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The single-electron transistor
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The discovery of periodic conductance oscillations as a function of charge density in very small transistors
has led to a new understanding of the behavior of electrons in such small structures. It has been demon-
strated that, whereas a conventional transistor turns on only once as electrons are added to it, submicron-
size transistors, isolated from their leads by tunnel junctions, turn on and off again every time an electron
is added. This unusual behavior is primarily the result of the quantization of charge and the Coulomb in-
teraction between electrons on the small transistor. However, recent experiments demonstrate that the
quantization of energy is important as well.
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I. INTRODUCTION

In 1978 a new subfield of condensed matter physics
was born when Thouless (1977) pointed out that the size
of a conductor, if made small enough, plays a role in
determining its electronic properties. In the following
decade a variety of theoretical and experimental
discoveries were made in what has come to be called
mesoscopic physics. The name was chosen to describe
submicron-size systems in which the behavior of elec-
trons can be fundamentally different from that in atoms,
which are much smaller, and from that in macroscopic
samples, which are much larger. An introduction to the
ideas of mesoscopic physics may be found in the article in
Physics Today by my colleagues, Altshuler and I.ee
(1988). In this Colloquium I shall describe a series of ex-
periments we have done on mesoscopic transistors. I
shall show that when a transistor is small enough, say a
few thousand angstroms or less in all dimensions, it
behaves in a very unusual way. Whereas a conventional
transistor turns on only once when electrons are added to
it, a very small transistor turns on and off again every
time an electron is added to it.

This single-electron transistor was an accidental
discovery we made several years ago. Since then we have
found a way of controlling its behavior, and in the past
year a quite simple model for the underlying physics has
emerged. In Sec. II, I tell the story of our initial

discovery that the conductance of small transistors turns
on and off periodically as a function of the electron densi-
ty. In Sec. III, I show how we demonstrated that the
period corresponds to the addition of a single electron to
the transistor. In Sec. IV, I present a simple model, in
which the oscillatory conductance results from the
Coulomb interaction between electrons on the transistor
and the quantization of charge, but in which the mechan-
ics are entirely classical. In order to understand the de-
tails of the oscillatory behavior, however, and especially
the phenomena we observe in high magnetic fields, we
need the quantization of energy, as well as that of charge.
I discuss these effects in Sec. V. I want to emphasize at
the outset, as I shall again in the conclusion in Sec. VI,
that our journey of exploration is not yet complete and
that these transistors continue to surprise us.

II. THE DISCOVERY OF CONDUCTANCE
OSCILLATIONS IN SMALL TRANSISTORS

Since the early 1980s our group' had been studying the
properties of very narrow transistors at low tempera-

In addition to myself, our group includes M. Heiblum and S.
Wind at IBM, H. I. Smith, and D. A. Antoniadis at MIT, whose
technical expertise and sophisticated ideas were essential to suc-
cess. Even more important are the young people who really
made it happen: The initial discovery was made by a graduate
student, John Scott-Thomas, and postdoctoral associate, Stuart
Field. The evidence for single-electron oscillations and all the
recent results carne from devices invented by another student,
Udi Meirav, and the high-magnetic-field experiments were done
by Paul McEuen, a postdoctoral associate, and Ethan Foxman,
a graduate student. We have also benefitted greatly from stimu-
lating interaction with two postdoctoral associates in the MIT
condensed-matter theory group, Ned Wingreen and Yigal Meir.
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tures, about 100 mK (Kastner et al. , 1987, and references
therein). In general, such devices show reproducible
noiselike variations of their conductance as a function of
their electron density. When the transistors are

sufficiently conducting, the magnitudes of these Auctua-
tions are always of order e /h, as is the case for fluctua-
tions observed as a function of magnetic field in narrow
metal wires. Because the magnitude is always the same,
they are called universal conductance Auctuations. In
1988 John Scott-Thomas succeeded in fabricating a new
kind of narrow transistor (Scott-Thomas et a/. , 1989;
Field et al. , 1990). We expected to see similar fluctua-
tions in this kind of device, but, instead, we saw some-
thing very different. Before describing the surprising
discovery we made, I need to tell you how the new
transistor works.

