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All known data on the energy distribution of secondary electrons from collisions of protons with atoms
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I. INTRODUCTION

When an energetic ion such as a proton collides with
an atom or a molecule, several inelastic processes can
take place in addition to elastic scattering. The basic
ones are excitation of the target, electron capture, and
the ejection of free electrons from the target. The last
process, often called "direct ionization, " involves the
greatest exchange of energy and is also the most probable
process for collision velocities exceeding the orbital ve-

locity of the electron in the target. This process is the
subject of the present review.

Because of the relatively large energy transfer, ioniza-
tion is a very important process for any study involving
the energy loss of particles traversing matter and for in-
vestigations of the deposition of energy in matter. Exam-
ples are the radiation damage of biological and other ma-
terials, radiation detection devices, and investigations of
the aurora borealis and other upper atmospheric phe-
nomena. Studies of magnetic and inertial-confinement
fusion and of stellar atmospheres also make use of ioniza-
tion data.

Knowledge of the total ionization cross section as a
function of incident energy sufBces for some purposes. In
an earlier paper Rudd, Kim, Madison, and Gallagher
(1985) made a critical review of total cross-section mea-
surernents for proton-impact ionization. In that review
recommendations were made for values of cross sections
over a wide energy range for 13 target gases, the theoreti-
cal and semiempirical methods available for calculation
of these cross sections were discussed, and a semiempiri-
cal equation was given along with parameters to enable
the cross sections to be easily computed for a given ener-
gy.

The present paper extends that review to differential
cross sections, which are crucial for a wide variety of
problems. In the calculation of radiation damage, for ex-
ample, it is necessary to take into account the ionization
caused by the secondary electrons themselves. For such
purposes, the energy spectrum of secondary electrons is
needed. This information is contained in the singly-
difFerential cross sections (SDCS s), i.e., cross sections as
functions of the secondary-electron energy. For other
purposes, such as studies of track structure and radial
dose distributions, the angular distribution of electrons
with a given energy is also needed. This requires
doubly-differential cross sections (DDCS's), i.e., cross
sections difFerential in both the angle and the energy of
the ejected secondary electrons. There is also another
SDCS, namely the cross section as a function of angle
only, which may be obtained by integrating DDCS data
over electron energy. However, this cross section has
found fewer applications in the above-mentioned areas.

Unfortunately, there is no reliable and direct way to
measure energy distributions of secondary electrons. The
most popular method is to measure the DDCS over a
wide range of angles and then to integrate it over the
electron ejection angle. However, this method is often

marred by uncertainties in the forward and backward
directions and in the spectra of slow ejected electrons.
The latter uncertainty is more serious because slow elec-
trons significantly contribute to the total ionization cross
section.

Differential cross sections for electron ejection are not
only of interest because of their many applications, but
are also important in their own right, since they provide
more detailed information about basic ionization process-
es than do total cross sections.

The basic mechanisms of electron ejection are known,
and theoretical treatments exist that will yield the re-
quired cross sections over some ranges of parameters.
However, no universal method of calculation exists that
yields accurate cross sections for all primary and secon-
dary energies and for all targets. This makes it necessary
to rely on experimental data and on semiempirical mod-
els. Even though there is general agreement among most
of the existing experimental data sets, there are
significant discrepancies. As a result, a potential user is
often faced with the problem of choosing from convicting
sets of data often covering different ranges of parameters.
In the present review the experimental data are critically
evaluated in the light of well-established theoretical re-
sults and of their consistency with other related data.
Recommended values for the SDCS's for ten common
target gases are presented.

In Sec. II basic cross sections are defined and in Sec.
III qualitative features of the differential cross sections
are discussed. Ab initio theoretical treatments and their
limitations are discussed in Sec. IV, and the various
methods for making consistency checks on experimental
data are considered in Sec. V. Semiempirical models for
SDCS's are discussed in Sec. VI. In Secs. VII and VIII
experimental methods are presented and sources of error
analyzed. The recommended values of the SDCS's are
given in Sec. IX. Section X contains a discussion of the
SDCS data for individual targets and gives the results in
graphical form. Recommendations for future work are
offered in Sec. XI.

I I. DEFINITIONS

The collision of a fast charged particle with a neutral
atom or molecule may result in the ejection of one or
more secondary electrons, which, in the case of proton
impact, must come from the target. These electrons are
ejected over a range of energies and directions.

The difFerential cross section is usually measured by
directing a beam, in this case of protons, through a gas
target with low number density n, and measuring the
electrons having an energy 8' that are ejected in a given
direction from a known length of path l. If one measures
the number X of electrons ejected into a solid angle AQ
with energies 8'to 8'+68' then the doubly-differential
cross section is defined by the equation

d o/dWdQ=N/(NonlbQEW),
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d 0
(4)

While other methods have been used to measure the total
cross section (Rudd et al. , 1985), no direct measurements
have been reported of singly-differential cross sections for
proton impact except for those of Park and co-workers
(Park and Schowengerdt, 1969b; Park et al. , 1977).
Vroom et al. (1977) have devised a method for direct
SDCS measurements with electron impact. This tech-
nique has not been pursued, however, and few data thus
obtained exist.

Knowledge of the differentia cross sections, especially
do /dW, makes possible the calculation of several addi-
tional quantities that are of interest in studies of radia-
tion effects and in other areas where the deposition of en-
ergy by fast charged particles needs to be known. The
average energy of secondary electrons is

W,„=(1/o )f W dW . (5)
0

The stopping cross section due to ionization is

o„=(1/R)f (W+I) dW,
0

where R is the rydberg energy (13.6 eV). If there is more
than one shell in the target, this equation must be re-
placed by the summation

where 1V0 is the number of incident particles. For unpo-
larized beams and targets, the cross section is indepen-
dent of the azimuthal angle P and depends only on the
polar angle 0 measured relative to the forward direction
of the incident beam. In this case, the DDCS is a func-
tion only of 0 and 8'.

If the DDCS is measured over a sufficiently wide range
of angles and energies, then one may obtain by numerical
integration the SDCS representing the energy distribu-
tion,

do p d 0
d8' " dS'dQ

or the SDCS giving the angular distribution,

do ~max d o2

dQ fo dWdQ

where O' „=T0—I is the maximum kinetic energy of
the ejected electrons, T0 is the energy of the incident pro-
ton, and I is the ionization potential. The total cross sec-
tion for electron ejection is obtained by integrating the
DDCS twice:

energy 8'is

f~=(1/o )f,dW' .

This quantity is especially useful in 6nding the fraction of
electrons with 8'~I, since such electrons can cause fur-
ther ionization.

III. QUALITATIVE CONSIDERATIONS

In this section, we consider qualitatively the basic
physics of proton-impact ionization. We also consider
electron-impact ionization, because comparisons between
electron and proton data have proven very useful in
evaluating and understanding proton measurements.

A. Sign of charge

The plane-wave Born approximation (PWBA), in
which the incident particle is represented by a plane
wave, predicts that both excitation and ionization cross
sections will be proportional to Z, where Z is the projec-
tile charge. As a result, the PWBA predicts the same
cross section for a charged particle of a given mass and
velocity regardless of its sign of charge. In the high-
energy region where the PWBA is valid and does not de-
pend on projectile mass, only the velocity of the particle
is relevant. For example, antiprotons and positrons with
the same high speed produce the same target ionization.
At intermediate to low energies, however, mass and
charge-sign differences, e.g., between protons and elec-
trons, cause cross-section differences. Experimental data
with fast projectiles are often scrutinized for these expect-
ed trends as signs of their consistency and reliability.

B. Projectile momentum

Since a proton is 1836 times more massive than an
electron, an incident proton carries that much more
momentum than an electron of the same speed. The
description of a continuum wave function depends on the
momentum k, rather than the speed v, of the projectile,
and the proton wave function approaches a plane wave of
the same momentum in the limit of high k. As a result,
the PWBA, which uses plane waves for the projectile,
works better for proton-impact cross sections than it
does for electrons of the same speed, for projectile speeds
below the high-energy region discussed in Sec. III.A.

o„=(1/R)g f ' (W+I;) dW,d8 (7)
C. Energy transferred to an ejected electron

where I; is the binding energy of the ith shell, 8',„, is
the maximum kinetic energy of electrons ejected from the
ith shell, and do. ;/d8' is the partial cross section for
ejecting an electron from the ith shell. The fraction frr
of electrons ejected with an energy greater than a given

An incident proton can transfer most of its energy to a
bound electron, but in practice the energy transfer is usu-
ally far less than the incident energy. The case of
electron-impact ionization is different, however, since one
cannot distinguish the two or more electrons emerging
after an ionizing collision. As a result, an operational dis-
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tinction is made between the primary (fast) electron and
secondary (slow) electron by requiring the maximum en-
ergy transferred 8', to be one-half of the incident ener-

gy To after subtracting the required binding energy I,
i.e.,

point mechanism provides a significant fraction of the
ionized electrons and is responsible for differences in the
cross sections between, say, protons and antiprotons (see
Kimura and Inokuti, 1988; Olson and Gay, 1988; Fain-
stein et al., 1989b; Schultz, 1989).

8',„(e )=(To I)/—2 . (9) E. Rutherford cross section

This choice of W,„(e ) assumes that the electron ex-
change effect between the incident and ejected electrons
has been properly treated.

For incident protons, conservation of energy and
momentum restricts the maximum energy transfer to an
unbound electron at rest to (see Appendix A)

8',„(p)=2m vo =4T, (10)

D. Slow incident particles

When projectile speeds are sufficiently low (v 5 3 a.u. ),
the "two-center" (ionized target plus receding projectile)
nature of the collision complex has an important effect on
the dynamics of electron ejection. While negative projec-
tiles such as electrons repel ionized target electrons, pro-
tons attract them, causing an enhancement in the
doubly-differential cross sections at forward-ejection an-
gles. This attraction results in two mechanisms, or
"channels", for ionization unavailable to negative-
projectile collision complexes: charge transfer to the
continuum (more recently labeled electron capture to the
continuum —see, for example, Crooks and Rudd, 1970;
Macek, 1970), in which the ejected electron has a velocity
closely matching that of the projectile, and "saddle-
point" ionization (Olson et al. , 1987), where electrons
stranded on or near the saddle point of the electric poten-
tial between the positive target ion and receding projec-
tile emerge with roughly half the projectile velocity.
While ionization due to charge transfer to the continuum
contributes little to the total cross section, the saddle-

where m is the electron mass, vo is the incident-proton
speed, and T =mvo/2. This limit is independent of the
projectile mass M (assuming M ))m) and is known as
the free-electron limit for energy transfer by heavy pro-
jectiles. In reality, a bound electron can exceed this limit
because the ion core can recoil, imparting additional
momentum and hence higher kinetic energy to the eject-
ed electron. We emphasize here that the recoil of the ion
core involves large momentum because of the ion mass,
but that the recoil ion does not receive an appreciable
amount of kinetic energy from the incident proton. As
will be demonstrated later in numerous examples, the
production of very energetic electrons by fast incident
protons drops sharply beyond this free-electron limit.
From Eq. (B7) of Appendix B we see that the free-
electron energy limit for electrons ejected in directions
other than that of the incident beam will be less than the
maximum given by Eq. (10), which is, in turn, far less
than the incident energy of the proton, To.

The collision of a charged particle with another at rest
is described by the Rutherford scattering formula, which
can be written

= (4n a 0 /T)(R / W)

E =8'+I . (12)

With this substitution, the singularity in the original
Rutherford cross section is removed. The modified
Rutherford cross section, which is an approximation to
the original but singular Rutherford scattering cross sec-
tion, is given by

d0 g = (4m a o /T)(R /E) (13)

We shall refer to the "modified" Rutherford cross sec-
tion, Eq. (13), as the Rutherford cross section hereafter
for brevity, while Eq. (11) will be referred to as the "orig-
inal" Rutherford cross section. The modified Rutherford
cross section will, of course, approach the original Ruth-
erford cross section when 8')&I. For a target atom or
molecule with complex shell structure, Eq. (12) is not
unique because most experiments measure only W
without distinguishing the shell from which an ejected
electron comes. As is shown later, Eq. (12) must be ex-
panded and E must be defined for each subshell in such a
case. The expanded form will be used, however, only to
help in the understanding of the qualitative behavior of
singly-differential cross sections.

F. Binary collision peak

In doubly-differential cross-section measurements, the
energy and angular distributions of the ejected electrons

where 8'is the kinetic energy of the target particle after
the collision, T is the kinetic energy of an electron with
the same speed as the incident particle [T=(m/M)TO
and hence T = To only for incident electrons or posi-
trons; see Appendix A], and ao is the Bohr radius (0.529
0
A). This formula is obtained from the usual expression
for the Rutherford scattering cross section in terms of 0
(Landau and Lifshitz, 1965) by assuming all momentum
transferred to the target electron remains with it upon
ejection from the atom, as would be the case for a free
electron. This is the correct quantum-mechanical result
for electrons at rest, which is singular at 8' =0. A bound
atomic electron, however, is not at rest, and part of the
energy transfer must be used to overcome the binding,
with the remainder going into kinetic energy. Conse-

quently it is logical to replace 8'by the energy transfer E
needed to eject an electron of energy 8' i.e.,
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TABLE I(b). Binding (I) and kinetic ( U) energies (eV) and occupation number (N) of some polyatomic molecules. The binding ener-
gies are mostly experimental values, and the kinetic energies are calculated values using DZP (double /+polarization) basis sets.
[For the DZP basis set, see Stevens et al. (1984) for SF6 and TeF6, and Dunning and Hay (1977), pp. 1 —27.] MO: molecular orbital.
Experimental values are marked by an asterisk. [Most experimental binding energies (vertical ionization potentials) are from Ber-
kowitz (1979) except for NH2 (Gibson et al. , 1985), CH3 (Dyke et al. , 1976), CO2 (Samson and Gardner, 1973), SF6 (Potts et al. ,
1970), and (CH3)2NH (Vovna and Vilesov, 1974).]

MO MO

la, (N ls)
2Q)
lb'
3Q)

lb2

la& (C ls)
2Q I

le
3al

lcr (C 1$)
lcr„(C ls)
20g
2' „
3'
1m„

423.8
30.09
17.47
13.02
11.14*

305.5
24.57
15.10
9 84+

291.1*
291.1*
23.5*
18.38*
16.36
11.40*

NH2

CH3

1204.6
100.9
72.25
87.96
46.86

872.0
68.84
52.74
29.73

870.9
873.0
98.16
66.12
64.50
57.24

la«(C ls)
le]„(C ls)
le2 (C ls)
b,„(C ls)

2a &g

le)„
2e2g
3Q )g

2b)„
lb2„
3eiu
la, „

e2g

le)g

la& (N ls)
2Qi
le
3Q)

290.2*
290.2*
290.2*
290.2*
26.0
22.7*
19.0*
16.9*
15.4*
14.8
14.0*
12.3
11.8
9.24*

405.6*
27.77*
16.0*
10.88*

C6H6

NH3

871.1
871.4
872.2
872.6
78.86
85.31
77.99
50.21
69.15
76.97
64.50
47.90
74.98
56.37

1204.1

98.03
71.33
84.84

2
4
4
2
2

4
2
2
2
4
2

4

la„(C ls)
la2„(C ls)
2a &g

2Q2

le„
3Q )g

leg

290.5*
290.5*
23.6*
20.16*
15.4*
13.5*
12.36*

C~H6
871.6
872.0
69.16
67.73
48.56
65.05
56.26

la( {C ls)
2Q)
lt2

lag {C ls)
1b,„(C ls)

290.7*
23*
14.35

290.9*
290.9*

CH4

C2H4

871.8
66.68
51.72

871.4
872.4

are determined, while the angular distribution and energy
losses of the scattered particles (primary protons) are in-
tegrated over. The angular distribution of fast ejected
electrons exhibits a prominent peak, known as the binary
peak, and the fractional width of the peak narrows as the
electron energy increases. This is a direct consequence of
billiard-ball-like collisions between the incident particles
and the target electrons. We can again use a simple mod-
el of a free electron initially at rest to predict the angle Ob

at which the binary peak will appear (see Appendix 8):

tribution is broad, and narrow if the target momenta are
small compared to the momentum of the ejected electron.
The binding energy of an ejected electron is only a rough
indication of the initial momentum of the electron be-
cause electrons in an orbital that has many nodes have
high average momentum but low binding energies. To
estimate the width of the peak, one should use the aver-
age kinetic energy of a bound electron, as opposed to its
binding energy [see Tables I(a) and I(b)].

G. Soft and hard collisions
(14)0b =cos '[ —,'(MW/mTO)'~ ] (proton impact)

=cos [(W/T) ~ ] (electron impact) . Proton-atom collisions can be divided into two qualita-
tively different types; a soft (or a glancing) collision and a
hard (or binary) collision. In a soft collision, momentum
transfer is small, the impact parameter is large, and the
proton's trajectory hardly deviates from a straight line.
Most collisions, particularly for fast protons, are of this
type.

In a hard collision, momentum transfer is large with a

(15)

An electron bound in an atom or molecule has its own in-
itial momentum distribution, which will be superimposed
on the delta-function angular distribution at Ob. The ac-
tual shape of the binary peak, which is known as the
Compton profile, will depend on this initial momentum
distribution; it will be wide if the initial momentum dis-
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TABLE I(b). ( Continued).

MO MO

2ag
2b, „
lb2„
3ag
1b3g
lb3„

23.68*
19.1*
15.87*
14.66*
12.85*
10.51

81.87
67.79
50.19
68.19
57.35
52.36

1t2g

2eg

1t2„
3tl
lt)g

19.9*
18.6*
16.9*

15.8

147.6
166.8
178.0
176.8
193.2

la) (0 ls)
2a)
1b)
3a&

1b2

lo.„(O 1s)
la~ (0 ls)
2o g (C ls)
3'g

2u
40
3ou
ln.„
1m'

la )g
ltiu
leg
2a )g
2ti

539.7*
32.2*
18.55
14.73
12.61

820
1589.5

142.0
97.39

118.4
122.9

541.0*
541.0*
297.5*

38.6*
37 PQ

19.4*
18.08*
17.60*
13.79*

CO,
1589.6
1589.7
872. 1

151.0
154.2
148.3
140.2
100.1
128.6

SF6 (K shell of F and K and L
shells of S omitted)
44.2 45.66
41.2* 60.79

67.94
26.8 93.62
22.5* 124.1

1a' (N ls)
la" (C 1s)
2a' (C 1s)
3a
2a
4a'
Sa'
6a'
3a
4a"
7a
5a"
8a'

1a )g
1tl„
leg
2a )g
2tlu
1t2g
lt2.
3t&u

2eg

ltlg

(CH, ),NH
422.7
871.9
305.8
32.62
25.79
23.26
16.70
15.49
15.05*
13.85
13.27
12.64*
8.94*

(dimethylamine)
1204.1

871.9
871.9
93.69
74.49
75.44
62.30
53.86
68.74
55.14
66.22
68.12
86.74

TeF6 (K she11 of F and IC, L, M,
and N shells of Te omitted)

47.61 52.12
45.85 61.44
45.01 65.31
27.55 93.45
23.05 129.2
21.17 151.0
19.74 170.2
19.46 171.0
19.31 167.5
18.97 180.9

small impact parameter, and the proton's trajectory is
significantly altered. The basic characteristics of a hard
collision are similar to those of an elastic collision be-
tween two billiard balls, in spite of the fact that energy is
lost, since the energy loss is small relative to the total en-
ergy. Hard collisions correspond to "direct hits" in the
classical sense, and for these collisions there is a large en-
ergy transfer to the electrons, which then emerge from
the collision in a sharp peak (known as the binary peak,
see Sec. III.F), which is easily predicted using classical
mechanics. Since these collisions are basically classical in
nature, they are we11 described by the Rutherford formu-
la, as described in Sec. III.E. The contribution of hard
collisions to a total ionization cross section is more
significant for slow incident protons than for fast pro-
tons.

H. Optical (zero-momentum-transfer) limit

In the plane-wave Born approximation, the generalized
oscillator strength, which is basically the form factor

describing a collision, reduces to the dipole oscillator
strength in the hmit of zero rnomenturn transfer. As was
discussed by Rudd et al. (1985) for the case of total ion-
ization cross sections, this connection between the gen-
eralized oscillator strengths and dipole oscillator strength
for singly-di6'erential cross sections can be used both in
checking the consistency of experimental SDCS's and in
formulating semiempirical models for SDCS's (see Sec.
IV). Although the zero-momentum-transfer limit is nev-
er reached in an inelastic collision, the physically allowed
minimum momentum transfer becomes very sma11 for a
fast projectile. Hence this dipole contribution is
significant for soft collisions with fast protons, eventually
dominating the SDCS at incident energies of a few MeV
and above. In the optical limit, collisions with fast pro-
tons correspond to the atom absorbing a photon.

A free electron, however, cannot absorb a photon be-
cause the total momentum cannot be conserved without
a third body (the nucleus in a real atom) to recoil. As a
result, classical methods treating atomic electrons as free
electrons (even with momentum distributions associated
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with the electrons) —such as those described in Sec.
IV—cannot properly account for this dipole contribu-
tion and therefore are unreliable for collisions with fast
protons.

I. Semiclassical treatment and the plane-wave
Born approximation

Although an ideal formulation of a collision theory
would be based on quantum mechanics, one can treat the
trajectory of heavy projectiles classically, while describ-
ing the interaction between the projectile and a target
atom or molecule using quantum mechanics. This ap-
proach is called semiclassical collision theory. The basic
assumptions for the validity of the semiclassical theory
are (a) that the projectile has high momentum, kao »1,
and (b) that the projectile energy is far greater than any
interaction potential V;„, it will encounter, i.e.,
To » V;„,. Under these assumptions, an integrated cross
section obtained from a semiclassical theory by integrat-
ing over the scattering angle reduces to the integrated
cross section derived from the plane-wave Born approxi-
mation (Bethe and Jakiw, 1986).

