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This is a tutorial review on knot invariants and their construction using the method of statistical mechan-
ics. We begin with brief reviews of the elements of knot theory and relevant results in statistical mechan-
ics. We then show how knot invariants, including those discovered recently, can be obtained by applying
techniques used in solving lattice models in lattice statistics. Our approach is based on the consideration
of solvable models with strictly local Boltzmann weights. The presentation, which is self-contained and
elementary, is intended for a general readership. A table of polynomial invariants for knot and links con-
taining up to six crossings is included in the Appendix.
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I. INTROOUCTION

An exciting development occurring recently in the
mathematical theory of knots and links is the discovery
of new knot invariants (Freyd et al. , 1985; Jones, 1985;
Akutsu and Wadati, 1987a; Kauffman, 1990) and their
connection with statistical mechanics (Kauff'man, 1987a;
Jones, 1989). Particularly, the newly discovered connec-
tion with statistical mechanics has permitted a simple
and direct formulation of knot invariants, a long-
standing fundamental problem in knot theory. (For an
account of these developments readable by nonexperts
see Jones, 1990a).

Knots and links are loops of strings possessing thread-
ing and knotting properties that are topological in na-
ture. To characterize these topological properties alge-
braically, mathematicians have found that certain poly-
nomials can be used. These polynomials are knot invari-
ants. Traditionally, each of the polynomial invariants
was discovered and constructed under diferent cir-
cumstances, often requiring lengthy and tedious analyses.
While knot invariants can now be analyzed using braid
groups and understood within the framework of quantum
groups (see, for example, Reshetikhin and Turaev, 1991),
the statistical mechanical approach remains, in contrast,
simple and elementary. Despite its simplicity and useful-
ness, however, the connection of knot invariants with sta-
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tistical mechanics has remained largely a topic unfamiliar
to physicists, including many in the community of statist-
ical mechanics where the main idea of the new approach
is rooted. To be sure, a number of monographs and arti-
cles addressing the connection of knot theory with phys-
ics have appeared recently (e.g., Kauft'man, 1988a, 1988b,
1991; Turaev, 1988; Jones, 1989; Wadati et a/. , 1989;
Yang and Ge, 1989), but they have been written mostly
for mathematicians and cover aspects that may not be fa-
miliar to all physicists. There exists an apparent gap of
communication between these two communities.

The purpose of this review is to introduce the recent
advances in knot theory to physicists, explain what knot
invariants are about, and show how they can be derived
and understood from the point of view of statistical phys-
ics. To accomplish this, it is necessary to reformulate
and rework a large body of existing and known results in
knot theory and recast them within the framework of
conventional statistical mechanics. The scope of this re-
view is therefore necessarily limited, and confined only to
the stated purpose. It is not our intent to review knot
theory, nor do we intend to explore the braid group and
the associated algebraic approach. We also do not dis-
cuss the role played by knot invariants in topological
field theory (Witten, 1989a, 1989b, 1990), which could be
the topic of a treatise by itself.

This review assumes no prior knowledge of knot
theory and statistical mechanics and is therefore self-
contained and suitable for a general readership. We shall
cite and refer to original references as they arise in the
course of our presentation, bui no attempt will be made
at a complete literature survey. Readers are referred to
two recent books by Kohno (1991) and Kauft'man (1991),
which contain complete listings of the relevant literature
in mathematics.

The organization of this review is as follows: In Sec. II
we present elements of knot theory and introduce knot
invariants and their traditional definition in terms of the
Skein relation. The basic idea of approaching knot in-
variants using statistical mechanical methods is explained
in Sec. III. This is followed by a review of relevant solv-
able, or integrable, vertex models in Sec. IV. These re-
sults are used in Sec. V to obtain knot invariants. We
next show in Sec. VI that interaction-round-a-face (IRF)
models can always be formulated as vertex models and
use this formulation to derive knot invariants from IRF
models. In Sec. VII we consider the construction of knot
invariants from edge-interaction models, the spin models
with pure two-spin interactions. For completeness we in-
clude in the Appendix a table of knot invariants for
prime knots and links containing six or fewer crossings.

where n+ and n are, respectively, the numbers of +
and — crossings in the knot. For single-component
knots the writhe w(K) is uniquely defined, independent
of the line orientation chosen. For exam. pie, the writhe
of the right-handed trefoil in Fig. 1(c) remains 3 if the
orientation is reversed. For knots with two or more com-
ponents, the writhe will generally depend on the relative
orientations of the components.

An unknot is a knot represented by a circle. Two
knots are equivalent if they can be transformed into each
other by a continuous deformation of the lines. Thus the
knot in Fig. 1(b) is equivalent to an unknot and, in fact,
all single-component knots with one or two crossings are
equivalent to an unknot. The simplest nontrivial knot is
the trefoil with three crossings. There are a total of
12 965 distinct single-component knots with 13 or fewer
crossings, excluding mirror images, for which a complete

(a) (b)

tersecting loop, in three-dimensional space. A link is a
collection of' two or more knots, or components, which
may or may not be physically intertwined. In this paper
we use the term knot loosely to denote either a single-
component knot or a link. A knot is oriented if its loops
are directed; otherwise, the knot is unoriented. While
knots are unoriented to begin with, it is often convenient
to direct the loops and consider oriented knots. Starting
from a given unoriented knot consisting of n com-
ponents, one has generally 2" versions of oriented knots.

Knots can be projected onto a plane and thus
represented by planar diagrams. We shall always have
planar diagrams, or projections, in mind when we speak
of knots. Diagrams of some simple knots are shown in
Fig. 1. It can be seen that when using planar diagrams to
represent knots we need to break one of the two lines
crossing at an intersection to indicate their relative posi-
tionings in three-dimensional space. For oriented knots
this leads to two kinds of line crossings, denoted by the
signs + and —,as shown in Fig. 2, where the + and-
crossings are related by a 90' rotation.

An intrinsic property, the writhe w (K), of a knot K is
defined by first orienting the knot and then computing

w (K)=n+ n—

II. THEGRY OF KNOTS

A. Definitions
{c)

We begin with a description of some terms in knot
theory. A knot is the embedding of a circle, or a nonin-

FIG. 1. Examples of planar representations of oriented knots:
(a) and (b},unknot; (c) right-handed trefoil; (d) Hopf link.
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(b)

FIG. 2. Two kinds of line crossings: (a) unoriented knots, (b)
oriented knots. FIG. 3. Three types of Reidemeister moves for unoriented

knots.

tabulation exists (Thistlethwaite, 1985).
While it is relatively easy to verify by inspection that

the two knots in Figs. 1(a) and 1(b) are indeed equivalent,
it is generally difticult to identify the equivalence of knots
without doing some tedious checking. The problem lies
in the fact that two equivalent knots may have very
different planar projections. This leads to the need for
characterizing knots algebraically. The idea is to associ-
ate algebraic functions with knots such that equivalent
knots possess the same identical function. Such algebraic
functions are the topological invariants of knots, or sim-

ply knot inUariants. It should be mentioned that, despite
recent progress, the construction of knot invariants that
are different for all distinct knots still remains an open
problem.

B. Reidemeister moves

As a first step in constructing knot invariants, one
needs to understand the process of deforming knots. To
this end it was shown by Reidemeister (1948) that all de-
formations of knots (in three-dimensional space) can be
broken down into sequences of three basic types of line
moves (in the two-dimensional projection), the
Reidemeister moves. Thus it is su%cient to consider
each of the three Reidemeister moves individually. We
describe these moves for oriented and unoriented knots
separately.

2. Oriented knots

The consideration of Reidemeister moves is more in-
volved for oriented knots, since the lines are directed,
thus breaking some symmetry. However, the basic topol-
ogy of the moves remains unaltered. For type-I and
type-II moves, it can be seen that there exists two in-
dependent moves of each type. These are the moves
shown in Fig. 4; all other type-I and type-II moves can be
obtained from those shown by applying a rotation and/or
a reAection. For example, a refl. ection of the move IIA
about a horizontal axis yields a move given by the same
diagram but with the crossings + and —interchanged.

The type-III moves for oriented knots require Inore at-
tention. Basically, there exist two distinct kinds of line
orientations, types IIIA and IIIB, shown in Figs. 5 and 6,
which differ in the way that the three lines are oriented.
In each kind of line orientation, there further exist six
distinct possible moves, and all other type-III moves are
related to those shown by rotations and/or rejections.
Note that the Reidemeister moves shown are those dic-
tated by legitimate line moves (in three-dimensional

1. Unoriented knots

The three types of Reidemeister moves for unoriented
knots are shown in Fig. 3; all other moves can be ob-
tained from those shown by applying a rotation and/or a
reQection. The algebraic function associated with a knot
is said to be of an invariant of ambient isotopy if it is in-
variant under all I, II, and III types of moves, and of reg-
ular isotopy if invariant under the. type-II and type-III
moves only.

IIA

FIG. 4. Type-I and type-II Reidemeister moves for oriented
knots. In move IIA the two lines point into the same half-

plane, and in move IIB the lines point in opposite directions.
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III A

Xg

FIG. 7. A type-IIIB move as deduced from type-IIB and one of
the six type-IIIA moves.

FIG. 5. Type-IIIA moves for oriented knots. The three lines
are oriented to point into the same half-plane.

space), and therefore are not necessarily all independent.
In fact, it suSces to consider only the type-I and type-II
moves shown in Fig. 4 and any one of the six IIIA moves.
All other moves, including the six-type-IIIB, follow as a
consequence (Turaev, 1988). We include in Fig. 7 an ex-
ample of how the type-IIIB move shown in the second
line of Fig. 6 can be deduced by using the IIB and one of
the IIIA moves (Kauffman, 1991). For comparison, we
show in Fig. 8 configurations that cannot be disentangled
by line moves. Note that con6gurations in Fig. 8 comple-
ment those in Figs. 4—6, so that altogether they give rise
to all possible kinds of crossings that two and three lines
can form.

As in the case of unoriented knots, the term ambient
isotopy refers to invariance under all types (I, II, and III)
of moves, and regular isotopy to invariance under type-II
and type-III moves only. It is clear that the writhe w (K)
of a knot given by Eq. (2.1) is regular isotopy invariant,
and that, under type-I moves, it changes by 1.

C. The Skein relation

Skein relations are recursion relations relating the in-
variants of knots whose diagrams are identical except
that the connectivity of lines in a small region embedded
in the knot is di8'erent. The most common Skein rela-
tions are described below.

FIG. 6. Type-IIIB moves for oriented knots. The three lines
are oriented to form a net circulation.

FIG. 8. Configurations that cannot be disentangled by line
moves.
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1
xPH, r(x,y, z)+y —(x+y)=z 1,

Z
(2.2b)

FIG. 9. The three line configurations considered in the Skein
relation for oriented knots.

1. Oriented knots

For oriented knots there are two kinds of line crossings
denoted by the signs + and —shown in Fig. 2 and again
in Fig. 9. If a plus-type line crossing in a given knot is
switched to a minus type, we arrive at, of course, a
different knot. Furthermore, if the crossing is spliced so
that it is replaced by a configuration denoted by 0 in Fig.
9, one obtains yet a third knot. We denote the three
knots, respectively, by L+, L, and Lo and their associ-
ated invariants PI, PI, and PL . The simplest Skein

+ 0

relation is then a recursion relation connecting these
three P functions,

XPL (x,y, z)+yPL (x,y, z)=zPI (x,y, z) (2.2)

x 1+y.l =zP2I(x, y, z), (2.2a)

and thus the P function for two unlinked loops is
P2I(x,y, z)=(x+y)/z. Applying the Skein relation to
the three knots in the second row in Fig. 10, one obtains

OD
I Cl)

where x, y, z are variables of the invariant.
The knot containing the configuration Lo is simpler in

the sense that it contains one less line crossing than the
other two. Then, by applying the Skein relation Eq. (2.2)
and Reidemeister moves repeatedly, one eventually
equates the P function of any knot to a product of two
factors: a Laurent polynomial of homogeneous degree
zero in variables x, y, and z, and P„„„„«(x,y, z), the P
function of an unknot which, without loss of generality,
can be taken to be P„„z„«(x,y, z) = 1. Thus the P function
is a Laurent polynomial of degree zero in x, y, z.

For example, applying Eq. (2.2) to the three knots
shown in the first row in Fig. $0, one obtains

and hence the P function for the Hopf link is
PH»r=(z —xy —y )/xz. From the third row of Fig. 10
one has

1
xPRT(x, y, z)+y 1=z (z —xy —y ),xz

(2.2c)

leading to the P function PRT(x, y, z)=(z 2xy——y )/x2
for the right-handed trefoil. One may also verify that the
same results are always reached, independent of the order
in which the Skein relation is applied to line crossings.

For the P function to be a true knot invariant, we need
to ascertain its existence and uniqueness. That is, the P
function so obtained is independent of the order in which
the Skein relation is applied to line crossings for arbitrary
knots. This is the crux of this approach. Indeed, the fact
that the Skein relation Eq. (2.2) with general x, y, and z
actually defines a knot invariant, the Hom6y polynomial,
was not recognized until very recently (Freyd et al.
1985), and only after its validity in two special instances
became known (Conway, 1970; Jones, 1985).

The P function of the mirror image of a knot is ob-
tained by interchanging x and y, since rejections inter-
change the crossings + and —.For example, the mirror
image of the right-handed trefoil of Fig. 1(c) produces a
left-handed trefoil with the invariant PLT(x,y, z)
=(z —2xy —x )/y . It is also clear that the reversal of
all arrows does not change the + types of crossings and
therefore leaves the P function unchanged. But the re-
versal of arrows in one component of a link generally
leads to a different P function.

