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Chaotic time series data are observed routinely in experiments on physical systems and in observations in
the field. The authors review developments in the extraction of information of physical importance from
such measurements. They discuss methods for (1) separating the signal of physical interest from contam-
ination (“noise reduction”), (2) constructing an appropriate state space or phase space for the data in
which the full structure of the strange attractor associated with the chaotic observations is unfolded, (3)
evaluating invariant properties of the dynamics such as dimensions, Lyapunov exponents, and topological
characteristics, and (4) model making, local and global, for prediction and other goals. They briefly touch
on the effects of linearly filtering data before analyzing it as a chaotic time series. Controlling chaotic
physical systems and using them to synchronize and possibly communicate between source and receiver is
considered. Finally, chaos in space-time systems, that is, the dynamics of fields, is briefly considered.
While much is now known about the analysis of observed temporal chaos, spatio-temporal chaotic systems
pose new challenges. The emphasis throughout the review is on the tools one now has for the realistic
study of measured data in laboratory and field settings. It is the goal of this review to bring these tools
into general use among physicists who study classical and semiclassical systems. Much of the progress in
studying chaotic systems has rested on computational tools with some underlying rigorous mathematics.
Heuristic and intuitive analysis tools guided by this mathematics and realizable on existing computers
constitute the core of this review.
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and, as such, have traditionally been taken as contamina-
tion to be removed from the interesting physical signals
one sought to observe. The characterization of irregular,
broadband signals, generic in nonlinear dynamical sys-
tems, and the extraction of physically interesting and use-
ful information from such signals is the set of achieve-
ments we review here. The chaotic signals that we shall
address have been discarded in the past as ‘“noise,” and
among our goals here is to emphasize the valuable phys-
ics that lies in these signals. Further we want to indicate
that one can go about this characterization by exploiting
the structure in these chaotic time series in a systematic,
nearly algorithmic, fashion. In a sense we shall describe
new methods for the analysis of time series, but on anoth-
er level we shall be providing handles for the investiga-
tion and exploitation of aspects of physical processes that
could be simply dismissed as ‘“stochastic” or random
when seen with different tools. Indeed, the view we take
in this review is that chaos is not an aspect of physical
systems that is to be located and discarded, but is an at-
tribute of physical behavior that is quite common and
whose utilization for science and technology is just begin-
ning. The tools we discuss here are likely also to be just
the beginning of what we can hope to bring to bear in the
understanding and use of this remarkable feature of phys-
ical dynamics.

The appearance of irregular behavior is restricted to
nonlinear systems. In an autonomous linear system of f
degrees of freedom, u(#)=[u;(t),u,(2),...,u(t)], one
has

du(z)
dt

where A is a constant f X f matrix. The solution of this
linear equation results in (1) directions in f-space along
which the orbits u(¢) shrink to zero—namely, directions
along which the real part of the eigenvalues of A are
negative, (2) directions along which the orbits unstably
grow to infinity-—namely, directions along which the real
part of the eigenvalues of A are positive, and (3) direc-
tions where the eigenvalues occur in complex-conjugate
pairs along with zero or negative real part. In any situa-
tion where the eigenvalue has a positive real part, this is
a message that the linear dynamics is incorrect, and one
must return to the nonlinear evolution equations that
govern the process to make a better approximation to the
dynamics.

Much of the work in nonlinear dynamics reported in
the past has concentrated on learning how to classify the
nonlinear systems by analyzing the output from known
systems. These efforts have provided, and continue to
provide, significant insights into the kinds of behavior
one might expect from nonlinear dynamical systems as
realized in practice and has led to an ability to evaluate
now familiar quantities such as fractal dimensions,
Lyapunov exponents, and other invariants of the non-
linear system. The capability for doing these calculations
is strongest when we know the differential equations or

= A-u(t) , (1)
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mappings of the dynamical system. When inferring such
quantities from data alone, we find the issues more chal-
lenging, and this is the subject matter covered in this arti-
cle.

At the outset it is appropriate to say that this is not,
and actually may never be, an entirely settled issue.
However, a certain insight and the establishment of cer-
tain general guidelines has been achieved, and that in it-
self is important. Only recently has the question of infer-
ring from measured chaotic time series the properties of
the system that produced those time series been ad-
dressed with any real vigor. The reason is partly that,
until the classification tools were clearly established, it
was probably too soon to tackle this harder problem.
Moreover, by its nature, this challenge of “inverting”
time series to deduce characteristics of the physical
system—that is, model building for nonlinear
dynamics—has required the development of tools
beyond those of direct classification, and these too have
taken time to evolve. While some general results are
known and will be described here, much of the analysis of
a physical system may be specific to that system. Thus
the tools here should be regarded as a guide to the
reader, not a strict set of rules to be followed.

This article is designed to bring to scientists and en-
gineers a familiarity with developments in the area of
model building based on signals from nonlinear systems.
The key fact that makes this pursuit qualitatively
different from conventional time series analysis is that,
because of the nonlinearity of the systems involved, the
familiar and critical tool of Fourier analysis does very lit-
tle, if any, good in the subject. The Fourier transform of
a linear system changes in what might be a tedious set of
differential equations into an algebraic problem where de-
cades of matrix analysis can be fruitfully brought to bear.
Fourier analysis of nonlinear systems turns differential
equations in time into integral equations in frequency
space involving convolutions among the Fourier trans-
forms of the dependent variables. This is rarely an im-
provement, so Fourier methods are to be discounted at
the outset, though as an initial window through which to
view the data, they may prove useful.

Having set aside at the outset the main analysis tool
for linear signal processing, we must more or less rein-
vent signal processing for nonlinear systems. In rethink-
ing the problem it is very useful to address the essential
set of general issues faced by signal processors. We en-
vision that the physicist will be presented with observa-
tions of one or perhaps, if fortunate, a few variables from
the system and then be interested in deducing as much as
possible about the characteristics of the system produc-
ing the time series—this is system classification. The
next step would be creating a framework in which to pre-
dict, within limits determined from the data itself, the fu-
ture behavior of the system or the evolution of new
points in the system state or phase space—this is model
building and parameter estimation, since the models that
allow prediction are usually parametric.
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Even before beginning the analysis, the practitioner
has to address the question of how to deal with data con-
taminated by other signals or by the measurement pro-
cess itself. This contamination can come from environ-
mental variables unmeasured by the instruments or from
properties of the observation instruments. In a general
sense the contamination has broadband Fourier spectra
with possible sharp lines embedded in the continuum.
This general description will also be true of the Fourier
spectrum of the chaotic signal, since it arises from non-
periodic motion and has a continuous broadband spec-
trum with possible sharp spectral lines in it. Separating
these two spectrally similar phenomena is not a task for
which standard time series analysis is well suited, but one
which, using differing characteristics of the signal and
contamination, we may address in the time domain. We
shall indicate in sections of this article how one goes
about this initial task in signal processing in chaos.

Broadly speaking, this article will follow the directions
pointed out in Table I. This indicates the requirements
on the physicist for creating some order from the time
series presented, and it is clear that the same problems,
with different solutions, are faced whether the system is
linear or nonlinear.

In an ambitious fashion, once one can clean up dirty
signals, classify the systems that give rise to those signals,
and reliably predict the behavior of the system in the fu-
ture, within limits set by the dynamics themselves, then
consideration of control strategies for nonlinear systems
is in order. This topic will be touched on in later sections
of this review.

One important insight into dynamical systems is the
role played by information theory. There is an intuitive
notion that a dynamical system that has chaotic behavior
is precisely a realization of Shannon’s concept of an er-
godic information source (Gallager, 1968; Shaw, 1981,
1984). This source is assumed to produce a sequence of
symbols X,:...,X_;,X,,X,,... drawn from an alpha-
bet x =0,1,...,J —1. This is for a discrete source with
a finite number of states available to it, namely, any
source we would realize on a finite-state digital computer
or in an experiment. The distribution of orbit points in
the alphabet P(x) gives the probability for realizing the
symbol x by measurements of the X,. The entropy (in
bits) of a joint set of measurements is defined using the
joint probability P(x,x,,...,xy) via
» X N)] .

Hy(X)=—3 P(xy,X3,...,Xy)log)[P(xy,Xx,, ...

7
()

As N becomes large this entropy, divided by N, has a

finite limit,
Hy(X)
lim ———=h(X), 3)
N—ow N

and this is the amount one learns about the source of the
symbols by the sequence of measurements on the set X.
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Clearly the source is no more than an abstract state-
ment of the system producing our measurements, and the
concept of entropy of a deterministic dynamical system,
where no notion of probability is immediately evident,
seems much the same as in the information-theoretic set-
ting. This idea was realized over thirty years ago by Kol-
mogorov (1958), who gave a definition of this entropy
which, in practice, is precisely the same as 4 (X) above.
Further, this entropy is an invariant of the orbits of the
system, that is, independent of the initial conditions or
the specific orbits observed. Additional work on this
quantity was done by Sinai (1959), and the quantity A (X)
has become known as the Kolmogorov-Sinai (or KS) en-
tropy of a dynamical system. Strengthening this connec-
tion is a theorem of Pesin (1977) equating the KS entropy
to the sum of the positive Lyapunov exponents. If a
dynamical system has no positive Lyapunov exponents, it
does not possess chaos in the usual sense.

These comments indicate the connection between
dynamical systems and information theory, but do not
explain the interest for someone concerned with the
analysis and modeling of chaotic data. The KS entropy
gives a precise statement of the limits to predictability for
a nonlinear system. Think of a phase space for the sys-
tem which is reconstructed or, if one actually knows the
differential equations or mapping, precise. Any realiz-
able statement about the system is known only to some
precision in this state space. Within that precision or
resolution we cannot distinguish at a given time ¢ =0 be-
tween two state-space points lying in the resolution cell.
A nonlinear system with positive 4 (X) is intrinsically un-
stable, however, and the two points unresolvable at ¢ =0
will move after some time 7T to differing parts of the
phase space. 2!"®¥7] js a measure of the number of states
occupied by the system after the passage of a time T
(Gallager, 1968; Rabinovich, 1978). When this number
of states is approximately the total number of states
available for the orbits of the system, then all prediction
of the future of an orbit becomes untenable. This occurs
in approximately T=~1/h (X). One still has statistical in-
formation about the system that is quite useful and in-
teresting, but knowledge of the evolution of a specific or-
bit is lost. Thus, 4 (X) becomes an object of considerable
interest for the physicist. Since it is the sum of the posi-
tive Lyapunov exponents, one can use the time series it-
self to determine how predictable it is.

A. Observed chaos

Actual observations of irregular evolution that we con-
sider are typically measurements of a single scalar observ-
able at a fixed spatial point: call the measured quantity
s(ty+n7y)=s(n), where t, is some initial time and 7, is
the sampling time of the instrument used in the experi-
ment. s(n) could be a voltage or current in a nonlinear
circuit or a density or velocity in a fluid dynamic or plas-
ma dynamic experiment or could be the temperature at
some location in a laboratory container or an atmospher-
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ic or oceanic field experiment. The full structure of some
of these measurements lies in the observation of a field of
quantities, namely, s (x,#, +n7;) with x=(x,y,z) the spa-
tial coordinates. Most of this review will focus on
methods for the analysis of scalar measurements at a
fixed spatial point. This is done for the simple reason
that the subject has matured to a point where one can
productively review what is known with the hope that
the methods can then become part of every physicist’s ex-
perimental analysis toolkit in much the same way that
Fourier analysis now is part of that toolbox. At the end
of our discussion we shall have some things to say about
spatio-temporal systems, but the developments there
which parallel what we know about purely temporal
measurements remain to be completed.

The first task will be to explain how to begin with this
set of scalar measurements and to reconstruct the system
phase space from it. This requires some explanation. In
fluid dynamics, for example, the system phase space is
infinite dimensional when the description of the fluid by
the Navier-Stokes partial differential equations is correct.
We do not reestablish from the s (7n) an infinite number of
degrees of freedom, but we take the point of view that,
since the observations of a dissipative system such as a
fluid lie on a geometric object of much smaller dimension
than that of the original state space, we must seek
methods for modeling the evolution on the attractor itself
and not evolution in the full, infinite-dimensional, origi-
nal phase space. In some circumstances this dimension
may be quite small, as low as five or so. The techniques
we shall discuss are then directed toward the description
of the effective time-asymptotic behavior of the observed
dynamics. In rare circumstances this might be expected
to yield the original differential equations.

The measurements s (n) and the finite number of quan-
tities formed from them in the course of the analysis pro-
vide coordinates for the effective finite-dimensional space
in which the system is acting after transients have died
out. This gives rise to two approaches to modeling the
dynamics from the point of view of the physicist interest-
ed in understanding the system producing the measured
signals:

® The first approach is that of making physical models
in the coordinates s(n) and quantities made from the
s(n)—and doing all this in the finite-dimensional space
where the observed orbits evolve. This description of the
system differs markedly from the original differential
equations, partial or ordinary, which one might have
written down from first principles or from arguments
about the physics of the experiment. Verification of the
model by future experiment or different features of the
experiment proceeds as usual, but the framework of the
models is quite different from the usual variations of
Newton’s laws, which constitute most physics model
making. The net result of this will be a nonlinear rela-
tionship or map from values of the observed variables
s(n) to their values s (n +T) some time T later. If one of
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the Lyapunov exponents is zero, as determined by the
data using methods that we shall describe later, then one
could construct differential equations to capture the dy-
namics. This suggests we are confident that extrapola-
tion to 7,—0, implicit in the idea of a differential equa-
tion rather than a finite time map, captures all the
relevant frequencies or time scales or degrees of freedom
of the source. In either case—map or differential
equation—no rigid rules appear to be available to guide
the modeler.

® The second approach is more traditional and consists
of making models of the experiment in the usual vari-
ables of velocity, pressure, temperature, voltage, etc. The
job of the physicist is then to explore the implications of
the model for various invariant quantities under the dy-
namics, such as the dimensions of the attractor and the
Lyapunov exponents of the system. These invariants,
which we shall discuss below, are then the testing
grounds of the models. The critical feature of the invari-
ants is that they are not sensitive to initial conditions or
small perturbations of an orbit, while individual orbits of
the system are exponentially sensitive to such perturba-
tions. The exponential sensitivity is the manifestation of
the instability of all orbits in the phase space of the dy-
namics. Because of this intrinsic instability no individual
orbit can be compared with experiment or with a com-
puted orbit, since any orbit is effectively uncorrelated
with any other orbit, and numerical roundoff or experi-
mental precision will make every orbit distinct. What
remains, and what we shall emphasize in this review, is a
statistics of the nonlinear deterministic system which pro-
duces the orbits. An additional set of invariants, topolog-
ical invariants, are also quite useful with regard to this
task of characterizing physical systems and identifying
which models of the system are appropriate (Mindlin
et al., 1991; Papoff et al., 1992), and we shall discuss
them as well. Topological invariants are distinct from
the better known metric invariants mentioned above in
that they do not rest on the determination of distance or
metric properties of orbit points on an attractor. They
appear to be quite robust in the presence of “noise” and
under changes in system parameters.

The statistical aspect of chaotic dynamics was dis-
cussed and its importance stressed in an earlier article in
this journal by Eckmann and Ruelle (1985). Our review
now is in many ways an update of features of that earlier
article with an emphasis on practical aspects of the
analysis of experimental data and model building for pre-
diction and control. Of course, we also include many de-
velopments unanticipated by the earlier review, but we
certainly recommend it as an introduction to many of the
topics here, often from a rather more mathematical
viewpoint than we project.

Many items we shall mention here, especially in the
sections on signal separation, control of chaotic systems,
and synchronization of chaotic systems, have direct prac-
tical implications which move beyond the usual preoccu-



Abarbanel et al.: Analysis of observed chaotic data 1335

pation of physicists with model building, prediction, and
model verification. The authors expect that many of
these topics will find further development in the en-
gineering literature, and we cannot anticipate the full
spectrum of those developments. We mention some
throughout the review, since we think it quite important
to underline the utility of chaotic states of a physical sys-
tem in the hopes that physicists will seek new phenomena
suggested by chaos and uncover further interesting physi-
cal behavior connected with this disordered, but not ran-
dom, feature of deterministic systems.

Just a note before we move ahead: we interchangeably
denote the space in which orbits of dynamical systems
evolve as state space or phase space. State space is more
commonly used in the engineering literature, while phase
space is more common in the physics literature. In phys-
ics, phase space is also used to denote the canonical set of
coordinates of Lagrange or Hamilton for conservative
systems. We do not use phase space in this restricted
sense, nor does our use of “phase” refer to the argument
of a complex variable.

B. Outline of the review

The main body of the review begins in the next section
with some details of approaches to the analysis of time
series, first from the traditional or linear point of view.
Then we move on to the idea of reconstructing the phase
space of the system by the use of time delays of observed
data, s (n). In the subsequent section we discuss methods
of determining the time delay to use in the practical
reconstruction of phase space, and in doing so introduce
the ideas of information theory in greater detail. Having
established the time delay to use, we move on to a discus-
sion of the choice, from analysis of the observed data, of
the dimension of the phase space in which we must work
to unfold the attractor on which the dynamics evolves.

With that we end our discussion of the state space in
which we are to view the dynamics and we move on to
the issue of classifying the dynamics that underlies the
observations. The classifiers in a linear system are the
resonant Fourier frequencies of the system. In a non-
linear system we have statistical aspects of the deter-
ministic chaotic evolution which we can use for this same
purpose. The quantities invariant under the dynamics
are used as classifiers, and we shall discuss the physical
and mathematical meaning of some of the most widely
utilized of these invariants.

After we have established ways to classify the physical
system leading to the observations s (n), we move on to a
discussion of model building to allow the codification of
the measurements into a simple evolution rule. This is an
easy task, as we shall see, if all we desire is numerically
accurate predictors. If we wish insight into the physical
processes needed to produce, reproduce, and predict the
signals we observe, then the task is harder, and no clear-
cut method has emerged, or for that matter may ever
emerge. Our discussion will cover various ideas on this
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problem, all of which have limitations or unattractive
features, however successful they may be in a numerical
sense.

The next topic we address is that of separating the
desired “clean” chaotic signal from the effects of contam-
ination by the environment through which it passes on its
way from the source to the measurement device or con-
tamination by properties of the measurement process it-
self. This contamination is often called “noise,” and the
task of signal separation goes under the label of “noise
reduction” in common parlance. The ideas involved in
signal separation carry one far beyond traditional views
of noise reduction, and we shall explore some of these as
well. In any case, the methods one must employ are to be
used in the time domain of reconstructed phase space,
and they differ in detail and conception from Fourier-
based methods, which are much more familiar. The
penultimate topic we discuss is that of controlling chaot-
ic systems by utilizing properties of the structure of the
attractor to move the system from its “natural” auto-
nomous chaotic state to motion about an unstable period-
ic motion—unstable from the point of view of the auto-
nomous system, but stable from the point of view of the
original system plus a control force.

Finally we turn to aspects of the experimental analysis
of spatio-temporal systems with disorder or chaotic
behavior. In this area, as noted earlier, we know much
less, so much of what we present is speculative. Clearly a
review of this subject five or so years from now will,
without question, supplant this aspect of the review.
Nonetheless, we felt it important to end the review with a
glimpse, however imperfect, of the problems that will
dominate the future of this kind of work. In any case,
the analysis of chaos of fields is essential for doing real
physics in chaotic systems, so the problems we outline
and the potential solutions we discuss certainly will affect
our ability to work with chaotic fields.

Il. SIGNALS, DYNAMICAL SYSTEMS, AND CHAOS

In the analysis of signals from physical systems we as-
sume from the outset that a dynamical system in the
form of a differential equation or a discrete-time evolu-
tion rule is responsible for the observations. For
continuous-time dynamics we imagine that there is a set

of f ordinary differential equations for variables
w(t)=[u(t),u,(2),... ,uf(t)],
4ult) _ Gur), @
dt

where the vector field G(u) is always taken to be continu-
ous in its variables and also taken to be differentiable as
often as needed. When time is discrete, which is the real-
istic situation when observations are only sampled every
74, the evolution is given by a map from vectors in R’ to
other vectors in R/, each labeled by discrete time:
u(n)=ul(ty+nr),
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u(n +1)=F(u(n)) . (5)

The continuous-time and discrete-time views of the dy-
namics can be connected by thinking of the time deriva-
tive as approximated by

du(z) uwlot(n+17)—u(tg+nty)

dt TS ’ ()
which would lead to
F(u(n))=u(n)+7,G(u(n)) , (7)

as the relation between the continuous and discrete dy-
namics.

Discrete dynamics can also arise by sampling the con-
tinuous dynamics as it passes through a hyperplane in the
f-dimensional space. This method of Poincaré sections
leads to an (f —1)-dimensional discrete system that is
not easily related in an analytic fashion to the continuous
system behind it. Often qualitative properties of the con-
tinuous system are manifest in the Poincaré section: an
orbit that is a recurrent point (fixed point) in the section
is a periodic orbit in the continuous flow.

The number of degrees of freedom or, equivalently, the
dimension of the state space of a dynamical system is the
same as the number of first-order differential equations
required to describe the evolution. Partial differential
equations generalize the number of degrees of freedom
from a finite number, f, to a continuum labeled by a vec-
tor x=(x,X,,...,xp). For a field with K components

w(x,t)=[u,(x,2),u,(x,t),...,ug(x,2)], we write the
differential equation
QXD _ Glu(x, 1), (8)
ot

and the labels of the dynamical variable now are both
continuous (namely, x and ¢) and discrete. Broadly
speaking the dynamics of fields differs from that of low-
dimensional dynamical systems only because the number
of degrees of freedom has become continuous. Many new
phenomena can appear because of this, of course, but
when we think of the analysis of real data it will certainly
be finitely sampled in space x as well as in time, and we
may consider the partial differential equation to have
been reduced to a very large number of ordinary
differential equations for purposes of discussion.

There is one important distinction between discrete dy-
namics that comes from a surface of a section of a flow
(continuous-time dynamics) and that from finite time
sampling of the flow. In the latter case we can associate
the direction of the vector field with evolution which can
be explored by the system. In the former case evolution
along the direction of the vector field is off the surface of
the section and is not available for study. This difference
will be manifest when we discuss Lyapunov exponents
below.

The vector field F(u) has parameters that reflect the
external settings of forces, frequencies, boundary condi-
tions, and physical properties of the system. In the case
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of a nonlinear circuit, for example, these parameters
would include the amplitude and frequency of any driv-
ing voltage or current, the resistance or capacitance or
inductance of any lumped linear element, and the IV or
other characteristics of any nonlinear elements.

The dynamical system

u(n +1)=F(u(n)) 9)

is generally not volume preserving in f-dimensional
space. In evolving from a volume of points d/u (n) to a
volume of points d/u (n +1) the volume changes by the
determinant of the Jacobian

dF(u)

DF (u)=det
du

(10)

When this Jacobian is unity, which is a very special oc-
currence and is usually associated with Hamiltonian evo-
lution in a physical setting, phase-space volume remains
constant under the evolution of the system. Generally
the Jacobian has a determinant less than unity, which
means volumes in phase space shrink as the system
evolves. The physical origin of this phase-space volume
contraction is dissipation in the dynamics.

As the physical parameters in the vector field are
varied, the behavior of u(?) or u(n), considered as an
initial-value problem starting from u(z,) or u(0), will
change in detail as ¢ or n becomes large. Some of these
changes are smooth and preserve the geometry of the set
of points in R/ visited by the dynamics. Some changes
reflect a sudden alteration in the qualitative behavior of
the system. To have an explicit example to discuss, we
consider the three differential equations of Lorenz (1963)!

d_x(t_)z -

D — oty (—x(0)
d_J:i(tL)z—x(t)z(t)+rx(t)—y(t) , an
dz(1) _ —

. x(t)y (1)—bz (1) .

These equations are derived from a finite mode trunca-
tion of the partial differential equations describing the
thermal driving of convection in the lower atmosphere.
The ratio of thermal to viscous dissipation is called o, the
ratio of the Rayleigh number to that critical Rayleigh
number where convection begins is called », and the di-
mensionless scale of a convective cell is called b. The pa-
rameters o and b are properties of the system and the
geometry — planar here—while the parameter r is deter-

In a later paper (Lorenz, 1984) there is a delightful descrip-
tion of how he came to consider this model. He was concerned
with linear prediction of nonlinear models and used this three-
degree-of-freedom model as a testing ground for this study. He
concluded that the idea of linear prediction for this kind of sys-
tem would not do.
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mined by geometry, material properties, and the strength
of the driving forces. The physically interesting behavior
of the Lorenz system comes as r is varied, since that
represents variations in the external forces on the “atmo-
sphere.” The derivation of the three ordinary differential
equations shows that they provide a representation of
thermal convection only near r=1 (Salzmann, 1962),2
but we, as have many others, have adopted them as a
model of low-dimensional chaotic behavior, and we shall
push the parameters completely out of the appropriate
physical regime.

When r is less than unity, all orbits tend to the fixed
point of the vector field,

G,(x,y,z)=—0x toy,
G,(x,y,z)=—y +rx —xz , (12)
Gy(x,y,z)=—bz +xy ,

at (x,,z)=(0,0,0). This represents steady thermal con-
duction. As r increases beyond unity, the state
(0,0,0) is linearly unstable, and the vector field has two
symmetric linearly stable fixed points at
(x4,Y4,2)=(£Vb(r—1),£Vb(r —1),r —1). For all
r <1, the geometry of the time-asymptotic state of the
system is the same, namely, all initial conditions
tend to (0,0,0). For r>1 and until r reaches
r,=o(oc+b+3)/(c—b—1), orbits end up at (x,y,z)
depending on the value of (x(0),y(0),z(0)). The
geometry of the final state of the orbits is the same,
namely, all volumes of initial conditions shrink to zero-
dimensional objects. These zero-dimensional limit sets
change with parameters, but retain their geometrical na-
ture until »=r,. When r>r,, the situation changes
dramatically. The two fixed points of the vector field at
(x4+,y+,z) become linearly unstable, and no stable fixed
points remain. As r is increased from r,, the time-
asymptotic state emerging from an initial condition will
either perform irregular motion characterized by a broad
Fourier spectrum or undergo periodic motion.

The analysis of the sequence of allowed states in a
differential equation or a map as parameters of the sys-
tem are varied is called bifurcation theory. We shall not
dwell on this topic as it is covered in numerous mono-
graphs and literature articles (Guckenheimer and
Holmes, 1983; McKay, 1992; Crawford, 1991; Crawford
and Knobloch, 1991). What is important for us here is
that as we change the ratio of forcing to damping,
represented by the parameter » in the Lorenz equations,
the physical system undergoes a sequence of transitions
from regular to more complex temporal evolution. The
physical picture underlying these transitions is the re-
quirement of passing energy through the system from
whatever forcing is present to the dissipation mechanism
for the particular system. As the amount of energy flux

2The same equations were derived in the context of laser phys-
ics by Orayevsky et al. (1965).
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increases, the system chooses different geometrical
configurations in phase space to improve its ability to
transport this energy. These configurations in the early
stages frequently involve the appearance of higher
Fourier modes than would be dictated by the symmetry
of the driving forces and the geometry of the container.
In a fluid heated from below the transition from conduc-
tion of heat to convection is an example of this (Chan-
drasekhar, 1961). The sequence of bifurcations that
would be suggested by these first instabilities and changes
in geometry does not persist. After a few new frequen-
cies have been induced in the system by increasing the
forcing to dissipation ratio, the system generically under-
goes a structural transition to ‘‘strange” behavior in
which the entire phase space is filled with unstable orbits.
These unstable orbits do not go off to infinity in the phase
space, as a rule, since in addition to the instabilities one
has dissipation which limits the excursions of physical
variables. The resulting stretching by instabilities and
folding by dissipative forces is at the heart of the
“strange” behavior we call chaos. When the forcing-to-
dissipation ratio is small and regular behavior is ob-
served, the time-asymptotic orbits evolve from whatever
is the initial condition to motion on an attracting set of
points that is regular and is composed of simple
geometric figures such as points or circles or tori. The
dimension of these geometric figures is integer and, be-
cause of the dissipation, smaller than the dimension f of
the underlying dynamics. When the system becomes un-
stable, the orbits are attracted from a wide basin of initial
conditions to a limiting set, which is fractional dimen-
sional and has an infinite number of points. The complex
appearance of the time series in such a situation is due to
the nonperiodic way in which the orbit visits regions of
phase space while moving along the geometric object we
now call a strange attractor.

In Fig. 1 we display the time series for x (¢) which re-
sults from solving the Lorenz equations using a fourth-
order Runge-Kutta integrator for time step d7 =0.01.

Lorenz 63

Time series, 8 000 points
40.0 — T T T

20.0

x(t)

0.0

-20.0 -

L L
-40.0 L L L L L
0.0 5.0 10.0 15.0 20.0 250 30.0 35.0 40.0

t
FIG. 1. Chaotic time series x (¢) produced by Lorenz (1963)
equations (11) with parameter values r=45.92, b =4.0,
o=16.0.
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The parameter values were r=45.92, b=4.0, and
o=16.0. In Fig. 2 we plot the orbit coming from the
three degrees of freedom [x(¢),y(t),z(¢)] in a three-
dimensional space. The familiar and characteristic struc-
ture of the long-term orbit of the Lorenz system—the
Lorenz attractor—is apparent.

