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Planar systems admit quantum states that are neither bosons nor fermions, i.e., whose angular momentum

is neither integer nor half-integer. After a discussion of some examples of familiar mocfels in which frac-
tional spin may arise, the relevant (nonrelativistic) quantum mechanics is developed from first principles.
The appropriate generalization of statistics is also discussed. Some physical efFects of fractional spin and

statistics are worked out explicitly. The group theory underlying relativistic models with fractional spin

and statistics is then introduced and applied to relativistic particle mechanics and field theory. Field-

theoretical models in 2+1 dimensions are presented which admit solitons that carry fractional statistics,
and are discussed in a semiclassical approach, in the functional integral approach, and in the canonical ap-

proach. Finally, fundamental field theories whose Pock states carry fractional spin and statistics are dis-

cussed.
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sions and to the possibility (characteristic of odd-
dimensional space-time) of introducing local, Lorentz-
invariant interaction Lagrangians with unusual transfor-
mation properties under CP and general coordinate
transformations, the Chem-Simons and Hopf topological
interactions. These features combine in giving rise to the
physical eA'ect that is the subject of the present paper, the
existence of quantum states that carry angular momen-
tuxn which is not quantized in half-integer units and
whose statistics is neither bosonic nor fermionic.

It is a priori clear that for a planar system there is no
reason why angular momentum should be quantized: the
(spatial) rotation group is Abelian, SO(2), and admits a
continuum of representations, characterized by the eigen-
value j of its only generator J, the angular momentum
operator. Physically, the angular momentum vector has
fixed direction (orthogonal to the plane where the system
is confined) and arbitrary length. Upon rotation by an
angle 8 the wave function f of a system with angular
momentum j acquires a phase

and, in general, is not invariant upon rotation by 2m.
It is natural to expect that it should be possible to gen-

eralize accordingly the usual definition of statistics, as
well as the spin-statistics theorem. That is, one would ex-
pect that the wave function for an n-particle system
iij(q„. . . , q„) (where q, denotes the set of all quantum
numbers characterizing the ith particle) may be chosen to
satisfy

Planar physical systems, i.e., systems in two space and
one time dimensions, display a variety of peculiar
quantum-mechanical phenomena, ranging from massive
gauge fields to soluble quantum gravity (see Jackiw,
1991). These are linked to the peculiar structure of the
rotation, Lorentz, and Poincare groups in 2+1 dimen-
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(1.2)

with o. , the statistics parameter, an arbitrary real number
(modulo integer, by definition). The cases of bosons and
fermions correspond, respectively, to o. =O and o.=—,',
and one would expect there to be a generalized spin-
statistics relation, of the form

Note that the sign here is immaterial in the case of bo-
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sons or fermions, while it is significant in the case of gen-
eric statistics.

This is indeed the case, although the justification for
the existence of arbitrary statistics and a generalized
spin-statistics theorem is not entirely trivial: as a matter
of fact, Eq. (1.3) turns out to be correct only in special
cases (cf. Secs. V.C and VI.C below). Also, it is not obvi-
ous how quantum-mechanical theories that display such
physical properties should look. In this paper we shall
review the actual implementation of these ideas in quan-
tum models, within the realms of both particle mechanics
and field theory, nonrelativistic and relativistic.

First, we shall deal with nonrelativistic quantum
mechanics (Sec. II). We shall exhibit several simple sys-
tems in which fractional spin and statistics can be made
to appear rather naturally. These will serve as reference
working examples in the subsequent, more formal treat-
ment. Then, in Sec. III, we shall discuss the appearance
of fractional spin and statistics from first principles in the
path-integral approach. In Sec. IV we shall discuss some
physical applications to simple systems (harmonic oscilla-
tor, ideal gas), and sketch some theoretical ideas that sug-
gest the relevance of fractional statistics to the theory of
the fractional quantum Hall effect, and, more generally,
to condensed matter physics.

Next, in Sec. V, we shall see how the previous group-
theoretical considerations can be made relativistic, by
looking at the 2+1-dimensional Lorentz group, and we
shall outline the characteristic features of fractional spin
and statistics in relativistic theories. The group-
theoretical approach will be applied to a detailed discus-
sion of relativistic particle mechanics with fractional spin
and statistics. In Sec. VI we shall consider relativistic
field theory, and in particular we shall discuss the con-
struction of solitons with fractional spin and statistics in
the O(3) and CP' model, first semiclassically, then from a
path-integral and canonical point of view. Finally, we
shall discuss how fundamental theories whose states car-
ry fractional spin and statistics may be constructed, and
we shall outline their features.

The main emphasis of our treatment will be on the
construction of the various models from first principles,
and on explicit calculations: we shall give a self-
contained rerun of the usual quantum mechanics and

II. THE ORIGiN OF FRACTIONAL SPIN
AND STATISTICS

A. Towards fractional spin: the solenoid

We shall discuss first a very simple system (Wilczek,
1982a; Jackiw and Redlich, 1983): a point electric charge
moving on a plane in the (external) magnetic field of an
infinitely thin solenoid perpendicular to the plane. Al-
though this system does not display fractional spin, it
provides a convenient stage from which to study the ap-
pearance of the effect.

Our system is described by the Lagrangian

I. = ,'mx +ex—A(x), (2.1)

field theory for systems with fractional spin and statistics,
and stress its peculiarities. By contrast, we shall treat
only in a cursory fashion, or not at all, several further re-
lated lines of development, most notably, the algebraic
(axiomatic) approach to fractional spin sectors; the dis-
cussion of the remarkable Chem-Simons theories, which
(both quantum-mechanically and field-theoretically)
display besides fractional statistics numerous startling
effects, such as the appearance of novel soliton classical
solutions and unexpected links to two-dimensional con-
formal field theory, knot theory, and integrable models;
and the applications of fractional spin and statistics to
the theory of the fractional quantum Hall effect and
high-T, superconductivity, which are at the origin of a
large part of the recent interest in the subject. For these
topics, we refer the reader to some ample and clear re-
views that have appeared in the literature: Frohlich,
Gabbiani, and Marchetti (1989) on the axiomatic ap-
proach, Jackiw (1991) and de Sousa Gerbert (1991) on
Chem-Simons theory, and Wilczek (1990a, 1990b) on the
applications to condensed-matter physics. Previous re-
views that cover some parts of the material discussed
here are those of Mackenzie and Wilczek (1988) and Aro-
vas (1989).

We shall see that quantum mechanics and field theory
with fractional spin and statistics reveal a score of new
nontrivial quantal phenomena that are intrinsically in-
teresting and justify a treatment for their own sake.

iExcitations with fractional statistics are often referred to as
anyons They shoul. d not be confused with parafermions, which
have canonical (integer or half-integer) spin but satisfy a
modified exclusion principle. The objects of our study, instead,
have fractional spin and obey (see Sec. III.A, below) the usual
exclusion principle. In this paper we shall refrain from using
unconventional nomenclature. Integer or half-integer spin and
statistics will be referred to as canonical, while spin and statis-
tics that are not quantized in half-integer units will be called
fractional. This is somewhat of a misnomer, as spin and statis-
tics will be allowed to take any real value and not only rational
values, as the term fractional would seem to imply.

where e and m, are respectively, the charge and mass of
the particle, located at x and interacting with the poten-

Our notational conventions will be as follows: latin indices
take the values 1,2, while greek indices run from 0 to 2; x ',x
are space coordinates and x —= t is the time coordinate; the
three-dimensional metric is (+,—,—); the vector notation al-

ways denotes the (two) spatial components of vectors; p, P are
polar coordinates on the space plane; repeated indices are
summed over; e' and e" i' are, respectively, the two- and three-
dimensional completely antisymmetric tensors, with the con-
vention e' =e ' =1; the exterior product of two vectors is
de6ned as v X vr =e' u'm (notice that it is a scalar}.
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tial A. The momentum canonically conjugate to x is

p=mx+e A

and leads to the Hamiltonian

q~ —
&

—i ny

If g satisfies periodic boundary
P(p, /+2m)= .P(p, P), then P' satisfies

(2.12)

conditions,

8= (p —eA)1

2m
(2.3)

The potential A is chosen to be that of a solenoid field,

~ah ~~ b

4(p),
2& p

(2.4)

where N(p) is a function of the radial coordinate p which
satisfies 4&(p) =NO=const when p )po (outside the
solenoid), leading to the magnetic field

8 = — @(p),1 1 d
277 p dp

(2 5)

E'= e'~x ~ N(t)
1 d

27Tp dt
(2.6)

is generated. This exerts a force on the particle, whose
mechanical angular momentum

J —=xXmx (2.7)

grows accordingly:

dJ =xXeE=-
dt 2~

(2.8)

Thus if the spectrum of J in the absence of background
(at initial time to) is given by the integers J =8, 8 HZ,
with the background field (2.4) (at time t, ) it is given by

@=e+0 .
(2.9)

An equivalent way of seeing this is to assume that the
A field has the form of Eq. (2.4) from the onset and to no-
tice that, since the potential outside the solenoid is con-
stant, we may set it to zero by a gauge transformation:

A'= A —VQ=O, (2.10)

Q=
2&

(2.11)

The wave function is transformed to

Notice that in 2+1 dimensions the electric field is a two-
vector and the magnetic field is a (pseudo)scalar.

whose Aux through any surface containing the solenoid is
constant and equal to @o. The solenoid can be made
infinitely thin by letting ro ~0.

Suppose now that the 2 field is switched on adiabati-
cally; at time to we take @(to)=0 for all p, that is, the A
field vanishes everywhere, and then 3 is slowly turned on
until, at time ti, @(ti ) Np. According to Faraday's law
an electric field

Q'(/+2')=e ' g'(P) . (2.13)

Noting that the mechanical angular momentum is the
operator J = —i(BIB/), we see again that its spectrum
is shifted according to Eq. (2.9) (Wilczek, 1982a).

However, of course, nothing remarkable has happened
(Jackiw and Redlich, 1983): the mechanical angular
momentum J, defined in Eq. (2.7), is not in general
equal to the total canonical angular momentum operator
J =x Xp. Rather, with p given by Eq. (2.2),

J =xX(mx+e A)=J +JI . (2.14)

e ' (xXp)e' =xXp+ 2' ' (2.15)

Acting on the wave functions i)'j' [Eq. (2.13)], this opera-
tor has the usual, canonical spectrum.

We conclude that the unusual spectrum of J is not
the sign of any new physics in the model (2.1) (Jackiw
and Redlich, 1983). However, this simple exercise will
teach us how to construct a variant of the model (2.1) in
which the angular momentum reduces to J [Eq. (2.7))
and the spectrum of angular momentum gets shifted. We
shall do this in the next section.

B. The virtual flux tubes

In order to understand better the origin of the various
contributions to the angular momentum J [Eq. (2.14)], let
us look at the total angular momentum of the particle-
field system, i.e., let us consider now the electromagnetic
field as a dynamical, rather than external, field (Jackiw
and Redlich, 1983; see also Paranjape, 1987, for a de-
tailed discussion). The gauge-invariant angular momen-
tum stored in the field is

J, = Jd y yXP(y)

(2.16)

According to the correspondence principle, it is J, notJ, that generates rotations of the wave function, i.e., it
is p, and not x, which becomes the operator —i V; there-
fore the spectrum of J remains canonical. This is also
clear if one observes that angular momentum is con-
served in the model (2.1), thus J=O, and necessarily
Jf = —J; if we switch on the field adiabatically
J = —Jf m

Equivalently, if we gauge-transform the potentials 2
[Eq. (2.4)] by Eqs. (2.10) and (2.11), we should recall that,
in general, an operator 6 also transforms according to
6—+e 'noe' . Because the gauge function 0 (2.11) is
singular in the origin, it is not surprising that it may
change both the boundary conditions on the admissible
wave functions and the form of the operator itself.
Indeed, it is easy to verify that

Rev. Mod. Phys. , Vol. 64, No. 1, January 1992



196 Stefano Forte: Fractional spin and statistics

where P(y) is the field's momentum density.
The total gauge-invariant angular momentum is the

sum

J, =J +J, (2.17)

With the potential (2.4) in the limit po~0 the magnetic
field is concentrated in the origin, thus J, =0, and it
would seem that the angular momentum reduces to J
There is, however, a caveat: the gauge-invariant total an-
gular momentum J, [Eq. (2.17)] does not coincide with
the canonical, conserved angular momentum J„obtained
from the application of Noether's theorem. Rather, J,
and J, diAer by a surface term —the integral of the total
derivative (see, for example, Jackiw, 1985):

J,=J,+J, ,

J, = Jd y 8;[E'(y)yX A(y)] .
(2.18)

The canonical angular momentum J, is not gauge in-
variant. However, if the fields are suS.ciently long
ranged, J, may be nonvanishing and J, may not be con-
served, whereas J, always is. Indeed, it is easy to see
that, with the potential {2.4),

J=—J=-
t s

e
2' (2.19)

L; = 8[x],2~ dt
(2.21)

It is the conserved quantity, J„that becomes the angular
momentum operator in the quantum theory. With a po-
tential of the form (2.4), J, coincides with the operator J
[Eq. (2.14)]: it is now clear that its two components J
and J& are to be interpreted, respectively, as the angular
momentum associated with the particle itself and that
due to the electromagnetic field, which is present because
of the long-range nature of the field, as demonstrated by
Eq. (2.19).

The angular momentum should reduce to J if we
eliminate the electromagnetic field and the particle-field
interaction in Eq. (2.1) in favor of an efFective particle-
particle interaction. We define, therefore, the following
new theory

L =
—,'mx'+L;[x],

(2.20)

L, [x]= e'bx'-
2W

Here there is no electromagnetic field; rather, L; [x] is
directly a functional of the particle's position x. In order
to avoid problems due to the fact that the interaction in
Eq. (2.20) is manifestly ill defined at x=0, we exclude the
origin from the configuration space, i.e., we assume x&0.
Since there is no field, now J, =J, =J, that is, the angu-
lar momentum has the fractional spectrum (2.9).

It is easy to verify by direct computation that the spec-
trum of the canonical angular momentum defined by the
Lagrangian (2.20) is indeed fractional. The interaction
term may be written as a total derivative,

where 0 is the polar angle of x:
2

O[x]= tan
x

(2.22)x'
Addition of a total derivative shifts the constants of
motion by a term that is equal to (minus) the variation of
the argument of the total derivative under the symmetry
associated with the constant of motion (see for example,
Jackiw, 1985). In the case at hand, the (canonical Noeth-
er) angular momentum J, is augmented by the variation
of —(@/2')8 under rotations, i.e., it is shifted according
to Eq. (2.9).

Although the theory (2.20) displays a spectrum of the
total angular momentum that is shifted with respect to
the integers, there is a problem in interpreting the frac-
tional contribution to the angular momentum as a frac-
tional spin, i.e., as an intrinsic angular momentum.
Indeed, the term (2.21) transforms in such a way as to
shift the angular momentum according to Eq. (2.9) only
upon rotations about the origin. An intrinsic contribu-
tion to the angular momentum should instead be in-
dependent of the choice of center of rotation. This is of
course a consequence of the fact that the origin is un-
naturally singled out by the interaction (2.21).

We can obviate this problem by considering the many-
particle generalization of the above construction. We at-
tach to each particle an infinitely thin solenoid (Wilczek,
1982a), which interacts with the other particles, then we
dispose of the electromagnetic field and we keep just an
efF'ective particle-particle interaction. We are thus led to
the Lagrangian (Wu, 1984b; Arovas er al. , 1985; see also
Jackiw, 1991)

L = g —,'mx;+L;, (2.23)

L; = g 8(x;(r)—x.(t)),d
(2.24)

.~. 2w

where 0 is as in Eq. (2.22). The sums run over particles,
and the points x;=x. are excluded from configuration
space. A rerun of the previous argument for the La-
grangian (2.23) shows that the spectrum of angular
momentum for a system of n particles is given by

J, =8— n (n —1); /HZ . (2.25)
277

Since the function O(x; —x ) [Eq. (2.24)] depends on the
relative positions of pairs of particles, the fractional con-
tribution to the angular momentum (2.25) does not de-
pend on the center of rotation.

Finally, it is instructive to look at the theory (2.23) in
the Hamiltonian formalism. The Hamiltonian is

H = g [p; —A(x, )]2,1

I

(2.26)
M(x;)= g V;O(x;(r) —x (t)) .

2 T7

The interaction A. may be eliminated by gauge transfor-
mation (which now is not singular, since x, Wx by as-
sumption). The transformed wave function is
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it'(x„. . . , x„)= Q exp —i@/2m+ 8(x;—x~ ) lit(xi, , x„)
lWJ

= + exp —i—8(x, —x, ) l((x„,x„) .
i (j

If P satisfies the Schrodinger equation associated with
the Hamiltonian (2.26), then g' [Eq. (2.27)] satisfies the
free Schrodinger equation, but if itj is subject to ordinary
boundary conditions, g' satisfies "twisted" boundary con-
ditions. For example, in the two-particle case, if P is the
relative polar angle of the two particles, g' satisfies

g'(/+2m. )=e ' g'(P) . (2.28)

(2.29)

It is, however, premature to draw any conclusion about a
spin-statistics relations, since we have so far no control
over internal quantum numbers associated with the parti-
cles; we shall come back to this problem in Secs. III.C
and VI.C.

In summary, we have constructed a many-particle
theory that displays a spectrum of angular momentum
that is shifted with respect to the integers, Eq. (2.25).
The infinite-range interaction (2.24) that changes the par-
ticles' spin may be regarded as the relic of "virtual" Aux
tubes (i.e., solenoids of infinitesimal radius) attached to
the particles, after eliminating the electromagnetic in-
teraction. It is important to remember, however, that
this heuristic picture should not be taken literally. These
are not physical solenoids, like those of the system dis-
cussed in the previous section, since the latter does not
display fractional spin. The interaction that contributes
the fractional part of the angular momentum may be
eliminated provided the wave function is subject to pecu-
liar boundary conditions. Notice that we nowhere as-
sumed that the theory, apart from the "fractional spin"
interaction (2.21), is free: all of the above holds true for
generic n-body systems interacting with each other
through an arbitrary potential.

C. The Hopf term

The particle-particle interaction (2.21) has the
shortcoming of being nonlocal; on the other hand we
cannot view it as generated by an ordinary Maxwell field
because then the angular momentum stored in the field
restores the conventional integer angular momentum
spectrum, as discussed in Sec. II.A. In this section we

It follows that (Wu, 1984b) an equivalent way of formu-
lating the theory (2.20) —(2.26) is to solve the free
Schrodinger equation while requiring the wave function
to satisfy twisted boundary conditions of the form (2.28)
in all couples of variables. It is interesting to observe
(Thouless and Wu, 1985) that upon interchange of two of
its arguments the wave function g' satisfies a modified
statistics relation of the form (1.2) with

(2.27I

I

shall see that the interaction (2.21) may be obtained by
coupling the particle current to an Abelian gauge field
whose dynamics is not governed by the usual Maxwell
Lagrangian, but rather by a topological Lagrangian.

Consider indeed the Lagrangian obtained by adding to
the particle Lagrangian Lo a coupling L, to an Abelian
gauge field whose dynamics is provided by L& (Hagen,
1984):

L =Lo+L +LI'

L;=eg(x, A —A ),
(2.30)

(2.31)

LI=—f d y( A(y) X A(y)+ A (y)B(y)) . (2.32)

In order to describe the particle-field coupling it is con-
venient to introduce a covariant charged-particle current
defined (in the general n-particle case) as

n
(3) dxj"(x )= g f ds 5' '(x —x;)

ds
(2.33)

where s parametrizes the space-time trajectories of the
particles, whose locations are (t(s), x, (s)). We shall al-
ways assume that the particle Lagrangian Lo is such that
the particle number is conserved,

Bp"=0. (2.34)

The action I associated with the Lagrangian (2.30)—(2.32)
may now be written in covariant notation as

I =Io+Ic +If,

I, = f d x j"(x)A„(x),

(2.35)

(2.36)

II=—f d x e"'PA„(x)B,A (x) . (2.37)

The field action I& (2.36) is the Abelian version of the
celebrated Chem-Simons action (see de Sousa herbert,
1991; Jackiw, 1991). Its peculiar properties are due to
the fact that the field is coupled through the e" i' tensor,
which is a generally covariant object. It is often referred
to as a topological action because of its sensitivity to the
global features of the gauge potential A. For our pur-
poses, however, it is enough to observe that the action I&
is quadratic in the field A: we can therefore compute the
path integral over the A field exactly (Polyakov, 1988)
and work out the e6'ective current-current interaction in-
duced by the particle-field coupling. We get, up to an ir-
relevant (albeit infinite) additive constant,
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I,tt[j ]= —i ln f2)3 "e

=IH ==——f d d yj "(x)K„(x,y)j (y),2

(2.38)

where the bilocal kernel

1 (x —y)~
P~ 'y 2 PP~ f3

is the inverse of the operator e~ )'B when acting on the
current j, i.e., it satisIIies

FIG. 1. Linking number of two curves: (a) l = —1; (b) l=O; (c)
l= 1.

e„.,a~~ (x,y) =S„S"'(x—y) (2.40) (see Dubrovin et al. , 1984); i.e., the integral, evaluated
along the two curves, would be proportional to the num-
ber of times the two curves link with each other (see Fig.
1). Even though here x, (s) traverse open curves in Min-
kowski space I ff is still related to a linking number, as
we show shortly.

Consider a single term in the sum (2.41), I, , with i'",
which we rewrite in the form

up to the addition of terms proportional to 8, which are
irrelevant because j is conserved. The bilocal functional
of the currents IH (2.38) is known as the Hopf term, be-
cause it is related (in a way we shall discuss in Sec. VI.A)
to the Hopf invariant of diAerential geometry.

We proceed now to show that the current-current in-
teraction (2.38) leads to an effective particle interaction of
the form (2.24) (Arovas et al. , 1984). The fact that the
result turns out to be a total derivative demonstrates the
topological nature of the interaction. By substituting the
current (2.33) in the action I,tt (2.38), we may reduce the
volume integrals to line integrals:

(x; —x. )~f dx, dx, e„,„,
l J

(2.42)

In this form, the invariance of I;- upon changes of pa-
rametrization of the curves is manifest. Next, observe
(Forte and Jolicoeur, 1991) that the integrand in Eq.
(2.42) may be written as the curl of a "potential" J":dxt'(s)

y f ds ds'e„.,
t x" =e""~B A (x) . (2.43)(x;(s)—x (s')) dxf(s')

fx;(s) —x,-(s') f' The function A must be singular, because the left-hand
side (lhs) of Eq. (2.43) may be written as divergence. As a
matter of fact, the lhs of Eq. (2.43) is the field of a Dirac
magnetic monopole (see, for example, Balachandran
et al. , 1983), and Eq. (2.43) defines 2 as its potential,
which notoriously has a string of singularities (that can
be put anywhere by a choice of gauge). Anyway, for our
purposes it is enough to pick a particular form of 3 that
satisfies Eq. (2.43); a convenient one is

&abx
b

A, (t, x) =0; A, (t, x)=-
r t r—(2.44)

where r = fxf =t —x, —xz. We may now use Eq.
(2.43) to rewrite I, [Eq. (2.42)]; we parametrize paths
with time:

The diagonal terms in the sum over particles are sorne-
what problematic because of the divergences in the in-
tegrand when both i =j and s =s'. Indeed, these terms
are ill defined in a nonrelativistic treatment; therefore we
shall defer their discussion to Secs. V.B and V.c, where
we deal with the relativistic theory, and we shall ignore
them for the time being. Indeed, in a nonrelativistic
theory, these terms may be set to zero by a suitable regu-
larization (Jacklw, 1991).