2. Unoriented knots

More generally, one can define Skein relations relating
knots that differ in a small disk containing other types of

Skein relations can be similarly written down for
unoriented knots. However, as the four lines at a cross-
ing can now be connected in four different ways, denoted
by +, —,0, and Do, as shown in Fig. 11, the Skein rela-
tion for unoriented knots relates four functions PD

PD, PD, and PD, where D+ is the knot with the

configuration +, etc. An example is the Skein relation
for the Kauffman polynomial (Kauffman, 1990) given in
Sec. II.D.5.

3. Other Skein relations

FICx. 10. Examples of knots connected by the Skein relation.
FIG. 11. The four line configurations considered in the Skein
relation for unoriented knots.
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originally obtained V(t) by analyzing the braid-group
representation of knots using von Neumann algebras, he
also pointed out that V (t) satisfies the Skein relation'

1—V (t) t—V (t)=L+ L VL (t)1

t
(2.6)

FIT&. 12. Line configurations for the general Skein relation.
and can be determined from it by further requiring am-
bient isotopy invariance and

V„„q„o,(t)= 1 . (2.7)

configurations, such as those denoted by L,2+ 1.3+ in
Fig. 12. The Akutsu-Wadati polynomial satisfies Skein
relations relating precisely these configurations.

D. Polynomial invariants

In this section we give the traditional definition of
several known knot invariants using the Skein relation.

1. The Alexander-Conway polynomial

Alexander (1928) discovered the first knot invariant
b,(t) for oriented knots. His derivation is a combinatorial
one. Years later Conway (1970) obtained an invariant
V(z), the Conway polynomial, and showed that it can be
determined from the Skein relation

3. The Homfly polynomial

The similarity between the Jones and Alexander poly-
nomials in terms of the Skein relation is very appealing.
Within a few months after the announcement of Jones'
result, four groups of researchers (Freyd et al. , 1985; see
also Hoste, 1986; Lickorish and Millett, 1987) indepen-
dently extended Jones's result to arrive at a new invari-
ant. They showed that the Skein relation (2.2) with gen-
eral x,y, z indeed defines a two-variable invariant, the
Homey polynomial. This new invariant, which has
since been rederived and analyzed by Jones (1987) using
the Hecke algebra representation of the braid group, can
be defined by rewriting the Skein relation (2.2) in the
equivalent form

V'L (z) —VL (z) =zVL (z) (2.3) PI (t,z) ——tPt (t,z) =zPt (t,z) .1
(2.8)

V„„k„o,(z) = 1 . (2.4)

in conjunction with the conditions that V'(z) be ambient
isotopy invariant and

The Homfiy polynomial P(t, z) is then completely deter-
mined from the Skein relation (2.8), the requirement of
ambient isotopy, and the condition

He further showed that V(z) is related to the Alexander
polynomial b, (t) through the relation

P„„k„„(t,z) = 1 .

We have the relations

(2.9)

(2.5)
(2.10)

It is clear that the Skein relation (2.3) is a special case of
Eq. (2.2) with x =1, y = —1. Alexander polynomials of
single-component knots are polynomials of z (Lickorish
and Millett, 1987) and are therefore symmetric in t and
1/t. It also follows from Eq. (2.3) that the Alexander-
Conway polynomial of a knot containing unlinked com-
ponents vanishes identically. Until the discovery of the
Jones polynomial in 1984, the Alexander-Conway poly-
nomial had remained as the single known and useful po-
lynomial invariant for decades.

2. The Jones polynomial

As alluded to earlier in Sec. I, recent advances in knot
theory were brought about by Jones' discovery several
years ago (Jones, 1985) of a new polynomial invariant
V(t), now known as the Jones polynomial. While Jones

4. The Akutsu-Wadati polynomial

The Akutsu-Wadati polynomial is an example of a new
knot invariant derived from exactly solvable models in
statistical mechanics (Akutsu and Wadati, 1987a). For
each X=2, 3, . . . , the Akutsu-Wadati polynomial
A' '(t) is a Laurent polynomial in t satisfying ambient

The definition of V(t) adopted here is the same as that used
in Jones (1987) and Kauffman (1991), and differs from that in
Jones (1985) and Freyd et al. (1985) by the change of t ~1/t.

Named after the initials of the six coauthors of Freyd et aI.
(1985). A fifth group of researchers also obtained the same re-
sults. However, their announcement (Przytycki and Traczyk,
1987) arrived late due to slow mail (from Poland) and was not
included in the joint paper.
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isotopy invariance. For N =2 the Akutsu-Wadati poly-
nomial coincides with the Jones polynomial, that is, we
have

60
A' '(t)= V(t), (2.11)

A' ' (t)=t(1 t'+t')—A"'(t)+t'(t' t +t'—)L2+ L+

X At'" (t)—t 'A~ ' (t ) . (2.12)

which satisfies the Skein relation (2.6). For general 1iI,

however, the Akutsu-Wadati polynomial satisfies a Skein
relation connecting knots differing in a small disk con-
taining configurations Lo, I, and L„+, with
n = 1,2, . . . , X—1. For N =3, for example, the Skein
relation is

FICi. 13. The three line configurations considered in Eq. (2.15).

Qnnkn«(a z) = 1

Q& (a,z)=a+'Qo (a,z) .
0

(2.14a)

(2.15a)

It is related to L(a,z) by the relation (Lickorish, in
Kauffman, 1990)

Q(a, z)= —( —1)' 'i ' 'L(ia, iz)—, (2.16)

5. The Kauffman polynomial

The Kauffman polynomial (Kauffman, 1990) is a two-
variable invariant of regular isotopy for unoriented
knots. That is, it is invariant only under type-II and
type-III Reidemeister moves. The Kauffman polynomial
L(a,z) is defined by the Skein relation

LD (a,z)+LD (az ) =z [Lo (a,z)+LD (a,z)], (2.13)

where +, —,0, and ao are configurations shown in Fig.
11, and LD, L~, LD, LD are the Kauffman polyno-

mials of four knots D+, D, Do, D that are identical
except that a small disk containing a single line crossing
is replaced by the respective configurations +, —,0, and

In addition, ihe Kauffman polynomial is required to
satisfy regular isotopy and the conditions

where i =&—1, c (K) is the number of components of
the knot K, and the writhe w(J ) is given by Eq. (2.1).
Since the reversal of the orientation of one component of
a link induces a change of writhe b, w(IC) =4n, n being an
integer, Eq. (2.16) is actually independent of the orienta-
tion chosen.

E. The semioriented invariant

Given an invariant of regular isotopy for unoriented
knots, we can always use it to construct an invariant of
ambient isotopy for oriented knots (Kauffman, 1988a).
We state this result as a theorem:

F(a)=a-' 'L(a) (2.17)

Theorem II.E. IfL (a) is a polynomial of regular isotopy
for an unoriented knot IC satisfying Eqs. (2.14) and (2.15),
then

L„„k„«(a,z) = 1, (2.14)

I., (a,z)=a 'Lo (a,z),
0

(2.15)

QD (a,z) —
QD (a,z) =z[QD (a, z) QD (a,z)]—

(2.13a)

and subject to the conditions

Here, Go, G+, G are configurations shown in Fig. 13,
and LG (a,z), Lo (a,z), and LG (a,z) are the Kauffman

polynomials of three knots that are identical except that
one disk containing two incident lines is replaced by Go,
G+, and G, respectively.

For our purposes it is convenient to consider the Du-
brovnik version of the Kauffman polynomial. The Du-
brovnik version of the Kauffman polynomial, Q(a, z) is
defined by the Skein relation

is an invariant of ambient isotopy for an oriented knot de
rived from K. Here, w(K) is the writhe IEq. (2.1)J of the
oriented knot.

F(a,z)=a "' 'L(a, z), (2.18)

which is a two-variable polynomial of ambient isotopy

The proof of the theorem follows from the facts that
both w (K) and L(a) are regular isotopy invariants, i.e.,
invariant under Reidemeister moves II and III, and that
the factor a ' ' in Eq. (2.17) cancels precisely those
powers of a induced under Reidemeister moves I, to
render F(a) ambient invariant.

As examples, applying Theorem II.E to the bracket po-
lynomial (Kauffman, 1987a; see Sec. V.B.2 below), one
obtains the Jones polynomial, and applying it to the
Kauffman polynomial, one obtains the F polynomial

Discovered by Kauffman is 1985 while visiting the city of Du-
brovnik of the former Yugoslavia.

4Theorems are numbered by the sections in which they appear.
5Note that attaching orientations to configurations 6+ in Fig.

13 leads to the respective configurations L+ for oriented knots,
independent of the orienting direction chosen.
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for oriented knots (Kauffman, 1990). A table of the F po-
lynomials can be found in Lickorish and Millett (1988).

As a corollary, Theorem II.E implies that, when the
orientation of one component of a link is reversed, the
net results to the invariant I' (a) is the introduction of an
overall factor a "' ', where b, m(K) is the change of
writhe and is always in the form of b,w(K) =4n, n being
an integer. For the Jones polynomial, for examples, we
have a= r—~ (Sec. V.B.2). Then the reversal of the
orientation of one component introduces a factor t ", a
fact verified by checking the list given in the Appendix.
Since reversals of line orientations induce only changes of
an overall factor, invariants given by Eqs. (2.17) and
(2.18), including the Jones polynomial V(t), have been
termed "semioriented" (Lickorish, 1988; Lickorish and
Millett, 1988).

III. LATTICE MODELS AND KNOT INVARIANTS

Lattice models are mathematical models of physical
systems de6ned on lattices. While in the real world one
deals with regular lattices of infinite size, many results on
lattice models also hold for arbitrary finite 1attices. It is
these latter results that are useful in knot theory.

In lattice models one is interested in the computation
of a partition function

where the summation is taken over all spin (or edge)
states, and 8' is a Boltzmann factor defined for each
configuration of spin (or edge) states. The Boltzmann
factors are usually local in nature, that is, they can be
decomposed into products of factors, each of which de-
pends on states of few spins (edges) located in the im-
mediate neighborhood. In statistical mechanics one fur-
ther computes thermodynamic properties by taking
derivatives of the partition function for infinite lattices.
In knot theory, however, one deals mostly with partition
functions.

The strategy of deriving knot invariants using statisti-
cal mechanics is the following: For each given knot, one
constructs a two-dimensional lattice. One then seeks to
construct lattice models on the lattice such that the parti-
tion function is identical for lattices constructed from
equivalent knots. Then, by definition, the partition func-
tion is a knot invariant.

There are generally two different kinds of lattice mod-
els. If one places spins at lattice sites and introduces in-
teractions among spins around an elementary cell of the
lattice, one is led to spin models. This includes the spe-
cial case of edge-interaction models for which only pair
interactions are present. When there are multisite
and/or hard-core interactions, the spin models are also
known as interaction-round-a-face (IRF) models. Alter-
natively, if one places spins on lattice edges and associ-
ates weights with vertices according to the spin states of
the incident edges, then one has vertex models. Vertex
and IRF models are closely related and can always be

transformed into each other (Perk and Wu, 1986a). For
applications in knot theory, however, we shall see that it
is convenient to begin with vertex models.

Historically, spin models originated from studies of the
Ising model of ferromagnetism (Ising, 1925; Onsager,
1944). The study of vertex models was initiated in 1967
following Lieb s pioneering work on the exact determina-
tion of the residue entropy for square ice (Lieb, 1967a,
1967d), culminating in Baxter's exact solution of the
two-state eight-vertex model (Baxter, 1971, 1972). The
two-state vertex models have since been generalized to
general q states (Kulish and Sklyanin, 1980, 1982;
Schultz, 1981). The IRF model, a term coined by Baxter
(1980), is another generalization of the eight-vertex mod-
el along a somewhat different route. A summary of early
progress in lattice models can be found in the review by
Lieb and Wu (1972) and the book by Baxter (1980).
More recent results, particularly those on general q-state
vertex and IRF models applicable to knot theory, are
scattered through the literature.

The connection between knot theory and statistical
mechanics was first noted by Jones (1985). In his deriva-
tion of the Jones polynomial, Jones noticed the resem-
blance of the von Neumann algebra used by him to the
algebra occurring in the Temperley-Lieb formulation of
the Potts model (Temperley and Lieb, 1971). The direct
connection between the two seemingly unrelated Aelds
came to light in 1986, when Kauffman (1987a) produced
a remarkably simple derivation of the Jones polynomial
using the bracket polynomial, a diagrammatic formula-
tion which also arose in the consideration of the nonin-
tersecting string model (Perk and Wu, 1986a) (see Sec.
V.B.2 below). Soon thereafter, Jones worked out a
derivation of the HomAy polynomial using a vertex-
model approach. His derivation, while unpublished at
the time, became widely known and was extended by
Turaev (1988) to the Kauffman polynomial. The connec-
tion of knot theory with statistical mechanics was for-
malized and further extended to include spin models by
Jones (1989). Particularly, Jones introduced angle depen-
dences to vertex models characterized by local weights.

The approach presented in this review follows closely
that of Jones (1989). In particular, we consider vertex
models with strictly local weights through the introduc-
tion of piecewise-linear lattices. We further establish
that the IRF-model approach to knot invariants can be
deduced as a special instance of the vertex-model formu-
lation, thus simplifying the task of its derivation.