Both assumptions (a) and (b) above are easily satisfied
by a slow but heavy projectile such as a proton because of
its large mass and the fact that it has a large kinetic ener-

gy compared to the usual energy loss involved in an ion-
izing collision. The normal criterion for validity of the
P%'BA is T»E, where T is the energy of an electron
with the same speed. For protons, condition (b) can be
satisfied although the usual validity condition for the
P%'BA is not satisfied. This is the reason that the PWBA
cross sections for slow ( & 1 a.u. ) protons agree well with
experiment, even though this would not be anticipated
from the normal PWBA condition.

IV. THEORETICAL TREATMENTS

The theoretical calculations of singly-di6'erential cross
sections for proton-impact ionization fall into three gen-
eral categories, the classical binary-encounter approxima-
tion, the classical-trajectory Monte Carlo approach, and
quantum-mechanical methods.

A. Binary-encounter approximation

The approximation made in this method is to treat the
collision as a classical one between the projectile and a
single electron in the target; the nucleus and the remain-
ing electrons in the target play no part except that of pro-
viding a binding energy for the electron being ejected. In
this model the energy transfer E and the energy 8'of the
ejected electron are related by Eq. (12). The justification
for using a classical model lies in the fact that di8'erential
cross sections (angular distributions) for Coulomb
scattering of unlike particles are the same when calculat-
ed using either classical physics or quantum mechanics

dcraE/dW=(doii /dW)[1+4U/3E]

for E;„~E~E

dona/dW'=(dail /d8')( U/6E) [(4T/U) i

(16a)

+ [1—(1+E/U)' ']'I
(16b)
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FKx. 1. Comparison of experiment and the binary-encounter
approximation for the singly-differential cross sections for ion-
ization of helium by 10 to 100 keV protons. The binary-
encounter approximation was obtained by integrating over a
Fock distribution of energies for the atomic electron.

(Mott and Massey, 1965).
Thomson (1912) utilized the results of the Rutherford

scattering theory and derived an expression that may be
converted into the Rutherford cross section of Eq. (11).
For the Thomson result, the target electron was assumed
to be at rest before the collision. This restriction was re-
moved in the work of Williams (1927) and in the more
general treatment of Thomas (1927). The results of Tho-
mas (1927) are given for the case of proton impact in a
particularly compact form by Vriens (1967). While the
binary-encounter-approximation results of Vriens may be
evaluated by using a delta-function distribution for the
initial momentum of the atomic electron, better results
are obtained by using a more realistic distribution of mo-
menta, which must then be integrated over. Rudd et al.
(1971) calculated binary-encounter-approximation results
using the quantum-mechanical Pock hydrogenic momen-
tum distribution. Some of these results are shown in Fig.
1, where it is seen that the agreement with experiment is
quite good at high primary energies but deteriorates at
lower energies. It should be noted that the Pock distribu-
tion depends upon a parameter that is the average initial
electron velocity for the atomic electron. For the results
shown in Fig. I, the binding energy was used to calculate
this average velocity. In some cases, a small improve-
ment may be effected by using Slater's rules (Slater, 1930;
Clementi and Raimondi, 1963; Clementi, Raimondi, and
Reinhardt, 1967) or some other method to obtain this
average velocity.

A simpler form of the binary-encounter theory leads to
a singly-difFerential cross section of the form (Thomas,
1927; Vriens, 1967; Inokuti, 1971)
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for E ~E ~E+, and

d craEld W =0 (16c}

It is tempting to equate the minimum energy transfer
E;„ to the ionization threshold I, but the quantum-
mechanical derivation of Eq. (16a) assumes that U (E
(Inokuti, 1971). Also, the fact that the target electron
must gain energy after a binary collision requires that
T~ U. Since most atoms and molecules have a U value
of the order of 1 —4 atomic units for valence electrons,
the minimum T for which Eqs. (16a) and (16b) are valid is
of the order of 25 —100 keV for incident protons.

Again, the relationship between E, 8' and U must be
redefined for multishell atoms. Binary-encounter theory
does not properly account for the logarithmic depen-
dence of ionization cross sections on T or Tp which
arises from the dipole interaction and dominates ioniza-
tion cross sections at high incident energies.

B. Classical-trajectory Monte Carlo method

The binary-encounter approximation discussed in Sec.
IV.A treats atomic ionization as a binary co11ision be-
tween the incident proton and the electron to be ionized,
without involving the rest of the atom (Gryzinski, 1959,
1965a, 1965b, 1965c; Gerjuoy, 1966; Vriens, 1969; Bon-
sen and Vriens, 1970). This early model was extended by
Abrines and Percival (1966a, 1966b) to incorporate more
realistic three-body dynamics. Such a treatment, which
has become known as the classical-trajectory Monte Car-
lo method, has been applied to atomic ionization by Bon-
sen and Banks (1971), Olson and Salop (1977), Olson
(1983), Reinhold and Falcon (1986), Olson et al. (1987),
Reinhold et al. (1987), Olson and Gay (1988), and Rein-
hold and Olson (1989).

In the classical-trajectory Monte Carlo method, the in-
itial state of the ionized electron is represented by a
momentum distribution chosen in such a way that it is at
least a sensible representation of the momentum distribu-
tion one would get from quantum-mechanical wave func-
tions (for the case of scattering from hydrogen, this
momentum distribution is exact). The rest of the atom is
treated as an inert core represented either by a screened
Coulomb potential or by a model potential. In both
cases, the independent-electron model (Hansteen and
Mosebekk, 1972; McGuire and Weaver, 1977) is used for
electron ejection from many-electron atoms. In the
independent-electron model, correlations between the
atomic electrons are neglected and it is assumed that
each electron can be regarded as being independent.

The calculation proceeds by randomly choosing the
phase-space coordinates (i.e., position and momentum}
for the atomic electron, using the above momentum dis-
tribution, and by randomly choosing an impact parame-

for E & E+, where U is the kinetic energy of the target
electron and

E+ =4T+4( TU)'

ter for the incident proton. The evolution of the collision
system is then found by integrating the classical equa-
tions of motion for the three-body system of projectile,
target electron, and atomic core from a large initial
projectile-target separation to a large final separation.
The relative energies and positions of the particles are
then used to determine scattering angles and which reac-
tion, if any, has occurred. This procedure is repeated a
large number ( —10 ) of times. After a sufficiently large
ensemble of projectile-target configurations has been
sampled, the di6'erential cross sections are determined.
Although there have been numerous classical-trajectory
Monte Carlo calculations performed for various scatter-
ing processes, in the case of singly-differential cross sec-
tions for proton-impact ionization, the most complete
calculations reported to date are for atomic hydrogen
(Olson, 1983; Reinhold et al., 1987) and helium targets
(Abrines and Percival, 1966; Reinhold and Falcon, 1986;
Olson et al., 1987; Olson and Clay, 1988; Reinhold and
Olson, 1989).

C. Quantum-mechanical methods

The quantum-mechanical treatments for atomic ion-
ization by proton impact fall into three different classes:
(1) those which treat the electron-target interaction as a
strong interaction and the electron-projectile interaction
as a weak interaction; (2) those which treat the electron-
target interaction as strong and the electron-projectile in-
teraction as strong for the incoming proton and as weak
for the outgoing proton; and (3) those which treat both
the electron-target and electron-projectile interactions as
strong interactions. Clearly, treatments of type (1) will
be valid when the outgoing electron and projectile have
significantly different speeds or outgoing directions.
Treatments of type (3) will be required if the ejected elec-
tron and projectile have similar speeds and are leaving
the collision region in similar directions.

1. Weak initial- and final-state electron-projectile
interactions

If the electron-projectile interaction is weak, this in-
teraction may be treated perturbatively. Theoretically,
this is accomplished by expressing the wave function for
the electron as a single-center wave function whose origin
is located at the target nucleus. The interaction between
the electron and projectile is ignored in the formation of
the electron wave function and, as a result, this interac-
tion appears only in the interaction potential in the tran-
sition matrix element, which is treated perturbatively.

The calculations that have been performed within this
framework have assumed either that the projectile is
undetected and moves in a classical trajectory or that the
projectile wave function can be expressed as a plane
wave. The former approach of assigning a classical tra-
jectory to the heavy projectile and treating the rest of the
problem quantum-mechanically is known as the semiclas-
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d2

dr
I (I + 1) —V(r)+k y, (k, r)=0,

where V(r) is a (spherically symmetric) potential
representing the residual ion. Over the years, there have
been various choices made for this potential ranging from
no potential (PWBA) to a Coulomb potential for some
efFective charge or a numerical potential obtained from
Hartree-Fock wave functions for the atom in question.
In terms of nomenclature, the effective-Coulomb-field
choice would appropriately be called the Coulomb-Born
approximation and the numerical Hartree-Fock-potential
choice would be called the DWBA. The difference be-
tween the Coulomb-Born and DWBA is most pro-
nounced in the doubly-differential cross section at large
scattering angles. In general, it is best to use a DWBA
even for the singly-differential cross section, since
significant difFerences between the two approaches can be
observed.

The DWBA approach was discussed by Rudd et al.
(1985), and the formulas for the SDCS are contained
therein; we shall not repeat that presentation here. The
interested reader is referred to that review for a discus-

sical approximation (Bang and Hansteen, 1959), and the
latter approach is called the plane-wave Born approxima-
tion (PWBA). Although there has been considerable use
of the semiclassical approximation for total cross sections
for inner-shell ionization (Madison and Merzbacher,
1975), there have been relatively limited applications to
singly-differential cross sections for proton impact
(Mukoyama et a/. , 1985). It can be shown that the semi-
classical approximation and PWBA yield identical results
for energy distributions of the ejected electron in heavy-
particle ionization (Bethe and Jackiw, 1968; Madison and
Merzbacher, 1975). Most of the work germane to this re-
view has been performed within the PWBA.

The PWBA (or standard straight-line trajectory semi-
classical approximation) will certainly be invalid if the
proton is defiected through a large angle ( & 1'). Howev-
er, for the types of experiment germane to this review,
this is a good approximation, since the results are in-
tegrated over proton scattering angles, and the major
contributions to the cross section come from very small
proton scattering angles. The distinction between
different calculations of this type then lies in the treat-
ment of the ejected-electron wave function. For the cal-
culations that have typically been labeled PWBA's, the
ejected-electron wave function is approximated as a plane
wave, and for the distorted-wave Born approximation
(DWBA), the ejected-electron wave function is calculated
as an eigenfunction of some model potential representing
the residual target ion.

In the standard theoretical development, a partial-
wave expansion is made for the final-state ejected-
electron wave function. The radial part of this wave
function g&(k, r) for a partial wave with angular momen-
tum l for the ejected electron is a solution of the
Schrodinger equation,

sion of the philosophy of the Born approximation, a
description of the calculation of self-consistent-field wave
functions and potentials, orthogonality requirements,
different types of DWBA calculations, conditions for va-
lidity of the DWBA, the numerical problems associated
with a DWBA calculation, the connection between in-
cident protons and electrons, the connection between
proton- and photon-impact ionization, and the low-
energy behavior of the cross sections.

2. Strong initial-state interactions and weak
final-state interactions

The Glauber approximation (Glauber, 1959) is
designed to include a strong electron-projectile interac-
tion in the initial state. It is very similar to the Born ap-
proximation except that instead of using a plane wave for
the initial projectile state, it uses an eikonal approxima-
tion for the exact wave function. In the eikonal approxi-
mation, the initia1 state is a plane wave modified by a
phase factor which is proportional to the average of the
perturbing potential over the trajectory of the particle.
When used in the scattering amplitude, it can be seen
that this eikonal wave function generates the first Born
amplitude exactly and higher Born amplitudes approxi-
mately. The Glauber approximation is obtained from the
eikonal amplitude by choosing a particular trajectory for
the projectile. For the final state of the system, the typi-
cal Glauber calculation ~ould use the same type of wave
function as the typical Born calculation. Consequently,
in terms of the strengths of interactions, the Glauber ap-
proximation assumes a stronger initial-state electron-
projectile interaction than does the Born and the same
weak final-state electron-projectile interaction. As a re-
sult, in simi1arity to the Born approximation, the
Glauber approximation would not be expected to be valid
for those cases in which the electron is ejected near the
projectile and with the same speed.

The Glauber approximation was first applied to atomic
physics problems by Franco (1968). Golden and
McGuire (1974,1977) and McGuire (1982) applied the
Glauber approach to the problem of atomic ionization by
heavy projectiles and found that it yielded accurate total
ionization cross sections at high energy. Limited results
have been reported for the singly-differential cross sec-
tion, which is of interest here.

3. Strong electron-projectile interactions

a. Continuum —distorted-wave method

The PWBA, DWBA, or Glauber methods would not
be expected to be valid when the ejected electron leaves
the collision with approximately the same velocity as the
projectile proton, since there would then be a strong
final-state interaction that is treated only to first order in
the perturbation expansion. When this happens, the at-
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tractive nature of this force will cause an enhancement of
the electrons being scattered in the direction of the pro-
ton. This effect has been observed in double-differential
cross-section measurements and has been called both
charge transfer to the continuum and, more recently,
electron capture to the continuum, as was discussed in
Sec. III.D.

Over the last several years, there has been a significant
effort directed towards the development of theoretical
models that take into account both the final-state
electron-target interaction and the final-state electron-
projectile interaction in a symmetrical manner (Ryufuku,
1982). Such treatments by definition require a two-center
final-state wave function, since one part of the electronic
wave function must be centered on the target and anoth-
er part on the projectile. A review of the experimental
observation and theoretical treatment of two-center
effects has recently been given by Fainstein et al. (1991).
One theoretical model that has been successful in its
treatment of two-center effects is the "continuum-
distorted-wave" approach. Cheshire (1964) developed
this model for charge-exchange scattering, and Belkic
(1978) applied it to atomic ionization by heavy particles.
The primary characteristic of a continuum-distorted-
wave calculation is that all two-particle Coulomb interac-
tions are contained explicitly in the initial- and final-state
wave functions. As a result, the final-state wave function
in the continuum-distorted-wave approach is represented
as a product of a Coulomb wave function for the
electron-target subsystem, a Coulomb wave function for
the electron-projectile subsystem, and a Coulomb wave
function for the projectile-target subsystem. The initial-
state wave function is expressed in a similar fashion ex-
cept that the electron-target wave function is an initial
bound state for this case.

A modified version of the continuum distorted wave
was proposed by Cxaribotti and Miraglia (1980), who used
the final state described above but assumed a weak
electron-projectile interaction in the incident channel.
As a result, the initial-state wave function in that work
was chosen to be a product of a plane wave for the pro-
jectile and a bound state for the electron (the same type
of choice is made in the PWBA). Previously, however,
Belkic (1978) found that it was important in general to
assume a strong electron-projectile interaction in the ini-
tial state also. Crothers and McCann (1983) developed
the continuum-distorted-wave method within the frame-
work of the semiclassical impact-parameter time-
dependent approach. For heavy projectiles it is expected
that the impact-parameter method should be essentially
equivalent to full quantal methods. In fact, Belkic (1978)
demonstrated the equivalence for forward scattering and
very massive targets. In the Crothers and McCann
(1983) work, the final state is treated in the standard
continuum-distorted-wave fashion and the initial state is
represented as an eikonal approximation to the initial-
state continuum distorted wave. Using the eikonal initial
state has proven to be very successful, and this type of

calculation is now called the CDW-EIS (continuum-
distorted-wave eikonal-initial-state) approximation.

Fainstein et al. (1988a) extended the CDW-EIS ap-
proximation from the case of ionization of a monoelect-
ronic target by a bare ion to the multielectronic case in
which there is a single active electron, and have success-
fully applied it to the problem of proton and antiproton
ionization of heavier atoms (Fainstein et al. , 1988b,
1989a, 1989b). The primary interest and motivation for
most of the continuum-distorted-wave work has been the
desire to understand and interpret experimental DDCS
results, but some SDCS results have also been reported
(Fainstein et a/. , 1988, 1989b; Crothers and McCann,
1983; Belkic, 1978).

b. Other methods for strong electron-projectile
interactions

In addition to the continuum-distorted-wave method,
there are other theoretical approaches that contain a
nonperturbative strong electron-projectile interaction.
This interaction is included exactly in the classical-
trajectory Monte Carlo method described in Sec. IV.B.
Two other approaches also deserve mention —the
coupled-channels approach and direct integration of the
time-dependent Schrodinger equation.

Shakeshaft (1978) performed a coupled-state calcula-
tion for proton-hydrogen scattering that used wave func-
tions centered on both the target and the projectile. In
this work, the standard time-dependent impact-
parameter coupled-state method was used and 35 basis
functions centered on both the projectile and the target
were used in the expansion of the electron wave function.
Singly-difFerential cross sections were not reported in
that work, but it was noted that for energies less than
about 75 keV, charge-transfer-to-the-continuum effects
are significant, to the extent that theories neglecting
them, such as the PWBA or DWBA, should be inade-
quate below that energy. There have been numerous oth-
er coupled-channels calculations for atomic ionization by
heavy projectiles, but the focus of those works is outside
the scope of this review (see, for example, Reading et al.,
1979, 1981; Reading and Ford, 1979, 1987; Janev and
Presnyakov, 1980; Ford et al., 1981; Fritsch and Lin,
1983; Paul and Obermann, 1983; Winter and Lin, 1984).

The last method we shall mention, which automatical-
ly includes a strong electron-projectile interaction, is the
direct integration of the time-dependent Schrodinger
equation by Bottcher (1982). In this work, it was as-
sumed that the projectile was a bare nucleus moving with
a uniform velocity in a straight line. The time-dependent
Schrodinger equation was then propagated from the ini-
tial state to the final state and cross sections for excita-
tion, capture into bound states, direct ionization, and
charge transfer to th'e continuum were determined from
the resulting final states. Although only total cross sec-
tions were reported in this work, it does represent an in-
teresting theoretical development.
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D. Comparison of experiment and theory I
O-2I

I I

400 keW
At present, ab initio theories are limited in their validi-

ty to certain ranges of proton energies and/or to certain
targets. Similarly, available experimental data are limit-
ed in the ranges of ejected-electron energies and/or
incident-proton energies. Often the missing parts in the
experimental data are supplemented using semiempirical
models. Section VI of this review will show that the ex-
perimental single-differential cross-section data can be
expressed in terms of analytic formulae with target-
dependent adjustable parameters. The recommended ex-
perimental data for He expressed in this parametrized
form are compared with the DWBA calculations de-
scribed by Rudd et al. (1985) and the classical-trajectory
Monte Carlo calculations of Schultz and Reinhold (1989)
at incident proton energies of 100 keV, 400 keV, and 1

MeV in Figs. 2—4. As was noted earlier, Shakeshaft
(1978) demonstrated that the effects of charge transfer to
the continuum start to become significant below 75 keV,
so the DWBA would not be expected to be valid for
much lower energies, since charge-transfer-to-the-
continuum e6'ects are included only to erst order in a
perturbation expansion. In general, both theories give a
reasonably good representation of the experimental data.
At 1 MeV the DWBA is in very good agreement with ex-
periment over the entire energy range of the ejected elec-
tron. At this energy, the classical-trajectory Monte Car-
lo result is in excellent agreement with experiment for the
higher electron energies but falls below the experiment
for the lower energies, where the cross sections are
larger.

This problem with the slow electrons is a manifestation
of the fact that the classical calculations give an asymp-
totic proton energy behavior of Tp

' instead of the
quantum-mechanical Tp 'lnTp behavior, a dependence
that has been well verified experimentally. The failure of
the classical-trajectory Monte Carlo approach for large
Tp is a direct result of the fact that the classical calcula-
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FIG. 3. Same as Fig. 2 except for 400-keV proton.

tions do not contain the dipole contribution to the
scattering process, which is the source of the Tp 'lnTp
energy dependence. While the dipole contribution is

significant for large Tp, nondipole terms are larger than
the dipole term at intermediate Tp, which explains why
the classical calculations are better in this energy region.
At 400 keV the classical-trajectory Monte Carlo result is
in better agreement with experiment than the DWBA.
Here the classical-trajectory Monte Carlo calculation is
in excellent agreement with experiment over the entire
secondary-electron energy range, while the DWBA is
somewhat too large for low electron energies. At the
lowest incident energy considered, 100 keV, the DWBA
is again in somewhat better agreement with experiment
than the classical-trajectory Monte Carlo approach. We
note, however, that these Monte Carlo calculations were
performed using a screened Coulomb potential to
represent the target core, and that Reinhold and Falcon
(1986) have shown that the use of a model potential in-

teraction brings the classical-trajectory Monte Carlo re-
sult into better agreement with experiment at lower
secondary-electron energies.

In general, the DWBA will be in very good agreement
with experiment for high proton energies (To 1 MeV),
in reasonably good agreement for intermediate energies
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(100 keV ~ To 5 1 MeV), and in increasingly poor agree-
ment with experiment for lower proton energies. For the
comparisons we made for He, it was found that the
DWBA was within 10% of experiment at 1 MeV, within
about 20% of experiment in the 100-keV-to-1-MeV
range, and within 50—100% of experiment by 40 keV.
The classical-trajectory Monte Carlo method, on the oth-
er hand, works best in the intermediate-energy range,
with decreasing validity both for the higher and lower en-
ergies. For the cases we considered, the Monte Carlo cal-
culation was within 10% of experiment at the intermedi-
ate energy (400 keV), with the difference increasing to the
30—40% range for both the lower and higher proton en-
ergies. For atoms heavier than helium, theoretical re-
sults start to depend strongly on the quality of the atomic
wave functions used for the outer electrons and other
rnultielectron effects. As a result, PWBA calculations us-
ing Hartree-Fock wave functions tend to overestimate
cross sections with increasing atomic number.

V. CONSISTENCY CHECKS

Most measurements of singly-differential cross sections
are indirect, i.e., SDCS s are deduced by integrating
DDCS's over the electron-ejection angle. Moreover, a
SCDS must be consistent with the corresponding total
ionization cross section when the SDCS is integrated
over the electron energy.

