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Bak, Tang, and Wiesenfeld proposed the idea of self-organized criticality in order to gain a general under-
standing of the behavior of extended dynamical systems driven in a nonequilibrium state. In particular
this idea was intended to explain the ubiquitous scaling behavior and fractal structures that are observed
in many different phenomena occurring spontaneously in nature. Recent experiments on the dynamics of
a pile of sand, which had been expected to show self-organized criticality, are reviewed and it is shown
that sand behaves in a manner more reminiscent of a first-order transition than of a second order (or criti-
cal) one.
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ty; I shall describe some of the more salient features of
real granular materials and a simple theory of friction to
account for some of this behavior. The experiments were
performed with Heinrich Jaeger and Chu-heng Liu, and
the model of friction was developed in collaboration with
them and Thomas Witten.

II. INTRODUCTION TO SELF-ORGANIZED
CRITICALITY

Geological faults and piles of granular material are ex-
amples of driven dynamical systems that often demon-
strate large and catastrophic events in the form of earth-
quakes and avalanches. Are these events similar in any
way, if so, what kind of behavior can one expect from
this class of systems? Is there anything we can say about
these systems from first principles without knowing about
the "microscopic" details of the problem? Renewed in-
terest in this type of phenomenon was generated a few
years ago by a series of papers by Bak, Tang, and Wiesen-
feld (Bak, Tang, and Wiesenfeld, 1987; Tang and Bak,
1988), in which they introduced the notion of self-
organized criticality to describe the behavior of spatially
extended, driven dynamical systems in a steady state.
Their idea was to make an analogy between such systems
and the better understood phenomena that occur in an
equilibrium system near a critical point. Following this
analogy they proposed a possible underlying cause for the
variety of fractal structures that occur ubiquitously in na-
ture. The ideas were initially expressed in terms of a
model "pile of sand, " and I believe that this is still the
simplest way of gaining an intuitive grasp of the concept.
We shall see later that real sandpiles actually do not
behave in this manner.

In this Colloquium, I shall talk about the dynamics of
granular materials, in particular about the behavior of
avalanches that occur when the slope of a pile of sand be-
comes too great. I shall first give an introduction to the
ideas of self-organized criticality and then describe some
experiments that have been performed to see if these
ideas relate to the dynamics of real avalanches. As we
shall see, the dynamics of sand is much more complicated
than is envisioned in the model of self-organized criticali-

If we take a flat, horizontal platform and place one
grain of "sand" on it, we expect that it will be stable and
not move. If we continue to place grains at random
places on the platform, eventually one particle wi11 land
on top of one already there, in which case it may be un-
stable and fall ofF' to one side. This is a microscopic
avalanche. As we continue to add particles at random
positions, the slope of the pile increases and it becomes
more likely that a new particle added at any position will
be unstable. When an added particle is unstable, it will
again fall to its neighbor, which is also likely to be unsta-
ble, so that the avalanche will continue to propagate.

Thus, as the slope of the pile increases, one expects
that avalanches should become larger in extent. This
should persist until the steady-state angle is reached
where, for every particle that is added to the pile, on
average one particle will fall off the edge of the platform.
From our childhood experience with sandpiles we
remember that the sand grains do not leave the pile one
at a time, but rather do so in larger avalanches which
may fluctuate in size. Thus we would expect that as the
slope of the pile increases the rearrangements of the par-
ticles (i.e., the avalanches) will also increase in size until
they span the entire system at the steady-state angle. If
we prepare the pile to be above the steady-state angle, we
expect that a small perturbation wi11 initiate a massive
rearrangement of particles, which will bring the pile back
to the steady-state conditions.

