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The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities
for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed
source has a number of technical advantages for these applications, and its use is predicted to lead to im-

proved current-drive e5ciencies and opacities in reactor-grade fusion plasmas in specific cases. The Mi-
crowave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for
some of these new heating and current-drive schemes. Although the motivation for much of this research
has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency
near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an
intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativ-
istic effects, is of general interest. Other relevant applications include ionospheric modification by radio-
frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnet-
ic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the
analysis and computer simulation of the absorption and current drive produced by intense pulses, and of
the possible complications that may arise, e.g. , parametric instabilities, nonlinear self-focusing, trapped-
particle sideband instability, and instabilities of the heated plasma.
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I. INTRODUCTION

A. Motivation and scope

This theoretical review addresses the physics of intense
microwave heating and current drive in toroidal magnet-
ic confinement fusion devices. The important features of
the physics reviewed here derive from the characteristics
of a new technology, i.e., the free-electron laser, that is

being brought to bear on heating and current drive in
tokamaks. In addition to the application of a free-
electron laser (FEL) to tokamak heating and current
drive, the physics studies reported here are of significant
fundamental interest and inAuence a number of other ap-
plications, including ionospheric modification experi-
ments, high-energy electron accelerators, and the interac-
tion of intense, coherent wave pulses in space and astro-
physical plasmas. Because the wave-particle interactions
of interest here are highly nonlinear, there is considerable
novelty in the phenomena and opportunities arise for
significantly improving the e%ciency of driving current
or plasma heating in a tokamak.

The application of principal interest in this review is
provided by magnetic-confinement fusion in toroidal de-
vices. The plasmas in toroidal fusion devices must be
heated to bring them to thermonuclear temperatures. In
addition, the good energy confinement and stability of
tokamaks depend on a toroidal plasma current which
provides both a twist of the magnetic field lines as they
wrap around the torus and some magnetic self-pinching
of the plasma. Figure 1 presents a schematic of a typical
tokamak. As the plasma heats, Coulomb collisions be-
tween charged particles become less frequent (Spitzer,
1967). This renders Ohmic heating, wherein energy in
magnetic windings surrounding the torus can be induc-
tively coupled to the plasma and then dissipated in the
plasma through Coulomb collisions (Chen, 1974; Wesson,
1987), much less effective at the high temperatures re-
quired in a thermonuclear plasma. Furthermore, Ohmic
heating and current drive depend on the presence of a
toroidal induction electric field, which in turn depends on
an ever-increasing magnetic Aux produced by the Ohmic
coils as dictated by Faraday's law. Because the magnetic
Aux produced by the coils is necessarily limited, the
pulse-length of an Ohmically driven tokamak is finite.
Thus, the desire for steady-state tokamak operation pro-
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FIG. 1. Schematic of waves injected into a tokamak (Fisch,
1987). The tokamak has a toroidal magnetic field component
encircling the torus hole and a poloidal component encircling
the minor cross section.

vides additional motivation for noninductive heating and
current-drive mechanisms (Fisch, 1987).

The emphasis of this review will be on recent progress
in the theory of the interaction of an intense, pulsed,
coherent electromagnetic wave with a plasma in an ap-
plied magnetic field at frequencies near the electron cy-
clotron frequency. Relativistic effects are shown to play
a fundamental role here, and the wave-plasma interaction
departs significantly from linear or quasilinear in nature.
We shall review the basic underlying Hamiltonian theory
of a charged particle in a strong wave field including rela-
tivistic effects, and present the conditions for trapping of
an electron in the wave and for resonance overlap leading
to stochastic electron motion. We present the results of
calculations of the nonlinear opacity and current-drive
efBciency as well. We shall also consider the nonlinear
mixing of two strong waves to produce a third wave
which heats and drives current in the plasma. We shall
review some of the calculations addressing the stability of
the intense coherent waves as well as the stability of the
heated plasma. We shall also comment on current exper-
iments that may test some of the theoretical issues
presented here. The calculations reported here have been
based on a combination of analytical theory, numerical
integration of orbit equations, and particle simulations in
which the particle orbits and Maxwell's equations are
solved self-consistently. The review will be reasonably
self-contained. However, for the sake of brevity, we shall
refer to recent publications of closely related subject
matter where it is appropriate.

B. Free-electron laser

Free-electron lasers offer the possibility of high-power,
coherent radiation sources over a wide range of frequen-
cies and with good efficiencies (Colson and Sessler, 1985;
Roberson and Sprangle, 1989). An FEL relies on the fol-
lowing mechanism. A linear accelerator is used to pro-
duce a high-energy electron beam. The relativistic elec-
tron beam is propagated through a transverse periodic

FICi. 2. Schematic of components for a high-power free-
electron laser.

magnetic structure called a wiggler (see Fig. 2). The
magnetic structure induces transverse oscillations of the
electrons, which cause them to radiate. In the moving
reference frame of the beam, the wiggler magnetic field
Lorentz transforms into a backward propagating trans-
verse electromagnetic wave with wave number and fre-
quency given by

r

kic
—ip, y

iP, y k c

iP, yk —c

where P, =
Ub /c is the relative beam velocity,

y = (1—p.p) ' is the relativistic mass factor, and
k =2m/A, is the wiggler wave number.

The backscatter of the wiggler-produced transverse
wave by an infinitesimal, longitudinal, periodic bunching
of the electron beam with wave number 2k& produces a
forward-propagating, scattered transverse wave with
wave number —k&. The physical mechanism for the
scattering is that the density perturbation of the electron
beam couples with the transverse velocity perturbation of
the beam in the wiggler field to produce a nonlinear
current density that acts as an antenna for the scattered
transverse wave. The transverse velocity and magnetic
perturbations of the scattered wave then beat with the
transverse magnetic and velocity perturbations, respec-
tively, of the wiggler wave to produce a ponderomotive,
longitudinally oriented Lorentz force to reinforce the
bunching of the electron beam; and the scattering ex-
ponentiates (Kroll et al. , 1981). This scattering mecha-
nism corresponds to stimulated Compton or Raman
scattering (Drake et al. ; 1974 Kroll et al. , 1981). The
Raman limit pertains to situations wherein space-charge
effects and the self-consistent longitudinal electric field
are important in the bunching of the electron beam, i.e.,
the bunching satisfies the dispersion relation for an elec-
tron plasma oscillation. The exponentiation of the stimu-
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lated scattering depends nonlinearly on the wiggler field
strength.

After Lorentz transforming the frequency —wave-
number four-vector back to the laboratory reference
frame, one obtains the wave number and frequency of the
output radiation:

k2c iP—,y —k, —2y, k cy

ip, y —E2y, k c

(1.2)

for y, = (1 —p, ) '~, p, = 1, and an infinitesimal wiggler
field strength. With the finite amplitude of the wiggler
wave taken into account, the wavelength of the output
radiation is expressed in terms of the total y and given by
(Kroll et al. , 1981)

&2= (1+a„),
2y'

(1.3)

where a =(eB /m, c)/&2 k c is a measure of the
wiggler strength. From Eq. (1.3), we conclude that the
frequency of the output radiation can be controlled by
adjusting the wiggler wavelength or the electron beam
energy. The dependence of A,2 on a has been exploited
to improve the efficiency of the conversion of electron
beam energy into coherent radiation. This is achieved by
matching the decrease in y as the electron beam slows
down, due to its energy loss to radiation, with the ap-
propriate decrease in a to maintain the resonance condi-
tion given by Eq. (1.3). This is called tapering the
wiggler.

High-power FEL operation and improved efficiency
with tapering have been successfully demonstrated at the
Lawrence Livermore National Laboratory using the Ex-
perimental Test Accelerator (ETA) to provide a 4.5 MeV,
10 kA electron beam and a wiggler with peak field of 3.7
kG (Orzechowski et al. , 1985, 1986). The taper of the
wiggler was controlled by decreasing the current in the
wiggler coils and resulted in improving the output power
efliciency from 6% without taper to 35% with taper. In
these experiments, the FEL was operated as a single-pass
amplifier using a pulsed magnetron as the input master
oscillator with radiation at the frequency f=34.6 GHz
and 100 kW of microwave power. Of the 100 kW inject-
ed, it was inferred that approximately 5 kW ended up in
the TE,o mode that was exponentially amplified by the
FEL. The peak output radiation with tapering ap-
proached 1 GW. Both the observed output power and
the efficiency with and without tapering agreed well with
computer simulations (Orzechowski et al. , 1986). The
pulse length of the FEL was set by the electron accelera-
tor, whose pulse length was 30 ns.

A key component in the FEL is the electron accelera-
tor, because high-power operation demands high bright-
ness and good emittance properties. The induction linac
used at Livermore is well-suited for driving the FEL.
The Livermore FEL has been upgraded for the Mi-
crowave Tokamak Experiment (MTX) to operate with a

C. Basic physics

The main focus of this paper is the resonant interac-
tion of electrons with a coherent electromagnetic wave in
a strong magnetic field. In this section we present an ele-
mentary derivation of the relativistic cyclotron resonance
condition. We also describe the types of electromagnetic
waves that are considered here for ECH. We conclude
with some general remarks about the in6uence of
toroidal geometry on the electron orbits and ECH
current drive.

The relativistic Newton-Lorentz equation is
r

d vXB
dt P (1.4)

where p=ymv is the momentum, y=(1+p /m c )'

7—10 MeV electron beam and produce radiation at 1 or 2
mm wavelength depending on whether the Intense Mi-
crowave Prototype (IMP) or Electron Laser Facility
(ELF) wigglers are used (Thomassen, 1986). So far the
MTX FEL has produced powers in excess of 200 MW in
8 —10 ns pulses with an untapered wiggler and up to 400
MW with a preliminary attempt at tapering (Stallard
et al. , 1990). The performance of the FEL was limited
by energy variations in the electron beam. Preliminary
experiments with a tapered wiggler resulted in substan-
tially higher powers. The goal of MTX is to inject 8 GW
in 30—50 ns pulses into the Alcator C tokamak, which
was moved from the Massachusetts Institute of Technol-
ogy to Livermore for this purpose (Thomassen, 1986).
With a repetition rate of 5 kHz, reasonably high average
powers (1.2—2 MW) will be injected (Jong et al. , 1989).
The FEL output frequencies for the two wigglers, 140
GHz and 250 GHz, match the electron cyclotron fre-
quency for 5 and 9 T toroidal magnetic fields on axis, re-
spectively.

High-powered electron cyclotron heating (ECH) using
a pulsed FEL as in the MTX has a number of technical
advantages. Because of the pulsed nature of the FEL,
breakdown problems in the waveguides are more easily
avoided. The FEL is coupled quasi-optically with the
tokamak using an overmoded waveguide with no dielec-
tric window; the window is a fragile component in gyro-
tron systems. Furthermore, the FEL is a broadband
amplifier and is tunable in frequency; and feedback con-
trol is possible. In general, ECH is compatible with small
access ports, and its propagation into the plasma is well
defined. Good penetration into the plasma and single-
pass absorption can be achieved, and strong edge pertur-
bations due to ECH are not expected. Finally, the high
peak and average power of FEL-driven ECH affords
unique opportunities to improve electron cyclotron heat-
ing and current-drive efficiencies, and to control MHD
activity and disruptions by altering the current profile.
These applications will be the focus of the rest of this re-
view.
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m is the rest mass, q is the charge, v is the velocity, and jE
and 8 are the electric and magnetic fields. The particle
position evolves according to

=V .

In a uniform, time-independent magnetic field 8=80m.
with no electric Qeld, the charged particles execute cyclo-
tron gyration at constant energy in the plane perpendicu-
lar to B with constant orbital frequency given by (if we
neglect radiation by the particle, which is weak unless the
particles are significantly relativistic)

q80
pmc

and Larmor radius

(1.6a)

vg
P (1.6b)

The particle energy can be expressed as

E(x,t)= —,'Eexp( icot+ik—,z+ik~x )+c.c. (1.8)

The electric Geld seen by the electron along its lowest-
order, unperturbed orbit is obtained by substituting the
expressions for the electron trajectory in the absence of
the perturbing electric field, z=zo+u, (t to) and-
x =X+psin(Qt+Oo), in Eq. (1.8), where zo, to, and Oo

are determined by the initial conditions and X is the
guiding center position. After using the Bessel function
identity,

exp(iu sinu)= g J„(u)exp(inu),

Eq. (1.8) becomes
OO

E(x, t ) =—E' g J„(k~p )exp( i cot +in Q—

1/2
p gQO pz

Qmc = 1+2 +
mc mc

where ps =p j /2m Qo is the relativistic magnetic moment
or perpendicular action (in appropriate units), Qo=q80/
mc, and pq =ymv~.

Consider the perturbations in the electron orbits pro-
duced by a plane wave with an electric field of in6ni-
tesimal amplitude

(1.10)

where u~~ =p~~/mc, uz =p&/mc, y =1+uz+u
~~,

and

N~~ =k~~c/co is the parallel index of refraction. The paral-
lel direction is along z. The resonance curves are ellipses
in momenta space for ~N~~ ~

& 1 (Fig. 3).
A number of important insights can be gained directly

from the inspection of the resonance condition Eq. (1.10)
and Fig. 3. We see that the wave characteristics enter in
an important way through the frequency and the parallel
index of refraction. Because of the energy dependence
entering through y and the dependence on parallel
momentum in the Doppler shift, an initially resonant
electron can be nonlinearly detuned from resonance by
exchanging energy and momentum with the wave so that
y and/or u

~~

are changed. Of course, the electron may be
detuned from resonance by other means, for example,
collisions. There is a special circumstance in which the
electron can maintain resonance while it exchanges ener-

gy with the wave. This occurs for N~~ =1. This condition
is a generalization of the cyclotron auto-resonance-maser
(CARM) condition N =1 for parallel-propagating waves

(Davydovskii, 1962; Roberts and Buchsbaum, 1964; Kuo
and Schmidt, 1985). Another interesting phenomenon
that can be illustrated in Fig. 3 involves the competition
of neighboring cyclotron resonances for electrons with
comparable energies but oppositely directed momenta.
Electrons of comparable energy lie on circles with nearly
identical radii centered about the origin of momentum
space. These circles can intersect the resonance curves of
neighboring harmonics I and I+ 1 at locations where the
values of

p~~
have opposite signs. This has been referred

to as harmonic overlap (Smith et al. , 1987) and has im-
portant implications for ECH current drive. The two op-
positely oriented groups of electrons that resonantly in-
teract with the wave will contribute oppositely to the
current driven parallel to the magnetic field, and a partial
cancellation of the contributions to the current will
occur.

Next we present an elementary view of electron cyclo-
tron waves. Comprehensive treatments of this subject
have been given in numerous textbooks and journal arti-
cles, e.g. , Budden (1961), Stix (1962), Ott et al. (1980),
Bornatici et al. (1983), and Batchelor et al. (1984). For
purposes of this review, it will sufBce to give a few simple
results pertaining to the linear dispersion of the normal

+ik, u, t )+c.c. ,

(1.9)

where nonessential, time-independent phase factors have
been absorbed in E'. An electron will experience a large
acceleration due to this electric field if the time-
dependent phase factor remains nearly constant along the
zero-order orbit. The constancy of the phase factor
defines the resonance condition, m —n Q —k, v, =0, which
is given in terms of the momentum components by

Resonances

FIG. 3. Resonant surfaces in the p&,p
~~

plane for I and I + l cy-
clotron harmonics including relativistic eKects.
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8 =1—g(co~, /u )[co/(co+0, }],

L =1—g(ai, /co )[co/(t0 —0, )],

0, =q,BO/m, c, and S=(R+L)/2 .

Electron cyclotron waves are elliptically polarized in gen-
eral. For exactly parallel propagation with respect to Bo,
the normal modes are either right circularly polarized (8,
rotates with the electrons) or left circularly polarized (L,
rotates with the ions) and

k))cX = =R orr. , 0=0.
CO

For waves propagating exactly perpendicular to the mag-
netic field, there are two linearly polarized normal
modes: the ordinary (0) wave has its electric field paral-
lel to 80 and

k c+2- j

CO

(1.13)

while the extraordinary (X) mode has its electric field

perpendicular to Bo and

kpc

CO

(Co COi )(CO C02)

~2(~2 ~2 )
(1.14)

where coi 2= —,'0, [%1+(1+4'~,/0, )'~ ] and co„h=co,
+Q, .

The ordinary wave propagates for co&cuz, and has a
cutoff at co=m, . The extraordinary wave generally has a
faster phase velocity, cuts off at ~=co2, becomes evanes-
cent for ~ &co2, and is resonant at the upper hybrid fre-
quency co=co„h. As the wave vector tilts more in the
direction of the background magnetic field, the 0 mode
becomes left circularly polarized; and the X mode be-
comes right circularly polarized and maintains a faster
phase velocity than the 0 mode. As a consequence of the
cutoffs, the electron cyclotron resonance at the funda-

modes. Relativistic effects are important for the resonant
mteraction with electrons and absorption, but are not
generally important for propagation. Thus, we can con-
sider the linear dispersion relation given by Stix (1962)
for a general angle of propagation with respect to a
straight, uniform magnetic field in a cold, homogeneous
plasma,

P(—N R—)(N L)—
tan 8=

(SN RL—)(N P)—
where 8 is the angle between the wave vector k and the
applied magnetic field Bo, N =k c /co, to is the mode
frequency,

P = 1 Qcopq /co

mental is accessible by 0 and X modes launched from the
inside (i.e., the high-magnetic-field side) of the torus,
while the resonance is only accessible from the outside
(i.e., the low-magnetic-field side) using the 0 mode. The
second harmonic resonance is accessible to both 0 and X
modes launched from either the inside or outside of the
torus.

Studies of the hot-plasma propagation and absorption
of electron cyclotron waves have been presented by Qtt
et al. (1980), Bornatici et al. (1983), Batchelor et al.
(1984), Timofeev (1989), and others cited in these papers.
In general, finite-temperature effects force the cutoffs and
resonances to occur at locations corresponding to.higher
values of the magnetic field for the same value of the
wave frequency.

To complete this section on basic physics, we discuss a
few simple properties of magnetic confinement in toroidal
devices. A detailed presentation of tokamak physics is
found in the excellent monograph by Wesson (1987). Be-
cause of the gyration of charged particles in a strong
magnetic field, a magnetic field retards the expansion of
plasma across the lines of force. However, streaming
motion can occur along the field lines. By wrapping the
field lines around a torus, a configuration of field lines
that close on themselves can be established, which im-
proves the confinement. However, in order to insure sta-
bility, the field lines must twist in the poloidal plane (the
minor cross section) so that the field lines spend some of
the time on the inside or high-field side of the magnetic
axis. This renders a stabilizing force on the plasma when
it tries to expand away from the torus into an increasing
magnetic field on the inside of the device. Magnetohy-
drodynamic stability in both stellarators and tokarnaks
derives in part from the twist of the magnetic field.

As the particles follow the magnetic field around the
torus, the magnetic field strength increases toward the in-
side of the torus because it is proportional to the inverse
of the major radius. However, the spatial variation of the
magnetic field is very weak on the scale of the Larmor ra-
dius; in consequence, the magnetic moment is an adiabat-
ic invariant. The invariance of the magnetic moment,
which is proportional to Pi/B, and energy conservation
in the absence of collisions lead to a retarding force on a
charged particle directed along the magnetic field line
and opposite to the direction of increasing field strength.
Particles with insuf6cient parallel kinetic energy are
turned around, i.e., these particles are mirror-trapped on
the outside of the torus, while particles with sufficient
parallel kinetic energy can circulate all the way around
the torus. The toroidal current carried by a trapped par-
ticle averages to zero over the orbital period, but a circu-
lating particle can carry current. Thus, trapped particles
can degrade the eKciency of a number of current-drive
schemes and must be taken into account when devising
strategies for efficient current drive (Fisch, 1987}. The
basic physics concepts of this section will be elaborated
in the detailed calculations and applications in the subse-

quent sections.
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D. Outline of succeeding sections

The plan of the rest of the paper is as follows. In Sec.
II we present the relativistic Hamiltonian and a calcula-
tion of the particle dynamics including considerations of
wave-particle trapping and stochasticity. A discussion of
several nonlinear electron cyclotron heating and
current-drive mechanisms is given in the second half of
this section. The heating mechanisms considered are in-
tense, pulsed ECH as envisioned in the MTX, including
the efFects of rising buckets, stochastic heating, and beat
waves.

Current-drive applications with intense ECH are de-
scribed in detail in Sec. III. The concept of pulsed
current drive is reviewed first. The degradation in ECH
current drive produced by magnetically trapped particles
is briefly discussed next. The section is concluded with a
comparison of current-drive eKciencies for various non-
linear mechanisms.

The stability of an intense electron cyclotron wave in a
plasma is surveyed in Sec. IV. Intense electron cyclotron
waves can nonlinearly couple to other waves in the plas-
ma leading to parametric instabilities that compete as en-

ergy sinks with the intended heating or current-drive ap-
plications. We next review an instability in which the
wave-trapped electrons induce the growth of sidebands of
the incident wave, We also summarize the calculation of
a virulent nonlinear self-focusing instability of an intense
coherent 0 mode. We conclude the section with some re-
marks concerning the possible instability of a strongly
heated plasma.

In Sec. V, we present the results of numerical simula-
tions of intense, pulsed electron cyclotron heating and
current drive. We begin the section with a brief discus-
sion of the particle-orbit codes and the self-consistent
particle simulations used to study the nonlinear phenom-
ena. Numerical results are then reviewed that address
nonlinear ECH, stochastic heating and current drive, ris-
ing buckets, beat-wave current drive, and parametric in-
stability. In Sec. VI we present a discussion of two exper-
iments that may provide tests of some of the theories re-
viewed here. Conclusions and comments on future
research directions are given in Sec. VII.