The measurement of a DDCS for an atom or molecule
involves many continuous variables, such as the incident
proton energy, the secondary electron energy, and the
electron ejection angle. The data thus tend to be incorn-
plete if one wishes to perform integrations to obtain a
SDCS. Therefore it is important to identify methods for
checking the consistency of existing data and to supple-
ment missing parts by comparison with other available
information.

For instance, if Eq. (4) does not agree with a known
value of the total ionization cross section, it is desirable
to know if some part of d o /dWdQ may be causing the
discrepancy rather than simply to renormalize
d cr /d W d 0 uniformly. One can also interpolate and ex-
trapolate experimental do/dW in both W and To if it
can be established that the observed do. /dW exhibits
qualitative trends expected from theoretical considera-
tions.

In this section, we discuss several powerful consistency
checks for identifying qualitative trends in do /dW Al-.
though these trends are based on the PWBA and are
hence valid only for fast incident protons ( To & 300 keV),
they are nevertheless very useful in detecting problems in
experimental data and in supplementing missing parts in
such data.

A. Bethe theory

Bethe (1930) derived the basic framework of the Born
approximation for ionization and excitation of atoms and

molecules by charged-particle impact. In this rnonumen-
tal work, he introduced the generaiized oscillator
strength, which is basically a collision form factor that
reduces to the dipole oscillator strength f in the limit of
zero-momentum transfer and that satisfies a sum rule
similar to that for f. The generalized oscillator strength
for a given transition is a function of momentum transfer,
which is determined by the angular distribution of the
scattered particle. Bethe showed further that the cross
section to excite an atom to state n, o.„, depends on
T =(I /M)To, i.e. , on the velocity of the incident parti-
cle. The cross section integrated over the scattering an-
gle of the incident particle is conveniently expanded as a
function of T:

cr„=(4+a OR /T) [a„ln( T/R ) +b„+c„R/T+ ],
(18)

where a„, b„, and c„are constants that depend on the ini-
tial and final states of the target but not on the projectile
energy. Note that T, not To, is used in Eq. (18) regard-
less of the projectile mass. In particular, a„has a simple
relationship to the dipole oscillator strength f„and exci-
tation energy E„:

Q„=f„R/E„. (19)

For the singly-differential cross section, Eqs. (18) and (19)
become

do /d W=(4+a /T)[a(E)ln(T/R)+b (E)

+c (E)R /T+ ], (20)

a (E)=(df /dE)/(E/R), (21)

and E = 8'+I is now the excitation energy to a specific
continuum final state. Note that the singly-differential
cross sections discussed in this review are differential in
the energy of the ejected electron and are expressed in
units of (area) && (energy) . This implies that a (E),
b (E), and c (E) have the dimension of (energy)

Another important conclusion from Bethe's work is
that the essential part of the PWBA is the first two terms
in the square brackets of Eqs. (18) and (20). Moreover,
these two terms are the same for incident protons and
electrons of equal speeds. Other physical effects not in-
cluded in the Bethe theory —such as the distortion of the
projectile wave function and the polarization of the tar-
get charge distribution —may introduce a T dependence
that can be more important than the T ' terms associat-
ed with c„or c(E) for fast projectiles. Differential cross
sections for protons with To & 100 keV, for example, may
be altered significantly by charge transfer to the continu-
um, a process not included in the Bethe theory. Experi-
mental data for neutral atoms indicate that the c (E) term
for ionization is small for incident protons of a few hun-
dred keV and higher.

For a multishell atom or molecule, Eqs. (20) and (21)
must be generalized to accommodate electrons ejected
with the same kinetic energy 8'but from different shells.
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In the usual experimental situation, where the initial elec-
tron shell is unknown and contributions from individual
shells must be summed over, Eq. (20) is thus replaced by

der/dW=(4maoR/T)X [a (Ez)ln(T/R)+bj(E ).
+c (E )R /T+ ]

with

(22)

E) ——8'+IJ,
where I is the binding energy of the jth orbital, and

(23)

aj.(E, ) = (dfIdE, ) I(EJ.IR ) . (24)

In principle, a~(E~ ), b~(EJ ), and c (E ) can be calculated
if the corresponding wave functions are known (Kim and
Inokuti, 1971), but a systematic study of aj(EJ ) and

b~ (E ) has .been carried out only for the ionization of the
hydrogen atom (Inokuti, 1971).

The T dependence described in Eq. (22) is valid only
when T is larger than the average (orbital) kinetic ener-
gies of the bound electrons being ionized [see Tables I(a)
and I(b)]. For multishell atoms, the average kinetic ener-
gies of the valence and core orbitals are so different that
the T 'ln T dependence predicted by the PWBA may be
valid for the ionization of the valence electrons but not
for the core electrons. Over most of the range of secon-
dary energies, the contributions from inner shells to
do. /d8' are small compared to those from outer shells.
The T dependence predicted by the PWBA is often ob-
served in experimental cross sections with incident pro-
ton energies of a few hundred keV.

Emax ~max +I1
As was discussed in Sec. III.C, 8',„ for a collision

with a free electron is 4T =4(m /M) To. For a bound
electron, however, 8',„~~4T, since the ion core can
recoil and impart extra momentum to the electron.
Therefore the lower limit of the integral in Eq. (26) is
practically zero for protons of a few hundred keV and
above. We present an example of a Platzman plot for the
ionization of Ar by 1 MeV protons in Fig. 5. The match-
ing continuum dipole function, E(df ldE), is plotted in
Fig. 6.

The Platzman plot is a powerful tool for analyzing and
identifying distinct features in the SDCS (Kim, 1975a,
1975b, 1975c; 1983). For instance, the dominance of the
dipole term in the proton-impact data is evident in Fig. 5.
The dip near R /E =0.3 in Fig. 6 is known as the Cooper
minimum (Fano and Cooper, 1968), and the sharp peak
near R/E=0. 07 in Fig. 5 includes peaks arising from
the LMM Auger electrons.

By integrating the area under the SDCS curve from
the threshold (R /E=0. 87) to R/E=0, one can verify
the normalization of the proton-impact data, which, in
this example, falls within 10%%uo of the total ionization
cross section recommended by Rudd et al. (1985). If we
assume that only the M-shell electrons participate in ion-
izing collisions, then the height of the singly-differential
cross section near R/E=0. 3 should be 8, since the di-
pole interaction essentially vanishes here, and hence the
ordinate in the Platzman plot should equal the number of
free electrons in the participating shell. In reality, the
SDCS in Fig. 5 has Y =10, indicating that there are addi-

B. Platzman plots

The Rutherford cross section, Eq. (13), is the singly-
differential cross section for a single bound electron.
Hence, if we divide the SDCS by the "modified" Ruther-
ford cross section, the result can be interpreted as the
effective number of electrons in the target atom or mole-
cule which participate in the ionizing collision of interest.
This is the underlying idea for the Platzman plot (Miller
and Platzman, 1957). In this plot, the ratio I'of the actu-
al SDCS to the Rutherford cross section [Eq. (13)] is plot-
ted as a function of R /E,

I'=

[der�

/d W]„,„,)/[do ~ /d W]

25

20

10

0.75 0.5
R E

0.25

max
o;,„=J (do/dW)dW

4rra & /I (

J Yd (R /E), (26)

where I1 is the binding energy of the outermost shell and

T E
2

[do. /dW]„,„,i .
4+a R

The choice of R /E as the abscissa makes the area under
the Platzman plot proportional to the total ionization
cross section:

FIG. 5. Platzman plots of proton- and electron-impact singly-
di6'erential cross sections for Ar. The ordinate is the ratio of
the SDCS to the Rutherford cross section [see Eq. (25)], and the
abscissa is the inverse of the energy transfer, E = W+I, [see
Eq. (23)j„where W is the secondary-electron energy and I, is
the first ionization potential (R is the rydberg): o, 1-MeV
(T=545 eV) proton-impact data of Toburen et al. (1978); E,
500-eV electron-impact data of Opal et al. (1972). The solid
curve is the recommended SDCS based on Kim's model, dis-
cussed in Sec. VI.C. The sharp peaks in the proton- and
electron-impact data at R/E=0. 06 are due to LMM Auger
electrons.
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iv On Ar

by the PWBA should apply to global properties rather
than to local details.

D. Comparison with photoionization data

bJ
O

5
O

W

0.75 0.5
R/E

0.25

FIG. 6. The dipole function E(df/dE) of Ar as a function of
the inverse of the photon energy (E) in rydbergs (R): 0, exper-
imental data compiled by Berkowitz (1979); solid curve, a fit to
smoothed experimental data using Gaussian functions and
power series (see Sec. VI.C). The structure near R/E=0. 5
arises from the 3s-np window resonances, the dip near
R/E =0.3 is the Cooper minimum, and the sharp rise near
R/E =0.05 is the onset of the I.-shell ionization. The onset of
the K-shell ionization appears as another peak near R /E =0.

tional electrons ejected from the I. shell and that there
are contributions due to the fact that the target electrons
are not free but bound with their own momentum distri-
butions, described by the binary-encounter term.

C. Comparison with electron-impact data

As was mentioned in Sec. V.A, the leading terms of
proton- and electron-impact cross sections are equal
when both projectiles are fast and have equal speed. This
equality, which is one of the most significant conclusions
of the PWBA, has been observed in numerous examples
of proton- and electron-impact ionization and has served
as a consistency check between experimental data sets.

The actual range of T for which this resemblance holds
depends on the target. For targets with simple shell
structures, such as H, He, and H2, the singly-differential
cross sections for electron and proton impact agree to
better than 10% for T & 1 keV, while much higher T is
needed for targets with inner shells. Proton-impact
(T =545 eV) and electron-impact (T =500 eV) SDCS's
of Ar are presented in Fig. 5, where the resemblance pre-
dicted by the PWBA is evident, though the T values are
too low to expect detailed matching between them. In
general, proton-impact ionization cross sections are
larger than the corresponding electron-impact data with
the same projectile speed, for the reasons discussed in
Sec. III, but the difference diminishes as T increases.

Since the incident-proton energy, To=(M/m)T, is al-
most 2000 times that of an electron with equal velocity, a
proton can eject secondary electrons of much higher ki-
netic energies than those ejected by an incident electron
with energy T. In this respect, the resemblance predicted

Another prediction of the PWBA is that the leading
term in do/did at higher energies is the logarithmic
term in Eq. (22). This term represents contributions from
soft collisions (Sec. III.Cr) and is directly associated with
the continuum oscillator strength df /dE, which can be
deduced from photoionization cross sections. As will be
shown in the following section, the dipole function a (E)
defined in Eq. (24) is distinct from one target to another,
and its main features remain clearly discernible in the
singly-differential cross section even at lower T, where
the Bethe formula defined in Eq. (22) is inadequate.

To be useful for consistency checks as well as for mod-
eling of proton- and electron-impact SDCS's, photoion-
ization cross sections for individual shells are needed.
Photoionization cross sections usually have energy reso-
lutions far better than those necessary for modeling
SDCS's. Coincidence measurements in electron energy-
loss or photoelectron spectra in which the energy transfer
and the kinetic energy of ejected electrons are identified
are needed for this type of consistency check.

E. Comparison with total ionization
cross sections

Deducing accurate total ionization cross sections, o.

[Eq. (4)], from experimental doubly-difFerential cross sec-
tions is not straightforward, since experimental DDCS's
often do not cover all ranges of 0 and S' for which
d2o /d8'dQ contributes significantly to o . In particu-
lar, contributions to o. from slow ejected electrons are
very important. In most cases, about two-thirds of o
comes from do. /d8' for 8' less than the first ionization
potential, yet the experimental cross sections for 8' & 10
eV are often unreliable or unavailable.

This low-energy region is where the Platzman plot, in
combination with photoionization data, can play a cru-
cial role in providing the missing information needed to
perform the integration over 8' such that o is con-
sistent with the total ionization cross sections measured
directly. In fact, one can normalize der /dW to a known
value of o, even if part of the

der�

/d W is missing, by us-

ing the Platzman plot and known values of df IdE. Ex-
amples are given in the next section on semiempirical
models. The solid curve in Fig. 5 illustrates a Platzman
plot in which the area under the curve has been normal-
ized to the total ionization cross section.

F. Relationship with stopping cross sections

A frequently used quantity in radiation physics is the"8' value, " which is the average energy needed to gen-
erate an ion. This "8'value" is usually determined by di-
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viding the energy loss of a projectile in a medium by the
total number of ions it generated —a gross measure of
how difII.cult it is to ionize the medium. The 8'value of a
target is higher than its lowest ionization potential be-
cause (a) some of the energy deposited by the projectile is
used in discrete excitations without producing any ions
and (b) the energy lost by the projectile in ionizing col-
lisions normally exceeds the lowest ionization potential
due to the kinetic energy gained by the ejected electron.
Fast ejected electrons can also ionize other targets in the
medium and produce additional secondary electrons
through successive inelastic collisions until their kinetic
energy drops below the lowest ionization potential.

The stopping cross section for ionization, o.„[Eq. (6)],
accounts for ionizing collisions but not for discrete exci-
tations. The total stopping cross section, however, must
include both discrete and continuum excitations (Inokuti,
1971). The o.„defined by Eq. (6), therefore, is a lower
bound for the total stopping cross section and constitutes
80—90%%uo of it (Wilson, 1972). The cr„ is also the dom-
inant component in the theoretical determination of the
8' value, although other factors, such as excitations by
the incident proton and subsequent collisions by secon-
dary electrons, must also be taken into consideration.

Vl. SEMIEMPlRICAL MODELS

With the exception of the work of Park et al., all ex-
periments to establish differential ionization cross sec-
tions by proton impact have measured angular distribu-
tions of ejected electrons as functions of the electron en-
ergy. Then, the cross sections were integrated over angle
to deduce the singly-differential cross section. Although
it is dificult to measure electrons ejected in the extreme
forward and backward directions, the integrated cross
sections are not sensitive to these angles, since the solid-
angle element sin8 d 8dg reduces the contributions from
the extreme angles. If one wishes to obtain total ioniza-
tion cross sections, a more serious problem presented by
existing experimental data stems from the measurement
of slow electrons ( W & 10 eV). Measurements are
difficult and often unreliable for slow electrons (see Secs.
VII and VIII), while their contributions to the total ion-
ization cross section are very important (20—40%%u~).

Semiempirical models can successfully supplement miss-
ing parts of SDCS's and provide consistency checks be-
tween SDCS's and total ionization cross sections.

Using the close relationship between the optical dipole
oscillator strengths and the Bethe cross section (see Sec.
V.A), Kim has shown (Kim, 1975b, 1975d, 1976) that
SDCS's for proton-impact ionization can be expressed
qualitatively as the sum of a dipole term and the Ruther-
ford cross section. This dipole term is not the same as
the a(E) defined by Eq. (21), but rather is scaled by a
function of E that depends on the target. This qualitative
behavior is best understood through the Platzman plot
discussed in Sec. V.B. Some of the semiempirical models
presented below take advantage of these qualitative

features in the SDCS. The Bethe cross section, however,
is based on the PWBA, which is valid for fast protons,
and hence a model based on the Bethe theory would
eventually fail for slow protons.

At present, there is no single model that accurately
reproduces SDCS's for all incident-proton and ejected-
electron energies. Some models are capable of providing
accurate and detailed SDCS's in a limited range of pro-
ton and/or electron energies. Other models can be used
for a wide range of proton and electron energies but do
not reproduce the details of SDCS's very well.

A. Miller's model

B. Dillon-lnokuti model

Inokuti et al. (1987) have studied analytic properties
of df IdE and of the generalized oscillator strength; they
have proposed to fit continuum oscillator strengths as
well as the generalized oscillator strength by a power
series in the ratio W/E:

der/dW=(4maoR /T)[A ( W)ln(T/R)+8 ( W)], (27)

where

g ( W) =g[R'/(I, . + W)](df, /d W)

=(1—h) ga„h", (28)

8( W)=(1 —h) gb„h", (29)

and

h =S'/E . (30)

In Miller's model (Miller et al., 1987, and references
therein), the bj(EJ) function in Eq. (22) is empirically
determined by subtracting the dipole contribution,
al (E& )ln(4TR /E~ ), from experimental singly-differential
cross sections at sufficiently high T that cj(EJ ) and other
T-dependent terms are assumed negligible. This
"semiempirical" b~(EJ) is used with the dipole term to
form a projectile-independent Bethe cross section. Then
the binary-encounter cross section appropriate for
heavy-ion projectiles [Eqs. (16a)—16d)] is added to this
"semiempirical" Bethe cross section to account for ejec-
tion of fast secondary electrons and to introduce an addi-
tional, though weak, T dependence.

Unfortunately, the T' dependence in the binary-
encounter theory, Eq. (16b), is neither T ' expected
from the PWBA [cf. Eq (22)].nor lnT/T expected from
the distortion of plane waves by the target (Kim and Des-
claux, 1987). Hence one must be cautious in using
Miller's model for incident protons of moderate to low
energies (&1 MeV). Nevertheless, Miller et al. (1987)
have successfully applied their model to a number of
atoms and molecules for which sufBcient experimental
SDCS data exist.
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As is implied by limiting the T dependence in the
square brackets of Eq. (27) to the logarithmic term, the
model is not meant to represent singly-differential cross
sections for low T. When there is more than one dom-
inant shell, h in Eqs. (28)—(30) must be defined for each
shell, and A ( W) and B ( W) must be determined for each
shell with different power series.

Inokuti et al. (1987) used Eqs. (27)—(30) and fitted
proton-impact singly-differential cross sections of CH4,
NH3, and HzO. The power series in h [Eqs. (28) and (29)]
reproduces qualitative features in A ( W) and B ( W)
reasonably well when the incident proton energy is high.
This method is thus well suited to represent gross
features in SDCS's at high T. The structure of the power
series, however, is too simple to reproduce details in
A ( W), which often serve to distinguish one target mole-
cule from another.

C. Kirn's model

In order to provide more flexibility to the semiempiri-
cal models based on the Bethe theory allowing its appli-
cation to lower proton energies and to reproduce the
shape of the SDCS more faithfully, a new model is
presented below, which expands on the models discussed
above (Secs. VI.A and VI.B).

For fast protons ( To & 0.5 MeV), the dipole term,
a/(EI ) in Eq. (22), dominates the singly-diff'erential cross
section and is largely responsible for individual
differences amongst various targets. The continuum os-
cillator strengths df/dE in Eq. (24) can be deduced
from experimental or theoretical photoionization cross
sections, though theoretical data near ionization thresh-
old are often unreliable. Once the continuum oscillator
strengths are known for a wide range of excitation ener-

gies E , one can fit formu. las similar to Eq. (22) to known
SDCS's by assuming simplified forms for functions
bi(EJ), cj.(Ei), etc. Contributions from difFerent shells
must be evaluated separately for multishell atoms and
mole cules.

The dipole term is sometimes referred to as the soft-
collision term, since the dipole interaction is dominated
by impact parameters much larger than the target size.
In contrast, the b~(E ) term is known as the hard-
collision term, representing the contribution of hard col-
lisions with small impact parameters (see Sec. III.G). In
reality, bj. (E~) includes contributions from binary col-
lisions described by the Rutherford cross section, Eq.
(13), and from another term loosely related to the cutofF
momentum transfer beyond which the dipole interaction

I

Yii„h, E(df——/dE)ln(T/R)+(E/R) b(E)

+(E/R)2c(E)R /T+ (31)

indicating the dominant role played by the dipole func-
tion E(df /dE) as T increases. In the absence of the di-
pole interaction, (EIR) b (E) approaches the occupation
number of each shell participating in the ionizing col-
lision as E increases (Kim, 1975a). The model described
below uses these properties and introduces additional T-
dependent terms to provide the flexibility needed to
represent cross sections at lower T than other models dis-
cussed above. Moreover, the dipole function, E(df /dE),
is fitted by compact analytic expressions that retain all
the major features specific to individual atoms and mole-
cules. These analytic expressions provide a far simpler
alternative to cumbersome numerical tables of experi-
mental or theoretical differential oscillator strengths.

To illustrate the importance of the dipole interaction
in the singly-differential cross section for fast protons,
Kim has extracted continuum oscillator strengths
dfldE~ from known photoionization cross sections for
Ar (Berkowitz, 1979) and N2 (Berkowitz, 1979; Samson et
al. , 1987). Then df IdE was fitted with a linear com-
bination of Gaussian functions

E(df/dE)=pa;expI —[(R/E b, )/c, . ] I(R/—E) .',

(32)
where a;, b;, c;, and d,. are fitting parameters (see Table
II), or with a four-term power series,

E (df IdE) =ge;(R /E)',
l

(33)

where e;, i =1—4 are fitting parameters (see Table II).
Using these df /de, Kim has fitted experimental SDCS's
of Ar and N2 to a form

diminishes rapidly. While this dipole-interaction cutoff
term is proportional to a (E ), it is also a function of E,
which results in an E dependence that is dificult to pre-
dict, although it is independent of the incident energy.
We emphasize the fact that the knowledge of the dipole
oscillator strengths alone will not be sufhcient to determine
proton imp-act cross sections because of this cutogmomen
turn transfer, which must be included in bj (E~ ).

Kim's model is designed to take advantage of the
Platzman plot, i.e., a plot of the ratio Y de6ned by Eq.
(25) versus R/E. When we divide the Bethe cross sec-
tion, Eq. (22), by the Rutherford cross section, Eq. (13),
then we have

(E df /dE)ln(4f T/R )[1+gR /T + h (R /T) ]+YaE+N
1+exp[k (E 4T) /R]— (34)

for the valence shells of Ar and Nz, where f, g, h, and k
are fitting parameters and N is the electron occupation
number of the shell.

The additional T dependence in the square brackets of

l

the numerator in Eq. (34) allows for a departure from the
lnT dependence predicted by the PWBA, as discussed by
Kim and Desclaux (1988). The term YBE is introduced
to account for the fact that target electrons are bound
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TABLE II. Parameters for fitting photoionization cross sections of Ar and N2 with Gaussian functions
[Eq. (32)] or power series [Eq. (33)]. The actual fitting was carried out on E(df/dE), a dimensionless
quantity. Binding energies I; used in converting 8'into E; are also listed.