This picture of what happens in a pile of sand bears a
remarkable resemblance to what occurs near a second-
order, or critical, phase transition. For example, in a
paramagnet at high temperatures, far above the critical
temperature T„ the spins will have a very small correla-
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tion length. The spins will only be aligned over a very
small region of space. However, as the temperature is
lowered, the correlation length grows until at T, it be-
cornes infinite and spans the entire system. Bak, Tang,
and Wiesenfeld made an analogy between the angle of the
sandpile and the temperature of the magnetic system. If
the angle is very small, far below the steady-state angle,
the avalanches, or fIuctuations in the sandpile, will be mi-
croscopic. This is analogous to the small Auctuations in
the paramagnet at high temperature. As the angle is in-
creased, the avalanches are expected to increase in size,
similarly to the increase in the correlation length as the
temperature is lowered in the spin system. The steady-
state angle, where the avalanches are supposed to be glo-
bal in extent, is analogous to the critical temperature,
where the correlation length has diverged. Thus this
model suggests that there is a strong analogy between a
dynamical system, such as a pile of sand, at its steady-
state condition and an equilibrium system sitting at its
critical point.

There is, however, one important difference between
the two situations. In order to observe critical behavior
in a magnet, one must carefully tune the temperature to
be at exactly the critical temperature. In the pile of sand,
however, the system apparently tunes itself. If we simply
add particles very slowly, the model sandpile will in-
crease its slope until the critical point is reached. If the
angle were ever to get too large, a global avalanche would
occur to bring the slope back to its critical value. In this
sense the sandpile is self-organized critical, since the ex-
perimentalist did not have to tune any of the parameters
by hand. [Although this seems to be very different from
the behavior of a magnet, one could certainly imagine
designing a feedback loop that automatically adjusted the
temperature to keep the system at the critical point. In
such a case it is less clear that there is a distinction be-
tween the two systems as regards the self-tuning. One
must also ask (Hwa, 1991) at this point whether the con-
dition of adding the grains of sand indefinitely slowly is
equivalent to adjusting a parameter such as the tempera-
ture in the spin system. ]

I have so far followed the original authors, Bak, Tang,
and Wiesenfeld, in describing the idea of self-organized
criticality in terms of. the behavior of a sandpile. It is
clear, as they pointed out, that the same ideas could also
be used to describe many diferent kinds of dynamic
problems. Indeed self-organized criticality has been sug-
gested as a possible explanation for the power-law behav-
ior seen in many systems. Thus 1/f noise in metal wires,
the power laws seen in turbulent systems, the power-law
distribution of earthquake sizes, the fractal nature of
coastlines, the power-law distribution of mass in the
universe, the distributions observed in the cellular au-
tomaton game of life, have all been ascribed to some self-
organized critical behavior. Clearly, if even a small por-
tion of these systems turns out to be self-organized criti-
cal, the model is important to understand. For this
reason we have tried to test its validity in the simplest of

systems to which it was applied —the dynamics of
avalanches in a sandpile, the system for which the ideas
were first enunciated.

III. EXPERIMENTS ON SAND
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FIG. 1. A schematic diagram of the side view of two experi-
mental configurations: (a) an open box with sand added from
the top and (b) a rotating semicylindrical drum. In both cases
the sand falls through a pair of capacitor plates. The signal
from the capacitor is sent to a spectrum analyzer.

The experiment we designed is very simple in concept
(Jaeger, Liu, and Nagel, 1989). We start with a three-
sided box. As shown in Fig. 1(a), we add sand from
above in such a way that it is spread evenly over the sur-
face of the container. As sand is added it forms a
wedge-shaped pile starting at the open edge of the box.
Qnce the pile has reached the steady-state condition, as
sand is added from above the avalanches will remove the
same average amount from this open edge. In order to
measure the size distributions of the avalanches as well as
their temporal occurrence, we have placed a pair of capa-
citor plates immediately below the front edge of the box,
so that all the sand that falls o6' the system must How

through the capacitor. The size of each avalanche is
detected by measuring the change of the capacitance as a
function of time. The capacitor is sensitive enough to
measure even the presence of a single grain of sand flow-

ing through it. The time dependence of the capacitance
can be measured to determine whether there is a power-
law behavior in the avalanche distribution.

