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The random distribution of impurities in a semiconductor host lattice introduces potential fluctuations
that allow energy levels within the forbidden energy gap. This statistical effect distorts the unperturbed
density of states of the pure semiconductor, and, at high doping concentrations, substantial band tails ap-
pear. The changes in the density-of-states function are particularly important in determining the number
of free carriers in a heavily doped semiconductor. Together with many-particle interactions, band tailing
constitutes one of the most significant heavy-doping effects. Although the band-tailing phenomenon has
been studied for many years, only a one-dimensional analytical model, which assumes a Gaussian white-
noise probability distribution of the potential fluctuation, exists. In this paper the different classes of
theories that describe this band tailing of the density of states in heavily doped semiconductors are re-
viewed in detail.
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I. INTRODUCTION

The aim of this work is to review the principal theoret-
ical developments in the theory of band tails, particularly
in heavy doped semiconductors.

By doping a pure semiconductor, one creates a slightly
different material. Since the band structure characterizes
a material, the change induced by doping is also rejected
as a deformation of the band structure. This altering of
the band structure is caused by difFerent physical mecha-
nisms, which we shall brieAy discuss. In heavily doped
semiconductors, a large number of impurities is inserted
into the host lattice. Each impurity ion locally intro-
duces a distinct level in the band gap. At high densities
these local levels interact to form a band. At high n (p)-
type doping concentrations, this impurity band merges
with the conduction (valence) band. The conduction
electrons together with the donor electrons form an in-
teracting Fermi gas (Berggren and Sernelius, 1985). The
interactions of electrons both among themselves and with
the positive impurity ions change the parabolic Eo(k) re-
lation of the noninteracting Fermi gas [or equivalently
the density of states (DOS) of the unperturbed semicon-
ductor] considerably. These efFects may be viewed as a
rigid shift of the conduction band towards the valence
band (band-gap narrowing) and a distortion of the DOS.
In addition to this distortion, the fact that the impurities
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756 Piet Van Mieghem: Band tails in heavily doped semiconductors

are randomly distributed in space causes the DOS to tail.
Since both the many-body effects and the random distri-
bution of impurities are responsible for this bandtailing
effect, one should be very cautious in the interpretation
of experiments showing tails. However, band tailing that
is observed in heavily-doped-semiconductor photo-
luminescence spectra is fundamentally different from the
exponential band tails resulting from purely random
effects. These follow from the lifetime broadening caused
by the electron-electron interaction (Sernelius, 1986).
The electron-electron band tail (Berggren and Sernelius,
1981) is relatively small and terminates somewhere in the
forbidden energy zone. The tails caused by electron-
impurity interactions are more pronounced, as demon-
strated by Klauder (1961) using a one-dimensional
multiple-scattering (Born) approximation with 5-function
impurity potentials; by Wolff (1962) via many-body per-
turbation theory; by Serre and Ghazali (1983), who have
applied a numerical extension of Klauder's method to
three dimensions with screened Coulomb impurity poten-
tials; by John (1987) studying polaron and exciton in-
teractions; and by Gold, Serre, and G.hazali (1988) using
a two-dimensional analog. It is also worth mentioning
that stress in heavily doped semiconductors may also
lead to tailing (Sernelius, 1983). In this review, we focus
mainly on the statistical fluctuations in impurity distribu-
tions, which we call the "band-tail problem. " We neglect
many-body effects and treat the band-tail problem in a
one-electron picture (except in Sec. V).

Before overwhelming the reader with the mathematical
aspects of the difFerent theories, we shall sketch the phys-
ics of the band-tail problem as described by Halperin
(1973). Let us first consider a dilute system of attractive
impurities distributed in some random fashion, as spatial-
ly shown in Fig. 1. Let EI be the energy of the ground
state of an isolated impurity. If the system is sufFiciently
dilute, so that the overlap of the wave function is general-
ly small, then there will be a band of states close to the
energy E&. In order to generate a local state with an en-

ergy well below E„ it is necessary to have two or more
impurities close enough together. Let Ez be the energy
of an electron in the ground state of a pair of impurities
that are spatially as close together as possible. For ener-
gies between E j and E2, an energy level can occur bound

„E

FIG. 1. Schematic drawing of the potential V(x) (solid curve)
and low-lying energy levels (dashed line) for a dilute system of
at tractive impurities.

, E

FIG. 2. Sketch of the potential V(r) (solid thin line) for the
case of a large number of impurities. The solid bold line
represents the smoothed potential V, (r), and the dashed line is
a low-lying energy level E, , while the straight line V„denotes
the average potential of the system.

to a pair of impurities separated by the appropriate dis-
tance for that energy; the DOS should be roughly given
by the probability of ending a pair of the correct separa-
tion (Lifshitz, 1964). For energies below E2, it is neces-
sary to consider a cluster of three impurities, etc. In
summary, for the dilute case, if one knows the probability
distribution of the impurities, it is relatively straightfor-
ward to calculate the DOS in the tail of the impurity
band.

A more complicated situation occurs when there are
many impurities within the range of a wave function, so
that the fluctuation producing the low-lying energy states
arises from a large number of impurities, rather than a
small cluster, and the position of any one impurity is not
very important. This situation is sketched in Fig. 2. We
wish to And a state with energy E below the average po-
tential of the system V„. The wave function must be
large in some local potential Auctuation with V(r)(E,
and small in all regions with V(r)) E, in order for its
average potential energy to be less than E. The necessary
potential Auctuation may be produced by a local excess
density of attractive impurities or a smaller-than-average
local density of repulsive impurities. If V(r) arises from
thermal fIuctuations in a crystalline lattice, the potential
well may be produced by a larger-than-average local
compression or dilation. In any case, the calculation of
the DOS is a calculation of the probability of finding a
potential fluctuation of the required magnitude. In the
energy-band picture, the random position of impurities in
the host of a pure crystal breaks the translational invari-
ance of the lattice and thus causes levels in the forbidden
band. The description of these levels, distributed over
energy, as drawn in Fig. 3, belongs to the more general
theory of disordered systems or to the theory of localized
states in amorphous materials (Ziman, 1969, 1990; Thou-
less, 1970; John and Grein, 1990). However, we confine
ourselves to heavily doped semiconductors. This restric-
tion has some interesting distinguishing features. First,
the framework of the effective-mass approximation
remains applicable; since the characteristic energies
determining the "tail region" are much smaller than the
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FIG. 3. Schematic of the energy E dependence of the DOS
p(E), showing the four different regions. The Gaussian and
continuum regions are contracted, while the Urbach region is
expanded relative to the Halperin-Lax region. For a heavily
doped semiconductor, the Urbach region is simply a transition
region between the Halperin-Lax and the Gaussian regions in
which the lnp(E) has a point of inAection and thus looks linear.

band gap E . Throughout this article, m denotes the
effective mass. Second, since many-body effects, which
polarize the electron medium and screen the ions, are
omitted, the impurity potential is of the Coulomb type,
i.e., long-range.

Long-range potential correlations exclude a simple ex-
ponential bandtailing, as first empirically proposed by
Urbach (1953). The theory of the Urbach tail was recent-
ly thoroughly studied by John et al. (1988) and physical-
ly explained in their review article (Cohen et al. , 1988).
They demonstrated by field theory (see Sec. IX) that an
exponential tail occurs for systems with rapidly decaying
short-range correlations (as in a-Si), but that this behav-
ior is not universal and may not be observed in heavily
doped semiconductors. The fact that Urbach tails may
not appear in heavily doped semiconductors was noted
earlier by Sritrakool et al. (1986) using a path-integral
method. However, the short-range correlation does not
seem a necessary condition for exponential bandtails. By
postulating the existence of a dilute concentration of
charged defects, Lewis and Movaghar (1990) and Silver
et al. (1989) claim by numerical simulations that the
Coulomb interaction leads effectively to an exponential
band tail.

This review is organized as follows. The second sec-
tion brieAy sketches the importance of band-tail effects in
heavily doped semiconductors. In Sec. III, some general
definitions and properties of the DOS are presented. An
important special random system, which can be solved
exactly, will be discussed in Sec. IV, before we examine
the various methods that describe "tailed distributions. "
Section V describes a generalized semiclassical approach,
which models the majority carriers in a heavily doped
semiconductor excellently. When many-body effects are
excluded and when a parabolic unperturbed DOS is as-
sumed, the semiclassical model reduces to Kane's model
(Kane, 1963). We discuss briefiy possible descriptions in-
cluding both the statistical and the many-body effects.
Due to the semiclassical treatment of the kinetic energy,

this simple model fails in the deep-tail region. In Secs.
VI and VII, we examine the Halperin and Lax minimum
counting Inethod and the Efros optimal-fluctuation mod-
el. The underlying principles of these two theories are re-
lated, and both are called fiuctuation models (Kane,
1985). In Sec. VIII, we illustrate the application of the
elegant Feynman path-integral formalism to bandtailing.
A functional-integral method related to the n-replica
method in field theory (Cardy, 1978; Edwards, 1979;
Brezin and Parisi, 1980; John et aI. , 1988; John and
Grein, 1990) is introduced in Sec. IX. Section X com-
pares the discussed theories and offers some conclusions.

II. IMPORTANCE OF BAND TAILS FOR
PROPERTIES OF HEAVILY DOPED SEMICONDUCTORS
AND SEMICONDUCTOR DEVICES

Before examining band-tail theories in detail, we
should like briefly to illustrate the importance of band
tails in heavily doped semiconductors. In disordered ma-
terials, the prominent observation is the exponential Ur-
bach tail. The Urbach theory, the appearance of band
tails in amorphous materials, and experimental tech-
niques are discussed in the recent review of John and
Grein (1990). Since agreement between theory and ex-
periments in heavily doped semiconductors is still not sa-
tisfactory in every case, Takeshima (1983; 1983b; 1984;
1985; 1986; 1989) has devoted much effort to explaining
band-tail experiments with approximate or semiempirical
Green's-function models.

Recent developments in molecular-beam epitaxy and
metal-organic chemical-vapor deposition make it possible
to study one-dimensional random structures. Superlat-
tices with random well width (Brennan, 1990; Yamamo-
to, et al., 1990) can be grown (as shown in Fig. 5 in Sec.
IV). The more quantum wells are created, the better the
structure will mimic a random one-dimensional chain
(see Sec. IV). Spatial disorder is intentionally introduced
in crystalline semiconductors in order to enhance the
photoluminescence. Due to the relaxation of conserva-
tion of momentum (the k-selective rule) for recombina-
tion through localized states, disordered semiconductors
are expected to radiate photoluminescence as intense as
that from single-crystal semiconductors. Yamamoto
et al. (1990) found that the photoluminescence intensity
IpL of a random superlattice can be modeled as a func-
tion of temperature T by an Urbach-like expression,

IpL —[I+ 2 exp( T/To ) ]

where To is a characteristic temperature corresponding
to the energy depth of localized states and A is a tunnel-
ing factor.

Compositional fIIuctuations in semiconductor alloys,
together with lattice strain, may be responsible for
recombination of carriers localized in band-tail states, as
observed in photoluminescence spectra by Reihlen et al.
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(1990) in GaP, Sb . Tamor (1986) reported the first
observation of multiple trapping in the crystalline semi-
conductor Pb& Sr S by measuring the transient photo-
conductivity.

The optical characterization of band tails and the un-
derlying recombination mechanisms are the subject of in-
tensive research (Domanevskii et al. , 1988; Quang, 1989).
Recently, Liebler and Haug (1990) have proposed a
theory for the band-tail absorption saturation. This plays
an important role in nonlinear optical switching devices
because they operate in the band-tail region (Haug,
1988). Glaser et al. (1986) and Glaser and McCombe
(1988) have shown that far-infrared measurements in the
n-inversion layer in the Si MOSFET provide direct evi-
dence for screening of localized states as well as for the
existence of long band tails and impurity bands. In addi-
tion, Hafez et ai. (1990) have demonstrated the impor-
tance of band tails in MOSFET circuits at low tempera-
tures, where the Fermi level lies close to the band edge
and thus directly probes bandtail efFects. We should like
to mention the importance of band tails on the operation
of semiconductor lasers, sketched in Fig. 4 and thorough-
ly examined by Yamamoto (1983) and Yamamoto et al.
(1983). From capacitance measurements on abrupt
symmetrical diodes, band-gap narrowing and information
about band tailing can be extracted (Van Mieghem et al.,
1990a; 1990b). Finally, band tails can cause significant
deterioration of the current gap of bipolar transistors,
especially at lower temperatures (Van Mieghem, et al. ,
1992).

Ill. PROPERTIES

A. Definitions

The DGS, p(E), gives the number of energy eigenstates
in the interval [E,E +dE] and can be represented as

p(E) = g 5(E E—),=- 1

V0
(3.1)

P (r)ti*(r')
G(r', r, E)= g (3.2)

Using the identity for g~O+,

E —E +ig
=I' 1

E —E
+i rr5(E E), —(3.3)

and integrating over r, we find

p(E) = +—Im[TrG —(r', r, E)]1 1 + /

V0
(3.4)

where G —(r', r, E)=-G(r', r, E+iq). If we define a local
DOS at a position r as

where 5(x) denotes the Dirac function, E is an energy
eigenvalue belonging to the eigenfunction P (r) of some
particular Hamiltonian, and V0 is the macroscopic
volume. Because p(E) is a (real positive) nonanalytic
function of the real variable E, it is convenient to intro-
duce the system's Green's function (Fetter and Walecka,
1971;Economou, 1979),

p(E, r)= g P (r)P*(r)5(E E), — (3.5)

Energy~~

Conduction band

then we may establish the following relations:

p(E) = Idrp(E, r),= 1

0
(3.6)

hv hv
emitted light

p(E, r)=+ —Im[G —(r, r, E)],

G(r, r, E)=I ' dg .
(3.7)

nce band

DOS

FIG. 4. Schematic of the laser operation at T=O K in GaAs
which is a result of population inversion (Pankove, 1971; Sze,
1981). g„~ is the quasi-Fermi level for the electrons (holes).
The narrow line denotes the unperturbed DOS, while the heavy

line depicts the DOS modified by heavy-doping e6'ects: both
valence and conduction band are shifted towards each other
(band-gap narrowing) and the DOS is distorted, showing

bandtails. These heavy-doping e6'ects result in a di8'erent emit-

ted spectrum.

When the Hamiltonian is translationally invariant, i.e.,
when G(r', r, E)=G(r' —r, E), the k representation is

often useful,

G(k, E)= fdr G(r, E)e'"' .

For any random system, we average G(r', r, E) over the
ensemble of possible potentials, assuming an infinite

volume for the system. The result ( G (r', r, E ) ) i, de-

pends only on the difFerence r' —r, meaning that
(G(r', r, E)) i

—=G, (r' —r, E) is translationally invariant.

B. The exact variational principle

An interesting property of the DOS is that there exists
an exact variational principle (Lloyd and Best, 1975),
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which states that the exact DOS is that function which
maximizes the pressure P (E) of the fermion system,

P(E)= f N(E')dE', (3.9)

where N (E) is the integrated (or cumulative) DOS,

N(E)= f p(E')dE' . (3.10)

In order to prove this principle, we note that the
ground-state energy of a many-particle system at T =0,
E „„„d,is givenby

E „„„d=Vo f Ep(E)dE .

A kG (k, E)= E — —ig
2l7l

Applying the definitions from Sec. II A, we obtain

p2(E) =
2 8(E),

2mB

3/2
p3(E) = —,&E 8(E),

&2m '

(3.1 1)

(3.12)

E „„„d may be estimated variationally, which implies
that a variational principle involving p(E) exists. Sup-
pose we use trial many-fermion wave functions with vari-
ational parameter(s) A, in a system with a fixed number of
particles X0. Then the true ground-state energy, for a
fixed Fermi level p, is a lower bound of the functional

F(E,A) = Vo f Ep(E, A, )dE+13 f p(E, A, )dE —No

where P is a Lagrange multiplier. This condition implies
(by integrating F by parts) that

P(p) ~ max f N(E', A, )dE' .

where 8(x) is Heaviside's step function. If not explicitly
mentioned, the spin correction ( X2) is not included.

