50)

However, the true number of features counted, N(l), is
written as

N(l)=N, (l)Pf(l)R (i), (3.51)

where F(/ —1) is the fraction of the field of view occu-
pied by features of size less than I,

(3.53)

and N(i) is the number of features of size i Thus .the
model contains two adjustable parameters, namely, the
prefactor a and the fractal dimension D.

The chord lengths that are measured by this technique
could represent either pore-surface structure or fracture
surface structure. The method does have the drawback
that the fracturing process may introduce unwanted
structures. Thus one has to make sure that a section of
the surface is measured and not a projection. Figure 17

E~ -2.0

LL

Cl

-3.0
E

where Pf is the probability of finding a feature and R (i)
is the distance in centimeters over which the features are
counted. The digital filter sets Pf(l), which can be deter-
mined by performing the Fourier transform of the im-
pulse response and expressing the amplitude as a function
of R. The probability of resolving a feature is directly
dependent on the amplitude of the filter and equals 1 at
the largest feature sizes. This probability is set to zero
for I & lo, where the amplitude of the filter becomes less
than the signal-to-noise threshold, in order to simulate
the amplitude threshold for the removal of the noise.
The final expression for N (i) is

N (l) =a (121/512Ma) Pf (l)(12/Ma) [1 E(l —1)—],
(3.52)

where J1 —~ —I2~ and I1 aIld I2 axc thc 11m1ts of flacta
behavior. For I &l2 the samples are homogeneous and
a= 3, which is the case if the geometrical features appear
only as statistically random noise. Because all measure-
ments are made from images, one expresses the feature
sizes in terms of pixels, where a pixel is 1/512 of the im-
age. One obtains a sequence of intensities I(J) for
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4 pit

1.0
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lag, a [Feature Size (~m)]

2.0

FIG. 17. Typical fractal plot for Berea sandstone, which yields
a fractal dimension D= 2.85 (from Krohn and Thompson,
1986).
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shows typical results for Berea sandstone with a porosity
of about 20%. For this sample, it was found that
D =2.85 and Iz) 32 pm. In general, after examining a
dozen sandstones, it was found that D is not universal
and is in the range 2.55 (D (2.85.

b. Chord-length measurements on thin sections

This method is not as accurate as the fracture surface
technique and was essentially developed to provide data
that are complementary to those obtained with the frac-
ture surface method. However, it also has its own advan-
tages. For example, it can be used for measuring the
amount of porosity and its distribution, which may or
may not be fractal. But let us first discuss the method it-
self by following Krohn (1988a) and summarizing her
work.

In this method one digitizes SEM images and de-
lineates the pore space whenever the intensity is less than
a set gray level. Usually, the edge of a feature appears
bright on SEM images. If one examines the gray-level
histograms of images, one finds that the distribution of
grains always appears to be brighter than the pore distri-
bution. The gray level for pore fill is between those of
grains and pores, and therefore it is important to measure
the pores within the pore fill. Once the SEM images are
digitized, chord lengths are measured from the intercep-
tion of horizontal lines with the surface of pores. Using a
logarithmic bin size, one constructs a histogram of the
number of chords whose lengths are in a given range.
The results are not dependent on the specific choice of
gray level, so long as the method is consistent from
magnification to magnification.

Typical results are shown in Fig. 18 for Coconino
sandstone, which has a porosity of about 10%. The mea-
sured fractal dimension is about 2.75, which is close to
that of Berea sandstone. The results with thin sections
generally agree with those obtained with the fracture sur-
face technique. Note that from both methods one can
obtain estimates for l2, the upper limit of fractal

-3.0

behavior. The chord-length methods do not contain any
information on the correlation functions, and therefore
the results obtained with these two methods are not
unambiguous evidence for fractal behavior (see below).

The linear intersection of the pore space that one uses
in chord-length measurements on thin sections can be
used for characterizing the pore space. For example, one
can measure a pore volume distribution, which is defined
as the porosity associated with each chord length and can
be expressed as

P(L) =NC(l)l (hl) (3.54)

4. Correlation function method

Measuring fractal properties of a given system in terms
of correlation functions is the most unambiguous method

where Nc(l) is the number of chords per unit volume of
length 1 and (b, l) is the cross-sectional area associated
with each chord, which is equal to one pixel. To obtain
Nc(l) one counts the chord lengths on the thin section
and assumes that the thin section is representative of the
core. Figure 19 shows the pore volume distribution for
Coconino sandstone. It is clear that most pores are in
the fractal regime, but there are also some that are not.
Thus there are generally two types of behavior for sand-
stones, Euclidean and fractal, and the pore volume of the
rock may include any amount of the two types of porosi-
ty. There is almost no sedimentary rock that does not
have any fractal component. The fractal component is
the result of diagenetic processes discussed above which
deposit clays on the surface of the grains, making it
rough. In a second paper, Krohn (1988b) measured the
fractal properties of carbonate rocks and shales and
found qualitatively the same behavior as that of sand-
stones. The only case for which fractal behavior was not
observed was Arkansas stone, which is a recrystallized
quartz sandstone that is almost pure quartz with single-
crystal grains that have well-defined crystal faces. Note
that Krohn's results are consistent with those of Avnir
et al. (1983, 1985) discussed above.
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FIG. 18. Typical fractal plot for Coconino sandstone with a
fractal dimension D=2.75. Also seen are the upper and lower
limits of fractal behavior (from Krohn, 1988a).

FIG. 19. Pore volume distribution for Coconino sandstone. I 2

is the upper limit for fractal behavior (from Krohn, 1988a).
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of establishing whether a system is fractal or not. In this
method one measures the density-density autocorrelation
function at a distance r =

l
r l,

C(r)- gs(r')s(r+r') . (3.55)

S, = (s(r)),
S2(r„r2)= (s (r+ri )s (r+r2) ),
S3(r„r2,r3) = (s (r+r, )s (r+r2)s (r+r3) ),

(3.56)

(3.57)

(3.58)

then because two points lie along one line and three
points lie in a plane, these quantities can be measured by
using images of cross sections of the porous medium. If
one assumes that the porous medium is macroscopically
homogeneous and isotropic, then it is easy to show that
S2(ri r2)=S2(r2 ri)=S2(lr2 ril) Moreover,

The origin of the coordination system is in the pore space
s(r)=1, if a given point at a distance r from the origin
belongs to the pore space, and s(r)=0 otherwise. Thus
the geometrical meaning of C ( r ) is the probability of
finding a given point at a distance r in the pore space.
For large values of r we must have C(r)-r, for a d-
dimensional system, and therefore D can be estimated.
Fara and Scheidegger (1961) were the first to use such
statistical properties for characterizing porous media.
Their method consisted of the following elements. One
draws an arbitrary line through a porous medium.
Points on this line are defined by giving them an arc
length ~ from an arbitrarily selected origin. Certain
values of ~ correspond to the pore space, while other
values represent the solid matrix. A function f(ir) is
then defined such that f= 1 if the line at i~ passes through
the pore space, and f = —1 if the line at ii. passes through
the matrix. It is easy to see that (f ) =2/ —1, where P is
the porosity of the medium, (f")= (f ) if n is odd, and
(f")=1 if n is even. One then carries out a spectral
analysis of f by calculating its Fourier transform, from
which some information about the structure of the pore
space and the solid matrix can be obtained. These basic
ideas were later used by others for obtaining the fractal
properties of porous media (see below).

Berryman and Blair (1986) investigated the statistical
properties of the function s(r) used in Eq. (3.55). If we
define the following quantities

viscosity epoxy, from which petrographic thin sections
are prepared, which are then polished. A scanning elec-
tron microscope is used in backscatter mode for viewing
the thin sections and producing high-contrast images of
the pore space and the solid matrix. Various magni-
fications of the images are produced and are digitized
with a raster scanning digitizer. The resulting digital im-
ages are then stored on arrays of given sizes. They are
then processed using digital image-processing techniques.
Then an image of zeros and ones that closely approxi-
mate the matrix and pore space of the working image is
created, from which various correlation functions are cal-
culated.

Katz and Thompson (1985) used an optical technique
to measure the correlation functions. In their method,
backscattered micrographs of polished thin sections are
photographically enhanced to produce a binary image.
Two identical negatives are made on 35-mm film format
and are placed in an optical microscope to measure the
transmitted light through both films. The transmitted in-
tensity is measured. The correlation function C (r) is cal-
culated as the transmitted intensity as a function of the
distance one film is translated relative to the other. Be-
cause of polishing, resolution is limited. The polishing is
usually done by a 1/4-pm abrasive that leaves scratches
of 1 pm dimension on the surface of the thin section.

Figure 20 shows the results for a Price River sandstone
from Utah (Thompson, Katz, and Krohn, 1987). The
plot has been made on a log-log scale in order to reveal
the possible fractal behavior. On such a plot, the devia-
tions from a straight line reveal the limits l& and I2 of
fractal behavior. The porosity of this sandstone is very
low, and it has been highly altered by the diagenetic pro-
cesses discussed above, so much so that the original sedi-
mentary sandstone grains are dificult to recognize. If
the alterations by the diagenetic process are not very
severe, then the pore space may not be a fractal, and only
the pore surface may have fractal properties. In such a
case, the correlation function has a complex structure,
even on a log-log plot. In some cases, the pore space is

OD

S, =S2(0)=P,
lim S2(r)=itr~ oo

S2(0)= —SY/4

(3.59)

(3.60)

(3.61)

0.1

O
O
C)

-O l

where S& is the specific internal surface area per unit
volume, discussed above. Equation (3.61) was actually
first derived by Debye et al. (1957).

The next step is to obtain images of the porous medi-
um in order to analyze them. The standard method con-
sists of the following steps (Berryman and Blair, 1986).
Samples of the porous medium are saturated with a low-

-Q 3
O.O Q.B ).6

log„o[Log (microns)j

FIG. 20. Autocorrelation function for Price River sandstone
from Utah. The upper limit of fractal behavior is clearly seen
I,'from Thompson, Katz, and Krohn, 1987).
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fractal, but a variety of complicating factors make the
shape of the correlation function look complex. For ex-
ample, Coconino sandstone has a fractal pore space, but
it is anisotropic. As a result, even. the log-log plot of its
correlation function is not a straight line, and chord-
length measurements are a better way of revealing its
fractal properties (Figs. 18 and 19). Another complicat-
ing factor is the presence of pores that are not connected
or are separated by more than a distance l2. Such pores
are uncor related and their presence can complicate
correlation function measurements. In such cases, even
the appearance of straight lines on a log-log plot of corre-
lation functions is not unambiguous evidence for fractal
behavior of the pore space. Thus, although methods that
use thin sections of the porous medium can yield impor-
tant information about the structure of a porous medium,
they also have their limitations.

ual pores may break down and lead to interference
scattering. To remedy this situation, Sinha et al. (1984)
introduced into C(r) an exponentially decaying term, in-
corporating a correlation length g, which refiects this
upper limit, namely,

C ( r) —r exp( r/g—, ),
which, when used in Eq. (3.63), yields

(3.65)

I(q)-q 'I (D —1)g, sin[(D —1)tan '(qg, )]

X [1+( g )2](1 D)I2— (3.66)

I(q)-8~$, [1+(q g, ) ] (3.67)

This form of I(q) was also confirmed by Sinha et al.
(1984) for silica particle aggregates. Note that in the lim-
it g, ~ co we recover Eq. (3.64), and for small values of
qg, and D=3 (homogeneous systems) we recover

5. Small-angle scattering methods

I(q)= f C(r)exp(iq. r)d r, (3.62)

where q is the scattering vector whose magnitude is given
by Eq. (3.21). For a scattering experiment, C(r) refers to
spatial variations in scattering amplitude per unit
volume, rather than physical density. For a porous medi-
um with sufficiently low porosity, it is not unreasonable
to assume that, to a good approximation, there will be no
interference scattering, and therefore the total scattering
intensity I,(q) is the sum of the scattering from all pores.
For an isotropic medium, C(r) =C(r), where r = ~r~, and
Eq. (3.62) becomes

I(q)= f 4~r C(r)dr .
0 qr

(3.63)

As we already discussed for fractal objects, the correla-
tion function for a three-dimensional system is given by
C(r)-r . Substitution of this into Eq. (3.63) yields

As already mentioned, SAS methods have been used to
obtain pore-size distributions of shaly rocks (Hall et al. ,
1986). In this section we outline how SAS methods can
be used to study fractal properties of a pore space and its
pore surface. These methods provide a measure of frac-
tal behavior at length scales between 0.5 and 50 mm.
Suppose that C(r) is the density-density autocorrelation
function at point r. Then the observed scattering density
I(q) is given by the Fourier transform of C(r)

which is the classical result of Debye et al. (1957).
If r is small, i.e., scattering at larger values of q but still

within the small-angle approximation, then the scattering
rejects the nature of the boundaries between the pores
and their surfaces. Thus the pore surface may have a
fractal structure with a fractal dimension D, discussed
above. The surface fractal dimension D, may or may not
be the same as the fractal dimension D of the pore space
itself. One may also have a nonfractal object with a frac-
tal surface and vice versa. Bale and Schmidt (1984)
showed that for rough surfaces described by a fractal di-
mension D, &2, the correlation function takes on the
form

3—DC(r) —1 —ar (3.68)

in which a =no[4$(1 —P)V] ', where V is the sample
volume, P the porosity, and no a nonuniversal constant
having the dimensions of area, which becomes the pore
surface area if it is smooth and nonfractal. Substitution
of Eq. (3.68) into (3.63) gives

I(q)-q ' I (5 D, )sin[(D, ——1)m/2], (3.69)

which reduces to I(q)-q, the classical result of Porod
(1951) for smooth surfaces for which D, =2, which is val-
id for the shortest length scales. Bale and Schmidt (1984)
were able to confirm this for pores in lignites and sub-
bituminous coals using small-angle x-ray scattering. If
both the pore space and the pore surface are fractal and
DAD„it is not difficult to show that

I (q) -q I (D —1)sin[(D —1)m /2], (3.64) D —2DI(q)-q (3.70)
where I is the gamma function. Both light scattering
and small-angle x-ray scattering from silica aggregation
clusters confirmed this q dependence of I on q
(Schaefer et al. , 1984). As already discussed, in real sys-
tems the range of scale invariance and fractal behavior
may be limited by lower and upper cutofFs I

&
and l2. Fin-

ite size of a system can also limit this behavior. Under
such conditions, the assumption of scattering by individ-

Therefore one has a crossover from q dependence toD —2D D —6
q

' dependence to q
' dependence. The crossover—Dbetween q and q

* occurs at a value of g', such that
q —g', . If D, is close to 3, as is found for some shaley

—1

rocks (Mildner et al. , 1986), the crossover between the—D D —6
q and q

' regimes may be difficult to discern. Fi-
nally, if the correlation function is not isotropic, but only
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possesses rotational symmetry around a unique axis, one
obtains a scattering law that has an elliptically symmetric
dependence on the azimuthal orientation of q. This ellip-
tical dependence can be removed by averaging the
scattering law in terms of a reduced scattering vector.
The SAS methods encounter difFiculty at the smallest
length scales. It is difFicult to find, in SAS data, fractal
rock data which span one order of magnitude in length
scale.

Wong et al. (1986) used small-angle neutron scattering
to study 26 different rocks, of which 12 were sandstones,
4 shales, 4 limestones, and 6 dolomites. Of the 16 sand-
stones and shales, 15 were found to have a fractal pore
surface but not a fractal pore volume with 2.25 ~ D, & 2.9.
The largest value was found for a Coconino sandstone,
consistent with Krohn's (1988a) result mentioned above
(Fig. 18). The lowest value was found for a Fountaine-
bleau sandstone. It was found in SEM images of Coconi-
no sandstone that the quartz grains are covered by clay,
which results in a convoluted surface and a high value of
D, . On the other hand, the SEM images of Fountaine-
bleau sandstone showed that the quartz grains were very
clean. Thus, as discussed above, diagenetic processes
give rise to highly convoluted surfaces and large values of
D, The fa.ct that the data of Wong et al. (1986) indicat-
ed that D, WD for many samples is significant in view of
the proposal by Katz and Thompson (1985) that D, =D.

Wong et al. (1986) also found that the carbonate rocks
they studied had quite different behavior than that of
their sandstones and shaley rocks. The carbonate rocks
they studied were quite "clean, " showing almost no trace
of clays and therefore no diagenetic alteration. The
scattering intensity indicated a q behavior for q ~0.02
0A, indicating a smooth surface. What is the reason for
this? As argued by Wong et al. (1986) and discussed ear-
lier in this paper, the formation process of carbonate
rocks is similar to conventional crystal growth, in which
carbonates can dissolve in water and reprecipitate later.
The roughness of the surface would be determined by the
competition between thermal Auctuations and the surface
tension if the water is clean. This phenomenon would
then be similar to the roughening of domain walls in the
Ising model, for which it is known that above a certain
roughening transition the width of the interface m grows
with the length scale r as iv-(lnr), which means that
the roughness grows so slowly that a fractal structure
may be hard to detect. Even if the water does contain
impurities, the phenomenon would be similar to the
roughening transition in a random-field or random-bond
Ising model, for which the same law of growth at very
low roughening transition temperature is predicted.
Note that the results of Wong et al. (1986) for carbonate
rocks are not inconsistent with those of Krohn (1988b),
who found a fractal pore volume for such rocks, although
in her data analysis she does not seem to distinguish be-
tween a fractal pore surface and fractal pore volume.
The reason for this apparent fractality of the pore
volume of carbonates is that their grain-size distribution
is broad and this, together with their packing, can lead to

a fractal pore volume.
We should mention two other studies of reservoir

rocks and their fractal properties. Lucido et al. (1988)
used small-angle neutron scattering on 18 different vol-
canic rocks and concluded that: (i) the pore volumes of
these rocks were not fractal; and (ii) it was not possible to
determine from their data whether the pore surfaces were
fractal. Hansen and Skjeltorp (1988) used the box
method discussed above and studied sandstones from
0.5 —200 pm. They found that D =2.7+0.05 and
D, =2.56+0.07, almost consistent, to within the estimat-
ed errors, with the equality of D and D, .

We should also mention a proposal by Katz and
Thompson (1985) regarding estimation of the porosity of
fractal porous media. These authors proposed that

p=c (l, /12) (3.71)

dV ~ p
dI"

(3.72)

from which a pore-size distribution can be determined.

6. Spectral methods

This method was proposed by Voss (1985) and was fur-
ther discussed by Hough (1989). The method is applica-
ble to self-a/6'ne rather than self-similar fractals, such as
pore surfaces and pore volumes that we have discussed so
far. Strictly speaking, a self-alone fractal distribution de-
scribes phenomena that are continuous but not
differentiable and correlated over several length scales.
Mandelbrot (1983, 1985) introduced the concept of self-
afBne fractals for describing systems that have different
scaling properties parallel and perpendicular to the sur-
face. In these systems there is some kind of anisotropy,
which may have been caused by an external force such as
gravity. Such anisotropies are usually seen in large-scale
geological systems. The basic idea, discussed below, is
similar to the work of Fara and Scheidegger (1961),
namely, using spectral analysis to obtain information
about the structure of a porous medium.

A function z (t) has a Fourier transform z(co, T) in the
interval 0&t & T given by

1 T
z(co, T)=—f z(t)exp(2micot)dtT 0

(3.73)

and a spectral density S (co),

S(co)=T~z(~, T)~ as T~a& . (3.74)

where c is a constant of order unity and l
&

and I2 are the
lower and upper limits of fractal behavior. The predic-
tions of this equation seem to agree well with the mea-
sured values, indicating the usefulness of fractal proper-
ties for estimating morphological properties of porous
rocks. This agreement also supports their proposal that
D, =D, at least for the rocks that they studied. Finally,
Pfeifer et al. (1984) proposed that the total volume V of
pores of diameter ~ 2r obeys
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For a self-affine fractal one has
—PS(co)-co (3.75)

which is somewhat similar to S2(ri, r2) defined by Eq.
(3.57). In the case of a random, stationary process, C(r)
is related to S(co) through the Wiener-Khintchine rela-
tion

C(r) =I S(co)cos(2mcor)dc@ . (3.77)

Equation (3.77) can be extended to nonstationary pro-
cesses. Then for a self-affine fractal Eqs. (3.75) and (3.77)
yield

(3.78)

On the other hand, C(r) is related to the mean-square in-
crements M;(r) of the function z ( t) by

M;(r)=(~z(t+7) —z(t)~ )=2((z ) —(z) )
—2C(r) .

If the fractal dimension of a two-dimensional profile is D,
then Eq. (3.79) is used to relate p& to D. The result is

D =
—,'(5 —P~), 1 &P~ & 3 . (3.80)

Hough (1989) discussed the mathematically rigorous con-
ditions under which Eq. (3.80) can be derived. If p& )3,
D sticks to D=1 and does not change. In this case the
self-affine fractal distribution is difFerentiable. Instead of
using Eq. (3.73), which is a one-dimensional Fourier
transform, one can also perform a two-dimensional
Fourier transform and obtain the fractal dimension of
two-dimensional topography. In this case 2&D&3, as
opposed to the first case, for which 1 &D & 2.

The moments of S(co) are also useful to study. The
nth moment is given by

m„=I co"S(co)den, (3.81)

where coo corresponds to the profile length Xo. In prac-
tice, the upper limit of the integral is a cutoff correspond-
ing to a wavelength of twice the sample interval (the so-
called Nyquist cutoff. For a self-affine fractal, Eqs. (3.73)
and (3.76) yield mo=aAO' ', where a is a constant.
Since mo is nothing but the variance of heights of the
profile, this equation relates the fractal dimension to this
variance, which is an important property of the profile.

Huang and Turcotte (1989) applied this method to the
topography of Arizona, using seven points per kilometer,
and obtained maps of fractal dimension and roughness
amplitude. For two-dimensional Fourier spectral analy-
ses, the mean value of the fractal dimension was found to
be D =2.09, and the corresponding value for one-
dimensional analyses was D=1.52. Mandelbrot (1983)

One defines a two-point autocorrelation function given
by

(3.76)

concluded that fractal dimensions in the range
D =2. 1 —2.2 produce the most realistic topography.
Huang and Turcotte (1989) also showed that maps of
roughness amplitudes can provide valuable information
on geological processes. Brown and Scholz (1985) used a
similar technique to study the topography of various
rock surfaces up to wavelengths of nearly 1 m. The es-
timated fractal dimensions varied between 1 and 1.7.
The fact that the fractal dimension was found to vary
with the wavelength means that these surfaces are not
self-similar or self-affine on all length scales.

F. Fractal properties of heterogeneous and
fractured rocks

So far our discussion has been limited to porous media.
However, macroscopically heterogeneous porous media
in which there are large-scale spatial variations of the
properties of the system are also of considerable impor-
tance, since in practical applications, such as field-scale
displacement of oil by a displacing Quid, or groundwater
Qow, one has to deal with such reservoirs. A complete
review of the properties of such reservoirs is well beyond
the scope of this paper. The interested reader is referred
to Haldorsen et al. (1988) and Lake and Carrol (1986)
for a fuller exposition of this important subject. Here, we
restrict our attention to a few issues that are pertinent to
this paper, namely, connectivity, morphological and frac-
tal properties of macroscopically heterogeneous systems,
and, in particular, fractured rocks.

Two types of large-scale heterogeneities that are of in-
terest to us and that do interfere with the movements of
fluids in reservoirs are fractures of faults. The effect of
such heterogeneities is so severe that many of the
smaller-scale heterogeneities, such as those at the pore or
laboratory scales, may seem "simple" by comparison.

f. Diagenetic processes and formation of fractured rocks

The presence of fractures, natural or man-made, is cru-
cial to the economics of oil recovery from underground
reservoirs. Likewise, the presence of fractures is very im-
portant to the development of groundwater resources. In
both cases, fractures provide high permeability patterns
for Quid Aow in reservoirs that are otherwise of very low
permeabilities and porosities and would not be able to
produce at high rates. Despite the obvious significance
of fractures, the field of characterization of fractured
rocks is not as well-developed as that of porous media
which do not contain fractures, discussed above. The ex-
istence of a heterogeneous framework of reservoir rock
interpenetrated by a network of fractures poses a difficult
setting for the estimation of recoverable hydrocarbons
and the implementation of improved recovery methods.

VVe have already discussed diagenetic processes for
sandstones and carbonate rocks. Such porous media do
not usually contain large fractures. On the other hand,
many fractured reservoirs, such as Monterey sediments
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in California, were originally complex mixtures of pri-
mary biogeneous components, finely disseminated organ-
ic matter, fine terrigeneous sediment, and authigenic
minerals formed during early diagenesis (Isaacs, 1984).
As discussed above, the accepted mechanism for dia-
genesis relies on a dissolution-precipitation sequence. An
additional and important feature of diagenetic origin is
the extensive lamination of the rock. Rich spatial pat-
terns of alternating layers of high and low porosity (de-
lineating low and high extents of diagenesis, respectively)
are prevalent in many fractured reservoirs over many
length scales ranging from millimeter to tens of millime-
ters. This spatial microlamination and layering is an in-
tegral aspect of fractured rock formation and represents
a significant obstacle to reservoir characterization. Vari-
ous theories have been advanced to explain such phe-
nomena, based on cyclic sedimentation triggered by
climatic events. This traditional approach should be con-
trasted to more modern theories (see, for example, Fee-
ney et al. , 1983) that attribute the laminations to self-
organization, driven by the competition between non-
linear reaction and difFusion.

The sedimentologic, tectonic, and diagenetic histories
of such fractured formations are complex, making results
from conventional measurements dificult to interpret. It
is well known that many formations have had complex
biodegradation, maturation, and migration histories.
Depositional environments could also inhuence the pri-
mary composition of the sediment as well as diagenesis
and the development of reservoir-related properties such
as brittleness and dolomitization. Sedimentary cycles on
scales from millimeters to meters are common
throughout many such fractured formations. These cy-
cles appear to record important fIluctuations in environ-
mental conditions, such as oxygen levels, and may also
serve as indicators of depositional environments. Diverse
rock compositions have also been observed in fractured
reservoirs. Silica phase transformation and dolomitiza-
tion can lead to the production of fractured reservoirs
characterized by a wide range of physical properties.
Production data from many fractured reservoirs indicate
that high productiviiies must be associated with frac-
tures. Fracture porosities are generally considered low,
usually in the range 1 —6 %, whereas the pore porosity is
usually larger than 10%.

geologic and hydrologic framework at Yucca Mountain,
Nevada (Barton and Larsen, 1985; Barton et al. , 1987;
summarized in Barton and Hsieh, 1989). The site was
evaluated by the U.S. Department of Energy as a poten-
tial underground repository for high-level radioactive
waste. Barton and Larsen (1985) developed the pavement
method of clearing a subplanar surface and mapping the
fracture surface in order to measure its connectivity,
trace length, density, and fractal scaling in addition to
orientation, surface roughness, and aperture. Each of
these parameters is important in predicting the hydraulic
characteristics of the network and in working out the his-
tory of its development in relation to the regional tecton-
ics. An example of one of their mapped pavements is
given in Fig. 21. We now briefly discuss the important
parameters for characterizing a fracture network.

Fracture surface roughness is important in reservoir
modeling because it controls the aperture variation and
therefore channeling of How between the fracture walls.
It also controls the closure of fractures under lithostatic
stress (Brown and Scholz, 1985) and can be important in
working out the temporal development of the fracture
network by identifying fractures with a common mechan-
ical and temporal origin.

Fracture aperture is the crucial parameter that deter-
mines permeability; the volumetric Aow rate through a
fracture is a function of its aperture cubed. For rough
fractures, the dependence is more sensitive, depending on
powers of the aperture as high as six. Although aper-
tures measured at the surface may be wider than those at
depth, due to unloading, an approximate measurement
may still be useful. For example, no correlation was ob-
served between fracture trace length and aperture in the
Yucca Mountain pavements. Fractures in a network
thus appear to have difFerent characteristics from isolated
fractures, where the aperture is expected to correlate
with fracture length. However, it was found that the fre-
quency of inverse aperture y, when plotted against the in-

2. Morphological and fractal properties of fracture networks

Although the intensity of fracturing in some reservoirs
has been correlated with rock type and layer thickness,
very few attempts have been made to map fracture net-
works systematically in order to quantify the hydraulic
characteristics of the individual fractures and of the net-
work as a whole, or to understand the orientation, tem-
poral development, or spatial extent of individual frac-
ture zones in terms of the local tectonic and geological
history. Qne such attempt was carried out by the U.S.
Cxeological Survey as part of the efFort to characterize the

FIG. 21. Mapped pavements for Yucca Mountain in Nevada
(from Barton and Larsen, 1985).
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verse aperture, follows a power law, a strong indication
of self-similar and fractal behavior.

Fracture trace lengths for Yucca Mountain were also
best fit with a power law of the form y =ax, where y is
the frequency, x is the trace length, and a and b are con-
stants.

Fracture density and spatial geometry are both impor-
tant parameters in reservoir modeling. The areal frac-
ture density is defined as the sum of fracture trace lengths
per unit area. For an isotropic fracture network this is
also the fracture area per unit volume.

Fracture connectiUity of a network, similar to the coor-
dination number of a pore space, has an important effect
on its permeability.

The most significant observation of the Yucca Moun-
tain study was that the fractured pavements have a frac-
tal geometry and are scale independent. The importance
of this result is that it is possible to represent the distri-
bution of fractures ranging from 20 cm to 20 m by a sin-
gle parameter, the fractal dimension D defined as

D =log(N, )/log(1/l), (3.82)

where X& is the number of fractures of length l. Using
the box counting method described above, fractal dimen-
sions at Yucca Mountain were found to be in the range
1.6—1.7. This is the same range of fractal dimensions
found over a wider range of scales in fault gouges by
Sammis et al. (1985), who proposed a simple physical
reason why materials fractured in shear zones evolve to-
ward self-similarity with a fractal dimension of 1.6. It is
possible that the mechanisms which produce fractal
gouges are also responsible for fractal fracture networks
(which may be viewed as poorly developed gouges).

A similar study was undertaken for the Geysers geo-
thermal field in northeast California (Sahimi, Robertson,
and Sammis, 1993). This field, from which heat is ex-
tracted for generating electrical power, covers an area of
more than 35 000 acres and is one of the most significant
geothermal fields in the world. The heterogeneous nature
of the reservoir, its fracture network, and nonsedimentary
rock distinguish it from ordinary sandstone reservoirs
(Stockton et al. , 1984). While the fractures are the main
conduits for fIuid transport through the reservoirs, tight
rocks containing very small pores between the major
fractures contain more than 90%%uo of the Quid reserves.
The fractures of the reservoir can be detected during dril-
ling, since they produce a sudden and measurable in-
crease in steam pressure. The average spacing between
steam-producing fractures is of the order 100—500 ft.

Using the box counting method, Sahimi et al. (1993)
determined the fractal dimension of the fracture patterns
for this reservoir. A typical fracture map for this field is
shown in Fig. 22. They found that, over a length scale
varying by more than one order of magnitude, the frac-
ture pattern is fractal and its fractal dimension is about
1.9, which is the same as that of two-dimensional per-
colation (see Sec. II). They also argued that, at large
length scales, the fracture network must have the struc-
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FIG. 22. Fractal plot of surface fracture pattern of the Geysers
field in Northern California {from Sahimi et al. , 1993}.

n -m
m (3.83)

where ~ was found to be about 0.85. Since D =3~ can be
interpreted as a fractal dimension, his results imply a
fractal dimension of about 2.5. Note that Eq. (3.83) is

ture of percolation clusters and developed a model for
nucleation and formation of fracture networks, based on
the earlier model of Sahimi and Goddard (1986), which
seems to support their view.

Nolen-Hoeksema and Gordon (1987) studied the frac-
ture patterns in Stockbridge dolomite marble. This mar-
ble is from Unit "A" of the Stockbridge formation (near
Canaan, Connecticut) and is a white, high-quality,
dolomite marble whose average grain size is about 0.3
mm. Its properties are isotropic and there is no discern-
able texture or fabric. The fracture pattern in this rock is
very branched and appears to be a highly interconnected
network. Chelidze and Gueguen (1990) analyzed the
fracture pattern in this rock and showed that the three-
dimensional fracture network is a fractal object with a
fractal dimensionality of about 2.5, essentially the same
as that of percolation clusters. Finally, the distribution
of contact areas in single, natural fractures in quartz
monzonite (Stripa granite) was measured by Nolte et al.
(1989) and was found to be fractal, with a fractal dimen-
sionality of about 2.

In many cases, fracture networks are products of frag-
mentation processes. Rocks are fragmented by joints and
weathering. Explosives are often used to fragment rocks.
Another mechanism for fragmenting a porous medium is
dissolving it in a reactant (e.g., an acid). Large fractures
can form in all cases. If the fragmentation process can
give rise to a fractal fragment-size distributio~, then the
fractures formed may also be expected to be fractal ob-
jects, and this has been found to be so in many cases.
Turcotte (1986) analyzed the size distribution of rocks
that had been impacted by an explosion, basalt rocks that
had been impacted by polycarbonate projectiles, and
many other systems, and showed that the number n of
fragments of mass m scales with m as
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similar to the cluster-size distribution for percolation
clusters, Eq. (2.9). Likewise, Poulton et al. (1990) found
that the length and spacing of discontinuities in rock
masses follow power laws, typical of fractal systems. Fi-
nally, Sahimi (1991) showed how fractal fragment-size
distribution and fracture pattern can arise as a result of
the consumption of a porous medium by a reactant.

If it is established that a fracture network is in fact a
fractal object, then it may be possible to model it starting
from a single generator, which is the fundamental build-
ing block from which a fracta1 pattern or network is gen-
erated. However, as for all natural fractal patterns, the
task of deducing a generator for a particular fractal frac-
ture network is not easy. An interesting method for
deducing a fractal generator is the iterated function sys-
tem developed by Barnsley and Demko (1985), which sys-
tematically deduces a fracta1 generator for a given fractal
object. With this scheme, one may be able to generate
fractal fracture patterns that not only look "realistic, "
but have transport properties that mimic those of frac-
ture networks in real rocks. On the other hand, if large-
scale fracture networks do have the structure of percola-
tion clusters, as claimed by Sahimi et al. (1993), then the
task of modeling such fracture networks becomes much
simpler.

3. Fractal patterns in fault systems

In simulation of Quid transport and displacement pro-
cesses in a reservoir, it is usually assumed that the entire
system is stratified and continuous. However, the pres-
ence of faults severely undermines this assumption be-
cause faults are usually created when two strata or layers
move with respect to each other, as a result of some
mechanical process, and the interface between the two
displaced layers is what constitutes a fault. So, in some
sense, faults are similar to fractures, and one often finds

large faults in almost any kind of reservoir. However,
unlike fractures, which can be created by a variety of
processes, ranging from diagenetic to mechanical, faults
are usually manifestations of tectonic processes that
reservoirs experienced in the past. Moreover, unlike
fractures, which usually provide large permeability zones
and facilitate transport of Quids in reservoir rocks, faults
may or may not do so. Sometimes they hinder Quid

transport in the reservoir, because nonintersecting faults
can compartmentalize reservoirs and isolate large por-
tions of them. They can also interfere with Quid Qow in
the reservoir. On the other hand, faults are generally
recognized as the largest-scale heterogeneities of any
reservoir, and therefore they can be easily detected.

Tchalenko (1970), who studied the structure of shear
deformation zones over many length scales, observed that
over many orders of magnitude in length scale, ranging
from millimeters to hundreds of meters, shear deforma-
tion zones are similar. This strongly suggests that fault
patterns are fractal objects. Others (Andrews, 1980; Aki,
1981; G. C. P. King, 1984) have also suggested that fault

patterns are fractal systems. Okubo and Aki (1987) and
Aviles et al. (1987) analyzed maps of the San Andreas
fault system in California and obtained fractal dimen-
sions for fault surfaces varying from 1.1 to 1.4. For a
more complete description of faults and their fractal
properties the interested reader is directed to the excel-
lent paper of Haldorsen et al. (1988), in which a detailed
description of fault systems and their realistic modeling
can be found. For more application of fractals to geo-
physical systems, see Scholz and Mandelbrot (1989).

Our description of the morphological properties of sed-
imentary and other types of reservoir rocks is now com-
plete. The accumulated experimental data and their in-
terpretation in terms of fractals leave no doubt that reser-
voir rock heterogeneities, from the smallest scales
(grains, pores, and pore surfaces), to the largest (fractures
and faults), give rise to fractal properties. Why should
rocks have fractal properties? This is not a completely
resolved issue, but there is no doubt that diagenetic pro-
cesses play an important role. As Cohen (1987) won-
dered, "why did sintering not occur and destroy the
structure of sedimentary rock'?" This is also not com-
pletely clear yet. However, we should be happy that
sintering did not occur, since if it did, we could not have
porous media that allow Quid Qow at extremely low poro-
sities, we would not have large oil and gas reservoirs, and
we would not have oil and gas industries as we know
them today. The same thing is true about groundwater
Qow. What is important to remember, however, is that
any realistic modeling of Quid transport and displace-
ment processes in reservoir rocks, which is the ultimate
goal of any study of reservoirs, has to take into account
such fractal properties.

IV. MODELS OF RESERVOIR ROCKS

Now that we have learned about various properties of
reservoir rocks, the natural question that comes to mind
is: How do we model reservoir rocks? Any realistic
modeling of Qow phenomena in reservoir rock has to in-
clude, as the first ingredient, a realistic model of the rock
itself. In this section we review and discuss various mod-
els, erst of porous media and then of fractured rocks.

A. Models of macroscopically
homogeneous porous media

Pore-space models are needed for evaluating the trans-
port coefficients and other important dynamical proper-
ties of porous media. The simplest of such properties are
perhaps the permeability k and electrical conductivity o..
One major goal of modeling a pore space has always been
to predict such properties, given some geometrical prop-
erties of the pore space. The simplest property of a pore
space is its porosity P, and therefore for many years an
obvious goal was to find a relationship between P and k,
whose existence had seemed so obvious that in the early
literature on Qow of oil through reservoirs no distinction
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had been made between k and P; it had been assumed
that they are proportional. Later on, many empirical
correlations between k and P were suggested, perhaps the
best-known of which was that of Rose (1945), who pro-
posed that k -P, where m ' is soine undetermined con-
stant. This relation is similar to the famous Archie's law
(Archie, 1942) for the electrical conductivity of a fluid-
saturated porous medium, which states that

a =o.fP (4.1)

where of is the Quid conductivity. However, it must be
clear to everyone that there cannot be any general rela-
tionship between k and P, because one can have two
porous media with the same P but very difFerent k. This
obvious example prompted Cloud (1941) to conclude that
"there is no sensible relation between porosity and per-
meability. " Thus it became plain that one has to develop
a model of the pore space before trying to estimate its
permeability and transport coefficients. Over the years,
many models of porous media have been developed, most
of which have been motivated by a certain phenomenon,
and often the model could be used to study that particu-
lar phenomenon and predict some of its properties.
However, these models were not general enough to be
useful for studying other problems, and they often con-
tained parameters that either were defined very vaguely
or had no physical meaning whatsoever, and their sole
purpose was to make the models' predictions agree with
experimental data. Scheidegger (1974) and Van Brakel
(1975) give lucid discussions of such models. In what fol-
lows, we describe various models of porous media.

1. Spatially periodic models

These models have been described and discussed by
Nitsche and Brenner (1989), whose paper we follow. In
this class of model the pore space is represented by a
periodic structure, the unit cell of which can be a capil-
lary periodic network or some other geometrical element.
A spatially periodic model is also characterized by an as-
sociated lattice that contains the translational sym-
metries of the porous medium for which the model is in-
tended. Because of its periodic structure, the lattice is of
infinite extent and is generated from any one lattice point
by discrete displacements of the form R= i, e,
+ize2+i3e3, where I=(i„iz,i3) is a triplet of integers
and [e„ez,e3J is a triad of basic lattice vectors. This
triad is not unique because, by applying any unimodular
3 X 3 matrix whose entries are integer to the basis
Iei, e2, e3J one can obtain another equally valid basis.
The microscopic length scale of the lattice I is defined
as l =max[d;„(r)],where d;„(r)is the distance be-
tween r and the nearest lattice points. For example, for a
cubic lattice of size a, I =(3' /2)a.

The simplest spatially periodic lattice model consists of
a two-dimensional array of circular cylinders. Despite its
simplicity, no rigorous results for transport in this model

were obtained until Sangani and Acrivos (1982a) used
square and hexagonal arrays of circular cylinders, calcu-
lated the permeability of the system, and discussed their
results in the context of heat transfer in porous media.
Later, Larson and Higdon (1987) considered flow in the
same lattices in both the axial and transverse directions.
Hasimoto (1959) obtained the first results for three-
dimensional lattices of spheres in the limit of small
sphere concentrations. The first results for the full range
of sphere concentrations were obtained by Zick and
Homsy (1982) and by Sangani and Acrivos (1982b).

The analysis of transport processes in such models is a
relatively simple problem, when numerical or analytical
calculations are confined to a unit cell. In principle, the
unit cell can have an arbitrary shape, but if one were to
analyze a disordered unit cell with arbitrary inclusion
shapes, the analysis would be no easier than that of other
models of porous media discussed below. In a sense, spa-
tially periodic models represent a sort of mean-field ap-
proximation to the true disordered system because they
attempt to mimic the properties of the system in some
average way. In some cases, the predicted effective prop-
erties come close to those of some real disordered media.
For example, Ryan et al. (1980) showed that the predict-
ed effective reaction rate of a spatially periodic model
provides a useful estimate for some highly unconsolidat-
ed porous media such as packed beds. Many years ago,
Philip (1957) stated that, "The particular case of flow
through a cubical lattice of uniform spheres. . .appears
capable of providing information on permeability-
geometry relations. " This statement turns out to be true
in the case of the systems studied by Hasimoto (1959),
Zick and Homsy (1982), and Sangani and Acrivos
(1982b). Lahbabi and Chang (1985) studied high-
Reynolds-number fiow through cubic arrays of spheres
and the transition to turbulence and found agreement be-
tween their predictions and some experimental data.
Brenner (1980), Carbonell and Whitaker (1983), and Eid-
sath et al. (1983) studied hydrodynamic dispersion in
spatially periodic models and found agreement between
some of their results and the experimental data of Gunn
and Pryce (1969). However, the main reason for the
agreement between the predictions and the experimental
data in all of these studies is that the geometry of the
models used closely resembles that of the experimental
systems. For example, Gunn and Pryce (1969) performed
their dispersion experiments in a spatially periodic
porous medium. Nitsche and Brenner (1989, p. 244) ar-
gue that, "while any given model of sample porous rock
cannot generally be expected to possess perfect geometri-
cal order, this does not mean that a spatially periodic
model is not useful for understanding the fundamentals
of a penetrant Quid Row through its interstices. "
Nonetheless, the usefulness of such models for predicting
the effective transport properties of real disordered
porous media of the type we are interested in in this pa-
per is very limited. For example, the transverse disper-
sion coefficient calculated by Eidsath et al. (1983)
difFered by two orders of magnitude from the data for
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disordered porous media. Nitsche and Brenner (1989)
provide an extensive list of references for spatially
periodic models; the interested reader. should consult this
paper.

What are the main shortcomings of spatially periodic
models of porous media? Three major shortcomings lim-
it the usefulness of such models. The first is the fact that
regular arrays of spheres are limited to relatively low
maximum concentrations of spheres, which are
significantly below the solid volume fraction of many real
porous media that are of interest here. The second is the
fact that Qow in regular lattices of isolated spheres occurs
around the spheres instead of Qow through narrow pores
found in real porous media of interest here. Finally, such
models may be useful for unconsolidated porous media in
which [cf. Ryan et al. (1980)] the solid phase is not a
sample-spanning percolation cluster, whereas in consoli-
dated porous media, such as sandstones, both the solid
and the fiuid phases are macroscopically connected (at
least in single-phase fiow). This effect may not be very
important for estimating the absolute permeability of the
porous medium if the heterogeneities are not broadly dis-
tributed, but it is important for other transport phenome-
na in porous media, such as two-phase Qow, hydro-
dynamic dispersion, etc. , and even for single-phase Qow
when the medium is highly disordered. For example, in
heat transfer in porous media, the effect of heat conduc-
tion through the solid matrix is important, and obviously
heat conduction through a sample-spanning solid matrix
is completely different from that in isolated solid in-
clusions.

To extend such spatially periodic models to consolidat-
ed porous media, Larson and Higdon (1989) made a sim-
ple extension. They started from a regular lattice of
spheres, but then allowed the sphere radii to increase
beyond the point of touching in order to form overlap-
ping spheres. Obviously, the solid fraction of this model
can be anywhere between the original fraction, before the
growth of the spheres is started, and unity. Using
different lattices results in different pore shapes and sizes.
This model is similar to the grain consolidation model of
Roberts and Schwartz (1985) except that, as discussed
earlier, Roberts and Schwartz (1985) mostly used a ran-
dom distribution of spheres, whereas Larson and Higdon
(1989) used only a regular lattice as the starting point.
The advantage of this model is that it is amenable to cer-
tain analytical and semianalytical calculations and, at the
same time, it mimics certain features of consolidated
porous media (see Sec. V).

2. Bethe lattice models

Next to spatially periodic models of porous media are
branching network models. These are nothing but Bethe
lattices of a given coordination number that have been
used routinely in the statistical mechanics literature to
investigate critical phenomena in the mean-field approxi-
mation. As far as their applicability to modeling porous

media is concerned, branching networks suffer from two
major shortcomings. First, although they contain inter-
connected bonds that can mimic the interconnectivity of
a pore space, they lack closed loops of bonds, which are a
major element of the topology of any real pore space.
Second, for a Bethe lattice of coordination number Z, the
ratio of the number of sites on the external surface of the
network to the total number of sites is (Z —2)/(Z —1)
(Ziman, 1979), which takes on finite values for any Z&2,
whereas for large three-dimensional networks this ratio is
essentially zero. Thus surface effects may strongly affect
any property of a Bethe lattice, which sometimes lead to
anomalous phenomena such as those discussed by
Hughes and Sahimi (1982), who investigated diffusion
processes on Bethe lattices.

Liao and Scheidegger (1969) and Torelli and
Scheidegger (1972) were the first to use Bethe lattices for
modeling transport in porous media. These authors stud-
ied hydrodynamic dispersion in a porous medium,
modeled by a Bethe lattice of a given coordination num-
ber. In particular, Torelli and Scheidegger showed that
such a model is fairly successful in predicting the Qow-
velocity dependence of the longitudinal dispersion
coefficient (see Sec. VI). Others have also used Bethe lat-
tices to model transport and reactions in porous catalysts
(Sahimi et al. , 1990).

3. Network models

The fact that Quid paths in a porous medium may
branch and, later on, join one another is intuitively clear.
This prompted many people to think of a network model
of pore space in which the bonds represent in some sense
the pore throats, or the narrow channels, that connect
sites which represent the pore bodies. To each bond is
assigned an effective radius, which can be selected from a
probability density function or an experimentally mea-
sured pore-size distribution (see Sec. III). In principle,
the bonds do not have to be cylindrical. They can
represent sheetlike pores (as in carbonate rocks) or have
converging-diverging segments. Normally, however, one
chooses a configuration for which a given transport pro-
cess can be solved analytically, and this is the reason why
cylindrical pores have been used in most of such network
modelings. Most authors also ignore sites and assign no
volumes to them, although there have been several pa-
pers in which this assumption has been relaxed. These
papers will be discussed later in the context of the prob-
lems that they investigated.

Although the idea of using a network to represent the
pore space is intuitively clear and has been used for a
long time, it was only about a decade ago that Mohanty
(1981) and Lin and Cohen (1982) provided a firm
mathematical foundation to such modeling approaches.
In particular, Mohanty (1981) developed the procedure
for deriving a network model for a given pore space. The
network that results from such a mapping has a random
topology whose local coordination number varies in
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space. Over sixty years ago, Bjerrum and Manegold
(1927) used a random network, made of randomly distri-
buted points in space, connected to one another by cylin-
drical tubes, to study transport in porous media, al-
though the computational limits of their time severely
limited their ability to do any extensive computations.
Extensive and analytical calculations with such models
were first carried out by de Josselin de Jong (1958) and
Saffman (1959) in the context of hydrodynamic disper-
sion in porous media, which will be discussed in Sec. VI.
As already mentioned, computer simulations of Jerauld
et al. (Jerauld, Hatfield, Scriven, and Davis, 1984;
Jerauld, Scriven, and Davis, 1984) showed that, as long
as the average coordination number of a random network
is very close or equal to the coordination number of a
regular network, the effective transport properties of the
two networks are essentially identical.

The network models just described are "mathematical
models, "which are usually used in computer simulations
of Qow phenomena in porous media. Another class of
models are "physical network models, " which are man-
made and transparent networks of pore bodies and pore
throats. These models have been developed for Qow visu-
alization studies and have been particularly useful for
gaining a deeper understanding of displacement of one
Quid by another. The first of such models was construct-
ed by Chatenever and Calhoun (1952), who made bead
packs from single layers of glass and Lucite beads. They
used this model to study immiscible displacement with
oil and brine. Mattax and Kyte (1961) made the first
etched glass network to study displacement processes in
porous media, and Davis and Jones (1968) improved
significantly their technique for construction of etched
glass networks by introducing photoetching techniques.
Finally, Bonnet and Lenormand (1977) developed a resin
technique for controlling the geometry of the network.
Currently, etched glass and molded resin are used for
constructing most of the physical networks. Lenormand
(1990) and Buckley (1991) reviewed various techniques of
constructing such physical networks and discussed the
results of Qow studies using such micromodels.

4. Modeling of pore surface roughness

As discussed in the previous section, in most reservoir
rocks the interface between the rock and the pores is very
rough. It is covered by features or overhangs which
often give rise to a fractal surface. For some phenomena
occurring in porous media the presence of such
overhangs and the fractal nature of the surface have very
little effect and can be ignored, while some other phe-
nomena are affected strongly by them. Examples include
fiow of fines (small, solid, and electrically-charged col-
loidal particles} and deep-bed filtration in porous media,
and the distribution of a wetting phase on the pore sur-
face of a porous medium. How can we modify a network
model to include the effect of a rough or fractal pore sur-
face? Three approaches have been proposed that are in

essence similar, but their details are different. These
models are as follows.

The first model that we discuss is due to Sahimi and
Imdakm (1991)and Imdakm and Sahimi (1991). In their
model, the pore space is represented by a three-
dimensional network of cylindrical tubes. However, the
surface of the cylindrical pores is not smooth, but
covered by protrusions, overhangs, or features of distri-
buted heights h. Sahimi and Imdakm showed that such
features have a crucial effect on the Qow of fines in
porous media and filtration processes. The inclusion of
such overhangs in the model resulted in good agreement
between the predicted and measured quantities of in-
terest, whereas their exclusion resulted in unphysical re-
sults.

The second model is due to Katz and Trugman (1988)
and is intended for proper modeling of distribution of a
wetting Quid over the rough surface of a pore. In their
model, the rough surface is represented by a triangular
network in which an independent random number U,
representing the height of the vertex, is assigned to the
jth vertex of the network, which is distributed according
to a continuous and bounded distribution. Bonds be-
tween the vertices lie along creases or folds in the surface.
Now consider the angle o. formed by the two triangular
faces defining the crease, where e is defined in terms of
the plane perpendicular to the crease. If +&180, then
the crease is defined to be a (+) crease; otherwise it is a
(
—) one. The (+) and ( —) creases reverse roles when

one considers the back side of the surface, and therefore
there are equal numbers of (+) and (

—}creases. The rel-
ative heights of four vertices that define the parallelo-
gram enclosing a bond dictate whether the bond is a (+}
or a (

—) crease.
Consider now the distribution of a strongly wetting

fiuid (contact angle =0) on a rough surface. The rough-
ness of the surface provides channels capable of retaining
the Quid up to very high capillary pressures. Thus, in the
context of Katz and Trugman's model, the wetting Quid
occupies only the (+) creases because they are the ener-
getically favorable states. If one assumes that the (+}
creases are strongly conducting, then the hydraulic con-
ductivity of the network of the wetting Quid can be calcu-
lated. Because the state of a given crease depends on its
neighbors, the question of whether the (+) creases that
make the conducting phase form a percolating network is
one of a correlated percolation. The correlation is of
course short range, but it usually decreases the percola-
tion threshold of the networks. If the correlation range
increases, then the percolation threshold can decrease to
small values, so that the network of (+) creases can be
conducting down to very small values of fraction of (+)
creases, consistent with experimental observations (Dul-
lien et al. , 1986) that a strongly wetting fiuid can retain
its macroscopic network structure down to very small
values of its saturation. If the contact angle is finite, the
problem becomes more complex and the model of rough
surfaces described above has to be modified.

The last model is due to Schwartz, Sen, and Johnson
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(1989), who were interested in the effect of pore surface
roughness on electrolytic conduction. A two-
dimensional model was used in which the pore surface
roughness was created by one of two methods. In the
first method, the roughness was generated by a random
walk. An example of the generated roughness is shown
in Fig. 23(a). Here the interface between the pore and
the matrix is a self-afrine fractal curve. In the second
method, the interface is a triadic Koch curve. As is well
known, the Koch curve can be iterated repeatedly to in-
crease the roughness of the interface. An example is
shown in Fig. 23(b), where the interface after the third
iteration is presented. Although, unlike the first method,
the Koch curve is a self-similar fractal, the qualitative as-
pects of the two interfaces are similar. Qf course, both
are idealized models of a rough interface between a pore
and the matrix, but they can capture some features of
such interfaces.

Before closing this subsection, let us mention a few of
the pioneering works that used network models to study
transport phenomena in porous media. We already men-
tioned Bjerrum and Manegold's work. Benner et al.
(1943) introduced a pore doublet model, which was in

Ore

fact a hexagonal network of channels through which
quid transport could take place. The same model was
also used by Rose and Witherspoon (1956). But, due to
the computational limitations of their times, no extensive
calculations were carried out and the two papers received
very little attention. Owen (1952) used a cubic network
of bonds and sites to investigate the origin of Archie's
law, Eq. (4.1). In this work, which was very sophisticated
for its time, the nodes of the network represented pore
bodies to which a volume was assigned. The bonds were
narrow channels, representing pore throats and connect-
ing pore bodies, to which no significant volume was as-
signed. Owen (1952) calculated the tortuosity factor for
such a network and showed that it is afFected strongly by
the structure of the network.