Much of the work on dynamical systems over the past
fifteen years has focused on the analysis of specific physi-
cally, biologically, or otherwise interesting differential
equations or maps for purposes of illuminating the vari-
ous kinds of behavior allowed by nonlinear evolution
equations. The sets of points in R/ visited by the orbits
of such systems is probably not yet completely classified
from a mathematical point of view, but the broad and
useful description suggested above, as the ratio of forcing
to dissipation is varied, has emerged. The details of the
bifurcations involved in the transition from regular
behavior, where the limit sets are points or periodic or-
bits, to irregular behavior such as that exhibited by the
Lorenz model are often complicated. They are of interest
in any specific physical setting, of course, but we shall
deal with situations in which the system has arrived in a
state where the parameter settings lead to irregular
behavior characterized by a broad Fourier power spec-
trum, perhaps with some sharp lines in it as well.

This broad power spectrum is a first indication of
chaotic behavior, though it alone does not characterize
chaos. For the Lorenz model in the parameter regime in-
dicated, the Fourier power spectrum is shown in Fig. 3.
It is broad and continuous and falls as a power of fre-
quency. Throughout this review we shall also work with
data from a nonlinear circuit built by Carroll and Pecora
at the U.S. Naval Research Laboratory (Carroll and
Pecora, 1991) as an example for many of our algorithms
and arguments. The time series for this circuit is taken

Lorenz 63,

(x.y.z) plot

100

FIG. 2. Lorenz attractor in three-dimensional phase space
(x(2),y(),z(2)).
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Lorenz 63: Power spectrum
of x(t) time series, 30.000 points
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FIG. 3. Power spectrum of the Lorenz data x (¢).

as a tapped voltage from a location indicated in their
original paper with 7,=0.1 ms. The voltage as a func-
tion of time is shown in Fig. 4 and the corresponding
Fourier spectrum in Fig. 5. Anticipating things to come,
we plot in Fig. 6 a reconstruction of the phase space or
state space of the hysteretic circuit orbits. The coordi-
nates are the measured voltage, the same voltage 0.6 ms
later and the same voltage 1.2 ms later. In contrast to
the irregular voltage time trace in Fig. 4 and the Fourier
spectrum of this voltage in Fig. 5, the phase-space plot
demonstrates simplicity and regularity. These data indi-
cate that the circuit is a candidate for a chaotic system,
and we shall systematically investigate other features of
the system from this voltage measurement. It is impor-
tant to note that the time series alone does not determine
whether the signal is chaotic. A superposition of several
incommensurate frequencies will result in a complicated
time trace but a simple line spectrum in Fourier space.
Linear analysis is not well tuned to working with sig-
nals with continuous, broad power spectra. Since stable
linear dynamics produces either zero frequency, that is,

Hysteretic circuit

Time series, 5 000 points
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FIG. 4. Time series of voltage V' (¢) produced by a hysteretic
circuit (Carroll and Pecora, 1991).
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Hysteretic circuit: Power spectrum
of V(t) time series, 30 000 points

P(f)
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f

FIG. 5. Power spectrum of the time series ¥ (¢) from the hys-
teretic circuit.

fixed points, or oscillations at a few frequencies, it is not
surprising that the use of linear models is not likely to
give much insight into the behavior of signals
arising from nonlinear systems. Traditional auto-
regressive/moving-average models (Oppenheim and
Schafer, 1989), then, are not going to do very well in the
description of chaotic signals. Indeed, if one tries to use
linear models to fit data from chaotic sources and
chooses to fit the unknown parameters in the model by a
least-squares fit of the model to the observations, the rms
error in the fit is about the same size as the attractor; that
is, nothing has been accomplished. If one tries a local
linear fit connecting neighborhoods in the state space of
the system (this is certainly one of the simplest nonlinear
models), the rms error can essentially be made as small as
one likes depending on the quantity of data and size of
the neighborhoods. This is not to suggest that local
linear models answer all questions—indeed, we shall see
below this is not the case—but that even small excur-

Hysteretic Circuit; 64 00O Points

x(n+12)

FIG. 6. Hysteretic time series embedded in a three-dimensional
phase space: [V (¢),V(t+6),V(t+12)]. See Fig. 4.
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sions from global linear modeling can significantly im-
prove performance in modeling nonlinear signals.

lll. ANALYZING MEASURED SIGNALS—LINEAR
AND NONLINEAR

The tasks faced by the analyst of signals observed from
linear or nonlinear systems are really much the same.
The methods for the analysis are substantially different.
This section is devoted to a discussion of the similarities
and differences in these requirements. The discussion is
centered around Table I.

A. Signal separation

The very first job of the physicist is to find the signal.
This means identifying the signal of interest in an obser-
vation that is possibly contaminated by the environment,
by perturbations on the source of the signal, or by prop-
erties of the measuring instrument. In a graphic way we
can describe the process of observing as (1) production of
the signal by the source, potentially disturbed during the
transmission, (2) propagation of the signal through some
communications channel, potentially contaminated by
the environment, and then (3) measurement of the signal
at the receiver, potentially disturbed during the reception
and potentially acting as a filter on the properties of the
transmitted signal of interest.

The problems in finding the signal are common to the
linear and the nonlinear observer. The linear observer
has the advantage of being able to assume that the source
emits spectrally sharp monochromatic signals which
might be contaminated by broadband interference. The
separation of the signal of interest from the unwanted
background becomes an exercise in distinguishing nar-
rowband signals in a broadband environment. Methods
for this (Van Trees, 1968) are easily fifty years old and
quite well developed.

Indeed, the main issue is really signal separation, and
in order to carry out the processing required we must es-
tablish some difference between the information-bearing
signal and the interference. In the case of a narrowband
signal in a broadband environment, the difference is clear
and Fourier space is the right domain in which to per-
form the separation. Similarly if the signal and the con-
tamination are located in quite different bands of the
spectrum, the Fourier techniques are certainly indicated.
In the case of signals from chaotic sources, both the sig-
nal of interest and the background are typically broad-
band, and Fourier analysis will not be of much assistance
in making the separation. In the first entry of the non-
linear side of Table I we identify several methods for
separating the signal from its contamination. All of them
rest on the idea that the signal of interest is low- or few-
dimensional chaos with specific geometric structure in its
state space. The geometric structure in the phase space
is characteristic of each chaotic source, so we can use
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this to effect the separation of that signal from others.
When the contamination is ‘““noise,” which we shall see as
an example of high-dimensional chaos, the signal separa-
tion problem is often called ‘“noise reduction,” but it
remains at heart a separation problem. In nonlinear sig-
nal separation, three cases seem easy to distinguish.
Each of these will be discussed in some detail in Sec. VII:

® We know the dynamics. We know the evolution
equations u(z# +1)=F(u(n)) and can use this knowledge
to extract the signal satisfying the dynamics from the
contaminating signals.

® We know a signal from the system. We have mea-
sured some signal from the system of interest at some
earlier time. We can use this earlier measurement as a
reference signal to establish the statistics of the evolution
on the attractor and use these statistics to separate a sub-
sequent transmission of the chaotic signal from contam-
ination of the kind indicated just above.

® We know nothing. We know only a single instance of
measuring a signal from the physical source. In this case

we are “flying blind”” and must make models of the signal
which allow us to establish what part of our observations
are deterministic in low-dimensional phase space and
what part a result of processes in higher-dimensional
state space and thus to be discarded. It should be clear
that this is much more problematic than the two other
scenarios, but it may often be the realistic situation.

B. Finding the space

If we now suppose we have found the signal of interest,
we may move on to establishing the correct space in
which to view the signal. If the source of our signal is a
linear physical process, perhaps a drum being beaten in a
linear range or a seismic measurement far from the epi-
center, so the displacements are very small, then the nat-
ural space in which to view the signal is Fourier space. If
the source is invariant under translations in time, then
sines and cosines are the natural basis functions in which
to expand the problem, and the display of the informa-
tion in the measurement will be most effective in Fourier

TABLE 1. Connection between the requirements in linear and nonlinear signal processing. The goals are much the same in each

case; the techniques are quite different.

Linear signal pfocessing

Nonlinear signal processing

Finding the signal

Noise reduction; detection
Separate broadband noise from nar-
rowband signal using different spectral
characteristics. If system is known, make
matched filter in frequency domain.

Noise reduction; detection
Separate broadband signal from broadband
noise using deterministic nature of signal. If
system is known or observed, make
“matched filter” in time domain. Use dy-
namics or invariant distribution and Markov
transition probabilities.

Finding the space

Fourier transforms
Use Fourier space methods to turn
differential equations or recursion. relations
into algebraic forms.
x(n) is observed;
x(f)=3 x(n)expl[i2wnf] is used.

Phase-space reconstruction
Using timelagged variables, form coordi-
nates for the phase space in d dimensions:

ym)=[xn),x(n+T),...,x(n+(d—1T)]
How are we to determine d and 7?7 Mutual
information; False neighbors.

Classify the signal

Sharp spectral peaks

Resonant frequencies of the system
Quantities independent of initial conditions

Invariants of orbits. Lyapunov exponents;
Various fractal dimensions; Topological in-
variants; Linking numbers of unstable
periodic orbits

Quantities independent of initial conditions

Make models, predict

x(n+1)=3 ¢;x(n—j)
Find parameters c¢; consistent with invari-
ant classifiers (spectral peaks)

y(n)—y(n +1) as time evolution
y(n+1)=F[y(n),a,a;, ... ,a,]

Find parameters a; consistent with invari-
ant classifiers (Lyapunov exponents, dimen-
sions). Find dynamical dimensions d; from
data.

Rev. Mod. Phys., Vol. 65, No. 4, October 1993
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space. If the source has transients or significant high-
frequency content with many localized events (in the
time domain), then a linear transform, such as wavelets,
that is adapted to such localized events will be more use-
ful. Under our assumption that the underlying physical
processes are governed by differential equations, we
would expect them to have time-independent coefficients
when the process is stationary, so Fourier space is again
suggested, as it will reduce the differential equations to
algebraic equations, which are much more tractable.
Much of the contemporary toolkit of the signal processor
rests on this ability to move to frequency domain and
perform matrix manipulations on that representation of
the measurements.

In the case of a nonlinear source, we are not likely to
find any simplification from Fourier-transforming the
scalar measurements s(n), since the processes that give
rise to chaotic behavior are fundamentally multivariate.
So we need to reconstruct the phase space of the system
as well as possible using the information in s(n). This
reconstruction process will result in vectors in a d-
dimensional space. How we choose the components of
the d-dimensional vectors and how we determine the
value of d itself now become central topics. The answer
will lie in a combination of dynamical ideas about non-
linear systems as generators of information and geometri-
cal ideas about how one unfolds an attractor using coor-
dinates established on the basis of their information-
theoretic content. The result of the operations is a set of
d-dimensional vectors y(n) which replace the scalar data
we have observed.

C. Classification and identification

With a clean signal and the proper phase space in
which to work, we can proceed to ask and answer in-
teresting questions about the physical source of the ob-
servations. One critical question we need to address is
that of classifying or identifying the source. In the case
of linear systems we have Fourier analysis to fall back on
again. The locations of the sharp lines in the Fourier
spectrum are characteristic of the physical system being
measured. If we drive the linear system harder, this will
result in more power under each of these lines, and if we
start the system at a different time, the phase of the sig-
nal will be altered, but the location of the Fourier peaks
will remain unchanged. Thus the characteristic frequen-
cies, usually called resonant frequencies for the linear sys-
tem, are invariants of the dynamics and can be used to
classify the physics. If we see a particular set of frequen-
cies emerging from a driven linear system, we can recog-
nize that set of frequencies at a later date and distinguish
the source with confidence. Recognizing the hydrogen
spectrum and codifying it with the Rydberg law is a clas-
sic (no pun intended) example of this. Similarly classify-
ing acoustic sources of their spectral content is a familiar
operation.
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Nonlinear systems do not have useful spectral content
when they are operating in a chaotic regime, but there
are other invariants that are specific in classifying and
identifying these sources. These invariants are quantities
that are unchanged under various operations on the dy-
namics or the orbit. The unifying ingredient is that they
are all unchanged under small variations in initial condi-
tions. Some of the invariants we discuss have the proper-
ty of being unchanged under the operation of the dynam-
ics x—F(x). This guarantees that they are insensitive to
initial conditions, which is definitely not true of individu-
al orbits. Some of the invariants are further unchanged
under any smooth change of coordinates used to describe
the evolution, and some, the topological invariants, are
purely geometric properties of the vector field describing
the dynamics. Among these invariants are the various
fractal dimensions and—even more useful for physics —
the local and global Lyapunov exponents. These latter
quantities also establish the predictability of the non-
linear source. Chaotic systems are notorious for the
unpredictability of their orbits. This, of course, is direct-
ly connected with the instabilities in phase space we dis-
cussed earlier. The chaotic motion of a physical system
is not unpredictable even with all the instabilities one en-
counters in traversing state space. The limited predicta-
bility of the chaos is quantified by the local and global
Lyapunov exponents, which can be determined from the
measurements themselves. So in one sense, chaotic sys-
tems allow themselves to be classified and to have their
intrinsic predictability established at the same time.

One of the hallmarks of chaotic behavior is the sensi-
tivity of any orbit to small changes in initial condition or
small perturbations anywhere along the orbit. Because of
this sensitivity, which is quantified in the presence of pos-
itive Lyapunov exponents, it is inappropriate to compare
two orbits of a nonlinear system directly with each other;
generically, they will be totally uncorrelated. The invari-
ants of the geometric figure called the attractor, which
each orbit visits during its evolution, will be the same.
These are independent of initial conditions and provide a
direct analogy to the Fourier frequencies of a linear
dynamical system. So these invariants can be compared
if we wish to establish whether the observations of the
two orbits mean they arise from the same physical sys-
tem. System identification in nonlinear chaotic systems
means establishing a set of invariants for each system of
interest and then comparing observations to that library
of invariants.

As noted above there are also topological invariants of
any dynamical system which can be used to the same
effect. These are not dynamical in the same fashion as
the Lyapunov exponents, but can serve much the same
function as regards classification. Metric invariants such
as Lyapunov exponents or the various fractal dimensions
are unlikely to provide a “complete” set of invariants, so
using them and the topological invariants together may
provide sufficient discrimination power to allow for the
practical separation of observed physical systems.



1342 Abarbanel et al.: Analysis of observed chaotic data

D. Modeling—linear and nonlinear

With all this analysis of the source of the measure-
ments now done, we may address the problem of building
models of the physical processes acting at the source.
The general plan for this was outlined in the Introduc-
tion, and here we focus only on the first kind of model
making: working within the coordinate system estab-
lished by the analysis of the signal to build up local or
global models of how the system evolves in the recon-
structed phase space. In linear systems the task is rela-
tively easy. One has observations s(zn) and they must
somehow be linearly related to observations at earlier
times and to the driving forces at earlier times. This
leads to models of the form

N L
s(n)= 3 aps(n—k)+ > bg(n—1), (13)
k=1 I=1

where the coefficients {a, } and {b,} are to be determined
by fits to the data, typically using a least-squares or an
information-theoretic criterion, and the g(n) are some
deterministic or stochastic forcing terms, which are
specified by the modeler. This linear relationship be-
comes simpler and algebraic when we take the “z trans-
form” by defining

+
S(z)= Y z"s(n), (14)

n=-—oc0

which leads to

L
2 bIZl
1=1

K

1— 2 akzk
k=1

S(z)= G(z), (15)

with G (z) the z transform of the forcing. This is just a
discrete form of Fourier transform, of course.

Once the coefficients are established by one criterion or
another the model equation (13) is then used for predic-
tion or as part of a control scheme. The choice of
coefficients should be consistent with any knowledge one
has of spectral peaks in the system, and the denominator
in the z transform holds all that information in terms of
poles in the z plane. Much of the literature on linear sig-
nal processing can be regarded as efficient and thoughtful
ways of choosing the coefficients in this kind of linear
model in situations of varying complexity. From the
point of view of dynamical systems this kind of model
consists of simple linear dynamics—the terms involving
the {a;} —and simple linear averaging over the forcing.
The first part of the modeling, which involves dynamics,
is often called autoregressive (AR) and the second mov-
ing average (MA), and the combination labeled ARMA
modeling.

This kind of model will always have zero or negative
Lyapunov exponents, zero KS entropy, and will never be
chaotic. It is, as a global model of interesting nonlinear
physics, not going to do the job.
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Nonlinear modeling of chaotic processes revolves
around the idea of a compact geometric attractor on
which our observations evolve. Since the orbit is con-
tinually folded back on itself by the dissipative forces and
the nonlinear part of the dynamics, we expect to find in
the neighborhood of any orbit point y(n) other orbit
points y(n)r=1,2,... , N, which arrive in the neigh-
borhood of y(n) at quite different times than n. One can
then build various forms of interpolation function, which
account for whole neighborhoods of phase space and how
they evolve from near y(n) to the whole set of points near
y(n +1). The use of phase-space information in the
modeling of the temporal evolution of the physical pro-
cess is the key innovation in modeling chaotic processes.
The general method would work for regular processes,
but is likely to be less successful because the neighbor-
hoods are less populated.

The implementation of this idea is to build
parametrized nonlinear functions F(x,a) which take y(n)
into y(n +1)=F(y(n),a) and then use various criteria to
determine the parameters a. Further, since one has the
notion of local neighborhoods, one can build up one’s
model of the process neighborhood by neighborhood and,
by piecing together these local models, produce a global
nonlinear model that captures much of the structure in
the attractor itself.

Indeed, in some sense the main departure from linear
modeling is to realize that the dynamics evolves in a mul-
tivariate space whose size and structure is dictated by the
data itself. No clue is given by the data as to the kind of
model that would be appropriate for the source of chaot-
ic data. Indeed, since quite simple polynomial models
and quite complex models can both give rise to time-
asymptotic orbits with strange attractors, the critical
part of the modeling—the connection to the physics—
remains in the hands of the physicist. It is likely there is
no algorithmic solution (Rissanen, 1989) to how to
choose models from data alone, and that, of course, is
both good news and bad news.

E. Signal synthesis

The main emphasis of this review and actually of most
work on nonlinear signals has been on their analysis; that
is, given an observed signal, can we tell if it came from a
low-dimensional chaotic attractor, can we characterize
that attractor, can we predict the evolution of state-space
points near the attractor or into the future, etc.

Another direction now being taken concerns the syn-
thesis of new signals using chaotic sources. Can one uti-
lize these signals for communication between distant lo-
cations or synchronization of activities at these locations,
etc. This, in our opinion, is likely to be the main direc-
tion of engineering applications of the knowledge we
have garnered about nonlinear systems operating in a
chaotic mode. We shall touch upon these ideas as we
proceed here, but their review will have to await a more
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substantial set of developments, and this we are confident
will be available over the next few years.

IV. RECONSTRUCTING PHASE SPACE
OR STATE SPACE

We now turn to methods for reconstructing the state
space of a system from information on scalar measure-
ments s (n)=s(ty+n7,). If more than just a single scalar
were measured, that would put us in an advantageous po-
sition, as will become clear, but for the moment we
proceed with one type of measurement.

From the discussion of dynamical systems we see that
if we were able to establish values for the time derivatives
of the measured variable, we could imagine finding the
connection among the various derivatives and the state
variables, namely, the differential equation, which pro-
duced the observations. To create a value for

_ds(t)
dt t=tytnrg ’

$(n) (16)

we need to approximate the derivative, since we have
measurements only every 7,. The natural approximation
would be

s(to+(n+1D)r)—s(tyt+nr)

Ts

s$(n)= (17)
With finite 7 this is just a crude high pass filter of the
data, and we are producing a poor representation of the
time derivative. When we next try to estimate §(n) with
second differences, we are producing an even poorer ver-
sion of the second derivative, etc. If we examine the for-
mula for the derivatives, we see that at each step we are
adding to the information already contained in the mea-
surement s(n) measurements at other times lagged by
multiples of the observation time step 7,. In approxi-
mately 1980 both a group at the University of California,
Santa Cruz (Packard et al., 1980) and David Ruelle ap-
parently simultaneously and independently introduced
the idea of using time-delay coordinates to reconstruct
the phase space of an observed dynamical system. The
Santa Cruz group (Packard et al., 1980) implemented the
method in an attempt to reconstruct the time derivatives
of s(¢). The main idea is that we really do not need the
derivatives to form a coordinate system in which to cap-
ture the structure of orbits in phase space, but that
we could directly use the lagged variables
s(n +T)=s(ty+(n +T)7;), where T is some integer to
be determined. Then using a collection of time lags to

create a vector in d dimensions,
y(n)=[s(n),s(n +T),s(n +2T),...,s(n+(d—1)T)],
(18)

we would have provided the required coordinates. In a
nonlinear system, the s (n +jT) are some (unknown) non-
linear combination of the actual physical variables that
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comprise the source of the measurements. While we do
not know the relationship between the physical variables
u(n) and the s(n +jT), for purposes of creating a phase
space, it does not matter, since any smooth nonlinear
change of variables will act as a coordinate basis for the
dynamics. This idea was put on a firmer footing by Mafié
and Takens (Mané, 1981; Takens, 1981) and further
refined relatively recently (Sauer et al., 1991).

To see this idea in action we take data from the Lorenz
attractor described earlier. We take points from the vari-
able x(n), and in Fig. 7 we plot the points
[x(n),x(n +dT),x (n +2dT)] in R*. Comparing this to
Fig. 3, we see that from the complicated time trace in
Fig. 1 we have created, by using 3-vectors of time-
delayed variables, a geometric object similar in appear-
ance, though somewhat distorted, to the original
geometric portrait of the strange attractor. The distor-
tion is not surprising since the coordinates
[x(n),x(n+dT),x(n +2dT)] are different from
[x(n),y(n),z(n)].

Now how shall we choose the time lag T and the di-
mension of the space d to go into the timelagged vectors
y(n), Eq. (18)? The arguments of Mafié and Takens sug-
gest that it does not matter what time lag one chooses,
and a sufficient condition for d depends on the dimension
of the attractor d 4. They argue that if d, which is an in-
teger, is larger than 2d 4, which can be fractional, then
the attractor as seen in the space with lagged coordinates
will be smoothly related to the attractor as viewed in the
original physical coordinates, which we do not know. In
practice, their theorem tells us that, if we have chosen d
large enough, physical properties of the attractor that we
wish to extract from the measurements will be the same
when computed on the representative in lagged coordi-
nates and when computed in the physical coordinates.
The procedure of choosing sufficiently large d is formally
known as embedding, and any dimension that works is
called an embedding dimension dy. Once one has
achieved a large enough d =dp, then any d = dj will also

x(t+2*dT)

FIG. 7. Lorenz time series x(¢) (Fig. 1) embedded in a three-
dimensional phase space (x (2),x (¢t +dT),x (t +2dT)),dT =0.2.
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provide an embedding.

Time-delay embedding is certainly not the only
method for embedding scalar data in a multivariate
dynamical environment. Other methods (Landa and
Rosenblum, 1989; Mindlin et al., 1991) are available and
have their advantages. Time-delay embedding is,
perhaps, the only systematic method for going from sca-
lar data to multidimensional phase space, and it has cer-
tainly been the most explored in the literature.

A. Choosing time delays

The statement of the embedding theorem that any time
lag will be acceptable is not terribly useful for extracting
physics from the data. If we choose T too small, then the
coordinates s(n +j7T) and s(n +(j+1)T) will be so
close to each other in numerical value that we cannot dis-
tinguish them from each other. From any practical point
of view they have not provided us with two independent
coordinates. Similarly, if T is too large, then s(n +;7T)
and s(n +(j +1)T) are completely independent of each
other in a statistical sense, and the projection of an orbit
on the attractor is onto two totally unrelated directions.
The origin of this statistical independence is the ubiqui-
tous instability in chaotic systems, which results in any
small numerical or measurement error’s being amplified
exponentially in time. A criterion for an intermediate
choice is called for, and it cannot come from the embed-
ding theorem itself or considerations based on it, since
the theorem works for almost any value of 7.

One’s first thought might be to consider the values of
s(n) as chosen from some unknown distribution. Then
computing the linear autocorrelation function

m)—75]
i , (19)

1 X
§= -ﬁés(m),

and looking for that time lag where C,(7) first passes
through zero, would give us a good hint of a choice for T.
Indeed, this does give a good hint. It tells us, however,
about the independence of the coordinates only in a
linear fashion. To see this, recall that if we want to know
whether two measurements s(n) and s(n +7) depend
linearly on each other on the average over the observa-
tions, we find that their connection, in a least-squares
sense, is through the correlation matrix just given.

That is, if we assume that the values of s(n) and
s(n +7) are connected by

s(n+7)=5=C.(7)[s(n)—5], (20)

then minimizing
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N
S {s(n+7)—5—C.(7)[s(n)—5]}?, (21)
n=1

with respect to C; (7), immediately leads to the definition

of C; (1) above.

Choosing T to be the first zero of C; (7) would then, on
average over the observations, make s(n) and s(n +7T)
linearly independent. What this may have to do with
their nonlinear dependence or their utility as coordinates
for a nonlinear system is not addressed by all this. Since
we are looking for a prescription for choosing T, and this
prescription must come from considerations beyond
those in the embedding theorem, linear independence of
coordinates may serve, but we prefer another point of
view, one that stresses an important aspect of chaotic
behavior—namely the viewpoint of information theory
(Shaw, 1984; Fraser and Swinney, 1986; Fraser, 1989a,
1989b)—and leads to a nonlinear notion of indepen-
dence.

B. Average mutual information

In the Introduction we discussed how the idea of infor-
mation created by chaotic behavior is suggested in a
qualitative fashion by the KS entropy and the growth in
time of the number of states of a system available to a
small piece of phase space as 2!"*¥)]. The same idea can
be used to identify how much information one can learn
about a measurement at one time from a measurement
taken at another time. In a general sort of context, let us
imagine that we have two systems, call them A4 and B,
with possible outcomes in making measurements on them
a; and b,. We consider there to be a probability distribu-
tion associated with each system governing the possible
outcomes of observations on them. The amount one
learns in bits about a measurement of a; from a measure-
ment of b, is given by the arguments of information
theory (Gallager, 1968) as

P ,pla;,by)

O L A 22
P ,(a;)Py(b;) 22)

1,p(a;,b)=log,

where the probability of observing a out of the set of all
A is P 4(a), and the probability of finding b in a measure-
ment of B is Pz(b), and the joint probability of the mea-
surement of a and b is P p(a,b). This quantity is called
the mutual information of the two measurements a; and
b, and is symmetric in how much one learns about b,
from measuring a;. The average mutual information be-
tween measurements of any value q; from system A and
b, from B is the average over all possible measurements
of I 4p(a;,b;),

1,(1)= 3 P,pla;,b)I 4p(a;,b;) . 23)

a;,b,

To place this abstract definition into the context of ob-
servations from a physical system s(n), we think of the
sets of measurements s(n) as the A set and of the mea-
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surements a time lag T later, s(n + T), as the B set. The
average mutual information between observations at n
and n + T, namely, the average amount of information
about s (n +T) we have when we make an observation of
s(n), is then

P(s(n),s(n +t))
P(s(n))P(s(n +T))

N
I(T)= 3 P(s(n),s(n+T))log,

n=1
(24)

and I(T)=0 (Gallager, 1968).

The average mutual information is really a kind of gen-
eralization to the nonlinear world from the correlation
function in the linear world. It is the average over the
data or equivalently the attractor of a special statistic,
namely, the mutual information, while the correlation
function is the average over a quadratic polynomial
statistic. When the measurements of systems A4 and B
are completely independent, P 4z(a,b)=P,(a)P,(b), and
I, p(a;,b,)=0.

Evaluating I(T) from data is quite straightforward.
To find P(s(n)) we need only take the time trace s(n)
and project it back onto the s axis. The histogram
formed by the frequency with which any given value of s
appears gives us P(s(n)). If the time series is long and
stationary, then P(s(n +T)) is the same as P(s(n)). The
joint distribution comes from counting the number of
times a box in the s(n) versus s (n + T') plane is occupied
and then normalizing this distribution. All this can be
done quite easily and rather fast on modern PC’s or
workstations.

In his dissertation (Fraser, 1988) Fraser gives a very
clever recursive algorithm, which is basically a search al-
gorithm for neighbors in d-dimensional space, for
evaluating 7(T) and its generalizations to higher dimen-
sions. The more appropriate question to answer when
creating d-dimensional vectors y(n) out of time lags is
this: what is the joint mutual information among a set of
measurements s(n),s(n +7T),...,s(n+(d—1)T) as a
function of 7? For our purposes of giving a rule for an
estimation of a useful time lag 7, it will suffice to know
I(T) as we have defined it.