Let us concentrate on the o6'-diagonal terms in the
sum (2.41). If the curves xt'(s) traversed by the particles
were closed curves in Euclidean 3-space, the double in-
tegral (2.41) for each value of the indices i,j would be an
expression for Gauss's linking number of the curves x, ,x

T T dxt"(t) dx, (t')
I;, = f dt f dt' [r)„A (x; —x. )

—8 A„(x;—x, )]

T & dx;(t)" g dx (t')~f dt'f dt A (x; —x. )-
0 0 dt

dxj(t')" g dx;(t)t'
+ f dt f dt' '

, W, (x, —x, )
0 dt' Qx~ ~ J dt

+XI.~xj

dx;= —2 dt e"
0 dt

dx' [x;(t)—xl(t)] +I
dt fx,. (t) —x.(t)

f

(2.45)

where in the last step we used the explicit form of A (2.44) and
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dx~I = J dt A (x;(t) —x (T))
dx~—A„(x;(0)—xj(t)) +x;~xj . (2.46)

Now, we may use the fact that

I) (x —y)S(x—y) =e,bI)y' "
/x —y/'

(2.47)

Itt= fdtL;+ I
4~ g

4~ g' (2.49)

where 8(x—y) is as in Eq. (2.22) and (2.24). It is impor-
tant to notice that Eq. (2.47) is satisfied only if in Eq.
(2.22) we take the tan ' to be multivalued, i.e., such that
if the vector (x —y) is rotated by 2m, then the value of 0
is also shifted by 2m. , rather than remaining the same. If
we took a single-valued definition, the function 0 would
necessarily have a branch cut, and there would be an ad-
ditional contribution on the rhs of Eq. (2.47), concentrat-
ed along the cut (see Sec. V for a more detailed discussion
on this point). Using Eq. (2.47) we get finally

I; =2f dt 8(x; —x )+I~ .d.
dt

(2.48)
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FIG. 2. Two particle trajectories (solid line) define a linking
number when their endpoints are joined to infinity (dashed line)
along a fixed direction. (a) l = —1; (b) l=O; (c) l= 1.

Equation (2.48) shows that, if we can forget about the
term I, then I, has a simple geometrical meaning: it is
equal to twice the total angle of rotation of the trajectory
of particle i around that of particle J in the course of
their evolution. The total angle of rotation, in turn, is
equal to (2' times) the number of times the two paths
link, i.e., if we close the paths by joining their endpoints
to a point at infinity along a fixed direction and in a fixed
order (see Fig. 2), the total angle of rotation is equal to
(2m) times their linking number. The term Ig vanishes
for closed paths; for open paths it is associated with a
contribution to the Lagrangian which does not modify
angular momentum and statistics (as can be explicitly
verified by checking that it is rotationally invariant) and
need not concern us here.

Adding up the contributions (2.48) from all pairs of
particles, we find that (up to the addition of I ) I,tt is the
action associated with the Lagrangian L; [Eq. (2.23)],

where in the last step I indicates the total linking number
(integer for a closed path). We have succeeded in repro-
ducing the nonlocal interaction (2.24) through the cou-
pling to an external field. Note that it is crucial that this
field be considered as a genuine dynamical field, rather
than an external one, otherwise we would be led back to
the action (2.1)—(2.4). Indeed, one may verify explicitly
(Jackiw, 1991) that the total angular momentum for the
full theory (2.30)—(2.32) has the fractional spectrum
(2.25), whereas if one considered the gauge field as exter-
nal (thus not contributing to the angular momentum) one
would get the canonical spectrum of the theory discussed
in Sec. II.A. Henceforth we shall always work with the
formulation of the theory (2.24) or (2.49), which does not
require the introduction of gauge fields and is, in a sense
that will be made more precise in the next section, more
fundamental. The angular momentum operator for this
theory, as discussed in Sec. II.B, in the n-particle case is
(Thouless and Wu, 1985)

J =Jo — n(n —1),
2n

(2.50)

Jo= g x, X( i)V, —. (2.51)

We are now equipped with the knowledge of a class of
models with fractional angular momentum. Starting
with any system of particles with conventional angular
momentum we can obtain fractional angular momentum
in several equivalent ways: we can add to the Lagrangian
a nonlocal interaction (2.24), or we can let the particles
interact through an Abelian gauge field with "topologi-
cal" dynamics (2.30), or we can couple the particle's
currents through the Hopf term [Eqs. (2.38) and (2.39)]
or, finally, we can require the wave function of the system
to satisfy twisted boundary conditions of the form (2.28).
The angular momentum operator in the first three cases
has the form (2.51) and has the spectrum (2.25) when act-
ing on single-valued wave functions; in the last case the
wave functions are multivalued, according to Eq. (2.28),
in the relative polar angles of all pairs of particles, and
the angular momentum, with spectrum (2.25), is found by
acting with the operator Jo (2.51).

It is important to observe that while the interaction
(2.24) is equivalent to the requirement of twisted bound-
ary conditions (2.28), and the Hopf dynamics (2.38) and
gauge dynamics (2.30) are strictly the same, the latter two
theories are not precisely the same as the former two
(only the spin-changing terms are) due to the presence of
additional terms (such as Ig ) which we neglected for the
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moment, since they have no effect on spin and statistics,
but may have other physical e(fects (see Jackiw and Pi,
1990).

III. NONRELATIVISTIC QUANTUM MECHANICS

A. The path integral on homotopically
nontrivial spaces

According to Eqs. (2.29) and (2.25) this would imply that
the angular momentum is canonical.

Furthermore, since particles are indistinguishable,
configurations that differ by the interchange of two parti-
cles (i.e., two two-vectors) should be identified. There-
fore, if (xi, . . . , x„) is an element of R"", if we call
2)C:R"" the set of points where x; =x for some i, j, and
if 5„ is the group of permutations of n objects, then the
configuration space is the coset

1t(x„x2)=e ' g(x2, xi), (3.1)

then if xj =x2 we get a contradiction unless o. is integer.

In the previous section we have seen that fractional an-
gular momentum may be constructed by imposing
"twisted" boundary conditions (2.28) on the wave func-
tion of a system that, if quantized in the usual way,
would have the canonical angular momentum spectrum.
It is clear that the possibility of consistently imposing
such boundary conditions is due to the peculiar structure
of the two-dimensional configuration space: for example,
suppose we tried to impose a boundary condition of the
form (2.28) on a two-body wave function in three spatial
dimensions, by using spherical coordinates and assuming

P to be the azimuthal angle. Along the z axis we would
get f'=e ' P', which is a contradiction unless 24=2~
modulo integer, which implies [take Eq. (2.25) with n =2]
that the spectrum of angular momentum is quantized in
the usual way.

In fact, we shall now show that both the possibility of
fractional spin and statistics, and the general form of the
Lagrangian which embodies it, are consequences of the
structure of the configuration space of indistinguishable
particles in two (space) dimensions. This result can be
obtained in several ways; historically, it was first found
in a Hamiltonian approach by looking at the most gen-
eral Schrodinger equation in two dimensions (Leinaas
and Myrheim, 1977). An equivalent way of getting at it
is to derive all possible representation of the algebra of
observables (Goldin et al. , 1981). Yet another distinct
possibility is to proceed in a Lagrangian framework and
derive the result by looking at the most general path in-
tegral (Wu, 1984a). This last option, which is the sim-
plest, is the one we shall follow; its equivalence with the
Hamiltonian approach (Wu, 1984b) will be discussed in
Sec. III.C; in Sec. V.B (in the relativistic case) we shall
provide a derivation based on the representation theory
of the Lorentz group (de Sousa Gerbert, 1990; Forte,
1991c).

Let us first see what is special about the configuration
space in two dimensions (Leinaas and Myrheim, 1977).
The configuration space for n particles in d dimensions is
given by the set of d-component vectors. If we wish to
allow all kinds of statistics, we ought to assume that the
vectors are distinct, i.e., that no two particles may occu-
py the same point in space, because otherwise the statis-
tics would be necessarily bosonic. For example, in the
two-particle case, if

(3.2)

y(a)K (q', t', q, t) .
aE ~1(C)

(3.3)

Here a labels equivalence classes of homotopically con-
nected paths (homotopy classes, henceforth); these form a
group, the fundamental group xi(C) (see, for example,
Dubrovin et al. , 1984). K is the usual path integral for
a theory with Lagrangian I.

K (q', t', q, t)= f Dq(t) exp i f dtoL(q(to))
q(t) En

(3.4)

with the integration restricted to paths belonging to the
eth homotopy class.

In order to compute the weights y we must assign
paths from point a to point b (a, b, E C) to homotopy
classes. This can be done by choosing a "homotopy
mesh, " i.e., by picking arbitrarily a reference point x H C
and defining a (continuous and smooth) path C(a) from x
to each point a H C (this is possible because C is connect-
ed) (Fig. 3). We assume that C(a) is oriented (i.e., it is
traversed in a fixed direction), and we call C '(a) the
path with the opposite orientation. Any path p (ab) from
a to b is associated with the closed path

where S„acts on the n-tuples of vectors (x, , , x ).
The main difference between 0=2 and d )2 is that in the
former case C is multiply connected, i.e., only in the
former case do there exist pairs of paths in C that share
the same endpoints and that cannot be deformed continu-
ously into each other (homotopically disconnected paths,
henceforth). This in turn implies that the connectedness
of C or, more precisely, the fundamental group (see Du-
brovin et al. , 1984) of C, is special when d=2.

Therefore let us first discuss path integration on multi-
ply connected spaces (Laidlaw and Morette de Witt,
1971). We shall see that this is the natural framework in
which to introduce fractional spin and statistics. The
path integral on a multiply connected space differs from
that on a simply connected space in that, in general, we
are free to assign different weights y to homotopically
disconnected paths. The quantum transition amplitude
from q H C' at time t to q' at time r' is

K(q, t;q, t) —(q, t ~q, t )
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c(a

c (aj
c(a)

FIG. 3. A path ab is assigned to a homotopy class by closing it
through the mesh C to point x and counting the number of
points that do not belong to configuration space (indicated by
X ) which are encircled by the closed path. Paths P& and P2 are
not homotopic. Their class assignment always differs by one
unit, regardless of the choice of mesh. However, the class as-
signment of each path with mesh C based on y differs by one
unit from that computed with mesh C.

P(ab)=—C(a)p(ab)C '(b). Since closed paths on a mul-

tiply connected space fall into equivalence classes —the
elements of vr, (C )—this construction naturally assigns
p(ab) to an element of vr, (C ), that to which P(ab) be-
longs (Fig. 3). Of course, changing the mesh may change
the class to which a path belongs; however, it is easy to
see that a change of mesh cannot change the
"di6'erential" assignment, i.e., if two paths with the same
endpoints belong to di6'erent classes they cannot be
brought into the same class by a change of mesh (see Fig.
3).

Now, there are some physical requirements that the
weighted sum (3.3) must fulfill, namely, (a) physical ob-
servables must not depend on the mesh. This implies
that a change of mesh may at most change all propaga-
tion amplitudes K (q', t', q, t) by a universal multiplicative
phase factor; (b) the weighted sum (3.3) must satisfy the
convolutive property

K(q", t",q, t)= jdq'(q", t"Iq', t')(q't' q, t)
= J dq'K(q", t";q', t')K(q', t';q, t) .

(3.5)

This follows from the assumption that lq, t ) be a com-

FIG. 4. Computation of the homotopy class through different
choices of mesh: (a) computation of the homotopy class of ab
through mesh C based at y; (b) re1ationship between computa-
tions of the class with mesh C and mesh C based at y. The ar-
rows indicate path C(a)C '(a)C(a)p(ab)C '(b)C(b)C '(b)
[Eq. (3.9)]; X indicates points excluded from configuration
space. (c) The path A,p.

piete set of states, and is satisfied by each of the K (3.4)
separately by definition of path integral.

These conditions in turn imply a set of constraints on
the weights g. Indeed, for the above requirements to be
satisfied, it is necessary and sufficient that (Laidlaw and
Morette de Witt, 1971)

(3.6)

(3.7)

In Eq. (3.7) a and 13 are the homotopy classes of two
paths with a common endpoint, say p (ab) and p (bc), and
a~P is the homotopy class of the path p(ac) obtained by
joining the two.

We shall now show that Eqs. (3.6) and (3.7) are
sufficient for requirements (a) and (b); the proof that they
are also necessary is somewhat technical and we shall
skip it. That Eq. (3.6) is sufficient for (b) is straightfor-
wardly seen by rewriting Eq. (3.5) as

gy(y)Kr(q", t";q, t)= ggy(a)y(p) Jdq'K (q", t";q', t')K~(q', t', q, t) .
y o. P

(3.&)

In order to show that (a) follows from Eq. (3.6), consid-
er the computation of the class of p(ab) using two
di6'erent meshes, C and C. For greatest generality, we
may take the mesh C to be based on a di6'erent point y.
The homotopy class assignment of p(ab) according to
the new mesh C is that of the closed path
P(ab) =—C(ab)p (ab)C '(b) [Fig. 4(a)]. The two paths
P(ab) and P(ab) are related by [Fig. 4(b)]

=AP(ab)p, (3.9)

where

A, =C(a)C '(a); p=C(b)C '(b) . (3.10)

P(ab)=C(a)p(ab)C '(b)

=C(a)C '(a)C(a)p(ab)C '(b)C(b)C '(b)
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The difference in assignment of P(ab) and P(ab) is thus
given by the class of Ap [Fig. 4(c)].

It follows that the weights g and y, computed, respec-
tively, with mesh C and mesh C, are related by a univer-
sal factor, y(Ap), and, because of Eq. (3.7), so are the
respective amplitudes:

g g(y )&~(q', t', q, t) =y(7 p ) g y(y )K~(q', t', q, t) .

This proves requirement (a): amplitudes computed
through two different meshes differ at most by the
universal phase factor y( A p ).

Now, the two conditions (3.6) and (3.7) just mean that
the weights g are phases, which provide a one-
dimensional (Abelian) unitary representation of the fun-
damental group vr, (C ). As we shall see shortly, their
most general form is determined by the relevant repre-
sentation theory. This will also make the previous state-
ments about the peculiarity of the two-dimensional case
mathematically precise.

B. The braid group

In order to construct the weights g that enter in the
path integral (3.3), we are interested in studying the
group ~,(C ), with C given by Eq. (3.2) (Laidlaw and
Morette de Witt, 1971; Leinaas and Myrheim, 1977; Wu,
1984a). When d )2, C is simply connected [that is,
m, (C ) =0]. The permutation group S„always acts
effectively on 8, i.e., there is no element of S„except the
identity that maps every point of C onto itself. These
two properties imply that n&(C)=S„. To understand
this, consider a path in C and the path in C to which it
corresponds by identifying points under 5„. A closed
path in C can be obtained either from a closed path on C

or from an open one. If the path in 8 is closed, then it is
always homotopically trivial, i.e., it can be smoothly
shrunk to a point (because C is simply connected). But
then so is the path in C, because to a family of paths
smoothly interpolating between a closed path and a point
in C there corresponds a family of paths with the same
properties in C. Thus a nontrivial path on C must be ob-
tained by projecting an open path in C. Furthermore,
the sets of points on C that project to the same point on
C~ are in one-to-one correspondence with elements of S„,
because the latter acts effectively. All this means that C
is the universal cover of C, and that equivalence classes
of paths on C are in one-to-one correspondence with ele-
ments of 5„.

The results of the previous section therefore imply
that, in more than two space dimensions, the weights g
must provide a one-dimensional unitary representation of
the permutation group. There are only two such repre-
sentations, the trivial one, which associates y=1 with
any element of S„,and the alternating one, which associ-
ates g = 1 with an even permutation and y= —1 with an

odd permutation. Clearly, the two cases correspond, re-
spectively, to bosons and fermions.

In d=2, instead, C is multiply connected, and m &(C ) is
an infinite non-Abelian group, known as the braid group
(see, for example, Guadagnini, 1991, and refs. therein).
Because of Eq. (3.6), however, we are interested only in
the Abelian representations of this group, which are easy
to work out (see Wu, 1984a). We can represent pictorial-
ly an element of the group —an equivalence class of
closed paths —by drawing a braid related to a representa-
tive of the class: for a given value of n (number of parti-
cles) this is given by a set of n curves in three dimensions
(two space and one corresponding to a parameter along
the curves, say time) which never intersect and such that
the final positions of the n particles are a permutation of
the initial ones (which corresponds to the same point in
C because S„ is divided out) [Fig. 5(a)]. Equivalent
braids (corresponding to a single element of the group)
are those which can be deformed into each other without
moving the endpoints and without letting a curve pass
through another one [Fig. 5(b), 5(c)].

Let us now project the braid on a plane spanned by the
time and one of the space coordinates. Qf course the
projected curves will generally intersect (Fig. 6); in order
to keep track of the way the curves in three dimensions
wind it is clearly enough to indicate (Fig. 6) in the two-
dimensional projection at each intersection which of the
two intersecting curves is on top. Each two-dimensional
braid may now be characterized by the set of its intersec-
tions, which we may denote by the action of an operator
o.; that performs the interchange of two neighboring
curves i and i+1, with the left curve on top. The ex-
change with the right curve on top is clearly the inverse
operation (i.e., the combination of the two interchanges is
equivalent to no interchange), thus it is performed by the
operator o. ,

' (Fig. 7).
A braid, i.e., an element of the group, is uniquely

X2

FIG. 5. Examples of braids defined by particle trajectories: (a)
the braid corresponding to a two-particle trajectory; the param-
eter along the curve (time) Aows in the vertical direction; (b)
two equivalent three-particle braids; (c) two inequivalent three-
particle braids.
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FIG. 6. Two-dimensional projection of the braids of Figs. 5(b)
and 5(c). (a) two equivalent braids; (b) two inequivalent braids. FICx. 7. The exchange operator o; and its inverse.

characterized by an ordered product of o's. There are,
however, different sequences of o's that correspond to
the same element of the group (i.e. , to homotopic braids).
Two equivalent braids are displayed in Fig. 6(a), and two
more in Fig. 8. These lead to the relations

where e& is the signature of the kth element, i.e., ek = 1 if
the kth element is o- and ek = —1 if it is o. . These are
the weights that we shall assign to paths that contribute
to the propagator (3.3).

Oii+los OI+iioi+1

from Fig. 6(a) and

(3.12) C. Path integral, wave function, and
Schrodinger equation

if li —jl & I

y(o;o'~ )=y(cr; )y(o)if ~i
—j.

~
) 1, (3.14)

i.e., phases corresponding to different interchanges fac-
torize, while Eq. (3.12) implies that

y(o;)=y(o ) for all i,j (3.15)

i.e., the interchange phase is universal. Therefore, a uni-
tary Abelian representation of the braid group is unique-
ly specified by the assignment of a universal phase y=e'
which is associated with the operator o.;. Consequently,
the phase y=e ' is assigned to the inverse operator
o,. '. A generic element of the braid group o.;

. o.;,
1 tt

where 0.; stands generically for o. or o. ', is represented
k

by the phase

=exp i4 g ek
k=1

(3.16)

from Fig. 8. It can actually be proven that there are no
more independent relations among cr's.

Now, let us concentrate on the case we are interested
in: that is, let us represent each element of the group,
i.e., each sequence of cr's, with a phase y. Equation (3.13)
implies

y=exp i gb—,O,J
E (J

=exp i g f—dt O(x, (t) —x, (t) )
. 4 d

dt
(3.17)

where S, is the relative polar angle of particles i and j
and the function O(x) was defined in Eq. (2.22). Notice
that although the phase y was constructed in Sec. III.A
for closed paths in C, Eq. (3.17) provides the generaliza-
tion to arbitrary open paths. Using this form of the
phases y in the path integral [Eqs. (3.3) and (3.4)], we get
finally

We are now ready to work out explicitly (Wu, 1984a)
the most general propagator on the multiply connected
configuration space C [Eq. (3.2)], by substituting the
weights (3.16) in the path integral [Eqs. (3.3) and (3.4)].
The representation of the braid group which enters in the
construction is fixed by the choice of the parameter N in
Eq. (3.16). It is easy to provide an analytic expression of
the phases (3.16) in terms of the paths to which they cor-
respond. We note that the signature e in Eq. (3.16) may
be expressed as e, =DO;/m in terms of the variation AS;
of the relative polar angle 0; of the two particles that are
interchanged. The phase g (3.16) which weights the n

particle path in C given (as a function of time) by
(x;(r), . . . , x„(t)) is then

&(q', &', q, r)= I Dq(to)exp
q{t)=q;q{t')=q'

i J dto(L(q(to))+ g O(x; —x~))
d

27K .~. I p

(3.18)

FICx. 8. The two equivalent braids of Eq. (3.13).

where q(t) stands for the point in configuration space
(x„.. . , x„).

The effect of the weights y is just to supplement the
Lagrangian that appears in the path integral with a
particle-particle interaction of the form (2.24). It is now

apparent that the one-parameter family of Lagrangians
(2.23) and (2.24) describes the most general quantum dy-
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namics in two dimensions; the parameter 4 characterizes
both the spectrum of angular momentum [given by Eq.
(2.25)] and the boundary conditions on the wave func-
tions, or, equivalently, the symmetry properties of the
wave function of the system upon interchange of two par-
ticles, as expressed by Eqs. (1.2) and (2.29).

We may now come full circle, and rederive the spin
and statistics properties of the system directly from the
path integral (3.18) (Wu, 1984a). The wave function of a
system that evolves according to Eq. (3.18) can be ex-
pressed as

q(q, t) =(q, t~q)

= Jdqp (q, t~qp tp)(qp tp~P)

= JdqpK(q t qp tp)g(qp tp) (3.19)

in terms of some initial condition described by the wave
function P(qp, tp). Also, the path integral (3.3) can be re-
lated to the path integral of the purely bosonic theory
Kp(q', t', q, t), which is obtained by setting 4=0 in Eq.
(3.18), or equivalently setting y(a)=1 for all a in Eq.
(3.3). Use of Eq. (3.17) in reverse obtains

K(q', t';q, t)= exp i g S,"(t')+2irn,")
2~ ~

K p"'(q', t '; q, t)exp i —g 0, (t)
2~ ~

(3.20)

The sums over n, appear because of the multivaluedness
of the function 0 [Eq. (2.22)]. They correspond to con-
tributions to the path integral from paths that wind n,
times on the configuration space. For each set of values
of n; only paths with the corresponding winding num-
bers are included in the computation of K". This pro-
vides an explicit representation of the sum over homoto-

py classes of paths a in the definition (3.3) of the propa-
gator.

The wave function f (3.19) is single-valued. Because
n, are summ"ed over, we can replace 0,"(t) and S,"(t') by
their determination modulo 2~. However, we may define
a new wave function

gp(q, t)=exp —i g 0; (t) P(q, t) .. 4
2~ ~

(3.21)

S(q)= J dq' S(q')
dq'

(3.22)

where q &1R& is a point in the punctured plane spanned
by I;—x for all i,j and where the integration runs along
a path that joins a fiducial reference point qo ER~ to the
point q at which 0 is evaluated. The set of paths from qo
to all points q HR& forms a mesh, as discussed in Sec.
III.A. The prescription described in Sec. II.C to com-
pute the linking number of paths i,j by attaching their
endpoints to infinity (Fig. 2) is a particular case of the
prescription (3.22), corresponding to the choice of qp as
the point at infinity of the comp actified manifold
R~+ I ao ].

Because of the definition (3.22), the wave function Pp at
point q carries a path joining qo to q; this allows it to
"remember" along its evolution the sheet of the Riemann

Here S(x) is defined as a multivalued function on the
punctured plane Rp =—R —IO]; it is single valued on its
universal covering 1R&, which is the Riemann surface of
the complex logarithm. The sum of O~," for all i,j which
appears as a phase in Eq. (3.21) is a multivalued function
over C [Eq. (3.2)], single valued (by definition) over its
universal cover C. We can fix the choice of branch for
the phase in Eq. (3.21) by defining

I

surface on which it should be evaluated. Otherwise stat-
ed, pp is to be considered a wave function on the univer-
sal cover C; when viewed as a function on C, it is a func-
tion that depends not only on the instantaneous
configuration q(t), but also on a path that connects the
reference point qp to q(t).