D. Crystal electrons

Crystal electrons are described by the well-known
Bloch theorem. Assuming that a crystal property in a
macroscopically large volume di6'ers negligibly from its
infinite-volume limit, definition (3.1) may be rearranged
as (Ashcroft and Mermin, 1981,p. 37)

Another derivation based on the convexity theorem [i.e.,
if f(x) is convex, or f"(x))0, then (f(x)) ~ f((x ))
where ( . ) is an expectation value] is given by Lloyd
and Best (1975).

p(E)= lim +5(E Ek)—
vo V0

, 5(E —E(k)) .
any primitive ceH

(3.13)

C. Free electrons

The expressions in d dimensions are derived from the
Careen s-function expression which, in this case, reads

According to Bloch's theorem, an alternative representa-
tion of the DOS of a particular band n can be construct-
ed (Ashcroft and Mermin, 1981, p. 144 and Madelung,
1981,p. 66). Ignoring spin correction, we have

number of allowed wave vectors in band n

in the energy range from E to E +dEEdE= X '

0

The number of allowed wave vectors in band n in this en-
ergy range is just the volume of a k-space primitive cell,
with E ~ E„(k)~ E +dE, divided by the volume per al-
lowed wave vector, 5k= 8m /Vo. Thus

I

VkE„(k), is also a vector normal to S„(E),whose magni-
tude equals the rate of change of E„(k) in the normal
direction, i.e., dE =

~ Vi,E„(k)~. 5n (k), we find an explicit
relation between the DOS and the band structure,

E dE=
E&E (k)&E+dE 8~3

(3.14) (3.16)

This volume integral is more elegantly expressed as a sur-
face integral. If $„(E)denotes a surface of constant ener-

gy E„(k)=E, then

p„(E)dE = f 5n(k),dS

IV. A PARTICLE IN A ONE-DIMENSIONAL
RANDOM POTENTIAL

A. Statement of the problem

where 5n(k) is the infinitesimal vector at k, starting per-
pendicular to the constant energy surface S„(E)and end-
ing on S„(E+dE) Since the k grad. ient of E„(k),

The problem (Halperin, 1965) consists in evaluating
the energy DOS of a particle moving in one dimension in
the interval t O, L] and subjected to the Hamiltonian
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d -+ V(x),
2m

(4.1)
or, employing the fact that

l
2 (f) l

is an even function of

& V(x) &=0,

&v( ) ~ ~(

(4.2)

(4.3)

where V is a random potential described by a Gaussian
statlstlcal d1stI ibution with thc expectation values

&y(t).y(t+r)&= f G(f)cos(2~fr)df,
(4.10)

6 (f ) =4 f &y (t)y (t +r) &cos(21rfr) dr .
0

Finally, let us define the normalized correlation function

where D is a constant. The wave functions are assumed
to satisfy boundary conditions' of the form

&y(t) y(t+r)&
&y'(t) &

(4.11)

0"(0)=a %(0) and 4'(L)=b. I1(IL)

for arbitrary real constants a and b.

(4 4) and the normalized spectrum as

G (f)

f G(f)df
(4.12)

B. Statistical properties of the potential V

y(t)= J A (f)e '~'df, (4.5)

where 2 (f)= 3 *( f) since y—(t) is real. From
Parzeval's theory (Titchmarsh, 1967) we have

f" y'(t)dt= f la(f')l2df . (4.6)

Using the fact that
l
A (f )

l
is an even function of f and

the definition of y(t), one can write this relation (for
T~oo) as

For what follows, it is instructive to recall briefly some
statistical quantities (Wang and Uhlenbeck, 1945). Con-
sider a random process y(t) over a very long time T.
Taking y(t)=0 outside the time interval T, one can de-

velop the resulting function in a Fourier integral:

For an almost pure random process, C (r ) drops very
rapidly from 1 to 0, and consequently S (f ) remains con-
stant except for very high frequencies f. This spectrum
is called a white spectrum; of course the 5 (f) =constant
for all f, which corresponds to a pure random process, is
a limiting case which will never occur in practice. The
potential V is thus described as white Gaussian noise. A
physical interpretation of V, which will be used below, is
the potential arising in the high-density limit as a set of
5-function potentials of Axed magnitude, distributed at
random on the line [O,L]. In this limit, the fluctuations
about the average potential tend to a Gaussian-white-
noise distribution with D =2nv0, where v0 denotes the
potential strength and n is the expected number of
scatterers per unit length.

C. Some general features of a random process

&y (t)&= lim —f y (t)dt
T~ oO T —T/2

y'(t)dt = f G(f)df, (4 7)

G(f)= lim —
l
& (f)l

2
T~oo T

(4.g)

is the spectral density. Analogously,

&y(t) y(t +r) &
= lim —f y(t)y(t +r)dt

T~ oo T oo

Since Marko6' processes constitute a very important
class, we shall examine them, restricting ourselves to sta-
tionary processes. A Marko6' process can be defined by
stating that the conditional probability I'„ that y lies in
the interval (y„,y„+dy„) at time t„, given that y is equal
to y„y2, . . . ,y„, at the times t„t2, . . . , t„, (where
t; ( t for i (j), depends o. nly on the value of y at the pre-
vious time t„, (besides, of course, the obvious depen-
dence on y„ t„):

P. (y 1 t],y2t2, ",.y. -lt. -1ly. t. ) =P2(y. -1.-1 ly. t. )

(4.13)

The conditional probability P2 (we omit the subscript
heieaf«r) «a Mark«process fulfills the Smoluchowski
equation,

= lim —f l
A(f)l2e2 't'df

T~ co T Qo

(4.9) P(xly, t+~t)= f dz P(xlz, t)P(zly, bt), (4.14)

for all values of At ~0. This equation follows from the
definition of a Markoft' process. The moments of the
change in space coordinate in a small time ht are given
by

iThe importance of the boundary conditions and the averaging
of the Schrodinger equations is discussed in detail by Klauder
(II96~, pp. 66-75). M„(z,ht)= J dy(y z)"P(zly, ht) . —(4.15)
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M, (z, b, t)
B (z)= lim

0 At

(4.16)

Combining Eqs. (4.14) and (4.16), we can derive the gen-
eral Fokker-Planck equation for P (Wang and Uhlen-
beck, 1945),

a
[ A (y)P]+ —[B(y)P] .1

By
(4.17)

Let us concentrate on Gaussian distributions. A
characteristic property of a Gaussian distribution F(t) is
that it is completely described by its first and second mo-
ment, or equivalently

Consider now the physically interesting processes for
which the space coordinate can only change with small
amounts in small times. Or, assume that, for ht —+0,
only the first and second moments become proportional
to At, so that the following limits exist:

M, (z, b t)
A (z)= lim

6~~0 6t

and

z(x)= 4'(x)
(4.21)

A (z)= —(z +A.),
while for B (z) we consider

bz = —(z +A, )Ax +2 f x+™&duU(u)
X

which reads after averaging

&bz )=[(z +A, )bx]

+4 f J du dy(U(u)U(y)) .

(4.22)

Employing Eq. (4.3), we find

( b z ) = [(z +A, )bx ] +2D '.bx

such that, with Eq. (4.16),

If we now assume that z has the Markoff property, we
readily find A (z) as

(F(ti ) F(t2) ' ' ' F(&2„+i) ) =0,
(F(r, ).F(r, ) F(t,„))

(4.18) B (z) =2D*,
where

(4.23)

all pairs

(F(&;) F(t, ))(F(&„)F(t, )) 2

D*= D . (4.24)

Furthermore, the relation between a Gaussian process
and a Markoff process is given by a theorem due to Doob
(1.53): A one dimensi-onal Gaussian process will be
Markojjan only if the correlation function
C(r) =exp( P~) so that—the spectrum S(f)-(P +co )

Hence we obtain the Fokker-Planck equation

B2P
(z +A.)P+D*

Bz az2
(4.25)

D. Solution of the problem

The considerations of the preceding section suggest the
following methodology. If we can reformulate the prob-
lem in terms of a variable y (t) which constitutes a Mar-
koff process, a Fokker-Planck equation can be derived.
Since we are dealing with a Gaussian random process,
this equation completely describes the process. The re-
sulting problem is then to extract information about the
density of eigenvalues from the probability distribution
P.

Guided by the form of the Langevin equation (Wang
and Uhlenbeck, 1945), we transform the Schrodinger
equation with Hamiltonian (4.1) to

Unfortunately, z(x) is not Markoffian, as is readily
verified from Doob's theorem. However, Halperin (1965)
introduces a second stochastic variable U& and shows, by
rather complicated reasoning, that (z, U, ) constitute a
two-dimensional Markoff process. If only the DOS is
concerned, the two-dimensional Fokker-Planck equation
found by Halperin reduces to Eq. (4.25).

The method for extracting the DOS from the probabil-
ity distribution P is due to Frisch and Lloyd (1960) ' (al-
though inspired by Rice, 1944). Because of the clarifying
ideas, we outline their method. They considered a
simplified version of our problem (Fig. 5), with

dz +z2+A, =2U (x),
dx

where

U (x)= V(x),m

2m

f 2

(4.19)

(4.20)

2A detailed comparison between the results of Frisch and
Lloyd and Klauder's diagrammatic method is presented by
Klauder (1961).

Another method that treats nearly the same problem was
given earlier by Schmidt (1957).

4Recent studies on the dynamic properties of the 1D random
walk (Aslangul et al. , 1991; Bouchaud et a/. , 1991) use the re-
sult (4.51), which can be computed through other approaches
such as a Dyson-Schmidt technique (Ziman, 1990) and the repli-
ca method.
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Well Width

Superlattice

Well Height

Let us further reformulate the problem to a time variable
t as in Sec. IV.2. Rewriting the Schrodinger equation in
state space as in the theory of linear systems, with
g(t) ='P(x) and g(t) =%'(x), we have

V6(x- x )J

Frisch and Lloyd model

q'(t)= — I,+2UO g 5(t —r~) g(t) .
J= oo

(4.31)

FIG. 5. Schematic drawing of the random superlattice. In the
limit of zero barrier width and infinite barrier height, we get the
theoretical structure considered by Frisch and Lloyd (1960).

~e interpret 5(t —t )as. a hit at time tj. At each hit, the
particle coordinate is unchanged (continuity of 0'),

lim g(t +E)= lim g(tj —E),
c,~p c,—+0

(4.32)

V(x) = V g 5(x —
x~ )

J= 00

(4.26) but the particle momentum receives an increment pro-
portional to the displacement,

and co=(. . .,x „xo,xi, . . . ) a sequence of randomly
distributed x on an infinite line assuming a Poisson dis-
tribution. If n is the expected number of scatterers, Eq.
(4.26) describes a Gaussian potential when n ~oo and
V~0, while ri V remains finite, as already explained in
Sec. IV. Each sequence co is treated as a single point in
an infinite-dimensional configuration space Q, and the se-
quences ~ are the "random variable. "

For each co let E, (L,co) & E2(L,co) & . denote the ei-
genvalues of the Schrodinger equation with Hamiltonian
(4.2) and with (4.26) for a finite interval [O,L]. Define
then

lim [g(t~+E)—g(t~ —E)]=—2vog(tj. ) (4.33)

(4.34)

(tWt~) describing elliptical motion

g(t) = cos8(t),

[obtained by integrating Eq. (4.31) from tj —s to tJ+E for
small c,]. Between the hits, the process evolves as a linear
system

NL(E, co)
g(t) = A sin8(t) .

(4.35)

1=—[number of E (L, co) satisfying E (L, co) &E] .

(4.27)

The zeros of 4 are now determined by the g-axis cross-
ings. The e6'ect of the hits is to speed up the angular
motion 8(t), because

The intregrated DOS N(E) [Eq. (3.10)] equals

N(E)= lim NL(E, co) . (4.28)

2UO8'(t)= —&X,—,g 5(t t, ) . —
J oo

It can be proven that this limit exists and that it is in-
dependent of ~, and, consequently, that probability is not
involved in this limiting case.

From the Sturm-Liouville eigenvalue theorems (Morse
and Feshbach, 1978, p. 719), it follows that the number
of eigenstates equals the number of zeros vt (E,co) of the
wave function qi(x;E, co) in the interval [O,L] within a
possible error of +1 such that

N(E)= lim vL(E, co),
I.~ oo

(4.29)

Ul
v = — V)0. (4.30)

and this limit is independent both of probability and of
the boundary conditions %(0;E,co)=go and
4'(0;E,co)=go. The problem is thus reduced to finding
the average number of zeros per unit length of real solu-
tions of the Schrodinger equation. Finally, we introduce
the dimensionless quantity

Since we are only interested in the g-axis crossings, we
may treat the angular part separately. Accordingly, we
introduce the variable z =g/g so that
(a) Equations (4.32) and (4.34) become

limz(tj+E)= limz(tJ —s)—2UO .
c~p g~p

(4.36)

(b) Equation (4.34) becomes

z'(t) = —(z'+A, ) . (4.37)

In a Poisson process, the times of the hits occurring
after a certain time ~ are statistically independent of the
times of the hits occurring before ~. Hence the condi-
tional probability distribution of z(t, co), give all values
[z (t, co), —Oo & t & r], is the same as the conditional prob-
ability distribution of z(t, co) given only z(r, co). Conse-
quently, in view of Eq. (4.13), the random variables
z (t, co) constitute a Markov process. The probability dis-
tribution of z(t, co) is found by reasoning on a Poisson
process.

Assume that the probability distribution of z (t, co) has
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the density

P[z(t, co)»gI =f T(z, t)dz for all real g, (4.38)

(4.42) gives

T(z) = 2+Vp
N(E) —n f T(u)du

z2+A, -
(4.43)

where, of course, for all real t,

T(z, t) ~0,
(4.39)

f T(z, t)dz = 1,
and recall the characteristics of a Poisson process:

(a) P j tlie tliile llltel'val ( t, t + dt} Contallls llo
hit) = 1 n—dt +o ( dt),

(b) P[the time interval (t, t+dt) contains exactly 1

hit) =n.dt+o(dt)
(c) P[the time interval (t, t +dt) contains more than 1

hitI =0 (dt)
Then T(z, t)5z is the fraction of z points that lie in an

interval (z,z+5z) at time t. A continuity equation can
be derived by considering the z points that lie in

(z,z+5z) at time t+dt:
(a) Those which were in (z', z'+5z') at time t and re-

ceived no hit during (t, t +dt) (with probability 1 —n.dt).
These are easily found by Eq. (4.37) to yield

z'=z —dz =z+(z +A)dt, .

5z'=(dz'Idz)5z =(1+2z dt)5z .

(b) Those which were in (z",z"+5z") at time t and re-
ceived exactly one hit during (t, t+dt) (with probability
n dt). With Eq. (4.36) these yield

z"=z+2Up and 5z"=5z .

Apart from a negligible proportion that reaches
(z,z+5z) after being hit more than once during t+dt,
the conservation of z points requires

or, since the integral vanishes as z —++ Oo, it follows that

N(E)= lim z T(z) .
oo

(4.44)

2nuo z
+ (z +A, +2nuo)T(x)=0,~d T(z) d

dz z
(4.45)

which obeys Eq. (4.25) with D*=2nuo In t.he case of a
Gaussian process, higher orders than 2 need not be in-
cluded. On the other hand, if we consider only a 6rst or-
der in Uo, we easily obtain from Eq. (4.43)

T( )
N(E)

z +A. +271U p

But using the normalization condition (4.39) gives

N (E)= QA—+2nu,1

7T
p

so that, if A, » —2nuo, T(z) is not everywhere positive as
required by Eq. (4.39). This justifies the second-order ex-
pansion. Invoking Eq. (4.43), we find that Eq. (445) be-
comes

This result enables us to proceed with the solution of our
initial problem.

As explained above, the link between a Poisson and a
Gaussian process is the limiting case, where the number
of scatterers n~oo but their intensity Up approaches
zero, while the overall interaction nop remains Gnite.
Thus expanding T(z+2UO) in Eq. (4.41) to second order
in vp yields

T(z, t +dt)5z =(1—n dt)T(z', t)5z'+n dtT(z", t)5z" .

From this we find, after some manipulation,
where

+(t +2b)T(t)=a N(E),
dt

(4.46)

t =az,
aT(z t) a

(z +A, )T(z, t)+n [T(z+2uo, t) T(z, t)] . —
Bx Bz

(4.40)

(z +A)T(z)+n [T(z+2uo) —T(z))=0
z

(4.41)

This equation must be compared with (4.25).
Frisch and Lloyd showed that every solution of Eq.

