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The properties of the WKB method in the discrete representation are reviewed. The method provides the
eigenvalues and the eigenvectors of the three-term recursion relations or, which is the same thing, the tri-
diagonal band matrices. Applications of the method to the splitting of the Rydberg atom levels in the
external electric and magnetic fields are considered. Analytical treatment is given to the problem of the
oscillator strength distribution in the quadratic Zeeman and the Stark-Zeeman spectra. In the case of the
nonhydrogenic Rydberg atoms, the effect of the core on the pattern of the splitting is studied. Certain al-

ternative applications of the discrete WKB method are considered in brief (the quasienergy spectra of
nonlinear oscillators in resonant fields, rotational molecular spectra, calculation of infinite continued frac-
tions).
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I. INTRODUCTION

Following the advent of tunable lasers, it became possi-
ble to obtain highly excited (Rydberg) atoms in individu-
al quantum states and to study the splitting of their levels
in various external fields. Because of their huge size (of
the order n where n )&1 is the principal quantum num-
ber of the valence electron) Rydberg atoms are highly
susceptible to external perturbations. Therefore effects
that would hardly be noticeable in the ground state be-
come significant.

In particular, considerable interest has been focused on
the second-order Zeeman effect. This is connected with
the diamagnetic part of the operator describing the in-
teraction of an atomic electron with an external magnetic
field Hz,

Hv„= (x +y ).
Sc
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116 P. A. Bf'aun: Semiclassical Rydberg atoms in fields

For a Axed Aeld the diamagnetic splitting grows as n

when n is increased.
Consider the case of the hydrogen atom. In experi-

ments on highly excited states (Holle et al. , 1985;
Wintgen, Holle et al. , 1986; Holle et al. , 1988) the spin-
orbital coupling can usually be neglected. Therefore the
orbital part of the paramagnetic interaction (H/2c)1. , is
an integral of motion leading to trivial equidistant split-
ting according to the value of the magnetic quantum
number m. The residual n —ImI-fold degeneracy is re-
moved by the diamagnetic perturbation (1.1).

In fields that are not too strong, the diamagnetic split-
ting can be found by diagonalizing the operator Vd in a
basis set of parabolic orbitals Inn, nz & with fixed n B.e-
cause of axial symmetry Vd can connect only states with
the same value of the sum n, +n2 =n —Im I

—1. It can
also change by 0 or +2 the value of the differencek:—n

&

—n2. Consequently the resulting set of equations
for the coefFicients of the zero-order eigenfunction is a
three-term recursion (TTR) relation:

Pk ck —2+ ( ~k E )Ck +Pk +2ck +2 (1.2)

Here E' is the energy correction value due to the diamag-
netic perturbation. Its connection with the total energy
of the perturbed atom is

uy 3k +m —1
Wk= 3

n2
(1.3)

E = —1/2n +mFI/2c+E' .

The diagonal wk = (nn, nzI Vd Inn, n2 & and the o&-
diagonal Pk = ( nn, —In'+ 1

I Vd Inn, n 2 & matrix elements
of the perturbation Vd are given by

1 —31(l + 1)
u

2

2(1 +I —1+m )

(2l —1)(2l +3)
(1.5)

j'2

p) —u ' 1
P1

(I —1)'1—
71

I /2

p
(I —m )I(I —1) —m ]

2 2
1 /2

(21 + 1 )(2l —1 ) (2l —3 )

These equations were written long ago (Schiff' and
Snyder, 1939) in connection with the experiments of Jen-
kins and Segre (1939) on the Rydberg states of the alkali-
metal atoms. However, there were no attempts to ana-
lyze their spectra until about 1980, when the following
striking features of the quadratic Zeeman splitting were
established (Clark and Taylor, 1980,1982; Zimmerman
et al. , 1980; Clark, 1981; Delande and Gay,
1981a;1981b):

(a) If
I m

I
is not too large, the quadratic Zeeman multi-

plet consists of two parts with difFerent properties (Fig.
1). The lower part contains extremely narrow doublets of
levels of opposite parity. In the upper part the levels are
locally equidistant. The relative size of the transition
zone between the two parts is small (of the order n ').

(b) With the growth of III, the relative length of the
doublet part decreases. When m =0 it constitutes 1/5 of
the whole multiplet; it disappears altogether when

I I I
is

uy
p 5

1+
n

(k —1)
n2

(k —1)
fl

' 1/2

The value
2

5n4 H
16 c

is the natural unit of diamagnetic splitting (y is the nota-
tion frequently used for the magnetic Aeld measured in
atomic units).

An alternative approach is to use a spherical basis set,
which also leads to a TTR relation,

0.2 U

Pl ct —2+ ( ~l E )Cl +Pl +2cl +2

The matrix elements

tU, = ( nlm
I v„ I

n Im &,

pi = (nl —2m
I vd I

nlm &

factor into products of their radial and angular parts:

FIG. 1. Quadratic Zeeman multiplet in atomic hydrogen with
n =20, m =0. Solid and dashed lines correspond to even and
odd levels. The g-u splitting in the doublets is grossly exag-
gerated.
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Here, within the accuracy of semiclassical theory,

( 2E(0))—i/2 (L2+ A2)1/2

note that our definition of A differs by the factor n from
that of Solov'ev (1981). The quantity (1.8) is bound to be
an integra1 of motion; since I., is conserved it leads to
conservation of A.

There is also a rigorous quantum-mechanical relation
similar to Eq. (1.8) between the matrices of the diamag-
netic operator Vd and the operator corresponding to A in
the manifold of a single hydrogen atom shell [see below,
Eq. (3.41)]. This relation was used to investigate the
zero-order eigenfunctions diagonalizing the diamagnetic
perturbation Vd, which are the orbitals produced by sep-
aration of variables on Fock's sphere in the ellipso-
cylindrical coordinates in the momentum space (Solov'ev,
1981,1982; Herrick, 1982; Grozdanov and Solov'ev,
1984; Hasegawa and Adachi, 1988).

Further studies based on the classical perturbation
theory revealed many other interesting properties of the
quadratic Zeeman effect. Important contributions were
made by Robnik (1981,1982), Delos et al. (1983a,1983b),
Gay et al. (1983), Hasegawa et al. (1984), and other au-
thors. This part of the theory of Rydberg atoms in exter-
nal fields is extensively covered in many reviews; see Gay
et al. (1985,1986), Nayfeh and Clark (1985), Lisitsa
(1987), and Hasegawa et al. (1989).

In spite of these spectacular achievements, a sense of
dissatisfaction sti11 remains. Many decades ago the prob-
lem of the quadratic Zeeman effect was formulated in

terms of the three-term recursion relations (1.2) and (1.4).
The three-term recursion relations are actually very sim-

ple mathematical objects similar to ordinary second-
order difFerential equations. However, for 40 years the
TTR relations (1.2) and (1.4) were literally before the eyes
of the investigators and no one guessed that there was

anything interesting about their spectra.
It is obviously highly desirable to have a method allow-

ing quick appraisal of the spectra of the recursion rela-
tions or, which is the same thing, of the tridiagonal ma-

trices. Such a method and the results of its application to
the spectra of Rydberg atoms in external fields is the to-

pic of this review. In essence this is the WKB method
adjusted to discrete representation.

The structure of the review is as follows. In Sec. II we

describe the formalism of the discrete WKB method. In
Sec. III the method is initially applied to the quadratic
Zeeman effect in atomic hydrogen (Secs. III.A —III.C).
We show that the properties of the splitting follow in a
rather trivial way from the expressions of the matrix ele-

ments in Eqs. (1.2) and (1.4).
Imposition of the additional external electric field leads

to complicated distortions of the diamagnetic multiplets.
The pattern of the splitting is qualitatively different, de-

pending on the relative strengths and orientation of the
two fields. Its description for highly excited atomic hy-

drogen is given in Secs. III.D and III.E; the discrete
WKB method was in this case the original means of in-

vestigation of the spectrum.
A new development in the theory of perturbed Ryd-

berg atom spectra is the discovery of the relations be-
tween energy-level distribution and oscillator strengths in
the quadratic Zeeman and the Stark-Zeeman multiplets.
Section IV deals with these relations for the hydrogen
atom.

Nonhydrogenic Rydberg atoms in external fields are
considered in Sec. V.

Certain general aspects of the discrete WKB method
are considered in the appendices. In particular, in Ap-
pendix C some applications of the method unconnected
with the theory of the Rydberg atoms are briefly re-
viewed.

Throughout the paper we neglect the mixing of states
from different shells, which corresponds to relatively
weak external fields (the so-called /-mixing regime). The
quantum-mechanical condition for this regime is that
field-induced splitting ( -u r ) be small compared with the
spacing between levels of the unperturbed atomic hydro-
gen (n ). In fact, many of the I-mixing regime laws
remain in force even in considerably stronger fields
(Wintgen and Friedrich, 1986a,1986b; Grozdanov and
Taylor, 1986; Cacciani et al. , 1989). The reason behind
this is that the properties of the highly excited states are
fairly accurately described by classical perturbation
theory, whose limitations on the perturbation strength
are much more lenient, with n replaced by n (Lan-
dau and Lifshiftz, 1989).' The results referring to the
domain of the classically chaotic movement are not con-
sidered here; they can be found in the reviews of Gay
(1988), Friedrich and Wintgen (1989), and Hasegawa
et al. (1989). See also the books by Taylor et al. (1988)
and Bassani et al. (1989).

Atomic units are used. To go to the practical units of
the fields one has to replace H /c by H /Ho with

Ho=2. 35X10 T and the electric field F by F/Fo with

Fo =5. 14X 10 v/cm.

II. THE DISCRETE WKB METHOD

In view of the well-known similarity between the re-

cursion relations and the differential equations, the idea
of using semiclassical methods on TTR relations like (1.2)

Here is a hint on how the limitations of quantum perturba-
tion theory may be circumvented. Consider the nth level,

n »1, of a perturbed system with one degree of freedom. If the

system is semiclassical, its levels E„' ' are locally equidistant,
and the matrix elements of the perturbation ( n

~ V~ n + k }
change slowly with n, k being fixed. Therefore, in the expres-
sion for the second-order energy correction E„' ', contributions
from transitions up to E(+I, and down to E„' 'k almost cancel
each other. As a result the value of E„' ' is greatly diminished.

An expression for the perturbed wave function that is valid in

the domain of classical perturbation theory may be found in

Kazantsev and Pokrovsky (1983b).
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or (1.4) is rather obvious. A rigorous mathematical study
of the related problems can be found in the books of
Maslov (1973) and Vasil'eva and Butuzov (1978). Physi-
cists have derived the WKB solutions of the recursion re-
lations mostly on their own. It was done many times in
many different ways in papers dealing with the asymptot-
ics of the 3nj symbols (Schulten and Gordon, 1975), the
quasienergies of the anharmonic oscillator driven by the
periodical force (Sazonov, 1978; Braun, 1978), and the
quadratic Zeeman effect and Stark-Zeeman effect for
atomic hydrogen (Braun, 1983a; Kazantsev, Pokrovsky,
and Bergou, 1983; Delos et al. , 1988; Fano et al. , 1988).
Connections with classical perturbation theory are traced
by Kazantsev and Pokrovsky (1983a,1983b).

Apart from the papers cited above, the discrete WKB
method has been applied to Rydberg atoms in external
fields by Braun (1983b, 1986, 1989b, 1990a, 1990b, 1990c,
1991a), Braun and Solov'ev (1984), and Braun and Sen-
yushkin (1991). Other applications include the rotational
spectra of molecules of various types: the rigid asym-
metric top (Braun and Kiselev, 1983; Bruev, 1986; Rau
and Lijun Zhang, 1990), the nonrigid asymmetrical top
(Braun, 1989a), the nonrigid spherical top (Braun et al. ,

1985), the Lamb shift of an atom inside the resonator
(Belov et al. , 1989), the microwave ionization of an atom
(Ostrovsky and Telnov, 1987), and the three-body prob-
lem in the dipole approximation (Braun et al. , 1990).

Bruev (1986) used the method to study rotational re-
laxation in molecular gases. The semiclassical tridiago-
nal problems discussed in the papers of Rau (1989), Rau
and Molina (1989), and Rau and Zhang (1990) also in-
clude the Edmonds-Pullen model (a two-dimensional iso-
tropic oscillator perturbed by the interaction x y ), an-
gular correlation between highly excited electrons, and
the problem of a two-nucleon system with quadrupole
coupling. The paper of Leopold and Richards (1989)
deals with a one-dimensional model of atomic hydrogen
in a high-frequency electric field. A semiclassical ap-
proximation for a special type of recursion relation
difterent from Eqs. (1.2) and (1.4) is considered by Bender
et al. (1979).

Here we outline the method, beginning with a review
of the classical problem, which is connected with the
TTR relation through the correspondence relations (Sec.
II.A). In Sec. II.B the analog of the potential energy for
such problems is considered. WKB solutions of the TTR
relations are introduced in Sec. II.C. The matching and
quantization conditions are formulated in Sec. II.D. In
Appendix A we list some of the typical errors connected
with the application of the discrete WKB method. Ap-
pendix B contains explicit expressions for the lowest and
highest eigenvalues of the TTR relation.

A. The classical Harniltonian corresponding
to a three-term recursion relation

Application of the WKB method in the discrete repre-
sentation is based on two facts. (a) Linear recursion rela-

p C,+(w E')C, +—p +,C +, =0 . (2 1)

It is supposed that j takes consecutive integer values.
Now we suppose that m and p are smooth analytical
functions known for all (not only integer) j. Both Eqs.
(1.2) and (1.4) can be brought to this form. In the para-
bolic basis, one should take k =2j or k =2j + 1, depend-
ing on the parity of n —rn +1; in the spherical basis, the
substitutions l =2j and l =2j+1 should be used for the
even and odd parts of the spectrum, respectively.

For the moment let us regard j in Eq. (2.1) as a con-
tinuous variable, using notations like C(j) along with C
etc. Introducing the "momentum" operator

and considering that the operators e —'+ shift j by +1, we
can write Eq. (2.1) as a Schrodinger equation for the
function C(j) with the eigenvalue E and the Hamiltoni-
an

H=w(j)+p(j)e '~ +p(j +1)e'~ . (2.2)

In the classical limit j and y turn into the canonically
conjugate "coordinate" and "momentum. " The operator
H turns into a Hamiltonian function. Remembering that
in the semiclassical situation p(j) and p(j+1) are only
slightly different, and replacing them by their value at the
midpoint, we obtain

H'(j, cp ) =w (j ) + 2p (j + —,
'

)cosy . (2.3)

Later we shall use the notations w and p (without indicat-
ing the argument) for w (j) and p (j+ —,

' ).
When n ~ oo the range of the discrete argument in the

recursion relation runs to infinity so that, strictly speak-
ing, it is not j but j/n which tends to a finite classical
variable. If we consider j /n to be of the order n, we can
develop the functions m and p into a series in n . In ac-
cordance with the accuracy of the usual WKB treatment
we shall keep two senior terms in these developments:

tions with constant coefficients are exactly soluble. (b)
The coe%cients of a recursion relation describing a physi-
cal system whose movement is semiclassical are locally
almost constant, changing little on each step.

In the case of perturbed Rydberg atoms, the small pa-
rameter of the problem determining its semiclassical na-
ture is n '. Accordingly the matrix elements (1.3) of Eq.
(1.2) depend on the discrete variable k only in the com-
bination k/n. This means that the derivatives of wk and

pk by k are of the order n ', so that the change of
coefficients in Eq. (1.2) on each step is indeed small; the
same is true of Eq. (1.4). Using this property, one can ob-
tain a formal asymptotic development of the solutions in
powers of n . We shall do this later, beginning with
more physical considerations.

Let us consider a problem of classical mechanics con-
nected with the TTR relation. It will be more convenient
to begin with a relation that has a unit step in the index,

Rev. Mod. Phys. , Voi. 65, No. 1, January 1993
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the purely classical limit plus the principal quantum
correction. The terms of higher order are irrelevant, so
that expressions like &j(j+I)/n can be replaced by
(j + —,

' )/n but not by j/n. The resulting Hamilton func-
tion (2.3) will be called the semiclassical Hamiltonian, as
opposed to the purely classical one.

The classical variables j and y obey the canonical
equations

minU +E'+maxU —. (2.8)

Otherwise classical movement wou1d not be possible any-
where. It can be proved that the extrema of U+(j) and
U (j) (if they exist) also give rigorous bounds to the ei-
genvalue spectrum of the quantum problem (2.1); see
Braun (1978).

(c) Excluding p from Eqs. (2.4) and (2.6), we obtain a
differential equation for j(t),

dj BH' dg ()H'
dt Bop dt Bj

2p sing, dj +It U+(j) E'~~E—' —U (j (2.9)

The physical meaning of j and cp depends on the repre-
sentation. In the parabolic basis, k = 3, so that the
"coordinate" j is proportional to the z component of the
Runge-Lenz vector, while in the spherical basis j is half
the angular momentum value. For the meanings of the
conjugate variable y see Born (1960). In both cases Eq.
(2.4) describes the slow evolution of the Kepler orbit of
the atomic electron caused by diamagnetic perturbation.

B. Potential functions of the recursion relations

Their role becomes clear from the following.
(a) According to Eq. (2.4) the classical "speed" be-

comes zero when @=0 and m. Since the value of the
Hamiltonian remains constant,

H'( j,&p ) =E', (2.6)

this means that at the turning points of the variable j we
have E'= U+ and E'= U, respectively. Thus the turn-
ing points can be found crossing the curve of U+— by the
line of the constant energy E'.

(b) At each value of j the values of U+ and U bound
the Hamiltonian (2.3). Supposing that p )0, we obtain

The Hamiltonian (2.3) depends on the canonical
"momentum" via a cosine function. This is typical of
problems in classical perturbation theory formulated in
action-angle variables (Carruthers and Nieto, 1968). To
deal with such problems it is convenient to introduce an
equivalent of the potential-energy curve (Braun, 1978).
This is the plot of the functions

U+(j)=H'( j,0)=w +2p,
U (j)=H'(j, m)=w —2p . .

It can be seen that the evolution of j is an oscillation be-
tween the turning points, in which the right-hand side
goes to zero. The period of oscillation is given by the in-
tegral

T(E )=2 ' ~ +(U+ E')(E' —U)— (2.10)

(d) The two turning points j„and j,z bounding the
classically allowed interval can belong either to the same
or to difterent potential curves. In the first case the vari-
able cp oscillates in the vicinity of 0 or ~, provided the
turning points belong to U+ or U, respectively. In the
second case the evolution of y is one of unlimited growth
(rotation), with y taking consecutive values
0,~, 2m, 3m, as the system reaches alternately U+ and
U

Better understanding of what the functions U+—mean
can be achieved through a solid-state analogy. A TTR
relation can be regarded as an equation describing a lat-
tice in one dimension, in which interaction exists only be-
tween the closest neighbors. If the matrix elements uj
and p- in the TTR relation were independent of j, the lat-
tice would be periodic with the zone energy spectrum in
the interval (w —2p, w +2p). The semiclassical situation
we are dealing with corresponds to a quasiperiodic lattice
whose properties slowly change along its length. The
lower and upper bounds of the zone can then be regarded
as functions of the nodal number; remember, for exam-
ple, the textbook picture of the inclined zones in the
description of Zener tunneling in an electric field [Fig. 93
in Ziman (1964)]. These bounds are just the functions
U+

Here are two simple mathematical examples.
(a) The recursion relation ( —oo (j ( Oo )

U (j)(E'(U (j) . (2.7) C. ,
—(2j/a +E')C +C + i =0 (2.1 1)

For a fixed E' these inequalities determine the classi-
cally allowed values of j. On the other hand, the ex-
tremal values of U —+ bound the interval of possible values
of E',

has the Bessel and Neuman functions of the argument a
as its solutions, their index running the values
u =j+aE'/2. The TTR (2.11) is semiclassical if a ))1.
The corresponding classical Hamiltonian is

A (J,Q) = 2j/0 +2 cos+ . (2.12)
~In some applications higher accuracy is needed. For exam-

ple, in the theory of the microwave ionization of a particle in a
short-range potential (Ostrovsky and Telnov, 1987), three or-
ders of discrete WKB development were necessary to obtain
nontri vial results.

