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Correlation functions are one of the key tools used to study the structure of the QCD vacuum. They are
constructed out of the fundamental fields and can be calculated using quantuIn-field-theory methods, such
as lattice gauge theory. One can obtain many of these functions using the rich phenomenology of hadron
physics. They are also the object of study in various quark models of hadronic structure. This review be-
gins with available phenomenological information about the correlation functions, with their most impor-
tant properties emphasized. These are then compared with predictions of various theoretical approaches,
including lattice numerical simulations, the operator product expansion, and the interacting instanton ap-
proximation.
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A. Preface

it is widely recognized that one of the cent. ral problems
of strong-interaction physics is in understanding the
structure of the ground state of quantum chrornodynam-
ics, the QCD vacuum. This "vacuum" is composed of
gauge and quark fields interacting in a complicated non-
perturbative way. A general introduction to this subject
and references to original papers can be found in many
reviews, including Shuryak (1984, 1988a) and Shifman
(1992).

This review deals with a part of the problem, that re-
lated to correlation functions. Our purpose is to collect
the available phenomenological information and compare
it with predictions of various theoretical approaches. %'e
do not discuss the theoretical ideas in depth, and in many
places we ignore the related technicalities. Instead, we
proceed from a qualitative discussion directly to the
specific results. %'e concentrate on the main phenomena
to be explained by the theory and comment to what ex-
tent this goal has been achlcvcd.

An important motivation for surveying the field is that
theorists working on strong-interaction physics are divid-
ed into several poorly interacting communities, accord-
ing to the method they follow. The main theoretical ap-
proaches are (1) lattice gauge theory (LCxT); (2) QCD
sum rules, based on the operator product expansion
(OPE); (3) interacting instanton approximation (IIA); and
(4) quark potential models for hadronic spectroscopy and
I'cactiorls.

%'e hope that this review can bridge the theoretical
gaps and bring these isolated communities together. Qur
main target is to make better connections between lattice
calculations and the other theoretical analyses. The lat-
tice community, having the most. powerful methods
based on first principles, has great opportunities for mak-
ing better contact with the phenomenology of strong-
interaction physics,

As a common denominator for our' dlscussio11, wc have
chosen the point-to-point cor relation function in the
coordinate representation, with which it becomes possi-
ble to compare phenomenological information and
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theoretical predictions. As we shall see, it is quite
straightforward to "translate back" the main results of
the OPE and instanton frameworks to the coordinate
representation of the correlators.

Unfortunately, most lattice studies of correlation. func-
tions use either sources in the form of three-dimensional
"walls" or even more complicated nonlocal sources.
However, the point-to-point correlators are the basic ob-
jects; they carry more information and can be measured
by simple modification of the existing techniques. Apart
from the qualitatively new short-range phenomena to be
learned, one Inay obtain more accurate and reliable com-
parisons between lattice and empirical correlators. This
contrasts with the traditional technique of only studying
the asymptotic large-distance behavior of the correlators
related to the masses of the lightest hadrons.

It is hoped that some part of this review may be of in-
terest to experimentalists working in difterent branches
of strong-interaction physics. We comment often on the
mutual consistency of various sets of data, on most desir-
able new experiments, on the main source of experimen-
tal uncertainties, etc. A brief summary of the experimen-
tal side of the problem can be found in Sec. VI.B.

The paper is organized as follows. In Sec. II we dis-
cuss the available phenomenological information about
mesonic correlation functions, outlining a set of major
facts to be explained by the theory. Section III is devot-
ed to theoretical predictions, which we consider only

briefly on a matter-of-fact level, concentrating on the re-
sults and their relation to experiment. In Sec. IV we dis-
cuss some other correlation functions, including light-
and-heavy mesons and baryons, as well as ordinary
baryons, pointing out several other important observa-
tions related to quark properties and interactions. There
also we consider experimental information and theoreti-
cal ideas together. Section V is devoted to correlation
functions at nonzero temperature and/or density. The
hadrons are expected to "melt" at some critical tempera-
ture into free quarks and gluons, and one can study this
phenomenon using the correlation functions. Our con-
clusions and suggestions are summarized in Sec. VI.

The reader who would like to see from the start which
operators and correlation functions are considered in this
review is invited to look at Table I.

B. Why the correlation functions?

Here we define what we mean by the correlation func-
tions, discuss their asymptotic behavior at small and
large distances, and then try to explain why they play
such an important role in studies of the QCD vacuum.

Below we deal with two types of operators: mesonic
ones of the type

Here the color indices i,j,k are explicitly shown; we shall
omit them below. Other indices like spin and Qavor are
not here specified, but shall be later. As all color indices
are properly contracted and all quark fields are taken at
the same point x, these operators are manifestly gauge in-
variant.

The correlation function is defined as the vacuum ex-
pectation value (VEV) of the product' of two operators
taken at two points x andy:

K(x —y)=(0~0(x)O(y)~0) .

The first comment is that the vacuum is homogeneous;
so one of the points can be the origin of the coordinate
system, say, y =0. A second comment is that we assume
throughout this paper that the separation between the
points (x-y) is spacelike. The reason is we prefer to deal
with virtual propagation of quarks or hadrons from one
point to another, to have simple decaying functions in-
stead of functions having a complicated oscillatory be-
havior.

There is an old question that one inevitably asks at this
point: why is there a correlation between fields outside
the light cone? It was essentially answered by Feynman:
particles can propagate along any path going from x to y.
Depending on the reference frame, an observer can con-
sider the path t6 be a sequence of spontaneous pair-
creation and annihilation events. This correlation does
not contradict causality, because one cannot use it for
signal transfer. See textbooks on quantum field theory
for more.

One can look at the pairs of points of the correlator in
two ways. Either they are two points in space, taken at
the same instant of time and separated by the spatial dis-
tance x, or they are two events separated by some inter-
val in imaginary or Euclidean time: ixo —iyo =~. Below
we use both interpretations, depending on which is more
convenient at the moment. %'e hope the reader will not
be confused by our using the symbols x and ~ inter-
changeably.

Let us now discuss the behavior of the correlation
functions at small and large distances. At small x
(remember, y =0) the asymptotic freedom of QCD tells
us that quarks and gluons propagate freely, up to small
and calculable radiative corrections. Therefore E(x) in
the mesonic (baryonic) case is essentially the square (or
cube) of the free-quark propagator, S(x)=(q(x)q(0)),
depending on whether a mesonic or baryonic correlator
is under consideration. From dimensional arguments,
the quark propagator S(x) is seen to scale as S(x)-x

0 „(x)=g;g 5,~,
and baryonic ones,

Ob„(x)=g, '(('J'(('ze' " . (1.2)

Actually, it is the time-ordered product that is usually denot-
ed by T: it is always implied below. We do not go into details
here, but only mention that such T-ordering just corresponds to
using the standard path integrals and Feynman propagators for
particles propagating from x to y.
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ignoring small quark masses. So for the mesonic or
baryonic correlators, there follows a small x limit
K(x)-x (or -x ) from the simple dimensional argu-
ments alone.

If quarks are allowed to propagate to larger distances,
they start interacting more strongly with vacuum fields.
If corrections are not too large, one can take these effects
into account using the operator product expansion (OPE)
formalism (see Sec. III.B). At intermediate distances,
description of the correlation functions becomes, in gen-
eral, very complicated, and one may only evaluate them
by using either lattice numerical simulations or some vac-
uum models (e.g. , the instanton model described in Sec.
III.C).

At large distances one can again understand the behav-
ior of the correlation functions, using now completely
different kinds of arguments. Instead of thinking in
terms of fundamental fields, one may just use the formal
relation for the time evolution of an operator
O(t)=e' O(0)e ' ', where H is a Hamiltonian, and
then insert a complete set of physical intermediate states
between the two operators:

K(t)=g~(0~0(0)~n ) e (1.4)

The coe%cient is also easy to find by solving the Dirac equa-
tion for free massless particles: S(x)= (i@„B„)(1/4m x ).
30f course, QCD does have a dimensional parameter A&co,

which eventually fixes the scale of all dimensional quantities.
However, in perturbation theory it only comes in via the radia-
tive corrections. Therefore, at small x, those produce correc-
tions to our estimates above containing a, (x) -1/ln(xA).

4A reader who does not like Euclidean time can repeat this ex-
ercise for spatially separated points and sum over virtual mo-
menta of the intermediate states. The result is the same, due to
the four-dimensional symmetry of the Euclidean space-time.

Now one can analytically continue the correlation func-
tion into the Euclidean time ~=it and get a sum over de-
creasing exponents.

Physically, application of such relations in QCD means
that one consider propagation of physical excitations or
hadrons between our two points, leading to the predic-
tion that K(x)-exp( —mx) for large x, where m is the
mass of the lightest particle with the corresponding quan-
tum numbers. This is essentially the idea of Yukawa, to
relate the range of the nuclear forces with the pion mass.

It is now easy to understand why the correlation func-
tions are so important in nonperturbative QCD and ha-
dronic physics. The reason is that the same function can
be considered on two different levels: (1) in terms of the
fundamental QCD fields, quark and gluons, or (2) in
terms of the physical intermediate states, using the vast
hadronic phenomenology of masses, coupling constants,
form factors, etc.

Moreover, there is a third approach to the correlation
functions. There are useful models originating from the

original quark model of the '60s based on "constituent"
quarks and their effective interactions. It is instructive to
explain what we want to learn from the correlation func-
tions in this language: it is the interquark effective in-
teraction.

Application of these models to hadronic spectroscopy
reminds one of nuclear physics in its early days, when
only limited information about the nuclear forces was
known. Besides knowledge of the bound states, such as
the deuteron, one had only qualitative information that
the potential was attractive and of short range.

Indeed, potential-type quark models are successfully
applied to the evaluation of hadronic parameters. This is
discussed in detail by Godfrey and Isgur (1985) for
mesons and by Capstick and Isgur (1986) for baryons.
One obtains the average characteristics of the few lowest
hadronic states in each channel, and the theory is sensi-
tive mainly to interquark interaction averaged over the
size of these states. The hadronic phenomenology
demonstrates the existence of Qavor- and spin-
independent confining forces, complemented by some
short-range spin-spin interaction.

However, we lack detailed knowledge of how the inter-
quark interaction depends on distance and momenta.
Returning to the analogy with nuclear physics, we corn-
ment that only the extensive studies of nucleon-nucleon
scattering eventually showed all the details of nuclear
forces with their complicated spin-isospin structure.

Although qq or qq scattering is experimentally impossi-
ble to study, due to confinement, a set of various mesonic
correlation functions K (x) plays essentially the same role
as that played in nuclear physics by the scattering phase
shifts. These correlation functions are discussed below.
Roughly speaking, we shall describe virtual qq or qq
scattering, using wave packets of variable size instead of
physical hadrons.

C. Different types of correlation functions

The correlation functions in Euclidean space-time
E(x) [or K(~)] defined above are the objects of our dis-
cussion in what follows. As their argument x is the dis-
tance between the two points in Euclidean space-time, we
call them point-to-point correlation functions, or correla-
tors.

We use this specific name because in various applica-
tions people have used other representations of correla-
tors related to the above ones by some integral transfor-
mation. We compare here their definitions and briefly
comment on their advantages and disadvantages.

If one makes a Fourier transform of K(x), the result-
ing function K, (q ) depends on the momentum
transfer q Aowing from one operator to another. For

5As we actually do not use any of them in what follows, the
reader may well skip this section.
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clarity we use the following notations, introducing
momentum squared with a negative sign Q = —

q . We
are interested in spacelike momentum transfers, as in
scattering experiments, for which q (0 and Q )0.

Due to causality, the Fourier transform of the point-
to-point correlation function satisfies the usual dispersion
relation,

ImK, (s)K, (q )=(I/vr) f ds
(s —

q )
(1.5)

The numerator on the right-hand side, ImK, (s), is the
physical spectral density. It describes the squared matrix
elements of the operator in question between the vacuum
and all hadronic states with the invariant mass s', and
is nonzero only for positive s. Because we are consider-
ing only negative q, we never come across a vanishing
denominator and therefore may ignore ie, which is usual-
ly put in the denominator. This simplification is possible
because our discussion is restricted to virtual processes,
although in the right-hand side we sha11 use information
coming from the real processes of particle creation and
annihilation.

Equation (1.5) is the basis of the so-called QCD sum
rules. Their general idea is as follows. Suppose one
knows K, (q ) in some region. This implies that some
integral of the spectral density is known, which can be
used to fix a set of physical parameters. Unfortunately,
such finite-energy sum rules are not very productive, be-
cause the dispersion integrals are usually divergent, lead-
ing to useful sum rules only after some subtractions.
This introduces extra parameters and significantly un-
determines their predictive power.

Let us be more specific, taking the mesonic correlation
functions as an example. As mentioned earlier, the
mesonic correlators are given by a simple loop diagram
for small x, corresponding in the coordinate representa-
tion to the free-quark propagator squared. It is not
difficult to see that the imaginary part of this diagram,
corresponding to the production of a qq pair, is
ImK (s) —s. This is also obvious on dimensional
grounds. Then from the dispersion integral we see that
at large s the Fourier-transformed correlator depends on
s as K, (s)-sin( —s). However, the dispersion in-

tegral is also divergent, which signals that something is
missing in the last argument. One simple way to get
around this difficulty is to consider the second derivative
over Q: then one deals with the function K", (s),
which is defined by a convergent dispersion relation.
However, while going back to the original function
K (s), one has to fix two integration constants corre-
sponding to the missing terms in K, (s) of the type

c&s+c2, which have no imaginary part. We can safely
ignore them below in our discussion of K(x), provided x
is never zero, because these correspond in the coordinate
space to contact terms, 5 functions, and their derivatives.
However, in finite-energy sum rules, these two undefined
constants need to be determined also from the data.

Several other ideas have been suggested to improve
these sum rules. First, after taking a sufficient number of
derivatives, one may take Q =0 and arrive at the so-
called moments of the spectral density,

M„=(1/7r) f ds ImK, (s)/s"+' (1.6)

Applying this to the dispersion relation (1.5), we obtain
the sum rules in the Borel-transformed representation:

Kb„(m)=(1/vr) f ds ImK o (s)exp( —s/m ) . (1.8)

Now the integral is cut off at large s by the exponential
function. This formula also has another useful feature:
usually we know the contribution of the lowest states (the
first resonance) better than the contribution of the multi-
body high-energy part; so the exponential cutoff hides
our ignorance and is therefore welcomed. Such forms of
the sum rules have been used in many papers based on
the OPE (see, e.g., references in Shuryak, 1984, 1988a
and Shifman, 1992).

However, most of the results obtained by this tech-
nique can also be presented in a much simpler way. In-
stead of the Borel transformation, one can Fourier trans-
form back to coordinate space; then the dispersion rela-
tion has the transparent form (Shuryak, 1984, 1988a)

K(x) =( I/~) f ds ImK, (s)D(s'r~, x ) . (1.9)

Here function ImK (s) describes the amplitude of pro-
duction of all intermediate states of mass s', while the
function

D(m, x) =(m/4~ x )K, (mx) (1.10)

Following ideas presented in the original paper of Shif-
man, Vainshtein, and Zakharov (1979a), this method is
commonly used in the discussion of "charmonium sum
rules, "which are related to correlators of cc currents.

Another idea, suggested in the same paper (Shifman
et al. , 1979a), is to introduce the Borel transform of the
function K, (Q), defined as follows,

2n

Kb„(m)= lim, ( —dldQ )"K, (Q ) .n-~ n —I !
$ —+ oo

m =Q /n

(1.7)

In principle, virtual processes contain all the information;
but, of course, in practice, it is much more dificult to go in the
opposite direction and reproduce the physical spectral density
from the point-to-point correlators.

is nothing more than the propagator of these states to a
point x. In practice there is not much difference between
this equation and Borel sum rules. At large x the propa-
gator goes as exp( —mx); therefore one has an exponen-
tial cutoff; but with the factor exp( —s'r x) instead of
exp( —s/m ). However, the space-time dispersion rela-
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tion has a much cleax'er physical interpretation, and wc
shall keep to it in what follows.

For completeness, let us also mention one more type of
correlation function, the one traditionally used in lattice
gauge theory. This is the so-called plane-to-plane corre-
lation function obtained from E(x) by an integration
over a three-dlmenslonal plane:

Kpi,„,„&,„,(r)=( f d x O(x, r)O(0, 0)) .

In other words, a spatial integration selects intermediate
states of momentum zero; so dispersion relations are
done in energy only. The above function can be related
to a physical spectral density by

K ],„,„),„,(7)=(1/77) f dm ImZ, (m)exp( —rm ) .

(1.12)

The mass of the lowest hadron can be obtained directly
from the logarithmic derivative of this function at large

However, its essential disadvantage is that it mixes
contributions of small and large distances. This makes it
dificult to match with the OPE-derived functions at
small dlstRnccs, and also obscures thc physics going oQ at
intermediate distances.

However, in the important case of heavy-hght mesons
(see Sec. IV.A), a lattice evaluation of point-to-point
correlation functions has been made. In this case there is
no d16'erence between point-to-point and plane-to-plane
ones, because the super-heavy quark does not propagate
in space; so the integral in (1.11) has only a 5 function
contribution.

To summarize this section, we have noted Ave di6'erent
correlation functions in use: (1) the original point-to-
point function K(x) in coordinate space; (2) the Fourier
transform K, (q ); (3) the moments of the spectra den-
sity M„; (4) the Borel-transform function IC, (I); and
(5) the plane-to-plane correlation function function
+plane to plane(r)'

Although each correlation function has its advantages,
we suggest that for the understanding of the underlying
physics it is better to use the original point-to-point func-
tion IC (x), and we shall do so in what follows.

has boih types of contributions. Lattice calculations deal
mainly with one-loop diagrams, and therefore with thc
I= I channels, for tcchnical reasons. Some general state-
ments can be made about the one-loop diagrams, which
we would like to outline here, following Weingarten
(1983).

To dcllvc thc relations~ wc first Qo'tc thc following fo1-
mula for the propagator in the backward direction,

S(x,y) = —y5S+(y, x )y5 . (1.13)

One next decomposes it into Dirac matrices S=Xa,.I;,
where I, =l, y~, y„,iysy„, iy„y (@AD). Finally, one
considers all diagonal one-loop correlators of the type
II =Tr[S(x,y)I;S(y, x )I;]and evaluates the traces.

The most interesting result appears for the pseudosca-
lar (pion) correlator: in this case one has a sum of all
coeKcients squared,

while, for example, the scalar one is

II /II"'S 5

Herc wc have normalized thc colrclato1 to its asymptoti-
cally free version, containing free propagators of massless
quarks. Assuming that the propagation takes place in
the time direction, the propagator is Sr pp/(277 XQ),
and the only nonzero coe%cient is ao = 1/(2m x 0 ). Com-
paring the above two equations, we obtain the %'eingar-
ten inequality. This states that the pseudoscalar correla-
tor exceeds the scalar one at all distances, IIIps ~

I IIs.
The nontrivial thing is that the physical pion is very

light, while scalars are hcavy, therefoxe for x & 0.5 fm the
scalar correlator is practically zero, while the pseudosca-
lar ratio is very large. This requires a very delicate can-
cellation between the di6'erent a; in the propagator.

Additional information is provided by similar relations
for vector (p ) and axial ( A, ) channels,

D. General relations and inequalities

One can classify correlation functions according to
quark paths, recognizing two different types of diagrams:
(1) the one-loop diagrams, in which quarks produced by
one operator go to another one, and (2) the two-loop dia-
grams, where quark lines are closed on the same opera-
tor.

For example, in the isospin I= I channels like m+, one
has operators like u I d, where I is any Dirac matrix. In
this case, obviously, only the one-loop diagrams contrib-
ute. On the other hand, considering the nondiagonal
correlators in Aavor, say, (u(x)l u(x)d(0)d(0) ), one is
restricted to the second type. For most I=O cases, one

7In preparation of this section J. Verbaarschot has helped a lot
toward the understanding of the meaning of these relations. He
also found a few new ones.

SReaders who wonder why y5 is needed should take as an ex-
ample a free massive propagator and notice that the terms pro-
portional to (x —y)„y„and to m behave differently under the
transformation x~p.
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TABLE I. Set of the operators and correlation functions discussed in this paper.

Channel

7l

scalars
Y
B-type mesons
heavy baryons

Current

(uy„u —dy„d )/2'
(u you +dy d )/2
s yes
u ypyps
u ypy5d
u y5u —d y5d )(i/2' )

ui y5s
(u y5u —dy5d —2$y5$)/(i /6' )

(u y5y„u +d y, y„d +sy, y„s )/( l/3' )

GG

by ub
Ql q
q CI~Q
(u Cd )u —(u Cy5d )y5u
(u Cy„u )u

Section

II.B
II.C
II.C
II.D
II.E
II.F
II.F
II.F
II.G
II.G
II.H
III.A
IV.A
IV.C
IV.D
IV.D

Info

e+e ~N~, N even
e+e —+N~, N odd
e e ~K%+Nn
decay ~~v, +K*
decay ~~v, +N, N odd
pion decay
K decay

J/P —+y+g etc.
J/g~y+g etc.
masses, generalities
e+e ~BB+ pions
masses of heavy flavored mesons
masses
OPE predictions
OPE predictions

and the following inequalities may be proven:

IIps/IIps" ) —,
'

( ll ~/II~P'+ ll „/II „"')

11„/11'; & —,'(11,/11';"—Il„/11'„"') .

(1.18)

(1.19)

I I ~ PHENOMENOLOGY
OF MESONIC CORRELATION FUNCTIONS

A. Vector currents and correlators

We start the discussion of the correlation functions
with vector currents for an obvious reason: these

These were shown to me by J. Verbaarschot (private com-
munication).

Witten (1983) has found another interesting inequality
between vector and axial correlators, but it applies only
to the momentum representation, and we do not discuss
it here.

As these inequalities are identities, they are satisfied
for any configuration of the gauge field, and they there-
fore are not very restrictive from a theoretical point of
view. However, they can be used to check consistency of
experimental data, as discussed below.

On the other hand, the diagonal correlators themselves
are positive monotonously decreasing functions, as is
clear from the spectral decomposition discussed in the
previous section. This condition is trivial to satisfy from
the empirical determination of correlators; but from the
theoretical point of view, it produces nontrivial limita-
tions for the ensemble of vacuum fields. Some
configurations do produce negative correlators, especially
in the scalar channel. If their weight in the ensemble of
vacuum fields is too large, the positivity and monotonici-
ty may be violated. These conditions may provide in-
teresting new conditions on the models of the vacuum.

j~ =(1/2'/ )[uy„u dy„d] or —uy„d,

j„=(1/2'/ )[u y„u +d y„d ],
g&=sy s .P P

(2.1)

(2.2)

(2.3)

Further definitions may be found in Table I. The elec-
tromagnetic current is the following combination of the
quark currents:

( 1 /2 1 /2
)JP ( 1 /21/23 )~

~ +P P

The vector correlation functions are defined as

II; „,(x)=—,'(0~Tj; (x)j; (0)~0),

(2.4)

(2.5)

and the Fourier transform (in Minkowski space-time) is
traditionally written as

i Jd x e'~"II; „(x)=II;(q )(q„q„qg„) . —(2.6)

The right-hand side is explicitly transverse, i.e., it van-
ishes when multiplied by momentum q. This is necessary
for conservation of the vector current.

