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In 1962 Bienenstock and Ewald described a simple and systematic method for computing all the crystallo-
graphic space groups in Fourier space. Their approach is reformulated and further simplified, starting
from the definition of the point group of a structure as the set of operations that take it into something in-
distinguishable and not merely identical to within a translation. The reformulation does not require
periodicity, making it possible to define and compute on an equal footing the space groups for crystals,
quasicrystals, and incommensurately modulated structures, without having to digress into the crystallog-
raphy of unphysically many dimensions, and using only simple geometry and the most elementary proper-
ties of symmetry groups. The general scheme is illustrated by a unified computation of all the icosahedral,
cubic, orthorhombic, monoclinic, and triclinic space groups. The remaining (axial) crystallographic and
quasicrystallographic space groups have been discussed in a companion paper.
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I. INTROOUCTION

This essay is intended to serve both a pedagogical and
a polemical purpose. I hope to persuade the reader that
it was a misfortune of intellectual history that the space-
group classification scheme of crystallography was
developed in real space to categorize periodic structures,
rather than in Fourier space to categorize diftraction pat-
terns consisting of sharp Bragg peaks. This was first
remarked upon in a little cited' paper by Arthur Bienen-
stock and P. P. Ewald, 1962. That their work has for
thirty years had no impact on textbook treatments of
space groups, or on the International Tables for Crystal
lography (International Union of Crystallography, 1987),
I attribute in part to the enormous inertia of well estab-
lished methods and in part to a few unnecessary com-
plexities in their formulation, simple as it was compared
with conventional methods.

The misfortune was compounded when people started
to extend space-group theory to the classification of in-
commensurately modulated crystals (de Wolff, Janssen,
and Janner, 1981; Janner, Janssen, and de %'olQ; 1983a,

~But see J. %'. Jeffrey, 1963, who a mere year later cites
Bienenstock and Ewald as "a landmark in the theoretical devel-

opment of crystaHography. "

1983b, and 1983c;Janner, 1991),and then, more recently,
to quasicrystals. (Janssen, 1986). With space groups
firmly regarded as giving the categories of periodic ma-
terials, it was considered necessary to regard quasiperiod-
ic materials as lower-dimensional slices of periodic
higher-dimensional structures, in order to arrive at a
space-group classification scheme. Space-group theories
for quasiperiodic materials therefore began with an arbi-
trary and artificial embedding of the structure in a
higher-dimensional space and proceeded by developing
the appropriate subset of the higher-dimensional space-
group scheme, and then, not without hazard, projecting
this information back down to the physical number of di-
mensions.

There is, however, a much simpler approach, based on
reformulating the Bienenstock-Ewald method so that it
defines, as well as efficiently derives, the space-group
classification scheme for both periodic and quasiperiodic
materials in ordinary three-dimensional reciprocal space.
In their approach a fundamental role is played by phase
relations between density Fourier coefficients at wave
vectors related by point-group symmetries. The key to
extending their method to quasiperiodic structures is to
note that those phase relations, although usuaHy viewed
as consequences of real-space translational symmetry,
can also be derived as a direct expression of real-space
quasiperiodicity, without any excursion into higher-
dimensional space.

In the course of applying this extended Bienenstock-
Ewald method to the computation of three-dimensional

quasicrystallo graphic space groups, some refinements
have been developed that simplify its application to crys-
tals as well as quasicrystals. Since the-&pace groups for
ordinary three-dimensional cystals are easier to construct
in three-dimensional Fourier space than in three-
dimensional real space, and since that three-dimensional
construction applies to quasipenodic as well as periodic
structures, there is no reason to continue to extract the
classification scheme for quasiperio die structures by
embedding them in a higher number of dimensions. The
motivation for doing so—to take advantage of periodici-
ty in the higher-dimensional space —vanishes when one
abandons an obsolete formulation of crystallography that
relies unnecessarily on periodicity.

Thus I maintain that the world deserves to learn how
to construct space groups for both periodic and quasi-
periodic materials in three-dimensional Fourier space.
There is, however, a barrier of unfamiliarity to be over-
come. It is the purpose of this paper and an earlier corn-
panion paper to provide an assault on that barrier. In
Rabson, Mermin, Rokhsar, and Wright (1991,henceforth
RMRW) the formulation of space-group theory for
quasiperiodic structures in Fourier space is reviewed and
applied to a unified computation of the space groups for
materials with point groups containing a unique n-fold
axis of maximum rotational symmetry. The analysis of
RMRW applies to the hexagonal, tetragonal, and trigo-
nal crystal systems, and to all their quasicrystallographic
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generalizations for n less than 23. These three crystal
systems are simply special cases of five general quasicrys-
tal types, and the space-group scheme can be developed
in a unified way for each type, for general values of the
rotational symmetry n. In the present paper I complete
the program of RMRW by examining the remaining
"special cases" where the point group has no unique axis
of highest symmetry, namely the icosahedral quasicrys-
tals and the cubic, orthorhombic, monoclinic, and tric-
linic crystals.

I have tried to write an essay that is independent of
RMRW, so that the two can be read in either order. Al-
though there is therefore some duplication between Sec.
II and the corresponding section of RMRW, I here set
forth the foundations of the approach from a somewhat
different and, I hope, more intuitive perspective, basing
the formulation on a fundamental distinction between
"indistinguishable" as opposed to "identical" densities.

Section II offers a formulation of crystallography that
the giants of the field —Frankenheim, Bravais, Fedorov,
SchonAies, et al. —could have arrived at over a hundred
years ago, had they only realized that the restriction of
their scheme to periodic materials was entirely artificial.
While they might more readily have come upon this in-
sight had x-ray diffraction been discovered before, rather
than after, their investigations, there is no reason why
their bad luck should continue to plague future students
of the subject. As in RMRW, the focus here will be pri-
marily on the concept of space group, so as not to be dis-
tracted by the problem of classifying the lattices. While a
lattice is easy enough to define in Fourier space, the issue
of how many there are with a given point-group
symmetry —answered a century and a half ago by Frank-
enheim and Bravais for three-dimensional crystals —is
subtle in the crystallographic case and for noncrystallo-
graphic point groups leads rapidly into number-theoretic
questions that even mathematicians have not fully ex-
plored. I therefore limit myself to defining the lattices
and specifying the properties on which the formulation of
space-group theory relies. To avoid obscuring the struc-
ture of space-group theory, however, I shall then regard

2When n exceeds 22 the possibility of "nonstandard lattices"
arises and a complete classi6cation scheme takes one into still
unplumbed depths of number theory, as noted by Mermin,
Rokhsar, and Wright (1987). The analysis of RMRW is valid
for arbitrary n when the lattices are standard.

For standard lattices.
4Monoclinic crystals do have a unique twofold axis of highest

symmetry, but twofold crystals are pathological from the n-fold

point of view, since the n-fold rotations of a single vector per-
pendicular to an axis fail to produce enough vectors to span the
orthogonal plane only when n =2. RMRW therefore did not
consider them.

5Much of this general formulation, and a preliminary version
of its application to the icosahedral and cubic space groups,
have appeared in Mermin, 1991a, 1991b.

the particular lattices of interest as given and focus on
the question of how to enumerate the categories of ma-
terials with those lattices.

The rest of this paper puts mesh on the dry bones of
Sec. II. In Sec. III, to emphasize that icosahedral quasi-
crystallographic space groups do not require an excur-
sion into six-dimensional crystallography, and to demon-
strate the unity of the Fourier-space approach, whether
applied to crystals or to quasicrystals, I give a single
unified computation of the 11 icosahedral and 36 cubic
space groups.

In Sec. IV, I apply the Fourier-space method to a com-
putation of all 59 of the orthorhombic space groups, and
in Sec. V, for completeness, I give the uninteresting com-
putation of the 13 monoclinic and 2 triclinic space
groups. I have deliberately worked from the richest and
most subtle case down to the simplest, not out of a per-
verse taste for inverse pedagogy, but because a certain ar-
tistry is employed in the icosahedral-cubic and (to a
lesser extent) the orthorhombic cases, which I fear the
reader might never get to enjoy, if forced first to traverse
the tedium of more routine applications.

Section VI shows how to extract from the results of
Secs. III—V the extinctions (or "systematic absences" ) as-
sociated with each space group, probably the single most
important application of the space-group formalism.

In Sec. VII, a brief Conclusion, I comment on the
relevance of the Fourier-space approach to earlier com-
putations of lattices and space groups for incommensu-
rately modulated structures and make a final plea on
behalf of reformulating the foundations of crystallogra-
phy without relying on periodicity.

Appendix A describes the scale invariance of the prim-
itive icosahedral lattice. (The more straightforward scale
invariances of the two centered icosahedral lattices are
established in Sec. III.E.)

We have examined elsewhere the question of what lattices
must be considered in extending crystallography to quasicrys-
tallography. See Rokhsar, Mermin, and Wright, 1987; Mermin,
Rokhsar, and Wright, 1987; and Mermin, Rabson, Rokhsar,
and Wright, 1990. The lattices for incommensurately rnodulat-
ed structures are discussed by de Wolff, Janssen, and Janner,
1981; Janner, Janssen, and de Wolff, 1983a, 1983b, and 1983c.
A Fourier-space treatment, which suggests a simpler formula-
tion of their conclusions, has been given by Mermin and
Lifshitz, 1992.
7Bertaut, 1970, has derived the 10 cubic space groups with

point group Oq using the original Bienenstock-Ewald method,
with some of the complicating features {4X4 matrices,
nonprimitive generating vectors for the centered lattices) that
our formulation avoids. The application of the Fourier-space
approach to the icosahedral case has been given by Rokhsar,
Wright, and Mermin, 1988. Their paper focused on a single is-
sue (scale invariance) and passed lightly over the details of the
rest of the computation, which I present here in a new and
simpler form.
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Appendix B gives the bases in six-dimensional "real"
space dual to the threefold symmetric bases we use here
to generate the icosahedral lattices, which can be useful
in constructing real-space structures, but are not needed
for classifying them.

Appendix C is intended as a convenience for those
who, like me, are nonalgorithmic readers. It contains a
brief index, citing the place (or places) where the major
technical terms are first defined.

II. GENERAI IZED CRYSTAI LOGRAPHY

Crystals, quasicrystals, and amorphous solids share the
property of being mesoscopically homogeneous although
microscopically inhomogeneous. The microscopic inho-
mogeneity is on the atomic scale: the time-averaged
atomic positions are not uniformly distributed (as they
are in liquids and perhaps, on sufficiently long time
scales, in glasses). The mesoscopic homogeneity is a
consequence of the fact that detailed microscopic
features of regions large on the atomic scale, but small on
the scale of a given macroscopic specimen, recur
throughout, so that any given mesoscopic subregion is in-
distinguishable from similar subregions scattered, with
the same statistical distribution, throughout the macro-
scopic sample.

Crystals achieve this mesoscopic homogeneity in an ex-
treme way, by being microscopically periodic. Amor-
phous solids are mesoscopically homogeneous because
the properties of a collection of enorm. ously many ran-
domly structured subregions do not vary if the subre-
gions are randomly rearranged. Quasicrystals and in-
commensurately modulated crystals accomplish the trick
with the most subtlety, having the property, familiar in
Penrose tilings, that the microscopic structure of any re-
gion of a given size D can be found perfectly reproduced
in other regions whose distance from the first is of order
D.

This property of mesoscopic homogeneity lies at the
heart of a unified classification scheme that encompasses
all quasiperiodic structures: crystals, quasicrystals, and
incommensurately modulated crystals or quasicrystals.
Unfortunately, when the scheme used today was
developed in the late 19th century, quasicrystals and in-

commensurately modulated crystals were unknown and
the classification focused narrowly on spatial periodicity
rather than the broader mesoscopic homogeneity of
which periodicity is only a special case. Thus crystals
were classified by their space group —the subgroup of the
full Euclidean group that brings the density into coin-
cidence with itself.

Viewed from the broader perspective, however, identi-
ty of densities is far too restrictive a way to define the
structural indistinguishability of two mesoscopically
homogeneous materials. All one can sensibly require is
the identity of the distribution of structures of all mesos-
copic subregions. In a mesoscopically homogeneous ma-
terial the mathematical statement of this condition is the

identity for arbitrary n of the nth-order positionally aver-
aged correlation functions c„given by

c„(r„.. . , r„)=(l/V) Jd rp(r, —r) . p(r„—r) .

We shall say that two densities p and p' are indistinguish-
able if all their correlation functions c„and c„' are identi-
cal.

Evidently two densities that differ only by a translation
are indistinguishable. The converse —that two densities
are indistinguishable only if they are identical to within a
translation —holds if a material is periodic in three in-

dependent directions. So for crystals the shift in em-

phasis from identity to indistinguishability is a trivial
one. Notice, though, that even for crystals it changes the
way one thinks about space groups:

If the space group is the subgroup of the Euclidean
group that leaves the density identical, then it contains
elements from the subgroup O(3) of rotations (proper
and improper), elements from the translation subgroup
T(3) that express the (incidental, from our broader per-
spective) periodicity of the density, and elements whose
presence defines the nonsymmovphic space groups, called
screw axes or glide p/anes, that combine a rotation and a
translation neither of which individually leaves the densi-

ty invariant.
If, however, we inquire into the subgroup of the Eu-

clidean group that leaves the density of a crystal indistin-
guishable from what it was, then that subgroup contains
all translations. The subtle interplay between transla-
tions and rotations leading to the rich catalogue of non-
symmorphic space groups seems to have disappeared.
Nothing seems to remain to characterize particular ma-
terials but the point group. We appear to have achieved
a greater generality at a cost of losing something impor-
tant. We shall see below how nonsymmorphic space
groups (for both periodic and quasiperiodic materials)
reemerge from this new perspective.

In contrast to crystals, densities of indistinguishable
quasiperiodic structures (quasicrystals or incommensu-
rately modulated crystals) can differ by more than just a
translation. If one insists on classifying the symmetries
of such materials by a subgroup of a Euclidean group,
one is forced to the clumsy expedient of introducing the
Euclidean group in unphysically many dimensions.
There is, however, no reason to insist; it is far easier to
follow the path that would have been taken for crystals
as well, had the superiority of indistinguishability to
identity not been masked in the periodic case by their
trivial connection. Quasicrystals, incommensurately
modulated crystals, and ordinary crystals can all be
classified by a point group and something else. In the
case, of crystals, both the point group and the something
else are familiar. In the case of quasicrystals and incom-
mensurately modulated crystals, as well as in the case of
ordinary crystals, when the emphasis is on indistin-

guishability rather than on identity, these concepts have
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to be reformulated. That reformulation is carried out in
Secs. II.A —II.J.

A. Indistinguishable densities in Fourier space

p(r)=gp(k)e' ',
k

(2.2)

then two densities p and p' will have identical correlation
functions (2.1) if and only if their Fourier coefficients al-
ways satisfy

p(k&) . p(k„)=p'(ki) p'(k„)

whenever

(2.3)

k + . +k„=O. (2.4)

Since real-space densities are real, the Fourier
coefficients satisfy

p( —k) =p'(k), (2.5)

and therefore Eq. (2.3), applied to k+( —k)=0, tells us
that the Fourier coefFicients of indistinguishable densities
have the same magnitude —i.e., that the Fourier
coefficients themselves differ only by a (real) phase:

+ (k) —e2mir(k) (k) (2.6)

We call y(k) a gauge function in analogy to the gauge
functions of electrodynamics, which can alter the phase
of a wave function without changing any observable
properties.

The condition (2.1) that two densities are indistinguish-
able assumes a useful form when expressed in terms of
the density Fourier coefficients. If

Thus two densities are indistinguishable if and only if
their Fourier coefficients are related by a linear' gauge
function as in Eq. (2.6).

B. The point group and the phase functions

We define the point group G of a material to be the set
of all proper and improper rotations g under which its
density is indistinguishably altered. Thus the real-space
condition for g to be in the point group of the material is
that all correlation functions (2.1) constructed out of
p(gr) and p(r) be the same. I stress the difference be-
tween this definition and the conventional crystallo-
graphic one, which requires p(gr) and p(r) to be identical
to within a microscopic translation rather than merely
indistinguishable.

The equivalent Fourier-space condition is that for each
g in the point group G there should be a linear gauge
function @g(k) relating p(gk) and p(k) as in Eq. (2.6):

p(gk) =e ' p(k) . (2.9)

We call the gauge functions associated with the point-
group operations phase functions. From the broader
point of view we are developing here, a space group is
specified by the point group taken together with its phase
functions.

C. Gauge-equivalent phase functions

Two sets of phase functions N' (k ) and Ns(k ) that can
characterize indistinguishable densities p' and p should
clearly be regarded as equivalent. The Fourier-space
condition (2.6) for indistinguishability of the densities
combined with the definition (2.9) of the phase functions
leads directly to the relation

Equations (2.5) and (2.6) together require that

X( —k) —= —X«» (2.7)

N'(k)—:N (k)+y(gk) —y(k)=@ (k)+y([g —1]k) .

(2.10)

y(k, +k2)=y(k])+y(k2) . (2.8)

With g satisfying Eq. (2.8), the indistinguishability condi-
tion (2.3) is automatically satisfied for all higher values of
n. '

where we use the symbol "=—" to specify equality to
within an additive integer. This, together with the indis-
tinguishability condition (2.3) for three vectors summing
to zero, leads to the stronger condition that y be linear to
within an additive integer:

Two sets of phase functions related in this way through a
linear gauge function are said to be gauge equivalent, and
the relationship holding between them is called a gauge
transformation. Note that Eq. (2.10) must hold with the
same gauge function y for every g in the point group G.
If two crystals have gauge-equivalent phase functions,
then they have the same space group. The space-group
classification scheme is basically a classification into
classes of gauge-equivalent phase functions. (The cir-

88y explicitly introducing the factor of 2m. in the definition of
y, we eliminate it from most subsequent results.

I find it remarkable that merely by taking Fourier transforms
one produces an elementary proof that the identity of the two-
and three-point correlation functions is enough to insure the
identity of all higher-order correlation functions, since the
geometrical basis for this theorem in real space is considerably
less obvious.

When referring to gauge functions, which are defined only to
within an additive integer, we shall always understand terms
like "linear, " "equal, " or "vanishing" to mean linear, equal, or
vanishing to within an additive integer. Note also that y is
defined only on the restricted set of k at which p(k)%0, so it is
not possible, in general, to extend it to a function that is linear
for all k.
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cumstances under which distinct gauge equivalence
classes are associated with the same space group are de-
scribed below in Sec. II.Cx.)

phase functions restricts them to a small number of
forms, which are closely related to the space groups.

D. Extinctions

If gk=k, then it follows from Eq. (2.10) that C&s(k) is
invariant under arbitrary gauge transformations. These
gauge-invariant parts of the phase functions are directly
related to the phenomenon of extinctions, for it follows
directly from the definition (2.9) of the phase function
that whenever gk=k, the Fourier coefficient p(k) must
vanish unless the (gauge-invariant) phase function @g(k)
vanishes (modulo an integer). Thus the nonintegral
gauge-invariant parts of the phase functions determine
sets of wave vectors at which the density Fourier
coefficients necessarily vanish. "

E. Group compatibility condition
on the phase functions

Since p([gh]k)=p(g[hk]), it follows from the
definition (2.9) that the phase function belonging to the
product of two point-group elements can be constructed
out of those belonging to the individual elements by the
ru1e

N i, (k)=@ (hk)+N„(k) . (2.11)

Other aspects of the Fourier-space perspective on extinc-
tions are discussed in Sec. VI and illustrated by application to
the space groups computed in Secs. III—V.

This rule, which we shall call the group compatibility con-
dition, plays a central role in determining the crystallo-
graphic and quasicrystaHographic space groups, in speci-
fying the extinctions, and in constructing real-space
structures associated with a given space group.

