
Nuclear spin and isospin excitations

Franz Qsterfeld

Institut fOr Kernphysik, Forschungszentrum Julia GmbH, Postfach f913, 5f 70 Ju(i', Germany

A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this
knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and
proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent
two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the gi-
ant Garnow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller tran-
sition strength in the resonance region is much less than a model-independent sum rule predicts. Two
physically different mechanisms have been discussed to explain this so-called quenching of the total
Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of 6-isobar excitation and
ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analy-
ses of the scattering data suggest that the nuclear configuration mixing effect is the more important
quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching
phenomenon occurs for nuclear-spin excitations at low excitation energies (co-10—20 MeV) and small-
momentum transfers (q 0.5 fm ). A completely opposite effect is anticipated in the high (co, q)-transfer
region (0 ~ m ~ 500 MeV, 0.5 ~ q ~ 3 fm '). The nuclear spin-isospin response might be enhanced due to
the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been
used to study the quasifree peak region and the b-resonance region. An interesting result of these experi-
ments is that the 6 excitation in the nucleus is shifted downwards in energy relative to the 5 excitation of
the free proton. The physical origin of this shift is discussed, and it is shown that it may be related to the
energy-dependent, attractive one-pion exchange interaction in the medium.
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I. INTRODUCTION

In this article we review the present status of collective
spin and isospin excitations in nuclei. Over the last de-
cade impressive development has taken place in this field
of nuclear physics. The progress has been made through
both outstanding experimental work at the intermediate-
energy hadron and electron facilities and intriguing
theoretical ideas. The hadron facilities contributing to
this field of physics are IUCF in Bloomington, IPN in
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Orsay, LAMPF in Los Alamos, SATURNE in Saclay,
TRIUMF in Vancouver, and SIN in Villigen. The elec-
tron facilities in question are DALINAC in Darmstadt,
MAMI in Mainz, MIT Bates Laboratories in Boston, NI-
KHEF in Amsterdam, and the (y, y ) facilities at Giessen
and Urbana.

Traditionally a considerable amount of the experimen-
tal work at nuclear physics accelerators is devoted to the
study of giant multipole resonances. These are elementa-
ry modes of nuclear excitation which involve the
coherent motion of many nucleons in the nucleus. Typi-
cal examples are the shape and density oscillations of the
nucleus around its equilibrium configuration. The ap-
propriate nuclear reactions to excite these modes are the
inelastic scattering of electrons or hadrons from nuclei.
Inelastic scattering processes are particularly sensitive to
any coherent aspects of the nucleonic motion, since they
lead to enhanced or diminished inelastic-scattering cross
sections as compared to, say, a single-particle transition
between shell-model orbitals. Furthermore, in the
inelastic-scattering event, energy and momentum can be
transferred independently to the target. This makes it
possible to measure both excitation functions and angular
distributions, the latter of which are needed to determine
the multipolarity of the given state under investigation.

By 1980 various electric collective modes like the iso-
scalar giant quadrupole resonance with spin-parity
J =2 (Pitthan and Walcher, 1971;Lewis and Bertrand,
1972) and the isoscalar giant monopole resonance with
spin-parity J =0+ (Marty et a/. , 1975; Harakeh et al. ,
1977; Youngblood et a/. , 1977; Buenerd et al. , 1979; Le-
brun et al. , 1980; Rosza et a/. , 1980; Youngblood et al. ,
1981) were well established. The isoscalar (T =0) modes
are vibrations in which the neutrons and protons move in
phase. Modes in which protons and neutrons move in
opposite phase are called isovector (T=l). The giant
electric dipole resonance (J =1, T= 1) is the classical
example for the latter class of states. This resonance is
very strongly and selectively excited by photon absorp-
tion (Baldwin and Klaiber, 1947, 1948; Berman and
Fultz, 1975). The electric dipole radiation induces a po-
larization oscillation of the protons against the neutrons,
leaving the center of mass of the nucleus at rest (Gold-
haber and Teller, 1948; Steinwedel and Jensen, 1950).

Similar oscillations to those in isospin space are also
possible in spin space. Nucleons with spin up and spin
down may move either in phase (spin-scalar S =0 modes)
or out of phase (spin-vector S=l modes). The latter
class of states is also referred to as spin excitations or
spin-Hip transitions. The spin excitations are again sub-
divided into isoscalar spin-fiip (S=1, 7 =0) and isovec-
tor spin-Aip (S =1, T =1) states. The interesting aspect
of the collective spin modes is that they provide direct in-
formation on the spin- and spin-isospin-dependent
effective interactions in the nuclear medium. These
forces are represented on the microscopic level by the re-
sidual particle-hole (p-h) interaction, which correlates the
individual p-h transitions. forming collective states.

The fields that can be used as a probe of spin excita-
tions are the weak, the electromagnetic, and the strong
interactions. In the weak interaction it is the axial-vector
current which couples to the spin of the nucleon and
which induces the Gamow-Teller (GT) transitions of nu-
clear p+ decay. In the nonrelativistic form of the p
current, these transitions are mediated by the spin-
isospin operator g z cr ~+, where g z is the axial-vector
coupling constant. Hence, by studying these transitions,
one obtains valuable information on the spin-isospin
properties of nuclei. Unfortunately, p decay has access
to nuclear states only in a very limited energy window
and misses the strongest states in the spectrum. There-
fore, to map out the complete response function in the
err+ channels, one needs probes that allow the indepen-
dent variation of both energy transfer and momentum
transfer to the target. This is possible with hadronic
probes such as the (p, n) and (n, p) charge-exchange reac-
tions, the properties of which we shall describe in this ar-
ticle.

The electromagnetic field couples to the spin of the nu-
cleon through the nuclear magnetization current, which
consists of an isoscalar part proportional to
(p. +p„)o.Xq and an isovector part proportional to
(p. —p„)cr Xqr3. Here, the nonrelativistic limit of the
current is assumed, and p~

=2.79 and p„=—1.91 are
the intrinsic magnetic moments of the proton and neu-
tron, respectively; q is the momentum transfer. Since the
difFerence of the magnetic moments, (p —p„)=4.71, is
much larger than the sum, (p. +p„)=0.88, it is apparent
that the electromagnetic interaction preferentially probes
spin transitions in the inelastic isovector (o.r~) channel
(Morpurgo, 1958, 1959). Note that the spin operator o.

and the momentum transfer q couple transversely, i.e.„
like o. X q. Therefore the electromagnetic interaction
measures the transverse spin response of nuclei. The ap-
propriate spectroscopic tool to study this response is
backward-angle inelastic electron scattering.

Because of the nucleon's spin and isospin structure, the
strong interaction has several couplings that allow many
di6'erent types of nuclear excitations to be investigated.
In a meson-exchange picture of nuclear forces it is the m-

and p-meson exchange which generates the spin-isospin-
dependent interaction terms. Here the pion plays a spe-
cial role for the following reasons: (i) Since the pion has
a small mass it can be exchanged over large distances.
This feature is especially important for the inelastic
scattering of nucleons from nuclei and for charge-
exchange reactions, where the exchange of neutral or
charged pions between the projectile and the target ex-
cites the nuclear spin-isospin degrees of freedom at
small-momentum transfers. (ii) Because of its pseudosca-
lar nature the pion couples longitudinally, i.e., by o'q, to
the spin of the nucleon, and thus can give complementary
information about nuclear-spin properties to that from
the electromagnetic interaction. In particular, the pionic
coupling can be used to study the virtual-pion field inside
the nucleus. (iii) The pion field itself strongly couples to
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the b,(1232, s= —', , t =—', ) isobar, which in the quark pic-
ture of baryons can be viewed as the internal spin-
isospin-Qip excitation of the nucleon. A central issue in
the study of nuclear spin-isospin modes is therefore
whether these 6 degrees of freedom of the nucleon can
also infiuence the properties of normal GT nuclear P de-
cay.

This question was first discussed in 1973 by Ericson
et aI. (1973) and Wilkinson (1973a, 1973b), who suggest-
ed a renormalization of the axial-vector coupling con-
stant gz for nucleons embedded in a nucleus. Their ar-
guments were based on the partially conserved axial-
vector current (PCAC) hypothesis, which states that the
divergence of the axial-vector current is proportional to
the pion field (Gell-Mann and Levy, 1960). Ericson et al.
(1973) pointed out that the pion field within the nucleus
might be suppressed at small momenta (~q~ -0) because
of the strong, short-range repulsion between nucleons in
the medium. Then, via PCAC, the Gamow-Teller P de-
cay would also be suppressed. This argument was
worked out in more detail by Rho (1974), and Ohta and
Wakamatsu (1974), who showed that the b, isobar would
be the main mediator of the subnucleonic influences on
the GT strength function. A quenching of GT strength
was indeed observed in all (p, n) charge-exchange experi-
ments (Gaarde et al. , 1981), as we shall discuss later.
Whether or not this quenching is due to a 6-isobar effect
is, however, not so clear. There are other many-body
corrections arising from short-range central and tensor
correlations between nucleons which also reduce the ob-
servable strength (Shimizu et al. , 1974; Bertsch and
Hamamoto, 1982).

The GT states test the spin-isospin correlations in nu-
clei at small-momentum transfers. Another interesting
problem is the nature and magnitude of these correla-
tions at higher-momentum transfers of q -(1—2) fm
This is particularly interesting in view of the possible ex-
istence of an enhanced pion field in nuclei in this
momentum-transfer region, as was first discussed by Mig-
dal (1972, 1978, 1979), Sawyer (1972), and Scalapino
(1972) (see also Sawyer, 1979). These authors pointed out
that the correlations could possibly be very attractive at
q —(1—2) fm ' because of the strong attraction of the
one-pion-exchange interaction, and that this attraction
might even lead to a phase transition into a pion conden-
sate at sufficiently high nuclear densities. From the study
of the GT states over the last decade we know that the
short-range correlations in the spin-isospin channel are
sufficiently repulsive to screen the attraction of the one-
pion exchange and hinder pion condensates as well as
their precursors. In addition, the strong attractive tensor
force of the m-exchange interaction, which would be the
driving interaction for formation of a pion condensate, is
reduced by the repulsive tensor component of the p-
exchange potential because of their mutual cancellation
at larger-momentum transfers.

In spite of the absence of co11ectivity, it is of great in-
terest to study the spin-isospin-dependent effective in-

teraction in the high-momentum-transfer region. In par-
ticular, one expects that the interaction in the spin-
longitudinal and spin-transverse channels might show a
quite different q dependence. The former involves the
pion, while the latter is governed by the p meson. Now
the p meson couples to the spin of the nucleon trans-
versely (cr X q), while the pion couples to it longitudinally
(o".q). Therefore their relative contribution to the residu-
al p-h interaction can, in principle, be separated by
measuring the longitudinal and transverse spin responses
of nuclei, respectively. The relevant region in which to
look for such effects in the nuclear excitation spectrum is
the quasielastic peak region. The longitudinal isovector
spin response function should be enhanced and shifted
downwards in energy relative to the free-Fermi-gas
response due to the attraction of the m exchange (Alberi-
co et al. , 1982), while the transverse isovector spin
response should be quenched and shifted upwards in en-
ergy due to the repulsive transverse p-h interaction. The
transverse spin response can be studied by means of in-
elastic magnetic electron scattering, while the measure-
ment of the longitudinal spin response requires complete
spin-Aip transfer measurements with hadronic probes.

Another very interesting problem is the spin response
of nuclei in the 6(1232) resonance region. Again the lon-
gitudinal and transverse spin responses are expected to
behave differently. The longitudinal response gives infor-
mation about pion propagation in the nucleus and, close-
ly connected to this, about the 6 dynamics in the medi-
um. A great deal of information on the 5 resonance in
nuclei has been obtained from pion-nucleus scattering
and y absorption (see, for example, Eisenberg and Kol-
tun, 1980; Oset et al. , 1982; Ericson and Weise, 1988).
New and complementary information comes from the
high-energy (p, n ), ( He, t ), and (d, 2p ) charge-exchange
reactions as well as from high-energy (e, e') experiments.
These reactions have a different selectivity and explore a
different kinematic region of the spin-isospin response
function than pion-nucleus scattering and y absorption.

This article is organized as follows: In Sec. II we
derive some very general, model-independent sum rules
for Fermi and Gamow-Teller transitions starting from
the fundamental current algebra of weak interactions.
These sum rules have to be respected by all nuclear struc-
ture models used for the description of Fermi and
Gamow-Teller transitions. In Sec. III we give an over-
view of the experimental development in inelastic scatter-
ing and charge-exchange reactions, with emphasis on col-
lective spin excitations in nuclei. We discuss only select-
ed experiments, by means of which we try to explain the
physics of spin excitations in a broad way. In Sec. IV we
present the direct nuclear reaction theory needed for the
interpretation of the scattering data. We shall find that
at intermediate projectile energies (E 100 MeV) inelas-
tic nucleon-nucleus scattering and charge-exchange reac-
tions mainly proceed via a direct, single-step reaction
mechanism. Therefore the measured cross section can be
rather reliably calculated within the distorted-wave im-
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pulse approximation (DWIA). This allows for a separa-
tion of the scattering problem into a nuclear reaction
part and a nuclear structure part. It turns out that the
probe-target nucleon interaction can be well described by
the free nucleon-nucleon t-matrix interaction, particular-
ly in the o.w channel. Thus one may regard the probe-
target coupling to be known and one can focus attention
on the nuclear structure aspect of the problem. In Sec. V
we review the nuclear structure aspects of the spin and
isospin excitations. The nuclear-spin response is calcu-
lated either within the various versions of the random-
phase approximation (RPA) or by complete diagonaliza-
tion of a shell-model Hamiltonian. The observed proper-
ties of the spin and isospin modes are related to the resid-
ual p-h interaction. The couplings responsible for the
damping width of the spin modes are discussed. In Sec.
VI we review various microscopic analyses of complete
forward-angle (p, n), (p,p'), and (n,p) spectra as well as
spectra obtained with other probes. These analyses are
intended to decompose the spectra into the various mul-

tipoles in order to determine the strength distribution
functions of states with diferent spin-parity J . Qf spe-
cial interest is the strength function of the GT states be-
cause of the possible quenching of GT strength due to
subnuclear degrees of freedom. Section VII will deal
with the spin-isospin response function in the quasifree
peak region (E —100 MeV) and in the b, -resonance

(E —300 MeV) region. Research in this area is still in

progress, and we shall therefore only review the experi-
mental facts and give some tentative explanations of the
data. Section VIII contains a short summary and con-
clusions.

'T

Vg(x, t)=q(x, t)yq q(x, t), j= 1,2, 3, (2.1)

Af(x, t)=q(x, t)yqy, q(x, t), j= 1,2, 3,
2

(2.2)

Here lz(x) is the leptonic four-vector current and

V& = V&+i V& and A &
= A &+i A & are the charge-

changing vector and axial-vector currents, respectively.
The weak Fermi coupling constant 6 is given by

6=1.15X10 ' GeV ' (2.4)

in natural units (A'=c =1).
Although the currents of Eqs. (2.1) and (2.2) are

defined in terms of the fundamental quark fields, they are
not easy to use directly because the wave functions of
hadrons in terms of quark fields are not known. Never-
theless general statements, derivable from the symmetry
properties of the Lagrangian in the Standard Model, can
be made. This is the current algebra, which we now

briefly review.

where the y z (1,=0, 1,2, 3 ) denote the usual Dirac ma-

trices with y5= i—yoy, y2y3 and q(x, t)=q (x, t)yo. The
~ are the Pauli isospin operators acting on the quark iso-
spin doublet consisting of a d and u quark. The weak-
interaction Hamiltonian describing low-energy P-decay
processes is then given by the effective coupling (Fermi,
1934a, 1934b)

H„„z(x)=— —[1 (x)]t[V& (x)—A& (x)]+H.c. (2.3)
6

2

II. SUM RULES

The charge-changing reactions that we study in this ar-
ticle involve matrix elements between nuclear states very
similar to the matrix elements required for weak-

interaction processes. This gives rise to parallels between
the treatment of nuclear matrix elements, which is usual-

ly made with a nonrelativistic reduction of the operators,
and matrix elements in hadron physics, which are always
written in covariant form. An important guidepost in

both areas is the existence of sum rules for operators of
interest. In this section we shall briefIy review the
relevant strong-interaction theory and derive the sum

rules needed for nuclear physics.
At the most fundamental level, which is the Standard

Model, the weak and electromagnetic interactions are
coupled to hadrons by matrix elements in the quark
fields. There are two types of matrix elements, connected
either with the vector (V) or the axial-vector (A) current.
The currents themselves are matrices in fiavor SU(3)
space. In the following we shall be concerned only with
ordinary (nonstrange) hadrons, in which case the matrix
structure is just that of SU(2) or isospin. In terms of the
quark fields the vector and axial-vector currents are
defined by

X=0, 1,2, 3, (2.5)

[ (V( xt), A~(y, t)]=l't kIAo(x t)5 (x—y),
iI=0, 1,2, 3, (2.6)

[A((x, t), A~(y, t)]=ie~kt Vo(x, t)5 (x —y),
A, =O, 1,2, 3, (2.7)

where e k& is the Levi-Civita antisymmetric tensor
defining the structure constants of the SU(2) group.
However, contradictions arise in field theory for all these
relations except those involving only the timelike com-
ponents of the fields. One may integrate the currents
over space to get the vector and axial-vector charges

gp(t) =I V~~(x, t ) d x, j= 1,2, 3,
QJ„(t)=I A~~(x, t)d x, j=1,2, 3,

(2.8)

(2.9)

A. Current algebra

Current algebra is based on equal-time commutation
relations among the various components of the currents
(Gell-Mann, 1962, 1964). Naively taking the commuta-
tors of the operators of Eqs. (2.1) and (2.2) one obtains

[V((x,t), Vz(y, t)]=ie~kI Vo(x, t)5 (x—y),
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which, in general, are time dependent. If one of the
currents is conserved, that is,

commutator of Eq. (2.12) between nucleon states. For a
neutron state, for example, we have

8 Vt (x)=0, (2.10) & n
I [T+ T—]In &

=
& n

I T+ T —T—T+ ln &

then the corresponding charge Qf is a constant of the
motion,

dgg
dt

(2.11)

For example, the vector current V& = V&+i V& and its
conjugate, V& = V&

—i V&, are partners of the isovector
electromagnetic current V& in an isospin triplet. The
corresponding charges are the isospin operators T~ =Qv
and T3:Qv which, in the absence of the electromagnet-
ic effects, are conserved. This is the conserved Uector
current (CVC) hypothesis of Feynman and Gell-Mann
(1958) and Gershtein and Zeldovich (1956). The isospin
charges generate the isospin SU(2) group and satisfy the
familiar commutation relations

(2.17)

By inserting a complete set of physical intermediate
states into the commutator we obtain

y&nIT+ If &&fIT ln &— g&nIT If &—& f IT+In &=1,
f f

(2.18)

where we used the (nuclear physics) convention
T3 I

n &
=

—,
'

I
n & ( T3 Ip &

= —
—,
'

Ip & ). Since Vi* is a conserved
current, the operators T+ and T allow transitions only
between particles belonging to the same multiplet.
Therefore in the first sum the only allowed intermediate
state is the proton, whereas no allowed intermediate
states appear in the second sum. We thus obtain the well
known result

[T+,T ]=2T3,

[T3,T+ ]=+T+ .

(2.12)

(2.13)
I&pIT In &I'=1 (2.19)

In the presence of symmetry-breaking effects in the La-
grangian, the charges are no longer constants of the
motion. As Gell-Mann (1962, 1964) pointed out, howev-
er, even in this case the charges will satisfy the equal-time
commutation relations

[ QP(t), gv(t)]=i ek, gv(t),

[Qp(t), Q„"( t) ]=i ejkI Q~ (t),

[Q~ (t), Q~ (t)]= iejk(gv(t) .

(2.14)

(2.15)

(2.16)

B. Fermi sum rule

The discussion in Sec. II.A is directly applicable to the
Fermi sum rule, which is obtained by sandwiching the

Equation (2.14) states that the SU(2) algebra generated by
the vector charges QP(t) holds independently of the con-
servation of the charges and of the validity of the con-
tinuity equation for the currents. These relations are
usually referred to as charge algebra (Gell-Mann, 1962,
1964). Equation (2.15) sets a relative scale for the various
vector and axial-vector charges. From Eq. (2.16) it is ob-
vious that the axial charges alone do not form a closed
algebra. This is due to their odd-parity character. Since
Eq. (2.16) is bilinear in axial charges, and since the right-
hand side contains vector charges, the relative scale be-
tween vector and axial-vector quantities is also fixed.

The vector and axial-vector charges together, connect-
ed by the commutation relations of Eqs. (2.14)—(2.16),
define the so-called chiral SU(2)L @SU(2)z algebra. The
current-algebra hypothesis of Gell-Mann states that these
relations hold independently of any explicit form of the
currents. (For a general discussion of current algebra,
see, for example, Adler and Dashen 1968; de Alfaro
et al. , 1973; Cheng and Li, 1984.)

Next we extend this sum rule to nuclei and assume that
the initial state I%'; & of the nucleus has good isospin
To= T3 =(N —Z)/2. For a nucleus with neutron excess
(N ~ Z) we have T+ IV; &

= T+ I To, To & =0. Therefore
the Fermi sum rule reads

Sp (F)=& I & +I I
T

f
=(N —Z) . (2.20)

Because isospin is conserved, all the Fermi strength
S& (F) has to be concentrated in one single final state

If &. This state is the so-called isobaric analog (IAS) of
the target ground state. It is defined by

IIAS&= T I+0&
(N —Z)

A

2v'(N —Z),~,' ' ' (2.21)

where I%'0 & denotes the target ground state and

(j)=—r, (j) irz(j ) denotes t—he isospin lowering opera-
tor that converts the neutron j into a proton without
changing its spatial wave function.

C. Gamow-Teller sum rule

If we take the nonrelativistic reduction of two space-
like axial currents, we obtain a second sum rule that is
very useful for the analysis of nuclear charge-exchange
reactions. But note that such a commutator is not one of
the permissible ones in Sec. II.A. In low-energy nuclear
physics the nucleons are usually treated as pointlike par-
ticles which interact via an effective two-nucleon interac-
tion resulting from meson exchange. Explicit mesonic
degrees of freedom are not considered. In this situation
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we can construct the nucleonic weak currents as follows.
We group neutron (n) and proton (p) into an isospin dou-
blet X = ("), and assume that the nucleon field can be de-

p
scribed by the Dirac field operators %z(x, r ) for pointlike
particles. Then, in the impulse approximation, the vector
and axial-vector currents associated with the SU(2) trans-
formations are given by

V( (x, t ) =0'~(x, t )yi 'Pz ( x, t ), j= 1,2, 3, (2.22)
2 N

A(( xt)=%~(x, t)yiy5 4'~( xt), j=1,2, 3,
2

(2.23)

%~(x, t)yo ql~(x, t) Il~( xt) q'~(x, &),

r (2.24)

V~(x, t )yk 4'~(x, t )~0, k = 1,2, 3,
2

while those of the axial-vector current become

+j
%~(x, r )yoy, %~(x, r )~0,

2
(2.25)

where qlz(x, t):—4 z(x, r )yo. The currents fulfill the
commutation relations of Eqs. (2.5)—(2.7), as can be im-
mediately verified by inserting them into these equations
and by making use of the canonical anticommutation re-
lations for the Dirac field operators,
[ql;(x, t), Il~(y, t)[ =5J5 (x—y). Note that in Eq. (2.23)
we have put g~ =1 since we assume that there is no sub-
structure of the nucleon in the present model. In Sec.
II.D we shall discuss the mesonic effects on g„.

In allowed p decay, and for the purposes of the present
discussion, we are interested only in the nonrelativistic
situation. Under these circumstances, the time and space
components of the vector current reduce to

A ++4 ~(x, r )o k 0'~(x, t )~—,
' g 5(x—r; )o k (i)r+(i),

(2.27)

where the sum runs over all 2 nucleons in the nucleus.
The operators on the right-hand side are charge-
changing density operators, which describe the probabili-
ty for finding nucleons at the space point x with the cor-
responding spin and isospin specifications. These opera-
tors belong to a larger set of 16 local one-particle density
operators p(x, o, r), which form a 4X4 matrix in the
spin-isospin variables.

Inserting the results of Eqs. (2.26) and (2.27) into Eq.
(2.7), we obtain after integration over coordinates x and
y, the following commutation relation:

[P+(p),P (p) ]=2T, , p = —1,0, + 1,
where

(2.28)

p+(p) =—,
' g o„(i)r+(i) (2.29)

T, =
—,
' g ~3(i) . (2.30)

S& (GT) —S& (GT)=pl(+&lp (p, )lW, )l'
f~p

Here, p+ is the nonrelativistic Gamow-Teller (GT) opera-
tor, o„(i) is the nucleon spin operator in spherical basis,
and T3 is the third component of the total isospin. By
taking the expectation vaIue of the commutator of Eq.
(2.28) with respect to the initial state of the nucleus l%; )
and by inserting a complete set of final states l%&) be-
tween the operators p+(p) and p (p), we obtain the non-
relativistic GT sum rule

+j
(x t)X 'YI5 +x(x r)

2
=3(X—Z) . (2.31)

T

-+
quilt( xt)ok 4~(x, t), k=1,2, 3 .

2

4&~(x, t) 4z(x, t)~ —,
' +5(x—r;)~+(i), (2.26)

Here the o.
k are the Pauli spin matrices, and the field

operators on the right-hand side of Eqs. (2.24) and (2.25)
are supposed to be nonrelativistic ones acting in the two-
component Pauli spin space. The connection between
the charge-changing vector and axial-vector currents and
the corresponding configuration-space operators is estab-
lished by the following relationship (see, for example,
Fetter and Walecka, 1971):

Note that the wave functions l+I) represent either the
wave functions of the (Z+ 1,N 1) or (Z —1,%+ I—)
daughter nuclei, respectively. The sum rule is expressed
in terms of the difference between the total transition
strengths S& (GT) and S& (GT) measured in p and p+
decay, respectively. This difference depends only on the
neutron excess (N —Z) and is totally independent of the
states l'P; ) and l%&). This reilects the model indepen-
dence of the sum rule.

A Gamow-Teller sum rule can also be derived within
the constituent quark model, which allows us to discuss
possible effects of the internal nucleonic degrees of free-
dom on the GT sum rule. In the quark model (Gell-
Mann, 1964; Zweig, 1964) the baryons are supposed to
consist of three-quark (qqq) bound states. The baryons
occur in SU(3) singlets (1), octets (8), and decuplets (10).
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The neutron and proton belong to the octet of J
baryons, which are three-quark states with total orbital
angular momentum I.=0 and with total quark spin
J =

—,
'+. The states in which the quark spins add up to

J =
—,
'+ represent the SU(3) decuplet of baryon reso-

nances. The b, (1232) isobar belongs to this latter multi-
plet.

The derivation of the sum rule within the constituent
quark model starts from the definition of the quark
currents in Eqs. (2.5)—(2.7). Then the nonrelativistic lim-
it of the quark currents is taken in analogy to Eqs. (2.24)
and (2.25). Insertion of the currents into Eq. (2.7) and in-
tegration over coordinates x and y then gives us the com-
mutation relation of Eq. (2.28) in terms of the quark
spin-isospin operators

3A

p+(p) =
—,
' g o„(i)r+(i), (2.32)

where the sum now runs over all quarks in the nucleus.
To explain the properties of the quark operators, let us
consider the operator p~ (p= —1) as an example. This
operator transforms d quarks with spin 1 into u quarks
with spin $ while it gives zero for all other quark states.
Therefore, if we apply this operator to a neutron wave
function that contains the quark configuration
lu Td td J, &, this configuration is changed into
lu 1'u $d J, &, which is a component of the proton as well
as of the 6+(1232). Thus p~ (p= —1) changes the neu-
tron either into a proton or into a 5+. Similarly it trans-
forms a proton into a 6++.

With the quark spin-isospin operators of Eq. (2.32) we
obtain the following sum rule for the neutron:

&nl[p+(o), p (0)]ln &= 1&pip (0)ln &I

+l&a+lp' (o)ln &l'

(2.33)

Here, the matrix elements were calculated within the
constituent quark model (see Kokkedee, 1969), and the
nuclear physics convention for the isospin was used, that
is, T3ld &= —,'ld & and T3lu &= —

—,'lu &. The sum-rule

value for the proton turns out to be just the negative of
that for the neutron, i.e., &pl[p~+(0), p~ (0)]lp &= —1.
From the value of l &pip't (0)ln &l

= —', we recognize that
the axial-vector coupling constant in the constituent
quark model is —,. This deviation from the experimental
value (g z = 1.26) is assumed to be due to strong-
interaction effects not included in the constituent quark
model.

To estimate the importance of 6-h excitations for the
Gamow-Teller sum rule we make a naive model of the
nucleus assuming that it is composed of 2 nucleons, each
of which is represented by a bag containing three
confined quarks. The ground state of the nucleus is then
described by a Slater determinant of A noninteracting
bags with the energetically lowest single-particle orbitals
being occupied. The action of the operator pq (p) on the
ground-state wave function produces p-h as well as 5-h
excitations. The sum rule reads

~@ (GT) —~@ (GT)= & l&plp' (p)lh&l' —& l&p p~j (p)l h&l'+ y 1&alp' (p)lh&l' —y 1&alp~~(p)lh& '
p-h) p p-h) p A-h, p b-h, p

", (N —Z)+ "(N+—3Z )
—4(Z—+3N )—

=3(N —Z), (2.34)

where the sum over h is performed with respect to all oc-
cupied single-particle states. We notice that in individual

p+ directions the total transition strength to the 6-h
states is very large. This refIects the fact that there exists
no Pauli blocking for 6-h excitations, so that all nucleons
in the nucleus can participate in 6-h transitions. For the
usual p-h excitation s, however, the total transition
strength remains proportional to the neutron excess
(N —Z). A comparison of Eqs. (2.31) and (2.34) reveals
that in the quark model the dominant part of the GT
strength is carried by the 6-h excitations.

D. Adler-Weisberger sum rule

It is still possible to make a useful sum rule involving
the axial current by introducing a new relation, the par-
tially conserved axial coupling (PCAC), which relates the
divergence of the axial current to the pion field. This

sum rule is based on the commutator of Eq. (2.16) and is
the so-called Adler-Weisberger sum rule (Adler, 1965;
Weisberger, 1966). In the following we shall only de-
scribe the main ideas for its derivation and refer the
reader to the original papers by Adler (1965), Weisberger
(1966), and Fubini and Furlan (1965) for details (see also,
Adler and Dashen, 1968). Unlike the vector current
Vz (x, t ), the axial-vector current 3 z (x, t ) is not an ex-
actly conserved quantity. Therefore the intermediate
states to be inserted into the commutator of Eq. (2.16) be-
long to a much wider class of states than just to a single
multiplet. The coupling to states outside the multiplet is
due to the nonconservation of the axial charges Q~ (t).

In order to determine the possible intermediate states,
we make use of the partially conserved axial current
theory, due originally to Gell-Mann and Levy (1960).
The PCAC theory states that the divergence of the axial
current is proportional to the pion field
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8 Ai—+ (x, t)=m f 4 +—(x, t), (2.35)

where 4 —(x, t) is the pion field operator creating or an-
nihilating a pion at point (x, t ), m = 140 MeV is the pion
mass, and f =93 MeV is the pion-decay constant.

