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This article describes recent technical developments that have made the total-energy pseudopotential the
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I. INTRODUCTION

There is little doubt that most of low-energy physics,
chemistry, and biology can be explained by the quantum
mechanics of electrons and ions. The limits of applicabil-
ity and even the interpretation of the predictions of
modern quantum theory are lively areas of debate
amongst philosophers. Questions such as "How do we
interpret the probabilistic nature of wave functions?, "
"%'hat constitutes a measurement?, " "How much can we
ever know about the state of a system?, " and "Can quan-
tum mechanics describe consciousness'?" are of funda-
mental importance. Despite the fact that these questions

are still debated, it is clear that whether or not a more
complete description of the world is possible, those
things that modern quantum theory does predict are pre-
dicted with incredible accuracy. One outstanding exam-
ple of this accuracy is the calculation of the gyromagnet-
ic ratio of the electron, which agrees with the experimen-
tal result to the limit of the measurement, some 10
significant figures. Quantum theory has also proven
correct and provided fundamental understanding for a
wide variety of phenomena, including the energy levels of
atoms, the covalent bond, and the distinction between
metals and insulators. Further, in every instance of its
application to date, the equations of quantum mechanics
have yet to be shown to fail. There is, therefore, every
reason to believe that an understanding of a great num-
ber of phenomena can be achieved by continuing to solve
these equations.

As we shall soon see, the ability of quantum mechanics
to predict the total energy of a system of electrons and
nuclei, enables one to reap a tremendous benefit from a
quantum-mechanical calculation. In fact this entire arti-
cle is dedicated to just this one type of quantum-
mechanical calculation, the foundation for which is quite
strong. The quantum-mechanical rules, or Hamiltonians,
for calculating the total energy of simple one-atom sys-
tems have provided some of the most precise tests of the
theory, and the rules for calculating the energies of more
complicated systems are simple, straightforward exten-
sions of these atomic Hamiltonians. It is therefore em-
inently reasonable to expect quantum mechanics to pre-
dict accurately the total energies of aggregates of atoms
as well. So far, this expectation has been confirmed time
and time again by experiment.

A few moments' thought shows that nearly all physical
properties are related to total energies or to difFerences
between total energies. For instance, the equilibrium lat-
tice constant of a crystal is the lattice constant that mini-
mizes the total energy; surfaces and defects of solids
adopt the structures that minimize their corresponding
total energies. If total energies can be calculated, any
physical property that can be related to a total energy or
to a difference between total energies can be determined
computationally. For example, to predict the equilibri-
um lattice constant of a crystal, a series of total-energy
calculations are performed to determine the total energy
as a function of the lattice constant. As shown in Fig. 1,
the results are then plotted on a graph of energy versus
lattice constant, and a smooth curve is constructed
through the points. The theoretical value for the equilib-
rium lattice constant is the value of the lattice constant at
the minimum of this curve. Total-energy techniques also
have been successfully used to predict with accuracy
equilibrium lattice constants, bulk moduli, phonons,
piezoelectric constants, and phase-transition pressures
and temperatures (for reviews see Cohen, 1984; Joanno-
poulos, 1985; Pickett, 1989).

Part of our aim in this article is to introduce the use-
fulness of quantum total-energy techniques to a broad
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LATTICE CONSTANT

FIG. 1. Theoretical determination of an equilibrium lattice
constant. Calculations (open circles) at various possible lattice
constants are performed and a smooth function is fitted through
the points. The predicted lattice constant is determined by the
minimum in the curve.

range of scientists, including, for example, chemists, biol-
ogists, and geophysicists, who can at last benefit from
these techniques. It is often suggested that quantum
mechanics was primarily developed to describe events on
the atomic scale, raising the question, "Of what use are
quantum-mechanical calculations in a science not con-
cerned directly with events on the atomic scale' ?" Since
our world is composed of and defined by the interactions
of atoms and molecules, a detailed and fundamental un-
derstanding of the world must ultimately rest on
comprehending these interactions. The good news that
this article brings is that the search for this kind of un-
derstanding is no longer a mere idle philosophical musing
but rather a practical methodology.

There are many examples of connections between
atomic and macroscopic levels being made every day.
The "lock and key" mechanism in biological systems has
led to the development of "designer drugs" whose shapes
correspond to the "key" in the relevant biological reac-
tion. In turn the shapes of the drugs are known and un-
derstood only because of the quantum-mechanical
description of covalent bonds. Although no drug has yet
been designed by determining the shape of the molecule
by solving the Schrodinger equation, this particular ap-
plication of quantum mechanics is not far away. There
are also examples of the application of quantum mechan-
ics beyond the atomic scale in materials science, for in-
stance in the onset of failure in a material. The failure of
a material starts on the atomic scale when one bond is
stressed beyond its yield-stress and breaks. Thus it is ob-
vious that where and when a material actually starts to
fail is determined by quantum mechanics. Though there
are many examples in materials science of significant pro-
gress having been made without any need for quantum-
mechanical modeling, this progress is often limited as one
pushes forward and encounters the atomic world. For
instance, the understanding of the properties and behav-
ior of dislocations comes from classical elasticity theory,
but even in these cases very little is known about the core
of a dislocation, precisely because this part of the disloca-

tion requires detailed quantum-mechanical modeling.
Moreover, even classical elasticity theory, which can only
be applied on a macroscopic scale, is directly related to
the atomic world through the elastic constants, the pa-
rameters of elasticity theory determined by the
quantum-mechanical behavior of the material. Though
materials constants such as the elastic constants may
often be simply measured in the laboratory, the geophysi-
cist modeling a continental drift does not have the luxury
of performing experiments to bypass quantuIn-
mechanical calculations. It is not possible, at present, to
generate geophysical pressures in the laboratory. There-
fore the relevant high-pressure parts of the phase dia-
grams of the materials that constitute the earth are un-
known. Geophysicists will greatly benefit from
quantum-mechanical modeling, which can provide them
with the parameters needed to pursue their research.

When should a scientist consider quantum-mechanical
modeling? The examples given above suggest that
quantum-mechanical modeling be considered in situa-
tions where experiment is impossible. This principle is
not limited, as in the geophysics example, to situations
that are completely inaccessible to experiment, but also
includes the performance of "computational experi-
ments, " which afford far greater "experimental" control
than their physical counterparts. For instance, one can
"reach into" a theoretical chemical calculation and, at
will, bend bonds at experimentally unstable and inacces-
sible angles to gain insight into the processes controlling
chemical reactions. Or, one can study the properties of
isolated defects in a material in which segregation of im-
purities towards those defects tends to cloud the experi-
mental results.

Another relevant consideration is what can be calcu-
lated quantum mechanically and at what cost. The
boundary of feasible quantum-mechanical calculations
has shifted significantly, to the extent that it may now be
more cost effective to employ quantum-mechanical mod-
eling even when experiments do offer an alternative.
Moreover, many fields of science, not just physics and
basic materials science, may benefit. It is true that the
original modeling of the covalent bond was not quantita-
tively accurate, and it did not give the correct value for
the energy associated with the bond. However, chemists
solving the Schrodinger equation nowadays accurately
calculate the energy of covalent bonds as well as their
equilibrium lengths, force constants, and polarizabilities.
Physicists have developed many methods that can be
used to calculate a wide range of physical properties of
materials, such as lattice constants and elastic constants.
These methods, which require only a specification of the
ions present (by their atomic number), are usually re-
ferred to as ab initio methods.

Many of the ab initio methods that physicists and
chemists use have existed for more than a decade, and it
is not the purpose of this article to describe or compare
the wide range of methods that exist. All of the ab initio
methods have been continuously refined over recent years
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and all have benefited from the availability of increasing-
ly powerful computers. A decade ago most ab initio
methods were capable only of modeling systems of a few
atoms, and hence applicability to real-world systems at
that point was extremely limited. Most methods can now
model systems that contain some tens of atoms and are
used to study a small but significant range of interesting
problems. Of all the methods, one, the total-energy pseu-
dopotential method, stands alone. A decade ago this
method was also capable of modeling only few-atom sys-
tems. Now, however, this method can model thousand-
atom systems, and it is already clear that this number
will increase by at least a factor of 10 within the next five

years. Pushing back the limits of quantum-mechanical
modeling to this extent, the total-energy pseudopotential
method opens up a wide range of interesting problems to
quantum-mechanical calculation, and the future should
bring the application of quantum mechanics to many new
fields of science. The increase in the number of atoms
that can be handled is directly due to an increase in com-
putational efficiency of the ab initio pseudopotential
method, which also means that there is an increasing
class of problems for which it is more cost effective to use
quantum-mechanical modeling than experiment to deter-
mine the physical parameters of systems. One purpose of
this article is to heighten awareness amongst scientists in
a range of scientific disciplines that the world is quantum
mechanical and that there now exists an ab initio method
that allows the quantum mechanics to be solved and in-
corporated into everyday science.

There is an economy of scale to ab initio total-energy
calculations because so many physical properties are re-
lated to total energies. While just one piece of theoretical
"apparatus" is needed to calculate all the physical prop-
erties that are related to total energies, completely
different sets of experimental apparatus are required to
measure each class of physical property of a material.
This represents an enormous advantage of quantum-
mechanical modeling over experimental measurements.
Comparing the decreasing cost of computers with the
cost of a large number of different pieces of experimental
apparatus needed to carry out the same functions, one
sees that the cost effectiveness of quantum-mechanical
modeling methods over physical experimentation will
continue to increase with time. This, then, is the time for
researchers in a wide range of scientific disciplines to
consider very seriously whether quantum-mechanical
modeling may be applied in a cost-effective way to their
own field of research, even if the field of research is far
removed from what is usually assumed to be the
quantum-mechanical world.

Total-energy pseudopotential calculations do require
significant amounts of computer time, even for systems
containing a few atoms in the unit cell, and the computa-
tional time required to perform the calculations always
increases with the number of atoms in the unit cell.
Thus, for large systems containing hundreds of atoms in
the unit cell, it is essential to use the most efficient nu-

merical algorithms. In the following pages we shall dis-
cuss in detail the latest methods for doing this. Among
the methods we shall discuss, two have revolutionized the
field of ab initio total-energy calculation, each increasing
the number of atoms in a calculable system by more than
an order of magnitude over previously existing tech-
niques. As we shall discuss in detail, the molecular-
dynamics method developed by Car and Parrinello (1985)
transformed the way in which we viewed quantum-
mechanical calculations and hence total-energy pseudo-
potential calculations; instead of finding a coupled self-
consistent solution to a descretized partial differential
equation through matrix techniques, Car and Parrinello
minimized a single function through simulated annealing.
The Car-Parrinello method can be used to perform calcu-
lations for systems containing on the order of one hun-
dred atoms in the unit cell. However, severe difficulties
are encountered in certain cases when one attempts to
use this method to perform calculations on much larger
systems. Recently, conjugate-gradients methods have
been developed (Teter et al. 1989; Gillan, 1989) that
overcome the difficulties encountered with the
molecular-dynamics technique. Conjugate-gradients
methods have again transformed total-energy pseudopo-
tential calculations by replacing simulated annealing
minimization with a direct, completely self-consistent
second-order search for the minimum. Using these
methods, one can perform calculations for systems con-
taining many hundreds, and soon thousands, of atoms.

The molecular-dynamics and conjugate-gradients
methods allow pseudopotential calculations to be per-
formed for much larger systems than was possible using
conventional matrix diagonalization methods. They also
allow, for the first time, tractable ab initio quantum-
mechanical simulations to be performed for systems at
nonzero temperatures. While these capabilities offer the
obvious advantage of permitting more complex systems
to be studied, there is yet another benefit to be gained by
using these new computational methods. By increasing
the efficiency of the total-energy pseudopotential tech-
nique, they have greatly extended the range of applica-
tion of this technique by allowing, for the first time, the
inclusion of noble and transition-metal atoms and first-
row elements such as oxygen in large pseudopotential
calculations. Until recently it was widely believed that
computations including such elements would be com-
pletely intractable with pseudopotentials in a plane-wave
representation. Recent work (Allan and Teter, 1987;
Bar-Yam et al. , 1989; Rappe et al. , 1990; Vanderbilt,
1990; Trouillier and Martins, 1991) has shown that pseu-
dopotential calculations can be performed for systems
containing these atoms by employing a substantial but
manageable number of plane waves in the basis set. With
their increased efficiency, molecular-dynamics and
conjugate-gradients methods can handle very large
plane-wave basis sets and therefore permit large total-
energy pseudopotential calculations to be performed with
these new pseudopotentials, thus opening the way for
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study of a larger variety of chemical systems than was
previously possible.

This article provides a detailed description of the
total-energy pseudopotential method, the molecular-
dynamics method, and conjugate-gradient minimization.
The article also discusses related techniques and develop-
ments in a number of areas that have played a role in in-
creasing the computational efficiency of these methods.
It is hoped that the information presented here is
sufficiently detailed and at the leading edge of the work
being done to be useful to scientists working both in and
outside the field of ab initio quantum-mechanical calcula-
tions.

II. TOTAL-ENERGY PSEUI3OPOTENTIAL
CALCULATIONS

This section describes the total-energy pseudopotential
method. An extremely useful review of the pseudopoten-
tial method can be found in articles by Ihm et al. (1979)
and Denteneer and van Haeringen (1985). These articles
are essential reading for anyone intending to implement
codes for total-energy pseudo potential calculations.
Total-energy calculations can only be performed if a
large number of simplifications and approximations are
used. These simplifications and approximations are de-
scribed in the following sections.

A. Overview of approximations

Prediction of the electronic and geometric structure of
a solid requires calculation of the quantum-mechanical
total energy of the system and subsequent minimization
of that energy with respect to the electronic and nuclear
coordinates. Because of the large difference in mass be-
tween the electrons and nuclei and the fact that the
forces on the particles are the same, the electrons
respond essentially instantaneously to the motion of the
nuclei. Thus the nuclei can be treated adiabatically, lead-

ing to a separation of electronic and nuclear coordinates
in the many-body wave function —the so-called Born-
Oppenheimer approximation. This "adiabatic principle"
reduces the many-body problem to the solution of the dy-
namics of the electrons in some frozen-in configuration of
the nuclei.

Even with this simplification, the many-body problem
remains formidable. Further simplifications, however,
can be introduced that allow total-energy calculations to
be performed accurately and efBciently. These include
density functional th-eory to model the electron-electron
interactions, pseudopotential theory to model the
electron-ion interactions, supercells to model systems
with aperiodic geometries, and iterative minimization
techniques to relax the electronic coordinates.

Very briefly, the essential concepts are the following:
(i) Density-functional theory (Hohenberg and Kohn,

1964; Kohn and Sham, 1965) allows one, in principle, to
map exactly the problem of a strongly interacting elec-
tron gas (in the presence of nuclei) onto that of a single
particle moving in an effective nonlocal potential. Al-
though this potential is not known precisely, local ap-
proximations to it work remarkably well. At present, we
have no a priori arguments to explain why these approxi-
mations work. Density-functional theory was revitalized
in recent years only because theorists performed total-
energy calculations using these potentials and showed
that they reproduced a variety of ground-state properties
within a few percent of experiment. Thus the acceptance
of local approximations to density-functional theory has
only emerged, a posteriori, after many successful investi-
gations of many types of materials and systems. General-
ly, total-energy differences between related structures can
be believed to within a few percent and structural param-

O

eters to at least within a tenth of an A. Cohesive ener-
gies, however, can be in error by more than 10%.

(ii) Pseudopotential theory (Phillips, 1958; Heine and
Cohen, 1970) allows one to replace the strong electron
ion potential with a much weaker potential —a
pseudopotential —that describes all the salient features of
a valence electron moving through the solid, including
relativistic effects. Thus the original solid is now re-
placed by pseudo valence electrons and pseudo-ion cores.
These pseudoelectrons experience exactly the same po-
tential outside the core region as the original electrons
but have a much weaker potential inside the core region.
The fact that the potential is weaker is crucial, however,
because it makes the solution of the Schrodinger equation
much simpler by allowing expansion of the wave func-
tions in a relatively small set of plane waves. Use of
plane waves as basis functions makes the accurate and
systematic study of complex, low-symmetry configura-
tions of atoms much more tractable.

(iii) The supercell approximation allows one to deal
with aperiodic configurations of atoms within the frame-
work of Bloch's theorem (see Ashcroft and Mermin,
1976). One simply constructs a large unit cell containing
the configuration in question and repeats it periodically
throughout space. By studying the properties of the sys-
tem for larger and larger unit cells, one can gauge the im-
portance of the induced periodicity and systematically
filter it out. This approach has been successfully tested
against "exact" Koster-Slater Green's-function methods
(see Baraff and Schluter, 1979), which are only tractable
for very-high-symmetry configurations.

(iv) Finally, new iterative diagonalization approaches
(Car and Parrinello, 1985; Payne et al. , 1986; Williams
and Soler, 1987; Gillan, 1989; Stich et al. , 1989; Teter
et al. , 1989) can be used to minimize the total-energy
functional. These are much more efficient than the tradi-
tional diagonalization methods. These new methods al-
low expedient calculation of ionic forces and total ener-
gies and significantly raise the level of modern total-
energy calculations. These methods are the subject of
Secs. III, IV, and V.
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B. Electron-electron interactions

The most difficult problem in any electronic structure
calculation is posed by the need to take account of the
effects of the electron-electron interaction. Electrons re-
pel each other due to the Coulomb interaction between
their charges. The Coulomb energy of a system of elec-
trons can be reduced by keeping the electrons spatially
separated, but this has to balanced against the kinetic-
energy cost of deforming the electronic wave functions in
order to separate the electrons. The effects of the
electron-electron interaction are briefly described below.

1. Exchange and correlation

The wave function of a many-electron system must be
antisymmetric under exchange of any two electrons be-
cause the electrons are fermions. The antisymmetry of
the wave function produces a spatial separation between
electrons that have the same spin and thus reduces the
Coulomb energy of the electronic system. The reduction
in the energy of the electronic system due to the antisym-
metry of the wave function is called the exchange energy.
It is straightforward to include exchange in a total-
energy calculation, and this is generally referred to as the
Hartree-Fock approximation.

The Coulomb energy of the electronic system can be
reduced below its Hartree-Fock value if electrons that
have opposite spins are also spatially separated. In this
case the Coulomb energy of the electronic system is re-
duced at the cost of increasing the kinetic energy of the
electrons. The difference between the many-body energy
of an electronic system and the energy of the system cal-
culated in the Hartree-Fock approximation is called the
correlation energy (see Fetter and Walecka, 1971). It is

extremely difficult to calculate the correlation energy of a
complex system, although some promising steps are be-
ing taken in this direction using quantum. Monte Carlo
simulations of the electron-gas dynamics (Fahy et al. ,
1988; Li et al. , 1991). At present these methods are not
tractable in total-energy calculations of systems with any
degree of complexity, and alternative methods are re-
quired to describe the effects of the electron-electron in-
teraction.

2. Density-functional theory

Density-functional theory, developed by Hohenberg
and Kohn (1964) and Kohn and Sham (1965), provided
some hope of a simple method for describing the effects
of exchange and correlation in an electron gas. Hohen-
berg and Kohn proved that the total energy, including
exchange and correlation, of an electron gas (even in the
presence of a static external potential) is a unique func-
tional of the electron density. The minimum value of the
total-energy functional is the ground-state energy of the
system, and the density that yields this minimum value is
the exact single-particle ground-state density. Kohn and
Sham then showed how it is possible, formally, to replace
the many-electron problem by an exactly equivalent set
of self-consistent one-electron equations. For more de-
tails about density-functional theory see von Barth
(1984), Dreizler and da Providencia (1985), Jones and
Gunnarson (1989), and Kryachko and Ludena (1990).

a. The Kohn-Sham energy functiona)

The Kohn-Sham total-energy functional for a set of
doubly occupied electronic states lt; can be written

Et IO ]]=2X f4
g2

V P, d'r+ f V;,„(r)n (r)d'r+ f, d rd'r'+Exc[n (r)]+E;,„(IRI]),
2&5 2 r —r'

(2.1)

where E;,„ is the Coulomb energy associated with in-
teractions among the nuclei (or iona) at positions IRI],
V; „ is the static total electron-ion potential, n (r} is the
electronic density given by

n (r)=2 + ~P,.(r)~ (2.2)

and E~c[n (r) ] is the exchange-correlation functional.
Only the minimum value of the Kohn-Sham energy

functional has physical meaning. At the minimum, the
Kohn-Sham energy functional is equal to the ground-
state energy of the system of electrons with the ions in
positions I RI ].

b. Kohn-Sham equations

It is necessary to determine the set of wave functions
that minimize the Kohn-Sham energy functional.

These are given by the self-consistent solutions to the
Kohn-Sham equations (Kohn and Sham, 1965):

V + V~,„(r)+VH(r)+ Vzc(r) g;(r) =e;l(;(r),

(2.3}

where P; is the wave function of electronic state i, c; is
the Kohn-Sham eigenvalue, and VH is the Hartree poten-
tial of the electrons given by
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Vtt(r)=e I, d r' . (2.4) 5Exc[n (r)]
5n (r)

B[n (r)sxc(r) ]
Bn (r)

(2.6b)

The exchange-correlation potential, V&&, is given formal-
ly by the functional derivative

5Exc[n (r)]
xc( )= (2.5)

c. Local-density approximation

The Hohenberg-Kohn theorem provides some motiva-
tion for using approximate methods to describe the
exchange-correlation energy as a function of the electron
density. The simplest method of describing the
exchange-correlation energy of an electronic system is to
use the local density appr-oximation (LDA; Kohn and
Sham, 1965), and this approximation is almost universal-
ly used in total-energy pseudopotential calculations. In
the local-density approximation the exchange-correlation
energy of an electronic system is constructed by assum-
ing that the exchange-correlation energy per electron at a
point r in the electron gas, exc(r), is equal to the
exchange-correlation energy per electron in a homogene-
ous electron gas that has the same density as the electron
gas at point r. Thus

and

Exc[n(r)]= f exc(r)n(r)d r (2.6a)

The Kohn-Sham equations represent a mapping of the
interacting many-electron system onto a system of nonin-
teracting electrons moving in an effective potential due to
all the other electrons. If the exchange-correlation ener-

gy functional were known exactly, then taking the func-
tional derivative with respect to the density would pro-
duce an exchange-correlation potential that included the
effects of exchange and correlation exactly.

The Kohn-Sham equations must be solved self-
consistently so that the occupied electronic states gen-
erate a charge density that produces the electronic poten-
tial that was used to construct the equations. The sum of
the single-particle Kohn-Sham eigenvalues does not give
the total electronic energy because this overcounts the
effects of the electron-electron interaction in the Hartree
energy and in the exchange-correlation energy. The
Kohn-Sham eigenvalues are not, strictly speaking, the en-
ergies of the single-particle electron states, but rather the
derivatives of the total energy with respect to the occupa-
tion numbers of these states (Janak, 1978). Nevertheless,
the highest occupied eigenvalue in an atomic or molecu-
lar calculation is nearly the unrelaxed ionization energy
for that system (Perdew et al. , 1982).

The Kohn-Sham equations are a set of eigenequations,
and the terms within the brackets in Eq. (2.3) can be re-
garded as a Hamiltonian. The bulk of the work involved
in a total-energy pseudopotential calculation is the solu-
tion of this eigenvalue problem once an approximate ex-
pression for the exchange-correlation energy is given.

with

exc(r) =ex'c [n (r)] . (2.6c)

The local-density approximation assumes that the
exchange-correlation energy functional is purely local.
Several parametrizations exist for the exchange-
correlation energy of a homogeneous electron gas
(Wigner, 1938; Kohn and Sham, 1965; Hedin and
Lundqvist, 1971;Vosko et al. , 1980; Perdew and Zunger,
1981), all of which lead to total-energy results that are
very similar. These parametrizations use interpolation
formulas to link exact results for the exchange-
correlation energy of high-density electron gases and cal-
culations of the exchange-correlation energy of inter-
mediate and low-density electron gases.

The local-density approximation, in principle, ignores
corrections to the exchange-correlation energy at a point
r due to nearby inhomogeneities in the electron density.
Considering the inexact nature of the approximation, it is
remarkable that calculations performed using the LDA
have been so successful. Recent work has shown that
this success can be partially attributed to the fact that the
local-density approximation gives the correct sum rule
for the exchange-correlation hole (Harris and Jones,
1974; Gunnarsson and Lundqvist, 1976; Langreth and
Perdew, 1977). A number of attempts to improve the
LDA, for instance by using gradient expansions, have not
shown any improvement over results obtained using the
simple LDA. One of the reasons why these improve-
ments" to the LDA do so poorly is that they do not obey
the sum rule for the exchange-correlation hole. Methods
that do enforce the sum rule appear to offer a consistent
improvement over the LDA (Langreth and Mehl, 1981,
1983).

The LDA appears to give a single well-defined global
minimum for the energy of a non-spin-polarized system
of electrons in a fixed ionic potential. Therefore any en-
ergy minimization scheme will locate the global energy
minimum of the electronic system. For magnetic materi-
als, however, one would expect to have more than one lo-
cal minimum in the electronic energy. If the energy
functional for the electronic system had many local mini-
ma, it would be extremely costly to perform total-energy
calculations because the global energy minimum could
only be located by sampling the energy functional over a
large region of phase space.

C. Periodic supercells

In the preceding section it was demonstrated that cer-
tain observables of the many-body problem can be
mapped into equivalent observables in an effective
single-particle problem. However, there still remains the
formidable task of handling an infinite number of nonin-
teracting electrons moving in the static potential of an
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infinite number of nuclei or ions. Two difficulties must be
overcome: a wave function must be calculated for each
of the infinite number of electrons in the system, and,
since each electronic wave function extends over the en-
tire solid, the basis set required to expand each wave
function is infinite. Both problems can be surmounted by
performing calculations on periodic systems and applying
Bloch's theorem to the electronic wave functions.