Finally, we point out the essence of the statistical
mechanical approach. The statistical mechanical ap-
proach to knot invariants is based on the integrability of
lattice models. Since we are seeking lattice models whose
partition functions are invariant under Reidemeister
moves, the main idea is that the partition function of in-
tegrable models (in the infinite-rapidity limit) naturally

See example 1.16 in Jones {1989).
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fulfills the requirement of Reidemeister moves IIIA (see
Sec. V.A. 1 below), a point not readily seen in the braid-
group approach (Jones, 1990b). In addition, Reidemeis-
ter move IIA is satis6ed as a consequence of unitarity. It
is then a relatively simple matter to require the invari-
ance of the partition function only under Reidemeister
moves I and IIB.

Our main results are summarized in Theorems V.A. 1

(for vertex models), VI.F (for IRF models), and VII.A
(for models with pure two-spin interactions).

lV. VERTEX MODELS

FIG. 15. A directed lattice.

y b
co; =co; (a, b~x,y) =co; (4.2)

A. Formulation

Consider a finite lattice X of N sites (vertices), E edges,
and arbitrary shape. For our purposes we shall confine
ourselves to lattices with a uniform coordination number
and without free edges, i.e., every edge terminates at two
vertices. An example of one such lattice is shown in Fig.
14.

Place spins on lattice edges, and let each spin indepen-
dently take on q distinct values, or states. It is often con-
venient to associate colors with spin states so that one
may regard edges as being colored. Then the partition
function Z in Eq. (2.1) generates q edge colorings of X.
In the case of q =2, for example, one may regard the
edges as having two colors, and thus one is led to consid-
er two-state vertex models that have been analyzed exten-
sively (for reviews see Lieb and Wu, 1972, and Baxter,
1980).

In vertex models the Boltzmann factor in Eq. (3.1) is
taken to be a product of individua1 vertex weights, and
the partition function reads

vertex ( ~ )
Iedge Statesl i =1

(4.1)

where co;, the vertex weight of the ith vertex, is a func-
tion of the spin states of its four incident edges.

Since we have arbitrary lattices in mind, in which ver-
tices can assume arbitrary orientations, a local frame of
reference is needed to properly define the weights. This
can be provided by directing lattice edges such that each
vertex is formed by the crossing of two directed lines.
For example, the lattice in Fig. 14 can be directed as
shown in Fig. 15. %'e can now write the vertex weight as

where a, b, x, y are numerical numbers denoting the spin
states of the four incident edges of a vertex as arranged in
Fig. 16. We shall assume the indices ta, b, x,y I H J',
where 2 is a set of q numerical values distributed symme-
trically about zero.

In the most general case, Eq. (4.2) gives rise to q dis-
tinct vertex weights and a q -vertex model. For q =2,
for example, this becomes the 16-vertex model (Lieb and
Wu, 1972). Several special case cases of the q =2 prob-
lem have been considered in the past; these include the
six-vertex (Lieb, 1967a, 1967b, 1967c; Sutherland, 1967)
and the eight-vertex (Fan and Wu, 1970; Baxter, 1971,
1972) models.

B. The Yang-Baxter equation

The q -vertex model is integrable if the q vertex
weights satisfy a condition known as the Yang-Baxter
equation. In practice, integrability of lattice models often
leads to closed-form solutions of the partition function
and other physical quantities such as correlation func-
tions. For our purposes, however, it sui5ces to consider
only solutions of the Yang-Baxter equation, which, as we
shall see, lead naturally to the realization of type-IIIA
Reidemeister moves. As alluded to earlier in Sec. III,
this is the key to the statistical mechanical derivation of
knot invariants.

Consider two clusters of lattice edges containing three
lattice sites represented by the upward-pointing and
downward-pointing triangles in Fig. 17. The Yang-
Baxter equation is the condition on the vertex weights
such that the partition functions of these two small lat-
tices are identical for any given states {a,b, c,d, e,f I. This
implies that one may replace an upward-pointing triangle
that is part of a lattice by a downward-pointing one, and
vice versa, without affecting the overall partition func-
tion. Algebraically, this condition reads

FIG. 14. A finite lattice of coordination number four. The lat-
tice contains 6 vertices and 12 edges. FIG. 16. The orientation of a vertex.
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FIG. 17. The Yang-Baxter equation for vertex models.
FIG. 18. Association of rapidities u, u, m, with the lines.

x,y, zCS
co, (x, bly, a)co~(f, zle, x)co3(z, cld, y)= g co,(e,xld, y)co&(z, clx, b)co3(f, zly, a)

x,y, z, Hg

for all a, b, c,d, e,f H J . (4.3)

Here, we have allowed vertex weights to be difT'erent at
the three sites.

Historically, the Yang-Baxter equation arose for q =2
as the factorizability condition in the Bethe-ansatz ap-
proach to the one-dimensional delta-function gas
[Mcguire (1964) for the Bose gas considered by Lieb and
Liniger (1963); Gaudin (1967) and Yang (1967) for the
Fermi gas] and as the star-triangle relation in solvable
two-dimensional models in statistical mechanics [On-
sager (1944) for the Ising model; Baxter (1972) for the
eight-vertex model; Baxter (1978) for the general Z-
invariant modelj. The Yang-Baxter equation, a term in-
troduced by the Faddeev school, also arises in the theory
of the factorized S matrix in quantum field theory (Zamo-
lodchikov, 1979), for which the vertex weight co is known
as the R matrix. For general q, a problem first studied by
Kulish and Sklyanin (1980, 1982) and Schultz (1981),Eq.
(4.3) is a set of q equations with 3Xq unknowns and is
highly overdetermined.

The most general solution of the Yang-Baxter equation
is not yet known, but families of solutions, including
many of the special solutions found by brute force, can be
constructed by using finite-dimensional representations
of simple Lie algebras (Bazhanov, 1985; Jimbo, 1986)
connected with quantum groups (Drinfel'd, 1986). These
solutions are parametrized by assigning line variables, or
rapidities (spectral parameters), u, U, w to the three lines,
as shown in Fig. 18, so that one has

coi(a blx y)=co(a, blx ylu w)

y b—
CO (u —w),

Q X

co (a, b lx,y)=co(a, blx, y lU
—u),

co3(a, blx, y) =co(a, b lx, ylu —w ) .

7The term Baxter-Fang relation first appeared in a review on
the quantum inverse scattering method by Takhtadzhan and
Faddeev (1979), and the name Yang-Baxter equation was used
thereafter by the Faddeev school. A useful collection of
relevant reprints on the Yang-Baxter equation can be found in
Jimbo (1989).

That is, vertex weights depend on a parameter that is the
difference of the two rapidities of the two lines crossing
at each vertex. Furthermore, it can be shown (Perk and
Wu, 1986b) that the decoupling (initial) condition

co(a, b lx, ylO) =5, 5i,„ (4.5a)

usually satisfied by solutions of the Yang-Baxter equation
leads to the unitarity condition

co(a, b lx, y lv —
u)co( yz lb, c lu —u) =5„5„,,

b,yEJ
(4.5b)

C
11m co

Q
(u) . (4.6)

Here it is understood that the right-hand side of Eq. (4.6)
has been divided by a divergent factor, such as sinhu or
e~~"~ where P is a constant, such that only the leading
weights contribute. The less divergent weights, if any,
vanish in this limit.

Then, depending on the relative magnitudes of u, U, w,
the Yang-Baxter equation (4.3) reduces to six different
equations shown schematically in Fig. 20. These are
given by Eq. (4.3) with indices

The subscripts + and the argument u of a vertex weight co

serve to remind us that co is a solution of the Yang-Baxter equa-
tion.

a situation shown in Fig. 19. Here, the Kronecker delta
indicates that there is a contribution only when the two
lines have identical indices. Solutions of the Yang-Baxter
equation useful in constructing knot invariants are those
with trigonometric parametrizations, usually the degen-
erate critical manifolds of more general soluble families
with elliptic function parametrizations. This leads, as we
shall see, to various generalizations of the two-state six-
vertex models solved by Lieb (1967c, 1967d) to general q
states.

The infinite rapidity limit In pursui. ng realizations of
knots as vertex models, we need two kinds of vertex
weights for the + and —types of crossings. This need
can be fulfilled by taking the infinite-rapidity limit
g —+ oo, U —+Do, w —+oo and writing
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{1,2, 3] = {
——+ I, {

—++ I, {
———I, {+——I, {+++I, {+—+ I . (4.7)

It is intriguing to note that the six configurations
specified by Eq. (4.7) coincide precisely with those in Fig.
5 representing the six possible Reidemeister moves IIIA.
Similarly, the unitarity relation Eq. (4.5b) reduces to

co+(a, b ~x,y )co+(y, z ~b, c)=5„5„,,
b,yH2

(4.8)

C. Enhanced vertex models

represented by configurations coinciding with that of
Reidemeister move IIA shown in Fig. 4. Conversely
starting from a given co+ ——m(+~) obtained from, say,
braid-group analysis, one may seek to reconstruct the
weight co(u). This inverse process is termed Baxteriza
tion (Jones, 1990b).

l

specified. The product of the vertex weights co'(a) along
the zigzag path shown in Fig. 23 is given by

e(&) g 1 2 ga9/2m

path

(4.10)

where 0 is the angle between the final and initial direc-
tions of the path. Thus one always obtains the same
product, independent of the way that the curved edges
are linearized. In addition, the creation of vertices of de-
gree 2 leads to the consideration of lattices in the shape
of a ring. Since the product of vertex weights along a
ring is

co*(a)=A, ' arrows in counterclockwise
closed path

direction,

arrows in clockwise direction,

It often happens that vertex weights occurring in a ver-
tex model contain factors depending explicitly on angles
between the incident lattice edges, a local parameter that
may vary from vertex to vertex. It further transpires that
one often regroups these local factors according to global
loops, a technique first used in an analysis of the Potts
model by Baxter et al. (1976) for arbitrary two-
dimensional lattices. It is then convenient to replace
curved edges, such as those shown in Fig. 15, by zigzag
lines. This leads to the consideration of piecewise-linear
lattices X'. For example, the conversion of the oriented
lattice in Fig. 15 into one that is piecewise linear is shown
in Fig. 21. Note that the conversion creates new vertices
of degree 2.

Consider next an enhanced vertex model on X* de-
rived from the vertex model on X by associated angle
dependences with vertex weights. For vertices of degree
two, shown in Figs. 22(a) and 22(b), we associate vertex
weights

(4.11)

the partition function of a ring,

Z„„(co')=Q A,',
aG2

(4.12)

C
co (a, dlb, clu)=co b (u)

=g'+' "'s "~~(a,g~b, c~u) (4.13a)

and the infinite-rapidity limits

co+(a, d~b, c)=A,'+' " ' " co+(a, d~b, c), (4.13b)

is independent of the arrow direction for J symmetric
about zero.

In the same spirit, we modify aH other vertex weights
by multiplying them by a factor to yield the angle-
dependent weights

co (a)=A, ' if the line turns an angle 8

to the left,
(4.9)

where a, b, c, d are arranged as shown in Fig. 22(c), and L9

is the angle between the two incoming (or outgoing) ar-
rows. ' Explicitly, the partition function of the enhanced

if the line turns an angle 8

to the right,

where a is the state variable, and A, a variable yet to be

FIG. 19. The unitarity condition for vertex weights.

h
Since A, is as yet unspecified, we may write A,

' as k ' for some
function h, indexing the lattice edge. Then the discussions of
this section and Sec. IV.D below can be carried through, pro-
vided that we replace the condition a+& =e+d in Eq. (4.16)
by h, +hb =h, +hq, and the factor a —d in the exponent in Eq.
(4.18) by h, —hz. This generalization proves to be useful when
vertex-model results are applied to IRF models in Sec. VII.

oWe shall assume that all vertices are formed by the crossing
of two straight lines, so that 0 & 0 & m.
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vertex model is

Zvertex(~
I edge states)

Q co'(a, b lx, ylu) Q co*(a),

Z„„„„(co+)= g g co+(a, b lx,y) g co*(a),
I edge states)

(4.14b)

and, in the in6nite-rapidity limit,

(4.14a)
where the two products are taken over vertices of degrees
4 and 2, respectively.

For the enhanced vertex model to be useful in knot
theory, we require the enhanced Yang-Baxter equation

co*(x bly, a lu —w)co (f,zle, x lu
—u) co*(z,cld, ylu —w)

x,y, zE2

co*(e,x ld y lu —w)co*(z, c lx, b lu u)co*—(f zly, a lu —w) (4.15)
x,y, z, BJ

to hold. This leads us to consider charge-conserving
models.

D. Charge-conserving vertex models

arrows is conserved, and we refer to Eq. (4.16) as the con-
dition of charge conservation. In charge-conserving mod-
els the angle-dependent weights, Eqs. (4.13a) and (4.13b),
are, respectively,

In most of our applications we shall have

r

C
co (u)=0 unless a+b =c+d .a b (4.16)

c
co*(a,dlb, clu)=co*

b (u)

""' co(a, dl b, cl u), (4.17a)

If we regard the functions a, b, c, d as defining charges
with edges, then the total charge of incoming/outgoing

c
co+(a, d lb, c)=co+

C
g( a —d)0/2~ + a b (4.17b)

W&V&U

V&W&U

w&u&v

Using the identity 03=0&+02, where 0,. is the angle be-
tween the two incoming arrows at site i in Fig. 18, one
can readily verify that the vertex weight Eq. (4.17a) is a
solution of the enhanced Yang-Baxter equation (4.15),
provided that co(a, d, lb, clu) is a solution of the Yang-
Baxter equation (4.3). It follows that Eq. (4.17b) is the
solution of Eq. (4.15) in the infinite-rapidity limit. Along
the same lines, since the rapidity differences also satisfy
u 3 u ] +u 2, where u is the difference of the two rapidi-
ties at site i,

W co(a, d, b, c lu) —=e~' "'"co(a,d, lb, clu), (4.18)

U&w&V

v&u&w

where P is arbitrary, is also a solution of the Yang-Baxter
equation. This is a "symmetry-breaking" transforma-
tion, which provides to be useful in latter applications.
We shall leave open the possibility of introducing this

u&v&w

FIG. 20. The Yang-Baxter equation in the infinite-rapidity lim-
it. FIG. 21. A directed piecewise-linear lattice.
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(a} (b) (e)

FIT&. 22. Vertices in piecewise-linear lattices.

symmetry breaking and use co to denote either co or co,

whichever is needed in the application.