Integrating Eq. (2.35) over x and using the fact that the
spatial part A(x, t ) of the axial current vanishes for large
distances, we find that the time derivative of the axial
charge operator is given by

dg —(t), BA,(x, t)
dt

= fd'x ' ' = fd'xO'A i(x, t)
at

=m „f f d x 4 +—(x, t ) . (2.36)

Since 4+—(x, t) is a pion field operator, Eq. (2.36) shows
that Q~(t) can connect states differing in pion occupa-
tion number by unity. This means that in the evaluation
of the expectation value of the commutator (2.16) we
have to consider, besides the one-nucleon states

l
n &, also

one-nucleon plus one-pion states k & as intermediate
states. Now we sandwich the commutator of Eq. (2.16)
between proton states p & and insert a complete set of in-
termediate states into the commutator. We obtain

—&&plgg ln &&nlgg lp &

+y. &pig, lk&«lg;lp &
—(g, -g;)

=2&plg~lp &
= —I, (2.37)

2f E„+mg

where we have separated out the one-nucleon (the neu-
tron) term. In the last step, we made use of the fact that
the vector charge gi, is conserved. The calculation of
the various matrix elements in Eq. (2.37) can be found in
the original papers by Adler (1965) and Weisberger
(1966), and we state only the final result here. The first
term is just the negative of the axial-vector coupling con-
stant squared, —g&, while the second term can be related
to an energy integral over the total pion-nucleon cross
section for zero-mass pion scattering (m ~0). The re-
sult is the Adler-Weisberger relation,

sandwiched between nuclear states
l 4; &. Following a

similar procedure to that described before for the nu-
cleon, one obtains

(N —Z) =(X —Z )(g ~ ),ir

f dE +„AE n AE
E

(2.39)

where (g„) ir is the eff'ective axial-vector coupling con-A e +~
stant of the nucleon in the medium, and o „,"(E ) is the
total pion-nucleus cross section for soft pions (m ~0).
Assuming a complete suppression of the dispersive in-
tegral on the right-hand side of Eq. (2.39) due to the
strong shadowing effect in pion-nucleus scattering, one
obtains (gz ),ir —-1 (Delorme et al. , 1982).

The fact that (g~ ),z might be diff'erent from g„has
been discussed for some time (Ericson, 1971; Wilkinson,
1973a, 1973b; Ohta and Wakamatsu, 1974; Rho, 1974).
This conjecture is based on the PCAC relation of Eq.
(2.35) and the possible modification of the pion field in-
side the nucleus. The nuclear medium has two major
effects on the pion field. First, when a nucleon is sur-
rounded by other nucleons a virtual pion emitted by it
will be successively scattered by these nucleons as it
propagates through the nucleus. In addition, of course,
the other nucleons will also act as sources of pions and so
contribute to the total pion field. Second, there is a re-
normalization of the strength of the pionic source due to
correlations between nucleons. These correlations pro-
duce a "correlation" hole around the nucleon, similar to
the hole around an electric dipole in a dielectric medium
which leads to the famous Lorentz-Lorenz effect. In the
case of the pion field, the axial dipole strength of the nu-
cleon (-glor, . ) is renormalizable in an analogous way,
as was first pointed out by Ericson and Ericson (1966).
Estimates of this effect in nuclear matter lead to a
quenching of gz, that is, to (gz ),ir-—1 (Delorme et al. ,
1976). To what extent g~ is quenched in finite nuclei is
still an open problem. There are significant surface and
other many-body effects that will modify this estimate.
We shall come back to this point in Secs. V, VI, and VII.

X [o„„~(E ) —o „,~(E ) ] . (2.38)

Here, cr„,~(E ) is the total cross section for scattering of
a zero-mass ~—on a proton at the pion center-of-mass
energy E . This cross section can be estimated by extra-
polation from the experimental cross section for finite-
mass pions. Using the experimental values one obtains

g~ =1.24, which agrees quite mell with the most recent
experimental value of g„=1.262+0.005 (Klemt et al. ,
1988).

The Adler-Weisberger relation was generalized to nu-
clei by Kim and Primakoff (1965) and Ericson (1971). In
the nuclear case the commutator of Eq. (2.16) is

III. EXPERIMENTAL OVERVIEW
OF SPIN-ISOSPIN EXCITATIGNS

In this section we try to give an overview of the experi-
mental development in nuclear-spin physics over the past
decade. In the presentation of the scattering data we
shall sometimes make use of results from nuclear reac-
tion and nuclear structure theory, which is described in
more detail in Secs. IV and V. If necessary, the reader
may go on to these sections to find the appropriate infor-
mation and explanations.
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A. The Gamow-Teller (GT} resonance

5

(p,n )

Ep = 200
169T e = 0o

The experimental breakthrough in our understanding
of spin-isospin correlations in nuclei came in 1980 with
the beautiful (p, n) charge-exchange experiments at the
Indiana University Cyclotron Facility (IUCF). These ex-
periments demonstrated the existence of very collective
spin-isospin modes in nuclei (Moake et al. , 1979; Ander-
son et al. , 1980; Bainum et al. , 1980; Goodman et al. ,
1980; Horen et al. , 1980, 1981; Gaarde et al. , 1981}.
Figure 1 shows measured zero-degree (p, n) spectra of
various targets at an incident energy of E =200 MeV
(from Gaarde et al. , 1981). The spectra of nuclei with
neutron excess are seen to be dominated by one prom-
inent peak, which is interpreted as the giant Gamow-
Teller resonance. This collective mode was predicted by
Ikeda, Fujii, and Fujita (1963}as early as 1963. These
authors inferred the existence of the GT resonance from
the absence of spin-isospin strength at low excitation en-
ergies. Assuming a collective GT state at high excitation
energies, they could show that the empirically observed
hindrance (quenching) of allowed GT P decays in medi-
um and heavy-mass nuclei could be explained as a core-
polarization effect. Core polarization means that the en-
ergetically high-lying GT state, which is inaccessible to P
decay, couples destructively into the low-lying GT states
and reduces their strength. Such an effect had been in-
troduced earlier by Blin-Stoyle (1953) and Arima and
Horie (1954a, 1954b) in order to explain the systematic
deviation of nuclear magnetic moments in odd-A nuclei
from the Schmidt values of the extreme single-particle
picture. First experimental indications of the GT reso-
nance were observed in 1975 in a 45-MeV Zr(p, n) ex-
periment by Doering et al. (1975), and thereafter in vari-
ous low-energy Zr( He, t) experiments (Galonsky et al. ,
1978, Ovazza et al. , 1978).

The GT resonance is a collective spin-isospin oscilla-
tion in which the excess neutrons coherently change the

lOO-
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direction of their spins and isospins without changing
their orbital motion. In the (p, n) reaction this spin-
isospin mode is excited by the V cr~ o .v. .v component
of the projectile-target nucleon interaction. The labels p
and j refer to the projectile and the struck target nucleon,
respectively. With respect to the target the (p, n) probe
has a similar spin-isospin operator structure to the GT
operator of P decay. However, the (p, n) reaction is con-
nected with P decay only if the GT cross section is mea-
sured at very-small-momentum transfers q, since allowed

P decay takes place at essentially q =0. In the (p, n) reac-
tion this condition can be met only for zero degree
scattering and at high bombarding energies (Fz ~ ao ).

The fact that the orbital motion of the nucleons is un-
changed in the GT excitation can be observed from the
angular distribution of the GT resonance, which has a
characteristic L =0 shape, with the maximum cross sec-
tion at zero degrees. This means that no orbital angular
momentum (L) is transferred in the reaction. In the left
panel of Fig. 2 the angular distribution of two GT states
in Zr are shown. Both show the characteristic L=0
shape. A spin transfer of S= 1 in the reaction can be de-
rived only indirectly from the incident-energy depen-
dence of the GT cross section, as we shall discuss shortly.
For a target ground state with spin-parity J =0, the
spin transfer then makes the GT resonance a J"=1+
state. The isospin transfer of T3 = —1 is obvious because
of the charge-exchange requirement. The single-particle
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FIG. 1. Neutron time-of-flight spectra of various target nuclei
at E~ =200 MeV, measured at the Indiana University Cyclotron
Facility (IUCF). The spectra are normalized to show relative
cross sections. From Gaarde et al. (1981).
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FIG. 2. Angular distributions from the Zr(p, n) Nb reaction
for different excitation energy regions. The curves (with arbi-
trary normalization) are angular distributions calculated in the
DWIA for typical single-particle transitions. From Gaarde
et al. (1981).
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transitions contributing to the GT oscillation are shown
schematically in Fig. 3(b) for the closed-shell nucleus
"Zr.

The GT resonance appears energetically somewhat
above the well known isobaric analog of the target
ground state. The isobaric analog state was first
discovered in 1961 by Anderson and Wong (1961) in a
'V(p, n) 'Cr experiment at E&=14 MeV .The single-

particle transitions involved in case of the isobaric analog
excitation are schematically shown for the nucleus Zr
in Fig. 3(a). The (p, n) reaction excites the isobaric ana-
log through the force component V w v. , which requires
no spin Aip (S =0). While the isobaric analog state is the
dominant peak in the spectrum at low incident energies
(E~ ~100 MeV), it is completely swamped by the large
GT cross section at E =200 MeV. In Fig. 1 the isobaric
analog state is hidden in the envelope of the GT reso-
nance and its position is indicated by the arrow. This
large difference in the excitation strengths of isobaric
analog state and GT resonance as a function of the in-
cident projectile energy is due to the strong energy
dependence of the V, term in the projectile-target nu-
cleon interaction. The force strength V, gets strongly re™
duced with increasing projectile energy, while the force
strength V is nearly independent of the incident energy
(Goodman, 1980; Love, 1980; Petrovich, 1980). Empiri-
cally this can best be seen from the reaction ' C(p, n )

' N,
where the GT transition to the J =1,E =3.95 MeV
state, and the isobaric analog transition to the J"=0+,
E =2.31 MeV state are energetically well separated.
The relative strength for these transitions in ' C between
60 and 650 MeV is shown in Fig. 4 (Gaarde, 1985; Rapa-
port, 1988). Here the spectra have been arbitrarily nor-
malized to give a constant peak height for the GT transi-
tion to the 3.95-MeV state in '"N. The relative energy
dependence of the V and V, interactions causes the
cross section to the 0+ isobaric analog state to decrease
between 60 and 200 MeV and then to increase slightly at
650 MeV relative to the GT transition. The physical ori-
gin of this different behavior of the two force components
will be explained in more detail in Sec. IV.

lg
I

1g 1g 'gs ~
~= ig

SB'
ZF'

(a)

FIG. 3. Schematic picture of single-particle transitions in-
volved in the (a) Fermi and (b) Gamow-Teller transitions. The
transitions are excited by the operators T and P (p), respec-
tively. The dashed line indicates an M1 transition excited by
(e, e') and (p,p') reactions.

60 MeV

14C( ~14N

120 MeV

00
L
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I ~.9S
+

1
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FIG. 4. Zero-degree cross-section spectra for the ' C(p, n)' N
reactions at the indicated bombarding energies. The spectra
have been arbitrarily normalized. From Gaarde (1985) and Ra-
paport (1989).

From Fig. 1 it is clear that the GT resonance is very
selectively excited by the (p, n) reaction at E~ =200 MeV.
Actually it provides us with one of the most beautiful ex-
amples of a giant resonance in nuclei [besides the giant
electric dipole resonance, which is very selectively excit-
ed by photon absorption (Baldwin and Klaiber, 1947,
1948; Berman and Fultz, 1975)]. With increasing neu-
tron excess the GT cross section increases, indicating
that a large fraction of the excess neutrons is participat-
ing in the oscillation. In the doubly closed-shell nucleus

Ca, where all nucleonic spins are saturated, no strong
GT state appears, as one expects from the shell model
and the Pauli principle. In heavy nuclei, like Pb, most
of the GT transition strength is concentrated in one col-
lective state at a high excitation energy. This concentra-
tion of strength in one collective state that is pushed up
in excitation energy proves that there exist strong, repul-
sive spin-isospin correlations in the nucleus. These are
generated on the microscopic level by the residual
particle-hole (p-h) interaction in the err channel. The p-h
interaction can be simply related to n. and p-meson ex-
change with important corrections coming from short-
range correlations between the nucleons in the medium
(Speth et al. , 1980). This will be discussed in more detail
in Sec. V.

The GT resonance is characterized by a rather broad
peak with a width of about 4 MeV in all heavy-mass nu-
clei, while the isobaric analog state is a rather sharp
peak. This difference in width is due to the different iso-
spin properties of the two states. To explain this let us
consider the excitation of an isovector vibration in a nu-
cleus with neutron excess and. ground-state isospin
To = T3 =(N Z)/2. The isobaric an—alog state is ob-
tained by applying the isospin lowering operator T to
the ground state t To To ) of the parent nucleus and thus
has isospin quantum numbers t T&& To —1), as is schemat-
ically illustrated in Fig. 5 (from Satchler, 1983). Since
Fermi transitions occur only between members of an
isomultiplet, the whole Fermi strength is concentrated in
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FIG. 5. Isospin transitions in a nucleus with ground-state iso-
spin To = T3 =(X—Z ) /2. The isospin Clebsch-Gordan
coe%cients are denoted by C. From Satchler (1983).

the isobaric analog state. In the neighborhood of the iso-
baric analog there are no other states with the same iso-
spin To, since such states are much higher in excitation
energy. Therefore the isobaric analog state has practical-
ly no states to mix with and the resulting width is small.
The situation is different for the GT states. Here the GT
strength is spread over a triplet of states with isospins
Tf =To —1, To, To+1, as is shown in Fig. 5. Most of
the strength goes to the states with Tf = To —1, as can be
seen from a simple application of the Wigner-Eckart
theorem to the isospin transition matrix element (T&
To —1 IP (p) I TOTO). This matrix element is proportion-
al to the usual Clebsch-Gordan coefficient C=(TO To 1
—

1 I'rf To —1), which, for a nucleus with neutron excess
(To))0), is largest for Tf =To —1. The corresponding
values of C for different isospins Tf are given in Fig. 5.
The GT state with isospin Tf = To —1 is now surrounded
by a large number of 2p-2h states with the same isospin,
which couple into the GT mode and lead to a fragmenta-
tion of the strength. This so-called nuclear configuration
mixing effect will be addressed in Sec. V.

As was shown in Sec. II, there exist very general
model-independent sum rules for both the Gamow-Teller
and the Fermi operators. The Fermi sum rule states that
if the initial state

I 4; ) has good isospin
To= T3=(N Z)I2, the Ferm—i strength S& (F) has to

be concentrated in one state because of isospin conserva-
tion. Consequently the S& (F) has to vanish. Experi-

mentally nearly all the S& (F) strength is found in the

isobaric analog state, showing that isospin SU(2) is a
good symmetry of nuclei. For GT transitions such a con-
servation law does not hold because SU(4) is not a good
symmetry. Therefore the S& (GT) strength is generally

nonvanishing. In spite of this fact one can use the sum
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FIG. 6. Fraction of the Gamow-Teller sum-rule strength ob-
served in the (p, n) reactions from different targets. For the
heavier targets the full points represent the strength concentrat-
ed in the peaks, whereas the shaded area also includes the
strength under the collective states. From Gaarde (1985).

rule of Eq. (2.31) to give a lower bound for the total
amount of S& (GT) strength to be expected. This lower

bound is obtained from the sum rule by putting
S& (GT)=0; that is, S&'"(GT)=3(N —Z). The condi-

tion S& (GT)=0 is approximately fulfilled for nuclei

with a large neutron excess, since in this case all states
for transferring a proton into a neutron within the same
major shell are Pauli blocked. For example, if we assume
an independent-particle shell-model ground state for
9 Zr, as is done in Fig. 3, we find that S~ (GT) =0 due to
the Pauli blocking. In the independent-particle model
the ground state is described by a single Slater deter-
minant. On the other hand, every nucleus shows
ground-state correlations, that is, the true ground state
can only be represented by a sum of various Slater deter-
minants instead of a single one. In the case of a correlat-
ed ground state the sum-rule result of the independent-
particle model is changed, since the ground-state correla-
tions always give rise to S& (GT)%0 because the sharp+
proton and neutron Fermi surfaces are smeared out.
Therefore the S& (GT) strength is also changed and now

becomes larger than the 3(N —Z) sum-rule bound.
The GT cross section measured in the (p, n) experi-

ments can be converted into GT sum-rule strength. The
procedure for this conversion will be described in Sec.
IV. The surprising result is that experimentally only
60% of the expected total GT strength of
SP'"(GT)=3(N —Z) can be located in the excitation en-

ergy region where the major GT peaks occur. This
means that at least 40% of GT strength is missing from
the spectrum. This feature is found for many nuclei all
over the periodic table. A summary of the results ob-
tained for the total GT strength as extracted from 160-
MeV (p, n) data (Rapaport, 1983; Gaarde, 1985) is shown
in Fig. 6. For the lighter nuclei the GT strength is often
concentrated in a few individual peaks, as can be seen,
for example, in Fig. 4. In heavy nuclei the GT resonance
appears on top of a large continuum (background), the
shape arid magnitude of which is not known. A few ex-
amples of spectra are shown in Fig. 1. Although the
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502 Franz Osterfeld: Nuclear spin and isospin excitations

peak-background ratio is very good for the GT states, the
decomposition of the spectra into resonance and back-
ground seriously limits the accuracy with which the
amount of sum-rule strength exhausted by the GT reso-
nance can be determined (Osterfeld, 1982). This uncer-
tainty is indicated by the error band in Fig. 6.

The question of the "missing" GT strength has stimu-
lated much experimental and theoretical work in recent
years. Two physically difFerent mechanisms have been
brought forward to explain this so-called quenching of
the total GT strength. The first is that b, (1232)-
isobar —nucleon-hole (b;h) states couple into the proton-
particle —neutron-hole (pn ') GT mode and remove part
of the strength from the low-lying excitation spectrum
(Ericson et a/. , 1973; Wilkinson, 1973a, 1973b, 1974,
1977; Ohta and Wakamatsu, 1974; Rho, 1974; Delorme
et al. , 1976; Oset and Rho, 1979; Knupfer et al. , 1980;
Toki and Weise, 1980; Bohr and Mottelson, 1981; Brown
and Rho, 1981; Harting et al. , 1981; Krewald et al. ,
1981; Suzuki et a/. , 1981; Osterfeld et a/. , 1982). This
mechanism invalidates the sum rule of Eq. (2.31), which
is based on the assumption that only structureless nu-
cleons are the building blocks of the system. The con-
sideration of the internal nucleonic degrees of freedom
changes the sum rule, and we have to consider a sum rule
like that of Eq. (2.34). The latter sum rule says that in
the quark model the dominant part of the strength is car-
ried by b, -h excitations. A schematic picture of the
strength function is shown in Fig. 7.

%'ith no mixing between p-h and 6-h states, the low-
energy strength excited in (p, n) reactions would still be
greater than or equal to 3(X—Z), since the rest of the
sum-rule strength is located at 300 MeV excitation ener-

gy in the 6-resonance region. However, if there is a
strong coupling between the low-lying GT Inodes and the
high-lying 5-h states, then these states will inhuence each
other. This will happen in spite of the fact that these
states are 300 MeV apart in excitation energy. It is just
the large number of 6-h configurations which is able to
bridge the energy gap of 300 MeV and bias the low-lying

GT modes. If the coupling is repulsive the transition
strength to the low-lying GT states will be reduced while
that to the 4-h states will be enhanced. Whether or not
this mechanism plays a major role in the quenching of
the total GT strength depends critically on the strength
of the residual interaction which couples the p-h states
with the 6-h states. The properties of this interaction
will be discussed in more detail in Sec. V.

The second mechanism for explaining the "missing"
GT strength is ordinary nuclear configuration mixing
(Shimizu et a/. , 1974; Towner and Khanna, 1979, 1983;
Bertsch and Hamamoto, 1982; Towner, 1984, 1987;
Drozdz et al. , 1986a, 1986b; Drozdz et a/. 1987; Nish-
izaki et a/. , 1988). Here, energetically high-lying two-
particle/two-hole (2p-2h) states mix with the lp-lh GT
states and shift GT strength into the energy region far
beyond the GT resonance. Again the importance of this
efFect depends sensitively on the coupling strength be-
tween the 1p-1h and 2p-2h states. If this mechanism is
the right one, then the so-called missing GT strength
would actually be located in the physical background
below and beyond the giant GT state. The detection of
this strength would not be an easy task from an experi-
mental point of view because the cross section on the
high-energy side of the GT resonance in the 0' spectrum
is continuous and structureless. This makes it difFicult to
extract information from it. Some estimates of the
amount of GT strength in the continuum can be given by
a careful analysis of the continuum spectra within micro-
scopic nuclear structure and reaction models. We shall
come back to this problem in Sec. VI.

B. The magnetic dipole {M1)resonance

The GT state with isospin TI = To is the analog of the
magnetic dipole (M 1) transition in the parent nucleus, as
is indicated in Fig. 5. The M1 operator is a one-body
operator

X

LLJ

K

1 gp+gn
Po g gi/J + SJ

j=1

g, /, + s, r3(j)
1 gp gn (3.1)

300 MeV

FICx. 7. A schematic picture of the Gamow-Teller strength
function, including the 6-h excitations in the spectrum. The
overall strength in the delta region is higher because there are
no Pauli restrictions on the excited nucleons. Depending on the
coupling to the states in the low-energy region, the residual in-
teraction may shift substantial strength out of the low states.
From Bertsch and Esbensen (1987).

consisting of an orbital part / (g&=1 for protons and

g& =0 for neutrons) and a spin part s (the gyromagnetic
factors are g =5.58 for protons and g„=—3.82 for neu-

trons), where po=efi/2M c is the nuclear magneton (e is
the proton charge and M is the proton mass). In Eq.
(3.1) the Ml operator is written as a sum of an isoscalar
and an isovector term, the spin parts of which measure
the isoscalar (o) and isovector (crr3) spin correlations in

the nucleus, respectively. According to the shell model,
for a closed-shell nucleus with spin unsaturated j-shell
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closures, the M1 strength should be concentrated in a
few p-h states. In Zr, for example, there is only one p-h
transition possible in the independent-particle model,
namely, the neutron transition [vg7/2(vg9/2) '],+ [see

Fig. 3(b)].
Before 1980, strong M1 transitions were known only in

light nuclei {in p-shell and sd-shell nuclei; Fagg, 1975;
Hanna, 1974, 1977, 1980). Searches for Ml strength in
heavy-mass nuclei mostly failed because of the high-level
density of states in the excitation energy region where the
shell model would predict the M1 states to be, and be-
cause of the difficulties in making the right parity assign-
ments to M1 candidates under consideration (Hanna,
1980; Raman, 1979; Brown and Raman, 1980). In 1980,
however, a strong and isolated M1 transition was
discovered in Ca at E„=10.23 MeV in a high-
resolution inelastic electron-scattering experiment at the
DALINAC in Darmstadt (Steffen et al. , 1980). The ob-
served 1+ state corresponds to a [vf5/2(vf7») '],~ neu-

tron spin-Aip transition. At the same time, the analog of
this state was also discovered in the Ca(p, n) Sc reac-
tion at E&=160 MeV (Anderson et al. , 1980). A zero-
degree Ca(p, n) spectrum measured in a later experi-
ment at E~ = 135 MeV (Anderson et al., 1985a) is shown
in Fig. 8 and the (e, e') spectrum of several Ca isotopes is
shown in Fig. 9. In the zero-degree Ca(p, n) spectrum,
one can clearly identify the isobaric analog state at
E„=6.67 MeV and the three 1+ states over which the
GT strength is distributed in Sc. The narrow 1+,
Tf 4 state at E = 16.8 MeV is the isobaric analog of
the J = 1+ state at E„=10.23 MeV in Ca shown in the
upper part of the (e, e') spectrum of Fig. 9. The analog
states have a narrow width, as expected from their iso-
spin character (Tf =4), and stand out strongly from the
underlying background.

The 1+ state in Ca carries a large transition strength

15— 4eCa (e e.}
Eo=39~eV
8 =165

of B(M1)1 =4.3 po, which is roughly —,
' of the value pre-

dicted in the independent-particle model (12 po). In addi-
tion to this giant M1 resonance, further weakly excited
1+ states are identified, which lead to a total observed
strength of 5.3+0.6po. This value is quenched compared
to the independent-particle model value of 12po. The
amount of quenching is similar to that observed for GT
states.

It is important to notice that there exists no model-
independent sum rule for M1 transitions. The total M1
strength strongly depends on the properties of the nu-
clear ground-state wave function. If the ground-state
wave function is strongly mixed among various Slater
determinants, an elaborate microscopic nuclear structure
calculation is needed to define a quenching factor. The
shell-model calculations of McGrory and Wildenthal
(1981) performed within the full pf-shell-model space
give a total 1+ strength of 7.3po in Ca. Microscopic
RPA calculations (Suzuki, Krewald, and Speth, 1981)
give a similar value of 8.2 po. This shows that even in the
doubly magic nucleus Ca there exist strong ground-
state correlations that produce a quenching of the total
Ml strength by -25 —30% relative to the independent-
particle model estimate. A further quenching of —30%
is needed to explain the experimental data. This addi-
tional quenching can be either due to the 6-hole mecha-
nism or due to the 2p-2h nuclear configuration mixing
effect. We remark that the renormalization of the cd~3

operator suggested by the excitation strength of these 1+
states is essentially the same as that required for ground-
state magnetic moments (see Arima et al. , 1987).
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FIG. 8. Neutron energy spectrum for the Ca(p, n) Sc reaction
at 0=0' and E~ =135 MeV (from Anderson et al. , 1985a). The
vertical bars indicate the location and relative strength of 1+
states predicted by the shell-model calculations of Anderson
et aI. (1985b). Similar shell-model calculations were also per-
formed by Gaarde et al. (1980).
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FIG. 9. Inelastic electron-scattering spectra from the even-even
Ca isotopes. The arrows point to strong J =1+ states. From
Steffen et al. (1980).
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From the lower part of Fig. 9, it can be seen that two
relatively strong 1+ states also appear in the "spin-
saturated" nucleus Ca where the independent-particle
model would not predict any. These 1+ states are the re-
sult of the ground-state correlations, which break the
spin-saturated j-shell closure. Amazingly, in the nucleus

Ca, where one would expect several 1+ states because
of the partially filled f 'neut—ron shell, no strong 1+ state
appears. A closer inspection of the spectrum shows,
however, that the 1+ strength is distributed over very
many weak lines, indicating an extreme fragmentation of
the strength due to the strong configuration mixing in
~ca.

The strong 1+ state in Ca was confirmed by various
high-resolution (p,p') experiments (Berg et a/. , 1982;
Fujita et al. , 1982; Rehm et al. , 1982; Crawley et al. ,
1983). In these experiments a similar amount of quench-
ing is observed to that in (e, e'). In the other Ca isotopes,
however, significant differences occur between the (p,p')
and the (e, e') results. Sometimes more 1+ states are seen
in (p,p') than in (e, e') and vice versa. A possible ex-
planation is that some of the 1+ states correspond
predominantly to the orbital (/) transitions, which are
strongly excited by electrons but only weakly by protons
(Bohle et a/. , 1986; Hartmann et a/. , 1987). In some
cases a destructive interference between the orbital and
spin parts of the Ml operator might occur in (e, e'). This
could lead to a suppression of certain states in (e, e') but
not in (p,p'). In the latter case only the spin excitation
contributes to the cross section. Many similar observa-
tions (See Crawley et a/. , 1983; Bohle et a/. , 1986) have
been made in other nuclei, and the origin of the
difference between the (e, e') and (p,p') results is not al-

ways obvious. One trivial reason is that since the Ml
states occur in a region of high-level density, and since
they themselves are strongly fragmented, many of them
might simply escape experimental detection.

For a long time neither backward-angle inelastic elec-
tron scattering (Richter, 1979; Meuer et a/. , 1980) nor in-

elastic proton scattering (Cecil et a/. , 1974) could clearly
identify Ml strength in heavy-mass nuclei like Zr or

Pb. However, the strong excitation of the Tf =To
component of the GT states in the Zr(p, n) reaction
(Horen et a/. , 1980) suggested where to look for the Ml
strength in the Zr(p, p') experiments. Such experiments
were carried out at the Synchrocyclotron in Orsay at
E„=201 MeV. In the Zr(p, p') reaction (Anantaraman
et a/. , 1981) a broad peak riding on a huge background
was observed close to the expected excitation energy.
The angular distribution of this peak was found to be of
I.=0 shape, as expected for 1+ transition. Similar
bumps were also detected in the other Zr isotopes. The
corresponding spectra are shown in Fig. 10. These (p,p')
experiments provided the first identification of the giant
M1 resonance in heavy-mass nuclei. These Ineasure-
ments were confirmed by Bertrand et a/. (1981) and ex-
tended by the Los Alamos group (Nanda et a/. , 1983,
1984). The Los Alamos group used a high-energy polar-
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FIG. 10. Spectra of protons inelastically scattered from Zr,
Zr, Zr, and Zr at 0=4 . The arrows indicate the centroids

of the M1 resonance. From Crawley et al. (1983).

ized proton (p) beam to determine the inelastic spin-fiip
spectrum by measuring the polarization of the outgoing
proton (p'). In this way they could separate the spin ex-
citations from the otherwise complicated inelastic excita-
tion spectrum, which is mainly governed by non-spin-Hip
transitions. In these experiments a fine structure of the
M1 resonance in Zr could be observed. In addition,
much additional spin-Qip strength at higher excitation
energies was identified, but no spin assignment could be
made.

Both the (e,e') and (p,p') experiments have difficulties
in giving an accurate value for the total M1 strength in
heavy-mass nuclei because of the large background,
which is of both physical and experimental origin
(Richter, 1979; Anantaraman et a/. , 1981). In Pb the
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by a similar amount; that is, there is no tendency for
Tf =1 states to be more quenched than Tf =0 states.
This is interesting in connection with 6-h quenching,
since this mechanism can apply only to the Tf =1 states.
Elaborate shell-model calculations show that both type of
states suff'er from a similar quenching due to nuclear
configuration mixing (Brown and Wildenthal, 1983, 1987,
1988). It is concluded that the b -h explanation of the
quenching is not the most important one.

FIG. 11. The measured Ml transition strength in Pb and
Pb (Laschewski et al. , 1986, 1987, 1988). The data are com-

pared to calculations (dashed line) by Cha et al. (1984). The ar-
rows indicate the neutron emission thresholds (From
Laschewski and Wambach, 1985).

M1 strength could not. be identified with these reactions
just for this reason (Djalali, 1984).

The longstanding problem of the "missing" M1
strength in heavy-mass nuclei like Pb was finally
solved by the beautiful photon scattering experiments of
Laszewski, Rullhusen, et al. (1985, 1986), and Laszewski,
Alarcon, et al. (1987, 1988). These authors used highly
polarized elastically scattered photons to measure the Ml
strength in heavy-mass nuclei. In these (y, y') experi-
ments essentially all of the isovector M1 strength below
the neutron emission threshold could be detected. The
amount of the observed strength is found to be compara-
ble with microscopic RPA calculations, including Zp-2h
spreading effects (Laszewski and Wambach, 1985). The
experimental spectrum, together with a microscopic cal-
culation (Cha et al. , 1984), is shown for the nucleus 20 Pb
in Fig. 11.