1. 8loch's theorem

f;{r)=exp[ik r]f;(r) . (2.7)

The cell-periodic part of the wave function can be ex-
panded using a basis set consisting of a discrete set of
plane waves whose wave vectors are reciprocal lattice
vectors of the crystal,

f, (r) =g c; Gexp[iG. r],
G

(2.8)

where the reciprocal lattice vectors 6 are defined by
6'1=2~m for all 1 where 1 is a lattice vector of the crys-
tal and m is an integer. Therefore each electronic wave
function can be written as a sum of plane waves,

Bloch's theorem states that in a periodic solid each
electronic wave function can be written as the product. of
a cell-periodic part and a wavelike part (see Ashcroft and
Mermin, 1976),

bution to the total energy from a filled electronic band by
calculating the electronic states ai special sets of k points
in the Brillouin zone (Chadi and Cohen, 1973; Joanno-
poulos and Cohen, 1973; Monkhorst and Pack, 1976;
Evarestov and Smirnov, 1983). Using these methods, one
can obtain an accurate approximation for the electronic
potential and the total energy of an insulator or a semi-
conductor by calculating the electronic states at a very
small number of k points. The electronic potential and
total energy are more difficult to calculate if the system is
metallic because a dense set of k points is required to
define the Fermi surface precisely.

The magnitude of any error in the total energy due to
inadequacy of the k-point sampling can always be re-
duced by using a denser set of k points. The computed
total energy will converge as the density of k points in-
creases, and the error due to the k-point sampling then
approaches zero. In principle, a converged electronic po-
tential and total energy can always be obtained provided
that the computational time is available to calculate the
electronic wave functions at a sufficiently dense set of k
points. The computational cost of performing a very
dense sampling of k space can be significantly reduced by
using the k p total-energy method (Robertson and Payne,
1990, 1991). In this technique solutions on the dense set
of k points are generated from the solutions on a much
coarser grid of k points using k.p perturbation theory.

P;(r)=g c,. k+Gexp[i(k+G) r] . (2.9)
3. Plane-wave basis sets

2. k-point sampling

Electronic states are allowed only at a set of k points
determined by the boundary conditions that apply to the
bulk solid. The density of allowed k points is proportion-
al to the volume of the solid. The infinite number of elec-
trons in the solid are accounted for by an infinite number
of k points, and only a finite number of electronic states
are occupied at each k point. The Bloch theorem
changes the problem of calculating an infinite number of
electronic wave functions to one of calculating a finite
number of electronic wave functions at an infinite num-
ber of k points. The occupied states at each k point con-
tribute to the electronic potential in the bulk solid so
that, in principle, an infinite number of calculations are
needed to compute this potential. However, the electron-
ic wave functions at k points that are very close together
will be almost identical. Hence it is possible to represent
the electronic wave functions over a region of k space by
the wave functions at a single k point. In this case the
electronic states at only a finite number of k points are
required to calculate the electronic potential and hence
determine the tota1 energy of the solid.

Methods have been devised for obtaining very accurate
approximations to the electronic potential and the contri-

Bloch's theorem states that the electronic wave func-
tions at each k point can be expanded in terms of a
discrete plane-wave basis set. In principle, an infinite
plane-wave basis set is required to expand the electronic
wave functions. However, the coefficients c;&+G for the
plane waves with small kinetic energy (A' /2m)~k+G~
are typically more important than those with large kinet-
ic energy. Thus the plane-wave basis set can be truncat-
ed to include only plane waves that have kinetic energies
less than some particular cutoff energy. If a continuum
of plane-wave basis states were required to expand each
electronic wave function, the basis set would be infinitely
large no matter how small the cutoff energy. Application
of the Bloch theorem allows the electronic wave func-
tions to be expanded in terms of a discrete set of plane
waves. Introduction of an energy cutofF' to the discrete
plane-wave basis set produces a finite basis set.

The truncation of the plane-wave basis set at a finite
cutoff energy will lead to an error in the computed total
energy. However, it is possible to reduce the magnitude
of the error by increasing the value of the cutoff energy.
In principle, the cutoff energy should be increased until
the calculated total energy has converged, but it will be
shown later that it is possible to perform calculations at
lower cutoff energies.

One of the difficulties associated with the use of plane-
wave basis sets is that the number of basis states changes
discontinuously with cutoff energy. In general these
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discontinuities will occur at different cutoffs for different
k points in the k-point set. (In addition, at a fixed-energy
cutoff, a change in the size or shape of the unit cell will
cause discontinuation in the plane-wave basis set. ) This

problem can be reduced by using denser k-point sets, so
that the weight attached to any particular plane-wave
basis state is reduced. However, the problem is still
present even with quite dense k-point samplings. It can
be handled by applying a correction factor which ac-
counts approximately for the difference between the
number of states in a basis set with infinitely large num-
ber of k points and the number of basis states actually
used in the calculation (Francis and Payne, 1990).

4. Plang-wave representation
of Kohn-Sham equations

W ~ ~ W W I P W W \ ~ M M ~ ~ W
I

I
I

Yiv 'g
Iw w ~ II m m ~ y

II

N
~ ~ ~ ~ W

I

FIG. 2. Schematic illustration of a supercell geometry for a
point defect (i.e., vacancy) in a bulk solid. The supercell is the
area enclosed by the dashed lines.

%'hen plane waves are used as a basis set for the elec-
tronic wave functions, the Kohn-Sham equations assume
a particularly simple form. Substitution of Eq. (2.9) into
(2.3) and integration over r gives the secular equation

~I +G~'S, + V,.„(6—6 )2'

+ VH(6 —6')+ Vxc(G —6') c, z+G,

~i ~i, k+G ' (2.10)

In this form, the kinetic energy is diagonal, and the
various potentials are described in terms of their Fourier
transforms. Solution of Eq. (2.10) proceeds by diagonali-
zation of a Hamiltonian matrix whose matrix elements

Hk+& k+G are given by the terms in the brackets above.
The size of the matrix is determined by the choice of
cutoff energy (fi /2m )

~

k+ 6, ~, and will be intractably
large for systems that contain both valence and core elec-
trons. This is a severe problem, but it can be overcome
by use of the pseudopotential approximation, as dis-
cussed in Sec. II.D.

surrounded by a region of bulk crystal. Periodic bound-
ary conditions are applied to the supercell so that the su-
percell is reproduced throughout space, as implied in the
figure. Therefore the energy per unit cell of a crystal
containing an array of defects is calculated, rather than
the energy of a crystal containing a single defect. It is
essential to include enough bulk solid in the supercell to
prevent the defects in neighboring cells from interacting
appreciably with each other. The independence of de-
fects in neighboring cells can be checked by increasing
the volume of the supercell until the computed defect en-

ergy has converged. It can then be assumed that defects
in neighboring unit cells no longer interact.

A surface may have periodicity in the plane of the sur-
face, but it cannot have periodicity perpendicular to the
surface. The supercell for a surface calculation is illus-
trated schematically in Fig. 3. The supercell contains a

5. Nonperiodic systems

The Bloch theorem can be applied neither to a system
that contains a single defect nor in the direction perpen-
dicular to a crystal surface. A continuous plane-wave
basis set would be required for the defect calculation,
and, although the plane-wave basis set for the surface cal-
culation would be discrete in the plane of the surface, it
would be continuous in the direction perpendicular to the
surface. Hence an infinite number of plane-wave basis
states would be required for both of these calculations, no
matter how small the cutoff energy chosen for the basis
set. Calculations using plane-wave basis sets can only be
performed on these systems if a periodic supercell is used.
The supercell for a point-defect calculation is illustrated
schematically in Fig. 2. The supercell contains the defect

FIG. 3. Schematic illustration of a supercell geometry for a
surface of a bulk solid. Same convention as in Fig. 2.
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FIG. 4. Schematic illustration of a supercell geometry for a
molecule. Same convention as in Fig. 2.

D. Electron-ion interactions

1. Pseudopotential approximation

crystal slab and a vacuum region. The supercell is re-
peated over all space, so the total energy of an array of
crystal slabs is calculated. To ensure that the results of
the calculation accurately represent an isolated surface,
the vacuum regions must be wide enough so that faces of
adjacent crystal slabs do not interact across the vacuum
region, and the crystal slab must be thick enough so that
the two surfaces of each crystal slab do not interact
through the bulk crystal.

Finally, even molecules can be studied in this fashion
(Joannopoulos et al. , 1991), as illustrated in Fig. 4.
Again, the supercell needs to be large enough so that the
interactions between the molecules are negligible.

pseudo wave functions rather than the true valence wave
functions. An ionic potential, valence wave function and
the corresponding pseudopotential and pseudo wave
function are illustrated schematically in Fig. 5. The
valence wave functions oscillate rapidly in the region oc-
cupied by the core electrons due to the strong ionic po-
tential in this region. These oscillations maintain the
orthogonality between the core wave functions and the
valence wave functions, which is required by the ex-
clusion principle. The pseudopotential is constructed,
ideally, so that its scattering properties or phase shifts for
the pseudo wave functions are identical to the scattering
properties of the ion and the core electrons for the
valence wave functions, but in such a way that the pseu-
do wave functions have no radial nodes in the core re-
gion. In the core region, the total phase shift produced
by the ion and the core electrons will be greater by ~, for
each node that the valence functions had in the core re-
gion, than the phase shift produced by the ion and the
valence electrons. Outside the core region the two poten-
tials are identical, and the scattering from the two poten-
tials is indistinguishable. The phase shift produced by
the ion core is di6'erent for each angular momentum
component of the valence wave function, and so the
scattering from the pseudopotential must be angular
momentum dependent. The most general form for a
pseudopotential is

(2.11)

where llm ) are the spherical harmonics and V& is the
pseudopotential for angular momentum l. Acting on the
electronic wave function with this operator decomposes
the wave function into spherical harmonics, each of
which is then multiplied by the relevant pseudopotential
V(.

Although Bloch's theorem states that the electronic
wave functions can be expanded using a discrete set of
plane waves, a plane-wave basis set is usually very poorly
suited to expanding electronic wave functions because a
very large number of plane waves are needed to expand
the tightly bound core orbitals and to follow the rapid os-
cillations of the wave functions of the valence electrons in
the core region. An extremely large plane-wave basis set
would be required to perform an all-electron calculation,
and a vast amount of computational time ~ould be re-
quired to calculate the electronic wave functions. The
pseudopotential approximation (Phillips, 1958; Heine
and Cohen, 1970; Yin and Cohen, 1982a) allows the elec-
tronic wave functions to be expanded using a much
smaller number of plane-wave basis states.

It is well known that most physical properties of solids
are dependent on the valence electrons to a much greater
extent than on the core electrons. The pseudopotential
approximation exploits this by removing the core elec-
trons and by replacing them and the strong ionic poten-
tial by a weaker pseudopotential that acts on a set of

FIG. 5. Schematic illustration of all-electron (solid lines) and
pseudoelectron (dashed lines) potentials and their correspond-
ing wave functions. The radius at which all-electron and pseu-
doelectron values match is designated r, .
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A pseudopotential that uses the same potential for all
the angular momentum components of the wave function
is called a local pseudopotential. A local pseudopotential
is a function only of the distance from the nucleus. It is
possible to produce arbitrary, predetermined phase shifts
for each angular momentum state with a local potential,
but there are limits to the amount that the phase shifts
can be adjusted for the different angular momentum
states, while maintaining the crucial smoothness and
weakness of the pseudopotential. Without a smooth,
weak pseudopotential it becomes dificult to expand the
wave functions using a reasonable number of plane-wave
basis states.

a. Norm conservation

In total-energy calculations, the exchange-correlation
energy of the electronic system is a function of the elec-
tron density. If the exchange-correlation energy is to be
desired accurately, it is necessary that outside the core
regions the pseudo wave functions and real wave func-
tions be identical, not just in their spatial dependences
but also in their absolute magnitudes, so that the two
wave functions generate identical charge densities. Ad-
justment of the pseudopotential to ensure that the in-
tegrals of the squared amplitudes of the real and the
pseudo wave functions inside the core regions are identi-
cal guarantees the equality of the wave function and
pseudo wave function outside the core region. One of the
first attempts to construct pseudopotentials of this type
was by Starkloff and Joannopoulos (Joannopoulos et al.
1977, Starkloff and Joannopoulos 1977). They intro-
duced a class of local pseudopotentials that described the
valence energies and wave functions of many heavy
atoms accurately.

Of course, in general, the scattering from the ion core
is best described by a nonlocal pseudopotential that uses
a different potential for each angular momentum com-
ponent of the wave function. Various groups (Redondo
et al. , 1977; Hamann et al. , 1979; Zunger and Cohen,
1979; Kerker, 1980; Bachelet et ah. , 1982; Shirley et al. ,
1989) have now introduced nonlocal pseudopotentials of
this type that work extremely well. Moreover, as pointed
out by Hamann, Schluter, and Chiang (1979), a match of
the pseudo and real wave functions outside the core re-
gion also assures that the first-order energy dependence
of the scattering from the ion core is correct, so that the
scattering is accurately described over a wide range of en-
ergy. A method for the construction of pseudopotentials
that corrects even the higher-order energy dependence of
the scattering has recently been introduced by Shirley
et al. (1989). Local and nonlocal pseudopotentials of
these types are currently termed ab initio or norns con-
serving and are capable of describing the scattering due
to the ion in a variety of atomic environments, a property
referred to as transferability.

b. Generation procedure

Select Exc

Solve all-electron
eigenvalues &wove functions

e pseucheigenvolues
ual to theall-electron
alenCe elgenvalueS &

, YES

he pseudo wave fun'
qual to the all-electro
lence wove functions be

a cutoff radtus r~?

„YES
Pseudopotential.

generated

i NO

Select a parametrized form
for the pseudopotential u {r)

Choosea set of parameters ~

Solve pseudo-atom
genvatues 8 wave functions

FIG. 6. Flow chart describing the construction of an ionic
pseudopotential for an atom.

The typical method for generating an ionic pseudopo-
tential for an atom of species a, v is illustrated in Fig. 6
and proceeds as follows. All-electron calculations are
performed for an isolated atom in its ground state and
some excited states, using a given form for the exchange-
correlation density functional. This provides valence
electron eigenvalues and valence electron wave functions
for the atom. A parametrized form for the ionic pseudo-
potential is chosen. The parameters are then adjusted, so
that a pseudoatom calculation using the same form for
exchange-correlation as in the all-electron atom gives
both pseudowave functions that match the valence wave
functions outside some cutoff radius r, and pseudoeigen-
values that are equal to the valence eigenvalues. The ion-
ic pseudopotential obtained in this fashion is then used,
without further modification, for any environment of the
atom. The electronic density in any new environment of
the atom is then determined using both the ionic pseudo-
potential obtained in this way and the same form of
exchange-correlation functional as employed in the con-
struction of the ionic pseudopotential. A generalization
of this pseudopotential construction procedure for solu-
tions of the atom that are not normalizable has recently
been introduced by Hamann (1989).

Finally, it should be noted that ionic pseudopotentials
are constructed with r, ranging typically from one to two
times the value of the core radius. It should also be not-
ed that, in general, the smaller the value of r„ the more
"transferable" the potential. (The entire procedure for
solving the problem of a solid, given an ionic pseudopo-
tential, is outlined in Sec. II.F.)
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c. Convergence properties

The replacement of the true ionic potential by a weak-
er pseudopotential allows the electronic wave functions
to be expanded using far fewer plane-wave basis states
than would be needed to expand the wave functions in a
full ionic potential. The rapid oscillations of the valence
wave functions in the cores of the atoms have been re-
moved, and the small core electron states are no longer
present. The pseudopotential approximation has a num-
ber of other advantages in addition to reducing the num-
ber of plane-wave basis states needed to expand the elec-
tronic wave functions. The removal of the core electrons
means that fewer electronic wave functions have to be
calculated. More importantly, the total energy of the
valence electron system is typically a thousand times
smaller than the energy of the all-electron system. The
difference between the electronic energies of different ion-
ic configurations appears almost totally in the energy of
the valence electrons, so that the accuracy required to
determine energy differences between ionic configura-
tions in a pseudopotential calculation is much smaller
than the accuracy required in an all-electron calculation.
The energy differences are just as large when only the
valence electrons are included in the calculation, but the
total energies are typically a thousand times smaller in
the pseudopotential calculation than in the all-electron
calculation. But, of course, the total energy is no longer
meaningful. Only differences have meaning.

d. Plane-wave basis sets

One property of a pseudopotential that is not incor-
porated into the standard generation procedure is the
value of the cutoff energy required for the plane-wave
basis sets. Obviously, the smaller this value, the smaller
the basis set required for any particular calculation, and
the faster the calculation. A number of approaches to
this problem have been adopted. Some authors add addi-
tional constraints in the process of generating the pseu-
dopotential which are intended to produce a more rapid-
ly convergent potential (Trouillier and Martins, 1991).
Alternatively, a separate optimization procedure can be
applied after generating a pseudopotential using one of
the standard techniques (Rappe et al. , 1990; Rappe and
Joannopoulos, 1991). A rather more radical approach
has been suggested by Vanderbilt (Vanderbilt, 1990;
Laasonen et al. , 1991),which involves relaxing the norm
conservation of the pseudopotential. This approach will

be described more fully in Sec. IX.B.

2. Structure factor

The total ionic potential in a solid is obtained by plac-
ing an ionic pseudopotential at the position of every ion
in the solid. The information about the positions of the
ions is contained in the structure factor. The value of the

structure factor at wave vector Cx for ions of species o. is
given by

S (G)=gexp[iG. RI J,
I

(2.12)

where the sum is over the positions of all the ions of
species a in a single unit cell.

The periodicity of the system restricts the nonzero
components of the ioni. c potential to reciprocal-lattice
vectors. Hence it is only necessary to calculate the struc-
ture factor at the set of reciprocal-lattice vectors.

3. Total ionic potential

The total ionic potential V;,„ is obtained by summing
the product of the structure factor and the pseudopoten-
tial over all the species of ions. For example, for a local
potential V;,„ is given by

V„„(G)=gS (G)U (G) . (2.13)

U „„=f [Zlr v(r) J4mrdr, — . (2.14)

where U is the pseudopotential for the I =Q angular
momentum state. This integral is nonzero only within
the core region because the potentials are identical out-
side the core region.

There is no contribution to the total energy from the
Z/6 component of the pseudopotential at G=O be-
cause of the cancellation of the infinities in the electron-
ion, electron-electron, and ion-ion energies. However,
the non-Coulomb part of the pseudopotential at Cx=O
does contribute to the total energy. The contribution is
equal to

+el+ X+ava, core (2.15)

where X,&
is the total number of electrons in the system,

At large distances the pseudopotential is a pure
Coulomb potential of the form Z/r, where Z is the
valence of the atom. On taking the Fourier transform,
one finds that the pseudopotential diverges as Z/6 at
small wave vectors. Therefore the total ionic potential at
Cs=O is infinite, so the electron-ion energy is infinite.
However, there are similar divergences in the Coulomb
energies due to the electron-electron interactions and the
ion-ion interactions. The Coulomb G=O contributions
to the total energy from the three interactions cancel ex-
actly. This is not surprising because there is no Coulomb
potential at G=O in a charge-neutral system, and so
there cannot be a contribution to the total energy from
the G =0 component of the Coulomb potential.

The pseudopotential is, however, not a pure Coulomb
potential and therefore not exactly proportional to Z/6
for small 6. There is a constant contribution to the pseu-
dopotential at small 6, equal to the integral of the
difference between the pure Coulomb Z/r potential and
the pseudopotential. This constant for species e is
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E. ion-ion interactions

It is extremely dificult to compute the Coulomb ener-

gy of the ionic system using a direct real-space summa-
tion because the Coulomb interaction is long ranged.
The Coulomb interaction is also long ranged in recipro-
cal space, so the problem is not solved by performing the
summation in reciprocal space. Ewald (1917a, 1917b,
1921) developed a rapidly convergent method for per-
forming Coulomb summations over periodic lattices.

Ewald's method is based on the following identity:

1

IR&+I —R&l

—g I exp[ IR&+I —Rql p ]dp

+ g f"exp0 6 o 4p2

1X exp[i (R, —R2).G] 3 dp,p'
(2.16)

where I are lattice vectors, G are reciprocal-lattice vec-
tors, and Q is the volume of the unit cell. This identity

is the total number of ions of species e, and Q is the
volume of the unit cell.

provides a method for rewriting the lattice summation
for the Coulomb energy due to the interaction between
an ion positioned at R2 and an array of atoms positioned
at the points R&+I. The identity holds for all positive
values of g.

At first sight, the infinite Coulomb summation on the
left-hand side of Eq. (2.16) has been replaced by two
infinite summations, one over lattice vectors and the oth-
er over reciprocal-lattice vectors. However, if one
chooses an appropriate value of g the two surnrnations
become rapidly convergent in their respective spaces.
Then the real and reciprocal-space summations can be
computed with only a few lattice vectors and a few
reciprocal-lattice vectors.

As mentioned in the preceding section, the contribu-
tions to the total energy from the electron-ion, ion-ion,
and electron-electron interactions at G =0 cancel exact-
ly, and so the Ci=O contribution to the Coulomb energy
of the ionic system must be removed in order to compute
the correct total energy. In the Ewald summations the
G=O contribution to the Coulomb energy has been di-
vided between the real-space and the reciprocal-space
summations, so that it is not sufhcient simply to omit the
Ci=O term in the reciprocal-space Ewald summation.
The Cx =0 term in the reciprocal-space suinmation
should be omitted and two terms added to the Ewa1d en-

ergy to give the correct total energy. The correct form
for the total energy is (Yin and Cohen, 1982b)

erfc( i7 I R, + I —R2 I )

2 I I IR+I —R~l

2g 4~ 1

v' " n o~~, ICI2'"P cos[(R& —R2).6]—
4q gA

(2.17)

where ZI and ZJ are the valences of ions I and J, respec-
tively, and erfc is the complementary error function.

An ion does not interact with its own Coulomb charge,
so the 1=0 term must be omitted froin the real-space
summation when I =J. This is indicated by the 1 in the
first summation in Eq. (2.17).

F. Computational procedure with conventional
matrix diagonalization

The sequence of steps required to carry out a total-
energy pseudopotential calculation with conventional
matrix diagonalization techniques is shown in the Aow
diagram in Fig. 7. The procedure requires an initial
guess for the electronic charge density, from which the
Hartree potential and the exchange-correlation potential
can be calculated. The Hamiltonian matrices for each of
the k points included in the calculation must be con-
structed, as in Eq. (2.10), and diagonalized to obtain the
Kohn-Sham eigenstates. These eigenstates will normally

I

generate a different charge density from the one original-
ly used to construct the electronic potentials, and hence a
new set of Hamiltonian matrices must be constructed us-
ing the new electronic potentials. The eigenstates of the
new Hamiltonians are obtained, and the process is re-
peated until the solutions are self-consistent. In practice
the new electronic potential is taken to be a combination
of the electronic potentials generated by the old and the
new eigenstates, since this speeds the convergence to
self-consistency. To complete the total-energy calcula-
tion, tests should be performed to ensure that the total
energy is converged both as a function of the number of k
points and as a function of the cutoff energy for the
plane-wave basis set. Very few total-energy calculations
are taken to absolute convergence. For most calcula-
tions, the difference in energy between different ionic
configurations is more important than the absolute ener-
gies of the individual configurations, and the calculations
are performed using an energy cutoff and number of k
points at which the energy differences have converged
rather than an energy cutoff and number of k points at
which the absolute energies have converged.
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Construct VlQQ given atomic numbers and

positions of ions
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Pick a trial density n(r)

Calculate VH {n) and Vxc {n)
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ir YES

Compute Total Energy
'

No Generate New

Density n (r)

FIG. 7. Flow chart describing the computational procedure for
the calculation of the total energy of a solid, using conventional
matrix diagonalization.

G. Drawbacks of conventional procedure

H. Alternative methods

It has been demonstrated that the total-energy pseudo-
potential technique gives accurate and reliable values for
total energies of solids. However, as described above, the
power of the pseudopotential method is severely restrict-
ed when using conventional matrix diagonalization tech-
niques to solve for the Kohn-Sham eigenstates. In Secs.
III, IV, and V, descriptions are given of alternative
methods for performing total-energy pseudopotential cal-
culations. These methods are alternative techniques for

Pseudopotential calculations with a plane-wave basis
are not very well suited to conventional matrix diagonali-
zation techniques. In a total-energy pseudopotential cal-
culation there are typically 100 plane-wave basis states
for each atom in the system. The cost of matrix diago-
nalization increases as the third power of the number of
plane-wave basis states, and the memory required to
store the Hamiltonian matrix increases as the square of
the number of basis states. As a result, conventional ma-
trix diagonalization techniques are restricted to the order
of 1000 plane-wave basis states, and this in turn restricts
the number of atoms in the unit cell to the order of 10.
Using conventional matrix diagonalization methods, the
Kohn-Sham eigenvalues of all of the electronic states are
calculated, although only those of the lowest occupied
states are required to compute the total energy. Further-
Inore, considerable effort is expended to compute the ei-
genvalues to machine accuracy, even when the electronic
potential is far from self-consistency.

minimizing the Kohn-Sham energy functional and lead
to the same self-consistent Kohn-Sham eigenstates and

eigen values as conventional matrix diag onalization.
However, they are much better suited to performing
total-energy pseudopotential calculations because the
computational time and memory requirements scale
more slowly with the size of the system, allowing calcula-
tions on larger and more complex systems than can be
studied using conventional matrix diagonalization tech-
niques.

l I I. THE MOLECULAR-DYNAMICS METHOD

Eigenvalue problems may be solved by successively
"improving" a trial wave function. A simple illustration
of this process is given in Sec. III.A. Although the Car-
Parrinello method (Car and Parrinello, 1985) should be
regarded primarily as a scheme for performing ab initio
dynamical simulations, the molecular-dynamics treat-
ment of the electronic degrees of freedom introduced in
the Car-Parrinello method can be used to calculate
directly the self-consistent Kohn-Sham eigenstates of a
system. In this case the method operates by carrying out
a series of iterations that "improve" a set of trial wave
functions until they eventually converge to the Kohn-
Sham eigenstates. The total energy can be easily comput-
ed once the self-consistent Kohn-Sham eigenstates have
been determined. In this section we describe the
molecular-dynamics treatment of the electronic degrees
of freedom and show how it provides a very efticient
technique for finding the electronic ground state for a
fixed ionic configuration. In Sec. III.A we begin this dis-
cussion with a description of a simple scheme for the
iterative solution of an eigenvalue problem based on the
variational princi. pie. The molecular-dynamics-based
method is not as transparent as the example presented
here, but it has the common feature of varying trial wave
functions until they become eigenstates.

