
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street,
Baltimore, Maryland 21218
and Theoretical Oi vision, MS 8282, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

This paper reviews the progress made in the last few years in theoretical understanding of the properties
of superconductors in very high magnetic fields. The key ingredient in the new understanding is the
recognition that the usual negative effect of orbital frustration in a superconducting state, reflected in di-
amagnetic pair breaking, is obviated when all electrons reside in only the few lowest Landau levels. A new
relation between the superconducting order parameter and the magnetic field now exists which permits a
strong enhancement of the critical temperature with increasing magnetic field. The issue of Pauli pair
breaking and the effect of impurities in this new state are also discussed, along with the important obser-
vation that the attractive component of the effective electron-electron interaction in systems with low car-
rier density is enhanced with increasing magnetic field. While this paper emphasizes the theoretical as-
pects of this high-field limit, it does present a unified picture of superconductivity throughout the whole
temperature and magnetic-field phase diagram. Numerical applications to simple models of low-carrier-
density semiconductors and semimetals are also discussed, since these materials are the most likely candi-
dates for this new phase.
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I. INTRODUCTION

Since the discovery of superconductivity in the early
1900s, it has become clear that the relationship between
the external magnetic field and superconductivity is both
fundamental in its physical origin and very important
from a practical point of view. The existence of the
Meissner e6'ect, the expulsion of the external field from
the interior of a superconductor, illustrates this funda-
mental relationship, which is based on the principle of
gauge invariance. Yet, at the same time, this inherent
property of superconductors can be used to provide
shielding from external fields when an environment free
of magnetic fields is needed in technological and industri-
al applications. Similarly, type-II superconductors, in
which the external field can coexist with superconductivi-
ty in the form of a quantized Aux lattice provide a basis
for the construction of the most powerful magnets.
These are just some of the reasons for the strong interest
in the scientific community in understanding supercon-
ductivity in the presence of magnetic fields. This interest
continues to grow, fueled further by the intense study of
high-temperature and other exotic superconducting ma-
terials.
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It has been an accepted "folklore" that an external
magnetic field suppresses superconductivity. This is
often, and sometimes superficially, attributed to the
breaking of time-reversal symmetry caused by the pres-
ence of the external field. The fundamental reason is that
the superconducting order parameter P(r) becomes
"frustrated" due to the gauge invariance, resulting in a
supercurrent flow either at the surface (type-I behavior)
or in the interior of a superconductor (type-II behavior).
This orbital frustration, or diamagnetic pair breaking, is
present in all superconductors and is based only on a
completely general property of the superconducting
ground state. Such a state has a broken global U(1) sym-
metry, the "magnitude" of this symmetry breaking being
measured by g(r). In type-I superconductors a small
external field H induces diamagnetic surface currents by
introducing a spatial variation in the phase of g(r). [By
small H we mean that the magnetic energy H /8% is
small compared to the absolute value of the free energy
F( T) of the condensate; ~F ( T)

~

= ~f~ .] Microscopically,
the way H couples to electrons results in an overall
momentum of the Cooper pairs transverse to H by shift-
ing one of the momenta of the electrons in the pair, rela-
tive to the other (i.e., the effect of breaking time-reversal
symmetry). The induced surface currents then exactly
cancel H beyond a skin depth A, , hence the Meissner
effect. As H increases, the Cooper pairs acquire greater
and greater momentum perpendicular to H, and the gain
from the reduction in the condensate free energy F( T)
decreases. The current j, which is proportional to the
product of the increasing velocity U and the decreasing
~g~, cannot then exceed an upper critical value j„' i.e.,
above j, (when H ~ H, ) H penetrates throughout the
sample and superconductivity is destroyed. The order of
magnitude of this 0, can be estimated from a considera-
tion of the current j, and the profile of the skin penetra-
tion of H. It, of course, can be also calculated exactly us-

ing thermodynamic considerations; this, however, does
not provide any details on how the diamagnetic pair
breaking is evolved.

Type-II superconductors have a slightly more complex
relation between H and diamagnetic pair breaking, as il-
lustrated by the phase diagram of Fig. l. (The origin of
the high-field portion of the phase diagram will be dis-
cussed in Sec. III). A type-II superconductor differs mi-
croscopically from a type-I in that, in the presence of H,
the acquired transverse momentum of the Cooper pairs
leads to a lower pair velocity than in type I. This has
significant experimental consequences; type-II supercon-
ductors can accommodate H in their interior. Again, as
in type I, up to a field H„ the surface current screens H
entirely out of the sample. H, i can be estimated from the
expense in the condensation energy required to generate
a single quantized Aux line in the interior of the sample.
Above H„, however, the low velocity per Cooper pair
momentum (or equivalently in the spin analog, a small
stiffness coeKcient and a corresponding relatively low
frustration energy) leads to a smaller expense in F(T)

FIG. 1. A sketch of the phase diagram for the superconducting
condensate in the T-H plane. Assuming the system is a type-II
superconductor at zero field, as the field increases one crosses
over from a Meissner state to the quantum-limit state at H, „.
The steplike crossover rejects the eFect of the depopulation of
higher Landau levels. Such oscillations will continue along H, 2

with smaller amplitudes and periods. For a pure type-II super-
conductor the H, 2 line comes close but never touches the verti-
cal axis.

than in type I. The ground-state wave function can then
modify itself to survive the presence of an internal mag-
netic field. The order parameter g(r) must now become
nonuniform in the bulk, even at the expense of the frus-
tration caused by the presence of a bulk magnetic field
B(r)=H+b(r). [b(r) opposes H, i.e., B(r)&H.] Just
above H, &

the order parameter is distorted to form a di-

lute array of vortices with a unit flux go=A'c/2e and a
range A, (see Fig. 2). Just below the H, z line, on the other
hand (see Fig. 1), g(r) goes to zero while maintaining a
nonuniform hexagonal lattice structure (the Abrikosov
lattice) containing one flux quantum per unit cell area
2al* [I'=(Pic/2eH)'~ ]. Above H, 2, f(r)=0 and there
is no superconductivity.

Of course, there are other ways in which H can affect
superconductivity. The Zeeman splitting, which is also
the consequence of the loss of time-reversal symmetry,
will lead to Pauli pair breaking in a spin-singlet supercon-
ductor and suppression of superconductivity. H, via the
Zeeman coupling, tends to align the spins of the electrons
forming the Cooper pair. To find the field H=H for
which such a spin alignment is profitable in type-I super-
conductors, we need to compare the energy of the
paramagnetic state —,'yH~ (where y is the Paul—i suscep-

tibility) with H, /Svr. Since y«— 1/4m, even for rela-

tively low electron density, H »H, and plays almost no
role. In a type-II superconductor Pauli pair breaking is
more relevant than in type I. Since the field around H, 2
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FIG. 2. Structure of one vortex line in a type-II superconduc-
tor. The magnetic 6eld is maximum near the center of the line.
Going outwards, h decreases because of the screening in an
"electromagnetic region" or radius -k (the penetration depth).
From de Gennes, 1966.

exists within the sample, H does couple to the spins and
does modify the shape of the H, 2 line. However, it is well
known that the Pauli critical field H is now given by
pi& gHp kp T, and is found to lie above the H, z line for
the majority of type-II systems. The Pauli pair breaking
will obviously become an important issue at very high
magnetic fields, where H ))Hz )H, 2 (T=O), i.e., along
H, of Fig. 1 (the origin of the high-field region of the
phase diagram in Fig. 1 is discussed in detail in Sec. III).
Furthermore, a strong magnetic field could modify the
interactions leading to the superconducting instability in
the first place. If localized magnetic atoms (or ions) are
present in the system, H could afFect their interaction
with the superconducting electrons and thus change
some superconducting properties. All of these efFects,
however, are not "fundamental" and are, in this impor-
tant respect, difFerent from diamagnetic pair breaking.
For example, a spin-triplet superconductor could be
largely insensitive to Pauli pair breaking, while, in some
systems, the pairing interaction could actually be
enhanced by H. In contrast, the orbital frustration and
the diamagnetic pair breaking are always present and
fundamentally tied to a superconducting state.

While orbital frustration is inherent to a superconduct-
ing state in an external field, it is an interesting question
whether it always leads to a suppression of superconduc-
tivity, as in the standard Abrikosov-Gor'kov theory (Fig.
1). Until very recently, a resounding "yes" would be the
response to this question by most physicists. In the last
several years, however, it has become increasingly clear
that the answer is "no" (Tesanovic, Rasolt, and Xing,
1989; Rasolt, 1987) and that there is a regime in which
the external magnetic field in fact enhances superconduc-

tivity. This unusual lim. it of superconductivity occurs
only in very high magnetic fields, where electrons move
in quantized Landau orbitals, and is most prominent in
the extreme quantum limit, where all electrons are in the
lowest Landau level. This limit arises through the
transformed nature of the orbital frustration. When the
electrons themselves occupy only several of the lowest
Landau levels, the orbital frustration is resolved "natu-
rally, " in a sense that will become clear later, and super-
conductivity is enhanced in an increasing field, as T, be-
comes a rapidly increasing function of H. '

This brings us to the main point of this review. The
description of diamagnetic pair breaking presented above
and leading to the usual H, z line of Fig. 1 depends on the
following assumption, which is generally well satisfied in
most type-II superconductors considered so far: It is as-
sumed that the bending of the semiclassical paths of elec-
trons by the magnetic field H is negligible over the range
of the single-particle Careen's function 6 at zero magnetic
field. This is the semiclassical phase-integral approxima-
tion, originally due to for kov (1958). In the clean limit,
this translates to I k~))uz/(2+k+ T) (or equivalently to
fico, «k&T), where I =(Pic/eH)' and co, =eH/I c.
For large impurity concentrations, it translates to
co, /2m. «r, where r is the impurity scattering lifetime.

In both cases, either temperature or impurity scatter-
ing (or both) totally erase any signature of the Landau-
level structure, a structure that must be there in a corn-
plete theory of type-II superconductors in the presence of
a magnetic field. As already mentioned, this is a very
good approximation in most cases, since the number of
occupied Landau levels is huge and the separation be-
tween them is very small. In low-carrier-density sem-
imetals and semiconductors with l of the order of the in-
terparticle separation, a situation that can readily be
achieved by application of fields in the 1 —30 Tesla range,
this assumption must be reexamined (Rasolt, 1987;
Tesanovic, Rasolt, and Xing, 1989). When this Landau-
level structure is fully accounted for, one finds that, for a
pure case or for a modest level of impurities, supercon-
ductivity does not terminate above the H, 2( T) line.
Rather, as H increases, the H, 2 line crosses over (for the
pure ease) or reenters (for a modest level of impurities) a
new superconducting state, above the H, „ line (see Fig.
1), whose critical temperature is an increasing function of
H. In fact, in the quantum limit H &H&i, where both
spins occupy the lowest Landau level (if the Zeeman
splitting is small), T, is a rapidly increasing function of H
(see Fig. 1 along the H, line and beyond the last
Landau-level oscillation).

~One final comment about diamagnetic pair breaking concerns
the role of impurities. The addition of nonmagnetic impurities,
not surprisingly, increases the "mass" of the Cooper pairs and
makes a superconductor more type II. In fact (as we discuss in
Sec. II), in the limit of high impurity density, the behavior of
the M,2( T) hne is correct all the way to T =0, and the crossover
region to H, „(Fig. 1) disappears.
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At this point, we should recall a more familiar instabil-
ity of an electron gas, which is enhanced in strong mag-
netic fields: the spin-density wave (SDW). Celli and
Mermin as early as 1965 observed that for H & H&L the
quasi-one-dimensionality along H leads to a strong
enhancement of SDW instabilities due to the nesting of
opposite sides of the Fermi surface perpendicular to H.
It is precisely this quasi-1D behavior that leads to the
enhancement of superconductivity along the H, line
through the rapid increase in the density of states. How-
ever, unlike the SDW case, such a suggestion for super-
conductivity may encounter serious reservations. For ex-
ample, the diamagnetic pair breaking and the orbital
frustration that result in the Meissner effect, irrelevant in
the SDW (or charge-density-wave) case, pose the physical
question, How can a stable superconducting state exist in
a magnetic Geld generally much higher than any charac-
teristic H, 2. Another point is the effect of impurities. If
we naively view the H, line as an extension of the H, 2

line to i~ —+ ~ (where lc—:A, /g with g the coherence
length), we run into the following possible misconception:
We argued that the larger the level of impurities, the
more type II is the superconductor and the higher is H, 2,
while at the same time the more appropriate is the ap-
proximation in which the Landau-level structure is ig-
nored. So how do we ever reach the H, line in real sys-
tems? We shall answer these questions in great detail in
the following sections. In fact, in the early sixties correc-
tions to the semiclassical phase-integral approximation
due to the Landau-level structure were already being
considered by Rajagopal and Vasudevan (1966a, 1966b)
and by Gunther and Gruenberg (1966). The mathemati-
cal structure for studying the H, line was largely in
place. It was probably the kind of reservation mentioned
above that left this most exciting region essentially unex-
plored. We have already briefly touched on how diamag-
netic pair breaking is circumvented in the quantum limit.
We shall see below that, while Pauli pair breaking and
disorder impede superconductivity severely in the cross-
over region, they do not have any "cata-
strophic" effect in very high fields, and particularly not in
the quantum limit, where Pauli pair breaking is largely
circumvented by the nonuniform state along 8
(Tesanovic, Rasolt, and Xing, 1989). It is nevertheless
clear that the best candidates for high-field-limit super-
conductivity are materials that are relatively pure and
that have a low effective g factor.

At present, the notion of superconductivity in high
magnetic Gelds is a purely theoretical one. We are not
aware of any experiments that have identified this state in
a real material. Thus, in writing this review, we have set
two major goals for ourselves: First, we want to present
a thorough theoretical basis for this state (within the
confines of the available literature) and to establish the
relation of this subject to other more familiar ones:
type-II superconductivity, many-body physics in the
quantum limit of a magnetic field, quantum Hall effect,
many-body physics in one dimension, etc. Second, by

discussion of topics like the effect of Pauli pair breaking
and impurity scattering on the superconducting state in a
high field, the interplay of electron-phonon and electron-
electron interaction in low-density systems, etc., we
should like to give at least a rough outline of the condi-
tions that Inust be met in real systems if one is ever to ob-
serve this limit of superconductivity. This message is
clearly directed toward experimentalists, whose interest
we would very much like to stimulate. If the experimen-
tal reader comes away from reading this review chal-
lenged and thinking of ingenious ways to prove the
theory right or wrong, then we have attained our most
important objective.

To elucidate the properties of this superconducting
state along and above the H, line we shall use a variety
of methods: variational wave functions, Geld theory, and
the Ginzburg-Landau expansion. Each approach will in
turn lend additional insight into this novel superconduct-
ing state. We shall, as much as possible, try to relate the
H, line with the more familiar H, 2 line, sometimes at
the risk of being repetitive. Our goal is to leave no doubt
that this superconducting state is as sound as the spin-
density-wave, charge-density-wave (CDW), and valley-
density-wave states, all believed to be enhanced in the
high-field limit, where only a small number of Landau
levels are occupied. Which broken symmetry will occur
in which particular material will ultimately have to be
answered by an experimental effort.

The review is organized as follows: In Sec. II we give a
general discussion of the interaction of the electromag-
netic vector potential and the superconducting state. We
stress in particular the relevance of time reversal and the
efFect of impurities on the superconducting condensate
along H, 2. In Sec. III we discuss the transition line from
H, 2 all the way along to H, using a full Landau-level
structure. Particular emphasis is given to the efFect of
Zeeman splitting and impurities. In Sec. IV, we discuss
the nature of the order parameter along H, 2~H, , with
particular emphasis on the effect of diamagnetic pair
breaking and the nature of the transport properties, such
as current Sow and dissipation. In Sec. V we go beyond
the mean-field approximation and discuss fIluctuations.
In Sec. VI we discuss various aspects of this subject with
an eye to experimental considerations. Finally, our con-
clusions are given in Sec. VII.

II. INTERACTION BETWEEN
THE ELECTRGMAGNETIC FIELD AND
SUPERCGNDUCTIVITY: GENERAL DISCUSSIGN

A. The Hamiltonian

The nonrelativistic Hamiltonian for a many-electron
system in the presence of an external vector potential
A(r) is given in second quantized form by

(2.1a)

Here H, is the electron interaction with the Gxed ions,

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



M. Rasolt and Z. Te5anovic: Superconductivity in very high magnetic fields 713

v=1,2

fd r g (r) —.V — —A(r)+a(r)2' l C
5 „+U,(r) E—z .g„(r), (2.1b)

where a(r) accounts, in a mean-field way, for the e-e diamagnetic interaction (i.e., the Breit term), with b(r) =V Xa(r),
and where the 1to(r) are the creation field operators for the two spin components i7=1,2. In Eq. (2.1b), U „(r) in-
eludes the fixed periodic background g, Uo(r —RJ ) and Zeeman splitting —gpii& H(r) and a random impurity con-

J
tribution g1 Uo „(r—R' ) (the spin indices o,v allow for magnetic impurities). Assuming small displacements, to
quadratic order, the ion-ion interaction is given by

ph =g Rmqsbqsbqs (2.1c)

where bq, are the phonon creation operators of polarization s and Acoqs are the corresponding phonon frequencies. The
electron-phonon interaction is given by

3

„p=i f gd r f g aq, (b, +bt, )e'q' ft(r)iti (r)
(2m )

(2.1d)

aq, =(N;/M)' g [Uo(q)qiei(q, s)/(2', )'~ ] . (2.1e)

In Eq. (2.1e) Ni is the number of ions, M the ion mass, and Uo(q) the Fourier transform of the electron-ion potential.
Finally, the electron-electron interaction H, , is given by

0 ),0'p
f d r, f d r2itio (r, )P (r2)u(r, —r2)f (rz)gati (r, ), (2.1f)

i(o/2) A (2.2a)

P (ci —ko. —1ciko=2 ci ko zc;ko=1—)+—g b qsbqs
k, i q, s

(2.2b)

where the c;& are defined by

g (r)=pc;k Pk'(r) (2.2c)

such that

&'[ss e& iko ] kko iko (2.2d)

[In 8,' we have removed the impurities from Ae in Eq.
(2.2b); 8,', therefore, represents the periodic part of the
single-body Hamiltonian 8'e.] In Eq. (2.2), i is the band
index, k the Bloch momentuin, and g the band energy.
[Incidentally, Eq. (2.1), with A(r) set to zero and without
magnetic impurities, continues to be invariant under k
even in the presence of spin-orbit interaction; we shall
not, however, consider spin-orbit e8ects in this review ar-

where u(r, —r2)=e /~r, —r2~.
If we set A(r) =0 and consider only nonmagnetic im-

purities, then Eq. (2.la) is invariant under the full SU(2)
symmetry roup and the time-reversal point-symmetry
operation, which is the product of complex conjuga-
tion C and a unitary matrix U (i.e., E= OC). In this ma-
trix 0 is given by

ticle. ] When B(r)%0 [and therefore A(r)%0], or when
magnetic impurities are included, it is not dificult to see
that Eq. (2.1) [and in particular Eq. (2.1b)] is no longer
invariant under SU(2), but even more important to us, it
is no longer invariant under time reversal, i.e., under k of
Eq. (2.2) (we shall come back to the implications of this
shortly).

In this review, the on-the-mass-shell processes we con-
sider involve almost exclusively the electronic coordi-
nates alone. It is then desirable to "integrate" out the
phonon degrees of freedom into an effective e-e interac-
tion. There are many ways to identify this interaction.
Perhaps the easiest is to consider the field-theoretic ex-
pansion to lowest order in the e-e scattering cross section
(see Fig. 3) at finite temperature. Using 8' of Eq. (2.1) (re-
moving, for the moment the presence of the magnetic
field), we find that this effective interaction u,s is given by
the wavy line of Fig. 3; its form is

udr( 1 r2 ~2 ~1)
2 iq-(r& —r2)

d q 2 q s~qs e

(217) (io2 iu1) co&

(2.3)

where co=kii Tm(21+1) are the electron Matsubara fre-
quencies. [Incidentally, in a, of Eq. (2.3) Uo(q) of Eq.
(2.1e) must now be replaced by the screened electron-ion
potential]. For a weak-coupling superconductor, one
uses a simple short-range attractive BCS (Bardeen, Coop-
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eg FICx. 3. The electron-electron scattering cross
section I of two different spins in the ladder
approximation. The wavy line is the effective
e-e interaction, and the arrowed lines are the
noninteracting electron propagators. The last
three graphs include the effects of impurities to
lowest order in impurity scattering.

er, and Schrieffer, 1957) point interaction —Vg(r, —r2),
with some energy cutoff, to replace all of Eq. (2.3). This
interaction, V, contains the efFective electron-electron at-
traction arising through the exchange of phonons [the
first term in Eq. (2.3)] and the effective Coulomb repul-
sion arising from the second term in Eq. (2.3). The
second term will also be screened through a Thomas-
Fermi (or similar) mechanism. Furthermore, this repul-
sive term has a di6'erent energy scale from the phonon
term and is renormalized downward by retardation
effects (for discussion of these points the reader should
consult reviews on the theory of superconductivity found
in Parks, 1969). The final Hamiltonian of interest here is
then

,'Vg fd'—r g—t(r)@ (r)f (r)g (r) (24)

We went to some length to write down Eq. (2.3) so that
we could briefly consider the effect on U,z(ri —rz) or
V5(ri —r2) of turning on the magnetic field. The magnet-
ic field couples (to order m /M) only to the electrons. All
the valence electrons participate in forming aq z or coq

and, therefore, even in low-carrier-density systems the
energy scale for modifying Eq. (2.3) is several electron
volts. The H corresponding to the quantum limit (in
low-carrier-density systems) has, therefore, little effect on

the form of Eq. (2.3) (there are some subtle points here,
like the coupling of the plasmon of low-density carriers
to optical phonons. The reader should consult Sec. VI.B
for further discussion). However, as we shall argue in
Sec. VI, the actual scattering processes, which in the
quantum limit include the matrix elements of Eq. (2.3), in
the lowest Landau level are strongly modified due to the
strong H. In fact, as we shall see, 8 reduces the repul-
sive part of U,z relative to the attractive one and thus
favors an attractive V (Rasolt, 1987); this is encouraging
to the actual observation of superconductivity in very
high fields.

The thermodynamics of the Hamiltonian (2.4) can be
calculated from the partition function Z:—T,e ~ . It is
sometimes more convenient to write Z in the Feynman
path-integral form using the coherent-state representa-
tion, i.e.,

Z =f Dg (r, r)DQ'(r, ~)Da(r)exp —f drL(~)P

0

(2.5a)

where jD Q (r, r)D Q*(r,r) denotes functional integra-
tion over Cxrassman variables g (r, r), P'(r, ~),a(r) is the
fluctuating part of the vector potential, and

L(~)=g f d3r p*(r, ~) p (r, ~)+ D,'g*(r, r)D, Q (r, r)+gp*(r, r)U „(r)g,(r, ~)
2m

V, , [H+b(r) ]'
g*(r,~)P' (r, ~)—P (r, ~)P (r, ~)+

2 Sm
(2.5b)

Here B. Mean field

D, —:8,——[ A(r)+a(r)],
C

and we have added the energy of the magnetic field.

It is, of course, impossible to calculate Z of Eq. (2.5)
exactly. A common approximation, which in many cases
captures the essentials of the superconducting state
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(but not always; see Sec. V), is the mean-field approxima-
tion. It corresponds to rewriting the quartic interaction
of Eq. (2.5b) in terms of new auxiliary fields
b, (r, ~),d (r, ~), the Hubbard Stratonovich fields, and
only quadratic powers of the electron fields g(r, w} and
f'(r, ~), and then setting these b, (r, w), d (r, w) to their
saddle-point values. These saddle points correspond to
what is traditionally taken as a mean-field solution of Xt
in Eq. (2.4).