Now we have to decide what property of I(7T) we
should select, in order to establish which among the vari-
ous values of T we should use in making our data vectors
y(n). If T is too small, the measurements s(n) and
s(n +T) tell us so much about one another that we need
not make both measurements. If 7 is large, then I(T)
will approach zero, and nothing connects s(n) and
s(n =+ T), so this is not useful. Fraser and Swinney (1986)
suggest, as a prescription, that we choose that T,, where
the first minimum of I (7)) occurs as a useful selection of
time lag 7. As an example of this we show in Figs. 8 and
9 the average mutual information for the Lorenz attrac-
tor and for the data from the Carroll-Pecora nonlinear
circuit. Each has a first minimum at some T,,, and this
minimum can be used as a time lag for phase-space
reconstruction. The lag T,, is selected as a time lag
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FIG. 8. Average mutual information I(T) as a function of time
lag T for Lorenz data.

where the measurements are somewhat independent, but
not statistically independent:

P(s(n),s(n+T,,))#P(s(n))P(s(n+T,)) .

Recognizing that this is a prescription, one may well
ask what to suggest if the average mutual information
has no minimum. This occurs when one is dealing with
maps, as the I(7T) curve from x (n) data taken from the
Hénon map (Hénon, 1976)

x(n+1)=1+y(n)—1.4x(n)?,
y(n+1)=0.3x(n)

(25)

shows in Fig. 10. Similarly, if one integrates the Lorenz
equations with a time step df in the integrator, which is
then increased, the minimum seen in Fig. 8 fills in as dt
grows and eventually disappears. This does not mean
that I(T) loses its role as a good grounds for selection of
T,,, but only that the first minimum criterion needs to be
replaced by something representing good sense. Without
much grounds beyond intuition, we use T, =1 or 2 if we

Hysteretic circuit

Average mutual information
4.0

3.0

2.0

Mutual information
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FIG. 9. Average mutual information for hysteretic circuit data.
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Henon map, 8192 points
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FIG. 10. Average mutual information for data generated by the
Hénon attractor [Eq. (25)].

know the data comes from a map, or choose T,, such
that I(T, )/I(0)=%. This is clearly an attempt to
choose a useful 7,, in which some nonlinear decorrela-
tion is at work, but not too much.

Since this is prescriptive, one may compare it to the
prescription used in linear dynamics of choosing a time
lag 7,, such that C; (7, )=0 for the first time. Why not
the second zero or the fifth? Grassberger et al. (1991)
scrutinize the use of a simple prescription for choosing T.
The authors point out that for high-dimensional data one
must use a more sensitive criterion than the minimum
average mutual information between x (n) and x (n +T),
especially if one allows differing lags in each component
of the data vector y(n). Recognizing, as we have
stressed, that the choice of T is prescriptive, we agree
with their caution that “we do not believe that there ex-
ists a unique optimal choice of delay.” Nonetheless, it is
useful to have a general rule of thumb as a guide to a de-
lay T that is workable; seeking the optimum is likely to
be quite unrewarding.

Liebert and Schuster (1989) have examined the first
minimum criterion by adding another criterion involving
the so-called correlation integral, which we shall discuss
below, and concluded that the T, of the first minimum is
that T, in which the correlation integral is also numeri-
cally well established. This is yet another prescription,
and we have no special bent toward any particular
prescription, though when the I(T) curve does have
minima, we find that to be a practical and useful choice.
The main idea is to use criteria based on correlation
properties tuned to aspects of chaotic systems, namely,
properties that are attuned to chaotic dynamics as infor-
mation generators, and average mutual information cer-
tainly does just that.

C. Choosing the embedding dimension

The embedding theorem of Mafié and Takens rests on
topological results discussed sixty years ago (Whitney,
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1936). It is really quite independent of dynamics and is a
generalization of ideas on regular geometries. The goal
of the reconstruction theorem is to provide a Euclidean
space R ¢ large enough so that the set of points of dimen-
sion d 4 can be unfolded without ambiguity. This means
that if two points of the set lie close to each other in some
dimension d they should do so because that is a property
of the set of points, not of the small value of d in which
the set is being viewed. For example, if the attractor is
one dimensional and it is viewed in d =2, it may still be
that the one-dimensional line crosses itself at isolated
points. At these points there is an ambiguity about
which points are neighbors of which other points. This
ambiguity is completely resolved by viewing the same
one-dimensional attractor in d =3, where all possible
zero-dimensional or point crossings of the set on itself are
resolved. Of course, if one wants to view the set of points
in d =4, that is fine too. No further ambiguities are in-
troduced by adding further coordinates to the viewing or
embedding space. When all ambiguities are resolved, one
says that the space R ¢ provides an embedding of the at-
tractor.

An equivalent way to look at the embedding theorem
is to think of the attractor as comprised of orbits from a
system of very high dimension, even infinite dimensional
as in the case of delay differential equations or partial
differential equations. The attractor, which has finite d 4,
lies in a very small part of the whole phase space, and we
can hope to provide a projection of the whole space down
to a subspace in which the attractor can be faithfully cap-
tured. Most of the large space, after all, is quite empty.
If this projection takes us down to too small a space, as
for example the scalar one-dimensional measurements
themselves are almost sure to do, then the evolution as
seen in this too small space will be ambiguous because of
the presence of incorrect neighboring points. In this too
small space the appearance of the orbit will be unduly
complicated, and part of the bad name of chaos or irreg-
ular behavior comes from looking at the orbits in the
wrong space. The appearance of the attractor when fully
unfolded in the larger embedding space is much more
regular and attractive than when projected down to one
dimension as in the scalar measurements. The embed-
ding theorem provides a sufficient condition from geome-
trical considerations alone for choosing a dimension d
large enough so that the projection is good—i.e., without
orbit crossings of dimension zero, one, two, etc.

The sufficient integer dimension dy is not always
necessary. For the Lorenz attractor, for example, we
have d ,=2.06 (we discuss later how to establish this).
This sufficient condition would suggest, since dg >2d 4,
that if we choose to view the Lorenz attractor in dg =5
we can do so without ambiguity. This is not at all incon-
sistent with our knowledge of the Lorenz differential
equations, which provide three coordinates for an R* in
which to view the attractor, since we are speaking now
about a time-delayed version of one of the Lorenz vari-
ables, and these are nonlinear combinations of the origi-
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nal x (t),y (t),z (t) which my twist the attractor onto itself
in only three dimensions. The embedding theorem
guarantees us that, however complicated these twists
may be, if the nonlinear transformation is smooth, d; =5
will untwist them globally in phase space. The theorem
is silent on local phase-space properties.

Why should we care if we always work in a dimension
dy that is sufficient to unfold the attractor but may be
larger than necessary? Would it not be just fine to do all
analysis of the properties of the Lorenz system in dp =5?
From the embedding theorem point of view, the answer
is always yes. For the physicist more is needed. Two
problems arise with working in dimensions larger than
really required by the data and time-delay embedding: (i)
many of the computations we shall discuss below for ex-
tracting interesting properties from the data, and that is
after all the goal of all this, require searches and other
operations in R? whose computational cost rises ex-
ponentially with d; and (ii) in the presence of “noise” or
other high-dimensional contamination of our observa-
tions, the “extra” dimensions are not populated by dy-
namics, already captured by a smaller dimension, but en-
tirely by the contaminating signal. In too large an
embedding space one is unnecessarily spending time
working around aspects of a bad representation of the ob-
servations which are solely filled with “noise.”

This realization has motivated the search for analysis
tools that will identify a necessary embedding dimension
from the data itself. There are four methods we shall dis-
cuss: (i) singular-value decomposition of the sample co-
variance matrix; (ii) “saturation” with dimension of some
system invariant; (iii) the method of false nearest neigh-
bors, (iv) the method of true vector fields.

1. Singular-value analysis

If our measurements y(n) are composed of the signal
from the dynamical system we wish to study plus some
contamination from other systems, then in the absence of
specific information about the contamination it is plausi-
ble to assume it to be rather high dimensional and to as-
sume that it will fill more or less uniformly any few-
dimensional space we choose for our considerations. Let
us call the embedding dimension necessary to unfold the
dynamics we seek dy. If we work in dg >dy, then in an
heuristic sense d; —dy dimensions of the space are being
populated by contamination alone. If we think of the ob-
servations embedded in dy as composed of a true signal
yr(n) plus some contamination c: y(n)“yT(nH-c(n)
then the d; Xdj sample covariance matrix

COV=% 3 [y(n) =y lly(m) =y 17 (26)
n=1

with

||Mz

yav=% y(n) , 27
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will, again in an heuristic sense, have dy eigenvalues aris-
ing from the variation of the (slightly contaminated) real
signal about its mean and dp —dy eigenvalues which
represent the “noise.” If the contamination is quite high
dimensional, it seems plausible to think of it filling these
extra dp —dy dimensions in some uniform manner, so
perhaps one could expect the unwelcome dp —dy eigen-
values, representing the power in the extra dimensions, to
be nearly equal. If this were the case, then by looking at
the eigenvalues, or equivalently the singular values of
COV, we might hope to find a “noise floor” at which the
eigenvalue spectrum turned over and became flat
(Broomhead and King, 1986). There are d eigenvalues,
and the one where the floor is reached may be taken as
dNu

This analysis can also be carried out locally (Broom-
head and Jones, 1989), which means that the covariance
matrix is over a neighborhood of the Ny nearest neigh-

bors, y"”(n) of any given data point y(n):
1 s
COV(n)=TE [y"(n) = yu (W) ][y (m) =y, (m) T
B r=1
N, (28)

— 3 y"(n).

r=

Ya(n)=

The global singular-value analysis has the attractive
feature of being easy to implement, but it has the down-
side of being hard to interpret on occasion. It gives a
linear hint as to the number of active degrees of freedom,
but it can be misleading because it does not distinguish
two processes with nearly the same Fourier spectrum
(Fraser, 1989a, 1989b) or because of differing computers
the anticipated ‘“noise floor” is reached at different nu-
merical levels. Using it as a guide to the physicist, to be
looked at along with other tools, can be quite helpful.
Local covariance analysis can provide quite useful in-
sights as to the structure of an attractor and, as em-
phasized by Broomhead and Jones (1989), can be used to
distinguish degrees of freedom in a quantitative fashion.
The local analysis is also useful in certain signal-
separation algorithms when one of the signals to be
separated has substantial resemblance to white noise
(Sauer, 1991; Cawley and Hsu, 1992).

2. Saturation of system invariants

If the attractor is properly unfolded by choosing a
large enough djg, then any property associated with the
attractor which depends on distances between points in
the phase space should become independent of the value
of the embedding dimension once the necessary dz has
been reached. Increasing dy beyond this dy should not
affect the value of these properties, and, in principle, the
appropriate necessary embedding dimension dy can be
established by computing such a property for
dg=1,2, ... until variation with d ceases.

A familiar example of this comes from the average
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over the attractor of moments of the number density

n(r,x): the number of points on the attractor or

equivalently on the orbit within a radius of » of points x

in the phase space, n (7,x), is defined by

1 N

n(rx)=—73 0(r—|y(k)—x]|), (29)
N

with 8(u)=0, u <0; 8(u)=1, u >0, and the average over

all points' of powers of n(r,x) is (Grassberger and Pro-

caccia, 1983a, 1983b)

M
C,(N=-LS [n(ry(in]e" . (30)
M}

=1
We shall show in Sec. V that averages such as these are
independent of initial conditions and are thus good can-
didates for characterizing an attractor. We shall also ela-
borate on the discussion of the correlation integrals C,(r)
in Sec. V.D. Now we want to concentrate on the
fact that this quantity depends on the embedding
dimension dp used to make the vectors y(k)
=[s(n),s(n+1T),...,s(n+(dg—1)T)].

We can evaluate C,(r) as a function of d and deter-
mine when the slope of its logarithm as a function of
log(r) becomes independent of dy. In Fig. 11 we show a
log-log plot of C,(r) for data from the Lorenz attractor
as a function of d. It is clear that for d; =3, or perhaps
dg =4, the slope of the function C,(r) becomes indepen-
dent of embedding dimension, and thus we can safely
choose d =3 or dy =4, which is less than the sufficient
condition from the embedding theorem of d =5.

While what we have described is quite popular, it does
not give any special distinction, from the point of view of
the embedding theorem, to C,(7) as the function whose
independence of d; we should establish. As we shall see
in the next section, there is a very large class of functions
one could consider, all of which are equivalent from the
point of view of embedding.

Indeed, it is our own opinion that determining dy by
looking for the independence of some function on the at-
tractor, whether it be C,(r) or another choice, is some-
what of an indirect answer to the direct geometric ques-
tion posed by the embedding theorem: when have we un-
folded the attractor by our choice of time-delay coordi-
nates?

J

R (kP=[s(k)—s"Mk)P+[s(k +T)—=s"Mk +T)*+ - - -

R, (k) is presumably small when one has a lot of data,
and for a data set with NN entries, this distance is more or
less of order 1/N'/“. In dimension d +1 this nearest-
neighbor distance is changed due to the (d +1)* coordi-
nates s (k +dT) and s"™(k +dT) to

R 1 (K)=RXk)+[s(k +dT)—s"™k +dT)]* . (33)
If R, . (k) is large, we can presume it is because the near
neighborliness of the two points being compared is due to
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lkeda map: correlation integrals
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FIG. 11. Sequence of correlation integrals C,(r) for data from
the Ikeda map in embedding dimensions dz =1, ...,8.

3. False nearest neighbors

The third method for determining dy comes from ask-
ing, directly of the data, the basic question addressed in
the embedding theorem: when has one eliminated false
crossings of the orbit with itself which arose by virtue of
having projected the attractor into a too low dimensional
space?

Answers to this question have been discussed in vari-
ous ways. Each of the ways has addressed the problem of
determining when points in dimension d are neighbors of
one another by virtue of the projection into too low a di-
mension. By examining this question in dimension one,
then dimension two, etc. until there are no incorrect or
false neighbors remaining, one should be able to estab-
lish, from geometrical considerations alone, a value for
the necessary embedding dimension dp=dy. We de-
scribe the implementation of Kennel et al. (1992).

In dimension d each vector

y(k)=[s(k),s(k +T),...,stk +(d —1)T)] (31)

has a nearest neighbor y"¥V(k) with nearness in the sense
of some distance function. Euclidean distance is natural
and works well. The Euclidean distance in dimension d
between y(k) and y"M(k) we call R;(k):

+[s(k+T(d—1)—s"™k+T(d—1)]. (32)

[

the projection from some higher-dimensional attractor
down to dimension d. By going from dimension d to di-
mension d +1, we have “unprojected” these two points
away from each other. Some threshold size Ry is re-
quired to decide when neighbors are false. Then if

|s (k +Td)—s"Mk + Td)|
R, (k)

>Ry, 34)

the nearest neighbors at time point k (or z,+k7,) are de-
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clared false. In practice, for values of R in the range
10< R =50 the number of false neighbors identified by
this criterion is constant. With such a broad range of in-
dependence of R, one has confidence that this is a work-
able criterion.

When this criterion is applied to various standard
models, as shown in Figs. 12—-14, one finds results that
are quite sensible. For the Lorenz attractor, one finds
that the number of false nearest neighbors drops to zero
at dy =3, while the sufficient condition from the embed-
ding theorem is at dy=5. For the Hénon map, we find
dy =2, while the embedding theorem only guarantees us
success in unfolding the attractor at dp=3, since
d 4 =1.26 for this map.

For the Ikeda map (Ikeda, 1979; Hammel et al., 1985)
of the complex plane z (k)=x (k)+iy (k) to itself,

k+1)=p +Bz(k S S—
2k 1=p +Bz (Kexp | i = 7 o)

iK , (35)

which describes the evolution of a laser in a ring cavity
with a lossy active medium, we find, with “standard” pa-
rameters p =1.0, B =0.9, k=0.4, and a=6.0, where
d 4,~1.8, that we require dy=4 to eliminate all false
neighbors. This is the same dimension that the embed-
ding theorem tells us is sufficient. In a sense this example
tells us that the false-nearest-neighbor test is really quite
powerful. While one needs only a phase space of dimen-
sion two for the original map, the test reveals that the
choice of time delays as coordinates for a reconstructed
state space twists and folds the attractor so much that in
these coordinates these features of the coordinate system
require a larger dimension to be undone. Comparing the
actual [x (k),y (k)] phase plane with the [x (k),x (k +1)]
phase portrait as in Figs. 15 and 16 makes this twisting
quite apparent.

The criterion stated so far for false nearest neighbors
has a subtle defect. If one applies it to data from a very-
high-dimensional random-number generator, such as is

Lorenz 63; False Nearest Neighbors
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FIG. 12. Percentage of false nearest neighbors as a function of
embedding dimension for clean Lorenz data.
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FIG. 13. Percentage of false nearest neighbors as a function of
embedding dimension for Hénon map data.

found on any modern computer, it indicates that this set
of observations can be embedded in a small dimension. If
one increases the number of points analyzed, the ap-
parent embedding dimension rises. The problem is that
when one tries to populate uniformly (as “noise” will try
to do) an object in d dimensions with a fixed number of
points, the points must move further and further apart as
d increases because most of the volume of the object is at
large distances. If we had an infinite quantity of data,
there would be no problem, but with finite quantities of
data eventually all points have ‘“near neighbors” that do
not move apart very much as dimension is increased. As
it happens, the fact that points are nearest neighbors does
not mean they are close on a distance scale set by the ap-
proximate size R 4 of the attractor. If the nearest neigh-
bor to y(k) is not close, so R;(k)=~R 4, then the distance
R, (k) will be about 2R (k). This means that distant,
but nearest, neighbors will be stretched to the extremities
of the attractor when they are unfolded from each other,
if they are false nearest neighbors.

False Nearest Neighbors

Ikeda Map; 7500 Points
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FIG. 14. Percentage of false nearest neighbors as a function of

embedding dimension for data from the Ikeda map.
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FIG. 15. Ikeda attractor in two-dimensional phase space
(x(k),y (k)).

This suggests as a second criterion for falseness of
nearest neighbors that if

—_— >
R, 22, (36)

then y(k) and its nearest neighbor are false nearest neigh-
bors. As a measure of R ;, one may use the rms value of
the observations

Ry=L 3 [s()—5]
4 NE
Ly (37)
S=— s
N2,

The choice of other criteria for the size of the attractor
works as well. When nearest neighbors failing either of
these two criteria are designated as false, uniform noise
from a random-number generator is now identified as
high dimensional and scalar data from known low-

Ikeda Map
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FIG. 16. Time series from the Ikeda map embedded in a two-
dimensional space (x (k),x (k +1)).
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dimensional chaotic systems is identified as low dimen-
sional.

This is a good occasion to emphasize a point that we
have more or less made implicitly during the discussion.
Noise, as commonly viewed, is thought of as completely
unpredictable and “random.” When a practical charac-
terization of noise is sought, one states that it has a
broadband Fourier spectrum and an autocorrelation
function that falls rapidly to zero with time. Since the
power spectrum and autocorrelation function are just
Fourier transforms of one another, these are more or less
the same statement. Just these properties are possessed
by low-dimensional chaos as well, and chaos cannot be
distinguished from noise on the basis of Fourier criteria.
Instead, we see in the false-nearest-neighbor method or
the other methods indicated for determining embedding
dimension a true distinguishing characteristic: noise ap-
pears as high-dimensional chaos. Qualitatively they are
the same. Quantitatively and practically one may not be
able to work with dimensions higher than ten or twenty
or whatever. It may be useful, then, in the sense of being
able to work with problems in physics, to adopt any of
the usual statistical techniques developed for random
processes for signals with dimension higher than this
threshold.

When one uses the false-nearest-neighbor test on mea-
surements from a dynamical system that have been cor-
rupted with “noise” or with signals from another dynam-
ical system (low- or high-dimensional), there is a very
useful robustness in the results. Figure 17 shows the
effect of adding uniform random numbers lying in the in-
terval [—L,L] to a x(n) signal from the Lorenz attrac-
tor. For the Lorenz attractor R ,~12, and the contam-
ination level is given in units of L /R 4 in the figure. Un-
til L/R ;=0.5 we see a definite indication of low-
dimensional signals. When the contamination level is
low, the residual percentage of false neighbors gives an
indication of the noise level. In any case, when the per-
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FIG. 17. Percentage of false nearest neighbors as a function of
embedding dimension for noisy Lorenz data: O, 0=0.0; O,
=0.005; 0, 0=0.01; A, 0=0.05; *, 0=0.1; #, 0=0.5; @,
o=1.0.
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Hysteretic circuit; False Nearest Neighbors
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FIG. 18. Percentage of false nearest neighbors as a function of
embedding dimension for hysteretic circuit data.

centage of false nearest neighbors has dropped below
~1%, one may choose that dimension as d, and have
some real sense of the error one might make in any subse-
quent calculations.

As an illustration of the method applied to real data,
we present in Fig. 18 the percentage of false nearest
neighbors for data from the hysteretic circuit of Carroll
and Pecora. Clearly, choosing dy =3 would result in er-
rors of less than 1% in computing distances or in predic-
tion schemes. This is also commensurate with the error
level in the observations.

4. True vector fields

Another geometrical approach to determining the

embedding dimension for observed time series data is .

given by Kaplan and Glass (1992), who examine the
uniqueness of the vector field responsible for the dynam-
ics. If the dynamics is given by the autonomous rule
x—F(x), and F(x) is smooth, that is, differentiable, then
the tangents to the evolution of the system are smoothly
and uniquely given throughout the state space. Kaplan
and Glass establish the local vector field by carving up
phase space into small volumes and identifying where or-
bits enter and exit the volumes. This defines the local
flow under the assumption that the volumes are small
enough. “Small enough” is something one determines in
practice, but there seems no barrier to making the
volumes adequately small.

If one is in too small an embedding dimension, the vec-
tor fields in any location will often not be unique, as they
will overlap one another because of the projection of the
dynamics from a larger embedding space. As one in-
creases the embedding dimension the frequency of over-
lap will fall to zero and the vector field will have been un-
folded. If the dynamics is very high dimensional, then
the vector field will not be unfolded until this high di-
mension has been reached. If this dimension is above
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ten, say, then at the present time we can think of dealing
with the problem using statistical methods.

To test for the deviation of the vector field from what
would be expected for a random motion, taken to be ran-
dom walks, the statistic

(V;)*—(RZ)?
J

(38)
1—(RZ )
J
is considered. The vectors V; are the average directions
of the line segments from entry to exit of the trajectory as
it passes through box number j. R? is the known aver-
J

age displacement per step for a random walk in dimen-
sion d after n; steps. This quantity will be averaged over
all boxes.

If the data set is drawn from a random walk, the statis-
tic will be 0, and if it is effectively random by being a
high-dimensional deterministic system viewed in too low
a dimension, it will be small. For a low-dimensional sys-
tem viewed in a large enough dimension this will be near
unity. The test appears to work quite well even with con-
taminated data. Indeed, the spirit of this method is quite
similar to that of false nearest neighbors. Both are
geometric and attempt to unfold a property of attractors
from its overlap on the observation axis to its unambigu-
ous state in an appropriately high-dimensional state
space.

D. Tand de

The determination of the appropriate phase space in
which to analyze chaotic signals is one of the first tasks,
and certainly a primary task, for all who wish to work
with observed data in the absence of detailed knowledge
of the system dynamics. We have spent some time on the
methods that have been devised for this, both because it
has been a subject of such intense interest, and because it
is important for the physicist to realize that not only are
there a variety of reliable techniques available for this job
but also the set of tools may be useful in combination and
as a complement to each other when the setting for the
data changes.

To determine the time lag to be used in an embedding,
one may always wish to use something nonlinear, such as
average mutual information, but the data may mitigate
against that. If one has sampled a map, achieved stro-
boscopically or taken as a Poincaré section, there is typi-
cally no minimum in the average mutual information
function. The reason is quite simple: the time between
samples 7, is so long that the orbit has become decorre-
lated, in an information-theoretic sense. One can see this
quite clearly by taking a flow such as the Lorenz model
and increasing the time step in the differential equation
solver step by step. At first, for a small time step, the
average mutual information has a minimum. As the time
step increases, the minimum moves in towards zero and,
since time steps are only in integer steps, disappears.
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What is one to do at this stage?

Typically, when one is handed data, there is nothing to
do about resampling it, but if that is an option, take it. If
not, one can turn to the autocorrelation function of the
time series to find at least an estimate of what one can re-
liably use for a time delay in state-space reconstruction.
While the criterion is linear, it may not be totally
misleading to use the first zero crossing of the autocorre-
lation function as a useful time lag. When the average
mutual information does have a first minimum, it is usu-
ally more or less the same order, in units of 7, as the first
zero crossing of the autocorrelation, so one is not likely
to be terribly misled by this tactic.

Once a time delay has been agreed upon, the embed-
ding dimension is the next order of business. As we have
seen, there are numerous options available, and we shall
not repeat them in detail. Our own experience is that it
is better to work with algorithms that are geometric rath-
er than derivative from the data.. Computing correlation
functions C,(r) not only requires a large data set, it also
degrades rapidly when the data are contaminated. If one
wishes simply to know that the embedding dimension is
low, then geometric methods will suffice. If one wishes to
know whether to use dimension d or d-+1, then
geometric methods will allow a way to start the selection,
and then after performing some signal separation as indi-
cated below, perhaps fractal dimension estimators can
pin down the answer more precisely. In any case, robust-
ness seems to come with methods that do not require pre-
cise determination of distances between points on the
strange attractor.

V. INVARIANTS OF THE DYNAMICS

Classification of the physical system producing one’s
observations is a standard problem for physicists. In an
earlier section we discussed general matters related to in-
variants of the dynamics. Now we give more detail.

The basic idea is that one wants to identify quantities
that are unchanged when initial conditions on an orbit
are altered or when, anywhere along the orbit, perturba-
tions are encountered. As usual we assume that underly-
ing the observations y(k) there is a dynamical rule
y(k +1)=F(y(k)). For purposes of defining invariants,
we need some notion of invariant distribution or invari-
ant measure on the attractor. This issue is discussed at
some length in the earlier review article of Eckmann and
Ruelle (1985), and for us it is only necessary to agree that
only one of the many possible candidates for invariant
distribution seems to be stable under the influence of er-
rors or noise. This is the natural density of points in the
phase space, which tells us where the orbit has been, and
whose integral over a volume of state space counts the
number of points within that volume. The definition of
this density is

p(x)= z s4x—y(k)) , (39)
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in phase space of dimension d.

Now any function on phase space g (x), when integrat-
ed with this density, is invariant under the dynamics
x— F(x). Defining

(g)—fd g(x)p(x),

. 2 g(y(k)), (40)
=1
we see that
1 N
[ d% g(Fx)p(x)=— 3 gly(k +1))
Nk=1
71\;[g(y(N+1))—g(y(l N]+<{g),
(41)

and in the limit N — o, the averages of g (x) and g(F(x))
are the same. Since F(x) moves us along the orbit pre-
cisely one step, we see that, for long enough data sets, the
physicist’s meaning of N — 0, all {g ) are unchanged by
perturbations within the basin of attraction—all those
points in state space which end up on an attractor—of
the observations.

Quantities such as (g ) can now be used to identify the
system that produced the observations. The {g ) are sta-
tistical quantities for a deterministic system and are the
only quantities that will be the same for any long obser-
vation of the same system. Different chaotic orbits will,
as we shall make quantitative below, differ essentially
everywhere in phase space. The issue, then, is to choose
a g (x) that holds some interest for physical questions.

A. Density estimation

Before proceeding any further, we need to discuss the
practical issues associated with numerical estimation of
the invariant distribution, Eq. (39). Expressing the mea-
sure as a sum of delta functions is supremely convenient
for defining other invariant quantities, as Eq. (40) demon-
strates. But integrals of delta functions presuppose an
absolutely continuous, infinitely resolvable state space,
which is something most experimentalists are not famil-
iar with.

Any measurement of a tangible variable necessarily im-
poses a partitioning of state space. The number of dis-
tinct, discrete states observable by any apparatus can be
no larger than the inverse of the measurement resolution.
Each element of this partition can be assigned a label,
which we shall denote as i (typically this label might be

some expression of the measurement value). In this
discretized space, the state-space integral ‘
(g)=fddxg(x)p(x) (42)
becomes
N
(g)=3 gx;)p(x;), (43)

i=1
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where the probability of the ith element of the partition is

d
(x;)= Jgxe) iy (44)
P Efx'ddxp(x) Z"(xi) '

with n (x;) equal to the number of counts in partition ele-
ment i. These discrete estimates of the partition proba-
bilities in the state space provide our approximation for
the invariant measure. Equation (40) can be interpreted
as the sparsely populated version of Eq. (43), resulting
from taking so fine a partitioning of phase space that
each partition element contains only one point.

This type of partition-based estimator is simply a mul-
tidimensional histogram and, as such, does not provide
smooth distributions and can suffer from boundary
effects. One way of improving upon traditional histo-
grams is to use kernel density estimators, which replace
the delta function in Eq. (39) with one’s favorite integra-
ble model for a localized, but nonsingular, distribution
function. Tight Gaussians are a popular choice for the
kernel, but scores of alternatives have been suggested on
various grounds of optimality criteria (Silverman, 1986).

Kernel density estimators illuminate an alternative to
the traditional fixed-volume methods for estimating
densities/probabilities. Instead of fixing a uniform grid
to partition the phase space and counting the number of
observations in each equal-sized partition element, it is
possible to base our estimates on the localized properties
of the given data set around each individual point.
Fixed-mass techniques perform a virtual partitioning of
the phase space with overlapping elements centered on
every point in the data set. The radius of each partition
element, rNB(x), is increased until a prespecified number
Ny of neighboring points have been enclosed. In this
way we accumulate a large number of overlapping parti-
tion elements, all containing the same number of points
but having different spatial sizes. The local density, or
probability, is then estimated as a function of the inverse
of the bin radius:

plx)ry (x) %, (45)

where dy is the embedding dimension of the reconstruct-
ed'phase space.