The first application of network models to modeling
two-phase Row in porous media was pioneered by Fatt
(1956). He used various two-dimensional networks of
bonds representing the pore throats. The radii of the
bonds were selected from a probability density function,
representing the pore-size distribution of the medium.
No volume was assigned to the nodes. The length of
each bond was assumed to be proportional to the inverse
of its radius. Using this model and an analogy between
laminar Aow in tubes and Ohm's law of electrical
currents, Fatt investigated the fIow of two immiscible
Auids in porous media and calculated the relative per-
meability to each Quid phase, i.e., the permeability of the
sample-spanning cluster of bonds filled with a Quid, di-
vided by the overall permeability of the network. He
showed that, consistent with experimental data, the rela-
tive permeability to each phase efFectively vanished at a
finite value of the phase saturation, which, in the
1anguage of percolation theory, means that the relative
permeabilities vanish at a nonzero percolation threshold.
Later, Rose (1957) and Dodd and Kiel (1959) used such
network models to study immiscible displacement pro-
cesses in porous media. We have already mentioned the
work of Ksenzhek (1963), who used a network model to
predict capillary pressure curves for porous media.
Thus, although in the condensed-matter literature two
seminal papers of Kirkpatrick (1971, 1973) are generally
credited with popularizing the use of resistor networks
for investigating transport and percolation in disordered
systems, the above pioneering works had already used
such models to study transport processes in disordered
porous media.

Pore , :, i Th7.oa.t

B. Models of heterogeneous porous media

FICx. 23. Rough fractal surfaces generated by a random walk

(top), and a Koch curve after the third iteration (bottom) (from
Schwartz, Sen, and Johnson, 1989).

So far, we have discussed models of porous media
which, on a large enough scale, are macroscopically
homogeneous. As a result, the effective transport proper-
ties of the system are independent of its size. We now
discuss various models of porous media that are macro-
scopically heterogeneous, i.e., models in which there are
large-scale spatial variations of the efFective transport
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properties of the system. There are three basic ap-
proaches to this problem, which are discussed below.

1. Random hydraulic conductivity models

In this approach the reservoir is represented by a rect-
angular region (or any other shape if desired). The re-
gion itself is divided into many smaller rectangular
blocks, which are supposed to represent a portion of the
reservoir that is homogeneous on the scale of the block's
size. To each block a randomly selected hydraulic con-
ductivity is assigned. This type of model was pioneered
by Warren and Skiba (1964) and Heller (1972). In both
studies it was assumed that there is no correlation be-
tween the conductivities of various blocks. Schwartz
(1977) modified this model by inserting blocks of lower
conductivities in an otherwise homogeneous two-
dimensional region. One can also accommodate a non-
random spatial structure by controlling the density and
mode of aggregation of the inserted blocks or inclusions.
In principle, the blocks do not have to be rectangular,
but nonrectangular blocks cause a lot of difficulties for
numerical computations of quantities of interest.

Smith and Freeze (1979) and Smith and Schwartz
(1980, 1981a, 1981b) modified this basic model by includ-
ing correlations between the blocks' hydraulic conduc-
tivities, which are expected to exist in real reservoirs and
porous media. In their model, it is assumed that the spa-
tial variations of hydraulic conductivities are described
by a statistically homogeneous stochastic process. The
spatial structure of the conductivity field is represented
by a first-order nearest-neighbor stochastic process mod-
el. It is assumed that the hydraulic conductivity kb of
the blocks is log-normally distributed. If Y =logkb, then
the first-order nearest-neighbor stochastic process implies
that F,", the random variable for the block with coordi-
nates i and j, is given by

Y, =a„(Y, i +Y;+, )+a, (Y; i+Y; +, )+e;

(4.2)

where a and o,, are autoregressive parameters express-
ing the degree of spatial dependence of Y~ on its two
neighboring values in the x and z directions, respectively,
and e,. is a normal random variable uncorrelated with
other e;.'s. Ifa„=n„then the medium has a statistically
isotropic covariance structure. Otherwise, the medium
has an anisotropic structure and the covariance between
conductivity values is dependent upon orientation. The
random variables e;. are distributed according to a nor-
mal distribution with a zero mean and a given variance.

logs of heterogeneous reservoirs obey fractal statistics,
and therefore there are infinitely-long-range correlations
between the permeabilities of various regions of a reser-
voir, rather than the short-range correlation that was
considered by Smith, Freeze, and Schwartz. More pre-
cisely, Hewett (1986) proposed that porosity logs and
permeability distributions are fractional Gaussian noise
(fGn) and fractional Brownian motion (fBm), respective-
ly. Consider a stationary stochastic process BH(x) with
the properties

(B (x)—B (x ))=0,
([BH(x) B—H(xo)] ) —~x

—xo~

(4.3)

(4.4)

where 0&H&1 is called the Hurst exponent. This is
called an fBm (Mandelbrot and van Ness, 1968). The
fBm is statistically self affine, and its trace has a fractal
dimension 2 H. Its —spectral density S(co) takes the
large-frequency asymptote [see Eq. (3.75)]

—(2H+)) (4 5)

If we define a correlation function C(x) by

( B~( x—)BH(x—) )
C(x) =

(B„(x)') (4 6)

then fBm has the remarkable property that

C(x) =2 ' —1 (4.7)

i.e., C(x) is independent of x. Thus fBm displays per-
sistence ( C) 0), i.e., a trend at x (e.g., a high or low value
of permeability) is likely to be followed by a similar trend
at x +Ax, when H & 1/2, whereas one has antiper-
sistence (C(0) when H(1/2. Equations (4.3)—(4.5) can
be easily generalized for a d-dimensional system [see, for
example, Feder (1988)]. For a given value of H, fGn has
a difFerent spectral density than fBm, namely,
S(co)-e) ' ", and, roughly speaking, corresponds to
the "derivative" of the trace of fBm. For example, for
H= 1/2, fBm reduces to regular Brownian motion, and
the corresponding fGn becomes a white noise. Based on
an analysis of extensive data for the permeability and
porosity of typical reservoirs, Hewett (1986) argued that
vertical porosity logs are samples of fGn, while the la-
teral distribution of these properties follows fBm, al-
though with the same H. His analysis also indicated that
H& 1/2, indicating long-range positive correlations. Us-
ing an fBm and an fon, Hewett generated permeability
and porosity distributions and used them in the simula-
tion of Quid transport in heterogeneous media, as will be
discussed in Sec. VI.

2. Fractal models 3. Multifractal models

The models of Smith and Freeze (1979) and Smith and
Schwartz (1980, 1981a, 1981b) with a short-range corre-
lation were significantly generalized by Hewett (1986),
who argued that permeability distribution and porosity

These models were introduced by Meakin (1987) and
Lenormand et al. (1990). Consider a two-dimensional
system, such as a square grid, and a probability p, which
can be related at the end of the construction of a model
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to a measure such as permeability or porosity and is dis-
tributed uniformly in the interval (1—a, 1+a), with
0~a ~1. In the first step of constructing the model, a
value p» is selected at random and is given to all the pix-
els of the initial square. The first dichotomy is then car-
ried out to make four squares of size 2" 'X2" ', and
four values p2„p22,@23, and @24 are selected at random
and attributed to each of the four squares. The same pro-
cess is repeated n times. At the end of the process, each
pixel is characterized by n values of the probability p. A
new measure P is now defined, which is the product of
the n random values of p. Figure 24 shows the various
stages of such a construction. The main property of this
process is that it introduces correlations between pixels
at all scales and thus induces a memory. A lower cutoF
can also be introduced into this model by considering m
dichotomy steps, where m & n, and n is the dimension of
the pattern. One first makes 2" X2" independent
multifractal patterns of size mo, and then computes
2" X2" independent products p +& Xp +2X
Xp„.The pixel values of each multifractal are then mul-
tiplied by these products in order to obtain products of
order n,. An example is shown in Fig. 25 with m=4 and
n=7. This procedure can be further generalized to an-
isotropic systems by considering two probabilities p and

p~ (or p, p», and p, for three-dimensional systems) for x
and y axes, distributing p„and p~ uniformly in (1—a„,
1+a ) and ( 1 —a, 1+a~ ), and identifying p by the prod-
uct p„Xp~.

For simulating How in a porous medium, the measure p
can be thought of as the eA'ective radius or permeability

I

C &%Pe ~%&%%A ~s4 4V ~ M . J.

(A)

FIT+. 25. (A) Isotropic and (8) anisotropic multifractal patterns
(from Lenormand et ah. , 1990).

of a pore. Criven a pattern and a pore radius (or perme-
ability) distribution, Aow and displacement processes in a
porous medium can be investigated. Lenormand et al.
(1990) conducted such simulations and showed that their
results were in good agreement with their experimental
data obtained by CT scanning during gas injection in lay-
ered and heterogeneous Berea sandstones.

C. Models of fractured rocks

A study of the literature indicates that there have been
three classes of models of fractured rocks. The first is the
classical multiporosity model, which was proposed in the
early 1960s. The second class consists of network models
of fractured rocks, which are in essence extensions of net-
work models of porous media. The last model is based
on simulated annealing concepts. A brief description of
each is now given.

1. Multiporosity models

step 1

dI st r l b u tl o n p

2 x 2

pixels

step 2
(b)

P p
t1l

fl

FICi. 24. The iterative process of constructing a multifractal
model (from Lenormand et al. , 1990).

Some of the earliest papers on modeling fractured
reservoirs are those of Barenblatt et al. (1960), Warren
and Root (1963), and Odeh (196S). Barenblatt et al. in-
troduced what is popularly known as the double-porosity
model. In this model, the reservoir is represented by a
regular, fully connected fracture network (representing
one degree of porosity), which is embedded in a porous
matrix (representing the other degree of porosity). The
matrix is assumed not to be interconnected, so that Quid
Row occurs only through the fracture network. More so-
phisticated variations of this model were developed by
Kazemi (1969) and Kazemi et al. (1976). Closmann
(197S) and Abdassah and Ershaghi (1986) extended this
model by including three degrees of porosity. Their mod-
el was motivated by investigation of the structure of frac-
ture networks of carbonate reservoirs and the observa-
tions of actual well tests in such reservoirs indicating
anomalous behavior that could not be explained by the
double-porosity model. However, although multiporosi-
ty models may be appropriate for studying Quid Aow in a
uniform set of fractures, they are not suitable for model-
ing fracture networks of natural rocks because, as dis-
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cussed in Sec. III, such networks have been shown to
have fractal characteristics over certain length scales or
they have incomplete connectivity, so that multiporosity
models are not adequate for representing them. More-
over, these models contain too many adjustable parame-
ters, often with no clear physical meaning, to be taken
seriously for fundamental studies of Aow phenomena in
fractured reservoirs.

2. Network models of fractured rocks

The idea that a fractured rock can be represented by a
network of interconnected and finite fractures is intui-
tively clear and appealing and thus has a relatively long
history. Parsons (1966) and Caldwell (1972) appear to be
the first to have used such an approach. They used elec-
trical analog models to study flow through a network of
fractures. In particular, Parsons (1966) used square and
triangular networks of resistors in which each bond (or
resistor) represented a finite fracture. However, his mod-
el had the drawback that the current in each resistor was
assumed to be proportional to the width of the conduc-
tor, whereas Row rate in a fracture is proportional to the
third or even higher power of the fracture's aperture
(Tsang and Witherspoon, 1981). Snow (1969) used a
three-dimensional model in which fractures were ideal-
ized as infinitely long and parallel ducts. As such, his
model was in the same spirit as the bundle of parallel
capillary tubes.

Over the past decade many authors have developed
two- or three-dimensional models of fractured reservoirs
in the form of networks of fractures of finite extent. In
the two-dimensional models (Dienes, 1980; Long et al. ,
1982; Englman et al. , 1983; Charlaix et aI. , 1984; Endo
et al. , 1984; Robinson, 1984a,b; Long and Witherspoon,
1985; Ross, 1986; Charlaix, Csuyon, and Roux, 1987;
Charlaix, Hulin, and Plona, 1987; Long and Billaux,
1987; Gueguen and Dienes, 1989; Hestir and Long, 1990)
fractures are represented by one-dimensional finite line
segments. These fracture networks are similar to two-
dimensional networks of pores already discussed. These
models can even be a reasonable representation of a
three-dimensional system if most of the hydraulic con-
ductivity is in the intersections between fractures, or if
fIuid Aow is channelized in the fractures. In the three-
dimensional models, the fractures are represented either
by discs of finite radius (Long et al. , 1985; Andersson
and Dverstorp, 1987; Charlaix, Guyon, and Roux, 1987;
Billaux et al. , 1989; Piggott and Elsworth, 1989) or by
fiat planes of finite dimensions (Wilke et al. , 1985).
There is experimental evidence that three-dimensional
fractures are either roughly elliptical or disc-shaped (Pol-
lard, 1976).

In the two-dimensional models, one distributes the
fractures at random in a plane. One of the simplest mod-
els is the Poisson model, which was first used by Long
et al. (1982). In this model, in a square block of size
LXL one chooses x and y coordinates for a specified

FIG. 26. An example of a two-dimensional fracture network in
which fractures are represented by line segments.

number of line or fracture centers from a uniform distri-
bution in (O,L). Once the coordinates of the centers of
the lines are selected, the orientation of the lines is also
selected from a given distribution. Then the lines are as-
signed randomly selected lengths and hydraulic conduc-
tances. If the fractures cross the boundary of the system,
they are truncated, but no truncation is done inside the
L XL box. Figure 26 shows a typical network obtained
by this method. These models are practically identical
with the percolation networks of sticks studied by Bal-
berg et al. (1983, 1984) and Balberg and Binenbaum
(1983, 1985) that were mentioned in the discussion of
continuum percolation. In particular, Balberg and
Binenbaum (1983) studied two-dimensional anisotropic
systems of conducting sticks, which may be more realis-
tic models for two-dimensional fractured reservoirs, since
such systems are usually anisotropic. Moreover, Balberg
et al. (1984) considered a three-dimensional fracture net-
work in which the fractures were finite cylinders of
length I and radius r, at studied the dependence of the
percolation threshold of the system on the aspect ratio
L /r and on the macroscopic anisotropy of the system.

One major difFerence between fracture networks and
percolation networks is as follows. In a percolation net-
work, an upper bound to all properties is the case in
which p, the fraction of conducting bonds, is unity. All
quantities of interest are normalized against the p=1
case. On the other hand, for random fracture networks,
there is theoretically no end to the degree of fracturing.
If we add one more fracture to the network, its perme-
ability or hydraulic conductivity increases ad infinitum
Thus one cannot determine how "filled" a fracture net-
work is, and there is no analog of the p=1 case in per-
colation networks. As Hestir and Long (1990) pointed
out, one can study systems in which A, &, the average fre-
quency of fractures intersecting a sample line, is held
constant. Since any fracture network can be rescaled to a
given constant A, I if it is held fixed, the permeability of
the network is maximum when all fractures are infinitely
long, which is the system that Snow (1969) studied.
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H (8)=f J sin
~

8—80~g (8)g (80)d 8 d 8o .
0 0

(4.9)

For example, if the fracture orientation is uniformly dis-
tributed, g (8)= I lvr and H (8)=2/~. Now, for every g
there is a pf(g), which is the analog of p for percolation
networks. For example, in the fracture network of Engl-
man et al. (1983) one has pf(g) = 1 —exp( —g). There-
fore a critical value of g, g„canalso be defined, and thus
all the results of percolation theory discussed in Sec. II
can be written in terms of g, if we replace p everywhere
with pf (g) = 1 —exp( —g). As a second example, consider
Robinson's (1984a, 1984b) model that was analyzed by
Hestir and Long (1990). In this model, pf(g) is the aver-
age fraction of a fracture that is available for Aow. Now,
consider a fracture of length l with n (l) intersections. If
the fracture length is constant, then n (l) will be a Pois-
son process. The average fraction of a fracture available
for Qow, i.e., the fraction between the two end sites
separated by l, is [n(l) —I]/[n(l)+1]. Therefore, if P„
is the probability that n ( l ) =n, one simply has
P„=g"e ~In and

(4.10)

Again, all standard results of percolation can now be
written down for Robinson's model by replacing p every-
where with pf. Hestir and Long (1990) worked out
several other examples relating pf (or p) to g. They also
considered the case in which the fracture lengths were
not constant, but were distributed according to a given
distribution. The goal of Hestir and Long (1990) was to
use the effective-medium approximation (EMA; see Sec.
V) and the scaling theory of conductivity near p, Isee Eq.
(2.6)] to predict the hydraulic conductivity of fracture
networks, and in order to do that one has to relate p (or
pf) to g. We should mention that, for two-dimensional
fracture networks of constant length, Robinson (1984b)
found that the percolation threshold, i.e., the average
number of fractures intersecting a given fracture, is about
3.1.

Long and Billaux (1987) developed a two-dimensional

Thus, if A,
&

is held fixed, Snow's analytical results for the

permeability of a fracture network is equivalent to the
p= 1 case for percolation networks.

The next question is how to relate the parameters of
fracture networks to those of percolation networks such
as p and Z, the average coordination number of the net-
work. Robinson (1984b) and Charlaix, Guyon, and Roux
(1987) used the average number of intersections per frac-
ture g as the measure of the connectivity. Suppose now
that the average fracture length is l, the orientation dis-
tribution is g(8), and the density of fracture centers is
kz. It is easy to show that A, I

= li, ~, and

(=A, ,lH (8),
where H (8) is defined by

network model of fractures by incorporating field data
into the model. The network was generated subregion by
subregion, where the properties of each subregion were
predicted through geostatistics. The region in which the
data were collected was divided into statistically homo-
geneous subregions. The fractures were divided into five
sets based on their tectonic history. It was observed that
in each set fractures were spaced close together and had
similar orientations. This information was incorporated
into the network model. Another piece of information
that was used in the simulation was the aperture distribu-
tion. The criterion for accepting a model was its ability
to reproduce the measured permeability of the subregion.
After all subregions were created, they were joined to-
gether to create the entire region. When the model was
applied to Fanay-Augeres, a uranium mine in France, it
was found that macroscopically the region was barely
connected. Only 0.1% of the fractures contributed to the
permeability of the system. This implied that (i) the sys-
tem had the structure of a percolation network and was
extremely close to its p„and (ii) the fracture network was
a fractal object over the scale of the observation. Both of
these findings support the ideas of Sahimi et al. (1993)
discussed in the previous section. These results also ap-
pear to be typical of many fractured rocks and indicate
the significance of percolation concepts to the modeling
of such systems. Indeed, the relevance of such concepts
to the modeling of fractured rocks was the chief reason
for including these systems in this review.

The applicability of two-dimensional networks of frac-
tures to the modeling of natural fractured rocks is limit-
ed. One main reason for this is that a two-dimensional
model cannot realistically describe the fracture network
connectivity, because fractures that do not connect in a
planar cut may connect in the third dimension. More-
over, whenever two-dimensional data have been used
with a three-dimensional model, it has been found that
one has a nonuniqueness problem in the sense that many
three-dimensional models can account for the same two-
dimensional data. However, despite their significance,
three-dimensional models have received less attention
than their two-dimensional counterparts, perhaps be-
cause of the complex computations that are involved.

Charlaix et al. (1984) argued that, at the percolation
threshold of a three-dimensional fracture network made
of Hat disks of radius r with a density of A, z of disks per
unit volume, one must have

k ~ r —0. 15—0.3 . (4.1 1)

Note that r represents the volume of a disk. For
polydisperse disks one must replace r with m. (r )(r )
in Eq. (4.11), which is nothing but
( surface ) ( perimeter )/2, where ( ) represents the aver-
age of the quantity. These predictions were confirmed by
Charlaix (1986) using Monte Carlo simulations. Robin-
son (1984b) found that, for three-dimensional networks of
planar fractures, the number of intersections per plane is
about 2. Wilke et al. (1985) considered percolation in
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networks of planar fractures and showed that the geome-
trical critical exponents of percolation in their model are
the same as those of random percolation (see Sec. II).
Madden (1983) represented a three-dimensional fracture
network by a cubic tessellation of elementary cubes and
studied the connectivity properties of the network using
renormalization-group theory (see Sec. V).

The above studies were concerned with the connectivi-
ty properties of idealized three-dimensional fracture net-
works. There have been a few papers in which three-
dimensional models were employed in order to simulate
the hydraulic behavior of a given field and match the
measured data. Billaux et al. (1989) extended the model
of Long and Billaux (1987), discussed above, to three di-
mensions. The fractures were represented as disks placed
randomly in space. The diameter of each disc was select-
ed independently from a probability distribution, which
was assumed to be log-normal. To locate the fractures in
the space, a point process called the parent-daughter pro-
cess was used. In this method one starts from a Poisson
process and places a cloud of points (or daughters)
around each Poisson point (called a parent or seed). The
number of points in each cloud is a Poisson random vari-
able, and each point is placed in a given cloud indepen-
dently of all other points. The motivation for doing this
is the fact that experimental data indicate that fractures
of real rocks often occur in swarms. Figure 27 shows a
typical swarm of disklike fractures. As in the case of the
two-dimensional model (Long and Billaux, 1987), the
fractures were divided inta five different sets. The orien-
tation of the discs in each set was characterized as a Auc-
tuation about the mean orientation for the set. This Auc-
tuation had a spatial structure that could be simulated
with geostatistics. After each set was generated, a model
of a given fractured field was created by putting together
all of the sets. By means of this model, the hydraulic and
transport properties of the fractured rock were simulat-
ed. In work somewhat similar to that of Billaux et al.

FEG. 27. A three-dimensional network of disklike fractures
{from Billaux et al. , 1989).

(1989), Dverstorp and Andersson (1989) used a three-
dimensional network of disklike fractures and showed
that the model can be calibrated by one set of data and
then be used to predict and match another set of data.

3. Simulated annealing

The simulated annealing approach recently developed
by Long et al. (1991) appears to be a promising way to
construct models of fractured rocks. In the last subsec-
tion, we discussed the models that were developed by
Long and Billaux (1987), Billaux et al. (1989), and Dver-
storp and Andersson (1989). There is a basic problem
with these models that may limit, at least in some cases,
their usefulness. This is the fact that, although there may
be a large number of fractures in a given rock or field,
usually only an extremely small fraction of the fractures
contribute to the Quid Bow. That is, most of such frac-
tured rocks are at or near their percolation threshold,
have fractal properties, and therefore cannot be treated
with the classical methods of analysis. To overcome this
difficulty, Long et al. (1991) developed a simulated an-
nealing method. Such methods were originally developed
by Kirkpatrick et al. (1983) for optimization processes,
using a connection between such problems and the sta-
tistical mechanics of spin glasses.

In the work of Long et al. (1991) rock is represented
by a three-dimensional network of finite fractures. Then
simulated annealing is used to find an appropriate pattern
of connected fractures, given some experimental informa-
tion about rock. The most important issue to be resolved
is to find how the fractures are connected, so that the
transport behavior of the fracture network can mimic
that of the actual system and honor the data. Cziven a
problem, simulated annealing can be used if one has (i) a
set of possible configurations of the system; (ii) a model
for systematically changing the configuration; (iii) an
"energy" function, in analogy with the work of Kirkpa-
trick et al (1983), t. o minimize; and (iv) an annealing
schedule of changing a temperature-like variable, so that
the system can reach its minimum.

For fiuid fiow in fractured rock, requirement (i) is obvi-
ous: it is a network of fractures in which some of the
fractures allow fiuid fiow to take place (they are "on")
and some are closed to the transport process (they are
"off"). Suppose I CJ denotes the set of all possible
configurations of on and off fractures (note that such net-
works are similar to percolation networks of open and
closed bonds discussed in Sec. II). The next requirement
is a method according to which a given configuration is
changed. Suppose that one assigns a probability function
for randomly selecting a fracture. Then, if the selected
fracture is on, it is turned off and vice versa. This gen-
erates a new configuration of the fracture network. One
now defines the "neighborhood" %c of C as the set of all
configurations that are very close to C (in the language of
Long et al. , they are one step away from C). Annealing
the system means picking a configuration from Nc and
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comparing it with C. In order to make the comparison
precise, one needs to define an "energy" E, the third in-
gredient of simulated annealing. Long et al. (1991)
defined E as

E = y If (&, ) f (s) ) I
', (4.12)

where G. and S are vectors of observed and simulated
responses, respectively, m, is a constant, and f (x) a real
monotonic function. The measurements could be hydro-
logical, geophysical, or geological. A probability distri-
bution of the configurations was assumed to be expressi-
ble as a Gibbs distribution,

P(C)=a exp[E(C)/T], (4.13)

where a is the renormalization constant (which is very
I

dificult to estimate, because one must know the energy
of all configurations, which is impossible), and T is a
"temperature" or a temperature-like variable to be
defined below.

Because P(C) is a Cxibbs distribution, C, the current
configuration, can be modeled as a Markov random field,
which means that the transition probability for moving
from C to C' depends only on C and C' and not on the
previous configurations from the set [C]. Thus the tran-
sition probability can change from configuration to
configuration, but it does not depend on the previous
configurations that were examined. Therefore, given C
and Xc, the transition probability for moving from C to
C' (given our current configuration C) is equal to the
probability that we select C' times the probability that
the system would make the transition to a given
configuration C'. Therefore

0, C"'&Xc

PIC C'ICI = .P(C'IC)X1, C'HX, E(C') E(C) ~—0, and C&C'

P(C'IC)expI [E(C) E(C')]/T—], C'&&c, E(C') E(C))0, —and CAC' .
(4.14)

The final ingredient of the model is a schedule for
lowering the temperature as annealing progresses. This
means that, as annealing continues, one is less likely to
keep those configurations that increase E. The tempera-
ture schedule that Long et al. (1991)used was ad hoc but
effective and was actually suggested by Press et al.
(1986), who proposed that the temperature be changed
after a number of configuration iterations sufIicient to
produce a fixed number of acceptable changes. At the
end of each iteration i, the temperature T; is decreased
using a geometric series,

(4.15)

probability is used to keep or reject C', and (iv) finally,
the new point is removed and the process is continued.
This completes the simulated annealing method for
selecting a configuration of a network of fractures that
can mimic important features of a given rock and repro-
duce some of its measured properties. Long et al. (1991)
showed that even if the initial configuration is a com-
pletely connected network of open (or "on") fractures,
the final configuration is usually a percolation network
(although they did not mention percolation) that is "bare-
ly connected" (i.e., is very close to its percolation thresh-
old).

where 0&8.; (1. Thus one need only select the initial
temperature. This is selected such that it is of the same
order of magnitude as the energy difference between the
first two configurations, so that the energy difference be-
tween successive configurations remains (most of the
time) between zero and 1.

What does one do if, for example, quantitative infor-
mation, such as the range of possible responses, is avail-
able, but there are no actual measurements'? For exam-
ple, suppose one wants to predict the How rate q at a
point in the system far from a point at which a measure-
ment was done, and one has the information that the fIow
rates were observed to be between a and b, q E [a,b] In.
this case, each time a configuration is changed, the fol-
lowing steps are also taken: (i) the new point is added to
the configuration and q is calculated at that point; (ii) a
new energy function E' is calculated such that E'=0, if
the calculated q is in [a,b], E'=(q —a) ', if q (a, and
E'=(q b) ' if q )b; (iii—) if E(C')+E'(C') (E(C)
+E'( C), then C' is kept. Gtherwise, the usual annealing

V. SINGLE-PHASE FLOW AND
TRANSPORT IN RESERVOIR ROCKS

In this section we review and discuss single-phase How
and transport in reservoir rocks. We focus on low-
Reynolds-number Aow, where Darcy's law is applicable.
We first give a theoretical derivation of Darcy's law. %'e
then review and discuss various methods of estimating
permeability and the electrical conductivity of Auid-
saturated rocks, and any possible relationship between
them. Of course, as a result of Einstein's relation, the
electrical conductivity is proportional to the effective
diffusivity D, of the system.

A. Continuum models: Derivation of Darcy's law

Darcy's law is expressed as

(5.1)
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V.vp=0,
—'PPp+ ppg+ gpss vp=0 .

(5.2)

(5.3)

The interfacial area between the Quid and solid phases is
Sp, and thus one boundary condition is that vp=0 on

Sp, the so-called no-slip boundary condition. As the
second boundary condition one may specify vp on the en-
trance and exit surfaces of the porous medium. One can
now use the spatial averaging theorem (Anderson and
Jackson, 1967; Marie, 1967; Slattery, 1967; Whitaker,
1967), which states that, for any quantity Pp associated
with the P (fluid) phase, one has

where (v ), g, and p are, respectively, the average veloci-
ty, viscosity, and density of the Quid, k is the permeabili-
ty, P the pressure, and g the gravity vector. Many au-
thors have given various derivations of Eq. (5.1) (Bear,
1972; Cxray and O' Neil, 1976; Neumann, 1977; Keller,
1980; Tartar, 1980; Larson, 1981; Whitaker, 1986a; Ru-
binstein and Torquato, 1989). The one-dimensional ver-
sion of Eq. (5.1) was discovered empirically by Darcy in
1856. However, it is the extension of Darcy's law to
more than one dimension which is of practical impor-
tance. In this subsection, we present a summary of
Whitaker s (1986a) derivation of Eq. (5.1), which is based
on the method of volume averaging developed by him
and his co-workers. This will also show us how continu-
um models of transport in porous media, of which
Whitaker's method is perhaps the best known, are formu-
lated.

The porous medium under consideration is shown in
Fig. 28. The macroscopic length scale of the system is I„
while the averaging volume is V. Other characteristic
length scales of the system are Ip and l, the characteris-
tic length scales of the Quid and solid phases, respective-
ly. The boundary value problem that one has to solve is
expressed by the continuity and momentum equations,

(Vgp) =V(gp)+ —f np gpd A,1
(5.4)

where Ap is the interfacial area contained between the
averaging volumes and np the unit outwardly directed
normal vector for the P phase. Note that the averaging
in Eq. (5.4) is over V. One can also define an average
over phase volume, called the intrinsic phase average,

f, gpdV, (5.5)

+ f n VvpdA =0, (5.7)
gp

PP AP

where several terms have been detected because their
contributions are negligible; see Whitaker (1986a). We
now need to develop governing equations for Pp and vp.
This is done by substituting the above decompositions
into Eqs. (5.2) and (5.3) to obtain

VPp+rlpV vp—= —( V(Pp)P+ppg—+gpV (vp)P),

(5 8)

where Vp is the volume of the P phase within V. Equa-
tion (5.4) and the no-slip boundary condition imply that
V (vp) =0, whereas if we use the averaging defined by
Eq. (5.5) we obtain V.(vp)P= ep

'—Vep (vp).P, where ep
is the volume fraction of the P phase (or the porosity of
the porous medium). On the other hand, when we use
Eq. (5.4) in the Stokes' equation, Eq. (5.3), yields

1—V(Pp) ——f np Ppd A+e~pg+rlp(V. Vvp) =0 .
Ap

(5.6)

If we use the obvious relation (Pp) =ep(Pp)p, the
decomPositions Pp=(Pp)P+Pp and vp=(vp)P+vp, and
the relation

1
n dA = —VeP~ P'

po.

which can be obtained from Eq. (5.4) using gp= 1, then
after some tedious manipulations and repeated applica-
tions of Eqs. (5.4) and (5.5), Eq. (5.6) finally becomes

1
V(Pp)P+Ppg — f —npP pdA

Ap

V'vp= V'( vp)P, (5.9)

with the boundary conditions that vp= —(vp)p on Sp
(since vp=0 there) and with specified vp on the entrance
and exit surfaces of the system. Since all terms on the
left-hand side of Eq. (5.8) are of the order of (vp)P/lp,
whereas those on the right-hand side are of the order of
(vp)P/L, the right-hand side can be safely neglected
(since lp ((L) and Eq. (5.9) becomes V vp=0. Then, use
of the averaging expressed by Eq. (5.5) in Eq. (5.8) yields

f ( VP p+rlpV vp)dV-
Vp

FIG. 28. The model of porous medium used in the volume
averaging method (from Whitaker, 1986a). ( V(Pp ) + ppg+ 'gpV ( vp) ) (5.10)
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which, when compared with Eq. (5.8), yields

VP—p+ilpV vp= j( VP—p+ripV vp)dV .
P

We now search for a solution of the form

vp=B'(vp) +I/J,

Pp=qpb (vp)P+rig,

(5.11)

(5.12)

(5.13)

bic array of spheres. He derived the periodic fundamen-
tal solution to the Stokes equation. He then expanded
the velocity profile in terms of the fundamental solution
and obtained an expression for k, valid for dilute arrays
of spheres. Sangani and Acrivos (1982b) modified and
extended Hasimoto's work and obtained expressions for
the permeability of all three types of cubic lattices of
spheres. If c is the volume fraction of the spheres, then
their result for a simple cubic lattice of spheres is given

where g and g are arbitrary functions, which means that
8 and b can be specified in any way one wishes. Whitak-
er (1986a) goes on to show that f and g can be ignored
altogether. Thus, if we use Eqs. (5.12) and (5.13) in Eq.
(5.7), defining a tensor T by

k,-- = 1 —1.76O1c' +c —1.5593c +3 9799c
k

—3.0734c' i +O(c" ), (5.16)

j np (VB—Ib)dA,
Ap

(5.14)

where I is the identity tensor, and letting K=@&T,Eq.
(5.7) becomes

(vp) = (V(Pp)P —ppg),
gp

(5.15)

which is Darcy s law, where K is the permeability tensor.
For isotropic porous media, Eq. (5.15) reduces to Eq.
(5.1).

B. Calculation of the permeability
and electrical conductivity of rocks

The above derivation of Darcy's law allows one, in
principle, to calculate the permeability tensor K, if the
unknown functions 8 and 1 can be calculated. In prac-
tice, however, one can neUer find an exact solution for 8
or b, except for some model porous media whose struc-
tures are simple enough to allow exact analytical expres-
sions for B or b be found. In this subsection we review
and discuss various methods for estimating permeability
and the electrical conductivity of Quid-saturated rocks.
Some of these methods are applicable to determining
both the permeability and the electrical conductivity,
while others are applicable only to one or the other.

1. Exact results and rigorous bounds

Before reviewing exact results, we should define pre-
cisely what we mean by exact. There are currently no ex-
act results for the permeability and conductivity of
porous media with an arbitrary microstructure. There-
fore, when we refer to exact results or rigorous upper and
lower bounds, we mean the results that can be obtained
for a given morphology of the pove space.

Most of the exact results for the permeability of porous
media are for periodic arrays of spherical particles of ra-
dius r, which are placed at the nodes of a regular lattice
such as a simple cubic lattice. These models are idealiza-
tions of unconsolidated porous media and, as already dis-
cussed, can capture some of their features. Hasimoto
(1959) was the first to treat slow Quid flow through a cu-

f (x)= g a;g;(x) .
i=i

(5.17)

The unknowns are now the a,. 's. In practice, the above
infinite sum is truncated after a few terms. One possible
set of basis functions is g;(x)=x~y~z', where p, q, and s
are integer or zero. For the present problem the
coefficient a1 is nonzero only if p, q, and s are even, a2 is
nonzero only if p and q are odd and s is even, a3 is
nonzero ifp and s are odd and q is even, and so on. Such
properties greatly facilitated the determination of a s,

where k, =2r /(9c) is the Stokes permeability. Sangani
and Acrivos (1982b) also presented the numerical
coefficients in the above expansions for bcc and fcc lat-
tices and two-dimensional square and hexagonal lattices
of parallel cylinders. These expansions are convergent
for 0 (c/c,„(0.85, where c,

„

is the maximum volume
fraction of the spheres for a given packing and
c,„=sr/6, 3'~ n/8, and 2'~ m/6 for simple cubic, bcc,
and fcc lattices, respectively.

Zick and Homsy (1982) also considered the same prob-
lem and obtained the solutions for the cubic family of lat-
tices, but used a different method from that of Sangani
and Acrivos. Instead of trying to solve the Stokes equa-
tion directly, they reduced the set of partial differential
equations to a set of Fredholm's integral equations of the
first kind. Like Sangani and Acrivos (1982b), Zick and
Homsy (1982) used Hasimoto's fundamental solutions.
The kernel of the integrals in Zick and Homsy's method
was a three-dimensional Fourier series which is difficult
to evaluate. However, their method had its advantages.
The unknown in their method was the surface stress vec-
tor, and therefore the domain of the problem was the
two-dimensional surface of a sphere, as opposed to the
three-dimensional domain of the original problem in
terms of the velocity and pressure. The number of un-
knowns was three, the components of the surface stress
vector, one less than the number of unknowns in the
original problem, which were the three velocity com-
ponents and the pressure. Zick and Homsy (1982) used a
Galerkin method in which the unknown, say, f (x), was
expressed in terms of a linear combination of some basis
functions g, (x),
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and were exploited by Zick and Homsy (1982). Their nu-
merical solutions for various cubic lattices agreed with
the expansions of Sangani and Acrivos (1982b).

Larson and Higdon (1989) considered the case in
which the spheres in the cubic packing were allowed to
grow, as already described above. For this case, Larson
and Higdon expressed the velocity and pressure 6eld in
terms of harmonic expansions in spherical coordinates, as
described by Happel and Brenner (1983). In this method,
one writes

P= g p„, (5.18)

v= g [VX(ry„)+V/„+a„rVp„+P„rp„],

(5.19)

s 3 )~2 135=1+ —c + c loge +16.456c. . . .
64

(5.20)

Actually, Hinch's result contained a few numerical er-
rors, which were corrected by Rim and Russel (1985),
who also derived a few higher-order terms of the above
expansion. Finally, Adler and Brenner (1984a, 1984b,
1984c) studied a variety of transport processes in spatial-
ly periodic capillary networks.

There are also a variety of rigorous results for the con-
ductivity of a model random medium, which is usually a
two-component mixture of spheres (or another relatively
simple geometry such as ellipses or cylinders) of conduc-
tivity o, and the matrix (the channels between the
spheres) in which the spheres are embedded, whose con-
ductivity is o. . The system can have a periodic struc-
ture or a more complex configuration. Various methods
have been used to determine, rigorously, the conductivity

where a„=(n+3)/2(n+1)(2n+3)g; P„=n /(n

+ 1)(2n + 3)g; and p„,y„,and g„aresolid spherical har-
monics, which are written in terms of the associated
Legendre functions in the form r"P„(cso8) exp(imP),
where P„is the Legendre function. These expressions
are used in the continuity and Stokes equations, the
geometry of the packing is specified, and the numerical
solution of the problem is obtained. For high concentra-
tions of the spheres an analytical asymptotic expression
was also derived by Larson and Higdon.

The above results are in some sense exact because, as
can be seen, one expresses the quantities of interest in
terms of expansions and infinite series, every term of
which can, in principle, be calculated. However, they are
only applicable to periodic arrays of spheres and in all
cases, except for the work of Larson and Higdon (1989),
might be relevant only to unconsolidated porous media.
Childress (1972), Howells (1974), and Hinch (1977) con-
sidered flow through a random array of spheres and ob-
tained an asymptotic expression for the permeability of
the system for low values of c. Hinch's (1977) results can
be summarized by the equation

10c
k (1—c)3 (5.21)

(recall that 1 —c =P is the porosity) falls within 15%%uo of
the results for at least one of the three types of periodic
packings if c& 0.5, and in the case of the random-sphere
model it is relatively close to the lower bound. One in-
teresting result of Torquato and Beasley (1987) was that
the bounds which incorporate a certain level of statistical
information on the medium are not always necessarily
sharper than bounds which involve less information.

Consider now a problem in which fluid particle, initial-
ly distributed uniformly in the pore space, are allowed to
diffuse randomly towards the pore surface, but are re-
moved as soon as they reach the surface (as a result of,
for example, a reaction). The average lifetime for the

of the system as a function of cr, /o (see Bonnecaze and

Brady, 1990, and Torquato, 1991, for extensive lists of
references). For our problem, if we assume that the ma-
trix is where Quid Aow takes place and the spheres
represent the solid matrix of the medium, we would be
interested in the limit cr, /o =0. However, almost none
of these results is applicable to this case, and none can
provide an accurate estimate of the conductivity of the
Quid-saturated porous medium.

Another set of rigorous results is obtained when, in-
stead of trying to solve the problem completely and ex-
actly, one obtains upper and lower bounds to the proper-
ties of interest. Prager (1962) and Weissberg and Prager
(1962, 1970) pioneered this approach for calculating
upper and lower bounds to k. [Note that Berryman and
Milton (1985) corrected an error in the original results of
Weissberg and Prager. ] They proposed that variational
bounds on k, which depends upon certain distribution
functions that statistically characterize the medium, may
be used for estimating k (or, more precisely, upper and
lower bounds to k) for a wide range of sphere volume
fractions c. Weissberg and Prager (1962, 1970) evaluated
these bounds for a model in which the centers of the
spheres are distributed at random, the so-called fully
penetrable-sphere model, or the Swiss cheese model. Tor-
quato and Beasley (1987) considered the general case in
which the spheres have an arbitrary degree of impenetra-
bility, characterized by a parameter k;, where A,; =0
corresponds to the fully penetrable model, whereas

=1 represents the case of completely impenetrable
spheres. This parameter also affects the percolation
threshold c~ of the particle (sphere) phase. One has
e =0.3 and 0.64 for A, ; =0 and 1, respectively. Torqua-
to and Beasley (1987) derived useful upper and lower
bounds for the permeability of the system as a function of

In a later paper, Torquato and Lu (1990) derived
upper and lower bounds for a polydisperse system of
spherical particles. It should be mentioned that, in all
cases that have been discussed so far, the Kozeny-
Carman empirical formula
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particles is given by

$2

e

(5.22)

where D, is the effective diffusivity of the particles and 6
is a characteristic measure of pore size relevant to the
diffusion-limited interface reaction. Thus 6 is a length
defined by a physical problem and does not have a purely
geometrical interpretation. Torquato (1990) proved that

k ~ k„=PD,t, =$5 (5.23)

where k„is the eiFective reaction rate constant and P the
porosity of the medium. Although this establishes an in-
teresting connection between k and reaction properties of
a porous medium, the upper bound provided by this rela-
tion is usually weak, so that its practical usefulness is lim-
ited; see Kostek et al. (1992) for a discussion of this.

Similar to permeability, various upper and lower
bounds have also been derived for the electrical conduc-
tivity of a two-component mixture of particles and the
matrix. As in the case of exact results, we are interested
in the limit o., /o. =0. However, this is precisely the
limit in which such bounds lose their usefulness, al-
though using a very small value of o, /o. might provide
a useful, order-of-magnitude estimate for the conductivi-
ty of a fiuid-saturated medium; see Torquato (1991) for a
review of this subject. The main problem with many
such exact or rigorous bounds is that they are not very
useful for the highly disordered porous media (some with
fractal properties) that are of interest here. For example,
rigorous upper and lower bounds are not useful if the
porous medium is close to its percolation threshold. In
fact, no bound can predict the existence of a nontrivial
(i.e., not zero or unity) percolation threshold.

+( —1 1)
(5.24)

where y=2/Z, h(g~) is the distribution of the pore
(bond) conductance g, and g, is the efFective conduc-
tance of the system. The same equation was derived by
Bruggeman and Landauer with y

' =d for a d-
dimensional continuous system with spherical inclusions.
Using Eq. (5.24), we can calculate the permeability and
conductivity o. of a porous medium. Consider an
efFective-medium network where each bond or pore has a
conductance g, . We fix the pressures at two opposite
faces of the network so as to produce an average pressure
gradient (VP ). The total Quid Aux q crossing any plane
perpendicular to ( VP ) is the sum of the individual fiuxes
in the bonds intersecting the plane. Each pore Aux is the
pressure difference across it times g, /g. If we approxi-
rnate the local pressure difference as the projection of the
average pressure gradient along the bond length l, we
find

(5.25)

[see Landauer (1978) for a history of EMAs]. In
Bruggeman's original theory, the shape of the inhomo-
geneity was assumed to be spherical. Stroud (1975)
showed that the conductivity of the spherical inclusions
need not be isotropic, but can be tensorial. Hori and
Yonezawa (1977), Thorpe and Sen (1985), and Xia and
Thorpe (1988) extended these ideas to the case in which
inclusions are ellipses of a given aspect ratio.

Kirkpatrick (1971, 1973) showed how Bruggeman's
EMA can be generalized to resistor networks. He
showed that for a regular network of coordination num-
ber Z the EMA predicts that

2. Effective-medium approximations
and derivation of Archie*s law

Effective-medium approximation (EMA) is a phenome-
nological method for determining the effective properties
of a disordered medium, in which the medium is replaced
with a hypothetical homogeneous one with unknown
physical constants. There are two approaches for imple-
menting this idea. The Maxwell-Garnett (1904) ap-
proach is applicable to the case in which isolated in-
clusions are embedded in a continuous matrix consisting
of a single phase; the effective properties of the system
are derived by placing a sphere (or an ellipse) of the
effective medium in this matrix. This is usually called
the average t-matrix, or non-self-consistent approxima-
tion. In the second approach, developed by Bruggeman
(1935), each inhom. ogeneity is embedded in the efFective
medium itself, the unknown properties of which are
determined in such a way that the volume average over
all inhomogeneities yields no extra fields in the medium.
Thus EMA is an ingenious way of transforming a many-
body problem into a one-body problem. Bruggeman's
EMA was rederived independently by Landauer (1952)

If we divide q by the area S of the plane, we obtain an
average velocity which, when compared with Darcy's
law, yields an estimate of the permeability

(5.26)

where n is a unit vector along the pressure gradient. But,
if the medium is statistically homogeneous and isotropic,
any unit vector can be used. Equation (5.26) shows clear-
ly why, for random pore networks, k and g, obey the
same scaling law near p, . In a similar way, the electrical
conductivity o. of a Quid-saturated network can be calcu-
lated.

It should be pointed out that, in this kind of approach,
the pressure drop in a pore body is neglected and it is as-
surned that all of the pressure drop occurs in the pore
throats (or bonds) of the network. Koplik (1982) treated
the case in which the pressure drops in both pore bodies
and throats are taken into account. The analysis in this
case is complex and will be ignored here. So long as pore
bodies are large and compact and pore throats are long
and narrow, the above approximation is valid.

An important test for any theory of transport in
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porous media is its ability to predict the percolation
threshold of the system. Despite its simplicity and lack
of detailed information about the microstructure of the
porous medium in its structure, the EMA can predict the
existence of a nontrivial p, . It is easy to show that the
EMA predicts that p,b=2/Z, for the bond percolation
threshold of a network. This prediction is accurate for
two-dimensional networks, but not so for three-
dimensional ones (see Tables I and II). The EMA also
predicts that the critical exponents for the conductivity
and permeability of the system near p, are equal to 1 in
all dimensions, which is a wrong result (see Table III). In
general, as Koplik (1981) showed, the EMA is very accu-
rate if the system is not close to its p„regardless of the
structure of h (g~ ). Its predictions are also more accurate
for two-dimensional networks than for three-dimensional
ones. The performance of the EMA near p, can be im-

proved systematically (Blackman, 1976; Turban, 1978;
Ahmed and Blackman, 1979; Sheng, 1980; Sahimi, 1984).
For example, a cluster of several bonds with random con-
ductances can be embedded in the effective-medium net-
work, instead of a single bond as in Kirkpatrick s EMA,
and the average of the resulting potential fluctuations in
the effective medium is set to zero in order to calculate
the effective conductance. The most accurate results are
obtained with those clusters that preserve the symmetry
of the network. Erdos and Haley (1976) showed how
different averaging schemes can affect the performance of
the EMA and suggested an averaging scheme that would
improve the EMA's performance.

Equation (5.24) represents an EMA for steady-state
transport. One can develop an EMA for transient trans-
port (Odagaki and Lax, 1981; Webman, 1981; Sahimi,
Hughes et al. , 1983b) and for the case in which there is a
first-order chemical reaction (Sahimi, 1988b). Moreover,
EMA has also been extended to anisotropic networks
(Bernasconi, 1974), which can be used for calculating
permeabilities of fracture networks that are usually an-
isotropic (Harris, 1990), to site percolation in random
networks (Watson and Leath, 1974; Butcher, 1975; Ber-
nasconi and Wiesmann, 1976; Joy and Strieder, 1978,
1979; Sahimi, Scrivan, and Davis, 1984), and has been
modified to include the effect of a short-range correlation
(Hori and Yonezawa, 1977; Hilfer, 1991a).

Koplik et al. (1984) analyzed in detail a Massilon
sandstone, used a serial sectioning method to determine
an equivalent random network to its pore space, and, us-

ing this information, employed Eq. (5.24) to calculate the
permeability and conductivity of the pore space. They
found that the predicted k's differ from the data by about
one order of magnitude, while the predicted o's differ by
a factor of about 2. They attributed the difference to the
fact that most sedimentary rocks, like the Massilon sand-
stone that they considered, are highly heterogeneous and
anisotropic, properties that are not taken into account by
Eq. (5.24). Doyen (1988) analyzed transport properties of
Fontainebleu sandstones and used Eq. (5.24) to predict
them; he found that their k and o. could be predicted to

o„of
cr(, ) =of 1+(1—p)y cr„+(y ' —1)of

(5.28)

0 (p) o & 1+pg
of o

of+(y ' —1)o„
(5.29)

The basic idea behind the self-similar EMA is as follows.
One starts from the pure Quid system, replaces a small
portion of it by pieces of rock step by step, and applies
the EMA at each step. Assume that o" is the conduc-
tivity of the mixture at a given step i, and replace a small
volume hq; of the medium by grains of rock. Equation
(5.24) yields

(i+i)
(i)+( —1 1) (i+1) (1—b,q; )

(i +1)
Aq; =0,

o.„+(y ' —1)o '+" (5.30)

within a factor of 3 by Eq. (5.24).
As already discussed in Sec. IV, a useful empiricism

for sedimentary rocks is Archie's law, Eq. (4.1). The ex-
ponent m has been found to vary anywhere between 1.3
and 4, depending upon consolidation and other factors.
Archie's law has been found to hold even for igneous
rocks (Brace et al. , 1968; Brace and Orange, 1968).
However, it may take a more complex form for clayey or
shaly rocks because, e.g. , the clays, which are capable of
ion exchange, can complicate conduction mechanisms.
Note that Archie's law implies that the Quid phase
remains connected at a11 saturations, i.e., its percolation
threshold is zero.

There have been many attempts to derive Archie's law
in order to understand its origin. Here, we briefly review
these works since most of them used a variation of the
EMA. Sen (1981, 1984), Sen et al. (1981), Mendelson
and Cohen (1982), and Yonezawa and Cohen (1983)
showed that a modification of the EMA can be used to
derive Archie's law. This version of the EMA was called
a self similar -EMA because of the assumption that a rock
grain is coated with a Quid that includes coated rock
grains, the coating at each level consisting of other coat-
ed grains. First consider the standard EMA, Eq. (5.24).
Since the electrical conductivity o. and the effective con-
ductance g, are, aside from a numerical coefficient, equal,
one replaces in Eq. (5.24) g~ and g, with cr and cr, re-
spectively. With a binary distribution, h (oz)=p5(oz
—crf )+(1—p)5(cr —o „),Eq. (5.24) becomes

—3+Id +4(y ' —1)o.fo„]'i
o = ), (5.27)2(y-' —1)

where

3 = [crf —(y ' —1)cr„—y '(of cr„)p]—.
Equation (5.27) has two solutions, but only one of them is

physically meaningful. In the limits @~0and p~1, we
get
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where cr, is the rock conductivity. If Aq, is small
enough, we obtain from Eq. (5.30)

o „—o-")
(i+1) (i) ~++—1

o „+(y ' —1)cr"
(5.31)

Note that by denoting the volume fraction of the Quid at
the ith stage by p; we have, hp;q; =p; —p;+1. If we use
Eq. (5.31) repeatedly, we obtain for the case of o„=0

(&+1) ~, P Pi+1 Pi '

(00 — 1 0 (5.32)

where o' '=of and po = 1 (where po = 1 corresponds to
pure fluid, the system we started with). If we take the
limit Aq; ~0, then Eq. (5.32) becomes a differential equa-
tion,

o o ( )

p; of+() -' —1)o"
dpi

(5.33)

which, after integrating and using the boundary condi-
tion cr"=o.f for p; =1, yields

with

0 —Ofp

(5.34)

Thus, if we interpret p as the porosity of the medium, the
EMA produces Archie's law. Equation (5.34) also shows
that, consistent with experimental data, m is not univer-
sal but depends on the connectivity of the system.

What is the geometrical interpretation of this result~
For a network Inodel of a pore space, Yonezawa and
Cohen (1983) presented a nice interpretation, which can
be summarized as follows. At the ith stage every bond
has the conductivity o"; one replaces a small fraction
4q; of the bonds by a resistor with conductivity o., and
then uses the EMA to estimate the conductivity of the
new system. This is equivalent to putting a resistor
parallel to the original one on each bond. The conduc-
tivity o-'"' of an added resistor should be

(ia) +
—1(i)

~( )
2

+(y —i 1)o( )
(5.35)

if the original resistor belongs to the host medium; other-
wise it is given by Eq. (5.31). The implication is that,
even when o.„=O,the application of the EMA at each
stage makes the link between the nodes conducting be-
cause of adding a parallel conducting resistor, and thus
there is always a sample-spanning cluster of conducting
bonds. Translating this for the rock-Quid system, it im-
plies that this procedure guarantees the continuity of the
Quid phase and the granularity of the rock grains. Note
that in the original derivation of Sen et al. (1981) m was
found to be 3/2, which corresponds to d=3 in the con-
tinuous EMA [or Z=6 in the discrete EMA, Eq. (5.24)],
which corresponds to spherical grains. For nonspherical

particles m) 3/2, but under certain circumstances one
can even have m(3/2. Mendelson and Cohen (1982)
give m = g; (1 L;—) '/3, where L s are the depolariza-
tion factors and g; L; = 1. Bussian (1983) generalized the
self-similar EMA to include finite rock conductivity o.„,
and fitted the resulting formula to the data, treating m
and o„asadjustable parameters. He found m ~3/2 in
almost all cases he considered, and argued that this is be-
cause clay gives a finite value to o, Since clay particles
are usually flat, they increase m (Mendelson and Cohen,
1982).

One major drawback of the above derivation of
Archie's law is that it pertains only to a microstructure
whose solid component is disjoint. This difhculty was
circumvented by Sheng (1990), who generalized the self-
similar EMA to a three-component system consisting of
Quid, solid, and cement material. Component one, the
starting phase, is composed of a mixture of fIuid and ce-
ment material. Sheng (1990) showed that the self-similar
EMA with three components reproduces Archie's law
with m =(5—3L)/[3(1 —L )], where L is the depolari-
zation coefticient of the grains, but with the added
feature that the solid grains also remain connected.

Although the self-similar EMA is successful in provid-
ing a derivation of Archie s law, its use for understanding
the properties of rocks is not without conceptual
difFiculty. Generally speaking, rocks have porosities less
than 40%%uo. This is far from the dilute limit in which the
assumptions of the models can be justified [recall that
Eqs. (5.28)—(5.31) are valid only in the dilute limit]. If
the porosity is low, then the grains are in close contact
with one another and the interaction between them is im-
portant. Such interactions cannot be taken into account
correctly by the EMA. In fact, Milton (1984) showed
that self-similar EMA accounts for the interactions
correctly only in the special case in which grains of any

, given size are surrounded by much smaller grains, and
grains of the same size are far separated from each other.
This is hardly the case in natural rocks. Moreover, rocks
with very similar grains can have very di8'erent values of
m, and rocks with very dissimilar grains can have very
similar values of m. These cannot be explained with a
self-similar EMA. Hilfer (1991b) presented an alternative
derivation of Archie's law based on the percolation mod-
el. However, his result, m =1+p, where p is the con-
ductivity exponent, indicates that m is universal, in con-
tradiction with the data.