C. The isoscalar M1 strength

D. The Gamow-Teller strength
in the ~+ channel
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The (n,p) reaction is a unique tool for measuring the
GT strength of nuclei in the ~+ channel. In 1V) Z nuclei
this reaction exclusively excites states with isospin To+ 1

(see Fig. 5). Fermi transitions are not allowed in this case
because of the isospin selection rules. Therefore
intermediate-energy (n, p) reactions at forward angles
provide an excellent filter of GT strength with

The isoscalar M1 strength can be measured with elec-
tromagnetic probes like the (y, y') and the (e, e') reac-
tions, as well as with inelastic hadron scattering, like
(p,p'). The better probe is the (p,p') reaction, since iso-
scalar states are strongly suppressed in electromagnetic
transitions, as can be immediately noticed from the iso-
scalar Ml transition operator of Eq. (3.1), which is pro-
portional to p~+p„=0.88 and therefore small. An iso-
scalar 1+ transition was observed in Pb in
photofiuorescence (Wienhard et al. , 1982) and various
(e, e') (Miiller et al. , 1983) and (p,p') experiments
(Hayakawa et al. , 1982). In sd-shell nuclei various new
isoscalar 1 states were identified by means of the (p,p')
reaction (Anantaraman et al. , 1984; Crawley et al. ,
1989). Especially interesting are even-even, spin-
unsaturated nuclei with a TO=0 ground state, like Si,
since both Tf =0 and Tf =1, 1+ states exist in these nu-
clei, and these states are excited by isoscalar and isovec-
tor transition operators, respectively. It is found that
both isoscalar and isovector 1+ transitions are quenched
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FIG. 12. Cross sections for the reaction 5 Fe(n,p)' Mn at
E„=298MeV for five angles between 0 and 12. The strongly
forward-peaked feature below 10 MeV excitation energy is the
Gamow-Teller resonance. The dashed curve in the 0 spectrum
represents a shell-model calculation of the GT strength by
Bloom and Fuller (1985). The calculated curve was renormal-
ized by a factor of about 0.45. From Vetterli et al. (1987).
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Tf To + 1 . One of the aims of the (n,p ) experiments is
to solve the problem of the missing GT strength observed
in the (p, n) experiments. By measuring both the zero-
degree (p, n) and (n,p) spectra at the same incident ener-

gy, i.e., with the same hadronic transition operator, one
can subtract the (n,p) from the (p, n) data. The remain-
ing cross section should then be proportional to 3(N —Z)
if the sum rule of Eq. (2.31) is valid.

The (n,p) reaction is very dificult to measure, since it
is not easy to produce a neutron beam with sharp energy.
For a long time the only (n,p) studies were performed at
the University of California at Davis at beam energies
below 60 MeV (Brady, Castaneda et a/. , 1982; Brady,
Needman et al. , 1983). For a quantitative measurement
of the P+ strength function, however, one needs a neu-
tron beam at higher energies. Such a new (n, p) facility
was recently installed at TRIUMF in Vancouver (Hel-
mer, 1987; Yen, 1987) and the first (n, p) measurements
were carried out. For the majority of targets these exper-
iments open up an uncharted spectroscopic territory.
Here we discuss the reaction Fe(n, p) Mn at E„=298
MeV, in which substantial S& (GT) strength has been ob-

served (Vetterli et al. , 1987). The measured spectra are
shown in Fig. 12. The large peak below 10 MeV excita-
tion energy in the 0 spectrum is the GT resonance. Its
location and shape are reasonably well reproduced by the
shell-model calculations of Bloom and Fuller (1985). The
measured strength, however, is again overestimated by
the theory. Experimentally only 3.8+1.0 GT strength
units are identified, while the shell-model calculations
predict total sum-rule values in the range
5. 1 ~ S& (GT) ~ 9.4, depending on the choice of the

+
model space (Bloom and Fuller, 1985; Muto, 1986).
These values are appreciably larger than the experimen-
tal one. Of course, there is again the question of how
much GT strength might reside in the high-energy tail of
the spectrum.

The Fe(n, p) measurements, when combined with the
Fe(p, n) data of Rapaport et al. (1983) and Vetterli

et al. (1989), provide a full test of the GT sum rule. Ra-
paport et al. determined an S& (GT) value of 7.8+1.9.
Together with the (n,p) result, this gives for the sum-rule
estimate Sp (GT) —S& (GT)=4.0+2. 1, which is 67% of
the expected value of 6, or even agrees with the sum rule
within errors. Note, however, that this result is question-
able, since a sizable fraction of the GT strength is shifted
out of the low-energy shell-model region in both the (p, n)
and the (n,p) cases. A definitive test of the sum rule is
made difficult by the need to determine the I =0 fraction
of the cross section —notably at high excitation energy
where other multipoles dominate.

Similar spectra to those of the (n,p) reaction are also
obtained with the (d, 2p) reaction at Ed =650 MeV at Sa-
turne in Saclay (Ellegaard, 1987; Ellegaard et al. , 1987,
1989; Gaarde, 1988). Obviously, with the (n, p) and
(d, 2p) reaction we now have excellent spectroscopic tools
at hand to study the o.~+ response function.

E. The giant spin-flip dipole and spin-flip
quadrupole charge-exchange resonances

&r,'[&,(~, )e~(j)],.r (j) . (3.2)

The spin-fiip dipole (L =1,S=1) resonance is a lyrico

excitation and has been observed in many nuclei. In the
200-MeV Zr(p, n) reaction it appears at an excitation
energy of E -25 MeV and has its peak cross section at
the scattering angle of 8=4.5' (see Fig. 13; Gaarde et al. ,
1981). The angular distribution of the bump around
E -25 MeV has a characteristic L, =1 shape, as can be
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FIG. 13. Neutron spectra at E~ =200 MeV for the
Zr(p, n) Nb reaction at difFerent scattering angles. The posi-

tions of the various giant resonances are indicated by the ar-
rows. The angular distributions of these giant resonances are
shown in Fig. 3. From Gaarde et al. (1981).

The GT and M1 states represent OA'co excitations that
are most strongly excited at very forward angles. The
(p, n) spectra at higher scattering angles show clear evi-
dence for the collective spin-Qip dipole and spin-Aip
quadrupole charge-exchange modes characterized by an-
gular momentum transfers of I.= 1 and I.=2, respective-
ly. These modes can be interpreted as a manifestation of
strength corresponding to the multipole operators
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seen from the right-hand panel of Fig. 2. The cross sec-
tion varies with incident projectile energy like that of the
GT resonance. This indicates that a spin transfer of
S= 1 is involved. The width of the resonance structure is
about 10 MeV. The resonance can be interpreted as the
superposition of three collective modes with spin-parity
J =0, 1, and 2 . This interpretation is supported by
microscopic RPA calculations (Krmpotic et al. , 1980;
Osterfeld et al. , 1981; Klein et al. , 198S; Osterfeld, Cha,
and Speth, 1985). Experimentally, however, it has not
yet been possible to resolve the broad resonance into the
different spin components.

In the ( He, t) reaction at E=130 MeV (Galonsky
et al. , 1978) and in the (p, n) reaction at E„=45 MeV
(Sterrenburg et al. , 1980) one also finds an L =1 reso-
nance structure in medium and heavy-mass nuclei, but
this time at a slightly higher excitation energy than that
of the spin-Aip dipole resonance. This bump, observed
with low-incident-energy beams (E~ =45 MeV), is inter-
preted as the (To —1) component of the giant isovector
electric dipole resonance which carries quantum numbers
J =1,L =1, S=0,T=1. This interpretation is based
on the incident energy dependence of the cross section
(energies around E =45 MeV favor non-spin-Aip excita-
tions) and on calculations (Krmpotic and Osterfeld, 1980;
Osterfeld et al. , 1981; Krmpotic, 1981a, 1981b; Krmpot-
ic et al. , 1983; Cha et al. , 1984). The corresponding
multipole transition operator is obtained from Eq. (3.2)
by replacing the, spin operator o by the identity operator.

In Pb the excitation energy of the J~=1, S =0
state is roughly 5 MeV higher than that of the spin-Sip
dipole resonance, although both modes represent 1%co ex-
citations. This difference in excitation energy is an effect
of the residual p-h interaction, which turns out to be
more repulsive in the ~ channel than in the o.~ channel
(Osterfeld, et al. , 1981).

The spin-flip quadrupole resonance (I. =2,S=1) is a
2Aco excitation and is observed in many heavy-mass nu-
clei. In the 200-MeV Zr(p, n) reaction it appears as a
broad structure at E„—35 MeV and obtains its peak
cross section at a scattering angle of 8=9.5' (see Fig. 13).
The angular distribution of this bump has an L =2 shape
(see the right-hand panel of Fig. 2!), and the spin transfer
of S= 1 is again deduced from the incident energy depen-
dence of the cross-section magnitude. The resonance is
very broad and strongly overlapping with the L = 1 reso-
nance. Therefore one has to decompose the spectrum
into the various multipoles in order to determine the
strength distribution functions of states with different J .
The resonance is interpreted as a superposition of three
collective modes with spin-parity J =1+,2+, and 3+
(Klein et al. , 1985; Osterfeld et al. , 1985).

A promising tool for resolving experimentally the
different multipolarities is the (p, n) spin-Aip transfer re-
action (Taddeucci et al. , 1984, 1986; Watson et al. , 1986,
1987; Taddeucci, 1987) which, in principle, is sensitive to
different J values (Cornelius et al. , 1981; Seestrom-
Morris et al. , 1982; McClelland et al. , 1984), as we shall

discuss in Sec. VI.
Until recently there was no clear signature for the cor-

responding spin modes in the neutral (r3) channel. How-
ever, a large amount of M2 strength was identified in the
(e, e') reaction (Knupfer et al. , 1978; Richter, 1982). The
M2 strength is found to suffer from a similar amount of
quenching as the Ml and GT states (Richter, 1982). The
(p, p') spin-Aip transfer measurements at LAMPF (Nanda
et al. , 1983, 1984) could identify a large amount of spin-
Aip cross section in the nucleus Zr up to excitation en-
ergies of E =40 MeV, but the interpretation of this cross
section relies heavily on microscopic nuclear structure
calculations (Yabe et a/. , 1986). More recent measure-
ments of Glashausser et al. (1987) and Baker et al.
(1988, 1989) give evidence for the spin-Aip dipole and
spin-Aip quadrupole resonances in the Ca(p, p') reac-
tion. The Ca target is particularly useful for the study
of L )0 spin-Aip resonances, since, owing to its being
spin saturated, very little L =0, S=1 strength is expect-
ed [and has been observed in Ca(e, e'); Richter, 1982].
The inelastic spin-Aip dipole resonance is found to have
its peak cross section at E —15—20 MeV, showing a
broad asymmetric width. The L =2 spin-Aip quadrupole
strength is centered around E =30 MeV and has an even
broader width. Both strength distributions were ob-
tained by performing a multipole decomposition of the
spin-Aip cross section at various scattering angles. The
multipole decomposition is based on the assumption that
the measured spin-Aip cross section is background free;
that is, it is only the result of one-step processes. This as-
sumption obtains strong support from microscopic
cross-section calculations, as will be shown in Sec. VI.

F. The spin-flip isovector
monopole resonance

The existence of an isoscalar giant monopole resonance
(J =0+, T=0) in medium and heavy-mass nuclei has
been well established for many years (Marty et al. , 1975;
Harakeh et al. , 1977, 1979; Youngblood et al. , 1977;
Buenerd et al. , 1979; Lebrun et al. , 1980; Rosza et aI. ,
1980; Youngblood et al. , 1981). The monopole reso-
nance is a volume mode that is connected with the
compression and expansion of the nucleus as a whole.
Neutrons and protons move in phase, and the spin de-
grees of freedom of the nucleons are untouched. Some
years ago the pion charge-exchange experiments (m.—,vr )

(Bowman et al. , 1983; Erell et al. , 1986) were successful
in observing the isovector monopole mode (J =0+,
T= 1). In this case the nucleus performs a monopole os-
cillation in which neutrons and protons move in opposite
phase. If, in addition, nucleons with spin t and spin J,

oscillate against each other, then one may have a spin-
isovector monopole excitation with quantum numbers
J =1+, L =0, S=1, T= 1. The relevant transition
operator for the spin-isovector monopole is
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A

g r,'o(jH„(j) (3.3)

Zr (~He, t)
E sHe = 900 MeV

e =o-
8= I3
8=30
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LQ

b~
IO—

80
I I

40
-Q ( Mev)

0

where p=+1 or 0. Since the spin-isovector monopole
has total spin J =1+ it can, in principle, couple to other
1+ states which involve I.=2 and S= 1. A realistic ten-
sor force actually does mix the L =0, J = 1+ and L, =2,
J =1+ modes.

The radial transition density of any monopole excita-
tion has a characteristic shape (Auerbach, 1971, 1974;
Bohr and Mottelson, 1975) with a node near the nuclear
surface. This is a consequence of mass conservation and
the spherical symmetry of the motion. The transition
density has a positive peak outside the nuclear surface
and a compensating negative peak in the nuclear interior,
so that its volume integral is vanishing. In order to ex-
cite a monopole resonance one therefore needs a strongly
absorbed projectile which only probes the nuclear surface
part, but not the volume part, of the transition density.
The cross section is then determined only from the sur-
face, and hence may take a large value.

The (p, n) reaction at intermediate energies is not the
best probe to excite the spin-isovector monopole because
the nucleus is quite transparent to protons and neutrons
at these incident energies. A better probe is the ( He, t)
reaction. The He projectile is strongly absorbed but still
shows a strong selectivity for spin-isospin excitations at
intermediate energies. This can be seen from Fig. 14,
where 900-MeV Zr( He, t) spectra (Gaarde, 1985) are
shown at three scattering angles and for a large excita-

tion energy range. A dramatic change of the spectra as a
function of scattering angle can be observed. The GT
resonance in the 0' spectrum and the spin-Hip dipole res-
onance in the 1.3' spectrum are excited with a similar
selectivity to that in the (p, n ) reaction. The main
diFerence between the ( He, t) and the (p, n) spectra at a
given incident energy per nucleon is the appearance of a
larger 0' cross section at E -35—40 MeV in ( He, t) than
in (p, n) (Ellegaard et al. , 1983). This excitation energy
region corresponds to that of the 2fico collective states.
Microscopic reaction calculations show (Schulte et al. ,
1987; Udagawa et al. , 1987; Auerbach et a/. , 1989) that
the 2fico collective states of spin-parity 1+ and 2+ give a
significant contribution to the 0' ( He, t) cross section.
The angular distribution of the strongest 1+ state has a
characteristic I.=0 shape, as expected for a spin-
isovector monopole state. We conclude that the ( He, t)
reaction is very selective in exciting the spin-isovector
monopole.

G. The magnetic high-spin states

So far we have discussed the spin-isospin modes of low
multipolarity which are excited at small-momentum
transfers (q ~ 1 fm '). Another interesting class of spin-
Aip transitions is provided by the magnetic high-spin
states (M4 to M14 transitions). They dominate the in-
elastic excitation spectrum at excitation energies of 1%co

and large-momentum transfers (q-2 fm '). Of special
interest are the so-called "stretched" (s) states, which are
characterized by having the total angular momentum
J, =j~+jl„where j~ =lz+ —,

' and jh =lI, + —,
' are the

highest single-particle angular momenta found in the first
open shell and the last filled shell of the nucleus, respec-
tively. Examples of stretched states are the 4 states in
1p-shell nuclei, involving the stretched configuration
[ld—,'(lp —,') '], or the 6 states in 2s ld-shell nuclei, in-

volving [1f—',( ld —', ) ']& . What makes the stretched

states most interesting is that, although their wave func-
tions will contain thousands of complex multiparticle-
multihole components in a 1k' shell-model space, only
the stretched configuration can contribute to the inelastic
excitation in a direct one-step reaction. As a result, in-
elastic scattering measures the distribution of this unique
configuration among all the others.

In terms of the orbital and spin angular momentum
quantum numbers, which are transferred to the target in
the reaction, the "stretched" transitions require
J, =I.+5, where I.= lz + lI, and S= 1. As a consequence
of the spin-Aip, the stretched states can only be excited
by the single multipole operator

FIG. 14. Spectra for the Zr('He, t) Nb reaction at three
scattering angles. The positions of the isobaric analog state and
of the GT states are marked by arrows. Note the enhanced
0=0' cross section around Q ——40 MeV, which gives evidence
for the existence of the spin-isovector monopole resonance.
From Gaarde (1985}.

gjl (qr„)[i Fl (r„)tg rr(k)]sr&3' '(k)
k

(3 4)

where jl (qrk) is the spherical Bessel function of order
I.=(J,—1) and r~3 '=1, r3 for m =0, 1. This operator
can involve only a single spin density, which provides a
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common source for the cross section in electron, nucleon,
and pion inelastic-scattering reactions. The isovector-
spin transition density can be uniquely determined from
the (e, e ) reaction. By combining this result with the
(p,p') or (ri.—,m.—') measurements, one can gain useful new
information on the hadronic reaction mechanism and the
form of the effective projectile-target nucleon interaction
(Moff'a and Walker, 1974; Lindgren et al. , 1979; Petro-
vich et al. , 1980; Petrovich and Love, 1981). It turns out
that the stretched transitions give definite information on
the high-momentum components of the isovector tensor
part of the nucleon-nucleon tensor force (Lindgren et al
1979). This will be described in more detail in Secs.
IV.C.3 and IV.E.

Most of the available experimental and theoretical in-
formation on the electromagnetic and hadronic excita-
tion of the high-spin stretched transitions relates to 1A'co

negative-parity states between adjacent shells. A com-
plete survey of this material is given in the recent review
papers by Lindgren and Petrovich (1984). Petrovich,
Carr, and McManus (1986), Lindgren et al. (1987), and
Raman, Fagg, and Hicks (1991). Historically the first
stretched states were detected in ' C and ' 0 (the 4
states!) by means of the (e, e') reaction (Donnelly et al. ,
1968; Sick et al. , 1969). The states with highest spin ob-
served so far are the 12 and 14 states in Pb with the
stretched proton and neutron configurations
[li,3/2(lh»/2) '],z and [ljis/2(lii3/2) ']i&, respec-

tively (Lichtenstadt et al. , 1979; Bacher et al. , 1980). Of
considerable interest also are the isoscalar and isovector
6 states in the self-conjugate nucleus Si which were
measured in the (e, e') (Yen et al. , 1980), (p,p') (Adams
et al. , 1977), and (ir +—

, m.—) (Olmer et al. , 1979) reactions.
These states give important information on the nuclear
structure aspects of the isoscalar and isovector stretched
states. It turns out that the experimental cross sections
for these states are less than 50% of the 1p-1h prediction.
This quenching of the stretched strength can be ex-
plained by the nuclear configuration mixing effect, as will
be discussed in Sec. V.J.

IV. REACTION THEORY OF INELASTIC
NUCLEON-NUCLEUS SCATTERING
AND CHARGE-EXCHANGE REACTIONS

In this section we describe the appropriate direct-
reaction theory needed in the analysis of the experimen-
tal data. We 1imit the discussion to nucleon-induced re-
actions, since most of the recent progress in our under-
standing of spin excitations comes from these reactions.
Particular emphasis is placed on the description of the
effective projectile-target nucleon interaction, since a
knowledge of the coupling between the probe and the nu-
cleus is essential for the interpretation of the scattering
data. The intrinsic relation between the measured zero-
degree (p, n) cross section and the P-decay matrix ele-
ments is derived.

A. Scattering observables

The evaluation and interpretation of nucleon-nucleus
inelastic scattering observables involves the construction
of the transition amplitude Vf;, which describes the tran-
sition of the scattering system from the initial (i) to the
final (f) reaction channel. Denoting the spin quantum
numbers of the projectile by l —,

' m ) and those of the target
by lIM), we find that the transition matrix element of
the transition operator V can be written as

Tfi (kfyIfMf& 2mf l&lki~I M;, ,'m; )— (4.1)

P ff' (4.2)

where iLt is the reduced mass (note that p; =iMf for inelas-
tic scattering and charge-exchange reactions).

Once the scattering amplitude is known, the various
scattering observables can be constructed. For example,
the differential cross section for an unpolarized (u) beam
is given by

m,.mf

Tr Watt—:~ o2(2I + 1 )
~ l1l Ptf

f
(4.3)

Here, an average over the initial spin orientations and a
sum over the final spin orientations of both the projectile
and the target spin states has been performed, since we
assume that neither of them was observed. The meaning
of the trace (Tr) is then obvious. The cross section o „ is
a function of the scattering angle 0 between k; and kf.

Next we assume that the incident beam is polarized.
Then the state of polarization of the beam is com-
pletely described by a polarization vector P(i)
=(P (i),P~(i), P, (i) ), whose components are the expecta-
tion values of the projectile spin operator o; (i =x,y, z)
along the three orthogonal directions of a Cartesian coor-
dinate system. According to the Madison convention
(Barschall and Haeberli, 1970), we choose the z axis (z'
axis) along the beam direction k (k') and the y axis per-
pendicular to the scattering plane parallel to
n=(kXk')/lkXk'l. The x axis is then chosen so as to
obtain a right-handed coordinate frame, i.e., x=yXz
(x'=yXz'). Note that the coordinate frames in the in-
cident and exit channels are related through a rotation
around the y axis by the angle 0. The cross section for a
polarization (p) beam is given by

where k; and kf are the projectile momenta before and
after the collision. A quantity related to the transition
amplitude is the scattering amplitude Jkf, , which is defined
by

' 1/2
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o~ =o „(1+p~A~ ),
where the analyzing power 3 is defined by

Tr(Ato" yJRt)

Tr( JRJkt t)

(4.4)

(4.5)

The other components of the analyzing power
vanish identically because of parity conservation.

In the next step we consider polarization transfer ex-
periments. In these experiments one uses a polarized
beam of polarization P(i ) and measures the polarization
P(f) of the outgoing particle in a secondary scattering
experiment. The components of the polarization vectors
P(i) and P(f) are related through the equation (Ohlsen,
1972)

0
cr P .(f) =cr„DO~. +cr„

&, (f) D,

0 D,„, P (i)

D ~ 0 P (i)
0 D„. P, (i)

where

Tr(Ster Jkt to )
D (k;,kI ) = t, m, m'=0, 1,2, 3

Tr( JR&.t )

(4.7)

0 yy+0 ~g
(4.8)

where the incoming nucleon is polarized along the y =y
'

axis (spin projection 1) and the polarization of the outgo-
ing particle is measured with respect to the same axis
(spin projection f or $). In case of a spin-independent re-
action the spin-Aip cross section O.

t& is vanishing and
D = 1. On the other hand, if there is a spin dependence,
then Dyy takes a value between —I and +1. In Sec. VI
we shall show that the D ~ functions can be used to
separate the longitudinal from the transverse spin
response of the nucleus for given momentum and energy
transfer.

B. The distorted-wave approximation

(Taddeucci et al. , 1984, 1986; Watson et al. , 1986; Tad-
deucci, 1987; Watson et al. , 1987). This is due to the
great advances made in polarimeter techniques (Moss,
1984). In these experiments one can directly measure the
spin transfer to the target and can thus separate the
spin-fIip from the non-spin-Aip excitations. To demon-
strate this, let us consider the polarization transfer
coefticient Dyy as an example. This coefficient can be ex-
pressed in terms of the cross section cr as

i f

are the Cartesian polarization transfer coefBcients. The
primed index on D ~ reminds us that the initial and
final states of polarization do not need to be referred to
the same coordinate frame. The Pauli spin operators are
defined as o.o=l, 0.&=0.~7 02 oy7 03 a„and corre-
spondingly for the outgoing channel. With our choice of
axes (y parallel to y'), the only nonvanishing functions
D ~ are DOO=1, D~O=A~ (analyzing power), Do (in-

duced polarization), D,„., D~~, D„,D,„,and D, , which
are altogether eight independent quantities. Note the ab-
sence of coefticients transferring an in-plane polarization
(along the x or z axis) into the perpendicular direction
(along the y axis) or vice versa. These transfers are for-
bidden by parity conservation.

Recently complete polarization transfer experiments
have become feasible for both inelastic A (p, p')8 scatter-
ing (Moss, 1984) and A(p, n)8 charge-exchange reactions

In general, the transition operator V' of Eq. (4.1)
represents a complicated many-body operator which can
only approximately be calculated. Fortunately, at in-
cident energies above 100 MeV, the operator simplifies
because the reaction mechanism operative at these ener-
gies is preferentially of a direct, one-step nature. This
means that the inelastic transition between target states
can be evaluated to first order in an effective interaction
V~, =g"=,V between the projectile nucleon p and the
nucleons j in the target. The interaction V, also has
large diagonal matrix elements in the target states. These
matrix elements represent average one-body potentials
which govern the relative-motion wave function of pro-
jectile and target before and after the inelastic scattering
event, making them distorted waves (Kerman et al. ,
1959). This procedure leads to the distorted-wave ap-
proximation to the scattering amplitude

Tf = fdr y&
' (kf rp )(IfMf 2mf ~ g V ~I;M„,'m; )g,'+'(k;, r—„)

j=l
(4.9)

Here g,'.+' and g&
' are the distorted waves of the pro-

jectile in the initial and final states, respectively, and
~I;M; ) and ~I&M&) are the associated many-particle
wave functions of the target states. The expression for
the distorted-wave amplitude in Eq. (4.9) is oversimplified
in that it assumes distinguishability between the projec-
tile nucleon p and the nucleons j in the target. In actual
calculations one has to include the exchange effects by re-

placing V„i through V„=V„J(1 P), where P, is the-
exchange operator that exchanges the space, spin, and
isospin coordinates of nucleons p and j. This leads to a
nonlocal effective interaction. For high incident energies,
however, the nonlocal operator can be well approximated
by a local form (Petrovich et aI , 1969; Love, . 1978), and
we shall assume in the following that this is the case.

With these assumptions one can show that the transi-
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Uf, (r )—= (IfMf ~ fdr V(r —r ) +5(r —r )~I,M, )

= f dr V(r r—)pI I (r) .f i
(4.10)

Here pI I (r) is the nuclear one-body transition densityf i

defined by
A

pI I (r)=(IfMf
~ g 5(r —rI )~I M; ) .
j=i

(4.11)

tion amplitude in Eq. (4.9) is factorizable into a nuclear
structure part and a nuclear reaction part (see, for in-
stance, Satchler, 1983; Petrovich, Philpott, et al. , 1984;
Petrovich, Carr, and McManus, 1986). This factoriza-
tion is most easily seen for the special case of a central
spin-independent interaction depending only on the rela-
tive distance r~I

=
~ r~ —rI ~

between the probe and the tar-
get nucleon j. To show this we first define a nuclear tran-
sition potential:

to the simple result

'Ff, (q)= V(q)p»(q) . (4.17)

Here q=k& —k; is the asymptotic momentum transfer
between incoming projectile and outgoing ejectile. Al-
though quantitatively unreliable, the plane-wave result of
Eq. (4.17) is extremely useful for the interpretation of
more accurate distorted-wave calculations. The inclusion
of distortions introduces a distribution of momenta q, but
one expects them to be peaked near (kf —k; ) for
suKciently high energies and at scattering angles where
the cross section is large. From Eq. (4.17) it is clear that
one needs a strong force component V(q) in order to ex-
plore the corresponding Fourier components of the nu-
clear transition density, pI I (q), and that both V(q) andf i

pI I (q) have to be large in order to obtain a large crossf i

section.
By transforming Eq. (4.13) into r space we obtain

It contains all the nuclear structure information with
respect to the transition I; ~I& as long as the probe acts
on the target system as a one-body operator. Expressing
V . in terms of its Fourier components V~I(q),

Tf (kf, k;)='f drpI I (r)P(kf, k;, r)

where

P(kf, k, ,r)= fdqexp[iq r]D(kf, k;, q)V(q)

(4.18)

(4.19)

V~, (~r, —r„~)= 3 fdqexp[iq (r, —r~)]V~I(q),
1

w I P (2 )3

(4.12)

and inserting this expansion into Eq. (4.9), we obtain the
distorted-wave transition amplitude in the form

Vf' (kf k; ) =f dqD (kf, k;, q) V(q)pI I.(q)

where

A

pI I (q)=(IfMf ~ g exp[iq r. ]~I M~)
j=l

(4.13)

(4.14)

D(kf, k;,q)=
3 f dr~yI ' (kf, r )

(2n) r I
Xexp[ iq r ]y'—,+'(k, , r ) .

2 I

(4.15)

From Eqs. (4.10) and (4.13) one can see that the nuclear
transition potential U&,. is separable in q space:

Uf (q) V(q)pI I.(q) . (4.16)

Clearly, Tf; of Eq. (4.13) is factorized into a nuclear
structure part and a nuclear reaction part. In the plane-
wave approximation the distorted waves g';+' and gj
of Eq. (4.15) are replaced by plane waves, and the distor-
tion function D(kf, k;, q) becomes 5(q —k;+kf ), leading

is the nuclear transition density in q space, and where
D(kf, k;, q) is the projectile distortion function defined
by

is known as the hadronic transition operator (Bernstein,
1970; see also Satchler, 1983). This is the interaction
operator or probe seen by the target during the collision.
It is the extent to which this operator resembles the tran-
sition operators of other probes which determines wheth-
er or not their transition rates and sum-rule strengths can
be compared. A few comparisons of the hadronic probe
function P(kf, k, , r) with the electric multipole operators
r YIM have been performed in the case of inelastic pro-
ton scattering (Osterfeld et al. , 1979) and in the case of
inelastic a scattering (Bernstein, 1970). Bernstein finds
that for inelastic u scattering the electromagnetic and ha-
dronic transition operators are rather similar, since both
operators favor the nuclear surface region: the multipole
operator r YI~ because of its r dependence and the ha-
dronic transition operator because of the strong absorp-
tion of the a particles. There can be, however, substan-
tial di6'erences between the radial dependence of the elec-
tromagnetic and hadronic transition operators in the case
of high-energy proton scattering (Osterfeld et al. , 1979).
Considering the charge-exchange reactions at intermedi-
ate energies we can argue that the (p, n) reaction is a
weakly absorbed probe, while the ( He, t) reaction is a
strongly absorbed probe. This difFerent feature of both
reactions is useful to identify volume oscillations such as
the spin-isovector monopole state.

Another useful limit to the distorted-wave transition
amplitude is the strong-absorption limit (Blair, 1959).
Especially at high beam energies (E~ ~ 500 MeV), where
the eikonal approximation applies and where the real
part of the optical potential can be ignored, the product
of the optical model wave functions in Eq. (4.9) can be es-
timated by
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XJ
' (k&, r~)X,'+'(k;, r~)

—exp[ —i q r~. ] exp
1

f dzW(r )
flvp

ND= f d r&5pI; z(r~)exp 1

Avp

(4.26)

(4.20)

pI I (r) =5p/; q(r) Y)*„(0,$)!(2A,+ I )'~ (4.21)

Here the second factor on the right-hand side of Eq.
(4.20) is a so-called attenuation factor, which describes
the damping of the distorted waves inside the nucleus.
The attenuation factor is a function of the imaginary part
of the optical potential W(r~ ). The z integration is along
an axis parallel to the beam direction, and vp is the beam
velocity. Because of the strong absorption, the attenua-
tion factor implies that the major contribution to the r
integration in Eq. (4.9) is localized in a narrow ring
around the target nucleus.

Bertsch and Esbensen (1987) have applied the strong-
absorption limit to the evaluation of the charge-exchange
cross sections. They assume the target transition density
(4.11) to be of the form

The latter factor describes the attentuation of the projec-
tile wave function inside the target nucleus in an average
way. From Eq. (4.24) we obtain the following simple ex-
pression for the double-differential cross section:

i V(q ) Yg„(m /2, 0)J„(qR ) i2'7'

X HAMI;~~ 5(E—col;) . (4.27)

The angular dependence of the cross section is deter-
mined by the product of the interaction V(q) and the
Bessel function. Thus, for a given angular momentum
transfer A., the cross section has a maximum at an angle
that is mainly determined by the position of the max-
imum of the Bessel function. The Blair approach to the
transition amplitude is particularly suited for the descrip-
tion of heavy-ion charge-exchange reactions at incident
energies E ~ 100 MeV/nucleon.

X 5p/; ),„(rp ) Yg„(8~, $~ ) . (4.22)

Using the axial symmetry of the problem around the
beam axis, one can perform the integration over the az-
imuthal angle P~ analytically:

f d(()~exp[ iqb cosP~ —] exp[ —ipP~ ]=2m J„(qb ) .

