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The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities
for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed
source has a number of technical advantages for these applications, and its use is predicted to lead to im-
proved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Mi-
crowave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for
some of these new heating and current-drive schemes. Although the motivation for much of this research
has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency
near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an
intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativ-
istic effects, is of general interest. Other relevant applications include ionospheric modification by radio-
frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnet-
ic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the
analysis and computer simulation of the absorption and current drive produced by intense pulses, and of
the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-

particle sideband instability, and instabilities of the heated plasma.
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I. INTRODUCTION

A. Motivation and scope

This theoretical review addresses the physics of intense
microwave heating and current drive in toroidal magnet-
ic confinement fusion devices. The important features of
the physics reviewed here derive from the characteristics
of a new technology, i.e., the free-electron laser, that is

Reviews of Modern Physics, Vol. 63, No. 4, October 1991

being brought to bear on heating and current drive in
tokamaks. In addition to the application of a free-
electron laser (FEL) to tokamak heating and current
drive, the physics studies reported here are of significant
fundamental interest and influence a number of other ap-
plications, including ionospheric modification experi-
ments, high-energy electron accelerators, and the interac-
tion of intense, coherent wave pulses in space and astro-
physical plasmas. Because the wave-particle interactions
of interest here are highly nonlinear, there is considerable
novelty in the phenomena and opportunities arise for
significantly improving the efficiency of driving current
or plasma heating in a tokamak.

The application of principal interest in this review is
provided by magnetic-confinement fusion in toroidal de-
vices. The plasmas in toroidal fusion devices must be
heated to bring them to thermonuclear temperatures. In
addition, the good energy confinement and stability of
tokamaks depend on a toroidal plasma current which
provides both a twist of the magnetic field lines as they
wrap around the torus and some magnetic self-pinching
of the plasma. Figure 1 presents a schematic of a typical
tokamak. As the plasma heats, Coulomb collisions be-
tween charged particles become less frequent (Spitzer,
1967). This renders Ohmic heating, wherein energy in
magnetic windings surrounding the torus can be induc-
tively coupled to the plasma and then dissipated in the
plasma through Coulomb collisions (Chen, 1974; Wesson,
1987), much less effective at the high temperatures re-
quired in a thermonuclear plasma. Furthermore, Ohmic
heating and current drive depend on the presence of a
toroidal induction electric field, which in turn depends on
an ever-increasing magnetic flux produced by the Ohmic
coils as dictated by Faraday’s law. Because the magnetic
flux produced by the coils is necessarily limited, the
pulse-length of an Ohmically driven tokamak is finite.
Thus, the desire for steady-state tokamak operation pro-
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FIG. 1. Schematic of waves injected into a tokamak (Fisch,
1987). The tokamak has a toroidal magnetic field component
encircling the torus hole and a poloidal component encircling
the minor cross section.

vides additional motivation for noninductive heating and
current-drive mechanisms (Fisch, 1987).

The emphasis of this review will be on recent progress
in the theory of the interaction of an intense, pulsed,
coherent electromagnetic wave with a plasma in an ap-
plied magnetic field at frequencies near the electron cy-
clotron frequency. Relativistic effects are shown to play
a fundamental role here, and the wave-plasma interaction
departs significantly from linear or quasilinear in nature.
We shall review the basic underlying Hamiltonian theory
of a charged particle in a strong wave field including rela-
tivistic effects, and present the conditions for trapping of
an electron in the wave and for resonance overlap leading
to stochastic electron motion. We present the results of
calculations of the nonlinear opacity and current-drive
efficiency as well. We shall also consider the nonlinear
mixing of two strong waves to produce a third wave
which heats and drives current in the plasma. We shall
review some of the calculations addressing the stability of
the intense coherent waves as well as the stability of the
heated plasma. We shall also comment on current exper-
iments that may test some of the theoretical issues
presented here. The calculations reported here have been
based on a combination of analytical theory, numerical
integration of orbit equations, and particle simulations in
which the particle orbits and Maxwell’s equations are
solved self-consistently. The review will be reasonably
self-contained. However, for the sake of brevity, we shall
refer to recent publications of closely related subject
matter where it is appropriate.

