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Symplectic maps are the discrete-time analog of Hamiltonian motion. They arise in many applications in-

cluding accelerator, chemical, condensed-matter, plasma, and Quid physics. Twist maps correspond to
Hamiltonians for which the velocity is a monotonic function of the canonical momentum. Twist maps
have a Lagrangian variational formulation. One-parameter families of twist maps typically exhibit the full

range of possible dynamics —from simple or integrable motion to complex or chaotic motion. One class of
orbits, the minimizing orbits, can be found throughout this transition; the properties of the minimizing or-
bits are discussed in detail. Among these orbits are the periodic and quasiperiodic orbits, which form a
scaffold in the phase space and constrain the motion of the remaining orbits. The theory of transport
deals with the motion of ensembles of trajectories. The variational principle provides an efficient tech-
nique for computing the Aux escaping from regions bounded by partial barriers formed from minimizing
orbits. Unsolved problems in the theory of transport include the explanation for algebraic tails in correla-
tion functions, and its extension to maps of more than two dimensions.
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I. SYMPLECTIC MAPPINGS

A. IntrodUctlon

A dynamical system consists of a phase space describ-
ing the allowed states of a system and a rule defining the
temporal evolution of those states. The evolution can be
continuous, as for difFerential equations, or discrete, as
for a mapping. Virtually every model of physical phe-
nomena is a dynamical system; furthermore, most of the
fundamental models of physics are Hamiltonian dynami-
cal systems. The latter give rise to symplectic mappings.
For example, the mapping defined by a Hamiltonian Qow
taking an initial condition to a state some finite time later
is a symplectic map. Symplectic mappings are prominent
in studies of charged-particle motion in particle accelera-
tors, chemical reactions, or magnetic plasma
confinement. Less appreciated is the fact that the motion
of a Quid particle in an incompressible Quid is also Ham-
iltonian, even when the Quid motion itself is viscous.
Mappings are useful because for many purposes they are
easier to study than difFerential equations —certainly any
numerical solution of a difFerential equation involves
iteration of a map (and if the system is Hamiltonian, care
should be taken to ensure that the map is symplectic).
Mappings are also more general than difFerential equa-
tions.

Typical questions of physical interest include the long-
time stability of orbits and the determination of the re-
gions accessible to the motion. For example, in a particle
accelerator, one would like to confine trajectories within
the tunnel for something like 10' revolutions. Direct
simulation of a dynamica1 system for such periods is
often impossible and, even if possible, is suspect due to
the numerical errors induced —thus the need for basic
theoretical results on stability. Another class of prob-
lems concerns transport, that is, the determination of the
time for a group of trajectories to move from one region

of phase space to another. Even if the system were not
strictly stable, it could be stable in practice if the trans-
port times were longer than the lifetime of the system—
such is probably the case for the planetary motions in the
solar system, though clearly not so for asteroids. Trans-
port calculations enter as well into the theory of chemical
reactions. For example, in the scattering problem
AB+C~A +BC, transport connects the regions of
phase space corresponding to reactants and products,
and quantities of interest are the reaction probabilities
and rates. These could be corn. puted statistically based
on the volume of accessible phase space, but such calcu-
lations are often quantitatively incorrect due to dynami-
cal obstructions to the motion —objects we call partial
barriers. We discuss them in Secs. VIII and IX.

In this article our primary concern is the theory of
symplectic twist mappings. The twist property is com-
mon in physical applications. It is fortuitous that the
twist property also permits the use of powerful tools,
both geometrical and analytical, resulting in a set of
striking and fruitful theorems. The essence of the twist
condition is that the canonical momentum variable
represents a velocity on phase space —larger momentum
implies that the configuration variable increases more
rapidly. For example, for the free particle, the ve|ocity is
directly proportional to the momentum. We adopt the
notation (x,y) for the phase-space coordinates, where y is
this privileged momentum coordinate, and x is its conju-
gate configuration.

We review the theoretical results in Secs. III—VII.
The first of these, the Kolmogorov-Arnol'd-Moser
(KAM) theorem, is a perturbative result —it implies that
most of the invariant tori of integrable twist mappings
are preserved under perturbation. The rest of the results
we discuss are nonperturbative —they hold for any twist
mapping. The proof of Birkhoff's theorem, Sec. IV,
typifies the geometrical reasoning allowed by the twist
condition. One consequence of this theorem is a nonex-
istence criterion for invariant circles of 2D twist maps.
We next discuss analytical results that are based on the
variational principle for twist maps.

The variational principle for twist maps is analogous to
the Lagrangian-action formulation of analytical mechan-
ics. Orbits are stationary points of the action function.
What is most interesting about twist maps is that special
extrema of the action, the minima and minimax points,
lead to a class of orbits that are of great importance.
These orbits each have a definite rotation frequency and
satisfy ordering properties. For rational frequencies
these orbits are the elliptic and hyperbolic orbits that
form the island chains (see Sec. II). For irrational fre-
quencies they are either invariant circles, when the sys-
tem is weakly perturbed, or invariant Cantor sets —the
cantori —when the system is strongly perturbed (see Sec.
VII). Thus we obtain a general picture of the regular
part of the phase space of these maps.

Chaotic orbits must wend their way through the obsta-
cle course formed by the minimizing and minimax orbits
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and their stable and unstable manifolds. We use these
manifolds to construct partial barriers, and in Secs. VIII
and IX, develop a theory of transport based on the Aux of
trajectories through these barriers. This theory is in
direct contrast with a more uniform statistical picture of
chaos and shows that chaotic zones must be. partitioned
into subsets that are often separated by efFective barriers.
One of the predictions of this theory is that any system
with regular regions should exhibit slow, nonexponential
decay of correlation functions. Another is a universal ex-
ponent for the onset of transport when an invariant circle
is destroyed by perturbation, becoming a cantorus.

In the remainder of this section we review Hamiltonian
dynamics, discuss the nature of symplectic Aow, and pro-
vide examples. ' %'e then define twist mappings, which
will be our major concern. Those readers with little in-
terest in the physical motivations for studying symplectic
mappings can proceed directly to Sec. I.E, where twist
maps are introduced.

0 I
—I 0, (1.4)

BH BH0=5S =I dt 5p q+p. 5q — 5p — 5q . (1.6)
to Bp Bq

in (q',p') coordinates. In fact, J transforms as a contra-
variant tensor, and Hamilton's equations (1.2) are covari-
ant.

Hamiltonian Qow can be obtained from a variational
principle. Consider a trial trajectory or path
Iq(t), p(t);to ( t ( t, j in phase space connecting the point

(qo, po) to (q„p, ). The action is a functional on such a
path, defined as

S=I [p.q —H(p, q, t)]dt . (1.5)
lo

Hamilton's principle states that the true path between
the fixed end points q( to ) =qo and q( t, ) =q, is one for
which S is stationary:

B. Harniltonian flows

A Hamiltonian flow is described by a function
H (p, q, t) and a set of differential equations

dq' BH dp' BH
dt Qp' dt Qq'

Here the q' represent configuration coordinates and the
p' represent canonical momenta, i =1,2, . . .X, for a sys-
tem with N degrees of freedom. For example,
H =

—,'p + V(q) represents the energy of a set of particles
interacting through a potential V. More compactly (and
more generally), these equations can be written as

z=Iz, Hj .

Here we use the symbol z to denote arbitrary coordinates
on phase space regardless of its dimension —it is hoped
that no confusion between scalars and vectors will arise.
The coordinates are denoted by z, m =1,2, . . .2%, and

I, j represents the Poisson bracket. The latter is defined
for any two functions f (z) and g (z) as

~f Jmn ~g y df ~g ~g ~f
, Bz Bz" k, Bq Bp Bq" Bp

where J, the Poisson matrix, is the 2X X2X antisym-
metric matrix

Since the path is arbitrary in the phase space, the varia-
tions 6p and 5q are independent. Thus the coefIicient of
each must be zero. The coeKcient of 6p yields directly
the equation of motion for q. Integration by parts on 5q,
and using the fixed end-point conditions on q, gives ihe
equation of motion for p.

The action (1.5) is covariant and thus can be written in
arbitrary coordinate systems.

The action principle is handy because it represents the
equations of motion in a compact, scalar form; however,
it also has more applications. In fact, a major theme of
this paper is that the action can be used to compute
quantities of physical importance. We shall erst use the
action principle to show that Hamiltonian How is sym-
plectic.

C. Syrnplectic mappings

A mapping is a transformation of each point in the
phase space

z'=T(z) .

We shall consider only difFeomorphisms, that is, one-to-
one mappings that are smooth and have smooth inverses.
A function is of class C" if it has n continuous deriva-
tives. A C diAeomorphism is also caHed a homeomor-
phism. Some of the results discussed here are valid for
homeomorphisms, but most require some degree of
diIterentiability.

An orbit is a sequence

~ ~ ~ )Zt p Zg + i ) ~ ~ ~

For a more complete discussion of some of the topics in this
section, consult Lichtenberg and Lieberman (1982) or, for the
mathematically inclined, Arnol'd (1978), MacKay and Meiss
(1987), or Arrowsmith and Place (1990).

such that z, + i
= T (z, ).

As we shall see below, mappings arise naturally from
Aows. An example is the transformation of phase space
given by integrating every point forward one unit in time;
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another is the "return map. " We shall discuss next the
mappings that come from Hamiltonian Aows. Such maps
are termed "symplectic. "

1. Integral invariant

We show here that the action of a loop is an invariant
for Hamiltonian Qow —the Poincare integral invariant.
The loops we consider are closed curves in the extended
phase space (q, p, t). One could, for example, choose a
loop at some fixed time —a loop in ordinary phase space;
however, the loop could just as well depend on time. We
denote by the symbol X a loop that is contractible to a
point. In terms of some parameter A, , ihe loop is given by
[q(A), p(A), t(A);0~A, ~1]. The action of X is the loop
integral

FIG. 1. Preservation of the loop action for Hamiltonian Inows.

(1.12)

=f pdq —Hdt (1.9)

S [X]—S [X']= I V X A.d s,

Here the second integral is a convenient notation for the
first. A more compact notation for Eq. (1.9) is obtained
by defining the vector A=(p, o, H), and a li—ne element
dl=(dq, dp, dt), to give

S[X]=)~A.dl . (1.10)

Every point on X constitutes an initial condition for
Hamilton's equations, and we can evolve the loop by in-

tegrating from each point. This gives a two-dimensional
tube V; Fig. 1. Now consider any loop X' on T that is
homotopically equivalent to X (i.e., X',

, must be obtained
by sliding X along 7 in some continuous but otherwise
arbitrary way; however, X' need not be a loop that is ob-
tained by evolving X forward for a fixed time step). We
wish to show that the action of X' is equal to S [X]. The
difFerence between S [X] and S [X'] is the difference be-
tween the two loop integrals of the vector A. These two
loops bound a piece of the tube V', and because X' is
homotopic to X this piece of V is simply connected.
Stokes's theorem implies that the difference between the
actions is equal to the integral of 7 X A over this piece of

A map that preserves the loop action is symplectic.
As an example, suppose H is independent of time; then

it is constant along the motion given by (1.1). Consider
any loop X contained within an energy surface H =E.
Since H is constant on X, it can be removed from the
loop integral, and fdt =0, therefore

S[X]=f&p dq (on an energy surface) . (1.13a)

The integral (1.13a) is the symp/ectic area; its value is the
sum of the X areas of the projections of X on the canoni-
cal plalles (g',p'), sllowii lii Fig. 2. Tlills liival'iailce Of
the action implies that the symplectic area is conserved
along the fIow of a time-independent Hamiltonian. It is
important for applications that the loop X' need not be a
loop obtained from X by evolving for a fixed time step
(see Sec. I.C).

As a second application consider loops on fixed time

)p

where d s is the surface area element. A simple calcula-
tion shows that V X A = (

—BH /Bp, BH /Bq, —1 ), which
is in fact the negative of the velocity vector in extended
phase space: VX A= —(q, p, 1). By construction the ve-

locity vector lies along Y, perpendicular to d s; so the in-
tegrand in Eq. (1.11) is zero, and

Actually we are using the generalization of Stokes's theorem
to many dimensions; the curl is generalized to the exterior
derivative d A (Appendix A). The net result is the same as Eq.
(1.11).

FIG. 2. Definition of the Poincare integral invariant. The
value of each of the projected symplectic areas shown is nega-
tive because the loops are traversed counterclockwise.
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slices, t (A, ) =constant. Then, even though H may depend
upon time, f~H dt =0, and the action is

S [X]=f&p.dq (for t =constant) . (1.13b)

Furthermore, Eq. (1.12) implies that the value of this ac-
tion is the same for any loop X' that is on a constant t
surface. Thus integrating Hamilton's equations forward
by a fixed time step conserves the action (1.13b).

Most of our applications will deal with the special
cases represented by Eq. (1.13).

2. Symplectic form

Using Stokes's theorem in reverse provides an alterna-
tive representation for (1.13)—it becoines the sum of in-
tegrals over the two-dimensional disks bounded by the
projection of X onto each canonical plane (see Fig. 2):

FIG. 3. Interpretation of the symplectic two-form.

5z'=DT(z) 5z = T(z) 5z .
Bz

(1.17)

S[X]=J dphdq= g cr; I dp'dq'.
A' (1.14)

Thus the image is also a parallelogram. Equation (1.12)
implies that the symplectic area of the image is equal to
its initial value:

Here the wedge product represents an oriented area, so
that o; is + 1 if the projection ofX is traversed clockwise
or —1 if traversed counterclockwise in the canonical
plane.

For example, consider a loop that is a parallelogram
with sides made from two vectors 5z and 5z, sketched in
Fig. 3. Its symplectic area is the sum of each of the areas
of its projections. We denote this co

co(5z', 5z') =co(5z, 5z) .

Using the definition (1.15), it is easy to see that this im-
plies

(1.19)

where co denotes the matrix (1.16) and M denotes the
Jacobian matrix

co(5z, 5z) =5p 5q 5q 5p=—5z'co.;~5zj .
BzM': (DT)' =-

1 j g j (1.20)

0 —I
I 0 (1.16)

which is the inverse of the Poisson tensor J.

The antisymmetric form co is called the symplectic form.
In (q,p) coordinates, it is represented by the matrix

Equation (1.20) is the local requirement on the mapping
T imposed by the integral invariant. Any map whose
derivative satisfies (1.19) everywhere is loca/ly symplectic.
If the phase space is not simply connected, then the con-
servation of the integral invariant (1.13) for curves that
cannot be deformed to a point is an additional require-
ment (see Sec. V.B). Maps that are symplectic in this
second sense are exactly symplectic.

3. Locally symplectic mappings

We can use the symplectic form to obtain a differential
statement of the symplectic condition. Suppose T is a
symplectic mapping; by definition T preserves the loop
action (1.12). Consider an infinitesimal parallelogram at
the point z, which is made from two arbitrary vectors 5z
and 5z. Under the mapping this parallelogram has an
image at z", each of the sides are given by the derivative
of the mapping (1.7) at z:

Unfortunately this is the reverse of a common convention;
however, since we wish to have {q,p) represent horizontal and
vertical coordinates, respectively, it seems that a minus sign
must appear at some point.

4. Reflexivity and volume preservation

A simple consequence of Eq. (1.19) follows from taking
its determinant:

Det(McoM) =Det(co) - (DetM) = 1,

Det(M —A.I)=0 . (1.21)

since Det(co)%0. This implies that Det(M) must be ei-
ther +l. In fact, we shall show that Det(M)=+1, and
that any symplectic map is therefore volume and orienta-
tion preserving. In showing this we shall also obtain an
important property of the eigenvalues of symplectic ma-
trices.

Consider the eigenvalue problem for M. The charac-
teristic equation is the (2Nth)-order polynomial

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



800 J. D. Meiss: Symplectic maps, variational principles, and transport

Because the mapping is real, the characteristic polynomi-
al is also real;

A, is an eigenvalue of M --A, * is an eigenvalue of M .

(1.22)

More interestingly, using Eq. (1.19) we can rewrite (1.21)

O=Det(co) Det(M AI—) =Det(cd —Aco)

=Det(M 'co —Aco)=Det(M ' —lI) Det(co)

=Det(M ' XI) —.
Thus if X is an eigenvalue of M, it is also an eigenvalue of
M '. Alternatively,

A, is an eigenvalue of M = A,
' is an eigenvalue of M .

(1.23)

Thus the characteristic polynomial is ref lexiue: it can be
written in the form

Of course, this case can occur only for four or more di-
mensions.

D. Return mappings

Consider a time-independent Hamiltonian. Since the
energy is conserved, the flow occurs on a (2N —1)-
dimensional energy surface 8 corresponding to a value
E =H. —Now suppose there is another (2N —1 )-
dimensional surface Q that is transverse (i.e., nowhere
parallel) to the Sow in some local region (see Fig. 5). The
Poincare section 4 is the (2X —2)-dimensional intersec-
tion of 6 with 6. The return mapping, denoted z'= T(z),
is the function that takes an initial condition z on 4 to
the point z' at which it first returns on S. The Poincare
recurrence theorem states that if the energy surface is
bounded (compact), almost all trajectories (all but a set of
zero volume) that begin on 4 will eventually return to 4
(Cornfeld et al. , 1982). The return map is symplectic
with action (1.13).

For example, let Q be the surface qua=constant. It is
transverse to the Qow if

Since Det(M) is the product of its eigenvalues, (1.22)
and (1.23) imply directly that

Det(M)=1 . (1.24)

Thus two-dimensional symplectic maps, for example,
preserve the oriented area element dp& hdq, . Converse-
ly, any two-dimensional map that preserves area and
orientation is locally symplectic.

Equations (1.22) and (1.23) imply that eigenvalues ap-
pear either in pairs or in quadruplets (Fig. 4). If A, is real,
then it has a partner A, '. If A, is complex and has only
one partner under (1.22) and (1.23), then A,

~ =A, ', so it is
on the unit circle. Furthermore, if A, = 1 is an eigenvalue,
then it must have even multiplicity, since the phase space
is even dimensional. Finally, if A, is neither real nor of
unit modulus, then there must be a quadruplet of eigen-
values

AO on.
dt Bp~

(1.26)

pg ps(q 1 &pl ' ' '
& qN —1 pN —1&qiv E) (1.27)

The return mapping T is parametrized by the choice of E
and q&. In this coordinate system, the action (1.13)
reduces to S =y,"=,' gp'dq'.

In the particular case of a two-degree-of-freedom
Hamiltonian, %=2, the mapping T acts on the two-

The Poincare section S can be described by the coordi-
nates (qi pi Ar i px —i)—since, with a choice of
value for the energy, transversality (and the implicit
function theorem) implies that H (q „p„.. . , q&,pz ) =E
can be inverted to obtain

(1.25)

FIG. 4. Possible eigenvalues for a symplectic matrix in the
complex plane. The triangles are a unit modulus pair, the
squares are a real pair, and the circles are a quadruplet. FIG. 5. Return mapping.
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dimensional phase space (q, ,p, ). In this paper we shall
almost always consider this two-dimensional case. There
are many examples of physical interest, and we give two
below.

1. Henon-Heiles Hamiltonian

The Henon-Heiles model (Henon and Heiles, 1964) is a
two-degree-of-freedom system with the Hamiltonian

I=—,'(p„+p +x +y +2x y ——', y ) .

It was chosen to model the motion of a star in a galaxy
with an axisymmetric distribution of matter. The Hamil-
tonian has a bounded energy surface when E ~ ~. The
original pictures of the How of this system were obtained
using the surface 6 defined by x =0, which is transverse
to the flow for p %0. Typically, one chooses p„)0 to fix
the branch of the function p„(y,p~;E, x). Since p„~O,
the domain of the mapping is restricted to the region
p +y ——', y ~2E, which looks like an oval for E small

and has a corner when E =
—,'.

Though this Poincare section is commonly used, any
choice of a transverse surface 6 will give a symplectic
mapping; and since the Hamiltonian Bow provides a
smooth connection between various transverse surfaces,
the structure of the mappings will be the same.

2. Passive tracers and magnetic fields

Volume-preserving How in three dimensions also can
be thought of as a Hamiltonian system and reduced to an
area-preserving mapping, providing there are no null
points of the flow. For example, consider an incompres-
sible fiuid with velocity field v(x), or a magnetic field
B(x). The equations for the Lagrangian particle trajec-
tories govern the motion of a passive tracer in the Quid.
An understanding of the Hamiltonian nature of these
equations is important for the study of mixing (Aref,
1984; Khakhar et al. , 1986; Ottino, 1989). Similarly, the
equations for the magnetic-field lines are, to the lowest
approximation, the equations of charged particles in
small gyroradius orbits. This is especially applicable to
magnetic confinement of plasmas. There are many appli-
cations of the study of such equations (Rosenbluth et al. ,
1966; Dragt and Finn, 1976; Rechester and Rosenbluth,
1978; Chirikov, 1979a; Mynick and Krommes, 1980;
Boozer and White, 1982). We shall use notation ap-
propriate to the magnetic-field case.

The relevant equations take the form

dx
dt

=B(x),

where t is a parameter-measuring distance along the field
lines (or streak lines). Whenever the magnetic field is
nonvanishing, the system of equations (1.28) is
Hamiltonian —in fact, it is equivalent to a one-degree-
of-freedom, time-dependent Hamiltonian. Thus three-

dimensional physical space is equivalent to the extended
phase space (q,p, t) (Cary and Littlejohn, 1983). The ac-
tion principle (1.S) can be shown to become

S=J Adl,
xo

(1.28)

where A(x) is the vector potential. In a general coordi-
nate system, the equations of motion generated by Eq.
(1.28) are noncanonical in form. There is an important
special case that is naturally canonical —a toroidal sys-
tern with coordinates ($,8,$), where 8 and g are the po-
loidal and toroidal angle variables, and for which the
toroidal component of 8 does not vanish. One can show
that a suitable radial coordinate g and a suitable gauge
can be found so that

A=QV8 —yVg . (1.29)

E. Twist mappings

We now restrict consideration to two-dimensional
maps and assume that the phase space (x,y) is a cylinder,
with x being the angle coordinate. Such a phase space
arises naturally in many examples, where y represents a
momentum and so is unbounded, but x represents the an-
gle coordinate of, for example, an oscillator. Let
T:(x,y)~(x', y') be a symplectic map from the cylinder
to itself, and suppose T is di6'erentiable. Then T is a twist
map (with twist to the right) if there is a X such that

d &K&0,
dy x

(1.30)

which means that x' is a Inonotonically increasing func-
tion of y. This is illustrated in Fig. 6—the first iterate of
a vertical line (x =constant) tilts to the right (is a graph

The corresponding field is B=VQXV8 —VgXVg. We
have assumed that the contravariant component of 8 in
the toroidal direction does not vanish:

B~=B.V(=V/ V8XV$%0;

this is equivalent to ($, 8, $) being a nonsingular coordi-
nate system. Using Eq. (1.29), we see that the action
(1.28) becomes

S =f fd8 y($, 8,$)—dg .