II. WAVE-PARTlCLE INTERACTlON

A. Relativistic Hamiltonian
and particle dynamics

There have been a number of analytical treatments of
relativistic electron dynamics in a monochromatic elec-
tromagnetic wave in a strong magnetic field, for example,
Kitsenko et al. (1975), Bolis and Spyrou (1986), Zvonkov
and Timofeev (1986), Nevins et al. (1987), Zaslavskii
et al. (1987), Villalon and Burke (1987), Davidson (1987),
Davidson et al. (1989), Suvorov and Tokman (1988),
Taylor et al. (1988), Menyuk et al. (1987 and 1988), Kar-
imabadi and Angelopoulos (1989), Karimabadi et al.

H=')/(cP qA) —+m c"+q@=ymc +q4,
where

A= A, +x8oe„

(2.1)

k~= A, singe„+ A2cosge —A, singe, +xBoe

(2.2a)

(2.2b)

P is the canonical momentum, A is the vector potential,
and N is the electrostatic potential. A canonical trans-
formation is introduced to remove the explicit time
dependence. The generating function is

S=P' 0—0 (2.3a)

from which follows

Pg=Pg =, O'=EB-SS, mt
BO' I

BS
BPg

(2.3b)

and the transformed Hamiltonian is

H' =ymc — P+ q@ sing—=H+CO BS
(2.3c)

The Hamiltonian H' is now independent of time and a
constant of the motion. We next expand the Hamiltoni-
an to first order in the perturbing wave fields and evalu-
ate the g phase factor at zero order using x =X+p cos8,
where X is the guiding center position and is a constant
of the motion, and p=P~ '/mQO=(2P'8 '/mQo)'
After introducing the Bessel function expansion used in
Sec. I and the identities 2J/(k p) =J& &(kzp) —J&+&(kjp)
and JI( —x ) =( —1)'J&(x), we obtain

H Ho+ cH» Ho ymc2 ——P,

H&= g Z„is[n k~~z
+n8' —(1—n/l)cot], (2.4)

(1990), Cohen and Cohen (1988a, 1988b), Kotel'nikov
and Stupakov (1990 and 1991), Farina and Pozzoli
(1988), and references therein. In this section, we present
a concise derivation of the nonlinear, relativistic electron
dynamics following the presentation of Karimabadi et al.
(1990). The nonlinear dynamics are deduced from a rela-
tivistic Hamiltonian which is expanded perturbatively in
the applied wave amplitude. Fixed points and the oscilla-
tion frequencies of wave-trapped electrons are calculated
for fundamental 0 and second-harmonic X modes. A
wave-amplitude threshold for the onset of stochasticity is
presented based on the condition for the overlap of
neighboring cyclotron resonances.

The relativistic Hamiltonian for a plane wave of gen-
eral polarization in a strong magnetic field expressed in
terms of canonical variables is (Karimabadi et al. , 1990)
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mc

70
si

l

slncr n cosct J„(kyp)q P() . q Q
mc q kiC

+ex J„'(ktp)+e3
l

yoJ„(kip)
pz q
mc q

(2.5)

where kt=k sinu, k~~=k cosa, Ei, 2=lqlA& z/mc and

E3 lql@o/mc . The validity of the linear expansion of
the Hamiltonian requires that

l e; l
« 1, and

l
P" '

l« lP' 'l to justify the use of the zero-order Larmor ra-
dius in the argument of the 8essel functions and
dz' 'Idt =PI~ '/ym in the phase factor.

The zero-order equations of motion are straightfor-
wardly calculated from the Ho in Eq. (2.4). Using
d 8'/dt = r)Ho Ir)Pe =0 ro /l a—nd dz Id t =u, =p, /y m at
zero order, we deduce that a particle can experience a
large phase-synchronous acceleration from the perturb-
ing wave fields if the phase of the Ith term in H, is nearly
tiIne-independent, which recovers the relativistic cyclo-
tron resonance condition given in Eq. (1.10).

mc
H& — J, (k~p)sin(8 cot )—.

mc mc
(2.6)

We further specialize to conditions for which the elec-
tron Larmor radius is small, which is valid for most cir-
cumstances of interest and allows the Bessel functions to
be expanded for small argument. The fixed points are
determined from Hamilton's equations

The analysis of Karimabadi et al. (1990) addressed the
structure of the resonances, the constant energy surfaces,
the trapping widths and frequencies, the heating charac-
teristics, and the condition for resonance overlap which
leads to stochastic motion for the Hamiltonian of (2.4).
Here we specialize the wave polarization to two cases of
specific interest to tokamak heating, the 0 mode at

-Q, and the X mode at co-2Q, perpendicularly in-

cident from the outside of the torus, where there is easy
port access and wave propagation into the magnetic axis
is straightforward. For the 0 mode near perpendicular

ence ~1 ~ ~2 +0 O kl

1/2
d aH p. kt A i IIoPe

P =— mc sin(8'+~/2) =0
&2 ymc Bo mc

(2.7a)

dO'

dt
p, kid& (1+P, Im c )—Q

"dPe y Qo 2mc Bo y'

1/2
mc cos(8'+m/2) =0 . (2.7b)

If (p, /mc)(ktA &IBo)(mc /QoPe)'~ &&1, then the per-
turbation expansion remains valid; and the fixed points
corresponding to dPe/dt =0 and d8'/dt =0 satisfy both
8'=m/2+nmand th.e cyclotron resonance condition for
small k~~u„viz. , re =Qo/y. Around an elliptic fixed point
there is a set of closed nested orbits corresponding to
wave-trapped. trajectories. For small excursions from the
elliptic fixed point, the Hamiltonian can be expand. ed to
second order and put into the form of a simple-harmonic
oscillator. The wave-trapped particle bounce frequency
can then be readily calculated:

~(0)1— cos =0,
2y'(Peno)'"

(2.9)

where a( ) —= (1/&2)p, (kt A
&
/Bo)(1+p, ),

y = 1+2P&Q0+ p, . Figure 4 is taken from Kotel'nikov

I

the fixed points for the 0 mode at perpendicular in-
cidence can be obtained from the solution of

BH BH
BO BPg

' 1/2
p, kp 21 PgQp

=Qp
y4mc &0 2mc'

(2.8)
i. Pe

This specific result was obtained by expanding
J, (k~p) =k~p/2 and agrees with the results of Bolis and

Spyrou (1986) and Nevins et al (1987). Note .that the
trapping frequency scales as l

A
& l

The constant-energy surfaces and the fixed points have
been examined in detail by Nevins et al. (1987),
Kotel'nikov and Stupakov (1990), and Farina and Pozzoli
(1988). The fixed-point values P„ofPe are determined by
Eq. (2.7b). If we adopt units such that m=c=lel=l,

2
3C

, - CD

FKx. 4. Constant energy surfaces in the Pz, 8' plane for ordi-
nary mode heating at the fundamental cyclotron harmonic and
different values of p=—1 —co/Qo: (a) p &p„(b) p=p„(c)
p, &p&2'~'p„and (d) 2' p, &p, where p, -a' '

(Kotel'nikov and Stupakov, 1989).
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mc' ~v~2~ Pi Ji(kil ) .H(= sin(28 —tot )
mc

mc kl ~ 2 IQOPOI
sin(29 —cot )

+p 2' C
(2.10)

for kzp«1. Equations for dPO/dt and d8'/dt analo-
gous to Eq. (2.7) are calculated directly, from which the
fixed points are then determined. For small wave ampli-
tudes, there is a fixed point near
PoQo=P„= 1/yo —co/IQO where I =2 and we again have
set m =c=~e~=1. In analogy to the solutions to Eq.
(2.9), we consider the weakly relativistic limit to obtain
POQp=P„+a~ ~, where cz ~=k&A2/2Bp arid the uppel
sign corresponds to an X point at 8'+~/2=2nri (Fig. 5).
For small values of cx' ', there are closed nested surfaces
around the Q point, and the trapping frequency deduced

and Stupakov (1990) and illustrates the constant energy
surfaces and the locations of the fixed points and the con-
stant energy surfaces as functions of the parameters o."
and yo

' —co/Qo, where yo= 1+@, and Ii, is treated as a
constant [this is only approximately true and has been
quantified by Farina and Pozzoli (1991)]. For
infinitesimal a' ', the value of P& at the fixed points can
be determined perturbatively by expanding in powers of
a' '. The zero-order solution is determined by co=Qp/y,
which sets PsQO=P„=1/yo —to/IQo. For the weakly
relativistic case, y= 1+PsQO+I2, /2 in the second term
of Eq. (2.9), and we can set y ~1 in the third term if
a' ' is small. In this limit, P„=1/yo co/IQ—0 where
I = l. At g=vr+2nmthe. re is an elliptic fixed point la-
beled 1 in Fig. 4. For small a' ', a' ' « ~1

—
yahoo/Qo~,

there are another two fixed points at Q=0+2nm, wh. ich
are labeled 2 and 3 in Fig. 4. The X point lies above the
Q point. As the magnitude of a increases, the X and
Q points labeled 2 and 3 approach one another, merge,
and disappear when a' ' ~ ) ~1

—yacc/Qo~. For small
a' ', the trapped-particle excursion amplitude 5P@ scales
as (a' 'P„' )' deduced from (2.7a) and a quadratic ex-
pansion of Ho, Eq. (2.4). The trapping frequency calcu-
lated in (2.8) scales as Qo5Po. We deduce from balancing
the P term in the Hamiltonian with the term propor-
tional to a' '/Ps~, or by considering Eqs. (2.7a) and
(2.8b), that the resonance oscillation scales as
(SPY Q,' and the trapping frequency scales as Qp6Pg
when a' ' ) ~1

—yoto/Qo~ in the strongly nonlinear re-
gime. These results were obtained by Nevins et al.
(1987) and Kotel'nikov and Stupakov (1990). The results
for the weakly trapped limit agree with Kitsenko et al.
(1975) and Bolis and Spyrou (1986), while the results in
the strongly nonlinear limit agree with Kitsenko and
Pankratov (1984) and Davidson (1987).

The calculation of fixed points, resonance oscillation
amplitude, and trapping frequency for the X mode at
~=20, and perpendicular incidence proceeds similarly.
The X mode at secolld harmoilic with k~~

=0 is dominant-

ly electromagnetic with 3
&

—0, A 2 &&4p and

FIG. S. Constant energy surfaces in the I'&, 0' plane for extraor-
dinary mode heating at the second harmonic.

from a quadratic expansion in P& and 0' around the Q
point gives

kiA2 2QOPe
COb

—Qp
p P SPIC

(2.11)

The structure of the fixed points and the scaling of both
the trapping frequency and the excursion of P can be
deduced easily from the Hamiltonian by expanding Hp to
second order in P& for PQp/@ac «1 and balancing
terms in Ho+Hi. When ~a' '~ &&P„, the excursion 6Pe
scales as ~a' 'P„~ ' and the trapping frequency scales as
Qp5P&. As e' ' grows, the trapping region swells and the
X points migrate downward, finally reaching P& =0 when
a' '=P@. In this limit the trapping excursion scales as
5P&-a' ', and the trapping frequency scales as Qp6P@.

The efFective width of the separatrix can be further
quantified by calculating the action enclosed; this allows
a precise determination of the range of energies of in-
cident electrons which become trapped. This has been
carried out for I = 1 by Kotelnikov and Stupakov (1991)
and Farina and Pozzoli (1988), and for both I = 1 and 2
by Farina and Pozzoli (1991). Cohen and Rognlien
(1991) have shown that the action can be calculated in
closed form through l =6. They further note that, for
l &4, the separatrix energy width can be comparable to
the resonant electron energy for ~E/80

~

&& 1, so that the
perturbation expansion of the Hamiltonian remains valid.
For I )4,

~
E /80 ~

) 1 is required, which invalidates the
perturbation expansion of the Hamiltonian and makes
other nonlinear efFects like overlap of neighboring
cyclotron-harmonic resonances important.

So far in this section we have calculated the resonant
interaction of an electron with a single cyclotron har-
rnonic. However, it is well known that neighboring
cyclotron-harmonic components of a wave can interact
with a charged particle leading to stochasticity when the
trapping excursions in phase space overcome the separa-
tion between resonances (Chirikov, 1979). To calculate
the stochasticity condition, the independent variables in
the Hamiltonian are reduced by canonical transforrna-
tign to a single pair of canonically conjugate coordinates
(P&, g). The separation 5P& between adjacent cyclotron
harmonic resonances is determined by solving for the
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values of P& for I and I+1 in the resonance condition
Eq. (1.10). The trapping halfwidth AP& for weak trap-
ping is calculated by expanding Hp expressed in terms of
P& and g to second order around an elliptic fixed point at
P& =P„and using

b P
&
=2

~ H, /( d H /BP
& ) ~

'/ (2.12)

where H
&

is the amplitude of the interaction Hamiltoni-
an. The trapped-particle bounce frequency from Eq. (2.8)
is

g2H g2H 1/2 g2H i /2

g2 gp2 1 ~p2
(2.13)

Karimabadi et al. (1990) express Chirikov's stochasticity
condition (Chirikov, 1979) as

Pll/mc

26py 4cob

5P~ Qo/y
(2.14)

FIG. 6. Cyclotron resonance curves in momentum space for
lQo/co=0. 96 and Nll =0.8 and 0.99 illustrating cyclotron auto-
resonance as Nll ~1. A heating characteristic is shown with a
dashed curve.

where y is calculated at the 0 point and 5P& gives the
separation between neighboring resonances. The explicit
expressions for cob, EP&, and 6P&, and the expressions re-
lating P& to Pz and Pll depend on the wave polarization
and the propagation characteristics. The results of Eq.
(2.12) and (2.13) correspond to the weak trapping limit.
The stochasticity condition will differ somewhat when
the trapping around one resonance is strong, while the
trapping around the neighboring resonance is weak.

The electron receives a succession of uncorrelated
kicks from the wave and follows a diffusive path in phase
space when the stochasticity condition is satisfied. The
exceptions to this are in regions of phase in which the
trajectories remain regular. We deduce from Hamilton's
equations that the electron energy changes by d c
=dt(dH/dt) =dt(BHi/dt ) and the parallel momentum
changes by dP~~ =dt(dP~~ Idt ) = dt(dH, /Bz )

—for an
infinitesimal time dt. These increments define the heating
characteristics with the sum over all cyclotron harmonics
included in H„

d6 co c (2.15)
dPll kll Nll

By comparison, the local value of the tangent to the reso-
nance curve determined by (1.10) is given by
d EldP~~ =N~~~c. Thus, for N~~ very close to unity, the heat-

ing characteristic can align itself with the resonance
curve (Fig. 6). This is the condition for cyclotron au-
toresonance. Furthermore, Karimabadi et al. (1990)
show that the surfaces of constant Hp are open for

Nll &1: they are parabohc for Nil=1 and hyperbohc for

N~~ & 1. Thus, while maintaining constancy of H(H =Ho
for H, «Ho), the particle can be resonantly accelerated
to very high kinetic energies for Nll = 1.

The expression (2.15) is correct only in a uniform mag-
netic field; otherwise, Pll is not constant even in the ab-
sence of the wave. The expression is locally correct but
not particularly useful if Bp is constant but kll varies. A
modified description which allows such variations but in-

eludes only a single harmonic will be presented in the fol-
lowing [Eq. (2.34)]. For a single harmonic, the charac-
teristics in a varying magnetic field are easily obtained
from Hamilton's equations for the rate of change of c. and
the canonical momentum Pe.. e= (co/l )P&+const.

The stochasticity accompanying the overlap of cyclo-
tron resonances sets in at relatively higher wave ampli-
tudes than for those required for the overlap of bounce
resonances in a nonuniform inagnetic field (Bernstein and
Baxter, 1981; Rognlien, 1983a; Smith and Cohen, 1983;
Hafizi and Aamodt, 1988). A quasilinear diffusion model
has been found to adequately describe stochastic diffusion
due to overlap of bounce resonances over much of the ve-
locity space (Smith, Byers, and LoDestro, 1980; Cohen,
Cohen, and Rognlien, 1983).

Another consequence of the wave-particle interaction
that can be deduced directly from the Hamiltonian is the
wave-driven cross-field transport of the heated electrons.
For a single plane wave with k=kjx+kllz, it is easy to
extend the analysis of Smith and Cohen (1983) and show
that

qBp 1'
k~c

where H is the time derivative of the Hamiltonian and F
is the time derivative of the guiding-center position in y.
Therefore, for a given kick in particle energy Ac, , there is
a displacement in the guiding-center position given by

PlC p

where N~=k~c/co. Thus, significant heating will be ac-
companied by cross-field displacements that Inay be ap-
preciable in units of c /Qp. However, it should be kept in
mind that c/Qp in a 5 T magnetic field is less than 0.04
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cm, which is several orders of magnitude smaller than
typical tokamak minor radii. Kupfer (1991) has used a
similar analysis to deduce the radial diA'usion coeKcients
accompanying quasilinear ECH.

The second half of this section illustrates the physics of
wave trapping, stochasticity, and other nonlinearities in
four mechanisms for heating and driving current in

tokamaks.

Pc

P

B. Heating and current-drive mechanisms
2' 0 271. 0

Heating and current drive are closely linked in the four
heating and current-drive mechanisms analyzed in this
section. All four mechanisms depend on the cyclotron
resonance condition (1.10). By introducing a wave hav-

ng a finite kll of definite sign, electrons transitting in a
preferred toroidal direction will be heated and collide less
often with other electrons and ions. This results in a net
contribution to the toroidal current in addition to heat-
ing the plasma (Fisch, 1987).

The Grst heating and current-drive mechanism re-
viewed in this section is that introduced by Nevins et al.
(1987) and is directly relevant to FEL heating in the
MTX. Consider first, for simplicity, 0-mode heating at
normal incidence to the magnetic field and neglect any
change in X~~ or Bp over the axial extent of the mi-

crowave beam. Because of the finite width of the wave

envelope, electrons streaming along the magnetic field

enter the edge of the wave and experience a wave ampli-
tude that rises smoothly, peaks, and then decreases back
to zero as the electrons exit the other side of the wave en-

velope. The following ordering of characteristic frequen-
cies corresponds to high-power FEL operation in MTX
(Nevins et al. , 1987; Thomassen, 1986).

(2.16)

where 0, is the electron cyclotron frequency, ~& is the
trapping frequency of the resonant particles (which could
be most of the illuminated electrons at the peak of the
pulse and near co=lAo in MTX), v~~ is the parallel elec-
tron velocity, m is the width of the wave envelope along
the magnetic field line, v, is the electron 90 collision fre-
quency, 8 is the major radius of the tokamak, &„E„is the
FEL pulse length, and T„Ez is the time in between FEL
pulses. Figure 7 shows a sequence of (P&, 8) phase space
snapshots illustrating the evolution of principal separa-
trix and fixed points as experienced by the electrons tran-
sitting the pulse. The 0 point labeled 3 in Fig. 4 has been
omitted in Fig. 7 in the interest of simplicity; its inclusion
does not significantly alter the following arguments.

With the ordering of frequencies indicated in (2.16),
the electron trajectories evolve adiabatically as the wave
amplitude they see slowly changes; and the action is con-
served except near the separatrices and the X points.
Adiabaticity fails near the separatrices and the X points,
because the trapping frequency cob decreases to zero so

FIG. 7. (a)—(f) A sequence of snapshots of electron phase space
moving across the microwave beam illustrating the heating
mechanism in the strongly nonlinear regime (Nevins et al. ,
1987). The thin lines are surfaces of constant H. The particles
are indicated by the heavy lines. Particles are first pulled
through the hyperbolic fixed point from below [(a)—(c)], and
then half are expelled above the separatrix [(d)—(f)].

that cob»ul/w is no longer true (U~~/w is a measure of
the characteristic rate of change of the wave amplitude
seen by the electrons). After the electrons enter the FEL
pulse and the wave amplitude swells, the X points and
the lower separatrix migrate to smaller values of Po.
Electrons are swept up by the growing wave and trapped.
Their orbits take them around the Q point on constant-
energy surfaces with a relatively uniform distribution of
phases. After the amplitude peaks and then decreases,
the lower separatrix and X points rise; and the volume of
phase space trapped by the wave within the separatrices
shrinks. As the trapped particles get closer to the separa-
trices and to the X points, their action is no longer con-
served because the trapping frequency decreases to zero.
Electrons are detrapped as the wave amplitude further
shrinks, and the volume of trapped particles decreases.

Nevins et al. (1987), Kotel'nikov and Stupakov (1990),
and Cohen and Rognlien (1991) have calculated the rate
of increase of untrapped phase-space volume above and
below the trapped region as the decrease of the wave am-
plitude causes detrapping. For both the 0 mode at
co=Q, and the X mode at co=20„ the phase-space
volumes above and below the separatrix grow at the same
rate, so that half of the resonant particles are expelled
from the separatrix at significantly higher kinetic ener-
gies and heating results. To prove this, one expresses the
Hamiltonian in action-angle variables, P& and P, where

P& is the action and is adiabatically conserved as the
wave amplitude slowly varies. The volume in phase
space is given by

dA =dP&dg=dP&dH/(r)H/r)P)= (dP&/P&)dH, —

(2.17)

where H=H —H, is the value of the Hamiltonian rela-
tive to its value H, at the separatrix, and where P& is the
total time derivative of P& along the particle orbit. The
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time derivative of the area surrounding the separatrix is
then

dppH

P~
(2.18)

(2.19)

where r, = iv/v~~ is the transit time (which, for this simple
case, is also the linear correlation time) and EP is the
characteristic resonance excursion of P& in dirnensionless
units. It was deduced earlier that bP-n' ' ~' in the
limit of strong wave trapping, where q= —,

' for the 0
mode, q = 1 for the X mode; and a' ' and a' ' were given
after Eqs. (2.9) and (2.10). Thus, p, is the ratio of the
nonlinear energy excursion to the thermal energy width;
and p2 is the ratio of the resonance width due to the finite
correlation time to the thermal resonance width. In the
first of two linear regimes, p, &p2 and p2 & 1, a resonant
electron acquires an amount of energy, hcL, of order

EEL meC
2

Psr, =uQor, (T, /m, c )~ '-pi ~/pz .
T T

(2.20)

The relative resonance width hvL is calculated by equat-
ing the relativistic shift in the cyclotron resonance condi-
tion to the decorrelation frequency 2m/~„ from which
one obtains AuL -p2u, . Thus, the fraction of resonant
electrons is approximately p2 for p2 & 1. The relative de-
formation of the heated electron distribution function for
electrons heated by hcL is of order AcL/T, over the
linear resonance width AuL. Then the energy gain of the
electrons averaged over the distribution function is

( hE„) /T, =pz(b EL/T, )'-p i '~/pz . (2.21)

which is a sum of equal contributions from above and
below the separatrix (Kotel'nikov and Stupakov, 1990).
Here H =a(B/Ba)(H H, ),—where a represents the wave
amplitude. Thus, the finite spatial width of the electron
cyclotron wave in the direction parallel to the magnetic
field causes the detrapping and heating of the resonant
electrons.