Here are three examples:

+g [ U &(r)u„(r,p)

where

0 1

—1 0

+b, '(r)p „u„(r,p)],

—E„u„(r,o )= E—F u„(r, o )
(p +eA /c)z

(2.9b)

&(r)= V( P(r T )g(r l ) &,

d, ( )= V[(itjf( t)itj( t)&+&yf( l)q( l)&],

(2.6a)

(2.6b)

and E„are the elementary excitations in the mean-field
approximation.

and

dz(r) = V[(P (r 1 )g(rJ, ) &
—(f (r J, )g(rt) & ] . (2.6c)

(2.7)

Incidentally, as is well known, the Hubbard-Stratonovich
field of Eq. (2.6a) is only defined in a larger Hilbert space
with varying number N of electrons. This change from a
canonical to a grand canonical ensemble is very con-
venient, but certainly not necessary, and the mean-field
approximation can be worked out equally well for fixed N
(see below}.

To solve for the eigenstates of 8 (and the correspond-
ing Z), we follow the presentation of de Gennes (1966).
Once we set this all up, it will help us identify (in the fol-
lowing sections) the similarities, difFerences, and cross-
over behavior along the whole H,2~H, line.

&. Elementary excitations of A,~

The elementary excitatlons of Eq. (2.7) are found by
performing the Bogoliubov transformations,

g (r) =g [u„(r,o )y„+u„*(r,o )y„], (2.8a)

The last two fields correspond to the usual charge and
spin contributions and will be lumped into 8,. Equation
(2.6a) is related to the off-diagonal superconducting
long-range order we are interested in. The mean-field ap-
proximation for H in Eq. (2.4) is then

8,s-=8, +Jd r[ b(r)g (rt')g (r1)+b, '(r)g(rg)p(r 1 )] .

where f(E„)=1/(1+e "). Since b,(r) enters Eq. (2.9),PE„

Eqs. (2.9}and (2.10) constitute the self-consistent solution
for P,fr and the corresponding Z and b,(r) (or, if we like,
the saddle-point solution for the Hubbard-Stratonovich
fields in the mean-field approximation). These two equa-
tions contain all possible efFects for any size magnetic
field in the presence or absence of impurities or Zeeman
splitting within the mean-field approximation. %"hatever
we say, in later sections, about the behavior of supercon-
ductivity in high fields is included, within the mean-field

approximation, in Eqs. (2.9) and (2.10). The full solution
of these equations, for arbitrary magnetic field (e.g. , an

arbitrary uniform applied magnetic field) is very difficult.
It will turn out, however, that in the quantum limit

things actually become considerably simpler, and, in a
certain sense, this is the "natural" limit in which to study
the orbital efFect of H on b, (r).

3. The mean-field result for the H,2~H, „line

Assuming a continuous transition (in the mean-field

approximation) on the H, 2 +H, „line, the or—der parame-

ter h(r) goes to zero and Eqs. (2.9) and (2.10) can be
treated as a perturbation to the electronic eigenfunctions

P„ in the normal metal, given by
2

eA —EF P„(r,cr)g„P„(r,cr ) =

2. Self-consistent equations for ~(r)

From Eqs. (2.6a) and (2.8a), b.(r) is given by

g(r)= ' Vg gp u„*(r,cr) u„(r,p)[1—2f (E„)], (2 10)

where

(2.8b)

E„u„(r,cr)= Ez u„(r,cr)—(p —eA /c)
2&l

+g [ U „(r)u„(r,p)

+b.(r)p „u„(r,p) ], (2.9a)

From Eqs. (2.7) and (2.8) we see that the u„(r, cr) and
u„(r, o. ) satisfy the two coupled equations

(2.11)

(2.12)

0
f„&0.

ln Eq. (2.11) the zeroth-order u„and u„[i.e., with
h(r) =0] are

g„&0,
0

u+ Q g (0
0, C„&0,
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To first order in b,(r), u„and u„are given by

u„=u„+ g a„P, U„=U„+ g b„
mAn m&n

The coefticients a„and b„are obtained by the usual perturbation method:

(2.13)

0 (g„&0),

4.+4 g f d r2$' (rzcr)p „P„*(r~)b,(rz) (g„(0),

g f d r2$„(r2o )p P„(rzp, )h(r2) (g„)0),
b =. 4.+k

0 (g„&0) .

(2.14)

b(r, )=VfK (r„rz)h(r2)d r2 (2.15)

where

P„"(ri)P„(r,)

XP (r, )P'(r, ) . (2.16)

Equation (2.15) again describes the transition to super-
conductivity for any magnitude of the uniform magnetic
field in the presence of any level of impurities (magnetic
or nonmagnetic or both) and Zeeman splitting within the

If we now insert Eqs. (2.12), (2.13), and (2.14) into Eq.
(2.10) (and replace E„by g„), we get, to lowest order in
b, (r), the following form for Eq. (2.10):

To get a first glimpse of the form of h(r) we can con-
sider two regions. Just above the H, &

line a very small
internal magnetic field 8 (r) exists. h(r) resolves its frus-
tration by screening this field in the form of a dilute vor-
tex structure (see Fig. 2). This region will not be of in-
terest here and will not be considered any further.
Around'the H,2~H, „line the form of b(r) first appears
when Eqs. (2.9) and (2.10) are expanded to third order in
b, (r). Perhaps an easier (but equivalent) way is to write
down the free energy I' to quartic order in b.(r) (ap-
propriate to 8,s) and then minimize with respect to b, (r).
The appropriate Feynman graphs for F are presented in
Fig. 4; F is then given by

F =F, +FI, ,

where

(2.17a)

mean-field approximation. It then describes the transi-
tion along the whole H, 2

—+H, „line.

4. The mean-fieId approximation
in the vicinity of the H,2~H, „line

F, =f d rid rid (r )[Kiz(r re) —V '6(r, r2)]b, (r2)+ ,' f d—rid r2d r3d—r4b,*(ri)b,*(r2)K4(ri, r2, r3, r4)b(r3)b(r4),

(H +b)Fb= d 7

8m

In Eq. (2.17c)

= 1Kz(r„rz)= —g Go (w, r„r2)GO ( —w, r„rq),

(2.17b)

(2.17c)

(2.17d)

1
K4(ri, rz, r3, r~) =—.g Go (w, r„rz)Go ~( —w, ri, r3)GO ~( —w, r4, rz)GO (w, r4, r3 (2.17e)

where Go ( w, r„r2) is the noninteracting Green's function that includes the contribution of b(r),

P„'(r„o )P„(r2,o )

Lw
(2.18a)

where
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(iw H—, )G11 ( w, r, , rz) =5(r, —rz), (2.18b)

while Go (w, r„rz) is a solution of Eq. (2.18b) with a(r) set equal to zero in 8, of Eq. (2.1b). Gp can be calculated to
first order in a(r). (It turns out that this is all that is necessary for a consistent description of F to order ~b,

~
.) It is

given by

GO (W rl 12) Gp (W rl 12)—f d "3gp (W ri r3)~(r3)gp (W r3 12) (2.19a)

h(r) = (p ——A(r) .a(r)+a(r). p ——A(r)
C C

(2.19b)

Inserting Eq. (2.19) in Eq. (2.17d), we get for the first term on the right-hand side of Eq. (2.17a)

f d'11 f d'l2&'(ri)K2(r„rz)4(rz) = fd'r, fd'rzh*(r, )K2(r„rz)b(rz)+F,
where

F, b
=f d r, f d rzh*(ri )K3(ri lz)h(rz)

with

K3(r„rz)=2f d rz f d r3 g Go~(w, ri, rz)gp ( w I'1 r3)f(r3)gp ~( w 1'3 rz) .

Minimizing Eq. (2.17) with respect to b,(ri ) and a(ri ), we get the following two self-consistent equations:

v-'s(r, )= fd'rz[K2(r, , rz)+K3(lj rz)]b, (rz)+ f d rz f d r3 f d r4b(rz)K4(ri, rz, r3, r4)b. (r3)b, (r&)=0
and

(2.20a)

(2.20b)

(2.20c)

(2.2 la)

2
A(1 )+a(1 )

1 M3 (ri, rz )b (rz )
VXVXa(r)= f d r, f d rzb, *(r, ) (2.21b)

4m. Sa r
Again Eq. (2.21) describes, in the mean-field approximation, the order parameter around the H, 2~H, „ line no matter
what the magnitude of the applied field.

Equation (2.21) takes an unfamiliar form. However, in the limit where the semiclassical phase-integral approximation
Is valid~

Go(w, ""i,rz) =exp[ie [ A(r)+a(r)] (r, —rz)h1Ic j Gp(w, r, —rz), (2.22)

where now both A(r)+a(r) are set equal to zero in Gp. In calculating Kz(ri, rz) of Eq. (2.17b) in the presence of im-
Purities (see Fig. 3), one multiPlies Kz(r„rz) by exP{ie [ A(r)+a(r) ].(ri —rz) J. Equations (2.21a) and (2.21b) reduce to
the familiar Ginzburg-Landau forms,

r

~( T)g(r)+p(T) ~g(r) ~'f(r)+ (2.23a)
2&i

1
V X V X [ A(r)+a(r)] = [f'(r)VQ(r) f(r)VQ*(r—)]— g (r)g(r) A(r),

—eA e'
4m. EOlC PPl C

(2.23b)

where, for example, for a pure host (i.e., no impurities),

and

a(T) = —1 111 1+
CV CP2m „(iw —g„)(iw+g„)

(2.24a)

1p(T)=
C2P 2m

(2.24b)
1 1

„„(iW—g„) (iW+ g'„)2

2mc '"
h

AUy
C =0.0165K(0)

8 c

FIG. 4. Example of free-energy contributions. (a) Free-energy
contribution of Eq. (2.17) to fourth order in the h(r). The filled
squares are the A(r) and the arrowed lines the electron propa-
gators. (b) Contribution to the free energy from impurities to
lowest order in impurity scattering.
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with N(0) the density of states at the Fermi surface. The
solution of Eq. (2.23) (along H, z) is, of course, a saddle-
point solution. Therefore a nonvanishing g(r) does not
necessarily correspond to an absolute minimum of F ( T).
The first nonvanishing P(r} can commence below the H,
line. In that case the superconductor is of type I; this
occurs when t~ =A, /g (1/v'2.

Finally, perhaps we should add that deriving Eq.
(2.23b) directly from Eq. (2.20c) is very subtle, since Eq.
(2.19a) assumes that f(r) is smaller than

lp
—(e/c) A(r)l for all r. This is certainly true along the

transition line in the high-field limit. In the region along
H, 2, where the semiclassical phase-integral approxima-
tion is valid, Eq. (2.22) is the appropriate starting point.

5. Ground-state wave function in the mean-field
approximation

Most properties of any many-body system can be cal-
culated without knowing the form for the many-body
eigenstates (ground states or excited states). For exam-
ple, Eqs. (2.21) or (2.23) describe the current distribution
around the H,2~H, line without ever calculating such
eigenstates. In fact, even to calculate only the corre-
sponding ground-state wave function, in the presence of a
magnetic field, is very dificult. This is due to the break-
ing of time-reversal symmetry, leading to complicated
mixing of the individual electron states in the pairing
wave function, whose momenta are transverse to the
field. This is what one usually refers to as "orbital frus-
tration. " As we shall show later, in the quantum limit
this orbital frustration is resolved in a "natural" way.
Time-reversal symmetry is, of course, still broken but,
due to the constraints arising from the electrons being in
the lowest Landau level, the ground-state wave function
is easier to write down.

For future reference we write down the ground-state
wave function lP) at zero field, which leads to the mean-
field approximation discussed below. Directly from de
Gennes (1966), this pairing wave function is given by

the level of impurities is so high that they change the
host to a new "alloy. " An easy way to see this is to com-
pare K2(ri, rz) [in Eq. (2.2la)] with and without the pres-
ence of a low level of impurities (see Fig. 3). In the pres-
ence of a magnetic field the interplay between the applied
field and the impurities has important consequences. As
already hinted in the Introduction, impurities can corn-
pletely change the nature of the superconductor from
type I to strongly type II (i.e., ~))1/i/2). Since our in-
terest is primarily the quantum limit (H, „},where the
"penetration" of H is total (i.e., i~ in some sense is
infinite: however, one should always keep in mind that
this is a clear oversimplification), it is important to cover
in some detail the situation at low or modest fields (H,2).
We follow again the presentation of de Gennes (1966).

Equations (2.15) and (2.16) provide the mean-field ap-
proximation for any size magnetic field or level of impur-
ities. As already mentioned in Sec. B.4, the efFect of a
low level of iinpurities can be calculated for K2 [Eq.
(2.16)] from the graphs of Fig. 3, in the absence of the
magnetic field and then (in the semiclassical phase-
integral approximation) multiplying K2 by the exponen-
tial of the phase of the path of the vector potential. A
more elegant way, which will also allow for a high level
of impurities and provide further insight into the inter-
play between time-reversal symmetry and impurities, is
to write E'2(ri, rz) as

dg dg'g q,

E (2q)=N( 0) kiTiQ f (g p I(g+ (2.27a)

where

and where

(nle"'lm ) —= fd'ry. (r)e"'y (r),

g(q, Q)=g (nle 'lm )(mle 'ln )5(g' —g„—iiiQ)
m, n

(2.27b)

lP) =+ (u„+u„C„&C„*~)lvacuum), (2.25)
K2(q)= f d r, f d r2e 'e 'E2(r„r~) .

+ (ui +uj Ci tCI i ) lvacllunl )
k

(2.26)

G. Time reversal and impurities

In the absence of a magnetic field, nonmagnetic impur-
ities have little efFect on the critical temperature, unless

with lu„l +lu„l =1 where C„& creates the state P„(rf)
and C~& creates the state P*(rJ, ) [see Eq. (2.11) with
A=O] and the product over n is over all the states. Note
that

l P ) is invariant under time reversal and that
l P ) is

not an eigenstate of the particle number operator. As al-
ready mentioned, this is very convenient but not essen-
tial. If we ignore the presence of impurities in 8„then
the P„'s become Bloch states and

The bar in Eq. (2.27b) represents the impurity average of
the P„'s and P 's in Eq. (2.16). Equation (2.27) is
equivalent to Eq. (2.16) for states ln ) around the Fermi
surface; i.e., the assumption of weak coupling; g(q, A)
can also be written as

g(qn)= f dt e'"'(nle"" e
" '

ln ),
27rA

(2.28)

where r(t) is the Heisenberg time dependence of r. We
were able to remove the intermediate states lm ) because
of time-reversal symmetry in the absence of A(r)+a(r),
specifically, because then both lm ) and IC

l
m ) [2 given

in Eq. (2.2)] are degenerate.
For an impure metal in which the mean free path Id is

small compared to the wavelength studied q ', e'q'" is
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controlled by a diffusion (random-walk) process. If
D =Uzld l3 is the diffusion coefficient, we have

( e
—iq. r~o~e ~q.~~ ~~ ) —e

—D0'I ~l
q$ && 1gE —e ~d (2.29a)

and therefore

(
1 Dq

g q =M n2+D2 4.
From Eq. (2.27) this leads to

X(0)k~ T
K2(q)= g, qdl «1 .

Dq +2 co

(2.29b)

(2.30)

For a dirty superconductor this C can be much smaller
than in the clean limit. The "mass" of the Cooper pairs
is now much heavier and the superconductor can become
"more" type II.

In the above discussion we have introduced the effect
of A(r)+a(r) in the semiclassical phase-integral approx-
imation. We can, however, write Eq. (2.16) in the form
of Eqs. (2.27)—(2.29) for any size magnetic field. In the
presence of A(r)+a(r) removing the intermediate states
~m ), thus leading to Eq. (2.28), is no longer valid. We
can do this, however, if we first insert the time-reversal
operator [Eq. (2.2)] next to the ~m )'s. Equation (2.28)
now takes the form

g(q, Q)= Jdt e' '(n~e ' K(t)Kt(0)e ' ~n)
27Ti6

where

&~t
K(t) =exp i E exp +i

(2.31a)

(2.31b)

(Note the unusual sign in the last exponent, due to the
fact that KE = ik. ) Th'e rate o—f change of k is given by

[&„K]= —(p. A+ A p)K . (2.31c)
dt A

" mac

This result for g(q, Q) and therefore K2(r„r2), in Eq.
(2.15), is completely general (in the weak-coupling limit)
and true for any level of impurities or any strength of the
magnetic field. The effect of the magnetic field (or break-
ing of time-reversal symmetry) resides entirely in k(t).
Equation (2.31) cannot be calculated in general. Howev-
er, in the dirty limit, where the motion of the electrons is
diffusive on a scale of the magnetic orbit, g(r„r2, Q) can
be shown to satisfy a diffusion equation (see de rennes,
1966) with the consequence that the H, 2 line [or Eq.
(2.23)] is valid all the way to T =0; the crossover region
to H, (see Fig. 1) disappears. Now we come to a possi-

The fact that the effect of impurities enters only in the q
term of K2(q) [Eq. (2.30)] is an example of Anderson's
theorem. Using Eq. (2.30) leads to a new value for C in
Eq. (2.24),

C= ~x(0) ~UF4
24 k~T,

ble misconception already alluded to in the Introduction.
On the surface, this conclusion appears to be very general
and valid for any H. It is important to realize that it is
not so. The diffusive propagation of the electron must
persist even within the cyclotron orbit (or magnetic
length). If this orbit is smaller than ld, then Eq. (2.31a) is
not the appropriate starting point. The full Landau-level
structure for the states

~
m ) must be used; the conse-

quences of this will occupy much of the rest of this re-
view.

In low-carrier-density systems, at high fields, and in
particular in the quantum limit, l is comparable to the
average electron separation t', . To get to the high-field
limit, the purity of the material must be such that
vz~)) I, ; this is not particularly hard to achieve in doped
semiconductors and semimetals. In the high-field limit,
then, there will be a reentrance to the H, at higher
fields. So here is the possible source of confusion we
want to avoid. Often one associates type-II behavior
with "dirty" superconductors. In fact, perfectly pure
systems with low carrier density are commonly strongly
type II. But even if a particular material is type I in a
pure phase and is made dirty intentionally to convert it
to type II, one should not take the simplistic view that
higher and higher fields (as we travel along H, „)reflect a
more and more type-II superconductor, implying the
need for larger and larger impurity concentration. This
thinking would lead us back to the situation in which the
difFusive result (discussed above) for g(q, Q) is appropri-
ate and H, would be eliminated from the phase diagram
in Fig. 1. This reasoning, however, is not correct. It is
important to recognize that there is in fact no direct con-
nection between the low-field and the high-field limits of
superconductivity. In the most extreme case we can even
imagine a sample that has no superconducting instability
at low (or zero) fields, whose effective interparticle in-
teraction becomes attractive when H =H&L, thus leading
to high-field-limit superconductivity (see our discussion
on the effect of H on U,s.). Consequently a given promis-
ing material can be made extremely pure, and the effect
of impurities can be minimized so as to make the situa-
tion most favorable for the high-field superconducting
state. This is a very important point to appreciate, since
it makes the experimental "quest" for high-field super-
conductivity a realistic one in a proper class of materials.

In this section we have presented some general proper-
ties of a superconducting state in an external magnetic
field. We have outlined what is involved in the solution
of the mean-field equations and have discussed the inter-
play of time-reversal symmetry and impurity scattering,
which is of concern in real systems. Now we turn to the
explicit solution of the mean-field theory which is the
source of the phase diagram in Fig. 1.

III. THE TRANSITION LINE

Let us now search for instabilities of the electron gas
with no Zeeman splitting [g =0 in Eq. (2.1b)] in the
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quantum limit, i.e., with all the electrons in the lowest
Landau level (Rasolt, 1987; Tesanovic, Rasolt, and Xing,
1989). We then need to consider the various cross sec-
tions of the e-h and e-e channels, in the lowest Landau
level. In Fig. 5 we present the cross section for the e-h
scattering; Fig. 3 corresponds to the e-e channel. In both
cases the ladder graphs can be readily summed, and in
both cases the cross section becomes singular at a critical
temperature, which in weak coupling (see below for a dis-
cussion of strong-coupling corrections) is given by

T, = 1.14Q exp[ —2ml /c, h (, , )
N i (0)

~ V~ ] . (3.1)

Here Q is the energy cuto6' on V and
Ni(0)=m/[2nk~(H)] is a 1D density of states at the
Fermi level of left- (right-) going particles. In Eq. (3.1),
Fig. 3 corresponds to a positive V and Fig. 5 to a negative
V, where V is the efFective e-e interaction in Eq. (2.4).
Figure 5 is the well known instability towards spin-
density waves, 6rst considered by Celli and Mermin
(1965}. In this case we should use c, h =2 in the exponen-
tial of Eq. (3.1). If Vis attractive, we can have a charge-
density-wave instability in the e-h channel (Frohlich and
Terreaux, 1965; note that these authors consider this in-
stability the quantum-limit analog of a superconducting
state, but their superconducting state is a Frohlich "su-
perconductor, " which is in fact a CDW state. Conse-
quently such a state does not have the orbital frustration
characteristic of a true superconductor and is di6'erent
from the BCS-like state discussed in this review). How-
ever, there is also an instability in the e-e channel. Here
we must use c, ,= 1.

What is somewhat unexpected in the above is that the
transition temperature for the e-e instability is finite.
There are two questions that naturally come to mind at
this point. First, it seems that Eq. (3.1} is at odds with
the familiar result that a magnetic field suppresses super-

conductivity through orbital frustration and an ensuing
diamagnetic pair breaking. In Secs. III and IV we shall
examine this "superconductivity" in great detail and
show that the finite transition temperature arises through
the transformed nature of orbital frustration. In fact, the
diamagnetic pair breaking is electively eliminated in
these high fields, its only vestige being c, ,= —,'c, h (note
that in the 1D H =0 case c, ,=c, h.). As the field in-

creases, the superconducting transition temperature is
strongly enhanced through the density-of-states e6'ect, as
are CDW or SDW instabilities. This leads us to the
second question: Can this superconductivity overcome
other instabilities and emerge as a ground state of some
suitable systems We shall postpone a detailed discussion
of this question until Sec. VI. We do, however, give a
preview of our answer. While for the very simpli6ed
model used in deriving Eq. (3.1) it seems that the CDW
state will be a favored state for attractive V, since
c, h & c,„in a realistic situation, with the attraction aris-
ing from electron-phonon interaction, and in the pres-
ence of long-range Coulomb forces, the competition will
most likely be between superconductivity and SDW
states, with CDW states being largely disqualified by the
direct Coulomb repulsion (Tesanovic and Halperin,
1987). Even for finite Zeeman splitting, with g(2, as
long as both spins are occupied, Celli and Mermin found
a stable SDW state. We shall show below that the same
holds true for the superconducting instability. The SDW
instability has motivated considerable experimental
eFort, while the superconducting instability was hardly
contemplated either theoretically or experimentally.
There is no reason why both should not exist, and in tru-
ly 1D systems both e-e and e-h channels have been con-
sidered on an equal footing (see Sec. V). In fact, in Sec.
VI we shall argue in favor of an attractive e-e interaction
( V positive) in the quantum limit (Rasolt, 1987), which
should result in superconductivity.