Comparing this with Eq. (1.5) shows that (8,$) are a
canonical pair of variables, and y acts as the Hamiltonian
with g playing the role of time. Periodicity in g implies
that we can use the Poincare section technique to con-
struct an area-preserving mapping T:($,8)—+(@',8').

In general, since the Aow is Hamiltonian at any point
for which BAO, the two eigenvalues of the map satisfy
A, ,A,2=1, according to (1.22) and (1.23). The Qow has a
third eigenvalue that corresponds to the direction of B; it
must be 1 because the flow is volume preserving. This
need not hold at null points of the Aow —there the only
restriction is A, &A,2A, 3

= 1.
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F. Examples of twist maps

1. The cyclotron

FIG. 6. Geometrical interpretation of the twist condition
(1.30).

Symplectic maps arise often in the study of particle ac-
celerators (Carrigan et al. , 1982; Evans, 1983; Jowett
et a/. , 1986). The simplest accelerator is the cyclotron,
which, though it is not a good example of modern design,
provides a nice example of a twist map. Our model cy-
clotron consists of a constant magnetic field B=Boe, and
a time-dependent voltage drop Vsincut across a narrow
azimuthal gap (Fig. 7).

Suppose there is an orbiting electron in the cyclotron.
The time for an electron to go around one circuit of the
cyclotron is

T= =2~ y =2~2m myc E
Q, eB eBc ' (1.34)

over x). The twist condition is natural physically, since y
represents a momentum, and larger momentum usually
implies larger velocity. Thus points with larger y should
move farther in x. As noted in Fig. 6, this relation does
not imply that y'(x, y) is a function of y.

Since the map is difFerentiable, we can consider its ac-
tion on a tangent vector (5x, 5y), as in (1.17): E'=E eV—singlet, t'=t+(2'/ceB)E', (1.35)

where E is the particle energy m yc, and y is the relativ-
istic factor. The change in energy upon traversing the
gap is b,E = —e V singlet. Let (E,t) be the energy and time
just before the electron reaches the gap; then after one
circuit their new values are

Bx
5x' Bx
5y' By'

Bx

Bx

By

By

By

r

5x 5x
=M (1.31)

providing the kick is too small to reverse the velocity.
Defining normalized variables y =coE/cd =to!0„

x =cot/2n. , and k =2mcoV/c8, Eq. (1.35) becomes the
"standard map"

According to Eq. (1.24) the matrix M has unit deter-
minant. The inverse of the linear map is represented by
the derivative of T ' as well as the inverse of M; thus

ky'=y — sin(2mx),2'
x'=x +y' . (1.36)

Bx Bx
Bx' By'

Bx By

Bx By

By'

By'

Bx

Bx

By

Bx
Bx

Bx & —K;Bx

By x

Therefore the twist condition implies that

(1.32)

(1.33)

It depends on a single parameter, k, representing the
strength of the nonlinear kick. It is important that
y'(x, y) appears in the second equation, so that the map
preserves area. In the case discussed here, y' represents
the energy after the kick and is therefore the proper
value to use for calculating the next period. Since the
map is taken at a fixed value of the angular position, the
action (1.9) reduces to —gH dt for this map; thus we
should expect that (x,y) representing time and energy are
appropriate canonical coordinates. The standard map
has twist; in fact, Bx'/By = 1.

so if T is a twist map, then T is also a twist map, but
one that twists to the left. Note that T is not necessarily
a twist map, and indeed typically is not, because the tilt-
ed line can rotate enough on the second iterate to violate
the twist condition (T is a member of a more general
class of maps, called "tilt" maps, to which we shall refer
in Sec. IV.C).

This paper will almost entirely concentrate on the
study of area-preserving twist maps. The theory behind
these maps is well developed, and the twist condition per-
mits the proof of several important theorems. Moreover,
twist maps occur commonly in applications. FIG. 7. Model cyclotron.

V sin(tot)
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CI10dlc
bit

Nearby
Orbit

circles r =constant. Extending this to the full phase
space, we see that the orbit lies on a torus. To the extent
we can neglect g and h, there is a family of nested tori.
However, the forrnal power series (1.37) does not con-
verge in general, and some of the nested tori do not exist
(see the discussion of the KAM theorem in Sec. III.B).

3. incommensurate states

FICx. 8. Return mapping near an elliptic periodic orbit.

2. Poincare section

Consider a two-degree-of-freedom system H(p, q) with
a periodic orbit. We construct a Poincare section using a
surface transversely intersecting this orbit at some point
(Fig. 8). The mapping T from S to itself is defined locally
near the periodic orbit, because points near the periodic
orbit inust return to 4, by continuity. The periodic orbit
becomes a fixed point of T.

Suppose that the periodic orbit is elliptic. By
definition, an orbit is elliptic if the return map T has a
linearization M with eigenvalues e* ' (see Sec. II.C).
When co is irrational there is a formal perturbation ex-
pansion for the map in terms of polarlike coordinates
(r, B) near the fixed point (Arnol'd, 1978, Appendix 7;
Arrowsmith and Place, 1990, Chapter 6}. In these coor-
dinates the map is said to be in Birkhom'normal form:

Symplectic maps also arise in condensed-rnatter phys-
ics. The simplest model of interest is a one-dimensional
chain of particles connected by harmonic springs (Fig. 9).
For simplicity, we take the spring constants to be 1. %'e
can imagine this chain to be deposited on the surface of a
crystal, which is represented by a periodic potential
V(x)=k/4m cos(2+x). The conflict between the poten-
tial and the interatomic forces can result in an equilibri-
um state if force balance is satisfied:

k
(x +i —x }—(x —x i)+ sin(2nx )=0 .

2&
(1.38)

8'=g —,'(x~ —x~+, ) +
2 cos(2mxj ) .k

J 4m
(1.39)

We shall learn much about this function and its extrema
in Secs. V—VII.

If we define y =x - —x &, and reinterpret the particle in-

dex j as "time, " then this becomes the standard map
(1.36). This model is known as the Frenkel-Kontorova
model (Aubry, 1983b). The energy of a configuration is

r'=r+h (r, B),
8'=8+2mm+p2r + . +p2~r +g (r, 8), (1.37) 4. Convex billiards

where h and g are o (r ), and m can be made as large as
one likes. The map preserves the area r dr dB. If any of
the p2„are not zero, then the map has twist, providing r
is small enough (the twist is to the right or to the left de-
pending upon the sign of the first nonzero p). If we
neglect h and g, then the radial coordinate is a constant,
while 8 rotates with a frequency depending on r —this is
in fact the meaning of the twist condition, Typically this
frequency is irrational, so the orbits tend to Ql out the

Consider a particle bouncing with elastic reflections in
a bounded, two-dimensional domain (Berry, 1981). Since
energy is conserved, the motion is completely determined
by the sequence of boundary points at which the bounces
occur. If the domain is convex, then the map from one
bounce to the next is continuous. Convenient coordi-
nates are Birkho+coordinates (s, B) (Fig. 10). The bounce
position is measured by the arc length s along the bound-
ary from a given point. The direction of motion is mea-

FICx. 9. Frenkel-Kontorova model.
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St-1

FIG. 10. Birkho6'coordinates for a billiard.

an illustration. It is in many ways a typical example of a
smooth one-parameter family of area-preserving twist
maps; however, it has two special aspects, which we dis-
cuss briefly.

First, the standard map is special because it is periodic
in the momentum direction —if (x,y)~(x', y'), then the
point (x,y+m)~(x'+m, y'+m), which is equivalent
to (x',y'+m) on the cylinder. So the orbits of two
points separated by an integer in y are identical. We can
use this to restrict our attention to the interval 0 ~y ~ 1.

Second, the standard map is reversi'ble —it has a time-
reversal symmetry (DeVogelaere, 1950; Devaney, 1976;
Sevryuk, 1986). Simple examples of reversible systems
include Hamiltonians even in the momentum
H( —p, q)=H(p, q). In this case the time reverse of an
orbit can be obtained by reversing the momentum. There
is a similar time-reversal operator for the standard map.
Reversibility is often used to help hand periodic orbits
(Greene, 1979);however, we do not discuss it further.

The sections are organized by increasing levels of
chaotic behavior. We begin at k =0.

A. Integrable case

sured by the angle O between a tangent to the boundary
and the trajectory. It is easy to see that s'(s, 8) is a mono-
tone increasing functiori of O because of the convexity of
the boundary (Fig. 11)—thus the map in Birkhoff coordi-
nates has twist.

In fact, s is an anglelike coordinate since the map is
periodic with period equal to the length of the boundary.
As we shall see in Sec. V.C, this map preserves the area
element sinO ds d O. Thus canonical coordinates are given
by (x,y) =(s,cos8). We could have anticipated this, since

y is proportional to the component of the velocity along
the boundary and is therefore the canonical conjugate of
the arc length. The boundaries y =+1 are fixed points
and the twist, dx'/dy, vanishes at these points.

When k =0, the standard map becomes

y=y~
x'=x +y' .

(2.1)

yt =yo~ x~ =xo+yot

the map is "integrable. "
(2.2)

1. Liouville integrability

Thus y is a constant of the motion, and x grows at a con-
stant rate, which, however, increases with y because of
the twist condition. Since the solution can be obtained in
closed form,

II. PHENOMENOLOGY

In this section we discuss range of phenomena that
occur in twist maps. We use the standard map (1.36) as

In general, a symplectic map is integrable wheri the
motion is "simple" in some way. To avoid philosophical
issues (Zakharov, 1991)we shall consider only the notion
of integrability in the sense of Liouville.

An integra/ is a function on the 2X-dimensional phase
space I (z), which is invariant under the map:

I(T(z))=I(z) . (2.3)

We wish to exclude the constant function, which is trivi-
ally invariant, so we assume

VI%0 (2.4)

0
0 L

FlG. 11. Twist condition for bilhard map in Birkhoft' coordi-
nates.

everywhere. This implies that I=constant defines a
(2N —1)-dimensional surface or set of surfaces in the
phase space. Assume that these are compact.

A set of n integrals tI', I, . . . ,I I is independent if
their gradients span an X-dimensional vector space at
each point in phase space. Furthermore, the set is in in-
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volution if all the mutual Poisson brackets vanish:

(2.5)

Using these ingredients, we can state the Arnol'd-
Liouville theorem for maps,

Theorem I.f there are N independent integrals in inuolu
tion, then the motion lies on a nested family of N-
dimensional tori, and there exist angle coordinates 8 such
that the map can be written in the form

I'=I,
8'=8+A(E) .

(2.6)

Sketch ofproof. Let M, be a connected component of the
set tz: I'(z)=c', i =1, . . . , N j. Arnol'd has shown that
if M, is compact and connected, then it must be an N-
torus (Arnol'd, 1978, Chapter 10). A construction of
Darboux shows that, given a set of X independent func-
tions I~ in involution, one can locally obtain canonically
conjugate variables, 8, that is, I8', I j =5jk. Because M,
is a torus, the 0 can be chosen as angle variables. Since
the Poisson bracket is preserved by a symplectic map, we
have

2. Frequency

Since the standard map is defined on the cylinder, x
should be taken mod 1 in Eq. (2.1). Thus y determines
the rate of rotation around the cylinder.

In general, to define the rotation rate, we "lift" the an-
gle coordinates to the real line. For the standard map
this corresponds to computing x' =x +y' without taking
the fractional part. The frequency is defined as the limit

x,u= lim
f —+ oo

(2.9)

if it exists. For Eq. (2.2) we have, trivially, co=y, for any
initial condition.

The lift is not unique, because we could also use the
equation

For k )0 there is an elliptic fixed point at (0,0) and a hy-
perbolic point at ( —„0). There is also a pair of period-2
orbits; the orbit beginning at (0, —,) is hyperbolic, and the
other, at cos(2mx)= —k/2, cos(2my)=k /2 —1, is ellip-
tic. Since V'I =0 at these points, Eq. (2.7) is not strictly
speaking Liouville integrable; however, all other invari-
ant curves are topologically circles. For k small, (2.7) ap-
proaches the standard map.

Using the invariance of I we can write this as

I8i—8i,I'j =0.
Since this is true for each j and k, the difference 8' —8
can be a function only of the integrals. This function is
Q(E) in (2.6).~

Thus the standard map, with k =0, has a form that is
typical of the integrable case, except that the frequency is
linear in the momentum.

There are many examples of integrable maps (McMil-
lan, 1971; Veselov, 1988; Quispel et al. , 1989; Bruschi
et al. , 1991), though many of them have singularities in

the phase space. In fact, the time t map of any one-
degree-of-freedom, time-independent Hamiltonian is in-

tegrable. From our perspective, particularly interesting
examples were found by Suris (1989), who showed that a
map of the standard form (1.36) has a holomorphic (i.e.,
analytic in some domain) integral of the form

I(x,y) =F(x,y)+kG(x, y)

only when the sin( ) function is replaced by one of three
forms, each of which has a number of parameters. One
of these is periodic in x, and a special case is

r

1 k sin(2m. x )

2+k cos(2mx)
(2.7)x'=x +y' .

This map has the integral

I(x,y) =cos2ny +k [cos(2vrx)+cos[2m(x —y)] j . (2.8)

x =x+y +m

for any integer m to compute x'. Should we choose
mXO, the frequency would shift by m; we fix the lift by
choosing m =0.

3. Periodic and quasiperiodic orbits

There is an important distinction between rational and
irrational values of co. For each rational co, the orbits of
(2.1) are periodic on the cylinder. Generally an orbit is
periodic with period n if n is the smallest integer such
that

y =yo

x„=xo+m
(2.10)

for some integer m. We shall denote such an orbit by

(m, n). For an (rn, n) orbit, the frequency always exists

and is given by m/n.
Because of the twist condition, rational values of co

occur at a dense set of values of y; for the integrable case,
these are just the values y =m /n

On the other hand, almost all points have irrational u.
When m is irrational the orbit never returns to its initial
condition. An orbit is quasiperiodic if the frequency is ir-

rational and the orbit is recurrent: it returns arbitrarily
close to its initial condition. For the integrable map,
when y is irrational, the x coordinate densely covers the
circle y =constant on the cylinder. Thus these orbits are
quasiperiod1c.

The phase space of the integrable map is thus foliated

by rotational invariant circles. A circle is "rotational" if
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than predicted by the pendulum approximation.
There are also resonances for other rational values of

y, corresponding to the periodic orbits with frequencies
m/n. Each resonance consists of a chain of n islands,
and each island has a structure similar to the pendulum;
several of these are shown in Fig. 13. Perturbation
theory implies that the width of the m /n resonance
grows as k" for k small. At the center of the island,
and at the cusp of the separatrix, are periodic orbits with
frequency m/n; typically there appear to be only two
such periodic orbits. The existence of at least two orbits
follows from the Poincare-Birkhoff theorem, which we
shall discuss in Sec. VI.

Orbits trapped in an island move successively from one
island to another, following the periodic orbit (they skip
m —1 islands each step). Thus there is an entire region
of phase space that has frequency m /n

2. Stability

To understand the structure of the orbits in the neigh-
borhood of the periodic orbits, we consider their linear
stability. Points in the neighborhood of an orbit (2.10)
evolve according to the tangent map (1.17). After n itera-
tions, in the linear approximation,

T(T( . T(zo))) 5zo
z0

TABLE I. Stability classification.

Stability

hyperbolic
elliptic

reAection

hyperbolic

&0
2;Ft co

&0

&0
(0,1)

Tr(M)

&2
( —2,2)

& —2

which has the residue

We have already mentioned that near an elliptic periodic
orbit with co irrational, the mapping has a formal series
representation (1.37), which has librational invariant cir-
cles. The full apparatus of the KAM theorem can be
used to show that the orbit is generically stable (that is,
points initially close stay nearby; Arnol'd, 1978), provid-
ing coAm /n with n & 4.

Positive residue corresponds to either an elliptic or a
reAection hyperbolic orbit. These two cases are properly
thought of as two manifestations of the same orbit. Neg-
ative residue always corresponds to a hyperbolic orbit.
Finally, the parabolic case, R =1 or R =0, corresponds
to points of bifurcation, where an orbit can cease to exist
or lose stability.

For the standard map, the matrix M is
r

1 —k cos(2nx) 1

—k cos(2mx) 1
2.17

=M (z„,)M (z„~) M (zo )5zo kR =—cos(2mx) .
4

(2.18)

=M "5z0 . (2.14)

Here M (z) is the Jacobian matrix given by the derivative
of T(z). Since M is symplectic, so is M; and (1.23) im-
plies that if A, is an eigenvalue, then so is 1/A, . Here A, is a
solution of the characteristic polynomial
k —Tr(M")+ 1=0:

A, =—,
'

j Tr(M" ) ++[Tr(M" ) ] —4 I .

The possible stability properties are

(2.15)

These are summarized in Table I.
A stability classification is most conveniently given in

terms of the residue (Greene, 1979);

R =—,'[2—Tr(M")] . (2.16)

The elliptic case, corresponding to A, =e '" or
0&8 =sin (neo) & 1, is the only one that could possibly
be called stable, although the stability is a neutral one.

(a) hyperbolic: both eigenvalues are real and larger
than 1;

(b) elliptic: there is a pair of complex conjugate eigen-
values with unit modulus;

(c) reflection hyperbolic: both eigenvalues are real and
less than 1;

(d) parabolic: the eigenvalues are both 1 or both —1.

Thus the fixed point (0,0) has positive residue for k &0.
It is elliptic for 0(k (4 and becomes reQection hyper-
bolic for k)4. The point ( —,', 0) is hyperbolic for k) 0.

3. Stable manifolds

For a hyperbolic period-n orbit, M" has two eigenvec-
tors corresponding to the unstable and stable directions
(A, , & 1 and A,2= 1/A, , & 1, respectively). Under M",
points move on the branches of a hyperbola, with these
eigenvectors as asymptotes. The stable manifold theorem
(Lanford, 1973) implies that the eigenvectors of M" can
be extended to invariant manifolds S'" and 8" of T"
(Fig. 14). Each point on these accumulates on the hyper-
bolic orbit in at least one direction of time:

zE 8"- -- T~"z —+z0 aS j~(x),
z&8'"=-T "z~z0 as j~—oo,

(2.19)

where z0 is some point on the orbit. It is important to
remember that the mamfolds, while having the appear-
ance of trajectories of a How, are collections of orbits. A
point on S'", for example, moves a discrete distance
upon application of T" to another point on 8'". The
stable manifold cannot intersect itself or the stable mani-
fold of any other periodic orbit, since this would violate
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W

FIG. 14. Stable and unstable manifolds for hyperbolic fixed
point. The hyperbolas with asymptotes given by the eigenvec-
tors of the orbit, shown inside the box, give the local behavior.
A global extension of the stable and unstable eigenvectors yields
the stable and unstable manifolds.

uniqueness. generically 8'" and 8" are different mani-
folds; one exception to this is an integrable system for
which 8'" and 8"join smoothly to form a separatrix.

When 8'" and 8" intersect transversely, the intersec-
tions are called homoclinic points. A homoclinic point
lies on both the stable and the unstable manifold; so it is
asymptotic to the hyperbolic orbit in both directions of
time. Thus each iterate of a homoclinic point is also
homoclinic, and the set of such iterates is a homoclinic
orbit. Heteroclinic points are the intersection points of
the stable and unstable manifolds of different periodic or-
bits.

Let z be a homoclinic point, as shown in Fig. 15. In
addition to z, we shaH see that there must also be a
second homoclinic point g on W" between z and its
iterate T(z). Let A be the closed region bounded by the
curves 8'" fromzo toz and 8"from ztozo. Sincezis on
W', T(z) must be on the segment of W' between z and zo;
however, at the next crossing along this segment, 8'"
must enter A (Fig. 16). This cannot occur at T(z), since
then orientation would be reversed. We label this cross-
ing g; its orbit is homoclinic and distinct from that of z.

In fact, if there is one homoclinic orbit, there are an
infinity of them (Poincare, 1892). For example, some
iterate of the segment of W" between g and T(z) must
cross 8". Consider the lobe X formed by the segments

FIG. 16. Existence of a second homoclinic orbit defined by z.

of W" and W' between g and T(z). By definition X is
contained in the region A; if the segment of 8'" were
never to cross W', then all future iterates of X must
remain in A. However, the area of X is preserved under
iteration, and since the area of A is finite, T (X) cannot
remain in A forever. Thus this segment of 8'" must
eventually cross 8", giving rise to at least two new
homoclinic points (see Fig. 17). We shall discuss this
process in Secs. VIII and IX.

C. Transltloll

3. Destruction of invariant circles

As k increases, the resonances grow in size, and the re-
gion of phase space occupied by rotational invariant cir-
cles necessarily shrinks. Invariant circles are destroyed
when resonances engulf the region of phase space they
once occupied. In Fig. 18 we show the standard map at a
moderate parameter value for which most of the invari-
ant circles are destroyed.

The twist condition implies that the frequency is essen-
tially a monotonic function of y (this will be made precise
in Sec. VI). Thus a rotational invariant circle of frequen-
cy co must lie between any pair of resonances whose fre-
quencies surround it. Suppose there is a heteroclinic con-
nection between this pair; that is, they ouerlap. There
can then be no such invariant circle. The heteroclinic

FIG. 15. Homoclinic intersection of the stable and unstable
manifolds of zo at the point z. FICx. 17. Existence of infinitely many homoclinic intersections.
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~a
~&e

W(0 1)

~se ~8+

FIG. 19. Resonance overlap. Pendulum approximation gives
the dashed shapes for the (0,1) and (1,1) resonances. Actual
stable and unstable manifolds are sketched as the solid curves.
Intersection points of these are heteroclinic orbits.