Wong et al. (1984) showed that their shrinking-tube
model, discussed in Sec. III, can reproduce Archie's law
such that m would depend on the skewedness of the
pore-size distribution. Their experiments with fused-
glass beads and real rocks indicated that m is larger in
porous media with a wider fluctuation of pore sizes,
which their model also correctly predicted. Moreover,
they showed that their model predicts that k is related to
the porosity by

(5.36)
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where m'=2m. Equation (5.36) is consistent with the
empirical Kozeny-Carman correlation, Eq. (5.21). Thus
Wong et al. 's model allows a unified derivation of two
well-established and widely used empirical laws. Note
that if, for example, m=3, we obtain I'=6, consistent
with experimental observations (Wyllie and Rose, 1950;
Timur, 1968) that, if k is to be related to P by a power
law, the exponent has to be large.

We should mention here the work of Hori and
Yonezawa (1977), who developed a cumulant expansion
method for determining transport properties of disor-
dered media. Their Inethod is more accurate than the
EMA for three-dimensional media, while the EMA is a
better approximation for two-dimensional systems. In
particular, the bond percolation threshold is predicted by
the cumulant expansion to be

p,b
= 1 —exp( —2/Z), (5.37)

3. Position-space renormalization
group and renormalized EMA

The main assumption behind any EMA is that Auctua-
tions in the potential field are small. However, if the Auc-

tuations are large, as in a fractal porous medium or one
that is near its p, or a macroscopically heterogeneous
medium in which there is a broad distribution of per-
meabilities, the EMA breaks down and loses its accuracy.
In such cases, a position-space renormalization-group
(PSRG) method is more appropriate because this method
first performs a certain amount of averaging and takes
into account the properties of the pre-averaged medium.
It can also predict nonanalytic scaling laws for transport
properties near p„which is a distinct advantage over the
EMA, which always predicts a linear relation for such
properties. We describe the PSRG method for a
random-network model of pore space. Its generalizations
to other more complex systems will be clear.

Consider, for example, a square or a cubic network in
which each bond is conducting with probability p. The
idea in any PSRG method is that, since our network is so
large that we cannot calculate its properties exactly, we
partition it into b X b or b Xb X b cells, where b is the
number of bonds in any direction, and calculate their

so that, for example, for the simple cubic network, Eq.
(5.37) yields, p,b

——0.283, which should be compared with
the EMA's prediction, p,b =1/3 and the accepted value

p,&
-—0.249 (Table II). This more accurate prediction is

due to the fact that near p, clustering, correlations, and
fluctuations play an essential role, and while the EMA
completely neglects such effects, the cumulant expansion
can, to some extent, take them into account.

Finally, it should be mentioned that, as long as one
represents a fractured rock by a network of channel- or
disk-shaped features, the EMA can be used for estimat-
ing its permeability. In fact, Hestir and Long (1990) used
the EMA for estimating the conductivity of two-
dimensional fracture networks.

properties, which are hopefully representative of the
properties of the original network. The shape of the cell
can be selected arbitrarily, but it should be chosen in
such a way that it preserves, as much as possible, the
properties of the network. For example, an important to-
pological property of a square network is that it is self
dual. The dual of a two-dimensional network is obtained
by connecting the centers of the neighboring polygons
that constitute the network. For example, if we connect
the centers of the hexagons in a hexagonal network, we
obtain a triangular network. Thus these networks are the
dual of each other. However, if we connect the centers of
the squares in a square network, we again obtain a square
network, and thus this network is self-dual. This self-
duality plays an important role in the percolation proper-
ties of a square network, and thus it is desirable to parti-
tion the network into self-dual cells. Figure 29(a) shows
an example of such b=2 cells for square and cubic net-
works, where the two-dimensional cell is self-dual.

The next step in a PSRG method is to replace each cell
with one bond in each principal direction. If in the origi-
nal network each bond is conducting with probability p,
then the bonds that replace the cells would be conducting
with probability p'=R (p); this is also shown in Fig.
29(a). R (p) is called the renormalization group tra-nsfor
mation and is the sum of the probabilities of all conduct-
ing configurations of the renormalization-group cell. It is
obtained as follows. Since we are interested in percola-
tion and transport in our network, and since the
renormalization-group cell is supposed to represent our
network, we solve the percolation and transport problem
in each cell by applying a fixed potential difference across
the cell in a given direction. For example, as far as per-
colation and transport are concerned, the 2 X 2 cell of
Fig. 29(a) is equivalent to the circuit shown in Fig. 29(b),
usually called the Wheatstone bridge. Thus for this cell
we need only deal with five bonds, and for the 2 X 2 X 2
cell we can construct an equivalent 12-bond circuit,
shown in Fig. 29(b). To obtain R (p), we find all conduct-
ing configurations of such circuits, with some bonds con-
ducting and some insulating (missing). Thus for the 2 X 2
cell we obtain

p'=R (p)=p +5p q+8p q +2p q (5.38)

where q =1—p. It is easy to see how this equation is ob-
tained: There is only one conducting cell configuration
with all five bonds conducting (probability p ), five con-
ducting configurations with four bonds conducting and
one bond insulating (probability 5p q), and so on.

As discussed in Sec. II, the sample-spanning cluster at
p, is self-similar. This means that the renormalization-
group transformation should remain invariant at p, . The
same thing should be true at p=1 and p=0, because un-
der any transformation full and empty networks should
be transformed to full and empty networks again. The
points p=0, 1, and p, are called the fixed points of the
transformation. Since the renormalization-group trans-
formation should not change anything at these points,
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P

pl

pl

pI

-3
pI

where A~ =dR (p)/dp, evaluated at p =p*. Thus for the
2X2 and 3X3 cells we obtain v =1.43 and 1.38, respec-
tively, which should be compared with the exact value
v =4/3. For the 2X2X2 cell we obtain v =1.03, which
should be compared with the numerical estimate
v =0.88. We now discuss the PSRG approach for calcu-
lating the conductivity of a random network.

In the PSRCx approach for calculating the conductivity
of a random network, one starts with a probability distri-
bution h0(g ) for the bond conductances of the
renormalization-group cell and replaces it with a new dis-
tribution h 1(g~ ), the probability distribution for the con-
ductance of the renormalized bond, which is calculated
by determining the equivalent conductance of the
renormalization-group cell. Thus one obtains a recursion
relation relating h, (g~ ) to I10(g ):

~ 1 (g ) y ~0(gl )dgl~0(g2 )dg2 ho(g )dg ~(g g

(5.41)

where g, , . . . , g„arethe conductances of the n bonds of
the cell and g' is the equivalent conductance of the cell.
For example, for the five-bond cell of Fig. 29, one has

g 1(g2g3+g2g4+g3g4)+gs(gl+g2)(g3+g4)
(g 1+g 4)(g2 g 3)+g5(g 1+g.+g3+g4)

(5.42)

For example, it is easy to show that if

h0(g„)=(1 p)5(g~ )—+p5(g~ —g, ), (5.43)

the implication is that at the fixed points the probability
of having a conducting bond in the cell (p) and of having
a bond in the renormalized cell [p'=R (p)] should be the
same. Thus the fixed points should be the solution of the
polynomial equation

p =R (p),
and indeed this equation usually has three roots, p=0,
p=1, and p =p*, where p' is the renormalization-group
transformation prediction for p, . For the renormaliza-
tion-group cells of Fig. 29 we obtain p*= 1/2 for both
2X2 and 3X3 cells, which is an exact result (see Table
II). In fact, it can be shown (Bernasconi, 1978) that the
renormalization-group transformation for such cells for
any b predicts p, =1/2. For the 2X2X2 cell we obtain
p*=0.208, which should be compared with the numeri-
cal estimate p, =0.249. The correlation length exponent
v is estimated from

lnb
ink,

(5.40)

(b)

FIG. 29. (a) Transformation of renormalization-group cells in
two and three dimensions. (b) The equivalent circuits for vari-
ous two- and three-dimensional renormalization-group cells.

then for the renormalization-group cell of Fig. 29, Eq.
(5.41) will yield

h, (g )=[1—R (p)]5(g )+2p q 5(g —
—,'g0)

+2p (I+2@)q 5(g —
—,'g0)

+4P q5(g„——,'g0)+P 5(g —g0), (5.44)

h (g ) =[1—R (p)]5(g )+R (p)5[g —g'(p)], (5.45)

where g'(p) is an "optimized" conductance. Various ap-
proximate schemes have been proposed in the past for
determining g'(p), e.g., g'(p) is taken to be the arithmet-
ic, or geometric or harmonic average of h;(gz). Once

which is already more complex than Eq. (5.43). One
iterates Eq. (5.41) to obtain a new distribution h2(g ) by
substituting h, (g ) into the right-hand side of Eq. (5.41).
The iteration process continues until a distribution
h „(g) is obtained, the shape of which does not change
under further iterations. This is thegxed point distribu--
tion, and the conductance of the original network is sim-
ply an average of this distribution. However, it is
difficult to iterate Eq. (5.41) analytically many times. The
common practice is to replace the distribution after itera-
tion i by an "optimized" distribution h (g ), which can
mimic closely the properties of h;(g~). The optimized
h (g~ ) is usually taken to have the form
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g (p) is calculated, Eq.
'

(5.41) is iterated again, a new dis-
tribution hz(g~ ) and its optimized form h 2(g~ ) are deter-
mined, and so on. In practice, after a few iterations even
a broad h, (g ) may converge quickly to a stable distribu-
tion whose shape does not change under further rescal-
ing, in which case A,,h„+,(A,,g~)=h„(g~),where A,, is a
constant, and p=v ink, , /lnb, which in the case of the
2 X 2 RG cell of Fig. 29 yields p = 1.32, in excellent agree-
ment with the accepted value p = 1.3 (see Table III).

This method can be used for estimating the permeabili-
ty of a microscopically disordered porous medium
modeled by a random network. The PSRG method for
calculating the effective permeability of macroscopically
heterogeneous media is similar to the above procedure.
In this case one partitions the system into cells of equal
sizes, each one of which is assigned an equivalent per-
meability, selected from its distribution. Then, as in the
above procedure, a renormalized permeability distribu-
tion is constructed using Eq. (5.41) and a renormaliza-
tion-group cell. A Monte Carlo sampling is used to
select the permeability of each cell from the joint proba-
bility distribution of the cells permeabilities. The sam-
pling and the iteration process are continued until a satis-
factory representation of the permeability distribution is
obtained. King (1989) used this method for calculating
the permeability of macroscopically heterogeneous
porous media.

In the condensed-matter literature, Young and Stinch-
combe (1975) were the first to use PSRG methods for cal-
culating percolation properties of random networks.
Stinchcombe and Watson (1976) were the first to use
these methods for calculating the electrical conductivity
of percolation networks. However, in a simultaneous and
little noted paper, Madden (1976) used the same ideas for
calculating transport properties of porous media modeled
by random networks, although he did not call his method
a renormalization approach. Many authors have pro-
posed variants of PSRG methods for calculating both
geometrical and transport properties of percolation net-
works and other disordered systems (Straley, 1977a; Pay-
andeh, 1980, Reynolds et al. , 1980; Tsallis et al. , 1983;
Sahimi et al. , 1984; Sahimi, 1988a). Stanley et al. (1982)
and Family (1984) reviewed most of the literature on this
subject.

PSRG methods are usually very accurate for two-
dimensional systems and are flexible enough to be used
for anisotropic and time-dependent systems, although the
treatment of the latter case is considerably more com-
plex. However, they have two drawbacks for three-
dimensional systems. The 6rst is that the results for a
percolating network with any type of b=2 cell are not
accurate. For example, a three-dimensional version of
the renormalization group cell of Fig. 29 yields p=2.2
for the cubic network, which is in considerable error
(Table III). Moreover, in'the treatment of the conduc-
tivity problem, even after the first iteration of Eq. (5.41),
the renormalized conductance distribution h, (g ) is very
complex; if we start with distribution (5.43), h, (g~ ) will

have seuenty th-ree components of the form 5(g„—a;),
i =1—73. Hence analytical calculation of hz(g ) is prac-
tically impossible. The second drawback is that even for
a b=3 cell, the renormalization-group transformation
cannot be calculated analytically, because the number of
possible configurations is of the order of 3X10". Thus
one has to resort to a Monte Carlo renormalization-
group method (Reynolds et al. , 1980), which is not any
simpler than the simple Monte Carlo method itself.

In order to circumvent these di%culties for three-
dimensional networks, Sahimi et al. (Sahimi, Hughes,
et aI., 1983a; Sahimi, Scriven, and Davis, 1984) proposed
a new method that combines the EMA and PSRG
methods and is called the renormalized effective-medium
approximation (REMA). The idea is that the efFective-
medium approximation is very accurate away from p, .
When we rescale a cell, the renormalized cell is farther
away from p, than the original cell (because its correla-
tion length is reduced by a factor 1/b) One .may there-
fore use an EMA with the renormalized cell (or network)
instead of the original network. That is, the pore con-
ductance distribution that one uses in Eq. (5.24) should
be h i(g~ ) instead of ho(g~ ). This renormalized efFective-
medium approximation markedly improves the accuracy
of the results. For example, with the three-dimensional
renormalization-group cell of Fig. 29, one obtains
p b

—-0.265, which is only 7%%uo larger than the accepted
value p,b ——0.249 for the cubic network (see Table II). In
general, if R (p) is the renormalization-group transforma-
tion, REMA predicts that p,b is the root of R (p,b ) =2/Z
(instead of p, b =2/Z, which is the EMA prediction, and
R (p,b ) =p,b, which is the PSRG's estimate). Using
REMA, Sahimi et al. (1983a, 1984) and Sahimi (1988a)
obtained very accurate predictions of transport proper-
ties of various two- and three-dimensional networks.

Finally, it should be pointed out that, as long as a frac-
tured rock is represented by a network of fractures,
PSRG methods can be used for estimating its effective
properties. Even if a fractured rock is represented by a
random continuum of disks or ellipses, the EMA and
PSRG methods can still be used; see Hori and Yonezawa
(1977) and Gawlinski and Redner (1983) for the develop-
ment of EMA and PSRG methods for continuum mod-
els.

4. Field-theoretic and perturbation methods

It has long been recognized that disorder is equivalent
to a field. Thus Geld-theoretic methods can provide a
means of estimating transport properties of disordered
media. This fact has been exploited in the condensed-
matter literature for a long time. However, its use for
Qow phenomena in porous media is relatively new and
has been attempted only recently. P. R. King (1987a)
was the first to develop a field-theoretic approach to es-
timating the permeability of macroscopically heterogene-
ous porous media.

For single-phase steady Aow, Darcy's law together
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with the equation of continuity yield

V.kVI =o, (5.46)

From Eq. (5.48) we can obtain

(5.54)

where gravity has been neglected. Without loss of gen-
erality, the permeability can be taken to be isotropic,
since the permeability tensor K [see Eq. (5.15)I is real and
symmetric and therefore can be diagonalized by using
normal coordinates, which may be rescaled to ensure that
it is isotropic. We may define a Green function 6 for Eq.
(S.44 ) by

V„k(r)VG(r,r')=5(r —r') . (5.47)

Suppose that we have a homogeneous porous medium
with permeability ko. For this system the Green func-
tion is given by

koV„GO(r,r') =5(r—r'). (5.49)

Thus if we write k(r)=ko+e(r), where e(r) is the per-
turbation, we obtain

koV 6 =5(r —r') VeVG . — (5.50)

We now recognize that Go is the inverse of the operator
koV and exploit this to rewrite Eq. (S.50) as an integral
equation,

6 (r, r') =60(r, r') —f Go(r, r" )koV„e(r")6(r', r" )dr" .

(5.51)

If we take the Fourier transform of Eq. (5.51), we obtain

6(i, j)=Go(i)5(i+ j)
+Go(i) fM(i;/, m)e(1)6(m, i)dl dm,

where

M (i; l, m) =ko [(I+ m).m]5( l +m —i) . (5.53)

This provides an iterative scheme by which a perturba-
tion expansion for the Green function may be developed.
Such expansions can be truncated at any order and have
been tried by several authors (see, for example, Gutjahr
et al. , 1978, and references therein). However, what one
is interested in is not the permeability itself but its aver-
age. Hence one has to average the perturbation series, as
was done by King (1987a). If one is to average the nth
term of Eq. (S.51), one needs to know the nth moment of
e(r). Since polarization diagrams (of the ~ type)
are absent in King's perturbation expansion, his field
theory is equivalent to a zero-state Potts model. Having
calculated the average Green function, one can estimate
the effective permeability, which can provide valuable in-
formation about the mean pressure field in the medium.

If we use the Neumann condition of constant Aux and the
Green theorem, we obtain

P(r)=v f6(r, r')dS' .

where ( k ) is the average permeability and
~
r —r'

~
is

the Green function for this problem in d dimensions. We
should keep in mind, however, that G(r, r') =1n~r —r'~ in
two dimensions.

King (1987a) showed that this field-theoretic method
can reproduce several known exact results. For example,
it is known (Matheron, 1967) that, if the permeability dis-
tribution is log-normal, then the exact effective perme-
ability in two dimensions is the geometric mean of the
distribution, which the field-theoretic model also repro-
duces. Several other results obtained by variants of per-
turbation expansions (Bakr et al. , 1978; Dagan, 1981,
1982a, 1982b; Gutjahr and Gelhar, 1981; Mizell et al. ,
1982) can also be reproduced by this formulation.

The main condition for the validity of this method is
that the Green function 6(r, r') be analytic around
60(r, r'), i.e., 6(r, r') must have a Taylor-series expan-
sion. This condition is satisfied if the perturbed system is
qualitatively similar to the unperturbed one. The condi-
tion for this is that the porous medium not be close to its
p„where the unperturbed system is not similar to the
true, perturbed medium. For single-phase Aow through a
porous medium, percolation does not play any role (un-
less the heterogeneities are broadly distributed), and thus
this approach retains its validity.

5. Percolation methods

Most of the methods that have been reviewed so far
are not exact and provide only approximate estimates of
k and cr. The exact results discussed above are mostly
applicable to spatially periodic media, which are not very
realistic models of disordered porous media. The only
exception to this is the exact solution of electrical con-
duction on a Bethe lattice (Stinchcombe, 1974; Straley,
1977b). For this solution, it is shown that near p„
o -(p —p, ), i.e., @=3. Thus this conductivity of the
Bethe networks would provide a poor estimate of o. for
three-dimensional networks (for which @=2). However,
there is a happy coincidence hereI The microscopic con-
ductivity cr (not the macroscopic conductivity o ) of a
Bethe lattice obeys the following scaling law near p, :

(5.55)

Since the critical exponent p for the macroscopic con-
ductivity of three-dimensional systems is also about 2 (see
Table III), and in fact it has been conjectured to be exact-
ly 2 (Gingold and Lobb, 1990), Eq. (5.55) indicates that
the exact solution of Stinchcombe (1974) for o on a
Bethe lattice may be used for estimating the macroscopic
conductivity of three dimensiona-l netivorks For example. ,
for a cubic network, p,&

——0.249 (Table II), and if we use a
Bethe lattice of coordination number 5, then p,b= I/(5 —1)=0.25, which is less than O. l%%uo larger than
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that of the cubic network. Thus a Bethe lattice of coordi-
nation number S can be used for estimating the conduc-
tivity of a cubic network. Figure 30 compares the mac-
roscopic conductivity o of a cubic network obtained by
Monte Carlo calculations and the microscopic conduc-
tivity o. of a Bethe lattice of coordination number 5. It
is evident that the difference between the two, if any, can-
not be detected. This idea was first used by Heiba et al'.

(1982).
Another percolation method of estimating the trans-

port properties of disordered media was developed by
Ambegaokar, Halperin, and Langer (AHL) in 1971.
These authors argued that transport in a disordered
medium with a broad distribution of conductances is
dominated by those conductances whose magnitudes are
larger than some characteristic value g„which is the
smallest conductance such that the set of conductances
tg Ig )g, ] forms a conducting sample-spanning cluster.
Therefore transport in a disordered medium with a broad
conductance distribution reduces to a percolation prob-
lem with threshold value g, . Shante (1977) and Kirkpa-
trick (1979) extended these ideas by assigning all local
conductances with values g ~ g, the value g„and setting
all conductances with values g &g, to be zero (since the
contribution of such bonds is very small). They then ar-
rived at a trial solution for the sample conductance of the
form

(5.56)

which is just what we described in Sec. II. Here p(g, )

denotes the probability that a given conductance is
greater than or equal to g„anda is a constant. Equation
(5.56) is now maximized with respect to g, to obtain an
estimate of g, and thus g, . Computer simulations of Ber-
man et aI (1986) fo. r two-dimensional networks with
various conductance distributions (Gaussian, log-normal,

Rat, and cubic) confirmed the quantities accuracy of the
AHL scheme even for relatively narrow distributions.
Therefore calculating the effective transport properties of
disordered media in which percolation does not seem to
play any role can be reduced to determining the same
properties for a percolating system. This indicates the
broad applicability of percolation theory.

Katz and Thompson (1986, 1987) extended the ideas of
Ambegaokar, Halperin, and Langer to estimate the per-
meability and electrical conductivity of porous media. In
a porous medium the local hydraulic conductance is a
function of the length I. Therefore the critical conduc-
tance g, defines a characteristic length l, . Since both
How and electrical conduction problems belong to the
class of scalar percolation problems, the length that sig-
nals the percolation threshold in the Bow problem also
defines the threshold in the electrical conductivity prob-
lem. Thus we rewrite Eq. (5.56) as

(5.57)

where the porosity P ensures a proper normalization of
the Quid or the electric-charge density. The function

g, (l) is equal to cfl for the Sow problem and c, I for the
conduction problem. For appropriate choices of the
function p (I), the conductance g, (I) achieves a maximum
for some l „~l, . In general If,

„

for the How problem is
different from I',

„

for the conduction problem, because
the transport paths have different weights for the two
problems.

If p ( I) allows for a maximum in the conductance
which occurs for l „~l„then we can write

If,„=I,—Elf =I, I 1 —p/[1+@+I,pp "(I,)/p'(I, )]],
(5.58)

I',„=I,—bl, =I, Il p/[3+@+I—,pp "(I,)/p'(I, )]] .

(5.59)
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If,„=I, [1—p/(1+ p)] = —,'I, ,

I',„=I,[1—p/(3+@)]=—', I, .

(5.60)

(5.61)

Using these, we can establish a relation between o. and k.
Writing

(5.62)

If the pore-size distribution of the medium is very broad,
then I,pp "(I,)/p'(I, ) «1, and Eqs. (5.58) and (5.59)
reduce to

0.04 and

(5.63)
0 IL

0.25 0.33 0.41 0.49

FIG. 30. Comparison of macroscopic conductivity of a cubic
network, obtained by a Monte Carlo method, and microscopic
conductivity of a Bethe lattice with Z= 5.

we obtain to first order in Al, or in Elf

p(If';„)—p, = &If,p'(I, ) . — (5.64)

To obtain the constants a& and az, Katz and Thol. pson
(1986) assumed that at a local level the rock conductivity
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is crf, the conductivity of the Quid (usually brine) that
saturates the pore space, and that the local pore
geometry is cylindrical. These imply that a, =o.f and
a2 = 1/32. Therefore one obtains

k =a3l, o. /o.f, (5.65)

where a3 = 1/226. A similar argument leads to (Katz and
Thompson, 1987)

IC

PS(&',„),
C

(5.66)

where S(l',„)is the volume fraction (saturation) of con-
nected pore space involving pore widths of size I' „and
larger.

Equations (5.65) and (5.66) involve no adjustable pa-
rameters. Every parameter is fixed and precisely defined.
To obtain the characteristic length I„Katzand Thomp-
son (1986, 1987) proposed to use mercury porosimetry,
discussed in Sec. III.C.1. As we discussed there, mercury
porosimetry is a percolation process. Consider a typical
mercury porosimetry curve in which the pore volume in
the injected mercury is obtained as a function of the pres-
sure; see Fig. 31. As can be seen, in the initial portion of
the curve the curvature is positive. This portion is ob-
tained before a sample-spanning cluster of pores, filled
with mercury, has been formed. There is also an
inAection point beyond which the pore volume increases
rapidly with the pressure. This inAection point signals
the formation of the sample-spanning cluster. Therefore
from the Washburn equation [Eq. (3.4)] we must have
l ~ 4cr „cos8/P—;, where I'; is the pressure at the
1nflcction po1Ilt. ThcIl I = 4o cosH /I; dcIIincs thc
characteristic length I, .

Figure 32 compares the logarithm of the permeability
for a set of sandstones, calculated using Eq. (5.65), with
the measured values. The dashed lines mark a factor of
2. No adjustable parameter has been used, and the agree-
ment between predictions and theory appears to be very
good. Note that, once l, is determined from a mercury

-3.0
-3.0 -&.0 &.0 3.0 5.0

log&o [Measured Permeability (md)]

FIG. 32. Comparison of predicted (solid line) and measured
( X ) permeabilities. Dashed lines mark a factor of two devia-
tions from the predicted values (from Katz and Thompson,
1986).

injection curve, the saturation S(1',„)can also be deter-
mined immediately. Figure 33 compares the calculated
and measured o. /o. f. As in the case of permeability, no
adjustable parameter has been used for calculating o /of.
Katz and Thompson (1986, 1987) contend that 1, can be
estimated from mercury injection curves with an error of
at most 15%. However, the error in the constant 1/226
in Eq. (5.65) can be as large as a factor of 2. We em-
phasize that Eqs. (5.65) and (5.66) are not in general ex-
act, but appear to provide very accurate estimates of k
and o.. Note that the exponent p can take on its value
for continuum percolation, discussed in Sec. II. Of
course, this depends on the structure of the pore space.

Some related work should be mentioned here. Swan-
son (1981) had already recognized that during mercury
injection (or How of any nonwetting fluid in a porous
medium) large pores dominate the How paths, and that
the inIIIection point in the pore volume-pressure curve
signals the formation of a sample-spanning cluster. Thus
he postulated a relation between the permeability and the
capillary pressure curve. He maximized the product of

i o~o

0.08

0.06

0.04

0
PRESSURE

0.02

0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

MEASURED

FIG. 31. Volume-pressure curve during a typical mercury
porosimetry experiment. The pressure at the jump defines I,
(see the text) (from Katz and Thompson, 1986).

FIG. 33. Comparison of predicted (line) and measured electri-
cal conductivity of porous media (from Katz and Thompson,
1987).
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length and saturation, both of which can be estimated
from the mercury injection curve, and obtained

l —(S l ),„, (5.67)

where I,
„

is a length scale very similar, both qualitative-
ly and numerically, to the length scale I, introduced by
Katz and Thompson (1986, 1987). The agreement be-
tween this correlation and the experimental data is very
good, which is not entirely surprising given the similarity
between Swanson's l,„(notto be confused with Katz
and Thompson's l,„)and l, . However, it should be not-
ed that the transport paths considered by Swanson were
appropriate for electrical conduction, not the fluid Aow
problem. Banavar and Johnson (1987) and Le Doussal
(1989) calculated the coefficient a3 in Eq. (5.65) slightly
differently from Katz and Thompson (1986, 1987). For
example, Banavar and Johnson (1987) gave
a 3 —7.68 X 10, which should be compared with Katz
and Thompson's value, a 3

= 1/226 =4.42 X 10 . How-
ever, Banavar and Johnson's predictions are sti11 within
the error bars of Fig. 32. Nyame and Ilbston (1980) used
an empirical parameter similar to I, to describe perme-
ability in cement paste. Hagiwara (1984) used Archie's
law to replace 5 in Eq. (5.67) with o. to obtain k -o I,
which appears again to agree with the data.

Finally, the ideas of Ambegaokar, Halperin, and
Langer and of Katz and Thompson can also be extended
for calculating the permeability of fractured rocks.
Indeed, Charlaix, Guyon, and Roux (1987) used argu-
ments very similar to those of Katz and Thompson to
calculate the permeability of fracture networks with a
broad distribution of fracture apertures. They can also
be used for obtaining an estimate of the permeability of a
porous medium saturated by a non-Newtonian quid
(Sahimi, 1993a).

6. Random-walk methods and network simulations

The methods discussed so far are analytical techniques
by which exact or approximate expressions for k and o. of
a porous medium are derived. We now discuss two nu-

merica/ methods which are in some sense exact because
the quantities of interest can, in principle, be obtained to
any desired or affordable accuracy.

The first method is based on random walks. As dis-
cussed in Sec. II, D, (and o ) can be calculated from the
relation between the mean-square displacement of a ran-
dom walker and its effective diffusivity, (r (t) ) =2dD, t

The first application of this idea for determining trans-
port properties of composite or disordered systems ap-
peared in a paper of Haji-Sheikh and Sparrow (1966),
who studied heat conduction in a composite solid. Since
this paper, many authors have used random-walk
methods to study transport in disordered media. In the
context of percolation problem, Brandt (1975) appears to
have been the first to use this method to study the
diffusion of noble gases in glasses. But the method was
popularized by de Gennes (1976), who made an analogy

between the motion of a random walker in a disordered
medium and that of an ant in a labyrinth. Mitescu and
Roussenq (1976) followed de Gennes' idea and performed
extensive simulations on percolation clusters. Havlin and
Ben-Avraham (1987), Haus and Kehr (1987), and Hughes
(1993) provide extensive reviews of this subject. Bunde
et al. (1985) considered a general two-component mix-
ture, in which both phases allow transport, and formulat-
ed a random-walk model for calculating the conductivity
of such a mixture. Using vectorization on a supercom-
puter and multispin coding, one can make the computer
algorithm for simulating random walks in a disordered
medium highly efficient; see Sahimi and Stauffer (1991)
for details.

One can facilitate the random-walk simulations by us-
ing first passage -time eq-uations. The idea is that, if a ran-
dom walker moves in a homogeneous region of the sys-
tem, there is no need to spend unnecessary time to simu-
late detailed motion of the walker. The walker can take
large steps to pass quickly through a homogeneous re-
gion and arrive at the interface between the two phases.
The necessary time for taking large steps can be calculat-
ed analytically. Thus unlike conventional simulations in
random networks, in which the length of each step of the
walk is only one lattice bond and each time a step is tak-
en the time is increased by one unit, in first-passage-time
simulations the walker takes long steps (providing its step
does not take it outside of a phase), and the time is in-
creased by an amount appropriate to that step. This
basic idea was first used by Sahimi, Heiba, et al. (1982)
for simulating hydrodynamic dispersion in a porous
medium by a random-walk method; their work will be
discussed in Sec. VI. In the context of calculating the
effective conductivity, diffusivity, and reaction rate of a
disordered medium, Zheng and Chiew (1989) and Kim
and Torquato (1990, 1991) appear to be the first to have
used this method. Let us now discuss briefIy the first-
passage-time simulation for conductivity and diffusivity.

Consider a multiphase system that consists of n phases
with conductivities o.

&, . . . , o.„and volume fractions
In a first-passage-time simulation one con-

structs the largest (imaginary) concentric sphere of radius
R around a randomly chosen point in phase i, which just
touches the multiphase interface; suppose that the ran-
dom walker is initially at the center of the imaginary
sphere. The mean time ~ for the particle to reach a
randomly selected point on the surface of the sphere is

(R)=R /(2dtJ; ), where d is the dimensionality of the
system. This time is recorded, and the process of con-
struction of the sphere and the time a point on its surface
is reached is repeated, until the random walker comes
within a very small distance of the multiphase interface.
One then computes the mean time necessary for crossing
the boundary v.

b and the probability of crossing the
boundary, which is dependent upon the ratio of the con-
ductivities of the two phases. If the random walker
crosses the interface and enters a new phase, it find itself
in a new homogeneous phase, and therefore the process
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of sphere construction is repeated. If the reference phase
is taken to be phase 1, then the oueraII effective conduc-
tivity of the system is given by (Kim and Torquato, 1990)

(((, (+ z r, ((((()
0 i

g1 vm R; + ~I, RJ
l J

(5.68)

where r, (R) is the mean first-passage (hitting) time for
a walker in a homogeneous sphere of radius R, i denotes
the number of phases j for paths crossing the interface,
and ( ) denotes an average over all realizations. Equa-
tion (S.68) is valid in the limit of long times.

The fj.rst-passage-time simulation is particularly
efFective for simulating transport in continuum models of
porous media. The efFiciency of the method decreases,
however, as the porosity of the pore space decreases,
since the search for the construction of the imaginary
sphere becomes time consuming. Near p, the method is
not efficient at all, and the vectorized version of the con-
ventional random-walk simulation (Sahimi and Stauffer,
1991)should be used.

Random-walk methods are particularly useful for es-
timating the electrical conductivity of porous media
made of an insulating granular matrix saturated with a
conducting pore fIuid such as brine. A traditional
method such as the finite-element technique is notorious-
ly time consuming for such porous media, since even if
we use only 20 grains (a modest number), a very fine
finite-element mesh with roughly 10 nodes would be re-
quired to solve the Laplace equation accurately, a pros-
pect that is totally impractical. For this reason alone,
random-walk methods are the preferred technique for es-
timating diffusivity and conductivity in porous media.
Evans et al. (1980), Abbasi et al. (1983), Nakamo and
Evans (1983), and Akanni et al. (1987) used random-
walk methods to study both ordinary and Knudsen
diffusion in a variety of porous media made of random
dispersions of penetrating or nonpenetrating spheres (or
disks in two dimensions). Likewise, Smith and Huizenga
(1984) used the method to investigate Knudsen diffusion
in a random assemblage of spheres. More recently,
Schwartz and Banavar (1989) used random-walk simula-
tions to calculate the electrical conductivity of the grain-
consolidation model of Roberts and Schwartz (1985), dis-
cussed in Sec. III.B, with multisize particles. The results,
shown in Fig. 34 in terms of the formation factor
E=o-f/o. , are in excellent agreement with the experi-
mental data of Guyon et al. (1987) for sintered binary
composites and with other experimental data for similar
systems (Oger et al. , 1986). In practice, the grain parti-
cles are not usually spherical, but in a random-walk
simulation the particles can have any shape. Schwartz,
Banavar, and Halperin (1989) also calculated the electri-
cal conductivities of a system that was originally a pack-
ing of spherical rubber grains but was exposed to a uniax-
ial pressure applied to deform the particles. To model
the system they constructed an unconsolidated sphere

+
~+++

+ Measured

Ca l cu1 a ted

0 -I
log +

FIG. 34. Comparison of experimental data for formation factor
I' of sintered binary composites with random-walk simulation
results. P is the porosity of the system (from Schwartz and
Banavar, 1989).

Note that the resulting system is no longer isotropic, and
one has to calculate a conductivity tensor. The results of
Schwartz, Banavar, and Halperin (1989) for this system
were in good agreement with the measurements of
McLachlan et al. (1987). In order to speed up random-
walk simulations in porous media that have macroscopic
inhomogeneities such as layering, Schwartz, Banavar,
and Halperin (1989) introduced a weak bias in their simu-
lations. This caused the random walker to sample the
pore space more efFiciently, because in the direction of
the bias the travelled distance was proportional to N,
rather than X,', where N, is the number of steps. Al-
though the ideas of biased diffusion for estimating the
conductivity of inhomogeneous systems is rather old
(Miller and Abrahams, 1960), Schwartz, Banavar, and
Halperin (1989) appear to have been the first to apply it
to inhomogeneous porous media.

In contrast with difFusivity and conductivity, there is
no random-walk method for estimating the permeability
of a porous medium, because there is no general relation
between k, o., and D, . This is not totally surprising, as o
and D, are calculated from the solution to the Laplace
equation, which is a scalar equation, whereas k is calcu-
lated from the solution to the Stokes equation, a vector
equation. Thus one cannot expect to have a general rela-
tion between these quantities. This lack of a general rela-

pack with a given particle distribution and then
compressed the system in one direction by a given a, .
This resulted in a system of spheroidal grains, which
were then allowed to grow along the three axes. Thus a
sphere of radius R at (xo,yo, zo) was replaced by the
spheroid

a (x —x )+a (y —y )+a (z —z ) =R
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tion between a scalar and a vector system is well known
in statistical physics. Effective properties of scalar per-
colation (for example, D, or o ) are not, in general, relat-
ed to those of vector percolation (for example, the elastic
moduli). Properties of the Heisenberg and Ising models
do not seem to be related at all.

In the absence of a random-walk algorithm, the main
numerical means of estimating the permeability of a
disordered pore space has been computer simulation us-

ing a network model. Of course the same networks can
also be used for estimating the diffusivity and conductivi-
ty of the pore space. A pore-throat (bond) shape (for ex-
ample, cylindrical, channel-like, etc.) and a fIow regime
(for example, laminar) are assumed. The liow problem is
then solved analytically for a single pore, from which an

~ expression is obtained for the How rate q; in pore i in
terms of the pressure drop along the pore and the length
and effective radius of the pore. In most cases the pres-
sure drop across a pore body, where pore throats meet, is
ignored. One then writes down a mass balance for each
node, or each pore body, which simply means that the
net Aow rate reaching it is zero. Writing down such a
mass balance for every interior node of the network re-
sults in a set of simultaneous equations for nodal pres-
sures, from the solution of which the pressure field in the
network, and thus the permeability, can be calculated.
The boundary conditions are usually an imposed How

rate or pressure gradient in one direction and periodic
boundary conditions in the other directions. One usually
distributes the effective sizes of the pore throats accord-
ing to a probability density function which represents the
pore-size distribution.

Various versions of this network simulation have been
used in the last four decades. As already mentioned,
Owen (1952) appears to have been the first to do relative-
ly extensive computations with a three-dimensional net-
work of large pore bodies and very narrow pore throats,
and estimated the formation factor. Fatt (1956) used a
two-dimensional network of pore throats with distributed
effective sizes and calculated permeability and relative
permeabilities for two immiscible fluids. In the 1960s
there were several works in which network models were
used for calculating permeability, conductivity, and for-
mation factors and for investigating the relationship be-
tween them (Fatt, 1960; Nicholson, 1968; Rink and
Schopper, 1968; Cxreenberg and Brace, 1969; Weinbrandt
and Fatt, 1969). This type of simulation was continued
in the 1970s (Nicholson and Petropoulos, 1971, 1975,
1977; Shankland and Waff, 1974; Dullien, 1975), in the
1980s (Koplik, 1982; Koplik et al. , 1984; Seeburger and
Nur, 1984; Doyen, 1988; Constantinides and Payatakes,
1989), and in the 1990s (David et al. , 1990). These works
vary in the amount of detail included in the network
model, the sizes of the networks used, and so on, but the
essential idea behind all of them is the same as that dis-
cussed above. On the other hand, Bryant et al. (1991)
developed a network model based on Finney's random
close packing of equal spheres (Finney, 1968), without in-
voking any major assumption regarding the microstruc-

ture of the network, and calculated the permeability of
the network. Chu and Ng (1989) used a somewhat simi-
lar method. Bryant et al. (1991) showed that the calcu-
lated permeability agrees well with the data, thus
confirming the general validity of network models for
calculating the permeability of a pore space. Finally,
Adler (1985a, 1985b, 1985c, 1985d) studied liow and
transport in-a variety of deterministic fractal networks.

7. Relation between permeability
and electrical conductivity

As discussed above, a general relation between the per-
meability and electrical conductivity of porous media
probably does not exist. Although many empirical and
semiempirical relations between k and o. have been pro-
posed in the past, almost all of them "work" only for cer-
tain classes of porous media and not for other porous
media. For example, although Wong et al. (1984) found
that cr -P and k -P, this relation is restricted to their
model and is not expected to hold for a general porous
medium. Johnson et al. (1986), however, introduced a
well-defined parameter A, defined by

f ~E(r) 'dV V
A=2

f ~E(r)~'dS,
(5.69)

where E(r) is the potential in the electrical conduction
problem, and V and S are, respectively, the pore
volume and the pore surface area. Note that V~/S„ is a
geometrical parameter that can be measured and is in-
dependent of any transport process. On the other hand,
A is a dynamical property, defined for a specific problem,
and cannot be measured by geometrical analysis alone.
Since E (r) can vanish in certain regions of the pore space
(for example, an isolated region), A is roughly a measure
of dynamically connected pores of the medium. Johnson
et al. (1986) proposed that for three-dimensional porous
media

A A o.
k=a4 =a4

8I' 8 op
(5.70)

where a4=0(1). It should be said at the outset that, for
the reasons discussed above, this relation [and Eqs. (5.65)
and (5.66)j cannot in general be exact, although, because
of the meaning of A, it is certainly appealing. If we com-
pare Eq. (5.70) with Katz and Thompson's (1986) rela-
tion, Eq. (5.65), we obtain

A
a3I =a4 (5.71)

This is immediately indicative of the possibility that A
can be measured, since l, is obtained from a mercury in-
jection curve. Various authors have tested the validity of
Eq. (5.70) (Banavar and Johnson, 1987; Straley et al. ,
1987; Banavar et al. , 1988; Schwartz and Banavar, 1989;
Saeger et al. , 1991; Kostek et al. , 1992), using a variety
of numerical and analytical methods as well as experi-
mental data for well-defined systems. Avellaneda and
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Torquato (1991) investigated the relation between k and
o. and derived the conditions under which an approxi-
mate relation between k and o. may be expected. It now
appears that (Kostek et al. , 1992), unless the system con-
tains two widely different relevant length scales, Eq.
(5.70) would be very accurate.

8. Relation between permeability
and nuclear magnetic resonance

Many years ago, Timur (1969) suggested that NMR
may be used as a way of measuring k. This may seem to
be impractical, since most of the Quid in a porous medi-
um is stored in the pore bodies, whereas k and other
transport properties are controlled by the pore throats.
Various authors (for example, de Gennes, 1982; Banavar
et al. , 1985) have investigated this issue. In particular,
Kenyon et al. (1988) studied the relation between NMR
and the permeability of 56 water-saturated sandstones.
They found that the decay of proton magnetization M, (t)
is described by a stretched exponential,

M, (t) =moexp[ (r /T, ) ']—, (5.72)

and that logk shows a very strong correlation with
log(P T, ), where P is the porosity of the system. Figure
35 presents the data plotted in this fashion. From this
figure we obtain

(y4T2 )
2 (5.73)

where 52 —-0.7. Billardo et al. (1991) carried out NMR
experiments on, and measured the permeabilities of, 44
different sandstones and found that Eq. (5.73) fits their
data very well. Banavar and Schwartz (1987) investigat-

ed the same problem in the grain-consolidation model of
Roberts and Schwartz (1985) and the shrinking-tube
model of Wong et al. (1984) and reached the same con-
clusion. These results may seem surprising until we ask
ourselves: What is the meaning of the relaxation time
T&? The protons in the hydrogen of water molecules car-
ry nuclear magnetic moment, which enables them to
align themselves with an externally applied field. But be-
cause water molecules at room temperature are thermally
agitated, only a few of the protons actually align them-
selves with the external field; these are, however, detect-
able. If the external field is removed, the system will go
back to its equilibrium configuration. The time that the
system needs to do this is also the same as the time that it
needs to build up its external magnetization after the
external field has been applied. This time is usually
denoted by T, , and is called spin-lattice relaxation time
for protons. Why should T& be related to k? Experi-
ments show that, if one measures T, for water saturating
a porous medium, one finds T& to be much smaller than
it is for the same water in the bulk. This is because T,
for water is afFected strongly by surface relaxation mech-
anisms, and thus it is expected to be sensitive to the mi-
crostructure of the porous medium and provide insight
into the structure of the pore space. Thus it appears like-
ly that NMR can serve as a means of measuring k.

Thompson et al. (1989) used deuterium NMR to study
sandstones, carbonate rocks, and synthetic porous sam-
ples. The reason for using deuterium instead of protons
is that (Williams and Fung, 1982) it has a much smaller
magnetic moment than protons. Thompson et al. mea-
sured T&, the longitudinal relaxation time in the rotating
frame, found that the magnetization M, (t) obeys a
stretched exponential similar to Eq. (5.70), with T, re-
placed by v.&E, the corresponding stretched-exponential
relaxation time. They argued that the parameter l, [see
Eqs. (5.58) and (5.71)] is proportional to a time scale
rNMR, the NMR relaxation time. Their experimental
data appear to be in complete agreement with this argu-
ment. Moreover, they showed that their data are fully
consistent with

(5.74)

FIG. 35. Correlation of permeability k of sandstones with
porosity P and NMR relaxation time T, (from Kenyon et al. ,
1988).

which, in some sense, is consistent with Eq. (5.73), except
that the exponents of T,~ (or ~NMR) and T, in these
equations are not the same. Thompson et al. (1989)
mentioned that their data could be fitted with an equa-
tion similar to (5.73), but the quality of the resulting fit
would be slightly worse than that provided by (5.74).
They also showed that T,~ is proportional to the width of
the pore-size distribution and also the water saturation in
a partially saturated porous medium. Since NMR mea-
surements can be made at depth in the earth with well-

logging tools, they provide one of the few Ineans of es-
timating in situ permeabilities and saturations.
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9. Dynamic permeability

So far, we have discussed the static permeability of a
porous medium. But what can we say about its dynamic
permeability? If we measure dynamic permeability, can
it provide extra information about the structure of the
porous medium? Dynamic permeability k(co) is defined
by a generalized Darcy's law

' 1/2
4l T k copy

gA P
1/2

lT~ kcopf

T(ro)=T + 1—
cokpf

4lT ~k copy

ilA P

(5.83)

frequency limit provides information on A and thus on k
through Eq. (5.70). Moreover, Johnson et al. (1987) pro-
posed that

(v(co)) = — VP(co),k(co)
7l

(5.75) (5.84)

k(co) =
T ( co )copy

(5.77)

where i =( —1)'~ . As co~0, we have k(co) ~k, and

where co is the frequency and VP(co)=VP '"'. This
problem has been investigated by several groups. Au-
riault et al. (1985) made measurements of k(co) to test
the validity of Eq. (5.75). Charlaix et al. (1988) also mea-
sured k (co ) for a variety of fused-glass beads and crushed
glass in a frequency range of 0.1 Hz to 1 kHz. Johnson
et al. (1987), Sheng and Zhou (1988), Zhou and Sheng
(1989), Chapman and Higdon (1992), and Knackstedt
et al. (1993) studied the problem theoretically and nu-
merically. [Some errors in the studies of Sheng and Zhou
were corrected by Chapman and Higdon (1992).] Let us
summarize some of the more important results, most of
which were derived by Johnson et al. (1987).

We obviously have to use Eq. (5.75) together with

T(co)p = VP-B(v)
at

(5.76)

as the starting point, where T(co) is the frequency-
dependent tortuosity (a dimensionless quantity) and pf
the density of the fluid. T(co) and k(co) are related to
each other:

These results, together with those of Sheng and Zhou and
the experimental data of Charlaix et al. (1988), also indi-
cate that, in general, k(co) obeys the following scaling
equation:

k (co) =f (oilco, ), (5.85)

Vl. HYDRODYNAMIC DISPERSION

where co, =rifi(T„kpf) is a characteristic frequency at
which a crossover in k(co) from a viscous Row regime to
an inertial one takes place. The function f(roice, ) is
found to be universal, independent of the microstructure
of the porous medium. Johnson (1989) showed that Eq.
(5.84) works extremely well when compared with numeri-
cal simulations, and is also obeys Eq. (5.85). Therefore,
although Eq. (5.85) tells us that we cannot gain much mi-
crostructural information about the porous medium by
just measuring k(co) [since f (oilco, ) is universal], Eq.
(5.82) can be used to obtain k, the static permeability of
the porous medium (via A). The experimental data of
Charlaix et al. (1988), as well as the analytical and nu-
merical calculations of Sheng and Zhou (1990), Chapman
and Higdon (1992), and Knackstedt et al. (1993), seem to
support the validity of Eq. (5.85).

lim T(co)=
tie —+0 k copy

(5.78)

Johnson et al. (1987) showed that in the high-frequency
limit

lim T(co)=T +C ( iso)— (5.79)

T„=PF, (5.80)

for any porous medium, a result that is generally attribut-
ed to Lord Rayleigh. Johnson et al. (1987) also showed
that in the high-frequency limit one has

1/2

lim T (co)= T 1+ l Y) 2
Q) —+ OO COPy A

(5.81)

lim k(co)=
~~ oo T~ copf

1/2

1— l'g

COpf A
(5.82)

[compare Eqs. (5.81) and (5.79)], so that the high-

where C =kKf j(i)P), Kf being the bulk modulus of the
fluid. Moreover, one has

So far we have largely discussed flow and transport
processes that involve only one fluid and one fluid phase.
This section may be considered as the beginning of Part
II of this paper, which discusses phenomena at the next
level of complexity, namely, those that involve at least
two fluids and one or two fluid phases. The most impor-
tant of such phenomena is hydrodynamic dispersion,
which is discussed in this section. Miscible displacement
processes, which are generalizations of dispersion phe-
nomena in which the viscosities of the two fluids are not
the same, will be discussed in Sec. VII. Two-phase flows
will be discussed in Sec. VIII.

A. The phenomenon of dispersion

When two miscible fluids are brought into contact,
with an initially sharp front separating them, a transition
zone develops across the initial front, the two fluids slow-
ly diffuse into one another, and after some time they de-
velop a difFused mixed. If one assumes that the volumes
of the two fluids do not change upon this mixing, then
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the net transport of one of the Auids across any arbitrary
plane can be represented by Pick's second law of
diffusion

BC
Bt

Here C is the concentration, t the time, and D the
molecular diffusivity. This mixing process is independent
of whether or not there is a convective current through
the medium. However, if the Auids are also Aowing, then
there will be some additional mixing of a different sort:
convective mixing. This mixing, called hydrodynamic
dispersion, is caused by a nonuniform velocity field,
which in turn may be caused by the morphology of the
medium, the fluid Aow condition, and chemical or physi-
cal interactions with the solid surface of the medium.
Dispersion is important to a wide variety of processes
such as miscible displacements in enhanced oil recovery,
salt water intrusion in coastal aquifers, where fresh and
salt waters mix by a dispersion process, in situ study of
the characteristics of an aquifer, where a classical
method of determining such characteristics is to inject
Auid tracers in it and measure their travel times, and the
pollution of surface waters because of industrial and nu-
clear wastes. Dispersion phenomena also occur in Aow
and reaction in packed-bed chemical reactors; these have
been studied extensively by chemical engineers for a long
time (see, for example, Bernard and Wilhelm, 1950).

B. Mechanisms of dispersion processes

In steady Aow through a disordered porous medium,
the transit time, or first-passage time, of a Quid particle
between entrance and exit planes depends on the path, or
streamline, that it follows through the pore space. A
population of particles passing the entrance plane at the
same instant will arrive at the exit plane by a set of
streamlines with a distribution of transit times. Thus a
solute concentration front will spread in the mean Aow

direction as it passes through the medium. The resulting
first-passage-time distribution (FPTD) is a measure of
longitudinal dispersion in a porous medium.

Likewise, a population of particles passing simultane-
ously through a restricted area of the entrance plane will
not follow entirely the mean Aow to the exit plane, but
will be dispersed in the transverse directions as well, that
is, the population and the set of streamlines traveled with
have a wider distribution of exit locations than of en-
trance locations. Thus a concentration front will also
spread laterally on the way to the exit plane. The distri-
bution of the first-passage times for crossing the system
at a given transverse plane is a measure of transverse
dispersion in a porous medium.

Two basic mechanisms drive dispersion in macroscopi-
cally homogeneous, microscopically disordered porous
media; these arise in the pore-level velocity field forced
on the Aowing Auid by the irregularity of the pore space.
The first mechanism is kinematic: streamtubes divide

and rejoin repeatedly at the junctions of Aow passages in
the highly interconnected pore space. The consequent
tangling and divergence of streamlines is accentuated by
the widely varying orientations of Aow passages and
coordination numbers of the pore space. The result is a
wide variation in the lengths of the streamlines and their
downstream transverse separations. The second mecha-
nism is dynamic: the speed with which a given Aow pas-
sage is traversed depends on the Aow resistance or hy-
draulic conductance of the passage, its orientation, and
the local pressure field. The two mechanisms conspire to
produce a broad first-passage-time distribution between
entrance and exit plane. These two mechanisms suggest
two possible geometrical aspects of dispersion processes,
defined with respect to the mean velocity direction, i.e., a
longitudinal efFect due to the differences between the ve-
locity components in the direction of mean Aow and a
transverse effect due to the differences between local ve-
locity components orthogonal to the direction of the
mean Aow.

These mechanisms of dispersion do not depend on
molecular diffusion. Diffusion modifies the effects of the
two basic mechanisms by moving material from one
streamline to another and also by the usually weaker
streamwise difFusion of material relative to the average
velocity. The solid matrix of a porous medium of course
acts locally as a separator of streamlines and thus as a
barrier to diffusion, and therefore the modification of
dispersion by diffusion depends on pore-space morpholo-
gy and how it in turn affects local Aow and concentration
fields. The effect of molecular diffusion is usually impor-
tant only in microscopically disordered porous media,
where it acts to transfer the tracer particles out of slow
or stagnant regions of the pore space.

C. The convective-diffusion equation

Dispersion processes in microscopically disordered and
macroscopically isotropic and homogeneous porous
media are usually modeled based on the convective-
diffusion equation (CDE),

aC a'C+( ) vc=D, , +D,v', c,
Bx

where ( v ) is the macroscopic mean velocity, C the mac-
roscopic mean concentration, and V'z- the Laplacian in
transverse directions. For the sake of simplicity we
delete ( ) and denote the magnitude of the average ve-
locity vector by v. Thus the basic idea is to model disper-
sion processes as anisotropic diffusional spreading of con-
centration, the diffusivities being the longitudinal disper-
sion coeKcient DL and the transverse dispersion
coefFicient DT. One important goal of any study of
dispersion is to investigate the conditions under which
dispersion processes in a give environment cannot be
represented by the convective-diffusion equation.

