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Within the last decade, significant progress has been made towards a consistent and complete reformula-
tion of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental
aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and
complete if it provides precise predictions for all experiments). The main steps involved decoherence (the
transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the
evolution of quantum properties, a convenient logical structure for dealing with histories, and also some
progress in semiclassical physics, which was made possible by new methods. The main outcome is a
theory of phenomena, viz. , the classically meaningful properties of a macroscopic system. It shows in par-
ticular how and when determinism is valid. This theory can be used to give a deductive form to measure-
ment theory, which now covers some cases that were initially devised as counterexamples against the
Copenhagen interpretation. These theories are described, together with their applications to some key ex-
periments and some of their consequences concerning epistemology.
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340 Roland Omnes: Consistent interpretations of quantum mechanics

I. INTRODUCTION

A. About interpretation

1. What is interpretation?

The goal of an interpretation, when a theory is so
abstract that our intuition fails to encompass it, is to
reexpress the phenomena, the setup of an experiment and
its data, in terms of the basic formalism. This, at least, is
how the first interpretations appeared in physics with the
advent of relativity.

The problem is deeper in the case of quantum mechan-
ics because of a confIict between the intrinsically proba-
bilistic character of the theory and the factual data one
uses when verifying its predictions. The point is that an
experimental device is made of atoms and, as such, one
expects it to be submitted to quantum laws, which can
only deal with probabilities. But a datum is a fact. Its
certainty is taken for granted, and here is the conQict.

The program of an interpretation can therefore be
defined as (i) reexpressing the phenomena and the data
within the conceptual framework of theory; and (ii)
reconciling the probabilistic character of the theory with
the certainty of facts and the existence of macroscopic
determinism (which may be not universal but is anyway
inescapable).

The Copenhagen interpretation answered the first
question by its axioms of measurement theory. It gave
up solving the second one when it assumed that the mea-
sured object should be described by quantum mechanics
and the experimental data by unmitigated classical phys-
1cs.

2. Which interpretation?

One may wonder what criteria should be used to judge
the quality of an interpretation. Interpretation is an in-
trinsic part of the theory. This is obvious, since it uses
only the means that are provided by the theory in order
to reach phenomenology. So, as a part, it must share the
criteria of a theory, namely, to agree with experiment
and to be consistent. Consistency is understood here in
its usual logical sense, a theory being consistent when it
contains no internal contradiction.

An interpretation should also be complete. One does
not mean by that a philosophical notion of completeness
such as was put forward, for instance, by Einstein et al.
(Einstein, Podolsky, and Rosen, 1935). One demands
only that the theory give a precise and unambiguous pre-
diction in the case of every experimental situation. This
is not a trivial condition, since it is not always clear what
are the predictions of the Copenhagen interpretation in
quite a few cases. Leggett (1980, 1987a, 1987b) was the
first to stress that the Copenhagen interpretation is in-
complete, and he proposed specific experiments to probe
these weak points. Similarly, the interest shown in the

observation of isolated atoms is not only due to the fact
that it is a technical feat leading to useful data, but also
because the predictions of, the Copenhagen interpretation
are somewhat unclear in that case. The same is true in
the case of delayed-choice experiments.

Finally, an interpretation must make it clear how it de-
scribes facts. Bohr (1958) spoke of phenomena as being
described in terms of classical physics. Landau and
Lifshitz (1958a) formulated quantum mechanics in terms
of a separate classical physics. Heisenberg (1958) and
others (London and Bauer, 1939; Peierls, 1985) stressed
the central role of an external, essentially classical ob-
server. Accordingly, the Copenhagen interpretation does
not really describe phenomena in the language of the
theory; it only puts them side by side with theory. The
question of consistency cannot even be stated in these
conditions.

If, on the contrary, one assumes that there is only one
physics, which must then be quantum physics, the theory
must account for the existence of the factual data enter-
ing in its experimental verification. This means that, if
one assumes the universality of quantum mechanics, the
theory must be consistent enough to encompass the condi-
tions ofits own experimental verification.

This is of course an unthinkable goal in the older ver-
sion of the Copenhagen interpretation, which is, howev-
er, the only one we have. Its formulation is too weH
known to be repeated here, and one Inay consult
d'Espagnat (1976) or Primas (1983) for a specific account,
see also the short and lucid discussion by Van Kampen
(1988). There is no serious alternative to it, since the ap-
proach through hidden variables, whatever its interest,
has not been developed to the point of giving a theory
but only the preliminaries of a theory (Bell, 1964, 1966;
Bohm, 1966; Belinfante, 1973).

The agreement of the Copenhagen interpretation with
a vast number of experiments is excellent, despite the
slight ambiguities that were mentioned before. It resist.'
criticism beautifully, and recent progress has only made
its real depth more obvious. Why then did not the
Copenhagen interpretation look really satisfactory, to an
extent that has kept research going on the subject for six
decades?

The reasons have already been mentioned: the
Copenhagen interpretation is incomplete, its consistency
is very questionable, and its treatment of phenomena is
much too superficial. It must necessarily be completed
by solving at least two basic problems, namely, why one
does not observe the linear superpositions of classically
different states as they are exemplified by Schrodinger s
cat (Schrodinger, 1935) and why classical determinism
holds at larger scales despite the probabilistic behavior of
atoms.

As far as determinism is concerned, one cannot give it
up, even if it cannot be held as universal (as shown by the
existence of chaotic systems) nor as absolute because of
quantum fluctuations. Determinism is necessary to pre-
dict how a device in a laboratory is going to work.
Without it, no apparatus would have any useful purpose
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Roland Omnes: Consistent interpretations of quantum mechanics 341

and no experiment could be checked. It also tells us how
to reconstruct the past from a record. Without it, one
would not be able to keep records of a series of experi-
ments, and it would even be impossible to check the
probabilities that are predicted by quantum mechanics.

The shortcomings of the Copenhagen interpretation
mentioned above should not, of course, be misconstrued
as a lack of depth. It constitutes a wonderful achieve-
ment, considering when it was put forward. Its empirical
success provides good reason to believe that there should
exist a version of it enjoying completeness and consisten-
cy, while providing a satisfactory description of phenom-
ena and justifying the use of common sense notions.

The present review is devoted to some recent attempts
at finding this kind of consistent Copenhagen interpreta-
tion and to the claim that these goals have been met.

B. Orientation

The kind of progress one needs to obtain a satisfactory
version of the Copenhagen interpretation does not
demand a drastic revision in the foundations of the
theory. Rather, it asks for the solution of a few specific
problems, and this can be accomplished by purely techni-
cal advances.

Quite a few such advances have been made during the
last decade. They took place after an episode during
which much interest was focused upon hidden variables
because of a test for their existence that was discovered
by John Bell (1964). The experiments have now decided
against hidden variables (Aspect et al. , 1981, 1982), al-
though it would be excessive to say that all the conceiv-
able possibilities have been excluded. The remaining
ones, however, either assume action at a distance, or they
have no precise formulation, so that they offer little grasp
for research. The time is therefore ripe for a better un-
derstanding of the Copenhagen interpretation.

The renewal of this interpretation began when
decoherence became understood (Zurek, 1982). Decoher-
ence means essentially that the wave functions of the
internal electrons and atoms are orthogonal for two
clearly different situations of a macroscopic body, or at
least they rapidly tend to become orthogonal. This is due
to the interaction between the collective and internal
motions that is also responsible for dissipation. Quantum
density operators describing the macroscopic properties
then become almost diagonal, so that the linear superpo-
sitions of quantum states are broken, together with
the quantum interferences they go with. For instance,
an initial quantum superposition of two states for
Schrodinger's cat, say 2 '~ ~dead)+2 ' ~alive), be-
comes through dynamics a simple statistical alternative
for the two disjoint events, either "dead" or "alive" with
equal probabilities.

Another significant step forward was made when
Griffiths (1984) introduced the notion of history for a
quantum system. It is defined as a sequence of properties
holding at a sequence of times, and it was found to be an

encompassing notion, wide enough to describe all of phe-
nomenological physics. Among all the conceivable his-
tories, only a few make sense, insofar as one can assign a
probability to them. The meaningful ones can be selected
according to well defined algebraic criteria. One can best
appreciate the interest of this result by means of a simple
example: when the possibility of observing a photon
behind an interferometer is stated by mentioning the
various regions where it can hit a screen, there is no
meaningful history stating that the photon also goes
through only one arm of the interferometer. According-
ly, histories give us a grasp of what is meaningful or
meaningless in quantum mechanics.

Gell-Mann and Hartle brought together the ideas of
history and decoherence. They proposed a theory that
can be considered as a good candidate for a consistent
and complete interpretation, although some parts of it
still remain in the state of a program (Cabell-Mann and
Hartle, 1990).

In the meantime, the author had proposed another
similar theory (Omnes, 1988a). Although it relied upon
some new principles, it soon turned out to be in fact a re-
formulation of the Copenhagen interpretation well suited
to the treatment of consistency. It stressed strongly the
logical aspects of quantum mechanics.

The logical structure of quantum mechanics was found
to be a useful guide in organizing the various problems
occurring in the construction of an interpretation. It led
first to a theory of classical phenomenology containing
the proof that classical determinism is a consequence of
quantum mechanics (Omnes, 1989). Together with
decoherence, it generated an apparently complete and
consistent interpretation (Omnes, 1990).

Altogether, therefore, there may now exist at least two
complete and consistent interpretations of quantum
mechanics. They are mostly equivalent. Their construc-
tion requires in one form or another four basic in-
gredients, namely,

(i) histories,
(ii) logic,
(iii) decoherence,
(iv) advanced semiclassical physics.

The purpose of the present review is to describe these
theoretical ideas together with their application to a few
significant experiments. The strategy of this approach is
best described as follows, at least in the version advocat-
ed by the present author:

(a) We shall assume that quantum mechanics is a
universal theory, standing as usual upon some principles
stating its mathematical framework and its dynamics,
which is based upon the Schrodinger equation.

(b) In order to avoid all kinds of uncontrolled prejudice
concerning the interpretation of the theory, we shall try
to rely upon a firm logical basis, stating what can be con-
sidered as a property of a quantum system and how one
can deal with these properties within a consistent logical
setup. This can be done by working with histories, a
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342 Roland Omnes: Consistent interpretations of quantum mechanics

unique, well defined, and universal rule for interpretation
replacing all the usual axioms of measurement theory.

(c) Then the theory itself will be used to extract from
its background all that one usually takes for granted
from a phenomenological observation. For macroscopic
systems, this includes their classical description and ordi-
nary determinism, together with explicit criteria assert-
ing when and how these classical ideas are allowed and
when they do not apply. One might describe this essen-
tial step in a nutshell as distinguishing when common
sense applies to the description of a quantum system and
when it does not apply.

(d) Having recovered completely and limitedly classical
physics, we shall reconstruct measurement theory, basing
it upon the principles established above for working with
histories.

The strategy used by Gell-Mann and Hartle is some-
what different, and it is described in Sec. II.H.

Section II will deal with the four ingredients (i)—(iv) of
a theory, listed above. They are organized in a logical or-
der that was advocated by the author, which is different
from that followed by Gell-Mann and Hartle. This is
why their theory is discussed only later on; the two ap-
proaches do not rely upon exactly the same lines of argu-
ment. Then measurement theory is treated. in Sec. III. It
is in principle completely deductive. It essentially recov-
ers the prescriptions of the Copenhagen interpretation,
except for a few more or less minor changes. Section IV
is devoted to a discussion of some experiments to which
the Copenhagen interpretation does not apply trivially.
They include, together with some refined neutron in-
terference experiments, the observation of a unique atom,
delayed-choice experiments, and the macroscopic quan-
tum behavior of superconducting interference devices.
Many other beautiful experiments are not reviewed be-
cause they are conveniently and directly covered by the
Copenhagen interpretation. Some epistemological corn-
ments are finally added in Sec. V. The Einstein-
Podolsky-Rosen problem is included in Sec. IV because it
occurs as a canonical case in a deductive measurement
theory.

This review does not try to cover all the recent
significant contributions to our understanding of quan-
turn mechanics. This is because there has been progress
in too many directions, and the corresponding literature
is too prolific to be reviewed usefully. We shall be con-
cerned here only with attempts at a synthesis and with
the notions entering them. Even so, there is much to
cover, and there have been particularly many significant
results in the theory and applications of decoherence.
Fortunately one can expect a forthcoming review by
Zurek on this specific subject, so that it will only be
sketched here as needed for the present purpose. See in
the meantime Zurek (1991).
II. FOUNDATIONS

A. Preliminaries

Phenomenology is concerned with the properties of a
physical system; it is important to make clear what a

property of a quantum system is. This question goes
back to the beginnings of the theory. Von Neumann
(1932) showed that properties can be associated with pro-
jectors in Hilbert space. Later on, Crleason (1957) proved
that the state of a system together with the associated
quantum probabilities is uniquely defined by a few simple
and logical requirements bearing upon the statement of
properties. These results will be needed later on, so we
shall review them brieAy here for the sake of clarity.

1. Mathematical foundations

One can assume that, with the possible exception of
spacetime, all of physics is controlled by quantum
mechanics. Cabell-Mann and Hartle also envision a
cosmological version of the theory in which spacetime is
included, at least in principle.

This assumption implies that the theory must deal with
individual systems rather than statistical ensembles, since
discussing, for instance, statistical ensembles of the solar
system would be rather awkward. The rules of quantum
mechanics are therefore stated for an isolated system, al-
beit if necessary an arbitrarily large one. A physical sys-
tem consists of particles, either fixed in number or with
fixed values for the conserved quantum numbers (in the
case of field theory).

The concepts of fields or particles are given a content
by some specific observables, which may be the fields
themselves or the momentum and position of particles
(position being easy to define only in the nonrelativistic
case). These observables can be more precisely defined
with the help of invariance properties, momenta being
for instance the generators of space translations. They
can also be thought of as functions in Feynman's path-
integration approach, (Feynman, 1948; Feynman and
Hibbs, 1965), as elements of an abstract algebra (Dirac,
1930; Haag and Kastler, 1964), or as self-adjoint opera-
tors in a Hilbert space (Von Neumann, 1932). It is well
known that quantum mechanics has several such
equivalent formulations, one or the other being best suit-
ed to a specific problem. The Hilbert-space approach
will be used here because it is most widely known.

An individual isolated physical system is therefore as-
sociated by the theory with a definite Hilbert space and a
definite algebra of observables (i.e., self-adjoint opera-
tors). The theory will never leave this framework, which
is enough to provide an account of dynamics, logic, and
interpretation.

2. The properties of a system

A property of a system is given when one can assert
that the value of an observable A is in some given set D
of real numbers. This set may be just one number when
the spectrum of A is discrete, or an interval or a more
complicated domain. Von Neumann (1932) associated a
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Roland Omnes: Consistent interpretations of quantum mechanics 343

property with a projector in Hilbert space, namely,

E= g 'g ~a, r)(a, r~
',

aED r
(2.1)

3. Probabilities and states

One can think of the state of a system as a datum al-
lowing one to define a probability for each property. The
probability of a property with projector E will be written
as p (E). Once again, at this early stage in the construc-

where
~
a, r ) is a normalized eigenvector of A with eigen-

value a in Dirac s notation, and r is a degeneracy index.
The following features of this correspondence are

worth noticing (Von Neumann, 1932; Mackey, 1963):
(i) Only the values of the observable A belonging to the

spectrum of the associated self-adjoint operator contrib-
ute to the sum (2.1).

(ii) When a change of observable amounts to a straight-
forward computation, there is no change of projector.
For instance, it amounts to the same thing to say that the
value of A is in the interval [ —1, +1] or that the value
of A is in the interval [0,1]. The projectors are the
same.

(iii) Every projector E is associated with some proper-
ty. This can be shown by taking A =E and D={1].

From here on, no explicit distinction will be made be-
tween properties and projectors, no more than between
observables and self-adjoint operators.

Although the properties are only sentences with no
empirical meaning at this early stage in the theory, we
note with Von Neumann that they are at least sensible as
sentences: Keeping the observable A fixed and denoting
by E and E' the projectors associated with different
domains D and D', one sees that

(i) E and E' commute;
(ii) One can identify the properties saying that "the

value of 2 is in D and/or in D"' with the simpler ones
saying that "the value of A is in D AD' (or D UD', re-

spectively), " having for their respective projectors EE'
and E +E' —EE'. The negation "the value of 2 is not in
D" also says that "the value of 3 is in D," D being the
complement of D and the associated projector E being
I —E. The conventional rules for the use of the logical
functions (and, or, not) are consistent with this formula-
tion of properties.

When noncommutative observables are considered, the
associated projectors do not commute, and there is no
possibility of preserving these simple logical aspects of
the construction. Birkhoff and Von Neumann tried to
dispose of this difficulty by using nonconventional logics
(Birkhoff and Von Neumann, 1936; Mackey, 1963;
Mittlestaedt, 1978, 1986; Jauch, 1968; Primas, 1983;
Mittlestaedt and Stachow, 1985). It does not seem, how-
ever, that this approach yields an explicitly consistent in-
terpretation, and accordingly the properties associated
with noncommuting projectors will never be considered
simultaneously in the following.

tion, the probability is not yet given an empirical content;
it is only a convenient mathematical device to be used for
constructing an interpretation. Accordingly, one can
only submit it to conditions arising from the meaning of
properties and from the axioms of probability calculus.
These are the following:

(i) The probability p (E) depends only upon the projec-
tor E and nothing else. For instance, it is insensitive to
the choice of a basis in the subspace of the Hilbert space
having E for its projector.

(ii) Positivity: p (E) 0.
(iii) Normalization: p(I)=1, the identity operator I

corresponding to a trivial property saying that the value
of an observable is anything whatever.

(iv) Additivity: if two properties (E,E ) are such that
E and E' commute and the product EE' is zero, one has

p (E+E')=p (E)+p (E') . (2.2)

This assumption corresponds, for instance, to the case of
two disjoint domains D and D' for the values of an ob-
servable A. Additivity is clearly necessary for the con-
sistency of the language of properties in that case.

An important theorem, due to Gleason (1957), star.=s
that these conditions are sufficient to define completely
the mathematical expression of p (E): There must exist a
positive operator p with unit trace such that

p (E)=Tr(pE) . (2.3)

When the property E states that the value of A is in D
and the state is pure, one gets from Eq. (2.3)

p(E)= y 'y l(~, rip)~'',
aED r

(2.5)

i.e., Born's probability rule, which therefore appears as a
consequence of straightforward logical considerations.

Gleason's theorem holds only for a dimension of the
Hilbert space larger than 2. It was first stated for a se-
parable Hilbert space and the proof was made clearer by
Jost (1976). It has been extended to a large class of
nonseparable Hilbert spaces. For a recent survey, see
Matsuda (1990).

4. Dynamics

Time evolution is expressed by a unitary operator U(t)
generated by a Hamiltonian operator H,

U(t) =exp( iHtlA) . — (2.6)

This is of course equivalent to the Schrodinger equation.

This operator p defines, therefore, the state of the system,
since it constitutes a datum allowing a knowledge of
probabilities. It may be called a state operator, although
it is more frequently referred to as the density operator.
The system is said to be in a pure state g (1( being a nor-
malized vector in the Hilbert space) when p is the projec-
tor upon g,

(2.4)
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344 Roland Omnes: Consistent interpretations of quantum mechanics

One can use either the Schrodinger representation, in
which the observables are kept fixed and the density
operator evolves according to

The time-dependent Heisenberg operator E(t) associ-
ated with a given projector E can be used to give a mean-
ing to a time-dependent property, stating for instance
that "the value of 2 is in D at time t." The a,ssociated
probability can be written as

p=TrIp(t)Ej=Tr[pE(t)j . (2.9)

(2.7)

or the Heisenberg representation, in which the density
operator is kept. fixed and the observables change with
time according to

(2.8)

made by GrifFiths was his discovery of the concept of
consistent histories, as will be explained below.

One may envision a history as a sequence of snapshots
resulting in a motion picture of the system. It contains of
course much more than the unique photograph given by
a Von Neumann property. What is perhaps surprising is
that histories are versatile enough to provide a complete
description for all of physics, as will be seen.

For definiteness, we shall consider that the property
holding at time t& states that the value of an observable
Ak is in a range Dk. No commutativity of the various
observables Ak is assumed, but one can use several com-
muting observables Ak' together at the same time in
place of just one, asserting for instance that the values for
the three components of a position are in some given
volume. The time-dependent projectors associated with
the properties occurring in the history will be denoted by
E„(t„).

B. Histories
2. Probability of histories

1. What is a history?

The idea of histories, extending significantly the notion
of properties, was introduced by Griffiths (1984). Basi-
cally, a history is simply a series of properties occurring
at an ordered sequence of times t„t2, . . . , t„(tk (tk+, ).
A typical history states some property at time t, , then
another property at time t2, and so on. It may give, for
instance, the position of a particle within some well
defined range at time t&, then its momentum under simi-
lar conditions at time t2, its position again at time t3, and
so on.

As a matter of fact, one can find earlier considerations
of histories in several works (Gell-Mann, 1963; Aharonov
et al. , 1964; Houtappel et aI. , 1965; Carmichael and
Walls, 1976; Cohen-Tannoudji, 1975; Cohen-Tannoudji
and Reynaud, 1979; Walls, 1979). The breakthrough

The probability of a history is given by the quantity

p =TrIE„(t„) . E2(t2)E, (t, )pE&(t&)Ez(t2) . E„(t„)j,
(2.10)

where p is the state operator at an initial time zero earlier
than t, (0 t, ). Once again, this probability is only a
convenient mathematical tool with no empirical content
for the time being. Its main purpose is to provide a con-
sistent language for talking about physics with a view to-
wards interpretation.

Equation (2.10) is the one that was used by Gell-Mann
and Hartle and by the author. Grif5ths used a slightly
different notion, what he called a conditional probability,
in which the state operator is specifically assumed to be
given by a property, i.e., by a projector Eo. Then he
defined the probability as

pG=trIE„(t„) E,(t, )EOE, (t, ) E„(t„)j/TrIEOE„~, ) j . (2.1 1)

The main difference between these two definitions is
that pG is time-reversal invariant whereas p is not. This
was the main reason for GrifIiths's choice, but it turns
out that the choice (2.10) is more convenient in spite of
that. Moreover, there is no reason to assume that the ini-
tial state is always defined by a property. It depends in
fact upon the complete previous history of ihe system,
which tells how it was prepared, and this has no
correspondence with a time-reversed situation.