The dispersion relations for the scalar functions II;(q )

are

currents really exist in nature, evidenced by their cou-
pling to weak and electromagnetic fields, in contrast to
many other operators to be discussed. In several cases
the complete spectral density of the corresponding corre-
lation functions is experimentally known, subject, of
course, to some experimental uncertainty, from e+e
annihilation into hadrons.

The vector currents and their correlation functions to
be discussed below will be denoted by the name of the
lightest meson in the corresponding channel; in particu-
lar, we define the p, the co, and the P currents as the fol-
lowing quark currents,

Rev. Mod. Phys. , Vol. 65, No. 1, January 1993



Edward V. Shuryak: Correlation functions in the QCD vacuum

ImII; (s)
II;(Q = —

q )=(I/m. )f ds
z(s+Q )

(2.7)

where the physical spectral density ImII;(s) is directly re-
lated to the cross section of e+e annihilation into had-
rons. As this quantity is dimensionless, it is proportional
to the normalized cross section

As we shaH see shortly, these relations are well satisfied
experimentally. In fact, this was historically one of the
first and simplest justifications for QCD.

Coming back to coor'dinate representation of the
dlspersior relation, one obtains

(2 8)

where the cross section of muon pair production (neglect-
ing the muon mass) is just o + + =(4vra /3s) and

8 8 ~P P
a is the fine-structure constant. If both quarks in the
current considered have the same fIavor, as, for example,
the ss in the P current, one obtains

X f ds R;(s)D(s', x),
0

where, we recall, D(m, x) from Eq. (1.10) is just the prop-
agator of a scalar mass-I particle to point x. Contract-
ing indices and using the equation —8 D(m, x)
=m D(m, x)+ contact term, which we disregard, the
dispersion relation finally becomes

ImII;(s) =R;(s)/(12me~ ), II; „„(x)=( I/4' }f ds sR;(s)D(s'~, x ) . (2.14)

where e is quark electric charge. Generalization to p, m

channels is straightforward: instead of the charge there
stands a corresponding coefticient in the equation for the
electromagnetic current, e.g.,

(2.10)

which for the P case gives lim, R&(s)= —,'. For the p
and m cases, we expand the electromagnetic current
equation (2.4) in terms of (2.1) and (2.2) and obtain from
that representation

limR (s)=—'„ lim R„(s)=—,
' .s~ oo S~co

(2.12)

The reader may wonder how the different vector corre-
lators are distinguished experimentally. It is clear
enough for the charge and beauty heavy flavors: if the
final state has a pair of such quarks, it is much more like-
ly that they were directly produced in the electromagnet-
ic current than that they were produced by Anal-state in-
teractions. We shall also use this argument later for the
strange quark, although it is less justified in that case. To
separate the light quark p, ~ channels, we make use of
their isospin and 6 parity. The two channels have a
different isospin I= 1,0 which is conserved by any strong
final-state interaction. As it is well known, C parity plus
isotopic invariance leads to the so-called 6-parity conser-
vation, and pions have negative 6 parity. Therefore
strong interactions do not mix states with even and odd
numbers of pions. The currents j,j have fixed 6 parity
as well, and therefore pionic states created by them can
have only even or odd numbers of pions, respectively.

Let us start with a simple example to show how these
relations lead to definite predictions. The ratios R;(s)
have a very simple limit at high energies s, because in this
limit quarks and antiquarks are produced as free par'ti-
cles. For currents containing only one quark flavor q, the
only difference with the muon is a different electric
charge and a color factor:

(2.11)

This is our experimental definition of the vector correla-
tloIl fuIlct1ons.

A final comment related to our notation: as correla-
tors are very strongly deer'easing functions of x, it is more
convenient to plot them normalized to the free propaga-
tors, namely, as II„„(x)/II„'„"(x)where II„"'(x) corre-
sponds to the simple loop diagram describing free-quark
propagation. In such ratios all uninteresting normaliza-
tion factors, such as the quark electromagnetic charges,
drop out. At small distances these ratios are all close to 1

duc to asylTlptotlc freedom.

B. Vector I =1 (or p) channel

Figure 1 shows a sample of experimental data on Rz(s)
at low energies. One can see that this function consists of
two quite dift'erent parts: (1}the prominent p-meson res-
onance, seen in the 2m channel, and (2) a mixture of mul-
tipion states, which starts with (at least) two "primed"
resonances, p' (1450) and p' (1700), seen mainly in the
four-pion channel. However, taken together with the
six-pion channel, they add up to a rather smooth nonres-
onance continuum, " and already at energies of about
1.5 6CV this spectral density follows the prediction
R =

—,
' made above.

We have parametrized the data in Fig. 1 by the follow-
1ng fuIlct1on, shown as thc solid 11Ilc:

R (E)= 9
1+4(E—m ) /I p

1+exp Eo E /5—
where EO=1.3 CxeV, 5=0.2 CseV, and a, (E)=0.7/ln
E/0. 2 CxeV). This parametrization includes all essential
ingredients of the data: the resonance peak and
(smoothened) transition to the asymptotic behavior, cor-
responding to the famous cross section of free-quark pro-
duction. For the high-energy contribution, we used a
smoothed function instead of the 0 function, as it is tradi-
tionally done in QCD sum rules. The physical meaning
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of the parameter Eo is the same: it is the energy above
which the asymptotic freedom is restored and simple
quark model estimates for cross section become valid.

We now calculate the correlation function using this
parametrization and the dispersion relation (2.14), taking
the integral over all energies. The resulting curve is
shown in Fig. 2, where the contributions of two com-
ponents of the spectral density mentioned above are also

FIG. 1. Ratio of cr(e+e ~n m )/cr(e+e ~p+p ) with n

even, as a function of the total invariant mass of the hadronic
system. The data points correspond to the following states: the
error bars without points to 2m. (Barkov et al. , 1985); stars to 4~
(Cosme et al. , 1979; Cordier et al. , 1982a; Barkov et al. , 1988;
Kurdadze et al. , 1988); and triangles to 6m. states (Cosme et al. ,

1979; Dolinsky et al. , 1989). The solid line is our fit to the sum
of all contributions with n even for the total cross section in the
I= 1 channel. We have not shown all data points available near
the top of the p peak, nor the region 2E )2 GeV, where the
agreement between data points and our fitted curve is very
good.

shown separately. The first striking observation is that,
starting with the rather complication function Imll„(s),
we arrived at a very smooth function of the separation x.
Clearly, the way back from the coordinate representation
to physical spectral density would be much more
dificult.

The second striking observation (Shuryak, 1989a) is
that the contributions of the lowest meson and continu-
um complement each other in such a way that the ratio
II(x)/Ilt„, (x) remains close to 1 up to distances as large
as 1.5 fm. We call this fine tuning of all parameters su-
perduality. As we shall show, it persists in all vector
channels. For small distances it is nothing more than
asymptotic freedom. At x -0.3 fm, it is a consequence
of the so-called duality between hadronic and quark
description. However, from 0.3 to 1.5 fm, where the
correlator drops by more than four orders of magnitude,
it is an unexpected and remarkable phenomenon!

Completing this section, let us examine the errors in
the determination of the correlators. Of course, the ex-
perimental uncertainties are there, and their magnitudes
are seen in Fig. 1. In the p region (due essentially to
VEPP-2M data from Novosibirsk), the resulting error at
large x )0.6 fm in the correlator is about S%%uo. The
high-energy domain is covered by SPEAR data from
SLAC, which fix the normalization of small-x region also
to within a few percent. However, in the most interest-
ing medium distances, we have contributions from the p'
energy region, and here the situation is actually even
more uncertain than our Fig. 1 indicates: the Frascatti
and Orsay data do not agree, and the problem is not sta-
tistical. It is quite probable that in this region our pa-
rametrization of the cross section is off by as much as
30%, which may lead to error bars for the ratio
II(x)/Ilt„, (x) plotted in Fig. 2 of about 15%%uo at x-0.6
fm. In view of the apparent systematic deviation of the
two sets of data, it would not be useful to display statisti-
cal error bars on the plots of the correlators.

I ~ 5 I I I
I

I I I I
I

I 3 I I
I

I 1 I I C. co and P channels
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0.5 I

x(tm)
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l.5

FIG. 2. Ratio of the I=1 vector correlation function to that
corresponding to free-quark propagation vs the distance x. The
dot-dashed curve is the p-meson contribution calculated as the
contribution to the integral of the region below a total energy of
1 GeV. The dashed curve labeled "continuum" is the comple-
mentary contribution of all hadronic states above 1 GeV, and
the solid curve is their sum.

The next channel we discuss is the isoscalar channel
having the quantum numbers of the co meson. The corre-
sponding data for the cross section of e+e annihilation
into an odd number of pions, now summed over all chan-
nels, are shown in Fig. 3. The top of the co peak is not
shown because here the Breit-Wigner curve (with the
width value taken from Review of Particle Properties,
Hernandez et a/. , 1990) is very accurate: the peak value

of R is about 12. One can also see a trace of the P peak
due to the co-P mixing, which will be disregarded in our
parametrization. Note the change of scale and the essen-

tially larger error bars compared to the I =1 channel.
Within uncertainties the continuum magnitude ap-
proaches its asymptotic value R =

—,
' at about the same

energies as in the I= 1 channel.
For narrow resonances, we include the resonance con-

tribution in the simple form
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Q, e l.2 FIG. 4. Same as in Fig. 2, but for the I=O vector correlator,
the co channel.

FIG. 3. As ln Fig. 1, the isospin I=0 final states, defined as
those having an odd number of pions. Data points are summed
over all channels, compiled in Dolinsky et al. {1989),while the
curve is our fit discussed in the text.

where the coupling constants of the currents to mesons
are de6ned as follows':

(0/ j™/resonance& =f„,m„,e„. (2.17)

Here the e„ is the polarization vector of the vector
meson. These couplings and the partial widths to the
e+e channel are related as follows:

3m„,l (reste+e )

4m+
(2.18)

1+exp [(Eo—E ) /5]

(2.19)

where now EO=1. 1 GeV and 5=0.2 GeV. The experi-
IllcIltal el I 01 oil tllc p coll'tl lbllt1011 ls about 3%, but
about 20% for the continuum.

In spite of completely difFerent final hadronic states

For reference, the accepted values of the coupling con-
stants of the p, P, and co mesons are f„=46 MeV,
f&

--79 MeV, f = 152 MeV.
Next Fig. 4 shows the correlation function

II (x)/III„„(x), again with contributions from the Io res-
onance and the continuum state shown separately and in
sum. The curve corresponds to the followi. ng parametnz-
ation of the cross section:

R (E)= 12
1+4(E—m ) /I

and a much smaller cross section, the correlator in the ~
channel is similar to the p correlator. Figure 2 for the p
channel and Fig. 4 for m agree to within uncertainties,
and the only difFerence between them appears at dis-
tances as large as about 2 fmf

To understand what this phenomenon means, let us
look at the difFerence between the p and ~ correlators.
As the former current has the uu —dd Aavor structure,
and the latter u u +dd, this difFerence is the vector
flavor-changing correlator

K d(x ) ( I7& II (x )dP d(0) ) 2( II pp Ilp pp ) (2 20)

Thus the data presented above tell us that this ampli-
tude is for some reason extremely small. Unfortunately,
we do not really know how small it is at intermediate dis-
tances, up to 1 fm or so, because it is within the experi-
mental uncertainties. Only at distances as large as 2 fm
does the difFerence between the m and p correlators be-
come clearly observable. It means that the fiavor-
changing correlation function (2.20) becomes comparable
to the flavor-diagonal ones" only when the latter drops
by many orders of magnitude.

There are two more striking experimental observations
that suggest that the famous Zweig rule, forbidding the
flavor-changing transitions, is indeed surpnsingly strict
in the vector channels: (1) the p-co mass difFerence is only
12 MeV; (2) the co-P mixing angle is only 1'—3 .

No general reasons for such strong suppression of
flavor-changing transitions in vector channels are known,
although some interesting hints have been suggested. In
particu1ar, a perturbative analysis leads to the idea that
in the vector case one needs at least three gluons in the
intermediate state, not two as in the pseudoscalar case.
However, this argument should not be applicable to dis-
tances of the order of 1 fm and beyond. In this respect,

Tllclc will, of collrsc, bc solllc alllblglllty 111 tllcsc clcflIlltlolls,
if the resonance is broad.

%'e show below that for pseudoscalar correlators such devia-

tion happens at much smaller distances, where the correlation
function is about four orders of magnitude larger.

Rev. Mod. Phys. , Voi. 65, No. 1, January 1993



10 Edward V. Shuryak: Correlation functions in the QCO vacuum

0.5 I 1

1

I I I

1

I I I
1

I I I
1

I I I
1

I 15 I I I
1

I I I I
1

i I l I
1

I I I I

0.4—

O

O 0.2—

O. I—

0 1 I 1 I . I lx 1 I

I l 2 14
I

l.6 l.8
2E (GeVj

2 2.2
I I I

2.4

I I l I I I 1 I 1 I I" 0--4--L I J
0.5 1 1.5 2

x(tmj

FIG. 6. Same as in Fig. 2, but for the P correlator.

FICx. 5. Same as in Fig. 1, but for the channels containing a
pair of K mesons. The points marked by crosses, closed dots,
open dots, and triangles correspond to the following final states:
K+K (Ivanov et aI., 1981); K&KL,K&K ~+ +K&K+~
(Mane et al. , 1982); and K K m+m (Cordier et al. , 1982b),
respectively. The solid curve is our fit to their sum. We do not
show the fit near the top of the P peak (which in this case is very
high, R being about 50), because it is perfect there.

an important observation can be made from nonpertur-
bative considerations to be discussed later (Sec. III.C). It
is that vector and axial channels do not have a direct in-
stanton contribution in first order in t Hooft interaction,
in contrast to pseudoscalar and scalar ones. However,
this argument also cannot account for the smallness of
this transition up to very large distances, where multi-
instanton effects become important.

Now we show one more figure related to e+e annihi-
lation experiments, Fig. 5, which presents the cross sec-
tion of the production of channels with KK plus pions.
We assume in this case that the sy„s current dominates
in strangeness production, which may not be well
justified. As above, we do not display the fit near the top
of the P peak, because it is nearly perfect; the maximal
value is R& -50. Instead we show how our fit reproduces
the sum of all other contributions, shown by the solid
line. The parametrization used here was

52.4
Rp(E) =

1+4(E m, )'I—r',

+ —,
' (1+a, (E)/vr), (2.21)

1+exp Eo E5—
where Eo=1.5 GeV and 5=0.4 GeV.

Finally, we present in Fig. 6 the cor relator
II&(x)/Ilr„, (x), which is also surprisingly similar' to the

p, co correlators shown above.

D. Strange vector (or K ) channel

For completeness, let us also consider the strange vec-
tor channel. Here the current is j =uy„s and the
lowest meson is the K*(892). Phenomenological analysis
in this case is not based on electromagnetic processes, but
rather on the vector part of weak currents. The data
come in this case from the weak decay process
~~v, +hadrons. Since the hadrons are produced from a
virtual 8' instead of virtual photon, we obtain an admix-
ture of the strange current from the Cabibbo mixing of
the weak current.

Comparing the Cabibbo suppressed production of K*
to the Cabibbo allowed production of p in this decay, one
can obtain the following relation,

B(r~v,+K*)
B(r~v, +p)

f * (1—m, Im, ) (1+2m + Im, )'8
fe (1 —m Im, ) (1+2m Im, )

(2.22)

where 0, is the Cabibbo angle. Inserting on the left-hand
side the experimental ratio 0.0143+0.0031 (from Review
of Particle Properties, Hernandez et al. , 1990), one ob-
tains the following ratio of the coupling constants:

= 1.1+0.1 .
fp

(2.23)

We do not have sufBcient information about the cross

Here our presentation is somewhat illogical, because we still Ineasure the correlator in units of H„"„",corresponding to the free
propagation of massless quarks. The decrease of R&(x) with distance is partly kinematical, due to nonzero strange quark mass. We
have not included this correction, in order to make comparison with nonstrange correlators in the same figure.
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FIG. 7. Same as in Fig. 2, but for the K* correlator.

section of weak production of nonresonance states with
such quantum numbers, E and pions. In addition, the ~
lepton mass sets a rather restrictive limit on the available
energy. However, one can still Inake some arguments
based on spectroscopic data. Indeed, in the strange vec-
tor channel there are two primed resonances, at 1415 and
1715 MCV, very much similar to two p' resonances near
1600 MCV. We shall thus assume that the nonresonance
part of both E* and p cross sections are similar. There-
fore the same nonresonant contribution as that for the p
cha~nel will be taken in the paraInetrization, scaled, of
course, to a dN'erent liInit at infinite energies.

The corresponding curves for II +/II«„(x) are given

in Fig. 7. The resulting curve fits perfectly between the p
and P curves discussed above, suggesting that all these
completely diFerent sets of data are, in fact, deeply con-
nected to each other.

FIG. 8. Contribution of the 3m channels to the spectral density
of the axial current, measured in the ~ lepton decay by the
ARGUS Collaboration (Albrecht et al. , 1986; the five-pion one
is small and rather uncertain). The curve is just a parametriza-
tion used in the theoretical paper by Peccei and Sola (1987),
from which we took this 6gure, and it is not used here.

The experimentally Ineasured distribution into three
pions Rs R fuIlct1on of their 1IlvRr1RIlt Inass ls shown 1n

Fig. 8. Thc asymmetric peak around 1.2 GCV is the con-
tribution of the A, meson. Its dominance is also
confirmed by the observation that two channels with
three pions, ~ m m+ and m m m, have branching ratios
(of all r~v +hadrons decays) equal to (6.8+0.6)% and
(7.5+0.9)%, respectively. They are equal within uncer-
tainties, and this is precisely what should be the case if
they are dominated by A

&
decays. For those reasons, we

treat the peak seen in the v. decays as an "efFective" A&

ITlcson.
Let us introduce coupling constants f„similar to

1

those of vcctoI' rcsonRnccs:

E. Axial 1=1 (or A, ) channel (2.25)

Now we turn from vector to axial-vector channels,
concentrating on the I=1 channel. This has the quan-
tum numbers of the A

&
meson and is related to the fol-

low1Ilg cur1 cnt:

~1
Jp =Q ppp5d (2.24)

Data corresponding to this channel are also obtainable
from the ~ lepton decay into the corresponding neutrino
and hadrons, because the weak current has both vector
and axial components. Since we deal with the charge
current associated with the 8'exchange, we do not have
an I=O component; so production of odd nuInbers of
pion s is now entirely due to the axial part of the
current.

8(r~v, + A I )

8(r—+v„+p)

f~ 2 (1—m~2 /m2)~ (1+2m„ /m, )

fz (1—m /m, ) (1+2m&/m )

one deduces a value for the coupling constant,

f„ /f p
= 1.0+0.07 .

(2.26)

(2.27)

Having fixed the resonance contribution, we next

From the experimental branching ratios and the theoreti-
cal equation

i3Decays into neutrino and an even number of pions are, as in
the e e annihilation, related to the vector p-type current.
Thc coII'csponding data aI'c conslstcnt with thc 8 e ann1hlla-
Cion data, although they are much less accurate.

~4The A i shape observed in the w decay and hadronic reac-
tions is somewhat different. This point is discussed in Isgur
(I989), which also contains further references. The data shown
in Fig. 8 seem to suggest an admixture of some nonresonance
background at the largest energies, but the eI'rors are still too
large to allow any definite conclusions.
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proceed to the continuum states at larger invariant
masses. Unfortunately, the ~ lepton is not heavy enough
to produce final states in the asymptotic region; direct
observation of the axial spectral density is limited by its
mass, 1784 MeV. Moreover, as one can see from Fig. 8,
the statistics of the existing experiments are only good up
to s '~ = 1.4—1.5 GeV. Therefore we do not see the most
interesting region in which spectral density approaches
its asymptotic limit.

However, we have some general arguments that allow
one to fix the continuum contribution with reasonably
small uncertainties. First, in the chira1 limit, the follow-
ing inequality has been proven" (Witten, 1983):

fds(lmII„„' —ImII~„) =0 . (2.29)

As the resonance contribution is proportional to
m~ f„—mg &0, the contribution of the nonreso-

nance continuum should be negative. Assuming our pre-
vious parametrization of the continuum, we may there-
fore conclude that asymptotic freedom in the axial chan-

nel should be recovered at larger energies, Eo &E~z,
which is indeed the case. The sum rule (2.29) is satisfied

at Eo ' =1.5 GeV, if we use the same shape as that used
for the p case, with 5=0.2 GeV. This is quite a firm pre-
diction, provided the shape of the continuum spectrum is
the same. However, to show the sensitivity of the corre-
lator to this uncertainty, we shall display two curves for
the axial correlator, with Eo ' =1.5 and 1.7 GCV. For a
more detailed discussion of the axial spectral density, in-
cluding, in particular, its relation to m + —I 0, see Pec-
cei and Sola (1987).

Before plotting the correlation function, let us also
clarify a theoretical point related to a general form of the
axial correlators. If chiral symmetry were exact, with all
quark masses zero, the nonsinglet axial currents would be
conserved. Because of that, one might think that the
Fourier transform of their correlators would have only a

The author is indebted to S. Nussinov for bringing this
theorem to his attention.

16This statement can be derived from the fact that, in the
chiral limit, the only dimension-4 scalar operator is a gluonic
field strength squared, which contributes the same amount to
vector and axial correlators (see Sec. III.B). However, for
nonzero quark masses, there appear contributions of the type
m~qq, diFerent for vector and axial correlators.

&~~(q ) II„„'(—q ) )0 (for all q &0) .

This condition should become an equality at large ~q ~

because the O(1/q ) terms, corresponding to the
O(1/x ) terms in the coordinate representation of the
correlators, should be the same for vector and axial
correlators in the chiral limit. This statement is known
as the second Weinberg sum rule' (Weinberg, 1967):

II„(a)—(q„q, —g„,q ) . (2.30)

This is not the case. The existence of a Goldstone mode,
the massless pion, coupled to the axial current, produces,
in addition, a longitudinal contribution:

11„",(q)=II, (q )(q„q, g„—q )+f~„q /q . (2.31)

In the coordinate representation, the second term just
gives a singularity at x =0, which does not spoil current
coIlscrvatlon.

Now we proceed further, discussing the real world in
which quark masses are nonzero. We still have a longitu-
dinal part due to a pion contribution, which now depends
on x as B„B+(m,x ). Taking the divergence 8„
{or contracting indices )Mv), we obtain 8 D(m, x )
= —m~(m, x)+contact term. Now we have a longi-
tudinal contribution, nontrivially depending on distance,
but it is proportional to I . This result is not unexpect-
ed: although in the real world the axial current is not
conserved, its divergence is O(m~)=O{m„).