Since every element in the point group 6 can be ex-
pressed as a product built from a small number of ele-
ments that generate G (never more than three, and except
for the orthorhombic point group mmm never more than
two in any of the cases considered here), the phase func-
tion for any element can be found from those for the
point-group generators, by repeated applications of the
group compatibility condition. There are, however,
many different ways to express an element of 6 as a prod-
uct of generators. In building the group from its genera-
tors one imposes a set of generating relations that guaran-
tee a11 such expressions to be identical. These generating
relations specify, through the group compatibility condi-
tion, constraints on the phase functions associated with
the group generators. The constraints insure that the
phase functions for the generators yield unique phase
functions for arbitrary elements of 6, independent of how
those elements are expressed in terms of the generators.
Applying these group compatibility conditions to the

F. The lattice of wave vectors

Crystals, quasicrystals, and incommensurately modu-
lated crystals share the property that their diffraction
patterns consist of sharp Bragg peaks. Each peak deter-
mines a wave vector k, according to the usual I.aue rules,
at which the density has a non vanishing Fourier
coefficient. In general, one expects that if the diffraction
pattern has peaks at wave vectors k1 and k2, it may also
have peaks at k&+kz. The Fourier components of the
density are thus to be found within the set L of all in-

tegral linear combinations of wave vectors determined by
the diffraction pattern.

We restrict ourselves to sets L that can be finitely in-

dexed, by which we mean that any wave vector in L can
be expressed as an integral linear combination of just D
integrally independent wave vectors b' ", . . . , b'

(2.12)

The vectors 1"are called generating vectors of L, and if
L consists of al/ integral linear combinations, the b" are
called primitive generating vectors.

We call such a set L of wave vectors a lattice' and
refer to D as the indexing dimension (or rank) of the lat-
tice. If the indexing dimension D is equal to the dimen-
sion d of physical space, then the lattice is an ordinary
crysta11ographic reciprocal lattice and is related, in the
familiar way, to a lattice of translations in ordinary d-

dimensional space. ' Allowing D to exceed d admits in-

commensurately modulated crystals, quasicrystals, and
incommensurately modulated quasicrystals, none of
which have the translational symmetry of a d-
dimensiona1 crystal. We shall not deal here with the
complexities of sets of wave vectors that cannot be finite-

ly indexed.
We are thus developing crystallography not as a

scheme to classify the exact symmetries of periodic real-
space structures, but as a scheme to classify the sym-
metries, to within indistinguishable differences, of struc-

~The practice has arisen in the Geld of incommensurately
modulated crystals of calling this set a Z module, reserving the
term "lattice" for ordinary three-dimensional Bravais lattices.
%'e do not adopt this nomenclature (a) because in the Fourier-
space formulation both kinds of sets play identical roles, (b) be-

cause in the case of quasicrystals the intensities of the Bragg
peaks do not identify a unique underlying three-dimensional
Bravais lattice, and (c) because the habit of singling out on the
basis of peak intensities a subset of the "Z module" for special
treatment as the "lattice" runs counter to the spirit of a
classification scheme based entirely on symmetry, and can lead
one into trouble, as noted in Sec. VII.

See Sec. II.H, below.
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tures that give rise to diffraction patterns consisting of
sharp Bragg peaks. For us the term "lattice" always
refers only to the lattice (in the mathematical sense of a
set closed under addition and subtraction) of wave vec-
tors determined by the diffraction pattern —i.e., what
crystallographers call the reciprocal lattice. The lattice
can be viewed as the set of all integral linear combina-
tions of wave vectors in the diffraction pattern or,
equivalently, as the smallest set of vectors, closed under
addition and subtraction, that contains all those vectors.
Only in the special crystallographic case can "lattice"
also refer to a real-space "direct" lattice dual to the lat-
tice of wave vectors.

I shall not explore the subtleties of enumerating the
distinct lattices that can exist with a given point-group
symmetry. It is important, however, to note a few gen-
eral points.

(a) The theorem that a three-dimensional lattice can
have only n-fold symmetry axes for the crystallographic
values n =2, 3, 4, or 6 relies critically on the assumption
that there is a minimum distance between points of the
lattice (and proceeds by demonstrating that, if an n-fold
axis with any other n is present, then it can be used to
construct from any pair of points another pair that is
closer together. ) Now a shortest distance between points
is a sine qua non for a lattice in real space, viewed as a
template for a periodic structure, for the structure itself
is realized by putting down an appropriate atomic unit at
each site of the real space lattice, and such units have a
nonzero size. Our lattices, however, are in Fourier space,
inferred from diffraction patterns consisting of Bragg
peaks. Real diffraction experiments measure only a finite
number of peaks. But it takes only a finite number (at
least D, but, if properly chosen, not enormously more
than D) to deternune the mathematical lattice. Each vec-
tor of that lattice is associated with a possible density
Fourier coefficient and therefore with a possible Bragg
peak. However, in any real experiment the resolution
will be less than perfect, and all but a finite number of the
peaks will be unobservable. That lattices with D & d have
points that are arbitrarily close together —"dense" in the
mathematical sense —has its physical counterpart in the
fact that their diffraction patterns reveal more and more
Bragg peaks between existing ones, as the resolution of
the apparatus is made better and better.

(b) A quasicrystal, as opposed to an incommensurately
modulated crystal (or an incommensurately modulated
quasicrystai), is a material with a noncrystallographic
point group and a lattice with the smallest possible rank
D compatible with that point group. ' Thus icosahedral
lattices have rank 6. Lattices with lower rank cannot
have icosahedral symmetry, and lattices of higher rank
with icosahedral symmetry are better viewed as describ-

~4This is the point of view of Rokhsar, Mermin, and Wright,
1987. There is still not complete agreement on how these dis-
tinctions ought to be made.

ing incommensurately modulated icosahedral quasicrys-
tals, just as lattices of rank higher than 3 with crystallo-
graphic point groups are associated with incommensu-
rately modulated crystals.

(c) There are just three distinct varieties of icosahedral
lattice, ' a fact that was conjectured immediately after
the discovery of icosahedral quasicrystals but proved
only with some effort (Rokhsar, Mermin, and Wright,
1987). The icosahedral lattices bear a close relation to
the three three-dimensional cubic lattices and are de-
scribed in detail in Sec. III.

(d) Aside from the icosahedral group, all other non-
crystallographic point groups in three dimensions are
axial —they have a unique n-fold axis of highest symme-
try with n =5 or n )6. Space groups for materials with
axial lattices are described in RMRW, and will not con-
cern us here, but I brieQy describe their lattices, to con-
vey a sense of the issues we neglect here by taking the lat-
tices for granted (Mermin, Rabson, Rokhsar, and
Wright, 1990.)

When n is less than 23 the situation is uncomplicated.
The lattices are periodic stackings of a unique plane lat-
tice perpendicular to the n-fold lattice, consisting of all
integral linear combinations of an n-fold star of vectors
of equal length, separated in angle by 2m/n. If successive
layers of the stacking have no displacement perpendicu-
lar to the n-fold axis ("vertical stackings"), then n is
necessarily even, and this state of affairs continues to
hold for all even n less than 46. A single stacking with an
additional horizontal shift' ("staggered stacking") is
possible only when n is a power of a single prime number

p (i.e., n=5, 7,8,9,11,13,16,17,19), and this stacking re-
peats every p layers. Crystallographic examples of stag-
gered stackings are the rhombohedral (n =3) and cen-
tered tetragonal (n =4=2 ) lattices.

These lattices continue to exist for larger values of n,
but when n is 23 or larger (staggered stackings) or 46 or
larger (vertical stackings) then it is one of the great
discoveries of number theory (made, coincidentally and
in an entirely unrelated context, in the same decade of
the 19th century that Bravais completed the classification
scheme for crystallographic lattices) that there can be ad-
ditional "nonstandard" two-dimensional sublattices of
great complexity. Although the existence of nonstandard
lattices is of great conceptual importance, demonstrating
as it does that the sufficiency of standard lattices for
smaller values of n is a highly nontrivial matter, practical
quasicrystallographers would be well advised to ignore
them until the day when a homogeneous material is
discovered with a 46-fold diffraction pattern. (Recent

~5The overwhelming majority of icosahedral quasicrystals
have P lattices, but an I (& lattice has been reported in the
A1-Cu-Fe system by Ebalard and Spaepen, 1989.

~ There might appear to be more than one possible shift, but it
has been shown that all of them differ by no more than a rota-
tion and a rescaling.
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work by Renn and t.ubensky suggests that the day may
be coming. For a review see Lubensky, 1991).

with @& playing the role of the gauge function y in Eq.
(2.10):

G. The space-group classification scheme
4 (k)—= 4& (k)+C&i, ([g —1]k) . (2.16)

Suppose two materials have the same lattice and the
same point group acting in the same way on their lat-
tices. If their phase functions diA'er only by a gauge
transformation, then we say the materials belong to the
same space group. This generalization of the space-
group concept makes it a classification scheme based on
phase relations between Fourier coefticients at
symmetry-related points (rather than a group of transfor-
mations in real space). '

From the reciprocal-space point of view, the space
groups are just the distinct classes of gauge-equivalent
phase functions, with one additional proviso:

There is a set of conditions under which one should as-
sign gauge-inequivalent phase functions to the same
space group. This may happen if there are proper opera-
tions h not in the point group of the material, that leave
the lattice of wave vectors invariant and for which the
group h6h ' (i.e., the group of all operations hgh
with g in 6) acts on the lattice in the same way as 6 it-
self. Under these circumstances, phase functions defined
by

4 (k)=@„„((hk) (2.13)

Vg(k) —=4'i, (gk)+4g(k)+@ )(hk) .

But application of Eq. (2.11) to e =Ii 'h gives

(2.14)

should clearly not be associated with a different space
group from the @g(k), since they merely describe the
same point group, operating in a diferent, but entirely
equivalent, manner with respect to the lattice. Indeed,
when h does belong to the point group 6, then the %'

and N~ are easily seen to be gauge equivalent, for repeat-
ed application of the group compatibility condition (2.11)
to the definition (2.13) of 4 gives

When h is not in the point group 6, however, N& is not
defined, and 4 and N~ need not in general be gauge
equivalent, even though the two space-group categories
they specify should not be viewed as distinct. As we shall
see below (Sec. III.H), this situation occurs in a single in-
stance in the cubic case, when the point group 6 is only
tetrahedral and h is a fourfold rotation. It also occurs in
the quasicrystallographic icosahedral case when h is a re-
scaling of the lattice by an appropriate factor A, , a lattice
symmetry forbidden in the crystallographic case that
clearly leaves each individual element of 6 invariant:
Ag(k/A, )=gk. It occurs routinely in the orthorhombic
case, where h combines a point-group operation with in-
dependent rescalings along two or more orthogonal
directions. And in certain axial quasicrystals it occurs
with h a combination of a rescaling and an element not in
the point group, as described in RMRW.

If the point group 6 lacks the inversion i, then this sit-
uation also arises with h =i, since all lattices have inver-
sion symmetry, and clearly igik=gk. If we applied the
rule here too we would identify enantiamorphic pairs of
space groups, arriving at 219 distinct three-dimensional
space groups instead of the conventional 230. There is,
however, a sound argument for not making such an
identification when the operation h is improper. When h

is a proper point-group operation and/or a rescaling, one
can devise a continuous family of rotations and/or rescal-
ings that take a structure with one set of phase functions
into another one with the gauge-inequivalent set. There
is thus genuinely no basis for distinguishing the space
group of one from the other. When h is improper, how-
ever, there is no way continuously to deform a structure
from one space group to the other, and the two sets of
phase functions can unambiguously be distinguished,
though which is which depends on an arbitrary conven-
tion.

0=4,(k)—:4„ i(hk)+C&I, (k), (2.15)
H. Special features of the crystallographic case

and therefore %' and N are indeed gauge equivalent,

i7We nevertheless retain the term "space group" since the
scheme does have a natural group-theoretic interpretation in

the crystallographic case. It can be given such an interpretation
in the quasicrystallographic case by going to an unphysically
large number of dimensions ("superspace" —see Sec. II.I
below), an excursion which from our point of view serves no
purpose beyond justifying the nomenclature (Rabson, Ho, and
Mermin, 1988). More than one person has told me that what I
am calculating here are cohomology groups. I have found this
information less valuable than M. Jourdain found the news that
he was speaking prose, but am too ignorant to state with
confidence that this is not a useful point of view.

When the indexing dimension D is equal to the dimen-
sion d of physical space, then the lattice of wave vectors
is dual to a lattice of real-space translations, and the rela-
tion between the concepts developed above and conven-
tional crystallography is recovered. The crucial point is
that it is then possible to define a real-space basis dual to
the b" satisfying

(2.17)

Since any wave vector in the lattice is of the form

~8%'hich I hope, but am reluctant to guarantee, is honored in
Table IX for cubic space groups Nos. 212 and 213.
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k=g;n;b", any gauge function g, by linearity, can be
expressed in the form

2m'(k) =2m.gn;y(b"):—k.gg(b")a" . (2.18)

p'(r)=p(r+yy(b")a") . (2.19)

Thus indistinguishable densities can differ at most by a
real-space translation, and we are back to ordinary crys-
tallography. If the gauge function y is the phase function

associated with a point-group operation g, then we
have

As a result, if p and p are indistinguishable densities
whose Fourier coefficients (2.2) differ only by a phase as
in (2.6), then in real space they will be related by

This is a useful and important trick for many
purposes —notably to help in building real-space struc-
tures with the observed diffraction patterns. It is not,
however, to be recommended for extracting the space-
group classification scheme unless one is so wedded to
doing crystallography for periodic structures in real
space that one would prefer to squeeze the results of D-
dimensional crystallography down into d dimensions
rather than directly developing them in d-dimensional
Fourier space for quasiperiodic structures. Since devel-
oping the d-dimensional crystallography of ordinary
periodic structures in d-dimensional Fourier space is a
much simpler exercise than developing it in d-
dimensional real space, there is no advantage and consid-
erable disadvantage to be had from exploring higher-
dimensional crystallography for this particular purpose.

p(gr) =p(r+ ga"@,(b")), (2.20)
J. Real-space structures with a given space group

which specifies the real-space translation that combines
with g to leave the density invariant. A gauge transfor-
mation on the phase function corresponds to the effect on
that real-space translation of a change of the origin
through which g acts.

I. The superspace approach

If one is used to developing crystallography in real
space, the facts in Sec. II.H above are so comfortably fa-
miliar that it is tempting to try to cast the case D & d into
the same mold. To do this one extends the D vectors b"
into an independent set B"in D dimensions, ' whose first
d components agree with those of the b". One then in-
troduces a dual basis A" in "real" D-dimensional space
satisfying

Given a point group G, a lattice of wave vectors primi-
tively generated by b", and the phase functions @g(k)
appropriate to a given space group, it is easy to construct
a real-space specimen of a structure with that space
group. The key is to define a set of density Fourier
coefficients by

p(k)=gf(hk)e
h

(2.22)

p(gk) =gf(hgk)e
h

(2.23)

where the sum is over all elements h of the point group
G, and where f is any function on the lattice of wave vec-
tors that satisfies f*(—k) =f(k) (to ensure that p(r) is
real).

We then have

A '-B' =2m5;, i,j=1, . . . , D . (2.21) The group compatibility condition (2.11) tells us that
One introduces a D-dimensional position vector R whose
first d components lie in ordinary real space, and one ex-
tends each d-dimensional wave vector k=$n, b" deter-
mined by the diffraction pattern into a D vector
K=+;n;8". The physical density p(r) is then a "slice"
in the first d dimensions of the (periodic) superspace den-
sity p(R) =(1/V)gp(k)e' ', and a gauge-equivalent
density satisfies p'(R)=p{R+gy(b") A"). As in the
crystallographic case, gauge-equivalent densities then
differ by translations, which in general have components
outside of the physical subspace. The real-space distor-
tion corresponding to the component of the translation
outside the physical subspace is described as a phason.

In general there is no uniquely natural way to do this. In the
icosahedral case there is. Although we make no use of it here,
it is useful in building real-space structures and is therefore
given explicitly for each of the three icosahedral lattices in Ap-
pendix B.

@hs(k) =C I, (gk)++ g(k),

so that

(2.24)

h

(2.25)

f(k)=e 'fo(k), (2.26)

But for fixed g in G, as h runs through all the elements of
G so does hg. The sum on the right side of Eq. (2.25) is
therefore identical to the sum on the right side of Eq.
(2.22), which establishes that the Fourier coefficients p(k)
satisfy Eq. (2.9). Thus p(k) as defined in Eq. (2.22) will
indeed be the Fourier transform of a density character-
ized by a space group with the given phase functions,
provided only that it does not vanish systematically on a
set of wave vectors so large that the lattice is thinned out
to a sublattice for which the space group has a different
character. We can avoid this pitfall by taking the func-
tion f(k) to lack any symmetry under the operation of
the point group G. One such choice is
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where fo is invariant under the operations of 6, but ro is
a generic vector, left invariant under none of them.

In the crystallographic case this choice (with f0=1)
has a direct geometrical interpretation in real space, since
the phase function appearing in Eq. (2.22) can be ex-
pressed [using (2.18)] as

2m@~(k) =k gN (b")a" (2.27)

where the a" are the basis for the real-space direct lattice
dual to the 1" satisfying the orthogonahty relations
(2.17). Consequently Eq. (2.22) reduces to

p(k)=/exp(ihk. ro)exp[ —ik. /@1,(b")a"] .
h I

(2.28)

Since we are summing over the whole group 6, we can
replace h in the summand by h ' and note that
h 'k. ro=k hro. Using Eq. (2.15) to reexpress @z ~(b")
as —@z(h 'b"), we have

p(k)=gexp[ik [hro++4„(h 'b")a "]], (2.29)

But this is precisely the "geometrical structure factor"
that describes a set of points given by displacing through
all the vectors of the real-space lattice a basis consisting
of a collection of points —one for each member h of the
point group 6—at the positions ("general Wyckoff posi-
tions")

rh =hro+ +Ah (h 'b")a" (2.30)

K. Computing space groups: an overview

Except that it has sometimes been overlooked.

To compute the space groups for a specified lattice and
point group, we must find the classes of gauge-equivalent
phase functions; i.e., we must find the general solutions to
the group compatibility condition (2.11) and classify
them by gauge equivalence class. We must then check to
see whether any of those classes should be associated
with the same space group, because of operations that
leave the lattice invariant but are not in the point group,
as described in Sec. II.G above, but this is a simple and
straightforward procedure.

In carrying out the determination of the gauge
equivalence classes it is important to use a set of vectors1"that generate the lattice primitively. The advantage
of primitive lattice generators is that the generating vec-
tors 1"are themselves in the lattice, and must therefore
themselves satisfy the group compatibility condition
(2.11). Because the phase functions are linear, if they
satisfy the group compatibility condition at the lattice-
generating vectors, they will satisfy it everywhere. It is
thus enough to impose the group compatibility condition

on the lattice-generating vectors themselves. '

The group compatibility conditions need only be ap-
plied to the phase functions associated with each point-
group generator. Since these phase functions in turn
need only be determined at the lattice-generating vectors,
the problem reduces to the computation of a small num-
ber of phases, Ng(b"). The number of these phases is

just the number of point-group generators (at most 3)
times the number of primitive lattice-generating vectors
(6 in the icosahedral case and 3 in the crystallographic
cases).

The sought-for phases are determined by the point-
group generating relations which impose linear relations
on those phases through the group compatibility condi-
tion (2.11). The gauge degrees of freedom (6 in the
icosahedral case and 3 in the crystallographic case) play a
central role in solving these linear relations. To specify a
given gauge equivalence class it is enough to specify a
single member of that class (the entire class then being
given by applying an arbitrary gauge transformation to
that given member). By using the gauge freedom to elim-
inate some of the unknown phases at the start of the cal-
culation, and carefully using at subsequent stages what-
ever gauge freedom remains to reduce the possible forms
of the remaining phases, we can always arrive at a unique
representative of each gauge equivalence class. The
problem of classifying the general solutions by gauge
equivalence class is thus solved by the same procedure
that produces the general solutions. "

The cubic and icosahedral space groups o6'er the most
spectacular examples of the procedure, since every point
group is generated by only two of its elements, and the
phase function for one of the point-group generators can
always be made to vanish at all lattice-generating vectors
by an initial choice of gauge. One is therefore computing
only three (cubic) or six (icosahedral) numbers.

The weary reader should bear in mind that although
what follows, when we descend to particular cases, may

2 The analysis is more intricate if the lattice is represented in

terms of a set of nonprimitive generating vectors with restric-
tions on the indexing, as in Bienenstock and Ewald, 1962.