Its potential functions are linear (Fig. 4),

U —
(j)= —2j/a+2 .

For all E' ( —~ (E' ( ~ ) the movement of the system
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~
l

+

t
~

finite. In the energy range —I &E'&I' there are two
turning points belonging to U and a single classically
allowed region of j. On the other hand, if E'&F there
are two symmetrical classically allowed regions of j di-
vided by a forbidden area (where corresponding CJ are
exponentially small). This fact reflects the di6'erence in
Fourier composition between eigenfunctions describing
the "almost bound" and the "almost free" states in the
potential I' cosx.

C. The semiclassical solutions

FIG. 4. Potential functions of the three-term recursion relation
(2.11) for the Bessel functions (a =5).

with the Hamiltonian (2.12) is finite. Its turning points
are j„=—a aE'/2 —and j,2=a aE'/2—, belonging to
U and U+ respectively.

(b) Consider the solution of the Mathieu equation

1. Physical arguments

I

B(E',j )=
2p

(2.15)

From the energy conservation law we get the phase
trajectory equation

tp=arccosB (E',j ),

1 d +F cosx E' $=—0
dx

(2.13) The action expressed through j is

S= ydj
corresponding to zero quasimomentum. Developing it
into a Fourier series we obtain the recursion relation for
the Fourier amplitudes ( —~ &j & ~ )

and the classical speed u (j ) =dj /dt is given by Eq. (2.9).
Now we can write the WKB solution of the recursion

relation (2.1). It has the obvious form—(C,+C.+, )+(j /2 E')C =—0 . (2.14)

The corresponding classical Hamiltonian following
from Eq. (2.3),

H'(j, y) =j /2+F cosy,

is simply the Hamiltonian of the Schrodinger equation
(2.13) with the coordinate and momentum interchanged
(and renamed). The potential functions of the problem
are parabolic (Fig. 5):

U —(j)=j /2+F .

For all allowed E'( F&E' & Oo ), —the movement in j is

U

25—
U U

CJ = cos[S (j)+y],
U(j)

(2.16)

CJ = exp +f arccoshB dj
U(j)

(2.17)

One of them grows exponentially when j is increased,
while the other one decreases exponentially. This is the
usual behavior of WKB solutions outside the classically
allowed region.

Now suppose that E' & U, which means that B & —1.
Considering that y=m+i arccosh( B), the two s—olu-
tions can then be written as

with j taking integer values and A and p constant.
The form (2.16) of the solution is convenient within the

classically allowed interval of j where y is real; this is
where the inequalities (2.7) hold. If E') U+ we have
8 & 1, and y is purely imaginary. The two fundamental
WKB solutions can then be written as

FIG. 5. Potential functions of the TTR relation (2.123 for the
Fourier amplitudes of the solution of the Mathieu equation
(F=4). Boundaries of the classically allowed region are
hatched. From Braun (1978).

(2.18)

The absolute values of C. increase and decrease exponen-
tially. What is new is that the sign of C. is changed on
each step of the TTR relation.

Thus there are not two, but three different types of re-
gions. These were named regions I (U &E'& U ), II
(E') U+), and III (E' & U ) by Braun (1978). After the
substitution C =( —1)JC, , the usual (II) classically for-
bidden region turns into the unusual one (III) and vice
versa.

C =( —1)~ exp + arccosh( B)dj-
v'IU(j)l
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2. Formal derivation

Let us show how one can obtain the WKB solution
(2.16) without appealing to physical considerations. We
know that the matrix element p in Eq. (2.1) is a slowly
changing function of j. In this section the dot over the
function denotes its derivative by the variable j; thus

p~ +, .
p~

—~p'=O(n '),

and similarly for w . Each additional differentiation by j
would introduce an additional power of n into the esti-
mate. Accordingly let us look for a solution of the TTR
relation (2.1) that has the form

l [@p(J') +N
&

(J') +N2( j)+ jC =e

in which the unknown functions are ranged according to
the speed with which they change:

ho=0(n ), ii=0(n '), @2=0(n )

=oO(n '), @,=O(n ), . . . .

Dropping terms of order higher than n ', we can write

C+, =C e ' 1+ &&o i—@,+O(n )
2

Inserting this expression into Eq. (2.1), considering that

p =p —
—,'p+O(n ), p +, =p+ —,'p+O(n ),

and comparing terms of the same order, we obtain the
equations for 4 p and 4„

2p cos@p=E w

~ 4

2ip@,sin@o= — (p sinC&o) .
dj

Their integration leads to two fundamental solutions:

C = exp — arccoshB dj, j &j, ,
2 U - j

JC- = —cos arccos8 dj ——,j &j, .
&v 4

(2.19)

( ondition (2.19) can be derived by approximately re-
ducing the TTR relation to a second-order differential
equation (Schulten and Gordon, 1975; Sazonov, 1978).
An alternative way is to use Eq. (2.11) for the Bessel
functions as the reference equation in the vicinity of the
turning point (Braun, 1978); this is analogous to Langer's
(1937) method of matching the WKB solutions of the
Schrodinger equation.

Next consider the turning point at the boundary of the
unusual classically forbidden region, supposing that
E'& U when j &j, and E') U when j &j, . Now j,
stands for the root of the equation E'= U (j) (not neces-
sarily integer). Surprisingly enough, the matching condi-
tions in this case proved to be a stumbling block for
many authors. In fact the problem is trivially reduced to
the previous case by substituting C =(—1)JC, applying
Eq. (2.19) to C, and returning to the original sequence.
The final result looks startlingly unlike Eq. (2.19):

(Braun, 1978). Note the presence of the additional phase
~j, determined by the position of the turning point,
which has important consequences in quantum-
mechanical applications; note also the opposite sign of
n/4.

The behavior of the TTR solution in the vicinity of
usual and unusual turning points is shown in Fig. 6.
Matching conditions similar to Eqs. (2.19) and (2.20) can
be written for the case in which the classically forbidden
region is situated to the right of the allowed one.

C.= (
—1)iexp — arccosh( B)dj, —j (j, ,

(2.20)
J

Cj = —cos arccosB dj+vrj, +—,j)j,
U 4

C =
[4 2 (E )2]1/4

E' —wx exp +i f arccos dj
2p

whose real part is just Eq. (2.16).

D. Quantization rules for the recursion relations

3. Matching in the usual and unusual turning points

Suppose that the classically allowed region has at its
left border the "usual" forbidden region so that E' & U+
for j&j, and E &U for j&j,. Here j, is the root of
the equation E'= U+(j) (not necessarily integer). Let us
look for the solution that vanishes in the forbidden re-
gion. Then the matching condition has the customary
form

FIG. 6. Typical behavior of the solution C,. of a TTR relation
in the vicinity of the turning point; (a) usual and (b) unusual
turning points. [Solutions of the TTR relation (2.11) with
E'=

—,', a =5 (case a) or a = —5 (case b) in the vicinity of the

point j =5].
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2. Quantization rules

Suppose that the three-term recursion relation under
consideration has a classically allowed region bounded on
both sides by forbidden regions. Requiring that the solu-

tion vanish beyond the allowed region and combining the
matching conditions in the two turning points, we obtain
a quantization rule for the eigenvalues of Eq. (2.1). Since
each of the turning points can be of two types, the quant-
ization rule can have four different forms (Braun, 1978),

both j„and j„on U +

"'
( )d =N +, +(j—t2 J~i)~—gati and J~2 on U

~ ~

j])K, j() on U and j,2 on U+

j,2~, j„on U+ and j,2 on U

(2.21)

Here N is an integer; the function y is determined by Eq.
(2.15). Since p depends on the energy parameter E', the
conditions (2.21) determine E' as a function of the quan-
tum number N. Only the first of these formulas resem-
bles the Bohr-Sommerfeld rule.

Equation (2.21) can be simpli6ed by integration by
parts in the left-hand side. In the turning points y is
equal either to zero (j, belongs to U+ ) or to m. (j, belongs
to U ). Therefore in all cases the extra-integral terms
cancel the terms +j,&m, +j,2m in the right-hand side.
Redefining the quantum number N, we can bring Eq.
(2.21) to just two types of conditions

(N+ —,')m, j„and j,2 on the

same potential curve

j,&
and j,2 on different

potential curves .

(2.22)

According to Eq. (2.15)

dy 1 dB
dj V'I Bdj'—

Quantization with half integers and integers in Eq.
(2.22) is used when the canonical variable q& undergoes
oscillation and rotation, respectively. This is formally
identical with the rules of coordinate representation. The
fundamental difference is that the left-hand side in Eq.
(2.22) is not simply the classical action. It also contains
the quantum corrections present in the matrix elements
w and p entering the function B (E',j).

One can of course obtain the quantization rule for the
purely classical action by bringing the quantum correc-
tions to the right-hand side. The result will be to destroy
the simple rule "half integers for oscillation, integers for
rotation" because the contribution of the quantum
corrections is of the same order as m. /2 in the right-hand
srde.

Instead of Eq. (2.22), a universal quantization rule can
be introduced (Braun, 1978),

f(j,+ —,') . dj =(N+ —,')~ . (2.23)

Following Braun (1983a) let us apply the theory of Sec.
II to the recursion relation (1.2). It is brought into stan-

The contribution of —, in the left-hand side, which is equal
to [y(j,z) —y(j„)]/2, is 0 in the case of oscillation and
+m/2 in the case of rotation, thereby automatically tak-
ing care of the proper quantization condition.

Each time we change the form of the quantization rule
we also redefine the quantum number N. Therefore a lev-
el found from Eqs. (2.21), (2.22), and (2.23) can receive
different quantum numbers. Note also that N is not
necessarily positive and that larger N can correspond to
smaller eigenvalues. These unconventional properties
can be traced to the trigonometrical dependence of the
Hamiltonian (2.3) on y. Another frequent peculiarity is
the discontinuity of the integrals in Eqs. (2.21)—(2.23) at
some values of E', corresponding to the top of the barrier
or quasibarrier (see below). However, this is a common
property of most quantization rules used in the theory of
Rydberg atom spectra, including Solov'ev's rule [see Cac-
ciani et al. (1988a), Hasegawa et al. (1989)].

The quantization rules give the energies as the implicit
functions of the quantum number N. Explicit expres-
sions can be obtained for the highest and the lowest levels
of the TTR relation. The reason for this is that when the
energy parameter approaches its highest or lowest possi-
ble value, as determined by Eq. (2.8), the span of the clas-
sically allowed area in the associated classical mechanical
problem shrinks to zero. The movement of the "coordi-
nate" described by Eq. (2.9) then usually becomes a
small-amplitude harmonic oscillation. Accordingly the
extremal energy levels in the quantum problem will be
approximately equidistant, with spacing equal to the clas-
sical frequency (Braun, 1983a; Braun and Solov'ev, 1984).
This idea can be put on a purely quantum-mechanical
footing. The resulting formulas are given in Appendix B.

III. THE ENERGY SPECTRA OF PERTURBED
HIGHLY EXCITED ATOMIC HYDROGEN

A. The quadratic Zeeman effect
(paraboiic representation)
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yQ

1k+1 5
1—

n

dard form with unit steps in the index by setting k =2j
or k =2j+1 if n —m+1 is even or odd, respectively.
Bearing in mind the relation between k and j, we shall
use k as an argument in the following semiclassical ex-
pressions. Thus, instead of pj+»2, the necessary off-

diagonal matrix element in the intermediate point will be
2 2

2
1/2

k m k

The potential functions of the problem expressed through
k are uk+2pk+&. Their plot is qualitatively different for
different magnetic quantum numbers.

First consider the case n =0, when the potential func-
tions written with the accuracy of the semiclassical ap-
proximation are

0
(o)

kU+(k) =u 1—

7g
2

Qy k
U (k)= 1—

5

(3.1) L
The potential curves [Fig. 7(a)] are then a pair of parabo-
las crossing at the boundaries +n of the discrete argu-
ment interval. Studying them leads to the following
conclusions.

(a) According to Eq. (2.8) the lowest and the highest
points of the plot of the functions U —determine the span
of the multiplet. Therefore all E' lie within the interval
(0, tu).

(b) The line of constant E', depending on its value,
crosses the plot of U +—in either two or four points. This
means that there is either a single classically allowed re-

gion with its center at k =0 (in which case
E' )max U =u /5) or, in the opposite case, two

symmetrical classically allowed regions divided by the
maximum of the function U (k); see Fig. 7(a). In the
second case, neglecting tunneling through the dividing
forbidden region, there would be two sets of &KB solu-
tions for the recursion relation (1.2), each localized in its
respective classically allowed region. The energies corre-
sponding to these solutions would be equal. Therefore
the levels are approximately doubly degenerate in the
lower part of the Inultiplet, where E' & uz /5, and nonde-

generate if (ur/S) &E'&u~. This explains the 1/S:4/5
division of the quadratic Zeeman multiplet shown in Fig.
1.

The problem of the quadratic Zeeman efFect in atomic hydro-

gen when m =0 is closely related to the problem of a rigid
asymmetrical top with the rotational constants 1, 5, and 0
(Braun, 1983a). In particular, the classical equation of motion
(2.9) corresponding to the TTR relation (1.2) coincides with the
equation for the projection of the angular momentum of the top
on the axis with a zero rotational constant [Eq. (37.7) in Landau
and Lifshitz (1988)]. This analogy has recently been
rediscovered by Rau and Zhang {1990)and Uzer (1990). See
also Appendix C on the discrete WKB treatment of rotational
spectra.

0
(b)

0
(c)

FIG. 7. Potential curves of the TTR relation {1.2) (parabolic
representation): (a) m =0; (b) 0 &

~
m

~
& n /&5; (c)

~
m

~
& n /&5.

4m'
min U =u

V5 n 5 n'

Qy
maxU = 1+ = U (0),

5 ~2
(3.2)

3 m
max U+ =u 1 —— = U (0)'v 5 2

(c) Considering that the independent variable k is equal
to the z component of the Runge-Lenz vector, it can be
seen that the upper states of the multiplet are character-
ized by A, =0. The states at the bottom are restricted to
A, =+n.

Suppose that the field is increased until the highest lev-

el of the quadratic Zeeman multiplet arising from the nth
shell anticrosses the lowest level of the multiplet from the
(n +1) shell. In the representation in which one of the
independent variables is A„ the wave functions of these
states would not overlap. Consequently the width of the
anticrossing is bound to be extremely small.

If m is dift'erent from zero but ~m~ & n 1&5, the func-
tion U still has a maximum dividing two symmetrical
allowed regions [Fig. 7(b)]. The same arguments show
that at the energy correction interval min U
&E' &maxU the spectrum consists of doublets, while

at the interval maxU &E' &maxU+ the levels are sing-
lets. Here
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The height of the potential barrier determining the
span of the doublet part of the multiplet diminishes with
the growth of

~
m ~. If

~
m

~
& n /& 5 the function U ( k)

has a minimum rather than a maximum at the point
k =0; see Fig. 7(c). Therefore all levels are then singlets
and lie within the interval U (0) &E' & U+(0).

Thus, the peculiar properties of quadratic Zeeman
splitting become obvious after a glance at the plot of the
potential functions. This is rather amazing considering
that to obtain U —one needs only the expressions (1.3) for
the diagonal and the off-diagonal elements of the pertur-
bation.

The connection between Solov'ev's integral A and the
energy correction value following from Eqs. (1.6) and
(1.8) can be written in the form

nDE

0.2 0.4 0.6 0.8

FIG. 8. The change of spacings AE' between adjacent levels
along the quadratic Zeeman rnultiplet. The plot of
n Ac =n AE'/u

~ against the scaled diamagnetic shift c=E'/u ~.

E'= U (0)+u~A/5n (3.3)

Therefore the two types of classical trajectories, differing
by the sign of A, which exist if ~m~ &n/v 5correspond
to the levels above and below the potential barrier [Figs.
7(a) and 7(b)].

The quantization formulas (2.21)—(2.23) applied to the
TTR relation (1.2) lead to exactly the same result as
Solov'ev's (1981,1982) quantization rule. The
equivalence of these approaches and the treatment using
separation of variables on Fock's sphere is considered by
Watanabe (1989).

A useful result of the semiclassical treatment is the ex-
pression for the spacings AE' in the quadratic Zeeman
multiplet. It follows from Eq. (2.10) for the classical
period T(E') since b,E'=2'/T. An expression for the
classical period containing the elliptic integrals is given
in Braun (1983a,1990a) and Kazantsev and Pokrovsky
(1983b,1983c).

The levels in the multiplet are strongly nonequidistant.
This may readily be seen in the plot of AE' versus the di-
amagnetic shift E' (Fig. 8) scaled in such a way as to be
independent of n and the field. If ~m~ & n/v'5 there is a
singularity in this plot reAecting the fact that the period
turns logarithmically into infinity when E' approaches
the barrier top. The function hE'(E') will be important
in our treatment of the oscillator strength distributions
(Sec. IV).

If tunneling is considered between the two classically
allowed regions, the doubly degenerate levels in the lower
part of the multiplet will split, forming g-u doublets. The
value of the splitting was obtained by Braun (1983a),

B. The quadratic Zeeman elect
(spherical representation}

It is instructive to consider the second-order Zeeman
splitting in atomic hydrogen using a spherical basis set
(Braun, 1983b; Fano et al. , 1988). The semiclassical ap-
proximations for the matrix elements (1.5), valid when I
is not too close to the boundary points

~
m

~
and n —1, are

Qr 3
WI 1 ——

2 5n2

Qr
pI+i =

4

21+:R(L ), —
L 2

(3.6)
m

1 ——
L 2

where I, =—l + —,'.
A plot of the potential functions

m 4 L,U (L)=w —2p =u 1+r 5n2 5 n2

coordinate representation is that the lower level in each
doublet is not always described by the even combination
of the localized solutions of the TTR relation. [The com-
bination is even only if k in Eq. (1.2) takes on even values,
so that the symmetry point k =0 is among the points of
the grid. ]

An alternative expression to Eq. (3.4), valid for the
splitting of the lowest doublets in the multiplet, was ob-
tained by Cxrozdanov and Solov'ev (1984). Splitting in
the opposite extreme (E' approaching the barrier top) is
treated below (Sec. III.C).

Es E„' =( —I )"e /T . —

Here

(3.4) (3.7)

U (L)=K+2@=u —— + +4 m L, m

n 5n L,
II

IG, w —E'8'= f arccosh dk
2p

(3.5)

is the classical action corresponding to tunneling through
the forbidden region with the boundaries k,

' and k,"; T is
the classical period (2.10) of oscillation in one of the al-
lowed regions. The important distinction between this
equation and the well-known formula for splitting in the

is shown in Fig. 9 (since p &0, the lower potential curve
is U+). This figure helps to explain certain facts about
the perturbed atomic states. In particular it can be seen
that the lowest levels of the multiplet are associated with
an angular momentum I whose value is almost fixed
close to (5)' &~

~
m(tnhe minimum of the function U ),

if ~m
~

& n /&5, and to n, in case of larger ~m ~. The upper
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max U~

Ec

min U

0
m

I

Jmn~s
(a)

max U—

min U

the angular momentum of the classical electron periodi-
cally approaches n. The quantity E,' is equal to maxU
of the parabolic representation given in Eq. (3.2). What
may be puzzling is that there is nothing reminiscent of a
symmetrical double-well potential, so we must look for
an alternative explanation for the presence of doublets in
the lower part of the multiplet.

The explanation follows from the property of the re-
cursion relations that they change their eigenvalues when
their independent variables are shifted. Consider the re-
cursion relation

FIG. 9. Potential curves of the TTR relation {1.4) (spherical
representation). (a) 0 & hami & n/v S; (b) imi & n/ vS.

p (j+6 )C. , + [m (j + b, ) E' ]C—/

+p (j+6+ 1)C, +, =0, (3.8)

levels correspond to L =
I
m I.