The nonlinear heating has been estimated analytically
and evaluated numerically by Nevins et al. (1987), and
quantified analytically by Kotel'nikov and Stupakov
(1991),Pozzoli and Ronzio (1989), and Farina and Pozzo-
li (1991). Following Nevins et al. (1987), define an opaci-
ty rNL=P, /Po, where P, is the absorbed power when
wave attenuation is ignored, and P0 is the incident
power. The model will be applied to the 0 mode at
co=A, and the X mode at co=20, that are normally in-

cident on a plane stratified slab, and we allow gradients
in B0 only parallel to the wave propagation. There are
several regimes of absorption depending on the values of
the dimensionless parameters

p, =bP(m, c /T, ), pz=(m, c /T, )(2m. /cor, ),

The absorbed power P, in this first linear regime is then
4—2q

Te P2

(2.22)

(2.23)

where X = kc /ra is the index of refraction. We define the
opacity to be the ratio

(L1) 2Pa Te 8 ~pe
+L1 P0 meC 0 Ae

(2.24)

where 3 is a dimensionless constant that must be set
equal to m to match linear absorption theory (Nevins
et al. (1987).

In the second linear regime, p, &p2 and p2 & 1, the res-
onance width is now determined solely by the inverse of
the correlation time ~, ' rather than by thermal effects.
In consequence, there are two compensating changes in
the estimate of the optical depth. With p2 ) 1, the entire
electron distribution is resonant with the wave. Hence,
hv L -p2u, in the first linear regime is replaced by u, and

(2.25)

The other change in the calculation of the opacity is that
the width of the absorption layer is now set by the in-
verse correlation time rather than by thermal broadening
of the cyclotron frequency, so that d i z =R /0, r,
=p2dL1. These two changes cancel one another in deter-
mining the absorbed power, which is given by

P«z~ n v T hd (m cz/T )4
—ze~z/pz P~L&~

and the opacity is unchanged from (2.24),

P (L2)
a

L2 +L1
0

(2.26)

(2.27)

For larger wave amplitudes so that cob~, ~ 1 for most
of the resonant electrons, nonlinear effects limit the reso-
nant energy excursion Ac.. The condition co&~, 1 is
equivalent to the linear step size hcL/T, -p1 ~/p2 in
(2.20), exceeding the relative linear resonance width in
energy hvL/v, -p2. Here cob is the bounce frequency for
a weakly trapped electron. In this regime the step size
for energy gain or loss is the island width
mu, Au =dc, =m, c 5p, where 5p -cx' -p', . For
p1 &1, not all of the electrons are trapped; the weakly
trapped fraction scales as Ac. /T, -p', ; and thermal

where h is the height of the ECH beam,
di, =4(T, /m, c )R is the width of the linear absorption
layer due to thermal broadening of the cyclotron reso-
nance, and R is the major radius of the tokamak, which
is an adequate estimate of the magnetic scale length. The
incident power is

Po=Nchiv(E /8m)-a .Bochw(m, c /T, ) ~/X,
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efFects determine the depth of the resonance layer. The
trapping causes both heating and cooling of the resonant
electrons, but there are more colder particles being heat-
ed than hotter particles that cool. The fraction of the
trapped electrons that experiences net heating by an
amount equal to the step size scales as an additional fac-
tor of b,e/T, . Thus, the energy gain averaged over the
distribution function is

L1
L2
NL1
NL2

1/(1 —q/2)Pl &P2
Pl &P2
p, &1
pi &~1 p2~ ..

TABLE I. ECH absorption regimes.

Regime

p2 &1
p2&1
P2 &Pl
PZ &Pl

1

1

yp
1 —q j2

3
Ac,

&«NLi&=Tee
3 —3q /2

eP1 (2.28)

Hence, the absorbed power is
3

p(NL1) T I d
~ 3 —3q/2

a eUe e L1 T. P1

and the nonlinear opacity is

p(NL1)
a I'2

+NL1 = TL ~

p (2.30)

In physical parameters,

7PPiIi = 2 (R /Xo)(co~, /0, )N(2m /cor, )

X ( T, /m, c )'~ (BoIki 2, )'~

rgb', = 2 (R /A, o)(co~, /fl, )N(2m /car, )

X ( T, /m, c )' (2BO/ki A2)'

The strongly nonlinear regime of absorption corre-
sponds to even higher wave amplitudes p, &max(l, p2).
The width of the wave-trapped region in phase space is
large, and essentially all of the electrons passing through
the microwave beam become trapped. Half of the elec-
trons gain energy AEIT, -p, as they pass through the
separatrix and X points on leaving the microwave pulse.
Because p, )p2 in this regime, nonlinear efFects also
determine the absorption depth, which is increased by a
factor of p1 relative to the linear absorption depth dL1.
Hence,

P,' " '=n, v, T,hp, di, (b e/T, )-p, , (2.31)

and the opacity is given by

p(NL2~
Q 2

+NL2 =
2 —2 (2.32)

In physical parameters,

rNL'q= 2 (R /Ao)(2n. /cow, )(co„,/0, )

XN(T, Im, c ) (B Ik 2 )

r~~2= A (R /Ao}(2n. /cor, }(co,/0, )N .

Table I summarizes the four regimes of absorption as
determined by the parameters p1 and p2. The depen-

dence of the nonlinear opacities on wave amplitude
enters through the parameter p1. We observe that the
opacity either remains unchanged or decreases as a func-
tion of increasing wave amplitude for 0-mode heating at
the first harmonic and X-mode heating at the second har-
monic. The opacities join smoothly at each boundary be-
tween regimes except for the X mode at the boundary

p, =@2)1 between the second linear and second non-
linear regimes. This suggests that there is an additional
absorption regime for the X mode that has been missed
by these arguments.

We note that Kotel'nikov and Stupakov (1991) have
obtained the same scaling for the 0-mode opacity in the
strongly nonlinear regime and have calculated the multi-
plicative constant A =1 in the following manner. They
deduced the energy gain of an electron transiting a large
amplitude ordinary mode from the relativistic Hamiltoni-
an analysis using Eq. (2.18) and their calculation of the
50% probability of being detrapped above or below the
sepatrix on the exit from the wave. Their result for the
absorbed energy is parametrized in terms of the parallel
momentum of the electron p, (whose change is assumed
to be small) and the magnetic field location x relative to
the cyclotron resonance. By assuming a Maxwellian dis-
tribution for p, and a linear dependence of the magnetic
profile on x near the resonance, they were then able to in-
tegrate the absorbed energy per electron over the elec-
tron distribution function and with respect to x to obtain
the energy absorbed per unit time and per unit length in
y. The ratio of the absorbed power to the incident power
per unit length in y is the nonlinear opacity. The result
has been further substantiated in the analytical and semi-
analytical calculations of Farina and Pozzoli (1991) and
in earlier numerical orbit calculations by Nevins et al.
(1987). Farina and Pozzoli (1991) included the eff'ects of
nonconstant p, in their work. For the parameters pro-
posed for high-power FEI. experiments in MTX, p1) 1

and p2 &1, which puts the expected absorption into the
second nonlinear regime. However, the heating in MTX
is expected to be dominated by the rising-bucket mecha-
nism reviewed later in this section. Current drive will ac-
company the nonlinear heating if the incident electron
cyclotron waves have a kl~ with a definite sign. Current
drive and current-drive efticiency will be addressed later
in the paper.

This picture can be substantially modified by variations
in X~~ or 8 over the axial extent of the microwave beam
(Cohen and Rognlien, 1991;Cohen, Cohen, Nevins, et al.
1988, Cohen et al. , 1989). Variations in N~~ or B cause

Rev. Mod. Phys. , Vol. 63, No. 4, October 1991



Cohen et al. : Theory of free-electron-laser. . . 961

(2)

ve

Resona
cUrv

Characteristics

40

FIG. 8. Rising bucket concept (R. Cohen et al. , 1989). (a) Mi-
crowaves launched into a tokamak and rejected by a convex
mirror to spread kll. (b) Resonance curves and heating charac-
teristics in momentum space.

the resonance to move in momentum space. If the varia-
tions are adiabatic, so that the time for the resonance to
move a separatrix width exceeds the trapping time, then
trapped electrons remain trapped as the resonance
moves, and consequently can extract more energy from
the microwave beam. The process is sometimes referred
to as acceleration by a rising phase-space bucket. At the
limit of marginal adiabaticity, it is analogous to accelera-
tion in a synchrotron (Bethe and Rose, 1937; McMillan,
1945); and more generally, it is analogous to acceleration
in a linear rf accelerator (Humphries, 1986). The process
is the inverse of the deceleration of resonant electrons in
a free-electron laser with a tapered wiggler (Colson and
Sessler, 1985; Roberson and Sprangle, 1989).

Variations in 8 over the extent of the beam are typical-
ly very small in a tokamak, at most of order
(r/R)(ui/2mRq), where here q is the safety factor; the
resultant change in energy b.y/y=b, B/8 is typically
small. On the other hand, variations in All can appreci-
ably increase the energy gain and, hence, the opacity.
This is essentially true if one deliberately spreads the mi-
crowave beam with, for example, a cyclindrical mirror as
shown in Fig. 8(a}; but the modifications are important
even for the variations in Nll which result from the com-
bination of the natural divergence of the microwave
beam as it emerges from the transmission system and
curvature of the magnetic 6eld lines. The eC'ect is illus-
trated in Fig. 8. The parallel index of refraction increases
from point (1) to point (2) in Fig. 8(a). The correspond-

ing resonance curves are shown in Fig. 8(b). An electron
initially resonant at (1) can be trapped and adiabatically
lifted to a higher energy at (2) along a heating charac-
teristic.

The heating characteristic here divers in a subtle way
from that described by Eq. (2.15) derived for the stochas-
tic regime, in which all cyclotron harmonics were includ-
ed and it was assumed tacitly that kll did not vary. Here,
the heating characteristic is specific to a single harmonic
number; and weak variations of the wave quantities and
the applied magnetic Geld in z are allowed explicitly. The
heating characteristic is derived from dsldP&

(aa/a—t)/ (BH/BO) =co/l, where H is given by Eqs.
(2.4) and (2.5) with k~~z f kidz; and the heating charac-
teristic for the harmonic is given by (Hafizi and Aamodt,
1987; Rognlien, 1983b)

c=pB„+const, (2.33)

where B„=m,ceo/el [the l appearing here in the denomi-
nator of 8, was omitted by Cohen, Cohen, and Nevins,
et al. (1988a) and Cohen et al. (1989)] and p=eP&/mi, c
is the relativistic magnetic moment.

The energy gain for a typical situation in which mag-
netic gradients are insignificant across the beam is

1 —X
llf

Ill

llf .1 —N

where Nll; and NllI are the initial and final parallel in-
dices of refraction, and pll, . is the initial parallel momen-
tum.

An important feature of Eq. (2.34) is that the energy
gain becomes large and in fact diverges as Nil/ 1,
which, as noted earlier, is the cyclotron autoresonance
condition. This is particularly significant for current-
drive applications, since current-drive eSciency increases
with the energy of the accelerated electrons. Hence, we
can devise "rising-bucket" current drive schemes which
are optimized for diverging beams where the maximum-

Xll ray is nearly tangent to the Aux surfaces where the ab-
sorption is large.

The energy gained by individual electrons varies from
that given by Eq. (2.34} by an amount of the order of the
nonlinear resonance width, as electrons can be trapped
from below resonance and detrapped above or vice versa.
The absorption can be calculated (Cohen and Rognlien,
1991) from Eq. (2.34), the expressions for the nonlinear
resonance width, the probabilities of trapping and de-
trapping above versus below resonance for fixed Xll and
8 (—,

' for either fundamental or second-harmonic heating),
and energy conservation. The absorption coe%cient is
nonlocal: the absorption from a specific ray depends on
the number and distribution of trapped electrons travers-
ing the ray, which in turn depends on the intensity and

All of all rays previously traversed. In a "sudden adiabat-
ic" turn-on and turn-off approximation, in which an is-
land i.s assumed to grow adiabatically at a fixed initial en-

ergy until all electrons destined to become trapped have
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been trapped, then accelerate without trapping or detrap-
ping electrons, and then decay adiabatically at a 6xed en-

ergy, the procedure outlined above yields closed-form ex-
pressions for the beam-averaged optical thickness.

The optical thickness r is given by (Cohen and
Rognlien, 1991):

bi+ +bw (2.35)

+bi ~lrlOP3 P5E (2.36)

where ~» and ~b, respectively, are contributions arising
from the acceleration of the phase-space island ("buck-
et") and the finite width of the bucket. The bucket-width
term is that derived earlier (rNi, or rNL2) for the absorp-
tion in the absence of gradients (with p, generalized as
below), while fbi is given by

~pe R2ol
2' '(l —1)! 0'

with co, and 0„ the electron plasma and cyclotron fre-
quencies, and

5E, = 5E, /T= min(1, ( 8/m)pt~ 0 '+'~
) .

Other quantities appearing in these expressions are:
l =harmonic number, Ql=(2' E +NiyE!v~~/c)/Ek is
the polarization factor; Ek and E are the amplitudes of
the electric field and its left-hand circularly polarized
component; 0=T/mc, po=ay/(1 —N ) p=—po / 8 (a generalization of the previously given

1/(2 q) w

definition to oblique propagation), a:—2 ' (Ek Qt /
yB )I' N' '/ (I —1)!,p =—(AN+2 *N)/(20)'~,

where

g 2N2I —3 0—i

5/2(2 4—
1( 1 N2 )2(I 1 )(

II

0+0*
AN+5

1 /2
—N +Nill II2

1 —N2
ll2

(1—N„, ),

~ 'N(N~~i, N~p) =&N( —
N~~2,

—
N~~, ) (and similarly for g),

8 =Ro/cosp, Ro is the major radius at the cyclotron res-
onance, (t is the angle of the poloidal projection of the
central microwave ray with the major-radius direction,
/=min(gb, g, +gb5E/2T),

1 /2

4 0

%(N~~, ,N~„)=(20) '" N

5E/T =max(q p, , (8/m )8 '+'
p '~ ),

+ +(20) i~q(bN)
(1 N„,)—

1/2
1 —N ((, N((2 ( arcsinN((, —arcsinN((~ )

1 —N, (1 N„)'—

and gb =2(27/16)'~ =2.38 for fundamental heating,
while g& =2 for second harmonic. These expressions ap-
ply for fundamental or second-harmonic heating (ex-
traordinary and ordinary modes) of a Maxwellian elec-
tron distribution, with diverging beams [N~~sgn(U~~) in-
creases as electrons cross the beam], and assume that the
variation of Nll over the extent of the microwave beam
dominates over the change in 80. Generalizations to
other harmonics, non-Maxwellian plasmas, and converg-
ing beams can be found in Cohen and Rognlien (1991).

An important qualitative feature of Eq. (2.36) is that
the optical thickness increases with the spread of Nll and
can even exceed the linear value for rather moderate
spreads (includes those which can arise from the com-
bination of toroidal curvature and natural beam diver-
gence). This will be explicitly demonstrated in Sec. V.
The derivation of Eq. (2.36) assumes that the buckets are
lifted adiabatically. When this is not the case, the ab-
sorption becomes linear. An interpolation formula
describing partially adiabatic bucket lift is given by

Cohen and Rognlien (1991).
An implicit assumption in the preceding discussion of

nonlinear absorption was that the trapping regions of
phase space centered on neighboring cyclotron reso-
nances did not overlap. However, as the wave amplitude
increases the trapping regions smell; and with suKcient1y
large wave amplitude there is overlap of the neighboring
trapping regions (Menyuk et al , 1987, 1988; .Karimabadi
et al. , 1990). The principal cyclotron resonance, the
neighboring interacting resonances, and the heating
characteristics are all determined by the same values of
wave frequency and kll. Thus, electrons with a preferred
sign of Ull can be stochastically accelerated leading to
current drive in addition to heating.

Stochastic electron diffusion along heating characteris-
tics occurs when resonances overlap. When the principal
cyclotron harmonic number is relatively low, the separa-
tion of the neighboring resonances in pj and pll is sub-
stantial. As a result, just preceding the onset of reso-
nance overlap, the trapping around the principal reso-
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FIG. 9. Stochasticity threshold values of the normalized right-
hand component of the electric field E„;,/80 for the extraordi-
nary mode for different values co/Q& at perpendicular incidence.
For this low-density example, the total electric field is
Eo =&2 E„;,. For the O-mode case, the threshold is
Eii /B0-0. 3 as indicated.

nance will be described typically by the strong trapping
physics presented earlier in this section. The closest
neighboring resonance in momentum space will corre-
spond to the next higher cyclotron harmonic number in
most circumstances, and the energy of the resonant parti-
cles will be significantly higher than those in the princi-
pal resonance (see Fig. 3 and Figs. 1 and 2 of Meynuk
et al. , 1988). In consequence of the larger value of y, the
island width of the neighboring resonance will have a
smaller amplitude. The width of the neighboring reso-
nance need not be very large to induce stochasticity be-
cause the primary resonance width is already large.
Thus, the trapping around the neighboring resonance is
typically in the weak regime while the trapping around
the primary resonance is strong (Lichtenberg and Lieber-
man, 1983). The appropriate overlap condition is not
given by (2.14) for this case, and the correct analytical ex-
pression for intense ECH has not appeared in the litera-
ture as yet. However, numerical determination of the
stochasticity thresholds has been made by Rognlien and
Nevins (1987) based on explicit orbit integrations (see
Sec. V).

Figure 9 displays the values of the right-hand circular-
ly polarized electric field component E,„/B foor the ex-
traordinary mode and in circumstances representative of
MTX operation as calculated by Rognlien and Nevins
(1987). Here, N

~~

=0 and Ki = 1; and infinitely wide plane
waves were considered. The orbit integrations demon-
strate that for k~p &&1 initially, the right circularly po-
larized component is dominant over the response to the
left circular component. The threshold amplitudes
shown for the X mode are systematically lower than for
the 0-mode case (the 0-mode threshold amplitudes satis-
fy E~~ /Bo ~ 0.3 with the minimum value at perpendicular
incidence occurring near co/Go=0. 9) and significantly
exceed the electric field strengths expected in MTX,
E/Bo 5 0.02, unless substantial focusing is introduced or

occurs nonlinearly. The stochasticity threshold can be
lowered by introducing a second FEL at a different fre-
quency. For the case of right circularly polarized X
modes with frequencies co/Q, =1.7 and 1.96 at normal
incidence, numerical orbit integrations determined that
the total power at the threshold for stochasticity was re-
duced by —

—,
' over the single-wave case (Rognlien and

Nevins, 1987).
Because of the significant amplitudes required to

achieve stochasticity, a matter of particular concern for
the application of stochastic heating and current drive is
the possibility of parametric instability (Porkolab and
Cohen, 1988), which will be addressed in Sec. IV. The
question of parametric instability is closely related to
whether ponderomotive effects are important. The pon-
deromotive force is important compared to the thermal
pressure in influencing force balance in the plasma when

E2

80 m, c2 2 (2.37)

Operation at high power in MTX with T, = 1—2 keV in
the core plasma is expected to satisfy E /Bo (& T, /m, c.
Only at the edge of the plasma where the temperature
falls is the ponderomotive force likely to be appreciable.
However, if the stochastic regime could be achieved in
MTX, (2.37) would be satisfied before the plasma sub-
stantially heated; and ponderomotive effects and self-
focusing could be important. Consideration of pondero-
motive self-focusing is presented in Sec. IV.

Electron dynamics in the stochastic regime have been
studied by numerically integrating the orbits in the work
of Menyuk et al. (1987, 1988), Rognlien and Nevins
(1987), Hizanidis et al. (1989), and Karimabadi (1990),
and analytically by Hizanidis (1989). Hizanidis (1989)
derived a Fokker-Planck model of the electron diffusion
appropriate for an infinite plane wave with amplitude
well above the threshold for stochasticity. Near the
threshold, not all of the momentum phase plane is sto-
chastic: some islands of regular motion remain. For
higher wave amplitudes the stochasticity is more com-
plete [for example, see Figs. 3 and 4 of Hizanidis et al.
(1989)]. The numerical results of Hizanidis et al. (1989)
demonstrate that as a function of increasing angle of
propagation with respect to the magnetic field, the trap-
ping widths for a right circularly polarized mono-
chromatic wave increase; and the resonances are more
closely spaced in momentum space so that the threshold
for stochasticity decreases. The numerical results also
exhibit a relatively short initial transient after which the
mean-square deviations of various moments of the elec-
tron distribution grow linearly in time in fairly good
agreement with theory. The dependence of the diffusion
coeKcient on wave amplitude predicted by theory and
calculated numerically is approximately quadratic. How-
ever, later in time the stochastic motion is not described
very mell by Fokker-Planck theory. In the stochastic re-
gime, nearly all of the electrons passing through the mi-
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crowave pulse will be strongly heated and the plasma be-
comes strongly absorbing. For MTX applications, in the
stochastic regime electron energies grow by order of their
rest-mass energy; and large opacities result (Rognlien and
Nevins, 1987).