2 They then insure that the phase function for any other
point-group element can be computed from the point group
generating relations, with a result that does not depend on how
one chooses to express that element as a product of generators.

In the crystallographic case the choice of gauge is equivalent
to the choice of real-space origin; in the icosahedral case it can
be viewed as the choice of origin in superspace, or the choice of
real space origin combined with the choice of "local isomor-
phism class." From the point of view of Fourier space this is of
little interest.

~One can always confirm at the end of the calculation that
two gauge equivalence classes arrived at in this way are indeed
distinct, by finding gauge-invariant linear combinations of
phase functions that have diFerent values in the two classes.
The real burden of the calculation is to make sure one gets a
representative of every class.
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look dense and elaborate, this is only because we are cal-
culating the space groups in every possible case. We
shall be examining seven icosahedral or cubic point
groups each of which can be associated with three
different lattices, leading to 21 cases, three orthorhombic
point groups each of which can be associated with four
different lattices, leading to 13 cases, three monoclinic
point groups associated with two lattices, and two tridin-
ic point groups with a single lattice. The method can be
applied directly to any one of these 42 cases, where the
ensuing calculation is extremely brief. The reader is
strongly urged not to plow through all 42 cases, but to
read selectively at the level of individual cases, to see how
easily the space groups for any particular point group
and lattice emerge.

III. THE CUBIC AND ICOSAHEDRAL
SPACE GROUPS

that the groups YA, , OI„and TI, are all generated by a
threefold rotoinversion and a mirror, and F, 0, and T by
a threefold and twofold rotation. The three point groups
in each of these two sets dier only in the order (fivefold,
fourfold, or threefold) of the rotation given by the prod-
uct of the two generators. Td is in a class by itself, being
generated by a threefold rotation and a mirror.

B. Vanishing of the phase functions
for the threefold generators

Since there are only two generators, we require only
two phase functions. The analysis is enormously
simplified by the fact that me can always work in a gauge
in which the phase function associated with the threefold
rotation (or rotoinversion) is zero, thereby reducing the
problem to a determination of the sing1e phase function

Ng .
2

A. Generators for the cubic
and icosahedral point groups

The computation of the space groups associated with a
given lattice and point group can be made quite easy by a
judicious choice of the point-group generators and the
vectors that primitively generate the lattice. (Conversely,
an injudicious choice can make it significantly more
cumbersome. ) The trick is to try to have among the
point-group generators one or more operations whose
phase functions can be made simple in an appropriate
gauge, and to select as lattice-generating vectors sets that
behave in an especially transparent way under those
operations.

For each of the two icosahedral and five cubic groups,
the most eKcacious choice of point group generators and
lattice-generating vectors exploits the presence of a three-
fold axis and the existence of primitive lattice-generating
vectors that are symmetrically disposed about that axis.
Each of the seven points groups can be generated by an
operation associated with the threefold axis and a second
operation of order 2 (see Figs. 1 —3):

(i) one generator, g3, is either a threefold rotation r3
or a threefold rotoinversion r3 =ir3 (where i is the inver-
sion i k~ —k).

(ii) The other generator, g2, is either a twofold rotation
rz or a mirror m, which can also be viewed as a twofold
rotoinversion about an axis normal to the invariant plane
of the mirror: m =r2=ir~.

1. The vanishing of the rotoinversion phase function

Note that, acting on any vector,

(r3 —1)(1+r3+r 3)=r 3
—1=—2, (3.1)

since r 3 is the inversion. Consequently if we define a
linear gauge function by

y(k) =
—,'4 ( [1+r3+ r 3]k), (3.2)

then the general definition (2.10) of a gauge transforma-
tion gives

bA&„(k) =y( [r3 —1]k)= —&b„(k), (3.3)

which sets 4 to zero.I"
3

2. The vanishing of the rotation phase function

Here the vanishing depends critically on the fact that
each cubic lattice can be primitively generated by a set of
three vectors that is invariant under r3, and the fact that
each icosahedral lattice can be primitively generated by
six vectors consisting of two such sets. Call the cubic

These choices for the generators are summarized in
Table I, which also lists the generating relations. Note

One of the point groups can be associated with one of the
lattices in two distinct ways.

Although I adhere to the international point-group notation
at solemn moments {in tables and important equations), I freely
use the old SchonAies names in the text when they are easier on
the eye and ear. Though less informative, Y is more attractive
and euphonious than 532. In the ortho rhombic case the
SchonAies names are not much more humane than their inter-
national counterparts, and I use them less.
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(2)

FIG. 1. An octahedron, viewed along an axis
of threefold symmetry. The vectors v"', v' ',

and v' ' are along the fourfold axes and gen-
erate the cubic P lattice. Primitive generating
vectors b'", 1' ', and b' ' for the three cubic
lattices that are symmetrically situated about
the threefold axis are defined in terms of the
v" in Eqs. (3.17), (3.18), and (3.19). The gen-
erating vectors for the F* (I) lattice point to-
ward the centers of the three octahedral edges
surrounding the central face. Those for the I*
(F) lattice point towards the centers of the
three octahedral faces surrounding the central
one. The senses of the twofold, threefold and
fourfold rotations r2, r3, and r4=r3r2 are as
indicated. The axis of r2=r4 is the same as
the axis of r4, the axis of r 3

= r3r 2 passes
through the center of the triangular face with
vertices —v"', v' ', v' '. The mirrors m and rn'

are in planes perpendicular to the axes of r2
and rg.

FIG. 2. An icosahedron, viewed along an axis
of threefold symmetry. The threefold-
symmetric set of vectors v"', . . . , v' ' are along
the Svefold axes and generate the icosahedral
P lattice. Threefold-symmetric sets of six
primitive generating vectors for the
icosahedral F (I) and I* (F) lattice are given
in Eqs. (3.21) and (3.22). The senses of the
twofold, threefold, and fivefold rotations r2, r3,
and r5 =r, r2 are as indicated. The mirror m is
in the plane perpendicular to the axis of r2.

(2)

(3)
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FIG. 3. The icosahedron of Fig. 2, viewed
straight down the twofold axis of r2, to em-

phasize that under the twofold rotation r2,

Note that the vectors v"', v' ', v' ' —v' ', and
v"' —v' ' all lie in the plane of the mirror
m = lP'2.

FIG. 4. The icosahedron of Figs. 2 and 3, in-
scribed in a cube of side 2r. Each edge of the
icosahedron has length 2. The vertices are
numbered to correspond to the vectors v" in
Figs. 2 and 3. For edges in the cube faces to
have the same length as the edges connecting
points in di6'erent faces, we must have
H=1+~, which fixes ~ at the golden mean.
The F* generating vectors b' '=v' ' —v"' and
b"'=v' '+v' ' are ( —w, &+1,1) and
( —l, ~, ~—1). Because ~ is the golden mean, it
follows that b' '=vb"'. The I* generating
vector b' '=v'" —v' ' —v"' —v' '+v' '+v' ' is
2(7 + 1, %, 0) which is 2~"'= wb" '. Note
finally that the sum v' "—v' '+ v' '+ v' '+ v' '

of the 5-vectors surrounding v' ' is
(2&—1,0,2+ w), which is (2r—1)v' '

=(7 —2)v' '.
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1(&) 1(2) 1(2) 1(3) 1(3) 1(&)

1(4) 1(5) 1(5) 1(6) 1(6) 1(4)
(3.4)

Explicit forms for these vectors are given below in Sec.
III.D.

In the cubic case, a gauge function y will give a gauge
transformation (2.10) that reduces (I)„ to zero, if it

3
reduces it to zero at the three lattice-generating vectors:

generators and one of the threefold symmetric subsets of
icosahedral generators 1'",1' ', and 1' ', call the second
symmetric icosahedral set 1' ', 1( ', and O' '. We shall al-
ways work with such primitive generating vectors, trans-
forming under r3 by the cyclic permutations

by the group compatibility condition (2.11) applied twice
to the generating relation r3 =e:

0=4, (1")
—=e„(r',b")+e,{b")'3 r3

—:N„(r32b")+4&„(r3b")+C„(b")). (3.7)

Therefore the required gauge function exists.
The above analysis holds in the icosahedral case for the

lattice-generating vectors 1'",1' ', and 1' ', and indepen-
dently for 1' ', 1' ', and 1' '. Thus a gauge can again be
found in which N„vanishes at all the lattice-generating

vectors and hence everywhere (by linearity).

3. Remaining gauge freedom

(b() )
) q) (b(1) ) ~(b(2) ) ~(b(1) )"3 3

(b(2)) (g) (b(2)) y(b(3)) y(b(2))
"3 '3

(b(3) ) @ (b(3) ) ~(b( &)
) ~(b(3) )"3 '3

(3.5)

These three equations have a solution for the three y(b")
if and only if

It is important to note that, whether the threefold gen-
erator is r3 or r3, there remains an additional freedom of
choice of gauge consistent with keeping the associated
phase functions 4 or Cj, zero.

r3 '3

If the rotoinversion r3 is a generator, a further gauge
function y, will yield a gauge transformation (3.3) that
does not alter @ if and only if it satis6es

4&„(b"')+ N„(b( ')+ @„(b' ' =0 .
3 "3 "3 (3.6) ~ (r b(l)) ~ (b(()) (3.8)

But Eq. (3.6) is precisely the constraint imposed on 4&„'3

53—
(53m)

73 j m =m = 73m =cj
r3m = mr33 3

TABLE I. Generators for the icosahedral and cubic point
groups. The actions of the generators r3 and r~ are shown in
Figs. 1 (cubic) and 2 (icosahedral), and the generator r2 is a two-
fold rotation about the indicated fourfold axis in Fig. 1. The ro-
toinversion r3 is ir3 where i is the inversion, and the mirrors m
and m' are ir2 and ir2. The first three sets of generating rela-
tions difFer from the last four because it is r 3 that is the identity,
since r 3=i, and because it is necessary to express the additional
fact that i commutes with the twofold operation.

Schon- Interna- Cener- Point-Croup
Qies tional ators Cenerating Relations

g (b'")=—g (b"')—=g (b'"):—a

y, (b(")—=y, (b"))—=y, (b') =P,
(3.9)

where a and P can be independently 0 or —,'. {The second
equation applies only in the icosahedral case. )

If the rotation r3 is a generator, the remaining degree
of gauge freedom is less restricted. A gauge transforma-
tion (3.5) does not alter 4„ if and only if"3

for all the lattice-generating vectors. The condition (3.8)
requires y((b(')) to have the same value (modulo an in-

teger) on b" and all the images of b" under repeated ap-
plications of r3. Since one of those images is
F 31"=i1"= —1",that value can be only 0 or —,

' . So for
the point groups with r3 as a generator, within the gauge
in which N vanishes, two sets of phase functions will be

r3

gauge equivalent if they are related by a gauge transfor-
mation given by

—3—4 2
m m

(m 3m)

73 j m r~3 ——m2 = r3m 4 = e,
r3m = mr33 3

y,(. b")=y, (b")), (3.10)

—32
fA t 3 j m

73j 72

r36-= m' = r3m' 3 = e,
r3m' = m'r33 3

= t2 = t3t2 = 8

so y, (b") satisfying Eq. (3.9) for arbitrary a and (in the
icosahedral case) P gives a gauge transformation (3.5)
that does not alter @„."3

Td

432 73 j

I73 j 7Q

j m

= t'2 = t3t2 =8

=m = 73m =8

C. Conditions imposed on the phase functions
by the generating relations

Since we work in a gauge in which the phase function
associated with the threefold generator vanishes, the
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problem of determining the space groups reduces to
finding the single phase function @ associated with the

gz

twofold generator. This is accomplished by imposing the
group compatibility condition (2.11) on all the generating
relations listed in Table I.

All but three of those generating relations are of the
form g"=e (with n =2, 3, 4, 5, or 6), leading [as in (3.7)]
through repeated applications of (2.11) to

0—:4 „(k)=4 ([1+g+ +g" ')k) . (3.11)

Since 4 vaniShe, this holds automatically when g =g3.
For the twofold operations g2 it leads to the condition

0=@g ([1+g~]k)=C&s (2Pg k), (3.12)

@g g (k)—:@g,(k), (3.13)

which requires N to vanish at twice the projection ofgz

any vector in the invariant space of gz (either the twofold
axis or the plane of the mirror). For the n-fold opera-
tions of the form g3g2, our choice of gauge leads with Eq.
(2.11) to

Because 4g can be taken to be the only nonvanishing

phase function, to determine the cubic (icosahedral)
space groups it is enough to determine the three (six)
phases

O~ =4 (b")
l gz

(3.16)

These phases are easily found by imposing on each of the
primitive lattice-generating vectors b" the two condi-
tions (3.12) and (3.14) [and, when F3 is a generator, the
further restriction (3.15)].

For the point groups F&, 0I„and T& with r3 as a gen-
erator, the procedure is substantially simplified by the
fact that the only allowed values for the phases 0; are 0
or —,'. On the other hand, the ability to simplify the
analysis for these point groups by an appropriate further
choice of gauge is subject to the restriction that the pa-
rameters a and P in Eq. (3.9) are also restricted to the
values 0 or —,'. For the other four point groups Y, 0, T,
and Td one cannot take advantage of an initial restriction
on the phases 0;, but the corresponding lack of any re-
striction on a or P allows for a greater simplification by a
judicious further choice of gauge.

so that Eq. (3.11) applied to g =g3g2 reduces to a second
condition on @ D. The cubic and icosahedral lattices

0=—N {[1+gg +. . . +(g g )" ']k):—N {nP k) .

(3.14)

@g (2k)=0, G= Yi„Oi„T~ . (3.15)

This restricts the values of @g to 0 or —,
' for the groupsgz

having r3 as a generator.

When g3g2 is a proper n-fold rotation, this requires N

to vanish at n times the projection of any vector on the
axis of that rotation. This is the only case we must con-
sider, since when g3g2 is improper (which happens only
for the point group Td ) [1+g3g2+ +(g3g2)" ']k
vanishes and the condition (3.14) is guaranteed to hold.

The three remaining generating relations (applicable
only to the point groups F&, 0I„and TI, with r3 as a gen-
erator) assert that the inversion i commutes with the two-
fold generator gz. Since i =r 3, it follows from Eq. (3.11)
that 4; vanishes in the gauge in which N =0. ApplyingI'3

Eq. (2.11) to ig2=g2i and noting that ik= —k we con-
clude that

Cubic I' lattice:

b(1)—(&)

b(2) —v(2)

b(3) —v(3)

(3.17)

The lattice that is face centered in Fourier space [but
indelibly labeled as the I lattice (body centered) because
of the unfortunate emphasis on real space —we prefer to
refer to it as the I' lattice since it is face centered in the
space of primary importance to us], consists of all in-
tegral linear combinations n, v"'+n2v' '+n3v' ' with
n, +n2+n3 even. It is therefore given by all integral
linear combinations of the following set:

To find their projections on the symmetry axes or in
the mirror planes, we must explicitly specify the
threefold-symmetric sets of lattice-generating vectors.

We first list the familiar threefold-symmetric sets of
primitive generating vectors for the cubic lattices in
terms of the orthonormal vectors v'", v' ', and v' ' along
the fourfold axes of the octahedron in Fig. 1. For the
simple cubic (P) lattice we have

27Quite generally, for any point-group operation g, we shall
denote by P~ the operator that replaces k by its projection on
the invariant subspace ofg.

Cubic F" (I) lattice:

b(') =v( )+v( )

b(2) =v( )+v(')

b( )=V( +V( )

(3.18)
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The I* or F lattice, body centered in Fourier space,
has n „n2, and n3 either all odd or all even, and is there-
fore generated primitively by the following set:

Cubic I* (F) lattice:

The F* lattice, consisting of all integral linear com-
binations n&v "+ . +n6v' ' with n&+ . +n6 even,
can be generated primitively by the following set:

Icosahedral F* (I) lattice:

b(1) v(2) +v3 (1)

1(2) V
3 +V V(2)

1(3)—v( &)+v(2) v(3)

1(4)—(4) ( ) 1 1

1(5)—v(5) v(2) b(2)

—V +V 1( )=V ) V( )= 1(3)

(3.21)

b("=v(') b( ) =v( )

1(2) v(2) 1(5) v(5)
7

1(3)—v(3) b(6) —v(6)

(3.20)

%"e next specify the two sets of threefold-symmetric
vectors that primitively generate each of the three
icosahedral lattices, in terms of the threefold-symmetric
set of vectors v'", . . . , v' ' along the distinct fivefold axes
of the icosahedron in Figs. 2 or 3.

For the primitive icosahedral lattice (P) lattice we have

Icosahedral P lattice:

One easily verifies that all integral linear combinations
of these yield the desired integral linear combinations of
the v". That 1' ' is parallel to 1'" is evident from an in-
spection of Figs. 2 or 3. That the proportionality con-
stant is just the golden mean ~ follows directly from the
coordinates given in Fig. 4 and the fact that 2=1+r.
(The corresponding relations on the next two lines of Eq.
(3.21) follow from the threefold symmetry. )

The I* lattice has n &, . . . , n6 either all odd or all even
and can be generated primitively by the following set:

Icosahedral I* (F) lattice.

b(i) —2V(i) 1(4)—v(&) v(2) v(3) v(4)+v(5)+ (6)—b(&)

v' ' 1' '=v' ' —v' ' —v'" —v'5'+v'6'+v'4
9

b(3)—2 (3) 1(6)—(3) (&) (2) (6)+ (4)+ (5)—b(3)

(3.22)

That these produce all the required linear combina-
tions of the v" follows from the fact that 2v' ', 2v' ',
2v' ', and v"'+ v' '+. . . +v' ' are all readily extracted
as integral linear combinations. That 1' ' is parallel to
1'"=2v'" can be confirmed by noting from Fig. 2 that
1' ' is just the sum of v'" and vectors +v" that point to
the five vertices surrounding v"'. That the proportionali-
ty constant between two such sets is ~ can be verified
from the coordinates given in Fig. 4.

E. Scale invariance of the icosahedral lattices

In contrast to crystallographic lattices, the icosahedral
lattices are invariant under certain changes of scale. As
noted in general in Sec. II.G, and as described in particu-
lar in Sec. III.H below, this can lead to the further
identification of certain space groups associated with dis-
tinct gauge equivalence classes.

The scale invariance of the F and I* lattices follows
from the fact that each can be expressed [see Eqs. (3.21)
and (3.22)] as the set of all integral linear combinations of
a triad of vectors 1"and the same triad scaled by ~, ~b",
i =1,2, 3. When scaled by the factor ~ such a lattice be-
comes the set of all integral linear combinations of wb"
and r b". But since r =1+~ the original lattice con-
tains every vector in the rescaled lattice. The rescaled
lattice, in turn, contains both rb" and b"=r 1"—rb",

and therefore contains every vector in the original lattice.
Hence the F* and I* lattices are indeed invariant under
an operation h which rescales every lattice vector by ~.

The icosahedral P lattice is not invariant under a scal-
ing by ~, but is invariant when rescaled by ~ . Establish-
ing this is a slightly more intricate matter, relegated to
Appendix A.

F. Projections of lattice generators
on rotation axes or mirror planes

P ~P„or P„', (3.23)

depending on whether the n-fold operation g„ is r„or r„'

(i.e., depending on whether or not the twofold operation
is associated with the 2 or the 2' axis), and

P ~P2, P2, P, orP' (3.24)

To determine the space groups we impose the condi-
tions (3.12), (3.14), and (3.15) demanded by the point-
group generating relations on each primitive generating
vector of the lattice. To apply Eqs. (3.12) and (3.14) we
must have at hand the projections of the lattice-
generating vectors on the n-fold axis and on either the
twofold axis or the mirror plane perpendicular to that
axis. These are given in Tables II—VII for each of the
icosahedral and cubic lattices. We abbreviate
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depending on whether the twofold operation gz is a rota-
tion about the 2 or 2' axis or a mirror normal to the 2 or
2' axis. (The various axes are specified in the captions of
Figs. 1 and 2. The primed operations occur only for the
tetrahedral groups T and T&.)

Although an entirely elementary exercise, the con-
struction of these Tables II—VII is undoubtedly the most
elaborate step in the entire analysis. The entries for the
primitive lattices can be read directly from Figs. 1 and 2
of the octahedron and icosahedron; those for the cen-
tered lattices then follow directly from the expressions
(3.18), (3.19), (3.21), and (3.22) for their primitive generat-
ing vectors in terms of those for the P lattices.

