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Irreversible random sequential adsorption (RSA) on lattices, and continuum "car parking" analogues,
have long received attention as models for reactions on polymer chains, chemisorption on single-crystal
surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of
these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure,
e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not
described by an equilibrium Gibbs measure. This is the case even for the saturation "jammed" state of
models where the lattice or space cannot fill completely. However exact analysis is often possible in one
dimension, and a variety of powerful analytic methods have been developed for higher dimensional mod-
els. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative
structure, etc. , which is emerging for these far-from-equilibrium processes.
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I. INTRODUCTION

Lattice models have played a central role in the devel-
opment of equilibrium statistical mechanics (Hill, 1956;
Stanley, 1971;Baxter, 1982; Bell and Lavis, 1989). In the
standard lattice-gas representation, the sites of the lattice
have one of two states, empty/vacant, "o", or
filled/occupied, "x". The model is completed by the
specification of interactions between particles at "near-
by" filled sites. The equilibrium state is then described
by a Cxibbs measure parametrized by the average fraction
of filled sites, 0, and the temperature T. For the two-
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dimensional case, there have been extensive studies of the
phase diagram of this "adsorbed layer" with varying 0
(coverage) and T (Einstein, 1982; Roelofs and Estrup,
1983; Weinberg, 1983; Binder and Landau, 1989).

The kinetics of equilibration has also been studied for
these models (Kawasaki, 1972; Gunton et al. , 1983), typi-
cally at constant coverage (Gunton and Kaski, 1984).
The natural mechanisms to achieve equilibration are via
adsorption-desorption (Glauber, 1963), particle hopping
or diffusion (Kawasaki, 1972), or a combination of both.
These processes, which are regarded as occurring one at
a time (sequentially), must be microscopically reversible
with rates satisfying "detailed balance" for evolution to
an equilibrium state. These rates serve as input to the
Master equations for the kinetics (Kawasaki, 1972). We
note that these equations can always be expressed in the
form of an infinite hierarchy of rate equations for proba-
bilities of subconfigurations which couple to those of
larger configurations. Since their exact analysis is rarely
possible even in one dimension (1D) (Glauber, 1963),
Monte Carlo simulation techniques (Binder, 1979; Gun-
ton et al. , 1983) are typically used to analyze these pro-
cesses.

In contrast to the above, the lattice-gas models of in-
terest here involve sequential adsorption where the state
of sites is assumed to change irreversibly from empty to
filled, o~x (Boucher, 1978; Plate and Noah, 1978; Evans
et al. , 1983; Tory and Jodrey, 1983; Solomon and
Weiner, 1986; Bartelt and Privman, 1991). If a single
sites changes state at each adsorption event, we refer to
this as "monomer filling. " However, one can also allow
adjacent pairs of sites to change oo~xx corresponding
to "dimer filling, " or larger ensembles of sites corre-
sponding to "animal filling. " Unless otherwise stated, we
shall assume that the process occurs on an infinite lattice
which is initially empty. Consequently invariance under
translation and other lattice symmetries must hold.
However microscopic reversibility and detailed balance
are lost (in contrast to the above), and the average cover-
age 0 increases monotonically with time t. Thus even the
final saturation state, if nontrivial, will not be described
by a Cxibbs measure.

In the simplest case, adsorption sites are chosen ran-
domly (perhaps subject to a simple constraint, e.g., that
no neighboring pairs of filled sites are formed). Such pro-
cesses are termed random sequential adsorption (RSA).
More generally, if the adsorption rates are dependent on
the local environment, the process is naturally termed
cooperative sequential adsorption (CSA). In the latter
case, the role of cooperativity in the adsorption rates is
somewhat analogous to the role of general interactions in
equilibrium theory. These types of models are appropri-
ate for many physical, chemical, and biological processes
where the microscopic steps are e6'ectiyely irreversible
(e.g. , chemical bond formation), and where equilibration
is not possible on the time scale of the experiment. We
shall use the language of adsorption (e.g. , empty and
filled sites) for unification, although in some applications
the language of reaction (e.g. , unreacted and reacted

sites), or generic transformation (e.g. , unchanged and
transformed sites) may be more appropriate.

At this point, it is appropriate to consider a specific
physical example which highlights the distinction be-
tween a conventional equilibrium system and one which
is described by (nonequilibrium) irreversible sequential
adsorption. We shall consider two-dimensional chemi-
sorption systems where very strong nearest-neighbor
(NN) repulsive interactions effectively block the occupa-
tion of adjacent adsorption sites, and where longer range
interactions can be ignored. Furthermore we shall re-
strict our attention here to the (100) face of single-crystal
fcc substrates, where the adsorption sites form a square
lattice. If the chemisorbed species is highly mobile over
the temperature range considered, then system will be in
equilibrium and correspond to the simple hard-square
model (Gaunt and Fisher, 1965; Ree and Chesnut, 1966).
This situation is realized to a good approximation in the
chemisorption of chlorine on Ag(100) between 120 and
800 K (the latter being the desorption temperature),
where an order-disorder transition is observed at a cover-
age of 0.39 monolayers (Taylor et al. , 1984).

On the other hand, if the chemisorbed species is essen-
tially immobile for the temperatures considered, the sys-
tem is clearly out of equilibrium and the adsorption pro-
cess is to a:good approximation described by RSA with
KN exclusion (random filling of empty sites with the con-
straint that all NN must be empty). This 2D RSA model
was first applied to describe the dissociative chemisorp-
tion of HzO on Fe(100) from 300 to 470 K, via a molecu-
larly physisorbed precursor. This process results in a
disordered overlayer of chemisorbed oxygen/hydroxyl
species of saturation coverage roughly 0.4 monolayers
(Dwyer et al. , 1977). Subsequent studies suggest the re-
action mechanism, at least for lower temperatures, might
be more complicated than RSA with NN exclusion, but
they still find a disordered 0 overlayer of saturation cov-
erage 0.39 monolayers (Hung et al. , 1991).

For both these processes, we shall describe that adlayer
in terms of c(2X2) order. Here c(2X2) or "centered"
2X2 refers to the arrangement of atoms in a checker-
board pattern with no filled NN pairs. This pattern lo-
cally involves 2 X 2 arrangements of atoms with an addi-
tional atom in the center, hence the name, although the
unit cell is actually &2 X &2 rotated by m/4. Clearly this
checkerboard pattern can reside on one of two equivalent
interpenetrating sublattices.

We now contrast the behavior of these analogous equi-
librium and RSA models. Since the repulsive interac-
tions in the hard-square model are infinite, the equilibri-
um state is independent of temperature. Thus both mod-
els are parametrized by the coverage, 0, alone. The
hard-square model exhibits a continuous transition from
c(2X2) short-range order for 8(8,=0.3677 to c(2X2)
long-range order for 0&0,. As 0 approaches 0, from
below, one observes a divergence of the length character-
izing the exponential decay of the spatial correlations as-
sociated with c(2X2) order. Above 8„the population of
the two sublattices on which the c(2 X 2) structure can re-
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side becomes unequal (spontaneous symmetry breaking),
and as 0~—,

' (the maximum coverage) only one sublattice
remains populated. For RSA with NN exclusion, clearly
the lattice will fi11 until "jamming" or saturation, i.e., the
point where there are no more "adsorption ensembles" of
empty sites with all NN empty. This occurs at coverage
OJ=0.3641. Both c(2X2) sublattices will be populated
equally. Also, in contrast to the hard-square model, the
spatial correlations remain short ranged over the entire
range, 0 ~ 6 ~ 0&, and in fact decay superexponentially.

Other comparisons between the models can also be
made. At low coverages, they become indistinguishable.
This statement can be made precise by comparison of for-
mal coverage or "density" expansions for the RSA prob-
lem (see Sec. IV.F) with conventional virial expansions
the equilibrium system. Consider the probability, S(8),
of finding an empty site with all NN empty. For these
problems, S (8) can be regarded as a normalized "stick-
ing probability. " For RSA with NN exclusion, one Gnds
that (Baram and Kutasov, 1989; Evans, 1989a; Dickman
et al. , 1991)

S ( 8) = 1 —58+ 68 +—'8 ——'8"——"0

148 g6 1730 g7
9 63

Furthermore, one has that S(0)—Oz
—0 near jamming,

since in that regime each deposited particle destroys ex-
actly one adsorption ensemble of five empty sites. For
the hard-square model, virial expansion yields (Gaunt
and Fisher, 1965)

S(8)=1—58+68 +60 —8 —190 —428 —268 + .

(2)

which difFers from (1) in the o(0 ) terms, a generic
feature first noticed by Widom (1966). As an aside, we
note that (2) follows from consideration of an ideal gas of
pressure P in equilibrium with the adsorbed layer of ac-
tivity z =z(8)=8+50 +198 + . ccP. Since, in equi-
librium, the adsorption rate cPS(8) must equal the
desorption rate c'8, one obtains S(8) cc 8/P cc 0/z(8).

One could also consider the coverage dependence of
the average size (number of particles), s,„,and structure
of the c(2X2) domains. For the hard-square model,
simulations suggest that for reasonable choices of domain
connectivity, s,„diverges at 8, (Binder and Landau,

1980; Hu and Mak, 1989; Evans, 1989b). Thus the ther-
modynamic critical point and percolation thresholds
coincide in this model for these simple connectivity
choices. For RSA with NN exclusion, one finds a similar
dramatic increase in s„closeto jamming. However, s„
remains finite (but large) at jamming. Presumably its an-
alytic extension diverges at a coverage "just above" OJ.
See Sec. IV.E for a detailed discussion. In both models,
the c(2X2) domains are ramified and have "random an-
imal" structure for low coverages (Evans, 1989a). Figure
1 shows a typical configuration for both models at
0=0.364. .

Finally we note that the above models provide ideal-
ized descriptions of the physical systems. For Cl on
Ag(100), detailed experimental studies show that 8, is
shifted above the hard-square value, presumably because
of the presence of weak repulsive second-NN interactions
(Taylor et al. , 1985). Often in chemisorption systems,
one finds strong NN repulsions in combination with
weaker second-NN attractions, which tend. to enhance
c(2 X 2) island formation (and produce phase separation
at low temperatures). Likewise, in the case of chemisorp-
tion of immobile species, one does not expect the sequen-
tial adsorption to be completely random (subject to NN
exclusion). If filled second-NN slightly inhibit adsorp-
tion, then Oz will be reduced. Perhaps more likely is that
adsorption rates are enhanced by filled second-NN. This
leads to a CSA model for island-forming chemisorption
(see Sec. II.B), whose structure bears some similarity to
the above equilibrium model with attractive interactions
(but there is no long-range order or phase separation for
CSA).

In addition to the statistical mechanics of lattice-gas
models, it is appropriate to comment on continuum sys-
tems. A classic problem here involves analysis of the
equilibrium structure of a gas of hard disks in 20, or of
hard spheres in 3D (Hansen and McDonald, 1976;
Chandler, 1987). The corresponding 2D RSA problem
involves irreversible random deposition of nonoverlap-
ping disks on a planar surface until jamming or satura-
tion is achieved (Feder, 1980). It should be emphasized
that this continuum RSA model has important applica-
tion in the description of protein and colloid deposition
(see Secs. II.C and II.D). Again the RSA distribution is
not a Gibbs distribution at any time including saturation.
Many parallel generalizations of the equilibrium and
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FIG. 1. Typical configurations at 0=0.364 for
the hard-square model (just below 0, ), and
RSA with NN exclusion (at jamming). X and
Y denote filled states in domains of different
phase; O denote empty sites except along
domain boundaries, which are indicated by
solid lines for contrast.
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sequential adsorption problem are possible to include
noncircular particles, interactions or cooperativity, etc.
For noncircular particles, equilibrium structure is strong-
ly dependent on packing efFects (the van der Waals pic-
ture). A corresponding understanding of RSA structure
and kinetics is emerging.

The sequential adsorption models reviewed here can be
thought of as an example of a broad class of far-from-
equilibrium kinetic or growth models which have been
studied intensively over the last decade (Family and Lan-
dau, 1984; Stanley and Ostrowsky, 1986, 1988, 1990).
For most of these studies of kinetics and correlations,
computer simulation has been an indispen sible tool.
While this is also the case for sequential adsorption mod-
els, there is in addition a substantial base of analytic tech-
niques and results which will be described below.

II. MOTIVATIONS AND APPLICATIONS:
HISTORICAL OVERVIEW

A. Reactions on 1D polymer chains

The first extensive studies of RLCSA problems were
motivated by interest in the kinetics of irreversible reac-
tions occurring between some "low" molecular weight
reagent and the pendant or functional groups along 10
polymer chains. Cyclization reactions between adjacent
groups are also of interest. The aim is to determine the
kinetics and perhaps also the distribution of reacted and
unreacted groups, i.e., the structure of the polymer chain.
Since this subfield has been extensively reviewed by
Rempp (1976), Boucher (1978), and Plate and Noah
(1979), we shall only provide some brief comments here.

It could be argued that RSA has its origin in the work
of Flory (1939) who considered the following simple cy-
clization reaction: adjacent pendant groups along the
polymer chain randomly link, leaving a few isolated un-
reacted groups. In fact, this is just the 10 version of the
"dimer filling" problem mentioned in the Introduction
and discussed below in Sec. III.A. 1. A broader class of
"polymeranalogous" reactions are associated with the re-
action of individual functional groups along the chain. If
reaction occurs independently of other groups, then the
kinetics and statistics of the process are simple. However
in general one expects at least "neighboring-group
efFects, " for which the process is described by a CSA
model of the type mentioned in the Introduction. See
also Sec. III.A. l. Reaction can be either enhanced by
reacted neighbors (autocatalyic or zipping reactions) or
inhibited. Furthermore, if the reagent concentration g(t)
varies with time, then so do the rates which include g as
a common factor. It is however possible to simply trans-
form away this variability of the rates by adopting a non-
linear time scale s, where ds =g(t)dt.

The process of irreversible dissociation from polymer
chains is mathematically equivalent to that of irreversible
binding (with or without cooperativity), and can be ana-
lyzed accordingly (Balazs and Epstein, 1984). Another

process of interest is the binding of large ligands to
polymer chains, where binding involves M, say, contigu-
ous pendant groups (Boucher, 1973a; Epstein, 1978,
1979a, 1979b). Processes involving competitive reaction
or binding, serial reaction, and reaction on polymers with
a distribution of "defective" sites have also been con-
sidered.

B. Chemisorption and reaction on
2D single-crystal surfaces

Around the time of Flory's work, Roberts (1935a,
1935b, 1937, 1938) considered the analogous 2D problem
of random immobile adsorption of diatomics at adjacent
pairs of empty sites on a square lattice of adsorption
sites. The key question was what fraction of isolated
empty sites are created which can never fi11? A more
complicated RSA process involves competitive adsorp-
tion at single sites (e.g., of a-CO) and pairs of sites (e.g.,
of P-CO) on surfaces (Hayden and Klemperer, 1979).
Another possibility is the irreversible reaction at or be-
tween immobile groups attached to the surfaces, e.g., hy-
dration or dehydration reactions involving neighboring
hydroxyl groups (Peri and Hannan, 1960; Peri, 1965; Peri
and Hensley, 1968; Peri, 1976; Zamora and Cordoba,
1978; Cordoba and Luque, 1985). General questions in-
volving the distribution of catalytic sites have also been
considered within the context of RSA (Fuller et al. ,
1976). Irreversible thermal desorption, in the (unlikely)
absence of surface difFusion, can be regarded as RSA or
CSA of holes (Dawson and Peng, 1972; Surda and
Karasova, 1981; Geldart et a/. , 1986; Evans et al. , 1987;
Evans and Pak, 1988). Exact analysis is possible in one
dimension.

Chemisorption on single crystal surfaces, at low tem-
peratures where surface difFusion is limited, provides a
natural application of RXCSA processes, as evidenced by
the examples discussed above and in the Introduction.
Thus some further discussion of more recent develop-
ments is appropriate. We consider first cases where
chemisorption is efFectively random. Chemisorption of
large molecules, e.g., hydrocarbons, requiring some large
"ensemble" of empty adsorption sites might be expected
to provide a good example of RSA problems (Polta et al. ,
1986). Even for smaller molecules, ensemble size require-
ments may be nontrivial. They can be tested, to some ex-
tent, by monitoring saturation coverage as a function of
the coverage of some preadsorbed blocking species
(Campbell et al. , 1986). Indeed a common situation in
chemisorption systems is that the occupation of adjacent
sites is blocked, or strongly inhibited, due to either direct
steric efFects or to strong substrate-mediated nearest-
neighbor repulsions. This leads to the formation of or-
dered superlattice structures in equilibrated systems.
The simplest RSA example of this type involving random
adsorption at single sites with the constraint that no
neighbors can be occupied (monomer filling with NN ex-
clusion) was described in detail in the Introduction.
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Brundle et a/. (1984) proposed that dissociative adsorp-
tion of oxygen on Ni(100) occurs at diagonally (or next)
NN sites on a square lattice with the constraint that none
of the six neighboring sites be occupied. This same mod-
el was adopted to describe the formation of a nonequili-
brium disordered c(2X2) adlayer during oxygen adsorp-
tion on Pd(100), under conditions ensuring limited sur-
face mobility (Chang and Thiel, 1987; Evans, 1987a).

Even in the absence of thermal surface mobility, it is
conceivable that adsorbed species could exhibit transient
mobility immediately following deposition. This motion
could derive from the inability to "instantaneously" dissi-
pate energy gained upon formation of the surface bond.
It likely occurs in Si epitaxy (Dobson, 1987), and may
sometimes occur in metal-on-metal epitaxy (Evans et a/. ,
1990; Egelhoff and Jacob, 1989). Transient mobility
could also follow exothermic dissociative adsorption of
diatomics (Brune et a/. , 1992; Chang et a/ , 1988.), and
could significantly affect local ordering.

Often chemisorption is mediated by a physisorbed pre-
cursor state. Precursor species have a finite lifetime so
those adsorbed above adsorbate-covered regions might
migrate to empty regions and then chemisorb (Kisliuk,
1957, 1958). The associated sticking coefficient S(8)
tends to be initially Bat, rather than decreasing linearly
with 0 as for direct adsorption. In many chemisorption
systems, there are attractive adsorbate-adorbate interac-
tions, so the precursor binding potential U should be cor-
respondingly enhanced near island edges. Thus if the
precursor is equilibrated, its density p-e " and the
chemisorption rates (which are proportional to p) should
also be enhanced near island edges (Hood et a/. , 1985).
The associated island-forming process is then
incorporation- rather than difFusion-limited, with rates
depending on the local environment, i.e., an example of
2D CSA (Evans et a/. , 1988).

C. Deposition of macromolecules
and microscopic particles

For adsorption of sufticiently large molecules, the
periodic lattice structure of the substrate is irrelevant.
Furthermore, the nonequilibrium nature of the process is
often evident due to the obvious irreversibility of adsorp-
tion and lack of surface mobility. Thus adsorption of
proteins on solid surfaces (MacRitche, 1978; Feder and
Giaver, 1980; Ramsden, 1993), of particles on a biologi-
cal membrane (Finegold and Donnell, 1979), of latex
spheres on a silica surface (Onada and Liniger, 1986), and
of colloids in general (Adamczyk et a/. , 1983; Privman,
Frisch, et a/. , 1991) have been modelled as, and have
motivated study of, 2D continuum RSA.

Implicit in the RSA model is the assumption that after
any failed attempt to deposit due to overlap, the particle
is removed, or equivalently, its position is randomized"
before another adsorption attempt is made. Both this
feature, and the initial random selection of position for
attempted adsorption, might be regarded as somewhat

unrealistic for the above processes involving adsorption
from solution. Here transport of particles to the surface
is diffusive and might be more appropriately modelled as
a Brownian walk. One might then expect that a failed
adsorption attempt, due to overlap, would be followed by
other nearby attempts to adsorb. Indeed a heuristic
treatment of this effect reveals that it produces asymptot-
ic kinetics quite different from that of the simple continu-
um RSA model (Schaaf et a/. , 1991). Surprisingly, recent
simulations of this more realistic process on a 1D sub-
strate revealed a jammed state indistinguishable from
that of 1D car parking (Senger et a/. , 1991, 1992).
Differences must however exist due to the (weak)
inhuence of adsorbed particles on subsequent adsorption.
See Senger et a/. (1993). Another important feature, ig-
nored in the simple RSA model, is the significant effect of
interactions. These introduce cooperativity into the ad-
sorption process which can, e.g. , dramatically lower the
jamming coverage (Adamczyk et a/. , 1990). See also
Bafaluy et a/. (1993). We shall comment on multilayer
colloidal deposition processes in Sec. II.E below.

D. Biological, ecological, and sociological systems

Another area of applicability is biological growth and
spreading (Jager et a/. , 1980), and specifically epidemiol-
ogy (Bailey, 1975, 1980). In Sec. III.D, we shall describe
continuum grain growth models where grains nucleate
randomly in space, and thereafter expand at a constant
rate. CSA provides natural lattice analogues of these.
One expects that these models may be useful for describ-
ing the spatial features of the irreversible spread of
disease or epidemics. Indeed these models would corre-
spond to the simple epidemic process where there is no
recovery and ultimately all susceptibles become infected
(Bailey, 1975). They furthermore correspond to models
where spreading is achieved by spatial contact (Mollison,
1977; Bailey, 1980), rather than by a diffusion mecha-
nism. The range of "contact" is variable, just as is the
cooperativity range in CSA. , The dependence of velocity
of spreading on the contact distribution is of primary in-
terest. A simple single-cluster lattice spreading model in
this case was developed by Eden (1961). It can be
thought of as RSA at island perimeter sites, and will
often be referred to in the following sections. General
epidemic processes include recovery (Bailey, 1975) which
allows for the possibility of complicated critical behavior
(Harris, 1974; Grassberger, 1983), just as adsorption-
desorption models can exhibit more complicated
behavior than R8cCSA models.

The 2D continuum RSA models have also been used to
describe spatial patterns in ecological systems. The asyn-
chronous settlement of territories, e.g., by nesting birds,
has been modeled as RSA of disks. Specifically, terri-
tories correspond to the Voronoi division of space associ-
ated with the centers of disks in the jammed state. Nest
centers might be chosen randomly within the Voronoi
cells (Hasegawa and Tanemura, 1980; Tanemura and
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Hasegawa, 1980). One refinement involved consideration
of RSA with difFerent sized disks (Bartlett, 1974). Final-
ly, we note that one can find more obscure applications of
RSA to the modeling of information density (Dolby and
Solomon, 1975), and even of election results (Itoh, 1978,
1980; Itoh and Ueda, 1979).

E. 3D solid state and moltilaYer growth processes

Jackson and Montroll (19S8) considered the 3D ana-
logue of the Flory dimer filling problem in the context of
recombination of free radicals in a quasicrystalline ma-
trix. More generally, one could imagine a variety of pho-
tochemical (Schmidt et al. , 1976) or radiation induced
processes, topochemical processes, or geometrical trans-
formations in solids which occur essentially irreversibly
with rates determined by the local environment (Boldyre-
va and Salikhov, 1985; Boldyreva, 1987).

Far-from-equilibrium epitaxial growth models have re-
ceived much recent attention, primarily from the per-
spective of their kinetic roughening properties (Meakin,
1987; Vicsek, 1990; Family, 1990; Krug and Spohn,
1991). A number of these constitute simple multilayer
generalizations of RSA and CSA models. These include
restricted solid-on-solid models, single-step models, and
models involving random deposition at specified adsorp-
tion sites. Incorporation of realistic adsorption site
geometries and deposition dynamics into such models al-
lows reasonable description of experimental results for
low-temperature metal-on-metal epitaxy (Evans et al. ,
1990; Sanders and Evans, 1991). The key strategy in elu-
cidating the asymptotic behavior of these microscopic
models is to postulate that, in a coarse-grained picture,
their evolution can be described by a suitable stochastic
partial differential equation. This might have the form of
a linear Edwards-Wilkinson equation (Edwards and
Wilkinson, 1982), or a nonlinear Kardar-Parisi-Zhang
equation (Kardar et al. , 1986). Properties of the former
are readily deduced from a simple Fourier-type analysis.
However, the latter can only be treated by more compli-
cated renormalization-group type techniques (or numeri-
cal analysis).

Recently there have been investigations of the essen-
tially irreversible growth of multilayer deposits of col-
loidal particles, from unstable or marginally stable co1-
loidal suspensions (Ryde et al. , 1991; Bartelt and Priv-
man, 1991). The latter conditions facilitate multilayer
rather than monolayer deposition. In contrast, most pre-
vious studies examined monolayer adhesion mediated by
diff'usion and convection. Multilayer RSA models incor-
porating blocking or jamming (e.g. , dimer filling) have
been applied to study details of the kinetics, and varia-
tion of the density of the deposit with height.

III. BASIC MODELS

We now provide a detailed analysis of two basic
sequential adsorption models on lattices which have in-

structional value and historical significance. Two related
continuum models are also discussed at some length.

A. The random dimer filling problem

Here adjacent pairs of sites on the lattice are selected
at random, and filled only if both are empty. During this
process, isolated empty sites are created which can never
fill [Fig. 2(a)j, so 8(t = ao)=OJ (1. Thus both the kinet-
ics and the "jammed" saturation state are nontrivial.