(4.23)

Here b =—r sinO is the impact parameter of the reaction
and J„(qb) is the spherical Bessel function of integer or-
der. Since the main contribution to the integral in Eq.
(4.22) comes from a narrow ring near 8 =m/2 and
b =R p, where Rp is the strong-absorption radius, the in-

tegral can be approximately factorized according to

7I; (q) =Nn~ V(q ) Yq„(~/2, 0)J„(qRO )M~; q (4.24)

with the nuclear matrix element

M&;~= f d3r 5p&, ~(r„)/(2A, + I)'~

and the distortion factor

(4.25)

and assume a momentum-dependent contact interaction
for the projectile-target nucleon interaction. The latter
assumption reduces the six-dimensional integral of Eq.
(4.9) to a three-dimensional one. In this case the transi-
tion amplitude can be expressed as

V&, (q)= f dr exp[ iq r~—]
(2A, +1)

Xexp — dz 8' rz
1

%Up

C. The effective projectile-target
nucleon interaction

From Eqs. (4.13) and (4.16) it is clear that in order to
extract the nuclear structure information from T&; one
needs to know the effective interaction Vz . This efFective
interaction is, in general, very complicated. It depends
on the incident projectile energy E and on the specific
properties of the target, such as its ground-state density
distribution and inelastic excitation spectrum. In princi-
ple it should be calculated for each scattering situation
anew, starting from a bare nucleon-nucleon (NN) poten-
tial V&z which, when used in a two-body Schrodinger
equation, describes the free NN scattering data.

Modern NN potentials are the Bonn potential (Holinde
et al. , 1972; Erkelenz, 1974; Holinde and Machleidt,
1977; Holinde; 1981; Machleidt, Holinde, and Elster,
1987), the Paris potential (Lacombe et al. , 1980), and the
Nijmegen potential (Nagels et al. , 1979a, 1979b), all of
which are based on meson-exchange models. The long-
range part in these potentials is provided by the one-pion
exchange, since the pion is the lightest meson. The
medium-range attraction is produced by correlated two-
pion exchange, which is simulated by an effective, low-
mass scalar meson ("o"meson). The short-range repul-
sion is due to the exchange of heavy vector (co) mesons.
In the Paris potential, instead of the co exchange, a purely
phenomenological short-range part is added to the meson
exchange potentia1 in order to reproduce the NN phase
shifts in the partial-wave expansion of the NN scattering
amplitude. Because of the strong repulsion in the NN po-
tentials at short distances, they cannot be used directly in
a perturbative calculation. First the repulsive core has to
be properly regularized by converting the bare potentials
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V» into weak eQectiue interactions. In the free XN
scattering problem this is done by solving the two-body
Schrodinger equation or, equivalently, the Lippmann-
Schwinger equation with V&z. The Lippmann-
Schwinger equation is an integral equation that allows
the two nucleons to interact any number of times via the
strong interaction V&&, but the final sum of all these in-
teractions is a weak eQectiue interaction represented by
the free NN scattering matrix tI;.

In the case of the scattering of a projectile nucleon p
from a nucleon j in the nucleus, one has to incorporate
the nuclear medium effects into the two-nucleon scatter-
ing amplitude. The effective interaction so constructed is
known as Brueckner's scattering matrix G (Brueckner,
1954; Brueckner and Levinson, 1955; Day, 1967, 1981;
Bethe, 1971), which is the solution of the Bethe-
Goldstone equation (Bethe and Goldstone, 1957) defined
by

G(~)=~»+ V»
co Hp+l E'

(4.28)

Here Q is the Pauli projection operator, which restricts
the two-nucleon intermediate states to those unoccupied
by the nuclear medium, Hp is a single-particle Hamiltoni-
an composed of the kinetic-energy operator and the
single-particle potential, and m represents the starting en-

ergy of the two interacting nucleons. The nuclear medi-
um effects enter in two ways, namely, by the Pauli opera-
tor Q, which hinders the interacting nucleons p and j
from scattering into already occupied states, and by the
single-particle Hamiltonian Hp, which modifies the
single-particle energies and single-particle wave functions
as compared to those in free space.

For finite nuclei it is very difficult to solve Eq. (4.28)
because of the complicated Pauli operator, which in-
volves a double integration over intermediate states.
Therefore one first calculates the 6 matrix in symmetric
nuclear matter at several densities and applies G(co) to
finite nuclei by using the local-density approximation
(Negele, 1970; Siemens, 1970). The medium corrections
to the effective interaction are found to be very large at
lower energies, E (&100 MeV (Jeukenne et al. , 1976;
Brieva and Rook, 1977a, 1977b, 1978; Brieva et al. ,
1978; Mahaux, 1983; Yamaguchi et al. , 1983; Nakayama
et a/. , 1984, 1986; Rikus et a/. , 1984; Rikus and von
Geramb, 1984; Nakayama and Love, 1988). For high
incident-projectile energies, however, i.e., for energies
large compared to the Fermi energy (e~-37 MeV) of the
nucleons in the target, the 6 matrix approaches the free
tz matrix. The replacement of 6 by tz is the impulse ap-
proximation (Kerman et al. , 1959), which becomes a
good approximation for incident energies, say, greater
than 400 MeV. The appeal of the impulse approximation
is obvious: the effective interaction can be constructed
directly from the phase-shift analysis of NN scattering
data without the intervention of a potential.

1. The free nucleon-nucleon
tF-matrix interaction

M(EcM, O)=A+Bcri no& n+C( &o+cr ).2n

+Eo, qo, .q+Fo, Qo., Q, (4.30)

where the coef5cients A, B,C,E, and I' are complex func-
tions of the energy ECM, the scattering angle 0, and the
two-body isospin; e.g., A = Ap+ A &~, ~z. The subscripts
1 and 2 refer to the coordinates of the two interacting nu-
cleons. The unit vectors [Q,n, qj form a right-handed
coordinate system with Q=k+k', q=k —k', and
n=qXQ. The vectors q and Q define the scattering
plane while the vector n is directed perpendicular to the
scattering plane.

The operator M induces either spin-independ. ent or
spin-dependent excitations in the target. The spin-
independent excitations are governed by the amplitudes
A and C, while the spin excitations are governed by the
amplitudes B, C, E, and F. Three different types of spin
excitations are possible, namely, a longitudinal one with
the spin transfer along the momentum-transfer direction
q (term E), and two transverse ones with the spin transfer
occurring either in the scattering plane (term F) or per-
pendicular to the scattering plane (terms 8 and C). The
individual spin components can be measured by perform-
ing appropriate spin-Aip transfer measurements. For ex-
ample, a projectile that has its spin polarized perpendicu-
lar to the scattering plane, as was assumed in Eq. (4.8), is
sensitive only to spin excitations within the scattering
plane, i.e., to the coeKcients E and I'. This is so because
only these terms can Aip the spin about the n axis. Simi-
larly, the spin of a particle polarized along the q (Q) axis
Aipped by the spin operators with amplitudes B, C, and I'"

(8, C, and E).
The scattering amplitude M can also be written in a

longitudinal transverse representation which facilitates

Nowadays the NN scattering data are rather complete
up to energies of 1 GeV (Amdt et al. , 1983), so that the
interesting properties of the free NN transition matrix t+
can be derived. In analogy to Eq. (4.2), the tF matrix is
related to the NN scattering amplitude M by

4m. (A'c )
tz = — M(EcM ~

CM
(4.29)

EcM =m c +(fiick)

where EcM and Ak are the energy and momentum in the
two-nucleon center-of-mass frame, respectively, I is the
nucleon rest mass, and 8 is the scattering angle between
the initial and final momenta k and k' of either particle.
The scattering amplitude M(ECM, O) is represented by a
4 X4 matrix in the spin space of the two nucleons. It can
be written as a sum of five linearly independent scalar,
time-reversible, parity-conserving and charge-
independent operators (Wolfenstein and Ashkin, 1952;
Kerman et al. , 1959; MacGregor et al. , 1960),

Rev. Mod. Phys. , Vol. 64, No. 2, April 1992



Franz Osterfeld: Nuclear spin and isospin excitations

=cri.qtr2. q+(o, Xq).(o 2Xq), (4.31)

one can rewrite Eq. (4.30) in the form (Love et al. , 1984)

M(EcM, O) = A +C(o i+ o'2) n

+E6i+ 6, + 6„(4.32)

with one longitudinal (6&) and two transverse operators
(6 6 )

6i rri'qo'i'q

6, =(o.i Xq) (o2Xq)
A A6„=o,.no 2 n —tr, .Qcr2 Q .

(4.33)

(4.34)

(4.35)

For spin excitations the C term is similar to the pion-
nucleon coupling (Petrovich et al. , 1986), while the 6,
term is similar to the transverse electromagnetic cou-
pling. The latter term can arise from the p-meson ex-
change with the magnetic type of coupling,
(o, Xq) (o2Xq). The longitudinal couphng operator 6&
is unique for hadronic probes and is mainly due to ~ ex-
change. The last term 6„can arise only from nonlocal
interactions and from exchange terms.

2. The construction of a local effective
interaction in r space

The coefficients A, 8, etc , in Eq. . (4.30) are defined for
free %Xkinematics and for antisymmetrized two-nucleon
wave functions. In the case of the nucleon-nucleus
scattering both the kinematics and the antisymmetriza-
tion properties are different. One of the nucleons in-
volved in the scattering process is bound in the target.
Therefore the scattering process in general requires a
knowledge of the t matrix at momenta that are not avail-
able from the free XX kinematics. Moreover, the an-
tisymmetrization has to be performed with bound nu-
clear wave functions. A partial solution to this problem
is to construct a coordinate representation of the t matrix
which reproduces the scattering matrix in the physically
accessible region and also provides a way to extrapolate
to off-shell momenta. This procedure has been carried
out by Love and Franey (1981) and Franey and Love
(1985). For that purpose they first rewrite Eq. (4.30) into
the form

M(EcM, 9)= A'As+8'Az. +C(o'i+o2).n

+E'S,i(q)+F'S, 2(Q), (4.36)

where S,2(u)=3o. i ucrz. u —o, o2 is the usual tensor
operator, and As=(1 —o, o2)/4 and Ar =(3+o'& o2)/4
are the singlet and triplet spin-projection operators, re-
spectively. Here use has been made of the identity

the comparison of the nucleon coupling with that of the
other spin probes (Love et al. , 1984). Using the relation

o, .oz=o, .qcr2 q+o, .Qo~ Q+o. , no2 n

(4.37)

reproduces the free tF matrix in each spin and isospin
channel at a given energy EcM. In Eq. (4.37) the opera-
tor P, 2 is the exchange operator which generates an-
tisymmetrlzatlon.

The tensorial structure of Eq. (4.36) suggests writing
the effective interaction as a sum of central (C), spin-orbit
(LS), and tensor (T} terms with the following spin-isospin
decomposition:

V,2(r)= Vo (r)+ V (r)o, tr2+ V (r)r, r2

+ V, (r)cr, ozri r2

+[V (r)+ V, (r)v'i r2)]Li2.S

+[V (r)+V, (r)r& rz]S&i(r), (4.38)

where Lip ——(ri —r2)X(ki —k2)/2 is the relative angular
momentum operator between nucleons 1 and 2, and
S=s&+s2 is the total two-nucleon spin. The coefIicients
V „etc., depend on the relative coordinate r=r& —r2 of
the two interacting nucleons. Love and Franey (1981)
represent these interaction coe%cients by a sum of Yu-
kawa functions,

exp[ —r/R, ]
V,2(r)= g V, r/R,

(4.39)

This functional form is very convenient for numerical
calculations, since the Yukawa form has an analytic mul-

tipole decomposition in terms of modified Bessel func-

tions, which simplifies the calculation of the two-body
matrix elements considerably. The force ranges R; are
free parameters, as well as the force strengths V;, which,
in general, are complex. Both the A; and the V,. are
determined from a best fit to the t„matrix of Eq. (4.38)
and, in general, depend on the incident energy ECM.

The representation of the effective interaction in Eq.
(4.38) is particularly useful for the description of
inelastic-scattering processes because it makes the spin-
isospin dependence of the effective interaction explicit.
In the single scattering approximation the operator of
Eq. (4.38) acts on the projectile as well as on the target
system as a one-body operator. All terms that involve
the spin operators o.&.uz, S, or S&z produce spin-Aip

o, ucr2. u= —,'[S,2(u)+o i o2] and of the completeness of
[Q,n, q]. The primed coeKcients are just linear
combinations of the old coeKcients: A '= A —8 —E—I,8'= 3 +(B+E+F)I3, E'=(E —8)/3, and F'=(F
—B)/3. The amplitudes A' and B' represent the central
parts of M, and the terms E' and I" represent tensor in-
teractions.

A practical form of the t+-matrix interaction is now
obtained by assuming a local functional form V,2(r) in r
space and by adjusting its parameters until the antisym-
metrized NX matrix element in momentum space

ts(q EcM)= J drexp[ —ik' r]V,2(r)(l —P,2)exp[ik r]
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dence of the central parts of the effective interaction at
zero-momentum transfer (q =0) (Love and Franey, 1981)
is shown in the upper part of Fig. 15 for the energy range
10~E& +750 MeV. For energies below 100 MeV the
values are based on the 6-matrix interaction of Bertsch
et al. (1977), while for energies from 100 to 750 MeV the
values are derived from the free tF-matrix interaction of
Love and Franey (1981). The latter interaction was de-
duced from the Amdt phase shifts (Amdt et al. , 1983)
supplemented with phase shifts from one-pion exchange
in the higher partial waves. The most prominent feature
of the curves in the top part of Fig. 15 is that the central
scalar-isoscalar interaction Vo is dominating the other
central spin-, isospin-, and spin-isospin-dependent in-
teraction terms at all energies considered. In the energy
region 150 MeV~E& ~500 MeV, Vo becomes relatively
weak and gives rise to the so-called energy window for
nuclear structure studies. The origin of this energy win-
dow goes back to properties of the 'So and S& XN phase
shifts, which are strongly attractive at low energies, but
vanish at around E&,b=300 MeV and become repulsive
at higher energies (see, for instance, Bohr and Mottelson,
1969). This behavior of the S-wave phase shifts is due to
the strong short-range repulsion in the XX potential,
which is ineffective at lower, but dominant at higher in-
cident energies.

The incident-energy region around 200—500 MeV is
especially well suited for nuclear structure studies for the
following reasons. First, the distortion effects on the pro-
jectile wave functions are relatively small in this energy
region, since they are related to the strength of the
scalar-isoscalar interaction Vo, which is weak here.
Secondly, a weak Vo implies a suppression of multistep
processes in the nuclear reaction mechanism (Chiang and
Hiifner, 1980). Therefore the inelastic nuclear excitation
spectrum at moderate excitation energies (E ~50 MeV)
is mainly the result of one-step processes and can be cal-
culated within microscopic nuclear structure models
(Bertsch and Scholten, 1982; Osterfeld, 1982, 1984;
Scholten et al. , 1983; Osterfeld et al. , 1985). This will be
demonstrated in detail in Sec. VI.

From Fig. 15 one can further recognize that the force
component V, which excites spin-isospin-Aip transi-
tions is especially large in the energy window, while the
isovector spin-independent component V is strongly re-
duced. This can be better seen from Fig. 16, where the
ratio of the volume integrals

~
J /J, ~

=~V (q=0)/V, (q=0)~ is plotted versus E at zero-
momentum transfer. The ratio is found to be larger than
10 at 200 MeV~E ~500 MeV. It is this dominance of
V over V which is why nucleon-induced reactions at
intermediate energies are an invaluable probe of isovector
spin modes in nuclei. This behavior has been known
since the work of Kerman, McManus, and Thaler (1959),
but was brought into focus with the work of Love and
Franey (1981), who calculated the isovector force
strength ratio (full curve in Fig. 16) using the NX phase
shifts of Amdt et al. , (1983) as input to their calcula-

l6

l0-

b

C( p, n) TRlUMF

C( p, n) IUCF

C(p, n)
N( p, n) LAMPF

200 600
E~(Mev)

800 l000

FIG. 16. Energy dependence of the ratio ~J,/J, ~~ at zero
momentum transfer. The experimental points are measure-
ments of IUCF (0) (Taddeucci, 1983), LAMPF (6 and 0)
(King et al. , 1986), and TRIUMF () (Alford et al. , 1986).
The solid line is the impluse approximation predication of Fra-
ney and Love (1985) based on the nucleon-nucleon phase shifts
of Amdt et al. (1983).

tions. The experimental points were later measured at
various accelerator laboratories (see Taddeucci, 1983; Al-
ford et al. , 1986; King et al. , 1986).

The isoscalar spin-dependent interaction term V is

rather small at all incident energies, suggesting that the
central part of the effective interaction is rather
ineffective for exciting isoscalar spin modes. This is
indeed the case, as has been observed in the inelastic exci-
tation of the 1+, T=O, E =12.5 MeV state in ' C by in-

elastic proton scattering (Comfort et al. , 1980, Comfort
and Love, 1980; Moss et al. , 1980). In this reaction the
tensor exchange process is the dominant reaction mecha-
nism, while the direct process governed by V is

suppressed.
The lower half of Fig. 15 shows the q dependence of

the complete tF-matrix interaction of Love and Franey at
E =135 MeV for natural parity [b,rr=( —1) ] and un-

natural parity [hrr = (
—1 )

+ '] transitions. More sophis-
ticated interactions (Nakayama and Love, 1988) behave
similarly. One noteworthy feature of the tF-matrix in-

teraction is the increased importance of the spin-orbit
(I.S) force at large q transfers relative to the central (C)
interaction. The large q transfer behavior can be best
studied through the examination of high-spin states
(J ~ 3 ), which involve tl ansltlon densities with large
angular momentum (I. ~3) transfer. These transition
densities have the property that they peak around
momentum transfers of q —1 —2 fm

The energy and momentum dependence of the isovec-
tor parts of the t-matrix interaction displayed in Fig. 15
can be qualitatively understood in the meson-exchange
picture of nuclear forces. The simplest interpretation is
obtained for the spin-isospin-dependent central and ten-
sor terms, which are mainly mediated by m- and p-meson
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exchange, modi6ed at short distances by correlations due
to co-meson exchange (Brown et al. , 1981). In momen-
tum space the ~- and p-exchange potentials are given by

o.&-qo.2 q
V.(~,q)=J (~,q)

co —
q

—m
(4.40)

(cr, Xq) ~ (cr2X q)
V (co,q)=J (co,q)

co q
—m

(4.41)

where (co, q) is the four-momentum transfer carried by
the exchanged mesons, and where m =0.699 fm ' and
m =3.9 fm ' are the corresponding meson masses. The
force strength parameters J and J are de6ned by

fnNN AmJ (co, q)=4m
2m~ A~ co +q

(4.42)

f~~ A —mJ (co,q)=4m
m A —m+qP . P

(4.43)

Here f z& =0.08 and f && =4.86 are the n NN and pNN
coupling constants, respectively. The quantities in round
brackets are the form factors which describe the Anite
size of the meson-nucleon vertices. The cut off masses

A =6 fm ' and A =10 fm ' are determined from ap-
propriate experiments like p ( n, p) n charge-exchange
scattering (Dominguez and Verwest, 1980) or pion pho-
toproduction (Dominguez and Clark, 1980) and also
enter the bare 1VX potentials as parameters. In the static
limit, i.e., for zero energy transfer, we have co=0. This
limit corresponds to elastic nucleon-nucleon scattering.
It is also a good approximation for inelastic nucleon-
nucleus scattering as long as the excitation energy E is
small compared with the pion mass, m —= 139 MeV.
Therefore, in the following discussion, we shall put co=0.
In Sec. VII, where we shall discuss the physics of the
quasifree peak region (E„—100 MeV) and of the
resonance region (E„—300 MeV), the co dependence of
the meson-exchange potentials in Eqs. (4.40) and (4.41)
becomes important.

From Eqs. (4.40) and (4.41) it is obvious that both the
m- and p-exchange potentials vanish for forward scatter-
ing (q =0), contrary to V, in Fig. 15. This is due to the
fact that both potentials represent only the Qrst-order
Born approximation to the full tF matrix. The higher-
order terms include the short-range correlations which
modify V, at small q. To understand this effect in a sim-
ple manner we 6rst decompose the interactions V and

Vz into irreducible tensors (note that co =0!),

V (q)= —
—,'J (O, q)

Vp(q) = —
—,
' Jp(O, q )

3o& qo2. q —0'& o2q

+m~

o i qo. 2 q i'o-2q

q +m P

2m
2 2 1 2 1 2 1+2

q +m

2m
0

~ cr2+2o
& o2

q +m

(4.44)

(4.45)

where we have made use of the operator identity of Eq.
(4.31). The first term in the large parentheses is a tensor
interaction, the second term is a central interaction of
Yukawa type, and the third term is a contact interaction,
which in coordinate space leads to a 5-function-like
force. Now the short-range correlations keep the nu-
cleons apart so that they never come to the same place.
Therefore the 5-function piece will become inoperative
and should be removed from the interaction (Ericson and
Ericson, 1966; Brown and Weise, 1975). When one con-
siders this effect for the m-exchange potential, one obtains
a force strength of 133 MeVfm at q=0, which is in
good agreement with the experimental V values of Fig.
15, which range from 160 MeV fm near Ez = 100 MeV to
12S MeV fm near E =750 MeV.

This simple prescription of dropping the 5-function
piece is not accurate enough for the determination of the
short-range correlations connected with the p-meson ex-
change. The p meson has a larger Inass than the pion
and consequently a shorter range. Therefore one has to
make a better model for the short-range correlations. In
principle, this requires a full t-matrix calculation. How-
ever, one can simulate the effects of a t-matrix calculation
by introducing a two-body correlation function g (r) that

d kP' (q)= f V (k)g(q —k),
(2~)

(4.46)

with g(q) being the Fourier transform of g (r):

g(q)= f d re'q'g(r) . (4.47)

Now we assume that g (r) arises mainly from the repul-
sion due to e-meson exchange in the nucleon-nucleon in-
teraction. Thus the range of g(r) is expected to be com-
parable to the Compton wavelength of the m meson. A
parametrized form that has been adjusted to reproduce
the dominant components of a realistic two-body correla-
tion function calculated with the Reid soft-core potential
is (Brown et al. , 1977; Anastasio and Brown, 1977)

g(r)=1 j(q, r), — (4.48)

with q, =3.93 fm '=m and jo(z) the spherical Bessel
function of order I =0. The Fourier transform is

I

multiplies the ~+p potential in coordinate space, that is,
P;(r) =g(r) V;(r) (i =m, p). In momentum space this
gives for the p potential
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g(q)=(2') 5(q) —2' 6(lql —q, ),21
qc

q, =3.93 fm ',
which, when inserted into Eq. (4.46), results in

V (q)= V (q) —V (q, ) .

(4.49)

and for the tensor part

2

V, (q) = —
—,
' J (O, q )

+m

This is the regularized form of the p-meson exchange po-
tential.

The short-range correlations strongly affect the central
force but affect only slightly the tensor force. This is due
to the fact that the latter acts only in a relative D state,
where the centrifugal barrier keeps the two nucleons
apart. Thus the correlation function can be omitted in
this case. The central interaction, on the other hand, is
roughly shifted by a constant in momentum space, since
the short-range correlations effectively correspond to a
short-range interaction. Including the effect of the corre-
lation function we can, to a good approximation, write
for the central part of the V interaction

d kVc (q)= —I g(&—q)
(2~)

2

X J (Oq)
q +m„

2

+2J (O, q) z, o~.o2r~. &~q'+ m'

(4.51)

energy dependence. The force is large and repulsive at
small energies (E ~ 50 MeV) and drops rapidly with in-

creasing Ez. This behavior has been qualitatively ex-
plained by Brown et al. (1981). These authors argue that
since there is no meson that couples directly to the iso-
vector degrees of freedom, the V interaction has to
come from higher-order meson-exchange processes.
Brown et ai. consider the ~- and p-meson exchange in
second-order perturbation theory, showing that the
second-order terms already give the experimentally ob-
served energy dependence of the V interaction.

D. The isovector spin-flip
and non-spin-flip excitations

With the form of the effective interaction as given in
Eq. (4.38) we can now construct the transition potentials
for isovector spin-Rip (S =1, 7= 1) and non-spin-flip
(S=O, T= 1) transitions. We again assume that the
knockout exchange terms can be incorporated into the
formulation via a short-range approximation (Petrovich
et a/. , 1969). Then the effective projectile-target nucleon
interaction is local, and only direct matrix elements have
to be considered. We also neglect the isovector L.S
force, which is relatively weak in comparison to the iso-
vector central (Cl and tensor (T) forces. With these sim-
plifying assumptions we now extend the formulation of
Sec. IV.B to include the nuclear-isospin and spin-isospin
degrees of freedom. To start with, we expand the isovec-
tor part of V in terms of its Fourier components,

1
V~~['(r —r )=

3 dq exp[ iq r~—].(2'�)
X [ V, (q)+ V (q)o .cr

—V (q)S~)(q)]

Jp(O, q) —
2 S)~(q)r) r2 . .

q'+m' (4.52) Xexp[iq r. ]r& r
where the tensor operator S . is defined by

(4.53)

It is important to notice that the tensor force contribu-
tions of the m- and p-meson exchange in Eq. (4.52) have
opposite signs. The pionic tensor force is attractive,
while that of the p meson is repulsive. Both force com-
ponents tend to cancel each other at large-momentum
transfers. This is interesting, since in this way the p-
meson exchange provides a natural regularization of the
otherwise pathologically strong, attractive tensor force of
the one-pion exchange at small distances.

A comparison between the results of the correlated
m+p model and the free t, interaction at E = 140 MeV
has been performed by Petrovich er al. (1983). These au-
thors find good agreement between both interactions if
the ~+p interaction is supplemented by a contact term
of strength 120 MeV fm . Petrovich et al. also per-
formed the spin-longitudinal/spin-transverse decomposi-
tion of the interaction using the interaction representa-
tion of Eq. (4.31) as a basis.

The isovector interaction V in Fig. 15 shows a strong

S~~=cr~ [3qq —I] o, q= (4.54)

pI'I, (q)= &IfMf I & exp[iq. r, ]r., lI, M, ),
j=1

(4.55)

pi I (q)=(IfMfl +exp.[iq rj]orlI;M; &, '

j=1
(4.56)

with the unit tensor I. The interaction in Eq. (4.53) is
written as a product of two one-body operators, one of
which acts in the space of the projectile while the other
acts in the space of the target. To the three force com-
ponents there correspond three different target transition
potentials. They can be expressed in terms of the isospin
(~) and spin-isospin (or) transition densities (L. ove et al. ,
1987),
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U", (q)=V, (q)p" (q), (4.57)

U(o'v)(q)Vc(q)p(07)(q
f o.7 IfIt

Ut I (q)= V (q)p' '(r), S=1,f t f

(4.58)

(4.59)

where V (q)= V, (q)(3qq —I). It is understood that in
Eqs. (4.55) and (4.56) the isospin matrix elements are car-
ried out. This is not indicated explicitly in order to keep
the notation simple. Equations (4.55), (4.56), (4.57), and
(4.58) represent the extensions of Eqs. (4.14) and (4.16) to
include the isospin and spin-isospin degrees of freedom.
As in the nuclear structure part, we also have to modify
the nuclear reaction part, where we have now to consider
the matrix elements of the isospin (r ) and spin-isospin

(o~~~) operators in the projectile distortion function of
Eq. (4.15).

For the consideration of spin observables it is con-
venient to write the spin-dependent interaction terms of
Eq. (4.53) in the longitudinal transverse representation.
Using Eqs. (4.32) and (4.54) one easily derives (Love
et al. , 1987)

V"'(q) = [ Vc(q)+ V'„(q )n .qo ~.q

S= 1 states.
A more detailed specification of the states that are ex-

cited at a given momentum transfer requires a multipole
expansion of the effective interaction of Eq. (4.53). For
that purpose we first expand the plane waves in Eq. (4.53)
into partial waves and couple the orbital (L) and spin (S)
angular momenta to a total angular momentum J. This
leads to an expansion of V in terms of the tensor opera-
tors

MtsJM, „(qr, Os)=A (qr)[i YL (r)SOs]M'rp (4.64)

XMLsj(p) Mls'( j) (4.65)

and that of the tensor part takes the form

VT f q2dq y VT(q)iL+i. +2
77 0 LL'J

XZ(L L J )ML, ig(p) ML, (J(j)

where 00=1 and 0& =cr. The expansion of the central
part of the effective interaction is given by

V =—f q dqg( —)
+ [V, (q)5so+ V,(q)5s i]

7T 0 LgJ

+ V,'(q)(a Xq) ~ (o. Xq)]v .r~, (4.60) (4.66)

where V', and V,' are the spin-longitudinal (l) and spin-
transverse ( t) isovector components of the interaction:

V', (q) = V, (q) —2V, (q),

V,'(q)= V,(q)+ V, (q) .
(4.61)

The corresponding longitudinal and transverse isovec-
tor-spin transition densities are defined by

pf, (q) = (IfMf ~ g exp[iq rj ]o1'qrJ ~I;M, ), (4.62)

pf,
' (q)= (,IfMf~ gexp[iq r, ]trJ. Xq~, ~I, M, ) .

2 j=1

(4.63)

The factor I/V2 in Eq. (4.63) has been included for con-
venience and accounts for the fact that there are two
transverse directions, n and Q, and only one longitudinal
direction, q, as can be seen from Eq. (4.32). The longitu-
dinal interaction V, induces pionlike excitations, while
the transverse interaction V', arises from p-meson ex-
change in lowest-order meson theory.

From Eqs. (4.57)—(4.59) it is obvious that the momen-
tum profiles of the diFerent parts of the effective interac-
tion determine which states are preferentially excited at a
given momentum transfer q. At small-momentum
transfers (0&q &0.5 fm ') the force components V, (q)
and V, (q) are large and excite the S =0 and S =1 iso-
vector transitions, respectively. This can be seen from
the momentum dependence of the interactions shown in
the lower part of Fig. 15. At large-momentum transfers
(q ~ 1 fm ') the tensor force dominates and excites only

(qrj )
QMoooo„(qr )~ g 1— r„(j), (4.67)

XMo»M, ,(qr, ~, )

J

(qrJ )1—
4m,

+M (j)~„(j» (4.68)

XM(o(M) (q J) g (q"J)YiM( J)r).(j)
J J' (4.69)

Here the Z (L ',L,J) are geometrical recoupling
coefficients, which can be expressed (Love and Parish,
1970) in terms of the total angular momentum transfer J.
For natural parity excitations, i.e., hm. =( —), the only
allowed value of L and L, ' is 1.=L'=J with
Z( J,J,J ) = 1. For unnatural parity transitions, i.e.,
b, m. = ( —)

+ ', the values of L and L ' are restricted to
J+1 and the corresponding coefticients assume the values
Z(J —1,J—1,J)=(J—1)/(2J+1), Z(J+1,J+1,J)
=(J+2)/(2J+1), and Z(J —1,J+1,J)=Z(J+1,J—1,J)=3v J(J+1)/(2J+1).