(4.40), whatever the initial distribution T(z, O), tends to a
limiting density T(z) = lim, T(z, t). The stationary
density T(z) is the unique solution of

1/3
g 2

(E —n[Vf),
mD

J

2/3

D
—1/3

(4.47)

Since Eq. (4.47) is a linear first-order difFerential equa-
tion, an analytical solution is always possible, which is
easily found to be

or, by integrating,
2 +Up

(z +A, )T(z)+n f T(u)du =c,
Z

(4.42)

where c is the integration constant. This equation asserts
that the Aux of z points is constant, hence c equals this
Aux. The expected il-axis crossing (+=/=0 or z = oo)
rate N(E) equals the Aux at z = ~, but since this flux is
independent of z, we have that c =N(E). Rewriting Eq.

T(t)=a N(E)exp ——t —2bt
1 2

3

X f exp( —,'u +2bu)du, (4.48)

where the lower limit (t ~—~ } is needed to render finite
results for T(t) as t~ —~. Finally, the cumulative
DOS is found using the normalization (4.39) of T(z) a«
Eq. (4.47),
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aN(E)= f dz exp( —,'z
' —2bz)

will be taken as a reference to check the various other ap-
proximate methods.

X exp —,'u +2bu du (4.49)
E. Conclusion

(4.50)

By Fourier transforming and recalling the properties of a
probability distribution (4.39), Halperin (1965) derived a
more elegant form of Eq. (4.50) in terms of Airy func-
tions,

N(E) = 1 1

am [Ai{—2b)] +[Bi(—2b)]
(4.51)

This function is drawn in Fig. 6. The energy is lowered
by the average potential nV of the impurities. By refer-
ring the energy to this average, we can further neglect
the shift. From either Eq. (4.50) or Eq. (4.51), we may es-
tablish the asymptotic expressions

1 v 2b for E»0,

N(E)- exp( —
—,'~2b~ ~

) for E &&0 .
am

N(E)-
(4.52)

The first result is just the free-carrier cumulative DOS (in
one dimension). The second relation is a typical result of
a tailed distribution caused by random effects. The DOS
derived from the latter

(E) dN(E) 8E 16 ~%2/2 E3~2

(4.53)

After changing the variables (u =z t)—and evaluating a
Gaussian integral, we find that Eq. (4.49) becomes

P

N(E)= aV~ f du u '~ exp( —
—,', u —2bu )

p(E) =f dE'po(E')—1

~ (E E') +I— (4.54)

The problem of a particle in a one-dimensional random
potential has been discussed in detail because it eluci-
dates the solution method for random stochastical pro-
cesses. Since this problem is only a limiting case and is

simplified to one dimension, the complexity already in-
volved predicts that, for the realistic problem, only ap-
proximate models are feasible.

The same problem as that considered by Frisch and
Lloyd (1960) was also solved by Borland (1961). Since his
method is less physically inspired and his final expression
(involving the dilogarithmic function) is an approxima-
tion, we do not discuss his results, but merely mention
the agreement of his results with the numerical (Monte
Carlo) results of Lax and Philips (1958) [which was also
the reference of comparison in the work of Frisch and
Lloyd (1960)].

The reduction of the DOS to Eq. (4.50) or (4.51) is a
rather remarkable accomplishment. An extension of the
presented methods to more dimensions seems impossible
because there is no Markov property when the parameter
is d dimensional (with d ) 1) and there is no mathemati-
cal evidence to generalize Eq. (4.29). Nevertheless, there
are three-dimensional models involving disorder (or ran-
dom processes) which have been solved exactly (Lloyd,
1969). The Lloyd model is a simple, single-band, tight-
binding model in which the single-site energies are in-
dependent random variables having an identical
Lorentzian probability distribution of half-width I about
vanishing average value. The DOS is

1.2
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where p0{E) is the DOS in the periodic case (I =0). The
tails introduced by disorder are clearly not exponential.
However, since the Hamiltonian containing the random
elements is somewhat artifIcial, and the probability distri-
bution for selecting these elements is limited to a Lorentz
distribution, the resulting DOS of this model is of less in-
terest in heavily doped semiconductors.

V. THE 6ENERALIZEI3 SEMICLASSICAL MODEL

A. Introduction

0.0
0 2

Normalized energy b

0.0

FIG. 6. Both N(b) and p(b) with their respective positive b

asymptotes as a function of normalized energy
b =(A' /mD )'~'(E n~ V~ ). Notice that th—e number of carriers
in the tail (at T =0 K) equals N(0) =0.20096/a. The tails (neg-
ative b asymptotes) are shown in the inserted graph. The names
of the axes are omitted for clarity but are identical to those of
the larger graph.

A detailed description that rigorously combines both
many-body and statistical Auctuation effects must be
exceedingly complicated, if it exists. A theory (Serre,
Ghazali, and Hugon, 1981) that partially includes many-
body effects with statistical effects has been developed,
but this requires extensive numerical calculations and a
number of approximations. A totally different approach
would be the introduction of many-body effects into a
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Feynman path integral because, in the absence of many-
body efFects, an exact path-integral formula (8.5) exists.
However, it is known that the path-integral method is
not the best one to describe many-fermion systems. Al-
ternatively, one could try to generalize the replica
method (Sec. IX) to interacting systems.

The discouraging difticulties that arise in first-principle
models suggest approximate techniques. We should like
to demonstrate that a combination of the electron medi-
um and the statistical fluctuations can be formulated in a
semiclassical framework. Because band-tail effects as
well as many-body effects only significantly alter the DOS
at high doping concentrations, a semiclassical approach
(Davydov, 1976) looks highly suitable, covering the
high-density limit exactly (Sa-yakanit and Glyde, 1980).
The major advantages of the generalized semiclassical
DOS are its simple physical interpretation and the expli-
cit use of an arbitrary energy-versus-wave-vector rela-
tion, E (k), necessary to include many-body e8'ects and to
deal with a nonparabolic unperturbed DOS (such as the
DOS of InSb As, ). The expression for the DOS can
be written as a closed analytical formula. Moreover, the
semiclassical model is the only existing simple formula
that covers the whole energy range. The analyticity of
our approach makes it possible to approach DOS expres-
sions in different geometrical dimensions.

In materials science, one is mainly interested in estima-
tions of the expected band-gap narrowing. In order to
make quick estimations of the band tailing effect, an
analytical closed formula is presented. All numerical re-
sults are calculated for n-type GaAs.

B. The generalized semiclassical DOS

1. A semiclassical approach

Kane (1963), Bonch-Bruevich (1963,1965), Keldysh
and Proshko (1964), Bagaev et al. (1964—1965), and
Shlovskii and Efros (1984) have applied a semiclassical
method to the calculation of the DOS in heavily doped
semiconductors. Our approach generalizes their results
to different dimensions, interacting Fermi liquids, and ar-
bitrary initially unperturbed densities of state.

The semiclassical approach assumes basically one ap-
proximation: the classical description of the electron
wave packet. The potential Auctuations caused by
charged impurities are assumed to be smooth in the sense
that they change little over the electron wavelength. The
electron only "feels" the potential of the point where it is
located. Thus this approximation considers electrons
with energies sufIiciently higher than the averaged poten-
tial V,„ in Fig. 7 such that the actual potential V(r) can
be replaced by the smoothed, slowly varying potential
V,.(r). Let po(E) denote the DOS in the crystal not per-
turbed by impurities. The energy E is measured from the
bottom of the band in the noninteracting electron system,
which will be represented by the subscript n while the in-

iiE E
F

E

P (E)

av

fl /7 l~~-E,

V(r)

teracting electron system will be denoted by the subscript

From Fig. 7 and Kane (1963) and Schlovskii and Efros
(1984), we obtain a semiclassical expression for the DOS,

E —
po {0)

p(E)= f po(E —V)P(V)dV

=f po(v)P(E —v)dv, (5.1)
p (0)

where P ( V) is the distribution function for the potential
energy V(r) to be determined and where x =po '(y) is
the inverse DOS function or solution of y =po(x). This
notation is required for interacting electron systems,
where the DOS shifts down to lower energies due to
many-body interactions, Hence, po,. '(0) &0 in contrast to
po„'(0)=0, by definition as the reference energy. Intro-
ducing the definition of the convolution of two functions
g (t) and f (t) as

g(t)'f (t)= f f (t r)g(r)«, —

we observe that our generalized result can be written as

p(E)=po(E) &(po(E))*P(E),

where L9(E) denotes Heaviside's step function. At this
point, we note a formal resemblance to the exactly solv-
able Lloyd model (4.54), which clearly obeys
p(E)=po(E)*P(E) with

Figure 7 illustrates that in the semiclassical approach
all energies above V, (r) contribute to the DOS. The ac-
tual energy levels E; are discrete and their spacing in-
creases as the potential well narrows, which actually
occurs at lower energies. As the semiclassical approach
ignores this quantum-mechanical efFect, the semiclassical
DOS overestimates the number of electrons in the deep
tails, but gains accuracy for increasing energies and final-

DOS

FIG. 7. Sketch of the semiclassical method: all states with en-

ergy above the smoothed potential V, (r) are counted. This
summation of states within the shaded infinitesimal-energy strip
in coordinate space is equivalent to the shaded area (a convolu-
tion) of the right-hand-side plot.
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ly becomes exact in the high-density limit. For degen-
erate semiconductors, most of the physics will be includ-
ed if the electron can be regarded as classical. Energy
states deep under the unperturbed energy band surely do
need a quantum-mechanical description (see Secs.
VI —IX). Because these deep-lying energy states are not
properly taken into account in a semiclassical approach,
the model will describe only majority carriers (with Fer-
mi level above the unperturbed band edge) sufficiently
well.

Let us now assume that the energy-versus-wave-vector
relation is isotropic in k space: E(k)=E( k~)=E(k).
Using Eq. (3.16) for a difFerent geometrical dimension d,
po. kd(k) yields

ergy V(r, I r; I ) at r, caused by a configuration of X im-
purities at positions I r; I, can be written as a superposi-
tion,

V(r, Ir, ])= g U(r —r, ), (5.6)

(5.7)

where U (r) is an arbitrary well-behaved function, then an
exact cxpIcss1on fo1 thc plobab1llty d1stllbutlon function
P ( V) can be derived (see Appendix A), yielding

P(V)= f exp iVt+n fdR(e '"' "—1) dt .= 1

k
Po~ k3 2E J

( k )
(k)=

k
PO; k2

1
PO;kl(k)

(5.2a)

(5.2b)

(5.2c)

The superposition (5.6) implies a superposition of the
charge densities, indicating that the Poisson equation
must be linear, which generally is not the case in an elec-
tron medium. As long as the potential fluctuations are
small, linear-response theory (Fetter and Walecka, 1971;
Mahan, 1986) applies, providing a general expression for'
the potential induced by an impurity charge Ze5(r) in an
electron medium:

where E'(k) denotes the k derivative of E(k). Observe
that d . Uq

U (r) —Z q eiq r.
(2~)d E(q)

(5.8)

po, k(k) =po(E(k) ) (5.3)

A replacement of the independent variable V by
E —E(k) in Eq. (5.1) yields

p(E) =f pO(E (k) )P(E —E(k) )E'(k)dk, (5.4)
0

where U~=e /eq is the Fourier transform of the bare
Coulomb potential and E(q) denotes the static dielectric
function. With an explicit expression for E (k),

since the lowest energy po '(0) corresponds to k =0. Ap-

plying Eqs. (5.2) and (5.3) finally gives pd(E) in different
d1mens1ons,

E(k) = " +frX(k, E),
2m

(5.9)

p3(E)= f k P(E —E(k))dk, (5.5a)

p2(E) = f kP(E —E(k) )dk,
27T 0

(5.5b)

p, (E)=—f P(E —E(k))dk .
0

(5.5c)

2. The distribution function P( V) of the potential
energy V in an interacting Fermi system

From these relations we conclude that if the distribution
function P(V) and the E(k) relation of electrons in an
unperturbed crystal are known, the DOS for majority
carriers can be calculated.

where iit'X(k, E) denotes the system's self-energy due to
many-body interactions, all quantities needed to calculate
Eq. (5.5) are defined. In this general form, as both the
self-energy iriX(k, E) and the dielectric function E(q) de-
pend on the number of electrons and thus on p(E), Eqs.
(5.5) and (5.7) —(5.9) represent a coupled system of equa-
tions.

The assumption of linearity is, of course, an approxi-
mation, but a very good one for heavily doped but non-
compensated semiconductors, and it becomes exact in
the high-density limit. Thus the proposed model based
on the semiclassical approach and the requirement of
linearity exactly describes band-tailing and many-body
interactions in the high-density limit. In the following,
we shall illustrate the proposed model for a 3D nonin-
teracting and interacting system. A 2D noninteracting
system is calculated in Van Mieghem et al. (1991).

An analytical, exact expression for P ( V) exists only on
the condition that the potential at a certain point r can
be written as a superposition of the influences of all im-
purities in a system with volume V0. For, if the probabil-
ity p(r, ) having an impurity at an arbitrary point r; is
constant and, hence, equals V0

' and if the potential en-

~Compensated heavily doped semiconductors su6'er from large
potential Auctuations (Shklovskii and Efros, 1984), which inhib-
it linearization.
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C. A noninteracting Fermi system
in three dimensions: the Kane DOS

As an alternative to Eq. (5.8) and in order to follow the
original derivation of Kane (1963), the Coulomb poten-
tial can be retained from the Poisson equation,

b, V(r)=- ey(r)

The charge density equals

y(r)=e {n,i(EF)—n,i[EF+V(r))+XD(r)],

where n, i(EF ) denotes the average electron concentration
corresponding to a Fermi level EF, n„[EF+V(r)] the
electron concentration at r, and XD(r) the density of
fixed impurity charges. The permittivity c has been as-
sumed constant. As shown above, the classical descrip-
tion of the electron requires

~
V(r)~ &&EF such that the

Poisson's equation can be linearized with

dn, i [EF+ V( r) ]
n„[EF+ V(r)] =n, i(EF )+ V(r) .

F V=O

known, yielding ND(r) =+~ iiti(r —r;, T). In the follow-

ing, these lattice vibrations are neglected. When we in-
vestigate many-body e6'ects, only the zero-temperature
case is treated because temperature e6'ects complicate
both ion-electron interactions (phonons) and electron-
electron interactions considerably.

