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The Nambu —Jona-Lasinio model is reviewed in its flavor SU(2) and SU(3) versions applied to quarks. The
dynamical generation of quark masses is demonstrated as a feature of chiral symmetry breaking. One
finds that the associated meson spectra, as well as the meson static properties, can be well described.
Current-algebra results, which arise as a consequence of symmetry considerations, automatically hold for
this model and are explicitly demonstrated to do so. These include the Goldberger-Treiman and Gell-
Mann —Oakes-Renner relations. Effects of finite temperature, finite chemical potential, and strong
Maxwell and chromoelectromagnetic fields on the dynamically generated quark mass and the meson spec-
tra are discussed. The alternative procedure of bosonization to obtain an effective Lagrange density in
mesonic degrees of freedom, using the derivative expansion, is also presented. The current status in relat-
ing the results of this model to that of chiral perturbation theory is critically examined.
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I ~ INTRODUCTION

For some time now quantum chromodynamics has
been accepted as the theory of strong interactions. The
usefulness of this gauge theory is particularly seen in the
kinematic range of large momentum transfer, where
scattering processes are calculated with much success.
This is due to the fact that, at short distances, the theory
exhibits the phenomenon of asymptotic freedom. That is,
the quark-gluon coupling strength becomes small; thus
the wealth of perturbative techniques that have been
developed for the study of quantum electrodynamics may
be confidently extended to describe QCD processes in
this so-called weak-coupling regime.

In contrast, away from large momentum transfer, or
equivalently at larger distances, QCD is not so well un-
derstood, and existing calculational techniques produce

In completing one discovery, we never fail to get an
imperfect knowledge of others of which we could have no
idea before, so that we cannot solve one doubt without
creating several new ones.

Joseph Priestley (1786)
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only rough numbers. Here the problem lies in the fact
that the strong-coupling constant becomes large, and a
perturbative approach cannot be justified. Qne now finds
oneself in a strange predicament. Qne actually has at
one s disposal a definite Lagrangian in which aH the dy-
namics of the system are contained, but one is not easily
able to extract useful information from it for most physi-
cal processes of interest, such as the properties of had-
rons and their interactions, or the behavior of hadronic
matter at high density. Several methods of approaching
QCD have therefore been developed. The only one of
these that attempts to actually solve the equations of
motion of the theory per se is that of lattice gauge theory
(see, e.g. , Kogut, 1980 and Rebbi, 1986 for an overview,
and Christ, 1991 and Kogut et al., 1991 for some current
results). This method carries with it problems of its own:
one requires computer power in gigaflops in order to
make reasonable calculations within acceptable time
periods. There are also problems that arise in including
fermions on a discretized lattice, so that approximations
are necessary, even in these calculations.

Qne is thus strongly motivated to look for a simpler
model Lagrange density that displays one or more of the
essential features of QCD, but that is mathematically
tractable. We would then be able to explore the conse-
quences of the features that we have isolated as relevant.
Such an approach is a common one to both nuclear and
solid-state physics: in nuclear physics, for example, the
many excited states available to a nuclear system via the
continuum may be averaged out to provide an optical-
model potential. In doing this, the X-body problem is re-
duced to a one-body problem for the purpose of calculat-
ing reaction rates. Basic to this approach is the recogni-
tion that many-body systems are only exactly soluble in
exceptional or oversimplified situations. Thus it is sensi-
ble to attempt to isolate the relevant physics for a process
and to study this either by making an approximation to
the exact theory, or, as is commonly done for a theory as
intractable as QCD, by creating models that serve to ac-
centuate the main features of the theory.

The candidate model that we shall discuss in this re-
view is the Nambu —Jona-Lasinio (NJL) model. In its
original form, this model was constructed as a pre-QCD
theory of nucleons that interact via an effective two-body
interaction. This today is reinterpreted as a theory with
quark degrees of freedom. Qf primary importance is the
fact that the Lagrange density of this model is construct-
ed such that the symmetries of QCD that are also ob-
served in nature are part and parcel of it. Qne of the
most important of these is chiral symmetry, which is
essential to the understanding of the lightest hadrons.
QCD is distinguished not only by its many symmetries
but also by the breaking of these symmetries. The NJL
model is particularly useful for observing how these
things happen. In particular, the dynamic generation of
fermion masses brought about by the breaking of chiral
symmetry is one of the features of the NJL model. The
special role of the Cyoldstone modes (for two quark

flavors, these are the pions; for three quark flavors, the
"pion octet") can also be explicitly traced. Furthermore,
there are the well-known results of current algebra,
such as the Goldberger- Treiman and Gell-Mann-
Oakes —Renner relations that hold for QCD. These must
also hold for the NJL model, since they are a conse-
quence of symmetry properties only. In the NJL model,
they can be derived explicitly. The actual mechanism
whereby chiral symmetry breaking (CSB) occurs in the
NJL model follows closely the microscopic theory of su-
perconductivity that was put forward by Bardeen, Coop-
er, and Schrie(fer (1956). In the NJL model, one argues
that the interaction between quarks and antiquarks,
which arises from some complicated processes of gluon
exchange, can be attractive, and leads to a quark-
antiquark pair condensation in the vacuum, should the
interaction exceed a critical strength. Qther effects, such
as gluon condensation, which do not play a direct role in
chiral symmetry breaking, are not considered.

The NJL model of course has shortcomings as well.
The interaction between quarks is assumed to be point-
like in character, with the result that it is not a renormal-
izable field theory. Hence, to define the NJL model com-
pletely as an ejective model, a regularization scheme
must be specified to deal with the improper integrals that
occur. A regularization scheme specifies a length scale
for the theory, which can be expressed as a cuto6' on the
quark momenta. Qne may regard the cutoF as an ap-
proximate, if crude, implementation of the property of
asymptotic freedom of QCD: by suppressing the interac-
tion between quarks for large spacelike momentum
transfer, one simulates the behavior of the running cou-
pling constant of QCD (Hatsuda and Kunihiro, 1985a;
Bernard, Ja(fe, and Meissner, 1988).

A second shortcoming of the NJL model, physical
rather than mathematical, is that the local interaction
does not confine quarks. For many questions, however,
the issue of confinement may not be important. For ex-
ample, the interaction of hadrons below the threshold for
producing free quarks may not depend on the details of
how the conIIinement is produced.

Qne of the purposes of this review is to provide a self-
contained exposition of chiral symmetry breaking and its
consequences, as it comes about in the NJL model. Be-
cause of its mathematical simplicity, the NJL model pro-
vides a good pedagogical framework for this discussion.
The review will also investigate the properties of low-
lying mesonic states that arise in the model, with particu-
lar attention to the inhuence of external conditions such
as density, temperature, and electromagnetic and color
fields. These questions are of interest in understanding
the processes that occur in heavy-ion collisions, where
high temperatures and densities are attained. Qf course
such collisions present a highly complicated scenario, as
one expects that a locally deconfined phase, a plasma,
would occur, which at some later stage would hadronize
on cooling. The exact mechanism whereby this occurs is
not yet understood quantitatively, but it involves the con-
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cept of confinement, which is not a feature of the NJL
model. Nevertheless, the interplay of chiral symmetry
with temperature and density should be understood as a
first step toward understanding these processes, and this
is the reason for our interest.

Most of the literature that has accumulated in the last
few years is restricted to rather brief communications
with each new author introducing different notations and
preferences in treating the Geld theory. Correspondingly,
authors have also chosen a variety of different regulariza-
tion schemes and parameter sets to regulate this model.
It is thus a concomitant purpose of this review to present
a unified approach to the literature, rather than simply
providing a collection of results, in the hope of clarifying
and demystifying the subject and making the task of the
reader easier.

There is another range of models that claim a relation-
ship to QCD for which an explicit Lagrangian can be
given in terms of mesonic and/or fermionic degrees of
freedom. They include the Skyrme model, in which the
fermionic degrees of freedom appear as topological soli-
tons (Skyrme, 1961, 1962), and variations thereof, which
gained popularity in the early 1980s since it was shown
that in the limit of a large number of colors N„quantum
chromodynamics behaves as a theory of bosons ('t Hooft,
1974). Other models that specifically investigate this
feature of chiral symmetry breaking and its consequences
introduce phenomenological boson fields and couple
these directly to the fermionic degrees of freedom (see,
for example, Lee, 1981 and Pokorski, 1989 for detailed
discussions). A connection between the NJL model and
the boson models, in fact, exists and may be established
by employing path-integral techniques to the NJL model
to derive a so-called bosonized form of the NJL Lagrang-
ian. This is a topic that we shall also discuss.

In this review, we do not follow the historical develop-
ment of the model, since, as with all research, this
proceeds along a winding path. We sketch this briefly
here. This list of references gives an overview, but is not
comprehensive. The NJL model with up and down
quarks was used in its bosonized form as early as 1974
(Eguchi and Sugawara, 1974). This SU(2) version was
then refined by Kikkawa (1976), Eguchi (1976), and
Chakrabarti and Hu (1976). Kikkawa (1976) also intro-
duced the U(3) version, i.e., with strange quarks as well
as the up and down quarks. The model received a resur-
gence of interest in the 1980s, primarily in the SU(2) and
U(3) versions. Work originating from Eastern Europe is
based mainly on the bosonization technique (Ebert and
Volkov, 1983; Volkov 1984, 1986; Ebert, 1985), within
which the meson spectra, polarizabilities, and charge ra-
dii have been evaluated. In a series of papers, Kruglov
(1984, 1988, 1989a, 1989b, 1989c) has used the NJL mod-
el to study, among other things, renormalization, Ward
identities, and an instanton-induced effective interaction.
The bosonized form of the model has also been studied
by Ebert and Reinhardt (1986), Ruiz Arriola et al.
(1989), Th. Meissner et al. (1988, 1990), Jaminon et al

(1989), Hosaka (1990), Schiiren, Ruiz Arriola, and K.
Goeke (1991),and Ruiz Arriola (1991), the latter two pa-
pers of which deal with the connection of the NJL model
to chiral perturbation theory as seen from the efFective
bosonized Lagrangian.

On the other hand, the use of the NJL model as ex-
pressed in terms of the fermionic degrees of freedom, in
which it was originally constructed, has found favor with
many authors. Hatsuda and Kunihiro (1984, 1985b,
1987a, 1987b) discuss the SU(2) NJL model at finite tem-
peratures. The reader is also referred to Kunihiro (1987,
1989a, 1989b, 1991) for further studies on finite tempera-
ture.

The formulation of the NJL model in fiavor SU(3) was
first introduced by Kunihiro and Hatsuda (1988) and
Bernard, JafFe, and Meissner (1988), who constructed a
suitable U(3) version and then removed the unwanted ax-
ial U(1) symmetry by including a term of the form sug-
gested by 't Hooft (1976a, 1976b). The latter set of au-
thors discuss the strangeness content of the nucleon
within the model, a topic which has also been investigat-
ed by Hatsuda (1988) and Kunihiro (1988). There has
been a series of articles initiated by Bernard, discussing
the original SU(2) NJL model as applied to quarks (Ber-
nard, 1986, 1987); finite-density and finite-temperature
properties in either SU(2) or SU(3) (Bernard et al. ,
1987a, 1987b; Bernard and Meissner, 1988a); electromag-
netic form factors and charge radii (Bernard and Meiss-
ner, 1988b; Bernard and Vautherin, 1989; see also Blin
et al. , 1988); and the vector-meson spectrum in SU(2)
(Bernard and Meissner, 1988c; see also Blin et al. , 1990).
The same topics have also been recently studied by Tak-
izawa et al. (1989, 1991), Klimt et al. (1990), Lutz and
Weise (1990), and Vogl et al. (1990). The results of the
last three groups are reviewed by Vogl and Weise (1991).
A time-dependent Hartree-Pock formalism embedded in
a density-matrix approach has been studied by da
Providencia et al. (1987), while the inclusion of Maxwell
and chromoelectromagnetic fields is discussed by Klevan-
sky and Lemmer (1989), Klevansky et al. (1991), Ber-
nard and Vautherin (1989), and Suganuma and Tatsumi
(1990, 1991). The reader is also referred to Rosenstein
et al. (1991),who mention the NJL model in their review
on dynamical symmetry breaking in four-fermion-
interaction models. In a completely different context,
Bardeen et al. (1990), Clark et al. (1990), and Pham
(1990) have included the NJL mechanism in versions of
the standard model, thereby relating the mass of the
Higgs scalars to that of the top quark.

In this review, we study the NJL model in its standard
context of modeling QCD, and we take the route desig-
nated by the set of authors mentioned in the preceding
paragraph; i.e., we deal with the NJL model in its origi-
nal fermionic form, choosing for each section to discuss
one or more primary references that are representative of
the topic in question. Bosonization is discussed thereaf-
ter. In more detail, the organization of this paper is as
follows. In Sec. II, we introduce the Nambu —Jona-
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ll. THE NAMBU —JONA-LASINIO MODEL

A. Symmetries

The Lagrangian of quantum chromodynamics is given

XqcD= & 2& 2& +p(l'4 M)f

where the field-strength tensor V„', is

V„,=a„~:—a,~„'+gf.„~„"~;

(2.1)

(2.2)

and the covariant derivative is (D„)„
=5„.B„—ig —,'(A, ')„.3 '. As will be standard notation
throughout this work, greek indices p, v=0. . .3 refer to
Lorentz vector labels; the labels a, b, c=1. . .8 have the
dimension of the adjoint representation of SU(3); and
e, c'=1. . .3 in context are color labels dimensioned by
the fundamental representation of SU(3). The strong-
coupling constant is given as g, and f,b, are the structure
constants of SU(3). Flavor indices, which will be denoted
as f,f ' have been suppressed to simplify the notation.

In Eq. (2.1), M is a color-independent mass matrix in
Aavor space and is phenomenological. Whatever its ori-

Lasinio model, in its SU(2) and SU(3) versions, from
symmetry considerations of QCD. We follow the
Bogoliubov-Valatin approach, as this method allows for
an explicit display of the particle-antiparticle pairing in
the vacuum. We move on to the Green's-function ap-
proach for calculating the self-energy, which is more
readily generalizable to include the effects of external pa-
rameters. The Fierz transformation is also discussed.

We devote Sec. III to a description of regularization
schemes, dealing with the three-dimensional noncovari-
ant cutoff, the covariant four-dimensional cutoff, regular-
ization in proper time, and the Pauli-Villars scheme.

In Sec. IV, the polarization propagator is introduced in
both the SU(2) and SU(3) flavor models and the meson
spectrum is calculated.

The effect of introducing external parameters such as
finite chemical potential and temperature is discussed,
somewhat lengthily, in Sec. V.

Applied Maxwell and chromoelectromagnetic fields
are discussed in Sec. VI.

In Sec. VII, bosonization of the NJL Lagrangian is dis-
cussed as an alternative method for analyzing its proper-
ties, and the connection with chiral perturbation theory
is elucidated.

In Sec. VIII, we conclude by drawing a critical balance
of the weaknesses and strengths of this method.

Finally, a word on notation. In this review we have
consistently followed the notational conventions given in
Itzykson and Zuber (1980), for example. In particular,
we use the Minkowski space metric
g" = I1,—1, —1, —1I, while y5=iy y'y y, where y"
are the standard Dirac spinors.

+QCD + h' i (mgii~+mddd)++$ bf (2.4)

where X„b, refers to the Lagrangian associated with the
heavier flavors s, c, b, t and the chiral part is given by

Q+ h'mi 4& ~p, +O'I 0 (2.5)

The bilinear form occurring in Eq. (2.5) is invariant un-

der the transformation Uf~f, where U can be, for ex-
ample, the 2 X 2 unitary matrix in Aavor space, the Dirac
matrix y5 in spinor space, or some combination of Aavor

and spinor matrices. The pure unitary transformations
Ui (1) and SUi, (2) are the well-known symmetries that
correspond to baryon and isospin conservation, respec-
tively. They are listed, together with their transforma-
tion properties and realization in nature, in Table I.
Transformations that include y~, the SU&(2) and the
Uz(l), are the so-called chiral or axial symmetries, and
their properties are also listed in Table I. Axial transfor-
mations alter the parity that is associated with a state.
Therefore a direct manifestation of SU„(2) in nature
would require that each isospin multiplet be accom-
panied by a mirror multiplet that has opposite parity.
Since no such multiplets are observed in nature, we con-
clude that SU~(2) should not be directly realized by
QCD. Likewise, since one does not observe opposite par-
ity partners to all the hadrons, one must conclude that
U„(1) should also not be realized directly by QCD. It is
believed that the SU&(2) symmetry is manifested in the
Goldstone mode' via chiral symmetry breaking and that
the accompanying pseudoscalar I = 1 massless bosons are
to be associated with the pions. This thesis is supported
by the experimentally observed low mass of the pion.
In comparison with the nucleon mass, one has

~The Goldstone theorem (Goldstone, 1961; Goldstone et al.,
1962) states that the spontaneous breaking of a continuous glo-
bal symmetry implies the existence of associated massless spin-

less particles.

gin, M can be brought to diagonal form through Aavor-
mixing transformations, so that the fermion mass contri-
bution to X&cD may be written as

3 6
Z .„=—y y m, yf'P . (2.3)

c=l f=1

The mf are not observables if QCD implies quark
confinement, but can be determined in terms of observ-
able hadronic masses through current algebra. These are
the so-called current quark masses as opposed to the no-
tion of constituent quark masses used in phenomenologi-
cal quark models of hadronic structure.

Intermediate-energy hadronic physics in the non-
strange sector, which runs over the MeV —GeV energy
range, should be well described by the dynamics of the
lowest-mass quarks, u and d. Then XQcD can be written
as
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TABLE I. Symmetries, their transformation properties, associated conserved currents, and manifesta-
tion in nature are given for the case of two flavors.

Symmetry

SU (2)
U, ('1)

SU~(2)
U, (1)

Transformation Current Name

Isospin
bar yonic

chiral
axial

Manifestation

approx. conserved
always conserved

CSB; Goldstone mode

U„(l) "puzzle"

m /m&=0. 15. On the other hand, if Uz(1} were to be
realized in the same fashion by QCD, it would require
the existence of an I=O pseudoscalar meson having
roughly the same mass as the pion. No such candidate
was observed, and thus arose the U~(1) puzzle: where is
the Goldstone boson? The problem was resolved
by 't Hooft (1976a, 1976b), who showed that, due to in-
stanton efFects, the U~ (1) symmetry should not result in

physical manifestations. We do not deal with this com-
plexity further here, but rather focus our attention on the
spontaneous breaking of the SU~(2) symmetry. Color
SU(3) symmetry, which is exact, will not play a role in
our further considerations.

The generalization to flavor SU(3) symmetry is
straightforward. One replaces the isospin Pauli matrices
~",k = 1. . .3, of Table I by the fIIavor matrices
A,', a =1. . .8; the spinor f in Eq. (2.5) is enlarged in
flavor space, g=[u, d, s]; and, in Eq. (2.4), the mass per-
turbation Lagrangian becomes X „,=m„uu+mddd
+m, ss. Clearly X„b,~X,b, . Thus the overall continu-
ous symmetries of QCD on display are

known, Nambu and Jona-Lasinio used nucleons, i.e., pro-
tons, neutrons, and their antiparticles, as the "elementa-
ry" building blocks. In their model, the nucleon-
antinucleon interaction channel is attractive and, in anal-

ogy to the efFective electron-electron interaction in a su-

perconductor, is responsible for the formation of
Cooper-like pairs that consist of a nucleon and antinu-
cleon. Nambu and Jona-Lasinio also identified the pseu-
doscalar Goldstone bosons occurring in the theory with
pions. To translate this picture over to QCD, one notes
that an efFective interaction between quarks could arise
from some complicated processes involving gluon ex-
change, just as the efFective electron-electron interaction
in BCS theory arises, not from the Coulomb interaction
between electrons, but rather from the electron-phonon
interaction.

One reinterprets the NJL model as a quark Lagrang-
ian, for which it is well suited. A possible candidate for
X,h;„& that has SU&(2)igiSU„(2)SU&(l) symmetry is

(2.7)

Q=SUy(3)SU~(3)iNU~(1)U~(1), (2.6)
The invariance of Eq. (2.7) under SU&(2) symmetry can
be confirmed by noting that

with the well-known realization of SU&(3) in the nucleon
octet (eightfold way), and SU ~ ( 3 ) broken to give the
Goldstone modes of the "n" octet. The U„(1)puzzle is,
as before, resolved by instanton effects. The continuous
symmetries given in Eq. (2.6) are often quoted in
the equivalent decomposition [SU(3)i3 U( 1)]I i3 [SU(3 )

iaiU(1)]z, where I. and R refer to the chiral forms left
and right, respectively, and $1 z =

—,'(1+ y5)ziti transforms
as gL z ~exp( icoL zA, '/2 —i5L z )gL +.—

At this point, we comment that there is no known
dynamical reason why SU„(2) or SU~ (3) should be real-
ized in the Goldstone mode. It is convincing, however,
in view of the low masses of the pseudoscalar bosons.

One now wishes to construct a model Lagrangian that
is simpler to work with than that of QCD, yet which con-
tains the same symmetry structure of QCD. One is natu-
rally led to the pre-QCD model of Nambu and Jona-
Lasinio (196 la), who considered nucleons interacting via
a two-body interaction that was constructed to have
SU&(2)i3 SU&(2)iaU&(l)iaiU&(1) symmetry in its origi-
nal form, and later excluded the U~(1) symmetry (Nam-
bu and Jona-Lasinio, 196lb), in accordance with experi-
mental observation. Since at their time quarks were not

(fg)~(gf)cos8 —(fiy, r 8)sin8,

(gi y 5r; g) ~(Pt y~r; g)+(gP')8;sin8
(2.8)

—X [detg(1+y~)g+detg(1 —y~)f], (2.9)

with A, =&2/3I. Here the determinant is in flavor
space, and 6 and K are coupling constants. One notes
that the four-fermion symmetric term of Eq. (2.9) is in-
variant under U(3), while the determinantal term, con-
structed along the suggestion of 't Hooft (1976), is re-
quired to remove the U„(l) symmetry that would other-
wise be present. It is apparent that Eqs. (2.7) and (2.9)
have formally the same structure if one rewrites (2.7) as
the sum of two terms,

(giy,—~ 8$)8;(.1 —cos8),

under the transformation tii~exp( i+ 8y~/2)f—, as. list-
ed in Table I. The angles 8; are 8=8;/~8~. For a La-
grangian invariant under SU v(3 )SSU ~ (3 }i3U ~( 1 ),
X.,h;„& takes the form (Bernard, Jaffe, and Meissner, 1988)

8

Xg,;'„)=Pijkg+6 g [(fA,'f) +(Piy5A, 'g) ]
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(&) — (&) (i)
+chiral +sym++dct

where

3

&',"=
—,'G g [(I&V)'+(4&ys&'tt)']

i=0

(2.10)

(2.1 1)

and

&d'.t = ,'G [(-A )'+(4t y s~f)' (4~—y A )' (0r—P)']

=G[detg(1+ys)g+detg(1 —ys)g] . (2.12)

Thus for two quark Aavors, a more general structure
could be obtained —here the coupling strengths of the
symmetric and determinantal terms are set equal so that
(2.11) and (2.12) can be combined to give Eq. (2.7). The
structure of the determinantal term for the two-fIavor
model is two-body in nature; i.e., it contains four-
fermion-interaction vertices, while for three quark
flavors, the determinantal term is three-body in charac-
ter, or contains six-fermion-interaction vertices. Howev-
er, since calculations will be performed in the mean-Aeld

approximation, the three-Savor NJL model will in princi-
ple be no more difficult to treat than the two-flavor one.
In this case, the six-fermion term can be reduced to an
effective four-fermion vertex, which can then be handled
in the usual way. While there is little technical difference
in the handling of the two- and three-Aavor models, the
six-fermion-interaction vertex brings new physics with it.
As we shall see, the flavor-mixing nature of this interac-
tion leads to the mixing of the pure pseudoscalar modes

qo and gs to form the physical g and g' mesons. Details
will be given in Secs. II.C.2 and IV.B.3. For illustrative
purposes, we shall deal as far as possible with the SU(2)
version ofX,h;„i.

For the sake of completeness, we remark that the
chosen form of the three-Savor version of X,h;„i given in
Eq. (2.9) is sufficient for satisfying the symmetry require-
ments set by QCD, but it is by no means unique. The
most general form for the four-fermion-interaction term
that includes other bilinear constructions of the vector
and axial-vector currents in SU(3), j"=gy A,"P and

k k
I V

Js„=Py„yP, g, that are also invariant under
SU&(3)SU~(3)IIU&(1)@U~(l) is (Klimt et al., 1990)

X' '=C, [($5 Roy'. g) +(g5'Roy'. ysf) ]+C2[(ttj5 A, , yi g) +((l'5 A, , 3 i ysP) ]

+Cs[(QAJ Roy„g) +(PAJ ltoy„ysf) ]+C„[(QA)~A,;y„f) +(PAJ A, ;y„ysg) ]

+Cs[(45 ~oyl, f)' (45 ~oyi, yA') ]+Ce[(l~j~oyf, f)' (P~J7oyiyA') ]. (2.13)

Here A, are the Gell-Mann matrices in color space, 6 is the unit matrix in color space, and the C&. . .C6 are nonin-

dependent coupling strengths. Constructing a Fierz-invariant Lagrange density from Eq. (2.13) leads one to the com-
monly used combination

&"'=-,'Gi g [(4~'4)'+(4~'tysP)'l —
—,'G~ X [(4~' y„4 ')+ (0~' y„yA)']

i=0 i=0

,'G [(4~—'y—„f)'+(4~'y,yA)'] ,'G [(4~—'y—„4)' (4~'yoy—4)']+&l"""'" (2.14)

where 6&, . . . , 64 are independent coupling constants
that may be expressed in terms of the constants
C„.. . , Ce. The term X4'"''"" contains bilinears that
include the color Gell-Mann matrices. For details re-
garding Fierz transformations, we refer the reader to Sec.
II.D. It has been shown (Bernard, Jaffe, and Meissner,
1988) that the introduction of other such bilinear terms
as occur in (2.14) leads to results that are qualitatively
similar to those obtained by using Eq. (2.9). For simplici-

ty, we shall use as far as possible the representation (2.7)
or (2.9) as our model chiral Lagrangian.

The NJL model, with Lagrangian as specified by Eq.
(2.4) with X,h;„i given by (2.7) in the two-flavor version
or the appropriate generalization to three-Aavors, has
shortcomings that are a consequence of the use of an
effective contact interaction. This interaction is not
con6ning; so it should only be applied to properties for
which confinement is not expected to be essential. It also
renders the model nonrenormalizable. This is a serious
problem, which again reminds one that this is to be treat-

I

ed as an effective theory. In applications, it is standard
practice to introduce one cutoff parameter to regulate the
theory, that is, to use one characteristic length scale for
the interaction. A careful procedure must therefore be
employed in regulating the different divergent quantities
that occur, since it is essential that the consequences of
the symmetries (such as the existence of the Goldstone
mode) continue to hold. That this can be enforced in a
nonrenormalizable theory that is regulated by one pa-
rameter only is not clear, since the different integrals to
be regulated may diverge with different strengths. We
comment on this at appropriate states and devote Sec. III
to the discussion of the various regularization schemes
that are commonly used.