FIG. 18. Standard map for k =0.8. Bounds are
x H [ —0.5,0.5],y E [0.0,0.6]. There are still some visible rota-
tional invariant circles.

connection implies that there is a curve formed from a
segment of unstable manifold of one resonance and stable
manifold of the other, which crosses the region that was
to have contained the invariant circle. Every point on
this curve is either forward asymptotic to one resonance
or backward asymptotic to the other and thus cannot be
on an invariant circle.

Chirikov has introduced a perturbative technique for
computing the overlap of resonances and therefore the
parameter for the destruction of invariant circles (Chiri-
kov, 1979b). The method is to approximate the map by
the pendulum Hamiltonian in the neighborhood of the
resonance and to use this to estimate the resonance
widths. For example, aside from the (0,1) resonance, the
standard map also has a (1,1) resonance corresponding to
the elliptic point (0,1) and the hyperbolic point ( —„1).
Setting y = I+5y and x =t +5x in Eq. (1.36), and ap-
proximating for k and 5y small, we obtain the pendulum
equations just as in (2.11). Thus the width of the (1,1)
resonance Wi»~ is equal to W~o, ~, as given by Eq. (2.13).
The distance between these resonances is 1; and so, as
shown in Fig. 19, they overlap when

(2.20)

This rough estimate would predict that there are no in-
variant circles in the range 0&co&1 when k &2.5. In
fact, this is a considerable overestimate of the actual
overlap value, since the pendulum approximation is valid
only for small k. Considerable improvement ean be ob-
tained by higher-order perturbation theory (Chirikov,
1979b; Lichtenberg and Lieberman, 1982).

2. Last invariant circle

11m
n;

(2.22)

and which have residues between zero and 1, then the in-
variant circle will exist. This "residue conjecture, " has
been proved in some cases (MacKay, 1991).

A natural set of frequencies to use is that given by the
continued-fraction convergents of co (we shall discuss
these in Sec. III). In this case the parameter values for
which the ith convergent has R =1 geometrically limits
on a value k„(co), which is the parameter at which the
invariant circle is destroyed. For the golden mean this
value is

k„(y )=0.971 635 406 . (2.23)

We show the standard map phase space at k„(y) in Fig.

As k increases, there are fewer invariant circles. In
fact, as we shall see in Sec. IV, there is a simple analytic
argument that shows when k is large enough there can be
no invariant circles (the "converse KAM" theorem). A
natural question to ask is, which invariant circle is the
last?

Greene (1979) discovered that for the standard map,
the last invariant circle has frequency ~=y, where y is
the golden mean

(2.21)
2

(special symmetries of the standard map imply that all
the circles with frequencies m+y are destroyed simul-
taneously; we refer to this set of circles as the "golden
circle" ). Greene developed a method for determining the
existence of an invariant circle by looking at the stability
of nearby periodic orbits. He reasoned that if there is a
set of periodic orbits whose frequencies limit on the in-
variant circle.
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tional orbits have class zero). In the neighborhood of any
class-1 elliptic periodic orbit the same structure repeats.
Thus we expect to see the structure of islands around is-
lands, and it can even occur in a self-similar way (Meiss,
1986; see also Fig. 21). This structure was already en-
visioned by Birkhoft'(1935), who said,

It is clear that not only do general elliptic periodic
solutions possess neighboring elliptic and hyperbolic
periodic solutions, but also, beginning again with the
neighboring elhptic solutions, who are, as it were, satel-
lites of these solutions, one can obtain other elliptic and
hyperbolic solutions which are secondary satellites.

D. Chaos

FIG. 20. Standard map for k =0.9716354. The invariant cir-
cle shown between the (1,3) and (2,5) resonances has frequency
1/y —it is equivalent by symmetry to the golden circle. Close
examination fails to reveal any other rotational invariant cir-
cles.

20. There is a remarkable self-similarity associated with
this parameter value, and the application of
renormalization-group ideas has been very fruitful
(MacKay, 1983). Since these methods have been re-
viewed elsewhere, we shall not discuss them further
(MacKay, 1986).

Using the Greene method one can construct a "fracta1
diagram" of parameter values k„(m/n) such that R =1
for f0=m/n (Schmidt and Bialek, 1982). On this dia-
gram the golden circle has the largest k„. An alternative
method, estimating the radius of convergence of a
Fourier series for the invariant circle, 1eads to a similar
conclusion (Percival, 1982).

3. Islands around islands

The entire structure we have just discussed is also
found in the neighborhood of any elliptic periodic orbit.

An elliptic period-n orbit is a fixed point of the map
T". The linearization about this point has orbits rotating
with the frequency co (recall Table I). Near the fixed
point the map can be expanded and written in the form
(1.37); if any of the p2k are nonzero, the map has twist in
some neighborhood of the point. Thus nearby orbits ro-
tate about the fixed point, and the rotation frequencies
vary with the distance away from the fixed point.

Thus as one moves away from the fixed point the rota-
tion frequency must go through rational values, and at
each such point a resonance is formed. If the rational
number is I

&
/n i, then the resonance corresponds to a

fixed point of ( T") '. We call these orbits of class 1 (rota-

As of yet we have not discussed the most intriguing
phenon1ena that occur when k is increased, that of chaos.
There are three basic ingredients for chaos (Devaney,
1986). First, one requires "sensitive dependence on ini-
tial conditions;" that is, nearby orbits should separate ex-
ponentially in time (positive Lyapunov exponents).
Second, the motion should be bounded, so that the ex-
ponential separation does not simply result in sn1ooth ex-
pansion to infinity. This means that separating orbits
must eventually come close together again. R.ecurrent,
but in practice unpredictable, behavior is a signature of
chaos. Finally, there should be some large set of orbits
(one of nonzero measure) that has this behavior.

A similar concept is Birkhoff's irregular component, a
connected set that is the complement of the elliptic
periodic orbits and invariant circles. Hyperbolic periodic
orbits and their stable and unstable manifolds are part of
an irregular component. In fact, their transversal inter-
section is a prime ingredient in chaos —giving rise to the
famous Smale horseshoe structure (Moser, 1973). Ex-
istence of a horseshoe implies that there is a zero-
measure set of orbits that act chaotically: they can be
equivalent to a coin toss (Bernouilli shift). To our
know1edge there are no results that imply a nonzero mea-
sure of orbits is chaotic for a typical system, and it is not
known whether irregular components typically have
nonzero measure. There are examples of completely er-
godic systems, such as the Arnol'd cat map (which is a
twist map; Arnol'd and Avez, 1968), and specially con-
structed examples of systems with both invariant circles
and irregular components (Wojtkowski, 1981).

On the other hand, computer-generated pictures, e.g.,
Fig. 22, imply that the measure of a typical irregular
component is nonzero; they seem to be "fat fractals"
(Umberger and Farmer, 1985). Understanding the struc-
ture of these regions, and the way in which typical orbits
move through them, is a major goal of the study of
chaos.

1. Transport

The inherent loss of predictability for chaotic systems
suggests that it is not especially eKcient or useful to try
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to follow individual trajectories. One alternative is to de-
scribe the properties of ensembles of trajectories. Thus
even though we study deterministic systems, statistical
methods may be appropriate.

Transport theory deals with the motion of ensembles of
trajectones, asking how long it takes a set of orbits to
move from one region of phase space to another. An un-
derstanding of transport properties allows one to com-
pute transition probabilities and correlation functions.

Applications of transport include the calculation of
chemical reaction rates. A chemical system can be
modeled by a set of differential equations and the reac-
tion itself by the transition between two regions of phase
space. Such an approach was pioneered by Wigner
(Wigner, 1937). Simple chemical reactions can be
modeled by classical Hamiltonian systems, and an under-

standing of classical transport has been found to be useful
(Davis, 1985; Skodje and Davis, 1988).

Another application is to inixing in fluids (Aref, 1984;
Ottino, 1989; Rom-Kedar et al. , 1990). The motion of a
passive scalar in a given velocity field can result in mix-
ing, and the most efficient mixing occurs for chaotic ve-
locity fields.

An understanding of transport is also important in
plasma and accelerator physics. The basic problem here
is to confine a set of interacting particles to one region of
phase space, corresponding to the configuration being in
the interior of the reactor and the momenta being large
enough so that significant nuclear reactions can occur.
For magnetic confinement of plasmas, the simplest model
of such a system, guiding-center particle motion, can be
reduced to an area-'preserving map (Rosenbluth et al. ,
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FICx. 21. Islands around islands for the standard map at k = 1.201 413 33. The bottom-right figure has the bounds [ —0.5, 0.5] for x
and [0.0,0.6] for y. One island of the (1,3) resonance at the bottom right is enlarged in the figure to the left, revealing, among other
things, a class-1 (1,5} island chain around it. This island, when enlarged, has a class 2 (1,5}chain, which when enlarged, etc. The pa-
rameter value was chosen to observe this self-similar structure (Meiss, 1986).
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Upon each iteration of the mapping, an area V escapes
from C and the same amount enters. Thus the flux gives
an estimate (sometimes a crude one) of a confinement
time for C: If motion in C is "randoin" in some sense,
then a trajectory will be trapped within C for a typical
time

A(C)
trapped p( p )

(2.24)

where A (8) is the area enclosed by C. A better estimate
of confinement time for the irregular trajectories would
be obtained if 3 were replaced by the area of the con-
nected irregular component inside C. However, this is
difficult to determine.