1. The one-dimensional problem

First we show how information on the saturation
statistics for this problem can be obtained by a simple
combinatorial analysis. Specifically we describe the origi-
nal treatment by Flory (1939) of random dimer filling on
a finite linear lattice of N sites. I.et S& denote the aver-
age number of empty sites at jamming. The key is to
note that after the first dimer is placed on the lattice, one
is left with random dimer 611ing problems on two smaller
disconnected lattices of n and &—n —2 sites, say. Thus
one has

where we have averaged over all erst landing sites. Solu-
tion of this recursion relation shows that S~/X~e, as
N —+ ~. Page (1959) went further to define P(i, N) as the
probability that the ith site of 1V remains vacant at satu-
ration, and set P(m)=P(m, m). He noted that

P (i,N) =P(i)P(N i)—
P(m)=[P(1)+ +P(m —2)]/(m —1)

The last result simply averages over all possible landing
positions of the first dimer, exploiting Flory s idea. This
relation can be solved, noting that P(1)=0 and P(2) =1,
to obtain P(m) = g„:0'( —I )"/r! which approaches e
as m ~~. This result demonstrates the super exponen-
tial decay of edge effects on a semi-infinite lattice: the
probability that the ith site from the edge is empty
satisfies P(i, ~)=P(i)e ' which approaches e, faster
than exponentially, as i~ ~. We shall comment on the
treatment of edge efFects via hierarchical truncation in
Sec. IV.B.

Next we describe in detail the rate equation analysis

AL l4

0
AL1F

FIG. 2. (a) Dimer filling on a 1I3 lattice, ' (b) dirner filling on a
square lattice. Isolated empty sites, which can never fill, are
shown as "o".
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for this process on an infinite one-dimensional lattice.
Let P„=P„.. ., denote the probability of finding a string
of n empty sites or empty n-tuple (which could be part of
a longer string), so P, =P and 8=P„=1 P—i. Then one
has (Cohen and Reiss, 1963)

P„=—k(n —1)P„—2kP„+i for n ~1 .
d
dt

(3)

P„(1)= —k (n —1)P„(l)—kP„+, (l)

kP„+, (I —1)—k (—I —1)P„(l)
kP„+,( I —1 )

—k—P„+,( I),
for l ~2 and n, m ~ 1. The first, second, and third terms
correspond to landing completely within, overlapping the
left end, and overlapping the right end of the empty n-
tuple, respectively. The fourth, fifth, and sixth terms cor-

Here k denotes the rate of adsorption attempts; the first
term corresponds to adsorption completely within the
empty n-tuple, and thus is absent when n = 1; the second
term corresponds to adsorption partly overlapping the
ends, thus requiring one extra empty site. One should
note that the generic form of (3) applies for all n ~ l.
By inspection, one sees that the identity
P„=exp[—(n —1)kt)Pi is consistent with (3) for an ini-
tially empty lattice. Substituting this identity for P2 in
terms of P, into (3) for n = 1 yields the closed equation,
dP, /dt = —2k exp[ —kt]P„for P, . Integrating yields
P, =exp[2e "'—2]. Thus the coverage 8=1 P, satu--

rates at OJ=1 —e =0.86466472. This is the famous
result of Flory (1939), obtained by combinatorial tech-
niques above. The normalized "sticking probability",

d 8/dt
d8/dt!, =0

'

which equals P2 here, can be written as

S(8)=(1—8)[1+in(1—8)/2],
for 8 ~ 1 —e, so S (8z ) =0. It is interesting to note that
the analytic extension of S(8),'for 8)8J, also has a zero
at 0=1.

It should be emphasized that the above results do not
constitute a complete solution to this 1D problem. More
detailed information about the distribution of filled and
empty sites might be of interest, e.g., the spatial pair
probabilities or correlations, and the distribution of
lengths of strings of filled sites. %e show below that, for
this process, all such quantities are determined by the
pair probabilities. Thus it is appropriate to present the
derivation of the latter quantities in some detail. First let
P„(l)denote the probability of finding an n-tuple and
an m-tuple of empty sites separated by l lattice vectors,
so P„(1)=P„+using the above notation. Then ac-
counting for all ways that dimer filling can destroy this
configuration, one obtains (Wolf, 1979; Evans, Burgess,
and Hoffmann, 1984)

for l ~2 . (5)

Equation (5) can be readily solved by a generating func-
tion or z-transform technique (Jury, 1964), together with
a "boundary condition" for P»(1)=Pz=e xp[

—kt]P„
to obtain

/ —1

Pi i(l)=P, g (lnP, )"/k!+—(lnP, )'/I!
k=0

(6)

If P„„(l)denotes the pair-probability of finding two
filled sites separated by l lattice vectors, we define the as-
sociated pair correlation by C„„(l)=P„„(l)P„~O—, as
l ~ oo. If, C, ,(l)=P, ,(l) —P„then one should note the
exact identity C„„(I)=C, ,(l) =C(I), say. Our results
above for the P»(l) =P, ,(I) show that

C(l)= P, —(lnP, )"/k! +—(lnP, )'/I!
k =1+1

i.e., the asymptotic decay of the spatial correlations is
super exponential.

It is instructive to describe the solution of the above
problem in the language of (empty site) shielding or Mar-
kov properties, since this provides a unifying framework
for the treatment of general R&CSA problems. One nat-
urally introduces appropriate conditional probabilities,
e.g. , Q,&=P«/P, denotes the probability of finding an

empty site "o", giUen an adjacent empty site

Q,&&
=P„,/P„,etc. It will also be useful to define con-

ditional probabilities Q„=P„+,/P„of finding a single
empty site given an adjacent empty n-tuple. Then follow-
ing Vette et al. (1974), the rate equations (3) can be rear-
ranged to yield

d lnQ„=—k —2k(Q„+,—Q„) for n ~1 . (7)

Clearly (7) has the solution Q =Q =e "' for all n ~ 1,
and in fact one could argue that Q is the natural variable
for this model. This recovers our previous solution after
substituting P2 =QP, into (3) for n = 1. In physical
terms, this result shows that a single empty site shields
sites on one side from the inhuence of those on the other.
Strictly speaking, this property should also be confirmed
for Q's associated with disconnected empty
configurations, e.g., Q & &=Q,&, which implies its va-

lidity for all configurations (using probability conserva-
tion relations). From a different perspective of renewal
processes, we note that the distance from one "o" to the
next "o" (to the right, say) is independent of the distance

respondingly refer to the empty m-tuple. By inspection,
these equations are consistent with the identity

P„(l)=exp[—(n +m —2)kt]Pi i(1) for n, m ~ 1 .

This observation can be used to obtain the (infinite)
closed coupled set of equations,

d P, , (l)= 2k—exp[ —kt][P, , (l)+P, , (l —1)]
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to the previous "o" (to the left). One should contrast the
above "o-Markov" shielding property with the standard
Markov shielding property of the 1D Ising model (where
either a single empty or filled site shields). Finally we
note one very important consequence of the o-Markov
shielding property. Since a single empty site shields in
this problem, probabilities of filled strings (and all other
quantities) are determined by just P„andprobabilities for
pairs of empty sites with various separations, e.g. ,

Pxxxxx = 1 5Po +4Poo +3Po-o +2Po—o +Po—-o

—3P —P ~ ~ 4

000 o-o-o

where

P...=P, ,P, , /P, , etc.

2. Higher-dimensional problems

d
P[n) kd[n[P[n) k X dj, [n[~j +[n[ (8)

Next we discuss random dimer filling on a general lat-
tice. Here the rate equations can be written in a remark-
ably succinct form as follows. Let In } denote some
configuration of n sites, and PI„~ the probability of
finding all sites in I n} empty. Let d[„[denote the num-
ber of adjacent pairs contained within I n }, and

dj [„[=dj+[„)—d [„)denotes the number of sites in I n}
adjacent to site j. Then the rate equation for PI„Ihas the
form (Vette et al. , 1974; Nord and Evans, 1985)

consistent with the rate equations (9). See Evans and
Nord (1985) for some examples on a square lattice where
the shielding wall must be connected by NN or second-
NN bonds. By comparison, the 2D Ising model satisfies
a Markov-field property: a separating wall of either filled
or empty sites of thickness one shields. Given this nota-
tion, the adlayer statistics for this random dimer filling
problem could be described as an o-Markov field.

The first systematic implementation of approximate
truncation in higher dimensions was in fact by Vette
et al. (1974) in the treatment of random dimer filling
problems. Here one naturally works with the Q hierar-
chy (9), and implements truncation Q. [„[~Q [„.[, where

t n '
} C: I n } is obtained by neglecting the influence of con-

ditioning 6 sites in [n} "further" than some cutoff dis-
tance from j. However, ideally, the calculation of dis-
tance should be tailored to reflect the (o-Markov) empty
site shielding property: the efFective distance between the
empty site j and a i[[ site in [ n } should be that of the shor-
test "unshielded" path which is not blocked by other 6
sites (Nord and Evans, 1985). Thus in the case of a
square lattice, the effective distance from the o site of the
right-most i[[ site in

Q &, Q &&, Q &
is 1, 4, 6, respectively .

Ol|['6

We now illustrate these ideas with examples of low-
order (shortest unshielded path) truncation for random
dimer filling on a square lattice [Fig. 2(b)]. Here (9) im-

plies that

In (8) we have simply accounted for all ways of destroy-
ing the configuration of n empty sites by a dimer landing
completely within In} [the first term in (8)] or partly
overlapping I n } [the second term in (8)]. These equa-
tions are complicated relative to their ID analogues by
the fact that must consider all shapes of empty
configurations. It should be no surprise that exact solu-
tion is not possible. Instead one must resort to analysis
via approximate truncation of this hierarchy, or formal
expansions (see below).

Before describing one strategy for truncation, we dis-
cuss a shielding property of (8) entirely analogous to that
for the 1D case. First we introduce the conditional prob-
ability, Q [„[=P + [„)/P[„[,that site j is empty given
that sites [n } are empty. Then one obtains from (8) the

Q equations

d
lnQj, [n[

= kdj, [n[ k g di j+[n[Qi j+[n[
i g j+InI

di, [n [Qi, [n )
i & InI

Using these equations, one can show that a wall of empty
sites of thickness one which separates the lattice into two
topologically disconnected parts, shields sites on one side
from the inhuence of those on the order. The strategy is,
as above, to show that the associated Q equalities are

dt
lnQ = —4kQ

Ogf

lnQ, ~
= —k —2kQ, ~q

—4kQ ~+4kQ,~,
ogf

(10)

In the first-order approximation, Q &
and Q &~Q &

in

opt

the second equation, yielding a closed equation for Q,&.

Solution, substitution into the first equation, and subse-
quent integration yields the estimate Hz=8/9=0. 8889.
In the second-order approximation, a closed set of equa-
tions is obtained for Q„Q,&, Q &

and Qz, which after in-

OQ og

tegration yield OJ=0.9019. It should be noted that the
number of Q's associated with the approximate trunca-
tion scheme increases dramatically with the order of the
truncation (i.e., the cutoff distance). For higher orders, it
is necessary to automate generation of the associated rate
equations (Burgess, 1982; Nord and Evans, 1985; Nord,
1986). The third- and fourth-order approximations re-
tain 24 and 766 Q's, and yield the estimates 8J=0.9036
and 0.9064, respectively (Nord and Evans, 1985). These
approximations clearly converge with increasing order of
the truncation to the "exact" simulation value of

Rev. Mod. Phys. , Vol. 65, No. 4, October 1993



J. W. Evans: Random and cooperative sequential adsorption 1289

d B

t 2

dP„ 4(P„—+2P„,+4P, )—+ —4 X7, (11)
dt

OO

d B d= —4 (P„+2PO,+4P,~)
dt dt

=4(P„+6P„,+12P, +14P„„+ )~4X67,
OO

as t —+0. Consequently, one obtains the Taylor expansion

7 2 67 3 803 4 114672!'+ 3I' 4i
'+

5!

so

dB 67 2 803 3 11467

8J =0.9068 (Nord, 1991). We should also mention earlier
truncation calculations by Vette et al. (1974) predicting
BJ=0 903, 0 880, and 0 915 for square, 3- and 6-
coordinated hexagonal and triangular lattices, respective-
ly.

Finally we use the example of random dimer filling on
a square lattice to illustrate the general technique for
RSA (or CSA) of deriving formal expansions in time or
coverage for quantities of interest. For this problem
(with k = 1), one has

dB =4P„-+4,
dt

(a)
iik2 ok( oko

4&I 2&~—
I -~j

41 ILL 4E 411F iF %F
JE it JE it

gv gr
BL 4E JE 4L gLlF 1F %F lF
8L 4L gL~ 0 & ~ ~ 0 ~"

g I i & I I I —'(—'—.—$i-
ks kg ko

Furthermore, since each deposited dimer destroys exactly
one empty pair near jamming, one has 5P„:6B=——,':2
[there are two pairs per site on the square lattice] and
thus S(8)-(8z—8)/4.

B. Monomer filling with nearest-neighbor
cooperative effects

Here single sites on a lattice are filled at rates which
depend on the state of the neighboring sites (Keller,
1963). Rates might be either enhanced or inhibited by
neighboring filled sites. The former leads to clustering or
island-forming processes with competition between birth,
growth, and coalescence of islands.

FIG. 3. Monomer filling with rates k;, determined by the num-
ber i of occupied NN sites: (a) on a 1D lattice, and (b) on a
square lattice. Con6gurations are indicative of clustering rates.

(12)

Eliminating t from (12) finally yields for the normalized
sticking coefficient,

S(8)= =P„,d 8/dt
d8/dt, =

the expansion

1. The one-dimensional problem

Let ko, k&, and k2 denote the rates for filhng sites on
an infinite 1D lattice with 0, 1, and 2 filled neighbors, re-
spectively [see Fig. 3(a)], and P's denote the probabilities
of various subconfigurations of specified sites. Then one
has (Keller, 1963)

d
dt ' dt

= —k2Pi —2(k, k~)P~ —(ko —2k—i+k~)P3,
(14)

dt " dt

= —[(n —2)ko+2k, ]P„—2(ko —k, )P„+& for n ~2 .

Here the meaning of various terms is clear since we sim-
ply account for all possible ways in which empty sites in
these configurations can be filled, weighting by appropri-
ate rates. The right hand sides (RHS) have been rewrit-
ten in terms of the P„using conservation of probability,
e.g. , P „=P2—P3, thus obtaining an infinite closed set
of equations for the P„.By inspection, one can see that
the identity P„=exp[—ko(n —2)t]P2, for n ~2, is con-

sistent with (14) for an initially empty lattice. Substitut-
ing this identity for P3 in terms of P2 into (14) for n=2
yields a closed equation for P2. Further substitution of
this result for P2 into (14) for n = 1 allows exact deter-
mination of P„andthus of the kinetics. In addition, it is
clear that this procedure allows exact determination of
the sticking probability, S(8), of all P„for n ~ 1, of the
island density D =P„„andof one measure of average
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filled cluster size, 0/D. However, much more work is re-
quired to determine spatial pair probabilities or correla-
tions, and the filled cluster size distribution.

Here we discuss in detail only the pair probabilities,
sketching the procedure of Plate et al. (1974), for deter-
mination of these. Consider first the rate equations for

the probabilities, P„(l),of finding an empty n-tuple and
m-tuple separated by I lattice spacings with n, m & 2 and
l & 1. Accounting for all ways of destroying this
configuration, and using probability conservation rela-
tions to rewrite the resulting terms as in (14), one obtains

P„(l)= —(kp —ki )P„+, (I)—(kp —k, )P„+, (1 —1)—2kiP„(l)
—(kp —k, )P„+i(l )

—(kp —k i }P„+,(I —1)—2k, P„(l) —kp(n +m 4)P—„() . (15)

By inspection, one sees that the identity

P„(l)=exp[ (n —+m —4)kpt]P2 z(l) for n, m ~ 2

is consistent with (15). One thus obtains a closed set of
equations for P2 z(l}, with l) 1, and P22(1)=P4. Simi-
larly one finds that P„,(l), for n ~ 2 and l) 1, couples to
itself; to P„+,i(l) and P„+,,(I —1); and to P„2(/—1),
P„z(l),and P„3(I—1). Closure of these equations com-
bined with the above Pz z(l) equations follows from the
observation that

P„&(l)= —exp[ —(n —2)kpt]Pz i (1) for n ~ 2,
as well as using above identities. Finally one must con-
sider the Pi i(I). Similarly to the above analysis, one ob-
tains a closed set of equations for P, i(l), P2, (l), and

Pz z(l), together with known quantities P„.These equa-
tions solved simultaneously yield the pair probabilities
and correlations. See Plate et al. (1974) and Evans et al.
(1984) for more details. Their solution reveals that the
pair correlations exhibit superexponential asymptotic de-
cay for all choices of rates (although for clustering rates,
this type of decay will only be observed for separations
larger than the characteristic length associated with the
clustering).

One could continue to give examples of equations for
multiply disconnected configurations where exact solu-
tion is possible. However, here we just emphasize that
the same type of coupling structure is always seen, i.e., to
configurations with the same or fewer disconnected parts,
and with the same or smaller separations. This structure
is related to the superexponential decay of spatial corre-
lations in these models. The above solvable irreversible
adsorption models should be compared with Glauber-
type adsorption-desorption models, where in addition
three corresponding desorption rates are specified. For
such reversible models, solution is only possible for a spe-
cial choice of rates (Glauber, 1963) for which 0~—,', as
t —+ oo.

As for the random dimer filling problem, it is appropri-
ate here to reconsider the above results from the perspec-

tive of (empty site) shielding. We introduce the same
conditional probabilities Q„=P„+,/P„as before. Then
the rate equations (14) can be rearranged to yield (Wolf
et al. , 1980)

lnQ, = —(2k, —k2 )—2(kp —k, )Q2

+2(k, —k2)Q, +(kp —2k, +k2)Q, Q2,
(16)

lnQ„=—kp 2(kp ki)(Q +i Q„) for n ~2 .
dt

Clearly (16) has the solution Q„=Q=exp[ —kpt] for all
n ~ 2, and Q is a natural variable for this model. Conse-
quently this model has an "oo-Markov" shielding proper-
ty (Mityushin, 1973) where an adjacent pair of empty
sites is required to shield sites on one side from the
inQuence of those on the other. This recovers the above
solution after substituting P3=QP2 into (14) for n=2.
An interesting special feature occurs if the k; form an ar-
ithmetic progression. Then (16) shows that Q„=Qfor all
n ~ 1, i.e., a single empty site (rather than a pair) sufiices
to shield (Mityushin, 1973). One can also confirm this
shielding property for disconnected empty
configurations, e.g. , Q,&& z

=Q,z&.
An alternative strategy for analysis of 1D monomer

filling with NN cooperativity was developed by Hemmer
and Cionzalez (1977). This strategy was based on the
"principle of independence of unreacted (i.e., empty)
neighbors": let P. . . «. . . be the probability of some
configuration in an infinite (or semi-infinite or finite) sys-
tem containing an empty pair, then P. . .„.. .
=P +P+ . Here e.g. P refers to a semi-

infinite (or finite) system, the right end site of which is
empty; the e indicates the absence of a right neighboring
site. It is assumed that the end site reacts with rates ko
(ki) for an empty (filled) left neighbor. Proof of this
identity follows from comparison of the rate equations
satisfied by the two quantities. Let o., 5,p, ~, . . . =o or x,
k =kp (k, ), and s =+1 ( —1) if o. =o (x), etc. Then
one has

cr5oopv. 5 k a P o.ooop~ . . k 5P o 6oopwdt p ' ' ~~«p& pk7.P . . o.5ooo~

(17)
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Clearly (17) are consistent with this identity, which is
also satisfied by the initial conditions, and thus for all
times. It is possible to use this idea to solve the rate
equations, if one in addition exploits such identities as

+ =P +P+ + and P~ ~ =exp[ —k t] to obtain a

closed set of equations for the quantities of interest. The
last result corresponds to trivial filling of a single (isolat-
ed) site at rate ko. However, this approach is rather in-
direct compared with application of the shielding condi-
tion described above.

0&0 xylo xgfx

tions, and then the Q[„![,! are factored as described
above to provide a closed set of equations for the QJ [„!.
The resulting Q equations are consistent with a shielding

property for separating walls of empty sites of thickness
2.

For the specific case of monomer filling with NN
cooperativity on a square lattice, from (18) one finds that

S(o)=—kog, —4k, g, —. —k4Q
„

2. Filling on a square lattice
= —k4 —4(k3 —kq)g, ~

—2(k2 —
2k3+ k4)g, ~,

(20)
Higher-dimensional analogues of such cooperative

filling processes [Fig. 3(b)] are perhaps of much more in-
terest, especially with rates which enhance clustering,
since now the individual growing islands have nontrivial
structure and their coalescence for higher coverages leads
to complicated correlated percolation problems (see Sec.
VI.D). Here we note that hierarchical rate equations can
be developed as above in terms of the rates, k;, for filling
sites with i filled neighbors. For a square lattice, one has
that (Evans et al. , 1983)

d
o 0 oP = —kP —4kP —. —kP1 o 4 x

S(oo)= —2kog, —6kiQ, — . —2k3Q
„

= —2k —2(k —k )Q3 odd

and consequently that

d
lng =S(o)=—k-

dt ' 4

d
dt

lng =S(oo)—S(o)= —2k +k3 4

(21)

(22)

(23)

000 Xoo

d P„= 2koP, 6k,—P, —— 2k3P„,—(18)
000 XOO

Exact analysis of these equations is not possible except
for random filling where all k; are equal (and for "almost
random filling" where ko=ki =k2=ks&k„as discussed
in Sec. V.B.3). Thus one might attempt analysis via ap-
proximate truncation of this hierarchy using an appropri-
ate factorization approximation. The approach we de-
scribe here exploits conditional probabilities and (empty
site) shielding just as in the treatment of random dimer
filling problem.

Let PI„Idenote the probability of finding n empty sites
in the configuration [nJ (as above). Analysis of this
cooperative filling problem now requires introducing con-
ditional probabilities of the form Q [

=P[ !+[„!/P[„!for finding sites in Im] empty, given
sites in j n] empty. Here Q's with m ) 1 naturally ap-
pear, however these can be factorized in terms of Q [„.!,
e.g., Q,@,=g,&&g,& =Q, Q2 [which was used in (16)] or,
more generally, Qf+J [pf! g( J+[g[QJ [n! QJ i+[g[Q4[n[.
The general procedure for deriving rate equations for the

Qj [„!is straightforward. It is clear that

Truncation can be applied to these equations as for the
random dimer filling problem, i.e., neglecting specified
empty sites more than a certain distance from the "o"
site. In general there are also consistency issues, e.g.,
that a P given by two or more distinct products of Q's is
obtained uniquely using approximate Q's from truncated
equations. This, however, is fairly easy to ensure (Evans
et al. , 1983).

3. RSA with NN exclusion

Finally we note that the process of random sequential
adsorption (of monomers) with NN exclusion or block-
ing, described in the Introduction, is a special case of
monomer filling with NN cooperativity where koAO and
k;=0, fori ~1.

In 1D, RSA with NN exclusion is isomorphic to 1D
random dimer filling. Each monomer corresponds to a
dimer on the dual lattice. Consequently the kinetics fol-
low immediately from the results of Sec. III.A. 1, and in
particular Hz=(1 —e )/2=0. 432332. However, it is
more dificult to determine the pair correlations than for
random dimer filling, since they contain more informa-
tion here. Solution of the equations for P i i P2, and
P2 2 described above in Sec. III.B.1 yields for
C„„=P»Pi the expression (Evan—s, 1989b)

»g, [„!=S(j+In])—S(In]), (19)

where S(Im])=(d/dt)P[ ! /P[ ! is first written in
terms of the Q[„![,! using probability conservation rela-

X g ~ln(1 —28)~'+ "+'/(I+2k+1)!,
k=0

(24)

again revealing explicitly the super-exponential decay. A
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detailed derivation of (24) at jamming can be found in
Monthus and Hilhorst (1991). See also Pederson and
Hemmer (1993). It is interesting to compare (24) with
the behavior of the pair correlations in the "correspond-
ing" equilibrium model, i.e., a 1D lattice gas with
infinitely repulsive NN interactions. Using the Markovi-
an property of the spatial statistics for this equi-
librium model one can easily show that
C„„(I)=(—I)'0'+'(I —8)' ', which has the characteris-
tic exponential decay, in contrasting to (24).

For RSA with NN exclusion on a square lattice, an ap-
proximate third-order truncation analysis of (19) yields
the estimate of Hz=0. 365 (Evans et al. , 1983). This
should be compared with simulation estimates of OJ by
Dwyer et al. (1977), Kertesz et al. (1982), and Meakin
et al. (1987), the latter of which is 0.36413. More recent-
ly, there have been estimates of OJ =0.36405 (Baram and
Kutasov, 1989), 0.364195 (Fan and Percus, 1991), and
0.364133 (Dickman et al. , 1991) from series expansions
of the form described in the Introduction and Sec.
III.A.2. Motivated by the surface science application,
the correlations, structure factor, and chord lengths for
disordered c(2X2) or checkerboard domains in this mod-
el have also been analyzed, and behavior compared with
that of the analogous equilibrium hard-square model
(Evans, 1989b). For a discussion of c(2 X 2) (percolative)
domain structure, see Sec. VI.E. Finally we also note es-
timates of 0&=0.379 for a 3-coordinated hexagonal lat-
tice (Evans, 1984b, 199lb), 0.23136 for a 6-coordinated
triangular lattice, 0.304 for a cubic lattice, and 0.264 for
a 4D hypercubic lattice (Meakin et al. , 1987).

C. The continuum RSA or car parking problem

1. The one-dimensional problem

It is instructive to first consider generalizations of the
1D random dimer filling problem described above, where
contiguous stretches of empty sites are filled randomly,
M at a time, rather than just in pairs. In the limit as
M —+ac with appropriate rescaling of length and time
(Gonzalez et al. , 1974; Hemmer, 1989), one recovers the
classic "car parking problem" wherein unit intervals are
placed sequentially at random on the infinite line (at rate
k per unit length, say), subject to the constraint of no
overlap (Renyi, 1958, 1963). See Fig. 4(a). One can also
analyze this problem directly in a way entirely analogous
to the treatment of the lattice problems above. Let P(x)
denote the probability of finding an uncovered or empty
interval of length x (which could be part of a longer emp-

(a)

FIG. 4. {a) Continuum "car parking" of unit length intervals on
the line; {b) jammed state for RSA of aligned squares in the
plane {Finegold and Donnell, 1979).