B. Free-electron laser

Free-electron lasers offer the possibility of high-power,
coherent radiation sources over a wide range of frequen-
cies and with good efficiencies (Colson and Sessler, 1985;
Roberson and Sprangle, 1989). An FEL relies on the fol-
lowing mechanism. A linear accelerator is used to pro-
duce a high-energy electron beam. The relativistic elec-
tron beam is propagated through a transverse periodic
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FIG. 2. Schematic of components for a high-power free-
electron laser.

magnetic structure called a wiggler (see Fig. 2). The
magnetic structure induces transverse oscillations of the
electrons, which cause them to radiate. In the moving
reference frame of the beam, the wiggler magnetic field
Lorentz transforms into a backward propagating trans-
verse electromagnetic wave with wave number and fre-
quency given by

kic Y iB,y | |kyc vk,c
io |~ |~iBy v |0 =[—iﬁzykwc ’
(1.1)
where pfB,=v,/c is the relative beam velocity,

y=(1—B-B)""% is the relativistic mass factor, and
k,=2m /A, is the wiggler wave number.

The backscatter of the wiggler-produced transverse
wave by an infinitesimal, longitudinal, periodic bunching
of the electron beam with wave number 2k; produces a
forward-propagating, scattered transverse wave with
wave number —k;. The physical mechanism for the
scattering is that the density perturbation of the electron
beam couples with the transverse velocity perturbation of
the beam in the wiggler field to produce a nonlinear
current density that acts as an antenna for the scattered
transverse wave. The transverse velocity and magnetic
perturbations of the scattered wave then beat with the
transverse magnetic and velocity perturbations, respec-
tively, of the wiggler wave to produce a ponderomotive,
longitudinally oriented Lorentz force to reinforce the
bunching of the electron beam; and the scattering ex-
ponentiates (Kroll et al., 1981). This scattering mecha-
nism corresponds to stimulated Compton or Raman
scattering (Drake et al.; 1974 Kroll et al., 1981). The
Raman limit pertains to situations wherein space-charge
effects and the self-consistent longitudinal electric field
are important in the bunching of the electron beam, i.e.,
the bunching satisfies the dispersion relation for an elec-
tron plasma oscillation. The exponentiation of the stimu-
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lated scattering depends nonlinearly on the wiggler field
strength.

After Lorentz transforming the frequency—wave-
number four-vector back to the laboratory reference
frame, one obtains the wave number and frequency of the
output radiation:

ksc

iw,

—kl

iwl

Y —iB,y “‘2’)/§ka

iB.y Y

~

—i2y2k,c
(1.2)

for y,=(1—p%)"12, B,~1, and an infinitesimal wiggler
field strength. With the finite amplitude of the wiggler
wave taken into account, the wavelength of the output
radiation is expressed in terms of the total ¥ and given by
(Kroll et al., 1981)

w
_2 2
Ay > (1+ag), (1.3)

where a,=(eB, /m,c)/V2k,c is a measure of the
wiggler strength. From Eq. (1.3), we conclude that the
frequency of the output radiation can be controlled by
adjusting the wiggler wavelength or the electron beam
energy. The dependence of A, on a2 has been exploited
to improve the efficiency of the conversion of electron
beam energy into coherent radiation. This is achieved by
matching the decrease in y as the electron beam slows
down, due to its energy loss to radiation, with the ap-
propriate decrease in @2 to maintain the resonance condi-
tion given by Eq. (1.3). This is called tapering the
wiggler.

High-power FEL operation and improved efficiency
with tapering have been successfully demonstrated at the
Lawrence Livermore National Laboratory using the Ex-
perimental Test Accelerator (ETA) to provide a 4.5 MeV,
10 kA electron beam and a wiggler with peak field of 3.7
kG (Orzechowski et al., 1985, 1986). The taper of the
wiggler was controlled by decreasing the current in the
wiggler coils and resulted in improving the output power
efficiency from 6% without taper to 35% with taper. In
these experiments, the FEL was operated as a single-pass
amplifier using a pulsed magnetron as the input master
oscillator with radiation at the frequency f=34.6 GHz
and 100 kW of microwave power. Of the 100 kW inject-
ed, it was inferred that approximately S kW ended up in
the TE;y mode that was exponentially amplified by the
FEL. The peak output radiation with tapering ap-
proached 1 GW. Both the observed output power and
the efficiency with and without tapering agreed well with
computer simulations (Orzechowski et al., 1986). The
pulse length of the FEL was set by the electron accelera-
tor, whose pulse length was 30 ns.