B. The Bogoliubov-Valatin approach

In this section we shall explicitly examine the structure
of the ground state in the mean-field approximation. Let

Rev. Mod. Phys. , Vol. 64, No. 3, July 1 992



S. P. Klevansky: The Nambu —Jona-Lasinio model of quantum chromodynamics 655

us consider the chirally symmetric two-Aavor NIL La-
grangian, given as

&NsL=@i~f+G[(A')'+(4'ys~4)'] . (2.15)

For simplicity, the perturbative mass term of the La-
grangian has been set equal to zero. The Hamiltonian
density corresponding to this Lagrangian is

~Nsi. = &A—"~@ G—[(A )'+ ( it& y s&4)'] (2.16)

and the Fourier expansion of the field operators at t =0,
d pg(x, 0)=y f, [b(p, s)u(p, s)e' '"

(2'�)'
+d (p, s)u(p, s)e '~ "], (2.17)

defines the annihilation operators b(p, s) and d(p, s) of
particle and antiparticle of momentum p and helicity s
that destroy the normal or unpaired vacuum ~0), i.e.,
b(p, s)~0) =d(p, s)~0) =0. We work in unit volume un-
less otherwise stated. The spinors u(p, s) and u(p, s)
are helicity eigenstates satisfying gfu(p, s)=ju(p, s)=0,
and are normalized such that u (p, s)u (p, s)
= u t(p, s)u(p, s) =1.

One now introduces a BCS-like variational ground
state

vac) = + [cosO(p)+s sinO(iu)b "(p,s)d ( —p, s)]~0)

One finds

d pW[P] = —2N, N& f p cosP(p)

—4G(N, NJ ) f sing(p)
(2m )

(2.22)

p tang(p) =4GN, N f sing(q) . (2.23)

This is the so-called gap or self-consistency equation. In
this model it takes on a specifically simple form, which is
due to the four-fermion contact interaction. We note
that the right-hand side of this equation is independent of
momentum and is, in fact, just a constant. Calling this
constant m*, we have

m
tang(p) =-

p
m

and sing(p) =
(pl+ m e2) 1/2 (2.24)

which may be inserted back into (2.23) to yield the more
familiar version of the NIL gap equation,

for the total energy in the Hartree approximation, up to
an unimportant constant. Here X, is the number of
colors and X& the number of fIavors of the system. The
angle P(p)=28(p). The form of P(p) that minimizes Eq.
(2.22) is obtained from 5W/6$(p) =0, or

p, s=+1

(2.18)
me=4GX xf (2'. )

(2.25)

that contains pairs of zero total momentum and zero to-
tal helicity. This trial ground state differs from the tradi-
tional BCS theory in that the pairing is between a parti-
cle and its antiparticle, and not between pairs of like par-
ticles. The operators that annihilate this vacuum are
given by the Bogoliubov-Valatin transformation as

B (p, s) =cosO(p)b(p, s)+s sinO(~u)d (
—p, s),

D(p, s)=cosO(p)d(p, s) —s sinO(p)b "( —p, s) .
(2.19)

+D (p, s)Mz(p, s)e ' '"], (2.20)

with

M, (p, s) = [cosO(p) +y sinO(p) ]u (p, s)

M2(p, s)=[cosO(p) y slnO(p)]B(p, s)
(2.21)

and makes use of the spinor relation yosu ( —p, s) = u (p, s)
and the helicity sum

gu (p, s)u (p, s)= —,'(1—y.Py ) .

It is now possible to evaluate the expectation value of
&NJL with respect to the vacuum (2.18). This becomes a
simple (if tedious) task, if one expresses (2.17) in terms of
the quasiparticle operators B (p, s) and D (p, s) as

d pf(x,0)= g f [B(p,s)M, (p, s)e' '"
(2'�)

In performing the calculations in this section, we have
implied that the ultraviolet divergences that arise from
the contact interaction are to be regulated by cutting off
the three momenta p at A . Doing this, one recovers the
condition of Nambu and Jona-Lasinio (1961a),

1/2
i' 2

1+
A

~2

GX,&gA

m* . , ) A
sinh

A m

(2.26)

which has a solution for values of the coupling strength
that exceed a critical value G„where G, A =~ /X, Nf.

The Bogoliubov-Valatin approach developed here
serves to highlight the physics of the situation: simply
stated, this is that the ground state that minimizes the to-
tal energy does not have the symmetry of the underlying
Lagrangian. An ansatz for its form, Eq. (2.18) explicitly
displays the Cooper-pair-like structure of particles and
antiparticles that is responsible for the breaking of chiral
symmetry. It also introduces the gap equation as the
condition that minimizes the total energy.

This approach has, however, several disadvantages. In
particular, the concept of quasiparticle transformations is
dificult to generalize to include the effects of external pa-
rameters, such as finite temperature, density, and the
presence of external fields. It is therefore useful to turn
to the equivalent, but more tractable, approach of many-
body theory via Green's functions.
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C. The self-energy in Hartree
and Hartree-Fock approximations

1. The two-flavor model

In this section we continue to work with the two-Aavor
NJL model, as defined by Eq. (2.15). The Hartree and
Pock terms that form the mean-field approximation to
the self-energy cannot easily be drawn for a contact in-
teraction. We therefore illustrate the self-energy graphi-
cally by temporarily giving the interaction a finite range
(see Fig. 1).

Using the appropriate Feynman rules for a four-
fermion interaction, the self-energy associated with the
scalar vertex (gg) is given as

~Hartree+ ~Fock

=26[TriS(x, x) —iS(x,x)], (2.27)

where Tr denotes a color, Aavor, and spinor trace, while
that associated with the pseudoscalar vertex (Piy5vg) is

&"'=&N..i-.+&F-k

=26 (i y 5m)TriS (x,x )i y ~r

FIG. 1. Hartree and Pock contributions to the self-energy for a
particular interaction vertex.

formalism, and the symbol tr refers to the trace over spi-
nor indices only.

Another comment is in order. The Hartree-Fock cal-
culation of (2.31) is seen to contain terms of order GN,
and G. As has been emphasized by Blin, Hiller, and
Schaden (1988), to the extent that the NJL model is to be
regarded as an effective theory of interacting quarks that
follows from QCD in the large X, limit ('t Hooft, 1976a,
1976b) where GN, -O(l), one should properly regard
the Hartree approximation as the first term in an expan-
sion of X, . From this point of view, it is consistent to
ignore the Fock contribution to Eq. (2.31), which is seen
to be of order X, ', since higher-order diagrams that are
also of this order, but which lie outside the scope of
Hartree-Fock, are not included.

—26 (iy5m)iS (x,x)(iy5~), (2.28) 2. The three-f!avor model

in terms of the time-ordered single-particle fermion
Green's function S (x,x') that is defined as
iS(x,x')=(Tg(x)P(x')). In general, this propagator
satisfies the equation of motion

We now consider the effective SU(3) Lagrangian, intro-
duced in Sec. II.A,

„=gi 8$+6 g [(gA, 'P) + ( pi y A; g ) ]
[i8„—X]S(x,x') =5'"'(x —x'), (2.29)

where X(x,x') is the total self-energy, due in this case to
both the scalar and pseudoscalar interaction vertices,
X=X'+X~'. For a contact interaction, the mean-field
calculation of X(x,x') is independent of both x and x', as
can be seen from Eqs. (2.27) and (2.28), so that one may
immediately identify the constant X as the mass of the
particles of the system, 2=m*. Then Eq. (2.29) has the
well-known solution in momentum space,

—K [detg(1+y5)f+detg(1 —y5)@]+X

(2.32)

with X „,=m„uu+mddd+m, ss. Because of the ex-
perience gained in Sec. II.C.1, we need only consider the
self-energy associated with the four-fermion-interaction
term X' ' in the Hartree approximation. Directly
translating the Feynman diagram for this (only the scalar
interaction vertex contributes!), one finds

+ m

p2 ~42 (2.30) d'p
Xf' '=2iGX, g (I,')ff g f (A, ') trS~(p) (2.33)

The Fourier transform of this may be inserted into both
Eqs. (2.27) and (2.28). One must now perform the traces.
One notes that integrals that are odd in p do not contrib-
ute, and one may rearrange the remaining terms in the
self-energy to give the form

with flavor indices f and g explicitly displayed. It has al-
ready been assumed here that S is diagonal in Aavor.
One can evaluate X for each of the Aavors at hand to find
the result

d'p
X= m *=m o+ 2i 6 [K,Nf + —,

' ]f 4 trS (p ) . (2.31) (2.34)

Equation (2.31) becomes the gap equation (2.25), which
was derived in Sec. II.B via the Bogoliubov-Valatin trans-
formation, upon neglecting the exchange contribution
(the factor one-half in the square brackets) and setting
mo =0. Here we have taken the liberty of including the
perturbative current quark mass m„=md=mo in the

This shows that the specific form of the two-body in-
teraction considered relates the self-energy of a quark of
a given Aavor to the propagator of that Aavor only. We
comment that, for this interaction, the Hartree and
Hartree-Fock approximations are identical, since the ex-
change contributions from the scalar and pseudoscalar
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terms exactly cancel.
An alternative approach for calculating the Hartree-

Fock approximation to the self-energy is to Wick-
contract all possible pairs of creation and destruction
field operators in the Lagrangian, so that only two
remain "alive" as operators. One aims at obtaining the
form

FIG. 2. Six-fermion vertex, reduced in the mean-field approxi-
mation to an effective four-fermion vertex.

(2.35)

from which we can directly identify the self-energy. We
apply this technique to calculate the self-energy X' ' that
arises from the six-fermion interaction. Details of this
calculation are relegated to Appendix A. There it is
shown that

Q'6'~P'K [2N, +3N, + 1](trSJ)(trS")f', i WjAk,
(2.36)

on performing the Wick contractions. Therefore one
may identify

XI '= KI2N, —+3N, +1](trSJ)(trS"), i' Ak,
(2.37)

for a quark of flavor i, indicating that flavor mixing origi-
nates from the U~(l) breaking contribution to the La-
grangian in the Hartree-Fock approximation. The total
self-energy for the Lagrangian (2.32) for a particular
quark Qavor is then

m;* =m;+4iGX, trS'

—K[2N, +3N, +1](trSJ)(trS ), i' Wk, (2.38)

as was originally derived by Bernard, Jaffe, and Meissner

(1988). Assuming that KN, -O(1), the consistent 1/N,
expansion requires

X, =m, =m, +4iGN, trS' 2KN—, (trSJ)(trS"),

i &j &k, (2.39)

as the lowest-order term. As before, in Eqs. (2.38) and
(2.39), I, refer to the current quark masses of flavor i

Equations (2.37) and (2.39) indicate the fact that in the
mean-field approximation, flavor mixing originates from
the U„(1)breaking contribution to the Lagrangian. The
Uz(1) term also has the physical consequence that the
degeneracy of the g and g' mesons is lifted. This may be
seen directly if we write the six-fermion Lagrange density
as an effective four-fermion interaction. Such an effective
four-fermion term is useful in general for constructing a
systematic procedure for analyzing Feynman diagrams
making up the self-energy and for identifying the meson
modes that are supported. One way of going about this is
to Wick-contract out one quark and one antiquark field
operator from the six-fermion form, so that the six-
fermion interaction is left in the form of an effective
four-fermion interaction, to which the standard Feynman
rules may be applied. This is indicated schematically in
Fig. 2. The actual calculation is performed in Appendix
A. One finds

N, +1
12

K [2(i trS'+2i trS")(fA, g) —3i trS'[(gA, 'g) +(PX g) ]

3i trS'—(fA, g) 3i trS "[(gA, g—) +(QA, f) ]

3i trS —"[(PA, g) +(gA, P) ]+(i trS' —4i trS")(@I,g)

+&2(i trS' —i trS")(PA, g)(PA, g)+&2(i trS' —i trS")(&PA, f)(fX g)+(A~y~k. )] . (2.40)

(gA, 'g) and (@y5A.'P) (2.41)

which occur in the standard U(3) four-fermion term, one
also has such mixed terms as

A full discussion of the meson properties will be given
in Sec. IV. However, we may note here that in addition
to having terms that are proportional to

with the X and A, terms, i.e., the go and g8 mesons, will
be mixed because of the effect of Eq. (2.42). This will
then give rise to the physical q and q'.

Finally, we remark that the self-energy corresponding
to the Hartree and Fock terms can be derived directly
from Eq. (2.40) by applying the Feynman rules. The
direct contribution is

(4~'1'54)(4~'1's4» (4~'1'sf)(4~'1's4» (2.42) XH„„«= 2N, (N, + 1)K trS—JtrS" with i Aj Ak,

and their scalar counterparts. Since the meson modes
that are supported are identified by the quantum num-
bers associated with the four-fermion products, we see
immediately that the pseudoscalar mesons associated

whereas the exchange term gives

X„'„k= (N, +1)K trSJtrS",—i' Ak .

(2.43)

(2.44)
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The sum of these two terms gives, as expected, the result
(2.37). It indicates, however, that for the six-fermion in-
teraction, in addition to working in the Hartree approxi-
mation, one should, strictly speaking, also drop terms
that are not of order 0 (1) in ICX, , in order to construct a
consistent expansion in 1/N, .

ing indices in these three spaces. The superscript k spans
the space of matrices in the three spaces given. Then a
general four-fermion-interaction term can be written as

i', (4)r,"bPb (2)f, ( 3)r,"dgd (1), (2.45)

and the Fierz transformation asks what the relation of
this interaction is to the term

D. Fierz transforrnations g, (4)r, blab(1)g, (3)r,"gg d(2) (2.46)

In this section, we look at the Fierz transformation ap-
plied to the NJL model. The Fierz transformation is a
purely technical device that is used to examine the eFect
of a rearrangement of fermion field operators that occur
in quartic products at the same space-time point. In
eQ'ect, with the four-fermion-interaction Lagrangians
given in Eqs. (2.15) and (2.32), one asks the question as to
how the direct and exchange terms are related to one
another. This technique is mentioned frequently in the
literature pertaining to the NJL model and is useful in
several ways. Here we list some interesting features that
arise from Fierz-transforming the NJL interaction La-
grangian, and we discuss them in more detail in what fol-
lows.

(i) A simple local color current-current interaction
leads directly to the four-fermion term of the SU(3) La-
grangian given in Eq. (2.32).

(ii) The self-energy arising as the direct contribution of
the Fierz-transformed Lagrangian is equivalent to the ex-
change contribution that would arise from the original
Lagrange density. This occurs simply as a consequence
of the definition of the Fierz transform. It is on occasion
simpler to know the Fierz-transformed Lagrangian in or-
der to obtain the exchange contribution to the self-
energy. We shall use this approach to construct the self-
energy in the flavor SU(2) model, when we work with
finite temperature and chemical potential in Sec. V. We
therefore derive the Fierz-transformed Lagrange density
here for this case.

(iii) If we work with a Lagrange density that is invari-
ant under Fierz transformations, the self-energy in the
Hartree-Fock approximation can be constructed. as twice
the direct or Hartree contribution arising from this
Lagrange density. This follows as a consequence of point
(ii) above.

In what follows, we define what is meant by the Fierz
transformation, but we present most of the technical de-
tail in Appendix B.

Let us denote the interaction vertex tensor in spinor,
flavor, and color space as I,"b, with a =(a,f,c) combin-

in which particles 1 and 2 have been exchanged. Denot-
ing V as the operator that performs the Fierz transforma-
tion, one can easily construct (2.46) from (2.45) by per-
muting the field operators to exchange 1 and 2 and rela-
beling the indices b++d:-

V[A, (4)r, y (2)y, (3)r," q (1)]

= —q. (4)q, (1)y,(3)iib(2)r."br,"„

g, (4)g—b(1)g, (3)gd(2)r,"dr,"b . (2.47)

.~fg'gf'

for SU(2), while

2 2 1.1
3 1

2 2 ff'gg'
(2.49)

8 1

. ff', gg'
(2.50)

for SU(3).
We are now in a position to apply the Fierz transform.

Let us examine some examples. First we consider the
four-fermion-interaction term of Eq. (2.32). Replacing I
in (2.47) first by A11' and then by A, S(iy5)S 1' in

Aavor, Dirac and color space, one has

The requirement that (2.47) reproduce (2.46) implies that
one requires a knowledge of the transformation
I k I k ~I k I k which can be formulated as

y r,"„rd.=pc kr,.rdb
k km

where c k is the crossing matrix that satisfies

kc kck =1. In Dirac space, the crossing matrix is
well known and can be found in standard texts such as
Itzykson and Zuber (1980). A summary of this is given
in Appendix 8, where we also calculate the SV(3) and
SU(2) crossing matrices for color, flavor, and isospin.
The final results are summarized as

9' g [(PA, 'P) +(PA, 'iZ~f) ] = (Qf'P&'P ",+" )—g (A, ')fg(A, ')sf [1 &l~&+(iy5) &(iy~) &]1,'d lz, .
i=0

(2.51)

We now make use of Eqs. (2.50) and (81) to arrive at the result

(2.52)
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A Fierz transformation applied to the right-hand side would of course give the original Lagrange density back again.
What we notice is that the U(3)-invariant four-fermion-interaction Lagrangian is equivalent to a local color-color in-
teraction that has the spinor structure of vector minus axial vector.

It is also of interest to examine the Fierz transform of the SU(2) interaction Lagrangian, Eq. (2.15). This follows from
combining

&(A')'= (P—.'Wp 'P.'Pp" ) [(1)fg (1)gf ]l.pl. pl:d ld, (2.53)

&(eiys&e)'= (ea—'Wg' ea"Pp" )[(&')fg «')gf ](iy5)ap(iy5)a pled ldc .

Using Eqs. (2.49) and (Bl), one finds that

9'[(gf) +(giysvf) ]= [2(gP) +2(giy5rg) 2(g—rg) 2(g—iy5$) 4(g—y"P) —4(giy"y5$)
C

+(Po"'g) (Po—" ~g) ], (2.55)

where color octet contributions have been neglected.
One sees, by comparing (2.52) and (2.55), the relative sim-
plicity of the Fierz transformation of an interaction La-
grangian that maintains flavor U(X) symmetry. Equa-
tion (2.55) will prove useful to us when we work at finite
temperature and chemical potential, as we shall simply
be able to read o8' the exchange contributions to the self-
energy from this result. We discuss this feature of the
Fierz transform in the following example.

Let us consider, for the sake of being definite, the two-
body interaction contribution to X.,h;„i of Eq. (2.32),

8

XI=6 g [(i','g) +(giy5A, 'f) ],
i=0

(2.56)

for which the Fierz-transformed Lagrangian has been
given in Eq. (2.52). One has three ways of writing an in-
teraction Lagrangian that will give us the same value for
the self-energy. We may consider either of the cases

(a)

(b ) 9'(XI ),
(c) —,

' [X~+9'(Xl )],
the last of which is by construction Fierz invariant.

The self-energy that is obtained from (a),

d4
X=2Gi A'f T,rSA, '

(2~)

(2.57)

(2.58)

arises solely from the Hartree term, since the exchange
term gives zero, whereas that calculated from (b), al-
though numerically identical, arises purely from the
Fock term, since in that case, the Hartree term vanishes.
Consequently a consistent calculation of the self-energy
from (c) must include both Hartree and Fock terms, since
they are identical. This simply amounts to an overall
readjustment of the coupling constant by a factor of 2, if
one calculates the Hartree term only. Technically, one is
of course now including the Pock contribution, as one
must do.

The Fierz-transformed Lagrangian has a further use in

that it allows an immediate identification of the quantum
numbers of the associated collective modes that are
mesonic in character, since it displays the nature of the
interaction vertices explicitly. As can be seen from Eq.
(2.55), the Fierz transform of the form of the particular
Lagrangian that we have chosen indicates, among other
things, the vector-meson modes that can possibly be ac-
cessed. In practice, however, the strength associated
with the Fierz-transformed interaction is generally
insufFiciently attractive in the vector and axial-vector
channels (Nambu and Jona-Lasinio, 1961b; Eguchi and
Sugawara, 1974), so that an additional term with a fur-
ther independent coupling strength is required to gen-
erate the associated modes, as is given, for example, by
the term accompanying the strength 62 in the general-
ized form of the NJL four-fermion interaction in Eq.
(2.14). The interested reader is referred to Takizawa
et al. (1989,1991), Blin et al. (1990), and Klimt et al.
(1990) for further details. Here, we shall concern our-
selves primarily with the pseudoscalar modes and their
behavior.

In conclusion of this section, we comment that a Fierz
transformation of the six-fermion interaction can also be
defined as that transformation that leaves this interaction
invariant under a11 possible permutations of the quark
spinors f occurring in it. The reader is referred to Klimt
et al. (1990) for explicit details.

ill. REGULARIZATION SCHEMES

As has already been mentioned, the contact interaction
renders the NJL model nonrenormalizable. One there-
fore requires a procedure for regulating divergent quanti-
ties. Strictly speaking, in a nonrenormalizable theory, an
infinite number of counterterms must be included in the
Lagrangian, or equivalently, a new regulator should be
introduced for each quantity that is calculated (see, for
example, Itzykson and Zuber, 1980). On the other hand,
a useful theory cannot a6'ord an infinite number of pa-
rameters, and one's physical sense suggests that the in-
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teraction should have a single length scale associated
with it. Even making this simplification, there are
several possible schemes that can be introduced and im-
plemented in several different ways. Which, therefore, is
the "right" one? The answer to this question is that a/l
are: a nonrenormalizable model per se is not unique; it
depends on the form of regularization chosen. That is,
the regularization scheme determines the model, and not
vice versa. One must therefore look to physical and not
just mathematical content. Regularization should be un-
dertaken in such a manner that physically expected prop-
erties of the model and symmetry considerations are
maintained. For the NJL model, there are two obvious
physical criteria that should be fulfilled: (a) from Sec.
II.B, it is clear that the minimization of the total energy
should give rise to the gap equation, and (b) symmetry re-
quirements impose the existence of a zero mode or Gold-
stone boson. We shall not check these conditions
stringently here. In fact, as was done in the original arti-
cle of Nambu and Jona-Lasinio (1961a), we shall, on oc-
casion, simply ignore the fact that we are dealing with
divergent integrals and proceed to manipulate them as if
they were convergent, showing thereby that the expected
physical result is obtained. This is an acceptable pro-
cedure only if one assumes that the cutoff involved is
much larger than all relevant momenta. The serious
reader should, however, be warned about handling the
ambiguities associated with improper integrals. The
problem lies in the fact that the stage at which the regu-
larization procedure is applied is crucial to the final re-
sult, since the normal calculational procedures of, for ex-
ample, shifting variables and integration by parts are no
longer legal mathematical manipulations. This will be
demonstrated in an explicit example, when such a calcu-
lation arises in Sec. IV.A.2. In this section, however, we
shall simply introduce the various regularization
schemes, by applying them to the gap equation, and we
shall provide a list of the standard parameters that are
used for each procedure.

In the literature, the NJL model has been presented
with many schemes: the noncovariant and physically in-
tuitive three-momentum cutoff, and a host of covariant
schemes that include the four-momentum cutoff in Eu-
clidean space, the regularization in proper time, and the
Pauli-Villars method. These latter three all have the at-
tractive feature of being Lorentz invariant. For the sake

of being definite, we consider the SU(2) flavor model as
given by Eq. (2.15), but include a small average current
quark mass mo, and we shall express the gap equation in
all four schemes. One finds that the model, in any
scheme, requires two parameters, the coupling strength G
and a cutoff A, say. Traditionally, these are fixed by set-
ting the quark condensate density per Aavor at its empiri-
cal value, (uu ) =(dd ) = —(250 MeV) (see, for exam-
ple, Reinders et al. , 1985), and the pion-decay constant to
the measured value f„=93 MeV. This will be given in
Sec. III.C.

A. The three-momentum noncovariant
cutoff scheme

In this case, the procedure is straightforward —a
cutoff on p (A is imposed on all integrals after carrying
out the po integration. The self-consistency condition
(2.31) neglecting exchange then reads

m *=m o +4GN, Nf m ' f d p 1

(2m )
(3.1)

with E =p +m*; since the integral occurring on the
right-hand side of Eq. (3.1) has the simple analytic form

&dp 1 1 A&m "+A' —m *'sinh A
4m. )fc

(3.2)

one may recover the result already given in Eq. (2.26).
An evaluation of the total energy-momentum tensor is
given in Appendix C. One finds

( T00) ~ de p2

N, Nf (2~)3 E~

2 &dp 1

(2m )
(3.3)

a result which may be compared with Eq. (2.22). If one
treats m * as a parameter, one can verify that the minimi-
zation of this equation leads to the gap equation in the
Hartree approximation. Alternatively, a calculation of
the change in energy density between the condensed and
normal phases, for m ' jA ((1, can be calculated to be

Scheme (MeV)
A

(Mev) GHFA GA

(a)
(b)
(c)
(d)

313
238
200
241

653
1015
1086
859

1.98
3.63
3.49
2.62

2.14
3.93
3.78
2.84

143
125
115
126

TABLE II. Values of G», G, A, m *, and ihe condensation en-

ergy for X,Nf =6 in the regularization schemes (a) three-
momentum cutoff, (b) four-momentum cutoff, (c) proper time,
and (d) Pauli-Villars.

A m*

8m A

vr21—
GN, Nf A

(3.4)

and, as expected, is always seen to be negative when the
gap equation is satisfied, indicating that the condensed
phase is the energetically favored state. A typical value
for the condensation energy is given in Sec. III.C, where
the parameters associated with this regularization
scheme are also discussed. The results, in comparison
with the other regularization schemes, are presented in
Table II.
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B. Covariant regularization schemes

1. The four-momentum covariant cutoff scheme

The four-momentum regulator restricts the Euclidean
four-momentum

—
], ImT

/
/

/
/

/

/

I

I f(

Re~

p
2 —p2+p 2 (g2 (3.5)

where pp=ip4. Performing a Wick rotation in the in-
tegral occurring in the gap equation (2.31), and again
neglecting exchange, one has

where

~ d'p
F2(m *,A) = i (4—rr) f (2') @~+m *

Evaluated explicitly, this is

(3.6)

(3.7)

FIG 3. Deformation of the integration path into the imaginary
~ plane.

It is at this point that one wishes to regulate the diver-
gent integral

AFz(m*, A)=A —m' log 1+ (3.8) f ds —m *'s
Q s 2

(3.13)

Once again, the parameters associated with solving Eq.
(3.6) in this regularization scheme are discussed in Sec.
III.C and are listed in Table II.

2. Regularization in proper time

A general description of the covariant regularization
schemes can be obtained if one makes use of the real-
space version of the single-particle Green's function. For
a free particle of mass m * this is

S( ,xx)= — (i8„+m*)1

(4n. )

X f exp[im* r+/(x —x') /4r]

Indeed, subtracting ofII'suitable counterterms,

F2(m* g)= f —e '= —E2(m* r/) . (3.15)

Once again, the choice of parameters and solution of
the gap equation in this scheme will be discussed in Sec.
III. C.

Fz(m, A )= f e ' [1—(1+sA )e '
] (3.14)

p s

leads to Eq. (3.8) obtained in the four-dimensional Eu-
clidean regularization scheme, when evaluated explicitly.
Proper-time regularization, however, involves simply the
introduction of a lower limit cutoA on the integral (3.13).
One then has

(3.9)

in the Schwinger proper-time form (Schwinger, 1951).
The gap equation in real space is, from Eq. (2.31), again
neglecting exchange,

m'=mo+2iGN, NftrS(x, x ),
and the insertion of Eq. (3.9) brings it into the form

(3.10)

im *'~m* =m p
— N, Nf m*

2'rr ~ T
(3.1 1)

It is useful to deform the integral on ~ into the upper-
left-quarter plane indicated in Fig. 3. Then only the sec-
tion from ~=i ~ to ~=0 contributes. Making the
change of variable ~=is, one can write

3. The Pauli-Villars scheme

1
F2(m *

) = lim g C, —Ez [M2p],
p~p g p P

(3.16)

The method of Pauli and Villars (1949) is an attractive
one, because it preserves gauge invariance. Here, one in-
troduces an arbitrary number of' regulating masses M,
and constants C, and chooses these in such a way that
the constructs that one wishes to regulate become finite.
For the function F2 of Eq. (3.13), which must be regulat-
ed in order to calculate the dynamically generated mass
from the self-consistency condition, one introduces the
constants C, and masses M„such that

1 oo dSm*=mo+ 6', 2V m* e
p

(3.12) with Cp = 1 and Mp =m *. The remaining M, and C, are
to be determined. Noting that, for small arguments,
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E„(z)= [ —lnz+g(n)]( —z)"
(n —1)!