Despite the fact that all quantities in Eq. (5.1) are cal-
culated, complications due to the divergence of Eq. (5.7)
using (5.14) arise. Indeed, all semi-invariants [Eq. (A8)]
of order m )2 diverge, due to the 1/r dependence of the
potential (5.14). However, Kane argued that one should
use an 1/(r + ro ) dependence (for which all semi-
invariants rapidly converge) because, first, an electron
can never approach the impurity nucleus arbitrarily close
(r~0) and, second, the semiclassical theory is not valid
for deep energy tails. The inhuence range of the poten-
tial should be limited to a certain ro. Thus the semiclas-
sical Kane formula (5.15) is limited by divergences to the
first two semi-invariants. In view of Eq. (A7), this means
that Eq. (5.15) can only be used in the high-density limit.
The Kane expression, which is clearly a high-density-
limit asymptotic form [see also Eq. (8.49)] reads

yielding

e XD(r)
b, V(r)=ti V(r)—

where a denotes an inverse screening length,

(5.10)

3/2 E
~zz 3 fm-'"A 3.O-

Xexp
'2

e2 dn, i(EF)
K

C EF iV=0
(5.1 1)

where

(5.15)

Worked out further,

2 e dfFD(E EF)—
sc = p(E) dE,—oo

(5.12)

V(r) = —fK(r —r')Xt, (r')dr' (5.13)

where fFD(x)=[1+exp(x/k&T)] ' is the Fermi-Dirac
distribution function. The solution of Eq. (5.10) is writ-
ten (Economou, 1979, Sec. 1.2)

e
o „= Qn /8m. ~„,

E

~ 3/2e2
&E sech

2i/2~ fi 3k~ Te
Fan

2k~ T

(5.16)

1/2

It can also be written, as suggested by Kane, in terms of a

function y (x) (Fig. 8),

with

2

IC( r )= exp( ar ) . —
4mcr

(5.14)
and

(2m)'" — „, Ep(E)= (~2o„)' y2ir'A'3 " v'2o „
(5.17)

A configuration of N impurities (single positive charges
in n ty pe materia-l) at positions {r; ], for which
KD(r)=+~, 5(r—r, ), causes a potential V(r, {r;] )
=g+,IC(r —r, ) which is of the form (5.6). Although
Eq. (5.12) reveals that a has to be solved self-consistently,
this self-consistent procedure is shown (Van Mieghem
et al. 1991) to be needlessly sophisticated compared to
the approximations already made. Due to lattice vibra-
tions (for T )0 K), the impurity positions are perturbed
from their fixed zero-temperature equilibrium positions
{r,]. This introduces a supplementary temperature
dependence of the tailed DOS, which can be included in
Eq. (5.13) if the position distribution function io(r, T) is

y(x)= —f &x —/exp( —g )dg .
v'7r

(5.18a)

This function can be written in terms of the parabolic
cylinder function D, ,&2(z), which offers useful

To the best of the author's knowledge, there exists no
rigorous calculation of the temperature-dependent band-gap-
narrowing problem.
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3.0—

2.5—

2.0—

o
V
N

1.5—

(5.19)

change effects because they dominate in the high-density
limit. We neglect the inhuence of correlation and de-
scribe the exchange e6'ect by the simple Hartree model at
T =0 K (Ashcroft and Mermin, 1981,p. 334),

iriX(k) = — kFF2' E

1.0—

1+1—x
1

1+x
(5.20)

0.0
2 4

Normalized energy x

Further, we choose the Thomas-Fermi dielectric function
(Mahan, 1986),

FIG. 8. The Kane function y(x) and &x. The asymptotic
properties of y (x) are

Ke(q)=1+
g

(5.21)

and

y(x)-&x, x »0,
y(x)-exp( —x ), x «0,

y (0)= —I ( —')=0.345 683 6,1

2&+ 4

0 1F(0)=f y(x)dx = —1(—')=0. 1704609 .
OO l2&~

The axis annotation of the inserted graph is identical to that of
the large plot.

yielding for Eq. (5.8) the screened potential (5.14). At
this point, we have the same problem as for a nonin-
teracting system, namely, that Eq. (5.7) diverges for the
screened Coulomb potential (5.11) because all semi-
invariants (A8) of order higher than 2 diverge. Restrict-
ing ourselves to the high-density limit, however, we find
that P( V) reduces to a Gaussian (A7) which requires
only the knowledge of ~. We still have to determine the
interacting inverse screening length ~; (at T=O K). If
the E(k) relation is isotropic, the number of carriers at
zero temperature equals

mathematical relations (Abramowitz, 1968 and Sec.
VIII.D),

1 z
I (1/2+ ) 4

2

X exp — —zs s ds
OO a —1/2

0 2

1
n ] kF o

3

3~2
(5.22)

g2 e2
EF= kF — kF .

4m c

Solving this equation for kF results in

Plugging the Hartree 30 expression for the exchange
(5.19) into Eq. (5.9), we find, since F(1)=0.5,

2

y(x)=2 '"exp — D „,( —&2x) . (5.18b)

1 1
2 1/2

25
m F (5.23)

Finally, we should like to mention that Eq. (5.15) can
also be obtained by Green's-function diagram techniques
(Efros, 1971).

Substituting Eq. (5.23) into (5.22) and using (5.12) not
self-consistently, we find the zero-temperature inverse
screening length for the interacting system,

D. The interacting Fermi liquid in three
dimensions

2kF
K

Qm.a~k, —1
(5.24)

The calculation will be demonstrated for the simplest
expression of the self-energy. We confine ourselves to ex-

Finally, we can compute (5.5a) combining Eqs. (A7)
and (5.9) with (5.19) as

3

p3;(E)= 2 I dx x exp —— —Q~; l8mn kF [k~aiix ——F(x)]1 E —

2 4
rr'&2+a. , 2 oi

(5.25)

Rev. Mod. Phys. , Yol. 64, No. 3, July 1992



Piet Van Mieghem: Band tails in heavily doped semiconductors 769

where the root mean square of the potential Auctuation
energy in the interacting system o.3; reads

2
o.; = +n /8m. a; .

Although it looks impressive, Eq. (5.25) is actually a rela-
tively simple, closed analytical expression that includes
many-body interactions through the function F(x) [Eq.
(5.20)] and statistical effects through Eq. (A7). A com-
parison of Eq. (5.25) with the noninteracting DOS and
free-electron DOS, drawn in Fig. 9, shows the supple-
mentary downward Fermi-level shift due to the Hartree-
Fock electron exchange energy, bE,„=(3e /16m c, )kz.
In addition to the low-energy band tail, a strong nonpara-
bolic behavior around the Fermi level is observed. At
high energies, all DOS functions tend to the free-electron
DOS.

E. Discussion

The derivation above shows the importance of the in-
verse screening length as a link between the electron
medium and the impurity that introduces the potential
Auctuation. One could ask if there exist methodologies
that rigorously describe both many-body interactions and
statistical effects. Apart from the semiclassical approach,
Serre et al. (1981) suggested a numerical approach.
Their method consists in calculating the DOS in a
suKciently large number of subvolumes, each containing
a particular impurity concentration N, yielding p&(E).
Secondly, a distribution function P (N) for the probabili-
ty of having a local concentration X is derived, given the
mean value N,„of N. By averaging the sets of p&(E)
with P(N), one finds the average DOS. Serre et al.
(1981) assumed a Poisson distribution for P(N) and in-
cluded only electron-impurity contributions. Since this
method is actually a straightforward numerical execution

of the definition "averaging over impurity Quctuations, "
no special physical understanding is gained. Moreover,
the calculated band tail strongly depends on the assumed
probability distribution. As far as we know, there does
not exist a more accurate analytical description including
many-body effects than the semiclassical model.

The semiclassical approach yields a simple expression
for the estimation of the equivalent band-gap narrowing
due to band tailing in noninteracting systems (Van
Mieghem et al. , 1991):

—f dt J po(u)du exp( r) . —(5.26)
Ek +m'

Equation (5.26) is calculated for GaAs in 3D and shown
in Fig. 10. Values of band-gap narrowing in the litera-
ture (Abram, Rees, and Wilson, 1978) indicate that the
maximum Fermi-level shift due to band tailing (at T =0
K) equals approximately one seventh of the band-gap
narrowing due to many-body interactions. Usually the
band-tail effect is neglected because its impact is smaller
than that of band-gap narrowing. However, the majority
carrier band tailing in heavily doped devices (Van
Mieghem et al. , 1992) is too significant to neglect. In ad-

dition, Arnaudov et al. (1977) have demonstrated the
necessity of considering band tailing in the analysis of the
Burstein-Moss effect. In GaAs heavily doped with tellu-

rium, they found experimentally an effective narrowing
of the band gap nicely agreeing with Eq. (5.26) and due to
Gaussian impurity fluctuations. In the high-density limit
where the theory is valid, band-gap narrowing due to
band tailing barely depends on temperature, a feature
that seems to characterize the total energy shift due to
heavy-doping eff'ects (Abram et al. , 1978). Estimations of
the band-tailing effect in InSb„As, „, which exhibits a
strong nonparabolicity, are discussed in Dobbelaere
et al. (1991).

8x)0 p,„(E);free eieciron

p,„(E):nonint t

-.--. p, ;(E): interac

n = 5&&I0 cmls -3

T =OK

E
V
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Q
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&I

-0. 1 0.0
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1016
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10is
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FIG. 9. A comparison between the DOS and the corresponding
Fermi levels for the unperturbed [p3Q(E): free electron], the
noninteracting [p3„(E):Kane DOS] and the interacting tp~;(E)]
electron systems for n =5 X 10' cm in GaAs. The Hartree
exchange shift equals AE,„=13.8 meV and agrees with

EF3n —E3Ft.

Doping concentration n (cm )
-3

FIG. 10. The AEF3 in GaAs vs doping concentration for
diA'erent temperatures. It should be stressed that AEF3 is only
valid at the high-density region (n3) az j, as clearly demon-
strated by extrapolations to low-doping regions.
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Vl. THE WAVE-MECHANlCAL MODEL
OF HALPERIN AND LAX

The inability of the previous semiclassical method to
describe deep tail states forces us to use a quanturn-
mechanical picture. The most famous model, based on
quantum-mechanical principles, was given by Halperin
and Lax (1966). Since then, a variety of other models
have been derived, which di6'er more in mathematical in-
genuity than in physical relevance.

A. Principle of the minimum counting method

The crucial assumption in this model is the following
ansatz: At any given energy E in the low-energy tail a par-
ticular shape of the potential fluctuation is assumed that is
most likely (or least unlikely) to produce a bound state of
the required energy (and consequently one particular
shape for the wave function); large deviations from this
shape are very unlikely to occur. Thus whenever an eigen-
state

lj ) has energy E~ =E, we find

4 (x)=f(x—x ), (6.1)

where the one-electron Hamiltonian is H=T+ V(x)
such that Eq. (6.2) can be written as the sum of two
terms:

E(y) =8+ V, (y), (6.3)

where f is a fixed function (for each given E) and x is a
position variable that may be anywhere in the system and
will be di6'erent for each eigenstate. The reasoning
behind this assumption is the following: potential Auc-
tuations much wider in space than the optimal size are
unlikely, because it is more improbable to have a poten-
tial Auctuation of given magnitude over a large region
than over a small one. Potential Auctuations much nar™
rower than the ideal one become unlikely because it is
then dificult to overcome the large kinetic energy result-
ing from the localization of the wave function.

For the present, let us assume that the function f is
known. [It is no restriction to choose f to be real and
properly normalized and to require that f reach its max-
imum when its argument is zero. ] If we use the function
f(x—y), with y a free parameter, in a variational esti-
mate of the energy E., we And

(6.2)

where E- denotes the true energy of the local low-energy
eigenstate. Consequently the best estimate of E. is ob-
tained by choosing y so that E(y) is a local minimum.
Even though E(y)l;„may be considerably greater than

Ej, in general, we expect E(y) to be a good approxima-
tion to E if the assumption (6.1) holds.

This physical reasoning establishes a close correspon-
dence between local minima in E (y) and the true energy
eigenstates in the vicinity of E; hence the number of these
eigenstates with energy E is approximately equal to the
number of local minima in E (y) with value E, or

p(E) =nf (E), (6.6)

where nf(E)dE is the number of local minima in E(y)
per unit volume [or equivalently, as shown by Halperin
and Lax, the number of points where VE(y) =0, in short
notation t VE(y ) =0] ] such that at the minimum
E ~ E(y) ~ E +dE.

Due to the variational principle and regardless of the
choice of f, the energies of all the eigenstates in the low-
energy tail are overestimated, such that nf(E) underesti-
mates the true DOS p(E). Clearly, the best choice of f,
for any given energy E, is that which maximizes nf (E)
Now, Eq. (6.6) may be written as

I vE(,y,. ).=OI

nf(E)= f d) x 5() —)()5(E —E(y))) .

0 0 J

(6.7)

When the indicated average over all potential
configurations has been taken, the quantity between
( . ) becomes independent of y, and the y integration
merely yields a factor of Vo. Since VE(y)=VV, (y), we

may write

I v v, (y,. ) =pI

tential V(x) in a region about x=y (see Fig. 2). When
we vary y throughout the system, V, (y) will fiuctuate
about the average potential V„ofthe system and at vari-
ous places in the crystal V, (y) will exhibit an unusually

large negative Auctuation. These places correspond to
regions of very low V(x), and hence to places where we

expect to find a low-energy eigenstate ip (x). Since a
variational estimate of the ground-state energy of a sys-
tem always overestimates this energy, we expect that in a
region of negative potential Auctuation

E(y) )E.

where nf(E)= 5(E —E(y)) (6.8)

g 2+2
g= —J f (x y) f (x—y)d x, —

2m

V, (y)= ff(x y) V(x)d x . —

(6.4)

(6.5)

The kinetic energy 8 is independent of the choice of y be-
cause the operator T is translatio nally invariant

(V„=V„+, for each constant vector z). On the other
hand, the potential energy V, (y) is an average of the po-

Q change of the variable y to the variable V'V, (y), ac-
cording to the transformation properties of the Dirac del-
ta function, gives

nf(E)=(5(E —8—V, (y))5(VV, (y))ldetVVV, (y)l ),
(6.9)

where ldetVVV, (y)l) arises as the Jacobian of the trans-
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formation. In what follows, the absolute values will be
dropped, since almost all the critical points y have posi-
tive second derivatives; the probability of having another
kind of extremum close to a local minimum is quite negli-
gible in the low-energy region.

Notice that Eq. (6.9) may also be interpreted as

nf(E)=P(E —8).p(O~E 8) y—(E —8,0), (6.10)

where P(A, ) is the probability density for V, (y) to take on
the value I, at an arbitrary point y; p (A~A, ) is the condi-
tional probability density for V V, (y } to take on the value
A when it is specified that V, (y)=A, ; and y(A, ,A) is the
conditional expectation value of detVVV, (y) when it is
specified that both V, (y)=A, and VV, (y)=A. A crude
estimate of p'=p(O~E —8) y(E —8,0) is L, where L is
the average distance between local minima of V, and
linked to a characteristic correlation range for the
smoothed potential V, . In fact, p' is somewhat larger
than this, essentially because it is more likely for V, (y) to
have an unusually large negative excursion if y is close to
a local minimum than if it is far from the nearest local

I

V(x)= f v&(x z—)nb(z)dz, (6.11)

where b denotes the type of impurity, U&(x —z) is the po-
tential at x resulting from a b-type impurity at z, and
nb(z) is the density of impurities at point z. Since the
impurity positions are usually not known, nb(z) is re-
placed by its average n. Neglecting the explicit depen-
dence on impurity type, the autocorrelation functions
( V(x)V(x')) and ( V, (y)V, (y') ) are then defined as

minimum. Nonetheless, p' is a relatively slowly varying
function of the wave function f and energy E. In con-
trast, P is a rapidly varying function of E in the low-
energy tail and will be quite sensitive to the choice of f,
since at sufBciently high doping concentration the ran-
dom variable V, (y) obeys Gaussian statistics, which con-
stitutes an exponential behavior of its arguments. Thus,
in practice, maximizing nf(E) with respect to f is
equivalent to maximizing P, and the rapid variation of
the DOS in the tail will be dominated by P.

In order to proceed further, we must characterize the
potential V(x). Generally, V(x) is the sum of the indivi-
dual impurity potentials,

( V(x) V(x') ) = W(x —x') =n f U (x—z)U(x' —z)dz (6.12)

( V, (y)V, (y') =G(y —y')= ff (x—y)f (x' —y')W(x —x')dxdx' . (6.13)

The principles of Halperin and I.ax's method have been
outlined, and in the next section we confine ourselves to
the important case of the high-density limit, for which an
analytic form of p(E) can be derived.

B. The high-density limit

From Eq. (6.5) and the assumed properties of f, one
deduces that the impurities that contribute heavily to
V, (y) are those which fall in a sphere about y whose ra-
dius is roughly the width of the wave function f. When
the impurity concentration is high enough that there are
many impurities in this region, the central-limit theorem
indicates that Gaussian statistics apply (see Appendix A).
The statistical properties of V, (y) in the Gaussian case
are completely determined by the autocorrelation func-
tion ( V, (y) V, (y')), if we take ( V, (y) }= V,„=O (Sec.
IV.C},

because G is an even function and hence VG(0) =0. But
since Gaussian variables (of zero mean) are completely
described by their second moments, uncorrelated vari-
ables [such as V, (y) and V'V, (y)] are statistically in-

dependent. Thus the conditional distribution p(A~A, ) is
independent of A, and reduces to the ordinary probability
distribution of VV, (y).

The covariances of the derivatives VV, (y) among
themselves are

( V' V, (y)V V, (y) ) =VrV„G(y —y') lr=r = —VVG(o)

(6.16)
and the coordinate axes can always be chosen so as to di-
agonalize the matrix of second derivatives of G (i.e., the
Hessian) with

diag[ V V G (0) ]=dlag[CT i, CTp, CT3] (6.17)

and consequently the three components of VV, (y) are
uncoupled or uncorrelated, and p(A~A, ) is just the prod-
uct of three Gaussians,

P(A, )=
&2n.o.exp

2g 2

with variance

o =( V, (y) ) =G(0) .