It will soon become clear that every time we can iden-
tify two broad classes of methods for implementing a
type of algorithm, the particular properties of any given
data set will dictate a hybrid technique for optimal per-
formance. For example, if there is obvious clustering in
the data, it would make sense to have the different clus-
ters lie in different partition elements.

B. Dimensions
Attractor dimension has been the most intensely stud-

ied invariant quantity for dynamical systems. Much of
the interest of the past decade was spawned by the reali-
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zation that attractors associated with chaotic dynamics
have a fractional dimension, in contrast to regular, or in-
tegrable, systems, which always have an integer dimen-
sion. Armed with this knowledge, a legion of researchers
embarked on the search for evidence of fractional dimen-
sions in experimental time series, to demonstrate the ex-
istence of chaos in the real world.

Since there are already a large number of very good re-
views of dimensions and their estimation (Farmer et al.,
1983; Paladin and Vulpiani, 1987; Theiler, 1990), we shall
not devote much space to a full discussion of all the
relevant issues. In particular, we refer the reader to
Farmer et al. (1983) for a more detailed discussion of the
basic theoretical concepts and Theiler (1990) for a
comprehensive review of many of the subtleties of es-
timation. Paladin and Valpiani (1987) provide a good
discussion of the inhomogeneity of points distributed on
an attractor, stating clearly how one determines quantita-
tive measures of this inhomogeneity and how one looks
for effects in the physics of this phenomenon.

Previous sections described the basic mathematical
concept of the phase-space dimension as the (integer)
number of quantities that need to be specified to fully
identify the state of the system at any instant. In the case
of ordinary differential equations, or discrete mappings,
the phase-space dimension corresponds to the number of
equations defining the evolution of each component of
the state vectors. In many cases of physical interest, e.g.,
Navier-Stokes or any system of partial differential equa-
tions, this state-space dimension is infinite. However, in
dissipative dynamical systems it is frequently the case
that the system’s asymptotic behavior relaxes onto a
small, invariant subset of the full state space. The variety
of dimensions about to be introduced describe the struc-
ture of these invariant subsets.

Beyond the simplest concept of dimension as the num-
ber of coordinates needed to specify a state is the geome-
trically related concept of how (hyper) volumes scale as a
function of a characteristic length parameter:

VoeL? . (46)

Planar areas scale quadratically with the length of a side,
and volumes in real world space go as the cube of the side
length. Contingent upon some workable generalization
of the idea of volume, we can invert Eq. (46) to “define” a
dimension:

D=—— ' 47)

Early techniques for estimating the dimension used a
covering of the attractor to calculate V. Consider a par-
titioning of the dg-dimensional phase space with an e-
sized grid. Count how many of the partition elements
contain at least one point from the sample data, and use
this value as the measure of ¥ at resolution €. Then
refine the phase-space partition by decreasing €. Now
count how many of these smaller partition elements are
not empty. Continue this procedure until € has spanned
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a large range, hopefully at least several orders of magni-
tude. In theory, in the limit as €—0 the ratio in Eq. (47)
describes the space-filling properties of the point set be-
ing analyzed. It is obvious that the largest value of D cal-
culable with this box-counting algorithm is dg. If the
embedding dimension is not large enough to unfold the
attractor’s structure fully, we shall only be observing a
projection of the structure, and much information will be
obscured. Therefore the common practice is to repeat
the described box-counting calculations in a number of
increasing embedding dimensions. For lower-
dimensional embeddings, the attractor’s projection is ex-
pected to “fill”” the space, resulting in an estimated frac-
tal dimension equal to the embedding dimension. As the
embedding dimension increases through the minimum re-
quired for complete unfolding of the geometric structure,
the calculated fractal dimension saturates at the proper
value. Figure 19 illustrates this basic technique with data
from the Hénon map.

According to our geometric intuition, Eq. (46) takes
“the amount” of an object to be equivalent to its volume.
But this is not the only measure for how much of some-
thing there is. Theiler has nicely phrased Eq. (46) in the
more general form

bulk o« sizedimension (48)

This now invites us to consider other measures of bulk.
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FIG. 19. Box counting for Hénon attractor in different embed-
ding dimensions d; =2,3 and at differing spatial resolutions.

Rev. Mod. Phys., Vol. 65, No. 4, October 1993

1. Generalized dimensions

Let us now return to our discussion of invariant quan-
tities by considering the case in which bulk is measured
in terms of some moment of the invariant distribution.
In other words, take g(x)=pf(x) in Eq. (40) and use
(g )!/P to measure bulk. Putting everything together we
arrive at

1/p
log(bulk) _ . log(g)

D =
r—0 log(size) -0 logr
1 e +1
I T R T

=lim—m—m——= llm —_—

r—0 logr r—0p logr

lo a

=1im 1 _g_Z_B. =D .

r—0qg —1 logr a

This definition of the generalized dimension D, pro-
vides a whole spectrum of invariant quantities for
— o <g< . We are already familiar with
D,=—1logN, /logr; this is just the capacity estimated by
the box-counting method.

Next we have D, to consider. The g —1 limit results
in an indeterminate form, but one easy way to find the
limit is with L’Hospital’s rule:

D,=lim— (49)
r—0r _é__ —1
aq {q ]q=1
. 1
lim =~ zpiqu, ogp; (50)
i g=1
2 pilogp;
=lim——— . (51)

r—0 logr

Note that, when p,=1/N for all i, then D;=D,. But
when the p; are not all equal D; <D,,. (In fact, in general
D; =Dy, ifi>j)

The difference between the two measures is explained
by how we use our state-space partition. For D, the bulk
is how many partition elements are nonempty. An ele-
ment containing one sample contributes as much bulk as
an element containing a million samples. D, is calculat-
ed from a bulk in which each partition element’s contri-
bution is proportional to how many samples it contains.
So bulk in Dy, is simply the volume, whereas for D; bulk
is equivalent to the mass.

Because of the functional form of the numerator in Eq.
(51), D, is commonly called the information dimension.
That numerator expresses the amount of information
needed to specify a state to precision #, and the ratio
defining the dimension tells us how fast this required in-
formation grows as r is decreased.

Next we have D,, the so-called correlation dimension:
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—log 3 p/
D,=1lim :

(52)
r—~0 logr

We see that the numerator constitutes a two-point corre-
lation function, measuring the probability of finding a
pair of random points within a given partition element,
just as the numerator in the definition of D; measures the
probability of finding one point in a given element.

Consequently, we can try to estimate the numerical
value of that numerator by counting how many pairs of
points have a separation distance less than some value r.
In 1983 Grassberger and Procaccia (1983a, 1983b) sug-
gested using

Cy(n= [d% p(x)n(r,x)

2

N
=—]\—7(1V—“'1)E 9(r—|y(j)—y(z)|) (53)

i#j

as a simple and computationally efficient means of es-
timating 3,;p2. With the introduction of the
Grassberger-Procaccia algorithm the floodgates were
opened for researchers looking for chaos in experimental
data. From fluid mechanics and solid-state physics, to
epidemiology and physiology, to meteorology and
economics, there was a staggering volume of papers pub-
lishing estimates of fractal dimensions.

2. Numerical estimation

Evaluation of the D, has been the subject of numerous
inquiries (Smith, 1988; Ruelle, 1990; Theiler, 1990).
Much of the discussion centers on how many data are re-
quired to determine the dimension reliably. Generally
speaking, large quantities of data are necessary to achieve
accurate approximations for the density of points in the
different regions of the attractor, and a good signal-to-
noise ratio is required to probe the fine structure of any
fractal sets in the attractor. Clearly, the required number
of points must scale as some function of the dimension
being estimated. The following are just a few opinions
that can be found in the literature:

@ Bai-Lin Hao (1984) points out the most basic limit.
To examine a 30-dimensional attractor “the crudest
probe requires sampling two points in each direction and
that makes 23°~ 10° points, a value not always reached in
the published calculations.”

® Theiler (1990) tells us N ~®P. “Experience indicates
that ® should be of the order of 10, but experience also
indicates the need for more experience.”

® Leonard Smith (1988) claims that to keep errors
below 5 percent one must have N >42M where M is the
largest integer less than the set’s dimension.

® On the other hand, Abraham et al. (1986) argue that
“Increasing N to the point where L /N'/? is less than a
characteristic noise length is not likely to provide any
more information on the attractor’s structure.”
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® Ruelle (1990) and Essex and Nerenberg (1991) argue
that if one estimates a dimension larger than 2 Xlog;y(N)
that one has only counted something related to the statis-
tics of the sample size N. This would mean that, for es-
timating a dimension d, a data set of at least size 10972 is
required.

It is not uncommon to see attempts to overcome the
limitations imposed by small data sets by measuring the
system more frequently. However, as discussed earlier in
Sec. IV, this is not an effective tactic. The raw number of
points is not what matters; it is the number of trajectory
segments, how many different times any particular locale
of state space is revisited by an evolving trajectory, that
counts.

Identifying the scaling region for estimating the dimen-
sion is another significant challenge. Standard practice
calls for accumulating the data’s statistics and then plot-
ting logC () versus logr for a set of increasing embedding
dimensions. For embedding dimensions smaller than the
minimum required for complete unfolding of the attrac-
tor, the data will fill the entire accessible state space, and
the slope of the plot will equal the embedding dimension.
As the embedding dimension increases, the slope of the
logC (r) versus logr plot should saturate at a value equal
to the attractor’s dimension. The dimension is defined as
the slope of this plot in the » —0 limit, but this region of
the plot is always dominated by noise and the effects of
discrete measurement channels. Therefore one hopes to
identify a scaling region at intermediate length scales,
where a constant slope allows reliable estimation of the
dimension by Eq. (47). Working with large quantities of
machine-precision computer-generated data, it is not
difficult to produce gorgeous plots with clearcut scaling
regions spanning many decades. But when dealing with a
limited quantity of moderately noisy data, the scaling re-
gion may not be identifiable. For example, one of the
characteristic signatures of oversampled data is the ap-
pearance of a ‘“knee” in the correlation integral plot,
separating regions with different scaling behavior. The
knee is caused by enhanced numbers of near neighbors at
small scales due to the strong correlation between tem-
porally successive points. We refer the reader to the re-
view by Theiler (1990) for a more complete and detailed
explanation of the subtleties of dimension estimation,
along with a survey of proposed refinements for increas-
ing the efficiency and reliability of the algorithms.

Motivated by the simple fact that many interesting
time series are extremely short or noisy, substantial effort
has gone into clarifying the statistical limits of the tech-
niques (Smith, 1988; Theiler, 1990). At the other extreme
is the question of how large a dimension can be investi-
gated with these techmiques.- Although many experi-
enced investigators believe the data requirements limit
the applicability of these algorithms to systems of dimen-
sion 6 or less, several groups claim encouraging results
up to 20 dimensions with careful application of the
Grassberger-Procaccia algorithm.
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In addition to the difficulties in accumulating sufficient
statistics for the reliable estimation of dimensions, there
is the uncomfortable fact that one can still be tricked by
the algorithm’s output. A controversial example was
pointed out by Osborne and Provenzale (1989), who
claimed that time series generated by colored stochastic
processes with randomized phase are typically identified
as finite dimensional by standard correlation integral
methods. In one sense, this can be explained as a conse-
quence of the fact that the data are not stationary, since
the correlation length grows with the length of the time
series. Although Theiler (1991) identified the sources of
their paradoxical results and suggested several pro-
cedures for the avoidance of such anomalies, the fact
remains that the identification of systems with 1/f¢
power spectra can be a frustrating task. In Sec. VIII we
shall see that filtered signals are also susceptible to misin-
terpretation by standard dimension-estimating algo-
rithms.

More important to attend to is the use to which the D,
are put for establishing that one has a low-dimensional
chaotic signal. If this is indeed one’s interest, then using
the false-nearest-neighbor method or one of the variants
will do that with many fewer data and much less compu-
tation. If one wishes to see an invariant on the attractor
saturate, then choose one that is less computationally in-
tensive. If one really wants the numerical value of D,
then caveat emptor.

With all this warning, we nonetheless quote some fa-
miliar D,, which come from graphs of good clean corre-
lation functions as a function of log[r]. From these we
are able to read off for the Hénon map D, =~ 1.26, for the
Lorenz system D,=~2.06, and for the Ikeda map
D,=~1.8. For the hysteretic circuit of Pecora and Car-
roll we see the results in Fig. 20. In earlier sections we
have loosely referred to the dimension of the attractor as
d 4, and made no distinction between the value of D, as
quoted here and the values of the box-counting D, di-
mension and information dimension D; which appear in

Hysteretic circuit: correlation integrals
7 500 points, nT=1, dE=1,...,8

FIG. 20. Sequence of correlation integrals C,(r) for hysteretic
circuit data.

Rev. Mod. Phys., Vol. 65, No. 4, October 1993

more precise statements. In practice, these dimensions
are all numerically so similar that there is no advantage
in distinguishing them from a signal analysis point of
view. A clear discussion of how and when the various
fractal dimensions are similar is given by Beck (1990),
who relates this question to the singularity of the invari-
ant distribution on the attractor.

C. A segue—from geometry to dynamics

One frustrating aspect of dimension estimation is the
meager quantity of useful information gained for the
amount of effort expended. Fractal dimensions are a con-
venient label for categorizing systems, but they are not
very useful for practical applications such as modeling or
system control. The dimensions describe how the sample
of points along a system orbit tend to be distributed spa-
tially, but there is no information about the dynamic,
temporally evolving, structure of the system.

An interesting connection between the fractal dimen-
sions discussed in the previous section and the stability
properties of the system dynamics was conjectured by
Kaplan and Yorke in 1980.

Assume the state space can be decomposed at each
point into local stable and unstable subspaces, with a
basis set containing expanding and contracting direc-
tions. The rates at which these deformations occur in
each direction are called the Lyapunov numbers. With
the typical ordering L>L,...>L,=Z1>L;...>L,,
and the existence of an attractor requires H}L 1Lj<1. A
dynamical system is said to be chaotic if at least one of
the L; > 1.

Consider a partitioning of the state space with d-
dimensional elements of side length ¢, i.e., the number of
partition elements required to cover.a unit d-cube is €%
Along the lines of a box-counting algorithm, let us count
the number of partition elements needed to cover our at-
tractor, and call this number N (€).

Now consider one of these elements of the partition
that covers the attractor as a fiducial volume, and let this
volume evolve according to the system dynamics. Each
axis of the fiducial volume will be scaled by a factor pro-
portional to that direction’s Lyapunov number. Direc-
tions with a Lyapunov number of magnitude less than 1
will contract, meaning one € width will still be needed to
cover these directions. Directions with a Lyapunov num-
ber greater than one will be expanded, thereby requiring
more € widths to cover the evolved fiducial volume in
these directions.

Let us use this information to estimate the number of
partition elements needed to cover the attractor if the
partition resolution is improved. Take the partition
spacing to be Ce, where C is some constant. How is
N (Ce) related to N (€)? Following the same reasoning as
above, we expect that each direction associated with a
Lyapunov number less than C will contribute a factor of
1.0, i.e., leave N unchanged. But each direction associat-
ed with a Lyapunov number greater than C will contrib-



Abarbanel et al.: Analysis of observed chaotic data

ute a factor of L; /C to N:

d
N(Ce)=N (€) [ max (54)

i=1

Lil
c’ |-

Recall the basic scaling relation that motivated our box-
counting algorithm:

VeN(e)~e P, (55)
So
N(Ce) _ ¢ L; (Ce)~ P -p
= —,1 (= =C™7, 56
N I max e P (56)
yielding yet another dimension measure:
d L,
log | [T max —C~,1
D, =——1t=1 57
L logC 57)

Now what value should be used for C? Consider using
one of the Lyapunov numbers, say Lg ;. Then

1357
log | T -
og max ,1
D —— ie1 Lg+1 |
£ logLg 4
K L,
log | 1
_ i=1 LK +1
Ak +1
K K
Kig1— 2 A DR
i=1 i=1
- =K — ,
Ak +1 Ak +1

where the A;, the logarithms of the L;, are called the
Lyapunov exponents.

Which Lyapunov exponent should be picked for A;?
In the spirit of the definition of the capacity D, we want
to choose the value that minimizes D;. Note that if all
the A; are less than zero the attractor is a stable fixed
point and has dimension zero. If the only non-negative
exponents are zero, the attractor is a limit cycle. Multi-
ple null exponents correspond to the number of incom-
mensurate frequencies in a quasiperiodic system, which is
also the system’s dimension. When at least one exponent
is positive, the last equation is to be minimized with
respect to A., to provide the most efficient covering of
the invariant set.

To find the optimal A, consider the difference in D,
calculated with A, or A, , ;:

k+1 k
S S A N
AD, = [k +1—-1— |- [k= = |=j— 3 a, [ — L |- 2k
t k+2 Ak +1 e T A Ak +2
k
2 A
_ Ak +1 k Lt L N R R L e LY =
=1— +3IM |l = | |1—
Meta | 2 A 1l 1Ak o] Ak 42l Ak 41l
[
Assuming - that A, ,,A;4,<0, and therefore description of the capacity D,. By constructing a

[k 41l <IAg 42|, we see that the first factor is a positive
quantity less than one. The second factor is a negative

quantity, and D; is decreasing, so long as
Sk 1 A;>|Ag41|. Therefore we take
K
Sh
D, =k—-=1 | (58)
Ak +1

such that 35,4, >0, and 3K A; <0.

An exact correspondence between D,, constructed
from measures of the stability properties of the dynamics,
and the dimensions defined in terms of moments of the
measure of the limit set is not obvious. The derivation of
the quantity is based upon a clever twist in the traditional
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refinement of the phase-space partitioning that is custom
tailored to the way phase space is deformed by the dy-
namics, we automatically create an efficient covering for
the invariant set, and we know how the population of the
covering scales in the €e—0 limit. However, that efficient
covering is defined in terms of the Lyapunov exponents,
which are invariant quantities, defined as averages over
the invariant measure. Therefore it seems that D; might
equal D,.

But which geometric-based dimension is equal to D; is
not very relevant from the time series analyst’s
viewpoint. Rarely does the real world bestow upon the
experimentalist a data set of good enough quality to dis-
tinguish among these various dimensions. The important
issue is which definition can motivate an efficient and
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stable numerical algorithm for dimension estimation.
One characteristic the D, all share is that they become
unwieldy and demand too many data as the dimension of
the attractor approaches and exceeds ten. Being based
on the dynamics rather than the distribution of sample
points, the Lyapunov dimension allows us to investigate
much higher dimensions so long as we can get reliable es-
timates for the Lyapunov exponents.

D. Lyapunov spectrum

Dimensions characterize the distribution of points in
the state space; Lyapunov exponents describe the action
of the dynamics defining the evolution of trajectories.
Dimensions only deal with the way measure is distributed
throughout the space, whereas Lyapunov exponents ex-
amine the structure of the time-ordered points making up
a trajectory.

To understand the significance of the spectrum of
Lyapunov exponents, consider the effects of the dynamics
on a small spherical fiducial hypervolume in the (possibly
reconstructed) phase space. Arbitrarily complicated dy-
namics, like those associated with chaotic systems, can
cause the fiducial element to evolve into extremely com-
plex shapes. However, for small enough length scales
and short enough time scales the initial effect of the dy-
namics will be to distort the evolving spheroid into an el-
lipsoidal shape, with some directions being stretched and
others contracted. The primary, longest, axis of this el-
lipsoid will correspond to the most unstable direction of
the flow, and the asymptotic rate of expansion of this axis
is what is measured by the largest Lyapunov exponent.
More precisely, if the infinitesimal radius of the initial
fiducial volume is called #(0), and the length of the ith
principal axis at time ¢ is called /;(¢), then the ith
Lyapunov exponent can be defined as

1;(1)
r(0) °

A;= lim ilog (59)

t—>o I
By convention, the Lyapunov exponents are always or-
dered so that A;>A,>A; - -

Equivalently, the Lyapunov exponents can be seen to
measure the rate of growth of fiducial subspaces in the
phase space. A; measures how quickly linear distances
grow—two points initially separated by an infinitesimal
distance € will, on average, have their separation grow as
ee}\lt. The two largest principal axes define an area ele-
ment, and the sum A;+A, determines the rate at which
two-dimensional areas grow. In general, the behavior of
d-dimensional subspaces is described by the sum of the
first d exponents, 37_A;.

E. Global exponents
The spectrum of Lyapunov exponents is determined by

following the evolution of small perturbations to an orbit
by the linearized dynamics of the system. Suppose we
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have established by phase-space reconstruction or direct
observation an orbit y(k);k=1,2,...,N to which we
make a small change at “time” unity: w(1). The evolu-
tion of the dynamics will now be

y(k +1)+w(k +1)=F(y(k)+w(k)), (60)

which will determine the w(k). If the w(k) start small
and stay small, then

w(k +1)=F(y(k))—y(k +1)+DF(y(k))-w(k)+ - --
=DF(y(k))-w(k) . (61)

The evolution of the perturbation can be written as

w(L +1)=DF(y(L))-DF(y(L —1)) - - - DF(y(1))-w(1)
=DFX(y(1))-w(1), (62)

which defines our shorthand notation, DFX(y(1)), for the
composition of L Jacobian matrices DF(x) along the or-
bit y(k).

In 1968 Oseledec (1968) proved the important multipli-
cative ergodic theorem, which includes a demonstration

that the eigenvalues of the orthogonal matrix
DFX(x)-[DFX(x)]7 are such that the matrix

Jim {DFL(x)-[DFk(x)]7)172F (63)
exists and has eigenvalues exp[A,],exp[A,], ..., exp[A;]

for a d-dimensional dynamical system which are indepen-
dent of x for almost all x within the basin of attraction of
the attractor. The A, are the global Lyapunov ex-
ponents. Their independence of where one starts within
the basin of attraction means that they are characteristic
of the dynamics, not the particular observed orbit. We
call them global because the limit L — o0 means they are,
in a sense we shall make more precise, a property of the
global aspects of the attractor.

Oseledec also proved the existence of the eigendirec-
tions of DFL(y(1)). These are linear-invariant manifolds
of the dynamics: points along these eigendirections stay
along those directions under action of the dynamics as
long as the perturbation stays small. Ruelle (1979) and
others extended this to the nonlinear manifolds and to
more complicated spaces. These eigendirections depend
on where one is on the attractor, but not on where one
starts in order to get there. That is, if we want to know
the eigendirections of DF® at some point y(L) and we be-
gin at y(1) and take L steps, or begin at y(2) and take
only L —1 steps, the eigendirections will be the same as
long as L is large enough. In practice, on the order of ten
steps are usually required to establish the eigendirections
accurately.

The multiplicative ergodic theorem of Oseledec is a
statement about the eigenvalues of the dynamics in the
tangent space (Eckmann and Ruelle, 1985) to x—F(x)
and is motivated by a statement about linearized dynam-
ics of the mapping. It is also a characterization via the
A, of nonlinear properties of the system. Basically it is
an analysis of the behavior of the nonlinear system in the
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neighborhood of an orbit on the strange attractor. By
following the tangent-space behavior (the linearized
behavior near an orbit) locally around the attractor, we
extract statements about the global nonlinear behavior of
the system. A compact geometrical object, such as a
strange attractor, which has positive Lyapunov ex-
ponents cannot arise in a globally linear system. The
stretching associated with unstable directions of
DF(y(k)) locally and the folding associated with the dis-
sipation are the required ingredients for the theorem.

If any of the A, are positive, then over the attractor
small perturbations will grow exponentially quickly.
Positive A, are the hallmark of chaotic behavior. If all
the A, are negative, then a perturbation will decrease to
zero exponentially quickly, and all orbits are stable. In a
dissipative system, the sum of the A, must be negative,
and the sum governs the rate at which volumes in phase
space shrink to zero. If the underlying dynamics is
governed by a differential equation, one of the A, will be
zero. This corresponds to a perturbation directly along
the vector field, and such a perturbation simply moves
one along the same orbit on which one started, so noth-
ing happens in the long run. Indeed, one can tell, in prin-
ciple, if the source is governed by differential equations
or by a finite time map by the presence or absence of a
zero global Lyapunov exponent.

A Hamiltonian system preserves phase-space volume
and respects the other invariants reflecting the symplec-
tic symmetry (Arnol’d, 1978). This leads to two conse-
quences: (i) the sum of all A, is zero, and (ii) the A, come
in pairs, which are equal and opposite. If A, appears in
the collection of Lyapunov exponents, so does —A,. For
Hamiltonian dynamics there are two zero global
Lyapunov exponents, one associated with the conserva-
tion of energy, the second associated with the fact that
the evolution equations are differential.

An interesting result due to Pesin (1977) relates, under
fairly general circumstances, the sum of the positive ex-
ponents to the KS entropy:>

AX)=3 A, . (64)

A, >0

F. Ideal case: Known dynamics

If one knows the vector field, determination of the A,
is straightforward, though numerically it poses some
challenges (Greene and Kim, 1986). The main challenge

3See also the paper by D. Ruelle (1978), which gives a bound
on A4 (X) in rather general settings.

4This paper also presents eigendirections associated with
Lyapunov exponents. These are not the same eigendirections
mentioned above for DFZ, they are the eigendirections associat-
ed with DFX(y(1))-[DFX(y(1))]7. The eigendirections of DF-
need not be orthogonal.
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comes from the fact that although each DF(y) has
eigenvalues more or less like exp[A,], the composi-
tion of L Jacobians, DFX(y), has eigenvalues approxi-
mately exp[A,L], exp[A,L],...,exp[A,L], and since
Ai>A,> ¢+ - > Ay, as L becomes large, the matrix is ter-
ribly ill conditioned. The diagonalization of such a ma-
trix poses serious numerical problems. Standard QR
decomposition routines do not work as well as one would
like, but a recursive QR decomposition due to Eckmann,
Kamphorst, Ruelle, and Ciliberto (Eckmann et al., 1986)
does the job.> The problem in the direct QR decomposi-
tion is keeping track of the orientation of the matrices
from step to step, so they propose to write each Jacobian
in its QR decomposition as

DF(y(i))-Q(i —1)=Q(i)-R(i) , (65)

where we begin with Q(0) as the identity matrix.
DF(y(1)) is then decomposed as Q(1)-R(1) as usual with
the QR decomposition of matrices. Then we write

DF(y(2))-Q(1)=Q(2)-R(2) , (66)
so we have for the product

DF(y(2))-DF(y(1))=Q(2)-R(2)-R(1) . (67)
Continuing, we have for DFX(y(1))

DFX(y(1))=Q(L)-1f_R(k) . (68)

The problem of directions within the product of matrices
has been handled step by step; at each step of this recur-
sive procedure no matrix R(k) is much larger than
exp[A;] and the condition number is more or less
exp[A;—A, ], which is quite reasonable for numerical ac-
curacy.

If we have differential equations rather than mappings,
or more precisely, if we want to let the step in the map
approach zero, we can simultaneously solve the
differential equation and the variational equation for the
perturbation around the computed orbit. Then a recur-
sive QR procedure can be used for determining the
Lyapunov exponents. Greene and Kim (1986) use a re-
cursive singular-value decomposition, and the idea of the
method is quite the same.

G. Real world: Observations

The problem of determining the Lyapunov exponents
when only a scalar observation s(n) is made is another
challenge. As always, the first step is reconstruction of
the phase space by the embedding techniques described
in Sec. IV. Once we have our collection of embedded
vectors y(n) there are two general approaches to estimat-
ing the exponents. In one case an analytic approach is

5A similar recursive method was shown to us independently by
E. N. Lorenz (private communication, 1990).
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adopted when a predictive model is available for supply-
ing values for the Jacobians of the dynamical rules.
Lacking such detailed information about the dynamics,
one can still try to estimate the larger exponents by
tracking the evolution of small sample subspaces through
the tangent space.

1. Analytic approach

The problem is to reconstruct the phase space and then
estimate numerically the Jacobians DF(y(k)) in the
neighborhood of each orbit point. Then the determina-
tion of the Lyapunov exponents by use of a recursive QR
or singular-value decomposition is much the same as be-
fore. To estimate the partial derivatives in phase space
we evidently must use the information we have about
neighbors of each orbit point on the attractor. The idea
(Sano and Sawada, 1985; Eckmann et al., 1986; Brown
et al., 1990, 1991) is to make local maps from all points
in the neighborhood of the point y(k) to their mapped
image in the neighborhood of y(k +1). In the early
literature (Sano and Sawada, 1985;® Eckmann et al.,
1986) this map was taken to to be locally linear, but this
accurately gives only the largest exponent, since the nu-
merical accuracy of the local Jacobians is not very good
and when one makes mistakes in each of the elements of
the composition of Jacobians that one is required to diag-
onalize to determine the A, those errors are exponential-
ly compounded by the ill conditioned nature of the prob-
lem (Chatterjee and Hadi, 1988). The problem is that the
burden of making the local map and the burden of being
an accurate Jacobian were both put on the dp Xd; ma-
trix in the local linear map. The solution is to allow for a
larger class of local neighborhood-to-neighborhood
maps, and then extract the Jacobian matrix from that
map.