A key component in the FEL is the electron accelera-
tor, because high-power operation demands high bright-
ness and good emittance properties. The induction linac
used at Livermore is well-suited for driving the FEL.
The Livermore FEL has been upgraded for the Mi-
crowave Tokamak Experiment (MTX) to operate with a
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7-10 MeV electron beam and produce radiation at 1 or 2
mm wavelength depending on whether the Intense Mi-
crowave Prototype (IMP) or Electron Laser Facility
(ELF) wigglers are used (Thomassen, 1986). So far the
MTX FEL has produced powers in excess of 200 MW in
8-10 ns pulses with an untapered wiggler and up to 400
MW with a preliminary attempt at tapering (Stallard
et al., 1990). The performance of the FEL was limited
by energy variations in the electron beam. Preliminary
experiments with a tapered wiggler resulted in substan-
tially higher powers. The goal of MTX is to inject 8 GW
in 30-50 ns pulses into the Alcator C tokamak, which
was moved from the Massachusetts Institute of Technol-
ogy to Livermore for this purpose (Thomassen, 1986).
With a repetition rate of 5 kHz, reasonably high average
powers (1.2-2 MW) will be injected (Jong et al., 1989).
The FEL output frequencies for the two wigglers, 140
GHz and 250 GHz, match the electron cyclotron fre-
quency for 5 and 9 T toroidal magnetic fields on axis, re-
spectively.

High-powered electron cyclotron heating (ECH) using
a pulsed FEL as in the MTX has a number of technical
advantages. Because of the pulsed nature of the FEL,
breakdown problems in the waveguides are more easily
avoided. The FEL is coupled quasi-optically with the
tokamak using an overmoded waveguide with no dielec-
tric window; the window is a fragile component in gyro-
tron systems. Furthermore, the FEL is a broadband
amplifier and is tunable in frequency; and feedback con-
trol is possible. In general, ECH is compatible with small
access ports, and its propagation into the plasma is well
defined. Good penetration into the plasma and single-
pass absorption can be achieved, and strong edge pertur-
bations due to ECH are not expected. Finally, the high
peak and average power of FEL-driven ECH affords
unique opportunities to improve electron cyclotron heat-
ing and current-drive efficiencies, and to control MHD
activity and disruptions by altering the current profile.
These applications will be the focus of the rest of this re-
view.

C. Basic physics

The main focus of this paper is the resonant interac-
tion of electrons with a coherent electromagnetic wave in
a strong magnetic field. In this section we present an ele-
mentary derivation of the relativistic cyclotron resonance
condition. We also describe the types of electromagnetic
waves that are considered here for ECH. We conclude
with some general remarks about the influence of
toroidal geometry on the electron orbits and ECH
current drive.

The relativistic Newton-Lorentz equation is

- vXB

q |[E+

> (1.4)

dr

where p=ymv is the momentum, y =(1+p2/m?c?)'/?,
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m is the rest mass, g is the charge, v is the velocity, and E
and B are the electric and magnetic fields. The particle
position evolves according to

ax _

dt

In a uniform, time-independent magnetic field B=B,2
with no electric field, the charged particles execute cyclo-
tron gyration at constant energy in the plane perpendicu-
lar to B with constant orbital frequency given by (if we
neglect radiation by the particle, which is weak unless the
particles are significantly relativistic)

(1.5)

B
a=2120 (1.62)
ymc
and Larmor radius
=0 (1.6b)
P=q - .
The particle energy can be expressed as
172
Q 2
yme?= 1+2p6 ;-i—% me? (1.7)
mc m*“c

where p,=p2/2m ) is the relativistic magnetic moment
or perpendicular action (in appropriate units), Qy=gB,/
mc, and p, =ymv,.

Consider the perturbations in the electron orbits pro-
duced by a plane wave with an electric field of infini-
tesimal amplitude

E(x,t)=1Eexp(—iowt+ik,z+ik x)+c.c. (1.8)

The electric field seen by the electron along its lowest-
order, unperturbed orbit is obtained by substituting the
expressions for the electron trajectory in the absence of
the perturbing electric field, z=z,+v,(t—¢,) and
x=X+psin(Qt+06,), in Eq. (1.8), where z,, ¢y, and 6,
are determined by the initial conditions and X is the
guiding center position. After using the Bessel function
identity,

expliu sinv )= i J,(u)exp(inv) ,

n=-—o0

Eq. (1.8) becomes

E(X,t)=%E’ S T,k plexpl —iwt +inQ

n=-—cw
+ik,v,t)+c.c. ,
(1.9)

where nonessential, time-independent phase factors have
been absorbed in E'. An electron will experience a large
acceleration due to this electric field if the time-
dependent phase factor remains nearly constant along the
zero-order orbit. The constancy of the phase factor
defines the resonance condition, ® —nQ—k,v, =0, which
is given in terms of the momentum components by
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nQ,
y—T—N”u"——O, (1.10)
where w;=p,/me, u,=p,/me, y*=1+u}+u}, and
N,=kc /o is the parallel index of refraction. The paral-
lel direction is along z. The resonance curves are ellipses
in momenta space for |N “| <1 (Fig. 3).