(
—z)

(m n+—1)m!
m&n —1

One can construct I'2 as

(3.17)
n, =

—,'( [1i(x),g(x)] &
= —i TrS(x,x),

so that the quark condensate density per flavor is

(3.23)

condensate density is, in fact, the order parameter of the
phase transition associated with the restoration of chiral
symmetry. One defines the scalar density as

F2 = lim QC, M, logM, p —g(2)QC, M,
p~o

+—g C, +O(p)1

a
(3.18)

QC, =O and QC, M, =O. (3.19)

Then the regularized form of I'2 is

In order that this quantity converge in the limit p —+0,
one must impose the conditions

(uu &=(dd & =n, /N/= —,m*F,3
(3.24)

A
(uu & =(dd &

= —6m* I (2')' &~
(3.25)

The pion-decay constant is calculated from the vacu-
um to one-pion axial-vector current matrix element.
This will be discussed in detail in Sec. IV.A.3. For the
various schemes, one fIInds

for the covariant schemes in the two-flavor model, while
the noncovariant calculation gives

F2(m )= g C,M, logM, /m (3.20)

d p 13D cutoff' (a) f =N, m* I (2m) E

As is standard practice (see, for exainple, Itzykson and
Zuber, 1980), we introduce only one regulator, A. This
can be done by setting

(m *'+A')
4D cutoff (b) f„= log

4m 71l

M, =m* +ca, A (3.21)
A

m* +A
(3.26)

where a0=0 and Co= 1. Now Eq. (3.19) can be written
as conditions on the u, . Minimally, the label a must run
from 0 to 2, and the conditions read

Ci +C2 = —1,
a&C&+u2C2=0 .

(3.22)

The solution of these equations is not unique. We make
the standard choice (Itzykson and Zuber, 1980) C, =1,
C2= —2, for which correspondingly o.'i=2 and o.'2=1.
Armed with these values, one may now explicitly solve
the resultant gap equation for specific choices of the pa-
rameters G and A. Results are given in the following sec-
tion and are summarized in Table II.

C. Parameter choice

The Nambu —Jona-I. asinio model, with any of the fore-
going regularization schemes, has two parameters, the
coupling strength G and a cutoff parameter which we
have denoted as A, except in the proper-time scheme,
where the cutoff g has been introduced. (We ignore for
the moment the small average current quark mass mo,
which is used later to fit the pion mass. ) One has, howev-
er, two physical quantities —the pion-decay constant f
and the quark condensate density —that are known, the
former experimentally from measurements of the decay

~p +v„, while the latter is deduced from sum rules
(Reinders er a/. , 1985). These parameters can also be cal-
culated in the framework of the NJL model. The quark

X m*
Proper time (c) f = E, ( m' g2),

&dp 1

(2~) E
1 A . i A

sinh
277 V m ~2++z m*

(3.27)

We now take the experimental value of f to be 93
MeV, while the value of the quark condensate density is
taken as ( uu &

= ( dd &
= —(250 MeV) . Building—(uu &' /f from the relations (3.24) or (3.25) and

(3.26), we solve for m*/A or m ' g, as the case may be.
Thus m * and A or q are determined. Finally, we use the
gap equation from (3.1) or (3.6) to determine the coupling
strength G. The current quark mass has been set to zero.
The results are listed in Table II, with the value of G
referring to the strength associated with the Hartree ap-
proximation given explicitly in these equations, while the
value GH„refers to the coupling strength in the Hartree-
Fock approximation, in which the factor GN, NI in (3.1)
or (3.6) is replaced by G [N,N&+ —,

' ]. Where the proper-
time scheme has been quoted, the value I/&g is given in
lieu of A.

One notices the following features. In the three-

Xm
Pauli-Villars (d) f = — g C, logM2/m*~,

7T a

where the integral occurring in (a) for the three-
momentum cutoff is given explicitly as
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dimensional cutoff scheme, the value for m* is attractive
in that it is roughly one-third of the nucleon mass. The
covariant schemes, on the other hand, are all character-
ized by a somewhat smaller value of the dynamically gen-
erated quark masses. The value of the cutoff in both co-
variant and noncovariant cases is comparable, bearing in
mind that the covariant cutoff restricts the four-
momentum. For small values of I /A, one may esti-
mate

+covariant 2+noncovariant

For the noncovariant cutoff A =653 MeV given in Table
II part (a), this relation gives the covariant cutoffs as
A=923 MeV, which lies within the numerical range
covered by schemes (b) —(d).

In the limit I*/A &(1, the value of the integral in Eq.
(3.27) can be simplified with the aid of the gap equation,
Eq. (3.1) for zero current quark mass, to yield the follow-
ing approximation for the pion-decay constant from Eq.
(3.26),

within the NJL model. Since we can also obtain an expli-
cit equation for the pion-decay constant f„,we shall also
be able to establish the appropriate current-algebra re-
sults, viz. , the Croldberger- Treiman and 6ell-
Mann —Oakes —Renner relations, in a way that does not
depend on the regularization scheme that is chosen. We
shall find, too, that the masses of the pseudoscalar and
scalar mesons are related to one another by an equation
that is also independent of the regularization scheme
used.

For the three-Aavor NJL model, we shall study the
pseudoscalar-meson spectrum that consists of the m, K,
g, and g' mesons. In so doing, we shall pay particular at-
tention to the role of the six-fermion interaction in ob-
taining the mass splitting of the g and g'.

Before we embark on our task, we must address the
problem of how we view a meson as a degree of freedom
in the model. We tackle this question directly in the fol-
lowing section, where we first examine the pion mode.

N, XfA

4m.
(3.2g) A. The two-flavor model

using the three-momentum cutoff. Then the condensa-
tion energy, calculated from Eq. (3.5) for small m'/A,
can be expressed in the regularization free form

(3.29)

The same result is obtained from other regularization
schemes. It is seen from Table II that this value varies
from 115 to 143 (MeV) for the diff'erent schemes quoted,
this variation arising solely from the different values of
the dynamical mass that are generated. We note that the
condensation energy is of the same order as the empirical
MIT bag constant.

In closing this section, we restate our procedure on
regularization. In all the schemes presented, we have
chosen the minimal procedure of introducing a single
cutofF parameter to regulate all quantities that are calcu-
lated. The NJL model, defined together with a regulari-
zation prescription, is regarded as an effective theory.
We comment that some authors (Jaminon et al., 1989),
working with a bosonized effective NJL Lagrangian, dis-
cuss the inclusion of two cutoff parameters and show that
the range of such possible cutoffs is enlarged within their
procedure.

1. The pion and sigma modes

A minimal local interaction Lagrangian that would de-
scribe the coupling of a pion field m to nucleon fields giv
is given by

«.~+A—(x)y5& ~A (x) (4 1)

=ig g(x)y5r ng(x) . (4.2)

One may decompose

~.~—/(+ )~(+)+~( —)~( —)+/(3)~(3)

where the operators

—(~, +im2)
2

(4.3)

destroy a ~+ or m, respectively. Correspondingly, the
operators ~'+' and ~' ' are defined as

with the coupling strength 6„&& of the pions to the nu-
cleons. This model can be taken over into the quark pic-
ture by regarding the fermion fields as quark fields,
g&~f. The coupling strength on the quark level is then
g„,and one has

IV. MESON MASSES
AND REG ULARIZATION-INDEPENDENT
RELATIONSHIPS

—(r,+ir~) .(+)—
2

(4 4)

In this section, we wish to study the rnesonic modes
and their properties. In the two-Aavor model, we exam-
ine the pseudoscalar isovector modes and the scalar iso-
scalar mode that correspond to the m and 0. mesons, re-
spectively. We shall derive explicit equations for the
masses and coupling strengths of both of these modes

[d 'iy5r' 'u][(ig ~~ ) ] [u 'iysr'+'d],
k —m

(4.5)

from which one may detach the legs to define an efFective
interaction

,The scattering diagram of, for example, (ud ~)(d'u'),
shown in Fig. 4, has the value
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i'

U

FIG. 4. Scattering diagram of (ud) —+(d'u').

4 ~qq

k —nz

for the exchange of a m'+'. This formula holds true for
all the other pion exchanges as well, with the appropriate
~ matrices inserted.

An e8'ective interaction for the exchange of a pion can
also be obtained from the NJL interaction Lagrangian.
We consider, for the sake of being definite, the two-flavor
version given in Eq. (2.15), but allow for the inclusion of
a small current quark mass I„=md =ma that explicitly
breaks the chiral symmetry of this Lagrangian. The
second term of (2.15), (fi y~rf), is responsible for excit-
ing the isovector pseudoscalar J =0 + mode to be
identified as the pion. The e6'ective interaction resulting
from the exchange of a m meson can be expressed to lead-
ing order in 1V, as an infinite sum of terms in the
random-phase approximation (RPA) that is recognized to
be a geometric progression. We consider the direct terms
only in this sum and illustrate this diagrammatically in
Fig. 5.

Calling the diagram on the left-hand side of Fig. 5,
iU;J(k ), one has

1 2 1
iU; (k )=(iy5)T; 2iG+2iG —.II,(k ) 2iG+2iG —II,(k ) 2iG —II, 2iG+ . . (iy5)T

l l

1 —2GII„(k')
(4.7)

w here T; selects the appropriate channel T, = T =~3 for
the m or T, =~'*', T-=~' ' for creating a ~ or m

The proper polarization insertion —i H, is given as

I

from which we may deduce that

g =(BII,/Bk ) (4.11)

—.II„,(k )

4
Tri y 5 T iS(p + ,' k)i y 5 T iS—(p——,

' k )
d p

(4.8)
on translating the diagram in Fig. 6.

By comparing the result (4.7) with Eq. (4.6), one sees
that one is required to solve

1 —2GII,(k )=0

in order to obtain the mass of the pseudoscalar mode,
while the coupling constant g q

can be related to the
residue at the pole of (4.7). To do this, one expands the
expression in (4.7) about its pole at k =m that is given
when (4.9) is satisfied, to find

g =(BII,/Bk ) (4.12)

relating this mode to its coupling to quark fields. Here
the scalar proper polarization is given as

—II,(k~) = —f P„TriS(p + ,'k)iS(p —
—,'k)—,

(2~)"
(4.13)

We comment that Eq. (4.9) was first derived by Nambu
and Jona-Lasinio (196la, 196lb), who examined a Bethe-
Salpeter equation for the vertex function in the ladder ap-
proximation. It is also clear that the scalar mode o. that
is associated with the term (gf) of the Lagrangian (2.15)
can be handled in much the same way, with the zero of
the function [1—2GII,(k ) j defining the mass, and an
analogous coupl 1ng strength g o qq

iUJ(k )=(iy5)T,
—i(BIIp, /Bk )

(i y~)T
k —m

since the vertex of Fig. 6, i y5T, is simply replaced by a 1

in both spinor and Aavor space. Thus, in either the scalar
or pseudoscalar case, the respective lowest-order term
that contributes to the proper polarization must be calcu-
lated.

~ ~ ~ ~ ~+ II (k)=iy TI 2
I' Ps 5 iy5T

FIG. 5. EfFective interaction in the random-phase approxima-
tion. Only the direct term is considered.

FIG. 6. Lowest-order contribution to the polarization propaga-
tor in the pseudoscalar channel. T selects the isospin channel;
T;=TJ=~3 for m or T;=~'+', T; =z'+' for the m —.
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2. Goldstone modes in the chiral limit

One can demonstrate explicitly that the pseudoscalar
mode, in the absence of a current quark mass, has zero
mass and can thus be identified as the Goldstone boson.

I

This is an exact result that is a consequence of
Goldstone's theorem, and it is rejected in the calculation
of the proper polarization in the RPA. Performing the
trace on color, spinor, and flavor indices in Eq. (4.8), the
proper polarization is

d4p
—.II@,(k )= 4N—,NIi ' (2~) [(p+ —,'k) —m' ][(p—

—,'k) —m' ]
(4.14)

In order to bring this equation into a form from which one can easily extract m, and which is also equivalent to the
self-consistency condition when mp =0, one writes the denominator in terms of partial fractions,

1

[(p+—,'k) —m' ][(p —
—,'k) —m' ]

1 1 1

2(p +—'k —m' ) [(p+—'k) —m' ] [(p ——'k) —m* ]
(4.15}

The numerator of (4.14) can be written as (m —p —
—,
' k )+—,

' k, so that Eq. (4.14) takes the form

—.II@,(k )=2N, NI f (2m)'
1 1

[(p+ —,'k) —m* ] [(p —
—,'k) —m' ]

—4X,N,
1 k2 d'5' 1

2 (2m) [(p+ —,'k) —m*2][(p —
—,'k) —m' ]

(4.16)

The latter term of this equation is abbreviated as I(k ),
i.e.,

4
I(k )=

(2n. ) [(p +—,
' k ) —m *

][(p —
—,
' k ) —m '

]

(4.17)

Making appropriate shifts of variables in the first term of
Eq. (4.16), one has

d4
. II,(k )=4N—,NI f 2N, NIk I(—k ) .P f (2 )4 p2 me2

(4.18)

The same integral that occurs in Eq. (4.18) arises in the
gap equation: evaluating Eq. (2.31) to leading order in
N„one sees that it has the explicit form

d4
m*=mo+8iGN, NIm* f ~ 2,2

. (4.19)
(2n. ) p —m *

One may eliminate the integral in (4.18), using (4.19), to
obtain

I

It follows immediately that m vanishes in the chiral lim-

it, i.e., when rnp =0. This can be expressed in an alterna-
tive fashion: one notes that in this limit, the relation (4.9)
expressed in terms of (4.18) is exactly equivalent to the
self-consistency condition (4.19).

We remark at this stage that the step from Eq. (4.16) to
(4.18) assumes that one can make the shift of variable in-
dependently of the regularization scheme employed.
Since the integrals diverge and must be regulated, this
does not follow automati. cally. Here one has made the
implicit assumption that a cutoff to be imposed would
tend to infinity on going from (4.16) to (4.18), and one ig-
nores any finite-size effects that would otherwise destroy
the required end result, viz. , that the Goldstone modes
appear (see Nambu and Jona-Lasinio, 1961a). Alterna-
tively, one can demand that the regularization procedure
enforce this behavior. In the Pauli-Villars regularization
procedure, this condition is automatically fulfilled by the
conditions that regulate the gap equation. Since m =0
must be a consequence of chiral symmetry breaking, we
regard this necessarily as a result that is independent of
regularization scheme.

1 —2GII,(k }=,+4t'GN, Ngk I(k ), (4.20)
3. The pion-decay constant

Pl p 1
m m* 4iGN, NII(m )

(4.21)

from which one may deduce that the mass of the pseu-
doscalar mode is The pion-decay constant is calculated from the vacu-

um to one-pion axial-vector matrix element, which is in-
dicated in Fig. 7.

Translating the diagram, one finds

4 1

ik„f 5'J= —f Tr iy„y5 iS(p+ ,'k)i—g y5rjiS(p——
—,'k) (4.22)
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having written I =ig qqy5& in terms of the pion-to-quark-quark coupling strength g . The symbol Tr is, as before,
reserved for the trace over color, Aavor, and spinor labels. Using the relation tr~'~J=25'~ and performing the traces, one
has

ik„f = N—,g q~ tr[y„y5S(p+ —,'k)y~S(p —
—,'k)],d p

/l fl' C 1Tqg (4.23)

and the trace over spinor labels yields

ik„f =N, g 4m *k„I(k ), (4.24)
m f2 =mom*(2G) (4.28)

I

demonstrated. Combining Eq. (4.21) for the pion mass
with (4.26) for f, one finds

where I(k } is as defined in Eq. (4.17}. We have already
derived an equation for the pion-quark-quark coupling in
(4.11). Together with Eq. (4.20), one finds the explicit
form

One notes, however, that the scalar density can be writ-
ten in terms of m*. This can be seen, for example, on
comparing Eqs. (3.25) and (3.1) to get

g = 4iGN,—I (0) (4.25) m ' = —2GNf ( uu ) +m 0,

f = 4iN, m* —I(0) . (4.26)

In actual numerical calculations, of course, some
scheme must be specified. The scheme-dependent equa-
tions for f, calculated from Eq. (4.26), are listed in Eq.
(3.26).

4. The Goldberger-Treiman,
Gell-Mann-Oakes —Renner relations
and the o.-m- mass relation

that has been taken at zero-momentum transfer. Squar-
ing Eq. (4.24) and inserting (4.25) at k =0, one arrives at
an explicit equation for the pion-decay constant that is
independent of the regularization scheme used,

which is the lowest-order approximation to the current-
algebra result

f m = ——2(m„+mz)(uu+dd ), (4.31)

derived by Gell-Mann, Oakes, and Renner (1968).
As mentioned earlier, the isoscalar scalar mode associ-

ated with the term (Pitj) can be evaluated in the same
fashion, with the proper polarization given in Eq. (4.13).
Following the same steps that lead to (4.20), one arrives
at the result

a result which is also independent of regularization
scheme. Equation (4.29) can be used to eliminate m~
from Eq. (4.28), yielding the result

(4.30)

From the previous section, we may combine Eqs. (4.25)
and (4.26) to obtain the regularization-free result

1 —2GII,(k )= +4iGN, Nf(k 4m* )I(k )—,

f2~2 ~ 4r2 (4.27) (4.32)

which is the quark level version of the Goldberger-
Treiman relation (Goldberger and Treiman, 1958).

In practice, one is interested in the chiral limit mo~Q
only as a useful check that the regularization scheme is
being consistently used. Otherwise, a small current
quark mass mo of the order of 5 MeV is required to 6x
the pion mass at the average value of 140 MeV. (A typi-
cal set of values sets m„=4 MeV, md-—7 MeV, and
m, = 150 MeV; see Gasser and Leutwyler, 1982 for a re-
view. ) With this, the last of the available parameters is
Axed.

Yet a further regularization-scheme-independent result
that also follows from current algebra can be simply

so that the mass of the mode is given as

mo
m = — [4iGN~NfI(m )] '+4m* (4.33)

and the coupling constant associated with this mode,
from Eq. (4.12), is

g ~~= 4iN, I(m ) . — (4.34)

m =4m* +m (4.35)

I(k ) is regarded as a smooth function that is slowly
varying, so that we can assume that I(m )=I(0) and
obtain the relation

5 p, 5 2

FICx. 7. Vacuum to one-pion and axial-vector current matrix
element, as a Feynman diagram. I J is the vertex function.

that links the pion and sigma masses. This is also a result
that is independent of the regularization scheme em-
ployed.

Let us now summarize the results obtained for the
two-flavor model. %'ith three parameters —mo, 6, and a
regularization-scheme-dependent cuto6' A—the pion-
decay constant f, quark condensate density (gi}'j), and
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the pion mass can be fixed. The dynamically generated
quark mass, the mass of the scalar-meson mode, and the
couplings of these exchanged bosons to quark matter can
be calculated. Further, results of current algebra such as
the Goldberger-Treiman and Gell-Mann —Qakes —Renner
relationships, which necessarily must hold as a conse-
quence of the chiral symmetry of the model, can be ex-
plicitly demonstrated to do so within the model, indepen-
dent of the regularization scheme that is chosen. Numer-
ically, the inclusion of a small current quark mass shifts
somewhat the parameters given in Table II. For the
Pauli-Villars scheme, which will be implemented in Sec.
VI, the parameters 6A =2.87, A =851 MeV, and
mo=5. 2 MeV fix f =93 MeV, (gf) =( —250 MeV)3

per quark flavor, and m =135 MeV. The dynamically
generated quark mass then falls at m =265 MeV and
the scalar mode at 546 MeV.

B. The three-flavor model

In this section we examine the flavor dependence of the
pseudoscalar-meson modes in flavor SU(3). We deal with
the pion and kaon sector first, confirming once again that
these are both Goldstone bosons. The g and g' mesons,
whose masses are split due to the six-fermion interaction,
are described separately. We also comment briefly on the
vector-meson spectrum.

1. Effective SU(3) Lagrangian and pion
and kaon modes

SU(3) flavor versions of the NJL model have been in-
vestigated by Takizawa et al. (1989), Bernard, Jaffe, and
Meissner (1988), Klimt et al. (1990), and Vogl et al.
(1990). Here we use the form introduced by the first of
these references, and which is given in Eq. (2.32), and we
continue to work to O(1) in N, . The pseudoscalar sector
is now enlarged to form the nonet of pions, kaons, and g
and g' mesons. Let us, however, examine the pion and
kaon sector first, since their description involves a simple
generalization of the ideas developed in Sec. IV. A. 1 for
the SU(2) sector. We shall then examine the g and ri',

k37 77

1

V'2

T, = 1

v'2

(A, i+iA~),

(A6+i A, ~), XO,Z'
(4.37)

1—(f4+iX~),
2

and one is required to solve the generalized form of the
dispersion relation (4.9),

1 —2X,'+'rr„=O, (4.38)

for each isospin channel i to obtain the masses of the
modes for that channel. Once again, the coupling
strength of each mode to a quark-quark vertex, g and

gz &, is given by the residue at the pole of the effective in-

teraction, evaluated at the mass of the respective mode.
The coupling strengths K +' appropriate to each channel
must now be determined.

Of key importance in writing Eq. (4.38) is the recogni-
tion that the three-flavor NJL Lagrangian (2.32) can be
brought into a form similar to that of the two-Savor NJL
Lagrangian (2.15) by writing the six-fermion-interaction
term that occurs in (2.32) in an eff'ective two-body form,
as in Eq. (2.40). Combining (2.40) with the four-
fermion-interaction term of (2.32), one may write an
effective three-Aavor N JL Lagrangian as

which are mixtures of the pure singlet and octet states of
SU(3), in a somewhat more sophisticated, if complex,
procedure. The m, m —,K +—

, E, and E can be de-
scribed by examining the generalized form of Eq. (4.8),

4—'. [11„(k')],, = —N, y f „try, (T,. )f fS~(p+ —,'k)
ty (2m')

Xyq(T )ff S~(p —
—,'k),

(4.36)

where the flavor indices f and f ' are explicitly included,
and tr refers to the spinor trace only. Now T,. and T.
select the appropriate flavor channel,

8

„=/itic/r+ y [K,' '(qA, 'ip) +K +'(itsy'A'I/J) ]+[—,,'K' '(yis11)(yA, y)+ —,'K'+'(yiy'As/)(yiy A, q)]
i=0

+ [-,'K.'-'(qXoy)(qX'y)+-, 'K.'+'(yiy'~'y)(yiy, ~'y)]+a „, , (4.39)

where the flavor-dependent effective coupling constants
K —' and L' —' are given in terms of 6 and K as

Ko—' =G + N, K(i trS'+—2i trS"), K'+—'= + ,'N, K&2(i trS' ——itrS") . (4.41)

I

and the mixed-Qavor terms have the coupling strengths

K' —' =E'*' =IC —' =6+—'X,Ki trS'
1

(4.40)
K' ' =K' —' =K =K'*' =6+—,'X,Ki trS"4 5 6 7

K is
—' =G + —,'N, K(i trS' —4i trS"),

The origin of the relative sign difference that occurs in
the scalar and pseudoscalar couplings can be traced back
to Eq. (2.40), where the pseudoscalar term occurs with
the opposite sign to its form in (4.39).
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2. Goldstone bosons in the chiral limit

A check on the consistency of this formulation is the
confirmation that the pseudoscalar mesons reemerge as
Goldstone bosons in the limit of X „,~0. Since the ~
mesons are degenerate, and the K mesons also, it suIIBces
to set up the dispersion relation for the m and K . We
examine first the m . Then Eq. (4.36) requires that we
select the meson channel T, = T =A,3. Since this matrix
is diagonal, (4.36) becomes

d4p

l
—II,(kz) = 2N, —f 4 try, S"(p + —,'k)y, S"(p —

—,'k),
2m '

(4.42)

denoting

[II,(k )]33=II,(k ).

We have also used the fact that since m„=md, the prop-
agators

S"(p)=(gf+m„*)/(p —m„* )

m,*=m, +4iGN, trS' 2K—N, (trS") (4.47)

from Eq. (2.39), cannot be factored as in (4.45) into a
term that contains an effective coupling strength. The
gap equations (4.45) and (4.47) warrant comment. Unlike
the SU(2) case, the SU(3) self-energy equations for the
masses m„*=md and m,* are coupled via the mass depen-
dences of these Aavors that occur in the traces of the
Green's functions found in these equations. In practice,
a numerical solution to these coupled equations (4.45)
and (4.47) must be obtained before the meson modes can
be evaluated.

The polarization propagator for the K can be con-
structed from Eq. (4.36) as

—II, (k ) = N, g f— try5(A, 6 )ff
l ff (2~)

the Goldstone nature of the pion.
Treatment of the K mesons is more complicated, since

the additional mass parameter m, Am„. This has, among
other things, the consequence that the self-energy of the
strange quark,

S (p)=(gf+md )/(p —md )

XSf(p +—,'k )y5(A, 6+ )f f
XSf (p —

—,'k) (4.48)

(4.43)

with I„(k ) given by I(k ) in Eq. (4.17) with m* —+m„*.
It is useful to express the first term of (4.43) in terms of
the spinor trace of the propagator in x space,
trS'(x, x)=trS'(0) =trS', so that

1 1—II (k )=2N, trS" 4N, k I„(k )—
m„

(4.44)

We now introduce the gap equation, which, from Eq.
(2.39), can be written as

m*=m +4iGX 1+ —i trS' trS"
Q Q C 2 6

are equal. Thus, formally, Eq. (4.42) difFers from the
two-fiavor equation (4.8) only in the fiavor trace given in
that equation, and the manipulations of Eqs. (4.14)
through (4.19) can be repeated to give the similar form

d4—II (k )=8N, f 4N k I„(k—),(2'�) p —m *

which can be evaluated in Aavor space, to give

1 K 2 d'p—II, (k )= 2N, f —~try~S'(p+ —,'k)y~S (p —
—,'k) .

1 —2K' 'II (k )=0.6 PS
(4.50)

The task now at hand is to calculate the polarization here
for unequal masses. We show consistency by recovering
the known result at k =0, viz. , that m o =0 is a solution

of (4.50) for zero current quark mass, so that the K
correctly emerges as a Goldstone mode. To do this, we
perform the spinor trace on Eq. (4.49), leading to the re-
sult

2(m,*md
—p )—' ll„'(0)= —4N,

i ' ' (2~) (p2 —m,' )(p —md )

(4.51)

(4.49)

In order to determine the dispersion relation for the K,
one is required to find values of k for which

=m„+4iN, K'+ 'trS" (4.45) Then the identity

for a quark of fiavor u. Eliminating trS" from (4.44) by
using (4.45), one finds that the dispersion relation can be
obtained on solving Eq. (4.38), which takes the form

1 —2K~3+'ll", (k )= +8iK3+'N k I„(k )=0 (446)
mg

here, and may be compared with Eq. (4.20). One sees
that the two-flavor limit may easily be extracted on set-
ting K in K3+' to zero, and that the limit m„=0 recovers

enables us to write

2(rn, 'md —p )

(p —m,' )(p —md ) p —m* p —m*

(m,*—md )

(p m,* )(p md )— —

(4.52)

2(m*m* —p )=m* —p +m* —p —(m* —m*)

Rev. Mod. Phys. , Vol. 64, Np. 3, July 1992



S. P. Klevansky: The Nambu —Jona-Lasinio model ot quantum chromodynamics 669

h

$ d
m* —m* d4p
m,*+m„* 2m 4 p' —m"

m,*—md d p 1

m*+m' (2n) p —I*

—.II, (0)=4N,xo

+4&, 1—

(4.53)

which may be simplified further as

0 2%,
—.II~ (0)= (trS'+trS")
i m +m*

$ d

(4.54)

We expand the last term of this equation in terms of par-
tial fractions in the inverse of the difference of the two
denominators, and, inserting the result into Eq. (4.51), we

may write FIG. 8. Schematic representation for the Bethe-Salpeter equa-
tion for the polarization propagator.