From Eqs. (4.65) and (4.66) one recognizes that the
nucleon-nucleus scattering induces isovector excitations
in the target through the tensors of Eq. (4.64). For
small-momentum transfer, that is for qr (1, we can ex-
pand the Bessel function jt (qr )in a Taylor series. . We
find that for 0 ~J transitions the hadronic transition
operator acting on the target is related to the usual iso-
vector multipole operators, the lowest multipolarities of
which are given by (Auerbach and Klein, 1983)
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(qr )
yM$02M p(qr J )~y +2M(r J )rp( j)15

(4.70)

(4.71)

(qr )
g~»JM „(qr, ,a, )~g '

[ I'2( r, ) cr, ] M~„(j) .
15

(4.72)

The operator on the right-hand side of Eq. (4.67) consists
of two parts: the first is proportional to the Fermi opera-
tor and the second can be recognized to be proportional
to the isovector monopole transition operator. The form-
er excites the isobaric analog state, while the latter ex-
cites the isovector monopole resonance. The operator of
Eq. (4.68) has a similar structure to that in Eq. (4.67),
apart from the fact that now the spin operator cr is in-
volved. The first term on the right-hand side of Eq.
(4.68) may be recognized as the GT operator, and the
second corresponds to the spin-isovector monopole tran-
sition operator. The operators in Eqs. (4.69) and (4.70)
are associated with isovector dipole transitions which in-
volve either no spin flip (4.69) or spin flip (4.70). The
spin-Qip dipole transitions can have spin-parity J =0
1,or 2, and hence, involve three collective modes. A
similar spin dependence is found for the isovector quad-
rupole transitions listed in Eqs. (4.71) and (4.72). The
spin-parities for quadrupole spin-Rip modes are J = 1+,
2, and 3

can contribute to the 0' (p, n) cross section. Therefore
the factorization of the nuclear transition amplitude into
a nuclear reaction part and a nuclear structure part,
which is exact in the plane-wave approximation [see Eq.
(4.17)], can only be fulfilled on average for the distorted-
wave case. Since, however, the distortion function
D(k, k', q) of Eq. (4.15) peaks at q=0 for Fermi and
Gamow-Teller (L =0) transitions, one might expect that
the distorted-wave Born-approximation (DWBA) transi-
tion amplitude of Eq. (4.13) would still approximately
factorize in this case. Empirically this is indeed the case,
and the 0 (p, n) cross section for Fermi and GT transi-
tions can be approximately written as (Goodman, 1980;
Goodman et al. , 1980; Petrovich, 1980)

N lJ l 8(F,i f),kf
I

dc' (q=O)=
d QGT

(4.73)

I

where

(4.74)

are the squares of the Fermi and GT transition matrix
elements. In Eq. (4.73), J—:V (q=0) (a=r, crr) is
the volume integral of the central part of the effective in-
teraction. N is the distortion factor, which summarizes
the distortion effects in a single constant. In practical
calculations X is conveniently determined by forming
the cross-section ratios

E. Spectroscopic applications of the (p, n)
reaction at small-momentum transfers cr (8=0', Q„„)

o (8=0', Q„„=O)
(4.75)

The (p, n) reaction is a powerful spectroscopic tool for
measuring the Fermi and GT strength functions of nu-
clei. The experimental situation of these transitions has
been reviewed in Sec. III. In this subsection we show
how the Fermi and GT transition matrix elements are ex-
tracted from the measured forward-angle (p, n) data.

First we notice that at high incident energies and at
forward angles the nuclear states are probed at small-
momentum transfers (q ~ 0.2 fm '). Therefore, from
Fig. 15, it is obvious that only the central parts of the iso-
vector effective interaction contribute to the cross section
and that the noncentral parts can be neglected. Further-
more, because of the small q transfer, the multipole ex-
pansions of Eqs. (4.67) and (4.68) are applicable, and one
may expect a simple relation between the measured 0'
(p, n) cross sections and the corresponding allowed p-
decay transition rates. There is only one major problem
that has to be considered in the derivation of this rela-
tion, and that is the projectile distortion effect. The dis-
tortions of the projectile wave function have the effect
that a range of momentum components of the nuclear
transition potential, Uf; '(q)= V (q)pl I (q) (a=r, or),f r

where o (cr ) is the distorted-wave (plane-wave)
cross section at 0' and Q„,& is the Q value of the reaction.
The distortion factors are usually calculated with the
complete tF matrix interaction and with inclusion of the
knockout exchange amplitudes in the scattering matrix.

By selecting now F and GT transitions with B values
known from p decay, one can extract the force strength
ratio lJ, /J, l

from a measurement of the corresponding
zero-degree (p, n) cross sections. The ratio

lJ,/J, l

determines, to a large extent, which type of mode (5 =0
or S= 1) should dominate the spectrum at a given in-
cident energy. In addition, this ratio can be directly
compared with the corresponding quantity of the free tF
matrix. This is done in Fig. 16, where the energy depen-
dence of the ratio lJ, /J, l

at zero-momentum transfer
is plotted. The experimental points are measurements of
IUCF (0) and LAMPF (b. and CI) and TRIUMF (0). A
strong energy dependence of the ratio is observed. The
ratio peaks at an energy of about 300 MeV, making this a
good energy for studying isovector spin excitations in nu-
clei. Once lJ, /J, l

is known, one can use the (p, n) re-
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action to determine the CxT matrix elements of states that
cannot be populated by P decay. In particular, it is possi-
ble to map out the whole GT response function in the 0'
spectrum. There are, however, other states with multipo-
larities L )0 which also contribute to the 0' (p, n) cross
section. In general, these states reach their maximum
cross sections at larger scattering angles, but their angle
distributions extend forward to O'. In order also to
guarantee a force-independent analysis of these states,
one has to calibrate the momentum dependence of the
effective projectile-target nucleon interaction. This can
be done as follows: First one selects a GT transition with
known B(GT) value and uses Eq. (4.73) to obtain the nor-
malization of the e6'ective projectile-target nucleon in-
teraction at q=0. The momentum-transfer dependence
of the interaction for q & 0 is then checked by analyzing
angle distributions of inelastic or charge-exchange reac-
tions to high spin states with known nuclear structure.
This calibration procedure was carried out, for instance,
by Osterfeld et al. (1982) for the o.r central and tensor
components of the Love-Franey interaction. The result
was that the q dependence of the interaction was found to
be essentially in agreement with experiment (see also Ra-
paport et al. , 1981).

The calibration procedure has to be slightly modified if
the wave functions of the nuclear states contain 6-h com-
ponents explicitly (Osterfeld et al. , 1985). In this case
one has to fix two independent quantitites, namely, J,
and J, the latter of which is the volume integral of the
effective V interaction. But, on the other hand, one
also has two known quantities, the measured B(GT) value
and the measured 0' (p, n) cross section. Numerically
one finds that both the B(GT) value and the 0 (p, n) cross
section can be simultaneously reproduced only if the rela-
tion

gg
(4.76)

holds, where g~ is the axial-vector coupling constant of
the 6-isobar sector. In the quark model we have
g„*/g~ =&72/25 (Kokkedee, 1969), while in the Chew-
Low theory (Chew and Low, 1956) we have g~/g„=2.
Equation (4.76) is an important result, since it shows that
the (p, n) probe at high incident energies sees 6 s in nuclei
in the same way as the weak interaction in P decay.

With the e6'ective interaction thus calibrated, one can
now start to analyze (p, n) spectra. The calibration pro-
cedure is usually carried out for the discrete transition

Ca(0+)~ Sc(1+,E =0.61 MeV), which possesses a
large B(GT) value of 2.57 and a large 0' (p, n) cross sec-
tion. The same transition is also used in experiments to
normalize measured zero-degree (p, n) data to P decay.
The only uncertainty in going from Ca to another tar-
get nucleus is the distortion factor, X, which changes
with target. This change can be taken care of by an ap-
propriate choice of the optical potentials. The uncertain-
ties introduced by the choice of the optical potentials are
found to be of the order of 10% (Osterfeld et al. , 1985).

V. NUGLEAR STRUGTURE

In this section we review the basic microscopic nuclear
structure theories suitable for the description of spin and
isospin excitations in nuclei. Almost all of these theories
have the independent-particle model as a starting point.
Here the problem of many interacting nucleons is re-
placed by that of noninteracting nucleons in a mean field.
In this approximation the ground state of the nucleus is
described by a single Slater determinant of single-particle
orbitals where the energetically lowest single-particle
states are occupied. Treating the single-particle potential
as a dynamical quantity, one can calculate the vibrations
of the nucleus around the ground-state configuration.
This is the time-dependent mean-field theory or,
equivalently, the random-phase approximation (RPA)
theory of vibrations.

The properties of the nuclear vibrations can be most
conveniently discussed in terms of the strength function.
For an arbitrary one-body operator 0 the strength func-
tion is defined by

(5 1)

where ~qlo) and i'I'f ) denote the ground (0) and final (f)
nucleus eigenstates of energies Eo and Ef. The major
peaks in S(co) are identified with the collective states. If
the peaks appear in the continuum region of the spec-
trum they are termed giant resonances. The RPA can
describe the excitation energies of the collective states as
well as their transition strength, but it cannot reproduce
their widths when these states appear in a region of high
level density. The reason is that RPA states are only of
one-particle/one-hole (lp-lh) character; the coupling to
2p-2h states, which will give rise to the spreading width,
is neglected.

The mean-field approach works well for doubly-
closed-shell nuclei. For its application to open-shell nu-
clei, one has to improve the theory by including the pair-
ing correlations between nucleons. This is achieved in
the Hartree-Pock-Bogoliubov (HFB) theory. The HFB
theory treats simultaneously the long-range, field-
producing forces and the short-range pairing forces in
the determination of the nuclear ground-state wave func-
tion. The latter is also of determinantal structure and is
the vacuum of the so-called Bogoliubov quasiparticles.
The Bogoliubov quasiparticles are generalized fermions,
which are represented by a linear combination of particle
and hole states. They can be used to construct the quasi-
particle RPA. The quasiparticle RPA provides a very
useful method for the study of collective states in open-
shell nuclei.

The description of the width of giant resonances re-
quires a theory which goes beyond the 1p-1h RPA and
involves higher-order configurations such as 2p-2h, 3p-
3h, etc. One approach, of course, is to try to calculate
the complete excitation spectrum using the shell model as
a basis. This is, however, impossible in most cases, apart
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from light nuclei (A ~40). Another approach is to com-
pute the mixing of the 1p-1h states with the more compli-
cated nearby configurations. This mixing is calculated
approximately within the so-called second RPA. The
second RPA considers the coupling of the 1p-1h states
with the 2p-2h states, which represent the next level of
complexity of nuclear states.

A. The independent-particle model

In the independent-particle model, the nucleons are as-
sumed to move independently of one another in the mean
field produced by all the particles. This motion exhibits a
shell structure with the major shells spaced at energy in-
tervals of order Aco=41A ' MeV. The ground state of
the nucleus is described by a single Slater determinant in
which the energetically lowest single-particle states are
occupied. The single-particle states P are eigenfunctions
of a single-particle Hamiltonian with eigenvalues e . .
This Hamiltonian is written as the sum of a charge-
independent and a charge-dependent term and has a
discrete and continuous spectrum. The charge-
independent part takes the form

II, =T+ U(r)+ Vi, (r)l.s „

where T is the kinetic-energy operator, U(r) is a local po-
tential, and Vi, ( r ) is the spin-orbit potential. The
charge-dependent part of the Hamiltonian consists of the
Coulomb potential Vc(r) and the symmetry potential.
The latter favors a nuclear configuration with an equal
number of protons and neutrons and is present only for
nuclei with neutron excess.

Empirically the single-particle potential U(r) can be
well described by a potential of %'oods-Saxon form, while
the spin-orbit potential V&, is usually taken to be propor-
tional to the derivative of a %'oods-Saxon form. The po-
tential parameters are determined from the requirement
that the experimentally observed single-particle energies
and the mean charge radius of the nucleus be repro-
duced. This requirement constrains the potentials quite
strongly. The potential depths are usually found to de-
pend on the single-particle energies. This rejects the fact
that the self-consistently calculated mean field is nonlo-
cal. This nonlocality can be approximately represented
by using an energy-dependent effective mass instead of
the free-nucleon mass in the kinetic-energy operator T.
The efFective mass varies from 1.0 (in units of the free-
nucleon mass) for single-particle states near the Fermi
surface to 0.7 for deep hole states and high-lying particle
states (for a recent review of the nuclear shell model, see
Mahaux et al. , 1985).

Starting from a microscopic many-body theory, the
single-particle potential is provided by the Hartree-Fock
(HF) self-consistent-field method. Using a variational
principle that minimizes the ground-state energy, one ex-
tracts from the effective two-nucleon interaction U; the
mean field that each of the nucleons feels due to its in-

gekak ak
k

(5.3)

where the tkk denote the matrix element of the kinetic-
energy operator T and g~",vk~k J is the self-consistent
HF field. The two-body matrix elements ukjk j
=—(kj~u ~k'j —jk') are antisymmetrized, making the HF
potential nonlocal. Moreover, the HF potential is densi-
ty dependent, as can be immediately recognized from the
sum over occupied single-particle orbitals j in the in-
teraction term. This sum performs an average over all
two-body interactions.

An essential ingredient in the HF theory is the effective
two-nucleon interaction. In principle, this interaction
should be calculated from the bare nucleon-nucleon
force. The proper framework for such a calculation is
the Brueckner theory, which we described in Sec. IV.C.
In this theory the effective interaction appears as an
infinite sum of scattering processes of two nucleons in the
nuclear medium. Since the Brueckner calculations are
rather involved, one usually parametrizes the effective in-
teraction by phenomenological forces. Widely used
effective interactions are the density-dependent Skyrme
forces (Skyrme, 1956, 1959) and the Gogny interaction
(Gogny, 1975). These interactions are very successful in
reproducing the ground-state properties of many nuclei
throughout the periodic table (Vautherin and Brink,
1972; Beiner et al. , 1975).

On the right-hand side of Eq. (5.3), the HF Hamiltoni-
an is written in its diagonal form defining the HF single-
particle energies ek and the corresponding single-particle
wave functions pk. The set of pk is complete and forms
the HF basis. The HF ground state of the nucleus is ob-
tained by occupying the lowest single-particle levels up to
the Fermi energy ez. The HF ground state is then used
as a vacuum to set up a complete basis of many-particle
wave functions. For example, one constructs one-
particle/one-hole (lp-lh) excited states by promoting a
particle from a state P. below the Fermi surface (e, ~ eF)
to a state P above (e )eF ). Correspondingly, one can
construct 2p-2h states, 3p-3h states, etc. The set of all
multiparticle-multihole states forms a complete orthogo-
nal basis in the many-body Hilbert space. This basis is
then used for further investigation of the many-body
Hamiltonian, in particular for the diagonalization of the
so-called residual interaction

VR g ~kk'li' k k' l'al
kk', lI'

(5.4)

The residual interaction is that part of the two-body in-
teraction not included in the HF potential.

In the independent-particle model one assumes that

teraction with all the others. In configuration-space rep-
resentation the HF single-particle Hamiltonian is given
by

A

~HF X kk'+ X Ukfk'1 k k'
+

k, k' j=1
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the residual interaction is negligibly small. Under these
circumstances the strength function of an arbitrary one-
body operator 0 is given by

s(co)=conf(1 n )l(p lola, & I2&(~+~, —~ ),
m, j

(5.5)

where n =0 or 1 is the occupancy of a given single-
particle orbit j.

The strength function takes a very simple form for the
Fermi and GT operators. To show this, let us consider
the closed-shell nucleus Zr. It has all shells filled up to
the g orbit. Within the g orbit, only the g9/2 neutron or-
bit is occupied. In this case the strength function of the
Fermi operator T has a single peak at the excitation en-

ergy of co=g9/2 g9/p The corresponding Fermi transi-
tion is schematically illustrated in Fig. 3(a). The GT
operator P (p) produces two peaks at excitation energies

l'pl E9/2 e'9/2 and co2 E$/2 &9/2 respectively [see
Fig. 3(b)]. The two CiT transitions differ in excitation en-

ergy by the spin-orbit splitting b, ek E$/2 E9/2 the mag-
nitude of which is determined by the spin-orbit potential
Vl, of Eq. (5.2). In Zr this splitting amounts to roughly
5 —6 MeV for the g orbits.

If 0 is one of the more general multipole operators of
Eqs. (4.67)—(4.72) with a spatial dependence of, say,
O(r) —r YL~(r), then the single-particle response is
characterized by transitions across the major shells with
excitation energies of 1%co, 2%co, etc. depending on the
value of L. The response for the dipole field (L =1), for
example, concentrates almost all of its transition strength
in a region around the excitation energy of 1Am. The
quadrupole field (L =2) produces two groups of excita-
tions, one at Ofzco associated with transitions between or-
bits in the open shells and the other group at 2Aco excita-
tion energy, which exhausts the main part of the total
transition strength. The L =3 and L =4 response func-
tions show some concentration of strength around 1%co

and 3%co in the former, and around Ohio, 2%co, and 4%co in
the latter case. For these higher multipoles, however,
one observes a considerable degree of "smearing out" of
the response function.

The energy integral of the strength function gives the
total transition strength, which can often be expressed in
terms of a sum rule. For the Fermi and GT operator
these sum rules are given in Eqs. (2.20) and (2.31), respec-
tively.

So far our discussion has been concerned with 1p-1h
transitions. The collective excitations are constructed by
a coherent superposition of them. For the description of
these states we have to include the residual interaction.
This can be done in different ways.

Qf IO) =0 for all f . (5.7)

The index f labels the eigenstates of the system. From
the stationary Schrodinger equation

H„lf & =Eflf &

we derive the equation of motion for Qf in the form

[H„,QJ ]lo) =(Ef Ep)Qfl0) ~fpQfl0& .

(5.&)

Here cof p =(Ef Ep ) is the—excitation energy of state
If )

relative to IO). Multiplying Eq. (5.9) from the left with
an arbitrary variation (OI5Q performed on the wave
function (f I

we get

«[~Q, [H„Q,']]I»=~fp«l[~Q, Q,']I» . (5.»)
The solution of this equation is completely equivalent to
the solution of the Schrodinger equation. In general, the
operator Qf will span the complete Hilbert space of np
nh excitations. In the RPA, Qf is truncated at the lp-lh
level

m, t

(5.11)

and the equations of motion are linearized by imposing
Bose commutation relations

[Qf'Qf' ] f,f' (5.12)

In Eq. (5.11), a and a; are single-particle creation and
annihilation operators, respectively, which create a parti-
cle in orbital P above the Fermi surface and annihilate
one in orbital P; below the Fermi surface. The RPA
ground state is defined by Qf IO) =0 for all f. Now we

specify the nuclear Hamiltonian H z. We assume it to be
the sum of the HF single-particle Hamiltonian of Eq.
(5.3) and of the residual interaction of Eq. (5.4):

closed-shell nuclei, then the random-phase approxima-
tion (RPA) gives a good description of the nuclear excita-
tion spectrum. In the RPA the residual interaction of
Eq. (5.4) is diagonalized within the model space of lp-lh
excitations. To derive the RPA equations we use the
equation-of-motion technique (Rowe, 1968, 1970). Al-
though this derivation has been given many times before,
we collect some basic formulas here since we need them
below for the discussion of the second RPA.

The equation-of-motion method starts with the obser-
vation that an excited state of the A-particle system can
be formally represented by a creation operator Qf as

lf &=Q,'Io&, (5.6)

where Qf acts on the exact target ground state IO)
defined by

B. The random-phase approximation

If the target ground state can be reasonable well ap-
proximated by a single Slater determinant of single-
particle orbitals, as is the case, for example, for doubly-

HA y k k k +
4 X kk'll' k kal'al1

k kk', ll'
(5.13)

Substituting this Hamiltonian and the RPA operator of
Eq. (5.11) into Eq. (5.10), we obtain, after linearization of
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the commutator [which corresponds to neglecting
ground-state correlations in the evaluation of the expec-
tation values of Eq. (5.10)], the well-known RPA equa-
tions (Brown, 1971a; Rowe, 1970; Ring and Schuck,
1980)

minj

min j
+minj

~min j

fX„

Y„f
fX;

COfo
ml

(5.14)

Here the matrix elements are defined by

~minj (em ei )~mn~ij +Umjin

(5.15)

minj Umnij

and the eigenvectors are normalized according to

(5.16)
mi mi

The coefficients X, and Y; are the forward and
backward-going p-h amplitudes. The matrix 2 in Eq.
(5.14) is Hermitian, and the matrix B is symmetric. Since
the interaction matrix elements U in involve p-h indices
only, we call this set of matrix elements the particle-hole
residual interaction, F~ ".

The p-h amplitudes X; and Y; have a direct physical
meaning: Their absolute squares ~ive the probability of
finding the states a a; Io) and a, a Io) in the excited
state

If ), that is,

xf, =(fIat a, Io),
lf, =(fla,'a Io) .

(5.17)

When we use these amplitudes the transition density of
Eq. (4.11) takes the explicit form

pf;(r) =g[Xf;4&* (r)@,(r)

+ 1"f;4,*(r)C& (r)] . (5.18)

(5.19)

In terms of these matrix elements the strength function
of the operator 0 is given by

s(~)=yl&flolo&l s(~f —~) .
f

(5.20)

One of the important features of the RPA is that it
provides a good description of the collective states. The
collectivity is created by F ", which causes the unper-
turbed p-h states, a a; I

0 ) and a,. a
I
0 ), to mix in such a

way that one of the RPA solutions becomes a construc-
tive superposition of many p-h basis states. This collec-
tive state is pushed up or down in excitation energy rela-

The transition matrix elements of a one-body operator 0
acting on the target ground state are then calculated as

&flolo) =y[xf, (mloli )

tive to the unperturbed p-h states depending on whether
F""is repulsive or attractive (Brown and Bolsterli, 1959).

The transition probability to the collective state is, in
general, large since most of the terms in the sum of Eq.
(5.19) add up constructively in this case. This means that
many nucleons contribute in a constructive manner to
the excitation and set up a collective motion in the nu-
cleus. A measure for the collectivity is the amount of the
total sum-rule strength exhausted by a state. If this frac-
tion is large, that is, of the order of 50% or so, then the
state is termed collective. There are many other noncol-
lective RPA solutions that are the remnants of the origi-
nal p-h excitations. These states are shifted little in ener-

gy and carry much less transition strength. Some of
them are of pure p-h nature.

The RPA provides a good description of the nuclear
excited states as long as the backward-going amplitudes
Yf; are not too large compared with the forward-going
amplitudes X;. The former are a measure of the
ground-state correlations in Io), that is, in how far the
true ground state deviates from a single Slater deter-
rninant due to the adrnixtures of 2p-2h and higher-order
excitations that are produced by the residual interaction.
If the Y; become large, then the ground-state correla-
tions are also large and the RPA becomes questionable.
If the ground-state correlations are neglected, the RPA
reduces to the Tarnm-DancoF approximation.

C. The RPA with explicit 5-isobar
degrees of freedom

For applications at low energies, the RPA can be easily
extended to include 6-isobar degrees of freedom. In
these calculations the 633 resonance is treated as a stable
particle with spin s =—'„ isospin t =

—,', and massI& =1232 MeV. The fermion operators of the nucleonic
sector a& are supplemented by corresponding fermion
operators a~& in the isobaric sector. The fermion an-
ticommutators are generalized to taiv, a z ] =0; i.e., if the
operators refer to diFerent intrinsic states of the nucleon,
they commute. The Harniltonian describing a nucleus
composed of nucleons and 6's formally resembles the
purely nucleonic Hamiltonian of Eq. (5.13). The matrix
elements have to be reinterpreted, however. In particu-
lar, one has to consider the 4-nucleon mass diFerence in
the kinetic-energy operator and one has to replace the
matrix elements of the residual interaction by the corre-
sponding Xh and AA transition potentials, respectively.

The RPA equations (5.14) are now diagonalized in an
extended model space including p-h and 6-h
configurations. The generalized RPA wave functions are
given by

If ) =g[x$;aiv a~; —1'iv;a~;aiv, ]Io&

+y[x~~, ata a„,—r~~, a~~, a~ ]Io) .
mi

(5.21)
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The amount of 6-h adrnixtures in the wave function de-
pends sensitively on the coupling strength of the residual
interaction between 6-h states and p-h states. The prop-
erties of this interaction will be discussed in Sec. V.F.4.
The e6'ect of the generalized RPA wave functions pro-
duced in the analysis of (p, n) data will be shown in Sec.
VI.

Ek=[(ek —
A, ) +b,k]'~

+ Utkk k~k'"k' &

k'&0

(5.25)

(5.26)

The minimization of (OlH —
A,A'l0& leads then to the

BCS equations, which can be summarized by the follow-
ing set of equations (see Ring and Schuck, 1980):

D. The quasipaiticie
random-phase approximation

For nuclei away from closed shells the pairing correla-
tions become so important that they have to be explicitly
included in the evaluation of the nuclear properties. In
order to include pairing one has first to improve the
ground-state wave function. This is done in the BCS
theory (Bardeen, Cooper, Schrieffer, 1957), which was
first applied to nuclei by Bohr, Mottelson, and Pines
(1958) and Belyaev (1959). The self-consistent version of
the BCS theory is the Hartree-Fock-Bogoliubov (HFB)
theory (Bogoliubov, 1959a, 1959b). In the HFB theory
one determines the most general wave function of in-
dependently moving quasiparticles by minimizing the
ground-state energy simultaneously with respect to the
long-ranged Hartree-Fock field and the short-ranged, at-
tractive pairing field.

In order to determine the BCS ground state it is con-
venient to introduce the so-called Bogoliubov quasiparti-
cles (Bogoliubov, 1958; Valatin, 1961). They can be
represented by a set of quasiparticle creation and annihi-
lation operators which are linear combinations of the
particle and hole operators of Sec. V.A. :

CXk
=Ukak —Ukak, CXk

=ukak —
Ukak

uk k+Uk k k k k+Uk
(5.22)

Here
l
k & is the time-reversed state of lk &, and Uk and uk

represent the probability that a certain pair state (k, k ) is
or is not occupied. These probabilities are determined
from the condition that the ground-state energy be mini-
mized. The BCS ground state is defined by

akl0&=0 for all k . (5.23)

IO&= Q(~k+Uk~kak)l&, (5.24)

where
l & is the bare vacuum. It is obvious that this wave

function has no definite particle number. The norm of
the ground state requires Uk+uk =1. The parameters uk

2 2

and Uk are determined by variation of the energy. This
variation is restricted to the subsidiary condition that the
expectation value of the particle number operator 8'have
on average the value A =2+k &Ouk. This is achieved by
adding the term —A,g to the Hamiltonian, where A. is a
Lagrange multiplier that is adjusted to fulfill the desired
condition.

For even-even nuclei the ground-state wave function has
the explicit form

v =—1—
Q(ek —

A, ) +b.k

(ek —A. )1
uk =—1+2

Q(ek —A, ) +b,„
uk+Uk=1 .

(5.27)

(5.28)

Here Ek is the quasiparticle energy of state k and 5k is
the gap parameter, which is a measure for the pairing
strength between the nucleons. Insertion of the uk's and
Uk's of Eq. (5.27) into Eq. (5.26) results in the gap equa-
tion, which is a nonlinear equation in 6k. It has only a
nonvanishing solution if the pairing force is larger than a
certain critical value.

The HFB quasiparticles can now be used to generate
the quasiparticle RPA. For that purpose we define in
analogy to Eq. (5.11) the excitation operator

with

Qf g (+1k'+k+k' I gk'teak'+k )
k&k'

(5.29)

QylO&=0 for all f . (5.30)

By inserting Q& into Eq. (5.10) we find —in analogy to
the derivation of the RPA equations in Sec. V.B—the
quasiparticle RPA equations (Baranger, 1960; Belyaev,
1965), whose matrix form is similar to that of Eq. (5.14).
The main di6'erence is that in the quasiparticle RPA
there appear also particle-particle (p-p) matrix elements
besides the usual p-h matrix elements of the RPA. The
appearance of p-p matrix elements can be immediately
understood from the structure of the quasiparticle opera-
tors of Eq. (5.22) and the excitation operators of Eq.
(5.29). Thus one needs two sets of residual interactions
for a description of the excitation spectrum of superQuid
nuclei: a p-h interaction and a p-p interaction. In Sec.
V.I we shall discuss the application of the quasiparticle
RPA to the charge-changing reactions.

E. Beyond the RPA

While the RPA gives a good description of the excita-
tion energies, and the transition strengths of the major
peaks of the response function, it fails to reproduce the
details of the response function, such as the widths and
the fine structure of the giant resonances. The RPA en-
ergies are discrete as long as only bound or quasibound
single-particle states are considered. In the so-called con-
tinuum RPA (Krewald et al. , 1974; Bertsch and Tsai,
1975) the widths of the single-particle states in the con-
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tinuum are included. In this case the RPA equations go
over into a set of coupled integral equations (Bertsch and
Tsai, 1975). This formulation considers the escape width
I of the excited states, i.e., the possibility that one parti-
cle can escape from the excited nucleus into the continu-
um. However, the escape width is, in general, only a
small fraction of the total width of a giant resonance
state. In order to explain the full width and the fine
structure of giant resonances one has to include spread-
ing eA'ects which are due to the mixing of the Ip-1h RPA
states with more complicated nuclear configurations.
Since the nuclear Hamiltonian contains only one-body
and two-body operators, an initially excited Ip-1h state
can mix directly only with 2p-2h states. Therefore, for a
description of the spreading width it is sufhcient to evalu-
ate the mixing of the 1p-Ih states with the 2p-2h states.
The 2p-2h states mix with still more complicated
configurations.

A problem in the calculation of the spreading width is
the appropriate choice of the 2p-2h states: i.e., whether
they are chosen to be two-phonon states, which include
collective eff'ects (Soloviev et al. , 1977, 1980; Soloviev,
1987), or whether they can be assumed to be uncorrelated
2p-2h excitations. Which of the two possibilities is the
better choice depends mainly on the excitation energy of
the mode considered. At low excitation energies the im-
portant degrees of freedom are the surface vibrations,
and the collective modes will decay by exciting them
(Bertsch et al. , 1983). Then the two-phonon model
(Soloviev et al. , 1977, 1980) is appropriate for the
description of the damping. At higher excitation ener-
gies, however, the level density of the 2p-2h states is very
large and all 2p-2h states will contribute to the damping.
Therefore all 2p-2h states have to be considered in the
calculations. This is possible in the so-called second
RPA formulation (Sawicki, 1962; Yannouleas et al. ,
1983; Drozdz et a/. , 1986a, 19861;Yannouleas and Jang,
1986; Wambach, 1988; Drozdi et al. , 1990).

In the second RPA the excitation operator of Eq.

(5.11) is extended to include 2p-2h excitations, such that

Qf g (+ph apah +ph h p )

p, h

+/(+pphhpphh
Pl &P2
hl &h2

h h h ah (5.31)

This sum of operators represents the only possible com-
bination of two- and four-fermion operators which
creates an excited state orthogonal to the ground state.
Inserting Qf into the equation of motion (5.10), and per-
forming the variation with respect to the individual ex-
pansion coe%cients, one obtains the second RPA equa-
tions, which formally resemble the usual RPA equations
of Eq. (5.14). In the second RPA, however, the matrices
3 and 8 of Eq. (5.14) become supermatrices which in-
volve, besides the 1p-1h matrix elements Aphph and

Bphp h the matrix elements Ap p h h p
.h . and

2P

A
h h, , h, h, , which describe the coupling of 1p-Ih

P1P2 1 2P 1P2 1 2

to 2p-2h states and the mixing between 2p-2h states, re-
spectively. It can be shown that as a consequence of the
Bose commutation relations (5.12) we have

h h 'h' , =o.
plp2 1 2p plp2hlh2plp2hlh2
Because of the large number of 2p-2h states needed to

correctly describe the damping in heavy nuclei, the
second RPA equations have a very large dimension.
Therefore these matrices cannot be diagonalized as they
stand. Since the external field, however, excites only the
Ip-Ih components of the wave function, only the project-
ed solution of the second RPA equation onto the 1p-1h
subspace is needed. The projected solutions obey the
RPA equation (5.14), but with a matrix 2 (co) which is
now complex and energy (co) dependent. The matrix
3 (co) has the explicit form (Drozdz et al. , 1986a, 1986b)

~phph ( ) &phph
—+

pl &p2, hl &h2
I I I I

pl &p2, h
1 h2

1 2 1 2 P1P2 1 2P1P2 1 2 P1P2 1 2P
(5.32)

I h h( )= —2I &h ~ ( ), (5.33)

which is a matrix in the p-h indices. Transforming to a
basis in which the interaction in the 2p-2h subspace be-
comes diagonal with eigenenergies co2, the width of a
state

~f ) can be expressed as

I f ( cl)fQ ) =2 trg l
~f2 I

'& (~fQ

2

where

(5.34)

~f2 X(+ph + +ph ) ~ph, 2
ph

(5.35)

where g~O is an infinitesimal quantity. The imaginary
part of 2 (co) gives the spreading width as

The spreading width of Eq. (5.34) has exactly the form
expected from Fermi's golden rule.