Target

Ar, M shell

N~, L„shellb

Nq, L~ shell"

Index i in
Eq. (31)

7
12
0.3

11.3
10
5.5
0.8
3.4
1.3
1.6

10
1.6
0.7
0.5
0.5
0.6
0.4

0.505
0.07
0.6
0.72
0.63
0.465
0.59
0.71
0.81
0.26
0.11
0.26
0.36
0.525
0.47
0.12
0.18

C;

0.12
0.13
0.05
0.19
0.1

0.155
0.035
0.14
0.09
0.08
0.1

0.06
0.055
0.02
0.08
0.08
0.05

d;'

0.01
1

1

3
3
0
0
0
0
0
1.1
0
0
2
1

0.1

1

Target

Ar, L shell
N2, 1cr +1cr„

[see Eq. (33)] e&

48.67
2.99

e2

745.6
5813

e3

—141200
30506

e4

616300
—1987000

Shell Ar, M Ar, L N2, L N2, K

Binding
energy, I; (eV) 249.18 15.59 28.8 410

'More careful fitting of the d; parameters is required to reproduce the correct asymptotic (high-energy)
behavior of E(df /dE).
Lg =3crg+ 1mu+2crui La =2og.

and have intrinsic momentum distributions:

YiiE=(NU/E) j I —[U/( W'+ U)]i'I, (35)

where U is the average kinetic energy of the bound elec-
trons [see Table I(a)] andi' is a fitting parameter. A value
of 8 was assigned to the occupation number X in Eq. (34)
for the M shell of Ar and for the L~ group (3os, l~„,
and 2o „orbitals) of N2, a value of 2 was assigned for the
LIi group (2o orbital) of N2. The denominator W+ U
in Eq. (35) simulates the classical cutofF in energy transfer
(see Sec. III.C).

The continuum oscillator strengths for the M shell of
Ar and the I ~ and Lz groups of N2 were fitted with five

or six Gaussian functions. Contributions from orbitals
with similar binding energies are combined, since small
differences in these binding energies are insignificant for
the modest level of accuracy attainable with this model.

The contributions to df IdE from the L shell of Ar and
the 1cr shells of N2 are hydrogenic in shape and were
fitted to a power series, Eq. (33). Various binding ener-
gies I. used in relating photoelectron energy 8' to the
photon energy, Ej W+Ij are also listed in Table II.

The K shell of Ar is ignored in the following discussion
because it contributes very little to the ionization cross
sections. It will, however, play more significant roles for
the stopping power or any other quantity that involves

TABLE III. Parameters for fitting singly-difterential cross sections to the Kim model, Eqs. (34)—(36).

Target/shell

Ar, M shell
Ar, L shell
N2, L& shell'
N2, L~ shell'
N2, 1o.~+lou

0.053

0.3
0.3

20

25
25

0.1

0.1

0.1

0.3

0.2
0.2

0.25

1.0

0.1

0.1

L/I 3og+ 1' +2crLg2og
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TABLE IV. Experimental absolute proton-impact doubly-difFerential cross sections. All published ab-
solute cross sections known to ihe authors are listed here.

Investigators
Primary energies

(keV)

Hydrogen (H)
Park et al. , 1977

Helium (He)
Blauth, 1957
Rudd and Jorgensen, 1963
Rudd et al. , 1966
Park and Schowengerdt, 1969b
Toburen, 1971
Stolterfoht, 1971a
Bordenave-Montesquieu et al. , 1973
Manson et al. , 1975
Rudd and Madison, 1976
Stolterfoht, 1975
Rgfdbro and Andersen, 1979
Tokoro and Oda, 1985
Gibson and Reid, 1985, 1986
Schader et al. , 1986
Olson et al. , 1987
Bernardi et al. , 1988
Irby et al. , 1988
Bernardi et al. , 1989
Cheng et al. , 1989a
Bernardi et al. , 1989,1990
Gay et a/. , 1990

Neon (Ne)
Blauth, 1957
Crooks and Rudd, 1971
Toburen et al. , 1978
Cheng et al. , 1989a
Bernardi et al. , 1990
Gay et a/. , 1990

Argon (Ar)
Blauth, 1957
Crooks and Rudd, 1971
Gabler, 1974
Criswell et a/. , 1977
Rudd, 1977
Toburen et a/. , 1978
Toburen et al. , 1978
Sataka, Urakawa, and Oda, 1979
Gibson and Reid, 1987a,1987b

25,50,75,145,200

11.8,49
50, 100,150
100,200,300
100
2000
200,300,400,500
150
300,1000,1500
5,7,10,15,20,30,50,70,100
4200,5000
225 1225
10
20,30,40,50,60,80,100
400,800,1100,1700,2000
60,100,150
150,200
60,100
50,100
7.5,10,15,20,30,50,70,100,150
100
100

49
50,100,150,200,250,300
300,1000,1500
7.5,10,15,20,30,50,70, 100,150
100
100

11.8,49
50,100,150,200,250,300
300,400,500,4200,5000
5,10,20,50
5,7,10,15,20,30,50,70
250,300,500,1000,1500
2000,3000,3672,4200
5,20
50

Krypton (Kr)
Blauth, 1957
Manson and Toburen, 1977
Cheng et al. , 1989a

Xenon (Xe)
Toburen, 1974

Hydrogen (H2)
Blauth, 1957
Kuyatt and Jorgensen, 1963
Rudd and Jorgensen, 1963
Rudd et al. , 1966
Toburen and Wilson, 1972

8.8,11.8,49
1500,2000,3000,3672,4200
7.5,10,15,20,30,50,70,100,150

300,1000,2000

8.8,11.8,49
50,75, 100
100
100,150,200,300
300,500,750,1000,1500
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TABLE IV. (Continued).

Investigators
Primary energies

(keV)

Rudd, 1979
Gibson and Reid, 1987a,1987b

Nitrogen (N2)
Blauth, 1957
Toburen, 1971
Crooks and Rudd, 1971
Stolterfoht, 1971b
Toburen and Wilson, 1975

Rudd, 1979
Gibson and Reid, 1987a,1987b

Oxygen (02)
Crooks and Rudd, 1971
Gibson and Reid, 1987a,1987b
Cheng et al. , 1989b

Carbon dioxide (CG2)
Gibson and Reid, 1987a,1987b
Cheng et a/. , 1989b

Water vapor (H2Q)
Toburen and Wilson, 1977
Wilson et al. , 1984
Bolorizadeh and Rudd, 1986
Gibson and Reid, 1987a,1987b

Ammonia (NH3)
Lynch et al. , 1976
Wilson et al. , 1984

Sulfur HexaAuoride (SF6)
Toburen et al. , 1977

Tellurium HexafIIuoride (TeF6)
Toburen et al. , 1977

Methane (CH4)
Stolterfoht, 1971a
Wilson and Toburen, 1975
Lynch et al. , 1976
Wilson et al. , 1984
Gibson and Reid, 1987a,1987b

Monomethylamine (CH3NH2)
Lynch et al. , 1976

Dimethylamine [lCH, )zNH]
Lynch et al. , 1976

Acetylene (C2H~)
Wilson and Toburen, 1975

Ethylene (C2H4)
Wilson and Toburen, 1975

Ethane (CzH6)
Wilson and Toburen, 1975

Benzene (C6H6)
Wilson and Toburen, 1975

5,7, 10,15,20,30,50,70,100
50

11.8,22.3,49
300,500, 1000,1400,1700
50, 100,150,200,250,300
200,300,400,500
300,500, 1000,1400,1700

5,7,10,15,20,30,50,70
50

50,100,150,200,250,300
50
7.5,10,15,20,30,50,70,100,150

50
7.5,10,15,20,30,50,70,100,150

300,500,1000,1500
3000,4200
15,20,30,50,70,100,150
50

250, 1000,2000
3000,4200

300,500, 1000,1800

300,500, 1000,1800

200,300,400
300,1000,2000
250, 1000,2000
3000,4200
50

250, 1000,2000

250, 1000,2000

300,1000,2000

300,1000,2000

300,1000,2000

300,1000,2000
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large energy losses of the incident particle. It is difficult
to extend the same type of analysis to the K shell of Ar at
present for lack of experimental singly-di6'erential cross
sections specific to that shell.

Kim used a somewhat simpler form of Y for the I. shell
of Ar and the two 1o. shells of Nz..

(E df /dE)ln(4qTE/R )+ FaE+X
I+exp[r(E 4T—)/R ]

with fitting parameters q and r. For the I. shell of Ar,
1V'=8, while N =4 for the lash. ell of N2, (lo's+ io'„).
The actual values of the fitting parameters are listed in
Table III. The Y function for the entire target is ob-
tained by summing Y~ and YI.

Experimental singly-di8'erential cross-section data for
Ar and Nz (see Table IV) were used to determine the
values of these fitting parameters so that the major

features in the profiles of the Platzman plots are faithful-
ly represented and the integrated cross sections (total ion-
ization cross sections) are consistent with those recom-
mended in Rudd et al. (1985). The many fitting parame-
ters are independent of the ejected-electron energy as
well as of the incident-proton energy for the entire range
of 8' and for Tp)200 keV. Since this model is con-
sistent with the Bethe theory and uses realistic oscillator
strengths, it is also expected to be reliable for very fast
protons (To & 10 MeV), though relativistic efFects are not
included in this model and will eventually dominate at
extremely high incident energies.

For protons of relativistic velocity v, or P= v /c & 0. 1

where c is the speed of light, relativistic expressions for
kinematic variables such as energy and momentum must
be used and an additional interaction between the proton
and bound electrons must be included. The net result is
that Eq. (22) is rewritten as

do/dW=(4rraoa /P )g(aj(EJ )Iln[P /(1 —P )]—P ]+bj'(EJ )+ ' ' ' ),
J

(22a)

b~'(EJ ) =bj.(E ) —2a.(E.)lna, (22b)

where a =
$37 is the fine-structure constant.

The optical functions E(df/dE) of Ar and Nz ob-
tained from this model are presented in Figs. 6 and 7, re-
spectively. Fitted singly-di6'erential cross sections are
presented in Platzman plots in Figs. 8 —11 and compared
with available experimental data.

Peaks in experimental data for Ar that are associated
with Auger electrons released following the ionization of
L-shell electrons (near R/E =0.07) are not included in
Kim's model; they appear as sharp peaks in the Platzman

20

I l I

Ar, E, = 300 keV

I

plot and add little to the total ionization cross section
(Figs. 8 and 9). Experimental and model values are in ex-
cellent agreement for Ar except for slow ejected electrons
(W &10 eV) at To ——300 keV.

Similar comparisons for N2 data (Figs. 10 and ll) do
not show agreement equal to that observed for Ar. It is
likely that the quality of available experimental data for
N2 with fast protons ( Tc & 0.5 MeV) is poorer than that

Ld 4
O

IJJ 0.75 0.5
R E

V V V V V V \J V V%%d \l VW

0.25

0.75 0.5
R/E

0.25

FKx. 7. The dipole function E(df/dE) of Nz as a function of
the inverse of the photon energy in rydbergs. The solid curve is
a fit to the smoothed experimental data of Samson et al. (1987)
and those compiled by Berkowitz {1979): 0, direct ionization
resulting in N2, A, dissociative ionization resulting in N+ and
N.

FIG. 8. Platzman plot of proton-impact (TO=300 keV) singly-
di6'erential cross section of Ar. The solid curve is the recom-
mended SDCS based on Kim's model: 0, L-shell contribution;
0, experimental data of Crooks and Rudd (1971); E, experi-
mental data of Toburen, Manson, and Kim {1978). The sharp
peak near R/E=0. 07 consists of several peaks due to the
LMM Auger transitions. The peak expected at R/E=0. 077
from charge transfer to the continuum is masked by the Auger
peaks, but the former, although it is expected to be broader, is
not noticeable. The dashed curve is the SDCS based on Rudd's
model, discussed in Sec. VI.D.
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FIG. 9. Platzman plot of proton-impact ( To =1 MeV) SDCS of
Ar. See Fig. 8 for the legend. FIG. 11. Platzman plot of proton-impact (TO=1 MeV) SDCS

of N2. See Fig. 10 for the legend.

for Ar (Toburen, 1990). As a result, fitted formulas for
N2 have greater uncertainty, but the mode1 should ade-
quately represent the systematics of the singly-difFerential
cross sections for fast protons. Auger electrons emitted
following E-shell ionization appear as sharp peaks near
R/E =0.03, again contributing litt1e to the total ioniza-
tion cross section.

For moderate to slow incident protons (To & 500 keV),
charge transfer to the continuum (see Sec. III.D) becomes
apparent. This contribution is localized near electron
speeds matching that of the incident proton (e.g. ,
W=160 eV for TO=300 keV), but it is diflicult to de-
scribe theoretically and hence was omitted in Kim s mod-

el. A continuum-charge-transfer "hump" can be seen in
the vicinity of R/E =0.15 in Fig. 10 for N2. A similar

20

N&, E, = 300 keV

hump in Ar is not visible in Fig. 8; it may have been
masked by the Auger peaks in the vicinity.

At much lower incident-proton energies ( To & 300
keV), the dipole interaction does not dominate and the
Bethe theory, on which Kim's model is based, becomes
inadequate. There is no definitive theory for this region.
The fitting formulas shown above should not be used for
To (200 keV.

Kim's model can be extended to other targets for
which experimental data are available to determine the
fitting parameters. Helium, neon, krypton, xenon, molec-
ular hydrogen, water, ammonia, and methane are candi-
dates for detailed future studies. Photoionization cross
sections for these atoms and molecules are known with
better accuracy than the corresponding proton-impact
singly-difFerential cross sections. Kim's model should
also be applicable to electron-impact ionization of atoms
and molecules with minor adjustments of the fitting pa-
rameters.

Kim's model and that of Miller et al. (Sec. VI.A) have
equivalent major features, but Kim's model includes ad-
ditional T-dependent terms that extend its applicability
toward lower proton energies. However, these additional
T-dependent terms specifically depend on the type of pro-
jectile, thus making it necessary to introduce difterent
fitting parameters for electron-impact and proton-impact
ionization cross sections.

0 O Opp P POOOKDO OO(ggMIgg

0.75 0.5 0.25 0
e/v

FIG. 10. Platzman plot of proton-impact ( To =300 keV)
singly-differential cross section of N2. The solid curve is the
recommended SDCS based on Kim's model: o, contribution
from the 2a~ subshell; D„experimental data of Toburen (1971),
which was later improved by Toburen and Wilson (1975);
data of Crooks and Rudd (1971). The broad peak at R/E =0. 1
arises from charge transfer to the continuum, and the sharp
peak at R/E=0. 03 is due to KI.L Auger electrons. The bro-
ken curve is the SDCS based on Rudd's model.

D. Rudd*s model

This model (Rudd 1987, 1988) is designed to provide
an analytic representation of the difFerential cross sec-
tions over a wide range of primary and secondary ener-
gies. It requires experimental data to determine its pa-
rameters, but successfu11y bridges large gaps in inter-
mediate energy ranges. An important advantage of this
model is that it has no restrictions on primary and secon-
dary energies and therefore is useful even at impact ve-
locities well below the target's orbital velocity.

This model assumes that the cross section for ejection
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(37)

where X, is the number of electrons in a shell with bind-

ing energy I, , 8'is the energy of the ejected electron, and
T =(m/I) To, where To is the proton energy. The sum
is taken over all shells of the target. It further assumes
that the ratios of the primary and secondary energies to
the binding energy are the important quantities. This as-
sumption and other considerations lead to the relation

=g(N, /I, )f(w, , u, ), (38)

of an electron depends only on the secondary energy, the
binding energy of the electron, and the projectile veloci-
ty. This leads to the relation

(S/I)(F, +F2')(1+w)
cr(w) =

1+exp[a(w —w, )/u]
(41)

where a is a dimensionless parameter near unity related
to the size of the target and w„ the energy at the cutoff,
1s

from experimental data. In addition, it is required that
F, —+(1/U )log(U ) and F2~1/U for U» 1, thus repro-
ducing the well-verified asymptotic energy dependence of
the Bethe theory.

Equation (40), however, does not give the proper
dependence on secondary-electron energy above the kine-
matic cutoff. This is corrected in the model by the addi-
tion of a factor derived from the molecular promotion
model (Rudd, 1979, 1988). The final equation is then

where w, =4v —2U —R/4I . (42)

w;=W/I; and U;=(T/I;)' (39)

Using this notation, we may write a general cross-
section equation for a single shell:

dR' =(S/I)(F, +Few)/(1+ w) (40)

where S=4na~(R/I). In Eq. (40), the units of
der/dWare determined solely by the choice of units for S
and I, since the remaining terms are dimensionless.

The results of Rutherford (1911)and Thomson (1912)
on the scattering of charged particles from atoms may be
used to obtain an equation for the cross section assuming
that each target electron is initially at rest (see Sec.
III.E). This relation is given by Eq. (40) with
F, =F2 ——1/u, which then becomes Eq. (13). Williams
(1927) took into account the initial motion of the target
electron and obtained a result that may also be put into
the form of Eq. (40) but with F, =7/3U and F2 ——1/U .
This choice leads to Eq. (16) with U=I, which holds ex-
actly for the hydrogen atom and one-electron ions and as
an approximation for other targets.

In the Rudd model, F& and F2 are taken to be adjust-
able fitting parameters that are functions of v determined

F, (U)=L, +H, (43)

with

F2(U) =L2H~/(L2+H2), (44)

H& ——A, ln(1+U )/(U +B, /U ), (45)

The first term on the right-hand side represents the free-
electron limit, 4T, discussed in Appendix A, the second
term represents the correction due to electron binding
(Rudd, 1988), and the third term gives the correct depen-
dence for v «1.

The quantities F„F2, and a constitute the three ad-
justable parameters in the model for each secondary-
electron spectrum at a given primary energy. The quan-
tity a resulting from the fitting turns out to be essentially
independent of primary energy and is taken to be a con-
stant for each target. The other two quantities are func-
tions of the primary energy that Inay be fitted to the ex-
perimental data, subject to the asymptotic energy depen-
dence given above, by the equations

TA.BLE V. Parameters for fitting singly-di6'erential cross sections to the Rudd model, Eqs. (41)—(48).

He CO2 CH4
Inner
shells

Al
Bl
Cl
Di

B2
C2
D2

1.02
2.4
0.70
1.15
0.70
0.84
6.0
0.70
0.50
0.86

0.58
65
0.23
0.55
0.16
1.40
0
0.72
1.35
0.57

1.20
8.0
0.86
0
0.80
0.90
2.7
0.75
0.80
0.71

1.46
5.7
0.65

—0.55
1.00
1.30

22
0.95

—1.00
0.78

0.96
2.6
0.38
0.23
2.2
1.04
5.9
1.15
0.20
0.87

1.05
12.0
0.74

—0.39
- 0.80

0.95
1.20
1.00
1.30
0.70

1.02
50
0.40
0.12
0.30
1.00
5.0
0.55
0
0.59

0.97
82
0.40

—0.30
0.38
1.04

17.3
0.76
0.04
0.64

1.09
25
0.75
0.75
0.65
0.78
3.0
0.70
0.85
0.53

1.15
14
0.35
0.50
3.0
0.60
3.8
1.20
0.45
0.61

1.25
0.50
1.00
1.00
3.0
1.10
1.30
1.00
0
0.66
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Di ~D, +4)L, = C, v 'l[1+E,v
' ],

H2 ——A2/u +B2/u

(46)
D~

L,2 =C2u

TABLE VI. Summary of experimental apparatuses by laboratory. That of R&dbro and Andersen
(1979) is not included in this listing. Substantial changes in apparatus are indicated by different num-

bers, as are separate apparatuses. The "overall estimated error" category contains the most conserva-
tive errors quoted by the authors in a given series of references associated with the specific apparatus.
Generally, the authors referenced here have made the common mistake of combining systematic errors
quadratically, instead of linearly. Where possible, i.e., when individual systematic errors are specified,
we have quoted a more conservative linear error. A comprehensive reference list of all known absolute
doubly-differential cross sections is contained in Table IV.

Laboratory

University of
Nebraska,
Lincoln, NE

[apparatus 3
constructed at
Concordia Col-
lege, Moorhead,
MN, where the
work of Rudd
et al. (1966) was
done]

References

Kuyatt and Jorgensen (1963)

Rudd and Jorgensen {1963)
Rudd et al. (1976)

Rudd et al. (1966)
Rudd et al. (1976)

Crooks and Rudd (1971)
Rudd et al. (1979)

Rudd and Madison {1976)
Rudd et al. (1976,1979)
Rudd (1977)
Rudd {1979)
Bolorizadeh and Rudd {1986)
Cheng et al. (1989a,1989b)
Gay et al. (1990)

Proton-energy
range (keV)/targets

50—100; H2

50—150; H2 He

100-300;
Hz, He

50-300;
N2, 02, Ne, Ar

5—150; He
N2, H2, Ar,
H20, Ne,
Kr, 02, CO2
Xe

Analyzer

127

127

Parallel-
plate

127'
127'

127'/
Parallel-

plate

Laboratory

University of
Nebraska,
Lincoln, NE

Apparatus Target type

Gas fills

chamber
(static)

Static

Static

Detector
type

Electron
multiplier
(From PM

tube)

Electron
multiplier
(From PM

tube)

Electron
multiplier

Electron
multiplier

Electron
multiplier

Quoted
magnetic
fields (T)

10
Helmholtz
coils

5X10
Helmholtz
coils

5X10
Helmholtz
coils

&5X10 '
Helmholtz
coils

&5X10 '
Helmholtz
coils

Analyzer
pre- or post-
accelerator

Both

Both

Both

Both

Post only
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The ten basic parameters A „.. . , E„A2, . . . , D2 and cz

for a given target suftice to specify the cross section at
any combination of primary and secondary energies.