A. Eigenvalue solution by successive
"improvement" of a trial wave function

where Xo is the energy of the lowest-energy eigenstate of
the Hamiltonian H.

If g is expanded using a set of arbitrary orthonormal
basis functions j d) I,

g=g c„P„. (3.2)

Substitution of Eq. (3.2) into (3.1) gives

The variational theorem gives an upper bound for the
expectation value of a Hamiltonian H for any arbitrary
normalized trial wave function g. The expectation value
is greater than or equal to the energy of the lowest-
energy eigenstate of the Hamiltonian. Hence

(3 1)
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(3.3)

and the constraint of normalization requires that

(3.4)

The values of the coefBcients c„can be varied subject
to the constraint of normalization until the minimum
value for the expectation value of the Hamiltonian is
reached. This minimum value gives an upper bound for
the ground-state energy of the Hamiltonian.

The variational theorem gives an upper bound to the
ground-state energy of the Hamiltonian. However, the
difference between the minimum value of the expectation
value and the true ground-state energy of any given
Hamiltonian is due to the lack of completeness in the
basis set I/I. The eigenstate and the eigen-energy ob-
tained by using the variational theorem are exact in the
space of the basis set. Diagonalization of the Hamiltoni-
an matrix in the Hilbert space of the same basis states
would yield an identical solution for the lowest-energy
eigenstate.

The variational principle can be applied to obtain an
estimate for the energy of the next-lowest-energy eigen-
state of the Hamiltonian by using a trial wave function
that is orthogonal to the ground-state wave function.
The eigenstate and eigen-energy obtained for the second
eigenstate will again be identical to those calculated by
diagonalizing the Hamiltonian matrix in the Hilbert
space of the same basis functions. A third eigenstate can
be obtained by using a trial wave function that is orthog-
onal to the ground state and to the first excited state.
This process can be repeated until all of the eigenstates
have been obtained. The essential point is that the varia-
tional principle can be used to obtain eigenstates that are
exact in the Hilbert space of the basis set used in the cal-
culation. The molecular-Dynamics method is essentially
a dynamical method for applying the variational princi-
ple, in which the eigenstates of all the lowest-energy elec-
tronic states are determined simultaneously.

B. Molecular-dynamics procedure

Xo

FIG. 8. Schematic illustration of annealing procedure in molec-
ular dynamics. The system is started at a high temperature
with total energy El. The trajectory at this energy allows the
system to sample a large amount of phase space. As the system
is gradually cooled to E2, E3, etc., it settles down to a minimum

energy configuration.

functional E [ {c;I ] is a function of the set of coefficients
of the plane-wave basis set Ic; I. Each coefficient c; can
be regarded as the coordinate of a classical "particle. "
To minimize the Kohn-Sham energy functional, these
"particles" are given a kinetic energy, and the system is
gradually cooled until the set of coordinates reaches the
values Ic; Io that minimize the functional. Thus the
problem of solving for the Kohn-Sham eigenstates is re-
duced to one of solving for a set of classical equations of
motion. It should be emphasized, however, that the
Kohn-Sham energy functional is physically meaningful
quantum mechanically only when the coefBcients take
the values Ic; Io.

f . Molecular-dynamics Lagrangian

Car and Parrinello formulated their method in the
language of molecular dynamics. Their essential step was
to treat the electronic wave functions as dynamical vari-
ables. A Lagrangian is defined for the electronic system
as follows:

(3.5)

The molecular-dynamics method will be introduced by
a description of its application to a system in which the
positions of the ions and the size of the unit cell remain
fixed. The calculation can then be directly compared to a
total-energy calculation performed using conventional
matrix diagonalization techniques. In the traditional
molecular-dynamics approach a system of classical parti-
cles with coordinates IX;I interact through an interac-
tion potential V( I X; I ). If the configuration of minimum

energy is required, the system is started at a high temper-
ature, and the temperature is gradually reduced until the
particles reach a configuration IX; Io that minimizes V.

This procedure is illustrated schematically in Fig. 8.
In the Car-Parrinello scheme the Kohn-Sham energy

where p is a fictitious mass associated with the electronic
wave functions, E is the Kohn-Sham energy functional,
RI is the position of ion I, and a„define the size and
shape of the unit cell. The kinetic-energy term in the La-
grangian is due to the fictitious dynamics of the electron-
ic degrees of freedom. The Kohn-Sham energy function-
al takes the place of the potential energy in a convention-
a1 Lagrangian formulation.

2. Constraints

The electronic wave functions are subject to the con-
straints of orthonormality,
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Ig,*(r)QJ(r)d r=5,J. . (3.6)

These constraints are incorporated in the molecular-
dynamics Lagrangian by using the method of Lagrange
multipliers. The molecular-dynamics Lagrangian be-
comes

+g A," Ig,*(r)g (r)d'r —5,, (3.7)

The Lagrange multipliers A - ensure that wave functions
remain normalized, while the Lagrange multipliers A;.
(i' ) ensure that the wave functions remain orthogonal.
As described below, the Lagrange multipliers may be
thought of as providing additional forces acting on the
wave functions, which ensure that the wave functions
remain orthonormal.

C. Molecular-dynamics equations of motion

The equations of motion for the electronic states are
derived from the Lagrange equations of motion,

d BL
dt (jg.

(3.8)

which give

(3.9)

where H is the Kohn-Sham Hamiltonian.
The force —(Hg; ) is the gradient of the Kohn-Sham

energy functional at the point in the Hilbert space that
corresponds to the wave function f; The Lagr.ange mul-
tipliers add forces A, /to the "force —(Hg; ). These
forces ensure that the electronic wave functions remain
orthonormal as they propagate along their molecular-
dynamics trajectories. A general discussion of the conse-
quences of various orthonormalization schemes is given

by Broughton and Khan (1989).

1. Unconstrained equations of motion

where H is the Kohn-Sham Hamiltonian, and o. is an en-

ergy shift that defines the zero of energy.
If g; is expanded in the basis set of the eigenstates of

Hamiltonian H,

(3.11)

The constraints of orthonormality play a crucial role
in the evolution of the electronic states in the molecular-
dynamics method. To illustrate the importance of these
constraints, we consider the evolution of the electronic
states in the absence of any constraints:

(3.10)

and if Eq. (3.11) is substituted into (3.10), the following
equation of motion for the coefficient of the eigenstate g„
is obtained:

pc', „=—[E„—cr ]c, „, (3.12)

where c„ is the eigenvalue corresponding to eigenstate
Integration of these equations of motion, under the

assumption that the velocities of the coefficients are ini-
tially zero, gives the coefficients at time t as

c, „(t)=c, „(0)cos[[(e„—o ) Ip]'~ t ], c.„)cr,

c; .(t)=c; „(0)cosh[(~s„cr—~/p)' t], e„&o .

(3.13a)

(3.13b)

Here c; „(0)are the initial values of the coefficients.
It can be seen that the amplitudes of the coefficients of

the eigenstates with energies greater than o. oscillate with
time, while the amplitudes of the coefficients of the eigen-
states with energies less than o. increase with time. If o.

is chosen to be larger than the lowest-energy eigenvalue,
then all the electronic states that have c; 0(0)WO will con-
verge to the lowest-energy eigenstate go, since the
coefficient c; o will increase faster than any other
coefficient. Therefore, under the unconstrained equations
of motion, the electronic wave functions remain neither
orthogonal nor normahzed. The initial wave functions
will only converge to diFerent eigenstates when the con-
straints of orthogonality are imposed.

2. Constrained equations of motion

The constrained molecular-dynamics equations of
motion for the electronic states,

(3.14)

3. Partially constrained equations of motion

Since a separate orthonormalization step is required at
the end of each time step, it is possible to remove the

ensure that the electronic wave functions remain ortho-
normal at every instant in time. The molecular-dynamics
evolution of the electronic wave functions under these
equations of motion would also conserve the total energy
in the electronic degrees of freedom for the system of
fixed ions we assume for this section. However, to ensure
these properties, the values of the Lagrange multipliers
must vary continuously with time, and so implementa-
tion of this form of the molecular-dynamics equations re-
quires that the Lagrange multipliers be evaluated at
infinitely small time separations. To make the calcula-
tions tractable, variation of the Lagrange multipliers dur-
ing a time step is neglected and the Lagrange multipliers
are approximated by a constant value during the time
step. In this case the wave functions will not be exactly
orthonormal at the end of the time step, and a separate
orthonormalization step is needed in the calculation.
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constraints of orthogonality from the equation of motion
and use a partially constrained equation of motion. The
constraints of orthogonality are then imposed after the
equations of motion have been integrated, and the
Lagrange multipliers for the constraints of normalization
A, , are approximated by the expectation values of the en-
ergies of the states, A, , where

(3.15)

larger number of time steps in order to integrate the
equations of motion. It requires a large amount of
memory to store the wave-function coefFicients and ac-
celerations for each time step in a total-energy pseudopo-
tential calculation. If the extra coefficients and accelera-
tions did not fit into core memory, the computation could
become I/O bound and the total time required for the
calculation may actually increase.

This leads to an equation of motion that has the form

pP;= —[H —A,;]g; . (3.16)

With this equation of motion, the acceleration of an elec-
tronic state is always orthogonal to that state, a necessary
requirement to maintain normalization, and the accelera-
tion becomes zero when the wave function is an exact
eigenstate.

D. Integration of equations of motion

1. The Verlet algorithm

Once the accelerations of the coefficients have been
calculated, the equations of motion for the coefficients of
the plane-wave basis states have to be integrated. Car
and Parrinello used the Verlet algorithm (Verlet, 1967) to
integrate the equations of motion.

2. Stability of the Verlet algorithm

p;=go+ g 5 (t)g
a&0

(3.18)

where the 5 represent infinitesimal coefFicients. Substi-
tution of Eq. (3.18) into (3.17b) gives to first order in 5

A general performance measure of algorithms of the
Verlet type is the rate at which they converge to
minimum-energy state. A given problem normally re-
quires a certain amount of real time to converge, and the
computational effort is then determined by the size of the
time step At. In what follows it is demonstrated that the
largest ht allowed for stability is related to the difference
between the largest and smallest eigenvalues of the sys-
tem.

Given the assumption that g, is near the lowest-energy
eigenstate go, the state P, is expanded as in Eq. (3.11),

The Verlet algorithm is derived from the simplest
second-order difference equation for the second deriva-
tive. It gives the value of the ith electronic state at the
next time step, f; (b, t), as

(3.17a)

(3.19)

In the standard stability analysis (see Mathews and Walk-
er, 1970), a constant growth factor g is introduced at
each time step, so that

where b, t is the length of the time step, g;(0) is the value
of the state at the present time step, and g;( —b, t) is the
value of the state at the last time step. Substitution of
Eq. (3.16) into (3.17a) then gives

5 (nest)=g5 ((n —1)b,t) .

Substitution of Eq. (3.20) into (3.19) then gives

g —2g+1+ (E —Eo)g =0,(hr)'

(3.20)

(3.21)

(3.17b)

The Verlet algorithm introduces an error of order At
into the integration of the equations of motion. A more
sophisticated finite-difference algorithm could be used to
integrate the equations of motion and hence reduce the
error in the integration to a higher order of ht. In princi-
ple, for a given level of accuracy this would allow a
longer time step to be used in the integration of the equ'a-

tions of motion and hence reduce the total computational
time by reducing the number of time steps required to
perform the calculation. The maximum stable time step,
however, is not significantly increased with a higher-
order difference scheme. A more sophisticated finite-
difference equation would also require the values of the
coefficients or the corresponding accelerations from a

and the real part of g can become greater than 1 if
1/2) ]y2

~

(s —so)
(3.22a)

Therefore the largest possible At that is allowed for sta-
bility must be

2 1/2
Lait (s,„—eo)

(3.22b)

where c „is the largest eigenvalue of the problem.
For a Hamiltonian representation in a plane-wave

basis, the largest eigenvalue is primarily determined by
the cutoff kinetic energy of the basis set. Thus the Verlet
algorithm will require the time step to be reduced as the
cutoff energy is increased. This problem is addressed
again in Sec. IV.A.

Rev. Mod. Phys. , Voi. 64, No. 4, October 1992



1062 M. C. Payne et al. : Abinitio iterative minimization techniques

In the discussion above, it has been tacitly assumed
that the Hamiltonian remains fixed during the time evo-
lution of the system. New instabilities can arise, howev-
er, when the Hamiltonian is not allowed to vary when it
must vary, as in the case of self-consistency. These
difficulties are discussed in Sec. III.J.

E. Orthogonalization of electronic
wave functions

that minimize the Kohn-Sham energy functional. This is
illustrated schematically in Fig. 9. The damping of the
coefficients can be applied in a number of ways: a damp-
ing term of the form y—f; can be added to the equation
of motion for the wave function f;, or the velocities of
the coefficients can be reduced at the end of a time step
by replacing the value of each coefficient at the previous
time step by a value lying between the values of the
coefficient at the previous and present timesteps.

After one integrates the partially constrained equations
of motion for the coefficients of all the basis states for
each electronic state, the wave functions will no 1onger be
orthogonal. Car and Parrinello use an iterative tech-
nique to orthogonalize the wave functions, repeating the
application of the following algorithm to generate a new
set of wave functions i',' from a normalized set of wave
functions f;:

(3.23)

The electronic wave functions can be made orthogonal to
any desired accuracy by a repeated application of this al-
gorithm. If the algorithm is applied to two wave func-
tions, these wave functions mill be exactly orthogonal
after a single application of the algorithm. However, ap-
plying the algorithm to orthogonalize each of the new
wave functions to a third wave function wi11 make the
two wave functions nonorthogonal. The number of itera-
tions of this algorithm required to orthogonalize a set of
wave functions to a particular accuracy increases with
the number of wave functions and with the initial degree
of nonorthogonality. The algorithm does not maintain
the normalization of the wave functions, so they must be
normalized after each application of the algorithm. Vari-
ous methods for imposing orthogonality have been com-
pared by Broughton and Khan (1989).

G. Self-consistency

The accelerations of the wave functions in the
molecular-dynamics equations of motion are governed by
the Kohn-Sham Hamiltonian. As described in Sec. II,
the Hartree potential and the exchange-correlation po-
tential contribute to the Kohn-Sham Hamiltonian and
depend on the charge density generated by the electronic
wave functions. As the wave functions evolve under the
molecular-dynamics equations of motion, these potentials
vary. The potentials are recalculated at the end of each
time step (when a new set of wave functions has been
generated) and lead to a new Kohn-Sham Hamiltonian.
Thus the evolution of the coefficients to their stationary
values is accompanied by an evolution of the Kohn-Sham
Hamiltonian to self-consistency. This is illustrated in
Fig. 10. Each of the solid-lines shown passing through
the open circles corresponds to a static Kohn-Sham
Hamiltonian with a fixed charge density. During a
molecular-dynamics time step, the coefficients Ic [ move
along a trajectory that lies between two open circles. At
the end of each time step, the Kohn-Sham Hamiltonian is
updated with the new charge density, and the trajectory
shifts to a new solid line. This shift is indicated by the
dotted-line trajectory. The final time step leads to a self-
consistent solution of the Kohn-Sham Hamiltonian and
the determination of the minimum in the total energy.

F. Damping

When damping is applied to the motions of the
coefficients c; „, the coe%cients will evolve to the values

fc),

FIG. 9. Schematic representation of the damping of wave-
function coefficients Icj and the evolution of the Kohn-Sham
energy functional E [Ic J ] to its ground-state value Eo

FICy. 10. Schematic representation of the evolution of
coefficients I c I, Kohn-Sham Hamiltonian H, and the total ener-

gy, in the final two time steps of the molecular-dynamics
method. Solid-line trajectories between open circles correspond
to H with a fixed charge density. The final time step leads to a
self-consistent solution of H and a simultaneous determination
of the minimum total energy. Note that, if a trajectory along a
solid line were followed all the way to the Icj axis, this would
correspond to conventional matrix diagonalization of H with a
fixed charge density.
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H. Kohn-Sham eigenstates

The Kohn-Sham energy functional is minimized by
any set of wave functions that are a linear combination of
the lowest-energy Kohn-Sham eigenstates. These wave
functions will be stationary under the molecular-
dynamics equations of motion and subsequent orthogo-
nalization. Therefore, in the molecular-dynamics
method, each electronic wave function will, in general,
converge to a linear combination of the lowest-energy
Kohn-Sham eigenstates. This is not a problem for sys-
tems with a gap, but it can be a severe problem for metal-
lic systems in which the occupancy of a state depends on
its eigenvalue. Some ideas for handling metals in Car-
Parrinello dynamical simulations have been proposed by
Fernando et al. (1989), Woodward et al. (1989), Benedek
et al. (1991), and Pederson and Jackson (1991). The ac-
tual Kohn-Sham eigenvalues can be found by diagonali-
zation of the matrix whose matrix elements are given by

(3.24)

A simpler approach, which guarantees convergence to
Kohn-Sham eigenstates, is presented later in Sec. IV.B.

I. Computational procedure
with molecular dynamics

The procedure for performing a total-energy pseudo-
potential calculation using the molecular-dynamics tech-
nique is shown in the Bow diagram of Fig. 11. The pro-

Construct V;pp given atomic numbers and

positions of ions

Pick a cutoff for the plane-wave basis set

Choose initial wave functions p,

Calculate n (r)

Calculate VH ( n ) and Vxc (n )

Construct KOHN-SHAM Hamiltonian H

Calculate p, Q; = —[H —K] Q.„

Integrate equations of motion

Orthogonalize and normalize

wave functions

cARE tI(IAVE FUNCTIONS STATIONARYP

ii YES

Compute Total Energy

FIG. 11. Flow chart describing the computational procedure
for the calculation of the total energy of a solid with molecular
dynamics.

cedure requires an initial set of trial wave functions from
which the Hartree potential and the exchange-correlation
potential can be calculated. The Hamiltonian matrices
for each of the k points included in the calculation are
constructed, and from these the accelerations of the wave
functions are calculated. The equations of motion for the
electronic states are integrated, and the wave functions
are orthogonalized and normalized. The charge density
generated by the new set of wave functions is then calcu-
lated. This charge density is used to construct a new set
of Hamiltonian matrices, and a further set of wave func-
tions is obtained by integration of the equations of
motion and orthonormalization of the resultant wave
functions. These iterations are repeated until the wave
functions are stationary. The wave functions are then
linear combinations of the Kohn-Sham eigenstates. The
Kohn-Sham energy functional is minimized, and its value
gives the total energy of the system. The solution is iden-
tical to the solution that would be obtained by using ma-
trix diagonalization techniques with the same basis
states. The convergence tests described in Sec. II.F must
be performed to ensure that the calculated total energy
has converged both as a function of the number of k-
points included in the calculation and as a function of the
cutoF energy for the plane-wave basis set.

J. Instabilities and fluctuations
in the Kohn-Sham energy

In Sec. III.D.2 above a criterion was derived that pro-
vides an upper bound to the largest stable time step in the
Verlet algorithm. There are, however, additional limita-
tions to this time step that are much more subtle. These
limitations are related to instabilities in the Kohn-Sham
energy and can arise when the Hamiltonian is allowed to
evolve under the equations of motion, as required by
self-consistency. These instabilities are caused by charge
Quctuations and are commonly referred to as charge
sloshing.

As discussed in Sec. III.G above, the Hartree and
exchange-correlation potentials of the Kohn-Sham Harn-
iltonian depend on the electronic density and must
change after each time step. If these changes are too
large, the problem becomes unstable and the time step
must be reduced. This instability is indicated schemati-
cally in Fig. 12. The trajectories in this figure should be
contrasted with the trajectories shown in Fig. 10.

The major difficulty lies with the Hartree potential,
VH ( Cx ), in Eq. (2.10). VIt ( Cx ) is proportional to
n (Cx)/~Cs~, where n (Cx) is the Fourier transform of the
charge density. Therefore, at small reciprocal-lattice vec-
tors, a small change in n (Cx) will produce large changes
in the potential. Since these changes are not taken into
account during an elemental time step, they can lead to
large increases in energy if the time step is too large.
This is particularly true for systems with sufficiently
small reciprocal-lattice vectors. The smallest (nonzero)
reciprocal-lattice vector is inversely proportional to the
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FKx. 12. Illustration of instability in the molecular-dynamics
method and Kohn-Sham Hamiltonian as a consequence of a
large time step. The convention is the same as in Fig. 10. Note
that each iteration drives the coefficients further from their
equilibrium value.

longest length of the supercell. Therefore, as supercells
become physically larger, the stability of the problem
eventually becomes dominated by "charge sloshing" con-
siderations, and the time step must be reduced to keep
the fluctuations small.

A related difticulty, which leads to a similar
phenomenon, arises if Inany states with nearly the same
eigenvalue exist in the neighborhood of the Fermi energy.
Under these circumstances, macroscopic oscillations in
electron density can occur with very little change in total
energy. The problem is particularly serious for metals.
Since small energy changes may yield large difFerences in
electron density, and hence in forces, close convergence
of the electrons to their ground state is necessary in me-
tallic systems.

Thus the largest stable time step in the Car-Parrinello
algorithm is dominated by either the maximum kinetic
energy in the problem (as discussed in Sec. III.D.2) or the
need to limit charge sloshing. One of these two con-
siderations will place a practical limit on the size and
type of problem that can be attacked with the Car-
Parrinello algorithm. Despite these limitations, however,
there are many problems for which the method has out-
standing utility.

Finally, it should be noted that, even for an
infinitesimal time step, the Kohn-Sham energy will not
always decrease monotonica11y during the evolution of
the electronic system to its ground state. InsufFicient
damping of the wave-function coefFicients in the equa-
tions of motion, for example, will result in fIuctuations of
the Kohn-Sham energy during this evolution. This is
simply the expected dynamical behavior of an under-
damped system and will not prevent the electrons from
euentually reaching their ground state.

K. Computational cost of molecular dynamics

The molecular-dynamics method provides a general
technique for solving eigenvalue problems. However,

this method was developed specifically in the context of
total-energy pseudopotential calculations, and in this sec-
tion the computational cost of using the molecular-
dynamics method to perform total-energy pseudopoten-
tial calculations will be calculated. An important feature
of any computational method is the rate at which the
computational time increases with the size of the system,
and so particular attention will be paid to the operations
that increase fastest as the size of the system increases.

In a total-energy pseudopotential calculation the wave
functions f; are expanded in a plane-wave basis set so
that

g, (r)=pc, „+Gexp[i(k+Cx) rj . (3.25)

1. Calculation of charge density

The charge density is most cheaply computed in real
space because it is simply the square of the magnitude of
the wave function. This requires that the wave functions
be Fourier transformed from reciprocal space to real
space. However, the charge density has components
with wave vectors up to twice the cuto8' wave vector for
the electronic wave functions. Hence, to maintain a
faithful representation of the charge density, one must
compute it on a Fourier grid twice as dense in each spa-
tial direction as the grid required to provide a faithful
representation of the wave function. Furthermore, the
plane-wave components of the wave function, which lie
within a sphere in reciprocal space, must be placed in an

A feature of total-energy pseudopotential calculations
is that the number of plane-wave basis states used in the
calculations is always much larger than the number of
occupied bands. The ratio is typically 100:1. This ratio
is independent of the size of the system: increasing the
size of the unit cell will increase the number of atoms in
the unit cell. However, the lengths of the reciprocal-
lattice vectors will be reduced, so that there will be more
plane waves with energies below the cutoff energy for the
plane-wave basis set. The ratio of the number of plane
waves to the number of occupied bands is considerably
larger when the system contains any transition-metal
atoms or first-row atoms. These atoms have strong pseu-
dopotentials, and Inuch larger basis sets are needed to ex-
pand the electronic wave functions. Only the parts of the
total-energy calculation that scale faster than linearly
with the size of the system will be considered in the fol-
lowing discussion. The parts of the calculation that scale
linearly with the size of the system do not have large
"prefactors" associated with their computational cost, so
the computational time required for these parts of the
calculation is negligible. A calculation for a system that
has Xz occupied bands in which the electronic wave
functions are expanded in a basis set containing 1V~+
plane waves will be considered. The operations described
below scale linearly with the number of k points so that a
calculation for a single k point will be considered.
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orthorhombic grid of plane waves to perform the fast
Fourier transformation (FFT). Fourier transformation of
a single wave function from reciprocal space to real space
can be performed in NFFT =N~sln(N~s ) operations using
a fast Fourier transform algorithm, where NRs is the
number of points in the real-space grid. For the reasons
given above, Nzz is of the order of 16 times the number
of plane waves in the wave function. Therefore the cost
of performing the fast Fourier transform for a single
band requires N„FT = 16N~~ln(N~~) operations; the fac-
tor 16 is irrelevant in the logarithm. The total charge
density can then be calculated in N~N„„T operations.