The diagrams corresponding to the various decay
modes of the state

~ f ) are given in Fig. 17 (From Drozdz
et al. , 1990). It is instructive to consider these diagrams
to lowest order in the residual interaction U as shown in
the lower part of Fig. 17. Diagrams of type (a) and (c) in-
volve self-energy insertions on the particle and hole lines,
which are closely related to the imaginary part of the op-
tical potential. The last two diagrams, (e) and (f), corre-
spond to medium polarization graphs where a particle
and a hole interact via the polarization of the medium.
This gives a screening correction to the interaction in the
p-h channel, similar to the screening of the Coulomb in-
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F "(r),rz)=[V("(r$, rz)+ V, "(r„rz)1$.7z

+ V~ "(r&,rz)o &
cr z

+ V (r(, lz)o')'cTzvy'1 z

+tensor terms + . ], (5.36)

(o) (b) (c) (d) (e)

FIG. 17. RPA self-energy in lowest-order approximation. Dia-
grams (a) and (c) are self-energy insertions on the particle and
hole line; diagrams (b) and (d) are particle-particle (p-p) and
hole-hole (h-h) interactions; diagrams (e) and (f) correspond to
polarization graphs in the crossed channel. From Droidi et al.
(1990).

teraction in an electron gas. There also appear p-p and
h-h linked diagrams [ladder diagrams (b) and (d)], which
renormalize the residual interaction in the p-p channel.
In the evaluation of the width, all these decay ampli-
tudes are added coherently and are then squared. De-
pending on the quantum numbers of the decaying state,
important interference effects can occur between the vari-
ous decay components, leading especially to a narrowing
of the width in the case of the scalar-isoscalar (S=O,
T=O) modes. In this case the diagrams (a) and (c) are
largely canceled by (e) and (f) (Bertsch et a/. , 1983; Wam-
bach, 1988). For all other spin and isospin modes, the in-
terference shows fewer coherence effects, making the
width of these states large.

where the dependence of the interaction on spin and iso-
spin has been made explicit. Since the microscopic calcu-
lation of F"" is very involved, one usually introduces
phenomenological interactions. In the following we dis-
cuss the Landau-Migdal interaction. This interaction
was originally developed by Landau (1956, 1957, 1959) in
the context of Fermi-liquid theory and later applied to
finite nuclei by Migdal (1967). In the Landau-Migdal
theory the nucleons on the Fermi surface are considered
as weakly interacting quasiparticles. A quasiparticle can
be thought of as a nucleon (or nucleon hole) which has
surrounded itself with a polarization cloud of nucleon
particle-nucleon hole excitations. This so-called
"dressed" nucleon behaves like a particle with an
effective mass m '. Starting from the ground state of an
even-even nucleus, the quasiparticles are defined as the
low-lying single-particle or single-hole excitations in the
neighboring odd-mass nuclei. The excited states in the
even-even system are then constructed from a superposi-
tion of quasiparticle-quasihole states.

Landau originally defined the quasiparticle interaction
for an infinite medium like symmetric nulcear matter. In
this case the quasiparticle states are represented by plane
waves ~k). Landau showed that for small excitations
close to the Fermi surface the excitation energy of the in-
teracting system can be expressed as a functional of the
quasiparticle occupation numbers n(k):

F. The residual p-h interaction

The various RPA calculations differ in the choice of
the single-particle Hamiltonian and in the choice of F
In the so-called shell-model RPA one starts from the
independent-particle model Hamiltonian of Eq. (5.2) and
parametrizes F""in a phenomenological way. The most
often used phenomenological interactions are the separ-
able multipole-multipole force of Bohr and Mottelson
(1975) and the density-dependent Landau-Migdal interac-
tion (Migdal, 1967). In the following we shall discuss the
Landau-Migdal interaction in some detail, especially be-
cause it has been extended by Migdal (1972) to include
one-pion exchange and by Baym and Brown (1975) to in-
clude one-rho exchange. These extensions introduce a
strong momentum dependence in the o.w channel. De-
tailed studies of the magnetic properties of light and
heavy nuclei with this generalized interaction support
this strong momentum dependence (Speth et al. , 1980).

6E=+e (k)5n(k)

+—,
' g F~ "(k„kz)5n (k& )5n (kz ) .
k, k2

(5.37)

5n (k, )5n (kz)
(5.38)

For isospin-symmetric nuclear matter, F""has the expli-
cit form

Here e (k) is the quasiparticle energy, and F~ "(k&kz) i,s
the interaction between a quasiparticle and a quasihole.
The variation 6n(k) represents the deviation of the occu-
pation numbers of the interacting system from the sharp
Fermi distribution function of the noninteracting system.

According to Eq. (5.37), the p-h interacting has to be
identified with the second derivative of the energy func-
tional with respect to the occupation numbers:

1. The Landau-Migdal interaction

Because of the symmetry properties of nuclear forces,
Fp" can be written in the general form

F~ "(k,, kz) =F(k„kz) +F'(k„kz)r, rz

+G(k„kz)cr, oz

+G'(k„kz)o, ozv(. ~z . (5.39)
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F(ki, k2) =QFiPi(cos81 ) .
I

(5.40)

For small excitations near the Fermi surface, I'~" de-
scribes the forward scattering of a particle and a hole in
the limit of vanishing energy and momentum transfer
(co~0, q ~0). This is the so-called Landau limit. In this
limit the quasiparticle rnomenta k, and k2 are close to the
Fermi momentum, so that ~ki~ =kz and ~k2~ =k~.
Hence the interaction depends only on the so-called Lan-
dau angle OL between k& and k2. Expanding in terms of
Legendre polynomials we obtain for the first interaction
component of Eq. (5.39)

gies and transition strengths of the collective states and
the electromagnetic moments and transition probabilities
of odd-A nuclei. This adjustment is a sensible procedure,
since the various types of collective states are selectively
sensitive to specific interaction terms. For example, the
excitation energies of the electric isoscalar modes associ-
ated with nuclear shape vibrations depend strongly on
the attractive interaction term fo, while those of the elec-
tric isovector modes associated with neutron-proton po-
larization oseillations are related to the repulsive interac-
tion term fo. Similarly, the spin excitations are governed
by the spin-dependent interaction parameters go and go.

The expansion coeKcients I'I are called Landau parame-
ters. It is customary to introduce dimensionless quanti-
ties

fi=Co Fi (5.41)

dX gC
—1

dEF
(5.42)

o(fo fo i'r2+gorri a'2

+goo'i'a a&i'r2)
(5.43)

where fo, fo, go and go are the four zero-order Landau
parameters. In Midgal's (1967) extension of this interac-
tion to finite nuclei, the Landau parameters become den-
sity dependent. Only the non-spin-ffip terms fo and fo
are found to show a strong density dependence (Ring and
Speth, 1974; Speth et al. , 1977).

According to Landau's ansatz, the p-h interaction of
Eq. (5.43) is an eff'ective force, which acts only between
p-h states and which does not have to be antisym-
metrized. The inhuence of the more complicated nuclear
configurations as well as the exchange contributions to
the matrix elements are assumed to be incorporated into
the Landau-Migdal parameters. The parameters are ad-
justed to experimental data, such as the excitation ener-

is the density of states at the Fermi surface per unit ener-

gy and unit volume, and I* is the e6'ective mass of the
quasiparticle. The factor g in Eq. (5.42) denotes the
spin-isospin degeneracy of states, which amounts to 4 for
symmetric nuclear matter. Using kF = 1.36 fm and the
bare nucleon mass, we obtain Co = 151 MeV fm . In the
literature there exist other choices for the normalization
constant Co. The Julich group, for instance, uses the
spin-degeneracy factor g=2, which leads to CO=302
MeV fm . Sometimes also slightly diA'erent values of I*
are used. Another unit is the so-called pionic unit, which
expresses the force strength in units of J
=4vrf »Im =392 MeVfm .

For a short-range interaction only the first few terms
in the Legendre expansion of Eq. (5.40) will be
significant. For a zero-range interactj. on only the I =0
term is important. In this limit we obtain

2. The ~+p+g,' model

F""(r„r2)= V (ri, r2)+ P' (r„r2)

+5goCoo i cTp'T) (5.44)

Despite its simple structure, the Landau interaction
performs very well in correlating the properties of collec-
tive nuclear excitations both in light and in heavy nuclei.
Its success is due to the fact that most collective states
are sensitive only to the small-momentum-transfer behav-
ior of the interaction. In particular, many natural parity
non-spin-Aip states as, for example, the electric giant res-
onances, can be well described by the Landau-Migdal in-
teraction (For reviews see Speth and van der Woude,
1981; Goeke and Speth, 1982). For magnetic or spin-ffip
transitions, however, a zero-range interaction is too sim-
ple, since the pion and the p meson play a significant role
there. Because of its small mass the pion introduces a
strong momentum dependence into the p-h interaction.
Moreover, it provides a tensor interaction which turns
out to be very attractive at large-momentum transfers,
q-2 fm '. This fact was first recognized by Migdal
(1972, 1978, 1979) in his discussion of pion condensates.
The attraction of the tensor force of the pion is partly
balanced by the tensor force of the p meson, which is
repulsive (Baym and Brown, 1975). A sensible Fr " in the
o.~ channel should therefore include the m- and p-meson
exchange potentials. These potentials alone, however,
cannot describe the short-range behavior of the p-h in-
teraction, since they vanish for small-momentum
transfers. The short-range behavior is characterized by
the Landau-Migdal parameter go, which has to be ex-
tracted from experiment. A semimicroscopic method of
introducing short-range terms into the p-h interactions is
to fold the m and p exchange potentials into the correla-
tion function g (r) of Eq. (4.48). One finds that this corre-
lation function accounts for a large fraction (72%) of the
empirical go value. But still a phenomenological correc-
tion term has to be added to the correlated ~ and p ex-
change potentials in order to reproduce the experimental
data. This correction term is usually assumed to be of
zero-range form, involving a parameter 5go. Thus most
models for the residual p-h interaction in the o.~ channel
have the form
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As previously mentioned, for the zero-range term only
direct matrix elements are calculated, while for the
finite-range part of the force both direct and exchange
matrix elements have to be considered. Several p-h in-
teractions with m- and p-meson exchange have been con-
structed, for example, by the Jiilich-Stony Brook group
(Speth et al. , 1980; Nakayama et al. , 1984; Krewald
et al. , 1988). There are other residual interactions which
consider either only the m. exchange plus a short-range
Landau-Migdal term (Meyer-ter-Vehn, 1981) or the full
one-boson exchange potential including m, p, o., and co

exchange (Towner and Khanna, 1983; see also Arima
et a/. , 1983; Towner, 1987). In all cases a Landau-
Migdal parameter has to be added to the finite-range in-
teraction in order to reproduce the empirical spin-isospin
properties of nuclei. Complete Brueckner G-matrix cal-
culations show a very similar behavior in the o.w channel
to that of the phenomenological interactions (Dickhoff
et al. , 1983; Nakayama et al. , 1984).

The a~ interaction is strongly repulsive at small-
momentum transfers. With increasing momentum
transfer q, however, the interaction decreases rapidly and
vanishes around q =2.5 fm '. The small-momentum
transfer behavior of the interaction is well tested by the
energetics of the GT resonance, which is pushed up in ex-
citation energy. The energy shift is very sensitive to the
repulsion of F " at small q. In order to test the high-
momentum transfer behavior of F"", one has to consider
magnetic excitations of high multipolarities (J"~ 2 ).
These states have transition densities peaking at large-
momentum transfers (q —1 —2 fm '). Although these
states are not very collective, one may deduce from their
energetics that the residual p-h interaction is weak in this
momentum-transfer region. For a more detailed discus-
sion of this point, see Krewald and Speth (1980), Speth
et al. (1984), and Krewald et al. , 1988.

3. The effective G-matrix interaction
and the medium polarization

There have been various attempts to calculate the Lan-
dau parameters microscopically starting from the
Brueckner G matrix. Pioneering work in this field was
performed by Brown (1971b), who pointed out the con-
nections between Landau-Migdal theory on the one hand
and the Brueckner-Bethe theory on the other hand (see
also: Backmann et al. , 1985). In Fig. 18 we show the
lowest-order contributions to the p-h interaction within
the Bethe-Brueckner approach. The antisymmetrized G
is evaluated by solving the Bethe-Goldstone equation
(4.28) for the scattering of two particles in nuclear matter
with the particle momenta ik, ~

and ik2~ restricted to k~.
The Landau parameters are then functions of the
momentum transfer q and of the Fermi momentum kz
(density).

Calculations of this form have been carried out by the
Tiibingen group (Dickhoff et al. , 1981, 1983; Dickhoff,
1983), the Jiilich group (Nakayama et al. , 1984, 1986; see

ph

FIG. 18. Lowest-order contributions to the effective particle-
hole interaction in the Bethe-Brueckner approach.

also Krewald et al. , 1988), and the Brooklyn group
(Celenza et al. , 1982; Anastasio et al. , 1983). In Table I,
set (I), we compare the theoretical Landau parameters
calculated within the G-matrix approach with the empiri-
cal values. The theoretical values correspond to the Lan-
dau limit ~q~ ~0. Especially for the fo parameter of the
scalar-isoscalar channel there is a large discrepancy be-
tween the empirical and the theoretical value. The latter
is too attractive and even violates the stability condition
of nuclear matter, which requires fo ) —1 (Sjoberg,
1973). This means that in the G-matrix approximation
nuclear matter at normal density is unstable against small
density fluctuations. The important physics missing in
the G-matrix approach is the medium polarization eA'ect.

It has been shown by Sjoberg (1973) and Babu and
Brown (1973) that, in particular, the screening effect in
the so-called crossed channel reduces strongly the attrac-
tion of the G matrix. The lowest-order diagram associat-

Tiibingen

Jiilich

Brooklyn

Empirical

I
II
III

I
IV

fo
—0.78
—0.38

—0.90
—0.22

0.18

—0.76
—0.23

0+0. 1

fo
0.17
0.16

0.25
0.05
0.12

0.19
0.23

-0.6

Ro

0.16
0.13

0.15
—0.05
—0.12

0.13
0.14

-0.15

go

0.44
0.49

0.49
0.58

0.56

0.44
0.38

-07

TABLE I. Landau parameters at normal densities (kf =1.4
fm ') in pionic units (Co=392 MeV fm }. The G-matrix calcu-
lations of the Tiibingen group (Dickhoff et al'. , 1983), the Jiilich
group (Nakayama et al. , 1984), and the Brooklyn group (Celen-
za et al. , 1982) are compared to the empirical Landau parame-
ters. The various calculations labeled by roman numerals were
performed with different input and different approximations.
Set I: Bare (nonrelativistic) G matrix derived from the Bonn po-
tential (Holinde et al. , 1972). Set II: Bare G matrix plus in-
duced interaction. Set III: Bare G matrix plus induced interac-
tion plus relativistic corrections. Set IV: Bare G matrix plus
relativistic corrections. From Towner (1987).
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ed with the medium polarization is shown in the lower
part of Fig. 18. Schematically, the equation to be solved
1s

P P-h —G P-h++ (+P-h ) (5.45)

where the induced interaction sums all p-h bubbles in the
crossed channel. This equation has to be solved self-
consistently. The major effect of the induced interaction
is on the parameter fo, reducing the strong attraction.
This is shown in Table I, set (II). There is a mild repul-
sive effect on the go parameter but essentially no effect on
the other Landau parameters.

A further improvement in the theoretical description
of the Landau parameters is achieved if relativistic effects
are considered in the 6-matrix calculations. The first cal-
culation of this type was perfomed by the Brooklyn
group (Table I, set IV). It can be seen that the relativistic
G matrix stabilizes the Landau parameter fo. A further
improvement is obtained if, in addition, the induced in-
teraction is considered, as was done by the Jiilich group
(set III).

4. The b,-hole residual interaction

The interaction between p-h and 6-h states is obtained
from Eq. (5.44) by replacing the operators o and r by the
corresponding spin and isospin transition operators S and
T, respectively, which convert a nucleon into a 6 isobar
(Brown and Weise, 1975). For the nucleon-isobar cou-
pling constant the Chew-Low (Chew and Low, 1956)
value f Nz =2f NN is assumed and correspondingly

f Nz =2f NN. A problem is the contact interaction term
of Eq. (5.44). In analogy to the purely nucleonic case,
one would expect that in the case of the p-h~ 6-h transi-
tion potential a contact interaction of the form
~gNE(f Nh~f NN)CO&1 S2rl'T2 would have to be added
to the correlated m and p exchange in order to obtain the
complete I' " interaction. The question arises whether
there exists a relation between the Landau parameters go
of the nucleonic sector and the corresponding parameter
g&& appearing in the coupling of the nucleonic and the 6
sector. Using chiral-symmetry arguments, Oset and Rho
(1979) have advocated that gN& —=go (see also Bohr and
Mottelson, 1981; Brown and Rho, 1981). This so-called
"universality" assumption leads to a large quenching of
GT strength due to 6 isobars. However, one-boson ex-
change models for the F " interaction (Arima et al. ,
1983; Towner, 1987), as well as complete microscopic G-
matrix calculations (Dickoff et al. , 1981; Dickhoff, 1983;
Nakayama et al. , 1984), do not support this assumption.
They give gN& values that are 30 to 40% smaller than go.
The results of these calculations are listed in Table II.
The reason for the small value of gzz is rather simple: In
the microscopic calculation of go and g&z, direct and ex-
change interaction terms appear which, in general, inter-
fere destructively. The exchange terms reduce the direct
terms, but for the p-h —+6-h transition matrix elements

TABLE II: Calculated Landau parameters go and g~z. The
value of go is measured in units of Co =392 MeV fm, while gzz
is measured in units of 2X Co =784 MeV fm . Listed are results
of 6-matrix calculations performed by the Julich group (Nakay-
ama et al. , 1984) and by the Tokyo group (Cheon et al. , 1983).
The various calculations were performed with different input
and different approximations. Set I: Bare nonrelativistic G ma-
trix based on the Bonn potential (Holinde et al. , 1972). Set II:
Bare G matrix plus induced interaction. Set III: Bare 6 matrix
plus induced interaction plus relativistic corrections. From
Towner, 1987.

Julich

Tokyo

I
II
III

go

0.49
0.58
0.56

0.52
0.61

0.35
0.56
0.68

0.35
0.45

this reduction is much stronger than for purely nucleonic
p-h matrix elements. This different interference pattern
is due to a simple property of the spin-isospin exchange
operator P „which is four times larger for p-h~b, -h
transitions than for p-h~p-h transitions.

Cheon et al. (1984) find, in addition, that the magni-
tude of the g&& value depends quite sensitively on the nu-
clear density. Its magnitude decreases with decreasing
density, thus favoring a small value of g&& near the nu-
clear surface. Some enhancement of the 6-matrix value
of g&& can be obtained if the induced interaction of Eq.
(5.45) is considered. Only a mild enhancement of gN&
over the G-matrix value is found (set II in Table II)
(Cheon et al. , 1984; Nakayama et al. , 1984). The Julich
group also studied relativistic corrections and obtained a
further slight enhancement of the gN~ value (set III in
Table II). In summary, all microscopic models for the
evaluation of the g&& parameter given much smaller
values than the "universality" relation of Oset and Rho
(1979) assumes ad hoc. This indicates that the b, -h
quenching mechanism may be much less important than
originally thought.

G. Applications to spin-isospin modes

1. Excitation energy
of the Gamow-Teller resonance

In order to calculate the excitation energy of the GT
resonance we have to solve the RPA equations of Eq.
(5.14) with an appropriate residual interaction. In princi-
ple we should start from the finite-range interaction of
Eq. (5.44), calculate direct and exchange matrix elements,
and diagonalize the residual interaction in a given model
space of p-h configurations. This procedure has been car-
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u,„=1~,&mi 'lo(1)r (1)lo&

X &nj 'lo(2)r (2)10& (5.46)

and similarly for the isobaric analog matrix elements

u „„=~,&mi 'lr (1)IO&&nJ 'lr (2)IO& . (5.47)

This amounts to the field approximation of Bohr and
Mottelson (1975), where the coherent states are generated
by oscillating average fields which, in the present case,
are proportional to the operators ~ and u~. By inserting
the matrix elements of Eq. (5.46) into the RPA equations
(5.14) we can eliminate the amplitudes Xf; and Yf; be-
cause of the separability of the interaction and obtain the
following dispersion relation for the excitation energy
cofo of the collective GT state (e.g. , for the 1+ state with
spin projection M =0):

I & (np -')J =1+,M =Olo, r+, IO & I'

(e„—e~ )+cofo

(5.48)

Here e and e„are the proton and neutron single-particle
energies. For nuclei with a large neutron excess the
second sum in Eq. (5.48) will be approximately zero,
since all relevant P+ transitions are Pauli blocked. This
means that the effect of ground-state correlations on the
GT resonance is small. Gaarde et al. (1981) have solved
Eq. (5.48) for various nuclei. They used experimental
single-particle and single-hole energies and adjusted x,
in such a way that the experimentally observed CzT ener-
gy is reproduced. They found the value ~,=23/A
MeV. From the isobaric analog state they determined
the coupling constant ~ =28/A. This value is slightly
larger than that of ~

An even simpler and more instructive method for
determining the GT energy systematics is the sum-rule
method (Bertsch, 1981, 1983; Suzuki, 1982, 1984; Bertsch
and Esbensen, 1987). Since the ground-state correlations
are small for the isobaric analog state and the CxT state,
the Tamm-Dancoff approximation is sufficient for the
evaluation of their excitation energies. The Tamm-
Dancoff theory respects the sum rules of Eqs. (2.20) and
(2.31). For charge-exchange modes with a narrow width,
it is convenient to identify the peak energy of the reso-
nance with the average excitation energy of the strength

ried out by many groups by now. For a first understand-
ing, however, it is sufficient to consider simplified residu-
al interactions such as the Landau-Migdal force or a se-
parable interaction of the multipole-multipole form. For
a description of the isobaric analog and GT states a se-
parable interaction is very appropriate, since both types
of excitation involve no change of the orbital motion of
the nucleons. With a radially independent separable in-
teraction we obtain for the GT matrix elements

e (1—r, 3)(1—~J3)

4lr, —r, l

(5.50)

According to Eq. (5.50), we can make the corresponding
separation of the mean excitation energy as

&E & =b,E„b;,+AEJ, +b,E,
+DE +hE +hE (5.51)

where we have split the single-particle energy into an or-
bital (orbit) and a spin-orbit (ls) part. Of the various in-
teraction terms of Eq. (5.50), only the Coulomb force
does not commute with the Fermi operator T . There-
fore, from Eq. (5.49), the mean excitation energy of the
isobaric analog state is given by

(5.52)

Here the commutator

X [(1 r;3)r~ +(1 r—j3)r; ]—(5.53)

represents a two-body force, which changes a neutron-
proton pair into a proton-proton pair The use .of (5.53)
in (5.52) yields

p~ (r )[p„(r')—p„(r') ]
(&—z) lr —r'I (5.54)

where we have kept only the direct Coulomb matrix ele-
ment, since the exchange matrix element is comparative-
ly small because of the long range of the Coulomb in-

function. The latter is defined by the linearly energy-
weighted sum over the non-energy-weighted sum of the
excitation strengths. In the Tamm-Dancoff theory the
average excitation energy is given by the commutation
expression

00 HO 0&E&=I dEESTD~(E)= ' (549)
& 0 I o 'o

I
0 &

where the expectation value is taken with respect to the
independent-particle-model ground-state wave function
of the parent nucleus. The operator in Eq. (5.49) is calcu-
lated by explicitly summing over intermediate p-h states
which are calculated within the Tamm-Dancoff approxi-
mation.

Let us first show that we can evaluate the excitation
energy of the isobaric analog state in this way. For that
purpose we divide the total Hamiltonian into the single-
particle Hamiltonian of Eq. (5.2), the spin- and/or
isospin-dependent two-body interactions, and the
Coulomb interaction:
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(5.55)

teraction. We remark that the a., interaction of Eq. (5.50)
contributes to AE„b;, via the symmetry potential and to
AE via the residual p-h interaction. Both contributions
to ( E,~s ) necessarily cancel, so that Eq. (5.54) is
fulfilled.

Let us next calculate the mean excitation energy of the
GT resonance. It is defined by

(olp (0)[a,p (0) jlo)
(olp (o)p (o)lo&

LLJ
2—

I

I-
bJ

~ ~/ I

11.~

Zr
Nb

~ Mo

Sn
X
o Pb

where, for convenience, we have considered only the
p=O component of the GT operator. In the following
we shall apply Eq. (5.55) to nuclei with a large neutron
excess, like Ca, Zr, or Pb, in which all the spin-
orbit partners of the proton states are occupied by neu-
trons. When we insert the Hamiltonian of Eq. (5.50) into
the commutator of Eq. (5.55) we find that only the orbital
part of the Hamiltonian commutes with p (0).

As the first of the noncommuting terms we evaluate
the expectation value of the spin-isospin-dependent two-
body interaction.

(OlP+(0) g ~,r;.r o; o JP (0) 0)
f)J

(olp, (o)p (o)lo)
(5.56)

In order to make a nonvanishing expectation value in Eq.
(5.56), the operators /3+(0) and p (0) must act on parti-
cles i and j, respectively. Decomposing the isospin
operator according to r; ~ =

—,'(r;+rj +r; r.+)+r;3r 3

and inserting the explicit form of the GT operator from
Eq. (2.29), we find that the numerator of Eq. (5.56) is
equal to 2(N —Z) i~ . The denominator has the value

(Olp (0)p (0)lo) =(N —Z), so that

bE, =2(N Z)i~, =4~—,To, (5.57)

—
& To —1To —1 l~, y ~;.~, I To 1T,—1&—

=4m, TO .

Subtraction of this energy difference from (Ei&s ) gives
the desired result.

where To=(N —Z)/2 is the isospin of the parent nu-

cleus.
Next we consider the Coulomb energy AEc and the

isovector single-particle energies that contribute the same
amount to the GT energy as to the isobaric analog state.
From Eq. (5.54) we know that bEc=(Ei~s). However,
the isobaric analog state has an additional energy contri-
bution from the residual x interaction, which we have to
subtract. We can calculate this contribution by noticing
first that g;&~r; r =2T —3A /2 and then using the fact
that the isobaric analog state and the GT resonance have
isospin quantum numbers To and (To —1), respectively.
This gives the energy difference

&ToTol& X r & lToTo&

0
O. IO

I

O. I 2
I

0.16
(N-Z) ZA

I

O.I8
t

0.20 0.22

FIG. 19. Energy difference of the Gamow-Teller and the iso-
baric analog state for different nuclei as a function of the rela-
tive neutron excess. From Nakayama et al. (1982).

The remaining term of Eq. (5.51) is the spin-orbit po-
tential. For nuclei like Ca or Zr only the j& neutron
shell is filled, while the daughter nucleus has both j& and

j& proton shells empty. Since the GT operator has
roughly equal strength for spin-Aip and non-spin-Aip
transitions, the expectation value of the spin-orbit value
is given by

b,Ei, =
—,'(e —e ) . (5.59)

=bEi, + 2(N —Z) . (5.60)

In the last step we have made the A dependence of the
coupling constants K, and ~ explicit by defining
If..:—K,/A and ~ =—R,/A, respectively.

Figure 19 shows the data on the position of the GT
resonance compared with the functional form of Eq.
(5.60) (from Nakayama et al. , 1982). For nuclei with
small neutron excess the spin-orbit energy 4E&, dom-
inates and the GT state lies above the isobaric analog
state. For heavy nuclei such as Pb, the second term
balances the first and the GT state appears at the same
position as the isobaric analog state. The slope of the
straight line requires that k be larger than ~ . Their
values are found to be K =28 and k,=23, respectively,
as was noted at the beginning of this section.

2. The fragmentation and the width
of the Gamow-Teller states

While the excitation energy of the GT resonance can
be estimated from the sum rule, a more detailed descrip-

Now, putting all the pieces together, we obtain the fol-
lowing mass formula for the mean excitation energy of
the GT resonance relative to that of the isobaric analog
state

(EoTs ) —(E,~s ) =bE(, +4(lc K )To
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model was, in fact, the main empirical evidence available
when Ikeda et al. (1963) first proposed that the GT
strength might be concentrated in a state at high excita-
tion energies.

Because of the large neutron excess more p-h transi-
tions can couple in Pb, and the situation is therefore
somewhat different. Already on the RPA. level, 27%%uo of
the total GT strength is located above 20 MeV excitation
energy. This strength originates mostly from the cou-
pling of the GT resonance to 2%co 1+ excitations. Other-
wise a large fraction of the strength resides in the collec-
tive CxT state (see also Sagawa and Van Cxiai, 1982). Note
that except for Pb the calculated energy position of the
GT resonance is in good agreement with the experimen-
tal centroid energies, which are indicated by the arrows.

The full curves on the right panel of Fig. 20 represent
the GT response functions of second RPA calculations
including 2p-2h correlations. The second RPA predicts a
width of about 4 MeV at half maximum for the GT reso-
nance in Ca and Zr —in good agreement with experi-
ment. The most important result of Fig. 20 is, however,
that the damping widths of the GT states predicted by
the second RPA are strongly asymmetric, with a very
long high-energy tail. By contrast, in the experimental
analysis of the data one usually fits the strength distribu-
tion of states to a Gaussian function, which cuts oA the

tion of the GT strength function needs a full RPA calcu-
lation. The random-phase approximation can accurately
describe the excitation energies of the low-lying weak GT
states as well as the fragmentation of the strength be-
tween these states and the high-lying GT resonance. The
width of the GT states can only be described if one goes
to the second RPA. In the following we shall apply both
the RPA and the second RPA to the evaluation of the
GT strength function.

In Fig. 20 we show theoretical GT response functions
for the nuclei " Ca, Zr, and Pb. The response func-
tions were either calculated in RPA (dashed curve) or in
the second RPA (solid curve) (from Drozdz et al. ,
1986b). As expected, in case of Ca and Zr the RPA
strength functions show two major peaks. In Ca the
two peaks correspond to the mixing between the
f7/2 ~f$/2 and the f7/2 ~f 5/2 transitions, while in the
case of Zr the mixing occurs between the g9/2~g9/2
and g9/p~g$/2 transitions. In both cases most of the
strength is concentrated in the high-lying GT resonance.
This is the result of the repulsive residual p-h interaction,
which couples, for example in Zr, the two p-h transi-
tions g9/2~g9/p and g9/2~g(/2 to form two new 1+
states. Only some strength remains in the state at the
lower excitation energy. This renormalization of the
low-lying transition strength of the independent-particle
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FIG. 20. Gamow-Teller distributions in various closed-shell nuclei. The left panel displays the RPA results, while the right pane
shows the effect of 2p-2h admixtures on the Gamow-Teller strength distribution functions. The arrows indicate the centroid energies
of the experimental resonances. The RPA results were folded into a width of 1 MeV. From Droidi et al. (1986b).
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strength in the wings of the strength function. This leads
to an underestimate of the total transition strength of the
peak. From the outset there is no theoretical justification
for this special choice of a Czaussian form for the width
of a peak. Rather, one expects that in the giant-
resonance region the spreading width I ~ increases with
excitation energy due to the increasing number of 2p-2h
states. This is, indeed, observed for the GT strength
functions in Fig. 20. Roughly 29% of the minimal sum-
rule bound SP'"(GT) =3(X—Z) is found beyond E =20
MeV in the nuclei Ca and OZr. In Pb this amounts
even to 40%%uo. Most of this high-energy strength origi-
nates from central spin-isospin interactions and from ten-
sor interactions. The relative contribution of both de-
pends on the strength of the tensor force. Note that the
second RPA calculations reproduce the position of the
CxT states rather well in all three nuclei. It should be
stressed that theoretically the high-energy tails necessari-
ly accompany the local broadening of resonance. They

are a direct consequence of the strong increase in level
density of 2p-2h states as the excitation energy increases.