1 1 1 . 1
—.I',

q
=—II; +—H;k 2i7CkI —FI (4.57)

polarization propagator in the RPA and is denoted here
as F;.. Here the labels i and j refer to the nine flavor
channels as selected by the basis given by extending T in
(4.37) to include T; =A,o and A, 8 also. FJ satisfies the cou-
pled set of equations

with the introduction of the trace of the propagator in x
space. One can build the sum I,*+md from Eqs. (4.45)
and (4.47) to find

of

I' = II+2IIKF (4.58)

md +m,*=md+I, +(4iGN, +2iKN, i trS )(trS'+trS")

=md+I, +4iN, K'&+'(trS'+trS")

and eliminate the traces in (4.54), so that

d+m$
1 —2K6+'ll, (0)= m*+m*d $

(4.55)

(4.56)

This confirms that in the limit of zero current quark
mass, the K is indeed a Goldstone particle.

In practical calculations of the mass of the m. and K
mesons that include small current quark masses, one
solves Eqs. (4.46) and (4.50) numerically, having, of
course, prior to this determined m„*=md and m,* from
the set of coupled gap equations.

3. g and q' mesons

The calculations of the g and q' meson spectra remains
to be addressed. Up to this point, we have easily been
able to apply the results of the SU(2) calculation of the
meson modes and their respective coupling strengths to
the SU(3) calculation, since the form in which the pseu-
doscalar channels described by T in Eq. (4.37) appear in
the Lagrangian (4.39) is directly analogous to the form in
which these channels are coupled in the SU(2) Lagrang-
ian (2.15). Consequently, the summation of bubbles in
the construction of the effective interaction, as in Eq.
(4.7) and Fig. 7, selected its specific isospin channel by
choosing at each stage the same proper polarization part
[II&,],J. In dealing now with the I =0 channel that de-
scribes the g and g', one notices that the SU(3) Lagrang-
ian (4.39) contains not only terms proportional to AoAO
and A,8(3A,8, but contains also the mixing terms k8 A,o and
A 0 A 8. One must thus examine the construction of the
effective interaction more carefully. To this end, let us
remove the external interaction vertices from Fig. 7 and
construct first the bubble sum, which represents the full

in a matrix notation. This relation is represented
schematically in Fig. 8.

Since we shall deal hereafter only with the pseudosca-
lar modes, we shall suppress the subscript ps in writing
II. The coupling constants in SU(3) are the pseudoscalar
coupling strengths and are diagonal,

+k1 +k ~kl
(+) (4.59)

except for the mixed couplings

=x =-'x'+' .08 80 2 m (4.60)

Likewise, the proper polarization insertions H; are diag-
onal,

II; =II;5;

except for the off-diagonal elements

&08—&80 .

(4.61)

(4.62)

(4.63)

and the poles of this propagator recover the masses of the
In general, however, one can consider the full matrix

F, which, from (4.57), is

F =(1—2IIK) 'II . (4.64)

Now the effective interaction is given in terms of I', via
Fig. 9, as

The diagonal nature of (4.59) and (4.61) in the I =1 and
I =

—,
' channels corresponding to the m and K mesons en-

ables us to solve (4.57) for F and recover our previous re-
sults. For example, choosing i =j =3, one has, from
solving (4.57),

II33
33
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U =(iy~)T; [M,, ]iy~T (4.66)

employing the solution (4.64), one finds that

FIG. 9. ES'ective interaction in terms of the fu11 polarization
propagator.

M =2K [1+[1—2IIK] '2IIK]

=2K [1—211K]-', (4.67)

iU =(i y ~)T;2iK J (iy5 )TJ +(iy 5)T;2iK;i . Fik —2iKkjiy~TJ
l

=(iy5)T;i(2K+2KF2K); iy5TJ, (4.65)

using matrix notation. It is useful to define

M, =[2K+2KF2K);, so that

with due regard to the required order of the matrix mul-
tiplications. In dealing with the I=0 channel, it su%ces
to investigate the 2 X 2 submatrix M;. , where i and j take
the values 0 or 8. This rejects the fact that T; and T
refer to either ko or A, 8 in determining the mixing of the
singlet and octet states to form the g and g'. One has

1 —2IIK =
1 (2IIppKpp +2K8p lisp) 2( llppKps + 2Kss lips )

(2K~IIsp+2Kspllss) 1 (2Kpsllsp+2Kssllss)
(4.68)

so that M can be written as MOOUI 0

(d /dk )IogD k m „M=- 8
where

C (4.69)
1X

2 2 XO ~0+ a&XO(3) ~8
k —m

7l

A =2K~[1—211ssKss]+(2Kps) 118s,

B =2K~+ lips(2Kpp2Kss (2Kps ) )

C =2K s s [ 1 2IIppK pp ]+ ( 2Kps ) IIpp

(4.70)

+ a„kpS A,p+ XsSks, (4.73)
M88

MOO

where the quantity in square brackets is to be evaluated
at k'=m'„, and

and D denotes the determinant of the matrix in Eq.
(4.68).

The effective interaction in the I =0 channel is then

U iy 5[M pp—A pS kp+Mps A pS As

+Mspk sS Ap+Mssl sS As]i y~ . (4.71)

As before, the poles of the effective interaction or polar-
ization propagator yield the dispersion relations for the
mesons. In this case these are the poles of M in Eq. (4.67)
that are determined by solving

M08a„=
k2~m2

To do this, one notes that

detM =det(2K)det(1 —2IIK )
' =det(2K)/D (4.74)

from the definition (4.67). However,
=( AC B)/D from E—q. (4.69). Thus

A C —B =det( 2K)D .

detM

(4.75)

It follows therefore that at a root of D, one has AC =B,
or that Mss /Mpp =C/A =B /A =a „, so that one may
factor U . One has

D =det[1 —2IIK] =0, (4.72)

which is the generalized form of Eq. (4.38). One
identifies m„with the smaller, and m„with the larger,
root. The coupling strengths, and in this case the mixing
angles, can be obtained by expanding the effective in-

teraction in the vicinity of the mass of the mode and ex-
amining the residues. Let us do this explicitly for the q.

We may expand U about m„. Then one has

2

UI=P=iy5
2
9"

2 ( —sinenkp+cosenks)
k —m

71

S ( —sine„i,p+ cose„A,s ),
where

g qqq MOO

1+a„(d/dk )logD(k ) k' m'„

(4.76)

(4.77)
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FIG. 10. Pseudoscalar-meson spectrum in the SU(3) flavor
model {after Klimt et al. , 1990). The parameters used are de-
scribed in the text.

and tan8„= —1/a„ through the identification

Ac+a„ks=(1+a )'~ (
—sin8„Ao+cos8„As) .

The strength cosO„represents the mixing of the q and
g', although O„cannot be regarded as a mixing angle in
the sense that it occurs in the quark model (Bernard,
Jaffe, and Meissner, 1988). Solutions of the Bethe-
Salpeter equation are not eigenstates of an energy-
independent Hermitian Hamiltonian, with the conse-
quence that the matrix of couplings of the q and g' to g
and g is not orthogonal.

Results from the different authors who have dealt with
Qavor SU(3) (Bernard, Jaffe, and Meissner, 1988; Tak-
izawa et al. , 1989; Klimt et al. , 1990) differ somewhat,
due to the differences in the level of approximation made
in 1/X, and to the slight differences in the choice of the
SU(3) Lagrangian employed. For the pseudoscalar-
meson spectrum, which has been developed here theoreti-
cally, we quote the results calculated by Klimt et al.
(1990) and display the spectrum in Fig. 10. One sees in
Fig. 10(a) that in the limit of exact chiral symmetry
where m„=md =m, =0 and K =0, the pseudoscalar no-
net (rr, K,K, rl, rt') appear as Cxoldstone modes.

The inclusion of the 't Hooft interaction removes the
Uz(1) symmetry explicitly, leaving the SU(3)SU(3) in-
tact and shifting the il' mass away from zero [Fig. 10(b)].
Finally, the introduction of the nonzero current quark
masses, m„=md ——5 MeV and m, = 130 MeV, breaks the
chiral symmetry, so that the pseudoscalar mesons have
the masses given in Fig. 10(c). Here we quote the
remaining parameters used as GA -5, A-1 GeV, and
KA -70 for this calculation, which have been taken
from Klimt et al. (1990) and notationally adjusted so
that the gap equations solved by these authors are coin-
cident with Eqs. (4.45) and (4.47).

Meson masses, decay constants, and meson-quark cou-
pling strengths are listed in Table III for the extended pa-

TABLE III. Pseudoscalar-meson properties. Empirical values
are given in brackets [after Kliint et al. (1990)].

Mass m (MeV)

Decay constant f (MeV)

Meson-quark couphngs g &

139 498
(139) (495)

93.3 96.3
{93.3) (114)

3.87 4.04

509
{548)

93.4

3.77

969
(958)

93.3

2.68

rameter set, used by Klimt et al. (1990), that is necessary
to describe the vector-meson sector. This is given in the
following section.

In general, the value of the mixing angle O„obtained
by Bernard, Jaffe, and Meissner (1988), Takizawa et al.
(1989), and Klimt et al. (1990) varies between 8= —6.9'
and 8= —13.9'. Experimentally (Gilman and Kauffman,
1987), data from the decays il(il')~yy, /~gal(rl')y,
g —+pseudoscalar + vector and m p scattering indicate
that 0„=—20', while tensor meson-decay data suggest
that 0„=—10'. On the other hand, the semiempirical
value obtained from the quadratic Gell-Mann —Okubo
mass formula is 0„=—10', while that from the linear
Gell-Mann —Okubo formula is 6„=—23 . Thus this issue
is not completely settled.

Values of the ratio fx/f calculated by the various
groups of authors lie between 1.02 and 1.08, and these
underestimate the empirical value

fthm

/f = 1.21 —l.28.

4. Vector-meson modes

The interested reader is further referred to Takizawa
et al. (1989, 1991), Klimt et al. (1990), and Vogl and
Weise (1991) for the calculation of the vector-meson
modes, for which it is necessary to include an additional
term [62&0 from Eq. (2.14)] in the NJL Lagrangian
studied in order to achieve a sufficiently attractive force
in the vector and axial-vector channels, and also to Blin
et al. (1990), who study resonances in the mesonic
strength functions in an alternative approach.

In the following, we brieAy report the results of Klimt
et al. (1990), without presenting detailed theoretical cal-
culations. Using the Lagrangian given by Eq. (2.14), with
the extended parameter set m„=md =5.5 MeV,
m, =131 5 MeV, A=O 9 GeV, G&A =3 97,
G2A =2.63, G3=G4=0, and KA =70.6, these authors
obtain a best fit to both the pseudoscalar- and vector-
meson sectors, with the former as listed in Table III.
With these parameters, the pion-decay constant is fixed
at its empirical value, f =93.3 MeV, while the value of
f» =96.3 MeV. The condensates are measured as
(uu ) =(dd) = —(247. 8 MeV) and (ss) = —(258. 3
MeV), and the dynamically generated quark masses lie
at m„=md =363.9 MeV and m, =522.2 MeV.

In the chiral limit, when m„=md =m, =0, the
vector-meson modes p, E, co„, and co& form a degenerate
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TABLE IV. Vector-meson modes and decay constants [after
Klimt et al. {1990)]. Empirical values {Dumbrais et al., 1983)
are listed in brackets.

Mass I (MeV)

Decay constant f (MeV)

77.2
(770)

7.0
(5.3)

785
(783)

24.0
(15.2)

892
(992)

17.0

1047
(1020)

25.0
(13.4)

set with a common mass mz-—770 MeV. When the
current quark masses are turned up to their actual
values, the coo —co8 singlet-octet pair turns into the m and

P, sllcli tliat, tile P ls ail allllost pllle $$ state, while tile co

remains almost degenerate with the p. It is necessary to
include a further tensor piece in the interaction with yet
another coupling strength, in order to describe the mass
splitting of the p and co. The numerical values for these
masses, together with the meson-decay constants, are list-
ed in Table IV.

The results of current algebra that are specific to the
vector-meson sector, such as the Weinberg formula
(Weinberg, 1967) and the KSFR relation (Kawarabayashi
and Suzuki, 1966; Riazuddin and Fayyazuddin, 1966),
can also be shown to hold; this is discussed by Ebert and
Reinhardt (1986).

5. General discussion and outlook

One of course also obtains an additional scalar-meson spec-
trum, but since the physical identification of these modes is un-

clear, we do not deal with these further here.

In conclusion of this section, we review what we have
accomplished in the Aavor SU(3) NJL model. Let us re-
strict ourselves to the pseudoscalar sector, which has
been presented in detail in this section. The SU(3) model,
as given by Eq. (2.32), contains two coupling strengths,
one regulator, and three current quark masses. With
these parameters, one wishes to describe the meson nonet
(rr, K, g, tl'), the pion- and kaon-decay constants, and the
three quark condensate densities. We may choose the pa-
rameters (m„,md ) to fit the pion mass and fix 6 and A by
setting f and the light quark condensates to their
respective empirical values. The remaining parameters
(m„K ) are fixed by styling a best fit to the remaining ob-
servables, with I, Axing the mass of the kaons in the
strange sector, and K, as discussed, serving to split the
masses of the g and g'. All quantities turn out to have
reasonable values. In addition, the current-algebra rela-
tions, the Croldberg- Treiman and Gell-
Mann —Oakes —Renner relationships, are obtained "free
of charge, "as a consequence of the built-in chiral symme-
try.

Our good description of the pseudoscalar mesonic sec-
tor comes, however, as almost no surprise, since we have
constructed it to be so from symmetry principles, and we
have enough parameters to reproduce the meson nonet,f, and the light quark condensate, depositing our uncer-
tainties primarily in f& and ($$). Wherein, therefore,
lies the relevance of the model'7 Its value lies perhaps not
so much in its predictive power up to this point, but, as
will be investigated, rather in the (qualitative) insights it
gives into various aspects of hadronic relativistic many-
body physics, particularly in studying the response of a
quark system to external parameters such as tempera-
ture, Gnite chemical potential, strong fields, and the equa-
tion of state of quark rnatter —in short, in investigating
properties of quark matter. This model also has
relevance in determining further static properties of
quarks, such as form factors and charge radii, which will
be dealt with in Sec. VI. Another problem of interest
that can be studied within the NJL Inodel relates to the
X & term that is measured in ~—X scattering, the
strangeness content of the proton, and ~—% scattering
lengths. The former two issues are dealt with by Ber-
nard, Jatte, and Meissner (1988) in a full SU(3) calcula-
tion, which does not, however, contain a consistent ex-
pansion in 1/N, for the self-energy. We refer the reader
directly to this reference for further information, and
also to Gasser et al. (1991), who point out that low-
energy precision measurements in m —X scattering are re-
quired for clarifying the discrepancies in the experimen-
tal data and to aid in the resolution of the theoretical
conAicts on this issue. Scattering lengths for the ~—X
system have, to date, not been studied within the frame-
work of this model.

In the next section, we shall discuss thermodynamic
properties of quark matter, and we include a discussion
for finite chemical potential. The application of external
electromagnetic and chromoelectromagnetic fields and
electromagnetic properties will be discussed in Sec. VI.

/

V. EFFECTS OF EXTERNAL PARAMETERS I:
TEMPERATURE AND CHEMICAL POTENTIAL

As has been seen in Sec. IV, the NJL model apparently
provides a good description of the pseudoscalar mesonic
sector. Of interest to us now is to see what insights we
may gain from the model with regard to various aspects
of hadronic relativistic many-body physics. In particu-
lar, we are interested in the response of a quark system to
temperature and finite chemical potential; we therefore
devote this section to a discussion of the finite density
and thermodynamical aspects of the NJL model. To
date, extensive work has been done on the SU(2) NJL
model in this regard, whereas the SU(3) case has not been
that thoroughly studied. Within the literature on the
SU(2) model, there has been some confusion as to the or-
der of ihe phase transition at finite density but zero tem-
perature. In this section we give an overview of the
SU(2) situation, addressing the problem of finite chemical
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A. Finite chemical potential

Here we consider a finite baryon density within the
SU(2) Lagrangian. One introduces the chemical potential
p into the operator K =H —pN, where H is the Hamil-
ton density associated with the Lagrange density X of
Eq. (2.15) and N is the quark number density operator
N =g itj, which can be fixed since it is a constant of
motion. On the other hand, the scalar density (fg) has
to be determined from the dynamics of the system itself.
Following the treatment of Asakawa and Yazaki (1989),
we note that the mean-field contribution of X;„,in (2.15)
to the mass term is

26(@ &A (5.1)

from the direct interaction, while that from the exchange
interaction can be gleaned from the Fierz-transformed
version of the Lagrangian given in (2.55) as

(5.2)

potential, but zero-temperature first. We then deal with
the finite-temperature case and the ensuing equation of
state. The generalization to SU(3) can be effected using
the results of Sec. II.

(5.7)[i8 —m*+y p']S(x,x')=5 (x —x'),
which has the solution, in momentum space,

S(p)= ™,+ (k'+m *)8(p' E—)6(ko —E )k2 —m*~

(5.8)

( gg) = i lim —TrS (x,x')
X ~X

as before, so that (5.6) reads

d'pm*=mo+2iG(N, N/+ —,')f trS(p) (5.9)

as the gap equation, and the vector density is given in
terms of S as

(g g) = i lim —Try S(x,x') . (5.10)

Inserting Eq. (5.8) explicitly, we see that (5.9) and (5.10)
become

with g=y (po+p') —y.p. This is the familiar result for
a Green's function associated with a free particle of mass
m* in a system with chemical potential p'. The scalar
density (fg) may be expressed in terms of the Green's
function S as

Since K has a term proportional to the density operator,
mean-field averages that are also proportional to it must
also be included. From (2.55), one can construct the con-
tribution from the exchange interaction to be

d p 1m*=mo+46(N, N +—')m'
(2~)3 E,

(5.3)

One assumes that all further exchange averages that
could arise from (2.55) vanish. The effective mean-field
Lagrangian is then

X,a =g(i 8 mo )Q+—6[2+ 1 /2N, ]( fg )gP

and

d'p(g P) =2N, N/ f,8(p' E~), —

(5.11)

(5.12)

&A&&+~A
C

—
—,'G [2+1/2N, ](gf) + (Ptg)

C

(5.4)

&A&
6

(5.5)

and the effective quasiparticle mass is given as

m ' =m 0
—6 [2+1/2N, ]( gg ), (5.6)

where the last two terms compensate for double counting
of the interaction energy. One sees immediately that the
chemical potential is shifted due to the average exchange
field,

respectively, and p =E =pI;+m defines the Fermi

energy. Here we have a regulator on the three-
momentum integrals. It remains now to solve Eq. (5.11)
in conjunction with (5.5) after inserting (5.12). Before un-
dertaking this, however, one notes from (5.11) that a
phase transition in which chiral symmetry is restored
must occur: on the right-hand side of (5.11), it is evident
that the unoccupied available phase space for exciting
quarks from the negative-energy sea becomes restricted
as p' or the density increases. The order of the transition
must, however, be determined by examining the thermo-
dynamic potential (here at zero temperature) in conjunc-
tion with a numerical solution of the equations. Writing
(5.5) and (5.11) in terms of the chemical potential, one
has the coupled set

so that one may write X,s=g(i8 —m *+y p')P plus the
constant terms appearing in Eq. (5.4). The Green's func-
tion associated with this effective Lagrangian is defined
through the relation and

'2
m e2)3/2GN~

3~2
(5.13)
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FIG. 11. Effective quark mass and the pion and sigma masses
for case I (Asakawa and Yazaki, 1989).

FIG. 12. E6'ective quark mass and the pion and sigma masses
for case II (Asakawa and Yazaki, 1989).

m*=ma+6 [N, N&+ —,'] 2
m'[A +m*'+A m*—log(A++m' +A ) p'+p—' m* +—m* log(p'++p' m* )]—.1

(5.14)

The solutions to (5.13) and (5.14) are displayed in Figs. 11
and 12 for two parameter sets that are commonly em-
ployed in the literature and which are listed in Table V.
We refer to that employed by Hatsuda and Kunihiro
(1987a) as case I, and cite that used by Bernard et al.
(1987a) as case II. Both cases are also discussed by
Asakawa and Yazaki (1989). Figures 11 and 12 also
display the scalar- and pseudoscalar-meson modes, which
are obtained by solving Eq. (4.9) and the associated equa-
tion for the o. meson, with II„, and H, as defined in Eqs.
(4.8) and (4.13), respectively. Here, of course, the density
Green's function (5.8) must be inserted.

The phase transition that one observes is first order in
nature in both cases, as can be confirmed by plotting the
associated thermodynamic potential density at zero tem-
perature. This is given in Fig. 13 for the parameters of
case II, with the formal development of the thermo-
dynamic potential energy left to Sec. V.B [see Eq. (5.43)].
Qne sees that the energy develops three extrema, two of
which are minima for certain values of the chemical po-
tential, and the desired mass m* corresponding to the
lowest minimum must be selected.

The results warrant comment, since they di6'er from
the results presented by other authors (Bernard et al. ,
1987a) who have also investigated the SU(2) case and
who find a second-order phase transition. In this refer-
ence, the method of characterizing the phase transition is

TABLE V. Parameter values, including a current quark mass.

misleading, since these authors present the spectrum as a
function of the density and not of the chemical potential.
In Fig. 14, we show p as a function of p, which indicates
that there is a discontinuity in the density at the critical
value of p =p, . In this case, the density jumps from nor-
mal to 5 times normal nuclear matter density,
pa=1. 30X10 MeV . For case I, the jurnp in density is
from 0.29po to 1.75po.

It is interesting to investigate whether the order of the
phase transition is related to the order of approximation
that has been made. We therefore solve the gap equation
in the Hartree approximation, for comparison. If one ig-
nores exchange, then Eq. (5.13) reduces to the simple
form p' =p, while in Eq. (5.14), the factor
X~Xf+ 2 X~%f The results for cases I and II are
given in Fig. 15. In both cases, one observes a smooth
transition in the behavior of the dynamically generated
quark mass from its "constituent" to its current quark
value. Thus a first-order phase transition is no longer ob-
served, and the smooth behavior that is seen is a vestige

O
O

&C

0.02

) Q~
C)

-0.02—
E

Case I
Case II
Phenomenological values

APE p
m* &uu &'"

(M.V) GA A (M.V) (M.v)

5.5 2.02 631 336 —247
5.0 2.00 925 472 —359

——'M~ ——250

-0.04 I I I

IOO 200 500 400
m~(Mev)

FIG. 13. Thermodynamic potential density as a function of m *
for case II (after Asakawa and Yazaki, 1989).
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i
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p {GeV)

0.56

FIG. 14. Density p, given as a function of p for case II. po is
normal nuclear matter density; po= 1.30X 10 MeV .

One may thus conclude that the NJI model does not
uniquely specify an order for the phase transition; it is
strongly dependent on the choice of parameters as well as
being a function of the approximation that is made.

Finally, for completeness, we note that Eqs. (5.13) and
(5.14) can be derived directly from the self-energy (Ber-
nard et al., 1987a; Klevansky and Lemmer, 1990). Equa-
tions (2.27) and (2.28) may be added and Fourier
transformed into momentum space to give

d "p d4pg=mo+2jG N, Nf f ~ trS(p) —f ~ S(p)
(2n ) (2~)

+3f,y5S(p)ys
d p

(2~)'
(5.15)

of the idealized second-order transition that would occur
if mo were zero. This result is, however, a sensitive func-
tion of the parameters employed: with a slight change in
parameters, for example, using the set A=643 MeV,
m0=5. 5 MeV, and GA =2.2, the 6rst-order transition is
recovered.

We also find that the results of the SU(2) NJL model
calculated at 6nite density and in Hartree-Pock diSer
also from the results of the U(1) version taken in the
same approximation. Here the Lagrange density is given
as

.A +Gl(A )'+(4 y A)')

In this case (Klevansky and Lemmer, 1990), the gap
equation obtained difFers from (5.14) only in that the cou-
pling strength

G ( Nf N, + ,' ) +GN, Nf—, —

while Eq. (5.13) remains intact. Thus the coupled set of
nonlinear equations to be solved divers slightly in its pa-
rameters from the SU(2) Hartree-Fock version. This
leads again to a smoothing out of the second-order phase
transition for the same parameter sets used in the previ-
ous calculation.

We mention the SU(3) situation only briefly: Kunihiro
(1989b, 1991) and Klimt, Lutz and Weise (1990) find that
the observed phase transition is again second order in na-
ture for the parameter sets that they have employed.

since TrS(p)y5+ vanishes. A direct evaluation of this us-

ing Eq. (5.8) gives

A
X=mo+4(N, Nf +—,

' )Gm ' f (2n. )3 E~

d'p 1
OP Ep(2n. )

d p+4y G f 8(p' E), — (5.16)

X=m —y Mo, (5.17)

one may identify

A
m =mo+4(N, Nf +—,

' )Gm ~ f (2n )

d p 1—f 8(p' E)—
(2m. )' E~

(5.18)

and

d p—Mo =-46 p' —E
(2~)'

(5.19)

indicating that the matrix form of X can no longer simply
be a scalar. Writing therefore

I
I

Case I Case II

where E =p' as before. With (5.18), one has again

recovered the gap equation as given in (5.11);and a direct
calculation of the density

0.4

)
Cg

E 0.2

(Nq —N~)/V=2N, N~ f ~ = (g"g)

indicates that ( 1( g) and Mo are directly related,

(y'y),6
C

(5.20)

(5.21)

I

0.5
I

0.4
+(GeV}

0.5

FIG. 15. E6'ective quark mass, calculated in the Hartree ap-
proximation for the parameters of case I and case II.

so that (5.12) may again be recovered. One also notes
that the effect of the term Mo in Eq. (5.17) for X is to
shift the chemical potential p to p'+MD, thus recovering
(5.5).
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S. Finite temperature

1. The gap equation and thermodynamic
potential

It would at first appear that the generalization of Sec.
V.A to include the effects of temperature is straightfor-
ward. By denoting the grand canonical ensemble average
of an operator 8 as

Tree @H

p( H ——tc)Tre
(5.22)

the mean-field procedure of Sec. V.A can be effected with
all averages occurring in Eqs. (5.1) through (5.6) being re-
placed by the corresponding ensemble averages. Howev-
er, there is a problem. Strictly speaking, ensemble aver-
ages for systems of quarks should refer to states that are
colorless. The grand canonical ensemble includes Quc-
tuations in color, and a suitable projection technique is
required to extract color singlet states only (Redlich and
Turko, 1980; Turko, 1981; Le Yaouanc et al., 1988). In
the following, we ignore this problem. Then, in particu-
lar, Eq. (5.5) becomes

The advantage of the Matsubara formalism is that
Vhck's theorem may be revised to apply to imaginary-
time operators (Fetter and Walecka, 1971). Consequent-
ly there is a formal similarity between the zero-
temperature theory and the finite-temperature theory at
imaginary time. %'e exploit this to note that the Matsu-
bara Green's function for a free particle of mass m * in a
system with chemical potential p described by the
effective Lagrangian following Eq. (5.6) must satisfy the
equation

(Jf„—m'+y )M)$(p, co„)=1,
where p„=(ico„,p) T.hat is,

S(p, co„)= [P„—m '+ y i(c ]

(5.29)

where

+ P —m* 1

2' ico„+(E~+p)
(5.30)

It is useful to rationalize this equation, and separate it
into partial fractions as

+(p, co„)= +m 1

2E& i co„(E~—
((c)—

and Eq. (5.6) becomes

m *=m 0
—G [2+ 1 j2N, ](( Pf » . (5.24)

At this point it is useful to introduce both the Matsubara
or imaginary-time Green's function and the real-time
Green's function (see, for example, Fetter and Walecka,
1971 and Dolan and Jackiw, 1974}. The former is defined
through

P =X'E, +r.p .

