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The authors offer a historical and pedagogical introduction to the local-field problem in dielectrics. They
then discuss a microscopic approach to the problem and introduce momentum dependence. Finally they
apply these results to electron-phonon coupling in quasi-two-dimensional systems, in particular the high-
T, superconductors.

The local-field problem is almost 150 years old. The
earliest treatments are due to Mossotti (1850), Clausius
(1879), Lorenz (1880), and Lorentz (1952, and references
therein). These treatments studied metallic particles em-
bedded in a dielectric. Clausius and Mossotti studied the
effective dielectric constant of the resulting system, while
Lorentz and Lorenz considered the resulting index of re-
fraction. In spite of the fact that these early treatments
suffered from a lack of knowledge of the molecular na-
ture of matter, many of the results are surprisingly accu-
rate.

The most familiar treatment of the local-field problem
is due to Lorentz. Consider a dielectric in an applied
electric field E „,which induces a polarization field P.
Now imagine a fictitious spherical cavity within the sam-
ple and examine the field at a point near the center of the
sphere. The radius of the cavity must be large compared
with the nearest-neighbor spacing. The total field at this
point can then be expressed
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The result is more commonly expressed in terms of the
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where E;„ is the field due to the dipole moments induced
on the molecules within the cavity. Lorentz showed that
this contribution is zero for cubic or random structures.
Using P =nnE&„, where n is the molecular density and cx

the molecular polarizability, leads to the Clausius-
Mossotti (CM) or Lorentz-Lorenz result:

dielectric constant:
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The CM relation has been shown to be accurate in gases
(Lorentz, 1952 and references therein), where n a = 10
More recently precise measurements on the rare-gas
solids proved its applicability in solids (Sinnock and
Smith, 1969), where the value of the denominator in Eq.
(1) or (2) can be as small as 0.7. The accuracy of Eq. (2)
for a solid may come as somewhat of a surprise consider-
ing the obvious simplifications in the derivation. The
most gross simplification is the-assumption that the mole-
cules are point dipoles. For spherical molecules at zero
wave vector, the external field is indistinguishable from
that of a point dipole. However, the field of an ellipsoidal
or cigar-shaped molecule differs from that of a point di-
pole. Since the molecules making up cubic solids must be
of high symmetry, the point-dipole approximation should
be accurate outside the molecular volume. A more subtle
simplification has been noted by Landauer (1978), who
points out that the removed cavity cannot be spherical in
shape, since whole molecules must either be taken out or
left in. This results in a somewhat irregular shape for the
surface of the cavity. However, since the dipole field falls
off as 1/r, the surface area grows as only r, and the
cavity must be large to begin with, these contributions
should be small.

The cavity approach is pedagogically useful, but not
necessary. In effect the Lorentz method consists of
averaging the contributions of all of the dipoles on the
lattice of the system, then solving for the field. Aspnes
(1982) has shown that the same result can be obtained by
first solving for the field, then averaging over the sample.
In addition, a number of treatments have appeared in-
volving sums over the dipole moments of the lattice
without removing nearby atoms (Cohen and Keff'er, 1955;
Nijboer and DeWitte, 1958; pano, 1960). All of these
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treatments have obtained the CM result for cubic struc-
tures at zero wave vector, indicating the accuracy of the
Lorentz model despite the simplifications.

In the following numerical work we have used a
method that follows the Lorenz approach in spirit but
that does not involve removing a cavity of molecules.
We consider an applied polarizing field with arbitrary
spatial variation. If we Fourier-analyze this field in both
space and time, then the equations separate in such a way
that we can treat each Fourier component separately.
We choose a direction in space along which the phase of
the plane-wave polarizing field will vary and evaluate the
dipole sum for planes of equivalent molecules perpendic-
ular to that direction. Near the origin the dipole fields
are summed discretely, but beyond a certain distance,
typically ten nearest-neighbor distances, the discrete sum
becomes indistinguishable from the result for a dielectric
slab, and the result for that plane can be extended to
infinite distance analytically. This method reduces com-
puter time and also has the advantage of removing the
pathological behavior of the discrete dipole sum for mo-
menta near reciprocal-lattice vectors (Cohen and Keffer,
1955).

The above discussion has indicated that the 1ocal field
in primitive cubic lattices at zero wave vector is well un-
derstood, but many systems of physical interest are not in
primitive cubic structures, and many quantities involve
wave vectors throughout the Brillouin zone. In these
cases the CM relation is not expected to be valid, and a
microscopic approach is needed in which the dipole fields
of the molecules are treated individually and a
momentum-dependent phase factor must be included.
Within the point-dipole approximation Nagel and Witten
(1975) have generalized Eq. (1) as follows:

E)„(q)
E „(q)
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where q is the momentum and 8(q) the momentum-
dependent local field factor, which is written in terms of
the dipole sum:

3[q (r —r )] —(r, —r )
8(q) =4~+ icos(q. r,), , (4)

where r; is the point in the solid at which the field is eval-
uated, r is another lattice point, q is a unit vector paral-
lel to q, and the sum is over a sufFiciently large cluster.
8 (q) curves are shown in Fig. 1 for the three principal
axes of the fcc structure. Some characteristics can be
noted. Each of the curves approaches the CM value of
4m /3 as q ~0, although the behavior is obviously
different for each of the directions. The behavior can be
understood qualitatively by considering the nearest-
neighbor spacing along the axis. The most closely
packed direction, the 110 direction, shows the largest
momentum dependence, nearly a factor of three, while
the least closely packed direction, the 111 direction,
shows very little momentum dependence. Each of the
curves is periodic, with the periodicity proportional to
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FIG. 1. Local-field factor 8(q) for the fcc structure: solid
curves, point-dipole results for the three principal axes; ~, ex-
perirnental results for solid N2.