H. Higher spin-isospin modes

In Fig. 21 the calculated strength distribution func-
tions for the 0, 1, and 2 components of the giant
spin-Aip dipole (L = 1, S = 1 ) resonance are shown.
Again the dashed curves denote the RPA results and the
full curves denote the second RPA results. While in the
case of the 1p-1h RPA the 0 and 1 strength is essen-
tially concentrated in a single collective state, in the
second RPA the strength is spread out over a large ener-

gy interval. The widths of the states become larger than
10 MeV, with an appreciable fraction of strength being
shifted into the high excitation energy region. For the
0 and I states approximately 35% of the strength is
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FIG. 21. Strength distribution functions for the L =1,J =0
1, and 2 resonances in Zr. The dashed curve is the RPA
result, while the solid curve represents the full second RPA cal-
culation. The RPA strength is multiplied by a factor 0.5. From
Drozdz et al. {1987).

FIG. 22. Same as in Fig. 21 but now for the L =2, J = 1+, 2+,
and 3+ strength distribution functions in Zr. Note that the
RPA strengths for the 1+ and 3+ states shown in the upper and
lower parts of the figure, respectively, have been multiplied by
a factor 0.25, while the RPA strength of the 2+ states in the
middle part of the figure has been multiplied by a factor O.S.
From Droidi et al. (1987).
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located beyond E„=35 MeV (Drozdz et al. , 1987).
The 2 strength distribution in the lower part of Fig.

21 differs from the 0 and 1 distributions in that it al-
ready shows a strong fragmentation on the 1p-1h RPA
level. The principal effect of the second RPA is then to
reduce the 2 strength in the lower excitation energy re-
gion (E„&30MeV) and move it into the high excitation
energy region at E„~30 MeV. A similar effect can also
be observed for the 2Acu, J =1+, 2+, and 3+ quadrupole
modes, the strength distributions of which are shown in
Fig. 22. Again the second RPA predicts a strong, asym-
metric spreading of the strength. The calculated widths
of the individual resonances are now larger than 15 MeV.
The second RPA moves at least 50 percent of the
strength out of that energy region where the 1p-1h RPA
would predict it to be. This strength is moved into the
high excitation energy tail, E 40 MeV. Comparing the
results of Figs. 20, 21, and 22, one observes that the
spreading of the multipole strength is larger the higher
the excitation energy and the higher the spin of the
mode. Note that the spreading width I ~ calculated in
the second RPA provides a lower limit to the total width
of a state because the escape width I ~ is not included yet.
The sum of escape width I"~ and spreading width I ~

gives the total width I = I ~+ I ~.

The second RPA mainly includes 2p-2h mixing in the
excited state, while the 2p-2h mixing in the ground state
is only treated on the RPA level. Several authors
(Desplanques and Noguera, 1986; MacFarlane, 1986;
Hirsch et al. , 1988; Nishizaki et al. , 1988; Takayanagi
et al. , 1988a, 1988b; see also Dro7dz et al. , 1990; Mari-
ano et al. , 1990) have improved on this by including 2p-
2h mixing in the ground state via perturbation theory.
This inclusion of ground-state correlations beyond the
random-phase approximation effectively renormalizes the
one-body transition operators (Speth et al. , 1977; Town-
er, 1987). In the case of the GT operators the total sum-
rule strength S& (GT) is enhanced (Towner and Khanna,

1979; Bertsch and Hamamoto, 1982; see also, Towner,
1984 and 1987), but accurate calculations (Nishizaki
et al. , 1988; Takayanagi et al. , 1988a, 1988b), which
treat all second-order 2p-2h diagrams in a consistent
manner, show that this enhancement is only of the order
of 10% or less. The resulting strength distribution is
therefore quite similar to the one in the usual second
RPA.

I. The quasiparticle RPA
and the P+ strength function

While the P strength function is well described by the
RPA theory, the P+ strength function is much less well
understood. In nuclei with a sizable neutron excess the
o.~+ transitions are suppressed due to Pauli blocking of
the accessible neutron orbitals. In general, many fewer
p-h configurations are available for o.~+ transitions than
for o.~, while the ground-state correlations become

much more important for the o.~+ transitions than they
are for the o.~ transitions. There are two major reasons
for the latter effect: The first is that the ground-state
correlations associated with P+ transitions are due to the
strong GT resonance, which is only reached by the o.~
operator. The second is that P+ transitions mostly take
place in open-shell nuclei which have additional ground-
state correlations. Therefore P+ transitions in these nu-
clei are severely suppressed with respect to the single-
particle values from the independent-particle model.

The appropriate nuclear structure theory for the
description of the P+ transitions is either the shell model
or the quasiparticle RPA. The shell-model calculations
can be performed only in light nuclei. The quasiparticle
RPA, which was originally introduced by Halbleib and
Sorensen (1967) to the calculation of Gamow-Teller P
decay, therefore provides a valuable method for studying
these transitions in heavy-mass nuclei. Cha (1983) was
the first to apply the quasiparticle RPA to P+ decay in
the 3 =100—150 region. He found that the RPA corre-
lations suppress the low P+ transitions by a factor of 3 to
10 with respect to the independent quasiparticle model.
However, the observed experimental transition strength
is even more suppressed —typically by an additional fac-
tor of 4.

Recently, Vogel and Zirnbauer (1986) have shown that
additional suppression can be obtained in the quasiparti-
cle RPA if the pp residual interaction is adjusted in an
appropriate way. Cha (1983) had adjusted this interac-
tion by fitting to energies of low-lying states which are
not very sensitive to the pp interaction. Vogel and Zirn-
bauer, on the other hand, used strongly suppressed P+
transitions in semimagic neutron-deficient nuclei like

Dy, ' Er, or ' Yb to fix the pp coupling strength.
These nuclei with the magic neutron number N =82 (and
others like Ru and Pd with N =50) are expected to
undergo very fast positron decay. In the extreme single-
particle model, their decay rates are determined by the
h~„~2~h 9/2 transition in the case of N=82, and by the
g~9&2~g7&2 transition in the case of %=50. The single-
particle B(GT) value for these even-mass systems is sim-
ply given by B(GT), =N 41/(2l+1), where l is the or-
bital angular momentum of the corresponding subshell
and N is the number of protons in the partially filled
j=l+ —,

' shell. For these nuclei the measured B(GT)
values are -7 times smaller than the single-particle
values (Nolte et a/. , 1982, 1983; Kleinheinz et al. , 1985).
Therefore the total P+ strength in these nuclei is strongly
quenched. Engel et al. (1988) have shown that pairing
and particle-hole interactions together reduce the
strength by approximately a factor of 2 with respect to
the single-particle value in the above semimagic nuclei.
After taking into account these effects and other possible
effects from b, -hole quenching, their calculated P+
strengths are still a factor of 2 to 3 larger than the experi-
mental value. If, however, the pp interaction is addition-
ally included with an adjusted strength of V = —400
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MeV fm, then Engel et al. (1988) can explain the data.
These findings have an enormous influence on the in-

terpretation and calculation of double 13-decay matrix
elements. In double P-decay the CxT transitions appear
as intermediate virtual transitions. Recently several
groups (Civitarese et al. , 1987; Tomoda and Faessler,
1987; Muto and Klapdor, 1988; Muto et al. , 1989a,
1989b; Hirsch and Krmpotic, 1990a, 1990b; Hirsch
et al. , 1990) have performed calculations for the double
P-decay transitions. All groups find a strong reduction of
the double P-decay matrix elements if the pp interaction
is included. Therefore the extremely small decay rates
for both 2v and Ov double P decay can be explained as a
nuclear structure effect. In case of 2v decay this suppres-
sion is observed experimentally in several nuclei. The
substantial suppression of Ov double P decay means that
limits on the neutrino mass deduced from limits on the
half-lives obtained in experimental searches for Ov double
P decay are less stringent than commonly thought. (For
recent reviews on double 13 decay, see Haxton and
Stephenson, 1984; Doi et QI. , 1985; Grotz and Klapdor,
1990; Tomoda, 1991).

The quasiparticle RPA calculations for the f3+
strength function have been tested against shell-model
calculations (Lauritzen, 1988). The quasiparticle RPA
predicts a P+ decay rate larger by a factor of about 2
than the full shell-model calculations and than experi-
ment. The P+ transitions are weaker in the shell model,
probably due to the correlations not included in the
quasiparticle RPA.

J. Shell-model calculations

If the target ground state is strongly mixed among
various 3-particle Slater determinants, as is the case, for
example, for nuclei in between closed shells, then a large
shell-model calculation is needed to obtain a reliable
description of the nuclear excitation spectrum. The
shell-model approach starts with the definition of a mod-
el space of single-particle orbitals and a corresponding
effective many-body Hamiltonian consisting of the
single-particle potential and of the effective two-body in-
teraction. The Hamiltonian is diagonalized in the mul-
tinucleon configuration space to obtain eigenvalues and
eigenfunction of the excited states as well as transition
densities between the states. The shell-model calcula-
tions have the advantage that they allow for a direct
comparison with many experimental data. Unfortunate-
ly, the number of 2-nucleon configurations to be treated
increases dramatically with the number of single-particle
states defining the model space. This limits the shell-
model calculations to light nuclei or nuclei near shell clo-
sures. The most extensive and successive shell-model cal-
culations have been performed for p-shell nuclei
(5 & A & 14) (Cohen and Kurath, 1965, 1967), for sd-shell
nuclei (17& A &39) (Wildenthal, 1984; Brown and Wil-
denthal, 1988), and for pf-shell nuclei (McGrory and
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FIG. 23. Excitation energy spectrum of the GT operator in
Mg. The solid curve is the experimental GT strength distribu-

tion as extracted from the forward-angle (p, n) reaction at
E~ =135 MeV (Madey et a/. , 1987a, 1987b). The dashed curve
is the theoretical prediction of a multiconfiguration shell-model
calculation of Brown and Wildenthal (1988). Both theoretical
and experimental spectra were averaged with a width of 2 MeV
to simplify the comparison. The dotted curve is the theoretical
spectrum renormahzed by a factor of 0.6.

Wildenthal, 1981;Muto, 1986). For the former two mass
regions the active model space includes all configurations
within the major shell, while for the pf-shell nuclei the
model space becomes so large that it has to be restricted
in real calculations and becomes incomplete.

To demonstrate the strength of the shell-model calcu-
lations, let us consider the reaction Mg(p, n) Al, which
has a complex spectroscopy. This can be seen from Fig.
23, where the experimental (Madey et al. , 1987a, 1987b)
GT strength distribution of Mg is compared with a
shell-model calculation of Brown and Wildenthal (1988).
Both the theoretical and the experimental results have
been Gaussian averaged over 2 MeV in order to em-
phasize the gross structure of the strength function. The
calculated GT strength function is larger than experi-
ment at all excitation energies considered. However, the
shape is in quantitative agreement with experiment. This
shows that the shell-model calculation can describe the
energetics and the fine structure of the strength distribu-
tion much better than any other method. In Fig. 23
theory and experiment can be brought into agreement
when the theoretical results are multiplied by
(0.77) =0.6. This quenching factor is consistent with the
GT strength extraction of Fig. 6. Similar quenching fac-
tors are found for all other sd-shell nuclei (Brown and
Wildenthal, 1988). In Fig. 24 a comparison of the mea-
sured and the calculated GT matrix elements of various
sd-shell nuclei is made. For perfect agreement the points
should lie on the diagonal line. However, they cluster
about a line with a slope of 0.77, showing the overall
quenching of the experimental GT matrix elements. Part
of this quenching is due to the configurations excluded
from the model space, such as the 2%co and higher Ace ex-
citations.

Careful studies of the quenching effect were carried out
by Arima et al. (1983) and by Towner and Khanna
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tal excitation energies of the magnetic high-spin states.
Therefore these states provide a sensitive test of the
high-momentum components of the p-h interaction in the
o.~ channel.

Recently large-basis shell-model calculations have been
performed for the stretched 6 states in Si and S
(Amusa and Lawson, 1983; Carr et al. , 1989; Clausen
et al. , 1990; see also the rotational model with Coriolis
mixing by Zamick, 1984, and Liu and Zamick, 1985).
These calculations give an excellent description of the ex-

perimental data and can explain the experimentally ob-
served fragmentation of the strength as well as the
quenching.
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FIG. 24. Theoretical vs experimental GT matrix elements for
sd-shell nuclei (Brown and Wildenthal, 1988). The matrix ele-
ments should lie on the diagonal for perfect agreement between
theory and experiment; however, they cluster at a line with
slope 0.77, showing the overall quenching of the GT strength.

(1983) for the magnetic moments and the P-decay matrix
elements of nuclei with a valence nucleon or hole outside
an I.S doubly closed shell. They found that approximate-
ly —', of the quenching comes from higher-order
configuration mixing and —,

' from hh adrnixtures to the
wave functions. (For recent reviews see Towner, 1984,
1987; Arima et al. , 1987).

As was pointed out in Sec. III.G, the experimental
transition strength to high-spin stretched states is also
strongly quenched. The measured strength is typically a
small fraction of that expected for pure p-h
excitations —generally less than —,

' for isoscalar excita-
tions and less than —, for isovector excitations. This de-

pletion of strength cannot be due to the 6-isobar effect,
since the 5 cannot couple to the isoscalar states. Furth-
ermore, the 5 coupling to the isovector stretched states is
weak because of the high angular mornenturn transfer.
Therefore the observed quenching must be due to the nu-
clear configuration mixing effect. That this supposition is
correct was first proven for the high-spin 12 and 14
states in Pb by Krewald and Speth (1980). These au-
thors showed that the fragmentation of the 1j»&2 and

li&3/2 single-particle strength due to phonon coupling
(Hamamoto, 1974) is the main reason for the reduction of
the cross section to the high-spin states. In this approach
the p-h strength, missing in the low-lying states, is frag-
mented into many states at higher excitation energies (see
also, Suzuki and Hyuga, 1983; Pandharipande et al. ,
1984). This strength escapes experimental detection.

Krewald and Speth (1980) used the Jiilich-Stony Brook
potential of Eq. (5.44) for the residual p-h interaction.
They found that the strong momentum dependence of
this interaction is important to reproduce the experimen-

With the reaction theory of Sec. IV and the nuclear
structure information of Sec. V at hand, we can now
proceed to discuss the analyses of the experimental data.
The basic model assumption in these analyses is that for
inelastic scattering and charge-exchange reactions at in-
termediate bombarding energies (E & 100 MeV/nucleon)
the cross section at forward angles is dominated by direct
one-step processes in which the scattered projectile ex-
cites the 1p-1h response function of the target. The
(p, n), (n,p), and ( He, t) spectra as shown, for example, in
Figs. 12, 13, and 14, are therefore believed to be a super-
position of cross sections of 1p-1h excitations, which are
calculable within microscopic nuclear structure and reac-
tion models. The contributions of multistep processes to
the cross section are assumed to be suppressed. This as-
sumption is corroborate by various two-step reaction cal-
culations (Chiang and Hiifner, 1981; Esbensen and
Bertsch, 1985; Smith and Wambach, 1988), which show
that at high bombarding energies the two-step cross sec-
tion is relatively small (of the order of 10%%uo or so) com-
pared with the one-step cross section. This is especially
true for moderate excitation energies (E ~ 50 MeV) and
for forward-angle scattering. The two-step background
cross section starts to be become significant only at rela-
tively high excitation energies and large scattering an-
gles.

In the (p, n) reaction at intermediate energies the cross
section is dominated by o ~ excitations because the
scattering matrix elements of these transitions are larger
by at least an order of magnitude than those of the ~ exci-
tations. This is due to the dominance of the V com-
ponent of the effective projectile-target nucleon interac-
tion over the V, component, as was discussed in Sec.
IV.C.3. Hence the (p, n) reaction at intermediate energies
is a unique example of a hadron-induced reaction that ex-
cites states very selectively in only one channel. Since the
impulse approximation is found to be rather accurate at
intermediate energies, one can calculate the cross sec-
tions within the DWEA and focus attention on the nu-
clear structure aspects being probed.
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A. Gamow-Teller strength from (p, n} data

In course of time the determination of the total GT
strength from the measured (p, n) data has involved
several methods and prescriptions. Here we give a short
historical overview of the various ways in which GT
strength was extracted from the data. Initially Gaarde
et al. , (1981) compared the measured GT cross section
with an absolute DWIA calculation based on the Love
and Franey (1981) t~ matrix. They found that only 30%%uo

of the expected total GT strength lay in the peaks of the
forward-angle spectrum. Of course, a DULIA calculation
is not reliable enough for the determination of the abso-
lute magnitude of a cross section because of the uncer-
tainties involved in the effective projectile-target nucleon
interaction. Therefore Goodman and Bloom (1984) cali-
brated the interaction to f3-decay using the prescription
of Sec. IV.E. They concluded that 50—60% of the total
sum-rule strength was present in nuclei ranging from
A =13 to A =90.

In heavier nuclei, the GT resonance is located on top
of a broad continuum whose shape and magnitude is not
known. Therefore a smooth background beneath the GT
resonance (see the dashed line in Fig. 25) was subtracted
from the spectrum to extract the GT cross section (see
Gaarde et al. , 1981). Osterfeld (1982, 1984), however,
showed that this procedure is not correct. He calculated
the forward-angle (p, n) cross section in the DWIA, in-

cluding many multipolarities of transitions in the
independent-particle model. The result of his calcula-
tion, obtained for the Ca(p, n)" Sc reaction at E = 160
MeV, is shown in Fig. 25. The calculation predicts that

l l

Co(p, n) Sc
E = l6OMeV
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FIG. 25. Zero-degree spectrum for the reaction Ca{@,n) Sc at
E~=160 MeV. The solid curve represents the experimental
data (Anderson et al. , 1985a). The dashed curve indicates the
experimental background subtraction. The dash-dotted curve
denotes the calculated background which, when multiplied by a
factor of 1.33 (dashed-double dotted curve), reproduces the ex-

perimental cross section at high excitation energies. From Os-
terfeld (1982).

there is essentially no background just below the GT res-
onance. On the other hand, the calculation reproduces
the continuous spectrum at higher excitation energies
rather well. This result indicated that most of the back-
ground subtracted in the experimental analysis of the GT
resonance was actually GT strength (see also Osterfeld
and Schulte, 1984). It was then soon verified from an ex-
perimental multipole decomposition of the cross section
(Anderson et al. , 1985a, 1985b; Moinester, 1987) that,
indeed, all the cross section below the GT peak was GT
strength. This increased the total GT strength to
50—60% of the total sum-rule value (see the shaded area
in Fig. 6).

The next question to ask is how much GT strength
might be located beyond the main peak in the high-
energy tail of the nuclear excitation spectrum? This
question was first discussed by Bertsch and Hamamoto
(1982), who performed a perturbative calculation for the
mixing of Gamow-Teller strength with 2p-2h
configurations at high excitation energies. They found
that roughly 50% of the total GT strength could be shift-
ed into the region of 10—45 MeV excitation energy for
the nucleus Zr. This amount of strength would make a
significant contribution to the 0' (p, n) cross section
beyond the GT resonance. Therefore, several experimen-
tal and theoretical attempts have been made to localize
this GT strength.

Experimentally it is not easy to check this conjecture
because the cross section in the high excitation energy re-
gion is structureless. Furthermore, as one goes up in ex-
citation energy, the GT cross section decreases rapidly
per unit GT strength because of the momentum-transfer
dependence of both the projectile-target nucleon interac-
tion V, (q) and the GT transition density pI+'i(q). Both

fall off rapidly with increasing momentum transfer, thus
making it easy to hide GT strength in (p, n) reactions, as
the strength is pushed up in excitation energy.

One experimental method of looking for GT strength
in the continuum is to compare 0 (p, n ) spectra of neigh-
boring nuclei which differ only in neutron excess. This
procedure was applied by Goodman and Bloom (1984) to
the targets Ca and Ca. The nucleus Ca has a strong
low-lying GT state at E =0.61 MeV and several other
weak GT states at higher excitation energies, summing to
a total B(GT) value +B(GT)=3.2+0.2. This value is far
less than the required minimum value of 6 for two excess
neutrons. Since Ca has essentially zero GT strength,
one can use its 0 (p, n) spectrum as a reference point for
the background level in Ca(p, n). Hence Goodman and
Bloom (1984) subtracted the O' Ca from the O' Ca
spectrum to see the effect of the neutron excess in the
continuum. Although these authors concluded that only
50% of the sum rule is present in the "Ca spectrum,
their plot of the difference spectrum shows a consistent
excess cross section up to 30 MeV excitation energy. If
this excess cross section were all I.=0 GT strength, over
80%%uo of the sum-rule limit would be present.

Various theoretical attempts (Izumoto, 1983; Bang
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FIG. 26. Neutron spectra for the reaction Zr(p, n) Nb at an-
gles of 0 and 4.5'. The data are from Gaarde et al. (1981). The
theoretical spectra (Izumotu, 1983) were calculated either with
the usual RPA wave functions (heavy solid) or with generalized
RPA+ 6 wave functions (dashed line). From Izumotu (1983).

et al. , 1985; Klein et aI., 1985; Osterfeld et a/. , 1985;
Cha and Osterfeld, 1989) have been made to calculate the
complete forward-angle (p, n) spectra using RPA wave
functions for the description of the nuclear excitation
spectrum. The use of the RPA method is of particular
importance in this connection since it describes the ener-
getics of the collective modes properly. Furthermore, it
allows for the use of large model spaces, including many
%co excitations. Such large model spaces are needed to
exhaust the total transition strength of the relevant mul-
tipole operators.

Izumoto (1983) was the first to calculate the continuum
cross section for the Zr(p, n) reaction at E =200 MeV
using large basis continuum RPA wave functions for the
nuclear structure. The RPA response was calculated in
two ways: once with and once without the inclusion of
6-isobar degrees of freedom. The single-particle wave
functions used in the RPA were generated from a
Woods-Saxon potential. The residual p-h interaction was
assumed to consist of one-pion exchange plus a repulsive
zero-range Landau-Migdal term with a force strength of
go =0.7 in pionic units. The coupling between p-h and
6-h states was obtained by following the prescription of
Sec. V.F.4 using a short-range repulsion between p-h and
6-h states modeled according to the "universality" argu-
ment of Oset and Rho (1979), with g&& =go. A quench-
ing of 30% of the total GT strength was found due to the
coupling of p-h with 6-h states. From the RPA wave
functions Izumoto calculated the inclusive Zr(p, n )

cross section using a simplified effective projectile-target

nucleon interaction normalized to the tF-matrix interac-
tion of Love and Franey. The results of his calculations
are compared to the 200-MeV Zr(p, n) Nb data of
Gaarde et al. (1981) in Fig. 26. The solid and dashed line
represent the theoretical spectra calculated either with
(full curve) or without (dashed curve) b;isobar degrees of
freedom. The magnitude of the calculated cross section
is seen to be in fair agreement with the data, although the
theoretical spectra show too much structure. This is due
to the fact that the continuum RPA only includes the es-
cape width (I "), but not the spreading width (I ~) of the
nuclear states. In Izumoto's calculations a constant
spreading width of I =2 MeV was assumed for all final
nucleus states.

Similar calculations to those of Izumoto were also car-
ried out by Osterfeld et al. (1985) with the major
difference that Osterfeld et al. treated both the nuclear
structure and the nuclear reaction calculations on a more
quantitative level. In their calculations the nuclear struc-
ture wave functions were generated from a large basis
RPA calculation using a discretized continuum and the
Julich-Stony Brook residual interaction of Secs. V.F.2
and V.F.4. The finite-range part of I'&" was properly an-
tisymmetrized. The reaction calculations were per-
formed with exact inclusion of knockout exchange ampli-
tudes for both the nucleonic and the b;isobar sector.
The Love-Franey tF matrix was employed for the
effective projectile-target nucleon interaction and was
calibrated to P decay as described in Sec. IV.E. The con-
tinuous theoretical spectra were then generated by fold-
ing the cross sections to the discrete RPA final states into
an asymmetric Breit-Wigner weight function with widths
either taken from experiment or adjusted phenomenolog-
ically. Strongly asymmetric spreading widths with large
high-energy tails were needed to describe the data. This
folding procedure effectively simulates the damping of
the 1p-1h RPA doorway states due to their coupling to
2p-2h states and more complicated configurations. The
results of Osterfeld et al. (1985) are shown in Fig. 27.
The theoretical spectra describe the experimental data
rather well in the Q value range 0~ Q ~ —40 MeV. Ap-
parently there is not much need for quenching of GT
strength to bring theory and experiment into agreement.
Actually the calculations with explicit 6-isobar degrees
of freedom underestimate the data quite appreciably. It
is important to notice that the projectile-target nucleon
coupling was calibrated to P decay. Hence there is no
freedom to readjust the magnitude of the cross section.
Part of the cross section is simply lost from the low-lying
spectrum due to the b, -isobar mechanism. Within the
framework of the RPA theory there is obviously no need
for a large 6-isobar quenching mechanism.

Similar calculations for the Zr(p, n) spectrum were
also carried out by Bang et al. (1985) and by Klein et al.
(1985), arriving at conclusions similar to those of Oster-
feld et al. (1985). Bang et al. used a local Woods-Saxon
potential to generate the single-particle wave functions
and a Landau-Migdal-type residual interaction supple-
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mented by a renormalized m exchange potential. Klein
et al. performed a continuum RPA calculation using the
Skyrme III force to generate the Hartree-Pock potential
and the single-particle wave functions. The residual p-h
interaction was chosen self-consistently, i.e., to be of
Skyrme type. The continuum RPA calculations were
solved in a large 1p-1h configuration space truncated at
200 MeV. The calculated strength function was
smoothed with a Lorentzian function whose full width at
half maximum was taken to be 2 MeV. All multipoles
with J ~ 5+ were included. The (p, n) spectrum was cal-
culated with the Love-Franey (1981) t~-matrix interac-
tion. The results of Klein et al. (1985) are shown in Fig.
28. The shape of the calculated spectra is very similar to
that of Izumoto in Fig. 26. While the experimental cross
section at forward angles and low excitation energies is
overestimated by the theoretical spectra, it is underes-
timated at high excitation energies. The energy-
integrated theoretical and experimental cross sections,
however, agree well for the angular range 0 8~10'.
Moreover, there is a good agreement between the calcu-
lated energy-integrated cross sections of Klein et aI.
(1985) and Osterfeld et al. (1985). Hence the picture that
is emerging from these various independent analyses of
the (p, n) data is that at least part of the C+T strength
which is missing from the low-energy portion of the ex-
perimental spectrum is present at excitation energies well

90 90Zr (p, n ) Nb E=200 Ne V
8-

8~ 0.2 Jp
I

i

i

l I

beyond the values predicted by the 1p-1h RPA.
This picture is supported by calculations for other tar-

get nuclei. Bang et al. (1985) and Cha and Osterfeld
(1989), for instance, have also calculated energy spectra
for the reaction Pb(p, n) at 200 MeV incident energy.
The nucleus Pb is especially interesting because the
RPA works best in this case and describes excitation en-
ergies, 8(EA, ) values, and transition densities of many
low- and high-lying states in a quantitative way. In Fig.
29 the calculated spectra of Cha and Osterfeld (1989) are
compared to the data. One sees that the experimental
data at all scattering angles are described rather well by
the microscopic cross-section calculations. In general
the theoretical cross sections tend to overestimate the
data at lower excitation energies (D~E„~40 MeV) and
underestimate them at higher excitation energies. In the
high excitation energy region, two-step processes will
certainly contribute to the cross section (Bertsch and
Scholten, 1982; Scholten et a/. , 1983; Smith and Wam-
bach, 1988). In Fig. 29 the background cross section
with respect to the GT resonance is also shown. One sees
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FIG. 27. Continuum cross sections of the reaction
Zr(p, n) Nb for E~=200 MeV at various scattering angles.

The solid and dashed lines are theoretical predictions (Osterfeld
et al. , 1985) calculated with and without inclusion of 5-isobar
hole states, respectively. The data are from Gaarde et al.
(1981).

Qp„(Mev)
-10

FIG. 28. Spectra for the reaction Zr(p, n) Nb at E~=200
MeV. The continuous lines represent the calculated cross sec-
tions (Klein et a/. , 1985), and the dot-dashed 'lines represent the
data (Cxaarde et al. , 1981). From Klein et al. (1985).
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that the GT strength is spread out up to E =40 MeV.
An analysis of the data suggests that the quenching of
GT strength due to 6 isobars can only be of the order of
10—20% in order not to destroy the good description of
the data. The energy-integrated experimental and
theoretical cross sections agree at all scattering angles
within 10%%uo. This is a further strong indication that
quenching due to 6's is not large.

B. Spin observables
in the charge-exchange continuum

The measurement of polarization transfer observables
in the (p, n) reaction can help to identify the spin and
parity decomposition of the continuum. In particular,
the measurement, of the transverse polarization transfer
coeKcient D„„makes it possible to separate the spin-Aip
from the non-spin-Aip cross section. In these experi-

ments the incoming proton is polarized transversely to
the beam direction with its spin pointing perpendicular
to the scattering plane (parallel to n). The polarization of
the outgoing particle is then measured for orientations
parallel and antiparallel to the n direction. Moss (1984)
has shown that, within the limits of the plane-wave im-
pulse approximation, the spin-observable D„„ is sensitive
to the total (P, orbital (L), and spin (S) angular momen-
tum transfers associated with a nuclear transition. This
implies that D„„can serve as a J meter and can help to
determine the strength distribution functions of states
with different J . Of particular interest is the GT
strength function and the issue of the "missing" GT
strength in the continuum.

To study the various properties of D„„,we first note
that D„„=D,as defined in Eq. (4.8). From Eq. (4.30)
we notice that only the spin operators cr q and o .Q
can Aip the projectile spin around the n axis, while all
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other terms —including the spin operator a .n —leave
the spin untouched. Using Eq. (4.60) together with Eq.
(4.33) we can specify the various spin-flip and non-spin-
Aip contributions to the charge-exchange cross section
within the plane-wave-impulse approximation. For
natural-parity transitions we obtain (Love et a/. , 1987)

o +cr'(n) —cr'(Q)
cr +cr'(n)+cr'(Q)

1
her = (

—)'
1+2 '/ (6.1)

and for unnatural-parity transitions we have (Love et al. ,

1987) V" xP

D„„=cr'(n) —o'(Q) —cr'(q)
cr'(n)+ cr'(Q)+cr'(q)

—1 )J+1
1+2cr '/o' (6.2)

Here o.
o is the non-spin-Aip cross section produced by the

isovector transition potential V (q)pI"I (q) of Eq. (4.57),f i

and o' and o' are the transverse (t) and longitudinal (l)
spin-Hip cross sections produced by the transition poten-
tials V,'(q)p~ (q) and V, (q)p~;, (q), respectively. The
longitudinal cross section o' is nonvanishing only for
unnatural-parity ("pionlike") states, hence its appearance
in Eq. (6.2) but not in Eq. (6.1). Observing that
o'(n)=cr'(Q)=cr', one easily verifies the second equality
in Eqs. (6.1) and (6.2).