The table entries for the projections P serve as a dou-
g2

ble purpose. Because r2=im, the action of this projec-
tion on any vector can be expressed in two different ways:

2Pz =1+r2 or 1 —m (3.25)

2P =1+m or 1 —r2 . (3.26)

As a result we can read directly from the expression for

b(&) —v(&)

b(4) = v(4),

b(2) —„(2)

b(s) —v(s),

b(s) —„(s),
b(6) = v(6)

b(t) b(2)

b(s), b(6) ~
b(4), b(s) ~

b(&)

b(2) ~
b(s), b(6)

b(4) b(&)

2' ——1+ r2 ——1 —m

0

b(s) + b(6)

b(4) + b(s)

2P =1+m =1—r,

2b(2)

b(s) b(6)

b(4) b(5)

TABLE II. Icosahedral P-lattice projections. The primitive
generating vectors 1"for the P lattice are identical to the vec-
tors v" specified in Figs. 2 or 3 (as indicated at the top of the
table). The projections P2 on the twofold axis can immediately
be confirmed by a glance at Fig. 3 (which views the icosahedron
along that twofold axis). The projections P follow directly
from the projections P2, since P2+P is the identity. The pro-
jections P5 can immediately be confirmed by a glance at either
Fig. 2 or Fig. 3.

A similar secondary purpose is served by the table entries
for the projections in the mirror planes:

bO; =b@„(b"—)
—=y, ([r2 —1]b")—= —y&(2P b") .

(3.28)

(The same relations hold, of course, for the primed two-
fold axes or mirrors. )

We are now ready to compute the icosahedral and cu-

TABLE III. Icosahedral I (Ij-lattice projections. The projec-
tions can be verified from the expressions for the generating
vectors b" in terms of the P-lattice generating vectors v" (given
at the top of the table), and the projections of the v" given in
Table II (for the P-lattice b"=v" ). The projections for
1' ', b"', and b' ' can also be confirmed from those for 1'",1' ',

and O' ' Using the fact that 1' '=wb"', b' '=wb' ' b' '=rb' ',

and the fact that r' = 1+r. Since, for example
2P21'"=b"'+1' ' —b"'+b' '=b"'+1' '+(~—1)b' ', it follows
that 2P~b' '=r2P2b"'=zb'"+zb' ~ '+(—r)b' '=b' '+b' '

+b(5)

b(') = v(') + v('),
b(~) —v(') g v('),
b(s) = v(') + v(')

b() =v() —v() =rb()
b(s) v(s) v(2) = rb(2),

b(6) = v(6) v(s) —rb(s)

b(&), b(2)

b(s), b(6)

b(4), b(s)

b(t) ~
b(2) ~
b(s) ~
b(4) ~
b(s) ~
b(6) ~

2' ——1+ r2 ——1 —m

b( ) + b(') —b(') + b(')

0

b(s) + b(4) + b(s)

2P~ =1+m=1 —r2

b(&) —b(2) + b(s) b(6)

b(t) + b(2) + b(s) b(6)

2b(s)

b(s) + b(4) b(s)

b(s) b(4) + b(s)

the projection of b" on the twofold axis of r2 not only
the constraint (3.12) on the phase function N„, but also'2'
the form (2.10) for the possible simplification of @ by an
additional gauge transformation given by Eq. (3.9):

50~, —=5N (b")—=y, ([m —1]b")—:—y, (2P~b") . (3.27)

b(&), b(2),

b( ), b(') b(') ~ b(') —b( ) + b( ) + b( ) + b(')
b(s) ~

b(&) b(s)

b(4) b(6) ~
b(2) ~
b(s) ~.

0

—b(') + 5b( ) —b( ) + 2b( ) + 2b( )

2b(t) + 2b(s) + b(4) + 5b(s) + b(6)
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bic space groups. We first find the classes of gauge-
equivalent phase functions, and then check to see wheth-
er any distinct classes should be associated with the same
space groups as a consequence of the existence of lattice
symmetries not in the point group (as discussed in Sec.
II.G).

G. The classes of gauge-equivalent phase functions

In determining the gauge equivalence classes we first
exploit the remaining gauge freedom (3.9) to reduce some
of the unknown phases to zero. Because of the relations
(3.27) and (3.28), the allowed shifts 6$; can be read
directly from the table of projections for the appropriate
lattice. Since g& has the common value o for the first
three 1"and the value p for the next three, if the table

entry for the relevant projection is n &b'"+ +n6b' '

then we have

6$': (12j+rt2+113)ct—{lt4+n5+n&)p, (3.29)

so a glance at the table informs us which values of
8, =Ng (1") (if any) can be made zero by a further

choice of gauge.
In the case of Yz, 0&, and T&, the possible phase shifts

(3.29) are severely limited because a and P can only be 0
or —,'. But since the 0; are also restricted to be 0 or —,', as
noted in Eq. (3.15), it is sometimes still possible to reduce
one or even two of them to zero in this way. Note also,
in treating Yz, Oh, and Tq, that because $;, a, and p can
only be 0 or —,', we can replace the coefBcients of each

TABLE IV. Icosahedral I (E}-lattice projections. The projections can be veri6ed from the expres-
sions for the generating vectors 1"in terms of the P-lattice generating vectors v" (given at the top of
the table), and the projections of the v", given in Table II (for the P-lattice 1"=v". The projections
for 1' ', 1' ', and 1' ' can also be confirmed from those for 1"', b' ', and b' ' using the fact that
1' '=rb'", b"'=rb' ', 1' '=rb"', and the fact that r =1+r. Since, for example, 2P b'"=21' '+1' '

+1"'=21'3'+~b")+~b' ' it follows that 2P b' '=~2P21"'=2~1"'+(1+~)b"'+(1+~}b' '=b'"
+1( )+b(4'+b(5)+2b( )

b(~) —2~(~) b(4) —~(~) ~(2) ~(3) ~(4) + ~(~) + ~(6) = 7-b(», '

b(2) —2V(2),

b(3) —2~(3)

b(4) ~(2) ~(3) ~(l) ~(5) + ~(6) + ~(4) = ~b(2),

b(4) —~(3) v(&) ~(&) ~(6) + ~(4) + ~(&) —7-b(3)

b(~), b(2)

b(4), b(s)

b(3) ~
b(6) ~

b(&) ~
b(2) ~
b(3) ~
b(4)

b(5) ~
b(6) ~

2P2 =1+r2 =1—m

2b(3) + b(4) + b(&)

b(&) + b(2) + b(4) + b(5) + 2b(6)

2P =1+m =1—r2

2b(»

b(4) b(~)

2b«)

2b(5)

b(&) b(2) b(4) b(5)

b(&) b(&) b(3) ~
b(4), b(~), b(6) ~

2b(&) b(2) + 2b(3) + b(4) + 2b(~) + b(6)

b(') + 2b(') + b(') + 3b(') + b(') + 3b(')
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TABLE V. Cubic P-lattice projections. The primitive generating vectors 1"for the P lattice are identical to the vectors v" specified
in Fig. 1 (as indicated at the top of the table). The projections P2, P4, P2, and P3 can all be confirmed by a glance at Fig. 1, where the
axes of r2 and r4 are explicitly indicated. The 2' axis is along the axis v' ' of r4. (Consequently the action of 2P~ is identical to that of
4P& except for a factor of 2.) The 3' axis (r3 =r3r2) is through the center of the triangle in Fig. 1 whose vertices are —v"', v' ', v' '.

The projections P and P' follow directly from the projections P2 and P2, since P2+ P or P2 +P ' are the identity.

b(~) ~
b(2) ~
b(3) ~

b(&) — (&),

2P2 ——1+ r2 = 1 —m

b(') + b(')

b(&) + b(2)

b(2) —~(&),

4P4

4b(')

b(» =.(».

2P,'=1+r', =1—m'

2b(&)

b(~) ~
b(2) ~
b(3) ~

2P~ =1+m=1 —r2

b(&) b(~)

b(&) + b(~)

2b(»

3P3

b(~) + b(2) + b(3)

b(&) b(2) b(3)

2P' =1+m'=1 —r'
2

0

lattice-generating vector in the projections by their
values modulo 2: i.e., we can ignore terms with even
coefficients and replace all odd coefficients by +1 (choos-
ing the sign at our convenience).

%'e compute the gauge equivalence classes point group
by point group, collecting the resulting information in
Tables VIII —X. In each case we begin by listing the par-
ticular form of the constraints (3.12) and (3.14) for the
point group, and the general form for an additional gauge
transformation that preserves the vanishing of N . %'e

first consider the three point groups Yz, Oz, and Tz for

which all the 0, and the values of a (and P) in the gauge
function (3.9) can only be 0 or —,'. In every case the text
refers to the table of projections for the lattice under con-
sideration. For a given projection I', I explicitly mention
all relevant values of P(b"); there are generally fewer
than six (icosahedral) or three (cubic) of these because
more than one generating vector can have the same pro-
jection (to within an irrelevant sign), or because a given
projection contributes no constraints beyond those al-

ready noted (including the overall constraint that all

phases are 0 or —,
' for Yz, Oi„and Tz).

TABLE VI. Cubic I'* (I)-lattice projections. The projections can be verified from the expressions for the generating vectors b" in

terms of the P-lattice generating vectors v" (given at the top of the table}, and the projections of the v" given in Table V (for the P-
lattice 1"=v").The axes rz, r&, r2, and r 3 are as shown in Fig. 1 and described in the caption of Table V.

b(~) = ~(~) + ~(3) b(2) = ~(3) + ~(~), b(3) —~(t) + ~(2).

b(~)

b(2) ~
b(3)

2P2 =1+r =1 —m

b(3)

b(3)

2b(3)

4P4

2b(') —2b(') + 2b(')

2b(~) 2b(2) + 2b(3)

2P,'=1+r', =1 —m'

b(t) b(2) + b(3)

b(t) b(~) + b(3)

b(~) ~
b(2)

b(3)

2P~ = 1+m=1 —rg

2b(2) b(3)

Sb(&) b(2) b(3)

2PI =1+m'=1 —".,
b (t) + b (2) b (3)

2b(~)

b(t) + b (~) + b(3)
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TABLE VII. Cubic I* (F)-lattice projections. The projections can be verified from the expressions for the generating vectors b" in
terms of the P-lattice generating vectors v" (given at the top of the table), and the projections of the v" given in Table V (for the P-
lattice b"=v"). The axes r, r, r2, and r 3 are as shown in Fig. 1 and described in the caption of Table V.

b(~) —~(~) + ~(3) ~(~), b(2) —~(3) + ~(&) ~(2), b(3) —~(&) + ~(~) —v(3).

b(&) ~
b(2) ~

2' = 1+ r2 ——1 —m

0

0

b(~) ~
b(3) ~

2P =1+m=1 —r2

2b(~)

2b(2)

b(&) b(~)

b(3) —+ b(&) + b(&) + 2b(3)

2b(') + 2b(')

2b(&) 2b(3)

2b(&) + 2b(3)

3P3

b(&)

b(&)

b(&)

2P' =1+r' =1—m'

b(l) + b(3)

b(&) b(3)

b(l) + b(3)

2P' = 1+m' = 1 —r',

b(~) b(3)

b(&) + 2b(&) + b(3)

b(&) + b(3)

1. Point group Yh

Constraints and remaining gauge freedom:

O=e (2P b"'), O=—e

5S;—:—yi(2P2(b")) .
(3.30)

and from 2P that

0=0~ +O~ +Q~ and 0=0~ +Q~ (3.34)

Equations (3.32) —(3.34) imply that all the S, vanish, so
all classes are gauge equivalent to the one with phases

P lattice (Fz). From the entries in Table II for 2P2 we
see that b,S3= —a —P, so we can always pick a gauge in
which 03 vanishes. The table shows that the remaining
gauge freedom (shifting both a and P by —,') can alter no
additional phases. With this choice of gauge, we then
learn from 2P (b' ') that 06 must also vanish, and from
2P (b' ') that O„and 05 must have the same value. We
learn from SPs(b' ') that Ss must vanish and 5P5(b' ')
then tells us that O& =—Oz. There are thus two classes:

P lattice, 53m: N (b")=000000 or —,
'

—,'0000 .

(3.31)

F* (I) lattice (Yh). From the entries in Table III for
2P2 we find that bS4 —=a+2P=a, and AS, —=a+P. We
can thus choose o, to make 04 vanish and, whatever that
value of a, we can then choose P to make S, vanish:

F* (I) lattice, 53m: @ (b")—:000000 . (3.35)

I* (F) lattice (Y'z). From the entries in Table IV for 2Pz,
we find no remaining freedom to alter any phases with a
gauge transformation. From 2P we get

0:—4+0. 5 and 0=0~&+0. 2 .

In view of these, 5P5 gives

(3.36)

0=02+04+86 and O=Oi+03+06 . (3.37)

Thus 0& and 0~4 can independently be taken to be 0 or —,',
and the values of the other four phases are then deter-
mined, giving four gauge equivalence classes:

I* (F) lattice, S3m:

e (b")—=OOOOOO, —,'-,'OOO-,',
0=Oi and 0=04 ~ (3.32)

(3.38)

With this choice of gauge, we learn from 5P5(b' ') and
SP,(b"') that

2. Point group 0„

0—=02+03 and 0—:05+06, (3.33) Constraints and remaining gauge freedom:

0—=@ (2P b"), 0=4 (4P4b"),
We list the values of 0;=+ (b"), i =1, . . . , 6, by simply

listing the six numbers: O&O&83040506. ~S = —y, (2P, (b")) . (3.39)
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P /attice (Oh). The entries in Table V for 2Pz show
that no phases can be changed by the remaining gauge
freedom. We learn that 0,=02 from 2P~, and nothing
new from 4P4, so there are four gauge equivalence
classes:

P lattice, m3m: @ (b")=000, 00—,', —,
'

—,'0, or —,
'

—,
'

—,
'

3. Polflt gl oup TI,

Constraints and remaining gauge freedom:

0=@ (2P' b"), 0—=N (3P3b"),
b,O —= —y, (2P2(b")) .

(3.43)

(3.40)

F* (I) lattice, (Oh). The entries in Table VI for 2P2
show that we can pick a gauge in which 02=—0. In this
gauge we learn from 2P that 03=—0. We learn nothing
new from 4P4, so there are two gauge equivalence
classes:

P lattice (Tz). The entries in Table V for 2P2 show
that no phases can be changed by the remaining gauge
freedom. We learn nothing new from 2P', and 3P3 sim-

ply requires an even number of those phases to be —,', so
there are four classes:

P lattice, m3: N~(b")—:000, —,'0—,', —,
'

—,'0, or 0—,
'

—,
' .

F* (I) lattice, m3m: @ (b")—:000 or —,'00 . (3.41)
(3.44)

I* (F) lattice, (Oh). The entries in Table VII for 2Pz
show that no phases can be changed by the remaining
gauge freedom. We learn that 0&—=02 from 2P, and
nothing new from 4P4, so there are four gauge
equivalence classes:

F* (I) lattice (Th). The entries in Table VI for 2P2
show that we can pick a gauge in which 03—=0. In this
gauge we learn from 2P' that 0& =02, and nothing more
from 3P3, so there are two classes:

F* (I) lattice, m3: @ (b")=000 or —,
'

—,'0 . (3.45)

I* (F) lattice, m3m:

(b")=000, 00—,', —,
'

—,'0, or —,
'

—,
'

—,
' . (3.42)

I* (F) lattice (T&). The entries in Table VII for 2Pz
show that no phases can be changed by the remaining
gauge freedom. We learn from 2P' that 0&—=03, and
from 3P3 that 0,=0, so there are two classes:

TABLE VIII. The space groups with point groups Yz, Oz, or Th. All phase functions are gauge equivalent to one of the (gauge-
inequivalent) sets listed for each lattice and point group. The phase functions are specified by giving the phases 0;=4 (b") in the
form O&0203, 040506 (for Fq) or O&0203 (for Oz and Tz). (The phase function associated with the other point group generator, @r

is zero in all cases, because of our choice of gauge. ) The international name (long form) and number (in italics) for the space group as-
sociated with each gauge equivalence class is listed alongside its phases. The three sets of phases in braces specify distinct gauge
equivalence classes, but give the same space group as the entries directly above them, for the reasons discussed in general in Sec. II.Cx

and in particular in Sec. III.H. There being no obvious way to generalize the international glide-plane notation to the two nonsym-
morphic icosahedral groups, I follow the notation of Rokhsar, Wright, and Mermin, 1988, replacing m by the noncommital q (for
"quasi").

432 (g ) —'3 (2a)

P53—'
P53-,'

E'53—'

I'53—
I*53-'

000 000
——0 0002 2

000 000

000 000
——0 00—1 1 1
2 2 2

2 222
222 22

P432

P~43—'

I~43-'
a

y 432

gy43 2

y y432

88i 000

888 OO —,
'

88g —,
'

—,
'

O

88$ 1 1 1

889 000

880 —00

885 000

88/ 00 ~~

888 ——02 2

886 1 1 1222

P—3 800

P—„3 804

P~ 3 M5

I—3 80/

I~3 806

F—3 808

E—3

000
—0—1 1
2 2

——01 1
2 2

000
——01 1
2 2

000
o10
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I* (E) lattice, m3: @ (b"):—000 or 0—,'0 . (3.46)

These exhaust the point groups for which 0;, a, and p,
are required to be 0 or —,'. For the remaining four point
groups they can have arbitrary values (modulo l). 0=0~=06 . (3.48)

P /attice (Y). The entries in Table II for 2P show
that b.02 =—2a and b,86=a —p, so we can choose a and p
to make

4. Point group Y

Constraints and remaining gauge freedom:

In this gauge 2Pz(b'3') and 2Pz(b' ') then give

0—:03 and 0=0 +O

and SP&(b '
) and 5P&(b ) give

(3.49)

0—=e„(2P,b"), 0—=C „(5P,b"), 0=0)+O4 and 0=505 . (3.50)

~O, = —y, (2P.(b")) . The complete set of solutions to Eqs. (3.48) —(3.50) is

TABLE IX. The space groups with point groups F or O. All phase functions are gauge equivalent to
one of the (gauge-inequivalent) sets listed for each lattice and point group. The phase functions are
specified by giving 0;=@„(b")in the form O&0203, 040506 (for Y) or O&0283 (for 0). (The phase

function associated with the other point group generator, @,is zero in all cases, because of our choice
p

of gauge. ) The International name (long form) and number (in italics) for the space group associated
with each gauge equivalence class is listed alongside its phases. Although they are gauge inequivalent,
the three sets of phases in braces for each icosahedral point group specify the same space group as the
entries directly above them, for the reasons discussed in general in Sec. II.Gr and in particular in Sec.
III.H.

532 (V) 432 (O)

000 000 P432 807 000

sop
(2;—,

' OO

(4 —,
' oo

(3 ~00

——04 1
5 5

4 10')
4 1p')
5 6

4 lp)
5 5

P4132 818 ——01 3
4

P4232 808 2i4 4 0

P4332 818 3 4 4 0

00 0 000 I432 821 000

I4132 82$ -00

55 55
(4'p 1 2

I*532
55 55 ~

000 000 F432 809 000

I'5132

(3 —,
' o -,' 3 o —', }

5 5 5 5.

E4132 840 ——01
2 2

5 5(2 -'O-' sp3')
5 5
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TABLE X. The space groups with point groups T or Td. All
phases functions are gauge equivalent to one of the (gauge-
inequivalent) sets listed for each lattice and point group. The
phase functions are specified by giving 0;=Ng (b") in the form

010203, where g=r2 for T and m for Td. (The phase function
associated with the other point-group generator, @„,is zero in"3'
all cases, because of our choice of gauge. ) The International
name (long form) and number (in italics) for the space group as-
sociated with each gauge equivalence class is listed alongside its
phases.