A different but universal set of parameters was found
to be more appropriate for inner-shell orbitals. Inner
shells are defined for this purpose as those whose binding
energy I exceeds twice the binding energy of the least
tightly bound orbital. These parameters are listed in
Table V for ten targets. The quantities A, and A2,
which are approximately unity, are related to the first
Bethe coefficient, a (E) of Eqs. (20) and (21), and thus to
the integrated optical oscillator strength obtainable from
photoionization data. The relations are

2a (E)
g(NR /I; )

(49)

and

A2 ——2 —A, . (50)

VII. EXPERIMENTAL METHODS

Two general experimental techniques have been used
to determine the singly-differential cross sections report-
ed in this article. The first involves measurement of the

TABLE VI. (Continued).

Laboratory Apparatus

University of
Nebraska,
Lincoln, NE

Electron-
energy

range (eV)

1-500

Electron-
ejection-

angle range

23 -152

Overall
estimated

error

4% relative

Comments

Rubber zipper
chamber

1-500 10'-160' -25% systematic & 10% relative
error

15-1057

1-300

10'-160'

10'-160'

10 -60'

30% absolute

-25% absolute

-25% absolute
&50% below
10 eV

Vacuum/Target
essentially
that of
apparatus 2
above

Ar measurements
made with
parallel-plate
analyzer

Laboratory

Battelle
Pacific
Northwest
Laboratory,
Richland, WA

Apparatus References

Toburen (1971,1974)
Toburen and Wilson (1972,1977)
Wilson and Toburen (1975)
Manson et al. (1975)
Lynch et al. (1976)
Rudd et al. (1976)
Criswell et al. (1977)
Toburen et al. (1977,1978)
Wilson et al. (1984)

Toburen and Wilson (1975)
Lynch et al. (1976)
Criswell et al. (1977)
Toburen et al. (1977,1978)
Wilson et al. (1984)

Criswell et al. (1977)
Rudd et al. (1979)

Proton-energy
range (keV)/

targets

250—5000, N2
H2, He, Xe
CH4, C2H6
C2H4, C2H2
C6H6, NH3
CH3NH2,
(CH3)2NH
H20, Ar
Ne
SF6, TeF6

50—4200; N2
CH4, NH3,
CH3NH2,
(CH3)2NH
Ar, He, Ne
SF6, TeF6, H20
5—100; Ar

Analyzer

Cylindrical-
mirror

analyzer
(CMA)

Time-of-
Aight

CMA
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energy and angle of ejection for ionized electrons, i.e.,
doubly-differential cross sections. These can be integrat-
ed to yield cross sections differential either in energy or
angle. The second method is ion-energy-loss spectrosco-
py, in which the proton energy is analyzed following the
collision. Those protons which lose energy greater than
that corresponding to the ionization limit of the target
contribute to the ionization cross section, except when
the energy is lost to dissociation or photon production.
Measurements made to date using this technique yield
directly cross sections that are singly differential in ener-
gy. Almost all of the data reported here have been taken
using the first method.

A. Analysis of ejected electrons

A schematic diagram of the generic apparatus em-
ployed in the electron-analysis method is shown in Fig.
12. (Table VI lists specific characteristics of most of the
apparatuses used in the work considered in this review. )

Proton beams with typical ion-source energy spreads
( & 100 eV) are magnetically analyzed and directed to-
ward the scattering apparatus. At the entrance of the
scattering chamber they are collimated and pass through
the target region. Collimation is necessary to properly
define the scattering geometry, but it can cause secondary
and tertiary problems. Secondary electrons produced at

TABLE VI. (Continued).

Laboratory Apparatus

Battelle
Pacific
Northwest
Laboratory,
Richland, WA

Target type

Static gas
cell

Detector
type

Channel-electron
multiplier
(CEM)

Quoted
magnetic
fields (T)

-2X 10
Helmholtz
coils
[&2X10 '
in Toburen and
Wilson (1977)]

Analyzer
pre- or post-
acceleration

None

Gas beam from CEM
multicapillary
array

Gas beam from CEM

multicapillary
array

&2X10 '
magnetic
shield plus
Helmholtz
coils

&5X10 '
magnetic
shield plus
Helmholtz
coils

Post

Both

Laboratory Apparatus

Battelle
Pacific
Northwest
Laboratory,
Richland, WA

Electron-
energy

range (eV)

0-4000

0-225

Electron-
ejection-

angle range

1S -130'

50 -130

30'-145'

Overall
estimated

error

-25% absolute
& S0%
(statistical)
at high
ejection
energies

—10% relative
&20 eV;
& 50%
relative & 1 eV
(statistical)

10% relative
-25% absolute
(normalized
with
apparatus 1)

Comments

Nominally
50 V
acceleration
into CEM
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the edges of the collimating apertures must be prevented
from entering the scattering volume. This is usually ac-
complished by a suppressor biased at a negative voltage
(—100 V is generally sufficient) after the last collimator.
Alternatively, the last colhmator may be biased positive-
ly. Electric 6elds from the biased aperture or collimator
must now be kept from the scattering volume so that
ionized-electron trajectories will not be disturbed. This is
accomplished with a grounded, conducting shield, which
also helps stop slit-scattered ions from reaching the col-
lision volume.

Three basic scattering volume/target configurations

have been used in this type of experiment (see also Table
VI). The first, used by Rudd and co-workers (e.g. , Rudd
and Jorgensen, 1963; Rudd et aI. , 1966; Crooks and
Rudd, 1971; Rudd and Madison, 1976; Criswell et aI.,
1977; Rudd, 1979; Bolorizadeh and Rudd, 1986; Cheng et
al., 1989a, 1989b), involves filling a relatively large
volume with a uniform pressure of target gas. The gas is
contained in a cylindrical chamber whose only openings
are an entrance port for the proton beam and an exit
aperture placed at one of several angles for the ejected
electrons (Fig. 13). A concentric, cylindrical outer
chamber is evacuated by a diffusion pump. Electrons to

TABLE VI. (Continued).

Laboratory

Hahn-Meitner
Institute,
Berlin, Germany

Lucas Heights
Research Laboratory,
Sutherland, Australia

Universite
Paul Sabatier,
Toulouse, France

Tokyo Institute
of Technology,
Tokyo, Japan

Apparatus References

Stolterfoht (1971a,1971b,1975)
Stolterfoht et aI. (1976)
Gabler (1974)

Gibson and Reid (1984,1985,
1986,1987a,1987b)

Bordenave-Montesquieu (1973)
Bordenave-Montesquieu
et al. (1973,1982)
Benoit-Cattin et al. (1973)

Sataka et al. (1979)
Tokoro and Oda (1985)

Proton-energy
range (keV)

targets

200-5000;
He, CH4, N2
Ar

20-100;
H2, He,
02, N2, CO2)
CH4, H20, Ar

14—150; He

5—30; He, Ar

Analyzer

Parallel-
plate

Fountain
parallel-

plate

127'

Parallel-
plate

Laboratory

Hahn-Meitner
Institute,
Berlin, Germany

Apparatus Target type

Static (for
absolute
measurements)
and gas beam
from single
capillary

Detector
type

Electron
multiplier

Quoted
magnetic
fields (T)

&3X10 '
magnetic
shield

Analyzer
pre- or post-
acceleration

None
(Preacceleration
used prior
to 1975)

Lucas Heights
Research Laboratory,
Sutherland, Australia

Gas beam
from
multicapillary
array

CEMs and &10
an electron Helmholtz
multiplier coils
at 0

None

Universite
Paul Sabatier,
Toulouse, France

Tokyo Institute
of Technology,
Tokyo, Japan

Static

Gas beam
from
multicapillary
array

CEM

CEM

5X10
Helmholtz
coils

&5X10 '
Magnetic
shield
(after 1980)
and Helmholtz
coils

Post

Not specified
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be analyzed pass through a radial tube in the outer
chamber before entering the analyzer. This tube contains
several ports for differential pumping. The observation
angles in this design are fixed; to change angles the entire
apparatus is raised to atmospheric pressure and the radi-
al tube and analyzer chamber are demounted and rein-
serted in the next port. A modification of this arrange-
ment has been used by Stolterfoht (1971a, 197lb; Fig.
14), Gabler (1974), and Bordenave-Montesquieu and co-
workers (1973, 1982; Benoit-Cattin et al. , 1973), in
which the entire vacuum vessel containing the analyzer is
filled with target gas. In the latter case, the analyzer is
contained in a box rotatable about the collision center

and pumped separately through a Aexible tube. One ad-
vantage of this design is the ease with which observation
angles can be changed.

An early apparatus of this type was described by
Kuyatt and Jorgensen (1963) and Cook (1955). In their
design, the ejection angle is varied by rotating the
scattering chamber and analyzer about the target center,
with the incident ion beam fixed in space. A sliding seal
over the proton entrance port is made with two grease-
impregnated rubber diaphragms. While this design also
has the advantage of not requiring a break in the vacuum
to change ejection angles, the diaphragms limit the base
vacuum in the target cell to about 10 Torr. Significant

TABLE VI. (Continued).

Laboratory

Electron- Electron-
energy ejection-

Apparatus range (eV) angle range

Overall
estimated

error Comments

Hahn-Meitner
Institute,
Berlin, Germany

Lucas Heights
Research Laboratory,
Sutherland, Australia

1-8600

5-1SO

18 —155

0'-100

-20%
absolute;( 10%
statistical

13%
relative
above 10 eV;
80% at 5 eV

Preacceleration
in 1971 work
thought to cause
artificially
high-cross
sections below
20 eV

Universite
Paul Sabatier,
Toulouse, France

16.5' —160 -30% absolute,
normalized
to Rudd and
Jorgensen
(1963)

Tokyo Institute
of Technology,
Tokyo, Japan

2-200 30',90 -30% absolute,
normalized to
Criswell et al.
(1977)

Laboratory Apparatus References
Proton-energy

range (keV)/targets Analyzer

Centro
Atomico
Bariloche,
Argentina

Bernardi et al. (1988,1989,1990) 50—200;
He, Ne

Coaxial
cylinder

Institut fiir
Kernphysik,
Frankfurt,
Germany

Technischen
Hochschule,
Karlsruhe,
Germany

University
of Missouri
Rolla, MO

Schader et al. (1986)

Blauth (19S7)

Olson et al. (1987)
Irby et al. (1988)

400-2000;
He

8.8—49;
H2, He,
N2, Ne,
Ar, Kr

60-150;
He

Magnetic-
sector
momentum
analyzer

Coaxial
cylinder

Parallel-
plate
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electric charge can also build up on their insulating sur-
faces, making measurements at low ejection energies un-
reliable.

A second type of target has been developed by To-
buren and co-workers (e.g. , Toburen, 1971, 1974; To-
buren and Wilson, 1972; Criswell et al. , 1977), in which
the target gas is introduced into a relatively small tri-
angular target cell (Fig. 15). A narrow slit is cut at the
apex of the cell, through which the proton beam passes
and ionized electrons escape. In such a target, the gas is
well localized and the analyzer/detector operates at cor-
respondingly lower pressures.

In the work of Oda and co-workers (Sataka et al. ,
1979; Tokoro and Oda, 1985), Gibson and Reid (1984,
1985, 1986, 1987a, 1987b; Fig. 16), and some of the work
of Toburen et al. (e.g., Toburen and Wilson, 1975; Lynch
et al., 1976; Criswell et al. , 1977; Fig. 17), and Stolter-
foht et al. (197la, 1971b; Gabler, 1974), a gas beam tar-
get was used. In these cases, the proton beam passes in
close proximity to the surface of a multicapillary array
(which is either made of metal or has a conducting coat-
ing on its surface), through which the target gas is
effusing. The gas beam is directed immediately into a
pump. Atomic densities in such cases are typically an or-

TABLE VI. (Continued).

Laboratory Apparatus Target type
Detector

type

Quoted
magnetic
fields (T)

Analyzer
pre- or post-
acceleration

Centro
Atomico
Bariloche,
Argentina

Institut fur
Kernphysik,
Frankfurt,
Germany

Technischen
Ho chschule,
Karlsruhe,
Germany

University
of Missouri,
Rolla, MO

Gas beam
from single
capillary

Gas beam
from single
capillary

Static

Gas beam
from single
capillary
array

CEM

CEM

Geiger-
Muller

tube

CEM

(7X10
single
current
coil

Not
specified

Not
specified

&10 '
Magnetic
shield plus
Helmholtz
coils

Post on1y

Not
specified

None

Post only

Laboratory Apparatus

Centro
Atomico
Bariloche,
Argentina

Institut fur
Kernphysik,
Frankfurt,
Germany

Technischen
Hochschule,
Karlsruhe,
Germany

Electron-
energy

range (eV)

5-300

20-7000

2-1000

Electron-
ejection-

angle range

0 —90'

0'-60'

54.5

Overall
estimated

error

15% relative

30% absolute

Not specified

Comments

Integrated
totals
normalized
to Rudd et al. (1985)

Normalized to
Rudd et al.
(1976,1979}

First measurements of
proton DDCS;
significant
background for
electron
energies
above 100 eV

University
of Missouri,
Rolla, MO

5-150 17'-90 10% relative;
norrna1ized to
Rudd and
Jorgensen
(1963)

Apparatus of
Arcuni and
Schneider
(1987)
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FIG. 12. Schematic diagram of generic apparatus employed in
measurements of doubly-differential cross sections for electron
ejection: 1 and 2, collimators; 3, electron-suppression aperture
(Faraday shield is indicated); 4, Faraday cup and shield; 5 and
6, solid-angle defining analyzer entrance slits; 7, preanalyzer ac-
celeration slit; 8, predetection acceleration slit.

der of magnitude higher in the region where the gas and
proton beams intersect than in the surrounding vacuum
chamber. This results in relatively high electron produc-
tion rates without attendant high pre, ssure in the analyzer
region and without the potentially disturbing inAuence of
target cell exit apertures. Measurements using the gas

hr

A

o VWMe
8

FIG. 14. Schematic diagram of the apparatus used by Stolter-
foht et al. (1976, 1979): 1, Effusive gas-target beam; 2,
preanalysis acceleration grids; 3, electron shield/analyzer hous-
ing; 4, parallel-plate analyzer; 5, fringe-field correlation elec-
trodes; 6, spurious-electron discriminator grids, ' 7, electron mul-
tiplier; 8, ring for rotation about center line of analyzer assem-
bly. The indicated proton beam is emerging from the plane of
the diagram.

beam technique, however, are diScult to put on an abso-
lute scale due to the uncertainty in the target density-
length product nl (see next section). Stolterfoht (1971a,
1971b) and Gabler (1974), as we11 as Bernardi et al.
(1988, 1989, 1990), Schader et al. (1986), and Olson
et al. (1987) used a single capillary to produce efFusive
atomic targets.

&2 l~ 2
I I

IO

8

FIG. 13. Schematic diagram of apparatus used by Rudd and
co-workers and described in detail by Rudd and Jorgensen
(1963): 1, proton entrance port; 2, collimator; 3, electron
suppressor; 4, inner gas-containment cyhnder; 5, Faraday cup
and shield; 6, outer vacuum-chamber wall; 7, analyzer entrance
tube; 8, difFerential-pumping and solid-angle-defining aperture;
9, differential pumping ports; 10, analyzer entrance and solid-
angle-defining slit; 11, preacceleration slit; 12, cylindrical
analyzer; 13, analyzer exit slit; 14, detector focusing electrode;
15, electron multiplier.

FIG. 15. Schematic diagram of apparatus described by To-
buren (1971): 1, collimating apertures; 2, electron-suppression
electrode; 3, Faraday shield; 4, triangular target cell showing
crumpled high-transmission mesh acting as an electron trap.
The segment below the beam line represents a slit through
which ejected electrons may leave the target chamber. 5 and 6,
Faraday cup with electron-suppression electrode; 7, solid-
angle-defining apertures; 8, cylindrical-mirror analyzer with
back electrode formed from wire for background reduction; 9,
channel-electron multiplier; 10, isometric projection of the tar-
get cell, showing detail of electron-ejection slit. Arrow
represents proton beam.
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FIG. 16. Schematic diagram of the "fountain" analyzer used by
Gibson and Reid (top and side views of the apparatus are shown

in the top and bottom of the figure, respectively): 1, ion-beam

collimating slits; 2, elusive gas-target beam produced by a mul-

ticapillary array; 3, analyzer entrance annular slit; 4, analyzer

top plate; 5, solid-angle-defining aperture; 6, channel-electron
multiplier (CEM); 7, fringe-field correction electrodes; 8,
analyzer back plate made of stainless steel mesh. For high
count rates, the 0' electron detector can be replaced by an elec-
tron multiplier. An array of nine CEM's (three of which are
shown in the top view) is rotated among 16 angular positions to
measure the electron-ejection cross sections.

~ ~

~ ~

5

I 6

FIG. 17. Schematic diagram of the time-of-Aight apparatus de-
scribed by Toburen and Wilson (1975): 1, 40 kV, 3.33 MHz RF
oscillator for beam rastering; 2, collimating apertures and elec-
trostatic shield for electron suppressor; 3, electron suppressor;
4, channelplate gas-beam target {beam is perpendicular to the
plane of the diagram); 5, Faraday cup shield; 6, Faraday cup; 7,
collimating apertures and accelerating electrode; 8, channel-
electron multiplier.

Having traversed the target region, the proton beam is
stopped in a Faraday cup and its current measured.
When fast ions are stopped, they can produce both secon-
dary electrons and sputtered ions. At 100 keV incident
energy, for example, each proton produces about one
electron (see, for example, Thomas, 1985) and 2&(10
ions (Andersen and Bay, 1981) with a copper target.
Thus, while sputtered ions do not represent a serious
problem, the secondary electrons must be prevented from
entering the scattering volume. This is accomplished by
inserting a negatively-biased element upstream of the

beam stop or by biasing the cup positively and shielding
it from the interaction region. Other potential problems
can be caused by reflected protons (Mashkova and Mol-
chanov, 1985; Thomas, 1985) and proton-induced x rays
or UV photons (e.g. , Palmer, Thompson, and Townsend,
1970).

Electrons ejected from the target volume at a given po-
lar angle 8 are energy analyzed and detected. Prior to
the analyzer section, the electrons pass through solid-
angle defining slits, except in the work of Gibson and
Reid, which we shall discuss below. Either time-of-Bight,
magnetic, or electrostatic energy analyzers are used to
determine the electron's velocity (Table VI).

Most of the work discussed here has employed
127, cylindrical-mirror, or parallel-plate electrostatic
analyzers, with the exceptions of the time-of-Right
analyzer used by Toburen et al. and the magnetic-sector
analyzer used by Schader et al. (see Table VI). To avoid
uncertainties due to fringing fields in the analyzer, as well
as spurious magnetic fields (including that of the earth),
electrons are sometimes preaccelerated before entering
the analyzer. This is done by running the analyzer sec-
tion, including the entrance slit, at a small positive bias
(typically + 10 V) relative to the scattering center.
While this procedure can significantly improve the
transmission of low-energy electrons through the
analyzer, it has the potential disadvantage of producing
focusing effects at the analyzer entrance, which can dis-

tort the solid-angle acceptance of the device (Kuyatt and

Jorgensen, 1963; Rudd and Jorgensen, 1963; Stolterfoht,
197la, 1971b).

Following passage through the analyzer, the electrons
are detected by either a channel-electron multiplier, a
discrete-dynode multiplier, or a Geiger-Muller tube
(Blauth, 1957). It is very important that the detection
efBciency e of these devices be a well defined function of
incident-electron energy. A constant function is the best
possibility. To this end, the electrons are generally ac-
celerated by 100 to 400 V prior to striking the detector.
At these energies, e is relatively insensitive to energy. It
is extremely critical that the voltages applied to various
elements of the analyzer/detector section, including the
high voltage required for operation of the detector, be
well shielded from the scattering region.

A novel "fountain" parallel-plate analyzer design,
shown in Fig. 16, has been employed by Gibson and Reid
(1984, 1985, 1986, 1987a, 1987b) to measure doubly-
differential cross sections. The device consists of two cir-
cular plates across which the analyzing voltage is placed.
A collimated proton beam crosses a vertically directed
multicapillary effusive target, making an angle of 60
with respect to the analyzer-plate normal. Ionized elec-
trons created in the target region with polar angles rela-
tive to the beam direction between 0' and I20 enter the
analyzer volume through an annular slit. Electrons of
the appropriate energy follow trajectories passing
through holes evenly spaced on a circle in the top plate,
and are detected by an array of channe1-electron multi-
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pliers located at several of these exit apertures. Protons
leave the bottom plate through an exit hole and are col-
lected in a Faraday cup. This design has the distinct ad-
vantage that data for a number of emission angles up to
120 can be taken simultaneously. In addition, electrons
ejected at 0' can be analyzed. This is more dificult to ac-
complish with the other configurations we have con-
sidered. Unfortunately, the "fountain" design does not
allow absolute measurement of cross sections.

For ejection energies less than 10 eV, accurate mea-
surements become di%cult because of the unpredictable
effects of stray electric fields in electrostatic analyzers.
To surmount this problem, the technique of time™of-Qight
velocity analysis has been applied to doubly-difFerential
cross-section measurements by Toburen and %'ilson
(1975). In their apparatus, shown in Fig. 17, the proton
beam is chopped by passing it through deQection plates,
across which is placed an oscillating high voltage (typi-
cally +20 kV at 3 MHz). Proton pulses of duration less
than 1 ns are thus produced as the beam is swept across
the collimating slits. Electrons produced in the interac-
tion region pass through two solid-angle defining aper-
tures and are accelerated just prior to being detected by a
channel-electron multiplier enclosed in a shielding box.
Typical Aight times for the electrons are 30—300
nanoseconds, and energies as low as 0.5 eV can be reli-
ably measured, owing primarily to the absence of large
electrostatic fields in the analysis region.