One must of course justify this choice of probabilities:
Eq. (2.10) was not new when Griffiths proposed it. It had
already been found to describe the outcome of several
successive measurements in the Copenhagen interpreta-
tion (Aharonov et al. , 1964), and Griffith's approach was
essentially similar, although he did not refer to the prop-

erties as being necessarily checked by a measurement.
This kind of argument is no longer satisfactory when

the history is considered as a pure assumption and the
notion of history itself becomes a building block for an
interpretation to come. One must then find better
reasons for adopting Eq. (2.10).

The simplest approach uses Feynman paths integrals
(Gell-Mann and Hartle, 1990; Omnes, 1988a). It is re-
stricted to the case in which each observable Ak is either
a position or a momentum observable. One writes down
the probability amplitude for the last property at time t„,
given the initial state at time zero, as a Feynman path in-
tegral. If then the property at time tk states that Ak is,
for instance, the position, and it lies in a domain Dk, one
only keeps the paths crossing this domain Dk at time tk
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Roland Omnes: Consistent interpretations of quantum mechanics 345

in the Feynman sum. When the same is done for all in-
termediate times, one gets Eq. (2.10).

There is also a formal approach more akin to the logi-
cal foundations of Gleason's' theorem. It consists once
again in giving a meaning to the language of properties.
One assumes that

(4)
2

(3)
2

(2)
2

(1)
2

,iixXLLLLLLLLL&~~

iixXLLLLLLLLL&~~iiLLLLLLLLL&&~iixiLLLLLLLLL&&~

iixXLLLLLLLLL&&~

(i) The probability of a history depends only upon the
properties occurring in it, i.e., upon the corresponding
projectors.

(ii) When n = 1, the probability is given by Gleason's
theorem.

(iii) When Ek+,(tk+, ) =Ek(tk ), i.e., when an immedi-
ately previous property is stated again, this is a tautology
and the probability is the same as for the history men-
tioning the property only once.

For the same reason, when the first property is tauto-
logical with respect to the initial state, i.e., when

pE, (t, ) =p, (2.12)

one can suppress the first property.
(iv) When two successive properties Ek+,(tk+i) and

Ei, (tk) contradict each other, i.e., when they commute
and their product vanishes, this is nonsense and the prob-
ability is zero.

(v) Probabilities are additive for two disjoint properties
occurring at the same time.

These simple conditions imply Eq. (2.10) for the probabil-
ities. Accordingly, this formula is unique, and it can be
used safely as a basis for constructing an interpretation.
It may be mentioned that not all the additivity conditions
(v) are satisfied by the formula, and one obtains Eq. (2.10)
by using additivity only for the last property.

3. Additivity and consistency

As will become clearer when quantum logics are intro-
duced, one should not consider a unique history alone
but a complete family of possible histories together, just
as one considers a complete family of possible events in
probability calculus. To do so, one specifies once and for
all the initial state, the sequence of times
Itk I, k =1, . . n, and th. e observables I Ak I. The spec-
trum of each observable, say Ak, is divided into a com-
plete family of disjoint sets Dk . When replacing the sets
IDk I in the previous definition of a history by all the pos-
sible sets ID&" I, one obtains a complete family of his-
tories. Figure 1 shows how this can be represented
graphically in the case n =2. Each property [ Ak, Dk ] is
associated with a projector Ek "(t„). All these histories
produce not only one motion picture but a complete fam-
ily of motion pictures with different scenarios. One can
also think of them as different events as in probability
calculus.

Several disjoint histories can be put together to pro-
duce another less detailed history. This is shown in Fig.

(2)
1

(3) D (4)
1 1

FIG. 1. Elementary histories are associated with small boxes.
A larger box at the lower left is associated with a larger history.
The shaded region at the upper right is associated with a more
general proposition.

E„:",'(t„,)E„"(t„)I =0, (2.13)

when the sequence

{akim

is difFerent from the sequence

Iak)(k =1, . . . , n —1). These conditions are suKcient
for additivity but they are not necessary. This means
that they might be in some cases too restrictive, leaving
aside families of histories for which additivity holds
whereas the stringent conditions (2.13) do not.

Necessary and suf5cient conditions have been given by
Griffiths (1984) and by the author in another form
(Omnes, 1988a), and one then speaks of consistent fami-
lies of histories. It will be enough to give an example in
the simplest case where n =2, when each spectrum is di-
vided into two complementary sets (see Fig. 2). There is

0
2

0
1 1

FIG. 2. The simplest family of histories giving rise to a con-
sistency condition.

1 where the shaded rectangular region corresponds to a
history; this rectangle is made of several smaller rectan-
gles, i.e., the larger history comprises several more de-
tailed histories. Additivity requires that the probability
of the larger history is the sum of the probabilities for the
more detailed ones entering it.

Not all complete families of histories satisfy additivity.
If one goes back to the expression of probabilities in
terms of Feynman path integrals, one finds that the win-
dows through which the paths must go are quite severely
restricted for this to be true. They must be so well
chosen that the additivity of probabilities is consistent
with the quantum additivity of amplitudes. This condi-
tion can also be expressed by some mathematical equa-
tions or consistency conditions (Griffiths, 1984).

Gell-Mann and Hartle (1990) have proposed a con-
venient set of consistency conditions. They read as fol-
lows:
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only one condition in that case, which was written by
GrifFiths as

Re TrIE, (t, )pE, (t, )E2(t2) I
=0

and by the author as

TrI [E)(t) ), [p,E((t) )]]E2(t2 )I =0 .

(2.14)

(2.15)

C. The logical structure of quantum mechanics

1. What is the problem?

Griffiths histories can be used to build up a consistent
logical structure of quantum mechanics. This is essential
for an interpretation because the difficulty one meets
when relating the mathematical structure of the theory to
the empirical description of phenomena is not so much a
quantitative matter as a logical one. The language of Hil-
bert spaces, operators, and so on and the language of
phenomena look very far apart, but they have at least one
common feature, which is their submission to logic. The
problem of interpretation can therefore be made clearer
if one is able to find a firm logical structure in quantum
mechanics.

The language of properties was a first step in that
direction. It shows how some statements having a rather
clear meaning in empirical physics can also be given a
perfectly clear meaning within the mathematical

Each of these forms can be extended in a precise manner
to the general case. They should be compared with con-
dition (2.13), which reads in that case

1( & )PE&(r 1 ) &(t2 ) I (2.16)

Clearly, the conditions (2.14) or (2.15), which are
equivalent, are less stringent than condition (2.13).

For instance, in the case of spin —„if the initial state
specifies the value of a spin component along a direction
no, whereas the properties at time t, and t2, respectively,
state the values of the spin components along two direc-
tions n& and n2, the conditions (2.14) or (2.15) give the
following geometric condition:

(noXn, ) ~ (n, Xn~)=0.

The more stringent condition (2.13) demands in that case
that n

&
=+no or n

&
=+n2.

It turns out that, in most cases of practical interest,
one can use families of histories for which the simpler
condition (2.13) holds. The Cxriffiths conditions (2.14)
are, however, necessary when it comes to proving beyond
any doubt that a statement is meaningless whatever its
context, such as saying for instance through which arm
of an interferometer a photon goes. In that case, one
must make sure that no possibility has been left out, and
one must use necessary and sufficient conditions.

One can also use more general families of histories that
are sometimes useful for making calculations simpler
(Omnes, 1988a). Their use is seldom imperative, except
when discussing delayed-choice experiments.

language of the theory. The main problem is then to use
this language of properties for reasoning and not only for
talking.

This can be made clearer with an example: Consider
an experiment in which a neutron coming from a reactor
produces fission in a target containing uranium; some de-
cay products enter a mass spectrometer and are then
detected. As an example of empirical reasoning, one
might say that a counter has registered, and this corre-
sponds to a xenon mass, therefore it detected a xenon nu-
cleus. Therefore fission has taken place. Therefore a
neutron collided with a uranium nucleus. Therefore this
neutron came from the reactor and crossed a velocity
selector belonging to the experimental device. From this
one can deduce the neutron momentum and the kinemat-
ics of the collision.

Similar reasoning is used when one derives physical
data from an experiment, or when computing statistics
and estimating systematic errors. This reasoning essen-
tially relies upon common sense and makes only a limited
use of quantum notions. The problem is to found this
reasoning consistently upon quantum mechanics, which
is assumed to be the only basis of physics.

One sees from the example that it is far from enough to
consider only one property, which would be the actual
detection of the xenon nucleus as the Copenhagen inter-
pretation would have it. Many other properties are
worth mentioning for a complete understanding of the
process. Furthermore, logical implications are every-
where needed, each time one might say "therefore" or
"if. . . , then. "

Accordingly, one needs a logical structure for the
theory extending the language of properties in order to
allow for all the different properties occurring at different
times to be mentioned. It should give an explicit recipe
for deciding when one can infer a logical consequence of
some known property via an implication.

This need was clearly perceived by Von Neumann, but
he stumbled upon the rigidity of quantum rules and of
formal logic. His proposal for using unconventional log-
ics (Birkhoff and Von Neumann, 1936) was brilliant but a
priori unable to recover common sense, despite the efforts
made in that direction (Mittlestaedt, 1978, 1986).

Griffiths consistency conditions have shown where the
difficulty lies: One cannot put together arbitrary proper-
ties at various times. Among the histories that one can
build from them, only those satisfying the consistency
conditions can be meaningful. Once this is realized, so
that simultaneously meaningful properties can be sorted
out, it becomes possible to reconcile quantum-mechanical
concepts with conventional logic.

The logical structure of quantum mechanics is there-
fore based upon consistent families of histories together
with logical rules allowing one to infer their conse-
quences. Although this logical structure is only a part of
a complete and consistent interpretation, it is neverthe-
less very useful because it provides a guideline for con-
necting all the other constituent parts of the interpreta-
tion.
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The content of the present section is due to the author
(Omnes, 1988a, 1990). Its partial extension to the frame-
work of C* algebras and to relativistic situations has
been worked out by Blencowe (1991).

2. What is logic' ?

What one needs to know about logic for interpreting
quantum mechanics is very little, but it should at least be
stated precisely. One must first distinguish between a
logic that deals with a specific subject and logic as such,
the general theory. What is called here a logic is some-
thing peculiar to the language of physics, what a logician
would rather call an interpretation of formal logic. This
name was introduced by Birkho6'and Von Neumann be-
cause the word "interpretation" is used in physics for
something else.

A logic consists of three ingredients: (i) a field of pro-
positions, (ii) a few logical tools, and (iii) a criterion for
truth.

A field of propositions is a family of sentences. For in-
stance, all the quantum properties [ A„D], where the ob-
servable 3 is kept fixed and the range of values D can
vary, constitute a field of propositions. In classical phys-
ics, one can consider as another example a given physical
system with canonical coordinates (q,p). Given a
domain C in phase space, a typical proposition in classi-
cal physics would say that the coordinates (q,p) of the
system are in the cell C at time t. The propositions in
that field can be denoted by [C,t].

The logical tools are of two kinds, operations and rela-
tions. There are three operations: not, and, or. The
negation of a proposition a will be denoted by a. Cxiven
two propositions (a, b), one can consider "a and b" as be-
ing another proposition, similarly for "a or b." In the ex-
amples just given, it is clear how "not, and, or" can be as-
sociated, respectively, with the familiar operations in set
theory, complementation, intersection, and union. For
instance, the proposition "(q,p) is in C or in C'" is
equivalent to the proposition "(q,p) is in C U C'."

There are only two logical relations, namely, implica-
tion ( . ) and equivalence (=). Given two propositions
(a, b), a meaning is supposed to be given to the sentence
"if a, then b," also denoted by a =b. As for logical
equivalence (a =b), it simply means that a:b and
b -a.

One can give a nontrivial example of these notions in
the case of classical mechanics. Consider two domains C
and C' in phase space and the two propositions (a, b)
stating, respectively, that (q,p) is in C (C') at time t (t').
Assume Hamilton's equations for classical motion.
These equations define how a point (q,p) in phase space
moves during the time interval [t, t']. Accordingly, they
define how the points in C are transformed by classical
motion, so that C is transformed into another domain
g (C). Then one can say that a implies b when g (C) is in-
cluded in C'.

We note that the two propositions are logically

equivalent when g(C) coincides with C'. Incidentally,
this shows that classical determinism is essentially a logi-
cal equivalence. How the logical tools are explicitly
defined upon a given field of propositions is left up to us.
Whatever they may be, the tools should in any case satis-
fy some twenty or so formal axioms that are listed in
textbooks on logic (Van Heijenoort, 1967; Manin, 1977).

Although the need for a criterion for truth has been
mentioned, it will have to be left aside momentarily, ex-
cept for mentioning that in classical physics a proposi-
tion is true when it expresses an actual fact or it is logi-
cally equivalent to an actual fact. The consistency of the
two possibilities in this criterion lies upon the validity of
classical physics and particularly upon determinism. The
notion of truth in quantum mechanics is much more sub-
tle, and one will have to wait until Sec. III.C before hav-
ing the means to give it a content. Apologies are made to
the reader for this unavoidable inconvenience.

3. Quantum logics

A quantum logic must first specify a definite field of
propositions. This field is based upon a family of his-
tories: One considers a physical system in a given initial
state at time 0, a sequence of times (t„.. . , t„), and a
family of observables (A„.. . , A„), the spectrum of
each observable Ak being divided into a complete collec-
tion of disjoint sets Dk . It will be simpler to consider
explicitly the case in which n=2 because it can be made
clearer by using some drawings.

Any history in this family can be represented by a
two-dimensional set D, ' XD 2' (as in Fig. 1) to be called a
box. Using these boxes as building blocks, one can con-
struct various sets, such as the shaded region in Fig. 1.
Expressing that the values of the observables 3

&
and A2

at times t, and tz belong to such a set constitutes a pro-
position. The logical operations (not, and, or) will then
be associated as usual with the operations among sets
consisting of taking a complement, an intersection, or a
union of sets.

Then, one must define implication. To do so, we shall
assume that the family of histories satisfies the consisten-
cy conditions, so that a sensible probability is well
defined for each proposition as a sum of elementary prob-
abilities (2.10). Given two propositions (a, b), it will be
said that a implies b when the conditional probability for
b given a is unity,

p (b
~
a) =p (a and b)/p (a)= 1 . (2.17)

It can be proued that all the conuentional axioms offor
mal logic are satisfied by these conventions when the un-
derlying collection of histories is consistent. Moreover,
consistency is a necessary and sufhcient condition for this
to be true.

A given logic can be simplified, for instance, by taking
a coarser graining for the sets dividing a spectrum or by
suppressing every reference to some specific time tk in
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the sequence (this amounts to not dividing the spectrum
of Ak at all; i.e., to taking the coarsest graining). One
can also extend a logic by using a finer graining or by
adding further reference times together with their associ-
ated observables, as long as the necessary supplementary
consistency conditions are satisfied.

4. The complementarity principle

In classical physics, one might proceed analogously by
introducing an arbitrary sequence of times and complete-
ly dividing phase space into cells, assuming that an initial
probability distribution f (q,p) is given. There are many
such logics because of the arbitrariness in the choice of
reference times and of the graining of phase space. This
is, however, of no consequence: given two logics L and
L' (i.e., two fields of propositions), one can always find a
finer-grained logic L" containing both L and L'.

This insensitivity to the arbitrariness of a choice of log-
ic no longer holds in quantum physics because, when two
logics L and L' are given, there does not exist in general
a larger consistent logic L" containing both of them.
The two logics L and L' can be said in that case to be
complementary, which is essentially what Bohr meant by
the complementarity principle.

As an example, one can consider the following two log-
ics: The system is a spin —,. One considers two times t,
and t2. The initial state is a pure state with o.„=1. A
logic L is obtained by taking 3,=o., and A2=o.„each
spectrum being naturally divided into its two components
[1I and I

—1). Another logic L' can be obtained simi-
larly by taking A, =o.„and A2=a. , It is easily shown
that L and L' are both consistent, but they are comple-
mentary to each other.

One might be afraid that the existence of di6'erent log-
ics could raise the spectre of paradoxes, if a paradox is a
situation where the same assumption a implies a con-
clusion b through one mode of reasoning whereas it does
not imply b through another mode. This is fortunately
not so, because a no-contradiction theorem shows that,
whatever the consistent logics L and L' both containing
(a, b) in their fields, an implication a -- b holds necessari-
ly in both logics together. So, at least in a restricted but
a precise sense, quantum mechanics is in principle im-
mune to paradoxes.

This does not mean of course that quantum mechanics
must agree with common sense, which may be defined in
its learned version as the use of logic with purely classical
concepts. On the contrary, quantum mechanics must
predict when and why one is allowed to use common
sense.

5. A rule of interpretation

One can then introduce a rule for the interpretation of
quantum mechanics, which reads as follows:

Any description of a physical system should consist of

propositions belonging to a common consistent quantum
logic and any reasoning about it should consist of ualid im
plications.

This rule can replace all the axioms of measurement
theory as they were set forth by the Copenhagen inter-
pretation and it can also be used as a guideline for con-
structing a complete and consistent interpretation.

No specific example of its use will be given now, but a
few will soon occur when the rule is used to produce a
theory of phenomena in Secs. II.E and II.F, and others
will be detailed in Sec. IV, where experiments are dis-
cussed. Some elementary examples can be found in
Omnes (1988a, 1988b, 1990).

6. Approximate logic

The overall consistency between quantum mechanics
and the description of phenomena by common sense can-
not be perfect, and one must be prepared to allow for
some errors. To take an extreme example, the Earth
could leave the Sun and go revolving around another star
by a tunnel e6'ect. So, when common sense says that the
sun will rise tomorrow, this is only correct up to a very
small error in probability from the standpoint of quan-
tum mechanics. Accordingly, the logical structure of
quantum mechanics cannot be absolutely precise. Some
amount of error must be allowed for.

Given a very small number e, a logic will be said to be
consistent to order e when the trace in the consistency
condition (2.13) is not strictly zero but of relative order e
as compared with a typical relevant probability. Similar-
ly, an implication a —- b holds with error e when the con-
ditional probability p(b~a) is larger than 1 —e. These ap-
proximations have been justified, as far as the use of in-
completely consistent probabilities is concerned, by
Cabell-Mann and Hartle (1990).

D. Macroscopic systems

Classical physics deals mainly with macroscopic sys-
tems and, more properly, with macroscopic objects. It
will be convenient to review briefly the relevant concepts
for the sake of clarity and particularly the notion of col-
lective observables describing the classical behavior of
such a system. Then, we shall see how to express a classi-
cal property as a quantum property by associating it with
a projector. This will give a consistent representation of
classical kinematics. The next task will consist in finding
necessary and sufficient conditions for a close correspon-
dence between quantum and classical dynamics. When
this is done, it becomes possible to reformulate the logic
of classical physics as a special case of an approximate
quantum logic and to give a precise meaning to classical
determinism, to find when it applies and what are its lim-
itations. This programme will be discussed here in the
ideal case when there is no friction, the case of friction
having to be treated by other techniques, to be given in
Sec. II.G.
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1. The notion of collective observables

(41 42) = J,Pi (q)42(q)I (q)d. q (2.18)

The collective system is also associated with a collective
Hamiltonian H„and the weight function p(q) is chosen
so that the scalar products are invariant under a time

One can consider the case of an ordinary pendulum as
an example of a simple physical object. It is macroscop-
ic, i.e., made up of a large number of particles. It is,
moreover, a specific object. Many different objects can
be made from the same particles; for instance, two small-
er pendula can be obtained from the matter of the pendu-
lum. Accordingly, many objects and many nonobjects
can occur as different manifestations of the same physical
system.

There are good reasons to assume that an object is
represented by a family of states corresponding to a sub-
space in'the overall Hilbert space of the physical system.
This has been discussed, for instance, by Bohr and
Mottleson (1975) in the case of nuclei.

One can define a set of commuting observables acting
in this subspace, to be called the collective position ob-
servables. They are essentially the variables one uses in
classical mechanics. In the case of the pendulum, they
specify its position. One might go farther and also con-
sider the elastic deformations of the pendulum and par-
ticularly the wire as being described by other collective
variables. In principle, one can even go so far as to treat
the position of atoms as collective variables by using the
Born-Oppenheimer approximation (Born and Oppenhei-
mer 1927; Hagedorn, 1980b). This is more or less a
matter of convenience, since the results one will obtain
are quantitative, and it is found that the more detailed
the description of the object by collective observables, the
larger are the errors involved in the classical approxima-
tion. One can finally complete the collective position ob-
servables by other observables in order to get a complete
commuting set. These are called the microscopic observ-
ables. They contain detailed information about the parti-
cles in the object.

There is no general theory of collective observables,
i.e., no known way of finding out directly from first prin-
ciples all the objects that can be obtained from a given
system of particles and how they should be characterized
and described. There may be some hints of such a theory
in a work of Feffermann (1983), but not a general answer.
In any case, one knows how to define the classical observ-
ables explicitly when one consider a specific object.

It is often convenient to treat formally an object as be-
ing made of two interacting physical systems, the collec-
tive system and the environment. The collective system
is associated with the collective position coordinates
Q =(Qi, . . . , Q„), where n is the number of collective
degrees of freedom. Its states can be described in terms
of wave functions f(q), which are defined upon a
configuration space I . They are square-integrable func-
tions with a scalar product

evolution, which is given by the Schrodinger equation
with a collective Hamiltonian H, depending only upon
these observables.

The environment is described by microscopic coordi-
nates. It consists of an internal environment taking into
account the particles constituting the matter of the ob-
ject. There can also be an external environment. For in-
stance, when the collective observables of a pendulum de-
scribe only the Inotion of the ball, the internal environ-
ment is the formal physical system that is made up of the
particles in the pendulum, after separating out the center
of mass. The external environment is made of air mole-
cules around the pendulum or of the photons in an exter-
nal light.

The total Hamiltonian consists of three parts,

H =H, +H, +H;„, , (2.19)

where H, depends only upon the collective observables
and H, does not depend upon them (it represents an
internal energy). The interaction Hamiltonian H;„, cou-
ples the collective system and the environment and is re-
sponsible for their exchange of energy, i.e., dissipation.

2. Collective observables
and classical dynamical variables

A general collective observable can be defined by a
self-adjoint operator 3 acting in the Hilbert space of the
collective system. A classical dynamical variable, to be
compared with it, is a real function a(p, q) defined in
classical phase space. It is possible to get a one-to-one
correspondence between them satisfying the following
conditions:

Condition (i) asserts that a change of scale acts in the
same way in the quantum and classical cases and it en-
sures that a conservation law looks the same in both
cases. The correspondence between observables and
dynamical variables is unique under these conditions

(i) The correspondence A~~a (p, q) is linear.
(ii) The position observable QJ and the corresponding

momentum observables I' are associated, respectively,
with the phase space coordinates (q,p. ).