As an example, we compute the fIux across the circle
C = Iy =yoI for the standard map. The iterate of C, by
Eq. (1.36), is the curve

~~~ t

~ ~ 0
l

r

~ ~

H ~ F

TC = Iy =yo —k sin[2m(x —yo)]/2~[ . (2.25)

The upward Aux is the area above C and below TC,
w111ch is

FIG. 22. Standard map for k =1.0. Shown are about 10
iterates of two chaotic orbits. These orbits appear to fi11 regions
of nonzero area.

(2.26)

This is also the downward Aux.1966; Rechester and Rosenbluth, 1978). Accelerators are
naturally modeled by maps (Carrigan et al. , 1982; Jowett
et al. , 1986). 3. Diffusion

When k is large, say of order 100, then the phase space
of the standard map looks, to the resolution of a typical
computer screen, completely chaotic. The rapid loss of
phase coherence for large k makes it plausible that sta-
tistical approximations should be valid. Because the
jump in y is proportional to k sin(2mx), an O(e) uncer-
tainty in x gives rise to an error 0 ( ke) in y. Using this in
the x equation leads to an error O(ke) in that of x. The
exponential escalation in error, by a factor of order k
each step, makes the phase completely undetermined
after a small number of steps.

Since the step in y depends on the highly uncertain
phase, x, we expect the motion of y to be diffusive in
character. The diffusion coeKcient is defined as the
mean-square spread in y per step,

2. Flux

The most elementary transport problem is to deter-
mine the volume of trajectories that escape from some re-
gion per unit time, or Pux. In the case of volume-
preserving motion, the net Aux is always zero; so one
would like to compute the one-way Aux.

Consider a map and a region bounded by a curve C
(see Fig. 23). The Aux V(C ) is the area escaping from C:
the area inside TC that is also outside of C'. If C en-
closes 6nite area, then area preservation implies that the
escaping Aux is the same as the entering Ilux. If C is a
rotational circle, the Aux is the area above C that is
below TC. Of course when C is an invariant circle, it has
zero fiux.

((y, —yo)'&

2t
(2.27)

where the average ( & can be thought of as an average
over some ensemble of initial conditions. The factor of 2
in (2.27) appears in the Fokker-Planck derivation
(Lichtenberg and Lieberman, 1982). Using
», =y, —y, „we can write (2.27) as

C

1 CK

INa
WN „.. ., E

&= =&8)' D= limt~ oo

t t —i

(»;»;+1 & .
2t

(2.28)= lim
t —+ oo

FIG. 23. Flux definition. The area outside 8 that is inside TC
is the Aux through 8. The average in (2.28) is the force correlation function
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Ct = ( 6y 0ky t ) (2.29)

1 —— Cj

(2.30)

Here we have noted that the average over initial condi-
tions is time translation invariant, since the map is area
preserving: dxodyo=dx dy . Reversing the order of
the sums in (2.28) yields

istence of accelerator modes —orbits that satisfy
y„=yo+j, x„=xo+I for integers n, m, and j. These
exist due to the periodicity in the y direction. Whenever
there is an elliptic accelerator mode, the diffusion
coefficient appears to be infinite (Karney et al. , 1982;
Meiss et al. , 1983).

We shall discuss the long-time tail problem in Sec. IX.

III. NUMBER THEORY ANI3 KOLMOGOROV-
ARNOL'D-MOSER (KAM) THEORY

k
D~L

16m
(2.31)

which goes by the name "quasilinear diffusion. " It is
indeed observed that when k is large, D approaches D&J .

Corrections to D&L can be systematically computed by
including correlations in (2.30) for j&0. This leads to a
series in products of Bessel functions (Cary et al. , 1981;
Rechester et al. , 1981). These results agree well with
moderate time computations of the diffusion coefficient
using either an ensemble of initial conditions or a single
initial condition which is chosen to be in the chaotic re-
gion (Meiss et al. , 1983; Ichikawa et al. , 1987).

where the last sum is valid providing the correlations de-
cay at least as rapidly as t

Formally, (2.30) can be applied to the standard map for
any value of k. Whenever there are rotational invariant
circles, then D must be zero, since, according to the
definition (2.27), diffusion requires that the momentum
reach arbitrarily large values. Thus for k(k„(y) of
(2.23), D =0. We shall discuss the form of D for k slight-
ly larger than k„(y ) in Sec. IX.

When k is large, the correlations should decay rapidly;
the simplest statistical approximation is to assume that x
is an uncorrelated random variable —the random-phase
approximation. Then only Co is nonzero, and for the
standard map Co=k ([sin(2@x)] )/4m =k /8m. .
Thus the diffusion becomes

A. Number theory

The persistence of invariant circles for small perturba-
tions from the integrable case depends on the fact that
some irrational numbers are "far" from rationals. Here
we discuss and quantify the degree of irrationality.

1. Diophantine numbers

/neo —m/ &
C

n
(3.1)

for some r&1. Let D,(C) be the set of co that satisfy
(3.1). Equation (3.1) implies that co is excluded from in-
tervals surrounding each rational (Fig. 24). For C small
enough, D,(C) is not empty; in fact, for any r&1 the
measure of D (C) approaches 1 as C approaches zero
(Khinchin, 1964). Consider, for example, the numbers in
the interval (0,1]. The complement of D,(C) has a mea-
sure p which is given by the sum of all the excluded in-
tervals, each of which have a width C in '+', thus

An irrational number can be approximated arbitrarily
closely by rational numbers whose denominators are ar-
bitrarily large. However, some irrationals are more
dificult to approximate than others. To measure this we
use the distance

~
neo —m

~
between a number and the ra-

tional m/n We s.ay co is particularly hard to approxi-
mate if it satisfies a Diophantine condition: there exists a
C & 0 such that for all integers (m, n)A(0, 0)

4. Long-time tails

However, the series for D does not appear to converge
at many parameter values, because the assumption
C, =O(t ) in Eq. (2.30) fails.

The long-time behavior of correlation functions is a
problem of continuing interest. Whenever there are reg-
ular regions, such as those caused by an elliptic periodic
orbit, the correlation function appears to decay algebrai-
cally with time (Karney, 1983; Meiss et al. , 1983; Chiri-
kov and Shepelyanksy, 1984; Geisel and Thomae, 1984).
This occurs even when the average is taken over only
chaotic orbits. The reason seems to be the stickiness of
the regular orbits. Whenever a chaotic orbit wanders
close to an invariant circle it stays close for a long time.

A related problem for the standard map is the ex-

p(D, (C))= g
n=1 m=1

(m, n) coprime

P(n) C g(r)
, n ~+' g(~+ 1)

(3.2)

1(2 4l7 3l55l8 F3
/

J
X IA

%7 % / '& % /

FIG. 24. Excluded intervals about rationals implied by Eq.
(3.1).

where P(n), the Euler function, is the number of integers
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not exceeding and relatively prime to n, and g(r), the
Riemann zeta function, is finite when r) 1 (Abramowitz
and Stegun, 1965, Sec. 24.3.2). Thus p(D (C))~0 as
C—+0 for any w) 1.

The set of Diophantine numbers D is the union of
D (C) for all C)0.

equivalent continued-fraction representations:

[ao ai a ]=[ao ai . , a; —1, 1], (3.5)

where a;Wl (unless i =0). Convergents of a continued
fraction are the rationals obtained by truncating the ex-
pansion at some stage:

2. Continued fractions
m, ln, =[ao,a, , . . . , a, ], (3.6)

Another classification of the properties of real numbers
arises from continued-fraction expansions (Khinchin,
1964). The continued fraction of co is the sequence
[ao,a i, . . . ] of integers generated by the map

where m; and n; are coprime. The continued-fraction ex-
pansion is a strongly convergent expansion: for any e
there is a j such that

In;co —m; I
& e for all i )j .

~n+i
CO-n n

(3.3)

where the square brackets indicate the nearest integer
less than co (if to is negative, ao is negative and the
remaining a; are positive), and coo=co. An alternative
representation for the continued fraction is

(3.4)

1
a + 0 ~ 0 +2 a + e o ~

n

The continued-fraction expansion of an irrational is
infinite (since if co„ is irrational, then co„+, is also irra-
tional), while that for rationals always ends (one eventu-
ally finds that co„+i is an integer). Every rational has two

Into mI —&C/n (3.7)

for C = 1; conversely, every rational that satisfies (3.7) for
C= —,

' is a convergent. However, when C&1/&5, there
exist co such that only finitely many convergents satisfy
(3.7).

Irrationals are more difficult to approximate if their
continued-fraction elements are small. This is because a
large element a;+, leads to a small correction to m;/n;.
A prominent example of such behavior is the number m,

which has the continued-fraction expansion

Furthermore, the convergents are best approximants —if
m In is a convergent of co, then every m 'In' with n' & n

is farther from co: In'co —m'I & Into —m I.
Every convergent is close to the frequency that it ap-

proximates in the sense that it satisfies

m = [3,7, 15, 1,292, 1, 1, 1,2, 1,3, 1, 14,2, 1, 1,2, 2, 2, 1, 84, 2, . . . ] (3.8)

so that m is well approximated by its second convergent,
22/7, and its fourth convergent, 355/113. This leads to
the definition of the numbers of constant type: those
numbers for which there is an a such that a; & a for all i.
For such co, and for sufficiently small C, there are no
(m, n) satisfying the inequality (3.7). In fact, the numbers
of constant type are precisely those that satisfy a
Diophantine condition (3.1) for r= 1. The set of numbers
of constant type has measure zero.

A subset of the numbers of constant type are the quad-
ratic irrationals: the solutions of a quadratic equation
with integer coefficients. Lagrange showed that every
quadratic irrational has an eventuaBy periodic continued
fraction, and conversely every eventually periodic contin-
ued fraction corresponds to a quadratic irrational. Quad-
ratic irrationals are a special case of the algebraic irra-
tionals: solutions of a polynomial of degree n with in-
teger coefficients. Roth has shown that every algebraic
irrational is in D, +s for any 5)0 (Cassels, 1965).

A more special subset of the numbers of constant type
are the noble numbers: these have a;=1 for all i larger
than some j. Noble numbers are dense in the reals, since

one can append a noble tail to a convergent of any co to
obtain an arbitrarily good approximation to ~. On the
other hand, the nobles are a set of measure zero, since
they can be put in one-to-one correspondence with the
rationals. The noblest of numbers is the golden mean
(2.21),

y=[1,1,1, . . . ] . (3.9)

3. Farey tree

The Farey tree (Hardy and Wright, 1979) is a tech-
nique for organizing the rational numbers according to
the length of their continued-fraction expansions. The
tree is constructed beginning with a pair of rationals in

Since (3.9) is periodic, y is a quadratic irrational (in fact,
it is the larger solution of y =y+1). Sometimes
1+&2=[2,2, 2, . . . ] is referred to as the silver mean; it
is quadratic, but not noble.

%'e show the relation between these classifications in
Fig. 25.
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Irrationals

[ao, ay, "a;-1,1] =& = ~ "a;]

[ao, a), "a;-1,2] [ao,a), " a;+1]

FIG. 27. Relation of the continued fraction to the Farey tree.

FICx. 25. Venn diagram of the irrational numbers.

lowest terms, m/n and m'/n', which are neighboring:
mn' —nm'=1. Level one of the tree is generated from
these by adding their numerators and denominators,

Pl +I
n+I' (3.10)

This rational is the mediant of m In and m'In'. It is not
difBcult to see that m" and n" are coprime and that
m "In" is a neighbor to both its parents. To construct
the second level, find the mediants of m "/n" and each of
its parents. This construction leads to a binary tree that
gives every rational number in the interval
[m'/n', m/n] The .tree generated by the neighbors 1/0
and 0/1, shown in Fig. 26, gives all the positive numbers.

The Farey path for a number is the sequence of
left/right steps leading to it from 1/1. Thus the Farey
path for 2/7 is LLLR. Irrationals are represented by
infinitely long Farey paths. The Farey path provides a
binary code for the reals.

The continued-fraction expansion is closely related to
the Farey tree construction. The sum of the continued-
fraction elements of m /n = [ao, a &, . . . , a; ] gives the lev-
el on which it occurs:

Level([ao, a&, . . . , a;])= g ai .
j=O

(3.11)

RLLLLLLLL 1

1 +

approaches 1/1 from above and

(3.12)

LRRRRRRRR. . 1

1
(3.13)

The continued fraction for a given Farey path can be ob-
tained recursively. The continued fraction for a daughter
of m ln is obtained by incrementing a; by 1. The two
representations (3.5) give the two daughters; that with
a;%1 is used if the current step in the Farey path is in the
same direction as the preceding step, and that with a; = 1

if the direction changes (see Fig. 27). For example, the
golden mean corresponds to the path
RLRLR = [1,1, 1, 1, 1, 1, . . . ]. In general, noble
numbers have a Farey path that eventually alternates,

LRLR .
There are two different types of infinite Farey paths:

those that eventually consist of all L's or all R's and
those that continue to alternate. The former converge to
rational numbers. For example, the sequence

0
1

1
2

1
0 Level

1

from below. These two numbers should be thought of as
distinct from 1/1 —they have a nice interpretation in
terms of the orbits of a twist map, as we shall see in Sec.
VIII. Farey paths that never settle down to either one
direction or the other approach irrational numbers.

B. KAM theory

1
3

1 2
5

123 357 87

2
3

3 3
5 4

45547875

3
2

FICx. 26. Farey tree construction.

Consider an integrable area-preserving map, Eq. (2.6),
satisfying the twist condition (1.30). Thus

dQ/dI~K) 0 . (3.14)

The twist condition implies that there are quasiperiodic
orbits for all irrational co, in fact, since I is a constant of
motion, the frequency is just Q(I).
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The perturbed map is written

I'=I+f (I,e) .

e =e+n(I)+g(r, e) .
(3.15)

As we shall see in Sec. IV.B, in order that there be invari-
ant circles it is necessary that the average of f (I,e) be
zero,

J f (I,e) de=0, (3.16)

since otherwise the perturbed map could simply shift all
points vertically. For this case the KAM theorem is

Theorem (Moser, 1973). If Q(y) satisftes (3.14) and is j
times differentiable, then there is an e) 0 such that a/I
area preserving -maps (3.15) and (3.16) with

Ifl j+ Iglj. &eKC have rotational invariant circles for all
frequencies that satisfy a Diophantine condition (3.I) with

1&r&(j—1)/2 . (3.17)

The theorem implies that the more di6'erentiable a sys-
tem is, the more invariant circles it has, since ~ can be
larger. The inequality (3.17) requires j)3; however,
Herman (1983, 1985) has shown that this theorem can be
extended to the case j =3,~= 1, providing an additional
Holder condition is imposed upon the third derivatives.
Furthermore, he has given examples of perturbations
which, being C but not C (C '), do not have invariant
circles.

One of the most important concepts arising from the
KAM theorem is the labeling of orbits by frequency. In
a sense the theorem says not to ask what happens to the
orbit with a particular initial condition as a system is per-
turbed, but rather to consider the properties of an orbit
with the same frequency.

Thus the KAM theorem says that most invariant cir-
cles (labeled by their frequency) persist for suKciently
small perturbations; however, in the proof of the
theorem, "small" is indeed very small. In order to obtain
better estimates for the domain of existence of invariant
circles, it is better to ask about the existence of one par-
ticular circle instead of all smooth ones: the domain of
existence of invariant circles in the space of smooth
area-preserving maps is undoubtedly nothing like the
simple ball assumed in the proof. For example, Herman
(1985) has shown that there is at least one invariant circle
(with co=y) of the standard map when k &0.029. A
computer-assisted version of this theorem, using interval

The KAM theorem, in this context, implies that rota-
tional invariant circles with su%ciently irrational fre-
quency persist under small area-preserving perturbations.
A perturbation is small if it and its first j derivatives are
small; to express this formally, define the j norm of a
function f as

gm +n

if (x,y)i, = sup
m+n ~g ()~ m()y n

arithmetic, attains the bound k &0.91 (de la Llave and
Rana, 1990).

As we shall see in the next section, it is often easier to
ask the converse question: when do rotational invariant
circles not exist?

IV. INVARIANT CIRCLES

Though the KAM theorem gives us some insight into
the existence and structure of invariant circles, its utility
is limited because it is a perturbative result. There are,
however, several important nonperturbative results about
invariant circles for twist maps, i.e., maps of the cylinder
that satisfy (1.30). In this section we prove Birkhoff's
theorem, which implies that any rotational invariant cir-
cle must be the graph of a function, y = Y(x). This
theorem leads to techniques for proving the nonexistence
of invariant circles —converse KAM theory; it implies
that irregular components must be bounded by invariant
circles; and it implies the existence of orbits that cross
any region not containing invariant circles, thus showing
that invariant circles are the only structures that prevent
transport.

A. Rotational invariant circles

Let T be an area-preserving map on the cylinder. We
suppose it is also end preserving: points with arbitrarily
large positive y are mapped to similar points. This is the
only possible case if the map arises from a Poincare sec-
tion of a Aow, since the Aow provides a smooth connec-
tion of the map to the identity.

An invariant circle is a curve C such that TC=C. A
rotational invariant circle (RIC) is a closed loop that
encircles the cylinder (i.e., is homotopically nontrivial;
see Fig. 28). An invariant circle divides the cylinder into
two invariant regions. To see this, consider the iterate of
the region below an RIC. Since the Inap is continuous
this iterate is a connected region. Since the circle is in-
variant, and the map is one to one, the iterate must have
the circle as its boundary (otherwise it would have to
"fold"). Finally, since the map is end preserving, points
far below must retain below —thus the entire region must
remain below. So a rotational invariant circle provides
an absolute barrier to motion. Similarly, the region in-
side any invariant circle that encloses a finite area must
remain inside.

FIG. 28. Rotational invariant circle. An invariant loop that
cannot be contracted to a point is a RIC.
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B. Net flux

For a rotational circle 8, let Az be the "algebraic area
below" C, that is, the value of the integral

Ap= I y dx. . (4.1)

If y is positive on C, then Ac is simply the geometric
area between C and the circle y =0; if, however, the cir-
cle dips below y =0, then the contribution to Eq. (4.1)
from this segment is negative, and the algebraic area
diff'ers from the geometric area. Moreover, in (4.1} we
need not assume that the circle can be represented as a
graph; so strictly speaking we should write the curve C in
parametrized form as (x (A, ),y (A, ) }and integrate over I,.

The net jEux is the area contained between a rotational
circle C and its iterate TC:

(4.2)

When TC is above (below) C the contribution to (4.2) is
positive (negative), as in Fig. 29. The net flux is indepen-
dent of the choice of C. To see this, choose a second
curve 2). Because T is area preserving, the area con-
tained between C and 2) is invariant; thus

C. Birkhoff's theorem

Birkhoff showed that any invariant set U that looks
like "half a cylinder" has a boundary that is the graph of
some function Y(x). In this section we sketch the proof
of this theorem, and in the next section we discuss some
of the practical consequences. Formally we have the

Theorem (Birkho+ 1920; Herman, 1983; Mather, 1984).
Suppose T is a C' area preseruing, e-nd-preseruing tun'st

A p
—

Ag) = A Tp
—A Tg) .

Rearranging this gives

ATg)
—Ag) = AT@—Ap,'

so the net Aux through 2) is the same as that through C.
A map with zero net flux is exactly symplectic (recall

Sec. I.C). We have already seen that the standard map
has zero net Aux in Eqs. (2.25) and (2.26).

A map that has an RIC must have zero net Aux, since
the net Aux through the RIC is zero. This is why the
condition (3.16) was required for the KAM theorem.

map on the cylinder. Let U be an open invariant set
homeomorphic to the cylinder such that there are a (b
satisfying

[x,y:y & a j C U C [x,y:y (b j .

Then the boundary of U (dU) is the graph [x, Y(x) j of
some continuous function Y.

The region U includes all points below y =a, is contained
in the region y (b, and can have no holes. The point of
the theorem is that BU cannot have any "whorls, " for ex-
ample, like those of a breakipg wave. In particular, any
continuous rotational invariant circle can be used as an
upper boundary to form U; so the theorem implies that
all RIC's are graphs.

1. Accessible points

The proof uses the concept of accessible points. Let
y(t)=(x(t), y(t)) be a curve embedded in U (y cannot
cross itself) and parametrized by t so that
y( —ao)~ —oo. The deviation of y from the vertical is
defined to be the angle 5 between a tangent to y and the
vertical. For those points y(t) such that y (t) )y (t') for
all t'(t, choose 5 in the range [ —m. l2, m/2]; otherwise
the branch of 5 is chosen to make the deviation a con-
tinuous function (see Fig. 30).

A curve y is tilted to the right if 5~0 everywhere;
i.e., its deviation from the vertical is everywhere to the
right. Left-tilting curves are denoted y .

As sketched in Fig. 31, a point zo E U is right accessible
if there exists a y E U such that y (to)=zo.

2. Proof

A curve y which tilts to the right is mapped onto
another such curve by T. For example, suppose the angle
5 at z is in the range [—n, O]; see Fig. 32. A vector u at z
is mapped to Mu, where M is the linearization (1.31) of T
at z. In particular, the twist condition (1.30) implies that
the vertical at z is mapped to a right-tilting vector with
tilt 0 in the range [ —m, O]. Since T preserves orientation,
the angle 5' between Mu and the tangent to T(y ) at
T(z) must be in the range [—m, O]. The deviation of

LC
TC

FIG. 29. Net flux through C, shown by the difference between
areas of the black region and the grey region. FIG. 30. Deviation from the vertical, 5.
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b

~ sj:

C,

FIG. 31. Right accessible point. FIG. 33. Right accessible region, 8' .

T(y ) from the vertical is the sum of these two angles
and therefore must be to the right.

Let 8' and 8' be the subsets of U that are right and
left accessible, respectively. The boundary of 8' con-
sists of portions of BU together with vertical segments
bounding those parts of U not right accessible (see Fig.
33). Since every point in W is on a curve that tilts to
the right, 8' is mapped into itself by T:

T(W~) C W~ .

Similarly, T '(W )C: W since T ' twists to the left.
In fact, since T is area preserving and has zero net fIux,

O' = U. If we suppose the contrary, then there is some
portion of U that is not right accessible and is therefore a
"lobe" bounded by a vertical on the right. Upon itera-
tion any vertical tilts to the right, and therefore some
portion of this lobe is mapped into W (Fig. 34). Now
consider a circle y =yo far below BU. Since BU is con-
tained between y =a and y =b, the area of U above yo is
6nite. Furthermore, area preservation implies that the
area of 8' above y =yo is mapped into a region with the
same area. However, since the net Aux through y =yo is
zero, this gives a contradiction. Similarly, since T
twists to the left, 8' =U.

Thus every point of U is both right and left accessible,
hence is vertically accessible. Therefore there exists a
function y =F(x) describing BU.

D. Corollaries

1. Lipschitz corollary

A function F(x) is Lipschitz if there are finite slopes
S and S+ such that

F(x, ) —F(xo)
X) Xo

(4.3)

for all xi and xo. These constants give a Lipschitz cone,
which contains the graph of the function (see, e.g., Fig.
35). A Lipschitz function is continuous and differentiable
almost everywhere.

A corollary of BirkhoC's theorem is that the function
F(x) is Lipschitz. In fact, we can obtain explicit bounds
on the slopes of an RIC. Upon iteration a vertical vector
5z =(0,5y) becomes 5z'=(5x', 5y') =M5z, which has the
slope

5y' By' Bx'
5x' „By By

(4.4)

According to Eq. (1.30) the denominator of (4.4) is
bounded below by the twist constant X; therefore there is
a maximum slope, S+. Inverse iteration of the vertical,
using Eq. (1.32), leads to a minimum slope S

v

FIT+. 32. Tilt property. The iterate of a curve that tilts to the
right also tilts to the right.

FIG. 34. Contradiction for the proof of Birkho8 s theorem. If
W"A U, then there are left-going lobes, and the iterate of S'" is
strictly contained in 8', violating area preservation.
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S =min

=min

By Bx
By' By'

Bx Bx
Bx By

FIG. 35. Lipschitz cone with slopes S+ and S

(4.5)

do not exist it may take many iterations for orbits to
climb even a small distance.

(b) Heteroclinic connections .Suppose the unstable
manifold of some periodic orbit intersects the stable man-
ifold of another. Then there can be no RIC's contained
between them. This could be a practical criterion be-
cause the stable and unstable manifolds can be computed
numerically. Furthermore, this is really what underlies
the resonance overlap criterion, Sec. II.C.

(c) Lipschitz criteria. Using the Lipschitz bounds on
slopes, one can obtain restrictive criteria for the nonex-
istence of RIC's. Consider the iteration of a small verti-
cal vector 5zo=(0, 1) at the point zo=(xo, yo), using the
linear map (1.30). Upon one iteration we obtain

Since a rotational invariant circle intersects each vertical
line exactly once, it must also intersect the iterate of each
vertical exactly once. Thus the slopes S+ and S bound
the slope of the RIC.

0
5z, =(5x, , 5y, ) =M, Bx By

By By

which has positive 5x, by (1.30). However, a second