The real- and imaginary-time Green's functions are
linked by the spectral function A (x,p), where

A (x,p)= —.[S(p,co„)i, ,„—()'(p, co„)i;„„+;„].1

g(x, r;x'r') = —(( T,i'(x, r)g(x', w') », (5.25)
(5.31)

where T orders the fermion operators in imaginary time
~, while the real-time Green's function is defined as

iS (x,x') = (( Tf(x)q(x') », (5.26)

with, as is customary, T ordering the fermion operators
in real time. The Matsubara Green's function is an-
tiperiodic for fermions over an imaginary-time interval P,
1.e.,

g(x x' «') I,—y=p= ()'( x',«') I, ,=—p——
Consequently the Fourier transform is given as

Then the real-time Green's function S(p, co) is obtained,

S(p, co)=f,' +if(co)A(p, co),
27T N co +E'Q

(5.32)

with f (co)=[1+exppco] '. Using Eqs. (5.30) and (5.31),
one finds the explicit form

it'+
2 ~ 42+)~

+2mi (k'+m *)5(k() E)—
eV(p, co„)=f d (x —x') f 1~$(x,x', r)e

0
(5.27) X[8(k )f (p, )M)+8( —k )f+(p, )(c)] (5.33)

with co„=&(2n +1)m/P, n =0, 1,2, . . . , and we have as-
sumed that the system is spatially homogeneous. The in-
verse transform follows as

for S(p) with

f*(p,p)=[1+expP(E +i(c)]

and
eV(x —x', r—~' }

3'~n(~ ~)f d P g( ~ )e iP.(x—x')

(2m. )
(5.28)

&=) '(pa+i ) rp . —

The single argument p of S in Eq. (5.33) refers to the
four-momentuin (p, p ).
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The choice of which Green's function to use-
Matsubara or real-time —is now a matter of taste. The
mean-field procedure developed in this section so far
fares better than the latter, while the self-energy ap-
proach can only be efFected with the former, since pertur-
bation theory and Feynman diagram techniques are only
applicable in this case. We shall have cause to examine
the self-energy anyway, since, as will be seen, it can be
used in a sophisticated method to evaluate the thermo-
dynamic potential. First, however, let us return to devel-

oping the gap equation, for which we use the real-time
Green's function. As before, the scalar density is

« fg» = —i lim TrS(x,x'),
I +

Recognizing the fact that

1 —f (p, p') —f+(p,p') =
—,'(tanh —,'Pc@~ +tanh —,'Pc@~ )

(5.36)

while the di8'erence in Fermi functions is given as

f (p, p') —f+(p,p')= —,'(tanh —,'Pc@~+ —tanh —,'Pc@ )

(5.37)

in terms of co+—=E +p', one can construct the gap equa-
tion from (5.24) and (5.35),

m =mo+G [N,Nf+ ,']—
while the quark density can be expressed as

«P'g»(=«[P', g]»)= —i itm Try'S(x, x') .

Inserting (5.33) into these equations and integrating out
the po and angular components, one has

«A»= ', f, dpp'[f (p S')—f+(pI ')1 (5.34)
N, Xf

A pX f dp (tanh —,'Pco~ +tanh —,'Pro~+ ), (5.38)
0 E

and from Eqs. (5.23) and (5.34)

p'=p G f—dp p (tanh —,'pro~+ —tanh —,'pro~ ); (5.39)

the mass I* obtained in this fashion must be shown to
lead to a value of the thermodynamic potential

n= l—og—(Tr. ~'H -~~') (5.40)

—f+(p v')] . (5.35)

that is lower in the chirally broken phase. The evalua-
tion of 0 is a technical exercise that is relegated to Ap-
pendix D. One finds

(m* —mo)

4[N, Nf +—,
' ]G

Mo

P (2 )'
(5.41)

which has been given by Asakawa and Yazaki (1989). The zero-temperature limit of this equation,

QT 0 (m* mo)

N Nf 4G[N Nf+ —,
' ]

leads to the simple analytic form

M —f E +2f E„O(p' E~ ) —2p' f —
3

8(p' E~ ), —
(2m ) (2n )' (2~)

(5.42)

N, (m* —mo) 2G
2[N, N, +, ]G

N, Nf -8[ —m log(A++A +m' )++A +m (m* A+2A )
7T2

+m e41og(pi+Qp~2 m e2)+pim e2+pl2 m +2+ 2pi(pi2 m e2)3/2] (5.43)

that has been used for Fig. 13.
Finally, one may recognize that the last integral occurring in Eq. (5.42) is related to Mo, via Eq. (5.19). Using this,

and writing its cofactor out explicitly, p' =p+Mo, enables one to write

QT O=NNf, , + +2f 3E~O(p' E~)—2f E ——p&g f)

=U —pN, (5.44)

from which the internal energy U may be identified.
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2. Mesonic excitations 0.8

We turn now to the particle-hole propagator to exam-
ine the mesonic excitations. As in Sec. IV, it suf5ces to
examine the lowest-order term for the proper polariza-
tion, which we denote, in the imaginary-time formalism,
as II(q, iv„). This term is illustrated diagrammatically in

Fig. 16.
Once again, in the random-phase approximation, the

bubbles must be summed. The meson modes may be ob-
tained by examining the function 1 —2GII(q, ro) =0 as be-
fore, where II(q, co) refers to the analytically continued
function II(q, iv„) onto the real frequency axis. For clar-
ity, we examine the scalar mode in detail in Appendix E.
Here we list only the final results, evaluated at q=0. In
this limit, the equations for II,(0,ro) and II,(0,~o) become
particularly simple,

E —rn

(2~) E~ E ro /4—
(5.45)

II,(0, co )=2N, N/ tanh —,'PEdp 1 +p

(2') E~ E~ ro /4—
(5.46)

q+»'"n+ ~l

II' (q, i v„) = q, v„

FIG. 16. Lowest-order contribution to the polarization propa-
gator in imaginary time. The frequencies v„are even,
v„=+2nm/P, n =0, 1,2, 3, . . . , while the fermion frequencies
co~ can take odd values only, (co, ) =+(2m +1)~//3, m

=0, 1,2, 3, . . . .

The temperature dependence of the dynamically generat-
ed mass, together with the meson modes, has been calcu-
lated by Hatsuda and Kunihiro (1985b, 1987a) and is
shown in Fig. 17.

The parameters used by these authors are A=631
MeV and GA =2.02 to reproduce the pion-decay con-
stant and the quark condensate (uu ) =( —250 MeV)
(case I of Table V). The current quark mass used is
ma=5. 5 MeV. One sees from the figure a pattern, indi-
cated by the solid curves, that occurs repeatedly in the
restoration of chiral symmetry. The mass drops rapidly
but continuously to the current quark mass value. The
scalar mode drops, while the pseudoscalar mode rises to
meet it in the chiral limit. Both modes continue to rise in
energy as the temperature is increased, since the thermal
energy now dominates the spectruID. The dashed curves
shown in this figure represent the calculated modes
where m* is kept constant (Wigner-Weyl mode). One

m04 m

o-2 —m„

'0 O. l 0.2
T{GeV)

0.5

FIG. 17. Variation of the dynamically generated mass m*, m„,
and I as a function of temperature. The solid curves indicate
the Nambu-Goldstone mode, whereas the dashed curves give
the signer-Weyl modes, where m* is kept constant (after
Hatsuda and Kunihiro, 1987a).
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FIG. 18. Phase-transition line for cases I and II (Asakawa and
Yazaki, 1989).

sees in this case that both meson modes rise, a feature
that can be understood as due to Pauli blocking: the
thermally excited quarks and antiquarks partially block
available states for the formation of the qq coherent
modes, thereby reducing the collectiveness of the o. and

In the Nambu-Goldstone mode, the fact that the ob-
served phase transition is smeared out means that no crit-
ical point in the temperature can be uniquely defined.
Following Asakawa and Yazaki (1989), we define it to be
the temperature at which I* has reached half its zero-
temperature value and denote this as T, . Then a phase-
transition line can be drawn for the parameter sets em-
ployed in this section, and this is shown in Fig. 18. In
this diagram, the solid lines refer to the occurrence of a
first-order phase transition, while the dashed lines
represent smooth transition regions as defined above. We
note that the transition temperature at p=0 lies at about
T = 180 MeV for case I, which represents a more realistic
parameter set than case II. This value lies close to the es-
timate T, = 190 MeV of chiral perturbation theory
(Gerber and Leutwyler, 1989). A closer comparison be-
tween the NIL model and chiral perturbation theory at
finite temperature has to date not been made.

It is interesting to note that, for the case of a zero
current quark mass and zero chemical potential, an ap-
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FICy. 19. Temperature dependence of f and g qq
is shown for

the Nambu-Goldstone mode (solid curve) and the Wigner-Weyl
model (dashed line); (after Hatsuda and Kunihiro, 1987a).

proximate estimate for T, can be obtained directly from
the gap equation. From Eqs. (5.38) and (3.28), one ob-
tains

1/2

T, =A 3
m2

1/2

1—
GX,XfA

=&2f =135 MeV (5.47)

Vl. EFFECTS OF EXTERNAL PARAMETERS II:
MAXWELL AND COLOR FIELDS

Up to this point, the self-interactions of quarks with
one another have been modeled via an interaction that is
four-point in SU(2), or, in SU(3), both four- and six-point.
Quarks, possessing a fiavor-dependent electric charge,

provided that m* «A .
The dependence of the coupling constants on tempera-

ture may be calculated along the lines developed in Sec.
IV.A. One finds (Hatsuda and Kunihiro, 1987a) the re-
sult shown in Fig. 19. One sees that an increase in tem-
perature leads to a decrease in the coupling strengths, in-
dicating that the mesons decouple from the surrounding
matter in the chiral limit.

One may wish to contrast the results obtained here
with the findings of lattice gauge theory. Here thermo-
dynamic Monte Carlo studies have been made, primarily
with @=0 (see, for example, Christ, 1991 and Kogut et
al. , 1991, and references cited therein). These references
tell us, however, that the nature of the phase transition as
determined via lattice gauge theory is not yet clear. The
results of Kogut et al. (1991) indicate that the initial evi-
dence for a first-order transition is considerably weak-
ened when a larger lattice is used. The transition is less
abrupt and could simply be a crossover phenomenon for
the quark masses used in their simulations. These au-
thors have studied a three-fiavor model. Christ (1991)
confirms this tendency for the two-flavor model, while
the three-Aavor-model results depend rather sensitive1y
on the quark mass parameters that are used.

however, couple to electromagnetic fields and, via their
color charge, also to chromoelectromagnetic fields. The
effects of such fields on a system of quarks that interact
via the NJL Lagrangian is the subject of this section
(Bernard and Vautherin, 1989; Klevansky and Lemmer,
1989; Klevansky et a/. , 1991; Suganuma and Tatsumi,
1990, 1991).

We first take a look at the coupling of quarks to
Maxwellian fields. One can solve this problem exactly,
for arbitrary values of the field strengths, provided that
constant electromagnetic configurations are considered.
This is important, since it lays the foundation for the
study in which color electromagnetic fields are con-
sidered instead: these fields are strong and cannot be
handled perturbatively. Furthermore, by using the
Pauli-Villars regularization scheme, we are able to per-
form calculations while preserving both gauge and
Lorentz invariance. The response of the condensate, the
meson modes, and the coupling strengths can all be cal-
culated. The results are at first sight somewhat surpris-
ing: the inhuence of an electric field serves to restore
chiral symmetry, while the magnetic field tends to
enhance its breaking. We can understand this physically,
since we may imagine that the electric field destroys the
condensate by pulling the pairs apart, while the magnetic
field aids in antialigning the helicities which are bound by
the NJL interaction. This is in contrast to the inhuence
of electromagnetic fields in standard BCS theory, but we
can understand this by recalling that in that case, like
particles (electrons) of opposite spin are paired, whereas
in the NJL model, the pairing is between particles and
their antiparticles.

We then present small-field results, i.e., the elec-
tromagnetic polarizabilities of the pion (Sec. VI.A.3).
The pion form factor, which can also be calculated
analytically in the NJL model, is examined in Sec.
VI.A.4.

It turns out that, in practice, the electromagnetic fields
that are generated in heavy-ion collisions are too weak
for an effect of chiral symmetry breaking to be observed,
and so we turn our attention to chromoelectromagnetic
fields in Sec. VI.B. In QED, background fields can be
kept under laboratory control. In QCD, however, this is
not the case: external color electric and magnetic fields
exist only in the interior of hadrons. This concept has
formed the basis of the schematic fiux tube models (Ko-
gut and Susskind, 1975; Casher et al., 1979; GatoF et al. ,
1987; see also Low, 1975) and is useful in describing the
early stages of ultrarelativistic heavy-ion collisions,
where fIux tubes with strong chromoelectric fields are
supposed to be formed in the central co11ision region.
This latter picture is also suggested by lattice QCD calcu-
lations (Cxiacomo et a/. , 1990). The evaluation of the
pair-production rate in the presence of external fields for
a Aux tube could in principle then be effected using
Schwinger's formula (see, for example, Itzykson and
Zuber, 1980; Cox and Yildiz, 1985; Martin and Vauthe-
rin, 1988, Klevansky, 1991;and Suganuma and Tatsumi,
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1991). It is with this rather rough picture in mind that
the constant or homogeneous background SU(3) color
Geld in the NJL model is reviewed.

A. Maxwell fields

1. Gap equation

(i 8 —qA) —+cr„g~ —M G(x,x') =5' '(x —x'),

(6.6)

where M =m +m, is the square of the quark mass in
the presence of the electromagnetic field and is flavor in-
dependent. (One may write this equation in operator
form as

To investigate the effects of minimally coupling a U(1)
gauge field into the NJL Lagrangian, we consider the
modified SU(2) Lagrange density

[%—M ]G =1,
with the identification

(6 7)

X=AN&„qgy—A "g—,'F,F—"+X,», (6.1) &=(iB qA) ——+o g"" M-
P (6 8)

where XNJJ is given by Eq. (2.15). If we consider the
fields A to be electromagnetic Gelds, then

Pv QPg v QvgP
Equation (6.7) may be expressed as

G i I d e i {&——I
7 (6.9)

qF = ,'e(r&+ —,
' ), — (6.2)

and one is required to Gnd the matrix element

and is again independent of position. The trace of the
pseudoscalar term does not in general vanish when fields
are present, so that X has the structure

=m +l /57ym )

in flavor space. S and therefore X are flavor diagonal,
this dependence arising solely from the di6'erent charge
states, since the current quark masses are assumed equal.
For notational ease, we temporarily suppress the flavor
labels. The propagator S (x,x') satisfies

(i{{I„—qA —X)S(x,x') =5{ '(x —x'), (6.4)

where ~&=+1 refers to up and down quarks, respective-
ly. We note that the presence of this term in (6.1) breaks
chiral symmetry explicitly. This is in contrast to the cou-
pling of chromoelectric fields into the QCD Lagrangian:
in that case, the associated coupling constant is both
flavor and. color independent, thereby maintaining the
chiral symmetry of the QCD Lagrangian.

In general, the electromagnetic potential is a function
of the four-dimensional space-time vector x, A „=A „(x).
We are thus led to consider the representation of all
quantities in x space. We begin once again with the self-
energy, which is given in Hartree as

2=m =mo+2iG TrS(x, x)+2iG(iy~)r Triy5S.(x,x)r,
(6.3)

This is determined if

U(x, x', r)=(xie ' ~ix') (6.1 1)

is known. Equation (6.11) can be evaluated by drawing
an analogy with quantum mechanics. U can be regarded
as an evolution operator if one considers & to be a Ham-
iltonian that describes the evolution of a system in the
"proper time" r. U (x,x ', r ) satisfies the differential
equation

(6.12)

and is subject to the boundary condition

limU(x, x', r)=5{ '(x —x') .
v—+0

BXP jI= —.[x,&]= —2
B~ i

(6.13)

It is interesting to note that Eq. (6.12), when analytically
continued to the Euclidean variable, t =i~, is identical
with the heat-kernel equation (Stephens, 1988), which is
discussed by Ebert and Reinhardt (1986), in connection
with bosonization techniques.

The equations of motion for the "coordinates" x„and
"momenta" m.„are

which can be solved either within the path-integral for-
malism of Feynman (1950); or through the proper-time
procedure of Schwinger (1951). We choose the latter,
summarizing the procedure only brieQy here. Qne intro-
duces an auxiliary function G (x,x') via

and

B&P
— ' =—.[B~ i

2qF„m' iq{3 F„—cj—„g g~——(6.14)

S (x,x ') = [i8 qA +X ]G (x,—x '),

so that G (x,x') satisfies the scalar equation

(6.5) respectively, where r„=(iB—qA )„. These equations can
be solved exactly for certain field configurations, in par-
ticular when the field strengths are constant. Gne finds
(Schwinger, 1951;Itzykson and Zuber, 1980)
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U(x, x', r) =— exp i—qP(x, x') L—(r)
(4m.~)

jl IAl 7

+—(x —x')EC (r)(x —x')

+~cr g""~
P (6.15) Re 7

using the abbreviations

P( x, x') =f d +[A'„(g)+ ,'F„„(—g x')'—],
X

L(v )=—,
' tr log[(qFr) 'sinh(qFr)]

(6.16)

(6.17) FIG. 20. Integration contour for the evaluation of the gap
equation (6.23).

X(~)=qF cothqFr (6.18) gauge-invariant combination y =(B+iE) =2(2+i Q} of
the field strength. Here

using an obvious matrix notation. We require, however,
S(x,x'), which can now be obtained on combining Eqs.
(6.5) and (6.10) to give

0 2iS (x,x') = dr e' '[ ,' y"M —„(—r)(x—x')"

+X ] U( x, x', ~}, (6.19}

where M(w) =X(r) qF, and —U(x, x', r) is obtained from
(6.15). lt is now a straightforward matter to obtain the
self-consistency condition or gap equation for X by in-
serting Eq. (6.19) into Eq. (6.3). We summarize the de-
tails here in a form somewhat different from that given in
the literature, which is, however, more transparent for
the present discussion.

Since only the trace of S at equal space-time points
enters the determination of X, one has some
simplification. One requires, however, the values of
exp[ L(~}]and —the value of the spinor trace operation
on exp[iqroF/2] and ysexp[iqwoF/2]. The foriner two
quantities have been calculated in Schwinger's original
paper (Schwinger, 1951) using an elegant eigenvalue ar-
gument to give their values in terms of the Lorentz and

I

9'= —
—,'(E —B ), Q=B.E (6.20)

I.(,) (qF'~)(qF" ~)
e

sinh(qF'v)sin( qF"r )

tre'~' "~ =4cosh(qF'r)cos(qF"r),

(6.21)

(6.22a)

triy5e'~' = —4 sinh(qF'v)sin(qF"v ) . (6.22b)

Gathering the results together, one can reorganize Eq.
(6.3) to read

are field invariants —'F„F" and ——'F„„FI", respective-
ly, and F I' is the field tensor dual to E" . Alternatively,
one can express these quantities explicitly in terms of the
four eigenvalues +iF' and +F" (two real and two pure
imaginary) of the field tensor F„„Wepr.esent a detailed
discussion of the eigenvalues of F" and the representa-
tion of functions of the field tensor in terms of its eigen-
values in Appendix F. Here, we simply give the final
equations,

i', 0
ggF 0 cobol qgF 7 Q'gF 0 cot ggE v lg 'Tf 'Pg ggTF gg7F

217
(6.23)

where g is a fiavor label. The integrand appearing in the first term has simple poles at +inn/qF due to the hyperbolic
cotangent, and at En'. /qF" due to the cotangent, where n =1,2, 3. . . . The point v=0 is always a double pole, wheth-
er the field is present or not, and rejects the standard divergence of the gap equation in the NJL model in the proper-
time scheme. The v-integration contour in Eq. (6.23) runs infinitesimally above the negative real axis, since m has a
negative imaginary part. It is useful to deform the ~-integration path to consist of a large quarter circle in the upper-left
quadrant of the complex ~ plane, plus a straight-line path parallel, but infinitesimally close, to the left of the positive
imaginary axis, in order to avoid the pales of qE ~cothqE ~. This deformation of contour is shown in Fig. 20. The
quarter circle makes no contribution, and one can rewrite Eq. (6.23) as

GX, ~ ds EIFII

X =ma+ X g f 2
e™qF's cot(qsF's)g F"s coth(q F"s)+iys~f (q„qd)—

2m'
g

o s
(6.24)

after setting ~=is on the positive imaginary ~ axis. The second term has been explicitly evaluated. In the first term of
this equation, the s-integratian path lies infinitesimally above the real s axis and, except in the case of a pure magnetic
field (F'=0, F"=8},results in a finite negative imaginary contribution to the integral from simple poles along the real
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axis. Consequently, the quasiparticles acquire a complex mass that rejects the nonpermanence of the vacuum under the
action of a constant field with respect to pair production (Schwinger, 1951). One can show that the second term that is
proportional to F'F"=9 also contributes mainly to the quasiparticle width. These efFects are ignored here, so that only
the principle value of integrals such as those occurring in (6.24) is considered, and the second term of Eq. (6.24) is
dropped, which in turn is equivalent to setting I

&
=0, M =m. In any event, this latter term falls away for the field

configurations that will be considered, where either I"or I'" are set to zero.
For the discussion of regularization, it is convenient to split up the gap equation as

r

GX, m ds —m s ds —m sg f — e '+g f e 'fqfF's cot(qfF $)qfF s cotll(qfF s) 1]
2m' f 0 s f o s

(6.25)

—M s
8„(m )=lim g C, f e

p o ~ p s

M=QC, Mzlog
Nl

(6.26)

with the weights C, and auxiliary masses M, satisfying

gC, =0 and gC, M, =0, with Co = 1 and Mo =m. Im-
plementing these conditions as in Sec. III, one chooses

~2 m 2+2A2, M2 I2+ A2

where A is an arbitrary cutofF'mass squared. Then

thereby isolating the divergence in the first term. The
original procedure of Nambu and Iona-Lasinio of cutting
off the zero-field version of Eq. (6.25) in Euclidean four-
momentum becomes intractable when fields are present.
Instead, we follow the procedure of Pauli and Villars of
coupling in massive auxiliary fields to regularize Eq.
(6.25), as discussed in Sec. III. Calling Bz (m ) the regu-
larized version of the divergent integral in (6.25), one
finds that

I

For a pure magnetic field, the eigenvalues F' and I'" in-
terchange, with the field invariant V given by V= —,'8 .
The resulting gap equation is again given by Eq. (6.28)
with the replacement E~iB.

For purposes of illustration, we ignore the charge
difFerence of u and d quarks and solve Eq. (6.25) for an
average common charge q (Klevansky and Leminer,
1989). The solutions of the respective gap equations are
shown in Fig. 21 as a function of q+~V~ for both a zero
current quark mass and for m0=5. 2 MeV. The other
parameters used are A=851 MeV and GA =2.87, to fix

f =94 MeV and (qq) =( —250 MeV) at zero field in
the chirally symmetric case. Then at zero field m =248
MeV for mo =0 or m =265 MeV for neo =5.2 MeV.

One notices the following features. For a zero current
quark mass, m displays a second-order phase transition
as a function of q&[2V~ to the chirally symmetric phase
at the critical-field strength given by

qE, =2A m '(1 2m /GN, N—fA )

=0.56 GeV fm

m2
Bii(m )=A 2+ z log 1+2

t
m A—2 1+ log 1+

m
(6.27)

with A =2A log2, in the case of a pure electric field.
(The approximate analytic form qE, = 8mf /3 =0.38
GeV fm ' obtained in the limit m*((A in the Pauli-
Villars scheme gives the correct order of magnitude for
this quantity, but underestimates it somewhat. ) This

2%2 1—
GN,

mo 2=Nf Bii ( m )
Pl

+gqf E ReJ (im /2qf E),
f

(6.28)

upon taking the principal value of the integral

In this equation, m is the field-dependent dynamical
mass. We consider now Eq. (6.25) for the case of a con-
stant electric field. Then F'=&2~ V~ and F"=0, in terms
of the Lorentz invariant V= —

—,'E . The gap equation

now takes the form

400

) 500

E 200

l00

—
mo = 5.2 MeV

I
~r

}

2
e gyE$ cotgfEs 1 QfEJ lm 2' E

S

0 I

0.5
I

I.o
qx Field (GeV/fm)

l.5

where

J(z)=2i[(z —
—,
' )logz —z —logI (z)+ —,

' log2m ] .

(6.29)

(6.30)

FICx. 21. Behavior of the dynamically generated quark mass in
a constant electric or magnetic field. The solid curves refer to
the efFect of a pure electric field for both a zero current quark
mass and for the choice m0= 5.2 MeV. The dashed curves give
the corresponding behavior in a magnetic field.
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phase transition is washed out in the presence of a
current quark mass. By contrast, the effect of a 8 field is
to stabilize the chirally asymmetric vacuum. In this case,
the gap equation always has a nontrivial solution for
finite 8. The different behavior in the response of a con-
densate in these two situations can be understood as fol-
lows. While the E field opposes condensate formation by
polarizing the bound qq pairs, the B field facilitates the
binding by antialigning the helicities of the quark and an-
tiquark, which are then bound by the NJL interaction.
We note that this contrasts with the behavior of the BCS
ground state of an ordinary superconductor. There the
application of an external magnetic field favors the spin
alignment of the electron pairs and consequently opposes
BCS condensate formation, with the result that the mag-
netic field tends to restore the spontaneously broken sym-
metry. The contrasting behavior in the response of a
quark system to electric and magnetic fields has recently
also been confirmed by other authors (Suganuma and
Tatsumi, 1991) who work with the linear sigma model.
These authors point out that this result has consequences
in weak-interaction physics, too, in particular, in resolv-
ing the longstanding issue as to whether the Cabibbo an-
gle vanishes and strangeness is conserved in the weak in-
teractions in a strong electromagnetic field, as may be ex-
pected in some nuclei or hadrons. This possibility was
first indicated by Salam and Strathdee, who, however, as-
sumed that the effects of a strong magnetic field are sym-
metry restoring (Salam and Swathdee, 1975; see also
Suganuma and Tatsumi, 1991, and references cited
therein). In the model presented by these authors, the
Cabibbo angle 8, is not considered as a constant, but
arises rather as a consequence of spontaneous symmetry
breaking due to a Higgs field.

must be expressed in terms of space-time variables. One
has

—.II„,(x,x') = Tr—[iy5TiS(x, x')iysiS(x'x)] (6.31)

for the 0 + mode, in analogy to Eq. (4.8), while the 0++
mode is obtained by constructing the appropriate analo-

gy to Eq. (4.13),

—.II,(x,x')= Tr—[iS(x,x')iS(x', x)] .1

l
(6.32)

XTr[y5TiS(x, x')y5TiS(x', x)] (6.33)

for the Fourier transform of the pseudoscalar polariza-
tion of II „for example. Once again, the dispersion rela-
tion is given by solving

1 —2GIIp, (k) =0, (6.34)

and the effective coupling strength of the pseudoscalar
mode to quarks, g, is given as before, via the relation

aII,
ako

(6.35)
Ic = 2

0

The mass of the scalar mode, and the coupling of this
mode to quarks, is given, for finite field strengths, by the
d.ispersion relation

One sees from Eq. (6.19) that S(x,x') is a function of the
relative coordinate x —x', apart from the phase factor
P(x,x') that occurs in U. This phase factor will cancel in
the construct required by (6.31} and (6.32), so that one
may write

1—.II (k)= d (x —x')e' '"
PS

2. Meson modes 1 —2GII, (k) =0 (6.36}

The response of the scalar-scalar and pseudoscalar-
isovector modes to an external U(1) field can be obtained
using the methods described in Sec. IV. For simplicity,
we consider here a common charge until we calculate the
polarizabilities of the mesons, when it is essential to
recognize the charge difFerence. Here, as was the case for
the Green's function in Sec. IV, the proper polarization

and the corresponding relation

BIIs

c)ko k2 2
(6.37)

The evaluation of H, and II, is rather a dificult techni-
cal exercise and is relegated to Appendix G, where it is

briefly sketched for II,. We find

—iM A,

—.II~,= N, Nf g —C, f qEA, cothqEAe
™~—2N, NfI(k)(ko —k3)+2N, NfI'(k)ki,

i (4~), o

where

(6.38)

I(k)= g C f EA, coth Eke ' du e
(4m ), '

o & o coshqEA, (6.39)

2 —1

I'(k) =
z g C, f qEA, cothqEAe ™~f du e(4~)~, ' o A, 0

(6.40)

The first term of (6.38) may be simplified by making use of the gap equation. By choosing a suitable contour deforma-

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



684 S. P. Klevansky: The Nambu-Jona-Lasinio model of quantum chromodynamics

tion, one may write

—M A, —M s
gC, f qEkcothqEAe ' =i lim g C, f e ''+i f 2

e "[qEcotqEs —1]
p s

(6.41)

and use the identifications (6.26}, (6.28), and (6.29) to
write the simplified form

1 —2GII, (k) = +4N, Nf Gt (k '—k )I(k)

4G—N, Nfik jI'(k), (6.42)

which is valid for all qE for me%0 and for qE (qE, for
mp=o.