This means that locally in state space, that is, near a
point y(n) on the attractor, one approximates the dynam-
ics x— F(x) by

M
F,(x)=3 c, (k)¢ (x), (69)
k=1

with the ¢,(x) a set of basis functions chosen for con-
venience or motivated by the data. The coefficients ¢, (k)
are then determined by a least-squares fit minimizing the
residuals for taking a set of neighbors of y(n) to a set of
neighbors of y(n +1). The numerical approximation to
the local Jacobian then arises by differentiating this ap-
proximate local map.

The burden of making the map and achieving a numer-
ically accurate Jacobian are separated by this approach,

SThis paper also introduces the local-phase-space method for
finding DF(y(n)), but uses only local linear maps for this pur-
pose. The method is unable to determine all exponents, just the
largest exponent.
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and quite accurate values for the full Lyapunov spectrum
are thus achieved. In the papers of Brown et al. (Bryant
et al., 1990; Brown et al., 1991), local polynomials were
used, and that was the method of Briggs (1990) as well.
Various basis functions have been used for this: radial
basis functions (Parlitz, 1992), sigmoidal basis functions
(called neural networks in popular parlance) (Ellner
et al., 1991; McGaffrey et al., 1992), and probably other
bases as well.

Typical of the results one can achieve are the ex-
ponents shown in Table II for the Lorenz attractor,
where it is known that A;=1.51, A,=0.0, and
A3=—22.5. We achieve high accuracy in establishing
these values from data on the x (r) observable only. The
table comes from making a local polynomial fit from
neighborhood to neighborhood in the phase space of the
Lorenz attractor, reconstructed from the observations
x (n). From this local map numerical values of the Jaco-
bian are read off and then the eigenvalues of products of
Jacobians are found by the recursive method indicated.
In the data used for x (n) the parameter values are o =4,
b =10, and r =45.92. We do not use the equations. of
the Lorenz model in determining these values for the A,
but from them we can establish a check on the results be-
cause the rate of phase-space contraction in the Lorenz
model is exp[ —(o+b +1)], and by the general proper-
ties of the Lyapunov exponents this must also be equal to
exp[A;+A,+A;]. This check is satisfied very accurately
by the numerical results.

All these results are quite sensitive to the presence of
contamination by other signals. This is quite natural,
since the evaluation of DF(y) is quite sensitive to dis-
tances in phase space, and inaccurate determination of
distances leads to inaccurate determination of DF. In
particular, achieving an accurate value of DF(y(k)) is a
task in extrapolating from measurements at finite dis-
tances in phase space to values on the orbit, i.e., zero dis-
tance, and that is just where noise or contamination has
the most effect. The effect of noise is shown in Fig. 21,

Lorenz 63 with noise

Lyapunov exponents

H«/

0.0 "’\o—“@\;

5.0 —

Lyapunov exponents

-25.0 o E— . -
-8.0 -6.0 -4.0 2.0 0.0

log(noise)

FIG. 21. Global Lyapunov exponents for Lorenz attractor in
the presence of noise.
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TABLE II. Global Lyapunov exponents computed from x (¢) data for the Lorenz attractor. The order
of the neighborhood-to-neighborhood polynomial map is varied. The correct values for these ex-

ponents are A;=1.50, A,=0.0, and A;= —22.5.

Global Lyapunov exponents for the Lorenz system

Order of
polynomial used
in local fit A Ay Az
Linear 1.549 —0.094 70 —14.31
Quadratic 1.519 —0.02647 —20.26
Cubic 1.505 —0.005 695 —22.59
Quartic 1.502 —0.002 847 —22.63
Quintic 1.502 —0.000 387 —22.40
where the three Lyapunov exponents for the Lorenz sys- | .
tem are evaluated from x(n) data for various levels of Amax= nlgfio ;log”DF ul, (71)

uniform random numbers added to the data. The sensi-
tivity is clearly seen here.

2. Trajectory tracing method

As an alternative to finding numerical values for the
local Jacobians of the dynamics along the orbit, one can
attempt to follow small orbit differences (Wolf et al.,
1985) and small areas defined by two orbits, and then
small subvolumes defined by three or more orbits to
sequentially extract values for the Lyapunov exponents.
These methods, while popular, almost always give accu-
rate values for only the largest Lyapunov exponent A,
due to inevitable numerical errors. Nonetheless, we de-
scribe this method and alert the reader to its sensitivity.

Assume we have a large collection of experimental
points from a long time series. What space our data is in
is not important, whether it be the natural space of the
defining dynamics or an embedding by time delays or
whatever. We want to find points in our sample library
that have close neighbors from different temporal seg-
ments of the library. Call these points x (¢) and y (¢). We
then keep track of how they deviate under dynamical
evolution until they become separated by a distance
greater than some threshold and/or another trajectory
segment passes closer to the presently monitored one.
When either of these conditions is met, the ratio of

1 |ly(n+t)—x(n+1)|
n Iy (£)—x (2)||

(70)

is calculated and a new pair of neighboring points is ob-
served. The largest Lyapunov exponent is estimated by
the log of the long-term average of the above quantity.
Strictly speaking, we want the asymptotic value as
n— . In practice, we are happy to be able to trace a
trajectory in this manner for several dozen characteristic
time steps.

If a large sample of observation points is available, we
may adopt a numerical trajectory-tracing technique
motivated by an alternative, but equivalent, definition of
the largest Lyapunov exponent:
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where u is a nearly randomly oriented unit vector pertur-
bation in the tangent space. We say nearly because if u
should just happen to fall precisely along the stable mani-
fold, it would remain within that invariant set and not re-
lax onto the most unstable direction.

Our task is to find points in our sample library that are
very close together and watch how trajectories specified
by following the points separate. In locating the initial
neighboring points we must not consider points that are
from the same temporal segment of the library. Let us
denote the starting point of our reference orbit as
r(0)=y(i) and call its nearest spatial neighbor
v,(0)=y(j). We require that i and j differ by some
minimum decorrelation length.

Now consider following the evolving trajectories
emanating from these two points. Initially the points are
separated by some distance ||A||, and we want to see how
this distance grows under dynamical evolution. There-
fore we continue to calculate a series of separation dis-
tances

1A= lr (k) —v (k)| =|ly(i +k)—y(j+k)| (72)

until we find a value of A, exceeding a present threshold
value. Typically this threshold will be some intermediate
distance between the smallest resolvable distances and
the overall size of the attractor as a whole. ||Ag|| is as-
sumed to start off at the smallest length scale, but when
[|Ag|l has grown to some sizable fraction of the
attractor’s extent we expect other nonlinear mechanisms
of enfoldment to dominate the further evolution of A.
Therefore we attempt to locate another point v,(0) in
our sample library close to r(k), lying as near as possible
to the line segment connecting (k) and v,(k). Things
can get tricky here as we try to trade off between near-
ness to 7 (k) and nearness to the separation segment from
r(k) to v(k). Locating v,(0) close to |r(k)—v,(k)| is
important, because in addition to being stretched by the
unstable components of the nonlinear dynamics, A is ro-
tated into alignment with the unstable manifold. In or-
der to get an accurate estimate of the expansion proper-
ties of the dynamics, we want to keep all future A’s
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aligned with the unstable direction.

When we reinitialize our neighboring trajectory with
v,(0), we store the final value of A, || for s, along with its
terminating value of kK =k7%*. Then we iterate the pro-
cedure, following r (k) further, with its new neighbor v,,
monitoring the separation:

AkTBX+k=||r(k'1“a"+k)—v2(k)|| . (73)
We continue this procedure for as long as the data or
computing resources allow. Then we calculate the ratio

A A A
k;nax kanax k}lwnax
A= s (74)
Ao Ak‘{‘“ﬂ Ak;‘;ajlﬂ
and estimate
A= logA . (75)

max
kM

To determine the second Lyapunov exponent we re-
peat the above tracing procedure, but monitor the evolu-
tion of area elements rather than separation lengths.
Consider the same starting points used in the above ex-
ample, 7(0) and v,(0). We want to augment this pair
with another neighboring point w,(0), which is close to
r(0) while being in a direction orthogonal to §,, the sepa-
ration between r (0) and v;(0). Call the separation vector
between 7 (0) and w,(0) ¥,. Then §, and ¥ define a fidu-
cial area element, which we can try to follow under
dynamical evolution. We again follow r(k), v,(k), and
now w,;(k) also, at each point calculating the area
spanned by &, and y,.

However, following this two-dimensional element in-
troduces further complications because, in general, v,
will tend to become aligned with §, along the unstable
direction. Therefore, in addition to reinitializing v and w
when the spanned area grows above a threshold value, we
must carefully reorient w to keep it as orthogonal to v as
the data resources permit.

Clearly the trajectory tracing method requires a sub-
stantial quantity of data to facilitate the aligned updating
procedure. If we are unable to locate nearby update
points in the required directions, our exponents will be
underestimated, since the maximal expansion rates will
not be observed. Although the basic idea easily general-
izes to higher-dimensional subspace elements for estimat-
ing the rest of the exponents, the precision and quantity
of data required, especially in larger dimensions, makes
this technique impractical for anything beyond the larg-
est couple of exponents.

3. Spurious exponents
One difficulty associated with working in reconstructed
phase spaces is that artifacts arising from inefficiencies of

representation inherent to the ad hoc embedding can be
annoying. A good example of such an annoyance is the
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presence of spurious Lyapunov exponents when the di-
mension of the reconstructed space exceeds the dimen-
sion of the dynamics’ natural space d .

Analysis of a dynamical system in a d-dimensional
space necessarily produces d Lyapunov exponents. And
Takens’ theorem tells us that the embedding space may
have to be expanded to d =2dy+1. So it is possible,
even in the ideal noise-free case, to have dy + 1 spurious
exponents in addition to the dy real ones.

Takens’ theorem assures us that d, of the exponents
we calculate in a large enough embedding space will be
the same as those we could calculate from a complete set
of measurements in the system’s natural space. But little
was known about the behavior of the spurious exponents
until recent work clarified the robustness of the numeri-
cal estimation techniques.

First clues were provided by Brown et al. (Bryant
et al., 1990; Brown et al., 1991) when they investigated
the use of higher-order polynomial interpolants for mod-
eling the dynamics in the reconstructed phase space.
Identifying the directions associated with each computed
Lyapunov exponent, they demonstrated that very few
sample points could be found along the directions of the
spurious exponents. Essentially, the directions of the real
exponents were thickly populated, indicating there was
actual dynamical structure along these directions. The
directions of the artificial exponents showed no structure
beyond a thickness attributable to noise and numerical
error.

Recently another method has been introduced for
discriminating between real and spurious exponents.
Based on the idea that most of the deterministic dynami-
cal systems of physical interest are invertible, we first
perform the typical analysis on the given time series, and
then we reverse the time series, relearn the reversed dy-
namics, and proceed to calculate exponents for this back-
ward data.

Under time reversal, stable directions become unstable,
and vice versa, no real exponents are expected to change
sign. On the other hand, the spurious exponents, being
artifacts of the geometry imposed by our ad hoc embed-
ding, will not, in general, behave so nicely. In fact, ex-
perience seems to show that the artificial exponents vary
strongly under time reversal, making identification easy.

H. Local exponents from known dynamics
and from observations

Global Lyapunov exponents tell us how sensitive the
dynamics is on the average over the attractor. A positive
Lyapunov exponent assures us that orbits will be ex-
ponentially sensitive to initial conditions or to perturba-
tions or to roundoff errors. No information is gained
from them about the local behavior on an attractor. Just
as the inhomogeneity of the attractor leads to interesting
characterization of powers of the number density, so it is
natural to ask about the local behavior of instabilities in
various parts of state space.
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A question of more substantial physical interest is this:
if we make a perturbation to an orbit near the phase-
space point y, how does this perturbation grow or shrink
in a finite number of time steps? This question is directly
relevant to real predictability in the system, since the lo-
cal Lyapunov exponents vary significantly over the at-
tractor, so there may be some parts of phase space where
prediction is much more possible than in other parts.
For example, if we are investigating the ability to predict
weather in a coupled ocean-atmospheric model, we are
much more interested in making predictions six weeks
ahead of a specified state-space location than 10° weeks
(20000 years) ahead. Global Lyapunov exponents may
suffice for the latter, but local Lyapunov exponents are
required for the former. Local Lyapunov exponents are
defined directly from the Oseledec matrix (Abarbanel
et al., 1991),

OSL(y,L)=DFX(y)-[DFk(y)]7, (76)

which has eigenvalues that behave approximately as
exp[2LA,(y,L)]. The A,(y,L) are the local Lyapunov
exponents. From the multiplicative ergodic theorem of
Oseledec we know

Llim Ay, L)=A, , (77)

the global Lyapunov exponents. It is the variation in
both phase-space location y and length of time L that is
of interest.

First of all, the A (y,L) are strongly dependent on the
particular orbit that we examine, just as are all functions
that we evaluate on a chaotic orbit. So we must ask
about averages over orbits with the invariant density.
For this purpose we define an average local Lyapunov ex-
ponent A, (L),

X (L)= [ d% p(y)A,(y,L)

N
=L s auw,L. (78)
NZ,
For large L, since A,(y,L) becomes independent of L,
within the basin of attraction of the attractor defined by
the observations we have
Llim A L)=A, . (79)

The variations around the mean value are also of some
importance, and we define the moments

[04(p, D)= [ d% p(y)[Aa(y, L) =R (L)}

N

=L s nuwn-1,mr. 6o

N2,

Two of the moments are trivial: o0,(0,L)=1 and
0,(1,L)=0. The moments for p =2 tell us how the local
exponents vary around the attractor, though they clearly
average this information over the whole attractor. The
direct local information resides in the A,(y,L). Each of
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the o,(p,L)—0 for L—> o and p=2, again by the
Oseledec multiplicative ergodic theorem.

The behavior of the A,(y,L) can also be captured in a
probability density for values of each exponent, for a
fixed L. The probability density for the ath exponent to
lie in the interval [u,u +du] is after L steps along the or-
bit,

N
P(u,L)="5 3 80, (y(k),L)—u) 81
N k=1
and the moments above follow in the usual way.

The behavior of the A,(L) in model systems is quite
striking. For the familiar test chaotic systems such as the
Hénon map, the Ikeda map, the Lorenz attractor, and
others, we have for large L

’

C
v+—£—+---, (82)
Lﬂ

Ca

A L)=~A,+

where ¢, and c, are constants, v, is a scaling exponent
found numerically to be in the range 0.6 <v, <0.85 for
many systems, and the final term proportional to L !
comes from the lack of complete independence of the lo-
cal Lyapunov exponents on the choice of coordinate sys-
tem. A demonstration of this is found in Abarbanel
et al. (1992)]. This also shows the independence of the
global exponents from the coordinate system when
L—oo.

All moments vanish for large L and do so at the rate

a a
L% L

o.(p,L)= (83)

where ¢," and ¢,” are constants, £, is a scaling index in
approximately the same numerical range as the v,, and
the last term comes from the coordinate system depen-

dence.
A typical example can be seen in Fig. 22, where the

Lorenz 63; Local Lyapunov exponents
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FIG. 22. Average local Lyapunov exponents for Lorenz attrac-
tor calculated from the Lorenz equations (11) as a function of
the composition length L. Averages are over 10000 initial con-
ditions.
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Lorenz 63; Local Lyapunov exponents

from equations - standard deviations. 10 000 locations
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L
FIG. 23. Standard deviations from the average for local

Lyapunov exponents calculated from the Lorenz equations (11)
as a function of the composition length L. Averages are over
10000 initial conditions.

three Xa(L) for the Lorenz attractor are shown, and in
Fig. 23, where the three 0,(2,L) for the same system are
shown. We also present in Fig. 24 the distribution of ex-
ponents P,(u,L) for the Lorentz attractor for L =2 and
L =50.

The scaling indices v, and &, are characteristic of the
dynamics and can be used, just as are the D, or the K, or
the A,, for classifying the source of signals. It is impor-
tant to evaluate them from data. The method is really a
straightforward extension of the techniques outlined
above for evaluating the global Lyapunov exponents
from data—with one small exception.

As before we compute the recursive QR decomposition
of

Lorenz 63; local Lyapunov exponents
Probability distribution

Frequency of occurence
o o =
@ @ o

o
a

o
N

-1.0 1.0 3.0 5.0 7.0 9.0 1.0 13.0 15.0
Lyapunov exponent

FIG. 24. The distribution of the largest Lyapunov exponent for
the Lorenz model for composition lengths L =2 and L =50.
Each distribution is normalized to unity. Note that when L =2,
this largest exponent can be negative.
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DFX(y)-[DFX(y)]T=Q (2L)R(2L)R,(2L —1) - - - Ry(1).
(84)

If Q,(2L) were the identity matrix, the eigenvalues of
OSL(y,L) would all lie in the “upper triangular” part of
the QR decomposition. In general, Q;(2L) is not the
identity. We follow the construction in Stoer and Bur-
lisch (1980) and make a similarity transformation to

QT(2L)Q,(2L)R,(2L)R (2L —1) - - - R{(1)Q,(2L)
=R,(2L)R,(2L —1) - - R{(1)Q,(2L) . (85)
Now we repeat the QR decomposition,

DFX(y)-[DFX(y)]”

=Q,(2L)R,(2L)R,(2L —1) -+ - Ry(1),  (86)

which has the same eigenvalues as the original
OSL(y,L). We continue this K times to reach

Qx(2L)Rx(2L)Rg(2L —1) -+ - Rg(1), 87)

which still has the same eigenvalues as OSL(y,L). As K
increases, Qg (2L) converges rapidly to the identity ma-
trix (Stoer and Burlisch, 1980).

When Qg (2L) is the identity to desired accuracy, the
final form of OSL(y,L) is upper triangular to desired ac-
curacy, and one can read off the local Lyapunov ex-
ponents, A,(y,L), from the diagonal elements of the
R, (k)’s:

Ay, L)=

2L
3L 2 108[Rk()al (88)

s j=

since the eigenvalues of a product of upper triangular
matrices are the product of the eigenvalues of the indivi-
dual matrices. The rapid rate of convergence of Qg(2L)
to the identity means only a few steps, K =3 or so, are

Lorenz 63 - data; d_E=4;d_L=3

Local Lyapunov exponents; 75 000 points
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FIG. 25. Average local Lyapunov exponents calculated directly
from the time series x(¢) generated by the Lorenz equations
(11). 75000 data points are used. The embedding dimension is
dz =4, and the order of local polynomials is taken to be d; =3;
1500 initial conditions are used.
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lkeda Map, d_E=4;d _L=2

Local Lyapunov exponents; 60 000 points
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FIG. 26. Average local Lyapunov exponents for data from the
Ikeda map; 60000 points are used. dyp=2, d; =2; 1500 initial
conditions.

ever needed to assure that Qg (2L) differs from the identi-
ty matrix by a part in 107° or 1076,

In Figs. 25 and 26 we show the local Lyapunov ex-
ponents determined from observations on the x (n) data
from the Lorenz equations and from Re[z(n)] from the
Ikeda map. In the former case we used dp =4 and used
local polynomials of dimension d;=3 for the
neighborhood-to-neighborhood maps, while in the latter,
dr=4 and d; =2. We shall discuss below how we know
d; =2 for the Ikeda map.

I. Topological invariants

An ideal strange attractor, which never has a coin-
cidence between stable and unstable directions, has em-
bedded within it a dense set of unstable periodic orbits
(Devany and Nitecki, 1979; Auerbach et al., 1987; Cvi-
tanovi¢, 1988; Melvin and Tufillaro, 1991). Such a hyper-
bolic attractor is rarely, if ever, found in physical set-
tings, but the approximation of real strange attractors by
this idealization can be quite rewarding. Indeed, in many
examples of strange attractors, the Hénon and Ikeda
maps used as examples throughout this article seem to
possess numerically many of the properties of the ““ideal”
strange attractor. The topological properties of the link-
ings among these unstable periodic orbits characterizes
classes of dynamics, and these topological classifications
remain true even when the parameters of the vector field
governing the dynamics are changed. So when one goes
from stable periodic behavior to quasiperiodic behavior
to chaos, the classification by integers or ratios of in-
tegers characteristic of topological invariants remains the
same. This is in direct contrast to the various invariant
properties we have discussed heretofore. It is clear that,
if one were able to extract these topological invariants
from experimental observations, they could be used to ex-
clude incorrect dynamics and to point to classes of dy-
namics that could be further investigated, say, by com-
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puting dimensions or Lyapunov exponents. In that sense
such geometric quantities can be a critical tool in select-
ing possible vector fields that could describe the observa-
tions.

If the dynamics can be embedded in R3, then the
periodic orbits are closed curves, which can be classified
by the way they are knotted and linked with each other
(Birman and Williams, 1983a, 1983b). This is the case
that has been studied in detail in the literature (Mindlin
et al., 1990; Flepp et al., 1991; Mindlin et al., 1991;
Tufillaro et al., 1991; Papoff et al., 1992) and applied to
experimental data. Whether one will be able, in a practi-
cal way, to extend the existing literature to more than
three dimensions (Mindlin et al., 1991) remains to be
seen, but the applications to physical systems that hap-
pen to fall into this category have already proven quite
interesting.

The first task, clearly, is to identify within a chaotic
time series the unstable periodic orbits. To do this one
does not require an embedding (Mindlin et al., 1991),
though to proceed further with topological classification
an embedding is required. Basically one seeks points in
the time series, embedded or not, which come within a
specified distance of one another after a fixed elapsed
time—namely, the period (Auerbach et al., 1987; Mind-
lin et al., 1990) of the unstable orbit. To succeed in this
one must be slightly lucky in that the Lyapunov number
associated with this unstable orbit had better be close to
unity or in one period the orbit will have so departed
from the unstable periodic structure in state space that
one will never be able to identify the unstable periodic or-
bit. If some orbits can be found by this procedure, then
one can proceed with the classification.

Using time-delay embedding may not always work well
for the purpose of classifying attractors by their topolo-
gy, for in three dimensions there may be self intersections
of the flow; i.e., dy =3 may be too low for time-delay
embedding. If the local dimension of the dynamics is
three, one may be able to follow the orbits in d =4 or
higher, but this has not yet been done. In much of the re-
ported work, embeddings other than time-delay embed-
dings are utilized, though there is no systematic pro-
cedure available. One useful embedding is to take the
scalar data s (n) and form

n

yl(n)z 2 [s(k)e——(n—k)A] ,
k=1

yy(n)=s(n), (89)

y3(n)=s(n)—s(n—1).

This is a perfectly fine embedding, and in the study of ex-
periments on chemical reactions (Mindlin et al., 1991)
and laser physics (Papoff et al., 1992) it has served to un-
fold the unstable periodic orbits in three dimensions.
One may not always be able to accomplish this, but when
it is possible, tools are then available for further analysis.
In particular, by analyzing the linking of low-order
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periodic orbits and the torsion—the angle (in units of 7)
through which the flow twists in one period in the neigh-
borhood of an unstable periodic orbit—of such low-
order orbits, one is able to establish a template or
classification scheme which fully characterizes all unsta-
ble periodic orbits and other topological properties of the
attractor (Mindlin et al., 1991). Once the template has
been established one may verify it by examining the link-
age of higher-order unstable periodic orbits, if they are
available. It is in the template that one finds possible de-
viation from the rigorous mathematics (Birman and Wil-
liams, 1983a, 1983b) available for hyperbolic strange at-
tractors. In the template one may find periodic orbits
without counterpart in the actual flow. The gain for the
analysis of experimental data is such that this is a small
price to pay. Indeed, as is often the case, precise
mathematics not quite applicable to a physical setting
may serve as a warning rather than forbidding attempted
application.

It appears (Gilmore, 1992) that this procedure is rather
robust against contamination, since noise first destroys
one’s ability to identify high-order unstable periodic or-
bits. These, happily, are not needed in establishing the
template. In the presence of noise at the level of nearly
60% of the signal in one case (Mindlin et al., 1991), the
low-order unstable periodic orbits were still visible. If
one could perform some sort of signal separation, even as
crude as local averaging on the time series, higher-order
noise levels could perhaps be handled.

This sequence of steps, from identifying the unstable
periodic orbits within a strange attractor to creating a
template, has been carried out in the analysis of a laser
physics experiment (Papoff et al., 1992) and a chemical
reaction experiment (Mindlin et al., 1991).

In the case of the NMR laser studied by Flepp et al.
(1991), it was established that a term in addition to the
conventional Bloch-Kirchhoff equations is required by
the properties of the unstable periodic orbits in the data.
This is a powerful result and underlines the importance
of topological tools based on unstable periodic orbits
when they are available. Indeed, we would say that if
one is able to extend the existing analysis methodology to
dimensions greater than three, this topological approach
should always be among the first tools one applies to any
chaotic data set. It will then serve as a critical filter for
proposed model equations, regardless of whatever ability
one has to evaluate invariants depending on distances
such as dimensions and Lyapunov exponents. The utility
of this approach and its robustness in the presence of
contamination serves as another item in our list of tech-
niques that rest on geometry and may prove increasingly
important when real, noisy data are confronted. There is
no substitute, eventually, for knowing Lyapunov ex-
ponents of a system if prediction or control is one’s goal,
but real data may require sharper instruments for its
study before these dynamical quantities can be reliably
extracted. The topology of the unstable periodic orbits
may well provide that instrument.
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VI. NONLINEAR MODEL BUILDING: PREDICTION
IN CHAOS

The tasks of establishing the phase space for observa-
tions and of classifying the source of the measurements
can be enough in themselves for many purposes. Moving
on to the next step, building models and predicting future
behavior of the system, is the problem that holds the most
interest for physicists. In some sense the problem of pre-
diction is both the simplest and the hardest problem
among all those we discuss in this review. The basic idea
is quite straightforward: since we have information on
the temporal evolution of orbits y(k) and these orbits lie
on a compact attractor in phase space, each orbit has
near it a whole neighborhood of points in phase space
which also evolve under the dynamics to new points. We
can combine this knowledge of the evolution of whole
neighborhoods of phase space to enhance our ability to
predict in time by building local or global maps
with parameters a: y—F(y,a), which evolve each
y(k)—y(k +1). Using the information about how
neighbors evolve, we utilize phase-space information to
construct the map, and then we can use the map either to
extend the evolution of the last points in our observations
forward in time or to interpolate any new phase-space
point near the attractor forward (or backward, if the map
is invertible) in time.

All that said, the problem reduces to determining the
parameters a in the map, given a class of functional
forms which we choose in one way or another. As dis-
cussed by Rissanen (1989), there is no algorithmic way to
determine the functional form. This is actually good
news or all physics would be reduced to fitting data in an
algorithmic fashion without regard to the interpretation
of the data.

Suppose, from guessing or some physical reasoning, we
have chosen the functional form of our map. If we are
working with local dynamics, then local polynomials or
other natural basis functions would be a good choice,
since any global form can be approximated arbitrarily
well by the collection of such local maps, if the dynamics
is smooth enough. Choosing the parameters now re-
quires some form of cost function or metric which mea-
sures the quality of the fit to the data and establishes how
well we do in matching y(k +1) as observed with
F(y(k),a). Call this the local deterministic error, €,(k),

ep(k)=y(k +1)—F(y(k),a) . (90)

The cost function for this error we shall call W (e). If the
map F(y,a) we are constructing is Jocal, then for each
neighbor of y(k), y"(k)r =1,2, ..., N,

eP(k)=y(r,k +1)—F(y'"(k),a) .

y(r,k +1) is the point in phase space to which the neigh-
bor y"(k) evolves; it is not necessarily the rth nearest
neighbor of y(k +1). For a least-squares metric the local
neighborhood-to-neighborhood cost function would be
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Np Ny
W(ek)=T3 |ePK)I?/3 [yk)—(yk))T]*, (1)

r=1 r=1

and the parameters determined by minimizing W(e, k)
will depend on the ‘“‘time” associated with y(k): a(k).
The normalization is arbitrary, but the one shown uses
the size of the attractor to scale the deterministic error.

If the fit is to be a global least-squares determination of

Np

I(y(r,k +1),F(y'"(k),a))= 3 P[y(r,k +1),F(y"(k),a)]log,

r=1

with respect to the a(k) at each k.

With one exception, to be noted shortly, this general
outline is followed by all of the authors who have written
about the subject of creating maps and then predicting
the evolution of new points in the state space of the ob-
served system. The exception is a representation of the
mapping function taking x—F(x) in an expansion in
orthonormal functions ¢,(x)

M
F (x)= 3 cyla),(x), (94)

a=1

where the functions are chosen to be orthonormal with
respect to the observed invariant density of the data

N
px)=+ 3 sdx—y(j)), 95)
N2

as
[ d%x p(x)¢,(x)¢,(x)=8,, . (96)

The form of p(x) allows one to determine the expansion
coefficients c(a) without any fitting (Giona et al., 1991;
Brown, 1992), as we shall see below.

All other mapping functions, local or global, are of the
form of Eq. (96) with a structure for the functions ¢,(x)
that is preassigned and not dependent on the data from
the observed system.