The conclusion from these theoretical considerations is
that one can partially get rid of the pion signal in the A

&

correlation function by simply contracting the indices on
the correlator. This will also make better contact to the
correlators for the vector channels. The contraction
leads to the following approximate relation for the axial
corrclatoI:

II„"„(r)=3f„m„D(m„,~)+f m~(m„, r)
1+a, (E) /m.

dEEDEr

(2.32)

The first two terms are the contributions of the A
&

and
the m, and the third term is the nonresonant continuum.
Thc latter 1s cxpI'csscd 1Il ouI' UsUal way, w1th 8 pcrturba-
tive contribution starting at some Eo, taken to be 1.5 or
1.7 GeV. As before, we took 5=0.2 GeV.

Now everything is fixed, and the resulting correlator is
shown in Fig. 9. Comparing it with the p correlator in
Fig. 2, one observes that it has a completely difFerent

shape. Thc 2
&

contlibutlon can bc slightly largcI thRIl

the p one at small x (again, because fz m~ )f m ), but
at larger distances it drops due to larger A, mass. Even-
tually, at large x, the axial correlator grows again, due to
ihe long-range pion contribution.

Finally let us emphasize that the difference between
the vector and axial correlators is entirely due to the
chiral asymmetry of the QCD vacuum. By studying how
this di8'erence develops as a function of distance, one can
hope to learn something about the mechanisms creating
this asymmetry.
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FIG. 9. Same as in Fig. 2, but for the axial current. The dot-
dashed line is the contribution of the A, meson, while the
short-dashed one is that of the pion. Two long-dashed lines
show the contribution of the nonresonance continuum, if its
threshold is ED=1.5 or 1.7 GeV. Two solid lines show the
sums of all contributions in these two cases; the true correlator
is somewhere between them.

terms, its mass is small due to the near vanishing of the
light quark masses. This subject is reviewed in detail by
Gasser and Leutwyler (1987), which also has original
references.

However, taking a closer look at this problem, one ar-
rives at the opposite puzzling conclusion: the pion is
surprisingly heavy, given the light quark masses. Indeed,
the pion mass can be written as

m =(m„+m„)K, (2.36)

where the constant K is nonzero in the chiral limit. This
constant is related to the quark condensate and the pion-
decay constant f =2' F = 131 MeV by the famous re-
lation (Gell-Mann, Oakes, and Renner, 1968)

K =2I & uu & I /f '. (2.37)

We do not present its derivation here and only note that
the standard values of the quark masses' are (Gasser and
Leutwyler, 1987)

md =7 MeV, m„=4 MeV . (2.38)

F. Pseudoscalar correlation functions for
the SU(3) octet (the rr, K, rt channels)

Here we consider correlations of the octet pseudosca-
lar quark-antiquark operators

j = (i /2' )(u y u —d y'd ),
JI(- =lug s

j„=(i/6'~ )(uy u+dy d —2sy s) .

(2.33)

(2.34)

(2.35)

These correlators are very important for the under-
standing of QCD vacuum structure. One might naively
think that because the pseudoscalars are the lowest exci-
tations of the QCD vacuum, they tell us primarily about
its long-range structure. However, as we shall see short-
ly, they also provide much puzzling information about its
short-range structure as well.

Generally speaking, the pseudo scalar and scalar
mesons are rather exceptional members of the family of
hadrons. There are some surprisingly large numbers at-
tached to them; in particular, the coupling constants to
the corresponding currents are very large. Therefore the
contributions of these particles to the correlators are also
important at small x.

Before we come to correlation functions, some general
comments about pseudoscalars are in order. Throughout
the history of hadronic physics, from naive nonrelativis-
tic quark models to modern lattice calculations, some
puzzles related to these particles have presented
difFiculties, and they are in many cases still unexplained.
New, surprising facts are revealed if one considers the
correlation functions.

The well-known observation that the pion is extraordi-
narily light was, in fact, explained in classical works of
the '60s, even before QCD was discovered: it is a Gold-
stone mode associated with chiral symmetry. In QCD

One then finds a very large value of this constant associ-
ated with the quark condensate: K = 1700 MeV. '

Masses are external to QCD, but the value of K is an
internal problem, which should be explained by QCD.
We formulate this question in a slightly more general
way as the first puzzle: (1) Why are the masses of the
pseudoscalar octet mesons so sensitiUe to small quark
masses?

The second well-known puzzle related to the pseudos-
calar channels is the famous Weinberg (1975) "Uz(1)
problem, " which is related to the SU(3) singlet channel
and the g' meson. Ignoring the u, d quark masses and
considering only the effect of m„one can easily see that
chiral perturbation theory predicts g' to be lighter than
the q meson: the former has —,

' of the "strange" com-

ponent, while the latter has —', of it. ' Experimentally,

m„.=958 MeV, which is much larger than these naive
estimates. Let us now formulate this problem somewhat
more generally: (2) Why is the singlet channel so much

~7guark masses are not physical, but are instead a kind of
theoretical parameter; so their values depend on their exact
definition. In particular, they have perturbative anomalous di-
mensions; so the numbers depend on "resolution" (normaliza-
tion point po) used. For example, speaking about bare quark
masses in the lattice Lagrangian, one has resolution on the scale
of lattice spacing po=a '. The numbers mentioned correspond
to the scale po=1 GeV.

Accuracy of these "standard" numbers depends on whether
extrapolation of chiral perturbation theory is good for the
strange quark; see details in Gasser and Leutwyler (1987).

We simplify discussion of this point for pedagogical reasons.
The reader may consult the original paper (Weinberg, 1975) for
his estimates of the upper limit of the g, with and without

O(m, ) effects.
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&o~u y„y, d~m, p &=if p„, (2.39)

one takes the divergence of the axial current and obtains

( m„+ m~) &o~ui y, d~m, p„&=f„m', (2.40)

from which one obtains the needed pseudoscalar cou-
pling constants

A, =&O~uiy d~~p&&=f„E=(480MeV) (2.41)

This X is a large quantity, due to the large value of the
factor K. This in turn can be traced to a large value of
the quark condensate.

The axial current matrix element to the K meson is
known fIOIIl its weak decays and thc decay constant 1s

diferent from the octet ones? What is the mechanism re
sponsible for this spiitting?

The third problem we address is also an old one, relat-
ed to the fact that in pseudoscalar channel we do not see
even a trace of the Zweig rule. Namely, Aavor changing
is not suppressed in this channel, but rather enhanced:
(3) Why isn't the strange sector in the pseudoscalar multi
p/et separated from the nonstrange one, as in other multi
plets? What is the mechanism of these mixings?

We now proceed to discussion of the pseudoscalar
correlation functions. The main point is that the cou-
pling constants of the me sons to the pseudosc alar
currents also can be expressed in terms of known param-
eters. For example, starting with the definition of the
ploQ "decay coIlstant

ambiguity in the Eo value is important only in a very
small window at about x =0.2 fm.

Note the marked difference compared to the vector
correlators considered above: instead of changes within
10—20% in the region x —1 fm, the ratio KIKt„„has
chRIlgcd by two orders of IIlagn1tUdc.

The general reason for this behavior is the well-known
feature of pseudoscalar mesons, that they are exception-
ally light. In terms of qq interaction, this behavior im-
pl1cs that thcI'c 1s a stIoIlg attI'Rct10Q bctwccIl qURI'k Rnd
the antiquark in this channel, forcing them to move in a
correlated manner. As a result, the coIrelation function
is larger than the perturbative one.

Note also that up to distances of the order of 0.5 fm,
there is no marked difference between the three curves,
which implies that all effects proportional to the strange
quark mass are irrelevant in this region. In fact, the
hcav1cl mcsons have s11ghtly 1RI'gcI coUpllngs IIlaking
the curves for different channels even more similar.

Surprisingly, due to contributions from these lowest
mesons alone, asymptotic freedom is violated at very
small distances, about —, fm. This fact, noticed in Novi-
kov et ai. (1981), deserves to be considered as another
general puzzle: (4) Why do deuiations from the perturba
tive behavior start at such smaII d)sIances in the pseudo-
scalar channels'7

G. The SU{3}singlet correlation functions:
axial, pseudoscalar, and gluonic ones

fr=1 24f (2.42)

We shall extrapolate from the ~ and K cases to the g-
decay constant with

The SU(3) singlet channel, called g' for brevity, is trad-
itionally discussed in relation to the axial current

(2.45)

f„=3' ,'f =1 32—f—— (2.43) Its matrix element is connected to f„, in the usual way:

(2.46)
We obtained this formula assuming that the deviations
from the SU(3) symmetry were due to strangeness. The q
is —', strange, while the K is only —,

' strange.
So far we only have information about ~, K, q contri-

butions to the axial correlators. However, in order to ob-
tain their contributions to the pseudoscalar ones, we have
to make additional assumptions. Here we assume that
they scale in a way similar to the decay constants

A~IX, -f~lf, A, „IA, -f„/f (2.44)

In Fig. 10 we show the resulting m, K, and g pseudoscalar
correlators in the form IC(x )/Kt„, (x). Apart from reso-
nance contributions, we assumed a nonresonance contin-
uum and selected a value Eo=1.6 CxeV to smoothly
bring the ratio to unity at small distances. In fact, the

This axial current is subject to the famous Adler-Bell-
Jackiw anomaly (Adler, 1969; Bell and Jackiw, 1969),
which means that its divergence is not just proportional
to thc qURI'k IIlasscs, but 1t also conta1ns R gluoI11c opcI'a-
tor":

*".=3'~ 2im, sy 5s+ GG
3

(2.47)

In the above equation GG:——,
' e &„G &G„ is the contrac-

tion of the gluonic field strength with its dual, analogous
to E-8 in electromagnetism.

Therefore, sandwiching this relation between vacuum
and q' states, one does not find a direct relation between
thc COUp11ngs to pscUdoscalaI' Rnd Rx1Rl currents A,

&
RIld

~OIn any case, a 10—20% level of accuracy is good enough for
most of our conclusions here, and at this level all couplings can
just be considered as equal.

21Contributions proportional to the light quark masses are ig-
nored here.
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f„=(0.5 —0.7 )f (2.48)

The simplest estimate is related to the J/g radiative
decay, which is also important because it provides some
direct information about the matrix elements of the
gluonic operator entering the anomaly (Novikov et al. ,
1980). Indeed, if the charmed quarks are sufftciently
heavy, one can describe the cc annihilation in terms of lo-
cal operators. We do not need to go into detail here, but
only comment that, for the decays J/g~y+pseudo-
scalar meson, one has to deal with the lowest-dimension
pseudoscalar gluonic operator GG. The exact coefFicient
of this operator in the effective Lagrangian is irrelevant,
because we shall only consider ratios of the decay proba-
bilities:

21.(q ) ~ ) &0IGGlq &

&0IGGI~&

3

(2.49)

The last factor is the phase-space ratio for P-wave de-
cays. Experimentally the left-hand-side ratio is
4.9+0.5, from which one finds the ratio of the matrix
elements to be

=2.46+0. 1 . (2.50)

Since that work was published, another large contribu-
tion in radiative decay of f has been found, that of the
decay into photon and g(1430) (originally called ~). Re-
peating the same argument, one obtains an even slightly
larger matrix element for this particle:

Several estimates of f„have been put forward by No-
vikov et al. (1980), all suggesting it to be smaller than

This fixes the absolute scale of these matrix elements.
Now, ignoring the O(m, ) term, we obtain the value for
the coupling constant, fz =0.74f .

Armed with this information, let us return to the
correlation functions. Unfortunately, the coupling con-
stant of the pseudoscalar SU(3) singlet current remains
unknown. Nevertheless, just for the sake of comparison
with other pseudoscalar correlators, we have also plotted
in Fig. 10 the g' contribution, making an "educated

. guess" based on the ratio of f„If„just derived,
A,„.=0.74k .

Whatever are the uncertainties in this coupling, a qual-
itative difference between the SU(3) octet and the singlet
correlators is obvious. Even if the singlet II(x)/IIr„, (x)
is Hat up to x -0.5 fm, the splitting between them seems
to begin at x,„&;«,„-0.2 fm. In the whole interval of in-

termediate distances x =0.3—1.5 fm, the singlet correla-
tion function is about one order of magnitude smaller
than the q correlator.

Now we switch to another interesting subject: the
correlation functions of the pseudoscalar gluonic opera-
tors. Generally, we know very little about them; we do
not even have reliable experimental information about
glueball masses. Heated discussions on whether particu-
lar hadronic resonances are glueballs take place at spe-
cialized conferences on hadronic spectroscopy, and we
cannot go into this question here.

Let us make only a general comment that all glueball
candidates are rather heavy, with masses in the region
1.5 —2 GeV. This is qualitatively consistent with LGT

I OO

&01GG l~(1430»
&0IGG lq'&

(2.51)

—
(

3 )1/2f m2
2 7l 71

(2.52)

Others are suppressed by powers of m, .
These numbers are from Hernandez et al. (1990).

24Actually, this is an even lower limit of the matrix element,
since the decay ratio branching into yg(1440) that we use actu-
ally contains the branching ratio of g(1440) ~ECKm.

In fact, the q —q' mixing angle is approximately
0;„;„g= 10 —20' and corrections are very small, O(8;„;„„).

In order to evaluate the absolute magnitude of all these
matrix elements, Novikov et al. (1980) proposed to
sandwich the anomaly relation (2.47) between the vacu-
um and the q state. If the latter is an ideal member of
the SU(3) octet, it should vanish because the current is
an SU(3) singlet. Thus one should have an exact cancel-
lation between the O(m, ) and anomalous parts, implying

3 2

&ol GG lq &
= —2im, &olsy, s lg &

16m
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FICx. 10. Normalized pseudoscalar correlation functions vs dis-
tance x (in fm). The three solid lines show the m, K, g channels,
while the dashed line corresponds to the contribution of the g'
meson into the SU(3) singlet correlator.
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(lattice gauge theory) calculations [see reviews in Lattice
88 (1989), Lattice 89 (1990), Lattice 90 (1991), and
Teraflop (1992)]. Quenched calculations also suggest that
the lightest glueball is the scalax', with a mass of about
1.3—1.5 GCV, while pseudoscalars are about twice as
heavy. Of course, results may be modified in calculations
going beyond the quenched approxixnation.

The general question of why all glueballs have com-
pletely difFerent mass scale, distinct froxn those typical of
hadrons made of quarks, remains essentially
Unanswcl cd.

The really relevant question is the contribution of vari-
OUs hadI'oxllc states to gluonic corrclRtloI1 fUnctloxls, in-
dependent of whether or not we call them glueballs.
From our discussion above we obtained several matrix
elements of the pseudoscalar gluonic operator. Our esti-
mates discussed above lead to

9(X, —1)
SC,(x)= &0~GG(x)GG(0) ~0& = (2.54)

&oiGGi~&=0. 9 GCV', &oiGGiq'&=2. 2 GCV',
(2.53)

&0~GO ~q(1440) & =2.9 GCV',

where we have also taken o, to be "frozen" at a, =0.3. It
is tempting to examine the contribution of these three
states to the pseudoscalar gluonic correlation function.
As before, in order to get an idea of whether the matrix
elements obtained are large or small, ii is instructive to
normalize this contribution to the asymptotically free
gluonic contribution, which is equal to

I I I l
]

I I I I
)

l I I I
I

I I I I

FIG. 11. Normalized pseudoscalar gluonic correlation function
to that corresponding to the propagation of two free gluons.
Three curves correspond to the contributions of q, q', q(1440)
mcsons rcspcctivcly.

states" contribute roughly an amount that causes the
K(x)/E«„(x) ratio to level off at 1 for x (—,

' fm. If so,
the threshold Eo is expected to be rather high, of the or-
der 2 GCV or so. In principle, one can tell whether it is
true or not from studies of the radiative decay
Y~y+hadrons(s), in which hadronic systems with cor-
responding invariant mass are produced. Moreover, the
local annihilation hypothesis is even better fulfilled here
than for charmed qUarks.

This equation is derived by propagating two gluons from
point 0 to x. The x dependence is obvious, since the
gluon operator GG has mass dimension 4. Apart from
the color factor, the formula is the same as in quantum
C1CCtI odynamiCS.

The estimated contributions of the g's to the gluon
correlator are shown in Fig. 11. We see that the g' and
I)(1440) matrix elements found above are indeed compa-
rable to the perturbative ones already at distances as
small as —' fm. Moreover, they become about an order of
magnitude larger at only slightly larger distances.

It ls alllllslllg to Ilotc tllat tllc 'g Rlld 7/(1440) togctllcr
contribute to the gluonic pseudoscalar correlator in a
way very similar to the m, K, g contributions to quark
pseudoscalar current. The genexal tendency of a rapid
rise suggests a stxong attraction in this channel, starting
at about the same distances.

One may further speculate that the "true gluonic

ln fRct, 1Il thc inter Rcting instRIlton approximation thc
di6'erence in Inass scales is quite natural. In the IIA the quark
and the gluon fields have completely difFerent roles and different
distribution in space-time. The former are distributed more or
less hoInogeneously, while glue is concentrated in small spots of
the strong field, the instantons.

H. General properties of the scalar correlators

%C conclude our survey of the phenomenology of the
QCD correlation functions with some remarks about the
scalar COI'I'clatlon functions.

From the phenomenological side the situation is fax'

from clear. Historically, the first candidate for scalar
mesons was the famous enhancement seen in the isoscalar
mw scattering near 500 MCV, known in literature as the

sigma meson. This name was also used ln thc sigma
el" (Gell-Mann and Levi, 1960), in which the scalar parti-
cle ls cssclltlRlly thc radial (I =0) osclllRtloll of thc
quark condensate. It is not recognized as resonance, but
still can be strongly coupled to the scalar I =0 current.

The next scalar mesons are isovector and isoscalar
pR11's of pal tlclcs, f0( 975 ) Rlld 0 0 ( 980 ) . Tllclr close
masses RQd paI'tlcUlRI' dccRy II1odcs have lcd to thc sUspl-
cion that they are not regular qq mesons, but rather
four-body qqqq mesons containing "intrinsic strange-
ness. " This latter observation makes it very improbable
that they play any role in the spectral density of non-
strangc qUark CUI'rents QQ» dd.

27The interested reader can consult the proceedings of any
conference on hadronic spectroscopy, where this topic is repeat-
edly discussed.
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The I=0 scalar channel has two IDore resonances list-
ed in the Review of Particle Properties, the fo(1400) and
fo(1590). The former decays predominantly into two
pions and can therefore be plausibly assigned as a non-
strange qq meson.

The f0(1590) was produced di8'ractively in one experi-
ment only, and it has a very interesting dominant mode,
q'g, in spite of the fact that it is very much suppressed by
small phase space. Taking into account its production
mcchanisID and specific decay pattern, with a gluonic
touch, " we see that it is a good candidate for scalar
gluonium. Its mass valUc also fits well with wERt
quenched lattice data tell us (see, e.g. , Teraflop, 1992).
Unfortunately, there are problems with this interpreta-
tion of fo(1590): in particular, there are strong experi-
mental limitations oil J/I/l —+1'+7) 'q. If correct, tlley im-

ply that this particle cannot have a sufficiently strong
coupling to the gluonic operator (O~G ~fo(1590)).

No isovector scalar resonances (other than ao men-
tioned) are in the Review of Particle Properties; so one has
to conclude that such IDesons probably do not exist, or
they are too heavy and wide.

Let us now discuss the qualitative behavior of
scalar correlation functions. In the I= 1 channel,
K(x ) /Kt„, (x ) should strongly fall off with x, because the
lowest intermediate state has a mass of at least 1 GCV or
more. In the I=O channel the situation is diFerent, be-
cause the correlation function

&„,i„t=o(x) = (qq(x)qq(0) ) (2.55)

28However, the sigma meson of the sigma model (Gell-Mann
and Levi, 1960) should be much wider at this mass.

possesses the factorizable contribution, ( qq ), which
does not fall off'at large distances, Large mesonic masses
in this case mean that transition to this region should be
rather sharp.

Our point now is that it is possible to guess at what
distances this transition takes place just by comparison of
perturbative contributions. In terms of the ratio we usu-
ally use, K(x)/Kt„„, it means a rapid increase starting
from the point where

+sc~l~r I=0(x)/Xf e~(xr) =~ (Pg) x /3 1

This estimate tells us that this curve probably turns up
starting from rather small distances, about —,

' fm (which is

again related to and from a rather large magnitude of the
quark condensate).

Summar izing, wc have two 1IDportant obscI'vations:
one expects the curve for K(x)/Kt„„(a) to curve up in
the I=O [or the SU(3) singlet] scalar case, but (b) to
curve down in the I= 1 [or the SU(3) octet] case. In oth-
er terms, one expects the existence of some attraction in
the singlet and a repulsion in the octet channel. Let us
now coIDpare these conclusions with the behavior of the
pseudoscalar channels. Note that their behavior is exact-

K++ —QJ Qg Qg Ql +dLdgdldL

K+ —QJ Q g QL Qg +dg dJ dg dI

K + —QI Qg dg dL +dr dg Qg Ql

K —QI Quadr dg +Qg Ql dgdl

(2.57)

(2.58)

(2.59)

(2.60)

Here L„R stand for left and right chirality. The nota-
tions are as follows: the first + index here corresponds to
Aavor, the second to chirality, (+) means this quark
property remains unchanged, (

—
) means it is changed.

At small distances the dominant contribution comes
from free-quark propagation, which corresponds to dom-
inant K++ .

Based on the discussion above of both scalars and
pscUdoscalar corrclators, with I=O, I, oIlc may I'each
two important conclusions: (1) The qualitative behavior
of those correlation functions is consistent with the as-
suInptions that the dominant term producing splitting in
parity and isospin is K; and (2) deviations from
asymptotic freedom are much more radical than those in
vector and axial channels, and they show up at Inuch
smaller distances, x =

4 3
fIIl.

Consequences of these observations will be discussed in
the next section, and we note here only that the K
amplitude corresponds exactly to the quantuID numbers
of the instanton-induced 't Hooft interaction.

Ill. THEORY GF MESGNIC
CORRELATION FUNCTlONS

A. Potential models and heavy quarkonia

This section is somewhat separate from the others, be-
cause it applies to the physics of heavy quarks only. %'e
have included it mainly for pedagogical reasons: here
one can use simple nonrclativistic language based on the
interaction potential between quarks, which, we hope,
will make the discussion clear.

Our main goal is to show how studies of the correla-
tion functions may help to reveal information that is
nearly impossible to get from an analysis of stationary
states. This discussion is based on a paper (Shuryak and
Zhirov, 1987) that attempted to find experimental evi-
dence for a strong Coulomb law.