FIG. 5. The electron-hole scattering ampli-
tude I of' two different spin states in the ladder
approximation. The wavy line is the interpar-
ticle interaction. The arrowed lines are the
noninteracting single-particle propagators.
The last three graphs include the effects of im-
purities to lowest order in impurity scattering.

x;I: ~ r.r
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A. The pure type II with no Pauli pair breaking

The transition line, for any H, is described as the solution of Eq. (2.15). The states P(r) in Eq. (2.16) are eigenstates of
8, with U, and a(r) set equal to zero and A(r) =

—,'H X r (we shall always work in the symmetric gauge unless explicit-

ly stated otherwise). Then

ik g

P, (r)= (z), (3.2a)

(z)=(2 +")'~ /(2vrm!n!)'~ exp( —,'lzl )
8
Z* Bz

'n

exp( —
—,
' lzl') . (3.2b)

in Eq. (3.2b) k, is the momentum parallel to H, and I. is the macroscopic length of the system along H,
z—:(x —iy)/l, r=(x,y, g). Moreover, n is the Landau-level index and m is the index for the manifold of degenerate
states of number N = 2 /(2irl ), with A the area of the system perpendicular to H. The eigenstates g; in Eq. (2.16) are

g; =(n + ,' )fire, +—iii k, /2m. Using Eq. (3.2) in Eq. (2.16), one can write a closed form for Eq. (2.15). There are a num-

ber of difFerent equivalent forms for this equation (depending on the gauge, etc.). Here we use the form first derived by
Rajagopal and Vasudevan (1966a, 1966b) in their study of the low-field limit:

b(r)=V J Q(r')exp —8 (rXr') b,(r+r')d r',
l2

L

(3.3a)

where

l Qo

Q(r)= g exp
(2m.l )

Z2 Z2
Pl

dk, dk,' tanh[pe„(k, )/2]+tanh[pe„(k, )l2]
X exp[i (k, +k,').g] (3.3b)

where I.„are the Laguerre polynomials and V ~ (n'+n)! 1

2m-l „„0 n '!n! 2

n'+n

(3.4a)

Ak,
e„(k, ) =(n + ,')fico,+-

2m

It was first noted by Rajagopal and Vasudevan that
b, (r)=hoexp( —lzl /2) is a solution of Eq. (3.3). It was
further observed by Tesanovic, Rasolt, and Xing (1989)
that any holomorphic form f (z)exp( —lzl /2) is a solu-
tion of Eq. (3.3) for any H; this degeneracy of solutions is
important in understanding the nature of the order pa-
raineter (see Sec. IV). This form of b,(r) has the lowest
kinetic energy of the center-of-mass motion of Cooper
pairs. Other forms of h(r), having higher kinetic energy,
will generally lead to much lower T, (H) in 3D. In 2D
(Rasolt, 1991, 1992), however, special circumstances may
arise where other channels in b.(r) become competitive.
For a discussion of the solutions of (3.3a) in different
channels in 2D the reader should consult MacDonald
et al. (1992) and Rajagopal and Ryan (1991).

Using f (z)exp( —lzl /2), we find that Eq. (3.3a)
reduces to

where

dk, tanh[pe„(k, )/2]+tanh[pe„. (k, )/2]
II, li e„(k,)+e„(k,)

(3.4b}

In principle, Eq. (3.4) contains the whole range of the
H, 2

—+H, line. Here, for simplicity, we have assumed
that V is independent of H. This, of course, is generally
not true, and the V(H) dependence has to be studied for
each particular physical situation (see our discussion of
Ueff in the high-field limit}. At first glance, it seems
reasonable that T, (H) should be quite close to T, (H).
The semiclassical phase-integral approximation is correct
in the limit when the number of occupied Landau levels,
n„goes to infinity. For a typical superconductor,
n, [H=H, 2(0)]=(Ez/T, o) »1, and this should be an
excellent approximation. Assuming a semiclassical-limit
approximation (SCLA) n, » 1, Rajagopal and Vasudevan
(1966a, 1966b) studied Eq. (3.4) along the lower part of
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the H, 2 line. The reader should note that the
semiclassical-limit approximation is different from the
semiclassical phase-integral approximation used by
Cxor'kov. In the former, the Landau-level structure is not
ignored but is included approximately by using the Pois-
son summation formula and replacing sums by integrals.
Using the Poisson summation formula, Rajagopal and
Vasudevan found a small correction to the standard H, 2
line of Fig. 1,

2'
TscLA(H) TAG(H) TAG

C

2 TAG
X exp

1/2

2mE~ +—
4

(3.5}

where T, (H) is the Abrikosov-Gor'kov transition tem-
perature [i.e., the semiclassical phase-integral approxima-
tion result for the H, 2(T) line]. T, " (H) has an oscilla-
tory nature due to the presence of Landau levels but has,
on the average, a monotonically decreasing trend as a
function of H. The corrections are small and, in particu-
lar, T, [H~H, z(0)]~0. Thus the nature of the su-
perconducting state remains basicaHy the same as in the
semiclassical phase-integral approximation and is reason-
ably described in Eq. (2.2b) (however, see below).

Equation (3.4) contains yet another, more exotic limit:
the high-field limit of Tesanovic, Rasolt, and Xing (1989}.

I

To appreciate how this limit arises, one must realize that
the solution to Eq. (3.4) depends very much on where one
is in the H-T phase diagram. In fact, the "seed" of this
new limit appears even at low fields. The first sign of
serious deviation from the semiclassical phase-integral
approximation occurs at a temperature T* given by
ro, [H,2(T*)]=2m T . It follows that T*—T,o/Ep
«T,o. If T,(H)&T', the full Landau-level structure

begins to play an essential role and Eq. (3.5) is not ap-
propriate (Tesanovic, Rasolt, and Xing, 1989}. For the
great majority of superconducting systems T* is a very
low temperature and is in the 1-mK range. Thus it
would appear that there is little practical interest in
studying this very-low-temyerature regime. However, in
high-temperature oxide superconductors or in Nb-Sn sys-
tems, T* may be sufficiently high to allow for the obser-
vation of these initial deviations from the Abrikosov-
Gor'kov theory (Tesanovic, Rasolt, and Xing, 1989;
Maniv, Rom, Vagner, and Wyder, 1991). But a dramati-
cally different situation is obtained in the limit of very
strong fields, co, &)2n.T (the high-field limit). The ex-
treme example of this is the situation in which only a sin-
gle Landau level is occupied (the quantum limit). This
happens for

H &HqL=2mcEF/(3Y2) e-( Ep /T, )0H,2(0),

where H, 2(0) refers to the standard result. In this limit,
the integral equation (3.3) reads

—h(z, z )=P 'g g Jd r' exp( —iz[ /2 —iz'i /2+zz'*)h(z', z'*) .1 1

V
' „„ro+(ek +—,'a), ) (2m.l )

(3.6)

We have neglected the Zeeman splitting (g =0) and as-
sumed that 6 is uniform along H.

In Eq. (3.6) we can decouple the (x,y) plane from the g
axis. There is an infinite degenerate manifold of solu-
tions, given by b, (z, z )=hf (z)exp( —

~z~ /2), where f (z)
is an arbitrary holomorphic function, while

2ml
T, (H &Ho„)=1.140 exp

1

[Eq. (3.1)]. This result, of course, is also contained in Eq.
(3.4). The approximation of the constant density of states
in the k, integration of Eq. (3.6) is accurate for weak cou-
pling, i.e., 0 «EFO, where E+o is the Fermi energy for
the lowest Landau level. As H increases, one eventually
gets into a strong-coupling regime where 0)E+0. This
situation will be discussed shortly. The above result
seems puzzling, since T,(H)H&L) is comparable to
T, (H =0) [T,'s for H =2. 13HoL and H =0 are equal if
one assumes that V(H&„)=—V(H =0), i.e., that V is in-
dependent of H; recall the discussion of Eq. (2.3)] and it
grows with the field: 2m 1 /N, (0) ~ H as shown in Fig.
6. (Qf course, T, cannot grow indefinitely, and the
strong-coupling effects will renormalize it back to zero

= 1.14Q exp
2~1 ~ ~ ( )

(2n)!.=0 2'"(n!)'

(3.7)

where Ni„(0) is the 1D density of states for the nth Lan-
dau level. (In the above equation it was assumed that
Q«m, and that the Fermi level is -Q away from the

I

for H))H&z. The simplest source of reduction in T,
wiB be the change in the cutoff frequency from Q to EIF,
where E,z is the quasi-one-dimensional Fermi energy,
once Q&EiF (Rasolt, 1987). This situation is also de-
picted in Fig. 6.) Furthermore, to understand the solu-
tion of Eq. (3.4) when the number of occupied Landau
levels n, ) 1, we note that Eq. (3.4) has two types of
terms: diagonal, for which the Landau-level index is the
same, and off diagonal, where -the Landau-level indices
differ. Only diagonal terms possess a Cooper singularity,
and, for H ~H&z, when n, is not "too large, " one ex-
pects that neglecting the off-diagonal terms will be a good
approximation. %e call this the quantum-limit approxi-
mation (QLA}. In this approximation we obtain

TQLA(H)
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FICx. 6. A more detailed presentation of Fig. 1. (a) The solid line is an artist s rendering of the T, (H) curve for a BCS-like type-II su-

perconductor. The dashed line is the Abrikosov-Gor'kov result. The physical significance of H&, H«, and T is explained in the
text. The inset shows T, evaluated in the high-field limit, including up to 11 Landau levels [we have chosen i'(0) V=0 6and h.ave

used the standard Coulomb cutoff to round off divergencies in the density of states (see text for discussion of this point)]. Actually,
for low-carrier-density materials in the high-field limit, T, (H) shown here represents a lower bound for a BCS superconductor. Fur-
ther enhancement of the coupling constant will arise due to a reduction in the average Coulomb repulsion when kF ——l (see text).
However, see Secs. III and VI for discussion of strong-coupling effects. (b) T, (H) of a BCS superconductor in the quantum limit.
A,(K=K«) is set to 0.18. Note the rapid rise of T, as H increases. Such a rise is unphysical for 0)E&F when 0 has to be replaced

by E&+ as the cutoff in the BCS formula. This is illustrated by the dashed line. We have chosen Q to be —10% of the 3D Fermi ener-

gy

singularities in the density of states. Clearly, this approx-
imation becomes increasingly unreliable as one moves to
lower fields. ) T~" (H) displays an oscillatory behavior
reQecting the Landau-level structure and has a monotoni-
cally increasing trend (on the average) as a function of H.
Consequently the quantum-limit approximation can nev-
er recover the Abrikosov-Gor'kov low-field limit. The
inset of Fig. 6 shows TP (H'). As the number of Lan-
dau levels increases (H decreases) TP~ decreases rapid-
ly. As the Fermi level crosses each Landau level the den-
sity of states in Eq. (3.7) diverges. This is an unphysical
divergence and it can be removed in one of two ways: (a)

by a more accurate evaluation of the BCS equation for T,
(in other words, without making a constant-density-of-
states approximation once Ez„&Q, where Ez„ is the
quasi one-dimensional Fermi energy for the nth Landau
level); (b) by more physical efFects of strong-coupling re-
normalization and thermal and/or disorder broadening
of the density of states. Effectively, the Landau level
crossing the Fermi energy is "turned off," and it does
not contribute to T, . In Fig. 6 a Coulomb "cutoff"
p =p/[1+pin(Ez„/0)] was included to smooth out
the oscillations (p, =0.15).

The qualitative behavior of T~" (H) in Eq. (3.7) is
completely opposite to T, " (H) in Eq. (3.5). This new
behavior, characteristic of the high-field limit, signals a

complete breakdown of the semiclassical phase-integral
approximation. The vortex lattice reaches its quantum
limit, in which the orbital frustration results in the
enhancement of the superconducting transition tempera-
ture. This may seem counterintuitive, since the increase
in H enhances orbital frustration and time-reversal sym-
metry breaking. The fact is, however, that orbital frus-
tration does not always result in a suppression of super-
conductivity. In low 6eMs the Landau-level structure is
thermally smeared (above T*), and the electronic
Green's function is still well represented by its plane-
wave form, corrected only by the field-dependent phase
factor. The order parameter is formed as a linear com-
bination of the anomalous expectation values

(ci,tc 1,+zt ). The wave vectors q that dominate this
linear combination have the magnitude given by -m. /r„
where r, is the separation between vortices. As H in-

creases, r, —=v'2l decreases, and one has to reach farther
and farther away from the Fermi surface in order to con-
struct the proper h(r ). This leads to a cost in condensa-
tion energy and destruction of the superconducting state,
once r, -g(T) [H,z(T) is defined by g(T) =l]. This sum-—
marizes the traditional view of this problem. But, below
T*, or in very high fields, the Landau-level structure
must be included explicitly, with the order parameter
now having the form
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In the high-field limit this sum is dominated by the n =n
terms. This transforms the effect of orbital frustration,
since now the correct form of h(r), with the required
density of zeros, can be built without an appreciable cost
in condensation energy. In fact, in the quantum limit the
magnetic field acts only as an external constraint, and,
once this constraint on the transverse motion is satisfied,
the BCS form of the condensation energy comes from the
motion along the field (if one considers a 2D problem
there is really no BCS weak-coupling solution. One has
to consider an infinitely degenerate Landau-level struc-
ture in the presence of a finite interaction, which leads to
a very strongly coupled problem). The lowest few Lan-
dau levels, participating in the pairing correlations, "nat-
urally" lead to the required form of h(r). This new role
of orbital frustration can be understood only by consider-
ing the nature of the superconducting state below T, (H)
and will be made clear in the following sections. What
should be emphasized here is that T~ represents a
completely 'legitimate" limit of superconductivity in a
magnetic field, in which orbital frustration leads to the el-
imination of diamagnetic pair breaking, in sharp contrast
to T, (H) and the low-field limit.

To obtain the crossover from the high-field behavior
given by Eq. (3.7) to the low-field limit of Eq. (3.5) and to
the familiar Abrikosov-Gor kov theory, ii is necessary to
include the off-diagonal terms in Eq. (3.4). Although
these terms do not have the Cooper singularity, their
number grows as n, , as opposed to n, for the diagonal
terms, when n, becomes large. Thus, while the diagonal
terms dominate at high fields and lead to an increasing
T, (H), at low fields the off-diagonal terms take over, re-
sulting in a decreasing T, (H). Because the sign of these
off-diagonal terms is always positive, they create a
countereffect to the decreasing critical temperature of the
diagonal terms [Eq. (3.7)]. At some field H, the off-

diagonal terms will become dominant, leading to a cross-
over from T~ (H) to a smooth (smooth only in some
average sense, since the fast oscillations in the density of
states have to be dealt with) transition to the Abrikosov-
Gor kov curve, as depicted in Fig. I. With off-diagonal
terms present, T,(K) cannot be written in a closed form
and has to be evaluated numerically. The results are
summarized in Fig. 6(a) in the solid line. It is, of course,
clear that this solid line is an artist's rendering of the
overall trend in T, (H) and that there will be rapid oscil-
lations throughout this region due to the Landau-level
structure. We find that as long as n, is less than -25 or
so, Eq. (3.7) is a very good approximation to a numerical
T, (H). This is because an off-diagonal term contributes
only if the energy difference between two Landau levels
(neo, ) is less than A. For larger n„once co, «0, the
off-diagonal terms become increasingly important. This
now signals the breakdown of the quantum-limit approxi-
mation as one moves from the high-field limit down to

low fields (n, )&1) and indicates that some form of
quasiclassical approximation should be appropriate. This
crossover has been investigated in some detail by Gun-
ther and Gruenberg (1966), Gruenberg and Gunther
(1968), and, more recently, by Maniv, Markiewicz,
Vagner, and Wyder (1990), and by Maniv, Rom, Vagner,
and Wyder (1991)using quasiclassical approximations for
the Landau levels. Using a rough approximation for the
oF-diagonal terms and defining Hc from dT, /dH =0, we
find Hc-(Ez/T, o)H, z(0). Since the off-diagonal terms
are not singular, and therefore are not. dominated by con-
tributions around EF, the exact shape of this crossover
region would require the calculation of the off-diagonal
terms I„,„[in Eq. (3.4)] over the full energy range of Fk .
Throughout the crossover region, T, is typically extreme-
ly small ( &10 ' 0), and only the high-field limit [in
which Tp A(H) is perfectly appropriate] will typically
have observational significance. However, as stated ear-
lier, in type-II superconductors with very high upper
critical fields, the crossover region may be observable. In
such systems the temperature T* is a sizable fraction of
T, (H =0), and one may well be able to reach the cross-
over region with available fields and still have an observ-
able transition temperature. A particularly detailed
study of T, (H) in the whole field range is presented by
Maniv et al. (1991). These authors use the semiclassical
approximation and demonstrate that the crossover to the
high-Geld limit can occur in realistic circumstances, par-
ticularly in quasi-20 strongly type-II systems. One
should emphasize that T, remains finite at all fields, a re-
sult obvious from Eq. (3.4) and first explicitly stated by
Gruenberg and Gunther (1968). It is important to real-
ize, however, that finite T, (H) obtained from Eq. (3.4)
does not imply that one has a stable superconducting
ground state at all fields. Whether such a state exists can
be decided only by analyzing the nature of the state
below T, (H) using the Ginzburg-Landau or some other
approach that allows one to study the situation with
Pnite g(r). For example, in type-I superconductors, even
though T, (H) exists it is preempted by a first-order tran-
sition at the H, line. The nature of the superconducting
state and its stability below T, (H) must be studied simul-
taneously (Tesanovic, Rasolt, and Xing, 1991a, 1991b).

In the above discussion, we have made several tacit as-
sumptions. As already stated, we have assumed that Vis
not a function of H. An additional assumption, which
was considered here for simplicity, is that in the low-field
limit the system is a type-II superconductor. In that case
there must be a continuous T, (H) curve joining the low-

and high-field limits of BCS superconductivity (continu-
ous only in some average sense, as is clear from our dis-
cussion). But, in accordance with the above discussion, it
is perfectly possible for a high-field-limit superconductor
to behave as type-I superconductor in low fields, with a
reentrance at high fields. In fact, a high-field-limit super-
conductor may not be a low-field superconductor at all,
but instead have a ground state of completely different
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symmetry (SDW, CDW, Fermi liquid, etc.). If this is the
case, various phase transitions will take place as the
external field increases, resulting ultimately in a high-
6eld-limit superconducting state. Study of such transi-
tions is obviously a very complex problem, involving de-
tailed understanding of the interacting electron systems
in a varying field. Finally, these results are valid for an
ideal system in the absence of Zeeman splitting and disor-
der. We now turn to a discussion of these two perturba-
tions in the high-6eld limit.

picted in Fig. 7. If we consider the uniform (along the
field) superconducting state of the previous section and
include the Zeeman splitting, we obtain the following
weak-coupling equation for T, :

B. Effects of Pauli pair breaking and disorder

The discussion of the previous section ignored Zeeman
splitting. The effective g factor can indeed be zero if we
consider the intervalley pairing in multivalley semicon-
ductors and semimetals (Rasolt, 1990). But, even in
those cases, there can be a contribution from the spin-
singlet channel and it is therefore important to under-
stand how Pauli pair breaking will affect the results of
Sec. III.A. Naively, one Inight expect that Pauli pair
breaking would simply wipe out the high-field limit of su-
perconductivity. We know that in the low-field limit
Pauli pair breaking leads to the Pauli critical field H,
which is simply obtained by comparing the Zeeman ener-

gy with T, . If the Zeeman splitting is larger, then no
spin-singlet superconductivity is possible (this is well
known as the Chandrasekhar-Clogston limit). One can
go slightly above the Chandrasekhar-Clogston limit if a
superconducting state with a 6nite linear momentum of
Cooper pairs is introduced to recover the Cooper singu-
larity (Fulde and Ferrell, 1964). Unfortunately, the re-
gion of stability of the Fulde-Ferrell state is very narrow,
since one can truly have a Cooper singularity only at a
single point in phase space. Consequently the critical
field is still of order T, /gpz, but the numerical factor in
front is larger by a few percent. However, in the high-
field limit there is a qualitatively new possibility: due to
the quasi-one-dimensional nature of the electronic disper-
sion relation one can choose to pair electrons with mo-
menta along the 6eld axis k, and —k, +qo, where qo is
chosen so as to offset the Zeeman splitting (Tesanovic,
Rasolt, and Xing, 1989). The important difFerence is that
now a full one-half of all the phase space is available for
pairing, and it contributes to the Cooper singularity, as
opposed to a fraction of measure zero in the familiar
Fulde-Ferrell state (Schrieff'er, 1959). As a result, super-
conductivity exists at arbitrarily strong fields as long as
both spin species are present. While, for a Zeeman split-
ting much larger than the thermal energy, T, is some-
what reduced, it is still de6nitely observable, and thus the
Pauli pair breaking is dramatically decreased. Since the
above discussion is very important in the light of experi-
mental observation of superconductivity in the high-field
limit, we now consider it in detail.

The most interesting region is the quantum limit.
When Zeeman splitting is present we have a situation de-

qo Ft F~

t f I
I

I I I
)

I

=0

0.2

T~ (1.14Q)
0.4 0.6

FIG. 7. Zeeman splitting in high magnetic fields. (a) Quasi-
one-dimensional spin-up and spin-down bands in the quantum
limit. Zeeman splitting is assumed to be small compared to the
cyclotron frequency. (b) T, (g) and T, (g =0) as described in the
text. The T, vanishes at H =Hd, ~. The dotted line is T, (g) for
a nonuniform state with disorder: 1/2~E3DQF 10 ', which
can be achieved in doped semiconductors and semimetals.
Clearly, the nonuniform state compensates for the Zeeman en-
ergy over a wide range of H. Unlike the 3D Fulde-Ferrell state,
in which the Cooper singularity is restored only at a single
point in the 30 phase space, in the quantum limit the Cooper
singularity for the nonuniform high-field-limit state is restored
for a full one-half of the phase space. [When full strong-
coupling corrections are included, the uniform state in (xe
(g =1.6,g,&=0.13) is completely eliminated, and the nonuni-
form state is essential in obtaining T,(g)- T, (g =0).f The dot-
ted curve demonstrates that impurities do not "destroy" this
state.
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where

1.14Q
max(T, A)

(3.8)
T, (g ) = 1.140 exp( —I /A, ), where

A(g =0)
A + —,'A(g =0)In[max(T, 2A)/T]

(3.10)

and

N i t( g ~

=m /2wky t ( g )

2 =2k~ t kF ig p~ II /vr( kF t +kF g )

max(T, A)=+T +A

where, for H &H&L, qo=2gp~meH /~ nc. This corre-
sponds to relaxing the requirement of time-reversal in-
variance of the ground state ~P) [in Eq. (2.26)] parallel to

ik g i(qo —k )gH [i.e., by creating Cooper pairs from e ' and e
in Eq. (3.2)]. The point is that, in the absence of the Zee-
man term, Eq. (2.1) is invariant under the time-reversal
operator E [in Eq. (2.2)] restricted to k, and —k, . This
"restricted time reversal" property of Eq. (2.1) is lost in
the presence of Zeeman splitting. By solving Eq. (3.6)
(with Zeeman splitting included) one finds

V 4ml~ Ã) y +Ã) g

1.14Q
T

1.14'
max( T, 2A )

(3.9)

In this case half of the available electronic states still con-
tribute to the logarithmic singularity. Combined with
the fact that the coupling constant is unchanged as dis-
cussed above, this state appears to be far more promising.
The reason is as follows: For A ((T,(0) the uniform
state still has a higher transition temperature. But for
A )T, (0), when the uniform state is destroyed, the
nonuniform state has a transition temperature given by

It is assumed throughout that 3 « 0, which will be true
in a realistic case. There is no reduction in the coupling
constant in the above equation, since

2%i gX» =Ni(g =0)»»
and thus A,(g&0)=A, (g =0). This fact (which, of course,
is true only in weak coupling) is, however, not of much
help here, since the Cooper singularity has been cut off
by 3, the pair-breaking parameter of the Zeeman split-
ting. Obviously T, will be reduced rather rapidly with
increasing g: Eq. (3.8) is easily solved and gives
T, (g)=T, (g =0)—A . In the uniform state T, (g) is
suppressed to zero for A = T, (g =0), and thus Zeeman
splitting of the order of the thermal energy will destroy
the uniform superconducting state. (This result is similar
to what occurs in the low-field limit. ) Figure 7(a) seems
to suggest that one should consider a nonuniform super-
conducting state of the type

'l(r) =0'f (z)exp( —
~z~ /2)exp(iqog),

and thus, in the weak-coupling limit
(A, «1),T, (g)=T, (g =0). Therefore the nonuniform su-
perconducting state can exist even for Zeeman splitting
considerably larger than the thermal energy, and the
transition temperature will still be of the order of
T, (g =0). This is a very important result from a practi-
cal viewpoint, since it demonstrates that the spin-singlet
superconductivity in the high-field limit could in princi-
ple be'observable in physical systems with finite g factors.
One must emphasize, however, that all the reasoning and
approximations used above implicitly assume that the
range of the fields in the quantum limit over which both
spin states are occupied is reasonably large, since obvi-
ously no spin-singlet superconductivity can exist if one of
the spin states is completely depopulated. This condition
immediately rules out the great majority of standard su-
perconductors, which have effective masses of the order
of the bare electron mass and g factors of order 2, since
in that case the quantum limit strictly speaking does not
exist. The region of H for which both spin species are
present and only the lowest Landau level is occupied will
be either very narrow or nonexistent, and high-field su-
perconductivity will be destroyed even for a nonuniform
state. This is not of great consequence, since most of the
standard superconductors are already ruled out as candi-
dates for high-field superconductivity by virtue of their
too high electronic densities, which would require enor-
mous fields in order to reach the quantum limit. We
want to emphasize, though, that it is important to have
small g factors so as to have a wide region in the quan-
tum limit where both spins are present. In many low-
carrier-density systems the effective g factors are quite
low, and such materials would be best suited for high-
field superconductivity.