The structure Scott-Thomas made is similar in many
ways to the metal-oxide-semiconductor field-effect
transistor (given the acronym MOSFET), which is the de-
vice commonly used in computer memories. A MOSFET
is a parallel-plate capacitor, one plate of which is a metal
and the other of which is a semiconductor, in this case
silicon. When a positive voltage is applied to the metal,
electrons accumulate in the conduction band of the semi-
conductor. The electric field at the interface between the
Si and the Si02, which is the insulator of the capacitor, is
so strong that at low temperatures the electrons are
confined to move in only two dimensions, parallel to the
interface. The conductance of this two-dimensional elec-
tron gas, measured by means of two (n-type) contacts, in-
creases as the positive voltage on the gate is raised be-
cause the number of electrons on the semiconductor in-
creases. It was in such a two-dimensional electron gas
that the quantum Hall effect was discovered.

Our device, for which a schematic diagram is given in
Fig. 1(a), is different only in that it has two metal gates

. Inversion region
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instead of one: The top gate is continuous as in the con-
ventional MOSFET, but the lower gate has a narrow gap0
in it, about 700 A wide. The small size of this gap is
what makes fabrication challenging. X rays or electrons
must be used to define this narrow channel because light,
which is currently used to make integrated circuits, has
wavelengths too large to make structures so small. I do
not have the space to describe adequately the fascinating
technology invented to make these nanometer-size struc-
tures, but you can find descriptions in the references
(Scott-Thomas et al. , 1989; Field et al. , 1990).

When the upper gate is raised to a voltage that is posi-
tive with respect to the semiconductor, and the bottom
gate is neutral or negative, electrons are added to the
semiconductor only under the gap in the bottom gate.
This creates an electron gas that is confined to move in
only one direction [see Fig. 1(b)]. We had made one-
dimensional transistors before. The only difference be-
tween this narrow transistor and those we had made ear-
lier was that it was narrower, by a factor of 3 to 5 (the ac-
tual width of the electron gas was 15 to 30 nm, narrower
than the gap in the lower gate), and that the electrons in
it had higher mobility, an indication that there were
fewer charges at the interface to scatter electrons.

We expected this transistor to behave like earlier ones,
which displayed the random universal conductance Auc-
tuations. However, as shown in Fig. 2, the behavior was
completely different. What is plotted in the upper panel
is the conductance of the narrow gas of electrons as a
function of the gate voltage V. Remember that the
number of electrons per unit length added is just the ca-
pacitance per unit length times the change in V, i.e.,
eh(N/L) =(C/L)b, V, so data like those in Fig. 2 can be
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FIG. 1. Schematic (a) cross section and (b) top view of the sil-
icon transistor with continuous upper gate and a gap in the
lower gate. The electron gas, formed in the Si by the positively
biased upper gate, is confined by the lower gate. The Si is p-
type, so the surface electrons are isolated from the bulk by p-n
junctions. That is why the electron-rich region is called an in-
version layer. The cross section is roughly to scale, but the top
view is not. The narrow channel is typically 20 nm wide by
1 —10 pm long. Contact is made to the two wide inversion re-
gions.

20 40 60 80

1/hV (volts )

FIG. 2. Qne of the first measurements on a narrow Si transistor
in which periodic oscillations were observed. Although the os-
cillatory behavior is not obvious from the conductance G itself
(upper curve) as a function of V~, the Fourier transform shows a
large peak.
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FIG. 6. Sketch (above) of narrow channel through which elec-
trons move. The channel is determined by a metal gate with

gap, as indicated by the shaded area. The black diamonds indi-
cate typical random distribution of charges near the interface.
Sketch {below) of electrostatic potential resulting from such im-

purities vs position along the channel.

Top View:

450 nm

strate

two electrons because of the spin degeneracy? In fact, Si
has an additional degeneracy because of its energy-band
structure, so the period might require four electrons. We
would never know the answer unless we could measure
the length Lo directly.