The fourth heating and current-drive mechanism is
beat-wave current drive. In beat-wave current drive, two
intense, high-frequency transverse waves nonlinearly mix
to resonantly excite a low-frequency longitudinal wave
that imparts energy and momentum to the plasma as it
damps. This application of beat-wave excitation to
current drive in a magnetized plasma was suggested by
R. M. 0. Galvao and T. Tajima in 1983 in unpublished
work. At about the same time, Cohen independently cal-
culated the nonlinear coupling of transverse waves to a
Langmuir wave and determined the resulting current-
drive CKciency when the Langmuir wave was Landau
damped by passing electrons (Cohen, 1984). Since then
there have been additional one- and two-dimensional cal-
culations and simulations by Tajima (1985), Mendonca
and Galvao (1986), Mendonca (1986), Cohen, Cohen, Lo-
gan, et al. (1988), Heikkinen et al. (1989), Amin and
Cairns (1990), and references therein. Recently there has
been an experimental demonstration of beat-wave cou-
pling in a toroidal plasma, the Davis Diverted Tokamak
at Lawrence Livermore National Laboratory; and the ex-
perirnent will attempt to observe a driven current
(Rogers et al. , 1989).

Beat-wave excitation is an example of a resonant
three-wave interaction. The frequency and wave-number
matching conditions required to ensure a strong, phase-
coherent interaction are m&

—~2=+3, k&
—kz=k3.

There are a number of requirements to be met for the
achievement of high efIIIciency in beat-wave heating and
current drive (Cohen, Cohen, Logan, et al. (1988). The
difFerence frequency of the two microwave pump beams
must match the local electron plasma frequency to excite
a large-amplitude plasma wave. It is advantageous to ex-
cite the beat wave and damp it on resonant electrons on
or inside the magnetic axis to minimize the degradation
of the current drive due to magnetically trapped elec-
trons [the same consideration is true for the other rf
current-drive schemes (Fisch, 1987)]. Furthermore, the
beat-wave phase velocity parallel to Bo must fall in an ap-
propriate velocity range so that there are sufhcient nurn-

bers of electrons to damp the Langmuir wave and carry
all the current. The two transverse waves should be sirni-

larly polarized to permit nonlinear coupling. Finally, the
wave momentum and energy deposited in the plasma de-
pend nonlinearly on the product of the two microwave
beam powers.

The physical mechanism at work in beat-wave excita-
tion is as follows. The electron equation of motion is
influenced by quadratically nonlinear driving forces, e.g. ,
the Lorentz force and the electric field force at the linear-
ly displaced particle position. The contributions to these
forces coming from the low-frequency beat produced by
thc bilincar' Inixing of orbit pcrturbations and fields from

the two high-frequency transverse waves (co ~ 0, ) consti-
tute the ponderomotive forces at the low frequency and
can produce an acceleration that resonantly excites a lon-
gitudinal wave. The nonlinear beat of the electron densi-
ty perturbation with the high-frequency velocity pertur-
bations produces high-frequency current-density pertur-
bations that drive changes to the microwave beams in the
mixing region. This process is an example of stimulated
Raman scattering.

The nonlinear beat-wave equations have been present-
ed in several papers. Here we use the formalism of
Cohen, Cohen, Logan et al. (1988) for parallel and anti-
parallel beat-wave coupling. Amin and Cairns (1990)
have generalized this formulation to two dimensions.
The nonlinear wave equation that describes the conserva-
tion of wave action Aux at steady state and from which
the CKciency of beat-wave current drive can be deduced
1S

—2m.k 3
k i VJi

= Ji J21m[y, ( 1+y; ) /s ]= —k2 VJ2
1 2

(2.38)
for parallel or antiparallel orientations of the pump
waves with identical polarization, where J

& 2
=(ki 2/2')lu, 2/cl are the transverse-wave action Aux

densities in natural units, u& 2 are the linear electron
quiver velocities in the waves, g, and g; are the conven-
tional linear electron and ion dielectric susceptibilities
evaluated at (co, —coz, k, —kz), and s=l+y, +y;. The
perturbation theory leading to (2.38) assumes
li, , /cl «1 and l~, —a), l «coi, co2-Q, . The high-
frequency wave energy Aux densities, i.e., the power den-
sities, are given by co&,2~i, z

Conservation of wave action for collinear wave propa-
gation follows directly from (2.38), which leads to
b,J, =+AJ2 for parallel (+) or antiparallel ( —) wave
orientations. Relative to the energy introduced in the
two transverse waves, only a fraction q, =co3/
[co,(1+co~/co, )] can be acquired by the beat wave as a
consequence of action-Aux conservation (p=J2" /J'," is
the input ratio of action fluxes). Analytical calculations
(Cohen, 1984) have determined that the pump-depletion
fact«&. —:~Ji/J'i" ~i «r (~k23L /ki)liiiii2/c~l » in
a plasma with a linear density gradient, I. = i%inn, l.
Detailed solutions for R, are shown in Fig. 1 of Cohen,
Cohen, Logan, et al, (1988). Good pump depletion
enhances the heating and current-drive CKciencies associ-
ated with this scheme. Examples of the power require-
ments to achieve high beat-wave current-drive
CSciencies in both MTX and a reactor plasma using
FEL s are given by Cohen, Cohen, Logan,
et al. (1988) and Sec. III.C here.

Beat-wave current drive ofFers the possibility of good
CKciency and precise control over where and when the
current is driven. Unwanted competition from neighbor-
ing cyclotron harmonics is easily avoided, and degrada-
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tion of the current drive by magnetically trapped parti-
cles is weak. The accessibility of the beat wave is readily
guaranteed by the easy accessibility of the driving waves.
The penalty for this is the requirement of two intense mi-
crowave sources and the reduction of the heating and
current-drive efticiency by the factor q, R„where q, &

—,
'

in most practical applications. The dependence of the
beat-wave excitation mechanism on both the relative an-
gle of the two microwave beams and the transverse beam
profiles has been addressed in the calculations of Amin
and Cairns (1990). Two-dimensional efFects are impor-
tant in determining optimal strategies for ef5cient beat-
wave heating and current drive; the work of Amin and
Cairns shows that collinear orientations are preferable
and q, R, =0.35 can be achieved.

When the two transverse waves are aligned parallel to
one another, the lower frequency transverse wave that is
amplified by the beat-wave process can nonlinearly mix
with the beat wave to excite a third transverse wave at
frequency co@

—(co
&

—
co2) which acts as an additional

pump wave to reinforce the generation of the beat wave.
In fact, a cascade of frequency down-shifted transverse
waves can be induced (Cohen et al. , 1972; Heikkinen
et al. , 1988). Each cascade step can deposit another
quantum of energy into the beat wave and the plasma
which would circumvent the limitation associated with

q, &1 at each cascade step. Another potential benefit
when the transverse waves are aligned parallel is that the
beat wave produced has a high phase velocity approach-
ing the group velocity of light in the plasma. This would
facilitate the acceleration of electrons to relativistic ener-
gies (Tajima and Dawson, 1979; Heikkinen et al. , 1988).
The principal disadvantages of the cascade are that ow-

ing to the dependence of the nonlinear coupling in (2.38)
on k3, which is much smaller for parallel beat-wave cou-

pling than it is for the antiparallel orientation, much
higher transverse-wave intensities are required and the
competition with nonlinear self-focusing and parasitic
parametric instabilities, e.g. , stimulated Raman and Bril-
louin backscatter, may greatly inhibit beat-wave coupling
in the parallel orientation and inhibit its efficiency
(Cohen, Cohen, Logan, et al. , 1988).

Another variation of beat-wave current drive that
overcomes the limit set by q, &1 has been devised by
Matsuda (1988). Only a single intense transverse pump
wave is introduced to nonlinearly induce a parametric de-

cay to a scattered transverse wave and a longitudinal
wave, e.g. , a Langmuir wave whose Landau damping on
passing electrons heats the plasma and drives current. If
the parametric instability can show a strong preference
for producing a Langmuir wave propagating along the
toroidal magnetic field line and lead to good depletion of
the pump wave, then the product q, R, appearing in the
heating and current-drive efficiency can be replaced by a
factor that can approach unity in value.

In the examples of beam-wave excitation cited here,
only Langmuir waves propagating parallel to the applied
magnetic field have been analyzed. However, the cou-

pling to other beat waves propagating at an oblique angle
with respect to the magnetic field might provide a better
vehicle for current drive. For example, a cyclotron-
auto-resonant, upper-hybrid beat wave might lead to im-
proved current-drive efficiencies by producing very hot
electrons whose collisionality is significantly reduced.

Calculations of the current-drive efficiencies for the
four mechanisms introduced in this section will be given
in the next section. Examples of the simulations of these
heating and current drive mechanisms are presented in
Sec. V.

III. CURRENT-DRIVE APPLICATIONS

A. Pulsed current drive

The physics of quasisteady current drive using pulsed
electromagnetic waves has been analyzed by Nevins
(1987). The important time scales for current drive using
intense, pulsed FEL's are

rf « vg & TIf « TI // (3.1)

where ~,f is the pulse length of the electromagnetic wave
source, v, is the electron collision frequency, T,f is the
time between pulses, and Tl &z is the inductive/resistive
decay time of the tokamak plasma. Because of the rela-

tively high inductance and relatively low collisionality
and resistance of a hot tokamak plasma, the TL &+ time
scale over which the plasma responds to changes in the
toroidal current is long compared to the pulse length of
the wave heating and the collisional relaxation time of
the electrons. As a result, the following picture of
current drive emerges.

The pulsed ECH shifts resonant electrons to higher en-
ergy where they collide less often and give rise to a
current (Fisch and Boozer, 1980). Parallel momentum as
well as energy can be delivered to the resonant electrons
leading directly to current, especially for the beat-wave
mechanism. The plasma's rapid response to the local in-
fusion of current is to generate a backwards electromo-
tive force (emf), which is produced by the time derivative
of the magnetic Aux according to Faraday's law. This ac-
celerates the bulk electrons counter to the wave-heated
electrons and cancels all but 0( Tz/Tl &z ) of the injected
peak current as calculated by Nevins (1987). In between
pulses, electron collisions relax the deformed electron ve-
locity distribution, and both the back-emf and the Auc-

tuating component of the current concomitantly decay.
Because the peak cyclical perturbation of the current is
smaller than the total average current by T~/TI z~ « I,
a large average current can be sustained with pulsed in-
jection. Nevins (1987) calculated this cyclical process in
detail using circuit equations introduced in earlier work
by Karney and Fisch (1986). Nevins also considered
current-profile effects and the possibility of runaway pro-
duction.

A simple model of non-inductive current drive was fur-
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nished by Cohen, Cohen, Nevins, et al. (1988). The
toroidal current-balance equation deduced from electron
momentum conservation and continuity is

28 n~

dt Jy —Sy(t) vgjy vbjy+ Ep
Ul~

(3.2)

where j4, =j~+j~ is the total current summed over the
heated component and the bulk electrons, vh and vb are
the characteristic collision rates for the two electron
components (vh &vb), and S&(t) is the time-dependent
source of toroidal current introduced by electromagnetic
waves, for example. The toroidal current j& acts as a
source for the poloidal magnetic field as described by
Ampere's law; and the time derivative of the poloidal
magnetic Aux induces a toroidal electric field E& as dic-
tated by Faraday's law. At steady state, dj p'dt =E =0;

~ band, if we assume that (vbj& ) « (v&j& ), because j& is
driven by E& (which is zero at steady state) and collision-
ally relaxes more rapidly than does j&, then Eq. (3.2)
leads to j&=j&=(S&(t))/vt„where (S&(t)) is the
time-averaged current source. A current-drive eKciency
is then readily obtained by dividing the current density
integrated over the current channel by the input power in
the electromagnetic waves. Examples of current-drive
eKciencies that can be attained using various applica-
tions of intense, pulsed ECH are given later in this sec-
tion. Detailed calculations of noninductive current drive
based on solutions of the Fokker-Planck equation
describing the collisional relaxation of the plasma and
circuit equations for the evolution of the toroidal current
and voltage have been presented in the comprehensive re-
view of current drive by Fisch (1987).

d3pg G (3.3)

where ( ) denotes a flux-surface average and
6=e(B&/R ) 'g exp(E/T). Here R '—:~V&~, P is the
toroidal angle, c is the electron energy, T is the tempera-
ture of the background electrons, 8& is the toroidal mag-
netic field, and g is the Spitzer-Harm distribution func-
tion modified to include magnetically trapped particles.
The equation satisfied by g at steady state is

u b.V' g+C( g)= —u b %/exp( E/T)—, (3.4)

where C(g) is the collision operator linearized about a
background Maxwellian of temperature T. This equation
is bounce-averaged with g expanded in increasing powers
of the ratio of the collision frequency to the transit (or
bounce) frequency. The bounce-averaged collision opera-
tor is evaluated in the high-energy (but nonrelativistic)
limit mu /2T ))1. Introducing h =g exp(e/T) and
h =(R&/R )cF(u)H(rl)/(4vu, ), where R&=B~/Bo,
F(u)=u/c in the nonrelativistic limit, v=4vrne lnA/
m u, , u, =(2T/m )', 7)=u~/u, and u is the speed, R.
Cohen obtained the following inhomogeneous Legendre
equation for H to leading order in T/mv,

cal solution. R. Cohen's calculation either models or re-
tains all important relativistic efFects. A Green's function
for the linearized Fokker-Planck equation is derived from
which the current drive can be calculated once the wave-
induced particle Aux I ~ is specified for a particular
current-drive mechanism.

The starting point of R. Cohen's calculation is the ex-
pression of Antonsen and Hui (1984), or, equivalently, of
Fisch and Boozer (1980), for the wave-induced current:

B. Trapped-particle effects —4II+ —(1+Z) (1—A. ) =+4k, ,2 dA, dA,
(3.5)

By definition, trapped electrons are rejected by the in-
creasing magnetic field as they follow field lines which
wind around the torus to smaller major radius. Thus,
trapped electrons carry no current on average. Their
presence degrades current-drive efIiciency in two difFerent
ways. Trapped electrons absorb energy without contrib-
uting to the current, and when initially passing electrons
absorb energy so that they become trapped, there is a
current increment produced opposite to that produced
when the accelerated particle remains passing. There
have been several calculations of trapped-particle efFects
on ECH (Start et al. , 1983; Chan et al. , 1982; Antonsen
and Hui, 1984; Yoshioka et aI., 1986; Yoshioka and An-
tonsen, 1986; Harvey et al. , 1989; and R. Cohen, 1987).

R. Cohen (1987) used the adjoint methods of Yoshioka
et al. (1986) to analytically solve the generalized Spitzer-
Harm problem for the wave-driven current and the col-
lisional relaxation of the perturbed distribution function
including trapped-particle efFects. It is assumed that the
collisions are well described by scattering ofF a Maxwelli-
an background. The introduction of a square-well ap-
proximation for the magnetic field facilitates an analyti-

where A, =(1—rl)' =u~~/u, Z is the charge state of the
ions, and the sign of the right side is determined by the
sign of v~~. The bounce-averaged collision operator was
replaced by the local operator evaluated at the bottom of
the magnetic well in obtaining Eq. (3.5). With the bound-
ary conditions that H is regular at g=o and vanishes at
the trapped-passing boundary g=g, = Bo/B,„bec ause

H is finite only for passing particles, the analytic solution
of (3.5) is

(3.6)

where I' is a Legendre function with index o. satisfying
the relation a(a+ I)= —8/(1+Z). With this expres-
sion, g and, hence, G are determined; and with I ~
specified for the particular current-drive mechanism, a J~~

can be calculated from (3.3) that incorporates both rela-
tivistic and trapped-particle effects. R. Cohen (1987)
used this Green's function approach to calculate analyti-
cally the current-drive e%ciencies for conventional ECH
and lower-hybrid current drive with continuous wave
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sources. For this purpose, quasilinear diffusion
coefficients were employed for I ~. In addition, this
analysis has been used as the basis of a current-drive di-
agnostic in particle simulations of intense, pulsed ECH
and beat-wave current drive (Cohen, Cohen, Logan,
et al. , 1988), whose results are reviewed in the following
discussion of current-drive efficiencies.

C. Current-drive eSciencies

The most precise calculations of the current-drive
efficiencies for the four mechanisms using intense pulses
described in Sec. II are based on numerical particle-orbit
calculations and self-consistent particle simulations. Ex-
amples of these calculations are presented in Sec. V.
Here we will summarize the current-drive efficiencies ob-
tained from orbit calculations and the particle simula-
tions. These current-drive eIIIiciencies for intense, pulsed
ECH are quite attractive when compared to present ex-
perimental standards and equal or exceed the best
theoretical current-drive efficiencies for conventional
lower hybrid and ECH current drive (Cohen, Cohen,
Nevins, et al. , 1988; Cohen et al. , 1989).

To calculate the current-drive efficiency in the numeri-
cal orbit integrations and particle simulations, a diagnos-
tic (Cohen, Cohen, Logan, et al. , (1988) has been
fashioned based on R. Cohen's (1987) analytical expres-
sion for J~~ reviewed in Sec. III.B. The diagnostic incorp-
orates relativistic and trapped-particle effects, and is
applicable to situations where the pulse length of the
electromagnetic waves is short compared to the charac-
teristic collision time of the particles accelerated by the
waves so that the arguments of Sec. III.A and Nevins

(1987) are applicable. Thus, the net effect of the wave
pulse is a finite displacement of the particles in phase
space, which is instantaneous on the collisional time
scale. The diagnostic then calculates the current driven
both directly and by the subsequent collisional decay.
While the calculation of Sec. III.B is nominally steady
state, it is easily verified that the driven current derived
from the Green's function in Eqs. (3.3)—(3.6) is valid even
for time-dependent and non diffusive radio-frequency
operators. By retaining time derivatives in the Fokker-
Planck equation for the velocity distribution function
and integrating over time, the expression given in (3.3)
remains valid, provided that J~I and 1"~ are replaced by
their time-averaged values. Equation (3.3) can be put
into the form

d pDG (3.7)

where G was defined after Eq. (3.3) and

D = [5(p —pI )5(x—x&) —5(p —p; )5(x—x, ) ]5(t —to)

for a finite instantaneous displacement of a particle by a
wave from (x;,p;) to (x&,p&). Thus, the total time-
integrated current from the wave-induced deformation of
the electron distribution function is

fdtI=e(hI —h;) (3.8)

where h =g exp(eiT). The time-integrated current pro-
duced by a pulse is summed over particles and then di-
vided by the sum of the absorbed energies to obtain a
current-drive efficiency

eg(hi —h; )

P g(si —s;)
(3.9)

In addition to the analytical expression for h given in
Eqs. (3.5) and (3.6), R. Cohen (1987) derived a description
based on a numerical solution for the angular part of h
for circular Aux surfaces that relaxed the square-well ap-
proximation for the magnetic field. The numerical ex-
pression was used in calculating g,d by Cohen, Cohen,
Logan, et al. , (1988) and Rognlien and Nevins (1987) for
their particle simulations and orbit integrations; their re-
sults for g,d differ at most by a few percent from those
based on the analytical expression for h.

We now compare the current-drive efficiencies for
three options exploiting the intensity of FEI. pulses: ris-
ing buckets, stochastic acceleration, and beat waves. A
relatively simple analytical formula for the current-drive
efficiency of the beat-wave mechanism is reviewed here,
which agrees fairly well with detailed numerical calcula-
tions over a range of beat-wave phase velocities. Cohen
and Rognlien (1991) have derived a prescription for nu-
merically calculating the rising-bucket current-drive
efficiency, which is closely related to the numerical
prescription used in conjunction with beat-wave current-
drive simulations (Cohen, Cohen, Logan, et al. , (1988).
The same kind of numerical prescription has been used to
compute the current-drive efficiency for stochastic
current drive. The Fokker-Planck analysis of Hizanidis
(1989) has not been used to estimate the current-drive
efficiency in the stochastic regime, because the orbit cal-
culations of Hizanidis et al. (1989) have shown that the
Fokker-Planck description for stochastic ECH is not val-
id for early or late times in a pulse. We have used the
analysis reviewed in this section to determine the
current-drive efficiencies numerically for the three op-
tions mentioned using intense FEL pulses and will sum-
marize the results for the three representative examples
of interest in magnetic fusion.

The first heating and current-drive mechanism de-
scribed in Sec. II is superseded by rising buckets, because
in practical applications b.VBO and b.gk

~~

are both finite.
A conventional measure of current-drive efficiency is
defined by g,d=nIR /P, where n is the density in units of
10 m, I is the current in MA, R is the major radius in
meters, and I' is the power in MW. All three options can
yield g,d in excess of the quasilinear value, which would
be obtained in the limit of weak, diffusive ECH. For
MTX applications (Thomassen, 1986; Jong et a/. , 1989),
stochastic current drive can yield the best efficiency in
the range 0.1 to 0.2, neglecting ponderomotive effects,
but is likely to be degraded by parametric instabilities,
nonlinear self-focusing, and synchrotron radiation.
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TABLE II. Representative ECH current-drive eKciencies
nIR /P (10 A/m W).