Therefore both the sum over paths in the propagator
(2.20) and the phases at initial and final times can be sim-
ply absorbed into the redefinition (3.21) of the wave func-
tion: the multivalued wave function gp is propagated by
the "bosonic" propagator Kp(q', t', q, t) Because .gp [Eq.
(3.21)] is multivalued on C, it satisfies twisted boundary
conditions of the form (2.13), or equivalently it has frac-
tional statistics (2.29). The canonical angular momentum
operator (2.51) acting on it produces the (fractional) spec-
trum (2.25).

It is now straightforward to make contact with the
Hamiltonian formalism (Wu, 1984b): because the wave
function (3.21) is propagated by Kp, it satisfies the ordi-
nary Schrodinger equation (without spin-changing in-
teraction). The transformation (3.21) is the same as that
of Eq. (2.27) which allowed us to eliminate the long-range
interaction in the Hamiltonian approach of Sec. II.B.
We may therefore revert to a single-valued wave func-
tion, which then satisfies the Schrodinger equation with
the Hamiltonian (2.26), that contains an additional long-
range interaction.

Again, we find that a theory with fractional spin and
statistics may be viewed in two alternative, equivalent
ways (Leinaas and Myrheim, 1977; Wu, 1984a): either as
a theory with the nonlocal interaction (2.24) and the
propagator K of Eq. (3.18) or a theory with the usual in-
teractions and the propagator Eo, but whose wave func-
tions are subject to twisted boundary conditions. In the
former case physical observables are modified because
the added interaction may contribute to conserved quan-

4The theory of wave functions localized on paths has been
developed by Zaccaria et al. (1983) and Balachandran, Fromm,
and Sorkin (1987). For an axiomatic (algebraic) approach see
also Frohlich, Cxabbiani, and Marchetti (1989).
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tities, while in the latter case the operators associated
with observables are as in the free theory, but their spec-
trum is modified by the boundary conditions. The angu-
lar momentum operator, in particular, is given in the
former case by J [Eq. (2.50)] and acts on single-valued
functions, whereas in the latter case it is given by Jo [Eq.
(2.51)] but it acts on multivalued functions. In both in-
stances its spectrum is the fractional one (2.25). The
Chem-Simons coupling (2.35)—(2.37) is a way of produc-
ing the required nonlocal interaction; it does, however,
produce extra terms, as well, that might further affect the
dynamics.

%'hatever description we choose, the dynamics of frac-
tional spin is characterized by the fact that nonhomoto-
pic paths are weighted with different phases in the path
integral. This provides a unique unambiguous character-
ization of a theory with fractional spin and statistics and
allows us to avoid the ambiguities that are inevitably
present in other approaches, as seen in Secs. II.A and
II.B, and that are due to the fact that some observables,
like the angular momentum, may be redefined by the ad-
dition of a constant.

The factors (3.17) and wave functions (3.21) may be
presented in an alternate form that is useful for some ap-
plications (Wu, 1984a). Points in two-space may be
parametrized with complex coordinates z =x '+ix . The
phase factors (3.17) may be expressed in this parametriza-
tion as

(3.23)

Any wave function of the form (3.21), satisfying twisted
boundary conditions, may thus be written as

Z Z Z p p Z

i(j
(3.24)

where f (z„.. . , z„) is a single-valued function of z and
Z*.

The phases y [Eq. (3.17)] [or, equivalently, the spin-
changing interaction in Eq. (3.18)] break the symmetry of
the theory under time reversal if N/m is not an integer,
i.e., if the spin is neither bosonic nor fermionic. The sim-
plest way of seeing this is to observe that under time re-
versal the spin s changes sign (see, for example, Schiff,
1968); therefore, if s&Z/2, the spectrum of angular
momentum (2.28) is not invariant. Equivalently, under
time reversal y —+y*; if we require y=g* for a closed
path (which is a necessary condition for time-reversal in-
variance to hold), we get g=+1 which, according to Eqs.
(3.17) and (2.25), implies that the spin is integer or half-
integer.

Time-reversal invariance is, of course, restored
(Semenoff and Weiss, 1990) in a theory that contains both
particles of spin s and —s. The derivation of the path in-
tegral given in this section, however, shows that the
phase y must be universal: this means that if particles of

different spin are present, the total propagator must be
constructed as a sum over superselection sectors, i.e.,
particles with different spins do not interfere with each
other (Frohlich, Gabbiani, and Marchetti, 1989, and
references therein). The fact that it is necessary either to
give up time-reversal invariance or to introduce super-
selection sectors (or both) if we want to consider wave
functions that are more than double valued was already
shown by Schrodinger (1938) to follow from the general
principles of quantum mechanics.

In conclusion, it is interesting to observe that the close
connection between fractional spin and statistics and the
topology of the configuration space makes it nontrivial to
generalize the theory to the case in which the particles
are located on a generic compact surface with arbitrary
topology, rather than on a plane, as we have discussed so
far. The simplest case is that of a particle on a torus T
(Einarsson, 1990). Then, although ~i(C) is still a braid
group, it is a larger group than that discussed in Sec.
III.B. This is due to the fact that now even the one-
particle configuration space is multiply connected; mi(C )

is generated by the o; [Eqs. (3.12) and (3.13)], supple-
mented (in the n-particle case) by 2n generators r;, p;,
i = 1, . . . , n, of ~, ( T). These are defined as the operators
that take each particle around the two inequivalent non-
contractible loops on the torus.

Although the group generated by the o.; is a subgroup
of this group, fractional statistics may be obtained only
from higher-dimensional (i.e., more than one-
dimensional) representations of the extended group.
Moreover, the allowed values of the representation pa-
rameter (3.17), which fixes the value of spin and statistics,
are, for a system of n particles, the rational fractions
(Lee, 1989; Einarsson, 1990)

=', kez.
27T 2n

(3.25)

IV. SOME PHYSICAL EFFECTS

As we have seen in the previous section, any system
can be endowed with fractional spin and statistics either
by adding the nonlocal interaction (2.24) or by imposing
twisted boundary conditions (2.13) on the wave function.
Both approaches are in practice rather difficult to pursue,
and even simple problems like the calculation of the par-

This restriction on the allowed values of the spin parame-
ter may also be derived (Lee, 1989) by using arguments
analogous to those that lead to the Dirac monopole
quantization. In this guise, it may be shown that the re-
striction (3.25) holds on a sphere as well. These results
are not only of academic interest, since the geometry of
the torus is relevant for the description of planar systems
with periodic boundary conditions, which, in turn, may
have physical relevance in the physics of the quantum
Hall eff'ect (see Sec. IV.C; Einarsson, 1990; Iengo and
Lechner, 1990).
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tition function for the free-particle gas are highly non-
trivial and as yet unsolved. There is nevertheless a small
class of models in which the physical effects of fractional
statistics may be seen explicitly at work.

H, =Hid +H„'+ V(R, r),
I 8 I

H,'=— +— +— +2isI Qp p Bp p BP

2 (4.4)

A. Two-particle systems: configuration
space and partition function

H =H~ +H, + V(r, R), (4.1)

where

I B 1 8 1 8
rn Qp p Bp p

with the boundary condition

(4.2)

P(R, p, g+~)=e' 'g(R, p, g) .

Equivalently, the same physics is described by the eigen-
states of the Hamiltonian

The simplest case in which we may see the effects of
fractional spin and statistics explicitly is that of a two-
particle system. Indeed, the structure of configuration
space which underlies the possibility of fractional statis-
tics is particularly simple in the two-particle case
(Leinaas and Myrheim, 1977). Let us use relative coordi-
nates R=(x, +xz)/2 and r=(x, —xz). The configuration
space C [Eq. (3.2)] when n =2 is given by the Cartesian
product of the IR spanned by the center-of-mass coordi-
nate R times the set of points spanned by r with r&0 and
the points r and —r identified. The latter space can also
be viewed as a Cartesian product, by representing r in po-
lar coordinates (p, P), namely, as the product of the IR

spanned by p and the real projective space spanned by P,
that is, the circle with points P and P+m identified,
which is again a circle. Therefore, when n =2, the
configuration space is C =IR XIRXS'.

The advantage of this way of looking at C is that all
the nontrivial effects of the statistics are contained in the
relative coordinate r, in the sense that the topological in-
teraction (2.24) depends only on r, or, equivalently, the
twisted boundary condition (2.13) is imposed on the r
dependence of the wave function. It is clear why the
two-particle case is special: for n & 2 we can still separate
the center-of-mass coordinate, which does not play any
role as far as spin and statistics are concerned, but then
the space of relative positions of the particles no longer
has a simple form.

We can now see how fractional spin enters the
Schrodinger equation. A system of two particles of massI and spin s is found by solving for the eigenfunctions of
the Hamiltonian (Leinaas and Myrheim, 1977; Arovas
et al. , 1985)

with the (usual) boundary condition

g( R,p, P+ ir ) =g( R,p, P ) . (4.5)

Of course, given an eigenstate g of H [Eq. (4.2)], an
eigenstate of H, [Eq. (4.4)] is

e
—izsgy (4.6)

Let us now consider the simplest possible case, namely
that of free particles, by setting the potential V(r, R) =0.
Eigenfunctions of Eq. (4.6) then have the factorized form

(4.7)

where y(R) is a solution of the free Schrodinger equation
while g(r) is an eigenstate of H„, which is best chosen as
an eigenstate of angular momentum [Eq. (2.50)]:

g(r)=e' ~~R„(p) . (4.8)

Here q is an integer because of the boundary condition
(4.5); Rk is an eigenfunction of the radial Schrodinger
equation, which is the Bessel equation of order
v=2~q+s~. The (un-normalized) generic eigenstate of
Eq. (4.4) is thus

(R, r) =e' "e' ~Jz +,~(Ap), (4.9)

2 2K Xnq+—',
tBPo

(4.10)

where x„ is the location of the nth zero of J2I +,I. The
spectrum (4.10) interpolates continuously between the
bosonic case (s integer) and the fermionic one (s half-
integer) and is periodic in s with period one. The spec-
trum of angular momentum is given by Eq. (2.25) with
n=2 and PI2vr=s b—ecause of the additive constant in
Eq. (2.50). Notice that indeed all integer values of 8 are
allowed in Eq. (2.25) because the relative angular momen-
tum 2q (which is even) must be composed with the
center-of-mass angular momentum (which can take any
integer value) carried by y(R) [Eq. (4.7)] in order to get
the total angular momentum (2.25).

The spectrum (4.10) may be used to compute the parti-
tion function for the two-particle gas in an expansion
around Bose or Fermi statistics (Arovas et al. , 1985; see
also Arovas, 1989, for a detailed review). The partition

where J2Iq+,
I

is the Hessel function of the first kind, of
order 2iq +si.

The effects of statistics on the energy spectrum are
seen, for example, by putting the system in a cylindrical
box of radius po, that is, by imposing the boundary condi. -

tion g(P, po) =0, which implies Jz +, (kpo) =0. This
leads to the energy spectrum
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function may alternatively be calculated exactly in a
path-integral approach. The path integral [Eqs. (3.3) and
(3.4)] with the phases (3.17) in the two-particle case may
be written as

K 2(R', r', r', R, r, t)=ZR g e '"'K", (r', r', r, t), (4.11)

where ZR is the free-particle path integral that describes
the center-of-mass motion, while K", (r', i', r, t) is the
propagator for free one-particle paths from r to r' that
belong to the nth homotopy class, i.e., that wind n times
about the origin (which is excluded from configuration
space). Explicitly,

I

K", (r', t', r, t)=f, ,Dro(to)exp i J dtol. (q(to)) 5[/(ro(t')) P(r—o(t)) 2nv—r 0]— (4.12)

where 8 =&((r') —P(r), L is the Lagrangian of a free particle with mass m/2, and the 5 enforces the constraint that only
paths with winding number n may contribute. A tour de force computation (Inomata and Singh, 1978; Gerry and
Singh, 1979) allows the explicit evaluation of K", [Eq. (4.12)] in closed form. The result when r=r' is

T

QO

K", (r, t', r,t)=, exp, p di, exp[i'(8+2~n)]I~&~
4vri i' —r 2 t' —t 2l t —t

(4.13)

where Iz(z) is the modified Bessel function. The parti-
tion function is found (Arovas et al. , 1985) by summing
over all n and integrating over all r. This result, which
displays the nontriviality of the statistics interaction even
in the simple case at hand, may be used to calculate the
second virial coeKcient of an ideal gas with s spin and
statistics (Arovas et a/. , 1985). It is worth noting that
the result, although a smooth periodic function of the pa-
rameters s, is not differentiable (it has a cusp) when s is an
integer, i.e., when the statistics is bosonic.

B. Central potentials„
statistics, and spectra

The effects of fractional spin on the spectrum of the
two-particle Hamiltonian (4.4) may be explicitly deter-
mined whenever the angular momentum operator (2.50)
commutes with the Hamiltonian, i.e., for central poten-
tials V= V(p). In this case, the wave function still has
the form of Eqs. (4.7) and (4.8), and Rk (p) is a solution
to the radial equation

obtained from the bosonic case by using the exclusion
principle. For example, in the ground state the two par-
ticles cannot both be in the Eo =~/2 state, so the
ground-state energy is F. o'

~ ' =(—,'+ —', )co rather than the
bosonic value E& '=~, and so forth. The parameter s
provides a smooth interpolation between these two cases
(The case s = —,

' is displayed in Fig. 9); notice that al-

though there are no level crossings (i.e., the ordering of
energy levels does not change with s) the pattern of de-
generacies depends on the value of s (Fig. 9).

%'ith a harmonic-oscillator potential it is possible to go
a few steps further and discuss the many-particle case as
well. When n )2 it is actually convenient to use the com-
plex parametrization described in Sec. III.C. The motion
of a system of n particles in a harmonic potential well
centered in the origin is given by eigenstates of the form
(3.24) of the Hamiltonian

n 2 g2H= g — + —,'mco ~z;~ . (4.16)
C)Z - BZ.

When n=2, the dynamics of Eq. (4.16) basically reduces
to that discussed in the previous section, in that the rela-

1 8 1I Qp2 P QP
( )+ 4(q+s)

P S =1/4 S=1/2

&a&k, (P) . (4.14)

As expected, spin has the effect of shifting the radial
quantum number q~q+s. For example, suppose we
take a harmonic-oscillator potential V(p) =—„' m co p .
The spectrum of energy eigenvalues is simply obtained by
performing the above replacement in the usual spectrum,
with the result (Leinaas and Myrheim, 1977; Wilczek,
1984b)

n=2, l= 0
n=l, l=~2
n=0. l=&4

n=l, l= 0 3
n=0 ~ l=&2

n=0, l= 0

n=l, l =+2
n=0, l =+4,

n=l, l= 0 2
n =0, l =-2

n =0, l =+2

n=0, l= 0

n=0,
n= 1,
n=l,
n =0.

l=4
l =2
l=o
l=-2 -- 3

n=O, l =2
n=0, l =0

E„"=co(2(n+ —,
' )+ ~q +s~ ), (4.15)

to which of course must be added the energy of the
center-of-mass motion. When s =0 (modZ ), the spectrum
is the usual one (Fig. 9), whereas when s =—,

' (modZ) the
spectrum is that of a fermionic oscillator, which may be

FIG. 9. The energy spectrum (4.1S) of a two-particle system in-
teracting through a harmonic-oscillator potential (4.14) in units
of ~. The cases s=0 (bosons), s =

2
(fermions), and s =

4
(inter-

mediate spin) are shown. The values of the principal quantum
number n and radial quantum number I as well as the degenera-
cies of the levels are shown.
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tive motion is described as before by the Hamiltonian H„
[Eq. (4.2)], although now the center-of-mass motion is
also subject to a harmonic potential rather than being
free. For n) 2, however, this dynamics is more easily
manageable than the other natural generalization of the
two-particle case, namely, that of ,'n (n ——1) interparticle
harmonic forces.

The Hamiltonian (4.16) is of considerable physical in-
terest in that if we let co = (eB)/(2m) in Eq. (4.16) then

may also be acccomplished in the presence of an addi-
tional Coulomb repulsive potential V, =e ( ~r, —r2~ )

(Vervain, 1991).
When n=3 a set of eigenfunctions of (4.16) may be ob-

tained (Wu, 1984b) by positing a wave function of the
form (3.24) with 4&/m= —2s and the ansatz

1

2
MP'f (zi z»z3) (zl& Z, z3)

(4.18)

e8
2m, BP;

(4.17)

is the Hamiltonian that describes n particles with frac-
tional spin and charge e on a plane with an external mag-
netic field 8 perpendicular to the plane (Dunne, Lerda,
and Trugenberger, 1991). The diagonalization of IIii
[Eq. (4.17)] when n=2 reduces trivially to Eq. (4.14) and

which is suggested by the fact that the asymptotic behav-
ior of the eigenfunctions of (4.16) for large r is

+[~ ')/2] k
P —e —('"' '~ )r". The center-of-mass motion is again
given by harmonic-oscillator wave functions (Laguerre
polynomials) L&, and if we set

P(z„z2,z3)=(z, +z2+z3) L~( ,'coR )(z—,—z2)'(2z, —z~ —z3) L„' + ' ~( —,'cor2)

+symmetrization w. r. , to z &, z2, z 3 (4.19)

where the center-of-mass radial coordinate is
—,'R =

—,
' ~zi+zz+z3~, while r=(~2z, —zz —z3t +cyclic

permutations)', then the functions f [Eq. (4.18)] are
eigenstates of the Hamiltonian (4.16) with energy

E =(2N+2n +L +1 +m +6s+3)co, (4.20)

where X,n, L, l, m are non-negative integers and I,I are
further constrained by the requirement that I' not vanish
after symmetrization.

The eigenstates (4.20) do not form a complete set: for
example, when s =

—,
' the lowest energy state (4.20) is

E 0(6s+3)co=6co. The energy of the ground state of
the three-fermion system, instead, is found by using the
exclusion principle, and it is obtained by putting one par-
ticle in the lowest state and two in the first excited state
(which is doubly degenerate); since the zero-point energy
is 3m, the result is Eo =5m. Therefore the ground state is

missing from the set (4.19) when s =
—,'. When s is close to

or equal to zero, instead, the lowest energy state (4.20)
does coincide with the ground state. This means that in
this case the complete energy spectrum must display level
crossings as a function of the spin parameter s, that is,
not only the degeneracies but also the ordering of the en-

ergy levels depends on s. Indeed, it is clear that for small
enough s the ground-state energy of the Hamiltonian
(4.16) with arbitrary n is given by the sum of the zero-
point energy Eo =neo and the energy due to the interac-
tion A (2.26) between all pairs of particles, i.e. , it is
Eo=(n +sn (n —1))co. The energy due to the spin grows
like a two-body interaction energy and determines level
crossings as s grows if n )2 (Wu, 1984b).

The eigenstates (4.19) of the Hamiltonian (4.16) may
also be generalized to the generic n-particle case (Chou,
1991a). Wider classes of solutions have been found by

Polychronakos (1991), who discussed the most general
rotationally invariant Hamiltonian quadratic in coordi-
nates and momenta, while a general classification of the
available eigenfunctions of the Hamiltonian (4.17) is
given by Dunne, Lerda, Sciuto, and Trugenberger (1991).
In all cases the fermionic ground state and the energy
levels which should display level crossings are missing.
The full spectrum has been determined numerically when
n =3 by Sporre et al. (1991), and displays an intricate
pattern of level crossings; it is as yet unknown when
n )3. The complete spectrum may also be found pertur-
batively in the n-particle case (Chou, 1991b) for statistics
infinitesimally close to the bosonic and fermionic statis-
tics, by retaining the spin interaction A [Eq. (2.26)] in
the Hamiltonian and treating the statistics parameter N
as a perturbative expansion parameter. The three-body
spectrum, which was first calculated in the absence of
magnetic field (McCabe and Ouvry, 1991) may then be
used to calculate the third virial coe%cient of the free-
particle gas (McCabe and Ouvry, 1991).

The perturbative expansion around Bose statistics is
technically intricate due to the fact that the spin interac-
tion must have a singular behavior when the spin param-
eter vanishes. Heuristically, this is a manifestation of the
fact that the exclusion principle, which holds for any
nonzero value of the spin parameter, however small,
ceases to hold when Bose statistics are exact and is

displayed by the nonanalytic behavior of the second virial
coefficient discussed above (McCabe and Ouvry, 1991).
Due to the singular nature of the spin interaction (which
diverges as 1/r," when the separation r," of two particles
tends to zero), one may actually compute the first-order
perturbative correction to all the n cluster coe%cients, as
well as the grand-canonical equation of state, without ex-
plicitly solving the Schrodinger equation (Comtet et al. ,
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1991). The result is

2

PP=P,P+lsl, +o(lsl'), (4.21)

C. Adiabatic evolution and the
Laughlin wave function

The recent renewal of interest in fractional spin is in
large part due to its possible relevance to the theory of
the quantum Hall effect and high-T, superconductivity.
Although the discussion of these developments is outside
the scope of our treatment, we would like to show at least
formally how fractional spin surfaces in this context.
The offspring of all these developments is a variational
wave function proposed by Laughlin (1983) as the ground
state of the Hamiltonian for a planar system of electrons
interacting electrostatically with each other, and with an
external magnetic field orthogonal to their plane of

where PoP is given by the equation of state of an ideal
Bose gas, p=n/V is the particle density, P= 1/kT, and
the thermal wavelength is A, =(2~/3/m)'

Finally, the exact ground state for arbitrary values of
the statistics parameter in the n-free-particle case may be
determined on the torus (Iengo and Lechner, 1990)
thanks to the translational symmetry of wave functions
on this manifold.

motion. As we shall show shortly, the localized particle-
like excitations of this wave function behave under adia-
batic transport as one would expect from a wave function
that describes excitations with fractional spin (Arovas
et a/. , 1985).

This leads us to a discussion of the adiabatic approxi-
mation for particles with fractional spin and its relation
to Berry's phase (Forte, 1991b). Let us consider a quan-
tum system containing particlelike excitations with frac-
tional spin, with dynamics given by a Hamiltonian H (t),
whose time dependence is due to the fact that the parti-
cles are allowed to move. This kind of system may be
treated in the adiabatic approximation (see, for example,
Schiff, 1968) if the time scale AT of variation of H(t) is
much slower than the time scale 6, associated with the
spectrum of H(to) at fixed t =to. The latter is of the or-
der of the inverse spacing b,E of energy levels of H (to ):
5, —1/AE. The adiabatic approximation consists of di-

agonalizing the Hamiltonian at fixed time (i.e., for fixed
positions of the "slow" particles, which in our case have
fractional spin):

(4.22)

and of assuming that if the system is prepared in a state
lg„& it remains in the same instantaneous eigenstate as

time evolves. The propagator in this approximation is
therefore given simply by

Ic'(t ;t) x~'g„(t )ejpx—=i'1'E„(tojdtD exp —f' n, to n, to)dto (g„(t)l .
Oto

(4.23)

Notice that H (and E„)depend on time through the posi-
tions of the slow excitations, which are treated as param-
eters.