III. SINGLE-ELECTRON CHARGING

At the time of our discovery of oscillations in Si
transistors, Udi Meirav, working with Shalom Wind and
Moti Heiblum at IBM, had just succeeded in making
closely analogous small transistors in GaAs (Meirav
et ah. , 1989; for technical details see also Meirav et ah. ,
1988, and Wind et aL, 1990). One of the advantages of
this material is that the density-of charges near the inter-
face between the -semiconductor and insulator is smaller
than for the Si-Si02 case. Meirav realized that this made
it possible to induce potential. barriers intentionally
(Meirav, Kastner, and Wind, 1990), so the distance be-
tween them would be known. The way he did this is il-
lustrated in Fig. 7.

One begins with a heavily doped crystal of GaAs (la-
beled n+). This plays the role of the uniform top metal
gate in the Si transistor. Next, using molecular-beam ep-
itaxy (MBE), one grows a layer of AlGaAs, which is a
semiconductor with a larger band gap than GaAs. This
is the insulator, like the Si02 in the Si structure (Fig. 1).
Next, one grows a layer of pure GaAs, which is where
the electrons accumulate, as in the silicon for the earlier
structure. A positive voltage applied to the n+ substrate
controls the density of these electrons. Finally, a metal
gate is deposited on the top and patterned using
electron-beam lithography. This metal is negatively
biased, so electrons are repelled from it, confining the
electrons to a narrow channel, just as the gate with a gap
(Fig. 1) confines the electrons in the Si transistor.

Making a GaAs transistor work just like the Si.devices
was already a major technological achievement. Howev-
er, the special new feature that opened unexpected ave-

3 ll.m

FIG. 7. Schematic drawings of device structure. Top: A one-
dimensional electron gas (1DES) or narrow two-dimensional gas
forms at the top GaAs-A1GaAs interface, with a density con-
trolled by the substrate voltage V~. Bottom: A top view show-

ing typical dimensions of the top metal gate structure, which
defines a narrow channel with two constrictions.

12

Sample 1a Sample Ib

CD
C3

o
0 12 0

Gate voltage (mV from threshold)

12

FIG. 8. Conductance as a function of V~ for two samples with
the same geometry. Although the amplitudes of the conduc-
tance peaks vary, the period of the oscillations is the same.

nues of research was the patterning of the upper metal
gates to form constrictions in the channel through which
the electrons Aow. The idea was that the negative bias on
the top gates would create a potential barrier for elec-
trons moving down the narrow channel.

Figure 8 shows how two of the new devices, which had
the same distance between the constrictions (La =1 turn),
behaved. As before, the conductance oscillated, but with
an important difference: while the amplitudes of conduc-
tance peaks were di6'erent for the two devices, the period
of the oscillations was the same. Cycling to room tern-
perature and back changed the amplitudes of conduc-
tance peaks, but left the period of oscillation unaffected.
For the first time the period of the oscillations was repro-
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FIG. 11. Sketch of Coulomb blockade system. Top: Electrons
tunnel from one lead onto a small metal particle and subse-
quently oft the particle onto the other lead. Bottom: Energy-
level spectrum for this system, showing filled (hatched) and
empty (shaded) levels. The metal particle has a gap of width
e /C in its tunneling density of states.

not happen. Current fIow requires the addition of an
electron or hole to the particle. To add a charge Q to the
particle costs the energy Q /2C, where C is the total ca-
pacitance between the particle and the rest of the
universe. Adding an electron therefore requires a
Coulomb energy e /2C. There is, therefore, an energy
gap in the tunneling density of states (what condensed-
matter physicists call the single-particle density of states),
as shown schematically in Fig. 11. For an electron to
tunnel onto the particle it must have an energy above the
Fermi energy in the contact by e /2C, and for a hole to
tunnel it must have an energy below the Fermi energy by
the same amount, so the gap has width e /C.