Dispersion is said to be macroscopically di+usiue or
gaussian if it obeys the CDE. If a particle population is
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(6.3)

where P(r, t)dr is the probability that a particle is in a
plane between r and r+ d r at time t, and r = (x,y, z).
P(r, t) is proportional to C/Cp, where Cp is the concen-
tration at t=O, and therefore Eq. (6.3) represents a solu-
tion of Eq. (6.2). If one defines Q (g gp, t)dt a—s the prob-
ability that a particle, beginning in the plane at gp will

cross, for the first time, a plane at g between t and t +dt,
then from Eq. (6.3) one can easily obtain the first-
passage-time distribution

Q(g gp, t)=—~g
—gp~(4m. Dgt )

X exp[ (g gp
—u~t)—/4D—tt], (6.4)

where D& and v& are the dispersion coefficient and the
mean fiow velocity in the g direction, respectively. Vari-
ous moments of Q yield information about the fiow field
and the dispersion processes. For example, for the longi-
tudina1 direction we have

injected into the medium at rp=(xp, yp zp) at t=O, for
macroscopically diffusive dispersion, the probability den-
sity P(r, t) obeys the Gaussian distribution

(x —xp —ut)
P (r, t) = (8~ DL, DT't) exp

4DL t

(z —zp)'

4D„t 4D„t

a'C 1 ac a'C
Br r ~r Bx

(6.7)

where v is the mean Qow velocity in the tube, and
defining a mean concentration C by

f'f 'C(r, x)r dr de
C =

f2 ~ =
2 f Crdr, (6.8)

rdrdO
0 0

they showed that in the limit of long times

speed offlow. " It turned out that this was not as obvious
as Griffiths had thought! Forty two years later, Taylor
(1953) pointed out that this is a rather startling result for
two reasons. First, because the water at the center of the
tube moves with twice the mean speed of the fiow (the
Hagen-Poiseuille fiow), the water at (or near) the center
must approach the column of tracer, absorb the tracer as
it passes through the column, and then reject the tracer
as it leaves on the other side of the column. Secondly, al-
though the velocity is asymmetrical about the plane mov-
ing at the mean speed, the column of tracer spreads out
syrnrnetrically.

Taylor (1953) and Aris (1956) studied dispersion in a
cylindrical capillary tube of radius R. Starting from the
convective-diffusion equation for a tube,

2
ac r

+2vm 1
Bt R

(t)=—,I,
v

(6.5)
ac 8'c

Bx)
(6.9)

2DI1+ t.v
(6.6)

D. Dispersion in a tube

where L =g —gp. In general, one can easily show that for
large L and to the leading order one has (t")—(t)",
where n ) 1 is any integer number. Of course, this is true
if the convective-diffusion equation is applicable, and
therefore one way of showing that the CDE cannot de-
scribe a dispersion process in a certain medium is to
show that (t")/(t)" (n ) 1) is not a constant and one
needs more information to describe various moments of
the first-passage-time distribution. This will be discussed
later in this section.

where x, =x —u t (the moving coordinate with respect
to the mean fiow velocity), and

R v
DI=D +

48D,
(6.10)

where the subscripts x and r signify the fact that D and
D„are the contributions of axial and radial molecular
difFusion, respectively. That is, if in Eq. (6.7) we delete
i) C/Bx (i.e., neglect axial diIFusion), D„will also be
deleted from Eq. (6.10); of course, D =D„=D . Note
that in Taylor-Aris dispersion DL depends quadratically
on u . We define a Peclet number Pe by Pe=Ru /D~
=~D/~&, where ~D=R /D is the diffusion time and
zc=R/v is the convection time. Thus Pe is simply a
measure of the competition between diffusion and con-
vection. Then Eq. (6.10) is rewritten as

Historically, GriKths (1911) was the first to report
some experimental results that demonstrated the essence
of the dispersion process in a tube with diffusional effects
present, but without mathematical treatment. He ob-
served that a tracer Quid injected into a system of water
spreads out symmetrically about a plane in the cross sec-
tion which moves with the speed of the Qow. He com-
mented that: "It is obuious that the mouement of the
center of the column of the tracers must measure the mean

Dm 48
=1+ Pe (6.11)

Aris (1956) also showed that for a cylindrical tube with a
cross section of any shape, one has

j'2v 2

DL =D +6, (6.12)

where l, is a length scale of the tube and 5, a shape factor
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that depends on the shape of the cross section. For ex™
ample, for an elliptical cross section where the major and
minor semiaxes are a and b, respectively, one has L,, =a
and

1 24 —24e 2+ 5e 4

48 24 —12e
(6.13)

E. Dispersion in spatially periodic media

At the next level of complexity are spatially periodic
porous media. We have already discussed diffusion, elec-
trical conduction, and fIow in such models of porous
media. Brenner (1980), Brenner and Adler (1982), Eid-
sath et al. (1983), and Koch et al. (1989) examined
theoretically dispersion in spatially periodic porous
media, and Gunn and Pryce (1969) measured the longitu-
dinal dispersion coeScient in fIow parallel to one of the
axes of a simple cubic 1attice of spherical particles. In
particular, Koch et al. (1989) showed that, for a square
array of cylinders or a cubic array of spheres, and in the
limit Pe~ac, DL depends quadratically on Pe and DT
approaches a constant value. These findings are in total
contradiction with dispersion in disordered porous media,
for which both DL and DT have a weaker dependence on
Pe and, in particular, DT does not reach a constant value
(see below).

where e =[1 (b —/a )]'~ . For a circular cross section,
b =a, e=0, and 5=1/48, as expected. For dispersion in
a duct of parallel plates with fully developed laminar
fiow, I, =h and 5, =2/105, where h is the half-width of
the channel. Thus the quadratic dependence of DL on U

is independent of the shape of the cross section: it is the
result of the competition between the equally strong
molecular diffusion and convection.

Aris (1956) conjectured that any initial distribution of
concentration will ultimately approach a Gaussian distri-
bution. Chatwin, in a series of papers (see, Chatwin,
1977, for earlier references to his work), proved this.
Further important work on dispersion in tubes was done
by Horn (1971) and Brenner (1980). In particular,
Brenner (1980) generalized Taylor-Aris dispersion
significantly and employed local and global spaces (for
example, in the tube problem r is the local space and x is
the global one). One can also exploit the equivalence be-
tween I.angevin and Fokker-Planck equations and derive
the Taylor-Aris results (Van den Broeck, 1982).

and Katz (1967) shows, however, that dispersion in con-
solidated porous media is similar to that in unconsolidat-
ed media. Figure 36 collects experimental data for
DL /D for sandpacks, showing that there are five
different regimes of dispersion. A similar plot can be
made for DT/Dm. For porous media the Peclet number
is defined as Pe=dgU/D, where dg is frequently taken
to be the average diameter of a grain or bead. The five
dispersion regimes, shown in Fig. 36, are as follows.

(i) Pe &0.3. This is the regime in which convection is
so slow that diffusion controls dispersions almost com-
pletely. In this regime, we have I'sotropic dispersion such
that (Brigham et al. , 1961; Koplik, Redner, and Wilkin-
son, 1988)

D D FP
(6.14)

DL p-Pe
D

(6.15)

p-Pe
D

(6.16)

where, as usual, F is the formation factor and P is the
porosity of the medium. The quantity 1/(FP) varies
commonly between 0.15 and 0.7, depending on the
porous medium. Because of this isotropy, a concentrated
sphere of solute will remain a sphere [rather than devel-
oping into an ellipsoid as indicated by Eq. (6.3)], but will
increase in size as dispersion progresses.

(ii) 0.3 & Pe & 5. This is the transition regime in which
convection contributes to dispersion, but the effect of
diffusion is still quite strong. DI /D appears to increase
with Pe, although it is dificult to say how!

(iii) 5 &Pe& 300. This is the power-law regime. Con-
vection dominates dispersion, but the effect of diffusion
cannot be neglected, and one can write

F. Models of dispersion in
macroscopically homogeneous porous media

Many researchers have carried out experimental stud-
ies of dispersion, almost exclusively, in beadpacks, un-
consolidated sandpacks, and sandstones. Some of the re-
sults, mainly for unconsolidated sands, were compiled by
Fried and Combarnous (1971). Work on sandstones,
compiled by Perkins and Johnston (1963) and Legaski

l
I

)0 )0

I

l I I

)0

I

$0 )0

FIG. 36. Experimental data for longitudinal dispersion
coefficient DI vs Peclet number Pe in the five different regimes.

is the molecular di6'usivity, and the curve is a guide to the
eye (from Fried and Combarnous, 1971).
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DL -Pe,
m

D~ -Pe .
m

(6.17)

(6.18)

This is usually called mechanical dispersion. In this case
dispersion is simply the result of a stochastic velocity
field induced by the randomly distributed pore boun-
daries.

(v) Pe) 10 . This is the turbulent dispersion regime.
The Peclet number is no longer the only correlating pa-
rameter, and the Reynolds number should also be used.

There is a sixth dispersion regime that is not evident in
Fig. 36. This is the so-called hoidup dispersion (Koch and
Brady, 1985), first studied by Carberry and Bretton
(1958), Turner (1959), and Aris (1959). In this case, the
solute is trapped in a dead-end region or inside the solid
grains, from which it can escape only by molecular
diffusion. One has

Dl -Pe
D (6.19)

DT ~ Pe&
D (6.20)

The auerage values of PL and Pr from all the available
experimental data are Pi ——1.2 and Pl ——0.9. We call this
regime the boundary-layer dispersion after Koch and
Brady (1985), since, as we shall show below, this regime
is consistent with the diffusive boundary layers near the
solid surface, first found by Saffman (1959), where
diffusion transfers materials from the very slow regions
near the solid walls to faster streamlines.

(iv) 300(Pe(10 . This is the regime of pure convec-
tion. Simple dimensional analysis indicates that

(1965), Todorovic (1971, 1975, 1982), and Chaudhari and
Scheidegger (1965). The Chaudhari-Scheidegger ap-
proach assumes that the solute concentration in a "cell"
of a porous medium is a Markovian variable, and in this
sense their approach is somewhat different from the rest.

Beran (1968) treated a one-dimensional system; he as-
sumed that the velocity field is an asymptotically station-
ary stochastic process and that two velocities separated
by a large but finite time are uncorrelated. He invoked a
formal analogy between a simple random walk and the
position of the solute molecules and then invoked a
central-limit theorem to assert that the probability P (x, t)
[the one-dimensional analog of Eq. (6.3)] is Gaussian. By
invoking an ergodic theorem, Beran asserted that P(x, t)
is proportional to C(x, t), the solute concentration, but
did not calculate the probability density for the velocities
v„v2,. . . , v„ofthe solute particle after 1,2, . . . , n steps.
The construction of this probability density is perhaps
the most fundamental problem in the development of a
model of dispersion. Todorovic (1970) also developed a
theory of longitudinal dispersion and extended his treat-
ment to transverse dispersion (Todorovic, 1971) and to
the situation wherein a time-dependent injection of solute
particles at a boundary is specified (Todorovic, 1975).
Using a Markov process, he argued that the displacement
x (t) of the solute particle at time t is a Brownian process,
and therefore its probability density is Gaussian. Bear
(1972) and Chaudhari and Scheidegger (1965) also sug-
gested that the theory of Markov processes can be used
for modeling dispersion processes. The problem with
these approaches is that (i) a Gaussian distribution for
the concentration profile is guaranteed, and (ii) they do
not provide a method of actually calculating the disper-
sion coefficients; therefore they are purely phenomeno-
logical and formal and have no practical use.

indicating a strong dependence of Dl and Dz- on Pe. In a
porous medium near its percolation threshold p„there
are many dead-end pores, and therefore this regime is
relevant to such a porous medium.

Bacri et al. (1987) used an acoustic technique (Bacri
et a/ , 1984) to m. easure DI for three different porous
media. They showed that pore-level disorder strongly
affects DL and its dependence on Pe, and were able to ob-
serve power laws (6.15)—(6.20), depending on the breadth
of the pore-size distribution and connectivity of the pore
space.

Having gained a qualitative understanding of disper-
sion in porous media and what we may expect, let us now
review and discuss various models of dispersion in mac-
roscopically homogeneous porous media.

1. Statistical-kinetic models

These models are mathematical formulations either of
the motion of a solute molecule (Beran, 1968; Todorovic,
1970) or of an abstract entity, e.g. , a "point. " Various
versions of this model were developed by Scheidegger

2. Fluid-mechanical models

These models are based on three basic components: (i)
a Lagrangian description of the motion of solute-
containing fiuid through a single pore; (ii) specific as-
sumptions about the medium, e.g., homogeneity and isot-
ropy; and (iii) calculation of quantities of interest as sta-
tistical averages. In a Lagrangian approach the motion
of a tracer particle is followed, and the tracer's average
velocity and the dispersion coefficients are defined as the
time-rate of change of the mean and mean-square posi-
tions, respectively. The works of Scheidegger (1954),
Day (1956), de Josselin de Jong (1959), Saffman (1959,
1960), Haring and Greenkorn (1970), and Bear (1972) be-
long to this group of models. Saffman's work is the most
general of these and hence is discussed briefly. His model
consisted a network of randomly oriented and distributed
straight capillaries, in each one of which the How was
uniform. The path of Quid particles was regarded as a
random walk in which the length, direction, and duration
of each step are random variables.

Saffman was careful to introduce a dynamical basis for
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his model, founded explicitly on fIuid-mechanical ideas.
He assumed that all the pores had an equal circular cross
section of radius R, and that flow was laminar in all
tubes. Saffman distinguished Ave cases in his first paper:

(i) t, « t„,where r, is the convective time spent by a
Quid particle in the pore and t, the time required for ap-
preciable radial diffusion of this particle, t„=R/(SD )

(the fiuid particle jumps a distance R/2 from one stream-
line to another). Thus radial diffusion is negligible and
the duration of a step is t = t, = I /0

(ii) The fluid particle is on a streamline close to the
pore wall, i.e., its speed is small and molecular diffusion
occurs. The duration of a step is then t =t, +I/0, i.e.,
the particle makes one jurnp from the streamline close to
the pore wall to another whose speed is v, and then is
convected out of the pore.

(iii) t„&t « t„where t, is the time for appreciable axi-
al difFusion; r, =I /(2D ). The effect of axial diffusion is
negligible and t = t„+1/u

(iv) t„&t &t„which means that the pore is very nar-
row and t =l/0

(v) t, « t. Thus the duration of a step is r =t, .
Saffman found that in all cases DT is given by

lv . (6.21)

(6.22)

then

1 3vt, 1 6vt„
n + ln

3 l 12

2
6vt„——ln +

4 l 24'
(6.23)

ut, jl «1;n'~ (In3ut /l)'

2 1 27vT~ 1 6vt,5 =—ln + ln
6 2I 12 l

(6.24)

2
60t„——1n +

I 24'

(6.25)

if inn, ))2, and

3ut„/l «1,n' (Inn' )S S

540T
S ==1

48 l

3vt, /I »1;
n,' (Inn, '

)

2 (6.26)

if inn, ))2, and

4vt„/l
1/21 1/2 ))1,

S S

40t /1
1/21 1/2 ))1

S S

where n, is the mean number of steps taken by the Auid

However, DL was found to depend on the regime con-
sidered. If

particles after a large time T, at which DL and DT are
measured, and is equal to 3(x ) /(2l), with (x ) being the
mean longitudinal position at time T . If we neglect the
constant 19/24 in Eqs. (6.23) and (6.25), which is usually
much smaller than the other terms in these equations,
Saffman's results can be summarized as

Dl —Pe(lnPe) (6.27)

where a= 1 or 2. Equation (6.27) can now be compared
with Eq. (6.15). If we take a = 1 and fit the experimental
data to this equation, the resulting fit would be as accu-
rate as that provided by Eq. (6.15) if Pl -1.25. On the
other hand, if we take a=2, the resulting fit would be
compatible with Eq. (6.15) if PL ——1.15. This explains
two interesting features of all experimental data: (i) The
data indicate that /31 is either about 1.13—1.16 [obtained
by Legaski and Katz (1967) for Bandera sandstone, by
Salter and Mohanty (1982) for Berea sandstone, and by
Blackwell et al. (1959) for packed unconsolidated sands],
or about 1.24—1.30 [reported by Brigham et al. (1961)
and Pakula and Greenkorn (1971) for glass beads, and by
Legaski and Katz (1967) for Boise and Nordosaria sand-
stones and for dolomites], with an overall average of
about 1.2, as mentioned above. (ii) Pl is probably not
universal; it depends on the strength of competition be-
tween molecular diffusion and convection, which in turn
depends on the pore shapes. On the other hand, Eq.
(6.21) is not completely compatible with Eq. (6.16), since
most data [see, for example, Blackwell (1962)] indicate
that f3T -—0.9, as mentioned above. It is probable that PT,
like Pl, is not universal.

Saffman also found that dispersion cannot be described
by a convective-diffusion equation, unless T is
suKciently large. Saffman's analysis clearly indicates the
significance of molecular diffusion for dispersion in mi-
croscopically disordered porous media, no matter how
small it may be, as long as it is not exactly zero. In the
absence of molecular diffusion, a Auid particle, which is
travelling along a streamline very close to a pore wall,
will need huge amounts of time to escape from this re-
gion, and DI =0. However, diffusion intervenes and
transfers the ft.uid particle to a much faster streamline.
The logarithmic terms in Eqs. (6.23)—(6.26) are exactly
due to such singularities in the dispersion process.

Saffman's results are presumably valid if Pe is large but
finite. In his second paper (Saffman, 1960), he considered
the case in which Pe is "less than some large value" and
found that both DL and DT depend quadratically on Pe.
The agreement between Saffman's results and various ex-
perimental data ranges from reasonable to good. In this
author's opinion, Saffman's work is the most detailed and
careful analysis of dispersion in microscopically disor-
dered porous media and has not been fully appreciated.
However, his work also has its shortcomings. Saffrnan
did not allow for the possibility of a pore-size distribution
(all pores were assumed to have the same radius). Haring
and Greenkorn (1970) rederived some of Saffman's results
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assuming a pore-size distribution. Moreover, in
Saffman's work the Aow field is represented by a sort of
mean-field approximation, and there are no correlations
between successive steps of the walk. This restriction can
also be removed by Monte Carlo calculations in network
models of pore space, as was first done by Sahimi et ah.

(1982); these calculations will be discussed below. Final-
ly, it is worth mentioning that the logarithmic singulari-
ties found by Saffman were rediscovered by Aronovitz
and Nelson (1984) in what they called "diffusion in steady
How" through a porous medium, which is nothing but
the hydrodynamic dispersion discussed beret

3. Continuum models: Volume-averaging methods

probability distribution of solid material and then de-
rived the effective dispersion coefficients in the high-
porosity limit, including the relevant proportionality con-
stants. A particular advantage of their method is that
the Quid-mechanical aspects of the problem are treated
without any approximations. It can also be extended to
the case in which dispersion is not Gaussian and does not
obey a convective-diffusion equation (see below). A ma-
jor disadvantage of the method is that the assumption of
high porosity has to be made in order to make the
method numerically predictive. Koch and Brady (1985)
also used their method to derive expressions for the
dispersion coefticients in the various regimes discussed
above.

We have already discussed this method in Sec. V,
where we reviewed single-phase Aow problems. The
works of Whitaker (1967), Bachmat (1969, 1972), Gray
(1975), Carbonell and Whitaker (1983), Eidsath et al.
(1983), Koch and Brady (1985), and Plumb and Whitaker
(1988a) fall into this class of methods. For example,
Plumb and Whitaker (1988a) start from the convective-
difFusion equation for the liquid or pore (/3) phase

ac +V.(cu&) = V (D VC),
at

(6.28)

with the boundary conditions

—np D VC=O at Sp

C =9(r, t) at Sp

(6.29)

(6.30)

(6.31)

where D* is the dispersion tensor given by

D*=D I+ f n& fdA —(v&f )~ . (6.32)
Ap

This analysis shows that on a large enough length scale,
such that the porous medium is homogeneous, a
convective-diffusion equation for the average concentra-
tion, Eq. (6.31), holds. Note that D* contains two terms.
One is the contribution of molecular diffusion, while the
other is due to hydrodynamic transport. As before, there
is an unknown function f which has to be determined.
In practice, f can be determined if a model of pore space
is specified. However, if the pore space is disordered,
then the numerical calculation of f is no easier than any
other numerical method that may be used to solve Eq.
(6.31) directly.

A more sophisticated version of this method was
developed by Koch and Brady (1985). These authors first
formally related the average concentration field to the

and the initial condition C =Co(r), using the same tech-
nique discussed in Sec. V, and derived the following
equation for the average concentration:

+v (~,(v, )'(c») =v (~ D* v(c»),a(c»

4. Network models

These models belong to the class of Quid-mechanical
models already discussed, except that the mean-field na-
ture of a model like that of Saffman (1959, 1960) and the
absence of disorder and heterogeneity are explicitly lift-
ed. As already mentioned, Torelli and Scheideg ger
(1972) appear to have been the first to propose a random
network model for studying dispersion processes in
porous media, although they did not report any result.
Torelli (1972) did simulate dispersion processes in How
through a random network, but his results pertain to a
dispersion not related to what we are interested in here.

Sahimi et al. (1982) were the first who used random
network models of porous media to simulate dispersion.
In their method, one first determines the Row field in the
network by the method discussed in Sec. V.B, where we
reviewed network models for calculating the permeability
of a porous medium. Then tracer particles are injected
into the network at random at the upstream plane x=O.
Each particle selects a streamline at random. The travel
time for a given pore is given by t =/lu, where / is the
length of the pore and u is the pore Bow velocity. Com-
plete mixing at the nodes is assumed, and therefore the
probability that a pore is selected, once a particle has ar-
rived at a node, is proportional to the Aow rate in that
pore. The first-passage-time distributions for the parti-
cles are computed by fixing the longitudinal or lateral po-
sitions and measuring the time at which the particles ar-
rive at these positions for the first time. It is easy to see
that D&, the dispersion coefficient in the g direction, is
given by

D~= f Q(g jo, t)($&l2t)—dt, (6.33)

where $0(xo) is the starting position of the particles,
S =(x —xo —ut), and S&=(g—

go) for g=y or z.
However, this random-walk method is appropriate for

mechanical dispersion, since pore-level molecular
diffusion has been ignored. To include the effect of
molecular diffusion and simulate the boundary-layer
dispersion, the following method was adopted (Sahimi
and Imdakm, 1988). The convective time r, for travelling
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along a streamline in a pore is first calculated. If t, &&t„
where t„is the radial diffusion time scale discussed above,
then one sets t =t, + t„since the tracer has enough time
to difFuse to a faster streamline. To simulate holdup
dispersion, the tracer particles are allowed to difFuse into
the dead-end pores of the network. Transport in such
pores is only by molecular diffusion. In a series of pa-
pers, Sahimi et al. (Sahimi, Heiba, et al. , 1982; Sahimi,
Davis, and Scriven, 1983; Sahimi, Heiba, et al. , 1986;
Sahimi, Hughes, et al. , 1986) and Sahimi and Imdakm
(1988) showed that these network models can reproduce
and simulate all of the regimes of dispersion discussed
above. In particular, Eqs. (6.14)—(6.20) can all be repro-
duced by these models.

de Arcangelis, Koplik, et al. (1986) proposed another
method, which they called the "probability propagation
algorithm. " In this method a one-dimensional convec-
tive-difFusion equation is assumed to hold for each pore
of the network,

ac ac a'c
Bt Bx

D (6.34)

Consider a network of tubes Iij J. The concentration C,"
in each tube obeys Eq. (6.34), with the initial condition
C; (x;J,O)=0 and three boundary conditions: (i) a unit
pulse of input Aux at nodei at t=o,

ac,,g S, u;J C; D —=6(t), (6.35)

where S,. is the cross-section area of tube ij and U," is
the mean flow velocity in that tube; (ii) a common con-
centration C;(t) at the starting junction, C~(O, t)=C;(t)
for all j; and (iii) a sink at each tube end, C; (l, t) =0, for
all j, corresponding to the fact that a tracer reaching the
end acts as a source for the junction problem at the new
node. The first-passage-time probability is given by
qj(t)= SJD dCJ—(l, t)IBxJ. Equatio. n (6.34) is easily
solved in the Laplace transform space. The solution is
given by

C; (x, A, ) = A;.exp(a;.x)+8;Jexp(PJx),

a;,P; = [u,j+(u; +4D A, )' ]l(2D ), (6.37)

where 3; and 8;. are determined from the above bound-
ary conditions and A, is the Laplace transform variable
conjugate to t. Then it is easy to see that

where the sum is over all paths I from the inlet to the
outlet of the network.

To compute this sum efticiently, de Arcangelis, Koplik,

'1 exp —;~i —exp —a,z
i

Having determined q;.(A, ), we obtain the first-passage-n
time distribution Q(L, A, ) for the entire network,

Q(L, A, )= g II q,"(A,),
I i j&I

et al. (1986) ordered the nodes of the network in decreas-
ing pressure order, starting with the inlet and finishing
with the outlet. At each node i, a quantity Q, (A. ) is intro-
duced that is a partial sum of Eq. (6.39), over paths run-
ning from the inlet to site i. For a delta-function input of
tracer, one initially has QI = 1 at the inlet I and Q, =0
elsewhere. One then proceeds recursively through the
pressure-ordered node list, propagating the quantity Q
from each node i to its network neighbors j according to
the rule Q (A, )—+Qj(A, )+Q,.(k)qj(A, ), Q, (k)~0. After
all the internal nodes have been propagated once in this
way, the quantity Qo(A, ) at the outlet contains all terms
of Eq. (6.39) corresponding to purely downstream paths.
However, because molecular diffusion is present, the
tracer motion includes upstream paths as well. Hence,
after one sweep through the network, one has Q„WO for
internal nodes n. By repeated sweeps through the net-
work, the contributions of paths with progressively more
upstream steps are included. Once Q(L, A, ) is deter-
mined, it is inverted to the time domain and DL is calcu-
lated using Eq. (6.33). Note that this method, in the
mechanical dispersion regime (i.e., with no diffusion), is
equivalent to the random-walk method of Sahimi and
co-workers. de Arcangelis, Koplik, et al. (1986) showed
that this method can reproduce the results for both
mechanical and boundary-layer dispersion. The method
is very efficient as long as the network is well connected.
For percolation networks near p, the method is very
inefficient because calculating the sum in Eq. (6.39) be-
comes vel y t1IIle-consuII11Ilg.

In a later paper, Koplik, Redner, and Wilkinson (1988)
used another method for studying dispersion in random
networks. In this method, one first calculates the How
field throughout the network by the method already dis-
cussed. Assuming that dispersion in each pore obeys a
convective-diffusion equation, Eq. (6.35) with its right-
hand side being zero (which is simply a statement of the
continuity of mass at each node) is written for all interior
nodes of the network. The resulting set of linear equa-
tions for nodal concentrations is solved (in the Laplace
transform space), from which DL is calculated. Roux
et al. (1986) used the same method, except that they used
a transfer matrix (Derrida and Vannimenus, 1982), origi-
nally invented for calculating the efFective conductivity of
percolation networks. Sahimi and Jue (1989) used a
somewhat similar method to study dispersion of large
molecules in porous media, i.e., molecules whose hydro-
dynamic radius is comparable to the pore sizes.

G. Long-time tails: Dead-end pores versus disorder

As already discussed, molecular difFusion transfers
Quid particles into and out of stagnant, dead-end, or
low-velocity regions of the pore space. Many experimen-
tal measurements of the concentration distribution dur-
ing dispersion indicate the presence of a long-time tail in
the concentration profiles. Diffusion into and out of the
stagnant regions is often used to explain such long-time
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tails. Such a phenomenon has, in fact, been of great in-
terest for a long time. Carberry and Bretton (1958), Aris
(1959), and Turner (1959) were probably the first who
studied dispersion in systems with stagnant regions. In
particular, Aris (1959) showed that D~ /D~ -Pe, a re-
sult that was rediscovered by Koch and Brady (1985). In
the early 1960s there were several studies of the relation
between the observed long-time tails and the efFect of
dead-end pores. Deans (1963) and Coats and Smith
(1964) attributed the long-time tails to the presence of
dead-end pores, which can cause long delays in travel
times and hence long tails in the concentration profiles.
They developed a semiempirical model to account for
this, which will be discussed below. Brigham (1974) and
Baker (1977) found that trapping in the dead-end pores is
needed to describe dispersion in carbonate rocks but not
in sandstones. They proposed that the origin of stagnant
regions in carbonate rocks is either regular or bimodal
porosity. This was recently disputed by Gist et al.
(1990), who measured dispersion coefficients in a variety
of sandstones and carbonate rocks. Their mercury
capillary-pressure data for Austin chalk and Indiana
limestone indicated the presence of bimodal porosity, yet
no long-time tails were observed in the measured concen-
tration profiles.

Deans (1963), Coats and Smith (1964), Passioura
(1971), Baker (1977), Rao et al. (1980), and Salter and
Mohanty (1982) have all investigated the effects of long-
time tails and dead-end pores. In Baker's model, which
is the most sophisticated, it is assumed that a fraction Pf
of the pore volume is available for fiow, while 1 —Pf is
the stagnant or dead-end fraction. A one-dimensional
convective-diffusion equation is assumed (thus ignoring
transverse dispersion), modified to account for the efFect
of the stagnant regions:

BCf BC aCf '0 Cf+(1 pf ) +U — =DL, (6.40)
Bt Bt Bx

et al. (1990), who did the same in a variety of sandstones
and carbonate rocks, all used the Coats-Smith-Baker
model to fit their data and found very good fits. Howev-
er, while Bacri et al. (1990a) attributed the long-time
tails in their data to the fact that the length of their medi-
um was too short to allow for the development of Gauss-
ian dispersion (see Fig. 37), Charlaix, Hulin, and Plona
(1987) and Gist et al. (1990) attributed this to the hetero-
geneous nature of their porous medium. Thus it is im-
portant to understand why the Coats-Smith-Baker model
is able to provide such good fits to the data (see below).

From their studies of dispersion in consolidated porous
media, Gist et al. (1990) identified two cases in which
long-time tails can occur. The first case is that of a
heterogeneous porous medium, when the permeability
contrast between various regions is strong enough. This
gives rise to a long-time tail in the concentration profile.
The second case is that of a narrow pore-size distribution,
in which the permeability heterogeneities are due to de-
fects in the packing density. If the long-time tails are in

C

10

where Cf and C, are the concentrations of the Aowing
and stagnant regions, respectively. This equation is aug-
mented by a mass balance between the stagnant and Aow-

ing Auids

C
-~~lkl ~A

(

BC,
(1—pf ) =k, (Cf —C, ), (6.41)

where k, is the mass transfer coefficient. k, ' can be in-
terpreted as the time that the Quid particles spend in the
stagnant regions. Equations (6.40) and (6.41), with the
appropriate initial and boundary conditions, are then
solved. Normally, Pf and k are not known a priori and
are treated as adjustable parameters.

Bacri, Rakotamalala, and Salin (1990), who used an
acoustic technique to measure the concentration and ve-
locity profiles in dispersion in unsaturated porous media
(i.e., dispersion in one fiuid phase while another immisci-
ble fiuid is also present), Charlaix, Hulin, and Plona
(1987), who measured dispersion coefficients and concen-
tration profiles in sintered-glass bead packs, and Gist

0
10 20

t(h)~ I

30

FIG. 37. Unsaturated concentration profiles at di6'erent cross
sections of the porous medium: (a) Mean Row velocity, V=3.6
cm/hr; (b) U=0.9 cm/hr. The dashed lines correspond to a
Graussian profile. Observe the long time tails of the profiles for
short distances x (from Bacri, Rakotamalala, and Salin, 1990).
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fact due to permeability heterogeneities, the implications
for the scale up of laboratory results to field conditions
can be important. For example, the Coats-Smith-Baker
model predicts that the long-time tails will disappear if
k, ' is much smaller than the total travel time of the Quid

particles [this is easily seen by inspecting Eqs. (6.40) and
(6.41)], whereas long-time tails will persist if there are
strong permeability heterogeneities at any length scale.
This is also consistent with studies and measurements of
tracer dispersion in groundwater Row in heterogeneous
aquifers (Pickens and Grisak, 1981). Before we go on and
explain this complex phenomenon, let us first study
dispersion in short porous media, a closely related sub-
ject.

H. Dispersion in short porous media

C =
—,'erfc(a )+—,'exp(Lu/DL )erfc(a+ ), (6.42)

where erfc(z) is the complementary error function. The
solution for a pulse input of total volume V;„&is found by

superimposing two step-change solutions. The outlet
concentration in this case was found by B. S. Carey [as
quoted by Gist et al. (1990)],

C =
—,'erfc(a )+ —,'exp(Lu/DL )erfc(a+ )

—
—,'erfc(P ) ——,'exp(Lv/DL )erfc(P+) .

If one is interested only in observation times t ))V;„/qf,
then the above solution can be simplified to

As mentioned above, Bacri, Rakatamalala, and Salin
(1990) attributed the long-time tails of their concentra-
tion profiles to the small size of their sample. Thus
dispersion in short porous media is of significance, be-
cause then the mixing zone will be large compared with
the medium's length. Brenner (1962) was probably the
first to investigate this issue, but Brigham (1974) made a
comprehensive and definitive analysis of the problem.

Let us first give the solution of a one-dimensional
convective-diffusion equation for a porous medium of
length I and various boundary and initial conditions.
We define the dimensionless quantities

I.+Ut

(4D, t)'"
p+= [L+v (t —V;„,/qf )]/[4DL (t —V;„,/qf )]'~

where qf is the volumetric fIlow rate and V;„;is the total
volume of injected tracer solution. For a step change in
inlet concentration at time t=Q, the convective-diffusion
equation provides an outlet solution given by Brigham
(1974),

tion profiles and found that the resulting fits are as accu-
rate as those provided by the Coats-Smith-Baker model.

Brigham (1974) showed that if the Coats-Smith-Baker
model is adjusted at the efBuent boundary to account for
the difFerence between in situ and Aowing concentrations,
then the above solutions for the convective-diffusion
equation in a finite-size sample and for that of the Coats-
Smith-Baker model will be essentially identical. This ex-
plains why Bacri, Rakotamalala, and Salin (1990) could
fit their data for a short porous medium with the Coats-
Smith-Baker model.

Koch and Brady (1987) also considered dispersion in
porous media of short-to-moderate lengths. They de-
rived an expression for the Fourier transform of the con-
centration and the effective dispersion coefIicients. They
showed that the characteristic time ~K& for reaching a
diffusive transport described by the convective-diffusion
equation is related to a Peclet number Pe& by

P
—2/3

KB 1 (6.45)

I. Dispersion in fractal porous
media and percolation networks

where Pe, =du/D and d is the typical grain size before
the grains are fused to produce a consolidated porous
medium. They found qualitative agreement between Eq.
(6.45) and the data of Charlaix, Hulin, and Plona (1987).
Bacri, Rakotamalala, and Salin (1990) also used the
Koch-Brady expression for the concentration profile, but
found only qualitative agreement between the predictions
and their data, whereas the Coats-Smith-Baker model
provided an accurate fit to the data. Perhaps the reason
for this discrepancy is that the Koch-Brady results are
valid in the limit of high porosities, whereas the data of
Bacri et al. (1990) and Charlaix, Hulin, and Plona (1987)
are both for lower porosities. Koch and Brady (1987)
also proposed that &KB could be taken to be the same as
k, ' in the Coats-Smith-Baker model. Finally, Han
et al. (1985) measured both DL and DT in three different
unconsolidated porous media made of packed particles,
and varied the Pe,clet number from 10 to 10 . They used
three types of packings, namely, uniform-size particles
and a narrow and a broad size distribution. In all cases,
they found that if the length of their packed column was
shorter than some critical length, the convective-diffusion
equation would not be able to predict their data, and that
this critical length depended on Pe such that the larger
the Pe, the larger the critical length for achieving a
diffusive dispersion regime. This is in qualitative agree-
ment with the prediction of Koch and Brady (1987), Eq.
(6.45). However, Han et al. (1985) observed no time
dependence for DT in their short porous media, whereas
DI was found to be time dependent before the critical
length was reached.

X [exp( —p )+exp( —a )] (6.44)

Gist et al. (1990) used Eq. (6.44) to fit their concentra-

In this section we discuss dispersion in percolation net-
works, which is relevant to dispersion in macroscopically
heterogeneous porous media. Moreover, as Katz and
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Thompson (1986, 1987) showed, fiow in a porous medium
with a broad pore-size distribution may be mapped onto
an equivalent percolation problem. The same must be
true about dispersion, since a broad pore-size distribution
gives rise to a broad distribution of pore Aow velocities,
which in turn affects dispersion strongly. There are two
features of percolation networks that can inhuence
dispersion. One is the fact that there are a large number
of dead-end pores near p„and thus holdup dispersion
can be important. The second is the fact that for length
scales shorter than the percolation correlation length g,
the sample-spanning cluster and its backbone are fractal
objects, and thus dispersion is not expected to be de-
scribed by a convective-diffusion equation. We call this
regime fractal dispersion. Two important characteristic
quantities are the dispersiuities aL =DL /U and a T =DT/U
(which are proportional to each other, but al is usually
larger than aT). Physically, the dispersivities represent
the macroscopic length scale over which a convective-
diffusion equation can describe dispersion, and thus in
some sense, they are similar to g .

In their simulations of dispersion in percolation net-
works, Sahimi et al. (Sahimi, Heiba, et al. , 1982, 1986;
Sahimi, Davis, and Scriven, 1983; Sahimi, Hughes, et al. ,
1983b) found that, as p, is approached, the dispersivities
also increase dramatically. This can be attributed to the
fact that near p, the transport paths are very tortuous,
resulting in a broad first-passage-time distribution and
thus large dispersivities. Figure 38 shows the results for
dispersion in a percolating square network. The increase
in dispersivities and thus the dispersion coefficients near

p, were confirmed by Charlaix, Hulin, and Plona (1987,
1988) and Hulin, Charlaix, et al. (1988), who studied
tracer dispersion in model porous media and measured
the DL . Charlaix et al. (1988) constructed two-
dimensional hexagonal networks of pores whose effective

18

15—

diameters were of the order of millimeters. They found
that as the fraction of open pores decreased, DL in-

creased sharply and Eq. (6.15) was satisfied. But even
when dispersion coefficients were measured quite close to
p„the quadratic dependence of DI /D on Pe [Eq.
(6.19)] was not observed (although the fraction of dead-
end pores is large near p, ), presumably because the ex-
change time between the Aowing Quids and the dead-end
regions was so long that it could not be detected during
their experiment. Hulin, Charlaix, et al. (1988) mea-
sured DL in bidispersed sintered glass materials prepared
from mixtures of two sizes of beads. They observed that
when the porosity was decreased from 30% to 12%, DL
increased by a factor of 30. The results of these studies
also indicated that dispersion is more sensitive to large-
scale inhomogeneities of a porous medium than to its de-
tailed local structure. Somewhat similar results were ob-
tained by Charlaix, Hulin, and Plona (1987).

We should mention here a paper of de Gennes (1983a)
in which he studied dispersion near p, . De Gennes
(1983a) presented a very long discussion and derivation
to show that, in calculating DL, the average Aow velocity
that one must use has to be based on the total travel time
of the tracer particles in the sample-spanning cluster,
rather than the travel time along the backbone alone. In-
tuitively, this is clear, and even in experimental measure-
ments of the concentration profiles and DL there is no
way to measure the travel time along the backbone alone;
what is routinely measured is the total travel or transit
time.

What are the scaling laws for DL and DL near p, '?

From our discussions so far, it must be clear that DL and
DT are sensitive to the structure of the porous medium.
Similar to fractal diffusion discussed in Sec. II, we may
define a crossover time ~„such that for t ))~„disper-
sion is Gaussian or diffusive and follows a convective-
diffusion equation, whereas for t &&~„dispersion is
nondiffusive, with the crossover taking place at about
t =~„.For dispersion near p„this time scale can be es-
timated from

12—
CO

L
(6.46)

C/3 9—
UJ
CL
C/)

C5 6—

To derive the scaling laws for DL and DT, we must con-
sider separately the various dispersion regimes discussed
above. Let us first introduce two random-walk fractal
dimensionalities by

(6.47)

(6.48)

0.5 0.6 0.7 0.8 0.9 1.0

FIG. 38. Dispersivities in a percolation network (from Sahimi,
Hughes et al. , 1986).

where (b,x ) = ((x —(x ) ) ) = (x ) —(x )z. These two
equations are defined for length scales I. &&g . Two
average Aow velocities can also be defined. If an average
velocity U, is defined in terms of the travel time in the
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sample-spanning cluster, then near p„v,-k/X, or

u-(p —p)P P 0

p Pg 0g (6.50)

where, Os=(p —pii)/v. For length scales L ((g, we
should replace g in Eqs. (6.49) and (6.50) by L, and—0~therefore v, -I. , and vB -I. , respectively. %'e also
de6ne a macroscopic Peclet number

where, 8=(p —P )/v, the critical exponents p and P~
were already defined in Sec. II, and we assumed that the
critical exponents of k and o (or g, ) are equal. On the
other hand, if an average particle velocity vB is defined in
terms of the travel times along the backbone, then
u2i-k/X, or

This demonstrates the strong eAect of the backbone
structure on dispersion processes. The backbone can be
approximated by nodes, links, and blobs. Links are the
bonds or pores that connect the blobs and the remaining
multiply-connected bonds aggregate together in the
blobs. The blobs are very dense in two dimensions, pro-
viding a wide variety of paths for the Auid particles with
a broad first-passage-time distribution. As a result, DL
and DT diverge as p, is approached. On the other hand,
the blobs are not very dense in three dimensions, which
means that the FPTD is not broad enough to give rise to
divergent DI and DT. In a hypothetical porous medium
modeled by a Bethe lattice, DL -DT —(p —p, )', which
indicates the strong efFect of closed loops of a network
(which are absent in Bethe lattices) on Dt and DT. For

1 —0~L ((g, we have DI -DT-L, which means that

(6.51)
d' =d' =1+0

w w B (6.55)

where u can be either u, or u2i. For L ((g, we replace

g~ in Eq. (6.51) by L. Having defined these quantities, we
can now investigate the scaling of the dispersion
coefficients and ~„nearp, .

(i) Let us first consider the small-Peclet-number re-
gimes discussed above. In this case convection has no
eFect, and Dt -Dz -D, -(p —p, ) ', as before. Forp —p

L «g, we have

Equation (6.55) implies that in two dimensions (Ax )
—(y2)-t'26, and in three dimensions &b,x &

—&y—(z )-t . That is, one has superdiQusion in two di-
mensions, i.e., a diffusion process in which the mean
square displacements grow with time faster than linearly.
This should be contrasted with fractal difFusion which is
always subdiQusiue [i.e., the mean-square displacement
grows sublinearly with time; see Eqs. (2.19) and (2.20)].
The time scale ~„is given by

d' =d' =2+I9 (6.52)
—p+ p~ —v 1+0~ (6.56)

Moreover
—p —2v+P

n ~2+8 (6.53)

( t n ) L n (2+ 8) (6.54)

(ii) Suppose now that dispersion takes place only in the
backbone of the network and that Pe is relatively large.
Although any porous medium has a large number of
dead-end pores near its p„asthe experiments of Charlaix
et al. (1988) indicated, the medium has to be extremely
close to p, if the e6'ect of the dead-end pores is to be seen,
so that dispersion along the backbone has practical im-
portance. For dispersion in the backbone, we have
DL /D, -Pe and DT/D, -Pe (mechanical dispersion),
and the logarithmic correlation indicated by Eq. (6.27) is
neglected in scaling analyses, which means that

DL, -DT-/zuni-gz s —(p —p, ) . Using the nu-$ —0 P Pg v

merical values of p, pii, and v given in Table III„weob-
tain DL, -DT-(p —p, ) in two dimensions, and
DL-Dz -(p —p, ), so that DL and Dz diuevge in two
dimensions but vanish very weakly in three dimensions.

so that w„-L+ for L (&g~. These equations are valid
for the entire sample-spanning cluster in the limit
Pe ~0. For dispersion along the backbone 0 is re-
placed everywhere with 8B. Moreover, we have

( t" ) —( t )", where n ) 1 is an integer, and therefore for
L «g~ we have (t")-(L /D, )", so that

which should be compared with Eq. (6.53) (replacing 0 by
1+0~

Os). For L (&g~, we have ~„-L . It is easy to—v —n (p —p~ ) 1+n 0~
show that (t")—(p —p, ) —g~, and

1+0~(t ) -g ', so that (t")/(t )"-g ". That is, from the
scaling of ( t) one cannot obtain the scaling of (t") for
n ) 1. For g ))L, we have

(tn) L " 8 (6.57)

d' =d' =0
w w (6.58)

and therefore & b,x &
—t and & b,x &

—t" in two and
three dimensions, respectively, with similar results for

which should be compared with Eq. (6.54) if we replace 8
by OB.

(iii) Now consider holdup dispersion discussed above.
We have, DL -( g~u) /D„which is the same as Eq.
(6.19) in which the length scale is g~ and the dif-
fusivity D has been replaced by D„as suggested
by de Gennes (1983). We can therefore write

0 2v+P P
DL —g —(p —p, ) ~, with a similar result for
DT, and thus DL -(p —p, ) ', and DL-(p —p, )

' in
two and three dimensions, respectively. That is, disper-
sion coefficients always diverge as p, is approached. This
divergence is undoubtedly because of the contribution of
dead-end pores and the long times that the particles
spend there. For L &(g, we have DL —L, which
means that
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the transverse direction. That is, one always has
superdiffusive transport when holdup dispersion is dom-
inant. The time scale ~„is given by

(6.59)

and r„-L for L «g . It is now straightforward to
show that (t")—(p —p, )

" ' + '+ -g' ' ', so that
(t")/(t )"-g'z ', and therefore scaling of (t ) is not
enough for obtaining that of (t") for any n) 1. In the
L «g~ regime we have

( tn) L n(0+2) —1 (6.60)

g(t)= F,
+D +D +D

(6.61)

where ~D and ~, are the di6'usion and convective time
scales, respectively, and rD -g + [see Eq. (6.53)], which
is also the largest time that the Quid particles can spend
in the dead-end pores, since the length of the longest
dead-end branches is of the order g . The scaling func-
tion F, has the following limiting behavior:

F, (x) as y~~,
F(x, )~'

yF2(x) asy ~0 . (6.62)

The case of pure dift'usion corresponds to y =r, /rD ~~,
while the convective limit corresponds to y ~0. Numeri-
cal simulations support this scaling representation of
Q(t).

Gist et al. (1990) used the percolation ideas of Katz
and Thompson (1986, 1987) to study and quantify disper-
sion in porous media. Following Sahimi and co-workers
(Sahimi et al. , 1982; Sahimi, Davis, and Scriven, 1983;
Sahimi, Heiba, Davis, and Scnven, 1986; Sahimi,
Hughes, Scriven, and Davis, 1986), they argued that the
fundamental quantity to be considered is the ratio g~ /ds,
where d is the mean grain size. Since (see Sec. II)
g~/d —(X ) ~ —(X"),and because X is roughly
proportional to the Quid saturation 5, we can write

Aside from Eqs. (6.52) and (6.53), all of the above equa-
tions were derived by Sahimi (1987) and were confirmed
by Monte Carlo simulations of Sahimi and Imdakm
(1988) and Koplik, Redner, and Wilkinson (1988). The
fact that ( t" ) /( t )" depends on n means that there is no
unique time scale for characterizing dispersion in the frac
tal regime. Koplik, Redner, and Wilkinson (1988) also
proposed an elegant and general scaling form for the
first-passage-time distribution given by

Their data for sandstones, epoxies and carbonates sup-
ported this relation. This confirms the relevance of per-
colation to dispersion in porous media and the scaling
laws discussed above.

The last question to be addressed is: What is the equa-
tion for the probability density function P(r, t) in the
fractal dispersion regime? For Craussian dispersion
P(r, t) is given by Eq. (6.3), and in Sec. II we discussed
P ( r, t ) for fractal dift'usion. For fractal dispersion,
Sahimi (1987) proposed the following equation for P(r, t),
in the limit of long times

—~, n
'

lx —(x)lP (r, t) —t ' exp —a
N

lyl
'

~ Izl
F31/d ' 1/d

W W

(6.65)

where a's are constant and as we already showed,
d' =d' for most cases. Here d, is the spectral dimension
(Alexander and Orbach, 1982), d, =2D~ /d, and
v~ =d'(d' —1) ', and v~ =d'(d„'—1) '. This equation,
which reduces to Eq. (6.3) when D =d and d„'=d =2,
is an extension of Eq. (2.21). Monte Carlo simulations of
Sahimi and Imdakm (1988) seem to support it, but no
rigorous derivation of it is yet available, and the matter is
still an open question (Sahimi and Hughes, 1993).

J. Dispersion in heterogeneous porous media

Dispersion in macroscopically heterogeneous media
has attracted considerable attention by both hydrologists
and politicians in the past two decades as a result of
growing concerns about pollution and water quality. Be-
cause of intensifying exploitation of groundwater, and
the increase in solute concentrations in aquifers due to
saltwater intrusion, leaking repositories, and use of fertil-
izers, dispersion in heterogeneous porous media has been
a main topic of research. Moreover, dispersion in misci-
ble displacement processes is an important phenomenon
during oil recovery processes, and depending on the mag-
nitudes of DL and DT and other physical parameters of
the process, dispersion can help or hurt a miscible dis-
placement process and its e%ciency. What follows is a
brief review of the main methods for studying dispersion
in macroscopically heterogeneous porous media.

' -s-'.
tag

(6.63)
1. Continuum models: Large-scale
volume-averaging techniques

g —4.4 (6.64)

Gist et al. (1990) derived a relation between a„=aL/ds
and g' /d using the percolation model. Their final result
1S

In studying transport in heterogeneous porous media,
one should define clearly a heterogeneous medium. Hal-
dorsen and Lake (1984) discussed four scales of averaging
which were microscopic, macroscopic, megascopic, and
gigascopic scales. They also devised statistical tech-
niques for estimating the distribution of heterogeneities
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in oil reservoirs. Bhattacharya and Gupta (1983) dis-
cussed a variety of length scales ranging from kinetic and
Taylorian to the Darcy scales, while Dagan (1986) con-
sidered length scales ranging from pore to laboratory to
formation to regional levels. Cushman (1984) provided a
brief review of the general problem of the development of
X-scale transport equations. A complete treatment of
the problem at all these length scales is not currently
available.

We remind the reader that dispersion in heterogeneous
porous media is purely mechanical, arising as a result of
large-scale spatial variations of the permeability of the
medium and the resulting random velocity field. Thus
Eqs. (6.17) and (6.18) are generally expected to hold in
which the length scale used in Pe may be the permeabili-
ty correlation length gk. In this sense, dispersion in a
heterogeneous system is somewhat simpler than that in
microscopically disordered but macroscopically homo-
geneous media.

Plumb and Whitaker (1988a, 1988b) [see also Thomp-
son and Gray (1986)] considered a two scale -problem and
developed a large-scale averaging technique for determin-
ing the macroscopic transport equation. The starting
point of their analysis was Eq. (6.31), which was then
averaged over regions in which the permeability varied
spatially. They derived a macroscopic equation for the
average concentration which contained such terms as
VVV I ( C )~I and VVB I ( C )~I lr)t, indicating that disper-
sion in macroscopically heterogeneous porous media does
not, in general, obey a convective-di6'usion equation. If
so, this can give rise to time- and scale-dependent disper-
sion coefficients which are in some sense similar to those
for fractal dispersion near and at p, discussed above.
The work of Plumb and Whitaker is valuable in that it
demonstrates clearly the deviations of dispersion in
heterogeneous porous media from a conventional CDE
description. The main problem with the approach of
Plumb and Whitaker (1988a, 1988b) is that, except for
very simplified models of pore space, the numerical solu-
tion of their equation is extremely dificult to obtain. The
problem has to be solved first at the local level in order to
use the solution as the starting point for determining the
solution of the macroscopic equation. Moreover, as dis-
cussed above, the main contribution to dispersion in a
heterogeneous medium comes from large scale variations
of the permeability of the medium, and local or pore-level
events such as diffusion do not play an important role,
and it is not clear how such large scale permeability vari-
ations can be incorporated into the computations.

Koch and Brady (1988) also studied dispersion in
heterogeneous porous media using averaging techniques.
They were able to show that if the correlations length gk
for the permeability Auctuations is finite, dispersion is
diffusive and obeys a CDE. However, if g„is divergent,
then fractal dispersion occurs in which the mean square
displacements grow with time faster than linearly, com-
pletely similar to fratal dispersion near and at p, for
length scales I.«g . The conclusion is that the length

This method has been popular with geologists and hy-
drologists, and has been used extensively. The main
motivation for using such methods is that the complex
geohydrological structures of aquifers, the nonuniformity
and unsteadiness of Aow, and other inAuencing factors
make dispersion a very complex phenomenon. Field
measurements of dispersivities are often costly and time
consuming. For example, one needs to drill many obser-
vation wells to monitor the spread of solute concentra-
tions, and the spreading itself is often very time consum-
ing and slow, and a few years may be needed for complet-
ing the investigations. The level of uncertainties in all of
the operations and measurements is quite high, and
therefore stochastic methods have been advocated so that
the concepts of randomness, uncertainty, and errors can
be introduced into the models and analyses.

In the early years of investigating this problem, the
convective-difFusion equation served as the starting point
for analyzing field data and the treatment of the problem
was deterministic. However, a considerable amount of
data has indicated unequivocally that DI and DT mea-
sured in a field are larger by several orders of magnitude
than those measured in a laboratory, and a completely
deterministic approach cannot explain such data. More-
over, the apparent dispersivities aL and o,'T seem to in-
crease with the transit times of the tracer particles, simi-
lar to those near p, in the regime I. «g . Figure 39,
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FIG. 39. Field-scale dispersivities vs distance from the tracers
injection point {from Arya et al. , 1985}.

scale gk plays a role very similar to g~. Moreover, Koch
and Brady (1988) showed that in the fractal regime the
space-time evolution of the concentration is universal,
and is uniquely related to the covariance of the perme-
ability field. This is again completely similar to fractal
dispersion near p, .

2. Continuum models: Stochastic-spectral methods
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taken from Arya et al. (1988), demonstrates this
phenomenon very clearly. As the distance from the
source increases, so does the dispersivity, and no asymp-
totic limit in which it is constant is apparent. It is now
well established that dispersion in heterogeneous porous
media is dominated by large-scale permeability hetero-
geneities. Warren and Price (1961) seem to be the first to
investigate dispersion in heterogeneous media, taking
into account the effect of permeability heterogeneities.
They used a Monte Carlo method which will be discussed
in the next subsection. Early analytical studies of this
problem, using stochastic concepts, were carried out by
Mercado (1967) and Buyevich et al. (1969), but not all
the ingredients were known at that time, and it has been
only in the last decade or so that a more comprehensive
analysis of this problem has become possible.