0=203+04 and 0=—0,+04+206,
while 5P5(b"') and 5P5(b' ') give

0—=20)+203+04+06,
0= 0~ + 0~ + 30~ + 30~

(3.57)

(3.58)

The complete set of solutions to Eqs. (3.57) and (3.58) is

I* (F) lattice, 532:

2s (T) 4sm (r&) e 4„(b")=—(101,202), n =0, 1,2, 3,4 ."2 5
(3.59)

P P2S 195 000 P4Sm 815 000

P2gs 198 0 2 2 P4sn 818 00 2

F' I2S 19T 000 I4Sm 817 QQQ

5. Point group 0
Constraints and remaining gauge freedom:

(I) r2, s 199 o-,'-,' I4sd neo o-,' o 0—:@„(2P21"), 0=—N„(4P4b" ),I' F2s 196 000 F4sm 816 000
b,S;=——y)(2P (b")) . (3.60)

(F)

readily seen to be

F4sc 819 z i 0 P lattice (0). The entries in Table V for 2P~ enable us to
pick a gauge in which 03—=0. We learn from 2P2 that
8&: 02 and from 4P4 that their common value must
be an integral multiple of —,', so there are four classes:

P lattice, 532: 4&„(b")=—(100,110), n =0, 1,2, 3,4 .'2 5

(3.51)

F* (I) lattice (F). The entries in Table III for 2P
show that b,S,=——a+p and b.S4—=a, so we can choose
a and P so that

P lattice, 432: @„(b")=——,"(110), n =0, 1,2, 3 . (3.61)

F* (I) lattice (0). The entries in Table VI for 2P en-

ables us to pick a gauge in which 02=—0. In this gauge
we learn from 2P2 that 03=0 and from. 4P4 that 20, —=0,
so there are two classes:

F~ (I) lattice, 432: N, (b")—:000 or —,'00 . (3.62)

0)=04—=0

In this gauge, 2P2(b"') and 2P2(b' ') give

0=0" 2
—0" +0~ and 0—= 0~ +O.

while 5P5(b' ') and 5P~(b' ') give

(3.52)

(3.53)

I* (F) lattice, 432: N„(b")=—000 or —,
'

—,'0 ."2 (3.63)

I* (F) lattice (0). The entries in Table VII for 2P en-

able us to pick a gauge in which 03=—0. In this gauge we
learn from 2P2 that 0& = —02 and from 4P4 that
0&

—=0, —,', so there are two classes:

@„(b")= —(012,021), n =0, 1,2, 3,4 .'2 5
(3.55)

I* (F) lattice (Y). The entries in Table IV for 2P give
b.S2=—2u and b,S5—:2P, so we can choose a and P so that

Q~
—0~ —0

In this gauge 2P2(b' ') and 2P2(b' ') give

(3.56)

0—= 50~2 —0~3+2O6 and 0=203+5S~+06 . (3.54)

The complete set of solutions to Eqs. (3.52) —(3.54) is

F'(I) lattice, 532:

6. Point group T

Constraints and remaining gauge freedom:

0—=4, (2P2b"), 0—:N, (3P31"),

AS;—:—y)(2P' (b")) .
(3.64)

P lattice (T). The entries in Table V for 2P' enable us

to pick a gauge in which 0& =—0. We learn from 2P2 that
202 ——0 and 3P3 requires 03+02=0, so there are two
classes:

P (I) lattice, 23: N, (b")—:000 or 0—,
'

—,
' .

7'2
(3.65)

It is convenient to write —1 as 1, etc. F* (I) lattice (T). The entries in Table VI for 2P' en-
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Since, as we shall see in Sec. VI, the second possibility
gives one of the only two examples of a nonsymmorphic
space group without extinctions, it is worth confirming
directly that it is not gauge equivalent to a set of vanish-

ing phase functions. To see this note from Table VI and
Eq. (3.5) that

e, (b"')—C, (b"')+2@„(b"))
12 I2 "3 (3.67)

is gauge invariant. But in the gauge in which @„=0,"3

this combination of phases is equal to —,
' when

4&, (b")=0—' —'. We therefore cannot reduce 4&, (b") to
I'p

000, without making @„nonzero [as is also evident from
3

the detailed calculation leading to (3.66)].

I* (F) lattice (T). The entries in Table VII for 2P' en-

able us to pick a gauge in which Sz —=0. We learn from
2P2 that S& = —S3, and from 3P3 that S, :—0, so there is

only the single class

I* (F) lattice, 23: @„(b")=—000 .
2

(3.68)

7. Point group Td

Constraints and remaining gauge freedom:

0:—e (2P b"), AQ; = —y, (2P, (b")) . (3.69)

P /attice (Td). The entries in Table V for 2Pz enable us

to pick a gauge in which S,=0. We then learn from 2P
that 02 =0 and 2S3—=0, so there are two classes:

able us to pick a gauge in which S&
—=0. In this gauge we

learn from 2P 2 that 02=—S3, and from 3P 3 th.at
02: 03 so there are two classes:

F* (I) lattice, 23: 4&, (b")=—000 or 0—,
'

—,
' . (3.66)

P2

This completes the calculation of the gauge
equivalence classes of phase functions for all point groups
on all cubic and icosahedral lattices. The results are tab-
ulated in Tables VIII, IX, and X.

H. The cubic and icosahedral space groups

Before associating each of these gauge equivalence
classes with a distinct space group, we must check for
further identification of distinct classes described in Sec.
II.G. This cannot happen for OI„which is the full point
group of the lattice, or for 0, which differs from it only
by improper operations. Among the tetrahedral point
groups, only T& on the P lattice has more than a single
class of nonzero phase functions, and there we find two
classes [the last two listed in Eq. (3.44)] which differ only
by the interchange of the values of N (b"') and

(b' )). Since this interchange can be accomplished by
the operation h =r4 (see Fig. l), which is a proper lattice
symmetry not in the point group, the two gauge-
inequivalent sets of phase functions do not specify dis-
tinct space groups. For that reason the second choice is
enclosed in braces in Table VIII.

For the icosahedral groups such an identification of
the space groups associated with distinct gauge
equivalence classes can only arise from the scale invari-
ance of the icosahedral lattices, since Y& is the full sym-

metry group of the lattice and Y differs from it only by
improper operations. When the point group is Y'&, only
the I* lattice has more than a single nontrivial gauge
equivalence class, but the invariance of the I* lattice un-

der a scaling by ~ leads to the identification of the space
groups associated with all three of the nontrivial classes.
This is because the invariance of the I* lattice under a
scaling by ~ means that there is no way to distinguish be-
tween the phases 4& (b") and %' (b" ) =@ ( rb" ).
Since ~b' =1'+ ' and wb

'+ '=1"+1' ' i=1 2 3 we
have

P lattice, 43m: @ (b")=—000 or 00—,
' . (3.70)

qg (b(i) ) @ (b(i + 3)
)

qP (b(i +3)) (y (b(i))+@ (b(i+3))

F* (I) lattice (Td). The entries in Table VI for 2Pz en-

able us to pick a gauge in which S& =—0. In this gauge we
learn from 2P that S3——0 and 202—=0, so there are two
classes:

l = 1,2~3

Thus if two sets of phases differ by the alteration

(3.73)

F* (I) lattice, 43m: C (b")=—000 or 0,'0. (3.7 l)
010203 040506

I" (F) lattice, 43m: 4& (b")—=000 or —,
'

—,'0 . (3.72)

The other is I2j2&2& (No. 24) in the orthorhombic system, as
noted in Sec. IV.C.2.

I* (F) lattice (Td). The entries in Table VII for 2P2
enable us to pick a gauge in which S3=0. We learn from
2P that S& =02——0, —,, so there are two classes:

~Q~ Q~ Q~ (Q~ +Q~ )(Q~ +Q~ )(Q~ +Q~ ) (3.74)

the second structure will have exactly the same phase re-
lations as the first does with respect to the rescaled primi-
tive set. But this is precisely how each of the last two
sets of phases in Table VIII for FI, on the I* lattice is re-
lated to the set above it. Therefore all three specify the
same space group.

When the point group is F, scale invariance leads to
the identification of the space groups associated with four
nonzero gauge equivalence classes on all three lattices.
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y(b(1) ) y(b(2) ) y(b(3) )

+(b(4) ) +(b(5) ) +(b(6) )
2n

(3.75)

Thus each of the four nonzero entries in Table IX for the
icosahedral P lattice is gauge equivalent (modulo 1) to
one obtained from the one above it (modulo 1}by chang-
ing primitive vectors from b" to ~ b".

IV. THE ORTHORHOMBIC SPACE GROUPS

This is most easily verified for the I * and I* lattices,
since both are invariant under a rescaling by v. and one
easily veri6es that each of the four nonzero entries for the

and I lattices is indeed obtained from the one above
(modulo 1) by precisely the transformation (3.74).

The corresponding identification of space groups is
slightly more subtle for the P lattice, which is invariant
under a scaling by r (see Appendix A.) It follows from
Eq. (A7} that if 4(b") is given by —,"(100,110} then
4&(r b")—:—,"(121,221). But this is gauge equivalent to
—',"(100,110) the shift in phases being —,"(221,001), which
Table II shows follows from the gauge transformation
given by

two of the rotations; a symmetric set of generators for
mm2 consists of the two mirrors; and mmm has all three
mirrors as its generators. The generating relations sim-

ply express the fact that all the generators are of order
two and all commute with each other. This information
is summarized in Table XI.

B. The orthorhombic lattices

b' '=c . (4.1)

The lattice that is face centered in Fourier space is
called body-centered orthorhombic and is given by all in-
tegral linear combinations of the following set:

F* (I) lattice:

There are four orthorhombic lattices, which we specify
in terms of their primitive generating vectors, expressed,
in turn, as integral linear combinations of three mutually
orthogonal vectors s, b, and c of unequal lengths. For
the simple orthorhombic lattice we have

P lattice:

b ' =b+c, b =c+a, b =a+b . (4.2)

A. Generators for the orthorhornbic point groups

Given an axis a, let r, be the twofold rotation about a
and let m, be the mirroring ir, in the plane perpendicu-
lar to a (i is the inversion}. The orthorhombic point
groups contain either r or m or both for each of three
mutually perpendicular axes, a, b, c. Since r, rb=r„
there are just three possibilities: 222 (D2), which has only
rotations; mm2(C2, ), which has a rotation associated
with one axis and mirrors associated with the other two;
and mmm (D2&), which has mirrors and rotations associ-
ated with all three. The group 222 is generated by any

The lattice that is body centered in Fourier space is
called face-centered orthorhombic and is given by all in-
tegral linear combinations of

I* (F) lattice:

b"'=b+c —a, b' '=c+a —b, b' '=a+b —c .

(4.3)

The fourth orthorhombic lattice is called centered or-
thorhombic and consists of centered rectangular planar
lattices stacked directly above one another. We take it to
be given by all integral linear combinations of

Gener-
ators

Point-Group
Cenerating Relations

TABLE XI. Generators for the orthorhombic point groups. The subscripts a, b, and c refer to the
three orthogonal axes. The twofold rotation r, is about the axis a, and the mirror m, is in the plane
through the origin perpendicular to a, etc. The two are related by m =ir„where i is the inversion.
Note that the product of rotations about any two of the axes is the rotation about the third:
r, rb =m, mb =r„etc. The generating relations simply assert that the squares of all generators are the
identity and that all generators commute.

Schon- Interna-
Sies tional

r~& rQ r =r& ——e, r rg=rgr2 2

&2v c~ fAg, fAb = fAQfA~2 2

Dig 222
(mmm)

~ ~

mS) mba mc mj e) mj mQ mJmj) s)g 6) 5) c
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C lattice:

b"'=1+a b' '=b —a b' '=c (4.4)

for each of the four lattice types (Tables XII-XV). A
mirror m di6'ers from the corresponding rotation r only
by the inversion i, so we have

Note that the a, b, and c axes are on an equal footing
in the first three lattices, but the c axis is distinguishable
frotn the other two (which remain on an equal footing) in
the C lattice.

[ I+~]b")= [ I —r ]b"'

[1—m]b"'= [1+r ]b"' .
(4.6)

C. The orthorhornbic space groups

We again determine the space groups by applying the
group compatibility condition (2.11) to the generating re-
lations, always selecting a gauge to make the analysis
simple. The two types of generating relation with their
associated conditions on the phase functions, and the
general form (2.10) of a gauge transformation are

g =e: 4 ([1+g]b")—=0;
gg''=g'g: @,([I—g]b")—=@,([I—g']b"); (4 5)

gauge transformation: y( [1—g ]b") = —4@s(b") .

The first two lines of Eq. (4.5) yield linear equations for
the values of the phase functions for the point-group gen-
erators at the lattice-generating vectors, and a judicious
choice of the three numbers y(b") in the third leads to a
unique representative of each class of gauge-equivalent
solutions to those equations.

The point groups 222 and mm2 have two generators
(see Table XI), so there are just three constraints on their
phase functions; mmm has three generators and its phase
functions are therefore subject to six constraints.

Since all of the conditions (4.5) used to compute the
space groups are on the values of phase functions at vec-
tors of the form [1+g]b", it is helpful to have at hand
explicit tables of the values of [1+g]1' and [1—g ]b",

Since 1+r is twice the projection on the axis of the rota-
tion and 1+m is twice the projection in the plane of' the
mirror, the table for each of the four types of lattice can
be read directly from the expressions (4.1)—(4.4) for their
primitive vectors in terms of the rotation axes (mirror
normals) a, b, and c association with the point-group
generators. Although the content of these tables is trivi-
al, examining them leads directly to the classes of phase
functions.

The choice of gauge is specified by three independent
parameters, y(b'"), y(b' '), and g(b' '). We shall choose
those parameters to make @s(b")zero for three pairs of
point-group elements g and primitive lattice-generating
vectors b~'). Since b,@ (b~'):—g([g —1]b')), to establish
that this can be done one need only confirm from the
table for the lattice under consideration that the three
values of [1—g]b" give three linearly independent vec-
tors. In each case that we consider, I shall simply state
which phases we choose to vanish, leaving it to the
reader to confirm, by a glance at the appropriate table,
that such a choice can indeed be made.

While I have tried to organize the computation that
follows to parallel as much as possible the treatment of
the icosahedral and cubic space groups in Sec. III, there
are two main diQ'erences:

(1) In Sec. III we examined each of the seven
icosahedral and cubic point groups, computing for each
point group the gauge equivalence classes for the three
icosahedral or cubic lattices. It was convenient to treat

b(» =a+b —c.

TABLE XII. Orthorhombic I* (F)-lattice projections. The primitive generating vectors 1"are ex-
pressed in terms of the orthoronormal vectors a, 1, and c at the top of the table. Since r, takes a into it-
self and 1 and c into their negatives, the entries for l+ r, are easily confirmed, and the entries for 1 —r,
follow immediately [most directly from the fact that (1+r, )+(1 r, ) =2]. The en—tries associated with
rb and r, are found in the same way.

b(» = b+e -a,

b(&) ~
b(&)

b(3) ~

b(&) ~
b(2)

b(3) ~

1+r~ = 1 —me,

b(2) b(3)

b(2) + b(3)

b(2) + b(3)

1 —r~ = 1+m~
2b(t) + b(2) + b(3)

b(2) b(3)

1+re = 1 —mb

b(3) + b(&)

b(3) b(&)

b(3) + b(&)

1 —rb = 1+mb
b(3) + b(t)

gb(2) + b(3) + b(t)
b(3) b(&)

1+re = 1 —mc
b(&) + b(&)

b(&) + b(2)

b(t) b(2)

1 —r, =1+m,
b(&) b(&)

b(&) + b(2)

gb(3) + b(&) + b(2)
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TABLE XIII. Orthorhombic F* (I)-lattice projections. The primitive generating vectors b" are ex-
pressed in terms of the orthoronormal vectors a, b, and c at the top of the table. Since r, takes a into it-
self and b and c into their negatives, the entries for 1+r, are easily confirmed, and the entries for 1 —r,
follow immediately [most directly from the fact that (1+r, )+(1 r, )—=2]. The entries associated with
rb and r, are found in the same way.

b(» =b+c, b(') =e+a, b(» = a+b.
1+r~ =1—m

0

1 + rl, = 1 —mb 1 + r, = 1 —m,
b(» + b(3) + b(» b(3) + b(~) + b(2)

Ob(z) ~ b(a) +b(2) + b(3)

b(3) ~ b(~) + b(2) + b(3) b(2) + b(3) + b(~)

b(3) + b(~) + b(2)

b(2)

b(3) ~

1 —rc =1+m
2b(~)

b(l) + b(2) b(8)

b(» —b(» + b(»

1 —rg = 1+mb
b(&) b(3) + b(&)

2b(~)

b(2) + b(3) b(&)

1 —rc = 1+m,
b(3) + b(&) b (&)

b(~) + b(~)

2b(3)

together all the cases for a given point group, because for
each point group a di6'erent set of projections had to be
examined. Here, however, essentially the same set of
projections is relevant for each of the three point groups,
and for each lattice the analysis for mme is simply an
extension of the analysis for mm2. It is therefore now
more convenient to examine each of the four orthorhom-
bic lattices, computing for each lattice the gauge
equivalence classes for the three orthorhombic point
groups.

(2) In the icosahedral and cubic cases we separated out
the computation of the gauge equivalence classes from
the further association of distinct classes with the same

space group, as a result of the existence of lattice sym-
metries h not in the point group. The orthorhombic case
is rife with such identifications, but they are all of a rath-
er trivial sort, associated with the arbitrary choice made
in labeling the three orthogonal directions a, b, and c.
Formally this leads to an identification of distinct gauge
equivalence classes associated with an operation h that
simultaneously permutes the directions of a, b, and c,
while rescaling independently along those three direc-
tions in such a way as to leave the resulting lattice un-

changed. Such a combination of rotations and resealings
is clearly not an operation in the point group of the ma-
terial, though it is a symmetry of the lattice, so the gen-

TABLE XIV. Orthorhombic C-lattice projections. The primitive generating vectors b" are expressed
in terms of the orthonormal vectors a, b, and c at the top of the table. Since r, takes a into itself and b
and c into their negatives, r, takes b'" into —b' ', b' ' into —1"', and c into —c. Similarly, rb inter-
changes b' "and b' ' and takes c into —c. Finally, r, takes b" ' and 1' ' into their negatives and c into
itself. The entries are easily constructed from this.

b(&) —&+ b,
1+ re ——1 —mc

b(&) b(2)

b(~) ~ b(~) + b(2)

0

1+ri, = 1 —ml,

b(&) + b(2)

b(&) + b(2)

b(3) = e.
1+re = 1 —mc

0

2b(3)

b(~) ~
b(2) ~
b(3) ~

1 —r~ =1+me,
b(&) + b(2)

b(&) + b(2)

2b(3)

1 —rb = 1+ml,
b(&) b(2)

b(&) + b(&)

2b(3)

1 —r, = 1+me
2b(&)

2b(&)
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TABLE XV. Orthorhombic P-lattice projections. The primitive generating vectors 1"are identified
with the orthonormal vectors a, 1, and c at the top of the table. The entries for 1+r, and 1 —r, follow
immediately from the fact that r, takes a into itself and 1 and c into their negatives. The entries associ-
ated with rb and r, follow in the same way.

b(&) ~
b(2) ~
b(3) ~

b(~) —~

1+r~ = 1 —m~

2b(&)

0
0

b(&) = b,

2b(')

b(» =c.
1+re =1 —mc

2b(3)

b(~) ~
b(2) ~
b(3) ~

1 —r =1+m

2b(3)

1 —rg = 1+my
2b(»

2b(»

1 —r, =1+m,
2b(&)

2b(&)

TABLE XVI. The space groups on the orthohombic I* (F) lattice. One can verify from the group
compatibility condition [Eq. (2.11)] that the phase functions for the unlisted rotations associated with

the two nonsymmorphic groups are given by N, (1")—=4 (1")+@ (1")+
2 2 ~ and (in the case of

C a b

mmm) the two additional relations given by cyclically permuting a, b, and c.

222 (Dg) 4„ mmm (D2g) 4 4, O

F222

70 200 020 00~

Fmm2 $8 00 Q 000

M 000 000 F———6g 000 000 000

mm2 (C2) 4 O, Fd d d

Fdd2 $8' 200 020

TABLE XVII. The space groups on the orthorhombic I' (I) lattice. One can verify from the group
compatibility condition (2.11) that the phase functions for the unlisted rotations associated with the
nonsymmorphic groups are given by 4„(b")=N (b")++ (1")and (in the case of mmm) the two

C a b

additional relations given by cyclically permuting a, b, and c.