Our structure is more interesting than the metal parti-
cle in the tunnel junction because with the gate voltage
we can vary the average number of electrons in the re-
gion isolated by the constrictions. If the potential
difFerence between the gate and electron gas is V, the
electrostatic energy of charge Q on the isolated region of
the transistor is given by

E=—QV+Q /2C.

The first term is the attractive interaction between the
positively charged gate electrode and the charge on the
isolated region, and the second term is the repulsive in-
teraction among the elements of charge on the iso-
lated region. Equation (1) can be rewritten as
E = ( Q —

Qo ) /2C, to within an additive constant, where

Qo =C~, .
We can choose any value of Qo, the charge that mini-

mizes the energy, by varying Vg. However, because the
charge is quantized, only discrete values of the energy
will be possible for a given Qo. This is illustrated in Fig.
12 for two cases. When QO=Ne, for which an integer
number of electrons minimizes E, the Coulomb interac-
tion results in the energy difFerence e /2C for increasing
or decreasing X by one. Under these circumstances there
will be an activation energy e /2C for current to fIow as
shown in Fig. 11. However, when Qo=(N+ —,')e, the
state with Q =¹ and that with Q =(N + 1)e are degen-

FIG. 12. Energy vs charge on isolated particle for an integer
average number of electrons (left) and for a half-integer average
number (right). Only those values of energy denoted by solid
circles are allowed by the quantization of charge.

crate; the charge fIkuctuates between the two values even
at zero temperature, so the energy gap in the tunneling
density of states disappears.

This simple classical model was first used by van
Houten and Beenakker (1989) to explain the most obvi-
ous features of the behavior of our devices: The conduc-
tance is thermally activated at all values of the gate volt-
age except those for which the average charge on the iso-
lated segment is (N+ —,')e. This results at low tempera-
ture in a conductance consisting of periodic sharp peaks.
The period in V~ is predicted to be simply e/C, the volt-
age change necessary to alter Qo from (N + —,

' )e to
(N+ —', )e. The activation energy at the minimum is,
indeed, found to be of order e multiplied by the period in
V, that is, e /2C.

As we shall see shortly, this is not the whole story.
However, it is important to emphasize that the Coulomb
interaction between the electrons on the isolated segment
is the largest energy in the problem. Because the time for
tunneling onto and o6'of the segment is long, the number
of electrons on the segment is quantized. This quantiza-
tion of charge, together with the Coulomb interaction,
suppresses charge fluctuations completely at zero temper-
ature for all values of Qo not equal to (N+ —,')e, and for
the latter the charge Auctuates only by one electron. The
suppression of the charge fluctuations by the Coulomb
interaction is what makes the behavior of our structure
so unusual, and that is why we call it a Coulomb island.
The charge fluctuations at finite temperature (see refer-
ences in footnote 2) and are interesting, but are not im-
portant for the present discussion.

At this point I have explained the essence of how the
single-electron transistor works using a classical argu-
ment, which requires only the quantization of charge.
The rest of my colloquium shows where quantum
mechanics becomes important.

V. LEVEL SPECTROSCOPY OF A COULOMB ISLAND

In Figs. 8 and 9 it can be seen that the size of the con-
ductance peaks varies, apparently at random. As recog-
nized by Meir, Wingreen, and Lee (1991) and in parallel
by Beenakker and co-workers (Beenakker, 1991;

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992
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e 5 V~ =e /C +b.E~, (2)

where b, V& is the voltage spacing between the (N —1)th
and Xth peaks. This, in turn, means that the peak posi-
tions in gate voltage are directly proportional to the
energy-level splittings and can be used to measure the

Beenakker et al. , 1991), this is one manifestation of the
quantization of the energy of eigenstates in the isolated
region, in addition to the quantization of charge. Be-
cause the area of the device between the two constric-
tions is small, the energy separation of the eigenstates is
appreciable, and this affects the tunneling. Figure 13 il-
lustrates the spectrum of the single-particle density of
states for a Coulomb island with a capacitance C. For
the case Qo =Ne there is a gap of width e /C, as for the
classical case. However, the small size of the structure
makes the possible values of the energy outside this gap
discrete.