(iii) Let U be a unitary transformation belonging to
Heisenberg's group, i.e., having the form exp{i F(Q, P) J,
where F(Q, P) is a homogeneous second-order polynomi-
al. It transforms an observable A into A'= U 'AU.
These transformations are such that the observables
(Q', P') are related to (Q, P) by a linear canonical trans-
formation. They are therefore the simplest transforma-
tions allowing a correspondence between unitary trans-
formation and canonical transformations. One assumes
that the dynamical variable a'(q, p) associated with A'
can also be obtained by performing the same canonical
transformation upon the variables (q,p) in the function
a (q,p).

(iv) When A is self-adjoint, a (p, q) is real.
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Xexp[ip (x" x')—/fiIdx'dx" . (2.20)

This formula was first given by Wigner (1932) in the case
of the density operator and was made systematic by Weyl
(1950).

(Hormander, 1979a, 1985). Its simplest form occurs
when the configuration space is a Euclidean space I".
Then one has explicitly

a(x,p)= I&x'IAlx")S(x —[x'+x"]/2)

(iii) One can perform algebraic calculations upon
operators. For instance, the symbol c(x,p) of a product
of operators C = AB is given formally by

a ac (x,p) =a (x,p)exp —i—
2 BXj BPj

a a
BPj BXj

technical role in the interpretation of quantum mechan-
ics, particularly because of the so-called master inequali-
ty

(2.21)

3. Microlocal analysis X b( xp), (2.22)

The previous correspondence between A and a (q,p)
has been known for a long time in physics. Mathemati-
cians have also turned it more recently into a powerful
and precise tool, known as the Weyl calculus. It belongs
to a vast branch of mathematics, the microlocal analysis
or pseudo-differential calculus (Taylor, 1981;Hormander,
1985).

Among the main results of this mathematical theory, it
may be mentioned that

(i) One can obtain many properties of the operator A

by looking directly at its so-called symbol a(q, p), e.g.,
one can find when the spectrum of 3 is discrete or one
can estimate its Hilbert norm ll A ll with known errors.

(ii) One can estimate the so-called trace norm, i.e., the
quantity Trl A l, where the absolute-value operator A is
defined as the square root (AA+)' . The quantity
Trl A —Bl is often a much better measure of the proximi-
ty of two operators ( A, B) than the Hilbert norm

ll
A —8 ll. It was little used up to very recently because of

the di%culty of computing it by conventional Hilbert-
space techniques. Nevertheless, it plays an important

the direction of an arrow showing upon which factor a
derivative acts. More precisely, this is a series in powers
of A when the exponential is expanded. It can be cut off
at any given power of A and there are good estimates for
the neglected terms. The usual correspondence between
commutators and Poisson brackets is exact for X and I'
and it is valid up to the leading order in Planck s con-
stant in all cases.

4. Semiclassical physics

Semiclassical physics establishes under what condi-
tions the properties of classical physics are valid and it
gives the corrections in terms of Planck's constant. Its
oldest result is Ehrenfest's theorem and its oldest tech-
nique is the BE@'approximation.

It can be nowadays approached with the help of two
powerful methods, one of them being microlocal analysis.
The other one came to be used earlier. It makes use of
coherent states (Glauber, 1963), or in the present case of
Gaussian wave functions:

1
g~(x) =const X exp ip.x/fi —g Ajk(xj——qj )(xk q„)—

j,k
(2.23)

The n Xn matrix A determines the uncertainties and
correlations for the various position coordinates, the
average values of X and P being equal to q and p, respec-
tively.

Hepp (1974) gave a rigorous proof of Ehrenfest's
theorem when the initial state is coherent by using
coherent states as a tool, showing that the leading correc-
tion behaves like the square root of Planck's constant. It
was then shown that semiclassical physics amounts to an
asymptotic expansion in powers of A' ', which is Borel
summable (Ginibre and Velo, 1979). The most useful for-
mulation was given by Hagedorn (1980a, 1981); see also
Heller (1976).

E. Classical properties as quantum properties

I

When the system has n degrees of freedom. and C is a rec-
tangular 2n-dimensional box, this means that the values
of (q,p) are given up to well defined upper errors. Since
motion transforms a rectangular box into a domain hav-
ing almost any possible shape when various dynamics are
considered, it is better to consider in general a more or
less arbitrary domain C.

The first question one can ask is whether such a classi-
cal property can be given a meaning in quantum mechan-
ics. In other words: is it possible to associate a projector
in the Hilbert space of collective wave functions with a
classical property? As a matter of fact, the question goes
back to Von Neumann (1932).

1. Which cell?

A classical property states that the classical coordi-
nates (q,p) lie within a given domain C in phase space.

Simple-minded semiclassical considerations can show
that the domain C entering in the statement of a classical
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property must be somewhat restricted. Elementary con-
siderations (Landau, 1958) suggest that one can associate
essentially one quantum state with a small rectangular
box in phase space having the volume h". A projector
will be more or less well defined if one can pile up many
such boxes in C, the rank of the projector being given by
the number of semiclassical states,

N= J h "dqdp; (2;24)

N =(PL/h)" . (2.25)

They will be made more precise later on but, when the
shape of C is simple, L and I' are characteristic scales for
its geometry (see Fig. 3).

To describe the geometric features of the boundary S
of C, one must introduce a metric on phase space. The
simplest one, when the configuration space is IR, is given
by

q /L +dp2/P2 (2.26)

It is dimensionless when the coordinates and momenta
are measured with unit scales (L,P). The volume V(C)
of the cell and the area X(S) of its boundary are then also
dimensionless quantities and one may completely fix L
and P so that the area is minimal under condition (2.25).

N should be large and therefore C big enough.
The shape of C should also be simple enough. If, for

instance, it is the kind of filamentary and tortuous region
one obtains from chaotic motions (see Fig. 3), it will be
impossible to tile it with rectangular boxes. The boxes
would have to become very tortuous themselves, and this
is inconsistent with semiclassical physics (Feffermann,
1983).

So, one must be content with a big bulky cell. This can
be made more precise by mathematical conditions to be
given now in some detail for the sake of definiteness.

Let C be a connected (in one piece) and simply con-
nected cell (without holes). One can introduce reference
scales (L,P) for the coordinates and momenta in such a
way that

Introducing the parameters

e=(fi/LP)'

8=2(S)/ V( C),

(2.27)

(2.28)

(2.29)

We shall consider only cells for which g is much smaller
than 1. In that case, e is also small. Such cells are said to
be regular. The parameter e will be called the classicity
parameter and ri the eQectiue classicity parameter Th. ey
control how well the classical property is also a quantum

property.

2. What kind of a projector?

TrF =X,
Tr(F F)=N O(q) .—

(2.30)

(2.31)

Two quasiprojectors F and F' are equivalent to order g
when

One can pile up boxes of volume h" in C in many
different ways. Although a change of piling within the
bulk of C essentially amounts to a change of basis among
the vectors defining the projector, different arrangement
near the boundary S will lead to slightly different projec-
tors. Accordingly, one cannot anticipate getting a
uniquely defined projector but rather a class of more or
less equivalent ones. Furthermore, since the validity of
classical physics, including classical logic, cannot be per-
fect, one must also be ready to deal with operators that
are nearly but not exactly projectors.

These remarks lead to the introduction of quasipvojec-
tors. A quasiprojector is defined as a self-adjoint operator
having only discrete eigenvalues belonging to the interval

[0,1]. Most of its eigenvalues are near 1 or 0. This condi-
tion can be given a precise meaning in the following way:
A quasiprojector F of rank 1V and order g is defined by
the conditions

TrlF F'I =N 0(q) —. (2.32)

One must also say how F is related to the cell C. To do
so, one can consider a wave function f&(q) with average
values (qo,po), for position and momentum, and uncer-
tainties Aq, hp. When the 2n-dimensional rectangular
box having its center at (qo,po) and half-sides (hq, bp) is
well inside C, one will say that the state P, is well inside
C. Similarly let fz be a, state well outside C. One will say
that the quasiprojector F is associated with the cell C
when

FIG. 3. Some regions in phase space are associated with classi-
cally meaningful properties. Cell (a) with typical dimensions
(L,P) is regular. The region (b) is irregular. The shaded box
has an area h.

FQ2=0 .
(2.33)

This convention clearly covers the case of quasiclassical
states as being essentially eigenstates of F.
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3. Which projectors?

One can explicitly construct the projectors or
quasiprojectors associated with a given cell C in two
different ways: The first one uses coherent states (Dau-
bechies, 1987), and a quasiprojector is given by the sim-

ple formula

F =I ~g }(g ~dq dp/h" . (2.34)

FF'=F'F =0, (2.35)

as expected from independent properties. More precise-
ly, the trace norm Tr~FF'~ is of order N exp( —6/e ).
This means that the projectors associated with two clear-
ly separated classical properties satisfy Eq. (2.35) to a
very high precision. The corresponding classical proper-
ties are therefore sharply separated, even when expressed
in the conceptual language of quantum mechanics.

F. Determinism

The other approach uses microlocal analysis, and F is
defined in terms of its symbol f(q,p). This symbol is
essentially the characteristic function of the cell (equal to
1 in C and to 0 outside), smoothed down near the bound-
ary of C upon a region of width e, in order to get a well
behaved operator.

The outcome of this process is a theorem according to
which one can associate with a regular cell C a family of
quasiprojectors of rank % and order g, these parameters
being given by Eqs. (2.25) and (2.29). The operators be-
longing to this family, including some true projectors, are
all equivalent to each other to order g.

This theorem goes back to Hormander (1979b). The
estimates were obtained by Omnes (1989, 1990). It may
be noticed that the errors are proportional to A', as ex-
pected from the results by Ginibre and Velo, and
Hagedorn. It is proportional to the ratio between the
area of the boundary of C and its volume, as expected
from intuitive arguments suggested by the piling up of
boxes in the cell.

It is also interesting to compare the quasiprojectors
that are associated with two clearly separated cells C and
C' of similar size. Let 5 denote the smallest distance be-
tween them in the nondimensional metric (2.26). The as-
sociated projectors F and F' are such that

consequence of quantum mechanics and to assert when it
holds.

A convenient formulation of classical determinism is
the following: let Co be a domain in classical phase space
and C, the transform of Co by classical motion during a
time t. The two propositions stating that "(q,p) is in Co
at time 0" and "(q,p) is in C, at time t," respectively, are
logically equivalent. Determinism can be expected to
hold even in quantum mechanics when this logical
equivalence is also valid in a consistent quantum logic.
Of course, it cannot be exact but only approximate, if
only because of wave-packet spreading.

This question has been investigated under the follow-
ing restrictions:

(i) Co and C, are both regular cells.

(ii) There is no dissipation.

The cells describe some classical properties involving
only collective degrees of freedom. They must be regular
in order to be associated with quantum properties. It
may sometimes happen that C, is in several pieces when

Co consists of one piece. This occurs when there is a po-
tential barrier that is crossed by some trajectories issuing
from Co, whereas some other trajectories are refIected
upon it. Such exceptional cases must be discussed sepa-
rately for their own sake. As for dissipation, its neglect
means that one neglects the coupling Hamiltonian in Eq.
(2.19). There are good reasons for believing that this re-
striction can be removed by using the results of decoher-
ence theory, but this remains to be proved.

When everything starts from quantum mechanics, a
preliminary question is of course to decide what is meant
by classical motion. To answer it, one may consider the
dynamical variable h (q,p) associated with the collective
Hamiltonian H„ treating it as a Hamilton function and
writing down the corresponding Hamilton equations.
This procedure defines classical motion and it gives a
content to the statement of determinism, at least as far as
classical physics is concerned.

Then one must give a quantum version of this deter-
minism: let Fo and F, be two quasiprojectors, associated
with the two cells. The corresponding quantum proper-
ties, occurring at times 0 and t, respectively, would be
logically equivalent in a trivial way if one had

U '(t)FoU(t)=F, . (2.36)

1. What is the problem?

It has already been mentioned how classical determin-
ism, or at least a sufFicient amount of determinism, is
needed to describe and to understand phenomena, to use
common sense confidently, and to get ultimate consisten-
cy in quantum mechanics when one must describe within
its framework the experiments that are used to check the
probabilities it predicts. Accordingly, any synthetic ap-
proach to physics taking its roots in quantum mechanics
must be able to prove that classical determinism is a

where U(t) is the quantum evolution operator associated
with the collective Hamiltonian H„

U(t) =exp( iH, t/A) . — (2.37)

The question of determinism therefore amounts to
finding out when Eq. (2.76) is valid and evaluating the er-
rors it involves. Since quasiprojectors are concerned,
there are again two possible approaches, according to
whether one uses coherent states or microlocal analysis.
The first method shows more clearly the physical mean-
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ing of the corrections, whereas the second one is more
general and more precise.

2. The coherent-states approach

tains will be given in that case.
Equation (2.36) takes the more exact form

Tri U '(t)FOU(t) F,—~

=N O(g, ), (2.42)

P(x, t)=(detA) ' exp[ —Q(x, t)J, (2.38)

where Q (x, t) is a quadratic quantity

Q(x, t)= —(1/4A)(x —q~BA '~x q)+ip—(x —q)/A' .

(2.39)

The quantities q and p evolve according to Hamilton's
equations

Given a coherent (Gaussian) wave function as an initial
state, one may wonder how well it remains Gaussian un-
der time evolution and, as far as the leading Gaussian
part is concerned, how its center moves and how it
spreads.

This question has been investigated in detail by
Hagedorn (1980a) in the case of the Hamiltonian

H, =P /2m + V(x)

for any dimension of space, the potential being bounded
from below and satisfying some regularity conditions
such as the existence of second derivatives. The Kepler
problem has also been treated analytically and numerical-
ly by Nauenberg (1989).

In order to describe Hagedorn's results, it is con-
venient to write down the Gaussian wave functions of in-
terest as

where N is still given by Eq. (2.25). The dynamical classi-
city parameter g, has a rather complicated expression in
which one can recognize the effects of cell deformation,
wave-packet spreading, and some effects analogous to the
non-Gaussian corrections encountered by Hagedorn [in
the present case they are controlled by the third deriva-
tives of h (q,p) ]. For all practical purposes, however, one
can simply assimilate g, into the upper bound of the
efFective classicity parameter rL(t') for all cells that are
the transforms of Co by classical motion during the time
interval 0 & t' & t.

4. The meaning of the results

Equation (2.42) gives a precise form of Ehrenfest's
theorem, in terms of quasiprojectors expressing classical
properties. It contains an explicit estimate of errors and
it enables one to say that the dynamics of an object (or
several objects) is reguLar or deterministic when the
dynamical classicity parameter is much smaller than uni-
ty. This crucial property explicitly refers to a given ini-
tial cell Co and to a finite time t, which may sometimes
be very large. For this kind of determinism to represent
a physical situation, the classical property associated
with the cell Co must be valid for the initial state. This
means that

q=p/m, p = —BV(q)/Bq . (2.40)
(2.43)

The matrices 3 and B describing the spreading of the
wave packet obey the equations

where Fo is a quasiprojector associated with Co, or more
precisely

A =iB/2m, B=2iV"(q) A, (2.41)
Tr~F pF —p~=O(g, ) . (2.44)

where V" is the matrix whose coeKcients are the second
derivatives of the potential. One may start from a given
correlation matrix A(0) at time zero and take B (0)=I.

When the exponential is a polynomial (second-degree
at most), time evolution is completely given by Eqs.
(2.38)—(2.41), up to a phase factor. In the case of a more
general potential, non-Gaussian corrections to the wave
function appear. These corrections are of order A and
they are controlled to leading order by the third deriva-
tives of the potential. These results can be used to give a
precise formulation for Eq. (2.36) (Omnes, 1989).

3. The microlocal-analysis approach

This approach does not restrict the configuration space
to being Euclidean, nor does it restrict the form of the
Hamiltonian function h (q,p). It assumes, however, some
rather stringent. regularity conditions, because h (q,p)
must be infinitely difFerentiable and satisfy some bounds
upon its derivatives (Omnes, 1990). The results one ob-

There are cases in which this condition is not satisfied,
when a macroscopic object is in a quantum state with no
classical description (Leggett, 1987b; see also Sec. IV).

Much more frequently, when determinism does not
hold, this is due to a deformation of the cell C, so ex-
treme that one cannot even associate a quasiprojector
with it. This occurs for chaotic systems for which the
geometric surface-to-volume ratio 0(t) entering in the pa-
rameter g, increases exponentially with time (Cornfeld
et aL. , 1982). The correspondence between classical and
quantum mechanics is then lost. This remarkable result
does not seem, however, to open up an experimental
check of the theory because the statistical predictions of
the two dynamics essentially agree (Omnes, 1990).

Restricting oneself to a regular object in a classically
meaningful initial state, one can use Eq. (2.42) to obtain a
clearcut proof of common sense as it applies to the ob-
ject: One selects as many discrete times (t„.. . , t„) as
needed for an argument, together with the associated
cells C, C, . Each cell is associated with a quasipro-

1 n

jector Fk, and the various projectors Fk(tk ) may be used
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to build up a history. A quantum logic is obtained by
also allowing the complementary projectors I —I k to
enter into other histories.

It is then a straightforward matter to prove that this
logic is approximately consistent, i.e., the consistency
conditions (2.13) are satisfied up to an error of relative or-
der g, with t =t„. This is a direct consequence of Eqs.
(2.31) and (2.42) and the inequality (2.21). Then one can
prove that the logical implications expressing determin-
ism in classical physics also hold in the quantum logic up
to an error at most of order g, .

In other words, one gets a proof of classical determin
ism as a consequence of quantum mechanics It. is worth
stressing once again that this holds for objects having a
regular dynamics that are initially in a state compatible
with a classical property. Furthermore, dissipation has
been neglected.

Determinism is not absolute, and one can find bounds
for the errors it involves. They are most often extremely
small. Most objects have a regular dynamics; even chaot-
ic systems are regular during a finite time, and the regu-
larity of dynamics can be checked by essentially classical
calculations.

Except for very special systems to be discussed in Sec.
IV, the most frequent case in which the state of a macro-
scopic object does not agree with a classical property
occurs after a quantum measurement. The state of a
measuring device is then a linear superposition of
different macroscopic situations. What happens in that
case will be treated in next section: it concerns decoher-
ence and it also sheds some light upon the role of dissipa-
tion.

G. Decoherence

Decoherence is here presented last but not least among
the building blocks necessary to obtain a satisfactory in-
terpretation. It has become by now an important subject
by itself, and only its most salient features will be men-
tioned here.

1. What is decoherence?

Decoherence is a dynamical efFect through which the
states of the environment associated with difFerent collec-
tive states become rapidly orthogonal. It comes from a
loss of local phase correlation between the corresponding
wave functions of the environment, which is due to the
interaction between the collective system and the envi-
ronment, also responsible for dissipation. It depends
essentially upon the fact that the environment has a very
large number of degrees of freedom.

The effect can be described more easily for a specific
example. Let us consider again the case of a pendulum:
It is released at time zero from a position xi with zero
velocity. This can be represented by an initial wave func-
tion P, (x) with an average value x, for the position and a

Let g2 be another similar initial state, differing from g,
only by the initial average position x2 of the pendulum,
and let 4 be a quantum superposition of these two states:

(2.46)

This kind of state represents what one gets when, for in-
stance, the pendulum is assimilated to a pointer register-
ing the outcome of a quantum measurement.

As time goes on, this state evolves into another pure
state V(t) according to a Schrodinger equation in which
the Hamiltonian is given by Eq. (2.19). The associated
density operator is given by

p(t)=l p(t)&(q(t)l . (2.47)

If the position of the pendulum (or any other collective
observable) is observed at a time t, the probabilities of the
results are given by the so-called reduced or collective
density operator p„(t), which is obtained from p(t) by a
partial trace upon the environment:

p(t) =Tr,p(t) . (2.48)

This is well known in the Copenhagen interpretation, and
it will also come out of the measurement theory to be
given in Sec. III.

The Hamiltonian H;„, coupling the collective system
and the environment produces energy exchanges between
them, i.e., dissipation. The wave functions of the envi-
ronrnent are sensitive to the collective motion, and they
become very different in the states %,(t) and %2(t) as
time increases. As a result, the overlap integral between
the two environment wave functions tends rapidly to
vanish. The nondiagonal terms of the reduced density
operator are proportional to this overlap integral and
they also vanish. As a result, the reduced density opera-
tor, which had initially the form of a pure state

p„(0)=(a(@,&+b(i/2&)(a*( ti[j+ 'b(y~]), (2.49)

becomes a mixed state. More, exactly, it becomes a diag-
onal density operator representing a situation in which
the object has a classical probability ~a~ of being in state
1 and another

~
b

~
of being in state 2. No interference

effect survives: this is the decoherence effect.
Since decoherence has the same physical origin as dis-

sipation, it disappears with it. This means that it de-
pends upon the dissipation coefficient A, entering in the
average collective motion of the pendulum, as given by
the classical equation

2x+~dx+ 2

dt

vanishing average value for the momentum. The internal
environment, i.e., the matter of the pendulum, will be as-
sumed to be initially in thermal equilibrium. When the
temperature is zero, the environment is in its ground
state. This will be assumed to be the case for simplicity,
so that the initial state is pure, given by the state vector

(2.45)
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The theory of decoherence gives in the present case

I(t)=expI —(1/4A')mt0(x& —x2) [1—exp( —At)]I,

(2.51)

where I(t) is a factor entering in the nondiagonal ele-
ments of p„(t) W. ith a mass of the pendulum of the order
of 1 gram, a period of 1 second, and a damping time of
ten minutes, one finds that for an initial distance x

&

—x2
of 1 micron, after a time t of 1 nanosecond, I(t) is of the
order of exp( —10 ). The eff'ect is therefore among the
most e%cient ones known in physics, and it is even
stronger at a finite temperature.

2. The theory of decoherence

It is difFicult to give a simple explanation for the ex-
istence of decoherence. Basically, it occurs because one
is dealing with an environment that is very complex, with
too many degrees of freedom. Decoherence is therefore a
complex effect concerning the phase of a many-body
wave function. This is very dificult to obtain from a
theoretical standpoint.

The Arst quantitative evaluation was given by Feyn-
man and Vernon (1963), who were mostly interested in a
quantum calculation of dissipation. They assumed an en-
vironment made up of an infinite number of oscillators.