There are two possible problems with this experiment,
which concern the mechanism for adding particles: any
fluctuation in the rate of addition of particles or any
non-randomness in the positions of where the sand is
placed might inhuence the rate of avalanche occurrence.
A second experiment, shown in Fig. 1(b), can eliminate
these problems. In this case we 611 a semicylindrical
drum with sand and rotate it, at a constant angular veloc-
ity, about its axis. The lower half of the drum is closed
oA; so that as it is rotated the sand will initially increase
to its steady-state slope and thereafter will maintain that
slope through avalanches across the top lip of the parti-
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tion. Again the sand that Aows out of the system is mon-
itored with a pair of capacitor plates as in the first ver-
sion of the experiment described above. In this experi-
ment, since the angular rotation velocity is kept constant,
there is no fIuctuation in the rate of increase of the upper
surface of the pile, and since the entire surface is tilted
uniformly there is no randomness in the positions of
where the sand is placed. In what follows, I shall show
results for the second of these experiments, although the
same qualitative behavior is found in both.

If the ideas of self-organized criticality were applicable
to the behavior of avalanches, we would expect that the
distribution of avalanche sizes would show power-law be-
havior. What we find is actually quite different. In Fig.
2(a), I show the change in capacitance b, C as a function
of time, as the drum is rotated. Since the capacitance
changes due to the amount of sand flowing through the
plates, AC is simply proportional to the current of Aow-

ing sand. Instead of finding avalanches of all sizes obey-
ing a power-law distribution, we find only avalanches of
one typical size. All the avalanches repeatedly corre-
spond to global ones which span the entire surface of the
sandpile. The spikes in the figure occur quite regularly in
an almost periodic pattern.

This leads us to the realization that the sandpile does
not act in the manner hypothesized above but rather has
two important angles between which the slope oscillates.
The pile is stable and does not collapse until the slope
reaches an upper value 6 . When the slope becomes
greater than this maximum angle of stability the pile is
unstable and a global avalanche occurs. This avalanche
brings the slope to a smaller value, called "the angle of
repose. " As more sand is added to the system, the slope
of the pile again increases until 6P is reached and anoth-
er avalanche is generated. The regularity of the spikes in
Fig. 2(a) indicates that the difFerence between the two an-
gles, 5:—0 —0„, is well defined. If we take the power
spectrum of the data shown in Fig. 2(a), we get the re-
sults shown in Fig. 2(b). There is a peak at low frequen-

cies corresponding to the average interval between
spikes. At intermediate frequencies, the spectrum is Aat,
and at high frequencies it falls off rapidly. The high-
frequency rolloff is due to the shape of each individual
spike and occurs at a frequency corresponding to the
time it takes an avalanche to sweep through the system.

This behavior is more reminiscent of a first-order tran-
sition than it is of second-order behavior. In a first-order
transition there is a barrier in the free-energy surface that
separates the two phases. See Fig. 3. If the system is ini-
tially in the high-temperature phase, then as the tempera-
ture is lowered past the transition temperature it will
remain in the high-temperature state until a fIuctuation
occurs that takes it over the barrier into the low-
temperature state. Thus a first-order transition occurs by
a process of nucleation and growth, where a fIkuctuation

spontaneously creates a nucleus of the equilibrium phase,
which then grows to envelope the entire system. In a
first-order transition it is therefore possible to supercool
one phase past its equilibrium phase transition. This
leads naturally to hysteresis.

In our experiments there is hysteresis in the behavior
similar to the ability to supercool a liquid below its equi-
librium first-order freezing temperature. Thus the slope
can increase past the angle of repose and exist in a meta-
stable situation with 0„&8 & 8 . One might even go so
far as to associate the upper maximum angle of stability,
0, with a spinodal point. Above this point the pile is no
longer metastable but is totally unstable.