As n, increases the situation becomes quite complicat-
ed. Pauli pair breaking will start suppressing T, very
rapidly, since now one cannot choose a single wave vec-
tor that would restore the Cooper singularity for all the
occupied Landau levels. One can still argue, however,
that, as long as 0 «~, and E~„ is away from singulari-
ties in the density of states, T, will remain finite although
considerably depressed. An interesting situation would
arise if a g factor were very close to 2m /m„where m, is
the effective cyclotron mass. In this case the Zeeman
splitting would be very close to the cyclotron splitting,
making the nth spin-up Landau level nearly degenerate
with the (n +1)th spin-down one. T, would then be re-
vived again, although it would still be less than for the

g =0 case. This may be the situation in SrTi03, a well
known low-carrier-density superconductor. Similarly,
for particular cross sections (corresponding to diff'erent

field orientations) of the Fermi surface in various materi-
als, the Zeeman splitting could be such as to make the
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nth ( f ) Landau level nearly degenerate with the
(n +m)th (4) one. This situation could be achieved by
varying the direction of the external field relative to the
principal crystalline axes (Norman, Akera, and Mac-
Donald, 1992).

We have already discussed some general aspects of the
interplay between magnetic fields and impurities [Eq.
(2.31)]. As we saw, impurities change the time depen-
dence of K(t) and have a profound effect on the
H,2~H, line. For a very large level of impurities, i.e.,
when the magnetic length I is bigger than the electron
diffusion length ld, there is no doubt that the H, „will
disappear. It is therefore very important to maintain
high purity of those materials in which one is searching
for high-field-limit superconductivity. The purer the ma-
terial the better. In the study of conventional supercon-
ductors one often associates very pure systems with
type-I behavior, and type-II behavior can sometimes only
be induced by making a system "dirty. " This is not the
case here. First of all, the promising materials for high-
field superconductivity will have a low density of carriers
and are likely to be strongly type II even when pure. But
even if such a pure system does not show a type-II behav-
ior in the low-field limit, and the H, 2 line is replaced by
the H, line of a type-I superconductor, or, for that
matter, by a nonsuperconducting state, this does not pre-
clude superconductivity in the high-field limit. The su-
perconductivity at this high field could in principle exist
independently of the nature of the ground state in low
fields.

The presence of impurities will affect high-field-limit
superconductivity in several ways. In addition to simple
pair breaking (which is obviously present in any realistic,
gAO nonuniform case), thermal and quenched disorder

will broaden sharp features in the density of states and
may change the effective interaction, particularly the
Coulomb repulsion. Here we shall consider the effect of
pair breaking only; the broadening of the density of states
can be simply included phenomenologically and leads to
suppression of T, for n, ) 1, since it flattens out the
jumps in the density of states but has little effect on the
quantum limit. The effect of disorder on the effective
electron-phonon and electron-electron interaction is a
very complicated subject, even for ordinary, zero-field su-
perconductivity, and we shall not consider it in this pa-
per. Finally, probably the most serious problem encoun-
tered by experimentalists searching for other quasi-one-
dimensional instabilities in the quantum limit, like SDW,
CDW, etc. , is "magnetic freezeout. " This dramatic loss
of carriers (due to deepening of the local impurity levels
in high fields) will affect the superconducting state in a
similar way. Recently, however, there has been consider-
able experimental progress in minimizing the effects of
disorder and producing high-mobility 3D samples, par-
ticularly in so-called wide parabolic quantum wells (see
Sec. IV.C.5). It appears likely that advances in
artificially structured materials will soon lead to systems
in which the electron-impurity interactions will be negli-
gible.

Pair-breaking can be included by considering the effect
of disorder on Eq. (3.6) (see Fig. 3). We first consider the
realistic gAO case and use the Born approximation to
derive the following expression for T, "(H,g&0), valid
for weak disorder, 1/~EF && 1, where I /2r is the scatter-
ing rate due to disorder (defined in zero field) and E~ is
the zero-field Fermi energy (we only give the expression
for the quantum limit, for gAO, since the calculation is
very involved when several Landau levels are included):

T "max( r ",2 3 )C c

T,max(T„2A)
1

[D, (co, 1/2r)+D2(co, 1/2r) ]

+a T g D2(co, 1/2r) 1 — [D)(co, 1/2r)+D2(co, 1/2r)]1

2+Ql
D i(co, O) —D2—(co, O)

(3.11a)

where

D2(co, 1/2r)= Iexp( —i5/2)8[cos(5/2)] —exp( —i5/2)8[ —cos(5/2)]]1

(d2 +d2 )1/4
(3.11b)

and

d (co, 1/2r) —=d, +id2 =—(d
&

+d& )' exp(i5)

= Co +Coil[ —,'7t+ —,'1.$+UFt/4UF$1. $+UJ;$/4UFt7. $+l (UFt+UF$)qo]

+ 7[ rtrj+(uFt/2rg uF$/2rt ) /4uFtuF JuFtuF)so + i (u+t /. 2r~+ u+~/2rt )eo]

with

(3.11c)

1/2roi =(2Nit&ig/(Xit+Nig ))rrW /4m i (3.11d)
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is the root mean square (RMS) value for the random potential, —,'r& i are corresponding single-particle scattering
rates, and

7/
—[ 1 + ( UF t Upi ) j4Up t Ul;i ]

One obtains Di(co, ,'r) —from D2(co, 2r)—by setting qo=0.
To get some feeling for what happens below the quantum limit, we give the result for g =0,

EF "~ N, „(0)
2rrT, " „=o 2+i X3i, (0)

(2n )!
22n(& ~)2

1.+g
2

(3.12)

where T, is given in Eq. (3.7). In the above equations the
Born approximation should be reasonable in the quan-
turn limit as long as the field is not too high, making k~
too long. When this occurs, one must go beyond the
Born approximation, which is quite a complicated issue.
Furthermore, as the field becomes very strong, I grows
shorter and eventually becomes less than the typical
range of the impurity potential, resulting in reduced pair
breaking. Below the quantum limit the Born approxima-
tion is less valid, since the density of states oscillates fas-
ter and faster as the field decreases. The pair breaking in-
creases and disorder will eventually suppress T, to zero,
resulting in a crossover region where superconductivity
does not occur even for T =O. Eventually there could be
a reentrant transition to the low-field regime. In the
quantum limit for a disorder such that 1/2rE3D ~ = 10
which can be achieved in low-carrier-density systems, us-
ing Eq. (3.11) we find a small correction [Fig. 7(b)] to the
H, line [Fig. 6(b)]. We should mention here that there
exists an opposing point of view, which argues that in a
high field and in the quantum limit superconductivity can
never be observed in nature, due to the effects of Pauli
pair breaking and disorder (Rieck, Scharnberg, and
Klemm, 1990; Norman, 1991; Scharnberg and Rieck,
1991). The proponents of this view argue that Pauli pair
breaking and disorder always "destroy" the H, line
(Fig. 1) and consider the possibility of superconductivity
in the high-field limit unrealistic. Explicit calculations
for Cxe-type systems, however, reveal that T, (H) is appre-
ciable in the quantum limit with both disorder and Pauli
pair breaking present (Tesanovic, Rasolt, and Xing,
1991a). One must realize here that the general conditions
on the Zeeman splitting and the strength of disorder are
similar for superconducting and the SDW state in the
quantum limit (Tesanovic and Halperin, 1987, and refer-
ences therein). Thus a low effective g factor is needed to
have a relatively wide region in the quantum limit where
both spin states are occupied, and a low level of impuri-
ties is necessary. We shall say more about how such con-
ditions can be met in real systems at the end of the next
section and in Sec. VI.A.

In summary, we have given here a detailed solution for
the mean-field T, (H) line in a BCS superconductor. We
have shown how the familiar H, 2(T) line crosses over
into T, (H), which is an increasing function of the field,
once the Landau-level structure is properly included.
The high-field limit was then discussed in detail and the

I

effects of Zeeman splitting and impurity scattering on
this unusual limit of superconductivity were studied.

IV. THE NATURE GF THE SUPERCGNI3UCTING
STATE

As shown in the previous section, two opposite regions
of the H, 2

—+H, line, the high-field limit and the famil-
iar low-field H, 2(T) line, could be discussed very accu-
rately. The crossover region, in which the contribution
from diagonal pairing was of a similar order to the con-
tribution from off-diagonal terms, could also be analyzed
using semiclassical methods. In particular, the origin of
this crossover, from T, (H) being an increasing function
to its being a decreasing function of H, is, in our opinion,
now well understood in terms of the effect of the
Landau-level structure within the mean-field approxima-
tion. The next step, which is probably more revealing
and important, is to achieve a similar understanding of
the actual superconducting state below the H, 2~H,
line. In this section we should like to elucidate the na-
ture of orbital frustration in the high-field limit and to ex-
amine how diamagnetic pair-breaking is circumvented in
such strong fields. First, in Sec. IV.A, we discuss some
general properties of the BCS wave function in the quan-
turn limit. In Sec. IV.B we then discuss the nonlinear
Ginzburg-Landau theory and the full BCS theory. Both
can be solved exactly in the quantum limit and to a very
good approximation in the quantum-limit approxima-
tion, where off-diagonal pairing terms are neglected. We
also discuss the crossover to low-field behavior within the
Ginzburg-Landau theory. Furthermore, we explore the
relationship of the superconducting order parameter and
the "indu. ced" vector potential which, in very low fields,
leads to the Meissner effect. Finally, in Sec. IV.C, we
present a general discussion of transport properties in
this new state and their evolution from the low-field lim-
it.

A. The ground-state wave function
in the quantum limit

Nothing can provide more information and insight
into what is going on than the ground-state wave func-
tion and low-energy excited states. This will become par-
ticularly clear, for example, when we consider the natu. re
of dissipation and current Aows. For arbitrary H, guess-
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ing the form of lP & [as in Eq. (2.25) or (2.26}] is hopeless;
the mean-field approach presented in Sec. II.B.2 is a very
important simplification. Typically, however, one cannot
find the ground-state wave function and the excited states
for HAO even within the BCS theory. The fact that the
superconducting order parameter is nonuniform makes
this a nasty nonlinear "band-structure" problem. In the
quantum limit, where all the electron states reside in the
lowest Landau level [i.e., Eq. (3.2) with n =0], things
turn out to be far more promising. Now

l P &, in the most
general form, can be written as

N

lp&=g g a„M g Ck lvacuum&,
N sc,M i

(4.1)

1
0 ~(z)=n =O, m

zme
—

jz/ /4 (4.2)

In Eq. (4.1) we have extended lP & to a varying number of
particles N for the same reasons discussed in Eq. (2.25).
Again this is done for the convenience of defining the or-
der parameter in Eq. (2.6a}, which is at T =0

&(r)= &&,ply(rt )y(rl ) ly & . (4.3)

Using Eq. (4.1), we can write b, (r) in the quantum limit in
the most general form as

where the coefficient a M depicts the various
Z

configurations (k, im i ) (k,&m&) [coefficients
m =0, 1, . . . , m, denote the degenerate manifold of the
states in Eq. (3.2) in the lowest Landau level for N parti-
cles; m, is given by II/2ml, where 0 is the cross-
sectional area of the system, assumed to be a cylinder of
radius R =&0/n. and length L, .]

From Eq. (3.2)

consider these y (g) in the mean-field approxiination
shortly. We shall also discuss, in Sec. V, how the Auctua-
tions modify the mean-field results. (e) The change in the
form of the exponential form exp( —

lzl /4) for the elec-
tronic wave functions to exp( —lzl /2) (which is the sig-
nature of the Cooper pairing; i.e., I ~I*) and the exten-
sion of the sum to 2m,:—m,* provides the correct com-
plete basis set for b,(r) in Eq. (4.4). [Note that b,(r) is
confined to the lowest Landau level itself, if we think of
h(r) as representing bosons of charge e*=2e. These
"bosons" are Cooper pairs, and their Landau levels cor-
respond to the center-of-mass motion. Also, note that
2ml m, =2~1' m,'=Q.] (f) As we go along the
H,2~H, line to a finite number of electronic Landau
levels, it is evident that the form of Eqs. (4.1) and (4.4)
will no longer hold true, as higher Landau levels start be-
ing involved in the pairing correlations. This makes the
discussion of the order parameter close to the transition
line more difficult. However, as we saw in Sec. III, Eq.
(4.4) continues to be a solution to Eq. (3.3) for all
Landau-level occupation. Furthermore, even below
T, (H) the form (4.4) still represents the dominant part of
the exact b, (r). (g) Above the true transition temperature
[which, in general, is different from T, (FI) found in the
mean-field approximation], 6(r)~0 corresponding again
to arbitrary phases in lP&. Things, however, are a bit
more subtle and will be discussed in Sec. V.

As emphasized above, Eq. (4.1) is very general. It can
also include a glassy superconducting state, etc. In fact,
for totally arbitrary form of ak M there will be random

Z

phase changes in Eq. (4.1); there will be no zero-entropy
state, and therefore h(r) will be zero. We can restrict
Eq. (4.1) to include explicitly at least coherence along H,
1.e.,

2m

h(r)= V g y (g)z e
m=0

(4.4) l(t &= Q g(ttk ™+Uk' 'C„ tCk i)lvacuum&
k, m m'

The excited states are all still in the lowest Landau level
(at finite temperature) and do not change this form; they
only introduce a temperature dependence in y~(g).
Thus the confinement to the lowest Landau level pro-
vides a severe restriction on the form of b(r). Apart
from the overall exponential, A(r) is a general holo-
morphic function of z. This restriction leads to a
significant simplification of the whole problem. Here we
make a few general comments about Eq. (4.4), which are
important to keep in mind in what follows and which il-
lustrate the special role of the quantum limit: (a) The g
dependence describes fully the spatial variation of b,(r}
parallel to H. (b) Equation (4.4) is not restricted to the
mean-field approximation; it is completely general. (c)
Equation (4.4) is not restricted to being close to the FX,„
line. Therefore, in the quantum limit the form of b, (r) in
Eq. (4.4) is an exact solution of the full problem, at any

temperature and any field, provided one knocks the exact
y's. (d) In the quantum limit the task left is to calculate
the y (g) within some approximate scheme. We shall

(4.5)

with

l~™I'+ IU
Z Z

For the nonuniform, spin-split Zeeman case discussed in
Sec. III.B, we need only to shift —k, ~—k, +qo in Eq.
(4.5).

B. The mean-field theory in a very
high magnetic field

The form of h(r) in Eq. (4.4) is completely general.
Consequently, in the mean-field approximation and in the
quantum limit we can solve for y (g) exactly (Tesanovic, .
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Rasolt, and Xing, 1991)! The generalization to nonuni-
form g dependence along H is straightforward and well
defined, at least for small g factors. In the quantum limit
all it does is change b, (r) to A(r)e xp(+iqog); see Sec.
III.B. Therefore we consider only the uniform case.
This amounts to the exact solution of the full BCS theory
for arbitrary H and T, as long as one is in the quantum
limit. We are not familiar with any other example of an
exact solution to the BCS theory in a finite magnetic
field. This makes this example of the quantum limit very
valuable and the starting point for a detailed understand-
ing of the BCS theory in high fields.

1. The order parameter in the quantum limit

Before we discuss the full solution of the BCS theory
let us first consider what happens right below H, , using
the nonlinear Ginzburg-Landau expansion. This will
prove useful a little later; particularly in the discussion of
the induced currents in the quantum limit; see end of Sec.
IV.B.3. We start with Eq. (2.21). The kernels
IC2(rf 12) K3(r&, r2), and K4(ri r2 r3 r4) defined in Eqs
(2.17d), (2.17e), and (2.20c), can be written in closed form
(Tesanovic, Rasolt, and Xing, 1989). Using the quantum
limit form for Go of Eq. (2.18a), we get

exp(z, z2 —iz, i /4 —iz2i /4)
Go (w, r„r2)=

2mI lw
Z

a'( T)
IC2(r„r2) = exp( —z*, z, /2 —z2z2/2+z, z2 ),

(2~l )

It4(rl I'2 I'3 r4) 2 4 exp[ z1zl /2 Z2z2/2 z3z3/2 z4Z4/2+(zl +Z3)(z2 +z4 )/2]
P'( T) )it

(2~&')4

(4.6)

(4.7)

(4.8)

y'( T)
K3(r&, rz)= exp( —

z& z& /2 —Z2z2/2+z&zz /2)
(2vrl )

x f d r3exp( —z3Z3/4+z&Z3 /2)h (z3,z3 )exp( —z3z3/4+z3z2 /2),
where

(4.9)

Ii (z,z*)=-
2l Pic

a
Bz

+ a, a' ~ .

2

+ (A'a+Ha*),
2' c

with a ( A) =a, ( 3, )+ia ( 3 ) and where

~'(T) =—g1 1

p k (iw —
gk )(iw +g„) (4.10a)

P'(T)= —g1 1 1

p k ~ (iw gk ) (iw+gg )
(4.10b)

y'(T) =—g2 1 1

P k „(iW —
gk ) (~W+gk )2

(4.10c)

We now consider the physics described by the various
kernels in the Ginzburg-Landau form of the free energy.
First we note that all the kernels entering the Ginzburg-
Landau free energy are fully nonlocal and no gradient ex-
pansions are possible, since the order parameter varies
over the same length scale as the kernels. The quadratic
kernel K2 projects h(r) to the "lowest bosonic Landau
level, " i.e., K2(r&, r2) is proportional to the Green's func-

I

I

tion of charge-2e bosons restricted to the lowest Landau
level, in accord with our discussion following Eq. (4.4).
Thus, if we consider contributions to K2 coming only
from the lowest electronic Landau level, all b.(r) have to
be of the form f (z)exp( —z*z/2) [again in agreement
with Eq. (4.4)] and have the same T„while all other
functional forms of the order parameter (coming from
higher "bosonic" Landau levels) do not contribute at all.
This simple situation illustrates the important physical
point already mentioned in previous sections: the di-
amagnetic pair-breaking efFect of the magnetic field is ba-
sically eliminated, and there is no frustration characteriz-
ing the low-field superconducting state [the only efFect is
that K2 leads to c, ,=—,'c, h, as mentioned below Eq.
(3.1)]. The electronic wave functions constrained to the
lowest Landau level naturally produce the order parame-
ter describing charge-2e bosons (Cooper pairs) in their
corresponding lowest Landau level.

This property is shared by the quartic term as well.
One can easily see that K4 also acts as a projection opera-
tor by rewriting the quartic part of Eq. (2.21a) as

fd'r exp( 2z'z/2) f—d'r, exp( —z*, z, /2+z, z')4'(r, )

X f d r2exp( —zzz2/2+zzz)h(r2) f d r3exp( —z3z3/2+z3z )b,*(r3)f d r4exp( Z44Z/2z+z4)b(r )4, (4.11)—
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which is clearly nonzero only for the above "holomorphic" form of b, (r). There is an important consequence of this
projection property: First we note that K4 and F, b select b, (r) that minimize F. Finding such configurations involves a
variation of F with respect to h(r) and a (r). For T, &(Ez the coupling between b, (r) and a (r), given by y ( T), can be
shown to be of order T, /E~, which translates to order (Tc/EF) for F, b. Thus, in weak coupling, we can ignore the
"Meissner eÃect, " and the minimization of F reduces to minimization of F, with respect to b, (r) at a fixed external H.
(It is clear that this is an excellent approximation, since the external field in the high-field limit will be far stronger than
any field that can be created by the motion of Cooper pairs. ) Consequently we can immediately conclude that
b, (r)=hof (z)exp( —z z/2) must be the form of the exact solution of the nonlinear Ginzburg-Landau equation. This
equation reads

V 'Air)= ' = a'(T) f d rz Kz(r, rz)b(rz) +P'( T) Jd rzd r3d r~h(rz)K4(r, rz, r3, r&)b, *(r3)b(r~) . (4.12)

There are many possible solutions of Eq. (4.12), de-
pending on the choice of f (z). From variational calcula-
tions in the low-field limit it is known that a triangular
lattice gives particularly low free energy. So we can sim-

ply take the variational Abrikosov solution (which is
confined to the lowest bosonic Landau level) for a tri-
angular vortex lattice and check whether this is a solu-
tion of Eq. (4.12). After some algebra one finds that
indeed it is! In fact, every function of the above form
with a periodic b, (r) such that there is a fiux quantum per
zero is an exact solution of (4.12), i.e., the correct choice
of the y *s in Eq. (4.4) leads to (in the symmetric gauge)

h(r) =b,oII;e ' (z —z; ) (4.13)

where z; are the position of the periodic array of zeros of
power A, . The flux per plaquette is Acmic!2e. Therefore we
have now obtained an exact solution of the nonlinear
Ginzburg-Landau equation which, for A, =1, is likely to
be the absolute minimum of the mean-field free energy.

The above form of h(r) provides an important clue to
the physics of the superconducting state. The holo-
morphic function is fully specified by the position of its
zeros, Iz,. I. The total number of zeros is 0/2m. l*z. The
quadratic kernel does not prefer any particular arrange-
ment of zeros; all configurations are equivalent. This is a
consequence of the fact that A(r) itself belongs to the
lowest Landau level for charge e *=2e. Which
configuration has the lowest free energy is decided by the
quartic term. We can consider b,o and I z; J as variational
parameters and minimize the free energy with respect to
their variation. For some fixed position of Iz;], the
minimization with respect to Ao leads to Foz(Iz; j ), the
free energy for that particular configuration of zeros. Fi-
nally, minimization with respect to Iz,. ], dFG„/Bz; =0,
leads to a solution. Note that this equation is in fact Eq.
(4.12) in disguise. Thus Eq. (4.12) is nothing else but the
D Alembert condition for the static equilibrium. Conse-
quently an arbitrary regular lattice of Iz, ], such that
every zero corresponds to a center of symmetry resulting

in cancellation of forces arising from other zeros, will be
an exact solution of the nonlinear Ginzburg-Landau
theory in the quantum limit.

2. BCS theory and the excitation spectrum
in the quantum limit

An inspection of the higher-order terms in the
Ginzburg-Landau expansion of the mean-field free ener-

gy reveals that, in the quantum limit, all kernels (of order
six and higher) act as projectors in a way similar to Kz
and K&. Thus the form b(r) =bof (z)exp( —z*z/2), with

proper periodicity, is indeed the exact solution of the full
BCS mean-field theory in the quantum limit at any tern-
perature and any field (Tesanovic, Rasolt, and Xing,
199lb). Again, we can consider Lo and Iz;] as variation-
al parameters. The argument presented above goes right
through, and we simply have to replace F«by E~cs.
There are numerous solutions, all representing regular
lattices of Iz;I in D Alembert static equilibrium. The
condition for this static equilibrium, Iz; J,BFBcs/Bz; =0,
is in fact the BCS self-consistency condition (2.10).