OI

—k(x —1)P(x)—2k f dy P(y) for x ) 1 .

(25)

For x ~ 1 (x ) 1), the first term accounts for various ways
of landing completely overlapping (completely within)
the interval of length x. In both cases, the second term
corresponds to landing partly overlapping the interval of
length x. By inspection one can see that the identity,
P(x)=exp[ —k(x —l)t]p(1) for x ) 1, is consistent with
(25) for an initially empty lattice. This immediately al-
lows solution for P(1) from (25) with x= 1. Using (25)
with x=0, one can then determine the time dependence
of the fraction of the line filled,

0(t)=1—P(0)
= f diJ exp[ —2 f du (1—e ")/u]~0. 747 597 92,

0 0

as t ~~ (Renyi, 1958).
One can extend this analysis to consider pair probabili-

ties, analogous to the treatment of lattice problems
above. One thus introduces probabilities P(x,y;l) for
finding empty intervals of length x and y, separated by an
interval of length I (of unspecified state). If x,y) 1 and
I & 1, one obtains

ty stretch). Then the rate equations for P(x) have the
integrodifFerential form

d 1+x
dt

P(x)= —k(l x)P(1)—2k—f dy P(y) for x ~1,

P(x,y;l)= —k(x —1)p(x,y;I) —k f dz P(z,y;I) —k f dz P(z,y;1 —z+x)

—k(y —1)p(x,y;]) k f dz p(x, z;I}—k f dz p(x, z;l ——z+y) . (26)
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These can be solved since the RHS involves only known
quantities. Finally the pair probabilities P(0, 0;I) for
finding two points empty separated by I & 1 have the form

d P(0,0;I)= —2k f dx P(1,0;I —x),1

0
(28)

and thus can be solved since the RHS is known. Since
the coupling structure of these equations resembles that
of the lattice problems above, one expects superexponen-
tial decay of spatial correlations. No detailed analysis of
these equations has been performed to date.

We next briefly reconsider the 1D car parking prob-
lem, presenting the analysis in a way which further
unifies lattice and continuum problems by emphasizing
the common underlying shielding properties. Extending
the treatment of Wolf (1979) and Schaaf and Reiss (1988),
we define Q( ~

xx)=P(x +x')/P(x') to be the condition-
al probability that an interval of length x is empty (un-
covered), given that an adjacent interval of length x' is
empty. Then, from (25), one can readily obtain the equa-
tion

By inspection, one can see that the identity

P (x,y; I)=exp[ —k (x +y —2) ]P (1, 1;l)

is consistent with (26). If 0&1& 1, it is not possible for
the interval between empty stretches of any length x and
y to be filled, so P(x,y;l)=P(x +l +y), which is known
from above. Consequently, (26) provides a closed
integrodifferential equation for P (1, 1;I) with l & 1, which
can be solved first for 1 & l &2, then for 2 & l & 3 using
this result, etc. The rate equations for pair probabilities
P(0, 1;l) for a point and a unit interval, separated by
I & 1, to be empty have the form

d P(0, 1;l)=—k f dx P(1, 1;I —x)
0

—k f dx [P(l,x;I)+P(l,x;I —x+1)] .
1

(27)

X(r)=t—

and dN/dt =1 crier t+ . —, where q2(R) denotes the
area of overlapping exclusion disks with centers separat-
ed by R. Inverting (30) for t in terms of the coverage
O=~R X, and substituting into the temporal expansion

(a) (b)

1993). See Fig. 4(b). An interesting conjecture of Palasti
(1960) claims that the fraction of space filled in the final
jammed state in the d-dimensional problem equals that of
the 1D problem raised to the dth power. This conjec-
ture, although not valid, is remarkably accurate especial-
ly in 2D where simulations find a jamming coverage of
Oz =0.562009+0.000004 (Brosilow et al. , 1991) com-
pared with Palasti's estimate of (0.747 598) =0.558903.
Another natural higher-dimensional analogue involves
RSA or parking of disks on the plane (or hyperspheres in
R ), for which simulations in 2D show that
OJ =0.5472+0.002 (Hinrichsen et a/. , 1986).

For both these problems, we are interested in the
kinetics of adsorption, and specifically in the asymptotic
kinetics of the approach to jamming. Let us first show
how formal expansions in time or coverage can be ob-
tained entirely analogously to the lattice RSA problem.
Consider the RSA of disks of radius R at rate 1 per unit
area. If N denotes the number density of adsorbed disks,
then dX/dt equals the probability 0 that no disks have
centers within the "exclusion zone" of radius o. =2R cen-
tered on the point of adsorption. Now d X/dt =dO/dt
involves the integral over the probabilities of larger emp-
ty regions required for adsorption of the center of a disk
in the exclusion zone. One could continue to derive rate
equations for these larger configurations, thus generating
an infinite hierarchy (see Fig. 5). Initial values of
d "X/dt" are simply given by (multiple) integrals over
areas which appear on the right-hand side. One thus ob-
tains the Taylor expansions

f dRq2(R)
mo 2+ IXI &a 3 (30)

2I

d 1

dI;
InQ(x~x') = —kx —2k f dy [Q (y~x +x') —

Q (y~x')]
0

for x' & 1, (29)

analogous to (7). Clearly the solutions can be consistent-
ly chosen to satisfy Q(x~x')=Q(x~1) for x'&1, so then
(29) implies that Q (x

~
1)=e " ' for an initially empty

line. This recovers the above Renyi solution after substi-
tuting P (y + 1)= Q (y ~

1)P(l) into (25) for x = 1. Howev-
er, here we emphasize that the equality Q(x~x')=Q(x~ 1)
for x' ~ 1 constitutes a shielding property for empty unit
intervals on the line.

d
dt

dt

d—N =
dt

dR /

d
dt

d
dt

~iI= 4'

2. Two-dimensional problems

In one higher-dimensional analogue of 1D car parking,
aligned squares are randomly deposited on the plane (or
aligned hypercubes in R ), again subject to the constraint
of no overlap (Solomon and Weiner, 1986; Bonnier et al. ,

FICz. 5. Schematic of the hierarchical equations for RSA (a) of
disks on the plane, and (b) of monomers on a square lattice with
NN exclusion. Probabilities of configurations of overlapping
exclusion disks (free of disk centers), or of empty lattice sites,
are denoted by the configurations themselves.
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the distribution, p ( A, t, ), of created areas A -h satisfies

p( A, t, )= p(h, t, )- A
dh

These holes are filled at a rate proportional to their area,
so

p(A, t)= —cAp(A, t) for large t .
dt

(31)

FIG. 6. RSA of disks of radius r Larger dashed-circles of ra-
dius 2r define the excluded area for the centers of subsequently
deposited disks. At late stages, typically adsorption of centers
is confined to small quasitriangular regions created with um-
formly distributed heights h.

for de/dt, yields a density expansion for the adsorption
rate, dN/dt =1—48+ . . We note here that difFerent
approaches to obtaining these expansions have been de-
scribed by Widom (1966, 1973), Schaaf and Talbot (1989),
and Dickman et al. (1991). A general formalism based
on a Kirkwood-Salsburg-like hierarchy for the n-particle
distribution functions has also been developed (Tarjus
et al. 1991).

Finally we describe a technique for analyzing the
asymptotic kinetics, the basic idea of which originated
with the work of Pomeau (1980) and Swendsen (1981).
One thinks heuristically of the process occurring through
"early stage" configuration building, where large holes
are filled up, and "late stage" slower filling of small
disconnected holes into which only one object can fit.
For deposition of disks on the plane, these small holes,
taken as the region in which the center of the disk can de-
posit, are roughly triangular in shape (Fig. 6), and are
created with an almost uniform distribution, p(h, t, ), of
heights, h. Here t, denotes a typical creation time. Thus

Thus p ( A, t) = A ' exp[ —cA (t t,—)], and since each
small hole is eventually filled by exactly one disk, we con-
clude that

(32)

Simple extension of these arguments shows that for park-
ing of d-dimensional hyperspheres, t ' is replaced by
t ' ", and for aligned d-dimensional hypercubes by
(lnt)" '/t (Swendsen, 1980). The divergence of the pair-
correlation function at contact in the saturation state can
also be analyzed using the above approach (Pomeau,
1980; Swendsen, 1981).

D. Grain growth models

1. Continuum models

Let us return to consideration of 10 monomer filling
with NN cooperativity in the regime of strong clusteririg
o.=k, /k0&)1. The average island size increases like
a'~ at fixed coverage (Evans et al. , 1983), so the fluctua-
tions which increase with the square root of size become
less significant. Thus in the limit as a —+Do, with ap-
propriate rescaling of length and time, we obtain a 10
continuum grain growth problem [see Fig. 7(a)]: grain
nucleation or birth occurs randomly at constant rate I on

i 0'I

Q
~Qg Q Q0

FIG. 7. Kolmogorov grain growth models (a)
in 10, with grain nucleation positions indicat-
ed by dots, and (b) in 2D. Locations of im-
pingement of grains are also indicated by lines
(although these are "invisible" if grains truly
merge).
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1 —0(t) =exp —J dt'I (t') V(t —t')
0

(33)

The most common cases involve: (i) continuous nu-
cleation at constant rate, I(t) =I ("Avrami models" ), or
(ii) nucleation about randomly distributed seeds of densi-
ty e, where I(t)=e5(t) ("cell models" ). Also typically
the expansion velocity is constant, U, and then for case (i),
Eq. (33) yields

1 —0(t)=exp[ ISd(vt)"+'l(d +1)],— (34)

i.e., kinetics rejecting the induction period of grain nu-
cleation. "Scaling" of the characteristic time and length
with deposition and expansion rates follows from simple
dimensional arguments (Yamada et al. , 1984; Axe and
Yamada, 1986; Ohta et al. , 1984).

More detailed information on the spatial distribution
of transformed area is of interest, perhaps most impor-
tantly the spatial pair (and n-point) correlations. Sekimo-
to (1984, 1984b, 1986) calculated these exactly, extending
the procedure described above. For the probabilities that
pairs of points are untransformed at time t, no nucleation
events can have occurred within a distance R (t t') at-
time t' & t of either of these points. If these two "space-
time causality cones" do not overlap, then there is no

the line (a Poisson process), followed by expansion of
grains at constant speed U about their nuclei; growth
ceases when grains impinge (Kolmogorov, 1937; Avrami,
1939, 1940, 1941; Johnson and Mehl, 1939). Higher di-
mensional grain growth problems [Fig. 7(b)] are also nat-
urally achieved as strong clustering limits of appropriate
cooperative lattice filling problems. For example, for
61ling with NN cooperativity, the rates can be chosen to
satisfy k, /ko=a)) 1, for i ~ 1. In this case, the indivi-
dual islands before impingement are Eden clusters (Eden,
1961), which are asymptotically almost hyperspherical
(Wolf, 1987) and expand with constant average speed.
[The asymptotic growth velocity of Eden clusters on a
square lattice differs by a couple of percent in the (10)
and (11) directions. ] Thus in the corresponding grain
growth model, nucleation again occurs randomly at con-
stant rate, followed by expansion of almost circular (or
hyperspherical) grains at fixed speed (until impingement).

In the most general d-dimensional versions of these
models, grains are nucleated randomly at rate I(t) in
continuous space. After nucleation, grains of hyper-
spherical (or some other) shape expand, transforming or
"filling" space with speed U(5t), where 5t denotes the
time since nucleation. In order for the origin to be un-
converted (or "empty") at time, it is necessary that no
nucleation events have occurred at time t'&t within a
distance R (t t')= f 0

'ds—U(s) of the origin. Thus no
nucleation can occur within a hypersphere of volume
V(t t')=VdR(t —t')" at th—is time, where Vd is the
volume of the d-dimensional unit hypersphere. Given
the Poisson nature of the nucleation process, it follows
immediately that the probability for the origin to be un-
converted at time t equals (Ohta et al. , 1987)

correlation between the occupancy of the points. If they
do, then the pair probability is "enhanced". The most
dramatic consequence of this observation is that the pair
correlations have strictly finite range (at finite time). This
should be anticipated since the propagation of correla-
tions is limited by the 6nite grain growth velocity. These
models can easily be extended to consider the growth of
nonhyperspherical grains, and possibly mixtures of
shapes (Sekimoto, 1984). In the simplest models, grains
have a single type or "phase" (they are nondegenerate),
so they merge upon impingement. One can also consider
cases where grains have finite (Ohta et al. , 1987) or
infinite (Axe and Yamada, 1986) number of phases,
p ~ ao, and grains of diferent phase form a grain or anti-
phase boundary upon impingement.

Characterization of the real-space structure of
transformed regions in continuum grain growth models,
particularly for the case of infinite degeneracy, p = ao,
has relied on ideas from stochastic geometry (Getis and
Boots, 1978). For p = 00, the final (t = oo ) partition of
space via grain boundaries is called a random cell pat-
tern, tiling, tessellation, or mosaic (although the last two
terms are often reserved for partitions into polyhedra).
For grain growth at constant rate about seeds (the cell
model), a conventional Voronoi-Dirichlet polyhedral
tessellation results. For the Avrami (or Johnson-Mehl)
model with continuous nucleation, the edges of the re-
sulting cells are hyperbolic sections. The average number
of edges and neighbors for each cell, and many other
features, are of interest. If grains have a finite number of
phases or degeneracy, the above ideas are useful in assess-
ing the degree of coalescence upon impingement, as are
ideas from map coloring problems (Saaty and Kainen,
1986).

At this point, it is appropriate to comment on the rela-
tionship between the behavior of the continuum grain
growth models described here and that of the corre-
sponding strongly clustering lattice CSA models. The
kinetics of the lattice models, and the scaling of charac-
teristic times and lengths, will clearly reduce to that of
appropriate continuum models. The relationship be-
tween the spatial correlations is more subtle. In the lat-
tice models, one expects the pair correlations to exhibit
the same form as those of the corresponding continuum
model for separations comparable to the correlation
length. However for larger separations where the contin-
uum model correlations are identically zero, the lattice
model correlations will instead have crossed over to their
superexponentially decaying tail (Evans et al. , 1988;
Evans, 1991a).

2. "Semideterministic" lattice models

It is instructive to consider a class of lattice models
which bridge the gap between the continuum grain
growth and lattice CSA models (Evans et al. , 1986). In
the simplest such models, nucleation or birth of islands
occurs randomly at constant rate k0 at lattice sites.
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However growth of islands is now deterministic rather
than stochastic: islands of fixed shape expand with con-
stant speed, incorporating and filling sites within their
perimeter. These models can be analyzed exactly in all
dimensions similarly to continuum models. Consider the
probability, P, (t) =1 8(t)—, that the site "0" is empty at
time t. Let r(l) denote the time for an island nucleated at
site I to travel to site 0. Then the occupancy of site 0 at
time t will clearly only depend on sites within the
"domain of influence" defined by r(l) ~t. Since site l
must be empty at time t —r(l) for site 0 to be empty at
time t, it follows that

1 0(t) = —g exp[ —ko(t —r(l) }] . (35)
1:gl)&t

The spatial pair (or n-point) correlations can be calculat-
ed similarly, and clearly have strictly finite range, as in
the continuum models (Evans, 1991a). The semideter-
ministic lattice models can readily be generalized to in-
clude nonconstant island expansion rates, etc.

One final basic feature of note is that of empty site
shielding, which is well established for lattice CSA mod-
els. Consider ID semideterministic lattice models. Sim-
ple extension of the arguments used above to calculate
P, =P, shows that P„(t)=exp[ (n —1)k—ot]P„ for
n I, which is consistent with shielding of single empty
sites (Evans et al. , 1986). For the 1D continuum prob-
lem, one can readily, but unconventionally, calculate the
probability, P (x), of finding an empty stretch of length x.
One finds, for constant nucleation rate I, that
P (x) =exp( Ixt)P(0), i.e—., exponential decay for all x ~ 0
(rather than only for x ~ 1, as in random parking of unit-
length cars).

random filling of M-mers (taking M contiguous sites at a
time) on a finite lattice (MacKenzie, 1962), and also to
the standard ID continuum car parking problem on a
finite line segment (Renyi, 1963). In all cases, this obser-
vation leads to simple recursion relations (with respect to
system size) for saturation coverages. Solution yields the
jamming coverage for an infinite system. This analysis
for random dimer filling is described in Sec. III.A. I.

One can continue to determine the kinetics of these ID
processes using much more complicated branch-
dependent counting techniques (McQuistan and Licht-
man, 1968; McQuistan, 1969). Here one asks the basic
question: after m spatially random attempts to place an
object on a linear lattice of X sites, what is the average
number of deposited objects (or empty sites) on the lat-
tice? It is possible to develop recursion relations which
relate the number of empty p-tuples on the lattice afterI —I attempts to the number of empty p'-tuples after m
attempts. Solving these relations for random dimer
filling, and taking the limit m ~ oo, X~ ao with
m /X =kt fixed, McQuistan and Lichtman (1968)
recovered the results of Cohen and Reiss (1963) for the
kinetics on an infinite lattice. Finally, we should em-
phasize that the utility of the combinatorial approach is
severely limited in higher dimensional systems. A com-
binatorial analysis of random dimer filling on 2D I.XI.'-
site lattices has been performed, but only for very small
systems (McQuistan et al. , 1970}.

B. Hierarchical rate equations
(finite range cooperativity}

IV. GENERAL FORMALISMS AND TECHNIQUES
OF ANALYSIS

The problems described in the previous section provide
concrete examples of techniques of analysis for RACSA.
These have included hierarchical truncation, as well as
formal expansion and combinatorial techniques. These
techniques have analogues in equilibrium theory, al-
though the details of the techoiques used here are
tailored to the special features of sequential adsorption
processes. It is the purpose of this section to describe in
general terms available approaches, which include the
above techniques and several others which are less con-
ventional. As much as possible, we draw analogies be-
tween the properties and analysis of lattice and continu-
um problems.

A. Combinatorial recursion techniques for RSA

The topology of ID systems facilitates a combinatorial
approach for RSA. Recall the observation of Flory
(1939) for random dimer filling on a finite lattice: after
the first dimer has landed, one is left with dimer filling
problems on smaller lattices. This observation extends to

Rate equations for arbitrary finite configurations of
filled and/or empty sites can be obtained by simply ac-
counting for all ways in which the configuration can be
created or destroyed. For each adsorption event, one
must also account for all possible configurations of the
influencing environment (which has finite extent here),
weighting by appropriate rates. For empty
configurations, clearly the rate equation includes only de-
struction terms. For the examples of random dimer
filling, or monomer filling with NN cooperative effects,
given in Secs. III.A and III.B, it is clear that the minimal
closed set of rate equations (in any dimension) involves
probabilities of all connected empty configurations In.
contrast, connected configurations of filled sites do not
satisfy a closed set of equations. (The irreversibility of
the filling breaks the symmetry between empty and filled
sites. )

It should be emphasized that probabilities of connect-
ed empty configurations provide only limited information
on adlayer statistics, e.g. , they determine P„=I —P, andP„=I—2P +P, but not P,„,=I —3P, +2P„+P,

„P„„„„=. , or the pair probabilities P, . . . , or P,
for separated sites. Some early attempts were made to
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determine probabilities of filled strings (Page, 1959;
Downton, 1961;Klesper et al. , 1971, 1972; Barron et al. ,
1974; Gonzalez and Kehr, 1978). However, the major
advance was made by Plate et a/. (1974) who (in one
case} wrote down a separate set of rate equations for the
probabilities of singly disconnected empty configurations.
These equations couple to probabilities of configurations
with the same or smaller separation, and thus eventually
to connected configurations. Explicit examples can be
found for random dimer filling in Sec. III.A. 1, and for
monomer filling with NN cooperativity in Sec. III.B.1.
One can continue to generate rate equations for multiply
disconnected empty configurations which couple only to
configurations with the same or smaller separations, and
the same or a lower number of disconnected components
(Evans et a/. , 1984a; Nord et a/. , 1985). All
configuration probabilities can be reconstructed from this
full set of empty configuration probabilities.

We pause here to mention that this coupling structure
produces the superexponential asymptotic decay of the
spatial correlations apparent in the examples of Sec. III.
For RSA, one expects that superexponential decay will
be manifest over the "full" range of separations. In con-
trast, for strongly clustering CSA processes, the correla-
tions will exhibit a "scaled form" for separations compa-
rable to the (large} correlation length, and only cross over
to super-exponential decay for larger separations (Evans
et a/. , 1988). The above discussion was implicitly for an
infinite lattice where translational invariance holds. If an
isolated defect is included on an infinite lattice, nearby
which adsorption rates are modified, then translational
invariance is broken and configuration probabilities de-
pend on displacement from the defect. The coupling
structure of the rate equations for such connected empty
configurations resembles that for two-cluster empty
configurations on a perfect infinite lattice. Thus one
might expect that the asymptotic decay of the inhuence
of the defect has the same form as that of the pair corre-
lations for a perfect system (i.e., superexponential).
Analogous remarks apply for the analysis of edge effects
on a semi-infinite lattice. See Evans, 1984a; Evans, Bur-
gess, and Hoffman, 1984.

If one considers 1D monomer filling with range two
cooperative effects (Evans and Burgess, 1983), then it be-
comes immediately clear that the minimal closed hierar-
chy involves probabilities of empty configurations which
are not NN connected (i.e., connected by NN bonds).
However these empty configurations are 2NN connected
(i.e., connected by second-NN bonds). In general, the
empty configurations in the minimal hierarchy are con-
nected only if one allows bonds whose length corresponds
to the cooperativity range. Appearance of non-NN-
connected configurations has ramifications for solvability
in 1D, as we discuss below.

Although the above discussion considered only lattice
problems, essentially all of the observations apply to con-
tinuum problems as well. These features of hierarchy
structure and coupling can be seen in the 1D example of
Sec. III.C.1.

C. Empty site Markov (or shielding)
property and truncation

1. Shielding and truncation

In Sec. III, we have presented examples where exact
analysis of the rate equations is possible leading to closed
form solutions. For these, and in fact all models where
exact analysis is possible, solvability can be associated
with a shielding property of empty sites (although many
of the first treatments did not use this unifying language).
The following statement of shielding applies to all lattice
R&CSA problems (Evans et a/. , 1983), solvable or other-
wise:

Consider a wall of sites specified empty which
separates the lattice into two topologically disconnected
regions. Suppose that the wall is sufficiently thick that
any filling event is not simultaneously affected by the
state of sites on both sites of the wall. Then such a wall
completely shields sites on one side from the inhuence of
those on the other.

One can check that this statement applies to the exam-
ples of random dimer filling, and monomer filling with
NN cooperativity, given in Sec. III. As for those exam-
ples, proof in the general case is by consistency with the
Q hierarchy equations. In fact, this statement of the
shielding property for lattice processes carries over to
continuum processes in any dimension (after simply re-
moving reference to lattice sites). See Sec. III.C.1.

Exact or approximate truncation of the hierarchical
rate equations for general processes on lattices (e.g. ,
adsorption-desorption models with or without diffusion)
has often been achieved via factorization of probabilities
for larger configurations in terms of those for smaller
ones (Silberberg and Simha, 1968; Schwarz, 1971; Simha
and Lacombe, 1971; Lacombe and Simha, 1974; Dateo
and Epstein, 1981;Surda and Karasova, 1981;Balazs and
Epstein, 1983; Cordoba and Luque, 1986; Cordoba et aI.,
1990; Wierzbicki and Kreuzer, 1991; ben-Avraham and
Kohler, 1992). These procedures include Kirkwood fac-
torization, and more general "dynamic cluster" or Kiku-
chi methods (Kikuchi, 1970}. However, the philosophy
emphasized here for R8cCSA is that one should tailor the
truncation procedure to exploit the empty site shielding
property, rather than just borrowing from equilibrium
theory. For example, for 1D monomer filling with gen-
eral range-two cooperativity, exact analysis is not possi-
ble because the minimal closed hierarchy includes discon-
nected empty configurations. However, the truncation
procedure should incorporate the exact shielding identity
Q„=Q4,for n ~4 (Evans and Burgess, 1983). This last
example emphasizes the utility for RkCSA of couching
the factorization procedure in terms of conditional prob-
abilities, e.g., Q,&&

~Q,&
rather than P„,~P

„

iP, .
Often this is also the case for more general processes
where factorization might correspond to an nth order
spatial Markov approximation.
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2. Solvability

The key to solvability in 1D is that the minimal closed
hierarchy involves only connected empty configurations.
Then the shielding condition immediately allows trunca-
tion to retain only a finite number of such "smaller"
configurations. -- Random dimer filling and monoIner
filling with NN cooperativity clearly fall into this class,
and other examples have been added over the years.
Here we just note that the most general solvable process-
es, incorporating all these cases, correspond to monomer
(or M-mer) filling with "nearest-particle rates" (Evans,
1990). Here the filling rates depend only on the distances
to the closest filled sites to the left and right of the site (or
M-tuple of sites) being filled. Rates must also be indepen-
dent of these distances if they are larger than some fixed
finite values. Such a specification of rates is familiar from
Infinite Particle Systems theory (Liggett, 1985). There
are a variety of extensions for which exact solution is still
possible, e.g. , to competitive adsorption, to adsorption
models with transient mobility, to systems with a period-
ic or stochastic distribution of dift'erent site types. These
will be detailed in Sec. V.

In equilibrium and percolation theory, Bethe lattices
and other branching media (Fig. 8) have played an im-

portant role in providing systems for which exact
analysis is possible, and for which the lattice coordina-
tion number z can be varied (Ziman, 1979). Here solva-
bility is related to the restricted lattice connectivity. For
R8r,CSA problems where the minimal closed hierarchy
involves just connected empty configurations, exact trun-
cation is possible on branching media exploiting the emp-

ty site shielding property. One can tailor the branching
media to locally resemble regular lattices, thus providing
insight into RACSA processes on these regular lattices
(Evans, 1984b; Evans and Nord, 1985b; Fan and Percus,
1991a, 1991b).