The importance of eliminating or minimizing spurious
electric and magnetic fields in these measurements can-
not be overemphasized. Constant magnetic fields such as
the earth's can be reduced to less than 5 mG in the in-
teraction region by orthogonal pairs of Helmholtz coils.
Commonly occurring ac magnetic fields, most typically
with a frequency of 60 Hz, can be reduced using the same
coils with a small ac component added to the dc current.
Random or transient magnetic fields can only be elim-
inated by the use of magnetic shields. In terms of ap-
paratus construction, the use of magnetic materials, such
as 400-series stainless steels, must be stringently avoided.
Electric patch fields can be minimized by using titanium
and molybdenum in electron-optical components and by
gold plating apertures through which electrons will pass.
Gold plating is especially useful, since it. eliminates the
formation of surface oxides, which can become electro-
statically charged, thus defIecting electron trajectories.

B. lon energy-loss spectroscopy

In this method, the occurrence of ionization is deter-
mined by analysis of the proton's energy loss, as opposed
to the detection of an emitted electron. The only mea-
surements using this technique which have been reported
were for an atomic-hydrogen target (Park et al. , 1977)
and a He target (Park and Schowengerdt, 1969b). The
apparatus, developed over a number of years by Park and
co-workers (Park and Schowengerdt, 1969a, 1969b; Park
et aL, 1976, 1978), is shown schematically in Fig. 18. A

HY

FIG. 18. Schematic diagram of the ion energy-loss spectrome-
ter described by Park et al. I,'1977): 1, Colutron ion source; 2,
Wien filter for mass selection; 3, accelerator high-voltage termi-
nal; 4, accelerator column, 5, target center, about which the en-
tire accelerator assembly can pivot; 6, analyzing magnet; 7, de-
celerator column; 8, decelerator high-voltage terminal contain-
ing cylindrical electrostatic analyzer, hV high-voltage supply,
which is varied to take an energy-loss spectrum; and 9, the
electron-multiplier ion detector.

collimated beam of protons is produced with very low
( —1 eV) energy spread in a Colutron ion source. It
traverses a room-temperature target cell or one that is
resistively heated to dissociate molecular hydrogen (Park
et al. , 1983). The scattered beam is deffected by an
analyzing magnet to separate the post-collision charge
states. Scattered protons are then decelerated to an ener-
gy of 2 keV and detected after passing through a 127' cy-
lindrical analyzer. In a typical run, an energy-loss spec-
trum is taken by changing the acceleration voltage by an
amount hV and then recording the detected proton
count rate after the analyzer as a function of 6 V. In this
way, all magnetic and electrostatic elements following
the accelerator are kept constant. To be detected, i.e., to
be decelerated to precisely the electrostatic analyzer pass
energy of 1 keV, the proton must lose an amount of ener-
gy 68'=ehV in the scattering volume. By measuring
the count rate for detected protons as a function of 6V
above the target's ionization limit, one can extract the
singly-differential cross section for proton-induced ion-
ization. Electron-capture processes are excluded by the
analyzing magnet.

The ion energy-loss method has two general advan-
tages over the electron-analysis technique. First, because
the high-energy massive proton is the particle being ana-
lyzed, the measured cross sections are much less suscepti-
ble to spurious fields. Second, since the proton scattering
angles are small, essentially the entire beam is analyzed,
and singly-differential cross sections are determined
directly. This eliminates potential systematic errors
caused, for example, by angle-dependent solid-angle ac-
ceptances or absorption coefficients (see next section).

Cross-section information obtained in ion energy-loss
spectroscopy is not directly comparable with that ob-
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tained by analysis of the ejected electrons, except in the
case of atomic hydrogen. For other targets, proton ener-

gy can be lost simultaneously to excitation and/or molec-
ular dissociation.

Vill. ERROR ANALYSIS

A. Analysis of ejected electrons

In this expression, N& and Nz are the number of total
signal and background counts, respectively, o., is the to-
tal scattering cross section for ejected electrons of energy
8' n is the number density of target atoms, and N0 is the
number of incident protons which produce the signal Xz.
The energy spread of electrons (with mean energy W)
passed by the analyzer with a transmission coefticient t is
68' and they are detected with efBciency e. The
"effective integral of solid angle times path length, "
(nlQ), s; is the 8-dependent product of difFerential proton
path length times local target number density times sub-
tended solid angle of detection, integrated over all proton
path segments viewed by the detector. Finally, x is the
effective path length between the collision volume and
the detector, given by

L n(r)
0 n

(52)

where L is the length of the geometric unscattered elec-
tron trajectory, ~ is the distance from the collision
volume to a given point along that trajectory, and n (7) is
the gas density at that point. Note that Eq. (51) is
equivalent to Eq. (1), but states explicitly the experimen-
tal quantities that must be taken into account.

Each of these quantities must be carefully measured or
calculated for an accurate absolute measurement; relative
measurements do not require absolute values of N0, 68'
E, t, or (nlQ), fr We now .consider the determination of
each of these quantities in detail, and the corresponding
experimental systematic errors that can affect the ulti-
mate absolute or relative accuracy of the cross-section
values. Table VI gives an overview of the experimental
parameters associated with apparatusses used by various
investigators to study ejected electrons.

1. Total signal and background counts, N+ and N8

The number of counts registered by the electron-
detection circuit for a given number of incident protons
is Nz. The background signal Xz results from any pro-
cess other than simple ejection and subsequent detection

The absolute differential cross section for electron
emission with energy 8'into a polar angle 0 is obtained
from experimental measurements by using the following
equation:

d2o( W g) [NsexP(o, nx) N~—]
dWdQ NoethW(nlQ), fr

of electrons from target-gas atoms caused by the incident
protons. If count rates are high and the dead time of the
detection circuit is not corrected for, or if the electrons
are deflected by spurious electric and magnetic fields, Nz
can be too low. The only papers that mention dead-time
corrections are those of Rudd and Jorgensen (1963) and
Rudd and Madison (1976), who applied a maximum
correction of 7% for this effect. Later measurements are
presumably less affected by dead-time loss than earlier
ones, since the effective pulse-pair resolution of standard
counting electronics has improved significantly over the
last three decades.

Stray electric fields due to contact potential differences,
patch effects, and the proximity of charged insulating
surfaces, as well as magnetic fields due to the earth or
magnetized materials, are ubiquitous (see, for example,
Moore et al. , 1983). They become particularly serious
when electron trajectories pass close to objects such as
defining slits and analyzer surfaces. Spurious electric
fields are generally minimized by the use of proper ma-
terials and the scrupulous avoidance of insulating com-
ponents within the line of sight of electron trajectories.
Insulating layers of diffusion pump oil can be particularly
troublesome in this regard. Effective vacuum pump trap-
ping is thus important and appears to have been ade-
quately considered in all the work reported here. While
it is dificult to assess the effects of such electric fields on
individual data sets, we note that the results of Kuyatt
and Jorgensen (1963) are probably affected by these prob-
lems more than those of other workers due to their use of
a "zipper" chamber containing large areas of greased
rubber surfaces. The data of Schader et al. (1986), taken
with a magnetic-field analyzer, are restricted to electron
energies above 20 eV. The use of a time-of-Aight
analyzer by the Pacific Northwest Laboratories (PNL)
group significantly reduces residual field problems be-
cause of its relatively open structure. Field effects can
also be reduced by accelerating the electrons before they
enter the analyzer. This procedure must be undertaken
carefully, however, because it can make (nlQ), s difficult
to calculate (see below).

Most researchers used Helmholtz coils to eliminate the
spatially large-scale ac and dc magnetic fields in their
chambers. The experiments of Olson et al. , Oda et al. ,
Stolterfoht and Gabler, and Toburen and co-workers, in-
volving time-of-Aight measurements or electrostatic
analysis with proton energies (100 keV, used shields to
minimize the magnetic field in the chamber. Such shields
reduce variable as well as steady-state fields. Stolterfoht
used an electron gun to prove that his electron measure-
ments were not affected by magnetic fields within his ex-
perimental error. In all the experiments discussed in this
review, the residual magnetic fields were reported to be
& 20 mG. In a typical experiment, e.g. , that discussed

by Stolterhoft (1971a, 1971b), such a field could defiect a
5-eV electron by as much as 1 cm over its path, causing,
in principle, a significant systematic error.

We note that both dead-time corrections and the
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effects of spurious fields are most important for low-
energy electron measurements. This is true in the former
case because of the relatively high cross sections, and
subsequently large count rates, associated with low-
energy electron production.

The background signal can be separated into beam-
related and beam-unrelated counts. The latter category
includes "dark counts" from the electron multiplier and
noise associated with its attendant electronic circuitry.
Both of these signals are easy to isolate and subtract as-
suming they are time independent. Elimination of
beam-related background is generally much more
difBcult. Such counts can be due to ejection of electrons
from fast H or H created upstream in the beam line or
by direct ionization of the target by H or H . Electrons
ejected from the target by spurious photons, secondary
electrons created in slit scattering, or protons reflected by
the Faraday cup also cause beam-related background, as
do ultraviolet photons created in the target. Finally,
secondary scattering of electrons emitted from the target
by chamber walls or residual gas adds to the background.
(Direct emission of electrons from the residual gas or
secondary emission from slits also contributes but is easi-
ly subtracted. )

The formation of neutral- and negative-ion contam-
inants can be reduced by maintaining good vacuum in
the beam line preceding the chamber and by reducing the
target volume (gas-beam targets are best for this). Typi-
cal beam-line pressures of 2& 10 Torr and lengths of 2
m yield neutralization fractions of less than 1% for a
10 ' cm cross section. The Nebraska group mentions
corrections for beam neutralization starting with Crooks
and Rudd (1971); Criswell et al. (1977), Sataka et al.
(1979), Bordenave-Montesquieu et al. (1982), Schader
et al. (1986), and Bernardi et al. (1988, 1989) also men-
tion the problem. At high energy ( & 200 keV), it is prob-
able that none of the data are affected by this problem
due to the small neutralization and negative-ion forma-
tion cross sections.

Electrons created in the target by H, H, photons,
secondary electrons, or backscattered protons are essen-
tially indistinguishable from the "real" signa1. In gen-
eral, their numbers can be shown to be negligible (Cheng
et aL, 1989b). Photons created in the target by the in-
cident beams, however, are a demonstrably serious
source of background, and have been observed by Rudd
et al. (1966). In that work, photon detection was mini-
mized by coating the back plate of the parallel-plate
analyzer they used with nonreAecting colloidal graphite.
Ultimately, this background was subtracted from the sig-
nal by eliminating the electron counts with a large
analyzer voltage (to sweep the electrons away from the
detector entrance aperture) and subsequently determin-
ing the photon count rate alone.

Potentially the most serious cause of background is the
scattering of ejected electrons by target and residual gas
and by chamber walls. While background due to direct
production of electrons in the ambient gas can be elim-

inated by simply removing the target gas and measuring
the count rate with beam on, no equivalent procedure ex-
ists for the elimination of secondary-scattering back-
ground. A quadratic dependence of signal on target pres-
sure would constitute evidence for the scattering of elec-
trons from ambient or target gas, while scattering from
walls would exhibit a linear pressure dependence. Most
workers mention investigating the pressure dependence
of their signals and finding it to be linear after correcting
for absorption effects (see below).

To reduce background, several approaches have been
taken. The Nebraska group coated their chamber walls
with colloidal graphite and added bafHes to impede scat-
tered electrons. These precautions produced no
significant differences from previous data (Rudd et al. ,
1966; Cheng et al. , 1989b). The Pacific Northwest La-
boratories group crumpled fine wire mesh and inserted it
directly behind the proton beam in their target cell to
prevent retlected electrons from leaving the cell (see Fig.
15). Both the cylindrical-mirror analyzer used by the
PNL group and the "fountain" analyzer of Gibson and
Reid used back plates made of wire mesh to minimize
electron reAection. Stolterfoht and Gabler enclosed their
analyzer in a tight box with negatively biased grids
placed across the pumping ports. They also used
discriminator grids in front of their electron multiplier to
eliminate low-energy multiply scattered electrons.

2. Number density of target gas, n

The target density is an important factor in both the
absorption correction term, exp(cr, nx), and (nlQ), ir. In
all the work reported here, it is determined from the tar-
get pressure P, measured either with an ionization gauge
or a capacitance manometer. These devices are in turn
calibrated by a McLeod gauge or, in some of the cases in-
volving capacitance manometers, a direct dead-weight
force measurement performed by the manometer's
manufacturer. Care must be taken to account for the
effects of thermal gradients and finite conductance be-
tween the point of measurement and the target region
(Knudsen, 1910; Blaauw et al. , 1980). Calibration mea-
surements using a McLeod gauge must also avoid error
due to inadvertent gas pumping by streaming mercury
vapor. [These considerations have been discussed in de-
tail by Rudd et al. (1985); see also Schram et al. , 1965,
and references therein. ] In their later work Rudd and
co-workers used a differential capacitance manometer
with a correction for nonzero reference pressure. To-
buren initially checked his capacitance manometer read-
ings by placing a second manometer directly at the target
cell, and found his calculated pressure differential to be
accurate.

Target pressures in these experiments range between
4)& 10 and 3 & 10 Torr. No quadratic pressure
dependence of the results is reported. Error estimates for
the measurement of the pressure range between 5 and
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12%. Absolute knowledge of the pressure is irrelevant,
of course, for relative measurements, but relative values
must be known precisely and must be reproducible.

In the early experiments at Nebraska, great care was
taken to purify target gases. In more recent work, these
precautions have been relaxed somewhat, with the simple
use of research purity gas and all-metal pressure regula-
tors and transfer lines.

3. The "absorption" coefficient O-,x

When electrons are ejected from the target by incident
protons, they can be prevented from entering the electron
multiplier by scattering from another gas atom. "Target
gas" in this context refers to any gas atom that is in the
chamber as a result of opening the target-gas valve; these
atoms need not be in a volume intersected by the proton
beam. "Absorption" of the ejected electrons can thus
occur at any point along their trajectory prior to striking
the first surface of the detector. The absorption process
is of course closely related to secondary scattering. One
detector's uncounted, absorbed electron is another
detector's background. If X counts would be observed by
a detector in the absence of absorption, X~ is given by
Ns ——%exp( o,nx ),—where a, is the total scattering
cross section, which is dependent on electron energy and
target-gas species. (In principle, o, should be taken as an
"effective" scattering cross section that does not include
the contributions of forward scattering into the detector
solid angle. ) Generally, o, decreases with increasing
electron energy. The effective path length x is given by
Eq. (52).

The absorption factor can either be measured or calcu-
lated. Stolterfoht observed an exponential decrease in
detected electron count rate with increasing target-gas
pressure, independent of proton energy or ejection angle,
when he used a static target. He was thus able to show a
maximum absorption of 30% for 1-eV electrons and
could experimentally correct his data for this effect. The
Nebraska and Pacific Northwest Laboratories groups
have calculated the exp( o, nx ) factor u—sing data for the
total cross sections compiled in various references
(Briiche, 1927; Normand, 1930; Golden and Handel,
1965; Golden et a/. , 1966). Such calculations are
difficult, especially for the PNL target, given the compli-
cated vacuum geometry of the slits, tubes, and apertures
that surround the electron trajectory. The PNL group
found upon making this correction (which was occasion-
ally as large as 25%), however, that the measured cross-
section values were rendered independent of pressure for
various angles and electron energies, indicating that the
correction had been made properly.

Bordenave-Montesquieu et al. ran at su%ciently low
pressures ( & 10 " Torr) that absorption corrections
could be neglected.

The absorption correction has been neglected in the
case of effusive gas-beam targets. This neglect is prob-
ably justifiable, given the much better localization of tar-

get gas and the generally lower values of n at the target
center in this case.

4. Number of protons N,

This quantity is measured by integrating the proton
charge collected in the Faraday cup and dividing by the
proton charge. Errors in this factor can result from elec-
tron capture downstream from the target region by the
protons, failure to eliminate secondary-electron emission
from the Faraday cup, faulty charge integration, failure
to capture all of the incident beam in the cup, and
reAection of protons from the cup back into the interac-
tion region. These last two problems are most severe for
low proton energies ( ~ 10 keV), where large-angle
scattering is more probable and susceptibility to stray
magnetic fields is greater. Potential errors from these
effects can be checked by varying the Faraday cup posi-
tion and the size of its entrance aperture and by steering
the beam electrostatically into the center of the cup
(Kuyatt and Jorgensen, 1963; Rudd and Jorgensen,
1963).

The problem of beam neutralization by the target gas
is more severe for static targets, but it is mentioned only
by Rudd and co-workers after 1971, and by Bordenave-
Montesquieu et al. Attempts to eliminate secondary-
electron emission from the cup must be made with care,
since fields from suppressor grids can leak into the in-
teraction region (Rudd and Madison, 1976). Faulty in-
tegration of the proton current is unlikely to cause errors
larger than a few percent; Toburen and Cheng, Rudd,
and Hsu have calibrated their ammeters with standard
current sources. The question of proton reflection has
not been addressed, except by Rudd, who finds the effect
to be negligible at 50 keV. Sputtering effects should also
be negligible.

5. Integrated path (engthl solid angle (nlQ), rr

Accuracy in this term depends critically on knowledge
of the target-gas pressure profile over the incident-beam
path, and the solid-angle acceptance of the analyzer. It is
given by

(nlrb), &0)=fO(z, e)n(z)dz, (53)

where the integral is over the proton-beam path, dz is an
element of length along that path, and 0 is the solid an-
gle subtended by the analyzer and detector for a given
path element and electron-ejection angle. For the static
gas targets of Rudd et al. , Stolterfoht et al. , and
Brodenave-Montesquieu et al. , n (z) is a constant over
the acceptance window of the analyzers for all angles in-
vestigated. Thus (nlQ), s.=n f Q(z, g)dz. This integral, a
purely geometric quantity, has been evaluated in terms of
slit sizes and positions by Kuyatt (1968). The pressure
profile of the PNL target is complicated by the longitudi-
nal slit in the target cell. This group has determined n (z)
by using the same procedure used to calculate x. They
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experimentally verified the accuracy of the calculation by
measuring K-Auger electrons from N2 as a function of 0.
Since these electrons are emitted isotropically, properly
corrected data will have no dependence on 0, as was
found to be the case. For relative measurements, only
knowledge of the functional form of n (z) is important.

The use of gas-beam targets essentially precludes the
possibility of absolute measurements because of the un-
certainty in the beam density. Moreover, unless the
length of the beam path viewed is so small that n (z) is
constant for all 0, or is so large that the entire proton
path in the target is viewed by the analyzer at any angle,
even relative measurements will sufFer some angular sys-
tematic error. This problem is not discussed by any of
the researchers using gas-beam targets except Gibson and
Reid and may be a source of significant error. In this re-
gard, we mention the systematic di6'erences in the mea-
sured angular dependence of doubly-difFerential cross
sections between Gibson and Reid and other workers
(see, specifically, gibson and Reid, 1986, and Cheng
et al. , 1989b). It appears that the poorly characterized
shape of the efFusive gas target in Gibson and Reid's
"fountain" spectrometer allows a significant angular
dependence of

(nlrb),

~ that was not accounted for in the
analysis. Interestingly, the angular discrepancies in the
DDCS measurements do not yield corresponding
discrepancies in the SDCS, as will be seen in Sec. X.

The problem of determining dQ is also difficult. The
efFective solid angle subtended by the detector can be al-
tered by spurious fields and by focusing e6'ects due to in-
tentional preacceleration of the ejected electrons prior to
their entrance into the analyzer (Kuyatt and Jorgensen,
1963). The effect of preacceleration on solid-angle accep-
tance (as well as energy resolution) has been considered
extensively by Stolterfoht, Rudd, Toburen and co-
workers, who find it to be most important for electron
energies & 10 eV (Manson et al. , 1975). The finite diam-
eter of the proton beam must also be considered in calcu-
lating the solid angle. All of the proton beams in the ex-
periments reported here were & 2 mm in diameter.

We note that estimates in the uncertainty in (nl Q),~
are typically of the order of 10%, meaning that this fac-
tor contributes significantly to the overa11 uncertainty of
the cross-section Ineasurements.

6. Energy width —transmission product
of the analyzer, hWt

If we consider illumination of the entrance slit of an
aberration-free electrostatic analyzer with electrons uni-
formly distributed in energy and angle (within the accep-
tance angle of the device), the output distribution of elec-
trons versus their energy will be either trapezoidal or tri-
angular in shape, with the peak of the distribution cen-
tered on the mean pass energy W. The base and top
widths of the distribution depend only on the geometric
dimensions of the analyzer (Rudd, 1972). The full width
at half-maximum of the distribution is then defined as

68' and its height taken to be the "transmission" t.
Thus, for a "white" incident-electron Aux of j electrons
per unit energy interval, the analyzer will pass j6Wt
electrons. Remarkably, the area under the transmission
curve does not change even when angular aberration
effects are considered (Kuyatt, 1968; Rudd, 1972). Since
A8't is a purely geometric quantity, it can be calculated.
Toburen (1971)has measured 6W by investigating Auger
electrons; Rudd and Jorgensen (1963), Kuyatt and Jor-
gensen (1963), and Stolterfoht (1971a, 1971b) have used
electron guns to verify their calculated values of 68'.

7. Detection efficiency e

This factor represents the percentage of electrons that,
upon traversing the analyzer, produce recorded pulses.
It includes the transmission of the discriminator/pulse-
counting circuit and can be measured in a number of
ways. The erst absolute determination of e in work of
this type was reported by Rudd and Jorgensen (1963)~

They replaced their analyzer and detector with a Faraday
cup and measured the electron flux emitted from the tar-
get at a given angle. By integrating the data taken with
the electron multiplier and analyzer in the pulse-counting
mode over electron energy, and comparing this result
with the Faraday-cup value, they extracted e with an un-
certainty of about 10%. A similar technique, described
by Stolterfoht (1971a), Rudd and Madison (1976), and
Cacak and Jorgensen (1970) involves replacement of the
target by a defocused electron gun. The electron flux
entering the analyzer is determined either by measuring
the emission current from the thermionic filament direct-
ly or by measuring the current density from the gun
through a larger aperture of well-known area using a
Faraday cup. In the latter case, a smaller aperture is sub-
sequently placed in front of the analyzer and the electron
flux is counted directly. These procedures also yield un-
certainties in e of about 10%%uo.