To find which of these solutions has the lowest free en-
ergy we need an explicit solution of Eqs. (2.9). Here we
follow Tesanovic, Rasolt, Andreev, and Dukan (1991)
and Rasolt (1991, 1992). Using the Landau gauge
[A =H( —y, 0,0)] for convenience, we can write the gap
parameter as

2&in 1 y bnh(r)=b.og c„exp x exp —— +
g 2 $Q 1+

2

where ab =2~/ fixes the Aux per elementary plaquette.
To solve Eqs. (2.9) we exploit the generalized Bloch
theorem by noticing that (as an example, we consider a
rectangular lattice but our discussion can be easily gen-
eralized to a triangular lattice)
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u(x+a, y)=e "u(x,y), U(x+a, y)=e "U(x,y),

and

2E 7Tu(x, y+2b)=exp iq b — x u(x, y)a
U(xy+2b)=exp iq b+ x U(xy) .2l&

Now, by defining u (r)U (r), [q=(q, q )],
with the generalized Bloch theorem,

1 1 b

(+ i)1/2

r

uk q(g) g exp( —2inq~b)exp i q„+n x exp ———+ q + l
2m 1 y 2mn

n

2

2

U (r)= 1 1 b

/L„( +7rl )
Uk q(g) g exp( 2in—q~b)exp i q nx—exp ————q„—2& 1

n

27T7l

a

we find that Eqs. (2.9) become

Ek quk q= gk + Rco
E~ u„—+b,(q)u„q,

(4.14a)
%co

Ek quk q= ——b, *(q)uk q+ gk + E~ Uk q—,

yielding the self-consistency condition and the quasiparti-
cle spectrum

(4.14b)

where

D(q)—:dg~q —
q ~

e

with d depending on the choice of lattice constant and
1/2

Ek, =+
q (4.14c)

~o
b, (q)= —Q (q —

q )eJ
J

with q=2(q~+iq„)l*. In the last step (4.14c) we have
now transferred b, (q ) back to the symmetric gauge which
we tend to favor in this paper.

This form makes it particularly clear that the gap
~A(q)~ has zeros located at [q~] which are directly relat-
ed to the zeros of b,(r), [z; ], via

2q 1*=x;/I*, 2q I*=y;/I* .

Equations (4.14) illustrate a particularly transparent rela-
tionship between the behaviors in real and momentum
space. This is another manifestation of the simple form
that orbital frustration takes in the quantum limit. The
compact form of Eqs. (4.14) indicates that the quantum

limit is, in fact, a "natural" limit in which to study the
e6'ect of a magnetic field on a superconductor. Note that
the Cooper pairs are formed by electrons in states of
equal and opposite "crystalline" momenta q, correspond-
ing to the magnetic translation group determined by the
initial choice of the vortex lattice in real space. These
states are not related by tiIne-reversal operation, since
time-reversal symmetry does not exist in the quantum
limit.

The zeros in real space are here directly transferred to
the points l qi ], where the gap in the quasiparticle excita-
tion spectrum vanishes. This gapless behavior at a set of
points in the magnetic Brillouin zone is an essential
feature of the excitation spectrum in a very high magnet-
ic field. The existence of these zeros has profound conse-
quences for the thermodynamic behavior of a high-field-
limit superconductor. For example, the specific heat at
low temperatures goes as C~ ~ T, [5(T)—b (0)]/
6(0) ~ —T, etc. Similarly, the transport properties will
be aft'ected as discussed later. The self-consistency equa-
tion has to be solved numerically and yields temperature
dependence for ho di6'erent from the standard BCS one,
owing to these zeros in the gap. Numerical calculation of
the BCS condensation energy is quite delicate, but it
seems that the triangular lattice of [z;] results in the
lowest energy at all T and H in the quantum limit.

3. BCS theory and the order parameter
below the quantum limit

If several Landau levels are occupied, the above results
can be easily generalized as long as we use the quantum-
limit approximation discussed in Sec. III. Two necessary
conditions are 5« co, and H )Hz. In particular, the
BCS theory can again be solved (Dukan, Andreev, and
Tesanovic, 1991), leading to an excitation spectrum of
Bogoliubov quasiparticles, which is a straightforward
generalization of Eq. (4.14c) with the gap for the nth
branch (arising from the nth Landau level) given by

(q) ~ [II ] boo(q)
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where b oo(q ) is the gap in the quantum limit given below
Eq. {4.14c) (one should remember that in the quantum-
limit approximation we include only the diagonal pairing
terms). The operator II is

II~=——i — +2q I=1 a a
2l any ag

The spectrum is gapless at the same set of points in the
magnetic Brillouin zone as in the quantum limit, since all
h„„(q) vanish at these points. Again, the gapless spec-
trum will have observable consequences and is the signa-
ture of the high-field limit. %'e should mention that the
result for a quasiparticle spectrum presented here differs
from that found by Stephen (1991), who concluded that
the energy bands are almost fIat.

The above form also represents the exact solution of a
BCS theory in two dimensions in the quantum limit. The
problem of orbital frustration is the same, and the only
difFerence is that one now does not have the motion along
the field. Moreover, the superconducting solution will
now not appear for arbitrarily small attractive V, but for
some critical value of the interaction that is larger than
the Zceman splitting. The density of states is now a set
of delta functions (broadened by thermal and impurity
scattering) corresponding to difFerent Landau levels. Be-
cause of these sharp features in the density of states, the
effect of Landau quantization is even more pronounced
than in 3D (Maniv et al. , 1991). This makes layered sys-
tems (Tesanovic, Rasolt, and Xing, 1989), like high-
temperature and organic superconductors, likely candi-
dates for the observation of quantum oscillations in the
superconducting state in the vicinity of H, 2(0) and above.
Very recently Akera et al. (1991) have studied the high-
field limit in a 2D system. They consider pairing in
several possible channels, including the case in which the
efFective attraction has a finite range, and find that for
pairing involving several electronic Landau levels, the or-
der parameter at low T has a more complicated form
than that given by Eq. (4.13). These issues could become
relevant in light of the possibility that a "superconduct-
ing" state may be found in semiconducting heterostruc-
tures typically used in quantum Hall effect experiments.

There is, however, an important difference between 2D
and 3D. In a 2D case there is no weak-coupling parame-
ter T, /E~, and the validity of the mean-field approxima-
tion in the high-field limit is highly questionable. In this
limit the average separation between vortices is of the or-
der of the average separation between the electrons, and
the quantum Auctuations could be so strong as to destroy
the mean-field vortex lattice solution at any temperature
{even at zero temperature). After all, it is well known
that for repulsive interactions the ground state involves
correlations that are not of the Hartree-Pock type
(Laughlin, 1983a). This is a serious concern, which is ad-
dressed further in Sec. V.C. However, this does not pre-
clude a possibility that some signature of high-field super-
conductivity could be seen in 2D heterojunctions and
other layered systems.

As the field is lowered further below the quantum lim-
it, the approximation used above eventually fails, as was
discussed in Sec. III. The contribution from off-diagonal
pairing terms increases with an increasing n, suppressing
gapless behavior, and now the diagonalization of the
"band-structure" problem presented above becomes an
lncrcaslngly hopclcss task. An interesting study that ad-
dresses this problem by considering a disordered array of
vortices has been recently carried out by Stephen (1992).
However, we can still learn about the nature of the super-
conducting order by studying the Ginzburg-Landau
theory in and around the crossover region. If many Lan-
dau levels are occupied, the Ginzburg-Landau free ener-

gy can be found in a similar fashion. The kernels K2 and
L4 are not projectors any more, and the exact solution
for b.(r) will now have a contribution from higher boson-
ic Landau levels. The insight that we gained in the quan-
tum limit concerning the nature of orbital frustration can
now be used to construct a solution to Ginzburg-Landau
equations at lower fields. Maniv and Tesanovic (1991)
consider an ordinary (low-field in the sense of Fig. 1)
strongly type-II superconductor (a))1), with a large
H, 2(0). The Ginzburg-Landau expansion for the free en-

ergy in an external field can be written to zeroth order in
the fluctuating part of the vector potential, exploiting
Ic))1, but otherwise in analogy with Eq (2.21.a) with Ã3
set equal to zero. Let us start with the low-field region,
where the semiclassical phase-integral approximation ap-
plies, i.e., Eq. (2.23a) with a(r) set equal to zero. The
linearized equation (2.23a) has the form of the
Schrodinger equation for bosons of charge e*=2e and
mass m *=2m in an external magnetic field (but not pro-
jected to the lowest Landau level, unlike in the quantum
limit). The eigenvalues are a( T) =fico, (n + —,

' ), where

co, =e *H /m *c, and a complete orthonorrnal set of
eigenfunctions of Eq. (3.26) modified for e —+e', i.e.,

=2/„(&2z). The highest T, corresponds to n =0.
This leads to an infinitely degenerate manifold of solu-
tions, which can be represented as b, '(r)
=hof (z)exp( —

~z~ /2), where the superscript prime indi-
cates the solution of the linearized Ginzburg-Land. au
equation. The Abrikosov variational solution consists of
a linear combination of the eigenfunction from within the
lowest, n =0, Landau level with coefIicients so selected as
to produce a regular lattice of zeros in f (z). The density
of zeros has to match the average magnetic induction
{B(r)).This form of solution we denote by f„(z). It is
easy to see that 6'~(r) [with B(r)=H] is not a solution of
Eq. (2.23a); thus the exact solution does not lie entirely in
the lowest Landau level, as in the quantum limit. Yct, at
temperatures sufficiently close to T, (H), the continuity of
b, (r) at T, should guarantee that b, '~(r) represents a
significant part of this exact solution.

To separate the exact solution into parts belonging to
the lowest and higher Landau levels we now can use what
we have learned in the quantum limit. Wc also use the
lowest-order gradient expansion for kernels Kz and K4.
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czP(r)+P Jd r'P(r, r')l(t(r')l P(r')=0 (4.15a)

where

It is very important to emphasize that this is only for the
sake of brevity. The procedure below can be carried
through with fully nonlocal E2 and K4 as well, and the
reader should consult Maniv et al. (1991)for details con-
cerning the crossover regime. We project Eq. (2.23a) to
the lowest Landau level:

unit vectors are a„and b. The above relation between b
and a„,a„b„=m 6xes the Aux through each unit cell to be
one elementary ffux unit Po. It can be readily shown that
the resulting order parameter is directly related to the fa-
miliar Abrikosov form, except for a di6'erent gauge.

The fact that P(r) is a solution of Eq. (4.15a) enables us
now to solve the original Ginzburg-Landau equation
(2.23a) exactly: We write the exact solution of Eq. (2.23a)

P(r, r')= g Po (r)Po (r')
m=0

1=—exp( —lzl /2 —lz'l /2+zz'*) (4.15b)

ltj(r) =P(r)+5/(r)
and then expand 5$(r) in the complete set of eigenfunc-
tions [P'„}as

is the projection operator on the subspace formed by the
lowest Landau level, with

P(r)= Jd r' P(r, r')f(r'),

where i'(r) is the standard Ginzburg-Landau order pa-
rameter,

7$(3)n
8(m.K~ T, )

and cx =a+ —,'%co, .
This projected equation is closely related to Eq.

(2.21a). It has a continuous set of exact solutions, which
can be written as

g(z)= g a„exp[ —(~n/a ) +(2minz/a„)],

4( r)= t'i'" o4 o(r) .

Now, we project the Ginzburg-Landau equation (2.23a)
to higher Landau levels (n )0) by applying the operator
6(r —r') —P(r, r'). This leads to a nonlinear equation for
the coefficients [b„},which can be solved by iteration,
assuming [b„}are small. To the lowest order, ap-
propriate for H not too far from H, 2, one gets

(P/Qo&oi, ) Jd "ly(r)l'q(r)y.* (r) . (4.18)

Similarly, the lowest-order correction to I' arising from
higher Landau levels can be written

o4(r)=Co X Xb..4'..(r) .
n=1 mk

Since p(r) is a projection to the lowest Landau level, it
can be written as

where a„ is an arbitrary real constant, determining the
period a I along the x axis, and

AF = —A'co, atro g nlb„l
n=1

(4.19)

g (z)—:f (z)exp( —lzl'/2) .

The coefficients la„}are given by

a„=exp[(inb /a~)n ], (4.16)

where b is an arbitrary real number, and the amplitude

Qo is

go= —a&2/Ps (2b/a„) . (4.17)

Here

s(p) = lo, (olp) I'+ lo, (olp)l'

coincides with the Eilenberger eigenfunction on an arbi-
trary periodic lattice (Eilenberger, 1967), whose primitive

and 03 2(pip) are the Jacobi theta functions, and b is
defined as b =b +ib, where b =~/a„. The corre-
sponding entire function, f (z), is given by

f (z)=exp(lzl /2)03(nz/a lb/a ).,
whereas the corresponding order parameter

g(r) =Poexp( —lzl'/2) f (z)

suggesting that excitations to higher Landau orbitals in-
duce attractive forces between vortices.

There are a number of other related questions which
we shall consider in Sec. V. For example, an interesting
issue is whether the triangular lattice of simple zeros
remains the lowest free-energy configuration at all 6elds.
In the high-field limit, one could imagine "Peierls"-type
instability, leading to deformation of the lattice and pos-
sibly overlap of zeros. Also, thermal and quantum Auc-
tuations should be included.

To study qualitatively the crossover region, where
many Landau levels are occupied, is more dificult. How-
ever, the important feature to appreciate is that close to
the H,2~H, „ line the order parameter b, (r) is almost
entirely represented by the basis set restricted to the
lowest Landau level, no matter where we are on the
H, 2

—+H, line. This follows directly from the form of
Eq. (4.15a). Since higher Landau levels will produce a
finite change in o., the cubic term cannot compensate,
and the effect of higher Landau levels in h(r) must go to
zero close to the transition line [i.e., go to zero faster
than 6'(r)]. Starting then from the quantum limit, as H
decreases towards the low-6eld limit the vortex lattice in
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the Ginzburg-Landau region simply expands, keeping the
area of the elementary hexagonal plaquette equal to
2m.l* . This continuous monotonous crossover might
seem in contradiction with our insistence (see, in particu-
lar, the Introduction) that the nature of the superconduc-
tivity in the quantum limit is different from that in the
semiclassical phase-integral approximation. We there-
fore discuss next in some detail what is going on.

The fact that b, (r) in mean-field approximation looks
very much the same all along the H, 2~II, line does not
mean that the properties of the superconducting states
are similar. In particular, the response of the system in
the presence of H is characterized by the induced
currents (which, for example, lead to diamagnetic pair
breaking in the semiclassical phase-integral approxima-
tion, as discussed in the Introduction) and not by b, (r).

j(r)= [P (r)VQ(r) g(r—)VQ*(r)]

4e g*(r)g(r) A(r) .
mc

(4.20)

For the quantum limit using Eqs. (2.21b) and (4.9) we get,
after a bit of algebra,

It is dificult to write down in a transparent way the rela-
tion between the induced current j(r) and b, (r) every-
where on the transition line [although in principle Eq.
(2.21a) does contain the full information].

Two extreme regions are accessible. For the semiclas-
sical phase-integral-approximation region, j(r) is given
by Eq. (2.23b),

Bb, VeH. . .»z(z,z*)=— —y'(T)z*e I'I ~ d r, f d rzb. *(zi,zf )b(z2, zf )
ml mc

X exp
2 2 2 2

(4.21)

where y'( T) is given in Eq. (4.10c); of course,
(4n/c)j(r)=V Xb(r). Let us now see the difFerence be-
tween Eqs. (4.20) and (4.21).

Suppose we produce the same disturbance (due to, say,
some external potential) in the quantum limit and the
low-Geld limit by setting

itj(r) =h(z, z*)=e (4.22)

From Eq. (4.20) we get that j(r) in the low-field limit is

j(r)=e I'I HXr . (4.23)

From Eq. (4.21) we get that j(r) in the quantum limit is

j(r)=e I I'nHXr . (4.24)

lg&=+(~k +Uk ck =ot&k =op)lvacuum& .
z

(4.25)

Aside from differences in proportionality constants, Eqs.
(4.23) and (4.24) differ by a factor of 2 in e I'I; this actu-
ally is a signature of the difFerence between the two re-
gin1es.

The induced current in Eq. (4.23) is the response of a
macroscopic order parameter n1ade up of many Cooper
pairs. To get the current response for such a g(r) we
must square it [i.e., p'(r)1(t(r)] and multiply it by A(r).
On the other hand, the response in the quantum limit can
be traced to a current carried only by the two local Lan-
dau orbitals making up the Cooper pair. These local
currents are simply the result of these orbitals [i.e., Eq.
(4.2)] being eigenstates of electrons in a magnetic field.
For example, the wave function of Cooper pairs that
leads to Eq. (4.22) is, from Eq. (4.5),

In Eq. (4.25) the concept of magnetic frustration is clear-
ly irrelevant. As already discussed in the Introduction,
the frustration energy in the low-field limit is a conse-
quence of the expense in energy due to the displacement
(by H) of the momenti transverse to H. This leads to
current Aows perpendicular to H and to "frustration en-
ergy. " It is the underlying essence of Eq. (4.20). There is
no analogous frustration in the quantum lin1it.

The crossover between these two regimes can now be
understood as well. As the Geld H gets stronger, the
transverse frustration loss in energy is regained by
stronger and stronger pairing along H. The crossover re-
gion contains a mixture of the current responses of Eqs.
(4.20) and (4.21). The order parameter, however, still
looks the same while the underlying properties continue
to change smoothly to the quantum limit.

%'hile the coupling between the order parameter and
a(r) can be ignored in the above discussion, it is still im-
portant conceptually. This coupling can be treated per-
turbatively in the above exact solution of the Ginzburg-
Landau equations. The magnetic field induced by super-
conductivity itself is very sn1all compared to the external
field. This is also true when the induced a(r) is coupled
to the order parameter in strongly type-II superconduc-
tors (i.e., ~))1/v'2). Therefore, to some extent, we can
think of high-field-limit superconductivity as a manifesta-
tion of extreme type-II behavior. The two coupled equa-
tions (2.23a) and (2.23b) can be solved perturbatively, re-
sulting in a variational solution to the problem. The
effect of the induced a(r) scales like 1/a « 1 and can be
ignored for n1ost purposes. It is important to keep in
mind that the effect of the induced vector potential is al-
ways significant at very large distances ( ))A, ), and so one
should be careful about ignoring it. In the high-field lim-

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



736 M. Rasolt and Z. Te5anovic: Superconductivity in very high magnetic fields

it the efFective A, will typically be longer than the size of a
sample, and thus our neglect of a(r) is justified.

C. Transport properties

1. General remarks

We next turn to transport properties in the mean-field
approximation. Although the magnetic response of a su-
perconductor, discussed above (and, in fact, the response
of the normal Fermi-liquid state as well), share many
similarities with transport properties (i.e., the response to
an electric field), they are not the same. Before we turn
to our primary interest here, which is the superconduct-
ing transport properties in the quantum limit, we want to
illustrate this difference in the linear-response region. It
is certainly true that both an applied electric field and a
magnetic field produce currents in the system. When the
velocity of the current in the super conducting state
exceeds some critical value, dissipation starts. This is
true for currents induced by both magnetic (see the In-
troduction) and electric fields. However, the two are not
exactly the same. The response of electrons (supercon-
ducting or normal) to an external magnetic field is a
ground-state property; not so, the response to an electric
field.

The most general formulation of these ground-state
properties has been presented in recent papers by Vignale
and Rasolt (1987, 1988 for the continuum and Rasolt and
Vignale, 1990 for the lattice). Unlike the normal case,
however, the case of superconductivity, requires the addi-
tion of the self-consistent correction discussed in Sec. VII
of Vignale and Rasolt (1988). We should also point out
that below the H, i line (and certainly in the linear-
response region) the magnetic field is totally expelled
from the bulk, and therefore the bulk ground-state prop-
erties are unaffected by H. However, around the H, 2 line
this new theory of Vignale and Rasolt can have impor-
tant implications, which are presently being exploited
(see also Olivera, Gross, and Kohn, 1988). This is even
more relevant to the effect of quantum Auctuations (see
Sec. V) around the H, „line (in particular in the quantum
limit), where the Abrikosov lattice rejects more micro-
scopic many-body effects perpendicular to H [see the dis-
cussion below Eq. (4.24)].

Coming back to a simple illustration of the difference
between responses to magnetic and electric fields, consid-
er Fig. 8, where we present the current-current response
function g;&(q, co) in the normal states. The more com-
plex set of graphs of Fig. 9 represent the same response in
the superconducting state. Both cases incorporate the
effects of disorder to lowest order in impurity scattering.
These contributions are equivalent to Fig. 3, now for the
current-current response y, ;. In other words, Fig. 3
represents the effect of impurities (for weak disorder) on
ICz [of Eq. (2.16)] and therefore on the creation of the su-

perconducting condensate [or equivalently b.(r)]. Figure

FIG. 8. Current-current response in the normal state: (a)
Current-current response function of the pure normal state; (b)
response to lowest order in impurity scattering.

9 represents the efFect of impurities (for equivalent disor-
der) on the response to either magnetic or electric fields,
once the condensate has been created (i.e., below the H, 2

line or above the H, „ line). The induced current j(q, co)

is given by the Kubo relation

pe 5 pj (q, co)= g~~~(q, co) — A~(q, co) . (4.26)

Equation (4.26) assumes that the response of the system
is translationally invariant after the average over impuri-
ties has been taken.

From the spatial isotropy,

/ II
/

/
r S r/
I C IC P

/// 1L

&. r~
I 2 C ICr w w r

/// 2 j
I & IC

PIG. 9. Current-current response in the superconducting state.
(a) Current-current response function in the superconducting
state ignoring impurity vertex corrections. The double-line ar-
rowed propagators represent the normal and anomalous propa-
gators in the superconducting states defined in (c) and (d). (b)
Including vertex corrections. (c) The normal propagator, in the
superconducting state, to lowest order in impurity scattering.
In contrast to Pigs. 3 and 5, the single-line arrowed propagators
include electron-electron interactions. This, of course, is the
reason why the single-line arrowed anomalous propagator is
nonzero. (d) The anomalous propagator to lowest order in im-

purity scattering.
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g;;(q, co) = BL (q, co) +BT(q,co) 5 &-qaqp qaqp

(4.27)

x,, (q ~)
0.= lim lim

co~0 q~O l CO

P P
co~0 pi (co+ i / 7)'I (4.33)

From gauge invariance,

2

lim BL (q, w)=
co~0 mc

(4.28)

so

In the normal state

2
lim lim BT(q,co)=
q~O co~0 mc

(4.30)

In the superfluid (or superconducting) state the superfluid
density p, (remember that p, is not simply ~g~ but is re-
lated to the helicity modulus) is

p, = lim lim [Bl(q, co) —Bz.(q, co)] .
q~Oco~O

(4.31)

[Note that according to Eqs. (4.28), (4.30), and (4.31)
p, =0 in the normal state. ] Now let us return to Figs. 8
and 9 and start with the normal state. In the absence of
impurities, only Fig. 8(a) contributes. Figure 8(a) in con-
junction with Eq. (4.29) then leads to the noninteracting
Landau dimagnetism,

lim y;, (q, co)= i +BT(q, co—&0) 5~&—p pe qaqp qaqp
co~0 mc q q

(4.29)

H = = + M —2aM
"dI' 8 1

BM BM 2y
(4.34)

When we take, however, the pure system, then ~—+Do

and o. goes to infinity as it should. The difference be-
tween transport and ground-state properties reduces to
an emphasis on temporal or spatial responses, respective-
ly.