Finally we comment on choices of initial conditions.
Perhaps the most natural choice is an empty lattice (as
assumed above). However any distribution of initially
filled sites could be specified. Suppose initial conditions
satisfy an nth-order Markov condition (i.e., strings of n

sites specified either empty or filled shield in 1D; walls of

(b)

FIG. 8. (a) A four-coordinated Bethe lattice. (b) A square
cactus.

specified sites of thickness n shield in higher dimensions).
Then an empty site shielding property will still be
satisfied by the sequential filling process. The thickness
of the required shielding wall is the maximum of that as-
sociated with the initial conditions (i.e., n) and that re-
quired for the sequential filling process on an initially
empty lattice. If a sequential filling process is solvable
for an initially empty lattice, it is thus also solvable for
these general initial conditions provided n & ao (Wolf
et al. , 1984).

D. Spectral properties and asyrnptotics
for hierarchical equations

For general dynamical processes on lattices (including
adsorption-desorption and difFusion events), the hierarch-
ical rate equations are always linear. Consequently, they
can be written in vector space form as

P= A.P
dt

where P is an infinite dimensional vector of configuration
probabilities, e.g. , P =[P„P„,. . .], and A is the
infinite matrix generating time-evolution. More
rigorously, P should be regarded as a vector in an I
Banach space (Taylor, 1958), i.e., a space large enough to
include the P(t=0) for filling of an initially empty lattice.
One should also show that A is the generator of a time-
evolution semigroup on this space (Pazy, 1974). This is
often straightforward for 1D processes where A is a
bounded perturbation of a diagonal operator, but is non-
trivial for higher-dimensional processes. Physically, we
know that A must always have a nonpositive spectrum,
cr( A).

Let us now restrict our attention to R8cCSA processes.
One can trivially cast the hierarchical equations for prob-
abilities of empty configurations in the above form such
that A is upper triangular (cf. Silberberg and Simha,
1968; Evans and Nord, 1985a). This simply requires or-
dering the configuration probabilities in P with nonde-
creasing size of the empty configurations. Then the diag-
onal entries automatically give the spectrum o.( A). For
random dimer filling, (8) implies that cr( A)= [ —kd(„),
for all In] l

= [0,—k, —2k, —3k, . . . I. It is also easy to
see that the same spectrum results for random filling, at
rate k, of larger molecules ("animals" ), or of monomers
with some blocking constraint (e.g. , where filling of sites
with occupied NN's is excluded). As a consequence all
components of P(t) =exp[ —k At]P(0), and 0, have
time-dependence of the form g„oc„e""'. Further-
more, the asymptotic kinetics is clearly determined by
the eigenvalue closest to zero, i.e., 8(oo ) —8(t)-ce
From this analysis, it is also clear why q =e "' is a natu-
ral variable for these problems. We should note that we
have assumed that "animal" adsorption occurs at rate k
for any allowed configuration of adsorption sites. Other
natural rescaled choices produce rescaled eigenvalues (see
below and Privman, Wang, and Niebala, 1991).
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This knowledge of the asymptotic kinetics can be easi-

ly applied to determine the behavior of the sticking prob-
ability, S(0), near jamming. Consider random dimer
filling on a square lattice where S(0)=P„-ce"', and
d0/dt =4kP„. Integrating the rate equation from t to
oo yields 0(oo) —0(t)-4ce "', so S(0)—(0z —0)/4, re-
covering the result of Sec. III.A.2. We emphasize that
these techniques of analysis apply to all RSA problems
(Evans, 1987a, 1989a).

It is also instructive to consider the continuum limit of
RSA problems in this context, e.g., RSA of M-mers in
10, or MXM-mers in 2D, as M~oo. To obtain a well
defined limit, one must rescale time as t'=M"t where d is
the dimension, so the relevant evolution operator spec-
trum is [

—knM, for n =0, 1,2, . . . j. Thus in the con-
tinuum limit, the spectrum becomes the whole negative
real axis, a prerequisite for algebraic rather than ex-
ponential asymptotic kinetics. For a more precise
analysis of asymptotic kinetics in the M —+ ~ limit, the
"density of eigenvectors" must also be determined. For
1D M-mer filling, this is clearly uniform so

0( oo ) —0(t)-M ' g exp[ knM '—t] —t

as M~ oo (and for large t), in agreement with Renyi's re-
sult. We note here that the transition from lattice to con-
tinuum asymptotic kinetics has also been considered by a
void-filling rate equation approach (Privman, Wang, and
Niebala, 1991;Bartelt and Privman, 1991).

We note that a direct spectral analysis of continuum
RSA processes could also be considered. The associated
rate equations in any dimension are entirely analogous to
those for lattice processes, with the caveat that
configurations are now naturally labeled by continuous
variables so sums are replaced by integrals. These equa-
tions are still linear, and it follows that the spectrum of
the associated evolution operators coincide with the neg-
ative real axis. This allows for the possibility of algebraic
(rather than exponential) asymptotic time decay, as noted
above.

Finally, we note that one can even exploit knowledge
cr( A) to analyze the asymptotic kinetics of CSA process-
es. For monomer filling with NN cooperativity on a
linear lattice, it immediately follows from (14) that
o.( A)= [

—k2, —2k„.. . j, where implicit entries are
more negative. Thus 1 0( t) -exp [ ——k 2 t] or
exp[ —2k, t], depending on which decays more slowly
(Evans et al. , 1986). A similar analysis is possible for
analogous higher-dimensional processes.

infinite number of states (producing comparable contri-
butions) must be considered. Instead one might start
with the master equations for a finite system, and first
rearrange the terms in these equations to obtain expres-
sions which converge in the limit of infinite lattice size
(cf. Hoffman, 1976).

To this end, we first introduce a formalism to describe
general (possibly infinite range) cooperative effects for
monomer filling. Here we specify a set of rates o I„Ifor
filling site j on a lattice for which only sites {n j are filled.
Thus o. - I„Iwill typically approach nonzero constants as
a site (or sites) in {nj are separated from j. We naturally
introduce corresponding Ursell functions yz I „ I.I, I

defined by

j;(.)+(
Im I c Ir I

(37)

Then yj („).(„)~0 as any site, or sites, in [r j is taken to
infinity (the cluster property). For finite range coopera-
tive effects, one has that y =0 whenever any site in [ r j
does not inAuence filling at j.

Next, for a finite lattice, let EI„Idenote the probability
of finding sites [nj filled and the others empty, and let
PI„)denote the probability that [n j are filled irrespective
of the state of the others. Thus one has
PI„)= g( ) F(„)+( )

and the inverse relationship
F(„)= g( )

( —1) PI„) (+). Starting with the master
equations,

(n) X ~j, (n) —j [n) —j X ~k, n() {n)jE Inj k
(38)

one replaces [ n j with [ n j + {m j, applies g( )
to obtain

a rate equation for PI„I.One then eliminates the I on
the RHS in favor of P', using the above inverse relation,
to obtain the desired hierarchical equations (cf. Hoffman,
1976)

)
—j() ( )+()—jl"

jeInI Irj

Some rearrangement is required in the last step. The lim-
it of infinite lattice size can now be taken provided the y
approach zero sufliciently quickly as sites in {rj become
"distant". For finite range cooperative effects, these
equations simply constitute a rearranged form of the
equations one would write down intuitively. For exam-
ple, for 1D monomer filling with NN cooperativity,

E. Infinite range cooperative effects P koPoo +2k i P, +k
d

For finite range cooperative effects, the direct develop-
ment of rate equations described above involved
enumeration of all possible states of the local environ-
ment which influences filling (of each site in the
subconfiguration of interest). This approach must be
modified for infinite range cooperative effects where an

is replaced by

ko koPx 2(ko —ki )P„+2(ko—k, )P„„
+(k.—2k&+k, )P„„—(k, —2k, +k, )P„„„.
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F. Formal expansions

In Sec. III.A.2, we showed how to obtain a Taylor ex-
pansion in time t for the coverage for random dimer
filling on a square lattice. This procedure straightfor-
wardly extends to completely general dynamical process-
es on lattices, e.g., including adsorption/desorption and
diffusion. It allows one to obtain Taylor expansions in t
for any configuration probabilities of interest. To demon-
strate the procedure in the general case, it is convenient
to write the hierarchical rate equations in the form

generate a Taylor expansion for PI„Iin terms of q or u
from that in terms of t by simply eliminating t. Alterna-
tively, one can directly generate the desired expansion in
u, say, by simply starting with (40) recast in the form
(Baram and Kutasov, 1989)

—aP(„)=k q L(„)(P(„,) ),

d —1 —2
2

du

dt
(40)

+k q L(„)(k q L(„,)(p(„„))),
where LI„Iinvolves a linear combination of the PI„.I,
and the sum over certain configurations [n'] is implicit.
To obtain a Taylor expansion for PI„I,one must simply
determine P(„)(t=0)[which is known from the initial
conditions],

d P(„)(t=0)=L(„)(P(„,)(t =0))

[which follows from the known form of the rate equa-
tions, and the initial conditions],

dt " dt

d

=L (, )
(L(„)(P(„-)(t =0) ), etc.

(Evans, 1984a, 1987a, 1989a; Poland, 1989, 1990, 1991a).
We emphasize that this procedure is quite versatile, al-
lowing determination of pair-correlations, analysis of
filling of larger molecules, of the effect of edges and iso-
lated defects, and of competitive adsorption (Evans,
1984a).

We have noted above that for RSA problems, q =e
or u =1—

q are natural variables. One can, of course,

(41)

d, d r

d8 " dt

Here GI„Iinvolves an infinite number of nonlinear terms,
and is obtained by expanding

d
dt

=o (1+ ),—1

where o is the filling rate for an empty lattice (Hoffman,
1976). For example, for 1D monomer filling with NN
cooperativity, one obtains from (14)

Rather than t or u expansions, it may be more appropri-
ate to obtain "density" expansion in 8 as illustrated in
the Introduction and Sec. III.A.2. One can simply start
with the t (or u ) expansions for filled (or empty)
configuration probabilities Pt„)(or P(„)) and for 8, and
eliminate t (or u) in favor of 8. This is entirely analogous
to the elimination of activity to obtain virial expansions
in equilibrium theory (Hill, 1956; Uhlenbeck and Ford,
1962). It is possible to by-pass this elimination procedure
by first generating equations for

p„„=[2kip„+2(k~—k, )p„„+2kiP„„+]l[ko+(2k, —3ko)P„+ . ]

=2o,P„+2(o.,—cr, )P„„+2cr,P„„—2o i(2o i
—3)p„+ (42)

where o; =k;/ko. For this and more general monomer
filling, one then self-consistently determines the
coefficients in the expansion PI„)= g o c 8"+

Note that o."co always equals the average of the n! prod-
ucts of rates corresponding to the various ways of creat-
ing the configuration of [n] filled sites on an otherwise
empty lattice.

For one specification of cooperativity, detailed di-
agrammatic characterization of the coe%cients, c, in
the Pt„)expansion is possible (Hoffman, 1976; Knodel
and Hoffman, 1978). Suppose that adsorption is activat-

ed and that a filled site k adds a contribution P k to the
activation energy for monomer filling at site j. Then one
can write o J („)=o' gk~(„)exp[ —

PPJ k ], where P is the
inverse temperature. Introducing Mayer f functions,

f, k =exp[ pp, k ]—1, one —can write (37) as

y („).(„)=( —1)"cr.(„)Qk („)f k, making explicit the
cluster properties of y (since P k,f.k ~0, as k separates
from j). Substituting into (39), and generating density ex-
pansions as described above yields a characterization of
c in terms of diagrams whose bonds represent f func-
tions, just as in equilibrium theory (Uhlenbeck and Ford,

Rev. Mod. Phys. , Vol. 65, No. 4, October 1993



J. W. Evans: Random and cooperative sequential adsorption 1301

p CSA
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FIG. 9. Comparison of density expansions for the pair probability P] 2 for sites 1 and 2 to be occupied (a) for CSA, and (b) for equi-
librium states. Bonds represent Mayer ffunctions-, f, k =exp[ —PP, k] —1, where P, „

is the activation energy in CSA and the in-

teraction energy in equilibrium theory, and P is the inverse temperature. The sum over locations of diagram vertices (except those la-

beled 1 and 2) is implicit.

1962). In fact exactly the same diagrams appear, but the
numerical prefactors are different (Hoffman, 1976; Dick-
man et ci/. , 1991). See Fig. 9 for the pair-probability ex-
pansion.

Finally we comment on the use of "resummation" to
enhance convergence of these expansions. A common
problem is that one wishes to use the first several terms in
"short-time" expansions of 0 to estimate infinite-time
jamming coverages OJ in RSA problems. Clearly one can
use a u rather than a t expansion for l9, which incorpo-
rates the known asymptotic time dependence (Baram and
Kutasov, 1989). A further variable transformation com-
bined with standard Fade techniques can also be useful
(Dickman et al. , 1991). Instead one can use a 8 expan-
sion of S(8) to determine its first zero at 8=8J (Evans,
1984a; Schaaf and Talbot, 1989a). However results are
haphazard unless one also rearranges the series, e.g., to
reflect known asymptotic behavior (Evans, 1987a, 1989a).
The latter can provide uniformly accurate estimates of
the kinetics. Another strategy is to rearrange the series
exploiting known behavior of low-order truncation solu-
tions (Evans and Nord, 1985a), or of analogous processes
on suitable branching media (Fan and Percus, 1991a,
1991b). Here the branching medium should refiect local
structure of the original regular lattice.

G. Creation/annihilation operator formalism

A formalism utilizing creation and annihilation opera-
tors is naturally suited to the description of processes in-
volving adsorption/desorption and even reaction (Doi,
1976; Grassberger and Scheunert, 1980; Dickman, 1989).
We now review the application by Dickman et al. (1991)
of this approach to RSA problems with NN (or some
longer range) exclusion. See also Fan and Percus (1991b).

First let cr J
=0 (1) if site j is empty (filled). Then the state

or configuration of the entire lattice is denoted by I cr~ j.
We construct a Hilbert space whose orthogonal basis
vectors,

I Icrj j &, correspond to these states. The state of
the system is then represented by the vector

(43)

where P ( t o 1 j, t) is the probability for the system to be in
state I cr j at time t Next .we define "fermion" creation
and annihilation operators Ak and Ak with the proper-
ties

At I I cr, j & =(I—0 „)IIcr)+k j &,
(44)

(45)

where S = g S and S =( AJ HJ )RJ. If-
= g( ~) I Icrj j &, then (I'Il(t) &= g( ~) P(Icrj j, t) and
evolution under (45) ensures the preservation of this nor-

where
I Io 1+k j & (I {crj—k j &) is obtained from

I Io 1 j &

by adding (removing) a particle at site k. One is then
lead to define particle number and vacancy operators,
&j A j Aj and H = A A which satisfy the canonical
anticommutation relations Ã~+H =1. Finally, let E(j.)
denote the set of sites which, if filled, block the filling of
site j. Then R = iikez~ ~HI, is the operator which is 0
if filling of site j is blocked by another filled site in E(j),
and which is 1 otherwise. Thus for filling with NN ex-
clusion, the product defining R extends over all NN sites
Of J.

Using the above notation, the master equation for RSA
now takes the form
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malization since ( ~SJ=0. Of course (45) has the formal
solution ~%'(t) ) =exp(St) ~0), where ~0) is the initial
state, assumed here to be the empty lattice. Of primary
interest is the time evolution of the coverage,
8(t) = ( ~

A o ~'I'(t) ) = (
~

A oexp(St) ~0) (interpreted here as
the probability the site 0 is occupied). One can determine
e(t) by expanding exp(St) = g„&OS "t"/n I, and simplify-
ing using the identity ( ~ AOS~@) = ( ~ AOS0~4)
= ( ~

ADROIT@),

for any ~@), to obtain

markable feature was noticed for lattice CSA by Hoffman
(1976).

The precise characterization obtained by Given of the
graphs contributing to the RSA pair-correlations allows
development of (Orstein-Zernike equations for these
quantities. The procedure parallels that of equilibrium
theory, and opens the possibility of exploiting well-
known approximate equilibrium methods for these equa-
tions (Given, 1992).

n&0 j2. . jn I. Interacting (or infinite) particle systems formulation

This is an explicit representation of the expansion that
one obtains using the procedure described in Sec. IV.F.

Dickman et al. (1991) continued to analyze the
coefficients in (46). Each term in the inner summation is
either zero or (

—1)"+' depending on whether any of the
( AJ H& ) facto—rs can be commuted to the left of all oth-
er operators. Setting j,=0, this means that for each j;
there is a jk with k &i such that jk=j; or close enough
to j, so that 611ing at j; is blocked by a filled site jk. The
problein of determining the coefficients in (46) is thus re-
duced to a lattice combinatorial problem. Fan and
Percus, (1991a, 1991b) showed how to further simplify
this combinatorial problem via a clever resummation of
the series (46).

Finally we mention that this creation/annihilation
operator formalism can also be applied to continuum
RSA problems (Dickman et al. , 1991).

H. Mapping onto an equilibrium-like formalism

A program is being pursued by Stell (1983, 1984, 1991)
and coworkers to extend the methods of equilibrium sta-
tistical mechanics (series expansions, integral equations,
etc.) to describe nonequilibrium disordered continuous
systems, e.g., consisting of ulled and empty regions. Re-
lationships have been derived between the n-point re-
duced probability distributions or "matrix functions" for
the filled region and the n-point probability density asso-
ciated with the inclusions or empty regions. See also
Given and Stell (1991). This type of formalism has also
been adopted for continuum RSA by Schaaf and Talbot
(1989a, 1989b), Tarjus et al. (1991), and Talbot et al.
(1991).

In another specific study, RSA has been considered as
a special case of a "quenched disorder" (Given, 1992):
one thinks of RSA as corresponding to a diQerentially
quenched system, where each particle is added to (or
equilibrated with) the frozen system of previously ad-
sorbed particles. Representing configuration probabili-
ties in a Gibbs-like form, with the help of the "replica
method", allows one to obtain graphical expansions for
such quantities as the pair correlations. The Mayer in-
tegrals appear as in equilibrium theory, but with different
combinatorial prefactors. [For RSA of spheres, these are
just the Mayer integrals for an equilibrium hard-sphere
gas; the f functions have values of either 0 or 1.] This re-

The field of interacting particle systems (IPS) had its
origins in the work of Spitzer (1969) and Dobrushin
(1971). The objective of this field is to describe the dy-
namics and steady states (invariant measures) for stochas-
tic models, typically with discrete state spaces (Liggett,
1985). States of the whole system are denoted by ri.
Here we naturally only consider the case of a lattice, the
sites, j, of which can have one of two states, "empty"
[il(j)=o] and "filled" [il(j)=x]. Then the IPS process is
prescribed by specification of a set of rates c!„I(ri)at
which the subset of sites I n] in il simultaneously change
state o~x. Clearly R8cCSA processes constitute a spe-
cial case where

cI„!(il) =0 if rl( j)=x for any jE I n], i.e.,
transitions x—+o are forbidden. For monomer filling, di-
mer filling, etc. , c(„I(r!)=0unless n= 1, n=2, . . . , re-
spectively. The formalism applies to processes on lattices
of any dimension, translationally invariant or not, with
finite or infinite range cooperative effects, etc.

Perhaps the most fundamental question is that of
rigorous existence and uniqueness of the dynamics for
infinite lattices. (This is trivial for finite lattices. ) This
established under very general conditions (from our per-
spective). The key is to use the Hille-Yoshida theorem
(Pazy, 1974) to show that the generator of time evolution,
constructed from the c(„)(g), in fact generates a serni-

group, S(t), say (Liggett, 1985). This resolves an issue
where had not been adequately addressed via, e.g., the
hierarchical rate equation formalism.

Another basic question which can be resolved via the
Interacting Particle Systems formalism is the nature of
the asymptotic decay of the spatial pair-correlations in
RkCSA processes. We have noted in Sec. IV.B above
that this decay of exactly solvable 10 RSzCSA processes
is superexponential, and that the coupling structure of
the hierarchical rate equations suggests this property
holds for R8cCSA processes in all dimensions (Evans
et al. , 1984). Indeed, super-exponential decay of spatial
correlations holds for general IPS processes with finite
range cooperative effects at finite times (Liggett, 1985),
provided this condition is met initially as for an empty
lattice. We note that this behavior can be demonstrated
explicitly for the solvable 1D Glauber model (Luscombe
and Evans, 1989).

The general result relies on an "correlation inequality"
presented in very general form by Liggett (1985) [Propo-
sition 4.4, Chap. I]. Rather than providing a complete
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development of the many quantities and concepts in-
volved, we just describe these in qualitative terms so as to
highlight the essential features of the result. Let cI„I
denote the maximum of the rates c!„!(g) for transitions
at sites In I. Let y(i, j) denote the maximum variation in
the rates involving a transition at site i for various states
of site j (considering all possible fixed states of the other
sites). Thus y(i, j) is an "upper bound" for the influence
of the state of site j on rates involving transitions at site i.
Next let I" be the bounded operator defined by
I'P(j) = g; P(i)y(i,j ) [H.ere P is some real valu-ed func-
tion on the lattice. ] Let e be a minimum for the sum of
rates for transitions o~x and x~o at a site for all possi-
ble states of the lattice. Finally if f (rt) is a real-valued
function of the state of the system, then let Af(j) be an
upper bound on the degree to which f depends on the
state of site j. Then the inequality bounds the magnitude
of the "correlation" S (t)fg —[S(t)f][S(t)g]by

c!„!f dse "(e' bf)(i)(e' Ag)(j) .
i j In I ai j

(47)

where the sum is over NN strings of sites. Thus for a
non-zero contribution to (47), one must have sufficiently
many powers, p =pk, of I to shift i to i =k; likewise in
e' b.s, p powers of I are required to shift j (=i) to m.
Clearly pk+p measures the path length between k and
m (through i =j), and a factor 1/(pk!p !) appears in the
leading contribution to (47). This factor produces the su-
perexponential decay with separation. It is however
necessary to also sum contributions over various paths
between k and m, as expected from previous studies of
RSA (Evans, 1984a) and equilibrium distributions.

We close with some general remarks on the utility of
the IPS formalism for investigating RACSA processes.
Clearly this formalism is invaluable in providing ex-
istence, uniqueness, and asymptotic type results. (Some
other asymptotic results will be described in Sec. V.)

However for quantitative estimates of important physical
quantities, including their asymptotic behavior, one ex-
pects that the approximate techniques described in other
subsections must be applied.

J. Monte Carlo simulation techniques

1. Lattice simulations

Monte Carlo (MC) simulation (Binder, 1979) provides
a natural and well controlled technique to estimate the

To estimate the conventional pair correlation between
sites k and m, one chooses f to depend only on the state
of site k and f=0 (1) if g(k) =o (x); g similarly depends
only on m. Consider specifically processes with only sin-
gle site transformations with NN cooperativity (e.g. ,
monomer filling) where i =j in (47). Now

(e' bf )(i)= g s~/p!(I ~bf )(i)
I/

and

behavior of the models described in this review for any
dimension. The earliest MC studies by statisticians
(Page, 1959; Mannion, 1964, Solomon, 1967; Blaisdell
and Solomon, 1970) and surface scientists (Roberts,
1935b, 1938; Rossington and Horst, 1965; Rossington
and Lent, 1967; Peri, 1965; Peri and Hensley, 1968) in-
volved RSA on lattices of dimers and other small an-
imals. These processes are necessarily simulated on a
finite lattice, typically with the objective of estimating
infinite lattice behavior. Thus an assessment of finite-size
efFects is important. This issue was addressed in several
studies (Blaisdell and Solomon, 1970; Jodrey and Tory,
1980; Brosilow et a/. , 1991; Nord, 1991) which showed
that finite-size effects quickly become insignificant for
RSA, especially if periodic boundary conditions are used.
This feature can be regarded as a consequence of the very
fast (superexponential) decay of spatial correlations for
RSA. If correlations are insignificant for separations
comparable to the linear dimension of the system, then
there will be no finite-size efFects.

A second general issue pertaining to finite size is that
of fluctuations, e.g., in the coverage, either at finite time
or at saturation. For all RACSA processes, the variance
cr in the number of adsorbed particles is always asymp-
totically proportional to the system size, N (i.e., the num-
ber of lattice sites), i.e., o —fN, as N~ ~. The constant
of proportionality has been calculated explicitly for 1D
RSA of (small) M-mers at jamming (Page, 1959;
MacKenzie, 1962). In general, it given by a sum over
pair correlations for all separations, or equivalently by
the structure factor evaluated at zero wave vector (Stan-
ley, 1971). For RSA and also CSA processes with jam-
ming, these fluctuations typically decrease dramatically
in magnitude as jamming is approached (Evans and
Nord, 1987b; Evans et a/. , 1988; Evans, 1989b). Finally
we note that estimates of the error in coverage deter-
minations are obtained by o /(N+R ) —&f /&(NR),
where R is the number of trials (Brosilow et a/. , 1991).

One final general finite-size issue is that of time-
dependence. For RSA, where adsorption is a Poisson
process with some rate k, there is an exponential distribu-
tion of waiting times between adsorption attempts with
mean 1/k. In lattice simulations, one typically defines
time as proportional to the number of adsorption at-
tempts. This "discretization" of time effectively pro-
duces the above exponential waiting time distribution for
large lattices, thus producing the "correct" kinetics.
However some refinement is necessary for "small" lat-
tices.

Next we briefly note several other issues for lattice
simulations. Straightforward random selection of possi-
ble adsorption sites in RSA becomes extremely inefFicient
for late times, i.e., near jamming, where only a few of
these remain. This problem could be avoided by keeping
a list of all available adsorption sites and selecting only
from these. (Of course, the list must be continually up-
dated. ) Now time is no longer proportional to the num-
ber of adsorption attempts (which all succeed), but it can
be determined from the number of adsorption sites (Bro-
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silow et al. , 1991). This latter approach, however, is
inefficient at early times, so a hybrid algorithm is pre-
ferred (see, e.g., Nord, 1986, 1991).