The phase factors (Berry's phases)

I,'dto(n, tol(d/dto)ln, to & (which are purely imaginary

because the states g„are normalized (f„lt/i„& =1) in the
standard treatments of the adiabatic approximation are
said to be unobservable (see, for example, Schi6; 1968),
and are therefore neglected. It has been pointed out rela-
tively recently (Berry, 1984), however, that this is true
only if the phases are single valued; otherwise they have
observable physical consequences. By writing the time
dependence of

l g„& through its dependence on the slow
coordinates (i.e., the parameters) q as

I

tegral along any closed loop vanishes.
Let us now come back to the case in which q are posi-

tions of (slow) excitations with fractional spin and statis-
tics. We may for instance assume that some external de-
vice generates a deep and narrow potential well centered
at points q which vary slowly with time. These excita-
tions can be described in two ways: either by a mul-
tivalued wave function that satisfies twisted boundary
conditions (2.13), or by a single-valued wave function
with a long-range, velocity-dependent interaction (2.26).
Let us first consider the former picture: the states ln &

are multivalued, and they are related to single-valued
states l n' & by Eq. (3.21) (with the replacement ito~ l n & ).
This implies

n, t n, t =q A(q),~
~

dt
(4.24)

(4.25)

one sees immediately that the phases are single valued if
and only if A(q) has vanishing curl, i.e., if its line in-

5Notice that q is a point in a generally k-dimensional parame-
ter space, i.e., a k-component vector, and so is A. By curl of A,
is meant the appropriate k-dimensional generalization, which

comes from the use of Stokes's theorem in calculating the line

integral of A. along a closed curve in the k-dimensional pararne-

ter space. This generalization reduces to the ordinary curl
when k=3.
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(
d iC d, dnt , n, t = X 0 n(t)+ n', t n', t)dt ' 2~ dt ~J

J dt

(4.26)

When integrated along a path, the second term on the
r.h.s. of Eq. (4.26) is single valued, whereas the first term
is multivalued: indeed, it can be written in the form
(4.24) with A given by Eq. (2.26). Recalling Eqs. (2.44)
and (2.47), we see that if we regard the path (in parameter
space) followed by the particles as a path in the space
spanned by q,i =(t,x,. —xj ), then A is the Dirac mono-

pole potential (2.44). This has of course nonvanishing
curl, and indeed it is the prototypical example of a Berry
phase (Berry, 1984). On the other hand, it is immediately
obvious that these phases, when used in the propagator
(4.23), exactly reproduce the homotopy weights y of Eq.
(3.17) which characterize the propagator for systems with
fractional spin (Forte, 1991b). Therefore the statistics
phases 0 coincide with a Berry phase for the system at
hand. The fact that a Berry phase is related to a
modification of the rotational transformation properties
of the theory [as we know to be the case for the y phases
(3.17)] is generally true and may be verified explicitly
(Jackiw, 1988).

If we now turn to the other picture, i.e., if we eliminate
the multivaluedness of the states at the expense of intro-
ducing a velocity-dependent potential, there no longer is
any multivalued contribution to the propagator (4.23).
However, the adiabatic approximation ceases to be valid,
and the form of the propagator (4.23) itself is not correct:
the velocity operator has an unbounded spectrum, hence
the off-diagonal matrix elements of the velocity-
dependent potential cannot be neglected, contrary to
what assumed in deriving Eq. (4.23) (Forte, 1991b).

Even without knowledge of the Hamiltonian, there-
fore, given the wave function of an n-particle system we
can establish that it describes fractional spin by comput-
ing the Berry phase (4.26) and verifying that it is mul-

tiva1ued, provided we know that the adiabatic approxi-
mation holds. Of course, the latter is dynamical informa-
tion which requires some knowledge of the Hamiltonian.

We can now finally come to the Laughlin wave func-
tion, which describes (Laughlin, 1983; see also Arovas,
1989 for a review) the ground state of an electron gas in

the plane in a strong transverse magnetic field BQ as

Q (z, —z. ) exp —
—,
' g ~z„~~

where the sums and products run over the electron loca-
tions z XQ is a normalization factor, and we have used
the complex parametrization (3.24). The electron density

with the wave function (4.27) is constant and equal to
(Laughlin, 1983)

eBQ

2&/?1
(4.28)

Elementary localized excitations are found by acting
on the wave function (4.27) with operators A+, .

0

o=X+-W+, ~(z, —z, )-exp —) y ~z„~'
i(j k

where

(4.29)

=+(z;—z ) (4.30)

creates a quasihole and

—.= H —eaozo
Bz.

i

(4.31)

creates a quasiparticle localized at zQ, 1V
—are normaliza-

tion factors. Higher excitations are obtained by repeat-
edly acting with A+, .

We may now compute (Arovas et al. , 1985) the Berry
phase (4.26) due to adiabatic displacement of a pair of ex-
citations and show that it is multivalued. We do this in
two steps. First, we compute the Berry phase for a single
excitation (4.29), say a quasihole. The time dependence is
entirely due to the adiabatic motion of the quasihole
zo =zo(t), hence

+., d,ln[z; —zo(t) ],
and the Berry phase is

0 0 — 0 (4.33)

Introducing the electron density in presence of the
quasihole

p, (z)=(t(t" X ()(z —z, ) tt ') (4.34)

we can rewrite the phase in a more transparent form:

= Jdx dy p, (z) ln[z —zo(t)]
dt dt

(4.35)

R0
t()z (t(t

' tP')dt =2tti f dp f d()p, (p, t))

where z =x +iy.
The Berry phase due to Eq. (4.35) is multivalued if its

integral along a closed loop is nonzero. The integral
along a circle of radius Ro of Eq. (4.35) is

6In the n-particle case the parameter space may be considered
as a tensor product of 2n(n —1) three-dimensional spaces

spanned by q;, for all distinct i,j, and A is a sum of monopoles
living in the subspaces spanned by each q;~-.

=2~i(n )~ (4.36)

where (p, P) are polar components of the vector (x,y) and
(n )s is the average number of electrons in a circle of

0
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radius Ro. Equation (4.36) allows us to establish the
charge of the quasihole, if we recall that the wave func-
tion of a particle with charge q that traverses a closed
path in the presence of an external electromagnetic po-
tential A picks up a phase

y=iq fdl A. . (4.37)

If we set A equal to the potential associated with the
magnetic field Bo, then the line integral is equal to the
fiux N(8) through the portion of the surface enclosed by
the path and

y =iq&(8) =ivrR Qoq . (4.38)

It can be shown (see Arovas, 1989) that the electron den-
sity is not modified by the presence of the quasihole;
therefore p, is still equal to po [Eq. (4.28)]. Then,
( n )z =7rR Opo, and equating the Berry phase (4.36) with

0

y (4.38) we determine the charge of the quasihole:

(4.39)

This shows that the quasihole charge is not quantized in
units of the electron charge.

We are now ready for the final step in the determina-
tion of the spin and statistics of the quasiholes. We take
a two-quasihole state

Q
' '=X+ A+, A+, Q (4.40)

normalized by the factor N+, and we consider a motion
in which zi is fixed whereas z2, as before, describes a cir-
cle of radius R o. The above calculation of the Berry
phase goes through unchanged, and we get again Eq.
(4.36), where the density p, is now to be evaluated by
averaging according to Eq. (4.34) in the two-quasiparticle
state (4.40). If zz~ ( z, ~

the density inside the circle is
the same as above (neglecting again finite-size effects). If,
instead, z, lies inside the circle traversed by z2, the num-
ber of encircled electrons ( n ) ~ is diminished by the

0

fraction of electrons needed in the average to build the
quasihole, thus in this case

2 1
( )~nor p,R, —

0 m
(4.41)

(4.42)

Now, recalling the discussion in Sec. II, we see that the
two paths with particle z i respectively within and outside
the circle traversed by z2 belong to different homotopy
classes. If there are no other excitations present, the
difference in homotopy class is one unit. Because the
Berry phase (4.26) provides the spin-changing weights,
the exponential of the difference in phase between the
two cases gives us the weight g [Eq. (3.17)]. Comparing
the adiabatic propagator, Eqs. (4.23) and (4.26), with the
path integral (3.18) we find immediately that the
quasiholes have weights y [Eq. (3.17)] with

and therefore have spin and statistics I/m. Through
.similar arguments, quasiparticles can be shown to have
charge, spin and statistics with the same magnitude and
the opposite sign.

It has been suggested (Halperin, 1984) that these
features of the quasiparticle excitations, rather than be-
ing just a haphazard feature of the phenomenological
wave function (4.27), are at the origin of the fractional
quantum Hall effect —i.e., the observation of dissipation-
less current Aow for fractionally quantized values of the
Hall conductivity (von Klitzing et al. , 1980; Tsui et al. ,
1982; see also Prange and Crirvin, 1987). This claim has
been substantiated by the construction of effective field
theories (Girvin, 1986; Zhang et al. , 1989) that support
fractionally charged vortices which may be identified
with the quasiparticles discussed above and which
display superAuid behavior. Indeed, these theories have
been shown (Read, 1989; Zhang et al. , 1989) to repro-
duce the physics of the Laughlin wave function (4.27) and
the phenomenological features of the quantum Hall
effect.

It was later conjectured (Kalmeyer and Laughlin,
1987; Laughlin, 1988a, 1988b) that the superfiuid behav-
ior is a universal property of a gas of particles with frac-
tional statistics, and moreover that the same
mechanism —based on fractional statistics —is at the ori-
gin of the fractional quantum Hall effect and high-T,
superconductivity. The first part of this claim has been
supported by mean-field computations (Chen et al. , 1989;
Fetter et al. , 1989; Hanna et al. , 1989), in which a gas of
particles with fractional statistics is described by the
Hamiltonian (2.26), and the many-body statistics-
changing interaction M [Eq. (2.26)] is approximated by
an average mean field.

The application of these ideas to the high-T, copper-
oxide superconductors is still rather speculative and is
currently the subject of very intense theoretical work.
Recent reviews and more extensive lists of references are
given by Wilczek (1990a, 1990b). Although the phenom-
enological import of these investigations is still hard to
assess, input from condensed-matter physics has greatly
contributed to the development of the theory of fraction-
al spin and statistics.

V. RELATIVISTIC THEORIES

The construction of quantum-mechanical models with
fractional spin in the previous sections has been intrinsi-
cally nonrelativistic, in that we have repeatedly made use
of the peculiar structure of the spatial rotation group (for
spin) and of the fundamental group of the spatial
configuration space (for statistics), that is, we have tacitly
singled out the spatial coordinates. It turns out, howev-
er, that this assumption is not crucial, and relativistic
models with fractional spin and statistics may be con-
structed as well. In this section we shall first discuss the
general features of relativistic particle mechanics from a
general, group-theoretical viewpoint, then study the gen-
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eralization of the path-integral approach of Secs. II.C
and III to the relativistic case.

a b
(5.3)

A. The Lorentz and Poincard groups
in 2+1 dimensions

[8',R]= —ie'"8

[8' 8']=i e"8. ,

or, in covariant notation,

[I (pv) L (pv)] —
( pal (vp)+gvpl (po)

g apl ( vo ) g
vo.l (pp )

)

(5.2a)

This is the same as the Lie algebra of SL(2,E), hence the
two groups admit the same universal cover.

An SL(2,E) matrix is

7A true representation is one in which only the unity of the

group is mapped onto the identity transformation.

Fractional spin in two spatial dimensions is possible
because the rotation group, SO(2), is infinitely connected:
the group manifold is the circle S', and n((S')=Z. In
general, a wave function may provide a multivalued rep-
resentation of rotations, provided the multivaluedness is
contained in a phase (recall the discussion of Sec. III). A
wave function that carries fractional spin provides a mul-
tivalued representation of the group, in that a rotation of
2~ does not leave the wave function invariant, but rather,
it multiplies it by the phase e ' ~, according to Eq. (1.1).
This is possible only if the group is multiply connected.
Then the wave function provides a multivalued represen-
tation of the group or, equivalently, a true representa-
tion of its universal cover.

In a relativistic theory, rotations are a subgroup of the
Lorentz group, which in 2+ 1 dimensions is SO(2, 1). The
wave function must provide a representation of SO(2, 1)

up to a phase, i.e., either a multivalued representation of
SO(2, 1) with the multivaluedness contained in a phase, or
a true representation of its universal cover SO(2, 1). A
necessary condition for fractional spin is that the mani-
fold of the Lorentz group be infinitely connected, which
is sufhcient to insure that the group admits multivalued
representations. Furthermore, it is necessary that the re-
striction to the rotation subgroup of a multivalued repre-
sentation be multivalued, too, i.e., that the corresponding
submanifold be also infinitely connected.

Let us now take a closer look at SO(2, 1) (see, for exam-
ple, Wybourne, 1974). The generators in the fundamen-
tal representation are the 3 X 3 matrices

I-'" ' = —i(g" g' —g g" ) .p p p

The operator —,((I." ' —I. ' ")—=R generates the compact
rotation subgroup, while the operators —,'(1. ' ' 1.' ')—
=—B' generate the noncompact boosts. The Lie algebra is

where a, b, c,d are real numbers that satisfy ad —bc = 1.
This condition on the determinant of Eq. (5.3) can also be
written

'2
' a+d + b —c

2 2

2
b+c

2

2

(5.4)

Rg =mg

8+) =&(d +m)( —d +m +1)g +, ,

8 g =&(—8+m)(d +m +1)g

(5.5)

(5.6)

(5.7)

where the raising and lowering operators are defined in
terms of the boost generators as B—=B'+iB, and the
eigenvalue of 6 associated with a given irrep is d (d —1).

Representations may be classified by looking at the be-
havior of the above ladders of states for all possible
values of d. Clearly, if d =m mod(Z) the ladder (5.6),
(5.7) terminates, and there exist two sets of infinite-
dimensional irreps, according to whether the ladder is
unbounded from above (if all m & 0) or from below (if all
m (0); these are the so-called discrete series of represen-
tations (unitary if d&0). If d is integer or half-integer,
there also exist representations that are bounded both
from above and from below, found by setting
d =m mod(Z), but none is unitary. Finally, for
d Am mod(Z) there are irreps unbounded both from
above and from below, which are unitary either when
d = ,'+ia (for all—real o.&0) (principal series) or when

which is the equation of a three-dimensional one-sheeted
hyperboloid. Its section by the plane a —d =b +c=O is
a real circle, which in SO(2, 1) language corresponds to
the SO(2) subgroup generated by R, the rotation sub-
group. It follows that there indeed exist noncontractible
paths on the group manifold, namely, those that wind
around this circle: xi(SL(2,E))=n i(SO(2)) =Z.

We conclude that the group SO(2, 1) is infinitely con-
nected, and its multivalued representations correspond to
multivalued representations of rotations. Notice that if,
instead, we considered theories defined in Euclidean
space-time, the Lorentz group would be SO(3). The
group manifold of SO(3) is notoriously doubly connected
[the universal cover is SU(2)], ir)(SO(3))=Z2. This im-

plies that representations of SO(3) can only be single
valued or double valued, that is, that spin may be either
integer or half-integer: the Minkowski signature of the
metric is essential if we wish to consider fractional spin.

Irreducible representations (irreps) of SO(2, 1) may be
obtained by fixing the eigenvalue of the Casimir operator
6= (8 '

) + (8 ) Rand di—agonalizing, say, the rota-
tion generator R. By means of the algebra (5.2) it can be
shown that the spectrum of 8 is always given by a ladder
of states g that satisfy
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—,
' —

~j —
—,
'

~

& d & —,
' +

~j —
—,
'

~, where j—=I mod(Z) (supple-

mentary series).
All of the above are true representations of SQ(2, 1)

(rather than its cover) when m is chosen to be integer.
We conclude that SO(2, 1) has no finite-dimensional uni-
tary representations. Moreover, even if we are willing to
give up unitarity (after all, the usual spinor representa-
tion of the Lorentz group is not unitary), it can be shown
that there exist no true finite-dimensional matrix repre-
sentations of the universal cover SO(2, 1) (see Dubrovin
et al. , 1984). Indeed, the above enumeration shows that
the finite-dimensional representations are at most double
valued.

Therefore, if we insist that spin be fractional, we must
necessarily work with an infinite-dimensional representa-
tion of the Lorentz group, in general, or the rotation
group, in particular. Suppose we consider a system with
definite spin. Then the wave function carries an irrep of
SO(2, 1). In order to write the wave function explicitly we
have two alternatives: either we define an infinite-
component wave function or we stick to a wave function
that gives the trivial representation of SO(2, 1) (a scalar)
and we supplement it with a phase that has multivalued
transformation properties upon the action of SO(2, 1). In
the first case the wave function provides a true irrep of
SO(2, 1); in the latter case it provides a multivalued irrep
of SO(2, 1).

If g:q ~q~ is the action of the group on a point q that
belongs to the configuration space C, then the action of
the group on wave functions is given by
U(g) P(q)=P(q~), which provides a single-valued repre-
sentation if the action of g on C is single valued. A mul-
tivalued representation may be obtained by introducing a
phase (see, for example, Jackiw, 1985)

U(g) g(q)=e ' '
P(q~) . (5.8)

The group composition law for the operators
U:U(g, ) U(g2)= U(g, 2) implies that the phase co, must
be a one-cocycle phase, i.e., it must satisfy the constraint

In fact, we are only interested in a particular subclass
of cocycles co,(q;g): the phase in Eq. (5.8), which must
be multivalued upon rotations, should shift the spectrum
of the generator of rotations (the angular momentum)
without spoiling its conservation law. Therefore it is
sufficient that the phase (5.8) be due to the presence of a
multivalued prefactor in the wave function, as in Eq.

Notice that in the relativistic case the configuration space C
is given by Eq. (3.2) with d=3 and with Minkowski metric;
thus, for example, when n=1 in the nonrelativistic case, C is
the plane, whereas in the relativistic case it is 2+ 1 dimensional
space-time.

bcoi ——cubi(q;g2) —coi(q;gig2)+co&(q;g& ) =0

mod(2m. X integer ) . (5.9)

(3.21). In this case, the wave function can be written [cf.
Eq. (3.21)]

itj(q) = e ' f(q) (5.10)

in terms of a wave function g that carries a single-valued
irrep of SO(2, 1), and

co, (q;g) =no(q~) —ao(q):—bsao, (5.11)

which automatically satisfies condition (5.9). A cocycle
that admits the expression (5.11) is said to be trivial. In
our case, the cocycle must be only IocaOy trivial, that is,
if g =go is the identity of SQ(2, 1) but not the identity of
SO(2, 1), then

~i(q 'go)wo (5.12)

p = fpdt w(t) .

An expression for the cocycle is then

(5.13)

co,(q;g)=s j dt' w(t),
0

(5.14)

where, in terms of some reference configuration qo,
A(to)qo =q and A(t, )qo=q~. This definition satisfies all
the requirements on the cocycle (5.8): it is a multivalued
function, since the same point may be associated with an
infinity of different values of the integral (5.14) (differing

by s times an arbitrary integer according to how many
times the path winds) and, in agreement with Eq. (5.11),
it is associative along the path, i.e.,

although q =q. This is of course just a restatement of
the multivaluedness of the function ao. If point q is
brought back to the same location after traversing a
homotopically nontrivial path, the function ao does not
get back to its original value.

The function 0 [Eq. (2.22)] as used in Sec. III.C is an
explicit example of the function ao [Eq. (5.11)] for the ro-
tation group SO(2), and the wave function $0 [Eq. (3.21)]
carries a multivalued representation of SO(2) or
equivalently a true representation of its universal cover
SO(2). In that case, if g is a rotation of angle P, then
b,~ao=/3. We can construct an explicit expression of
b,~ao in the SQ(2, 1) case, too (see Forte and Jolicceur,
1991), by associating each element g&SO(2, 1) with a
path on the group manifold from a reference element
(say, the unity of the group) to the element
A(g)ESO(2, 1). Because of the infinite-valuedness of the
universal cover there is an infinity of g's that correspond
to the same A; however, to each g corresponds a distinct
path from unity to A, or rather, an equivalence class of
homotopic paths. Paths corresponding to difFerent g's as-
sociated with the same A are instead nonhomotopic.

Once we associate with A a path P, an expression of
the cocycle (5.11) is given by any local expression of the
winding number density along this path. If p is an in-
teger that labels homotopy classes of paths on the group
manifold, a local expression of the winding number den-
sity is a function w (t) along the path such that
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b, ' 'a=2!, '(b. 'a) .

An explicit expression of the function w (t) [Eq. (5.13)]
for a path originating from the identity of the group is

P„P"u(p)=m u(p),

e„P",'M—i'u(p)=msu (p) .

(5.18a)

(5.18b)

where R is the generator of the rotation subgroup of
SO(2, 1). Clearly, for a rotation of 2~p, use of this expres-
sion for ui in Eq. (5.13) gives the winding number p. For
an arbitrary closed path I' this is still true. One way of
seeing this is to decompose the instantaneous transforma-
tion A(t) into its rotation and boost components. The
winding number is then found by adding up the
infinitesimal rotational components along the path„and
the trace in Eq. (5.19) has precisely the eft'ect of project-
ing out the rotation component of the infinitesimal trans-
formations that build up A (see Forte and Jolicceur,
1991).

If we are interested in constructing relativistic one-
particle states, the Poincare, rather than the Lorentz,
group is relevant: indeed, general quantum-mechanical
principles tell us that a physical (on-shell) state must pro-
vide a unitary irreducible representation of the universal
covering of the Poincare group (Wigner, 1939; see also
Balachandran et al. , 1983). The Poincare group (see, for
example, Barut and Raczka, 1986) is the semidirect prod-
uct of the Lorentz group and the translatio~ group; in

2+1 dimensions it is the group ISO(2, 1)=R g SO(2, 1).

Its universal cover is ISO(2, 1)=lR g SO(2, 1). The Lie
algebra of ISO(2, 1) is generated by the three generators
I.'" ' of the Lorentz group and the three generators P" of
translations, and it is given by extending the I.orentz
algebra (5.2) by the further relations

[P",P ]=0, [L'" ', Pp]=i(P"g ~ Pg"P) . — (5.17)

The unitary irreps of ISO(2, 1) may be easily classified
and constructed (Binegar, 1982) through Wigner's
method of induced representations (see Barut and Racz-
ka, 1986). A complete classification is given by the set of
distinct orbits of a point p" ER under the action of
SO(2, 1), times all irreps of the subgroup of SO(2, 1) that
leaves p~ invariant (little group). Greneral quantum-
mechanical principles (Wigner, 1939) lead us to identify
p~, which belongs to the space spanned by group trans-
formations generated by the operators I'", with momen-
tum. The orbits of p" under Lorentz transformation are
classified by the value of p =m . The little group of p"
is the group of spatial rotations about p", i.e., SO(2),
whose representations are classified by the eigenvalue s of
its only generator. Physically, m is the mass and s the
spin of the particle.

The infinitesimal transformation laws for the states
u (p) of an irrep with mass m and spin s are determined
again by Wigner's method (Binegar, 1982). The mass and
spin are given by the eigenvalues of the Casimir opera-
tors,

The transformation of u (p) upon translation along
a "(ai'a„=1) is

e" 'u (p)=e "~'u (p);
its transformation under infinitesimal rotation is

(5.19)

e" u (p)=e"'u (e "p) (5.20)

and its transformation under an infinitesimal boost along
0'(0'0, =1) is

ab~
ieO 8 6 u&Pb

e ' u (p) =expise E+m
—ieO 8

u(e ' p), (5.21)

where we have denoted by E the time component of p„
(the energy). In the next section we shall work out expli-
cit examples of physical systems that provide representa-
tions of the Lorentz and Poincare groups and see that the
cocycle representations of the Lorentz group [Eqs.
(5.8) —(5.16)] automatically reproduce the irreps of the
Poincare group (5.19)—(5.21) when the states it(q) [Eq.
(5.10)] are momentum eigenstates.