Equation (2.51) for the decoherence eFect in the case of
a pendulum was obtained by Hepp and Lich (1973) as the
outcome of a thorough mathematical analysis, which,
however, relied heavily upon the fact that the collective
motion is harmonic. They also considered the correc-
tions coming from the finite number of oscillators in the
environment, whereas, using simpler and somewhat less
realistic models, Zurek (1981, 1982) suggested the univer-
sality of the effect; thus he was the Arst to clarify its basic
importance in measurement theory. See also Unruh and
Zurek (1989).

The most complete analysis to date is due to Caldeira
and Leggett (1983a, 1983b). They use the following mod-
el:

(i) The environment is treated as a collection of har-
rnonic oscillators. This might look like a very restrictive
assumption, had not Caldeira and Leggett shown that an
internal environment is reliably described mathematically
by such a model, one oscillator with frequency mk
representing faithfully one energy level EI, of environ-
ment with tok = (Ek Eo)fi, at least in—some cases

(ii) The environment is initially in a state of thermal
equilibrium.

(iii) The coupling Hamiltonian H;„, has a special form,
linear in the positions of the environment oscillators and
not involving their momenta. The authors claim that this
is a correct assumption in most cases of physical interest
by reviewing many diFerent cases.

Then they proceed to a calculation of the reduced den-
sity operator p„(q, q', t) by using Feynman path integrals.
The trace upon the environment degrees of freedom can
be explicitly performed because of assumptions (i) and

S (k, k')=S(k, k') exp[i(k —k').x] (2.52)

where S is the S matrix for the center of the ball at the
origin and S„ for the center at a position x, and where k
and k' are the initial and final wave numbers of a collid-
ing particle. It is found that many such collisions pro-
duce a complete loss of phase coherence in the environ-
ment for different positions of the center of the ball.
Coherence still decreases exponentially in a very short
time when the ball is macroscopic, the time being in-
versely proportional to the number of collisions per
second.

One can give an amusing example of this effect. The
center of mass of the Moon is decoupled from its internal
environment so that no decoherence can be due to it (ex-
cept for tide efFects, to be ignored here). Light corning
from the Sun, however, represents an external environ-
ment leading to a very efficient decoherence effect taking
place in about 10 sec. This means that whatever
quantum efFect happens to the Moon, it must be seen in
one place if only because of light. The calculation takes
into account an exponential decrease e ' in the nondi-
agonal elements in the density operator, the time T
behaving like o¹where cr is the cross section of the
Moon, % the density of photons, and v =c their velocity.
Of course, this example is just given for the fun of it; it
would be suf6cient to use the deterministic character of
the Moon's motion to make sure that it is in only one
place.

3. Schrodinger's cat

Although the famous example of Schrodinger's cat is
far from containing all the basic problems of interpreta-
tion, its pedagogical value makes it worth a special com-
ment (Schrodinger, 1935).

As is well known, it goes as follows: A cat is enclosed
in a box where a radioactive source can trigger a system

(ii), since quadratic Lagrangians can be integrated exact-
ly. What they find is a density operator vanishing ex-
ponentially when t increases, except when q

—q' is very
small. Again this is the decoherence effect, since the den-
sity operator is becoming diagonal in the q basis.

Looking at the correlation between the midpoint
(q +q )/2 and a given initial position, Caldeira and Leg-
gett find a generalization of Eq. (2.50), i.e., they get a gen-
eral form of classical motion in which friction enters but
is not necessarily instantaneous, as would otherwise be
expected from general causality arguments (Landau and
Lifshitz, 1958b). One therefore completely recovers clas-
sical mechanics, including the friction eFects.

Whereas all this is concerned with the internal envi-
ronment, Joos and Zeh (1985) also showed the existence
of a decoherence effect coming from the external environ-
ment. When, for instance, a macroscopic ball is hit by
air molecules or photons, the phase of the ball-particle
collision S matrix depends upon the position of the ball
center. One has
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liberating some poison. Because of internal decoherence,
it can be said that the cat is necessarily either alive or
dead. It is not in a quantum superposition state. When
the box is open, if one finds the cat to be dead, an autopsy
using classical determinism can tell what was actually the
time of its death. These are the true consequences of
quantum mechanics, and the use of retrodiction (here by
an autopsy) tells much more than what could be said in
the older form of the Copenhagen interpretation. Of
course, these conclusions completely agree with common
sense. Moreover, one can consistently state that, at any
time, the cat is actually dead, alive, or dying, as will later
be shown.

4. Is decoherence a complete answer?

Although nobody denies the existence and the impor-
tance of decoherence, a criticism has been raised against
its basic significance for the interpretation of quantum
mechanics (Bell, 1975; Zurek, 1982; d'Espagnat, 1990).
Although the reduced density operator becomes diago-
nal, the full density operator p(t) still represents a pure
state with a permanent superposition, as long as the sys-
tem remains isolated. Is it not therefore possible in prin-
ciple to perform a very refined measurement upon the en-
vironment, revealing the existence of quantum interfer-
encesT

Zurek (1982) gave a pragmatic answer to this objec-
tion, namely, that such a measurement is impossible in
practice. One can, however, go further and show that it
is also impossible as a matter ofprineip/e.

It can be shown that no measurement, except for test-
ing an individual oscillator in the environment, can ex-
hibit interferences revealing a superposition. Since, ac-
cording to Caldeira and Leggett, each oscillator formally
represents an eigenstate of the environment Hamiltonian,
one must therefore perform a measurement upon such an
eigenstate. This can be done for instance by a yes/no
measurement telling whether a specific eigenstate is occu-
pied some given time t after preparation. The probability
p for a positive answer is very small because of the very
high density of energy levels, which behaves exponential-
ly with the number of atoms in the pendulum. Let v be
the number of degrees of freedom for all particles in the
pendulum and v' the corresponding number for the ap-
paratus to be used for the measurement. It is explicitly
assumed that the degrees of freedom are continuous
(which excludes the case of spins).

By necessity, classical physics is only approximate.
When stating the result of a measurement, it is open to
an error of order g (as given in Sec. VI), which has a
lower bound when the size of the apparatus is given.

The experiment will be significant, which means that it
can be reliably considered as giving a "yes" answer to the
question rather than as being due to a malfunctioning of
the apparatus (e.g., a photodetector firing in the dark),
only if g ((p. When a pendulum is the object tested for
superposition and one uses another measuring device
made of ordinary metal to perform the test, everything

can be computed explicitly by elementary solid-state
physics, and this condition becomes

v') v'exp(xv ~ ), (2.53)

5. The direction of time

Decoherence is a time-directed e6'ect, as is dissipation,
which occurs along with it. It follows the usual pattern
of irreversible thermodynamics: one starts from an or-
dered state (here a pure state), and one obtains a disor-
dered (mixed) state. To restrict the discussion to the ob-
servation of collective observables plays essentially the
same role as making a coarse graining.

The reverse process is mathematically meaningful:
One can consider the forrnal time-reversed density opera-
tor that is obtained from p(t) as being an initial state and

where sc and sc' are of order unity for all practical pur-
poses.

Taking for example v= 10 would mean that the
measuring apparatus would have to contain about
exp10' atomst This is clearly impossible in practice, and
even in principle, because the apparatus would be too big
to act at a fixed time t because of its sheer size and of the
finite velocity of light, not to mention the finiteness of the
universe unable to provide enough matter to build up this
monster.

This remark has several noticeable consequences:
(i) The Von Neumann chain, consisting of a measuring

apparatus to be used for measuring another apparatus
while both remain in a state of superposition, is meaning-
less.

(ii) There are propositions in physics that can be for-
mulated but cannot be tested empirically, even in princi-
ple. Therefore many observables can never be measured.

(iii) One can, of course, answer Bell s objection by say-
ing that decoherence is not only a practical e6'ect but also
a matter of principle. This answer does not rely, howev-
er, uniquely upon quantum mechanics, but calls for rela-
tivity or the finiteness of the universe.

A word of caution should be added. The proof of Eq.
(2.53) assumes that the quantum Auctuations making a
"no" e6'ect look like a "yes" have a probability of order g
and not exp( —(i/e ) (see Sec. II.E), which happens when
some pointer in the measuring apparatus takes clearly
distant positions for the two cases, yes and no. It was as-
sumed that such a good apparatus is impossible when one
must isolate an eigenenergy of the environment from ex-
tremely nearby ones. This is most probably true but not
rigorously proved.

As for the origin of the exponential in Eq. (2.53), it
comes from the exponential decrease in the separation
between the energy eigenvalues of a solid when the num-
ber of atoms increases.

Finally, this result also shows that incomplete decoher-
ence is after all most easily seen by looking at the collec-
tive degrees of freedom, as shown in practical examples
in Sec. IV.C.
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let the Schrodinger equation act on it. The outcome will
be the initial state p(0) after a time t.

It is worth noticing, however, that it is usually impos-
sible to prepare this time-reversed density operator, as a
matter ofprincip/e. The argument is the same as that just
given above: the preparing device would be too large to
work according to the full laws of physics. This impossi-
bility may, by the way, point towards a new understand-
ing of the second principle of thermodynamics.

The most important point in the present context is that
the logical direction of time must coincide with the ther-
modynamical direction. This is most obvious when the
initial state p is well described by a property having a
projector Eo, so that p can be written as Eo/TrEO ~ A
unique projector Eo describes the initial situation,
whereas several projectors must be used to describe the
possible final situations. This is exactly what happens in
thermodynamics, where irreversibility come& from an or-
dered preparation of the initial state, yielding disordered
states.

to common-sense logic.
(iii) When it happens that some initial macroscopic

state does not agree with classical physics by involving
some quantum superpositions, this feature is very rapidly
lost in most cases by decoherence, so that the phenomena
become clearly separated.

(iv) Furthermore, phenomena are inescapable insofar
as no conceivable experiment can exhibit a property go-
ing against this separation.

(v) Finally, explicit dynamical calculations can be used
to assert when a macroscopic system cannot be expected
to behave classically.

There is little doubt that this theory of phenomena is
the main key to interpretation. It should be noticed that
it contains words of caution and it avoids sweeping state-
ments. This kind of caution does not hide ignorance, but
it refers to known conditions for the applicability of some
theorems and to known error bounds. This is why the
theory can be said to be complete by-offering a precise
prediction in every experimental situation.

H. Discussion 2. Gell-Mann and Hartle's interpretation

The interpretation of quantum mechanics that one can
get by using all these ideas together should by now be
rather clear, as far as the organization of the basic ideas
is concerned. It has been presented here in a form whose
whole construction is ordered by logic, which corre-
sponds to the author's inclination. Gell-Mann and
Hartle's approach attributes the main role to decoher-
ence, so that their theory looks rather different at first
sight. An important step in the discussion, therefore, will
be to compare these two formulations and to show that
they are almost equivalent.

Having thus made sure that there is, at least now,
essentially only one candidate for a consistent and com-
plete interpretation, it will become possible to compare
the new theory with the older Copenhagen interpreta-
tion.

1. The theory of phenomena

A few basic results of the modern approach play a cen-
tral role in all these discussions. They are concerned
with the description of phenomena (Gell-Mann and Har-
tle, 1990) or equivalently the so-called theory of facts
(Omnes, 1990).

Phenomena may be defined as the classical properties
of macroscopic objects. From what was obtained in the
previous sections, it can be asserted that

(i) When conveniently specified, these properties have a
clearcut meaning in the phenomenological language of
classical physics, as well as in the formal language of
quantum mechanics.

(ii) Many of them, which can be made exphcit, obey
determinism up to a very small error in probability.
Moreover, they can be described and discussed according

The Gell-Mann —Hartle (GMH) theory is still partly in
the form of a program, which is more ambitious than
what has been presented here since it aims at extending
the interpretation of quantum mechanics in several direc-
tions, namely, towards cosmology, towards a quantum
account of observers, and towards a systematic treatment
of the classical domain (Gell-Mann and Hartle, 1990,
1991a, 1991b).

It also relies upon consistent families of histories,
which are histories of the universe, at least when the
quantum effects of gravitation have become negligible.
Consistency is written in the form of Eq. (2.13). Its logi-
cal consequences are not much developed, but condition-
al probabilities are used for retrodiction so that the basic
ingredients of logic are already present. The direction of
time is defined by the evolution of the universe, starting
from a state that is far from equilibrium because of ex-
pansion.

Rather than assuming the existence of classically
behaving objects, Gell-Mann and Hartle proceed in a
more systematic way. They consider so-called full sets of
decohering histories of the universe as being a deeper
preliminary concept.

A property occurring in a history specifies a domain of
values for an observable. This may be considered as
some sort of coarse graining, and there exists, at least in-
tuitively, an optimal graining so that a finer graining
would spoil consistency and a coarser one would only in-
crease ignorance with no appreciable gain in consistency.
It is not, however, objective as long as the observables it
refers to can be chosen arbitrarily.

One should notice at this point that the consistency
conditions (2.13), as they are using them, can be satisfied
for various reasons: When one is interested in a micro-
scopic system, e.g., a spin- —,

' system, the consistency con-
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(2.54)

which means that it gives the same probabilities and the
same amount of consistency as the complete density ma-
trix of the universe p. The most economical coarse-
grained density operator gives a maximum for the entro-
py functional

S (p) = —Tr(p logp), (2.55)

subject to the conditions (2.54). Any other one, including
p, would only contain useless information that cannot be
extracted from the decoherent histories.

One can then look, in principle, for the best set of al-
ternative histories. Consistency increases rapidly when
the graining is coarser, and one rapidly reaches a point
where a negligible gain in consistency must be paid for by
too large an increase in entropy. Introducing more inter-
mediate times does not necessarily decrease entropy, be-
cause these times may just happen to yield tautologies

ditions can be viewed exactly in the same light as in
Griffith's theory, and the necessary and sufficient condi-
tions represented by Eqs. (2.11) or (2.12) are to be pre-
ferred. For a macroscopic system, when the properties to
be considered are also macroscopic, one may expect that
consistency is a consequence of decoherence. It takes in
that case the form of Eq. (2.13).

The authors assign paramount importance to con-
sistency through decoherence. According to their views,
it should be the key to the existence of classical physics,
from which one should obtain the full extent of the classi-
cal domain, namely, classical properties as such but also
an objective criterion for the right choice of collective
coordinates.

When microscopic systems interact with macroscopic
ones during some measurements, Gell-Mann and Hartle
assume that the full consistent decohering histories con-
tain what they call a generalized record. This is a projec-
tor for a macroscopic property, which multiplies a pro-
jector for a microscopic property. It is called "general-
ized" because the authors cannot rely upon the theorems
of Sec. II.F in their approach, so that the persistence of
the record is not proved. The corresponding families of
histories, whether in the case of a measurement or only
for macroscopic systems, are called full sets of decoher-
ing histories (Gell-Mann and Hartle, 1991b).

Gell-Mann and Hartle try to give an objective content
to the notion of full sets of decoherent histories by com-
bining decoherence with maximal information: Let

IEk "(tj, ) J, k =1,2, . . . , n, . . . be the properties occur-
ring in such a set of alternative consistent histories for
the universe. This formalism satisfies the consistency
conditions (2.13) with very small (formally zero) values
for the right-hand side.

One can then define a coarse-grained density matrix p
that is sufficient for a faithful description of these his-
tories. It satisfies the conditions

(this is the place where determinism shows up). Finally,
among all the possible sequences of projectors, one of
them certainly gives a minimal entropy, at a fixed level of
consistency. In principle, this should provide an algo-
rithm for extracting the full sets of decoherent histories.

A reasonable guess is then that many properties occur-
ring in these privileged histories are in some sense classi-
cal. As long as the search for full sets of decoherent his-
tories is uncompleted, the existence of this "classical
domain" remains postulated as a good guess. Its "classi-
city" cannot of course be perfect, and some parameters
should express how well it is achieved (one can think of
them as the parameters g in Secs. V and VI). The
relevant observables should be determined directly by the
full sets of decoherent histories, but Gell-Mann and Har-
tle give some arguments to show that one may expect the
particle densities obtained from quantum field theory to
be among them, or at least to enter in their construction.
Finally, one expects the tautological relations existing be-
tween these properties to be well represented by the clas-
sical equations of motion.

Gell-Mann and Hartle also suggest that the algorith-
mic complexity of some parts of the classical domain
should increase as time goes on. Algorithmic complexi-
ty, which is a well-defined notion in information theory
(Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1966),
can measure the complexity of a dynamical behavior or
its virtualities and therefore distinguish a part of the
universe as being potentially an acting observer or an in-
ert chunk of matter.

The fact that several parts of the program have not yet
been worked out makes it less easy to describe it faithful-
ly, and nothing can replace a reading of the inspiring pa-
per by Gell-Mann and Hartle.

A criticism of this theory by d'Espagnat (1990) looks at
first sight as if it comes from a misunderstanding. It
may, however, be viewed in another light (d'Espagnat,
1991): When assuming that the evolution of the universe
generates some classically meaningful alternative his-
tories, and when considering an observer as an "Informa-
tion Gathering and Utilizing System" (IGUS), Gell-
Mann and Hartle seem to deny a free will to the observer
or, at least, some people guess that one would then have
to find free will's ultimate origin in some fluctuations in
the brain of a quantum or a chaotic origin. If this were
so, any criticism relying on a free choice would not ap-
ply, but, of course, this conceptual framework is not suit-
ed to everybody's taste. Conversely, one should also say
that the point of view of the critics excludes a priori that
the theory of the IGUS and of their self-programmation
might lead to nontrivial results, which is of course not to
the taste of the workers in the field. Anyway, this kind of
criticism does not apply to the less ambitious interpreta-
tion advocated by the present author.

3. One or two interpretations'P

There are, therefore, two theories, by Gell-Mann and
Hartle and by the author, aiming at a complete and con-
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sistent interpretation of quantum mechanics. Notwith-
standing the divergences in their programs, in what they
stress and in what has actually been achieved by each of
them on specific points, it is important to determine
whether they are comparable formulations of a basically
unique theory or whether they are significantly different.

A careful examination clearly decides in favor of their
close relationship. The same basic ideas occur in both of
them: the essential role of histories, the logical aspects
that are the same when they can be compared, the clearly
limited but widely valid domain of classical physics, the
tautological nature of determinism when it holds and,
finally, the necessary role of decoherence to disentangle
classically meaningful phenomena from highly intricate
quantum correlations. These ideas were not developed in
the same order, nor with the same emphasis; they did not
use the same word for the same notion (though an eff'ort

in that direction has been made in the present review),
nor did they use the same mathematical techniques.
Nonetheless, they are close enough for each of them to
benefit from what the other has achieved or the openings
offered by the other.

They both incorporate seminal ideas first published by
Griffiths (1984), whose work is not presented here as
yielding a possibly complete and consistent interpretation
because it lacks a theory of phenomena. Griffiths's in-
sightful work provides, in fact, a better understanding of
the conventional Copenhagen interpretation rather than
full logical consistency. Whatever it may be, it remains
in any case an essential landmark.

4. Where do we stand?

If one agrees that there is basically only one frame-
work of interpretation, which is approached from two
different standpoints, the two approaches should now be
compared if only to find out the most promising direc-
tions of future research.

The so-called logical approach by the author seems to
yield more easily immediate results; it already includes a
theory of phenomena with precise results, and it gives ex-
plicit estimates for a classicity criterion. This can be as-
cribed to the use of microlocal analysis, which provides
an extremely powerful tool for semiclassical physics.
One wonders therefore, how large a part of Gell-Mann
and Hartle's program could be realized by using'the same
techniques.

The "logical" approach is rather simple-minded as far
as the notion of objects or their description by collective
observables are concerned. The program set up by Gell-
Mann and Hartle is perhaps deeper, and it also takes the
construction of the collective coordinates as one of its
targets. One might therefore consider it as more ambi-
tious in principle and concentrate the discussion on how
it might be fully realized. Rather than talking about full
sets of decohering alternative histories, it may be clearer
to speak of objects, Hilbert subspaces of objects, and col-
lective observables, even if the two notions do not neces-
sarily completely coincide.

The approach advocated by Gell-Mann and Hartle is
very sound as far as the fundamental reasons for classici-
ty are concerned. One may wonder, however, what are
its chances of success considering the techniques they
propose. These techniques are essentially based upon
decoherence, even if adding considerations of informa-
tion theory. The point is that the theory of decoherence,
at least as it stands now, is a rather blunt mathematical
tool with little grip and little delicacy. Explicit calcula-
tions of Feynman path integrals are either very difficult
to perform or they have a very limited domain of applica-
tion. It looks attractive, therefore, to retain the program
while looking for more adequate mathematics.

It might very well be that microlocal analysis is again
the proper tool; we refer here to a beautiful paper by
Feffermann (1983). He was able, for instance, to prove
that the eigenstates of energy for a system of fermions in-
teracting via Coulomb forces, when the energy is near
enough to the ground-state energy, represent atoms, mol-
ecules, or at least clustered particles. This is a very
strong indication of the ability of microlocal analysis to
show the existence of objects by using only the funda-
mental interactions.

Another result by Feffermann concerns a system with
an arbitrary number of degrees of freedom and a Hamil-
tonian with a quadratic kinetic energy and a rather arbi-
trary potential energy. He has shown that one can then
microlocalize the Hilbert space by quasiprojectors of a
special type. Their definition must use a local canonical
transformation of phase space, i.e., one chooses con-
venient observables by means of a specific algorithm.
The total Hamiltonian is found to be approximately diag-
onal in the associated subspaces of the Hilbert space.
One wonders whether these purely mathematical results
do not in fact contain a theory of objects and an objective
construction for a hierarchy of observables. It would be
most useful if the publication of Feffermann's proofs ulti-
mately resulted in their being used for a more practical
purpose.

Finally, the question "where does one stand?" can be
answered by saying that there is now a workable corn-
plete and consistent interpretation of quantum mechan-
ics. What is lacking is a proper definition of objects and
an objective algorithmic definition of collective observ-
ables. A program has been formulated for bridging this
gap, and a technique looks promising for fulfilling the
program. Not much more can be said, at this stage,
about this last remaining weak point.

5. Relation with the Copenhagen interpretation

A significant difference between the logical form of the
present interpretation and the Copenhagen interpretation
lies in their axiomatics: a unique rule of interpretation
now replaces the full set of axioms concerning measure-
ment. This is not, however, essential.

The real difference lies in the treatment of phenomena.
They become a consequence of quantum mechanics in
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the modern theory, so that a consistent and complete in-
terpretation becomes possible. The Copenhagen inter-
pretation, as a matter of fact, cannot even be considered
as translating the language of phenomenology into the
formal language of the theory. It just keeps them apart,
so that the notion of consistency cannot even be stated in
its framework.