A recent set of experiments by Held and co-workers
(Held, Solina, Keane, Haag, Horn, and Grinstein, 1990)
indicated that a different behavior could be observed if
the pile were made sufIiciently small. These experi-
menters added single grains of sand to a pile confined to a
very small platform and measured the distribution of par-
ticles falling off the edge after each grain was added. For
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FIG. 2. Avalanches in the rotating drum experiment: (a) The
change in capacitance AC as a function of time, as the drum in
Fig. 1(b) is rotated. The sand consists of spherical glass beads of
diameter 0.5 mm. (h) The power spectrum S(f) for the same
trace as shown in (a). For comparison, a 1/f power spectrum is
shown by the dashed line.

FICx. 3. A. schematic illustration of the free-energy surface at a
first-order phase transition. 6 represents the free energy and X
represents a coordinate of the system such as the density. At
high temperature, above the phase-transition temperature
T,the lowest free-energy minimum occurs at A, whereas at
low temperature it occurs at 8. As the temperature is lowered,
the system remains in the minimum at A until a nucleation
event occurs. Nucleation is caused by a fluctuation that takes a
small part of the sample over the energy barrier from the meta-
stable minimum at A to the stable minimum at B. If the nu-
cleus is sufficiently large, it will grow to envelop the entire sam-
ple.
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platforms with very small diameter. they found that the
distributions of avalanches could be superimposed on top
of one another after being suitably scaled. This result has
been taken as evidence (Bak and Chen, 1991) that sand-
piles do, after all, demonstrate self-organized criticality.

We have proposed an argument showing how finite-
size effects can affect the behavior of avalanches and ob-
scure the first-order nature of the transition when the pile
is made suKciently small (Liu, Jaeger, and Nagel, 1991).
The difference between the two angles 6—:0 —0„ is ap-
proximately two degrees. If the base of the pile is small,
it may not be possible to add even a single grain, of diam-
eter d, to the top of the pile without bringing the slope
from below 0„ to above 0 . As shown in Fig. 4„ the base
of the pile, L, must be greater than d/5 in order for an
entire grain to 6t between the two angles. For our case of
5=2' this implies that L )30d. For smaller piles of sand,
the pile is so small that the slope is not defined with a
resolution that can distinguish between 0 and 0„. In
this case the first-order behavior of the pile must be cut
oK The experiments of Held et a/. indicate that the
transition to the small-size regime occurs almost precise-
ly at this value of the platform radius. Thus the sandpile
must be very small indeed before the first-order nature of
the transition is blurred by the Gnite-size effects. Al-
though for platform sizes smaller than L =30d it is possi-
ble to superimpose the different distribution curves on
top of one another, this should not be taken as evidence
of true critical behavior. First, with the largest length
scale of only 30 bead diameters, there is not sufhcient dy-
namic range to tell whether any significant scaling does
indeed occur. Second, there is no region where asymp-
totic behavior can be observed. (One would normally
think that the scaling should occur in the limit of large
distances, whereas here it is precisely at large distances
that the scaling results disappear. One cannot look at the
asymptotically small piles, since piles cannot be made
with diameters less than a single grain. )

Self-organized criticality was not observed in our large
sandpiles primarily because the slope of the pile oscillat-
ed between two distinct angles. It was plausible that if
we could get rid of one of these angles the self-organized
critical behavior would become manifest. In order to do
this we introduced vibrations to the system, so that the
system would be made unstable as soon as the slope in-
creased above the angle of repose and the upper angle 0
would no longer be encountered. In Fig. 5 we show the
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results of the power spectrum for the avalanches when
different amounts of vibration were used. No new scaling
behavior was observed as the vibration intensity was in-
creased. Instead the high-frequency rolloff became pro-
gressively more rounded. Thus this experiment, as well,
did not indicate that avalanches in a sandpile behave in a
self-organized critical manner.

Clearly sand does not behave in a manner predicted by
the theory of self-organized criticality. Instead it has
many intriguing properties of its own which we do not
fully understand. For example, sand behaves like a solid
in that its upper surface remains stable at a nonhorizon-
tal angle even under the inhuence of gravity. Yet when
the angle grows too large, the sand begins to Aow like a
liquid. The flowing sand, however, is quite different from
liquids with which we are well acquainted. The region
where the flow takes place is con6ned to a narrow layer
near the surface of the pile. The bulk does not How at all.
There is hysteresis in the sandpile as well. When the
slope lies between 0 and 0, the pile can have two states,
depending on its initial conditions: it can either be sta-
tionary or it can be Aowing.