Mechanism MTX CET ITER

Quasilinear
Beat waves
Rising buckets
Stochastic

0.03-0.04
0.03—0.05
0.05—0.1

0.1-0.2

o.v-o. aS
0.2

0.2-0.4
0.15—0.3

0.2-0.3
0.2-0.4
0.3-0.6
0.2-0.4

Rising-bucket current drive could yield efficiencies
around 0.1 if a tail in the electron energy distribution can
be drawn out to about 8 keV and if waves with N~~=0. 9
can be propagated into the plasma. With less stringent
conditions, g,d-0. 05 for rising buckets can be achieved.
Beat-wave current drive can produce g,d=0. 05 with con-
siderable control over where the current is deposited, but
requires two intense microwave sources. Beat-wave
current drive is the only one of the three options that
does not generate loss-cone-like distributions, which may
excite microinstabilities. All three options yield g,d-0. 3
when applied to the International Thermonuclear Experi-
mental Reactor (ITER), which has a much hotter plasma
(T, =20—25 keV in ITER and 2 keV in MTX). Current-
drive calculations for the Compact Ignition Tokamak
(CIT, renained the Burning Plasma Experiment, BPX) at
T, =10 keV lead to efficiencies that are intermediate be-
tween MTX and ITER (see Table II).

We next review the current-drive efficiencies for the
three options using intense pulses in more detail. The
case of conventional low-amplitude ECH current drive,
which infinitesimally displaces resonant electrons, is a
useful standard of comparison. The quasilinear ECH
current-drive efficiency has been evaluated using the cal-
culation of R. Cohen (1987). Cohen points out that the
efficiency is greatest for absorption on the low-field side
of resonance and at the inside of the flux surface (the
former so as to have additive direct-momentum and an-
isotropic resistivity contributions to the driven current;
the latter so as to minimize trapped-particle effects). The
efficiency varies almost linearly with the energy of the
resonant electrons. For MTX parameters with T, =2
keV and lQO/co=0. 92, g,d varies from 0.028 for E/T, =3
to 0.042 for c, /T, =5, where e is the resonant energy.
For ITER parameters, T, =20 keV and IQO/m=0. 8, we
have q,d=0. 3 for E/T, =5 and I = l. At higher energies
c, there is competition from the second-harmonic reso-
nance that degrades g,d, and this competition sets in at
lower values of c, for l &1. Rising-bucket physics can
enhance the current-drive efficiency in two ways. First,
there is the direct efFect of acceleration to high energies,
particularly if the range of Xi extends to near unity [see
Eq. (2.34)]. When the absorption is on the inside of the
Aux surface and power is launched from the outside, this
effect enhances the efficiency on that Ilux surface. (When
the absorption is on the outside or power is launched
from the inside, the accelerated buckets can deposit their

electrons in or close to the trapped-particle region of
momentum space, resulting in a decrease in efficiency. )

Additionally, there is an indirect benefit, which can be
even more significant, resulting from the possible increase
of opacity over linear values. Increased opacity implies
absorption farther from the cyclotron resonance layer,
which, for outside launch, implies absorption by higher-
parallel-energy electrons and, hence, higher current-drive
efficiency.

Rising-bucket current drive has been studied using nu-
merical integration of particle orbits (Sec. V) and an
analytical model. The current-drive efficiency is deduced
from Eq. (3.9) in both calculations. The analytic estimate
proceeds as follows (Cohen and Rognlien, 1991); the
current-drive efficiency is estimated by evaluating it
[from the relation (3.9)] on a representative characteristic
whose minimum energy (in the illuminated portion of
momentum space) E;„ is greater by T than so, the
minimum energy in all of the illuminated portion of
momentum space. Since rising-bucket current drive is
primarily of interest for a spread of X~t sufficient to make
the range of energy along the representative characteris-
tic large compared to the temperature T, we evaluate the
current-drive efficiency by assuming that all particles are
moved along this characteristic from energy c;„+T to
c,„, the maximum energy on the illuminated portion of
the characteristic. The choice c. ;„+T accounts for
phase-space displacement efFects: in the "sudden adia-
batic turn-on and turn-ofF' approximation described in
the discussion of the opacity calculation, electrons would
be trapped at c. ;„, but phase-space displacement fills in
the empty hole in phase space. The net efFect is
equivalent to electrons being trapped at energy T above
the minimum. Finally, if we wish to estimate the
current-drive efficiency for the entire ray-bundle rather
than a single Aux surface, the evaluation is done on a
representative Aux surface where much of the absorption
occurs, chosen so that Eo= T ln(1+rNL/2).

In order to benchmark this procedure and also assess
the direct enhancement of the current-drive efficiency on
a given flux surface, Cohen and Rognlien (1991) carried
ont this simplified procedure and compared the
efficiencies with those inferred from orbit-code calcula-
tions (for a single flux surface, with specified so) for
several sets of plasma parameters, as shown in Table III.
The co values chosen are representative of the bulk elec-
tron temperatures in MTX (2 keV) and ITER (20 keV)
(although, in ITER, the opacities for harmonics such that
the bucket mechanism is efFective are sufficiently high
that the microwaves would not be expected to penetrate
to fiux surfaces where so is this low). The various values
of T serve to mock up the efFect of previous FEL pulses
in producing a tail in the resonant portion of the electron
distribution function. We observe from Table III that
the analytic procedure tends to underestimate the numer-
ical efficiency, by anywhere from 0 (one case) to over
50%. Also shown in Table III are efficiencies for conven-
tional (quasilinear) ECH evaluated on the representative
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TABLE III. Comparison of analytic and numerical current-drive efBciencies for intense ECH and
weak-ECH (quasilinear) ef5ciency. Here 0 is the poloidal angle at which absorption occurs (0=0 is the
outside of the Aux surface); q=n(10 m )I(A)R(m)/P(Vf), where I' is the absorbed power, and cp is
the minimum resonant energy (consistent with 7 and N~~2).

co (keV)

20 0.8 0.846

T (keV)

20

50

m/2
0

m/2

mcanal

0.22
0.20
0.18
0.34

0.30
0.26
0.21
0.39

Iweak

0.22
0.20
0.19
0.28

20 0.78 0.917 20
50

m/2
m/2

0.25
0.43

0.29
0.42

0.20
0.29

0.93 0.835
m'/2

0

m/2

0.032
0.018
0.001
0.071
0.046

0.054
0.034
0.008
0.104
0.071

0.020
0.017
0.014
0.036
0.033

0.923 0.914 0.048
0.026
0.106
0.072

0.075
0.048
0.126
0.087

0.020
0.017
0.036
0.033

characteristic. As anticipated from the preceding discus-
sion, the rising-bucket efficiencies (particularly the nu-
merically calculated values) exceed quasilinear for ab-
sorption on the inside of the Aux surface, but not neces-
sarily for absorption on the outside.

Assessment of the indirect efFect of increased opacity
on global current-drive efficiency is more difficult, as it
involves issues such as the tradeoff of opacity with com-
petition from absorption at higher harmonic numbers
(Smith et a/. , 1987); the required ray-tracing studies have
not yet been done. A measure of the efFect is provided,
however, by the simple criterion e„=T ln(1+rNL/2) in-

troduced above. In the limit where the energy gained by
a bucket, Eq. (2.34), is small compared to e;„, the non-
relativistic current-drive efficiency scales approximately
with c;„;hence the efficiency would increase by a factor
of roughly [1+in(1+rNi /2)]/[1+in(1+dpi /2)]. For
fundamental 0-mode current drive in ITER, this factor
would be about 1.4. The finiteness of the energy incre-
rnent will tend to increase this ratio, while relativistic
efFects decrease it. More detailed studies can be found in
Cohen and Rognlien (1991).

The combination of increased opacity, increased
current-drive efficiency, and harmonic selectivity of the
bucket adiabaticity criterion can assist in overcoming the
limit on conventional ECH current-drive efIiciency im-
posed by harmonic competition (Smith et a/. , 1987). It is
not difficult to arrange for a particular harmonic to be
adiabatic, while higher harmonics are not. Hence, one
can exploit the advantage of increased opacity to plow a
larger fraction of the wave energy into absorption at the
desired harmonic, and it will do so with enhanced
current-drive efIiciency. With proper ray aiming, the
higher harmonics, for which current is driven in the

wrong direction, absorb less of the power and drive
current with the relatively lower linear-ECH current-
drive efficiency.

The primary outstanding issues associated with rising-
bucket current drive are microstability (see Sec. IV.D)
and the degree of penetration of individual ECH rays.
The success of the direct enhancement of the current-
drive efficiency depends on the highest X~~ rays penetrat-
ing to where they are needed; they must not absorb at a
significantly larger minor radius than where the lower X~~

rays are absorbed. Assessment of this requirement, as
well as quantitative evaluation of the global effect of in-
creased opacity on current-drive efficiency, requires im-
plementation of nonlocal, per-ray absorption coefficients
into a ray-tracing code.

Particle orbits have been numerically integrated to cal-
culate the current-drive efficiency for stochastic accelera-
tion (Rognlien and Nevins, 1987). The particle-orbit cal-
culations determine the final momentum-space distribu-
tion resulting from a Maxwellian population passing
through the intense FEI pulse. This data is then used in
the current-drive diagnostic Eq. (3.9) to calculate the net
current driven during the subsequent collisional relaxa-
tion. The current drive is then obtained from the ratio of
the integrated current to the energy absorbed. Results
for stochastic acceleration on the magnetic axis are
shown in Fig. 10 for two angles of propagation with
respect to Bp as a function of the right-hand circularly
polarized electric field strength, E„/8p. Ponderomotive
efFects have been omitted here. The threshold for sto-
chasticity at 70 is lower than at 45', but the maximum
obtainable efficiency is higher at 45 because that wave
has more parallel momentum. The initial temperature of
the distribution in these examples is 1 keV. For an initial
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current drive for an electrostatic wave that is completely
damped by resonant particles gives a current-drive

efficiency (Fisch, 1987)
F P 4

CO
Al

CD

cL 0.2

I.d 31.2 i 1

P Ro(m)n, (10 m )
(3.1 1)

0.1 0.3

FIG. 10. Stochastic current-drive eKciency nIR /I' (10 A/m
Vf) on axis as a function of the normalized right-hand electric
field amplitude E, /8o for 0=45 and 70 angles of incidence,
~/DO=1. 9, and T, =1 keV. qb„=q, R, g,d=0. 8X10 q, R, E (keV) (3.12)

where J /P is a function of the momentum of the
current-carrying particles. In the nonrelativistic limit
with

u~~ )&ui, J/P=gx /(5+Z, z) and x =2m/mc
where c is the energy of the resonant electrons. The
beat-wave current-drive efficiency ilb =nIR/P is re-
duced by q, R, so that

vyb =q,R, (3.10)

where v& is the classical coHisional slowing-down rate for
a fast elec~ron and u,

~

=(~,—~,)/(k, —k, ) b is the paral-
lel velocity of the electrons resonantly damping the beat
wave.

A careful relativistic treatment of radio-frequency

temperature of 20 keV, the maximum eIIIiciencies are
similar but the threshold for stochastic acceleration ex-
tends to lower E„/Bo. Current-drive efficiencies as high
as 0.2 can be obtained for values of E„/Bo correspond-
ing to a 8 GW pulse with focusing to a 0.5 cm beam ra-
dius and 80=5 T, but the results are quite sensitive to
the electric-field strength. Trapped-particle e6'ects are
not included in the results plotted here and reduce the
e%ciencies by factors of 0.5 and 0.7 for angles of 70' and
45, respectively.

Beat-wave current-drive eKciencies have been calculat-
ed analytically and in self-consistent particle simulation
(Cohen, Cohen, Logan, et al. , 1988). The electron
current density introduced on each toroidal transit of the
electrons is directly calculated from the momentum Aux

density liberated by the resonantly damped beat wave,
whose damping is assumed to be complete if the phase
velocity of the beat wave does not fall too far out on the
tail of the electron velocity distribution. Because the
three-wave interaction producing the beat wave con-
serves wave-action Aux as well as momentum and energy
Aux, ihe momentum and current sources for the electrons
are proportional to the wave power available to the beat
wave, which is given by q, R, times the input power in
the high-frequency pump wave, where q, is the quantum

efficiency and R, is the relative action transfer defined
and discussed in Sec. II. It is shown by Cohen, Cohen,
Logan, et al. , (1988) that the current-drive efficiency for
beat waves can be derived from Eq. (3.2) and is given by

in the nonrelativistic limit, with 8/( 5+Z,tt )= 1 and
31.2/lnA=2. There is good agreement between (3.12)
and (3.10). For resonant velocities where relativistic
effects begin to be important, the current-drive efBciency
saturates with increasing electron energy: J/P=0(1)
for x =p~~ /mc )O(1) aild pi &(p~~. The cllrreilt-drive

efficiency depends on both the peak electromagnetic wave
power (to achieve a satisfactory value of R, ) and the en-
ergy of the current-carrying electrons (which determines
J/P and thus q,d). Trapped-particle effects should have
little inhuence for beat-wave current drive involving an
acceleration of the electrons that is Inainly parallel to the
magnetic field and which can be done on the inside of the
Inagnetic axis.

Particle simulations of beat-wave current drive were
performed with the EMoNE electromagnetic code (Cohen
et al. , 1975; Cohen, Cohen, Logan, et al. , 1988). The
current-drive diagnostic described in this section was in-
corporated in the simulations. The results of parameter
studies, in which the absolute phase velocity of the beat
wave he@/hku, was varied with the initial plasma tem-
perature Axed at a value of 3 keV representative of MTX
and 20 keV for ITER, are shown in Fig. 11. The
current-drive efficiency gb peaked at bc@/b, ku, -4.5
with gb~-0. 05. For the significantly hotter ITER plas-
ma, gb„peaked at b,co/hku, -2.5 with rib„~0.3. The
simple analytical expressions (3.10) and (3.12) are reason-
ably accurate in predicting gb„ for hen/hkU, less than
the optimal values, although they slightly underestimate
the current-drive eKciencies obtained in the simulations.
Furthermore, because the analytical expressions assumed
that the plasma wave was completely damped by the
electrons for all beat-wave phase velocities, the analytical
expressions grossly overestimate the current-drive at high
phase velocities where the Landau damping becomes too
weak and there are insufhcient numbers of electrons to
carry the current. Speci6c beat-wave current-drive
scenarios were calculated for MTX by Cohen, Cohen,
Logan, et al. , (1988) using particle simulations and a
ray-tracing code.
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Flo-. 11. Beat-wave current-drive e%ciency gb„and gb„/R, {to
correct for the incomplete action transfer in arti6cially short
simulations) as a function of the beat-wave relative phase veloci-
ty Ace/Ako, for MTX and reactor cases (Cohen, Cohen,
Nevins, et al. , 1988).

lV. STABlLITY OF AN lNTENSE
ELECTRON CYCLOTRON WAVE

Numerous nonlinear e6'ects can occur when an intense,
coherent electromagnetic wave irnpinges upon a plasma.
We have already reviewed several nonlinear aspects of
the wave-particle interaction. In this section we review
the possible parametric destabilization of waves in the

plasma as the result of ponderomotive e8'ects and trapped
particles induced by an intense electron cyclotron wave.
We also review nonlinear self-focusing and a first theoret-
ical study of the rnicrostability of an FEL-heated plasma.
These nonlinear phenomena are important because they
can result in the absorption, depletion, scattering, or
modulation of the FEL, which may be deleterious to the
intended application of the FEL to heating, current
drive, or control of magnetohydrodynamic instabilities
through localized current drive. If the heated electron
distribution is unstable, the resulting wave turbulence

can lead to anomalous heat and particle transport. In ad-
dition, electron microinstability can be used as a diagnos-
tic of the plasma heating.

A. Parametric instabilities

The parametric instability of the plasma heated with
cyclotron waves is a mature area of research, and there
have been numerous theoretical analyses and papers re-
ported experimental observations. A number of theoreti-
cal reviews and surveys have been published. The litera-
ture is so extensive that we shaH direct the interested
reader to only a few exemplary papers and the references
therein, which will serve as an introduction to the litera-
ture. We shaH present the general dispersion relation
describing the parametric decay of an electromagnetic
plane wave in a uniform magnetized plasma into both
electromagnetic and electrostatic waves. We shall identi-
fy some of the most important parametric instabilities
that might be encountered for an intense electron cyclo-
tron wave.

Porkolab (1977, 1978) reviewed the theoretical analysis
and experimental status of parametric instabilities associ-
ated with wave heating of magnetically confined plasmas.
Porkolab's theoretical ca1culations assumed that the in-
cident electromagnetic wave had a negligible wave num-
ber in the region where it nonlinearly decayed into elec-
trostatic waves in the plasma. A number of possible de-
cay products were considered. Ott, Hui, and Chu (1980)
analyzed electrostatic decay instabilities for finite-wave-
number pump waves with frequencies near the electron
cyclotron frequency. Stefan and Hers (1984) surveyed
parametric instabilities associated with electron cyclo-
tron heating that lead to nonlinear absorption; they ana-
lyzed a dispersion relation for finite-wave-number ordi-
nary and extraordinary pump waves which decay into
electrostatic waves and were particularly interested in the
secondary decay instabilities of the parametrically desta-
bilized electrostatic waves. Stefan and Krall (1985) re-
viewed nonlinear conversion and parametric absorption
of finite-wave number electron cyclotron waves as ap-
plied to the heating of bumpy torus plasmas. The secon-
dary parametric decay and possible cascade of the decay
products, as weH as pump depletion, were among the sat-
uration mechanisms analyzed by Stefan and KraH.

The generalization of the dispersion relations describ-
ing parametric decays into electrostatic waves to include
stimulated scattering has been presented by B. Cohen
(1987a), Stefan et al. (1987), StenAo (1989), and others.
In stimulated scattering, an incident electromagnetic
wave can parametrically couple to a scattered elec-
tromagnetic wave and another mode that is typically an
electrostatic normal mode or quasimode in the plasma.
In a uniform magnetized plasma, the dispersion relation
for both stimulated scattering and a parametric decay
into electrostatic modes for weakly nonlinear incident
electromagnetic wave is (B. Cohen, 1987a; Stefan et al. ,
1987)
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k'fk Xv, f'
s —

—,'X, (1+X;)
k+D+
k fk Xvof+

k D

k (k+ vo)

k+ cc)+c+2 2

k (k .vo)

k co E,

(4.1)

r U U O (+C ko~p (( 1 and Q)0 0+Q) Q) ~ where p
is the electron Larmor radius, U, is the electron thermal
speed, cg; is the ion plasma frequency, y, and g, are the
linear susceptibilities in a warm, magnetized plasma eval-
uated at (co,k), E=l+y, +y; is the linear longitudinal
dielectric function evaluated at (co, k), D+ =(k+ko) c
—(~+~a)'E+, e~=E(~+~0, k+ko), and vo is the linear
oscillation velocity of an electron in the electromagnetic
pump wave in the presence of an applied Inagnetic 6eld.
The derivation of (4.1) depends on a perturbation expan-
sion in the pump-wave amplitude and does not include
relativistic or trapping e6'ects. The stability of an intense
electromagnetic wave to the growth of sidebands in the
presence of wave-trapped electrons is reviewed in Sec.
IV.B.

Equation (4.1) describes stimulated scattering, filamen-
tation, and parametric decay instabilities with co(&~o.
Parametric decay into two upper-hybrid waves or two
obliquely propagating, magnetized plasma waves is not
included in (4.1), in analogy to the similar observation for
an unmagnetized plasma (Drake et a/. , 1974). Stenflo
(1989) showed that Eq. (4.1) can be straightforwardly
generalized to include collisions. The dispersion relation
Eq. (4.1) acquires additional terms for an amplitude-
modulated electromagnetic pump wave, as has been illus-
trated for ion-cyclotron pump waves by Similon and
Kaufman (1984), D'Ippolito and Myra (1985), Cohen and
Rognlien (1985), and Otani and Cohen (1988). Equation
(4.1) yields the dispersion relation for parametric decay
or stimulated scattering by a low-frequency electrostatic
normal mode when c,(co, k) nearly vanishes. The elec-
tromagnetic pump wave couples the low-frequency mode
to upper and lower-frequency sidebands (co+coo, k+ko).
When D+ or D nearly vanish, and c+ and c, are finite,
the pump wave couples the low-frequency electrostatic
mode to an electromagnetic sideband; this corresponds to
stimulated scattering. When c.+ or E. nearly vanish, and
D+ and D are finite, the dispersion relation describes
parametric decay to electrostatic decay products. When
the coupling is strong enough, a sideband can couple
unstably to a low-frequency quasimode or to a heavily
damped mode (nonlinear Landau damping or stimulated
Thomson scattering) for which c. is finite. Filamentation
is an example of two electromagnetic sidebands coupling
equally strongly to a low-frequency quasimode. The os-
cillating two-stream instability is an example of two elec-
trostatic sidebands coupling equally strongly to a low-
frequency quasimode.

Porkolab and Cohen (1988) used Eq. (4.1) to survey the
potential for parametric instabilities associated with in-

tense electron cyclotron heating in the MTX. They ana-
lyzed the parametric instability of ordinary modes per-
pendicularly incident from the outside of the torus at a
frequency near the fundamental electron cyclotron fre-
quency and extraordinary modes perpendicularly in-
cident from the outside of the torus at the second har-
monic of the electron cyclotron frequency. Both non-
linear decays into electrostatic modes (absorptive insta-
bilities) and stimulated scattering (reflective instabilities)
were considered for a collisionless plasma with parame-
ters appropriate to MTX. Local growth rates, threshold
conditions, and convective stabilization criteria were cal-
culated for several important parametric instabilities.
When the pump wave decays into two normal modes, the
local threshold condition is yo) I &I 2, where yo is the lo-
cal growth rate, and I

&
and I 2 are the damping rates of

the decay products. In a nonuniform plasma, the
threshold condition for instability to overcome convec-

amentation

~=-=0-mode

0
Minor radius, r/a

, filamentation

2~ cos 0
2M
decay

«0 2M

Minor radius, r/a

FIG. 12. Schematic of parametric processes associated with (a)
ordinary-mode (coo= Q, ) and (b) extraordinary mode (~0=20, )

wave heating. eB denotes an electron Bernstein wave, eC
denotes an electron cyclotron wave, PDI is the parametric de-
cay instability, and OTSI is the oscillating two-stream instabili-
ty.
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TABLE IV. Parametric instabilities for ordinary-mode heating in MTX.