To give the reader some ideas about stochastic-spectral
models of dispersion in heterogeneous media, let us dis-
cuss briefly the work of Gelhar et al. (1979), which is
representative of this class of models. The starting point

is the CDE at the local level,

ac+ a(c)= a
D,

ac +a D, ac
L, T (6.66)

where it is assumed that C, DI, and DT, which are local
properties, are random processes with

C(x, z, t)=C (x, t)+c(x,z, t),
v=v +u,
DL, —DL,~+d
DT=DT +dT

(6.67)

(6.68)

(6.69)

(6.70)

where subscript m denotes a mean value, e.g. ,
C (x, t)=(c(x,z, t)), with the averaging being taken
with respect to the vertical depth z. c (x,z, t), dL, and dT
are fluctuations such that their mean values are zero. If
we substitute Eqs. (6.67) —(6.70) into Eq. (6.66) and take
the average of both sides, we find that

+ (U (. (+ (uc) = DL + (di )+ (dr ), (6.71)

where we have now used the fact that the mean quantities are independent of z. We subtract Eq. (6.71) from Eq. (6.66)
and use the coordinate g=x —

U t to obtain

a a~c a ac a c a ac ac

d
8

d
8

+ay "'ag "'ag (6.72)

If the perturbation u is small, then the second-order
terms (numbered 3, 7, and 8) can be neglected and one
obtains an approximate equation of the form

™
az ag ag

c = f e' 'dZ, (co),

then Eq. (6.73) becomes

(6.75)

I

kf ~, it is easy to show that dr /DL =3k /(2k ). If we
introduce a spectral representation for c

so that, even at this level of approximation, one already
has the additional term dI a c/ag . Equation (6.73) is
solved by assuming that the permeability is a
statistically-homogeneous random process. To solve this
equation, one introduces the spectral representation of
the random variables. If the field permeability kf is writ-
ten as, kf =k +k, where k = (kf ), and (k ) =0, then

k =f e' 'dZk(co), (6.74)

with

+aTv co y DI 2
= V, (—g, t)

at ™Lm a/2

Zc

de
V, =v 6,

(6.76)

where co is the wave number and Zk(co) is a complex pro-
cess with orthogonal increments. The random processes
u, c, dL, and dT also have similar spectral representa-
tions. Based on the experimental results of Harleman
and Rumer (1963) that aL seems to be proportional to

ac 3 a'C

ag +2"
ag

and aL=DL /U and ar=D /u . The cross spectrum
of u and c, S„,(co), and the spectrum of k, Skk(co), can be
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S„,(co) =E(dZ„dZ,*), (6.77)

represented by [see, for example, Lumley and Panofsky
(1974)]

Si,k(co) =E (dZkdZ„*), (6.78)

where E denotes the expected value, and + denotes the
complex conjugate. Since dZ„/u =dZk /k, we obtain

S„,(co)=
k

e
—P

U G
a Tco

aG a'G
at ' ag'

1 —(1+Pt)e
a'co4T

(6.79

where p=aTu~co . Similarly, (uc ) is given by

(uc) =AU G B —DL—aG O'G

Bt

- ~kk(~) 1 —e t"-
dco

k acom T

„Skk(~) 1 —e ~'B= k' a' 4
ddt .

tll T

Using all of these results, Eq.(6.71) is rewritten as

(6.80)

effect of correlations in the stochastic treatment of
dispersion. Stochastic models of the type that we dis-
cussed here can be useful if an adequate representation of
the velocity or permeability fields is available, in which
case the problem is in some sense simp/eI" than dispersion
in microscopically disordered and macroscopically
homogeneous porous media, because one does not have
to be concerned about boundary-layer and holdup disper-
sion mechanisms, which are generally very difFicult to
treat accurately. The interested reader should consult
Dagan (1986, 1987) and Haldorsen and Damsleth (1990)
for more details and references on stochastic modeling of
transport in heterogeneous porous media.

ac a'c o'c 8 C
=(A +aL )U —B — —3aL AU

'dt Bg Bg Bt Bg

O4C

aP
+ 0 ~ ~ (6.81)

Equation (6.81) shows that average concentration C
does not obey a convective-diffusion equation, a result
similar to what was obtained by Plumb and Whitaker
(1988b). The rest of the analysis is clear: a spectrum
Skk(co) is assumed and the quantities A and B are calcu-
lated. Having determined A and B, one can proceed to
analyze Eq. (6.81). Gelhar and Axness (1983) extended
this analysis to three-dimensional heterogeneous media
and found that the dispersion coefficients depend linearly
on the average velocity, which is not surprising [see Eqs.
(6.17) and (6.18)].

The above method assumes that all of the randomness
is due to the permeability field kf. An alternative ap-
proach relies on a stochastic representation of the veloci-
ty (Tang et al. , 1982), and develops an ensemble average
equation containing coupling between the velocity and
concentration fluctuations [which is similar to that found
by Crelhar et al. (1979)], that leads to a coefficient in the
stochastic transport equation which is similar to Dl in a
conventional CDE. This term, the ensemble dispersion
coef6'cient, depends upon the variance-covariance struc-
ture of the velocity field. If neighboring velocities are un-
correlated, the ensemble dispersion coefficients incI'ease
as a function of travel distance from the source. If the
covariance of the velocity field is an exponentially-
decaying function, then ensemble dispersion coefficients
reach a constant value. This analysis -shows clearly the

3. Monte Carlo methods

d =(24DLiht)' (0.5 —[R]),

dy =(24DTibt)' (0.5 —[R]),

(6.82)

(6.83)

where b, t is the time step, [R] a random number uni-
formly distributed in (0, 1), and D&& and DTt are local
dispersion coefFicients. Using this model, Smith and
Schwartz investigated many aspects of dispersion in
heterogeneous media and showed that strong permeabili-
ty heterogeneities give rise to non-Gaussian dispersion.
They also showed that when the permeability correlation

%'e have already discussed in Sec. IV the model of
heterogeneous porous media that was developed by War-
ren and Price (1961), Warren and Skiba (1964), and Hell-
er (1972), and its improvement by Smith and Freeze
(1979) and Smith and Schwartz (1980, 1981a, 1981b) who
incorporated short-range correlations between the neigh-
boring blocks. In addition, Smith and Schwartz used an
algorithm for the motion of particles that included both
deterministic and random displacements. In their simu-
lations, a tracer particle is released in the Aow field. For
each time step a velocity is calculated by linearly interpo-
lating the value from four surrounding values (in a two-
dimensional system}. The particle is then moved a dis-
tance that is fixed by the magnitude of the time step and
the velocity. This is the deterministic portion of the dis-
placement. Relocation from the deterministic position is
accomplished first by moving the particle a distance d„in
a direction that coincides with the How vector, and
second a distance d in a direction normal to it. The ran-
dom displacements d„and d are calculated from
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length gk is of the order of the system length, a unique
dispersion coeScient may not be possible to define.

4. Fractal models

It can be shown that for fGn one has
r 8

R/S = I
2

(6.88)

R (l)=X,„(l,L) X;„(I,—L), 1 & l ~L, (6.84)

where

1 L
(e) =—g ~(&), (6.85)

X(/, L)= g [e(u) —(e)~],
u=1

and S(I ) is given by
1/2

(6.86)

(6.87)

In the discussion of models of heterogeneous media we
mentioned Hewetts's (1986) work on modeling of trans-
port in heterogeneous porous media. Hewett analyzed
vertical porosity logs and found that their distributions
often obey fractal statistics. More precisely, they obey a
fGn with H) 0.5. Analysis of fGn data is best done by
using the rescaled range R (I)/S(l), where R (I) is the
range of the accumulated departure from the mean of the
variable (whose sample is the fGn), and S(I) is the stan-
dard deviation. [We note that this notation is standard;
see, for example, Feder (1988).] This method was first
proposed by Hurst et al. (1965), and is ideally suited in
uncovering the long-range correlations. In mathematical
terms, if the variable takes the value e (l) at position I,
R ( I ) is given by

Vertical porosity logs analyzed by Hewett (1986) pro-
duced values H =0.7 to —0.8, indicating long-range pos-
itive correlations. Typical data are shown in Fig. 40.
The exponent H, so obtained, was subsequently used for
generating fractal distributions of the permeability of the
reservoir with long-range correlations. In his work, the
dispersivity aL is predicted to vary with time as

]2H —1
O,'L (6.89)

so that with H =0.75 one obtains aL -t . A similar re-
sult was obtained by Philip (1986), Ababou and Gelhar
(1990), and Neuman (1990), and is also implicitly as-
sumed by Arya et al. (1988). Philip's work also predict-
ed that at short times, o,L

—t, and the constraint
0.5&H&1 was also proposed, consistent with Hewett's
analysis of porosity logs.

These results demonstrate most definitively the
relevance of fractal statistics to modeling heterogeneous
media and transport processes in such media. Using
these results, transport processes were simulated in a
series of papers by the Chevron group (Hewett and
Behrens, 1988; Mathews et al. , 1989; Emanuel et al. ,
1989). The processes that were simulated were a miscible
displacement and a waterflood (a process in which water
is injected into the medium to displace the oil; see Sec.
VIII), which is an immiscible displacement process.
These simulations showed that fractal statistics lead to
substantial improvements in the prediction of process
performance.

Density Porosity Log
8 . 1 . 2 .3 . 0 .5 . 6

l ~T ~ ~ I

188

RrS RNRLYSIS

388

088
\

588

688
Rrg 18

788

888

l888

l 188 18 188 1888
Lag Sp ac i ng

FIG. 40. Typical porosity logs of heterogeneous media and their 8 /S analysis, as explained in the text (from Hewett, 1986).
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A different approach to the application of fractal
geometry to transport in heterogeneous media was pro-
posed by Wheatcraft and Tyler (1988). These authors
were motivated by the experimental observations of Sud-
icky and Cherry (1979), Pickens and Grisak (1981), Sud-
icky and Frind (1982), Sudicky et al. (1985), and Molz
et al. (1983), numerical simulations of Hewett (1986) and
Arya et al. (1988), and Monte Carlo simulations of
Smith and Schwartz (1980, 1981a, 1981b) who had found
that dispersion coefFicients and dispersivities are often
scale dependent. They generated fractal and self-similar
heterogeneities and, using a Lagrangian random-walk
model of dispersion, showed that dispersion coeKcients
and dispersivities grow with the distance travelled. Al-
though their model does seem to provide an explanation
for the observed dependence of the dispersivities on time
and length scales in terms of fractal concepts, their
random-walk algorithm is not adequate enough to pro-
vide quantitative information, because their random walk
is "unbiased, " whereas if the motion of the tracer parti-
cles is to be modelled by a random walk, it has to be a
biased walk, the bias being generated dynamically by the
fI.ow field.

K. Dispersion in fractured rocks

Dispersion in fractured rocks is important to both oil
recovery processes and groundwater Qow, and has re-
ceived attention from researchers in both fields. Howev-
er, unlike the simpler problem of How in fractured rocks,
dispersion in such media has not received the true atten-
tion that it deserves, primarily because of two reasons.
One is that, as already discussed, appropriate models of
fractured rocks are still being developed, and studies of
dispersion in fractured rocks have mostly been delayed
until such models are developed. The second reason is
the level of complexity involved in such studies.

Previous studies of dispersion in fractured rocks can be
divided into two groups. In the first group are studies
that investigated transport in a single fracture. This
group includes the works of Grisak and Pickens (1980),
Neretnicks (1980), D. H. Tang et al. (1981), Noorishad
and Mehran (1982), and Lowell (1989). These studies
were concerned with the effect of the matrix on transport
through a single fracture. Some of these works were
analytical, while others required numerical simulations.
They are useful for modeling of transport in a network of
fractures, since a fracture network simulation requires
the solution of the problem at the level of a single frac-
ture. The second group includes the works of Schwartz
et al. (1983) and Smith and Schwartz (1984), who studied
dispersion in a discrete network of interconnected frac-
tures, and are perhaps the most advanced studies of
transport in fractured rocks. But before we describe
these, let us discuss first the continuum models that have
been used to study transport and dispersion in fractured
rocks, namely, the double-porosity and related models

which are widely used in the petroleum industry for
reservoir simulation.

1. The double-porosity and related models

The petroleum industry has relied heavily on the
double-porosity model discussed above for simulating
transport and dispersion in fractured rocks. Typical of
such attempts are those of Kazemi (1969), Closmann
(1976), Kazemi et al. (1976), Gilman and Kazemi (1983),
Thomas et al. (1983), and Dean and Lo (1988). The
main problem with these works is that while the models
are mathematically elegant and contain enough adjust-
able parameters to match the limited available data, they
often lack predictive ability, in the sense that if new data
become available, all parameters have to be fitted to the
new data. This is perhaps because such parameters do
not have any clear physical meaning; their sole purpose is
to reproduce a certain set of data and, as such, they can-
not be expected to be constant for a variety of different
data. More recent continuum works include those of
Firoozabadi and Hauge (1990) and Firoozabadi et al.
(1991), where references to earlier works can also be
found. These authors used simple structural models (for
example, fracture blocks in series) to investigate trans-
port processes. They found analytical solutions for cer-
tain problems, but the model of the rock that they used
was too simple for this solution to be applicable to more
general cases. The petroleum engineering literature con-
tains many of such models, and a review of such works is
beyond the scope of this paper. The reader should con-
sult Chen (1989) for a complete review of this class of
models.

Recently, Hughes and Sahimi (1993) developed a gen-
eral formulation for simulating transport in double-
porosity media. Their model takes into account the effect
of the distribution of hydraulic conductivities and the in-
terconnectivity of the pores and fractures. As such, the
model is much more realistic than the previous models
and can be used for simulation of transport processes in
fractured rocks.

2. Fracture network models

In the works of Schwartz et al. (1983) and Smith and
Schwartz (1984), the rock is represented by a two-
dimensional network of interconnected discrete fractures.
Such models were already discussed in the Secs. IV and
V. The fractures are oriented at various angles with
respect to the direction of the macroscopic mean Aow.
After calculating the Bow field throughout the network,
tracer particles are released into the network and their
motion, which is governed by a random walk biased by
the macroscopic mean Aow, is monitored. Thus their
model is completely similar to that of Sahimi et al.
(1982) for dispersion in pore networks. It is found that
the most important controlling factor is the orientation
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of the fracture sets with respect to the macroscopic mean
Aow, and that in most cases dispersion is not Gaussian or
diffusive.

As already mentioned, several careful experimental
studies have indicated that fracture networks may be
fractal objects. If so, dispersion in such networks should
also be fractal, with dispersivities and dispersion
coefficients that vary with time and length scales. Even
though the fracture networks used by Schwartz et al.
(1983) and Smith and Schwartz (1984) were not fractal,
their study did indicate the possibility of fractal disper-
sion. On the other hand, assuming that a fracture net-
work is a fractal object, Ross (1986) provided some argu-
ments about the variations of the dispersivities with the
scale of observations and the distance traveled.

L. Dispersion in stratified porous media

The last topic to be discussed in this section is disper-
sion in stratified porous media. Natural rocks are often
stratified, made of various layers in which the structural
and transport properties may vary greatly from stratum
to stratum. For this reason, dispersion and transport in
stratified porous media have always been of interest. The
earliest studies on transport in stratified porous media
appear to be those of Koonce and Blackwell (1965) and
Goddin et al. (1966), who studied the displacement of oil
by water or a solvent in a stratified porous medium.
However, these works do not belong to this section and
will be discussed brieAy in Sec. VIII.

Marie et al. (1967) and Giiven et al. (1984, 1985) ap-
plied Taylor-Aris dispersion theory discussed above to a
system of X strata that communicate with one another.
Marie et al. (1967) obtained a complex integral expres-
sion for the longitudinal dispersion coefficient involving
porosity, velocity, and local transverse dispersion
coefficient which were all functions of the distance per-
pendicular to the strata. Lake and Hirasaki (1981) and
Van den Broeck and Mazo (1983, 1984) also considered
Taylor-Aris dispersion in a stratified medium. In partic-
ular, Van de Broeck and Mazo (1983, 1984) derived
several interesting results, including the first-passage-
time distribution and the longitudinal dispersion
coefticient. Gelhar et al. 's work discussed above can be
thought of as a method of studying dispersion in two-
dimensional stratified porous media, since their equations
were averaged over the vertical distance z and the per-
meability field was assumed to depend on the distance
perpendicular to the strata. Plumb and Whitaker (1988a,
1988b) used their large-scale volume-averaging method
discussed above to study dispersion in stratified porous
rrledia.

In a seminal paper, Matheron and de Marsily (1980)
studied dispersion analytically in a two-dimensional
stratified porous medium, using analytical methods and
asymptotic expansions. The direction of the Aow velocity
was assumed to be parallel to the bedding and constant
for a given stratum. It was further assumed that the

component of the velocity along the direction of macro-
scopic Aow field is a weakly stationary stochastic process.
The permeability was assumed to be an isotropic stochas-
tic process and the medium was assumed to be of infinite
extent in both directions. Matheron and de Marsily
(1980) showed that under such conditions dispersion is
never diffusive. The reason is that since the system is
infinitely large and heterogeneous, a travelling tracer par-
ticle always samples new regions and strata with new
heterogeneities. As a result, a diffusive regime can never
be reached. Matheron and de Marsily also showed that if
dispersion is to be Gaussian, then the integral of the co-
variance of the velocity (or permeability) must be zero, as
its Laplace transform must depend linearly on the La-
place transform variable k near A, =O. However, for most
realistic situations, this will not be the case. On the other
hand, if the macroscopic Aow is not strictly parallel to
the stratification (i.e., a small but finite perpendicular
fiow component is added), then dispersion will asymptoti-
cally be Gaussian if this integral is finite.

Bouchaud et al. (1990) extended Matheron and de
Marsily's work by looking at a random walk in a two-
dimensional stratified medium containing random veloci-
ty fields. If the velocities in the x (macroscopic fiow)
direction are a function of the vertical distance, then
Bouchaud et al. showed that

(6.90)

i.e., one has superdifFusion, and that there are large
sample-to-sample Auctuations. The probability density
P (x, t), when averaged over various environments (reali-
zations of the medium), was found to be non-Gaussian
and approximately given by

(6.91)

where f (u) is a scaling function with the properties that
f(u)-exp( —u ) for u ))1, with 5=4/3. These results
show clearly the non-Gaussian nature of dispersion in
strongly heterogeneous media, and the inadequacy of a
convective. -diffusion equation for describing it.

From our discussion of dispersion processes in rocks, it
is clear that these phenomena are very sensitive to the
spatial heterogeneities of rocks. For this reason, disper-
sion has been advocated as a sensitive probe of the struc-
ture of heterogeneous rocks. Moreover, it is clear that
superdiffusion is a generic property of dispersion in
heterogeneous media with long-range correlations and, as
such, it is very different from pure difFusion in such
media, which is usually subdiffusive and very slow.

VII. MISCIBLE DISPLACEMENT PROCESSES

In the last section we discussed dispersion processes
which involve two Auids and one fluid phase. The
viscosities and densities of the two Auids were assumed to
be equal. In this section we discuss the displacement of
one Auid by another miscible Auid having a different
viscosity and density. If we inject a Auid into a system
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saturated with another Auid, and if the two Auids mix in
all proportions and their mixture remain a single phase,
the two tiuids are said to be first co-ntact miscible
Intermediate-molecular wveight hydrocarbons such as
propane and butane have this property. In other situa-
tions, the injected and in-place Auids may form two
difFerent phases, i.e., they are not first-contact miscible.
However, mass transfer between the two phases and re-
peated contact between them can achieve miscibility; this
is usually called multiple contact or dynamic miscibility.
In the petroleum industry, the miscible injection Auids
that achieve either first-contact or dynamic miscibility
are usually called miscible solvents. In this review we re-
strict ourselves to first-contact miscible problems, since
modeling multiple contact miscibility involves thermo-
dynamic phase equilibria calculations that are beyond the
scope of this paper.

Miscible displacement processes have received consid-
erable attention since early 1950s. In the 1950s and early
1960s over 100 projects were undertaken to study the
feasibility and economics of miscible displacement pro-
cesses as effective tools of increasing oil production. In
most of these projects hydrocarbon miscible Aooding was
used. However, most of the hydrocarbons used are nor-
mally less viscous than the oil and this viscosity contrast,
together with the so-called gravity segregation, make a
miscible displacement much less efficient than desired.
For this reason, miscible displacement processes have not
been used as widely as immiscible displacement process-
es, such as water Aooding, in oil recovery processes. In
most miscible displacement processes the injected Auid is
either a hydrocarbon or, less frequently, Aue gas, nitro-
gen, or C02. The temperature and pressure that one
needs for miscibility of the oil and these agents are often
so high that they limit the number of prospective reser-
voirs. For example, CO2 and medium-to-heavy hydro-
carbons become miscible only at high temperatures and
pressures (Sahimi et a/. , 1985; Sahimi and Taylor, 1991).
Another negative factor is the cost of a miscible displace-
ment process. It may happen that a miscible displace-
ment is more eKcient in terms of the amount of the
recovered oil than an immiscible process, but the total
cost of the miscible displacement (including the cost of
transporting the Auid agent to the oil field from other lo-
cations) is so high that makes it unattractive from an
economical point of view. Flue gas and nitrogen have
only limited application as agents of a miscible displace-
ment process in deep and high pressure reservoirs. In the
United States, C02 has the greatest potential for miscible
displacement and oil recovery, but its availability is ques-
tionable.

In this section, we review and discuss important as-
pects of miscible displacement processes. Since the publi-
cation of a paper of Paterson (1984) in which a connec-
tion between miscible displacement processes and
diffusion-limited aggregates was suggested, there has
been a great deal of interest in such phenomena, especial-
ly in the physics community. We review in this section a

few important continuum models of miscible displace-
ments and contrast them with the statistical and DLA-
like models. We also discuss the stability of miscible dis-
placement processes. This section is by no means exhaus-
tive. The interested reader can consult, for example, the
monograph by Stalkup (1984) which provides a detailed
discussion of these processes, the classical methods of
studying them, and the experimental data.

A. Factors affecting miscible
displacement processes

As discussed by Stalkup (1984), many factors contrib-
ute to the e%ciency of a miscible displacement. Among
the most important of these are the following.

(i) Mobility ratio: The mobility A, , of a iiuid i is defined
as the ratio of the effective permeability of the rock and
the Auid's viscosity: A,;=I;/g;. When one Auid dis-
places another, the mobility ratio M is defined as the ra-
tio of the mobilities of the displaced and displacing Auids,
and is one of the most important inAuencing factors in

any displacement process. Normally, M is not constant
because mixing changes the effective viscosities of the
two fluids. If, in addition to the solvent, another Auid
such as water is also injected into the medium, as is often
done in order to reduce the mobility of the solvent, then
it is not completely clear how to define an efFective value
of M. In many miscible displacement processes, one has
to deal with more than one displacing front. For exam-
ple, in tertiary oil recovery processes (which are under-
taken when a process such as water Aooding is no longer
effective) there is usually more than one displacing front.
The problem of defining an effective M is even more com-
plex in such a situation, and no completely satisfactory
method has been developed yet.

(ii) DEversion: D'ispersive mixing can decrease the
viscosity and density contrasts between the displacing
and displaced Auids, and in many cases this can be very
useful. As discussed in Sec. VI, three major contributing
factors to dispersion are microscopic and macroscopic
variations of fiuid velocities (or the permeabilities), and
molecular difFusion, all of which help mixing of the two
miscible Auids. Since longitudinal dispersion coefticient
is usually much larger than the transverse dispersion
coefFicient, more mixing takes place in the direction of
macroscopic Aow. Even at the level of a single pore, it is
dificult to study rigorously dispersive mixing of two
Auids of unequal viscosities. Ig. essence, we have to re-
work the Taylor-Aris dispersion theory, except that the
viscosity of the mixing zone depends on the concentra-
tions of the two Auids. To the best of this author' s
knowledge, and also to his surprise, no serious attempt
has ever been made to tackle this problem. Since, as dis-
cussed in Sec. VI, pore space heterogeneities strongly
affect DL and DT, this implies that such heterogeneities
also afFect miscible displacements.

Mobility ratio and gravity also affect dispersion. If
M) 1, viscous instability develops (see below) in which
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case the displacement is no longer a simple process.
However, if M& 1, the usual dispersion mechanisms dis-
cussed in Sec. VI will be operative. Moreover, since no
instability develops, the effect of pore space hetero-
geneities is also supressed. On the other hand, if in a
miscible displacement a less dense Quid displaces a denser
Quid, then gravity supresses the effect of dispersive mix-
ing.

In some situations, longitudinal dispersion affects a
miscible displacement more strongly than transverse
dispersion, and vice versa. For example, when large
fingers of the displacing Quids develop, which is often the
case when M & 1, then there would be a large surface area
on the sides of the fingers which allows for significant
transverse dispersion to occur. This can help join the
fingers, stabilize the displacement, and increase its
efficiency. By contrast, longitudinal dispersion can only
take place at the tip of the fingers, and therefore its effect
is much weaker than that of transverse dispersion. For
this reason, models that ignore transverse dispersion are
usually not adequate for describing a miscible displace-
ment.

(iii) Reservoir stratification: We have already discussed
the effect of stratification on dispersion. Obviously, if
dispersion is affected by stratification, so also are mixing
and miscible displacement. It is clear that the displacing
Quid preferentially chooses the strata with higher per-
meabilities. As a result, large amounts of the displaced
Quids can be left behind in the strata with low permeabil-
ities. If we try to displace this Quid by injecting more
displacing agent into the low permeability strata, some of
the agent will inevitably enter the high perme-
ability strata and do "nothing, " since such strata have al-
ready been swept by the displacing Quid, and this is not
very efficient. The effect of stratification is even stronger
when M& 1. Another phenomenon that affects miscible
displacements in stratified media is the crossQow of
displacing and displaced Quids between the strata. De-
pending on the direction of the displacement process,
crossQows can help or hurt the efficiency of the process.
Another factor that inQuences miscible displacements is
dead-end pores. We already discussed the effect of dead-
end pores on dispersion which, in turn, affects mixing
and displacement.

irregular shapes, and their formation reduces strongly
the efficiency of the displacement process. Figure 41,
taken from Habermann (1960), shows the effect of M on
the formation and shape of the fingers. The experiments
were carried out in a quarter of the so-called five-spot
geometry, made of consolidated sand. The porous medi-
um was essentially two dimensional. It is clear that as M
increases the amount of swept oil decreases, and thin and

P.V.

03

0.2

0 )

005

B. Viscous angering

If the displacing and displaced Quids are first-contact
miscible, and if M & 1, then the displacement process is
very simple and efficient. The d.isplaced Quid moves
ahead of the displacing Quid, the displacernent front is
stable, and there is a mixed zone between the pure
displacing and displaced Quids regions. However, as in
any other aspect of life, a real miscible displacement pro-
cess is not as simple as this. If M& 1, the front is unsta-
ble, and many fingers of the displacing Quid develop that
penetrate the displaced Quid leaving behind large
amounts of the displaced Quid. . These fingers have very

M.= &7.3

FIG. 41. Patterns of viscous fingers in a five-spot geometry as a
function of the mobility ratio M. B.T. denotes the break-
through, the point at which the displacing Quid first reaches the
producing well, while P.V. denotes the pore volume of the in-
jected Quid (from Habermann, 1960).
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d (x&+e)
dt

and therefore

k hI'
r)Iiti[ML + (1 —M)(x&+ e) ]

(7.2)

de khP(1 —M—)

dt r)~iti[ML +(1 M)xI ]— (7.3)

if e«x&, and hence e=e". However, c&0 if M) 1,
which means that e grows exponentially with t, and a
long thin finger is formed, but it dies out if M&1. Al-
though this example is too simple, it does illustrate the
effect of M in the formation of viscous fingers. We
should remark that finger formation is not restricted to
miscible displacements, and can also occur in immiscible
displacements, which will be discussed in Sec. VIII. Be-
cause of its significance, viscous fingering has been stud-
ied for a long time, and several review papers have dis-
cussed the subject. Among these are those of Wooding
and Morel-Seytoux (1976), who reviewed viscous finger-
ing in a porous medium, Bensimon et al. (1986) and
Saffman (1986) who discussed immiscible viscous finger-
ing only in a Hele-Shaw cell (see below), and Homsy
(1987) who considered the problems in both Hele-Shaw
cells and porous media. Viscous Angering also belongs to
the general class of pattern-selection problems, and
Kessler et al. (1988) have provided a comprehensive re-
view of the subject. Therefore it is clear that the subject
is both important and well-reviewed, and hence we re-
strict ourselves to a review of the most interesting and
important results.

There have also been many experimental studies of
viscous fingering, both in miscible and immiscible dis-
placements. Some of these include those of Blackwell
et aI. (1959), Benhan and Olson (1963), Slobod and Tho-
mas (1963), Greenkorn et al. (1965), Kyle and Perrine
(1965), Perkins et al. (1965), Mahaffey et al. (1966), Per-
kins and Johnston (1969), and more recently, those of Pa-

long fingers of the displacing Quid are formed.
Why do these fingers form? Collins (1961) gives a sim-

ple but very clear illustration to explain this
phenomenon. Suppose that a porous medium is saturat-
ed with oil, and a displacing Quid is injected into the
medium to displace it. Assume that dispersion is negligi-
ble. The displacing Quid displaces the oil linearly, i.e., if
the porous medium is homogeneous, the front will
remain a Aat plane throughout the process. Suppose now
that the displacing Quid encounters a small region of
higher permeability. Then the front will travel faster in
that region and produce a bump that is a distance e
ahead of the rest of the front. If k, P, and b I' are, respec-
tively, the permeability, porosity, and pressure difference
along the medium, then using Darcy's law we can write

dxy k hI'
dt r)&P[ML +(1—M)x&]

when x& is the position of the front, L, the medium's
length, and M =gp/q&. Similarly, we can write

terson (1981, 1983, 1985), Paterson et al. (1982), Park
et al. (1984), Chen and Wilkinson (1985), MAl&y et al.
(1985, 1987), Nittman et al. (1985), Ben-Jacob et al.
(1986), Daccord et al. (1986), Lenormand et al. (1988),
Tabeling and Libchaber (1986), and Bacri et al. (1991).
Most of these experiments were carried out in either a
Hele-Shaw cell, or a porous medium with microscopic
disorder. Flow in the Hele-Shaw cells was either rectilin-
ear or radial. The Auids were mostly oil and water, in the
case of immiscible displacements, or oil and a miscible
Quid. Most of the experimental works were also accom-
panied by a linear stability analysis (see below), and most
authors were interested in the qualitative aspects of the
displacement process, e.g. , the shape of the fingers and
the effect of M on them. Some of these experiments will
be compared with the theoretical predictions. In addi-
tion, viscous fingering and pattern formation in viscoelas-
tic media (Van Dame et al. , 1987a, 1987b), and with
smectic and nematic liquid crystals (Buka et al. , 1986;
Horvath et aI , 198.7a) have also been studied. Finally,
Horvath et al. (1987b) studied viscous fingering in a
Hele-Shaw cell with a set of parallel grooves on one of
the plates to investigate the effect of an uniaxial anisotro-
py on the morphological phase diagram of the system.

Before we go on with the review of the subject, we
would like to remind the reader that our policy
throughout this review has always been to mention, and
give credit to, the first important work on any subject we
discuss. Hence, we should mention that Hill (1952) ap-
pears to be the first who published experimental and sim-
ple analytical results on viscous fingering. Later, Saffman
and Taylor (1958) and Chouke et al. (1959) did the first
rigorous analysis of the problem. Homsy (1987) suggest-
ed that one must call this phenomenon the "Hill instabil-
ity" problem, instead of the now-popular "Saffman-
Taylor instability. " We take a middle-of-the-road ap-
proach and refer to this as the "Hill-Saffman-Taylor in-
stability. "

C. Miscible displacements in Hele-Shaw cells

The simplest system to study Row problems in is a
Hele-Shaw cell (Hele-Shaw 1898), which is an essentially
two-dimensional system confined between two parallel
plates of length L, separated by a small distance b. For
single-phase Aow, in the absence of dispersion, and in the
limits of small Reynolds number and small b/I„, the
governing equations are the continuity equation, V.v =0,
and Darcy's law, Eq. (5.1). The equivalent permeability
k of the cell is k =b /12. These equations are the same
as those of two-dimensional incompressible Auids in a
porous medium. As long as dispersive mixing is absent,
the same analogy is also valid between viscous fingers in
Hele-Shaw cells and a two-dimensional porous medium.
If dispersion is present, the analogy breaks down because,
as we discussed in Sec. VI, transverse dispersion is always
present in a porous medium, whereas a Hele-Shaw cell
with its thin gap cannot support significant transverse
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dispersion in the third direction. With dispersion
present, we have to add a convective-difFusion equation
to the set of governing equations, and keep in mind that
the Quid viscosity g is now dependent upon the concen-
tration C. The solution to this set of equations depends
on the value of the Peclet number, which was already dis-
cussed in Sec. VI, and on two other dimensionless
groups, which are [see Homsy (1987)]

gk(pi —
s ~)6=

v(i), +q2)
(7.5)

Let us first outline the general approach to stability
analysis of miscible displacements, as we refer to it fre-
quently in the subsequent subsections. In Sec. VII D we
shall present a more quantitative description of the ap-
proach, but for now we restrict ourselves to a qualitative
description.

The standard method of stability analysis of miscible
(or immiscible) displacements can be summarized as fol-
lows. In the first step the governing equations are intro-
duced which represent the unperturbed quantities. Next,
one introduces perturbations into the dependent variables
of the model. This results in a set of equations which,
when subtracted from the unperturbed model, yieMs the
governing equations for the perturbations. In the next
step, the governing equations for the perturbations are
solved either analytically or numerically, from the solu-
tion of which stability criteria are obtained. Clearly, if
the perturbations grow with time, then the displacement
is unstable. At first, this may seem to be a straightfor-
ward exercise which can be carried out with essentially
no difficulty. However, the governing equations for the
perturbations are often nonlinear and difficult to solve,
even numerically. In that case, the equations are linear-
ized in order to make the computations more tractable.
This results in a linear stability criterion which is useful
for the onset of stability, but cannot be used for predict-
ing the long time behavior of the displacement process.
One common feature of linear stability theory is that one
can decompose the initial perturbations into separate
Fourier components, so that the stability of each com-
ponent can be investigated separately. This often
simplifies the problem considerably. This also suggests
that Fourier analysis (also known as spectral analysis) is a
very convenient way to solve the perturbation equations.
It also introduces the terminology of wave theory, and
thus the stability criterion may be expressed in terms of
perturbations that have wavelengths greater or less than
a critical value. Of course, if the critical wavelengths can
be measured, then the stability criterion can be much
more quantitative.

Dispersion limits the wavelengths or frequencies of the
Fourier components that can be unstable, which is why it
usually has a positive effect on a miscible displacement.
In the presence of dispersion the problem is always time

(7.6)

where the cutoff wave number is given by

a, = A Pe/4,

and co is maximum when

(7.7)

a =(2&5—4)A Pe/4 . (7.8)

Thus the Peclet Pe=LV/D provides a physical mecha-
nism for the introduction of a cutoff length scale. Equa-
tion (7.6) should be compared with the result in the ab-
sence of dispersion, i.e., when Pe~ ~, co=(A +6)a,
which is unphysical because it implies that smaller wave-
lengths are even more unstable than the larger ones. In
this subsection, we present a mostly qualitative discus-
sion of the available results. In the next subsection,
where we discuss the results for porous media, we give a
more quantitative discussion, most of which is also appli-
cable to Hele-Shaw cells. Homsy (1987) provides an ex-
cellent and comprehensive review of the subject, and
what follows in this subsection is essentially a summary
of his discussion, plus our own remarks and comments
and the review of the works since the publication of his
review.

In the early 1960s several attempts were made to inves-
tigate the stability of miscible displacements in both the
Hele-Shaw cells and porous media. The approach of in-
troducing small perturbations that we discussed above
was taken by Perrine (1961)and Wooding (1962). In par-
ticular, Wooding (1962) treated the stability of a time-
dependent base solution, and considered buoyancy-driven
fingering. By expressing the disturbance quantities as a
Hermite expansion and truncating the expansion beyond
the first term, he obtained a dispersion relation which
was qualitatively similar to Eq. (7.6). He also argued that
all disturbances will die out if dispersion is given enough
time to act. Another approach was based on a macrosta-
tistical method, first used by Scheidegger and Johnson
(1961), in which the fingers are treated statistically. Thus
only the average cross-sectional areas occupied by the
fingers are taken into account, and the shape and size of
the individual fingers are neglected. Dougherty (1963),
Koval (1963), and Perrine (1963) used this approach and

dependent, transport coefncients such as the viscosity
and dispersion coefficients are concentration (and hence
time) dependent, and one cannot find a physical steady-
state solution. Chouke was the first who analyzed the
effect of dispersion, but his results appeared almost 30
years after their derivation in an Appendix to the paper
of Crardner and Ypma (1982). For now we assume that
the disturbances are of the form of normal modes propor-
tional to exp(cot +iay). Chouke considered the case of a
jump in viscosity, i.e., a base-case solution in which longi-
tudinal dispersion is absent, but allowed both longitudi-
nal and transverse dispersion to act on the disturbances.
His result for co is then given by

~=—'[Aa —a3Pe —a(a Pe +2AaPe ')' ],
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took into account the effect of dispersion. In all cases,
one ends up with nonlinear equations which have to be
solved numerically in order to study instability.

Schowalter (1965) studied fingering in which both den-
sity and viscosity variations are present. Although, as
discussed above, the governing equations do not allow a
steady base solution, he assumed one anyway and ob-
tained a dispersion relation and a cutoff wave number.
Heller (1966) considered horizontal miscible displace-
ment in a rectangular system, and studied th.e early
growth or decay of perturbations using a Fourier
analysis. He also included the efFect of dispersion and ap-
proximated the profiles by straight-line segments (or
"ramp-shaped" profiles as he called them), and obtained
the dependence of the growth exponent on the wave
number. However, the assumption of straight-line seg-
ments for the profiles makes his results of limited applica-
bility.

Peters et al. (1984) considered a miscible displacement
process, took into account the effect of dispersion, and
performed a Fourier analysis to derive a linear stability
criterion. Tan and Homsy (1986) considered this prob-
lem for the case of no density difference, and a situation
in which the concentration dependence of the viscosity is
given by i)(C)=exp( —C lnM). The Row was rectilinear
and the domain was unbounded. Both isotropic and an-

isotropic media were considered, and a quasi-steady-state
assumption was made. They showed that, for the isotro-
pic case, Chouke's result is essentially correct in the sense
of predicting correctly the magnitude of the growth rates
and the preferred wave numbers. However, they also
found that at longer times dispersion causes a shift to
larger wave lengths, and stabilizes the Aow to some ex-
tent. Tan and Homsy (1986) also showed that transverse
dispersion causes a shift to smaller length scales, as ex-
pected. Hickernell and Yortsos (1986) considered the
case in which the solvent is injected into the system
whose amount varies with time. This results in a spatial-

ly varying mobility profile. They ignored the effect of
dispersion and showed that a finite thickness of the zone
of viscosity variations provides a cutoff scale. Chang and
Slattery (1986) showed that, when there is a steep change
in concentration and M ) 1, the displacement can be un-

stable at the injection boundary. But, if the concentra-
tion is changed sufficiently slowly with time at the en-

trance to the system, the displacement will be stable to
small perturbations, regardless of the value ofM

In some situations, dispersion can play a role similar to
that of surface tension in immiscible displacements. As
we shall discuss in Sec. VIII, surface tension is responsi-
ble for tip splitting in the fingers, which is the main mech-
anism of pattern formation, and dispersion can cause a
similar phenomenon in miscible displacements. The ex-
periments of Wooding (1969) in a Hele-Shaw cell, in the
presence of buoyancy forces, are indicative of this
phenomenon. In Wooding's experiments, transverse
dispersion causes lateral spreading of the fingers, as ex-
pected. However, because of this spreading, the tips of
the fingers can become unstable since their typical

breadth exceeds the cutoff length scale, which is also set
by transverse dispersion. Because of this instability, tip
splitting can occur if Pe exceeds a critical value which,
according to Tan and Homsy (1987), depends on both A
and M. For example, at M =e, 250 & (Pe/2„)„;„„i
(300, if dispersion is isotropic (i.e., DI =Dr), where A„
is the aspect ratio of ihe cell. Note that if transverse
dispersion is weak, then tip splitting may not happen at
all, because before it can start one must have spreading of
the fingers, which can happen only if transverse disper-
sion is strong enough.

Numerical simulations of miscible displacements in
rectilinear Aows (such as those in Hele-Shaw cells) with
weak dispersion (high values of Pe) are particularly
difficult. The first attempt in this direction was made by
Peaceman and Rachford (1962), using finite-diit'erence
methods, which was not successful because of large nu-
merical errors that dominated the solution. Since their
pioneering attempt, a lot of effort has been dedicated to
this problem. The main reason for this difhculty was that
for large values of Pe, viscous fingering can occur on
many scales, and there is no unique power of Pe with
which one can rescale all lengths. Zimmerman and
Homsy (1991)proposed a method which appears to tack-
le this problem to a large extent. They used Fourier
transforms to recast the system of partial difFerential
equations, governing Row and dispersion into an ordinary
difFerential equation for the Fourier coe%cients. Then
they used a two-dimensional Hartley transform, which
for an arbitrary function g (x,y) is given by

G(a, a )=, +peas
1

(x.x, )'"„,
277+ Ay+ g(x y),

3'

(7.9)

where X„andX are the number of collocation points,
a and a are the wave numbers in the longitudinal and
transverse directions, respectively, and cas(x) is the so-
called "cosine and sine" function, formed by summing
the cosine and sine of its argument. The advantage of us-

ing the Hartley transform is that it can be easily inverted,
because it is its own inverse. An eKcient method for
computing a two-dimensional discrete transform via
&„+Xdiscrete fast Hartley transforms has been de-
vised by Bracewell et al. (1986). Zimmerman and Hom-
sy (1991) used the Taylor-Aris result, Eq. (6.12), to relate
DL to Pe, in which they used 6, =2/105, the appropriate
value for Row between two parallel plates (Hele-Shaw
cell), and assumed that Dz =D (i.e., a constant,
velocity-independent DT). As such, the results are valid
only for Hele-Shaw-like geometries, although the authors
claimed that the results are also valid for porous media.
Over a wide range of value of Pe, they observed a variety
of phenomena, including spreading, tip splitting, shield-
ing, and pairing. In a shielding process, one finger gets

Rev. Mod. Phys. , Vol. 65, No. 4, October 1993



Muhammad Sahimi: Flow phenomena in rocks 1481

ahead of its neighbors and grows explosively. Eventual-
ly, the tip of the finger spreads out and shields the neigh-
boring fingers. Pairing is a phenomenon by which pairs
of fingers join and form a larger finger. This
phenomonon has been observed both with isotropic
dispersion (DL =DT) and anisotropic dispersion. It can
also be found in immiscible fingering as was shown by
Tryggvason and Aref (1985) and Kessler and Levine
(1986). According to Tan and Homsy (1987), pairing
occurs because of unequal cross-How about neighboring
fingers. This allows a finger to spread, which shields the
growth of the neighboring finger and results in its eventu-
al collapse. If tip splitting is absent, then pairing eventu-
ally results in the reduction of the number of fingers to
one or two.

The results of Zimmerman and Homsy (1991) also in-
dicated great sensitivity in the complex two-dimensional
fingering patterns that evolve on the size of the initial
noise. However, when an averaging was performed over
the cross-section area, it was found that the one-
dimensional average concentration profiles were similar
with large Pe and sma11 D /DL. This means that it may
be possible to describe nonlinear viscous fingers by a
one-dimensional model, which is invariant with respect
to Pe and Dm ~DL~ for large Pe and small Dm ~DL'
sense, this is the same as the idea of Scheidegger and
Johnson (1961) already mentioned above. It is also simi-
lar to the work of Fayers (1988), who constructed an ap-
proximate one-dimensional model with adjustable param-
eters that had clear physical meaning. Koval (1963) and
Todd and Longstaff (1972) also constructed empirical
one-dimensional models which could predict the evolu-
tion of the average concentration profile well. But be-
cause of their empirical nature, they could not provide
much insight into the mechanisms of viscous Angering.
Finally, Christie and Bond (1987) developed a numerical
method for the evolution of both linear and nonlinear
fingers. They used a finite-difference method for the lon-
gitudinal direction and Fourier decomposition in the
transverse direction.

The effect of the cell geometry is significant. Wilson
(1975) and Paterson (1985) studied miscible viscous
fingering in a radial Hele-Shaw cell both theoretically
and experimentally. Paterson (1985) ignored dispersion
and obtained the following relation for ~

co= Am —1, (7.10)

where m is a discrete azimuthal wave number. This
equation indicates that there is no cutoff azimuthal wave
number, which is not surprising. Thus Paterson (1985)
suggested that in a radial Hele-Shaw cell, and in the ab-
sence of dispersion, fingers can form on al/ length scales,
down to the size of the gap between the plates. Based on
a heuristic argument using the concept of energy dissipa-
tion in the gap, Paterson (1985) estimated that the cutoff
wavelength is approximately 4b. Figure 42, taken from
his work, shows the pattern of miscible viscous fingers in
a radial Hele-Shaw cell. While his experimental results

FIG. 42. Viscous fingers in a radial Hele-Shaw cell. The gap
between the plates is 6=0.3 cm, and the exposures are, from left
to right, at t=12, 17, 21, 26, and 31 sec, respectively. The indi-
cated distance is 4b (from Paterson, 198S).

appear to agree with his rough estimate of the cutoff
wavelength, Paterson's argument in the general case in
which dispersion is present is not expected to hold, be-
cause, as discussed above, transverse dispersion (however
small in a Hele-Shaw cell) helps the fingers to spread,
which leads to tip splitting. Thus fingers cannot form
down to the scale b. This has been discussed in details by
Homsy (1987). Finally, mention should be made of the
experiments of Nittman et al. (1985) and Daccord et al.
(1986). These authors used a viscoelastic Iluid to study
fingering in both radial and rectilinear Hele-Shaw cells.
Their viscous fingers show very localized tip splitting and
shieldings which are also much stronger than those ob-
tained with a Newtonian Auid. The viscous fingers a1so
have a fractal structure with a fractal dimension close to
that of diffusion-limited aggregates, which will be dis-
cussed below. These results contradict those obtained
with Newtonian Auids discussed above, and remain unex-
plained.

D. Miscible displacements in porous media

Since the 1950s there have been many experimental
studies of miscible displacements in porous media, most
of which were made of sand or other unconsilidated ma-
terials. In particular, Slobod and Thomas (1963) and
Perkins et al. (1985) used x-ray techniques to make visu-
alization studies of viscous fingers. Normally, one can
observe viscous fingers over length scales that are several
times larger than the typical pore size. Since in these ex-
periments the transverse Pe (i.e., the Peclet number based
on DT instead of D ) is relatively low, finger growth is

probably due to the spreading phenomenon discussed
above. A careful examination of the pictures taken dur-
ing the experiments of Slobod and Thomas (1963) and
Perkins et al. (1965) shows no tip splitting. However,
Habermann's (1960) and Mahaffey et al. 's (1965) experi-
ments do show tip splitting due to shielding, similar to
those in a Hele-Shaw cell already discussed. The dom-
inant length scale in all of these experiments is much
larger than a typical pore size. However, if one carries
out experiments in a porous medium in which Pe in-
creases with decreasing length scales, one can no longer
claim that the dominant length scale is much larger than
the typical pore size. An example is the work of Pater-
son et al. (1982) who studied miscible viscous fingers in

packed beds. The viscous finger patterns that they ob-
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tained are similar to diffusion-limited aggregates. This
indicates that, for a given pore space there is a crossover
between the continuum and discrete description. An im-
portant and interesting question is the shape of viscous
fingers for the case in which there is no mechanism for
the creation of a cutoff scale, e.g. , in the absence of
dispersion. These will be discussed below where we
present discrete models of viscous fingering.

How can we describe miscible displacements and
viscous fingers in a porous medium? One method is
based on averaged continuum equations, most of which
were discussed above and the rest are reviewed below.
This can then describe any instability that is smooth on
the length scale of the continuum equations. Thus all of
the above discussions regarding miscible displacements in
Hele-Shaw cells and similar geometries are equally appli-
cable to porous media, provided that dispersion phenom-
ena discussed in Sec. VI are properly taken into account.
For example, the approach of Zimmerman and Homsy
(1991) can be used for miscible displacement in porous
media if, instead of what they used, we use the appropri-
ate equations for the velocity (or Pe) dependence of DI
and DT, discussed in Sec. VI. In the strict absence of
dispersion (i.e., the limit Pe~ao, where Pe is based on
Dl or DT and not D ), viscous fingers will occur on all
scales, with growth rates that increase with decreasing
scale. This means that a scale will be reached for which a
continuum description is no longer appropriate, and one
has to develop a pore-level model. Such models are dis-
cussed below. The initial-value problem in this case is ill

posed, but one can seek solutions that contain discon-
tinuities. Since dispersion is absent in this case, there will
be a step jump in the viscosity profiles (from the displac-
ing to the displaced fiuids). As a result, the pressure
obeys the Laplace equation, and the pressure and Quid

cruxes are continuous across the front separating the dis-
placed and displacing Auids. One may have all sorts of
singularities in the solution, and different nonuniformities
can appear in different boundary value problems. For ex-
ample, Shraiman and Bension (1984) and Howison (1986)
investigated cusp formation in viscous fingering.

Even since Paterson (1984) pointed out an analogy be-
tween DLA processes and viscous fingering in the limit
A = 1 (M = co ) and in the absence of dispersion, there
has been considerable interest in this subject. But, before
we review and discuss this body of work, we fi~st discuss
brieAy continuum approaches to miscible displacements
and their stability in porous media. As we already point-
ed out, most of the methods that we discussed for rnisci-
ble displacements in Hele-Shaw cells are also applicable
to porous media, provided that the effect of dispersion is
properly taken into account.

1. Continuum approaches to miscible
displacements in porous media

In the petroleum industry, a standard approach to mis-
cible displacements in porous media is based on solving

the governing equations with finite-difference techniques.
The earliest of such methods was that of Peaceman and
Rachford (1962) mentioned above, while the works of
Giordano and Salter (1984), Cxiordano et al. (1985), and
Christie and Bond (1987) represent the latest of such at-
tempts. There are two major problems with such
methods. The first is that the resolution of the results is
often poor, making it very difticult to investigate viscous
fingers. The second problem is that the initiation of in-
stabilities in this method requires permeability variations.
However, the results are often very sensitive to the initial
permeability variations that are used in the simulations.
Although supercomputer technology has made it possible
to use very fine finite-difference grids, the results do not
yet agree quantitatively with the experimental data, un-
less a very large and detailed mesh is used.

An alternative approach is based on the method of
weighted residuals, proposed by Tan and Homsy (1987)
and Hatziavramidis (1988). Fourier expansions (or a
spectral method) and Chebyshev polynomials are used in
this method, which are accurate and relatively efIicient.
To obtain numerical solutions of the resulting equations,
collocation methods are used which means that these
equations are solved exactly at the collocation points.
One can also use a fast fourier transform (FFT) to refine
the grids. Even the system with the refined grid can be
solved more efhciently than those with the standard
finite-difFerence method. However, the method can be-
come complex if simulations for long times are needed.
Moreover, FFTs can be used if the number of grid points
is an integral power of two, which means that most of the
advantage gained from the use of FFTs can be lost. Fi-
nally, one usually has to use periodic boundary condi-
tions in order to avoid the so-called Gibbs phenomenon,
which is characterized by wiggly outlet concentration
curves. Hatziavramidis (1988) compared the results of
his spectral method with simulation results and found
good agreement between the two. Other continuum
methods were discussed when we reviewed miscible dis-
placements in Hele-Shaw cells.

2. Linear stability analysis
of miscible displacements
in porous media

%'e have already given a qualitative discussion of how
a stability analysis of miscible displacements is per-
formed. In this subsection we provide a more quantita-
tive discussion of this. The main goals of this subsection
are to illustrate, (i) how a linear stabihty analysis is actu-
ally carried out, and (ii) how far an analysis can take one.
We emphasize again that most of this discussion is also
applicable to Hele-Shaw cells. A detailed discussion of
such stability analyses is given by Yortsos (1990). What
follows is a summary of his discussion.

As already discussed in Sec. VI, dispersion coefIicients
depend on the mean Aow velocities, and the precise form
of the dependence depends on the value of the Pe. How-
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ever, for simplicity, we assume that DL and DT are relat-
ed to the Bow velocities v and U through the relations
(Bear 1972)

DL =D +tzL lvl+(~L, —ttT)v.'/lvl,

DT =D +aTlvl+(a~ —aT)v,'/lvl,

(7.11)

(7.12)

BC BC BC B BC B BC
Bt " Bx ~ By Bx Bx By By

8V~ 0Vy+ =0,

(7.13)

(7.14)

which describe longitudinal and transverse dispersion
coefficients in terms of the corresponding dispersivities
uL and cxT, and the molecular diffusion coefficient D
For convenience, we shall follow the notation in Yortsos
and Zeybek (1988) and Yortsos (1990) to obtain the sys-
tem

CXL U

L, = D +CXLU
(7.24)

appear in Eq. (7.20). e is a measure of flow-induced an-
isotropic dispersion, which is characteristic of porous
media, while L, is a measure of the contribution of
mechanical dispersion to total dispersion. It must be
stressed that in the works of Chouke (1959) and of Tan
and Homsy (1986) the term containing L, in (7.20) is ab-

sent, thereby restricting their conclusions to essentially
constant (although still anisotropic) dispersion. Zimmer-
man and Homsy (1991) used velocity-dependent disper-
sion coeKcients, although their functional forms were
diff'erent from (7.11) and (7.12).

Based on our discussion in the previous subsections,
one expects that the onset of instability and related
features would be dictated by the sharpest mobility con-
trast, namely, that associated with a step concentration
profile, which also allows for an analytical solution given
by (Yortsos and Zeybek, 1988)

k aI
Ux=

77 Bx

k a~
U3' ~ gy

(7.15)

(7.16)

aR [1+L,yotanh(R /2) ]=2yo(a +yo),

where

yo=(ea +co)'~ )0 .

(7.25)

(7.26)

Implicit in the above continuum description is the as-
sumption that the local Peclet number PeI=vl/D, is
small.

The base state corresponding to constant injection at
concentration C;, and rate v in a rectilinear Bow
geometry is given by the well-known diffusive profile
(Tan and Homsy, 1986)

In general, the solution of (7.25) leads to parabolic like
profiles, examples of which are shown in Fig. 43. The
case L, =0 corresponds to the result of Tan and Homsy
(1986): for unfavorable mobility ratio (R )0) large wave-
lengths are unstable, while a strong stabilization due to
transverse dispersion is exerted at smaller wavelengths.
A cutoff wave number can be identified

C =
—,'erfc(g/2t ' ), (7.17) R

CX

2(a+e' )
(7.27)

aI
Bg

1

A, (C)
(7.18)

where g=(x vt)/L is a m—oving coordinate, A, denotes a
normalized mobility (inverse of viscosity), and lengths are
scaled with DL o/v, where DLO is the base-state dispersion
coefficient. Using normal modes for concentration and
Aow rate, respectively,

As expected, o,, increases with increasing unfavorable
mobility, and with an increase in the ratio of longitudinal
to transverse dispersion (I/e). However, the limits of the
continuum description should be kept in mind. The size

1.2

[C', v„'I =
I X, N I exp(cot +i ay ),

the following eigenvalue problem is obtained:

X~~
—(ea +co)X=@&C( L, (C&Cg)g, —

A, (A, '4„;)&—a 4= —a RX,

(7.19)

(7.20)

(7.21)

0.8

0.6

04

where the mobility dependence is taken to be (Tan and
Homsy, 1986) 0.2

A, ( C) =exp(RC), (7.22) 0
0

and R =lnM. The subscripts denote derivatives with
respect to the variables. Two important terms, e and L„ WAVE NUMBER

D +aTU
D +FLU

(7.23)
FIG. 43. Step-profile results for the growth rate vs the wave
number for various values of the parameter L (from Yortsos
and Zeybek, 1988).
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of the most unstable disturbance scales with the charac-
teristic length, which for large enough Bow rates becomes
equal to the dispersivity o,'L, which is normally a multiple
of the typical pore size (or the length scale of the hetero-
geneity). It is apparent that a possible conflict may devel-
op between the above result and the continuum descrip-
tion, precluding meaningful predictions over scales of the
order of the microscale.