222

I2y2y2g 8$

mm2 (a,„)

000 000
——01 1
2 2

2 2 2I———
FA tA FA

21 21I———
FA FA Q

000 000 I~—,—2/ 2g 2g

7$ 000 000

78 ——0 0~—22 22
7$ ——0 0 ——22 22

000
—Q—1
2 2

71 000 000 000

g6 —,'-,'o ooo
1 1 1 1
22 22
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eral argument of Sec. II.G applies. In practice, however,
the need for identifying the space groups associated with
gauge equivalence classes related in this way is so obvious
that we do not make a special point of it.

The results derived in the four subsections that follow
are collected together in Tables XVI—XIX.

1. I" (F) lattice

Everything follows from an examination of Table XII:

(b(i) )r

(b(i) )

000

000
(4.10)

Point Group mm2 (I* (F) lattice) We pick a gauge in
which

is gauge equivalent to 0, so there is only the symmorphic
space group

I* (F) lattice, 222:

Point group 222 (I' (F) lattice) We .can pick a gauge
in which

(b' ))=@ (b' ')—:0. (4.1 1)

C „(b"')=e„(b"')—=e„(b"')=0 ."a a b
(4.7)

In this gauge the conditions (4.5) associated with the gen-
erating relations r, =e and rb =e reduce to

C„(b"))=—0, e„(b"))=0,
a b

(4.8)

a „(b"')=0.
b

(4.9)

We have thus established that any set of phase functions

and the condition (4.5) associated with r, rb =r&r, then
requires the only remaining nonzero phase to vanish:

(b' ') =0, 2@ (b'") —=0,
(b'"):—0, 24& (b' ') —=0,

(4.12)

and the conditions (4.5) associated with m, mb=mbm,
aH reduce to

[Note that we are still left with enough gauge freedom to
make N (b")—:0 for any given b", when we come to

C

the case of mmm. ]
In the gauge (4.11) the conditions (4.5) associated with

the generating relations m, =—e and m& =e reduce to

TABLE XVIII. The space groups on the orthorhombic C lattice. The space groups for m2m on the
centered lattice are more commonly denoted by Amm2 Abm2, Ama2, and Aba2, a nomenclature
based on taking the twofold axis of G along c (instead of b) and the preferred direction of the lattice
along a (instead of c). One can verify from the group compatibility condition (2.11) that the phase func-
tions for the unlisted rotations associated with the nonsymmorphic groups are given by
+„(b")=—4 (b")+4 (b") and (when relevant) the two additional relations given by cyclically per-

e a b

muting a, b, and e.

222 (Dg) mmm (Dgp, )

C222 81 000 000

C2221 80 000 002

mm2 (C&„) e . e
Cmm2 85 000 000

Cmc2q 86 000 00 2

Ccc2 $7 00 i 00 zi

2 2 2C———
lA lA 7A

2 2 2gC———
FA

2 2 2C———
FA tA Q

2 2 2gC———
FA C Q

222C———
C C Q

68

000 00-
oo-,' oo-,'

000 000

000 00-
OO-,' OO-,'

000

000
——01 1
2 2

——01 1
2 2

——01 1
2 2

65 000 000 000

Cm2m $8 000

Cm2a SQ 000

000

Cc2m $0 00 2

Cc2a g1 00 z~

000
——01 1
2 2
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(b"')=+.,(b"') . (4.13)

In addition to the symmorphic space group there is thus
a single additional one in which the only nonvanishing
phases can be taken to be 000 —,'00

+@ (b' ') is gauge invariant and nonzero.m

I* (F) lattice, mm2:

(4.15)
(b(&))—@ (b(2)) —( (4.14) (b(i) ) 000 0—'0

The unused remaining gauge freedom cannot reduce this
to the syrnmorphic space group, since @ (b' ")

a

Point group mmm (I* (F) lattice). All of the condi-
tions and gauge freedom used to arrive at (4.15) continue

TABLE XIX. The space groups on the orthorhombic I' lattice. The mirror phase functions are given
in a gauge in which N (1'"),4 (1' '), and 4 (1' ') are zero. The first eight sets of phase functions

a b C

listed for mm2 are grouped into four complementary pairs (the first and second entries constitute such
a pair, the third and fourth another, etc.), and the first 12 sets of phase functions for mmm are grouped
into six complementary pairs, as described in Sec. IV.C.4. (The remaining two sets of phase functions
for mm2 and remaining four sets for mmm give the same space groups as their complements. ) The
meaning of the international space-group nomenclature is transparent for the I' lattice, since it is always
based on primitive indexing: m appears in the first (second, third) position if the phase function 4

a(4,4 ) is 000; n appears if the corresponding phase function has both entries —,and a, b, c indicate
b c

a single entry of 2 (with the choice of letter clearly indicating which entry it i.s); 2 or 2& appears in the

third position if N„(b"')= —', and similarly for the other two positions, when 1"' and 1' ' are also two-
C

fold axes. [One can verify from the group compatibility condition (2.11) that the phase functions for
the unlisted twofold rotations are given by N„(b")—=4 (1")+N (1")and (when relevant) the two

C a b

additional relations given by cyclically permuting a, b, and c.]

P222

P2122

P2g2g2

P212y2t

(D,} o„.
16 000

~00
18 220

000

000

0 —0

fAFAfA

2 2 2P———
fA FA fA

222P———
tL tL fL

21 2 2P———
fA ~ Q

2j 2 2P———
n nb

g7 000 000 000

M 0 ——
2 2 2 2 0 —0

1 1 1 1
22 2 2 22

sg ooo ooo —,
' oo

mm2 (D,&} O . O,
Pmm2 8S 000 000

21 21 2P———
tA tA~
21 21 2P———

tL fA

21 21 2P~——
21 21 2P———
C C fL

S9 000 000

S8 O-'-' -'O-'22 2 2

ss o-,' o —,
' oo

00—
2

——01 1
2 2

000

000
——01 1
2 2

Pnc2 80 0--
Pmc2q M 000

e7 OO —,
'

M 0-0
Pmn21 M 000

89 00-

Pma2 88 0 00 —002

oo —,
'

00-
-00
00-
—00

-'oo
2

2 21 21P ———
c m

2 21 2jP———
C lX fL

2 2 2P- ——
222P ———ban
21 2 2P———

C C Q

21 21 21P~——
21 2 2P———
C tL FA

21 21 21P~ ——

60

50

00—

oo-,'

0 —0

00-
0~0
00-
o-,'o

—,
' eo

00-
—,
' oo

ee-'
2

00—
—0—1 1
2 2

—0—1 '1
2 2

——01 1
2 2

000
——01 1
2 2

-00
-00
000

000

o-,'o oo-,' ooo
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to hold when we add a third independent generator m, .
In addition, as noted above, we can use a gauge in which

e (b"')=—O. (4.16)

The condition (4.5) coming from the generating relation
mama =mama then gives

(b(3))—@ (b())) (4.17)

The corresponding condition coming from m&m, =m, m&

then holds automatically, and the final condition (4.5)
coming from m, =e gives

(b'") =—0 . (4.18)

(b") —,'00

(b") = 000 or 0'0 .

(b") 00-,'

000

000

(4.19)

2. /=* (/) lattice

Everything follows from an examination of Table XIII:

Point group 222 (F' (I) lattice) We p. ick a gauge in
which '

Consequently there continue to be just two space groups
with phase functions given by

I* (F) lattice, mmm:

where we have noted (from Table XIII) that
r~b' '= —b' '

We are thus left with a single choice of nonzero phase
functions:

F* (I) lattice, 222:

(b(i) )"a

(b(i) )lb

000

000
or

0
(4.24)

As a direct check that the second possibility is not gauge
equivalent to the erst, note from Table XIII that the
nonzero combination 4„(b' ') —4&, (b'") is gauge invari-

ant. (As we shall note in Sec. VI, this is the only other
example of a nonsymmorphic crystallographic space
group without extinctions. )

Point group mm 2 (F* (I) lattice) The .generating rela-
tions m, =e and m& =e give

and

(b" ') =—0, —,', N (b'2') =0, —,
'

(b(2) b(3) ) @ (b(() )
a 0

(b(3) b( i) ) (P (b(2) )
b mb

(4.25)

(4.26)

[Since —
—,
' = —,', a third pair of conditions —the pair (4.26)

with the signs of @ (b"') and 4& (b' ') reversed—

gives nothing more. ] The remaining generating relation,
m, m& =m&m„adds nothing new to these conditions. If
we now pick a gauge in which

(b(3) ) q (b() )
) g (b(2) ) ()

Q b C
(4.20) (b' ') =—@ (b' ') —=0, (4.27)

In the gauge (4.20), the conditions (4.5) associated with
the generating relations r, =e and rI, =e reduce to

(b(l)) q (b(2)) C (b(2) q (b(3))
"a a b b

(4.21)

(Since r, =r, rb, the third of these gives an additional con-
straint on @„and i'„,which we return to below. )

a b

then we end up with just four gauge-inequivalent families
of phase functions. Because, however, the distinction
between the a and b axis is conventional, the two choices
(4.25) with a single nonzero phase do not specify distinct
space groups. There are thus just three space groups,
associated with the gauge equivalence classes defined by
the phase functions:

(b( i )
) (4.22)

In view of Eqs. (4.20) and (4.21), the conditions (4.5) asso-
ciated with r, rI, = rI,r, give additionally (b")

(b(i) )

000

000

F* (I) lattice, mm2:

or
110

000
or

-'-'0
(4.28)

The third gauge condition expands to

O=e„(b( ') =e, (r b' ))+e„(b' ')
C a b

—= —e„(b(2))+e„(t"'),
a b

(4.23)

Note that this choice preserves the a~b~c~a symmetry
but introduces a gauge-dependent handedness; the alternative
choice N„(b' ') —=N, (b' '):—W, (b'")=—0 would introduce the

a b C

opposite handedness.

32%Ye noted in Sec. III.G.6 a single example in the cubic sys-
tem.

3 This is a familiar phenomenon in the orthorhornbic system.
More formally, it is another consequence of the existence of an
operation not in the point group that leaves the lattice invari-
ant, as discussed in Sec. II.G. In this case the operation is a 90-
degree rotation about c combined with an independent rescal-
ing of the vectors a and b in such a way as to interchange their
lengths.
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(1(3))
—0m 7 2 (4.29)

and

Point group mmm (F* (I) lattice) .Everything done
above for the pair of generators m„mb leading to Eqs.
(4.25) and (4.26) applies equally well to the pairs mb, m,
and m„m, . If we cychcally permute a, b, c and with
them 1,2, 3 then we generate from (4.25) and (4.26) just
two additional conditions:

Point groups mm2 or m2m (C lattice) .In this single
case there are two ways of orienting the point group with
respect to the lattice: the unique twofold axis can lie ei-
ther along or perpendicular to the distinguished lattice-
generating vector b' '—:c. In the latter case, we take the
twofold axis to lie along b. We distinguish the two cases
nomenclaturally by referring to the point group as mm 2
or m2m.

In either case (or in the case of mmm) the mirror m, is
a generator, we can pick a gauge in which

(b(1) b(&)) (P (1(3))
C C

(4.30)
(4.36)

To maintain the symmetry it is now convenient to ex-
press the result in a gauge in which 4 (b' ')

(b'") =4& (1' ') =0 (the existence of which is en-
b C

sured by the upper part of Table XIII). The distinct
classes of gauge-equivalent phase functions then result in
just four space groups:

F* (I) lattice, mmm:

and the generating relation m, =e then gives

(4.37)

In the case of mm 2 (or in the case of mmm) we can do
the same for the mirror mb.

000 000 1 10 110 (4.38)

4~ (1") = 000 or 000 or 0—,
'

—,
' or 0—,

'
—,
' .

b

(b(i) ) OOQ

(4.31)

3. Clattice

Everything follows from an examination of Table XIV:

Point group 222 (C lattice) We pick .a gauge in which

(b( ))

(1(l))

000

000
or

000

001
or

00

001
(4.39)

In the case of m2m (or in the case of mmm) we can
choose a gauge in which

The relation m, mb =mbm, imposes no further con-
straints, so we have four gauge-inequivalent families of
phase functions. In view of the interchangeability of the
a and b axes these give three distinct space groups:

C lattice, mm2:

(4.32) (4.40)

The conditions (4.5) associated with r, = e and rb =e then
give

and the generating relation m, =e gives

(1(1)) 0 t q& (1(2)) 0 (4.41)

4 „(b'")=0 „(1"')=—0,"a b

and r, rb =rbr gives

(4.33)
The relation m, m, =m, m, imposes the additional con-
straint

(4.34)

so there are just two space groups with phase functions
given by

(1'"):—@ (1' '),
so we have four space groups:

C lattice, m2m:

(4.42)

C lattice, 222:

(b(i) )r

(b(i) )rb

000

000
or

000

00-,'
(4.35)

(b(~) )

(b(r) )

000

000

000
or

00-,'

000
or

00—,
'

0

(4.43)

Point group mmm (C lattice) Since all three m. irrors are generators, all of Eqs. (4.36)—(4.42) must hold, and the only
remaining source of constraints is the generating relation mbm, =m, mb, which gives nothing new. The distinct space
groups therefore arise from the three independent choices 0, —,

' for 4 (1' '), @ (1' '), and 4 (b"')=4& (b' '). In
0 b C C

view of the interchangeability of the a and b axes, the eight choices yield six distinct space groups:
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C lattice, mmm:

(b")
e. (1"')

(b(r) )

000

000

000

Ol

000

001

000

or

00-,'

00-,'

000

or

000

000 or

000

001

110
or

001

00-,'

110

(4.44)

4. P lattice I' lattice, 222:

Everything follows from an examination of Table XV: (b(i) )r 000 100 21 210

Point group 222 (P lattice). As in the case of 222 on
the I lattice, we preserve the a~b~c~a symmetry (at
the price of introducing a gauge-dependent handedness)
by picking the gauge

100000

(4.50)

4„(b")—:000 or 000 or 0—,'0 or 0—,
'

—,
' .

b

(b(i) ) —,'00 101

C (b( ))—=C (b("):—4 (b( )):—0
a "b C

Since

(1~2~) = q& (r 1~2~)+@I (1~2~)
C b a

(4.45)

Point group mm2 (P /attice). We choose a gauge in
which

(b(2))+@ (b(2))
b a

(4.46) e (1"')—=e (S"')=—0. (4.51)

(b(2) ) (g& (b(2) )
b "a

The generating relations r, =e and rb =e give

(4.47)

the third of these constrains the phase functions associat-
ed with the two independent generators by The generating relations m, =e and mb=e lead to four

independent choices of 0, —,':

(b(1) )
—0 & g& (b(2) )

—0 (4.48) (b(&) ) 0 (b' ')=0, —,',
and in view of the choice of gauge (4.45) the relation
r rb = rb r gives (b'")=0,—,', @ (1' ') =0, —,',

(4.52)

e„(b"'—=0, —,
' . (4.49)

There are therefore eight distinct gauge equivalence
classes associated with the three choices 0, —,

' in Eqs.
(4.48) and (4.49). The a~b~c~a symmetry reduces
the number of distinct space groups to four, which is
only evident if one displays the redundant phase function

along with those for the group generators r, and"e
.34, 35rb.

34The phase N„ is easily evaluated from the group compatibil-

ity condition (2.11), which gives N„(b")—:4, ( rbb" )
C a

++„(b"). But for the P lattice rbb"=+b". Since we use a

gauge in which the only values of N„and N, are 0 or 2, it fol-
a b

lows that e, (b") =e„(b") +e, (b"}.
C a b

The other four gauge equivalence classes are given by the
a—+b~c~a permutations of the two that lack a—+b~c~a
symmetry.

in view of which the additional generating relation
m, mb =mbm, gives no additional constraints. There are
thus 16 distinct gauge equivalence classes, four of which
are symmetric under interchange of a and b, leading to
10 distinct space groups when one takes a+-+b symmetry
into account.

In enumerating the cases it is convenient to define for
every pair of phase functions N and @ a "comple-

a b

mentary" pair in which each of the four choices (4.52) for
0, —,

' is replaced by its opposite. We can then enumerate
the space groups by considering first the case where all
the choices are 0 (and the complementary pair with all
choices —,), then the two cases in which only one choice is

—,
' (and the complementary pairs with three choices of —,'),
and finally the case in which two of the choices are —,

'

(two of which form a complementary pair and two of
which —listed last —give the same space groups as their
complements). In the enumeration that follows comple-
mentary pairs are separated by commas:
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P lattice, mm2:

(b(i) )

(b")

000

000

000

—,'00 00-,'
or

000

00

Ql 1

—,'00

00-,'

oo-,' —,'00
or

000

101
OI

001

100

(4.53)

Point group mmm (P /attice) We c. hoose a gauge in
which

C (b' ) e (b ')=—C iS"') 0. (4.54)

The generating relations m, =e, m& =e, and mc =e lead
to six independent choices of 0, —,':

C (b"') =0, —,', e. (b"') =0, —,',
e (b"')—=0, ,', e. (b'")=0, —,', (4.55)

(b(i)) 0 e (b"')=0, —,',
in view of which the additional generating relations

Note that the first, second, seventh, and eighth sets of
phases are symmetric under interchange of a and b; the
results of interchanging a and 1 on the remaining six en-
tries give back the full set of 16 gauge equivalence
classes.

mbm, =m, mb, m, m, =m, m„m, mb =mbm, give no
additional constraints. There are thus 64 distinct gauge
equivalence classes, which reduce to 16 distinct space
groups when the a~b~ c —+et symmetry is taken into
account.

We enumerate the 16 sets of phase functions below,
grouping each of the first 12 with a complementary set in
which each of the six choices (4.55) for 0, —,

' is replaced by
its opposite. (The last four on the list give the same space
groups as their complements. ) The enumeration is made
systematic by considering first the case where all the
choices are 0 (and the complementary set with all choices
—,'), then the case in which only one choice is —,

' (and the
complementary sets with five choices of —'), then the four
cases with two choices of —,

' (and the complementary sets
with four choices of —,'), and finally the four cases in
which three of the choices are —,

' (each of which gives the
same space group as its complement). In the enumera-
tion that follows complementary pairs separated by com-
mas:

P lattice, mmm:

(b(r) )

(b(~) )

(b(i) )

000

000

000

0-,'0
or 00—,

'

000

—,'00
00-,'

or 00—,
'

000

0—' —' 000
—'0—' or 000
110

QQ-,'

—,'00
—,
'

—,
' 0

0—,
'

—,
'

—,'0—,
' or

0-,'0
0-,'0
100
—' —,'0

000
000
110

00-,'

or 00—,
'

—,'00

0—,
'

—,
'

—,'0—,
' or

000
010

or 00—,
'

—,'00

0-,'0
—,'00
QOQ

00-,'

OI —,'0—,
'

000

00-,'

QO-,'

—,
'

—,'0
0-,'0
101

000
(4.56)

The results are collected together in Tables XVI—XIX,
which list the orthorhombic space groups in terms of
gauge equivalence classes of phase functions.

m„or both. The point-group nomenclature and generat-
ing relations are summarized in Table XX.

V. THE MONOCLINIC AND
TRICLlNIC SPACE GROUPS

B. The monoclinic lattices

A. Generators for the monoclinic point groups

The three monoclinic point groups are characterized
either by a unique twofold axis (which we take to be
along c), a unique mirror plane (which we take to be or-
thogonal to c), or both. The generators are therefore r„

There are two monoclinic lattices, which we specify in
terms of their primitive generating vectors. These can be
expressed in terms of two vectors a and b bearing no spe-
cial relation to one another and a third vector c normal
to the plane of a and b. For the simple monoclinic lattice
we have
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TABLE XX. Generators for the Monoclinic Point Groups. The subscript e refers to the unique direc-
tion c of the axis of the twofold rotation r„or the normal to the mirror m, =ir, .

Schon- Interna- Gener
Qies tional ators

Poixxt- G roup
Generating Relations

r~ =ec

m (2) m2 =ec

c~ mc FAc —&& t c —&y mcf c —t cmc

I' lattice: (b(1)) P 1 q& (b(2)) —P (5.7)

b( & ) —a b(2) —b b(3) —c (5.1)

There is also a single centered lattice given by

C lattice:

b'"=a, 1' '=1, 1"'=c+—,'(a+1) . (5.2)

C. The monoclinic space groups

1. P lattice

Point group 2 (P lattice). Since r, takes a and 1 into
their negatives, we have

As earlier, we determine the space groups by applying
the group compatibility condition (2.11) to the generating
relations, always selecting a gauge to make the analysis
simple.