In order to determine p (A~A, ), we notice that

( V, (y) V V, (y) }=V'„G (y —y') ~„=„=0

(6.14)

(6.15) Xexp
A)

&2o,

A3

&2o.,

p (Aik. ) = (2')3~ o,o 2cr3

2

2

A2

&Zcr,

(6.18)

Rev. Mod. Phys. , Yol. 64, No. 3, July 1992



772 Piet Van Mieghem: Band tails in heavily doped semiconductors

Finally, y(A, , A) must be determined. Since the deriva-
tion is rather cumbersome and not very important, we
merely give the exact result and refer the reader for the
details to Halperin and Lax (1966):

2
CT )0 203 gg(E —8, 0)= —(E —8) 1 —3

g 3 E —8

2

(6.19)

(8 E)—
Xexp

20
(6.20)

while the one-dimensional expression can be derived
analogously,

0) (8 E)—
nf )(E)=(8 E)— exp

(2~)o 20
(6.21)

As discussed above, the true DOS is best approximated
by choosing f to maximize nf(E). Since the pre-
exponential factor varies slowly with respect to f, we re-
strict the maximization of nf(E) to the minimization of
the argument of the exponential, yielding minf(l ) where

2
E—ff (x)Tf (x)d x

ff (x)f (x')W(x —x')dxdx'

In order to make this expression homogeneous in f, we

multiply E by the normalization integral ff(x) dx= 1,
to obtain

ff(x)[Ef(x)—Tf(x)]d x
I =

ff (x)f (x')W(x —x')dxdx'
(6.23)

It is now easily verified that putting f (x)=ag(x) does
not alter I for any arbitrary constant 0.. Hence I may
be minimized by fixing the denominator at an arbitrary
value, say u, while minimizing the numerator,

Combining Eqs. (6.14), (6.18), and (6.19), with (6.10), we
have

2
+1+2+3

nf3(E) = (8 E)—
(2') cr

which is clearly minimal with respect to f, if

Ef (x)—Tf(x)+p f(x)ff (x') W(x —x')dx'=0 .

nf(E) = 3 (E)exp[ B(E—)], (6.26)

where B (E)=I;„.Furthermore, the kinetic energy 8 of
an eigenstate increases as the well depth increases or the
ratio of 8 to the total energy E, 8/E, decreases monoton-
ically for energies deeper in the tail; hence
I /E =(8 E) /E —decreases monotonically as
E~—oo for any fixed f. Now, let f; be the best f at en-

ergy E . If E2 &E„then B (Ez) =I (f2,Ez) ~ I (f„E2)
and thus

B(E,) 1(f,,E, )

E2 E2

Combined with the previous result for any fixed f,
I (f„E2)/Ez ~ I (f,E&)/E„ this gives

I (f„E ) l(f, ,E, ) B(E, )

E2
2 1 1

which means that B(E)/E decreases monotonically as
E~—~. Consequently the DOS falls off less rapidly
than a Gaussian, illustrating the failure of the semiclassi-
cal approach when E~—oo.

C. A comparison of the method
with an exact result

As discussed in Sec. IV, the DOS of a particle in a
"white-Gaussian-noise" potential in one dimension can
be calculated exactly. In order to test the Halperin-Lax
theory, we take [see Eq. (4.3)]

(6.25)

Condition (6.25) looks like the famous self-consistent
Hartree equation; the only difference is that E is specified
and that p is considered as the eigenvalue to be found.
Although it is physically obvious that there exists a
minimum value for Eq. (6.22), it has not yet been proved
that the solution f of Eq. (6.25) is unique.

Despite the lack of an analytical expression for f, we
are able to represent the DOS as [see Eqs. (6.21) and
(6.22)]

I, = ff(x)[Ef(x)—T f(x)]d'x

I2= ff (x)f (x')W(x —x')dxdx'=a .

( V(x)V(x')) = W(x x')= ,'D5(x——x') .—

Equation (6.25) reads

(6.27)

Introducing the Lagrange multiplier p, we have to mini-
mize the functional F=I, +p(I2 —a) or

1 3f'(x) pDf (x)=Ef—(x—),
2m 2

(6.28)

where f (x) is subjected to the following boundary condi-
tions:

x E x —T x

+IJ, f(x)ff (x')W(x —x')dx' d x —ap,

f(x)=f'(x)=0 for x~~,
f'(0) =0,

f f(x) dx=l .

(6.29)
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The solution can be expressed in analytical form,

f ( x )=v'P/2 sechPx, (6.30)

The differential equation (6.25) can only be solved nu-
merically. By dimensional arguments and Eq. (6.26),
nf(E) must have the form

where

P=+ 2mE—/I

(6.31)

(6.32)

E K
n (E)= a (v)expf g2

where

E2
b(v) (6.39)

In order to find the DOS (6.21), we need to calculate
three parameters:

A K

2&l
(6.40)

o =& V, (y) &=/ I f (x)dx =
'2

=& v(y)'&=g
8x 15

(6.33)

zA'8= — I f (x)f'(x)dx =

(6.34)

(6.35)

After putting these expressions into Eq. (6.21), we obtain

n &(E)= — exp — +A /2m E1 SE 16
v'S ~a 3D

(6.36)

D. The DOS in heavily doped semiconductors

As shown in Sec. V, the impurity potential in heavily
doped material is well described by a screened Coulomb
potential (5.24): v(x —z)=K(x —z). The autocorrela-
tion function then reads

& V(x) V(') &=a(x—')=pe .~.— '~

where
2

2K e
g =n =o'„.

K 47TE,

The use of a screened Coulomb potential is justified in

weakly compensated materials. If the compensation ra-
tio increases, the superposition of K(r) functions is not
valid and we enter the region of "nonlinear" screening.

(6.38)

7For compensated materials, the fluctuations of the impurity
density are no longer small compared to the Fermi level. Hence
the Thomas-Fermi approximation does not apply. The result-

ing Poisson equation is clearly nonlinear (see Sec. V).

This result (6.36) differs only by a factor v'5 from the ex-
act asymptotic form (4.53), which shows a remarkably
good agreement. By applying a sophisticated mathemati-
cal technique, based on functional integration, Zittartz
and Langer (1966) showed that their method reproduces
the exact asymptotic result in the case of a "white-
Gaussian-noise" potential in one dimension. They
demonstrate that the shape of the wave function itself
must change with local changes in the shape of the po-
tential Auctuation if the pre-exponential factor is to be
determined exactly.

v=( E)/E—,)0 (6.41)

Vll. THE OPTIMAL-FLUCTUATION METHOD

The interesting feature of the optimal-Auctuation
method is its ability to estimate the range of applicability
of Gaussian statistics and to yield results deep in the
low-energy tail where Gaussian statistics are valid. As a
drawback, the optimal-fIuctuation method does not per-
mit the evaluation of the pre-exponential factor in the
DOS, although it suffices to determine the leading term
in the exponential, i.e., 1n[p(E)/p(0)] or E /2gb(v) in

Eq. (6.39). In practice, however, just this quantity is
measured.

A. Outline of the method

The idea of the method, which is closely related to that
of Halperin and Lax, is as foHows. The characteristic
size of the wave function is supposed to greatly exceed
the average separation between impurities in a Auctua-
tion. Quantum-mechanical averaging then smears out
the discrete impurity charge, and the fluctuation varies as
a smooth function of coordinates z(r), which represents
the deviation of the impurity concentration n(r) from its
average value n. The determination of the DOS requires

and a (v) and b (v) are dimensionless functions.
The results [e.g., a(v) and b (v)] are given in table form

in Halperin and Lax (1966) and are therefore less con-
venient than analytic forms. It is interesting to note that
d logb (v)/d log(v) varies smoothly from —,

' to 2 as v in-

creases. The validity regions for p(E) are also discussed
and various inequalities are given, but the main con-
clusions is that, deep enough in the tail, the use of
minimum counting methods should be quite valid. On
the other hand, if E is too far into the low-energy tail,
Gaussian statistics are certainly not valid and Eq. (6.39)
will be incorrect. This complicates calculations substan-
tially.

Analytical approximate expressions for a (v) and b (v)
are proposed by Chaiyasith, Kokpol, and Sa-yakanit
(1983). They have improved the method of Eymard and
Duraffourg (1973) by choosing a more appropriate trial
wave function in the potential fluctuation, which optim-
izes b (v).
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a summation over the contributions of all impurity
configurations that contain an electron state of energy E.
In the low-energy tail, these configurations have vanish-
ingly small probabilities, and the sum is dominated by
the most probable configuration. Let a probability of a
fiuctuation z(r) be written as exp( —Q[z j ). If zz is the
most probable fluctuation among those which contribute
to energy level E, then we can expect that, as E increases,
the DOS will fall off as exp( —Q[zz j ). In seeking zz, it
is assumed sufficient to consider only those fluctuations
in which E is the lowest energy level, since the probabili-
ty of a fluctuation in which this level corresponds to an
excited state is certainly lower. In what follows, we con-
sider only uncorrelated impurity distributions. Ideas
concerning correlated impurity distributions can be
found in the work of Efros (Schlovskii and Efros, 1984,
part 2).

B. The fundamental equations

P!
N!(P —N)!

The entropy in the volume 6Vo is given by

(7.1)

In order to find the probability of a fiuctuation z(r),
we consider a volume element 6Vo small enough that we

may regard the impurity concentration within AVo as
constant, but still containing a large number of impuri-
ties, N=n(r). b, Vo»1. To count the number of states,
we assume that the impurities can be located only at the
lattice sites, whose concentration p is large, p »n(r).
The number of sites in the volume, P =phVo, can ac-
commodate N impurities in I zv di6'erent ways, where

tion of the particle number, I v d r z(r) =0, we obtain
0

f d r z(r)= —f d r z(r) .
V0

—V V

The entropy of such a fluctuation is

S = f d r o.(r)+ f d r o(r) .

(7.6)

(7.7)

Since we have measured z(r) «n in the volume Vo
—V,

we can expand o(r)=f [n(r)] as f [n(r)]
=f[n+z(r)]=f [n]+f'[n].z(r), so that Eq. (7.7) be-

S=f d r(n+z(r))ln +(Vo —V)n ln
V n+z(r) n

+f'[n] f d rz(r) .
0

(7.8)

S —S,„=f d r [n +z(r)]ln +z(r) &0 .
V n+z r

(7.9)

If z(r) decreases fast enough so that the integral (7.9)
converges, the integration can be extended to infinity.
The probability that some part of the volume will exhibit
a Auctuation z (r) is given by exp( —Q [z j ), where

Q[z j = —f d r [n +z(r)]ln +z(r)n+z(r) (7.10)

The ground-state energy Ao[z j of an electron at r with a
potential energy V(r, [z j ) is determined by the
Schrodinger equation

Transforming Eq. (7.8) with (7.6), we obtain the addition-
al entropy, compared to that of a uniform. impurity dis-
tribution S,„=Vo ln(pe/n),

S~v, =in(i zv, ) (7.2)

Sav =P lnP N lnN (P——N)ln(P —N)—
0

=N lnP N lnN+(P N—)IN/P+o(—N/P) j

(7.3)

The entropy density is defined by

Invoking Stirling's asymptotic formula for large x,
lnx! =x lnx —x, and the fact that P &&N, we find

P ql+ V(r, [z j )0'=XOIz j 4 .
2&l

Assuming linear screening, as in Sec. V, we obtain with
Eq. (5.13)

(7.11)

V(r, [z j ) = —fK(r —r')z(r')dr' . (7.12)

The optimum fiuctuation must minimize Q [z j, subject to
the condition A,OIzj = E. Introducin—g the Lagrange
multiplier p, we must minimiz the functional
F[zj=Q[zj+p(i [zoj+E). Varying Q[z] and Ao [in
Eq. (7.11)]we obtain, after a straightforward calculation,

SEV0 peo (r) —= =n (r)ln
b Vo n(r)

5QIz] = f d r ln 5z(r),

5~,[.j= fd" ~ql' '['j 5 (.),
(7.13)

Finally, the total entropy of the crystal volume is given
by and since 5F =5Q [z j +p5AoI z j =0, we finally obtain

S=f d ro.(r) .
V0

(7.5) ln —p f d r'l'(rIl')l K(r —r')=0, (7.14)

Let us find the entropy of a fluctuation z (r) in a volume
V which constitutes a minor fraction of Vo, while in the
rest of the volume one has z (r) «n. From the conserva-

or, rewritten,

z (r) = n (er"—1) (7.15)
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where Z= 7'Z 1 (7.23)

( )
p'e d 3 I

+(r'}I'
4n.e Ir —r'I

(7.16)

Together with Eq. (7.11), Eq. (7.14) determines the op-
timal fiuctuation z*(r). The leading term in the loga-
rithm of the DOS then reads

and the characteristic length of the exponential decay of
z(r) in Eq. (7.16) is small compared to the electron wave-
length A, in the ground state. Since the ground-state ener-

gy must equal E, we have

= —n[z ].p(E)
p(0)

E=Z Ep,
(7.17) where

(7.24)

C. The high-density limit: Gaussian statistics

The assumption of Gaussian statistics implies (see Ap-
pendix A) that z(r) &&n and n »1. In this case, Eq.
(7.10) reduces to

me4Eo= (the ground-state of the H atom),
2A e

(7.25)

A, =—the ground-state wavelength of the H atom).
Z

(7.26)

Q[z]= f d rz (r),1

2n

while (7.14) simplifies to

z(r)=pn fd r'IV(r')I~K(r r') —.

(7.18)

(7.19)

Following Efros, we now prove that this solution indeed
satisfies Eqs. (7.11) and (7.15). Substituting Eq. (7.22)
into (7.16) and expanding in terms of r/A, , we find the ex-
plicit form of y(r) and z(r):

2

It is interesting to note that Eq. (7.18) is more elegantly
derived from a characteristic functional, as is elucidated
by Feynman and Hibbs (1965). Combining Eq. (7.19)
with (7.12), we find that Eq. (7.11)becomes

V W —pO f d r'I%'(r')I W(r —r')=AoIz]ql,
2m

(7.20)

where

y(r) =t (7.27)

where

2 = 3A't= andx =
4m.eA, 2t

(7.28)

The above assumption of a sharp decline of z (r) at short
distances is equivalent to t »1. Consequently Eq. (7.15)
may be written

W(r —r') =n fdr"K(r r")IC(r" —r') . —(7.21)
z (r ) =n [e 'exp( r /x ) 1]—=ne 'exp—( r /x —

)

(7.29)
Equation (7.20) exactly equals the fundamental equation
(6.25) in the work of Halperin and Lax (1966), which also
appears in the method of Zittartz and Langer (1966). In
the particular case of a random system where only the
ground-state energy is taken into account, Donsker and
Varadhan (1975) derived an upper bound for 4 which
coincides with the lower bound. It leads to the nonlinear
eigenvalue problem (7.20) [or (6.25)]. This remarkable re-
sult proves the exactness of Eq. (6.25).

D. DOS asymptotics (E~—ao)

As already mentioned above, very deep in the tail,
Gaussian statistics are no longer valid. For these ener-
gies, one may intuitively argue that the situation resem-
bles an ion-electron system. Consequently, one would ex-
pect Eq. (7.11) to possess a spherically symmetric solu-
tion, with a ground-state wave function of the form

Combining Eqs. (7.29}, (7.24), and (7.23), we obtain a
transcendental equation for t,

t =ln 2
377

' 3/2 . ~ 2 3/2E t
7

na
(7.30)

whence for su%ciently high energies we may deduce

t =ln E 1 »1,
Ep na

(7.31)

Q[z]=fz(r) ln —1 d r.
n

(7.32)

which justi6es the above approximation. Thus the de-
scribed solution does, indeed, exist. To evaluate 0 [z ],
we note that z(r}»n [see Eq. (7.29)] so that Eq. (7.10)
simplifies to

%(r)= e (7 22) Substituting Eq. (7.29), we readily obtain

In this picture, the fluctuation then represents an almost
pointlike nucleus of an ion with the charge

Q[z] =Z(t —1)——,'Z . (7.33)

However, this expression contains terms both of order Z
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E =Z'E
3

(7.34)

and of order Zt . A simple substitution of Eq. (7.24)
would not correctly describe 0 [z ], and corrections of Z
to order t ' must be included. The ground-state energy,
corrected for the finite (not pointlike) nucleus size, reads
(Bethe and Salpeter, 1957)

will be exponentially smaller because of the exponential
dependence of the probability on V. Further, because of
this same exponential dependence, the regions whose
shape is such that V is smallest for a given lowest level
will make the main contribution. Hence, by the isoper-
imetric theorem, this will mean spherical regions. The
lowest level E in an empty spherical volume of radius R
with boundary condition that the wave function vanishes
on its surface is given by

(r') =—Iz(r)r'd'r1

Z

m fi

2mB
(7.38)

Invoking Eq. (7.29), we obtain the corrected expression
for Z,

The probability of such a region existing is proportional
to exp[ n—(4m/3)R'], so that the DOS of low-lying lev-
els will be given by

Z=QE/E, 1+
2f

(7.35)
p(E)-exp

CO E~O 9 (7.39)

The corrections to Eq. (7.30) by using (7.34) instead of
(7.24) are of order t ' and can be neglected. Finally, em-
ploying (7.35) in (7.33), 0[z ] yields

0 [z ]
=QE/Eo( t —1), CO

3/2
4~ ~A

(7.40)

ln = —QE /Eo lnp(E)
p(0)

t 3/2 —1
3/2

3' na
9

(7.37)

which gives for the DOS, for very large negative energies
E for which the e6'ective-mass approach is applicable,
clearly a non-Gaussian form,

ln = —(c E i+c E 'i+. )
p(0)

(7.41)

This conjecture (7.39) was put on a firmer mathematical
basis by Friedberg and Luttinger (1975). Although their
rigorous proof, departing from the general equation (5.7),
is one of mathematical beauty, we give only the result,

where t follows from Eq. (7.30).