If Imi (n/&5 and E' is close to the common value of
the potential functions at the right point of their crossing

u
U (n)= 1+ =E,',n'

where p(x) and w(x) are analytical functions and the
shift b, (0 & 6 ( 1) is a parameter. The eigenvalues E' de-
pend on 6, and this dependence can take two very
different forms. It can be evaluated by applying the
quantization rule (2.22) to the TTR equation (3.8). The
shift aff'ects only the left-hand side in Eq. (2.22):

0, both j„and j,2 on the same potential curve,

fj,2(&) d+(J +g) j,2(o) d+(pJ J= J dJ+ 57T, J]) oIl U and J~p on UJ, )(b) s1(0) dj
DENT J~ &

on U and J~2 on U

(3.9)

These results follow from cp being equal either to zero or
to ~ in the turning points belonging to U+ and U, re-
spectively. Consequently, (a) if both of the turning points
belong to the same potential curve, the eigenvalues of Eq.
(3.8) are unchanged by the shift [in fact they do change,
but this change is exponentially small; see Fig. 10(a)]; (b)
if one of the turning points belongs to U+ and the other
one to U, the shift of the argument of the three-term re-
cursion relation is equivalent to replacement of the quan-
tum number N by N+ 6 or N —A. As a result, the ei-
genvalues are shifted by the spacing between two adja-
cent levels multiphed by 5 [Fig. 10(b)]. Note that case (a)
is observed when the evolution of the classical angle y
conjugate to j is an oscillation, while case b is observed
when the evolution of y is a rotation.

The recursion relation in the spherical basis set (1.4) is
brought into standard from with steps of unity by putting
l =2j or 1=2j+1, depending on parity. The resulting
TTR relations for the even and odd states differ by the
shift 6=—,'. Consequently, if the turning points limiting
the classically allowed region belong to the same poten-
tial curve, we shall observe approximate g-u degeneracy.
As can be seen in Fig. 9(a), this is the case when the ener-

gy correction value is between

Imi 4 m'
min U = u r v'5 n 5 n'

0

(a)

FIG. 10. Two types of dependence of the eigenvalues of a
three-term recursion relation on the shift of the independent
variable. (a) the TTR relation (3.8), with p(x)=1, w(x)=x /4
(Ave lowest eigenvalues are shown); {b) the TTR relation (3.8),
with p(x) =1, w(x) =x/2.
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j =L/2 —
—,', even states,

j =L/2 —
—,', odd states .

(3.10)

Substituting Eq. (3.10) and the relation dy=2dO into
Eq. (2.22), we obtain quantization rules for the purely
classical action in the variables L, O. In the case of vibra-
tion (both of the turning points are on U+ ), on the basis
that B(L„)=6(L,2) =0, we have

L dL =m X+—,
'

dL
(3.1 1)

In the case of rotation when 0(L„)=0, 0(L,2)=al2 we
have

m(N +—', ), even states,

n(N+ —,'), odd states . (3.12)

and E,'. In all other situations the even and odd levels
are locally equidistant.

Thus the same peculiar structure of the quadratic Zee-
man multiplet reemerges in the spherical representation.
The quantization rules of the discrete WKB method ap-
plied to Eq. (1.4) lead to exactly the same eigenvalues as
Solov'ev's (1981,1982) method and our treatment in the
parabolic representation.

We shall reformulate the rules of Sec. II.D in order to
obtain the quantization conditions for the purely classical
action because this point has caused some controversy
(Richards, 1983; Rath and Richards, 1988). As follows
from Eq. (3.6), a semiclassical approximation for the ma-
trix elements w& and pI+, that is correct up to second or-
der in n ' can be obtained from their purely classical
limit expressions by the substitution L = l + —,'. This
means that the semiclassical Hamiltonian in which L is
taken as a canonical variable and O=y/2 as the conju-
gate momentum, "

H'(L, O) =w(L)+2@(L)cos20,

is identical with the classical Hamiltonian function
describing perturbation of the Kepler movement in
spherical coordinates. The variable 0 is the angle be-
tween the major axis of the Kepler orbit and the line of
nodes, minus m/2 (Delos et al. , 1983a,1983b; Richards,
1983).

Consider now the quantization rule (2.22). The con-
nection between L and the standard integer variable j,
with the step unity, is

and combining the rules for the even and odd states so
that the new quantum number is X' =2% or 2N + I, de-
pending on parity, we again obtain Eq. (3.13).

The need to use half integers in the quantization condi-
tion (3.13), even in the case of rotation, is not self-
evident. In the framework of the discrete WKB method
it follows automatically from the general quantization
rule and Eq. (3.10) connecting L with the integer variable
j. The usual approach, based on the study of the caustics
of the projection of the multidimensional phase trajecto-
ry onto the plane of L, and 8 (Maslov and Fedoryuk,
1976; Hasegawa et al. , 1989) leads to the same result but
at a much greater effort.

C. The treatment of singularities
and quantization in the vicinity
of the separatrix

Most recursion relations associated with physical prob-
lems have singularities close to which the WKB approxi-
mation becomes invalid. As regards the TTR equation
(1.4) these are the boundary points I = n —1 and l = ~m ~.

The way out is to find a solution in the vicinity of a
singular point by some alternative method and then to
match it with the WKB solution. However, such pro-
cedures are essential only if the singularity is not located
deep in the classically forbidden region where the physi-
cal solution is vanishingly small.

1. The singularity at I =n —1

This singularity is important when the energy correc-
tion is close to E,'. It reAects the presence of the separa-
trix dividing the classical trajectories, with A(0 and
A )0. When E'~E,' the period of oscillations of the an-
gular momentum described by the classical equations
(2.9) and (2.10) corresponding to the TTR equation (1.4)
grows to infinity as ln ~E' E,'~. This reminds —us of the
movement near the top of a potential barrier without,
however, there being two separated classically allowed
regions of the variable L. A similar peculiarity is found
in many other problems expressed by TTR relations
whose potential curves cross in such a way that the
derivatives (U+) and (U )' have opposite signs at the
crossing point. The term "quasibarrier" was suggested
by Braun and Solov'ev (1984) to describe this situation.

fL d 8=2'(N +—') . (3.13)

In the case of rotation the integral in Eq. (3.12) is taken
over one-fourth of a period (corresponding to the change
of 0 by 2n). Extending integration over the whole period

Let us rewrite these formulas extending the integral
over the whole period of the field-induced evolution of
the Kepler orbit. In the case of oscillation the integral in
Eq. (3.11) is taken over half a period; consequently we
can write

4To quote Delos et al. (1983a), "The half-integer quantization
condition is derived from a long argument that we cannot
reproduce here. " This argument is presented in Delos et al.
(1983b).
5The logarithmic divergence of the classical period at E'=E,'

is connected with the fact that both of the factors under the
radical in the integrand of Eq. (2.10) go to zero at the upper in-
tegration limit.
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128 P. A. Braun: Semiclassical Rydberg atoms in fields

To find a solution of the TTR equation (1.4) close to
l =n —1, we introduce the following approximation for
its coefficients (n —I ((n):

1 m n I ——1/2 m 3
NI QI y n 5

T

u y
pr = — 1 — &(n —l)(n —I +1) .

2n n2

(3.14)

/

Ec

After that we obtain an exactly soluble TTR relation. Its
solution CI is given by the integral of overlap between the
set of harmonic-oscillator eigenfunctions with the index
u = n —l —1 and the parabolic cylinder function (Braun,
1983b). Matching it with the discrete WKB solution
leads to a modified quantization rule. The result for the
case ~m~ &(n will be discussed later, after the second
singularity is considered.

2. The singularity at I = (m
~

(The treatment in this section will be essential for the
subsequent consideration of oscillator strength distribu-
tions in quadratic Zeeman multiplets and the spectra of
the alkali-metal atoms. )

If ~m~ is comparable to n there is no need to take spe-
cial care of this singularity. Only the uppermost states of
the quadratic Zeeman multiplet can feel it (see Fig. 9),
and even for these levels the general WKB quantization
rules give correct results.

A much more important case, practically speaking, is

~

m
~
&&n, where the terms in the semiclassical Hamiltoni-

an that contain m are of the order n and can be
dropped. This is equivalent to complete neglect of the
centrifugal terms in the equations of classical dynamics.
In fact, if ~m~ &&n this can be done for all angular mo-
menta large enough to justify the classical trajectory ap-
proach. After that we obtain

r

1 3I.H'(L, O) =u — 1 ——
5 n2

1
2

1—
2

L
cos20

n

(3.15)

Note that in the case
~
m

~
&(n the "momentum" 9 is sim-

ply the polar angle of the Runge-Lenz vector. The corre-
sponding potential curves are two parabolas (Fig. 11),

QyU+(L)=, U (L)=uz 1 —— (3.16)

The matrix elements of the recursion relation entering the
quantization rule should be taken in their semiclassical form
(3.6), although the approximate equality in Eq. (3.6) is invalid
for l =m. Compare with the quantization of the radial move-
ment in the spherical potentials, where the replacement of
&l (l + 1) by l +

2 is used although this is not a valid approxi-
mation for l comparable with unity.

FIG. 11. Potential curves of the three-term recursion relation
(1.4) (spherical representation), when m =O. Hatching marks
the boundaries of the classically allowed region.

In this approximation the left turning point of I. is
zero, which corresponds to the Kepler orbit's periodical-
ly degenerating into a line; its angle with the magnetic
field is then

i)0=8(L) ~L o=arccos&1 —E . (3.17)

Here c =E'/u is the energy correction measured in di-
amagnetic units. Equation (3.17) follows from the energy
conservation law

H'(L, O) =E', (3.18)

with H' determined by Eq. (3.15).
The WKB solution of Eq. (1.4) can be written as

g WKB

CI = cos f B(L)dL +y
&U (L) L =I +1/2

(3.19)

where the "speed" U =dL/dr and 9 are determined with
respect to the m-independent Hamiltonian (3.15); y is
the arbitrary phase. This solution is applicable if
l —m » 1.

For smaller l we need an alternative solution. It can be
obtained by considering that when I &&n the radial
parts of both the diagonal (wr") and the off-diagonal (pr")
matrix elements (1.5) can be approximated by the same
constant u . We obtain a recursion relation whose exact
solution is

Cr = A Pr (cos80) . (3.20)

2
7T sin0Pr (cos80) =

X cos I +—80——+
2 4 2

(3.21)

Here Pr is the normalized Legendre function [the spher-
ical function without the factor exp(imp)//2']. The
angle Bo is the same as in Eq. (3.17).

If n is large, the domains where the WKB and Legen-
dre solutions are valid overlap (l —m ))1 and I &(n,
respectively). The Legendre function. can be replaced
here by its asymptotical form

1/2
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Comparison with Eq. (3.19) shows that the phase y
should be

3. The quantization rule

x
7T Pl 7T

(3.22)

This means that if m =0 the left singularity is formally
equivalent to a usual turning point at L =0. For m%0
there is an additional phase hami~/2; this is the only term
in the WKB solution (3.19) depending on m. Interesting-
ly, the m-dependent phase is precisely the centrifugal
phase induced in one-dimensional parabolic wave func-
tions in the analogous electric-field problem.

Since the change of the phase y by m. is of no im-
portance, levels with different m of the same parity are
approximately degenerate provided hami «n Th. is is a
direct consequence of the fact that the solution CI of the
perturbation-theory equations in the domain l «n is
given by the Legendre functions. The same is true of a
wide class of perturbations (Braun, 1991a); hence this de-
generacy is a widespread phenomenon.

c, =E'/u

m+1
nz (E) =sr X+ +y(n, s) .

2

(3.23)

Here (80=—arccos&1 —s),

Combining matching conditions that take into account
both of the singularities, we obtain a quantization rule
that preserves its validity even in the transition zone
close to the critical-energy correction E,' (Braun, 1983b).
This energy range is of considerable interest, partly be-
cause it is here that the first signs of chaotic movement
appear when the field is increased (Delande and Gay,
1987). After minor transformations this quantization
rule can be brought into the form of an equation for the
scaled diamagnetic energies

z(E)=do+(s —
—,
'

)I (1+x)[(E—x /5)(1 —4x /5 —s)]'i

( —1)" is
y ( n, E ) = arctan exp n~—

2 4 5

(3.24)

The upper and lower signs in Eq. (3.23) refer to even
and odd levels, respectively; N =0, 1,2. . . is a quantum
number. The complete elliptical integral z(E), whose
upper limit is the smaller positive root of the expression
under the radical, is connected with the action integral in

Eqs. (3.11) and (3.12) by the relations (L, =nx, )

nz(s)= '

—f I dO

o dj
nm ~t dO

d
2 0 dL,

(3.25)

(3.26)

Unlike the action integral, z(E) is a continuous function,
monotonically growing from 0 to m/2 when s changes
from 0 to 1. A continuous function analogous to z(s)
was introduced by Cacciani et al. (1988a); see also
Hasegawa et al. (1989).

The angle y(n, s) providing the smooth transition be-
tween the two parts of the quadratic Zeeman multiplet is
close to 0 and +m/4 for levels lower and higher than the
critical energy. If n ))1 this transition takes place in an
almost steplike manner. Putting y equal to 0 for
c&a, =—,

' and to +~/4 for c)c, we would return to
Solov'ev's quantization rule. In particular, levels of op-
posite parity with c&c, would be doubly degenerate.
The nonzero value of y(n, s) leads to g-u splitting, whose
size, according to Eq. (3.23), is

I

Here dE' is the spacing between two adjacent levels of
the same parity. For levels not too far below E,' the split-

ting thus obtained is the same as that given by Eq. (3.4).
For lower levels the approximation used in the derivation
of the matching condition at l =n —1 becomes inaccu-
rate and Eq. (3.4) is therefore preferable.

Let us now consider levels above the critical energy. If
the limit values +~/4 are introduced instead of y, the
quantization rules (3.23) for even and odd levels can be
combined into a single rule (a new quantum number
equal to 2X and 2N+1 for even and odd levels, respec-
tively, has to be introduced). The resulting WKB eigen-
values would form a sequence of levels with alternating
parity and smoothly changing spacings. The deviation of
y from +~/4 introduces irregularities into the behavior
of the spacings. However, these irregularities can be ob-
served only for the few levels closest to E,'; see Fig. 12,
where the spacings between the lowest three levels obvi-
ously do not fit the general pattern.

This effect is similar to the overbarrier reflection in
problems with a double-well potential. As a matter of
fact, rule (3.23) could also be obtained in the parabolic
representation, where there does exist a double-well po-
tential (Fig. 7). This is done by approximating Eq. (1.2)
in the vicinity of the maximum of U by the differential
equation for the functions of the parabolic cylinder and
matching the result to the WKB solution.

As stated earlier, the WKB energy levels with different
m of the same parity following from Eq. (3.23) are degen-
erate. This can readily be seen in Fig. 13, where the
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130 P. A. Braun: Semiclassical Rydberg atoms in fields

FIG. 12. Effects of reflection over the barrier in the quadratic
Zeeman multiplet (n =40, m =1). Spacings AE' between the
consecutive levels with energy higher than E,' are shown. Note
irregular change of hE' between the first three levels lying im-
mediately over the top of the quasibarrier.

quadratic Zeeman levels of atomic hydrogen with n =40
and m =0—3 are depicted (compare the energies of these
levels with m =0 and m =2). This approximate degen-
eracy holds throughout the multiplet, including the tran-
sition zone around E,' where primitive WKB rules disre-
garding the barrier effects are inapplicable.

E
I

C

In the upper part of the multiplet the energies are ob-
served to be totally independent of m, in line with the
term "rotational levels" introduced by Herrick (1982).
This can be explained by the fact that changing m by 1

and passing simultaneously to the states of opposite pari-
ty also leaves the quantization condition (3.23) intact, in
the approximation y =+m /4.

It should be noted that the m independence of the en-
ergies exists only for levels with ~m~ ((n I.t is far less
rigorous than the g-u degeneracy of levels with the same
m in the lower part of the multiplet [the respective split-
tings are proportional to m In and exp( —constn)].

D. The hydrogen atom in parallel electric
and magnetic fields

The combined effects of parallel electric and magnetic
fields on the highly excited hydrogen atom were investi-
gated by Braun (1983a) and Braun and Solov'ev (1984),
using the discrete WKB method in the parabolic repre-
sentation. The method earlier suggested by Sumetsky
(1982) is applicable only for states localized in the direc-
tion of the fields; its advantage is that it remains valid in
the n-mixing fields. Kazantsev and Pokrovsky (1983b)
considered the limit of relatively weak electric fields.
Cacciani et al. (1988b) used a semiclassical method
analogous to Solov'ev's (1981,1982) approach to the
quadratic Zeeman effect. A discrete WKB treatment in
the spherical representation was carried out by Water-
land et al. (1987) and Braun (1989b). Localization of the
upper states of the Stark-Zeeman multiplet was discussed
by Bivona et al. (1988). Extensive n-mixing calculations
were carried out by Richter et al. (1987) and Zeller et al.
(1989). Experimental results were reported for the hy-
drogenlike spectra of highly excited atomic lithium by
Cacciani et al. (1988b,1988c).

Investigation of the combined Stark-Zeeman effect in
parallel I-mixing fields is a simple extension of our treat-
ment of the quadratic Zeeman effect in the parabolic rep-
resentation (Sec. III.A). The additional perturbation
operator VF =Fz is diagonal in the basis set of parabolic
orbitals belonging to a single shell of the hydrogen atom.
Consequently the set of equations for the coefficients of
the zero-order eigenfunction will still be a TTR relation,
differing from Eq. (1.2) only by the additional term 23Fnk-
in its diagonal coefficient wk. The same additional term
linear in k appears in the expressions for the potential
functions of the TTR relation, and it is easy to establish
the corresponding changes in their plots compared with
Fig. 7.

In particular, consider the case m =0. The potential
functions can be written as

FICx. 13. The lower part of the quadratic Zeeman multiplet
with n =40 and m =0—3. Below the barrier E,': g-u degenera-
cy of levels with the same m; a much less exact degeneracy of
levels with m differing by 2, which continues into the transition
zone around E,'. Above the barrier: no g-u degeneracy of levels
with the same m; approximate degeneracy of levels with oppo-
site parity and m differing by 1.

U (k)=u 1 — +2P-+ k k
2

U (k) =u — 1 — +213—1 k k
Y 5 n2 n

(3.27)
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332 P. A. Braun: Semiclassical Rydberg atoms in fields

coefficients of the zero-order eigenfunction in the spheri-
cal representation (Braun, 1989b,1991a).

With an increase of p, the number of states in group I
increases, while that of groups II and III decreases. The
relevant numbers are given in papers by Braun and
Solov'ev (1984) and Cacciani et al. (1988b). When p
exceeds —,', the potential barrier and the right potential
well disappear, and with them go the levels of group II
and the anticrossings in the spectrum.

When —,
' & p& 1, instead of a potential barrier there ex-

ists a quasibarrier singularity with its abscissa at k = n

and its ordinate E,'= U —(n); see Fig. 14(b). As explained
above, the classical period (2.10) tends to infinity when E'
tends to E,' ["the quasibarrier top, " to use the name in-

troduced by Braun and Solov'ev (1984), although this is
not a very appropriate term]. Therefore the presence of
the quasibarrier means the existence of a separatrix di-
viding two types of classical trajectories. In the quantum
problem these two trajectories correspond to the two
groups of states (I and III) that remain when —,

' & p & l.
The presence of the quasibarrier leads to a characteris-

tic series of infl. ection points in the plot of the energies
against p (Fig. 15). Diverse effects connected with the
presence of the quasibarrier are discussed by Cacciani
et al. (1988c) in connection with experimental observa-
tions on atomic lithium.

Finally, if p) 1, the maximum of U+ moves away
from the allowed interval n&k—&n [Fig. 14(c)]. The
quasibarrier and group III states disappear. The spec-
trum becomes more primitive; it consists of the only
group (I) of states, and with the growth of F it tends to
linear Stark splitting.