iteration gives

2. Confinement corollary
Bx Bx Bx By5z2=M, 5zi =5xq=, + (4.6)

Suppose the orbits of all points y (a stay below some
point b. Then there exists a rotational invariant circle
between a and b.

To see this, we construct the set U for application of
BirkhofF's theorem as follows. The iterates of all the
points y (a form an invariant set, which by assumption
is contained below y =b; we shall call this set of iterates
V. However, V cannot be used for Birkho6's theorem be-
cause it is not necessarily homeomorphic to the cylinder
(there will typically be lots of holes in the annulus
a &y &b corresponding to elliptic island chains). How-
ever, since V is below y =b, its complement has a con-
nected component that contains a11 points y &b. Thus
the complement of this connected component is a set
contained below y =b, which satisfies the hypothesis of
Birkhoff's theorem; we shall call this set U. The bound-
ary of U is the RIC.

3. Converse KAM theory

BirkhofF's theorem leads to several criteria for the
nonexistence of invariant circles which have varying
efFectiveness in practice.

(a) Climbing orbits. If there is an orbit that climbs ar-
bitrarily far up the cylinder, then there are no rotational
invariant circles. More precisely, consider an annulus
a &y &b. If there is an orbit going from below this an-
nulus to above it, then there are no RIC's contained in
the annulus. Furthermore, since RIC's must be
Lipschitz, for any point z there is an annulus, with height

If 5xz &0 there can be no RIC through zo, because the
orbit of zo would have to be on the circle and it could not
be a graph (see Fig. 36). For example, for the standard
map, (1.36), (4.6) becomes

5xz =2—k cos(2~x') . (4.7)

5zo

Now, since a RIC must intersect every vertical, if (4.7) is
negative for any x', there are no rotational invariant cir-
cles. Thus when ~k~ & 2, there are no RIC's for the stan-
dard map. Mather (1984) refines this criterion using the
explicit Lipschitz cone to obtain the bound ~k~ &4/3.
MacKay and Percival (1985) use a further refinement of
this criterion to obtain the bound ~k~ &63/64. They uti-
lize the computer to obtain this result: each floating-
point calculation is given explicit bounds so that the re-
sult is rigorous. Furthermore, Stark (1986) has shown
that the criterion of MacKay and Percival is exhaustive:
if there is no invariant circle, the method will eventually
show nonexistence. These bounds compare favorably
with the result (2.22) of Greene.

inside of which any RIC containing z must lie. In prac-
tice this criterion is not too useful, since even when RIC's

FIG. 36. Converse KAM criterion. If the iterate of a vertical
vector eventually turns around, there is no RIC.
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V. YARIATIONAL PRINCIPLES

In this section we show that any twist map has a La-
grangian variational principle. This variational formula-
tion turns out to be of great utility. In Secs. VI and VII
we shall discuss the theory of Aubry and Mather, which
uses this formulation to classify what one could call the
"regular" orbits of a twist map. The variational principle
also has a physical interpretation in terms of phase-space
areas, and in Sec. VIII we show that it provides compact
and computationally efficient formulas for the area of res-
onances and escaping Auxes.

X

FIG. 38. Curves y and y in (x,x') space.

(x,x')

A. Generating function

Let T:(x,y)~(x', y') be the lift (as discussed in Sec.
II.A) of a twist mapping to the plane. We shall show
there exists a generating function F (x,x') such that

y = F&(x,x—'),
y'=F2(x, x'), (5 1)

or, alternatively, a "one-form" dF:

dF(x, x')=y'dx' —y dx . (5.2)

Here the subscripts. indicate derivatives with respect to
the first and second arguments, respectively. F is a gen-
erating function for a canonical transformation (F, in
Goldstein's notation).

To show the existence of F we must first invert the re-
lation x'(x, y') to obtain y (x,x'); we do this geometrical-
ly. Consider the verticals x =g and x =P in the plane.
The curve T(x =g) intersects g' exactly once by the twist
condition. Define y'(g, g') to be this intersection (Fig.
37). Similarly, define y(g', g') to be the unique intersec-
tion of T '(x =g') with the vertical x =g.

Using these functions, we define the generating func-
tion by integration,

~ |
F(x,x')= I ' y'(g, g') dg' —y (g,f ) dg, (5.3)

where y is a path (see, e.g., Fig. 38), which begins at some
arbitrary point and ends at (x,x'). In fact, Eq. (5.3) is in-

BgF (x,x')=—
12

Bx

By
~ ——& 0; (5.4)

1

E

so the mixed second partial derivative of F is negative-
definite.

The mapping generated by F is area preserving because
F12dx +F22dx and dp = F11dx F12dx ' imply

that the two area elements

dy R, dx = —F,2dx' h dx
(5.5)

dy' 5, dx'=F, dx 5 dx'= —F, dx' 5 dx

are the same.
Finally, this construction provides a useful interpreta-

tion of the generating function. Consider a curve C and
its iterate C' (see Fig. 39). The area under C' is the in-
tegral fy dx along C, while that under C' is fy'dx'.

dependent of the choice of path. To see this consider a
second path y that has the same end points as y. By
Stokes's theorem the integral fy(x, x')dx around the
closed loop y —y is the integral of the area enclosed:

fdy h dx. Since (x',y') is the iterate of (x,y), area
preservation implies that this is the same as

fdy' h dx'= fy'(x, x') dx' over this same loop. Thus
the integrals of dF along y and y are equal (we say that
dF is an exact one-form in the plane).

By construction, the derivative of F with respect to its
first argument is —y (x,x') and with respect to its second
is y'(x, x '), as required.

The twist condition (1.30) translates into a requirement
upon the second derivative of F. Using (1.37) we obtain

A

X X X

FICx. 37. Definition ofy(x, x') and y'(x, x'). FICi. 39. Area under a curve and its iterate.
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The difference between these areas is

~ —W= f p'dx' —f ydx

where (X(s), Y(s) ) represents the billiard boundary. The
derivatives of F are

=F(x,x') F—(x,x'), (5.6)
8, 1F(s,s') =-
as

BX [X(s)—X(s')]
BS

where we recall Eq. (5.2). We shall discuss and rederive
this relationship in Sec. VIII.

B. Net flux

The net flux across a rotational circle C is the
difference between the area under C and that under TC
(recall Sec. IV.B). A rotational circle is a curve that
ranges from (x,y) to (x+ l,y). Since the mapping is
periodic, TC ranges from (x',y') to (x'+l, y'). Using
these curves in Eq. (5.6) gives a formula for the net flux:

+ [ Y(s)—Y(s') ] = —cos8,BF
BS

(5.10)
8

, F(s,s') =cos8',
Bs

since the vector (BX/Bs, 8 Y/Bs) is the unit tangent to the
boundary (recall Fig. 10). This confirms again that the
momentum coordinate is cos8. In these coordinates the
billiard map is area preserving.

The twist for the billiard is

V~ =F(x + 1,x '+ I ) F(x,x—') . (5.7)
sin8 sin8'

Fig s, s (5.11)

The net Aux is zero if the generating function is a period-
ic function of —,'(x +x'); it can depend arbitrarily on
x' —x. Such a mapping is called exactly symplectic be-
cause in this case the one-form y'dx' —y dx is exact on
the cylinder: its integral is path independent even for
paths that encircle the cylinder.

Since, for a convex billiard, 0 & 0 & ~, the mapping has
twist; however, it twists to the left, since F&2 ~0. There-
fore the sign convention for billiards is opposite to that
which is used in this paper. To translate our discussion
in Secs. VI —VIII for billiards, replace "minimizing" by

Inaxlmlzlng.
The circle billiard has the generating function

C. Examples
F =2r sin

s $
(5.12)

1. Standard map

A generating function for the standard map (1.36) is

F(x,x') =—(x —x') —V(x),~ =1

kV(x) = — cos(2+x) .
4m

(5.8)

2. Billiards

The generating function for a convex billiard is the
function that gives the length between two boundary
points. Let (X, Y) represent rectangular coordinates in
the plane of the billiard. Using Birkhoff coordinates
(s, cos8), Sec. I.F, we see that the generating function is

F(s,s') = [[X(s)—X(s')] + [Y(s)—Y(s')] ]'i, (5.9)

This is the same as the energy per site for the Frenkel-
Kontorova model (1.39).

From another point of view the generating function is
a discrete version of the Lagrangian for a dynamical sys-
tem. For the standard map, it has the familiar form of
kinetic minus potential energies, where the "velocity" is
x' —x for the discrete-time system, and the potential is
V(x). Thus we see that the standard map is a discrete

approximation to the pendulum.
Equation (5.8) confirms that the standard map has zero

net flux, by Eq. (5.7).

where r is the radius. Since F is a function only of s' —s,
the circle billiard is trivially integrable: the momentum
is conserved. Obtaining a generating function for more
general billiards, such as an ellipse (which is also
integrable) or the stadium (Bunimovich, 1974), is left as
an exercisel

D. Action

L(q, q, t) dt .

Now (5.13) is the value of the action of the exact orbit
from q (0)=x to q (1)=x', and the mapping generated by
F is the time 1 mapping of the Lagrangian Qow. To ob-
tain the action for several periods, we merely have to sum
(5.13) over the intermediate steps:

For a continuous-time Lagrangian system, the action is
the integral of the Lagrangian L(q, q, t)=pq H(p, q,t)—
along a path q (t) in configuration space [recall Eq. (1.5)].
Orbit segments q (t) of this dynamical system are station-
ary points of the action with respect to variations with
given end points q(to)=x, and q(ti )=x'. We shall show
here that the value of this action on the orbit is the func-
tion F(x,x'), which generates the mapping for this flow.
Suppose the Lagrangian depends periodically on time,
and without loss of generality suppose the period is 1.
Let q (t) be an orbit segment for one period, and define

F(x,x') = f (5.13)
0

q ( t) stationary
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n —1

WIx, x +„.. . , x„j= g F(x„x,+, ) . (5.14)

for m & t & n, which implies that the two definitions of
momentum (5.1) agree at each point on the orbit:

g (XI i,Xi )—g ( XJ. ,X~. + i ) —pJ. (5.16)

An (m, n) periodic orbit, (2.10), is determined by the
action

n —1

W(m, n) Ixo&x2& ' ' '
& xn —i j 2 F(xt&xt+ I ) ~x =xo+m

t=0

(5.17)

which is a function of the n —I distinct points on the or-
bit. The (m, n) periodic orbit is a stationary point of
W~ „~ upon variation of all its arguments. This yields
the same equations as before when 0&t &n. Variation
with respect to xo gives the equation

F, ( x, oix)+F2(x„„x„)=0,
which implies the periodicity condition y„=yo.

An orbit is a bi-infinite sequence

I. . . ,x, „x„x,+„.. . j such that every finite subse-

quence is an orbit segment. Thus the action WI x j is sta-
tionary for each t.

For example, for the standard map, stationary points
of the action must satisfy Eq. (1.38), which is the La-
grangian form of the equations (1.36). Similarly, for the
billiard, Eq. (5.16) implies that the angle of incidence
equals the angle of reflection for each bounce.

This is the same as the action (1.5), restricted to a path
that is an exact orbit for each period; it depends only on
the configuration points at the discrete times t =n.

An orbit segment is a configuration Ix, . . . , x„j that
is a stationary point of the action holding x and x„
fixed. Setting the variation of the action to zero gives the
equations

d8'
5W =0 - =Fz(x i,xi)+F, (xj,x~+. i) =0

dXJ

(5.15)

infinitesimal variation of the configuration to first order:
5WIX j =0. The second variation of the action about an
orbit is not generally zero. Consider first a finite segment
of an orbit, Ix, . . . , x„j; let 5 WIxm, . . . , x„j be the
quadratic form obtained from the second-order term in
the expansion of 8'for fixed x and x„:

n —1

5 WI5xj= 0 8'
6x. 5xk .

BXJBXI
(6.1)

An orbit segment is locally minimizing if 5 8' is non-
negative for all vectors t5X +„.. . , 5X„,j. If 6 W is
positive-definite, then the minimum is nondegenerate.

The orbit corresponding to the infinite sequence
I. . . ,x, . . .x„, . . . j is defined to be locally minimizing
if euery finite segment is locally minimizing.

Consider now arbitrary variations Ig, . . . , g„j= IXm, X ~i+5xm+i, . . . , Xn i+5xn i, xn j abOut
some orbit segment Ix j with fixed end points (here the
6X,. 's can be of arbitrary size). An orbit segment is
defined to be minimizing if for every variation I f j

WIgj —WIX j ~0 . (6.2)

B. Existence of (m, n) orbits

If euery finite segment of an orbit is minimizing, then the
orbit is minimizing. In this definition it is important to
allow only variations with compact support; otherwise
the action difFerence WI gj —WIx j would not necessari-
ly be finite (being an infinite sum), and the two orbits
could not be compared. Furthermore, anchoring the
asymptotic (r ~+~ ) behavior of the orbit acts as a kind
of boundary condition, and we shall find diferent mini-
mizing orbits when diferent boundary conditions are im-
posed.

It is not obvious that minimizing orbits exist. We shall
first show that there are {m,n) minimizing periodic orbits
for any frequency. There are two steps in this demon-
stration: first we consider orbits that minimize 8'~

and then we show that these also minimize 8'. In Sec.
VII we shall consider irrational co.

Vl. PERIODIC GRBITS

In this section and the next we shall discuss the theory
of Aubry and Mather, which shows the existence of
minimizing and minimax orbits for each frequency m for
an area-preserving twist mapping. In the process, many
properties of these orbits will become clear.

A. Minimizing orbits

The action of an orbit was defined in Eq. (5.14). Its
first variation on an orbit is zero according to Eq. (5.15).
This implies that the action does not change under an

The Poincare-BirkhofI' theorem implies that a twist
mapping has at least two periodic orbits for each (m, n)
Actually, this theorem applies to a more general class of
maps: maps on an annulus that preserve the two
boundaries, rotating them in opposite directions. Such
maps need not satisfy the twist condition (the two ends of
a vertical line must move in opposite directions, but the
intermediate points are unconstrained). To prove his
theorem, Birkho6' used intricate geometric arguments
(Birkho6', 1913). For the twist case the existence of these
orbits follows more simply from the variational principle.
The first orbit appears as a minimum of 8'~ „~, and the
second will follow from the minimax principle. The
proof of the existence of a minimum is based on the
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Crrowth condition. For an area-preserving twist mapping
with zero net fiux the generating function is bounded by

F(x,x') &' 3 B—ix —x'i+Cix —x'i (6.3)

where B and C are positive.

This result can be generalized to 2S-dimensional sym-
plectic twist maps. Here we assume that the mapping
has uniformly positive-definite twist: there exists a
positive-definite matrix C, such that for any vector
v, v.F,2(x, x') v~ —v C v for all x, x'. For this case the
above proof of the growth condition can be directly tran-
scribed (MacKay et a/. , 1989).

Using the growth condition in the action for a periodic
orbit, we can prove the

Poincare-Birkho ff theorem. For an area-preserving
twist mapping with zero net fifux there is a periodic orbit
for each (m, n)

Proof. We shall obtain the orbit as a global minimum of
W( „) [see Eq. (5.17)]. W( „) is a function on the space
of periodic configurations {xo,x„.. . ,x„,] E IR". Since
the mapping is periodic, we can, without loss of generali-
ty, choose xo to lie in the interval [0,1]; so the space of
configurations reduces to [0,1]X IR" '. To guarantee
that 8

( „~ has a minimum, we must find a compact sub-
set on which W( „) is bounded. By (6.3) W( „) satisfies
the bound

W( )
~nA+ g ( BIx)+i xi~+C~x +i xj ~

)
j=0

(6.6)

In particular, W( „)~n(A ,'B IC) is bound—ed—from
below.

Now consider the set of configurations for which

„~ ~nA+D, for some constant D. We can show
that this is a compact set in the space of configurations.
In particular, the bound on 8'~ „~ implies that the sum
in (6.6) is smaller than D; therefore each term is bounded.

Proof. Let g) =x +A,(x' —x) represent the line connect-
ing x to x' as k ranges from 0 to 1. Then for any func-
tion E(x,x') we have the identity

1

F(x,x')=E(x,x)+ dA, F2(x, g)„)(x'—x) . (6.4)
0

Repeating this construction on F2 gives
1

F(x,x')= F(x,x)+ f dkF, (g)„,gi)(x' —x)
0

—f

deaf,

dp F)2(g„,g) )(x' —x)' . (6.5)

Define A =min[E(x, x)] and B =max~F2(x, x)~ &0.
These exist by periodicity (5.7) when the net fiux is zero.
Finally, let C =

—,'K)0, where K is the twist constant
(5.4). Substituting these into the integrands in (6.5) gives
(6.3) directly. ~

This implies that ~xi+i —xj ~

is bounded, and therefore,
since

xone

[0, 1], ~x, —xo~ is bounded. Thus each of the

x, for 0 & t & n is bounded.
Outside the compact set 8'~ „~ is large. On the other

hand, since 8'[ „~ is bounded below on the compact set
it must have a minimum. Thus there exists an ( m, n )

periodic orbit that minimizes 8'[ „~.R

{x +k, x, +,+k, . . . , x„,+k, xo+k, . . . ,xj,+k]
(6.7)

for any j where the integer k is chosen so that x-+k is in
the unit interval [0,1]. Thus there are at least n minima
in the domain [0,1]X%"

As an example, consider the (0,1) orbit for the standard
map (5.8). The action is

(o, i) {xo] V(xo) (6.8)

which is a periodic function and therefore has at least
one minimum. For the standard map this occurs at
x =

—,', corresponding to the hyperbolic fixed point. Note
that minima of S'correspond to maxima of V and there-
fore to dynamically unstable orbits.

In exceptional cases, such as the integrable twist map
(2.1), there is an entire curve of minima, forming the ra-
tional frequency invariant circle. In this case Eq. (5.8)
yields the action

(6.9)

The extrema that satisfy the constraint x„=xp+m are
the orbits x, =xo+ mt In for any choice of xo. For each
xp 8 ( ) has the same value; since these are the only ex-
trema, a variation about these orbits can never decrease
the action. Thus these extrema are degenerate minima.

C. Aubry's fundamental lemma

We have obtained periodic orbits that minimize the
periodic action. To show that these orbits are minimiz-
ing, we need the "fundamental lemma" of Aubry (1983b).
The point is that even though we have shown that the
periodic configuration minimizes 8'~ „~, it is possible
that a variation which is not (m, n) periodic will decrease
the action of the infinite orbit, 8'.

The fundamental lemma utilizes the twist condition
and its concomitant distinction between the x and y coor-
dinates as an essential hypothesis. First, we use the fact
that an orbit is determined entirely by its configuration
sequence, as in Eq. (5.14). Furthermore, we shall see that
there is a frequency (or mean velocity) associated with
each minimizing orbit, and that if one minimizing orbit is
moving more rapidly through phase space than another,

The minimum is not unique. For example, if
{xo,x„.. . ,x„,] is a minimum, then so is any
translate:
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then the paths of the orbits must diverge —one cannot
oscillate about the other. The twist condition necessarily
orders these orbits in y: larger momentum means larger
frequency.

Aubry's lemma is related to Morse's theorem (Morse,
1924) for geodesics (two minimum length geodesics on a
toroidal surface cross at most once) and is a global ver-
sion of a theorem in the calculus of variations (locally
minimizing orbits have no conjugate points; see Gelfand
and Fornin, 1963). We prove only the simplest version of
this lemma (MacKay and Stark, 1985):

Proof of Aubry's fundamental lemma. Suppose the con-
verse, that tx } and If} cross twice. We shall obtain a
contradiction. There are three possible cases: (i) The
crossing points both occur at noninteger values of t, as in
Fig. 40; (ii) one of them occurs at integer t; or (iii) they
both occur at integer values of t.

Case (i). We construct deformations of [x } and [g j
and show that at least one of these has smaller action, im-

plying that not both I x j and t g j can be minimizing. Let
the two trajectories cross between times j and j+1 and
times k and k +1. Define the deformations

Aubry's fundamental le~ma. Let Ix j and tgj be tttio

distinct minimizing orbits. Then they cross at most once.

I' ' ' &kj —1&kj &Xj+1& ' '
& Xk~fk +1&kk +2~ '

. . ~x —l~xj ~kj +1~ ~ kk~xk+1»xk+2~
(6.11)

x(t)=(x —xj, )(t j)+x fo—r j —1~t~j . (6.10)

Similarly, construct the curve for g. The orbits {x} and

I g} are said to cross if the function x ( t) g(t) h—as a zero.

To define the crossing of orbits, draw the orbits in the
( t, x ) plane and join successive points with straight lines
to form the continuous curves

as sketched in Fig. 41. Note that it is necessary to have

Ix } and Ig} cross twice to construct these deformations,
because the definition of minimizing required that the
variation occur only on finite segments.

Consider the orbit segments running from time j to
1+1. Since Ix } and Igj were assumed to be minimiz-

ing, the new segments must not have smaller action.
Adding the actions of these two segments we obtain

WIx }+WIkj F(xj&kj+1)+WIkj+1 ' ' ' kk }+F(kk xk+1)+F(kj xj+1)+WIxj+1& ' ' ' &xk }+F(xk&4k+1)

Subtracting from this the sum WI x }+ WI g} and regrouping terms gives

WIx }+Wt(j —WIx }
—WI(j = F(xj,gj+, )+F(g.,xj.+, ) F(xj,xj+—, ) F(g), g'J+, )—

+F(xk~lk+1)+F(kk~xk+1) (xk~xk+1) F(kk~kk+1) (6.13)

Each of these sets of four terms can be shown to be negative. In general, consider two points (x,x') and (g, g') and as-
surne that there is a crossing so that (x —g)(g' —x') is positive; then

F(x,g)+F{g,x') F(x,x') F—(g, g') =I—dkfdltt ,F,2{A,,p) ~ ——(x —g)(g' —x'),
x'

where K is positive by the twist condition (5.4). (In the
case of no crossing, the inequality must be reversed be-
cause d A, dp is negative. ) Therefore after a crossing

F(x,g')+F(g, x') —F(x,x') —F(g, g') &0; (6.15)
Wtx }+WIgj —WIx j

—W(gj (0 . (6.16)

This contradicts the assumption that both Ix } and t g }
are minimal.

so the di6'erence between the actions of the modified or-
bits and the original orbits satisfies

P

I I
j+1 k

I
k+I

FICx. 40. Crossing configurations. The configurations tx } and

Igj cross twice. FICs. 41. Deformed configurations that no longer cross.
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Case (ii) is proved similarly. The difference between
the actions has contributions only from the noninteger
crossing, but it still is negative.

Case (iii). Both crossing points are at integer times,
say, t =j +1 and k. Choose the new segments as in Eq.
(6.11). Now the sum of the actions of the new segments
from j to k + 1 is the same as for the old segments. How-
ever, the new segments cannot be stationary points of the
action because, although g~ =gj. and g~+, =g'I+ „
g~. +2%/~+~,' and stationarity uniquely determines gj+z.
Since the new segments are not even stationary they can-
not be minimizing. This contradicts the assumption that
the original orbits are minimizing, since the action is un-
changed in value. ~

We shall apply Aubry's fundamental lernrna to deter-
mine various properties of minimizing configurations in
the new few sections. One direct result is the

Corollary. Two (m, n) minimizing orbits cannot cross.

Proof. Suppose {x j and {g j are both minimizing ( m, n )

periodic orbits. Then they cannot cross, for if they cross
once, then periodicity implies that they cross each
period, and therefore infinitely often. R

x, +j &x,.+j' -x, +,+j &x,.+1+j' .

Corollary. Minimizing (m, n) orbits are monotone

(6.17)

Proof. Let x, +j ~x, and x,'+j '~g, and apply the fun-
damental lemma: g, cannot cross x, .~

Furthermore, minimizing (m, n) orbits have a mo-
notonicity property. An orbit is said to be monotone if
for any integers t, t', j and j'

g, +„—m)g, or g, ~„—m (g, . (6.18)

Consider the first case. Shifting time by n steps
implies that g, +2„—m )g, +„, and therefore

g, +z„—2m & g, +„—m & g, . Repeating this k tiines gives

g, +k„—km &g, . This is a contradiction, since we as-
sumed it was of type (km, kn). So if an (m, n) minimizing
periodic orbit has a smallest period n, then m and n are
coprirne.

We have just shown that if {xo,x&, . . . , x„&j mini-
rnizes 8'& „~, then

xo~x1~ ~ xn —1~xo+m~x1+ m

. . . ,x„,+(k —1)m j (6.19)

minimizes 8'~k k„~ for all k & 1. Since the segment (6.19)
is rninirna, its action must be less than that of any varia-
tion with the same end points. Since k is arbitrary, this
implies that any variation of the orbit {xj with compact
support must increase the action of {xj. Thus {xj is a
minimal orbit. R

E. Minimax principle

This theorem apparently cannot be generalized to
higher dimensions. For the case of geodesic Bow on a
torus, where an analogous theorem holds in two dimen-
sions, Hedlund (1932) has given a counterexample on a
three-torus. The difficulty in this case is that there is no
natural generalization of the idea of crossing: curves do
not separate regions in a space with- more than two di-
mensions. Thus it seems that minimizing orbits may not
be as important in higher-dimensional systems, though
orbits that minimize the periodic action may still play an
important role (Kook and Meiss, 1989; Gole, 1990).

We shall see in Sec. VII that monotone orbits are or-
dered in the same way as simple rotations on the circle.

D. Minimizing (m, n) orbits

We now are set up to prove the existence of rninimiz-

ing periodic orbits. We follow the discussion of Banget
(1988) to prove the

Theorem (Aubry and Le Dacron, 1983). For an area
preseruing twist mapping there is a minimizing periodic or
bit for every (m, n), where m and n are coprime.

Proof. Let {xj be the periodic extension of the
configuration that minimizes 8'{ „~. We must show that
there is no infinite configuration that has smaller action.
For example, we consider an orbit {gj of type (km, kn),
which minimizes 8'~k &„~. By the fundamental lemma,
this orbit cannot cross any of its translates. Now suppose
{gj is not also of type (m, n) Then g', +„.Ag, +m. Since
g', +„—m does not cross g, we must have either

The existence of a minimizing (m, n) orbit immediately
implies the existence of another orbit, the minimax orbit.