2. Construction of Hamiltonian matrix

The Kohn-Sham Hamiltonian is a matrix of dimension
Nppr. The total number of elements in the matrix is N~~.
The number of operations to construct the matrix and
the storage required by the matrix both increase as Nz~.

3. Accelerations of the coefficients

The molecular-dynamics equation of motion for the
coefficient of the plane-wave basis state with wave vector
k+G is obtained by substitution of Eq. (3.25) into (3.16)
and use of (2.3) for H. Integration over r then gives

PCi k+Q ~k+G~' —A, ; c; „+G—g VH(G —G')c; g+G2m Ql

—g Vzc(G —G')c; z+o. g V;,„(k+G,k+G')c; k
QI Ql

(3.26)

with A, , defined as in Eq. (3.15).
If Eq. (3.26) is used to calculate the accelerations of the

coefficients of the plane-wave basis states, Nz~ opera-
tions are required to calculate the accelerations for a sin-
gle wave function. This is the number of operations re-
quired to multiply the wave function f, by the Kohn-
Sham Harniltonian H. The accelerations of each of the
Nz occupied bands must be calculated, so that a total of
NzNz~ operations are required to compute the accelera-
tions of the wave functions.

4. Integration of equations of motion

Integration of the equations of motion for the electron-
ic states requires NzN&~ operations.

I

putational speed over matrix diagonalization techniques.
However, the number of time steps required to integrate
the equations of motion and converge the electron states
in the molecular-dynamics method is usually /arger than
the number of iterations required to achieve self-
consistency in matrix diag onalization calculations.
Hence the equation of motion given in (3.26) does not
provide a significantly faster method for obtaining the
self-consistent eigenstates than conventional matrix diag-
onalization techniques. It should also be noted that the
full Kohn-Sham Hamiltonian has to be stored, which re-
quires N~~ words of memory. Therefore, even if the
molecular-dynamics method were faster than convention-
al matrix diagonalization methods, the memory require-
ment would make it difficult to perform calculations that
required extremely large plane-wave basis sets.

5. Orthogonalization

The number of operations required to orthogonalize
the wave functions using Car and Parrinello's algorithm
is proportional to NzNz~.

6. Comparison to conventional matrix
diag onalizations

The total computational time for the processes de-
scribed above is dominated by the N~Nz~ operations re-
quired to calculate the accelerations of the wave func-
tions. This should be compared to the computational
cost of conventional matrix diagonalization techniques
for total-energy pseudopotential calculations, which is
dominated by the Nz~ operations required to diagonalize
the Kohn-Sham Hamiltonian. As the number of occu-
pied bands in a total-energy pseudopotential calculati:on
is so much smaller than the number of plane waves in-
cluded in the basis set, it appears that the molecular-
dynamics method offers a considerable increase in corn-

7. Local pseudopotentials

PCi, k+ Q
f2

)k+G/' —X, c, „
—g VT(G —G')c, „+o

Qt

where VT(G) is the total potential given by

VT(G) = V„„(G)+VH(G)+ V~c(G) .

(3.27)

(3.28)

The problems described above can be overcome by re-
placing the nonlocal ionic pseudopotential by a local
pseudopotential. A local pseudopotential is a function
only of the distance from the nucleus or, equivalently, is
a function only of the difference between the wave vec-
tors of the plane-wave basis states. Therefore use of the
same procedure as before to derive Eq. (3.26) results in
the equation of motion for the coefficient of the plane-
wave basis state at wave vector k+6 with a local pseu-
dopotential
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The equation of motion can more usefully be written as

I c;k+G II+Gl —X, c, „+o2

2m

—I [ VT(r)g;(r)]exp(i [k+Cx] r)d r . (3.29)

This form of the equation of motion shows that the mul-
tiplication of the wave function by the Kohn-Sham Ham-
iltonian can be divided into a part that is diagonal in re-
ciprocal space and a part that is diagonal in real space.
However in order to maintain a faithful representation of
the potentials and the product VT(r)g;(r), one must per-
form the real-space multiplication on a double-density
Fourier transform grid (see Sec. III.K.1). This separation
procedure leads to a multiplication that can be per-
formed in just 17Nppr operations: 16N~~ for the multi-
plication of the wave function by the potential in real
space and Nz~ for the multiplication of the wave func-
tion by the kinetic-energy operator in reciprocal space.
The computational cost of calculating the accelerations
of the wave functions is dominated by the NFFT opera-
tions required to Fourier-transform the wave function
from reciprocal space to real space and the N„FT opera-
tions required to transform the contribution to the ac-
celeration that is calculated in real space back to recipro-
cal space. The accelerations of all the plane-wave
coefficients for the Nz occupied electron states can be
calculated in 2N~N»T ope~at~o~s. Reductio~ of the
number of operations required to evaluate the accelera-
tions of the coefFicients from N~Npgr to 2NgNFFT makes
the molecular-dynamics method very much faster than
conventional matrix diagonalization techniques for any
system, although the saving in time is obviously much
greater for large systems. The same technique can be
used with any iterative matrix diagonalization technique,
since all iterative matrix diagonalization techniques in-
volve the multiplication of trial wave functions by the
Hamiltonian matrix.

Another advantage of using local pseudopotentials in
total-energy pseudopotential calculations is that the
Hamiltonian "matrix" can be stored in 17N~~ words of
memory by storing the potential-energy operator in real
space in 16N&~ words and the kinetic-energy operator in
reciprocal space in Nz~ words. This allows extremely
large "matrices" to be stored with ease.

Unfortunately, it is not possible to describe all atoms
with local pseudopotentials. It is important to use an
efIicient scheme for applying nonlocal pseudopotentials if
the computational speed of the molecular-dynamics
method is to be retained. EfFicient schemes have been
developed for applying nonlocal pseudopotentials in the
molecular-dynamics method and other iterative methods.
These schemes will be described in Sec. IX, but it should
be noted that the most efficient of these schemes requires
16N&~N& operations to apply the operators for each
component of the nonlocal pseudopotential. This is less
than the cost of Fourier-transforming the wave functions
and is less than the cost of orthogonalizing the wave

functions in any but the smallest of systems, and so these
operations dominate the computational cost irrespective
of whether local or nonlocal pseudopotentials are used.

IY. IMPROVEMENTS IN ALGORITHMS

In this section a number of relatively simple
modifications to the molecular-dynamics-based method
are introduced which offer significant improvements over
the original approach when calculating the electronic
ground state for a fixed ionic configuration. These im-

provements include methods that increase the computa-
tional speed of the calculations and methods that permit
the electrons to converge to the exact Kohn-Sham eigen-
states. As discussed in Sec. III, the possibility of obtain-
ing the latter is important, for it paves the way for stud-
ies of metallic systems. However, it should be noted that
these modifications are not generally useful when per-
forming dynamical simulations of the ionic system, for
reasons that will be discussed in Sec. VII. The remaining
problems in the calculation of the electronic ground state
for a static ionic configuration, problems that cannot be
overcome with the improvements described below, are
addressed in Sec. IV.D.

A. Improved integration

It has already been pointed out in Sec. III.D that an at-
tempt to improve on the Verlet algorithm by using a
more sophisticated finite-difference technique for in-

tegrating the equations of motion may not produce any
increase in computational speed. This is because a more
sophisticated finite-difference equation typically requires
information from a large number of time steps in order to
integrate the equations of motion. A large amount of
memory is generally needed to store this information.
Therefore, if sufficient core memory is not available, the
computation can involve an excessive number of input
and output operations.

An alternative technique for improving the integration
of the equations of motion, which does not require any
additional storage, is to calculate the change in the mag-
nitude of the acceleration of the coefficient during the
time step, as the values of the coe+cients change. [Recall
that simple use of the Verlet algorithm (3.17) requires the
coefficients to remain fixed during a time step. ] At first

thought, it might appear that the determination of the
time dependence of the coefBcients during a time step ac-
tually necessitates a solution of the equations of motion
in the first place! This, however, turns out not to be the
case. An examination and manipulation of the form of
the equations of motion (3.26) and (3.27) reveals that it is

indeed possible to obtain a good approximation to the
time dependence of the coefficients during a time step.
The argument is as follows (Payne et al. , 1986).

With the assumption of a local pseudopotential for
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PCi k+G
f2

ik+Gi'+ V,(a=a) —X, c,

Vr(G G—')c, „+G. .
G'4G

If one now introduces the definitions

(4.1)

~k+a~2+ VT(a=a) —
A, , /iM (4.2a)

simplicity, the equation of motion (3.27) can be rewritten
as

highest kinetic-energy basis states, however, provide the
least important contributions to the wave functions, since
the coefficients of these basis states are small if the cuto6'
energy for the basis set is large enough to converge the
total energy. It is unsatisfactory that the least physically
significant basis states restrict the length of the time step
used to integrate the equations of motion. One method
of overcoming this restriction is to perform an analytic
integration of the equation of motion. A direct compar-
ison between the Verlet algorithm and the analytic in-
tegration scheme is presented in Sec. IV.C below.

and

Bi i+G= $ VT(G —G')c(k+G' /p ~

G'WG
(4.2b)

1. Analytic integration of second-order equations
of motion

equation (4.1) becomes

2
i, k+G ~i,k+Gci, k+G +i,k+G ' (4.3)

This shows that the equation of motion for the
coefficient of each plane-wave basis state is essentially an
oscillator equation. This permits an immediate deter-
mination of the largest acceptable time step for use with
the Verlet algorithm. For plane-wave basis states at large
reciprocal-lattice vectors, the oscillation frequency of the
coefficient increases roughly linearly with the magnitude
of the wave vector of the plane-wave basis state or as the
square root of its kinetic energy. To integrate the oscilla-
tor equations stably, using the Verlet algorithm, one must
restrict the length of the time step so that (co; i,+Gb, t) (1
for all of the plane-wave basis states. This means that the
length of the time step is restricted by the plane-wave
basis states that have the highest kinetic energies, which
is consistent with the discussion in Sec. III.D. The

/ 2
Ci, k+G ~i,k+G~ ~i,k+G

and the complementary function is

(4.4)

c; i,+G(t) = A, exp(ice; k+Gt)+ A2exp( ice; „+G—t) .

(4.5)

The coefficients 3, and A2 are determined by the values
of the coefficient at the present and previous time steps to
give

It is extremely difficult to integrate the equation of
motion for the coefficient c;i,+G [Eq. (4.3)] because the
term B; k+G depends on the values of all the other
coefficients c; k+G. However, if the variation of B,. k+G is
ignored, then the equation of motion (4.3) can be easily
integrated analytically over a time step. The particular
integral is

c; „+G(ht) = 2cos(co; k+ab t)c( z+G(0) c; k+G( —A—t) —2[1 cos(co; i,+G—ht)]B; k+o/co; i+G, (4.6)

where c; k+G(0) is the value of the coefficient at the present time step and c; k+G( ht) is the value of—the coefficient at
the previous time step.

In Sec. III.F, the importance of damping the electronic equations of motion was discussed. One of various possible
choices is to apply the damping directly to the equation of motion. If a term of the form yc; k+o is added to Eq. (4.3),
the coefficient at the next time step is now given by

c; i,+G(b t) = 2 exp( y, k+ob t)cos(n; k+—Gb t)c; k+o(0) exp( 2y, i,+Gb, t)c—; i,+G—( b. ,t)—
—[1+exp( —2y, „+Ger)—2 exp( y, „+Gb,t)cos(~, „+Gh—t))B, „+G/~', „+G (4.7)

where

y i, v+ 6=D
I ~;,k~o I

(4.8)

and D is the damping factor applied to the motion of the
coefficients.

If the expectation value of the energy of the state
A,;k+o is larger than ~A' ~k+G~ /2m+ V(G=Q)], the
value of ~; k+o in Eq. (4.6) becomes imaginary. This can
occur for the basis states at small reciprocal-lattice vec-
tors in the higher-energy electronic states. Nevertheless,

I

the analytic expression for the value of the coefficient of
the plane-wave basis state at time At is still valid, provid-
ed the argument of the cosine function is taken as imagi-
nary.

It might appear to be unduly expensive to use Eq. (4.6)
to compute the value of the coefficient of the plane-wave
basis state because several function calls are required to
evaluate the expression. A square root is needed to ob-
tain m; k+G, and then a cosine or hyperbolic cosine must
be evaluated to obtain cos(co; i,+oh, t). These function
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calls are required for every coe%cient of the basis states
for each electronic state. However, the heavy computa-
tional cost of the function calls can be avoided by an in-
terpolation of the value of cos(co; „+Ght) from a data ar-
ray that contains cos(ro; „+oh,t) as a function of co; z+o.
If the damping is applied directly in the equation of
motion, the function exp( —A, z+&b, t) can be interpolated
in a similar manner.

2. Analytic integration of first-order equations
of motion

Some authors (Williams and Soler, 1987) have suggest-
ed a change to a first-order equation of motion for the

electronic degrees of freedom. Thus Eq. (4.3) becomes

2
Ci k+G mi, k+GCi, k+G Bi,k+G &

(4.9)

with ro;k+o and B;k+o defined as in Eq. (4.2). This
would have adverse consequences for following ion
motion, as described later in Sec. VIII.C, but is complete-

ly appropriate for fixed-ion positions. Again assuming
that B; z+& does not vary during the time step, Eq. (4.9)
can be analytically integrated to give

Bi,k+ G Bi,k+ G
c;z+&(br)= — ' + c;k+o(0)+ ' exp( co; k+ob—t) .

~i,k+G ~i,k+G
(4.10)

This first-order equation gives roughly the same
asymptotic convergence rate as the corresponding
second-order equation of (4.6). But even given the same
convergence rate, the first-order method is more efticient,
since it requires only half the storage or half the
input/output operations for the large number of wave-
function degrees of freedom.

B. Orthogonalization of ~ave functions

When analytic expressions for the integration of the
equations of motion (4.6) and (4.10) are used to calculate
the coefficients, the length of the time step ht is no longer
restricted by the requirement ~,. k+Ght &(1 for all of the
plane-wave basis states, and a longer time step can be
used. Car and Parrinello's iterative scheme for orthogo-
nalization of the wave functions, described in Sec. III.E,
becomes increasingly expensive to apply as the time steps
increase in length. This is because the wave functions be-
come more nonorthogonal during the time step, and
more iterations of the algorithm are required to orthogo-
nalize the wave functions. Since each iteration of the or-
thogonalization scheme requires NzXz~ operations, it is
sensible to adopt an alternative orthogonalization scheme
that makes full use of the increase in computational
speed obtained by integrating the equations of motion us-

ing a longer time step.

1. The Gram-Schmidt scheme

The simplest and most computationally efticient or-
thogonalization technique for long time steps is the
Gram-Schniidt scheme (see Lin and Segel, 1974). In this
approach, a set of orthonormal wave functions Ig,'I is
easily obtained from a set of linearly independent wave
functions I Q,. I by use of the following algorithm:

(4.11a)

with

(4.11b)

The Gram-Schmidt scheme also has the advantage of
breaking spurious symmetries that may occur in the
choice of initial conditions for the electrons. These sym-

metries can propagate through the equations of motion
and keep the electrons from reaching their true ground
state. This is a rather subtle and technical point, ad-

dressed later in Sec. VI.A.
The most significant difference, however, between the

Gram-Schmidt scheme and the Car and Parrinello or-
thogonalization method (3.23) lies in the convergence of
electrons to Kohn-Sham eigenstates.

2. Convergence to Kohn-Sham eigenstates

As discussed earlier in Sec. III.H. , the Kohn-Sham en-

ergy functional is minimized by any set of wave functions
that are linear combinations of the lowest-energy Kohn-
Sham eigenstates. The orthogonalization method of Car
and Parrinello (3.23) generates orthogonal wave functions
by a procedure that tends to intermix the wave functions,
thereby preventing the Kohn-Sham eigenstates from be-

ing singled out. As a consequence, the final wave func-
tions are, in general, linear combinations of the Kohn-
Sham eigenstates.

In contrast, the Gram-Schmidt procedure orthogonal-
izes wave functions in a definite order. All of the higher-
energy wave functions are forced to be orthogonal to the
lowest-energy wave function, and so on. This in turn
forces each state to converge to its lowest possible energy
under the constraint that it be orthogonal to all states
below it. The set of lowest possible single-particle levels
under these constraints comprises the Kohn-Sham eigen-
states.

The ability to converge to Kohn-Sham eigenstates is
very important for metallic systems. After each time
step it is necessary to know the correct ordering of the
energy levels in order to fill states properly up to the Fer-
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mi level. Without Kohn-Sham eigenstates, the Fermi
level of a metallic system cannot be defined.

C. Comparison be@veen algorithms

D. Remaining difficulties

The molecular-dynamics method and the algorithm
improvements described above all become ineffective as
the size of the system increases. For example, in silicon,
only systems with supercell length scales less than about
50 A benefit from these modifications to the molecular-
dynamics method. For larger length scales the maximum
stable time step is completely dominated by the need to
suppress Auctuations in the charge density, or charge
sloshing. As discussed earlier in Sec. III.J, this is a conse-
quence of instabilities in the Kohn-Sham energy Hamil-
tonian which arise for very small reciprocal-lattice vec-
tors and which require intractably small time steps to
overcome. These instabilities present severe obstacles to
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FIG. 13. Evolution of the total energy for an eight-atom cell of
germanium. in the diamond structure. Open circles represent
the original scheme. The filled circles correspond to an analytic
integration of the equations of motion as described in the text.

The simple modifications to the molecular-dynamics-
based method described in Secs. III.A and III.B above
can produce significant increases in computational speed.
This is illustrated in Fig. 13, where the evolution of the
total energy of an 8-atom cubic supercell of germanium
in the diamond structure is shown. Here the ions are
held fixed and the electrons are being iterated to conver-
gence. A local pseudopotential of the Starkloff-
Joannopoulos type is used with a basis set of 4096 plane
waves. The open circles show the results obtained by us-
ing the Verlet algorithm to integrate the equations of
motion, while the filled circles show the results obtained
by using analytic integration of the equation of Inotion.
The use of the analytic expression to integrate the equa-
tion of motion allows the time step to be increased to six
times the value at which the Verlet algorithm becomes
unstable and gives convergence of the total energy in
one-tenth of the number of time steps.

future studies of large and more complex systems.
Clearly, some different and novel methods are required

to surmount the problems encountered in the regime of
large systems. One method that overcomes these
difficulties involves a direct minimization of the Kohn-
Sham total energy with a conjugate-gradients approach.
This is the subject of the next section.

V. DIRECT MINIMIZATION OF THE KOHN-SHAM
ENERGY FUNCTIONAL

At the end of Sec. IV, it was stated that all the algo-
rithms described so far in this article encounter
difficulties when performing calculations on large sys-
tems. The difficulties encountered can be attributed to
the discontinuous changes in the Kohn-Sham Hamiltoni-
an from iteration to iteration. There are an infinite num-
ber of Kohn-Sham Hamiltonians, each of which has a
different set of eigenstates. One of these sets of eigen-
states, the set generated by the self-consistent Kohn-
Sham Hamiltonian, minimizes the Kohn-Sham energy
functional. All the methods for performing total-energy
pseudopotential calculations described so far involve an
indirect search for the self-consistent Kohn-Sham Hamil-
tonian. The search procedure used in the molecular-
dynamics method was illustrated in Fig. 10. The discon-
tinuous evolution of the Hamiltonian can be clearly seen
in this figure. In Sec. III.J it was shown that use of too
long a time step in the molecular-dynamics method can
lead to an unstable evolution of the Kohn-Sham Hamil-
tonian. This results in wave functions that move further
from the self-consistent Kohn-Sham eigenstates at each
tim. e step, as illustrated in Fig. 12. Unfortunately, the
value of the critical time step at which the instability
occurs decreases as the size of the system increases. It is
always possible to ensure stable evolution of the electron-
ic configuration using the molecular-dynamics method,
but this is at the cost of using smaller time steps and
hence more computational time as the size of the system
increases. This problem is also present in all of the algo-
rithms described in Sec. III, since all of these employ an
indirect search for the self-consistent Kohn-Sham Hamil-
tonian.

To perform a total-energy pseudopotential calculation
it is necessary to find the electronic states that minimize
the Kohn-Sham energy functional. As discussed above,
to perform this process inChrectly, by searching for the
self-consistent Kohn-Sham Hamiltonian, can lead to in-
stabilities. These instabilities would not be encountered
if the Kohn-Sham energy functional were minimized
dhrectly because the Kohn-Sham energy functional nor-
mally has a single well-defined energy minimum. A
search for this energy minimum cannot lead to instabili-
ties in the evolution of the electronic configuration. In
this section, a computational method is introduced that
allows direct minimization of the Kohn-Sham energy
functional in a tractable and efficient manner. In Sec.
V.A, an introductory discussion is provided of two gen-
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eral methods that can be used for the minimization of
any function. Of these general methods, the conjugate-
gradients method is shown to be particularly promising.
The modifications and extensions to the conjugate-
gradients method that are needed in order to perform
total-energy pseudopotential calculations tractably and
stably for large supercells and large plane-wave kinetic-
energy cuto6's are described in Sec. V.B.

STEEPEST DESCENTS

A. Minimization of a function CONJUGATE GRADIENT

In this section two general methods are described that
can be used to locate the minimum of function F(x),
where x is a vector in the multidimensional space [a de-
tailed description of the techniques outlined in this sec-
tion can be found in the book by Gill, Murray, and
Wright (1981, p. 144)]. It will be assumed that the func-
tion F(x) has a single minimum. If the function had
several minima the methods described here would locate
the position of the minimum "closest" to the initial sam-
pling point (strictly speaking, it would locate the
minimum in whose basin of attraction the initial sam-
pling point lies).

FIT+. 14. Schematic illustration of two methods of convergence
to the center of an anisotropic harmonic potential. Top:
steepest-descents method requires many steps to converge. Bot-
tom: Conjugate-gradients method allows convergence in two
steps.

1. The method of steepest descents

In the absence of any information about the function
F(x), the optimum direction to move from the point x'
to minimize the function is just the steepest-descent
direction I' given by

It will be assumed that the direction of steepest descent
at the point x' can be obtained from the negative of a
gradient operator G acting on the vector x' so that

g'= —Gx' .

To reduce the value of the function F (x) one should
move from the point x' in the steepest-descent direction
g' to the point x'+ b 'g', where the function is a
minimum. This can be done by sampling the function
F(x) at a number of points along the line x'+bg' in or-
der to determine the value of b at which F(x'+bg') is a
minimum. Alternatively, if the gradient operator G is ac-
cessible, the minimum value of the function along the
line x'+bg' can be found by locating the point where the
gradient of the function is orthogonal to the search direc-
tion, so that g G (x +b g ) =0. It should be noted that
this process minimizes only the value of the function
along a particular line in the multidimensional space. To
find the absolute minimum of the function F(x), one
must perform a series of such line minimizations. Thus
the vector x'+b 'g' is used as the starting vector for the
next iteration of the process. This next point is conven-
tionally labeled x . (The superscripts label the iterations
of the minimization process. ) The steps described above

can be repeated to generate a series of vectors x such
that the value of the function F(x) decreases at each
iteration. Hence F(x') &F(x") for I )k. Each iteration
reduces the value of the function F(x) and moves the tri-
al vector x towards the vector that minimizes the func-
tion. This process is illustrated schematically in the top
panel of Fig. 14.

Although each iteration of the steepest-descents algo-
rithm moves the trial vector towards the minimum of the
function, there is no guarantee that the minimum will be
reached in a finite number of iterations. In many cases a
very large number of steepest-descents iterations is need-
ed to get close to the minimum of the function. The
method of steepest descents performs particularly poorly
when the minimum of the function F(x) lies in a long
narrow valley such as the one illustrated in Fig. 14. The
reason for the poor performance in this case is that each
steepest-descent vector is orthogonal to the steepest-
descent vector of the previous iteration. If the initial
steepest-descent vector does not lie at right angles to the
axis of the valley, successive vectors will point across
rather than along the valley, so that a large number of
iterations will be needed to move along the valley to the
minimum of the function. This problem is overcome by
using the conjugate-gradients technique.

2. The conjugate-gradients technique

It might seem surprising that there can be a better
method of minimizing a function than to move in the
direction in which the function decreases most rapidly.
The rate of convergence of the steepest-descents method
is limited by the fact that, after a minimization is per-
formed along a given gradient direction, a subsequent
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minimization along the new gradient reintroduces errors
proportional to the previous gradient. If the only infor-
mation one has about the function F(x) is its value and
gradient at a set of points, the optimal method would al-
low one to combine this information, so that each minim-
ization step is independent of the previous ones. To ac-
complish this, one must first derive the condition that
makes one minimization step independent of another.