While the case L, =0 leads to expected results, a dis-
tinct sensitivity develops as L, takes nonzero values (see
Fig. 43). This effect is present only because of the veloci-
ty dependence of the dispersion coeKcients, and it can be
best quantified in terms of the combination

B =(RL, /2)tanh(R /2) —1 —e'i~ . (7.28)

The following may then be shown (Yortsos and Zeybek,
1988):

(i) When B(0 (which is always the case if L, =0), at
small enough viscosity ratio and for L,&0, the cutoff
wave number is finite

a, =
—,'R e '~

( B), — (7.29)

although it increases as L, or B does.
(ii) On the other hand, when B)0, a finite cutoff' does

not exist, with the rate of growth increasing indefinitely
at large o. as

co-B(B+2e' )a )0 . (7.30)

Clearly, such is the case for a sufficiently high (but finite)
mobility contrast, as long as L,WO, as shown in Fig. 43.
This unexpected and rather remarkable result was ob-
tained on the basis of a step base state, which is subject to
a singular behavior in the large (as well as in the small) a
region. To better understand the proper dependence,
Yortsos and Zeybek (1988) attempted a more rigorous
asymptotic analysis valid for base states near a step
profile, namely, for

C =
—,'erfc(bg), (7.31)

where b ))1. Their results showed that the step profile
prediction, inequality (7.30), is invalid at large a, when
B)0, and in fact a cuto6'wave number does exist. How-
ever, the latter was found to increase monotonically and
without bound as b increases, namely, as the profile be-
comes steplike, provided that B)0. Thus the essential
predictions, that qualitatively different instability
behavior is obtained by changing the sign of B, remain
intact. Most of the above results were confirmed by the
recent experimental study of Bacri et al. (1991).

The implications of the above are straightforward.
Due to the dependence of the dispersion coefficients on
the Aow velocity, an essential feature of hydrodynamic
dispersion in porous media, and for mobility ratios that
exceed a critical value dictated by the given process con-
ditions, a miscible replacement is predicted to be unstable
at all wavelengths. Under such conditions, there is no

finite preferred mode, and in fact the above continuum
description is ill-posed and breaks down.

This remarkable result raises serious doubts about our
ability to describe the conditions for the onset of instabil-
ity in miscible displacements. Recall that the result is an
outcome of several hypotheses, including the validity of a
continuum description, with dispersion represented in
terms of a passive solute and formulated in terms of a
conventional convective-di6'usion equation. If the
present predictions are to be taken seriously, the break-
down of the continuum hypothesis beyond a finite M
calls for an alternative description to the present CDE-
based description. One concludes that at least for large
enough mobility ratios, our present description of misci-
ble displacements is inadequate, particularly at the early,
and the most important, stage of the process. Thus al-
though Zimmerman and Homsy (1991)used a CDE, it is
not clear that the formulation is actually applicable to
the early stages of the growth of the fingers. Clearly, ad-
ditional fundamental work is needed. The above analysis
demonstrates clearly the significance of anisotropic
dispersion (i.e., the inequality of DL and DT ). Of course,
all of the above results are limited to linear fingers, and
nonlinear fingers require full numerical simulations of the
above equations, provided that the proper forms of the
velocity-dependence of the dispersion coefficients are
used.

One problem with all of the above approaches, includ-
ing those of Tan and Homsy (1986, 1987), Zimmerman
and Homsy (1991),and Yortsos and Zeybek (1988) is that
it is difficult to incorporate the effect of rock heterogenei-
ty into such models, especially if it is strongly disordered
with correlations over many length scales, in which case
not only the above approaches cannot account for such
effects, a continuum description may not even be valid to
begin with. This is certainly the case if the pore space is
fractal. For this reason, discrete models, which are Qexi-
ble enough for including the e6'ect of pore space disorder,
offer an alternative to the continuum formulations. Such
an alternative is very useful for obtaining insight into the
effect of disorder on viscous fingering. %'e now review
and discuss the discrete models.

E. Discrete models of miscible displacements

In this section we discuss discrete models of miscible
displacements, and compare their performance with the
experimental data and the predictions of continuum
models.

1. Diffusion-limited aggregation

In the DI-A model one starts with an occupied site (the
"seed") of a lattice, located either at the center of the lat-
tice or on its edges. Random walkers are released, one at
a time, far from the seed particle and are allowed to
move randomly on the lattice. If they visit an empty site
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adjacent to an occupied one, the aggregate of the occu-
pied sites advances by one site and occupies the last site
visited by the walker. The walker is removed, another
one is released and so on. Now, imagine that the aggre-
gate represents a displacing Quid, and the empty sites
represent the displaced or the defending Quid. Thus the
original seed particle represents the point at which the
displacing Quid is injected into the system. Since the par-
ticles perform their random walks on the empty sites, the
probability P(r) of finding the particle at a position r in
this region obeys the Laplace's equation, V P=O. Be-
cause the walkers never move into the aggregate, the
probability of finding them there is zero. If the walkers
are reQected at the "walls" of the system, one has
(VP)„=0,where n denotes normal to the wall. Finally,
the mean speed at which the front between the displacing
and displaced Quids advances is proportional to the prob-
ability on the side of the displaced Quid next to the front,
i.e., v=(VP)„. But these are essentially the same equa-
tions for the displacement of a viscous Quid by a miscible
inviscid one, in the absence of dispersion. In other words,
a miscible displacement in the limits M=ao and no
dispersion can be simulated by this algorithm. The DLA
model was originally invented by Mitten and Sander
(1981, 1983) to simulate aggregation of small particles,
and Meakin and many others have studied it extensively
[see Meakin (1988) for a review of the subject]. Paterson
(1984) was the first to note the above analogy between the
DLA model and miscible displacements.

There are, however, several problems with this analo-
gy. Recall that a miscible displacement can be unstable if
M& 1. The DLA algorithm produces an aggregate that,
(i) has a fractal structure with a fractal dimension of
about DO~A ——1.7 and 2.45, in two and three dimensions,
respectively; and (ii) it contains a large number of very
tiny fingers in which tip splitting occurs at all times.
Chen and Wilkinson (1985) displaced glycerine by oil in
an etched-glass network and showed that, if the system is
perfectly ordered (all pores have the same size), then the
fingers form ordered (dendrites) patterns (see Fig. 44), in
which growth occurs mostly along the coordinates of the
system, whereas the DLA algorithm would generate a
random fractal for exactly the same situation. The
reason is that the surface of a DLA structure is dominat-
ed by noise: random walkers taking random trajectories
arrive there one at a time, which makes the surface very
rough. Thus one has to somehow reduce the noise. Two
algorithms were introduced to accomplish this. In the
first, one introduces a "sticking probability, " the proba-
bility p, that the front will advance by one unit once a
random walker is in an empty site next to the aggregate.
The DLA case corresponds to p, = I. However, if we let
p, to be very small, then the surface of the aggregate be-
comes very smooth, because a random walker will en-
counter the front many times (roughly 1/p, times on
average) before the front actually advances. This was
discussed by Meakin (1986).

The second method is due to Tang (1985) and Szep

et al. (1985). In this method, each time an empty site
next to the front is visited by a random walker, a counter
registers the event. The front does not advance to an
empty site in its neighborhood unless the empty site has
been visited at least n, times, so that n, = I corresponds
to the DLA case, and n, = co represents the mean-field
(noiseless) limit of the DLA model. Kertesz and Vicsek
(1986) showed that this modification of the DLA algo-

(c)

FIG. 44. Patterns of viscous fingers in an etched-glass network.
In (a) all pores have the same radius, while in (c) the network is
completely disordered (from Chen and Wilkinson, 1985).
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P (r) =a,a+a2, (7.32)

where ~ is the curvature of the interface, a, is propor-
tional to the surface tension, and a2 is a constant. Ac-
cording to the method proposed by Kadanoff' (1985) and
Szep et al. (1985), one should allow the walkers to leave
the interface and walk through the displacing fIuid until
they finally reach the displacing Quid again. One allows
the walkers to leave the displacing Quid with a probabili-
ty proportional to P(r) given by Eq. (7.32), which mea-

rithm can reproduce the patterns obtained by Chen and
Wilkinson [see also Siddiqui and Sahimi (1990a)].

If, in an unstable miscible displacement, we reverse the
direction of the pressure gradient and allow the more
viscous Quid to displace the less viscous (or inviscid) one,
the displacement will be stable. This can be simulated by
allowing the displaced Quid to advance each time the n,
visits occur. This was suggested by Paterson (1984) and
Tang (1985), and may be called anti-DLA (since it essen-
tially represents the reverse of the DLA process). Pater-
son (1984) compared the results of such simulations with
the experimental data of Habermann (1960) and found
reasonable agreement. C. Tang (1985) compared his re-
sults with the exact steady-state solution of Saffrnan and
Taylor (1958), and the exact unsteady-state solution of
Shraiman and Bensimon (1984), and found excellent
agreement. Therefore this aspect of DLA-based simula-
tion of miscible displacements is clarified.

There are several other aspects of DLA-based simula-
tions of miscible displacements that deserve careful con-
sideration. The first one is whether this type of simula-
tion can be generalized to the case of finite values of M.
The next question is whether this type of simulation can
be a quantitative tool for simulating miscible displace-
ments in a disordered porous medium, at least in the limit
M= co. The third aspect is the fact that this type of
simulation shows a sensitive dependence on the lattice
size, and therefore it is highly important to establish links
between the parameters of the simulations and the physi-
cal parameters that can be measured. Next is how to
generalize the DLA algorithm for a porous medium with
a pore size or a permeability distribution (as in a hetero-
geneous medium). The next issue is whether it is possible
to generalize such techniques to include the efFect of
dispersion since, as we discussed above, dispersion plays
a fundamental role in miscible displacements, whereas in
most of published papers using this kind of simulations,
this effect has completely been ignored. We shall investi-
gate these issues, but we first review briefly a few models
related closely to the DLA algorithm.

Before closing this subsection, we would like to men-
tion that the DLA algorithm has been generalized to in-
clude the effect of surface tension, as in an immiscible
displacernent in a Hele-Shaw cell, which is the classical
Hill-Saffman-Taylor problem. This method was suggest-
ed by Szep et al. (1985) and Kadanoff (1985). The prob-
lem is to force the probability P(r) at the interface be-
tween the two Auids to have a value of the form

sures the net fIux of walkers through each interface bond,
and then moves the displaced or displacing fIuid forward
whenever the Aux is —n„or +n, . In this manner one
has a complete and meaningful model for simulating im-
miscible displacements in a Hele-Shaw cell. Various ver-
sions of this basic model were used by Sahirni and Yort-
sos (1985), Meakin et al. (1987), Sarkar and Jensen
(1987), and Tao et al. (1988) to investigate various as-
pects of pattern selection problem. Vicsek (1984, 1985)
suggested a variant of the DLA in which the particles
stick to the aggregate with a probability proportional to
P (r) given by Eq. (7.32), without the reshuffling of the in-
terface suggested by Kadanoff' (1985) and Szep et al.
(1985). Sarkar (1985) showed that Vicsek's model simu-
lates the early stages of the Hill-Saffrnan-Taylor problem.
Finally, Liang (1986) applied the Kadanoff-Szep et al.
model very successfully to the study of immiscible dis-
placements in a Hele-Shaw cell.

2. The dielectric breakdown model

This model was proposed by Niemeyer et al. (1984) to
study dielectric breakdown. A discrete version of the
Laplace's equation is solved in which, as the boundary
condition, the unknown function is specified at the
boundary. In the context of a miscible displacement, the
unknown function is the pressure, so the simulation is ap-
propriate only for the case of a viscous Quid and an invis-
cid Quid. At each step of the simulation, one site on the
boundary is selected for growth, the probability of selec-
tion being proportional to a power of the gradient of the
unknown function. This algorithm is usually called the
dielectric breakdown model (DBM). The same acronym
is used by Ben-Jacob et al. (1985) to denote dense
branching morphology. The DBM can also be simulated
by a random walk technique. The method would be sirni-
lar to that of DLA, except that in the DBM the front ad-
vances to a nearest-neighbor empty site if this site is visit-
ed by a random walker which also crosses the front
(whereas in the DLA model the front advances as soon as
the empty site is visited by the walker). Thus the bound-
ary conditions at the front are not the same for the DBM
and the DLA.

3. Gradient-governed growth model

DeGregoria (1985) and Sherwood and Nittman (1986)
introduced an algorithm for simulating miscible displace-
ments at finite values of M, and in the absence of disper-
sion. The model is usually called the gradient-governed
growth model (GGGM). This is essentially an extension
of the DBM to the case in which both fIuids have a finite
viscosity. A discrete version of the Laplace equation is
solved in the region occupied by each Quid to yield the
pressure field. One point on the front is advanced at each
time step, with the selection probabilities proportional to
the local pressure gradients. The model is wrong in a rni-

croscopic sense, because the velocity field is determined
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4. The two-walker model

This method was proposed by Siddiqui and Sahimi
(1990a) for simulating miscible displacements at finite
values of M, in the absence of dispersion, using only ran-
dom walkers. Since the pressure in each Quid region
obeys the Laplace equation, one random walker for each
fiuid region (displacing and displaced) is used. Because in
the absence of dispersion and surface tension the front al-
ways advances forward, both random walkers advance
the front, upon contacting it, with a probability propor-
tional to p &

= (M +1),for the particle in the displacing
fiuid region, and p2=M/(M+1), for the particle in the
displaced fiuid region. As such, this model can be
thought of as the random walk version of the GGGM.
Because of different mobilities of the two Quids, the
lengths of each step of the random walkers are diferent
in each Quid region. The results of this model are in
complete agreement with those obtained with DBM and
GGGM. Siddiqui and Sahimi (1990a) also generalized
the model to the case in which there is a pore size or pore
permeability distribution. In this case, the random walk-
ers take each step with a probability proportional to the
pore permeabilities (see also Meakin, 1987; Blumberg Sel-
inger et al. , 1989). A somewhat similar model was pro-
posed by Leclerc and Neale (1988), although the precise
relation between these two models is not clear to us.

5. Probabilistic models that
include the effect of dispersion

The discrete models discussed so far do not explicitly
take into account the effect of dispersion. We now dis-
cuss three models that can accomplish this, two of which
use probabilistic arguments and are discussed in this sub-
section, while the third one is completely deterministic
and will be discussed in the next section.

The first of the two probabilistic models is due to King
and Scher (1987, 1990), whose details are as follows.
Consider first the case of miscible displacement without
dispersion. For point injection of Quids the governing
equations are

ac
Bt

+u VC =5 (x),

u= v/q„=V X(gz),

(7.33)

(7.34)

assuming the entire front is moving instantaneously, yet
only one bond at the front is moved at a time. DeGre-
goria (1985) and Sherwood and Nittmann (1986) used this
model to simulate miscible displacement at finite values
of M, in the absence of dispersion. Using a 100X100
square network, DeGregoria (1985) obtained reasonable
agreement with Habermann's (1960) data. Sherwood
(1986) used the same model for investigating the size dis-
tribution of the islands of the displaced Quid that are
formed when the displacing Quid completely surrounds a
portion of the displaced Quid. (C) =(1—C+ CM'")-'

7J J

(7.36)

If there is no dispersion, then the solution is simple: A
concentration bank C=1 displacing C=O, which are also
what the diffusion-limited aggregation model predicts.
However, in general, the concentrations need not form a
bank. To develop a probabilistic model, King and Scher
(1987, 1990) interpreted (BC/B~)d x as a two
dimensional probability density function for concentra-
tion evolution. Equations (7.33) and (7.34) tell us that we
can write

d x = — dg, dg2= —dCdg,a~ ag, ag,
(7.37)

where g, and gz are local tangential and normal coordi-
nates on the front. Equation (7.37) can now be given a
probabilistic interpretation. The probability of concen-
tration evolution at x [i.e., (BC/Br)d x] is the product of
the probability d g of fiuid fiow through x and the proba-
bility dC of a concentration gradient moving through x.
For a given realization, one samples the cumulants C and

i.e., determines the fiux contour C =r „and the
streamline /=re, and calculates their intersection in the
plane, which is also the point at which concentration is
modified. Here r, and r2 are two random numbers uni-
formly distributed in (0,1).

In a simulation, one has to employ a probabilistic in-
terpretation of the finite-difference version of Eq. (7.33).
We integrate this equation over a rectangular spatial re-
gion A;. and time interval h~ to obtain 5C;, the change
in the average concentration C; . This is given by

(7.38)

Obviously, if 5C; /b. C is properly normalized, then it can
be interpreted as the growth probability at site ij. One
now has to fix hC. If we choose AC=1, we have a situa-
tion similar to the diffusion-limited aggregation model
(i.e., a cluster of C= 1 surrounded by a cluster of C=O).
According to Eq. (7.38), the growth probability is
nonzero only when the boundary integral overlaps the
cluster edge. This method has the advantage that finite
values of M can be used in the simulations. But it also
implies that very large clusters cannot be generated with
this method.

We can now add the effect of dispersion. Consider first
the static case v=0. The evolution equation is simply

where q„is the injection rate (volume per unit thickness
per unit time), f is the stream function, and 5 (x) is the
two-dimensional Dirac delta function. The injected
volume of Quid provides a natural time variable

r= I q„(t')dr'/g . (7.35)
0

Note that the viscosity function is a bulk Quid property.
Mixture viscosities q are well represented by the follow-
ing formula due to Koval (1963)
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the diffusion equation, BC/8 T —DL 7 C=0, where
T =DI t (King and Scher assumed the equality of Dz and
DT, which is not justified). In discrete form

5C;, = It) n VCdl,hT
bxby

(7.39)

which should be compared with Eq. (7.38). If the time
step b, T satisfies b, T/(b, xhy) ~ AC, then

5C," AT
( —n VC)dl .

faces

(7.40)

For the full problem (convection and diffusion) we can
split the time evolution as

BC BC+ D BC
~at qa ~ 'aT

In this equation d/dt represent separate convection and
dispersion processes. Convective evolution is described
by Eq. (7.39), while dispersion evolution is represented by
Eq. (7.41). Thus we have a sequential finger evolution in
which convection initiates the growth, which is then
modified or moderated by dispersion. If we fix the time
interval 5t, then 5r=(q„/P)5t, and 5T=DI 5t, which
then define the Peclet number Pe=5r/5T. In practice,
5z is set by 5~= b,~=bx Ay b, C, implying that
AT =6~/Pe. In most of practical cases, Pe) 1, and Eq.
(7.41) is properly normalized. However, if Pe ( 1, 5T is
subdivided into nr intervals to obtain b, T =(5&/Pe)nD,
where na & Pe

King and Scher (1990) simulated miscible displace-
ments with dispersion for various values of M and ob-
tained reasonable agreement with the data of Habermann
(1960). It is interesting to note that, although in the
GGGM and the two-walker model dispersion is not
present explicitly, the numerical algorithms seem to con-
tain implicitly the effect of dispersion.

The second probabilistic method is due to Araktingi
and Orr (1988). It this model the porous medium is
represented by a three- or two-dimensional system of cu-
bic (square) grid blocks. At the beginning of each time
step the pressure field is calculated, given the distribution
of permeability and the current distribution of Quid

viscosities. Tracer particles that carry a finite concentra-
tion of displacing Quid are injected into the system and
are moved with velocities based on the pressure field.
The velocities are calculated at the midpoint between
pressure nodes. Velocities for particles that are not on
such nodes are obtained by linear interpolation. After
moving the particles by convection to their current posi-
tion, the effect of dispersion is simulated by random per-
turbations of particle positions in the longitudinal and
transverse directions. As discussed in Sec. VI, for
diffusive dispersion the standard deviations of the motion
of the particles are given by, cr = (2DL r )', and

o~ =(2DTt)' . Thus the distribution of the particles
about a mean position can be simulated by multiplying
these standard deviations by a number between —6 and
+6. This number is obtained by adding a sequence of 12
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FIG. 45. Comparison of the predicted recovery vs pore volume

injected (PVI) with the experimental data of 81ackwell et al.
(1959), for various values of mobility ratio M and grid sizes
(from Araktingi and Orr, 1988).

random numbers, distributed normally with a zero mean
and unit standard deviation, to —6. The values +6 and
—6 were selected because, on a practical basis, the proba-
bility of a particle moving beyond 6 standard deviations
on either side of the mean is less than 1%. After the par-
ticles arrive at their new position, the current time step is
determined. To avoid having particles travel a distance
greater than a grid block, the time step is chosen to allow
measurement equal to half of a grid block length (or
width), travelled at the highest existing velocity. The
new pressure field is calculated, and a new position for
each particle is determined. This procedure is repeated
many times. It should be noted that both this method
and that of King and Scher require a priori estimates of
DI. and DT.

Araktingi and Orr (1988) compared their results with
the experimental data of Blackwell et al. (1959), using

DL =1.6X10 cm /sec, and DT=6.5X10 cm /sec.
Figure 45 compares their results with the data and the
agreement is very good. Although this method suffers
from Quctuations due to the limited number of particles
used in the simulation, the ensemble-average properties
over several realizations compare well with the data of
Blackwell et al. (1959). Note that the probabilistic
method suggested by Araktingi and Orr (1988) is very
similar to Monte Carlo method of Smith and Schwartz
(1980, 1981a, 1988b) for studying dispersion. The only
difference is that Araktingi and Orr (1988) treated the
case in which the viscosities of the two Quids were not the
same. The main disadvantage of these models is their
long simulation times. This is especially true when the
effects of gravity and transverse dispersion are to be in-
cluded in the simulations.
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6. Deterministic models that
include the effect of dispersion

P, P=ggz—(x;J/M+l, ~
—x; )q; /(vrR; )=.

glJ
(7.42)

where gz is the viscosity of the displaced Quid, q;J the
Qow rate in the tube between i and j, and g; is the hy-
draulic conductance of the tube. At each node i of the
network we have conservation of fiuid fiuxes, g q; =0,
which, when written for the interior nodes of the net-
work, yields a set of linear equations for the nodal pres-
sures. The boundary conditions are such that at the in-
jection point P=1, while at the production point P=O.
After determining the nodal pressures, we move the front
a distance

Ax; = At,
q;.

lJ

into one of the pores adjacent to the interface. We
choose the time step b, t to be the time necessary to exact-
ly move the front to reach a node through the fastest
tube. We then update all other fronts (i.e., we move them
into the slower pores adjacent to the front and partially
fill such pores) and, for the new configurations of the re-
gions of displacing and displaced Quids, calculate the
pressure field and repeat the entire process. This method
was used by Chen and Wilkinson (1985), King (1987b),
Siddiqui and Sahimi (1990a), and Ferer et al. (1992) to
investigate miscible displacements without dispersion.
The main advantage of this method is that it allows one
to investigate the effect of pore-level or large-scale
heterogeneities on the displacement process. It is also
free of the type of noise that is generated by the DLA-
type models.

The second method is capable of taking into account
the effect of dispersion. As in the first model, we first cal-
culate the pressure field throughout the network. There
is, however, one difFerence between this case and the first
case: the portion x; is occupied by a mixture of displac-

These models were invented for investigating viscous
fingers in pore networks. Nobles and Janzen (1958) had
already used analog resistor networks to study the efFect
of M on miscible displacements. Random networks and
deterministic Qow models were originally proposed by
Simon and Kelsey (1971, 1972), but their model was too
simple and the networks used were too small. There are
two such models, one of which is applicable to miscible
displacements in the absence of dispersion, while the oth-
er can also take into account the effect of dispersion.

Let us first discuss the case in which dispersion is
neglected. The porous medium is represented by a net-
work of interconnected pores, usually assumed to be cy-
lindrical tubes with distributed radii. Consider a tube of
length l;. and radius R,J which connects nodes i and j, of
which a portion x, is occupied by the displacing Quid
and the rest by the displaced fluid. The pressure
difference P, —P along the tube is given by

ing and displaced fluid with an effective viscosity g
given by, e.g. , Eq. (7.36). Thus M should be calculated
and used in Eq. (7.42) based on the effective viscosity g
and the viscosity g2 of the displaced Quid, i.e.,
M=g2/g . We then assume that within each pore a
one-dimensional convective-diffusion equation governs
the concentration distribution, whose solution is given by
Eqs. (6.36) and (6.37). Using the fact that C is a con-
served quantity, and employing the distribution of pore
velocities, we can determine the concentration distribu-
tion in the entire network, since for every node i, we can
write QJ S,"J; =0, where J; =v,"C, DB—C, /Bx is the
total fiux (convective plus diffusive) in the pore that con-
nects sites i and j, and S; is the cross section area of pore
ij. This equation, when written for every node of the net-
work, yields a set of linear equations for the C s, the con-
centration at site i, which is solved numerically. Once
the concentration distribution is determined, we proceed
as in the first case except that the distance Ax; that the
front moves in a pore is given by bx;J =J~/(mR;~)b, t.
The advantage of this method is that one does not need
to provide DL and DT as phenomenological inputs to the
model, as is done in the models of King and Scher (1987,
1990) and Araktingi and Orr (1988). It also allows one to
investigate the effect of rock heterogeneities on miscible
displacements in the presence of dispersion.

F. Relation between miscible displacements
and diffusion-limited aggregation

In the previous subsections we described the DLA and
other discrete models. Among these the DLA model and
its two-walker generalization are the only ones that use
only random walkers, and thus, from a computational
point of view, they can be very efficient. Therefore, the
relevant question is whether such random walk methods
can predict quantitatively miscible displacements without
dispersion. At first the answer may seem affirmative,
since the governing equations for both phenomena and
processes are identical. However, this only guarantees
that the universal properties of the two processes to be
the same, but not the equality of nonuniversal quantities
of interest. For example, as far as a petroleum or chemi-
cal engineer is concerned, the most important quantity to
calculate is the volume fraction Sb of the displaced Quid
at the breakthrough point, i.e., at the point at which a
sample-spanning cluster of the displacing fluid is formed,
since this is a quantitative measure of the efficiency of the
displacement process. Murat and Aharony (1986) and
Meakin et al. (1989) used the DLA model and the DBM
to simulate viscous fingers in the absence of dispersion.
They found that the two models are not always the same,
but their results were not conclusive.

Chan et al. (1986, 1988), Sahimi and Siddiqui (1987),
and Siddiqui and Sahimi (1990a) made a more definitive
study of this problem. As explained by Sahimi and Siddi-
qui, the proper comparison is between the DLA model
and the deterministic model in the absence of dispersion,
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because in an actual experiment the front does not ad-
vance one pore at a time, as in the DBM and GGGM,
but advances in several pores simultaneously, which is
the basis of the deterministic model. Thus they comput-
ed Sb using both models and found them to be generally
different. Moreover, they found that although the fractal
dimensions of the two models are identical if the pore
system is well connected, the two models are character-
ized by different fractal dimensions if the pore system is
poorly connected, e.g. , if the pore space is a percolation
cluster near the percolation threshold. Chan et al.
(1986, 1988) argued essentially along the same lines as
those of Sahimi and Siddiqui, except that their model of
pore space was different from that of Sahimi and Siddi-
qui. In the model of Chan et al. , the porous medium is
represented by a network of interconnected tubes and
chambers. The tubes have small diameter, and thus con-
tribute most of the resistance to Quid Aow. These tubes
connect the grid points of the network a distance I apart
at which the chambers are located. The chambers have
volumes much greater than those of the tubes, thus mak-
ing a negligible contribution to the hydrodynamic resis-
tance. The Quid capacity of each chamber, i.e., its
volume per specified volume /, is a randomly distributed
quantity. Chan et al. showed that, unless the distribu-
tion of the Quid capacity of the chambers is exponential,
the predicted values of Sb by their model and the DLA
model will be different. The conclusion is that although
the DLA model often provides a good description of the
universal properties of miscible displacements without
dispersion, the mapping between the two problems is not
exact but approximate, although a very good one in
many situations.

G. Crossover from fractal to compact
displacement at finite mobility ratios

Since the universal properties of viscous fingering, in

the limit M —+ao and without dispersion, and those of
diffusion-limited aggregates are the same, one may con-
clude that viscous fingers are fractal objects in the limit
M= ~. But what about the case of viscous fingers at
finite values of M? We already know that viscous fingers

may be unstable if M ) 1, which might mean that they
are fractal objects for any M& 1, with the instability
manifesting itself with the fractal structure. However,
this implies that the density of the displacing fluid would
vanish as the displacement proceeds, since this is a gen-
eral property of any fractal object. This means that very
thin sections of Auids would have to support a vast and
tenuous network of the fingers at the tip. In fact, if the
displaced Quid has a finite mobility, one would expect the
fingers to become thicker, as opposed to thinner fingers
with the fractal behavior. However, for M&1 the dis-
placement can be unstable, if dispersion effects are ab-
sent, and we cannot expect it to be smooth. The cluster
of the displacing Quid is also not compact, since there is
no intermediate length scale between the size of the sys-

tern and that of a pore. Thus, as argued by King (1987b),
only the surface of the viscous fingers (i.e., the front be-
tween the two fiuids) can have a fractal-like character,
and this can be interpreted as the manifestation of the in-
stability of the process. This argument is supported by
the simulations of King (1987b), Blunt and King (1988),
Siddiqui and Sahimi (1990a), and Ferer et al. (1992) who
used the deterministic model, and by those of Siddiqui
and Sahimi (1990b) who used the two-walker method.
Even the surface roughness and its fractal character
should gradually disappear as the size of the system in-
creases. This is supported by the work of King and
Scher (1990) who argued that if the linear size of the sys-
tem exceeds a crossover size X„,then there would be a
crossover from a fractal-like behavior to a compact dis-
placement, where X„is given by

DLA

(7.44)

King and Scher (1990) called this viscous relaxation Ear-.
lier Monte Carlo simulations of DeCxregoria (1986), who
used the gradient-governed growth model, also supported
this. DeGregoria observed that, for finite values of M,
the volume fraction of displaced Auid increases as the
size of the system increases, which implies increased sta-
bility. Note that Eq. (7.44) implies that no such cross-
over can occur if M~ oo. Using renormalization-group
methods, Lee et al. (1990) also reached the same con-
clusion. They showed that there exist t~o fixed points on
a renormalization fIow diagram; The Eden point, corre-
sponding to a compact, nonfractal structure such as what
one obtains with M= 1, which is stable, and the
diffusion-limited aggregation point, corresponding to a
fractal structure, which is what one obtains in the M = oo

limit, which they showed it to be a saddle. point. This im-
plies that for any finite M viscous fingers "eventually" ap-
proach a Euclidean limit, in the sense of taking up a com-
pact shape, perhaps with a fractal or rough surface,
where "eventually" means either long times, or very large
length scales, or a fine enough grid. Furthermore, Lee
et al. (1990) proposed the crossover scaling law

R
m, (R)-R F (7.45)

where I, is the "mass" of the cluster of displacing fIuid,
R the radius of gyration of the cluster, d the dimensional-
ity of the system, and 5 a crossover exponent. F(x) is a
scaling function with the properties that F(x)-1 for
x «1, and F(x)-x' for x ))1,with d +a5=2.

These results have two practical implications. The first
is that the scale up of numerical or laboratory experi-
ments of unstable displacements ought to be done with
caution since, as suggested by Eq. (7.45), there will al-
ways be a crossover to a stable displacement if one waits
long enough, or if the scale up is done for a large enough
scale. The other implication is that heterogeneities of a
scale of the order of the crossover length N„orlarger
dominate viscous fingering (see also below).
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H. Miscible displacements in

heterogeneous porous media

Miscible displacements in macroscopically heterogene-
ous porous Inedia have also been studied by various
Inethods, although these studies are not as extensive as
those for macroscopically homogeneous porous media.
For example, Tan and Homsy (1992) used their continu-
um model to study miscible displacements in heterogene-
ous porous media, in which the heterogeneities were
modeled as stationary random functions of space. The
permeability correlation length gk was finite. They found
that the fingers grow linearly in time in a manner similar
to that of homogeneous media. This result is not surpris-
ing since g& was assumed to be finite. As an example of
discrete simulations, we mention Araktingi and Orr s
(1988) simulations in which they assumed that the mean
of the permeability distribution is independent of the lo-
cation, and that the spatial correlation between any two
regions depends only on the distance between them. A
heterogeneity index HI was used to characterize a per-
meability field, which was defined by

prov ernent in the predictive ability of their models.
These authors used finite-difference techniques for solv-

ing their equations, which may limit the size of the sys-
tern and the extent of correlations that they can simulate
(since one usually needs a very fine grid structure with
finite-difference techniques in order to achieve reliable ac-
curacy). On the other hand, Sahimi and Knackstedt
(1993) used a random-walk model to study miscible dis-
placements in heterogeneous porous media, in which the
perme abilities obeyed a fBm discussed earlier. They
showed that M does not play any important role, and the
permeability heterogeneities control the performance of
the displacements.

At the end of this section we should again emphasize
the role of dispersion (both microscopic and macroscop-
ic) and permeability heterogeneities in any miscible dis-
placement process. In the past few years, the physics
literature has witnessed an explosion of papers on misci-

HI =cr i„kgk, (7.46)

where o.&„k is the standard deviation of log permeability
and gk is the dimensionless correlation length of perme-
ability gk =gk/L, L being the system length. HI com-
bines the variability (as measured by cri„k) and the spatial
correlations of the permeability field. Figure 46 com-
pares their simulation results for two values of M and
three values of HI. It is clear that for low values of HI,
i.e., a more homogeneous porous medium, the effect of M
is strong, which is expected. However, as HI increases
the effect of M diminishes, and the shape of the fingers is
dominated by the permeability heterogeneities. For ex-
ample, for HI=0.77, the shapes of the fingers are almost
identical for M=1 and 20. If this is the case, then a sim-

ple generalization of a DI.A-based model (or any other
random-walk method) should suffice for simulating misci-
ble displacements in heterogeneous reservoirs, since as
discussed in Sec. VI, pore-level dispersion is not impor-
tant in heterogeneous porous media, and the velocity
field Auctuations, induced by the permeability field, is the
only important factor, and this effect is easily captured
by a DLA-like model.

One of the factors that distinguishes a heterogeneous
porous medium from a homogeneous one is the extent of
the spatial correlations in the permeability distribution.
If there are no spatial correlations, or they are of finite
extent and very short, we do not expect a miscible dis-
placement in the heterogeneous medium to be very
different from that in a homogeneous one. One way of
incorporating the effect of long-range permeability corre-
lations is of course through the use of fractal statistics
that we already discussed in Sec. VI. Emanuel et al.
(1989) and Mathews et al. (1989) used such statistics in
their simulations of displacement processes. They
showed that using such statistics leads to significant im-
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FIG. 46. Comparison of viscous finger patterns for various
values of heterogeneity index (HI). Dashed curves are for
M=1, while solid curves are for M=20 (from Araktingi and
Orr, 1988).
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VIII. TWO-PHASE FLOW AND
IMMISCIBLE DISPLACEMENT PROCESSES

We now turn our attention to two-phase Aows in rocks.
A large number of factors can affect this class of phenom-
ena, among which are capillary, viscous, and gravity
forces, the viscosities of the two Auids and the interfacial
tension separating them, chemical and physical proper-
ties of the surface of the pores, i.e., whether or not there
are surface active agents, or whether the surface is frac-
tal, the morphology of the pore space, and the wettability
of the Auids. Obviously, two-phase Aows and the dis-
placement of one Auid by another in porous media in-
volve a set of complex phenomena, and to date no model
has been developed that can take into account the efFect
of all of these factors.

A. Wettability and its measurement

Cienerally speaking, the rock-Auid interactions are
what we call wettability. It has a strong efFect on the
Aow of two immiscible Auids in a porous medium, con-
ventional and enhanced oil recovery processes, and many
other phenomena (for example, coating operations), and
has been studied for a long time by petroleum engineers
(Bartell and Miller, 1928; Owens and Archer, 1971;
Salathiel, 1973; McCaffery and Benion, 1974; Batycky
et a/. , 1981), and others. It is also known that oil
recovery process itself can a1ter reservoir wettability
(Wagner and Leach, 1959; Reed and Healy, 1977).

Consider, as an example, a situation in which a drop of
water is placed on a surface immersed in oil. Then a con-
tact angle is formed that can vary anywhere from 0 to

Oow

a os WS

Rock Surface

FPPIIPPPPPPFXXXZXZZZ/8
8'o ter Wet
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FIG. 47. Formation of contact angle between a liquid and a
solid surface {from Anderson, 1986).

ble displacements and their relation with growth phe-
nomena. While these studies have added to our under-
standing of miscible displacements, most of them would
be of limited use in practical (field) applications, unless
they adequately take into account the efFect of dispersion
and permeability heterogeneities. Unfortunately, most of
the papers in the physics literature lack this fundamental
requirement.

180'. A typical situation is shown in Fig. 47. The three
difFerent surface tensions are related by the Young-Dupre
equation

o., cos0=o.„—o (8.1)

where o.,„

is the interfacial tension between oil and wa-
ter, and o.„ando. , are the surface tensions between oil
and the solid surface, and water and the solid surface, re-
spectively. Normally, the contact angle 0 is measured
through the water phase. Strictly speaking, if 0 & 90', the
surface is preferentially water-wet. However, in practice,
0 & 65 for water-wet systems, while 105 & 0 & 180' for
oil-wet systems. If 65' & 0 & 105', the system is said to be
intermediately-met, and has no strong preference for any
of the two Auids. Another important case is mixed metta-
bility, in which the wettability of the surface changes
from pore to pore or from one portion of the surface to
another. This is caused by chemica/ heterogeneity of the
surface, and is actually the situation one has to deal with
in most oil reservoirs.

The study of moving contact lines and contact angles
goes back to Washburn (1921) who proposed Eq. (3.4).
This equation is invalid if the length of the tube (for
which the equation was intended) is much longer than its
diameter, and if the diameter is small enough that gravity
cannot have a significant effect on the shape of the mov-
ing contact line or meniscus. Fisher and Lark (1979) ac-
cumulated experimental evidence in support of this equa-
tion. However, Eq. (3.4) neglects the details of the sur-
face and its effect on the moving contact line: it provides
only an overall picture of what happens. For example, in
almost all cases of practical interest, one has to deal with
the no-slip boundary condition. Huh and Scriven (1971)
were the first to analyze moving contact angles and hnes
and claimed that, with no-slip boundary condition, the
stresses at the contact line become divergent (or the total
dissipation diverges). They attributed this to the ex-
istence of, among other things, discontinuous processes
around the contact line. As pointed out by Dussan and
Davis (1974), this anomaly is due to the fact that Huh
and Scriven (1971) had worked with a p/anar interface,
and that their equations failed to satisfy the normal stress
boundary condition at the interface between the two
Quids. It is now well known that there are two ways of
removing the singularity. If the advancing Auid wets the
solid surface perfectly, then a thin precursor film forms
ahead of the contact line and the dissipation divergence
(which is logarithmic) is cutoff at the film thickness. On
the other hand, if the advancing Quid does not wet the
surface completely, slip can occur within a length 16, from
the contact line. This length can act as a cutoff and
prevent the divergence of the total dissipation. These
matters has been reviewed by Dussan (1979).

On a moving contact line the interface exerts a force
o.f,cos0D, where 0~ is the apparent dynamic contact an-
gle (as opposed to a static contact angle Os which is well
defined on a homogeneous surface), and of, is the surface
tension between the Quid and the solid. There is also an
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additional viscous force F, on the contact line. If the
capillary number Ca [Eq. (3.8)] is small, F„would also be
small compared with the capillary forces, except within a
distance l& from the contact line. This gives us a method
of measuring F, from OD, measured far from the contact
line since, F„=of, (cos8ii —cosOs). Roughness, chemical
heterogeneity and other factors can make this picture
more complex, which will be discussed below. The dy-
namic contact angle OD can be measured by optical
methods (see, for example, Hoffman, 1975).

Many methods have been devised for measuring the
wettability of a system, and Anderson (1986) has given a
thorough discussion of them. Here, we restrict ourselves
to three quantitative methods. More details are given by
Anderson (1986).

1. Contact-angle measurements

There are several methods for measuring the contact
angles. These include the tilting plate method, capillary
rise method, tensiometric methods, vertical rod method,
cylinder method, and sessile drops or bubbles method,
and Adamson (1990) discusses most of them. However,
the petroleum industry does not use most of these
methods, because they work best when one deals with
pure Auids, and clean, artificial cores which are rarely en-
countered in practice. The most popular method in the
petroleum industry is the sessile drop method (see, for ex-
ample, McCafFery, 1972), and its modification by Treiber
et al. (1972). In the latter method the mineral to be test-
ed is put in a test cell which is made of inert material.
This prevents the contamination of the surface which can
alter the true contact angle. Two Hat and polished
mineral crystals are mounted parallel to one another,
that are usually either quartz or calcite crystals (sedimen-
tary rocks are composed of such crystals). The apparatus
has to be completely clean so that the true contact angle
can be measured. The cell containing the mineral crys-
tals is then filled with de-oxygenated synthetic formation
brine. It usually takes a few days for the oil-crystal inter-
face to be clearly established (this is called aging) Then.
the two crystals are displaced parallel to each other to
shift the oil drop. Thus the brine can move over a por-
tion of the surface that was covered with oil. In this way
an advancing contact angle 0~ is measured. Usually, it
takes a day or two before 0& reaches its equilibrium

value. The surface is aged again, the water is advanced
again, and so on. The sessile drop method is similar to
this procedure, except that only one Hat crystal is used.
A drop of oil is formed at the end of a fine capillary tube
and brought into contact with the fiat surface (see Fig.
47).

If the oil contains surface-active agents, 0~ increases
with aging until an adsorption equilibrium is reached.
This may take a long time. Usually, the measured con-
tact angles show hysteresis, that is, the contact angle 0&
of an interface that was recently advanced differs from
the apparent contact angle Oz that recently receded.

2. Amott method

In this method (Amott, 1959) a core is prepared by
centrifuging under brine until the residual oil saturation
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were changed by changing the salinity (from Morrow, 1976).

This hysteresis is presumably due to the existence of
many metastable positions of the contact line. The
difference 6I& —Oz can be as large as 60. According to
Adamson (1990) there are at least three reasons for this
hysteresis which are, (1) surface roughness, (2) surface
heterogeneity, and (3) surface immobility on a macro-
molecular scale. As pointed out by Morrow (1970, 1976),
surface roughness and pore geometry can affect the con-
tact lin'e between the two Auids and the surface, and thus
change the apparent contact angle. If the surface is
smooth, then 0 is fixed. However, in an actual reservoir
there are sharp edges which give rise to a wide range of
contact angles. Figure 48, taken from Morrow's work,
demonstrates this clearly. The contact angles 0& and Oz
were measured on a roughened teAon surface, while the
intrinsic angle OE was measured on a smooth teAon sur-
face; we shall return to this later. Moreover, composi-
tional heterogeneity of a surface gives rise to 0& and L9~

that can change from pore to pore, and one problem with
contact angle measurements is that they cannot take such
effects into account. In addition, no information can be
gained about the absence or presence of various coatings
on the pore surface of a reservoir rock.
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(ROS) is reached. This is the volume fraction of oil in the
pore space, residing in isolated finite clusters of pores,
that can no longer be displaced by the brine in the centri-
fuge. Then four steps are taken for measuring the wetta-
bility of the core. (i) The core is immersed in oil, and the
volume of water displaced by free or spontaneous imbibi-
tion of oil into the core is measured, in a period of time
that may be as long as one or two weeks. (ii) The core in
oil is centrifuged until the irreducible water saturation
(IWS), i.e., the water saturation that can no longer be re-
duced by centrifuging, is reached and the total amount of
displaced water is measured. (iii) The core is immersed in
brine, and the volume of oil displaced by water is mea-
sured. (iv) Finally, the core is centrifuged in brine until
residual oil saturation is reached, and the total amount of
displaced oil is measured. To decide whether the core is
water or oil wet, two quantities are calculated. One is
R, = V;/V „where V,. is the water volume displaced
by free imbibition of oil, and V, is the total volume of
water displaced by free and forced (centrifugal) displace-
ments. The second quantity is R~= V„/V„,where the
notations have similar meanings. Now, if the reservoir is
water wet, then R~)0 and R, =O, because in a water-
wet reservoir there can be no free imbibition of oil (it has
to be forced into the medium), and vice versa. In a sense,
the method measures the average wettability of the sys-
tem. Sometimes, an index I~=R~ —R, is measured
which can vary anywhere from +1 (completely water-
wet reservoirs) to —1 (completely oil-wet reservoirs).
According to Cuiec (1984), for 0.3I(1 the reservoir
must be considered as water-wet, for —0.3 ~I ~0.3 it is
intermediately-wet, and for —1~I~ —0.3 it is oil-wet.
The main problem is that if the reservoir is close to being
intermediately-wet, then the method is not very sensitive
or accurate, simply because free imbibition of either fIuid
cannot take place in significant amounts.

3. U.S. Bureau of Mines method

This method was developed by Donaldson et al. (1969)
and, like the Amott method, also measures the average
wettability of the system. It compares the work neces-
sary for one Quid to displace the other. The wetting Quid

requires less work to displace the non-wetting Quid from
the core than the opposite. It can be shown (see, for ex-
ample, Morrow, 1970) that the required work is propor-
tional to the area under the capillary pressure curve (in a
capillary pressure-water saturation plot; see Sec. III). If
the reservoir is strongly water-wet, most of the water will
imbibe freely into the core, and the area under the curve
for water will be very small. Thus the capillary pressure
curves for the two displacements are measured, and a
wettability index I~= log( 3, /3@ ) is calculated, where

3, and A~ are the areas under the oil- and water-drive
curves, respectively. Obviously, if I~ & 0, then the reser-
voir is water-wet, and if Iz &0, it is oil-wet. If, Iz —-0,
then the reservoir is close to being intermediately-wet.

B. Dependence of dynamic contact angle
and capillary pressure on capillary number

R
cosOD —cos8„= (I', I', ) =a Ca-

2g f~
(8.2)

where P, is the total pressure, a =- 3.1+1, and
x =0.4+0.05. This implies that P -U". For homogene-
ous surfaces the velocity dependence of 6lD has been stud-
ied by several authors. For example, Cox (1985) found
that for 0D measured a distance r from the contact line
one has

g (HD, M) =g (HO, M)+ [1n(r/le)+8, ]Ca, (8.3)

where g is a simple analytic function, M the viscosity ra-
tio of the two Quids, 00 the actual contact angle at
lengths smaller than I&, and 8& a constant that depends
on the model. Molecular dynamics simulations of Ko-
plik et al. (1988a) confirmed this equation if one takes
80=0&. This equation implies x = 1 for an
intermediately-wet Quid on a homogeneous surface,
which is diff'erent from Eq. (8.2). This can be attributed
to the roughness or heterogeneity of the surface, an effect
which is apparently strong enough to change the ex-
ponent from unity to about 0.4. This indicates the
significance of surface roughness and its effect on contact
angle (see below). On the other hand, Rillaerts and Joos
(1980) correlated data from several difFerent systems by
plotting cosOD —cosl9z versus Ca', which is close to Eq.
(8.2), and HoFman (1975) proposed somewhat more com-
plex correlations which can describe many different sets

Stokes et al. (1990) studied the velocity dependence of
cosOD —cosO& by a method which, in a sense, belongs to
the class of contact angle measurement methods, except
that its details are very difFerent from those of the
methods discussed above, and it also appears to be more
sensitive. They measured the capillary pressure P, across
the interface as a function of the contact-line velocity U.

P, can be measured very accurately by superimposing a
small-amplitude oscillatory Qow on a larger steady-state
fiow and measuring the response. Stokes et al. (1990)
generated the oscillatory flow by a plunger that was cou-
pled to the Quid through latex membrane, and was driven
at frequency co by an audio speaker. The steady-state
Qow was varied by raising a reservoir of the advancing
Quid. Between the reservoir and the sample a narrow-
bore and long tube was inserted to guarantee that the
Qow rate was constant. The interface between a mineral
oil and a glycerol-methanol mixture was measured in a
1-mm diameter 30-cm long Pyrex tube. Two Omega
pressure transducers were used to measure both the pres-
sure and velocity. The AC outputs of the transducers
were amplified, and the harmonic content measured with
several amplifiers. When the glycerol mixture was ad-
vanced, 0& =65', and I9& =45' were measured, which in-
dicated that the surface of the tube was somehow disor-
dered.

These experiments indicated that for a tube of radius R
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of data for all 0~OD ~ 180'. For example, at low values
of Ca he obtained, OD —Ca' (which is known as
Tanner's law). Weitz et al. (1987) also measured the ve-
locity dependence of the capillary pressure (and hence
OD) between two fluids in a porous medium, and pro-
posed the correlation

P, = (
—I+8~Ca"),~fs

P't
(8.4)

where r, is a typical radius of pore throats. Their mea-
surements indicated that, x =0.5+0.1, and B2 ——300,
which are compatible with the results of Stokes et al.
(1990). de Gennes (1988) used scaling arguments and
proposed that

D. Fluid distribution on fractal surfaces:
Hypodiffusion versus hyperdiffusion

In Sec. III we discussed fractal properties of pore sur-
faces. Fractality of pore surfaces can have interesting
implications for Auid distributions at low wetting-phase
saturations. This was discussed by de Gennes (1985),
Melrose (1988), Davis (1989), Davis et al. (1990) and
Toledo et al. (1990). In this section, we briefly discuss
their results and their implications.

%'e assume that one of the Auids strongly wets the sys-
tem, so that even at very low saturations the wetting
phase remains hydraulically connected through thin
films. The capillary pressure is given by the Young-
Laplace equation

fs Ca2/3T5/3
c a p (8.5) P, =2Hg~~, (8.6)

where T is a tortuosity factor. Although this result is
almost consistent with Eq. (8.4), it does not seem to agree
with the result of Stokes et al. There is, however, one
major difference between the experiments of Stokes et al.
(1990) and Weitz et al. (1987): the former experiments
were done in a tube, whereas the latter ones were per-
formed in a porous medium. Whether this can explain
the discrepancies between these experiments and de
Gennes' prediction is not yet clear.

C. The effect of surface
roughness on contact angles

We have already mentioned the experimental work of
Morrow (1970, 1976), who investigated the effect of sur-
face roughness on contact angles. There have also been a
few recent theoretical studies of the effect of a hetero-
geneous surface on moving contact angles and contact
lines (Joanny and de Gennes, 1984; Pomeau and Van-
nimenus, 1985; Robbins and Joanny, 1987; Joanny and
Robbins, 1990). For example, Joanny and Robbins
(1990) studied the motion of a contact line on a surface
with periodic heterogeneities. Although such hetero-
geneities do not usually occur on natural surfaces, their
study can provide clues as to how such problems may be
studied on a real heterogeneous surface. They considered
the case in which the contact line is advanced at a con-
stant force F or a constant velocity v. In the first case,
motion starts if F )F&&, where F&, is some threshold
force which is related to the static O„orOz defined
above. For smooth heterogeneity, they found that,
F Fc] v . If the contact line is moved at a constant
velocity, the results are somewhat different: one has two
regimes, namely, the weak and strong pinning regimes.
In the strong pinning regime, which is more interesting
and relevant, there is another threshold Fc2 which ap-
proaches Fc& as the surface becomes more heterogene-
ous. For smooth hetero geneities, they obtained
F —FC2-v . Similar results were obtained by Raphael
and de Gennes (1989).

where H is the mean curvature of the interface between
the two phases, and o.

&&
the interfacial tension between

the two Auids. This equation is vali, d when both phases
are present in large amounts. However, if the wetting
phase is present on1y in the form of thin films, then one
has to use the augmented Young-Laplace equation

P, =2Ho ~I+ II(h ), (8.7)

where h is the thickness of the film, and II(h) is the dis-
joining pressure. At saturations below the percolation
threshold, the wetting phase exists as thin films or pendu-
lar structures at intergranular contacts, or in nooks and
crannies provided by the pore surface features or
overhangs. Thus at a given capillary pressure, the liquid
volume is proportional to r, and since r —1/P„we
must have

S -P-"- '.
w c (8.8)

Using Eq. (8.8) Davis (1989) analyzed Melrose's (1988)
data, and found that they are we11-described by it with
D =2.55. This is in the range of fractal dimensions re-
ported by Katz, Thompson, Krohn and others discussed
in Sec. III. If the capillary contribution, 2Ho. &&, is small
compared to the disjoining pressure, then P,
= II(h) —h ",and therefore

P cll

W C (8.9)

Similar relations can be developed for the hydraulic con-
ductivity k„ofthe wetting phase. Thus, if only thin
films are present, then since k -h, we find

p cll g 3
W C w (8.10)

3/md;(3 —D)
w w (8.11)

If our porous medium, and its low wetting-phase satura-
tion, is now immersed in a reservoir of a wetting phase, it
will spontaneously imbibe the wetting phase. The satura-

and if only the pendular structures are present, distribut-
ed fractally, then
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tion of the wetting phase will obey a convective-difFusion
equation in which the dispersion coeKcient DL, is given

by

k dI',
Lc

9 ILL t8

(8.12)

DL, is usually called the capillary dispersion coe%cient.
Depending on the wetting-phase saturation, one can have
three distinct regimes. If DL, ~0 as S ~0, the invading
front of the wetting phase will disperse less than that in a
diffusive front. This is called hypodi+usion If D. L, ap-
proaches a constant as S —+0, then we have a diffusive
dispersal of the front. Finally, if DL, ~oo as S ~0,
then the front will disperse faster than that in a diffusive
front, and is called hyperdiffusion From. Eqs. (8.9)—
(8.12) we obtain

DL, -S
a=[3—md;(4 —D)]/[md;(3 —D)] . (8.14)

Therefore if m d; (3/(4 D), we—will have capillary
hypodiffusion, if md; )3/(4 —D), we will be in the regime
of capillary hyperdiffusion, while md; =3/(4 —D) will
give rise to a capillary diffusive front.