When m WO, the transformation of the quadratic Zee-
man multiplet caused by the parallel electric field can be
analyzed in a similar way. Spectacular changes in the
spectrum, such as linear Stark splitting and anticrossings,
can be observed if there are g-u doublets in the absence of
the electric field, i.e., if ~m~ n& v/' .5

E. The quadratic Stark-Zeernan effect
in orthogonal 5elds

1. The recursion relation
describing second-order splitting

We begin by recapitulating the theory of Epstein and
Pauli. The first-order operator describing the interaction
of the hydrogen atom with the external fields is

V)= +F r.
2c

(3.30)

Within the nth shell of atomic hydrogen the Pauli rela-
tion holds:

r= —'n A.
2

The operators

L+A L—A
J(—,Jq— (3.31)

possess the properties of the angular momentum opera-
tors of two independent pseudoparticles; their squares are
constants,

V) =co)Ji )+co2J22 . (3.32)

Here co, and co2 are the absolute values of the vectors

H 3 H
co] = + nF co2= —nF

2c 2 2c
(3.33)

The commuting operators J&, and J22 are the com-
ponents of J, along co, and of J2 along ~2. Their eigen-
values k, and k2 take integer or semi-integer values from
—j to j. Therefore the first-order energy-correction
values equal to the eigenvalues of V& are given by the for-
mula

E = 67 ]k ] +C02k 2 (3.34)

The zero-order eigenfunctions 4'k 'k can also be found
1 2

analytically (Demkov et al. , 1969). The common eigen-
functions ~k&kz) of the components of J& and J2 along
the same vector ~, are parabolic orbitals quantized along
the direction of co&,

' the parabolic quantum numbers are
connected with k, and k2 by the relations

J&=Jz=j(j+I), j—= (n —1)/2 .

Written in terms of these operators, the perturbation
V& is

The first-order splitting of the hydrogen atom levels in
crossed electric and magnetic fields is a famous
quantum-mechanical problem solved by Epstein (1926)
and Pauli (1926). However, if F and H are mutually or-
thogonal, there remains a residual degeneracy of atomic
levels. Our topic here will be the lifting of this degenera-
cy under the inhuence of second-order e6'ects. The prob-
lem was theoretically studied by Solov'ev (1983), Braun
and Solov'ev (1984), and Belov et al. (1985). Later,
second-order splitting was experimentally measured by
the Bielefeld group (Wiebusch et al. , 1989); the results
agreed well with the theoretical predictions.

n&
—n2+m

k, = n2 n i+m
k2=

S= J

where d~k (5) are the Wigner functions.' 2

(3.35)

To obtain from ~k&k2 ) the zero-order eigenfunctions
in crossed fields, we must change the direction of quanti-
zation of the angular momentum Jz from co, to co&.

Denoting by 5 the angle between co& and cu2, we can write
the result as
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E~"=co.q, —(n —1)~ q ~ n —1 . (3.36)

The integer quantum number q is an eigenvalue of the
operator

In the case of orthogonal fields the two frequencies are
equal: co& =co2=co. Therefore the first-order energies de-

pend only on the sum of the quantum numbers

k, +k2—=q:

nth shell (Solov'ev, 1983),

n 4F'
W= (5n +31+24L 2—1LF+9A+) . (3.40)

The equivalence relation for the diamagnetic operator
(Herrick, 1982; Solov'ev, 1982; Gay et a/. , 1983) can also
be written in a form that is independent of the choice of
coordinate frame:

Q =Ji, i+Jz, 2 ~ (3.37)
2H2

V = (4A —5A +L +n +3)
16c

(3.41)

In the limit F/H~0 we have Q =L„so that q becomes
the usual magnetic quantum number m. In the opposite
limit H/F +0 w—e have Q= A, and q =n, n2—Th. e lev-

els E"' are n —
lql times degenerate. The corresponding

eigenfunctions are the functions (3.35) with a fixed sum

k, +k2 and all possible k =k] k2 ~ From now on we
shall denote these functions by 4'k'.

Degeneracy of the levels E"' is lifted if we take into
account the higher-order effects. These include the di-
amagnetic perturbation Vd given by Eq. (1.1). There are
also the second-order effects of the perturbation V&.

These effects are characterized by the secular operator
8' whose matrix elements between states of the same
(nth) shell are, by definition,

(na'l V, ln "a")(n "a"
l V, lna)

I E —E-n
n "Wn

(3.38)

Here, the subscripts F and H signify projections onto the
direction of the electric and magnetic fields. By
definition, Eqs. (3.40) and (3.41) mean equality of the ma-
trix elements of the operators in the left- and right-hand
sides between any functions belonging to the manifold of
the orbitals of the nth shell of the unperturbed hydroge, n
atom.

To find the second-order splitting, one needs to diago-
nalize operator IV+ Vd in the basis set of the functions
4'k' belonging to the degenerate level E"', alternatively,
one can diagonalize the sum of the operators in the
right-hand side of Eqs. (3.40) and (3.41). Calculations are
made easy if the operators A and L are expressed
through components of the angular pseudomomentum J,
in the coordinate frame with the z axis along co&, and of
J2 in the frame with the z axis along co2. The result is a
TTR relation for coefBcients of the zero-order eigenfunc-
tion,

Here
l
n a ) is an arbitrary complete set of unperturbed

hydrogen atom orbitals, with cx denoting all the quantum
numbers but n. Actually, in this expression, only the
electric part of V& is important because the operator L
has only zero matrix elements between states with
different principal quantum numbers.

If we choose as
l
n a ) the parabolic orbitals

l nn, n 2 )
quantized along the electric field direction, the matrix
elements of 8'are expressed through values that are well
known from the theory of the Stark effect in atomic hy-
drogen,

rQ

Pk=
5

1 ——q
n

2
(k —1)

n

1+—q
n

(k —1)
n

bk
Nk =El

Sn

Pkck —2+(~k E )Ck +7k+2 k+2

with

1/2

(3.42)

(3.43)

( n n, n 2 l

O'
I nn, n 2 ) =E„'„'„

(3.39)

Here ur =5n H /16c; b is a parameter given by the for-
mula (x =3ncF/H—):

(nn In&i wlnn, n2) '=(E„'„"„E'",, )c"—, ',
1 2 1 2 &1&2

(n1&n1)

Here E„'„"„and E„',' „are the first- and second-order en-
1 2 1 2

ergy corrections in the electric field; C",', is the
ll 1n2

coefficient at inn', nz ) in the development of the first-
order correction to the zero-order eigenfunction

inn in2). These values can be found in Adamov et al.
(1964). Equations (3.39) follow from the equations for
the perturbation theory for degenerate levels (Landau
and Lifshitz, 1989).

The results of calculation in Eq. (3.39) can be summa-
rized by the equivalence relation which holds within the

2b=x —1—2

1+x (3.44)

1 2
E(2) Et+ ~ + q

Y 5

n F 2
4 2

+ 3q —17n —19— (n —3q —1)—2

16 1 —x2

(3.45)

It grows monotonically from —3 to infinity when the ra-
tio F/H is increased from 0 to ao.

The second-order energy corrections are equal to the
eigenvalues E' of Eq. (3.42) plus a shift common to all
levels of the multiplet obtained from E"'.
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2. Investigation of the spectrum

Comparing the TTR relation (3.42) with Eq. (1.2)
describing the quadratic Zeeman eAect in the parabolic
representation shows that the presence of an orthogonal
electric field results only in modifying the coeKcient of
k in the diagonal matrix element wk (one also has to re-
place m by q). The potential functions of the Stark-
Zeeman problem can now be obtained from those studied
in Sec. III.A by adding (b +3)k !5n to both U+(k)
and U (k). The resulting changes of the potential
curves fully explain the complicated transformation of
the spectrum accompanying changes in the relative
strengths of the electric and magnetic fields.

In the simplest case q =0, corresponding to the central
line in the first-order splitting pattern, the potential
curves are two symmetrical parabolas:

0

u
U+(k) = 2 —(2 —b)

n

uy k
U (k) = —2+(2+b)

5 n 2

(3.46)
FIG. 17. Second-order splitting of the hydrogen atom levels in
orthogonal fields (c—:5E'/u

~ ), when n = 10, q =0. From
Braun and Solov'ev (1984).

Depending on the value of b there are three possibilities.
(a) Let —3&b (—2 (weak electric fields). The poten-

tial curves are similar to those for the pure quadratic
Zeeman effect [Fig. 16(a)]. The lower part of the quadra-
tic Stark-Zeeman multiplet consists of exponentially
close doublets. With the growth of b, the two symmetri-
cal potential wells on both sides of the maximum of
U (k) grow shallower and the proportion of doublets di-
minishes.

(b) Let —2 & b & 2 (comparable fields). The potential
curve U has a minimum instead of a maximum at the
point k =0. There are no potential barriers in the plot of
U (k) [Fig. 16(b)], hence no doublets in the spectrum.
Instead there are two symmetrical quasibarriers at
k =+n. Their presence is manifested by a series of
inAection points forming a typical crease in the plot of
the eigenvalues against b (Fig. 17). A similar crease was
observed by Herrick (1982) in a related problem.

(c) Let b )2 (weak magnetic field). The plot of the po-
tential functions is turned upside down compared with

the case b ( 2 [Fig. 16(c)]. If the level E is higher than
the minimum of U+(k), there are two symmetrical clas-
sically allowed regions. These are divided by a classically
forbidden region, which might be called an overturned
potential barrier. The length of the classically forbidden
interval grows when the energy correction is increased.
This means that, in a strong enough transverse electric
field, the doublet levels reemerge. However, this time
they occupy the upper part of the quadratic multiplet,
and the exponential splitting is smaller the higher (!) the
energy of the doublet level.

The values b =+2 are singled out because for these
values one of the potential functions turns into a con-
stant. In these cases the WKB theory integrals in Eqs.
(2.10) and (2.21)—(2.23) become elementary instead of be-
ing elliptical. Now there seems to be a rule: if the semi-
classical theory integrals are elementary, the correspond-
ing quantum problem is likely to be exactly soluble. As a
matter of fact, it was shown in Braun and Solov'ev (1984)
that when b =2 the exact eigenvalues of Eq. (3.42) are

E'=u [q +n —1 2L(L+1)], —2
Y 5n2

L =0, 1, . . . , n —
Iql

—1. (3.47)

The case b = —2 is reduced to b =2 by the exact rela-
tion, which holds for all b,

E'( —b) = —E'(b) . (3.48)

(b) (c)

FIG. 16. Hydrogen atom in orthogonal fields. Potential curves
of the TTR relation (3.42): (a) b (—2; (b) —2 (b (2; (c) b )2.
From Braun and Solov'ev (1984).

This can be proved by substituting Ck = ( —1 )" C~ in
Eq. (3.42). Equation (3.48) means that there is a center of
symmetry in the plot of the eigenvalues against b. Dis-
cussion of the case q&0 can be found in Braun and
Solov'ev (1984).
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The pattern of quadratic Zeeman splitting is much less
sensitive to the presence of a transverse electric field than
to that of a parallel one. (The diamagnetic splitting
should be compared with the second- and first-order
Stark splittings, respectively). This means that in experi-
ments on atomic hydrogen in orthogonal fields it is cru-
cially important to establish the exact geometry of the
fields. Even a slight deviation from 90' means that an ad-
ditional parallel electric field is introduced, which can
completely modify the spectrum, especially the doublet
structure in the cases b & —2 and b & 2. This was indeed
observed in the experiments of Wiebusch et al. (1989).

The problem of atomic hydrogen in approximately or-
thogonal electric and magnetic fields was considered by
Belov et al. (1985) and Braun (1990a). Estimates in the
latter paper show that in the experimental conditions of
the work of Wiebusch et al. (1989) the doublet part of
the quadratic multiplet is distorted beyond recognition if
the angle between F and H differs from 90' by 15'.

3. Related problems. Splitting bythe
generalized van der Waals perturbation

Like the pure quadratic Zeeman effect, second-order
Stark-Zeeman splitting of the central line with q =0 is re-
lated to the problem of a rigid asymmetrical top with the
rotational constants

V(a)=x +y +az (3.49)

(the so-called generalized van der Waals potential), which
is considered by Gay and Delande (1983), Gay (1986),
Gay et al. (1988), Alhassid et al. (1987), and Ganesan
and Lakshmanan (1990). In addition to the case of the
quadratic Zeeman effect (a=0), the family V(a) includes
the van der Waals interaction with the conducting sur-
face (a=2) and the hydrogen atom in a wave guide
(2 & a & —,'); see Hinds (1990).

It can easily be checked that the equation for the zero-
order eigenfunction corresponding to the perturbation
V(a) in the parabolic basis set is essentially identical
with Eq. (3.42) provided one chooses in this TTR relation

ai = —6+2, a2= —b —2, a3=0 .

The exactly soluble cases correspond to the top's becom-
ing symmetrical.

Another closely related problem is the first-order split-
ting of hydrogen atom levels by perturbations of the type

TABLE I. The conjugate pairs of the parameter o, in the opera-
tors V(n).

Comment

The diamagnetic perturbation

Exactly soluble case

Exactly soluble case
Symmetrical spectrum

E =n (6+a)+z 2+3m, 1 a—m —+—
4 4 2 4

+ 5n (4—a) E'
8 u&

(3.51)

The exactly soluble cases b =+2 correspond to +=—,
'

and a= 1; the limit of quadratic Stark splitting (b —+ oo )

corresponds to a=4. As regards splitting by V(a), the
exact solubility of these cases is well known (see the pa-
pers cited above). In general the second-order splitting of
the hydrogen atom in orthogonal electric and magnetic
fields 0&F/H & Oo is equivalent, up to a scaling factor
and a shift, to the first-order splitting by V(a) with
0&a &4.

An interesting result follows from the symmetry rela-
tion (3.48) (we do not know whether it was earlier report-
ed). The replacement of b by b'= bmean—s, according
to Eq. (3.50), the replacement of a by

7a —8

3(x 7
(3.52)

(3.53)

Some of the conjugate values of e and a' are listed in
Table I. The diamagnetic splitting (a=O) is equivalent
to the splitting produced by the operator V( —', ). In the
case a= —', we have a=a', which means that Eq. (3.53)
connects different eigenvalues of the same perturbation
matrix.

Using Eq. (3.51), it is easy to prove that the first-order
splitting produced by two different operators V(a) and
V(a') is essentially equivalent, with the first-order ener-
gies connected by the following exact relation:

4 2())(,)
5 ())( )

5n (a —4) 1+ 2m —3

3' 7 3(x 7 5n

b= 6(3a—2)
4 —a (3.50)

IV. INTENSITY DISTRIBUTION IN THE SPECTRA
OF HIGHLY EXCITED ATOMIC HYDROGEN
IN EXTERNAL FIELDS

and replaces q by the magnetic quantum number m.
Then the following relation holds between first-order en-
ergies E"' corresponding to V(a) and eigenvalues of Eq.
(3.42):

Calculations of the spectrum of excited atomic hydro-
gen in an external magnetic field (Clark and Taylor,
1980,1982; Wintgen and Friedrich, 1987; Zeller et al. ,
1989) have revealed that the oscillator strength distribu-
tion in this spectrum has a highly characteristic appear-
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ance (Fig. 18). The following properties may be singled
out.

(a) As long as quadratic Zeeman multiplets with
different n do not overlap, the oscillator strength distri-
bution within each multiplet has a peculiar profile practi-
cally independent of n (apart from the scaling factors).
This profile can also be reproduced in the /-mixing ap-
proach when the intensity distribution within a single
multiplet with n fixed is calculated (Cxrozdanov and Tay-
lor, 1986; Wunner, 1986); see Fig. 19.

(b) The form of the intensity envelopes in the spectra of
the Lyman series transitions with Am =0 and Am = 1 is
totally different. It is also absolutely unlike the intensity
distribution in the Balmer series transitions from the 2p
state [see Fig. 20(c,d) below]. There are two types of be-
havior at the high-frequency edge of each multiplet, with
intensity either going to zero or rocketing upward.

(c) There are details in the intensity plots obviously
connected with properties of the classical evolution of the
orbit of an atomic electron. In particular, the minirnurn
in the intensity which divides the span of each multiplet
in the ratio 1:4 is obviously connected with the presence
of a separatrix corresponding to the critical diamagnetic
energy shift Eo =u r I5 (or A =0).

It is usually assumed that reliable prediction of the os-
cillator strengths is a far more difticult task than calcula-
tion of the energy levels. It will be shown that, in the
case of perturbed Rydberg atoms, the real situation is
just the opposite: provided the energy-level distribution
is known, the oscillator strengths of transition to the

low-lying atomic states can be obtained by simple alge-
braic formulae. We shall also see that the intensity distri-
butions with different Am in the spectra of the Lyman
and Balmer series, which look so different, are in fact
connected by elementary relations. Apart from the quad-
ratic Zeeman etfect (Sec. IV.A), we consider the oscillator
strengths of atomic hydrogen perturbed by the van der
Waals interaction with a conducting wall (IV.B) and by
parallel (IV.C) and crossed (IV.D) electric and magnetic
fields.

(b)

FICz. 19. Lyman series oscillator strengths in a separate quad-
ratic Zeeman multiplet with n =20: (a) m =0. (b) m =1.
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A. Oscillator strengths in quadratic
Zeeman-effect spectra

In comparatively weak l-mixing external magnetic
fields, the low-lying atomic states remain virtually un-
changed. The oscillator strengths of transitions from
these states to the levels of the quadratic Zeeman multi-
plet with n &) 1 can be expressed through the coe%cients
CI of the zero-order eigenfunction in a spherical basis set.
For example, in the case of transitions from the 1s state
(the Lyman series), the oscillator strength is the weight
C& with which the np orbital enters the Zeeman state in
question times the oscillator strength of the 1s-np transi-
tion in unperturbed atomic hydrogen.

Thus all we need to calculate the oscillator strength
distribution is the formula for the coe%cients C& with
I (&n. It has already been obtained in the form of Eq.

(4.1)

Finally we obtain the formula (Braun, 1990c)

C(=, P( (&1—E), l (&n .
[1—e]' (4.2)

Here E=E'/u . This value b.e=b,E'/u~ is the scaled

(3.20), which expresses CI through the Legendre func-
tions. The fact that it matches the WKB solution (3.19)
establishes the relation between the normalizing con-
stants 2 and A . On the other hand, the latter con-
stant can, as usual, be expressed through the classical os-
cillation frequency of the "coordinate" L, which in its
turn is equal to the spacing AE' between quadratic Zee-
man levels of the same parity:

1/2

g WKB=2 AE

(c)

I

I

t

i, j

l7, Z
0 0.25 0.50 0.75 1.00

2-

0.2

FIG. 20. Analytical oscillator strength distribution profiles in the quadratic Zeeman effect: (a) Transitions 1s —nm, m =0. (b) Tran-
sitions 1s —nm, m =1. (c) Transitions 2p —nm, m =0 with Am =0 (solid curve) and Am =1 (dashed curve). Here L:—&5/8
(Am =0) or —&5/4 (Am = 1). (d) Transitions 2p —nm, m = 1 (solid curve) and m =2 (dashed curve). From Braun (1990c).
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spacing. It is the reciprocal of the density of levels in the
quadratic Zeeman multiplet and is different in its
different parts. The plot of Ac against e, was shown in
Fig. 8 (Sec. III.A). It can either be regarded as an empir-
ical quantity or expressed through the classical period
(2.10).

In some cases it is more convenient to use the angle
80=arccosV 1 —E instead of E as the independent vari-
able in the expression for CI.

Ci =Q2 sin8o~8o P, (cos8o)

where

ddo
560= Ac.