For simplicity, consider a symmetric and positive-
definite function of the form

d~ =gm+ y~d~

where

(5.8)

elude minimization over all previous directions in a mul-
tidimensional space. The proof that directions generated
in this manner are indeed conjugate is the important re-
sult of the conjugate-gradients derivation. The precise
search directions d' generated by the conjugate-gradients
method are obtained from the following algorithm:

F(x)=—,'x G x, (5.3)
m g g

m —i. m —i
g 'g

(5.9)

where G is the gradient operator defined in Eq. (5.2).
Consider now the minimization of F(x) along some
direction d' from some point x'. The minimum will
occur at x =x'+ b 'd' where b ' satisfies

(x'+b'd'). G.d'=0 . (5.4a)

This is obtained by difFerentiation of Eq. (5.3) with
respect to b' at x . A subsequent minimization along
some direction d will then yield x =x +b d, where b
satisfies

(x +b d +b d ).G.d =0 (5.4b)

However, the best choice of b' and b, for the rninimiza-
tion of F(x) along d' and d, is obtained from the
differentiation of Eq. (5.3) with respect to both b ' and b
at x . This gives

(x'+b'd'+b d ).G d'=0 (5.5a)

and

(x'+b'd'+b d ) G.d =0 .. (5.5b)

It is clear that in order for Eqs. (5.4) and (5.5) to be con-
sistent, and consequently for the minimization along d
and d to be independent, one must require that

d'. G-d2=d2 6 d'=0 . (5.6)

d".G.d =0 for num . (5.7)

The conjugate-gradients technique provides a simple
and effective procedure for implementation of such a
minimization approach. The initial direction is taken to
be the negative of the gradient at the starting point. A
subsequent conjugate direction is then constructed from
a linear combination of the new gradient and the previ-
ous direction that minimized F(x). In a two-dimensional
problem, it is clear that one would need only two conju-
gate directions, and this would be sufFicient to span the
space and arrive at the minimum in just two steps, as
shown at the bottom of Fig. 14. It is less clear, however,
that the current gradient and the previous direction vec-
tor would maintain all of the information necessary to in-

This is the condition that the directions d' and d be con-
jugate to each other (see Gill et al. , 1981) and can be im-
mediately generalized to

and y'=0.
Since minimizations along the conjugate directions are

independent, the dimensionality of the vector space ex-
plored in the conjugate-gradients technique is reduced by
1 at each iteration. When the dimensionality of the func-
tion space has been reduced to zero, there are no direc-
tions left in which to minimize the function, so the trial
vector must be at the position of the minimum. There-
fore the exact location of the minimum of a quadratic
function will be found, conservatively speaking, in a
number of iterations that is equal to the dimensionality of
the vector space. In practice, however, it is usually possi-
ble to perform the calculations so that far fewer itera-
tions are required to locate the minimum.

Another way of thinking about the difference between
the conjugate-gradients technique and the method of
steepest descents is that, in the method of steepest de-
scents, each direction is chosen only from information
about the function at the present sampling point. In con-
trast, in the conjugate-gradients technique the search
direction is generated using information about the func-
tion obtained from all the sampling points along the
conjugate-gradients path.

The conjugate-gradients technique provides an efFicient
method for locating the minimum of a general function.
This suggests that it should be a good technique for lo-
cating the minirnurn of the Kohn-Sham energy function-
al. It is important, however, to implement the
conjugate-gradients technique in such a way as to max-
imize computational speed, so that each iteration of the
method is not signifieantly more expensive than alterna-
tive techniques, and to minimize the memory require-
ment so that calculations are not limited by the available
memory. A conjugate-gradients method that fulfills
these criteria has been developed by Teter et al. (1989).
This method is described in See. V.B below. Stieh et aI.
(1989) have used a conjugate-gradients method with the
indirect approach in order to search for the eigenstates of
the Kohn-Sham FSamiltonian. While this is an efFicient
method for obtaining the eigenstates of the Hamiltonian,
it is expected, for reasons discussed earlier, that this
method will encounter difBculties when calculations are
performed on very large systems. The authors point out
that in these cases it will be necessary to use a direct
minimization method. Gillan (1989) has developed a
conjugate-gradients technique for directly minimizing the
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Kohn-Sham energy functional. His method has many
similarities to that described in the following section, but
it does have a signi6cantly larger memory requirement.

B. Application of the conjugate-gradients method

In this section, a computational technique is intro-
duced that overcomes the instabilities described earlier,
which are associated with large supercell sizes and large
plane-wave kinetic-energy cutoffs. This technique uses
the conjugate-gradients approach, with the proper
preconditioning, to minimize directly the Kohn-Sham en-
ergy functional.

The abstract description of the conjugate-gradients
technique presented above considered a function I" of the
vector x where the gradient of the function could be cal-
culated using a gradient operator G. In the case of total-
energy calculations, the Kohn-Sham energy functional E
takes the place of the function F, the wave functions I g; I

take the place of the vector x, and the Kohn-Sham Ham-
iltonian H is the relevant gradient operator G.

1. The update of a single band

2. Constraints

A tota1-energy calculation differs from the conjugate-
gradients minimization described previously in that the
electronic wave functions are constrained to be orthogo-
nal. The orthogonality constraints can be maintained by
ensuring that the steepest-descent vector is orthogonal to
all the other bands. The steepest-descent direction calcu-
lated as

(5.12)

is the direction of steepest descent allowed by the ortho-
gonality constraints. There is no iteration index on the
wave functions P~ in Eq. (5.12) because these wave func-
tions do not vary during iterations for band i.

If the search direction for band i were not orthogonal
to the wave functions of all the other bands, all of the
wave functions would have to change during each itera-
tion in order to maintain the constraints of orthogonali-
ty. Since all the wave functions would change, the
charge density from all of the bands would have to be
computed at each iteration. By ensuring that the search
direction is orthogonal to all the other bands, this tech-
nique requires computation only of the change in the
charge density from the single band at each iteration.

A conjugate-gradients iteration can be used to update
all of the electronic wave functions simultaneously. The
only drawback to this approach is that a large amount of
data has to be stored between iterations to ensure the
conjugacy of the search directions. To determine the
conjugate direction requires, among other things, the
previous conjugate direction and the present steepest-
descent vector. If all of the wave functions are updated
simultaneously, both of these constitute an array of the
same size as the wave-function array, so that, in total,
three arrays of the size of the wave-function array are
needed to perform the conjugate-gradients calculation.
The memory requirement in molecular-dynamics calcula-
tions is dominated by the storage of the wave-function ar-
rays. Increasing the number of arrays that must be
stored could limit the size of system for which calcula-
tions can be performed. Ideally all of the advantages of
the conjugate-gradients technique should be retained
without increasing the memory requirement. This can be
achieved by updating a single band at a time.

The steepest-descent direction for a single band is
given by

3. Preconditioning

Successive steps along the conjugate-gradient direc-
tions will reduce the magnitude of the error in the wave
function. From Eq. (5.10) it is clear that a measure of the
error in the wave function f, is contained in the
steepest-descent vector g;. Ideally, if the steepest-descent
vector were a simple multiple of the error in the wave
function, then moving the correct distance along the
steepest-descent direction would entirely eliminate the er-
ror in the wave function. The actual relation between the
error in the wave function, 5g;, and the steepest-descent
direction g; is most easily demonstrated by expansion of
5$, in terms of the eigenstates of the Kohn-Sham Hamil-
tonian,

(5.13)

The steepest-descent vector is obtained by substitution of
Eq. (5.13) into (5.10), which gives

(5.10) g;= —[H —
A, , ]pc; (5.14)

where = —g (e —A,;)c; (5.15)

(5.1 1)
where c is the eigenvalue associated with the eigenstate

It should be noted that the superscript m labels the itera-
tion number and the subscript i labels the band.

It can be seen that the steepest-descent vector g, is

only a multiple of the error vector 5$, if all the unoccu-
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pied eigenstates of the Kohn-Sham Hamiltonian are de-
generate; however, the Kohn-Sham Hamiltonian has a
broad spectrum of eigenvalues, which extends up to the
cutoff energy for the plane-wave basis set and leads to
poor convergence in a conjugate-gradient calculation.
Each step tends to remove components of the error vec-
tor that correspond to eigenstates in a particular energy
range. The rate of convergence will be improved if some
method is used to conjugate for the weighting factors
c. —A, ; that distinguish the error vector and the steepest-
descent vector. The technique of preconditioning can be
used to achieve this approximately (see Chill et al. , 1981).

The technique of preconditioning involves multiplying
the steepest-descent vector by a preconditioning matrix
K to produce a preconditioned steepest-descent vector g
that more accurately represents the error vector, as illus-
trated in Fig. 15. In principle, a preconditioning matrix
exists that perfectly preconditions the steepest-descent
vector so that the preconditioned vector is parallel to the
error vector. However, this preconditioning matrix will
be a full Xz~xXz~ matrix, which would then require

N&~ operations to precondition the steepest-d. escent vec-
tor for each band, thus making the computational
scheme prohibitively expensive. In practice, it is ex-
tremely expensive to construct an exact preconditioning
matrix, and the cost of this operation would make the
cost of the calculation even more unfavorable. It is al-
ways more efBcient to use an approximation precondi-
tioning matrix and a succession of conjugate-gradient
minimizations rather than to attempt to compute and ap-
ply exact preconditioning.

The broad eigenvalue spectrum of the Kohn-Sham
Hamiltonian in pseudopotential calculations that use
plane-wave basis sets is associated with the wide range of
energies of the basis states. The higher-energy eigen-
states of the Hamiltonian are dominated by plane-wave
basis states whose high kinetic energies lie close to the ei-
genvalue of the state. To make those states whose eigen-
values are dominated by their kinetic energy nearly de-
generate, one must remove the effect of the kinetic-
energy operator in the Hamiltonian. This is easily

I
U

C
C
U)

achieved by multiplication of a diagonal preconditioning
matrix, which is essentially the inverse of the kinetic-
energy operator. This argument breaks down for the
lower-energy eigenstates because the potential and kinet-
ic energies are similar, and so the potential is strong
enough to mix a range of different energy plane-wave
basis states into the eigenstates. Therefore the elements
of the preconditioning matrix should become a constant
for the plane-wave basis states of low energy rather than
varying as the inverse of the kinetic energy.

It has been found that preconditioned steepest-descent
vectors that accurately represent the errors in the wave
functions can be obtained by multiplication of the
steepest-descent vectors by a preconditioning matrix EC

whose matrix elements are given by the following expres-
sion:

27+ 18x + 12x ~+ Sx 3

27+18x+12x +8x +16x

where

(X'~k+a[')/2m
Tm

E

and T; =(P; ~(
—fi /2m)V ~P, ) is the kinetic energy of

the state g; . The matrix elements KG & have the follow-
ing attractive properties. As x approaches zero, the
EG G. approach unity, with zero first, second, and third
derivatives. This guarantees that the smaH wave-vector
components of the steepest-descent vector remain un-
changed. Above x =1, the EC«asymptotically ap-
proach 1/[2(x —1)] with an asymptotic expansion
correct to fourth order in 1/x.

This factor thus causes all of the large wave-vector
components to converge at nearly the same rate. This
preconditioning procedure should be compared to the an-
alytic integration technique outlined in Sec. IV.A. 1. In
the molecular-dynamics method the diagonal dominance
of the Hamiltonian due to the kinetic energy causes a
rapid oscillation of the wave-function coe%cients, and
the analytic integration technique provides a method for
allowing a time step that is not restricted by these oscilla-
tions. In the conjugate-gradients method, the same diag-
onal dominance of the Hamiltonian produces a steepest-
descent vector that is biased towards plane-wave com-
ponents with large wave vectors, and the preconditioning
directly reduces these components. Although both prob-
lems have the same basic cause, their solutions are rather
different in the two methods.

The preconditioned steepest-descent vector g; is

(5.17)

FIG. 15. Spectral representation of error in wave function 5g,
the gradient of the wave function g, and the preconditioned gra-
dient g. Note that the error in the wave function can be elim-
inated completely, in a single step, only if the preconditioned
gradient is added to the wave function g.

The preconditioned steepest-descent vector is not or-
thogonal to all the bands. For the computational reasons
given above, any change to a band vector must leave all
the other bands unaffected. The preconditioned
steepest-allowed-descent vector that is orthogonal to all
the bands is calculated as
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(5.18)

4. Conjugate directions

The conjugate-gradient direction is constructed out of
steepest-descent vectors as indicated in Eq. (5.8). With
the inclusion of preconditioning as described above, the
preconditioned conjugate directions cp; are given by

(5.19)

where

One piece of information, such as a total energy or a
gradient of the total energy, is required to evaluate each
term in this expression. As the summation in Eq. (5.24)
is infinite, any attempt to locate the minimum of the
Kohn-Sham energy functional using this expression
would be even more costly than searching for the
minimum by calculation of the Kohn-Sham energy for
various values of 0. However, it is found that the varia-
tion of the Kohn-Sham energy with 0 is very accurately
reproduced by just the n = 1 term in the summation in
Eq. (5.24). The accuracy of the fit can be seen in Fig. 16.
Therefore the following expression for the Kohn-Sham
energy is sufficient to locate the minimum of the Kohn-
Sham energy functional:

~m —1 lg~m
—1) (5.20) E(8)=E,„+A, cos(28)+B,sin(28) . (5.25)

«m

»mt imam )1/2
(5.22)

5. Search for the energy minimum

The steps outlined above yield a preconditioned conju-
gate direction described by the normalized vector y,

'

which is orthogonal to all the bands. The following com-
bination of the present wave function g; and the precon-
ditioned conjugate vector cp;

g; cosO+y, ' sinO (8 real), (5.23)

is a normalized vector that is orthogonal to all the other
bands P~ (j Wi) Theref. ore any vector described by Eq.
(5.23) obeys the constraints of orthonormality required
for the electronic wave functions.

The conjugate-gradients technique requires that the
value of 0 that minimizes the Kohn-Sham energy func-
tional be found. The search for the position of minimum
energy could be performed by the calculation of the
Kohn-Sham energy for various values of 0 until the
minimum is located. If the approximate location of the
minimum is not known, this would be a relatively expen-
sive search technique. As an alternative method for lo-
cating the minimum, the Kohn-Sham energy could be
written as a general function of 0,

E(8)=E,„+g [A„cos(2nO)+B„sin(2nO)] .
n =1

(5.24)

and y,'=O.
The conjugate direction generated by Eq. (5.19) will be

orthogonal to all the other bands because it is construct-
ed from preconditioned steepest-descent vectors that are
orthogonal to all the other bands. However, the conju-
gate direction will not be orthogonal to the wave function
of the present band. A further orthogonalization to the
present band should be performed and a normalized con-
jugate direction y,' calculated as

Three pieces of information are required to evaluate
the three unknowns in this expression. The value of the
total energy at 8=0, E(0), is already known. The gra-
dient of the energy with respect to 0 at 0=0 is given by

(5.26)

Since H
l P, ) has been computed to determine the

steepest-descent vector g;. , the value of (BE/BO)l8=0
can be computed cheaply. Therefore just one further
piece of information is required to determine all the pa-
rameters in Eq. (5.25). This could be the second deriva-
tive of the Kohn-Sham energy functional at 0=0, or the
Kohn-Sham energy, or its derivative at any other value
of 0. Calculation of the second derivative of the Kohn-
Sham energy functional would require additional pro-
gramming effort in most pseudopotential codes, whereas
no additional programming effort is required to calculate
the Kohn-Sham energy or its derivative at a second value
of 0. Therefore we shall first describe the method that
uses the Kohn-Sham energy at a second value of 0.

The second value of 0 should be chosen so that the

-180
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a -200
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C-210—

~O

-220 '

0
8(rad)

FIG. 16. The total energy of an 8-atom silicon supercell plotted
as a function of the parameter 0, which determines the propor-
tions of wave function and its gradient as described in the text.
The dots represent the exact calculation and the line is the
lowest harmonic contribution.
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sampling point is far enough from 0=0 to avoid round-
ing errors but not so far from the origin that the estimate
of the curvature of the Kohn-Sham energy functional at
8=0 becomes inaccurate. In the later stages of the cal-
culation, shorter and shorter steps will be taken along the
conjugate directions, and so it is important that the cur-
vature of the Kohn-Sham energy functional at 8=0 be
accurately determined in order to locate the position of
the minimum to high precision. It has been found that
computing the Kohn-Sham energy at the point 0=m. /300
gives reliable results. If the value of the Kohn-Sham en-

ergy at the point 8=m /300, E (vr/300), is computed, the
three unknowns in Eq. (5.25) are calculated as

Alternatively, the Hartree term can be written" la(G)l'
20 o~p eo G

where

h(G)= —f exp(iG r)—1

0 unit cell

X2Re[qp,' (r)*g; (r)]d r .

The exchange-correlation term is

1 BVxcf (2Re[y,' (r)"g; (r)]) d r .
Q unit cell Bn(r)

(5.34)

(5.35)

(5.36)

Eavg = 300
1 BE E(0)—cos

2m

0=0

2'
1 —cos

300

(5.27)

The cost of computing the analytic second derivative is
the same as the cost of calculating the Kohn-Sham ener-

gy at a trial value of 0.
The required value of (9, 0;„,is determined using

E(0)—E +-
0=0

1-- ""'
300

(5.28)

BE
BO g=p

1 BE
2 BO g=o

(5.37)

1 BE
Bl =— (5.29)

The wave function used to start the next iteration of
the conjugate-gradients procedure, f, +', is

1 l
B

e =—tan
2

(5.30)

Once the parameters E„, A&, and B& have been
determined, the value of 0 that minimizes the Kohn-
Sham energy function can be calculated. The stationary
points of the function (5.25) occur at the points

~=/; cos(8;„)+y,'. sin(0, „) . (5.38)

The new wave function generates a diA'erent charge den-
sity from that generated by the previous wave function,
and so the electronic potentials in the Kohn-Sham Ham-
iltonian must be updated before commencing the next
iteration.

The value of 0& that lies in the range 0& 6I &m/2 is the
required value, 19;„.

The calculation of an analytic second derivative of the
Kohn-Sham energy at 0=0 provides an elegant way of
determining the optimum step length, even though it
does require some additional programming. The re-
quired expression for the second derivative is

1 f v(r).2Re[y,' (r)*g,. (r)]d r,
Q unit cell

where

(5.32)

2Re[y,' (r')'g; (r')]
v(r)= f, d r' .

4~o lr —r'l (5.33)

+f[Hartree term

+exchange-correlation term], (5.31)

where f is the product of the occupation number and the
k-point weight, the Hartree term is

6. Calculational procedure

The Aow diagram in Fig. 17 illustrates the steps in-
volved in an update of the wave function of a single band
using the conjugate-gradients method. Eventually the
wave functions of all of the bands must be updated.
There is no point in converging a single band exactly if
large errors remain in the bands that have not yet been
updated. Thus no more than three or four conjugate-
gradients iterations should be performed on one band be-
fore moving to the next band. Once all of the bands have
been updated, conjugate-gradients iterations are started
again on the lowest band. Rather than perform a fixed
number of conjugate-gradients iterations on each band,
one can perform conjugate-gradients iterations on one
band until the total energy changes by less than a partic-
ular value or by less than a given fraction of the change
of energy in the first conjugate-gradients iteration. Then
iterations are started on the next band. The convergence
criterion should be changed as the system moves towards
the minimum of the Kohn-Sham energy functional.
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FIG. 17. Flow diagram for the update of a single band in the
(direct-minimization) conjugate-gradients method.

7. Computational cost

After each sweep through the bands, the change in the
total energy at which conjugate-gradients iterations on a
band are stopped should be reduced. The reasons for ap-
plying the convergence criteria outlined in this section
and a discussion of the optimum choice of the parameters
is given by Arias et al. (1991).

of the accelerations of the wave functions in the
molecular-dynamics method. Hence the computational
cost is dominated by the cost of performing two Fourier
transformations which require 2%„„T operations. If
preconditioning is applied, one orthogonalization of the
steepest-descent vector to all the bands and one orthogo-
nalization of the preconditioned steepest-descent vector
to all the bands must be performed. These two orthogo-
nalizations require 2X&N~w operations. Only a single
orthogonalization would be needed if preconditioning
were not applied. To calculate the Kohn-Sham energy at
the trial value of 0, one must transform the trial wave
function to real space, so that the charge density can be
computed, and then transform the charge density to re-
ciprocal space so that the Hartree energy can be calculat-
ed. These two Fourier transforms require 2X„„Topera-
tions. After the wave function is updated, the new
Kohn-Sham Hamiltonian must be calculated. The new
charge density can be computed directly from the previ-
ous wave function and the trial wave function, both of
which have already been transformed to real space, so
that no extra Fourier transforms are required for this
operation. However, the new charge density must be
transformed to reciprocal space so that the new Hartree
potential can be computed, and the new Hartree poten-
tial must be transformed back to real space. These two
Fourier transforms require 2%FFT operations. Therefore
the total number of operations required to perform a
conjugate-gradients update on a single band is 6%FFT
operations for the Fourier transforms and 2X&Xzw
operations for the orthogonalizations. Hence each
conjugate-gradients iteration requires twice the number
of operations required by a molecular-dynamics time step
for a single band.

The computational cost of performing a conjugate-
gradients iteration on a single band is higher than the
cost of performing a molecular-dynamics time step on a
single band. In a molecular-dynamics calculation the
computational cost per iteration is dominated by the
three Fourier transforms for each band and the orthogo-
nalization. The number of operations required for each
band at each time step is 3XFFT for the Fourier trans-
forms and XzXzw for the orthogonalization, where X~w
is the number of plane-wave basis states,
X„„T=16XIwlnXtw, and X~ is the number of occupied
bands. The computational cost of a conjugate-gradients
iteration is also dominated by the cost of performing
Fourier transforms and the cost of orthogonalizing the
wave functions. Qnly the steps in the conjugate-
gradients iteration that involve Fourier transforms or or-
thogonalizations will be considered in this section. All of
the other steps in the conjugate-gradients update of a sin-
gle band require only %zw operations and constitute a
negligible part of the computational effort.

The calculation of the steepest-descent vector in the
conjugate-gradients method is identical to the calculation

In this section the speed of convergence of methods
that directIy minimize the Kohn-Sham Hamiltonian is
compared with the speed of convergence of the
molecular-dynamics method. The systems used for these
calculations were specifically chosen to highlight the
problems associated with the use of conventional
methods to perform total-energy pseudopotential calcula-
tions. However, it is important to appreciate that these
systems are representative of systems for which
molecular-dynamics calculations are currently being per-
formed.

1. Large energy cutoff

Figure I 8 shows the error in the total energy against
iteration number for a calculation on an 8-atom unit cell
of silicon with a cutoff energy for the plane-wave basis set
of 32 rydberg. Although this cutoff energy is much
higher than the value actually needed for calculations on
silicon, it is typical of the cutoff energies required for the
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FIG. 18. Error in the total energy of an 8-atom silicon supercell
with a 32-Ry kinetic-energy cutoff vs iteration number for
indirect-minimization (dashed line) and direct-minimization
(solid line) methods. Note that the curve labeled "molecular
dynamics" involves a first-order equation of motion, and the
number of iterations associated with this curve has been diuided

by Pve to allow comparison at the same level of computational
effort as discussed in the text.

FIG. 19. Error in the total energy of a row of 12 silicon unit
cells with an 8-Ry kinetic-energy cutoff vs iteration number for
indirect-minimization (dashed line) and direct-minimization
(solid line) methods. Same scaling as in Fig. 18.

2. Long supercells

first-row elements and for transition metals. The dashed
curve represents results obtained with the molecular-
dynamics method and a first-order equation of motion to
evolve the electronic wave functions. This also includes
the algorithmic improvements discussed in Sec. IV. All
of the other curves show results obtained with methods
that directly minimize the Kohn-Sham energy functional,
methods for which the iteration number in Fig. 18 labels
sweeps through all the bands. Each sweep through the
bands involves a number of conjugate-gradients steps for
each band. In contrast, each iteration has been taken to
represent five time steps in the molecular-dynamics
method. This number has been chosen so that the com-
putational time required for each "iteration" is similar
for all the schemes. The same scaling is used in the other
examples presented in this section.

Figure 18 shows that all the schemes that d&rectly lo-
cate the minimum of the Kohn-Sham energy functional
converge in a smaller amount of computational time than
the molecular-dynamics method. The improved perfor-
mance of the conjugate-gradients method over the
method of steepest descents is clearly demonstrated. It
can be seen that the preconditioning of the conjugate gra-
dients significantly increases the speed of convergence for
this system. This is expected because the cutoff energy
for the plane-wave basis set is very high, so the spectrum
of eigenvalues of the Kohn-Sham Hamiltonian is particu-
larly broad, and preconditioning is particularly beneficial.

The diSculties associated with instability due to the
discontinuous evolution of the Kohn-Sham Hamiltonian
are most apparent for large systems, when one or more of
the unit cell vectors becomes very long. The perfor-
mance of different computational methods for such a sys-
tem has been tested by performing calculations on a long
unit cell containing 24 silicon atoms. The results are
shown in Fig. 19. The time step used in the molecular-
dynarnics method had to be drastically reduced to main-
tain stability in the calcu1ation. The consequences of us-
ing a very small time step are clearly revealed by the slow
rate of convergence shown in the figure. In contrast, all
of the methods that directly minimize the Kohn-Sham
energy functional perform extremely we11. These
methods do not suffer from the instabilities associated
with an indirect minimization of the Kohn-Sham energy
functional. Comparing the relative speeds of conver-
gence of the directly minimization methods shows that
the speed of convergence improves on changing from
steepest-descent to conjugate-gradients methods and then
to the preconditioned conjugate-gradients method, as ex-
pected.

3. A real system

To demonstrate that the results shown in Figs. 18 and
19 are representative of calculations on real systems, Fig.
20 shows the results of calculations on a twelve-atom unit
cell of silicon dioxide in the a-critobalite structure. For
test purposes a cutoff energy of 32 rydberg for the plane-
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FIG. 20. Error in the total energy in eV of a 12-atom cell of the
o.-cristobalite form of Si02 with a 32-Ry kinetic-energy cutoff vs
iteration number for indirect-minimization (dashed line) and
direct-minimization (solid line) methods. Same scaling as in Fig.
18.

Vl. CHOICE OF INITIAL WAVE FUNCTIONS
FOR THE ELECTRONIC STATES

A. Convergence to the ground state

wave basis set was used for this calculation. The figure
compares results obtained by use of the molecular-
dynamics method and the preconditioned conjugate-
gradients method, with the letter giving an improved
speed of convergence, as it did in the previous examples.

the ground state of the electronic configuration. For ex-
ample, when the lowest-energy plane waves are used as
initial states for a calculation of the electronic structure
of an 8-atom cubic cell of any of the tetrahedral semicon-
ductors, the electronic configuration does not converge to
the ground state. This is shown schematically in Fig. 21.
Germanium, silicon, and carbon each have four valence
electrons. An 8-atom unit cell of any of these materials
contains 32 electrons, so 16 doubly occupied electronic
states are required to accommodate the electrons.