IV. FRICTION IN SAND

FICx. 5. The power spectra for avalanches occurring in a rotat-
ing drum in the presence of vibrations. The intensity of the vi-

bration is parametrized by 0„,which is the steady-state angle of
the pile when the drum is rotated with a given angular velocity
0 (in this case Q= l. 3'/min). As in Fig. 2, a 1/f power spec-
trum is shown by the dashed line for comparison.

L= d/6

FIG. 4. Finite-size eAects should become important if the ra-
dius of the pile is smaller than I.=d/6. For I less than this
value the pile is too small to be able to distinguish between 0„
and 0

In order to explain some of these phenomena we have
proposed (Jaeger, Liu, Nagel, and Witten, 1990) a simple
friction law for the motion of a grain of sand on the sur-
face of a pile with slope 0. We start with Newton's laws:

ma =mg sinO —F,
where F is the friction force retarding the acceleration
down the pile. In a steady state with no acceleration, the
friction force just balances the driving force:
F=mg sinO. We can calculate the friction from
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where E is the energy of the particle and x is the distance
traveled in the forward direction. There will be two con-
tributions to E. The first will be the kinetic energy
Ek= —,'mu and the second will be the potential energy
E =mgh where h is the height. Every time the particle
has moved a distance d corresponding to its own diame-
ter, it will lose much of its kinetic energy, due to col-
lisions in the closed-packed system, and a portion of its
potential energy due to falling into depressions between
particles in the layer on which it is moving. From these
two sources of dissipation we can write down a friction
law, which has the form

F (rng)
~

0-'
0

v ([gd) )

FIG. 6. The friction as a function of the velocity, as given by
Eq. (3) for a grain of sand moving on the top surface of a sand-

pile. The parameters used are a =b = 1 and c =0.5.

Qmg

2

1+6
gd

u
2

+cmg
gd

where a, 6, and c are constants.
As can be seen in Fig. 6, the friction starts out at zero

velocity with a finite value, then decreases as the velocity
increases, and then starts to increase rapidly after reach-
ing its minimum value. It is easy to see that the value of
I' at u =0 corresponds to mg sinO, its value just before
the pile becomes unstable. The value of the friction at its
minimum value near U =(gd)'~ is mg sin8„. That is, the
only steady-state solution for the pile is to be stationary
below the angle of repose. In between 9 and 0„ there
are three steady-state solutions. The middle one, which
occurs in the region where the slope of F versus u is nega-
tive, is an unstable solution. The other two solutions, at
u =0 and at large velocity, are both stable. In this region
there is hysteresis since, depending on the initial condi-
tions of the system, the pile may be in one or the other of
the two stable solutions. Finally it is possible to show
that, because the minimum in the F(U) curve occurs at a
finite velocity, this form of friction law can account for
the existence of a boundary layer for the Aowing materi-
al.

In this article I have tried to review some of the ideas
of self-organized criticality. Although the theory was
originally formulated in terms of avalanches in granular
systems, a series of experiments on real sandpiles indi-
cates that these systems behave in a much different and
more complicated manner than that predicted by the
model. Qur demonstration that granular materials do
not show self-organized critical behavior should not be
taken as evidence that the self-organized critical systems
do not exist. There may be many systems that display

this behavior. What our results do show is that the ideas
of self-organization must be extended to include first-
order as well as critical behavior. Indeed, first-order be-
havior may be the generic result and self-organized criti-
cal behavior might be the exceptional situation. What is
also apparent is that we do not yet know what conditions
would be necessary and sufhcient for critical behavior to
exist. After all, granular materials were originally pro-
posed as the prototypical example of self-organized criti-
cal behavior. The fact that they do not behave in the
predicted way should give us pause.
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