As for completeness, there are cases clearly calling for
a completion of the Copenhagen interpretation. There
exist, for instance, macroscopic objects behaving in ac-
cordance with quantum mechanics rather than classical
physics. This is, by the way, a case in which a proposal
that was initially put forward as a criticism against the
Copenhagen interpretation (Leggett, 1980, 1987a, 1987b)
confirms the present one. Other examples will be met in
Sec. IV.

Except for well controlled exceptional cases, however,
one recovers as consequences of the new theory the main
prescriptions of the Copenhagen formulation. This will
now be shown by considering measurement theory.

III. MEASUREMENT THEORY

This third section is devoted to measurement theory.
It follows mainly the treatment given by the present au-

thor (Omnes, 1990), taking into account later improve-
ments. In Sec. III.A measurements are defined in a pre-
cise manner. This is to give a clearcut setup for the
theory and also to answer a very general criticism by Bell
(1987) against the fuzziness of too many statements con-
cerning measurement. Section III.B will show how the
usual Copenhagen axioms of measurement theory reap-
pear as theorems in a consistent approach, though wave-

packet reduction is now found to be a convenient calcula-
tion recipe with no specific physical content. In Sec.
III.C, one considers what can actually be said to be true
when an experiment has been performed. This allows a
very simple way out of the apparent difhculties that were

stressed long ago by Einstein, Podolsky, and Rosen
(1935), as shown in Sec. III.D.

A. The conditions for a measurement

Rather than trying to give a fully general treatment of
quantum measurements, we shall consider here a few
specific cases that may be used as references for further
extensions if necessary. An effort will be made, however,
to cover enough of them to make these generalizations
easier.

A measurement can be grossly defined as an interac-
tion between a quantum system and a macroscopic object
producing an actual fact, yielding also as a result a value
of an observable pertaining to the quantum system. The
latter will be called the measured system and it is denoted
by Q, whereas the macroscopic object acting as a measur-
ing device is denoted by M. The measured observable
will be called A.

Bell (1987) has stressed how poorly defined are the no-

tions too often entering measurement theory, so that a
few comments and distinctions will be needed to avoid
this criticism.

1. Conditions concerning the measured system

One will have to distinguish between an ordinary clas-
sical measurement and a quantum measurement, the
latter being the only one of interest here.

The measured system Q is supposed to be isolated be-
fore the measurement. It may be microscopic or macro-
scopic. As a matter of principle, it can be prepared in a
state involving linear superpositions of the eigenstates

~
a, r ) of A with different eigenvalues a. This is possible

when Q consists of a very small number of particles. As
another example, one may consider the case of a macro-
scopic crystal containing a magnetic impurity. The spin
of this impurity can sometimes be prepared in a quantum
state: it can be oriented along the z direction by a mag-
netic field and left in that state before performing a mea-
surement of its value along the x direction by a resonance
device or other means. A counterexample occurs when Q
is a macroscopic object and A is a collective observable.
Then, because of decoherence, the state of Q cannot be a
linear superposition of the type to be considered. A mea-
surement of this observable would most often be an in-
teraction between two macroscopic systems obeying clas-
sical physics.

2. Conditions concerning the measuring device

It is essential that the measurement be signaled by a
phenomenon, a fact. Before elaborating upon this point,
it will be useful to consider counterexamples.

Consider the case in which a spin- —,
' atom goes through

a Stern-Gerlach device oriented along the z direction and
let T+ and T be the two trajectories behind the magnet
corresponding to S,=+—,'. One can very well assert that
the atom goes along T+ by using the notions of classical
physics. A quasiprojector covering completely the values
of position and momentum along T+ at some time can
do the job. This is, however, a property of a classical na-
ture, not a fact. Although this distinction is pretty obvi-
ous, it can be made still clearer by using an argument due
to Wigner (1963).

Let us assume that, by some cleverly devised magnetic
fields, the two trajectories T+ and T are recombined
into a unique beam T' (see Fig. 4). It can be shown that,
if a measurement of S„ is made after recombination, the
results will be the same as if the first Stern-Gerlach de-
vice had not been present. No factual phenomenon has
kept track of the trajectory that was followed, and to
state the value of S, has no more meaning than telling
through which arm of an interference device a photon
went (see Sec. IV).

The phenomena signaling the result of a measurement
can sometimes be subtle. Consider again the Stern-
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FIG. 4. The Wigner gedanken experiment: The beams issued
from a first Stern-Gerlach device oriented along the z direction
are recombined before entering another Stern-Gerlach device
oriented along the x direction.

Tr
I
EOM pE~g pl

=—O(q) . (3.3)

This is, however, a bit pedantic because g is extremely
small, and this kind of refinement can be ignored here for
the sake of clarity.

the sake of rigor, one should take into account that the
projector is not uniquely defined but belongs to an
equivalence class of quasiprojectors. There is according-
ly an unavoidable error g in the statement of a classical
property, g depending upon the apparatus, so that Eq.
(3.2) should rather be written as

n=0
(3.1)

all the b„'s being diff'erent. It is then equivalent to say
that the pointer is in position n or that B has the value
b„.

Before the measurement, the pointer is in the neutral
position or B =bo. This means that the initial state of
the apparatus is consistent with this initial property or,
more formally,

Eo pM&o =pMM M (3.2)

pM being the initial-state operator of the apparatus. For

Gerlach device with no recombination of the beams. The
atoms are not detected before entering other Stern-
Gerlach devices arranged along T+ and T and measur-
ing S„. This time, the atom is detected when coming out
of the second apparatus. The methods to be explained in
next sections will allow one to assert not only the value of
S„at the time of the second measurement but also along
which trajectory T+ or T the atom went beforehand.
This proceeds by logical implications. In any case, it
should be clear that nothing can be asserted without the
help of an actual fact.

A fact occurs when a property of the measuring ap-
paratus changes in a significant way. As a fact, it con-
cerns a collective observable (or several of them). The
change of properties usually goes with an expenditure in
energy, coming, for example, from latent heat in a bubble
chamber or from the electric field in a Geiger counter. It
must be an irreversible process, not so much for dissipa-
tion itself but for decoherence, which does not exist
without some dissipation.

The outcome of the measurement can be registered in
many ways, for instance by a pointer on a dial or a num-
ber displayed on a counter. It can also be a track in a
rock nobody has ever seen. Considering the case of a
pointer, its final position is a classically meaningful prop-
erty, which can be described by a projector (acting in the
collective Hilbert space of M). It is convenient to denote
by an index n (n = 1,2, . . . ) the various final positions of
the pointer and by the index 0 its initial neutral position.
Let E„be the associated classically meaningful projec-
tors. The mathematics of the discussion is a bit simpler if
one defines an observable

3. The conditions for a measurement

The interaction between Q and M must be very special
if it is worth being called a measurement. It will be as-
sumed to take place between an initial time t and a final
time t'. It takes most often some more time for the
complete working of the apparatus to take place, but this
is inessential, and it will be assumed that the pointer im-
mediately shows the final data at time t' . The evolution
operator U(t', t~) for the interacting Q+M system
will be denoted by S, a notation analogous to that used
for a collision operator: in some sense, Q and M collide.
As a matter of principle, this operator can be computed
from the complete Schrodinger equation describing the
interacting system Q +M.

Consider first the case in which the measured observ-
able A has discrete eigenvalues a„. A perfect measuring
apparatus has the following property: when the initial
state of Q is an eigenstate of A with the value a„, then
the final state of M is in an eigenstate of B with the value
b„. It should be stressed that this is only a property of
the interaction dynamics, something coming from the
Schrodinger equation. It can be written as a condition
upon the matrix elements of S [Eq. (3.5) to follow].

In many cases, the measured system Q is lost. It has
decayed or it has been irretrievably lost in the bulk of the
apparatus. When it survives, it may happen that it is still
in an eigenstate of 3 with the same value a„. The mea-
surement is then said to be of Type I (Pauli, 1933), but
this case is at present much less important than in the
Copenhagen interpretation.

%'hen the spectrum of A is continuous, one can often
proceed along the same lines by cutting the spectrum into
pieces [D ] and agree that one is in fact measuring the
various projectors associated with the properties
[ A, D ]. There is no difficulty in extending all these con-
siderations to the simultaneous measurement of several
commuting observables.

An important distinction must be made concerning the
outcome of the measurement. The classically meaningful
property B =b„, as shown by a pointer or a counter, will
be called the data. It can be read at time t' but, because
of the deterministic character of the apparatus, it also
constitutes a record that can be read at any later time.
However, what one is really interested in is the resuLt of
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the experiment. This is a quantum property, namely
A =a„, stating something about the measured system
(for instance, a value for a spin component). It is a prop-
erty holding at the time t when the interaction begins.
The goal of the measurement is to assert the result; its
tool is the actual occurrence of the data.

Finally, it should be said that all this is a theorist's
dream of a measuring apparatus. No one is really perfect
and, even so, the data itself suffers from the quantum
corrections to classical logic These systematic errors can,
however, be treated for their own sake and they will be
ignored here.

B. The theorerns of measurement theory

The Copenhagen axioms of measurement theory be-
come theorems in a consistent interpretation. This point
of view has been developed at some length by the author
(Omnes, 1988a, 1990). Crell-Mann and Hartle (1990) lim-

ited themselves to a few indications, but this is quite
enough to make sure that the notions coincide.

i. General results

Let us begin with the results that are universally valid.
It will be assumed that, at the initial time 0, the measured
and the measuring systems are uncorrelated, so that the
total state operator for Q+M can be written as a prod-
uct,

p PQpM (3.4)

SE~~(r )E„(t ) =EM(t ' )SE~(r )E„(r ), (3.5)

where E„ is associated with the property 2 =a„ for the
measured system. The projector E„(t ) is associated
with the result of the measurement. One also uses condi-

When there is correlation, a special analysis is needed.
The systems Q and M do not interact before time t

and thereafter interaction takes place until a time t'
when the data have become classically meaningful and
decoherent. It will be assumed that the data are B =b„.
It does not matter whether this is simply a possibility as
envisioned by classical probability calculus (since the pos-
sible final states of M are described by this calculus be-
cause of decoherence) or whether it is an actual fact. In
order to seriate the problems, it is better to stick to the
first point of view for the time being. The result is the
quantum property stating that A =a„at time t

The technique consists in building up histories based
upon the initial state (3,4). The most economical one
only mentions the various possible results at time t and
the various possible data at time t' . It must be shown
that they build up a consistent logic in which some
relevant implications can be exhibited.

The essential tool for this, the measure" character of
the interaction, has already been discussed and it can be
formally written as

It shows how knowledge of the data given by the pointer
implies knowledge of the result, which is what one is
looking for.

The second theorem has to do with probabilities.
What one actually gets from a repeated set of individual
measurements are the probabilities for the data. They
are given by

(3.7)

the trace being taken over the Q+M Hilbert space. It
turns out that, because of the measure property (3.5), this
probability can be expressed much more simply in terms
of quantities depending only upon the Q system, namely,

p„=Tr[p&(0)E„(t )]=Tr[p&(t )E„] . '(3.8)

The trace and the operators are now defined much more
simply in the Hilbert space of Q.

This is Born's rule. It states that the statistics of the
results do not depend upon the details of the measuring
device that is used. Of course, this might have been ex-
pected from Gleason's theorem and the logical
equivalence (3.6), which is the really profound result.

The last general result concerns successive measure-
ments: At a time t later than t', a measurement of
another observable A' is made by another apparatus M'.
The two observables 3 and A ' may be the same or be
different. One looks for the probabilities for the second
measurement, once the first one has given the result a„.
These probabilities can now be expressed in terms of his-
tories beginning at the time t' when Q becomes isolated
again after the first interaction. In these later histories, it
is found that one must take for the density operator of Q
at time t' the expression

Tr~[E. (&' )pgpME. (t' )]
Tr[E„(t' )pgpME„(t' )]

(3.9)

The trace in the numerator is taken over the Hilbert
space of M, while in the denominator it is taken over the
whole Hilbert space of Q +M.

This formula, which appears in the approaches of both
Gell-Mann and Hartle and the author, is the most gen-
eral expression of wave-packet reduction. It does not
mean, as will be seen, that reduction is an actual effect.
It only appears here as a useful tool for computing the
probabilities for later interactions, including measure-
ments.

That this is wave-packet reduction can be seen most

tion (3.2) for the initial state of M and the fact that the
classical properties stating that 8 =ho (neutral position
of the pointer) at time 0 and at time t are logically
equivalent because of the deterministic behavior of the
measuring apparatus, which remains isolated prior to in-
teraction with Q.

The first theorem one gets is that the data d is logically
equivalent to the result r:

(3.6)
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clearly when the result of the measurement is a nonde-
generate eigenvalue a„. By using Eq. (3.5) together with
the unitarity of the S matrix, we greatly simplify Eq.
(3.9), which becomes

pg, .t...=la„&&a„l . (3.10)

In a measurement that is strongly of type I, so that an in-
itial eigenstate ~a„,r) for a degenerate eigenvalue a„
remains the same in the final state, one gets (Luders,
1951)

E p (T )E
pg, after Trt~ (t )~

(3.11)

The meaning of the general expression (3.9) is best un-
derstood by writing down explicitly the propagators
entering in the time-dependent projectors. The trace in
the numerator on the right-hand side of Eq. (3.9) be-
comes

Tr IU '(t' )E„U(t )pU '(t' )EMU(t' )I . (3.12)

Taking into account the absence of interaction between
times 0 and t, one has

U(t' )=SU,(t ), (3.13)

where Uo is the free propagator for the two systems Q
and M with no interaction. The trace (3.12) being only
partial, the two propagators U(t' ) and U '(t' ) on the
extren1e right and left do not trivially cancel each other,
but they do so when due care is taken of Eq. (3.5) togeth-
er with the unitarity of S. Then the trace becomes

Tr IE~Sp(t )S+Z I (3.14)

2. Time monitoring

It has been assumed that the measurement begins at a
well defined time t . This is what occurs, for instance,
when Q contains an atom standing permanently in the vi-
cinity of apparatus M. In a nuclear-magnetic-resonance
experiment, the measurement begins when the mi-
crowave magnetic field is set up. This is controlled from
the outside and, if it takes place automatically, the setup
is completely described by the collective classical proper-

The factors S and S+ express the details of the interac-
tion between Q and M when the measurement is not of
type I. Consider, for instance, a case in which a charged
particle crosses a bubble chamber without stopping in it.
One can, however, sometimes get at the momentum of
the particle by looking at the ionization rate, i.e., the
density of bubbles along the track. When going out, the
particle has lost some momentum, and the probabilities
of its later interactions can be computed froxn the
effective state operator given by Eq. (3.10). The S matrix
represents the effect of the interaction of the particle with
the chamber. This is why wave-packet reduction is so
complicated generally.

ties of the apparatus. Then it is clear that t is well
defined.

In a Stern-Gerlach experiment, the interaction begins
when the atom penetrates the region of the magnetic
field. This is controlled by the initial wave packet of the
atom, and the beginning is loosely defined. One might in
principle describe what happens by the techniques of col-
lision theory but, so long as the measured observable is a
constant of motion, this is of no importance. In any case,
there is in principle no diSculty in extending the previ-
ous results to a case in which the interaction between Q
and M builds up continuously. This can be considered as
a technical problem to be treated for its own sake if an
experiment is so devised as to need it.

3. Correlated measurements

When several measurements are performed one after
the other, one can also encounter the following situation:
An apparatus M measures an observable A upon a sys-
tem Q while another apparatus M' measures an observ-
able A' on another system Q', but the initial states of Q
and Q' are correlated. This occurs when the density
operator p&+& does not turn out to be the tensor prod-
uct of p& and p&, the three operators being computed by
partial traces upon the state of the laboratory.

There is no special difhculty: one has only to consider
Q+Q' as the measured system, and the recipe (5.9) still
holds for it when the two measurements are made at
different times. Otherwise, it is a simultaneous measure-
ment of two commuting observables. Of course, the
correlation between Q and Q' results in correlations
among the data: The probability p(a, a') for the results
A =a and A'=a' is not the product p(a)p'(a'). Such
correlations are often used to get useful information: for
instance, one can get at the spin and parity of a particle
by this kind of measurement performed upon the decay
products.

Another aspect of this situation is of a more logical na-
ture. It has to do with possible paradoxes first con-
sidered by Einstein, Podolsky, and Rosen. This will be
considered in Sec. III.D.

4. The status of wave-packet reduction

To get wave-packet reduction in the form (3.9), one has
to describe the two measurements taking place one after
the other. The physical systems is made up of Q, M, and
M'. One uses a rather large family of histories involving
the various possible data from M and M' as well as the
various results, which are properties of Q occurring at
the time when one or the other measurement begins. The
logic one thus obtains can be shown to be consistent, and
one can therefore compute the conditional probability for
some data shown by M', given that M shows data n. It
turns out that this probability can be written in a form
analogous to Eq. (3.8) in which the initial state of Q is
now given at time t ' (the end of the first measurement) in
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the form (3.9). The presence of a denominator in Eq.
(3.9) comes from the fact that there is always a denomi-
nator in a conditional probability.

However, there is no physical effect that might be
called a reduction effect. Reduction is nothing but a con-
venient shortcut to avoid keeping track of all measure-
ments by dealing explicitly with histories involving many
outside devices, when one needs only to compute some
probabilities. It comes from a theorem stating how one
can conveniently express these probabilities and nothing
else. It has no physical content, just as there is no physi-
cal content when one writes down Newton's equations of
motion and then integrates them: No formula resulting
from a mathematical analysis is supposed to have a phys-
ical content, and wave-packet reduction is only a formula
expressing the result of a calculation in logic.

Of course, the whole construction depends upon the
theory of phenomena expressing data, and it has been
shown that decoherence breaks forever the quantum
correlations between different phenomena and the
different possible data. This is a physical effect and it has
been observed, as discussed in Sec. IV. So, one can find
in it a physical reason for the simplicity of wave-packet
reduction. It is, however, not a physical effect occurring
in the measured system Q, but a physical effect occurring
solely in the measuring device M.

Finally, it should be stressed that real physics is de-
scribed by histories, not by reduction. One can talk
about an atom Q from time to time, when it becomes iso-
lated for a moment, and this is convenient to concentrate
upon what is relevant when an experiment is done. It
should not, however, be so pervasive a point of view as to
make all of us think of the real world as a series of quan-
tum measurements. In reality, there are many objects,
some of them being apparata devised for experiments in
physics. An atom may have had a long and complex past
history with all sorts of interactions with its surround-
ings. Only a Griffiths history can described completely
what they were and what became lost and forgotten be-
cause of decoherence. In some cases this preparation
process, either spontaneous or organized by a physicist,
is so peculiar that the state of the atom becomes clearcut
and is completely expressed by a property. In most prac-
tical cases, only a few relevant characteristics of the state
are well determined, but this is enough to proceed with
measurement theory.

The best one can say is that there are parts of the
universe well enough isolated to be described by a state
operator. Long ago, this was only the whole universe it-
self (Gell-Mann and Hartle, 1990). The state of a
momentarily isolated subsystem is obtained from the
state operator of the sufficiently isolated system to which
it belongs (e.g. , the solar system) by a partial trace over
the surroundings.

Experiments in physics are so well done that some-
times in practice one can arrive at this state operator and
a series of measurements can be made. It turns out that
they can be represented by the simple formula (3.9)

without having to invoke over and over again the holistic
universe. This is most fortunate; no angel has to touch a
particle to change its wave function every time a counter
makes a noise.

5. The state of the universe

%'hen one wants to describe reality rather than what
happens within a corner of a laboratory, it can be done as
follows (Gell-Mann and Hartle, 1990, 1991a): Let p; be
some "initial" state of the universe at an "initial" time
zero. Let E "(T„)be the projectors representing all past
actual facts in the history of the universe. Then one can
take the present state of the universe as given by

p =Mp;M/Tr(Mp;M), (3.15)

where M is the time-ordered product of all the projectors
representing past facts. This is enough to take into ac-
count present facts and to predict the probabilities of fu-
ture ones. Of course, due caution concerning relativity
should be exercised. There is no difficulty as long as ob-
servables belonging to spacelike separated regions com-
mute.

Gell-Mann and Hartle have also considered all the pos-
sible histories of the universe, which leads them to set up
their interpretation within Everett s (1957) many-worlds
framework. The author preferred to start from a given
factual present state of the form

p =8/Tr8, (3.16)

where 8 is the (commuting) product of all the projectors
of existing present phenomena. He then proceeded to
show that a large part of past facts can be known and
shown to - be uniquely defined by retrodiction from
present records (Omnes, 1990). Later evolution resulting
in the occurrence of new actual facts preserves the form
(3.16).

Both formulations lead to the same conclusion, name-
ly, that all observations of present phenomena and all
predictions of probabilities for future ones can be ob-
tained from either Eq. (3.15) or (3.16) for the state of the
universe.

6. About information

The present formulation relies only upon factual phe-
nomena, whether they came to the knowledge of an ob-
server or not. It does not mean of course that an ob-
server should not have to allow for his limited informa-
tion in order to make the best of it. This has nothing to
do with the extreme positivistic point of view according
to which the only content of physics is information: In-
formation theory is a very useful superstructure of sci-
ence, but it cannot be its foundation. True enough, the
principles of physics are essentially economical sum-
maries of experimental information, but they cannot be
put within the framework of information theory because
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one cannot formulate the class of all conceivable laws of
physics and assign them a priori probabilities that would
be necessary to write down the information. So, basic
physics definitely does not rely upon information theory.

This being said, when an observer knows only the aver-
age values of a few observables Ak, including the square
of some of them to assert uncertainties, the best he can
do for fixing the relevant density operator is to minimize
the information

I=Tr(p logp )

under the constraints

(3.17)

Tr(peak)=ak, Trp=l .

This gives him the best possible density operator,

p =exp —a —g P„Ak
k

(3.18)

(3.19)

where the Lagrange parameters a and kk are fixed by the
conditions (3.18).

C. The notion of truth

1. What is the problem' ?

Let us consider the following example: A spin- —,
' sys-

tem is initially in the state s =+—,
' and a measurement

shows that s, = +—,
' at a later time t. One considers an in-

Asserting what can be said to be true or real when the
laws of physics are those of quantum mechanics is an old
question that was first considered by Heisenberg (for dis-
cussion, see Jammer, 1966, 1974; d'Espagnat, 1976). The
experimental data, though not clearly distinguished from
experimental results, mere supposed to be true by the
Copenhagen interpretation exclusively of anything else.