FIG. 23. A directed path.

E. Integrable vertex models

We now present examples of integrable vertex models
known in statistical mechanics.

1. The spin-conserving model

W„(u ) =sinh(g+ e, u ),
S,~(u)=sinhu,

T. (u)=e " ' "' ")sinhg,ab

(4.22)

Schultz (1981) and Perk and Schultz (1981, 1983) have
carried out a systematic study of solutions of the Yang-
Baxter equation in some special cases. The erst case is a
q(2q —1)-vertex model generalizing the (q =2) six-
vertex ice-type models (Lieb, 1967a, 1967b, 1967c). In
this vertex model all weights vanish except those associ-
ated with the q (2q —1) configurations shown in Fig. 24.
If one identi6es edge variables as spins, then the
incoming/outgoing spins are conserved, " that is, we
have either

where e, =1 or —1, and g is arbitrary. In the infinite-
rapidity limit, Eqs. (4.20) and (4.22) become

C

co+ b
= A+(e, e ' 5,g,d+(5,„5~,—5,~,d )

+(e" e")8—[+(b —a)]5„5&d),
(4.23)

where we have divided the weight, Eq. (4.20), by sinh u

and introduced normalization factor 3+ and the step
function

Ia =c, b =dI or Ia=d, b=cI . (4.19)
0(b —a)=1 if b )a,

=0 if b&a . (4.24)

It is instructive to write out Eq. (4.23) explicitly. Exclud-
ing the normalization factor A+, we have

a a +e 7I=E'ge

b a
CO+ =1, aWb,

Thus the spin-conserving model satis6es charge conserva-
tion, a+b =c+d. For q =2, the condition (4.19) is
equivalent to the ice rule (Wu, 1967, 1968) leading to the
six-vertex models solved by Lieb (1967a, 1967b, 1967c).

Let W„, S,&, and T,&, a&b, be the vertex weights
shown in Fig. 24. Then we can write

T

c d
co b (u) = W„(u)5,I„d+S,t, (u)(5,d5q, 5,q,d)—

+ T,I,(u)(5„5bd 5,b,q), —

where 6,b is the Kronecker delta function and

(4.20)
a b

+ a b
=e"—e ", a (b, (4.25)

5 bd=1 if a =b=c=d,
=0 otherwise . (4.21) CO a b

= —(e"—e ") a) b 7

Perk and Schultz (1983) found that, within the family of
Eq. (4.20), the solution of the Yang-Baxter equation is,
excluding an overall normalization,

The term spin conservation has been used by different au-
thors in different contexts. Here we use it to refer to models in
which the states of the incoming and outgoing arrows are strict-
ly the same.

Here we have omitted some multiplication factors corre-
sponding to gauge transformations and external fields that do
not concern us.

c d
co+ b

=0, otherwise .a

As we shall see, this spin-conserving model leads to the
Homey polynomial.

2. The N-state vertex model

Another family of integrable charge-conserving models
is the ¹tate vertex model (Sogo et al. , 1983). Let the
edge variables take on N distinct values,
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(4.26)

for fixed X =2,3, . . . . Then the X-state vertex model is
specified by

a+b =c+d =I III ~& (4.27)

1

2

CO

. 2

2

(u) =su

1

2

1

2

2

(u) =sinh(q —u),

'1
2

CO

. 2

1

2

1

2

1

2

2

(u) =co
2

1

2

2

(u)=e "sinhg,
2 .

1

2

2 .
( u ) =slnhu

(4.28)

that is, charge-conserving weights with the total charge
I ~X —1. This yields a total of 2+/=0', 2 I +I)))'

=X(2X +1)/3 vertex configurations, leading to the 6-
vertex (ice-type) models for N =2 and the 19-vertex mod-
el (Zamolodchikov and Fateev, 1980) for I)I =3. For ex-
ample, the X =2 solution is (Akutsu and Wadati, 1987b)

c
e g((ab +cd)+ k (k —) )/2]+ a b

XI (, k(rl)[6)(a b)+5,(, ]—, (4.29)

where the vertex weights are those including the
symmetry-breaking factor in Eq. (4.18) with P=1. We
observe that this solution is identical to that of the spin-
conserving model given by Eqs. (4.20) and (4.22) with
q =2, e, = —1. But the general X-state vertex model is
di6'erent from the spin-conserving model. Explicit ex-
pressions of vertex weights for N =3,4 can be found in
Sogo et al. (1983) and Akutsu and Wadati (1987b). The
general X model can be constructed using, for example, a
fusion procedure (Kulish and Sklyanin, 1982b) according
to the ideas of Kulish et al. (1981).

An expression for vertex weights co+, the infinity-
rapidity limit of w(u), for general X has been given by
Jones (1989). This expression, which includes the
symmetry-breaking factor in Eq. (4.18) with P=1 and
reduces to our e, = 1 solution in the case of N =2, is

1

2 2 .
(u) =e "sinhg,

where k =a —d,

f N
( )

2 sinh[(b + n +—'I))t +—')q]sinh[(b + n ——'X ——')g]2 2

—sinh[(n + 1)q]
(4.30)

with empty product being 1, and

C d d C
co

b (g)=co+ b ( —g) . (4.31)
[a =c, b=d] or [a =b, c =d] .

Thus the vertex weight is

(4.32)

This vertex model leads to the Akutsu-Wadati polynomi-
al.

C
co b (u) = W„(u)5,(„d+S,(,(u)(5,q5,d 5,(„d)—

3. The nonintersecting-string model
+ Tab( )(5ac5bd 5abcd ) (4.33)

Another family of solutions considered by Perk and
Schultz (1983) is the q(2q —1)-vertex model with vertex
weights shown in Fig. 25. These are vertex weights
characterized by either

If at each vertex we connect edges in the same states,
then the partition function (4.1) generates polygons on X
that do not intersect. Hence this is a model of noninter-
secting strings. For q =2, this reduces to a six-vertex

a Q b

Sa& Tab Waa ~ab

a+b
Tab

FICx. 24. Vertex weights of the spin-conserving vertex model. FIG. 25. Vertex weights of the nonintersecting-string model.
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model discussed by Lieb and Wu (1972). Two models for
q =3 have been considered by Stroganov (1979). Note
that the nonintersecting-string model does not obey the
charge-conserving condition, ' Eq. (4.16), and conse-
quently we take A, =1 so that all vertices of degree two in
X* have the weight

FIG. 26. Construction of a lattice from a knot.
co(a)=1, for all a . (4.34)

W„(u ) =sinhu +sinh( il —u ),
S,&(u) =sinhu,

T,b(u) =sinh(ri —u) .

(4.35)

In the infinite-rapidity limit, we obtain from Eq. (4.33)

c
co~ b

= A~ [5 b5 d e +% 5id ] (4.36)

where we have again divided Eq. (4.33) by sinhu and in-
cluded a normalization factor 3+. Explicitly, excluding
the normalization factor A+, we have

~+aa = 1 —e*",

a b
N + a b

= —e —" aAb

a a
coy b b

=1, aAb

(4.37)

C

co+
&

=0, otherwise .

Perk and Schultz (1981, 1983) found that there exist
exactly q+1 distinct integrable models in the form of
Eq. (4.33). One of the integrable cases, termed the separ-
able model by Perk and Wu (1986a), is

line crossings as lattice sites (vertices). This leads natu-
rally to two types of vertices, + and —,corresponding to
the two kinds of line crossings + and —.For example,
from a trefoil one constructs the directed lattice in Fig.
26 and the piecewise-linear lattice in Fig. 27, both having
three + crossings.

We next seek to construct an enhanced vertex model
on X* with correspondingly two difFerent kinds of vertex
weights co+, such that its partition function Z(co+) is a
knot invariant. That is, we require Z(co+) to remain in-
variant under Reidemeister moves of the lattice edges.
To accomplish this, we use vertex weights co+ derived
from the enhanced Yang-Baxter equation (4.15). Indeed,
as remarked after Eq. (4.7), configurations of the Yang-
Baxter equation in the infinite-rapidity limits coincide
precisely with those of type-IIIA Reidemeister moves.
As a result, the partition function Z(co+) is by definition
invariant under type-IIIA moves. We therefore need
only examine its invariance under Reidemeister moves I
and II (moves IIIB follow as a consequence). Note that
the use of the infinite-rapidity limit, Eq. (4.6), a crucial
step whose meaning is not well understood in the braid-
group approach (Witten, 1989b; Jones, 1990b), now
emerges naturally as a condition for ensuring invariance
under Reidemeister moves IIIA.

The invariance of Z(co+) under Reidemeister moves I,
shown in Fig. 28, reads

As we shall see, this vertex model leads to the Jones poly-
nomial (Lipson, 1992; Wu, 1992b).

e~~ "co*(a,b ~x, a) =g "e ~(i (I)
aCJ

(5.1)

V. KNOT INVARIANTS FROM VERTEX MODELS

A. Oriented knots

1. Formulation

where we have used the identity 0&+02+03 277 0.
Similarly, consideration of the invariance of Z(co+) un-
der Reidemeister moves IIA and IIB, shown in Figs. 29
and 30, respectively, leads to the conditions

Starting from a given oriented knot, one constructs a
directed lattice X and the associated piecewise-linear lat-
tice X* by regarding lines of the knot as lattice edges and

However, by applying a staircase-type transformation gen-
eralizing the one used by Fan and Wu (1970) for the eight-
vertex model, one can view the nonintersecting-string model as
a checkerboard spin-conserving modql. I am indebted to J. H.
H. Perk for this remark.

FIG. 27. The piecewise-linear lattice constructed from the lat-
tice in Fig. 26.
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1114 F. Y. Wu: Knot theory and statisticai mechanics

to*(a, b ~x,y)to*—(y, z ~b, c)
b,y&2

—) (a —x)e/2vrg g ( IIA )ac xz 9

A,
' + " ' co*(y,x~a, b)to* (b—c~z y)

b, y& J

(5.2) e

g(a +x){m
—e)/2wg

For completeness, although it is redundant, we write
down the requirement imposed by Reidemeister moves
IIIB. Using the labelings shown in Fig. 31, we have FIG. 28. Labelings for Reidemeister moves I.

x,y, zE2
co(y, a ~b, x)co& (x,c

~f z)co3 (z, c ~dy) = g co*, (dy ~x, e)co& (b, c ~z, c)co3 (f z ~y, a) (IIIB),
x,y, zH2

(5.4)

(5.5)

For charge-conserving models, we use Eqs. (4.17a) and
(4.17b) and obtain from Eqs. (5.1)—(5.3) the equivalent
conditions

y X'co+(a, b~x, a)=5, , (I),
aEJ

to+(a, b ~x,y)co+(y, z ~b, c)=5„5, (IIA),
b,yG2

For charge-conserving models, co+ is given by Eq.
(4.17b), and Eqs (5.1)—(.5.3) reduce to the fundamental
conditions (5.1a)—(5.3a).

Skein relation. With knot invariants formulated as
partition functions, Skein relations relating knot invari-
ants can be formulated in terms of vertex weights. For
the HomAy polynomial, for example, it is readily verified
that the Skein relation (2.8) is equivalent to the following
relation among the enhanced vertex weights:

'to+(y, x ~a, b)to+(b, c~z,y) =5,$„(IIB).
b,yE2

(5.3a)

C
tt co a b

g( a —d)0/2~g
ae bd (5.6)

Here, to+(a, b, ~c, d) are defined by Eqs. (4.6) and (4.4) and
are deduced from the solution of the Yang-Baxter equa-
tion (4.3). These are the fundamental conditions, which
do not refer to enhanced weights. Note that they do not
depend on the angle 8 and the condition (5.2a) coincides
with the unitarity relation, Eq. (4.8).

We now collect our main results and state them as a
theorem:

For charge-conserving models Eq. (5.6) reduces to

c C

CO+ g t 6)
g

=Z5a~ 6bd (5.6a)

Similar relations can be written down for other Skein re-
lations.

We now apply our formulation to obtain knot invari-
ants.

Theorem VA. 1. For each oriented knot construct a direct
ed lattice X and the associated piecewise linear lattic-e X*.
Then the partition function (4 14b), with Ue. rtex ioeights
to*(a) giuen by Eq. (4.9) and to+ by the inftnite rapidity-
limit of the solution of the enhanced Fang Baxter equa-
tion (4 15), is a .knot invariant, prouided that Eqs.
(5.1)—(5.3) hold.