For any conductance peak the value of Qo is equal to
(N+ —,')e, and this requires that the Fermi energy in the
leads be equal to that of one of the discrete energy levels
of the small structure, as illustrated in Fig. 13. Only if
these energies are the same can the charge on the struc-
ture Auctuate at zero temperature, and this is the condi-
tion that determines the gate voltage at which a peak
occurs. At low temperature the conductance of a specific
peak depends on the tunneling matrix element for one
particular energy level of the small structure. Because
this matrix element depends exponentially on the decay
length of the wave function through the barriers, the am-
plitudes of the peaks vary appreciably from one to the
next. Because of potential fluctuations caused by defects
or impurities, these amplitudes fIuctuate randomly while
generally increasing with gate voltage as the Fermi ener-

gy approaches the top of the barriers (see Fig. 10).
Not only the amplitude, but also the position, of the

conductance peaks depends on the discrete levels of the
structure. The matching of the Fermi energy with an in-
dividual level at a conductance peak requires that the
gate voltage difference between two adjacent peaks be
e/C, as before, plus the energy spacing of the levels of
the structure, AE. That is,

level spectrum.
The level spectrum is, in genera1, quite complicated be-

cause the geometry of the isolated segment of the transis-
tor is not highly symmetric. However, in a high magnet-
ic field the spectrum becomes much simpler. Therefore,
as Paul McEuen immediately realized, the best test of the
theory would come from the behavior of our single-
electron transistor in a high magnetic field.

In a two-dimensional electron gas at a high magnetic
field 8, the energy spectrum consists of Landau levels.
The energies are given by (n + 1/2)%co„where the cyclo-
tron frequency is co, =e8/m*c, and I is the effective
mass. These energies are increased by the electrostatic
confinement near the edges of the two-dimensional gas.
Figure 14 shows schematically, as solid curves, how the
energies of the states in the three lowest Landau levels
depend on position. Near the edge of the sample all the
occupied Landau levels cross the Fermi energy. The
states at the Fermi energy are the edge states, sometimes
described as classical skipping orbits, that play a central
role in the quantum Hall effect. The states within each
Landau level have discrete energies because of the finite
size of the system, and when the size of the confined re-
gion is small the energy separation between quantized
edge states is large. These discrete states are shown
schematically by the points on the three curves in Fig.
14.

Each of the discrete states illustrated in Fig. 14 occu-
pies an area given roughly by 4o/8, where @0 is the
quantum of flux, hc/e. As 8 increases, this area shrinks,
the positions of the discrete states move from the edges
toward the center in Fig. 14, and the degeneracy of the
Landau levels thus increases with magnetic field. This
causes electrons gradually to fall from higher into lower
Landau levels, in the following way: Consider the case in
which the magnetic field is chosen such that only the
lowest two Landau levels are occupied and the Fermi en-

ergy is near the bottom of the second Landau level, as in-

Qo Ne Q,= ( N. ~)e
I

DE

--——————e~/ C E

Leod l slond Leod Island

FIG. 13. Schematic energy diagram for tunneling into a
Coulomb island, when the average charge on the island is Ne

(left) and when it is (N+ —')e (right). The energy levels for elec-

tronic excitation internal to the island are spaced by a small en-

ergy AE. The energy to add an extra electron from the leads is
e /2C when QO=Ne. For our devices, bE-O. le /2C.

FIG. 14. Schematic of energy as a function of position in a
confined geometry in a high magnetic field. The solid curves
are the Landau levels, whose energies increase near the edge be-
cause of the electrostatic confinement. The circles indicate
states allowed when the area of confinement is small.
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dicated in Fig. 14. The quantized states near the Fermi
energy, the quantized edge states, for the second Landau
level move up in energy with increasing .8, because when
the Fermi energy is close to the bottom of the Landau
level the increase in Am, is more important than the in-

crease of degeneracy. However, the quantized states near
the Fermi energy in the lowest Landau level move down
because the positions of the discrete states move toward
the center, and, since the dependence of energy on posi-
tion is strong at the edges, the resulting decrease in ener-

gy is more rapid than the increase of A~, . Because filled
states in the second Landau level move up and empty
states in the first move down, electrons fa11, one at a time,
from edge states in the upper Landau level into edge
states in the lower Landau level as B is increased.