For CSA, the simplest procedure is to randomly select
sites for possible adsorption, filling available sites with
various probabilities proportional to the difFerent rates.
In the strong clustering regime, i.e., where island growth
rates are much larger than nucleation or birth rates, this
becomes inefficient: nucleation sites are selected far more
often than growth (island perimeter) sites, but only filled
with small probability. Again the solution is to keep lists
of the various types of sites, selecting with appropriate
weight from the list each time a site is to be filled. The
list updating procedure is now rather complicated since,
e.g., sites can change from birth to growth type (Nord,
1985). In a more general context, this procedure is some-
times called the "N-fold way" (Bortz et al. , 1975). Final-
ly, we note that introduction of clustering clearly leads to
increased correlation lengths, and thus to increased fluc-
tuations.

2. Continuum RSA simulations

The principal issue here is algorithmic efficiency (Bro-
silov et al. , 1991), especially for "late stage" filling. We
brieQy list several common strategies. For parking of
aligned squares, Akeda and Hori (1975) utilized the idea
of dividing the surface into unit square cells, so at most
the center of one square can fall within a given cell. The
possibility of filling a cell is thus determined by its state
and the state of its nearest and diagonal nearest neigh-
bors (albeit nontrivially). As in RSA on lattices, eventu-
ally random selection of cells for attempted adsorption
becomes inefficient, and it is preferable to keep a list of
viable candidates, i.e. , adopt a hybrid algorithm (Brosi-
low et a/. , 1991). Alternatively, one could keep a track
of all regions of the surface in which the center of a
square can land and select only from them (Jodrey and
Tory, 1980). For parking of circles on the plane, it is not
practical to track the complicated region of the surface
available to centers (a collection of small distorted trian-
gles at late times). However, it is viable to track empty
circular voids containing these triangles, and to select ad-
sorption sites from these (Hinrichsen et al. , 1986). For
parking of nonspherical or square objects, determination
of overlap is obviously more complicated, especially if
the objects are not aligned. However some useful algo-
rithms, originating from equilibrium theory of Auids, are
available (Talbot et al. , 1989).

(49)

diftering slightly from the Flory ~alue for the convention-
al problem of 1 —e =0.86466. The 1D t9+ can also be
determined by combinatorial methods (Gornick and
Freedman, 1990). For end-on dimer filling on a square
lattice, one finds 0+=0.9188 compared with the conven-
tional value of 0.9069 (Nord and Evans, 1990). Although

(a}

I I I I I

1~

I I I

filled only if both are empty. The 1D version of this
problem discussed in Sec. III.A. 1. There we described
the combinatorial analyses of Flory (1939) and Page
(1959) of the saturation statistics and edge effects, and
noted that this approach can be extended to analyze
kinetics (McQuistan and Lichtman, 1968; McQuistan,
1969). However the hierarchical rate equation approach
yields the kinetics much more efficiently (Cohen and
Reiss, 1962), and also allows determination of edge effects
(Cohen and Reiss, 1962), pair probabilities (Wolf, 1979;
Evans et a/. , 1984), and the statistics of filled stretches.
Page also estimated the latter distribution by simulation
and fitted it to a geometric distribution. However it is
only asyinptotically geometric (Evans and Nord, 1985c).
For other work on this problem, see Downton (1961),
Barron and Boucher (1969, 1970), Barron, Bawden, and
Boucher (1974), Olson (1978), Maltz and Mola (1981),
(1982), Mellein et al. (1983), Texter (1989), and Bartelt
(1991a). A detailed discussion of results for this conven-
tional random dimer filling problem in higher dimensions
can be found in Sec. III.A.2.

Page (1959) was also first to consider a distinct "end-
on" dimer filling problem: randomly select a single site
on the lattice; if empty, randomly select a second site
from its empty neighbors (should one or more exist), and
deposit the dimer on this empty pair. The conventional
problem above corresponds to randomly selecting the
second site from amongst a/I neighbors. See Fig. 10. The
rate equations for this problem can be solved exactly in
1D. One simply notes that from the general statement of
the shielding condition that an empty pair (rather than a
single empty site) is required for shielding. Thus one ob-
tains a closed pair of equations for P, and P„which
when integrated yield (Nord and Evans, 1990)

OJ =2 —(2me)' [erf(+2) —erf(1/V 2) ]=0.876 68,

V. COMPENDIUM OF RESULTS FOR KINETICS
AND CORRELATIONS

A. Random animal filling

(b)

il Il
I I I I I I I I I I I

1. Dimers

In the conventional random dimer filling problem (Sec.
III.A), adjacent pairs of sites are picked at random and

FIG. 10. Schematic comparison of (a) the conventional, versus
(b) the end-on mechanism for 10 random dimer filling. Num-
bers in (b) indicate probabilities for various rotations; replacing
1's by 2

recovers model (a).
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these Oz results show weak dependence on the filling
mechanism, we shall see that the dependence is much
stronger in competitive filling and reaction models.

2. Larger animals

There are many exact analyses for one-dimensional pro-
cesses. MacKenzie (1962) and Boucher (1973b) analyzed
in detail 3-mer filling where gJ=3D(2) —3e D(1)
=0.82365 and D (x) is Dawson's integral. Boucher
(1973) noted that for M-mer filling, the probability,
I'~ I, of finding a string of M —1 empty sites at jam-
ming equals exp[ —2 QJM:o'1/j], which generalizes
Flory's result. Most of the analyses for general M have
dealt with cooperative filling (see below). Mac-
Kenzie (1962) and Gonzalez et al. (1974) studied the
transition to the continuum car parking problem in the
M —+ ao limit. One can show that

OJ(M) =Hi( ~ )+0.216 181/M +0.36 255 9/M +. . . ,

where OJ(ao ) is Renyi's car parking result, and a corre-
sponding expansion for 49 at finite times is also available
(Bartelt et al. , 1992). For other work, see Maltz and
Mola (1983) and Mellein et al. (1984). Recent extension
of the end-on filling mechanism to the M-mer case re-
vealed that 0J exceeds the value for conventional filling
when M= 2 or 3, is comparable to this value when M=4,
and is lower for M ~ 5 (Nord, 1992). See also Freedman
and Gornick (1992).

Next we review results for higher-dimensional filling of
animals (larger than dimers). Filling of linear trimers
(8~=0.8465) and bent trimers (HJ=0.8333), and square
tetramers (OJ =0.7479) on a square lattice, and of trimers
on triangular (gJ =0.797) and hexagonal (8& =0.839) lat-
tices (see Fig. 11), have been studied by hierarchy trunca-
tion exploiting empty site shielding (Evans and Nord,
1985a). More specifically, a hierarchy was obtained for
the conditional probabilities Q („}and truncation imple-

mented as described in Secs. III.A.2 and III.B.2. Com-
parison with simulation results (Nord, 1991) demon-
strates rapid convergence with the order of the trunca-
tion, especially for compact animals where narrower
walls are required for shielding. Often reasonable accu-
racy is even achieved in 1ow order approximations which
yield analytic expressions for the kinetics (cf. Schaaf
et al. , 1988). Dependence on animal shape has been con-
sidered for various 4-mers on a square lattice (Barker and
Grimson, 1988). RSA at rate k of line segments of gen-
eral length M on a square lattice has been considered us-
ing an end-on filling mechanism (Manna and Svrakic,
1991). It seems that

8(t,M)-8( oo, M) —exp( —2kt)/(2M) as t ~ oo,

where the asymptotic decay rate of 2k follows immedi-
ately from the spectral arguments of Sec. IV.D, and

g( ~,M)-0. 583+0.32/lnM as M~~ .

There are several studies of M XM-mer filling on
square lattices (or M -mer filling on hypercubic lattices),
partly because of interest in the M —+ ~ continuum limit,
and partly to check the (incorrect) generalized Palasti
conjecture (GPC). This conjecture states that the jam-
ming coverage for M"-mers is given by that for 1D M-
mers raised to the dth power. The conjecture is surpris-
ingly accurate (Blaisdell and Solomon, 1970). For exam-
ple, one obtains simulation (GPC) estimates of
6~=0.747 88 (0.747 65) for 2 X 2-mers, 0.679 75 (0.67840)
for 3X3-mers, 0.648 18 (0.64625) for 4X4-mers, . . . ,
0.562009 (0.558902) for 0O X &a-mers in 2D, and 0.6454
(0.6465) for 2X2X2-mers, 0.5595 (0.5588) for 3X3X3-
mers, . . . , 0.4227 (0.4178) for ce X oo X &n-mers (Nord,
1991; Brosilow et al. , 1991; Jodrey and Tory, 1980) in
3D. Scaling of OJ as M~ ~ has also been considered
(Nakamura, 1986a; Brosilow et al. , 1991) and is de-
scribed reasonably well by the GPC (Evans, 1987b).
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3. Cooperative generalizations

Several studies have provided exact analyses of 1D M-
mer filling with NN cooperative eff'ects (Boucher, 1972b,
1973a; Gonzalez et al. , 1974; Epstein, 1979). It was later
realized that exact analysis is also possible for general
range M cooperative etfects by rate equation (Wolf et al. ,
1984) and generating function (Mellein, 1986) techniques.
However, for 1D M-mer filling, it should be noted that
the possible local environments of an empty M-tuple are
restricted: if a site a distance I +M from this M-tuple is
filled (but closer sites are empty), then all sites on that
side between distances l and I+M —1 must also be filled.
Thus general range M cooperative efII'ects reduce to
"nearest-particle" rates of range M, where the filling rate
depends-only on the distance to the closest filled site. As
noted in Sec. IV.C.2, it is possible to analyze exactly M-
mer filling with nearest-particle rates of any finite range
(Evans, 1990a).

B. Cooperative monomer filling

1. Filling on a linear lattice

In Sec. III.B.1, we gave a detailed analysis of 10
monomer filling with NN cooperativity. Here we supple-
ment this with a more comprehensive listing of contribu-
tions to this problem. We also provide more detail on the
behavior of correlations in the strongly clustering regime,
and of the filled cluster size distribution. The first solu-
tion of this problem by Keller (1962) relied on determina-
tion of average adsorption rates. The procedure used
turned out to be exact, a consequence of empty site
shielding. Later Alfrey and Lloyd (1963) introduced the
exact hierarchy equations, which they solved for kp k)
(cf. Sec. V.B.3), and Arends (1963) and Keller (1963) then
solved in general. Other analyses followed by Lazare
(1963), by Mcguarrie et al. (1965) expressing kinetics in
terms of incomplete gamma functions, by Boucher
(1972a), by Gonzalez (1974), by Hemmer and Gonzalez
(1977) using the "principle of independence of unreacted
neighbors", and by Wolf et al. (1980) using equations for
conditional probabilities (which lead to a Riccati form).
The latter workers also considered strongly autoinhibito-
ry rates k2 «k, «kp where filling occurs in stages first
of empty sites with no occupied NN, then of those with
one, then of those with two are filled. In the "opposite"
strongly clustering regime a=ki /kp )&1, the average is-
land size is known to scale like cx' at fixed (9, or at satu-
ration in the case where k2 =0 so islands cannot merge
(Evans et al. , 1983, 1986).

A procedure for exact determination of general pair
correlations was described in Sec. III.B.1, with emphasis
on their superexponential asymptotic decay. However, if
a=ki/kp)%1, the correlation length scales like a'
and correlations have the scaling form C„„(l)-f (I/cc' ', for I =O(a' ) (cf. Evans et al. , 1988).

satisfying 0= A,(0) & A, (8) & A, (l) = 1. Determination of
A, (9) follows from that of the P,' for s =1,2, . . . , or by
direct (but approximate) analysis on an appropriate non-
linear set of hierarchy equations (Nord et al. , 1985). In-
teracting particle systems theory (Liggett, 1985) provides

~ 0.1-

0.0

/100

-0.

-0.2-
I I I

1 3 5 7 I

FIG. 12. Comparison of the decay of pair-correlations C„,(l),
with separation I, for (i) 1D sequential adsorption with rates
k; ~ a for sites with i occupied NN (solid line), and (ii) a 1D Is-
ing model lattice gas with NN interactions J (dashed line). %'e
choose cx=e ~ =,oo (strong inhibition or repulsion) and set
L9= —' (Evans et al. , 1984).

Here f is determined by the 1D grain growth problem,
and crossover to superexponentia1 decay occurs only for
l »O(a'/ ). If k; ~a', then it is natural to compare
C„„(I)with their form for a 1D equilibrium lattice gas
with NN interactions J and inverse temperature P satis-
fying a =e ~ . Thus clustering [anticlustering] a & 1

[a & 1] corresponds to attractive J&0 [repulsive J&0].
These equilibrium correlations satisfy C„„(I )

=8(1—0)p', where 2/(1 —p) = [1+49(1—8)(a—1)]'
+ 1. For strongly attractive interactions 13J«0 or
a»1, one has p'-exp[ —IO ' (1—8) ' a ' ], so
again the correlation length scales like a' . Figure 12
compares these equilibrium and CSA correlations for the
strongly anticlustering choice a = 1/100.

Exact determination of the (filled) cluster size distribu-
tion is possible, but more complicated, since it must
proceed via determination of empty n-tuple probabilities
P„,empty two-cluster probabilities, and probabilities of
empty multiply disconnected configurations of the form
cr —-o—-o- . -o-—cr', where cr, cT'=o or oo (Nord et al. ,
1985). Let P„'denote the probability of finding a string of
n fHled sites (which could be part of a longer string).
Then n, =I",—2I",+ i +I','+2 gives the probability of
finding a filled cluster of size s, and one has
g, » n, =P„,=D (the cluster density), and g, &, sn, =8.
Average size can be defined as s,'„=gsn,/gn, =0/D or
as s„=psn, /gsn, Both .scale like a', as a~ ac .

If all k; &0, then the asymptotic decay of the filled
cluster size distribution is geometric (i.e., exponential)
with the decay rate

A, (0)= lim n, +, /n, = lim P,'+i /P, '
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at time t. If ko ~ k j ~ k2, then P,'+„~P,'P„'(Harris, 1977)
so k&0 exists for t&0. If k2=0 so that no islands
coalesce, then I", decays not exponentially but superex-
ponentially, i.e., sP,'+ j /P, '~ 2 (t), as s~ oo (Evans and
Nord, 1985c). For "almost random" filling where

kp k i k and k2 =0, one has

P,'= (1—e "')'[1+se "'+
—,j(s+1)(s+2)e "'],2s+1

(s +2)!
(50)

so A(t)=2(l —e "'). In general, if k, =ako=ak and
k2=0, analysis of a nonlinear hierarchy for quantities
like A suggests that 3 (t)=2a(1 —e "'). However no
rigorous proof exists at present.

Next consider the case of general range-2 cooperative
efFects. Let k„„,k,„„,. . . denote rates for filling with
no filled NN or second-NN sites, with only one filled left
NN site and no filled second-NN sites, . . . . Then one
has

d
~ ~ ~

0 00.00 00000 OX. 00 OXOOOdt (51)

and, since I',„„,=I',„,—I'„„„in general disconnect-
ed empty configurations appear. Thus exact solution is
not possible despite a shielding property of quartets of
empty sites (Evans and Burgess, 1983) and despite earlier
claims (Krishnaswami and Yadav, 1976). This is in some
sense the simplest nonsolvable model. However accurate
high order truncation approximations incorporating ex-
act shielding relations can be constructed.

This model can be solved exactly in the case where the
rates for filling depend only on the nearest occupied sites
to that being filled. Then, for example,
k,„„=k„„„=k,„,say, and the corresponding two

some rigorous results on this asymptotic behavior. Let
k =min(k;) and k+ =max(k;), then comparison with
associated RSA processes implies that

[1—exp( —k t) ]' ~ P,' [ 1 —exp( —k ~ t) ]'

terms in (51) can be combined as

kx. oo(Poxooo+ xxooo )

k„—„P„„,= —k„„(P„,—P„„),
thus avoiding appearance of troublesome disconnected
empty configurations. An important subcase where
filling is blocked by occupied NN sites is discussed in de-
tail below in Sec.V.B.4. This example motivates con-
sideration of the general case of monomer filling with
"nearest-particle rates", i.e., where rates depend only on
the distance of the nearest occupied sites to the left and
right of that being filled. Again only connected empty
configurations appear in the minimal closed hierarchy. If
these rates are constant beyond some distance (finite
range cooperativity), then exact analysis is possible by
virtue of the empty site shielding property (Evans,
1990a).

2. Filling with NN eooperativity on a square lattice

In Sec. III.B.2, we have described the rate equations
and appropriate truncations procedures for this problem.
These can produce reliable estimates of the kinetics for
moderate cooperativity, or for filling with simple ex-
clusion rules (Evans et al. , 1983). Here we focus on
analysis of the strongly clustering regime, k,. &&kp, for
i ~ 1, where the process involves a competition between
the birth, growth and coalescence of islands. Here
Monte Carlo simulation provides the most reliable assess-
ment of kinetics and correlations. Simulation is also an
indispensible tool in the characterization of the stochas-
tic geometry of the adsorbed layer, e.g., structure of
growing islands (which depends on the choice of k, ), the
average number of sites in filled clusters (which diverges
due to extensive island coalescence near the percolation
transition; see Sec. VI.D). One can consider "chord
length" measures of island size, m,'„=g, sm, /g, m,
and m,„=g, s m, /g, sm„where m, denotes the dis-
tribution of horizontal or vertical strings of exactly s con-
secutive filled sites. Figure 13 shows typical
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FIG. 13. Typical configurations for filling with
NN cooperativity on a 100X100 portion of a
square lattice; (a) Eden rates with a=499, (1)
Arrhenius rates with a= 19. Both induce clus-
tering (Sanders and Evans, 1988).
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configurations of the adlayer island distributions for two
specific choices of rates which we now consider.

For "Eden rates", k;=cxko, for i 1, the individual
growing islands are Eden clusters since particles are add-
ed with equal probability at all perimeter sites (Eden,
1961). Such clusters are asymptotically "almost circu-
lar" with radii, R, expanding at constant rate (Wolf,
1987). The width, W, of active zone of growing sites scal-
ing like 8 -R '~' ', where z=3/2 is the dynamical criti-
cal exponent (Racz and Plischke, 1985; Freche et al. ,
1985; Wolf, 1987; Wolf and Kertesz, 1987a). The corre-
lation length, the average linear island size before coales-
cence, and m„,scale like a', as a~ ~, for this model
(Evans et al. , 1986; Sanders and Evans, 1988; Anderson
and Family, 1988); m,'„increases more slowly being sen-
sitive to defects in the active zone. As noted previously,
much of this behavior and the associated kinetics are
readily understood from consideration of the Avrami
grain growth model.

For "Arrhenius rates", k; =a'ko, for i ~ 1, the indivi-
dual growing islands tend to be rectangular before coales-
cence. This is because the rate k, =O(a) for addition of
a particle on the edge of a perfect rectangular island is
much lower than the rate k2=0(a ) for filling at the
created kink sites (which completes the new edge layer
and recover a perfect rectangle). Such an isolated island
growing indefinitely would eventually achieve roughly
circular shape (being in the Eden model universality
class), but this regime is not reached before coalescence
in our multicluster growth model. Finally we note that
the correlation length, the average linear island size be-
fore coalescence, and both m,', and I„,scale like u'
as a —+ ~, for this model Evans et al. , 1986; Sanders and
Evans, 1988).

Instead of considering models with continuous nu-
cleation, ko )0, one could set ko =0 and consider growth
of islands about some distribution of "seeded" filled sites
of concentration e (Evans et al. , 1986; Sanders and
Evans, 1988; Evans, 1990b; Poland, 199lb). Kinetics for
e«1 is elucidated by consideration of suitable "cell
models" (see Sec. III.D.1).

3. "Almost random" filling

Rk.CSA problems are typically not solvable on regular
lattices of dimension greater than one. Although the
empty site shielding property still holds, it does not allow
exact truncation of the hierarchy. One exception is the
"almost random" filling process where single sites fill
randomly at rate k provided not all neighbors are filled.
Such surrounded sites can fill at some difFerent rate
k' ~0. Here one can determine exactly the kinetics and,
for k'=0, the jamming coverage Oz=z/(z+ I) (z is the
lattice coordination number). The key observation is that
probabilities of connected clusters of more than one emp-
ty site satisfy exactly the same kinetics as for purely ran-
dom filling. Furthermore, one can also show that the
pair-correlations have a strictly finite range (of 2). One

can also solve analogous more general processes where
filling requires a site be in an empty cluster of m )2 sites
(Evans and Hoffman, 1984a). The first (m=2) model ap-
plies to the deposition of carbon on Pt(110) via CO disso-
ciation: CO adsorbs at single sites, quickly dissociates if
there is an adjacent empty site, and the 0 is quickly re-
moved, with the C remaining on the adsorption site
(Rosei et al. , 1983). A very similar but nonsolvable mod-
el applies to the deposition of oxygen on Pt via NO disso-
ciation: NO adsorbs at single sites, quickly dissociates if
there is an adjacent empty site, and the X is quickly re-
moved, with the Q remaining on the adjacent site to the
adsorption site (Fink et al. , 1991).

4. Cooperative filling with NN exclusion

In cooperative filling with NN exclusion on a one-
dimensional lattice, adsorbed particles form double-
spaced domains . . oxoxoxo . residing on one of two
sublattices, and separated by antiphase or domain boun-
daries . oxooxo. . . Exact analysis of this model has
been performed for general second-NN cooperative
eFects with filling rate k for empty sites with i occupied
second-NN (Gonzalez et al. , 1974; Evans and Burgess,
1983). In the clustering regime a =k', /ko ))1, the aver-
age size of double spaced islands scales like o.', and the
saturation domain boundary density is given byP„=1 —28J-2 (vrla)'~ . Clearly OJ is independent
of kz&0, since the center empty site in configurations
xooox must eventually fill, and its state does not afFect
the rest of the process (Evans and Burgess, 1983). Spatial
correlations, their scaling for large a (Evans et al. , 1988),
the associated structure factor (Evans and Nord, 1987b),
and the double-spaced island size distribution (Nord
et al. , 1985) can be determined exactly. Finally, we note
that exact analysis of monomer filling with NN exclusion
is possible for general range-3 cooperative effects (a pro-
cess isomorphic to dimer filling with range two coopera-
tive effects).

Monomer filling with NN exclusion and second-NN
cooperative eFects on a square lattice is a natural model
for precursor-mediated "checkerboard" c(2X2) island-
forming chemisorption (see Sec. II.B. and Evans and
Nord, 1987). Here the filling rates k, depend on the
number i of occupied second-NN sites. Individual grow-
ing c(2X2) islands have one of two phases; islands of
diFerent phase upon impingement are separated by a
domain or antiphase boundary (Fig. 14). Island structure
will depend on the specific rate choice, and both the Eden
(k,'=ako, for i ) 1) and Arrhenius (k,'=a'ko) forms
have been considered. Since Eden clusters tend to be al-
most circular, the domain boundary between two imping-
ing out-of-phase islands tends to be a hyperbolic section.
However, large fluctuations typically hide this feature,
and the overall pattern of domain boundaries looks quite
irregular [Fig. 15(a)]. For Arrhenius rates, islands tend
to be diamond shaped, and domain boundaries tend to be
diagonal with smaller fiuctuations [Fig. 15(b)]. The
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characteristic or correlation lengths, and chord lengths
for double-spaced strings of sites, defined analogous toI,

„

in Sec. V.B.2, scale like a'~ (a' ), as a~co, for
Eden (Arrhenius) rates, and 1/2 —OJ correspondingly
scales like a '~ (a '~ ). Scaling of the complete pair-
correlation function and of the associated structure fac-
tor have been analyzed (Evans et al. , 1988). Here as in
1D, two-state Avrami-type models are useful for charac-
terizing structure in the strongly clustering regime. We
shall discuss the percolative domain structure in Sec.
VI.E.

C. Isomorphisms

One can readily show that RSA of M-mers is
equivalent to RSA of monomers with range M —1 ex-
clusion (i.e., monomers cannot land within M —1 lattice
vectors of previously adsorbed monomers). This
equivalence also holds if "corresponding" cooperativity
is present, e.g., M-mer filling with NN cooperativity is
equivalent to monomer filling with range M —1 exclusion
and rates depending on monomers adsorbed a distance M
away (Gonzalez et al. , 1974; Wolf et al. , 1984). More
generally, RSA of animals on a lattice of any dimension
is equivalent to RSA of monomers on some dual or
"event" lattice with a suitable exclusion range, and again
the equivalence extends to cooperative processes. This
event lattice picture has been exploited to develop formal

FIG. 14. Schematic showing c(2X2) islands of different phase
impinging to form a domain or anti —phase boundary. Domains
of each phase are associated with one of two interlaced sublat-
tices of the square lattice. These are indicated by + or —in,

the expanded view.

expansions (Hoffman, 1976) and in simulations (Nord,
1991)of animal filling.

Next we note a few specific 2D examples (Nord and
Evans, 1985). RSA of monomers on a square lattice with
NN and diagonal NN exclusion is equivalent to the ex-
tensively studied problem of RSA of 2 X 2-mers, 9J
differing by a factor of 4. Thus from the GPC, we obtain
an estimate of 9&=(1—e ) /4=0. 186911 for this
monomer filling problem (cf. Nord and Evans, 1985;
Dickman et al. , 1991). RSA of dimers at diagonal NN
sites of a square lattice is equivalent to RSA of dimers at
NN "sites (on two interpenetrating sublattices). RSA of
rnonomers on a triangular lattice with NN exclusion is
equivalent to RSA of hexagonal 6-mers on a hexagonal
lattice. For other examples see Nakamura (1987), Evans
(1987b) and Barker and Grimson (1987). Some examples
of these isomorphisms are illustrated in Fig. 16.