the inverse lattice spacing.
8 (q) can be measured in certain cases by a direct com-

parison of the appropriate physical quantities in the gas
phase and the solid state. X2 provides a good example.
The gas-phase and solid-state oscillator strengths, f (q)
and K,s(q), of an excitation localized on a K2 molecule,
can both be measured using inelastic electron scattering.
The ratio provides a direct measure of the square of the
local-field enhancement:

X,s(q)
f (q)

Et„(q)
E „(q)

(5)

Included in Fig. 1 are results for 8 (q) from the ratio of
the oscillator strength in the solid state (Tarrio and
Schnatterly, 199la) and the gas phase (Skerbele and
Lassettre, 1970). The results seem to indicate that our
sample was an oriented crystal with momentum
transferred along the 110 axis; however, diffraction pat-
terns indicated a polycrystalline sample with small crys-
tallites. Results for a polycrystalline sample can be ap-
proximated by calculating 8 (q) for many random direc-
tions and averaging the measured quantity. Figure 2
shows our results for the square of the field enhancement
for solid N2 with averages in the three principal planes;
our data are still better described by the 110-axis result,
suggesting that a degree of alignment must have occurred
under the growth conditions of the samples.

As mentioned, the point-dipole approximation is a
good one at zero momentum; however, as the momentum
grows, higher multipole moments become important.
The reduction in dipole strength with q can be included
through a form factor similar to that used in x-ray
diffraction. Figure 3 shows results for solid Kr, a large
atom in which the form factor is expected to introduce a
large effect (Tarrio and Schnatterly, 1991b). A Lorentzi-
an form factor was used, which decreased the polarizabil-
ity to 0.75 of its low-momentum value at q=1 fr„
The resulting comparison with measurement is favorable,
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temperatures if the superconducting electron-phonon
coupling is enhanced suf5ciently over that measured in
normal transport.

In normal transport the electrons scatter from pho-
nons with momenta in the conducting plane. Thus the
phonon momentum component perpendicular to the
plane does not contribute to the normal-state resistivity.
However, the superconducting electron-phonon coupling
involves a sum over all the phonons, including those with
momenta perpendicular to the conducting plane. Since
the macroscopic field is experienced in the conducting
plane, but the local field is experienced perpendicular to
the plane, the electron-phonon coupling is enhanced by a
factor of

FIG. 2. Local-field enhancement ratio: R, experimental results
for solid N2; solid curve, point-dipole results averaged over the
(100) plane; dotted curve, point-dipole results averaged over the
(111)plane; dashed curve, point-dipole results averaged over the
(110)plane.

although the scatter in the data is large.
If electrons are localized in one direction and extended

in the other two directions, they will experience the mac-
roscopic field within the plane but the local field perpen-
dicular to the plane. Most of the high-T, superconduc-
tors have conducting planes separated by insulating lay-
ers, and thus provide this sort of system. This becomes
important when considering electron-phonon coupling,
which includes contributions proportional to the square
of the phonon-induced electric field. The BCS electron-
phonon coupling parameter, XBcs, and the transport
electron-phonon coupling parameter, A,„, are generally
taken to be equal; however, in some cases they can be
quite different. Using the McMillan (1968) equation, we
find that the A,„of0.3 measured in several of the high-T,
superconductors is much too small to account for transi-
tion temperatures of up to 125 K. However, convention-
al BCS theory Inay still be able to account for the high
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FIG. 3. Dielectric constant of solid Kr: ~, experimental re-
sults; solid curve, point-dipole results averaged over the (110)
plane as described in the text.

(6)

for LO phonons with momenta perpendicular to the con-
ducting plane. In this expression the subscript l ((() indi-
cates perpendicular to (parallel to) the conducting plane,
the superscript p indicates the contribution due to polar
phonons, S is the screening factor by which the in-plane
coupling is reduced, and I. is an average over momen-
tum of the local-field enhancement, i.e., the square of the
ratio of the local field to the macroscopic field. Thus we
can estimate the enhancement in A, due to the two-
dimensional nature of these compounds by evaluating the
electric-field enhancement through B (q).

The induced dipole moment on an atom depends on its
local environment as well as its polarizability. This in-
creases the number of dipole sums that must be evaluated
in complex crystal structures that have several ine-
quivalent ions and sublattices. B (q) then becomes a ma-
trix, and the electric field at a point in the solid is ob-
tained by solving the simultaneous equations

E)„=E „+gB;j(q)EJ„,
J

where E&„ is the local field at sublattice E' and 8," is the
element of 8 arising from the field at sublattice i due to
sublattice j. 8; is diagonally symmetric.

Since 8; is simply a geometric quantity, we can calcu-
late it directly from crystal structures (Yvon and
Frangois, 1989). Figure 4 shows our results for B (q) for
q in the z direction for the highly polarizable sublattices
in Lai s5Sro, 5Cu04 (Tarrio, Benitez, and Schnatterly,
1991). As in the cubic cases, the sublattices with the
closest nearest-neighbor spacing in the z direction have
the largest momentum dependence for B(q). However,
since these are not cubic structures, the curves generally
do not approach 4m/3 as q ~0. The low-momentum be-
havior can be visualized by considering the shape of the
dipole field. For a sublattice with close neighbors in the
x-y plane but distant spacing in the z direction, such as
the 02 sublattice in La, 85Sro»CuO„, the dominant con-
tribution is negative, and, as shown in Fig. 3, B (q) is neg-
ative. However, for sublattices with smaller spacing in
the z direction, such as La and Ol, the nearest-neighbor
contributions are large and positive, and B (q) is positive.
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with the highest T, values, may contribute significantly
to the observed superconductivity.
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