2. The Homfly polynomial

We now show that the q-state spin-conserving model
described in Sec. IV.E.1 (Perk and Schultz, 1981, 1983)
generates the Homey polynomial (Jones, 1989). The ver-
tex weights co+ of the spin-conserving model are given by

iy

8b~ b

FIG. 29. Labelings for Reidemeister moves IIA. FIG. 30. Labelings for Reidemeister moves IIB.
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2

—e+vA, '+(e~ —e I) g 8[+(b —a)]A,' =1, b~+,
QCJ

FIG. 31. Labelings for Reidemeister moves IIIB.

Using the identity

g 8[+(b —a)]g'=(g+~'i-'~ —q")/(1 —q+')
a6S

we deduce from Eq. (5.9) the condition

(5.9)

(5.10)

Eqs. (4.20) and (4.23) with'

e, = —1 for all a,
and

(5.7)

A+e —"A. +
1 —A,

which is satisfied by taking

A, =e", A = —e ~" .

(5.1 1)

(5.12)

2= [
—(q —1),—(q —3), . . . , (q —3), (q —1)], (5.8)

containing q integers with intervals of 2 in between.
The partition function is invariant under Reidemeister

moves IIIA by construction. To satisfy invariance under
Reidemeister moves I, we substitute the vertex weight
(4.23) with e, = —1 in Eq. (5.1a) and obtain

Similarly, substituting Eq. (4.23) with e, = —1 in Eqs.
(5.2a) and (5.3a) required by Reidemeister moves IIA and
IIB, we verify that they are also satisfied with the choice
of Eq. (5.12). For example, to verify Eq. (5.2a), which is
the same as the unitarity relation Eq. (4.8), one substi-
tutes Eq. (5.12), which equates the left-hand side of Eq.
(5.2a) to

LHS= g [ —e "5,I„+(5,b5 —5,b„)+(e~ e")8(b—a)5, 5b —
)

b,yEJ

X[—e%,i„+(5i„5,—5b, , )=(e"—e ")8(y —z)5, 5b, ] .

Expanding the fist square bracket in Eq. (5.13) and carrying out the summations term by term, one obtains

LHS= —e "[(—e "5„„,)+0+0]+[0+(5„5,—5„„,)+0]+(e"—e ")[0+0+0]

(5.13)

(5.14)

This establishes Eq. (5.2a). In a similar fashion and using Eq. (5.10) in conjunction with the identity

g 8(a b)8(b —c)A—, =(A, '+ —A,')/(I —A, ),
bef

(5.15)

we verify that Eq. (5.3a) is satisfied. It can also be checked, although this is not necessary, that the condition (5.4) re-

quired by Reidemeister moves IIIB is also satisfied.
Combining Eqs. (5.12) with (4.17b) and (4.23), we arrive at the following explicit expression for the angle-dependent

vertex weight:

G

a)+ b
=e + ((ie "+1)5,—i—„d 5,d5b, +(e—" e")e' —'" ~ "8[+(b a)]5„5bd) —. (5.16)

Here 0 is the angle between the two incoming arrows at
the vertex, and 8(a) is the step function defined by Eq.
(4.24). The partition function Z(co+) of this vertex model
generates knot invariant. '

The choice of e, =1, which leads to A, =e "and A+ =e
also yields the HomAy polynomial.

5It is instructive to verify that the vertex weight (5.16) does
not disentangle the con6gurations shown in Fig. 8. Thus the
vertex weight (5.16) is exactly what is required of knot invari-

ances, no more and no less.

To see that this knot invariant is the Homey polyno-
mial, we need to establish the Skein relation (5.6).
Indeed, using the identity

8(a b)+8(b —a)+—5,&
= 1, (5.17)

one verifies that Eq. (5.6) is satisfied by the co+ Eq. (5.16)

by identifying

t=e~", z=e "—e" . (5.18)

Furthermore, as discussed in Sec. II.C.1, the Skein rela-
tion expresses the partition function Z (q, e ") of the
enhanced spin-conserving vertex model as the product of
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1116 F. Y. Wu: Knot theory and statistical mechanics

two factors: a Laurent polynomial P(t, z) in t and z and
the partition function of a ring, Z„.„=sinhqq/sinhg, de-
duced from Eq. (4.12). Thus the Laurent polynomial

Another construction of the Jones polynomial based on
the nonintersecting-string model will be given in Sec.
V.B.2 below.

sinhqg
(5.19) 4. The Alexander-Conway polynomial

satisfies the normalization condition (2.9) and hence is
the HomAy polynomial for integral q. By analytically
continuing Eq. (5.19) to all values of q, we establish the
existence and uniqueness of the Homey polynomial
P(t, z) for general t and z. This completes the construc-
tion of the Homey polynomial.

3. The Jones polynomial

We have seen in Sec. II.D.3 that the Jones polynomial
V(t) is obtained from the Homfiy polynomial P(t, z) by
taking z=&t —1/&t, indicating that the Jones polyno-
mial is constructed from the q =2 spin-conserving vertex
model. In view of its fundamental importance, we give
here another construction of the Jones polynomial using
the nonintersecting-string model of Sec. IV.E.3 (Lipson,
1992; Wu, 1992b). This construction is direct, as there is
no need of introducing piecewise-linear lattices nor the
writhe; it also expresses the Jones polynomial directly as
a Potts model partition function (Wu, 1992b).

In the nonintersecting-string model we have A, =1, so
that there is no angle dependence in vertex weights. As
before, the condition for Reidemeister moves IIIA is au-
tomatically satisfied by the vertex weight (4.36). Substi-
tuting this weight in Eq. (5.1a) with A, = 1, we obtain

+2g (5.20)

Explicitly, the vertex weight Eq. (4.36) is now

C = —e*2"S.
b S.d + e+ "g.,gb„a (5.21)

C
2Y/~ 4

+ a b

'C d
2'—e "m

L

It can be checked that Eqs. (5.2a) and (5.3a) are now
satisfied by Eq. (5.21). Hence, the partition function
Z(q, e") of the nonintersecting-string model with weight
(5.21) is a knot invariant. To identify this knot invariant
as the Jones polynomial, we obtain from Eq. (5.21)

The Alexander-Conway polynomial V(z) is obtained
from the Homfly polynomial P(t, z) by taking t =1. Ac-
cording to Eq. (5.18), this corresponds to taking q =0 in
our derivation of P(t, z). We shall therefore assume that
we have analytically continued Eq. (5.19) to permit us to
take the q~0 limit. This is very much similar to the
q —+0 limit of the Potts model, which generates percola-
tions (Fortuin and Kasteleyn, 1972).

Alternatively, V(z) can also be constructed from a
two-state vertex model (Kauff'man, 1991). This is done
by considering two-strand knots which convert to lattices
possessing two open lattice edges. It can then be shown
that the partition function of a q =2 spin-conserving ver-
tex model with weights given by Eqs. (4.23) and (4.17b),
with q =2, ta, b, c,d I =+1, @+&=+1, and A, =&—1,
gives rise to V'(e"—e ") for two-strand knots. Readers
are referred to Kauffman (1991) for details of this
analysis.

5. The Akutsu-Wadati polynomial

In a similar fashion the angle-dependent vertex weight
(4.17b) with A, =e "and co+ given by Eqs. (4.29)—(4.31) for
the X-state vertex model can be used to derive knot in-
variants. This leads to the Akutsu-Wadati polynomial

'(t) (Akutsu and Wadati, 1987a, 1987b). Expressions
for the X =3 Akutsu-Wadati polynomial have been ob-
tained, and tabulated, for knots of closed three-braids
(Akutsu et al. , 1987). The extension to two-variable po-
lynomials has been made (Deguchi et al. , 1988), and Cxe
et al. (1989) have also given an explicit derivation of the
N =3,4 polynomials. The Akutsu-Wadati polynomial
satisfies the general Skein relation relating knots with
configurations L, Lo, L+, and L„+,
n =2, 3, . . . , X —1, and is more powerful than the Jones
polynomial in difFerentiating knots. For example, the
two knots found by Birman (1985) to possess an identical
Jones polynomial can be distinguished using the Akutsu-
Wadati polynomial (Akutsu et al. , 1987).

e el + e
—t1 )e (a —d)0/2vr8

ac bd (5.22)
B. Unoriented knots

is the Jones polynomial when one sets

q= —(&t + I/&t ), e"= &t—(5.24)

This leads to the Skein relation Eq. (2.6) for V(t) upon
identifying e"= &t. Furthermore, Z(q—, e") is propor-
tional to Z„„s(q,e")=q. It follows that the Laurent po-
lynomial

V(t) =q 'Z„„„„(q,e")

1. Formulation

Polynomial invariants for unoriented knots can be con-
structed by following the same route as that for oriented
knots. For each knot one constructs an unoriented lattice

Consider a vertex model on X and require the parti-
tion function to remain invariant under all Reidemeister
moves of lattice edges. The partition function is then a
knot invariant.
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F. Y. WU: Knot theory and statistical mechanics 1117

unoriented knots, prouided that Eqs. (5.26a) —(5.26d)
hold.

FIG. 32. Labelings of a vertex for unoriented knots.

Collorary V B.l. The function a ' 'Z(co) is a
semioriented inuariant for oriented knots.

2. The bracket polynomial and ice-type vertex models

For unoriented knots, however, there is only one type
of line crossing, and hence the partition function has a
uniform vertex weight. We label the vertex edges as in
Fig. 32 and write the vertex weight as

c d b a
c(oa, d ~b, c)=co b

=co d . (5.25)

g co(a, c~b, c)=a '5b„,
c6S

g co(c, b ~a, c)=a5.b,
cES

g co(a, b ~x,y)co(b, c~y, z) =5„5„,
b,yEJ

(5.26a)

(5.26b)

(5.26c)

If we further label the Reidemeister moves as shown in
Fig. 33, assuming regular isotopy and Eq. (2.15) for
type-I moves, we can read ofF from Fig. 33 conditions im-
posed by Reidemeister moves. This leads to

As an example, we construct an invariant using the
nonintersecting-string model of Sec. IV.E.3, which leads
to the Jones polynomial.

For the vertex shown in Fig. 32, we assign the vertex
weight given by Eqs. (4.33) and (4.35), namely,

C
co b

= A5„6I,d+85,b5,d, (5.27)

where A =sinh(g —u), B=sinhu. Note, however, that
we regard A and 8 as two independent parameters and
apply the vertex weight (5.27) to all vertices.

Perk and Wu (1986a) pointed out that the particular
form of the weight given in Eq. (5.27) permits one to
write the partition function ZN, s as a generating function
of nonintersecting polygonal decornpositions P of X.
Indeed, by substituting Eq. (5.27) into Eq. (4.1) and sum-
ming over all edge states, one finds ZN~s in the form of a
polynomial in q, A, and B (Perk and Wu, 1986a),

co(x, b~y, a )to(f,z ~e, x)co(z, c~d, y)
xyzE J

a)(e, x~d, y)to(z, c~x, b)co(f,z~y, a), (5.26d)

N

ZNys(q A B)=g q Q W' (P)
P i=1

(5.28)

Theorem V B 1. For a given knot me construct an
unoriented lattice X. The partition function Z(co) fEq.
(4.1)J of a uertex model on X with uertex weight as given
in Eq. (5.25) and satisfying Eq. (2.15) under typeI-
Reidemeister moues is an inuariant of regular isotopy for

=a' ~a~

~x~~a~
a b 0 b

z / c

xyzE2

where, as before, J' is a set of q integers. We now state
the main result as a theorem:

where p(P) is the number of polygons (loops) in P, and
W; (P) is the weight of the ith site in P, equal to either A

or 8. Since the lattice has at least one loop, ZN~s is
divisible by q.

The polynomial

P (q& A B)&= q ZNys(q& A B)& (5.29)

was discovered independently by KaufFman and named
the bracket polynomial of a state model (Kauffman,
1987a). Clearly, in this picture, the state model is charac-
terized by nonloca/ Boltzmann weights. In a remarkable
piece of pioneering insight connecting knot theory with
statistical mechanics, Kauffman (1987a) showed that the
bracket polynomial can be used to provide a simple
derivation of the Jones polynomial (see also Wu, 1992a).
Perk and Wu (1986a), Truong (1986), and Kauffman
(1988b) have also shown that the bracket polynomial is
completely equivalent to a q -state Potts model partition
function, a fundamental connection relating the Potts
model with the Jones polynomial. Kauffman (1988b)
went further and reformulated the Potts model in terms
of a formalism of alternating link diagrams.

It is straightforward to verify that Eqs. (5.26a) —(5.26d)
are satisfied by taking

B=A ', q= —(A +A ), ct= —A3. (5.30)
d

FIG. 33. Labelings for Reidemeister moves.
It follows from Theorem V.B.1 that the one-variable
function
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f (A)=P( —A —A, A, A '), (5.31)

which is normalized to f„„(A ) = 1, is an invariant for
unoriented knots. This is the Kauffman bracket invari-
ant. Furthermore, by Corollary V.B.j, the function

FIG. 3S. Orientation and sign convention.

is an invariant of ambient isotopy for oriented knots,
where we have written A =t '~ . To identify V(t) as
the Jones polynomial, one verifies the identity

d b—t ace c a

1&t — 5„5bd .
t

(5.33)

q =q, + g (A,„+A.„') .
@=1

(5.34)

The case of q, =0, q2 = 1 leads to the usual ice-rule model
(Temperley and Lieb, 1971; Baxter et al. , 1976), a
correspondence that has also been discussed by
Kauffman (1988b).

C

3 3

b

a+0 a+0 a++ b a&b a&d

n
e

-n
e

a

This shows that V(t) satisfies the Skein relation (2.6) and
hence is the Jones polynomial.