In the superconducting state, hajj of Fig. 9 can also be
calculated. It is found that now, due to the presence of a
gap, both yl and o. become infinite even in the presence
of impurities (see below). [Incidentally, the terms
presented in Fig. 9 will not yield the gauge-invariant
form of Eq. (4.29). As is well known, additional correc-
tions (vertex corrections) beyond the mean-field approxi-
mation need to be included. At finite ~ these lead to the
Anderson-Higgs Goldstone mode (for Coulomb e-e in-
teraction to a plasmon), which is a collective Cooper
pair —Cooper pair excitation present beyond the single
quasiparticle excitation F.„=—(g„+b, )', the only excita-
tion available in the mean field. ] Perhaps we should add
one more remark about the Meissner effect. In the
linear-response region the magnetization M (in the super-
conducting state) equals —H/4m, the definition of the
Meissner effect. This is a direct consequence of yL's go-
ing to infinity, because

—k~e0
XL,

2K mc
(4.32)

On the other hand, the response of the system to an elec-
tric field (i.e., transport) is given by reversing the limits in
Eq. (4.29). Including impurities, the conductance o is
given by the famous Drude form,

Therefore in the superconducting state M= (H/4m ), —
while in the normal state, where ~yL ~

((1/4m, M =pl H.
The relation between transport and ground-state prop-

erties in the superconducting state (and in linear
response) can be made more general by considering Fig. 9
for arbitrary q and co. For completeness, we list the final
result:

j (r)= f d i'. Jdgdg'L, (g, g')Re cr & r, r', — 6(r —r')5
& A&(r'),

27Tc mc
(4.35a)

where

b, +g' —ee'
E' E(E +E)

(4.35b)

and e=(g +b, )'~ and o.
& is the transport response.

We then see that even for arbitrary variations of E(r)
there is a close relation between transport and ground-
state properties, though the two are not the same. Final-
ly, we should mention that Eq. (4.35) can be derived, as
well, by expanding Eq. (2.9) to linear order in A(r).

2. Transport properties of the normal state
in the high-field limit —linear response

To understand the transport properties of the super-
conducting state in the high-field limit we start with the
normal state in this limit. This problem has been
thoroughly investigated by Abrikosov (1969). We list the
relevant aspects of his study below.

The response to a weak electric field is given again in
Fig. 8. The single-particle propagators are now given in
terms of the Landau levels; it is an extension of Eq. (4.6)
to many such levels,
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P„* (ri)P„(r&)
Go(co, ri, rz) = g

m, n '~ sn+ kz
(4.36a) e ppT

yy 2 2

n+ —,
'

kF„+

n+2+
kF„

(4.39a)

where P„are given in Eq. (3.26) and where

eH geH & kz
g„,(k, ) = (~ +-,' )+ + ' —E, (4.36b)

cc 2Plc 2fnz

(we are keeping the Zeeman splitting).
The Fermi momentum (along H) for each occupied

Landau level is given by

and the transverse Hail conductance is

o ~=p+ec/H .

3. Transport properties of a superconductor
in the high-field limit —linear response

(4.39b)

m~ C 2fPT C

1/2

(4.36c)

Now introducing Eq. (4.36) for the electron propagator
into Fig. 10, we get the following form for the Careen's
function in the presence of pointlike impurities of ampli-
tude Uo.

nm r& nm r2G=
„ i co g„(—k, ) —X

(4.37a)

where

eHm,
X=Ã~ Uo 1+i sgncoU&

2~c „kF„~
(4.37b)

and where X; is the impurity concentration, the sum in
Eq. (4.37b) is over the occupied Landau levels, and Eq.
(4.37b) is restricted to zero temperature. The result of
Eq. (4.37b) is rigorous when (rkFO)/(2m, )~~, with
1/r= —2ImX. Since the impurities are nonmagnetic,
there is no communication between the two spins, and
the e6'ect of the Zeeman splitting is to introduce the +
signs according to Eq. (4.36b). As we shall see below in
considering superconducting transport, it is important to
note that the imaginary part of X [in Eq. (4.37b)] is
nonzero only due to scattering from states of momentum
k, and Landau index n to k,' and n' all sitting at the Fer-
mi energy EF. If a gap appears in the g„(k, ) at EF the
imaginary part of X must vanish.

Now introducing G [Eq. (4.37)] into Fig. 8, we get the
various current responses depending on the orientation of
E relative to H (or equivalently the z axis); for E along z,

o„=(p+r++p r )e /m„o, „=0, o., =0, (4.38)

pc
//

I 2 Ir

FIG. 10. The normal propagator in the normal state to lowest
order in impurity scattering.

where p+ and ~+ are the two spin densities and lifetimes,
respectively.

For E along y the longitudinal Hall conductance is

We can carry out the same calculation for Fig. 9 as we
did for Fig. 8. The calculation is more tedious, due to the
presence of the anomalous propagator F(iso, r„r2). Not
only that, but in the mean-field approximation the order
parameter has a lattice structure (see Sec. IV.B). This re-
quires the calculation of G(ice, r&, rz) and F(iso, r„r2) in
the presence of a nonuniform b, (r), which is very
difficult. What will happen to Eqs. (4.38) and (4.39) in
the superconducting state, however, can be understood
without such a calculation.

Let us turn, then, to the wave function given in Eq.
(4.5) (for simplicity we restrict the discussion to the quan-
tum limit). Whatever the coefficients u and v do, as a
function of m and m', as long as the coherence is main-
tained between k, and —k, the lifetimes r+ and v [in
Eqs. (4.38) and (4.39)] must go to infinity. This we can
see by de6ning a new set of operators Dk and Dk

z Z

such that
k

Dk, =X~;
77l

(4.40)

where the matrix A diagonalizes Uk
' in Eq. (4.5). The"z

ground-state wave function in the mean-field approxima-
tion, given in Eq. (4.5), now reads

~0~ —II (uk @Uk D'mtD' km')~vac u-
k, m

(4.41)

The Bogoliubov operators introduced in Eq. (2.8) are

PPl f pal

Vk mf +kDk mg UkD —k m$ (4.42)

These can be shown to create the quasiparticle excitation
of Eq. (4.41). These excitations have a gap as long as
uk %0 [i.e., as long as the coherence along k, and —k, is

z

maintained; see, however, Eq. (4.14)]. We then conclude
from Eq. (4.38) and (4.39) that in the superconducting
state in high Acids, the longitudinal resistance p„parallel
to the field vanishes and pyy perpendicular to the field
also shows a significant drop. Such dramatic drops in
resistance make this state experimentally distinct from all
the other instabilities (for example, SDW, CDW) and
other transport properties (like magnetic freezeout). In
using Eqs. (4.38) and (4.39) we did not take into account
the spatial nonuniformity of b,(r) perpendicular to H
(nor parallel to H in the case of Zeeman sphtting). This
should not, however, change our discussion; we come
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~ f ) =Q ( 1lk; +Uk; Dk; tD k; i )
~
vaclllliii )

k, i

(4.43)

where the Dk~; creates single-particle states of momen-

tum k, and index i in the basis set introduced by Maki
for the Wigner lattice ground state of the quantum Hall
effect,

ik g

(r z)= —e ~'~ e ' e
2 —Iz. I /4 zz. /2

k (4.44)

where z,. =R +iR are distributed in a hexagonal Abri-

z
Ji )1

i

h

back to this in a more general discussion shortly. It
might be tempting to suggest that the transport proper-
ties perpendicular to H should resemble the quantum
Hall effect; this is not entirely true. There are many
reasons for this. We list a few: (a) In Eq. (4.39b) there is
no relation between the carrier density p~ and H, as
there is, for example, in the integer quantum Hall effect
without impurities, which is certainly very well under-
stood. (b) The general gauge arguments by Laughlin for
the case of impurities depend on the 20 geometry of the
quantum Hall efFect. (c) Localization and the corre-
sponding plateaus are not strong in 3D. (d) Any finite
temperature leads in the quantum Hall effect to opening
of the gap and some low-level dissipation. Here the gap
remains up to T, except for single points in the zone [see
Eq. (4.14)].

We want to conclude this discussion with a few more
remarks about ~P ) of Eq. (4.5). For arbitrary u's and U's

Eq. (4.5) describes any spatial form of the order parame-
ter b.(r). Another useful form for P which leads to an ap-
proximate vortex structure in the mean Beld approxima-
t1on 1s

kosov structure of R and R~. Such a ~P) resembles a set
of tubes (depicted in Fig. 11) filled up with many Cooper
pairs of k, and —k, momentum, with the same Pk, per
tube.

4. Transport properties of a superconductor
in the high-field limit —general considerations

We can go beyond linear response. We can take our
superconductor and push a current through it, with some
superAuid velocity U„and ask what happens to its dissi-
pation. Let us start with zero temperature. When there
is coherence in the wave function (4.5), the system has a
gap [see, however, the discussion of Eq. (4.14)]. We can
now change this wave function to a current-carrying one
by multiplying ~P) by expiQ g, r, ,

P, (ri r;)=exp iQ Qr. ; P(ri r;), (4.45)

where v, =A'Q/m. We should remark that for Q~~H

P„(r, r, ) is an eigenstate of 8 in Eq. (2.4) [with
S

U „(r) and a(r) set to zero in Eq. (2.1b)]. On the other
hand, for QIH, Eq. (4.45) is an eigenstate of
H + (U, Hy ) /c, where the y axis is perpendicular to the
current Row. This is just as it should be, the appropriate
Hall voltage. As long as U, is not so large that
P(r, . r2) will itself be modified by the currents, then
the superconducting order parameter remains the same;
i.e., the fact that it is nonuniform both along z, due to
Zeeman splitting, and perpendicular to H, due to the vor-
tex lattice structure, does not interfere in the nondissipa-
tive How. This is true all along the H,2~H, line, al-

though a remark should be made about the effect of 6nite
temperature. At finite temperature, a gap continues to
exist in the usual way (except for single points in the
zone) below the whole H, 2~H, line. A zero-entropy
mode always exists in the presence of quasiparticle exci-
tations and, in the usual way, the superAow and the sta-
tionary normal Quid stabilize at a maximum entropy.

Thermal and quantum fluctuations can also melt the
vortex structure. The wave functions are now random
superpositions of ~P)'s of Eq. (4.5) and therefore coher-
ence is lost (e.g., u ~0) and no zero-entropy mode sur-
vives. See Sec. V for discussion of Quctuation effects.

5. Transport properties of a superconductor
in the quantum limit within a wide parabolic
quantum well

FIG. 11. Induced magnetic and current profiles in the quantum
limit: (a) The superconducting "tube" in the quantum limit; (b)
the induced part of the magnetic field h associated with a single
tube (note h &(H); (c) in contrast to Fig. 2, the radius of the
tube is governed by the magnetic length I*.Note also that there
are no diamagnetic superconducting currents (a) circling in the
tube, since they are extremely small.

In order for superconductivity in donor-doped semi-
conductors to exist in the quantum limit, it is preferable
(or perhaps even essential) to keep donor impurities out
of the conducting region (e.g. , magnetic freezeout is one
serious concern; see Sec. VII). Wide parabolic quantum
wells are one solution to this experimental problem (Cros-
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sard, Halperin, and Westervelt, 1987; Gwinn et a/. , 1989;
Sajoto et al. , 1989). Here we discuss the expected trans-
port behavior in such a restricted geometry. As already
stressed in the Introduction and in later sections, there is
a strong similarity between SDW instabilities and super-
conducting instabilities in the quantum limit. This will
become even clearer here. In fact, to discuss the trans-
port properties in a wide parabolic quantum well, all we
need is to "invert" the discussion of Brey and Halperin
(1989) in the same geometry for a spin-density wave; by
"invert" we mean that whenever a gap at EI;, due to the
SDW, occurs, conductivity parallel to H is reduced,
while whenever the same occurs for spin-singlet super-
conductivity the conductivity increases.

0
The geometry we consider is a thick ( & 1000 A) and

uniform layer of high mobility; we choose the y direction
to be perpendicular to the layer, and we place H along
the z axis. We also choose a carrier density such that
only the lowest level of the quantum well is occupied.
The Fermi surface without the superconducting instabili-
ty is illustrated in Fig. 12(a) and with the instability in
Fig. 12(b). Here is what we are looking at: the fiat por-
tion of the Fermi surface represents the fact that, when
the Landau states (in the lowest Landau level) are far
from the two boundaries of the parabolic quantum well
(along y), the eigenvalues as a function of k are disper-
sionless. (Here it is more convenient to switch to the
Landau gauge, where the k„'s represent the usual center
of the localized wave functions in the y direction). The
curvature of the Fermi surface for larger ~k„represents
the e8'ect of the boundary of the wide parabolic quantum
well (i.e., so called edge states). The curvature at positive
k and negative k represents the edge state at the two

quantum well boundaries.
When a superconducting instability occurs, the Bat re-

kx
)i

, ~ ~ tl

~ ~ ~
~ ~ 'J:::'.: '.

s:::.:-.-". ys.':.: ..:y
::j

kx

FIG. 12. Fermi surface of a wide parabolic quantum well: (a)
schematic of Fermi surface in the absence of superconductivity;
(b) schematic of Fermi surface in the presence of superconduc-
tivity. From Brey and Halperin, 1989.

gions of the Fermi surface acquire a gap, and excitations
over that part of the Fermi surface are eliminated (see
Fig. 12). The group velocity v of an electron with wave
vector (k„k„) is given by the gradient of the dispersion
with respect to (k„k ). It is clear that the edge states at
EF with k &0 all have v„)0, while states at the opposite
edge have U &0. The value of v, depends on k„and
both signs of u, may be found at each edge of the layer.
Now suppose we set the state in motion. The impurity
potential will scatter electrons at Ez, on either side of the
wide parabolic quantum well, from one value of k, to
another. If the quantum well is thick compared to the
magnetic length, there is little overlap between the states
from opposite sides of the layer, so that the impurities
should produce very little scattering between these two
sets of states. Since the states at a given edge carry a
current of a definite sign in the x direction, they cannot
be localized in that direction, and this probably implies
that they must also be extended in the z direction.

In order for a current to be carried by the sample in
the x direction, one must establish a di6'erence in the
electrochemical potential between the two sides of the
electron layer (essentially a Hall voltage). The electrical
current is then carried by a combination of two e6'ects:
an excess in charge carriers at the edge, corresponding to
a positive group velocity, and a contribution from the
E XB drift of electrons in the center of the layer, arising
from the induced electrostatic field E . In order for the
current to relax, it is necessary for electrons near the Fer-
mi energy to be scattered from one side of the electron
layer to the other and thus restore the equilibrium popu-
lation. Since there is little overlap between the two sets
of states, this scattering rate should be relatively small,
and the resistivity p„ for currents in the x direction, at
low temperatures in the spin-singlet superconducting
state, should be smaller than the values at temperatures
above the spin-singlet superconducting transition.

By contrast, current in the z direction is carried equal-
ly by extended states at both sides of the electron layer; it
is not necessary to scatter electrons across the layer to re-
store equilibrium in this case. We expect that the resis-
tivity p„ for currents in the z direction will be
significantly lower in the spin-singlet superconducting
state than at temperatures above the spin-singlet super-
conducting transition, because electrons near the center
of the parabolic well cannot scatter due to the supercon-
ducting gap. We note, however, that for a layer of finite
thickness the values of both p„and p„„should be finite.

In this section we have studied high-field superconduc-
tivity below the transition line. We have shown how the
BCS theory in the high-field limit can be solved exactly
and have discussed the nature of the superconducting
state. We found the excitation spectrum of Bogoliubov
quasiparticles to be gapless at a set of points in the mag-
netic Brillouin zone. The consequences of this solution
of the BCS theory were then discussed, with particular
emphasis on difFerences from and similarities to the low-
field limit and transport properties.
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V. FLUCTUATIONS

A. General remarks

All of what we have said up to now follows one crucial
simplification of the exact thermodynamics as given by
Eq. (2.5). This simplification is presented in Eq. (2.7) and
is exactly what is meant by the mean-field approximation.
To go beyond the mean-field approximation (for a super-
conductor in a magnetic field) is a very nontrivial matter,
and exact results are scarce. This is particularly true in
the quantum limit, where both thermal and quantum
fluctuations could potentially play an important role.

First, we discuss what would be required to solve the
problem exactly [i.e., calculate Z in Eq. (2.5a)]
throughout the whole H-T plane. Since at this point our
discussion is totally general, we go back even further and
start with 8 in Eq. (2.1).

1. Fluctuations outside the superconducting transition

FICx. 14. Fluctuation contributions to the free energy below T, :
(a) example of fluctuation-corrected free energy in the supercon-
ducting state; (b) example of the e6'ect of superconducting Quc-
tuations on the order parameter; boot strap e6'ects (see text); (c)
example of normal fluctuations and their e6'ect on the order pa-
rameter.

Here the free energy is given exactly by the famous
linked-cluster expansion. %'e illustrate in Fig. 13 a low-
order fluctuation contribution to the free energy, which
includes the remainder of the superconducting state in-
side the transition. %'e have already seen these ladder
graphs in Fig. 3, representing the effect of superconduct-
ing fiuctuations in the normal state (Aslamasov-Larkin
fiuctuations). To get the full contribution to the free en-

ergy, we need to sum all contributing graphs. It is not
uncommon to divide fluctuations into thermal and quan-
turn types. For example, in Fig. 14, to get thermal Auc-
tuations only (in the order parameter) we set co to zero

0)~+ co, k+ q

and keep q finite. These fluctuations should, to a good
approximation (although not rigorously), be viewed as
additional to the thermal excitations of quasiparticles
across the gap. The quantum IIIuctuations are associated
with finite co . This separation, however, is a bit
artificial, particularly in the quantum limit; the full
answer is a hybrid of both.

Another way of carrying out exactly the same calcula-
tion is to decouple the quartic interaction in Eq. (2.5) us-

ing the Hubbard-Stratonovich fields b, (r, r). Equation
(2.5a) now includes an integral over Db(r, r)Db, *(r,r),
and in Eq. (2.7) b, ( r )~5(r, r ) and

d r~ —f d~d r.
Again the thermal Auctuations are associated with
neglecting the r dependence (or equivalently co; see
above), and again this separation is artificial.

Calculating the fluctuation contributions this second
way leads to direct contact with the Ginzburg-Landau
expansion for thermal fluctuations. It corresponds to ap-
proximating Eq. (2.5) by

Z = fDb, (r)Db, *(r)Da(r)e (5.1)

FIG. 13. Fluctuation contributions to the free energy above T, .
(a) Example of nonsuperconducting Auctuations (or equivalently
correlations) contributing to the free energy in the normal state.
(b) Contribution of a single superconducting fluctuation to the
free energy in the normal state. When co is set to zero we com-
monly think of it as a "thermal" fluctuation. (c) Contribution
of the interaction of two such superconducting fluctuations to
the free energy in the normal state. When the co 's are set to
zero such nonlinear contributions correspond to quartic and
higher contributions in the Landau-Ginzburg expansion of the
free energy.

with I' given in Eq. (2.17). It is exact all along the
H, 2

—+H, line when quantum Auctuations are neglected
and when we describe a second-order phase transition
with the expectation that no higher than quartic contri-
butions in b, (r) are required. Incidentally, this is true for
some things (like universal exponents) but not true for
the shape of the transition line. In the quantum limit the
transition line (and even the nature of the transition) can
be strongly affected by thermal as well as quantum Auc-
tuations (see below).
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2. Fluctuations inside the superconducting transition

In the superconducting state the free energy of Fig. 13
needs to include symmetry-breaking corrections. This, as
we saw, is illustrated in Fig. 14. In the Hubbard-
Stratonovich field the same calculation involves introduc-
ing tadpole graphs for the broken symmetry of h(r, r) in
the superconducting phase.

Finally we remark on the case in which the transition
of h(r) is first order (such as perhaps the melting of the
Abrikosov lattice; see below). For a first-order phase
transition, Eq. (2.17) [inserted into Eq. (5.1)] is not ap-
propriate for studying the transition line. Contributions
like Fig. 14 must be calculated without any assumption
of the magnitude of b, (r). The free energy must be also
calculated for the normal phase (Fig. 13). The equality of
the two phases will then give the correct transition line;
this is an enormously complex route. It is not, for exam-
ple, as simple as calculating a melting curve of, say, sodi-
um. The point is that the gap itself is crucially boot-
strapped to the fluctuations. One can think of the melted
lattice as a collection of vortices that have lost their spa-
tial long-range order. This implies that the "normal"
phase loses the true, static (co=0) gap in the quasiparti-
cle excitation upon vortex melting (see Sec. IV.A), but
the remnant contributions from the sup ere onducting
phase remain very strong. The free energy of the fIuid"
phase in the vicinity of the transition is therefore particu-
larly complicated.

B. One-dimensional phase transitions and the
qUantUm llmlt

Although in principle methods do exist to handle the
quantum limit rigorously, in reality this is an impossible
task. As we shall see, even the treatment of thermal Auc-
tuations in the low-field region is a highly nontrivial
problem. The nonuniformity of h(r), due to magnetic
frustration, makes such calculations much more difticult
than the spatial isotropic Cxinzburg-Landau- Wilson
renormalization-group treatment. However, quantum
and thermal fluctuations can be handled with some rigor
in truly 1D systems. These calculations do provide some
useful insights into fluctuations in the quantum limit; we
take a few pages to discuss this.

Both Fig. 5 for spin-density waves and Fig. 3 for super-
conducting instabilities can be reduced to a one-
dimensional form [see Eq. (3.6)]. The remaining one-
dimensional variable is the momentum k, along the mag-
netic field. Does that imply that a 3D electron gas in the
presence of a very strong magnetic field (where all the
electrons occupy the lowest Landau level) is truly one di-
mensional' Of course not. The one-dimensional form in
the case of spin-density waves, as well as for ofF-'diagonal

superconducting instabilities, is a consequence of degen-
eracy in the eigenstates of difFerent momenta k . This
permits the elimination of k by summing over this vari-
able (i.e., summing over the phase space perpendicular to

the magnetic field or, in the cylindrical gauge, over m).
Such a sum, however, does not make the system truly one
dimensional. In fact, precisely this degeneracy was
resolved below T, to give the Abrikosov lattice discussed
in Sec. IV, which is a three-dimensional configuration.

Above T, the three-dimensional nature of the phase
transition will appear at once, the moment we consider
contributions beyond the ladder graphs of Fig. S for the
spin-density wave state or Fig. 3 for superconductivity.
For example, contributions from cross terms in the irre-
ducible vertex (see Fig. 15) will not permit its transforma-
tion to 1D.

'We can reduce the quantum limit to a truly 1D prob-
lem by replacing the interparticle interaction in Eq. (2.4)
by a delta function interaction w (q),

w(q)=g(q, )5(q„)5(q~) . (5.2)

g)

~vw~ W
I

FIG. 15. Low-order scattering processes (to second order) (b,c)
in 10 Fermi systems, in terms of the backward (g& ) and for-
ward (g2) elements. From Solyom, 1979.

This interaction is a constant in real space, perpendicular
to the magnetic field, i.e., very long range and highly un-

physical. In any event, the initial momentum kz& and ky3
now remain the same across any intermediate states for
any scattering processes (see Fig. 15). The problem is now
truly 1D.

In 1D there is strong competition between supercon-
ductivity, spin-density waves and charge-density waves.
The phase diagram for this 1D case has been studied pre-
viously. We discuss briefIy the conclusions of these stud-
ies with particular attention to their implication for the
mean-field predictions made in Secs. III and IV in the
case of a realistic interparticle interaction (i.e., a short-
range interaction in real space).

The interaction of Eq. (5.2) leads to scattering only
along the z direction. Now in the weak-coupling limit
the singular nature in the electron-electron or electron-
hole scattering occurs around the Fermi surface. In 1D,
then, there are only two possible scattering processes.
Either the two electrons scatter in the forward direction
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is that the e-h products [Eq. (5.5)] and e-e products be
maintained consistently in the SDW, CDW, and super-
conductivity response functions; we did not do this in
Secs. III and IV. When this is done correctly, no phase
transition can occur in 1D. It is instructive to see how
this happens in 1D and then to reconsider the implica-
tions for a short-range interparticle interaction (i.e., the
physically meaningful situation) discussed in Secs. III
and IV.