Because there is no relation between a and 1, the choices
with one or both of the phases equal to —,

' all give a single

space group. If only one of the two is —,', this is an im-

mediate consequence of the interchangeability of a and b.
If both are —,', it follows because a, a+b is as valid a
choice of primitive generating vectors as a, b, but with
this new choice, 4 (a+b)—:p. We represent the single

C

nonsymmorphic space group by the symmetric choice in
which both phases are taken to be —,

' and record the two

space groups in Table XXI.

Point group —' (P lattice). Both r, and m, are genera-

tors, but since the choice of gauge leading to Eq. (5.4)
fixed only y(b"') and y(b' '), while the choice of gauge
leading to Eq. (5.6) fixed only y(b' '), we can work in a
gauge in which both sets of conditions hold. We there-

b,@„(b")—=y([r, —1]b")=——2y(b"), i =1,2 .
C

We can therefore pick a gauge in which

(5.3)

2 (a2)

TABLE XXI. The space groups on the monoclinic I' lattice.

(b(1) ) g& (b(2) ) ()
C C

(5.4)

On the other hand the generating relation r, =e gives,
with the group compatibility condition (2.11),

(b(3) )
—p

P2x

000
00—

m (Cxl, )

000
so there are two space groups, as noted in Table XXI.

Point group m (P lattice). Since m, takes c into —'c,
(1' ') =—y([m, —l]b' ') = —2y(b' ' .

C

We can therefore pick a gauge in which

(b(3)) p

(5.5)

(5.6)

Since m, leaves a and b invariant, the group compatibili-
ty condition, applied to the generating relation m, =e,
gives

Pc

P—
2

(&2a)

10 000 000

oo —,
' ooo

18 000

002 2 20
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fore begin with the possible nonzero phases being
N„(b' ')—:0, —,

' and, independently, N (1"')
C C

(1' ')=0, —,'. We have one additional constraint,
C

coming from the application of the group compatibility
condition (2.11) to r, m, =m, r, . This requires

e ([r,—1]b('))=e„([m,—1]b") .

TABLE XXII. The space groups on the monoclinic C lattice.

5 000

But since each b" is either invariant or changes sign un-
der I", or m„and since aH the possible phases are 0 or —,',
Eq. (5.8) always holds, and there is no further constraint.
The four space groups are recorded in Table XXI.

(&2a}

000

4„. 4
2. C lattice

Point group 2 (C lattice) Sin. ce r, preserves c and takes
a and b into their negatives, we have

18 000 000

25 000 ——0

b,N„(b") =y( [r, —1]b")
—= —2y(b"), i =1,2,

C

and

(5.9)
There are thus two space groups, noted in Table XXII.

b,N„(b' ') =y{[r, —1][c+—,'(a+1) ] )

= —y(b" ') —y(b"') (5.10)

We can therefore pick a gauge in which N„(b(") and

@„(b(2))vanish and be left with enough gauge freedom

to shift %„(b( ') by —,'. But the generating relation r, =e
C

gives, with the group compatibility condition (2.11).

Point group —' (C lattice). If we add to m, the genera-
tor r„we can pick a gauge in which all of the preceding
gauge conditions hold. Since aH phases are zero or —,', the
one additional condition coming from r, m, =m, r, gives
nothing new. Consequently we get just the two space
groups listed in Table XXII.

D. The triclinic space groups

0—:C„([r,+1]b' ))=@„(2c),

and therefore

(5.11) The triclinic lattice has no symmetries beyond the in-
version i, which any lattice must possess. If b" are prim-
itive generating vectors then we have

2e „(1"')=e„(b'")+e„(b"')=—0,
C C C

(5.12) iI).C&;(b")—:y{[i —1]b")—= —2g(b"), (5.17)

which restricts @„(b( ') to be 0 or —,'. Consequently we

can pick a gauge in which all the phases are zero. This is
recorded in Table XXII.

so we can always choose a gauge in which N;(b"):—0.
There are thus only two triclinic space groups, depending
on whether the point group does or does not contain &,

both symmorphic, as duly noted in Table XXIII.

Point group m (C lattice) Since m, l.eaves a and b in-
variant, we have

(b' ')=y([m, —1]b' ')= —y(2c),
C

(5.13)

0:—N ([m, +1]b"), (5.14)

which applied to b"', b' ', and b' ' requires that

so we can take 4& (1' ')=—0. The generating relation
C

m, =e gives

Vl. EXTlNCTIONS

As noted in Sec. II.D, the phase functions for a given
space group immediately determine the extinctions.
These have a somewhat different character when viewed
from the perspective of Fourier space. Conventional
crystallography starts with a direct lattice, the template
for the periodicity of a real-space structure. Dual to this

(b'")=—0, —,',
(b(')+b(~) )

—=0
C

so we can have

(1(2)) 0
(5.15)

TABLE XXIII. The space groups on the triclinic lattice.

P1 1

(b(() )
—@ (b(2) )

—0 (5.16) Pl 8 000
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is a lattice of wave vectors, and associated with each
wave vector is a Bragg peak. Certain peaks may be miss-
ing from the diffraction pattern —extinct —as a conse-
quence of the space-group symmetry.

In Fourier-space crystallography, on the other hand,
one begins with the diffraction pattern itself. Peaks are
"missing" only when their intensity is beneath the
threshold for detection. The lattice is not a template for
the diffraction pattern, but an extension of it—the set of
all integral linear combinations of the observed vectors.
Every lattice vector is a candidate for an additional
Bragg peak, but for a given space group certain such in-
tegral linear combinations of observed peaks cannot con-
sistently be associated with a density Fourier coefficient
and therefore cannot be associated with a Bragg peak.
The emphasis thus shifts from extinctions as missing"
Bragg peaks to extinctions as peaks that can never be
added to the pattern, no matter how much the resolution
is improved.

Extinctions occur at wave vectors k in the invariant
subspace of a point-group operation g for which the
phase 4 (k) is nonintegral. The vanishing of p(k) fol-
lows directly from the definition (2.9) of the phase func-
tion. Since it follows from the definition (2.10) of a gauge
transformation that the phase functions are gauge invari-
ant on their invariant subspaces, we can find the extinc-
tions in any convenient gauge and thus directly from the
phase functions given in the tables.

As in determining the phase functions themselves, the
primary analytic effort consists of an elementary geome-
trical exercise, in this case specifying the form of a gen-
eral lattice vector in each invariant subspace of the point
group in terms of the primitive generating vectors 1"of
the lattice. In a few cases it is also necessary to use the
point-group generating relations and the group compati-
bility condition to express the phase function for a gen-
eral element g of 6 in terms of the phase functions for the
point-group generators.

A. Cubic and icosahedral extinctions

Because the magnitudes of the density Fourier
coefficients have the symmetry of the point group, it is
enough to determine the extinctions for one specimen of
each of the invariant subspaces. These invariant sub-
spaces are either rotation axes or mirror planes.

In both the cubic and icosahedral cases, there are nev-
er extinctions on the threefold axes because N can al-

P3

ways be taken to vanish. This has already been noted
and exploited when the point group has r3 as a generator.
When the generator is r3, then + can be taken to vanish

(Sec. III.B.1), and the vanishing of @„ then follows from'3
applying the group compatibility condition (2.11) to the
identity r3 =r 3.

The group compatibility condition can also be used to

express the phase functions associated with the remain-
ing invariant subspaces in terms of the phase function

associated with the twofold generator of the point

group. In all but two cases (noted below) those other
phase functions can be taken to be identical to N

1. Cubic extinctions

The specimens of the remaining invariant subspaces
can be taken to be the twofold axis of r2, the plane of the
perpendicular mirror m, the fourfold axis of r4 (which is
also the twofold axis of r2 in the tetrahedral groups), and
the plane of the perpendicular mirror m'. (See Fig. 1.)
The general forms of vectors in those four subspaces are
given for each of the three cubic lattices at the top of
Table XXIV ( and again at the top of Table XXV, except
that m' is omitted because none of the point groups in
Table XXV contain it. )

The entries in Tables XXIV—XXVI are the values in
the invariant subspaces of the associated phase functions.
With two exceptions, they are constructed by taking the
inner product of the phase-function vector 4 (listed ex-

plicitly for each space group) with the form of a general
vector in the invariant space specified for the appropriate
lattice at the top of each column. The first exception is
the invariant subspace of m' of the point group OI„
whose twofold generator we have taken to be m. Since
r4 = r3m and r2 =im = r zm, it follows from the vanishing
of &0 and the group compatibility condition (2.11) that

f3

N, —:@~ and +, —=+~. Because, however, m'=ir4, Eq.
4 2

(2.1 1) gives

(k)—=@„([I+r~]k)—:N ([I+r4]k) . (6.1)

The second exception is the invariant subspace of r2
for the point group Td, whose twofold generator we have
taken to be m. The phase function N, is not given by

T2

, but because r2 =r 4 the group compatibility condi-
tion (2.11) gives

4&, (k) —=4 ([1+r„]k), (6.2)

which vanishes (modulo 1) on the invariant subspace of
r2, since the rotoinversion r4 reverses the sign of any vec-
tor on its axis.

In all other cubic cases (and all the icosahedral cases
considered below) the phase functions associated with the
invariant subspaces are identical to those for the twofold
generator.

Extinctions for the cubic space groups occur for values
of the arbitrary integers u and u that give nonintegral en-
tries in Tables XXIV or XXV. Note the interesting case
of space group I2,3 (No. 199) in Table XXV, a rare ex-
ample of a nonsymmorphic space group with no extinc-
tions.

More abstractly, the phases +g(k) and @z~h(hk) necessarily
agree when gk =k as a consequence of Eqs. (2.13) and (2.16).

The only other is I2&2&2& (No. 24) in the orthorhombic sys-
tern, as noted below.
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2. Icosahedral extinctions

The extinctions for the icosahedral space groups are
given in Table XXVI. The only efFort in constructing the

table is in specifying the primitive generating vectors for
the invariant subspaces of r5, r2, and m. The icosahedral
case is simpler than the cubic because there are at most
three invariant subspaces and because the phase func-

TABLE XXIV. Extinctions for the cubic space groups with point groups Oz and Tz. The four invariant subspaces are listed in the
top row. [Since 4& =0 and since r, =r 3, it follows from the group compatibility condition (2.11) that C&„=0,so there are no extinc-

P'3 "3

tions on threefold axes. ] Immediately below are the general forms for vectors in each of the invariant subspaces, for each of the three
lattice types. An entry (u, U, w) means a lattice vector of the form ub'"+Ub' '+nb"' where the b" are the threefold-symmetric sets
of primitive generating vectors given in Eq. (3.17) [I' lattice], Eq. (3.18) [F* (I) lattice], or Eq. (3.19) [I* (F) lattice] and u, U, and w are
arbitrary integers.

The nonsymmorphic space groups with point groups Oh and T& are listed by number, international symbol, and the phases
O'; =4& (b '

) (0& ) or C&m (b '
) (Th) in the form Oi0203 (taken directly from Table VIII).

The Table entries are the values (modulo unity) of the phase functions @„,N~, N„, N, , or N~. in the invariant subspace of the

operation with which they are associated. [A dash( —) indicates that the operation is not in that point group. ] In every case but one
the appropriate phase function is identical to the one given by the O;, so if a point in an invariant subspace of a lattice is specified by
(u, u, w), then the entry in the table is just uOi+UO2+w03. The only exceptions to this rule are the entries in the invariant sub-
space of m' for Oh. In this one case the phase function N~. associated with the invariant subspace is not identical to the phase func-
tion @~ specified by the phases O&0263, but is given by Eq. (6.1). As a result, to get the extinctions in the plane of m' one must
evaluate the phase function 4& not at the vectors listed under I', but at the result of applying (I+r4) to those vectors. These are
easily verified to be given by (I+r4)(u, o, u) =(u —U, O, u+0 ) [I' lattice ], ( I+r&)(u, u, u ) =(u+ v, u +U, u +u) [F (I) lattice],
( I + r4 )( u, u +U, v ) = ( u +U, 2U, u +U) [I* (F) lattice].

m'

P lattice

F' (I) lattice

I' (F) lattice

(u, u, o)

(o, o, u)

(u, u, 2u)

(u, u, v) (0, u, 0) (u, 0, v)

V) Q V) V tL~V~ V (u, v, u)

(u, v, O) tC~ ) V tL~Q V) V

(o&) o
P432

88$ P—„'3

eeS P"3—
880

887 E~3

ee8 E~43

8M E 3—

—(001)

—,'(11o)

—,'(111)
—(100)

—(001)

—,'(11o)

—,'(111)

0

0

0

0

0

0

0

1—V2

0

&(u+ v)

0

2(u+ v)

—,'(u+ v)

0

1—62

1—62

0

2(u+ v)

—,'(u+ v)

—,'(u+ v)

~1(u+ v)

~(u+ v)

(T&) e ~

801

80S

806

80$

P„3—
F3d3

—,'(1o1)

—,'(11o)

—,'(11o)

—,'(o1o)

0

0

0

~(u+ v)

1
2

~I(u+ v)

—'(u+ v)
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tions associated with all of them can be taken to be iden-
tical. It is more complicated because the lattice vectors
on the invariant rotation axes are the integral linear com-
binations of two integrally independent vectors on those
axes, while those in the invariant plane of m are the in-

tegral linear combinations of four vectors in the plane.
Sets of vectors whose integral linear combinations give

the three invariant subspaces are listed in the upper part
of the table. The phase functions Ng for the five non-

symmorphic icosahedral space groups are given in the

TABLE XXV. Extinctions for the cubic space groups with point groups 0, Td, and T. The three possi-
ble invariant subspaces are listed in the top row. (Since N„—=0 there are no extinctions on threefold"3

axes. ) Immediately below are the general forms for vectors in each of the invariant subspaces, for each
of the three lattice types. An entry (u, u, w) means a lattice vector of the form ub'"+ Ub' '+ wb' ' where
the b" are the threefold-symmetric sets of primitive generating vectors given in Eq. (3.17). [P lattice],
Eq. (3.18) [F* (I) lattice], or Eq. (3.19) [I* (Fl lattice].

For each point group the nonsymmorphic space groups are identified by number and by their inter-
national space-group symbol (to facilitate comparison with the calculated extinctions). Immediately
after the number and symbol of each space group are listed the phases 0";=@ (b '

) in the form

O&0203, where g2 = I'2 for 0 and Td, and g2 =r 2 for T. (These phases are taken directly from Tables
IX and X.)

The entries in the table are the values (modulo unity) of the phase functions N, , N~, N„, or N, ,

in the invariant subspace of the operation with which they are associated. [A dash (—) indicates that
the operation is not in that point group. ] In every case but one, if the phases are 0" &0'20'3 and the vec-
tor in the invariant subspace is specified by (u, U, w) for the appropriate lattice, then the entry in the
table is just u 0" &+@02+ta03. The exceptions to this rule are the zero entries in the invariant sub-
space of r2 for Td. In this one case the phase function 4, associated with the invariant subspace is

P2

not identical to the phase function 4~ specified by the phases O&0203. It must, however, vanish as an
immediate consequence of Eq. (6.2).

Note the rare example of a nonsymmorphic space group (No. 199) with no extinctions. The only oth-
er example is I2&2&2& (No. 24) in the orthorhombic system.

P lattice

432

F' (I) lattice
I* (F) lattice

(o) e„,
818 P4132 4 (110)
808 P4232 i (110)
818 P4332 4 (110)

—,'(1oo)
810 F4132 ~ (110)

r2

(u, u, o)

(o, o, u)

(u, u, 2u)

0

0

0

0

0

t4 01 t'2

(Q, 5, 0)

-81—
4

-81
2
1~Q

1
2
1——62

CCq S~ V ~ the

tC V~6 VqV Qqg~Q

(u, o, u)

43m

MO I43d

819 F43c

(&d)

818 P43n —,'(oo1)

2 (010)

—,'(11o)
—.'( + )

2(u+ e)

0

0

23

199

O, i

198 P2g3 I (011)
I213 2 (011)

1
2
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lower half. In the case of FI, we have
4 —=W =4„—=N„, while for F we have

g2 m f2 7"5

Extinctions occur at points in an invari-
g2 '2 '5

ant subspace of a lattice that have nonintegral inner
products with the 6-vector specifying the phase function
for that lattice. One verifies directly from the table that
FI, has nonvanishing inner products only in the mirror

planes, and F only along the fivefold axes. The coordi-
nates of extinct vectors in those subspaces (i.e., the values
of those nonvanishing inner products) are given in the
lower half of the table.
B. Orthorhombic extinctions

To determine the extinctions we require the values of
the phase function @ (k) at vectors k in the invariant

TABLE XXVI. Extinctions for the icosahedral space groups. For each of the three icosahedral lattices, the upper half of the table
gives the invariant subspaces of Yz and K Each invariant subspace is specified by giving a set of primitive generating vectors for that
subspace. Two vectors are required for each of the invariant subspaces of r5 and r2, and four for the invariant subspace of m
(relevant only to Pz). the subset of a given lattice lying in a given invariant subspace is just the set of all integral linear combinations
of the specified vectors. That the subspaces are as stated can be confirmed directly from Fig. 2 for the I' lattice, and from the expres-
sions (3.21) and (3.22) that give the generating vectors for the I' * and I* lattices in terms of the generating vectors v" of the I' lattice.

The lower half of the table lists the nonzero phase functions for the five nonsymmorphic icosahedral space groups, taken directly
from Tables VIII and IX. Since N, =N, for P and 4„—=N, =4~ for Y&, extinctions can be computed directly from the upper

5 2 5 2

part of the table by examining the inner products of these 6-vectors with the 6-vectors specifying the invariant subspaces. One im-
mediately verifies that the only extinctions are in the mirror plane for Fh and along the fivefold axis for Y, and that the extinguished
points are as specified by the entries in the lower part of the table.

58—(Yj,)
P53—

I*532

532 (V)

P5132

F*SI32

I'5132 s (101,202) 2(uv(s) + harv( ))

(000, 010) (100,000) = v(')

(O1O, OOO) = v(')
~3 ~6

= r'v(') (OOO, 110) = v(') —v(')
j

= 2v(') (OOO, OO1) = r(v(') + v(»)
~2 ~1

=r v5 , =v-v2 -v'
(010,101) (100,000) = 2v(1)

= 2v(» (OOO, 1OO) = r(2v('))

(101,ill) (010,000) = 2v(2)

V

Vec«rs in plane of m
1

+gv(» + g(v(4) v(5))

u~ '

+2t v(') + 2trv(')

O„, = 4„, Vectors on 5—fold axis

uv 5 vrsv 5

uv 5

(001,001)
—v(s) + v(s)

(000, 110)
=x~3 v6

(111,001)
= v(s) + v(s)

(ool, llo)
=r vs v6

(oo2, 11o)
—2(v(s) + v(s))

(110,112)
= 2r(v(') + v('))

Extlllc t1oIls

u+ v odd

Ext1Ilct lolls

u g 3v (mod 5)

u g 2tp (mod 5)

u g 2m (mod 5)
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subspace of g, for every point-group operation g. Tables
XVI-XIX list the phase functions only for the point-
group generators. The unspecified phase functions must
then be determined from the group compatibility condi-
tion (2.11):

(k)—:@s (g2k)+@ (k) . (6 3)

The invariant subspaces of the orthorhombic point
groups are the twofold axes a, 1, and c and the planes or-
thogonal to those axes. The result of any orthorhombic
point-group operation in any of these invariant subspaces
is to leave k invariant or take it into —k, so when k is in
any of the invariant subspaces of an orthorhombic point
group, Eq. (6.3) simplifies to one of the two forms

with twofold rotations. These rotations are given in
terms of the point-group generators by

G =222: 7" 7 lb

G=mmm or mm2: r, =m, mb,

6 =mmm or 2mm: r =mbm

G =mmm or m2m: rb =m, m, .