Consider a calculation for the It point (0,0,0). The 16
lowest-energy plane-wave basis states at the (0,0,0) k
point are the plane wave with wave vector (0,0,0), the six
plane waves with wave vectors in the I1,0,0j star of
wave vectors, and any nine of the twelve plane waves
with wave vectors in the [1,1,0j star. At least six of the
nine plane waves chosen from the I1, 1,0j wave-vector
star can be paired, so that the wave vectors of the plane
waves in each pair are separated by reciprocal-lattice vec-
tors in the I2, 2, 0j set. For instance, the plane waves
with wave vectors (1,1,0) and (1,1,0) are connected by
the (2,2,0) and (2, 2,0) reciprocal-lattice vectors. The
band gap in the tetrahedral semiconductors is formed by
the potentials at the I2, 2, 0j reciprocal-lattice vectors.
The electronic states on either side of the band gap are
bonding and antibonding combinations of the plane
waves connected by the {2,2,0j reciprocal-lattice vec-
tors. If the plane waves with wave vectors (1,1,0) and
(1, 1,0) are among the initial states used in the calcula-
tion for the 8-atom unit cell, one of these initial filled
states will relax to a valence-band state based on the com-
bination [(1,1,0)+(1,1,0) j, and the other will relax to a
conduction-band state based on the combination
[(1,1,0)—(1,1,0)], which is clearly not occupied in the
physical ground state. Hence the choice of the lowest-

The most important consideration when choosing the
initial electronic states for any of the iterative schemes
described in the previous sections is to choose a set of
wave functions that allows the electronic configuration to
converge to its ground state. Two factors that can
prevent a set of initial states from converging to the
ground state are described in this section.

&110& 12

INITIAL
WAVE FUNCTIONS DEGENERACIES

RELAXED STATES

1. Spanning the ground state &100&

The most obvious reason why an electronic
configuration might not converge to the ground state is
that the initial states do not span the ground state. In
this case the electronic wave functions relax to a self-
consistent set of Kohn-Sham eigenstates but not to the
set that forms the ground state.

The simplest choice of initial wave functions for the
electronic states is a single plane wave for each state, and
the most obvious choice of initial states is the set of plane
waves with the lowest kinetic energies. However, there is
considerable danger that these initial states may not span

(000)

FIG. 21. Schematic energy-level diagram for the lowest states
of an 8-atom cubic supercell of the diamond structure at the
(0,0,0) k point. The figure shows that three plane waves from
the ( 111) set must be included in the initial conditions in order
for the electronic configuration to relax to the 16 valence-band
states that constitute the ground state. Note that, for the sys-
tem to relax to the ground state using the lowest-energy plane
waves as initial conditions, 22 bands must be included, of which
6 will end up in the conduction band.
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energy plane waves as the initial states for a calculation
for the tetrahedral semiconductors will not yield the elec-
tronic ground state. In order to span the ground state,
the initial electronic configuration must not contain any
pairs of plane waves from the I 1, 1,0I star of wave vec-
tors connected by I2, 2, 0I reciprocal-lattice vectors.
Only when three plane waves from the I 1, 1, 1) star are
included among the initial states will the electronic states
relax to the required I6 valence-band states. If the
choice of lowest-energy plane waves as the initial states
were retained, 22 electronic states would have to be in-
cluded in the ca1culation before the electronic
configuration could relax to the ground state, and of
these, 6 states would end up being unoccupied.

The computational cost of all of the iterative schemes
described in the previous sections increases at least
linearly with the number of electronic states included in
the calculation, and the cost of orthogonalizing the elec-
tronic wave functions increases as the square of the num-
ber of bands. Including unoccupied states in the elec-
tronic relaxation reduces the advantage in computational
speed of the molecular-dynamics and conjugate-gradients
methods over conventional matrix diagonalization tech-
niques. It is sensible, therefore, to attempt to use the
smallest possible number of electronic states in the calcu-
lation. However, it is essential that the initial electronic
states be able to converge to the ground state.

The problem with the calculation for an 8-atom cubic
cell of the diamond-structure materials is that there are
many reciprocal-lattice vectors at which the structure
factor is zero. Hence there is no lattice potential associ-
ated with these reciprocal-lattice vectors. If the ionic po-
tential is nonzero at every reciprocal-lattice vector, any
choice of plane waves for the initial electronic states will
span the ground state. The most common reason for the
structure factor to be zero at some reciprocal-lattice vec-
tors is symmetry. If the ionic configuration has no sym-
metry, any choice of initial electronic states should con-
verge to the ground state. Only if the system has some
symmetry must precautions be taken to ensure that the
initial electronic states span the ground state.

2. Symmetry conservation

There is another reason why a particular set of initial
states may not relax to the ground state when molecular-
dynamics equations of motion are used to evolve the elec-
tronic configuration. This is a constraint on the evolu-
tion of the electronic states that arises from symmetry
conservation. The effect is described in detail by Payne
et al. (1988), and only a brief outline of the problem will
be presented here.

The molecular-dynamics equations of motion and the
related first-order equations of motion for the electronic
wave functions will conserve any symmetry that is shared
by the Hamiltonian and the initial electronic
configuration. This symmetry can be broken when the

electronic wave functions are orthogonalized, but this de-
pends on the orthogonalization scheme used. In the
Cxram-Schmidt orthogonalization scheme, the symmetry
is broken, whereas in many others, including the iterative
scheme by Car and Parrinello, it is not. Since the elec-
tronic ground-state configuration must have the same
symmetry as the Hamiltonian, one might not expect con-
servation of symmetry in the electronic configuration to
cause any problems. However, the initial electronic
configuration may not be able to propagate to the
ground-state configuration without breaking this symme-
try. If this is the case, the electronic configuration will
not reach the ground state unless a symmetry-breaking
orthogonalization scheme is used. Symmetry breaking is
not necessary if random initial conditions are applied to
the electronic wave functions, as described in Secs.
VI.C.3 and VI.C.4.

B. Rate of convergence

Once it has been ensured that the initial electronic
wave functions can relax to the ground state, the next
most important consideration in choosing the wave func-
tions is to maximize the rate of convergence. In all itera-
tive matrix diagonalization techniques, new wave func-
tions are generated by successive improvements to the
previous wave functions. The closer the initial wave
functions are to the self-consistent Kohn-Sham eigen-
states, the fewer the number of iterations required to
reach the ground state of the electronic configuration.
However, it is extremely dificult to estimate the form of
all the Kohn-Sham eigenstates of a complex system.
Hence it will be necessary to use fairly poor approxima-
tions to the eigenstates as the initial states for most calcu-
lations.

C. Specific initial configurations

Selection of a set of initial wave functions is straight-
forward when the system to be studied is similar to a sys-
tern that has been studied previously. In this case the
converged wave functions for that system should be used
as the initial states. This is particularly useful when test-
ing for k-point convergence or for convergence as the
cutoff energy for the plane-wave basis set is increased.
The wave functions that were calculated with the previ-
ous set of k points or with the previous energy cutoff can
be used as the initial electronic states.

Reduced basis sets

It is possible to obtain approximations to the Kohn-
Sham eigenstates by using conventional matrix diagonali-
zation techniques to find the eigenstates of the Kohn-
Sham Hamiltonian with a small number of basis states.
For most of the calculations that have been performed
using the molecular-dynamics and conjugate-gradients
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methods, this technique would yield a relatively large
matrix to diagonalize, even if a basis set consisting of
only a few plane waves per atom were used. The Hamil-
tonian matrix would have to be diagonalized several
times to achieve approximate self-consistency. Using this
method to obtain a set of initial states for a molecular-
dynamics or conjugate-gradients calculation might not
save any computational effort over a method that used
much poorer approximations to the self-consistent
Kohn-Sham eigenstates but applied iterative matrix diag-
onalization methods throughout. To avoid the cost of di-
agonalizing the Hamiltonian matrix using conventional
matrix diagonalization techniques, one could use iterative
techniques to find the initial states with the smaller basis
set. However, the computational cost of the iterative
techniques increases only linearly with the number of
basis states, so that there may not be much to be gained
by using a reduced number of basis states initially. If
most of the computation has to be performed using the
complete basis set, then there will be an insignificant sav-

ing in computational time if the calculation is started
with a reduced basis set.

2. Syrnmetrized combinations of plane waves

The choice of single plane waves for the initia1 elec-
tronic states in a molecular-dynamics or conjugate-
gradients calculation does not exploit the symmetry of
the system. The computational cost of such a calculation
could be reduced by using symmetrized combinations of
plane waves as the initial states for the electronic relaxa-
tion. Factoring the Hamiltonian matrix into submatrices
of dN'erent symmetry, which can be solved independent-

ly, drastically reduces the computational time from that
required using conventional matrix diagonalization tech-
niques. However, there is an insignificant time saving to
be gained by exploiting the symmetry of the system in the
molecular-dynamics or conjugate-gradients methods. A
significant saving in computational time could only be
achieved if the fast Fourier-transform routines were
rewritten for each symmetrized combination of basis
states, and this requires a considerable investment of pro-
gramming efI'ort. Computational time can be saved in
the orthogonalization routine by usirig symmetrized com-
binations of plane waves as the initial states. States of
di6'erent symmetry are automatically orthogonal, and
only states with the same symmetry have to be orthogo-
nalized. If there are N, states with one symmetry, N2 of
another, and so on, ortho gonalization requires
(N&+X&+ . )Xz~ operations rather than the X&Xp~
operations required if symmetrized combinations of
plane waves are not used. However, rounding errors will
tend to destroy the symmetry of the wave functions, and
so additional computational efI'ort will be required to
resymmetrize them periodica11y.

The relatively small reduction in computational speed
for systems with low symmetry is one of the strengths
of the molecular-dynamics and conjugate-gradients

methods. The use of symmetry is contrary to the spirit of
these methods. In all of the calculations performed using
these techniques, the positions of the ions have been al-
lowed to vary. If the positions of the ions vary during
the calculation, the ionic configuration will spend most of
the time in regions of the phase space that have very low
symmetry. The use of symmetry was essential in the days
of primitive computers, when conventional matrix diago-
nalization techniques were used to solve for the Kohn-
Sham eigenstates. Imposing symmetry onto a system
adds fictitious constraints to the motions of the ions and
restricts the relaxation of the ionic configuration. There
is no point in imposing symmetry in molecular-dynamics
or conjugate-gradients calculations because this does not
significantly increase the computational speed of these
techniques.

3. Random initial configurations

The initial electronic states for a molecular-dynamics
or conjugate-gradients calculation can be generated by
choosing random values for the coefficients of the plane-
wave basis states. This method ensures that the ground-
state is spanned by the initial states and that there is no
conserved symmetry in the initial electronic
configuration that might prevent the wave functions from
relaxing to the Kohn-Sham eigenstates. It is sensible to
give nonzero values only to the coefficients of plane-wave
basis states that have small energies, so that the initial
states do not have very high energies. With this precau-
tion the electronic states are unlikely to be significantly
further from eigenstates than simple plane waves, and
very few extra iterations will be required to converge to
the ground state.

4. Random initial velocities

In the molecular-dynamics method there are two de-
grees of freedom available for choosing the initial elec-
tronic configuration: the initial wave functions and their
velocities can be chosen arbitrarily. Adding random ve-
locities to the coefficients of the initial electronic states
avoids the problem of the initial configuration s not span-
ning the ground-state and not relaxing to the ground
state due to a conserved symmetry. It is sensible to limit
the kinetic energy of the initial wave functions so that
there is not too much excess energy in the electronic sys-
tem.

Vll. RELAXATION OF THE IONIC SYSTEM

Up to this point, the relaxation of the electronic
configuration to its ground state has been considered,
while the ionic positions and the size and shape of the
unit cell have been held fixed. Once these additional de-
grees of freedom are allowed to relax to equilibrium, new
features emerge. This procedure is much simpler than a
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full dynamical simulation of the ionic system because
only the final state of the system (ions and electrons in
their minimum energy configurations) is of interest, and
the path towards this state is irrelevant. Hence errors
can be tolerated along the relaxation path. This is not
the case with a full dynamical simulation, where errors
must be carefully controlled at all points along the ionic
trajectories. The problems associated with full dynami-
cal simulations of the ionic system will be discussed in
Sec. VIII. Here we describe how ionic relaxation is easily
incorporated into a molecular-dynamics-based method.

A. The Car-Parrinello Lagrangian

The positions of the ions and the coordinates that
define the size and shape of the unit cell can be included
as dynamical variables in the molecular-dynamics La-
grangian. The resulting Lagrangian is usually referred to
as the "Car-Parrinello Lagrangian*' and takes the form

(7. l)

where Ml is the mass of ion I and P is a fictitious mass
associated with the dynamics of the coordinates that
define the unit cell, I avl.

C. The Hellmann-Feynman theorem

The force on ion I, fr, is Ininus the derivative of the to-
tal energy of the system with respect to the position of
the ion,

dE
I (7.4)

As an ion moves from one position to another, the wave
functions must change to the self-consistent Kohn-Sham
eigenstates corresponding to the new position of the ion
if the value of the Kohn-Sham energy functional is to
remain physically meaningful. The changes in the elec-
tronic w'ave functions contribute to the force on the ion,
as can be clearly seen by expanding the total derivative in
(7.4),

motion of the unit cell. In this case the system will
evolve until the total energy of the system is minimized
with respect to all of these degrees of freedom, and the
ionic configuration will have reached a local energy
minimum. However, integration of the equations of
motion for the ions and for the unit cell is not as straight-
forward as it first appears. This is because physical
ground-state forces on the ions and integrated stresses on
the unit cell cannot be calculated for arbitrary electronic
configurations, as shown in the following section.

B. Equations of motion
BE BE d'4 BE
BRI,. Bg; dRI, . Bq,*. dRI

(7.5)

Two further sets of equations of motion can be ob-
tained from the Lagrangian (7.1), the first for the posi-
tions of the ions,

(7.2)

which simply relates the acceleration of the ions to the
forces acting on them. The second set of equations is for
the coordinates of the unit cell,

BE
Ba

Equation (7.5) should be compared with the Lagrange
equation of motion for the ion (7.2). It can be seen that
the "force" in Eq. (7.2) is only the partial derivative of
the Kohn-Sham energy functional with respect to the po-
sition of the ion. In the Lagrange equations of motion
for the ion, the force on the ion is not a physical force. It
is the force that the ion would experience from a particu-
lar electronic configuration. However, it is easy to show
that when each electronic wave function is an eigenstate
of the Hamiltonian the final two terms in Eq. (7.5) sum to
zero. Since BE/Bf,'. is just Mg;, these two terms can be
rewritten

These equations relate the rate of acceleration of the
lengths of the lattice vectors to the diagonal components
of the stress tensor integrated over the unit cell and relate
the accelerations of the angles between the lattice vectors
to the off-diagonal components of the stress tensor in-
tegrated over the unit cell.

The equations of motion for the degrees of freedom as-
sociated with the dynamics of the ions and of the unit cell
can be integrated at the same time as the equations of
motion for the electronic states and, as will be shown
below, provide a method for performing ab initio dynam-
ical simulations of the ionic system. However, a relaxa-
tion of the ionic system can be performed using these
equations of motion simply by removing kinetic energy
from the electronic system, the ionic system, and the

g ( Hg;)+g (P;H )
. (7.6)

Hg; =A, ;Q;,
so Eq. (7.6) is equal to

(7.7)

(7.8)

since ( P; lg, ) is a constant by normalization.

However, if each f; is an eigenstate of the Hamiltonian,
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This shows that when each g; is an eigenstate of the
Hamiltonian the partial derivative of the Kohn-Sham en-

ergy with respect to the position of an ion gives the real
physical force on the ion. This result is usually referred
to as the Hellrnann Fey-nman theorem (Hellmann, 1937;
Feynman, 1939). The Hellmann-Feynman theorem holds
for any derivative of the total energy. Hence, when each

g,- is an eigenstate of the Hamiltonian, only the explicit
dependence of the energy on the size and the shape of the
unit cell has to be calculated to determine the integrated
stresses.

1. Errors in Hellmann-Feynman forces

Forces calculated using the Hellm ann-Feyn man
theorem are very sensitive to errors in the wave functions

g;. The error in the force is first order with respect to er-
rors in the wave functions. Therefore accurate forces can
only be calculated when the wave functions are very close
to exact eigenstates. The error in the Kohn-Sham energy
is second order with respect to errors in the wave func-
tion, so that it is significantly easier to calculate an accu-
rate total energy than to calculate an accurate force.

2. Consequences of the Hellmann-Feynman
theorem

The Hellmann-Feynman theorem simplifies the calcu-
lation of the physical forces on the ions and the integrat-
ed stresses on the unit cell. However, the electronic wave
functions must be eigenstates of the Kohn-Sham Hamil-
tonian for the Hellmann-Feynman theorem to be applic-
able. Therefore the forces on the ions and the integrated
stresses on the unit cell should not be calculated until the
electronic configuration is near its ground state. Once
the forces and stresses have been calculated, the positions
of the ions and the size and shape of the unit cell may be
changed. Each time that the positions of the ions or the
size and shape of the unit cell are changed, the electrons
must be brought close to the ground state of the new ion-
ic configuration in order to calculate forces and stresses
for the new ionic configuration.

When the ionic configuration is relaxed to a local ener-

gy minimum, the relaxation of the ionic configuration
can be partially overlapped with the initial relaxation of
the electronic configuration. Provided that the magni-
tudes of the Hellmann-Feynman forces are larger than
the errors in the forces, moving each ion in the direction
of the calculated force will lower the total energy of the
system and move the ionic configuration towards the lo-
cal energy minimum. However, if the Hellmann-
Feynman forces are smaller than the errors in the forces,
displacement of the ions in the directions of the forces
may not decrease the total energy and could take the ion-
ic configuration away from the global energy minimum.
In this case, overlapping the ionic relaxation with the
electronic relaxation will increase the total number of

iterations needed to relax the system to the global energy
minimum.

It might be argued that, as long as kinetic energy is
continuously removed from all the degrees of freedom in
the system, the total energy in the system must continu-
ously decrease, so that the ionic configuration must relax
to a local energy minimum. However, this is only true if
the time steps are made sufticiently short. Moving the
ions a finite distance can add energy to the electronic sys-
tem. If the energy added to the electronic system each
time step becomes too large, the electronic system will
never relax to its ground state, and the ionic system will
never reach a local energy minimum. Therefore some
caution has to be exercised when one overlaps ionic re-
laxation with the electronic relaxation, to ensure that the
ionic system reaches the local energy minimum in the
shortest possible time.

D. Pulay forces

In principle, there should be an additional term in Eq.
(7.5) to represent the derivative of the basis set with
respect to the position of the ion. This contribution to
the force on the ion is called the Pulay force (Pulay,
1969). If the value of the Pulay force is not calculated,
there is a further error in the value of the Hellmann-
Feynman force. It can be shown that the Pulay force
vanishes if the derivatives of all the basis states 5P/M,
are spanned by the basis set [PI (SchetBer et al. , 1985).
For a plane-wave basis set, the derivatives of each basis
state with respect to the position of an ion are zero and
the Pulay force is zero. The calculated Hellmann-
Feynman force then will be exactly equal to the deriva-
tive of the total energy with respect to the position of the
ion, provided that the electronic wave functions are
Kohn-Sham eigenstates. This is one of the great advan-
tages of using a plane-wave basis. If the Pulay force does
not vanish and if it is not calculated, the computed
Hellmann-Feynman force will not be equal to the deriva-
tive of the total energy with respect to the position of the
ion. This error is independent of how close the electronic
configuration is to its ground state. In this case, moving
an ion in the direction of the calculated force may in-
crease the total energy. When the Pulay force is nonzero,
a local energy minimum of the ionic system cannot be lo-
cated by calculating the Hellmann-Feynman forces on
the ions. The only ways of finding a local energy
minimum are by trial and error or by calculating the ac-
tual force on each ion by calculating the change in the to-
tal energy on displacing each ion in turn. This calcula-
tion on XI ions requires 3' total-energy calculations.
Therefore the number of total-energy calculations that
are required to take the system to the local energy
minimum using this method is 3%I times as many as
would be required if the forces on all the ions could be
calculated from a single total-energy calculation. This
represents a hidden increase in computational time with
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the size of the system, which could completely negate the
apparent efBciency of a computational method.

E. Pulay stresses

If a plane-wave basis set is used in a total-energy calcu-
lation, the Pulay forces on the ions will be zero. Howev-
er, the Pulay stresses on the unit cell may be nonzero
with a plane-wave basis set. If the number of plane-wave
basis states remains constant, changing the size of the
unit cell changes the cutoff energy for the basis set. In-
creasing the number of plane-wave basis states by in-
creasing the cutoff energy for the basis set will usually
reduce the total energy of the system. Only if the cutoff
energy is large enough to achieve absolute convergence
will the change in the total energy be zero. Most total-
energy pseudopotential calculations are performed with a
cutoff energy at which energy differences have converged
but at which the total energies have not converged. In
this case the diagonal components of the Pulay stresses
on the unit cell will be nonzero.

It may be surprising that increasing the number of
basis states can change the total energy of a system but
not change the differences in energy between a number of
systems. However, the energy differences between sys-
tems arise mainly from the differences in bonding in each
system, so the energy differences are dominated by the re-
gions outside the ion cores. Provided that the additional
basis states introduced by increasing the cutoff energy for
the basis set do not change the charge density in the
bonding regions, energy differences between systems will
not change. The additional basis states introduced by in-
creasing the cutoff energy for the basis set merely provide
a more accurate description of the wave functions inside
the core regions. The additional basis states will change
the total energy per atom of each system by a constant
amount and so leave energy differences unaltered.

The magnitude of the Pulay stress in a pseudopotential
calculation can be determined by calculating the change
in the total energy per atom as the cutoff energy for the
basis set varies (Froyen and Cohen, 1986; Gomes Dacos-
ta et al. , 1986). The crucial significance of Pulay stress
correction for surface stress calculations has been em-
phasized by Vanderbilt (1987). The change in the total
energy per atom will be independent of the details of the
ionic configuration provided that the cutoff energy for
the basis set is large enough for energy differences to
have converged. Hence the Pulay stress due to the
plane-wave basis set can be calculated once and for all
from the change in the total energy of a small unit cell as
the cutoff energy for the plane-wave basis set varies.

Hellmann-Feynman forces until the residual forces on all
the atoms are smaller than a given value. In such a cal-
culation the errors in the Hellmann-Feynman forces due
to the deviation of the electronic configuration from the
ground state can be regarded as a source of thermal
noise. These forces will cause the ions to Quctuate
around their equilibrium positions, and the magnitudes
of the residual forces on the ions will never reach zero.
The magnitudes of the errors in the Hellmann-Feynman
forces must be reduced as the system approaches the lo-
cal energy minimum if the system is to continue ap-
proaching that minimum. Therefore the electronic
configuration must be relaxed closer and closer to the in-
stantaneous ground state as the ionic configuration ap-
proaches the loca1 energy minimum.

1. Local energy minimization with
the molecular-dynamics method

In molecular-dynamics methods it is sensible to treat
the electronic and ionic systems independently when re-
laxing the ions to their equilibrium positions and to use
different time steps for the two systems. The time step
for the ionic system should be progressively reduced as
the ionic configuration approaches the local energy
minimum. This allows the electronic configuration to re-
lax closer to its instantaneous ground-state configuration
as the ions approach their equilibrium positions, to en-
sure that the errors in the Hellmann-Feynman forces are
always smaller than the actual forces on the ions.

2. Local energy minimization with
the conjugate-gradients method

The conjugate-gradients method converges the elec-
tronic configuration to its ground state in far fewer itera-
tions than molecular-dynamics methods. In this case,
moving the ions small distances along the directions of
the Hellmann-Feynman forces at each iteration will be an
inefticient method for performing a local energy minimi-
zation. Many more iterations will be required to reach
the energy minimum than would be required to converge
the electronic configuration to its ground state. In this
case it is sensible to use a more sophisticated scheme for
relaxing the ionic configuration, one which can locate the
equilibrium positions of the ions in the minimum number
of iterations. Ideally the number of iterations required to
locate a local energy minimum of the ionic system should
be of the same order as the number of iterations required
to relax the electronic configuration to its ground state.

F. Local energy minimization

The simplest use of Hellmann-Feynman forces is to lo-
cate the position of a local energy minimum of the ionic
system. The ions are moved along the directions of the

G. Global energy minimization

Accurate forces on the ions can be calculated relatively
quickly when conjugate-gradients or molecular-dynamics
methods are used to perform a total-energy pseudopoten-
tial calculation. It has been shown how these forces can
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be used to relax a system of ions to a local energy
minimum. The technique of moving the ions in the
directions of the Hellmann-Feynman forces until the
forces on the ions become zero is basically a zero-
temperature quench, because the ions do not acquire any
kinetic energy during the relaxation. At the end of this
process, the system will be in a local energy minimum.
By performing zero-temperature quenches from a variety
of initial configurations of the ionic system, one can ob-
tain information about the local energy minima of the
system. However, there is no guarantee that this method
will locate the global energy minimum of the system. In
theory, a very-low-energy minimum can only be found if
a simulated annealing process is carried out (Kirkpatrick
et al. , 1983). But even with a simulated annealing pro-
cedure, there is no guarantee that the global energy
minimum will be located.