Very heavy quarks and antiquarks form nonrelativistic
bound states similar to positronium, with the interaction
described by a Coulomb-type potential (Appelquist and
Politzer, 1975). The force is as fundamental as a

ly the opposite: a similar ratio (c) goes up for the octet
(n., IC, rt), but (d) goes down for the singlet (q') case.

Let us reformulate these four statements in terms of
somewhat d1ffcI'cIlt corrclat1011 fUIlctioIls. Considering
for simplicity u, d quarks only, we define instead of the
four previous correlation functions, scalar and pseudo-
scalar with I=O and 1, the following linear combina-
tions:
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8m 1

(11N, —2Nf )in[1/(R A«„„b)] R
(3.1)

where X, and Xf are the number of colors and Aavors.
Note that this potential contains a parameter Ac,„&, b.
Its measurement is crucial for setting the absolute scale
in QCD, which is also needed for lattice calculations (dis-
cussed below). Heavy quarkonium is in principle an
ideal place to measure the QCD scale, because the poten-
tial is perturbative in nature but still produces large ob-
servable effects.

Unfortunately, neither c nor even b quarks are heavy
enough for this simple idea to be applicable. However,
these mesons are very well described by an effective po-
tential V,tr(r), a combination of confining and Coulomb
forces. To be specific, let us consider two potentials used:
the Martin potential (Martin, 1981)

V=6.87R '+const, (3.2)

and the Cornell potential (Eichten et al. , 1980)

V= —0.52/R +0.18R, (3.3)

where in the last two formulas all units are GeV or in-
verse GeV. Both potentials give about equally good
descriptions of all states in the J/P and Y families.
However, the Martin potential has no Coulomb term at
alit From this experts in quarkonium spectroscopy have
concluded that there is not yet any direct evidence for a
strong Coulomb law.

Now comes the main idea: if the stationary states,
J/P and Y mesons, are not small enough to be a
Coulomb system, why not consider a virtual system, a
wave packet of any desirable size? In particular, one can
discuss a correlation function in which quarks propagate
any distance (or Euclidean time) we want.

As for the light quarks already considered, these corre-
lation functions can be recalculated from experimental
data on e+e annihilation into heavy quarks. What is
important is that these data contain not only resonances
(the upsilons), but also a continuum of excited states
above the heavy quark-antiquark threshold. Therefore
one can obtain information not only about lowest bound
states, but also about the unbound (or scattering) states.

Coulomb law of electrodynamics or the Newton law of
gravity; so it is certainly worth trying to measure it more
precisely. In fact, QCD does not predict exactly a
Coulomb law, because of the running coupling constant,
which effectively depends on the distance between
quarks. The equation derived in Appelquist and Politzer
(1975) for the potential is

4 a, (R)
QCD

Realizing all this, let us consider a correlator of two
vector currents made of b quarks placed at the same spa-
tial point and separated by the Euclidean time ~. It is
connected to the experimentally measurable cross section
mentioned above by the following formula

K(r)= Jdss o + -„(s)D(s'i, r) .3

16+3u~eb2
(3.4)

+(4m.a /3s)Rb8(s —so) . (3.5)

The partial widths and masses of the four upsilon states
are taken from Particle Data Table; so is the threshold of
the open beauty production, (2m~ ); and the constant Rb
is taken from the averaged data to be R&=0.31+0.06,
consistent with the free-quark value Rb =

—,
' just above the

threshold. Putting all this into the equation above, we
obtain the "experimental" correlation function plotted in
Fig. 12. This shows the logarithmic derivative

F(r)= — ln
d K(r)

free
(3.6)

where ICf„,(r) corresponds to free propagation of the bb

pair. ' The function X(r) decays very strongly, due to
factors like exp( —2mb'); so it is more informative to
plot the logarithm. By definition, if the interaction po-
tential is absent, F(r) is just zero. Its physical meaning
is, roughly speaking, the mean energy of the wave packet
existing during the Euclidean time period ~.

The function F(r) obtained in this way is shown in
Fig. 12 by the dashed region (representing experimental
error bars). Although the experimental accuracy is not
very good, one can see that this function is decreasing to-
ward the small ~, which, of course, means that some at-
traction is present at small distances. Thus one does ob-
serve a manifestation of the strong Coulomb law.

At this point we are finished with our phenomenologi-
cal input and come to theoretical predictions. In the
nonrelativistic case, with a potential-type interaction
V(R), this can be done just by solving the ordinary
Schrodinger equation for the Green's function with this
potential. Another practical way to do it (Shuryak and
Zhirov, 1987) is based on the equation

K(r)
exp —J dr V[~r&(r) —r&(r)~]

+free(r) free paths

(3.7)

We evaluate this using the following equation for the
cross section,

cr + „- (s)=g(12~ I'~/M~)5(s —M~)
Ys

Some recent work done in the direction of fixing the scale
from charmonium physics can be found in Mackenzie (1991).

In fact, in the nonrelativistic domain under consideration,
vm »1, the propagator can be taken in the nonrelativistic lim-

it, D(My 7) M' v exp( —M7 )

The b quark mass was taken to be 4.9 CxeV.
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I
I I that essentially the same potentials as those used above

for heavy quarks produce a reasonable description of the
overall spectroscopy of the strange and even of the light
mesons and baryons (Capstick, Cxodfrey, Isgur, and Pa-
ton, 1986). It is only necessary to introduce a phenome-
nological "constituent*' quaxk mass for the light quarks.
It would bc intcrcst1ng to know whether sUch Rn ap-
proach could reproduce the correlation functions associ-
ated with the light quarks, especially at smaller distances.

B. Operator product expansion
and QCD sum rules

I I I I I I I I I I I I I t I I l I I I I I

0 2
T (I zsev)

nG. l2. r(~) = —dlog(Z gX„„)yd~, where Z (~) 1s the vector
bb (or Y) correlation function, Kf„, is its version corresponding
to free propagation of b quarks with a mass m& =4.9 GeV, and
v 1s Euclidean time (1n GeV ). The erroI bals show F('7) as
derived from experimental data (see text). The more negative
values of this quantity at small v correspond to stronger
Coulomb forces at smaller distances between quarks. The solid
line corresponds to the Cornell potential, and the dashed line to
the Martin one.

Here one averages the exponential "interaction factor"
ovex an ensemble of quantum paths, corresponding to the
motion of free quarks.

We have calculated this correlator using the two phe-
noxnenological potentials given above. The resultixlg
curves are also shown in Fig. 12. Although the experi-
Inental accuracy is not x'cally good enough to make a
conclUsioi1, it appears that thcsc data show some pxcfcx'-

ence for the Cornell potential over the Martin one. Im-
provement in the quality of the data, especially in the
measurement of the actual shape of the nonresonance
continuum contalnlng a pair of b-Aavorcd hadlons~ can
clarify this important issue.

Perspectives of tt spectroscopy is an interesting sub-
ject, which wc Qow address briefly. Bccausc thc t qUark
mass is at least 100—150 GcV or more, its weak decay is
too rapid to allow the Coulomb bound states to show up
as a set of Darrow resonances. However, even if the
separate toponium states cannot be seen as well-separated
peaks, by integrating the corresponding cross section as
above and calculating the correlation function, one may
still observe its derivation from that expected for frec-
moving t quaxks and detect a trace of Coulomb-induced
e8'ects. This may provide a xnethod to measure A&CD.

We conclude this section with a question. It is known

In this section we turn from the simple potential mod-
els to a much more complicated approach, that of apply-
ing the operator product expansion to correlation func-
tions at small distances. We present only a few impor-
tant examples of its applications, but actually about a
hundred papers have been written on this topic, and it
has been reviewed by Novikov et al. (1982, 1984),
Shuryak (1984, 1988a), Reinders et al. (1985), and Shif-
man (1992).

The general idea (Wilson, 1969) is an expansion of the
bilocal operator

j(x)j(0)=QC„(x)O„(0) (3.8)

in terms of local operators. Here the C„(x) are
coefficients, depending on the distance between the
points, and the O„(0) are operators. If one deals with or-
diDRry functions» onc might think of a Taylol-scx'ics ex-
pansion of J(x) in powers of x, but the dependence on x
is quite singular in quantum field theory. However, in
massless QCD the powers of x are just determined by di-
mensional arguments, except for some nontrivial powers
of ln(x).

A formal definition of the OPE is based on a separa-
tion between the high-momentum and soft Inomentum
modes of the quantum fields involved. The operators 0„
contain a cuto6' p so that they only couple to soft modes,
with Euclidean momentum p &p . The coefficients C„
absorb all hard xnodes of the fields, i.e., those with mo-
menta p & p . If the value of p is changed, the whole ex-
pansion is redefined, however, the sum remains the same,
because p is just an artificial parameter without any
physical significance.

There are no averaging symbols in this equation; the
expansion is assuxned to be valid for any matrix element
of this equation. In particular, we may average it over
the vacuum state, of course, but the equality should hold
for any configuration of the fields separately. %'e cannot
go deeper into the theoretical discussion here, but refer
those interested to a recent compilation of xnain papers
(Shifman, 1992), which also has further references.

Two tcchnical points should bc Doted herc. First, since
unrenormalized QCD with massless quarks has no di-
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mensional parameters, the coefficients C„(x) are just
powers of x, depending on the dimension of the corre-
sponding operator 0„. For example, if one deals with the
product of two currents, one has an object of total mass
dimension 6. Suppose one is interested in the coefficient
of gluonic operator 0=(G„' ), which has dimension 4.
Without calculations, one sees that the corresponding
coefficient must have an x dependence C,(x)-1/x .

Our second remark is that, in practice, people have
used a somewhat different form of the OPE, namely, the
expansion of the Fourier transform of the correlators
K, (Q ) in powers of 1/Q, where Q is the momentum
transfer. Roughly speaking, large Q corresponds to small
x, but not exactly. Suppose, for example, one has a term
proportional to (1/Q )" and takes its Fourier transform.
Then, for n ~2, one gets the power of x dictated by
naive dimensional counting times the ln(x ). In fact, this
logarithm is present because al1 contributions that are
regular at x =0, i.e., proportional to (x )" without loga-
rithms, are missing in this approach.

The existence of terms regular at x =0 is one of the
reasons why people in the past avoided the use of coordi-
nate representation. We return to this point at the end of
this section.

Let us first show some examples of how the Shifman,
Vainshtein, and Zakharov (SVZ) approach works in the
space-time representation. Derivation of the formulas
can be found in the original papers (Shifman, Vainshtein,
and Zakharov, 1979b) or in reviews (e.g., Reinders et al. ,
1985; Shuryak, 1988a; Shifman, 1992). For clarity, we
omit some terms that are, in practice, unimportant, like
the m qq operators. We also did not include the lengthy
expressions for higher-dimension operators, because they
are not actually used in applications.

In Euclidean time ~, which is the same as the spatial
distance x used before, the normalized correlation func-
tions for p and A

&
channels are given by (Shifman et al. ,

1979b):

((gG;. )') '
3X2

+ ln (0, „)+
1P

(3.9)

The complicated four-fermionic operators 0 ~ areP, A I

different for the vector and axial channels and are given

by

&EX~0 = (u y„y 5t'u dy—y 5t'd )P

+ (uy„t'u+dy„t'd ) gqy„t'q
9

(3.10)

0~ =0 +2vra, (uI y„t'ui dl —y„t'dl )

X(u„y„t'u~ —d~y„r'd~ ), (3.11)

( 0 ) = ( 7 X 2 vr /3 )a, ( tijou )

( 0„)= —
( 2 m. /3 )a, ( Pg )

(3.12)

(3.13)

where (gP) is the quark condensate. Note that these
two expressions have opposite signs.

We can see how well this works in Fig. 13. The phe-
nomenological corre1ation functions of the previous sec-
tion are shown by the solid curves, and the OPE predic-
tions by dashed curves. The curves marked p, SVZ and
A„SVZ correspond to the above expression, and, in
particular, the short-dashed line shows the OPE predic-
tion, including perturbative and gluon condensate correc-
tions. One can see that the general behavior of these
correlation functions is reproduced surprisingly well up
to distances of about —,

' fm. In particular, (1) the splitting
between the vector and axial I=1 channels happens ex-
actly in the right place, and (2) the magnitude of the
splitting is also correct. Both observations show that the
estimates of the vacuum expectation values of these two
four-fermion operators are probably reliable. As a
third point, note that in the vector case the quark and
gluon corrections nearly compensate each other, so that

where R,L denote right- and left-hand polarization on
the quarks.

Estimates of vacuum expectation values of the above
operators were made using the so-called vacuum domi-
nance hypothesis (Shifman et al. , 1979b). The recipe is
as follows: one should try to transform this operator into
a product of two scalars, and just include the vacuum
state in the sum over intermediate states between the two
scalar operators. The vacuum expectation of the scalar
will be nonzero if there is a quark condensate, and it is
evaluated as such.

For the operators mentioned above the answer is (Shif-
man et al. , 1979b)

Radiative corrections produce terms containing a dimen-
sional parameter AQcD but only in the form of some powers of
ln(xAQCD), the so-called anomalous dimensions. Since these
complications are not very important for our discussion, we
shall not introduce them, for the sake of simplicity of presenta-
tion.

33Their Fourier transform is IC, (Q ) -exp( —Q X const),
and such terms are more difficult to trace.

The accuracy of this estimate is an interesting question that
can be addressed with lattice data, the IIA, and other vacuum
models. The IIA (Shuryak, 1989b) strongly contradicts the vac-
uum dominance hypothesis for gluonic operators, but more or
less agrees with it for the operators in Eqs. (3.10) and (3.11).

The general discrepancy between OPE curves and experi-
mental ones, about 10% in absolute normalization, may well be
due to higher-order radiative corrections. They are also compa-
rable to the experimental uncertainties in the axial channel.
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FIG. 13. Ratio of the correlation function to that correspond-
ing to a free-quark propagation vs distance x (fm). One solid
line shows the p contribution, and two solid lines for the A&

correspond to experimental data as in Fig. 9. Other curves are
different versions of the OPE. The short-dashed line shows the
perturbative correction and that due to the gluon condensate:
those are the same for both channels. The long-dashed lines
marked p, SVZ and A„SVZ correspond to 1/Q expansion,
while the dot-dashed ones marked p, VD and 3&, VD include
regular terms as well.

& (r)/IIt„, (r)=1+a,(r)/n. + ((gG„', )')r /384

+(m /48)~ ln (0, +02),7.A,
(3.14)

where the four-fermion operators are de6ned as follows:

0, = —ma, (uo„ t'u)(do„ t'd)

0~=(ma, /2)[(ua„„t'u) +(do„ t'd) ]

+(ma, /3)[(uy&t'u )(X~qy„t'q)] .

(3.15)

(3.16)

The expectation values of these operator products are
evaluated according to the vacuum dominance hy-
pothesis, and the main one is

(0, ) =(56 /27), ( qy)' . (3.17)

The operator 0&, estimated in the same way, has a smaller
matrix element. We have separated 0& because it is the opera-
tor that obtains contribution from instanton zero modes. In the
instanton liquid model, its vacuum expectation value is actually
several times larger than that for 02 (Shuryak, 1983), but it still
does not contribute enough to make a good description of the
data.

at least the beginning of superduality is reproduced.
Encouraged by this success, let us look at the pseudo-

scalar channels. The OPE expression for the pseudosca-
lar correlators was also given by Shifman et al. (1979b).
In coordinate representation the correlator can be writ-
ten as

x, (fm)

FIG. 14. Same as Fig. 13, but for the pseudoscalar channel.
The three solid lines close together correspond to the ~, K, and

g phenomenological correlators, respectively.

The resulting curves are compared to phenomenological
ones for m, E,g mesons in Fig. 14. One sees that the SVZ
results have "good intentions" in the sense that the pre-
dicted behavior looks similar to the experimental trend,
but numerically these effects are too small to reproduce
the experimental data. (Remember, coming from x- —,

'

fm to —,
' fm means correlators being reduced by

-2 =64. )

This failure was discussed in the important paper by
Novikov et al. (1981) entitled "Are all hadrons alike?"
The suggested answer was that all spin-zero correlation
functions are special: new, important effects show up in
these cases, which are not seen in the OPE framework.
Attempts to understand how this could come about have
led to the instanton theory discussed in the next section.

However, before we go into it, we can take one more
step forward. It was noticed at the beginning of this sec-
tion that the SVZ expressions ignore the part of the
correlation functions that is nonsingular at x=0. The
natural question is what corrections can arise due to
them. In fact, the theory of regular terms is even simpler
than that of singular ones. In particular, it is not difficult
to understand that the constant term at x ~0 is nothing
but the current squared: K„s„&„(x~0)= (j (0) ). One
can also easily evaluate their vacuum expectation values
in the same vacuum dominance approximation, gaining
some insight into the effect of those regular terms. More-
over, as all currents considered in this section have the
simple fl.avor structure ud, two quark lines do not mix
and one can obtain all 0( ( Pg) ) corrections by using the
quark propagator in the form S =So+ —,', ( fg). The re-

This simple way of implementing the vacuum dominance
was first used by Ioffe in treating the baryonic sum rules. We
come to them in the next section.
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suits look as follows:

~'7-'
rl~„(r)/11„"„-(r)=1+, & yq)', (3.18)

11„,'(r) /11„"„-(r)=I —„ t, qy) ', (3.19)

4 6

11.(r)/11„„(1)—1+
6

(~/)'lj()'
36

(3.20)

4 6

II„„„()/II„„( )=1— (it/)' .
36

(3.21)

These corrections are added to the SVZ terms dis-
cussed above and shown as the dot-dashed curves in Figs.
13 and 14 marked VD (vacuum dominance). We see that
in all channels these corrections have signs coinciding
with experimental trends. However, the quantitative
comparison is not at all satisfactory: although inclusion
of the regular corrections makes disagreement in the
pseudoscalar case somewhat smaller, it also worsens the
agreement in the vector and axial channels.

In summary, the OPE can be used in two forms: as
I/Q expansion in momentum space and x expansion in
space-time, the latter possessing extra regular terms.
Supplemented by the vacuum dominance hypothesis, it
predicts correct qualitative behavior of correlators, but it
is not able to reproduce them quantitatively.

C. interacting instanton approximation

A detailed discussion of the theory of instantons and
related phenomena cannot be made here. We simply out-
line the main steps of the development of this theory
(presenting the references), then briefiy consider some
qualitative features of the instanton-induced efFects to
first order in the instanton-induced 't Hooft effective La-
grangian, defined in Eq. (3.22). After that, jumping over
a decade of work, we proceed directly to the particular
predictions, including all orders, in this interaction. We
end with a brief discussion of the connections between
the IIA and lattice data.

Since the discovery of the instanton solution in non-
Abelian gauge theories (Belavin, Polyakov, Schwartz,
and Tyupkin, 1975), they have been believed to be an im-

portant ingredient of strong-interaction physics. Early
applications to hadronic physics are discussed in Callan,
Dashen, and Cxross (1978). The theory is very elegant,
using semiclassical theory related to the physics of tun-
neling.

However, instanton-induced effects appeared to be
"too strong" in the following sense: only a few effects,
such as the short-distance deviation from asymptotic
freedom discussed below, could be understood from a
first-order treatment of instantons. Other properties of
QCD, such as hadronic masses and coupling constants,
could be described only by including many instantons in-
teracting with each other. That is why only recently has

it become possible to create a consistent approximation
treating the interacting instantons (IIA, for short), which
both includes 't Hooft effective interaction to all orders
and is simple enough to make calculations practical.

The main steps in the development of this theory were
as follows. Phenomenological discussions pioneered by
Geshkenbein and Ioffe (1980) and Novikov et al. (1981)
eventually led to the "instanton liquid model" (Shuryak,
1982a, 1983, through which the qualitative picture of the
ensemble of interacting pseudoparticles was significantly
clarified. Surprisingly enough, essentially the same pic-
ture emerged from the variational approach to the "in-
stanton liquid" (Diakonov and Petrov, 1984). En-
couraged by this agreement, much effort was devoted to
the study of the approximations involved in this analysis
and to the development of a more quantitative theory. A
straightforward numerical solution was obtained by the
present author (Shuryak, 1988b), who then applied the
approximation to the calculation of various mesonic
correlation functions (Shuryak, 1989a, 1989c, 1989d.
These results are discussed below.

Let us now brieAy introduce the reader to some quali-
tative features of the instanton-induced effects. The main
physical phenomenon, a tunneling through a barrier
separating gauge fields of difFerent topology, was shown
('t Hooft, 1976) to be related to specific rearrangements
of the light quark states: some of them "dive into the
Dirac sea" during this process, and some others emerge
from it. Without going into details, let us only mention
that the tunneling between gauge fields is described by
the 't Hooft effective Lagrangian, which has the structure

ff g('qf 40)( Aqf )

f
(3.22)

Here q& is a quark field of flavor f (f=u, d, s), while Pc is
the so-called fermionic zero mode, a solution of the Dirac
equation Dgo(x)=0 in the field of the instanton. These
zero modes play the role of wave functions of quark
states, in which they are produced or absorbed during the
tunneling; they depend in a known way on collective
variables of the instanton. Important for us is the fol-
lowing fact: these zero modes have chirality, directly re-
lated to the topological charge of the gauge field: there is
only a left-handed solution for the instantons and a
right-handed one for the anti-instanton. Thus the quark

8The status of this activity is somewhat intermediate between
what is usually called a "model" and a "theory. " Unlike the
"instanton liquid model" of the early '80s, now it does not con-
tain any model-dependent elements; its statistical sum is, in

principle, directly derived from QCD. But it is also not a com-

plete theory: it is restricted to the sum over gauge-field
configurations of a certain type, a superposition of some num-

ber of instantons and anti-instantons.
39There are 12 collective degrees of freedom in QCD: the size

p, the four-dimensional position of the instanton center, and
seven (out of eight) color rotation angles.
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X [det(iB+imf )] . (3.23)

Here we have denoted by dA; the measure in space
of collective coordinates of the ith instanton.
S; =8w /g (p; ) is the action corresponding to individual
instantons. S;„, describes the classical (gluonic) interac-
tion between instantons and anti-instantons. At large
distances it is known to be a dipole interaction (Callan
et al. , 1978), but at finite distances this quantity requires
a specific definition. Starting with Diakonov and Petrov
(1984), a set of trial functions of growing complexity was
used (Shuryak, 1988c). However, the most natural col-
lective coordinates for the instanton —anti-instanton
problem can be obtained by "descending down the val-
ley" (Shuryak, 1988d), solving the so-called streamline
equation (Yung, 1988). This was done for gauge fields in
Verbaarschot (1991), where one can find a detailed dis-
cussion of this interaction.

The last (and the most complicated) factor in (3.23) is
the so-called fermionic determinant, which describes

~ Recently this interaction has attracted much attention in
connection with possible baryon number violation by weak in-
teraction (see Khoze and Ringwald, 1991; Shuryak and Ver-
baarschot, 1992).