(4.3)

3 EC2 b.E(s), b, m =1
4 vl —E

(4.4)

[see Figs. 20(a) and 20(b)].
In Balmer series transitions from the 2p state, the mag-

netic quantum number I of the upper state can be +2,
+1, and 0. If mAO the oscillator strengths are propor-
tional to the weight of the nd orbita1 in the Zeeman states
[Fig. 20(c)],

C', = e&1—ebs(E}, Iml =1,15

15 c.C', = b, s(e), Iml =2 .
16 1 —s

(4.5)

If m =0 both the ns and the nd components contribute to
the transition amplitude. Using the relation between the
amplitudes of the 2p-ns and 2p-nd dipole transitions
(Bethe and Salpeter, 1957) it is easy to show that the os-
cillator strengths are proportional to [Fig. 20(d)]

(e —
—,
' )'

Co+C2 = be(E), b, m =0,
1 —E

2

Co+ Cz
(s—

—,
' )'

he(E), hm =1 .
1 —E

(4.6)

Thus all the oscillator strength profiles can be obtained
from the plot of the spacings b, c, versus E (Fig. 8) by mul-

tiplying the curve of spacings by the appropriate elemen-
tary function of c. This means, by the way, that these
profiles are connected by simple relations. For example,
the Lyman series distribution with Am =1 differs from
that with b, m =0 only by the factor E/( I —E).

Various peculiarities in the oscillator strength distribu-
tions can be traced to different factors in Eqs. (4.4) —(4.6).
The minimum in the intensity at c, = —, is due to a singu-
larity in Ac caused by the classical period s logarithmic-

is the difference in the va1ue of 80 for two adjacent levels.
It follows from Eq. (4.2) that in the Lyman series the

oscillator strength distributions in quadratic Zeeman
multiplets are proportional to

C, =—&1—Eb,s(s), bm =0,2 3

ally tending to infinity. The well-known steep rise in in-
tensity at the high-frequency edge (Clark and Taylor,
1980,1982; Gay, 1986) is connected with the denominator
&1—E; it is absent if the sum of the indices of the
relevant Legendre function is odd, because this function
then turns into zero at the point c.=1.

The analytical expressions (4.3)—(4.6) agree, to within
an accuracy usually far exceeding practical demands,
with the results of the numerical calculations in the cited
papers. They are also in complete agreement with the ex-
perimental findings of the Bielefeld group (Holle et al. ,
1985; Wintgen, Holle et al. , 1986). Comparison with the
experimental spectra of nonhydrogenic Rydberg atoms in
a magnetic field (Gay et al. , 1980; Delande and Gay,
1981b; Cacciani et a/. , 1986a;1988a; van der Veldt et al. ,
1990;1992) shows that, in situations where core effects
could be neglected, the theoretical and the experimental
intensity distributions are almost identical.

A predictable fall in accuracy is observed for the levels
in the immediate vicinity of the critical energy E,', the
reason for this is failure of the normalizing condition
(4.1) for levels close to the barrier or quasibarrier top.
The results are also slightly less accurate than average for
the transitions to the highest level of the multiplet. In
this case higher accuracy is provided by the expression
for CI given in Fano et al. (1988); see the discussion and
numerical examples in Braun (1990c).

B. Oscillator strengths of a hydrogen atom
perturbed by the van der Waals interaction
with the conducting wall

The problem of a Rydberg atom inside a resonator at-
tracts much attention because of its connection with the
fundamental problems of quantum electrodynamics as
well as because of its possible practical implications; see
the reviews of Haroche (1986), Beterov and Lerner
(1989), and Hinds (1990). A related topic is the problem
of transformation of the Rydberg atom spectrum caused
by interaction with the conducting wall of the resonator
(Barton, 1987,1988). The principal term in the interac-
tion is usually the van der Waals attraction of the atomic
dipole to its electrostatic image. The operator of the in-
teraction is proportional to

V(2) =x +y +2z (4.7)

and belongs to the family of operators considered in Sec.
III.E.3.

Let E' be the first-order energy correction due to V(2)
and c.=2E'/5n be the scaled quantity. Suppose that

I
m

I
((n. In this case the spectrum is limited to the inter-

val —', &c.&2. It turns out that in the part of the van der
Waals multiplet where 1 & c. & 2 the spectrum consists of
extremely close doublets. In the part of the multiplet
where —', & E, & 1 the levels are singlets. Thus, if the sign of
the perturbation operator were changed, the splitting
would be similar to quadratic Zeeman splitting. The
dependence of the scaled energy spacings hc on c, has the
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U (L)= —n 2——+ 5 4 7 L
2 5 n2

U (L)=—n 1 ——5 4 2 L
2 5 n2

(4.9)

(a)

0, 6

FIG. 21. Spacings in the van der %'aals moltiplets.

same birdlike appearance (Fig. 21) as in the case of the
quadratic Zeeman effect (Fig. 8). However, the oscillator
strength distribution is totally different (Fig. 22). Almost
all of the intensity goes to the spectral interval 1 & c &2,
whereas at the interval —', &e &1 the oscillator strengths
are negligible, quickly decreasing exponentially when we
move down the multiplet away from the critical point
c.=1.

A qualitative explanation of these e6'ects, based on a
study of the operator equivalent to V(2) within the nth
shell, is given by Alhassid et al (1987). .The discrete
WKB method provides an alternative explanation and
analytical expressions for the oscillator strengths (Braun
and Senyushkin, 1991).

In the spherical basis set the perturbation theory equa-
tion corresponding to V(2) is a TTR relation. It differs
from Eq. (1.4) in that the angular parts of the matrix ele-
ments of Eq. (1.5) are modified in the following way:

C2

(b)

mt ~2—mI, p& ~—p (4.8)

and that we set H /8c = 1. The corresponding semiclas-
sical Hamiltonian, from which we have dropped the
terms depending on m, for the same reasons as in Sec.
III.C.2, is (L =l+ —,')

5 4 3 3 L2 1 L2
H'(L, 8)= n — 1 ——— +— 1 — cos28

2 2 5 pg 2 n

The angle 0 canonically conjugate to L is the polar an-
gle of the Runge-Lenz vector of the classical hydrogen
atom. The canonical variables slowly change because of
the interaction described by V(2). The equation for the
evolution 8=8(L) follows from the energy conservation
law E'=H'(L, 8).

The potential curves are parabolic (Fig. 23),

0.6

FICx. 22. Oscillator strengths of the Lyman series transitions to
the levels of the van der Waals multiplet with n =30: (a) m =0;
(b) m =l.

Rev. Mod. Phys. , Vol. 65, No. 1, January 1993



140 P. A. Braun: Semiclassical Rydberg atoms in fields

the classically forbidden region. The latter solution is
then matched by means of Eq. (2.20) to the WKB solu-
tion in the allowed region, and is normalized in the usual
way. The resulting expression is

C&
=+2 sin@oh.60 P& (cos80)e

S= ~—0 L dI. .
(4.11)

I.O

0.6

FIG. 23. Potential curves of the three-term recursion relation
describing the van der Waals splitting of atomic hydrogen
(spherical representation), when m =0. The boundaries of the
classically allowed region are hatched.

Compared with Eq. (4.3), the result includes the addi-
tional factor, which gives the probability amplitude of
tunneling of the atomic electron into a state with I =0 in
which its Kepler orbit is a line. The integral is taken
over the classically forbidden region. The function
vr H(L—) in the integrand is purely imaginary. The pres-
ence of the factor e leads to the rapid vanishing of C&

when c becomes significantly smaller than unity. A
check of Eq. (4.11) shows that it leads to values of the os-
cillator strengths that agree almost perfectly with the nu-
merical results, despite the fact that the intensities in
different parts of the interval —,

' & c. & 1 differ by many or-
ders of magnitude.

The plot of U +—
immediately shows that if E & 1, small

values of I lie in the classically forbidden region. This
means that the coefficients CI with l «n of the eigen-
function in the spherical basis set will be extremely small.
Hence the oscillator strengths of transitions to the low-
lying levels will also be extremely small; this completes
the qualitative explanation.

The analytical treatment of the intensities is based on
the fact that if I «n the coefficients CI are given by the
same Eq. (3.20) as in the case of the quadratic Zeeman
effect, but with a different relation between the argument
of the Legendre functions and the energy correction,
which follows from the formula

C. Intensities in parallel electric
and magnetic fields

Introduction of an electric field parallel to the magnet-
ic field leads to a marked complication of the oscillator
strength distribution; see the numerical calculations of
Richter et al. (1987), Bivona et al. (1988), Grozdanov
and Racovic (1988), Zeller et al. (1989). If the electric
field is not too strong, the pattern of line intensities looks
like the plot in Fig. 24. At the bottom of the multiplet
the oscillator strengths form a smooth sequence resem-
bling the pure Stark effect. The intensities of lines with
higher frequency change in a complicated fashion so that

E= &+ 2cos2gp (4.10)

It can be seen that 8o is equal to the value of 9(L) at
L =0. [The reason for the universal validity of Eq. (3.20)
will be considered later. ]

The same arguments as in the preceding section show
that at the energy-correction interval 1 & c & 2 the
coeKcients C& are still expressed through 8p and A8p by
Eq. (4.3). By means of Eq. (4.10) they can be expressed
through c, and Ac. It follows that, in the case of the Ly-
man series, the intensity distribution at the interval
1 & c. & 2 is proportional to

C& =—&e—16E(e), bm =0,2 3

3 (2 —e)C2 EE(e), bm =1 .
4 v'~ —1

I-

a
'LJ
Vl

O. t

-7 00 - 6.76

g;ndIng energy (~ &0 ) {ou)

-6 Ok

In the energy-correction interval —,
' & c & 1, the normal-

izing constant of the Legendre solution (3.20) is found by
matching it to the WKB solution of the TTR relation in

FIG. 24. Lyman series oscillator strengths of the hydrogen
atom in parallel electric and magnetic fields, 8=4.7 T, F=25
V/cm, when m =0. The multiplets with n =27 and 28 are
shown. From Bivona et al. (1988).
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the oscillator strength distribution has nothing resem-
bling a smooth envelope. A similar picture is observed in
experiments on atomic lithium (Cacciani et al. , 1988c).
Following Braun (1991a), we shall explain the peculiari-
ties in the intensity distribution in Stark-Zeeman multi-
plets and give analytical expressions for the transition
amplitudes.

To find the oscillator strengths, we have to determine
the coefficients of the zero-order eigenfunctions in the
spherical basis set. These coefficients obey a five-term re-
cursion relation,

pt CI i+—qt CI i+—(wi E—')Cr

q, =
& nI —lm! Fz!nlm ) =q,"qP,

2
1/2

$2

n

—3q'= —Fn 1—
I

(4.13)
l —m

41 —1

When l (&n the radial parts of the matrix elements in
Eq. (4.12) can be replaced by constants,

3 ~ 21-pl -uy ql ——,Fn

If these approximations are made, Eq. (4.12) reduces to
the equation for the eigenfunctions of the operator

V(8) =u~(sin 8+2P cost) )

in a basis set of spherical functions. Here p is the param-
eter (3.28) introduced when the problem was considered
in the parabolic representation.

The operator V is simply a function of the polar angle.
Therefore its eigenfunctions with a definite m are
5(8—8o)e ™~,where 8o is any angle in the interval (O, m),
the respective eigenvalues being

E'=u&(sin 8o+2P cos8o) . (4.14)

Projecting these eigenfunctions onto the basis set of the
spherical functions, we find that in the domain of small I
the solution of the problem (4.12) corresponding to a cer-
tain eigenvalue E' has the form

Ci = A Yi (Bo,0), l «n. (4.15)

Here A is a normalizing constant, while E' and 80 are as-

sumed to be connected by Eq. (4.14). Since

Y& (Bo,0)=Pi (cos6o)/&2n. ,

this solution is identical to the Legendre solution (3.20).
It is important that, if p & 1, a part of the spectrum of

the operator V is doubly degenerate (Fig. 25), so that
there are two angles (8o and 8o') corresponding to a fixed

value of the energy correction E'. Consequently, in gen-

eral, the solution is a sum of two partial solutions for Eq.
(4.15) with different 8o and A.

The unknown normalizing constant (or constants) can

+qi+, Ci+, +pi+2Ct+2=0 . (4.12)

Here p& and w& are the matrix elements (1.5) of the di-

amagnetic operator, while

FIG. 25. The Stark-Zeeman eff'ect in parallel fields. 13epen-
dence of cos 6o on the scaled energy correction e: (a) p & 1, two

80 for each E' in the upper part of the multiplet; (b) p) l.
From Braun (1991a).

be found by matching the Legendre solution of the five-

term recursion relation with the semiclassical one. The
discrete WKB method for the five-term recursion can be
developed in much the same way as for the three-term re-
lation (Waterland et al. , 1987; Braun, 1989b). It is based
on an expression of the semiclassical Hamiltonian corre-
sponding to Eq. (4.12) in the case !m! « n:

1/2

H'(L, 8)=u — 1 —— +2P 1—
5 2 n

cosO

1 2
1—

2
L cos20
n

(4.16)

The terms containing m are dropped for the reasons
given in Sec. III.C. The phase trajectory equation fol-
lows from the energy conservation law

H'(L, 8)=E' . (4.17)

The fundamental WKB solutions have the same form
(3.19) as for the case of the quadratic Zeeman effect, with
8(L) fixed by Eq. (4.17).

The formalism of the discrete WKB method in the
case of the five-term recursion relation is more compli-
cated. Most importantly, there are in general two in-
dependent solutions of the type (3.19). This is because
Eq. (4.17) is quadratic with respect to cos8, so that the
phase trajectory consists, generally, of two branches,
8'(L) and 8'(L). There are now three potential func-
tions and three types of matching conditions. However,
the final expression for Cl with I ((n is remarkably sim-

ple. The result can be better understood in terms of a
classical model describing the radiative transition to and
from the perturbed Rydberg levels. (The role of this
model is purely illustrative; the results themselves are ob-
tained by a step-by-step quantum treatment. )

The field-induced evolution of the angular momentum
described by the Hamiltonian (4.16) is an oscillation of L
between 0 and some maximal value. This means that the
perturbed Kepler orbit periodically turns into a line
whose angle 8(0) with the direction of the field depends
on E' and is equal to 8o as determined by Eq. (4.14).
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Consider the optical transition from one of the low-
lying atomic states to a Rydberg Stark-Zeeman state.
Prior to the transition the atomic angular momentum
was close to zero; hence immediately after it I. is also al-
most zero. This means that the "newborn" Kepler orbit
modeling the Rydberg state is in its linear phase. Its po-
lar angle is connected with the energy of the Stark-
Zeeman level by Eq. (4.14); its azimuth is completely un-
determined. Therefore possible positions of the orbits
immediately after the transition form a cone around the
direction of the fields.

We can now state the results, which can take three
different forms.

(a) In the lower part of the multiplet, the angle 8o is
uniquely determined by the energy correction E'. (In
terms of our treatment in the parabolic representation in
Sec. III.D, this is the part of the spectrum where only the
levels of group I are present. ) Let b,E' be the energy
spacing in the multiplet so that

dlo
AQ =2~ sin80, AE' (4.18)

is the solid angle between the two close cones of the
linear Kepler orbit directions corresponding to two adja-
cent quantum levels. Then the coefficients of the Ryd-
berg state eigenfunction in the spherical basis set are

Ci =&3,QYi (Bo,0), l «n . (4.19)

CI+C II (4.20)

By means of Eq. (4.14) we can express C& in terms of E'
and AE'.

If there are two Bo corresponding to a given E' there
are two possibilities.

(b) The angles 8o and 8~' are connected with two iso-
lated phase trajectories 0'(I. ) and 0"(I.). Remembering
our treatment in the parabolic representation, we can see
that this is the intermediate-energy range in which the
levels of groups I and II overlap. (This situation occurs
only if f3& —,'). The two isolated trajectories correspond
to oscillation of the point representing the system to the
left and to the right of the potential barrier in Fig. 14(a),
Sec. III.D.

In this case the spectrum is composed of two overlayed
partial spectra obtained by independent quantization of
the movement along the two trajectories. In each spec-
trum the solution is given by Eq. (4.19), the dependence
of C& on E' and AE' following from the equation
Bo=B~(E'), where s =I,II.

(c) If P & 1, then in the upper part of the multiplet (the
energy domain of the levels of group III) there is a single
phase trajectory for each E'. However, in a period of the
field-induced evolution, the classical orbit twice becomes
a line, its polar angle at first time being 8~ and at the
second time 80. The probability amplitudes connected
with these events are coherent and may interfere. Ac-
cordingly the solution is

where the summands are the expressions obtained by
substituting Bo(E') and Bo'(E') into Eq. (4.19). The spac-
ing AE in both of the partial amplitudes is the same.
The signs in Eq. (4.20) alternate from level to level (for
the uppermost level of the multiplet the sign is plus).

Knowing C&, one can calculate the oscillator transition
strengths. In particular, in the Lyman series they are
proportional to CI. The pattern of spectral lines in the
parts of the multiplet where the situations (a), (b), and (c)
are realized is quite different. If there is a single 80 for
each E' [case (a)j, the positions and intensities of the lines
change smoothly (this is the Stark-effect-like part we
spoke about).

Otherwise the spectrum is much more complicated. If
there are two isolated phase trajectories [case (b)j, over-
laying of two independent spectra results in an alterna-
tion both of the energy spacings and of the line intensi-
ties. Finally, if there is a united phase trajectory, the in-
terference of two probability amplitudes expressed by Eq.
(4.20) leads to alternation of the line intensities while the
energy spacings change smoothly.

All or some of these situations are observed simultane-
ously in the same multiplet, depending on the value of f3.
For example, the multiplets shown in Fig. 24 correspond-
ing to 13=0.4 consist of two parts in which cases (a) and
(c) are realized.

The results of this section provide, as simple limiting
cases, the oscillator strength distributions of the linear
Stark effect (P—+ ~ ) and, in the opposite limit (P=O), the
quadratic Zeeman effect. On the other hand, the treat-
ment can be extended to other perturbations of the type

U (r, 6)=g u, kr'(cos8)",
i, k

(4.21)

7Note that in Sec. IV.A AE' meant the spacing between levels
of the same parity. In the case of levels of group III this spac-
ing is twice as large as AE' in Eq. (4.18). The eAect of alterna-
tion of intensities of the lines of group III in the limit P=O goes
to the extreme (every second line disappears because of parity
considerations). In this case go=m —Bo.

~here e,k are some constants and the maximal powers of
i and k are small compared with n. The results are again
expressed through the function connecting the polar an-
gle of a linear Kepler orbit and the corresponding
energy-correction value (Braun, 1991a).

The role of the classical orbits passing through the nu-
cleus was earlier stressed in works on the averaged pho-
toabsorption close to the ionization threshold of atomic
hydrogen in a magnetic field (Reinhardt, 1983; Delos and
Du, 1988; Du and Delos, 1988; Holle et al. , 1988 and
reference therein; Bogomolny, 1989). We deal with a
much simpler situation of a completely regular classical
motion (and hence have no need to use the heavy guns of
the Gutzwiller theory). On the other hand, we obtain a
much more detailed description of the spectrum, includ-
ing the oscillator strengths of individual lines, given as
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functions of the quantities that can be measured in the
experiment (the line positions and the energy spacings).

D. Intensities in crossed electric
and magnetic fields

If the electric and magnetic fields acting on a highly
excited hydrogen atom are not orthogonal, complete lift-
ing of degeneracy occurs in the first order of perturbation
theory. The zero-order eigenfunction of a state with the
quantum numbers k, and k2 is then given by Eq. (3.35).
Its development in the spherical basis set necessary for
oscillator strength calculations is given by the formula

=(jjk, m —k, ~lm )d' „k (5), (4.22)
FIG. 26. The vector model of radiation of the hydrogen atom
in crossed electric and magnetic fields. From Braun (1991b).

where j =(n —1)/2. It is assumed that the spherical or-
bitals are quantized along the direction of the vector ~1
(Sec. III.E).

The right-hand side in Eq. (4.22) is a product of the
Clebsch-Gordan coefticient and the Wigner function. It
depends in a complicated way on the quantum numbers
and the angle 6 between the vectors co& and co2 deter-
mined by Eq. (3.33). The explicit expression for 5 is

6=arctan
2x sino. FH

1 x2

H' =CO1.J1+n) J

It describes rotation of the two independent angular mo-
menta J1 and J2 with the constant length j+—,

' around
the vectors co1 and co2, respectively. Their projections,

~2, 2 (J2 ~2)~~2 &

are integrals of motion. In the quantum-mechanical ap-
proach these integrals can take either integer or half-
integer values equal to the quantum numbers of the
Stark-Zeeman state:

1 1 kl& ~22 k2

where x:—3ncF/H and uFH is the angle between the two
fields.