Let us examine the results that we obtain. Firstly, one
finds that, as before, an explicit equation for m can be
obtained, which is the generalized version of Eq. (4.21),

mp 1m~=
m(&) 4GN, NfI(m2 )

(6.43)

given here for a pure electric or magnetic field, and is
characterized by X Correspondingly, the coupling
strength scales as

g qq= 2iNfN&I(m ) (6.44)

+4m
m(V} 4iGN, NfI(m )

with coupling strength

(6.45)

In a fashion analogous to the arguments given in Sec.
IV.A.3, the pion-decay strength f (9') may also be calcu-
lated in the presence of a field 9, and again one can
directly confirm the Cxoldberger- Treiman relation
f (V)=g qq(P)m(V) and the current-algebra result
m (9')f (9')= —mc(Pg), if one again assumes that I is
slowly varying.

The scalar-meson mode can be treated in a fashion
similar to that of the pseudoscalar mode; the mass of this
mode is found to be

g q
= 2N NfiI(m ) (6.46)

To the extent that the variation of I with four-
momentum is unimportant,

g
2 g 2 f2(P)m 2(P) (6.47)

and the scalar and pseudoscalar masses are connected by
the relation

m (P)=4m (V)+m (9') .

In Fig. 22 we show the variation of the coupling con-
stants as a function of the field strength, having set
I (m )=I(m )=I(0). Since

AI(0)= 2 ln 1+
(4m. ) m

A—ln 1+2
m

(6.49)

800

one sees that the variation of the coupling strengths with
external field is contained solely in the variation of the
dynamical mass m =m(V). This holds true also for the
variation off, which is also shown in this figure. In this
section, all the calculations were performed with the
choice mp=5. 2 MeV for the current quark mass. The
remaining parameters are the same as those used for Fig.
21.

The collective modes are shown in Fig. 23. At zero
field, one has m =546 MeV, while m = 135 MeV for
the parameters chosen. The important features that one
observes from this calculation are (i) the slow variation of
meson mass with magnetic field: one sees that the m

meson hardly moves at all; and fii) the behavior of the
two modes, which in the electric case is complementary.
The mass m falls to a minimum before turning up to

l50
O

~ loo

O
O

o 50
Ia

CL

—IO

) 600
X

E 400
O

200

0 I i t s I

0.5 I.O I.5
qx Field streng th (GeV/f m)

FIG. 22. Variation of the coupling constants g «-—g~«(solid
lines) and the pion-decay constant f (dashed lines) with ap-
plied field. The nature (electric or magnetic) of the field is indi-
cated by the appropriate argument. The left-hand scale refers
to f, whereas the right-hand scale refers to the coupling con-
stants g qq (Klevansky, Jaenicke, and Lemmer, 1991).

00

Zrn(E)

I I I

0.5 l.o l.5
qx Field (GeV/frn)

FIG. 23. Variation of m and m as a function of the applied
field (solid curve). The dashed curves illustrate the behavior of
the pair-production threshold 2m(9). A smal1 current quark
mass, mo =5.2 MeV, has been assumed.
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merge with m and appears as a common excitation of
the vacuum in which chiral symmetry has been restored.
The turning point of m can be used to identify the
critical-field strength -0.8 GeVfm ' that always lies
above the pair continuum threshold, so that this mode is
unstable with respect to its decay into qq pairs. By con-
trast, the pion is stable in the chirally asymmetric region,
but is unstable in the chirally restored phase where its
mass has moved into the pair continuum. It is also
noteworthy that the features that are observed with re-
gard to the inclusion of electric fields are common to the
response of other external parameters in the NJL La-
grangian that tend to restore chiral symmetry. For ex-
ample, a similar variation of meson masses and coupling
constants was shown in Sec. V as temperature and/or
baryon density was varied, the increase in either of which
favors a chirally restored vacuum.

3. Polarizabilities

From Fig. 23, one sees that the collective modes have
masses that vary quadratically with the applied field in
the vicinity of the origin. One can thus introduce electric
and magnetic polarizabilities a and P according to the
change in mass with field,

(6.50)

3 2

16' f~f
em 2~f1—

96 7rf 3m

2m. f
3m

(6.52)

for the m. meson. Note that this vanishes in the chiral
limit, a=P=O. The symbols m and f refer to the
zero-field values. Since e /4ir= 1/137, and the other
quantities have been calculated previously, one can calcu-
late the polarizability. Since we have assumed a common
charge coupling for the quarks, the calculation thus far
corresponds to that for the neutral pion. One finds

a = —P =6X10 fm
%0 770

The polarizabilities for the charged pions have been
calculated together with those of the neutral pion and the
E mesons within the SU(3) NJL model in a perturbative
approach (Bernard and Vautherin, 1989). These authors
obtain the results listed in Table VI for the parameter
sets (i) GA =2.35, J A =27.83 and (ii) GA =2.74 and
EA =43.29. In both cases, they set m„=md-—7 MeV
and m, =175 MeV. Experimentally, the polarizability
for charged pions is a ++p ~=(1.4+5.5)X10 ~fm3

(Antipov et al. , 1985), while nothing is known about the
polarizability of the neutral pions.

In addition, o; contains a classical contribution due to the
acceleration of the charge (Ericson and Hiifner, 1973;
Bernard and Vautherin, 1989), which we do not consider
further here. Since the behavior of the meson masses
with applied field is completely determined by the varia-
tion of the dynamically generated mass with P, see Eqs.
(6.43) and (6.48), one can give simple expressions for u or
P by expanding the right-hand member of the gap equa-
tion (6.25). One finds that m(V) varies as

4. Electromagnetic form factor of the pion

The electromagnetic vertex function 1 &(k, k') of the
pion considered as a composite object is given by the sum
of the diagrams shown in Fig. 24 (Brodsky and Primack,
1969), where the incoming and outgoing mesons are on-
shell, k =k =m

One finds, after a short calculation, that

m ( V) =m (0)+ g qf2
8ir m(0)f

(6.51)
I „(k',k) = N, Nf(q;+q —)g I„(k',k),

where

(6.53)

to first order in X Since I is solely a function of the
Lorentz invariant V, it follows that the electric and mag-
netic polarizabilities necessarily sum to zero, u+P=O.
One can see this from Fig. 23, in the symmetric forked
behavior of m near the origin. The e6'ect is too small to
be seen for the m meson, with the graphical accuracy em-
ployed. Analytically, one deduces that

4
I„(k',k) =I tr[y5iS(p +k')y„iS (p +k)y, iS (p)],

(2n. )

(6.54)

and q, +q makes up the charge on the pion. One can
show that the on-shell version of I„(k',k), evaluated at
k =k =m, is given by

TABLE VI. Electromagnetic polarizabilities of the charged (neutral) particles in units of 10 (10 )
fm (Bernard and Vautherin, 1989).

a 0 Po

12.5
10.5

—11.8
—10.3

3.88
3.14

—1.74
—2.45

1.24
2.30

9.97
1.93

3.50
3.42

6.35
0.14
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=k -kI
I.O

0.5

FIG. 24. Electromagnetic vertex function for the pion.

I„(k',k)=2 iI(0)— R (q ) (k„+k„') (6.55)
1

(4n. )

in the chiral limit, where m =0. Here I(k ) has been
defined in Eq. (4.17) and

'j 2 2
1 1

R(q )= dx dy
o o I —qy x(l —x)

Inserting g = —2iX,%&I(0), from Eq. (4.25), and Eq.
(6.55) into Eq. (6.53), one finds

I

0.05
I I

o.lo Q.I5

-q (GeV /c )

I

0.20

FIG. 25. Pion charge form factor ~F (q )~ in the spacelike re-
gion for —

q =Q2~0. 2 GeV2. The solid line is the NJL model
calculation. The data are taken from Amendolia et al. (1984),
Amendolia, Arik, et al. (1986), and Amendolia, Batignani,
et al. (1986). The dashed line gives the best constrained fit of
these authors, with (r ) =0.431 fm (Bernard and Meissner,
1988b).

l„(k',k)=(q;+q )F (q )(k„+k„')

where the form factor F (q ) is given by

(6.57)
factors in an SU(3) Savor generalization of the NJL mod-
el.

F (q )=1— R (q )/iI(0) .1

(4m. )

For small values of q, R (q ) = —,'q /m, so that

2

F (q )=1+
8m f

] 2

8m f

(6.58)

(6.59)

using Eq. (4.26). Q is spacelike. From the standard re-
lation for the rms radius of a charged particle,

B. Chromoelectromagnetic fields

At this point, it is reasonable to ask if such strong elec-
tromagnetic fields could be so generated in heavy-ion col-
lisions as to indicate the features observed in the previous
section. To this end, it is instructive to make a simple
model of two colliding ions, both, say, of radius R. Let
us assume further that the distance of closest approach is
limited by their radii, as is illustrated schematically in
Fig. 26.

The electric field along the z axis, generated by this
configuration, is

( 2) 6dF(Q )

dQ2 g2 0
(6.60)

(2Za)z
(R 2+ 2)3/2

which has its maximum value

(6.61)

one identifies (r ) =3f /4m. =(0.58 fm) (Bernard and
Meissner, 1988b; Bernard and Vautherin, 1989), which
concurs with the result quoted by Tarrach (1979) from
the direct photon-quark coupling in the soft-pion limit.
This underestimates the experimental value of (0.66) fm .
An extension of this calculation in flavor SU(3) that in-
cludes p-meson intermediate states (Bernard and Meiss-
ner, 1988b) is required to bring this number to its experi-
mental value. A plot of ~F (Q ) ~

that has been extended
to include the coupling of the p meson as well is given in
Fig. 25 for spacelike values of q = —Q . The elec-
tromagnetic form factor of the kaon, including inter-
mediate co and P states, is also given in this reference.
Here the kaon radius (rg)'~ =0.56 fm i-s underestimat-
ed by four percent.

The reader is also referred to Lutz and Weise (1990)
and Vogl and Weise (1991), who also calculate the form

eEmax
2ZQ
R

2
33/2 (6.62)

iI Z

FICx. 26. Heavy ions, with centers separated by 2R.

at z =R /&2. Here Z is the charge of each ion, and a is
the fine-structure constant a= 1/137. Assuming that
R =1.2A ' fm, an estimate for eE,„ for two uranium
ions, for which Z =92, gives eE=0.003 GeV/fm. This
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X=/(i@ m)g+G—[(Pg) +(i7tiy5rg) ]—,'F„'gI"—
(6.63)

with

and

F,""=BI'A," d A," gf—,b, Ag A—; (6.64)

D"=8"+ig2" 2"=—'1,'3' .2 P (6.65)

The dynamics of the gluon fields can now be disregarded,
since the effects due to these are assumed to be already
incorporated in the form of the four-fermion interaction
of the NJL model. The presence of the gluon fields is

I

value is considerably less than the lowest possible critical
strength qE, -0.55 GeV/fm (see Fig. 21) that is obtained
for the parameter set used, with zero current quark mass.
The large value of the critical-field strength and the scale
over which chiral symmetry is restored indicate that the
phenomenon may well be relevant for gluonic systems.
(An estimate given later on in this section indicates that a
field strength -5.3 GeV/fm could be expected in the in-
terior of a fiux tube. ) One could naively regard the U(1)
field as an effective gluonic field, and the coupling con-
stant q occurring in (6.1) as an effective fiavor-
independent color charge. It is of course more realistic
to examine the case of coupling in an SU(3) gauge field to
the NJL model, and this is discussed in what follows.

The generalization of Schwin ger's arguments
(Schwinger, 1951) for a U(1) background field to describe
a constant or homogeneous background SU(3) color field
has been investigated by Yildiz and Cox (1980) and
Claudson, Yildiz, and Cox (1980). Their arguments have
been expanded by Suganuma and Tatsumi (1990,1991) to
investigate the couplings of such external fields into the
SU(2) NJL Lagrangian. In this case, Eq. (6.1) is altered
to read

thought of solely as being due to the presence of a quark
and antiquark placed at opposite ends of a Aux tube. The
condition of a constant background field, B„F„=O,is
not gauge invariant; the condition

D abFb PP 7TP (6.66)

that presumes that the field is covariantly constant is
gauge invariant, however, and is used to define what is
meant by "constant" or "homogeneous" field in this
instance (Claudson, Yildiz, and Cox, 1980; Yildiz and
Cox, 1980). By introducing a matrix notation
(F„,)' =if"F„', this can be written in a matrix form

i[D„,F ]=0, (6.67)

together with the relation [D&,D„]= igF„„—with the
consequence that

[F„,F ]=0 . (6.68)

This in turn has the consequence that F can be diagonal-
ized as a Lorentz matrix, without problems due to the
non-Abelian nature induced by color. As for the
Maxwellian case given in Sec. VI.A, gF„will again have
two real and two imaginary eigenvalues (here for each
color component), +gF' and +igF" where F' and F" are
the same as those given for the Maxwellian field by Eq.
(F5). As usual, V= —

—,'(E —8 ) and Q=B.E, with

E; =F ' and B,.=—,'e,- kF . This formal similarity of the
solution to the SU(3) background field problem with the
Maxwellian constant field problem has the consequence
that the equations arising in the SU(3) case bear formal
similarity to that case with only minor differences
(Claudson et a/. , 1980): in SU(3), the trace over color
does not appear trivially, and the fields naturally refer to
the combinations E=E,A, '/2, B=B,A,'/2. In particular,
the self-energy is given, as before, by Eq. (6.3), and the
gap equation is given as (Suganuma and Tatsumi, 1991)

ds 2,
m =mo+ m tr, e ' gF's cot gF's gF"s coth gF"s

2~2 ]/p2 s2
(6.69)

E =E~ A,3/2+E~A, 8/2 . (6.70)

in direct analogy with (6.24). Here tr, refers to a trace
over color alone, and a lower limit cutoff on the proper-
time integral has been introduced, as has been presented
by these authors. Following their treatment, we special-
ize to the case of a constant E field only, considered in a
Aux-tube model. It is useful to label the chargeless gauge
fields A i3' =A" and A is' =%". These have associated with
them a color isotopic charge Q~ and a color hyper-
charge Q&, respectively (see, for example, Huang, 1982),
which are listed in Table VII.

Since the external field is homogeneous, ii may be ex-
pressed solely in terms of fields due to A" and X",

To obtain E~ and E+, one can apply Cxauss's law in-
dependently to each of these charges, so that

~~ 300

E 200

lOO

l I I I

0 8
g (GeV/fm)

FIG. 27. Dynamical quark mass I as a function of 6 =g /o.
The value of P~ expected in a mesonic system is indicated by the
arrow (Suganuma and Tatsumi, 1990).
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Q~ =E~o,Q~=E~o, where rr is the cross section of
the flux tube, One has, for example, from (6.70) for the
choice E.R,

0 0
E= 0 —-' 0 (6.71)6 0

0 0

Red
Blue
Green

1/2
—1/2

0

1/2&3
1/2&3
—1/&3

TABLE VII. Color isotopic charge and color hypercharge Q~
and Q~ for quarks, given in units of the coupling strength g.

and the Dyson equation, on explicitly performing the
color trace, becomes

ds
m =m0+m

2m &/'& s

GNf
+m e

0 s

oo dS—s cot —s —1 +2 — e
3 3 0 2

—s cot —s —1
6 6

(6.72)

where 6 =g /cr, to be compared with Eq. (6.25) for an
electric field. This result holds for any color
configuration. The solution to (6.72) for the dynamical
quark mass is given in Fig. 27 and indicates that a critical
strength for the restoration of chiral symmetry is 8, =4
GeV/fm, a value that lies somewhat higher than that for
the U(l) case. These authors use the parameter set
6 =0.21 fm, A=950 MeV, and m0 =S.5 MeV or m0 =0
in the chiral limit.

Suganuma and Tatsumi (1990) estimate the physical
value of 8 in a Aux tube due to a quark and antiquark
pair by considering the total energy per unit length,

k =
—,'(E~ +E~ )a = (Q~ +Q~ ) =

20 60.

Here, a volume energy has not been considered (see, for
example, Low, 1975). Using a value k =0.177 GeV
from Casher et al. (1979),one has

2
=5.3 GeV/fm& 6', .

0

This indicates that chiral symmetry should be restored in
the interior of mesons, and thereby provides support for
the chiral bag model picture.

Vll. BGSGNIZATIGN

Up until this point, the NJL Lagrangian has been con-
sidered in its original form, which considers quark de-
grees of freedom and their interactions that are deter-
mined to be consistent with the symmetries of QCD.
One may, however, attempt to parallel some of the devel-
opments made in the understanding of QCD. In particu-
lar, the work of 't Hooft (1974) showed that in the limit
of a large number of colors, QCD can be regarded as an
effective theory of mesons and glueballs. Subsequently, it
was shown (Witten, 1979,1983) that the baryons could be
viewed as the solitons of the meson theory. One thus ar-
rives at the question, what effective meson theory does
the NJL Lagrangian approximately represents Mesonic

I

theories of different natures have been well studied over
the past few decades. These include, for example, the
linear and nonlinear sigma models of chiral symmetry
breaking (see, for example, Lee, 1981 and Pokorski,
1989), the Skyrme model (Skyrme, 1961), and the Walec-
ka model (Serot and Walecka, 1986), all of which have
enjoyed considerable success since their inception.

At this stage, it should be clearly stated that all the
models in question suffer from a common Qaw: all are
simply models, none of which have been derived from
QCD, and the parentage of any one of them has not been
rigorously established. It is of course highly desirable to
do so. In this regard, the bosonization of QCD per se is
required to arbitrate between models, and some steps to-
ward performing this dificult task hav'e Already been tak-
en (Reinhardt, 1991). In this section, however, we shall
deal solely with bosonization of the NJL model. This
should then reveal the nature of the effective meson
theory. More importantly, however, since bosonization
is generally introduced via the Feynman path-integral
formalism, one can attempt to make contract with the re-
normalization constants of chiral perturbation theory
(Gasser and Leutwyler, 1984, 1985, 1987). Since these
constants are determined from experiment, this gives
some criterion as to the validity of the model, and it is
with this in mind that this section is written. We stress
that the bosonized (or efFective) NJL Lagrangian must
also, as a model of chiral symmetry, necessarily allow for
the current-algebra results to be fulfilled. We do not re-
peat these standard arguments here in this framework,
but refer the reader to papers in this field (see, for exam-
ple, Ebert and Reinhardt, 1986 and Volkov, 1984, 1986).

To date, bosonization of the original (flavor) U(1) form
of the NJL Lagrangian has been undertaken by Eguchi
and Sugawara (1974) and Kikkawa (1974). The non-
Abelian U(Nf ) form has been discussed by Chakrabarti

An approach relating the results of the NJL model to those
from QCD sum rules can be found in Adami and Brown (1990).
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and Hu (1976},and in particular, the SU(2) version has
received attention from Ebert and Volkov (1984,1986}
and Ebert and Reinhardt (1986). Unfortunately, no
direct bosonization of an SU(3) Lagrangian that includes
a t Hooft term, as indicated in Eq. (2.9), exists in the
literature, although some authors (see, for example, Vol-
kov, 1984) account for the nonappearance of the Uz(1)
symmetry by hand at a later stage. We deal therefore
with the SU(2) situation in detail and discuss the U(3)
version only briefly, suggesting appropriate literature.

Historically, the procedure of bosonization was first
developed by Eguchi and Sugawara (1974), who extended
the BCS model of superconductivity, which has been ap-
plied to elementary particles in the NJL model, to spa-
tially inhomogeneous systems. They present a field-
theoretical model that is based on an analogy with the
Ginzburg-Landau theory of superconductivity.
(Ginzburg and Landau, 1950) that generalizes the BCS
theory to describe spatially inhomogeneous systems such
as type-II superconductors or superconductors with mag-
netic impurities. In the field-theoretical analog, Eguchi
and Sugawara describe mesons as extended objects by
identifying inhomogeneous (but local) terms occurring in
the self-energy as the mesonic fields. The resulting equa-
tions of motion derived for the fields bear strong resem-
blance to the Ginzburg-Landau equation of superconduc-
tivity: their derivation is performed in analogy with
Gor'kov's derivation from the microscopic theory of su-
perconductivity (Gor'kov, 1959; see also Fetter and
Walecka, 1971). From the equations of motion that are
obtained for the fields, an effective Lagrangian for the
meson fields may be inferred, thus completing the bosoni-
zation procedure. We comment that this method is also
used by Chakrabarti and Hu (1976).

An alternative approach of reformulating bosonization
in terms of the Feynman path-integral method was first
introduced by Kikkawa (1976) and taken over by subse-
quent authors. Today, this enjoys the most popularity, as
it is easier to handle systematically, although the
Ginzburg-Landau-like derivation, like the Bogoliubov-
Valatin transformation, offers a simple intuitive and
physical insight. In what follows, we shall briefly discuss

I

the Ginzburg-Landau approach, using, however, a simple
Lagrangian in order to emphasize the methods and not to
generate long equations. We then discuss the SU(2) mod-
el via the path-integral formalism and comment on the
further development in the U(3) model.

A. Ginzburg-Landau description for quarks

[i8„—m (x)]S(x,y) =5' '(x —y} . (7.2)

The Green's function for an infinite system in the Har-
tree approximation is denoted as So(x,y) and satisfies, as
before,

[i8„—m ' ]So(x,y) =5' '(x —y) . (7.3)

Note that So(x,y) =So(x —y), but that this is not true of
S(x,y}. The lowest-order term in the calculation of the
self-energy is given as

m (x)=2Gi [TrS (x,

x)+tyler

Trv(i y.5)S(x,x)], (7.4)

where the second term need no longer vanish. Upon in-
troducing the abbreviations

m, (x)=26i TrS(x,x),
m, (x)=26i Trv(iys)S(x, x),

(7.5)

one may write

m(x)=m, (x)+iysr m (7.6}

for the effective quark mass in Eq. (7.2). A formal solu-
tion to Eq. (7.5) can be obtained by expanding the'full
propagator about So(x,y), i.e.,

We return again to the two-Qavor model Lagrangian
given by Eq. (2.7),

(7.1)

Following the method of Eguchi and Sugawara (1974),
we go beyond the Hartree approximation in assuming
that the self-energy is inhomogeneous, but local. That is,
the Green's function satisfies the equation

S(x,y)=SO(x, x)+f d x'So(x, x')5m(x')So(x', y)+ f d x' fd"x "So(x,x')5m(x')So(x', x")5m(x")So(x",y)+

(7.7)

where m(x)=m +5m(x). Seen in diagrams, this series
represents the sum shown in Fig. 28.

The series that occurs in Eq. (7.7) can be evaluated in
the limit of large A, where terms up to order logA only
are retained. One sees that the tadpole (or second) term
in the expansion for m, (x) can be written as

m,'"=2iG d x'5m, (x') —.II,(x',x),1

l
(7.8)

with 5m, (x)=m, (x)—m *, since the pseudoscalar part of
5m(x) does not contribute in building the trace. II, is

S(x,x)

FIG. 28. Diagrammatic representation of the expansion of the
single-particle propagator. The continuous lines represent
quark propagators, while the wavy lines refer to the scalar or
pseudoscalar Gelds.
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the scalar polarization, which is given in Eq. (4.27). For
zero current quark mass, this is

2GII,(k )=1 4—iGN, NI(k 4—m' )I(k ) . (7.9)

The leading log expansion is given by evaluating the
function I at the value k =0 [see Eqs. (3.36) and (3.40)j.
This is consistent with our earlier assumption that I(k )

is slowly varying. Inserting this into Eq. (7.8), one ob-
I

tains the Fourier transform

m,"'(k)=5m, (k) —4N, Nf iI(0)5m, (k)[k —4m ' ]

(7.10)

for this contribution to m, (x). The following terms in
the expansion for m, (x) are best evaluated directly in
momentum space. The next term is given as

d4p d'q
m,'2'(k) =2iG Tr f p f So(p)5m(q)SO(p q)—5m(k —q)SO(p —k) .

(2m. ) (2m )
(7.11)

In order to calculate terms to leading order in logA, we immediately evaluate the propagator So everywhere at the argu-
ment p, so that one has

d'p d'q
m,' '(k)=2iGTr f f 4 2 2 3 (gf+m')[5m, (q)+iy5m, (q) v].

(2m. )4 (2m. ) (p —m '
)

X(gf+ m')[5 m(k q)+i—yam (k —q) r](p'+m*), (7.12)

which, upon performing the trace, simplifies to

d4p d4q
m,'2'(k)=2iG f f 4N, Nf [(3m «p2+m «3)5m, (q)5m, (k —q)

(2~)4 (2~)4

+(m p —m* )mp, (q).m, (k —q)]
1

P~ Ps (p2 m «2)3
(7.13)

Again, since only leading terms in the expansion are to be considered, convergent terms may be discarded. Further-
more, by writing

~

4

~ ~
2 ~~ 4d4p p' d'p

(2m) (p —m } (2m) (p —m ) (p2 —m' )
(7.14)

one may neglect the second term in leading order and write

d4 2

=I(O),
)4 (p 2 m «2)3

with the consequence that

d'q
rn,'2'(k) =8iGN, NfI(0)m « f [35m, (q)5m, (k —q)+m, (q) m, (k —q)] .

(2m )

The third divergent term in the expansion for S can be evaluated analogously. One has, to leading order,

(7.15)

(7.16)

4 4 4 4

m,"'(k)=2iG4N, N
(2n. } (2') (2m ) (p —m *

)

X [5m, (q)5m, (q')5m, (k —q' —q)+mP, (q)5m, (q')5m, (k q' q)——

+m, (q) m (q')5m (k —q' —q)] . (7.17)

Decomposing

p4y(p2 «2)4 ly(p2 «2)2+2m «2y(p2 «2)3+ 4y(p2 m «2)4

and again discarding the last two terms, which when integrated over are convergent, one has

d4
m,' '(k}=8iGN, NfI(0) f „f [5m, (q)5m, (q')5m, (k q' q)+m—,(q—) m, (q')5m, (k q' q)] . (7.18)— —

(2m. }" (2m. )

The x-space representation of the terms in the expansion for S(x,x ) are now obtained upon Fourier-transfornung the
results of Eqs. (7.10), (7.16), and (7.18). The corresponding three terms that make up m, (x) from Eq. (7.5) are
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m', "(x)=5m, (x)+4GN, Nf iI (0)(B"8„+4m* )5m, (x),
m', 2'(x)=8iGN, NfI(0)m* [3(5m, (x)) +m, (x) m~, (x)],
m I~'(x) =SiGN, NfI (0)[(5m, (x) ) +mp, (x) mp, (x)5m, (x)],

(7.19)

which can be combined with the first term that occurs from the expansion (7.7) for S to give the equation of motion for
the scalar field that reads

(B„B~—2m* )m, (x)+2m, (x)m&, (x).mz, (x)+2m, (x)=0,
on replacing 5m, (x) by m, (x)—m *. Analogously, the equation of motion for the pseudoscalar field is

(B&B"—2m *
)mz, (x)+2m, (x)mz, +2(m, m~, )m, =0 .