Bacri et al. (1985) carried out experiments in which
water imbibed in a pre-wet sandstone (i.e., a porous medi-
um with irreducible water saturation) and observed
hyperdiffusion. Bacri, Rosen, and Salin (1990) studied
the same problem in a porous medium with glass beads
that were totally wetted by water, and with polymethyl-
methacrylate (PMMA) beads that were partially wetted
by oil and water. In the porous medium with glass beads,
they observed hyperdiffusion again, whereas PMMA
beads did not allow this to happen. They also studied the
same phenomenon in a porous medium with a mixture of
glass and PMMA beads, and observed hyperdiffusion
even when the fraction of glass beads was small (but not
smaller than the critical volume fraction for percolation).
Toledo et al. (1990) analyzed the data of Nimmo and
Akstin (1988) using the above scaling laws. Nimmo and
Akstin (1988) reported measurements of p, and k at low
saturations in the presence of air in several compacted
samples of Qakley sands, which is a clayey soil. Qn the
other hand, Viani et al. (1983) provid. ed data on disjoin-
ing pressure of clayey solids, which indicate that they are
well-described by II(h)-h '~, i.e., md;=1/2. Using
this value of md;, Toledo et al. (1990) showed that the
above scaling laws hold for 9 different samples with a
fractal dimension between 2.35 and 2.67, with an average
of about 2.5. Davis et al. (1990) also analyzed Ward and
Morrow's (1987) data on capillary pressure-saturation
curves in the presence of air in several low permeability
sandstones. Two distinct regimes were found. Qne was
in the lowest saturation region where D =2. The other
was in a higher saturation region for which 2.6 & D ~ 2.9,
which is consistent with the range of fractal dimensions
discussed in Sec. III. Finally, Novy et al. (1989)
developed a network model of two-phase Aow in porous

media to test the above scaling laws, and found qualita-
tive agreement between their simulations and the scaling
laws.

The wettability of a medium affects strongly its trans-
port as well as thermodynamic properties such as the
capillary pressure curves. There is a strong correlation
between the shape of the capillary pressure curves of a
medium and its transport properties. Thus we first dis-
cuss the effect of wettabi1ity on capillary pressure curves.

E. Effect of wettability on capillary pressure

We have already discussed in Sec. IV capillary pres-
sure curves and how they can be used for extracting in-
formation about the pore size distribution of the porous
medium. In this section, we discuss the effect of wettabil-
ity on capillary pressure curves. Let us first introduce
the terminology that is frequently used in the oil indus-
try. In drainage a nonwetting phase displaces a wetting
phase from a porous medium, while during imbibition a
wetting phase displaces a nonwetting phase.

With sintered porous teAon and clean Quid pairs, Mor-
row (1970, 1976), McCaffery and Benion (1974), and
Morrow and McCaffery (1978) studied two-phase relative
permeabilities (discussed below) and capillary pressure
curves in porous media that are uniformly wettable.
They took, as an independent measure of wettability, the
intrinsic contact angle OE made by the Quid pairs on
smooth teAon surfaces, and studied two processes. The
first is primary displacement, i.e., the reduction of the sat-
uration of a reference phase from 100% to the residual
saturation (RS) by injection of a nonreference phase. The
second is secondary displacement that follows primary
displacement, i.e., reduction of the nonreference phase
saturation to the RS by injection of the reference phase.
On the basis of the capillary pressure (and relative per-
meability) behavior in the sequence of primary and
secondary displacements, they identified three regimes of
wettability: (i) wetted, in which primary displacement is
drainage and secondary displacement is imbibition; (ii)
intermediately-wetted, in which primary and secondary
displacements are both drainage, and (iii) nonwetted, in
which primary displacement is imbibition and secondary
displacement is drainage. The second case is very in-
teresting: because primary displacement is drainage, one
intuitively expects secondary displacement to be imbibi-
tion. However, in the intermediate wettability regime the
operative contact angle appears to give the more strongly
wetting characteristics to the phase being displaced,
whether it be the reference phase or the nonreference
phase.

Figure 49(b), taken from Killins et al. (1953), shows
the capillary pressure curves for a typical wetted regime.
The measurements were done on a water-wet Berea sand-
stone. The primary process, denoted by 1 on the curve,
was a drainage process in which oil displaced water and
was terminated at A, where irreducible water saturation
was reached. This is followed by process 2, a spontane-
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ous imbibition of water into the core, up to point B at
which P, =0. Beyond B, the water had to be forced into
the medium (curve 3), characterized by a negative P„un-
til point C and the residual oil saturation were reached.
Note the two typical kriees, one at the beginning of
drainage, and the other at B. This figure should be com-
pared with Fig. 49(a) which is typical of capillary pres-
sure curves in nonwetted porous media. The curves were
measured in an oil-wet Berea sandstone treated with
Drifilm (to render it strongly oil-wet). Note that in both
processes 1 (spontaneous imbibition of oil) and 2
(drainage of oil by water) the capillary pressure curve
takes on negative values. Moreover, the imbibition curve
rises steeply, and the drainage curve proceeds slowly, ex-
cept near the original starting point A. Finally, Fig.
49(c), measured by Morrow and McCaffery (1978), shows
capillary pressure curves for typical intermediately-wet
systems.

In order to compare capillary pressure curves mea-
sured on different cores from the same reservoir, and to
take into account the effect of permeability and porosity
of each core, the curves are usually replotted in terms of
the Leverett J function, Eq. (3.5). As long as the wetta-

bility of all cores is the same, the cos8 term of Eq. (3.5) is

a simple numerical factor, but if different fluids are used
with cores of the same reservoir, then this term becomes
important. Figure 50 shows the effect of contact angle on
capillary pressure, as measured by Morrow (1970). As
the contact angle increases, the return curve of the capil-
lary pressure (to the left of the dashed curve) becomes
steeper, which is in agreement with Fig. 49(c), since in-

creasing 0 implies the tendency of the system towards in-
termediate wettability. In fact, in the last curve on the
left (shown by ~ ) the advancing contact angle 8„is
about 77' which, as discussed above, is well within the
range of intermediate wettability.

There is yet another wettability regime that is of great
practical importance. This is the so-called mixed wetta-
bility regime (Owens and Archer, 1971; Treiber et al
1972; Salathiel, 1973; Craig, 1977), in which some pores
are wetted by one Quid, while others are wetted by the
other Quid. There is evidence that over the course of geo-
logical times oil displaces brine from a portion of the
pore space. Depending on the nature and composition of
the oil, those portions of the pore wall that are separated
from the crude oil by only a thin film or a tiny pendular
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by oil remaining water-wet, while the larger pores that
have been occupied by oil becoming more or less oil-wet.
Figure 51 shows capillary pressure curves for a system in
which a fraction Y of the pores was invaded by oil and
became oil-wet. Y=O corresponds to a totally water-wet
system, while Y=1 is representative of a totally oil-wet
porous medium. These various wettability regimes also
affect transport properties of porous media, which will be
discussed below. More complete discussions of the effect
of wettability on capillary pressure curves are given by
Melrose (1965, 1968), Heiba (1985), and Anderson
(1987a).
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FIG. 50. Effect of contact angle on capillary pressure curves
(from Morrow, 1970, reproduced from Anderson, 1987a).

structure of brine may become oil-wet owing to diffusion
and adsorption or stronger chemical interactions with
constituents of the oil phase. One widely cited interac-
tion is the deposition by the crude of polar organic sur-
factants upon the surface of the rock (Brenner et al. ,
1943; Salthiel, 1973; Melrose, 1982). In any event, it ap-
pears that migration, accumulation and deposition pro-
cesses can generate a distribution of surface wetting
preferences, the small pores that have not been invaded

F. Immiscible displacement processes

We now discuss displacement of one Auid by another
immiscible Auid. This process is controlled and affected
by a variety of factors that were mentioned at the begin-
ning of this section. We already discussed the effect. of
wettability and contact angles on capillary pressure, and
shall discuss their effect on transport properties of the
porous medium in two-phase Aow later. Among the
remaining factors, the capillary number Ca and the mo-
bility ratio M have the greatest importance. Depending
on how the displacement process proceeds, many
different regimes may arise. A very careful discussion
and classification of imbibition processes and how to dis-
tinguish between them was given by Payatakes and Dias
(1984). We give here a summary of their classification
and discussion and expand on them if appropriate.

(i) Spontaneous imbibition, which we already men-
tioned in the context of capillary pressure curves.

(ii) Constant infiux, constant Ca imbibition, which
occurs if a pressure drop AP is applied to the medium,
and if it is adjusted as the invading Auid expells more
Auids from the medium. If M&1, then we must main-
tain AP +0, and vice versa. If for M ~ 1 the applied
pressure dominates capillary forces, we shall no longer be
dealing with an imbibition pr ocess.

(iii) Quasistatic imbibition, which happens when the
Aow rate of the displacing Auid is vanishingly small. In
this case, the interface between the displacing and dis-
placed Auid advances in only one pore at a time.

(iv) Dynamic inuasion with constant Pow rate of the
displacing fiuid This can. be done either at favorable mo-
bility ratio (M ~ 1) or at an unfavorable one (M) 1). To
achieve this, a large pressure drop AP is applied to the
porous medium, which can be so large that it would dom-
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FIG. 51. Capillary pressure curves for porous
media with mixed wettability. Y is the fraction
of oil-wet pores (from Heiba, 1985).
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inate capillary forces. The interface advances in many
pores at any given time. For M) 1 viscous fingers can
develop.

Note that the reverse of at least some of these imbibi-
tion processs can be considered as drainage processes. At
the end of these processes, the displaced Quid exists only
in the form of isolated blobs or clusters of finite sizes that
cannot be displaced by any of the above processes. In or-
der to mobilize and displace such blobs, the capillary
number has to be significantly increased, which then
gives rise to three other displacement processes which are
(Payatakes and Dias, 1984) quasistatic and dynamic dis-
placements of blobs, both of which are time-dependent
phenomena, and steady-state dynamic displacement. The
last process is achieved if the displacing and displaced
Quids are simultaneously injected into the porous rnedi-
um. After some time, a dynamic equilibrium is reached
and the macroscopic Qow rate becomes constant. This
problem was recently investigated by Siddiqui and
Sahimi (1993) using computer simulations, and has been
discussed, from an experimental point of view, by Craig
(1971). Payatakes (1982) has given an excellent discus-
sion of blob mobilization and displacement in porous
media. Therefore we shall not discuss the last three pro-
cesses in great detail.

Before describing various theoretical and experimental
studies on immiscible displacement in porous media, let
us remind the reader that, unlike miscible displacement
processes, immiscible displacements in Hele-Shaw cells
have no direct relevance to those in a porous medium.
This can be seen easily by realizing that the interface in a
Hele-Shaw cell is sharp, whereas it is diffused in a porous
medium due to the disordered structure of the medium.
The interested reader can consult Bensimon et al. (1986),
Saffman (1986), and Homsy (1987) regarding two-phase
Qows in a Hele-Shaw cell.

1. Spontaneous imbibition

The driving force for spontaneous imbibition is capil-
lary suction, and because of this the smallest pore bodies
which are next to the interface are always invaded. At
any given time step, many pore-level interfaces advance
in the porous medium. Usually, the displacement takes
place at small but finite capillary numbers. Moreover,
the value of Ca, which depends on the extent of the pro-
cess, does not remain a constant, but varies over a range
of values. This was demonstrated nicely in the experi-
ments of Legait and Jacquin (1982) who studied spon-
taneous imbibition of water in sandstones containing oil
at M=225. They reported that the rate of oil displace-
ment increased strongly with time. When the same ex-
periment was carried out at M= 1, the same phenomenon
was observed, albeit in a much weaker manner.

When relatively large values of Ca are created, a tran-
sition zone develops in which there is a high saturation
gradient. As the interface advances in the medium, two
separate regions develop. One is in front of the transition

zone in which the saturation of the displaced Quid is
high. The other moves behind the transition zone in
which the saturation of the displacing Quid is high. This
region expands as the interface advances. The transition
zone remains essentially the same throughout the dis-
placement, except when the interface nears the end of the
porous medium. For this reason, this region is called sta-
bilized zone. Although Bail (1956) argued that under
conditions used in regular imbibition in oil reservoirs, the
length of this zone is not very large, its dynamics are in-
teresting because it affects the efficiency of the displace-
ment, and it is also in this region where oil blobs are
formed by the disconnection of the displaced Quid by the
displacing Quid.

2. Quasistatic imbibition

One main difference between this process and spon-
taneous imbibition is that in this process at any given
step only one pore is invaded by the displacing Quid.
This can be done by adjusting the backpressure so that
the narrowest pore throat is invaded, while the interface
at other larger throats remains essentially motionless.
Since even the largest pore throats are smaller than the
pore body to which they are connected, once a pore body
is invaded, all of the throats that are also connected to it
are also invaded. As soon as the interface enters such
throats, the smallest pore body that is connected to them
is invaded and so on. Thus at any given step of the dis-
placement the smallest pore body that is accessible from
the surface through a continuous path of the displacing
Quid is invaded.

When the displacing Quid forms a sample-spanning
cluster of invaded pore bodies (and the associated pore
throats), a breakthrough is achieved. Just before the
breakthrough the displaced Quid is mostly connected.
However, as the displacement proceeds small blobs of the
displaced Quid are formed which get trapped. At the end
of this process, one may end up with a large number of
isolated blobs whose volume fraction is significant. The
value of this volume fraction depends on the morphology
of the pore space. In unconsolidated media it varies be-
tween 0.14 and 0.2 (Chatzis et al. , 1983), whereas in con-
solidated rocks it is anywhere between 0.4 and 0.8
(Wardlaw and Cassan, 1978).

Experimental data of Raimondi and Torcaso (1964),
Egbogah and Dawe (1980), and Chatzis et al. (1983) indi-
cate that the size distribution of the blobs, when ex-
pressed in terms of the number of pore bodies they occu-
py, follows the power law

n, b
-s (8.15)

where n, b is the number of blobs of size s. Egbogah and
Dawe (1980) found that the size of the blobs varied be-
tween 1 and 10 grain volumes, but most of them were
around s= l. Although the data of Chatzis et al. (1983)
show an apparent disagreement with Eq. (8.15), if one
plots them as a function of the number of pore bodies
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they occupy, they become consistent with Eq. (8.15).
This equation reminds us immediately of Eq. (2.9), the
scaling law for the number of finite percolation clusters
of s sites. Indeed, as we shall discuss below, an appropri-
ate percolation model can be devised to model such a
quasistatic displacement.

3. Imbibition at constant flow rates

This is very similar to spontaneous imbibition except
that in this case we need to adjust a backpressure in or-
der to keep the Aow rate constant. There has been some
controversy regarding the role of M in the displacement
process. There are some older papers (for example,
GeiFen et al. , 1951; Donaldson et al. , 1966) in which it
was claimed that for Auids with identical wettability
characteristics M does not have any slgnificRnt effect.
More recent works do not agree with this. Le Febvre du
Prey (1973) investigated systematically the efFect of M on
relative permeabilities (i.e, the permeability to a fluid
phase divided by the permeability of the medium) to
two-phase Aows, by studying displacements in sintered
porous media in which Ca varied between 10 and
S X 10 . He found that the higher the viscosity of one of
the Auids, the lower the relative permeability of the other
Auid, and this effect was found to be even more important
than the wettability effect. This effect is presumably due
to the fact that the high viscosity of the Auid gives rise to
a filrn of the Auid residing on the pore walls, which denies
pore volume to the other Auid and decreases its relative
permeability.

Abrams (1975) found that the residual oil saturation in
short porous media correlates well with the group
M Ca, where 10 Ca 10 . Egbogah and Dawe
(1980) found that for M 1 the blob size distribution be-
came much broader, took on bimodal and even trimodal
shapes, and the average blob size increased dramatically.

4. Dynamic invasion at constant flow rates

The driving force for this process is an applied pres-
sure drop, since the role of capillary forces is of secon-
dary importance. If M) 1, we shall have an unstable dis-
placement, which will be discussed later. Therefore, for
now, we consider only the M& 1 case. There is a small
transition zone in this process in which the saturations of
both phases change with time. If the capillary pressure is
negligible compared to the applied pressure, we shall

have several advancing interfaces in as many pores at any
given stage of the displacement. Because the driving
force is the applied pressure, the microscopic interfaces
choose the largest accessible pore throats (to minimize
the resistance). Thus the structure of the sample-
spanning cluster of the displacing Auid resembles that in
a drainage process. However, this does not necessarily
mean that smaller throats will not be selected: local pres-
sures are also important and can cause the invasion of
smaller throats by the advancing Auid. Since in the tran-

sition zone the saturation of the phase changes with time,
the value of Ca cannot remain constant, even though the
Aow rate can be kept constant.

As in the previous cases, the advancing Auid creates
isolated blobs of the displaced Auid. Whether these blobs
become stranded or not depends on many factors. Ng
and Payatakes (1980) and Payatakes et al. (1980) argued
that the stranding of the blobs depends on Ca, the length
of the blob in the direction of the macroscopic Aow, and
the sizes of the pore bodies and pore throats in which the
blobs reside. If a very large blob is created, initially it is
mobile, but later on it breaks into several smaller blobs,
and the breaking process continues until they are small
enough to be stranded.

5. Displacement of blobs:
Choke-off versus pinch-off

If the displaced Auid is incompressible, then at the end
of both imbibition and dynamic invasion one obtains
many isolated blobs or clusters of the displaced Auid,
whose displacement is the main goal of oil recovery pro-
cesses. Usually, the mobilization and displacement of oil
blobs require relatively high capillary numbers, say
Ca) 10 . However, the value of Ca depends on several
factors, including the shape and size of the blobs, the
morphology of the porous medium, especially around the
regions where the blobs reside, and the contact angle.
For Ca) Ca„where Ca, is a critical value of Ca, the
blobs start to move. If Ca —Ca, is small, then we obtain
what is called quasistatic displacement of the blobs. Dur-
ing this process one blob moves downstream, while one
or two may move upstream. A blob may get re-
entrapped if it arrives at a pore body where all throats
that are connected to it are too small for the blob's move-
ment, in which case one needs an even higher Ca to move
such blobs.

A moving blob is almost certain to break into smaller
blobs by one of the following mechanisms. In pinch oQ-
the velocity of the moving blob becomes small for a long
enough time that the blob collapses into several smaller
blobs. In dynamic breakup (Payatakes, 1982) a blob ad-
vances in two or more pore throats simultaneously,
which can easily happen if the coordination number of
the pore space is large enough. For this to happen, the
value of Ca has to be large enough that even if two pore
throats connected to the same pore body have different
effective sizes, there can still be enough force to move the
blob into both pores. If the blob completely evacuates
the pore body, it breaks into two or more smaller blobs,
depending on how many pore throats it enters.

There is yet another mechanism for blob breakup
which is usually called choke-odor snap oQ and w-as first
discussed by Pickell et al. (1966). Roof (1970), Mohanty
et al. (1980, 1987), and Arriola et al. (1983) have dis-
cussed this phenomenon in detail. Chokeoff signals the
breakup of a small drop from the leading tip of a nonwet-
ting thread that tries to pass through a narrow constric-
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tion. Roof (1970) conducted several experiments and
demonstrated this phenomenon nicely. He considered
choke-off in a toroidal pore throat, assumed that there is
a thin lubrication film on the surface, and showed that
choke-off occurs if the curvature of the interface at the
throat is larger than the curvature of the tip of the
thread. If the throat is nonaxisymmetric, then Roof
showed that the same phenomenon happens except that
it takes place faster than the toroidal case, because the
film has easier access to the point of rupture as a result of
the act that some parts of the cross section are not filled

by the nonwetting film. He also showed that before
choke-off occurs, the tip of the nonwetting Quid thread
has to travel a distance of several pore-throat diameters
beyond the original throat. Therefore choke-off is impor-
tant if the ratio of the pore body and pore throat diame-
ters is large, and this was demonstrated by Wardlaw
(1982) and Li and Wardlaw (1986a, 1986b). Hammond
(1983) made a careful study of this phenomenon by solv-
ing the problem of slow adjustment of lubricated threads
and drops in axisymmetric, straight capillaries, and con-
stricted tubes. He used a 1ubrication theory and showed
that it is not sufhcient for the lubrication film to be unsta-
ble for choke-off to happen. One must also have a
sufhcient amount of wetting liquid in the film near the in-
cipient neck to form a bridge across the tube because,
while the neck is being formed, the thread on either side
bulges and isolates the local wetting Quid from the rest.
He estimated that for rupture to occur, the thickness If
of the wetting Quid, normalized by the tube radius, must
be larger than m./6. He also estimated that the time scale
for the growth of a perturbation large enough to cause
the rupture of a thread in a constriction is at least of the
order lf Dg, /cr f„where D is the diameter of the tube.

Finally, just as blobs breakup into several smaller
blobs, they can also coalesce. This happens when two in-
terfaces that belong to two different blobs pass through
the same throat and are pressed against each other for a
long enough time. Constantinides and Payatakes (1991)
used a network model to investigate the likelihood of coI-
lision and coalescence of blobs in a porous medium.
Their results indicated that the wetting characteristics
are more important than Ca, M, or 0, and that the proba-
bility of coalescence, given a collision, decreases as 0 in-
creases. They found this probability to vary between
0.03 to 0.15. Thus the breakup and coalescence phenom-
ena give rise to a series of complex dynamical processes,
in which the displaced Quid can break, but form a larger
cluster again at a later time. Lenormand and Zarcone
(1985b) presented nice experimental realizations of these
phenomena in a micromodel. These are fascinating phe-
nomena, for a review of which the reader can consult
Payatakes (1982).

G. Models of two-phase flow and displacement

Similar to all the phenomena discussed so far, there are
two classes of models of two-phase fiow and displacement

1. Continuum equations and
relative permeabilities

Whitaker (1986b) studied fiow of two immiscible fiuids
in porous media. Starting with the continuity and
Stokes' equations for each phase, and using the appropri-
ate boundary and initial conditions, he derived the fol-
lowing equations for the average Aow velocity and
volume fraction of the phases P and y

Kp .(V (P&) p&g)+K—&r.v~,
7l

as, +V vp=0,
at

(8.16)

(8.17)

v r (8.18)

as,
Bt

+V' v =0, (8.19)

where all notations are as before. Note that Eqs. (8.16)
and (8.18) contain two terms, the first of which is the usu-
al Darcy's law, written for each phase, while the second
one is a cross term that couples the two phases. These
equations are valid if Ca ((1 and if moving contact lines
discussed above do not have a significant effect. Equa-
tions (8.16) and (8.18) were first proposed by Raats and
Klute (1968) and de Gennes (1983b) based on physical ar-
guments, although somewhat similar equations had been
conjectured by Rose (1972). Whitaker (1986b) was the
first to derive Eqs. (8.16)—(8.19). In analogy with the
thermodynamics of irreversible processes, one may as-
sume that K&&=K&&. Generally speaking, the coupling
terms in Eqs. (8.16) and (8.18) are not significant unless

g&
—-gr (in which case a thin film of one phase covers the

walls of a pore whose bulk volume is filled with the other
phase). However, Kalaydjian and Legait (1987) and
Goode and Ramakrishnan (1993) showed that such cou-

pling terms might be important in certain cases even if g&
and g& are not close to each other. Some of the most
convincing evidence for insignificance of the cross terms
of Eqs. (8.16) and (8.18) was provided by Yadav et al.
(1987). They experimented with a wetting and a nonwet-

in porous media. One of them relies on continuum equa-
tions, averaged over a suitably defined representative
volume. This is the classical engineering approach whose
major elements and achievements were already discussed
in the previous sections. The literature on this class of
model is enormous, and there is no possibility of review-
ing it in this paper. We refer the reader to Collins (1961),
Bear (1972), Scheidegger (1974), and Marie (1981) for
complete discussions of this class models. The models in
the second class are discrete or statistical. In this section
we review them for two-phase How problems. The litera-
ture on this class of models has also grown dramatically
in the last few years, and it would be difFicult to review
everything that has been done.
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ting Quid and showed that the permeability of both
phases in drainage, measured when the opposite phase
was solidified in situ, was the same as that typically mea-
sured for Berea sandstones. The phase permeabilities Kp
and K are supposed to be known, but in practice one
calculates them by the use of the relations

Kp=Kk, p, (8.20)

2. Measurement of relative permeability

There are many methods of measuring RPs (see An-
derson, 1987b). One method that is routinely used is as
follows. The porous medium is initially filled with the
wetting phase, and both wetting and nonwetting fluids
are injected into the medium at a constant Aow rate.
When the steady state has been reached, the pressure
drop across the medium is recorded. From the
knowledge of the Qow rate and pressure drop the phase
permeabilities kp and kr are calculated, using Eqs. (8.16)
and (8.18). The phase saturations can also be determined
by several methods, the simplest of which is by weighing
the sample before and after the injection. Since the abso-
lute permeability of the medium is already known (see
Sec. V), the relative permeability to the wetting phase at
this particular value of saturation is calculated. In the
next stage, the injected amount of non-wetting Quid is in-
creased, and the procedure is repeated. In this way, the
RP to the wetting phase is obtained. By reversing the
procedure one can obtain the RP to the nonwetting
phase, and so on. The reader should consult Anderson
(1987b) and Heaviside (1991) for more details on mea-
surement of RPs.

with a similar equation for the y phase, where k„pis the
relative permeability (RP) to the P phase, a concept that
has been used for many decades in the petroleum indus-
try. A major problem in two-phase Row in porous media
is the prediction of the RPs. Unlike the absolute perme-
ability, k,p has been found to depend on many parame-
ters, including saturation and saturation histories of the
fluids (Johnson et al. , 1959; Naar et al. , 1962), pore
space morphology (Morgan and Gordon, 1970), the wet-
ting characteristics of the Auids (Owens and Archer,
1971; McCaffery and Benion, 1974), sometimes on the
viscosity ratio (Odeh, 1959; Le Febre du Prey, 1973), and
Ca (Leverett, 1939; Taber, 1969). Moreover, forty years
ago it was recognized (Richardson et al. , 1952) that the
relative permeability to a phase typically becomes small
or altogether negligible when its saturation is less than a
critical value which is distinctly above zero. This is of
course the signature of a percolation problem which will
be discussed below. The reason k„papparently depends
on the saturation history of a phase, i.e., the way that sat-
uration has been reached, is that there are presumably
multiple shapes that satisfy the Stokes equation, which is
made nonlinear by the free interfaces. This dependence
naturally gives rise to hysteresis in RPs, which is dis-
cussed shortly.

3. The effect of wettability on relative permeability

We have already discussed the efFect of wettability on
capillary pressure. It is clear that wettability and contact
angles should also afFect the RPs, and this is indeed the
case. Figure 52(a) shows typical oil-water RP curves for
a strongly water-wet system, while Fig. 52(b) shows the
same for a strongly oil-wet porous medium. While the
difFerence between the two RP curves for the oil phase is
not very large, there is a dramatic difFerence between the
RPs to the water phase. Note also the existence of a
finite saturation (i.e., a percolation threshold) at which
the RP vanishes. Normally, if a system is strongly
water-wet, there is little or no hysteresis in the RPs to the
water phase. This can be seen clearly in the experimental
data of Morrow and McCaffery (1978). They measured
RPs in a teAon core with nitrogen as the nonwetting Quid
and heptane (0=20') and dodecame (0=42') as the wet-
ting phase. They found that there is no hysteresis in the
wetting-phase RP. Figure 53 shows the data of
McCaffery and Benion (1974) and Morrow and
McCaffery (1978) for the three different wettability re-
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F/Q. 52. Typical relative permeabihty curves: (a) for a water-
wet system; (b) for an oil-wet porous medium (from Craig, 1971,
reproduced from Anderson, 1987b).
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INTERMEDIATE WET TABILIT Y H. Percolation models of capillary-controlled
two-phase flow and displacement
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In this section we discuss statistical and network
methods of two-phase Aow and displacement in porous
media. Some of these are based on percolation concepts
and their variants and, strictly speaking, are applicable
only when Ca is very small. There are other models that
are presumably valid even when Ca is finite (in which
case both capillary and viscous forces are relevant). The
limit Ca~ ~ is of course the case of miscible displace-
ments already discussed in Sec. VII.
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0.2 O.l 06 0.8 1. Random-percolation models

FIG. 53. Relative permeability k„vsthe reference phase satu-
ration S„for various regimes of wettability. The contact angles
for the wetted and nonwetted cases were 49' and 130', respec-
tively (from McCaffery and Benion, 1974, and Morrow and
McCaffery, 1978}.

gimes discussed above, namely, wetted, intermediately-
wetted, and nonwetted cases. In this figure the reference
phase refers to the displaced phase, while the nonrefer-
ence phase refers to the displacing phase, and S, is the
saturation of the reference phase. The differences be-
tween the three cases are rather large. For example, in
the nonwetting case, the contact angle for the nonrefer-
ence phase was more than 130', whereas in the wetted
case is was at most 49'. Figure 54 is an even clearer
demonstration of the effect of contact angle and wettabil-
ity on RP s, in which Y is the fraction of oil-contacted
pores rendered oil-wet in the primary drainage (such
pores were initially water-wet). These curves exhibit four
processes, which are primary drainage (the core is sa-
turated 100%%uo with water), followed by a primary imbibi-
tion (started at the end of primary drainage), and then
followed by secondary drainage and secondary imbibi-
tion. It is obvious that wettability strongly affects the
trends in RP's, and one major theoretical challenge is to
predict such trends. This is the subject of the next two
subsections.

At the outset we should point out that the fundamental
assumption in all percolation models of two-phase How is
that the occupation probability p is proportional to the
capillary pressure. Without such an assumption, it
would be difticult to make a one-to-one correspondence
between a percolation model and the two-phase fILow

problem. Although in some percolation models such as
invasion percolation (see below) the occupation probabili-
ty is not defined, an analogue of it can be calculated easi-
ly.

The first random-percolation model of two-phase Aows
in porous media was suggested by Larson (1977), with the
details given in Larson et al. (1977, 1981a, 1981b). In
Larson et al. (1981a) the authors proposed a model for
drainage. The porous medium was represented as a cubic
network of bonds and sites with distributed sizes. It was
assumed that a bond next to the interface is penetrated
by the displacing Quid if the capillary pressure at that
point exceeds a critical value, which implies that the ra-
dius of the bond has to exceed a critical radius r;„.This
is the same radius that is defined by Eq. (3.9), which im-
plies that during drainage the largest pore throats are in-
vaded by the nonwetting fluid (which is similar to dy-
namic invasion). All bonds that are connected to the
(nonwetting) displacing fiuid by a path of pores or bonds,
whose effective radii are larger than r;„,are considered
accessible, the accessibility being defined in the sense of
percolation discussion in Sec. II. It was also assumed
that all accessible bonds, whose radii are at least as large

Y~o Y *I/3 YK2/3 Y=l

kr
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FIG. 54. Relative permeability curves for varying fractions Y of oil-contacted pores rendered oil-wet after an oilflood (from Heiba,
1985}.
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P-
C

o., cos6
(8.21)

where l is a typical grain size. On the other hand, the
viscous pressure drop is proportional to

g Ul

V1S
(8.22)

where g is the viscosity of the wetting phase. Therefore

Pvis

P,
(8.23)

where kd =k/l is a dimensionless permeability which is
small (of order 10 or smaller), because k is controlled
by the narrowest throats in the medium. It follows that
for capillary-controlled displacements, one must have
Ca«1, and in practice one has Ca-10 —10 . Ex-
perimental data (Le Fabvre du Prey, 1973; Amaefule and
Handy, 1982; Chatzis and Morrow, 1984) seem to sup-
port this, since they indicate that S,

„

is constant for
Ca & Ca„where Ca, is the critical value of Ca for
capillary-controlled displacement, and S„„decreases
only when Ca) Ca, . Larson et al. (1981b) compiled a
wide variety of experimental data and compared them
with their predictions.

Heiba et al. (1982, 1983, 1984, 1992) further developed
these ideas and used them for calculating relative per-
meabilities for all regimes of wettability discussed above.
Heiba et al. (1982) distinguished between bonds (pore

as r;„,are filled with the nonwetting Quid. This is of
course not true, since an interface which starts at one
external face of a porous medium has to travel along a
certain path before it reaches an accessible and potentia1-
ly eligible bond. Larson et al. (1981a) also assumed that
the displaced Quid is compressible, so that even if a blob
of it is surrounded by the displacing Quid, it can still be
invaded. This does not, however, result in a serious er-
ror, as we discuss below.

In their next paper, Larson et al. (198lb) proposed a
percolation model of imbibition in order to calculate the
residual nonwetting phase saturation S,„andits depen-
dence on Ca. To do this, they modeled the creation of
isolated blobs of the nonwetting phase by a random site
percolation (see Sec. II). At the site percolation thresh-
old of the network, they calculated the fraction g(s) of
the active sites that are in clusters of length s in the direc-
tion of Qow and argued that this represents the desired
blob size distribution. To calculate S,„,they assumed
that once a blob is mobilized, it is permanently displaced
which, as discussed above, is not always the case, because
a blob can get trapped again, can join another blob and
create a larger one, and so on.

The fundamental assumption behind the work of Lar-
son et al. work is that pore-level events are controlled by
capillary forces. It is possible to use simple scaling argu-
ments to estimate the values of Ca for which this assump-
tion is valid. The capillary pressure across the interface
is proportional to
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FIG. S5. Relative permeability curves for a strongly wetting
and a completely nonwetting porous medium, as predicted by
the random-percolation model. Data are shown with o and 0
(from Sahimi, Heiba et al. , 1986).

throats) that are allowed to a phase, and those that are
actually occupied by the phase. Then, given a pore size
distribution of the pore space, they calculated the pore
size distribution of the allowed pores and the occupied
pores. Consider, for example, a displacement process in
which one Quid is strongly wetting, while the other one is
completely nonwetting. Then, according to percolation
model of Heiba et al. (1982, 1992), during primary
drainage the pore size distribution of the pores occupied
by the displacing (nonwetting) phase is given by Eq.
(3.10), since the largest throats are occupied by the
nonwetting Quid, and during imbibition the pore size dis-
tribution of the pores occupied by the displacing (wet-
ting) phase is given by Eq. (3.12), because the smallest
pores are occupied by the wetting phase. One can, in a
similar fashion, derive expressions for the pore size distri-
bution of the pores occupied by the displacing and dis-
placed Quids during secondary imbibition and drainage.
Once such pore size distributions are determined, calcu-
lating the permeability of each Quid phase (and therefore
the RP) reduces to a problem of percolation conductivity,
because when we calculate the permeability of a given
phase, the conductance (or effective radii) of the bonds
occupied by the other phase can be set to zero, since the
two phases are immiscible. Therefore any of the methods
discussed in Sec. V can be used for calculating the RPs to
the phases. These ideas were first developed by Heiba
et al. (1982) and were implemented by them and by
Sahimi et al. (1986a) on a variety of networks. Figure
55, taken from Sahimi et al. (1986a), shows the results
obtained with a cubic network. A comparison between
this figure and Figs. 53 and 54 shows that all qualitative,
and many quantitative, aspects of the experimental data
are reproduced by the model. Note that, as discussed in
Sec. III, drainage is better described by a bond percola-
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tion process, whereas imbibition is more complex (see
below).

In two subsequent papers, Heiba et aI. extended their
model to the case in which the porous medium is
intermediately-wet, or has mixed wettability characteris-
tics (Heiba et al. , 1983), and to the case where there are
three immiscible phases in the medium (for example, oil,
water, and gas). Consider the case of an intermediately-
wetted medium. As discussed above, in such a case both
primary and secondary displacement processes are
drainage. Therefore the formulas developed by Heiba
et al. (1982, 1992) for drainage can be easily extended
and modified for this case. Heiba et al. (1983) showed
that their model can predict all relevant features of RPs
and capillary pressure for intermediately-wetted a porous
media (see Fig. 53). Ramakrishnan and Wasan (1984)
used similar ideas and developed expressions for RPs and
also considered the effect of Ca on them. Just as the re-
sidual saturations S„depend on Ca (in fact S„~Oas
Cacao, which is the limit of miscible displacements),
the RPs also depend on Ca. Normally, If Ca is small RPs
do not show a great sensitivity to Ca. Evidence for this is
provided by the experimental data of Amaefule and Han-
dy (1982). However, as Ca increases the RP curves lose
their curvature, and in the limit Cacao they become
straight lines. Ramakrishnan and Wasan (1984)
developed formulae that can take this effect into account.
Levine and Cuthiell (1986) used an effective-medium ap-
proximation and a percolation model similar to that of
Heiba et al. to calculate the RPs to two-phase Row sys-
terns.

2. Random site-correlated bond
percolation models

Chatzis and Dullien (1982) used a network model in
which the sites represented the pore bodies to which ran-
dom radii were assigned, and the bonds represented the
pore throats whose effective radii were correlated with
those of the sites. Using this model, Chatzis and Dullien
(1982, 1985), Diaz et al. (1987), and Kantzas and Chatzis
(1988) simulated RP and capillary pressure curves for
sandstones. On the other hand, Wardlaw et al. (1987)
determined experimentally the correlations between the
pore bodies and pore throats sizes, and found that there
are little, if any, such correlations in Berea sandstones
but larger correlations for the Indiana limestone. Li
et al. (1986), Constantinides and Payatakes (1989), and
Maier and Laidlaw (1990, 1991b) also proposed network
models in which the sizes of the pore bodies and pore
throats were correlated. In spite of the fact that the
correlated model is much more detailed than a simple
random bond model, and despite extravagant claims
made by Chatzis and co-workers about the superiority of
the model, the RP predictions of their model are not
different in any significant way from those of the random
percolation model.

3. invasion percolation

This model was first proposed by Lenormand and
Bories (1980), Chandler et al. (1982), and Wilkinson and
Willemsen (1983). In this model the network is initially
filled with a Quid called the defender. To each site of the
network is assigned a random number uniformly distri-
buted in [0,1]. Then the displacing Quid (the inuader) is
injected into the medium which displaces the defender at
each time step by choosing the site next to the interface
that has the smallest random number. If we interpret the
random numbers as the resistance that the sites offer to
the invading fIuid, then choosing the site with the small-
est random number is equivalent to selecting a pore with
the largest size, and hence this model simulates a
drainage process. A slightly more tedious procedure can
be used for working with bonds instead of sites. Two ver-
sions of the model have been developed. In one model
the defender is incompressible, and therefore if its blobs
are surrounded by the invader, they become trapped.
This was studied by Chandler et al. (1982) and Wilkin-
son and Willemsen (1983). In the second model, trapping
is ignored (i.e., one tries to displace an infinitely compres-
sible defender). This was studied by Wilkinson and Bar-
sony (1984). Note that invasion percolation represents a
dynamical growth process, as opposed to random per-
colation which is static.

There is a close connection between invasion percola-
tion without trapping and random percolation. This con-
nection was first found by Wilkinson and Barsony (1984)
by Monte Carlo simulations. Some theoretical argu-
ments were also given by Chayes et al. (1986). Wilkin-
son and Barsony (1984) hypothesized that the exponent
A=vD of invasion percolation without trapping is the
same as that of random percolation, and this was sup-
ported by their Monte Carlo simulatio~s. An exact solu-
tion of the problem on the Bethe lattice (Nickel and
Wilkinson, 1983) also confirmed this. Therefore invasion
percolation without trapping seems to be in the univer-
sality class of random percolation.

For invasion percolation with trapping, Monte Carlo
simulations of Wilkinson and Willemsen (1983) and those
of others indicated that, D (d =2)= 1.82, somewhat
smaller than D~(d =2)=91/48=1.896 for random per-
colation, whereas for d=3 no significant difference be-
tween invasion and random percolation models was ob-
served. Therefore the effect of trapping seems to be
negligible in three dimensions. However, it is not yet es-
tablished rigorously that invasion percolation with trap-
ping does not belong to the universality class of random
percolation.

From a conceptual point of view, invasion percolation
is definitely a more appropriate model of immiscible dis-
placements than the random percolation models dis-
cussed above. The most obvious reason for this is -the

fact that there is a well-defined interface that starts from
one side of the system and displaces the defender in a sys-
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tematic and realistic way. Thus, the concepts of history,
and the sequence of invading pores according to a physi-
cal rule are naturally built into the model.

Let us summarize the experimental evidence in support
of invasion percolation model of two-phase flows. Lenor-
mand and Zarcone (1985a) displaced oil (the wetting
Auid) by air (the nonwetting Quid) in a large and trans-
parent two-dimensional etched network and obtained
D = 1.82, consistent with two-dimensional computer
simulations of invasion percolation with trapping. Jac-
quin (1985) and Shaw (1987) also performed experiments
that gave strong support to the validity of invasion per-
colation. For example, Shaw (1987) showed that if a
porous medium, filled with water, is dried by hot air, the
dried pores (i.e., those filled with air) form an invasion
percolation cluster with the fractal dimension that is
found in computer simulations. Stokes et al. (1986) used
a cell packed with unconsolidated glass beads, an essen-
tially three-dimensional pore system. The wetting Quid
was water or a water-glycerol mixture, while the nonwet-
ting fiuid was oil. When oil displaced water (drainage),
the resulting patterns were consistent with invasion per-
colation description of the process. Chen and Wada
(1986) used a technique in which one uses index matching
of the Auids to the porous matrix to "look" inside the
porous medium. Their observations were consistent with
invasion percolation model. Chen and Koplik (1985)
used small two-dimensional etched networks, with oil
and air as the wetting and nonwetting Auids, respectively,
and found that their drainage patterns were consistent
with the assumptions and results of invasion percolation.
Finally, Lenormand and Zarcone (1985b) used two-
dimensional etched networks and a variety of wetting
and nonwetting Auids (oil, different water-sucrose solu-
tions, air), and showed that their drainage experiments
are all completely consistent with an invasion percolation
description of this phenomenon. Therefore although all
these porous media were man-made, and we still do not
have any experimental evidence from two-phase Row in a
natural porous medium, there is little doubt that invasion
percolation is an appropriate description of capillary-
controlled two-phase Aow in porous media, especially in
the case of drainage.

A large number of authors have used an invasion per-
colation algorithm or its variants to simulate two-phase
Sow in porous media. Some of them (Lin and Slattery,
1982; Mohanty and Salter, 1982; Katz et a/. , 1988; Roux
and Wilkinson, 1988; Blunt and King, 1990, 1991;
Jerauld and Salter, 1990) were concerned mainly with
calculating the RPs and conductivities of invasion per-
colation clusters. Some of these authors did not mention
invasion percolation, although their model was similar to
invasion percolation. Others concerned themselves with
fundamental properties of invasion percolation clusters.
For example, Wilkinson (1986) and Sahimi and Imdakm
(1988) derived the scaling laws that the capillary pres-
sures, RPs, and dispersion coeKcients obey near the re-
sidual saturations (see below). Furuberg et al. (1988)
studied the probability Q (r, t) (where r = ~r

~
) that a site,

a distance r from the injection point, is invaded at time t.
They found that a dynamic scaling governs Q (r, t)

D
Q(r, t) —r 'f(v ~/r), (8.24)

4. Random percolation with trapping

Random percolation with trapping was developed by
Sahimi (1985) and Sahimi and Tsotsis (1985) to model
catalytic pore plugging of porous media. In this problem
the pores of a porous medium plug as the result of a
chemical reaction and deposition of the solid products on
the surface of the pores. Large (macro-) pores take a
long time to be plugged, and if they are surrounded by
small (micro-) pores that quickly plug, they are trapped
and cannot be reached by the reactants. Accurate com-
puter simulations of Dias and Wilkinson (1986), who pro-
posed the same model for two-phase Bow problems, indi-
cated that most properties of random percolation with
trapping in both two and three dimensions are the same
as those of random percolation discussed in Sec. II.
However, this may not be the case if, as in the problem
considered by Sahimi and Tsotsis, the pore sizes are

where f (u) is a scaling function with the unusual proper-

ty that f(u)-u '(u «1), and f (u) —u '(u ))1), i.e.,
f (u) vanishes at both ends. This dynamic scaling implies
that the most probable point at which the growth of the

j./D
interface takes place is at r-t ~. The reason for this
unusual limiting behavior of f (u) is that at time t, most
of the region within the distance r has already been in-
vaded, and new sites close to the interface that can be in-
vaded are rare. Roux and Guyon (1989) argued that the
exponents a

$
and a2 are given by, a

$
= 1, and

az=r~+o~ Di, /D—
~
—1, where r~, o~, and D~ are the

usual percolation exponents and fractal dimension (Sec.
II), and Dh is the fractal dimension of the hu/I (or exter-
nal surface) of percolation clusters, where
Dh(d =2)=1+1/v=7/4, and Dh(d =3)=D .

Laidlaw et al. (1988) considered two different algo-
rithms for invasion percolation. One of them was the
usual one defined above, while in the other one the
displacing Quid invaded a// accessible sites less than a
given size. They found that while the fractions of invad-
ing fiuid in the two cases are different (which is expected),
their scaling properties are the same. Meakin (1991)
studied invasion percolation on substrates with multifrac-
tal distribution of bond threshold probabilities. He found
that the spatial correlation does not change the fractal
properties of invasion clusters. However, certain
differences may appear in the scaling of the hulls of the
clusters. Maier and Laidlaw (1991a) investigated the ex-
istence of dimensional invariants (such as B, defined for
random percolation in Sec. II) in invasion percolation.
Finally, Bakurov et al. (1990) proposed a dynamical per-
colation model of oil displacement, and developed a
quasi-quantum-mechanical formulation for it. Their
model is closely related to invasion percolation.
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broadly distributed.
More rigorously, a trapping transition for random per-

colation can be defined as follows (Pokorny er al. , 1990).
One starts with a random percolation model and at any
fraction p of open bonds removes from the network all
the bonds which are part of the infinite cluster. A trap is
then defined as the connected component of what
remains of the network. For p =1, all traps are of finite
size. As p approaches p„atrapping transition occurs at

p, below which there is an infinite trap. Aizeman and
Grimmett [quoted by Pokorny et al. (1990)] proved that
p, ) 1 —p, . Pokorny et al. (1990) showed that p, =0.52
for the square network, and that trapping transition is
described by the critical exponents of random percola-
tion.

5. Crossover from fractal
to compact displacement

Although we discussed relative-permeability RP
curves for both imbibition and drainage in terms of a per-
colation model, there are certain qualitative difFerences
between the two that need to be discussed. A clue to
these di6'erences is already evident in the RP curves. The
RP to the nonwetting phase during primary imbibition

by a strongly wetting Quid vanishes only at S,„=Q,i.e.,
the nonwetting phase is completely expelled from the
medium and the wetting phase fills the system; see Fig.
55. This indicates that imbibition is an essentially com-
pact displacement. However, during drainage by a com-
pletely nonwetting fIuid, the RP to the wetting phase
vanishes at a finite value of S~, i.e., the nonwetting phase
does not fill the porous medium, and a fractal percolation
cluster is formed. This was already predicted by the per-
colation model of Heiba et al (1982, 1.992), and was also
nicely demonstrated by Lenormand and Zarcone (1984)
who used a two-dimensional etched network, injected
mercury into the system (drainage), and then withdrew it
(imbibition). The cluster formed during imbibition was
totally compact and filled the etched network.

A definitive study of this problem was made by Cieplak
and Robbins (1988, 1990). In this study the porous medi-
um was represented by a two-dimensional array of disks
with random radii, where the underlying lattice was ei-
ther a triangular or a square network. The limit of low
Ca was considered, and the displacement dynamics were
modeled as a stepwise process where each unstable sec-
tion of the interface moved to the next stable or nearly
stable configuration. Their simulations showed that
there are three basic types of instability and the corre-
sponding growth mechanisms. (i) Burst happens when, at
a given capillary pressure P„nostable arc connects two
disks, and therefore the interface simply jumps forward
to connect to the nearest disk. (ii) Touch happens when
an arc that connects two disks, intersects another disk at
a wrong contact angle t9. In this case, the interface con-
nects to this third disk. (iii) Ouerlap happens when two
nearby arcs overlap. There is no need for the disk to

w-(8 —8, ) (8.25)

where ve-—2.3 in their two-dimensional simulations. The
critical angle 8, was found to depend on the porosity P of
the system, for example, 8, =29 for P =0.322, and

8, =69 for $ =0.73. The exponent vs was found to be
universal. The compactness of the cluster for 0(0, is
consistent with the imbibition picture discussed above.

The divergence of m at 0, is clearly due to the transi-
tion from fractal to compact growth. For large 0,
growth occurs mainly by burst, similar to invasion per-
colations, and the growth pattern is independent of 8.
However, as 0—+8„the overlap and touch phenomena
become more important, and the interface is unstable for
almost any configuration of the local geometry. Thus the
growth pattern changes, and hence w diverges.

(b)

FIG. 56. Three types of instability and growth that occur dur-

ing an immiscible displacement: (a) burst, (b) touch, and (c)
overlap of arcs (from Cieplak and Robbins, 1990).

which both arcs are connected, and it can be removed
from the interface. Figure 56 illustrates these three
growth mechanisms.

To simulate the growth of the interface P, is fixed and
the stable arcs are found. If instabilities are found, local
changes are made to remove them. Then, P, is increased
by a small amount (to simulate a capillary-controlled in-
vasion), the interface is advanced, possible instabilities
are removed again, and so on. As in invasion percolation
with trapping, if the invading Quid surrounds a blob of
the displaced fIkuid, the blob is kept intact for the rest of
the simulation. If all disks have the same radius, the re-
sulting patterns are very regular and faceted which also
preserve the symmetry of the lattice. This is in agree-
ment with the experiments of Ben-Jacob et al. (1985).
However, when the radii of the disks are randomly distri-
buted, then the behavior of the system depends on the
contact angle 0. To quantify the efFect of 0, we define an
interface width m. %'hen 0 is near 180, i.e., one has a
drainage process, then the phenomenon is an invasion
percolation and w is of the order of pore size. However,
Cieplak and Robbins (1988, 1990) showed that as 8 de-
creases the cluster of invading Quid becomes more com-
pact and m increases; see Fig. 57. Finally, at a critical
contact angle O„mdiverges according to a power law
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6. Roughening and pinning of fluid interfaces:
Dynamic scaling of rough surfaces

Although the available experimental data, the percola-
tion model of Heiba et al. (1982, 1992) for RP's, two-
dimensional experiments of Lenormand and Zarcone
(1984), and simulation of Cieplak and Robbins (1988,
1990) all indicated a major difference between drainage
and imbibition, we still have not discussed the nature of
the interface during imbibition. The cluster of the in-
validing Quid during imbibition is compact, but capillary
forces lead to random loca1 pinning of the interface
which results in its roughening. This rough interface has

a self-affine (anisotropic) fractal structure, which was
demonstrated by the experiments of Rubio et al. (1989)
and Horvath et aI .(1991a). The self-affinity of such
rough interfaces was first suggested by Cieplak and Rob-
bins (1988),but it was not quantified.

Rubio et al. (1989) performed their experiments in a
thin (essentially two-dimensional) porous medium made
of tightly packed clean glass beads of various diameters.
Water was injected into the porous medium to displace
the air in the system. The motion of the interface was
recorded and digitized with high resolution. The experi-
ments of Horvath et al. (199la) were very similar (see
below). Before embarking on an analysis of the results of
Rubio et al. (1989) and Horvath et al. (1991a), let us re-
view brieQy the dynamics of rough surfaces and inter-
faces.

The roughness of the interface is characterized by the
width w(L) defined as, t'ai(L)=([h (x)—(h )z ] )'
where h is the height of the interface at position x, and
(h )I is its average over a horizontal segment of length
I.. According to the scaling theory of Family and Vicsek
(1985) for growing rough surfaces, one has the scaling
form at time t

Ii (x)—(h )L —t~f (x/t~ ), (8.26)

where a and P are two critical exponents that satisfy the
scaling relation

(8.27)

and the scaling function f (u) has the properties that,
~f (u)l &c for u &)1, and f (u)-L f (Lu) for u «1,
where c is a constant. It is then easy to see that

ic (L, t) —t~g ( t /L ~), (8.28)

where g (u ) is another scaling function, and therefore

w(L, oo )-L (8.29)

Note that w (L, t) is a measure of the correlation length
along the direction of growth. A variety of surface
growth models and the resulting dynamical scaling can
be described by the stochastic differential equation pro-
posed by Kardar, Parisi, and Zhang (1986) (KPZ)

(8.30)

where o- is the surface tension, U is the growth velocity
perpendicular to the interface, and JV is a noise term.
Kardar et al. (1986) considered the case in which the
noise was assumed to be gaussian with the correlation

(8.31)

FIG. 57. The eftect of contact angle on the shape of the invad-
ing cluster: (a) 6I=179; (b) 0=58'. The cluster in (a) represents
a drainage process, while the one in (b) represents imbibition
(from Cieplak and Robbins, 1990).

2
0+2 (8.32)

where A is the strength of the noise. For this model it
has been proposed that (Kim and Kosterlitz, 1989;
Hentschel and Family, 1991)
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(8.33)

for a d-dimensional system.
Another stochastic equation was proposed by Koplik

and Levine (1985)

Bh =o VTh +ug+ A JV(r, h),
Bt

(8.34)

Bh =u + AJV(h) .
Bt

(8.35)

If u & 3JV,„,where JV,
„

is the maximum value of JV,
then Bh /dt & 0, and the interface always moves with a ve-
locity fluctuating around u . If, however, us(AJV, „,
the interface will eventually arrive at a point where
ug+ 3JV=O, and get pinned down. Therefore for a fixed
v there has to be a pinning transition at some finite value
of A. Indeed, Stokes et al. (1988) performed fiuid dis-
placement experiments in random packs of monodisperse
glass beads in pyrex tubes and measured the capillary
pressures at which such a pinning transition takes place.
The reader is referred to Family and Vicsek (1991) for a
variety of models and experiments in random media and
the accompanying surface growth phenomena.

Now that we have equipped ourselves with this
description of rough interfaces, let us now go back to the
experiments of Rubio et al. (1989) and Horvath et aI
(1991a). Rubio et al. (1989) found that a =0.73,
significantly difFerent from a = 1/2, predicted by Eq.
(8.32), but consistent with the result of Kessler et al.
(1991). Horvath et al. (1990) reanalyzed the data at Ru-
bio et al. and obtained, a=0.91, larger than all other
values. Horvath et al. (1991a) conducted their own ex-
periments in a Hele-Shaw-like cell, packed randomly and
homogeneously with glass beads, and displaced the air in
the system with glycerol-water mixture, and obtained,
a=0.81, and @=0.65. Although this value of a is close
to that of Rubio et al. , as analyzed by Horvath et al.
(1990), and although these a and P satisfy the scaling re-
lation (8.27), they are significantly difFerent from the pre-
dictions of Eqs. (8.32), but their a is consistent with the
result of Kessler et al. Martys et al. (1991) employed
the model of Cieplak and Robbins (1988) discussed above
and showed that below 0, one has, a=0.81, in perfect
agreement with the result of Horvath et al. (1991a).