D. Competitive adsorption

Epstein (1979) was first to notice that the rate equation
analysis for One-dimensional RSA of M-mers may easily
be extended to exactly treat 1D RSA of mixtures of M-
mers of different lengths. For solvability, there must be a
strict upper bound on the size of the largest particle, al-
though any distribution (with size) of adsorption attempt
rates is allowed. It should be noted that partial coverages
will not be simply determined by the relative adsorption
rates. Mellein and Vicenti (1986) also provided rate
equations for RSA of mixtures. Mellein (1985b) provided
a recursion analysis of RSA saturation statistics. Bartelt
and Privman (1991b) consider RSA kinetics for a simple
mixture of monomers and k-mers. Taking the k —+oo
continuum limit, with suitably chosen relative rates, pro-
duces continuum deposition of a mixture of fixed-length
cars and pointlike particles. They show that the asymp-
totic kinetics is modified non-universally by the presence
of the point particles. For other work, see Nord and
Evans (1990), Bonnier (1992), and Rodgers (1992).

Exact analysis is even possible for 1D competitive pro-
cesses with NN cooperativity (Evans, Hoffman, and Bur-
gess, 1984), and in fact for general nearest-particle rates
with finite range (Evans, 1990). Behavior of these pro-
cesses can be quite complex, as is evidenced by the
behavior of the "trajectories" of the partial coverages
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FKs. 15. Jammed states for cooperative mono-
mer filling with NN exclusion on a 50X 50 por-
tion of a square lattice; (a) Eden rates with
a=200, (b) Arrhenius rates with a=40. X
and Y denote filled sites in domains of different
phase; 0 denote empty sites, except those
along domain boundaries which are left blank
for contrast (Evans et a/. , 1988).
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FIG. 16. (a) Equivalence of 1I3 M-mer filling, and 10 monomer
filling with range M —1 blocking (for M=2, 3). (b) Equivalence
of dimer filling on a square lattice, and monomer filling on the
dual or event lattice indicated by dots; the monomer landing at
site x blocks monomers filling at sites marked with o's. (c)
Equivalence of 2X2-mer filling on a square lattice and mono-
mer filling with NN and second-NN exclusion on a dual square
lattice indicated by dots.

used, and /=1 is a dimer so for /& =/z=l, one finds

gal=0. 9188 (Nord and Evans, 1990; Henkel and Svrakic,
1992). One finds that the jamming coverage for mixtures
is higher than that for either of the constituents. For
/2 ) /„Henkel and Svrakic note a crossover from short-
time kinetics dominated by the longer species to asymp-
totic kinetics dominated by the shorter. Specifically, they
find that 8( &n ) —8(t)-(2l, ) 'exp( —2l@ ' t),—where
deposition rates for each species equal 1/2. The asymp-
totic exponentia1 decay rate of unity follows immediately
from a spectral analysis (Sec. IV.D). Furthermore, the
decay rate for the concentration of empty (l2+1)-tuples
is 1+(l2 —l, ) times greater than that for (l, +1)-tuples,
confirming that deposition of the shorter species dom-
inates asymptotic kinetics. Heuristic arguments are
given for the nontrivial form of the prefactors.

There are a number of recent studies of competitive
adsorption for 2D continuum car parking problems.
These will be discussed in Sec. V.F.2 below.

E. R8 CSA in different environments

3. Edge effects and ladders

with time. Finally, the observation that trajectories can
cross for different relative rates means that knowledge of
partial coverages does not specify the states of the sys-
tem, so multivariable partial coverage or "density" ex-
pansions may have limited utility (Evans, 1984a).

For RSA of pure M-mers, instead of randomly select-
ing M-tuples of sites from all possibilities on the lattice,
one could randomly select from only those which are
empty. Although this "accelerates" the kinetics, it does
not change the statistics. However, for RSA of mixtures,
Mellein and Mola (1985) and Mellein (1985) noted that
the statistics are also afFected, and determined these via
recursion relation techniques. In their model, to fill an
empty stretch of infinite length, one selects a particle no
longer than this stretch (weighting by relative adsorption
rates), and places it on this stretch with random location.

Next, turning to two-dimensiona/ RSA, Hayden and
Klemperer (1979) performed a simulation study of RSA
of monomers and dimers on a square lattice, apparently
using the end-on dimer filling mechanism. Barker and
Grimson (1988) simulated RSA of mixtures of 4-mers of
diff'erent shapes. Evans and Nord (1985a) used high-
order hierarchical truncation to analyze competitive
filling of various small animals on a square lattice. For
competitive filling of monomers and dimers, partial satu-
ration coverages are quite sensitive to the dimer filling
mechanism, in contrast to pure dimer filling (Nord and
Evans, 1990). This has important ramifications for sur-
face reactions (see Sec. VII.C). We also note that trunca-
tion procedure used here is remarkably accurate.

Kinetics of RSA on a square lattice for mixtures of line
segments of two different lengths, /, and /2 ~ /„has been
recently simulated (Svrakic and Henkel, 1991; Henkel
and Svrakic, 1992). Here the end-on filling mechanism is

1.0

0.6'
CA

o, 0.4,

0.2
O

CL 0
I 7 I 5 I9 25 BI

Number of Site from Edge

M=2 ~ M=4 M=I2

FIG. 17. Edge efFects in Po at jamming for random M-mer
filling on a 1D semi-infinite lattice. The inset compares edge
effects for dimer filling on semi-infinite 1D linear and 2D square
lattices (Nord and Terrell, 1992).

We have already noted that edge effects always decay
super-exponentially for RACSA processes (Fig. 17). This
is clearly refIlected in the behavior of density expansions
in semi-infinite systems (Evans, 1984a). Exact analysis of
edge effects is possible for many 1D processes. Combina-
torial techniques for finite lattices often naturally lead to
an assessment of edge efFects, as evidenced by the results
of Page (1959) for random dimer filling (Sec. III.B.1).
Bartelt (1991a) has provided a detailed rate equation
analysis for 1D RSA of M-mers on finite lattices, making
explicit finite size corrections to the kinetics. Terrell and
Nord (1992) analyzed edge efFects on a 1D semi-infinite
lattice for random M-mer filling. For other 1D work, see
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Cohen and Reiss (1963), Boucher (1972b, 1973), Gon-
zalez and Hemmer (1977a), Epstein (1979a), Gornick and
Freedman (1990), and Krug and Meakin (1991). As a
general strategy, for 1D R&CSA one can use empty site
shielding to obtain a closed set of equations for position
dependent probabilities which couple only to a finite
number of those closer to the edge (cf. Wolf, 1979). Of
course exact analysis is not possible in higher dimensions,
but approximate truncation has proved accurate for ran-
dom dimer filling on a semi-infinite square lattice (Terrell
and Nord, 1992).

Fan and Percus (1992) recently noted that RSA of
monomers with NN exclusion is exactly solvable on
2X ao triangular and square ladders with free boundary
conditions. For the square ladder, one finds
8J=—,'(1—e '/2) (see also Baram and Kutasov, 1992).
Evans and Nord (1992) note that this process is iso-
morphic to a solvable 1D RSA process involving com-
petitive adsorption. Exact analysis is also possible for
RSA of animals, which span the ladder for all adsorption
orientations, and various CSA processes, on narrow
ladders. For "broader" ladders, exact solvability is lost,
and one quickly regains the complexity of the ao X ~ lat-
tice problem. However, sometimes for a ladder "slightly
too broad" for exact analysis, one can use the empty site
shielding condition to simplify the hierarchical equations
sufficiently to allow "almost exact solution". This is the
case for random dimer filling on a 2X ao square ladder
where one obtains Hz=0. 91556671 "almost exactly"
(Evans and Nord, 1992).

2. Branching media

In Sec. IV C 2, we noted the possibility of exact
analysis via hierarchy truncation for various R&CSA
processes on Bethe lattices with general coordination
number z. For random dimer filling, one obtains

S(8)= (1—8)[(z —1)(1—8)' 'i' —1]/(z —2),
so 8+= 1 —(z —1) '~' ' (Evans, 1984b). For
RSA of monomers with NN exclusion, one ob-
tains S(8)= [(z —1)(1—28) ' ' —(1 —28)]/(z —2)
(Evans, 1989a; Fan and Percus, 1991a). These expres-
sions recover the linear lattice results in the limit
z~2+. Evans, Hoffman, and Burgess (1984) also pro-
vided a detailed analysis of monomer filling on Bethe lat-
tices with rates k, for sites with i occupied NN. Choos-
ing k, /ko =a (0) for i = 1 (i ) 1) corresponds to competi-
tive birth and growth of noncoalescing Eden clusters.
Note that lim 8z(a) (1 since these is always a finite
fraction of the lattice associated with the boundary be-
tween abutting clusters.

Bethe lattices can also be regarded as local approxirna-
tions to regular lattices. Thus z=3 Bethe lattice and hex-
agonal lattice values of OJ are similar for monomer filling
with NN exclusion (3/8 versus 0.379), and for random di-

mer filling (7/8 versus 0.880). The z=4 correspondence
with the square lattice is not so good, since the square
lattice has smaller loops. One can of course better ap-
proximate the local structure of regular lattice using ap-
propriate cactuses for which exact analysis of R&CSA is
also possible. For random dimer filling, one obtains
8J=8/9=0. 8888 on a z=4 Bethe lattice, 0.89462 on a
square cactus, versus 0.9068 on a square lattice (Evans
and Nord, 1985b). The use of exact results for branching
media as references for perturbation-like expansions of
behavior on corresponding regular lattices was exploited
by Fan and Percus (1991a).

3. Random media

Irreversible reaction on random copolymers is natural-
ly modeled as R&CSA on a 1D random lattice. The dis-
tribution of site types is typically taken as random or to
have first-order (or even nth-order) spatial Markov statis-
tics. Reactions at single sites with NN cooperativity has
been analyzed extending the "principle of independence
of unreacted neighbors" (Gonzalez and Hemmer, 1976,
1977, 1977b; Gonzalez, 1978). An analogous treatment
of 2-site binding, including competition with 1-site bind-
ing, has also been given (Schumaker and Epstein, 1990).
Of course, reaction rates must now be specified for each
type of site. A more direct analysis using the natural ex-
tension of empty site shielding is also possible. The basic
strategy here is to focus on conditional probabilities for
configurations of sites to be empty, say, gioen the types of
those sites. Rate equations are most naturally written for
these quantities, and an empty site shielding property
demonstrated. Probabilities for (unconditioned) empty
configurations are readily reconstructed as the sum over
products of these conditional probabilities and the
(specified) probabilities for various configurations of site
types (cf. Evans and Nord, 1985a).

Random dirner filling, at rate k, in the presence of a
random distribution of inactive (nonadsorbing) sites has
also received considerable attention. For a 1D lattice
with a Markov distribution of inactive sites, one has
8(t)=1—exp[2y(e "'—1)],where y gives the probabili-
ty of finding an active site given an adjacent active site.
Thus 8J = 1 —e ~ generalizing Flory's result (Cohen and
Reiss, 1963; Boucher, 1978; Merz et al. , 1946; Evans and
Nord, 1985a). This 1D problem for end-on dimer filling
has been analyzed by Gornick and Freedman (1990) and
Nord (1992). The analogous problem on a 2D square lat-
tice was simulated by Hayden and Klemperer (1979) us-

ing the end-on mechanism in the context of CO-
adsorption on binary metal alloy surfaces. See also Ko-
zak et al. (1993). Evans and Nord (1985a) provided an
approximate analytic treatment of the 3D problem. In
last two cases, the fraction of empty active sites at satura-
tion first increases with the introduction of inactive sites,
before finally decreasing.
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F. Continuum RSA problems

1. Standard problems

One exact analysis of the one-dimens&ona/ problem of
Renyi (1958) for the random parking of unit length cars
is based on the observation that after the first car parks
on a finite interval, one is left with car parking problems
on two smaller intervals. This is the continuum analogue
of Flory's 1939 argument. Renyi thus obtains the asymp-
totic behavior of the mean number of parked cars for
long intervals. Higher moments of this distribution were
analyzed by Dvoretsky and Robbins (1964). Car parking
involving a distribution of car lengths has been con-
sidered by Ney (1962), Mullooly (1968), Goldman et al. ,
(1974) and Krapivsky (1992a). Widom (1966, 1973) em-
phasized the distinction between this sequential filling
problem and analogous equilibrium problems based on
general configuration space considerations, as well as
diA'erences in the density expansions. Burgos and
Bonadeo (1987, 1989) note that meinory efFects imply
that the pair probability functions, if labelled by the or-
der in which cars are added, depend strongly on these la-
bels. These quantities are determined analytically for
very small systems of a few particles, and by simulation
for larger finite systems. This memory feature is of
course common to all R8cCSA processes. In Sec. III.C.1,
we have shown how the rate equation approach can be
used to obtain directly exact kinetics and correlations for
an infinite system, analogous to lattice RSA processes.

At this point, we mention an interesting connection be-

tween these 1D models and fragmentation processes em-

phasized by Ziff (1992). In 1D, the random parking of
cars of length 1 is isomorphic to the random deposition of
points on a line with range-1 exclusion, i.e., deposition is

forbidden at points within a distance one of previously
filled points. Here one simply thinks of each deposited
point as marking the center of a car. In Sec. III.B.3 and

Sec. V.C, we described analogous lattice isomorphisms
(see also Gonzalez et al. , 1974; Wolf et al. , 1984). Depo-
sition of points on the line can equally be thought of as
fragmentation of the line. In the above case there is the
constraint that no fragments can be created with length
less than one. This connection has been noted previously
(Solomon and Weiner, 1986), and this special fragmenta-
tion model (Itoh, 1978, 1980; Itoh and Ueda, 1979) is

used to describe election results! There are, of course,
more general fragmentation models which could be
thought of as cooperative deposition of points on a line.
Some exact results are available (ZifF, 1991).

Next we describe results for two-dimensional problems.
There are many simulation estimates of the jamming cov-
erage for RSA of aligned squares, e.g., 0.5565+0.0015 by
Blaisdell and Solomon (1970), 0.5629+0.0006 by Akeda
and Hori (1976), 0.56210+0.00056 by Jodrey and Tory
(1980), 0.5620+0.0002 by Privman, Wang, and Nielaba
(1991),0.56196 by Nord (1991),and 0.562009+0.000004
by Brosilow et al. (1991). See Akeda and Hori (1975)

and Finegold and Donnell (1979) for earlier estimates. In
Sec. III.C.2, we described the conjecture of Palasti (1960)
which predicts a jamming coverage equal to the square of
the 1D Renyi value, i.e., (0.747 597. . . ) =0.SS8903. . . .
Although various statistical ideas have been used to ex-
plore this conjecture (Weiner, 1978, 1979; Solomon and
Weiner, 1986; Zheng, 1988), the above simulati. on results
provide the clearest evidence of its "slight breakdown".
Finally we note that Brosilow et al. (1991)have provided
a detailed analysis of pair correlation behavior for this
problem.

Estimates of the jamming coverage for RSA of disks
include 0.5473+0.0009 by Tanemura (1979),
0.547+0.0002 by Feder (1980), 0.5444+0.0024 by Tory
et al. (1983), 0.5472+0.0002 by Hinrichsen et al. (1986),
and 0.5467+0.0003 by Meakin and Jullien (1992a). See
also Finegold and Donnell (1979). Quantitative analysis
of the "random area pattern" associated with the depos-
ited disks was provided by Hinrichsen et al. (1986) draw-

ing on concepts from stochastic geometry (Stoyan et al. ,
1987). As an aside, we remark that continuum RSA in

higher dimensions constitute a chal enging subclass of
problems in Combinatorial Integral Geometry (Ambart-
zumian, 1982).

As noted in Sec. III.C.2, much of the interest in con-
tinuum RSA problems has been in the asymptotic kinet-
ics. This was prompted by the conjecture of Feder
(1979), and analyses of Pomeau (1980) and Swendsen

(1981), showing that for RSA of d-dimensional hyper-
spheres, the jamming coverage is approached like t
Indeed this result was used in obtaining some of the jam
ming coverage estimates above. Recent analysis of the
parking of noncircular, nonaligned objects in 20 by Tal-
bot et al. (1989) revealed that 8( ~ ) —0(t) —t '~, con-
trasting the Feder conjecture. Talbot et a/. were able to
show that this deviation from Feder was associated with

additional orientational constraints in the late-stage
filling, which modify the phase space calculation in Sec.
III.C.2. The same t ' behavior has been observed for
RSA of nonaligned squares and rectangles (Vigil and Ziff,

1989, 1990; Viot and Tarjus, 1990). It is also of interest
to note that the jamming coverage in these problems has
a maximum at an aspect ratio of about 2 (or I/2) for both
ellipses and rectangles. As a general rule, it seems that
the asymptotic kinetics in these problems has the form
t ' ", where n equals the number of degrees of freedom

per object (Viot and Tarjus, 1990). For other work on
these problems, see Viot et al. (1992a, 1992b) and Ricci
et al. (1992).

RSA of line segments or "needles" (rectangles in the
limit of infinite aspect ratio) deserves special comment.
Here the number density of lines, n ( t ) —t ', clearly in-

creases without bound, and the challenge is to determine
the scaling exponent, z) 0 (Sherwood, 1990; Vigil and

ZifF, 1990; ZifF and Vigil, 1990; Tarjus and Viot, 1991).
The strategy for analysis of this problem is somewhat
similar to that above in that one focuses on the "late
stage" of the process, which here corresponds to filling of
very close, almost parallel lines. This allows connection
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to a simpler 1D process, analysis of which shows that
z =v'2 —1, the first example of an irrational scaling ex-
ponent in RSA (Tarjus and Viot, 1991).

Figure 18 shows typical con6gurations for RSA of
disks and noncircular objects as well as a late-stage
con6guration for RSA of needles.

A few simulations of three- or higher-dimensional RSA
problems for aligned (hyper) cubes are available. Esti-
mates of the jamming coverage are 0.4227+0.0006 by
Jodrey and Tory (1980), 0.4262 by Blaisdell and Solomon
(1982), 0.430+0.008 by Cooper (1988), and 0.4219+0.008
by Nord (1991) in 3D, and 0.3129 by Jodrey and Tory
(1980) and 0.3341 by Blaisdell and Solomon (1982) in 4D.
These estimates are consistently higher than the Palasti
estimates of 0.4178 in 3D and 0.3123 in 4D. They also
contrast a questionable lower 3D estimate by Akeda and
Hori (1976). It seems that the accuracy of the Palasti
conjecture decreases with increasing dimension (Solomon
and Weiner, 1986). Some of these studies assess finite
size effects, variances in the number of parked cars, and
time dependence.

RSA of 3D spheres has been studied by Cooper (1987,
1988b) to obtain assessments of finite-size effects, asymp-
totic Swendsen kinetics, and a jamming coverage esti-
mate of 0.385+0.01. An improved estimate of
0.384+0.001 was obtained by Meakin and Jullien (1992a),
and of 0.382+0.0005 by Talbot et al. (1991). The latter
workers also developed a formal density expansion for
the sticking probability (or fraction of space available for
filling). Contrasting the 2D case, resummation (e.g. , ex-

FIG. 18. Configurations for 20 RSA of (a) disks at jamming
(Tory et al. , 1983) where the last disks added are black, (b) of
unaligned ellipses with aspect ratio 4 at 0=0.5 (Ricci et al. ,
1992), (c) of unaligned rectangles with aspect ratio 2 at 0=0.90J
{Vigil and Xi', 1989), (d) of unit needles at a time corresponding
to 245 needles per unit area (Ziff and Vigil, 1990).

ploiting known asymptotic kinetics) is necessary to ob-
tain uniformly accurate results (cf. Sec. IV.F).

2. Generalized models

We first discuss One-dimensional studies. Solomon
(1967) considered a modified parking problem where cars
which overlap are not immediately discarded. Instead
they are parked at the next adjacent space to the car al-
ready parked, if there is space. Talbot and Ricci (1992)
provided an analytic treatment of an equivalent model
where cars are circles sitting on the line and incoming
cars can "roll off" already parked cars. They determined
a jamming coverage of 0.80865. . . , which not surprising-
ly is substantially higher than the Renyi value of
0.74759. . . . See also Viot et al. (1993). We note that
exact analysis is also possible for analogous "roll off" lat-
tice processes which can be mapped onto cooperative
filling problems (Evans, 1991b). Tarjus and Viot (1992)
consider a generalized car parking problem where the
deposition rate depends on the length of the empty inter-
val on which adsorption is attempted. Since the location
of adsorption is still selected randomly from within this
interval, the saturation statistics correspond to the con-
ventional problem. However clearly the kinetics and
statistics for finite times will be modified. Analogous
behavior would apply to lattice RSA processes where the
rates depend only on the length of the empty interval
upon which adsorption is attempted.

It has long been realized that continuum processes are
obtained from lattice RSA processes in the limit of "large
molecules". One can thus exploit exact results for 1D
RSA of M-mers to obtain Renyi's results for 1D car
parking (Gonzalez et aI , 1974.). It should also be noted
that since one can also exactly solve the 1D M-mer 611ing
problem with general range-M cooperative effects (Wolf
et al. , 1984; Mellein, 1986), the M —« ~ limit yields infor-
mation on the "cooperative car parking problem" with
general cooperative effects of range one (the car length).
Here empty intervals of length two are required to shield.
More generally, the solvable 1D M-mer Ailing problem
with finite but arbitrary range nearest-particle rates
yields information on cooperative car parking with
"nearest-car" rates (Evans, 1990).

. Turning to higher-dimensional problems, Jullien and
Meakin (1992) considered the effect of a "roll off" re-
structuring mechanism in 2D RSA of spheres analogous
to Talbot and Ricci (1992) in 1D. They find the jamming
coverage is increased (from 0.547) to 0.61056+0.0005,
and is suggested to be reached exponentially. The latter
might be expected since the rate at which the last
"small" holes are 611ed is not proportional to their size.
Thompson and Glandt (1992) provided density expan-
sions for the kinetics and pair-correlations in this prob-
lem. Adamczyk et al. (1990) analyzed the effect of intro-
ducing cooperativity into sequential adsorption of disks.
This cooperativity rejected screened Coulomb interac-
tions present in colloidal systems. Jamming coverages
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for such "soft disks" were substantially below the RSA
value, in agreement with experiments. Detailed analyses
of pair-correlation behavior were also presented. Rosen
et al. (1986) consider the curvature effects for RSA of
particles on the outside of a spherical substrate, and note
a crossover in the asymptotic kinetics for high substrate
curvatures. Adamczyk and Belouschek (1991) consider
RSA on the exterior of both spheres and cylinders, also
including the cooperativity due to interactions. Thomp-
son and Glandt (1991)consider a more complicated prob-
lem of RSA in porous solids formed from a network of
randomly overlapping spheres. Spherical particles ad-
sorb on the interior surfaces of spherical pores which can
be accessed from the periphery of the solid. Convention-
al (Feder's law) kinetics is observed.

Some recent studies have considered RSA of mixtures
of disks of different sizes in two dimensions. Talbot and
Schaaf (1989) consider a binary mixture with greatly
differing diameters. Here some simphfication of the
analysis is possible. The large disks approach their jam-
ming limit exponentially, and the smaller disks algebrai-
cally. Thus asymptotics is determined by the smaller
particles just as in lattice processes. Tarjus and Talbot
(1991) consider a mixture with a continuous distribution
E(cr ) of dia'meters, but strict upper and lower cutoffs o. ,
and o.2. Asymptotic kinetics is determined by the form
of K(cT) at the small particle end of the distribution,
specifically 8( &n )

—8(t) —t '~' +"', where the first
nonzero derivative of L at o.

&
is of order n. The coverage

for a specific disk size 0 has the time dependence
8 (ac ) —8 (t)-exp[ —2 (cT)tl3]/[A (o)t], for n=0,
where 2 (o ) O-K(cr, )(cT —o i) . Meakin and Jullien
(1992b) have performed extensive simulations of these
processes and addressed several basic scaling issues. For
binary mixtures with diameter ratio R, 8J(R) —8J(1)
scales like (R —1), as R —+1, where 1/2 ~ a ~ 1 seems to
depend on the relative impingement rates of large and
small disks. For a uniform distribution of diameters
o. , ~ o ~ o 2, set r =cr i/cT2. Then 8J(r) 8J(0) sca—les like
(r —1), as r~l, where A, =0.84 (but may be 1). Here
the disk size distribution is monotonically decreasing
with the form (o.—o, )

i' for "large" o. cr, R—esult. s are
also given for a truncated Gaussian size distribution.
Tarjus and Talbot (1992) considered directly the limit of
competitive adsorption of pointlike and fixed-size parti-
cles and found behavior different from the exactly solv-
able 1D case. Recently Meakin and Jullien (1992a) per-
formed a simulation study of RSA of mixtures of spheres
of different sizes in three dimensions.

G. Special topics

1. Analytic methods for single cluster growth studies

There has been renewed interest in single cluster
growth models, where often addition at perimeter sites is
governed by local growth rules (Family and Landau,

1984; Stanley and Ostrowsky, 1986). The best known ex-
ample is the previously mentioned model of Eden (1961)
where, in one version, particles are added with equal
rates at perimeter sites. Of particular interest is the scal-
ing of active or growing zone width, 8'-R", as a func-
tion of the average radius R. The absence of translation-
al invariance in single cluster growth makes analytic
studies difFicult, so most results are from simulations.
However, if one thinks of translationally invariant CSA
models as involving competition between birth and
growth (and later coalescence) of clusters, then in the
strongly clustering regime, they must contain informa-
tion on the corresponding single cluster growth. For ex-
ample, the scaling of certain chord lengths contains in-
formation on g (Evans et aI , 198. 6; Sanders and Evans,
1988). For a simpler example, consider the growth of
"Eden trees" where particles are added at random only
to empty sites with exactly one occupied cluster site
(Dhar and Ramaswamy, 1985). These clusters have finite
asymptotic density which has been estimated with
reasonable accuracy from the strongly clustering limit of
an appropriate CSA model (via approximate truncation)
as 0.63 (Evans et al. , 1986).