(7.20)

(7.21)

Using the fact that g =g, we scale m, =g o and
m =g n to find that the set of coupled equations (7.20)
and (7.21) can be summarized in the form

B„B"4—2m*++2g IVI2%=0, (7.22)

with m *=g ~qq 0 {)sufBcinge
For completeness, we comment that in the work of

Eguchi and Sugawara (1974), a U(1)-invariant NJL La-
grangian that includes both vector and axial-vector terms
is included,

where the complex field 4 is defined as %=o.+iy5v"m. .
For a static field O', Eq. (7.22) has precisely the form of
the Ginzburg-Landau equation (Ginzburg and Landau,
1950; see also Fetter and Walecka, 1971). This again
leads to the physical interpretation of mesonic states as
particle-antiparticle pairs that are correlated over a finite
region in space. Furthermore, one can describe this
theory of mesons by constructing a Lagrangian that
would give rise to the above equations of motion. In this
case,

X=—'8 crB"o+—'8 mdl'm 'g. (—o —+~ era)—, (7.23)

B. Path-integral formulation in flavor SU(2)
and the derivative expansion

Starting with the SU(2) NJL Lagrange density of Eq.
(2.7) for massless quarks,

X=gi8$+G[(gg) +(gi y~5$) ],
one may introduce the generating functional

(7.27)

with F„,=B„m "—B,m,". A feature of this calculation is
that the axial Geld couples in as an external Geld would
do. In this case, however, it is not an external field, but
describes the collective excitations of the quasiparticle
pairs just as the scalar and pseudoscalar Gelds do. This
constitutes a major difference between the derivation of
the superconducting Ginzburg-Landau equation and that
for a theory of mesons, since in the former case, the term
containing F„would represent the inclusion of an exter-
nal electromagnetic field.

&=@~&0+G [(A )'+(4~ y 54)']

G'[(4y„—4)'+(6 y,4)') l . (7.24)
Z[ri, i)]=—

f2)/fan)/exp

i f d x[X(P,P)

This has the consequence that the breakdown of the self-
energy into meson Gelds includes vector and axial-vector
fields; here, one has

m (x)=m, (x)+iy ~mq(x)+ y"m „(x)+y ~y&m „"(x) .

(7.25)

Clearly, equations of motion for m (x) and m (x) can
be derived in the same fashion as that for the scalar and
pseudoscalar fields, and the corresponding Lagrangian
can be inferred. We only quote the Gnal result,

+A+W]

(7.28)

where 2)hatt, 2)tp are the fermion functional measures, and

g and q are fermion and antifermion sources, respective-
ly. As is well known, the path integral of Gaussian func-
tions can be performed exactly,

f2)@exp i f d x(+ A @ BN )—
L(x)=I[8„+2im„"(x)]VI —

—,'F (x)F""(x)

m~x'
3(4G' G)L'—

+2m 'Ie(x) I' —Iq (x)I', (7.26)

, exp i f d xA /48 (7.29)

N' is an (infinite) normalization constant that need not be
known explicitly. In particular, introducing a single sca-
lar field o. and triplet of pseudoscalar Gelds m, according
to
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r

N', exp i f d xG(gg) =f2)cr exp i f d x —(Pg)o — o46

4 —. 2
, exp i f d xG(giy~~f) =f2)~exp i f d x (—giy5r nP)—4 ~ ~ 2

(7.30)

one may write
r

Z[ri, ri']= —f2)$$$2)crSmexp i f d x /[i') (o—+i'y&r ~)]f —(o +m' )+Pri+rig (7.31)

Defining

[ig —(o +iysr n )]5' '(x —y) =S '(x,y)

as the inverse fermion propagator, one may decompose the functional into fermionic and bosonic sectors,

Z[g, q]= f2)o2)m exp i f d x — (cr +n ) Zf[g, g], (7.32)

with the fermionic sector described by

Zf [ri, ri]= f2)$2)/exp i f d x f d y@(x)S '(x,y)f(y)+g(x)g+rig(x) (7.33)

which, when integrated out, gives

Zf[ri, ri]=exp( i Trlog—S '~ +)exp i fd x—f d yp(x)S(x, y)p(y) (7.34)

We recall at this point that the symbol Tr has been
reserved to describe the trace over color, flavor, and spi-
nor- indices. In keeping with the standard literature, we
introduce the functional trace, which we denote Tr,

TrO= Tr fd'x &x ~O~x &,

where 0 is any operator. Then, with S(x,y) written as

S( yx)=[if (o+i—year n)] '5' '(x.—y),

0 =S +Vo

varying 5$/5$ =0,
(7.40)

one recovers the gap equation

with 5po=go/26. Assuming that oo,ly o has a nonvan-
ishing vacuum expectation value vo, we write

the generating functional can be written as

Z[8,8] m*=2iG Tr (7.41)

=fNo2)m exp iE+ f d xg
1

i 8 (o +i r.m—).with m*=goUo, written here in terms of the functional
trace. This result can be compared with the Hartree lim-
it of Eq. (2.31), after recognizing that the functional trace
is invariant under a change of basis.

Our major interest here, however, is in deriving an
e6'ective local action for the mesonic degrees of freedom.
Equation (7.39) contains, however, the highly nonlocal
term due to the fermionic determinant. For the above
purpose, it is desirable to localize it in a systematic
fashion. One such procedure is to deal with this term in
a derivative expansion of the fields. Now, since the parts
of the action that are free of boson fields only contribute
to the normalization of the generating functional, the
essential piece of the action due to the nonlocal fermionic
determinant term, from Eq. (7.39), is given as

(7.37)

where the action 4 is

(7.38)

We note that the fields o. and m may be scaled by a cou-
pling strength go, i.e., o,n ~go(o, m ), so that one has

S=fd'x [ ——,'5@0(o'+n')]

i Tr log[ij8 —go(o +—i ~.n. )], (7.39)

4= f d4x — (crz+~z) i Tr log[i—j8 (o+i~—n)] . . .
4G
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Sfd —i Trlog 1—

U(n)

n=1

1
go(s+iy5r m. )

i —m*

(7.42)

subdivided into both divergent and convergent pieces in
the manner that will be illustrated explicitly in the
derivative expansion for the scalar 6eld. Consider, for
exam. pie, n =2. The scalar contribution to U' ' is

where

U =—Tr(n)
n

1
go(s + l7'51 1r)

i8 m—' (7.43)

(2) 2 l d p 1 1

(2~) i8—m * i8—m *

(7.44)

One notes that U'"', n ~ 5, are convergent integrals, while
U'"', n =1. . .4, diverge. These divergent terms are now

I

which, on introducing appropriate intermediate states,
leads to the result

d4 d' ' I +
U,' '=4goiN, f f f d x f d ye'P P"" ' ', ' s(x)s(y) .

(2n. ) (2n. ) (p2 m 42)(p 2 m Nr2)
(7.45)

It is convenient to move to Euclidean space for intermediate calculations: p ~pE, x ~xE, and dropping the subscript,
one has

d4 d4 ' l, &+ 42$
U,' '=4iN, go d x d ye ' P" ' ', ' s(x)s(y) .

(2~)4 (p* +m )(p +m' )

One now makes a local expansion in the 6eld

s (y) =s (x)+(y —x)„B„s(x)+ —,'(y —x)„(y —x) B„B~(x)+

The first term of the series can be simply evaluated and reduced to the (Minkowski) space form,

Term(1)=(g()I2 —2m g()I())f d x s (x),
where

4
I =41' dp 1

(2 )4 p2 e2

(7.46)

(7.47)

(7.48)

(7.49)

Io = —4%,i dp 1

(2n) (p —m )
(7.50)

The second term of the expansion can be shown to vanish. The third term in the series, in which two spatial derivatives
of the Qeld occur, is

d'p d'p' 1 ~ I+ 42
Term(3)=2N, goi f f f d (xBsB~)fd ze'P P 'z z,

(2m ) (2m ) p'+m *' p'+m *'

Noting that

exp[i(p —p')z]z„=icY exp[i (p —p')z],
one has

d4 1 d4 '
4

— '+m*'
Term(3)= —2N, goi f f d4x(s() (}Z)f P fd'z, P m P P.e "P P'"'. -

(2m) p +m* (2m. )4 p'+ m"
But the last two integrals can be easily evaluated,

T

(7.51)

(7.52)

so that

d p f 4
—pp'+m

(2n ) p +m*
42~'~'e i(p —p')z ~'.~' p p ™

iM V P ~ '2+m e2 (7.53)

(7.54)
d p 4PpPv ( —p +m ) p+m*-Term(3)= —2iN, go f d x(sB„B~)f 4 2 2 3 +Sp~„2 2 4

—25„2 2 3(2n) (p +m* )
"

(p +m* )
" (p +m* )

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



694 S. P. Klevansky: The Nambu —Jona-Lasinio model of quantum chromodynamics

This equation may now be evaluated in a straightforward
manner following the philosophy of the previous section,
in which the convergent terms are separated out. The
divergent remainder can be evaluated, using relations
such as (7.14), to give

the scalar sector of U' 'is

U,' ' = —2m goIo J d x s (x),
while that from U'4' is

(7.56)

Term(3)= —,'Iogo Jd x(B„s)(B"s). (7.55) U', ' = —
—,'I()g() Jd x s (x) . (7.57)

One is now in a position from (7.55) to distill the contri-
bution from U,' ' to the effective Lagrange density that
displays the kinetic energy of the o. field. This can be
seen explicitly in Eq. (7.59), which will follow, on
remembering the connection (7.40). For completeness,
we note that the term occurring in the Lagrange density
that will be proportional to o. contains not only the con-
tribution from Eq. (7.48) due to the scalar portion of
U' ', but also a piece due to the scalar sectors of U' ' and
U '. The leading term in the derivative expansion for

In combination with Eq. (7.40), the term proportional to
o. may be isolated. One has, from adding the contribu-
tions from U,' ', that the term contributing to the action
and proportional to o. is

g oI2+ m *'goIo (7.58)

For a full calculation, this procedure is applied to the
pseudoscalar field also. The resulting local Lagrange
density, obtained after summing up all divergent contri-
butions, is given as (Eguchi, 1976)

(5)((o 2I2go)((T +m )+Iogo2(P()„o ) +(()„m) ]+Iogo(govo) (o +m )

—
—,'Iog()(o +~ ) +X,(go, vo)+g

iB—g (or(+iy r m. )
(7.59)

where

4 oo

y U(i)+ y U(i) (7.60)
1=2 i=5

reflects the contribution of the convergent terms U'"' to the Lagrangian. The sum for U from Eq. (7.43) can also be
seen in a diagrammatic fashion similar to the Green s-function expansion of Fig. 28. In this case, the direct diagram-
matic translation of the fermionic determinant is expressed in Fig. 29.

As has been pointed out by Eguchi (1976), renormalization of the terms occurring in Eq. (7.59) can be effected along
the lines of the linear sigma model, which is defined as

(7.61)

The fermionic fields may again be integrated out of the
generating functional to give an effective Lagrangian in
meson degrees of freedom only that may be compared
with the effective Lagrangian of the bosonized NJL mod-
el. Although there is a formal similarity between the two
models, there are fundamental differences in philosophy.
In particular, the cr model introduces quark and meson
fields simultaneously. This implies that there is a dual
role assigned to the mesons: either they can be conceived
of as fermionic bound states, or as independent fields.
No such conceptual difficulty arises in the bosonizing
procedure for the NJL model, since the original Lagrang-

FIG. 29. Feynman diagram representation of the series con-
tained in Eq. (7.43) (after Kikkawa, 1976). Wavy lines represent
meson fields.

I

ian contained only fermionic degrees of freedom. One
then sees clearly how the mesons are obtained; i.e., the
kinetic terms for the meson fields are generated via radia-
tive corrections to the fermion loops, while the meson in-
teraction potential arises directly from the four-fermion
interactions.

We make some comments in conclusion. Firstly, it is
clear that the wealth of knowledge obtained from the
study of o models can now be applied to an effective La-
grangian of this kind, and the hadronic degrees of free-
dom can be studied as the corresponding solitonic states.
Further expansion of this model would include the vector
and axial-vector contributions to the original NJL La-
grangian (see, for example, Ebert and Volkov, 1983) that
would consequently require the introduction of sufficient
corresponding mesonic fields. Such terms are necessary
to achieve a sufficiently attractive force in the axial-
vector channel. Finally, we comment that the results of
Ebert and Volkov (1983) differ from those of Eguchi
(1976) in describing the scalar and pseudoscalar sectors.
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The treatment given here is in agreement with the latter
paper.

C. Developments in flavor U(3)

Several authors (Kikkawa, 1976; Volkov, 1984, 1986;
Ebert and Reinhardt, 1986) have studied the bosonized
effective Lagrange density in flavor U(3), written here as

X=/(ij8 m—o)g+ ,'Gi —g[(gA,;f) +(1ijiy5A.;p) ]
i=O

i=0
(7.62)

which is identical with the Lagrangian (2.14) with G3 and

G4 set to zero and with color octet terms suppressed.
The six-fermion-interaction term is not included here,
with the consequence that the model does not contain the
problem of the Uz(1) anomaly and the splitting of the g
and q' mesons. A bosonization procedure can, of course,
once again be performed through the introduction of vec-
tors of nine scalar fields, nine pseudoscalar, nine vector,
and nine axial-vector fields. Since this exactly parallels
the development of Sec. VII.B, we do not go into detail
here. Instead, we refer the reader directly to the work of
Ebert and Reinhardt (1986), who have studied this in de-
tail. We point out that these authors used an expansion
technique different from, but equivalent to, the derivative
expansion described in the previous section, in order to
evaluate the ensuing nonlocal functional of the mesonic
fields. That is, a heat-kernel expansion is performed.
The resulting effective Lagrangian, as in the SU(2) case,
can be subdivided into finite and divergent contributions.

In addition, these authors indicated that the presence of
the axial-vector coupling leads to an imaginary part of
the effective action, as was considered by Wess and Zu-
mino (1979), and thus the effective Lagrange density
gains a Wess-Zumino term. For a discussion of the
current-algebra properties that relate to the vector-meson
spectrum [Weinberg and KSRF (Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin) relations], we refer the
reader directly to Ebert and Reinhardt (1986) and Meiss-
ner (1988).

D. Correspondence with chiral pertorbation
theory

In a series of articles, Gasser and Leutwyler
(1984,1985) derive an effective low-energy mesonic La-
grangian for two and three flavors, to order p . They
show that in the two-fiavor case, the O(p ) general
effective Lagrangian consistent with Lorentz invariance,
parity, and chiral symmetry involves only two constants,
F and 8, and can be written as

~ =—'F V U VuU+2gF (s U +p'U')
IM

(7.63)

In Eq. (7.63), U~(x) is defined to be a four-component
real O(4) vector field of unit length U U= 1, and s(x)
and p (x) are external scalar and pseudoscalar fields, re-
spectively, the former of which is understood to contain a
mass matrix M.

A general effective Lagrange density of order p", con-
sistent with the same symmetries as Xi, requires the in-

troduction of ten constants, I, . . . l7 and h, . . .h 3,
rejecting low- and high-energy properties, respectively.
The Lagrange density in this order reads

Xq=li(V"U V„U) +l2(VI'U V U)(V U V U)+13(y U) +14(V"y V U)+lq(U FI' Fp U)

+l6(V"U F„,V"U)+l7(f U) +hip y+h2trF~, F" +h3f (7.64)

In this equation the vector y' is given as y'=28(s, p').
Evaluating the action to one loop (see, for example, Ra-
mond, 1981 and 't Hooft, 1973), one obtains ultraviolet
divergences that may be removed on effecting the renor-
malization

Ml;"= T; 1+og
3 2'' p

i=1, . . . , 6

l

useful to define the scale indepen-dent quantities l; and h;
via

l;=l +y;A, , )=1, . . . , 7

h; =h;"+5;A,;, i =1,2, 3

for which

(7.65) M
h;+log

327T p
i =1,2.

(7.67)

A, =(4m ) p" ~
j 1/(d —4) ——,

' [log4n. + I '(1)+1]],
(7.66)

for which d is the dimensionality, and y, =3 y2 3,
y3 y4 2, y5 = ——', y6= —

—,', and y7=0. The con-
stants 5,- are given as 5& =2, 52= —,'„and 53=0, and p is
the renormalization scale. The renormalized constants l
and h;" depend logarithmicaHy on the scale p, so that it is

pj
rn =mo 1 — 213+0(mo)

32m F (7.68)

The values of l, can be extracted from experiment and
are listed in Table VIII.

It is useful to note that physical quantities, expanded
in the current quark mass to 0 (p ), can be obtained. In
particular, the pion mass and pion-decay constant are
given as
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TABLE VIII. Values of th~, low-energy constants (Gasser and
Leutwyler, 1984).

f =F 1+ 1~+0(mo)
16 F (7.69)

where ma is the average SU(2) current quark mass.
For three quark flavors, the general effective Lagrang-

ian of order p again requires only two constants, while
that to O(p ) requires ten additional low-energy con-
stants L, i. . .I-io and two high-energy constants H, and
H2. The e8'ective Lagrangian for this order takes the
form

Constant

T]

T2

T3

74

T5

T6

l7

Value

—2.3 +3.7
6.0 +1.3
2.94+2.4
4.3+0.9

13.9+1.3
16.5+1.1

O(5X 10 )

Obtained from

D wave

scattering lengths

SU(3) mass formula

fr ~f
m-+e vy
(r2)w

m -q mixing

1

3
2
3

1

2

2
1

6
1

3

(7.70)

X =L, ( V UtV„U ) +L ( V„U V U ) ( V"U V"U ) +L ( V"U V„UV'U V, U ) +L ( V'"U V„U ) (y U+ y U )

+I,, & V ~U "V,U(y'U+ U'y) &+L, & y'U+yU'&'+L, &y'U yU'&-'

+L,&y'Uy'U+yU'yU' —Z, , & F„'„V~UV'U'+F„'.V~U'V U)

+Lio(UtF UF i' )+H (F +" +F g~'L)+H2(pter)

Here, the bracket ( A ) denotes the trace of the matrix
A. The field-strength tensors are defined as

FR,L () FR,L gg R, L i (FR,LFR, L ]pv p v p p, v

with E"~ =U +a .P P P
Taking one-loop graphs into account in the generating

functional, one is again led to a renormalization prescrip-
tion,

(7.71)

m =X=XO+Ximo+X2(mo/2)+ (7.73)

and the expansion coefBcients Xo, X&, and X2 are deter-
mined from the Hartree-Fock gap equation, Eq. (2.31), in
the SU(2) case. One finds that

lated to those of SU(3). The reader is referred to Gasser
and Leutwyler (198S).

There are two methods in which a comparison of the
NJL model with chiral perturbation theory has been un-
dertaken. In the work of Hansson, Prakash, and Zahed
(1990), a direct expansion of the self-energy in terms of
powers of ihe current quark mass is made, i.e.,

Ig p)
L;"(p )=2L;"(pi ) + -log

16~2 P2
(7.72)

The renormalized coupling constants of SU(2) can be re-

where A, is given as before by Eq. (7.67), and the values of
the 6; are 6i = —

—,
' and 52= 2'4. The values of the L,;", in-

ferred from experiment, are listed in Table IX. As be-
fore, the I. are scale dependent, and the change in I.,'
with the scale is given by

d p 1

)3 ( 2+X2)1/2

X ~X2 d'P 1

(2 )3 ( 2+X2)3n

X,=3~(X,X, )3I (2 )3 (p2+X2)5n

g2

&o
'

(7.74)

TABLE IX. Values of the low-energy constants taken at the scale p=m„{Gasser and Leutwyler,
1985).

Constant

LT

L2
L3
L4
L5
L6
L7
L8
L9
L10

(0.9+0.3) X 10
(1.7+0.7) x 10-'

( —4.4+2.5) X 10
(0+0.5) X 10
{2.2+0.5) x 10-'
(0+0.3) X 10

( —0.4+0. 15)x10-'
(1.1+0.3) X 10
(7.4+0.7) X 10

( —6.0+0.7) x 10-'

Source

m~D waves, Zweig rule

+AD waves

mmD waves, Zweig rule
Zweig rule

fz ~f
Zweig rule

Gell-Mann —Okubo, LsL8K'-K, R,L,
(r'&,

3
32
3
16

0
1

8
3
8
11
144

0
5

48
1

4
1
4
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(qq &o= (2Nf
—N, /b, )XO,

(qq & i= (2N—fN, /b, )(X,—2),

(qq &z= (2Nf—N, /6)(X2+2/Xo) .

For the pion, the expansion

I„=0+m, ma+ m 2(m 0/2)+ (7.76)

has coefficients that are determined from Eqs. (4.9) and
(4.21) to be m i =4XOXi and

m z=8(2XOX~/3+Xi) .

Finally, the pion-decay constant can also be expanded in
powers of the current quark mass as

where the abbreviation b, =2G (2N, Nf + 1 ) has been in-
troduced and a cutoff on the three-momentum has been
employed. A similar expansion for the quark condensate
follows from Eq. (3.25) on setting

( qq &
=

& qq &o+ & qq &,m, + & qq &,(I ', /2)+

(7.75)

One finds

tree contribution. It would certainly also be of interest to
see if one could reproduce the broad spectrum of parame-
ters of chiral perturbation theory by using the full SU(3)
NJL Lagrangian of Eq. (2.32).

An alternative approach has been taken by Ebert and
Reinhardt (1986) and, following this work, by Schiiren,
Ruiz Arriola, and Croeke (1991)and Ruiz Arriola (1991).
Ebert and Reinhardt consider the effective Lagrange den-
sity that they have obtained via bosonization and recon-
struct this in a form analogous to that of Passer and
Leutwyler (1985). In this calculation, the renormalized
constants are calculated neglecting the pion loops that
are responsible for chiral logarithms. The full fourth-
order term in the heat-kernel expansion has not been cal-
culated in this approach. In the papers of Schuren, Ruiz
Arriola, and Goeke (1991) and Ruiz Arriola (1991) that
commence with the SU(2) and U(3) NJL models, respec-
tively, the philosophy of Ebert and Reinhardt is followed,
but the evaluation of the fermion determinant is under-
taken to fourth order using a derivative expansion in the
fields. The results obtained are compared with the renor-
malized values L,i = 1. . .10, at the scale m =776 MeV.
A typical set of results quoted by these authors seems in
fair agreement with the low-energy constants. They ob-
tain, for example, in the Pauli-Villars regularized scheme
with m p

=7.0 MeV, A =911 MeV, the values

f =f 0+f,mo+ (7.77)

with the expansion coefficients f 0 and f, determined
via Eq. (4.26) for the chosen regularization scheme. A
comparison of Eqs. (7.76) and (7.77) with Eqs. (7.68) and
(7.69) leads to the identification

L] =077& L2 = 1 ~ 54 L3 = 3.08 L4=0

L5=1.21, I 6=0, L7=0, L8=0.34,

L9 4.72 L &p
= 3.08

2
g2—m = — I =—

fly2
8 2+2 3

&qq &o,
32f,o

(7.78) in comparison with the empirical values taken at the
scale m =776 MeV,

where the last step follows on identifying B =1408 MeV
and F =88 MeV as the values of —(qq &/2f and f,
extrapolated to the chiral limit. Thus l3 may be deter-
mined in terms of the values calculated within the NJL
model. In a similar fashion 14 may be obtained,

(7.79)

L =0.7+0.3, L2=1.3+0.7, L3= —4.4+2.5,
I.4= —0.3+0.5, L5 =1.4+0.5, L6= —0.2+0.3,
L7 = —0.4 0. 15, L8 =0.9+0.3, L9 =6.9+0.7,
I )p= 5 ~ 2+0.3

The calculation of these (scale-independent) values gives

P "=0 37 I =0.85,3 (7.80)

which, for the parameter set chosen, GA =2.09, A=615
MeV, and rnp -—5.8 MeV, is not particularly good. For a
four-momentum cutoff A=859 MeV, GA =4.25, and a
larger current quark mass mp=7 MeV, these values are
somewhat improved,

I "=0 983 4 (7.81)

These results should be carefully considered. It may
perhaps be more useful to work strictly to first order in
the number of flavors, considering as such only the Har-

In a treatment of the U(3) NJL Lagrangian that includes
vector mesons, Ruiz Arriola (1991) performs a chi-
squared fit to the renormalized low-energy constants. In
this paper, the Uz (1) breaking is introduced by including
an extra term in the NJL Lagrangian, which is, however,
not flavor mixing, as is the 't Hooft term in the standard
version of the model as given in Eqs. (2.32). It is there-
fore not strictly equivalent to the SU(3) NJL model as
presented in Sec. II. In addition, it should also be noted
that the bosonization procedure, strictly speaking, leads
to a version of the linear sigma model and, moving onto
the chiral circle to construct a nonlinear sigma model, is
done by hand. The least-squares fit, while representing
the constants L &. . .L

&p well,
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I i =0 96, 1.2=1 25, I 3= —5 21, I4=0,
L,5=1.23, I.6=0, L,7= —0.40, L, 8=0.62,

I 9 =6.27, L, )o
= —5.42,

leads to a somewhat higher value of the Pauli-Villars reg-
ularization cutofF A=1370 MeV and somewhat too low
values of the current quark masses (m„+md )/2=2. 44
MeV. The condensate value ( uu ) = —(325 MeV)
differs from the value extracted via sum rules
( uu ) = —(240+25 MeV) by roughly a factor of 2. With
their parametrization, the renormalization-group-
invariant product, —(m„+md ) ( uu +dd ), remains at
the physical value that one would expect, viz. , at 2f m

The dynamically generated mass in the SU(2) sector is
quoted as I =300 MeV.

We conclude this section by remarking that the con-
clusions regarding the connection of the NJL model to
chiral perturbation theory remain open. We substantiate
this comment by summarizing the situation. In the fer-
mionic version of the NJL model, which has been studied
in the flavor SU(2) version in the Hartree-Pock approxi-
mation, the scale-independent quantities I3 and 14 are not
in particularly good agreement with the empirical values.
On the other hand, the bosonized form of the NJL La-
grangian appears to give a good fit to the scale dependen-t

values L, . . .L, ,o at the scale of the p-meson mass. In this
calculation, however, the usual parameters of the model
((uu ),m„,mz) do not lie within the standard bounds.
Furthermore, the procedure invoked by these authors is
to move onto the chiral circle. This is a procedure which
is put in by hand, in an ad hoe fashion, and which there-
fore distances this efFective boson model from the origi-
nal fermionic NJL model. It is thus desirable within the
framework of the (fermion) SU(3) NJL Lagrange density
of Eq. (2.32) either to establish the scale-independent
low-energy parameters or to extract in a complete
fashion the renormalized constants from a fully
equivalent SU(3) bosonized e8'ective Lagrangian. We
comment, too, that a detailed comparison of the NJL
model with chiral perturbation theory at finite tempera-
tures (Gasser and Leutwyler, 1987; Gerber and Leu-
tywler, 1989) has not yet been undertaken.