Toburen (1971) directly calibrated a channeltron for
incident-electron energies of 600 eV by comparing the
channeltron count rate with that of a windowless-flow
proportional counter operated in the Geiger region,
whose efficiency was taken to be unity. Cheng et aI.
(1989a) have described a novel method for determining
the discriminator transmission and electron-multiplier
efficiency separately. The integral pulse-height spectrum
from the counting circuit is obtained and a linear fit to
the region of minimum slope is made. The zero-pulse-
height intercept of this fit is divided into the value of the
spectrum at the discriminator setting used for measure
ments, and the ratio is taken as the discriminator
transmission. In addition, the efficiency of the multiplier
is obtained by measuring its gain, which is used to infer
the gain per dynode stage. If the electron-emission pro-
cess at each dynode is assumed to obey Poisson statistics,
the probability of no electrons reaching the collector
anode, equal to 1 —e, is easily calculated.

Gibson and Reid used several channeltrons and a
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discrete-dynode electron multiplier simultaneously to
detect scattered electrons. While they did not attempt to
make absolute measurements, a knowledge of the relative
efficiencies of their various detectors was required to pro-
vide accurate angular distributions. This was accom-
plished by rotating the detector array in situ to measure
various parts of the angular distribution with several
detectors, and cross-correlating the relative count rates
at a given angle.

One possible cause of serious systematic error lies in
the variation of e with incident-electron energy. Some
researchers appear to have neglected this problem, al-
though knowledge of this dependence is crucial even for
relative cross-section measurements. In general, the
dependence must be determined experimentally, as has
been done in some of the experiments discussed here.
The variation of e can be minimized by accelerating the
electrons to —100 eV after passage through the analyzer.
The efficiency vs energy curve above this voltage is rela-
tively Aat for both channeltrons and discrete dynode de-
vices; variations of —10% are typical between 500 and
2000 eV (see, for example, Bordoni, 1971; Toburen,
1971).

In all cases discussed above, determinations of e have
yielded values between 0.27 and 0.98. This range is due
primarily to the different types and conditions of the
detectors themselves, although some variation due to the
incident secondary-electron energy has been observed.
Both relative and absolute uncertainties between about
5% and 10% have been quoted.

Finally, we note that space charge of the positive ion-
ized core of target gas can, in principle, cause systematic
variations in the energy of the ejected electrons. Such
effects can be significant if the differential cross section is
falling rapidly with electron energy. For the experiments
reported here, typical beam currents ( —1 pA) would re-
sult in negligible electron-energy shifts.

do /dW=[Ns( W) N~(W)]/n—lNO . (55)

Several important issues relating to the quantities in Eq.
(55) are as follows.

1. The beam-related signal-background
difference Ns —N8

integrated singly-differential cross section. For this as-
sumption to be correct, essentially all of the protons scat-
tered in the target must ultimately be detected. Park
et al. were able to demonstrate complete angular accep-
tance in their measurements of total cross sections with
He by showing that the sum of the energy-loss, elastic,
and charge-transfer signals was equal to the incident-
proton fIux within their measurement uncertainty. This
observation was consistent with theoretical calculations
showing that protons scattered to angles greater than the
instrumental angular acceptance of —10 rad would
not affect the integrated cross section. It should be point-
ed out, however, that the fraction of protons scattered
outside a given angle of acceptance is generally a func-
tion of W. Thus failure to attain complete angular accep-
tance in regions of W where the SDCS does not contrib-
ute significantly to the total cross section would not affect
the above summation, but would result in systematic er-
rors in the cross sections for those values of W. The re-
port of the later H measurements (Park et al. , 1977) does
not mention angular acceptance checks. With the caveat
that the smaller singly-differential cross sections could, in
principle, have some systematic error due to incomplete
angular acceptance, there is strong circumstantial evi-
dence to indicate at least the total cross sections do not
suffer from this problem (Park, 1983).

If do/dW varies slowly with W, as it does in the
smooth energy-loss ionization continuum, then @(W),
which varies rapidly about its central energy, can be tak-
en as a 5 function in Eq. (54), yielding

B. ion energy-loss spectroscopy

In the technique developed by Park and co-workers,
the singly-difFerential cross section der/dW is measured
directly and is given by the equation

Ns(W) N~(W)=nlNO I der/—dW'N(W —W')dW',
0

(54)

where Xz and %~ are the number of protons detected
with energy loss W with and without target gas, respec-
tively, for an incident number of protons N0', n and I are
the target number density and length; and N(W) is the
energy profile of the incident beam (Park and
Schowengerdt, 1969b; Park et al. , 1977).

Implicit in Eq. (54) are two assumptions. First, no
correction for multiple scattering of the proton is includ-
ed. This correction has been experimentally demonstrat-
ed to be small in both the He and the H experiments.
Second, do. /dW is taken to be the complete, angle-

The ion energy-loss signal includes, in general, process-
es other than those contributing to the electron signal
discussed in the preceding section, except for H targets.
In addition to simple single ionization, electron-analysis
experiments will detect electrons resulting from multiple
ionization and from transfer ionization that yields fast
neutral hydrogen. The ion energy-loss experiments
detect not only simple multiple ionization in addition to
single ionization, but also energy loss resulting from
simultaneous target excitation and/or dissociation.
Moreover, collisions with more than one electron ejected
are weighted more heavily in the electron-analysis
method than single ionization [Rudd et al. (1985), p.
966]. Thus cross sections measured by the two methods
are comparable only when multiple and transfer ioniza-
tion, as well as excitation and dissociation, are negligible.
Typically, such cross sections are at least an order of
magnitude smaller than those for single-electron ejection
(see, for example, DuBois, 1985, 1986 and DuBois and
Manson, 1987, and references therein).
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The background signal Xz includes contributions from
background gas (most typically N2) and refiections of the
incident beam from the back (positive voltage) cylinder

segment of the analyzer. With H targets, it is also neces-
sary to eliminate the signal from undissociated Hz in the
target oven. This is done indirectly by determining the
ratio of the energy-loss signals at 10.2 and 12.5 eV, corre-
sponding to excitation of H(n =2) and of the Lyman a
bands of H2, respectively. This ratio yields the target dis-
sociation fraction and allows a correction for H2 ioniza-
tion. The dissociation fraction for H is reported by Park
et al. to be better than 97%, so this correction is small.

2. The target length-density product nl

The target length-density product nl is difficult to
determine with H targets, due to the high temperatures
and open structure of the H furnace. As a result, the H
results of Park et al. have been integrated and subse-
quently normalized to the Born approximation for the to-
tal ionization cross section at 200 keV. A long,
differentially pumped target cell with small entrance and
exit apertures has been used in the He work, and nl can
be calculated to a high degree of accuracy (Park and
Schowengerdt, 1969b).

3. The number of incident protons N,

This number is measured by integrating the incident
ion beam over its energy spread. Since the beam is
detected by the complete "detector" following the target
cell, as is the product signal Xz, all factors regarding
detector efficiency, angular acceptance, and ion-related
secondary-electron detection cancel out in the ratio of
Eq. (54). This canceling of factors is a significant advan-
tage of the ion energy-loss method.

IX. RECOMMENDED VALUES
OF SINGLY-DIFFERENTIAL CROSS SECTIONS

The tables of double-differential cross-section data that
have accumulated are quite voluminous. For example,
Toburen's data for one target gas at a single proton ener-

gy typically involved measurements at 200—300 electron
energies for each of 1 1 angles. Even the singly-
differential cross-section data are rather extensive when

many combinations of proton energy, electron energy,
and target are involved. Generally only a small fraction
of the data appears in published form, and even the tables
that have been published (Rudd et a/. , 1976,1979) con-
tain condensations or selections of the data.

For the purposes of this review, we have obtained
tables of the original data from most of the authors.
While data from different laboratories are in good gen-
eral agreement, there are areas of disagreement. Inter-
cornparison of many data sets indicates systematic varia-
tions with proton and electron energy and target, which

enable us to choose among divergent data.
The presentation of recommended values of singly-

differential cross sections in tabular form is difficult be-
cause the pertinent ranges of electron energies change
with proton energy. An electron-energy range for which
the cross section is changing slowly at one proton energy
may be one where it is varying rapidly at a different pro-
ton energy.

These three problems, the large volume of data, the
discrepancies among different data sets, and the difficulty
of presenting data in tabular form, are solved in this re-
view by the use of semiempirical models. Model parame-
ters are determined by fitting the models to experimental
data. Averaging and/or selection were done with respect
to the parameters rather than the original data. As a re-
sult, the recommended singly-differential cross-section
values are expressed in the form of reasonably simple
equations with a small number of parameters.

A. Choice of model

As discussed in Sec. VI, there are several semiempiri-
cal models to choose from, each having its own advan-
tages and disadvantages. For instance, Kim's model is
able to reproduce many details in the singly-differential
cross sections of Ar and Nz for a limited range of To, and
the resulting SDCS's can serve as normalization stan-
dards for experiments. For most practical applications,
however, a model is needed that reproduces only gross
features of the SDCS over a wide range of primary ener-
gies, since experimental data are available from 5 keV to
5 Me V. The only model presently available that
represents the energy distributions over the entire range
of primary as well as secondary energies is the one pro-
posed by Rudd (1987, 1988). The parameters in this
model must be determined from experimental data.
Sufficient data are presently available for this determina-
tion for ten of the common gases. The model has been
successfully fitted to all of these targets, thus determining
its parameters.

The Rudd model reproduces gross features of the
singly-differential cross sections of all targets reasonably
well for low and intermediate energy collisions. It is also
accurate at high energies for single-shell targets such as
He and H2, but the form of the equation is not flexible
enough to reproduce the fine details of SDCS's in
different multishell targets. For quantitative reproduc-
tion of cr(W) at To) 300 keV, models that incorporate
individual details of the dipole term are preferred. As de-
scribed earlier, parameters for the model proposed by
Kiim are available only for argon and nitrogen.

B. Data adjustment

Kim's model depends mostly on the dipole function
[Eq. (24)] and on the binary-encounter term [Eq. (35)] to
reproduce the global shape of singly-differential cross
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sections. Only parts of the experimental data that exhibit
the expected shape are used to determine the mixture of
dipole and nondipole contributions, to avoid distortions
that may be introduced by uncertain parts of the experi-
mental results. Thus it is unnecessary to modify any ex-
perimental data to determine adjustable parameters in
Kim's model. Qn the other hand, the parameters in
Rudd's model are sensitive to the shape and magnitude of
the original data, and it is desirable before parameters are
fitted to modify data deemed to be seriously inaccurate.
We describe below how some of the experimental results
were adjusted before applying Rudd's model.

Since total ionization cross sections have generally
been determined to a higher accuracy than differential
ones, and since recommended values of these total cross
sections are readily available (Rudd et al. , 1985), each
experimental set of singly-differential cross sections was
first adjusted to be consistent with the total cross sec-
tions. Two methods, both one-parameter adjustments,
were used. In the first method, all SDCS's in a set were
adjusted by a single multiplicative factor. In the second
method, most of the adjustment was made on the larger
low-energy cross sections. The equation used in this
method was

300 o 0 Ct ~~0
Q V

(a) Unadjuste
3

(b) Adjusted
&- 3—

H++X2
200 keV

.03 10 100
W(eV)

1000

FICx. 19. Plot of electron-energy distributions from 200-keV
H++N2 to show the effect of data adjustment: G, data of Stol-
terfoht (1971b); o, data of Crooks and Rudd (1971); solid line,
Rudd model. (a} Original, unadjusted data. (b) Data adjusted
by Eq. (56).

o ( W)/o. „(0)=[1+%,o „(8')/o. „(0)] ' —1, (56)

where o( W) is the adjusted cross section, o „(W') is the
uncorrected cross section, and o „(0) is its uncorrected
value at the lowest measured secondary energy, generally
2 eV. The value of E, was varied until the adjusted cross
section yielded an integral equal to the recommended to-
tal cross section.

An example of this second form of adjustment is
shown in Fig. 19. In (a) the original, unadjusted data are
shown from two experiments. The agreement is quite
good above about 20 or 30 eV, but the run of Crooks and
Rudd (1971) yields an integral smaller than the recom-
mended total cross sections of Rudd et al. (1985). The
discrepancy appears due to the falloff of the cross section

at the lowest energies. On the other hand, the data of
Stolterfoht (197lb) integrate to too high a value, most
likely because of cross sections that are too high below
about 20 eV. When Eq. (56) is applied to the two sets of
data and the values of Kc are chosen to give the correct
integrated value, the resulting adjusted data are brought
into much better agreement, as shown in Fig. 19(b).

Each of the runs of the data analyzed in this paper was
subjected to the adjustment procedure of Eq. (56) before
fitting. An exception was made for the data of Toburen
and his collaborators. In their data, time-of-Aight
analysis was used to improve the low-energy accuracy, so
that the relative uncertainty was virtually constant over
the entire range. Therefore the first method of adjust-
ment was used. Except for a few runs at low proton ener-
gies, the adjustments in the data were smaH.

C. Fitting of the Rudd model

A nonlinear least-squares program was adapted from
the CURFIT program of Bevington (1969). The three
parameters F, ,F2, and a of the Rudd model were varied
to provide the best fit for each energy spectrum at a given
proton energy. As discussed in Sec. VI.D, the values of
F, and F2 for all subshells with I ~ 2I& were determined
from Eqs. (43) and (44) using the same set of target pa-
rameters. For the inner subshells a single set of parame-
ters was used for all targets. The inner-shell parameters
were dificult to determine with any accuracy, but ap-
proximate values were sufhcient, since inner shells gen-
erally do not contribute much to the overall cross sec-
tions. These values were estimated by fitting at the high-
energy taiIs of the energy distributions, where inner-shell
contributions predominate. Also, the known total cross
sections for inner-shell ionization were used. If
differential cross-section data for specific inner shells be-
comes available in the future, the inner-shell parameters
can be determined more accurately.

The values of n were found to be independent of pro-
ton energy within experimental uncertainty and were tak-
en to be constant for a given target. The parameters F&
and F2 vary smoothly with proton energy, allowing fits
by the functions in Eqs. (43)—(48). There appear to be
two maxima in the graph of F& for several of the targets,
as seen in the example in Fig. 20.

D. Table of parameters in the Rudd model

The values of the target parameters for Eqs. (43) and
(44) are given in Table V. It can be seen that the values
of A

&
are not far from unity, and the sums A

& + 2 z are
not far from 2, as expected on the basis of the Bethe
theory. The parameter o. always falls between 0.5 and
0.9. The parameters C& and C2, which determine the
magnitudes of F, and F2 at low proton energies, are typi-
cally in the range of 0.2 to I. The values of D& and D2,
which determine the slope of the cross sections with pro-

Rev. Mod. Phys. , Vol. 64, No. 2, April 1992



480 M. E. Rudd et a/. : Electron production in proton collisions

I
o

1Q — o

8 n ~ o
o o

0 0

I I l

10 100 1000
Ep(keV)

FIG. 20. Plot of the parameters F&, F2, and a obtained in
fitting the data for 5—1500 keV H++H2 collisions. Data from
Rudd (1979), Rudd and Jorgensen (1963), Rudd et al. (1966),
and Toburen and Wilson (1972). The lines for F, and F2 are the
best fits to Eqs. (43) and (44). The 1ine for a is a constant equal
to the average of the fitted values.

ton energy at low energies, have a greater variation, even
becoming negative for some targets. The parameters B,,
Bp E

&
and E2 are less easily interpreted and have

greater variations, since they merely determine connec-
tions between the low- and high-energy regions.

E. Recommended values

Having fitted the model to the data for ten difFerent
target gases, it is possible to calculate cross sections for
any combination of primary and secondary energy for
any of those targets from parameters of the model Eq.
(41). The following is a sample computation for the case
of 8-eV electrons ejected in H++ He collisions at 50
keV. %'ith I =24.6 eV and X =2, we have m =0.325,
U =1.05, and 5 =2. 15 A . From the parameters in
Table II, we have I-, =0.389, H, =0.232, Lz ——0.718,
and H2=5. 65, giving I', =0.621 and F2=0.637. The
cutoff' energy is tc, =4U —Zv —R /4I =2. 19, whence
exp[a(w —tc, )/v] =0.219. Moreover, (F, +F2w )/
(1+tU) =0.356. The cross section is then 0.0255 A /eV.
For comparison, integrated experimental results of Rudd
and Madison (1976) and Rudd and Jorgensen (1963) are
0.0341 and 0.0251 A /eV, respectively; Gibson and
Reid's value (interpolated) is 0.024 A /eV.

Additional samples of recommended cross sections are
given in Table VII for selected combinations of primary
and secondary energies with hydrogen (H2) as a target.
Table VIII gives the total and partial cross sections for
the various subshells of argon at 300-keV proton energy.
Figure 21 shows these data compared with the results of
Toburen et al. (1978). The same quantities are plotted as
Fin Fig. 22.

At the cost of somewhat greater complexity, the Kim

0
TABLE VII. Sample of recommended cross sections (in A /eV)
denotes 5 X 10

for H++Hz calculated from Eq. (41). The notation 5.52( —2)

To

0
1.5
2
3
5
7

10
15.
20
30
50
70

100
150
200
300
500
700

1000
1500
2000
3000
5000
7000

10000

5.52( —23
5.12( —2)
4.94( —2)
4.56( —2)
3.76( —2)
3.04( —23
2.15( —23
1.17{—2)
6.25( —3)
1.75( —3}
1.44( —4)
1.33( —5)
4.40( —7)
1.91(—9)
9.92( —12)
3.52( —16)
7.50( —25)

9.19(—23
8.98{—2)
8.84( —2)
8.48( —2)
7.64( —2)
6.79( —2)
5.61( —2)
4.06( —2}
2.94( —2)
1.S4{—2)
4.08( —3)
1.00( —3}
1.19(—4)
3.95( —6)
1.52( —7)
3.00( —10)
1.96( —15)
1.76{—203

100 keV

1.24( —1)
1.06( —1)
1.01( —1)

7.73( —2)
6.55( —2)
5.23( —2)
3.76( —2)
2.82( —2)
1.75( —2)
8.58( —3)
4.95{—3)
2.49( —3)
7.98( —4)
1.83( —4)
5.36{—6)
5.03( —9)
6.44( —12)
3.90( —16)
5.26( —23)

300 keV

7.78( —2)
6.24( —2)
5.83( —2)
5.11(—2)
4.02( —2)
3.24( —2)
2.43( —2)
1.62( —2)
1.16( —2)
6.73( —3)
3.07( —3)
1.75( —3)
9.34( —43
4.44( —4)
2.58( —4)
1.17( —4)
3.10( —5)
1.57( —63
4.58( —9)
3.52( —13)
3.40( —17)
4.46( —25)

1000 keV

3.47( —2)
2.71( —23
2.51(—2)
2.17(—2)
1.66( —2)
1.30( —2 }
9.46( —3 3

6.02{—3)
4.13(—3)
2.26( —3)
9.58( —4)
5.21{—4)
2.66( —4)
1.21( —4)
6.92( —5)
3.10{—5)
1.12( —S)
5.74( —6)
2.81(—6)
1.24( —6)
3.39( —7)
2.17( —11)
4.40( —20)

1.50( —2)
1.16( —2)
1.07( —2)
9.25( —3)
6.99( —3)
5.43( —3)
3.88( —3)
2.42( —3)
1.63( —3)
8.66( —4)
3.51( —4)
1.85{—4)
9.23( —5)
4.09( —5)
2.28( —5)
1.00( —5 }
3.57( —6)
1.80( —6)
8.81( —7)
3.89( —7)
2.18( —7)
9.69( —8)
3.47( —8)
2.36( —103
8.40( —18)
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TABLE VIII. Cross sections (in A /eV) by subshell for 300 keV H++Ar calculated from Eq. (41). The notation 1.97(—1) denotes
1.97 X 10-'.

W (ev)

2
4
6

10
15
20
30
50
75

100
150
250
300
500
750

1.97( —1 }
1.50( —1)
1.18( —1)
7.71( —2}
4.98( —2)
3.46( —2)
1.92( —2)
8.32{—3)
4.04( —3)
2.37( —3)
1.09( —3)
3.99( —4)
2.75( —4)
6.85( —5)
2.61(—6)

3$

1.58( —2)
1.36( —2)
1.18( —2)
9.19{—3)
6.95( —3)
5.44( —3)
3.57( —3)
1.87( —3)
1.02( —3)
6.43( —4)
3.19(—4)
1.22( —4)
8.30( —5)
1.86( —5)
1.27( —6)

1.44( —4)
1.42( —4)
1.39( —4)
1.34{—4)
1.29( —4)
1.23( —4)
1.13(—4)
9.64( —5)
7.96( —5)
6.65( —5)
4.76( —5)
2.61(—5)
1.98( —5)
7.05( —6)
2.10( —6)

1.89( —5)
1.87( —5)
1.84( —5)
1.79( —5)
1.73( —5)
1.68( —5)
1.57( —5)
1.38( —5)
1.19( —5)
1.02( —5)
7.74( —6)
4.62( —6)
3.62( —6)
1.45( —6)
4.96( —7)

3.00( —9)
3.00( —9)
3.00( —9)
3.00( —9)
2.99( —9)
2.99{—9)
2.98{—9)
2.96( —9)
2.94( —9 }
2.92{—9)
2.86( —9)
2.73( —9)
2.66( —9)
2.34( —9)
1.93( —9)

Total

2.14( —1)
1.64( —1)
1.30( —1)
8.64( —2)
5.69( —2)
4.01(—2)
2.29( —2)
1.03( —2)
5.16{—3)
3.09{—3)
1.47( —3)
5.52( —4)
3 ~ 81(—4)
9.56( —5)
6.48( —6)

model yields more accurate cross sections for primary en-
ergies above 200 keV. Parameters for the two targets, ar-
gon and nitrogen, are given in Tables II and III for use in
Eqs. (32)—(34). The two models by Kim and Rudd are
compared with unadjusted experimental data in Figs.
8 —11.