Instability
(n), k) matching

satisfied
Importance,
comments

Reflective
1. Raman scattering by upper hybrid wave
2. Raman scattering by lower hybrid wave
3. Brillouin scattering by ion cyclotron wave
4. Brillouin scattering by ion quasimode
5. Brillouin scattering by ion Bernstein wave

No
Yes
Yes
Yes
Yes

No
No, convectively stable
Unstable, maybe important
Unstable, maybe important
No, convectively stable

Absorptive
6. Decay to upper hybrid and ion quasimode
7. Oscillating two-stream
8. Parametric decay to two magnetized

plasma waves

Yes
Yes

Yes

No, convectively stable
Unstable

Probably important if —' ~ co~, /0, 1

tive losses is yo»K'V& Vz, where X'—:V.(ko—k, —kz), and V&„and V2„are the group velocities of
the decay waves in the direction of the inhomogeneity.
When the low-frequency wave is a quasimode and the
sideband is a normal mode, the local threshold condition
is yo) I 2, and the convective threshold is

yo& ~ V2 (dE /dx)~. Figure 12 displays a schematic of
the important phenomena, and Tables IV and V summa-
rize the conclusions of Porkolab and Cohen (1988) and
Perkins (1988) for MTX. Perkins (1988) corrected the as-
sessment of Porkolab and Cohen of the oscillating two-
stream instability for the ordinary mode and showed that
it can be important in MTX.

There are several absorptive parametric instabilities
that are likely to occur at high power in MTX. The ab-
sorptive instabilities will divert wave power into other
waves, which will heat the plasma, but will also increase
the level of wave turbulence. The increased level of tur-

bulence can be deleterious to particle and energy
confinement. The rejective instabilities are dangerous
because they can result in scattering significant amounts
of the incident wave energy from its intended purpose.
In this regard, Brillouin backscatter by forward and
backward electrostatic ion cyclotron waves have the
lowest local and convective thresholds, and have appre-
ciable local growth rates, y0=0(Q;). Brillouin back-
scatter is predicted to exhibit significant convective
amplification for the 8 GW and 50 nsec pulses anticipat-
ed in MTX unless nonlinear effects limit the backscatter.
For larger and hotter target plasmas than in MTX, the
area of the laser spot size can be increased and both
uo/u, and uo/c can be reduced, which will diminish the
possibility and strength of parametric instabilities. In-
creasing the frequency bandwidth and using very short
laser pulses can also lessen the risk of parametric instabil-
ities (Porkolab and Cohen, 1988).

TABLE V. Parametric instabilities for X-mode heating in MTX.

Instability
(co,k) matching

satisfied
Importance,
comments

Reflective
1. Raman scattering by upper hybrid waves
2. Raman scattering by lower hybrid waves
3. Brillouin scattering by ion cyclotron wave

or quasimode
4. Brillouin scattering by ion Bernstein waves

Yes
Yes

Yes
Yes

Yes, convectively unstable
No, convectively stable

Yes, convectively unstable
No, convectively stable

Absorptive
5. Parametric decay: X~2 upper hybrid waves

7.

8.

9.

Parametric decay: X~2 electron Bernstein or
electron cyclotron or two magnetized plasma waves
Parametric decay: X~upper hybrid + ion
quasimode
Oscillating two-stream: 2X—+2 upper hybrid +
quasimode
Parametric decay: X~2 electron Bernstein
wave + ion wave

Yes

No

No

Yes

Yes, convectively unstable,
maybe absolute
Yes, convectively unstable,
maybe absolute
No, cannot satisfy matching

No, cannot satisfy matching

Yes, convectively unstable
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B. Trapped-particle sideband instability

When a large-amplitude, monochromatic wave reso-
nantly accelerates particles and traps them, the cyclical
motion of the trapped particles causes a beating with the
principal wave that can destabilize sidebands separated in
frequency by the trapping frequency from the principal
wave. This phenomenon has been observed experimen-
tally and analyzed theoretically for Langmuir waves by
Kruer et al. (1969) and for whistlers by Denavit and Su-
dan (1975). More recently, Cohen and Cohen (1988a,
1990) derived the dispersion relation for an electromag-
netic trapped-particle sideband instability for a large-
amplitude ordinary mode at perpendicular incidence as
proposed in the FEL experiments in MTX.

A sideband instability could have at least two possibly
important e6'ects on FEL heating experiments. For the
case that V'~~k~~0=0, the modulation induced by unstable
sidebands could broaden the power spectrum, detrap the
resonant electrons, and improve the overall absorption.
In the second case, consider V~~kloxo, Vlsoeo, and FEL
heating exploiting the rising-bucket concept. A strong
sideband instability could detrap resonant electrons and
"spill" the buckets, preventing improved absorption. For
parameters appropriate to high-power FEL operation in
MTX, Cohen and Cohen find a weakly unstable sideband
instability with growth rates that are steeply peaked at
the frequencies coo+co&, where coo is the frequency of the
principal ordinary mode and mb is the trapped-particle
bounce frequency calculated in Eq. (2.8). The local
growth rate yo is sufhcient in MTX to exceed the thresh-
old condition set by collisional damping of the sidebands,
yo) I +I" where I +=(co~, /coo)v„/2 and v„ is the
electron-ion collision rate. However, the growth rate is
weak (y0=10 Q, ); and the sidebands convect rapidly at
the group velocity of the ordinary wave with a spatial
gain length that greatly exceeds the minor radius of
MTX.

The derivation of the dispersion relation due to Cohen
and Cohen (1988a, 1990) is reasonably straightforward,
and only a brief synopsis will be given here. The relativ-
istic Hamiltonian introduced in Sec. II.A is expanded
about the principal elliptic fixed point to second order in
the excursions in P and 0 to describe the trapping in the
principal wave. The linear perturbation to this Hamil-
tonian due to the upper and lower sidebands (co+coo,
lc+ko) is introduced. The linear perturbation has the
form of H& in Eq. (2.6), but is summed over both side-
bands. The solution of the linearly perturbed motion
now resembles closely that of a harmonic oscillator
whose natural frequency is cob being driven by a plane
wave with frequency coo. From the solution of the linear-
ly perturbed motion, the linearly perturbed electron dis-
tribution function is obtained by introducing a Klimonto-
vich representation. The linearly perturbed current j,'"
is then calculated by integrating over the perturbed dis-
tribution function for use in Maxwell's equations to
determine the sideband field amplitudes self-consistently.

The determinant of the sideband coefticients matrix
yields the dispersion relation describing the normal
modes:

1 —M 1 + 1

D(can+coo, k+ko) D(co —coo, k —ku)

(4 2)

where D(cokcou, kkko)=c (k+ko) —(co+coo) +co „ lc

and ko are parallel,

M=(co, /32y)(p, /pi) (kop) (kuo) (coq —cu )

y is the relativistic factor at the elliptic fixed point, p,
and p~ are the corresponding mornenta, and co, is the
electron plasma frequency for the density of trapped elec-
trons. This dispersion relation is identical in form to the
dispersion relations for the Langmuir (Kruer et al. , 1969)
and whistler (Denavit and Sudan, 1975}sideband instabil-
ities. For ~kkoc /coo&cob~ there is instability, and for
co&cob the frequency is given by

cu=kkoc2/coo+&IPk4N (1 N )—
X~ ([k (co k k C4/C02)j}

—1I1/2

where N=koclcuo, P=(N cu, /64ycoo)(uou, p, /c p~),
and v, =pA, . The maximum growth rate peaks sharply
at kkoc /~0=cob and

co=cub+( I/2+iv'3/2)(P/2)' cubN (1 N)'—
There is stability for kkoc /coo) cob.

The sideband coupling is relatively weak here because
the coupling coefticient of one of the sidebands with the
principal mode to excite the other sideband is propor-
tional to the product of (kop) « 1 and (vo/c )
=(eE, /ymcooc) «1. The proportionality to (kop)
derives from the small-argument expansion of J,(kop),
and the proportionality to (vo/c) is due to the product
of v,' ' in the principal wave and the perturbed displace-
ment in the nonlinear current. We expect that the side-
band instability for the extraordinary wave nearly per-
pendicularly incident at the second harmonic is similarly
weak for the following reasons. The perturbed Hamil-
tonian Eq. (2.10) is again proportional to J&(k~p). The
dispersion relation for the X mode at co0=2Q, is dom-
inantly electromagnetic; thus, the wave equations for the
sidebands require the perturbed currents j'" and j"',
which depend on the products of v' ' and v ' ', respective-
ly, with the perturbed displacement in analogy with the
G-mode case. Thus, it is concluded that an electromag-
netic sideband instability exists; but it is a weak instabili-
ty for physical conditions similar to the FEL heating ex-
periments in MTX.

A one-dimensional electromagnetic particle simulation
of the sideband instability of a monochromatic ordinary
mode with frequency co=A, was reported by Cohen and
Cohen (1988b). The initial-value simulation exhibited
significant wave attenuation of the ordinary mode due to
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electron trapping and deformation of the electron distri-
bution, and very weak growth of the sidebands predicted
theoretically to be weakly unstable. The attenuation of
the ordinary wave and the time dependence of its ampli-
tude preclude quantitative comparison with the analyti-
cal theory, which assumes a constant amplitude for the
main wave.

P & 2( a—) 0/co, ) X 109 W . (4.7)

Max (1976) used Eqs. (4.3)—(4.5) to derive a threshold
power condition for steady-state, self-trapped filaments
induced by the ponderomotive force:

1974), and the laser is stable to relativistic self-focusing
for powers P satisfying (Schmidt and Horton, 1985)

C. Nonlinear self-focusing
P & Po ( 1 n, /n—, )

' ~
( n, /n, ), (4.8)

One of the parametric instabilities described by Eq.
(4.1) is ponderomotive filamentation. Porkolab and
Cohen (1988) calculated the linear convective growth
lengths for the coupling of an incident ordinary-mode
plane wave to linearly unstable, infinitesimal-amplitude,
ordinary-mode sidebands. This is an example of the
linear ponderomotive filamentation instability. For
MTX parameters, Porkolab and Cohen (1988) deter-
mined that the linear convective growth length for
filamentation is comparable to the minor radius of the
tokamak. However, a more realistic calculation of
filamentation or self-focusing models the incident ordi-
nary wave as having finite lateral extent, which corre-
sponds to a nonlinear modulation of the principal wave
by finite-amplitude sidebands and allows for the possible
nonlinear self-focusing of the incident wave. Analytical
and numerical calculations of nonlinear self-focusing for
ordinary-mode FEL heating in MTX suggest that there
may be appreciable nonlinear ponderomotive self-
focusing in proposed high-power experiments (Cardinali
et al'. , 1988; Cohen, Cohen, Nevins, et al. , 1988; Lontano
et al. , 1989; Cohen et al. , 1991).

The analysis of nonlinear self-focusing begins with the
wave equation derived from Maxwell's equations:

2 +V(V E)—V E+ =0 .
c Bt c2 Bt

(4.3)

For ordinary modes incident nearly perpendicular to an
applied magnetic field, or for an unmagnetized plasma, a
Quid model for the high-frequency plasma current car-
ried by the electrons gives (Kaw et al. , 1973; Max, 1976;
Cardinali et a/. , 1988)

gJ n, e E
Bt m,

(4.4)

vo/c & O(2)(coo/co, )(m, /m; )' (4.6)

ponderomotive self-focusing is dominant over relativistic
self-focusing and modulational instability (Max et al. ,

For finite k~~u, and k~~u~~, the quasisteady magnetized
plasma response to the ponderomotive force produced by
the high-frequency electromagnetic waves is (Max, 1976;
Cohen, Cohen, Nevins, et al. , 1988; Cohen et al. , 1990)

n, =Z, n, =noexp[ —e (E )/2m, co (T0, +T;/Z;)] .

(4.5)

For laser amplitudes satisfying

where Po =m, c ( T, + T, /Z; )/e = 17 MW ( T, + T, /Z, )

(keV) and n, is the critical density where the plasma and

laser frequenci. es are equal. Proposed high-power FEL
experiments in tokamaks satisfy all of the inequalities
(4.6)—(4.8).

Cohen, Cohen, Nevins et al. (1988) adopted the
analysis of Max (1976) to study steady-state self-focusing.

By neglecting V(V. ) and introducing both an eikonal rep-
resentation and the paraxial assumption that 8 /Bz is
small compared to ko(B/Bz) and Vf operating on the
slowly varying wave amplitude, a simplified wave-

envelope equation was derived. With the additional as-
sumptions that the wave envelope is cylindrically sym-

metric, varies radially as a Gaussian, and remains Gauss-
ian, the self-focusing calculation was reduced to a quad-
rature. The relative beam radius as a function of the
penetration distance into the plasma was calculated by
Cohen, Cohen, Nevins, et al. (1988) for MTX parame-
ters. For a simple slab density and profile, and a laser
beam composed of parallel rays at incidence, self-

focusing occurs very close to the magnetic axis for
U 0 /4U, ( 1+T; /T, ) =0.03, T; = T, = 1 keV, Z; = 1, and

co&, /coo= —,'. Introducing an angular divergence into the

laser beam or Gaussian profiles for the plasma density
and temperature forces the self-focusing to occur at a
greater distance into the plasma.

The work of Cardinali et al. (1988) and Lontano et al.
(1989) addressed the space-time dynamics of ponderomo-
tive self-focusing. This is relevant because the current
induction-linac driven FEL technology involves finite-

length pulses (30—50 nsec) in MTX. Cardinali and co-
workers incorporated a hydrodynamic description of the
plasma ion response retaining ion inertia and invoked
quasineutrality to determine the electron density. They
then applied both a self-similar analysis and numerical
integration to Eqs. (4.3) and (4.4), and evaluated both
steady-state and space-time solutions for the location of
the first focus in the plasma assuming either strongly or
weakly magnetized ions. For uniform slab density and

temperature profiles, and with parallel electromagnetic
rays incident and no cyclotron absorption, Cardinali
et al. calculated that a first focus would appear in a dis-
tance less than 30 cm (twice the minor radius of MTX)
after 10—20 nsec for high-power operation P-8 GW and

T, =T,=1 keV.
A different approach to the space-time dynamics of

ponderomotive self-focusing was given in Cohen et al.
(1991). In this paper both steady-state and time-
dependent, paraxial solutions of Eqs. (4.3)—(4.5) were ob-
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FIG. 13. Steady-state Aux contours for an initial Gaussian
profile with Uo /v, (1+T; /Z; T, )' =0. 1, T, + T; /Z; = 10 keV,
and an initial Gaussian half-width koo. =700. If the beam had
retained its Gaussian shape, the contours would have remained
equally spaced (Cohen et al. , 1990).

tained by numerical integration. The wave envelope was
not required to remain Gaussian. Computed steady-state
Aux contours (the flux is defined as Jdr r IE

I ) are shown

in Fig. 13. If the beam had retained its Gaussian shape,
the contours would have remained equally spaced.
Without the Gaussian assumption, intense beams focus in
shorter distances; and rings of increased intensity develop
downstream of the first focus. The time-dependent calcu-
lations of Cohen et al. (1991) retain time derivatives in
the wave equation (4.3), while assuming that the hydro-
static plasma response in Eq. (4.5) is valid. This assump-
tion is valid in a magnetized plasma if the self-focusing
time is longer than the ion and electron transit times
across the laser beam parallel to the applied magnetic
field and if k A,, &&0, /co, for each species, where A,, is

the ion or electron Debye length. The second condition
is satisfied if the Larmor radius of each species is smaller
than the laser beam width. The first condition depends
on the self-focusing rate and is more difficult to satisfy in

physical applications of interest.
Cohen et al. (1991) reduced Eqs. (4.3)—(4.5) to the

scaled dimensionless nonlinear wave equation

8 8
BT BZ BZ

l 1

2 R M
IEI'

BR
+fE 1 —exp

g

(4.9)

with the scaling transformations d T=co &Ddt /coo,
dZ= &~odz/claus(z), dR =co~odr /c, and E=(e /
m, coo)E(x, t )/2v, o(1+T;0/Z; T,o)'~z, where u, o

= T,o/
m, and the unperturbed equilibrium density and temper-
ature profiles were allowed to vary in z (the propagation
direction of the incident wave): co ~, (z)=co ~of (z),
T, (z)=T,vg(z), and T;(z)=T,og(z). The scaling trans-
formations collect the important parameter dependences
in compact form and allow the application of the solu-
tions of the scaled equation to an infinite number of
different physical systems. The boundary condition
E (Z =0, R, '1) describing the incident pulse was defined,
and the radial boundary was set at a large enough R com-
pared to the beam radius so that E=0. The Z-vs-T tra-
jectories of the first focus were computed for various
values of vp/v 0 which depends on the wave strength and
the plasma temperature, the incident beam width a, the
angular divergence of the incident beam, and the density
and temperature profiles. For decreasing vo/v, o, increas-
iilg copa /c, increasing angular divergences, and density
profiles that decrease faster than do the temperature
profiles, the self-focusing occurred at larger values of Z
and T, i.e., farther into the plasma and later in time.
Other effects that weaken the self-focusing rate are ab-
sorption of the laser beam in the plasma [included in
some of the steady-state calculations of Cohen et al.
(1991)] and the scattering of the incident wave in the
edge turbulence of the tokamak which increases the an-

gular divergence of the laser.
The more restrictive condition on the validity of the

hydrostatic assumption Eq. (4.5) was found to obey the
following scaling. The self-focusing time scaled as

T,f =500(u,o/uo) for cooa /c «O(10 ). With v; = 10
(cm/sec)[T~ (eV)]' in hydrogen, the critical temperature
above which the hydrostatic assumption is valid (provid-
ed that p; (a ) is then

T; «(3.6 keV)(n, /n, ) (cooa/c) (vo/v, o)

Thus, for (n, /n, )(vo/v, c) ~ 10 and 100 ~ cooa/c ~ 200,
T, ~ 5—10 keV is required for the validity of the hydro-
static assumption. This condition can be satisfied for
possible FEL applications in current large tokamaks like
the Joint European Torus (JET) and the Tokamak Fusion
Test Reactor (TFTR), and future tokamaks like CIT and
ITER. The validity condition for the hydrostatic as-
sumption is not satisfied for MTX applications at high
power: Cohen et al. (1991)calculate a self-focusing time
of 3—5 nsec for ( vo/u, &)2=0.24, co 20/coo=0. 5, and
coo/2+=140 6Hz anticipated in MTX where the ion
transit time across the laser beam is approximately 30
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the results of several published papers, they applied the
code to an MTX case with 2 G%' of power at 140 6Hz, a
beam cr'oss-section of 6 cm X 8 cm, a toroidal field of 5 T,
and a density of 1.8X 10' cm . Preliminary results in-
dicate that both the whistler and uppe~ hybrid loss-cone
modes are unstable with growth rates Imago/0,
=(5—7)X10 for ~~, /0, =0.6. Growth rates for the
whistler' instability for kj =0 are plotted in Fig. 15.
These growth rates are rapid compared to the inverse of
typical pulse durations, and, hence, of concern, particu-
larly for current-drive applications. However, finitc-
geometry c6ects, such as convective stabilization, have
not yet been evaluated but are under investigation. Addi-
tionally, study of the cyclotron maser instability is in pro-
gress; and calculations indicate instability with
Rem/Q, =0.99 and Imm/0, =3.6X10 for co, /0,
=0.6 RDd this gI owth I'Rtc has bccll Inaxlrnlzcd with

k, ) ~

V. SIMULATIONS OF FEL HEATING
AND CURRENT DRIVE

A. Monte Carlo and self-consistent
particle slmolatlons

ID this section we present a few examples of computer
simulations of' FEL heating and current drive. Analyti-
cal progress in describing aspects of the highly nonlinear
interaction of RIl 1Ilt,cnsc, pUlscd clcct,ion cyclotIQIl wave
with R plasma is limited and subject to restrictive approx-
imations. In order to test the approximate analytical cal-
culations and obtain a more comprehensive picture of the
phenomena that is subject to fewer assumptions and is
closer to first principles, numerical simulations have been
undertaken (Rognlien and Nevins, 1987; Nevins et al. ,
1987; Cohen, Cohen, Nevins, et al. , 1988; Cohen, Cohen,
Logan, et ah. , 1988; Menyuk et ah. , 1987, 1988; Akimoto
and Karimabadi, 1989). The numerical simulations
shoUld bc vlcwcd as computational experiments that pro-
vide qualitative and quantitative insight into the FEL
heating Rnd current-drive phenomena.

The two most heavily used simulation methods for the
study of the nonlinear aspects of FEL heating and
current drive are orbit-following codes (so-called Monte
Carlo codes) and self-consistent electromagnetic particle
slrnulatlon codes. Thc orbit-following codes take thc lel-
ativistic equations of motion for charged particles in
prescribed electromagnetic fields Rnd integrate the trajec-
tories of an ensemble of test particles representing an ini-
tially Maxwelhan distribution (Rognllen, 1983b). The
equations of motion ar'e a sct of ordinary differential
equations requiring a simple set of initial conditions for
their solution. %'hcn collisional CQects need to be includ-
ed, R Monte Carlo scattering scheme has been adopted in
which the test particles scatter on a background plasma.
with a pI cscrlbcd dcIlslty and vcloclty dlstl lbUtlon
(Rognlien, 1983a). Much of the physics of FEL heating
and current drive separates cleanly into collisionless and

collisional regimes because of the separ'ation of time
scales between the relatively fast electron transit times
and the slow collisional time scale. The integration
schemes used in the orbit-following codes may be the
simple second-oI d cI'-RccUratc schemes favored for sclf-
consistent particle simulations (Hockney and Eastwood,
1981; Birdsall and Langdon, 1985), because these are
readily optimized for C%cient computer solution, or
higher-order-accurate integration schemes where accu-
rate integration through a resonance or turning point is
desired (Ruth, 1983, Keefe, 1986).