An immediate result of Eq. (6.1) is that for natural-
parity S=O transitions D„„=1,since a'—=0 in this case.
On the other hand, for natural-parity S=1 transitions
D„„=O,because now o. =—0. For unnatural-parity transi-0

tions D„„ is always negative, as follows from Eq. (6.2). In
this case D„„depends on the ratio

pI,(q) V,'(q)
(6-3)

o. pI;,(q) V, (q )

where the nuclear structure and reaction aspects of the
problem enter through the ratios pj' (q)/pf'', (q) and
V', (q)/V,'(q), respectively. Both the transition-density
ratio and the force strength ratio depend on the momen-
tum transfer q. The q dependence of the interaction
terms V, V,', and V, is shown in Fig. 30 for the 210-MeV
tF-matrix interaction parametrized by Franey and Love
(1981). One observes that V' and V dominate V for

q ~2 fm '. This makes spin excitations the dominant
states at this bombarding energy and in this momentum-
transfer range. Furthermore, the linear momentum
profiles of V' and V,' are such that for 0 ~ q ~ 1 fm ' the
longitudinal interaction V varies strongly with q, while
the transverse interaction V' changes only slowly with q.
This different behavior of the spin-dependent interaction
terms is qualitatively understood from the underlying
meson-exchange picture. The longitudinal interaction V
obtains a large contribution from the one-pion exchange
interaction, which causes a strong q dependence because

FIG. 30. The isovector spin-independent ( V, ), spin-
longitudinal ( V'), spin-transverse ( V'), and exchange spin-
transverse (V"), parts of the free tF-matrix interaction vs q at
E~ =210 MeV. From Love et al. (1987).

of the light pion mass. On the other hand, V' is driven
by one-p meson exchange, which varies slowly with q be-
cause of the large p-meson mass.

From Fig. 30 it is clear that the relative magnitude of
V,'(q) and V, (q) will mainly determine which value is
taken on by D„„ for unnatural-parity transitions at a
given momentum transfer q. For small q values (q ~0.2
fm ') one expects D„„=—

—,
' for states that have longitu-

dinal and transverse transition densities of comparable
magnitude. For larger q values, however, D„„will tend
to zero because of the weak V,'. This result suggests that
the sensitivity of D„„ to natural versus unnatural-parity
transitions is most pronounced at small-momentum
transfers (q ~0.5 fm '). From a nuclear structure point
of view, the value of D„„becomes more negative the
more a nuclear transition is of longitudinal character. A
purely longitudinal excitation like a 0 transition has
D„„=—1. Summarizing, we can say that a positive value
of D„„ is a signature of S=0 strength, while a vanishing
or negative value is a signature of S=1 strength. The
more negative D„„becomes, the more important is the
contribution of the spin-longitudinal response to the
cross section. It can be shown that distortion efFects do
not alter these results as long as there are no strong spin-
orbit terms in the optical potentials.

Transverse polarization transfer measurements of (p, n)
reactions to the continuum have recently been performed
at IUCF with beam energies up to 200 MeV (Taddeucci
et al. , 1986). Figure 31(b) shows 0' spectra for the

Zr(p, n) Nb reaction at E~ =160 MeV. In the top and
in the middle part of the figure, the differential spin-flip
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and non-spin-Aip cross sections are shown as a function
of the Q „value of the reaction. Both cross sections are
expressed in terms of the spin-Aip probability S„„,which
is defined by S„„:=(1 D„„)/2. Th—e value of S„„is zero
for S=O transitions and lies between zero and one for
S=1 transitions. Some interesting features emerge from
Fig. 31(b). The giant GT resonance stands out in both
the spin-Hip (oS„„) and the non-spin-Hip [o(1—S„„)]
spectrum. On the other hand, the isobaric analog state
transition, for which D„„=1, stands out only in the non-
spin-Aip spectrum, as expected. The GT resonance and
the low-lying GT states have a negative value of
D

3
as expected for pure GT transitions. This can

be seen from the lower part of Fig. 31(b), where the D„„
spectrum is shown. The D„„=—

—,
' value extends over

the range —22 MeV~Q~„~ —15 MeV. This result is
consistent with the theoretical prediction (Bang et al. ,
1985; Klein et al. , 1985; Osterfeld et al. , 1985) that most
of the strength in this energy region should be due to GT
excitations. The data, however, cannot exclude the possi-
bility of other unnatural-parity excitations.

Another noteworthy feature of the data in Figs. 31(a)
and 31(b) is that D„„=O near Qz„= —27 MeV. This is
the excitation energy about which the giant spin-Qip di-
pole resonance is centered. The data indicate that a large
fraction of the strength observed in this energy region at
0 has natural parity, i.e., J =1 . Around Q „=—35
MeV there seems to be again a concentration of

unnatural-parity strength.
The dotted curves in Figs. 31(a) and 31(b) are the cal-

culations of Klein and Love (1986), which are in remark-
able agreement with the measured cross sections and
with the measured D„„values in the Q~„range of
—32 ~ Q „~—15 MeV. The calculations were per-
formed in the same way as described in Sec. VI.A, apart
from the fact that now the continuum RPA cross sec-
tions are smoothed (Klein et al. , 1985; Klein and Love,
1986) using a Lorentzian function with a full width at
half maximum of 6 MeV. Especially interesting is the
prediction for D„„atE =500 MeV, since the signature
for the J =1 strength at Q~„= —27 MeV disappears.
The D„„values up to Q „=—35 MeV are now dominat-
ed by the J = 1+ excitations (GT and spin-isovector
monopole), which produce D„„=—

—,'. The J = 1 exci-
tation is suppressed at forward angles (8=0') and high
incident energies (E =500 MeV) because it involves an
L =1 angular distribution that yields a very small cross
section near q =0. Simultaneously there is practically no
cross-section loss for the redistributed GT strength be-
cause of the small change in momentum transfer for in-
creasing Q values. The 200-MeV (p, n) data of Taddeucci
et al. (1986) already show a tendency towards this behav-
ior. Spin-Aip transfer experiments were also performed
by Watson et al. (1986) for the Ca(p, n) Sc reaction at
E =135 MeV with very similar results. In these experi-
ments 75% of the GT strength could be identified.
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C. The (p, p') spin-flip transfer reaction

Recently, cross sections, analyzing powers, and spin-
Qip probabilities have been measured at small angles in
the polarized proton inelastic scattering from targets in
the mass range from ' C to Zr (Nanda et al. , 1983,
1984; Cxlashausser et al. , 1987; Hiusser et al. , 1988).
These measurements reveal a large cross section for spin
excitations distributed roughly uniformly over the excita-
tion energy region from 8 to 40 MeV. This is a very in-
teresting result, particularly in connection with the
identification of the M1 and M2 strength in the inelastic
channel.

In Zr the spin-Aip measurements can clearly identify
the M 1 resonance (Nanda et al. , 1983, 1984), but a large
amount of spin-Aip strength is also observed in the con-
tinuum region above the giant M1 resonance. It is im-
portant to understand this spin-Aip strength in order to
draw firm conclusions concerning the quenching mecha-
nism of the magnetic strength.

In Ca first evidence has been reported for the spin-
Aip dipole and spin-Aip quadrupole resonances
(Cilashausser et al. , 1987). The strength distributions of
the individual modes were obtained by performing a mul-
tipole decomposition of the spin-Aip cross section at vari-
ous scattering angles. This multipole decomposition was
based on the assumption that the measured cross section
is background free; that is, that it receives little contribu-
tions from two-step processes. This assumption is sup-
ported by microscopic cross-section calculations, as we
shall now show.

w

Zr(p, p') Zr , E =319NeV

3.5 deg.

CJ i .

CO

K
p

5.8 deg.

C
C

CJl I

vir---"
gil

&l

1

2

Rll '

0
0

4

io 20 30
E L'Ãe V3

FIG. 32. Spin-Qip spectra for the Zr(p, p') reaction at scatter-
ing angles of 3.5' and 5', respectively. The solid circles are the
experimental data {from Nanda et a/. , 1983). The heavy-solid
curve shows a DULIA calculation, including many multipoles of
transitions (Yabe et a/. , 1986). For comparison, the cross-
section contributions of 1, 1, and 2 states are also given.
From Yabe et al. (1986).

As an example of a multipole decomposition of an in-
elastic spin-flip spectrum we choose the Zr(p, p') reac-
tion at E =319 MeV. In Fig. 32 the spin-flip spectra cal-
culated by Yabe et al (1. 986) are compared to the data of
Nanda et al. , (1983, 1984) at scattering angles of 3.5' and
5, respectively. The theoretical spectra (Yabe et al. ,
1986) were calculated within the DWIA using RPA wave
functions for the nuclear structure description. The cross
sections to the discrete RPA states were folded into an
energy-dependent phenomenological width I . From Fig.
32 it can be seen that the theoretical spectra reproduce
the experimental data rather well. The theoretical spec-
tra are the incoherent sum of cross sections with multipo-
larities L =0 through L =3 (J =0, 1+,1,2+,2, 3+).
The largest contribution to the total spin-Aip cross sec-
tion comes from the 2 states, which generate roughly
40% of the theoretical spin-fiip cross section. The 2
strength distribution shown in Fig. 32 is rather similar to
that of elaborate 2p-2h calculations performed by
Drozdz et al. (1987). The energy-integrated Zr(p, p')
spin-Hip cross section is in good agreement with the tran-
sition strength predictions obtained from the RPA. A
similar result was obtained by Esbensen and Bertsch
(1984) using a semi-infinite nuclear slab model for the nu-
clear structure description.

D. Some results from the ('He, t) reaction

The decomposition of the spectra into the various mul-
tipoles described in the previous paragraphs is, of course,
model dependent. To reduce the model dependence it is
helpful to have data from other probes which show a
different selectivity for the excitation of the various spin-
fiip modes. Such data are provided by the ( He, t) reac-
tion at intermediate energies (E =200—400 MeV/
nucleon). Here an interesting observation is made in that
the high excitation energy cross section of the 0 ( He, t)
spectrum appears to be much larger than that of the cor-
responding cross section in the (p, n) spectrum. From the
analyses of the (p, n) data in Sec. VI.A one would expect
that this enhancement is due to a stronger excitation of
the lyrico and 2iiico modes in ( He, t) than in (p, n). An
analysis of the ( He, t) data shows that this expectation is,
indeed, correct. The enhancement factor is about 10 and
is a result of the strong surface character of the ( He, t)
reaction. The ( He, t) data thus provide different nuclear
structure information from that of the (p, n) data.

In Fig. 33 spectra are shown for the Zr( He, t) reac-
tion at E=600 MeV incident energy and at scattering
angles of 0, 2.5, and 4.3 . The solid lines represent the
experimental data (Ellegaard et al. , 1983) and the dashed
curves are the calculated spectra (Udagawa et al. , 1987).
The calculations were performed in a similar manner to
that for the Zr(p, n) reaction described in Sec. VI.A. In
the case of the ( He, t) reaction the finite size of the pro-
jectile has to be considered. This was done (Udagawa
et al. , 1987) by folding the eff'ective projectile nucleon-
target nucleon interaction into the magnetic projectile
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density distribution of He, which was taken from experi-
ment (McCarthy et al. , 1977). Similarly, the optical po-
tentials in the incident and exit channels were generated
from the 200-MeV proton optical potentials of Nadasen
et al. (1981)by following the single folding procedure.

The low-energy part of the 0 spectrum in Fig. 33 is
clearly dominated by the GT transitions and is described
well by the calculations. The high-energy part of the
spectrum, i.e, the energy region 15 MeV ~E„~40 MeV,
is underestimated by the calculations. This part of the
spectrum is dominated by the 2%co, L =0, J =1+, and
2fico, I.=2, J = 1+, 2+, and 3+ transitions. In the (p, n)
reaction at E=200 MeV the contributions of the 2hcu

modes to the 0' spectrum are small. The enhancement of
the 2fico modes in the ( He, t) spectrum can be explained

by the surface character of the ( He, t) reaction (see
Udagawa et al. , 1987).

Vll. SPIN-ISOSPIN RESPONSE
IN THE QUASIFREE AND
b -RESONANCE REG IONS

A. The quasifree region

In this section we discuss the continuum spectra ob-
tained with high-energy beams. The quasifree region
represents a broad bump in the nuclear continuum
which, to a first approximation, can be interpreted as due
to the incident particles, being directly scattered by the
individual nucleons in the target, the nucleons being
knocked out of the nucleus. This process becomes visible
at momentum transfers above about 1 fm ', where the
recoil nucleon gets free of Pauli blocking. The peak of the
bump is expected near the excitation energy of
ru=q /2m, with m the nucleon mass and q the three-
momentum transfer. The large width of the bump is a re-
sult of the Fermi motion of the nucleons in the nucleus.

One of the major aims of the experiments performed in
the quasifree region (co~ 150 MeV, q =1.0—2. 5 fm ') is
to separate the spin-longitudinal (o"q) from the spin-
transverse (o Xq) nuclear response. The corresponding
response functions are connected with the transition den-
sities of Eqs. (4.62) and (4.63) by R'"(co,q) = ~p',"(co,q) ~

and R'"(co,q)= ~p',"(co,q)~ . Here an interesting question
is whether the virtual pion field inside the nucleus is
strong enough to cause a collective enhancement of
R '"(co,q ) over R '"(co,q ); that is, whether or not
R '"(co,q ) ) 1. The existence of such a phenomenon
would be very significant because of its direct relation to
Migdal's original suggestion of the existence of a pion
condensate at suf6ciently high nuclear densities (Migdal,
1972, 1973, 1978). So far, all searches for so-called pre-
critical phenomena of pion condensation have produced
negative results.

In 1982 Alberico et al. (1982) proposed that the ap-
propriate place to look for pionic eA'ects in the nucleus
would be the quasifree region. These authors argued
that, in spite of the repulsive short-range correlations at
small-momentum transfers, the p-h interaction in the o.~
channel might still become sufficiently attractive in the
high (co, q)-transfer region to induce an enhancement and
shift of the spin-longitudinal response towards lower ex-
citation energies relative to the free-Fermi-gas response.
The transverse response R '(ro, q ) should instead be
quenched and shifted upwards in excitation energy be-
cause of the repulsiveness of the p-h interaction in this
channel. The arguments of Alberico et al. (1982) are
easily understood from the (m + p+g 0 ) model for the re-
sidual p-h interaction. In this model the spin-
longitudinal (l) and spin-transverse (r) particle-hole in-
teractions are given by
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2
VpI"h(~ q)=J.(~ q) go+

co q foal

(7.1)

(,)
J (co, q)

V„„(~,q)=J (co,q) go+ (cr, xq) ~ (o Xq)ri'12,J (~,q) co' q' —m,'—
(7.2)

where the force strength parametes J„(co,q) and J (co, q)
are defined in Eqs. (4.42) and (4.43). Note that the
Landau-Migdal parameter go in Eqs. (7.1) and (7.2) is
measured in pionic units here. The q dependence of
V~"h ( co, q ) and V„"h ( co, q ) resembles the graphs shown in
Fig. 30: In the high-q-transfer region [q —(1—2) fm ]
V"

h is attractive, while V"
h is repulsive there.

It is well established from inealstic electron scattering
to the nuclear continuum that there are no large collec-
tive effects in the transverse spin-isospin response (Mezi-
ani et al. , 1985). There might be a slight reduction of the
cross section in this channel, but even this small effect is
not well established (O' Connell et al. , 1984, 1987; Mezi-
ani et al. , 1985). The first measurements of the spin-
longitudinal response were carried out at LAMPF by
Carey et al. (1984) and Rees et al. (1987). These experi-
mentors performed a complete (p, p') spin-flip transfer
experiment using longitudinal (L), sideways (5), and nor-
mal (N) polarized beams to measure the tarnsverse polar-

o."(co,q ) =N, ~o ~~R ' "'(co, q ) ( r = l, t) . (7.3)

The response function ratio R '"(co,q )/R '"(co,q ) is then

I

ization transfer coeScients Dqq Dgg, and D«. They per-
formed the experiments at E =500 MeV and at a fixed
momentum transfer of q =1.75 fm ', where the precriti-
cal effects of pion condensation are expected to be larg-
est. From the measurement of the coeKcients D, D&&,
and D„„one can extract the transverse and longitudinal
spin-flip cross sections o'(~, q ) and o'(co, q), by using for
D and D&& similar expressions to those derived for
D„„=D in Eq. (4.8) (for details see Carey et al. , 1984;
Moss, 1984; Rees et al. , 1987). Assuming that the cross
sections can be factorized into a product of nucleon-
nucleon cross section (o.&z) times the response function
R'"'(co, q) (r =l, t) times an effective number of nucleons
participating in the reaction, %,z, the cross section can
be written as
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easily determined. This ratio should deviate appreciably
from unity if a collective enhancement in the spin-
longitudinal channel is present. However, a ratio of
R'"(co,q )/R'"(co, q ) ~ 1 was found, which completely
contradicts the prediction.

Inelastic proton scattering has the disadvantage that it
is a mixed isoscalar-isovector (T=O and T=l) probe
and that it thus does not provide the single spin-isospin
response that a charge-exchange (T =1) reaction can pro-
vide. Therefore a ' C( He, t) charge-exchange experiment
(Bergqvist et al. , 1987) was performed at Saturne at
E=2 GeV incident energy. In this experiment for the
first time a shift of the quasielastic peak position relative
to that of the ' C(e, e') experiments (O' Connell et al. ,
1984, 1987; Meziani et al. , 1985) was observed. This is
shown in Fig. 34, where the ' C( He, t) and ' C(e, e') spec-
tra are compared at four different momentum transfers
(co, q). It can be seen that the ( He, t) spectrum at 4
(q =1.4 fm ') is quite similar to the (e, e') spectrum at
480 MeV and 36', and gives the same centroid energy and
width of the peak. However, with increasing momentum
transfer a relative shift takes place between the ( He, t)
and (e, e') bumps, amounting to about 25 MeV at q =2. 1

fm ' and to about 45 MeV at q =2.5 fm
It is also interesting to compare these results with

those using other probes. This is done in Fig. 35, where
the quasifree peak positions measured in the reactions
(e,e') (O' Connell et al. , 1984, 1987), (p,p') (Moss, 1984;
Rees et a/. , 1987), ( He, t) (Bergqvist et al. , 1987), (p, n)
(Taddeuci, 1988), and (n,p) (Taddeucci, 1988) are plotted
in the (co,q) plane. One of the eminent features seen in
Fig. 35 is the gradual softening of the ( He, t) peak with
respect to the (e, e') peak as the momentum transfer q in-
creases. The experimental results are compared with the
theoretical prediction co=q /2m of a relativistic (solid
line) or nonrelativistic (dashed line) Fermi gas.

Several causes have been suggested to explain this rela-
tive shift of the quasifree peak positions between the
( He, t) and (e, e') experiments. The most interesting one
is related to the softening (hardening) of the longitudinal
(transverse) spin response of the nucleus in the high-q-
transfer region (Chanfray and Ericson, 1984; Ericson,
1984). Recent RPA calculations by Alberico et al.
(1988); by De Pace and Viviani (1990, 1991), and by
Ichimura et al. (1989) do, indeed, support such a possi-
bility. These calculations, however, cannot simultane-
ously reproduce the (p, p') and the ( He, t) data. Ichimura
et al. (1989) performed a full DWIA calculation and
found that projectile distortions can also produce a shift
(see also Okuhara et al. , 1987 and Shigehara et al. , 1988).

The fact that recent (p, n) and (n,p) results from
LAMPF (Taddeucci, 1988) seem not to show agreement
with the shifts observed in the ( He, t) experiments throws
doubts on the interpretation of the ( He, t) data. The in-
terpretation can only be kept if one can show that there
is an essential difference between the ( He, t) and (p, n) re-
actions in exciting the spin-longitudinal and spin-
transverse nuclear responses. Such a difference could be
due to the ( He, t) form factor, which might favor one ex-
citation over the other, but this has yet to be proven.

The (d, 2p) reaction has also been used to study the
quasifree peak region (Ellegaard et al. , 1987; Gaarde,
1988). The quasifree peak position is observed to fall on
the same line as the ( He, t) results in Fig. 35.

B. The 6-resonance region

The charge-exchange reactions at intermediate ener-
gies have been successfully used to measure the isovector
spin response of nuclei in the 6-resonance region. Figure
36 displays zero-degree triton spectra of the ( He, t) reac-
tion at 2 GeV bombarding energy on various targets
(Contardo et al. , 1986). A considerable energy shift of
-70 MeV is observed between the elementary 6 excita-
tion in the proton and the 5 excitation in a nucleus. The
spectra are plotted versus the kinetic energy T of the out-
going triton. For our discussions it is more convenient to
express everything in terms of excitation energy, which
we define as co=E3 —T. For the proton target the 5

He

peak occurs then at co=325 MeV, while for nuclear tar-
gets with mass number A ~12 it appears at m=255
MeV. This phenomenon is also found to persist, al-
though to a variable extent, at higher bombarding ener-
gies (Ableev et al. , 1984). A similar situation prevails for
the (p, n) reaction at E~ =800 MeV. Here the b, peak ap-
pears at @@=365MeV in the p(p, n)b, ++ reaction (Glass
et al. , 1977) and at co=295 MeV for targets with A ~ 12
(Cassapakis et al. , 1976; Bonner et al. , 1978; Lind, 1987).
Again the shift of the b, peak position amounts to -70
MeV. In contrast to this, in the case of y absorption
(Ziegler, 1979; Mecking, 1979; Ahrends, 1980; Arends
et al. , 1981) and inelastic electron-scattering experiments
(Barreau et al. , 1983, Meziani et al. , 1985; Sealock et al. ,

Rev. Mod. Phys. , Vol. 64, No. 2, April 1992



548 Franz Osterfeld: Nuclear spin and isospin excitations

l600
I

T {MeV}
l700 1800

I I

( He, t)
l.2 —T = 26eV

He lll I
I (lpllllli,

0.4—
~t"0+

l
ill

ll

I

)gl)olst1+
IIII l I

l 9 II'IIIt
I

a. O P —C& ~,,
~' (ty~(l)

/
f)~ I IQ p f (

lA

l2 I

= '-:""-
I,lr&I'

0( p ~ (I Ik
Hg

0.05—

5300 3400 3500 5600 5700
Pt (MeV/c)

FIG. 36. Triton spectra observed in ('He, tj reactions at 2 GeV
incident energy for a number of targets. The important feature
of the spectra is the relative shift of the 6 peak position between
the proton target and the nuclear targets. From Contardo et al.
(1986).

to a lowering of the 5 mass produced in the target.
Along this line of reasoning, no shift of the 6 peak posi-
tion is to be observed with the electromagnetic probes,
since they excite the 6 transversely, i.e., by the transition
operator SXqT. Here S and I are the spin and isospin
transition operators, respectively.

Several model calculations were performed to explain
the shift of the 6 bump in nuclei. All of these calcula-
tions are based on the isobar-hole model, which has been
successfully used in the description of pion-nucleus
scattering (Hirata et al. , 1977, 1979; see also the reviews
of Oset, Toki, and Weise, 1982; Ericson and Weise, 1988)
and y absorption (Koch et al. , 1984, Ericson and Weise,
1988).

In the isobar-hole model the elementary excitations of
the nucleus are the 6-h states. The 6 is assumed to move
in a complex one-body potential, the imaginary part of
which describes the increase of the 6 width in nuclei due
to decay channels other than A ~m+N, such as

The real part of the 6 nucleus potential in-
corporates a variety of effects, like (i) the average single-
particle potential experienced by the 6, (ii) Pauli blocking
effects, etc. (see Ericson and Weise, 1988).

The correlations between the 6-h states are introduced
by solving RPA-like equations with a residual interaction
of the form

V~ h(co, q)= [ V~ h(m, q)Si qS2 q

+ V~'h(co, q)(Si Xq) (S2Xq)]Ti.T2 (7.4)

1989), the b, peak does not show such a pronounced dis-
placement.

The energy shift of the 6 peak as observed by the
charge-exchange reactions has two different origins. The
first is due to the Fermi motion of the nucleons in the nu-
cleus. This effect accounts for roughly 40 MeV of the ob-
served energy shift, leaving 30 MeV unexplained (Esben-
sen and I.ee, 1985). This latter part of the shift is the in-

teresting one. The question is whether it is due to a nu-
clear medium effect or whether it is a trivial consequence
of the reaction mechanism and of the reaction kinemat-
1cs.

Before we try to answer this question, let us first note
that the apparent shift of -40 MeV between the (p, n)
and (He, t) spectra is a trivial effect of the finite projectile
size. The probability that the triton can survive the
( He, t) scattering process is rapidly decreasing with in-

creasing momentum transfer, so that the cross section is
heavily weighted towards low excitation energy. This
weighting factor is evident from the (co, q ) dependence of
the He-t form factor (Ellegaard et al. , 1985).

Soon after the first ( He, t) experiment (Ellegaard et al. ,
1983), Chanfray and Ericson (1984) speculated that the
nontrivial part of the shift might be related to a nuclear
medium effect in the isovector spin-longitudinal channel.
That is, if the 5-isobar nucleon hole (6-h) residual in-
teraction becomes strongly attractive at large-momentum
transfers lql =1—2 fm ', then this attraction might lead

where
T

V~"i, (co,q)= J (co,q)
srNN

q~ »+ 2
co q pl ~+ l 6'

(7.5)

2

V~q'h(co, q) =J„(co,q )
vh'N

J (co, q)
g~~+ 2 2 2J (~.q ) co —

q
—m +i e

(7.6)

Here g&z is the Landau-Migdal parameter, which de-
scribes the short-range correlations for 5-h —+6-h transi-
tions. Note that Vz h (co, q ) has a singularity at
q=q~, ~, =+co —m when the excitation energy co is
larger than I„.This singularity appears for the 6 exci-
tations because the excitation energy is larger than the
pion mass. The interaction V& h is repulsive for q (q,&„
but attractive for q & q, &, .

Chanfray and Ericson (1984) and Dmitriev and Suzuki
(1985) calculated the longitudinal and transverse spin-
response of the 6 resonance in nuclear matter. They ob-
tained a large energy shift of -200 MeV for the 6 peak
position in the longitudinal channel. Such nuclear
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matter calculations are, of course, unrealistic because the
finite size effects of the nucleus are important. Esbensen
and Lee (1985) applied the surface response model of Es-
bensen and Bertsch (1984) to the problem. They found
only a small shift of 5 MeV from RPA correlations.
They could, however, reproduce the 4 peak position by
introducing an effective mass of the 6 in the medium.
This effective mass was introduced ad hoc and was found
to be -30 MeV smaller than the free-6 mass. Esbensen
and Lee, however, could not give the mechanism that
produces such an effective mass.

Recent RPA calculations performed by Delorme and
Guichon (1989, 1991) and by Udagawa et al. (1990) for
finite nuclei consistently find a downward energy shift of
-30 MeV for the 5 peak position in nuclei. The energy
shift is due to the energy (co)-dependent m-exchange in-
teraction of Eq. (7.S). The calculations of Udagawa et al.
(1990) especially show in a very transparent way how the
energy shift comes about. These authors calculate the
4-h transition densities explicitly in momentum space for
all relevant multipolarities J and find that these transi-
tion densities have their peak positions in the attractive
region of V~&'h(co, q). This is illustrated in Fig. 37, where
the real part of the spin-longitudinal residual interaction
is plotted along with the real part of a J =1+, L, =0
transition density (dashed curve) versus momentum
transfer. As can be seen, the peak appears in the attrac-
tive region. This rejects the fact that the squared four-
momentum transfer t —= (co —

q ) is negative in the reac-
tion. By folding the transition densities into Vz'h(co, q)
Udagawa et al. obtain a net attractive energy shift. This
is shown in Fig. 38, where cross sections calculated either
with or without residual interaction are compared to the
' C(p, n) data of Lind et al. , (1987). One can see a strong
energy shift in the 6 peak position between the correlat-
ed and uncorrelated calculations. This energy shift
amounts to -30 MeV. The strong energy shift occurs in
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FIG. 38. Zero-degree neutron spectra for the reaction ' C(p, n)
at 800 MeV incident energy. The data are from Lind et al.
(1987). The theoretical cross sections are calculated with (solid
curve) or without (dashed curve) 5-h correlations. The longitu-
dinal and transverse cross sections are shown separately for the
case in which correlations are included. The theoretical cross
sections were multiplied by a normalization factor of N=1.5.
From Udagawa et al. (1990).

VIII. CONCLUSIONS AND OUTLOOK

Over the last decade great progress has been made in
our understanding of collective spin-isospin excitations in
nuclei. Today, the main properties of the collective
spin-isospin modes, like, for example, the excitation ener-
gies and the damping widths of the giant Gamow-Teller
resonances and other isovector magnetic resonances, are

the spin-longitudinal channel. The spin-transverse in-
teraction V&'h(co, q ), on the other hand, is weakly repul-
sive in the important momentum-transfer range; there-
fore no shift occurs in the spin-transverse channel. This
is in agreement with what is observed in the electroexci-
tation of the h. Udagawa et al. had to use a small gz&
parameter of about —,

' (in units of
=4mgcf zzf zz. /m2 =1600 MeVfm ) in order to
reproduce the 6 peak position. This value corresponds
to minimal short-range correlations. Apparently gzz is
much smaller than go. One may view the shift of the 6
bump as a tool for determining experimentally the
Landau-Migdal parameter g&&. Of course, further stud-
ies are needed to confirm this result. In particular, the
(co,q) dependence of the t~~ transition potential in the 5
excitation process has to be understood better in order to
draw firm conclusions on the 6-h correlations in nuclei.
This is particular true for the longitudinal and transverse
components of the t&z operator. Studies of the
p(d, 2p)b, reaction (Ellegaard et al. , 1989) indicate that
there is a strong transverse component in t&&. However,
this conclusion depends on assumptions about the deute-
ron form factor. Therefore other reactions should also be
used to determine the longitudinal and transverse spin
character of the t~~ interaction (see also the review paper
by Gaarde, 1991).
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known. The progress was initiated by investigations into
the (p, n) charge-exchange reaction at intermediate ener-
gies, which triggered various other investigations with
the (p,p'},(e,e'), ( y, y'), and (n,p) reactions as well as
with other probes. The combined effort of all these stud-
ies made it possible for us now to have a working
knowledge of the nuclear spin-'isospin response function
over a wide range of excitation energies and momentum
transfers.

The collective spin-isospin modes give information on
the spin-isospin-dependent interaction in the nucleus. In
particular, the short-range spin-isospin correlations be-
tween nucleons in the medium, as well as the role played
by pions in the nucleus, can be determined.

From a theoretical point of view the question of the
so-called "missing" Gamow-Teller strength seems essen-
tially to be solved. All microscopic nuclear structure cal-
culations, as well as the extensive analyses of the experi-
mental spectra, indicate that most of the "missing"
strength is located in the continuum region of the nuclear
excitation spectrum just beyond the collective mode. The
configuration mixing of the 1p-1h modes with the 2p-2h
states and more complicated nuclear configurations leads
to a strong fragmentation of the GT strength, shifting a
large amount of GT strength (20%—30%%uo) up to excita-
tion energies from 30 to 70 MeV. In this way a strongly
asymmetric damping width of the collective spin-isospin
modes is produced. The asymmetry is a consequence of
the increasing level density of 2p-2h states with increas-
ing excitation energy. Furthermore, it is found that the
higher the excitation energy of a mode, the larger is its
spreading width.

The admixture of 6-h configurations to the low-lying
GT modes seems now to be much less important than
early work suggested. It probably pushes 5% to—at
most —20% of the nucleonic GT strength up to the 6 re-
gion. A decisive experimental test of this conjecture,
however, is still lacking.

The question of the missing" GT strength has led the
experimentalists to measure the isovector spin response
of nuclei in the 6 resonance region. The result was unex-
pected and surprising. A strong energy shift of the 6
peak position towards lower excitation energies was ob-
served in nuclear targets as compared with the proton
target. The origin of this shift is not yet completely
clear, but there are strong indications that the 5-hole
correlations mediated by the energy-dependent, attrac-
tive, m-exchange interaction in the spin-longitudinal
channel shifts the 6 peak position downwards in energy
by 30 MeV. No significant shift is observed in the elec-
troexcitation of the 6 that probes the spin-transverse
channel. The shift observed in the charge-exchange reac-
tions provides strong support for the assumption that
baryon resonances can feel strong nuclear medium
effects. This history of spin and isospin excitations in nu-
clei over the last decade indicates that still more unex-
pected phenomena await discovery and that nuclear
physics will continue to be challenging and exciting.
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