This occurs because the translates g, =x, +k+j of a
minimizing orbit are also minimizing; thus the existence
of one minimum for 8'~ „~ implies directly that there are
many rninirna. Between these minima there must be oth-
er critical points. The Morse index of a critical point of a
function [i.e., a point for which Df (x)=0] is defined to
be the number of downward directions of the function at
that point (Milnor, 1963). Thus a minimizing orbit has
index zero. The minimax principle, originally due to Bir-
khoF, implies that there is an orbit of index 1. To show
this more formally we construct a new orbit by con-
strained minimization.

Theorem For euery .(m, n) there exists an index I, period-
ic orbit —the minimax orbit.

Proof. Any translate {g,j of {x,j does not cross {x,j,
since both orbits are minimizing. Choose the translate
for which $0 is closest to xo. Now choose a path
g(A, )= {xo(A,), . . . , x„&(A,) j for A. H [0, 1] connecting
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Xo

are of course many other periodic orbits in a typical map-
ping. Some of these can be understood by techniques
similar to the above. For example, the librating orbits
within an island chain can be thought of as ordered or-
bits of the mapping T" with respect to rotation about the
minimax fixed point in the center of the island. Since T"
typically has twist in the neighborhood of such a point
(Sec. I.F), the above theorems prove the existence of li-
brating periodic orbits for all rational frequencies in some
interval. Thus we obtaj. n both minimizing and minimax
class- jI per1odlc 01blts. If these mlnlmax pe11od1c orblts
are elliptic, then oscillating orbits of class 2 and so forth
can be obtained (recall Sec. II.C).

FIG'. 42. MiniDlax coIlstIuct1on foI n =2. The miniIllax oIblt
occurs at a saddle point of 8'between neighboring minima.

these two neighboring minima of 8
( „). Since W( „) is

continuous it must have a maximum along this path. In
Fig. 42 we sketch the n =2 case. Minima occur at the
pomts Ixo, x, I and Ix„xoI. The maximum along the
path g is shown in the figure as the open circle. Now
vary the path g(A, ) to find the smallest of these maxima.
This gives a critical point of 8'( „) and therefore an
(m, n) periodic orbit. This minimum over the maxima is
the minimax orbit. R

In addition, the minimax orbit is well ordered with
respect to the minimizing orbit, in the sense of (6.17)
(Mather, 1986).

The minimizing and minimax orbits form the 'island
chain" structure seen in Sec. II. In fact, one can see that
the residue (2.16) of a nondegenerate minimizing orbit
must be negative (MacKay and Meiss, 1983), indicating
that lt is liypei bolic (tile oi bit ls parabolic if tile
minimum is degenerate). On the other hand, the residue
of a nondegenerate minimax orbit must be positive, so
that it is either elliptic or hyperbolic with reAection.

This is most easily seen for the fixed-point case. Here
the action is 8'~o,

~
=F(x,x) = —V(x). This is a periodic

function, and so it necessarily has at least one minimum
and one maximum. However, the minimum of 8' corre-
sponds to the maximum of the potential energy and
therefore gives the unstable orbit [as we saw in Eq.
(2.17)]. Similarly, the minimax orbit sits at the minimum
of V and is therefore elliptic. Remarkably, this cir-
cumstance generalizes to any (I,n) orbits.

When the minimax orbit is elliptic we have the familiar
island-chain structure. If it is refIection hyperbolic, then
this typically means that the elliptic orbit has undergone
a period-doubling bifurcation (Greene et al. , 1981), sig-
naling the destruction of most of the invariant circles in
the island chain. Even in this case the unstable manifolds
of the hyperbolic, minimizing orbit can be used to form
the "separatrix" of an island, as we shall see in Sec. VIII.

Aside from the minimizing and minimax orbits, there

Vll. QUASIPERIODIC ORBITS

In addition to the periodic orbits found in the previous
section, there are also quasiperiodic orbits that minimize
the action. In fact, we shall show that any rotational in-
variant circle is minimizing. Remarkably, however,
minimizing quasiperiodic orbits exist for any twist map
and any rotation frequency —not just for maps close
enough to the integrable case and for Diophantine fre-
quencies, as one might expect from the KAM theorem.
When an invariant circle with a given frequency is de-
stroyed, the corresponding minimizing quasiperiodic or-
bit can no longer densely cover a circle; in fact, it covers
a Cantor set and is caHed a "cantorus. " Cantori have an
infinite set of gaps through which chaotic orbits can leak,
and, as we shaH see in Sec. IX, the leakage through can-
tori can be extremely slow.

We shall follow Aubry and Katok and obtain orbits
with irrational co by considering the limit of a set of m jn
minimizing orbits as the period approaches infinity and
the frequency approaches m. This approach follows the
ideas used in the numerical experiments of Greene, dis-
cussed in Sec. II.C. A more direct approach was
developed by Mather (1982), who studied the action for
curves introduced by Percival (1979a).

The analysis in this section is somewhat more formal
than the rest of this article, and some of the proofs are
omitted.

A. Circle maps

A rotational invariant circle can be described by a
function y = F(x), which is periodic in x (Fig. 43). When
restricted to the invariant circle the map becomes

(x',y') = T(x, I'(x)) . (7.1)

Equation (7.1) defines a function a, a "circle map, "
through

x'=a(x)=~(T[x, I'(x) j) . (7.3)

A projection onto the x axis is denoted by the symbol ~;
thus for a point z =(x,y)

(7.2)

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



J. D. Meiss: Symplectic maps, variational principles, and transport

FICx. 43. Rotational invariant circle Y'(x) and corresponding circle map a(x). Here a is shown wrapped onto the torus [0,1]X [0,1].

Since the Inap is periodic with period one, we have
x'(x + l,y) =x'(x,y)+1 and therefore

H(x, x') satisffes the same growth condition (6.3) as
F (x,x'), and H is bounded from below. Therefore

a(x+1)=a(x)+I . H(x, x') )Ho for x'Wa(x) . (7.7)

Thus a is a degree one circle map (see Appendix B). In
fact, since T is a homeomorphism and 7 is Lipschitz, the
circle map e is a homeomorphism as well. A classic
theorem of Poincare implies that any homeomorphism of
the circle has a unique rotation number (Appendix B),
and thus all invariant circles of twist maps have one as
well.

B. Invariant circles are minimizing

In any discussion of rotational invariant circles of twist
maps, the concept of minimizing orbits arises naturally,
since

Proof. By Birkhoff's theorem (Sec. IV.C), every RIC is
the graph of a Lipschitz function Y'(x). Let

S(x)=I Y(g') dg, (7.4)

integrating from some arbitrary point xo. De6ne the
function

Theorem. Euery orbit on a rotational invariant circle is
mlnlmlzlng.

) (k j)Hc+S (—xk ) —S (x )

)8'Ixj .

Therefore the segment Ix ] is minimizing. R

(7.8)

This theorem can be generalized in a limited sense to
higher dimensions. The limitation is really the absence of
a result comparable to Birkho6's theorem: it is not
known if every rotational invariant torus is a graph.
However, upon assuming that the rotational tori are
graphs and imposing the additional restriction that the
torus must be a Lagrangian manifold (Herman, 1988), we
have the

Theorem (MacKay et al., 1989). For a symfj/ectic map-
ping with uniformly positiue dej7nite twist on-T X R and
zero net jhux, every orbit on an invariant Lagrangian
graph is minimizing.

Finally, suppose Ix, . . . , xk I is an orbit segment on the
and Ikj xj kj+1 ' ' 4k —1 4 xk I is a deforma

tion. Then the action of the deformed segment is

k —1

8'I/I = g H(g;, g;+, )+S(xk)—S(x )

H(x, x') =F(x,x') S(x')+S(x) . —

The derivatives of H are

H& =F&(x,x')+ Y'(x),

H2=F2(x, x') —Y(x') .

(7.5)

(7.6)

Proof. On a Lagrangian graph, Y(x)=VS(x). Use this
5 to define H as before; since the growth condition ap-
plies, we can follow Eqs. (7.4) —(7.8).~

C. Monotone-sets
Following the discussion in Sec. V.A, each of these
derivatives is zero exactly once, when x'=ct(x). This im-
plies that H(x, a(x) ) =Ho is constant and that all critical
points of H occur on x'=a(x). Now Eq. (7.4) implies
that S (x + 1 ) =S(x)+C, where C is constant; so if F has
zero net ffux (5.7), then H (x + l,x'+ 1)=H (x,x'). Thus

In order to show that the limit of a set of minimizing
periodic orbits is a minimizing orbit, we need to use the
fact that they are monotone [Eq. (6.17)]. In this section
we discuss general properties of monotone sets before us-
ing these properties in the next section to prove the ex-
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istence of quasiperiodic minimizing orbits.
As invariant set M is monotone if for all z, g HM

m(z) &rr(g): ~(T(z)) &~(T(g)), (7.9)

seen most easily by referring to well-known results on
one-dimensional maps of the circle (Appendix 8). First
we show that the restriction of the twist mapping to a
monotone set is equivalent to a mapping on the circle:

where vr is the projection (7.2). An orbit is monotone if
the set formed from all its translates is monotone, i.e.,
(6.17). We showed in Sec. VI.C that Aubry's fundamen-
tal lemma implies that minimizing periodic orbits are
monotone.

Monotone invariant sets for twist maps have nice
properties:

Lemma. 2 monotone invariant set M is a graph over x.

Proof. Suppose not, then there are two points, z =(x,y)
and g=(g, g) in M which have the same x value:
x =n.(z) =g=~(g), but diff'erent y values, say y ) il.
However, the twist condition then implies that
m(T 'z) &m(T 'g), which violates (7.9). Thus if x =g,
theny =g, and m(z) =mr(g):m(T(z)) =rr(T(g))R

Le~~a. Any limit of monotone orbits is monotone

Proof. Suppose that for each k, [x'"'I is a monotone or-
bit. Then points on the orbit must satisfy
x &x' -x( ' & x ', and in the limit,

(oo) (oo) . (oo) ~ (oo)
Xl. &X~ Xi+i XJ+i (7.10)

The only possible problem is equality in (7.10). Suppose
this occurs; then the twist condition implies that
x +2 )xJ+2 (Fig. 44). However, this implies there is a K
such that for all k )K,x +'2 )x '. +2, contradicting the as-
sumption that [x'"'] is monotone for all k. Thus the lim-
it must be monotone. ~

Le~ma. The closure of a monotone invariant set is mono
tone.

Proof. Let zo=(xo,yp) aild go=(go go) be points in the
closure of a monotone set M. Continuity of T and mono-
tonicity of M implies that

xo & go --x„&g„. (7.11)

Monotone states have a rotation number. This can be

However, as in (7.10), equality is forbidden by the twist
condition. ~

Lemma (Katok, 1982). If T is a twist mapping and M is a
monotone set, then the mapping from m(M) to n(T(M))
can be extended to a homeomorphism x'=a(x) for x HE
satisfying a(x +1)=ct(x)+1.

Proof. The closure of M is monotone; so a can be extend-
ed to this by continuity. The complement of this closure
is a disjoint union of open intervals. Extend a to these by
linear interpolation for x H [0,1] and then continue to E
by periodicity. Thus a is continuous, and because T is
invertible, it has a continuous inverse. S

In Fig. 45, we sketch the construction of a(x) for a
(2,5) monotone orbit. For an (m, n) orbit there are m in-
equivalent translations in the (x,y) plane. For the (2,5)
case they are Ix] = t. . . ,xo, x„xz,x3,x4, . . . ] and

Igl=t. . . ,x, —l, x4 —l,xo+l, x, +1,x, +1, . . . ]. We
show part of the real line (of length 2) in Fig. 45, and the
five points of each of the orbits [x ] and tgI which lie in
this segment. Define the function a(x) on the orbit so
that ct(x, ) =x, +, and similarly a(g, ) =g, +,. Since the
set of all translations is monotone, a(x) is a strictly in-
creasing function. Thus defining a(x) by interpolation
between the points x, and g, and between g, and x, +,
gives a homeomorphism of the circle.

To see how this fails for a nonmonotone orbit, consider
a configuration of type (2,4), Fig. 46. Recall from Sec.
VI.D that if x2%xo+1, then this orbit cannot be mini-
mizing because it cannot be monotone. [Indeed we
showed that only orbits with (m, n) coprime can be
monotone. ] Though x, increases with t, monotonicity
fails because the translation g, =x, +z

—1 is not well or-
dered with respect to x, . In the figure we see that al-
though ki & x i 42 x2 This is refiected by a nonmono-
tonic segment in the induced a(x ), which is therefore not
a homeomorphism.

Theorem (82) in Appendix 8 shows that every orbit of
a homeomorphism of the circle has a rotation number,
and the rotation number is the same for all orbits. So all
monotone states have unique rotation numbers. Further-
more, the rotation number is a continuous function on
monotone states:

1+2

Lemma. The rotation number of the limit of a sequence of
monotone states is the limit of the rotation numbers of the
sequence.

X)+g

FIG. 44. Disallowing equality in Eq. (7.10). The twist condi-
tion implies that if two points are ever vertically aligned, then
their order changes on the next iteration.

Proof. First we show that nearby monotone states have
nearby rotation numbers. Let [x ] and I g) be two mono-
tone orbits, and suppose there are 5 and T such that
~x, —g, ~

&5 for all 0&t & T. From Lemma (81) in Ap-
pendix 8 it follows that there is a frequency co(x) such
that ~x, —xo —tco(x)

~
& 1, and similarly for g. Thus
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(2,5) orbit

Xy-

I I
~ ~

X

FIG. 45. Construction of the homeomorphism u for a {2,S) monotone orbit.

lx, —g', —(xo go) —t [(v(—x)—e)(g')]l ~2

lo)(x) —~(g)l ~2 (1+5)
T

Now consider a sequence of monotone states t x (")},with
periods n' )~~ such that m"(/)n"(~)ot. If tx'"'j ap-
proach a limit I x ' "' j, there are 5 and N such that
lx,' ' —x,' 'l (5 for all 0~ t ~ n'"' and k ~¹Since the
periods go to infinity, (7.12) implies that the rotation
number of Ix' 'j is the same as the limit of the rotation
numbers of the I x ' "'

j .~

With these properties of monotone orbits, we can now
prove the existence of monotone quasiperiodic orbits for
every irrational co.

O. Existence of quasiperiodic orbits

Proof. Consider a sequence of periodic minimizing states
Ix'"'j such that m' '/n(")~co as k~ ~. By the lemmas
in Sec. VII.C we conclude that Ix' 'j ~Ix j is a mono-
tone state with frequency co.

To show the limiting state is minimizing, consider a
segment Ig("'} which is a deformation of Ix'"'j with
g'; '=x "' and g'"' =g'"'. Furthermore, I g'"'}~ I g}. Let

e'"'= max( lx,'"'—x, l, lg',
"'—g, l ) for i ~ t ~j . (7.13)

and similarly for Ig}. Hence the action of the deforma-
tion Ig} minus that of Ix } obeys

Since F(x,x ) is differentiable, there is a constant K, in-
dependent of k, such that

l8'Ix "', . . . , x' 'j —wIx;, . . . , x j l
~K(i —j)e'"',

In Sec. VI.D we proved that there is a minimizing
monotone state for every (m, n). We now show that this
is true for all co.

Theorem (Mather, 1982; Aubry and Le Dacron, 1983).
There exists a minimizing, monotone state for every co

8'Ig, , . . . , g j
—W(x;, . . . , xJ j

) ~Ig(k) g(k) j grIx(k) x(k)
j

—2K(i —j)e'"', k )K .

Now because e'"' —+0 as k ~ ao, and each Ix'"' j is

(2,4) orbit
X

Xg.

! I ~

(2 x2 "0

FIG. 46. Circle map construction for the {2,4) orbit. The map a{x)is not a homeomorphism because the orbit is not monotone.

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



830 J. D. Meiss: Symplectic maps, variational principles, and transport

minimizing, we have

Wlg';, . . . , g'
l
—Wlx;, . . . , x l ~0; (7.14)

Theorem. Let (xi be a quasiperiodic minimizing orbit
with frequency cp. The closure of Ix I,M Ixj is either an
invariant circle Or an invariant Cantor set.

and so the limit is minimizing. R

A minimizing state obtained as a limit of periodic
states is always recurrent, because there are periodic
states arbitrarily close; thus such states are quasiperiodic.
There are other Ininimizing states that are not recurrent.
We shall discuss these below when we consider hetero-
clinic orbits.

If [x, I is a quasiperiodic orbit, then I x, +„—m I is
another such state. These are never identical; otherwise
the orbit would be periodic instead of quasiperiodic.
Thus we have obtained a countable family of such states.
This family is monotone, or totally ordered, by Aubry's
fundamental lemma. In fact, the totality of minimizing
states for a frequency cp is a closed monotone set (Aubry,
1983b).

The theorem showing that a limit of periodic states is
quasiperiodic is of practical importance. For example, if
one would like to study the properties of a particular
quasiperiodic state, it is sufficient to study nearby period-
ic states and consider the limiting behavior of these prop-
erties. This was the approach pioneered by Greene in his
studies of the breakup of invariant circles (Greene, 1979);
recall Sec. II.C.

E. Cantori

We have seen that quasiperiodic minimizing orbits ex-
ist for all co, for any twist mapping. Of course, this is not
surprising for the case in which the mapping dN'ers only
slightly from an integrable mapping and the frequency
satisfies a Diophantine condition: these orbits lie on the
invariant circles of the KAM theorem (Sec. III.B). How-
ever, the KAM theorem applies only to this slightly per-
turbed case, while the Aubry-Mather theorem applies to
any twist mapping. Furthermore, we have seen from
Birkho6's theorem that invariant circles typically do not
exist when the nonlinear potential energy is sufficiently
strong (Sec. IV.D). What do the minimizing quasiperiod-
ic orbits become when there are no invariant circles~
The answer is provided by the following

Proof. Since the minimizing orbit is monotone, its clo-
sure can be extended to a homeomorphism, a(x) of the
circle. Theorem (B3) in Appendix B implies that if the
rotation number is irrational, the set of limit points of the
orbit of any point is unique, invariant, and is either the
entire circle or a Cantor set. Since we have assumed that
the minimizing orbit is recurrent, then its closure is in
fact this set of limit points of a.0

We remind the reader of the definition and some of the
properties of Cantor sets in Appendix B.

Percival called the invariant Cantor sets "cantori"; we
show a cantorus for the standard map in Fig. 47. He sug-
gested the existence of cantori based on a variational
principle for quasiperiodic orbits (Percival, 1979b); Au-
bry (1978) independently suggested their existence.
Furthermore, Percival explicitly constructed cantori for
a particular family: the sawtooth map (Percival, 1979b;
Aubry, 1983a).

A cantorus is an invariant set that is "trying" to be a
rotational invariant circle; however, orbits on this set fail
to cover the circle: they never fall in a countable set of
open intervals, or gaps —in fact, any Cantor set is
equivalent to an interval with a countable family of delet-
ed gaps. The end points of these gaps are quasiperiodic
minimizing orbits, but the canto rus has uncountably
many more orbits on it than these end points.

However, the structure of the cantorus is determined
by the orbits of these end points, because the orbit of any
point on the cantorus must densely cover the cantorus.
We can "construct" a cantorus by imagining first that an
invariant circle develops a single gap (imagine, if you
will, that nearby islands on either side of the invariant
circle have grown and squeezed a hole in the circle). I.et
xo and xo be the left and right end points of this gap. By
definition of a gap there can be points in the interval
(x p x p ) that are on a minimizing orbit with frequency co.

The orbits of each of the end points are distinct and
quasiperiodic. Furthermore, because minimizing orbits
are ordered, the iterates of these end points do not cross
upon iteration; thus x, & x, . Since there are no minimiz-

lk ~

~ ~

Xlg Xr Xlo Xr0 Xlg Xg

FIG. 47. Cantorus for ur = I/y and k =1.0 for the standard map. The largest gap forms around x =0, the "potential minimum. "
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ing points in the interval (xo,xo), there can be none in
the intervals (x„x,"). Thus each interval (x„x,") is also a
gap and each of these is distinct because the orbit is
quasiperiodic. The total length of the gaps (in x) is at
most 1; so the length of the iterate of any gap must even-
tually go to zero.

Thus we can speak of "iterating" a gap; however, what
we really mean is that we iterate the end points of the
gap —these are points on the cantorus itself. The iterates
of a gap form a fami/y. Since any Cantor set has at most
a countable set of gaps, there are at most a countable set
of families of gaps in a cantorus; typically we observe just
one: every gap is the iterate of a single gap [though the
example of Greene et al. (1987) probably has two families
for some parameter values; see Ketoja and MacKay
(1989)].

Cantori are typically hyperbolic, though I do not know
of any theorem that guarantees this in general [when k is
large enough all cantori of the standard map are hyper-
bolic; see Goroff (1985) and Veerman and Tangerman
(1991)]. The hyperbolicity is measured by a Lyapunov
multiplier, which is obtained from the linearized map-
ping along a segment of length n of the orbit:
~Tr(M")~' "~A,, as n~~. In numerical studies the
Lyapunov multiplier is observed to grow continuously
from 1 when a cantorus is formed.

When the Lyapunov multiplier is larger than 1, the
iterate of any gap has a length that eventually must ap-
proach zero as A, ". This implies that the Hausdorff di-
mension of the cantorus is zero (Li and Bak, 1986;
MacKay, 1987). This is remarkable, since it implies that
when an invariant circle breaks, its length falls immedi-
ately to zero; furthermore, its dimension discontinuously
changes from 1 to zero (providing it becomes hyperbolic).

However, when the twist is monotone this cannot hap-
pen.

In addition to the periodic and quasiperiodic minimiz-
ing orbits, a new class, the nonrecurrent orbits, must be
considered. Since the set of minimizing orbits of frequen-
cy co is monotone, the nonrecurrent minimizing orbits
must lie in the gaps of the recurrent minimizing orbits.

When co =I In the nonrecurrent orbits are crossing
points of the stable and unstable manifolds of the mini-
mizing orbit: they are homoclinic to the minimizing
(m, n) orbit. There are two such orbits that are minimiz-
ing. One is the "advancing" homoclinic orbit. As
t ~—ao, this orbit is asymptotic to the left end point of a
gap, while when I;—+ ~, it is asymptotic to the right end
point. The other orbit is the "retreating" homoclinic or-
bit. These orbits lie on the upper and lower separatrix of
the resonance, and we shall discuss them in more detail
in Sec. VIII.

When co is irrational the nonrecurrent minimizing or-
bit lies in the gaps of the cantorus; since the gap widths
must shrink to zero, it is homoclinic to the cantorus.

G. Mather's hW

The nonexistence of an invariant circle is implied by
the existence of a nonminimizing orbit with frequency cu.

In particular, if the limit of the minimax periodic orbits
as min~co is an orbit with larger action than the
minimizing quasiperiodic orbit, then there is no invariant
circle.

Theorem (Mather, 1986). Let [x' '] and [g( )] be se
quences of minimizing and minimax (mk, nk) periodic
states, respectively, such that mk!nk ~to. Then the limit

of action differences

F. Characterization of the set of minimizing orbits b, 8' = lim [W( „)[g(")}—W( „)Ix(")]] (7.15)

So far we have shown that there exist minimizing or-
bits for each co, and that these orbits are monotone.
However, there could be other minimizing orbits that are
not covered by these results. Here we mention some
properties of the complete classification of the set of
minimizing orbits (Aubry and Le Dacron, 1983; Mather,
1982, 1985).

Aubry's fundamental lemma implies that periodic
minimizing orbits are monotone. This can be generalized
to any minimizing orbit. Thus every minimizing orbit
has a frequency cu, and for each cu the set M of all
minimizing orbits is monotone. Furthermore, if there is
a rotational invariant circle with irrational frequency co,

then every minimizing orbit of frequency co is recurrent.
We have seen that to every minimizing quasiperiodic

orbit there corresponds a homeomorphism of the circle;
however, it is not obvious that different minimizing orbits
correspond to the same homeomorphism. One could
imagine that the closures of different orbits might give
rise to disjoint invariant circles, or disjoint Cantor sets.

exists and is non negative -If AW . )0, there is no invari

ant circle with frequency co.

We shall see in Sec. VIII.C that the quantity 6W„can
be interpreted as the Aux through the minimizing set. It
is therefore natural that b W„=O when there is an invari-
ant circle.

Vill. FLUX

Flux is the area per unit time that crosses from one
side of a surface in phase space to another; we defined it
in Sec. II.D. A calculation of Aux can be used to obtain
estimates of transport rates, for example, the transition
time for trajectories to move from one region of phase
space to another. Suppose we consider trajectories start-
ing in the region y (yo and would like to estimate the
time to enter the region y)y&. If there is an invariant
circle in the annulus yo &y (y&, then of course this time
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would be infinite. More generally, the transit time would
be long if there were rotational circles with small Aux;
the minimum Aux rotational circle would be most restric-
tive.

Wigner (1937) proposed that finding the minimum Aux

surface for a Hamiltonian representing a chemical system
would yield good estimates of reaction rates. His formu-
lation was variational. In this section we shall use a
difterent variational principle, the one for twist maps,
and present evidence that minimum Aux curves are asso-
ciated with noble cantori. First we discuss techniques for
computing Aux.

A. Partial barriers and turnstiles

We call a curve that has small Aux a partial barrier:
chaotic orbits leak through the barrier, but they do so
slowly. In this section we discuss several ways of con-
structing rotational partial barriers; each way uses
minimizing orbits (MacKay et al. , 1984). One reason for
using these is that for the integrable case a minimizing