We shall use the semiclassical approximation to ana-
lyze the dependence of the oscillator strengths on k, , k2,
and 5. This will be easy because the WKB approxima-
tions for the Clebsch-Gordan coefficients (Edmonds,
1960) and the Wigner functions (Brussard and Tolhoek,
1957; Ponzano and Regge, 1968) are well known. The re-
sult can be brought into a physically meaningful form
closely tied to the semiclassical model of the problem.

Before we formulate the result, let us consider the be-
havior of the classical hydrogen atom in crossed
nonorthogonal fields (Born, 1960). The classical first-
order Hamiltonian can be written as

It is convenient to introduce the vector J2= —J2, which
also rotates around co2, its projection on co2 is —k2. The
two cones described by J, and J2 are shown in Fig. 26.

Consider the light emission of a highly excited hydro-
gen atom in crossed fields leading to a transition to a
low-lying state. Because of the angular momentum selec-
tion rules, the transition can take place only if the Kepler
orbit modeling the perturbed Rydberg state is in the
linear phase of its field-induced evolution, i.e., when L=O
or J1=J2. Denoting the common value of J1 and J2 by I,
we see that there are two such vectors, I, and I&, direct-
ed along the lines showing the crossing of the two cones
in Fig. 26; they are symmetrically placed with respect to
the plane of the fields.

Thus when we study transitions to the low-lying levels
we get a "stroboscopic" picture of the upper state, ob-
serving it when the corresponding Kepler orbit is linear
and directed either along I, or along Ib. We obtain a
model of two identical radiating linear vibrators directed
along I, and Ib, with equal amplitudes but shifted phase.
For a given level Ek'k the orientation of the two corre-

1 2

sponding vectors is fixed by their projections on m1 and
602'.

a1 b1 1& a2 b2 2

Once this model is adopted it leads to important con-
clusions.

(a) The cones in Fig. 26 may cross or not, depending on
the value of k1, k2, and 5. The noncrossing of the cones
means that the angular momentum of the Rydberg state
never approaches zero. Consequently the transition to
the low-lying levels will be classically forbidden; if n &) 1

its probability will be extremely small.

Similar arguments were used by Penent et al. (1988) in esti-
rnates of the quantum defect shifts of nonhydrogenic Rydberg
atoms in orthogonal fields.
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Let us depict the Stark-Zeeman states of the nth shell
by the integer or half-integer points in the k&kz plane.
These points fill an n Xn square whose sides are parallel
to the coordinate axes (Fig. 27). It may be shown that
the cones in the vector diagram Fig. 26 cross, provided
the following inequality is fulfilled:

—n/2

n/2

n/2 k)

2
k)+k2 +

sin(5/2 )

k-k
&n

cos(5/2)
(4.23)

This is the equation of an ellipse inscribed into the square
in Fig. 27, the axes of the ellipse being the diagonals of
the square. The points outside the ellipse correspond to
the levels Ek'k of the multiplet classically inaccessible by

j 2

radiative transitions from the low-lying atomic levels.
As an example in Table II we present the relative oscil-

lator strengths f„„kk /f', , ' „of the Lyman series
1 2

transitions to the Stark-Zeeman levels, for the case in
which n =2 l and 5 = 80 (here f ', , ' „ is the oscillator
strength of the 1s —np transition in the unperturbed hy-
drogen). Results are given for the non-negative k& and
kz, i.e., the first quadrant in the square in Fig. 27. The
dashed curve indicates the position of the elliptic bound-
ary following from Eq. (4.23). Note the rise in intensity

FIG. 27. The ellipse of classically allowed values of the quan-
tum numbers k&, k2 in the radiative transitions between the
Rydberg Stark-Zeeman levels Ek"k and the low-lying levels.

I 2

The spectral lines with the upper-state quantum numbers de-
picted by a point in one of the hatched areas have exponentially
low intensity if n ))1. From Braun (1991b).

near the inner side of this boundary, in accordance with
its role of a caustic, and rapid extinction beyond it.

(b) The radiation emitted by the atom is symmetrical
with respect to the plane containing the vectors I, and
lb. If the line of observation lies in this plane, the light is

TABLE II. Relative intensities for the Lyman series (X10 ) of transitions to the levels with non-
negative k&, k2 of atomic hydrogen in crossed fields, when 6=80', n =21. The dashed curve indicates
the boundary of the classically allowed area of the quantum numbers; the underlined values mark the
strongest transition in each row.
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linearly polarized, otherwise it is elliptically polarized.
The semiclassical approximation for the coeKcients

C& following from the well-known asymptotic expres-
sions for the factors in Eq. (4.22) turns out to be full
agreement with our vector model. It is an obvious exten-
sion of Eqs. (4.10) and (4.20) of the previous section to
the axially nonsymmetric case:

C& =&~&[ Y'&* (&„y,)e' +I'i* (&b, yb)e ' ] .

(4.24)

The arguments of the spherical functions are the spheri-
cal angles of the vectors I, and Ib, S is the semiclassical
phase. The quantity AQ is expressed through the Jacobi-
an of 8„y, by k

&
and kz..

reason for the violent oscillations of intensities accom-
panying even small variations in the relative strength and
geometry of the crossed fields (Fig. 28); it is also responsi-
ble for large variations in the probability of transitions
from states with close k, and kz (Table II). Certain po-
larization properties of the light emitted by the atom are
independent of S; these properties are much less sensitive
to variations of k„k2, and the fields.

When the fields are orthogonal we have to take
second-order perturbations into account if we want to
determine the zero-order eigenfunctions and the oscilla-
tor strengths. An analytical description of the intensity
distribution in this case has not yet been reported. Sim-
ple results have been obtained (Braun, 1991b) for the to-
tal transition probability connected with quasidegenerate
first-order levels.

This is the solid angle of the directions of the vector I,
corresponding to a unit area in the k&k2 plane, i.e., to a
single state of the Stark-Zeeman multiplet of the nth shell
[compare with Eq. (4.19)]. The quantities S and b,Q are
functions of k &, kz, and 5; their expressions can be found
in Braun (1991b).

Equation (4.24) represents C& as a sum of two proba-
bility amplitudes, created by the multipoles determined
with respect to the directions I, and lb. The oscillator
strengths, which are proportional to

~ Ci ~, contain,
apart from the (a) and (b) contributions, an interference
term depending on the large phase difference 2S. The
changes of the quantum numbers k, and k2 by 1, or of
the angle 5 between the vectors co, and m2 by a small
quantity of the order min lead to changes comparable to
m of this phase difference.

Interference between the two vibrators is the obvious

( . 03

I

(

I

)

V. NONHYDROGENIC RYDBERG ATOMS
IN EXTERNAL FIELDS

The analytical studies of Rydberg atoms in external
fields have concentrated mainly on the hydrogen atom.
On the other hand most of the experiments have been
carried out on the nonhydrogenic Rydberg atoms. The
presence of a core leads to serious changes in the pattern
of field-induced splitting and in the intensity distribution.

One of the merits of the discrete WKB method is the
ease with which core effects can be taken into account.
In doing so there is no need to introduce any specific
model for the core potential, since the results are ex-
pressed in terms of the quantum defects of the unper-
turbed atom.

A. The quadratic Zeeman effect in highly
excited alkali-metal atoms

The quantum defects 5I of alkali-metal atoms, which
are comparable to unity when l is small, quickly subside
with the growth of l [see Table III, where their values
corresponding to n —+Oo and reduced to the interval
( ——,', —,') are given]. In a comparatively weak magnetic
field the levels with small l can be considered isolated.
Their diamagnetic shift is found by averaging the opera-
tor Eq. (1.1) over the unperturbed atomic orbital. The
states of a free atom with larger I are almost degenerate

2.5I
TABLE III. Quantum defects of alkali-metal atoms reduced to
the interval ( —0.5,0.5) [after Lindgard and Nielsen (1977)].

gn i

5Q . 0 Bo 90
DELT~ tace~,

FIG. 28. Relative intensity of the Lyman series spectral line
Is —4„« in crossed fields, n =21, k, =3, k2=2, as a function

of the angle 5. From Braun (1991b).

Li
Na
K
Rb
Cs

0.40
0.35
0.18
0.14
0.06

0.05
—0.14
—0.28
—0.35
—0.44

d

0.002
0.015
0.26
0.34
0.48

0
0.002
0.009
0.015
0.032

0
0
0
0
0.005
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and are heavily mixed by the external field. The numeri-
cal methods for calculating the quadratic Zeeman ener-
gies are considered by O'Mahony and Taylor
(1986a, l986b); see also the review of O'Mahony (1988).
We shall describe here the semiclassical treatment of the
problem (Braun, 1983b,1990b).

Let us use the perturbation theory for a group of close
levels and suppose that ~m~ ((n (otherwise the spectrum
is exactly like that of hydrogen). Developing the zero-
order eigenfunctions in the basis set of orbitals of the free
atom, we obtain the three-term recursion relation

s'ici 2.+(~—i+E"i' E')ci+Pi+2ci+2=0 . (5.1)

Q& (cos8o),

where Q& are the second-order Legendre functions.
Normalization is carried out in such a way that the

Its difference from Eq. (1.4) is in the core-induced shifts
E„'&'= —

5& In present in the diagonal terms.
Only a tiny fraction of the equations of the three-term

recursion relation (5.1) is spoilt by the presence of phase
shifts. Indeed, for l ) lo where lo = 1 —3 depending on the
atom, the quantum defects 5& and the energies E„'I' are
practically zero. Therefore the hydrogenic WKB solu-
tion (3.19), which is valid only if I is large enough,
remains valid for the nonhydrogenic atoms; what difFers
is the value of the phase g

Further treatment is best demonstrated by a specific
example. Consider the lithium atom s diamagnetic split-
ting in the case m =0, beginning with the even part of
the spectrum. The quantum defect of the ns state is so
large (0.4) that in the l-mixing magnetic field it is not ap-
preciably intermixed with the rest of the manifold; its di-
amagnetic shift is found as the average of the diamagnet-
ic operator. On the other hand, states with l ~2 are al-
most perfectly hydrogenic. Therefore the corresponding
even eigenvalues can be found by diagonalizing the di-
amagnetic operator in the incomplete manifold of orbit-
als of the nth shell of the hydrogen atom with the ns or-
bital excluded. This "truncated basis set" approximation
has been extensively used in the theory of perturbed Ryd-
berg atoms (Braun, 1983b; Fabre et al. , 1984; Penent
et al. , 1988). In this approximation the coefficients C&

can be found from the purely hydrogenic TTR relation
(1.4), starting with the equation with I =2, in which one
should set Co =0.

In the case of hydrogen the analytical solution of Eq.
(1.4) with small I was given by the Legendre solution
(3.20). However, this TTR relation also has a second, ir-
regular, solution proportional to the functions
(cosdo=&1 —E, E=E'/u ),

1/2»+ I (I —Im~)i

2 (I +
~

~m)!

The constant phase g determines the contents of the ir-
regular solution.

Considering the even states of Li with m =0, we ob-
tain the value of y from the condition Co =0, which gives

cotg =— 2= ——arctanhV1 —e .
7T

(5.4)

After y is fixed, matching the solution of Eq. (5.3) with
the WKB solution (3.19) provides the WKB phase

fPl

The remaining steps are the same as in the case of
atomic hydrogen (Sec. III.C). The phase y finds its way
into the quantization condition for the eigen values,
which differs from the hydrogenic rule [Eq. (3.23), upper
sign] by an additional term, —y(E), in its right-hand side.
Its presence leads to a shift of the even levels, compared
with the respective quadratic Zeeman levels of atomic
hydrogen, by

E' —E' = ——AE'Li H (5.6)

where AE' is the spacing between even levels in hydro-
gen. The shift (5.6) varies from 0 to b,E'/2 as we move
from the bottom to the top of the multiplet. Note that in
the truncated basis approximation the splitting pattern
does not depend on the field strength.

The behavior of the odd levels is more complicated,
due to the small but significant quantum defect of the np
state (5,=0.053). In very weak fields the np level can be
considered to be isolated and not taking part in the l mix-
ing,' the rest of the levels formed from the odd states with
l ~ 3 can be found in the truncated basis approximation.
At the other extreme (fields strong enough to be on the
verge of the n-mixing regime), the energy gap between
the np level and the rest of the odd levels becomes
insignificant compared with the diamagnetic splitting,
and the spectrum becomes almost hydrogenlike. Core
efFects can then be considered as small perturbations
(Komarov et al. , 1980).

In intermediate fields the solution has to be sought in
the form (5.3). The angle y is a function of E'; it is fixed
by the requirement that Eq. (5.3) satisfy the equation of
the TTR relation (5.1) with I = 1. The result is

asymptotic expression for 6& differs from that of P&

given by Eq. (3.21) only by an additional phase shift ~/2
in the cosine argument. The sequence 6& satisfies the
equations of the TTR relation (1.4) with 1 &(n except for
the initial one, with / =

~
ml. In the case of nonhydrogen-

ic atoms this initial equation is either absent or distorted.
Therefore we have to include 6& in the general solution,
writing it as

Ci = c4 [cos+Pim ( cosgo) +sln+ai~ ( cosdo ) ] . (5.3)

The matrix elements of the diamagnetic operator are also
slightly diff'erent from those given in Eq. (1.5), but this distinc-
tion is of secondary importance.

E"i'Pio
coty =-

(~i+E."i' —E')6» +6p33.
(5.7)

Rev. Mod. Phys. , Vol. 65, No. 1, January 1993



P. A. Braun: Semiclassical Rydberg atoms in fields 147

The quantization condition is the same as for the odd
states of atonuc hydrogen [Eq. (3.23), lower sign] except
for the additional term —y in the right-hand side. The
energy shifts of the Zeeman levels with respect to those
of atomic hydrogen are given by Eq. (5.6).

The emerging picture of quadratic Zeeman splitting in
atomic lithium with m =0 is heavily distorted compared
with atomic hydrogen (Fig. 29; compare with Fig. 1). A
particularly striking feature is the presence of g-u dou-
blets in the upper part of the multiplet instead of the lo-
cal equidistance of the levels characteristic of atomic hy-
drogen. The reason for this is that the core-induced shift
of the even levels is much greater because it is connected
with the huge quantum defect of the ns states. More for-
mally, it follows from the fact that the phase y of the
even and odd solutions with close energies differs by
about 90 (Braun, 1983b). According to Eq. (5.6) this
means that the shifts of the even and odd levels differ by
b,E'/2. This value is equal to the spacing between levels
of opposite parity in the upper part of the quadratic Zee-
man multiplet in atomic hydrogen, hence the formation
of the doublets.

This approximate pairwise degeneracy of the quadratic
Zeeman levels in the upper part of the multiplet was ex-
perimentally confirmed by Cacciani et al, (1986a,1988a).
It was also demonstrated in experiments showing the
avoided crossings of levels originating in adjacent shells
of the lithium atom, when the atoms were subjected to a
magnetic field strong enough to cause n mixing and a
weak parallel electric field (Cacciani et al. , 1989).

FIG. 29. Quadratic Zeeman splitting of the levels of atomic
lithium with n =20, m =0 in a magnetic field K=4.7 T
(E„'&'/u~ = —0.33). Solid and dashed lines correspond to even
and odd levels.

The situation described for the lithium atom is typical
of other alkali-metal atoms. The quantum defects 51 be-
come small beginning with a certain lo, so that 5I +, is

0
practically zero while 5I &

is comparable to unity (, l0=1
0

for Li, 2 for Na, and 3 for the rest of the alkali-metal
atoms). Levels with the same parity as lo+1 can be
found in the truncated hydrogen-atom basis approxima-
tion from which the orbitals with I & l0+ 1 have been
dropped. The phase y in Eq. (5.3) for these states is
found from the condition C&,=0 (supposing that

0

~
m

~

~ la; otherwise the spectrum is exactly hydrogenic).
States of the same parity as Io are practically hydro-

genic if the diamagnetic splitting is large compared with
E„'I'. Otherwise the phase g is obtained by inserting Eq.
(5.3) into the equation of the TTR relation (5.1) with
I =la in which case C& 2 should be set to zero.

0

Our treatment has been based exclusively on the ap-
proxirnation of a single shell. In a strong enough field,
n-mixing effects tend to smooth out the nonhydrogenic
features of the spectrum (Cacciani et a/. , 1988a). In or-
der to appreciate the impact of this n mixing, it might be
useful to explore the effective operator giving the higher-
order corrections associated with the diamagnetic pertur-
bation (Delande and Gay, 1984).

B. Intensities in the quadratic Zeeman
splitting of alkali-metal atoms

In the preceding section we obtained Eq. (5.3) for the
coefficients of the zero-order eigenfunctions in the basis
set of the unperturbed orbitals of the valence electron.
The normalizing constant A in this equation is deter-
mined by matching with the WKB solution (3.19), whose
normalizing constant is expressed through the energy
spacings AE'. The result is the same as for atomic hy-
drogen,

( gs )1/2
A =

(1 —E)' '
s=E'/ur, DE=DE'/ur .

Inserting A and y into Eq. (5.3) gives Ci as a function of
c., which can be used to obtain the oscillator strengths of
transitions to the low-lying levels.

An analytical study of intensities in the quadratic Zee-
man effect of atomic lithium was made by Braun (1990b).
The lower state was assumed to be the ground 1s 2s
state, so that only the odd sublevels of the Zeeman multi-
plet were important. The oscillator strengths within each
multiplet were proportional to the contents of the np or-
bital in the wave functions of the levels. Using Eq. (5.7)
and the similar result for the case ~m~ =1, Braun ob-
tained the following expressions. They give the oscillator
strength distribution in the interval

( —1/2n +mH /2c, —1/2n +mH/2c + u r )

of energies of the upper level or, in terms of the reduced
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energy correction, in the interval 0( c. ( 1:

(C, )L;=(C, )HM (E) . (5.8)

reAects the impact of the quantum defect of the np state.
If we denote

Here (C& )H are the Eqs. (4.4) for the intensities in the
Lyman series of atomic hydrogen. The factor M

x =&1—E c,' '=E' '/u
1 n1 y

the factors M for m =0 and 1 can be written

Mo= [1+3EI '(x arctanhx —1)] + 3'7TX p

'2 ' —1

M = 1+—c —arctanhx+13 (p)
1 2 1

3~& (o)
4~

2 —1 (5.9)

Equations (5.8) and (5.9) describe the transformation of
the oscillator strengths with changes in the magnetic
field. In very weak fields, the parameter c.~i

' is large and

Mp and M1 are small. Indeed, in weak fields almost all of

2

0.15—

0 10-

the spectral intensity goes to the perturbed np level, while
the rest of the quadratic Zeeman lines have very low in-
tensity.

En stronger fields the intensity is more evenly distribut-
ed along the Inultiplet, and the oscillator strength profile
becomes more hydrogenlike. However, there are impor-
tant differences. First the bulk of the intensity is shifted
to lower energies (Fig. 30). Then there are specific
changes in the form of the intensity plots. The most ob-
vious of these is observed in the cr spectra (m =+1) close
to the high-energy edge of the multiplet (e~l): instead
of the hydrogenic monotonic growth as (1—e) '~, the
oscillator strengths reach maximum and then go down as
(1—c, )' . On the other hand, the behavior of the intensi-

O. OS— / wP

I

0.8

(a)

C,

0.ZO—
-122

I~I hatt, V
-12& -120

f frni

-119

0. 15

0.10

O. Z 0.0 0

FIG. 30. Analytical oscillator strength profiles in the quadratic
Zeeman multiplet of atomic lithium (solid line) compared with
those of the Lyman series transitions of atomic hydrogen,
(dashed line) n =30, 0=1.65 I: (a) m =0; (b) m =1. From
Braun (1990b).