B. Relativistic point particles

Among the difFerent approaches to fractional spin con-
sidered so far there is one that lends itself naturally to a
relativistic treatment, namely, adding to the Lagrangian
of an n-particle system the Hopf interaction [Eqs.
(2.38)—(2.41)], discussed in Sec. II. Indeed, it is clear that
the n-particle current jp' [Eq. (2.33)] is a Lorentz vector,
and both the Chem-Simons interaction [Eqs. (2.36) and
(2.37)] and the Hopf Lagrangian (2.48) are Lorentz sca-
lars. In the treatment of Sec. II.C the covariance of the
theory was broken by the choice of boundary conditions,
and led to a noncovariant expression of the spin-
changing interaction, Eq. (2.48), which endowed the
wave function of the system with a multivalued represen-
tation of the rotation group. Let us now see how a fully
relativistic treatment leads to the multivalued representa-
tions of the Lorentz and Poincare groups discussed in the

9As a matter of fact, because of the form {2.39} of the kernel
K", all indices are contracted with the tensor density e„~, and
it can be shown {see Forte, 1991a}that the Hopf Lagrangian is

actually invariant under general coordinate transformations
{Einstein scalar).
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dx~(t)
dt

(5.22)

where the two integrations run along the same curve x (s)
traversed by the particle, and $, t are invariant parameters
along the curve, for example the arc length
ds2=dx~dx "g„. Although the integrand in Eq. (5.22)
looks singular as s~t, if we expand x (s) in a Taylor
series in the vicinity of s = t we get (Calugareanu, 1959)

[x (s)—x (t) ]

= ——fs r[E — +O([s rJ ),1 x "(s)x (s)x'~(s) 2
OWi ~

(')i3

previous section.
Let us first consider the case of a one-particle system;

the extension to the many-particle case and its implica-
tion for the spin-statistics relation will be discussed in the
next section. We look at a theory of particles interacting
through the Hopf Lagrangian (2.38). In the one-particle
case, this reduces to

dx~(s) [x(s)—x(t)]IH= d$ dt 6'
4ir " d& ~x (s) —x (r)

~

FIG. 10. Framing x, of a curve x.

we recover Gauss's integral (5.22), evaluated for the two
curves x and x„which, as shown in Sec. II.C, is propor-
tional to their linking number I; let us call this I,. Ac-
cording to Eq. (2.49)

I,=/@, (5.26)

where l is an integer for closed paths (recall Fig. 2). For
e sufficiently small, l does not depend on e (see Fig. 10),
and we can take e—+0 in Eq. (5.26). Of course, l depends
on the choice of framing, i.e., on the choice of n [Eq.
(5.24)]. If n is the principal normal, defined in terms of
the tangent e as

(5.23)
e"nP= ~ eP= (5.27)

where the dot denotes diIterentiation with respect to s.
This expression is O(~s —t~) as s~t, implying that the
integrand is not only regular but actually vanishing when
$ ~t.

The integral (5.22) may be computed explicitly [(Calu-
gareanu, 1959; Pohl, 1968); a "physicist's" discussion is
given by Frank-Kamenetskii and Vologodskii (1981; see
also Tze, 1988)] by introducing a framing of the curve
x (s), i.e., by defining a new curve

then 1 is called the self linking nu-mber of the curve (Pohl,
1968)." Clearly, this cannot be equal to IH [Eq. (5.25)],
that is, lim, Q,WIH, because i [Eq. (5.26)] is manifestly
framing dependent, while IH must be a framing-
independent quantity.

This means that the integral and the limit in Eq. (5.25)
do not comIIlute. The noncommutativity 1s glveIl by
(Calugareanu, 1959)

x", (s)=x "(s)+en "(s), (5.24) IH —1&9= —@j e„e"nds p dnP
(5.28)

where n" satisfies n n=1, n.dx/d$=0, and e—+0. In
this approach IH [Eq. (5.22)] is written as

dx", (s) [x,(s) —x(t)]" dxp(r)
IH = ds dt lim e„4' ~ o "~ ds ~x (s) —x(t)~3

(5.25)

If we take the limit out of the integral sign in Eq. (5.25)

where e is as in Eq. (5.27). Rewriting Eq. (5.28) as

IH =4(l —r),
dS b.n
2m

(S.29)

(5.30)

(5.31)

The possibility of formulating the propagator for relativistic
spinning particles in terms of a bosonic path integral with a
Chem-Simons coupling was first proven by Polyakov (1988, see
also 1989), who laid the bases of the theory, in the spin- —' case.
The quantization of relativistic particles with arbitrary fraction-
al statistics is discussed by de Sousa Gerbert (1990) from a
canonical point of view, using the general formalism of
Balachandran et al. (1983). The path integral with arbitrary
statistics in the n-particle case is worked out by Forte (1991c).
The formal theory of spin and statistics superselection sectors is
developed by Frohlich and Marchetti (1989) and Frohlich, Gab-
biani, and Marchetti (1989).

' Strictly speaking this terminology applies to the case of an
Euclidean metric, i.e., to the case of curves in three-dimensional
space, rather than 2+1-dimensional space-time. There is, how-
ever, no obstacle to defining linking, self-linking, etc. for a Min-
kowski metric, either by performing the computations in Eu-
clidean space and Wick-rotating the result by supplementing
appropriate factors of i, or by performing the computation in
Minkowski space directly. It is, for instance, straightforward to
verify that the computation of the linking number (2.45) —(2.48)
goes through regardless of the signature of the metric; the same
applies to the results discussed here. In order to facilitate the
geometrical understanding of the results we shall stick to the
usual Euclidean terminology.
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shows that if n =n~ [Eq. (5.27)], then b [Eq. (5.31)] is the
binormal vector and r [Eq. (5.30)] is the torsion of the
curve.

Upon changes of framing, the variation of the total
torsion ~ is exactly equal to that of the self-linking I, thus
leading to a framing-independent value of III. The
difference of linking number and torsion in Eq. (5.29) is
called the cotorsion or tarithing number of the curve.
Equations (5.29) —(5.31) imply that the writhing number
is a functional of the time evolution of the moving
frame' of vectors e(s), n(s), b(s). Because of its fram-
ing independence, however, the writhing number may be
expressed as a function of the tangent vector only. If we
set

coshO

e"(s)= sinhO sing
sinh8 cosP

then it can be shown (Forte, 1991c)that

(5.32)

IH = —0& f P cosh' — I [n] (5.33)

Here Is [n] are functions of the form (2.46), evaluated for
the pair of curves formed by x and its framing, x, =x,
x.=x„and also depend on the framing vector n. For a
closed path the terms I vanish; for an open path they
depend on the boundary conditions imposed on the frame
at the endpoints of the path and may be set to zero by a
choice of boundary conditions (Forte, 1991c). These
terms are present because for an open path there is a cer-
tain ambiguity in defining the tangent to the path at its
endpoints. They do not aA'ect the Lorentz transforma-
tion properties of the theory and will be neglected hence-
forth.

Equation (5.33) shows that (because of the factor of
coshO), even for a closed path, the writhing number need
not be an integer, while the linking number necessarily is.
Clearly, IH is a kind of relativistic generalization of the 0
term (3.18): in the nonrelativistic limit the tangent vector
is e"= (1,0,0), that is, 0 =0 and IH reduces to a polar an-

gle in the space plane. However, the nonrelativistic 0
was defined as the polar angle of a two-particle relative
coordinate, whereas Eq. (5.33) holds for a one-particle
system. Indeed, as a function of e, IH is singular when

e=(1,0,0), as is apparent if we write

I~= — ds .A' e2' ds
(5.34)

where

e,&e e0 6

J'[e]= 0, — o 2((e )'—1)
(5.35)

is the potential of a Dirac monopole in e space, with two
Dirac strings going through the north and south poles
(see Balachandran et al. , 1983).

This singularity has a geometrical meaning (Pohl,
1968; in this context see Forte, 1991c). Suppose we com-
pute I~ with the canonical Frenet framing (5.27). Then
the writhing number is the diA'erence of the torsion and
the self-linking of the curve. Now, the torsion is a
smooth function of the shape of the curve: a small defor-
mation of the curve results in a small variation of the tor-
sion. The self-linking, instead, takes only integer values
and may jump one unit upon arbitrarily small deforma-
tions of the curve; thus the same must be true for the
writhing number, independently of the framing we use to
compute it. When written as a functional of e(s), the
writhing number is a function of the path traversed by e.
Because e is timelike, it spans the upper sheet of a two-
sheeted hyperboloid (which we may parametrize by 0 and
P). The fundamental group of this manifold is trivial,
i.e., all paths on it are homotopic. Thus IH as a function
of this path must have singularities if it is to vary discon-
tinuously upon small deformations of a smooth path.
Notice that there need be no singularity if the writing is
expressed, instead, as a function of the path traversed by
a spacelike vector (like n): this spans a one-sheeted hy-
perboloid, which is homotopically nontrivial. Therefore
the writhing can be written as a regular function as soon
as we introduce an n vector along the path, i.e., a fram-
ing.

This argument also shows that, although IH has singu-
larities as a function of the path traversed by e [Eq.
(5.34)], it is regular and well defined as a function of the
path x (s) itself and its derivatives, and as such it may be
used as an action in a path integral. Choosing for
definiteness the canonical Frenet framing, we have the
path-integral expression for the propagator

K(q', s', q, s)= f g Dq'"'(so)
q(s) =q;q(s') =q'

i (1|j(s')+2~n )2' exp i f dsoII. O[q(so)] —@r[e]]
S

—i g(s)
2m (5.36)

where ~ is the torsion of the path, L0 is the Lagrangian of
the theory without Hopf term, and P is the multivalued
polar angle of the projection of the principal normal on
the plane orthogonal to e. The path integration runs

r
over all possible paths from q to q', including those
which go backwards in time. ' This means that the
tangent vector e [Eq. (5.32)] may be spacelike; hence 8
might be imaginary.

If n = n~ this is the usual Frenet frame along the path. The rigorous derivation of a path integral of the form (5.36)

Rev. Mod. Phys. , Vol. 64, No. 1, January 1992



Stefano Forte: Fractional spin and statistics 217

f pds A '[e]= fdS "e„~r) A
' [e] .

ds
(5.37)

Nevertheless, given the wave function P(q) propagated
by the path integral (5.36), we may define a new wave
function Po which depends not only on the point q H C,
but also on a path that joins a reference point qo to q
(Forte, 199lc):

from the scaling limit of a sum over random walks, as well as a
discussion of the scaling properties of random paths for a spin-
ning particle, is given (in the spin- — case) by Ambj@rn,

Durhuus, and Jonsson (1989) (in four dimensions) and
Jaroszewicz and Kurzepa (1991) (in arbitrary dimension).

' The proof that paths can be classified according to their
self-linking number, as well as the topological interpretation of
the latter, is nontrivial and relies on somewhat more advanced
arguments in homology theory. Roughly speaking, the self-
linking is related to the number of times the path intersects the
surface formed by the envelope of its tangents; as such, it is re-
lated to the "knottedness" of the path. A detailed discussion is
given by Pohl (1968).

Equation (5.36) shows that the addition of the Hopf in-
teraction (5.22) to the one-particle Lagrangian Lo(q) has
a twofold effect; not only are the paths weighted with a
multivalued topological phase which depends only on the
endpoints (as in the nonrelativistic case), but they also re-
ceive a weight related to their torsion r [Eq. (5.30)]. The
sum over the integer n in the path integral (5.36) is not
related to a classification of paths into homotopy classes:
indeed, in the one-particle sector, the configuration space
is just C =R (with Minkowski metric), which is homo-
topically trivial (all paths are homotopically connected).
Rather, paths are classified according to their self-linking
number and assigned weights y [Eq. (3.17)] which repro-
duce the sum over n in Eq. (5.36) (as in the nonrelativistic
case) according to their self-linking class. ' The measure
of integration over paths of the nth self-linking class
Dq'"' may in practice be rather complicated; for practical
purposes different parametrizations and classifications of
paths (corresponding to different choices of framing) may
be more manageable (see Forte, 1991c).

We are now ready to show that the Hopf interaction
endows the particle with spin s = —+/2~, as one would
expect comparing Eq. (5.36) to the nonrelativistic propa-
gator (3.20). It is clear that the nonrelativistic construc-
tion cannot be reproduced literally, since the effect of the
Hopf term is not merely to endow the path integral with
the integral of a total derivative, as would necessarily be
the case if the action (5.33) were due to homotopy
weights [cf. Eq. (3.17)]. Rather, the writhing (5.33) may
be viewed as a Wess-Zumino term (see, for example,
Jackiw, 1985), i.e, as a total derivative in one dimension
more. For a closed path, use of Stokes's theorem leads to

i 0& (q)
'(('o(q) =e ' P(q), (5.38)

Op (q)= f dq', A'[e] .
qp p dq

(5.39)

Since the wave function must describe a state of a physi-
cal system, the requirement that boundary conditions be
imposed on a spacelike surface, as dictated by causality,
implies that the path Pp must be contained in a spacelike
surface. Furthermore, if we wish that the choice of path
Po be immaterial, the curve must be planar, since in that
case the difference in phase for two different paths Po Po
vanishes. Indeed, thanks to Eq. (5.37), if So is a surface
bound by Po and Po,

Op (q) —0, (q)= f d coshOdg, (5.40)

which vanishes because for a planar curve d cosh'=0.
Without loss of generality, we may therefore take the
path Po to be a straight line joining spatial infinity to q
along a spacelike plane. '

Patterning after the nonrelativistic case, we should
now like to interpret the set of paths Po(q) as a mesh
over space-time (cf. Sec. III.A). For this purpose, we
must connect the paths Po and P at q in such a way that
the tangent at q is smooth, because the writhing number
depends on the tangent, rather than on the path itself.
We can do this by positing that, given the tangent
e (0,$ ) to the path at q, (a) Po is the line from infinity
to q on some spacelike surface along P=Pz,' (b) the
tangent to Po at q is joined to e~ by keeping p=p~ and
varying 8 [see Fig. 11(a)]. The corresponding path of
tangent vectors e [shown in Fig. 11(b)] may be realized by
deforming the end of the path P at q.

With this prescription the torsion (which is a function
of e only) vanishes along Po (see Fig. 11). This allows one
to express the writhing number of an arbitrary open path
P(q, q') in terms of the writhing number of the closed
path Po(q)P(q, q')Po (q') (using the notation introduced
in Sec. III.A). Furthermore, the wave function go [Eq.
(5.38)] is propagated (Forte, 1991c) by the path integral

Eo of the theory without Hopf term, in that the propaga-
tion of the phase Oz localized on a path automatically

0

produces the topological contribution to the action in the
path integral (5.36). Therefore, as usual, the eft'ects of the
topological interaction may be viewed in a dual way, ei-
ther as a modification of the propagator or as a
modification of the wave function.

It should be observed that the phase (5.39) is a function

tsQuite in general it may be shown (Zaccaria et al. , 1983;
Balachandran et aI., 1987) that the effects of the addition of a
Wess-Zumino term to the action may be reproduced by a wave
function localized on a path. The fact that wave functions with
fractional spin must be localized on a spacelike line was first
proven by Frohlich and Marchetti (1989; see also Frohlich,
Gabbiani, and Marchetti, 1989).
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the winding number from the path we are considering:

1 AB,
~, (q, g) =—J ds tr(A' 'A'R ),

2/ B~
(5.43)

FICz. 11. Calculation of the writhing number of an open curve:
(a) an open curve in space-time (solid line) is closed through a
torsionless mesh (dashed line); (b) path of the tangent vector
corresponding to the curve (solid line} and the mesh (dashed
line) of Fig. (a). The Euclidean (rather than Minkowski)
tangent is shown for simplicity.

of the tangent to the path. At the endpoints of the path
itself the tangent is uniquely defined by the boundary
conditions only if the initial and final states are momen-
tum eigenstates: if 1t is an eigenstate of momentum p,
then the tangent to the path at q is fixed and parallel to p.
If, instead, g is a position eigenstate, or generally a super-
position of momentum eigenstates, it should be written as
a superposition of momentum eigenstates each of which
carries a phase [Eqs. (5.38) and (5.39)].

Because the wave function go has the "bosonic" dy-
namics defined by Ko, the fractionization of its angular
momentum is due to the boundary conditions, that is, go
provides a multivalued representation of SO(2, 1) (Forte,
1991c). By construction, the wave function g in Eq.
(5.38) is single valued, and the function O~ plays the role

of the multivalued phase ao [Eq. (5.10)]. This means that
upon Lorentz transformation Oz produces the cocycle

0

co& [Eq. (5.14)]. Indeed, upon Lorentz transformation by
A H SO(2, 1) we have

O~ (Aq) = J dq', .3 '[e]=O~ (q)+co, (q, g),
qo 8q

(5.41)

co, (q,g)= I dq', A'[e] .
q 8q

The integration (5.42) runs over a path of tangent vec-
tors obtained by acting on e (q) with the path of matrices
A(s) which corresponds to the given element of SO(2, 1)
[see the general discussion of the cocycle (5.14)]. The in-
tegral (5.42) is the writhing number of a path whose
tangent vector is e (s) =A(s)e (q), and it can be written, as
usual, as the difterence of torsion and self-linking of this
path. Now, the torsion is a smooth, single-valued func-
tion of the path; therefore it transforms covariantly. Al-
though its presence may aAect the dynamics described by
the wave function $0, it does not modify its Lorentz
transformation properties. Let us concentrate, therefore,
on the self-linking. This is the integral along the path of
the polar component of the projection of n on the normal
plane to e. For the path that we are considering this is
the instantaneous rate of rotation of n around the comov-
ing e axis; but this is, by definition, the contribution to

where 8, is the boost that takes the unit vector t = (1,0,0)
into e: B,t =e.

This proves that the wave function Po [Eq. (5.38)] car-
ries a multivalued representation of SO(2, 1) (see Forte,
1991c, for a more explicit proof), and, because the angu-
lar momentum operator acting on it is the canonical one,
it carries fractional angular momentum. If we consider
in particular a state with definite momentum p, the
tangent vector e is parallel to p, and the transformations
laws take the simple form of Eq. (5.20) and (5.21), as ex-
pected on group-theoretical grounds. The transforma-
tion law under rotations (5.20) is trivial to verify, because
if R~ is a rotation by angle P, then (R~) 'R~=2iPR.
The transformation upon a boost B is easily found by
noting that (Forte and Jolico=ur, 1991;Forte, 1991c}

tr(A' 'A'R)i~ '=Pcosh8i~ '

~ab e b

=(Be —e )'
e'+l (5.44)

(5.45)

it is clear that this cannot be done without modifying the
rest of the Poincare generators, if relativistic covariance
is to be preserved.

Indeed, in the nonrelativistic case the multivalued
phase 0 [Eq. (3.21)] can be absorbed in a redefinition of
the angular momentum according to

oq
'

o(
—i(@/2m. )oq)

i9$y . (5.46)

J=J —---
27T

(5.47)

As shown by Eq. (5.20), Eq. (5.46) holds for the relativis-

The form (5.21) of the phase follows immediately, since
e =p/I for momentum eigenstates. This shows that
the phases (5.20), (5.21) are reproduced by the cocycle
(5.16) when the latter is evaluated for a momentum eigen-
state, as claimed at the end of Sec. V.A.

To summarize, if the theory is formulated in terms of
the wave function go [Eq. (5.38}],fractionization of spin
follows from the Lorentz transformation properties of
the multivalued phase Oz [Eq. (5.39)]. If, instead, the

0

theory is formulated in terms of the single-valued wave
function P and the path integral (5.36), fractional spin
must follow from a modification of the canonical angular
momentum due to the topological interaction terms in
Eq (5.36). Whereas it is easy to verify that (as in the non-
relativistic case) the topological interaction shifts the
canonical angular momentum Jo by an additive constant,
as in Eq. (2.50),
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i(N/2m. )00 B=e

e ~'bPb

2mP +I

(5.48)

(5.49)

It can be verified explicitly that the topological interac-
tion modifies the canonical currents Mop ' according to
Eqs. (5.47) and (5.49), while leaving I' invariant, i.e., in
covariant notation,

pp+ t pmpp pp. ~(pv) ~(pv) &pvp
P +™

2m P.t +m (5.50)

where t=(1,0,0) The. covariance of both theories entails
the somewhat unexpected result that there exists a
redefinition of the Poincare generators, given by Eq.
(S.50), that preserves the algebra while shifting the spec-
trum of the angular momentum. This is actually a
known. fact (Jackiw and Nair, 1991a, 1991b), although
not an obvious one.

C. Many-particle states, spin,
and statistics

In the previous section we have seen that the addition
of a Hopf term to a theory of relativistic particles endows
the one-particle sector of the theory with fractional spin.
We can now look at the many-particle case by simply let-

tic wave function (5.38), (5.41) and cocycle OB as well.

However, S~ is noninvariant upon boosts, because of
0

Eqs. (5.44) and (5.21). Yet, the noninvariance may be ex-
pressed fully in terms of Poincare generators, and this
makes an analogous redefinition possible (Forte, 1991c):

b~
iW Bo iW Bo (p ~ apb

e ' 0=e ' exp —i
2]r E+m

n @ n i —1

IH = g IH [x; ]+2 g g I;, ,
i =1 i =1 j=l

(S.51)

which contains two diff'erent kind of terms (Frohlich and
Marchetti, 1989): n one-particle (diagonal) terms IH,
given by Eq. (5.22), and n (n —1) two-particle (oft'-

diagonal) terms I;~ of the form (2.42).
The diagonal terms have the properties we discussed

extensively in the previous section in the one-particle
case. The ofF-diagonal terms were discussed in the nonre-
lativistic case. The treatment of these terms in Sec. II.C
is actually Lorentz covariant. The explicit invariance is
broken by the choice of boundary conditions when com-
puting the Gauss integral (2.42). However, Lorentz co-
variance is preserved. If, for example, we impose on the
path integral boundary conditions at fixed time by requir-
ing the in and out states to be ( x; t~]/i;, ) =]/t;, (x; t), then,
upon Lorentz transformation by A, the in and Out states
become (Ax; At~]/i;, ) =]/i;, (Ax; At). Furthermore, the
only efFect of the linking number terms is to endow the
path integral with the multivalued phases 0; that de-
pend only on the endpoints of the path (see Sec. III.C).
In a relativistic treatment, these phases are defined as po-
lar angles on the arbitrary spacelike plane on which
boundary conditions at initial and final times are im-
posed. Without further ado, we can give to all the results
derived in the nonrelativistic case in Sec. III.C a
Lorentz-covariant interpretation.

Explicitly, the n-particle propagator from
]/i (x], x t )to Qf (x] x'tf ) has the form
(Forte, 1991c)

ting j"be an n-particle current, according to Eq. (2.33).
Substituting this expression of the current in the Hopf
action when n ) 1, we obtain

K t I ~ p ~ ~ j(X]y y Xnt tf yx]y y X~yti )

K(x]y ~ y Xgytf9X]7 7 Xnpti )

n" (iWj)= —oo
IJ

exp i o g 8;—, (tf )+2~n;i
l WJ

XK ( x ], . . . , xn,
' tf ', x ], . . . , x~

', t; )exp l 0' g 0"
( ( t; )

l WJ

oo n nI + Dx;(to) exp is g ]/i, (tf )+—2~n,
n n

(5.52)

tf n

Xexp i dto Io(x](to), . . . , x](to))+2ris g r;[e;]
t

t i=1

Xexp is g ]/j;(t;) (5.53)

Here o. =s = —N/2m. , the two parameters have been dis-
tinguished for reasons that will become clear shortly.
The integration is performed over all n-particle paths
with the boundary conditions specified above. To simpli-
fy the notation we have left implicit that for each value of
n," and n; only paths with the corresponding linking and

self-linking are to be integrated over. The diagonal terms
contribute to the sum over paths the weights proportion-
al to the torsion r and the self-linking phases ]/i. These
terms are both inside the path integral, if boundary con-
ditions corresponding to position eigenstates are im-

posed, since in this case all (timelike) values of the
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tangent to the path at the endpoints contribute to the in-
tegral. The nondiagonal terms contribute the additional
phases 0;J, which are (with position-space boundary con-
ditions) outside the integral (i.e., fixed by the boundary
conditions). The functions 0;. are defined as polar angles
(2.22) on the spacelike plane on which boundary condi-
tions are imposed (a space plane at fixed time, in the ex-
ample at hand). Notice that the coefficients of the diago-
nal phases g, and the off-diagonal phases 0; are the
same, and both are equal to the coeKcient of the torsion.

The various interaction terms induced by the Hopf
term in the path integral (5.53) may be, as usual, ab-
sorbed in a redefinition of the wave function of the form
{Forte, 199lc)

italo(x„. . . , x„;t)=exp 2ia g g 0;J(t)
i =1 j=1

XJ dk„. . . , dk,
1 n

X exp is g—Op (k, )

(5.54)

where the phases 0 and Sp are given by Eqs. (3.22) and
0

(5.39), respectively. The phase (3.22) is defined in posi-
tion space and is evaluated for each pair of particles
along the paths Po associated with the two particles. The
phase Op is defined in momentum space (the space of

0

tangent vectors to the path), and for a position eigenstate
must be defined by expanding g in momentum eigen-
states, as indicated in Eq. (5.54). This procedure parallels
that of constructing one-particle position-space solutions
to the Dirac equation: the general solution is found by
expanding in plane waves and weighting each plane wave
of fixed momentum with the spinor that solves the per-
tinent Dirac equation in momentum space.