It will be necessary to discuss this question again, if
only because of the role of truth in logic. Moreover, it
was mentioned in Sec. II.C.2 that the full definition of a
logic must involve a criterion for truth. This condition
can at last be considered now. As a matter of fact, the
renewal of interest in these questions lying at the margin
of physics came from an objection by d'Espagnat (1989)
against the interpretations that are reviewed here. He
criticized the legitimacy of Griffiths's use of retrodiction,
and this would also apply to what Gell-Mann and Hartle
have since published on the subject. He also denounced
the existence of a gap in Omnes's (1988a) logical con-
struction where a criterion of truth was still missing, con-
trary to the definition of a logic given in Sec. II.C.2.

To discuss this rather delicate point, me shall first show
where the difficulty lies by an example, to find that it
comes from complementarity. Then a criterion for truth
allowing us to go beyond the multiplicity of complemen-
tary logics will be given (Omnes, 1991). These notions
will then be applied to the Einstein-Podolsky-Rosen situ-
ation, where their full power will appear.

termediate time t' (0& t' & r) and two logics L and L, .
Both of them include a description of the preparation
and the measurement processes and they also state some
properties of the spin —

—,
' system at time t'. The logic L

(L, ) envisions histories in which s„(s,) can take the two
possible values +—,

' at time t'.
It can be shown that both logics are consistent. They

are also obviously complementary, since they assert the
values of two noncommuting observables at the same
time. In L„one can prove that the property for the
value of s, to be +—,

' at time t' follows by a logical impli-
cation from the measurement made at time t. Let a,
denote the corresponding proposition. One can also
prove that in L, the property for the value of s to be
+—,

' at time t' is implied by the preparation data. Let a„
denote the corresponding proposition.

The argument by d'Espagnat is quite simple. It says
that a and a, cannot be considered to be true. The
reason is that, when two propositions a„and a, are both
true, the joint proposition "a and a," should also be
true (Manin, 1977). So, d'Espagnat argued, the proper-
ties mentioned in histories are not true and have no actu-
al physical meaning.

Before discussing this issue, one can give another ex-
ample that is also useful: Consider a particle that is pro-
duced at the origin in an outgoing isotropic 5 wave with
a rather well defined velocity U. At a time t, it is mea-
sured to be in a small volume 5 V around a point x. Con-
sider again an intermediate time t and three logics L,
L, and L, . They all involve the same isotropic initial
state and the same detected property at time t. They also
involve one property at time r'(0&t'&t) and its nega-
tion. This property is the following (Omnes, 1988b,
1990):

(i) In L„: One considers the point x' on the straight
line going from the origin to x, such that
~x —x'~ =u (r t'). A sp—here V' has its center at x' and
a radius R'. The property is that the position of the par-
ticle is in V' at time t'. It can be shown that the logic L
is consistent if the radius R ' of V' is conveniently chosen.

(ii) In L: One defines a region B' in momentum space.
This region is contained inside a cone having its axis in
the direction of the measured position x and its apex at
the origin of p space. It is also contained between two
spheres defined by ~p =mu —bp and ~p~ =mu+bp. The
property is that the momentum of the particle is in B' at
time t'. Here again, it can be shown that the associated
logic L is consistent after a convenient choice for the
width 2' of the region B and the angle under which it is
seen from the origin.

(iii) In L, : This last logic relies upon a classical prop-
erty according to which (x,p) is in some region C' of
classical phase space at time t'. This region contains the
point associated with classical motion going along a
straight line from the origin to point x. The property is
defined by a quasiprojector, which can also be chosen to
give a consistent logic.
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It may be noticed that these three logics assert in three
dÃerent ways that the particle goes essentially along a
straight line from the origin to the final position x. This
is well known to be true from both experiment and
theory (Mott, 1929) when the track of the particle is
detected by a medium, as for instance in a bubble
chamber or a Wilson chamber. The logics one has intro-
duced say that some kind of straight-line motion also
occurs when there is no detector to show it.

Contrary to the previous example, the three logics L„,
L, and L, are still consistent, but they are not comple-
mentary (i.e., they are consistent with each other), at
least up to a small error, when the regions V', B', and C'
are well chosen (essentially big enough to be classical). In
all of them the property occurring at time t' is implied by
the measurement made at time t. Nevertheless, the pre-
vious difhculty is still present: Let one of these logics, for
instance L„be imbedded in a larger logic L& involving
also the properties of the measuring device detecting the
particle near point x at time t and of a preparing device,
triggering, for instance, the production of the initial state
by the decay of a source particle. It turns out that one
might as well construct another logic stating that the
particle is still in an isotropic 5 state at time t, and one
would obtain exactly the same difhculty as in the case of
a spin —,': The previous role of property "s„=—,

'" would

be replaced by the property now stating that the angular
momentum is zero at time t', whereas the previous role
of the property "s,= —,

'" is replaced by the quasiclassical
statement expressing that the particle is going along a
straight line. Therefore d'Espagnat's criticism is serious
and it must be answered seriously.

property a of that kind, this means that one can augment
the logic I by adding a and its negation to its field of pro-
positions, the supplementary consistency conditions that
come from this extension being automatically satisfied
because of some dynamical property.

(ii) In all these augmented logics, a is logically
equivalent to a factual phenomenon.

Measurement theory, as it was described previously,
can be used to prove that the result of an experiment is
always true. Another example comes from determinism:
a past classical property that can be reconstructed logi-
cally in a deterministic way from present records can be
said to be true, even when the sensible logics one is using
involve only the present facts.

This theory of truth, therefore, covers the two main
avenues of knowledge provided by physics: measure-
ment, in quantum mechanics, and, in a classical frame-
work, inference from present records concerning, for in-
stance, the past history of the Earth, or the solar system
and so on.

It seems that the two examples just given are the only
ones. Thus one recovers essentially Heisenberg's point of
view as far as quantum events are concerned, except for a
deeper understanding of the meaning of truth among the
phenomena themselves. The second example also
answers an old question: It shows that a standing object
at which nobody is looking is still nevertheless at the
same place, and this can be taken to be true despite the
fact that classical physics relies upon quantum mechan-
ics.

3. Reliable properties

2. A criterion for truth

It is possible to give a criterion for the truth of a prop-
erty that goes beyond complementarity and satisfies the
simple conditions on truth that logicians are asking for.

One must first restrict oneself to a special class of log-
ics: those containing all the actual facts, i.e., all the real
classical phenomena. Alternatively, one might deal with
the class of histories containing a unique sequence of con-
sistent phenomenological properties of the universe in
Cabell-Mann and Hartle's formulation (i.e., properties be-
longing to the classical domain). These logics do not
contain only the phenomena, they may also involve many
other properties, as needed, for instance, for a thorough
discussion of an experiment, straight-line motion, or any-
thing else. They are assumed to be consistent. Being
consistent and in accordance with the facts, they may be
said to be sensible.

One can then assert what should be said to be true. To
begin with, actual fact will be taken to be true. Some
other properties, which are not necessarily of the same
type, will also be said to be true when they satisfy the two
following criteria:

(i) One can add them to any sensible logic while
preserving consistency. Criven a sensible logic L and a

A reliable property partakes of a bit of truth because it
never leads to self-contradiction, but it is not universally
valid and is limited by complementarity so that it is not
fully true. More precisely, it is defined as a property
entering in some but not all sensible logics and in the log-
ics where it has a meaning, it is implied logically by a fact
(Omnes, 1991).Reliable properties have also been called
"trustworthy" by d'Espagnat (1990), who analyzed them
afterwards.

This notion of reliability can be used to discuss some
matters of principle such as the Einstein-Podolsky-Rosen
experiment or the separability of quantum mechanics.
They also have a more practical use. In Sec. II.C.1, we
discussed briefly an experiment in nuclear physics. When
an experimentalist considers the corresponding systemat-
ic errors, he will have to take into account, for instance,
the possibility that a neutron has su6'ered a collision with
the shielding before hitting the target. Hc will, of course,
use a classical description of the motion, for instance by a
Monte Carlo calculation. This is complementary with
another conceivable though impractical description in
which one would use the complete wave function of the
neutron. Finally, he will retain only the trajectories that
are consistent with the final data, which are the logical
consequences of this fact in the logic where they enter.
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They represent, therefore, possible reliable properties,
and their probabilities can be evaluated although they
cannot be held to be true.

Thus one can say that the estimate of systematic errors
relies upon reliable properties. If only for that purpose,
reliable properties are therefore useful tools of physics,
whereas it is not clear whether it was already noticed
that this important aspect of experimental physics goes
beyond the limits set up by the Copenhagen interpreta-
tion. Anyway, it can be justified within the present inter-
pretation, and the corresponding probabilities, as used in
a Monte Carlo approach, follow directly from a correct
use of histories.

D. The Einstein-Podolsky-Rosen experiment

The notion of truth will now be applied to a discussion
of the Einstein, Podolsky, and Rosen (1935) experiment.
It will be found that the "elements of reality" that were
considered by these authors do not correspond to true
properties, though they are reliable. As a consequence,
they are arbitrary, since they depend upon an arbitrary
choice of logic, and this is enough to deny them any real
value for knowledge. This result will then be generalized
to show that, as far as true properties are concerned,
quantum mechanics is separable. Finally, we shall go
back to the state of the universe to consider up to what
point some arbitrariness occurs in its definition.

1. The Einstein-Podolsky-Rosen experiment

(3.20)

The spin component of particle 1 along a direction n is
measured at time t, and the spin component of particle 2
along a direction n' is measured at time t'(t ~ t') It will.
first be assumed that t &t'.

The discussion hinges upon the properties of the non-
measured particle 2 at the time of the first measurement.
In the two-dimensional Hilbert space for the spin of par-
ticle 2, every property asserts the value of the spin com-
ponent of particle 2 along some direction n ", so one con-
siders a logic containing the properties:

s"'-n =+—,
' at time t,

s -n"=+—,
' at time t,

s"'n'=+-,' at time t .

(3.21)

Preparation and measurements could be explicitly intro-
duced together with the relevant properties of the
measuring devices as in Secs. III.A and III.B, but this is
cumbersome and unnecessary. %'e shall simply assume

In a form due to Bohm, the EPR experiment is the fol-
lowing: A spin-zero particle decays into two spin- —, par-
ticles 1 and 2, their total spin state being given by

(~) —2
—&/2([&(() —( ) ( (&(2)—

that this has been done so that all the logics to be con-
sidered are sensible. It wiH also be assumed for
definiteness that the results of the two measurements are
s"'n =+—,

' and s' 'n'=+ —,'. These are true properties,
as one can check by an explicit calculation.

To be consistent, a logic including the properties (3.21)
must satisfy some consistency conditions. There is only
one condition, which is analogous to Eq. (2.14) and can
be transformed algebraically into a condition upon the
unit vectors (n, n', n"), namely,

(n Xn") (n" Xn')=0. (3.22)

It is satisfied in particular when n" is collinear with n or
n', and these will be the only cases of interest here. They
are, by the way, the only cases satisfying the consistency
conditions in the stronger Gell-Mann —Hartle form
(2.13).

There are therefore two logics worth considering for
this experiment. Both contain the results of the experi-
ments (and their formal negation). The first one, say 1.,
also states that s' 'n =+—,

' at time t, whereas the other,
L', states that s' 'n'=+ —,

' at time t. They are obviously
complementary when n and n' are not collinear. (By the
say, one can say that n and n' are collinear for all practi-
cal purposes when their angle is smaller than the errors
of classical logic for the measuring devices. ) In the logic
L, the property

a: s .n= ——(2)
2 (3.23)

is found to be the logical consequence of the first result,
itself logically equivalent to the first data. Therefore it is
reliable. The property

a' s'" n'=+-'
2 (3.24)

is also reliable in logic L'.
Property a follows also from wave-packet reduction

after the first measurement. However, it has been found
that reduction is not a logical necessity but only a
mathematical convenience, allowing one to predict the
probabilities of later measurements. Here one is not con-
sidering a series of measurements giving rise to a proba-
bility, but an individual system where all the facts are
known, so that reduction is not only unnecessary but use-
less. The meaning of property a' is that it anticipates at
time t what will be the result of the second measurement
at the later time t'.

There is no good reason for choosing one logic over
the other, and the choice between them is arbitrary. It
might even be said that, if two different experimentalists
were to perform the measurements and they knew from
theory what could be said in a consistent way, each one
of them might prefer what was implied by his own result.

Anyway, property a is the one selected by reduction,
and it was called an element of rea/ity by Einstein, Podol-
sky, and Rosen for reasons that are not essential here.
This gave rise to a large number of papers, far too many
to cite here. The main point resulting from the previous
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remarks is that the elements of reality have nothing to do
with reality, since they result from an arbitrary logical
choice, i.e., from something that is left entirely to the
freedom of the speaker. For more details, see Omnes
(1991), where the case t =t' is also considered. The ex-
tension to measurements made in relativistically moving
frames is straightforward, and spacelike separated mea-
surements have the same logical relation as nonrelativis-
tic simultaneous measurements.

2. The separability of quantum mechanics

A theory is said to be separable w'hen it has the follow-
ing property: The properties of a system S cannot be
changed by an action that is performed upon another sys-
tem S' not interacting with it. The EPR situation was
usually considered to show that quantum mechanics is
nonseparable because wave-packet reduction resulting
from a measurement upon S' changes the properties of S,
if reduction is supposed to be a physical effect, S and S'
being the particles 1 and 2 one considered earlier (see, for
example, d'Espagnat, 1976).

It should be clear from the discussion of the EPR ex-
periment that one must be careful about the characters of
the properties to be considered when asserting separabili-
ty. If one allows for reliable properties, nonseparability
holds, but if one keeps to true properties, one gets separa-
bility. Since reliable properties are only logical artifacts,
one can say that quantum mechanics is truly separable.
Similar conclusions have been endorsed by d'Espagnat
(1990).

It should, however, be mentioned that separability has
also been defined as a statistical property by Bell (1964).
It was thought for a long time to be essentially the same
kind of separability as the one just mentioned, but they
are in fact quite different. Bell s criterion refers to pa-
rameters acting as hidden variables for which the proba-
bilities of two separate measurements are correlated with
the parameters of the measured objects, though not
correlated directly with each other. This statistical
separability, which leads to Bell s inequalities, cannot
even be formulated in quantum mechanics. It belongs to
another world of theory. One can, however, use quasi-
classical logic to show why it holds when macroscopic
systems are concerned, which is probably why incautious
common sense can believe in it too easily (Omnes, 1991).

IV. EXPERIMENTS

Many recent and not-so-recent experiments have been
devised with the purpose of testing the interpretation of
quantum mechanics. Some of them are not easy to inter-
pret within the conventional Copenhagen framework. As
a matter of fact, many experiments have given rise here
and there to some technical improvements aimed at giv-
ing more precision to the basic interpretation, for practi-
cal purposes. It is, however, difFicult to do justice to this

kind of work, which is disseminated in the specialized
literature dealing with many fields of physics.

This is a review about some aspects of theoretical
physics and, as such, it is highly concerned with what ex-
periments can bring out but, on the other hand, it is not a
review of experimental physics. Our attention will there-
fore be focused upon experiments that may be considered
as particularly significant from the standpoint of inter-
pretation, leaving aside the many experiments fitting easi-
ly with the Copenhagen point of view. References in
which specific details can be found will be quoted but,
despite an effort towards a reasonable amount of corn-
pleteness, some important contributions have certainly
escaped. The author can only apologize for that.

These experiments have been classified into families.
Section IV.A deals with those requiring most obviously
the use of histories. They are concerned with decaying
particles, continuous measurements, and a limiting case
known as the Zeno effect; the most interesting deal with
the observation of an isolated atom. Section IV.B deals
with interference experiments and the quantum behavior
of some superconducting systems. Finally, it may be re-
called that the description of the straight-line motion of
particles, so useful for the evaluation of systematics error
in experiments, has already been discussed.

A. Experiments requiring histories

1. The decay of a particle

This is the simplest example one can think of. The sys-
tem one considers has two types of states. One of them is
a particle; let E denote the associated projector, corre-
sponding to the property stating that the particle has not
decayed. There is also a whole family of states having a
continuous energy spectrum, which represent the decay
products. Let Ed be the associated projector. One may
restrict it by specifying the total energy within fixed
bounds around the available decay energy, or a range of
momenta for the decay products and so on, but this is a
trivial modification and one does not need to consider it
in detail. The projector Ed states that the particle has
decayed. This property can be tested by the detection of
a decay product.

The elementary theory of decay usually considers the
probability p (t, t +At) that the unstable particle existing
at time zero (initial state) will still be intact at time t and
will decay during the time interval (t, t +At). The mean-
ing of this double probability is rather questionable in the
Copenhagen interpretation, since the existence of the
particle at time t is not the result of a measurement. This
difhculty can be avoided by a thorough two-channel
treatment of the complete wave function (see, for exam-
ple, Goldberger and Watson, 1967).

It is simpler to use a history with two times, t and
t +At, in which the particle is intact at time t and the de-
cay products are present at time t +Et. The Hamiltoni-
an includes the terms that are responsible for the decay.
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One must, however, be careful to forbid the regeneration
of the initial particle from its decay products, which is al-
lowed by this Hamiltonian. This can be done in two al-
ternative ways: (i) If a decay product is actually detected
at time t +b t, the detecting apparatus is included in the
total physical system together with its factual data, as
was done in measurement theory. (ii) When there is no
actual detection, one can take into account the outgoing
character of the decay products in the projector Ed. This
is found to be enough to insure the consistency of the
simplest logic including the decay history, but the time
interval ht must satisfy the inequality

ht »fiiE, (4.1)

The calculation of the function f (b, t) proceeds exactly as
in textbooks, and one gets as usual

(4.3)

where ~ is the lifetime ensuing from dynamics. This for-
mula is valid when )rb&, t &)fi/E. Equations (4.2) and
(4.3) give immediately the well known exponential decay
law. There are slight corrections for large times, when
one takes into account the finite width of the initial ener-

gy level allowing in principle a finer preparation of the
initial state, but this is easy to deal with and without in-
terest in practice.

It is worth recalling that Eq. (4.2) is modified when ht
is of the order of fi/E or smaller. One finds in that case

(4.4)

and f (b, t) is of order (b, t) when At is very small. This
remark will be useful in the discussion of the Zeno effect;
it can be used only when some decay product is actually
detected, since otherwise the logic one is using is not con-
sistent.

2. Continuous measurements

Systematically repeated measurements have been the
subject of much discussion (Chiu et al. , 1977; Misra and
Sudarshan, 1977; Peres, 1990; Singh and Whittaker,
1982; Joos, 1984; Zurek, 1984; Braunstein and Caves,
1988; Caves and Milburn, 1988). They will first be dis-
cussed in a rather formal way before going to the obser-
vation of isolated atoms.

Let us consider a specific ideal example in which a
measuring device M checks repeatedly at time At, 2ht,
3ht, . . . that an unstable particle is still intact. Another
measuring device M', also acting at the same times,

where E is the available energy for the decay products.
In both cases, one finds that the history belongs to a

consistent logic, so that the use of probability p ( t, t + b, t)
is legitimate. If p (t) is the probability for the particle to
be intact at time t, which is well defined by the history,
one then gets

(4.2)

3. The Zeno effect

The Zeno effect is what occurs when the time interval
between the measurements is of the order of A/E or
smaller. It was usually considered as promising to show
in principle an actual reduction of the wave packet, i.e.,
its manifestation as a physical effect, and this is why it
was thought to be particularly interesting. Of course, it
is extremely dificult to observe because of the finite dura-
tion of a practical measurement. Nevertheless, let us see
what is predicted.

Using the consistent logic based upon the measure-
ment data, one can still get Eq. (4.2), where now t is equal
to nest, the probability for a decay between times nest
and (n +1)ht satisfying the inequality (4.4). From that,
one gets for the probability of observing the undecayed
particle at time t

p, (t)=expt t [F(bt)/bt] j . — (4.5)

In principle, when b, t becomes very small, f (b t)/b t van-
ishes, and it looks as if the decaying particle had been
frozen by the successive measurements and acquired a
much larger lifetime.

checks for the presence of decay products.
A history stating that the particle survives up to time

nest

and has decayed at time (n +1)b,t is associated with
a sequence of properties having the projectors
IEg(ht), . . . , Es(nest), Ed((n +1)ht) J. The family con-
sisting of all the possible histories of that kind turns out
to be consistent if one is careful to forbid a decay with re-
generation between two times in the sequence. If this is
done by excluding regenerating particles (e.g., photons)
in the initial state and by restricting Ed to outgoing
waves, one gets a consistent logic as long as condition
(4.1) is satisfied. Alternatively, one can include the
measuring devices in the system and use the projectors
Eg, Ed expressing the factual data in place of the pro-
jectors Eg, Ed expressing directly the properties of the
decaying system. One again gets a set of consistent logics
in which the elementary properties of the decaying sys-
tem follow by logical induction from the data: they are
true, even if condition (4.1) is not satisfied.

The consistency and truth of the results can be ex-
pressed in a striking way by saying that the logical struc-
ture of quantum mechanics has for a consequence the ex-
istence of quantum jumps, i.e., a change of state that can
occur during a very short time interval.

When there is no actual checking of the undecayed
state at times At, . . . , nest and consistency is only en-
sured by the absence of decay products in the initial state
and their outgoing character at time (n + 1)b,t, the quan-
tum jump is only complete when At &)h/E. Otherwise,
one finds that the system is in a linear superposition of
decayed and undecayed states and the logic is not con-
sistent. On the other hand, when all actual measure-
ments are made, there can only be complete quantum
jumps.
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The Xeno effect exists in principle in the present inter-
pretation, and it has of course nothing to do with an ac-
tual physical reality of wave-packet reduction, since it
has been found by relying directly upon histories.

Another remarkable effect has been experimentally ob-
served that has sometimes been considered as a kind of
Zeno effect. It is the narrowing of resonance lines in
nuclear-magnetic-resonance experiments performed upon
gaseous or liquid samples (Abragam, 1964).

The origin of the effect is the following: Resonance
lines are displaced by the fields generated locally by
neighboring atoms. These fields behave randomly, giving
a width of the resonance line, since the various resonat-
ing nuclei see different local fields. This is indeed what is
observed in a solid sample, and it is well explained by the
theory, the width of the line Aco being related to the fluc-
tuating local magnetic field AB by

fib, co=pihBi, (4.6)

where p is the magnetic moment of the resonating nuclei.
In a gaseous or liquid sample, one may observe a nar-

rowing of the resonance line. If ~, is the collision time
with neighboring atoms or molecules, the effect occurs
when

Eco'T~ C 1

and the width is found to be of the order of

y=(hco) r, . (4.7)

The theory of this effect is well known (Abragam,
1962), and it is based upon a description of the fluctuat-
ing local field as a random classical signal. This makes a
comparison with the Zeno effect difticult. However,
there is no essential difficulty in recasting Abragam's cal-
culations within the framework of decoherence, using the
results of Caldeira and Leggett (1983b).