A very elegant way to sum this set of graphs is the
multiplicative renormalization group developed by
Solyom (1979), and others. The idea is to demand scale
invariance of the two amplitudes I

&
( co, Ep ) and I z( co, Ep )

when Ep (or equivalently kp) is scaled from Ep to Ep.
The result is the usual How equations for the couplings g&
and g2, as a function of x (where x =Ep/E—p). The two
How equations are

[i.e., g(p, =O)—=g2] or they scatter in the backward
direction [i.e., g (p, =2k+) —=g& ]. Of course, there is a
small range of intermediate momentum ~kp~ (or energy
Ep =A' kz lkp ~

/m) around kF, whose contributions to the
singular scattering amplitude is important. In this small
range, however, we expect g (p, ) to remain relatively con-
stant. In addition to the electron and holes' being close
to kF, in both the e-e channel and e-h channel, the states
must lie on opposite sides of the Fermi surface. [Inciden-
tally, we are not interested in the pathological case of a
half-filled band, in which case an Umklapp process is
possible and an additional g (p, =4k~) must be included. ]
The phase transition, in 1D, is then described by collect-
ing all the singular contributions to, say, the electron-
electron scattering amplitude (see Fig. 15). In Fig. 15(a),

g, and g2 are defined. The arrowed line is an electron
state with momentum kF, and the dashed arrowed line is
an electron with momentum —kF. The contributions to
the e-e scattering amplitude I, to second order in the
couplings g„and g2, are presented in Fig. 15(b). Note
that this collection of terms allows only for forward and
backward momentum exchange. Moreover, the inter-
mediate electron-electron and electron-hole lines are al-
ways on opposite sides of the Fermi surface, in accor-
dance with the above discussion.

Suppose we consider two electrons with different spins.
Two different cross sections can then be identified:
I 2(co,Ep), where the two electrons emerge with the same
initial spins, and I &(co,Ep), where the spin is inter-
changed,

m m
g, (x)+ g, (x)+

dX X fZkF ~ (haik„) 2m

(5.6)

m m
g&(x)+ g&(x)+

(haik~) 4m

(5.7)

In Eqs. (5.6) and (5.7) we have included third-order con-
tributions in the couplings, which are not shown in Fig.
15.

The How equations can be easily analyzed. If we
neglect the third-order terms, then

I (co Ep)=I ](co Ep)5 5ps I 2(co Ep)5 s5 p (5.3)

It is easy to identify these two distinct cross sections in
the collection of terms in Fig. 15. [The reason for the
dependence of I (pi, Ep) on Ep can be found in Eqs. (5.4)
and (5.5)]. Each one of these diagrams contains logarith-
mic singularities in 1D. These arise from the product of
the e-e Green's functions,

F+~ p~ dk'
i f„„— f G+ (k', co')G ( k', co co')— —

g&(x) =g&/(1 —g&1nx) (5.8)

and

(5.9)g2(x) =g2 —
—,'gi+-,'g i(x) .

To that order, there is a singularity in the renormalized
coupling for g, &0, corresponding to a phase transition
at finite temperature. If we replace Eo by kz T, then the
critical temperature, in the weak-coupling limit, is given

+ 1/g)
by kz T, =Eoe '. This, of course, is closely related to
the phase transitions discussed in Sec. III. If we include
the third-order terms in Eqs. (5.6) and (5.7), then the
singularities in g(x) are removed. Therefore, as should
be the case in 1D, there can be a phase transition only at
T =0. The point is that uniquely in 1D both the e-e and
e-h products must be consistently maintained to give the
correct physics. One can also use the Bow equations to
construct response functions of appropriate symmetry.
The well known phase diagram, at T =0, is presented in
Fig. 16. Clearly the competition between the different
phases in 1D is very strong.

What does this all mean for the case of short-range in-
terparticle interactions? As already discussed above, for
such physical interparticle interaction many of the terms

m f1co
ln

62m kF Eo
(5.4)

m
1

A'co
ln

A2~kF Eo
(5.5)

where 6+ and 6 are the 1D noninteracting Green's
functions for kF and —kF, respectively.

One can continue to write infinite sets of such dia-
grams, with leading logarithmic singularities; these are
the so-called parquet graphs. Such sets of graphs have
great resemblance to the ladder graphs already con-
sidered in Figs. 3 and 5. However, what is crucial to 1D

and the e-h,

kF+ Ikp ~ dk—i f„ i„ i
f 6+ (k', co')G (k' 2kF, a)' co)— —
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g) = 2g

FICx. 16. Phase diagram of the 10 Fermi gas obtained in the
second-order scaling approximation. The response functions
corresponding to the phases indicated in parentheses have a
lower degree of divergence than the others (from Solyom, 1979).
SS and TS correspond to singlet superconductivity and triplet
superconductivity, respectively.

(e.g., the cross terms in Fig. 15) cannot be reduced to 1D.
On the other hand, the ladder-type contributions are
similar to those of one dimension and are singular both in
the e-e and in the e-h channels. Therefore the situation
in the quantum limit is a kind of mixture of 3D with
strong 1D features. Significant progress along these lines
has been made by Brazovskii (1971) and, more recently,
by Yakovenko (1987). These authors have used the par-
quet equations to study the growth of CDW, SDW, and
superconducting correlations as the temperature is re-
duced. They found that unretarded attractive interac-
tions seem to favor a CDW over a superconducting insta-
bility. It is clear, however, that the realistic interactions,
consisting of the short-range retarded attraction and the
long-range Coulomb repulsion, could qualitatively aA'ect

their results. The long-range Coulomb part will strongly
suppress the CDW instability and favor a SDW
(Tesanovic and Halperin, 1987), while the retarded at-
traction will help superconductivity (Zimanyi, Kivelson,
and Luther, 1988). (The issue of the most likely ground
state with a realistic interaction is further discussed in
Sec. VI.) Moreover, it is most likely that the supercon-

[

C. Thermal fluctuation near T, (H)

Assuming a continuous transition along the H, 2 line,
Brezin, Nelson, and Thiaville (1985) studied Eq. (5.1)
with F of Eq. (2.23a), and applied renormalization-group
expansion techniques to the calculation of fluctuation
effects. Very briefly, what they do is write g(r) in Eq.
(2.23a) as

g(r ) =P(z, ri)exp( —lzl /2), (5.10)

where P(z, ri) is holomorphic in z. Introducing this into
Eq. (2.23a), they find that the corresponding F is given by

ducting transition is discontinuous (see the discussion in
the following section), and thus the approach of relying
on similarity to the more familiar purely 1D case may
not lead to a quantitatively reliable phase diagram. Cer-
tainly the precise interplay between e-e and e-h contribu-
tions, which led to nonsingular behavior in the renormal-
ized couplings, is not expected to occur for the case of a
physical interparticle interaction in the presence of high
magnetic fields. Phase transitions to SDW, CDW, and
superconductivity are expected at 6nite T, but the phase
diagram is expected to be modified considerably from the
mean-Geld results presented in Secs. III and IV. Unfor-
tunately, a rigorous study of this phase diagram to our
knowledge has not been carried out. When cross dia-
grams are included, intermediate sums over the manifold
of states m [in Eq. (4.2)] remain explicitly in the
renormalization-group recursions [Eqs. (5.6) and (5.7)].
The scattering cross sections [Eq. (5.3)] need to be made
invariant now with the additional dependence on m (or
equivalently z=x+iy). We are pursuing such a study;
the analysis is very complicated, and it is not clear
whether it can be carried out at all. It does, however,
share similarities with a study (Brezin, Nelson, and Thia-
ville, 1985) restricted to the effect of thermal fluctuations
oa the superconducting phase transition. We turn to this
next.

I: =fd" ",f« f«' (l~~pl'+~Ill')exp —
' + 2PI& '~ (5.11)

where ex=a+ —,'Ace, . The propagator of the quadratic
term of Eq. (5.11) is (after Fourier transforming the ri
coordinate)

6 (qiz*,z') = e~ = 1 1

2~ (qi+a)
(5.12)

Carrying out the standard renormalization-group rescal-
ing along qi, Brezin, Nelson, and Thiaville (1985) could
not find the same form for the rescaled I; they concluded
that thermal fluctuations cause the transition across the
II,2 line to be erst order. It might be that in fact the
Abrikosov lattice does not disappear continuously (as en-

visioned by Abrikosov from the mean-field approxima-
tion), but rather melts through a first-order phase transi-
tion (see Sec. V.A). [Incidentally, Halperin, Lubensky,
and Ma (1974) find a first-order fluctuation-driven phase
transition for Eq. (2.23a) due to the fluctuation in a(r).]
This possibility gives further credibility to the various at-
tempts to understand the melting of the Abrikosov lattice
in high-T, superconductors (Nelson, 1988; Houghton,
Pelcovits, and Sudbo, 1989; Nelson and Seung, 1989;
Xing and Tesanovic, 1990; Brandt, 1991). For example,
Nelson and Seung (1989) apply continuum elastic theory
and the Lindemann criterion to the displacement free en-
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ergy of an Abrikosov lattice,

5F(u(r))= ,' f—d r 2pu p+A, us2s+K
az

2

(5.13a)

where

Bu Bup
u p(r)= —,

' +
Br Brp a a,p=x, y

(5.13b)

where P„(z,z*) are the Landau eigenfunctions (for par-
ticles of charge e*=2e) in an arbitrary gauge. As we
have discussed earlier, the dominant contribution comes
from the lowest "bosonic" Landau level, n =0. The Quc-
tuations from higher Landau levels, nAO, have a gap of
order co, and can be ignored "near" T, " . These Auc-
tuations will "smoothly" renormalize the Ciinzburg-
Landau expansion for the lowest Landau-level contribu-
tion to f(r). Thus the problem is now reduced to a study

is the symmetrized two-dimensional strain matrix, p and
A, are Lame coefficients, and K is a tilt elastic constant.
For high-T, material, where E is very small, they find
that melting preempts the continuous transition along
the H, 2 line.

It is physically clear from the above approaches that
the true superconducting transition T„(H), defined as
the point where the resistivity vanishes, is different from
T, (H) found in the mean-field approximation. Thermal
fiuctuations act to reduce T„(H) relative to T, " (H).
However, the renormalization-group technique cannot be
used to treat what is, most likely, a first-order transition.
Furthermore, the elastic theory uses the Lindemann cri-
terion to locate T„(H). This is clearly unsatisfactory,
since the Lindemann criterion is entirely ad hoc and cer-
tainly does not represent a theory of melting of the vor-
tex lattice. Finally, the elastic theory has one further
principal difBculty: it cannot describe the vortex
"liquid" phase above T„(H).

Recently there has been some further progress in un-
derstanding the true superconducting transition T„(H),
by Tesanovic and Xing (1991) and by Tesanovic (1991).
Tesanovic and Xing consider the case of "ordinary"
low-field quasi-2D superconductors —thin films, super-
lattices, and layered systems —but their approach can be
generalized to 3D (Tesanovic, 1991) and to the high-field
limit (Tesanovic, Rasolt, Andreev, and Dukan, 1991),
which is of interest here. Let us review this approach,
which, in fact, leads to a unified description of both vor-
tex "solid" and "liquid" phases and leads to a quantita-
tive result for T„(H)in very good agree'ment with exper-
iments in "low-field" superconductors.

Physically, the idea of Tesanovic and Xing is that fluc-
tuations of the superconducting order parameter
f(x,y, g) are dominated by two factors: First, the exter-
nal magnetic field places a constraint on the form of
P(x,y, g). Near T, " (H) we can expand

alt(x, y, g) =g b„(g)P„(z,z*),

of fiuctuations in Ibo j. The second important point is
that the problem of fluctuations in type-II (and high-
field-limit) superconductors is "low diinensional, " even in
3D, and particularly in 2D (Lee and Shenoy, 1972;
Tesanovic, 1991). This is because the upper critical di-
mension in the sense of the renormalization group, D„ is
D, =6 for this problem (Brezin, Nelson, and Thiaville,
1985). Here, a parallel is suggested with the H=O case
for D &&D„ in which it is often beneficial to write
1f(r ) = A (r )expip(r ) and to study the fluctuations in am-

plitude and phase separately, since their nature can be
quite different. This is particularly important in low di-
mensions, far from D„' one example is a 2D Kosterlitz-
Thouless transition. In this case the amplitude Auctua-
tions are effectively suppressed, and the important contri-
bution comes from the singular part of the phase Auctua-
tions, describing the motion of vortices and antivortices.
Similarly, for HAO, and as long as the fields are com-
paratively low, we can use the same approach and con-
centrate on these singular phase fluctuations, except now
only vortices will be present. Near T, " (H), however,
while one can still separate the amplitude and the phase
as above, confinement to the lowest Landau level pro-
vides a stringent constraint on the fluctuations in 3 and

They cannot fiuctuate independently. Tesanovic and
Xing show that this constraint can be enforced exactly in
the symmetric gauge by writing

N

P(x,y, g)= g b (g)P, (z,z')
m=0

N

=C(g) g z —z(g) e ~' '4, (5.14)

where now 4(g) and I z;(g) j are allowed to fiuctuate free-
ly. The fluctuations in 4 and Iz; j near T, " (H) are the
"natural" way of representing two distinct tendencies in
g(r ): 4& describes the "global" superconducting correla-
tions, while the motion of vortices Iz, j emulates "local"
amplitude and phase Auctuations, coupled together by
confinement to the lowest Landau level.

In the mean-field approximation, @becomes finite, and
the Iz; j order into a triangular lattice at the same point,
T, " (H), as was discussed previously. Tesanovic and
Xing demonstrate that, when thermal fluctuations are
properly included, 4& and Iz; j behave very differently.
Vortices Iz; j still form a liquid long after the fiuctuations
in 4 have subsided, and its value is dominated by the
mean-field saddle point. They find that the growth of @
provides an eff'ective interaction between the vortices Iz, j
and ultimately leads to the formation of the vortex
"solid." This solidification, or melting point, is identified
with T„(H). Tesanovic and Xing also show that T„(H)
is always far from T, " (H), in some universal sense, as
will become clear below.

Vfe now illustrate how this works in a 2D "low-field"
case, following Tesanovic and Xing. Equation (5.1) can
be written as
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Z =fDbomDbo exp[ 1—3F(bo bo )]

The measure of the functional integral in Eq. (5.15) can
be transformed, after some algebra, to

by the evaluation of the Jacobian for

+ dbo dbo ~d@d@*+ dzdz, * .

This change of variables contains important physics.
The eigenmodes of the quadratic part of I', [bo j, de-
scribe an infinitely degenerate manifold. As one ap-
proaches T, " (H) these modes are so strongly mixed by
the quartic term that they completely lose their initial
identity. But general linear combination of these eigen-
modes is exactly (5.14). Furthermore, the additional, and
essential, benefit of these new variables becomes obvious
when we note that the integral over 4 in the partition
function can be carried out exactly in the thermodynamic
limit. This is significant since this integral contains con-
tributions from the nonperturbative sector of Eq. (5.15).
After integration one obtains

N dZ) dZi —(N+ 1)/2 2

i=1 l (J
Xexp[ —,'NB —,'NB+B +2—Nsinh '(B—/&2)],

(5.16a)

where

C( [z, j ) = f exp( —z *z)~I (z, [z, j ) ~',
2+N

tion among vortices {z,. j which dominates the low-
temperature behavior. Note that this interaction be-
comes the Abrikosov mean-field free energy when the
{z;j freeze. This interaction is inherently nonperturba-
tive and cannot be detected in large-order perturbation
theory (where the quartic term in the free energy is treat-
ed as a perturbation; Ruggeri and Thouless, 1976; Brezin,
Fujita, and Hikami, 1990). The thermodynamics of this
dense vortex plasma is equivalent to the original problem
of superconducting fluctuations in 2D.

As an example of cooperative phenomena, Tesanovic
and Xing consider the melting transition. Once the dense
vortex plasma freezes, by conventional wisdom, disorder
will pin this vortex solid and result in dissipationless Aow

for weak currents. Thus the melting point of the dense
vortex plasma can be identified as T„(H). The "gauge
interaction" B ( {z;j ) is scale invariant. Therefore the
thermodynamics of the plasma in Eq. (5.16) does not de-
pend on its density. It is entirely determined by the di-
mensionless coupling constant g. In particular, we can
write down the equation for the melting line, H~(T) [or
T„(H)], in the H-T phase diagram as

g(T H)=gpss (5.17)

where g~ & 0 is a pure number (note that the mean-field
transition corresponds to g =0). The melting line de-
rived from Eq. (5.17) has the qualitative form shown in
Fig. 17 as HM(T). This line signifies the transition to a
true superconducting state. It exhibits the following
"universal" feature: If experimentally determined TM
are plotted versus g (T~,HM)k&T~ for a variety of
quasi-2D and a &) 1 superconductors, the data should all
fit on the same straight line, with the slope given by
(g~ ) (see Fig. 18).

The number g~ is therefore of considerable
significance. To determine g~, Tesanovic and Xing per-

dZdZ ~ - 2

2m%

H

exp z z

and

(5.16b)

g =a(2ml d/2Pk~ T)'~2 .

Z describes a two-dimensional classical system of par-
ticles with density fixed at (2m. l )

' interacting through a
long-range multiple (2,3, . . . ) body potential B([z;j ).
These long-range "gauge" forces arise from the
confinement to the lowest Landau level, much as in the
quantum Hall eff'ect. The introduction of N and {z;j as
basic variables was crucial, since it is the integration over
N that enables Tesanovic and Xing to extract the interac-

FIG. 17. A schematic H-T phase diagram for layered and thin-
film type-II superconductors. The dense vortex regime (A) is
separated from the dilute vortex regime (8) by a dot-dashed
crossover line. For most systems OM is small and HM(T)
behaves as HM(T) (see text). As OM increases, HM(T) evolves
from HM(T) to HM(T). The dashed region is the London re-
girne, where HM( T) turns toward H, &(0) from Nelson, 1988.
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FIG. 18. HM(T) for three different thicknesses in thin films of
Nb3Ge. The data points are from Berghuis et al. ( 1990). The
dashed lines are obtained from Eq. (5.17) with g~ =67, and the
experimental parameters from Berghuis et al.

Eq. (5.17). The value of gM is difficult to determine with
the same precision as g~, but it seems to be
——3.5 « —1 (note that one is comparing the squares of
g) from the fit to the experimental data on YBa2Cu306 9,
a high-temperature superconductor (Tesanovic, 1991).
Thus the 3D case is also "low dimensional, "with T„(H)
dominated by the fiuctuations of jz;(g)], while the fiuc-
tuations of @(g) have basically subsided. Furthermore,
~gM ~

& ~g~ ~, which should not be surprising since, as
one goes toward dimension 6, g~ should move toward 0,
its mean-field value.

As outlined above T„(H) can be obtained from

g3D ( T,H) =gM, where now

g3D =a'[2~1 g, ( T,H)/2I3'kz T]'~

Inserting the quantum limit expressions for u', P', and
g', ( T,H), one finally obtains

formed a numerical Monte Carlo simulation of the dense
vortex plasma of Eq. (S.16). They found (g~ ) =63+12.
The origin of the uncertainty in g~ ——8 is the softness
of the potential 8 ( jz; ] ), requiring very long equilibration
times.

The size of g~ testifies to the validity of Tesanovic
and Xing's approach. For such large negative values ofg, N already has a "mean-field"-like behavior, and the
superconducting transition is completely dominated by
the motion of jz; j. In fact, the leading terms in the

g « —1 limit of the exponential in Eq. (5.16) are
equivalent to the saddle-point approximation for @. For
g around zero or positive, the form of the effective in-
teraction among jz; j is different and much weaker (see
Tesanovic, 1991). Thus, near the mean-field transition
TM"A(H), which is given by g =0, the system of jz;] is
a weakly interacting liquid, far from the solidification
transition. This universal large distance of
T„(H)(g =gM « —1) from T, " (H) is the conse-
quence of the infinite degeneracy of the lowest "bosonic'"
Landau level and the effective low dimensionality as pos-
tulated by Tesanovic and Xing.

We now consider the implications of all of this for the
quantum limit. If we neglect quantum fluctuations, then
the results of Tesanovic and Xing can be readily extended
to the 3D quantum limit. Of course, both a and P in Eq.
(5.11) must be replaced by the appropriate kernels, Eqs.
(4.7) and (4.8). However, the important transformation
to the coordinates of the z; [Eq. (5.14)] stands, and the
analogy with plasma melting remains. Unfortunately, in
3D one cannot carry out the integration over N(g) exact-
ly, due to the presence of gradient terms (along H).
However, the integration can be carried out approxi-
mately (see Tesanovic, 1991) and results in a "quantized"
version of this 2D dense vortex plasma. The scaling
remains, except now g20 goes into g3D when one replaces
d by g', ( T,H), where g, is the coherence length along H.
The melting line is again determined by the 3D version of

T (H)= To'A(H).1
sc

( 3D)2 c

The value of gl ———3.5 is universal and is the same for
the high-Geld limit and "low-field" ordinary 3Q super-
conductors (Tesanovic, 1991). Thus the true T„(H) is
reduced to about 10% of its mean-field value T~" (H).
This illustrates that thermal fluctuations are quite
significant in the high-field-limit superconductor, but
they still leave T„(H) observable. It is important to
stress here that an analysis of the Auctuations demon-
strates that high-field-limit superconductivity is a truly
3D state, despite a deceptive quasi-1D appearance at the
mean-field level. The approach of Tesanovic and Xing
enables one to extract this important "lateral" interac-
tion among vortices which is not found in other ap-
proaches. These lateral correlations can now be included
on an equal footing with the Auctuations along H
(Brezin, Nelson, and Thiaville, 198S). It is essential that
both be included, since it is the "lateral" correlations that
drive the superconducting transition both in the quantum
limit and in low fields in 3D, as well as in 2D. Using the
results of Tesanovic and Xing, one can now address is-
sues like the shape of the (probably first-order) transition
line, the mechanism of melting of the vortex "solid, " etc.
Therefore the analysis of Tesanovic and Xing, applied to
the high-Geld limit, provides us with a quantitative un-
derstanding of the effect of thermal fluctuations on the
superconducting transition.

Now we turn to the effect of quantum Auctuations in
the quantum limit. First, if we again ignore the propaga-
tion along 8 and consider the 2D case, then the wave
functions in Eqs. (4.5) and —even more explicitly —Eq.
(4.43) share a lot of similarities with a boson version of
the Wigner crystal phase of the quantum Hall effect. The
process of melting of such a crystal to a fiuid state (e.g., a
ring exchange of vortices?) would probably be relevant
here. %'e must, however, bear in mind that the density of
zeros in b, (r) "per plane" (next to the Hc„ line) is of the
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order of electron-electron separation and the tendency
for melting due to such quantum fluctuations will be
strong. For a complete treatment of both quantum and
thermal Auctuations, we need to consider the contribu-
tions of Figs. 13 and 14. The thermal Auctuations will
continue to be modified by the small q, of the ladder
graphs. We believe that the quantum fluctuations will be
modified by terms like Fig. 13(a). In other words, the
mean-field condensate is modified by nonsuperconducting
quantum Auctuations.

The solution to the BCS theory found in Sec. IV will
experience significant effects from thermal and quantum
Auctuations. These effects were discussed in this section.
We find that, in 3D, thermal fluctuations reduce the tran-
sition temperature in very high fields, but the supercon-
ducting state still appears at an observable temperature
range. The mean-field theory is therefore a reasonable
starting point at low temperatures. In 2D the effect of
fluctuations is much stronger, and it may be that the
mean-field theory is not a valid starting point for any
temperature. The effect of quantum fluctuations is more
complicated and at present remains an open issue. These
fluctuations will be discussed further in the next section,
with regard to the issue of competition among different
types of ground states.