E. Very-deep-tail asymptotics: Lifshitz s conjecture

2' &&'/m
a A,O

(7.42)

In this section, we present an ingenious intuitive
method due to Lifshitz (1965) because it is related to the
optimal-fluctuation method in some ways. Before sum-
marizing Lifshitz's idea, we rescale the energy axis such
that p(E) =0 for E (0. Hence the problem considered is
"How does p(E) behave as E~0+?"

Electronic energy levels for arbitrary small energy can
only come from states with wave functions localized in
very large regions that are empty of impurities. Indeed,
if the electronic wave function overlaps an impurity ap-
preciably, there will be a finite potential energy of in-

teraction, while a large region is necessary to make the
kinetic energy very small. By the Poisson distribution
law, the probability of a large region of volume V being
free of impurities is proportional to exp( —n V). Since the
volume V is very large, the low-lying levels for localized
states will be insensitive to the exact conditions on the
boundary 8 V of V, and we may take the wave function to
be zero on BV. Now, clearly, the Inain contribution to
the probability of finding a low-lying level E for the sys-
tem will be proportional to the probability of finding a re-
gion V whose lowest level is E. As mentioned above, the
probability of finding a region whose second level is E

a =scattering length,

(7.43)

c=f dx[1 —(/1 —exp( —x )]=0.628 .
0

Equation (7.41) should be compared with (7.37) after re-
scaling the energy scales properly.

Vill. THE PATH-INTEGRAL METHOD

The famous path-integral approach to quantum
mechanics was invented by R. P. Feynman and is very
well described in his book (Feynman and Hibbs, 1965).
For the description of disordered systems, the path-
integral method was first introduced by Edwards (Abram
and Edwards, 1972a, 1972b) and improved by Samathi-
yakanit (Samathiyakanit and Cxlyde, 1973; Samathi-
yakanit, 1974), who has extensively compared his path-
integral results (Sa-yakanit, 1979; Sa-yakanit and Glyde,
1980; Sa-yakanit et al., 1982) with the method of Halpe-
rin and Lax (see Sec. VI).
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The central idea and basic assumptions of the follow-
ing derivation were given in Feynman's polaron theory
(Feynman, 1955). The action S of the random system is
approximated by a trial action Sp, which contains adjust-
able parameters to minimize the "free energy" and which
is quadratic, because for such actions the path integral
can be evaluated exactly.

Once the trial action Sp has been introduced, the aver-
age propagator can be calculated by expanding in cumu-
lants about the corresponding trial-average propagator
Go. All this is described in Feynman and Hibbs (1965,
Chap. 11). Some basics of the path-integral theory are
summarized in Appendix B. Although higher cumulant
corrections (Gross, 1983), are possible, we limit ourselves
to the first cumulant and thus obtain G&. In Sec. VIII.A,
we formulate the problem in terms of path integrals. Sec-
tion VIII.B goes into the details, and Sec. VIII.C com-
pares Sa-yakanit's results with previously discussed
methods.

The propagator (or Green's function) 9 of such a system
with a particular configuration of impurities [r, I is ex-
pressed as a path integral,

Q(r2, r &, t; [ r, ] ) =f2)r(r )exp —S( [r; ] ) (8.2)

with boundary conditions r(0)=r, and r(t)=r2, where
the action S ( [ r; ] ) is given by

S(Ir;])=f dr r (r) —g u(r(r) —r;) . (8.3)

The average over all configurations reads

G(r2, r, ;t)=fP[[r;]]d[[r;I]Q(r2,r&, t;[r;]) . (8.4)

Assuming that the impurities are equally likely to be
found at all points, the probability distribution is

A. Path-integral theory of a disordered
system: statement of the problem

In the one-electron and efective-mass approximation,
the doped semiconductor is described by the Hamiltoni-
anH,

dr;dx'2 ' drN
P[[r ]]d[[r ]]=g

N
yN

n=
P o y.

0

g2 N
H= — V+ gu(r —r).

2&i
(8.1)

The method that results in Eq. (5.7) (Appendix A) is
readily applied, yielding

G(r2, r&,'t)= f2)r(r)exp —f dr r (v)+n fdR exp ——f dru(r(r) —R) —1
o 2 p

(8.5)

Expanding

exp —— d ~ u (r(r) —R) —1
p

to second order and setting the energy origin at the mean
potential of the system, we find that Eq. (8.5) becomes

l
G (rz, r, ; t) =f2)r(r )exp —S (8.6)

Although Eq. (8.5) is an exact general formula, the path
integral is too complicated to work with. An obvious
simplification (also applied in Sec. V) is the assumption of
high density (n ~~ ) combined with very weak scatter-
ing (u ~0), so that nu remains finite.

I

parameter g denotes the strength of the scattering poten-
tial. Although various correlation functions can be con-
sidered, here we confine ourselves to a Gaussian correla-
tion function

W(r(~) —r(o ))=n(mL ) exp
~r(~) —r(o ) ~

L 2

(8.8)
where L, denotes the correlation length of the random
system.

From a knowledge of the Green's function (8.6) many
physical quantities can be studied. Again, we limit our-
selves to the DOS, obtained by taking the trace of 6 and
then Fourier transforming according to the standard for-
mula,

where

S=f d~ r (~)
0 2

OO l
p(E) = dt TrG(r„r2, t)exp Et . (8.9)—

00

+ g f f drdo W(r(r) —r(o)) .
2A o o

(8.7)

Here W denotes the correlation function (6.12), and the

Analogous expressions are derived by Feynman and Hibbs
(1965, Chap. 12). This expression (8.5) seems first to have ap-
peared in Edwards and Gulyaev (1964).

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



778 Piet Van Mieghem: Band tails in heavily doped semiconductors

Since 6 is obtained by averaging over all configurations
of scattering potentials, it must be translationally invari-
ant (see Sec. II.A), meaning that G (r2, r, ; t) =G(r2 —ri, t).
Consequently TrG(r2, ri, t) simplifies to VOG(r2 —ri, t) in
Eq. (8.9).

The problem is now well described and consists in solv-
ing Eq. (8.9) together with (8.6)—(8.8).

B. A harmonic trial action:
solution of the problem

trial action as

G (rz, ri,'t) =f2)r(1 )exp —So(co)

X exp —[S—So(co) ]

or, more rigorously, by explicitly expressing the path-
integral normalization, with Eq. (812)

G(r2, r, ;t) =Go(rz, r, ;t, co)(exp[i(S So(co—)/fi] )s ( )

Guided by Feynman's polaron theory, we consider the
following trial action of a harmonic oscillator having one
parameter co: where

(8.11)

S()(co)=f dr r (r) —- f do r(r) —r(cr)~
0 2 2t o

l
6Q ( rz, ri,' t, co ) =fX)(r( r ) )exp —So ( co ) (8.12)

(8.10)

The average propagator may be written in terms of this
%'hen we use the exact semi-invariant or cumulant ex-
pansion (Kubo, 1962),

(e")=exp ( A &+—(& A &
—

& 2 & )+—[( A ) —3( A &(( A') —
& A &') —& A )']+1 2 2 1

2! 3t
(8.13)

to first order, Eq. (8.11)becomes

Gi(r2 ri t ~) Go(r2 rl t ~)exp[i/&&S —So(~)&s,( )]

1. The average (S—80(co))s ( )

(8.14)

Since the kinetic terms in the actions S and So(co) are identical, only the second terms in Eqs. (8.7) and (8.10) play a
role in (S—So(co) )s ( ), and we shall denote them (S )s („)and (So(co) )s ( ), respectively.

Let us first consider (S )s ( ), which can be exactly evaluated by expressing W(r(r) —r(cT )) as a Fourier transform.
0

For, if W(k) is the Fourier transform of W(r), which equals for Eq. (8.8)

then
W(k) n=exp( —L k /4), (8.15)

d k
&S&. ..,

= „q'f f drd~ f ", W(k)&exp[ ik [r(r) —r(o)]])s —
(2A 0 0 (2m. ) 0

(8.16)

The average appearing now in Eq. (8.16) is of the type investigated in Appendix 8 [Eq. (813)],because So(co) is quadra-
tic. Such path integrals can be evaluated exactly [see Eq. (815)]. Alternatively, only the first two cumulants (8.13) are
nonzero (Kubo, 1962). Consequently we get

d k
&S&, ( )= „ri'f ' f dado f W(k)exp(a, +a2)

2A 0 0 (2m )

where

ai =ik. ( [r(~)—r(o )] )s („),
a2= —

—,'k [—', ([r(r) r(o )] )s („)——([r(r)—r(cr)])s („)]
(8.18)

jp 2

4A

0

(S)s ( )= nri f f drdcr (8.19)

Note that the second term inside the large square brackets represents only one component of the coordinates. The k in-
tegration can be performed if W(k) is given by Eq. (8.15) and yields

' 3/2
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where

+——&[r(r)—r(o)] &, ,
—&[r(r)—r(o)]&

1 2 1 1 2 2

& =&r(r) r(cr)&s, i i

Next we focus on & So(co) &z i„i, which is easily written as
0

(8.20)

(8.21)

From Eqs. (8.19) and (8.21), we see that the average &S—So(co) &z i„i can be expressed solely in terms of the averages

& r(r) &z i„i and & [r(r).r(cr ) ] &z i„i. Such averages can be obtained from Eqs. (816) and (817) and therefore we need the
0 0

classical action 5,'I.

2. The classical action 8,', corresponding to Eq. (8.10)

From S,'i [b,a] =S'[g(t) ], the classical path g of Eq. (8.10) must be found, which obeys

5S'=5 So+ fdr f(r) r(r) =0

or

g(r)+ f der[/(r) —g(cr)] — =0 .
t o Pl

Rewriting Eq. (8.22) as

(8.22)

g(r)+co g(r)= f dcr g(o )—
t o Nl

and introducing a Green's function

(8.23}

+ co g ( r, o ) =5(r cr ),—

g (r, cr ) . [Slnco(t r)slncocr 8(1 cr }+slnco(t cr )sinc01 e(cr r}]
sincot

we find the general solution of Eq. (8.23) with boundary conditions g(0) =pi and g(r) =gz,

g(r)= . [$2sincot+g'isinco(t —~)]+ f do c0 g(cr)+1 . . 1 t 2 f(~)
sinco~ m 0 P7l

(8.24)

This is an integral equation, which can be solved, yielding

gzsincot + /ising@( t —r)
(~)=

slept
4 sin —,'co(t —r }sin—,'cow

singlet

~ 2 t ~ r
~ 1

(pi+f2)sin —,'cot — f do f(o )sin —,'co(t cr)sin2cocr +— f(cr)g(r, cr) .
M CO 0 Pl 0

(8.25)

The classical action S,'i is simply found by substituting g(~) into

S,', (g2 —
g, ;co)= f 1~g (r)— f dr f der~/(r) g(cr)~ + f—dr f(r) g(r),

which simplifies, after integrating the first term by parts and invoking Eq. (8.23), to

S,', (g~ —g'„.co)= [g'(r)g'(r) —g(0)g'(0)]+ —,
' f dr f(r) g(r) . . (8.26)
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Explicitly, Eq. (8.26) becomes

S,', (gz —g, ;co)= ~gz g—, ~
cot ,'co—t+

4
d~ f(r)[sincor —2 sin —,'cot sin —,'co(t —cr )sin —,'cow]

sinmt o

f dr f(r)[sinco(t —r) —2sin —,'cot sin —,'co(t —o )sin —,'cow]
singlet o

f d~ f(r) f do f(cr)[sinco(t —r)sincocr —4sin —,'co(t —r)sin —,'co~sin —,'co(t c—r)sin —,'cocr]
m co singlet o 0

(8.27)

The classical action S,i(gz —g, ;co) is then obtained by setting f —=0 in Eq. (8.27),

S,i(gz —g„'t, co)= So(gz—g„'t, co)= ~gz
—g, ~

cot ,'cot —. (8.28)

Invoking Eqs. (8.25), (8.26), and (8.27), we can work out Eq. (8.20). After some straightforward calculations we find for
w&o

siiizco(1 cr)siiizco[t (7 0')]
A = A(t, r o",co)=—,'L +-

mcus

sin —cot2

sin —,
' co(~—o. )cos—,'co[1—(~+o. ) ]8 =8(rz —r, ;t, r, o",co) (r,—ri),

sin —,
' cot

(8.29)

and we clearly have

A (t, ~ o ,co)=—A"(t, t —(r—o. );co). (8.30)

Analogously, after performing the integration, we find that Eq. (8.21) reads

(rz —r, )
( So(co ) )s ~ l

=
—,
'

imari( —,'cot cot ,'cot —1)+——,' I [ ,'cot cos ,' cot ( ,'—co—t—csc—,
' cot ) ]— (8.31)

3. Evaluation of G, (r, , r, ;t, co)

Since the trial action So(co) is quadratic, Eq. (8.12) can be evaluated with Eqs. (87) and (8.28) as

l
Go(rz, r, ;t, co)=exp —S,i(rz —r, ;t, co) F(t, co) . (8.32)

The remaining problem consists in the determination of F (t, co). Since the path integral (8.12) reduces to the propagator
for a free particle as co =0, we readily obtain from Eq. (811)

3/2

lim F(t, co) =
co~0

(8.33)

Our trial action So(co) is closely related to that of a simple harmonic oscillator, as follows. The propagator H(rz, rz', t, y)
of a simple harmonic oscillator is

H(rz, r, ;t,y)= f2)(r(r))exp —f dr r (r) ——~r(~) —y~ (8.34)

(8.35)

where y represents the origin of the harmonic oscillator and a=md is the force constant. This path integral can be
worked out exactly and can be obtained from formula (3.66) in Feynman and Hibbs (1965, p. 64) by some minor
modifications. Since Eq. (8.34) is also quadratic (or Gaussian) in y, an integration over all y can be accomplished, illus-
trating a remarkable property of Eq. (8.34):

3/2
2M

dyH(rz, r„t,y)= z Go(rz, r, ;t, co) .
imago t

From a mathematical analogy, we may introduce a kind of "partition function Z" (Feynman and Hibbs, pp. 279), in fact
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an imaginary one, which would equal the "true" partition function after transforming t ~ifiP, where P is proportional
to the inverse temperature T. Then the "partition function" corresponding to Go(rz, rz', t, co) is

Zo= fdr Go(r, r;t, co)= V0F(t, co),

which also equals, with Eq. (8.35),
—3/2

dr Go(r, r, t;to)=o t t tI
~~ ~

~I

2

2mA

lfPZM t
—3/2

2mA
(2i sin —,'cot ) Vo .

im m2t

(8.36)

(8.37)

Hence

F(t, co) =
3/2

Mt

2 sin —,'cot

3

(8.38)

and this agrees with Eq. (8.33).

4. The final expression for p(E)

Putting all the above results together to construct Eq. (8.11),we get
' 3/2 3

Gi (rz, r i', t& co)
cot

2 sin —,
' cot

3 cot cot im mt cot cot cot
2

(rz —r, )

3/2 8 (rz —r„t,r, o. , co)
exp

4A (t, r o,co)—pg 'g 1X exp — d~do.
2A o o 4m. A (t, r o",co)— (8.39)

COt
2 sin

From Eq. (8.9), we finally achieve an expression for p(E, co),
~ 3/2

2M —~ 2m.iAt A 2 2 2 2A2 o

1

4nA( t, x;co ).