How can we explain these beautiful results'? As of the
time of writing this review, this question has not found a
definitive answer. Several models and explanations have
been introduced. For example, Zhang (1990a) proposed a

a linear equation whose noise term is more complex than
that of the KPZ equation. A similar equation was used
by Bruinsma and Aeppli (1984) to describe the motion of
the interface between the spins-up and the spins-down
domains of an ising model. For this model, the numeri-
cal work of Kessler et al. (1991) indicated that
a(d =2)=0.75. It is now easy to see why a pinning tran-
sition occurs by considering Eq. (8.34) in zero transverse
dimension

modification of the KPZ model in which the distribution
of the noise amplitude is of power-law form

P(A)-A (8.36)

which is interesting, since such a distribution implies
long-range correlations in the noise (siinilar to fBm dis-
cussed in Sec. IV). Horvath et al. (1991b) showed that
the above experimental data can be fitted to this model if
p„=2.7. Havlin et al. (1991) used an analogy between
surface growth models and Levy flights [i.e., random
walks in which the walker takes steps whose length is dis-
tributed according to a distribution similar to (8.36)] to
show that

(8.37)

(8.38)

(8.39)

(8.40)

One has, vL = 1.734 and 1.27, and vT = 1.1 and 0.735, for
two and three dimensions, respectively.

Tang and Leschhorn (1992) and Buldyrev et al. (1992)

so that with p„=2.7 we obtain a =0.81, in perfect agree-
ment with the data. Equations (8.37) and (8.38) had been
proposed by Zhang (1990b) and Krug (1991) as loiuer
bounds to the true values of a and P. Of course, we still
do not know why the noise amplitude should have a
power-law distribution, or if it does, why this particular
value of p„should fit the data. It may have to do with
the geometry and the pore size distribution of the porous
media used in these studies.

Another model was proposed by Tang and Leschhorn
(1992) and Buldyrev et al. (1992). The latter authors also
carried out an interesting experiment in which a paper
was clipped to a ring, and was dipped into a basin filled
with suspensions of ink or coffee. The Quid invaded the
paper and formed a rough interface between the wet and
dry regions. The roughness exponent was found to be
+=0.63, completely different from the above data. Tang
and Leschhorn (1992) and Buldyrev et al. (1992) argued
that this phenomenon is related to directed percolation.
In this process [for a review see Kinzel (1983)],the bonds
of the network in a given direction are directed and
diode-like, in the sense that they allow transport in only
one direction; if the direction of the macroscopic poten-
tial is reversed, no global transport would take place.
This induces a global anisotropy such that one needs two
correlation lengths for characterizing the network. One
is gL, the longitudinal correlation length in the direction
of macroscopic potential, while the other is gT, in the
transverse direction. The percolation thresholds p,d of
directed networks are much larger than those of random
percolation. Near p,d
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argued that w (L ) -gT and L -gl, and therefore

w (L)-L (8.41)

i.e., a= vT/vz—-0.63 for d=2, which agrees with the ex-
periments of Buldyrev et al. (1992), and the simulations
of Tang and Leschhorn (1992). Barabasi et al. (1992) ex-
tended these experiments to three dimensions, and ob-
tained a=0.5. However, we should point out that the
roughness of the interface in a natural porous medium
such as sandstone is far more complex than whatever
that has been considered in all of these experiments, and
despite their elegance it remains to be seen whether these
models and experiments are directly relevant to imbibi-
tion in natural porous media.

7. Finite-size effects on capillary pressure
and relative permeability: Devil's staircase

X~~ -(b,R) " . (8.42)

kR was found to vary between 0.57 and 0.81. It presum-
ably depends on the strength of the competition between
capillary and gravitational forces: A, R

——0.57 signifies the
limit of no gravitational forces, while A,R

——0.81 presum-
ably represents the limit in which gravitational forces are
prominent. Based on the stepwise decrease of the resis-
tance and the apparent first-order phase transition (see
Fig. 8), Thompson, Katz, and Rashke (1987) concluded
that mercury injection is not second order and should not
be modeled by percolation, which usually represents a
second-order phase transition. This was already men-
tioned in Sec. III.

However, simulation of this process by Katz et al.
(1988), Roux and Wilkinson (1988), and Sahimi and Im-
dakm (1988), and a related simulation of Batrouni et al.
(1988) showed that such a stepwise decrease in the resis-
tance can be predicted by a (random or invasion) percola-
tion process. The reason for this stepwise decrease in the
sample resistance is that, in a finite sample, penetration
of any pore by mercury causes a finite change in the resis-

Most of our theoretical discussion so far has been lim-
ited to systems that are essentially of infinite extent. If
the system is of finite size, the dependence of macroscop-
ic properties on the size I. of the system can be investi-
gated using finite-size scaling. But we have not investi-
gated the effect of the size of a porous medium on its
capillary pressure and relative permeability curves.
Thompson et al. (1987b) measured the electrical resis-
tance of a porous medium during mercury injection
(drainage), and showed that the resistance decreases (the
permeability increases) during the injection process in
steps on devil's staircase (Mandelbrot, 1983), this is
shown in Fig. 8. The steps were irreversible in that small
hysteresis loops did not retrace the steps, and they were
not reproduced on successive injections. When the num-
ber XzR of resistance steps larger than hR was plotted
versus AR, a power-law relation was found:

tance (or, in order to cause a finite change in the resis-
tance, the capillary pressure should also change by a
finite amount), but as the sample size increases, the size
of the step changes decreases such that for a very large
sample the steps would vanish and the resistance curves
become continuous and smooth. Siddiqui and Sahimi
(1993) simulated this process using invasion and random
percolation models which showed clearly the effect of
sample size on the resistance curve. Using a percolation
model, Roux and Wilkinson (1988) showed that, for a
three-dimensional porous medium of size L„

L 3(P,—v)/(P+3v)( gg )
—3v/(P, +3v)

h, R (8.43)

8. Immiscible displacements under the
influence of gravity: Gradient percolation

So far, we have neglected the effect of gravity on an
immiscible displacernent. However, this effect cannot be
neglected for three-dimensional porous media. The hy-
drostatic component of pressure adds to the applied pres-
sure, and this creates a vertical gradient in the effective
injection pressure. Because of this gradient, the fraction
of accessible pores decreases with the height of the sys-
tem. This effect was not taken into account in the per-
colation models described above. However, a
modification of the invasion percolation by Wilkinson
(1984), and by Sapoval et al. (1985) and Gouyet et al.
(1988) succeeded in taking into account such eff'ects. But
before discussing these models, let us briefly describe a
few experimental studies regarding the effect of gravity.

Clement et al. (1987) and Hulin et al. (1988) used the
following procedure to study gravitational effects. They
injected Wood s metal, which is a low-melting point
liquid alloy, into the bottom of a vertical and evacuated
crushed-glass column. The experiments were carried out
at low values of Ca by controlling the Qow velocity U.

After the front reached a given height, they stopped the
injection and let the liquid solidify. The horizontal sec-
tions of the front corresponding to various heights were
then analyzed, and the correlation function C(r) [see Eq.
(3.55)] of the metal distribution in the horizontal planes
was determined to see whether a fractal structure was
formed.

Another series of experiments were carried out by
Birovljev et al. (1991) in a two dimensional porous-medi-
um. They used transparent two-dimensional models con-
sisting of a monolayer of 1-mm glass beads placed at ran-
dom and sandwiched between two plates. The system
was filled with a glycerol-water mixture, which was dis-
placed by air invading the system at one end.

so that Az =3v/()M+3v)=0. 57, which agrees well with
the experimental result in the absence of gravity. Thus,
while sample size effects are important, the stepwise de-
crease in the resistance of the sample during mercury in-
jection is still consistent with a percolation description of
this process discussed in Sec. III, and with that of two-
phase Aow discussed in this section.
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The competition between gravity and capillary forces
is usually expressed through the Bond number Bo which
is defined as

hpgRBo=
OOW

(8.44)

where Ap is the density difFerence between the two fluids,

g the gravity, and R the typical size of the grain. %wilkin-

son (1984) showed that in an immiscible displacement un-

der gravity, the correlation length g does not diverge
(unlike random and invasion percolation which have a
diverging correlation length g ), but it can reach a max-

imum value which is given by

9. A phase diagram for displacement processes

I —(p+ v+ 1)/v

towards the stable viscous displacements, and as

(8.49)

Lenormand (1989) studied the crossovers between
three regimes of displacements, namely, capillary-
controlled displacements (represented by percolation
models), unstable viscous displacements (represented by
DLAs and their generalizations), and stable viscous dis-
placements (represented by anti-DLAs). If L is the linear
size of a porous medium, then, the boundaries of a
percolation-type displacement scales as

—v/(1+ v)
bg (8.45) I —(v+1)/v (8.50)

so that gs
—Bo " and g~

—Bo ~ in three and two di-

mensions, respectively. In three dimensions, there is a
transition region where both phases can percolate, and
the width m of this region is given by

w —Bo (8.46)

6 —v/(1+ v)
5g (8.47)

which is completely similar to Eq. (8.45), in which Bo has
been replaced with G. The three-dimensional experi-
ments of Hulin et al. (1988), and the two-dimensional ex-
periments of Birovljev et al. (1991)were completely con-
sistent with these results. For example, Birovljev et al.
(1991) obtained g -Bo, where the exponent 0.57
agrees completely with the theoretical prediction,
v/(1+ v) =4/7 =0.57.

Wilkinson (1984) also derived an important result re-

garding the efFect of gravity on the residual oil satura-
tion. He showed by a scaling argument that the
difference S„,—S„„whereS„,is the ROS for Bo&0 andS„„the corresponding value when Bo=0, is given by

Similar results were obtained by Sapoval et al. (1985)
and Cxouyet et al. (1988) in the context of gradient per
colation, which is a model in which a gradient 6 for the
occupation probability p is imposed on one direction of
the network [such a model had in fact been considered
earlier by Trugman (1983), who called this a graded per
colation] They .used arguments similar to Wilkinson's to
show that

towards the unstable regime. Unstable viscous displace-
ments can occur for

L„—(&&, )/(Ca) (8.52)

where 6P, is a measure of the spatial variations of P, and

D; is the interface fractal dimension on small length
scales, which they found to be D;=1.3 in two dimen-
sions.

&/lg (N

(8.51)

which extends towards percolation-type displacements as
I. increases. Stable displacements do not depend on the
size of the system. These considerations lead to the
phase diagram shown in Fig. 58. Fernandez et al. (1991)
also studied the crossover from invasion percolation to a
DLA-type displacement. They found that on length
scales much smaller (larger) than a crossover length scale
L„,invasion percolation (DLA) patterns are obtained.
Moreover, they argued that

S„,—S„-BoO 7Lg (8.48)

where X~=(1+P )/(1+v), v and P being the usual

percolation exponents, so that S„,—S,,-Bo, for a
three-dimensional porous medium. Wilkinson (1984) also
proposed a simple model for simulating invasion percola-
tion under the inhuence of gravity, in which a bias,
linearly proportional to the height of the interface, is
added to the random numbers that are assigned to the
sites in the usual invasion percolation. The simulation
proceeds as in the usual invasion percolation by invading
those sites in the vicinity of the interface that have the
smallest numbers.

FICi. 58. Phase diagram for three types of displacement (from
Lenormand, 1989).
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10. Scaling laws for relative
permeability and dispersion coefficients

One can derive scaling laws for capillary pressures, rel-
ative permeabilities, and dispersion coefficients near the
residual saturations, to see whether the experimental data
agree with such scaling laws. Wilkinson (1986) derived
such scaling laws for capillary pressure and RPs, while
Sahimi and Imdakm (1988) did the same for the disper-
sion coefBcients. The main problem in deriving such
scaling laws is relating the saturations 5 and S„„ofthe
wetting and nonwetting phases (and their residual values
S and S„„„)to the occupation probability p and the
percolation threshold of the system.

During drainage we are concerned with the point
where the displacing nonwetting Auid erst percolates.
Since the trapping of the wetting phase is not important,S„„is proportional to L ~iL, if L &&g . For L ))g~,

-—p /v
we replace L with gz, so that, S„-g~",and therefore

S -(p —p )~p (8.53)

On the other hand, during imbibition we have

S„—S„„—X dp —(p —p, )
1+p

C

(8.54)

k„„„-(S„) (8.55)

and during imbibition it obeys

p/(&+p )

krnw (Snw Srnw ) (8.56)

Similar results can be derived for the dispersion
coefficients. Thus if near the residual saturations holdup
dispersion is the dominant mechanism (see Sec. VI), then—2v+ p —p
Dl —(p —p, ) ~. Therefore in drainage

(8.57)

and in imbibition

(8.58)

These results appear to agree with both simulations and
experimental data. For example, Eqs. (8.56) and (8.57)
imply that DI -S„',and Dl -(S„—S„„)', for
drainage and imbibition, respectively. These are in
agreement with experimental data of Delshad et al.
(1985), which indicate very weak divergence of DL near
the residual saturations.

11. Comparison of invasion and
random-percolation models

As we already saw, invasion percolation is a realistic
model of capillary-controlled two-phase Aow in porous

Given these two equations, it is not dificult to derive the
scaling laws for RPs and dispersion coefficients. Thus
the relative permeability k„„to the nonwetting phase
during drainage obeys k„„—(p —p, )~, or in view of
(8.52)

media. However, permeability and relative permeabili-
ties are controlled by narrow pore throats and, moreover,
the trapping of one phase by another seems to be
insignificant in three dimensions. On the other hand, the
random-percolation model of Heiba et al. (1982, 1992)
provides analytical expressions for the pore-size distribu-
tions of the pores occupied by each phase during imbibi-
tion and drainage. These expressions greatly facilitate
calculation of RPs, since many methods of calculating
the permeability of a porous medium, discussed in Sec. V,
can be used with such expressions for estimating RPs.
Moreover, simulation of invasion percolation in a large
three-dimensional network is costly and time consuming.
Therefore, a practical question is: How do the predic-
tions of invasion and random percolation models for RPs
compare with the experimental data? Siddiqui and
Sahimi (1993) compared the predictions of the two mod-
els, obtained with a simple cubic network, with the ex-
perirnental data of Talash (1976) for Berea sandstones;
see Fig. 59. It is clear that the predictions of the
random-percolation model are at least as accurate as
those of invasion percolation. We emphasize that this
comparison is only for predicting the RPs, an important
problem for simulation of two-phase Aows. However, for
other quantities of interest invasion percolation is a more
realistic model than the random-percolation model.

I. Network models of immiscible
displacements at finite capillary nombers

So far we have discussed capillary-controlled displace-
ments, and in such processes viscous forces do not play
any role. However, in practice, especially in oil recovery
processes, it is often true that for a given displacement
such as waterflooding of an oil reservoir, the capillary
number Ca is relatively large so that viscous forces be-
come important. In this section, we review and discuss
network models of such processes.
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FICx. 59. Relative permeabilities as predicted by the random-
percolation {solid curves) and invasion percolation {dashed
curve) models. Circles represent experimental data {from Siddi-
qui and Sahimi, 1993).
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5P = — qf+P, — qf,
1 1

gal
' '

gp2
'' (8.59)

where qf is the Aow rate, and g; is the single-phase Qow

conductance of Quid region i. The basic assumption
behind equation (8.59) is that away from the interface the
Qow field in each Quid region is unaffected by the other
fiuid. Equation (8.59) gives rise to a nonlinear problem, if
it is assumed that the radius of the meniscus between the
two Quids, and thus the capillary pressure P, change in
some way as the meniscus passes from a pore body or
pore throat into the contiguous pore throat or pore body.
The nonlinear problem can be converted into a con-
strained linear one if one assumes that the meniscus stops
at the interface during this passing period. The Qow in
the pore throat is, therefore, zero until the constraints
are violated and the meniscus either moves forward into
the pore body or back into the pore throat. If only one
Quid is present in a pore body or pore throat, then P, is
of course dropped from Eq. (8.59). Using Eq. (8.59) and
the fact that for each pore body one has the mass conser-
vation law, g; qf; =0, one obtains a set of equations for
the pressure at the center of each pore body which can be
solved by a number of methods. Then in a time step At, a
meniscus I with velocity v moves a distance v At.

This gives a new Quid distribution, and the process is re-
peated. Koplik and Lasseter assumed that the two Quids
have the same viscosity (M= 1), and did detailed compu-
tations to determine the rate of change of saturations
from the Quid Quxes and to find out which Auids are
crossing the pore-throat boundaries. As already dis-
cussed above, at relatively high Ca the viscosity ratio M
is expected to have a significant effec, which Koplik and
Lasseter's model did not capture. Their simulations were
restricted to very small networks (10X 10).

The model of Dias and Payatakes (1986a, 1986b) is, in
some sense, more sophisticated than that of Koplik and

The first of such models was apparently developed by
Singhal and Somerton (1977), followed by the works of
Mohanty et al. (1980) and Payatakes et al. (1980). In
particular, Mohanty et al. (1980) used a square network
of pore bodies and pore throats with distributed sizes,
modelled the displacement of a nonwetting Quid by a
wetting one, investigated the effect of pore body and pore
throat size distributions, and simulated both low and rel-
atively high Ca regimes.

Detailed, and to some extent quantitative, models of
these phenomena were developed by Koplik and Lasseter
(1984, 1985), Dias and Payatakes (1986a, 1986b), Leclerc
and Neal (1988), and Lenormand. et al. (1988). In Ko-
plik and Lasseter's work, the pore space is modeled by a
two-dimensional, but nonplanar, network of cylindrical
pore throats and spherical pore bodies with distributed
effective sizes. The local coordination number of the net-
work was random. In general, the equations that have to
be solved are those for the pressure field throughout the
network, and those for saturations of the two phases. In
a pore throat, the pressure drop AP is given by

Lasseter, and at the same time it is simple enough to al-
low computations with larger networks. They used a
square network of pores having converging-diverging
segments with a sinusoidal profile. This model was first
used by Payatakes et al. (1980) for simulating blob
mobilization and dynamics, as discussed above. For
single-phase Qow through a pore the solution due to Til-
ton and Payatakes (1984) was used according to which

&Codp
qf=„"AP,„, (8.60)

where co is a constant, d the smallest diameter of the
pore (at the minimum of the sinusoidal profile), AP, a di-
rnensionless pressure drop along the pore (which is a
function of d ) when the fiow is creeping and the Rey-
nolds number is unity, and AP,d the pressure drop along
the converging-diverging pore. For two-phase Aow in the
pore a lubrication approximation was used and the solu-
tion of the flow problem due to Shef6eld and Metzner
(1976) was used. For the capillary pressure across the in-
terface the Washburn approximation, Eq. (3.4), was used.
Various mechanisms of imbibition, similar to those dis-
cussed above, were then simulated. In their second pa-
per, Dias and Payatakes (1986b) simulated mobilization
of oil blobs using physical mechanisms that were dis-
cussed above. The calculated quantities included residual
oil saturation and the distribution of the blobs. They
found that ROS decreases with decreasing M, even for
very small values of Ca. Moreover, for M(1 ROS de-
creases as Ca does (if Ca) 10 ), while for M& 1 ROS in-
creases slightly with Ca in the range 10 ~ Ca
& 5X 10,but for still higher values of Ca the ROS de-
creases rapidly as Ca increases. Finally, they found that
a waterAood at finite values of Ca gives rise to blob popu-
lations in which most blobs occupy only one pore body,
whereas as Ca —+ oo larger blobs are also formed. These
findings are all in qualitative agreement with the experi-
mental data which we already discussed above.

The final model is due to Lenormand et al. (1988)
which is completely similar to that of Leclerc and Neal
(1988), that was mentioned in our discussion of miscible
displacements in Sec. VII. More details of the work of
Leclerc and Neal (1988) can be found in Kiriakidis et al.
(1991). Blunt and King (1990, 1991) also used a similar
model. Whereas Koplik and Lasseter as well as Dias and
Payatakes replaced the actual nonlinear problem by a se-
quence of linear problems, Lenormand et al. (1988)
solved the actual nonlinear problem. In their model the
porous medium is represented by a network of bonds
with distributed effective radii. Consider a pore between
nodes i and j with radius r; for which the Qow rate is
given by

4
7Tr)J-

q;~ (P; P P„)"
I/J

where I is the length of the pore, P; and PJ the pres-
sures at i and j, and P„"the capillary pressure in the
pore. The mixture viscosity g; was taken to be g;J-
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=0.5[F2(a,. +a )+pi(2 —a; —a )], where a; is the frac-
tion of the pore occupied by the fiuid i .In Eq. (8.61) +
means that q; =0 as long as P, —P. &P„".Because of
this constraint, Eq. (8.60) is actually a nonlinear relation
between the flow rate, and the nodal and capillary p'res-

sures. Because the actual nonlinear equations are solved,
one can use any value of the capillary number Ca and
mobility ratio M. Figure 60 shows the displacement pat-
terns obtained with various values of Ca and M (in the
figure C denotes the capillary number). Only the dis-
placement of the wetting phase by a nonwetting phase
was considered. Thus very low values of Ca correspond
to invasion percolation, while very large values of Ca
represent miscible displacements. These results are also
in excellent agreement with the experiments of Lenor-
mand et al. (1983) in two-dimensional etched networks.
Lenormand et al. (1988) were also able to use relatively
large networks (100X 100) which is a distinct advantage
over the methods Koplik and Lasseter, and Dias and
Payatakes.

J. Stability of immiscible displacements
in porous media

We now discuss the stability of immiscible displace-
ments. But we first provide a qualitative discussion of
the subject, and then follow it up with a more quantita-
tive analysis.

Many years ago, van Meurs (1957) used displacing and
displaced fluids of the same refraction index and studied
immiscible displacements in porous media. Chouke
et al. (1959), Perkins and Johnston (1969), White et al.

(1976), Peters and Flock (1981), Paterson et al. (1982,
1984a, 1984b), M516y et al. (1985, 1987), Stokes et al.
(1986), and Frette et al. (1990) provided more experi-
mental results and insight. From these observations it
appears that immiscible fingering can take place over
many length scales, up to a macroscopic one, and there-
fore one may even use a characteristic length scale for
characterizing what is seen. The main implications of
most of these experimental works were discussed exten-
sively by Homsy (1987), and can be summarized as fol-
lows. (i) If the invading Auid wets the porous medium,
fingering can be characterized by some macroscopic
length scale, such as the width of the fingers, whereas if it
does not, fingering is limited to pore scales, in which case
shielding dominates spreading (see Sec. VII) (recall that a
displacement with a wetting fiuid is compact). The
characteristic macroscopic length scale decreases as Ca
increases. These were confirmed by the careful experi-
ments of Stokes et al. (1986), who also showed that when
macroscopic fingering takes place, the width of the finger
w scales with the permeability and Ca as
wlk'~ -Ca '~ . (ii) If the invading fiuid is nonwetting,
then one obtains fingers that form a percolation cluster.
This was already discussed above. (iii) Finally, there is a
transition zone just behind the interface where both
phases are Rowing. We should mention that Mkl&y et al.
(1985, 1987) and Oxaal (1991) claimed that their viscous
fingering patterns obtained with immiscible fluids are
similar to dift'usion-limited aggregation clusters which, as
discussed in Sec. VII, are strictly applicable to miscible
fluids in the limit M = Do. Therefore it is not clear at all
why there should be any similarities between the two
phenomena.
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Chouke et al. (1959) were the first to attempt a
theoretical analysis of stability of two-phase Aows in a
porous medium. They ignored the transition zone and
assumed that one Quid completely displaces another
fiuid. As the boundary condition at the interface they
used Eq. (7.32), but replaced the microscopic surface ten-
sion by an effective surface tension for the macroscopic
system. Although there is no theoretical justification for
doing this, it does provide a reasonable description of
some experimental works. Other authors (Outmans,
1962; Rachford, 1964; Hagoort, 1974; Peters and Flock,
1981; Huang et al. , 1984; Jerauld, Davis, and Scriven,
1984; Jerauld, Nitsche et a/. , 1984; King et al. , 1984;
Yortsos and Huang, 1986; Chikhliwala and Yortsos,
1988; Chikhliwala et al. , 1988; Yortsos and Hickernell,
1989) analyzed stability of immiscible displacements.
Yortsos (1990) has given a detailed discussion of such
analyses, a summary of which is as follows.

We consider the results that are obtained from dis-
placements at a constant velocity U of a nonwetting Quid

by the injection of a wetting Auid. The system is initially
at a uniform saturation S; . Unidirectional Bow is de-
scribed by the equation

aS. af„aS. a kk„„.dP, aS.
+v = — fat aS„ax ax il ~ ds~ ax

S„f

S„;

S„
S„o

0

S„o

Swr

0

(8.70)

FIG. 61. Various upstream conditions for wetting-phase satu-
ration 5 vs the axial distance X, used in the stability analysis of
immiscible Aows (from Yortsos, 1990).

with the initial and boundary conditions

(8.62) ' 1/2 dI',
&0,~, cos8 dS

(8.71)

S =S;, t =0,
S ~S;, as x~oo,

(8.63)

(8.64)

(8.65)

are used. Moreover, length scales will be measured by
I- =(k/P)' (S„"—S")k "/Ca, which is the length
over which the viscous and capillary forces are balanced.
In this new notation we have

S —S
Srd= S„—S (8.66)

and normalized mobilities (see Sec. VII),

k
(S„d)=

QO
(8.67)

A,„„(s„d)=
krnw

—oo
PLO 9

E'EN

. ~rnid

(8.68)

(8.69)

where f is the fractional flow of the wetting phase (i.e.,
the ratio of its flux and the total flux). If f~ has an up-
ward convex segment, which is usually the case during
imbibition, or during drainage of not strongly wetting
phases, then the base state can be taken as the travelling
steady-state solution of Eq. (8.62). Various upstream
conditions, denoted by —~, are graphically shown in
Fig. 61. We use dimensionless notations to simplify the
discussion. A reduced saturation

dS„d
=A, ,(fs,d +f") —MA, (8.72)

dI', =fS„d+f"—1, (8.73)

S„d S
dg

(8.74)

where 0&m &1 for secondary displacements, and m& 1

for primary displacements. Equation (8.74) is a manifes-
tation of hypodi6'usion discussed above.

To examine the stability of the system, the above equa-
tions are written in a moving coordinate and the stability
of the resulting equations are studied using ihe general
method discussed in Sec. VII. The following results are
obtained.

(i) The rate of growth co is bounded from above for all
wave numbers a by the expression

m& —A(a +2233m,

where f =f f, and g=x/L. —We note that if
k (S =S, ) )0, i.e., if the saturation is mobile, then the
downstream decay of the base state is exponential. In the
opposite case we have
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where Ai =min( —A,„&&, /&, ) &0» ~z=m»(dfw/
diaz)&0, and 23=A, , (1)/A, , (0)—1&0, where 1 and 0
correspond to upstream and downstream values of S„&,
respectively [see Eq. (8.66)]. Therefore, co lies below the
parabola on the right side of (8.75) and a cutoff' wave
number a„~AzA3/A„while the maximum growth
rate co does not exceed ( 2, A z ) /(4A, ). These general
results confirm what is expected, that long-wave instabili-
ty is driven by mobility contrast ( A3), while short-wave
stabilization is a result of capillarity ( A, ).

(ii) One can develop large wavelength asymptotics,
co=coiA+Q)~A + ' ' ', where

(8.76)

4A, , (0)dA, , /dS„g is

k [A,,(0)+A,,(1)] (8.77)

where k is a measure of the algebraic decay. Since
dA, , /dS~~+ i is positive for unstable displacements, its

d
—'

existence indicates a stabilizing effect. Interestingly, this
is due to mobility effects alone which adds to the process
stability. Chikhliwala and Yortsos (1988) obtained the
numerical solutions of the above equations to demon-
strate the adequacy of the above expansions.

The geometries of the interface and the medium can
have an important effect. For miscible displacements
Tan and Homsy (1987) suggested an algebraic (rather
than exponential) dependence for the time evolution of
the disturbances. This suggestion was applied by Yortsos
(1987b) to immiscible fluids in radial displacements. In
this case, the base state profiles are sole functions of the
similarity variable g, =r /t. Perturbations are then
sought in the following forms

S„q=S(i),)+r s( ), )ie (8.78)

P =P(rl, )+t p( ), )re (8.79)

where I' and I' are dimensionless capillary pressures, and
0, is the azimuthal angle. If 5&0, then the interface is
unstable. At low values of o; one has the asymptotic ex-
pansion

5——1+5in+5 a + . (8.80)

where 5, is equivalent to the Saffman-Taylor term, i.e.,
co=a(M —1)/(M+ 1), and 5z is inversely proportional to
a capillary number Ca . Large Ca leads to instability,
but if Ca is not too large, even M& 1 may not lead to
instability. For Ca (Ca, the displacement is stable,
where Ca, is a critical value of Ca given by

which is a generalization of the Saffman-Taylor condi-
tion, co=a(M —1)/(M+1), for Hele-Shaw cells. coz is
not zero but varies according to the upstream decay of
the base state. For example, if the upstream decay is
algebraic [see Fig. 61(a)], then one has co =co,a
+~&0, lno. +cu3a +,where

Ca, =2f /m, and co is a parameter independent of Ca.
Finally, it should be pointed out that, as Yortsos (1987a)
showed, immiscible displacements are equivalent to mis-
cible displacements with equi/ibrium adsorption. This
analogy relates (S,f„)to the ffowing and adsorbed con-
centrations ( Cf, C,z ).

K. Two-phase flow in heterogeneous
and stratified rock; continuum models
and large-scale averaging

So far, our discussion of two-phase Aows has been re-
stricted to macroscopically homogeneous porous media.
Most reservoirs are, however, stratified and heterogene-
ous (see Sec. VI). Similar to every phenomenon discussed
so far, two-phase Aows in heterogeneous rocks have also
been studied both experimentally and by numerical simu-
lations. Let us first describe a few key experimental pa-
pers, and then review the theoretical studies.

Ogandzanjanc (1960) was perhaps the first to study ex-
perimentally Bow in a stratified porous medium. He used
an unconsolidated porous medium and showed that there
is significant crossflow between the strata. He observed
that, initially the How velocity is higher in the more
permeable layer, and that Bow in each layer was similar
to a single-phase Qow system. However, because of the
crossAow the distance between the interfaces in the two
layers stabilizes. Since this early work, there have been
several other experimental studies, including those of No-
vosad et al. (1984), Sorbie et al. (1987), Ahmed et al.
(1988), and Bertin et al. (1990). Bertin et al. (1990) stud-
ied waterfiooding in a system of two strata, where one
stratum was made of Aerolith-10, an artificial sintered
porous medium, and the other was Berea sandstone. The
two strata had the same thickness. The results indicated
the strong effect of heterogeneities within each stratum
and the contrast between them on the performance of the
waterAood and the volume fraction of the recovered oil.
Bertin et al. (1900) found that even small scale hetero-
geneities within the sandstone layer could strongly affect
the waterflood process.

Most of the theoretical studies of two-phase Aow in
stratified porous media have two goals. The first is to ex-
amine the crossAow between the strata, its significance,
and its variations with time as the displacement proceeds.
The second goal is to determine its properties and those
of the displacement process. For example, Douglass
et al. (1959) studied imbibition in a layered system and
used an averaged form of Darcy's law to describe the
two-phase ffow problem. Cxoddin et al. (1966) studied
waterAood processes in stratified media and concluded
that crossQows can be caused by both capillary and
viscous forces, while Yokoyama and Lake (1981) under-
took an extensive study of the effect of capillary forces on
crossfiows. Kyte and Berry (1975) used large scale nu-
merical simulation to study immiscible displacements in
stratified media, while Coats et al. (1971) used a hydro-
static distribution of various Quid phases in the vertical
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direction to obtain large scale capillary pressure and rela-
tive permeability curves for their stratified medium.
With this introduction, let us now describe two-phase
Qow in stratified and heterogeneous porous media more
quantitatively.

Perhaps the simplest heterogeneous system to consider
is a stratified medium of several layers with no crossQow
between them. Each stratum is characterized by an
effective permeability. Dykstra and Parsons (1950) con-
sidered two-phase Qow in such a medium and, assuming
that fiow in each stratum was pistonlike (constant veloci-
ty), they derived an expression for the amount of
recovered oil just at the breakthrough point, i.e., at the
point where the interface in one of the strata reaches the
outlet of the system. Reznik et al. (1984) generalized
this model and derived expressions that can be used for
calculating the amount of oil recovered at any stage of
the process, and the RPs at that stage. If we do calculate
these, we find that the shape of the resulting RP curves
are not similar to those of macroscopically homogeneous
media discussed above.

The literature on two-phase Qow in stratified media
with communicating layers is relatively extensive. Start-
ing with Goddin et al. (1966), many authors (Coats
et al. , 1967, 1971; Martin, 1968; Hearn, 1971; Jacks
et al. , 1973; Kyte and Berry, 1975; Killough and Foster,
1979; Yokoyama and Lake, 1981; Kortekaas, 1983;
Wright and Dawe, 1983; Ypma, 1983; Bertin et al. , 1990)
have studied two-phase Qows in stratified media using nu-
merical simulations. To give the reader some idea about
how such calculations are carried out, we consider a
two-dimensional system with only two layers. Suppose
that the two Quids are water and oil, and that the Quids
and the rock are incompressible. If we write a material
balance for the water phase, we obtain

k.. 'a~, as,
Bx 'g Bx Bx

k BP0+
By xj By

BP,

By
(8.81)

Ca =Ca Rl, (8.82)

where Po is the pressure in the oil phase, and kx~, k~~ are
the water phase permeabilities in the x and y directions,
respectively (recall that a stratified medium is anisotrop-
ic). If functional forms for k„,k~ and I', are assumed,
then Eq. (8.81) can be solved numerically for various
boundary conditions at the interface between the two lay-
ers, and injection conditions. If the layers are homogene-
ous, then the results of the previous sections can be used
for k „,k, and P, within each layer. The crossQows
between various layers can be of various natures. One
may have systems with only viscous crossQows, or with
viscous and capillary crossQows, etc. If we rewrite Eq.
(8.81) in a dimensionless form, then direction dependent-
capillary numbers appear. The two capillary numbers
Cax and Ca would be related to one another by

kL y ref'

I.
kxref

' 1/2

(8.83)

where L and H are the length and thickness of the medi-
um, and k „fand k „fare the perrneabilities to a refer-
ence phase (which can be taken to be either oil or water).
In effect E.I is some kind of aspect ratio which has been
corrected by the permeability anisotropy.

Normally, the results of such simulations are averaged
over the vertical direction. If this is done, then one ends
up with quantities that are referred to as pseudofunctions
in the petroleum engineering literature. For example,
one can use pseudofunctions for RPs and another pseu-
dofunction for the capillary pressure. These pseudofunc-
tions are in fact nothing but what Quintard and Whitak-
er (1988) refer to as large scale R-Ps and capillary pres-
sure, i.e., RPs and capillary pressure for a heterogeneous
porous medium (which, in general, may or may not be
anisotropic or stratified). Of course, from a scientific
point of view, large scale fun-ctions are much more ap-
pealing than pseudofunctions, since as Quintard and
Whitaker (1988) pointed out, the prefix pseudo suggests
that these functions are something less than what they
purport to be, whereas an analysis such as that of Quin-
tard and Whitaker (see below) shows that such functions
can be deduced from a rigorous analysis for any hetero-
geneous medium.

Quintard and Whitaker (1988) developed a large-scale
averaging technique for two-phase flow in heterogeneous
rock. Starting from Eqs. (8.16)—(8.19) as the locally aver-
aged equations, they developed large-scale averaged con-
tinuity. and momentum equations for each Quid phase. In
their equations, they allowed for the possibility that a
portion of a Quid phase may be trapped by another phase
(see our discussion of trapping phenomenon given above).
The technique they used is along the same lines as those
mentioned for dispersion in heterogeneous media in Sec.
VI. In order to make the theory tractable, they assumed
that the system is in local mechanical equilibrium, which
means that the local Quid distribution is determined by
capillary pressure-saturation relations, and is not limited
by the solution of an evolutionary transport equation. In
two later papers, the authors studied the effect of large
scale spatial and temporal gradients (Quintard and Whi-
taker, 1990a), and investigated two-phase fiow in a
heterogeneous and stratified medium under quasistatic
and dynamic conditions (Quintard and Whitaker, 1990b),
using the theory developed in Quintard and Whitaker
(1988). Quasistatic condition in the present context
means that, the local capillary pressure, everywhere in
the averaging volume, is set equal to the large-scale P,
evaluated at the centroid of the averaging volume, and
that the large-scale P, is given by the difference between
the large-scale pressures in the two Quid phases. As such,
the large-scale P, is assumed to be independent of such
complex factors as transient, gravitational and Qow
efFects. If there is significant departure from the quasi-
static conditions, then one is in the dynamic regime.
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They found that even at relatively low flow rates, dynam-
ic eff'ects may be important. Bertin et al. (1990) used this
theory and compared its predictions with their experi-
mental data, and found only qualitative agreement.

L. Two-phase flow in fractured rocks

Although two-phase flow in fractured rocks is impor-
tant to enhanced oil and gas recovery, isolation of ra-
dioactive waste, exploitation of geothermal fields for gen-
erating energy, and recovery of coal-bed methane, very
little is known about the laws governing such flows. The
conventional approach has been based on the assumption
that Darcy's law is applicable to both fluid phases, and
that the cross terms of Eqs. (8.16) and (8.18) can be
neglected. Moreover, it is usually assumed that the Rp
to each phase is equal to its saturation. This assumption
is supported to some extent by the experimental work of
Romm (1966), in which oil and water were confined to
different regions of a smooth fracture by controlling the
wettability of the fracture surface. Pruess et al. (1983)
analyzed some field data from geothermal reservoirs and
provided further support for this work. However,
theoretical analysis of Pruess and Tsang (1990) for rough
fractures, and computer simulations of Mukhopadhyay
and Sahimi (1992), who used a network of interconnected
discrete fractures to study two-phase flow and heat
transfer in a geothermal field, indicated that this assump-
tion may be in serious error. In the petroleum engineer-
ing literature, the double-porosity model that was dis-
cussed in Sec. IV has been used for simulating two-phase
flows in rocks with fractures and pores. This field of
research remains largely undeveloped.

IX. ADVANCES IN COMPUTATIONAL METHODS

Simulation of multiphase, multicomponent flows in
natural porous media, often called reservoir simulation in
the petroleum industry, requires enormous amounts of
supercomputer time. Even the three-dimensional per-
colation and network models described in Sec. VIII,
which are relatively simple models of the actual phenom-
ena, need a large amount of computer time. In fact, as
already discussed, some of such models have not even
been studied in three dimensions. The reservoir simula-
tors that are normally used in the petroleum industry are
usually one of two types. The first type are the so-called
black oil simulators, in which it is assumed that the fluids
(usually oil, gas, and water) are homogeneous. It is also
assumed that gas can dissolve iri the oil, or vice versa, in
any proportion. This avoids the problem of computing
the detailed phase diagrams of the system, which requires
accurate equations of state. The second type of simulator
is more complex; they are usually called compositional
simulators. Such simulators represent the oil as a mix-
ture of several hydrocarbons and perform detailed phase
equilibria calculations in order to determine the distribu-
tion of components between the liquid and vapor phases
in the reservoir.

In most reservoir simulators the preferred numerical
method is a finite-difference approximation to the trans-
port equations. The reservoir is divided into blocks, and
the fluid flow is computed between the blocks. A five-
point (in two dimensions) or seven-point (in three dimen-
sions) finite-difference approximation is normally used.
This has both advantages and disadvantages. The main
advantage of using a finite-difference method is that it is
straightforward to set up the discretized transport equa-
tions that are to be solved. The main disadvantage is
that the method may not be accurate enough, especially
if large blocks are used, and may lead to numerical
dispersion, which can mimic physical dispersion discussed
in Sec. VI. While this can be advantageous, if physical
dispersion is actually present, it can also be a disadvan-
tage, in the sense of producing solutions that do not actu-
ally mimic the true situation.

In any event, once the equations are set up, they are
usually solved by iterative methods. Nonlinear equations
are also linearized and solved using the Newton-Raphson
method. Direct methods such as Gaussian elimination
are never used (although, in principle, they are much
more accurate than iterative methods), simply because
the number of equations is so large that no computer
memory can fit the enormous matrix of the coefFicients,
even though these matrices are usually sparse and band-
ed. Solving these equations by iterative methods means
that there has to be a tradeoff between the desired accu-
racy of the solution and the computer time that one has
to consume in order to achieve that accuracy. Another
problem with finite-difference methods is that they are
not suitable for systems that have complex boundaries,
unless the discretization is very refined there. But a very
refined discretization also implies a much larger number
of equations to be solved. Various finite-element methods
are better suited for such computations, but the matrix of
coeKcients in finite-element methods is usually full and
dense, not sparse and banded as in finite-difference
methods.

For these reasons, devising eKcient numerical methods
for solving the transport equations has always been an
active area of research. We do not intend to review the
literature on the subject here, since it is very large and
deserves a separate review paper by itself. The interested
reader can consult Cheshire and Pollard (1988) and
Christie (1988) for an updated review of the subject.
However, we would like to discuss a new method of
simulating flow in porous media based on cellular auto-
mata (CA), or lattice gases (LCx), which we believe can
dramatically change the way people think about simula-
tion of flow in porous media and reservoir simulation.
What follows is a review of the. basic ideas about cellular
automata and the recent advances that have been made.

A. Cellular automaton and lattice-gas
simulation of fluid flow

Cellular automata (see Wolfram, 1986a; Doolen, 1991;
Boon, 1992; for collections of reviews) are large lattices in
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which each site can be in one of several discrete states.
The state of each site at the next time step is determined
completely by the present state of the neighboring sites.
Thus both time and space are discrete, and connections
are between neighbors only, ideal conditions for high-
speed simulations on vector or parallel computers like a
Cray. The CA approximation of the Navier-Stokes equa-
tion in two dimensions is based on particles of unit mass
either resting on the site of a lattice or moving with unit
velocity on one of the six bonds emanating from each lat-
tice site. Frisch et al. (1986, 1987), using a model
developed by Hardy et al. (1973, 1976), showed that in
order that the discrete equations reduce to the usual
Navier-Stokes equations, two-dimensional simulations
have to be done on a triangular lattice.

Up to six particles may reside at any site on the tri-
angular lattice. Figure 62 shows how the particles move
on this lattice. If particles hit each other, they are scat-
tered according to the laws of momentum conservation.
For example, one particle hitting another one that is at
rest may be scattered such that its direction changes by
60, and that the previously resting particle moves in a
direction inclined at —60' with respect to the direction of
the incoming particle. Usually up to four particle col-
lisions are employed (5 and 6 particle collisions almost
never happen). If a particle hits a solid wall, it is
rejected by 180 to simulate the no-slip boundary condi-
tion. The extension to three dimensions is more complex,
since no regular three-dimensional lattice is isotropic,
and thus in the continuum limit one has spurious terms,
in addition to those in the Navier-Stokes equation, which
are caused by the anisotropy of the lattice. However,
there are now several methods of circumventing this
difficulty. For example, one can use a three-dimensional
topologically random lattice, such as the Voronoi lattice,
which is macroscopically isotropic (Sahimi, 1989, unpub-
lished). Alternatively, one can use (d'Humieres et al. ,
1986) a four dimensional -face-centered-hypercubic
(FCHC) lattice. For this lattice, which has a coordina-
tion number of 24, all pairwise symmetric fourth-order
tensors are isotropic, and therefore one can simulate the

oR

FIG. 62. Collision rules for particle movement on a triangular
lattice during cellular automata simulations of Quid How.

Navier-Stokes equation on such a lattice. %'e may then
make the observation that any solution of the four-
dimensional equation that does not depend on the fourth
dimension is a solution of the three-dimensional equa-
tion. This suggests the use of an FCHC lattice that
wraps around periodically in the fourth direction. One
actually uses a lattice that is only one lattice unit long in
the fourth dimension and therefore has an effectively
three-dimensional structure. The disadvantage of this
method is that, although the fourth dimension is very
thin, the discrete velocities still have components in all
directions; therefore the model is bit intensive (24 or 25
bits per site as compared with 6 in two dimensions). A
third approach (d'Humieres et al. , 1986) is to use a
three-dimensional cubic lattice in which the particles
move with speeds zero, one, and +2 (instead of one and
zero in two dimensions). This model uses only 19 bits per
site. Despite the discrete nature of cellular automata in
both two and three dimensions, these models are capable
of exhibiting rich macroscopic complexity such as tur-
bulence (d'Humieres and Lallemand, 1986).

B. Cellular automata and lattice-gas
simulation of single-phase flow in porous media

In order to simulate Oow through porous media with
the CA method, one distributes obstacles randomly or in
a prescribed fashion in a two- or three-dimensional lat-
tice. For example, Rothman (1988) used rectangular obs-
tacles or a variation of them in his two-dimensional simu-
lations, while Brosa and Stauffer (1989, 1991), Duarte
and Brosa (1990), Kohring (1991a, 1991b, 1991c), and
Sahimi and Stauffer (1991) used circular and overlapping
or non-overlapping obstacles. One main advantage of us-

ing cellular automata is that any configuration of the
pore space can be used. Thus even the exact digital im-

age of a natural porous medium can be used in the CA
simulations.

Once the desired pore-space configuration is generated,
the simulation can be started. At the beginning of the
simulation, one constructs a transition table that tells
how one of the present states (determined by the velocity
of the incoming particles) is transformed into the next
state, determined by the outgoing velocities. The table
contains all of the possible states (for example, in two di-
mensions, 2 ). One then starts the simulation using the
two-, three- and four-body collisions at a site which con-
serve momentum and energy. The rules are such that no
new particle is created, and in one time step all particles
on the lattice first move to different lattice sites and then
undergo transitions at the new sites. One iteration in the
simulation consists of updating all lattice sites according
to the transition table. The number of required iterations
for reaching a steady-state solution depends on the poros-
ity of the medium. If the system is far from the percola-
tion threshold, about 10 iterations suffice. However,
near the percolation threshold many more iterations may
be required.
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An issue of particular importance is the mean free path
of the particles and its relation to the size of the obsta-
cles. As Rothman (1988) showed, in order for the CA
simulation results to approach the continuum limit, the
mean size of the void area in the lattice must be at least
twice the mean free path of the particles, which is about
9 lattice bonds. If this condition is not obeyed in the
simulations, the result may not represent a macroscopic
continuum. Thus simulations such as those of Balasu-
bramanian et al. (1987), in which a fraction of the sites
are blocked at random in order to create random obsta-
cles, may not correspond to true Qow in an actual porous
medium, because their simulations do not obey the con-
straint imposed by the mean free path of the particles.

The cellular automata model that we have described
has been used by various authors to investigate Qow phe-
nomena in porous media. Rothman (1988) used it to
study single-phase Qow in porous media. Succi et al.
(1989) studied the same problem in three dimensions.
Duarte et al. (1992) and Knackstedt et al. (1993) used
the CA method to study the dynamic permeability of a
porous medium. Brosa and Stauff'er (1989, 1991), Kohr-
ing (1991a, 1991b, 1991c),and Sahimi and Stauffer (1991)
looked at Qow in two-dimensional porous media with
various obstacle shapes and arrangements (random
versus regular and periodic) and paid particular attention
to the efticiency of the simulation. For example, Kohring
(1991a) achieved a speed of 233 million site updates per
second (233 MUPS) on a single processor of the Cray
Y-MP/832, and 1690 MUPS when running multiproces-
sor batch mode. This is the fastest algorithm currently
available. Vollman and Duarte (1992) studied flow
through a porous membrane and investigated the effect
of various boundary conditions. Many other hydro-
dynamical problems in nonporous systems have been
treated with this method; see Wolfram (1986b), Kadanoff
et al. (1989), Zanetti (1989), Doolen (1991), and Hoon
(1992).

Let us emphasize once again that, in order for a CA or
LG model to represent a physical phenomenon, the lat-
tice used in the simulation must have sufficient symrne-

try; mass, momentum, and energy must be conserved;
and local equilibrium must exist and depend only upon
the conserved quantities. However, CA and LG models
are not yet free of drawbacks. For example, they suffer
from statistical noise. This results in some physical phe-
nomena that lead, among other things, to the divergence
of viscosity in two dimensions. Moreover, they have a
velocity-dependent pressure and are not usually Galilean
invariant. Various schemes have been proposed to cir-
cumvent these difficulties (McNamara and Zanetti, 1988;
Higuera et al. , 1989; Qian et al. , 1992). In particular,
Qian et al. (1992) proposed a relaxation method such
that, if n; is the density of particle i and v; is its velocity,
then

n;(t + l, x+v, ) =(1—co„)n;(t,x)+co„nz(t, x), (9.1)

where ~„is a relaxation parameter and n; is the predict-

ed value of n; at time t, given by

Vl aVa VaVP
n;~(t, x) =e~p 1+ +

U 2U

VlaViP —5 p
Us

C. Cellular automaton and lattice-gas
simulation of two-phase flow in porous media

Rothman and Keller (1988), Rothman and Zaleski
(1989), Somers and Rem (1989, 1991), and S. Chen et al.
(Chen, Diemer et al. , 1991; Chen, Doolen, et al. , 1991;
Chen, Doolen, and Matthaus, 1991)generalized the mod-
el to study the fIow of two immiscible Quids in two-
dimensional porous media. Rem and Somers (1989) also
studied the same problem in three dimensions. Let us
consider the method of Rothman and co-workers on a
triangular lattice. We follow the description given by
Rothman (1990). Two types of particles, say red and
blue, reside on the lattice. The velocities at a given site
are numbered from 0 to 6 with Uo =0 and
vj+, =[cos(2m j/6), sin(2vrj/6)]. Two Boolean variables
r;(x) and b,.(x) are introduced that indicate the presence
or absence of a red or blue particle with velocity v; at lat-
tice site x. The system evolves in two steps. In the first
step particles are propagated to the nearest-neighbor
sites, where they may collide with other particles. The
number of both red and blue particles is conserved. To
simulate the surface tension between the two Quids, the
configuration resulting from a collision depends on the
configuration at the nearest-neighbor sites on the lattice.
Those collisions which carry red particles in the direction
where the neighbors contain a relative majority of red
particles are favored, and likewise for blue particles.

Two vectors are now introduced. The first one is the
color jlux, given by

q= g v;[r;(x) —b;(x)], (9.3)

while the second is the color field, defined by

f= g v; g [rj(x+v;) b~(x+v;)] . — (9.4)

The particle configuration that results from a collision is
that configuration which maximizes f.q, such that the
number of red and blue particles, as well as the total
number of particles, is conserved. This rule ensures that
the Quxes of the red and blue particles in the direction of

(9.2)

where a and P denote Cartesian coordinates (with im-
plied summation for repeated indices), v, is the speed of
sound, v is the Quid velocity in the o. direction, the index
p is the square modulus of the particle's velocity, and e
is the corresponding equilibrium distribution for v=0.
The e 's are calculated so that the fourth-order velocity
tensor is isotropic and the system is Galilean invariant.
It can then be shown that the pressure is also indepen-
dent of velocity.
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their respective mass gradient is maximized. Rothman
and Keller (1988) showed that Darcy's law is valid within
the regions of the red and blue particles and that, when
the particles are at rest, the pressure drop across the in-
terface between the red and blue regions obeys the
Young-Laplace equation, Eq. (8.6). To simulate the
effect of wettability, the sites of the lattice that belong to
the solid matrix and are at the interface between the solid
and the fluid are colored red or blue, so that the vector f
calculated in the vicinity would be biased to point in the
direction of the solid site. Thus red (blue) particles would
preferentially spread on the red (blue) solid sites. If the
"density" of coloring on the solid sites is varied, then
various regimes of wettability discussed in Sec. VIII can
be simulated. Chen et al. used somewhat different rules
for simulating two-phase Bows, which they claimed to be
more realistic and also more e%cient.

Rothman (1990) used this method to study flow in a
two-dimensional model similar to the etched network of
Lenormand et al. (1983). Good agreement between his
simulations and Lenormand et al. 's data was found. We
should mention that Appert and Zaleski (1990) proposed
a CA model for the liquid-vapor phase transition of the
same Quid species. Thus their model may be used to
simulate two-phase How of liquids and vapors in a porous
medium, an important problem in thermal oil recovery
processes. Gunstensen and Rothman (1991)extended the
model further and developed a model for three-phase
fiuid Row problems (for example, oil-water-gas mixtures).

Finally, we should point out that because of the ease
with which How in complex geometries of a pore space
can be simulated with the CA method, one can use this
method to estimate the permeability of a three-
dimensional porous medium with a given geometry and
compare the results with various rigorous results and
bounds for the permeability of the same system (see Sec.
V). Cancelliere et al. (1990) undertook such a study for
the Swiss cheese or randomly-distributed-penetrable-
sphere model discussed in Secs. IV and V, and found that
at high solid fractions the calculated perme-
ability is within one order of magnitude of the most accu-
rate upper bound due to Weissberg and Prager (1970) and
Berryman and Milton (1985). Moreover, one can use the
CA and random-walk methods to calculate the permea-
bility k and the electrical conductivity 0. of the same
model pore space and thus test the validity of the relation
between k and cr proposed by Katz and Thompson (1986)
and Johnson et al. (1986). It is this author's opinion that
cellular automata offer the most promising method for
simulating complex problems of Qow, dispersion, and dis-
placement processes in natural porous media.

X. CONCLUSIONS

Many aspects of the morphology of rocks are now
reasonably well understood. Although their origin is not
yet completely understood, we now know that fractal
concepts play a fundamental role in characterization of

rock properties. Aside from a few issues regarding the
effect of small-scale heterogeneities on miscible and im-
miscible displacement processes, we can claim with
confidence that flow, dispersion, and disp'lacement pro-
cesses are also reasonably well understood in microscopi-
cally disordered, macroscopically homogeneous porous
media. However, how these phenomena behave in hetero-
geneous porous media, and especially in stratified and
fractured rocks, is not as yet understood. As our discus-
sion has indicated, even at the level of macroscopic and
larger-scale heterogeneities, fractal concepts and long-
range correlations play fundamental roles. Moreover,
our discussion was restricted to Newtonian Auids, and
much less is known about non-Newtonian and nonlinear
flow phenomena in porous media (Sahimi, 1993a).

One goal of this review was to present and contrast
two fundamental approaches to flow phenomena in reser-
voir rocks. One of them, favored by engineers, uses mac-
roscopic continuum equations of transport. The other,
which has mainly been advocated by physicists and allied
scientists, employs discrete models and attempts to dis-
cover the universal features of Qow phenomena in porous
media. An engineer is interested in a method that is ap-
plicable over the entire range of the parameters of a given
How phenomenon, and does not usually pay much atten-
tion to the universal scaling laws, which are normally
valid over a small range of the parameter space. On the
other hand, in order to discover the universal features of
a phenomenon, physicists have sometimes oversimplified
a given Row phenomenon. It is clear that both ap-
proaches have their shortcomings and strengths, and the
ideal model would take advantage of the strengths of the
two in order to eliminate their shortcomings. This re-
view has attempted to unify these two approaches. It
was also written with the hope that the reader could get a
reasonably clear picture of what is now understood and
what remains to be done to resolve the remaining issues.
Hopefully, by the time the next review is written, many
of these issues will have been resolved.
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