In what follows we give a short survey of the methods
developed for the prediction in chaos. There are many
different methods, and we shall follow the traditional
classification of them as local and global models. By
definition, local models vary from point to point (or from
neighborhood to neighborhood) in the phase space. Glo-
bal models are constructed once and for all in the whole
phase space (at least, the part occupied by the data
stream). It should be noted, however, that the dividing
line is becoming harder and harder to define. Models us-
ing radial basis functions or neutral nets carry the
features of both. They are usually used as global func-
tional forms, but they clearly demonstrate localized
behavior. In the next subsections we start with the clas-
sic local and global models in order to explain the main
ideas and then discuss the newer techniques. First we
take up the topic of choosing the appropriate dimension
for our models.
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a, then

N N .
Wie)=T3 lep(k)*/ 3 [ylk)—<y(k))]*, (92)
k=1

r=1

and so forth. An interesting option for modeling is to re-
quire the a to be selected by maximizing the average mu-
tual information between y(r,k +1) over the neighbor-
hood and the F(y'”(k),a); i.e., maximize

Ply(r,k +l),F(y(’)(k),a)]
Ply(r,k +1)]P[F(y'"(k),a)]

, (93)

A. The dimension of models

Before discussing model making, it is useful to consid-
er how to choose the appropriate dimension of the mod-
els when we have observed only scalar data s (n). When
we reconstruct phase space using time delays, we, at best,
arrive at a necessary dimension dy for unfolding the sys-
tem attractor. As the example of the Ikeda map shows
quite clearly, d; may be larger than the local dimension
of the dynamics, d;. For the Ikeda map, dy =4, while
the local dimension, that is, the dimension of the actual
dynamics, is d; =2. Recall that this difference comes
from the choice of coordinate system and has nothing to
do with the dynamical content of the observations.
While we could, in the Ikeda map again, make four-
dimensional models without any special theoretical
penalty, making four-dimensional local models would re-
quire unnecessary work and unwanted susceptibility to
“noise” or other contamination of various dimensions
higher than d.

A method we can use for choosing the dimension of
models is to examine the local average Lyapunov ex-
ponents A,(L). If we compute these exponents in dimen-
sion d, we, of course, have di of them. dy—d; are to-
tally geometric and have nothing to do with the dynam-
ics required to describe the observations. If we compute
the A,(L), reading the dy dimensional data forward in
time, and then do precisely the same, reading the data
backward in time, the true exponents of the system will
change sign (Eckmann and Ruelle, 1985; Bryant et al.,
1990; Brown et al., 1991; Parlitz, 1992; Abarbanel and
Sushchik, 1993). The false dy —d; exponents will not
change sign and will be clearly identified. If one per-
forms this calculation keeping dj fixed, so distances be-
tween points on the attractor are properly evaluated, but
changing the dimension of the local model of the
neighborhood-to-neighborhood dynamics from d; =dj
to d; =dp—1 to d; =dg—2, etc. until there are no
remaining false local Lyapunov exponents, then the
correct value of d; will be that for which the false ex-
ponents are first absent. At that local dimension, if it is
desired, one may return to the computation of the local
exponents using more data and higher-accuracy data to
evaluate the local Lyapunov exponents with as much pre-
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Ikeda map, d_E=4; d_L=4; 60 000 points
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FIG. 27. Local Lyapunov exponents calculated from data gen-
erated by the Ikeda map, dp =4, d; =4. Forward exponents are
marked by open symbols, minus backward exponents by solid
symbols. Clearly, there are two true exponents and two spuri-
ous ones.

cision as desired. The advantage to using local Lyapunov
exponents is simply that one has more points of direct
comparison between forward exponents and negative
backward exponents than just the comparison of global
exponents. Further, if the data come from a differential
equation, local exponents are able to identify true and
false versions of the zero exponent, which as a global ex-
ponent will not change sign under time reversal.

In Fig. 27 are shown the average local Lyapunov ex-
ponents for the Ikeda map with dz =4, which is larger
than d; =2 but is the dimension suggested by the global
false-nearest-neighbor algorithm. Forward and minus
backward A,(L) are displayed. Evidently only two ex-
ponents satisfy the condition of equality of forward and
minus backward average local Lyapunov exponents. De-
creasing d; from four to three and then to two, we ob-
serve (but do not display) the same phenomenon: only
two exponents satisfy the required time-reversal condi-
tion.

B. Local modeling

We now assume that our data are embedded in an ap-
propriate phase space, and we have determined the di-
mension of the model. The problem now is to recon-
struct the deterministic rule underlying the data.

We start our discussion with the simplest and earliest
nonlinear method of local forecasting, which was sug-
gested by E. Lorenz (1969). Let us propose to predict the
value of y(k +1) knowing a long time series of y(j) for
j=k. In the “method of analogs” we find the nearest
neighbor to the current value of y(k) say, y(m) and then
assume that the y(m +1) is the predicted value for
y(k +1). This is pure persistence, and is not much of a
model. In the classification by Farmer and Sidorowich
(1988) it is called a first-order approximation. Clearly, the
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quality of this prediction can be improved in different
ways. The first thing one can do is to take a collection of
near neighbors of the point y(k) and take an averaged
value of their images (Pikovsky, 1986) as the prediction.
Further improvement of the same idea is to make a
least-squares fit of a local linear map of y(k) into y(k +1)
using N >d near neighbors for a given metric ||-||,

NB
W= 3 lly(rnk+1D—ay"(k)—b"|2 . ©7)

r=1

This represents a second-order approximation. The sum
in Eq. (97) can be weighted in order to provide a larger
contribution from close points. More sophisticated local
prediction schemes (Farmer and Sidorowich, 1987) may
represent the map in the form of a higher-order polyno-
mial whose coefficients must be fit using near neighbors.
In this case one can expect better results for more long-
term forecasts. However, the use of high-order polyno-
mials requires many free parameters to be determined,
namely, (m +d;)!/(mld; )=d[", where d; is the local
dimension and m is the degree of the polynomial. It
makes these models less practical for local forecasting if
the embedding dimension and/or the order of the poly-
nomial are too high.

If one wishes to predict the value of y (k +K), i.e., K
steps ahead, one can use a direct method, which finds the
coefficients of the polynomial map FX(y) by direct
minimization of

NB
wR=3 |y(r,K +k)—FKXy" k)| . (98)

r=1

One particularly useful property of local polynomial
forecasts is that we can estimate how the quality of the
forecasts scales as a function of prediction interval K,
size of training set N, dimension of attractor d,, and
largest Lyapunov exponent A,.

Assume we accumulate a data set y, =y (x, ) from ob-
serving a continuously evolving system. In other words,
we know y varies continuously, but we can only make
measurements at the x,. We might try to model approxi-
mately the intervening values of the system variable y by
interpolating a fit to the measured data. Let F(x,)
denote the true dynamics driving the system’s evolution,
and consider its Taylor expansion:

F(x,+8)= F(x,)+DF(x,)8+1D?F(x,)8*
+1D3F(x,)8+ -+ - . (99)

If we construct a local polynomial model of degree m,
our leading-order expectation for the forecast error is the
8™ *1 term in Eq. (99). Recall one of our basic definitions
of dimension, and rearrange it to express the distance

variable as
L=yiD (100)

If we make the admittedly faulty assumption that the
points are evenly distributed through the state space,
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then V' =pN, which implies

L

— N 1/D
pl/D =N""=5.

(101)

This expression for the average distance between neigh-
boring points can be used to replace § in Eq. (99).

Next there are the derivative factors in each term of
Eq. (99). As we have seen in Sec. V, the Lyapunov ex-
ponents can be viewed as measuring the average deriva-
tive of the dynamics over the attractor. Discrepancies
between our forecasts and the actual points on the evolv-
ing trajectory would grow much in the same way that ini-
tially nearby points would separate under the dynamics,
and this expansion rate is measured by the largest
Lyapunov exponent:

(DF(x)) < exp(MK) . (102)

Although nontrivial to justify (Farmer and Sidorowich,
1988), the assumption that higher-order derivatives also
average in a similar manner,

(D"F(x)) <exp(nA,K) , (103)

provides a useful model that agrees well with numerical
results from ideal calculations:

(m+1)/dy,

(Eps) <N exp[(m +1)A,K] . (104)

Having a limited number of data points, we must balance
two opposing factors. Higher-order polynomials poten-
tially promise higher accuracy, but also require more
points in the neighborhood (and, therefore, larger neigh-
borhoods). That in turn makes the local mapping more
complex.

Frequently it is desirable to attempt long-term fore-
casts. One straightforward approach is to use the already
described approximation techniques to construct a
predictive model, Fg(x), specifically for the long-term in-
terval:

Fg(x,)=x(n+K) . (105)

In this case we construct a model that predicts over the
full time interval in a single step. Any implementation of
the supervised learning algorithm would select a sample
of domain points from the neighborhood of the point of
interest, and the range sample would be all those neigh-
bors’ post-images the full time K later.

An alternative approach is to split the interval K into »
subintervals of length Ky.,=K/n and concatenate n
short-term forecasts to build up the full prediction. The
original domain sample remains the same, but the range
sample is now found, on average, to be much more close-
ly packed, since the prediction interval is much shorter.
The initial forecast produces a new state, which is used as
the basis for selecting a new domain sample, which in
turn supplies a new range sample for the next predictive
model fit, and so on.

This iterative, or recursive, forecasting technique can
demonstrate substantial advantages over the direct
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method. For an appropriate range of base forecasting
time steps, K ., the prediction error scales differently,

—(m+1)/d,,

ExN exp[AnK e ] 5 (106)

and implies higher accuracy due to the absence of the
factor (m +1) in the second exponent.

Experience indicates that the scaling behavior of fore-
casting errors strongly depends on some of the modeling
parameters. If the time series is amenable to the sort of
analysis we are prescribing, there will be a range of
values for K., where Egs. (104) and (106) hold. This
range typically centers on the optimal value for the time
delay used in phase-space reconstruction (Sec. IV).

If data are collected by sampling a continuous signal at
a very high rate, forecasts can be made over intervals
shorter than the delay time used in phase-space recon-
struction, with performance limited by the signal-to-noise
ratio of the data. However, using the shortest possible
composition time in an iterative forecasting scheme is not
a wise strategy, since the large number of forecasts that
need to be concatenated compound the errors at each
step and can cause the recursive technique to perform
worse than the direct methods.

Different local prediction methods were tested by
Farmer and Sidorowich (1988) and Casdagli (1989) for a
variety of low-dimensional chaotic systems. In Fig. 28
we show the comparison of different orders of direct and
iterative approximations for the Ikeda map. As expect-
ed, for first-order (constant) approximations there is no
difference between direct and iterative scalings. For
linear and quadratic predictors the iterative procedure is
clearly superior, in accordance with the scaling expecta-
tions. Figure 29 illustrates the difference between direct
and iterated forecast performance of local linear models
for hysteretic circuit data of Pecora and Carroll.

lkeda Map - 20000 4D points

-05 — —

forecast error
B

Legend
recursive quadratic

—®— constant

10 1 2 3 4 5 6
forecast interval

FIG. 28. Prediction error as a function of prediction time for
the Ikeda map for different prediction techniques.
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FIG. 29. Direct and iterative linear forecast error for hysteretic
circuit data.

C. Global modeling

The collection of local polynomial (or other basis func-
tion) maps form some global model. The shortcomings
of such a global model are its discontinuities and ex-
tremely large number of adjustable parameters. The
latter is clearly a penalty for high accuracy. At the same
time, it would be nice to have a relatively simple continu-
ous model describing the whole collection of data. A
number of solely global models has been invented which
present a closed functional representation of the dynam-
ics in the whole phase space (or, at least, on the whole at-
tractor).

Each method uses some expansion of the dynamical
vector field F(x) in a set of basis functions in R? The
first such global method that comes into mind is to use
polynomials again. Their advantage in local modeling
where least-squares fitting works well, is now reduced by
the extremely large number of data points and the need
to use rather high-order polynomials. There is an attrac-
tive approach to finding a polynomial representation of a
global map. This measure-based functional reconstruc-
tion (Giona et al., 1991; Brown, 1992) uses orthogonal
polynomials whose weights are determined by the invari-
ant density on the attractor.

The method eliminates the problem of multiparameter
optimization. Finding the coefficients of the polynomials
and the coefficients of the function F(y) requires only the
computation of moments of data points in phase space.
It works as follows:

We introduce polynomials ¢,(x) on R? which are or-
thogonal with respect to the natural invariant density on
the attractor,

J d%p(x)¢,(x)¢,(x)=8, ,

and which are determined by a conventional Gram-
Schmidt procedure starting from

¢1(X):1 .

(107)

(108)
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The vector field F(x), which evolves data points
y(k +1)=F(y(k)), is approximated in Mth order as

M
Fy(x)=3 cla)d,(x),

(109)
a=1
and the coefficients c(a) are determined via
cla)= [ d% F(x)¢,(x)p(x)
1 N
=— 73 F(y(k))¢,(y(k))
N =
1 N
=— 3 ylk +1)¢,(y(k)) . (110)

NSy

This demonstrates the power of the method directly.
Once we have determined the orthogonal polynomials
¢,(x) from the data, which we can do before computa-
tions are initiated, the evaluation of the vector field at
any order we wish is quite easy: only sums over powers
of the data with themselves are required.

Furthermore, the form of the sums involved allows one
to establish the vector field from a given set of data and
adaptively improve it as new data are measured. The
best aspect of the method, however, may be robustness
against contamination of the data (Brown, 1992). There
is no least-squares parameter search involved, so no dis-
tances in state space need be evaluated. The geometric
nature of the method does not rely on accurately deter-
mining distances and is thus not so sensitive to “noise”
which spoils such distance evaluations.

It is possible that the two general forms of global mod-
eling we have touched on can be further improved by
working with rational polynomials rather than simple
Taylor series. Rational polynomials have a greater ra-
dius of convergence, and thus one may expect them to be
more useful when the data set is small and perhaps even
allow the extrapolation of the model from the immediate
vicinity of the measured attractor out into other regions
of phase space.

D. In between local and global modeling

As we already pointed out, the present direction of
nonlinear modeling combines features of local and global
models. Consider, for example, the method of radial
basis functions (Powell, 1981, 1985, 1987), which, as Cas-
dagli (1989) notes, “is a global interpolation technique
with good localization properties.” In this method a lo-
cal predictor F(y) is sought in the form

NC
F(y)= 3 1, @(ly—vy.l), (111)

n=1
where @ is some smooth function in R! and ||| is the
Euclidean norm. The coefficients A, are chosen to satis-
fy, as usual,

F(y(k))=y(k +1) . (112)
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Depending on the number of points N, used for recon-
struction, this method can be considered as local (small
N, <<N) or global (N, =N).

One can choose different ®(||x||) as the radial basis
function. For example, ®(r)=(r?+c2)™# works well for
B> —1 and B70. Moreover, if one adds a sum of poly-
nomials to the sum of radial basis functions, then even in-
creasing functions ®(r) provide good localization proper-
ties. However, for a large number of points N, this
method is computationally as expensive as the usual
least-squares fit. Numerical tests carried out by Casdagli
(1989) show that for a small number of data points radial
basis predictors do a better job than polynomial models,
whereas for a larger quantity of data (N > 10*) the local
polynomial models seem to be superior.

A modification of the radial-basis-function method is
the so-called kernel density estimation (Silverman, 1986).
This method allows one to estimate a smooth probability
distribution from discrete data points. Each point is as-
sociated with its kernel [a smooth function K (||ly—y;|])],
which typically decays with distance but sometimes can
even increase. Then one can compute a probability dis-
tribution

P(Y)=ZK(ly—y:lD

or a conditional probability distribution

P(yl2)=Z K (ly=yis1 DK (z=y,l]) -

Kernel density estimation can then be used for condition-
al forecasting by the rule

y(k +1)= [dxp (x|y(k))x . (113)

Kernel density estimation usually provides the same ac-
curacy as the first-order local predictors. It has the ad-
vantage of being quite stable even with noisy data (Cas-
dagli et al., 1991).

Again, computing the conditional probability distribu-
tion, one can impose weights in order to attach more
value to the points close to the starting point of predic-
tion (both in time and in phase space). In fact, this leads
to a class of models that are hybrids of local and global
ones. Moreover, it allows one to construct a model that
not only possesses good predicting properties but also
preserves important invariants of the dynamics. The pre-
diction model by Abarbanel, Brown, and Kadtke (1989)
belongs to this class. It parametrizes the mapping in the
form

N-—1

F(y,a)= ¥ y(k +1)g(y,y(k);a), (114)
k=1

where the function g(y,y(k);a) is the analog of the ker-
nel function, that is, it is near 1 for y=y(k) and vanishes
rapidly for nonzero ||y—y(k)||. a is a set of parameters.
The cost function to be minimized is chosen as
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N—1 L
S llytk+1D)— 3 X, F(y(k —n +1),a)|?
C(X,a)=2"% i
> lyo)|?
k=1

(115)

where X,, n =1, ..., L is a set of weights attached to the
sequence of points y(k —n +1) all of which are to be
mapped into y(k +1) by maps F*(y). It is clear that then
F(y(k),a) will be close to y(k +1), as it provides an ex-
cellent interpolation function in phase space and in time.
The free parameters a in the kernel function g and the
specific choice of the cost function allow one to predict
forward accurately a given number L >1 of time steps
and satisfy additional constraints imposed by the
dynamics—significant Lyapunov exponents and mo-
ments of the invariant density distribution, as determined
by the data, will be reproduced in this model. The
preservation of Lyapunov exponents does not follow au-
tomatically from the accuracy of the prediction. Indeed,
it is shown by Abarbanel et al. (1989) that models able to
predict with great accuracy can have all negative
Lyapunov exponents, even when the data are chaotic.

At first sight very different ideas are exploited in neur-
al networks when they are used as nonlinear models for
prediction (Cowan and Sharp, 1988). Neural networks
are a kind of model utilizing interconnected elementary
units (neurons) with a specific architecture. After a train-
ing (or learning) procedure to establish the interconnec-
tions among the units, we have just a nonlinear model of
our usual sort. In fact, this is just a nonlinear functional
model composed of sums of sigmoid functions (Lapedes
and Farber, 1987) instead of sums of radial basis func-
tions or polynomials as in the previous methods. There
are many different modifications of neural nets. Consid-
er, for example, a typical variant of feed-forward nets. A
standard one includes four levels of units (Fig. 30): input
units, output units, and two hidden levels. Each unit col-
lects data from a previous level or levels in the form of a
weighted sum, transforms this sum, and produces input
values for the next layer. Thus each neuron performs the
operation

Xout=g ) T~~Xi"+9,~ (116)
J

gy

where T}; are weights, 6, are thresholds, and g(x) is a

nonlinear function typically of a sigmoidal form such as
g (x)=1[1+tanh(x)] . (117

For the purpose of forecasting in d;-dimensional phase
space, the input level should consist of d; neurons, and
we feed them by the d; delayed values of the time series
{y(k),y(k —1),...,y(k —d; +1)}. The predicted value
y(k +p) appears at the output level after nonlinear trans-
formation at the two hidden levels:
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O HIDDEN UNITS
O
O INPUT UNITS
FIG. 30. Sketch of a feed-forward neural network.
y(k +p)
:F(Y(k),Y(k _1)7 .. ,Y(k _dL +1)7{T11}7{6,} ) )

(118)

and the learning procedure consist of minimizing the er-
ror,

N,

E= 2 I|Ydata(k +P)—y(k +P)|| P
p=1

(119)

where N, is the number of data in a training set. De-
pending on what sets of data are used for the training,
the neural net eventually can be considered as a local or
as a global model. In the first case only N, <<N near
neighbors are used for feeding the net, while in the
second one uses all the data. The fitted parameters are
here the weights {7};} and the thresholds {6,}. Unfor-
tunately, this learning appears to be a kind of nonlinear
least-squares problem, which takes much longer than
linear fitting to run on regular computers. Nevertheless,
neural networks present great opportunities for parallel
implementation, and in the future that may become the
most useful technique for forecasting.

Neutral nets are quite useful when we have a simple
dynamics, and we can hope that a net with an a priori ar-
chitecture will work well. Then the only thing to do is to
train this net, i.e., to adjust the weights of connections
and thresholds. Adjustment of the architecture itself is a
secondary (and very often omitted) procedure for stan-
dard neural network modeling. The approach taken by
genetic learning algorithms (Goldberg, 1989) represent a
quite opposite point of view: This starts with finding an
architecture based on the data set. Sorting out different
architectures for a complex dynamics in a high-
dimensional phase space is a very difficult task. To ac-
complish this, genetic algorithms utilize Darwinian evo-
lution expressed in terms of variables (data), mathemati-
cal conditions (architecture), and quality of fit (criterion
for sorting out the better architecture). Specifically, if we
have a set of pairs (x,,y,) where each x, is mapped into
Yy, in some d; -dimensional space, then we try to learn the
set of conditions (genes) imposed on {x,} under which
the quality of fit associated with {y,} is extremal. In par-
ticular, we can seek conditions determining the subspaces
of the whole phase space for which the distribution of
{y,} is sharpest (Packard, 1990). The search for the ap-
propriate set of conditions is performed by a kind of nat-
ural selection. We start with a number of random sets
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(genomes) of conditions (genes), and after each generation
some fraction of the worst sets of genes is discarded and
some mutations are produced on the rest of the condi-
tions. The important feature of genetic algorithms is that
they allow an effective search in a very high-dimensional
phase space. Conditions learned after many generations
determine the part of the phase space (or orbit of a
dynamical system) for which prediction is possible. In
this regard we can see genetic algorithms as a global,
adaptive search method, which allows searches in both
parameter space and a predetermined, possibly large
space of functional representations of the dynamics
x—F(x). While there is really only limited development
of this approach to nonlinear forecasting at this time, it
clearly holds promise as an effective procedure for high-
dimensional and complex systems.

VII. SIGNAL SEPARATION —*“NOISE” REDUCTION

Now we address some of the problems connected with
and some of the solutions to the very first task indicated
in Table I, namely, given observations contaminated by
other sources, how do we clean up the signal of interest so
we can perform an analysis for Lyapunov exponents, di-
mensions, model building, etc.? In linear analysis the
problem concerns the extraction of sharp, narrowband
linear signals from broadband ‘“‘noise.” This is best done
in the Fourier domain, but that is not the working space
of the nonlinear analyst. Instead signals need to be
separated from one another directly in the time domain.
To succeed in signal separation, we need to characterize
one or all of the superposed signals in some fashion that
allows us to differentiate them. This, of course, is what
we do in linear problems as well. If the observed signal
s(n) is a sum of the signal we want, call it s,(n), and oth-
er signals s,(n),s5(n). ..,

s(n)=s(n)+sy(n)+ -, (120)

then we must identify some distinguishing characteristic
of s,(n) which either the individual s;(n), i > 1, do not
possess or perhaps the sum does not possess.

The most natural of these distinguishing properties is
that s,(n) or its reconstructed phase-space version,

yi(n)=[s(n)s(n+T),...,s;(n+Ty(d;—1))],
(121)

satisfies a dynamical rule: y,(k +1)=F,(y,(k)) different
from any dynamical rules associated with s,(n), . . . .
There are three cases we can identify:

® We know the dynamics y,—F,(y,).

® We have observed some clean signal yg(k) from the
chaotic system, and we can use the statistics of the chaotic
signal to distinguish it.

® We know nothing about a clean signal from the dy-
namics or about the dynamics itself. This is the “blind”
case.
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It is quite helpful as we discuss work on each of these
cases to recall what it is we are attempting to achieve by
the signal separation. Just for discussion, let us take the
observation to be the sum of two signals:
s(n)=s(n)+s,(n). If we are in the first case indicated
above, we want to know s;(n) with full knowledge of
y;—F(y;). The information we use about the signal
s1(n) is that it satisfies this dynamics in the reconstructed
phase space, while s,(n) and its reconstruction does not.
This is not really enough, since any initial condition y,(1)
iterated through the dynamics satisfies the dynamics by
definition. However, it will have nothing, in detail, to do
with the desired sequence s;(1),s;(2), ... which enters
the observations. This is because of the intrinsic instabil-
ities in chaotic systems, so two different initial conditions
diverge exponentially rapidly from each other as they
move along the attractor. To the dynamics, then, we
must add some cost function or quality function or accu-
racy function, which tells us that we are extracting from
the observations s(n) the particular orbit that lies
“closest” to the particular sequence s(1),5,(2),...
which was observed in contaminated form. If we are not
interested in that particular sequence but only in proper-
ties of the dynamics, we need do nothing with the obser-
vations, since we have the dynamics to begin with and
can iterate any initial condition to find out what we want.

Similarly in the second case, we shall be interested in
the particular sequence that was contaminated or masked
during observation. In this case, too, since we have a
clean reference orbit of the system, any general or statist-
ical question about the system is best answered by that
reference orbit rather than by attempting to extract from
contaminated data some less useful approximate orbit.

In the third instance, we are trying to learn both the
dynamics and the signal at the same time and with little a
priori knowledge. Here it may be enough to learn the dy-
namics by unraveling a deterministic part of the observa-
tion in whatever embedding dimension we work in. That
is, suppose the observations are composed of a chaotic
signal s,(k), which we can capture in a five-dimensional
embedding space combined with a two-hundred-
dimensional contamination s,(k). If we work in five di-
mensions, then the second component will look nondeter-
ministic, since with respect to that signal there will be so
many false neighbors that the direction in which the or-
bit moves at essentially all points of the low-dimensional
phase space will look random. Thus the distinguishing
characteristic of the first signal will be its relatively high
degree of determinism compared to the second.

A. Knowing the dynamics: manifold decomposition

In this section we assume that the dynamics of a signal
are given to us: y,—F,(y,) in d,-dimensional space, We
either observe a contaminated d,-dimensional signal or,
from a scalar measurement s(k)=s(k)+s,(k), we
reconstruct the d,-dimensional space. We call the obser-
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vations y,(k) in d; dimensions, and we wish to extract
from those measurements the best estimate yz(k) of the
particular sequence y,(k) which entered the observations.
The error we make in this estimation
yi(k)—yg(k)=¢€ (k) we call the absolute error. 1t is
some function of € , that we wish to minimize. We know
the dynamics, so we can work with the deterministic er-
ror €,(k)=yg(k +1)—F,(yg(k)), which is the amount
by which our estimate fails to satisfy the dynamics.

A natural starting point is to ask that the square of the
absolute error |e,(k)|> be minimized subject to
€p(k)=0; that is, we seek to be close to the true orbit
y(k) constraining corrections to our observations by the
requirement that all estimated orbits satisfy the known
dynamics as accurately as possible. Using Lagrange mul-
tipliers z( k), this means we want to minimize

N

%2 ly (k) —yg(k)|?
k=1

N—1
+ S zk)-[ypk +D—F(yp(k)]  (122)
k=1

with respect to the y;(m) and the z(m).
The variational problem established by this is
yelk +1)=F(yg(k)),

(123)

which we must solve for the Lagrange multipliers and the
estimated orbit y; (k). The Lagrange multipliers are not
of special interest, and the critical issue is estimating the
original orbit. If we wished, we could attempt to solve
the entire problem by linearizing in the neighborhood of
the observed orbit y,(k) and using some singular-value
method for diagonalizing the N X N matrix, where N is
the number of observation points (Farmer and
Sidorowich, 1991). Instead we seek to satisfy the dynam-
ics recursively by defining a sequence of estimates
ye(k,p) by

yelk,p +1)=yg(k,p)+A(k,p), (124)

where at the zeroth step we shall choose y;(k,0)=y,(k),
since that is all we know from observations. We shall try
to let the increments A(k,p) always be “small,” so we can
work to first order in them. If the A(k,p) start small and
remain small, we can approximate the solution to the dy-
namics as follows:

(125)

Atk +1,p)=F(yg(k,p)+Alk,p) —yg(k +1,p)
~DF,(yz(k,p))-Alk,p)+ep(k,p) ,

where €,(k,p)=F(yp(k,p))—yg(k +1,p) is the deter-
ministic error, namely, the amount by which the estimate
at the pth step fails to satisfy the dynamics.
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We satisfy this linear mapping for A(k,p) by using the
known value for y;(k,p). To find the first correction to
the starting estimate yz(k,0)=y,(k), we iterate the
mapping for A(k,0) and then add the result to y;(k%,0) to
arrive at yg(k,1)=y(k,0)+A(k,0). The formal solu-
tion for A(k,p) can be written down in terms of A(1,p).
This approach suffers from numerical instability lying in
the positive eigenvalues of the composition of the Jacobi-
an matrices DF,(yz(k,p)). These, of course, are the
same instabilities that lead to positive Lyapunov ex-
ponents and chaos itself.

To deal with these numerical instabilities, we introduce
an observation due to Hammel (1990): since we know the
map x— F(x), we can identify the linear stable and un-
stable invariant manifolds throughout the phase space
occupied by the attractor. These linear manifolds lie
along the eigendirections of the composition of Jacobian
matrices entering the recursive determination of an es-
timated orbit y; (k). If we decompose the linear problem
Eq. (125) along the linear stable and unstable manifolds
and then iterate the resulting maps forward along the
stable directions and backward along the unstable direc-
tions, we shall have a numerically stable algorithm in the
sense that a small A(1,p) along a stable direction will
remain small as we move forward in time. Similarly, a
small A(N,p) at the final point will remain small as we
iterate backward in time.