Vill. CONCLUDING REMARKS

We have demonstrated that the NJL model is a techni-
caBy useful field-theoretical framework for modeling
chiral symmetry breaking, since it facilitates calculation.
The basis of solution rests on obtaining a self-consistent
solution for the self-energy in either the Hartree or
Hartree-Fock approximation that can be carried out ex-
actly bemuse of the simple contact nature of the four- or
six-point fermion interacti. ons. Physically, this corre-
sponds to constructing a trial BCS-like vacuum state of
zero total helicity and momentum in which particles and
antiparticles are paired. This is in contrast to the theory
of superconductivity in which like particles (electrons) of

opposite helicities are paired.
The inclusion of the Savor symmetries of QCD in the

construction of' the NJL Lagrangian has the consequence
that the relations of current algebra, such as the
Goldberger- Treiman and Gell-Mann —Oakes —Renner re-
lations, must hold and can easily be demonstrated to do
so explicitly. The NJL model has further been used to
study efFects of including external parameters such as
temperature, chemical potential, and applied Maxwell
and color fields on a system of quarks that are governed
by a chirally symmetric Lagrangian. The static proper-
ties of mesons are also studied. One finds that, in addi-
tion to the relations of current algebra, approximate
regularization-free results can be established for several
other quantities of physical significance. These include
the o.-meson mass, the condensation energy, and the crit-
ical parameters of the phase transition, such as the criti-
cal transition temperature and the critical-field strength
for chiral symmetry restoration.

We have also noted that the path-integral formalism
may be employed to construct an effective Lagrangian
that contains only bosonic degrees of freedom. This bo-
sonized form of the NJL model may be linked to the
well-known phenomenological meson models, which
have been well studied over the past few decades.

One must of course draw a balance by also listing the
negative features of the model. To the extent that it has
been investigated, the connections and predictions of this
model in comparison with chiral perturbation theory are
in partial agreement at best. The relationship of this
model with QCD is not known, and it would be interest-
ing to establish whether such a connection exists. Next,
the contact nature of the fermion interaction has the
consequence that the model is not renormalizable, in the
sense that an infinite number of renormalization con-
stants would be required for its complete specification.
In practice, one uses only one regularization constant
when working at the one-loop level, so that care must be
taken in performing any mathematical procedures, to en-
sure that the symmetries of the model are maintained.
We have mentioned this only cursorily in this article. A
further criticism is that the contact four-fermion interac-
tion does not allow for confinement, so that the decay of
mesonic states into free qq states occurs. This is rather a
feature of states that lie high in energy with respect to
the scale of the theory. It is assumed in constructing the
NJL model that, for low-energy mass spectra and proper-
ties, the role of symmetries overrides that of confinement,
which is expected to a6'ect the high-energy behavior of
the theory. In actual calculations, mesonic states that lie
in the continuum must have a narrow width in order to
be considered as physical in this model, which has been
assumed to be the case.
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APPENDlX A: THE SIX-FERMION
INTERACTION

In this appendix we obtain the self-energy that arises
from the six-ferrnion interaction in the mean-field ap-
proximation. We also derive an e8'ective four-fermion
form for this interaction term.

The self-energy due to the six-fermion interaction can
be obtained by Wick-contracting all possible pairs of
creation and destruction operators in this term of the La-
grangian, such that only two remain. Introducing the ab-
breviation I —=1+y5, this term, taken from Eq. (2.32),

can be written as

IC—(deter+/+deter g)

x(y kr +yn)+(+ )]

where e; k is the Levi-Civita antisymrnetric tensor, and
the flavor indices i,j,k, . . . are now explicitly displayed.
Consider a generic term for which I can be either I + or
I . There are 18 possible ways of contracting two
creation and two destruction field operators of the six
available that will give rise to four distinct terms,

PJ[31 (TrI S~ )(TrI'S ")+6ISJ I (frrSk")

+3r(SrrSk"rSJ-)+6rSJ"rS'"r]y'. (A2)

The symbol Tr refers to the sum over color and spinor in-
dices only, and the particle propagators are all under-
stood to be in x space, S'~( x, x)= S'( x, x)5'J. Thus the
eQ'ective contracted six-ferrnion Lagrangian is given by
Eq. (Al) with Eq. (A2) inserted and with I ~r+ and
I —+I . One now adds pairwise the terms of the same
structure that contain I + and I, to obtain an e6'ective
six-fermion mean-field Lagrangian

X', '=P'Eg e, „e,,„[N",(tr S)i(tr S) +%2, [ S(itr S)+y Sjy (trs")]+X,tr(s'S"+y'Sjy S")
jk

+2(SjSk+y5Sjy5Sk+y5SjSky5+Sj 5sk 5)]yi

The epsilon tensor has the consequence that i XjAk, and it always brings in a factor of 2 if one performs the sums ex-
plicitly, as can be seen by examining, for example, the first term on the diagonal i = I =u:

g ejk Eijk (trS )( trS" ) =e„d,e„d, ( trS )( trS') +e„,d e„,d (trs')( trs")
jk

=2(trsi)(trs"), where jWkWu . (A4)

Every term can be handled in this way. Furthermore, the remaining three terms can be written as factor X (trSJ)(trS"),
with the direct insertion of Eq. (2.30) into (A3): the second term of (A3) is proportional to

4 5 + e S

(Sj+ 5Sj 5)( Sk) d p p+m + y (gf+m )y
(277) p —m ~

p —m*

d'p 2m*
( Sk)

(2m. ) p —m ~~

=
—,'(trs~)(trs") .

Similarly,

tr(s's" +y'sjy's ) =—,'(«s')(«s") (A6)

and

SiSk+ y'SJy'S" +y'S&S "y'+Sjy'S "y'=-„'(«»)(«S'),

(A7)

with the consequence that the effective six-fermion-

interaction Lagrangian reduces to a simple form,

g'IC(2X,'+3m, +1)( rSt)( 1St"r)q' .

One may therefore identify

XI"= X(2X,'+3K, +1)(—trS )(trS"),

i' Xk .

(AS)

(A9)
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Equations (A8) and (A9) were quoted as (2.36) and (2.37)
of the main text.

Let us now construct an effective four-ferrnion interac-
tion from X( ' that would yield the same self-energy. We
do this by contracting out one quark and one antiquark
field operator in all possible variations, such that four

field operators are always remaining.
Since there are nine different, possible ways of con-

tracting out one pair of creation and destruction opera-
tors, the effective Lagrangian that must be used to evalu-
ate the self-energy must be half that obtained via this
procedure. One Qnds

)~(6) (4)—)I( & & [ ) ~ Tr(gill +)(q jl +pm)(ykl +yn) .(qiI +gljI +pm)(ykI +yn)+(+

from Eq. (Al). Writing I + and I' out in full and combining like terms, one finds that

'"=-,'«;,k&im. (&,+ I » «~'[(4 j0 )(4 "0")+(PyA™)(4"y8'")] . (A 1 1)

We have made use of the identity

S'y +@5 =-' y5

3 3

(r )fg (r )gf' C()(1)ff (1)gg + g C'(r )ff'(r )gg (83)

Equation (Al 1) represents the six-fermion interaction
reduced to a four-fermion form. As it stands, however, it
is unappealing, and we therefore rewrite (Al 1) in terms
of the basis of Gell-Mann matrices A,

' . X, and
A.0=@'2/3I, so that the fiavor labels are not explicitly
displayed. After some tedious algebra, we obtain the re-
sult, Eq. (2.40) quoted in the main text.

3

(1)f '(1)gf Co(1)ff (1)g '+ p Ci(r )ff (r'), . (84)

To determine the c; from Eq. (83), one recalls the com-
pleteness relation

Xi(r )cb(r )cd 2(5bc5ad 25ab5cd )

APPENDIX 8: CROSSING MATRICES
FOR THE FIERZ TRANSFORMATION

to evaluate the left-hand side of this equation:

(5gg.5ff 2 fg gf )=coo(1)ff ( )

[s] tt. p= ,'[s+u+ ,'t ——a p] —p-
[p]ap'a'p 4 [S u +

~ t +a p ]ap a'p

[u] p. p= —,'[4s —2u —2a+4p] p

[a] p, ,p= —
—,'[4s+2u+2a+4p] p. ,p, ,

where the symbols s, U, t, a, and p are defined as

(81)

ap;a'p' ap a'p'

p p ,p, =(iy~) p(iy5).

u p p (y„) p(y") .—p,
ap;a'p' (yp 5)ap(y y )a'p'p 5

t p. p
=(iT"') p(o„) p .

(82)

The purpose of this appendix is to calculate the cross-
ing matrices in Dirac, SU(2) fiavor, and SU(3) color or
flavor space. In Dirac space, the crossing matrix is well
known (see, for example, Itzykson and Zuber, 1980). Us-
ing a notation that differs slightly from this reference, we
quote only the final results that we use,

+ g c;(r')ff (r')gg

Multiplying by off,(1)ff/ .(1)g.g and performing the
fIavor sums enable one to extract co= —', . The remaining
coefficients c;= —

—,
' are obtained by multiplying Eq. (85)

by off g (v')f f(r')g.g and performing the flavor sums,
noting that the Pauli matrices are traceless and
tr(r'rj) =25; . This procedure may also be applied to Eq.
(84) to reveal co=c', =

—,', so that the SU(2) fiavor rela-
tions analogous to (Bl) become

3

fg' gf' 2 ff' gg' 2~ + r ff' ~ )gg' '

(86)
3 3

fg' )gf' Y3 ff' gg' 2~ + r ff' r gg' '

The SU(3) color condition can be set up in the same
fashion as Eqs. (83) and (84), with the r' being replaced
by the color matrices A,;,i = 1. . . 8 and 1~1' (Klimt
et al. , 1990). Since the Gell-Mann matrices are normal-
ized also according to tr()(,k A, l ) =25lk, the same pro-
cedure can be followed, to obtain

The crossing matrix for isospin, Aavor, and color can be
obtained directly from the definition (2.48). For isospin,
for example, the coef5cients c; and c must be obtained
that relate

8

1; 1'„, =—,'1;, 1'„„+-,' g (A,;)„,(A, ;. )dd,
i=1

(87)
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X (~i )cd'~dc' 9 lee' dd' 3 g (~i )cc'(~i )dd'
T" =i'(('y"i) g —g""X . (Cl)

Finally, the Aavor SU(3) group can be obtained trivially
from Eqs. (87). Here it is conventional to introduce
iI. =(2/3)' I, so that (87) in Savor space reads

For a two-body interaction, the average value of T" can
be expressed solely in terms of the single-particie propa-
gator. One notes, from its definition preceding Eq. (2.29),
that the required kinetic term average is given as

8

(1, )fg(A, )gf 3(A )ff(iP)gg+ —,
' g (A, ')ff(A )gg (88)

&y.( )y"gP„y ( )&= li y"pa„'&1( ( )@ ( ')&
X ~X

i —lim 8„' y"pSp (x',x)
+

X (~')fg(~')gf = l(~')ff (~')g' l X (~'ff (~')g'.

These results are summarized as Eqs. (2.49) and (2.50) of
the main text.

APPENDIX C: THE TOTAL ENERGY

i —liin Try "8„",S(x 'x ),
t

&Z,„,&=G&qy&2=G~ i. Trs—(x,x) j',
so that the energy-momentum tensor is given as

& T"'& = lim Try"O'S(x, x)

(C3)

while the average of the interaction terms of the La-
grangian (2.15) is given, in the Hartree approximation, as

For completeness, we give a sophisticated method for
evaluating the total energy per unit volume in the nonco-
variant cuto6' scheme. This method relies solely on a
knowledge of the single-particle Green's function. Our
starting point is the energy-momentum tensor

—gi'" lim Trg)„S(x,x') —6[TrS(x,x) j

(C4)

The energy-momentum tensor is more familiar in
momentum space, where it can be written as

d4p . . d4p d4p&»'& = —Tr f 4ip "y"S(p)+g"" Tr f 4PS(p) —G Tr f 4S(p)
(2m ) (2n. ) (2m )

(C5)

and, after performing the trace, we have

&».& d d4 2 d'= —4& +g" 4i +16',Xfm g"
(2m ) p —m* (2n) p —m (2n. ) p —m '

2

(C6)

In particular,

4' P +4' P +~~GG1V m *
(2m. )

' —m" (2m) —m* 4

2

(C7)

or
r

(2m)4 p' —m*' f (2 )4 p2 me2

Integrating out the po component, one obtains the result
quoted as Eq. (3.4).

APPENDIX D: THE THERMODYNAMIC
POTENTIAL

The thermodynamic potential can be calculated, for
example, via the method of coupling-constant integration

I

(Fetter and Walecka, 1971), which is sketched briefly
here. One divides the thermodynamic potential K into
K(A, ) =Ko+A,Xi, where, in this case, one identifies

ED =Ho —pX

=P(igl —mo)iji —piti g

4We note that the arguments of Nambu and Jona-Lasinio
(1961a) with regard to the calculation of the total energy are in-
complete (Suzuki, 1963). G l(A')'@(4 y it)'] .

Rev. Mod. Phys. , Vol. 64, No. 3, July 1992



702 S. P. Klevansky: The Nambu-Jona-Lasinio model of quantum chromodynamics

The partition function associated with X is One now inserts this into Eq. (D2); integrating on A, from
0 to 1 gives

—PQ
Z A, Tr —PK(A. )

from which one may deduce that

(D 1)
n n—,= f «uc, )) . (DS)

dA, P Zq BA,
(D2)

QZ~ oo

(n!) '( —P)"n Tr[(TO+AX) )" 'K) ],
n=1

(D3)

which may be manipulated to give (see, for example,
Fetter and Walecka, 1971)

BZg p= ——e i'"((kK, )) .

A direct evaluation of BZ&/BA, can be made by inserting
K(A, ) explicitly into the definition of Z and expanding the
exponential function. One finds

Thus a knowledge of the thermodynamic average of the
interaction energy suftices to determine the thermo-
dynamic potential. Moreover, for a two-body interaction
of the form of K„ this interaction energy can be ex-
pressed in terms of the single-particle Matsubara Green's
function and the self-energy. Generalizing the nonrela-
tivistic result of Fetter and Walecka (1971),one has

«&re, » = f — ~ —g e'"""-,' Trr'(p, ~„)Z'(p,~„) .(2~)'P „

(D6)

All that remains is to determine 4 (k, co„) and X (k, co„}.
The former is given by Eq. (5.30). There is no explicit A,

dependence. Rather, the A, dependence arises implicitly
through the dependence of m on A, . X"(k,co„) can be ob-
tained, in analogy with Eq. (5.15), from the Feynman
rules for finite temperature. In the Hartree-Fock approx-
imation,

X = —2GA, —g e " f [N, N&trS(p, co„)—eV( pc@„) 3iy $—(p, co„)iy5];
n 2' 3

(D7)

making the same subdivision as that in (5.17),

X =m*(A, )—yoMO(k),

one recovers the gap equation, Eq. (5.35) for m *(A,), with
G ~GA, , and

d3
Mo(A, ) = 2GAf— . (tanh —,'pcs~+ —tanh —,'p~~ ),

use of Eq. (Dg) and the gap equation, leads to an equa-
tion,

N, Ny Mo'(X)
uc, ) = [m (A, ) —mo]

Gk(N, Ng+ —,
'

)
(Dl 1)

for the average interaction energy, which may now be in-
serted into Eq. (DS). An integration by parts is useful for
evaluating the integral on A, . One finds that

—M, (X)=GX((y'q)) yN, (D9)

after renormalizing away the density divergence that
arises from the negative-energy sea. As in Eq. (S.21),
Mo(A. ) is related to the quark density via

0—Qo 1 (m ' —mo)

N, N~ 4 (N, N~+ ,')G—
2 d p
p

p'( A, ) =p+ Mo(A, ) . (D10)

cosh —,'Pcs+(1)cosh —,'Pco (1)
X log

cosh —,'Pc@~+(0)cosh—,'Pco (0)

Inserting Eqs. (D9) and (5.30) into (D6), and making (D12}
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where co& (A, )=Ez(A, )+[p+Mo(A, )]. With the interaction
fully on, m*(1)=m* and mo(l)=mo, as determined by
Eqs. (5.38) and (5.39); with the interaction switched fully
o6; one has for zero current quark mass, for example,
m'(0)=0 and Mo(0)=0, so that co*=p+p. Inserting
this into (D12) and writing out the cosh function explicit-
ly enable one to identify

and to subtract this ofF to obtain the result quoted in Eq.
(5.41).

APPENDIX E: THE POLARIZATION
PROPAGATOR AT FINITE TEMPERATURE

3 log 1+e P'P+~' 1+e
p

2 p
J p

(2m)3
(D13)

In this appendix we look at one example of the proper
polarization, viz. , that for the scalar mode. The Feyn-
man rules for Anite temperature can be used to translate
Fig. 16. One has

II,( q, i v„)= ——g Tr/(q+ p, v„+co, )4( p, co, ) .1 dp
(2n. )

(El)

For simplicity, we shall use S(p, co„) from Eq. (5.30), setting the chemical potential to zero. Then the spinor trace of the
potential must be evaluated. One can immediately write

trS(p+q, v„+co, )Wp, co&) = . . [E~E~+q+m' p'(p+q)1
EpEq l v„+co( Ep+q Eco( Ep

+ [E E + —m +p.(p+q)]1

v +co) Ep+q Eco)+Ep

+ [E E + —m +p.(p+q)]
i(v„+co,)+E + i~& Ep

+ [E E„+ +m +p (p+q)]i v„+co) +Ep+q leo)+Ep
(E2)

Next, the frequency sums must be evaluated. This can be done either directly via contour integration, or by inserting a
redundant factor expire&g into each double sum and expressing it in partial fractions. One knows that

so that

ice„+e
=f (+e~), (E3)

II,(q,iv„)= N, N& I 3
— [E~E~+~+m"—p.(p+q)](2~)' E,E,+, l Vn p+q p

f ( Ep) f—(E~+q)—+ [E E~+ —m * +p.(p+ q) ]
l Vn p+q p

f (E~)—f ( —E~+, )+ [E„E + —m * +p.(p+q) ]
)v„—Ep+q —Ep

f ( —E~)—f( Ep+q)—+[E E + +m' —p (p+q)]
l Vn+ p+q p

(E4)

One notes now that the change of variable p —+ —p' —q has the consequence that p.(p+q)~p'. (p'+q). Also,
E~+~~E~, and E~~E~.+~. Applying this now to the second and last terms of Eq. (E4) leads to considerable
simplification, and one finds

5We use the conventions of Mattuck (1976), which differ from those of Fetter and Walecka (1971)by a minus sign.
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f (Ep ) —f (E~+q )
[E E + +m* —p.(p+q)]

T

II,(q, iv„)= 2—N, X&f d p 1

(2m-)' &p&~+~

d3
+N, XfJ (2~)' E.E.+q

[E~E~+~—m ' +p (p+q)]tanh —,'PE 1

iv„+E + +E l v~ Ep+q Ep

where the first term is the relativistic generalization of
the nonrelativistic polarization propagator, while the
second rejects the presence of the negative-energy sea.
The analytic continuation of this equation

11,(q, ~)=11,(q, iv„)~,„

i.e.,

F"+iF' =v~2( %+i 0)'

provided that the square root is taken on the first sheet.
F' and F" are both real and positive, which may be seen
by writing

is now required. The associated mass of the scalar meson
is obtained, however, at q=0. These results are listed as
Eqs. (5.45) and (5.46) of the main text.

APPENDIX F: EIGENVALUES
OF THE FIELD-STRENGTH TENSOR
AND EVALUATION OF TRACES

%+i 0= ~9+i Q'~exp(+i/),

0~/&2' .

Then the eigenvalues are given as

F'= &2(9 +9 )'~ sing/2,

F"=&2(@+g')'"cosyy2
(F6)

Schwinger (1951)has shown that trace operations over
both I.orentz and spinor indices on equations involving
the field-strength tensor F" can be calculated from the
eigenvalues of the tensor. This has been used in the pre-
vious section for the functions given in Eqs. (6.21),
(6.22a), and (6.22b). In this section we shall briefly repeat
Schwinger's arguments, firstly to show how these func™
tions may be obtained, but more importantly, to extend
the results to cover further trace operations that are re-
quired. The eigenvalue equation for FI' is

FIJ»g (F)=Fqg(F)

leading to the determinantal condition det(F"' Fg" )—
=0 for the eigenvalues. By recalling the identities (see,
for example, Itzykson and Zuber, 1980)

FP»P (F ) =FOP(F ) (F7)

where P"(F)=y( F), is antis—ymmetric. The complete-
ness and orthogonality relations involve both P(F) and
q&(F) and are given by

g PP(F)yP(F)=gi

& 0"(Fi )m„(F2)=5r, r,

and are shown in Fig. 30.
For a pure E field, Q=O and 9= ,'E &0,—s—o that

P= ~ and F'=E while F"=0. For a pure B field, on the
other hand, Q=O while V= ,'8 )0, so—that /=0 and
F'=0 and F"=8.

The adjoint problem is defined by the eigenvalue equa-
tion

FI »F =gP g

F A.v F FA,v+ J gvF FaP
pA, pA, 2 p aP (F2)

where F& and F2 are any two eigenvalues. Now the ten-
sor F/" may be represented in terms of its eigenvectors
Q(F) and the eigenvector p'(F ) of the adjoint problem,

and applying these to the eigenvector y, one may obtain
a quartic for F in terms of the invariants V and 9:

F +2VF 9=0—
FP»= ggP(F)Fq)»(F) (F9)

from which it follows that

F'= V+(W+ e')'" . — (F4)

The four solutions can be written as +iF' and +F"where

iF'= [(9+i9)' (P—iQ)' ], —
v'2

F"= [(9'+l'0)' +(9—i9)' 2];1

v'2 FIG. 30. Eigenvalues of the field-strength tensor I'".
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This display facilitates the calculation of the Lorentz
trace of a function f of F"", which is in itself a matrix
f"". Assuming that fI"' has a power-series representa-
tion in the operator P =F",one has

U=(1+y y )/&2 .

One has

U ( —,'oE) U=2(P+iy 9), (F15)

f"'(I")=g Q(f)f(E)$"(E),

so that

g f"„=g f (F) .

Thus, applying this to L (r) in Eq. (6.17), one has

L (r) =In[(q~E) 'sinh(qE'~)]

(F10)

(Fl 1)

so that the eigenvalues of ( —,
' oF) are 2( %+i Q), each

value being doubly degenerate. Because of this degenera-
cy, U does not diagonalize —2o.F simultaneously. In fact,
the form

U ( —,'crF)U= —(X.B)+iy (y E). ,

with X=@'y y, is only block diagonal. However, the
four eigenvalues of —,

'o.F are given by

+In[(qrE" } 'sin(qrF")], (F12) 1/2(2+i g)' =+(F"+iF'), (F16)
which leads directly to the result (6.21}.

The spinor traces of equations involving the combina-
tions ,'oF= ,'—o„g""—are more complicated. A direct
evaluation of this combination gives

in view of Eqs. (F5}and (F15). It is useful to observe that
the square of this result is summarized by the statement

2(V+iy Q)=(F"+iy F')

,'crF=—y y (y B)+i.y (y E),
from which it follows that

( —,'oF) =2(P iy'9') . —

(F13)

(F14)

from this equation and from (F15) it follows that

(2c7F) = U(F"+iy F') U

=(F" iy F')— (F17)

This 4 X4 matrix in spinor space is diagonalized by the
unitary matrix

One can employ Eq. (F17) to express the spinor func-
tion e ( —r) =exp(iqro F/2) as

2

exp(iqwo F/2) =1+iqro F/2+ (iqr)—1 . 2 oF
2'l 2

+

F"+sy5F'
=cosh[iqr(F" i y F')]+- (F")'+ (F')' sinh[iqr(E" iy~F')]—.

Since (y ) = 1, both hyperbolic functions can be written as a simple sum of products, e.g.,

cosh[iqr(F" —i y F')]=c sho(q&E')c s(oq&F")+i y sinh(qrF')sin(qiF")

(F18)

(F19)

Thus, for example,

tr exp(iqro F/2) =4 cosh(q~F')cos(qrE"),
(F20)

tri y exp(iqrcrF/2) = —4 sinh(qrF')cos(qrF"),

since the traces of all other terms in (F19) vanish. This
result was quoted in Eqs. (6.22a) and (6.22b). Finally, we
comment that the traces that occur in the calculation of

I

the meson modes, as described in the next section, are
evaluated most easily by the method displayed here.

APPENDIX G: THE POLARIZATION
PROPAGATOR, INCLUDING A U(1) FIELD

We sketch the calculation of the polarization propaga-
tor II, brieily. Inserting Eq. (6.19) into (6.31), one has

X fd xe'" +' '" X X tr[ —'y"M (r&)x'+m]e( —r, )[—'y"M (v2)x +m]e( —r2),

where E )2 =E ) +Eq and

e( —
r& )=exp(iqo „g" r; /2),
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which commutes with y5. On making the change of variable a; = —r;, and noting that L (
—a, ) =L (a) and that e (a)

has an even number of Dirac matrices, one obtains

1 —im a1 L (aI) im a2 L(a2—11„(k)=-
i ' (4~) o a, o az

4 &kx ——xKx1

2X d xe ' N, Xf 4 xM» xM2 try"e a& y e cz2 +m tre a& e cz2 . G2

The space-time integrals can be performed on making a
shift of variable

y„=x„2(K—12' )F k

One finds

f d xexp ikx ——xK12x =(4') iI JIexp(ikK12'k)

(G3)

and

for F =+E, plus the orthogonalized pair [0,1,0,0] and
[0,0,1,0] for the double root at zero. The corresponding
adjoint vectors are

P~(F)= [1,0,0, +1]/&2

and [0,—1,0,0] and [0,0, —1,0]. One thus finds that

1
Koo = —K33 =qE coth(qEa), —K11=—K22 =—,

(G7)

so that

(K12 )00 K12 )33

d x exp ikx ——xK,2x (xM1 )„(xM2 )„

= (4~) iI JIexp(ikK12'k)( 2i [—M1K,2'M2]„~

+4[M1K12'k ]„[M2K12'k ],), (G4) —«12)11=—«12)22=
cx& +a&

a&a2

sinh[qE(a, +a2) ]=qE
sinh(qEa, )sinh(qEu2)

(GS)

where

3

IJl=g (K '") ". (G5)

The matrix elements of K,z' are the inverse of this set.
Now the Jacobian

I JI can be explicitly evaluated,

Using the results of the previous section, one may evalu-
ate the constructs K„„,(K,2' ), and

I
JI. In general, one

has

sinh(qEa, )sinh(qEa2) a,a2

qE sinhqE(a1+a2) a1+a2
(G9)

K„,(a)= [qFcothqFa]„= g y„(F)qF coth(qFa)P„(F),
f

and the factor occurring in the exponential of Eqs. (C3)
and (C4) is given as

(K,2 )„=K(a, )„+K(a2)„

qF sinhqF(u, +a2)
q(F) . . P (F),

sinh(qFa, )sinh(qFa2)

sinh(qFa, )sinh(qF~2)

F
"

q sin q a, +a2

(G6)

sinh(qE a1)sinh( qE a2 )
kK, 2'k =(k 0

—k 3 )
qE sinhqE a, +a2

CX )CKp—k
a&+uz

(G 10)

with k ~
=k

&
+k 2. One requires the remaining traces

We specialize now to the case of a pure E field. Then
the eigenvectors of F" are

y„(F)=[1,0,0, + 1]/&2 and

tre(a1)e(a2) =4coshqE(a, +a2) (G 1 1)

try"e(a )y'1e(a )=24g" coshqE(a, +a2) —4(g" g —g" g )sinhqE(a, —a2)+8(g" g' —g" g )sinhqEa1sinhqEa2,

(G12)

in order to reassemble the equation for (1/i )II„„Eq.(G2), as
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jkg
—lk

—II,(k) = — f da, f daze ' ' qEcothqE(a, +az)
i (4'�) o o CX) +CX2

X 4im + 4qE + 4
sinhqE(a, +az)coshqE(a, +az) a, +az

CX )CX2 sinhqEa&sinhqEu2—4ik~ +4i (ko —k 3 )
(a&+az) sinhqE(a, +az)coshqE(a, +az)

One now proceeds in a standard fashion of inserting

f dA, 5(A, —a& —az) =1

(613)

and rescaling a; —+A,a;, so that one may do one of the a integrals. The resulting integral is then regulated via the Pauli-
Villars procedure, as in Sec. VI.A. 1. One then obtains the expression given in Eq. (6.38).
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