1. Simulated annealing

The success of any simulated annealing technique is
very sensitive to the structure of the phase space being
explored. The purpose of performing a simulated anneal
is to determine the lowest-energy configuration of the
ionic system. For a system that contains many ions there
will be a large number of ionic configurations that are lo-
cal energy minima. The simulated annealing procedure
has to explore the phase space of the system to locate the
lowest-energy local minimum. The phase space for a par-
ticularly simple system is shown schematically in Fig. 22.
The diagram shows two local energy minima, separated
by energy AE. If the position of the lowest-energy
minimum is to be located using the technique of simulat-
ed annealing, the thermal energy kT must be smaller
than AE. If the thermal energy is larger than this, the
energies of the two minima cannot be distinguished
within the thermal smearing. The diagram shows an en-

ergy barrier of height Ez separating the local energy
minima. The ionic configuration can only move between
the two local energy minima by gaining at least E~ in en-

ergy through a thermal fIuctuation. The time spent wait-
ing for a thermal fIuctuation of this magnitude is
(1/v)exp(E~/kT), where v is the attempt frequency. In

E

Configuration Coordinate

FIG. 22. Representation of two energy minima differing by 6E,
separated by a barrier E~.

a typical simulation with the molecular-dynamics
method, the total time of the simulation is of the order of
10—100 times 1/v. Therefore the probability that the
ionic configuration will traverse an energy barrier during
the simulation is dominated by the exponential factor.
When the temperature is low enough to distinguish be-
tween the energies of the local energy minima (kT-hE),
the time taken for the system to move between the energy
minima is proportional to exp(E~/EE). The system
must move between the minima at least once to locate
the lower-energy minimum. If E~/b, E is large, it is ex-
tremely unlikely that the simulation wi11 locate the global
energy minimum, but if E~/b, E is small, the global ener-

gy minimum can be located easily.
Simulated annealing is ideal for escaping from local en-

ergy minima separated from the global energy minimum

by small energy barriers. However, the method is very
ine%cient when the energy barriers separating the energy
minima are large. Unless the structure of the phase
space of the system is very favorable, any simulated an-
nealing process will leave the system in a local energy
minimum rather than at the global energy minimum.

The success of simulated annealing techniques also de-

pends on the number of local energy minima that have
energies close to the energy of the global energy
minimum. In principle, all of these local energy minima
have to be visited during the simulated annealing process
in order to determine which is the true global energy
minimum. As the number of local energy minima in-
creases exponentially with the number of atoms in the
system, simulated annealing is only likely to be successful
for small systems.

2. Monte Carlo methods

The difticulty of locating the position of the global en-

ergy minimum using the technique of simulated anneal-
ing is due to the difBculty of traversing the energy bar-
riers that separate the local energy minima. If the energy
barriers are large, the system only occasionally traverses
an energy barrier. Between traversals of the energy bar-
riers, the system explores the region of phase space
around a single local energy minimum. However, only
the value of the energy at the local minimum has any
relevance to the process of locating the global energy
minimum. The time spent exploring the phase space
around each local energy minimum serves no useful pur-
pose in the simulated annealing process, although it does
provide information about the free energy of the system.
It is easy to locate the local energy minimum in each re-
gion of phase space, but it is dificult to move between re-
gions of phase space that have low-energy local minima.

The process of locating the global energy minimum is
sometimes attempted by using the method of steepest
descents or simple molecular dynamics to sample the re-
gion of phase space around each local energy minimum,
followed by a discontinuous jurnp through phase space
into the region around a diC'erent local energy minimum.
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However, there is no point in exploring regions of phase
space that have very high energies, and so a sampling cri-
terion should to be applied to determine whether to ex-
plore the region of phase space reached by the discon-
tinuous jump. The sampling criterion generally adopted
compares the energies of the new and the old ionic
configurations. The new configuration is accepted or re-
jected according to a Monte Carlo algorithm (Metropolis
et al. , 1953): if the new configuration is of lower energy
than the old, it is accepted; if the new configuration is AE
higher in energy than the old configuration, it is accepted
with a probability exp( bElkT—). This method allows
the system to cross energy barriers without waiting for a
thermal fluctuation large enough to traverse the barrier.

The Monte Carlo technique described above is compu-
tationally expensive to implement with molecular-
dynamics schemes for relaxing the electronic
configuration to its ground state. When the ionic
configuration makes a discontinuous jump through phase
space, the electrons will not be close to the ground state
of the new ionic configuration. Each change in the ionic
configuration must be followed by a complete relaxation
of the electronic configuration to the new ground state
before the energies of the initial and final configurations
can be compared. In contrast, the Monte Carlo tech-
nique could be efticiently implemented with the
conjugate-gradients method because the energy of the
new ionic configuration can be calculated rapidly.

3. Location of low-energy configurations

Location of global energy minima is a complex prob-
lem. No scheme can be guaranteed to find the global en-

ergy minimum in a single calculation. The only way of
being reasonably confident that the global energy
minimum has been located is to find the same lowest-
energy configuration in a number of different calcula-
tions. In practice a number of low-energy configurations
will be located by successive calculations. When subse-
quent calculations do not locate any new low-energy
configurations and the ionic configuration always reaches
one of the low-energy configurations found previously or
a configuration of significantly higher energy, then there
is a very high probability that all the low-energy
configurations of the system have been located and,
hence, that the global energy minimum has been located.

Empirical potentials have the drawback that it is impos-
sible to know their region of validity. The potentials are
often parametrized using data for the perfect crystal or
data describing only small perturbations from the perfect
crystal. Even if these potentials do work perfectly for the
crystal, there is no reason why they should be capable of
describing diffusion in the solid, which can involve
configurations very different from those found in the
crystal, let alone a liquid, whose structure may bear no
relation whatsoever to the parent crystal. The problem
of determining an accurate interatomic potential is. par-
ticularly acute in the case of silicon, for which many
years of effort have yet to produce a general-purpose po-
tential. In contrast, the total-energy pseudopotential
method has been shown to be applicable in a much larger
region of phase space than any empirical potential.
Hence a dynamical simulation performed using these
forces should accurately describe a real system, irrespec-
tive of the region of phase space that is explored under
the dynamical evolution of the system.

A. Limitations to dynamical simulations

If simulations are performed using a finite supercell, as
they must be when plane-wave basis sets are used, the
systems cannot undergo true phase transitions, and the
range of correlations in the system will be limited by the
size of the supercell. It should also be appreciated that
the electron temperature will, in general, be zero in such
a simulation. Thermal excitation of the electronic system
can be described in density-functional theory (Mermin,
1965); however, there are fundamental problems with
density-functional theory which make it dificult to de-
scribe a system at finite temperature without performing
an extremely time-consuming calculation for the excited
states of the system (Hybertson and Louie, 1985; Godby
et al. , 1986). Provided that the thermal energy is much
smaller than the smallest excitation energy of the elec-
tronic system, the effects of a finite electron temperature
should be small. If this is the case, the error introduced
by using zero-temperature density-functional theory in a
dynamical simulation should not be significant. The
effect of setting the electronic temperature to zero recent-
ly has been shown to be negligible in a study of the
structural phase transition of GeTe (Rabe and Joanno-
poulos, 1987).

Vill. DYNAMICAL SIMULATIONS B. Accuracy of dynamical trajectories

There is an enormous literature associated with studies
of the dynamical behavior of systems. The book by Allen
and Tildesley (1987) provides an excellent introduction to
the subject. Obvious areas of interest include diffusion,
melting, and the calculation of free energies. These stud-
ies are generally carried out using empirical potentials
(i.e., some model of the interaction between the atoms in
the system parametrized according to experimental data).

In Sec. VII it was pointed out that the calculated
forces on the ions are only the true physical forces when

the electronic system is in its exact ground-state
configuration. Therefore, to generate correct dynamical
trajectories for the ions, the electrons must be relaxed to
the ground state at each ionic time step. Although any of
the methods described in Secs. III, IV, and V can be used
to relax the electronic configuration to its ground state,
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C. Error cancellation in dynamical simulations

The origin of the cancellation of the errors in the
Hellmann-Feynman forces under the equations of motion
generated by the Car-Parrinello Lagrangian can be illus-

trated by considering a system that contains a single
atom, which has a single occupied electronic orbita1, as
shown in Fig. 23. The molecular-dynamics equation of
motion for the evolution of the electronic wave function
1s

p,f= —tH —A, ]g . (8.1)

If the atom is at rest and the electronic wave function
is the ground-state wave function, then tH —A, ]/=0, and
the wave function will be stationary. If the orbital is dis-
placed away from the ion, the magnitude of the accelera-
tion of the wave function will increase roughly linearly
with the magnitude of the displacement. If the ion is
moving at constant velocity and the orbital begins to lag

most of these prove to be extremely expensive computa-
tionally for performing dynamical simulations of the ion-
ic system. The most efIIicient of these, the conjugate-
gradients method, is fast enough to allow dynamical
simulations, but even in the case of this technique it is
important to generate good sets of initial wave functions
according to the technique outlined in Sec. VIII.E below.
However, there is an alternative approach to performing
dynamical simulations, which forms the basis of the Car-
Parrinello method. Rather than insisting that the elec-
tronic configuration be in the exact ground-state
configuration at each ionic time step, one may be able to
perform dynamical simulations even if the electronic
configuration is only close to the exact ground state. Al-
though this implies that there are errors in the
Hellmann-Feynman forces at each time step, dynamical
simulations will be successful provided that the errors in
the forces remain small and that the effect of these errors
remains bounded in time. The Car-Parrinello method
can fulfill both of these criteria (Retnler and Madden,
1990; Pastore et al. , 1991). It is this latter point about
the boundedness of the errors which provides the distinc-
tion between the Car-Parrinello method and the "im-
proved" methods outlined in Secs. IV and V. While
these improved methods will for a fixed computational
effort move the electronic system closer to the ground-
state configuration than the simple molecular-d. ynamics
method, the errors introduced by these improved
methods, although smaller than the error in the simple
molecular-dynamics method, does not remain bounded in

time. The boundedness of the error in the Car-Parrinello
method results from an "error cancellation" that occurs
when the Car-Parrinello Lagrangian is used to generate
the dynamics of the electronic and ionic system. This
effect is most easily demonstrated by the simple example
in the following section, which clarifies this point by
comparing second-order and first-order equations of
motion.

ORBITAL IS STATIONARY

~-W ION BEGINS TO MOVE

ORBITAL ACCELERATED

o-c
/

ORBITAL IN

INSTANTANEOUS

~-~
~

GROUND STATE

ORBITAL DECELERATE

FIG. 23. Schematic illustration of how an orbital will oscillate
around a moving ion during a simulation with
pP= —[0—

A, ]g, as discussed in the text. Velocities and ac-
celerations are designed as open and filled arrows, respectively.

g= —[H —
A, ]g . (8.2)

With this equation of motion the velocity of the orbital
increases roughly linearly with the displacement of the
orbital from the ion. Once the ion has begun to move,

behind the ion, the acceleration of the orbital will in-
crease. The velocity of the orbital will increase until the
orbital overtakes the ion. As the orbital overtakes the
ion, the acceleration of the wave function will change
sign and the orbital will begin to slow down. The orbital
continues to slow down until the ion overtakes it, at
which point the whole process starts again. Hence, if the
ion were to move at constant velocity, the electronic or-
bital would oscillate around the instantaneous position of
the ion. The value of the Hellmann-Feynman force ex-
erted on the ion by the orbital will oscillate around the
correct value, so that the error in the Hellmann-Feynman
force will tend to cancel when averaged over a number of
wave-function oscillations. The oscillation of the error in
the Hellmann-Feynrnan force will prevent a continuous
transfer of energy between the ionic and the electronic
degrees of freedom, as long as the fictitious oscillations
occur over time scales much shorter than the physical
ionic time scales. This is a reAection of the fact that,
given a sufticiently large mass ratio, there is an adiabatic
isolation of the (tnuch) "lighter" electronic coordinates
from the "heavier" ionic degrees of freedom.

A first-order equation of motion, on contrast, gives the
following expression for the evolution of the electronic
orbital:
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ORBITAL IS STATIONARY

ION BEGINS TO MOVE

ORBITAL VELOCITY LESS
THAN ION VELOCITY

ORBITAL
VELOCITY EQUAL
TO ION VELOCITY

FIG. 24. Schematic illustration of how an orbital will eventual-

ly lag behind a moving ion during a simulation with
IMQ= —[H —X]p, as discussed in the text. Convention the same
as in Fig. 23.

the orbital falls further behind the ion until its velocity is
equal to the velocity of the ion, and the orbital then
remains a fixed distance behind the instantaneous posi-
tion of the ion. This process is illustrated in Fig. 24. The
orbital then exerts a constant damping force on the ion
due to the systematic error in the value of the Hellmann-
Feynman force, which is proportional to the velocity of
the ion. Hence using the first-order equation of motion
to evolve the electronic wave function for a dynamical
simulation results in a viscous drag on the ions. This
simple model suggests that a second-order equation of
motion for the electronic degrees of freedom should give
a more accurate account of the dynamics of the ionic sys-
tem than a first-order equation of motion, a conclusion
supported by detailed analysis of the evolution of the
electronic wave function (Payne, 1989; Car et al. , 1991)
and by simulations using first- and second-order equa-
tions of motion (Remler and Madden, 1990). The success
of the Car-Parrinello method comes from this error can-
cellation, which turns the first-order error in the
Hellmann-Feynman forces into a second-order error
when integrated along the ionic trajectories.

D. Car-Parrinello dynamics; constraints

The successful implementation of Car-Parrinello dy-
namics relies on a number of features. The error cancel-
lation occurs only if the time scales in the electronic sys-
tem are all shorter than the shortest time period in the
ionic system. From considerations similar to those in
Sec. III.D.2, it can be seen that the longest time period in
the electronic system is related to the difference in energy
between the highest occupied state and the lowest unoc-
cupied state. The actual magnitude of this time period
can be adjusted by changing the value of the fictitious
mass, so that even in systems where this energy gap is ar-

bitrarily small the fictitious mass can be chosen
sufficiently small to ensure the nonoverlap of time
periods in the electronic and ionic systems. However, as
the value of the fictitious mass is decreased, the highest
frequency in the electronic system increases, requiring a
shorter time step to integrate the equations of motion
stably for the electrons, thus increasing the computation-
al effort required for a given simulation. Therefore the
energy gap can become so small that it becomes impracti-
cal to carry out a simulation.

The Car-Parrinello Lagrangian is invariant in time,
and hence the total energy in the electronic and ionic sys-
tems will be constant provided that no damping is ap-
plied to any of the kinetic degrees of freedom and that
the "forces" required to impose the constraints of ortho-
normality of the wave functions are conservative. The
energy constant of motion in a classical molecular-
dynamics simulation is made up only of the kinetic ener-

gy of the ions and the potential energy, which is the
Kohn-Sham energy in the ab initio simulation. However
in a Car-Parrinello simulation the energy constant of
motion includes the fictitious kinetic energy of the elec-
trons. Even in a "perfect" Car-Parrinello calculation, in
which the electrons moved at exactly the correct velocity
to remain in the instantaneous ground state of the ionic
configuration, the electronic wave functions would speed
up and slow down as the ions moved along their trajec-
tories, and the kinetic energy of the electrons would vary
in time in direct proportion to the ionic kinetic energy,
but smaller by a factor of the ratio of the fictitious elec-
tronic and physical ionic masses, typically less than 0.01.
Because of this fictitious electronic kinetic energy, the
sum of the kinetic energy of the ions and the potential en-

ergy is not a constant, even in a "perfect" Car-Parrinello
simulation. In this situation the fictitious temperature of
the electronic degrees of freedom is at least two orders of
magnitude smaller than the temperature of the ionic sys-

tem, so that this situation is thermodynamically unstable.
In addition to the kinetic energy required for the elec-

trons to follow the ions exactly, there are fluctuations of
energy between the ionic and electronic systems. The de-
viation of the electronic configuration from its ground
state is related to the magnitude of these energy Auctua-
tions. If the longest time period in the electronic system
is not significantly shorter than the shortest time period
in the ionic system, energy will be continuously
transferred between the electronic and ionic systems until
the fictitious temperature of the electronic degrees of
freedom and the temperature of the ionic degrees of free-
dom are equal. In such a situation there are large
amounts of energy in the electronic degrees of freedom,
and the electronic configuration is far from its ground
state. When a significant transfer of energy from the ions
to the electrons occurs in a Car-Parrinello calculation,
the simulation must be stopped periodically and the elec-
trons returned to their ground-state configuration before
restarting the simulation (Zhang et al. , 1990). In the
process of returning the electrons to their ground state,
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the fictitious kinetic and potential energies in the elec-
tronic degrees of freedom are removed from the system
so there is no longer a conserved energy associated with
the Car-Parrinello dynamics. If no further action were
taken, the temperature of the ionic system would de-
crease continuously during the simulation. To compen-
sate for this irreversible heat Aow from the ionic system,
it is usual to attach a Nose thermostat to the ionic system
(Nose, 1984). This Nose thermostat has the primary role
of supplying energy to the ionic degrees of freedom, to
compensate for the loss of energy from the ions to the
electronic degrees of freedom. A systematic study of the
range and validity of the Nose thermostat is given by
Cho and Joannopoulos (1992). It has been demonstrated,
however, that in simulations where the total energy tends
to drift, the Nose thermostat breaks down and fails to
produce a correct canonical thermal distribution (Tox-
vaerd, 1991). As yet no one has attempted to analyze the
errors in the ionic trajectories that arise when the time
periods in the electronic and ionic degrees of freedom be-
gin to overlap. An alternative method has recently been
proposed to control the buildup of energy in the electron-
ic degrees of freedom by attaching a separate Nose ther-
mostat to the electronic degrees of freedom, set at much
lower temperature than the ionic thermostat (Bloechl and
Parrinello, 1991). Once again no attempt has yet been
made to quantify the errors introduced by this method.

The correct application of the constraints of ortho-
gonality and normalization is essential for performing a
successful Car-Parrinello dynamical simulation. This is
relatively easily understood from the following considera-
tions. Consider two wave functions that are not orthogo-
nal. There are an infinite number of pairs of orthogonal
wave functions that can be formed from these two wave
functions, and each of these possible choices will have a
different "velocity" associated with each of the wave
functions. However, only one of these choices is con-
sistent with a "conservative" constraint force acting on
the wave functions that does not change the kinetic ener-

gy of the electronic system. The simplest method for un-
derstanding which form of application of constraints is
correct is to appreciate that the constraint forces must
not change if the labeling of the wave functions is
changed —the constraint forces should be invariant un-
der rotations within the subspace of the occupied elec-
tronic states. It is clear, then, that the Gram-Schmidt or-
thogonalization technique cannot be applied in a dynami-
cal simulation, because the forces change according to
the labeling of the states —for instance, whichever wave
function is labeled 1 is not changed by the orthogonaliza-
tion procedure. Car and Parinello apply the constraints
in two steps (Car and Parrinello, 1989). The first is an
application of constraints directly in the equations of
motion, using the La grange multiplier s. These con-
straints ensure that if the accelerations of the wave func-
tions were all zero the wave functions would remain
orthonormal. This constraint is required because, despite
their orthonormality at the last and present time steps,

the wave functions would become nonorthonormal if
they continued to move with constant velocity. The
I.agrange multipliers that ensure this orthonormality (to
order dt ) are

(8.3)

Although application of these Lagrange multipliers
alone would be sufficient to ensure orthonormality of the
wave functions, to the same accuracy as the error in Ver-
let algorithm in the absence of any accelerations, this is
no longer true if accelerations are present. To ensure the
orthonormality of the wave functions at the end of the
time step, one can either modify the above Lagrangian
multipliers to take account of the accelerations of the
wave functions, or one can retain the Lagrange multi-
pliers given by Eq. (8.3) and Car and Parrinello s iterative
method (3.23), or one can employ a similar rotationally
invariant method, such as determining the similarity
transform required to diagonalize the overlap matrix.

E. Conjugate-gradients dynamics

It has been pointed out that the Car-Parrinello algo-
rithm permits accurate dynamical simulations of ionic
systems to be performed, providing the time scales in the
ionic and electronic systems are decoupled. Although
there are many systems in which this is the case, this
decoupling of the time scales is generally dificult to ob-
tain in the case of metallic systems, where the gap van-
ishes (unless the "simulation" is so artificial that the sys-
tem used in the simulation is actually an insulator as a re-
sult of limited lt-point sampling). In such cases, where
the long-term stability of the Car-Parrinello dynamics is
in doubt, there is considerable motivation for seeking an
alternative technique for performing dynamical simula-
tions. It has already been pointed out that using one of
the alternative techniques to relax the electrons to the
ground state requires much more computational effort to
achieve the same accuracy in the evolution of the ionic
system, and so, at first sight, it is simply too expensive
computationally to perform dynamical simulations on
systems for which the Car-Parrinello algorithm fails.
However, it is obvious that, if the initial electronic
configuration can be moved closer to the correct instan-
taneous ground-state configuration, less computational
effort is required to converge it to its exact ground state,
and hence a faster simulation is possible.

A simple method has been developed that allows an ac-
curate prediction to be made for the initial electronic
configuration at each ionic time step by extrapolating for-
ward from electronic configurations at previous time
steps. Typically, this method of extrapolation is found to
bring the initial wave functions two orders of magnitude
closer to the minimizing energy functional than simply
using the wave functions from the previous time step.
This typically reduces by a factor of two the computa-
tional effort required to bring the electronic system to
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within a few micro-eV per ion of its ground state. When
this extrapolation technique is combined with the
conjugate-gradients method, the resulting computational
scheme is sufficient to make the entire dynamical simula-
tion comparable in speed to a Car-Parrinello simulation.
However, the technique has the advantage that it can be
applied to a broader class of systems. The details of the
scheme can be found in Arias et al. (1991);it will only be
described brieAy below.

The basis for the trial wave-function scheme is the
first-order extrapolation

(8.4)

where [r(t; ) j are the ionic coordinates at time t; with i
the ionic iteration number, o. is a fitted parameter, and
the prime indicates a trial wave function, as opposed to
the fully converged %„1,( I r(t; ) j ). This scheme produces
trial wave functions correct to first order in dr (and, by
the 2X + 1 theorem, energies correct to third order in the
time step) when the ionic coordinates are

I r'(t;+, ) j
=

I r (t; )+a[r (t, ) r(t;,—)]j . (8.5)

To ensure that the resulting wave functions are in as
close correspondence as possible with the actual ionic lo-
cations, [ r (t;+, ) j,a is taken to minimize the discrepancy

= ~r(t;+&) —(1+a)r(t; )+ar(t;, )~ . (8.6)

(8.7)

One may imagine generalizing this scheme to higher
orders, employing more of the preceding wave functions
and producing ever smaller errors in the extrapolated
wave functions. However, higher-order schemes suffer
from an instability that pushes the wave-function errors
into regions of phase space where'convergence is so
difficult that the net effect is to slow the simulation.

As in the Car-Parrinello scheme, orthonormality of the
wave functions must be maintained; however, Eq. (8.4)
yields wave functions that are not properly orthonormal.
In the present case, one can simply Gram-Schmidt ortho-
normalize the resulting wave functions, because there is
no longer any concern for maintaining a proper electron
dynamic and because this procedure will not disturb the
correctness to first order of the wave functions, a conse-
quence of the fact that

F. Comparison of Car-Parrinello
and conjugate-gradient dynamics

The Car-Parrinello and conjugate-gradients schemes
for performing dynamical simulations are very different,
and it is important to understand these differences in or-
der to apply either technique successfully. The most im-
portant point is the difference between the time steps
used in the two methods. In this respect conjugate-
gradients dynamics is closer to conventional dynamical
simulations, in which the time step is chosen to ensure an
accurate integration of the ionic equations of motion. In
simulations employing empirical potentials and those us-
ing the conjugate-gradients scheme, the forces on the
ions are, to high precision, true derivatives of the total
potential energy of the ions. In the case of empirical po-
tentials, the only differences between the computed forces
and the derivatives of the total ionic energy are rounding
errors due to finite machine accuracy, but in the case of
the conjugate-gradients simulation, the differences also
include contributions due to the failure of the Hellmann-
Feynman theorem because the electronic system is not
exactly converged to its ground state. In the Car-
Parrinello simulation, at each time step there are
significantly larger errors in the Hellmann-Feynman
forces, because the electronic configuration is riot main-
tained so close to its exact ground-state configuration.
The time step used in a Car-Parrinello simulation has to
be much shorter than the one used for an equivalent
conjugate-gradients simulation to integrate the electronic
equations of motion stably. Additionally, the longest
time period in the electronic system must be less than the
shortest ionic time period, to ensure that the errors in the
Hellmann-Feynman forces average to zero along the ion-
ic trajectories.

At first sight the Car-Parrinello method and the wave-
function extrapolation combined with conjugate-gradient
relaxation are rather similar, in that each essentially per-
forms an integration of the wave functions forward in
time. However, the spirit of each technique and the be-
havior of the wave-function coefficients in the two cases
are very different. In the case of the conjugate-gradients
dynamics, the wave functions are propagated as close as
possible to the instantaneous ground state, in order to
reduce the effort required to fully relax them to the
ground state. In the Car-Parrinello method, the motion
of the electronic degrees of freedom preserves a delicate
adiabatic separation between the electronic and ionic de-
grees of freedom. The electronic coefficients oscillate
artificially about their ground-state values, which leads to
a cancellation of the errors in the ionic forces.

Once the wave functions extrapolated according to Eq.
(8.4) have been Grahm-Schmidt orthonormalized, they
are then relaxed to within a set tolerance of the Born-
Oppenheimer surface by the conjugate-gradient pro-
cedure; this completes one cycle of iteration of the ionic
motion.