The noninteracting-string model can be further gen-
eralized by associating line orientations. This leads to
the oriented nonintersecting-string (ONIS) and general-
ized ice-type models (Perk and Wu, 1986a). In the ONIS
model the lattice edges can be colored in q1 distinct
colors and, in addition, colored as well as oriented in q2
colors, with the restriction that the numbers of in and
out arrows of a given color at a vertex must be the same
(the ice rule). This permits one to consider the
piecewise-linear lattice X* and introduce, for vertices of
degree 2, weights in the form of Eq. (4.9) with
p= 1,2, . . . , q2 replacing k for each of the qz colors. For
a model with separable weights one finds the partition
function again given by Eq. (5.28), but with

3. The Kauffman polynomial

(5.35)

Here 2 is the set of q numerical values given by Eq. (5.8).
For our purposes we shall consider q =2,4, 6, . . . so that
2 does not contain the value zero. '

Again, one looks for vertex weights that are solutions
of the Yang-Baxter equation (5.26d), so that the
Reidemeister move III is automatically satisfied. To ob-
tain the Kauffman polynomial one uses a representation
of simple Lie algebras 3 '"„giving rise to nonvanishing
vertex weights of the form (Turaev, 1988)

a b b —b a b
co b ~ co, ol co (5.36)

However, to write down the explicit expression of co we
need first to orient and decompose X.

Connect at each vertex the edge indexed a with that in-
dexed +a, and b with +b, a process that is unique and
that leads to one of the six configurations shown in the
first row of Fig. 34. This process decomposes X into
disconnected components, each of which contains an
edge in states +a. [Components may cross each other via
bridges, however, due to the presence of the third vertex
weight in Eqs. (5.36) and (5.37).] To uniquely specify
each component by a single index, we now orient com-
ponents and adopt the convention that

(i) the negation of an edge variable has the same effect
as reversing the orientation, a situation shown in Fig. 35,
and

(ii) a component has the same index as its upward-
pointing edges at the vertex shown in Fig. 32, assuming
the latter vertex edges are oriented to point upward.

Thus configurations that can occur at a vertex are
those shown in the first row of Fig. 34 with weights

The construction of the Kauffman polynomial (Turaev,
1988) requires special attention. The following is essen-
tially a reformulation of the diagrammatic analysis (of
the Turaev construction) due to Kauffman (1991),
modified by considering a vertex model with local
weights on piecewise-linear lattices.

To begin with consider a (q + 1 )-state vertex model
with edge variables I a, b, . . . , x,y, . . . ] taking on q + 1

numerical values contained in the set

a+0 a+0 a+ b d&a -a & -b

ne e -Z

FIG. 34. Vertex configurations and weights for the Kauffman
polynomial. Configurations in the two rows are related by a 90'
rotation.

For q =odd the construction of the Kauffman polynomial
still holds, but there are then two zeros in the set Sz, and one
needs to distinguish them carefully in Eq. (5.37) and Fig. 34
below.
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a a
CO =8, QWO, b

=e"5,b,d(l —5,O)+e "5, b, d(1 —5,0)

CO a
=e ", a&0,

+5,d5b, (1—5,&)(1—5, b)+z5„5bd8(a b—)

z5~ +5~ d| (Q d)+5abcdo
r

=1, aW+b,

—b —a
—c (5.39)

b

b
=z, a)b,

z, a)d,

0 0
0 0

(5.37)

Zvertex(~) = Q X ~i ~

abc i

(5.40)

Note that the symmetry of the vertex weight indicated in
the last line is difFerent from that given in Eq. (5.25).
However, due to the sign and orientation convention, the
symmetry shown ensures its consistency and does not
affect the overall partition function.

Substituting Eq. (5.39) into the partition function equa-
tions (4.1) and (4.2), we can write the partition function
as

r

c d
CO =0, otherwise,

where q is arbitrary and

z=e"—e (5.38)

Note that edges with state zero also form connected com-
ponents. For later use we show in the second row of Fig.
34 the same configurations rotated 90 clockwise, where
we have adopted the sign and orientation convention and
negated some edge variables.

The weight equation (5.37) can be summarized as

where the summation is taken over all possible decompo-
sitions of X into oriented components c, each of which is
now indexed by a single edge variable a.

We next introduce the piecewise-linear lattice X with
angle-dependent vertex weights. For vertices of degree
two, the weights co*(a) are those given previously in Eq.
(4.9). For other vertices, we require that the new weight
e* satisfy the Yang-Baxter equation. If we color corn-
ponents of X by difFerent colors, then as seen in Fig. 34
the incoming/outgoing colors are conserved at each ver-
tex. This color conservation, which is a special case of
charge conservation in the sense that charges (colors)
remain unchanged, permits us to introduce angle factors
as in Eq. (4.17b) for each term in Eq. (5.39), leading to
the new weight

C

g $ (~) ~ 5abgg( 1 5QO)+e 5g, —b, —gd( 1 5gO)+ 5gd5bg( 1 5gb )( 1 5a, —b )+z~ 5gc5bd@+

—zX'"-'" -""5. ,5, ,e(u —d)+5.„,„,
—b —a—67 d C

(5.41)

As a consequence of color conservation, the weight co*

now satisfies the Yang-Baxter equation. ' The partition
function Z(co') with angle-dependent weights is now in-

This fact can also be seen by noting that a) can be generated
from co by separating the angle-dependent factor into factors

and associating them separately vnth the two paths of
different colors passing through a vertex. The desired property
can then be established by using the property Eq. (4.10).

variant under Reidemeister moves IIIA of the lattice
edges.

The expression of ~* divers from that of ~ only in the
appearance of angle-dependent factors in the fourth and
fifth terms. In the latter (fifth) term we can write
g{d—a)(~—8)/2~ g(d —a)/2g(a —d)8/2m giving rise to a factor

noted in another context (Kauffman, 1991).
Here this factor arises naturally as a consequence of the
requirement that co' satisfy the Yang-Baxter equation.

We now choose A, so that Z(co*) is invariant under the
two distinct Reidemeister moves I shown in Fig. 36.
Adopting line orientations as shown, we obtain from Eq.
(2.15) the conditions
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IA ~m —e

a a

a&b a&b a&d a&d

=z )(

FIG. 37. Skein relation for the Kau8man polynomial.

"8(a —d) =(1—5,o)8(a)
dH JP

FIG. 36. I.abelings for Reidemeister moves I. +
1 —A,

2

gd(++8)/2m e (&)a —bdE JP

(5.44)

it is straightforward to show that Eq. (5.43) is satisfied if
we take

A, =e", a=e (5.45)
lg a(m 8)/2m'

( IA)
7

(5.42)

T

c b
g

—b(2m 8)/2n e —
(g) ga(i/2m'

a b ac
b&SP

(5.43)

where, as in Eq. (5.1), we have included weights of the
three vertices of degree 2.

When we substitute Eq. (5.41) into Eq. (5.43) and use
the identity

In a similar manner one shows that Eq. (5.42) is satisfied.
One also establishes that conditions imposed by
Reidemeister moves II (and III) are all satisfied by the
vertex weight (5.41), details of which we omit. It follows
that the partition function Z(co') defines a knot invari-
ant.

To identify this knot invariant as the Kauffman poly-
nomial, we need to show that the partition function
Z(co*) satisfies the Skein relation (2.13) or (2.13a). Now
the vertex configurations and weights of a minus-type
crossing are given in the second row in Fig. 34 (for which
the "upward-pointi. ng" direction is pointing towards the
right). By taking the difFerence of the two weights in
Fig. 34 and making use of the identity (5.17), one obtains

c d d —b
(8)=co g ) ~

g( a d)8/2m'— g g( d a)( n 8) /—2m p-
a b —c a ac bd a, —b c, —d (5.46)

ZD (co*)—ZD (co*)=z[ZD (co*)—ZD (co')], (5.47)

which is precisely the Skein relation (2.13a) for the Du-
brovnik version of the Kauffman polynomial.

As before, recursive applications of the Skein relation
eventually equate Z(co*) to the product of two factors, a
Laurent polynomial in a and z, and the partition function
of a ring, now given by

Here the negation of b and c in the second expression in
Eq. (5.46) is due to our orientation convention.

Inserting this expression into Z(co*) written in the
form of Eq. (5.40), a procedure shown schematically in
Fig. 37, one arrives at the identity

Q (a,z) =Z„„„„(co*)/Z„„s(a,z), (5.49)

VI. KNOT INVARIANTS FROM IRF MODELS

A. The IRF model

normalized to Q„„k„«(a,z)=1, is the Dubrovnik version
of the Kauffrnan polynomial. By analytically continuing
Z„„„„(e~",e" e") to all q, —we finally establish the ex-
istence and uniqueness of Q(a, z) for arbitrary a and z.
This completes the construction of the Kauffman polyno-
mial.

Z„.„(a,z) = g A,
+—'= 1+

sinhg
P

=1+(a—a ')/z .

It follows that the Laurent polynomial

(5.48)

Consider a directed lattice X of N sites, arbitrary
shape, and a uniform coordination number 4. Place spins
inside the faces of X as shown in Fig. 38, where the spin
locations are indicated by solid circles. Let the spins take
on values, or spin states, designated by variables
Ia, b, . . . j HS, where 2 is a set of q integers. Let the
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f(d) — f(c) f(c) —f(b)

f(d) — f(a) f(a) —f(b)

FIG. 38. A directed lattice for the interaction-round-a-face
(IRF) model. Spins are denoted by solid circles.

FICx. 39. The four interacting spins in the IRF model. Edge in-
dices are de6ned as in Fig. 42.

four spins surrounding a site of X interact via a
Boltzmann weight 8(a, b, c,d), where spins a, b, c, d are
arranged as shown in Fig. 39. In the figure we have
drawn the edges of X as broken lines and connected the
four spins along the edges of XD, the dual of X, to indi-
cate the "domain" of the interaction.

If one regards spin states a, b, . . . as defining heights,
then an overall spin configuration describes a height as-
signment of faces of X. This is then a solid-on-solid
(SOS) model describing the interface of two solids. The
overall Boltzmann factor 8' is a product of individual
Boltzmann weights 8, and the partition function (3.1)
reads

N

Z,RF(8)= g II 8;(a, b, c,d) .
Iheightsj i =1

(6.1)

Here the product is taken over all vertices of X or,
equivalently, all faces Xi„ including the exterior (infinite)
one. This defines an interaction-round-a-face (IRF) mod-
el (Baxter, 1980).

Generally there can be q different Boltzmann weights
8 (a, b, c,d). But in practice one considers IRF models
for which 8(a, b, c,d) vanishes unless the heights of two
neighboring (adjacent) faces are related in a specific way.
For example, the restricted eight-vertex SOS model
solved by Andrews, Baxter, and Forrester (1984), the
ABF model, is an SOS model with q finit and for which
the difference of two adjacent heights is always 1. Partic-
ularly, the q = ~ version is the unrestricted eight-vertex
SOS model. Such rules are conveniently represented by
line graphs in which heights are represented by num-
bered dots and allowed adjacent heights by line connec-
tions. ' For example, the unrestricted eight-vertex SOS
model is described by the graph shown in Fig. 40, and the
ABF model is described by graph 3 in Fig. 41.

Generally, there is a one-to-one correspondence be-
tween line graphs and certain IRF models (Akutsu et al. ,
1988), a consideration leading to hierarchies of integrable
models (Date et al. , 1986; see also Akutsu et al. , 1986a,
1986b; Kuniba et a/. , 1986a—1986e; Pearce and Seaton,
1988). In particular, there exists an integrable IRF mole
for each Dynkin diagram of simply-laced classical or
affine Lie algebras of the 3, D, E series (Pasquier, 1987a;

B. Equivalence with charge-conserving vertex models

The construction of knot invariants from IRF models
is most conveniently done via the equivalence of IRF
models with a charge-conserving vertex model. We first
elucidate this equivalence (Akutsu et al. , 1988; Jones,
1989; see also KadanofF and %'egner, 1971 and %'u,
1971).

Consider an IRF model with the partition function
(6.1). Consider further the partition function Z,"R'„(8)
defined by Eq. (6.1) with the height of one face, say, the
exterior, fixed at a. Then Eq. (6.1) can be written as

ZIRF (8 ) X Z IRF (8 )
aE'J

(6.2)

To each height a we assign a value f (a) where the func-
tion f is one-to-one; to each directed edge we assign an
index

II,„=f (a) —f (b), (6.3)

where a is the height to the left, and b to the right, of the
edge, as shown in Fig. 42. An example of f is f (a) =a;
but more generally the function f can be chosen at our
discretion. A height configuration is now mapped into
an edge indexing. Clearly, as can be seen from Fig. 39,
the edge indexing satisfies the charge conservation condi-
tion, Eq. (4.16), as generalized in footnote 9. Conversely,
each charge-conserving edge indexing in the form of Eq.
(6.3) is mapped into a height configuration, provided that
the height a, or the function f (a), of the exterior face is
given. This leads to the equivalence

Jimbo et al. , 1988), examples of which are shown in Fig.
41. The IRF model corresponding to A„ is the ABF
model; the model corresponding to D„has been solved by
Pasquier (1987b), and the cyclic eight-vertex SOS model
(Baxter, 1973a, 1973b) corresponding to A„"' has been
solved by Pearce and Seaton (1989).

-2 0 1 2

The connecting lines will be directed in the case of IRF mod-
els with chiral Boltzrnann weights.

FIG. 40. Line graph for the Andrews, Baxter, and Forrester
I,'ABF) model.
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1

A n

2 3 f(~) - fA)
Jl

1

Dn

FIG. 42. Convention of lattice edge indexing.