Finally we note the possibility of obtaining formal tem-
poral expansions for the mean size in single-cluster
Eden-type growth models using appropriate rate equa-
tions (Poland, 1991b; cf. Sec. IV.F). One could then in
principle obtain certain growth exponents, although this
procedure seems impractical.

2. Noise-reduced adsorption and serial reactions

Rempp (1976) provides a general discussion of serial
reactions on polymer chains; Such irreversible processes
would be represented in our notation as
o—+x,~x2~ . , where the rates for each transition
will in general depend on the local environment. If rates
for o~x& depend only on whether nearby sites have
reacted (but not on their specific reacted state), then the
empty site kinetics and statistics are equivalent to those
for a corresponding simple process o—+x. Even then, it is
not possible to determine the kinetics for the individual
x;, e.g., for NN cooperative effects.

In single cluster growth studies, and occasionally for
multilayer growth, "noise reduction" is used to control
fluctuations (Wolf and Kertesz, 1987b; Kertesz and Wolf,
1988). Instead of following the standard growth rules,
here one introduces a counter to monitor the number of
times an allowed growth site is chosen. This site is only
filled when the counter reaches some threshold value, say
M. Of course, one could consider noise-reduced R8cCSA
processes. Such processes can be thought of as a special
case of serial reactions where x&,x2, . . . denote a site
chosen once, twice, . . . . To date no such analyses have
been performed, e.g., to assess the M dependence of Oz in
RSA.
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3. Valence-restricted sequential adsorption

In Sec. III.B.3, we described results for monomer
filling with NN exclusion. One natural generalization of
this process is to allow sites to fill randomly provided
they have no more than c occupied NN. Thus 0 ~ c ~ z (z
denotes the lattice coordination number), c=0 corre-
sponds to filling with NN exclusion, c =z —1 to exactly
solvable "almost random" filling, and c =z to trivial ran-
dom filling. We call these models c-EX. In 1D, one finds
that Oz=(1 —e )/2, 2/3, 1 for c=0,1,2. On a square
lattice, hierarchy truncation (Evans et al. , 1983) and
simulation (Meakin et al. , 1987) analyses show that
Oz =0.364, 0.514, 0.658, 4/5, 1 for c=0, 1, 2, 3, 4. Simu-
lation estimates of 8J versus c are also available for hex-
agonal, cubic, and 4D hypercubic lattices.

Another generalization was first considered within the
context of percolation theory (Gaunt et al. , 1979; Ker-
tesz et al. , 1982). Here one allows sites to fill randomly
provided this results in no filled sites with more than c
"bonds" to NN occupied sites (i.e., the valence is restrict-
ed to c or less). We call these models c-V. Motivation
for these models comes from consideration of such pro-
cesses as kinetic gelation (Herrmann et al. , 1982, 1983).
The difference between c-EX and c-V models is that for
c-V one must check the change in valence of previously
occupied sites on the lattice after each new adsorption
event. For c=0, both models are equivalent (to RSA
with NN exclusion). For c=1, only isolated pairs of
filled sites are formed in c-V, in contrast to c-EX where
the adlayer consists of an ensemble of growing "trees"
which cannot coalesce. In 1D c-V models, one finds that
8=(1—e )/2, 0.600, 1 for c=0, 1, 2 (Toner and Onoda,
1992). On a square lattice, one finds 8+=0.364, 0.413,
0.526, 0.706, 1 for c=0, 1, 2, 3, 4, and results for a cubic
lattice are also available (Kertesz et al. , 1982; Toner and
Onoda, 1992).

Toner and Onoda note that c-V models are intrinsical-
ly less tractable than c-EX models. This is most clear in
10 where the 1-EX model is trivially solvable, in contrast
to the 1-V model. In fact the 1-V model is equivalent to
monomer filling with range-2 cooperativity where (using
the notation of Sec. V.B.l) k, , ~ =k,„,=k,„,=k,
and all other rates are zero. Thus the 1-V model falls
into the previously mentioned class of "simplest" non-
solvable models, although a shielding property is satisfied
and eKcient approximate truncation procedures are
available (Evans and Burgess, 1983). Higher dimensional
c-V models can similarly be interpreted as monomer
filling with longer range cooperativity. Toner and Onoda
(1992) have developed approximate "mean-field" expan-
sions for the kinetics of these processes which incorpo-
rate exact short-time and long-time behavior.

4. Transient mobility

Transient mobility is associated with the (possible) in-
ability to instantaneously dissipate the energy gained by
an atom after formation of the surface bond (Dobson,

1987; Egelhoff and Jacob, 1989; Evans et al. , 1989a).
Such "hot" motion would occur on a very short (pi-
cosecond) time scale relative to the deposition time scale
O(k '). Consequently we assume each transient motion
is completed immediately after deposition of a particle,
and prior to deposition of the next particle. Thus, in
such models, we specify not only the depo'sition rates for
various local environments, but also the probability dis-
tribution for various subsequent transient motions (which
again depend on the local environment). In general,
mobile hot atoms might dislodge previously adsorbed
atoms, greatly increasing the number of possible tran-
sient motions. An empty site shielding property holds in
the general form stated in Sec. IV.C.1. The width of the
shielding wall is determined by the {finite) range of
cooperativity and transient motion, including that of
dislodged atoms.

Next we comment on solvability for 1D processes. If
atoms can be dislodged, then the minimal closed hierar-
chy will involve disconnected empty configurations and
cannot be solved exactly. However, if adsorption rates
and subsequent transient motion are inAuenced by NN
interactions, and if atoms cannot be dislodged once tran-
sient motion has ceased, then the minimal hierarchy in-
volves just connected empty configurations and can be
solved exploiting empty site shielding.

For dissociative diatomic adsorption, such transient
motion might be expected to result in separation of the
constituent atoms in the direction determined by the
transition state bond orientation (Brune et a/. , 1991;
Chang et al. , 1988). Exact analysis of such 1D processes
is possible with the same constraints as noted above
(Evans, 1987a). Finally we remark on the eff'ect of adding
transient mobi1ity to the 8-site model for dissociative ad-
sorption of dimers on diagonal NN sites of a square lat-
tice. Allowing separation of atoms in the diagonal direc-
tion clearly ensures that they remain in c(2 X 2) domains
of the same phase (Fig. 19). It also results in a significant
increase in correlation length associated with the c(2X2)
ordering, and associated sharpening of the {—,', —,') spot in

the diffraction profile. The latter is consistent with ex-
perimental data for 0/Pd(100) (Chang et al. , 1988). For
other work see Pereyra and Albano (1993), Albano and
Pereyra (1993),and Privman (1993).

I'a')

FIG. 19. Dissociative adsorption of dimers on 2NN sites of a
square lattice with transient mobility producing (a) the same,
and (b) di6'erent c(2 X 2) phases of the constituent adatoms. Ad-
sorption sites are indicated by "o".
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Vl. PERCOLATION TRANSITIONS ANI3
LARGE-SCALE STRUCTURE

For any distribution of filled and empty sites on a lat-
tice, one can define "clusters" of s ~ 1 filled (or empty)
sites by specifying a connectivity rule. In the simplest
choice, we specify that filled sites joined by NN bonds are
in the same cluster (NN connectivity). All results below
are for NN connectivity unless otherwise stated. A less
restrictive choice is to specify that filled sites can be
joined by NN or second-NN bonds (2NN connectivity).
Any specific definition uniquely determines the cluster
size distribution n„and thus the average cluster size
s,„=g, s n, /g, sn, . We also set s,', = g, sn, /g, n, .
If R, denotes the average radius of gyration for clusters
of size s, then the characteristic distance between filled
sites in the same cluster, or connectivity length,
satisfies g' =2+, R, s n, /g, s n, . One might also con-
sider the behavior of the average number of empty perim-
eter sites, t„for filled clusters of size s (Stauffer, 1979).

Next suppose one has a class of distributions
parametrized by the fraction of occupied sites, p, or
equivalently the coverage, 0= g, sn, (=p), varying from
zero to unity. (Here one naturally thinks of distributions
generated by a random or cooperative sequential adsorp-
tion process. ) One then naturally asks at what "critical"
coverage 8, do the clusters of filled sites link sufficiently
to span the lattice (Stauffer, 1979; Stauffer and Aharony,
1992). Clearly at this "percolation threshold" the aver-
age cluster size and connectivity length diverge (for an
infinite lattice). What is the nature of this divergence'?
What is the structure of the infinite percolating cluster
and its perimeter? Likewise, one can consider the per-
colation problem for empty clusters. Note that the filled
and empty site percolation problems are not simply relat-
ed in general.

These issues have been addressed primarily for random
or "independent" distributions of filled sites, which in the
context of this review, we can naturally think of as being
generated by RSA of monomers. This is the famous "ran-
dom site percolation problem" of Broadbent and Ham-
mersley (1957). Although the probability of finding a
specific cluster Isl of s filled sites and t empty perimeter
sites trivially equals 0'(1 —0)', the cluster size distribu-
tion is nontrivial. However, the behavior near 0, has the
postulated form

s,„-l0 0, 1

r g 10 0, I

and

n, -s 'f [(0—0, )s ],
(Stauffer, 1979) where f is a universal scaling function,
and the critical exponents y, v, ~, and o. satisfy the rela-
tions y=(3 r)/o and dv=—(w —1)/cr on d-dimensional
lattices. Postulated 2D exponent values are v=4/3 and

T =43/18. —1/dfIf one assumes that R, -s f, then the relation be-
tween g and R, together with (52) implies that the fractal

dimension df of large clusters at percolation equals
( cr w)

'
( =91/48 in 2D). It is believed that

df ( 0)=d(animal) for 0 (0„where d(animal) ( = 1.56 in
2D) is the fractal dimension of large random animals.
(All random animals of the same size have equal proba-
bility, as do percolation clusters as 0~0.) Also df(0) =d
for 0~ 0, (compact clusters). In practice, however, the
"eA'ective" fractal dimension increases smoothly with 0.
It has also been shown that large clusters at any fixed
coverage are ramified, i.e., R (0)= lim,

„ t, /s exists and
is nonzero. One finds that R (0) is a monotonically de-
creasing function of 0 which equals (1 —0)/0 for 0~ 0, .
The perimeter of percolating clusters also has fractal
properties (Ziff, 1986) and can be described by a special
type of self-avoiding walk (Ziff et a/. , 1984).

If one thinks of random distributions as associated
with RSA of monomers, one is naturally led to consider
generalized "correlated (site) percolation problems" asso-
ciated with CSA of monomers, or RSA of larger animals.
Such investigations are described below. In contrast to
random percolation, here the percolation problems for
filled and empty sites are not equivalent. There is little
hope of providing an analytic treatment of these prob-
lems. However finite-size-scaling (FSS) procedures pro-
vide an efficient and reliable way of determining percola-
tive behavior. The strategy here is to accurately deter-
mine the behavior for a sequence of finite systems of in-
creasing size (e.g. , via simulations). One then judiciously
extrapolates to infinite size behavior exploiting a natural
finite-size-scaling hypothesis (Saleur and Derrida, 1985).
We present results from such procedures, but skip the de-
tails.

It is appropriate to emphasize some special exact rela-
tionships for percolation on square lattices of primary in-
terest here. For NN connectivity, the filled site percola-
tion threshold must exceed that for empty sites, since
filled and empty regions cannot simultaneously percolate.
(Here percolation of the empty regions blocks that of the
filled regions, and vice versa. ) However the filled site
threshold for 2NN connectivity always corresponds to
the empty site threshold for NN connectivity, and vice
versa. (Either 2NN connected filled clusters or NN con-
nected empty clusters must percolate. )

Finally we should mention the extensive studies of con-
tinuum percolation problems (Stauffer and Aharony,
1992), especially in two dimensions. These suggest that
the continuum and lattice problems belong to the same
universality class, i.e., they are characterized by the same
critical exponents. Continuum percolation ideas natural-
ly apply to grain growth models, and thus to strongly
clustering CSA. Their connection to continuum RSA is
less clear. We shall briefly comment on these issues
below.

A. One-dimensional lattices

For clusters on 10 lattices defined by NN connectivi-
ty, clearly percolation can only occur at 6I, =1. One also
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has a simple expression g, n, =P„,for the cluster densi-

ty D. For random distributions where n, =(1—0) 0', it is
a trivial matter to calculate the various moments

g, n, =0(1—0), g, sn, =0, g, s n, =0(1+0)(1—0)
etc. (Reynolds et a/ , .1977). Thus one has s,„=
(1+0)(1—0) ', so y =1 in the above scaling formula for
s,„,and s',„=(1—0) '. Of course the statistics of empty
sites at coverage 1 —0 is equivalent to that of the filled
sites at coverage 0.

Here we characterize the divergence of s,', and s„,as
0—+1, for CSA of monomers. For monomer filling with
rates k; depending only on the number i of occupied NN
sites, from the exact solution in Sec. III.A. 1 one can
readily show that, as 0—+ 1,

with

s,'„—A (1—0)

(53)

1 for k2 + 2k&,
2(1 —k

&
/k2 ) for k2 ~ 2k

&

(Evans et al. , 1986), i.e., the prefactor, but not the ex-
ponent, undergoes a transition when k2 =2k &. Since
determination of s,„requires knowledge of the full clus-
ter size distribution, precise analysis is not possible.
However, if lim, n, +, /n, =A,(0)~1, as 0—+1 (cf. Sec.
V.B.1), then one might expect that s„-2(1—A. )

' and

s,'„-(1—A, ) ', as 0~1. As an aside, we note that start-
ing with a lattice "seeded" with filled sites changes the
prefactors describing the divergence of s„and s,'„,as
0~1 (Evans et a/ , 1986). F. inally we observe that for
CSA processes, empty site shielding guarantees that the
size distribution of empty strings or "clusters" exhibits
strictly geometric decay after "small" sizes. This allows
precise analysis of the divergence of the average size of
empty clusters as 0~0.

In preparation for our 2D discussion below, we next
consider 1D R&CSA processes where percolation never
occurs due to jamming, but where one naturally thinks of
a "Virtual percolation transition" occurring in the unphys-
ical coverage range above jamming. The simplest such
example is random dimer filling where OJ = 1 —e, and
s,'„=20~in(1—0)

~

'(1 —0) ' diverges when analytically
extended beyond the physical range 0 ~ 0 ~ OJ to the vir-
tual percolation threshold of unity. For 1D cooperative
filling of dimers, one can shift OJ arbitrarily close to uni-

ty, choosing filling rates which enhance clustering, but it
is clear that the virtual percolation threshold will remain
at unity. It is instructive to also consider (isomorphic)
problems involving sequential adsorption of monomers
with NN exclusion, where 0J ( 1/2. Here the virtual per-
colation threshold for double-spaced strings or "clusters"
(defined by 2NN connectivity) of filled sites clearly al-
ways occurs at 0=1/2. For RSA of monomers with NN
exclusion, one finds (Evans, 1989b) 0&=(1—e )/2 and

s,'„=20~in(1—20)
~

'(1 —20)

B. Branching media

For Bethe lattices and more general branching media,
exact solution of the random percolation problem is still
straightforward (Fisher and Essam, 1961). Such an
analysis can be simply interpreted in terms of simple
spreading phenomena, or as branching or cascade pro-
cesses (Harris, 1948). Consider a Bethe lattice of coordi-
nation number z with a fraction 0 of sites randomly filled.
Imagine attempting to hop between NN filled sites to
infinity. At each step one has z —1 new NN sites from
which to choose (excluding that of the previous step). On
average, (z —l)0 of these are filled, so for the walk to
continue indefinitely, i.e., for the cluster to "spread" to
infinity, one must have (z —1)0~1. Consequently, one
has 0, =(z —1) '. Exact analysis extends to cases where
the distribution of filled sites is spatially Markovian, and
this has been exploited to solve the correlated percolation
problem for the Ising model on a Bethe lattice (Kikuchi,
1970; Coniglio, 1975). Exact analysis is also possible for
distributions satisfying suitable nth-order spatial Markov
conditions and, importantly for our purposes, for distri-
butions satisfying nth-order o-Markovian (or x-
Markovian) conditions (Evans, 1987c). The existence of
an o-Markovian condition, as in R&CSA processes, often
allows one to solve exactly the empty site percolation
problem. Exact analysis of the filled site percolation
problem for such R&CSA processes is not possible.

Here we comment only on the example of random di-
mer filling on a Bethe lattice of coordination number z,
which satisfies a first-order o-Markovian condition. One
finds an empty site percolation threshold at

0+ = 1 I(2z 3)(z 1) z]~~~

(Evans, 1987c), compared with the jamming coverage of

Thus one has 0'=37/64 and 0J =7/8 when z=3,
0*=56/81 and 0&=8/9 when z=4, 0' —1 —2z ' and

0q —1 —(z —1) ', asz~~.

C. Random sequential adsorption in higher dimensions

For RSA of monomers (the random percolation prob-
lem), 0, =0.593, 0.311, 0.197, 0.141, 0.108, 0.089 for
square, cubic, 4-, 5-, 6-, 7-dimensional hypercubic lat-
tices, respectively, and 0, —1/(2d —1)=l/(z —1), in d
dimensions, as d ~~; also 0, =0.500 (0.698) for 3- (6-)
coordinated hexagonal (triangular) lattice. Exponent
values depend only on lattice dimension, and reduce to
mean-field values v=1/2 and y=1 for d ~6 (Stauffer,
1979).

Random dimer filling in 2D has received some atten-
tion as a model to treat mixed alkali effects in solid ionic
conductors. In this context, Bunde et al. (1986) and
Harder et al. (1986) estimate empty site percolation
thresholds at 0=0.448+0.01 and 0.38+0.01 on square
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and 6-coordinated triangular lattices, respectively. More
accurate FSS analysis for the square lattice [Ref. 27 of
Evans and Sanders (1989)] yields percolation thresholds
of 0.434+0.001 and. 0.562+0.001 for empty and filled
sites, respectively (cf. values of 0.407 and 0.593 for ran-
dom percolation). Exponents take random percolation
values. Holloway (1989) estimated the filled site thresh-
old to be 0.35 on a 3D diamond lattice (cf. 0.43 for ran-
dom percolation).

Nakamura (1987b) considered the filled site percola-
tion for n Xn-mers on 20 square lattices. He finds that
1X1-mers percolate at 8, =0.593 (the random percola-
tion problem), 2 X 2-mers percolate at 8, =0.601 and jam
at OJ=0.748, 3X3-mers percolate at HJ =0.621 and jam
at Oz =0.679, but n X n-mers with n ~ 4 do not percolate
before jamming. Nakamura describes these n X n-mers
as filling cells on a square grid, so that problems consti-
tute continuum percolation problems. He further deter-
mined that the perimeter(P)-area( A ) relationship had

the form P-(3/n)A, for n ~2, where df =1.9, anddf /2

presumably most data is taken from near jamming.
Nakamura (1986b) obtained the same fractal dimension
for a modified class of RSA problems where one first fills

with n Xn-mers (for large n) until jamming, then with
(n —1)X (n —1)-mers until jamming, etc.

Kertesz et al. (1982) analyzed the percolative proper-
ties of ISA with restricted valence, i.e., the c-V models
described in Sec. V.G.3. Percolation on square and cubic
lattices occurs only for c ~ 3 (i.e., one must allow at least
triply coordinated filled sites). Estimates of percolation
thresholds are available and depend fairly weakly on c.

For conventional continuum car parking problems (or
RSA), percolation is never achieved since there is zero
probability that cars touch. However Hinrichsen et al. ,
(1986) noted that for RSA of disks on the plane, if one
enlarges the disk radii in the jammed state, percolation
first occurs when the radii are enlarged by nearly 20/o.
(This is equivalent to changing the connectivity rule to
require only that disks are within a certain distance of
each other to be in the same cluster. )

D. Cooperative monomer filling on a square lattice

It is natural to consider how the introduction of corre-
lations, and specifically islanding, a8'ects the percolative
behavior. Monomer filling with NN cooperativity pro-
vides a natural generalization of the random percolation
problem, and is used here to examine such questions
(Evans and Sanders, 1988; Sanders and Evans, 1988; An-
derson and Family, 1988, 199b; Evans, 1990b). As previ-
ously, filling rates for sites with i occupied NN are denot-
ed by k;. Traditionally the equilibrium Ising lattice-gas
model has been the vehicle for such analyses (Stauff'er
et al. , 1982). As a consequence, an impression has
developed that clustering tends to enhance percolation,
i.e., to reduce 8„although exceptions are known (Bug
et al. , 1985).

Here we describe results for both the Eden rate choice,
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FIG. 20. Percolation thresholds for NN-connected filled and
empty clusters for monomer filling on a square lattice with NN
cooperativity. (a) Eden rates k; =ako, (b) Arrhenius rates
k; =n'ko. Here a ) 1, u = 1, n & 1 correspond to clustering, ran-
dom, anticlustering filling, respectively. The scales on the hor-
izontal axes are chosen to give roughly linear behavior of
thresholds as o.~~ (Sanders and Evans, 1988; Evans, 1990b).

k; =cxko, for i ~ 1, and the Arrhenius rate choice,
k; =a'ko (see Fig. 20). Consider first perturbation of ran-
dom filling, a=1. In both cases, introducing anticluster-
ing (a ( 1) increases 8„and introducing clustering
(a) 1) decreases 8, . However as clustering becomes
stronger (a increases further), 8, reaches a minimum
then increases to about 0.7, as e—+Do. This asymptotic
behavior is achieved much earlier for Arrhenius rates.
The percolation thresholds for empty clusters increase
monotonically with a ~ 1, and asymptote to the filled site
thresh olds.

This behavior is readily understood noting that for
large a, characteristic island sizes diverge, so the lattice
problems go over to continuum percolation problems.
These are not conventional continuum percolation prob-
lems, where disks are placed randomly on the plane (Pike
and Seager, 1974). Instead for Eden rates, one is led to
consider the continuum percolation problem for Avrami
or Johnson-Mehl type models, rather than for the cell
model (see Sec. III.D.1). However, it is generally be-
lieved that for continuum percolation problems with non-
pathological distributions of disk sizes, that the critical
area fraction is typically around 0.7 (Kertesz and Vicsek,
1982). This is consistent with our estimates of lim „8,.
Furthermore, for continuum percolation problems, either
empty or filled regions percolate (but not both). This ex-
plains the convergence of the empty and filled site per-
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colation thresholds, since they must coincide at n = ao.
%'hy is n —+ oo asymptotic behavior achieved faster for

Arrhenius than Eden rates? It should be noted that 0, is
lower for Eden rates than for Arrhenius rates, even
choosing a values so characteristic length scales coincide.
The reason is that Eden clusters are much "fuzzier", i.e.,
have broader active zones, which enhances percolation
keeping 0, low (Evans, 1990b). One can check this pro-
position by considering a model with fixed island size and
noting that reducing fuzziness (e.g., by incorporating
noise reduction into island growth) increases 8, (Sanders
and Evans, 1988).

For both models, one finds that critica1 exponents take
random percolation values for all n. This random per-
colation universality should be expected. Correlation
lengths are finite for u& ao. One is simply considering
the random linkage of islands rather than individual filled
sites. Even continuum percolation problems are believed
to be in the (lattice) random percolation universality
class. Consequently, percolating clusters in these prob-
lems always have the random percolation fractal dimen-
sion df =91/48. We find that the effective fractal dimen-
sion increases with 0. Its low 6I value comes from
analysis of appropriate correlated animals (Sanders and
Evans, 1988), which are presumably in the random an-
imal universality class. We also note that
R = lim, t, /s decreases with 8 (as for random per-
colation), and also decreases with a (at fixed 8). Finally
we suggest that island perimeters can be characterized as
a type of correlated self-avoiding walk (cf. Ziff' et al. ,
1984).

Suppose one replaces the homogeneous (Poisson) nu-
cleation process in the above models with heterogeneous
nucleation about randomly distributed seeds of coverage
e. Then as e~O and the characteristic island size in-
creases, and for growth of Eden clusters about seeds, one
sees analogous behavior to the above models. First the
filled site percolation threshold decreases, before increas-
ing towards a continuum value of about 0.7 (Evans,
1990b). In this case one recovers the conventional con-
tinuum percolation problem (if one ignores slight devia-
tions from circular shape of large Eden clusters).
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FIG. 21. Two second-NN-connectivity c(2X2) clusters that are
linked to form a single third-NN-connectivity c(2 X2) cluster.

E. 2D virtual percolation problems

In random or cooperative monomer filling with NN
exclusion on a square lattice, disordered c(2 X 2) or
checkerboard domains are formed having one of two
phases. These are separated by domain or anti-phase
boundaries in the jammed state where Oz & 1/2. See Figs.
1 and 15. Implicit in this description is a specification of
connectivity rule defining domains, e.g., filled sites joined
by second-NN bonds are in the same c(2X2) domain or
"cluster" (2NN connectivity). Another natural but less
restrictive choice is to specify that filled sites connected
by second- or third-NN bonds are in the same domain
(3NN connectivity). See Fig. 21. For either of these con-
nectivity rules, we emphasize that percolation of c(2X2)
domains is not possible for topological reasons. The ar-
gument is simple. Since domains of the two different
phases are statistically equivalent (there is no long-range
order), either both percolate or neither percolate. The
former is impossible since percolation of a domain of one
phase would block percolation of any domain of the oth-
er. However examination of the jammed state for ran-
dom filling (Fig. 1) or cooperative filling (Fig. 15) with
NN exclusion suggests that this state is "close to percola-
tion". Below we quantify this claim and argue that there
is a "virtual percolation transition" at a coverage "just
above" jamming. See Evans and Sanders (1989) for de-

tails.
First we analyze the case of random monomer filling

with NN exclusion. The coverage dependences of the
average domain size s,„,and connectivity length g are
shown in Table I. The rapid increase near jamming,

TABLE I. Average c(2 X 2) domain sizes (s,„)and connectivity lengths (g), as functions of coverage 0
for random monomer filling (RSA) with NN exclusion. Values for both second-nearest-neighbor (2NN)
and third-nearest-neighbor (3NN) connectivity are given.