Each iteration of the linear map for the A(k,p) will fail
to satisfy the condition A(k,p)=0, which would be the
completely deterministic orbit, because the movement to-
ward A(k,p)=0 exponentially rapidly along both stable
and unstable directions is bumped about by the deter-
ministic error at each stage. If that deterministic error
grows too large, then we can expect the linearized at-
tempt to find the deterministic orbit closest to the obser-
vations to fail. This deterministic error is a measure at
each iteration of the signal-to-noise level in the estimate
relative to the original signal. If this level is too large,
the driving of the linear system by the deterministic error
will move the A(k,p) away from zero and keep them
there.

The main mode of failure of this procedure, which at
its heart is a Newton-Raphson method for solving the
nonlinear map, arises when the stable and unstable mani-
folds are nearly parallel. In practice they are never pre-
cisely parallel because of numerical roundoff, but if they
become so close to parallel that the forward-backward
procedure cannot correctly distinguish between stable
and unstable directions, then there will be ‘“leakage”
from one manifold to another and this error will be
magnified exponentially rapidly until the basic stability of
the manifold decomposition iteration can catch up with
this error. .

In Fig. 31 we show the result of iterating this pro-
cedure for 15 times when uniform noise is added to the
Hénon map at the level of 2.1% of the rms size of the
map amplitude. One can see the regions where the stable
and unstable manifolds become almost parallel, called
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Absolute Error in Cleaned Henon Map
15 Passes; 1250 Points; Original Noise in [-0.015,0.015]
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FIG. 31. Absolute error in use of the manifold decomposition
method for cleaning Hénon map data contaminated with uni-
form noise at a level of 2.4% of the rms amplitude of the chaos.
Fifteen passes through the algorithm were used. Note the large
excursions due to homoclinic tangencies.

homoclinic tangencies in a precise description of the pro-
cess, and then the orbit recovers. What we show in Fig.
31 is the absolute error ||yz(k,p)—y (k)| as a function of
k. A plot of €,(k) shows no peaks and simply displays
noise at the level of machine precision.

The “glitches” caused by the homoclinic tangencies
can be cured in at least two ways (Abarbanel et al., 1993)
that we are aware of. First, one can go back to the full
least-squares problem stated above and in a region
around the tangency do a full diagonalization of the ma-
trices that enter. One can know where these tangencies
will occur because the Jacobians, which we know analyti-
cally since we know F,(x), are evaluated at the present
best estimate y,(k,p). The alternate solution is to scale
the step A(k,p) we take in updating the estimated trajec-
tory by a small factor in all regions where a homoclinic
tangency might occur. One can do this automatically by
putting in a scale factor proportional to the angle be-
tween stable and unstable directions or by doing it uni-
formly across the orbit. The penalty one pays is a larger
number of iterations to achieve the same absolute error,
but the glitches are avoided.

In either of these cases one arrives at an estimate of the
true orbit y,(k) which is accurate to the roundoff error of
one’s machine. So, if one has an orbit of a nonlinear
dynamical system that in itself is of some importance, but
it is observed to be contaminated by another signal, one
can extract that orbit extremely accurately if the dynam-
ics are known. The limitations on the method come from
the relative amplitudes of the contamination and the
chaotic signal. In practice, when the contamination is
10% or so of the chaos, the method works unreliably.
The other important application of the method would be
using the chaotic signal as a mask for some signal of in-
terest which has no relation to the dynamics itself. Then
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one is able to estimate the chaotic signal contained in the

observations extremely accurately and by subtraction ex-
pose the signal of interest. Since this application would
be most attractive when the amplitude of the signal of in-
terest is much less than the masking chaos, the method
should perform quite well.

B. Knowing a signal: probabilistic cleaning

Now we discuss the case in which we are ignorant of
the exact dynamics, but we are provided with a clean sig-
nal from the system of interest, which was measured at
some earlier time. Clearly, we can use any of the tech-
niques from Sec. VI to estimate the dynamics, and then
use the resulting models in the algorithms discussed just
above. But now we focus on what can be done by using
the reference signal y (k) to establish only the statistical
properties of the strange attractor. Later one receives
another signal from the same system y (k) along with
some contamination z(k). The observed signal is

P(yc(1),yc(2), ...

,Yo(m)=P(yc(m)lyc(m —1))P(yc(1),yc(2), ...

s(k)=yc(k)+z(k). We have no a priori knowledge of
the contamination z(k) except that is is independent of
the clean signal y-(k). Except for coming from the same
dynamics, yi and y. are totally uncorrelated because of
the chaos itself. :

The probabilistic cleaning procedure (Marteau and
Abarbanel, 1991) seeks a maximum conditional probabil-
ity that, having observed the sequence s(1), ...,s(N), we
shall find the real sequence to be y(1),...,yc(N). To
determine the maximum over the estimated values of the
yc we write this conditional probability in the form

P({s}l{yc}P({yc}])
P({s})

P({yc}l{s})= (126)

and note that only the entries in the numerator enter in
the maximization over estimated clean orbits.

The probability of the sequence of clean observations
can be estimated using the fact that y-(k +1)=F(y(k))
so it is first-order Markov. This allows us to write

»¥c(m —1)) (127)

and use kernel density estimates of the Markov transition probability P(yc(m)|yc(m —1)) via

N
S K(yc(m)—yr(iNK(yc(m —1)—yg(j'))

=1

P(yc(m)lyc(m —1))

n=1

N
> K(yc(m —1)—yg(n))

(128)

The conditional probability P({s}|{yc}) is estimated by assuming that the contamination z is independent of the y, so

m—1

P(s(j); j=1, mlyc(k); k=1,m)= [] P,(yc(k)—s(k))
k

=1

=P(s(j);j=1,m —1llyc(k);k =1,m —1)P,(yc(m)—s(m)) ,

with P,(x) the probability distribution of the contam-
inants.

These forms for the probabilities lead to a recursive
procedure for searching phase space in the vicinity of the
observations s. One searches for adjustments to the ob-
servations s which maximize the conditional probability
P({yc}l{s}). The procedure is performed recursively
along the observed orbit, with adjustments made at the
end of each pass through the sequence. Then the obser-
vations are replaced by the estimated orbit, the size of the
search space is shrunk down toward the orbit by a con-
stant scale factor, and the procedure is repeated. This
search procedure is similar to a standard maximum a
posteriori (Van Trees, 1968) technique with two altera-
tions: (1) the probabilities required in the search are not
assumed beforehand, but rather are estimated from
knowledge of the reference orbit {y(k)}, and (2) in the
search procedure the initial volume in state space, in
which a search is made for adjustments to the observa-
tions, is systematically shrunk.
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(129)

[

The nonlinear dynamics enters through the reference
orbit and the use of statistical quantities of a determinis-
tic system. The method is cruder than the manifold
decomposition algorithm, but it also requires much less
knowledge of the dynamical system. It works when the
signal-to-noise ratio is as low as 0 dB for extracting an in-
itial chaotic signal contaminated by iid (independently
and identically distributed) noise. For a signal of interest
buried in chaos, it has proven effective when the signal-
to-chaos ratio is as low as —20 dB, and even smaller sig-
nals will work.

" In Fig. 32 we show first a sample of the Lorenz attrac-
tor contaminated by uniform noise with a signal (Lorenz
chaos)-to-noise ratio of 0.4 dB, and then in Fig. 33 we
show the signal recovered by the probabilistic cleaning
method after 35 passes through the algorithm. The
signal-to-noise ratio in the final signal, relative to the
known input clean signal, is 12.6 dB for a gain against
noise of 12.2 dB. When the initial signal-to-noise ratio is
higher, gains of about 30 to 40 dB with this method are
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Lorenz Attractor
Uniform Noise in [~12.57, 12.57]
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FIG. 32. Noisy Lorenz attractor data. Contamination is uni-
form noise in the interval [ —12.57,12.57]; this gives a signal-
to-noise ratio of 0.4 dB.

Lorenz Attractor; Cleaned Data
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FIG. 33. The cleaned version of the data in Fig. 32. Thirty-five
passes of the probabilistic cleaning algorithm are used. The
final signal-to-noise ratio, comparing with the known clean
data, is 12.6 dB.

Henon Data (Solid); Henon Data with Pulse (Solid + Stars)

Pulse neor Step 75; Amplitude 0.076
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FIG. 34. A pulse added to data from the Hénon map. Signal-
to-noise ratio is —20 dB. Pulse is in the neighborhood of time
step 75.
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Pulse of Amplitude 0.076 in Henon Data
0.08 Clean Pulse (Solid): Cleaned Pulse (Solid + Stars)
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FIG. 35. Pulse recovered from contamination by data from the
Hénon map. Signal-to-noise ratio is now +20.8 dB.

easily achieved.

In Fig. 34 we show a pulse added to the Hénon map
with an initial pulse-to-chaos ratio of —20 dB. This
pulse was then extracted from the Hénon chaos to give
the result shown in Fig. 35, which has a signal-to-noise
ratio of 20.8 dB relative to the known initial pulse. This
method can clearly extract small signals out of chaos
when a good reference orbit is available.

The probabilistic cleaning method and the manifold
decomposition method both use features of the chaos
which are simply not seen in a traditional Fourier treat-
ment of signal-separation problems. In conventional ap-
proaches to noise reduction the “noise” is considered un-
structured stuff in state space with some presumed
Fourier spectrum. Here we have seen the power of
knowing that chaotic signals possess structure in state
space, even though their Fourier spectra are continuous,
broadband, and appear as noise to the linear observer.
We are confident that this general observation will prove
the basis for numerous applications of nonlinear dynam-
ics to signal-based problems in data analysis and signal
synthesis or communications.

C. Knowing very little

When we have no foreknowledge of the signal, the dy-
namics, or the contaminant, we must proceed with a
number of assumptions, explicit or implicit. We cannot
expect any method to be perfectly general, of course, but
within some broad domain of problems we can expect to
succeed in separating signals with some success.

In the work that has been done in this area there have
been two general strategies:

® Make local polynomial maps using neighborhood-to-
neighborhood information. Then adjust each point to
conform to the map determined by a collection of points;
i.e., the whole neighborhood. In some broad sense a local
map is determined with some kind of averaging over
domains of state space, and after that this averaged dy-
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namics is used to realign individual points to a better
deterministic map. The work of Kostelich and Yorke
(1991) and Farmer and Sidorowich (1991, 1988) is of this
kind.

® Use linear filters locally or globally and then declare
the filtered data to be a better “clean” orbit. Only
moving-average or finite-impulse-response filters will be
allowed, or we will have altered the state-space structure
of the dynamics itself. Many papers have treated this is-
sue. Those of Pikovsky (1986), Landa and Rosenblum
(1989), Sauer (1991), Schrieber and Grassberger (1991),
and Cawley and Hsu (1992) all fall in this class.

The blind cleaning proceeds in the following fashion.
Select neighborhoods around every data point y(n) con-
sisting of N points y"(n), r=1,2,...,Np. Using the
y”(n) and the y(r,n +1) into which they map, form a lo-
cal polynomial map

yir,n +1)=g(y"(n),a)
=A+By"(n)+Cy"(n)y"(m)+ -,
(130)

where the coefficients are determined by a local least-
squares minimization of the residuals in the local map.
Now, focusing on successive points along the orbit y(n)
and y(n +1), find small adjustments 8y(»n) and 8y(n +1)
which minimize

ly(n +1)+8y(n +1)—gly(n)+8y(n))| (131)

at each point on the orbit. The adjusted points
y(k)+38y(k) are taken as the cleaned orbit.

In the published work one finds the use only of local
linear maps, but the polynomial generalization seems
clear. Indeed, it seems to us that use of local-measure-
based orthogonal polynomials ¢,(x) would be precisely
in order here as a way of capturing, in a relatively
contamination-robust fashion, a good representation of
the local dynamics, which would then be used to adjust
orbit points step by step. Using only local linear maps is
in effect a local linear filter of the data, which does not
explicitly use any features of the underlying dynamics,
such as details of its manifold structure or its statistics, to
separate the signal from the contamination. We suspect
that the order of signal separation is limited to
O(1/v/N 5) as a kind of central limit result. This is ac-
tually quite sufficient for some purposes, though it is un-
likely to allow for separation of signals that have
significant overlap in their Fourier spectrum or for sepa-
ration of signals to recover a useful version of the origi-
nal, uncontaminated signal as one would desire for a
communications application. The method of Schrieber
and Grassberger (1991) injects an implicit knowledge of
dynamics into their choice of linear filters. They utilize
an embedding with information both forward and back-
ward in time from the observation point. Thus, as they
argue, the exponential contraction backward and for-
ward along the invariant manifolds in the dynamics can
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significantly improve the removal of the contamination.

The second approach to separating signals using no
special knowledge of the dynamics rests on the intuition
that a separation in the singular values of the local or
global sample covariance matrix of the data will occur
between the signal, which is presumed to dominate the
larger singular values, and the “noise,” which is
presumed to dominate the smaller singular values. The
reasoning is more or less that suggested in an earlier sec-
tion: the ‘“noise” contributes equally to all singular
values, since the singular values of the sample covariance
matrix measures how many data, in a least-squares sense,
lie in the eigendirection associated with that singular
value. If the data are embedded in a rather large dimen-
sion >dp, the singular values with the largest index are
populated only by the ‘“noise,” while the lower-index
singular values are governed by the data plus some con-
tamination. While this may be true of white noise, it is
quite unlikely for ‘“red” noise, which has most of its
power at low frequencies. Nonetheless, given this limita-
tion, the method may work well.

The idea is to form the sample covariance matrix in di-
mension d >dy and then project the data (locally or glo-
bally) onto the first dg singular values. This is then taken
as new data, and a new time-delay embedding is made.
The procedure is continued until the final version of the
data is ‘“‘clean enough.” Landa and Rosenblum (1989)
project onto the direction corresponding to the largest
singular value and argue that the amount of “noise
reduction” is proportional to d/d multiplied together
the number of times the procedure is repeated. Cawley
and Hsu (1992) do much the same thing, with interesting
twists on how the “new’” scalar data are achieved, but lo-
cally. The projection onto the singular directions is a
linear filter of the data. A combination of local filters,
each different, makes for a global nonlinear filter, and in
that sense the method of Cawley and Hsu represents a
step forward from the earlier work of Landa and Rosen-
blum. Pikovsky (1986) also does a form of local averag-
ing, but does not use the local singular-value structure in
it.

All in all one can say that there is much exploration
yet to be done on the properties and limitations of blind
signal separation. The hope is certainly that a method,
perhaps based on invariant-measure orthogonal polyno-
mials, that utilizes the local nonlinear structure of the
data will have some general applicability and validity.

VIII. LINEARLY FILTERED SIGNALS

An important footnote to the discussion of signal sepa-
ration is to be found in the issue of the effect of filtering
by linear filters by convolution on a chaotic signal. All
signals are observed through the filter of some measuring
instrument. The instrument has its own characteristic
response time and bandpass properties. Many filters can
be represented as a convolution of the chaotic signal s (n)
with some kernel & (n) so that the actual measurement is
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S(n)=3 h(j)s(n—j). (132)
j

The question of what happens to the properties of the
signal under this filtering has been addressed in many
places (Sakai and Tokumaru, 1980; Badii et al., 1988;
Mitschke et al., 1988; Chennaoui et al., 1990; Isabelle
et al., 1991) with the following basic results. If the filter
is a so-called moving-average or finite-impulse-response
(FIR) filter, that is, a kernel of the form

M
S(m=3 h(j)s(n—j),
j=0

(133)

then the dimension and other characteristics of the at-
tractor are unchanged. This is more or less obvious,
since this filter is simply a linear change of coordinates
from the original s(k), to S(k). By the embedding
theorem, invariant properties of the system seen in the
reconstructed phase space should be unaltered.

In the case of an autoregressive or infinite-impulse-
response (ITR) filter, the story is different. A model of
this kind of filter is

s(n +1)=F(s(n)),
S(n+1)=aS(n)+g(s(n)) .

(134)

The first equation is just the dynamics of the system. The
second produces from the signal s(n) an observation S (n)
that has its own (linear) dynamics [S(n +1)=aS (n)]
plus a nonlinear version of s(n). By adding another de-
gree of freedom to the original dynamics, it is no wonder
that one can change the properties of the observed chaot-
ic attractor. One practical implication of this, pointed
out by Badii et al. (1988), is that low-pass filtering one’s
data, a quite common practice in experimental setups,
can cause an anomalous increase in estimated dimension.

It is rather succinctly pointed out by Isabelle et al.
(1992) that the criterion for a change in the Lyapunov di-
mension is the nonconvergence of the sum

o0

> [h(k)lexplkAy],
k=0

(135)

where Ay is the smallest Lyapunov exponent of the total
system. A FIR filter always converges, while an IIR
filter may fail to converge and thus change properties of
the apparent attractor.

The nonlinear dynamics reason for this is that, if the
additional dynamics characterizing the filter results in
Lyapunov exponents that are large and negative, their
effect on the original system is essentially unnoticed be-
cause small deviations from the original system are rapid-
ly damped out. If the additional exponent decreases in
magnitude, eventually it gets within the range of the orig-
inal exponents and affects the properties of the original
attractor because its effects on orbits becomes both
measurable and numerically substantial.

In essence then, the issue of linear filters on a chaotic
signal is rather straightforward, since linear systems are
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rather well understood. The results stated should act as a
sharp warning, however, since numerical issues associat-
ed with the clearly stated theory may lead to severe
misunderstandings. Nonetheless, from the theoretical
point of view, this is a well understood area.

IX. CONTROL AND SYNCHRONIZATION
OF CHAOTIC SYSTEMS

A. Controlling chaos

1. Using nonlinear dynamics

In this part of our review we present a method that has
been demonstrated in experiments for moving a chaotic
system from irregular to periodic, regular behavior. The
method has two elements: (1) an application of relatively
standard control-theory methods, beginning with a
linearization around the orbits, and (2) an innovative idea
on how to utilize properties of the nonlinear dynamics to
achieve linearized control in an exponentially rapid
fashion. One of the keys to the method is detailed
knowledge of the phase space and dynamics of the sys-
tem. This can be gleaned from observations on the sys-
tem in the manner we have outlined throughout this re-
view. An attractive feature of the method is its reliance
on quite small changes in parameter values to achieve
control once the system has been maneuvered into the
appropriate linearized regime by the nonlinear aspects of
the problem.

We assume that the experiment is driven by some out-
side force and the data are in the form of a time series
taken once every period of the drive. We call such a data
collection technique stroboscopic. An equally useful as-
sumption is that there is some type of fundamental fre-
quency in the nondriven dynamics. We would then use
one period of this frequency for our stroboscopic time.
Next we shall assume an adjustable parameter which we
call p. Let the data vectors on the stroboscopic surface of
a section be given by v(n) forn =1,2,...,N.

Embedded within a hyperbolic strange attractor is a
dense set of unstable periodic orbits (Devany and Ni-
tecki, 1979). The presence of these unstable periodic or-
bits and the absence of any stable ones is a characteristic
sign of chaotic motion. The goal of the control algo-
rithm is to move the system from chaotic behavior to
motion along a selected periodic orbit. The orbit is un-
stable in the original, uncontrolled system but clearly
stable in the controlled system. The reason for this ap-
parent paradox is that the controlled system has a larger
phase space, since the parameter that was fixed in the
original dynamics is now changed as a function of time.
In the new dynamics, the periodic orbit of the original
system becomes stable.

The first step in solving this problem is obvious. We
must find the locations of the periodic orbits. We discuss
how this can be accomplished for the two cases intro-
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duced above (Auerbach et al., 1987). In the first case the
system is not driven, but there is some fundamental fre-
quency. We choose some, typically small, positive num-
ber €. For each data vector y(n), we find the smallest
time index k > n such that

ly(n)—y(k)|| <€ .

We define the period of this point by M =k —n. As an
example, experimental data collected from the Belousov-
Zhabotinski (BZ) chemical reaction (Roux et al., 1983;
Coffman et al., 1987) indicate that there is a fundamental
periodic orbit yu (1))=Y (2)—> - - >y (M)=y, (1)
near M =125. Our stroboscopic vectors are
vim)=y(mM) form =1,2, ... .

When the system is driven, the procedure is even
easier. We again look for recurrent points. Typically for
driven systems with data acquired once every period of
the drive we will find M =1. There is only one major
difference between this system and the previous one. For
the previous system the data vectors between y,,(1) and
yu(M)=y, (1) give the trajectory covered by the period-
ic orbit. For data that are taken only once every period
of the drive we usually do not have the details of trajecto-
ry of the periodic orbit with the lowest period.

The evolution of orbits is taken to be governed by a
map v(n +1)=F(v(n),p) with some parameters that are
at our disposal. The exact phase-space location of the
periodic orbit v,,+—>v,, is a function of the parameter p.
We choose the origin of values of p to be on the orbit we
have found.

We want to vary p in the neighborhood of p =0, when
the orbit of the undriven system comes ‘“‘close” to the
vy (0)=v,(p =0). Now, we must either wait until the
experimental chaotic orbit comes near this or use some
technique to force it into this region (Shinbrot et al.,
1990, 1992). Once v comes near v, (0) the control is
given by the following steps, illustrated in Fig. 36 (Ditto
et al., 1990).

The part of the figure on the left indicates the situation
just prior to the control mechanism’s being activated.
The unstable fixed point is indicated by v,,(0). Using the
techniques we described in the previous section, we
evaluate DF[v,,(0)], the Jacobian matrix of the mapping

£ -Ep(Py)

Z- Ep(Py+8P ) LEp(Py)
é" En En+ l/'
(a) (b) (c)

FIG. 36. Sketch of control algorithm invented by Ott et al.
(1990): (a) if the nth iterate £, is near the fixed point £z(po)
then (b) one changes the parameter p from p, to p,+8p to move
the fixed point so as to (c) force the next iterate onto the stable
manifold of the undisturbed fixed point (from Ditto et al.,
1990).
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at the point v,,(0). We also determine the directions of
the stable and unstable eigenvectors of the Jacobian. The
location of the phase-space trajectory at time » is indicat-
ed in this figure by the vector v(n).

The control mechanism is an instantaneous change in
the parameter from p =0 to p =p. For p=p the cross
shown in solid lines on the left figure becomes the cross
shown in dashed lines in the center figure (Ditto et al.,
1990). This change is nothing more than the small
change in the location of the periodic orbit after a change
in the parameter, i.e., v,,(0) moves to v, (p). We have
indicated the location of the cross prior to the change by
a solid line. What is important is that the change in the
parameter has created a situation that will force the tra-
jectory of v(n) in the direction of the stable manifold of
v,7(0). In fact, one chooses the magnitude of the param-
eter p so that on the next time around the orbit v(n +1)
is on the stable manifold of v,,(0). One then instantane-
ously moves p from p back to p =0. From now on the
trajectory will march along the stable manifold (of the
uncontrolled system) until it reaches the periodic point
\4 M(O)'

The hard part of the control process is determining the
value of p. When p =p the dynamics near v, (p) can be
approximated by the linear map

v(n +1)=vM(17)+DF1_,-[v(n)—-vM(ﬁ)] . (136)

We must choose p so that in one period of the drive the
phase-space trajectory from v(n) to v(n +1) lands on the
stable manifold of v,;,(0). To choose this value of p
define the vector g via the following rule:

vy,

&~ op |p=ry

_ vV (P)

p

To simplify the calculations we shall confine ourselves
to d =2 dimensions, though the method is readily gen-
eralized to higher dimensions. Since p is small, we as-
sume DFﬁ can be approximated by DF,_,=DF. Using
the techniques described above one can find DF from the
data vectors v(n). Furthermore, one can write DF as

DF=A,f,+A3f, , (137)

where the A; and A, are the stable and unstable eigen-
values, and § and i are the stable and unstable eigenvec-
tors. The vectors f; and f, are the stable and unstable
contravariant eigenvectors defined by f,-i=1, f,$§=0,
f,8=1, and f-u=0.

Equations (136) and (137) and the vector g are all that
is necessary to define the control mechanism. The
motion along the stable manifold of v,, brings the origi-
nal orbit very rapidly to the vicinity of the unstable
periodic orbit v,,. Once the orbit is in this vicinity, small
changes in p proportional to v—v,, are made. This
linearization defines a new linear map near v,;, and we
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require the eigenvalues of this new linear problem to be
within the unit circle. The requirement on the change in
parameter necessary to control the oscillations is given
by

Ay

. v(n)-f,
P=A

g'fu

(138)

This type of control mechanism has been experimen-
tally verified in an experiment on magnetoelastic ribbons
(Ditto et al., 1990). The device involves a ribbon whose
Young’s modulus changes under the influence of small
magnetic fields. An inverted ribbon is placed in the
Earth’s gravitational field so that initially it buckles due
to gravity. By adding a vertical oscillating magnetic
field, one creates a driven chaotic oscillator. For this ex-
periment the force driving the oscillation is gravity, while
the control parameter is the magnetic field strength. The
results of this experiment are shown in Figs. 37 and 38.

In Fig. 37 the iteration number represents passes
through the stroboscopic surface of a section, which is
one period of the drive. The gray portion for iterates less
than approximately 2350 represents the chaotic motion
of the ribbon before the control is initiated. For an
iterate near 2350, the motion of the ribbon passes near an
unstable period-one orbit, and the control is initiated.
After initiating control the motion of the ribbon remains
near the periodic orbit. In the figure this is indicated by
the fact that the location of the orbit on the surface of
the section is constant near 3.4 for all subsequent inter-
sections. The period of the driving of this magnetic field
is typically 0.85 Hz; thus the period-one orbit has period
1/0.85 Hz~1.2 sec. The experimenters have been able
to confine the motion of the ribbon to the unstable orbit
for as long as 64 hours. Clearly the control mechanisms
works.

Figure 38 is an admirable piece of showing off on the
part of the researchers. First they control near a period-
one orbit. Then they change their minds and control
near period-two orbits. Then they change their minds
again and control back on the original period-one orbit.
Control has also been demonstrated near period-four or-
bits.

4.5

2‘ 1 1 1
50 1000 2000 3000

Iteration Number

1
4000

FIG. 37. Time series of the voltages stroboscopically sampled
from the sensor attached to magnetoelastic ribbon (Ditto et al.,
1990). Control was initiated after iteration 2350.
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FIG. 38. Time series of voltages from the magnetoelastic rib-
bon. System is switched from no control to controlling the (un-
stable) period-1 orbit (fixed point) at iteration 2360, to control-
ling period-2 orbit at n =4800, and back to the fixed point at
n =7100.

2. More traditional methods

It is also possible to influence the dynamics of a chaot-
ic system using traditional techniques from control
theory (Cremers and Hiibler, 1986; Eisenhammer et al.,
1991; Singer and Bau, 1991; Singer et al., 1991). To illus-
trate this approach we imagine that the uncontrolled dy-
namics is given by the equation

2 gy,

dt (139)

and that y*(z) represents the trajectory we are interested
in controlling (stabilizing or, possibly, destabilizing).

Traditional control techniques implement a feedback
mechanism to manipulate the dynamics. The feedback
is an externally applied force we denote as
H[y(t)—y*(¢),¢;p]. The vector p contains adjustable pa-
rameters, which are often called the feedback gains.
When the control mechanism is implemented the dynam-
ics changes from Eq. (139) to

dy(t)
dt

The purpose of H is clear from Eq. (140). H is a force
that gives nudges to orbits. If y* is unstable without the
control, and the trajectory y moves away from y*, then
H can push it back towards y* and thus stabilize an un-
driven, unstable orbit.

This type of control has been implemented in a labora-
tory thermofluid experiment. The experimental device
consisted of a torus heated from below and cooled from
above. This thermosyphon implements convection,
behaving in a similar fashion to the original 1963 Lorenz
equations. The feedback was implemented by controlling
the current flow into the heater as applied to the lower
part of the torus. The control part of the heating was
k(AT —AT,) where AT 1is the actual temperature
difference between two selected points and AT is the
desired temperature difference. The value of k was much
smaller than the constant heat component applied to the
bottom part of the torus (Bau and Singer, 1992).

Some of the results of this experiment are shown in

=F[y(1),t]+H[y(t)—y*(2),¢;p] . (140)
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FIG. 39. Experimentally measured temperature oscillations as

a function of time. The controller was activated 33 min after
the start of the experiment (Bau and Singer, 1992).

Figs. 39 and 40. Figure 39 shows the temperature profile
AT as a function of time. The control is implemented at
time equal to 33 minutes. The control mechanism causes
the dynamics of the temperature to stabilize about a par-
ticular value that indicates steady laminar flow, corre-
sponding to counterclockwise rotation of the fluid. Fig-
ure 40 is showing off in a manner similar to the magne-
toelastic ribbon example. In this case the control is used
to change from steady counterclockwise motion to steady
clockwise motion.

It is important to note that the two main types of con-
trol we have discussed are not equivalent. The first type
involves changing parameters of the system to achieve
control. It also used a knowledge of the location and
function of the stable and unstable manifolds of the dy-
namics. The dynamics in this control technique is given
by

4y _prvio1+ OF.
2 Elyspl+ 3 5p .