(&)
A n-1 C. The Yang-Baxter equation

FIG. 41. 13ynkin diagrams of Lie algebras.

where ZP;„'„(ia) is the vertex-model partition function
(4.1), with edges indexed by Ii,&, and the function f of the
exterior face fixed at f (a). Explicitly, we have the
equivalence

f (d) f (c) f (c) —f(b)—
f (d) f ( ) f ( ) f (b)

=8 (a, b, c,d) . (6.5)

An IRF model is integrable if its Boltzmann weight
8 (a, b, c,d) satisfies a Yang-Baxter equation. The Yang-
Baxter equation can now be written down from the
equivalence with a vertex model, by assuming appropri-
ate edge indexings in Eqs. (4.3) and (4.4). To completely
describe the Yang-Baxter equation, one needs further to
specify the factor f (a) associated with the exterior face.
It is then more convenient to write down the Yang-
Baxter equation directly in terms of the IRF-model
Boltzmann weights 8 (a, b, c,d ). As may be surmised
from Fig. 43, this is equivalent to considering a cluster of
seven spins with interactions arranged in two di6'erent
ways, as shown, and requiring the partition functions of
the two clusters to be identical for any given spin states
I a, b, c,d, e,f I . The Yang-Baxter equation in IRF
language then reads (Baxter, 1980)

g 8(g, c, b, a~u —ui)8 (f,e,g, a~u —u)8(e, d, cg~u
—tc)

gag

g 8(e,d, g, f~u w)8(g, d, c,—b~u —w)8(f, g, b, a~v —w) for all a, b, c,d, e,fES . (6.6)
gEJ

The unitarity condition, Eq. (4.5b), now reads, after
changing edge indexings,

I

whichever arises in applications. In the infinite-rapidity
limit, we have

g 8(a, b, c, d~u —U)8(c, b, d, e~u —u)=5„,
col

(6.7) 8+(a, b, c,d)= lim 8(a, b, c,d~u), (6.9)

which we show graphically in Fig. 44. In analogy to Eq.
(4.18) for the vertex model, one verifies that the
Boltzmann weight

B(a,b, c,d~u)=e ' ' ' " 8(a, b, c,d~u) (6.8)

is also a solution of Eq. (6.6) for any 13. We shall leave
open, the possibility of using this symmetry-breaking
Boltzmann weight, and use B to denote either 8 or 8,

where, as before, the right-hand side of Eq. (6.9) has been
divided by the leading diverging Boltzmann weight.

l3. Integrable IRF models

We now present examples of integrable IRF models.

1. The unrestricted eight-vertex SOS model

The unrestricted eight-vertex SOS model, the q =Do
ABF model, is characterized by the line graph of Fig. 40.

b

-- ———-- —& —-- mv
g

cl ~

FICx. 43. The Yang-Baxter equation for IRF models. FIG-. 44. The unitarity condition for Boltzmann weights.
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In this model, adjacent heights always differ by 1, and
there are six contributing configurations, as shown in
Fig. 45. It is also clear that we need only consider the
partition function Z "(8).

Boltzmann weights of integrable IRF models are given
in terms of elliptical theta functions. At criticality, how-
ever, they reduce to hyperbolic functions. In the case of
the q = ao ABF model they can be written in the form

81=82=1,
83=8 4= si nhu /si nh(g —u) .

8 5
=e "sinhg/sinh( g —u ),

86 =8 slnh'g/s1nh('q u )

(6.10)

8 (a, b, c,diu)

slnhu [(a +c)/2 —b]q
sinh(g —u)

=0, (a b)(b —c)—(c —d)(a —d)%+1, (6.11)

where a, b, c,d are integers. Taking the infinite-rapidity
limit, we obtain

& [ ( a +c) I2 b+ I ] rl]—
=0, (a b)(b —c)(c——d)(a —d)%+1,

(6.12)

where we have included a normalization factor A+.

2. The cyclic SOS model

The q-state cyclic SOS model (Pearce and Seaton,
1988, 1989) is characterized by the Dynkin diagram 3 '"
of Fig. 41. The contributing configurations are also those
shown in Fig. 45, but now with indices a, b, . . . , mod(q).
The critical vertex weights are again those given by Eqs.
(6.10) and (6.11), but with

rl=i2ms/q, s =1,2,. . . . , q
—1 . (6.13)

Since the q states are cyclic, the partition function is in-

where u is the rapidity and g is arbitrary, and we have in-
cluded the symmetry-breaking factor in Eq. (6.8) with
P= 1/2 and f (a) =a.

The Boltzmann weights of Eq. (6.10) can be rewritten
as

dependent of the height of the exterior face, and we have
ZIRF(8) qZIRF(a)(8)

E. Enhanced IRF models

where 0 is the angle of the two edges bordering the face
indexed a, and, for vertices of degree 2 on X*,

h ~9/2m8'(a, b)=A, " if the line turns an angle 8

to the left
—h bg/2m if the line turns an angle 0

to the right

=0 if adjacent heights a and b are forbidden.

(6.15)

Here the arrangement of a and b is the same as in Fig. 42.
This enhanced IRF model now maps into an enhanced
vertex model with vertex weights as in Eqs. (4.17a) and
(4.17b) and the replacement of a by f (a).

The partition function of the enhanced IRF model is
now

Z,RF(8*)= g +8*(a,b, c,d, ~u) +8*(a,b),
I heights I

(6.16)

and, in the infinite-rapidity limit,

Z,R„(8+)= g +8+(a, b, c,d) gB*(a,b),
I heightsj

(6.17)

where

8+(a, b, c,d) =k "' ' 8+(a, b, c,d) . (6.18)

The creation of vertices of degree two leads to the con-
sideration of lattices in the form of a ring. We shall as-
sume that the integer set 2 and the function f have been
chosen such that the partition function of a ring,

Analogous to the discussions in Sec. IV.C, we intro-
duce the piecewise-linear lattice X* and enhanced IRF
models on X*. The enhanced IRF model has angle-
dependent Boltzmann weights

8*(a,b, c,d~u)=A, ' ' 8(a, b, c,d~u), (6.14)

Z„„(8 )= g A,
' =A,

Ia, bI EJ
(6.19)

is a constant. Here the summation is taken over heights
a and b, consistent with the adjacency requirement.

(4) (6) F. Construction of knot invariants

FIG. 45. Con6gurations of the ABF and cyclic solid-on-solid
(SOS}models.

We now construct knot invariants from IRF models.
From a given knot we consider an integrable IRF model
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1124 F. Y. Wu: Knot theory and statistical mechanics

a x e
+

d~b~ (6.20b) and (6.20c) hold and that the partition function of
a ring, Eq. (6.19), is A=e"+e " for the ABF model and
A=q (e"+e ") for the cyclic SOS model. It follows that
Z (B+ ) is a knot invariant.

To identify this invariant as the Jones polynomial, we
obtain from Eqs. (6.12), (6.14), and (6.21) the identity

e ~B+(a,b, c,d) e —"B*(a, b, c,d)
(d —a)e/2m —(a —b)el2n'

da~ x ~e+ b
X ~d —a, d —a~a —b, c —b (6.22)

FIG. 46. Reidemeister moves I and II for IRF models.

This is precisely Eq. (5.22) leading to the Skein relation
(2.6) for the Jones polynomial V( t) after identifying
e"= &t . —This establishes that

V(t)=A 'Z(B' ) . (6.23)

and its equivalent enhanced vertex model. We can then
use Theorem V.A. 1, and, since the equivalent vertex
model is charge conserving, we need only consider condi-
tions (5.la)—(5.3a). Recasting these conditions for
Reidemeister moves I and II in terms of Boltzmann
weights B+(a,b, c,d), a process we show in Fig. 46, we
obtain

'B+(a,b, a, d)=1, for all a, b (I), .
ding

(6.20a)

g B+(a,b, x,d)B+(x, b, e,d)=5„(IIA), (6.20b)
xES

y )„f(a)+f(x) f(b) f(d)B —
(d a

—
b x)

xCS

XB+ (b, e, d, x)=5„(IIB). (6.20c)

These conditions have been obtained by Akutsu et al.
(1988). Note that, as in the case of vertex models, Eq.
(6.20b) is a consequence of the unitarity condition, Eq.
(6.7).

We now state our results on IRF models as a theorem:

G. Examples

Theorem VI.I'. I'or each oriented knot me construct a
directed lattice X and the associated piecewise linear lat-
tice X*. Then the partition function (6.I 7) of an
enhanced IRF model with Boltzmann weights (6.I5) and
(6.I8) is a knot inuariant, prouided that Eqs.
(6 20a) (6 20c) .hold —and. that the partition function of an
unknot is Eq. (6.I9).

By considering multicomponent spins, Akutsu et al.
(1989) have shown that the Homfiy and Kauffman poly-
nomials can also be constructed from IRF models.

Vll. KNOT INVARIANTS
FROM EDGE-INTERACTION MODELS

A. Formulation

In our discussion of constructing knot invariants from
IRF models, we have not inquired about explicit realiza-
tions of the Boltzmann weight B(a,b, c,d). In this sec-
tion we consider the realization of B by explicitly intro-
ducing two-spin interactions. While it is possible to do
this by further specializing our results on IRF models, it
is more convenient to take advantage of the simplicity of
the interaction and proceed directly. This direct ap-
proach also eliminates the need for introducing the
piecewise-linear lattice X* and the associated enhanced
lattice models. This leads to the consideration of edge-
interaction models.

Starting from a given knot consisting of X line cross-
ings, we construct an unoriented lattice X of N sites,
while disregarding the line orientations. In the simplest
case we consider a spin model whose spins reside in one
set of the bipartite faces of X forming a lattice X'. ' To
help us visualize, it is convenient to shade faces ofX con-
taining spins, a device 6rst introduced by Baxter et al.
(1976) in an analysis of the Potts model for arbitrary pla-
nar lattices. An example of a lattice X with shaded

We now apply Theorem VI.F to the ABF and cyclic
SOS models, both of which lead to the Jones polynomial
(Akutsu and Wadati, 1988).

Using the Boltzmann weight given by Eq. (6.12), we
find that Eq. (6.20a) is satisfied by choosing

f(a)=a, A, =e", 3+=e+"
%'ith these choices, one readily verifies that both Eqs.

It is also possible to consider spin models (Jones, 1989)
whose spins reside in all faces ofL. If the four spins surround-
ing a vertex of L interact with crossing pair interactions, then
the two sets of spins are decoupled and the overall partition
function becomes a product of two, one for each sublattice (Ka-
danofF and Wegner, 1971;Wu, 1971).

The designations of L and L' here are interchanged from
that in Baxter et al. (1976).

Rev. Mod. Phys. , VoI. 64, No. 4, October 1992



F. Y. Wu: Knot theory and statistical mechanics 1125

FIG. 47. Example of a lattice for a spin model with pure pair
interactions. The solid circles denote spins arid the dashed lines
denote lattice edges and interactions.

FIG. 48. Two kinds of interactions in the spin model. The in-
teraction is of type + ( —) if one Ands the shaded area on the
left (right) upon leaving the vertex along an edge that is an
"overpass. "

faces is shown in Fig. 47. The lattice L is the surround-
ing, or the covering, lattice ofX'.

Let the spins interact with two-spin interactions placed
across lattice sites of X (and along lattice edges of X') as
indicated by the dashed lines in Fig. 47. Then, depending
on the relative positionings of the shaded faces with
respect to the line crossing, we assign two kinds of in-

teractions, + and —,as shown in Fig. 48. '

We let the Boltzmann factors be W+(a, b), and, for
simplicity, we assume symmetric interactions, i.e.,

W~(a, a) =a*',
for Reidemeister moves I, and

W (a, b)W+(b, c)=&q 5„,
W+ (a, b) W (a, b) =1,

g W+(a, d) W+ (b, d) W~(c, d)
1

(7.5)

(7.6)

(7.7)

W+(a, b)= W+(b, a) . (7.1) = W+ (a, b)W+(b, c)W+(c,a) (7.8)
As in the case of the IRF model, we assume that spin
variables a, b, . . . take on q integral values in the set J.
The partition function (3.1) now reads

Z(W, )=q-"" g g W, (a, b),
spin states

(7.2)

—1/2
Zsingie spin q g = q

a6J
(7.3)

We require the partition function Z ( W+ ) to be an in-
variant of regular isotopy under Reidemeister moves of
lattice edges. Taking into account all possible face shad-
ings, this leads to the independent moves shown in Figs.
49 and 50. Figure 49 shows the four independent
Reidemeister moves I of regular isotopy derived by shad-
ing faces of the two type-I moves shown in Fig. 13 and
Eq. (2.15). Similarly, Fig. 50 contains independent
Reidemeister moves of types II and III derived by shad-
ing faces of the corresponding moves in Fig. 3. Explicit-
ly, the conditions are

1
W+(a, b) =a

~ bee
(7.4)

~It should be noted that the + and —types of vertices in this
context are different from the + and —types of crossings intro-
duced in Sec. II.

More generally one introduces a factor v. ' for each sum-

mation. Then setting a =c in Eq. (7.6) and using Eq. (7.7), one
obtains ~=q.

where the product is over all interacting spin pairs in +',
and we have introduced to each spin summation a fac-
tor q

' . The partition function of a single spin corre-
sponding to an unknot is then

for Reidemeister moves II and III. Conditions
(7.4)—(7.8) can be more conveniently represented by linear
graphs on X', as shown in Fig. 51.