orbit lies on a rotational invariant circle; and since
minimizing orbits are monotone, one might expect them
to approximate such a circle even for the case in which
there are none.

Furthermore, the monotonicity of these orbits allows a
simple construction of a rotational (noninvariant) circle.
To do this we use the notion of gaps. Let xo be a point
on a monotone orbit; then the gap go is the segment be-
tween xo and the nearest neighbor to the right on the or-
bit of xo or any of its translates (Fig. 48). Monotonicity
implies that upon iteration go ~g

&
becomes a gap be-

tween x& and its nearest neighbor on the right. We call
the set of iterates of a gap a family of gaps; a monotone
orbit can have more than one family of gaps, though
there can be at most a countable number.

1. Periodic orbits

One way to construct a rotational partial barrier is to
use the minimizing and minimax (m, n) orbits. Choose
any gap in the minimizing orbit, call it the principal gap,

minimax

and fill it with an arbitrary curve, Xo, which also goes
through the minimax orbit (see Fig. 48). The remaining
gaps are filled with the n —1 preimages of this curve,

z, . . . , X „+,. The resulting curve is a rota-
tional circle, a "partial barrier" connecting a11 the points
on the two (m, n) orbits.

This curve defines a partial barrier that divides the
cylinder. To move from one side of the partial barrier to
the other, a trajectory must cross; it can do so because
the partial barrier is typically not an invariant curve. In
fact, when iterated, each X,~X,+ „which is another
segment of the partial barrier except that Xo—+X„which
is not part of the barrier. To visualize the Aux through
the partial barrier, take the preimage of X „+, to obtain
a second curve, X „, in the principal gap, the dashed
curve in Fig. 49. It must connect the end points of go,
because the end points lie on a periodic orbit.

Using the partial barrier, i.e., the solid curve in Fig. 49,
to provide a definition of "below" and "above, " we see
that the only region that crosses from below to above on
one iteration of the mapping is the region below Xo and
above X „. Similarly, the region below X „but above

Xo crosses from above to below upon one iteration.
These areas define the upward and downward cruxes
through the barrier. Because the net Aux is zero, the
fiuxes up and down are equal; therefore X „and Xo
must cross at least once, giving the characteristic figure-
eight structure shown in Fig. 49, which we call a turnstile
(MacKay et al. , 1984). This is because it acts as a "rotat-
ing door, " dumping all the area in its left lobe above, and
all the area in its right lobe below the partial barrier each
iteration.

As we shall see below, the Aux is independent of the
construction of the partial barrier, providing it connects
neighboring points on the minimizing orbit and goes
through the minimax orbit. Thus the arbitrariness in the
choice of Xo is not important, and we can think of the
minimizing-minimax pair of orbits themselves as defining
a partial barrier.

Turnstiles can be more complicated than we indicated
in Fig. 49. For example, there is nothing that prevents
the turnstile from looking like Fig. 50. In this case the
Aux is the shaded region shown. Though we have never
seen a turnstile with this structure, it could occur in
physical examples.

40

1&lmlZlllg

45

g2

I
1 I

gi g4

FIG. 48. Partial barrier for the (2,5) orbits. The orbit of gaps,
g„ is shown along the x axis. L, are the preimages of an ini-
tial segment Lo of arbitrary shape in the principal gap of the
minimizing orbit.

FIG. 49. Turnstile for and area under periodic orbits.
Turnstile in the gap go gives the Aux crossing the partial bar-
rier. The areas Ao and A

&
are used to obtain Eq. (8.4).
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FIG. 50. Possible turnstile shape.

2. Homoclinic orbits

Probably the most familiar case of a turnstile occurs in
the separatrix of a hyperbolic orbit. The hyperbolic
minimizing orbit has stable and unstable manifolds, 8"
and 8'", and, as discussed in Sec. VII.F, advancing and
retreating minimizing homoclinic orbits. For
definiteness, consider the (0,1) orbits and the advancing
homoclinic orbit. A partial barrier is formed by choosing
a gap go (the principal gap) in the homoclinic orbit and
closing it with a segment 8'0 of W". Preimages of 'Mo

converge to the minimizing (0,1) orbit. For positive t, Vl,
oscillates increasingly wildly; so in order to construct a
well-behaved rotational circle we switch to segments of
the stable manifold eV, . These converge to the (0, 1) orbit
as t~ ao. In this way we construct a piecewise smooth
rotational partial barrier, with a discontinuity in slope at
the right end point of go, shown as the solid curve in Fig.
51. As before, the turnstile is obtained by taking the
preimage of the partial barrier. Bach segment has a
preimage on the partial barrier, except for 4i, which be-
comes So in the principal gap, and gives the turnstile.
Since the advancing minimax orbit lives in the gaps of
the advancing minimizing orbit and is homoclinic to the
(0,1) orbit, a point on the minimax orbit must be on %(0,

as shown in Fig. 51; therefore the turnstile must have at
least two lobes. Just as in the periodic orbit construction,
the two lobes of the turnstile correspond to areas that
cross the partial. barrier each iteration.

The construction for the (m, n) case is similar. One
gap in the (I,n) orbit is closed with segments of unstable
and stable manifolds as before; the switch occurs, at an
arbitrary point on the advancing minimizing homoclinic
orbit (labeled mo in Fig. 52). Taking n —1 preimages
gives curves that fill in the remaining gapa of the (m, n)
orbit. Thus there is a discontinuity in the slope of the

FIG. 51. Partial barrier for an advancing minimizing orbit
homoclinic to the (0,1) minimizing orbit. It consists of a seg-
ment of unstable manifold from the left point on the (0,1) orbit
to some arbitrarily chosen point on the advancing minimizing
homoclinic orbit. From there we switch to stable manifold
leading to the right point on the (0,1) orbit.

FIG. 52. Upper partial barrier for the (1,3) orbit. The turnstile,
dashed and solid curves in the gap go, iterates to the curves in
g&. Only the left lobe of the turnstile moves from below to
above the partial barrier in one iteration.

partial barrier at the points m, for —. n & t ~0. The Aux

through the partial barrier is localized to one turnstile,
, that contained in the gap g& between m „and mp.

3. Resonances

The construction of a partial barrier for the advancing
and retreating homoclinic orbits of an (m, n) orbit leads
to a precise de6nition of a resonance: it is the area con-
tained between these upper and lower partial barriers.
The upper turnstile area of an (m, n) resonance gives the
area that makes a transition from inside the min reso-
nance to some resonance above (m, n) Sim. ilarly, the
lower turnstile represents the area making a transition to
below ( m, n )

The shape of the resonance depends on the choice of
homoclinic point at which we switch from unstable to
stable segments. However, the turnstile area is indepen-
dent of this choice, since any iterate of the turnstile must
have the same area as the original one. Similarly, the to-
tal area of the resonance is independent of the choice of
homoclinic poirit, because for a different choice the shape
of the resonance changes by the addition of one entering

: and the deletion of one exiting turnstile area. These are
equal since the net Aux is zero.

4. Cantori

A similar partial barrier can be constructed for a can-
torus. Choose a gap go in the cantorus. Since the can-
torus lies on a Lipschitz graph and is monotone, the
length of any gap must go to zero far enough in the fu-
ture and in the past. The stable manifold theorem, Sec.
II.B, implies that there are mamfolds S, and 8', that con-
nect the end poirits of g, and that approach the cantorus
as t~ ao and t —+ —Do, respectively. A partial barrier is
obtained by forming the curve from R, for t ~0 and 4,
for t )0 (see Fig. 53). If there is only one family of gaps,
then the resulting curve will be a rotational circle and
will form the partial barrier; otherwise, since there is a
countable number of gaps, we can repeat the construc-
tion for each family. The preimage of Si lies in go but
would coincide with Vlo only if the barrier we construct-
ed had been an invariant circle, contrary to assumption.
The segments So and 6'0 must cross at least once, since
they necessarily go through the minimax orbit (which
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Q) 52
0

50

This is the basic formula from which all the others fol-
low. 4

2. Periodic orbits

FICi. 53. Partial barrier in a cantorus.

lives in the gaps and is homoclinic to the cantorus). The
combination of $0 and 'Mo forms a turnstile. The flux
through the cantorus is the area in one lobe of the
turnstile, as before. Note that even though there are an
infinite number of gaps in the cantorus, the entire Aux is
localized to the principal gap by this construction.

B. Areas and actions

, =F(s, „s,) F(m,—„m, ) . (8.4)

The area of turnstile, Ao —A „, is obtained by adding
successive iterates of (8.4):

The Aux through the turnstile in a pair of (m, n)
periodic orbits is easily obtained from the fundamental
formula. Let [m, j denote the minimizing orbit, and [s, j
the minimax orbit. Let Ao be the area under the portion
of the Xo connecting mo to so (Fig. 49). Similarly, A,
represents the area under the portion of the iterate X,
connecting m, to s, . The fundamental formula (8.3) im-
plies that

1. Fundamental formula
V= Ao —A

t= —n+1
n —1

[F(s, i,s, ) F(m, —i, m, )]

Areas of resonances and of turnstiles are both needed
for the theory of transport. An obvious way to calculate
them is to approximate the boundaries by closely spaced
points and then to use numerical integration; however,
this is not the best way. In fact, these areas can be ob-
tained solely from the action of the minimizing and
minimax orbits making up the partial barriers (Bensimon
and Kadanoff', 1984; MacKay et al. , 1984).

The basic formula relating area to action is given by
Eq. (5.6). In fact, this is a relation between algebraic area
and action. As in Sec. V.A, let C be a directed curve in
the phase plane; we parametrize it by A, H f 0, 1],so that

C(A, )=[x(A, ),y(A, )j . (8.1)

dI dx + dx'
dX 'dX ' dX

Let A be the algebraic area "under" 8, i.e., the value of
Eq. (4.1). For the simple situation depicted in Fig. 39, A
is merely the geometric area If, how. ever, C intersects it-
self or if y (A, ) is negative for some range of A, , then the
sign of the areas of these regions will change, and 2 will
not be the geometric area between C and the x axis. In
any case we shall still refer to A as the area "under" C,
though some regions may be included with negative sign.
The image of 8 is denoted C

' and has an area A '.
Let F(x,x') be the generating function of the twist

map T from the initial point with configuration x (A, ) to
its image x'(A, ). By Eq. (5.1)

= g [F(s„s,+, ) —F(m„m, +, )]
t=0

=W( „)jsj—8( „)Imj:—bW'( „) .

(8.5)

Thus the flux is simply the di6'erence in action between
the minimax and minimizing orbits. It therefore does not
depend on the choice of Xo, or indeed in which gap the
turnstile is placed.

3. Stable and unstable segments

The formulas for the Aux through homoclinic orbits
and cantori also follow from Eq. (8.3), but we cannot rely
on periodicity, as in Eq. (8.5). Instead we use the fact
that in both cases the gaps shrink to zero in the past and
in the future.

Two points in phase space, zo and wo, are called future
asymptotic if they are distinct, but their orbits approach
each other asymptotically, so as to become indistinguish-
able at sufticiently long times in the future:

lim Iz, —w, I=0t~ oo
(8.6)

»m Iz, —w, l=o. (8.7)

where
I I represents any norm. Similarly, they are past

asymptotic if they are distinct and their orbits approach
each other asymptotically in the past:

, dx . dxy'
dA ydA,

Integrating both side with respect to A, , we obtain

bF:F[x (1),x'(1)]—F[x (0),x'—(0)]

(8 2)

(8.3)

Points that are both future and past asymptotic are

4This relation, and the others that follow, can be generalized
not only to maps that do not satisfy the twist condition, but also
to those that are not area preserving {Easton, 1991).
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homoclinic (to each other). If Uo is past asymptotic to zo
and future asymptotic to zo, then it is heteroclinic from zo
to wo.

If an orbit z, is hyperbolic, then the set of points that
are future or past asymptotic to zo forms two smooth
curves without self-intersection, crossing transversely at
zo, called the stable and unstable manifolds of zo (recall
Sec. II.B). All points on the same stable manifold are fu-
ture asymptotic, and all points on the same unstable
manifold are past asymptotic. Given two such points, we
call the piece of invariant manifold between them a stable
or unstable segment. As we have seen, partial barriers
for cantori and minimizing homoclinic orbits are made
from such segments.

We can find stable (unstable) segments numerically by
taking the limit of backward (forward) iterates of straight
lines joining corresponding points of two future (past)
asymptotic orbits. Thus if zo and wo are future asymp-
totic, let XJ,j)0, be the directed straight-line segment
from z. to w (Fig. 54). Then the stable segment joining
zO tO WOiS

So= lim T ~(X~) .
J—+ oo

(8.8)

Similarly, a pair of past asymptotic points gives an unsta-
ble segment

Ro= lim T'(X, ) .
J—+ 00

(8.9)

The images of a stable (unstable) segment are also stable
(unstable) segments and are denoted 4, ( 6', ).

Using the fundamental formula, the area below a stable
or unstable segment can be expressed in terms of sums of
action differences. Let {w, j and {z,j be a future asymp-
totic pair, and denote the action difference by

W1

~ ~ ~

FIG. 55. Area under a future asymptotic pair. The stable seg-
ment connecting z& and mo has area A 0. The unstable segments
are dashed. The action difference AS'= Ao —Ao is the dark
region, Eq. (8.13).

future asymptotic orbits, A,'+k —+0 as k ~~; so the sum
in (8.11)can be extended to oo, yielding

3,'= —g bFt+J .
j=0

(8.12)

—1

b.F, +
J= 00

(8.13)

Note that the t =0 term is not included here, and the
sign is indeed different from the previous one.

C. Flux formulas

Since F is continuously differentiable, the convergence of
the sum (8.12) is guaranteed if the union of the two orbits
is monotone, since the sum of the gap widths is bounded
by 1, or if the orbits are hyperbolic, since the points con-
verge exponentially.

If {w, j and {z,j are past asymptotic, and At" is the
area under their unstable segment Vl„ then a similar cal-
culation gives

bF, =F(w„w, +&) F(z,z, +, ) . — (8.10)

Suppose 4, is a stable segment connecting the tth points
on these orbits. We can parametrize it with I,, just as in
Eq. (8.1), so that $, (0) is z, and eV, (1) is w, . The area un-
der S„denoted A, in Fig. 55, is obtained by iterating the
fundamental formula (8.3):

1. Homoclinic pair

We can combine the future (8.12) and past (8.13) sums
if {z,j and {w, j are homoclinic. The signed area be-
tween the unstable and stable segments (positive where
V/, is above 4, ) is given by

Ic —1= ~~'+k X ~Et+I ~

j=0
(8.11)

Now because the action difference is taken between two

bF& .
J= 00

(8.14)

By a slight abuse of notation, we can write (8.14) as a
difference between the actions of the two orbits:

2,"—2;= W{w, j
—W{z, j =5W . (8.15)

4t+j

FICx. 54. Construction of the stable segment, following Eq.
(8.8).

This area, the dark region in Fig. 55, is the Aux through a
hornoclinic pair of orbits. Thus we have shown that the
fiux is Mather's b, 8; (7.15).

Note that (8.15) is independent of t by area
preservation —the region contained between the stable
and unstable segments has the same area for a11 time.
For example, we can let {z,j be a minimizing orbit Im, j
and {w, j be the corresponding minimax orbit {s, j, corre-
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Aux.
Notice that the Aux through a daughter rational is nev-

er larger than the Aux through either of its parents. We
observe this to be true for any k, and indeed for any of
the maps we have studied. For example, the Aux through
the (2,5) orbit is smaller than either of its parents (1,3)
and (1,2). Though this property could be violated if the
map had large Fourier coefficients at some frequencies,
we conjecture that it is a general property of smooth
maps for large enough levels on the tree.

Since irrationals are limits of infinite Farey paths, the
Aux through a quasiperiodic orbit is smaller than that
through any of the rationals above it on the Farey tree.
In this sense then, the cantori provide curves of local
minimum Aux. They form the most important barriers in
any frequency interval.

A second observation from Fig. 56 is that, of the two
daughters of a given rational, one always has smaller Aux
than the other. This rational corresponds to the Farey
path that changes direction. Thus of the two daughters
(3,8) and (3,7) of (2,5), the first has smaller flux. Recall
from Fig. 27 that alternating directions on the tree corre-
spond to a continued-fraction expansion whose elements
are 1's. Thus the cantorus with the smallest Aux below a
rational (m, n) is the noble irrational corresponding to
appending an infinite sequence of 1's to the continued
fraction of (m, n) Again. we conjecture that this is a gen-
eral property of smooth maps for large enough levels on
the tree.

For the special case of the standard map, this property
appears to hold for all levels on the tree. For example, in
the interval [ —,', —,'] the most noble irrational is 1/y . The
corresponding Farey sequence, m /n, is

1 1 2 3 5 8 13 21 34 55
2' 3' 5' 8' 13' 21' 34' 55' 89' 144

(8.17)

to the Lyapunov multiplier, A., of the limiting orbit:

5W( „)-ER +CA.j' (8.19)

Equation (8.19) converges rapidly because n grows
geometrically with level for an alternating path. This im-
plies that an accurate calculation of 68'for a highly un-
stable cantorus (A, ))1) can be made with a relatively
short periodic orbit. Other properties of the cantori also
converge with the same rapidity (MacKay et al. , 1984).

Every Farey path that eventually moves in one direc-
tion (either L or R) converges to a rational [from above
or below, respectively; recall (3.12) and (3.13)]. The cor-
responding sequence of orbits converges either to the
upper or lower homoclinic orbits. In Fig. 56 one can see
that these sequences have well-defined nonzero limits for
58'. These correspond to the Auxes through the upper
and lower separatrices of the resonance and have
difFerent values in general. The separatrix Auxes are al-
ways larger than those through nearby cantori.

D. Area formulas

1. Cantorus area

To find the area under the partial barrier formed from
a cantorus, suppose the cantorus has a single family of
gaps, and let [z, j = j x,'j be the orbit of the left end points
of a gap in the cantorus and [ w, j

= [x,"j be the orbit of
the right end points. Backward iterates of the unstable
segment of a gap and forward iterates of the stable seg-
ment form the cantorus partial barrier (recall Fig. 53).
The area under a single segment of the partial barrier is
given by either (8.12) or (8.13). To find the total area we
simply sum over t. The area under all the segments 4,
after time t is

In Fig. 56 the lowest Aux corresponds to the periodic or-
bit (55,144). The flux through the golden cantorus itself
would be zero in Fig. 56, since k =k„(y)=k„(1/y ).
In general, for the standard map, the golden cantorus has
the smallest Aux of any cantorus.

In fact, though it is difficult to see in Fig. 56, the Aux
through the orbits in the sequence (8.17) decreases
geometrically with level (MacKay et al. , 1984),

hW( „)-Cg J, /=4339 .

The constant g can be computed using the renormaliza-
tion analysis. This equation applies not just to the criti-
cal golden circle, but to any critical noble. A slight gen-
eralization applies to any "boundary circle" (Greene
et a/. , 1986; we shall discuss boundary circles in Sec.
IX.C).

At k =k„(y ) there is only one invariant circle; so the
flux through any sequence other than (8.17) converges to
a nonzero constant. The convergence to a cantorus is
faster than geometric. In fact, the convergence is related

A,'+k= —g g bF, +)+k= —Q kbF, +k .
k=1 k=1 j=0 k=1

(8.20)

This converges for hyperbolic orbits, since AI', ap-
proaches zero exponentially. Similarly, Eq. (8.13) gives
area under all the unstable segments for t or less as

0 0

X At"+k = — & k~Ft+k . (8.21)

The total area under all the stable and unstable segments
in the sum of (8.20) and (8.21):

A = — g t [F(x,', x,'+, ) F(x,",x,"+, )] . (8.22)—
f = —oo

Suppose that there is only one family of gaps; then (8.22)
includes all the gaps. Furthermore, when the cantorus is
hyperbolic, it has zero length (indeed, zero dimension; re-
call Sec. VII.E). This implies that the area under the
Cantor set itself is zero. Thus (8.22) is the area under the
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cantorus partial barrier. Note that the area under a par-
tial barrier is independent of the construction of the par-
tial barrier itself, depending only on the orbits of the gap
end points; thus we can refer to Eq. (8.22) as the area
"under the cantorus. "

2. Resonance area

Now we obtain the area under an upper partial separa-
trix for the simplest case of the (0,1) resonance. Let xF
denote the minimizing fixed point. Choose z, to be xF
and mt to be any point m,+ on the upper minimizing
homoclinic orbit. The area under the unstable segment
connecting x~ to m,+ is given by (8.12), and the area un-

der the stable segment connecting m, to xF is given by
(8.13). Thus the total area under the upper separatrix is

the area of the resonance from the action of the (m, n)
minimizing orbit add together instead of canceli. ng; but
this is so and comes from the fact that the asymptotic
motion approaches the periodic orbit from the left in the
upper separatrix and from the right in the lower separa-
trix.

In the above analysis, it has been assumed that there is
only one minimizing (m, n) orbit. If there is more than
one such orbit, then each gives a family of gaps, and one
has to sum the contributions from each family.

3. Mean energy area formulas

The area formulas can also be obtained from the
"mean energy, " defined as a function of m on the mini-
Inizing orbits as

g(+0 i)
= g [F(m,+,m, +i ) F(x~,—x~)] .

t = —oo

t —1

1.(co)= lim g F(x„x,+i)~2t g= —t
(8.26)

For the lower partial separatrix the unstable segment
connects a point on the lower minimizing homoclinic or-
bit to xF; so we define zt =mt and wt =xF and obtain

A(() i) = — y [F(m, , my+) ) F(XF,xy—)] .

The change in sign arises from the reversed ordering of
the points.

The analysis for an arbitrary (m, n) resonance is simi-
lar. Letting x, represent the minimizing ( m, n ) orbit,
choose a point m,+ on the upper homoclinic orbit in the

gap to the right of x, . As in Fig. 52, the upper boundary
of the resonance in this gap is formed from the unstable
manifold connecting x, to m,+ and the stable manifold
connecting m,+ to the right neighbor of x, ; the area un-

der these segments is given by adding (8.12) and (8.13) as
usual. Since this area is independent of the choice of gap,
and there are n gaps in the (m, n) orbit, the area under
the complete upper partial separatrix is simply n times
larger:

n —1

A(+ „)=n g g [F(m,+„+,m, +„+ +, ) F(x,x +, )] .—
t= —oo j=O

(8.23)

Aubry (1982) shows that this is a convex function of (u,
which implies that it has left and right derivatives and
that they are equal almost everywhere. However, these
derivatives differ at each rational value of co. In fact, by
considering limits of periodic orbits approaching horno-
clinic orbits or cantori, Chen (1987) has shown that these
derivatives give the area functions

d—L,
(m, n)

~=m/n

dL,
CO

co irrational

(8.27)

Here the + in the derivative indicates that the derivative
is taken from the right or left, respectively. These formu-
las are obtained by constructing the derivatives as limits
of the difference L(co') L(co) as co' app—roaches a) on
minimizing periodic orbits, and by showing that the re-
sult is one of our previous area formulas. For irrational
frequency, this formula gives the area under the cantorus
partial barrier (providing the cantorus is hyperbolic), or,
if one exists, under the invariant circle. We have no oth-
er formula for the area under the invariant circle in terms
of the action of a finite number of orbits.

Similarly, the area under the lower separatrix is

n —1

A( „)= ng g—[F(m,„+,m,„+ + )
t= —oo J=O

F(x),x +, )] . — (8.24)

1s

The final result is that the area in the (m, n) resonance

+
~(m, n) ~ (m, n) ~ (m, n) (8.25)

If we write (8.25) out explicitly, then it is similar to the
general result (8.16) with u =m+, u =x, (u =m, and
z =x. It may seem surprising that the contributions to

4. Resonances fill space

The twist condition implies that the minimizing orbits
are ordered according to frequency along the vertical
direction. Thus the area under the partial barriers as a
function of frequency, 3, is a monotonically increasing
function. One could think of it as the action for a nonin-
tegrable system. Across every rational value, the area
jumps by the amount (8.25), which is the area of the reso-
nance. Thus 2 is a deuil's staircase [actually, the in-

verse function a)( A ) is the devil's staircase].
Aubry (1982) has conjectured that this devil's staircase
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is complete when there are no invariant circles and every
cantorus is hyperbolic. Completeness means that the en-
tire variation of the function is due to the jumps. Since
the jumps each represent the area of a resonance, this im-
plies that the resonances fill phase space. This can be nu-
merically verified for the standard map when k )k„(y)
(MacKay et al. , 1987) and analytically verified for the
sawtooth map (Aubry, 1983a; Chen and Meiss, 1989).

Thus the resonances give a complete partition of irreg-