(8.40)

where (1/Vo)TrG(rz, r„t)=G(r, r;t)=Gi(0;t, co) because of translational invariance. We have used Eq. (8.28) to per-
form one integration in the double integral appearing in (8.39). The dependence of the variational parameter co is ex-
plicitly expressed. An exact variational principle for the DOS exists (Sec. II.2) which completely determines the best
value for for co and hence the best p(E), subject to the chosen trial action (8.10), the first cumulant expansion (8.14), and
the assumption of a Gaussian correlation function for the potential (8.8). This optimal p(E) can only be computed nu-
merically.

C. Discussion and comparison with previous models

Sa-yakanit (1979; Sa-yakanit and Glyde, 1980) used the method of Sec. VIII.C to calculate the DOS assuming a
screened Coulomb scattering potential (6.37), and he obtained

p(E, co) = f dt
3/2

COt
2 sin

2

3

exp +— cot —1
iEt 3 cot cot g~t

A 2 2 2 2A2 p
dx F(x) (8.41)

oo sin —,'coax sin —,'co(t —x)F(x)= f dyy exp( —a y) y+
Pl 6) sin —,

' cot
(8.42)
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In the low-energy band tail, we can argue [as is generally assumed in fiuctuation models (Secs. VI and VII)] that only
the ground states of the potential fluctuations contribute to the DOS. Applied to path integrals, the lowest energy of
the system is found by considering the "partition function Z" in the limit t ~~ (Feynman and Hibbs, p. 303). This
means that we should first take the limit of G&(r, r; t, co) [Eq. (8.39)] for t ~ ~, before substituting in Eq. (8.9). Employ-
ing the parabolic cylinder function formula,

dt(it)Pexp( —u t ist—)=2 I'/ 3/mu ~ 'exp
0

2S D S

8u' ' u 3/Z

' i/2
1 2

p(E, ~)=—
4

co u exp

Sa-yakanit derived the following expressions:

( —,'A'co —E )

8u

( ,'%co —E)—
D3/2

u 2
(8.43)

where for a Gaussian potential

1 71 g l +4
fl

2iri2 (~L, 2)3/2 2m~1 2

—3/2

(8.44)

and for a screened Coulomb potential

u = — dy y exp( —x y) y +~t 1 2
2A'' 3/7r 2m 6)

—3/2

(8.45)

From the variational principle (Sec. II.B), a supplementary equation can be derived to determine co. For a screened
Coulomb potential, we have

2D 4(z)

3(z)
1 T
z T —T/E,

3/~(T E/E. )' —D, (z)

4p 2 exp(z /4)D 3 (z) D 3 (z)
2Z 3

T E/E, — (8.46)

where [with Eq. (6.40)]

2E
Z =

3/%co
(8.47)

and where T is the normalized zero-point kinetic energy
of a harmonic oscillator,

I 33-2T = —%co——zE 4 2
(8.48)

Similarly, retaining only the high electron energy
states corresponds to the t —+0 limit of the "partition
function Z." Performing this operation before using Eq.
(8.9), we find

gl /4 3/2 E2

p(E) =
2 3 exp — D 3/2~2~'A'

E
v'g

(8.49)

pi(E)=a exp —P +Pi /2m E /8E 16
3g

which exactly equals the Kane result [Eq. (5.15)]. In this
limit, the resulting DOS (8.49) does not depend only co,

because only the free-particle contribution "survives, " so
that the semiclassical p(E) is independent of the trial ac-
tion (8.10).

The one-dimensional analog of Eq. (8.43) can be com-
pared to the exact asymptotic formula (a=P=1) [Eq.
(4.53)]

yielding a =3/2m /6 =0.4178 and P=sr/3 = l.0233.
Halperin and Lax found a=1/&5=0. 4472 and P=1.
Although this result is worse than that of Halperin and
Lax, Sa-yakanit shows some advantages of the path-
integral method:

(1) The calculation can be improved by going beyond
the first cumulant. Gross (1977) calculated pi(E) with
the second-cumulant correction and found o.' = 4,

3/m/6=0. 9648 and P=&64~/201=1. 00015. This cal-
culation roughly agrees with the second-order correction
of Halperin and Lax (1967).

(2) Analytical expressions are obtained that are much
more convenient to use than results given in tables (like
those of Halperin and Lax).

(3) The method can be used to obtain the DOS at high
and intermediate energies.

(4) The model can be applied to the evaluation of the
DOS with general statistics including correlations among
the impurities, i.e., by using Eq. (8.5) and then immedi-
ately considering a cumulant expansion.

(5) The trial action S (co) [Eq. (8.10)] can be generalized

This can be understood physically by considering the "pseu-
do" Heisenberg uncertainty relation for the energy and time,
Et ~ fi. Making the time large corresponds to searching for low
energies (and vice versa).
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CSa-yakanit
K

(8.50)

has been calculated for various doping concentrations
and temperature in n-GaAs in Fig. 11, assuming a
Thomas-Fermi approximation (Sec. V). This figure gives
an idea of the order of magnitude of the potential Auctua-
tions in n-GaAs and may serve to relate Figs. 12 and 13
to doping concentration in n-GaAs. For energies deep in
the tail, the results coincide with those of Halperin and
Lax. At higher energies the DOS intersects the semiclas-
sical value (5.15). At this point the result of Halperin
and Lax is significantly too low. As a conclusion, Sa-
yakanit et al. propose to use Eq. (8.43) until it crosses
the semiclassical Kane p(E) and thereafter to employ the
latter.

0.1

to a quadratic trial action with two variational parame-
ters S (a,0 ) (Sa-yakanit, 1974).

The use of a harmonic trial action is equivalent to as-
suming that all the ftuctuating potentials have the same
quadratic shape. In fact, this was the ansatz of Halperin
and Lax's model, that all ground-state wave functions are
assumed to have the same wave function f [Eq. (6.1)].
The harmonic-oscillator potential is equivalent to ap-
proximating Eq. (6.1) by a Gaussian. However, the use
of a Gaussian for (6.1) also permits an analytical expres-
sion for Eqs. (6.20) and (6.22) in the Halperin and Lax
theory.

Sa-yakanit and Glyde (1980) compare the determina-
tion of m by the exact variational principle with two oth-
er methods. The first maximizes p(E) to obtain tty; the
second only minimizes the argument of the exponential
(as in Halperin and Lax and Efros). Sa-yakanit and
Glyde (1980) conclude that the results obtained by max-
imizing P (E) (Sec. II) and p(E) do not difFer significantly,
but that the result of minimizing the argument of the ex-
ponential is substantially different from the first two.

The path-integral approach, the semiclassical, and the
Halperin-Lax methods are compared in Figs. 12 and 13.
The normalized parameter for the energy of the potential
fluctuation,
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[Eq. (6.39)].

IX. FIELD THEORY AND THE REPLICA APPROACH

The replica approach was introduced by Edwards and
Anderson (1975) in their study of spin glasses. In the
theory of disordered systems (mainly applied to spin
glasses and amorphous materials) the replica solution has
reached a high degree of sophistication. For spin glasses
it is thoroughly studied in the book by Mezard, Parisi,
and Virasoro (1987). Although successful in some cases,
the replica approach still lacks a rigorous mathematical
foundation. Cardy (1978) and Brezin and Parisi (1980)
have applied techniques from statistical field theory com-
bined with the replica "trick" to describing the electronic
states in a random potential. We shall now consider the
replica approach.

A. The formal description

In field theory, the Green's function is defined as the
correlation of two t)It fields (Parisi, 1988). The correlation

I

1.4—
--- Path-

------- Varia—Semi
—.""Free-

FIG. 12. Important band-tail theories for the parameter

gs, y,k,„;,=0.5 (data extracted from Sa-yakanit and Cxlyde (1980)
in normalized quantities: v=E/E, [Eq. (6.41)] and

2
E/causa-yakanit b(v)

p„(v)=, n/(E) =a(v)exp
K Sa-yakanit

0.01

1.0—

Q
8 0.8—

I
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ctz
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I p16 1p17 I p
18

Doping concentration N (cm )
-3

1019
0.2—

FIG. 11. The root mean square of the potential fluctuation a.„
as a function of doping concentration for n-GaAs in three di-
mensions. The parameter gs, „,k,„;, is further used in Figs. 12
and 13.

0.0
-6

Normalized energy &

FIG. 13. Graph analogous to Fig. 12 but on a linear scale and
r kSa-yakanit
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As in the path-integral approach, we are interested in the
Green's function averaged over all possible potential
configurations having a probability distribution function
P [ V]. Direct averaging of Eq. (9.2) is hard, but the repli-
ca approach (Appendix C) can be introduced as follows:
LetG( „„E)—= &y(, )(t(, )&

—PH [$]j

—PHjpj
(9 1) Z. [g(r)]

f2)/exp —,
' fdr P(r)[E H, +—2g(r)]P(r)

functions of the functional-integral approach of statisti-
cal field theory become expectation values of the time-
ordered products of operators on the ground state (as in
quantum field theory). Thus

In order to find the DOS by Eq. (2.4), it suSces to study
G(r„r„E)because of the trace in Eq. (2.4). Substituting
the Hamiltonian in d dimensions for a random potential
(4.1), we find the starting expression for the Green's func-
tion (Parisi, 1988),

G(r„r„E)

f2)P P(r, )P(r, )exp —,
' fdr/(r)(E H,„)P(r—)

f2)/exp —,
' fdr/(r)(E H, )(t(—r)

(9.2)

I

Then we And by functional derivation with respect to
g(r) that

G(r„r,;E)= (lnZ, )
6

5g r g(r) =—0
(9.4)

Performing the average over the potential
configurations

gives

(G(r, ,r„E)&, = f2)U(r)P [U (r)]G(r„r~;E)= f2)u(r)P[U(r)]lnZ„
5

5g (r) g(r) =0
(9.5)

The expression between brackets is the continuous case of (C5). When we apply the replica trick (C10), Eq. (9.5) be-
comes

(G(r„r„E)&„= lim ln f2)U(r)P[U(r)]Z,5gr M oM g(r):—0
(9.6)

Changing the limit with the functional difFerential operator, we obtain, after functional derivation,

Url' U r ivzM

(G(r„r„E)&, = lim
OM f2)U(r)P [U(r)]Z„

Substituting

6Z, f2)PP(r, )(t(r, )exp —,
' fdr/(r)(E H, )P(r)

g(r)—:0

in Eq. (9.7) and using the fact that J X)U(r)P [U (r]=1, we find that Eq. (9.7) simplifies to

(G(r„r„E)&, = lim f X)U(r)P[U(r)]
M~O

(9.7)

(9.8)

f2)PP(r, )(t(r, )exp —,
' fdr/(r)(E H, )P(r)—

M —I
X f2)gexp —,

' fdr(()(r)(E H„)P(r)—
Using the replica concept (C 1 1), we arrive at

' In our particular case, a somewhat more elegant approach is as follows. Instead of averaging Eq. (9.4), we can first use

lnZv=limM p(Zv 1)/M. After changing the order of the limit and differential functional and executing the functional derivation,
we perform the average and obtain the result (9.10) without using the more complicated replica trick [Eq. (C10)]. However, this alter-

native is possible due to the functional derivation with respect to g(r) and is less general than the presented method.
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G(r„r,;E))„= lim fl)u(r)P[u(r)] f Q2)p, p, (r, )p, (r, )exp —f dr g $, (r)(E H—,~)p, (r)
M~O i=1 i=1

(9.9)

We then write the explicit form of the Hamiltonian operator H, [Eq. (4.1) with Eq. (4.20)], denoting by
4& =

I $„$2, . . . , P~ ] the M-component vector field, and reordering of the path integrals finally leads to

(G(r„ri,E)),= lim f + 2)P;P, (ri)P, (r, )e
M —+0 '=1

(9.10)

with

M g 2+2 M
S[C&]=—,

' fdr g P;(r) E+ P;(r)+In Q g [P;(r)]
i=1

(9.11)

M M

Q g [P;(r)] = f2)u(r) P[u(r)]exp —fdr g [P,(r)] u(r)
i=1 i=1

(9.12)

The representation (9.10) is valid for E sufficiently large and negative with a real contour for all P;(r). To obtain a rep-
resentation for Eq. (3.4) with il )0, Cardy (1978) shows that a rotation of each contour over e' ~ defines Eq. (9.10) for
all nonreal E such that the contour can be distorted to enclose singularities of 6 (r, r, E+irI) In an. other approach, Nit-
zan et al. (1977) inserted a convergence factor.

At this point, further elaboration requires a knowledge of the distribution function P[u]. The assumption of a Gauss-
ian distribution function is obvious for several reasons. Physically, we have shown before [Eq. (A7)] that heavily doped
semiconductors are satisfactorily described in that way. Mathematically, averaging over a Gaussian probability func-
tion can be performed exactly because quadratic path integrals can be analytically evaluated. The resulting expression
for (9.12) is derived in Appendix D,

1 M M

Q g [P;(r)] =exp —f du fdr g [P;(r)] W'(r —u) g [P;(u)]
,

i =1 i=1 i=1
(9.13)

where the correlation function W(r —u) is defined in Eq.
(6.12). Further evaluation usually consists of approxi-
mating Eq. (9.10) by the saddle-point method (Parisi,
1988) about an M-component field @, satisfying

p(E) = A (E)exp —fdr E[@,(r)] — [VC&,(r)]4 2m

(9.17)

5S[4] 5S[@]
e, , i 5P;(u)

(9.14)
or equivalently

p(E) = A (E)exp ,' f du—f—dr@,(u) JY(r —u)N, (r)
Evaluation of Eq. (9.14) for Gaussian statistics (9.13)
gives

f 2+2E+ @,(u)+ —,'@,(u) fdr W(r —u)~4, (r)~ =0 .2'
(9.15)

The trivial solution @,( u ) =0 corresponds to energies in
the continuum (E &0). After the saddle-point integra-
tion is carried out, the expression for the DOS can be
written as

p(E) = A (E)exp(S[@,]), (9.16)

where A(E) is a (nonexponential) prefactor that is in
general difficult to determine (John and Stephen, 1984).
Explicitly, we can write Eq. (9.16) as

(9.18)

The presented replica procedure exhibits a number of
interesting features. First of all, we notice that Eq. (9.15)
which determines the instanton in field theory is precisely
the same key equation in the work of Halperin and Lax
[Eq. (6.25)] and Efros [Eq. (7.20)]. Moreover, this Har-
tree equation appears in other theories of bandtails
(Lifshitz, 1964; Zittartz and Langer, 1966). This funda-
mental equation returns the wave function in a potential
fluctuation obeying Gaussian stochastics. Obviously,
there is a close analogy between the instanton and the
most probable potential: by solving the instanton equa-
tion of motion (9.15), one allows for the most general well
shape possible for a Gaussian distribution. Another ob-
servation concerns Eq. (9.17), in which the argument for
the exponential resembles the variational energy for the
wave function N, [see also the review of Thouless (1986,
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B. White-noise Gaussian spectrum:
W(r —u) = 205(r —u)

Although the white-noise spectrum may have a limited
physical significance, it enables exact results to be de-
rived. Moreover, comparison with older methods de-
scribed before may illustrate the power of the replica field
approach. The white-noise correlation function (4.3)
simphfies Eq. (9.13) to

M 2

Q g [0;(r)]' (9.19)
D M

=exp J dr g [P,(r)]

Substitution in Eq. (9.11),bearing in mind that

fifdr&;(r) p;(r)= —fdr [Vp;(r)]

gives the result of Cardy (1978) and Brezin and Parisi
(1980),

' In fact, this statement was already introduced by Wolff
(1962), who showed that perturbation theory fails for localized
states.

p. 690)]. This again links the variational method of
Halperin and Lax and the replica field approach. Pertur-
bation theory (Cardy, 1978), is not applicable" to the re-
gion of localized states because a nonzero DOS and a
finite localization distance are only found if perturbation
theory diverges.

Considering Eq. (9.18), we deduce that the correlation
function plays an important role. However, the precise
form of this correlation function is hard to find and
strongly depends on the kind of disorder. In their study
of Urbach tails in amorphous materials, Cohen et ah.