Note that according to Eq. (7.2) there is a factor q
for each shaded area; this leads to the compensating fac-
tors occurring in the left-hand side of Eqs. (7.4), (7.6),
and (7.8). Furthermore, conditions (7.4)—(7;8) are not all
independent. Setting b =c in Eq. (7.8), for example, one
obtains Eq. (7.4) after using Eqs. (7.5) and (7.7). The con-
dition (7.8) is the Yang-Baxter equation, which is a gen-
eralization of the star-triangle equation for the Ising
model (Onsager, 1944).

We now state the main result as a theorem:

Theorem VII.A. For each knot me construct an unorient-
ed lattice X and a q-state spin model with spins occupying
euery other face of X, with its partition function Z( W+ )

given by Eqs. (7.2). Then q
~ Z(W+) is an inuariant of

regular isotopy for unoriented knots satisfying Eqs. (2.14)
and (2.15), provided that Eqs. (7.4)—(7.8) hold.

Corollary VII.A. The function a "' 'Z(W+)I&q is an
inuariant of ambient isotopy for oriented knots.

Finally, we remark that since the faces ofX, or the lat-
tice X, are bipartite, there exist two choices for shading
the faces, and hence two ways of constructing the spin
model. However, these two choices lead to the same in-
variant (Jones, 1989).

The condition imposed by Reidemeister moves III must now
be checked, since we are not basing our derivation on solutions
of the Yang-Baxter equation.
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0

0

. O..

O 0

0
+

--0

0

FIG. 49. Type-I Reidemeister moves. 0
0 --0

B. Example

As an example of the formulation, we show that the
Potts model leads to the Jones polynomial (Kauffman,
1988b).

The Potts model (Potts, 1952; for a review see Wu,
1982) is characterized by the two-spin Boltzmann factor

FIG. 51. Equivalent representations of Reidemeister moves.
Open circles are rooted denoting fixed spin states; solid circles
denote spin states under summations.

where

W+(a, b) = 3+e
v+=8 1

+ (7.10)

= A+(1+U~5,b ), Then the substitution of Eq. (7.9) into Eq. (7.7) leads to
(7.9)

A+ A =1, v++v +v+v =0 . (7.11)

+a

The second relation in Eq. (7.11) corresponds to
K+ = —K . Similarly, Eq. (7.6) leads, after using Eq.
(7.11), to

q =v+v (7.12)

and Eq. (7.8) leads to

A+ =&q /U+ . (7.13)

Finally, it can be checked that both Eqs. (7.4) and (7.5)
are satisfied if one takes

a=A+(1+V+)=[A (1+U )] (7.14)

Qb It is readily verified that Eqs. (7.11)—(7.14) are satisfied
by writing

—K EI;= —e = —e+—

v+ = —(I+t '),
(7.15)

FIG. 50. Type-II and type-III Reidemeister moves.

q =t+2+1/t,
3/4
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b 0 ~ b

Lo

siderations. Such considerations of local Boltzmann fac-
tors are in line with conventional statistical mechanics.
With this perspective in mind, we have presented a
genuine statistical mechanical approach to knot invari-
ants.

FIG. 52. Skein relation configurations. Note that the 8'+
( S' ) interaction corresponds to the L (L+ }crossing. ACKNOWLEDGMENTS

—[a W (a, b)] t [aW—+( ab)]=&t—1 —$ 1

t
(7.16)

Indeed, using Eq. (7.15) one verifies that Eq. (7.16) is an
identity. Now P(t) has P„„k„„(t)=&qas a factor. We
thus conclude that

y(r) =q 1/2( t 3/4)w(K)Z ( W (7.17)

is a Laurent polynoniial normalized to V„„z„„(t)= 1 and
is thus the Jones polynomial.

For further examples of invariants derived from spin
models with pure two-spin interactions, see Jones (1989).

Then, by Theorem VII.A, Z(W+) is an invariant for
unoriented knots, and, by Corollary VII.A,
P(t)=( t —/

)
"' 'Z( W+ ) is an invariant for oriented

knots. To identify P(t) as the Jones polynomial other
than a normalization factor, we consider the three
configurations shown in Fig. 52. A moment's reQection
shows that Z( W+ ) satisfies the Skein relation (2.6), pro-
vided that we have [compare with Eq. (5.33)]

I am grateful to C. King for a critical reading of the
manuscript and for comments and suggestions that have
greatly improved the clarity of the presentation. I am
also indebted to J. H. H. Perk for critical and helpful
comments and for calling my attention to relevant refer-
ences. I would like to thank L. H. Kauffman for sending
me a copy of his book (Kauffman, 1991)prior to publica-
tion, and V. F. R. Jones for comments. The knot table of
Fig. 53 is produced from computer graphics designed by
D. Rolfsen and R. Scharein; I am grateful to D. Rolfsen
for providing a copy of the figure for our use. This work
is supported in part by the National Science Foundation
Grant DMR-9015489.

APPENDIX: TABLE OF KNOT INVARIANTS

Traditionally, knots are classified according to the
minimum number of crossings in a planar projection.
Prime knots and links with up to thirteen crossings have
been tabulated in Thistlethwaite (1985). Here we include
in Fig. 53 graphs of prime knots and links with up to six

VIII. SUMMARY

We have presented the formulation of knot invariants
using the method of two-dimensional models in statistical
mechanics. The underlying theme of the statistical
mechanical approach is the construction of lattice models
on lattices deduced from planar projections of knots,
with the requirement that the partition function remain
invariant under Reidemeister moves of lattice edges.
When this is done, the partition function is a knot invari-
ant.

The requirement of invariance under Reidemeister
moves leads naturally to the consideration of integrable
lattice models. It is shown that the integrability of a lat-
tice model leads to invariance under two of the required
Reidemeister moves, namely, IIIA and IIA. Then the job
is done if the remaining Reidemeister moves, I and IIB,
are also realized.

The main results using vertex and IRF models are
summarized in Theorems V.A. 1 and VI.F, respectively.
The construction of knot invariants can also be carried
out using spin models with pure two-spin interactions.
This leads to Theorem VII.A and the semioriented in-
variants.

Finally, we emphasize that the approach presented in
this review utilizes lattice models whose Boltzmann
weights are strictly local, without reference to global con-

FIG. 53. Planar projections of prime knots and links with six
or fewer crossings.
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crossings. We also include a table of the associated poly-
nomial invariants. The knot notation of 62, for example,
denotes the second three-component knot (link) with six
crossings. In the case of links for which there exist more
than one orientation, only those generating distinct in-
variants are given. They are specified by the subscript
i=1,2 in [ ];. Our convention of specifying the sub-

script is that if w;(K) is the writhe of the oriented knot

[K), , i = 1,2, then II1~(K) & w 1(K).

1. The Alexander-Conway polynomial

The Alexander-Conway polynomial b, ( t) =P(z),
z =&t —I /V't, is defined in Sec. IE.D.1. Further 1istings
of the Alexander polynomial can be found in Burde and
Zieschang (1985) and Rolfsen (1976).

2]
[41]1

52
1

[6,]l
62

[6BI
[63]2
0
[61]1
[61]2
63

[6q],

t
—11/2( 1 + t t2 t4)

l/t ( —1+t t '—t'—)

t (1 2—t+t +2t +t t —
)""(—1+t t—'+ t ' t—" t—')

&t ( —1+t t'+—t' t4—t'—)
t'~'( —1+t —2t' —2t'+2t'+t' —t')
t ' i

( —1+2t 2t —+2t 3t —+t t )—
t i

( —1+2t 2t —+2t 3t —+t t )—
'(1+2t +tl)
'(1 —t +3t' t'+—3t' 2t'—+t')
'(1—t +3t' t'+—3t' 2t'+—t')
'( —1+3t 2t'+4t —' 2t'+ 3t—' t')—

t '(1+t'+2t4)
t'(1+ t'+2t4)

0)
31

4)
5)
52

6)
62

63

1

'(1 t +t')—
'( —1+3t —t')
'(1 t +t' —t'+ t4)—
'(2 —3t +2t')
'( —2+ St —2t')
'( —1+3t 3t '+ 3t ' —t')—
'(1—3t +St' 3t' t4)— —

1+z2
1 —z 2

1+3z'+z'
1+2z2
1 —2z2

1 —z' —z'
1+z'+z4

Alexander polynomials for links with two or more com-
ponents vanish identically.

2. The Jones polynomial

The Jones polynomial V(t) listed below is defined in
Sec. II.D.2 and is the same as in Jones (1987). Further
listings of the Jones polynomial for single-component
knots can be found in Jones (1985, 1987). Note, however,
definitions of V(t) in Jones (1985) and Jones (1987) are
related by t~t ', and expressions in Jones (1985) con-
tain several misprints.

0)
3 $

4)
5)
52

6,
62

63
02

1

'( —1+t+t')
'(1 t + t' —t'+ t4)—
'( —1+ t t'+ t'+ t')—

t '( —1+t t'+2t' t'+t')— —
'(1 —t + t' 2t'+2t' —t '+ t ')—
'(1 2t +2t' ——2t'+2t4 —t'+t')
( —1+2t —2t +3t —2t"+2t —t )
'"(—1 t)—

Specifically, the expression for 6& in Jones {1985)is in error
(but correct in Jones, 1987), and expressions for the links 4& (the
second expression), 5&, 62, 63, 6&, and 63 are given in the variable
t ', instead of t. The expressions for 6& and 62 given in Jones
(1985) are correct.

3. The Homfly polynomial

The Homfiy polynomial I'(t, z) given below is defined
ln Sec. II.D.3 and colllpllted floni )he list of I (I, III ) given
by Lickorish and Millett (1987, 1988), by substituting
wi&h l =it ', m =iz Sett.ing z =i/t —1/V't ln the ex
pressions below we recover the Jones polynomial, and
setting t =1 we recover the Alexander-Conway polyno-
mial.

Oi 1

3, t '( —1+2t'+z't')
4, t '(1 t'+t4 t'z'—)—
5, t '[ 2+3t'+z'( ——1+4t')+t'z']

'[ —1+t'+ t4+z't'(1+ t') ]
6, t '[1—t'+t' —t'(1+t')z']
6I t [1 2t +2t +(1—3t —+t )z —t z )
6, t '( —1+3t' t4)(1+z')+z'—
01 (zt) '(1 t )—
2', (zt') '(1 —t') —zt
[4', ], (zt') '(1 —t') —3zt '(1 t') z't——
[4', ], (zt) '(1 t') zt '(1 t—')'+—z't—
5', (zt) '(1 t') zt '(—1 —t'—)'+z't
6, (zt ) '(1 t )+3zt (1 2t )+z —t (—1 5t )—

—z't
62 t z '(1 t )+zt (2+2t —t )+zlt (1+t )—
[6',], (t'z) '(1 t')+zt '(1 t' 2t') —z't '(1+t')— — —
[6',], t'z '(1 t')+zt '(1 t'+2t4) —tz'— —
0', (zt) '(1 2t '+t')—
[6', ], (1 t')z '+(1 3t'+—2t )+(1 3—t'+t')z'—

—t'z'
[6', ], t '(1 —t')'z '+3t '( —1+t')+t 4(2+t')z'

[63]2 t (1—t ) z +3t (1 t )+t (4 t )z +t z— —
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4. The three-state Akutsu-Wadati polynomial

The X-state Akutsu-Wadati polynomial A' '(t) is defined in Sec. V.A.S. The following list of A' '(t) for knots of
closed three-braids is taken from Akutsu et al. (1987).

3]
4)
5]
52

62

63

t '(1+t ' t '—+ t' t '—t '—+ t')
(1 t —t —+2t t —t —+3t t —t —+2t t ' —t "—+ t '

)
t'(1+t' t'—+ t' t'—+t' 2t—"+t" t "—+t")
t (1 t +3t— 2t —t +—4t 3t —t +—3t 2t'—t"—+2t' t'—t' +—t' )

t (1 t t —+—3t t —3t —+St t —St —+6t 6t"—+6t' St' —+4t' 2t' —+t' )

t ( 1 2t t—+—St 4t —3t +—9t 5t —5t +—lit St' —St "—
+9t'~ —3t' 4t' —+5ti~ t'6 ——2t'7+t's)

5. The Kauffman polynomial —the Dubrovnik version

The Kauffman polynomial L (a,z) is defined in Sec. II.D.5. In the following we list Q (a,z), the Dubrovnik version of
the Kauffman polynomial, computed from the list of L (a,z) given by Kauffman (1987b) and using Eq. (2.16).

3]
3]
4)
5)
52

6)

63

p2

p3

1

(2a —a ')+(1—a )z+(a —a ')z
(a —1+a )+(—a+a ')z+(a —2+a )z +(—a+a ')z
(3a —2a ')+(2—a —a )z+(4a —3a ' —a )z +(1—a )z +(a —a ')z
( —a+a '+a )+(—2+2a )z+( —2a+a '+a )z +(a —2+a )z +( —a+a ')z
( —a +1—a )+2(a —a ')z+( —3a +4—a )z

+( —3a+2a '+a )z +(a —2+a )z +( —a+a ')z
( —2a +2+a )+(a ' —a )z+( 3a —+6 2a — a—)z

+( —2a+2a )z +(a —3+2a )z +( —a+a ')z
(
—a +3—a )+(a —2a+2a ' —a )z+( —3a +6—3a )z

+(a —a+a ' —a )z +( —2a +4—2a )z +(a —a ')z
1+(a—a ')z

[ I+ (a —a ')z '
j
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