The outcome of this analysis is that the narrowing of
NMR lines and the Xeno effect have analogies but they
are nevertheless quite distinct physical effects. As a
rnatter of fact, in the Zeno eFect, decoherence occurs in
the measuring device, whereas the measured system is
unaffected by it. In contrast, in the narrowing of spectral
lines, the sample of resonating nuclei has a directly
decoherent density operator. One can therefore conclude
that the Zeno effect has not as yet been observed.

fields forbidding the charges to escape. A laser (blue)
light provokes transitions between the ground state g and
a well defined excited state e of the barium atom. When
in its excited state, the atom can fall back to the ground
state by stimulated emission of a photon, in which case
the emitted photon is indistinguishable from the laser
light. The atom can also emit a fluorescence photon with
essentia11y the same frequency, when the photon escapes
in a direction diFerent from the laser-beam direction, and
it can be detected. If w is the natural lifetime of the excit-
ed atom, one can observe an average of one fluorescence
photon per time interval 2r (the factor 2 coming from the
probability —,

' for the atom to be in state e rather than g).
This fluorescence emission is strong enough for the atom
to be seen with the naked eye or to be photographed as a
point source.

One can also add another (red) laser light, which can
provoke a transition from the state e towards another ex-
cited state f (see Fig. 5). The transition from e to f is
forbidden, so that a rather large average time ~' is needed
for its occurrence. Before that, one can observe a large
amount of fluorescence when the atom is Gipping back
and forth between the states e and g. Once the state f
has been reached under the action of the red laser,
Auorescence stops. It turns out that the lifetime of the
state f is rather large, because the transition from f to g
is also forbidden. Eventually state f ends up by a deexci-
tation and the atom is back in its ground state g, from
which it is reset to Gipping by the blue laser, and Auores-
cence reappears until a new transition to f occurs and so
on.

The description that has just been given is quite intui-
tive, but it does not fit trivially with the Copenhagen in-
terpretation. Is there a reduction of the atom wave func-
tion each time a fluorescence photon is detected? What
occurs when these photons are not detected'? How can
one describe the detailed statistical signals that are ob-
tained during a long time of observation? The reaction
time of a photomultiplier is finite; does the reduction of
the wave function wait that long or does it take place be-
fore the measurement is completed, which would go
against the spirit of the Copenhagen interpretation but
would better fit the statistics of the events, particularly
the intensity of fluorescence light and its fluctuations?

None of these problems occur when one uses histories:

4. Observing a single atom

One can now monitor a single atom (Bergquist et al. ,
1986; Nagourney et al. , 1986; Sauter et al. , 1986), and
this is enough to show that an interpretation of quantum
mechanics that would be strictly limited to the considera-
tion of statistical ensembles cannot be complete.

As an example, consider the following experiment
(Nagourney et al. , 1986; Dehmelt, 1990): A singly ion-
ized barium atom is confined in a Paul trap, i.e., a clever-
ly devised combination of static and oscillating electric

FIG. 5. A typical Auorescence signal from a single atom under
the inQuence of two lasers, as explained in the text.
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What is actually seen is just a history of the system. Con-
sistency does not even require the fluorescence light to be
detected, and it is enough to take into account the outgo-
ing character of the photons. There is no problem of
principle in predicting the statistical properties of the
fluorescence signal. As a matter of fact, the detailed
theories of this kind of experiment rely, explicitly or im-
plicitly, upon histories (Cohen-Tannoudji and Dalibard,
1986; Kim et al. , 1987; Zoller et aI., 1987; Reynaud
et al. , 1988).

Finally, it may be noticed that, when saying that the
atom goes from the state e to state g when a photon is
emitted, one asserts two true properties. The range of
truth, or reality, is therefore much wider in quantum
mechanics than what was previously believed in the con-
ventional interpretation.

B. Interferences

One can observe interferences with a single photon
(Grangier et al. , 1986) or currently with a single neutron.
This is of course in agreement with quantum mechanics.

One also observes much more often interferences with
"classical" light. It contains many photons and it can
therefore be considered as a macroscopic system. Never-
theless, photon-photon interactions are so weak that
there is neither dissipation nor decoherence, which is
why interferences can be observed. This classical light is
well described by coherent states (Glauber, 1963), which
are eigenstates of the amplitude and phase of the elec-
tromagnetic field, and one can measure in that case a lo-
cal intensity. A sensible logic including the factual prop-
erties of preparation and detection leads in that case,
through implications, to the knowledge of some proper-
ties of light that must be expressed in terms of fields.

Conversely, when interferences at low luminosity are
observed with photodetectors, the detectors react statisti-
cally one by one to photons, and a factual single detec-
tion leads through implication to a property of light that
is expressed in terms of an observable for the photon.
Accordingly, the present interpretation completely
agrees with Bohr's considerations about wave-particle
duality: the true statement of an experimental result is
determined by the experimental device. There is no oth-
er consistent complementary choice. This, however, is
not imposed from above by some kind of supplementary
axiom but follows directly from the theory itself.

It will be convenient to consider the case of an experi-
ment with single photons coming one by one, the initial
wave packet of the photon being sharp enough to be at
some time t' completely inside the interferometer. Of
course, it is equally divided between the two arms. Other
cases could be considered, as in Young's experiment, but
they are essentially equivalent, except sometimes for a
more tedious mathematical formulation.

For definiteness, let it be assumed that the interfer-
ences can be seen in the focal plane of a converging lens
where there is a photographic plate. Each (classically
behaving) grain of the emulsion acts as a position detec-
tor for the photon. So, in a sensible logic where all the
facts are mentioned (each grain being either reacting or
nonreacting, only one of them reacting), one must in-
clude all the properties stating the presence of the photon
in every grain as possible at the time t when the wave
packet reaches the focal plane. One can also, with the
help of projectors for position, introduce two properties
holding at the intermediate time t'. Each of them states
that the photon is in a definite arm of the interferometer.

Let us consider a logic involving both kinds of proper-
ties (those expressing the result of a detection and those
stating which path the photon takes). One then finds as
many consistency conditions as there are grains in the
emulsion.

For a grain centered at a point x„, the corresponding
consistency condition turns out to be given, after compu-
tation of the trace, by

cosh'„=O, (4.8)

where Aq„ is the phase difference between two semiclas-
sical paths going through each arm, respectively, and
ending at point x„.

Not all these conditions can be satisfied, so that one
must conclude that the statement that a photon goes
through only one arm is meaningless. This has nothing
to do with the presence or absence of a photon detector
in the arms, although of course one also finds that such
actual detectors would destroy interferences.

N.B.: This is a case in which one needs necessary and
sufficient consistency conditions in the form (2.14) and
not conditions (2.16), which are only sufficient. This is
because all opportunities for a possible meaning must be
considered when a statement is to be rejected as meaning-
less.

1. Meaningless statements

May it be said that a photon goes along a single arm of
an interferometer or through a single hole in Young's ex-
periment? This is an old question about which much has
been written.

Its answer is quite simple if one accepts the universal
rule of interpretation: a property is meaningful if and
only if it can be included in a consistent logic.

2. The Badurek-Rauch-Tuppinger experiment

Some refined interference experiments are not so easily
disposed of. A very interesting one was proposed by Vi-
gier (see Dewdney et al. , 1984; Vigier, 1986) and, despite
the technical difticulties, it was beautifully realized by Ba-
durek, Rauch, and Tuppinger (1985).

This is a single-neutron interference experiment using
polarized neutrons. A neutron can follow two separate
paths, along each of which there is a spin-Hipper revers-
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ing the direction of the spin. Since the spin is finally the
same whatever the path, interferences are possible. The
interest of the experiment comes from elsewhere: A
spin-flipper is a magnetic-resonance device usually in-
volving a stationary magnetic field and a microwave with
a definite frequency ~. One can then say that a spin flip
corresponds to the absorption or emission of a photon
with frequency m. The essential point in the experiment
is that the two spin-nippers have different, well separated
frequencies co& and co2.

When the experiment is performed, interferences are
found. So, Vigier asked the question, since there was
only one neutron and therefore only one photon to be ab-
sorbed (or emitted) this photon must have either the fre-
quency cu& or co2, and its frequency is a signature of the
path that was followed by the neutron. Is this not, there-
fore, a case in which there are interferences and in which
one might nevertheless say which path the neutron took?

The question can be answered within the framework of
the Copenhagen interpretation by using it with delicacy.
A more systematic approach consists in using once again
consistent logics. One introduces again, as intermediate
properties, the two statements of which arm the neutron
is in at a time t' when the full wave packet is separated
into two disjoint parts, the final properties expressing
possible detections of the neutron and allowing one to
detect interferences if they exist. The time dependence of
the projectors associated with the properties involves the
neutron propagators U(t t'). The Ham—iltonian enter-
ing in this propagator involves the interaction of the neu-
tron with the spin-nippers, which is linear in the creation
and annihilation operators for the microwaves photons,
these operators being different for the two spin-nippers
since the waves are in two different modes.

In a sensible logic where all the devices interacting
with the neutron are included, the traces occurring in the
consistency conditions involve subtraces upon the elec-
tromagnetic degrees of freedom. To perform them, one
must take into account the state of the microwaves,
which are produced by a classical current in a coil. Their
state is, therefore, a coherent Czlauber state. The matrix
elements of the creation and annihilation operators then
become pure numbers factoring out of the traces. This
means, in more physical terms, that the device is in prin-
ciple unable to signal which kind of photon has been
emitted or absorbed, and this is also the reason why the
Copenhagen interpretation can be used.

In any case, one falls back upon the consistency condi-
tions in the form (4.8), from which one can again con-
clude that it is meaningless to assert that the neutron fol-
lowed a single path.

3. Delayed-choice experiments

According to Wheeler, the origin of delayed-choice ex-
periments goes back to von Weizacker (1931) and to a
single sentence by Bohr (Schillp, 1949). They have been
discussed at length by Wheeler (1978).

The principle is the following: one decides to active a
device that is able to detect a photon in one arm of an in-
terferometer only at a time when the full wave packet is
already completely inside the two arms. If wave-packet
reduction were a genuine physical effect, the decision
would come too late to cancel the packet that is following
the other arm, so that one might perhaps see interfer-
ences and nevertheless assert through which arm the
photon went, or the collapsing of the wave packet would
be an effect propagating faster than light. This kind of
experiment therefore checks the physical character of
wave-packet reduction, if one excludes the possibility of
action at a distance.

These experiments have now been performed (Alley
et al. , 1987; Hellmuth et al. , 1986). For the sake of
definiteness, we shall describe only the one by Alley et al.
It is essentially a single-photon experiment. A laser pulse
triggers an electronic signal before entering an emitting
diode, which emits a very weak pulse (reduced in intensi-
ty by a factor 10 ' with respect to the incident laser in-
tensity, the delay being about 2.5 ns). The electronic sig-
nal triggers a random yes/no output signal from a ran-
domizer. This output triggers in turn two Pockels cells
located in the arms of the interferometer.

A Pockels ce11 is based upon the Kerr effect, i.e., the
generation of birefringence in a crystal by an applied
electric field. The light from the diode goes through a
linear polarizer before entering the interferometer.
When activated, a Pockels cell turns the polarization by
90. Everything takes place in a time interval of 13.5 ns
at which the 3-cm-long photon wave packet is far inside
the interferometer.

A detector is located at a position where the existence
of interferences can be checked by the number of counts.
One gets statistics showing interferences when the two
cells or none have been activated and no interference
when only one of them is activated. This agrees with
Bohr's prediction according to which it does not matter
"whether our plans for handling the instruments are fixed
beforehand or whether we postpone the completion of
our planning until a later moment when the particle is al-
ready on its way from one instrument to another"
(Schillp, 1945).

A theory of these experiments using the Birkhoff-Von
Neumann approach has been given by Mittlestaedt
(1987). It relies upon refinements of this approach in-
volving the restrictions imposed upon the use of a
language by pragmatic observations (Mittlestaedt, 1978).
It seems that, when these restrictions hold, one can use a
consistent logic in the sense meant here, although it
would be interesting to know whether this equivalence
also goes the other way round. In the present case, both
"logical" approaches yield the same results.

The present interpretation can treat in principle any

type of delayed-choice experiment. One introduces as be-
fore the properties stating through which arm a photon
goes, these properties being now actualized as facts (or
not) by a detector that can be randomly triggered when
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the wave packet is already inside the interferometer. In
order to stay clearly within the bounds of quantum
mechanics, the detector may be assumed to be triggered
randomly by a quantum event, for instance the decay of a
particle. This is only a technical bypass allowing us to
avoid a precise description of an actual randomizer.

Basically, the system to be described consists of one
photon, whose wave packet at a time t' is split between
the two arms of the interferometer, and of an unstable
particle in its undecayed state. When one-half of the
photon wave packet crosses a region V farther along on
one arm of the interferometer, it is factually detected in a
nondestructive measurement if and only if the unstable
particle has decayed at that time. One must of course use
a logic involving the properties of the photon, of the un-
stable particle, and of the detectors inside and outside,
the latter detectors being used to find out interferences.

The techniques that must be used for this analysis
combine the methods that were explained in the previous
section and the present one, and their outcome is quite
simple: For the class of events in which inside detection
of the photon takes place, the probability of detection
outside is the sum of the probabilities for the photon go-
ing through only one arm or the other. For the class of
events with no inside detection, interferences, i.e., addi-
tion of amplitudes rather than probabilities, should be
observed. This is completely in agreement with Bohr's
statement and with experiments.

C. Macroscopic quantum systems

A macroscopic system does not necessarily behave ac-
cording to classical physics. The proofs of classicity that
were given in Sec. II allowed for such exceptions. Two
conditions must, however, be satisfied for observing a
nonclassical behavior of a collective degree of freedom,
namely, an initial state that is not a state of fact and the
absence or ineffectiveness of decoherence. This last con-
dition suggests that we consider nondissipative systems,
the most obvious ones being light, superconductors, or
super Auids.

Light is a macroscopic system consisting of many pho-
tons. The semiclassical theorems given in Secs. V and VI
correspond in that case to geometrical optics, although
the quantum aspects are more difficult to analyze by us-
ing these theorems because of the infinite number of de-
grees of freedom in quantum field theory. Classical be-
havior can be violated by a Young interference device,
because the slits are so narrow that passage through
them is incompatible with a classical property. The in-
terferences are therefore observed under conditions ex-
cluding the assumptions leading to classical motion, as
explained in Sec. II. Other interferometers rely upon
other devices, all of them being based upon some wave
properties' holding because of coherence (such as, for in-
stance, semirefiecting mirrors).

Whatever it may be, light is so well understood and of
$uch a primary concern for physicists that few people are

ready to put it on the same level as a macroscopic tunnel
effect occurring in a superconducting device big enough
to be plainly touched and seen.

The possibility of such a behavior in semiconductors
was first put forward by Leggett (1980). He made it plain
how this would be contrary to the assumptions made by
some adherents of the Copenhagen interpretation (Lan-
dau and Lifshitz, 1958a), according to whom a collective
degree of freedom is always expected to behave classical-
ly. For discussion of the Copenhagen interpretation on
this point, see Leggett, 1980, 1987a, 1987b.

1. A superconducting quantum interference device

I =Iosin5 . (4.9)

FIG. 6. A superconducting quantum interference device, or
SQUID. The superconductor ring contains a Josephson junc-
tion J. Voltages can be measured and current can be injected
with the contacts A and B.

Superconducting quantum interference devices (or
SQUIDs) have been used for a long time in fundamental
and applied physics. It is important to see how they
work in order to understand how they can be used for
testing the interpretation of quantum mechanics.

A SQUID consists of a superconductive ring contain-
ing a Josephson junction. Leads are connected to the
ring at two points in order to allow the injection of an
electric current from the outside or the measurement of a
voltage (see Fig. 6).

This is a rather ordinary electrical circuit, and it is
easy to write down its dynamical equations. The vari-
ables are the electric charge Q across the Josephson junc-
tion (acting like a capacitor), the electric current I in the
ring, the voltage V across the junction, and the magnetic
Aux y across the ring. The internal parameters are the
capacitance C, the inductance L„and the resistance R of
the junction. The external varying parameters are the
externally imposed magnetic Aux y,„and the injected
current I,„. The characteristics of the junction are also
well known: Let Io be the critical current, i.e., the maxi-
mal current the junction can sustain. Remembering that
a superconductor contains many Cooper pairs, which all
have essentially the same wave function, and denoting by
5 the jump in the phase of this wave function across the
junction, one has
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The voltage is also related to the phase by

d5
V =2+go

di
(4.10)

where yp =h /2e ( e being the charge of an electron) is a
convenient unit of magnetic fm.ux. Finally, the
Schrodinger equation for the wave function of the Coop-
er pairs gives a relation between 5 and y, namely,

5=2&+/pp . (4.11)

Using the characteristics (4.9)—(4.11) of the junction, to-
gether with elementary circuit theory, one easily gets an
equation giving the time evolution of the Aux in the form

Cd q)/dt = —aU/a&p,

where

(4.12)

U(y}=(2L) '(y —y,„) —(Ip/2m)cos(2. my/yp)

(I,„yp/—2m )p . (4.13)

The resistance of the circuit has been neglected, as well
as the thermal (Nyquist} noise. Shot noise is negligible.

One sees that Eq. (4.12) is entirely analogous to the
classical equation of motion for a particle with a mass C
in a potential U(p). This analogy is very convenient for
getting a clearer picture of what is going on. Note also
that the functioning of the junction relies upon quantum
mechanics, but everything ends up in a perfectly classical
equation of motion for the collective degree of freedom

Cooper pairs, i.e., from their description by a quantized
field. So, from whatever approach, the Schrodinger
equation (4.14) is associated with quantum field theory.

The potential U(q&), as shown by Eq. (4.13), consists of
an oscillating part coming from the junction together
with a simpler contribution upon which one can play, in
principle, by a suitable choice of the constitutive parame-
ters I0,I., C and the control parameters y,„,I,„. Two spe-
cial cases have particularly attracted attention (see Fig.
7): Case (a) shows a double well. It should make possible
the observation of changes in the localization of a state,
symmetric and antisymmetric states, and transitions be-
tween them. Its actual realization is, however, very
difficult (Chakravarty, 1986; Tesche, 1986; Tesche, 1990).

The second case has been realized experimentally, and
the results will now be considered. Before doing so, we
note that all dissipation effects have been neglected in the
present discussion. Despite the dissipationless character
of superconductivity, this is very questionable because
the junction has a resistance and there is also dissipation
outside the superconductivity circuit, the impedance of
which enters in a complete description of the effects.
These dissipation corrections are much more difBcult to
compute than the simple dissipationless motion in Eq.
(4.12). They rely upon the general approach in Caldeira
and Leggett (1983a), which also takes into account
finite-temperature effects.

3. Experiments

After a series of experiments showing the existence of
the predicted quantum effects (den Boer and de Bruyn

2. Quantum aspects of the SQUID

Because of the essentially quantum character of a
Josephson junction, it is often said that the working of a
SQUID is already by itself a macroscopic quantum effect.
This is also true of superconductivity. It may be recalled
here that the first experimental check of the Aharonov-
Bohm effect (Bohm and Aharonov, 1957) was made with
a SQUID involving two Josephson junctions (Jaklevic
et al. , 1964). This quantum origin of superconductivity
is manifested by the occurrence of the unit flux yo pro-
portional to Planck's constant in Eq. (4.10), and it also
appears in the explicit expression for the critical current
Io.

Notwithstanding, Leggett (1980) proposed to consider
the classical equation of motion (4.12) as a classical limit
of a quantum dynamics to be described by the
Schrodinger equation,

ik U

fi aih = — g+ Ug,at 2c aq2
(4.14)

where g is a wave function depending upon the variable
This is best understood as coming from quantization

of the electromagnetic field, which leads to the introduc-
tion of a quantum observable for the magnetic Aux. It
also comes from quantum fluctuations in the number of

FIG. 7. Two examples of potentials that may be realized with a
SQUID: (a) A double well; (b) a well with a barrier allowing
bound states that are unstable under a tunnel effect.
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Outboter, 1980; Jackel et al. , 1981; Prance et al. , 1981;
Voss and Webb, 1981; Bol et al. , 1983, 1985; Dmitrenko
et al. , 1985; Washburn et al. , 1985), quantitative checks
of the Schrodinger equation (4.14) together with the
quantum theory of decoherence were realized (Schwartz
et aI., 1985; Martinis et al. , 1987; Devoret et al. , 1984,
1987). For a lucid review, see Clarke et al. , 1988.

The most complete experiments to date have been
made with the potential configuration shown in Fig. 7(b}.
All the parameters can be measured in separate monitor-
ing experiments, so that the theory contains no adjust-
able parameter. The potential U(y) shows a well where
there can be a finite number of bound states. It will be
convenient to describe what happens in terms of an
analogous "particle" with mass C in the potential U(y).

In the ground state of the well, the average velocity
dy/dt of the model particle is zero, so that, according to
Eqs. (4.10) and (4.11), the voltage V is zero. When the
model particle crosses the barrier, it aquires a kinetic en-
ergy by rolling down the potential hill, so that a voltage
appears and then increases. This is a clear signal of the
decay of the bound state.

At high enough temperature, the model particle can go
classically over the barrier because of thermal motion.
When the temperature decreases, thermal motion is re-
placed by a quantum tunnel effect with a well-defined
transmission coefFicient. The lifetime is explicitly given
at zero temperature under the conditions of the experi-
ment (Caldeira and Leggett, 1983a, 1983b) by

1/2

120m2'
7.26U

flCOp

hU 1+ 0.87
A'co Q

(4.15)

The plasma frequency co can be understood as the fre-
quency at which the "particle" hits the barrier. It is ex-
plicitly given by

but it is a good representative of the situations that can
be realized with present technological means. The agree-
ment between theory and experiment is very good. A
quantitative check of the quantized energy levels in the
well was also made by perturbing the system with an ap-
plied microwave field.

In another series of experiments (Esteve et al. , 1989),
still with the same potential configuration, the junction is
biased by an adjustable impedance Z(co) [see Fig. 8(a}].
This can be realized by partially covering a SQUID con-
sisting of two parallel superconducting wires by an ab-
sorbing load [Fig. 8(b)]. The uncovered part of the
SQUID behaves like a transmission line with a finite time
delay. Friction in the absorbing load is therefore retard-
ed.

Biittiker and Landauer (1982) have shown that a tun-
nel effect is characterized by a finite time ~&, which they
interpret as the time needed by a "particle" to cross a
barrier. This interpretation has been questioned (Low
and Mende, 1991), and the effect can be understood less
controversially as a time delay originating from the
momentum dependence of the transmission amplitude, as
it occurs in any kind of collision (Froissart et al. , 1963).