ular components. In Fig. 57 we show the (1,4), (1,3), and
(2,5) resonances for the standard map. The partition of
phase space resembles a tessellation —a tiling into n is-
lands for each resonance, though the shapes of the tiles
vary. There is a rough self-similarity apparent in the
figure; for example, between the (1,3) and (2,5) resonances
are exactly eight empty regions, which is just the right
number for the (3,8) resonance, the Farey daughter of
(1,3) and (2,5). Between the (3,8) resonance and each of
its parents are just the right number of spaces for the
next rationals on the Farey tree, (4,9) and (5, 13). This
structure continues for all levels. The structure is even
more apparent for the sawtooth map (Chen et a/. , 1990).

We shall use the resonance partition to construct a
transport theory in the next section.

IX. TRANSPORT

In this section we develop simple models of transport
based on Aux between regions that partition phase space

(recall the discussion of transport and fiux in Sec. II.D).
The ultimate goal, only partially attained to date, is to
produce models that predict transport rates and provide
explanations for such phenomena as the long-time tails
seen in correlation functions.

We begin with an exact description of the transport
process, based on the resonance partition.

A. Partitions

1. Resonances

Any annular irregular component is bounded by rota-
tional invariant circles (Birkhofi's theorem, Sec. IV.C)
and can be partitioned completely into rotational reso-
nances (Sec. VIII.D). A resonance is the region of phase
space enclosed by the separatrices and, up to the choice
of a homoclinic point at which to switch from unstable to
stable manifolds, is uniquely defined. We denote the res-
onance area by A~ „~. Each resonance has turnstiles in
its upper and lower separatrices; their areas are denoted

„~ (see Fig. 58).
Since the rationals are countable, the resonances give a

countable partition of phase space.
The transport process consists of the movement of tra-

jectories among the resonances. Suppose that each reso-
nance has an initial population of N~ „~ points. The goal
of our transport description is to determine the popula-

-0.4 -0.2
X

0.2 0.4

FIG. 57. Resonances for the standard map at k = 1.283.
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leaves correspond to the stable islands, which are ulti-
mately inaccessible (MacKay et al. , 1984; Meiss and Ott,
1986).

B. Markov models

1. Transition probabilities

FIG. 58. Resonance partition of phase space. The upper
turnstile of the (0,1) resonance overlaps the lower turnstile of
the (1,2) resonance; so a direct transition is possible.

tion of each resonance after t iterations (MacKay et al. ,
1987; Dana et al. , 1989).

In order to leave the (m, n) resonance, a point must fall
in the exit lobe of either the upper or lower turnstile.
Since there is a turnstile in only one island of the chain of
n, points must move in a regular fashion through each is-
land in the chain before finding themselves in the "princi-
pal" island with the turnstile (Fig. 58). Only when a
point is in the turnstile in the principal island can a tran-
sition occur. Thus when a point enters a resonance, it
must remain in the resonance for some multiple of n
iterations.

A direct transition from a resonance (m, n) to (m', n')
is possible only if the exit lobe of an (m, n) turnstile over-
laps with the entry lobe of an (m', n') turnstile. In gen-
eral, since the turnstiles have some 6nite height and the
twist condition implies that resonances are ordered verti-
cally according to frequency, the (m, n) turnstiles overlap
with all resonances in some frequency range
coI (m /n ( co U (Chen et al. , 1987). For example, in Fig.
58, since the upper turnstile of the (0,1) resonance par-
tially overlaps the lower turnstile of the (1,2) resonance, it
must overlap (completely) the turnstiles of all the reso-
nances between 0/1 and 1/2.

The ultimate goal of a transport theory is to develop
an approximate, statistical description of the motion (re-
call Sec. II.D). Recognizing the extreme complication of
chaotic motion, we abandon the hope for an exact
description of each trajectory and consider ensembles of
trajectories. The simplest statistical model is a Markov
model,

A Markov model consists of a partition of phase space
into regions and a transition matrix, I';, which is the
probability of a transition from region j to region i in one
step. The entire motion is described in terms of the se-
quence of regions visited. When a trajectory is in one re-
gion, it has a given, fjxed probability of making a transi-
tion to another region independent of its history. This is
an essential assumption to the Markov model —that I',"
is independent of the past of the trajectory; it is almost
certainly not true unless the partition is chosen with ex-
treme care. We would like to investigate to what extent a
partition into resonances has the Markov property.

Given that the population of the jth region at a given
time is iV, the Markov evolution states that upon one
iteration the new distribution becomes

(9.1)

It is known that a Markov partition exists for com-
ponents on which the Lyapunov exponents are nonzero
almost everywhere (Pesin, 1977). However, the construc-
tion of such a partition is nontrivial.

For the regions it is natural to choose resonances.
Since the resonance partition is countable, the
transition-probabi1ity matrix is discrete, but infinite in
size. In the Markov approximation, the transition proba-
bility between two resonances is

2. Transport on a tree
lJ

lJ
J

(9.2)

The resonance partition and its corresponding trans-
port description may be sufhcient for some purposes.
However, because the motion within a resonance is not
typically featureless chaos, it may be important to con-
sider partitioning the resonance itself for transport calcu-
lations. In fact, following the discussion of Sec. II.C, a
rotational resonance can be partitioned into librational
(class-1) resonances. Thus once a trajectory enters a
class-zero resonance, it can get trapped in a sequence of
class-1 resonances. Each of these has within it class-2
resonances. Thus the transport process occurs on a tree,
whose branches correspond to the classes and whose

where V; is the overlap area of the ith and jth resonance
turnstiles. This transition probability is indeed exact for
one iterate of the map; however, it is typically only quali-
tatively correct for longer times.

This kind of picture is in distinct contrast to the
smoothed "diffusion" discussed in Sec. II.D. We would
expect that the discrete model would be much more ap-
propriate when there are partial barriers whose cruxes are
small. This model should limit to the di6'usive picture in
the limit of large k.

A detailed construction of such a transport model can
be given for the sawtooth map, which is almost every-
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where hyperbolic (Dana et al. , 1989; Chen et al. , 1990).
The Markov model works well for moderate values of k
and does give the appropriate difFusive limit. In general
we expect that if the system is chaotic enough —if the
trapped set inside a resonance is a hox'seshoe —then the
Markov model will work. However, in the typical case of
a system with mixed regular and irregular components,
the Markov model provides only a qualitative descrip-
tion.

2. Onset of transport near k„(y}

N, =(1 p—)'No remaining in the resonance, and at the tth
step,

N, i N,—=p (1—p)' 'No (9.7)

Exponential decay is indeed often observed, especially
when the interior of the resonance has no apparent ellip-
tic regions.

particles escape. Thus the population would decay ex-
ponentially with time with escape rate

r = —log(1 —p) .

The time for crossing an invariant circle is infinite.
Above the critical value k„(co) the Aux through the can-
torus grows smoothly from zero as the parameter is
changed; thus we expect that the crossing time will have
a singularity as the parameter limits to k„(co) from
above. Indeed, Chirikov observed in a numerical experi-
ment for the transition from y-0 to y- —,

' in the stan-
dard map (Chirikov, 1979b) that the transition time
obeyed a power law

T-(k —k„) (9.3)

For the case of noble frequency, 68, and hence the
flux, grows as a power law (MacKay, 1982)

V~ (k —k„(co))", g=3.012 . (9 4)

Since the area of the connected chaotic component does
not vanish in the neighborhood of k„, one would expect
that the exponents in (9.3) and (9.4) should be identical.
This has been numerica11y verified to a high degree for
the standard map and the golden cantorus (Dana and
Fishman, 1985) in the range 1 & k & 2.5.

1. Transit-time decomposition

p(S) =p(S, )=p(8) =hW++hW (9.8)

The set that enters the resonance at t =0 is in the re-
gion 2, at t =1 (see Fig. 59). The fraction of J, that in-
tersects 6" exits the resonance upon the next iterate; and
so we say it has a transit time of 1. In general, the set
that traverses the resonance is exactly t steps is

V;=@AS, . (9.9)

The sets Tt are clearly disjoint. Furthermore,

To obtain an exact description it is necessary to follow
the iterates of the incoming lobes of the turnstiles [i.e.,
lobe dynamics (Rom-Kedar and Wiggins, 1988)]. Let J'
represent the collection of incoming lobes, 6 the exiting
lobes, and 2, the tth iterate of J'. The areas of these re-
gions are denoted p( J', ), etc.

Since the area of the exiting and of the entering lobes is
the area of the turnstiles, we have

C. Escape from a resonance

In this section we consider the problem of escape from
a single resonance with upper and lower turnstiles 68'+
and 68' and area A. Suppose that at t =0 the reso-
nance is uniformly populated with Xo particles, and the
rest of phase space is empty. At the first step of the map
a fraction of exactly

(9.10)

because any area that enters must eventually leave (recall
Sec. II.B). The transit time de-composition of 8 is the
decomposition into the sets 7;.

The transit-time decomposition of the exit set can be
analyzed completely in terms of various homoclinic or-
bits (Easton, 1991). Figure 60 sketches the decomposi-

58'++68'
(9.5)

escapes from the resonance. Thus there are

N, =(1 p)NO— (9.6)

particles remaining. Computing the fraction that escapes
at the next iteration is more difficult, because the popula-
tion in the resonance is no longer uniform. In the Mar-
kov approximation we assume that the X, particles have
spread more or less uniformly throughout the resonance,
so that a coarse graining would then view the resonance
as uniformly populated with a lower density than at first.
In this case, after t steps, we would have a population

FIG. 59. Transit time for a resonance. Only the upper turnstile
is shown.
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m+
0

s+0

and using (9.10) in (9.13) would yield

(9.14)

(9.15)

of the p( V, ), nor how to compute them.
If the escape were a pure exponential, then the area of

the transit sets would have to decrease exponentially with
time:

Comparing this with (9.7), we see that the Markov escape
rate would be exact if a = 1 —p, or

FIG. 60. Transit-time decomposition of an exit set. P(+i) p(@)
p(b) A

(9.16)

tion of the exit lobe of the upper turnstile. It is bounded
by points on the upper minimizing and minimax homo-
clinic orbits, mo and so+. The area of the region Y& is
the area contained between the segments of stable and
unstable manifolds of the two homoclinic orbits h

&
and

h'„shown in the figure. We recall that area contained
between the stable and unstable manifolds of any homo-
clinic pair is given by Eq. (8.15). For 'T2 there are four
homoclinic orbits that must be computed, and the area is
given by Eq. (8.16). In general, each 7 consists of a set
of strips stretching across 6', and possibly of some lobes
that do not traverse 6 entirely. However, all these re-
gions can be computed by knowing the actions of various
homoclinic points on the segment of stable manifold be-
tween mo and so.

2. Lobe dynamics

(9.12)

since the density in the occupied region, Xo/A, is invari-
ant under the map. Using Eqs. (9.5), (9.8), and (9.10), we
can write this as

p( , )
Nr —

& Nt =pNo g p g
(9.13)

Formulas similar to (9.13) and also applicable to more
general cases can be given (Rom-Kedar and Wiggins,
1988; Rom-Kedar, 1990; Beigie et al. , 1991). Unfor-
tunately, these formulas give no indication as to the size

The transit-time problem is closely related to the exit
time problem, since the population escaping at time t is
the occupied portion of the outgoing turnstile. To calcu-
late this, one must subtract the total area of the transit-
ing regions,

t —1

Area escaping at time t =p(8) —g p(V' ) .
j=O

This implies that the number of particles escaping at time
tis

which is a kind of "mixing" assumption: the fraction of
area that transits the resonance is the same as what we
would expect if the incoming turnstile were completely
mixed throughout the resonance area.

When the parameter k of the standard map is large
enough, we expect —and observe numerically—
exponential decay. Even so, the rate a is often different
from 1 —p. Furthermore, it often happens that it takes
several iterations before the incoming turnstile intersects
6, so that p( T, ) =0 for t & t . In this case the number of
particles decreases linearly for t (t, and then exponen-
tially thereafter. In this case one need only compute t
and p( "T, ) in order to calculate a.

m

For the sawtooth map, which can be analyzed corn-
pletely because it is piecewise linear (Percival and Vival-
di, 1987a, 1987b), the rates can be computed analytically
in some cases. For example, when k & —'„(9.16) is valid
for the (0,1) resonance and the Markov model is exact
(Chen et al. , 1990). More generally, whenever the
Lyapunov multiplier of the minimizing (m, n) orbit is
larger than 3", the Markov model is exact.

3. Periodic orbit theory

An alternative theory for escape rates for systems that
are hyperbolic can be obtained by analyzing orbits that
are trapped in the resonance forever (Kadanoff and Tang,
1984; Grebogi et al. , 1988). Consider a small box about
a point on a hyperbolic period t trapped orbit. After t
iterations the box returns to the neighborhood of the ini-
tial point; but due to stretching along the unstable direc-
tion by a factor A, , the eigenvalue of the Jacobian matrix
(2.15), only a fraction of I/I, of the iterate overlaps with
the original box. The escape from the neighborhood of
the orbit is exponential.

In order for an orbit to remain trapped in the reso-
nance for a long time, it must be close to the trapped or-
bits; after t steps the trapped set is a small neighborhood
of the trapped period t orbits. The fraction remaining in
the resonance after t steps is proportional to the sum of
the fractions remaining near each of these orbits:
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(9.17)

Here k.is the eigenvalue of the jth trapped period t orbit,
and the sum is over all trapped period t orbits. In the hy-
perbolic case the escape should be exponential; so as
t ~ ~, (9.17) is proportional to e "', with the escape rate

For the simplest case, all trapped orbits have the same
Lyapunov multiplier A, ; so A, =A, '. Then the escape rate
1S

the structures: an island of the closer chain is similar to
an island of the farther one. Thus the turnstile area
scales as the area of one island. The area of the entire
resonance, however, scales as the period times the area of
one island, and thus decreases more slowly.

These qualitative statements can be made precise for
the case of boundary circles (Greene et al. , 1986). Sup-
pose

r =

log�(

A, )
—ent( T),

where ent( T) is the metric entropy of the map T, that is,
the growth rate of the number of periodic orbits of period
t. This formula works well for the sawtooth map, even
when k ( T4 (Chen et al. , 1990).

More generally, the sum (9.17) must be evaluated by
computing the periodic orbits. Considerable savings in
computational effort can be obtained by reordering the
sum to take advantage of the fact that long period orbits
can be closely approximated by products of shorter orbits
(Artuso et al. , 1990a, 1990b). Often escape rates can be
obtained with high accuracy using only short orbits.

A similar analysis yields formulas for the diffusion
coefficient in terms of periodic orbits (Dana, 1989; Cvi-
tanovic and Eckmann, 1991).

Unfortunately the periodic orbit formulation seems un-
able to deal with systems that are not hyperbolic. In
such cases the decay is not exponential —in fact, observa-
tions imply it is algebraic.

(9.18)

This reduces to (8.18) for the case of noble circles where

n,. -y '. The area of a single island scales in the same
way. However, the area of the resonance is n; times the
area of one island; thus

(9.19)

Therefore the transition probabilities (9.2) have the scal-

ing

Po
Pi+ i, i. = (9.20)

represents the Farey sequence of rationals on the chaotic
side of the boundary circle. For example, if the chaotic
component is an annulus below the boundary circle, then
m; /n; & m. One observes that the turnstiles in the
(m;, n; ) resonances scale as

4. Algebraic decay

Whenever there are elliptic islands within a region, the
escape rates are not exponential, but rather appear to be
algebraic (Chirikov, 1983; Karney, 1983; Chirikov and
Shepelyanksy, 1984; Geisel et al. , 1987; Petschel and
Geisel, 1991).

One of the major outstanding questions in this field is
how to explain this behavior from first principles.

Numerical experiments (Karney, 1983) show that the
longest orbits are those that get trapped arbitrarily close
to the outermost invariant circles surrounding elliptic is-
lands, the boundary circles. From our viewpoint, this is
not unexpected, since the Aux through orbits limiting on
an invariant circle approaches zero [recall (8.18)];howev-
er, this effect must compete with the concomitant de-
crease in the area of the regions.

In fact, the area of the turnstiles decreases more rapid-
ly than that of the resonances. This is because there is
only one turnstile in a chain of n islands. Moving closer
to the boundary circle corresponds to the frequency

becoming a better approximation to the frequency of the
irrational boundary; thus the closer island chains have
longer periods. Furthermore, as one moves closer to the
boundary, there is an approximate geometric scaling of

and the ratio of the probability for a transition towards
the boundary circle to one away from the boundary circle
1S

(9.21)

N, -t ', z =1+13, (9.22)

where P is given in (9.18). Numerically observed decays
are much slower.

The model can be improved by including the branches
of the tree and developing a scaling for transitions from
one branch of the tree to another (Meiss and Ott, 1986).
Using this analysis and plausible values for the scaling
coefBcients, one finds that the decay exponent z becomes
2.96—which still does not agree with numerical rates.

One possible resolution of this discrepancy is that the
use of the universal scaling relations (9.18) and (9.19) is

If we assume that n; grows geometrically, as it does for
noble numbers, then the transition probabilities have a
geometrical scaling. Using these in the model (9.1) re-
sults in an infinite, self-similar Markov chain with
nearest-neighbor connections. This model can be solved
exactly (Hanson et al. , 1985). It predicts an algebraic de-
cay of the number of trapped particles at the rate
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inappropriate in a comparison with numerical experi-
ments (Murray, 1991). In particular, these are valid only
in a tiny neighborhood of the critical circle —a neighbor-
hood which would be reached by a typical orbit only
after many iterations; Murray estimates 10' for one case.
Murray argues that farther from the critical circle the
scalings become h8'~n; P, and 2,. ~n, . This would
give an exponent in (9.22) of z —1.45, which agrees more
closely with the experiments.

Given the assumptions that are required for the Mar-
kov model, these results must be taken as incomplete.
The numerical experiments are also not totally convinc-
ing. Experiments require iterating the map at least 10
steps to detect algebraic decay; the record number of
iterates is 10' (Karney, 1983). Great care must be used
in interpreting these results, since the Lyapunov multi-
pliers for the orbits involved imply that all accuracy in
the computation is lost. Karney used an integer repre-
sentation to ensure that his map was computationally one
to one; however, recent number theoretic results imply
that great care must be used in such discretizations, in
order that the discrete map be a good representation of
the continuous map (Percival and Vivaldi, 1987a).
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APPENDIX A: DIFFERENTIAL FORMS

A differential n form is an object that operates on n

vectors to give a real number (Arnol'd, 1978). A one-
form, a, is analogous to a covariant vector, it acts on an
ordinary vector v with the dot product to give a real:
a(v)=a;v' (we use the summation convention). For ex-

ample, the form df is a covariant vector associated with
the gradient of a function f; operating on a vector v with

df gives the derivative off in the direction of v:

df(v)=u'
ax' (A 1)

Associated with the coordinate function x is a one-form
dx'. The action of dx' on a vector v is U', the ith com-
ponent of v.

A two-form, ~, is an equivalent to an antisymmetric
matrix, say, co; —its action on two vectors is
co( u, v ) =u 'coj U~. Antisymmetry implies that
co(u, v)= —co(v, u). The form with which we are most
concerned is the symplectic form co=gdp' h dq'. The
result of acting on two vectors with co is the number

co(u, v) =g dp'(u) dq'(v) dp'(v—) dq'(u), (A2)

A = g f dp' h dq' (A3)

is a sum over the projected areas of the surface 4 onto
the canonical planes; the wedge product means that the
areas are positive if the projection of the boundary is
traversed clockwise, or negative if counterclockwise. The
generalization of Stokes s theorem to n dimensions im-
plies that since to=d (pdq), the integral (A3) can be writ-
ten as the integral ofpdq over the boundary of 4

(A4)

APPENDIX B: CIRCLE MAPS

Here we review a few basic facts about homeomor-
phisms of the circle (Cornfeld et al. , 1982, pp. 73—95).
Let a(x) be a continuous, monotonic increasing function
of x satisfying a(x+1)=a(x)+1 (see, for example, Fig.
43).

B 1 Le~ma There exis. ts an co such that for all x H IR and
integers (m, n)

neo) m -a"(x)—m )x,
nco&m -a"(x)—m &x .

(B1)

which can be interpreted as an area [recall Eq. (1.15) and
Fig. 3].

The exterior derivative d converts an n form to an
n+1 form. Thus the exterior derivative of pdq is the
two-form cu. If the exterior derivative of a form vanishes,
the form is said to be closed. If an n form can be written
as the exterior derivative of an n —1 form, it is said to be
exact. The exterior derivative of an exact form is zero; so
it is closed.

DifFerential n forms can be integrated over n-
dimensional surfaces. For example, choose an arbitrary
two-dimensional surface 4 embedded in a 2X-
dimensional manifold. Associate an orientation to S by
choosing a direction to traverse the boundary of S. The
integral
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The co that satisfies this lemma is the rotation number of
a. An important consequence of this lemma is that the
orbit cannot deviate too far from uniform rotation. To
show this from the above two inequalities, in the first
case let m be the greatest integer less than neo, and in the
second let m be the smallest integer greater than neo,
then we can bound the difference FIG. 61. Three levels in the construction of the middle-thirds

Cantor set.
~a"(x)—x n—co~ ~ 1 . (B2)

Equation (B2) implies

B2 Theorem. The limit

co= lirn
a"(x)

(B3)

Choose an arbitrary point xo and consider its trajecto-
ry under e. Let Q be the set of limit points of the orbit:
x HQ if there is a sequence x =aj(xo) such that x ~x
as j~ ao. By definition 0 is closed. Then

exists and does not depend on the choice of x HR. The ro-
tation number co is rational only if some power of a has a
fixed point

contrast, points that lie on the end points of a gap have
finite base-three expansions, since they are rationals with
powers of 3 in the denominator.

The Hausdorff dimension of a Cantor set embedded in
some manifold can take any value. In the middle-thirds
case, the Hausdorff dimension is log(2)/log(3). If the
fraction removed at each level is increased then this di-
rnension decreases. The invariant Cantor sets arising in
the twist map case (cantori) typically have zero Hausdorff
dimension.

B3 Theorem (Poincare, 1885; Denjoy, 1932). If co is irra
tional,

(a) 0 is independent of the choice ofxo',

(b) A is i n Uarian t;

(c) 0 is either the entire circle or is a Cantor set.

A Cantor set C is a nonempty, perfect, totally disconnect-
ed, compact set:

Perfect Every point in the set is a limit point of
other points in the set: For all x H C, there is a sequence
x '"' E C such that x '"'Ax and x '"'~x as n ~ oo .

Totally disconnected For any x,y&C, such that
xAy, C can be written as the union of disjoint, closed
sets 3 and B for which x E- A and y EB.

Compact ~ Every sequence x' ' in C has a convergent
subsequence.

This definition of the Cantor set is a purely topological
one. It does not require the set to be embedded in any
other space. The standard example of a Cantor set is a
subset of the interval [0,1], Fig. 61. Remove the open in-
terval ( —,', —,'), leaving two closed intervals. Remove the
middle third from each of these. Continue this procedure
ad inftnitum This constru. ction shows that the comple-
ment of a Cantor set is a countable set of gaps.

A Cantor set contains an uncountable number of
points; in particular, there are points that are not the end
point of any gap. To see this for the rniddle-thirds exam-
ple, we code the points in the set in a base-three represen-
tation. The geometrical construction of the middle-
thirds set implies that it consists of points whose base-
three representations have no 1's, i.e., 0.2022202000. . . .
There are an uncountable number of such sequences. By
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