Lagrangian generated by a single instanton or anti-
instanton has an effective interaction like q fqf (or
R~L), but never gfgf (or Pfgf ). The Dirac structure
of the helicity-Qip interaction contributes only to scalar
and pseudoscalar correlators. Noting also the specific
Aavor-changing structure of this Lagrangian, we find that
the interaction has the following important properties:

(1) The first-order corrections in the 't Hooft effective
interaction are present in the scalar and pseudoscalar
correlators, but absent in the vector and axial ones.

(2) These corrections have the opposite sign for the
scalar and pseudoscalar channels.

(3) These corrections have the opposite sign for the iso-
spin 1 and 0 channels.

All three points are welcomed to reconcile the
disagreements in the previous section. The first point ac-
counts for the nature of the disagreement in the pseudos-
calar case, while preserving the good agreement for the
axial and vector cases. The last two points show how
this interaction has exactly the structure of the amplitudeE,which was demanded at the end of Sec. II to pro-
vide a qualitative explanation of the behavior of all four
spin-zero correlators. Unfortunately, one can use the
first-order results only at small distances, where the
instanton-induced efFects are small corrections to the per-
turbative correlation functions.

To go beyond the first-order efFects, one can numerical-
ly model an ensemble of interacting instantons, using a
partition function of the form

Z= I II;[dA;exp( —S;)]exp(S;„,)IIf=i z
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FIG. 15. Ratio of the various correlation functions to that cor-
responding to the free-quark propagation vs distance xApz
(normalized to the Pauli-Villars Ap& parameter, roughly in fm).
The points correspond to the calculation in the IIA framework
(Shuryak, 1989a) for scalar (S), pseudoscalar (PS), vector (V),
and axial (A) channels with the flavor structure ud, us (closed
and open points, respectively). The dashed curves are the
three-parameter fit described in the text.

quark-induced interactions. It is evaluated by division
into two terms, that due to zero and nonzero modes. The
former can be written as the NXX matrix in the so-
called zero-mode subspace, where N is the number of in-
stantons (and anti-instantons) considered. Its deter-
minant is evaluated directly for each configuration,
which is equivalent to inclusion of all diagrams in the 't
Hooft interaction to ¹horder.

This system is somehow more complicated than the
traditional systems considered in statistical mechanics:
the fermion determinant induces a very nonlocal interac-
tion. Therefore in simulations one has to deal with about
20-60 instantons. The question of whether or not chiral
symmetry is broken becomes a matter of calculation,
similar to the question of whether a collection of atoms
behaves as a conductor or an insulator. The situation is
also complicated by the fact that the ensemble of instan-
tons is not "frozen" into a periodic structure, but
remains liquid-like. However, this problem still is enor-
mously simpler than lattice gauge theory. In fact, one
needs only about 10 parameters to describe field in the
volume 1 fm, instead of 10 or more used for the same
purpose in current lattice calculations. We also have
some evidence that these variables are in fact the main
ones (see below).

After this brief introduction, a sample of results is in
order. In Fig. 15 the I=1 mesonic correlation functions
presented in Shuryak (1989a, 1989b, 1989c, 1989d) are
shown, in the form of II;(x)/IIf„,(x). Qualitative behav-
ior of all correlators agrees well with our discussion. In
particular, there is strong attraction in the octet pseudos-
calar case, causing the curve to go up starting from rath-
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er small distances. There is very good superduality in the
vector channels. No resonance, it is amusing to note, is
needed to fit the scalar channel: the correlator found is
consistent with just a continuum threshold at suKciently
high masses. This prediction is intriguing in its correla-
tion with phenomenology.

Moreover, the results are in quantitative agreement
with the data. The dashed curves are the three parame-
ter fits for the data points, with resonance mass m, its
coupling, f, and continuum threshold Eo obtained for
each channel. ' Further studies of a wide set of correla-
tion functions in the IIA are now in progress.

Let us now briefly discuss connections between IIA
and LGT. In order to see the instantons in LGT, one
must "cool" the lattice configurations of gauge fields by
damping out the quantum Auctuations. This leaves a
configuration of only classical gauge fields, which can be
examined. Kremer et al. (1988) have shown that the
classical fields remaining after cooling are essentially the
instantons, and their density is roughly comparable to
what is used in the IIA. Second, these instantons are re-
lated to fermionic zero modes, which strongly contribute
to the quark condensate (Hands and Teper, 1990). Third,
it was recently found (Chu and Huang, 1991) that cooling
a6'ects the correlation functions surprisingly weakly; so
hadronic masses and coupling constants determined from
the full QCD and from the cooled, instanton-dominated
configurations are practically the same. However, these
studies are in their initial stages and the accuracy of the
numerical results should be improved. Further refer-
ences on studying the IIA with lattice methods may be
found in the recent lattice conference proceedings [Lat-
tice 90 (1991);TeraAop 1992)].

We conc1ude this section by listing the main phenome-
na that can be explained using the IIA:

(1) We found that the IIA accounts for the chiral sym-
metry breaking of the QCD vacuum, including the value
of the quark condensate (Shuryak, 1989b) at T=O, as
well as for the chiral symmetry restoration at higher tem-
peratures (Ilgenfritz and Shuryak, 1989).

(2) As will be discussed in Secs. IV.A and IV.B, the
IIA produces an efFective mass for the quark of about
300—400 MeV. This is the constituent quark, the main
building block of all hadronic masses.

(3) The IIA gives the absolute magnitude and quantum
numbers of qq eA'ective interaction at small distances,
especially in the scalar and pseudoscalar channels.

(4) The IIA reproduces some delicate erat'ects, such as
the superduality in the vector channels or the absence of
isovector scalar resonances.

It perhaps can account for some other phenomena dis-
cussed in literature, such as (5) spin splittings of baryons,
especially explaining why the nucleon is so light (see Sec.
IV.D); (6) part of the NN potential and the experimental

4~A table of the numbers is given in Shuryak (1989a).

absence of a well-bound dihyperon H (Takeuchi and Oka,
1991); and (7) the suppression of the singlet axial charge
of the proton (known as the "spin crisis") or, in other
words, the strong polarization of the gluonic field in the
polarized protons (Forte and Shuryak, 1992).

However, the IIA certainly does not explain the im-
portant QCD phenomenon of quark confinement. This
may be seen from the fact that in the "instanton liquid"
the static potential between a pair of heavy quarks tends
at large distances toward a constant (Shuryak, 1989d).

IV. OTHER CORRELATION FUNCTIONS

A. Light-and-heavy mesons

The central idea of our discussion has been that the
correlation functions have quite di6'erent properties de-
pending on the quantum numbers of the channel con-
sidered, which means that a realistic qq interaction is
rather complicated and that by no means does it reduce
to a simple universal confining potential. In this section
we shall continue these studies, considering now the qq
interactions.

However, before addressing the issue of interquark in-
teraction in two- (or three-) body systems, it would be
logical to study first the propagation in the QCD vacuum
of a single quark. However, as the quark propagator is
not a gauge-invariant quantity, it cannot by itself have
any physical meaning; one has either to fix the gauge, or,
following Schwinger, to switch from the ordinary propa-
gator S to its gauge-invariant version S:

S(x)= (p(x)P exp (ig l2) I A„'r'dr g(0) ), (4.1)

4~The reader may be puzzled about how an approximation can
produce correct hadronic masses without this important piece
of physics. Instanton-induced forces are strong enough to make
effective masses of quarks and to bind them together into
mesons and, perhaps, even baryons. However, even if those
have reasonable parameters, there also should be some false
states related to free propagation of "dressed" quarks. So far
the behavior of the correlation functions in IIA has not re-
vealed this unphysical component, which probably means that
the false states do not contribute very much.

where t' are Gell-Mann matrices of the color group, and
the path-ordered exponent contains an integral to be tak-
en over the straight line, going from 0 to x. In other
words, one can simply supplement our light dynamical
quark with a static, very heavy antiquark, considering a
heavy-light meson instead of a single quark. Of course,
this now changes the long-distance physics: the light
quark becomes bound by the confining potential to the
heavy one. However, at the small distances we are going
to be studying, these confining forces are not crucial, and
the static charge of the heavy quark produces only small
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(and calculable) corrections. This is the line of reasoning
that has led us to study such mesons. In a sense, it is the
simplest system with light quarks, so to say, a hydrogen
atom of hadronic physics.

Certainly, there is some empirical information about
charmed and bottom mesons. For simplicity we concen-
trate on the simplest case, in which the light quark mass
is put to zero and that of the heavy one is considered
large on the hadronic scale: m «A, m& ))A. Discus-
sion of the corresponding correlation functions in the
OPE framework was started in Shuryak (1982b). In a
more genera1 context, discussion of some effective theory
excluding the heavy quarks was initiated by Isgur and
Weise (1991) and applied to various decay form factors,
etc. , which can be related to multipoint correlation func-
tions.

Returning to our main object, the two-point correla-
tors, we shall discuss the correlation functions of the fol-
lowing type,

K;(r) = (Q(r)l;q(r)q(0)I, +. Q(0) ), (4.2)

E(J )=m(J ) —m

Using the values of s, c, and b quark masses from the

TABLE II. Masses of some heavy-light mesons (in MeV), ac-
cording to Particle Data Table.

JP 0 0+

cu
bu

497
1865
5278

892
2007
5327

1270,1400
2422

1430

where I; is some gamma matrix, ~ is the Euclidean time
difFerence between the two points, and Q, q stand for the
field of heavy (light) quarks. We assume that the heavy
antiquark just stays at X=O all the time. All energies are
naturally measured relative to the heavy quark mass M&.
Additional simplification due to the large M& limit is the
absence of a spin splitting: the spin direction of the su-
perheavy quark cannot be of any importance. Thus the
pseudoscalar and the vector mesons are degenerate, as
well as the scalar and the axial ones. Therefore, we con-
sider only the splitting in parity P, negative ( —) for the
first two cases and positive (+ ) for the two latter ones,
denoting these correlators by K (r) and K+ (~). These
functions were evaluated numerically both on the lattice
(Boucaud et al. , 1988; Bernard, Heard, Labrenz, and
Soni, 1992) and in IIA (Shuryak, 1989d; see below).

Experimental data on heavy-flavored mesons are still
very incomplete. Some masses of flavored mesons have
been compiled in Table II. We included strange mesons
as well as charmed and bottom mesons, although the s
quarks and probably even the c quarks are not sufFiciently
heavy to have the above approximation applied to them.
However, the data are useful for showing the trends. We
express these masses in terms of the excess energy above
the heavy quark mass,

QCD sum-rule analysis m, = 150 MeV, I,=1250 MeV,
and m& =4800 MeV (Shifman, 1986) and assuming that
the spin splitting is caused by the S&S2-type interaction,
we have the following equation for the spin-averaged ex-
cess energies of the negative- and the positive-parity
states

E+=
—,
'E—(1+—)+—,'E(0+—), (4.3)

E -450 MeV, E+-900 MeV . (4.4)

For the small-distance behavior of the corresponding
correlation functions, we see that the trivial limit is given

by the product of free propagators

Kfree( ) T [Sfree( )I Stree(
Q

(4.5)

where

S "'(r)= —yo/(2m r ), Sg"(r)-(I+yo) . (4.6)

Here we have dropped all unimportant factors in the
heavy quark propagator.

As before, we consider the ratio of the true correlation
function to the free one, R(r)=K(r)/K "'(r) First, for.
the OPE coefFicient of the leading operator, the light
quark propagator is modified due to the presence of the
nonzero quark condensate as follows (Shuryak, 1982b),

S~(r)= —yo/(2m. v )+ (qq ) /12+

This yields

7T2~3
R (r)=I —(+) ~(qq&~+O(r') .

6

(4.7)

(4.8)

In this equation, the + stands for the parity of the
state considered, and we use the modulus of the quark
condensate to avoid any sign confusion. Thus one can
see that the nonzero quark condensate naturally pro-
duces the splitting of the correlation functions with the
opposite parity. The OPE suggests a simple symmetry
splitting of the two correlation functions considered: the
odd-parity cor relator curves up, which means these
mesons are lighter, and the even-parity one curves down,
which means these mesons are heavier. These predic-
tions certainly agree with phenomenology.

Following the usual OPE descriptions, some further
terms were evaluated and the resulting correlator was fit

(Shuryak, 1982b) with the usual parametrization of the

where 1,0 label spin. Using the experimental numbers,
one concludes that the spin-averaged P= —1 state is
separated from the quark mass by E =640, 520, and
475 MeV for s, c, and b quarks, respectively. Splitting of
the two parity states 5E=E+—E is roughly 600 and
450 MeV for s and c cases. From this we conclude that
for the superheavy mesons the excess energies are prob-
ably
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evaluate both P =+1 correlators and consider their ratio:
then the mass difference between the two lowest mesons
can be calculated without this problem.

Finally, let us turn to the calculations of these correla-
tion functions in the IIA (Shuryak, 1989d). Omitting all
details, we come directly to the results shown in Fig. 17.
Although the splitting between two parity channels still
is significant, the whole picture looks quite different from
the symmetric 1+const X~ behavior suggested by the
OPE. The solid lines are again the three-parameter fit by
the standard equation (4.12), but now with the following
values of the parameters:

FICx. 16. Correlation functions for the B-type meson (arbitrary
units) vs Euclidean time t (in lattice units a), evaluated in
(Maiani, Martinelli, and Sachrajda, 1992).

physical spectral density

ImE(E) =f„,M&5(E E„—, )+(3E /rr)8(E Eo) . —

(4.9)

The fit E„, corresponds to the meson mass; the corre-
sponding excess masses found were

E =400+100 MeV,

E+ —E =800+250 MeV .

(4.10)

(4.1 1)

Comparing this with the data discussed earlier, one can
see that the E was evaluated correctly, while the split-
ting E+ —E was overestimated, roughly by about a fac-
tor of 2.

Let us now present an example of point-to-point corre-
lation functions measured on the lattice. In Fig. 16 one
can see a set of early data by Boucaud et al (1988) co. rre-
sponding to the 8-type (which means pseudoscalar light-
and-heavy quark) meson.

At small distances (r= la —3a) they are in a reasonable
agreement with a free propagator; but at large distances
they fall with distance very rapidly, and one finds the ex-
cess energy of the lowest state E —1 GeV, about twice
larger than expected phenomenologically. The reason is
not difticult to trace: the pointlike superheavy quark has
a divergent self-energy, 5M& —1/a, and one should sub-
tract this unphysical quantity. Another way out is to

E =(2+0.4)A, Eo =3.2A,

E+= (4.5+1)A, Eo =5.5A,

(4.12)

(4.13)

where A is the QCD scale parameter. With the experi-
mental values A=150—200 MeV it gives E =330—440
MeV and E+ —E =350—460 MeV, in reasonable agree-
ment with the empirical energy excesses.

B. Does the constituent quark model make sense?

0.5—

The nonrelativistic quark model of the '60s suggest a
simple picture of hadrons as relatively loose bound states
of constituent quarks with masses of about 350 MeV.
During its long history, this idea obtained impressive
phenomenological support (DeRujula, Georgi, and
Glashow, 1975; Isgur and Karl, 1978), reproducing many
properties of the baryons, such as masses and magnetic
moments.

Another simple argument in favor of the nonrelativis-
tic quark model presents itself when one considers the
correlation functions: although the masses and the cou-

0.2 0.4
x Apv

0.6

One may be surprised by the appearance of a large quantity,
the heavy quark mass, in this equation. In the limit M&~ ~,
the combination f„,M& tends to constant, equal to 12m.n, where
n is the density of a light quark at the origin.
~Later data, corresponding to much larger statistics and

larger lattices, can be found, for example, in Allton et al. (1991),
Lubicz et al. (1992), and Bernard et al. (1992), together with
further discussion of how the large-mass limit on the lattice can
be reached, Maiani et al. (1992).

FIG. 17. Correlation functions for B-type mesons, normalized
to the free propagator, vs distance xApv (normalized to the
Pauli-Villars Az& parameter, roughly in fm). The points corre-
spond to the calculation in the IIA framework (Shuryak,
1989d). The closed and open points correspond to negative-
parity channels [pseudoscalar (PS) and vector (V) ones] and
positive-parity ones [the scalar (S) and axial (A) channels], re-
spectively. The solid curves are the three-parameter fit de-
scribed in the text. The dotted line shows the common contri-
bution of the nonzero fermionic modes.
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plings of the lowest states strongly depend on the quan-
turn numbers of the channel, the continuum thresholds
are always about Eo = 1.3—1.5 GCV. Now, if
confinement demands production of an extra pair of con-
stituent quarks, these thresholds should be roughly 4M,&
1n ordcI' to pl oducc Rn cxtr'a pair, which 1ndccd corI'c"
sponds we11 with observation. Unfortunately, it is very
dificult to understand how the constituent quark model
may be derived from QCD.

Considering correlators for light-and-heavy mesons,
one may wonder how a "bare'* quark becomes a

drcsscd onc. FOI cxarnplc what Rl c thc dlstancc scales
involved, and what is the spin structure of the light quark
propagator'7 To be specific, let us consider the following
linear combinations of the two correlation functions dis-
cussed above:

Ss;p =—,'Tr[S(r) ]—[EC —X ],
S„,„a;p

=
—,'Tr[y(S(r)]- [K++K ],

(4.14)

(4.15)

l I l I

0.4 0.6
pv

Ss~(~)-Z mD(m, r),
S„,„thp(r)-Z t)+(m, r),

(4.16)

(4.17)

where m is the constituent quark mass, D(m, r) is the

—O.B-
rn

v 06-
OJ

0

0.2-

eff lt le5 APg

where "Aip" and "nonAip" refer to the light quark chiral-
ity, S is the gauge-invariant quark propagator (4.1), and
K,K are the correlators for light-heavy mesons with
difFerent parity (discussed above). These quantities are
shown in Figs. 18 and 19, as calculated using the IIA
(Shuryak, 1989d). In the constituent quark model, one
expects that these two amplitudes will be given by the
following simple formulas

FIG. 19. Same as in Fig. 18, but for the spin-nonAip component
of the propagator S (in units Azz) vs distance x (in units
1/Ap&). Dots correspond to IIA calculations (Shuryak, 1989d),
and thc dashed and solid llncs corrcspoIld to thc constltucnt
quark Hlodel %'ith PT ff 0 1 5Apf/ respectively.

propagator' of a scalar particle at distance ~, and Z is the
coupling constant of the constituent quar'k to the bare or
"current" quark. Note that m in the propagator and in
the numerator of Sfl p should be the same, if this model is
to make sense.

The results of the calculations are indeed reproduced
by these simple formulas well enough, with Z =1 and a
quark efFective mass of about (1.5—2)A. This fact is quite
surprising. Particularly unexpected is the result that
Z =1 within the error limits; it means that for unknown
reasons the current quarks become constituent quarks
without any additional admixture of more complicated
statesf

The fit is not perfect, of course: in fact, looking at Sfl;„,
we observe that this model works only for ~&0.5 fm; so
one gets an idea of the distances at which the constituent
quark mass is formed. This agrees with the OPE-based
estimates (Shuryak, 1982b) of the e{Fective mass at small
distaIiccs:

0.2
e a t

0.4 0.6 0.8 I

X Apv

m,~(x)= (~'/3) I & qq & IX ', (4.18)

FIG. 18. Spin-Hip propagator of thc light quark normalized to
the value of the quark condensate, —,'2 TrS{x)/(qq ) vs distance

xA+&, normalized to the Pauli-Villars Apz parameter. Closed
points are the result of the calculation in the IIA framework
(Shuryak, 1989d; open ones show the contribution of the
nonzero modes). The dashed lines are simply a fit to the points,
while thc two solid llncs col'lcspond to thc constltUcnt qUark
model with a fixed value of the quark CA'ective mass m, ff

= 1, 1.5
App'e

if one assumes that this equation is valid up to m, fr-300
MCV is for'ed. d.

Recently, lattice measurements of the light quark
propagator, taken in a variety of gauges, were reported
by Bernard, Murphy, Soni, and Yee (1990). Remarkably,
the gauge dependence turns out to be relatively weak,
and the data can be more or less described by a simple
constituent quark model with a similar mass value. We
think this interesting point deserves further' study.
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M ( A, ) =2284. 9+1.5 Me V,

M(X,++)=2452.2+1.7 MeV,

M(:-, )=2460+19 MeV .

(4.19)

If one ignores the kinetic energy and any interactions
with the charmed quark, the following conclusions
emerge.

(1) Subtracting m„one finds that the excess energy as-

C. Diquarks and baryons containing a heavy quark

In contrast to the qq channels, we know very little
about the qq interaction. Empirical information must
come from baryons, but it is nontrivial to deal with a sys-
tem containing three light quarks. The logical extension
of what we did in the preceding section is to work with a
qq pair, adding a heavy static quark Q to produce a phys-
ical gauge-invariant object.

Masses of the corresponding charmed baryons are
known:

sociated with two light quarks is rather large: it is about
1 CxeV. It is also about twice the minimal energy of the
light quark E, estimated above, for the light-heavy
mesons; so these numbers are consistent.

(2) The X-A splitting yields the difference between en-
ergies of the spin-0 and spin-1 diquarks to be about 170
MeV.

(3) The =—X difference is 175+20 MeV, more or less
consistent with the standard value of the strange quark
mass.

Unfortunately, we are not aware of any studies of the
corresponding correlation functions (besides some pre-
liminary discussion in Shuryak, 1982b). Therefore we
simply indicate which correlation functions we suggest in
this respect.

For simplicity, let us take two quarks of different
flavors, say, u, d ones. We consider a heavy quark mass
to be infinitely large; so it only propagates in the (Eu-
clidean) time direction. Thus one may consider the fol-
lowing correlation functions:

K„(r)=([u, (r)Cy, dm(r)] e,~„Pexp (ig/2) I A'„r'd~
0

[u, (0)Cy~d (0)]e; k ),
nk

(4.20)

Kz(r)=([u& (r)Cy d~(r)] e&m„P exp (ig/2) f A„'t'd~ [u; (0)Cy„d (0)]e; I, ),
0 " nk

(4.21)

where T means transposition and C charge conjugation.

D. Ordinary baryons. Why is the nucleon so light?

m~ /m (4.22)

As mentioned earlier, we want to learn about the in-
teraction between quarks by studying the baryonic corre-
lation functions. Unfortunately, we do not have as much
experimental information about baryons as we have
about mesons. What we actually know is essentially only
the baryonic masses; but as we have those for all
rnernbers of octet and decuplet, it is still possible to get
some information from them.

We start this section with a presentation of lattice data
on hadronic masses, using the so-called Edinburgh plot,
the ratio mz/I versus m /I . In Fig. 20 are data
taken from Terafiop (1992). None of these points so far
correspond to quarks being as light as they are in Nature.
Nevertheless, one can see that these data are all con-
sistent with the naive quark model,

Unfortunately, this is 25% higher than the empirical ra-
tio.

Recently, large-scale lattice simulations with dynami-
cal fermions were reported by the Columbia group
(Brown et a/ , 1991). T. hey were able to come down in
quark masses to the values ma =0.01 and even to 0.004
(for the valence quarks only); and even in this case the
X/p mass ratio is found to be 1.527(11), or still much too
large.