VI. APPLICATIONS

A. Model calculations

In Sec. III we presented some of the qualitative
features of the transition temperature in high-field-limit
superconductivity. Here we present several model calcu-
lations which illustrate these qualitative features. First,
we specify the type of system in which high-field super-
conductivity can be a realistic possibility. As already
mentioned before, low-carrier-density systems are prob-
ably the most suitable materials. We consider two exam-
ples, Ge and GaAs. We emphasize that we are not pre-
dicting high-field superconductivity in Ge and GaAs.
We simply use their material parameters as an illustra-
tion of what range of these parameters will be favorable
for superconductivity. The model based on Ge parame-
ters we call model I, while the corresponding model for
GaAs is called model II. Models I and II represent sys-
tems in which the quantum limit can be reached with
reasonable laboratory fields and in which the existence of
a relatively wide region between H&L and the spin-
depopulation field H& is well established. In fact, in n-

doped Ge, a spin-density wave is expected to exist in the
quantum limit. This is due to a modest g factor of —1.6
and large valley anisotropy. The conduction band con-
sists of four equivalent valleys, which are ellipsoids of re-
volution about the (111)crystal axes. The longitudinal
mass m& along the (111)axis is 1.64 in units of electron
mass, while the transverse mass I, is only 0.08. Thus,
for a field along one of the (111) directions, the cyclo-

tron mass m, =I„ leading to an effective g factor
g*=gm, =0.12. The small effective g factor results in
both spin states' being present considerably above H&„
and, combined with strong valley anisotropy, favors
spin-density waves relative to other high-field quasi-one-
dimensional instabilities like charge-density waves and
valley density waves. Since general conditions regarding
the availability of both spin states are similar for SDW
and high-field spin-singlet superconductivity, we take Ge
parameters for our model I. We shall also assume that H
is applied along the (111) axis of one of the valleys and
that Ge is simultaneously being subjected to a uniaxial
stress along the same direction. The stress leads to a situ-
ation in which only this one valley is occupied, with

HL&I =5.6T for a carrier density 6X10' cm . Note
that in our calculations density does not appear explicit-
ly', one can use our results for various carrier concentra-
tions by scaling appropriate quantities. Furthermore, Ge
is rich with experimental possibilities since, in the un-
stressed case, all four valleys will be degenerate and an
intervalley pairing in the spin-triplet case becomes a pos-
sibility (which we shall not investigate in detail here). A
discussion of this point is presented in Rasolt (1987). The
basic idea is that valley degeneracy plays the role of the
spin and makes possible the formation of the orbital s-
wave state. Similarly, in GaAs the cyclotron mass is
-0.07, which, combined with g =0.32, leads to
g*-0.02, providing an example of a system with very
small Zeeman splitting (relative to the cyclotron frequen-
cy). Finally, we choose m, =0.075, mi =1.0, and g = 1.5
as our model III, illustrating the values of parameters
that can be found in doped semiconductors and semimet-
als which will be favorable for the high-field supercon-
ducting state.

The formulas of Sec. III were obtained using a simple
weak-coupling BCS approximation. While this approxi-
mation is expected to be qualitatively correct, one of the
important characteristics of the quantum limit is a rapid
rise in the density of states (and coupling constants) with
increasing field ( ~H ). This is accompanied by a corre-
sponding drop in the Fermi energy. Thus conditions for
the validity of the weak-coupling BCS theory will be
violated at high fields. Consequently we use here a
strong-coupling theory, based on a solution of the two-
square-well model for kernels of the electron-phonon and
electron-electron interactions. This results in a familiar
reduction of the coupling constant due to the effects of a
Coulomb pseudopotential p* and the quasiparticle renor-
malization factors:

(6.1)

where Z& (Z& ) are the spin-up (-down) quasiparticle re-
normalization factors, A, is the electron-phonon coupling
constant, and

p
I+@,In(QEFtEFi IQ)
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In the above we are restricting our consideration to the
lowest Landau level. The cutofF of the frequency integra-
tion is equal to Q. The above form is applicable for
Q((QEF&EF(. In the opposite limit, 0&)QEFtEF1,
which occurs as the field increases, the same two-square-
well model leads to

MODEL II

(6.2)

where now

1 —
A, ln(QEFtEFg/0)

and the cutofF in frequency space is replaced by
QEFREF~. The solution in this limit should not be taken
too seriously, since many of the physical concepts of the
standard Eliashberg theory fail for a Fermi energy com-
parable to or much smaller than the typical phonon ener-

gy. Still, the solution in this limit does have the qualita-
tive feature of a vanishing retardation efFect and the cor-
responding rapid loss of the efFective attraction. We
therefore use this form to illustrate the drop in the transi-
tion temperature, which should be a qualitative feature of
the 0 &)EFtI'F &

limit. (Here we do not consider the pos-
sibility of various bipolaronic instabilities that may occur
for low Fermi energies. )

The results are plotted in Figs. 19—21. We have used
A, =0.6 and p=0. 1 for H =H&L in all cases, as well as
0-10% of the 3D Fermi energy. T, is calculated for
both uniform and nonuniform states along H (due to Zee-
man splittir'g) of Sec. III. Several qualitative features are
apparent from our results. First, the uniform state gives
T, =0 for models I and III (for model II, with its very
small efFective g factor, there is a region where the uni-
form state is competitive). Thus the nonuniform state is
essential in obtaining a finite transition temperature.
Furthermore, all transition temperatures are uniformly
suppressed relative to weak coupling. As the coupling

3

l I I I

0 .02 .04 .06 .08
T~ (1.14Q)

FIG. 20. Model II: m =mI=0. 07 and g =0.32.

constant increases (A, ~H ), the quasiparticle renormal-
ization factors reduce T, considerably, particularly for
higher fields. One should not look for high-temperature
superconductivity in the high-field limit, at least not in
low-carrier-density systems like doped semiconductors
and semimetals. In these systems T, 's are likely to be in
the —10 mK to —1 K range. The break present in all

T, (H) curves occurs for 0-QEFtEF1 and will disap-
pear in a more realistic calculation including
modifications of the Eliashberg theory for a Fermi energy
comparable to the average phonon frequency. Finally,
while the reduction in T, due to Zeeman splitting is not
negligible and is more significant than in weak coupling,
the nonuniform state still leads to T, 's of the same order
as T, (g =0). For models I—III we find that T, (g) is typi-
cally —30—80% of T, (g =0). This qualitatively
confirms the analysis of Sec. III and leads to the con-
clusion that the Zeeman efFect does not destroy the
nonuniform superconducting state in the quantum limit.
All examples studied here (models I—III) indicate that if
T, (g =0) is itself observable, T, (g) will be too.

Models I—III have the parameters characteristic of
low-carrier-density semiconductors and semimetals. As
we have mentioned earlier, the Landau-level structure
afFects particularly systems with a high upper critical

2.5—
MODEL I

2.5—
l I

MODEL III

I I

~ 01 .02 .03
T (1.14Q)

~ 04

FIG. 19. T, (H) in strong coupling, for a nonuniform state.
T,(II) for a uniform state is zero for models I and III, while it is
smaller for model II. Model I: m, =0.08, mI =1.64, and

g =1.6.

1.5—

I I I I

.01 .02 .03 .04 .05
T~ (1.14Q)

FIG. 21. Model III: m, =0.075, mI=1.0, and g=1.5. For fur-
ther discussion, see text.
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150
m /m=2 TD = 6Tc Tc ——87

30

FIG. 22. H-T phase diagram for Bi2Sr2CaCu208-type systems
with m*/m =2, T,0=87 K. The Landau-level structure results
in deviations from the standard theory amund T-2 K and
H-30 Tesla and leads to the crossover to the high-Geld limit
for T-O. 8 K and H -50 Tesla. From Maniv et a/. , 1991.

field, like some of the recently discovered high-
temperature superconductors. %'hile the quantum limit
will be out of reach in these systems, the initial deviations
from the Abrikosov-Gor'kov theory should be observable
and are further enhanced by the 2D character of these
systems. The effect of Landau quantization on the transi-
tion temperature at high fields has been recently calculat-
ed by Maniv et al. (1991)and is shown in Fig. 22. Their
results show a particularly clear crossover to the high-
field limit taking place at T-0.8 K and H —50 Tesla
(this crossover occurs at a temperature much higher than
in 3D systems). While the results in Fig. 22 are very sen-
sitive to Zeeman splitting, one could tune the Zeeman
splitting by tilting the direction of the field to maintain
degeneracy between Landau levels (Norman, Akera, and
MacDonald, 1991).

B. Interactions in real systems

So far we have assumed some BCS effective attraction,
V, which is a weak function of the external field, and
have focused primarily on the questions of orbital frus-
tration and various forms of pair breaking, i.e., on how
superconductivity survives in the high-field limit. But
there are other issues, as well, of great practical impor-
tance for high-field superconductivity: what is the origin
of V? how does it change with the external field in real
systems? what is the likelihood of superconductivity s be-
ing the ground state in the quantum limit as opposed to a
spin-density, charge-density, or other state~ Some of
these issues have been brieAy touched upon in earlier sec-
tions (e.g., Sec. V); we now discuss them in some detail.

First of all, as we already mentioned in the Introduc-
tion and in Sec. III, an important piece of physics, first
noted by Rasolt (1987), concerning the H dependence of

V, may make spin-singlet superconductivity favorable in
the H&L over SD%', etc. It is the observation that a very
strong magnetic field will tend to favor an attractive
piece of the interparticle interaction. It is important to
emphasize that this clearly may or may not be true, de-
pending on which physical system is under consideration.
The point is that in low-carrier-density systems the effect
of the field is such as to actually enhance the efFective at-
traction V (Rasolt, 1987). This important point is dis-
cussed below.

Doped semiconductors and semimetals do not make
"good" superconductors. The transition temperatures
that one can expect in these systems are unlikely to be
very high, due to the low carrier density. The low carrier
density reduces the metallic screening, and the Coulomb
interaction is thus often too strong to permit any super-
conductivity. In addition, in low-carrier-density systems
the density of states at the Fermi level will be small,
which again results in low T, s. Therefore it is very im-
portant to realize that the application of the magnetic
field =H&z may enhance the superconductivity already
present at H =0 or even induce high-field superconduc-
tivity in systems that are not superconductors at H =0.
The reason is that V, which is a simplified BCS represen-
tation for an effective attraction arising from the com-
bined effect of electron-phonon and electron-electron in-
teractions, is likely to increase from its H =0 value or to
change sign from repulsive to attractive, when the field
~ H&L is applied (Rasolt, 1987).

The physical origin of this phenomenon is the follow-
ing. Even including screening, the e-e interaction has a
much larger range than the phonon part. The e-e in-
teraction drops rapidly for Fourier components q larger
than something like the Thomas-Fermi screening wave
vector of the free carriers. Now, for two carriers without
a magnetic field, the states are very extended and the
long-range e-e repulsion matrix element is large. The
presence of the magnetic field squeezes these states per-
pendicular to H and reduces this repulsion; the phonon
part remains largely unchanged. This is because in lom-
carrier-density systems there is a very fortuitous hierar-
chy of length scales: r, =I &)a, where r, is the average
separation between the carriers and a is the lattice con-
stant. Of course, it is exactly this property which enables
one to reach the quantum limit with reasonable fields.
But, at the same time, this hierarchy of length scales is
responsible for the electron-phonon interaction, which is
why the BCS attraction remains largely unaffected by the
field. H of the order of H&L is very "large" as far as the
carriers are concerned, but it is "low" for phonons in
low-carrier-density systems. The phonon spectrum and
the corresponding "ionic" part of the dielectric function
are determined by aI/ of the electrons in the system. The
inAuence of the small number of carriers on this part of
the dielectric function is, in fact, negligible. It is impor-
tant to appreciate this since, as is well known, the polari-
zability of the low-density carriers is radically changed
by the magnetic field, as Celli and Mermin (1965) have
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shown. Furthermore, the plasmon of the low-density
carriers in a polar semiconductor is known to interact
with the optical phonons. All these effects are propor-
tional to the density of carriers and should be a small
correction to the effective electron-electron interaction
arising from the phonon exchange. (For example, even if
the optical phonons are modified due to their coupling to
the plasmon of low-density carriers, what enters in the
Eliashberg theory is the integral over the whole frequen-
cy range of the phononic spectral function. This quantity
will still be dominated by the part in which the carriers
are ignored. ) To significantly modify the contribution to
the dielectric function one would have to apply fields that
have a magnetic length of the order of the lattice con-
stant. Such enormous fields (10 —10 T) are much, much
larger than H~ in doped semiconductors or semimetals.
Furthermore, even the dramatic change in wave func-
tions of the carriers at these high fields does not affect the
effective electron-electron attraction due to phonon ex-
change. This interaction is short ranged, with a range of
the order of one lattice constant, and has a far shorter
range than the Coulomb repulsion because, contrary to
what one may usually think, acoustic long-wavelength
phonons play only a very minor role in the superconduc-
tivity of low-carrier-density systems. The dominant con-
tribution comes from phonons with large wave vectors,
comparable to the zone size, and, in particular, from the
multivalley electron-phonon coupling (see Cohen, 1969).

The relative insensitivity of the effective attraction,
arising from electron-phonon coupling, as well as the
reduction of the Coulomb repulsion as the field is in-
creased from zero to the neighborhood of H&L, means
that V increases as a function of H, and the effective BCS
interaction can change from being repulsive to being at-
tractive. This effect and the orbital effect, which as we
saw changes from depressing to enhancing, are what
drives superconductivity in the high-field limit; they
represent the two essential ingredients of superconduc-
tivity in high magnetic fields. To see how this change
from repulsive to attractive works explicitly we return to
Eq. (2.3). In the static approximation Eq. (2.3) gives

a4=1.5345, and V(q) is equal to V(q)/Qo. Our results
are displayed in Fig. 23 (Rasolt, 1987; 1990).

The next important issue is competition with other
types of broken-symmetry ground states. As has already
been pointed out, even an effective attraction in the
Cooper channel, i.e., making our V positive and
sufficiently large, does not insure that superconductivity
will be a preferred state. The quasi-1D nature of the
quantum limit is also very favorable for other instabili-
ties, such as spin-density waves, charge-density waves,
etc. , and these states may very well have a lower free en-
ergy than the superconducting state. The competition
between these various instabilities and the nature of the
phase diagram is a very difficult problem to solve with
realistic interactions (see discussion in Sec. V). However,
we can still reach important conclusions concerning this
question based on the Hartree-Fock, "weak"-coupling
consideration. While such considerations are almost cer-
tainly quantitatively invalid, since low-carrier-density
materials are moderately to strongly interacting systems,
they should still provide qualitative guidance in charting
the phase diagram in the quantum limit. We now assume
that both spin levels are occupied in the quantum limit
and that the Zeeman splitting is small. Under these cir-
cumstances the CDW state is always strongly disfavored
in the Hartree-Fock approximation (Tesanovic and
Halperin, 1987). This is due to a large cost in direct,
electrostatic energy that one has to pay for setting up a
long-wavelength (q =kF t +kF ~ ) first-order charge-
density inhomogeneity. The strong long-range Coulomb
interaction in low-carrier-density systems makes this cost
sufficiently great that the system will generally avoid any
state having such an inhomogeneity [for stronger fields,
when the spins are polarized, a CDW or Wigner crystal
may be the ground state of the system (Fukuyama,
1978)]. Thus the Coulomb repulsion alone will favor a
spin-density wave or a valley density wave, composed of
the "out-of-phase" CDW from different valleys in a mul-

tivalley system, with the first-order charge-density inho-
mogeneity canceled out (Tesanovic and Halperin, 1987).

f2 2—&0 V' QD & QD 4~e'
M (iricog ) pQD

(6.3) 0.7

0.6

where e is the dielectric constant of the semiconductor
and QD ——1/I. QD is a cutoff' on the q components due to
the Gaussian envelopes of the Landau levels. It corre-
sponds exactly to the squeezing, perpendicular to H, of
the spread-out wave functions discussed above. To see
the effect of this magnetic-field dependence in V(H) we

apply Eq. (6.1), now to a simple model of Si (we apply it
to the uniform state g =0). For the ionic potential V(q)
we choose

0.5

0.4
C:

~ ~
o 03

0.2

0.1

a, (q —ai)
V(q) =

exp [a i(q —a~ ) ]+1
(6.4)
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1(in A)

30 40

where a
&
=0.342, a2 =2.221, a3 =0.86334, and

FIG. 23. Critical temperature T, vs the magnetic length l at
carrier density =10' /cm .
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The inclusion of the short-range retarded attraction aris-
ing from phonon exchange will now introduce supercon-
ductivity into the picture (this short-range retarded at-
traction does not help the CDW, since the cost in electro-
static energy is always overwhelming).

The competition between superconductivity and spin-
density waves (or valley density waves) will be decided by
the strength of the electron-phonon coupling, degree of
retardation (i.e., the size of the characteristic phonon fre-
quency f1 relative to E~), the strength of the Coulomb
repulsion as it enters the Coulomb pseudopotential p, etc.
In a purely 10 model with only short-range interactions,
the retarded attraction alzeays wins over the repulsive
part (even if the repulsive coupling constant is much
larger) and drives the system away from a spin-density-
wave state toward the superconducting state (Zimanyi,
Kivelson, and Luther, 1988). It is clear that we cannot
simply generalize this result to our case: After all, we
have just spent considerable efFort arguing that the prob-
lem in the quantum limit is not purely 10. But this 10
analog does provide a qualitatively similar example of a
superconducting state s winning over a spin-density-wave
state. Thus, at least within this Hartree-Pock-type
analysis, superconductivity will compete with the spin-
density wave and, provided the electron-phonon coupling
is sufriciently strong and retarded and the carrier density
is not too low, is likely to be the ground state in the quan-
tum limit, by the above qualitative argument. Clearly,
materials of low carrier density that are superconductors
at zero field are the most promising candidates for this
new state. The competition between these two states
must be considered in the presence of Zeeman splitting,
however small. We must stress here that the problem of
the phase diagram in the quantum limit with realistic in-
teractions is still unsolved, and other possibilities, like the
triplet superconductor, etc. , may play a role.

Finally, we insert a word of caution about searching
for this state in semiconductors (not so much in semimet-
als). Donors in the conduction region will contribute to
magnetic freezeout. It is therefore crucial to keep impur-
ities out of the conducting region. Modulation doping
gives promising possibilities for producing regions
& 1000 A of high mobility, where the electron density is
fairly uniform. The transport properties of these wide
parabolic quantum wells were discussed in Sec. IV.C.

To summarize, we have presented here a discussion of
some of the experimental constraints and "facts of life"
that will have considerable bearing on the eventual obser-
vation of high-field superconductivity in real systems.
We have considered a strong-coupling correction in
several representative model systems. We have also con-
sidered the validity of the BCS theory and the structure
of the e6'ective interaction in systems of low carrier den-
sity. Particularly important is the question of the com-
petition of superconductivity with other types of broken-
symmetry ground states (SDW, CDW, etc.). While this
problem remains unsolved, we have presented qualitative
arguments that indicate that superconductivity should be

a ground state in a system with optimized, but not un-
realistic, characteristics.

Vll. CONCLUSIONS

In this review a new superconducting state was pro-
posed in high magnetic fields. Such a superconducting
state must be considered on an equal footing with all oth-
er possible instabilities (like charge-density waves, spin-
density waves, valley density waves, etc. ) believed also to
be enhanced in the high-field limit. Which broken sym-
metry will occur in which particular material will ulti-
mately depend on the nature of the electron-phonon and
electron-electron interaction.

The main results are as follows: (i) In the very-high-
field limit, and in particular in the quantum limit (when
all the carriers are in the lowest Landau level, i.e.,
H & H&i ), there is a phase transition to a new supercon-
ducting state with T, enhanced by the external field H.
(ii) The vortex lattice reaches its quantum limit; the na-
ture of orbital frustration is completely changed from its
low-field limit so that it now enhances superconductivity
through a density-of-states efFect. In many ways this is
the simple limit, which provides a paradigm for studying
the interaction of superconductivity with a magnetic
field. In particular,

b, (r)=50 + (z —z, )e
i=1

is the exact solution of the full BCS theory, resulting in a
gapless excitation spectrum. The relationship of the su-
percurrent with the vector potential, Meissner efFect, etc.
are similarly elucidated. (iii) As long as both spin states
are occupied in the quantum limit, Pauli pair breaking
can be largely circumvented by the nonuniform (along H)
order parameter, which takes advantage of quasi-one-
dimensional nesting (much like the SDW), and a novel
triplet state can exist for even higher fields. (iv) Both
spin states are occupied in the quantum limit only if the
efFective g factor g* is less than 2, and it is preferable to
have g* considerably less than 2. (v) Low-carrier-density
semiconductors and semimetals, in which the quantum
limit can be readily achieved and in which often g (0.1,
are probably the best experimental candidates. Also,
low-dimensional systems like layered semiconductor
heterojunctions may be suitable in this respect. In partic-
ular, a superlattice made of a candidate material and a
suitable high-temperature superconductor and subjected
to a perpendicular magnetic field is a promising experi-
mental geometry, since the Abrikosov lattice in the
high-temperature superconducting layer would have the
efFect of reducing vortex Auctuations in the neighboring
candidate layer. (vi) The quantum-limit approximation
for T, (H), which works very well in the high-field limit,
can be extended by the inclusion of off-diagonal Landau-
level pairing terms to provide a unified description of the
crossover from the high-field to the low-field limit
(H-H, 2), but otherwise these two superconducting re-
gimes are independent. (vii) Therefore the material can
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be exceptionally clean, exhibit high-field superconductivi-
ty, and not be a type-II superconductor (nor, in fact, a su-
perconductor at all) for low fields. (viii) The effect of
Pauli pair breaking and impurities becomes very pro-
nounced as the number of occupied Landau levels in-
creases, therefore suppressing T, (M) prior to a possible
reentrance at low fields. and (ix) The high magnetic field
in systems of low carrier density may actually favor the
effective attraction responsible for superconductivity.
This is a consequence of an interplay between the
electron-phonon and electron-electron interactions in the
quantum limit. .

As emphasized in the Introduction, this review focuses
on theoretical aspects of this unusual part of the super-
conducting H-T phase diagram. We have attempted to
provide the reader with an up-to-d. ate coverage of the
theoretical activity in this field. This activity continues,
at a pace that may be faster than at any time before. The
reader should realize that many important theoretical
problems relevant to this subject are still unsolved. Prob-
ably the most interesting, and most difficult, is the prob-
lem of the full phase diagram in the high-field limit, in-
cluding all the competing states (SDW, CDW, supercon-
ductivity of the spin-singlet and spin-triplet variety, etc.).
We have presented some qualitative arguments based on
the Hartree-Fock theory which give an outline of a real-
istic system in which the superconducting instability will
dominate, but clearly much additional work in this direc-
tion is needed. Furthermore, awhile we have spent much
effort discussing low carrier systems, like doped semicon-
ductors and semimetals, one should also think about oth-
er possibilities: organic superconductors, artificially
structured systems, etc. Also, the effect of fluctuations,
particularly at very low temperatures and in 2D systems,
has to be studied in greater detail. But the main message
of this review is that there is yet another, somewhat
counterintuitive, dimension to the relationship between
superconductivity and a magnetic field, exciting and
largely unexplored. We hope we have been able to
present the reader with the overall picture, however in-
complete and biased, of this subject.

Finally we must add that these two authors, perhaps
naively, believe in the boundless ingenuity of their experi-
mental colleagues. If this new superconducting state in
high magnetic fields is not forbidden by any fundamental
reason, a dedicated experimentalist will find it and open
yet another view of this truly fundamental relationship
which exists between superconductivity and a magnetic
field. It is the main intent of this review to give further
encouragement to such a serious experimental effort.
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