To make this more precise, one must choose a specific
model for the electrostatic confinement, although, in the
end, the results depend only weakly on the geometry.
For the case of harmonic confinement the calculation
was done analytically a long time ago (Fock, 1928;
Darwin, 1930). For more realistic models numerical cal-
culations are available (Sivan and Imry, 1988; Kumar
et al. , 1990). Figure 15 shows, schematically, the trajec-
tory of the edge states near the Fermi level for the two
Landau levels in our structure. One may think of these
as the contours of maximum probability for one of the
quantized edge states in each Landau level. Also shown
is part of the calculated energy spectrum as a function of

uter edge sta

oner edge state

8 for harmonic confinement with frequency coo. The en-
ergies of the quantized edge states for the first Landau
level increase with 8 and those for the second decrease
with 8, as expected from the qualitative discussion given
above.

Figure 15 allows one to predict how the gate voltage of
a conductance peak should depend on 8. For a given
peak in conductance the average number of electrons in
the isolated segment is fixed at X+—,'. This means that
the Fermi energy in the leads is degenerate with one of
the quantized edge states, say one in the first Landau lev-
el, whose energy decreases with 8. As a result, the gate
voltage at which the peak occurs will decrease with 8.
This state has an average occupancy of —,'; higher energy
states are empty and lower ones are full. At some field,
however, the energy of a quantized edge state from the
second Landau level, one that is increasing with B,
crosses that of the edge state of the first level. Then the
downward-moving state becomes full, the upward mov-
ing one becomes half-full, and the conductance peak,
now following the state from the second Landau level,
shifts to higher gate voltage. In Fig. 16, we show a mea-
surement of the evolution of the position of one conduc-
tance peak with B. Indeed, the peak position moves al-
ternately up and down, as expected.

Because the edge states from the first Landau level are
closer to the periphery of the isolated region, the rate of
tunneling into them from the leads is much higher than
into those from the second Landau level. This explains
the dramatic decrease in the peak height, seen in Fig. 16.
Whenever the peak is shifting to higher gate voltage it is
tracking a state in the second Landau level, which is
more weakly coupled to the leads.

Following a single conductance peak thus gives infor-
mation about the Xth state of the isolated region. By fol-
lowing successive peaks we can map out the entire spec-
trum. Remember I'see Eq. (2)] that the spacing in gate
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FIG. 15. (a) Schematic top view of the device, showing the path
of the edge states associated with the lowest two Landau levels.
The upper gate (shaded) defines a dot whose lithographic di-

mensions are 500 nm by 700 nm. (b) Energy level of a dot with

a parabolic confining potential —'m *~oro as a function of
m, = eB/m *c in a parameter range where two Landau levels are
occupied (Fock, 1928; Darwin, 1930). The heavy line represents
the energy of the single-particle state that is 78th lowest in ener-

gy.
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FIG-. 16. Height and position of one of the conductance peaks
shown in the inset as a function of magnetic field. The tempera-
ture of the electron gas is -100 mK. The inset shows conduc-
tance vs V~ for B =3 T. Full scale for the inset is 0.03e /h.
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voltage of the peaks was supposed to be simply e /C plus
AE&, apart from a factor e. This means that if we shift
the ¹h level by —Ne /C we should have the spectrum
of the b,E&. Figure 17(a) shows the positions in gate
voltage of nine peaks as a function of 8. In Fig. 17(b) we
show the same data but after subtracting a constant
diC'erence voltage between successive peaks. The conver-
sion from voltage to energy is not quite as straightfor-
ward as one might guess, and the details of how its done
may be found in McEuan et al. (1991).