Although the history of lattice simulations has shown
that such problems should disappear if larger and finer
lattices are used, it is always instructive to ask what par-
ticular effect requires such a fine-grained lattice. For the
N/p mass ratio, we do not know; but we can speculate.
Note that the mass of the 6( —,', —,') is phenomenologically
in better shape. Thus it is more probable that something
is wrong with the nucleon itself: for some reason it is not
as light as it should be on the lattice. The nucleon differs

by having s=0 qq pairs; so our speculation is that there
is a short-ranged attraction between quarks in this chan-
nel.

Let us examine the general origin of the spin splitting

45In principle, exclusive reactions with baryons at high-
momentum transfer (e.g. , elastic form factors) provide some in-
formation about the probability of finding three quarks at the
same point, in definite spin and color state.

We discuss recent large-lattice data with dynamical ferrnions
(Brown et al. , 1991) below. A review of the current situation
can be found in the talk given by Toussaint (1992).

47Those numbers roughly correspond to bare masses at lattice
scales of about 15 and 7 MeV in absolute units. In other words,
in the ma =0.004 case, the pion mass is already nearly as small
as it is in the real world.
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FIG. 20. Compilation of lattice data obtained by the
HEMCCxC Collaboration [this figure is taken from the review
Terafiop (1992)] on the plot mz/m~ vs m /m~. The dagger in
thc left coI'IlcI' ls thc cxpcriIHcntal point, that at thc right ls thc
one at (1, z) expected for very heavy quarks. The line at large

3

masses corresponds to the nonrelativistic potential model, while
the line at small ones corresponds to chiral perturbation theory.
Data points correspond to di6'erent lattices and fermion masses,
explained in the figure.

in an e6'ort to understand why lattice simulations may
have problems x'eproducing them. It is instructive to
start with a some~hat simplisitic discussion of light-
heavy hadrons. In Sec. IV.A we concluded that the
minimal energy of a light quark is about E -450 MeV,
ignoring here the energy of the intexaction with the static
quark. In Sec. IV.C we found that an average diquark
has an energy about twice that. l3oes that imply that the
typical three-quark baryon should have a mass about
3E =1.3—1.4 CieV, even lax'ger than —,'M '7

No, if the mutual qq interaction is significant: in the
three-quark system it may be much more important than
in the two-quark one. Checking whether the simple idea
of binary interactions can explain this difference, we fol-
low a simple analysis by Shuryak and Rosner (1989).
They used a nonrelativisitic quark model, in which light
and strange quarks had some energies E,E, together
with additional negative interaction for spin-zero di-
quarks 5E,5E, . All masses of the baryon octet and dec-
uplet can be very well described by this primitive model,
with the following values of the parameters:

E =412.9 MeV, E, =557.5 MeV,

6E= —200. 5 MeV, 5E, = —132.7 MeV .

%'e make the following observations on these quantities:
(1) E~ is indeed consistent with the magnitude of the light
quark energy in light-heavy hadrons; and (2) 5E is also
close to the binary interaction found from the splitting in
the light-heavy baryons. The strange sector also leads to
no surprises: (3) the difFerence is given by E, E=145-
MeV, close to the standard estimates of m, ; and (4) the
ratio 5E, /5E =0.66 is close to the ratio of the magnetic
moments and to the ratio of the energies themselves.

To summarize, the baryon mass systematics suggests

g~=(u Cd)u —(u Cysd)y&u,

r)a &=(u Cy&u)u,

(4.24)

(4.25)

where C is the charge-conjugation matrix, and T stands
for transposition. We gave suppressed color indices,
which are, as usual, convoluted with e'~' . Convolution
of the spin or indices is prescribed by brackets; the
current is a spinor itself, and its index is the same as that
of the quark field in the last position in this formula.

One can consider the nucleon (or the 6) correlation
functions with or without a spin Hip; so, in fact, one still
has a var1cty of coII'elation funct1ons to bc d1scusscd.
Deviating slightly from IO6'e in this respect, I consider
the simplest traces

One can consldcI other traces, say, without po, which actual-

ly was used by Ioffe as well. Certainly, our discussion of
baryonic conelators is not complete; we have picked up the
sum rule which is assumed to be the best.

that the nucleo~ is light because it contains spin-zero qq
pairs, which have attractive interactions.

Two mcchan1sms have bccn suggcstcd as thc cause of
this attraction: (a) a perturbative spin-spin interaction
due to gluon-magnetic moments (DeRujula et al. , 1975);
and (b) the instanton-induced interaction (Betman and
Lapex'ashvili, 1985; Kochelev, 1985; Shuryak and Rosner,
1989; Takeuchi and Oka, 1991).

How can one distinguish these two mechanisms'7 One
possible way is a comparison of the ud and us pairs, relat-
ed to point (4) in the discussion above. The conclusion
drawn above is ofte~ taken as a proof that the spin split-
ting mechanism is due to a gluon-magnetic spin-spin in-
teraction; but, as shown in Shuryak and Rosner (1989),
the instanton-induced forces lead to precisely the same
p1 ed1Ct ion.

Another possible way is to look at the corresponding
correlation functions. Even if both mechanisms are
tuned to fit the observed mass splittings, they have, in
general, a di6'erent spatial dependence. In fact, both are
rather shor t-range forces; but still they should have
difFerent systematic errors on the lattice. If, as it follows
from IIA, the typical instanton radius is as small as —,

' fm

(Shuryak, 1982a; Diakonov and Petrov, 1984; Shuryak,
1988b), one still may have problems, even with the lattice
spacing being about a -0.1 fm. And, certainly, correla-
tion with instantons can be studied on the lattice on a
configuration-by-configuration basis.

The last topic in this section is the OPE analysis of the
baryonic coxrelators, as initiated by B. L. IO6'c and colla-
borators (Ioff'e, 1981; Belyaev and Ioffe, 1982; see also
Farrar, Zhoang, Ggloblin, and Zhitnitsky, 1981 and
Reinders, Rubinstein, and Yazaki, 1983). The results ob-
tained in these papers show some xemarkable features
(which were partly unnoticed in the original papers), well
correlated with our discussion above.

We shall use Ioff'e's nucleon and 6 currents, which are
defined as (IofFe, 1981)
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K ( )=Tr[y (li (r)11 (0))],
K~(r) =Tr[yo( 11' „(r)qf, „(0)) ] . (4.27)

I
l

I I I I
l

I I I I
l t

The two points are separated by the Euclidean time w.

Both correlation functions Rre nonzero in the free-
quark approximation; so, as above, we normalize the
correlators to these values:

K free{
X (4.28)

K free
( (4.29)

I.et us now present the OPE predictions by IofI'e (1981)
and Belyaev and IoFe (1982)

I l 1 I I I l I I It f

( )=1+,((gG„' )'&
3X2

452'
„&{gG„.)'&3X2"

+4~'+ & sty)'(1 —7r'm'/96)+
12

R~(r)= 1—

+ (fP) (1—v m /32)+ .
72 0 (4.30)

FIG. 21. Ratio of the nucleon correlation function (see text) to
that corresponding to the free propagation of three quarks vs
distance x (in fm). The short-dashed, long-dashed, and short-
dot-dashed lines are the OPE predictions including the gluon
condensate, the gluon and quark condensates, and the gluon,
quark, and mixed condensates, respectively. The solid line is
the resulting prediction of Belyaev and Iota, (1982), to be com-
pared with the resulting OPE line at x &1 fm. (The long-dot-
dashed line shows the contribution of the continuum states,
apart from that of the nucleon itself. )

Here mo= ig(—go&„f'O' P)/(Pg), according to
Ioffe, it is rather large, of the order of 0.5—1 GCV . Note
that these (gP) corrections correspond to straightfor-
ward application of the vacuum dominance hypothesis
(see Sec. III.B). Radlatlve col'1 ectlolls 'to tlle111,
0(a, )ln(1/rp), which played an important role for vec-
tor mesons, are not included.

The corresponding curves are displayed in Figs. 21 and
22. The short-dashed, long-dashed, and dot-dashed lines
are OPE corrections including all terms up to gluonic
condcnsatc~ quark condcnsatc, Rnd quaIk-gluon condcn-
sates. One can probably trust the last line up to, say,
x =0.7 fm before it starts to bend too much.

As we do not have experimental data for this correla-
tor, we can only compare it to predictions for these
correlators, whj. ch are actually based on sImj. lar equa-
tions. If we paramctrize the imaginary part in the usual
way, wc gct

3 Qo

Kf, (x)=2k, D'(mz, r)+ dss D'(s', v),

(4.33)

&~=1.5 GeV, P, =0.45 GeV (2m. )

W, =2. 1 GeV, X'=2.3 GeV'(2~)'.

(4.34)

{4.35)

Itl I
l

I I I I
j

I

i

BI

where D'( m~) = —d/de(m, v ). The parameter values
suggested by Belyaev and Io(I'e (1982) are

oo

K~(x) =P,D'(m~, r)+ s ds s D'(s'~2, ~),

{4.32)

49These formulas have been recalculated in the space-time rep-
resentation from the original expressions given in Borel-
transformed form. The vacuum expectation values of operators
were evaluated using the vacuum dominance hypothesis.

~OIn general, behavior like this is typical for any power expan™
sion of a rapidly falling function. The subsequent terms are sign
changing and tend to compensate each other.

gl

lw
I ~ & I l

l.5

FIG. 22. Same as in Fig. 21, but only for the 6 correlation
function. In this case we have shown by two solid lines predic-
tions of two groups: BI (Belyaev and Ioffe, 1982) and FZOZ
(Farrar et al. , 1981).

Rev. Mod. Phys. , Vol. 65, No. 1, January 1993



Edward V. Shuryak: CorreIation functions in the QCD vacuum

The corresponding prediction correlators are also shown
in Figs. 21 and 22 as the solid lines. Here BI stands for
the predictions of Belyaev and Ioffe (1982), while FZOZ
corresponds to Farrar et al. (1981), where the baryonic
parameters were obtained from a somewhat diferent set
of sum rules (Chernyak and Zhitnitsky, unpublished).
The latter work obtained similar parameters for the nu-
cleon, but significantly smaller coupling for the
A, =0.5 GeV (2~) . The agreement between the OPE
and the predicted curves in some regions of v. is not
surprising: the parameters of these curves were obtained
from essentially the same sum rules.

What is surprising is the large predicted magnitude of
the nucleon correlator at distances of from 1 —2 fm,
where they are essentially larger than the perturbative
ones. Comparing this curve with the mesonic ones dis-
cussed in Sec. II, one sees that they are reminiscent of the
pseudoscalars, for which strong attractive forces certain-
ly exist.

It seems the curves for the 6 have less pronounced
peak than those for the nucleon, if the FZOZ numbers
are used. Is it because the 6 contains only diquarks of
spin oIlc, similar to thc p, while the nUclcoIi also has sca-
lar diquarks, similar to scalar and pseudoscalar Inesons
with strong instanton-induced interactions'7

Although these curves seem to support our discussion,
it remains to be proven whether these OPE predictions
are really true, and it is not actually applicable at such
large distances.

Recently the first attempt to calculate the instanton-
induced corrections to baryonic correlation functions in
first order in 't Hooft interaction was made. Kochelev
(1990) reported a significant improvement of the sum
rules compared to the loRe OPE-based results. Similar
work in the IIA framework is now in progress, including
the evaluation of all orders of the 't Hooft interaction.

We have seen that a number of approaches, including
the naive quark model and the OPE, suggest the ex-
istencc of an attractive qq interaction inside the nucleon.
The attraction is less pronounced inside the 6 and there-
fore is attiibutcd to thc spin-0 isospiIl-0 dlquarks. If thc
attraction is there, it can explain why the nucleon is so
light and its coupling to the IofFC current is so large. The
nature of these forces remains an open question. We also
do not UndcrstRnd why lattice simulations have problems
in reproducing them.

V. CORRElATION FUNCTIONS AT NONZERG
TEMPERATURES AND/GR DENSITIES

(Shuryak, 1980). This transition can be studied experi-
mentally in heavy-ion collisions at high energies. Such
experiments are under way at CERN and Hrookhaven
[see Quark Matter-89 (1990) and Quark Matter '90
(1991)j. Construction of a large, dedicated facility in
Brookhaven, the Relativistic Heavy Ion Collider (RHIC),
was begun in 1991, and there are plans to use, in the
study of this transition, the future Large Hadronic Col-
lider at CERN as mell.

This problem can be studied theoretically in the frame-
woik of VRrloUs models Rnd, from thc flIst pIinciplcs of
QCD, by numerical simulations on the lattice. This work
is very active at the moment [see Lattice 88 (1989); Lat-
tice 89 (1990); Lattice 90 (1991}]. The proposed
TERAFLOP project ' (TeraAop, 1992) in the United
States promises to increase the computer power involved

by 2—3 orders of magnitude.
Readers interested in finite temperature QCD in gen-

eral are directed to Shuryak (1980), Cxross, Pisarski, and
Yaffe (1981), Shuryak (1988a), and Hwa (1990). In this
section we shall concentrate on the correlation functions
at finite temperature.

Two main qualitative features of the QCD vacuum will

disappear at a high enough temperature: one expects
deconfinement and chiral symmetry restoration. Figure
23, taken from a recent paper by the Columbia group
(Brown et al. , 1990), makes a brief summary of our
present understanding of the corresponding phase dia-
gram. Two observations are important: (1) The two
phase transitions mentioned seem to be well separated,
which supports the idea that they are based on complete-
ly different physics. (2) The real world seems to be out-
side of the first-order transition regions, but still very
close to the line of the chiral one.

Speaking about the QCD vacuum more quantitatively,
one may ask why typical energy density is needed to
melt it7 For deconfinement one may take as a guess
something similar to the MIT bag constant,

8MII 50 MCV /fm

For the energy density related to chiral symmetry res-
toration, one may take the simple estimates (Asakawa
and Yazaki, 1989; Li, Bhalrao, and Bhadury, 1991) in the
Nambu —Jona-Lasinio model. This is essentially an esti-
mate of how much energy will be gained if the quarks in
the negative-energy Dirac sea are correlated, making the
quark condensate and the massive constituent quarks.

Because the QCD vacuum is a complicated medium
made out of nonperturbative Auctuations of quark and
gluon fields, one naturally arrives at the idea of trying to
"melt" it. The present understanding is that at some
critical temperature or density it undergoes a transition
to another phase called the quark-gluon plasma

5iSimilar projects are developing in Europe and Japan as well,
but none have been approved yet.

%"e shall use the notion of critical temperature T„meaning
the one at which specific heat is maximal and chiral symmetry
is "practically restored. " Numerically it is expected to be about
150—180 MeV.

53We do not speak here about the temperature T, because the
energy density is Inuch more relevant for experiments.
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We have discussed in the preceding sections what kind
of inforn18tion is currently available about the correla-
tion functions at T=O. Roughly speaking, phenomenol-

ogy tells us that the physical spectral density can usually
be represented by two distinct components,

1m'�(s)=f 5(s —m )+8(s E—o)I mK~, «( s), (5.3)

O,O!—

O.OI 0.025
mu, d a

FIG. 23. Diagram of the @CD phase transitions, given in the
m„,m, plane (the light and strange quark masses, respectively)
according to Brown et aI. (1990). In the lower left corner, one
observes a first-order chiral restoration transition, and in the
upper right a first-order deconfinement. The experimental
point is shown by the dashed circle.

Without going into details, we conclude only that this
leads to a magnitude of chiral energy density comparable
to the BMIT value.

However, it is important to realize that the total non-
perturbative energy density of the QCD vacuum is much
larger: using the trace anomaly relation and the value of
the gluon condensate (Shifman et ai. , 1979b), one obtains
(Shuryak, 1978a)

11K,/3 —2%~ /3

128m

-500 MeV/fm

where X„N& are the number of quark colors and Aavors.
Therefore one may conclude that some important non-
perturbative effects should be present even at T larger
thRQ that Qccdcd for dcconflncnlcrit and chiI'Rl restora-
tion; and in order to obtain the quasi-ideal quark-gluon
plasma, one actua11y needs to surpass this energy density.
That is why the planned energy of the heavy-ion collider
is chosen to be so high.

The hadrons are expected to melt along with the vacu-
um as one approaches the phase transition. Presumab1y,
hadrons gradually become U~stable in hot matter and
finally fail to represent the main degrees of freedom of
the system. To discuss hadrons at finite temperature is
rather tricky, because we have to define precisely the ob-
jects of discussion at nonzero T.

The correlation functions, on the contrary, have the
same definition below oI' above T~ aild I'ctairi csscQtially
the same physical meaning. The only obvious
modification in their definition is that the averaging
changes its nneaning, the angular brackets here represent-
ing the statistical avex'age over the Gibbs ensemble,
characterized by the temperature T and possibly by
chemical potentials, for finite charge ox fl.avor densities.

describing propagation of bound quarks at large dis-
tances and of free quarks at small distances.

Is this general structure preserved at TWO? I.et us
take it as a rough working hypothesis. If so, the general
question formulated above is I'cdUccd to 8 qUcstloIl about,

the tempex'ature and density dependence of these three
parameters, f, m, and Eo.

We have already mentioned two phenomena that are
expected to occur at high temperature —deconfinement
and restoration of chiral symmetry. As one signal for
deconfinemcnt, one can consider "hadron smelling, "
presun1ably detectable in the correlation functions as a
strong decrease of the coupling constants f to local
currents. Another possible signal might be a drop of
the observed threshold Eo.. the threshold under
confinement may be interpreted as 4m, it (see discussion
in Sec. IV), and we expect it to drop to something like

2m, & at the point where decon6nement takes place.
So far there has not been much discussion in the litera-

ture of the effect of phase tx'ansitions on the correlators.
Rather, the main focus has been on "dropping masses"
m(T) There .were suggestions that parity doublet ha-
dronic modes could be formed (rr cr, p——Ai, X %*, —
etc.) above T, (DeTar and Kogut, 1987). Another in-

teresting suggestion is that masses of many hadronic
modes should vanish at the critical point, because they
are related to the vanishing quark condensate (Brown,
1991), and this phenomenon may cause much more
smooth behavior at the phase transitions (Brown, Bethe,
and Pizzochero, 1991) compared to naive estimates with
free pions and quark-gluon plasma.

Lct us add to this list of gcnerRl questions 8 fcw morc
that are related to spccific channels. As we have men-

tioned, the isovector scalax' channel most probably has no
"normal" qq mesons; so these correlators are mainly re-
lated to the quark continuum. As T approaches T„does
the I=1 scalar resonance go down in mass to meet its
parity partner, the pion, and bccon1e a visible resonance,
OI docs orle have simply 8 cut with R dccI'casiIig thresh-
old, going down as the temperature approaches T,7 Can
the scalar-pseudoscalar mode, representing large Quctua-
tions in qq, persist even above T, '?

The next very interesting channel is the q', the isoscal-
ar pseudoscalar channel. It is well known that U~(1)

54The usual order parameters used for the deconfinement on
thc lattlcc, such as thc expectations of Wilson of Polyakov

loops, are not really useful in theories with light quarks, be-

cause forces between static quarks are screened.
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chiral symmetry is explicitly broken by the instanton-
induced interaction, and therefore it is never restored in a
strict sense. However, at some temperature it is restored
for practical purposes, in the sense that diA'erences be-
tween singlet (g') and octet (K, m, r)). correlation func-
tions become small.

Thinking about the mixing of hadrons made of quarks
with glueballs, one may naturally ask whether the
quark-related and the gluon-related correlators approach
their high-T limit at the same or at di6'erent tempera-
tures. In particular, it is known that quark-made mesons
are much lighter than glueballs: does this imply that one
will need higher temperatures to "melt" the glueballs?

In the remainder of this section we shall review what is
known on this topic. Investigations are only recently
started, so only a few of these questions have answers.

B. The low-temperature and low-density limits

The Gibbs averaging of the correlation functions can
be written, in general, as the sum over stationary states

KT(x ) = & (j(x)j(0) ) ) =&„&n
~
j(x)j(0)e

(5.4)

If the temperature and baryon density are small enough,
the matter will be normal hadronic, made of well-
separated particles: pions at low T or nucleons at low
densities nb. Therefore, to first order in rnatter density,
one need consider only the one-body states in the statisti-
cal sum. This makes finite density corrections calculable,
provided the corresponding matrix element over the ha-
dronic state can be estimated.

Let us restrict our discussion to the case of zero densi-
ty of all charges and divide the low T range into two
separate regions: (a) parametrically small temperatures,
meaning that power series in T may be terminated at the
lowest nonvanishing terms, and (b) any T below T„ex-
cluding the vicinity of the transition region.

In the former case, one can use such general methods
as the partially conserved axial current hypothesis
(PCAC) and the Weinberg effective Lagrangian. In the
latter case, one should use some more involved parame-
trization of the empirical interaction between particles
involved. Note that in the latter case the conclusions are
essentially model independent, but their accuracy is lim-
ited by the accuracy of the corresponding data.

As an example of the general statements valid at
parametrically small temperatures, we consider vector
and axial correlators with p, A

&
quantum numbers, fol-

lowing Dey, Eletsky, and Ioffe (1990). At low tempera-
ture, the vacuum has added a dilute gas of pions; so finite
temperature expectation values can be expressed in terms
of the thermal density of pions n ( T) as

(M) =(M)+n (T)&~IMl~) .

To evaluate (~~ V'(x) V (0)~vr), one can use PCAC and
replace it by vacuum averages of the type ( A VVA ).

Here A, V are axial and vector currents, and their upper
indices are, for example, those of the SU(2) isospin group.
Then, using commutator relations

[ga Vb] fabcgc [ga gb] fabcVc (5.5)

it can be further reduced to a combination of T=O vec-
tor and axial correlators. The results can be written in
the following elegant form, expressing the small-T corre-
lators in terms of vacuum correlators:

K„(T) =(1—e)K„(T=O)+eK„" ( T),

K~ (T)=(1—e)K„" (T=O)+eK„(T) .

(5.6)

(5.7)

The admixture coefficient is simply

T2

6I
4d k 1

(2~)32k exp(klT) 1— (5.g)

As both vector and axial correlators at T=O are known
(see Sec. II), we therefore know both correlators at finite
but parametrically small T, e (( l. In a later paper (Elet-
sky, 1990) a similar statement was also proven for
positive- and negative-parity baryonic currents. From
this general approach, one has learned that vector and
axial correlators start to merge at small T. By the time
T)T„they should become identical.

Unfortunately, this general approach is very restricted
in its applicability, as the following argument shows.
What has been taken into account is essentially the
forward-scattering amplitude of a pion on virtually a p
meson or nucleon. This is indeed known at low pion mo-
menta from quite general considerations. However, this
region ends as soon as the thermal pion energy becomes
large enough to hit the first resonance, say, A

&
in the ~p

channel or 6 in the mN case. This condition actually re-
stricts T to a level below IOO MeV or so.