0+
0.12
0.24
0.30
0.32
0.34
6J

s„(2NN)

1

1.91
6.8

22.2
38
71

164

g(2NN)

0
1.43
4.2
9.0

12.9
19.4
30

s.,(3NN)

1

3.13
21.7

102
185
370

—10

g(3NN)

0
2.83

10.7
26.7
35
52

—100
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FIG. 22. Percolation phase diagram for monomer filling with

NN exclusion on a square lattice with biased rates, 1+5, for
filling sites on sublattices (cf. Fig. 14) corresponding to the two
di6'erent c(2X2) phases. The filling trajectory for the "physical
adsorption model" with no bias, 6=0, is shown by a heavy solid
line. Virtual percolation threshold values for 6~6, are ob-
tained by extrapolation of s,„and g' beyond jamming. Dashed
lines show the majority c(2X2)-phase partial coverage corre-
sponding to percolation and jamming.

0&=0.364, suggests that analytic extension of s,„and g
would produce divergence "just above" I9&. Extrapolat-
ing simulation data, assuming divergence is described by
random percolation exponents, suggests simultaneous
divergence of s„and g at 0„=0.43 for 2NN connectivi-
ty (and 0„=0.41 for 3NN connectivity). Here 0„
denotes the virtual percolation threshold.

Additional evidence for this picture comes from
embedding this RSA problem in a larger class of prob-
lems where the virtual transition becomes real! This is
simply achieved by assigning different adsorption rates,
1 5, for filling of sites on the interpenetrating sublattices
associated with the two c(2X2) phases (Fig. 14). Thus
when the bias 5, is zero, one recovers the original RSA
problem with OJ =0.364; when 6=1, one sublattice fills

randomly and completely so OJ=1/2. Clearly, as 6 in-
creases, one will reach a critical value 5„where the
jammed state will first percolate. (For 2NN connectivity,
5, =0.160 corresponding to 0~=0.367.) For larger 5,
percolation will be achieved before saturation; for 6=1,
percolation is clearly achieved at half the random per-
colation threshold (at 0=0.593/2=0. 297 for 2NN con-
nectivity). The complete percolation phase diagram is
shown in Fig. 22. Extrapolation of the percolation line
for 5 ~ 5, back to 5 =0 gives an estimate of O„consistent
with that above.

Finally we comment on the effect of introducing a
c(2X2) island-forming propensity, e.g., via Eden or Ar-
rhenius rates (Sec. V.B.4), to the adsorption process.
Since OJ & 0„,& 1/2 and OJ increases toward 1/2, one ex-
pects the jammed state to become "closer to percolat-
ing". One can also confirm that 5, decreases. In the lim-

it of strong clustering (n~ ao ), characteristic sizes

diverge, and one goes over to a continuum picture: in the
jammed state, space is divided between the two statisti-
cally equivalent c(2X2) domains. Such a system is neces-

sarily at the percolation threshold (so 5, =0).

VII. GENERALIZATIONS AND FUTURE DIRECTIONS

A. Sequential adsorption with diftusional relaxation

Z

k, 0'(1 —0)' '+'-k4(1 —0), as 0~1 .
0

(54)

—k4t
Consequently one always finds that 1 —0-e ', in con-
trast to the immobile case [see Sec. IV.D and Evans
et al. (1986)]. Instead of random hopping, one could al-

low more general Kawasaki hopping dynamics. For Ar-
rhenius filling rates, k; ~ o,", hopping rates might natural-

ly be chosen to correspond to a NN interaction
J= —P 'In(a). Then, in the limit of high hopping rates,
the adlayer is described by equilibrium statistics associat-
ed with NN interaction J. Thus (54) must be appropri-
ately modified.

Privman and Nielaba (1992) treat random dimer filling

including random hopping of undissociated dimers. Here
hopping allows isolated vacancies formed during deposi-
tion to diffuse together creating empty pairs, which have
a finite lifetime, and which may be filled. Thus the sys-
tem is able to reach the completely filled "adsorbing
state". Simulations in 1D reveal I;

' -asymptotic decay
of 1 —0, which corresponds to the diffusion-limited for-
mation of empty pairs. The same argument would sug-
gest ln(t)/t decay in 2D, and t ' decay in ~ 3D. Simula-
tions in 1D for larger diffusion rates also revealed a re-
gime of t ' decay preceding the asymptotic t 'f re-
gime. This was associated with "mean-field" behavior.
It should however be noted that, in the limit of infinite
diffusion rate, the equilibrium distribution of the
difFusing dimers is not random: P„=2(1—0) /(2 —0)
rather than I', =(1—0) . However either form when in-

serted into the random dimer filling rate equation,
d 0/dt =2P„,gives t -asymptotic behavior. Privman
and Nielaba (1992) also note the possibility of more exot-
ic behavior in diffusional relaxation in RSA of larger an-
imals. For extension to k-mer deposition, see Nielaba

Consider cooperative sequential adsorption of mono-
mers on a lattice of coordination number z (in any dimen-
sion), where one also allows adsorbed monomers to hop
to unoccupied NN sites at rate h, say. Exact analysis of
this process is not possible (except for random filling)
even in 1D, and the introduction of hopping invalidates
the empty site shielding property. However, clearly hop-
ping has the effect of reducing the correlations developed
during filling. [See Evans and Hoffman (1984b) for an
analysis at constant coverage. ] In the limit as h ~ ao, the
adlayer becomes random and the adsorption kinetics is
given exactly by the "mean-field" expression. For filling

with rates k; for sites with i occupied NN, one then has
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and Privman (1992a), and Privman and Barma (1992).
It is appropriate to note that problems involving

sequential adsorption with diffusional relaxation are "iso-
morphic" to problems involving irreversible desorption
in competition with surface migration (Surda and
Karasova, 1981; Sundaresan and Kaza, 1985). Think of
desorption as corresponding to adsorption of holes! Also
note that under this isomorphism, dissociative adsorption
of dirners corresponds to recombinative desorption of di-
mers (Luque and Cordoba, 1982, 1987; Surda, 1989).
Thus exact analysis is often possible for 1D problems
without diffusion. However, since activation energies for
surface diffusion are typically much smaller than binding
energies, virtually all such studies have considered the
limiting regime of large diffusion rates, i.e., desorption
from an equilibrated adlayer (King, 1985; Kreuzer and
Payne, 1991).

Finally we note that Tarjus et al. (1990) have con-
sidered diffusional relaxation of continuum RSA prob-
lems. They use a distribution function approach and
generate an infinite hierarchy of evolution equations.
The adsorption terms in these equations are just the con-
tinuum analogue of those in suitably formulated lattice
hierarchies (Hoffman, 1976; Dickman et al. , 1991).
Diffusional contributions appearing in the n «2 particle
distribution function equations are described using Smo-
luchowski operators. An approximate analysis of the
transition from simple RSA (no difFusion) to "equilibrium
adsorption" (infinite diffusion), for lower coverages, is ob-
tained via a density expansion formalism. This does not
provide information on the nontrivial long-time
compactification kinetics.

most importance experimentally, and on the spatial
correlations.

1. Growth without defects

The most basic such models involves irreversible ran-
dom deposition of particles at on-top sites at rate k, say,
in a square lattice geometry in d = 1+ 1 dimensions (a 1D
substrate), or a simple cubic (SC) geometry in d=2+ 1 di-
mensions (a 2D substrate) (Reif, 1965; Weeks et al. ,
1976). We call this the "rain model". Here one has

81=k(8,—8 )=kS, or S.=k(S i
—S~) .

These equations can be easily solved for the above initial
conditions to obtain S =e 8J/j!, where 8=kt (i.e., a
Poisson distribution of column heights). It readily fol-
lows that &=8'~ (so P= 1/2) and Is, =e . More
generally, the deposition rates could depend on the layer
(i.e., k for layer j). The case k, &k2=k3=kz=. . . has
been analyzed in some detail (Privman, Frisch et al. ,
1991; Appendix B of Evans et al. , 1986), and a closed
form expression for the 0 is available if all rates are un-
equal (Bartelt and Privman, 1991).

Numerous other random deposition models have been
considered (Fig. 23): random deposition at bridge sites in
d= 1+1, or fourfold hollow sites starting from the (100)
face of an fcc crystal in d=2+ I (Evans, 1989c); the
equivalent single-step models (Meakin ei a/. , 1986;
Plischke et al. , 1987); the restricted solid-on-solid

B. Irreversible multilayer growth models

In the multilayer growth models of interest here, parti-
cles are allowed to adsorb on top of particles in lower lay-
ers, according to various rules, so as to continue an "epi-
taxial" lattice structure. Unless otherwise stated we as-
sume growth occurs on an infinite substrate. The most
basic quantities of interest are the coverages, 0, for the
various layers indexed by j. Typically, one starts with an
initially perfect substrate, so 00=1 and 0.=0, for j ~ 1„
at t=0. Here the total coverage is simply given by
8= g.&, 8 . Much of the recent investigation of these
models is motivated by interest in their "kinetic roughen-
ing" properties. Let 5 =0 —0 +I denote the effective
fraction of "exposed" particles in layer j, and note that
g S = 1. Then a natural measure of roughness is the in-
terface width, W; satisfying 8 = g~ (j—j,„)SJ, where
j,„=g. jS (=8, for the above initial conditions). Then
the value of the exponent in the relationship, 8'-0P, as
0—+~, is of primary interest. Another quantity of in-
terest is the Bragg intensity, IB,= [ g~ ( —1)~SJ], corre-
sponding to diffraction from the surface at a wavelength
where scattering from consecutive layers interferes de-
structively. We shall also comment on the detailed kinet-
ics of filling of the first several layers, since this is often of

(c)

p 0
0@0 0 U

I I

II

I II I I I

i i
I Ij I I I I I I I I I I

Q I Il I I II II I I I1

FIG. 23. Schematics of various irreversible multilayer deposi-
tion processes on 1D substrates: (a) random deposition at on-
top sites [the "rain model"]; (b) random deposition at bridge
sites; (c) the single-step model [equivalent to (b)]; (d) the restrict-
ed solid-on-solid (RSOS) model with adsorption sites indicated
by +'s; (e) lattice ballistic deposition with adsorption sites indi-
cated by + 's; (f) random dimer filling without screening.
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=kS(Vh, V h, . . . ) —V j„,+q(x, t) .
Bt

(55)

Here k is the adsorption rate for a perfect substrate; S is
the normalized sticking coefficient (S= 1 initially), which
might depend on local slope, curvature, etc. ; j„,denotes
the nonthermal Aux of particles subsequent to impact
with the surface; and g is zero-mean stochastic noise
term (typically chosen as delta-function correlated) which
produces roughness. Solution of (55) yields 8' from
W =((h —(h)) ).

For on-top adsorption sites, without RSOS or single-
step type restrictions, every incoming particle sticks, so
S=1. Thus for the rain model where j„,=O, (31) be-

(RSOS) model of Kim and Kosterlitz (1989), where a par-
ticle can be added to layer j only if the site beneath in
layer j —1, and all NN of that site, are filled. We note
that although complicated correlations develop in all
these models, exact analysis is possible for O, , oz, (93, . . .
as functions of time (Evans, 1989c; Evans and Bartelt,
1994). However the number of quantities infiuencing the
Oz, whose rate equations must be simultaneously integrat-
ed, increases dramatically with j. One can also exactly
determine for these models the spatial correlations which
have strictly finite range, depending on layer height j
(Evans, 1989c). We comment on the roughening proper-
ties of these models below.

Many modifications of these simple models are possi-
ble. Family (1986) first analyzed the remarkable smooth-
ing effect on the above "rain model" of introducing
"transient mobility" in the form of a single downward
hop to a lower NN column. Similar simple restructuring
by a single downward hop has been considered in the
other models (Kang and Evans, 1991). More generally,
one can allow multiple-restructuring through downward
hops (Meakin and J'ullien, 1987; Jullien and Meakin,
1987), or a similar physically realistic "downward funnel-
ing" deposition dynamics (Evans et al. , 1990; Evans,
1991b). Rather difFerent behavior is observed if one al-
lows immediate migration to nearby kink sites (Wolf and
Villain, 1990; Das Sarma and Tamborina, 1990; Kang
and Evans, 1992a); but see Yan (1992). Another
modification would be to incorporate cooperative filling
into the rain model, e.g., with rates k, depending on the
number i of occupied NN in the same layer. Although
no study of this model is available, we discuss a limiting
case of multilayer grain growth below. Amar and Family
(1990) considered a cooperative version of the RSOS
model with enhanced growth at kinks.

Insight into the asymptotic growth of the roughness,
8'-Op, as 0~ ~, in these models is obtained by utilizing
a coarse-grained description of film growth. Here the
evolution of the film height, h (x, t), as a function of a
continuous lateral position, x, and time, t, is described by
a stochastic partial difFerential equation (Vicsek, 1989;
Family, 1990; Krug and Spohn, 1991). For defect-free
models without thermal diffusion, this equation has the
form (cf. Krug, 1989; Villain, 1991; Kang and Evans,
1992b)

comes dh/dt =k+q which yields p= 1/2. Including
transient mobility in the form of a downward hop after
deposition implies j„,= —v,Vh, so (55) becomes the
linear equation of Edwards and Wilkinson (1982) for
which P= 1/4 in d =1+1, and P=O ( W -In0) in
d=2+1 dimensions (EW exponents). The "downward
funneling" model has the same behavior, the only
difference being that j„,represents the downward funnel-

ing Aux rather than that associated with downward tran-
sient mobility. For the RSOS and single-step models (or
for random deposition at non-atop sites), one has j„,=O,
but now S depends on film structure, i.e., S = 1

+A, ~Vh~ +v'V li+ . For these models, one has A. (0
(tilted surfaces have less adsorption sites) and v') 0 (the
"most" adsorption sites occur at local minima, and the
"least" at local maxima). Here (55) becomes the non-
linear Kardar-Parisi-Zhang equation (1986), for which
P=1/3 in d =1+1, and P= 1/4 in d=2+1 dimensions
(KPZ exponents). Equation (55) can also be used to ana-

lyze the way in which cooperativity or transient mobility
modifies the behavior of these models.

Consideration of the steady states of growth models for
finite width substrates also provides information on
kinetic roughening. The steady state of the d =1+1
single-step model is random (in a spin representation), so
exact analysis is possible yielding, e.g., A, (Krug and
Spohn, 1989; Evans and Kang, 1991). Information on v
follows from the response of the system to a spatially in-
homogeneous perturbation (Wolf and Tang, 1989).

2. Growth models with blocking or screening

The classic lattice model exhibiting a screening (or
overhang) effect is ballistic deposition for a square or SC
lattice geometry (Family and Viscek, 1985; Meakin
et al. , 1986). Here particles deposit vertically at random
and stick and the first site reached with an occupied NN.
This can create overhangs which shadow lower layers
leaving permanent voids (Fig. 23). In this model, S= 1,
but the first term in (31) should be replaced by
k/p(Vh, . . . ), where p ~ 1 is the density or capacity of
the growing film (Krug, 1989). A key observation here is
that p depends on the slope of the growing film, thus
placing this model in the KPZ universality class (Pelli-
grini and Jullien, 1990). Modification of this model to in-

clude downward hopping transient mobility has also been
considered (Pelligrini and Jullien, 1990; Yan et al. , 1990;
Kang and Evans, 1991).

Continuum models of ballistic deposition of spheres
provide a natural multilayer generalization of RSA of
spheres on a plane. Various degrees of restructuring
have been considered in such models (Void, 1959; Vissch-
er and Bolsterli, 1972; Henderson et aI., 1974; Jullien
and Meakin, 1987; Meakin, 1987; Vicsek, 1989). The
propagation of disorder from the first layer has also been
considered (Socolar, 1992). We also mention a hybrid
class of models of a crystal-liquid interface (Bonissent
and Muftaftschiev, 1977, 1981). Here one starts with a
fcc(111) crystalline face. Atoms are added randomly at
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the threefold hollow sites in the first layer (which is
equivalent to RSA on a 3-coordinated hexagonal lattice),
producing domains separated by domain boundaries.
Atoms are added at local minima in higher layers which
evolve towards a random close packed structure.

A class of simple multilayer lattice models exhibiting
blocking (or jamming) in each layer, but not screening,
involve multilayer deposition of animals with the con-
straint of no overhangs (Nielaba et al. , 1990). Here
growth in higher layers proceeds by increasingly uncorre-
lated "towers" separated by gaps, so P=1/2 for this
model as in the rain model. Most interest is on the layer
dependence of the jamming coverages, 8~(t = ~ )-8 (r = ~ )+ 2 /j~, with 2) 0. For 1D k-mers or 2D
k Xk-mers, this asymptotic behavior, with /=1/2, was
explained in terms of the dominant late-stage decay of
two-animal-wide towers into one-animal-wide towers
(Hilfer and Wang, 1991). Note that the height difFerence
between two adjacent towers is described by a 10 ran-
dom walk at late stages. Thus the two- to one-wide tran-
sition, which requires equal tower heights, corresponds
to trapping (with finite probability) of the walk at the ori-
gin, consistent with /=1/2. In contrast, for multilayer
deposition of bent trirners on a square lattice, late-stage
evolution is instead dominated by a three- to one-tower
wide transition. Analogous (2D) random walk arguments
predict 8i(t = ~ )-8„(t= ~ )+8/In(j) (Privman and
Wang, 1992). A continuous version of multilayer deposi-
tion without screening, with a distribution of sizes of
parking objects, has been considered by Krapivsky
(1992b).

Bartelt and Privman (1990) introduced a d = 1+1 mul-
tilayer random dimer filling model which incorporated
overhangs (and blocking) but still no screening. Here a
dimer can land if completely supported or if covering an
isolated empty site in the layer below (Fig. 23). Thus
only isolated empty sites remain permanently in any lay-
er. A simple approximation to the exact rate equations
comes from neglecting the correlations between layers;
since a dimer cannot land if both sites beneath are empty
oo, or if it overlaps the left (right) end of an empty string
of two or more sites xoo (oox), this implies that filling
rates for layer j should be reduced by
1 —P„(j—1)—2P„„(j—1). Bartelt and Privman use
the simpler factor 1 I'„(j—1), but—in either case the
approximation predicts 8~(t = ~ ) =(1—e )/2, for all j.
However simulations (Nielaba and Privman, 1992b) re-
veal the behavior 8 (r = ao )-8„(t= ~ )

—C/j~, where
/=0. 3 and C) 0. The same relationship is found for
analogous d = 1+ 1 multilayer k-mer filling problems. A
sophisticated analytic formulation of these problems
might treat higher layer filling as filling in a "random en-
vironment". One needs a characterization of the statis-
tics of sites in the underlying layer which make up the
time-varying random environment. Since this is readily
available for the first layer of dimer filling, a precise
analysis of 8z(t) [as well as 8,(t)] is feasible. Finally for
these models, we expect that 5, and presumably also p,

will depend on Vh, etc., so they should exhibit KPZ
behavior.

3. Multilayer grain growth models

The multilayer generalization of the continuum grain
growth model of Kolmogorov et al. (Sec. III.D) is some-
times referred to as polynuclear growth (PNG), a classic
model of crystal growth (Frank, 1974; Gilmer, 1980).
Here grains or islands nucleate randomly in each layer at
rate I. Thereafter grains expand at constant speed v from
the nuclei (and are typically circular for a 2D substrate).
Clearly no overhangs are created in such models. This
model can also be thought of as the strong clustering lim-
it of cooperative multilayer lattice fiilling models as men-
tioned above (cf. Sec. III.D. for the submonolayer case).
Here we focus on the work of Kashchiev (1976) which
provided an exact treatment of the kinetics of filling of
the "first few" layers, as well as the asymptotic growth
rate. From the submonolayer grain growth models, we
know that 8&(t)=1—exp[(t/r) ]=F(t), say, where r de-
pends on I, v, and d. Kashchiev asserts that higher layer
kinetics is described by d8~. +(t)/d8J(t')=F(t —t'), for
t & t'. Since higher layer nucleation and growth occurs
on finite "platforms" rather than an infinite substrate,
one might question the use of the "first layer" function I'
(Weeks and Gilmer, 1979). However, this finite-size
effect is never felt since the platform expands as fast as
any island nucleated on top of it. One could continue to
determine spatial correlations extending the ideas of Sek-
imoto (1986).

The steady state of this d = 1+ 1 model on a finite sub-
strate can be analyzed exactly: it corresponds to an ideal
gas of island edges (Krug and Spohn, 1989, 1991). Such
an analysis reveals a slope dependence of the growth ve-
locity indicating that the model should exhibit KPZ
behavior. This claim is supported by numerical analysis
of the above recursion relation for layer coverages (Bar-
telt and Evans, 1993).

C. Diffusionless reaction models

Ziff et al. (1986) introduced the following irreversible
monomer( A)-dimer(82) reaction or ZGB model: mono-
mers adsorb randomly at single empty sites of a lattice
with rate pz, dimers adsorb randomly at adjacent pairs
of empty sites with rate p~ =1—p„;any AB pairs
formed as a result of adsorption react immediately off the
surface leaving behind an adjacent empty pair (thus
A+ —,'B2~AB). For this model on a square lattice,
there is continuous transition between a 8-poisoned
steady state with 0~=1 for p~ ~0.391 and a reactive
steady state for 0.391~pz ~0.525, and a discontinuous
transition to an 2-poisoned steady state with 0& =1 for
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p~ ~0.525. Analogous behavior is observed for finite re-
action rate (Dumont et al. , 1990). Thus by adding a re-
action step to competitive RSA of monomers and dimers
(see Sec. V.D), one obtains a model exhibiting kinetic
phase transitions.

The ZGB model prompted interest in a variety of
RSA+reaction models exhibiting such transitions. We
comment brieAy on a few of these emphasizing RSA-
related issues. In the steady states of the above 2 +82
models, one has 2ptiP„=p&P (balance of adsorption
rates), so P„vanishes linearly with P, at a continuous
transition. Thus the two-site requirement for dimer
filling does not inhibit 8 poisoning. If one replaces the
conventional dimer filling mechanism with the "end-on
mechanism" (Sec. V.A. l), one finds only poisoned steady
states except for a narrow range of p~ close to the
stoichiometric value of 2/3 (Evans and Miesch, 1991).

In an analogous dimer( Az )-trimer(83 ) reaction model
—,
' Az+ —,'83 —+ AB (Kohler and ben-Avraham, 1991) on a
6-coordinated triangular lattice, one finds a continuous
transition between a nontrivial trimer poisoned state for

p~ ~0.340 ( =p, ) and a reactive steady state for
0.340+pz ~0.461, and a discontinuous transition to a
non-trivial dimer poisoned state for p„~0.461 (=pz ). In
the steady state, one has 3p~ I', ,'= 2p ~I'„;poisoned
states incorporate isolated empty sites and it was suggest-
ed that their "degeneracy" fundamentally changes the
nature of the continuous transition (from that of the
ZGB model). The dimer poisoned state corresponds to
the RSA jammed state at p„=1 with 8„=0.914 (Nord
and Evans, 1985), but is "reactively shu~ed" for pz ( 1

with 0& increasing to 0.923 at p2. The trimer poisoned
state has 0&=0.904 at p& =0+, and Oz =0.894 at p&.
This is rather different from the trimer RSA jammed
state at p~ =0 which includes "empty strings"' and has

Ozi =0.797 (Nord and Evans, 1985).
Albano (1992) and Maltz and Albano (1992) considered

a dimer-dimer reaction model, roughly —,
' 32+82 ~ 282

with an intermediate AB-species, on a square lattice.
The model exhibits kinetic phase transitions with
poisoned states incorporating only isolated empty sites.
The total coverage of the poisoned states remains quite
close to the dimer RSA value of 0.907. Within the con-
text of the 3 +BC~AC+ —,'82 reaction, Meng et ah.

(1992) considered a "reactive dimer Piling problem"
where BC dimers adsorb randomly and any resulting 88
pairs react immediately leaving an empty pair. The re-
sulting jammed state is mainly C covered with isolated
B's and empty sites. The total coverage is close to the di-
mer RSA value.

The rates in these reaction models typica1ly do not
satisfy detailed balance, and the processes correspond to
open systems, so the steady states are not equilibrium
Gibbs states. Such nonequilibrium steady states, and as-
sociated kinetic phase transitions, can also be found in
simpler adsorption-desorption models where rates do not
satisfy detailed balance (Dickman and Burschka, 1988;
Vlachos et al. , 1991, 1991b).

l3. Conclusions

In this review, we have attempted to provide a
comprehensive description of studies involving random
and cooperative sequential adsorption. The field has a
long history and diverse applications, but has only re-
cently received concentrated attention. Sequential ad-
sorption problems provide simple models of irreversible
far-from-equilibrium processes, often with nontrivial
nonequilibrium jammed states. An extensive body of an-
alytic results is available for both random and coopera-
tive 1D models, which elucidate complicated kinetics and
unusual super-exponential decay of spatial correlations.
While exact solution of higher dimensional processes is
typically impossible, a sophisticated understanding of
their behavior is emerging. Their spatial structure is
rich, and provides challenging new problems in the areas
of stochastic geometry and correlated percolation theory.
While many issues remain to be explored for the basic
RXCSA processes, their understanding will also eluci-
date studies of more complicated processes such as multi-
layer adsorption, RLCSA with relaxational diffusion,
adsorption-desorption and irreversible reaction models.
More generally, they provide an important example of a
trend in Statistical Mechanics away from the study of
equilibrium systems towards that of far-from-equilibrium
systems.
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