Thc self-conslstcrit clcctromagDctlc partlclc slIQU1R-

tions also integrate the relativistic particle equations of
motion (Birdsall and Langdon, 1985). However, these
codes additionally solve Maxwell's equation for the self-
consistent electric and magnetic fields. To accomplish
this, the charge and current densities for the particles are
accumulated on a spatia, l grid by interpolation from the
particle locations. These charge and current densities
provide the sources in Maxwell's equations which deter-
rnine the electromagnetic fields on the grid. Maxwell's
equations are a set of par'tial differential equations that
are solved on a spatial grid by fast Fourier transform or
by finite-di6'crencing and matrix inversion. The 6elds are
interpolated from the grid back to the particle locations
to accelerate the particles. In addition to the constraints
on the particle-trajectory calculations, the self-consistent
simulation must also accurately and stably resolve the
propagation of the electromagnetic normal modes sup-
ported by its physics model. This leads to a set of con-
straints on the integration time step and the spacing of
the spatial mesh. Further'more, because the discrete par-
ticles emit and absorb electromagnetic waves in a self-
conslstcnt slIIlulRtlon, thcI'c arc thermal Quctuations con-
tI'lbUtlIlg to RI1 electromagnetic nolsc lcvcl that leads to
requirements on the number of particles to accurately
resolve linear and nonlinear phenomena (Birdsall and
Langdon, 1985). As the size of the simulation problem
increases in terms of a characteristic wavelength, the De-
bye length, Larmor radius, or skin depth, the self-
coIlslstcnt slrnulatloI1 rcqulrcs Inolc gild points Rnd morc
particles, and the cost of the computation r'ises concomi-
tantly.

In what follows in this section, we shall review exam-
ple calculations performed with orbit-following and self-
conslstcnt pRI tlclc simulation codes addressing scvcI'Rl

aspects of FEL heating and current drive. First we de-
scribe simulations of nonlinear electron cyclotron heating
in which electron trapping is important. This is followed
with simulations of heating and current drive in which
stochasticity or the rising-bucket mechanism is impor-
tant. Beat-wave current drive is illustrated next. The
section is concluded with examples of simulations of
stimulated Brillouin backscatter and filamentation.

B. Nonlinear electron cyclotron heating

Thc t4coly of thc I'csonant nonlinear wave-paI'tlclc in-
teraction for intense, pulsed electron cyclotron heating
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FICx. 16. Power absorbed per unit beam height for the Q-mode
with ~0/Qo = I from an orbit code for two cases:
k

ll

=&&0/Bs =0 corresponding to a minor radius of r =0
(squares) and for kll

= 1.4+0.5(s —so } cm ' with
BB0/Os=3. 7X10 T/cm corresponding to r=3 cm in MTX
(circles). Parameters are T, =1 keV, So=5 T, and n, =1X10'"
cm . The beam power width along Bo is m=3. 7 cm, yielding
p2 = 1.3 (Nevins et al. , 1987). The line labeled "complete
theory" is from Kotel'nikov and Stupakov (1991).

was reviewed in Sec. II. Owing to the Anitc transit time
of an electron crossing the width of the beam parallel to
the magnetic Acid for an electron cyclotron wave propa-
gating across the magnetic 6eld, resonant electrons are
trapped and then detrapped nonadiabatically. Analytical
calculations indicate that the detrapped electrons have a
50% probability of being accelerated to higher energy for
first and second harmonic heating. The fraction of
tlappcd clcctlons dcpcnds cxpllcltly on thc wRvc ampli-
tude. At high wave amplitudes as described in Sec. II,
the opacity of the plasma depends on the wave ampli-
tude. In the absence of' gradients in either the paraHel
wave number or the magnetic field that lead to rising-
bucket enhancements of the opacity, the opacity is re-
duced from its linear value by nonlinear CQects. The non-
linear absorption of intense, pulsed electron cyclotron
waves has been studied with both orbit-following and
self-consistent particle simulation codes (Nevins et a/. ,
1987).

Rognlien and Nevins (1987) used an orbit-following
code to study the nonlinear absorption of an ordinary
mode with frequency near the first harmonic that is in-
cident nearly perpemIicular to the magnetic field. Initial
ensembles of Maxwellian test particles were launched on
a Aux surface near the cyclotron resonance. The ab-
sorbed power as a function of the incident 6cld strength
deduced from the orbit code is plotted in Fig. 16. Linear
theory predicts that the absorbed power should increase
as E

~~.
The data points (crosses) for a uniform applied

magnetic field and klan=0 show reasonable agreement
with the theoretical prediction for the strongly nonlinear
regime, for which the absorption is proportional to
E

ii
. The simulation data determines the overall multi-

plicative factor that the scaling arguments of Sec. II can-
not set (Nevins et a/. , 1987). In the subsequent work of

Kotel'nikov and Stupakov (1990), the multiplicative fac-
tor 3 = 1 was calculated for the strongly nonlinear opaci-
ty of the ordinary mode which 6ts the data in Fig. 16 at
the largest field amplitudes. In the numerical calcula-
tions reported by Nevins et a/. (1987), a value of A =1.6
was used as an overall fit to the numerical results. The
increased absorption observed in the orbit code for finite
dkl /ds and dB /ds is caused by rising buckets.

The two-dimensional, relativistic, electromagnetic par-
ticle code ZDHAR (Langdon and Lasinski, 1976) was used
to perform self-consistent particle simulations of non-
linear absorption (Nevins et a/. , 1987; B. Cohen, 1987b).
This model was used to simulate wave propagation across
a prescribed plasma profile and includes wave attenua-
tion on multiple Aux surfaces in a natural way. %'ave at-
tenuation was omitted from the orbit-following code and
was not included in the opacity estimates given in Sec.
II.B. An ordinary mode with finite width in y was in-
cident on a finite plasma slab with density and back-
ground magnetic field Boy that varied in x. The bound-
ary conditions were periodic in y and open in x (out-
going boundary conditions on particles and radiation).

The predictions of the scaling theory of Sec. II were
compared to the particle simulation results, noting that
thc width of the plasma slab in the simulation was corn-
parable to the width of the linear absorption layer. This
reduced the opacity in all absorption regimes (by factors
of 2 or 3). The value of ri given in (2.24) was reduced
from ~L= 10 to &L=3 for the smallest resonance zone and
to ~L=5 for a set of simulations with a wider resonance
zone. The limited resonance zone alters the scaling argu-
IDcnts fol thc opacity. Thc Iange of wRvc intensities
varied over 0 ~

E~~ /Bo (0.4 corresponding to
0(pi (2.66. Recall that pi = [Xi(E~~/&0)(~, c /
T, ) j for the ordinary mode. From the relative temper-
ature of the plasma, T, /m, c =0.09 and the width of the
incident beam along Bo, m=50ko ', p2=0. 4, where pI
and pz were defined in Eq. (2.19). The first nonlinear re-
gime corresponded to 1 ~p &

~p 2, which was
1 ~p& ~0.3 for these parameters. The absorption layer
width dL was replaced by a shorter distance d in these
simulations, but the relative scaling of the opacity in the
first nonlinear regime was unchanged from
rNL, =r&(pz/pi ) given in Eq. (2.30). In the second non-
linear regime p& &1. The absorption layer width was
shoI tcncd from p i dh to d» and thc RvcI'Rgc cncI'gy ab-
sorbed was reduced by an additional factor of p& because
of the reduced layer width (Nevins et a/. , 1987). Thus,
the scaling of the opacity in the second nonlinear regime
was predicted to be rNLz =~L(pz /p, ).

Results from self-consistent simulations are shown in
Figs. 17 and 18. Figure 17 shows contours of the time-
dependent electromagnetic field 8,(x,y) for a simulation
of a perpendicularly incident ordinary mode with
B,&/Bo =0. 1 and frequency that is resonant with the fun-
damental cyclotron harmonic at x =30 in the interior of
the plasma. The background magnetic Geld varied
linearly, 0.85(0, /coo(1. 35. There was 75% absorption
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8, (x,y)

FIG. 17. Contours of magnetic 6eld amplitude 8,(x,y) in the
x,y plane for a particle simulation of ordinary mode heating at
peI'peIldiculal 1ncldence and at the fundaInental elect1on cyclo-
tron harmonic shovnng good absorption.
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FIG. 18. Particle simulation results for the opacity as a func-
tioIl ofpl ~ E

)~
fol ord1IlaIy Inode heating at pel pendlcular 1Il-

cidence and at the fundamental cyclotron harmonic (Nevins
et ah. , 1987). The curves indicate the predictions of scaling ar-
guments as modified for the restricted spatial domain of the
slIIlulatloIls.

of thc ordinary mode ln thc simulation. Thc deAnition of
in Fig. 18 is v = —ln (transmitted power/incident

power), which is plotted as a function of p, . Data for
narrow (circles) and wider (triangles and x) resonance
ZQIlcs Rx'c shown. IncI'cased absorption occulI'cd foI' thc
wldcl lcsollRQcc XQDc. The simulations wclc performed
with 96000 electrons and ions with a mass ratio of

m; lm, = 10 and T, = T, when mobile ions were included.
The x-y mesh was 100X 128; m&, /no=0. 5 at the peak of
the electron density pro6le; and 3000 tin1e steps weI'e

Used with Q)ot =0.2. Thc systcn1 slzc wRs I = 120k o
and I~ =80ko or 100ko . The data from the simula-
tions agx'cc reasonably well with thc modified scR11Ilg RI'-

guInents. At very low wave intensities, there is strong
linear absorption ~& 4, and the weak transmitted signal is
diKcult to measure with pI'cclsloD bccausc of thc coIn-
pctltlon with thermal Ilolsc. At high 1QtcQsltlcs, the ob-
served absorption was improved over the expectation of
thc scaling thcol y. Onc posslblc mechanism that could
contribute to the enhanced. absorption is the resonant
paI'RInctllc decay of thc ofdlnaI'y Inodc into two Q1agnct-
ized plasma waves that is mentioned in Sec. IV.A. VAth
the inclusion of ions in the simulations, the enhanceInent
of the absorption was not as lax'ge for increasing wave in-
tensity. There was evidence of nonlinear self-focusing in
these simulations with mobile ions, which became more
px'QQQUDccd with 1Ilcl cM1Ilg lncldcnt wave intensity.
Nonlinear self-focusing depletes the local plasma density
and raises the local value of the wave intensity. These
two CIIccts reduce thc wave RbsolptlQIl RIld 1IlcI'cMc thc
transmission, while the narrowing of the laser beaIn
reduces the correlation time ~„increases p2, and tends to
1Qcl case t4c absorption.

C. Stochastic heating a,nd current drive

The thx'eshold condition for the wave amplitude re-
qUlx'cd to 1Qducc resonance ovcI'1Rp and stochastlclty WM
given in Sec. II. How stochasticity can be used as 8 heat-
ing and current-drive mechanism was also reviewed in
Sec. II. %'e presented results from Rognlien and Nevins
(1987) for the stochasticity threshold values of the wave
clcctI'lc field as 8 fUnctlon of thc wave fI'cqucncy foI' thc
use of finite-width extx'aordinary and ordinary xnodes in
MTX. There have been several other numerical studies
of the onset of stochastic electron Inotion in the presence
of 8 UIllfoI'In clcctI'on cyclotlon wave, fox' example, Mcn-
yuk et al. (1987, 1988), Hizanidis (1989), Karimabadi
et al. (1990), and Akimoto and Karimabadi (1989). The
calculations of Akimoto and Karimabadi (1989) were
based on self-consistent particle simulations, while the
rest wex'e based on orbit-following codes. Stochastic
current-drive cScicncy calculatlQIls wcI'c I'cvlcwcd 1D Scc.
III. Thcsc calculatloIls wcI'c produced with Rn orbit"
following code (Rognlien and Nevins, 1987) omitting
ponderomotive CFccts from the finite xnicrowave beam
pro61C. The calculation of the CKciency included effects
of both co01slonal rclaxatlon Rnd Q1agQctlcally tI'Rppcd
particles.

Figures 19, 20, and 21 further illustrate stochastic
11catlIlg RIld cUrrcnt dI'lvc. These I'csUlts RI'c taken again
from Rognlien and Nevins (1987). The surface of section
plots in Fig. 19 show the transition from regular to sto-
chastic motion for a right circularly polarized extraoxdi-
nary wave with mo/Q', '=1.96, k~i =0,E,&/B0=0.02 and
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FICx. 21. The stochasticity threshold electric 6eld strength
E, /8O for the right circularly polarized component of the ex-
traordinary wave at frequency no=1.9QO as a function of the
angle between k and 80.

IW

~ ~t tlL

0

FIG. 19. Surface of section plots in the I'j, O plane showing the
transition to chaos for a right circularly polarized extraordinary
wave with uo/Q0=1. 9, kI~=0, initial energies e,J B(~ 1 kcV,
and (a) E, /Bo =0.0463 Mld (b) E /80 =0.093. Thc liIlcs dcIlot-
ed by different I's give the cyclotron resonances for small wave
amplitude.

0.2, and 1 keV electrons. The extraordinary wave was an
in6nite plane wave. Plotted in Fig. 20 are the results of
orb1t calculat1ons for the m1t1al and Anal momenta result-

ing from acceleration by an extraordinary wave with fre-
quency coo/0', ' = 1.9 and well above the stochastic

J ~

, el

FIG. 20. Final positions 1n the py/me, p)( /ntc plane of electrons
from an initial 1 keV Maxwellian after they pass through a 0.71
cm wide rf beam in the stochastic regime with E, /80=0. 15
and ~0/Q&= 1.9. Results for the extraordinary mode at two an-
gles of propagation (70 and 45 ) with respect to 8 are shown.

threshold for two diferent angles of propagation with
respect to the magnetic field. These trajectories follow
the heating characteristics calculated in Eq. (2.15). The
stochastic threshold electric 6eld amplitude for a right
circularly polarized extraordinary mode with frequency
coo/Q,' '=1.9 is plotted in Fig. 21 as a function of the
propagation angle with respect to the magnetic field.
%'hen above threshold for stochasticity, the current-drive.m. -.& ---. t --. gk~~/k, b t theth-. h-
old electric Geld increases also.

D. Rising buckets

The theory of electron cyclotron heating exploiting ris-
ing buckets was reviewed in Sec. II.B. Examples of the
current-drive eKciency for rising-buckets were presented
in Sec. III.C. Rising-bucket calculations have been made
with both an orbit-following code (Cohen and Rognlien,
1991)and a self-consistent electromagnetic particle simu-
lation (Cohen and Rognlien, 1989). We first describe
selected results from orbit calculations.

Figure 16 shows simulation data form Nevins et al.
(1987) for the absorbed power as a function of the electric
6eld strength for a perpendicularly incident ordinary
mode for both k~~ =Mo/as =0 on the magnetic axis and

k~~
=1.4+0.5(s —so) cm ' with BBO/Os=3. 7X10

T/cm corresponding to r =3 cm in MTX. The other im-
portant parameters for the simulations were T, = 1 keV,
80=5 T~ Ps~ = 1 X 10 clT1 ~ and a beam width along Bo
of m=3. 7 cm, which yielded @2=1.3. The gradients in

Bo and k~~, and the finite beam width facilitated rising-
bucket acceleration, which led to the increased absorp-
tion noted in Fig. 16. Representative electron trajec-
tories illustrating the difference between rising buckets
and the nonlinear heating for k~~

=0 described i.n Nevins
et al. (1987) are presented in Fig. 22. In the three cases,
d+(I/dz was zero, positive, and negative, which. corre-
sponded to normal incidence, a diverging beam, and a
converging beam. For each case, two electrons with
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FIG. 22. Electron trajectories calculated with an orbit code il-

lustrating bifurcation, and rising buckets and phase-space dis-

placement. (R. Cohen and Rognlien, 1990). Particle energies as
a function of z are plotted for (a) dNI~/dz=0, (b) dN~~/dz &0,
and (c) dN~~/dz &0. Two electrons with identical initial ener-

gies and differing gyrophases are shown in each plot. The reso-
nant energies are shown as dashed lines.

0.8
CO

E
O

0.6

E
0.4

0.2

c~=c.~~=1 keV and different gyrophases are followed
from z= —10 cm through a pulse with E~~=4X10
Vjcm, 80 =5.07 T, f= 140 GHz, and a Gaussian profile
with 4 cm width centered at z =0. The resonant electron
energy is plotted as a dashed line. Figure 22(a) shows the
electrons becoming trapped and then detrapped, result-
ing in one electron being significantly heated and the oth-
er returning to its original energy. This illustrates the
basic heating mechanism described by Nevins et aI.
(1987). Rising-bucket acceleration is demonstrated in
Fig. 22(b) when the resonant energy is made to increase
with increasing z. On the other hand, if the resonant en-

ergy decreases with z, the bottom of the separatrix (buck-
et) descends to the electron energy, as in Fig. 22(c); and
the electrons are displaced to the top of the separatrix as
the result of the strong but brief acceleration. This
phase-space displacement mechanism is included within
the rising-bucket theory of Cohen and Rognlien (1991).
Figure 23 displays the deformation of the electron distri-
bution function after passing through a microwave pulse
with E~~=5X10 V/cm, AX~~=0. 25, B0=5 T, a beam
width of 10.4 cm, and 1 keV initial temperature. Reso-
nances and heating characteristics deduced from Eq.
(2.37) are shown in Fig. 23(b). The results from the orbit
calculations establish that with the appropriate spread of
k~~, the nonlinear opacity can significantly exceed the
linear opacity. Figure 24 presents the ratio of the non-
linear opacity to the linear opacity from orbit calcula-

, ii)

0 0.2
I t I 1 I

0.4 0.6 0.8 1.0

p, /m [10 cm/s]

FIG. 23. Contour plots in the p&,p~~ plane from an orbit code
showing the electron distribution function (a) before and (b)

after passing through an 0-mode rf beam with cop/Op= 1. Heat-

ing characteristics are denoted in (b) as dotted lines, and the res-

onance at the exit side of the beam at the 1/e point of the elec-
tric field is indicated with a dot-dashed line. Here, Bp=S T,
AN~~ =0.2S, E~~

=S X 10 V/cm, the beam power width was 14.7
cm, and the initial temperature was T, = 1 keV.

tions and analytical theory (Cohen and Rognlien, 1991)
for a spread of N~~ using parameters similar to those in
Figs. 22 and 23.

A set of self-consistent electromagnetic particle simula-
tions with the zoHAR code (Langdon and Lasinski, 1976)
were reported by Cohen and Rognlien (1989), who com-
pared self-consistent simulations of rising-bucket ac-
celeration to simulations performed with an orbit-
following code. In the self-consistent simulations, an or-
dinary mode was launched with a square profile through
an aperture that was 20ko ' wide at an angle of 45' with
respect to a background magnetic field that varied linear-
ly across the simulation so that 1.34~coo/Q, ~1.08.
The relatively narrow aperture encouraged a beam diver-
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0
0.2 0.4

FICi. 24. A plot of the ratio of the nonlinear opacity to the
linear opacity rNL/~L as a function of Nll, „/N as determined
by an orbit code and theory for parameters similar to those of
Figs. 22 and 23. The dashed curve reAects a small modification
of a coeKcient in the theory to better fit the numerical particle
orbit calculations. Here N~l, „ is the value of Nl~ at the 1/e
point of the electric field.

the product of the trapping frequency cob and the transit
time across the beam ~, satisfied 2m. ~ cob~, ~ 1. The con-
dition that the bucket lift was adiabatic, i.e., that the
trapping time was shorter than at the time to lift the res-
onance in energy by the width of the separatrix, was only
marginally satisfied.

Results from the orbit-following and the self-consistent
particle simulations are shown in Figs. 25 and 26. Condi-
tions in the orbit code were established to mimic the elec-
tromagnetic field pattern and the spread of X~~ achieved
in the zoHAR simulations (Fig. 25). The results of two
sets of simulations with different wave amplitudes are
shown in Fig. 26, E&IBO =0.06 and 0.24 at the aperture,
which translated to E,f/SO=0. 03 and 0.13 at the reso-
nance point in the plasma. There was fairly good agree-
ment between the two types of simulations on the heated

gence so that there was a spread of XI~ 0 5 &Xl( &0 95.
The plasma density had a Bat-top profile with a max-
imum density corresponding to co, /coo=0. 185, and the
electron distribution function was represented with
128 000 particles. The ions were a fixed charge-
neutralizing background, and the duration of the simula-
tion was coot =600 with a time step not =0.2. The self-
consistent simulations included wave attenuation, refrac-
tion, diffraction, and scattering due to thermal Auctua-
tions in the electromagnetic fields. In these simulations,
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FIG. 25. (a) Contour plots of E,(x,y) in the x,y plane for a
zoHAR particle simulation of ordinary mode heating and rising
buckets with 45' angle of incidence, peak amplitude at the aper-
ture Eo/80=0. 06 and 0.24, and frequency resonant with the
fundamental electron cyclotron frequency in the center of the
plasma slab. (b) Corresponding plots of the electric field and N~~

on a Aux surface in the middle of the plasma versus distance
along the magnetic field from an orbit code used to compare to
the particle simulation.