However, using the experimentally measured forward-
scattering amplitudes, one can get realistic estimates of
the modification of hadrons at low T. Such calculations
for m., K, p, co, and other mesons, modified in the pion
gas, were made in Shuryak (1991) and Shuryak and
Thorsson (1992). Without going into details here, let us
only mention some main conclusions. In all the cases ha-
dronic dispersion curves co(k) were found to shift down
with increasing T. However, the magnitude of the eff'ect

was found to be rather modest, even at T=150—200
MeV, where the phase transition is expected. Roughly
speaking, the corresponding collective potentials are of
the order of the nuclear potential well, say, —50 MeV, an
order of magnitude smaller than rnesonic masses them-
selves.

These calculations show that the hadronic masses can
significantly drop only very close to T„where the calcu-
lations are inapplicable due to possible multiple particle
interactions. Whether the masses really drop or not
remains an open question.
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C. Quark propagation in the quark-gluon plasma
at high temperatures

d k exp(ikx)
(2ir) k + [AT(2n —1)]

(5.9)

where n ranges over all integers, positive and negative.
The second method leads to

ST(x)=(y„B„) exp(ikx)
dk .k

1 1

(2~)3k 2 1+exp k/T

(5.10)

where the last term is the Fermi occupation factor, and
the third to

55In general, there will be different functions for spatial and
time separations, because the thermal system is not Lorentz in-
variant.

At very high temperatures (and/or densities) matter is
believed to be a nearly ideal gas of fundamental constitu-
ents, the so-called quark-gluon plasma. Discussion of
this statement in the framework of the perturbation
theory and beyond it can be found in Shuryak (1980,
1988a) and Gross et al. (1981). Without going into detail
here, many phenomena were found to be analogous to
those in ordinary electromagnetic plasmas. For example,
electric fields are known to be screened, there are plasma
oscillations, etc. Only the long-range gluo-magnetic field
may have a specific nonperturbative structure at the scale
g T.

If hot plasma is made of nearly noninteracting quarks,
one may expect that the correlators correspond to in-
dependent propagation of quarks, described by the ordi-
nary loop diagram with thermal quark propagators,
below denoted by ST(x). Such zero-order diagrams were
first evaluated for the vector correlator at TWO by Bo-
chkarev and Shaposhnikov (1986), and for the nucleon
current by Adami and Zahed (1990). These authors used
a Borel-transformed representation of the cor relator,
which made the derivation rather complicated.

Calculations are significantly simplified in the coordi-
nate representation. In the zeroth order, one has a com-
pletely independent propagation of quarks; so mesonic or
baryonic correlators are reduced essentially to the square
or cube of the thermal quark propagator. For simplicity,
we ignore the quark masses and consider correlators in
the spatial direction only.

There are three ways of getting the thermal quark
propagator: (1) use the standard Feynman rules in the
Matsubara formalism and then make a Fourier trans-
form; (2) use a real-time formalism and look at all scatter-
ing processes; or (3) solve the Dirac equation in space-
time with Matsubara antiperiodic boundary conditions.
The first way leads to the sum

ST(x)=So(x)f(rrTx ), (5.12)

where, at T=O, one has f(0)=1, So(x)=1/(2' x ) and
at TAO

z + 1+(z —1)exp( —2z)f(z) =z exp( —z)
[1—exp( —2z ) ]

At small z, fmay be expanded as

f= I —(7/360)z +0(z ) .

(5.13)

(5.14)

The meaning of the fourth-order coef5cient and the
reason why lower powers vanish will be discussed in Sec.
V.E. Consider now another limit: why does this func-
tion decrease exponentially, f(z) =z exp( —z), at large z?
This behavior implies that the thermal propagator decou-
pled from low-energy quark states, although they certain-
ly exist in the noninteracting gas of massless quarks.

Some readers are probably satisfied by the formal
answer to this question based on Matsubara formalism
(Eletsky and Ioffe, 1988): the lowest Matsubara frequen-
cy for fermions is (~T ). It may also be seen in perhaps
more physical terms by looking at the second equation
(5.11) containing the combination [—,

' —n&(k)] with the
Fermi occupation factor. In the case of Bose statistics,
one has instead a much more familiar combination

[ —,'+n~(k)], due to zero-point motion and thermal exci-
tations, respectively. In our case these two terms have
the same interpretation as well. At k =0 one has exactly
nf = 2, there is cancellation due to the destructive in-

terference of zero-point Quctuations and excitations.
One may also rewrite P —n~( k ) ] as —,

' [( 1 —n~ )
—nF ],

so that the particle-hole symmetry n~~(1 nF ) becomes—
obvious. If the situation near nf =0 and nf =1 is physi-
cally similar, up to a sign of the propagator, it is natural
that the point where occupation is exactly n~= —,

' is spe-

cial; here the particle and hole terms compensate each
other.

We now use these formulas to compare the expected
high-T behavior of the correlation functions with what is
known in the vacuum (T=0). In Figs. 24 and 25 com-
parison is made for the vector-axial and nucleon-5 corre-
lators. This comparison indicates that the axial correla-
tor should show the weakest T dependence in the interval
of distances considered, the p and 6 ones should show
somewhat stronger T dependence, and the nucleon corre-
lator should depend most strongly on T. We have not
discussed scalar and pseudoscalar cases, but from our dis-
cussion in Sec. III.A and Fig. 24 it may be inferred that
in these cases the T dependence should be even more
dramatic.

ST(x)=(y„B„)TX„(—1)" 2, (5.11)
1

x +(r n—/T)
where an antiperiodic scalar propagator is written as a
sum over paths with different "winding number. " These
different methods give the same results, which can be ex-
pressed in terms of a universal temperature modification
factor f,
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looked very mysterious. However, as it was shown in the
previous section, even for independent quark propaga-
tion, a destructive interference of two terms in the quark
propagator [nz(E) —

—,
' ] leads to such exponential decay.

A set of lattice data compiled by Gocksch (1991) is
plotted in Fig. 26 in the form of the so-called screening
masses as a function of temperature. The screening mass
is defined as

0.5 d lnK(x)
X~ oo dX

(5.15)

0 0.5 l.5

FIG. 24. Ratio of correlation function to that corresponding to
free-quark propagation, vs distance x (in fm). The dashed
curves correspond to p and A

&
channels at zero temperature, as

derived from experimental data in Sec. II. Two solid lines cor-
respond to the factor f (rrTx), describing modification of quark
propagators in the quark-gluon plasma; they are shown for
T=200 and 400 MeV.

D. Lattice data

1. Screening masses

Lattice studies of correlation functions at nonzero T
were pioneered by DeGrand and DeTar (1986), who ob-
served the exponential decay with distance and interpret-
ed it as the existence of hadronic modes, even at high
T & T, . As it was in apparent contradiction with popular
ideas about deconfinement and even with perturbative
Debye screening of color charges in the plasma phase, it

Its value at low T should coincide with the masses of the
lowest hadrons in the corresponding channels. At
T& T„data for vector mesons and baryons show that
M/T is essentially constant. Moreover, although it is
not exactly 2m and 3m, they agree reasonably well with
the corresponding values after finite-size corrections
(Born et al. , 1991).

The following observations can also be made on the
basis of these results.

(a) The lattice results clearly show one of the anticipat-
ed phenomena, parity doubling. At T) T, vector-axial
and scalar-pseudoscalar correlators, etc., become identi-
cal, which is a direct consequence of the restored chiral
symmetry.

(b) For the vector and baryonic correlation functions,
the asymptotically high-T form is smoothly reached al-

ready near T„without any noticeable discontinuities.
(c) For the scalar-pseudoscalar case, one observes

much smaller screening lengths than those corresponding
to Matsubara frequencies.

15 I I I

Scr eening Masses

I I I I

(
I I I I

i

I I I I
i

I I I I

BI nucleon 10—

0

20 0.5 l.5

0
o
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FIG. 25. Same as Fig. 24, but for baryonic currents. Two solid
curves for T=200 and 400 MeV correspond to the factor
f (mTx ); the dashed ones are B.elyaev-Ioffe (BI) predictions (Be-
lyaev and Ioffe, 1982) for the nucleon and Farrar et al. (FZOZ)
ones for the 6 (Farrar et al. , 1981)discussed in Sec. V.

FIG. 26. Compilation of screening masses (Gocksch, 1991) ob-
tained on the lattice for diA'erent correlators vs temperature T
(scaled in units of the critical one, T, ). The short-dashed curves
show values 2mT, 3m.T corresponding to the lowest Matsubara
frequencies in the continuum, while the long-dashed ones show
their values for the finite lattices used.
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2. Binding of qq pairs propagating
in spatial direction MeV

0.3
T =350MeV

The question of whether qq pairs are correlated or
move independently was addressed in the recent lattice
study by Bernard, DeGrand, DeTar, Gottlieb, Krasnitz,
Ogilvie, Sugar, and Toussaint (1991). It was demonstrat-
ed that if the qq pair is forced to propagate large distance
in, say, the z direction, it moves in the transverse x,y
plane in a correlated way. The corresponding wave func-
tion at finite T happens to be similar to that at T=0, and
it even has a smaller radius. This result has created some
excitement and we believe, some misinterpretation.

The key technical point, important for the understand-
ing of the terminology used, is an interchange of the time
t and z axis. After transformation to this new space, one
deals with a system at zero temperature in a periodic box
in the z direction, with periodicity /3=1/T. Using this
language it is obvious that in the high-T limit the so-
called dimensional reduction takes place, and a 1+3 di-
mensional gauge theory becomes a 1+2 dimensional one
(Appelquist and Carazzone, 1975).

The main physical point is that in the high-T limit the
motion of a quark in the new space is dominated by its
momentum in the z direction, which, as a result of the
antiperiodic boundary conditions, is given by ~T. For
the motion in the transverse directions x,y, this momen-
tum acts just like a mass:

M =+m +~T (5.16)

As at a high temperature, M,z becomes very large, any
attractive potential can bind the quarks in the transverse
direction.

Qualitative features of the related quantum electro-
dynamic problem of d =2 positronium were recently dis-
cussed in Hanson and Zahed (1991): apart from the
effective mass just mentioned, another important in-
gredient is the logarithmic Coulomb potential in two di-
mensions. More quantitative analysis of this problem
was made by Koch et al. (1991).

Turning to the QCD case and using the old dimension-
al reduction argument (Appelquist and Carazzone, 1975),
one realizes that one has to deal in this case with
d =2+1 Yang-Mills theory, which is far from simple. In
particular, as argued in D'Hoker (1982), it has a linear
confining potential, as do d= 1+1 and d= 1+3 (the real
QCD!) theories.

In the high-T limit quarks have large effective mass,
similar to superheavy quarkonia (Appelquist and Pol-
itzer, 1975); so the size of the bound state is small
R —1/g T and the Coulomb potential is justified. Howev-
er, one cannot compare this picture with the available
lattice data because the temperature is too low. The les-
son learned from quarkonium physics is that the nonrela-
tivistic approach based on an effective potential works
very well. Such effective potential, in fact, was numeri-
cally studied some time ago by Manousakis and Polonyi
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FIG. 27. Wave functions for p, m. channels at T=250 MeV (a)
and T=350 MeV (b), as a function of r/a (a =0.22 fm). The
lines are solutions of the d=2 Schrodinger equation with the
potential discussed in the text from Koch et al. (1991), while
the points are from lattice measurements by Bernard et al.
(1991). The solid line and the short-dashed line correspond to
p with spin projections S,=+1 and 0, respectively, while the
long-dashed line corresponds to the pion wave function. In (a)
normalization is arbitrary, while in (b) all cases are normalized
in the same way.

(1987), who found for the potential

(5.17)

One may compare these data with the potential correspond-
ing to quarks propagating in time direction. Not only are the
confinement forces absent above the deconfinement tempera-
ture, but even the Coulomb part is much smaller, due to screen-

ing effects.

with a =0.184+0.02 &cr =0.22+0.03. This should be
compared to the T=0 parameters, a =0.25,
&o =0.22+0.02. Thus the potential measured in the
space direction appears to be essentially T independent.

In Koch et al. (1992) spin-dependent forces due to a
Fermi-Breit interaction are discussed in detail. In partic-
ular, this paper points out that the vector states p, co are
split into separate states at high temperature, depending
on the spin projection S, on the propagation axis. All
these splittings are proportional to one common parame-
ter, the effective color charge, and more detailed lattice
study can check the Fermi-Breit splitting mechanism
well enough. Presumably, it is the only mechanism to
survive at high T, while at low T nonperturbative phe-
nomena discussed in previous sections should also be in-
volved.

With a potential fixed, one can proceed further and
solve numerically the d =2 Schrodinger equation and
compare it with lattice data, as shown in Fig. 27. Com-
paring data for the p, m channels, one can observe a
significant difference between the two cases. The average
size of the pion is significantly smaller and, in particular,
at small distances r & 2a, the pion wave function is much
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more prominent, with If(0)i about 4 times greater
than in the p-meson case. Let us also note that spin-
dependent forces explain not only the difference in wave
functions, but also large splitting of the screening masses
discussed in the previous section.

We have discussed in this section correlation functions
in the spatial direction at high temperature. Unlike for
T=O, these spectra are by no means related to the energy
spectra of hadronic modes. However, the corresponding
momentum or "screening masses' spectra, as well as the
corresponding wave functions, happen to be very similar
to those at T=O. This may be explained by the d=2
Schrodinger equation with an eff'ective mass (5.16) and
potential (5.17).
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FID. 28. Baryonic charge susceptibility for singlet (a) and non-
singlet (b) definitions (5.17) vs the bare coupling constant g (ar-
rows show positions of the corresponding chiral restoration
temperature T, and 1.5T„from Gottlieb et al. , 1987).

3. Baryonic number susceptibility

As a final topic, we mention an interesting set of lattice
data (Gottlieb et al. , 1987) related to the so-called baryon
number susceptibility (McLerran 1987):

yb=(1/T) Jd x((nb(x)nb(0)) ), (5.18)

where nb is the baryon density. Such an integral measure
of the SU(3) singlet vector correlator (a combination of
co, p ones) was found to jump significantly at T„as shown
in Fig. 28, soon reaching about —, of its asymptotic value
corresponding to the free thermal motion of light quarks.
Shown also in the same figure, the nonsinglet susceptibili-
ty with the quantum numbers of p has the same behavior,
and within the error limits (Gottlieb et al. , 1987). The
definitions for singlet and nonsinglet cases can also be
written as derivatives with respect to the chemical poten-
tials,

correlation functions integrated over space-time. The
integrated correlators vanish at T=O, which can be ex-
plained as follows (McLerran, 1987). The general struc-
ture of the vector correlator at T=0 is
II„=(a„a,—a g„,)II(x), and the density-density corre-
lator is the II00 component. The two terms generally
compensate time derivatives, and the spatial integral over
spatial derivatives vanishes.

At nonzero temperature this simple form for the vec-
tor correlator is no longer valid. There exist other trans-
verse tensors, because the thermal rest frame is special.
Thus yb can be nonzero. However, Fig. 28 suggests that
no significant modification in vector correlators takes
place until T is very close to T, .

Certainly, much more work is needed to reach a real
understanding of these data. It would be helpful to mea-
sure the entire point-to-point correlation functions FT(R)
on the lattice, not just its derivative, (the screening
length) or an integral (the susceptibility).

y, » (a/a~„+a——/aI „)(n„+nd ) . (5.19)

One may be puzzled by this jump after our previous
experience of smooth behavior in the screening lengths.
As the magnitude of gb is comparable to that expected
for free quarks at high temperature, the real question is,
why is g& so sma11 below T,?

One can answer this question in two ways. First, the
nucleons are the lowest baryons and they are rather
heavy. Therefore below T, we expect their density to be
low, and the effects of changes in chemical potential will
be small. Thus the data shown in Fig. 28 suggest the
baryonic masses do not drop significantly, until maybe
very close to T, .

Second, one can relate this susceptibility to the vector

E. Sum rules based on the operator product
expansion at 5nite temperatures and densities

Generalization of the QCD sum rules for nonzero tem-
peratures was pioneered by Bochkarev and Shaposhnikov
(1986), and for nonzero baryonic density by Drukarev
and Levin (1990). These two important papers have
created quite a substantial literature, which can only be
discussed in full in a specialized review. Our discussion
below concentrates on a few key points, some of them be-
ing firmly established and others remaining open ques-
tions. We conclude with a sample of the results. Even
more than for the vacuum case, the status of these pre-
dictions is not completely clear, but they are certainly
very interesting. In any case, they have raised many new
physical questions and have given a new perspective in
the area of finite temperature and density @CD.

On the topic of pion wave functions, the T=O pion wave
function by Bernard et al. (1991) is sensibly the same as the
zero-temperature Bethe-Salpeter amplitude calculated by Chu,
Lissia, and Negele (1991).

5 A warning: we have up to now ignored contact terms, but
they do contribute to the integrals.
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1. Modifications of the operator product expansion

SC(x)=rC"x. . . . . .x. «O~'I. }& (5.20)

and the thermal average of the operator would give fac-
tors n, . . . , n . In simpler terms, one simply has to

expand separately in powers of time and the space inter-
Val.

Thc k1ncmatlcs arc slightly mof c lnvolvcd foI vcctol
and axial currents, but it is essentially the same as the

In Sec. III.B we saw that many questions related to the
domain of applicability of the OPE remain open even for
the vacuum. In the case of nonzero temperature or den-
sity we certainly have to face extra complications. All
finite temperature complications can bc put 1nto two
categories: (a) modification of the OPE itself, because in
matter one has to include a wider set of operators on the
left-hand side; and (b) the physical spectral density on the
right-hand side is more complicated, containing not only
production processes but also scattering on matter con-
stituents. In this section we mainly concentrate on the
first set of questions, holding to our general idea that pre-
dictions for the correlation functions are interesting even
without empirical information, for comparison with oth-
er (e.g. , lattice) studies.

Let us first recall that the OPE has R generic scale p
used for the separation of the low and high frequencies,
with which the matrix elements and coefficients of the
operators are constructed. At finite temperature or
nonzero chemical potential, one should first decide on the
relationship between T and p. If T &&p, coefFicients C;
are not modified and only the operator matrix elements
«0; » ale cliallged, iiicludlilg ilew colltiiblltloiis f lorn

the heat bath.
The major difhculty with the finite temperature OPE is

that the set of contributing operators is no longer limited
to Lorentz scalars but includes all symmetric tensors.
This is, of course, due to the existence of a preferred
frame, the thermal rest frame. Let us define the unit
four-vector of the thermal frame, n„. If, for example,
one considers a correlation function of scalar or pseudo-
scalar operators, the QPE equation would have the form

one foI deep-inelastic scattering. As at T=0, the Fourier
transform of the correlator

T„,(q)=i Jd x e'~ &&j„(x)j (0)&& (5.21)

can be considered as a physical scattering amplitude, say,
of forward photon scattering on the heat bath, and its
imaginary part has all the usual analytic properties, al-
though it depends on the energy transfer co=(qn) and
momentum transfer separately. Standard notations for
vector current describe the corresponding physical spec-
tral density in terms of the two functions 8', and 8'2.

Here the transverse part of the vector n is
n „=n „(nq )q„/q—. This parametrization satisfies

gauge invariance of electrodynamics, which demands
that (Tq)=0.

The main new operators are the so-called leading twist
quark operators (Politzer, 1974) of the kind

o„„=yy„a„,. . . , a„y . (5.23)

The origin of these operators is easily explained. These
operators are associated with a process in which a quark
is created at point 0, travels from 0 to x, and then is re-
turned to the heat bath. Its amplitude can be written as

g(0 )I ( y&x „)/(2m x )I 1t (x ), where I =y„or y ~ for vec-

tor and pseudoscalar currents, respectively. All that
remains to be done is to simplify y matrices and expand
P(x ) in a Taylor series in x.

The lowest of these operators, with only two indices,
has dimension 4 and is nothing other than the quark
stI'css tcnsoI'. That 1s why ouI' small-distance expansion
of the quark propagator (5.14) started with the x" term.
Furthermore, the O(T ) coefficient is nothing more than
a pI'essure of the plasma made of free quarks.

Now let us display few OPE terms of the lowest dimen-
sion, measuring the correlation function in a spatial
diI cct1OIi x,

1
ImT„,(q)= —W, (q)(g„, q„—q, /q )+n„n, 8'z(q) .

2m'

(5.22)

K(x)/K„„(x)= I+x'[C, &
E' B'&+C, &

E'+—B'&+C, & iTy, a, t/r &]

+ '~c.&O~&'+c, &(ey,~)(~y,~) &+c.«y, ale& (5.24)

This equation includes some operators that have not
yet been studied in the literature, in particular, the gluon-
ic stress tensor (C2) and the square of the vector current
(cg).

ing, one cannot answer these questions without an under-
standing of the underlying nonperturbative dynamics.
However, some statements can be made about the matrix

2. Operator expectation values

The next set of questions concerns the temperature
dependence of the operator averages. Generally speak-

59For the nonconserved axial current there are four functions:
two additional ones can be chosen to be proportional to q„q
and cfp fl ~ + pl p g ~.
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elements, and we brieAy review some ideas suggested in
the literature.

Let us start with the leading twist operators just dis-
cussed. In Bochkarev and Shaposhnikov (1986) and in
many later papers on the subject, the diagrams were eval-
uated using the thermal quark propagator ST(x) instead
of So(x). It seems like a logical thing to do, but actually
this prescription has a limited region of validity. It in-
volves the operators mentioned above, but perturbative-
ly, which means that their average values are automati-
cally taken for an ideal quark gas.

Such estimates of these matrix elements may be used at
high T & T„where matter is indeed the quark plasma,
but they are not valid otherwise. Therefore the simplified
procedure based on thermal propagators overestimates
the temperature dependence of the correlation functions
at T K T~. In thc opposite limit of low T~ onc can evalu-
ate the quark part of the thermal energy density as
e (T)=g~e (T), where e„(T) is the energy density of a
dilute pion gas and y is the quark share of the pion Ino-
menta. This share is about y —

—,, inferred from empiri-
cal pion structure functions.

In OPE-based sum rules, one of the essential in-
gredients is the gluon condensate, (G„). In matter one
has to include two separate operators: essentially the
electric- and magnetic-field strength squared. An argu-
ment was proposed (Bochkarev and Shaposhnikov, 1986)
that the correction is connected with the average at small
T over the pion state (vr~G„, ~~) are small because they
are proportional to the pion mass. In Adami, Hatsuda,
and Zahed (1991) lattice data were used to conclude that
although these quantities decrease with T„ the decrease
occurs near T, and is roughly a factor of 2. The IIA also
predicts a qualitatively similar behavior of the instanton-
induced gluonic fields. It can be parametrized, for exam-
ple, as follows:

(5.25)

where To is of the order of T„but actually has nothing
to do with it. For example, there is a systematic suppres-
sion of the instantons of size p T & 1, but they certainly do
not dEsappear at the chiral symmetry restoration point T,:
the so-called instanton —anti-instanton molecules do exist
even in the chirally symmetric phase.