G. Phonon frequencies

The phonon frequencies of a system can be obtained by
performing a dynamical simulation and then Fourier-
transforming either the velocity or the position auto-
correlation functions. However, for this procedure to
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FICx. 25. Superposition of maximum-entropy-method spectral
fits for each class of allowed phonon k state. For clarity, only
the longitudinal spectra are displayed. The frequencies have
been scaled so that the optic phonon frequency coo, as calculated
from a frozen phonon calculation at the same cuto6'in the same
supercell, is normalized to unity.

give phonon frequencies to high accuracy, the original
ionic trajectories must be extremely accurate, since any
noise in the trajectories will broaden the phonon frequen-
cies. The conjugate-gradients dynamics scheme gen-
erates extremely accurate ionic trajectories, in which the
noise can be reduced to an arbitrarily low level, and thus
provides an excellent set of input data with which to
determine phonon frequencies. Figure 25 shows the
transform of the longitudinally polarized autocorrelation,
as determined by the maximum-entropy method (Press
et aI , 19.89), of 40 silicon atoms in a periodic system over
50 A long in the [100] direction. Each peak represents a
natural frequency in the system. Neither the heights of
the peaks nor this integrated intensities are meaningful,
in that the system has not yet reached thermal equilibri-
um. Note that the primary caveat when working with
the maximum-entropy method is that it produces spuri-
ous pea.ks when working with noisy data. No such peaks
are obtained, indicating very clean data. The frequencies
of the peak values of these spectra, as well as their trans-
verse counterparts, are then compared with the experi-
mentally measured phonon frequencies (Dolling, 1963;
Nilsson and Nelin, 1972) in Fig. 26. As can be seen,
there is good agreement between the results of the calcu-
lation and experiment, particularly in resolving the deli-
cate splitting of the optic bands along 6, which beat
against each other with periods on the order of one pi-
cosecond. This technique for obtaining phonon frequen-
cies requires no information about the displacements as-

sociated with each phonon mode and is particularly at-
tractive for complex systems in which the phonon dis-
placements are not known and for which it would be ex-
tremely expensive to compute the full matrix of second
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FIG. 26. Phonon spectrum as determined from maximum peak
values of maximum-entropy-method fits. These values are com-
pletely ab initio, with no free parameters. Empty circles
represent experimental data (Dolling, 1963; Nilsson and Nelin,
1972), and filled circles represent results of an extrapolated
conjugate-gradient dynamics simulation.

derivatives of the ionic potential energy —a calculation
normally required to calculate phonon frequencies and

eigen vectors.

IX. NONLOCAL PSEUDOPOTENTIALS

The computational speeds of the molecular dynamics
and conjugate gradients techniques are significantly
enhanced by using local pseudopotentials rather than
nonlocal pseudopotentials. This allows the number of
operations required to multiply each of the wave func-
tions by the Hamiltonian to be reduced from Np~ to
16Xpgrln(Nppr ) where Np~ is the number of plane wave
basis states. However, it is not possible to produce accu-
rate local pseudopotentials for all atoms. To apply
molecular-dynamics and conjugate-gradients methods to
systems containing atoms that can only be represented by
nonlocal pseudopotentials, it is necessary to use an
efficient scheme for dealing with the nonlocality of the
pseudopotential. Nonlocal pseudopotentials generally re-
quire fewer plane-wave basis states than do local pseudo-
potentials to expand the electronic wave functions.
Therefore, although it will require additional computa-
tional effort to use nonlocal pseudopotentials in
molecular-dynamics and conjugate-gradients calcula-
tions, some of the loss in computational speed will be
recouped because fewer plane-wave basis states are re-
quired. However, it is essential to find an efficient
method for using the nonlocal pseudopotentials. The
methods that have been used employ only a partial pro-
jection of the nonlocal components of the wave functions.
Examples of such methods are described in the following
two sections. It has long been appreciated that all of
these partial-projection methods could be applied in ei-
ther real space or reciprocal space. The computational
cost scales as the cube of the system size using a
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reciprocal-space method but only as the square of the
system size with the real-space method. As will be seen
in Sec. IX.C.1, there are difhculties associated with the
real-space projection method that have delayed its im-
plementation. These problems have now been overcome,
and Sec. IX.D describes a successful real-space projection
method for nonlocal pseudopotentials.

Im

(9.1)

where YI are spherical harmonics and VI is the pseudo-
potential acting on the component of the wave function
that has angular momentum l. Outside the core radius
the potentials VI are identical for all the angular momen-
tum components of the wave function. To implement
this form for the nonlocal pseudopotential, one needs a
complete projection of the angular momentum corn-
ponents of the wave functions. In contrast, the
Kleinman-Bylander pseudopotential (Kleinman and By-
lander, 1982; Allan and Teter, 1987) is a norm-conserving
pseudopotential that uses a single basis state for each an-
gular momentum component of the wave function. The
Kleinman-Bylander pseudopotential has the form

(9.2)

where Vtoc is a local potential, $1 are the wave func-
tions of the pseudoatom, and 5 VI is

& VI =
VI, NL

—VI.Qc (9.3)

Here VI NL is the l angular momentum component of any
nonlocal pseudopotential. Kleinman and Bylander sug-
gested using the arbitrariness of VLQc to produce an ac-
curate and transferable pseudopotential.

The Kleinman-Bylander pseudopotential projects each
spherical harmonic component of the wave function onto
a single basis state. When applied to the pseudoatom, the
potential gives identical results to the nonlocal pseudopo-
tential it was derived from, independent of the choice for
the local potential VJQC However, the potential does
not produce identical results when applied in another en-
vironment, because the wave function is not projected
onto a radially complete set of spherical harmonics.
Some of the difBculties that can be encountered with this
approach have been discussed recently by Gonze et al.
(1990). All of the known problems can be overcome by
the proper choice of local potential, a simple reduction in
the core radius, or the application of the ideas of extend-
ed norm conservation (Shirley et al. , 1989). It may be
necessary, however, to include pseudo core states to
achieve a high degree of transferability for certain

A. Kleinman-Bylander potentials

The most general form for a nonlocal pseudopotential
1s

transition-metal atoms. These improvements all typically
require a larger number of plane waves in the basis set.

1. Enhanced projections

The Kleinman-Bylander form of the pseudopotential
can be systematically improved by adding more basis
functions for the projection of the spherical harmonics
(Bloechl, 1990). This allows the accuracy of the nonlocal
potential to be checked by plotting the total energy as a
function of the number of basis states used for the projec-
tion of the spherical harmonics of the wave functions.

2. Computational cost

The contribution to the product of the Hamiltonian
and the wave function f; at wave vector k+Cx for the
Kleinman-Bylander pseudopotential is given by

X xlm, k+G g xlm, k+ci'ci, k+o'
lm 6'

where

Jr dr j,(Ik+cxIr)BV, (r)p, (r)

(9.4)

(9.5)

B. Vanderbilt potentials

A rather more radical approach to modifying pseudo-
potentials for use in plane-wave calculations has been
suggested by Vanderbilt (1990). The basic aim with these
potentials, in common with the other schemes described
in Sec. II.D.1.d, is to allow calculations to be performed

and jI is the spherical Bessel function of order l. The
spherical Bessel function j&( Ik+G Ir) gives the amplitude
of the l angular momentum component of the plane wave
exp[i (k+ Cx) r] at distance r from the origin.

The contributions to the product of the Hamiltonian
with each and every electronic wave function from the
nonlocal pseudopotential can be calculated in3'NpgrNI NL operations per k point, using the
Kleinman-Bylander pseudopotential, where XL is the
number of nonlocal spherical harmonic components in
the pseudopotential. 3X~Xp~NIXL operations are re-
quired to calculate the contributions to the forces on all
the ions from the nonlocal pseudopotential using the
Kleinman-Bylander scheme in reciprocal space, and6'NpgrXIXL operations are required to compute the
diagonal and off-diagonal stresses on the unit cell. Hence
the computational cost of all these operations scale as the
third power of the number of ions in the unit cell, since
Xz and Xp~ are proportional to Xl. This computational
cost is usually significantly larger than the cost of ortho-
gonalizing the wave functions (N+N~a ). Therefore the
application of the nonlocal potential in reciprocal space
will dominate the computational cost for large systems.
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with as low a cutoft energy for the plane-wave basis set as
possible. The rationale behind the Vanderbilt potential is
that in most cases a high cutofF' energy is required for the
plane-wave basis set only when there are tightly bound
orbitals that have a substantial fraction of their weight
inside the core region of the atom. In this case the cutoA'

energy for the plane-wave basis set cannot be substantial-
ly reduced, because there must be plane-wave com-
ponents up to a large enough wave vector to allow the
majority of the weight of the wave function to be kept
within the core. However, if the norm conservation rule
is relaxed, then the resulting wave function can be ex-
panded using a much smaller plane-wave basis set, as
shown in Fig. 27. All that is required is that the wave
function be projected back to the correct pseudovalence
wave function before normalization. Unfortunately, the
procedure is rather more complex, because the relaxation
of the norm conservation condition from the pseudopo-
tential also causes the correct first-order change of the
phase shift with energy to be lost. Therefore this scheme
also requires an energy-dependent potential to ensure
that the correct phase shift is generated over the range of
energies of the electrons in the system. Fortunately, this
modification can be included at a relatively modest com-
putational cost in any iterative method, although it
would be disastrous in a conventional matrix diagonaliza-
tion method, since each matrix diagonalization would
yield only a single band. Details of the implementation
of Vanderbilt potentials can be found in Vanderbilt
(1990) and Laasonen et al (1991).

Although Vanderbilt potentials require lower cuto6'
energies for the plane-wave basis set than even optimized
pseudopotentials, they require more operations to com-
pute the nonlocal components of the pseudopotential at
each iteration. It is also possible that iterating to energy
self-consistency in the potential may increase the total
time required for an energy minimization calculation or

FIG. 27. Illustration of a pseudo wave function that is strongly
peaked inside the core and the modified wave function in
Vanderbilt's scheme.

require an even shorter time step in a Car-Parrinello
dynamical calculation. If the operations for the nonlocal
pseudopotential are carried out in reciprocal space in a
large system, where these operations dominate the com-
putational cost, it is not clear that a calculation using
Vanderbilt potentials will be any cheaper than a calcula-
tion using Kleinman-Bylander pseudopotentials. If the
real-space projection technique described in Secs. IX.C
and IX.D below is used, so that operations required to
implement the nonlocal pseudopotential no longer dom-
inate the computational cost, then a Vanderbilt potential
will be more eKcient.

C. Real-space projection; nonuniqueness
of spherical harmonic projection

The nonlocality of the pseudopotential extends only
over the region occupied by the core of the atom. As the
core region is relatively small, it should be possible to
deal efhciently with the nonlocality of the pseudopoten-
tial by working in real space, since only a small number
of operations should be required to project the angular
momentum components of each wave function in the
core of each atom. Furthermore, the number of opera-
tions needed to project the angular momentum com-
ponents of a single wave function around a single atom in
real space will be independent of the size of the system,
thus leading to a more efticient scaling than the
reciprocal-space projection. If Xp is the number of
points in the core of each atom used to project each an-
gular momentum component of a single wave function,
then the number of operations required to incorporate a
nonlocal pseudopotential using a real-space method is

X~NIXpXI per k point. The electronic wave functions
are routinely transformed to real space in the molecular-
dynamics and conjugate-gradients methods. No further
operations besides those described above are required to
implement a real-space projection of the angular momen-
tum components provided that the product of the wave
function and the nonlocal potential is computed at the
point in the calculation where the product of the wave
function and the local potential is computed. The num-
ber of operations required to calculate the forces on the
ions is 3X~XIXpXI per k point using the real-space pro-
jection method 6XgNyXpXL operations are required to
compute the diagonal and off-diagonal stresses on the
unit cell. However, it may also be necessary to perform
an additional FFT to generate the wave functions in real
space before performing these operations.

The cost of computing the product of the Harniltonian
and the wave functions, the forces on the atoms, and the
stresses on the unit cell using the real-space projection
method scales only as the second power of the number of
ions in the system. This is in contrast to cubic scaling for
the reciprocal-space projection methods. The reason is
that, in a reciprocal-space formulation, computation of
the force on an ion requires a sum over all reciprocal-
lattice vectors. In contrast, calculation of the force on an
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ion using the real-space method requires only operations
involving the wave function in the immediate vicinity of
the atom.

As we shall see shortly, the real-space projection
method for nonlocal pseudopotentials is not simple to im-
plement using a representation of the wave function on
the existing Fourier transform grid because of its coarse-
ness. Calculation of the wave functions at a specialized
dense set of points near each atom (ruling out the FFT)
results in the same scaling as the reciprocal-space
methods. Alternatively, a fast Fourier transform of the
wave functions onto a denser real-space grid preserves
the favorable scaling of the real-space methods. Howev-
er, a scheme that allowed computation on the original
grid would be most efficient. Such a scheme exists and
will be described below.

If fast Fourier transform techniques are used to trans-
form the electronic wave functions between real and re-
ciprocal space, the values of the electronic wave func-
tions in real space are known only on a grid of points.
The incomplete knowledge of the wave function in real
space introduces an ambiguity between the angular and
radial dependences of the wave function. This can be il-
lustrated with a simple example as shown in Fig. 28.
Consider a real-space Fourier transform grid that has
equal distances between grid points in the x and y direc-
tions but a distance between grid points in the z direction
that is 50% greater. Suppose an atom is positioned at

one of the grid points and the value of the wave function
is 0 at the position of the atom, 1.0 at the adjacent grid
points in the +x and +y directions, and 2.25 at the adja-
cent grid points in the +z directions. The wave function
at these points could be an "s" wave function equal to
1.0(r /a ), where r is the radial coordinate and a is the
distance between grid points in the x direction. Howev-
er, the values of the wave function at the points can also
be fIt by the sum of an "s"wave function equal to 6

7(r/a)
and a "d„"wave function equal to —'(r/a)[3cos 0—I],
where 0 is the angle between the radius vector and the z
axis. The distinction between these two wave function
can only be made by considering the value of the wave
function at points lying between the Fourier transform
grid points. However, it is computationally expensive to
calculate the value of the wave function at arbitrary
points of a Fourier transform grid. If the real-space pro-
jections cannot be performed from the Fourier transform
grid, then the real-space method will be too costly to im
plement directly.

The difficulty highlighted above rises because the
discrete Fourier transform grid is poorly suited to pro-
jecting the angular momentum components of the wave
functions. The problem of ambiguity between the radial
and angular dependences of the wave functions becomes
even more difFicult to resolve if the atom is not positioned
at a grid point or halfway between grid points, if the dis-
tances between the grid points is different along all three
of the cell axes, or if the unit cell axes are not perpendic-
ular to each other.

D. Potentials for real-space projection

Z

2.25

FIG. 28. Illustration of nonuniqueness of spherical harmonic
projection, as discussed in the text. Top, an s state equal to
l.o(r /a ). Bottom, a mixed state equaI to
6(r/a)+ 6(r/a)(3cos 0—1). The grey discs represent the ion

positions.

Some of the problems outlined above become some-
what less severe if, instead of insisting on a complete pro-
jection of the spherical harmonic components of the
wave functions around each ion, one performs only a par-
tial projection as in the Kleinman-Bylander scheme.
However, the scheme outlined below can be applied to
any number of projections and hence allows the spherical
harmonic components of the wave functions to be pro-
jected to any degree of accuracy (as in the enhanced pro-
jection schemes mentioned above). Let us consider
Kleinman-Bylander projectors for the present.

An alternative way to understand the difficulties asso-
ciated with the real-space projection technique and thus
identify a possible solution is by considering the proper-
ties of the Fourier transform grid. If a double-density
Fourier transform grid (see Sec. III.K.1) is used in the
calculation, the reciprocal-space Fourier transform grid
is of length 46,„along each reciprocal-lattice vector,
where G,„ is the cutoff wave vector for the electronic
wave functions. On the corresponding real-space Fourier
transform grid, the phase of a plane wave of wave vector
46 „changes by a factor of 2m between each grid point,
and so the values of this plane wave on the grid points
are indistinguishable from those generated by a plane
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wave with wave vector 6 =0 or any other integer multi-
ple of 46,„. This is a general result; any function
defined only on the real-space grid points is unchanged if
any of its Fourier components are changed by any multi-
ple of the wave vector 46 „.This is the origin of the
so-called "wraparound error" of discrete representations
of Fourier transforms. The use of a double-density
Fourier transform grid eliminates the wraparound error
in all the parts of a pseudopotential calculation con-
sidered so far. Unfortunately, this is not true in the case
of a real-space projection of the nonlocal Kleinman-
Bylander projectors because these projectors must have
Fourier components at all wave vectors if they are to be
strictly localized in the core of the atom. If the Fourier
transform grid moves with respect to a fixed ionic and
electronic configuration, there will be interference be-
tween the components of the Kleinman-Bylander projec-
tors at wave vectors G +n 4G,„(n integer), and the
value of the Kleinman-Bylander matrix elements will
vary. For a fixed ionic and electronic configuration,
these matrix elements must be independent of the origin
of the Fourier transform grid for their values to be physi-
cally meaningful, and without a solution of this problem
the real-space projection technique cannot be applied.

It should be remembered that the local part of the
pseudopotential will also have components at large wave
vectors. However, the real-space representation of this
potential includes only wave vectors up to 26 „,since
this representation is generated by Fourier-transforming
the potential from reciprocal space, where only com-
ponents of the potential up to wave vector 26 „are
represented on the double-density Fourier transform
grid. This analogy provides an immediate solution to the
problem associated with the real-space Kleinman-
Bylander projectors. Rather than using the actual real-
space Kleinman-Bylander projectors, we should use pro-
jectors that have been Fourier filtered so that they do not
contain any components at wave vectors larger than a
wave vector Gz, which must be less than 46,„. If this is
the case, these modified projectors will not be subject to
any wraparound error.

The cost of forcing the high Fourier components of the
modified Kleinman-Bylander projectors to be strictly
zero at wave vectors above Gz is that in real space the
projectors are no longer localized in the core, but are
nonzero over the whole of the real-space grid. Obvious-
ly, if the projectors extend over the whole of the real-
space grid, there is nothing to be gained from the real-
space projection technique. The trick is to use the arbi-
trariness of the modified Kleinman-Bylander projectors
over the range of wave vectors 6,„&6 & Gz to ensure
that the magnitude of the modified projectors is negligi-
ble at distances greater than roughly 2r, from the ion
core, where r, is the core radius of the pseudopotential.
Of course, the Fourier components of the projectors at
wave vectors less than 6 „must not be changed, or the
real- and reciprocal-space Kleinman-Bylander projec-
tions will not be identical. The Kleinman-Bylander pro-

jections are carried out only over the grid points where
the projectors are non-negligible, thus restoring the
favorable scaling of the real-space projection technique.
The procedure for generating the modified projectors is
detailed in King-Smith et al. (1991). The test of the gen-
eration technique is simple. The modified real-space pro-
jectors must yield identical results to the reciprocal-space
Kleinman-Bylander projectors, irrespective of the rela-
tive positions of the ion and the Fourier transform grid, a
condition that the old, unmodified real-space Kleinman-
Bylander projectors failed to meet.

X. PARALLEL COMPUTERS

The series of algorithmic improvements described in
this article yield a method for performing total-energy
pseudopotential calculations whose computational time
requirements scale essentially as a constant times the
theoretical minimum number of operations required to
update all the wave functions in a single iteration. (This
can never be reduced below the cost of orthogonalizing
the wave functions without introducing an error. ) The
value of this constant depends on the system but always
lies between several tens and several hundreds. Although
there may be some possibility of reducing this constant, it
is clear that, since this constant can never be less than
one and is more likely to be of the order of ten, there are
ultimate limits to the gains to be achieved by improve-
ments in the numerical methods. There is certainly no
longer the possibility of increases in computational speed
by many orders of magnitude, of the sort that have been
gained in the last few years, without fundamentally
changing the essential features of the total-energy pseu-
dopotential method. This does not, of course, exclude
the possibility of a completely different method proving
to be more efFicient.

The developments in the total-energy pseudopotential
method allow calculations to be performed on any
reasonably powerful computer (anything from a modern
workstation to a conventional supercomputer) for quite
large systems containing up to 150 atoms in the unit cell,
provided that the pseudopotentials are moderately weak.
However, to allow studies of significantly larger systems,
much more powerful computers are required, which
combine both faster processing speeds with extremely
large amounts of memory. Without a fundamental
change in computer technology (the speed of each pro-
cessor of a conventional supercomputer has changed by
significantly less than one order of magnitude in the last
decade), these requirements can only be fulfilled by com-
bining a number of processors into a "parallel" comput-
er. In principle, by combining enough compute nodes,
parallel computers can be constructed that achieve arbi-
trarily large numbers of operations per second. No
parallel computer will achieve 100%%uo efficiency on a real
computation, since there are overheads associated with
communication between the processors, and achievement
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of a significant fraction of full efficiency is quite difFicult
on any but the most trivial of tasks. A relatively low
efficiency is not too great a cause for concern, as long as
it is maintained as the number of compute nodes is in-
creased. In this case, any required computational speed
is achievable with a large enough number of
processors —even if this computational speed is
significantly less than the theoretical speed of that num-
ber of processors. The real problem, however, is that in
all applications the efficiency falls steadily above a criti-
cal number of processors. This effect is associated with
the parts of the code that cannot be run in parallel. At
the critical number of processors this part of the calcula-
tion starts to dominate the computational time, and no
further reduction in computational time is possible by in-
creasing the number of processors. In this regime the
efficiency varies as the inverse of the number of compute
nodes! It is clear that, for any calculation to be run
efficiently and "scaleably" (i.e., so that computational
time decreases with number of processors), on a parallel
machine containing n processors not more than 1/n of
the entire calculation may run sequentially.

There are many possible architectures for parallel
machines. Each tends to have its own strengths and
weaknesses and, more importantly, its own suitability for
any particular computation. Interestingly total-energy
pseudopotential calculations have been successfully im-
plemented on two very different classes of parallel
rnachine. One, the Connection Machine, consists of an
extremely large number of relatively modest-performance

compute nodes. The other class of machine consists of a
smaller number of extremely powerful compute nodes;
examples of this latter class of machine are those
manufactured by Intel, Meiko, and N-Cube. Although
the strategies for implementing the codes is the same on
both classes of rnachine, the detailed methods required to
implement the codes are rather different. The Connec-
tion Machine is programmed using a standard high-level
computer language, Fortran 90. When the total-energy
pseudopotential calculation is expressed using vector-
oriented Fortran 90 statements, parallel execution is irn-
plemented by the compiler. The programmer is not re-
quired explicitly to implement communications among
the thousands of processors constituting the fine-grained,
massively parallel architecture. To further accelerate
processing, the vendor supplies a library of hand-micro-
coded FFT subroutines, which are directly callable from
Fortran 90 programs. The combination of programming
in Fortran 90 and the use of the distributed rnachine FFT
makes it possible for most of the total-energy calculation
to be performed in parallel.

In the case of the other class of machine, there is nor-
mally no fully distributed three-dimensional FFT, and a
major task in implementing total-energy pseudopotential
codes on these machines is the implementation of the
communications required to perform a distributed FFT.
A full description of the implementation of a set of pseu-
dopotential codes on this class of machine can be found

in Clarke et al. (1992).
The potential for pseudopotential calculations on

parallel computers has been demonstrated by the success-
ful calculations of the surface energy and relaxed struc-
ture of the 7 X 7 Takayanagi reconstruction (Takayanagi
et al , 1.985) of the (111) surface of silicon on a 64-node
Meiko machine (Stich et al. , 1992) and on a Connection
Machine (Brommer et al. , 1992). The supercells used for
these calculations contained 400 atoms and had a volume
of 784 times the atomic volume. Basis sets of up to
35000 plane waves were used to expand the electronic
wave functions, and the electronic minimization involved
up to 2. 8 X 10 degrees of freedom.

XI. CONCLUDING REMARKS

Car and Parrinello's molecular-dynamics method
stands as a landmark in the field of total-energy pseudo-
potential calculations. Iterative matrix diagonalization
techniques were in use before the molecular-dynamics
method was developed, but these schemes only partially
exploited the benefits to be gained by the use of iterative
techniques. Car and Parrinello's technique exploited the
advantages of overlapping the processes of calculating
eigenstates and iterating to self-consistency and the use of
fast Fourier transform techniques. Efficient schemes for
using nonlocal pseudopotentials were only implemented
as a result of the molecular-dynamics method. The com-
bination of all of these features rather than just the re-
placernent of a conventional matrix diagonalization
scheme by an iterative scheme is responsible for the
significant increase in the power of the total-energy pseu-
dopotential technique brought about by the molecular-
dynamics method. Any iterative matrix diagonalization
technique must exploit all of these features to be able to
challenge the molecular-dynamics method. Car and
Parrinello's method did not change the basic total-energy
pseudopotential technique but offered an enormous in-
crease in computational efficiency, so that much larger
and more complex systems became accessible to the tech-
nique. It also allowed the first ab initio dynamical simu-
lations to be performed. Only with the reduction in the
scaling of computational time with system size that
comes from Car. and Parrinello's molecular-dynamics
method and from conjugate-gradients techniques is it
worthwhile performing calculations for large systems on
parallel computers.

As mentioned previously, there is now only limited
scope for improvements in the algorithms used to per-
form total-energy pseudopotential calculations. Howev-
er, there are a number of areas where progress can still be
made. At present a definitive scheme for generating
pseudopotentials that are fully transferable and computa-
tionally efficient is still lacking. There is considerable
scope for improved densi. ty functionals. Perhaps the
most ambitious objective is to couple quantum-
mechanical modeling of small, critical regions of a system
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(such as a dislocation core) with a less rigorous modeling
of the noncritical regions (which could be modeled using
classical elasticity theory).

Even if all else is forgotten, the authors would like the
reader to retain just one idea. This is that ab initio
quantum-mechanical modeling using the total-energy
pseudopotential technique is now capable of addressing
an extremely large range of problems in a wide range of
scientific disciplines.
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