Upon Lorentz transformation each phase Oz trans-
0

forms with the cocycle (5.43). Furthermore, it is clear
that the same argument used to derive the transforma-
tion properties of 0& implies that the phase 0; de6ned

on the spacelike surface orthogonal to a timelike vector n
transforms with the cocycle (5.43), with the replacement
e~n: in fact, these two phases are due to one and the
same object, the linking number density (2.45), comput-
ed, respectively, for a pair of paths i,j or for the ith path
and its canonical Frenet framing. To summarize, upon
Lorentz transformation the wave function acquires n

copies of the Fourier transform of the cocycle (5.43),
evaluated for all e =plm, and n (n —1) copies of the co-
cycle (5.43), evaluated for e =n. Upon spatial rotation,
in particular, the wave function acquires a phase (5.46)
(the same for all the contributions to the cocycle) which
shifts the angular momentum according to (Thouless and
Wu, 1985; Frohlich and Marchetti, 1989)

J=JO+[n+n(n —1)]s =Jo+n s . (5.55)

The somewhat haphazard-looking path integral (5.53)
and wave function (5.54) actually have a very simple
physical interpretation {Polyakov, 1988; Forte, 1991c),
which is perhaps best understood by comparison to the
usual spin- —,

' case. First, let us look at the diagonal terms,
which are related to the one-particle dynamics. The mul-
tivalued phases f have the role of generating the cocycle
(5.43) upon Lorentz transformation of on-shell momen-
tum eigenstates; they play the same role as the de6nite-
momentum spinors u (p), in that an on-shell one-particle
state is a Fourier superposition of plane waves multiplied
by the appropriate phase, or spinor, respectively. The
pertinent contribution to the angular momentum spec-
trum has the form of an intrinsic angular momentum,
since it is independent of the choice of the origin. The
torsion terms in the path integral provide the kinetic
term that describes the spin dynamics. Indeed, it has
been shown explicitly by Nielsen and Rohrlich (1988) and
Johnson (1989) that the action (5.34) used in a path in-
tegral, with the choice s =

—,', leads to the correct canoni-
cal quantization of e/2, interpreted as a spin degree of
freedom. '

The nondiagonal terms, instead, appear at the level of
the n-particle position-space wave function. Upon
Lorentz transformation they produce a cocycle that de-
pends on the choice of the (spacelike) plane of quantiza-
tion, i.e., on the form of the wave function. In particular,
the cocycle determines a shift in the angular Inomentum
spectrum due to the relative orbital angular momentum
of each pair of particles. Indeed, suppose we let particles
i and j rotate about their center of mass while keeping
the other particles fixed. This rotation may be realized
by acting on the wave function with the operator

EEgb X) b +Xj
Bx; '

c)x~

=e "g( Rx Rx ) (5.56)

In the construction of a spin path integral from first princi-
ples the inclusion of the multivalued "self-linking" phase ap-
pears to be inevitable if the correct S-matrix elements are to be
obtained. The need for a multivalued phase may be understood
as the consequence of the fact that the coherence effects that
yield the desired quantization rules are effective only if one
path-integrates over a noncompact phase space (I thank K.
Johnson for pointing this out to me). This dynamical result
complements the purely group-theoretical (kinematical) one ac-
cording to which the multivaluedness is needed in order to ob-
tain multivalued representations of SO(2, 1}.

and the corresponding cocycle produces a phase propor-
tional to the angle of rotation P:

i PI.
& +Ite ~10(. . . , x;, . . . , xj, . . . )
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where A~ is the rotation matrix of angle P. Since the
generator of rotations of x; and x, L„ is the orbital an-

l J
gular momentum operator for the pair of particles x;, x,
the phase in Eq. (5.56) corresponds to a contribution of
2sI3 to the total orbital angular momentum (Forte and
Jolicceur, 1991).

In the customary spin- —,
' case, the phases 8;~ represent

just the antisymmetrization of the wave function with
respect to all pairs of particles: if we interchange parti-
cles i and j by means of a rotation of m, Eq. (5.56) shows
that when s =

—,
' the wave function is antisymmetrized

upon interchange. For arbitrary fractional spin the wave
function is "symmetrized" with phases, rather than just
factors of +1, and upon interchange acquire a phase ac-
cording to Eq (5.56), i.e., it carries fractional statistics.
Notice that if s is not quantized in half-integer units the
statistics phase depends on whether the interchange is
realized through a clockwise or counterclockwise rota-
tion. Of course, this just means that the wave function
on a spacelike plane carries a representation of the braid
group, rather than the permutation group, as discussed in
Sec III.C.

All this implies that there is a natural spin-statistics re-
lation in the theory we are discussing. In a 2+ 1-
dimensional quantum-mechanical theory there are gen-
erally two distinct relations between statistics and angu-
lar momentum (Forte and Joliccmur, 1991). The first is
expressed by Eq. (5.56), and it is always true —it follows
from the identification of the orbital angular momentum
operator L„„asthe generator of rotations of particles ~',jj
about each other. It states that the statistics cr [Eq. (1.2)]
is equal to (one-halfl the spectrum of the orbital angular
momentum operator L modulo integer. The second is

l J
the relation between the statistics phase [Eqs. (1.2) and
(5.56)] and the phase acquired by a one-particle state
upon rotation, modulo integer. The latter is the
coefficient of the one-particle cocycle (5.42), and, as dis-
cussed above, it coincides with the particle s spin s in
Eqs. (5.53) and (5.54). This last relation is what is usually
referred to, and what we shall call, the spin-statistics re-
lation: it is, in the general n-particle case, a relationship
between the coefficients o and s in the path integral [Eqs.
(5.52) and (5.53)] and wave function (5.54). The spin-
statistics theorem states that, for boson and fermion
fields, cr=s mod(Z) if the underlying relativistic field
theory is to be local; in a first-quantized theory (quantum
mechanics), however, it may or may not be verified. For
a generic theory of particles with spin s and statistics o.

the orbital angular momentum L, spin S, and total angu-
lar momentum Jof an n-particle state are thus

theory the spin-statistics theorem o.=s is automatically
satisfied (Frohlich and Marchetti, 1989).

To summarize, the relativistic treatment of the Hopf
interaction (5.22) leads naturally to the dynamics associ-
ated with spin degrees of freedom in 2+1 dimensions.
The action (5.34) that determines this dynamics is intrin-
sically relativistic, in that it requires that the particle's
paths be viewed as paths in 2+ 1-dimensional Minkowski
space-time. The spin degrees of freedom are coupled to
the translational degrees of freedom, as one would expect
in a relativistic theory, because the spin action is a func-
tion of the tangent vector to the particle paths. Since
semiclassically the tangent to the path is identified with
the particle momentum, the semiclassical spin vector
along the path is always parallel to the momentum (this
can be shown to follow directly from the semiclassical
limit of the Dirac propagator; see Coste and Luscher,
1989).

The "diagonal" terms IH [Eq. (5.51)] that determine
the spin dynamics cannot be disposed of in a relativistic
theory (contrary to the nonrelativistic case; cf. Sec. II).
Because paths contributing to the path integral can go
both forward and backward in time, intermediate states
corresponding to propagation of an n-particle state may
contain an arbitrary number of particles k & n (Fig. 12).
This implies that there is no universal way of defining the
two-particle braiding phases O,J [Eq. (3.17)] used in the
nonrelativistic construction: both the braiding and the
self-linking phases must be included at once. Indeed, one
would expect the self-linking phases to be responsible for
the nontrivial relativistic spin dynamics, as is the case for
fermions. For instance, this term leads to the Pauli cou-
pling of spin to the magnetic field once the particle is
coupled to an electromagnetic field (Cortes et a/. , 1991).

This concludes our discussion of the theory of relativis-
tic particles with fractional statistics obtained by cou-
pling the particle's current through a Hopf interaction.
No proof is as yet available that the path integral [Eqs.
(5.52) and (5.53)] (even with crWs) is the most general one
for relativistic particles with fractional spin and statistics,
contrary to the nonrelativistic case (3.18), although this
seems plausible.

In the spin- —,
' case the present approach to the theory

of relativistic spinning particles yields the same results as
the usual Dirac theory. For example, the propagator
(5.36) can be shown to coincide with the usual Dirac
propagator (Polyakov, 1988, 1989; Ambjdrn, Durhuus,

L =n(n —1)a+8, PEZ,

S=ns, J=L+S .
(5.57)

Comparing Eq. (5.55) with Eq. (5.57), we see that in our
FIG. 12. A three-particle state obtained as a section of a single
space-time path by a spacelike plane.
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Pi'(M'I'5„„, +M~~/'5 &)Fg(x) =msF„(x) . (5.58)

The value of the spin s in Eq. (5.58) is fixed in terms of
the value of d that characterizes the infinite-dimensional
irrep [cf. Eqs. (5.5) —(5.7)] as s = 1 —d.

In order to project out the physical degrees of freedom,

and Jonsson, 1989; Orland, 1989)—it is actually in this
particular case that the theory was first developed. The
possibility of trading the rnultivaluedness of the wave
function for a long-range interaction, once rephrased in
terms of spinor fields, allows one to establish an isomor-
phism between a bosonic theory and a fermionic one, i.e.,
a bosonization in 2+ 1 dimensions (Liischer, 1989;
Ambjdrn and Semenoff; 1989). The equivalence with the
Dirac formalism, as well as the numerous developments
of the quantum theory that this equivalence makes possi-
ble, have spawned an extended literature (see Jaroszewicz
and Kurzepa, 1991,and references therein).

Of course, a quite difT'erent approach to relativistic
theory is possible: rather than starting with the path in-
tegral, one can start with the Schrodinger equation, or
rather, the Dirac equation, adapted to the case of frac-
tional statistics (Jackiw and Nair, 1991a, 1991b). The ad-
vantage of this approach is that it disposes with the
cumbersome cocycle formalism. One straightforward
way of writing this equation is to postulate, according to
Wigner (1939, see also Balachandran et al. , 1983), that
the one-particle states provide irreps of the Poincare
group. In this case the equations of motion reduce to just
the two equations (5.18)—the mass-shell condition (5.18a)
and the spin condition (5.18b). There is an important
ambiguity in this procedure, namely, that of choosing the
representation space (necessarily infinite-dimensional) in
which the wave functions live. Moreover, a purely
group-theoretical approach does not give us any clue as
to the construction of the covariant field theory. Pattern-
ing after the familiar integer or half-integer spin cases,
the covariant fields should provide a linear representation
of the Lorentz group and a generally reducible represen-
tation of the Poincare group, whereas the equation of
motion should project out the Poincare irreps. Al-
though, in principle, the path integral of the theory
should contain all the relevant dynamical information, it
is in practice rather unmanageable: compare, for exam-
ple, the task of computing a fermion-fermion scattering
amplitude from the path integral [Eqs. (5.52) and (5.53)j
rather than from the 2+ 1-dimensional Dirac equation.

A dynamical equation that satisfies these requirements
has been proposed recently (Jackiw and Nair, 1991a,
199lb). The wave functions are chosen to be of the
spinor-vector form: F„"(x),where p is a vector index and
0~ n ~ oo runs over an infinite-dimensional irrep bound-
ed either below or above of SO(2, 1) (cf. Sec II.A). Then
the spin condition (Pauli-Lubanski equation), Eq. (5.18b),
is imposed on I'I'. Setting I'„=iB„, the generator of
space translations, and M'" ' the Lorentz generators in
the tensor product of the spaces spanned by the indices p
and n in Eq. (5.18b), one obtains

two additional subsidiary conditions have to be imposed,
namely (Jackiw and Nair, 1991a, 1991b),

P M'~'F (x)=0P n

&~ P M'-'Fi'(x)=O.
VP CK n

(5.59)

By expanding the solutions to the spin equation in plane
waves it is then easy to show that the solutions that satis-
fy the subsidiary conditions (5.59) also satisfy the
transversality condition (Jackiw and Nair, 1991a)

P„Fi'(x)=0 . (5.60)

&2 0 0
(5.61)

O —i i

where Po =(m, 0,0) and g(po) is a function that provides
a one-dimensional positive-energy Poincare irrep with
zero spin and the given momentum. The solution for ar-
bitrary p is of course obtained by boosting Eq. (5.61), and
a negative-energy solution can be constructed as well.

The explicit relation between these solutions and the
wave functions that may be obtained from a path integral
of the form (5.52) and (5.53) is as yet unexplored. We
shall come back to this problem when discussing frac-
tional spin and statistics in field theory in Sec. VI.C.

VI. FIELI3-THEORETICAL MODELS

Field theory with fractional spin and statistics is still
an open subject: although it is reasonable to expect that
various eAects of fractional spin, such as the spin-
statistics theorem, should be understood only in a full-
Aedged relativistic field theory, relatively little is known
in this respect.

The simplest approach to a field theory of excitations
with fractional spin and statistics consists of looking at
field theories that support topological solitons. Indeed, it
is clear that, insofar as topological solitons may be de-
scribed as localized particle-like excitations, the treat-
ment of the soliton sector of such a theory may be re-
duced to that of point-particle mechanics. In fact as we
shall see, the soliton approach is in a way more natural
than the particle approach. A di6'erent option consists of
trying to construct a field theory in which the fundamen-
tal field quanta themselves (rather than some soliton
states) carry fractional spin. We shall see that the first

The general solution to these equations can be con-
structed explicitly. Only one component of I'„ is nonvan-
ishing, the highest-weight one n=0, and this satisfies the
mass-shell conditions automatically by iteration. The ex-
plicit form of the solution in the particle's rest frame is
(Jackiw and Nair, 1991b)

0
f io (po ) =Xi' 0

q'(pp )
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results obtained in this approach hint at new physics not
seen in the soliton approach.

A. Solitons in the O(3) and CFP
' models:

topology and the adiabatic limit

The simplest example of a theory that supports static
topological solitons in 2+1 dimensions is the O(3) non-
linear sigma model (see Rajaraman, 1982, for a review).
In this theory the fields are three-vectors n'(x), ' nor-
malized to n'n'=1, that is, they take values on the
sphere S . The Lagrangian density is

(6.1)

where f has the dimensions of [length].
If we compactify the fixed-time surfaces to a sphere by

requiring the fields to tend to a constant value at spatial
infinity, the classical field configurations at fixed time are
maps S ~S and thus fall into disconnected homotopy
classes (see, for example, Dubrovin et al. , 1984). A
representative of the kth homotopy class is

r sinkf (r)
coskf (r)

if r=O
f( )='()

(6.2)

where r is the radial coordinate and r the radial unit vec-
tor on the space plane. Fields in different homotopy
classes cannot be deformed continuously into each other
and are classified by a two-dimensional winding number

1
Q = d x e,b, e"n'B, n 8 n', (6.3)

(6.4)

which counts how many times n ' spans S as x runs over
all space, i.e., for n' given by Eq. (6.2) Q =k.

Classical solutions to the equations of motion are ob-
tained for a wide class of functions f (r) [Eq. (6.2)].
These solutions, extended yet localized, are referred to as
solitons of the classical theory. Time-dependent solitons
may be obtained by letting the location of the soliton de-
pend on time, i.e, by letting x~x —xo(t) in Eq. (6.2).
The current that carries the soliton cxcitations is then

ject, localized in the region where most of the charge
density is concentrated; the size of the latter, in turn, is
related to the range of variation of the function f (r) [Eq.
(6.2)] (measured on the scale set by f): for example, if
F(r) = sr[A, /(A, + r) ], the soliton size is of order A, .

A classically equivalent field theory is the CP' Inodel
(see Rajaraman, 1982), whose fundamental field takes
values in the space of unimodular two-component com-
plex vectors

n =Z 0 Z (6.S)

where o' are the usual Pauli matrices. The relation be-
tween z fields and n fields is the usual one between spi-
nors and vectors made from spinor bilinears. The La-
grangian (6.1) and current (6.4) can easily be written in
terms of the z field by substituting Eq. (6.5). The current
(6.4), in particular, takes the simple form

ji'= e" i'(B~ Bp) .
2&

(6.6)

As we shall see shortly, the CP' formulation may be
more convenient for some applications.

The soliton sector of these theories may be quantized
by canonical or path-integral methods, although the non-
renormalizability' of the theory (6.1) makes its quantum
treatment arduous. At the very least, the model can be
treated as a low-energy efFective one, and this is enough
to be able to discuss its long-range symmetry
properties —like spin and statistics. It is rather natural
to expect that fractiona1 spin and statistics may be in-
duced in the soliton sector of the theory (6.1) by coupling
the current (6.4) to itself through the Hopf Lagrangian
(2.38), or equivalently, by coupling it to a Chem-Simons
term (2.35)—(2.37) (Wilczek and Zee, 1983). Indeed, this
is trivially true in the limit in which the current (6.4) is
concentrated in one point zo, so that it may be approxi-
mated by a point-particle current (2.33). ' In this case,
wc aI'c lcd back to tbc trcatmcIlt of a 1clatlvist1c point
particle coupled via the Hopf interaction (Wu, 1984b;
Wu and Zee, 1984), discussed in the previous section.

Z j
z~z =1,

Z2

with vectors differing by an overall phase identified (CP'
space). This space is isomorphic to the sphere (on which
the fields n' live); the isomorphism is given by

This current is identically conserved, Bp"=det(B„n ) =0
(as a consequence of the normalization of n), indepen-
dently of the dynamics. The charge density from Eq.
(6.4) coincides with the winding number density that ap-
pears in Eq. (6.3). The soliton is a generally extended ob-

7In this section latin indices from the beginning of the alpha-
bet take the values a=1,2,3. These indices are always to be
summed with an Euclidean metric.

~8It is interesting to observe that the O(N) model, which gen-
eralizes the above model to the case in which n' takes values in

the N —1 dimensional sphere, although perturbatively non-

renormalizable, admits a renormalizable 1/N expansion (Parisi,
1975). This feature has been used to discuss the equivalerice of
the phase structure of the O(3) model with Hopf term, with that
of a fermonic theory (Kovner, 1990).

I9Notice that if j (x—xo) =5' )(x—xo(t)) then it automatically
follows from Eq. (6.4) that the full current has the form of Eq.
(2.33).

Rev. Mod. Phys. , Vol. 64, No. 1, January 1992



224 Stefano Forte: Fractional spin and statistics

A simple topological argument (Wilczek and Zee,
1983; see also Wu and Zee, 1984) shows that extended
solitons (6.2) can carry fractional angular momentum, ir-
respective of the pointlike approximation. This is be-
cause the configuration space of the O(3) model fields at
fixed time is infinitely connected. The configuration
space is the space C of all maps n:5 —+5, and
ir, (C)=+3(S ), but ir3(S )=Z (see Dubrovin et al. ,
1984). Otherwise stated, all possible one-parameter fami-
lies of field configuration over space (not space-time)
n'(x) fall into disconnected classes. This is good news,
because each of these one-parameter families may be
thought of as a time evolution (i.e., a motion) of a given
static soliton, and then we may weight the contribution
to the path integral of paths in each equivalence class
with a phase, as discussed in Sec. III.C (Wu and Zee,
1984). It remains to establish that these equivalence
classes correspond to solitons that perform diAerent
numbers of space rotations, so that the multivalued
phases in the path integral may be interpreted as contri-
butions to the angular momentum, and to relate these
phases to the presence of a topological term in the action.

Rather than constructing the phases from first princi-
ples and then deriving the action, let us show that the
Hopf action, evaluated for a rotating soliton, does the job
(Wilczek and Zee, 1983). That is, let us assume that the
Hopf interaction is added to the action, and consider the
path integral in the one-soliton sector of the theory, i.e.,
the sum over paths of one-soliton configurations, weight-
ed by their action. We consider in particular the contri-
bution to the path integral from an evolution of the soli-
ton (6.2) (with k= 1), in which the soliton remains at a
fixed location, does not change shape, and rotates about
itself:

Q(

Q(to j= Q(t, )

Q(t')

/P(toj = P(t )

P(t')

these maps, just as the winding number (6.2) classifies
maps from S to S (see Dubrovin et al. , 1984). The
Hopf term (2.38), evaluated for the current (6.4), provides
precisely an expression of this invariant. Note that it is
nonlocal. Moreover, this invariant has a simple geome-
trical interpretation: if f is a map S ~S, we can define
the inverse map f '. The inverse image of a point

p HS, given by f '(p), will be in general a curve in S,
which can be shown to be closed if the map f is
sufficiently regular. Now, two closed curves always
define a linking number (Fig. 1), and we can consider the
linking number of the two inverse images f '(p) and

f '(q) of two distinct points p, q HS . It turns out that
this linking number is a universal invariant for the map f

[R (t)r ] sinf (r)
n'( tx)=n'(R (t)x)= cosf (r) =A'b(t)n (x),

(6.7)

where R (t) is a matrix that performs a spatial rotation by
2~ in a period T. If we let T~ ~, ie. , if we assume that
the rotation is infinitely slow, the kinetic term (6.1),
which is of order 1/T, gives a vanishingly small contribu-
tion to the action. The Hopf term, instead, is of order
T =1 and survives even in this limit. We show now that
for a rotation of 2~n the Hopf term evaluated for this
field configuration takes the value n, and that this implies
that the angular momentum spectrum is shifted by an
amount proportional to the coeKcient of the Hopf term.

The Hopf action for the rotating soliton (6.7) is easy to
compute (Wilczek and Zee, 1983); however, the result
can be obtained directly by inspection, thanks to the to-
pological meaning of the Hopf term (Wilczek and Zee,
1983). As mentioned above, all maps from S to S fall
into disconnected homotopy classes. A field n'(x, t) may
be viewed as one such map, if we impose boundary condi-
tions that allow compactifying space-time like 5 . There
exists an invariant (called Hopf invariant) that classifies

FIG. 13. Determination of the Hopf invariant of a rotating sol-
iton: (a) location on the space plane of the points p and q where
the soliton field takes the values (1,0,0) and (0, 1,0), called P(t)
and Q(t), respectively (inverse images of points p, q). The loca-
tions at initial and final times to and t&, as well as at intermedi-
ate times to ~ t ~ t' T& are shown. (b) Space-time trajectory of
points p(t) and Q (t): two linked helices wound on a cylinder of
radius ro. (c) Space-time trajectory of the inverse images of p
and q for a soliton-antisoliton pair in which the soliton rotates.
In the vicinity of the rotating solitons the trajectory coincides
with that shown in (b).
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(it is the same for any pair of points p, q)and that the
Hopf invariant is proportional to it.

It is easy to see that this produces the desired resu1t.
Consider a rotating soliton (6.7) and choose as points p, q
two points on S, say the points n '= (1,0,0) and
n'= (0,1,0). At an initial time to, when R = I, the soliton
has the form (6.2), and the inverse images of p and q are,
respectively [see Fig. 13(a)], the points P—:(to, ro, O) and

Q =(to, O, ro), where ro is a point such that f (ro)=7r/2
(there is always one such point for a map of the first
homotopy class: we assume for simplicity and with no
loss of generality that there is only one). As the soliton
rotates, the points P(t), Q(t) that are mapped, respec-
tively, into p and q, describe a helix; for a rotation of 2~
the inverse images of p and q are the two helicoidal paths
shown in Fig. 13(b). These are open paths, but of
course a soliton (6.7) does not define a map S ~S: in
order for the fields to be compactified on S they must
tend to the same constant at both space and time infinity,
whereas any one-soliton configuration tends to (1,0,0) at
spatial infinity, while it has the space-dependent form
(6.2) at time infinity. '

However, we can consider (Wilczek and Zee, 1983) a
process in which a soliton-antisoliton pair is created at
t, &to [th. at is, a pair of fields (6.2) with k= 1 and
k = —1]. Then the two solitons are taken apart, and at
t =to only one of the two solitons starts to rotate and
performs a rotation by 2~ until t =t, . Finally, the soli-
tons are brought to annihilation at t = t&. In this case,
for fixed time t &t, and t ) t& the . n field is n=(0,0, 1),
that is, no point is mapped into p and q. For times
t; & t & t& there are two pairs of space points where the n

field takes the values p and q, associated with the soliton
and antisoliton, respectively, and when the soliton rotates
Fig. 13(b) represents the trajectories of the points associ-
ated with the soliton only. In sum, the inverse image of p
and q for this configuration is given by the pair of linked
paths of Fig. 13(c), and it should be clear that this pair-
production picture just reproduces the usual prescription
(Fig. 2) for calculating the linking number of open space-
time curves.