X. DISCUSSION OF SINGlY-DIFFERENTIAL
CROSS-SFCTION DATA FOR INDIVIDUAL TARGETS

Most of the available data (listed in Table IV) for the
ten gases were used in the determination of parameters
for the Rudd model, as illustrated in Figs. 23—32. Some
sets of experimental data were excluded. Blauth (1957)
presented doubly-differential cross-section data for heli-
um, neon, argon, krypton, hydrogen, and nitrogen, but
only at one angle, 54.5'. It was thus not possible to ex-
tract singly-differential cross sections by angular integra-
tion. The data of Bordenave-Montesquieu et aI. (1973,
1982) yielded angular SDCS's at only one electron ejec-
tion energy. The pioneering experiment of Kuyatt and
Jorgensen (1963) provided DDCS data for hydrogen but
with incorrect normalization, owing to poor collection of

low-energy electrons. Measurements of DDCS by
Re(dbro and Andersen (1979), Sataka, Urakawa, and Oda
(1979), Tokoro and Oda (1985), and Olson et al. (1987)
are too limited to permit SDCS calculations. The DDCS
data of Bernardi et al. (1988, 1989, 1990) and Schader
et al. (1986) are probably extensive enough for calcula-
tion of SDCS's, but were not published in tabular form.
Furthermore, their cross sections were normalized to the
data of Rudd et al. (1976).

The only data for atomic hydrogen at the present time
are those of Park et al. (1977). Unfortunately, their elec-
tron energy range extended only to 20 eV, insufficient to
provide information about the parameter o;. Further-
more, the proton energy range is not sufficient to allow
unambiguous determination of the parameters in a model
that relates high and low energies. For this reason, atom-
ic hydrogen was not included in our analysis and fitting.

A. Helium

Thirty-eight runs in the range 5 —5000 keV from 7
different data sets were fitted. The value of 2

&
from the

)
Q)

o~

CB
O 7-

1s
g I I

500
w(ev)

)000

0-

1
o

CD
O -2

-3=

1 — O o

FIG. 21. Partial cross sections (dashed lines) from the subshells
of argon, as calculated from Eq. (41), along with the total (solid
line) for 300 keV. Also shown are the corresponding experi-
mental data from Toburen et al. (1978).

I

10
w(ev)

1000 10,000

FIG. 22. The same as Fig. 21 plotted as Y(E, T), the ratio of
the cross sections to the Rutherford cross section.
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fit was 1.02, 15% higher than the 0.89 value obtained
from oscillator-strength data. The values of the parame-
ters in Table V fit the total cross sections with an average
deviation of 3%.

A large downward adjustment was needed in the low-
energy data (especially those of Rudd and Madison,
1976) to match the recommended total cross sections.
The charge transfer to the continuum (CTC) peak results
in a discrepancy for the runs at the intermediate energies
of 40—150 keV in all data sets, the peaks being especially
prominent in the data of Cxibson and Reid (1985, 1986).

There is also a discrepancy near the cutofF energy be-
tween the model calculations and the data of Rudd and
Jogensen (1963) and of Rudd et al. (1966). This stems
from the size of the angular mesh, which was too coarse
to reproduce the binary-encounter peak in the experi-
ment at high energies. The data of Toburen (1971)and of
Stolterfoht (1971a) taken with smaller angular steps do
not have this discrepancy. The data of Park and
Schowengerdt (1969b) agrees well with other data just
below the cutofF but falls too low at lower energies.

The average overall accuracy of the At is estimated to
be +10%. Samples of the data are shown in Fig. 23,
where Y, the ratio of the cross section to the Rutherford

(X30)

cross section, is plotted against the secondary energy S'
for various primary energies from 10 to 4200 keV.

B. Neon

Three sets of data combine to cover To from 7.5 to
1500 keV, with a gap between 300 and 1000 keV. While
the individual runs were Atted fairly well by the model, it
was difficult to find parameters that agreed with the
singly-difFerential cross sections and also gave the correct
asymptotic total cross sections at high and low energies.
The value A

&
=0.75 from the total cross sections is too

large to At the higher-energy SDCS's. The value 0.58 was
chosen as the best compromise. The data and fit of the
model are shown in Fig. 24.

The discrepancy between the model and the SDCS's
due to the CTC peak begins to appear at about 30 keV
and is quite prominent at 150—300 keV. At 300 keV and
above, another peak (in abut not in do /d W) comes at a
somewhat lower secondary energy, 8'-50 eV. This
peak, which represents an enhancement of the
continuum-dipole interaction, grows as the proton energy
is increased (Kim, 1976).

At primary energies of 50—300 keV, the data above the
cuo at fF are generally higher than the model. This may re-

11 assuit from our arbitrary classification of the 2s subshe as
an "inner shell, " since I(2s) )2I(2p). If the parameter
3 j had been given the lower value of 0.57 for the outer
shells rather than the larger value (0.66) characteristic of
the inner shells, this discrepancy would have been much
smaller. Nevertheless, the model should provide SDCS's
with an average error of about 15%%uo.

C. Argon

0

CD -1—

10

Six sets of data cover the energies 5 —5000 keV. These
are shown for representative primary energies in Fig. 25.
At low energies the data of Criswell and Toburen Cris-

I I I

x x x x x xx x 1000 (x3)

10 100 1000 10,000
W(eV)

FICx. 23. Energy distribution of secondary electrons from pro-
ton collisions on helium, shown as a ratio of SDCS to the Ruth-
erford cross section (see text): o, Rudd and Madison (1976);,
Rudd and Jorgenson (1963);0, Rudd et al. (1966); X, Toburen
et al. (1978); +, Cheng et al. (1989a); Q, Park and
Schowengerdt (1969b);, Manson et al. (1975); A, Gibson and
Reid (1985, 1986). Lines are the model with parameters given
in Table III. Vertical arrows indicate the expected position o
the peaks from charge transfer to the continuum.

10 100
W(eV)

1000 10,000

FIG. 24. Energy distribution of secondary electrons from pro-
ton collisions on neon: , Crooks and Rudd (1971). The rest of
legend as in Fig. 23.
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timated at 20 e~o xcept near the Cooper minimum and
above the n =3
Fis. s 9

cutoff, where the agreement is wor (orse see
gs, , 22, and 25). For applications thata require e-

ai s o dcrldS; Kim's model, discussed in Sec. VI.C,
gives a more accurate fit and should be used for To ~ 200
keV (cf. Figs. 8 and 9).

D. Krypton

CD

CD
O

10 100 1000 10,000
W{eV)

well et a/. , 1977) agree quite well with those of Rudd
1977) after both are adjusted to match the recommended

total cross sections. Below 50 keV none of the runs were
carried to sufficiently high secondary energies for the
n =2 shell contribution to be appreciable. The fit of the

an estimated average uncertainty of 10%. Figure 22

subshells.
s ows model calculations for the separat d ba e an corn ined

In the range of 50 to 500 keV the n =2 contribution is
apparent beyond the cutoff for the outer shell and may be
compared with the Rudd model, where data are avail-
a e. In some cases the model calculations for the n =2
contribution are in good agreement with the data or are
slightly lower. However, in most cases the model results
beyond the n =3 cutoff are too high. For the 50—500
keV energies the Rudd model yields results that are prob-
ably accurate to 10—15 % below the n =3 cutoff, but the
error increases to about 50% above this cutoff.

Above 1000000 keV, the n =2 contribution actually
some energies belowexceeds that of the 3s electrons at some '

I
t e cutoff, and at 2000 keV it begins to exceed that of the
3p electrons. Above 4200 keV the n =2 contribution is
dominant over a large fraction of th de secon ary-energy
range.

The Cooper minimum appears as a dip in Y at about
30 eV for impact energies greater than 300 keV and is
clearly seen in Figs. 22 and 25. The CTC peak is barely
noticeable in most of the data and is most prominent in
the data of Gibson and Reid (1987a, 1987b).

The accuracy of Rudd's model above 500 keV is es-

FIG. 25. Ener gy distribution of secondary electrons from pro-
on collisions on argon: 0 Rudd's d t f Cs a a rom Criswell et aI.

(1977); , Crooks and Rudd {1971);X, 10 keV, Criswell's data
in Criswell et al. (19e e a . ( 77); X, high energies, Toburen et al.
(1978); CI, Gabler (1974). The rest of legend as in Fig. 23.

E. Molecular hydrogen

Twenty runs from five sets of data were individually
fitted with an average deviation of 10%. The value of A i
calculated from oscillator strength (0.80) was too small to
fit the SDCS data and was replaced by 0.96. Cross sec-

X X~X

3670 (X3)
XX X X

v Y
X

1500

10ke

21 10 100
W{eV)

1 000 1 0,000

FIG. 26. Ener gy distribution of secondary electrons from pro-
ton collisions on krypton. Legend as in Fig. 23.

The twowo data sets for krypton cover To from 7.5 to
200 keV, with a gap from 150 to 1500 keV. However,

because the model fits smoothly both the low- and high-
energy data sets, the missing energies can b fill d

'

quite accurately and there is little need to take add' '
o a e a itional

a o o ain SDCS's. Only small adjustments to the ex-
perimental data were required except at the very lowest
proton energies (below 20 keV); the model fits well nearly
everywhere. One exception lies at the hi he ig est secondary
energy for the two lowest primary-energy runs where the
mo e results are somewhat too hi h. The

iscrepancy occurs in the highest-energy run (4200 keV).
The experimental data are suspect h

'
here, since t eir pat-

tern differs abruptly from that of other runs in the same
data set.

The model should be accurate to 10—15 % with the ex-
ceptions noted. The value of A, =1.46 is 12% higher
than the valuue expected from oscillator-strength data.
Fi ure 26g re shows the data for representative energies
along with the model.
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tions computed with the parameters given in the table
agreed with the measured data with an average deviation
of 15%%uo.

The data by Rudd (1979) required the largest adjust-
ment, especially at the lowest energies, but were fitted
well after adjustment. The single run at 50 keV by Gib-
son and Reid (1987a, 1987b) had an average deviation of
30% due to the CTC peak. This peak also showed up,
but to a lesser extent, in the other data sets. In the Rudd
et al. (1966) data, a discrepancy occurs in the 200- and
300-keV runs near the cutoff, owing to the coarseness of
th angular mesh mentioned earlier. A discrepancy be-
tween the model and the data of Toburen at ~ 1000 ke
occurs near the cutofF. Since the cutoff is very sharp at
high energies, cross sections obtained by integrating data
over a limited number of angles are apt to be inaccurate.
The cross sections given by the model are estimated to
have an accuracy of 10%. Data and the fit are shown in
Fig. 27.

buren and Wilson (1975) and of Crooks and Rudd (1971).
Toburen's data tend to be lower than the model and the
other data sets at low energies. The accuracy of the mod-
el is estimated to be 15%, except for low secondary ener-
gies, where it is worse. The CTC peak appears from 50
to 300 keV (except in Stolterfoht's data), but at the
higher energies it comes at a somewhat lower 8'than ex-
pected.

The K-shell contribution is noticeable at 100 keV and
above, but is only important above the cutoff for the oth-
er shells. The measurements are subject to considerable

variation in this region of very small cross sections, but
the fit is generally good, as can be seen in Fig. 28.

As was the case for Ar, Kim's model, discussed in Sec.
VI.C, is recommended for applications that require de-
tails of der/d8'for To ~ 200 keV (cf. Figs. 10 and 11).

G. Molecular oxygen

F. Molecular nitrogen

Sets of data from several laboratories over the range of
TO=5 to 1700 keV are available for nitrogen. The best
value for A&, 1.05, coincides with that predicted by the
oscillator strength. The lowest-energy data would be
fitted better with a slightly smaller value of u (say, 0.60
instead of 0.70), while some of the runs at higher energies
would have benefitted from a somewhat larger value (e.g. ,
a=0.80). However, the three highest-energy runs did
not extend far enough past the cutoff to give any infor-
mation on cx.

The cross sections in Stolterfoht's 500-keV run (Stol-
terfoht 1971b), and to a lesser extent in his 400- and 300-
keV runs, tend to drop too fast at energies approaching
cutoff, as compared to the corresponding data of To-

Three sets of data cover the range of 7.5 to 300 keV.
With guidance from total cross sections, the parameters
were estimated over the full range of energies. The major
discrepancies between model and data were at U, =U due
to CTC. Smaller discrepancies occur at the highest
secondary energies. These may be due to a poor set of
parameters for the inner shells, but more likely to Auc-
tuations and incorrect background subtraction in the ex-
perimental data. The model should be accurate to 15%.
Figure 29 shows the results. The value of 2, is 1.02,
very close to the 1.04 calculated from the oscillator
strength.

I

1000 (X10)
w X~

300 (X3)

10 1QO

W(eV)

I

100Q 10,QOO
10 100 1000 10,000

W(eV)

FIG. 27. Energy distribution of secondary electrons from pro-
ton collisions on molecular hydrogen; o, Rudd (1979); X, To-
buren and Wilson (1972). Rest of legend as in Fig. 23.

FIG. 28. Energy distribution of secondary electrons from pro-
ton collisions on molecular nitrogen: o, u 1979 ' X, To-j
buren (1971); Cl, Stolterfoht (1971b). Rest of legend as in Fig.
23.
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400 (x10)

10
w(ev)

100 1000

FIG. 32. Energy distribution of secondary electrons from pro-
ton collisions on methane: 6, Gibson and Reid (1987a,b); 0,
Stolterfoht (1971a).

XI. RECOMMENDATIONS FOR FUTURE WORK

In this section we briefly review what appear to be the
most promising and important avenues for future
theoretical and experimental investigations.

Perhaps the most serious drawback in the theory of
proton-impact ionization is the lack of convenient
theoretical methods to predict cross sections for slow in-
cident protons, i.e., To ~ 300 keV. In addition to the fact
that the usual perturbative calculations fail for slow pro-
tons, the "two-center" aspects of the collision can now be
very important. This necessitates the use of quasimolecu-
lar models or theories, which explicitly include the in-
teraction between the ionized electron and the two posi-
tive ions, such as the Coulomb distorted-wave method.
One approach that is likely to work well in this regime is
the classical-trajectory Monte Carlo method described in
Sec. IV.B. Hence a systematic study of the doubly- and
singly-differential cross sections based on the classical-
trajectory Monte Carlo method for a variety of targets is
desirable. Such a study could identify systematics and
make it possible to develop more realistic theoretical
models that could effectively cover slow incident protons.
In general, DDCS measurements made at very low
( To (50 keV) energies, where two-center effects are most
prominent, have large uncertainties. This is partly due to
the fact that the secondary electrons have corresponding-
ly lower energy and are thus difficult to measure accu-
rately, and partly due to the fact that low-energy proton
beams are more difficult to characterize and control. It
would thus be desirable, from the standpoint of develop-
ing theory in this difFicult region, to make several careful
"benchmark" measurements of SDCS's.

Although first-order perturbation theory such as the
Born approximation is valid for fast protons, it is unreal-
istic to use the PWBA to calculate doubly-differential or

singly-differential cross sections for molecules because of
the complexity in calculating continuum wave functions
for such targets. With the possible exception of H2, it is
safer to rely on a combination of semiempirical models
and some selective experimental data for the time being.
Models based on the Bethe theory (see Sec. VI) will be
able to provide reliable predictions for high-energy pro-
tons as long as realistic dipole oscillator strengths are
used. Such models, however, cannot be built from opti-
cal data alone; the models contain parameters that can be
determined only if actual proton-impact cross sections
are known for some strategic incident energies, e.g. ,
To =300, 1000, 3000, and 5000 keV. When reliable abso-
lute values of the total ionization cross sections are
known, experimental DDCS's or SDCS's need not be ab-
solute, since relative cross sections can easily be normal-
ized using Platzman plots. Hence experimental data for
DDCS's that emphasize the correct shape rather than ab-
solute magnitude are desirable for targets whose total
ionization cross sections and dipole oscillator strengths
are well known. Experimental photoionization cross sec-
tions, including partial cross sections that identify
different ionic states, are also needed to provide
differentia oscillator strengths for this type of normaliza-
tion, as well as for modeling collisions with fast incident
protons.

Another weak link in the theory concerns multiple ion-
ization. Multiple ionizations that result from a series of
single ionization events (such as the ionization of an
inner-shell electron followed by Auger electrons created
in filling the inner-shell vacancy) can be handled within
existing theory. However, no good theory exists for true
multiple ionizations, i.e., when two or more electrons
from a given subshell are ejected as a result of a single
collision. Such multiple ionization is a manifestation of
electron-correlation effects, which are inherently non-
linear. Any attempt to describe multiple ionization as a
series of single collisions, e.g. , the first ejected electron
hitting and ionizing another in the same subshell, and so
on, will not be sufficient unless such a model includes all
orders of perturbation. The development of a true
multiple-ionization theory is a worthwhile challenge;
such a theory might share the same basis as a nonpertur-
bative theory of multiphoton ionization. Experimentally,
measurements of SDCS that are shell specific would be
beneficial here. Such data would also be very helpful in
providing input parameters for semiempirical models.
The level of complexity of such experiments, however, is
significantly greater than that of those described in this
review, since coincidence detection would be required.

As we have mentioned earlier, experimental difficulties
so far have hindered the determination of accurate
DDCS's for slow ejected electrons, 8'~ 10 eV. The de-
velopment of any theory that can predict an accurate
DDCS for slow electrons ejected from, say, He will pro-
vide a valuable tool that not only yields sorely needed
data but also serves as a gauge with which experimental
distortions can be identified. In combination with such a
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theory, more extensive measurements of low-energy elec-
trons using the time-of-Aight technique would dramati-
cally improve the existing data sets.

A judicious application of the theory for Compton
profiles may lead to a reliable method to predict the
singly-differential cross sections of very fast ejected elec-
trons beyond the classical cutoff. Such electrons contrib-
ute little to the total ionization cross sections, but their
role becomes more significant in modeling energy deposi-
tion by energetic protons.

Experimentally, a number of technical possibilities and
challenges exist that hold promise for major improve-
ments in the SDCS data base. As Inentioned earlier,
benchmark measurements at low primary energy and ex-
tensive time-of-fl. ight measurements at low secondary en-
ergies are highly desirable. In addition, the technology
for measuring subshell-specific DDCS's is currently avail-
able, using coincidence measurements, and such measure-
ments should be performed. Two techniques for measur-
ing SDCS's directly —ion energy-loss spectroscopy (Park
et al. ) and the angle-integrating method of Vroom et al.
(1977)—have found only limited use to date. The
analyzer of Vroom et al. could be adapted easily for
incident-proton measurements. Ion energy-loss measure-
Inents, which have been made for a limited range of both
primary and secondary energies, for only atomic hydro-
gen and helium targets, could provide a broad range of
direct, reliable SDCS's. While the cross sections mea-
sured with ion energy-loss spectroscopy are not strictly
equivalent to those measured by secondary-electron
analysis, the energy regions where valid comparisons can
be made are large, and the two techniques could provide
important consistency checks for each other.

If realized, the theoretical and experimental advances
just mentioned will significantly improve the applicability
of basic ionization physics to problems that need these
results. One of the most important of these is radiation
damage in biological systems. In this field, more doubly-
differential and singly-differential cross sections for a
range of hydrocarbon targets would be immediately use-
ful.
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the conservation of energy and momentum requires

Muo/2=Mu /2+mu, /2,

Mvp =Mu +mv, ,

(Al)

(A2)

where M is the proton mass, vp its incident speed, v its
speed after the collision, m the electron mass, and u, the
electron speed after the collision. From Eqs. (Al) and
(A2), we get

Vp+ Up
=

Ve (A3)

However, energy conservation prohibits the proton from
Inoving faster after the collision than its initial speed, i.e.,
Up (Vp.'

Ue 2Up (A4)

Thus the maximum energy the free electron can gain
from the incident proton is

W,„(p)=mu, (max) /2=2muo =4T,
where

(A5)

T =muo/2 (A6)

APPENDIX B: BINARY PEAK ANGLE

Consider the collision of an incident particle of energy
To and momentum ko with an electron at rest (see Fig.
33). After the collision, the electron recoils at an angle 8
with kinetic energy 8'and corresponding momentum k„
while the proton is scattered at an angle P with kinetic
energy T = Tp —8'and corresponding momentum k .

From momentum conservation, we have

k cosP+k, cos8=ko,

k sing=k, sin8 .

By eliminating P in Eqs. (81) and (82), we get

2kpk, cosO=kp+k, —k

while

(Bl)

(82)

(83)

is the kinetic energy of an electron moving with the same
speed as the incident proton.

Note that (a) W,„(p) given by Eq. (A5) is independent
of the proton mass and indeed applies to all heavy in-
cident particles [see Eq. (10)j; (b) this liinit is far smaller
than the actual incident energy, Tz=(M/m)T; and (c)
the maximum kinetic energy of an electron ejected away
from the incident-beam direction will be even less than
4T because, in such a case, the momentum transferred to
the electron will be smaller.

APPENDIX A: MAXIMUM ENERGY TRANSFERRED
TO AN ELECTRON AT REST

Consider a head-on, linear collision between an in-
cident proton and a free electron initially at rest. Then,

kp =2MTp k =2pyg W

k =2MT =2M(T OW) .

Substitution of Eq. (84) into Eq. (83) results in

(84)
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k,

FIG. 33. Momenta in the collision of a proton with an electron
ai rest. ko, incident proton momentum kp scattered proton
momentum; k„ejected electron momentum.

cosOb = ( fV/To )'~ if M =m,

,' (M W—/m To )
~ if M &&m,

where 8s is the angle to which the (secondary) electron is
ejected. Since the target electron was at rest initially, Ob

is the only direction it can go, i.e., it has a delta-function
angular distribution.

From Eq. (86), we get

W =4T cos Ob . (B7)

Hence an electron ejected in the forward direction has
the maximum energy 8',„=4T.
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