FIG. 26. (a) Scatter plots of the final momenta p~ =p~~ and p„
from ZGHAR simulations of rising buckets for the two electric
fields shown in Fig. 25, (b) Electron energy distribution versus
energy in the particle simulation. (c) Contour plots in the p&,p~~
plane from the corresponding orbit-code simulation. (d) Elec-
tron energy distribution versus energy from the orbit code
simulation illustrating rising buckets. The wave amplitudes
were below the stochasticity threshold.
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electron velocity distributions. Signi6cant heating was
observed, with individual particles gaining energies that
exceeded their initial energies, T, (0)=0.04m, c: many
electx'ons realized energy gains comparable to the
he=0. 5m, c predicted for complete bucket rise, Eq.
(2.34), for EziBo~0. 1 at the aperture. After the in-
cident wave was a«Ilabatlcally tuIQcd o6 in the ZOHAR

simulations, the power spectrum for the electrostatic
6elds did not reveal any superthermal Auctuations nor
microinstabihty; and thermal Auctuations and collisions
(enhanced by particle discreteness) relaxed the anisotro-
pies in the electron velocity «Iistribution produced by the
heating. Diagnostics of the single-particle orbits in the
orbit code indicated that the electrons were trapped and
cxpcx'lcQccd stlong single-pass RccclcI'RtloQ 1Q thc I'cso-
nant wave field, but that nb~, ~m in most cases. The
transit time in the particle simulations of rising buckets
was short, because the system size was compressed. As 8
result, not all aspects of rising buckets were faithfully
modeled by thc self-coQ81stcnt paI't1clc simulations.

E. Beat-wave current drive

ma wave is cxcitc«I. ThcIc ls significant hcatiQg Rnd tall
formation in the electron velocity distx'ibution, Rnd there
is nearly complete transfer of wave action from the
higher frequency electromagnetic pump wave to lower
frequency transverse waves. This simulation and ihe oth-
ers reported in Cohen, Cohen, Logan et al. (1988) had no

1000

10

10

The theory of beat-wave current drive was reviewed in
Sec. II.B, and self-consistent particle simolation results
foI thc curI'cnt-«Iilvc cKcicncy wcic pI'cscntcd in Scc.
III.C. Two-dimensional fluid simulations of beat-wave
coupling were reported by Amin and Cairns (1990),
whose work showed that parallel and Rntiparallel
geometries were preferred. The one-dimensional particle
simulations of Cohen, Cohen, Logan et al. (1988) using
the self-consistent electromagnetic particle code EMONE
(Cohen et al. , 1975; Birdsall and Langdon, 1985) have
given a detailed picture of many nonlinear aspects of
beat-wave current drive.

The particle simulations model the beat-wave coupling
froID 6rst px'lnclplcs an«I, thcicfoic, 1Iicox'poI'atc 1ri 8 DatU-
ral way the nonlinear transfer of wave action between the
electx'omagnetic waves, electron Landau damping and
elcctxon trapping ln the longitudinal beat wave, the possi-
ble nonlineax' coupling of the beat wave to other electro-
static modes in the presence of ions and ion waves, and
the possible multiple scattering of the two electromagnet-
ic pump waves. As pointed out in Sec. III.C, an impor-
tant 6nding in the simulations was the sensitivity of the
beat-wave coupling and thc cuiicnt-drive cSciency to thc
ratio of the beat-wave phase velocity to the electron
thermal speed; values of this ratio in the range of 2 to 4
for wave propagation parallel to the background magnet-
ic Geld were found to be optimum to achieve good action
transfer and current-drive cKciency. The simulations
also demonstrated that the momentum transfer to the
plasma was in good agreement with the Manley-Rowe re-
lations governing conservation of wave action: Fig. 4 of
Cohen, Cohen, Logan et al. (1988).

Figure 27 shows simulation results from Cohen,
Cohen, Logan et aI. (1988) for oppositely propagating
transverse pump waves, wherein a large-amplitude plas-
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Mode number

1l&ll III/I II tt i[I It- (d)
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Velocity V iC v„'&c'

FIG. 27. Particle simulation results (Cohen, Cohen, Logan,
et aI., 1988) for beat-wave current drive with opposed trans-
verse waves with co& =2.24~~„co2= 1.12m~„v, /e =0.13,
nz;/m, =100, u &" /e=u2" /a=0. 04, and (m&

—mz)/(k&+k2)
=3.5v, =0.45'. (a) Higher-frequency pump-wave energy densi-
ty versus time. (b) Lower-frequency pump-wave energy density
components for left and right-going vacuum transverse waves
versus time. (c) Longitudinal field energy density spectrum
versus wave number at co~, t =100 showing the beat-wave peak.
(d) The electron velocity distribution versus velocity parallel to
the beat-wave phase velocity at m~, t =1000 showing tail forma-
tion. The trapping width was as large as v, . 120% of the beat-
wave momentum was deposited in the electrons and —20% in
the ions.
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background magnetic field.
Additional simulations by Cummings and Cohen

(1989) including a background axial magnetic field
demonstrated the requirement that the two transverse
pUMp waves have the sRmc po1811zatlon fol good cou-
pling. For pI'opagation parallel to the background mag-
netic field, the normal modes are right and left circularly
polarized. Simulations of a pair of linearly polar'ized

pump waves showed that they decompose into 8 pair of
right circularly polarized pump waves and a second pair
of left circularly polarized pump waves. Each paiI' of
waves had approximately one-half of the poweI' of the
oI'1glQ81 pa1r of waves, which 1cdUccd thc I'atc of action
transfer by one-half as predicted by theory (Cohen,
Colieii, I ogan et 0/. , 1988). Simulafi011s witli oiie paii of
identically polarized, left or right circularly polarized
pump waves showed no reduction in the rate of action
transfer from the I'ate observed for two identically polar-
ized pump waves with no background magnetic 6eld.

8, (x,y)

F. Parametric instabilities

PRIamctI'1c instabilities Rssoc18tcd w1th FEI. heating
Rrld cuII'cnt dI'1vc wcI'c reviewed 1rl Scc. IV. HcI'c wc give
two simulation examples of parametric instabilities Chat

could occur in intense electron cyclotron heating.
both cases, the zOHAR self-consistent electromagnetic
particle code was used to simulate the interaction of an
ordinary mode propagating perpendicular to a back-
ground magnetic field and normally incident on a plasma
slab. Self-consistent particle simulation is well suited to
the simulation of laser-plasma interactions and paramet-
ric instabilities where kinetic detail and a model that is
close to first principles are desirable. However, the simu-
lat1ons accommodate only limited 1RQgcs of time and
space scales, and typically use arti6cial parameters to
compress the dispaI'ate time and space scales. Neverthe-
less, considerable insight and valuable theoretical under-
standing have been gained with the use of simulations.

In the first example of parametric instability, Fig. 28
shows strong evidence of self-focusing in two-
dimensional contour plots of the magnetic field of the
wave and the ion density. The electromagnetic beam
constricts and digs a channel through the plasma as it
propagates across a background magnetic 6eld. A series
of two-dimensi. onal simulations were performed by us
with mobile ions having a mass ratio m;/I, = 10 and for
vaI'IoUs values of thc 1nc1dcrlt 01dlnaI'y mode amplitude.
There was signi6cant focusing of the beam in Fig. 28 for
uo/c=0. 4, T, =T, =0.09m, c, coo=!e/I, !=c= 1, a
beam half-width sou /e = 15, and a Qat-top density pro6le
with co~, /eau ~ 0.5. The cyclotron frequency in the
nonuniform background magnetic field varied linearly
across the simulation domain, 0.85~0, (x)/~0~1. 35.
With these parameters, the inequalities (4.6) and (4.'7)

were satisled-, i.e., pondcromotive self-focusing dom-
inates relativistic self-focusing and modulational instabil-
ity. Inequality (4.8) is not satisfied, from which we infer

that steady-state, self-trapped 61aments are not expected
according to the nonlinear analysis of Max (1976). How-
ever, some convective focusing is certainly evident in Fig.
28.

Porkolab and Cohen (1988) calculated the maximum
linear growth rate for convective filamentation of an or-
dinary mode:

2
1 ~o ~pe

k =—
8 Ug

Uo

2
1+ (5.1)

Equation (5.1) suggests that the fastest growing linear
perturbation of a wide beam would grow by approxi-
mately two e-foldings in traversing the simulation plasma
for the parameters of Fig. 28. With wave amplitudes cor-
responding to uo/c &0.2, there would be less than one-
half e-folding, which agrees with the self-focusing that
was observed in a simulation with uo/c=0. 2 and the
substantial self-focusing evident with uo/c=0. 4. It is

FIG. 28. zoHAR particle simulation of ponderomotive self-
focusing for a perpendicularly incident ordinary mode. The
background magnetic field was oriented in the y direction. C,a)
Contours of the wave magnetic field in the x,y plane at
not =300 showing focusing of the wave. (b) Contours of the ion
density in the x,y plane showing ducting of the plasma accom-
panying the self-focusing.
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noteworthy that these estimates based on a linear theory
of self-focusing agree qualitatively well with the simula-
tions, because the analytical theory omits both the fimte
beam width of the laser and the finite amplitude of the
plasma perturbation.

The second example of parametric instability is stimu-
lated Brillouin scattering of an ordinary mode that is
backscattered by a lower hybrid wave. Stimulated Bril-
louin backscatter was identified in Sec. IV.A as potential-
ly one of the most dangerous parametric instabilties for
intense, pulsed ECH, because it can result in the
reAection of a large amount of the laser energy before it
reaches the absorption layer in the plasma. The follow-
ing analytical arguments and results from one-
dimensional particle simulations illustrate some of the
physics of Brillouin backscatter in a magnetized plasma
and serve as a useful paradigm (Cohen, Cohen, Nevin
et al. , 1988).

Consider the backscatter of a perpendicularly incident
ordinary wave (k.Bc=0) by a perpendicularly propaga-
ting lower hybrid wave. The calculation of the frequency
and growth rate has been given in (B. Cohen, 1987a).
The local growth rate is given by

1/2
kp Up @Op~ COg,

70 (5.2)
2 Q Q)p

where roII, =nip, . /(1+ re„, /&, )

coupled-mode equations for the pump wave and the
backscattered radiation are readily deduced from
Maxwell's equations and a simple Quid theory (Kruer,
1980),

I 0
I

0.6 (I
0.400

V

~ 0.2—

0
0

~ 5n~/no
o Rb

— 0.3

- 0.2
M.5n, ln

— 0.1
R b

0
0.002 0.004 0.006 0.008 0.010
ion thermal velocity vi /c

0, ~', '. ,", ,
'. ,"I . .a&l~g+~Wgspi Lp»

0
C

CN ~C
qp C0
) C$

lg

a$, a/= —0, ap,
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(5.3)

where 5n, is the perturbed electron density in the ion
wave, ap &

are the vector potentials for negligibly damped
transverse modes, a—:(m. /2)(co„, /coo)AO '(1 —

co~, /
coo) ', and A,o is the vacuum wavelength of the incident
transverse wave. For backscattering over a uniform plas-
ma of length L, Eq. (5.3) can be integrated for constant
a5n, /no to obtain a reffection coefficient for Brillouin
backscatter

Rb = ia, (0)/ao(0)~ =tanh (aL5n„/no) .

The reAection coe%cient at saturation is then determined
by the amplitude of the ion wave.

On a relatively short time scale determined by the
growth rate of the instability and the initial fIuctuation
levels, the ion wave can grow to large amplitude and trap
ions before significant heating or deformation of the equi-
librium density profile can occur. Because of the strong
background magnetic field across which plasma must be
transported in order to steepen the density profile, profile
steepening as a possible saturation mechanism is inhibit-
ed. An unmagnetized analytical description of the ions
suftices to describe their trapping in the limit that the
lower hybrid frequency and the growth rate greatly

FIG. 29. One-dimensional particle simulation results for stimu-
lated Brillouin backscatter by a lower-hybrid wave (Cohen,
Cohen, Nevins, et al. , 1988). (a) Ion phase space, momentum p„
versus x, showing the onset of ion trapping, which saturates the
backscatter. (b) The perturbed electron density 5n, /no
and reflection coe%cient for Brillouin backscatter
8b=—~a, (0)/ao(0)~ at saturation as functions of the initia1 ion
thermal velocity.

exceed the ion cyclotron frequency. From a simple
waterbag model (Dawson et al. , 1973), an approximate
trapping criterion can be derived:

e5$ 1 ego

I; 2 k

5n $ pl. cog kU
1 —&3

np 2 ~e +~ ~lb

2

(5.5)

where 5P is the electrostatic potential perturbation,
k =2ko, U; =( T; /m; )', and the electron response is as-
sumed to be linear. Use of Eq. (5.5) for 5n, /no in Eq.
(5.4) relates the reffection coefficient to the ion tempera-
ture. Figure 29(a) shows significant ion trapping in a
snapshot of the ion phase space from a zoHAR particle
simulation, while in Fig. 29(b) we plot simulation results
for the relative density perturbation and reAection
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coeKcicnt at satux'ation compared to the theoretical esti-
mates of Eqs. (5.4) and (5.5) as a function of the ion
thermal velocity. Fairly good agreement with theory was
obtained, and the strong CFect that increasing the ion
temperature on reducing the rcAection coefBcient was
evident. The analysis for backscatter by electrostatic ion
cyclotron waves is generally similar, but the ions are
magnetized, which alters the trapping criterion (Cohen
et ah. , 1982).

Two-dimensional ZQHAR simulations of stimulated
Brillouin scattering by lower hybrid waves showed a re-
duced level of backscattering as compared to the results
of the one-dlxnens1onal s1mulat1ons. The two-
dimensional simulations were more (numerically) col-
lisional, which decreased the growth rates Rnd increased
the thresholds; and coxnpetition with other parametric
instabilities that led to plasma heating was observed. A
likely candidate for a competing absorptive parametric
instabiHty was an oscillating two-stream instability that
nonlinearly converts the incident 0 mode into uppex' hy-
brid or electron Bernstein sidebands Rnd has growth rates
comparable to Brillouin backscatter growth rates for the
simulation parameters (Tripathi et al. , 1984).

Vl. EXPERlMENTAl TESTS

The first laboratory tests of some of the theoretical is-
sues associated with intense, pulsed FEL heating and
curx'ent drive will be provided by the MTX experiment at
thc Lawl cncc I lvcrmore Nat10QRl Lab01 RtoI'y

(Thomassen, 1986). In 1992, the MTX FEL using the
IMP wiggler is expected to deliver peak powers of 3 GW
at 140 GHz with an extraction efficiency of 25 —30%
(Jong et al. , 1989). With a roughly elliptical spot pattern
whose radii are 3.6 cm laterally and 2.6 cm vertically,
th p d t 400 kV/ E /8 =0.027 f th
0 mode and B=5 T. This intensity will put the expected
absorption in the strongly nonlinear regime (p i

—4,
p2 —1.3) as modified by rising-bucket efFects. The field
intensity is well below the threshold for stochasticity.
The divergence of the ray bundle introduces a spread in

kI~ and should enhance the absorption. The predicted
opac1ty 1s v=0. 7 with 8 diverging I'Ry bundle, Rnd %~0.2
without rising-bucket efFects. The microwave power
transmitted and rcAected by the plasma will be detected
by calox'1nlctcls Rnd microwave horns, Rnd thc local clcc-
t10Il cIlcIgy 1IlcI'case measured, from wh1ch thc Rbsolp-
tion will be inferred, Plasma heating and. current drive
will be negligible for single-pulse injection. Later in the
experimental plan, Mty pulses will be injected at a 5 kHz
rate. This will give SUKcient cnex'gy to measurably heat
the plasma. Because the FEL pulses will be short ( ~ 50
ns), stimulated Brillouin backscatter is not expected to be
severe. Some self-focusing may occur, which will be
difBcult to detect unless the self-focusing is extreme. By
adjusting the toroidal magnetic field strength, the cyclo-
tron resonance can be moved outside the plasma, which
could bc Used to scp81atc 1csonant Rbsox'pt1on Rnd sclf-

focus1ng efFccts.
A sccoQd experimental faclllty Rt I ivefmore ls bc1ng

used to study aspects of beat-wave current drive. The
Davis Diverted Tokamak (DDT) is a research tokamak
operated jointly by the University of California at Davis
and the Lawrence Livermore National Laboratory Under
the auspices of the Plasma Physics Research Institute.
Two microwave soux'ces with 140 k%' peak power, fre-
quencies in the range 8.8—9.5 CxHz, and pulse lengths of
2.5 ps are launched in opposition to one another along a
chord of the torus (Rogers et al. , 1989, 1990). The plas-
xna density is varied in the range 1.2X10 to 2X10
cxn to test the resonant coupling of the microwaves to
8 Langmu1r wave. Both a d1pole antenna and a m1-

crowave scattering diagnostic will be used to measure the
amplitude of electrostatic waves. The tokamak is operat-
ed without Ohmic current to make it easier to detect
current drive. With the relatively low microwave powers
in DDT, the relative action traxlsfer and current drive ex-
pected are small. However, resonant excitation of a beat
wave has been observed (Rogers et al. , 1990).

An ixnportant limitation on studying current drive in
the DDT experiment is that the L/R time (-100 ps) is
Hluch loIlgc1 than thc 2.5 ps pulse length of thc m1-

crowaves. Therefore, the beat-wave excitation will lead
to a back-emf to cancel most of the current drive. The
back-exnf can be measured as a loop voltage. A distor-
tion of the electron distribution function can be Ineasured
with an energy analyzer. In order to better drive curx'ent

with a single microwave pulse, microwave sources will be
installed with 1 ms pulse lengths that much exceed the
I./R time. Although the low microwave powers in DDT
restrict the expected beat-wave current drive to have a
low efficiency, experiments in DDT should be able to
quantitatively test the resonant excitation of beat waves
and clcctlon acceleration 1Q 8 bounded~ InagIlctlzcd plas-
rnR. While thcx'c have bccIl many experiments px'cccd1ng
DDT that have studied the resonant excitation of beat
waves, beat-wave acceleration, and optical mixing (see
the Icview by Stefan, Cohen, and Joshi, 1989, and xefer-
ences therein), the experimental observation of beat-wave
cux'IcQt drive 1Q thc toI'01dal gcoxnctry of DDT w111 bc
significant for future magnetic fusion applications.

Vll. CONCLUSIONS

This paper has reviewed recent theoretical analyses ad-
dressing the interaction of intense, pulsed, coherent elec-
tron cyclotron waves with plasmas. There are several
reasons for the current interest in this subject. There has
been dramatic progress in the development of induction-
linac-driven free-elcctx'on lasers. The application of these
high-power FEL's to microwave heating and current
drlvc 1n thc clcctIOQ cyclotIon I'ange of frcqUcnclcs has 8
number of technical advantages and will be tested in the
MTX at the Lawrence Livermore National Laboxatory.
The associated laser-plasma interactions are also poten-
tially relevant to ionospheric modification by radio-
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frequency waves, high-energy electron acceleration, and
the propagation of intense, pulsed electromagnetic waves
in astrophysical magnetized plasmas.

The physics of the interaction of an intense laser with a
magnetized plasma is highly nonlinear, and there are
many novel phenomena. Relativistic e6ects play an im-
portant role in ihe resonant wave-particle interactions.
The coherent, intense, pulsed nature of the FEL has
made possible considerable innovation and the invention
of several new concepts utilizing FEL*s for plasma heat-
ing and current drive that depend on stochasticity, rising
buckets, and beat-wave coupling. Out of these new con-
cepts may come eKcient mechanisms for plasma heating,
sustaining the toroidal current in a steady-state tokamak,
controlling current and pressure pro6jkes in order to stabi-
lize magnetohydrodynamic fluctuations and disruptions
(Hanada et al. , 1991), and diagnosing conditions in a hot
plasma. The pulsed nature of FEL current drive is espe-
cially well suited to the possibility of doing feedback sta-
bilization of disruptions by modifying the current locally
in the profile. The new heating and current-drive con-
cepts have been studied by first analyzing the underlying
nonlinear wave-particle interactions. The analytical cal-
culations of the nonlinear dynamics, the implications for
current drive, and the stability of the laser-plasma system
have been supported with computer simulations in many
cases, which have both confirmed the analyses and ex-
tended the calculations beyond the limits of the analyti-
cal theories.

The calculations reviewed here need both extension
and refinement, and many new research questions have
been raised. For example, a comprehensive rigorous cal-
culation of the nonlinear opacities in the various non-
linear regimes needs to be done; calculations of the stabil-
ity of the heated plasma have only just begun; many more
calculations need to be done on parametric instabilities
and nonlinear self-focusing; and more simulations ought
to be performed. The cross-field particle transport asso-
ciated with intense, pulsed ECH has not been studied.
There is a direct inhuence of a cyclotron wave on the
electron guiding-center location related to the change in
the electron's energy as described in Sec. II.A. There are
other cross-field transport mechanisms to be considered,
e.g., classical collisional transport and anomalous trans-
port due to electric field Quctuations. We expect that the
classical cross-field transport of the heated electrons in
the presence of collisions will decrease as the electrons
heat, because the square of the step size for the di6'usion
process scales with the square of the Larmor radius, viz. ,
proportional to the energy cj, while the collision frequen-
cy decreases as c . However, if there is an increase in
wave turbulence as a consequence of either parametric
instabilities in the presence of the FEL or microinstabili-
ty of the heated electron velocity distribution, then an in-
crease in anomalous cross-field transport is likely.

Experimental data from high-power FEL heating and
current-drive experiments is needed to give guidance and
direction to further theoretical modeling and analysis.

The MTX experiment should yield such data in the near
future. The DDT experiment is expected to provide data
testing some of the principles of beat-wave current drive.

The theoretical research completed to date on FEL
heating and current drive indicates that the FEL technol-

ogy being tested in MTX makes possible new and novel
opportunities to improve the heating, confinement and
current drive in fusion plasmas. We have reviewed calcu-
lations indicating that the opacities for intense, pulsed
ECH mechanisms can much exceed the quasilinear opa-
city for ECH, and the corresponding current-drive
e%ciencies are attractive according to current standards.
Thus, the application of FEL's to tokamak heating and
current drive may lead eventually to improved prospects
for controlled fusion. The theoretical research in this
area has already led to a deeper understanding of the in-
teraction of intense electromagnetic waves in a magnet-
ized plasma.
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