We conclude that the Hopf invariant, evaluated for
any rotating soliton configuration, just measures the link-
ing number of the space-time trajectories followed by any
two points arbitrarily picked on the soliton shape. This
proves that in the limit of an adiabatic rotation the

soliton's action is proportional to the coefficient of the
Hopf term times the total rotation angle. But this also
implies that the soliton's path integral contains a weight
of the form (3.17)—(3.18), which shifts the angular
momentum spectrum, thus concluding the argument.

Finally, a similar argument (Wilczek and Zee, 1983)
may be used to show that if two solitons are inter-
changed, the path integral acquires a phase equal to that
acquired when rotating one soliton by 2m, thus establish-
ing the spin-statistics connection that we know (from Sec.
V.C) to hold in the point-particle limit. For this it is
enough to evaluate the linking number for a process in
which two soliton-antisoliton pairs are created, then the
solitons are interchanged (Fig. 14).

In a way, if we regard the soliton as an assembly of
particles, the Hopf term simply measures the linking of
the space-time trajectories of the particles and endows
the soliton with fractional angular momentum by the ar-
guments of Sec. III.C. In this sense, the discussion of
fractional spin is more natural for a single soliton than
for a single particle, in that a soliton, being an extended
object, can be viewed as a many-particle system and can
be endowed with fractional spin by the simple homotopy
arguments of Sec. III, without the need to face the subtle
problems related to the definition of the self-linking of a
one-particle trajectory.

A precise evaluation of the coefficient of proportionali-
ty between the fractional contribution to the angular
momentum and the coefficient of the Hopf term requires
us to look more closely at the quantization of the theory.
We shall do this in the next section.

B. Soliton dynamics and quantization

The topological interpretation of the Hopf term sug-
gests that its role in the field theory of solitons with frac-
tional spin may be as simple as it was in the case of non-
relativistic particles: namely, that the Hopf term in the
one-soliton sector may be written as a total derivative-
or rather, being a field-theoretical object, a total diver-
gence. This turns out to be the case (Din and
Zakrzewski, 1984; Wu and Zee, 1984) and makes the dis-
cussion of its effect on the quantization of the theory

Notice that a counterclockwise rotation of the inverse im-

ages (as shown in Fig. 13) corresponds to a clockwise rotation
[Eq. (6.7)] of the soliton profile.

Indeed, both the equality mi(C ) =m3(5 ) and the
identification of the Hopf invariant as a linking number hold
only for maps that on fixed-time surfaces are homotopically
trivial, i.e., that are homotopic to the trivial map obtained put-
ting k=0 in Eq. (6.2).

This somewhat formal argument has been checked by expli-
cit calculation by Jaroszewicx (1985).

FIG. 14. The inverse images of p and q for a process in which
two soliton-antisoliton pairs are created, the solitons are inter-
changed, and then the pairs are brought to annihilation. The
picture is homotopically equivalent to the two linked loops
shown in Fig. 1(a).
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rather simple.
The expression of the Hopf term in terms of the O(3)

and CP' fields is found by substituting the current (6.4)
or (6.6), respectively, in its definition, Eq. (2.38). It is
convenient, to this purpose, to rewrite the Hopf term as

—$,8~2Bg2 ), (6.14)

IH= ——f d x ji'(x)A„'(x),

A„'(x)= f d y K„(x,yj)(y) .

(6.8)

(6.9)

which is the sought-for total-divergence form of the Hopf
term. Equation (6.14) may be rewritten in a more trans-
port form by choosing arbitrarily the overall phase of z in
such a way that P, = —$2—=Po. Then

j"(x)=e"'~B A' (x), (6.10)

which, for j"given in CP ' form by Eq. (6.6), is solved by

The expression of A
' in terms of j in Eq. (6.9) coincides

(up to the normalization) with the classical equation of
motion of the Chem-Simons field A„[Eqs. (2.36)—(2.37)]
(Wilczek and Zee, 1983). Equations (6.8) and (6.9) ex-
press the Hopf term as a local function of the current j~
and a composite (i.e., nonlocal) gauge field A „'.

It turns out that if we express the current in CI'' form
the composite gauge field becomes local, and thus so does
the Hopf term (Wu and Zee, 1984). Indeed, Eq. (6.9) can
be written equivalently as

IH = fd x B ($0(x)j"(x)) . (6.1S)

It is now easy to see how the Hopf term induces frac-
tional spin of the solitons when the theory is quantized
(Wu and Zee, 1984): the argument closely parallels the
construction of the path integral for particles on a multi-

ply connected space, given in Sec. II. In a field theory,
the points in configuration space are functions, and the
state vectors are functionals. If we quantize the theory a
la Schrodinger, time is singled out, the fields n'(x) are
quantized canonically, and the state vectors are
( q, t~'ll) = ( n'(x), t~%') =0'[n'(x); t]. Equation (3.19)
then holds for these state functionals, with

leading to

zBz,
2~

(6.1 1)
IC (q', t', q, t) =K(n "(x),t'; n'(x), t )

a t iI [n]

I [n ]= f d x Xo+IH
(6.16)

I = ——f d x — e" ~(z 8 z)(B~ 8 z) .H 4 2 P P
(6.12)

i +
X2+ lg&

i (pl /2)
p&e

i (P2/2)
Pz~

(6.13)

Straightforward though cumbersome manipulations lead
to (Wu and Zee, 1984)

This is not fortuitous: the field z actually takes values on
S, rather than on S as the n field does, as may be seen
by observing that each spinor z uniquely specifies an
SU(2) matrix (which takes a fixed spinor, say (o), into the
given one), and that the group manifold of SU(2) is S .
The CI'' field is obtained by identifying all spinors that
differ by a phase, i.e., by identifying CP ' =S /U(1). As a
function of space-time the z field is a map S ~S, rather
than S —+S as the n field is. This is called a lift of the
original map. Now, it may be shown (see Pak and Per-
cacci, 1991) that the lift of the Hopf invariant (i.e., the
Hopf invariant calculated for the lifted map) just coin-
cides with the winding number of the lifted map, which is
obviously local.

This discussion also tells us immediately that the Hopf
term is (locally) a total derivative, since the winding num-
bcl 1s (scc Dubrovln et aI , 1984; Jacklw. , 198S). All ex-
plicit expression is found by parametrizing the com-
ponents of z with Cartesian or polar coordinates on the
complex plane:

where the boundary conditions are the field
configurations n'(x) at initial time t and n "(x}at final
time t . Now, the topological action IH is a total deriva-
tive; let us moreover suppose that space is compactified
to S by requiring that fields fall o6'at infinity. Each field
configuration that contributes to the path integral (6.16)
is defined on a cylinder S XI, where I is the time interval
t ~ to ~ t' and vanishes at space infinity, while at initial
and final times it satisfies the given boundary conditions.
It follows that the topological action reduces to surface
terms at initial and final times:

IH= fdxdto 8 fI"[P(x,to)]=H(t') —H(t),

H (t) = fdx flo(x, t) .
(6.17}

The theory of path integration on multiply connected space
by Laidlaw and Morette de Witt (1971),described in Sec. III.A,
has been generalized to field theory by Dowker (1972).

Upon Lorentz boost the surface on which the boundary
conditions are defined is transformed into a generic
spacelike plane. These surface terms are the exact analo-
gue of the phases 0 [Eq. (3.17)], in that, as shown in the
previous section, they measure the linking of the soliton
profile, considered as a path (parametrized by time) on
the multiply connected space of static one-soliton
configurations (Wu and Zee, 1984).

At this point, we may proceed exactly as we did in Sec.
III.C for nonrelativistic particles. From Eq. (6.1S) the
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surface terms are

H(t)= fd x $0(x)j (x) .
4
277

(6.18)

thorough discussion of the topological aspects). The
canonical momenta conjugate to the fields n'(x) are

vr'(x) =—()on'(x) —A'(x),=1
This quantity is multivalued in configuration space: if we
write the unit three-vector n in spherical coordinates 8„,
P„[as in Eq. (5.32) with cosh —icos), then Eq. (6.5) im-
plies that P„=(P,—P2); therefore if we let P„~P„+u
we have (t')0~$0+a. Therefore the surface terms evalu-
ated for the field n (x) and its rotation by a, R n (x), are
related by

A'(x)= e.,b, e'JA, '(x)(n (x)BJn'(x)),
(6.21)

[where A ' is given by Eq. (6.9)] and satisfy the canonical
Dirac brackets (the use of Dirac brackets is necessary be-
cause of the constraint n 'n '= 1):

H[R n]=H[j (R n)]+ aQ,
2&

(6.19)
[vr'(x), n "(y)j=—(6'"—n'(x)n (y))5( '(x —y),
[n'(x), vr (y) I

= —(vr'(x)n (y) n—'( x)n "(y))5( '(x —y),
where Q is given by Eq. (6.3). Because Q is identified
with the soliton number, the multivaluedness is present
only in the soliton sectors of the theory.

It follows that the propagator is given by

K( ~ t~. t) y er[H(t')+(pl2m)ng)q, , q,

—
E
—H(, t)

XK()(q', t', q, t)e (6.20)

~4Gamboa (1990) has shown directly that any propagator of
the form (6.20) that contains multivalued surface terms has a
pole corresponding to a physical excitation with fractional spin.

where Ko(q', t', q, t) is the path integral (6.15) in the ab-
sence of a topological term IH, and the sum over n corre-
sponds to the sum over all possible determinations of
H (t'). We may at this point absorb the topological term
by redefining the state vectors by a phase obtained by in-
tegrating H ( t ) from a certain reference field
configuration to the given one, etc. Let us just verify that
the redefined functionals carry a spin @/2' represen--
tation of rotations. Space-time transformations are re-
lated to transformations in field space by the soliton an-
satz (6.2). In particular, with n = 1, Eq. (6.7) shows that a
space rotation is the same as a rotation of the soliton field
n. Thus H transforms upon space rotations as do the
phases (3.22) and (5.38), and it endows the one-soliton
states with spin —@/2m.

To evaluate the spin of a k-soliton state, as well as its
statistics, along the same lines, is rather dificult, because
the explicit form of the n field plays a crucial role in the
above derivation, while the k-soliton field has a rather
contrived form. It is possible, nevertheless, to verify ex-
plicitly (Din, 1990) that in the k-soliton sector the spin-
statistics relation we discussed in the point-particle case,
Sec. V.C, also holds. A determination of the complete
Lorentz transformation properties of the n-soliton states
is, however, lacking.

The total angular momentum carried by a k-soliton
state can also be determined directly by quantizing the
theory canonically (Bowick et a/. , 1986; see also Voru-
ganti, 1989, for the quantization of the CI' ' theory in the
BRST formalism, and Pak and Percacci, 1991, for a

In'(x), n "(y)] =0 .
(6.22)

Note that the Hopf term (being a total derivative) has no
effect on either the Dirac brackets or the classical equa-
tions of motion [although it modifies the canonical mo-
menta (6.21) by the term A ].

The canonical energy-momentum tensor TI' (x) can be
determined by use of Noether's theorem, as well as the
angular momentum tensor

J" = Jd x xI'T "(x), (6.23)

and it may be verified explicitly that they satisfy the
Poincare algebra. In particular, the angular momentum
operator turns out to be

J—= T'&= d x e'~x ~'(x)d~n'(x)
2 2m

Q2 (6.24)

where Jo is the angular momentum operator in the ab-
sence of a Hopf term, and Q is the soliton charge (6.3).
This shows explicitly that the total angular momentum is
fractional and that it scales with the soliton number (as
measured by the total soliton charge) just as in the point-
particle case (5.55). Because we would expect the spin
carried by the n soliton state to be given by n times the
one-soliton spin, this suggests that Eq. (5.55) is still true,
term by term, and solitons satisfy the same spin-statistics
relation as relativistic point particles.

A completely different approach to the soliton theory,
hampered by its lack of renormalizability, consists of try-
ing to define soliton creation operators (SemenoF and So-
dano, 1989; Karabali, 1991). These are formally con-
structed as follows: given the one-soliton field (6.2), there
exists a space-dependent SQ(3) matrix R (x) such that
n'(x)=R (x)t, where t=(1,0,0); thus a classical soliton
field located at xo is n(x —xo)=[R (x—xo)]t. R may be
expressed in terms of the SQ(3) generators J, as
R =e xp(i JO'( x xo)) Bec—ause t.he field theory is O(3)
invariant, there exist three Noether currents I)'(x) associ-
ated with the transformations generated by J, . In the
quantum theory the Noether charges I, generate the O(3)
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transformations on the fields upon commutation. There-
fore we may identify

U(xo)=exp Jd x 9'(x —xo)I, (x) (6.25)

as the operator that —acting on the vacuum functional
Vo—creates a one-soliton excitation, provided the
charges I are interpreted as operators in the quantum
theory.

If the theory is quantized canonically, the charges I,
are expressed in terms of the canonical fields n'(x) and
their conjugate momenta (6.21) as

I, =—e,b, ()on (x)n'(x) =e,b, (~ ( x) +A. "( x)) n'( x) .0 1 b

A(x) =IH [n ], (6.30)

where IH [n ] is the Hopf action (6.8) evaluated, with time
t; ~ t ~ tI, for a field configuration n(t, x) that at initial
time reduces to the vacuum field configuration while at
final time it coincides with the one-soliton field (6.2):

ing whether the function S(x) is multivalued, as one
would expect and as the function 8 [Eq. (2.22)] is
(Hagen, 1989; Semenoff, 1989); we shall come back to
this problem in the next section.

An alternative proposal (Karabali, 1991) consists of
defining

(6.26)

iaJU( )
—iaJ —a((4&/2m)(2Q —1)U(~ a (6.27)

i.e., the soliton operators, although single-valued, carry
fractional angular momentum because of the modified
form of J [Eq. (6.24)].

The solitons created by U [Eq. (6.25)] experience a
long-range interaction due to the Hopf term. In view of
previous experience, it is natural to define new operators

U (x)=e ' '"'U(x) (6.28)

such that the canonical transformation from U to Uo
eliminates the Hopf interaction [i.e., if H is the Hamil-
tonian with Hopf term, then Ho =e ' ' 'He ' '"' does not
contain the Hopf term], while the redefined states are
multivalued and carry fractional statistics. However, no
entirely satisfactory form of the functional A(x) has been
found. One possibility is to define (Semenoff and Sodano,
1989)

A(x) = S(x),2'
S(x)=Jd y 8(x—xo)j (x),

(6.29)

where 0 is the multivalued function (2.22) and j is the
soliton charge density. Although it is easy to verify that
the operators Uo have fractional statistics (we shall dis-
cuss this in the next section), it has not been possible to
prove that the redefinition (6.25) eliminates the Hopf in-
teraction potentials. Because of the integration over y in
Eq. (6.25), there is also a technical problem in establish-

It is then sufhcient to use this expression for the currents
in Eq. (6.25), while replacing the canonical momenta
(6.22) with functional derivatives; vr, ~—i5/5n '. The
operators U thus obtained may be verified to carry bo-
sonic statistics, in that U(x) U(y)= U(y) U(x). Their
transformation properties under rotations may be found
by commuting with the canonical generator of rotations
(6.24). While the standard operator Jo has the eff'ect of
rotating the fields, the Q-dependent term produces an ad-
ditional contribution. Because by construction
QU(x)= U(x)(Q+1) [that is, U(x) creates one unit of
soliton charge], it follows that

n'(t =t;,x)=(1,0,0),
n '( t =tI, x )= n '(x ) .

(6.31)

It is straightforward to verify that this redefinition of the
fields eliminates the Hopf interaction. Moreover, the
operators Uo have the same multivalued transformation
law (6.27) as the fields U, provided the operator Jo (6.24)
is used to generate the rotations. It is unfortunately im-
possible to determine the statistics displayed by the
operators Uo with this form of A and to ascertain wheth-
er the two definitions of S(x), (6.29) and (6.30), are
equivalent. In the next section we shall see that they are
equivalent in a second-quantized theory, in that, up to
terms that do not have any effect on the Lorentz trans-
formation properties of the state functionals, A [Eq.
(6.29)] can be interpreted as the surface term that results
from integration of Eq. (6.30).

In conclusion, we have recovered in the path-integral
approach the results of the one-point-particle treatment.
Because the soliton contains internal degrees of freedom
associated with its shape, while the soliton ansatz (6.2)
automatically treats space and time on a different foot-
ing, even the single-particle integral has the simple form
of the nonrelativistic path integral, with which it shares
the simple topological interpretation as a path integral on
a multiply connected configuration space. The somewhat
loose remark at the end of the previous section, to the
effect that the soliton treatment allows one to regard the
self-linking of each particle's trajectory as a linking of the
soliton profile, is made precise by Eqs. (6.13)—(6.15),
which express the Hopf term as the linking number (2.48)
computed for the soliton's profile polar coordinate $0
[Eq. (6.13)]. The role of the Hopf term in describing spin
also appears to be related to the fact that the phases that
provide fractional spin and statistics have the form of the
holonomy of a Dirac monopole potential (2.44), (5.35),
and the latter can always be written (Ryder, 1980) as the
holonomy of a U(1) connection naturally induced by the
Hopf map. The O(3) solitons produce this map in the
most economic way. The price to pay for these niceties is
the loss of covariance of the theory restricted to its soli-
ton sector.
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C. Fundamental field theories
with fractional spin and statistics

The construction of a quantum field theory whose
fields carry multivalued representations of SO(2, 1) is the
logical conclusion of the line of argument that we have
pursued so far. The treatment of fractional spin in soli-
ton sectors of a field theory, discussed in the previous two
sections, further suggests that, while fractional spin
seems to be compatible with field theory, some of the
problems in the soliton approach might disappear if frac-
tional spin were carried by the fundamental fields of the
theory. In particular, the models discussed in Secs. V.A
and V.B are plagued by nonrenormalizability, and their
investigation is made difficult by the lack of knowledge of
the (nonlinear) soliton dynamics; finally, the soliton
profile breaks Lorentz invariance explicitly, and indeed
most of the results found in the previous sections are not
manifestly Lorentz covariant.

As we mentioned already in Sec. V.C, the fundamental
fields of a relativistic theory ought to provide a linear
representation of the Lorentz group, with a generally re-
ducible Poincare representation content. If the funda-
mental fields are to carry fractional spin they must carry
a multivalued irrep of SO(2, 1). As discussed in Sec. V.A,
this means that either we define infinite-component fields
or we work with multivalued fields, which transform with
a cocycle (5.8) upon Lorentz action. The construction of
the theory can thus be approached from two opposite
points of view: either we construct the one-particle dy-
namics by starting with infinite-component fields and im-
posing equations of motion that satisfy the requirement
that one-particle states provide multivalued Poincare ir-
reps (5.18)—(5.21), and then derive an action that repro-
duces these equations of motion, or we proceed as we did
in all the instances we have considered so far, i.e., we add
a topological term to the action that endows the path in-

tegral with multivalued phases, and then we seek a trans-
formation to a basis of one-particle states that eliminates
the topological interaction while endowing the wave
function with a multivalued Lorentz representation.

In the former case, the only available set of equations
of motion with fractional spin is given by Eqs. (5.58) and
(5.59). The infinite-component wave function F„"(x) in-
troduced in Sec. V.C may be promoted to a relativistic
field (Jackiw and Nair, 1991a, 1991b). However, it may
be shown that these equations cannot be derived from an
action principle as they stand (they do not satisfy the in-

tegrability condition that would follow if they were the
variation of something). It is possible, though, to intro-
duce a nonlocal set of equations containing a further aux-
iliary (infinite-component) field whose classical solutions
coincide with Eq. (5.61) and can be obtained by varying a
nonlocal action (Jackiw and Nair, 1991b). The quantiza-
tion of the ensuing theory is an open problem, as well as
its physical interpretation.

Qn the other hand, it seems plausible that the addition
of the Hopf current-current interaction (6.8) to the action

of any field theory that admits a U(1) conserved current
j" should have an effect on the spin and statistics of the
theory (Semenoff, 1988; Semenoff and Sodano, 1989;
Forte and Jolicmur, 1991). It turns out that indeed the
theory can be developed from this point of view. Hence-
forth we shall assume that the fundamental field of the
theory is a complex scalar field P(x) that satisfies canoni-
cal commutation relations and for which the one-particle
states are found by acting with the creation operator
(t (x) on the vacuum state ~0) (as in the usual Klein-
Gordon theory). The latter assumption can be formal-
ized as the requirement that the commutator

[j (y), p (x)]=5( '(x —y)pt(x)

hold. We consider a theory with action

I =Io+IH,

(6.32)

(6.33)

y t( )
—2icrs(x)yt( ) (6.34)

The Baker-Campbell-Hausdorff formula, together with
the commutator (6.32) then implies that

2i os( —
)ytx( )

2i as(x) ——2ia o(x —y)y1'( (6.35)

whence

P (x))I) (y)=e —' '
(() (y)P (x) (6.36)

because O(x —y)=O(y —x)+m. This shows that if the
fields P commute, then the fields P obey graded commu-
tation relations. For example, if o. is half-integer they an-
ticommute (Semenoff, 1988; Matsuyama, 1989). The sign
ambiguity in the phase is due to the fact that the function
0 is defined only mod(2m). If 2a EZ, when P (x) and

(t) (y) are interchanged the result depends on whether the
interchange is performed by means of a clockwise or a
counterclockwise rotation. If the rotation is clockwise,
the sign in Eq. (6.36) is minus, whereas if it is counter-
clockwise the sign will be plus. In particular, a state ob-
tained by applying two (or more) operators P [Eq.
(6.34)] to the vacuum has statistics (7 [according to the
definition of statistics (1.2)].

The possibility of constructing fields that satisfy arbi-

The Aeld must be complex if we want to allow for fractional
statistics. Because antiparticles, which are generated by the
complex-conjugate operator, have spin and statistics equal in

magnitude and opposite in sign (recall Sec. III.C), a real field is

necessarily either bosonic or fermionic.

where Io is a matter action for the fields P that admits a
U(1) charge symmetry, whose Noether current j~ satisfies
Eq. (6.32), and IH is the Hopf action (2.38).

It is immediately clear that if we are given fundamen-
tal canonical fields P(x), m(x) that carry bosonic statistics
we can define new field operators that carry arbitrary
statistics by proceeding in analogy to Eqs. (6.28) and
(6.29) (Semenoff, 1988; see also Matsuyama, 1989), i.e., by
defining
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trary commutation relations can be given a physical
meaning if we are able to show that n-particle states are
created by acting on the vacuum with the operators P t.
A first indications that this might be the case is the obser-
vation (SemenofF, 1988; Semenoft' and Sodano, 1989; see
also Matsuyama, 1989) that formally the transformation
(6.35) eliminates the effects of the Hopf interaction at the
classical level. To prove this, consider the Hopf interac-
tion as the efFect of a Chem-Simons coupling
(2.35)—(2.37). The A field satisfies the classical equation
of motion (6.10). The latter is actually a constraint, and
as such persists in the quantum theory. This is most easi-
ly seen by working in the Ao =0 gauge, because then the
nonvanishing components 3 ' are determined by Eq.
(6.10) with @=0, which is a secondary constraint, ob-
tained by demanding that at all times the canonical vari-
able m.

o conjugate to Ao vanish, mo—:0.
Now, Eq. (6.10) with p =0 is solved by

A'(x, t)= —e"8,fd'y G(x —y)j (y, t), (6.37)

where G (x—y) is the Green's function of the two-
dimensional Laplacian 8;8;G(x)=6' '(x). Using the ex-
plicit form of the Green's function G(x)=(1/2~)ln~x~ in
Eq. (6.37), we obtain

A'(x, t)= — f d2y e'~ jo(y, t)
2m )x—yf~

f d y, S(x y)j (y, t)—,
277 BX

(6.38)

where in the last step we used Eq. (2.47). This shows
that, if we can interchange integral and derivative in the
last step, then, in terms of S(x) [Eq. (6.29)],

(6.39)

XS(x)=—e,b 2~H(x')5(x )—
Bx' " ixi'

(6.40)

i.e., the gauge potential is a pure gauge and may be re-
moved by a gauge transformation. Because we assumed
the P fields to be charged, this transformation will have
precisely the form (6.34), with the value of s determined
by the details of the gauge-matter coupling.