The spectrum we extract in this way is remarkably
similar to that predicted in Fig. 15. It turns out that this
simple model is not adequate to quantitatively predict the
spectrum of Fig. 17(b). A more sophisticated treatment,
however, analogous to the Hartree approximation, is
very successful (McEuen et al. , 1992). It is thus clear
that quantum mechanics is crucial at these energy scales,
corresponding to 1 K or less. It is also clear that the
suppression of charge Auctuations makes it possible to
use the conductance as a spectroscopy of the energy lev-
els of the Coulomb island.

VI. CONCLUSIONS

There still are many mysteries, some of which are be-
ing solved as I write this colloquium. A fascinating ques-
tion is why the simple subtraction of the constant
Coulomb term works so well. When we extract the level
spectrum by subtracting Ne /C from the gate voltage of
the Nth peak, we are tacitly assuming that the interac-

FIG. 17. (a) Peak position vs B for a series of consecutive con-
ductance peaks. The arrow follows a particular state in the first
Landau level as it moves through successive peaks. (b) Single-
particle energy-level spectrum inferred from (a) as described in

the text and McEuen et al. (1991). The zero of the energy scale
is arbitrary.

tions among the electrons on the isolated region can be
accounted for with the simple capacitance model. That
is obviously not the case for atoms, so why does it appear
to work here? Our transistors have only about 100 elec-
trons on them in the gate voltage range we study, so they
are like large atoms in terms of the number of electrons.
In fact, the assumption of a constant Coulomb energy is
not generally valid, and a self-consistent calculation
shows that the Coulomb energy depends on the occupan-
cy of the Landau levels (McEuen et al. , 1992).

The widths of the conductance peaks are, at present,
limited by kT. We shall learn more about our single-
electron transistors when we reach lower temperatures or
make the tunneling matrix elements larger, so that we
can measure the natural line shapes. Meir, Wingreen,
and Lee have pointed out that our small transistor cou-
pled to its leads is analogous to a transition-element im-

purity, with its localized d electrons, coupled to the s
electrons in a host metal. When the average number of
electrons on the Coulomb island is an integer, charge
Auctuations are completely suppressed. This is analogous
to the Kondo problem, in which the charge on the
transition-element atom cannot Auctuate because of the
large Coulomb energy required to add an electron, and
only spin Auctuations occur. On the other hand, when
the average number of electrons on the transistor is an in-

teger plus —,', the charge Auctuates, but by only +—,'. This
is the case of the valence Auctuation problem in which
the valence of the transition element fluctuates between
two values, U and v +1. Line shapes for these cases can
be predicted using what we know about these analogous
problems.

Of course, as our accidental discovery of the conduc-
tance oscillations shows, it is the unexpected phenomena
that are likely to be most exciting. I suspect we shall
continue to be surprised for some time to come.

A number of clever applications of single-electron
transistors have been proposed. Radio-frequency
turnstile devices have already been demonstrated
(Kouwenhoven et al. , 1991, 1992). By turning the two
tunnel barriers of a single-electron transistor on and off
sequentially, one generates a current I=ef where f is the
radio frequency. The intrinsic frequency response of
single-electron transistors is very high because of their
very small capacitance; for example, the capacitance of
transistors like those whose characteristics are given in

Fig. 9 is —10 ' F. However, despite their elegance,
such turnstile devices are not expected to be very impor-
tant technologically. They might eventually provide
current standards, but their precision is, at this writing,
still much lower than competing standards.

Likharev (1988) has proposed applications, such as
multilevel logic, involving discrete devices which may be-
come important if higher-temperature operation can be
achieved. However, our guess is that, if single-electron
transistors are to have a significant technological impact,
it will be in much more unusual systems. It is likely that
they will not be used as discrete components but rather in
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internally coupled arrays.
As with most scientific discoveries, it is impossible to

predict what the technological impact of the single-
electron transistor will eventually be. The histories of the
transistor and of the diode laser are good examples.
Nowadays, new electronic technologies must compete
with the industry based on silicon with its enormous past
investment. Few new technologies are likely to compete
successfully with conventional silicon technology. How-
ever, arrays of devices with novel properties may turn
out to be valuable.
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