(1988) and John et al. (1988) have investigated a broad
class of physically interesting correlation functions.
They showed that an exponential Urbach tail can be
found if a short-range-order correlation function [typical-
ly of the form W(x)=8'oexp[ —(IXI/L) ) with short-
range-order radius L and m ~ 2] is used. In contrast, in
heavily doped semiconductors the potential fluctuation
originates from randomly distributed ions and can be ap-
proximated (in a Thomas-Fermi approach) by random-
screened Coulomb potentials. The corresponding corre-
lation function lies closer to m 1, for which the linear
exponential regime is very narrow [in fact, rather an
inflection point between the Halperin-Lax regime and the
deep-tail regime (Fig. 3)].

A last remark concerns the general form of Eq. (9.12).
Although the limitation to a Gaussian distribution seems
a good approximation for tail states sufficiently below the
unperturbed band edge (E=0), it remains doubtful
whether energy states close to this edge (or in the inter-
mediate region) follow Gaussian statistics.

M g2
$[4 ]=fdr —g E[p;(r)] — [Vp;(r)]

D N
'2

+ g [P;(r)]' (9.20)

Expression (9.20) with (9.10) resembles the averaged
Green*s function corresponding to the I-component
Landau-Ginzburg model in d dimensions (Parisi, 1988),
with effective "Hamiltonian"

+ —glc I' " &[4;(r)]'
'2'

(9.21)

D(fi /2m)'
4IEI2

—d/2

(9.22)

Based on this resemblance, Brezin and Parisi (1980) de-
rived expressions for the DOS [Eqs. (9.17) and (9.18)] in
two and three dimensions for large negative energies E.
In one dimension, the correct exponent and prefactor
had already been obtained by Zittartz and Langer (1966}.
Moreover, Thouless (1986, p. 692) briefly sketches how
the derivative of Eq. (4.51), the exact one-dimensional
DOS first found by Frisch and Lloyd (1960), may be ob-
tained from Eq. (9.20).

C. Conclusions

The field-theoretical method is the most general and
powerful technique discussed here to handle the band-tail
problem. The advantage it offers over the path-integral
method (Sec. VIII) is that we are not restricted to Gauss-
ian wave functions or to the introduction of quadratic tri-
al actions. In addition, the use of field theory offers some
technical and computational advantages (Cohen et al.,
1988}.

X. CONCLUSION

The deviations from the free-electron DOS due to the
random distribution of impurities in a heavily doped
semiconductor are described by several models. The
most important of these models have been discussed in
detail. The exact solution of the band-tail problem in one
dimension, has received much attention, as it was used to
evaluate the accuracy of approximate theories. An exact
solution for heavily doped semiconductors in three di-
mensions, however, does not exist. %"e have demonstrat-
ed that the semiclassical theory yields a simple asymptot-

Comparison between the dimensionless equation (9.21)
and (9.20) reveals that

2mE
p
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ic formula valid for all energies. This model is particu-
larly useful for the majority carriers in degenerate semi-
conductors. An approximate expression for the Fermi-
level shift purely due to band tailing offers the possibility
of introducing band-tail effects into device simulators.

The calculation of the number of carriers in the deep
energy tails requires a full quantum-mechanical treat-
ment. The most famous model is that of Halperin and
Lax, which clearly describes the fundamental underlying
physics. Even today, it remains, together with Kane's
semiclassical theory, the most referenced band-tail
theory. Efros's optimal-fluctuation theory does not differ

significantly from that of Halperin and Lax and has the
advantage that non-Gaussian statistics may be treated. If
we consider only noninteracting Fermi gases, then there
exists an exact description of the band-tail problem in
three dimensions, given in terms of a Feynman path in-
tegral, i.e., Eq. (8.5). Since this expression is exceedingly
complicated, approximations of Eq. (8.5) result in the
method of Sa-yakanit, yielding expressions for the whole
energy region. Related to the path-integral method, we
have the powerful replica method. This technique repro-
duces the precise solutions of older methods (e.g. , the
Frisch and Lloyd model in one-dimension). In addition,
John et ai (1988) .argue that for static disorder the repli-
ca method is much more e%cient than even the path in-
tegral. The main advantage of the quantum-mechanical
methods is that they are derived from first principles and
thus may serve to check approximate models. Moreover,
they can be generalized (in principle) to include other
physical mechanisms (e.g., electron-phonon interactions,
. . .). However, all full quantum-mechanical models lead
to numerically complicated solutions, which prohibit
their application in device simulators to calculate the
number of minority carriers accurately. Apart from the
semiclassical model, there seems to be no easy generaliza-
tion for interacting Fermi liquids available.
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APPENDIX A: THE DISTRIBUTION FUNCTION I ( V)
FOR A POTENTIAL ENERGY V(r, Ir; I )=g,". , v(r —r;)

Employing the identity

5(x —a)= 1 e" '"dt,2'
we can rewrite Eq. (A 1) as

P(r, V)= f e' 'f (t;r)dt,
277

(A2)

where

f (t.r) f i (r —uR—)t

V
(A3)

Thermodynamically, the extensive properties of a struc-
ture do not change if the volume increases. Applying
this principle, the distribution function P (r, V) becomes

Assuming that the probability of 6nding an impurity at
a point r; is constant (and thus equals Vo '), the probabil-
ity for the potential energy to have the value V at posi-
tion r is defined as

dI'i d12 dIN
P(r, V)= f f . f 5(V —V(r —Ir, I )) .

Vo Vo Vo

P( V)= lim
1 ~ ~ 1eiVt dR(e '"' "—1) dt .

Vo ~ oo 2~ —oo vo
(A4)

Moreover, P( V) turns out to be independent of position
r, because a change of variables in Eq. (A4) does not alter
the integral if Vo oo. Let

P(V)= f exp iVt+n fdR(e '"'R"—1) dt,
277

(A6)

g —f d R(
—t'u(R)t

1 )
Vo

(A5)

If U (r) decreases sufficiently rapidly, then A rapidly ap-
proaches a constant value, even while the volume Vo
keeps increasing. The following relationship then ap-
plies:

whose properties are further explored in Van Mieghem
et al. (1991). An alternative derivation is proposed by
Morgan (1965).

In the high-density limit (n ~ ~), P( V) reduces to a
Gaussian~

limvo-"

n Vo

1+ An

Vo
exp( —x /2)

&2n.o. (A7)

and we Anally obtain the exact result
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b =n f dRU (R), (A8)

cerned only with Eq. (82), we could remove the factor x
from those terms in which it is linear through an integra-
tion by parts.

If we denote g(t) as the classical path between the
specified end points, then g(t) is an extremum for the ac-
tion S, and we write S,i[b, a]=S[g(t)]. We now change
the variable x in Eq. {82)by

which considerably simplifies both the interpretation and
the calculation of P( V). The shift b, results from the
average potential of the charged impurities. Due to
charge neutrality, however, this energy shift is exactly
compensated by the potential energy of the electrons and
will be disregarded further.

APPENDIX 8: MATHEMATICAL PROPERTIES OF
PATH INTEGRALS WITH QUADRATIC ACTION"

L (x;x;t)=a(t)x +b (t)xx+c (t)x

+d(t)x+e(t)x+f(t) . (81)

We wish to determine

The simplest path integrals are those in which all of
the variables appear up to second degree in an exponent.
Let us consider a particle whose Lagrangian has the form

x =g+y . (83)

This means that, instead of defining a point on the path
by its distance x (t) from an arbitrary coordinate axis, we
measure instead the deviation y(t) from the classical
path. Since the classical path g(t) is well defined, it does
not vary, and hence 2)x (t) =2)y (t).

The action becomes

S [x (t)]=S [g(t)+y (t)]

=f [a(t)(g'+2(y+y )+. . . ]dt . (84)

If all the terms that do not involve y are collected, the re-
sulting integral is just S[/(t)]=S,i[b, a]. Since g is so
chosen that there is no change in S, to first order, for the
variations of the path around g (5S=S [g+y]—S[g]=0), all terms that contain y as a linear factor
cancel, and all that remain are the second-order terms in
y. Thus Eq. (84) equals

K(b, a)= f exp —f L(x;x, t)dt 2)x(t),
a a

(82) tbS[x(t)]=S,i[b,a]+f [a(t)y +b(t)yy+c(t)y ]dt,
a

the integral over all paths that go from {x„t,) to (x&, tb)
Notice first that the form of the Lagrangian is more gen-
eral than necessary for our purpose. Since we are con- and the kernel (or propagator) reduces to

(85)

tb

K(b, a)=exp. S,i[b;a] f—exp . —f [a(t)y +b(t)yy+c(t)y ]dt Sy(t) .
0 a

(86)

Since all paths y ( t ) start and return to the point y =0,
the integral over paths is only a function of the times at
the end points, and hence

man and Hibbs, pp. 71 —73).
An important special case of (81) is the Lagrangian of

a free particle,

K(b, a)=exp —S,i[b;a] F(t„tb) . (87) I. =—mx~ 2

2
(89)

The dependence upon the spatial variables x, and x& is
completely determined. The factor F(t„t&) must be
determined by some other property of the solution, as,
for example,

with its corresponding action

(xb —x, )
S[b,a]=—m

2
(810)

K(b, a)= f dx, K(b, c)K(c,a) (BS)
and kernel (where d stands for the dimension)

or by evaluation through Fourier series expansion (Feyn- K(b, a)=
2~i R(t, t.)—d/2 im (xb —x, )

exp
2A'(t, t.)—

(Bl 1)

2Most of the results are summarized from Feynrnan and
Hibbs (1965).

Let us now consider the average ( . . )z of a functional
A through a quadratic action S, which is defined as
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r ~ exp —S

r ~ exp —S
fi

(812)

evaluated in terms of

5 S,', 5S,',
5f(r)5f(o. ) 5f(r)

If we choose for the functional A the particular form

l
A =exp — dr f(r) r(r) (813)

then the numerator exhibits an action
S'=S+fdr f(r) r(r), which is clearly quadratic. Thus
the numerator path integral can be worked out as ex-
plained above, so that

APPENDIX C: THE REPLICA TRICK

From the basic principle of statistical mechanics
(Feynman, 1972), once the partition function Z is known,
all thermodynamic properties can be found. Consider a
system whose Hamiltonian Hv depends on a certain po-
tential configuration V. This potential configuration is a
stochastic variable with probability P [ V]. For a certain
choice of V we can compute the partition function

r ~ exp —S' =exp —S,', b;a F' t„t~
~Ev(w &(i )

N

V(N)
=

i=1
(Cl)

(814)

The integral over the paths y, F'(t„tb) does not depend
on the function f(t), because this function appears in the
action S multiplying only a linear term in r(t) and, from
Eq. (86), F'(t„tb) contains only quadratic parts of S'.
Hence F'( t„t(, ) =F( t„tb ), which implies that

exp —fdr f(r) r(z)
S

where P= 1/ks T and Ev(z)(i) is the ith energy state be-
longing to Hv in a finite volume, which implies a finite
number of states X. The corresponding free-energy den-
sity is

fv(x) = 1/PN lnZv(z) . (C2)

The principle of the thermodynamic limit states that for
N ~ ao (infinite-volume limit) the free-energy density
does not change or

=exp [S,', [b;a]—S„[b;a]]— (815) lim f,(„)——fv" .
N —woo

Once the classical action S,') [b;a] has been obtained,
S,)[b;a] can be found by simply setting f(r)—:0. Sup-
pose we take the functional derivative with respect to
f(r) to Eq. (815) to obtain

r(r)exp —' fdr f(r).r(r)
S

This principle has proven to be very useful in computa-
tions (see, for example, Appendix A).

We are interested in the average of the free-energy den-
sity of the possible potential configurations

&A&V(N) X P[V(N)]fv(N)

exp —(S,', [b;a] S„[b;a])—5 l
1/PN g P [V(N) ]1nZv()v) ~

V(N)
(C4)

5S,', [b;a] i
exp —(S,') [b;a] S,) [b;a])—5f r

Evaluating both sides when f(t) —=0, we obtain

Suppose now that direct computation of Eq. (C4) is hard
but that gv(&)P[V(N)](ZV()v)) would be feasible. The
replica method yields a formal solution procedure for the
computation of (C4). Define

&g)v & v())()= PN &fr & v(n)

5S,', [b;a]
5f(r)

We can continue this process to get the second deriva-
tive,

5 S,') 5S,', 5S,')
i 5f(r)5f(o. ) 5f(r)5f(o ) t=o

(817)

and use the relation

lim ln
I
1+m A

I

= A,1

m~0 Nl

yielding

1
(g)v&v()v)= lim ln 1+m g P[ V( N)]l nZv()v)

m —+0 Vl v(N)

(C6)

(C7)

Actually, since S' is quadratic only in f, the average of
any number of r(r), (r(r)r(A. ) . . r(cr ) &z, can be directly

Since gv(&)P [ V(N)]=1, the argument of the logarithm
reads
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1 +m g P [ V (X)] liiZ v( )v)
V(N)

P [ V(X)](1+m lnzi {)v)) .
v(N)

(C8)

we finally obtain the replica alternative formula for Eq.
(C4),

1(f~)),()v)= —1/PX lim ln g P[V(X)](Zi,()v))
17' ~0 Pl V(N)

Invoking the fact that

1 +m lnZy()v) = (Zv()v) ) foi' m ~0 (C9)
The name "replica" originates from the calculation of
(Zi, ()v) ) by taking m duplicates of' the system. Indeed,

N —Eim —~ ~ V(N) I ) ~ ~ V(N) 2 . . . ~ P V(N) m
Zv(N) ~

k) =1 k2=1 k =1

N N N Pal

exp g PE@()v)(k ) (Cl 1)
ki 1 k2 k =1

meaning that the partition function of m (noninteracting)
replicas of the system is the partition function of the
original system to the power m.

The replica method is a formal procedure. The I~0
limit assumes a continuous variable I where one usually
only disposes of integer values of m. The impossibility of
analytic continuation of the free energy from its values
on the integers down to its value at I =0 constitutes a
weak point of the method. Further, the derivation
demonstrates that first the limit m0 and afterwards
the N ~ ~ (thermodynamic limit) should be taken.
However, in practice, a reversal of this order seems to be
permitted, as discussed by Mezard et al. (1987). Finally,
complications may occur in what is called "breaking of
the replica symmetry, " which is connected in some way
with the order of the limits. For this, we refer the reader
to Mezard et al. (1987) because it is not part of our prob-
lem.

APPENDIX D: EVALUATION OF THE AVERAGE (9.12)
OVER ALL POTENTIAL CONFIGURATIONS
HAVING A GAUSSIAN DISTRIBUTION FUNCTION

The problem is to calculate a path integral of the form

Q [f(r)]=f2)v(r)P[v(r)]exp —,
' fdr f(r)v(r)

fduB(r —u)A(u)=5(r), (D4)

or, the Fourier transform of the correlation function
A (u) is the inverse of the Fourier transform of the B (u).
With Eq. (D3) the path integral (Dl) resembles a path in-
tegral with quadratic action, where the argument of the
exponential S [v (r ) ] is

S[v(r)]= ,' f—dr—fduv(r)B(r u)v(—u)

+ ,' f dr—f(r)v(r) . (D5)

I'his kind of path integral can be evaluated exactly (Ap-
pendix B). Proceeding as in Appendix B, we find the
analog of the classical action by first solving

5S [v (r)] =O=f(u) —fdrB(u —r)v(r) .
|)v(u) (D6)

Multiplying both sides of Eq. (D6) with A (x—u), in-
tegrating over all space, and using Eq. (D4) solves (D6)
with the resulting analog for the classical path

v, (x)=—,
' f du A(x —u)f(u). (D7)

Substitution of Eq. (D7) in (D5) gives the analog of the
classical action,

(D 1)
where the probability P [ v (r ) ] is assumed to be Gaussian,
and characterized by the first two moments (see Sec.
IV.C)

S, = ,' f du f—drf (r)A(r —u)f(u) .

According to Eq. (B7) we have for (D 1)

(D8)

( )
(v(r)v(u) ) = A ( ~r —ut) .

Feynman and Hibbs (p. 333) show that the corresponding
probability functional P [v (r ) ] equals

Q[f(r)]=Fexp ', fduf dr f(r—)A(r —u)f(u)

P[v(r)]=exp ——' f dr fduv(r)B(r —u)v(u) The remaining constant I' is found by the normalization
condition for the probability, or equivalently Q[0]=1,
yielding I =1.
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