Unfortunately, the formal manipulation leading from
Eq. (6.38) to Eq. (6.39) is incorrect (Jackiw and Pi, 1990):
the interchange of integral and derivative required in or-
der to go from (6.37) to (6.38) or, equivalently, the local
use of Eq. (2.47) to express 2 (6.38) in terms of S, are not
allowed. The simplest way of seeing this is to observe
that the integral (6.37) has support on a space plane,
where the function S (2.47) must have a discontinuity of
2m along a straight line that originates at x and goes to
infinity. The derivative across the discontinuity contains
an extra 5-like term: if, for definiteness, we suppose that
the discontinuity is along the positive axis of abscissae,
then Eq. (2.47) is modified into (Forte and Jolicceur,
1991)

where H is the Heaviside function. This term modifies
Eq. (6.38) and prevents the identification of A as a pure
gauge (Jackiw and Pi, 1990). Equivalently, it is possible
to change coordinates and domain of integration in Eq.
(6.38) in such a way that Eq. (2.47) holds everywhere in
the interior of the integration domain, but at the expense
of introducing a noncornmutativity of derivative and in-
tegral in Eq. (6.39), which eventually yields the same
correction (Jackiw, 1990; Jackiw and Pi, 1990).

Apart from this problem, even if Eq. (6.39) were true,
it would still have to be shown that the redefined opera-
tors (6.34) create one-particle states. Indeed, in a
second-quantized theory, the appearance of fractional
spin and statistics is inevitably a consequence of an
anomaly, i.e., of the fact that a symmetry of the classical
theory is broken when represented on the quantum state
vectors (see, for example, Jackiw, 1985). Fractional spin
and statistics in field theory appear when the Lorentz co-
variance of the state functionals is spoilt by a cocycle u&

[Eq. (5.8)]: the state W=%'[P(x);t] transforms as

Q(A)%[/(;xt)]= e ' ' ' %[/(Ax;At)] . (6.41)

The cocycle must depend on the particle content of the
state '0, because the transformation law of an n-pa. rticle
state depends generally on n. In particular, the vacuum
of the theory should be Lorentz invariant; this, however,
is possible only if the classical Lagrangian is strictly
Lorentz invariant (rather than invariant up to a total
derivative), which in turn implies that a cocycle of the
form discussed in Sec. V.A must vanish at the classical
level. The rotational symmetry is classically exact, and
the modification of the angular momentum spectrum
produced by the cocycle appears only when the theory is
quantized (Forte and Jolicceur, 1991).

The fact that an anomaly may modify the quantum
numbers of a theory and, in particular, produce quantum
numbers that are not integer multiples of those carried by
the fundamental fields of the theory (quantum number
fractionization) is well known when internal symmetries
are involved (see Niemi and Semenoff, 1986, for a re-
view). The possibility of fractionization of angular
momentum —a space-time quantum number —was first
envisaged by Paranjape (1985).

It turns out that rotational anomalies do appear in the
theory (6.33). It is actually possible to follow the ap-
proach that we described for point particles and for soli-
tons, namely, to work out the efFect of the Hopf term on
the path integral explicitly (Forte and Jolicceur, 1991, see
also Forte, 1991d). A few surprises are, however, in
store.

The key observation is that in a quantized field theory
it is actually possible to write the Hopf action as a sur-
face term (6.17) without invoking any specific form of the
currents j" (in particular, without having to use any soli-
ton ansatz), up to terms with trivial Lorentz transforma-
tion properties. Indeed, if one replaces the point-particle
currents by the currents of a field theory, the computa-
tion of the Hopf Lagrangian (2.42) —(2.45) goes through
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unchanged. One gets

IH= —f dt~ f d x d y j (x, t~)j'(y, t )
0

(x —y) (6.42)
x

where I is the field-theoretic generalization of Eq. (2.46),
with which it shares the trivial Lorentz transformation
properties.

We may now use Eq. (2.47). Integrating by parts and
using current conservation we get

IH= —f dt fd xd yO(x —y)j (x, t )
0 3'

Xj (yt )+ ,'I— (6.43)

When integrating by parts, we find that surface terms are
produced that are also covariant upon Lorentz transfor-
mation (Forte and Jolicceur, 1991) and that have been
lumped into I . Integrating by parts with respect to time
once more leads to the desired result:

H(t)= ,' f "p—.dp. f d8. f "pdp

8 +2m
X f d88[j (x, t)j (x+r, t)],

X

(6.46)

where (p„,8„) and (p, 8) are polar components of the
vectors x, r, respectively, and a is an arbitrary (mul-

tivalued) reference angle, which may be chosen, as usual,

by defining H(t) as the integral of its time derivative
from a reference field configuration to the given one.

We may now proceed as in Secs. II.C and VI.B (Forte
and Jolicceur, 1991) and eliminate the Hopf term from
the propagator by redefining the state functionals accord-
ing to

quantization provides both particles' indistinguishability
and the exclusion principle automatically.

When going from Eq. (6.42) to (6.43), we find that the
double space integration is lifted to the universal cover of
the space C (cf. Sec. III.A), i.e., spelling out the extremes
of integration, Eq. (6.45) reads

IH =—[(H(T) —H(0))+ ,'Is ], — (6.44)

H(t)= ,' f d x—dy j (x;t)j (y;t) . (6.45)

The terms contained in I have no effect on the space-
time symmetries of the state functionals and need not
concern us; note, however, that they do prevent the elim-
ination of the Hopf term by gauge transformation (6.39),
and in particular they might have dynamical effects (as
nonrelativistic arguments seem to suggest; Jackiw and Pi,
1990).

The fact that the function 0 is ill defined in the origin
is of no concern, since in the quantized field theory the
currents j are operators, and the product of currents in
Eqs. (6.42) and (6.45) diverges as x~y. This point is
thus effectively excluded from the domain of the double
space integral (6.42), which becomes the multiply con-
nected space C given by Eq. (3.2) with d=2 and n=2.
The regularization of this singularity is responsible for
the anomalous representation of the Lorentz symmetry.
If the divergence is subtracted in such a way that the vac-
uum is invariant, the n-particle states are not. This may
be checked by performing an operator-product expansion
of the current operators in Eq. (6.46) (Forte and
Jolico:ur, 1990, see Forte, 1991d). As expected, second

In a rigorous treatment these divergences are treated by
splitting in a position-dependent way the times at which the
operators j(x) and j(y) act. Whereas the nontrivial transfor-
mation properties of H (t) are due to a contribution to the dou-

ble integral (6.45), which is localized on a spacelike line (Forte
and Jolico:ur, 19&1), if this prescription is used the nontrivial
contribution becomes localized on a spacelike cone whose axis
is this line (Frohlich and Marchetti, 1989; see also Frohlich,
Gabbiani, and Marchetti, 1989).

—i—H(t)
%o[P(x),t] =e 0'[P(x), t] . (6.47)

As usual, the topological interactions may be eliminated

by a phase redefinition of the state vectors. In the field-

theoretic case, however, the phase is operator valued.
The phase factor e ' ' '" turns out to provide the co-
cycles that modify the representation of the Lorentz and
Poincare groups given by the n-particle states, and it will

be referred to as an operator cocycle.
The spin, statistics, and space-time symmetry proper-

ties of n-particle states %o can now be obtained by using

repeatedly the commutator (6.32). These properties are
nontrivial and depend on the number of particles n, as
they ought to, because the operators H(t) and P (t) do
not commute:

[H(t), P (z, t)]=$(z, t)P (z, t},
S(x,t)= f d y O(x —y)j (y, t),

(6.48)

27Commutation with P(x, t) leads to the same result but with

the opposite sign.

where the integration over y runs over the same range as
the integration over r, 8 in Eq. (6.46).

The commutation relation (6.48) implies, again by the
Baker-Campbell-Hausdorff formula, that the operator H,
when acting on an n-particle state ~%"), effectively
modifies the field operators according to Eq. (6.34):
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n=e '
P (x, )e 'P (x2)e ' + P (x, ) 0)

1 =3

n

~y'(x, ) lo&, (6.49)

where we have set

l
0 ) —e 2i rr H—

l 0 ) (6.50)

(6.51)

R'S [J'(x)]Ri' =pQ+S [J'(Ri' x)], (6.52)

where Q is the charge operator and S [j (R~ x)] denotes
the covariant transform of S[j (x)] upon rotation, ob-
tained by transforming the argument of the field opera-
tors on which S depends. It follows that each phase fac-
tor e ' '"' is multivalued upon rotation of 2m and con-
tributes a phase e ' ~~ to the transformation of the state
functionals l%o) [Eqs. (6.49) and (6.50)]. Accordingly,
the total angular momentum becomes fractional and
equal to

J =2(rQ = ——Q mod(Z) .
7T

Because of Eqs. (6.35) and (6.36), the statistics of an n

particle state is given by o [Eq. (6.51)j, which has the
same magnitude as the point-particle result (5.52) and
(5.53) but the opposite sign. In order to determine the
contribution of the phases in Eq. (6.49) to the spin and
orbital angular momentum, it is su%cient to observe that
the phase S(x) (6.48) is not invariant upon rotations:

Comparing the values of the spin and statistics (6.51),
(6.56), (6.57) with each other and with the point-particle
result (5.55), it is apparent that (i) the spin-statistics
theorem is not verified (for example, fermions, which cor-
respond to s =

—,', do not anticommute, but rather, com-
mute with a factor of i); and (ii) the point-particle result
is not reproduced.

To disentangle ihe various contributions to spin and
orbital angular momentum, it is convenient to rewrite the
n-particle functional (6.49) as

n j—1

l@())—exp 2iog. g 8(x;—x~)
j=l i =1

n n

X exp is g S(x, ) + P (x;)l0)
i=1 i=1

(6.58)

where (r and s are given by Eqs. (6.51) and (6.56), respec-
tively. Because [S(x),S(y)]=0, the statistics is entirely
given by the 0-dependent prefactor, and the different
contributions to the induced phase may be interpreted as
was done for the point-particle wave function (5.54) in
Sec. V.C. Comparison with Eq. (5.54) shows that the
statistics carried by Eq. (6.58) is (r, while its orbital angu-
lar momentum L„spin S, and total angular momentum I
are (Forte and Jolicceur, 1991)

The transformation law of the vacuum under the
Lorentz transformation T(A) is left unchanged by the
phase redefinition, Eq. (2.33). Because of the Poincare in-
variance of the vacuum,

L:on(n —1—)+8= n(n —1)+8, 8HZ,
2~

S=n s= — 2n, J=I.+S .
2m

(6.59)

T(A) 0) =T(A)e ' T(A ')l0& . (6.54)

Equivalently, the vacuum expectation value of e ' may
be subtracted by normal ordering. A one-particle state,
instead, acquires a phase

R~lq'o[P(x)]) =R~e ' '(t (x)l0)

and carries spin

e
—i P( &0 I~ )

l
@(

[y ( R /3x ) j ) (6.55)

(6.56)

n (n +1)mod(Z) .
2&

(6.57)

An n-particle state is endo~ed by the operator cocycle
with a fractional total angular momentum equal to

It may be analogously shown that the operators P gen-
erate the corresponding antiparticles, i.e., states with op-
posite spin, angular momentum, and statistics.

Comparison with the point-particle values of the same
quantities, Eq. (5.57), shows that (i) the dependence of the
orbital angular momentum (and statistics) on the number
of particles is the same, while the dependence on the
coefficient of the Hopf term N has the opposite sign; (ii)
the (one) particle spin has the same sign but twice the
magnitude it used to; (iii) the dependence of the spin on
the particle number is quadratic rather than linear. It
follows in particular that the spin-statistics theorem is
never satisfied by the states (6.58). Notice that all this
holds true for any state obtained by applying a string of
operators P to the vacuum, regardless of the details of
ihe interaction.

This somewhat surprising result indicates that the
point-particle limit and the quantization of the theory do
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When acted upon by the operator cocycle, the states
) acquire extra spin and statistics phases and may be

0

written in the form (6.58), with s given by Eq. (6.56), and
statistics

o+ o. o.
o (6.61)

In general, a state with spin s and statistics o' has a total
angular momentum spectrum given by (Forte and
Jolicceur, 1991)

J=n s+n(n —l)(T'+8, EEZ . (6.62)

ls clear that no value of o.
o reproduces the point-

particle result (5.57); however, we may satisfy the re-
quirement that the spin-statistics relation hold for fer-
mions by tuning o.

o so that s =+o.. Because the opera-
tors P [Eq. (6.34)] can be identified with creation opera-
tors for physical states only if o.o=0, it follows that this
identification ls incompatible with the spin-statistics
theorem (even in the case of fermions). This means that
neither the point-particle wave functions (5.54) nor their
nonrelativistic limit (3.21), nor the wave functions associ-
ated with the state functionals (6.60) can be obtained as
the vacuum expectation value of a string of P and P
operators. There exist, however, operators that do have
this property with respect to the nonrelativistic wave
function (3.21) (Fubini, 1991; Fubini and Liitken, 1991).
These operators are closely related to the so-called FV
operators of string theory (Fubini and Veneziano, 1970)
and satisfy

(AiU (, ). U (, )i0)= Q(z; —z )
'

lWJ

(6.63).

not commute. In particular, the difFerent dependence of
the spin term on n can be traced back to the fact that
fractional spin is due to the current self-interaction in the
Hopf action (2.38) [i.e., the diagonal terms (5.51) in the
point-particle case], and the interaction kernel K" (x, y)
(2.39) is singular as x—+y. In the point-particle case the
singularity is regulated geometrically by evaluating the
interaction along the classical particle s trajectories, then
the theory is quantized by path integration. In the field-
theoretical case the theory is second-quantized first, and
the singularity turns out to be taken care of by the second
quantization of the theory. This may be made manifest
by computing the phase induced on states (6.49) directly
through the expansion of the operator product of the

' 0Hopf action and the field operators, e P (x) (Forte and
Jolicceur, 1990; see Forte, 1991c).

The symmetry of the physical states, however, is not
determined by the action or the path integral, i.e., the
states (6.58) need not be physical. Rather, we are free to
impose any symmetry on the state functionals that we
propagate through the path integral of the theory. This
is just a choice of boundary conditions, which we may
enforce by symmetrizing the states ~)P ), i.e., by setting

n n

~%" ) =exp ioo g g O(x; —x. ) ~%'0) . (6.60)
j=ii =1

CT= S (6.64)

Notice that, in the case of fermions (s = —,'), Eq. (6.64)
reduces to the spin-statistics relation found in the point-
particle case; moreover, in this case the difference in sign
in o [Eq. (6.51)] and the dependence of the spin (6.59) on
n are unobservable.

The multivalued transformation properties of the state
functionals ~%0) [Eqs. (6.47) and (6.58)] upon rotations
are fully compatible with the Lorentz covariance of the
theory: it is possible to show that upon Lorentz transfor-
mation the phases induced by the operator cocycle trans-
form with a cocycle (5.16), with coefficient equal to the
fractional part of J [Eq. (6.59)]. The proof proceeds
along the lines of that given in the relativistic point-
particle case, Eqs. (5.41)—(5.43). Upon a combination of
Lorentz rotations and boosts the phases S(x) and O(x)
transform covariantly, up to the addition of a term equal
to the winding number of the path, which builds up the
cocycle (Forte and Jolicceur, 1991).

Finally, if we look in particular at one-particle states
with definite momentum, i.e., with current

JP[f ]=kP~ (6.65)

(where p= I/Vis a normalized constant charge density),
it is easy to verify that the state functionals (6.47) satisfy
Eqs. (5.18) and (5.19), i.e. , they provide a (multivalued) ir-
reducible representation of the Poincare group, as they
ought to (Forte and Jolicceur, 1991). Although we can
formally identify the phase induced by the operator cocy-
cle on one-particle states e" '"' with a functional repre-
sentation of the infinite-component wave function I'I"

[Eqs. (5.58)—(5.60)], a direct link with the field theory and
equations of motion described by the latter is missing.

The appearance of fractional spin and statistics in
some field theories of the class considered here, such as

where
~
A ) is a suitably redefined vacuum state, U~ (the

l

FV operator) is an operator-valued function of z;, and a,
is an arbitrary two-vector. The r.h.s. of Eq. (6.63) can be
recognized as the generalization of the complex parame-
trization (3.23) and (3.24) of the nonrelativistic wave
function (3.21). Since this is the most general wave func-
tion with braid statistics, any wave function with generic
statistics may be constructed in this manner [for exam-
ple, Dunne, Lerda, and Trugenberger (1991) construct in
this fashion eigenfunctions of Eq. (4.17)]. It is then trivi-
al to endow the FV operators with spin, too, by supple-
menting them by prefactors (6.34), and thus to construct
factorized creation operators for states with arbitrary
spin and statistics. Whether these operators might be re-
lated to a local Lagrangian field theory is still an open
problem.

If we now require that the physical in and out states
describe a local, noninteracting system, then the angular
momentum J [Eq. (6.62)] must be linear in the number of
particles. This entails the spin-statistics relation (Forte
and Jolicceur, 1991)
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the Klein-Gordon theory with Hopf term, can be seen
also in a canonical approach, where one may show that
the canonical fields develop graded commutators, and an
anomalous transformation law upon rotations (Foerster
and Girotti, 1990); or, equivalently, one computes direct-
ly the canonical angular momentum operator and shows
that it is supplemented by an anomalous addition, which
turns out to have the form (6.24) (Semenoff and Sodano,
1989). This seems to be a universal feature of field

theories whose charged current is coupled to a Chern-
Simons term through Eqs. (2.35)—(2.37). When pursued
in a fundamental field theory (rather than the soliton sec-
tor of a theory), these approaches are plagued by the
difhculty of identifying the physical degrees of freedom;
accordingly, doubts have been cast on the results thus ob-
tained (Boyanovsky, 1989).

However, one may take the shift of the angular
momentum spectrum (6.24) as an indication that frac-
tional statistics is a general feature of a field theory cou-
pled to a Chem-Simons term, and try to tackle the prob-
lems of a field-theoretic description of fractional spin and
statistics by quantizing the Chem-Simons theory on the
lattice (a review is given by Semenoff, 1991). Indeed, be-
cause in the lattice theory the charge density is necessari-
ly localized in points, many difhculties are resolved, in
that field-theoretic objects coincide with point-particle
quantities. For example, the manipulations leading from
Eq. (6.37) to Eq. (6.39), which are illegitimate in field

theory, are allowed if j" is a point-particle current, as in

Eq. (2.33), because if j is a sum of Dirac's 5 the integra-
tion in (6.38) can be done immediately and there are no
problems in interchanging derivation and integration in

Eq. (6.38) (Jackiw and Pi, 1990). Thus the Chem-Simons
interaction may be eliminated by a (singular) gauge trans-
formation, which of course coincides with that displayed
in Eqs. (2.26) —(2.28). This carries over to the lattice
theory, where j" is a sum of an infinite number of point
charges, localized on all lattice sites. Then the gauge
transformation that removes the Chem-Simons field may
be viewed as a three-dimensional generalization of the
Jordan-Wigner transformation (Fradkin, 1989; Ambjgjrn
and Semenoff, 1989), in that it is a nonlocal transforma-
tion (depending on all pairs of lattice points), which re-
lates fields (or state functionals) that carry difFerent spin.

An understanding of the spin and statistics of the
physical states, however, requires the lattice quantization
of the full theory coupled to a Chem-Simons term. The
point-particle lattice theory has been quantized and
shown to reproduce the usual continuum results by
Frohlich and Marchetti (1988), while the lattice field

theory is discussed by Luscher (1989), albeit only for
those values of the Chem-Simons coeKcient that lead to
a fermionic angular momentum spectrum; the generaliza-
tion to the case of generic spin and statistics has been
presented by Muller (1990). In these references, however,
the gauge-field action is not just the Chem-Simons action
(2.37), but rather, it contains a Maxwell term as well. Al-
though fractional spin and statistics do seem to appear,

the theory must contain extra dynamical gauge degrees
of freedom. A lattice quantization of the pure Chern-
Simons theory (Eliezer et al. , 1990) requires either a
gauge-noninvariant lattice Chem-Simons term (Fradkin,
1989) or a lattice non-nearest-neighbor generalization of
the Chem-Simons interaction (Eliezer et al. , 1990).
Within the latter approach (Eliezer et al. , 1990), a theory
of lattice fermions interacting through a Chem-Simons
term has been mapped exactly onto a theory of free parti-
cles with fractional spin and statistics. The construction
of the continuuID limit and of the interpolating operators
for the asymptotic states is still an open problem in all of
these models.

Vll. CONCLUSIONS

We have tried to present the quantum mechanics and
field theory of particles with fractional spin and statistics
as a self-contained and consistent theory, which should
eventually be available for the development of models
that may be of interest for physical applications, just as
the usual theories of' bosons and fermions are. The dis-
cussion and development of these applications, which is
the ultimate goal of any physical theory, is already a
Aourishing subject, but lies outside the scope of the
present review. We would like to conclude by summariz-

ing the status of current knowledge and by pointing out
where our attempts at a consistent and complete presen-
tation have inevitably failed due to lack of knowledge.

As far as nonrelativistic quantum mechanics is con-
cerned, the situation is entirely satisfactory from the for-
mal point of view: the theory is well understood in the
path-integral as well as in the Schrodinger equation ap-
proach; its topological underpinnings and even its ax-
iomatic formulation are known in detail. The situation is
much less satisfactory from the point of view of applica-
tions: very little is known beyond the very simplest mod-
els. Even the partition function for an ideal gas has been
determined only in the simplest possible case of a two-
particle system, and explicit solutions are available only
for a handful of models. On the other hand, due to possi. -

ble applications to superconductivity, the mean-field
theory has been vigorously pursued in recent times and
hints at several promising developments (see Wilczek,
1990a, 1990b).

The theory of relativistic particles is more or less un-

derstood, at least from the viewpoint of kinematics and
symmetry properties; however, the nontrivial spin dy-
namics appearing in a relativistic treatment have not
been disentangled from the rather formal path-integral
formulation —except, of course, in the spin- —,

' case. This
amounts to saying that the dynamical consequences of
fractional spin for relativistic particles are virtually unex-
plored. This is an aspect of the theory of considerable
potential interest, as a wide range of problems (particle
scattering, bound-state problems, coupling to electro-
dynamics, . . . ) is open to investigation and perhaps will
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offer surprising e6'ects.
Finally, the Geld-theoretical knowledge of fractional

statistics is full of gaps even from a purely forrnal
viewpoint. Different formulations of the same theory
lead to contradictory results. The results found in the
point-particle limit do not seem to be reproduced by a
fundamental field theory, while in theories of solitons it is
difBcult to establish reliable results due to nonrenormal-
izability. Although progress in these directions may turn
out to be hard, the consistent formulation of a field
theory holds the promise of adding new items to the very
limited list of known renormalizable field-theoretic mod-
els.

The intricacies of the theory even in the simplest cases,
as well as the numerous surprising connections with to-
pology and differential geometry that it displays, suggest
that answering these questions may be of considerable
theoretical interest. Perhaps the results may prove im-
portant and eventful even in their phenomenological ap-
plications.
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