FIG. 31. Excitation spectrum for the n =30, m =0 odd di-
amagnetic spectrum of lithium, H =1.65 T: (a) experimental
recording for lithium; (b) numerically calculated spectrum for
lithium; (c) calculated spectrum for hydrogen. From Cacciani
et al. (1988a).
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to}

~&II(I~L L

(1987), who measured the spectra of highly excited atom-
ic barium with n =78, m =0 in the l-mixing magnetic
field (Fig. 33). The oscillator strength distribution
strongly differed from its hydrogenic prototype rthe Bal-
mer series transitions with m =0; see Eq. (4.6) and Fig.
20(c)]. In particular, the intensity went to zero at the
high-frequency edge. Interestingly, some of the hydro-
genic peculiarities remained, including the minimum at
c, =0.2 and the zero value of the intensity inside the mul-

tiplet; the latter is characteristic of the Balmer series
transitions to the Rydberg states with m =0.

-)22 -g 3 -520 -0 l9
f tee

il
-)22 -12~ -120 -99

E (c~ '
)

C. Alkali-metal Rydberg atoms in an electric field
and in combined electric and magnetic fields

1. Electric field only

FIG. 32. The n =30, m =1 odd diamagnetic manifold: (a) Ex-
perimental spectrum for lithium at H = 1.94 T composed of two
spectra shifted by double the Larmor frequency. (b) Experi-
mental spectrum for lithium obtained by eliminating in (a) the
contribution of the paramagnetic interaction. (c) Theoretical
spectrum numerically calculated for lithium by disregarding the
paramagnetic term. (d) Theoretical spectrum calculated for hy-
drogen by disregarding the paramagnetic term. From Cacciani
et al. (1988a).

ties close to the singularity a=0.2 (A=O) remains un-
changed, because this singularity, associated with near-
maximal l components of the wave function, does not feel
the presence of the core.

Our results are in good agreement with the experimen-
tal findings of Cacciani et al. (1986a,1988a). In these
studies atomic lithium was optically excited to states
with n close to 30. The fields were about 1.6—2.5 T,
which corresponds to values of the parameter c, '&

' in the
range —0.16 to —0.08. The observed intensity profiles
were indeed characterized by the nonhydrogenic pecu-
liarities mentioned here; see Figs. 31 and 32.

In more complex atoms, deviations from the hydrogen-
ic pattern of intensity distribution may be more pro-
nounced. It can be seen in the results of Rinneberg et al.

The Stark effect in the nonhydrogenic Rydberg atoms
has been extensively studied both theoretically and exper-
imentally (Zimmerman et a/. , 1979; Fabre et al. , 1984;
Mur and Popov, 1988; O'Mahony, 1988; Chardonnet
et al. , 1989). The analytical theory of the eff'ect (Harmin,
1984) uses separation of variables in the parabolic coordi-
nates in the problem of atomic hydrogen in an electric
field. Here for the sake of completeness we describe the
discrete WKB approach to the problem (Braun, 1986).

Once more we use the fact that there is a number l0 di-

viding orbitals of the free atom with huge quantum de-
fects (l (lo) from those which are practically hydrogen-
like (l) 10). The zero-order eigenfunction contains the

components with l lo. The coeScients in its develop-
rnent satisfy the recursion relation whose first equation is

«."i,' E')C—i, +a,+i', +i=0 .

Other equations are totally hydrogenhke:

Ql Cl —1 E Cl +~l + 1 CI + 1

(5.10)

Here ql are the matrix elements of the operator Fz given

by Eq. (4.13).
The coeKcients Cl with l0 ~ l &&n are given by a com-

bination of Legendre functions (5.3). The phase g is ob-
tained by substituting Eq. (5.3) into Eq. (5.10). After that
the Legendre solution should be matched to the WKB
solution (3.19), in which one should set

BARIUM

k= 76 60

44

957 Gauss
n= 78
m= 0

8

16

10 12 14

FREQUENCY / GHZ
2N, n +m odd,
2N+1, n+m even . (5.11)

El
0=arccos

2q '+2

The matching determines the value of the WKB phase
and leads to the quantization rule. Denoting
e =2E'/3nF, we have

FICx. 33. Spectrum of the n =78, m =0 diamagnetic manifold
of barium. H =957 Gauss. From Rinneberg et al. (1987). (The
label k denotes the quadratic Zeeman levels in order of decreas-
ing energy, beginning with k =0 for the level at the top. )

In the case of hydrogen g=0. The shift of the Stark
levels of the alkali-meta1 atom compared with the corre-
sponding levels of atomic hydrogen is approximately
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equal to

3XF
H

An expression for the phase y through the Legendre
functions of the scaled energy e is given by Braun (1986).
The oscillator strengths can be calculated using Eq. (S.3),
in which the normalizing constant is now equal to

—1/2

2. Parallel electric and magnetic fields

Experiments on Rydberg atoms in parallel electric and
magnetic fields were carried out on atomic barium by
Rinneberg et al. (1986) and Konig et al. (1988) and on
atomic lithium by Cacciani et al. (1986c,1988c,1989).
Generally the spectra were similar to that of atomic hy-

drogen. In particular, anticrossings were observed in the
part of the multiplet where groups I and II of levels over-

lapped. The positions of the anticrossings were almost
exactly as given by our Eq. (3.29). However, their width
was much greater than in hydrogen, indicating strong
coupling between the states of groups I and II caused by
the presence of the core.

[The tendency of the core field to couple states con-
nected with isolated classical phase trajectories was also
obvious in the observations of anticrossings between the
quadratic Zeeman levels of atomic lithium belonging to
adjacent shells (Cacciani et al. , 1986c). Instead of the ex-

ponentially small anticrossing widths characteristic of
atomic hydrogen, the widths in the case of lithium were
much larger and decreased according to a power law

when n was increased. )
The semiclassical theory of the Stark-Zeeman effect in

the alkali-metal atoms is laid down in Braun (1989b).
The object studied is the five-term recursion relation for
the coefFicients C& of the zero-order eigenfunction. It
diff'ers from Eq. (4.12) by the presence of quantum defect
shifts in the diagonal matrix elements. The form of the
solution depends on the energy correction range. In the
lower part of the multiplet, where only the levels of
group I are present (cf. Sec. III.D), the coefficients CI
with l ((n are given by Eq. (5.3). This treatment led to a

formula for the energy levels and the oscillator strengths
similar to the pure Stark-effect case.

In the intermediate part of the multiplet, where groups
I and II of levels overlap, the situation is more complicat-
ed. In the case of hydrogen this was the energy range
where two isolated phase trajectories 0(L) existed. Be-
cause of the presence of the core it is now inadmissible to
quantize the movement along these trajectories indepen-
dently. Accordingly the solution of the five-term recur-
sion relation in the range I «n should be sought in the
form

CI = g A "[cosy"PI (cosgo')+sing"QI (costa')]
s =I,Ii

(5.12)

Here 60 and 80 are the two roots of Eq. (4.14), giving the
polar angles of the Kepler orbit of the atomic electron at
the moments when it degenerates into a line.

The constants 2' and 3" determine the probability
amplitudes of the system moving along the respective
phase trajectories, i.e., localized in the left or the right
potential well in Fig. 14(a). These constants are obtained
simultaneously with the energy spectrum by matching
Eq. (5.12) with the WKB solution and using the second
matching condition as the right turning point of the an-
gular momentum.

Here are some of the results obtained for atomic lithi-
um with m =0 in the truncated basis approximation (the
ns orbital is dropped from the basis set, while the orbitals
with l ~ 1 are considered to be exactly hydrogenic). Let
us introduce notations for the functions of the reduced
energy correction and the parameter p determined by Eq.
(3.28):

( g I)2 ( g II)2 y
(2 ) +(2 ) Vl+

(S.13)

The function y rapidly oscillates when p is increased,
due to the presence of the large factor n in the argument
of the sine. As a result, the ratio of components I and II
in the wave function oscillates with the period 2/n&5
when p is increased. Consequently the atomic properties
should also oscillate when the electric field is increased.
In particular, there should be oscillations of the line in-
tensities, which indeed were observed by Cacciani et aI.
(1988c).

At the avoided crossing (&SPn =1,2, 3, . . . ), one of
the participating states has 2'= 2' while for the other

This means that at the anticrossing one of
the spectral lines attains maximal intensity while the oth-
er one disappears.

The distance between the levels at the anticrossing is

arctanN
&nl 'lj

(5.14)

where AE' is the spacing in one of the two overlapping
spectra in the case of atomic hydrogen. When p is small,
AE„& becomes equal to the shift of the Li-atom even
quadratic Zeeman levels compared with the correspond-
ing levels of atomic hydrogen.

Provided p(1, the states of group III occupying the
upper part of the multiplet are described by Eq. (5.12)
with 3 =+A, the signs alternating from level to level.
There is no oscillation of the atomic properties with
growth of the electric field; instead these properties alter-
nate when we move from level to level down the multi-
plet.

1 (+I+p —E+ 1) —pN= —ln
(+I+P —c, —1) —P

y =@si n& Sm.np .

The equation for the probabilities ( A') and ( 3 ") has
the form
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A plot of the eigenvalues calculated in the truncated
basis approximation as functions of P is shown in Fig. 34;
it closely resembles the experimental plots of the energies
versus the electric field obtained by Rinneberg et al.
(1986) and Cacciani et al. (1988c).

An interesting peculiarity connected with group-III
levels of atomic lithium was observed by Cacciani et al.
(1988c). Every second level of this group was virtually
unmoved by the presence of the core, occupying almost
exactly the same position as the corresponding Stark-
Zeeman level of atomic hydrogen. That would be under-
standable if the magnetic field alone were present, be-
cause the odd levels would not feel the huge quantum de-
fect of the ns state. However, it is not immediately clear
why this situation persists even in the presence of a
strong parity-breaking electric field.

The explanation lies in the peculiar property of the hy-
drogen atom states in parallel electric and magnetic fields
(Braun, 199la): every second state of group III is almost
exactly orthogonal to the ns orbital. This follows from
Eq. (4.20) in the case 1=0, when the two terms in this
equation cancel each other (provided the sign in it is
minus).

This property has nothing to do with the approximate
parity conservation. In the example given by Braun
(1991a; P=0.5, n =30, m =0), the hydrogenic eigen-
function of one of the Stark-Zeeman levels had the fol-
lowing coefticients at the ns, np, and nd orbitals, respec-
tively:

Co =0. 1 1 X 10 C& = 0.220 C2 = 0 426

with the amplitudes of the s and d components dift'ering

by five orders of magnitude.
It follows that every second level of group III cannot

react to the quantum defect of the ns state. Its energy
would have been exactly the same as that of the corre-
sponding level of atomic hydrogen had there not been the
small quantum defect in the np state. The same situation
holds, for the same reasons, at the anticrossings in the
lower part of the multiplet: the energy of one of the par-
ticipating levels is almost the same as that of the corre-
sponding level in atomic hydrogen, while the other level
takes the whole of the phase shift (5.14).

3. Orthogonal fields

The nonhydrogenic atoms in I-mixing orthogonal elec-
tric and magnetic field were experimentally studied by
Korevaar and Littman (1983; sodium in the state with
n = 12) and Penent et al. (1984,1988; rubidium with n up
to 40). Other experiments on atoms in crossed fields in-
volved either low-excited atoms (Windholz, 1990) or
atoms far into the n-mixing regime (Fauth et al. , 1987;
Raithel et al. , 1991).

In the case of atomic hydrogen, first-order splitting in
orthogonal fields led to 2n+1 equidistant levels E"',
q = —(n —1), (n ——2), . . . , n —1, each of which was
n —

~q~ times degenerate. The origin of this degeneracy
was the special symmetry of the problem (Nikitin and
Ostrovsky, 1982; Gay, 1986). In the nonhydrogenic
atoms the Coulomb field is distorted by the presence of
the core, and this symmetry is lost. Therefore one might
expect that even first-order splitting in a crossed field
would bring about complete lifting of degeneracy. This,
however, is not true. As shown by Braun (1985), when
n )&1 the overwhelming majority of the Stark-Zeeman
states have the same energy as the corresponding states
of atomic hydrogen in orthogonal fields; the degeneracy
of the first-order levels is diminished but does not disap-
pear.

The reason behind this is that the quantum defects of
nonhydrogenic atoms di6'er from zero only for a limited
number of states with I ~ lo, where lo is of the order of
unity and depends on the atom. Indeed, consider some
level E' " of atomic hydrogen in orthogonal fields.
Transforming the manifold of the degenerate eigenfunc-
tions belonging to E'", we can separate the subspace or-
thogonal to all the unperturbed spherical orbitals with
I ~lo. Obviously none of the states in this subspace
would react to the introduction of the quantum defects 6&

for l ~ lo. Therefore they will not feel the presence of the
core and will have the same energy as in hydrogen. The
degeneracy of the level will be lessened by 2lo+ 1 [not, by
the way, by the total number (lo+1) of the orbitals
~nlm ) with nonzero quantum defects. See the explana-
tion in Braun (1985)].

Therefore first-order splitting of the levels of a nonhy-
drogenic Rydberg atom leads to a spectrum consisting of
degenerate levels whose energy is exactly the same as in
the case of atomic hydrogen and a number of nondegen-
erate levels. The positions of the hydrogenic levels de-
pend on the strength of the fields only through co, where

H 3co="~ co +co co = co =—nI'L S~ L 2 ~ S

FICx. 34. Calculated Stark-Zeeman levels of atomic lithium in
parallel electric and magnetic fields as functions of the scaled
electric field. n =30, m =0. From Braun (1989b).

The positions of the nonhydrogenic levels, on the other
hand, depends not only on co but also on the relative
strength of the fields.

The plot of the splitting of the levels of atomic rubidi-
um, calculated in the truncated basis approximation as a
function of the angle cz=arctan(co+/coL ), with co kept
constant, is shown in Fig. 35. The hydrogenic levels in-
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3

the possibility of introducing in both cases meaningful
potential-energy functions, which are highly useful in
visualizing the movement of the physical system. Con-
sidering how often one encounters TTR relations and tri-
diagonal matrices in various applications of quantum
mechanics, we believe that the formalism of the discrete
%'KB method deserves to be widely popularized.

77 /4

FIG. 35. Calculated first-order energies of the rubidium atom
in orthogonal fields as functions of the angle
n=arctan(co&/coL). The nonhydrogenic and hydrogenic parts
of the spectrum are shown by the solid curves and dashed hor-
izontal lines, respectively.
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dependent of a are depicted by dashed horizontal lines.
The nonhydrogenic levels behave in a complicated way,
with a number of avoided crossings and other peculiari-
ties. The experimentally measured energies of the Rb
atom in orthogonal fields behave in a closely similar
manner (Penent et al. , 1988).

The hydrogenic levels E'" should in fact be split due
to second-order field effects in the same way as was ob-
served for the hydrogen atom (Sec. III.E). This splitting
for the nonhydrogenic Rydberg atoms has not yet been
analyzed. Experimental studies are likely to be hampered
by the fact that the respective eigenfunctions are orthog-
onal to all states with l lo. Therefore optical one-
photon excitation of the atoms can be achieved only via a
level with a sufFiciently large angular momentum.

Vl. CONCLUSIONS

The discrete &KB method provides a unified ap-
proach to the effects connected with level splitting of
Rydberg atoms in l-mixing external fields. In many cases
alternative methods could also be used; however, they
have a narrower scope of application. In particular, sep-
aration of variables in the ellipsocylindrical coordinates
on Fock's sphere is a useful method in the case of atomic
hydrogen in a magnetic field and in orthogonal electric
and magnetic fields, but not in parallel fields; in the
framework of the equivalent operator method, it is
difficult to take into account the effect of the core;
Harmin's treatment of the Stark effect in nonhydrogenic
atoms relies on separation of variables in parabolic coor-
dinates in the absence of the core and cannot be general-
ized to diamagnetic perturbation.

The main subjects of our study have been the three-
term recursion relations for coefFicients of the zero-order
eigenfunctions of the Rydberg atoms. En the semiclassi-
cal limit their spectra could be analyzed by a simple set
of rules similar to those used in the case of the
Schrodinger equation in one dimension. The similarity
between the two types of problems goes far; it includes

APPENDIX A: TYPICAL ERRORS IN APPLICATIONS
OF THE DISCRETE WKB METHOD

There are a surprising number of errors in papers de-
voted to the semiclassical solution of the recursion rela-
tions; we shall name the most widespread.

(a) Uncritical use of the replacement

dC ) dC.
C,„C+ .' +-

dj 2 dj
(A 1)

and obtain an approximate differential equation for the
function f (j). However, in the vicinity of the unusual
turning points, when y tends to ~, this substitution be-
comes singular and the connection between the solutions
of the TTR relation and the differential equation is lost.

(c) Stereotyped use of the Bohr-Sommerfeld quantiza-
tion rule with half-integers for the action

S&2 = ydj .

As can be seen from Eq. (2.21), this leads, statistically, to
correct results only in one case out of four.

(d) Omission of the principal quantum corrections in
the expression for the action S,2. In fact, if these correc-
tions are not taken into account, the calculated eigenval-
ues can fall anywhere between the real ones; thus no in-
formation whatsoever is obtained about the position of
the levels.

which amounts to the truncation of the finite shift opera-
tors exp( iy) in the Hamiltonian (2.2). This can be
justified only if the function tp( j) determined by Eq. (2.15)
is close to zero for all relevant values of j. The reader
may check it using Eq. (A 1) on a three-term recursion re-
lation with constant coefficients whose exact solutions are
known (they have the form p J where p is a constant).

(b) Improper treatment of the unusual turning points.
Specific errors can be different. For example, Schulten
and Gordon (197S) use the substitution

1/2
q(j)

sing( j)
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c(x) CJ

FIG. 37. The same function as in Fig. 36, in integer points
(E =0).

FIG. 36. Solution of the difference equation (A2) with a =5
vanishing at x~ ~. Note oscillations with a rapidly growing
amplitude at x~ —ao which cannot be eliminated by the
choice of the parameter E.

C(x —1)— +E C(x)+C(x + 1)=0
a

(A2)

(e) Confusion of the properties of the differential and
the finite difference equations. Some authors obviously
do not realize that there is no such thing as a smooth
eigenfunction of the finite difference operator. " In fact,
an eigenfunction of such an operator has the form of a se-
quence of 5 pulses, '

f (x)=g C~5(x —j —b, ), 0(6 &1 .
J

Therefore the eigenvalue problem always reduces to a re-
cursion relation for the coefficients C;.

Here is a typical example. Consider the difference
equation

with the parameter a fixed and —ao (x & ~. If a))1
this equation is semiclassical, with the classically allowed
region at —a (x &a and the classically forbidden usual
and unusual regions at x )a and x (—a, respectively. It
has no continuous eigenfunctions. Its smooth solution,
which is well-behaved when x ~ oa [the Bessel function

J„+z,&2(a) multiplied by an arbitrary periodical function
with the period unity], exhibits oscillations with a quick-
er than exponentially growing amplitude when x —+ —ao

(Fig. 36).
On the other hand, if the argument in Eq. (A2) is al-

lowed to take only the integer values x =j, the result is
the recursion relation (2.11). The latter has a complete
set of well-behaved orthogonal eigenvectors
C{")=J +k(a), k integer (Fig. 37), corresponding to the
equidistant eigenvalues Et ~=2k/a.

APPENDIX 8: EXPLICIT EXPRESSIONS
FOR THE HIGHEST AND LOWEST
EIGENVALUES OF THE TRIDIAGONAL MATRICES

Suppose that the potential function U+ of the recur-
sion relation (2.1) determined by Eq. (2.5) has a max-
imum at some point j0. Then the spectrum is bounded
from above by the value U+( jo) —=ao, and the levels close
to a0 are given by the following explicit expression
(N =0, 1,2, . . . ):

b2E~= ao —(N+ —,')Q( —a2)(ao bo)+(N—+N+ —,')

15a 3 (ao —bo ) 3a3bi
+(N +N+ —", ) (N +N+ —')—

32a 16a2

3b3a4(ao bo) +
Sa& 32(ao bo)—

(B1)

There are rare exceptions connected with difference opera-
tors whose eigenvalues are infinitely degenerate, like those stud-
ied in the theory of incommensurable lattices (Sokoloff, 1983).

where a„b, are the coefficients of the Taylor expansion
of the potential functions in the vicinity of j0:

U+(j)=a + g a, (j —j )'
s&2

(B2)
U (j)= g b, (j —jo)'.

s&0
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This formula was obtained (Braun, 1989a) by develop-
ing the quantum Hamiltonian (2.2) of the TTR relation in
powers of the operators y= —iB/Bj and j —jo. Treating
the harmonic-oscillator part of the Hamiltonian as the
zero-order problem and the rest of the terms as perturba-
tions, we obtain Eq. (81). This is analogous to the ex-
pression for the lower energy levels in a potential well
through the Taylor coefficients of the potential energy at
the minimum. A similar approximation can be obtained
for the lower levels of the TTR equation (2.1) adjacent to
the minimum point of the function U; the problem is
brought to the preceding one by the substitution
C =(—1)JC.