The next important ingredient of the OPE-based sum
rules is specific four fermionic o-perators. Their analogs at
finite T are, generally speaking, a set of all symmetric
tensors, and the corresponding OPE formulas are very
complicated. ' In Bochkarev and Shaposhnikov (1986),
estimates of their expectation values were obtained as fol-

=1—T/T, . (5.26)

The last parametrization is used because it is simple and
rcproduccs lattice data.

3. Some results

We now apply the above approximations to the vector
and axial correlators. Speci6cally, we start with the OPE
expression at T=O, modify the quark loop with the fac-
tor f (mTR ), and take. the condensates to have a temper-
ature dependence given by Eq. (5.26). The results are
shown in Fig. 29. We see that both vector and axial
correlators converge rapidly and join smoothly to the ex-
pected high-temperature curves. Next, one can make fits
to such curves to a parametrized spectral density, deriv-

ing the temperature dependence of the parameters in-

volved.
As discussed earlier, the spectral density is usually ex-

pressed with three parameters, the resonance mass m, its
coupling to the current f, and the threshold energy Eo.

Bochkarev and Shaposhnikov (1986) first analyzed the
temperature dependence of the p channel in this way, and
they concluded that all three parameters decrease with T,
with Eo dropping much faster than the others. However,
several later papers addressing the same issue (Dosch and
Narison, 1988; Furnstahl et al. , 1990; Adami et a1., 1991)
found somewhat weaker temperature dependence of all
three parameters in the vector channel, still with the
main T dependence seen in Eo. Figure 30 shows the typi-
cal results taken from Adami et al. (1991).

lows: they were rewritten as a sum of squares of some
currents, with quantum numbers of diferent mesons. At
small T, one therefore may start with a simple pion loop
diagram, making a unique estimate of the T dependence
of the corresponding matrix element. For example, for
the operator 0 entering the p-meson sum rules, this
pion loop leads to a negative correction; so its expecta-
tion value diminishes with temperature.

Another simple way of reasoning (Furnstahl, Hatsuda,
and Lee, 1990; Adami et al. , 1991) leading essentially to
the same conclusion is as follows. According to the vac-
uum dominance hypothesis (Shifman er Ql. , 1979b), VEV
of four-fermionic operators can be expressed via quark
condensate squared. If so, it is natural to expect all of
them to Uanish at the chiral symmetry restoration point
T= T,. The specific parametrization usually used is then

«0„„;.„(T)» ((qq(T)»2
« o4 f., ;..(T =0)» « qy(0) )&'

6O%e recall that due to an anomaly relation this operator can
be considered as a trace of the energy-momentum tensor.

6iThe relevant formulas were derived for higher twist correc-
tions to deep-inelastic scattering (Ja8'e and Soldate, 1982;
Shuryak and Vainshtein, 1982a, 19821).

6~Actually, it is traditionally done in Borel representation,
with the so-called Sorel parameter playing the role of distance
in our approach. Let us repeat that there are no real advan-

tages behind this trick, which makes the whole presentation
much less transparent.
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FIG. 29. Schematic OPE predictions for vector (solid lines) and
axial (dashed ones), given by the ratio of the correlation func-
tion to that for free quarks vs distance x (in fm). Four solid
lines correspond to T=O, 140, 200, 400 MeV (from upper curve
down), and the dashed lines correspond to T=0 and 140 MeV
(in the last two cases, above T„they coincide with solid ones).

FIG. 30. Solid lines show predictions of the temperature depen-
dence of the p meson mass and of the threshold parameter of
the continuum So and the coupling constant F~, derived in
Adami et al. (1991) from the APE-based sum rules. (The points
are a slightly diQ'erent calculation and can be disregarded. ) The
"Model II" used corresponds roughly to a condensate
modification discussed in the text and to the correlation func-
tion shown in Fig. 29.

ESects in the p channel may be weaker than the other
channels, bccausc thc p corrclatoI' 1s close to free-quark
propagation, as wc saw in Sec. II. It would be interesting
and relatively simple to generalize the analysis done for
vector current to the axial case, where we have m. , 3 t

contributions and nonperturbative corrections acting in
the same direction.

Another suggest1011 ls 'to focils oil co, p IIiesolis, fol'

reasons related to experiment (Shuryak, 1991). Their
widths are small enough so that even a relatively small
shift of the mass could be observable. On the other hand,
their widths are large enough to give them a chance to
decay inside the "6reball" created in heavy-ion collisions.
Even in the environment of heavy-ion collisions, one can
observe two decay modes, e+e and K+I(, and thus
measure the coupling to the current. Therefore in these
cases the resonance modification with temperature can be
subjected to direct experimental testing.

Finally, consideration has also begun of correlation
functions in dense nuclear matter: Drukarcv and Levin
(1990), Cohen, Furnstahl, and Cyriegel (1991),and Hatsu-
da and Lee (1991). There are corrections of first order in
density that also contain certain nucleon matrix ele-
ments. Fortunately, these can be determined empirically
from deep-inelastic scattering. The results suggest that
nuclear matter produces signi6cantly larger corrections,

compared to the pion gas of comparable density, and
makes the nucleon lighter. %"hether the next-order
corrections produce positive shifts in the nucleon mass,
as would be required to saturate nuclear matter (see
Drukarev and Levin, 1990), is still unclear.

The current state of the art of QCD sum rules at finite
T does not allow firm conclusions. However, there is
some understanding of how the correlation functions are
modi6ed with temperature, and also what physical mean-

ing these modifications may have. A lot of work, both
analytic and numerical, is needed and is currently under
way.

A. Summary of phenomenological observations

In Sec. II we discussed the phenomenology of mesonic
correlation functions and showed that existing experi-
mental data not only fixed the loganthrnic derivative of
the correlation functions at large distances, the hadronic
masses, but, in several important cases, they also provid-
ed a good description of the whole function.

Using these data one can conclude that a realistic qq
1ntcr'act1oIl 1s much more complicated thaI1 jUst a UI11vcI'-

sal confining potential. Various channels show very
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different trends, and their deviations from a perturbative
picture of free-quark propagation in some cases occurs at
such small distances, where confinement effects are yet
unimportant. Several phenomena have been observed, in
particular:

(1) We have seen the superduality in the p and other
vector channels, giving unexpectedly small deviations
from the free-quark behavior. These deviations are
within 10—20%%uo up to very large distances 1 —1.5 fm,
while the correlation function changes in this interval by
several orders of magnitude. In other words, in all vector
cases all nonperturbative corrections in this range of dis-
tance are remarkably canceled. No explanation for this
phenomenon is known.

(2) It was shown that p and co correlators are identical
within errors in a wide range of distances. Not only the
masses of these particles, but also the coupling constants
and even the production amplitudes of the nonresonance
states are very similar. This means that the famous
Zweig rule forbidding Aavor mixing is unexpectedly strict
in the vector channels: it holds up to distances x -2 fm,
where the correlations are extremely small.

(3) The last interesting observation related to vector
channels is that even for the J ', P channels involving
strange quarks a similarity to all other vector correlators
persists up to distances of about 1 fm. The effect of
larger masses is partially compensated by larger coupling
constants, and all curves go together as shown in Fig. 31.
In other words, all corrections proportional to the
strange quark mass are canceled separately.

Taken together, observations (1)—(3) show that all
point-to-point vector correlators in coordinate represen-
tations are more similar than the cross sections from

which they were calculated. This clearly demonstrates
our main point: these correlators are more fundamental
objects than particular hadronic states and their excita-
tion amplitudes involved.

(4) Comparing the axial and vector correlators, one ob-
serves quite different behavior. This axial-vector
difference is due to chiral asymmetry of the QCD vacu-
um and should therefore gradually decrease with temper-
ature, disappearing at the chiral restoration point T= T, .

(5) The octet pseudoscalar correlators, including the ~,
X, and g channels, are very similar at distances up to
x =0.5 fm. In all cases the effect of a very strong qq at-
traction is seen already at x —

—,
' fm.

(6) The SU(3) singlet (g') pseudoscalar correlator shows
completely different behavior. No trace of attractive
quark interaction is observed, at least at distances x )0.5

fm, where it is presumably dominated by the evaluated g'
contribution.

Let us also point out that in none of the pseudoscalar
channels is any trace of the Zweig rule seen: on the con-
trary, the flavor-changing amplitudes seem to be the
dominant effect.

(7) Radiative J/g decays provide valuable information
on the g, g', g(1440) couplings to gluonic pseudoscalar
operator GG. Deviations from asymptotic freedom in this
case take place at very small distances x- —„' fm, as in

quark-related pseudoscalar channels. Similarly, also the
sign of these deviations indicates the presence of a strong
attraction.

(8) Qualitative comparison of all four spin-zero chan-
nels (scalars and pseudoscalars, octets and singlets) made
in Sec. II.H leads to the following conclusion: all devia-
tions from the asymptotic freedom can presumably be ex-
plained by the dominance of one particular amplitude
(denoted K ) changing both quark liavor and chirality.

100: B. What new experiments are needed?

x
O
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IO—
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O. l

'

x(fm)

FIG. 31. Phenomenological information on the various meson-
ic correlation functions discussed {same as in Fig. 2, etc.).
Different vector correlators were derived from completely
different sets of data, but they are very consistent with one
another and demonstrate a systematic trend.

Electromagnetic and weak currents are the only local
probes available in nature, and their relations to funda-
mental quark fields are by now well established. The
cross sections of e+e —+hadrons and ~—+v, +hadrons
are giving us fundamentally important information, in
particular, information about the correlation functions in
the QCD vacuum discussed in this review.

In view of significant efforts devoted to understanding
QCD (heavy-ion collider projects like RHIC, or new
large-scale lattice simulations like the TERAFLOP pro-
ject), one may also think about new generations of e+e
and ~-lepton-related experiments providing more accu-
rate data than those available today. Discussion of vari-
ous c and b "factories" is under way in many places
around the world, which may be the basis for some opti-
mism in this respect. Here are some possibilities related
to our discussion.

(1) In principle it seems feasible to achieve an experi-
mental accuracy of a few percent in the e+e cross sec-
tion resolved into I=0, 1 channels. If so, one will have
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vector (p, co) correlation functions with similar accuracy.
At the moment, the uncertainty in the correlators is
dominated by the poor accuracy (-30%) of the data in
the energy region E=1.5 —3 GCV. This corresponds to
the very interesting intermediate-distance region,
x =0.2—0.6 fm. If the gap is filled, we shall be able to
tell whether these correlators follow the OPE fomulas
and, if so, to measure directly the vacuum expectation
values of the operators involved.

(2) A new generation of r lepton hadronic decay exper-
iments is very interesting as the best source of informa-
tion on axial and strange vector correlators. The particu-
lar region of hadronic states with invariant mass above
the 3

&
mass is of main interest, since the available data

are very poor in this region.
(3) Our discussion in the rI' correlator, the axial anom-

aly, and the gluonic matrix elements was based on a rath-
er old set of data on J/g radiative decays. These studies,
done mainly at SPEAR a decade ago, have found many
interesting phenomena, but Inany related questions
remain unanswered. As it is the best way we know to ap-
proach the mysterious world of gluonic states and corre-
sponding matrix elements, further experiments are
Justified.

(4) Much better data on bb production above the 88
threshold can help to measure the magnitude of the
strong Coulomb potential. This is a new and potentially
fruitful method of measuring A&CD. Observable effects
are large, but they are of a perturbative nature and allow
for rcliablc cvalURtion by staIldRId Hlcthods.

(5) Although the t quark seems to be too heavy to form
narrow states, the shape of the tt production threshold
can still be used to measure CouloInb-type strong forces.

(6) Last, but not least, hadron modification at finite
temperatures and densities can be studied in high-energy
collisions of heavy ions. Instead of lepton annihilation
into hadrons, one observes the inverse process, a hadron-
ic production of lepton pairs, to detect the melting of the
p, co, P, and f mesons.

C. Further lattice studies

The main suggestion for immediate study is as follows:
It would bc very iIltcI'cstiQg to sUpplcIIlcnt currcIlt cfforts
oriented to measureInents of hadronic masses by a set of
data on point-to-point correlation functions. The most
1ntcrcsting region 1S Rt, 1ntcrmcdiatc distances x =0.2—1

fm, which corresponds to a few lattice spacings. For ob-
vious reasons, such data can be statistically more accu-
rate and also less affected by the finite-size effects,
presumably making their comparison with phenomenolo-
gy Inore conclusive. Some details of this suggestion are
discussed below.

(I) Cxenerally speaking, any integration of the correla-
tion functions leads to some loss of information, and
measurements with nonlocal sources certainly cannot tell
us much about the short-range interaction of quarks and
gluons. Separation of the contributions of short- and

long-range correlations in the vacuum is the natural
thing to do. In particular, it is important to understand
at which distances one should trust OPE-based expres-
sions in various channels.

(2) It has been shown that several correlation functions
are experiInentally known at all distances; so their com-
parison with lattice data can provide a much better test.
In particular, one may wonder if' lattice simulation can
reproduce such delicate phenomena as superduality in
the vector channels, their splittings from the axial one, or
short-range attraction in pseudoscalar channels.

(3) In this paper the ratio of the correlation functions
to those corrcspoIldlIlg to fI'cc"quaIk motion 1s systcITlat1-
cally used. If one normalizes the lattice data in a similar
way, some systematic errors, such as finite-size correc-
tions, can be canceled or reduced. MoIeover, using such
normalized correlators, one can avoid the problem of the
absolute scale of lattice units.

(4) It would be very interesting to study Ilavor-
changing correlation functions. the so-called two-loop
diagrams have not yet been studied because of the prob-
lems with statistics, but presumably correlation functions
at intermediate distances are still measurable. Hadronic
phenomenology tells us that these correlators are strong-
ly suppressed in all vector channels, but enhanced in the
pseudoscalar ones. It would be interesting to see whether
I.CxT reproduces these observations, even qualitatively.

(5) Studies of light-heavy systems can easily be extend-
ed to various angular momenta and parities, but so far
most of the work has been concentrated on the pseudo-
scalar channel. It was argued above that the pattern of
splittings of such mesonic correlators in parity could
shed some light on the old question of the applicability of
the constituent quark model. The point is whether the
model can describe both the spin-Aip and the spin-QOQAip

part of the propagator. Data on the light-heavy baryons
can similarly clarify the properties of the qq interaction.
In particular, studies defining at which distances and how
the X and A-type correlators become different can tell a
lot about the mechanism of spin splitting in baryons.
There are two candidates: gluon exchanges and
instanton-induced forces, Rnd oQ thc lattice onc CRQ iIl-

vent a number of ways to tell the difference between
them. For example, one may study spin splittings by ap-
plying the so-called lattice cooling, thereby killing the
pcrturbative component but preserving instantons.

(6) A technical point: the three-parameter fit for the
spectral density, with a 6 plus a 8 function, has proved to
be very accurate in most cases studied. It is even more
accurate than a four-parameter fit with two exponents
used in some lattice works, because it has both long- and
short-distance limits right. We recommend using it as
thc standard paramctrization of thc corrclators.

D. Theoretical problems

The list of questions formulated below is certainly re-
lated to phenomena discussed above, but they are listed

Rev. Mod. Phys. , Vof. 65, No. 1, January 1993



Edward V. Shuryak: Correlation functions in the QCD vacuum

in order of their theoretical importance, from the more
general to the more specific.

(1) Why are the quark m-ade hadronic states much
lighter than the glueballs? Or, speaking in terms of the
correlation functions, why are gluonic ftelds uncorrelated
at much smaller distances than the quark ones? Certain-
ly, there should be a big difFerence between the space-
time distribution of gluon and quark fields in the QCD
vacuum. One example is provided by IIA, which sug-
gests a picture of the vacuum as a very inhomogeneous
instanton liquid. According to it, gluonic fields are con-
centrated in small fluctuations, the instantons, while
quarks have another role: they jump from one instanton
to another, filling the whole space-tiIne more or less
homogeneously. I.GT also reproduces these qualitative
features of correlators, but it is at the moment very
difBcult to say whether it is consistent with this explana-
tion.

(2) It was argued earlier that correlation functions tell
us that, in fact, qq and qq interaction is much more com-
plicated than just simple universal confining forces.
After many years of studies of individual hadrons, only
now 1s an attempt bc1Ilg IYladc to undcl stand fiI'st t4c
much simpler objects, the small-size wave packets that
are the intermediate states of the correlators. The long-
range effects (confinement) are in this case much less im-
portant, but some others (like spin-spin interactions) are
enhanced. We have found the strongest deviation from
perturbative behavior at small distances in the case of oc-
tet pseudoscalars, where attraction dominates at dis-
tances as small as —,

' fm. The OPE formulas do not repro-
duce the effect. What is the physical nature of the short
range qq attractive interaction?

(3) Considering these data (which are also combined
with some limiting information about other spin-zero
channels, the 11' one and the scalars), we have concluded
that the quantum numbers of them in corrections point
toward the amplitude K, which changes both chiralI', ty
and JVavor of pal'tlclpatlng qllalks. T11e qllailtl1111 1111111-

bers of this interaction fit into the instanton-induced
't Hooft interaction; so it is the best candidate we know.
However, to make our arguments convincing, it mould be
interesting to measure all these correlators on the lattice.
Is there a window in which one may use the 't Hooft in
teraction in jirst order, avoiding complicated IIA calcula
tions?

(4) Now we come to a set of questions related to the qq
interaction and baryons. 8'hy is the nucleon so light,
compared to current lattice calculations? Is the OPE-
based conclusion really true, and is there a maximum in
K~(x)/Kg"(x) in which the nucleon contribution is
several times larger than the perturbative one? Is it also

63Unless one increases VEV of some four-fermion operators by
more than one order of magnitude compared to the "standard"
estimates.

true for the I= 32(5—) correlator? More generally, how do

the spin-splitting interactions depend on interquark dis-
tances?

(S) Let us ask some questions about the propagation of
a single quark in the QCD vacuum, assuming such ques-
tions CRn bc given physical meaning. Docs the constituent
quark model make sense? Is it indeed true that quarks
are "dressed smoothly, " with Z factors close to I, and
more or less independently from one another? Is it true, as
is sometimes conjectured, that the size of the constituent
quark is significantly smaller than I fm, a hadronic ra
dlus?

(6) Modification of all correlators with temperature
and density is a vast region for investigation. In particu-
lar, the correlators were decomposed above out of several
components: resonance and nonreson ance hadronic
states. Do these components depend on temperature sim/-

larly, or quite differently? What is "melted" first, the res-
onance contribution or the continuum threshold? 8'hich
correlation functions are discontinuous following the
chiral or confinement phase transitions? What is the na
ture of strong deuiation of the scalar pseudosc-alar screen
ing length from 21rT, which is not obserued in other chan
nels?

In conclusion of this review, lct us return to a general
point considered in the Preface. The QCD-related stud-
ies is a vast field. Many particular problems mere ana-
lyzed in detail, and we have a vast phenomenology and
great potential for better experiments and lattice simula-
tions. Even so, these new efForts will be more successful
if they are also supplemented by some woI'k aimed on
their synthesis, consolidating all studies to the common
set of observables and problems. Whatever goals this pa-
pcI' has reached, 1t 1s an attempt 1Il this dlrcct1on.

Notes addedin proof

Since this paper was submitted, some extremely impor-
tant new developments have taken place in the field, and
in this note we cite the main ones.

One of the main suggestions of this paper is to perform
detailed lattice studies of point-to-point correlation func-
tions. Now the first such Ineasurements have been made
by (Chu, Grandy, Huang, and Negele, 1992). Another
idea emphasized above was to get much more accurate
results fIom the instanton-based models, and those are
also now available, both for the simplest case or "random
instanton liquid" (Shuryak and Verbaarschot, 1992a,
1992b, 1992c), and interacting instantons (Shuryak and
Verbaarschot, 1992d).

A selection of the most im.portant data for lattice and
random instantons is shown in Fig. 32: they are surpris-
ingly consistent with each other in all cases. For mesons,
they are also very close to phenomenological expecta-
tions. For baryons, both show a remarkably difFerent be-
havior for nucleons and 5's, strongly supporting
Chernyak-Zhitnitsky predictions (Farrar, Zhoang,
Ogloblin, and Zhitnitsky, 1981) over Belyaev-Ioffe ones
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very critical. A recent paper (Hatsuda, Koike, and Lee,
1992) has addressed this criticism and deals with the
problem in a much more consistent way. However, it
still is incomplete (tensor operators are not really includ-
ed) and, by construction, restricted to the very low-Tr-e-
gion. Therefore, we still think some main conclusions of
this paper (e.g., qualitatively different modification of p
and co mesons, predicted there) still may be revised by
further works.
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FIG. 32. Correlation functions for the isovector pseudoscalar
(~), vector (p), scalar (5), axial-vector ( A, ), nucleon (N), and
delta (6) channels, as a function of distance x in fm, and nor-
malized by corresponding correlators for free massless quarks.
Squares and triangles show lattice results by Chu et al. (1992)
and random instanton vacuum (Shuryak and Verbaarschot,
1992b, 1992c), respectively. Solid lines correspond to experi-
mental data; long-dashed (Farrar et al. , 1981) and short-dashed
(Belyaev and Ioffe, 1982) ones show different predictions of the
QCD sum rules.

(Belyaev and Ioffe, 1982). As argued above, this provides
a completely new perspective in our understanding of
baryon structure.

At the same time more detailed studies of interacting
instantons (Shuryak and Verbaarschot, 1992d) have re-
vealed a problem: the "streamline"-generated interaction
leads to too strongly bound instanton —anti-instanton
pairs, which spoils a good description of correlators
reached in a random (=noninteracting) instanton vacu-
um. However, an additional repulsive core-type interac-
tion does solve a problem, and leads to even better agree-
ment with data, especially for scalar and q' channels.

New important results concerning the quark-gluon
plasma phase have been reported by Boyd, Gupta, and
Karsch (1992). In agreement with our arguments, they
have clearly observed the appearance of e6'ective quark
mass ~T if the quark propagates in spatial directions, but
only small perturbative mass for quarks propagating in
the time direction.

Our last comment deals with QCD sum rules at low
temperatures: our discussion of all these works above is

Most of what I have learned about correlation func-
tions has been gained through discussions with my old
friends A. I. Vainshtein, M. A. Shifman, V. I. Zakharov,
and V. L. Chernyak. The idea for writing this paper
presented itself naturally, because its substance was part
of a course on nonperturbative QCD in Stony Brook in
1990, a project which would never have materialized
without the practical help and everlasting curiosity of G.
E. Brown. I am also much indebted to S. I. Eidelman,
who supplied relevant experimental data, and to G.
Bertsch and J. Verbaarschot, who took on the painful
task of reading this voluminous manuscript and making
numerous suggestions. I should also mention that this
paper was finished at the Aspen Summer Institute, which
I thank for its hospitality. This work is partly supported
by the U.S. Department of Energy under Grant No. DE-
FG02-88ER4038 8.
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