(6.6)

Since a general vector in the invariant subspace of a
twofold rotation is just an integral multiple of the vector
a, b, or c along its axis, it follows from Eqs. (6.5) and (6.6)
that the extinctions for the unlisted rotations are deter-
mined by adding two of the phases listed in Tables
XVI—XIX according to the following rules:

4'g g (k)—:+@g (k)+@g (k) . (6.4)
G =222: @„(nc)—:@„(nc)+@„(nc),

(k)=@g (k)+@ (k) . (6.5)

Since we always take all the mirrors in each ortho-
rhombic point group to be generators, we need apply Eq.
(6.5) only to find the unlisted phase functions associated

When, however, g& is a generator of an orthorhombic
space group and the phases are as in Tables XVI—XIX,
then an examination of those tables reveals that the only
values N (k) can have are 0 or —,'. Since —,

'—:—
—,', we can

drop the + from Eq. (6.4):

G=mmm or mm2: N„(nc)=4 (nc)+N (nc),
(6.7)

G=mmm or 2mm: N„(na):—N (na)+@ (na),
a b c

G=mmm or m2m: N„(nb)—:@ (nb)+@ (nc) .
b C 6

Note that in the last three cases the phase functions as-
sociated with a twofold axis can be nonintegral on that
axis only if one of the two phase functions associated
with the mirrors leaving that axis invariant is also nonin-

TABLE XXVII. Invariant sublattices of the orthorhombic lattices. For each of the four orthorhombic lattices, we list primitive gen-
erating vectors for the one-dimensional sublattices invariant under each of the twofold rotations, and for the two-dimensional sublat-
tices invariant under each of the mirrorings. The primitive generating vectors for the sublattices are specified both in terms of the
three orthogonal vectors a, b, and c and in terms of the primitive lattice-generating vectors b"',b' ', and b' ', related to a, b, and e
through Eqs. (4.1)—(4.4).

Lattice

c

Tw'o-fold Axes

a —b(&)

b = b(2)

c =b(')

mg e

mc

Mirror Planes
b =b(2), , =b(3)

c =b( ), a=b(')
a = b(t) b = b(~)

r: 2a = b( ) + b(3) —b( ) m: b+ c = b('), b —c = b(') —b(')

E* (I) r ..b2b=b( )a+b( ) —b( ) mb. c+a=b( ) c —a=b( ) —b( )

r, : 2c = b( ) + b( ) —b( ) m, : a+ b = b( ), a —b = b(2) —b( )

2a = b(') + b(')

I* (E) r, : 2b = b(3) +b(t)

2c = b(') + b( )

2a = b(t) b(2)

2b = b(~) + b(2)

c —b(3)

ma-

mb

mc ~

2b=b( )+b( ) c =b( )

2a = b(» b(» c = b(3)

a + b = b(') b —a = b( )

m~: 2b=b(3)+b( ) 2c =b( )+b(')
mb. 2c = b(')+b(') 2a = b(')+b(')

m, : 2a=b(')+b('), 2b=b()+b(»
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tegral. Therefore, except for the point group 222, which
contains no mirrors, extinctions on twofold axes can only
arise for points that are already extinct by virtue of being
in mirror planes. Therefore extinctions arising from the
phase functions N„, +„,or W„need only be considered

C

when the point group is 222.
In Table XXVII we list primitive generating vectors

for the sublattices of the four orthorhombic lattices in-
variant under the orthorhombic point-group operations,
giving them as linear combinations of the primitive
lattice-generating vectors b" in terms of which the phase
functions are specified in Tables XVI—XIX. One finds
the extinctions for any orthorhombic space group from
Table XXVII, Tables XVI—XIX, and (in the case of 222)
the first of rules (6.7) giving @, (nc) in terms of the tabu-

C

lated phase functions.

1. P lattice

Here the content of Table XXVII is trivial and one can
read the extinctions directly from Table XIX:

Screw axes (222). Along twofold axes the lattice con-
tains all integral multiples of a, 1, and c. Odd multiples
of a are extinct if and only if @„(a)=—,', and similarly for

b and c. The relevant phases are either listed in Table
XIX or inferred from it directly through the rule
C&„(c)=@„(c)+@„(c).

Glide planes. In the mirror plane orthogonal to a the
lattice contains all integral linear combinations mb+ nc.
If only N (b) —= —,

' then points with odd m are extinct; if
a

only N (c)=—,
' then points with odd n are extinct; if

a

both phases are —,
' then points with odd (m +n) are ex-

tinct. All relevant phases can be read directly from Table
XIX. The same rule applies, mutatis mutandis, to the
planes orthogonal to b and c.

2. |"lattice

Screw axes along c (222). The lattice contains all in-
tegral multiples of c. Since @„(c)=4„(c)+4„(c),"c a b

Table XVIII shows that odd multiples are extinct for the
one nonsymmorphic space group No. 20.

Screw axes along a or 1 (222). These axes contain in-
tegral multiples of 2a or 21. since 4, and 4„vanish at

a bb'" and 1' ' for space group No. 20, Table XVIII shows
that there are no extinctions along these axes for the
point group 222.

Glide planes normal to c. The sublattice consists of all
integral linear combinations I(a+1)+ n (1—a ), and ac-
cording to Table XXVII the relevant phase is
m4 (b'")+n@ (1' '). According to Table XVIII this

C C

can be nonzero only in space groups Nos. 39, 41, 64, 67,
and 68. In all five cases both @ (b'") and N~ (1' ') are

C C

—,', and the extinct points are therefore those with m+n
odd. (Alternatively, the sublattice can be viewed as the
set of integral linear combinations of a and b with both
integers of the same parity, and the extinct points are
those with both integers odd. )

Glide planes normal to b or a. The sublattice normal to
b consists of all integral linear combinations mc+2na.
According to Table XXVII the relevant phase is
I@ (b' ')+n[N (b'")+@ (b' ')], but according to

table XVIII @ (b"') and @ (1' ') are always both 0,
b b

so points with odd m are extinct if and only if
(1' '):——,', which happens in Nos. 36, 37, 63, 64, 66,mb

and 68. In the same way, the lattice normal to a consists
of all integral linear combinations m c+2n a, and points
with odd m are extinct if and only if N (b' ')—= —,', as inm

Nos. 37, 40, 41, 66, and 68.

3. F (I) andI (F) lattices

For the other two orthorhombic lattices we can further
simplify Table XXVII. Because every phase 4&g(b") is

TABLE XXVIII. Mirror phase functions on their invariant sublattices for the orthorhombic I* and
F lattices. Using (6.11) we list the phase functions 4 evaluated at the vectors that primitively gen-
erate the invariant subspace of rn, in terms of the values of phase functions tabulated in Tables XVII
and XVIII at the lattice primitive vectors b".

Mirror Planes

.(b+c) —= 4 .(b —c) —= 4 .(b '
)

4, (c+a)—:4, (c —a) —= 4, (b i )

O .(a+b) =e .(a —b) =e .(b')
C .(2b) =—O .(b')+-,', e .(2c) =—@ .(b')+-,'

(Z) O, (2c) =e, (b')+-,', e, (2a) —= @,(b')+-,'
O .(2a) —= 4 .(b i

) + 2, 4 .(2b) = 4 .(b ) + ~
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either 0 or —,', in evaluating

e (n 1111+n2b '+n31 ) (6.8)

(b(1)+b(2) +,b(3) )g

and any with two odd coeScients can be reduced to

we can shift any of the n; by arbitrary multiples of 2. In
particular, any expression of the form (6.8) with three
odd coefficients reduces to

(b(1)+b(2) +b(3) )+ (P (b(i1)

where 1"is the one without the odd coe%cient. But an
inspection of Tables XVI and XVII reveals that

(1'"+1' '+b' ')—:0, m =m„mb, m„F* (I) lattice'

(1'"+1' '+1' ') =—,', m =m„mb, m„ I* (F) lattice, nonsymrnorphic space groups .
(6.11)

Table XXVIII lists the phase functions 4 on the invari-
ant subspaces of m, where the expressions for the invari-
ant subspaces are taken from Table XXVII and the re-
sulting expressions are simplified through the use of Eq.
(6.11).

l

such a point to be —,'( m+n ) +mC&~ (b' ')+nN~ (b' ').
a a

But according to Table XVI, 4& (b' ') and 4& (1' ')
a g

vanish for both nonsymmorphic space groups, so points
are extinct if and only if I+n is odd. The analogous
state of aftairs holds for the other two mirror p1anes.

a. F (lj lattice C. Monoclinic extinctions

Screw axes (222). Along twofold axes the lattice con-
tains all integral multiples of 2a, 2b, and 2c. It follows
from Tables XVII and XXVII that the corresponding
phase functions @„(2a),&b„(2b), N„(2c) vanish. There-

a "b C

fore the twofold axes in the F* (I) orthorhornbic lattice
imply no extinctions. Note, in particular, space group
I2,2,2, (No. 24), a rare specimen of a nonsymmorphic
space group with no extinctions.

Glide planes. A general lattice point in the plane per-
pendicular to a is m(b+c)+n(b —c). According to
Table XXVIII it will be extinct if and only if

(1"')=——,
' (as in Nos. 45, 46, 72, and 73) and m+n is

a

odd. (Alternatively one can characterize the sublattice as
integral linear combinations of a and b with both integers
of the same parity, and the extinct points are those with
both integers odd. ) The rule for extinctions in the planes
perpendicular to 1 (Nos. 45, 72, and 73) and c (Nos. 73
and 74) are the same, except for cyclic permutations of a,

candb( ) b( ) b( )

The only point-group operations are the twofold rota-
tion r, and/or the orthogonal mirror m, .

Screw axes. The primitive lattice contains all integral
multiples of c=b' '. Odd multiples are extinct if
N„(b' ')—=—,', which it does, according to Table XXI, in

C

Nos. 4, 11, and 14. The centered lattice contains all in-
tegral multiples of 2c=2b' ' —b'"—b' '. According to
Table XXII the phase function @„always vanishes on

C

the centered lattice, so none of these points is extinct.
Glide planes. In both the primitive and the centered

1attice, points in the mirror plane are of the form
mb"'+nb' ' for arbitrary integers m and n. According
to Tables XXI and XXII all space groups with nonzero

have N (1"')=@ (1' ')= —,', so for those space

groups (Nos. 7, 9, 13, 14, and 15) points with odd m +n
in the mirror plane are extinct.

D. Triclinic extinctions

b. l" (F) lattice

There are no nonsymmorphic space groups with point
group 222, so we need only consider glide planes.

Glide p/anes. The sublattice in the mirror plane per-
pendicular to s consists of integral linear combinations
2mb+2nc. Table XXVIII specifies the value of N at

a

As noted above this is true whenever g is a generator, and is
therefore true for arbitrary g since an arbitrary phase function
can be expressed as an integral linear combination of phase
functions associated with generators.

9The only other example is I2l3 (No. 199 in the cubic system),
as noted above.

Both space groups (Table XXIII) are sytntnorphic, so
there are no extinctions.

Vll. CONCLUSIONS

Friends shook their heads sadly when, in response to
polite inquiries, I cheerily informed them I was spending
a significant part of my sabbatical year 1990—91 rederiv-
ing all the 230 crystallographic space groups. There are
two answers" to their implied question: Why did you
choose that particular way to waste your time'P

~There is also, of course, Hillary's answer: Because they are
theret
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(1) Qn the practical level, there is the matter of space-
group theory for incommensurately modulated crystals.
These can be regarded as materials with ordinary crystal-
lographic point groups, but with lattices whose indexing
dimension D is higher than 3. The analysis described
here leads directly and efhciently to the classes of gauge-
equivalent phase functions on such lattices, and a major
part of the computation simply repeats the computation
of the phase function for the crystallographic sublattices
they contain. The tables of phase functions derived here
and in RMRW therefore greatly simplify that process.

Much work on the lattices and space groups of incom-
mensurately modulated crystals has been done by Janner,
Janssen, and de Woltf, (de Wolff, Janssen, and Janner,
1981;Janner, Janssen, and de WolA; 1983a, 1983b, 1983c;
Janner, 1991) but their catalogues of lattices and space
groups fail to take full advantage of the fact that from
the point of view of symmetry there are no grounds for
drawing distinctions within the lattice of wave vectors
between a basic lattice (corresponding to an underlying
crystal) and a set of satellites, corresponding to modula-
tions of that crystal. From the present perspective many
of their distinct "Bravais classes" contain identical
Fourier-space lattices, and many of their distinct space
groups are equivalent. '

(2) More importantly, on the visionary level, there is
the matter of rescuing crystallographers from the abyss.
I launched into a recomputation of the InternationaI
Tables because I believe the conventional approach to
space groups based on real space periodicity is a
pedagogical disaster for students and a source of torment
for anyone wishing to make use of them. Much of the
information contained in the vast expanses of the Inter-
national Tables for Crysta/lography (International Union
of Crystallography, 1987), together with all of the analo-
gous information for standard quasicrystals of arbitrary
rotational order, can be concisely summarized in a few
tables of phase functions —Tables VIII —X, XVI—XIX,
XXI, XXII of the present paper together with two short
tables (V and VI) from RMRW —and a few rules on how
to extract the useful information 'in those tables. How
better to convince those addicted to established methods
to try something else, than by writing two brief (on the
scale of the International Tables) essays that do every-
thing?

I would not dare to suggest that even in the matter of
nomenclature it would be better to specify the space
groups by simply giving the values, in a suitable gauge, of
the phase functions associated with the point-group gen-
erators. Though it would be.
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APPENDIX A: SCALE INVARIANCE
OF THE ICOSAHEDRAL P LATTICE

Since we have noted (Sec. III.E) that the icosahedral
F' lattice is invariant under a scaling by ~, an easy way
to establish the scaling properties of the P lattice is to
represent it as a sublattice of the F* lattice. It follows
from inverting the definition (3.21) of the generating vec-
tors b" of the F* lattice in terms of the generating vec-
tors v" of the P lattice, that

2v" =(111,000), 2v' '=(111,000), 2v~ '=(111,000),

(Al)
2v' '=(111,200), 2v' '=(111,020), 2v' '=(111,002),

where by (a, aza3, a4a~a6) we mean ga;b". Thus a P
lattice (scaled up by a factor of 2 from the one we started
with) can be viewed as a sublattice of the F' lattice sub-
ject to the constraint that the last three coordinates are
all even, while the f][rst three are either all even or all odd.

Since F* lattice vectors satisfy

r(a, a~a3, a4a~a6)

=(a4asa6, [a, +a4][a2+a~][a3+a6]), (A2)

we can readily establish the behavior of the P sublattice
under successive scalings by v.. We have

4~These matters are discussed in Mermin and Lifshitz, 1992.
See, for example, the charming obiter dicta on the Interna-

tionaI Tables scattered through Wilson, 1990. It is convenient to write —1 as 1, etc.
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2r v "=(111,222), 2& v '=(111,222),

2r v' '=(111,222);

2& v =(311,422), 2r v '=(131,242),

2r v =(113,224) . (AS)

2rv("=r(111,000)={000,111) (not in lattice),

2~ v'"=r(000, 111)=(111,111) (not in lattice), (A3)

2& v("=r(111,111)=(111,222) (in lattice);

2rv( ) =r(111,200) =(200, 111) (not in lattice),

2r v' '=r(200, 111)=(111,311) (not in lattice), (A4)

2r v '=r(111,311)=(311,422) (in lattice) .

Similar expressions (given by cyclical permutations
within the first and second three sets of coordinates) hold
for v' 'and v' 'and for v' 'and v' '

It follows that scaling the P lattice by ~ or ~ gives vec-
tors not in the P lattice, but scaling it by ~ yields only
P-lattice vectors:

threefold-symmetric sets of primitive vectors. The only
feature of icosahedral geometry required in their con-
struction is that a unit vector along a fivefold axis (say
v'") is orthogonal to the sum of unit vectors along
nearest neighboring (say v' ') and next-nearest neighbor-
ing (say v' ') fivefold axes, as is evident from the imbed-
ding of the icosahedron in a cube in Fig. 4. As a result,
the inner products v"v' ' have one value for ij=45, 56,
64, 15, 16, 26, 24, 34, and 35, and the negative of that
value for ij= 12, 23, 31, 14, 25, and 36.

It follows immediately that an orthornormal 6-space
extension of the P-lattice primitive generating vectors is
given, to within a normalization constant, by

(v(1) v(4)) (v(2) v(5)) (v(3) v(6))

(V(4, V 1)), (V 5, V
2 ), (V(6) V(3)) (81)

The primitive vectors (3.22) for the I* (F) lattice are
just b(&) 2v(i) i 1 2 3 and b(i) wQ(i

—3
l =4 5 6. If

we define a set of 3-vectors by (see Fig. 2)

v(2)

2 1 1

1 2 1 1

(3) 1 1 2 1 1

v"' 111
(5)

v(6)
1 1 1 1 2

1 1 1 1 1

3 (1)

3v

1 v v

1 3v(4)

3 (5)

3 (6)

(A6)

Furthermore, scaling the original lattice by ~ yields all
the original lattice vectors. This can be confirmed by
noting that the original vectors 2v", expressed in the
form (Al), can be extracted as integral linear combina-
tions of the vectors 2r v" expressed in the form (AS).

The explicit relations are

a(1)—v(1) +v(4) a(4) —v(5) +v(6) —/a(1)
7

a' '=v' '+v' ' a' '=v' '+v' '=&a' '
7

a(3)—v(3)+ v(6) a(6) —v(4)+ v(5) —/a(3)

(82)

(
(1) (1)) (a(2) ra(2)) (a(3) ra(3))

( (1) a(1)) {ra(2) a(2)) (ra(3) —a(3) )

(83)

and

then for 1 ~i,j ~3 we have a".b' '=0, i' It fo. llows
that to within a norfnalization constant the 6-vectors A"
and 8"of Eq. (2.21) are given by

(b(1) rb(1) ) (b(2) rb( )
) (b( ) rb )

( b(1) b( 1)
) {rb(2) b(2) ) ( rb(3) b(3) )

(84)

3 (1)

3 (2)

(3)

3 (4)

3 (5)

7 3v(6)
L

2 1 1 1 1 1 v'"
1 1 1 1 v''

1 1 2 1 1 1 v

121
1 1 1 1 1 2

(A7)

Note, finally, that with the A" and 8" interchanged,
the sets (83) and (84) serve equally well for the F* (I) lat-
tice, since the vectors (82) can be taken as a primitive
generating set alternative to the set given in Eq. (3.21).

APPENDIX C: INDEX OF TECHNICAL TERMS

APPENDIX B: SIX-DIMENSIONAL DUALITY
OF ICOSAHEDRAL PRIMITIVE VECTORS

We record here the sets of dual 6-vectors, Eq. (2.21),
appropriate to the three icosahedral lattices, because, al-
though no use is made of them in this essay, they have an
appealing form when expressed in terms of the

I give below an index of the major technical terms used
in quasicrystallography. Although most of them are rou-
tinely familiar to crystallographers and solid-state physi-
cists, I emphasize that some —notably "point group, "
"lattice, " and "space group" —are defined here more
broadly than they are in conventional crystallography
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(although, of course, they reduce to the conventional
definitions in the narrower contexts in which convention-
al crystallography applies).

C lattice 28,37
cohomology 10
crystallographic lattice 8

direct lattice 9
dual 10
enantiamorphic 10
extinction 8,38
F (I) lattice 17,18,27
gauge equivalence 7
gauge function 7

gauge transformation 7
generating relations 8
generators of lattice 8
generators of point group 8

geometrical structure factor 12
glide plane 6
group compatibility condition 8
I* (F) lattice 18,27
incommensurately modulated crystal 9
indexing dimension 8
indistinguishable derisities 6
international notation 13
lattice 8

lattice, nonstandard 9
lattice, real-space 9
linear 7
local isomorphism class 12
mesoscopic homogeneity 6
nonstandard lattice 9
nonsymmorp hie 6
I' lattice 17,18,27,37
phase function 7
phason 11
point group 7
primitive generating vectors 8

projections 18,28
quasicrystal 9
rank 8

reciprocal lattice 8

rescaling 10,26,33,46
scale invariance 10,26,33,46
SchonQies notation 13
screw axis 6
space group 10
staggered stacking 9
standard lattice 9
superspace 11
symrnorphic 6
vertical stacking 9
WyckofF position 12
Z module 8
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