Whatever the origin of the delay, it is found that, when
the transmission line delays the wave packet for a time
longer than ~b, there is little effect of the shunting im-
pedance upon the rate of tunneling, whereas, in the oppo-
site case, this rate is strongly reduced. This is a direct
observation of the decoherence effect. From the point of
view of Biittiker and Landauer, it would mean that
decoherence has enough time in the latter case to freeze
the position of the model particle. The particle then
obeys essentially a classical equation of motion with an
almost instantaneous friction, so that the tunnel effect be-
comes much reduced (Persson and Baratoff, 1988). It
would be interesting to see whether this point of view
agrees with a history approach, but this has not yet been
done.

co~ =(2n-Io/q&oC)' [1 (I,„/Io) ]' ~ . — (4.16)

The energy 5U is representative of the effective height of
the barrier. When the potential is approximated in the
neighborhood of the wall by a third-degree polynomial,
one can use

hU = [2(2)'~ log&o/3m. ](1 I,„/Io) ~—(4.17)
(a)

Finally, the damping coefficient Q depends upon the
resistance R and is given by

Q =a)~RC . (4.18)

Equation (4.15) clearly shows the effect of decoherence
through the occurrence of the damping coe%cient. One
can act upon the resistance R by adjusting the input im-
pedance and thus check this crucial aspect of the theory.
It should be stressed that Eq. (4.15) is obtained by keep-
ing only the leading order in an expansion with parame-
ter 1/Q. It cannot be used for the ideal case where R =0,

junction chip

delay line
load

(b)

FIG. 8. A device realizing a tunnel effect: (a) The equivalent
electric circuit; (b) schematic view of the actual device.
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V. OBJECTIVITY, REALISM, AND SO ON

Since its beginnings, quantum mechanics has been the
subject of intense philosophical discussions (Jammer,
1966, 1974). The interpretations presented here obvious-

ly answer some of these questions and they raise new
ones, so that it may be convenient to sketch them brieAy
as some sort of a conclusion.

After some general comments about interpretation in
Sec. V.A, Sec. V.B will briefly review the most obvious
consequences of the theory, having to do essentially with
its objective character. Section V.C is more speculative,
centered on the connection between theory and reality,
together with a related question concerning the actuality
of facts.

A. Why an interpretation?

Since the purpose of physics is to arrange in order the
facts belonging to the material world, one may wonder
why it happens to end up with theories that a.'e obscure
enough to need an interpretation. Should not the facts
speak for themselves~

The reason seems to lie in the potentialities that are
offered by the scientific method, a description of which
can be borrowed from Einstein (1952): Physics starts
from empirical data but it goes through a conceptual
stage in which the basic concepts are invented together
with their ruling principles. They give rise to a
mathematical construction representing the properties
and the behavior of reality. Once this representation is
obtained, its consequences can be worked out and com-
pared with experiments.

When physics extended its range beyond ordinary phe-
nomena by considering electromagnetic fields, or motions
near the velocity of light, or the structure of atoms, there
was no reason to expect that it would still conform to
common sense.

Common sense could also be called phenomenology or
classical physics. It has two main features, namely, intui-
tion and plain language. Intuition consists in a represen-
tation of the world, both visual and active, which comes
from everyday experience. It goes with perception and
action. Ordinary language describes what exists, what
happens, and how the facts are linked together in ordi-
nary circumstances. This is done, of course, according to
reason, i.e., with some due regard to logic. Common
sense is undoubtedly as essential to physics as the con-
ceptual and mathematical language of theory because it
is the framework in which one must describe phenomena.

When science results in a theory that is apparently too
far away from common sense, it is necessary to reconcile
them, if only to link the theory with the empirical data
lying at its origin or the experiments that are used to
check it. This is where interpretation comes in.

As long as a theory can be expressed by using the
language of common sense, there is no need for an inter-

pretation. This was more or less the situation for classi-
cal physics. An interpretation becomes necessary when
no pedagogical method can be found to reexpress the
basic concepts of the theory within the categories of corn-
mon sense. Then one must go the other way round by re-
casting these categories within the mathematical frame-
work of the theory.

Although one may see a posteriori some hints of an in-
terpretation when the electromagnetic field and statistical
mechanics entered classical physics, the problem came to
the forefront only with the advent of relativity. What an
observer sees and measures had to be translated into
some well defined mathematical notions belonging to the
theory.

The role of the observer was, however, overstated. It
provided a convenient pedagogical approach to an inter-
pretation by making it easier to grasp. It resorted to in-
tuition, and, this is very helpful. Nevertheless, it should
not mislead us into believing that observers have a com-
pelhng role in physics. One can also interpret relativity
by translating its phenomenology directly into the con-
ceptual language of the theory without ever mentioning
observers but only physical systems.

Interpreting quantum mechanics is much more
difficult than interpreting relativity, whether special or
general. Not only is its mathematical language much far-
ther from intuition, but it must also solve new problems
that are not accounted for in the basic theory. This is be-
cause the theory is fundamentally probabilistic, whereas
the phenomena one observes are endowed with certainty
by observation and common sense: they are facts.

This is why an interpretation of quantum mechanics
consists in reexpressing the phenomena and the data
within the conceptual framework of the theory, as stated
in the Introduction.

B. About objectivity

A theory is objective when it deals only with facts,
whether they are observed or not, and not with our con-
scious knowledge of them. Niels Bohr (1958) made it
plain that he considered quantum mechanics to be objec-
tive. For the sake of the argument, it will not be neces-
sary to distinguish here in detail between Bohr s interpre-
tation and the present one, which can be considered as its
modern version, even if it differs in some respects.

It may be mentioned by the way that nothing can in-
spire a greater respect for Bohr's insights than rediscov-
ering them with the help of a deductive method. One
gets the feeling that he was able to keep in parallel all the
necessary tenets by the sheer power of thought, a feat
that would be broken by the linear rendering of a
discourse. If this were true, it might explain why Bohr
never wrote more than hints and landmarks and why he
gave no complete explanation. It might also suggest that
many later accounts of his views, essentially glosses over
some of his quotations, were in fact contrary to his spirit
(excepting, of course, direct witnessing from close colla-
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borators}. It may be true, as some people say, that every-
thing is in Bohr, but this has been a matter for hermeneu-
tics, with the endless disputes any scripture will lead to.
It may also happen that he guessed the right answers, but
the pedagological means and the necessary technique de-
tails were not yet available to him. Science cannot, how-
ever, proceed by quotations, however elevated the source.
It proceeds by elucidation, so that the feats of genius can
become ordinary learning for beginners.

Rather than making long comments, it may now be
simpler to list a few theses following more or less obvi-
ously from the previous parts of this review. They will
also provide a clearcut summary. Although they follow
closely the logical formulation, analogous statements
might probably be reached by using Gell-Mann and
Hartle's approach:

(1) Quantum mechanics is universal: Leaving aside
some questions having to do with the structure of space
and time, one can rely at present upon a unique set of
physical laws, which is quantum mechanics. One does
not need to assume anything special about the kind of
physics taking place at a macroscopic level. All physical
objects, whether microscopic or macroscopic, are com-
pletely subject to quantum mechanics.

(2) Quantum mechanics has two main structures.
Within a unique mathematical framework, it can be
thought of as consisting of two categories of laws and re-
sults running first in parallel and then intimately related,
one being concerned with dynamics and the other with
logic. Neither gives a complete formulation of physics
without the other.

(3) Whatever is said about something physical, the
statements in language can be replaced in principle by
some mathematical objects, and the reasoning can be
proved like an equation. The logical structure of quan-
turn mechanics can be completely formulated in terms of
mathematical entities, and its use can be reduced to
mathematical equations. Its range is wide enough to cov-
er in principle all that physics can reach.

(4) The whole interpretation of physics can be based
upon a unique logical axiom stating how one can describe
a physical system and what kind of reasoning one can
make about it. This axiom is exclusive: any sentence
that does not satisfy these conditions is deemed to be
meaningless.

(5) Phenomena pre-exist in the theory. This means
that the theory predicts the existence (in the mathemati-
cal sense of this word} of some mathematical objects,
which are able to express the usual properties of phenom-
ena as they exist (in reality). These properties can be de-
scribed by educated common sense, i.e., by classical phys-
ics, as well as by quantum mechanics.

(6) The Moon is not fuzzy: Phenomena are clearly
separated and, as alternative possibilities, they obey the
conventional calculus of probability.

(7) One cannot beat phenomena: No measurement,
however, costly in time and equipment, or whether it is
just dreamed of as being possible, will ever deny the sepa-

ration of phenomena, as long as the principles of this
measurement are consistent with the basic laws of phys-
ics including relativity.

(8) Classical determinism is a direct consequence of
quantum mechanics, despite the latter's probabilistic
character. This determinism is, however, approximate,
though generally with very small errors in probability. It
also means that the existence of reliable records and
memories is compatible with quantum mechanics.

(9) Aristotle is back again: Common sense logic, when

applied to the macroscopic world, is consistent and it is
useful in most cases, with a very good approximation. Its
range of validity, however, is not universal and it is ex-
plicitly limited by the theory.

(10} One can think in one's own way. The logical
structure of the theory allows for a wide number of
diferent, so-called complementary, consistent logics.
This multiplicity cannot, however, be responsible for any
internal contradiction.

(11) One can give an explicit criterion for truth in
physics. Once actual facts are taken to be true, a few
other properties can also be said to be true according to
well defined prescriptions. The most remarkable exam-
ples of true properties are the results of an individual
measurement and the past facts, as they can be logically
reconstructed from their present records or traces.

(12) There is no Einstein-Podolsky-Rosen paradox.
The famous diSculty exhibited by these authors came
from what turns out now to be a confusion between the
true properties of a system and the so-called reliable
properties, which are not self-contradictory as such but
involve an arbitrary choice of logic outside which they
cannot even be stated.

(13) As far as true properties are concerned, quantum
mechanics is separable. This means that no true proper-
ty of a system can be modified by an action that is per-
formed upon another isolated system far away.

(14) There are many propositions that can be formulat-
ed within a consistent logical framework but to which
one cannot assign a truth value (as being true or false).
They cannot be verified or falsified by experiment, what-
ever the experiment. This implies that most observables
cannot enter propositions within the range of truth.
They can be used only for purposes of discussion, with no
truthful meanin.

(15) Some very small probabilities, though theoretically
meaningful, have no empirical meaning because they are
below the confidence probability threshold for their fac-
tual measurement.

(16} There is a logical direction of time. It coincides
with the direction in thermodynamics.

(17) An observer is only a part of the universe with no
privileged role as compared with any other object that is
able to detect a fact and to treat information.

(18) Perception is a special case of a quantum measure-
ment.

These theses might warrant various comments but the
arguments for most of them have already been given in
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some detail, so that it will be better to avoid undue re-
petition. The last one is the outcome of a rather lengthy
exercise, which can be summarized as follows: When an
object is seen, one must take into account the photons in
the light allowing it to be seen As shown by Joos and
Zeh (1985), the geometric characteristics of the object, its
position and orientation, become separated, i.e., they be-
come in a very short time alternative distinct possibilities
as a result of decoherence. Only one of them can be real-
ized, because the projectors describing two such different
facts are exclusive. The light scattered by the object con-
tains, in its emission pattern, a huge amount of informa-
tion about this unique shape and position of the object,
which can be expressed in terms of geometrical optics.
The pigments in the retina are receptors for these scat-
tered photons, and this is essentially a quantum measure-
ment. The many data registered by various cells contain
a large part of the information contained in the emission
amplitude. Two eyes allow a reconstruction for the part
of the surface of the object emitting towards the eyes.
The details of this analysis are not very instructive, but
the basic idea is quite simple. Analogous considerations
can probably be made for the perception of sound and for
touch. Their main interest is to show that a classical
measurement is a special kind of quantum measurement.

Finally, no special comment is needed to advocate the
objectivity of this interpretation. It has not been formal-
ly proved to be complete and consistent in the sense
given in the introduction but, though below the level one
requires in formal logic, the arguments that have been
given make this more or less obvious.

Some other versions of an interpretation, if not neces-
sarily inconsistent, can be considered as unnecessary, and
they may better be avoided for philosophical reasons.
The so-called standard interpretation (Von Neumann,
1932; London and Bauer, 1939; Wigner, 1963) attributes
to consciousness the role of breaking the linear superpo-
sitions issuing from a measurement. This looks more
than ever troublesome at a time when most experiments
leave to consciousness only the modest role of reading
the listings of a computer. Everett's conception of paral-
lel universes also seems to answer a somewhat empty
question (Everett, 1957; De Witt and Graham, 1973),
though it is considered as a possible framework by Gell-
Mann and Hartle. It assumes the simultaneous oc-
currence of several versions of the universe, each time a
linear superposition is broken by decoherence.

There is nothing against envisioning the future evolu-
tion of the universe as alternative histories or versions, all
of them being possible with definite probabilities. Be-
cause of decoherence, this is nothing but ordinary proba-
bility calculus. To say with Everett that something
might remain, though inaccessible, of past unrealized
possibilities is quite different. Such a point of view can be
criticized on two grounds. As a matter of fact, most
branchings of the universe are of a classical chaotic na-
ture. Should one say that two universes are generated
and separated from each other when a turbulent brook

pushes a pebble on the right rather than on the left? Or
should one say that this manifestation of chaos is a quan-
tum effect hidden in the quantum origin of the motion
uncertainties that are amplified by chaos?

A somewhat more cogent argument comes from logic:
why not start the description of the universe from now
rather than from a nebulous origin? There are at present
a vast number of facts, some of them explored and many
remaining unknown. 'When one starts from them and
uses logical retrodiction, with the help of determinism,
many past facts can be recovered. This is how science
proceeds, and why should science rely upon something
else it cannot get at directly? From the uniqueness of
present facts results the uniqueness of many past facts,
and of all of them in idealized models (Gmnes, 1990),
whereas the future must remain potential. This essential
distinction between the characters of past and future is
not only plain evidence, it also preexists in the logical
theory of facts, so that, even there, interpretation regains
common sense. For analogous considerations, see Haag
(1990).

Of course, the basic question to which the Everett
description is addressed is the reconciliation between the
uniqueness of actual facts and the multiplicity of poten-
tial phenomena in the case of a quantum measurement.
This question will have to be considered anyway, but
parallel universes look a bit too much like what hap-
pened in the world where Caesar was born king of Persia;
if one can avoid them, this will be for the best.

C. Realism and actuality

A basic tenet of realism is that there exists something,
reality, that does not depend upon human consciousness
(see, for instance, d'Espagnat, 1976, 1983, 1984, 1989).
Except for the advocates of the standard interpretation of
quantum mechanics and some idealist philosophers, most
physicists accept it. A much stronger statement of real-
ism asserts that reality is accessible to knowledge as a
matter of principle. This is what d'Espagnat calls strong
realism, while offering other versions as weak realism or
empirical realism.

It is sometimes said that the main alternative to real-
ism is positivism. This other approach to epistemology,
as advocated by Stuart Mill, distinguishes some aspects
of reality as not accessible to knowledge and others as
knowable, with knowledge of the latter being obtained by
agreement between sensible men. No physicist, at least
before the advent of quantum mechanics, was a hard-
boiled positivist.

Most classical physicists had a third position, which in
one version or another stated that physics arrives at some
principles giving an economical expression of empirical
laws. It does not provide a complete knowledge of reality
or a full explanation of it but, in most cases, a representa-
tion of it in terms of some mathematical models. This in-
terpretation of physics as keeping all appearances is best
analyzed by Duhem (1908, 1914), who quotes in its favor
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Pascal, Newton, Ampere, Kelvin, Maxwell, Mach, and
tens of others, as compared with only two clearcut real-
ists, Descartes and Kepler, and two not-so-clear ones,
Copernicus and Cxalileo. It would therefore be an error
to consider realism as typical of classical physics, or at
least this view ought to be strongly qualified.

Furthermore, the formal definition of realism is rather
unclear, since it fails to specify the principles allowing
reality to be known, if reality is not metaphysical, and
the criterion for truth that applies to a knowledge of real-
ity. The interpretation of quantum mechanics presented
here is obviously not strongly realist, since it leaves some
conceivable properties of a physical system as inaccessi-
ble to knowledge, restricting knowledge to what satisfies
a criterion for truth. This leaves it, however, in good
company, and perhaps one should not ask of quantum
mechanics what Newton did not ask of classical dynam-
ics. In less controversial terms, it offers a representation
of reality in terms of a mathematical construction. It al-
lows a notion of truth in which all objective facts can fit,
and there is no reason to expect more from a theory.

The most startling (even if not quite new) feature of the
present interpretation is the status it gives to empirical
knowledge. Cziven a fact, its origin and its consequences
are not absolutely certain, and there always remains a
tiny uncertainty in them. Their account by common
sense does not strictly obey the rules of logic, and even
these have a slight risk of error. Of course, in the rare
event that erratic quantum effects happen, one rather at-
tributes them to an unknown ordinary cause and they go
unnoticed. They cannot be reproduced and therefore
they escape direct knowledge.

This fringe of uncertainty has its rewards: to think
that physics has been able to recognize such limitations,
to work within them by well-made experiments, and to
express them economically by general principles is some-
thing remarkable. To find that, most probably, common
sense rests upon more basic raisons d etre and that its
own limitations can be understood, is worth some philo-
sophical consideration. Conversely, it gives a warning
against incautious philosophical principles, which after
all are most often ennobled forms of common sense.

%'e shall not enter here into this kind of comment but
rather reconsider the representation of reality by the
mathematical model of physics, the main reason for that
being to shed some light upon the difficult problem of ac-
tual facts.

Despite its constraints by experiments, a theory is
essentially a purely mathematical and logical entity.
How and why it can adequately represent reality is the
prime mystery of science. Thus any consideration of
physical knowledge cannot leave aside the nature of
mathematics.

Realism is not restricted to physics. There is also a
Inathematical realism according to which a mathemati-
cian more or less freely invents, but, when he really
succeeds, this is a discovery, He has encountered some-
thing having its own existence, its own reality. The
wonderful coherence of modern mathematics and its har-

monious architecture are often taken as an argument in
favor of this point of view. One may also add its
efficiency in physics. Whether this other kind of reality
proceeds from the one we touch and see is far from clear,
and it may be better to give it another name for clarity:
Philosophy calls it logos.

As far as one can see, physics (together with other sci-
ences) is a representation of reality, and mathematics
niight well be a representation of a logos. Both are
secreted by man, growing, changing through exploration
and confrontation, but they represent something outside
man. Now, the representation occurring in physics
demands for its construction the representation built up
by mathematics. One may therefore wonder whether this
necessity is also representative of a more elevated
correspondence between reality and logos. It might be
that science is possible because reality has order, a notion
expressing that it is strongly connected with logos.

Most physicists, if not perhaps all of them, believe that
there is order in reality; it is expressed by the laws of
physics in their mathematical form. But if one assumes,
with most philosophers after Leibniz, that mathematics
is an arbitrary game invented by man, one is back to a
science and even to an order in reality that are also hu-
man. This is why the present author advocates what
might be called a total realism, where both the physical
reality and the logos exist by themselves.

Total realism does not suffer from the pitfalls of ordi-
nary realism. It gives meaning to ordinary language as
being a special representation of reality; it is explicit
about the meaning it gives to knowledge, since it has cri-
teria for truth, and also about what it means when stating
something "in principle. " It does not need to assert what
should be a priori the extent of knowledge, and it has no
distinctions such as that between "strong realism" and
"weak realism. " Nevertheless, it does not reduce science
to an "agreement between the observers" nor theory to
the too modest goal of "keeping all appearances. "

Whatever it may be, these remarks hint at the fact that
physical realism remains incomplete. It does not state
what kind of knowledge it refers to, and it even does not
know what knowledge is, as long as it avoids stating what
it assumes about mathematics and logic.

This apparent digression was meant to prepare the
ground for the problem of interpretation and probably
the only essential problem: what is an actual fact?
Quantum theory envisions possible phenomena, for in-
stance, that one detector will register rather than anoth-
er. These are potential phenomena, about which the
theory can give only some a priori probabilities. Now, all
of a sudden, one of them becomes real and the others
fade into oblivion. How is this?

It should be stressed that actuality, whether in a quan-
tum measurement or in plain classical situations, is the
only point where theory and reality come into contact with
each other. All the rest is a matter of relations between
phenomena and observations of their frequencies, which
are obtained entirely within the framework of theory if
one includes in theory its account of common sense. This
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is also the only point for which theory does not provide
an explanation, nor a mechanism, nor a cause for what is
observed.

Perhaps the best way to see what it is all about is to
consider what would happen if a theory were able to off'er

a detailed mechanism for actualization. This is, after all,
what the advocates of hidden variables are asking for. It
would mean that everything is deeply determined. The
evolution of the universe would be nothing but a long
reading of its initial state. Moreover, nothing would dis-
tinguish reality from theory, the latter being an exact
mathematical copy of the former. More properly, noth-
ing would distinguish reality from logos, the time-
changing from the timeless. Time itself would be an il-
lusion, just a convenient ordering index in the theory.

So, one falls back upon a conception of physics going
back to Bohr, who stated that reduction of the wave
packet is a law of physics differing in its nature from all
other laws. This idea was made somewhat obscure by its
reference to reduction of the wave packet, and it can now
be elucidated: physics is not a complete explanation of
reality, which would be its insane reduction to pure un-
changing mathematics. It is a representation of reality
that does not cross the threshold of actuality.

To make this idea clearer, one might follow Bohr by
stating it as a law of physics differing from all the other
laws, because it is the only one referring directly to reali-
ty. It would be that reality is always unique. It evolves
in time, in such a way that the diff'erent facts originating
from identical initial phenomenological conditions show
frequencies in accordance with the theoretical probabili-
ties.

Finally, it is wonderful how quantum mechanics
succeeds in giving such a precise and, as of now, such an
encompassing description of reality, while avoiding the
risk of an overdeterministic insanity. It does it because it
is probabilistic in an essential way. This is not an ac-
cident, nor a blemish to be cured, since probability was
found to be an intrinsic building block of logic long be-
fore reappearing as an expression of ignorance, as empiri-
cal probabilities. Moreover, and this is peculiar to quan-
tum mechanics, theory ceases to be identical with reality
at their ultimate encounter, precisely when potentiality
becomes actuality. This is why one may legitimately con-
sider that the inability of quantum mechanics to account
for actuality is not a problem nor a Aaw, but the best
mark of its unprecedented success.
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