In this equation there is no need for a new class of exter-
nal forcings as in the one found in Eq. (140). Instead the
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FIG. 40. Switching the direction of the flow in a thermoconvec-
tion experiment from clockwise to counterclockwise using the
controller (Bau and Singer, 1992).
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role of external forces is to effect changes in the parame-
ters of the system rather than the form of the system.
The main distinctions are the use of the nonlinear dy-
namics of the system in the first method and the impor-
tant fact that only infinitesimal external forces are re-
quired to change parameters. This latter point comes
from the use in the method of the exponential approach
along stable manifolds.

3. Targeting

The final type of control that we shall discuss differs
from both of the two previous cases. As with many
things, the control mechanisms work well when they
work. After the system moves into a region of the phase
space that we wish to control, we are able to implement
the control with great success. However, we have to wait
until the dynamics approaches the desired region before
control can be initiated. This can often take a long time.
What would be very useful is some technique to persuade
the dynamics to approach the control region quickly. In
other words, we need a net that can be thrown over the
phase space in order to capture the trajectory. Once it is
in the net we can drag it back to our control cage and
lock up its behavior.

There are two different techniques for directing trajec-
tories towards specific regions of phase space. They
differ in detail and implementation, but the zargeting goal
is the same. The first technique is useful when the target
point is on the attractor given by the data. When the tar-
get is not on the attractor given by the data, the second
technique is required.

The first targeting technique involves both forward
and backward iterations of small regions of the phase
space. Assume that the data are given on a surface of a
section by v(n), n =1,2, ..., N. For purposes of illustra-
tion also assume that the dynamics is in two phase-space
dimensions and is invertible. Let the initial point be
given by v; and the target point by v,. Without altering
the dynamics, the time necessary for a typical point on
the attractor to enter a ball of size €, centered on v
scales like 7~ 1/u(e, ), where p is the natural measure on
the attractor. This measure scales with d,, the informa-
tion dimension of the attractor (Badii and Politi, 1985),
so 7~(1/¢, )d‘. Obviously for small €, the time it takes
for a trajectory to wander into the target region can be
quite long. This phenomenon is evident in Fig. 41, where
it took thousands of iterations before the trajectory was
near enough to the period-one target to implement con-
trol. Other examples of even longer duration exist (Shin-
brot et al., 1990).

Clearly this is not acceptable, and happily it can be im-
proved upon. Assume that the dynamics on the strobos-
copic surface is given by

v(n +1)=F[v(n);p],

where we have explicitly indicated the parameter depen-
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FIG. 41. Average time required to reach a typical target neigh-
borhood from a typical initial position as a function of the in-
verse neighborhood size: dashed line, no control; circles and
solid line, with control (from Shinbrot et al., 1990).

dence of F by p. For now we shall use only one parame-
ter, but that is not necessary. The change in one iteration
on the surface due to a change in the parameter is

Svin +1)=V(n+1)—v(n +1)

_ 9F[v(n)]
ap

If we choose 8p small, then ¥(n +1)—v(n +1) sweeps
out a small line segment through the point v(n +1).
After m steps through the unperturbed map F[v;p],
the line segment will have grown to a length
V(n +m)—v(n +M)~exp[mA,]6v(n +1). Eventually
the length will grow to the same order as the size of the
attractor, which we shall conveniently call 1. The num-
ber of iterations necessary for this to happen is
m,;=—log[8v(n +1)]/A,. We now imagine iterating the
target region €, backwards in time. This process will
transform the target region into an elongated ellipse.
The length of the ellipse will grow like exp[A,m]. After a
total of m, iterations the ellipse will have been stretched
to the point where its length is the same order as the size
of the attractor.

Generically the line formed by the forward iterations
of 8v(n +1) will intersect the ellipse formed by the back-
ward iterations of the region €. For some value of the
parameter, call it p,, in the range p +8p the end of the
line segment will be inside the backward images of €.
By changing the parameter at time n from the value p to
the value p;, we can guarantee that the trajectory will
land inside the target region. The number of iterations
required for this to happen is

Sp

T=m;+m,

__ In[év(in +1)] In[er]
A{l A’Z )
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The targeting strategy above utilizes only one change
in the parameter. After the initial perturbation, the pa-
rameter value is returned to p from p,. It also assumes
that one has complete knowledge of the dynamics. In the
presence of noise, or incomplete knowledge of, the dy-
namics the above procedure will not work without
modifications. The modifications are very small. Instead
of only perturbing the dynamics once at time n, one
should perturb the dynamics at each iteration through
the surface. Therefore the entire forward-backward cal-
culation should be done at v(n), v(n +1), v(n +2), etc.
until the target region is reached.

The forward-backward technique has been demon-
strated to be effective in computer experiments (Shinbrot
et al., 1990). More impressive is experimental implemen-
tation of these techniques. For the experimental situa-
tion only the forward portion of the targeting method
was used. This is equivalent to setting m, =0 and wait-
ing for the stretched line segment to contact €. The re-
sults indicate that for the magnetoelastic ribbon experi-
ment without targeting it required about 500 iterations to
reach a typically chosen €. With control the number of
iterations typically was reduced to 20 (Shinbrot et al.,
1992). The power of using the nonlinear dynamics of the
process is quite apparent.

The second type of targeting is much more ambitious.
The basic problem is still the same. Assume that initially
the trajectory is located at y;. How can we control the
system so that it quickly arrives at the location y,? No-
tice that the locations y; and y, are legitimate states of
the dynamics for some value of the parameters. Other
than that they are arbitrary. The type of control that ac-
complishes this broad category of behavior has the draw-
back of requiring a complete model of the dynamics for
all values of the parameter.

The first step in the control technique involves using
cell maps to determine the dynamics of the entire phase
space for a range of parameter values, p") where
Jj=12,...,N, (Hsu, 1987). Each different value of the
control parameter p' implies a different dynamical sys-
tem for Eq. (139) and hence different trajectories in its
corresponding cell maps. The dynamics may even ex-
perience bifurcations without a conceptual change in the
control technique. Once the cell maps have been estab-
lished, one searches through the possible trajectories. A
final path is chosen by using pieces of the possible trajec-
tories provided by the cell maps. Thus the entire con-
trolled trajectory can be given by the sequence of cells
S=(59,8M, . .,8P). Each of the individual $/"s is a
true trajectory of the dynamical system y=F[y,z;p"].
The criteria for determining the SY”s is that S be as
short as possible.

The details of the construction of the cell maps and the
search algorithm for determining the shortest S from the
large number of possible values can be found in the refer-
ences (Bradley, 1991, 1992). Once the final phase-space
destination is achieved, standard control techniques, as
above, can be employed to ensure that y stays near y .
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B. Synchronization and chaotic driving

Many physical phenomena can be modeled as an un-
derlying dynamical system driven by external forces.
The most often studied types of driving are periodic and
steady forcing. A down-to-earth example is given by a
system that is driven with a period half that of the natu-
ral oscillation. This models pumping a playground
swing.

A type of driving that is new to our field of inquiry is
chaotic driving (Kowalski et al., 1990; Pecora and Car-
roll, 1990, 1991a, 1991b). Under this type of scenario one
has a dynamical system that is driven by the output of
another dynamical system. If the second dynamical sys-
tem, the one that is providing the drive, is exhibiting
chaotic motion, then we say that the first system is un-
dergoing chaotic driving. In Fig. 42 we schematically il-
lustrate chaotic driving. The first dynamical system, the
one that is doing the driving, we call the driving system.
The second dynamical system, the one that is being
driven we call the response system.

Imagine dividing the two dynamical systems into three
parts. The degrees of freedom of the driving system are
u(#) and v(¢) while those of the response system are
called w(t). The vector fields for the driving and
response are g, f, and h, and the equations of motion are

du _

dt - [ll,V] 3

dv _ .. .

ar =flu;v], (141)
dw _ .

ar =h[w;v] .

The first and second equations of motion involve the
driving system. We have split it into two parts. The first
part represents the variables in the driving system that
are not involved in driving the response. The second part
represents the variables that are actually involved in the
driving of the second dynamical system. Finally, the
third equation represents the response system. We shall
assume that the combined system has n equations of
motion, while partitions g, f, and h have k, m, and [
equations of motion, respectively.

A simple familiar example is provided by a damped
driven pendulum: 6+7y60+sin(6)=cos(wt). This system
can be written in the form of Egs. (141) through the
identification of variables: 6=w,, 9=w2, ¢=v, and
d=u. The result is written

1 IE— 2

FIG. 42. Sketch of chaotic driving: chaotic generator 1 drives
another chaotic system 2.
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wp=w;,

W, = —yw, —sin(w,)+v ,
v=v,

u=—o .

In this example m =1, k =1, and / =2. The driving sys-
tem is a simple harmonic oscillator and the response is
the damped pendulum.

In chaotic driving we replace the simple harmonic os-
cillator with a chaotic system. When the chaotic system
is identical to the response system the most dramatic
effects occur. Under these conditions the chaotic response
system may synchronize with the chaotic driving system.
Synchronization means here that the two systems follow
the same trajectory in phase space (Afraimovich et al.,
1986). This occurs despite the fact that the response sys-
tem has a different initial condition from the drive sys-
tem. Under normal chaotic circumstances a different ini-
tial condition would imply that the two trajectories
would diverge exponentially on the attractor. Thus the
fact that chaotic driving can cause two systems to follow
the same trajectory for a long time is quite an attention
getter.

When does synchronization occur? That is, when will
two nearby initial conditions in w converge onto the
same orbit? The condition that determines whether or
not a driven dynamical system will synchronize is ob-
tained by examining the values of the conditional
Lyapunov exponents. To determine the conditional
Lyapunov exponents, as well as to define them, we must
simultaneously solve Egs. (141) and the variational equa-
tions of the response system,

d(Aw)
dt

where Aw=w’'(¢)—w(?) and
oh,,
dwg

=DF,[v,w]-Aw , (142)

(DF,), 5=

The eigenvalues exp[LX] of compositions of DF, are the
conditional Lyapunov exponents.

For periodic trajectories in w, understanding the
behavior of Egs. (141) and (142) and its influence on Aw
is a straightforward application of Floquet theory. But
we are interested in chaotic instead of periodic trajec-
tories. A moment’s thought convinces us that determin-
ing the behavior of Aw is equivalent to calculating the
Lyapunov exponents associated with Eqgs. (141) and (142).
Numerical experiments have determined that the
Lyapunov exponents associated with Eqs. (141) and (142)
are not the same as the Lyapunov exponents calculated
only from Eq. (141) alone. Nor are they a subset of those
calculated from Eq. (141) alone. The first of these facts is
obvious. The variational equations associated with Eq.
(141) have an nXn Jacobian and will produce n
Lyapunov exponents. On the other hand, Eq. (142) has
an [X[] Jacobian and will produce [ conditional
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TABLE III. Conditional Lyapunov exponents for synchronized
Lorenz attractors. With z as the drive, one of the conditional
exponents is positive, so this will not synchronize.

System Drive Response Conditional Lyapunov exponents

Lorenz x (y,2) (—2.50,—2.5)
o=16
b=4 y (x,z) (—2.95,—16.0)
r=45.92
z (x,y) (0.007 89, —17.0)

Lyapunov exponents.

The set of / Lyapunov exponents associated with Egs.
(141) and (142) are the conditional Lyapunov exponents.
If all / conditional exponents are less than zero, then the
subsystem, w, will synchronize [i.e., wW'(f)—w(z) as
t—o]. If we denote the conditional Lyapunov ex-
ponents as 0>A4;<A,< --- <A, then the convergence
rate is given by exp[xlt]. Numerical experiments on the
Lorenz system are given in Table III. As the table
shows, for the parameter values used one can implement
either x or y as the drive. The corresponding subsystems
[(»,z) in the case of x drive and (x,z) in the case of y
drive] have two negative conditional Lyapunov ex-
ponents. The third possible subsystem has z as the driver
and possesses a small positive conditional Lyapunov ex-
ponent. The positive conditional Lyapunov exponent im-
plies that this type of drive/response system will not syn-
chronize.

One can cascade several dynamical systems together
(Carroll and Pecora, 1992; Oppenheim et al., 1992) and
achieve synchronization in all of them by using only one
drive. An example of this type of system is given in Fig.
43. Here we show a system of three cascaded Lorenz sys-
tems. The x coordinate of the first is used to drive the
second. Similarly, the y coordinate of the second is used
to drive the third. One could extend this cascade
indefinitely without changing the results. Moreover,
since the second and third systems respond to the drive
of the first system there is really only one drive, namely,
the x coordinate of the first system.

difference

y y =
z z’ "
Z
Drive Response

FIG. 43. Sketch of cascaded chaotic systems.
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X. SPATIO-TEMPORAL CHAOS

As we remarked in the introduction, the study of
spatio-temporal chaos is much further from a full under-
standing than solely temporal chaotic behavior. The sit-
vation is changing quite quickly, and while we shall
merely touch upon our own expectation of where this
area will go, it seems certain that the developments will
bring the analysis of spatio-temporal observations to the
same stage as that of temporal chaos, reviewed in this ar-
ticle. So what we include now is less a review than, we
hope, a preview to indicate how the subject might devel-
op from the results reviewed throughout this article.

In the last few years increasing attention has naturally
been focused on spatio-temporal chaos in various experi-
mental setups such as Rayleigh-Bénard convection
(Manneville, 1990), Taylor-Couette flow (Anderek and
Hayot, 1992), and surface excitations of the Faraday sort
(Gollub and Ramshankar, 1991). On the theoretical side
there have been extensive studies of cellular automata
which provide coarse graining in the dynamical variables
as well as in the independent variables of space and time,
coupled map lattices (Keeler and Farmer, 1986), which
study the interaction between known chaotic maps cou-
pled together on spatial lattices, and model physical
equations such as the Kuramoto-Sivashinsky and various
Ginzburg-Landau equations (Kuramoto, 1984). Discus-
sion of those studies as well as relevant mechanisms of
transition to chaos go far beyond our scope. In that re-
gard, however, we recommend the review by Cross and
Hohenberg (1993), which reports on studies in which the
instabilities of linearized dynamics can be traced as the
origin of observed space-time patterns in a variety of ex-
periments.

Our present aim is to outline the approach to analysis
of data from spatio-temporal systems following the philo-
sophy and methods developed for the pure temporal
cases in previous sections. In other words, we need to de-
velop machinery that allows us to calculate meaningful
characteristics identifying the spatio-temporal behavior
and to build models for prediction of behavior of the
spatio-temporal system—and to do all of this working
with data.

The main difference (and difficulty) which comes with
spatial degrees of freedom is the very high (or even, typi-
cally, infinite) dimension of the system. Of course, one
may take only one observable from one space location
and try to reconstruct the dynamics in the usual way.
The idea would be that since the system is totally cou-
pled, by the embedding theorem, any measurement
should reveal the full structure of all degrees of freedom
in interaction. This standard approach of treating a
spatio-temporal system as though it were purely tem-
poral, while possible in principle, is practically infeasible
with existing or projected computational capability. It
seems much more promising to account for the spatial
extension explicitly at both the phase-space reconstruc-
tion and model-making stages of the problem. We have
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seen in the preceding sections that a scalar time series
s(n) represents the projection of a multidimensional
geometric object onto the observation axis. In the case of
spatially extended systems, we deal with similar scalar
measurements labeled by space as well as time.

To be concrete, we restrict our discussion to one space
dimension, call it x, and time. The amplitude which is
measured we call a(x,t). The first step towards the
reconstruction of the spatio-temporal phase space is to
consider just space series rather than temporal ones
(Afraimovich et al., 1992). This approach is quite legiti-
mate if we study the “frozen” spatial disorder resulting,
for example, from the evolution of a gradient spatio-
temporal system of the form

da(x,t) _ _ 6F[a]
ot da ’

(143)

where F(a) is some free-energy functional. For this kind
of dynamics, it is easy to show that any initial state

|

a(iyn)
a(i+D,n)

a(i +(M,—1)D,n)

where a (i,n)=a(x,t) at a(xy,+iD,t,+nT), and the time
delay T is an integer multiple of the sampling time 7,
while the space delay is an integer multiple of the spatial
sampling A;. If we have N, data points in the temporal
direction n=1,2,...,N, and N, points in the space
direction i =1,2, ..., N,, then the total number of ma-
trices available to  populate the space is
(N,—M,)X(N,—M,). It will be usual to have N, >M,
and N, >>M,.

To determine the time delay we use average mutual in-
formation in the familiar fashion. To determine the
space delay D, we do the same, but now we must com-
pute the average mutual information for measurements
a(n,i) and measurements a (n,i +D) averaged over all i
and n to cover the attractor. Thus, it requires just a
slight generalization of existing algorithms for temporal
chaos.

To determine the dimension of our ‘“‘matrix” phase
space M,M,, we need to establish values for the
minimum number of coordinates needed to unfold the at-
tractor observed through the projection onto our mea-
sured a(i,n). For this we can use the method of false
nearest neighbors (Kennel et al., 1992), which works
efficiently in the case of temporal chaos alone.

The result of this analysis will be the M, XM, dimen-
sional state space within which we can work to determine
the same kind of quantity of interest as in temporal
chaos: dimensions, Lyapunov exponents, models, etc.
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aliyn +(M,—1)T)
a(i+D,n +(M,—1)T)

ali +(M,—1)D,n +(M,—1)T)
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a(x,0) evolves to a steady state a(x). For this pure
space series all the machinery developed for time series
can be directly reformulated by substituting x for ¢z. In
this way one can calculate fractal dimension of the
‘“‘space’” attractor, evaluate spatial Lyapunov exponents,
make models, etc.

A richer situation arises when we have spatio-temporal
dynamics and measure the spatio-temporal series a (x,t).
The first thing we want to deal with is the correct phase
space for this form of measurement. Recall that we
reconstruct the phase space in a temporal case using
time-delay coordinates. Determination of the time delay
T in the temporal case requires that the measurements
x(t) and x (¢t +7T) were independent in an information-
theoretic sense. In the case of space as well as time, the
natural modification of this procedure is to seek a space
delay at which observations become slightly uncorrelated
(in an information-theoretic sense again). In this way we
arrive at the idea of a “matrix” phase space composed of
M, (spatial) by M, (temporal) matrices formed from
space and time delays of the observations a (x,¢):

[

We denote the members of our state space by 4, g(i,n),
where the ranges of a and 8 are a=1,2,...,M, and
p=1,2,...,M, while the “labels” (i,n) run over
i=1,2,...,N,—M_ andn=12,...,N,—M,.

Essentially the same approach can be employed if the
object of interest is a “‘snapshot” of a dynamical process
with two spatial dimensions, namely, an image. We need
only change the “labels” from x, ¢ to x,y and the variables
to a(x,y)=a(xo+iA,, yo+jA,) with space. delays
A,,A,. We would establish two embedding dimensions
M,,M,, and the remainder of the general discussion
would go as before. The resulting modeling of images as
nonlinear processes in the M, M, -dimensional space of
matrices will then replace the present “state of the art”
of linear modeling (Biemond et al., 1990).

To determine quantities such as dimensions of the
state-space attractor—that is, the dimension of the col-
lection of matrices located in the M, XM, -dimensional
space—we must address the question of the distance be-
tween two rectangular matrices. This question has been
studied in some detail by mathematicians. The most in-
teresting work is reported in the monograph by Horn and
Johnson (1985), where the idea of matrix norms is ex-
plored. This is summarized in the book by Golub and
Van Loan (1989), where the needed computations are
also discussed. The idea is that one can always read a
matrix along its rows and then along its columns to con-
sider it a vector of length L =M, M, then define the usu-
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al distances between vectors in that L-dimensional space.
This approach has been used by Afraimovich et al.
(1992) for the analysis of 2D snapshots of Faraday rip-
ples. They calculated the correlation dimension of the
patterns at different stages of disorder corresponding to
different pumping magnitude. It should be noted, howev-
er, that matrices have more structure than just long vec-
tors; in particular, they can be multiplied in a natural
way, and thus there are new alternatives for the norms of
such objects.

The norm that seems much more relevant for the
present purposes is the so-called spectral norm. This
norm follows from the idea of a singular-value decompo-
sition of a rectangular matrix. Suppose we have a matrix

A which is m X r; this can be decomposed as
A=U-3-VT, (144)

where the m Xm matrix U and the » X»n matrix V are
orthogonal:

ulu=1, vIi.v=I, (145)
and, taking m = n, 2 is the n X n diagonal matrix
S =diaglo,05 ...,0,]. (146)

The o, are known as the singular values of the matrix A.
They are also the square root of the eigenvalues of the
nXn matrix AT-A. We order them as is conventional
byo,20,Z - 20,.

The relevance of the singular values to our considera-
tions is that the norm of a matrix defined by

A= maxx|| A-x|| (147)

1=

is just the largest singular value, s,( A). Here x is an n
vector and

Ix||=(x3+x3+ - +x2)172, (148)
the Euclidean distance in our n space. If n =1, the
matrix is A=(a,a,,...,a,,)and

si(A)<Va?+al+ -+ +ak ,

which is a familiar norm.

Once one has a way of finding the appropriate space
for the discussion of spatio-temporal data, the various as-
pects of the analysis we have discussed in previous sec-
tions become ready for use in this enlarged context. We
consider these comments as suggestive of how the general
subject will unfold as spatio-temporal data are studied
from the nonlinear dynamics viewpoint. It remains to do
the hard work of carrying out such analyses on models
and measured data to see what general classification
schemes and tools for physics can be extracted. '

XIl. CONCLUSIONS
A. Summary

Over the past decade we find an enormous literature on
the analysis of temporal chaos and correspondingly
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significant progress for purposes of studying chaotic lab-
oratory experiments and chaotic field observations of in-
terest to physicists. In this review we have tried to em-
phasize tools that are of direct utility in understanding
the physical mechanisms at work in these measurements.
We have placed less emphasis on mathematical results,
using them as a guide to what one can learn about funda-
mental physical processes. Numerical results are critical
to the study of nonlinear systems that have chaotic
behavior. Indeed, computation plays a larger role in
such studies than is traditional in many parts of the phys-
ics literature. Progress such as that reported throughout
this review rests heavily on the ability to compute accu-
rately and rapidly, and as such would often not have been
possible a decade ago. The subject reviewed here is al-
most “experimental” in that sense through its reliance on
computers as an instrument for its study. This bodes
well for further analysis of chaos and its physical mani-
festations, since one can expect even more powerful com-
puting tools to be widely available on a continuing basis.

The point of view taken throughout this review, often
implicitly, is that chaotic behavior is a fundamental and
interesting property of nonlinear physical systems. This
point of view suggests that as a basic property of the non-
linear equations governing real physical systems there is
much new to be learned by the study of chaos. While at
times we have reported on efforts to ““tame” that chaos,
as in the section on control of periodic behavior, our
main goal has been to bring to physicists a set of tools for
extracting important information on the underlying
physics of chaotic observations. Absent many of the
tools created by those whose contributions we have re-
viewed here, much of the physics of chaos has been
passed by as ‘“noise.” We expect the development of
these tools to continue and the exploitation of the physics
thus exposed to blossom in applications across the spec-
trum of phenomena where chaos is found. Indeed, this
spectrum is so vast that our review has been inevitably
unable to cite fully even a fraction of the literature on
laboratory and field observations where chaos is known
to occur. In any case, such a full recitation might be per-
ceived as a litany of all of classical and semiclassical
physics, and thus slightly useless.

The critical aspect of chaotic behavior from the
physicist’s view is that it is broadband spectrally, yet
structured in an appropriate phase space, which itself can
be reconstructed from data. This distinguishes it from
the conventional view of “‘noise’” and opens up for review
and reexamination a wide variety of work which
presumes unstructured stochastic behavior to be a driver
or major influence on the physical processes being stud-
ied. That reexamination has not been undertaken in this
review, nor is it a finished project to be found in the
literature. Our review has focused on the tools one will
use or the ideas underlying the tools, which will evolve
for the extraction of new physics from observations of
chaotic physics. We have no doubt whatsoever that
where physics has been hidden by the assumption of un-
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structured stochastic forces, an understanding that there
may well be structure there after all will provide exciting
new discoveries.

In a broad sense, what we have covered in this review
might be cast as “signal processing” in another context.
It seems to us substantially appropriate for physicists to
have a major role in defining what constitutes signal pro-
cessing for signals arising from physical systems. We ex-
pect that many of the developments over the coming de-
cade in this field will come from the more traditional
signal-processing community. This is borne out by a
careful look at our references and a glance at the issues
now developing in the analysis of temporal chaos. Fur-
ther, while we have touched upon it only slightly, we also
expect that from the same community we shall see an
effort in “signal synthesis” in addition to the kind of “sig-
nal analysis” that has been our emphasis.

This review is in many ways an update of the earlier
review by Eckmann and Ruelle (1985) about eight years
ago. Clearly much has been achieved since then, and
much rests on ideas carefully exposed in that previous re-
view. It is impossible that we will have covered all the
topics seen as important and interesting by all the physi-
cists, mathematicians, chemists, engineers, and others
who have contributed in the past eight years to the sub-
ject covered here. We offer our apologies to those whose
work has only indirectly been cited. We do not deem
that as a signal of its lack of importance, but eventually
the finiteness of our task prevailed. We have appended a
set of additional references in the hopes of identifying
some of the omissions in the main text. In any case, we
have made no attempt to survey the literature outside
physics and what is now called “nonlinear science” for
this review. This has excluded interesting work in
economics, statistics, chemistry, engineering, biological
sciences, and medicine—to name just a few important
areas. This is a choice we have made, and we acknowl-
edge the many interesting contributions that we have
chosen not to assess or include.

B. Cloudy crystal ball gazing

The study of temporal chaos—the analysis of physical
measurements at a point in space—is by now rather
thoroughly explored. The various items reviewed try to
bring into focus the methods now available in a practical
sense for the study of basic properties of nonlinear physi-
cal systems in purely temporal measurements. We are
certain that new developments in many of the areas we
have touched upon and in areas we have not yet even im-
agined will continue to occur before the next review of
this general area. We expect numerous algorithmic im-
provements to be created in each of the areas we have
touched upon. We hope there will be a significant push
in the formal and rigorous statistical analysis of many of
the algorithms already available. It would be enormously
useful, for example, in the analysis of data to have some
estimate of the error in all conclusions arising from finite
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data sets as well as from numerical, experimental, or in-
strumental uncertainty. It would be extremely important
to extend the full power of the existing topological
analysis (Mindlin et al., 1991) in three dimensions to
higher dimensions. We anticipate extensive work on the
analysis of geometric properties of experimental strange
attractors. These may also be more robust against con-
tamination by unwanted signals than the more familiar
derived or metric quantities such as dimensions and
Lyapunov exponents.

We look forward to the application of chaotic analysis
tools, both as covered here and in their further develop-
ments, to the detailed study of numerous physical sys-
tems. The few examples we have presented here are
clearly the “tip of the iceberg.” It is in the actual making
of these applications where the push for further progress
is sure to come most persuasively. The part of the task
for the physicist which has been little touched on in this
review, since there is little to review on it as a matter of
fact, is the building and verification of models that arise
from considerations of chaotic physical experiments. We
took the liberty to say a few general words about this in
the Introduction, but the “proof of the pudding” is in
performing the task itself. It is clear, and even
mathematically good sense (Rissanen, 1989), that we can-
not algorithmically discover fundamental physics. For
the physicist the road ahead with the subject of chaotic
data analysis will differ from signal processing and return
to the analysis of interesting physical systems with the
methods reviewed. The point of view in the creation of
physical models will change, of course. It will not be
necessary, we imagine, always to start with the Navier-
Stokes equations to build models of chaos in fluids,
though, perhaps, we will learn to project those infinite-
dimensional equations down to the few relevant physical
degrees of freedom, which will appear in the models.

The discovery of temporal chaos in physical systems is
a “finished” topic of research, we believe. Many physical
systems have been shown to exhibit chaotic orbits, and
we are certain many more will be found. It is no longer
enough, however, to have good chaos, one must move on
and extract good physics out of it. The methods and
techniques in this review are directed towards that in the
realm of temporal chaos. An important challenge for the
area of research we have reviewed here is to extend both
the existing methods and the classification of widely ex-
pected and universal behaviors to spatio-temporal chaos.

This is to say that the study of chaotic fields remains
rather untouched from the point of view taken
throughout this review. We certainly do not mean that
early and productive steps have not been taken; they
have! We simply desire to underline the clear fact that
the developments in the analysis of spatio-temporal
chaotic data and the connection with model building, sig-
nal separation, and the other goals we have outlined are
not yet as far along as for temporal chaos. The recent
thorough review of Cross and Hohenberg (1993) makes it
quite clear that the predominant body of work in this
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area has concentrated on the patterns and behaviors
coming from identifiable linear instabilities in spatio-
temporal dynamical systems. The challenge of moving
the study of experimentally observed chaotic fields for-
ward is a large one. Just as much of physics is nonlinear
and has postured behind easier problems posed by local
linearization for many years, so have we focused on point
measurements or ‘“lumped parameter” models when
studying a remarkable phenomenon like chaos in physics.
The physics of chaotic fields will bring us from this too
narrow focus to substantial problems encountered in the
laboratory and in geophysical field observations. We ex-
pect the next review of this sort to be able to report ma-
jor accomplishments in the analysis of experimental
chaotic fields, and we expect the lessons we have tried to
report here to pervade the way we proceed to those ac-
complishments.
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