The accuracy of Eq. (81) is higher than that of the usu-
al semiclassical approach because terms of relative order
n are taken into account. The similar, but less accu-
rate, expression given in Braun (1983a) was obtained by
an approximate solution of the quantization rules of the
discrete WKB method with respect to the eigenvalue E',
its difference from Eq. (Bl) was that it contained (N + —,

'
)

instead of the three different quadratic polynomials in N.
To give an example of the use of Eq. (Bl), consider the

upper levels of the quadratic Zeeman multiplet of atomic
hydrogen in the case I =0. The potential functions of
the TTR relation (1.2) are

U+ =u 1+ 1

5n

k y 1

n n

In contrast to Eq. (2.1) we retain the term (Sn )
' be-

cause Eq. (Bl) goes beyond the WKB level of accuracy.
The argument k is either 2j or 2j + 1, depending on the
parity of n —1 where j is the integer variable with a step
equal to unity.

The upper levels are adjacent to the maximum of U+,
which is at k =0, i.e., at j0=0 or —

—,'. Expressing U—

through j and developing in powers of j —jo, we get

1 41+
z "r~ ~2 2 "r ~

5n n

1 1bo= —+ u, b2= — u
5n 5n

nH
2c

5n 1n&5 N+ ——
4 2

The rest of the Taylor coe%cients are zero. Consequently
we get from Eq. (Bl), replacing u by 5n H /16c2,

3069.848
2959.044
2849.241
2740.438
2632.634

3069.910
2960.357
2853.054
2748.000
2645. 197

3069.910
2960.356
2853.053
2748.003
2645.206

the first two terms coincide with those of Eq. (81). The
rest of the terms describing deviations of the levels from
exact equidistance are meaningless. This is because the
replacement (Al) does not take into account the third
and the fourth powers of the "momentum" operator
—iB/Bj in the development of the finite shift operators
(corresponding, one may say, to the "dependence of mass
on speed").

With respect to the upper levels of the quadratic Zee-
man multiplet, an approach based on the spheroidal
equation provides the approximation (Rau, 1990)

2
nH
2c

5n 1—n&5 N+—
4 2

+ (N +N)+ ——1 2 3
2 4

(86)

This is fairly accurate if N is small; however, with the
growth of N the accuracy quickly decreases due to the
wrong coefficient at (N +N) ( —,

' instead of —', ). See the
numerical example in Table IV.

Other approximations introduced for the upper levels
of the quadratic Zeeman multiplet also provide lower ac-
curacy than Eq. (85). The expression given in Braun
(1983a) contains a small shift independent of N ( —,", in the
formula for E~ instead of the correct value —,", ).
Solov'ev's (1982) approximations have the same order of
accuracy as Eq. (86). The formula given by Herrick
(1982) differs from Eq. (85) by slightly changed
coefficients at N + —,

' (2 instead of the correct i/5) and N
(1 instead of —', ).

Approximate formulas for the lower levels of the quad-
ratic Zeeman multiplets were established by Herrick
(1982) for the case

~
m

~
((n and by Braun (1983a) for the

general case.

TABLE IV. The upper levels of the quadratic Zeeman multi-
plet in atomic hydrogen, n =50, m =0.

2

nH
N

N Approximation (B6) Approximation (B5) Numerical

+ (N +N)+—
8 16

A somewhat different approach is described by Rau
(1990). He uses the replacement (A 1) to transform the
TTR relation into a differential equation for the
spheroidal functions. The eigenvalues of this equation
provide an approximation for the upper eigenvalues of
the TTR relation. In their development in powers in n

APPENDIX C: SOME ALTERNATIVE APPI ICATIONS
OF THE DISCRETE WKB METHOD

The discrete WKB method can be used in numerous
physical problems leading to three-term recursion rela-
tions and tridiagonal (Jacobian) matrices. We shall give
here a brief account of several alternative applications of
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the method unconnected with the theory of the Rydberg
atoms.

(a)

1. Floquet spectra of vibrational systems
in external resonant fields

Consider a weakly nonlinear quantum oscillator driven
by a resonant external force with the Hamiltonian

g2 d2 m~2~2+ +ax +Px +Fx cosset .
2m dx

(Cl)

—100-

This system is used to model the excitation of nondegen-
erate molecular vibrations in a laser field (Makarov and
Fedorov, 1976).

In dealing with quantum systems whose Hamiltonian
is time-periodic, it is essential to know their Floquet, or
quasienergy, spectrum (Baz et a/. , 1971). Developing the
Floquet solution of the time-dependent Schrodinger
equation with the Hamiltonian (Cl) in the basis set of sta-
tionary oscillator eigenfunctions

~
U ) and applying the

rotating-wave approximation, we obtain a TTR relation
(Kravchenko and Prostnev, 1973; Fedorov, 1977).
Neglecting small corrections, this relation can be written
as

—150-

20—

1Q

0—

(b)

f (&U C, , +&U + 1C„+,)+ (yu +6U E)C, =—0 .

(C2)

—10—

Here v =0, 1,2, . . . is the vibrational quantum num-
ber, E is the quasienergy of the Floquet state, f =(R/
8m')'~ F is the scaled amplitude of the periodic force,
6=Pi(co 0) is the d—etuning, and

3 15 cxy=
2
P—

(mco) 2 4 pleo

is the eff'ective anharmonicity. Equation (C2) was exam-
ined by semiclassical methods by Sazonov {1978) and
Braun (1978). This study revealed interesting parallels
between the classical and quantum pictures of nonlinear
resonance.

Depending on the detuning 5 the potential curves of
the TTR relation (C2) can have one of the two forms
shown in Fig. 38(a), the case in which 5&5„;„and Fig.
38(b), the case in which 5 )5„;„where

3(f2y y2 )
1 /3

(It is assumed that y (0; this can be done without loss of
generality. ) Using the expressions for y, f, and 5, one
can see that the inequalities 5 & 5„;,and 5 & 5„;,coincide
with the well-known conditions for the existence of one
or two stable resonant amplitudes, respectively, of a clas-
sical nonlinear oscillator with zero damping (Landau and
Lifshitz, 1988).

In the classical bistable case [Fig. 38{b)] the lower po-
tential function is nonmonotonic. As a result there is an

FIG. 38. The potential curves of the three-term recursion rela-
tion (C2) describing the resonant properties of a nonlinear
quantum oscillator (a) 5 (6„;„' (b) 5 & 6„;, (classically bistable
case). The dashed lines mark at the ordinate axis the quasiener-

gy interval in which there is an overlay of two independent Flo-
quet spectra. From Braun (1978).

interval of E in which there are two classically allowed
regions of the variable v for each E (a situation similar to
the nonsymmetrical double-well potential of the coordi-
nate representation). In this interval the quasienergy
spectrum consists of two overlapping spectra obtained by
independent quantization in the left and right allowed re-
gions of v.

The plots of the potential functions of Eq. (C2) are par-
ticularly helpful in studying the e6'ects of adiabatic varia-
tions of the external field parameters on the quantum os-
cillator. For example, when 5)6„;, the two groups of
Floquet levels localized in the left and right classically al-
lowed regions of v anticross when the detuning is
changed. If this change is slow enough, the oscillator
tunnels from the left to the right "potential well, " which
means a sharp increase of the average vibrational energy
%co(U+ —,

' ).
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Other examples of the nonlinear resonance situations
considered by discrete semiclassical methods can be
found in Braun (1979; the parametric excitation of a non-
linear oscillator) and Braun and Microshnichenko (1980;
excitation of the deformational vibration of the linear tri-
atomlcs) .

2. Rotational spectra of rigid
and nonrigid molecules

In the rigid-rotor approximation, the rotational Hamil-
tonian of a molecule with the rotational constants A

A, A, is expressed through the components of the angu-
lar momentum J on the principal molecular axes of iner-
tia as

symmetrical classically allowed regions of E divided by a
barrier. Therefore the coefficients CK will be significantly
nonzero only if their subscript belongs to one of these re-
gions, whereas Cx. with small ~K~ will be exponentially
small. It is also clear that the rotational levels are dou-
blets with the splitting determined by the probability of
tunneling through the potential barrier. Calculation of
this splitting in the framework of the discrete WKB
method is described in Braun (1981).

A less hackneyed problem is calculation of the rota-

A J
Z

H=A„J +2 J +A,J, .

The problem of finding the eigenvalues of H becomes
difficult only if all the rotational constants are different
(the asymmetric top case). The rotational eigenstate is
then a combination of generalized spherical functions
corresponding to the same total angular momentum
J(J+1) but different angular momentum projections
K =J, on the molecular axis z. The coefficients of the
combination obey the TTR relation ( —J ~ K ~ J) K/J

2
A J

A J

PK CK —2+ ( ~E +)CK +1K+2CK +2

with (b)
A J

X

px = [ (J+K)(J—K+1)(J+K—1)

X (J—K +2)]'i~,
A J

WK
A„+A A„+2

2
J(J+1)+ A, — K

2

If J is large, the problem represented by the recursion
relation (C4) is semiclassical and can be treated by the
discrete WKB method (Braun and Kiselev, 1983; Braun,
1984). Its potential functions are parabolic:

U+(K)=A J +(A, —A, )K

U (K)=A J +(A, —A )K
(c)

I

1

K/J

A J
X

Depending on the choice of z axis of the molecular-fixed
frame (along the axis of inertia with the largest, inter-
mediate, or smallest rotational constant), the plot of the
potential functions can have one of three forms (Fig. 39).

The quantization rules of Sec. II.D applied to the
rigid-rotor problem lead to the same energy levels as oth-
er more conventional semiclassical methods (Colwell
et al. , 1978). Among the advantages of the discrete
WKB approach is that it makes obvious the behavior of
the amplitudes CK, which may sometimes be important.
For example, suppose that the generalized spherical func-
tions are quantized on the axis with the smallest rotation-
al constant [Fig. 39(c)] and consider the lower levels of
the rotational multiplet with a given J. There are two

A J

K/J

FICs. 39. The potential curves of the TTR relation (C4) for a
rigid asymmetric top. There are three ways of choosing the
quantization axis Z of the generalized spherical functions: (a)
Az ) A~ ) Ay~ (b) A~ ) Az ) Ay ~ (c) A~ ) Ay ) Aza
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tional spectra when centrifugal deformation of the mole-
cule has to be taken into account ("nonrigid rotation").
The model Hamiltonian commonly used in this case is
the so-called Watson tridiagonal form (Watson,
1967,1977),

H = (J„—Jy )4(J,Jz ) +H. c+I' (J,Jz ) . (C5)

Here N and F are functions (usually polynomials) of the
commuting operators J and Jz. The coefficients con-
tained in N and I' are either deduced from ab initio calcu-
lations or regarded as 6t parameters, which are chosen to
reproduce the experimentally observed rotational levels.
Note that the rigid-rotor Hamiltonian Eq. (C3) can be re-
garded as a special case of Eq. (C5).

The eigenvalue problem for Watson's Hamiltonian re-
sults once again in a three-term recursion relation similar
to Eq. (C4). As distinct from the rigid-rotor case, its po-
tential functions will be polynomials of E of degree
higher than quadratic (Braun, 1989a). If the centrifugal
effects are not too pronounced (this will be the case when
J is not excessively large) the potential curves will still
resemble the parabolas in Fig. 39 [cases (a), (b), and (c)
correspond to the so-called reduction schemes I", II", and
III", respectively). Accordingly the rotational spectrum
will be qualitatively unchanged by the effects of nonrigi-
dity.

Higher-order terms in K become more important in
the case of quickly rotating molecules with large J. The
deviation of the potential curves of Watson's tridiagonal
Hamiltonian from the purely parabolic form can be a
convenient way of describing the resulting complicated
centrifugal distortions of the rotational spectra.

In the case of spherical-top molecules, the discrete
WKB method can be used to describe the centrifugal
splitting of rotational levels (Braun et al. , 1985). Because
of this splitting the degenerate eigenvalue AJ(J+I) of
the Hamiltonian (C3), where 2 = Az = A r = Az is the
molecular rotational constant, becomes a multiplet (Fox
et a/. , 1977; Harter and Patterson, 1977; Baldacchini
et al. , 1982). The emerging spectrum has a complicated
structure consisting of clusters, each containing six or
eight quasidegenerate levels.

The zero-order rotational eigenfunctions are obtained
by diagonalizing the effective operator of the centrifugal
corrections in the basis set of generalized spherical func-
tions. This results in a three-term recursion relation con-
necting Cz with EC differing by +3 or +4, depending on
the choice of quantization axis for the spherical func-
tions.

In Sec. III.B dealing with the quadratic Zeeman split-
ting of atomic hydrogen in the spherical coordinates, we
showed that the spectrum of a TTR relation with a step
larger than 1 consists partly of quasidegenerate groups of
levels. In the case of centrifugal splitting this source of
degeneracy is combined with the customary double
quasidegeneracy due to the symmetrical-double-well-like
form of the plot of the potential functions of the corre-
sponding TTR relation. This explains the sixfold (3X2)

and the eightfold (4X2) composition of the clusters in
the rotational spectra.

3. The Lipkin-Meshkov-Glick model
of the transition from spherical to
nonspherical nuclei

A simple model used to describe the loss of the spheri-
cal form by a nucleus when the number of valence nu-
cleons is increased is the Lipkin-Meshkov-Glick (LMG)
model (Lipkin et aI. , 1965). It considers a system of N
interacting fermions, which can occupy one of two one-
particle levels separated by an energy gap E, both of
which are X times degenerate.

Let us introduce the fermion creation a; and annihila-
tion a; operators (i =1,2 is the number of the energy
level and p =1,2, . . . , X is the number used to distin-
guish the degenerate states belonging to each level). The
so-called quasispin operators

H =EJ,+
2 W(J+ J +J J+ )+ —,

' V(J+ —J ), (C6)

where c, , 8' and Vare parameters.
The Hamiltonian (C6) commutes with the operator of

the total quasispin J =J (J + 1); the ground state is asso-
ciated with the maximal possible J' =N/2.

The characteristic property of the LMG model is the
sharp change in the structure of its ground state and the
transition energy to the first excited state when the num-
ber of fermions N exceeds a certain critical value. (It is
this change that is associated with the spherical-to-
nonspherical form transition in the nuclei. ) Such a trans-
formation acquired the name of "phase transition" in the
ground state; see the paper of Gilmore and Feng (1978),
where this phenomenon is explained in terms of the
coherent-states technique.

The discrete WKB method was applied to the LMG
model by Braun et al. (1987), making use of the fact that
the eigenvalue equation for the Hamiltonian of the model
is brought to a TTR relation by developing its eigenfunc-
tion in the basis set of the eigenfunctions

~
JK ) of the to-

tal quasispin J =J(J+1) and its component J, =K,
where J is fixed. This TTR relation has the form (C4)
with

wx. =eK + IV [J (J + 1 ) K], ,
—

px =
—,
' V[(J —K+2)(J+K —1)(J—K+1)(J+K)j'

The potential functions of the LMG recursion relation
are presented in Fig. 40. The lower part of their plot has

J+=(J )+= g a 2a,
p=1

obey the angular momentum commutation rules. The
LMG model Hamiltonian, written in terms of the quasi-
spin operators, is
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Iteration of Eq. (C9) expresses pj through p. +2 p '+3,
etc. If this process converges, we obtain the development
of p into an infinite continued fraction:

b, +i
~j+2

j+1
J +2

(C10)

K

(a)

-J 0
C

FIG. 40. Potential functions of the recursion relation associat-
ed with the Lipkin-Meshkov-Glick model. The dashed horizon-
tal lines mark at the ordinate axis the lower and the upper
bounds of the energy spectrum: (a) J &J,„;,; (b) J„;,(J.

a differen form depending on the relation between J and

C

2( V —W)

Assuming that V) W, the lowest point of the plot is ei-
ther the crossing of U+ and U at IC = —J [when
J & J„;„,Fig. 40(a)] or the minimum of U at IC = —J,„;,
[when J„;,& J, Fig. 40(b)]. The ground-state wave func-
tion will correspondingly be a combination of states with
the J, value either close to —J= —X/2 (which means
that all fermions occupy level 1) or close to —J'„;,. The
excitation energy equal to the classical oscillation fre-
quency (cf. Sec. II.B) will also be different. Such a trans-
formation of the ground-state composition, occurring
when the number of fermions exceeds 2J„;„is JUst the
"phase transition" mentioned above.

Critical effects in the case of more general quasispin
Hamiltonians encountered in nuclear theory can also be
dealt with by the discrete WKB method; see Braun et al.
(1987) for a discussion and references to other works.

On the other hand, an infinite continued fraction of the
form (C10) with arbitrary elements d, ,d, +„... . and pos-
itive b-+, , b +2, . . . can be expressed through a particu-
lar solution of a Hermitian TTR relation of the type (2.1).
This means that every approximate method of solving the
TTR relation provides a tool for calculation of the con-
tinued fractions.

Suppose that the elements d- and b of the continued
fraction are given slowly changing functions of the sub-
script j. Then the associated TTR relation can be investi-
gated by the discrete WKB method. A qualitative ap-
praisal of the properties of the sequence Eq. (C10) can be
obtained using the connections with classical mechanics
(Sec. II.A) and the plot of the potential functions of the
related TTR relation. In particular, it is easy to show
that the continued fractions with slowly changing ele-
ments converge provided the associated classical move-
ment is finite (large j should be classically forbidden).

The WKB solutions of the TTR relation given in Sec.
II.C can be used to construct closed analytical expres-
sions for the infinite continued fractions (Braun, 1984).
Denoting D =d. —4b. +»2, we can write this expression
in one of two ways:

(a) In the classically forbidden interval of j stretching
to positive infinity.

p —p +p +

4. Calculation of infinite continued fractions

p,' '=(d, +QD, )/2,

ad, abj

(C 1 1)

In a number of physical problems the result is formu-
lated in terms of infinite continued fractions, e.g. , the
treatment of the Coulomb two-center problem by
Komarov et al. (1978) and calculation of the quantum
correlation functions by Lee et al. (1987). [General prop-
erties of the continued fractions are described in detail by
Wall (1973) and Jones and Thron (1980).]

There is a close link between continued fractions and
recursion relations; To show this, let us make the substi-
tution in our standard TTR relation (2.1)

d
X I '

dj arccos
J 2+bj+1/2

(j&j, ) .

(C12)

(b) In the classically allowed interval of j divided from
positive infinity by just one turning point j„

j2 = —'d ——'( D)'~ tan—J 2 J 2 J

PJ PJ CJ 1 ~CJ

The sequence p obeys the recursion relation

bj+}
pJ

—dj
PJ+i

where we denoted d =E' —m, b + i =p + &.

(C8)

(C9)

In both expressions it is assumed that d. is positive for all
suKciently large j; otherwise these formulas have to be
slightly modified.

As an example consider the sequence of infinite contin-
ued fractions connected with the TTR relation (2.11) for
Bessel functions with E'=0, which corresponds to the
choice d =j/a, b = 1 in Eq. (C10):
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the classically forbidden region (within the "classical sha-
dow") of the recursion relation (2.1).

Drawing a plot of the potential functions of the TTR
relation, we can see at once the position of the boundary
of the classically forbidden region for all energies. As a
result it is easy to establish a minimal size jo of the basis
set necessary to obtain eigenvalues located in a specified
energy interval with a desired accuracy.
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