A number of important insights can be gained directly
from the inspection of the resonance condition Eq. (1.10)
and Fig. 3. We see that the wave characteristics enter in
an important way through the frequency and the parallel
index of refraction. Because of the energy dependence
entering through y and the dependence on parallel
momentum in the Doppler shift, an initially resonant
electron can be nonlinearly detuned from resonance by
exchanging energy and momentum with the wave so that
y and/or u; are changed. Of course, the electron may be
detuned from resonance by other means, for example,
collisions. There is a special circumstance in which the
electron can maintain resonance while it exchanges ener-
gy with the wave. This occurs for N~ 1. This condition
is a generalization of the cyclotron auto-resonance-maser
(CARM) condition N =1 for parallel-propagating waves
(Davydovskii, 1962; Roberts and Buchsbaum, 1964; Kuo
and Schmidt, 1985). Another interesting phenomenon
that can be illustrated in Fig. 3 involves the competition
of neighboring cyclotron resonances for electrons with
comparable energies but oppositely directed momenta.
Electrons of comparable energy lie on circles with nearly
identical radii centered about the origin of momentum
space. These circles can intersect the resonance curves of
neighboring harmonics / and /+1 at locations where the
values of p, have opposite signs. This has been referred
to as harmonic overlap (Smith et al., 1987) and has im-
portant implications for ECH current drive. The two op-
positely oriented groups of electrons that resonantly in-
teract with the wave will contribute oppositely to the
current driven parallel to the magnetic field, and a partial
cancellation of the contributions to the current will
occur.

Next we present an elementary view of electron cyclo-
tron waves. Comprehensive treatments of this subject
have been given in numerous textbooks and journal arti-
cles, e.g., Budden (1961), Stix (1962), Ott et al. (1980),
Bornatici et al. (1983), and Batchelor et al. (1984). For
purposes of this review, it will suffice to give a few simple
results pertaining to the linear dispersion of the normal

FIG. 3. Resonant surfaces in the p,,p) plane for /and / +1 cy-
clotron harmonics including relativistic effects.
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modes. Relativistic effects are important for the resonant
interaction with electrons and absorption, but are not
generally important for propagation. Thus, we can con-
sider the linear dispersion relation given by Stix (1962)
for a general angle of propagation with respect to a
straight, uniform magnetic field in a cold, homogeneous
plasma,

—P(N’*—R)N’—L)
(SN?—RL)(N*—P)

where 0 is the angle between the wave vector k and the
applied magnetic field By, N>=k2c%/w? o is the mode
frequency,

P=1-awk /o,

tan?0= , (1.11)

R=1—3 (0} /0)]0/(0+Q,)],
L=1—3 (o} /*)w/(0—Q)],

Q,=q,By/m,c , and S=(R+L)/2.

Electron cyclotron waves are elliptically polarized in gen-
eral. For exactly parallel propagation with respect to B,
the normal modes are either right circularly polarized (R,
rotates with the electrons) or left circularly polarized (L,
rotates with the ions) and
.k ic?
)

=RorL, 6=0. (1.12)
For waves propagating exactly perpendicular to the mag-
netic field, there are two linearly polarized normal
modes: the ordinary (O) wave has its electric field paral-
lel to By and

k2c? ?

24 p ps
Ni=—-=P=1-3—,

® s @

0=m/2, (1.13)

while the extraordinary (X) mode has its electric field
perpendicular to By and

N k3c? _RL _ (0®—0?)0*—3)
oNw?*—0d)

(1.14)

where o, ,=1Q,[F1+(1 +4a)12,e /92)'?] and wﬁh=wge
+Q2. :

The ordinary wave propagates for o> w,, and has a
cutoff at ®=w,,. The extraordinary wave generally has a
faster phase velocity, cuts off at ® =w,, becomes evanes-
cent for w <w,, and is resonant at the upper hybrid fre-
quency w=w,,. As the wave vector tilts more in the
direction of the background magnetic field, the O mode
becomes left circularly polarized; and the X mode be-
comes right circularly polarized and maintains a faster
phase velocity than the O mode. As a consequence of the
cutoffs, the electron cyclotron resonance at the funda-
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mental is accessible by O and X modes launched from the
inside (i.e., the high-magnetic-field side) of the torus,
while the resonance is only accessible from the outside
(i.e., the low-magnetic-field side) using the O mode. The
second harmonic resonance is accessible to both O and X
modes launched from either the inside or outside of the
torus.

Studies of the hot-plasma propagation and absorption
of electron cyclotron waves have been presented by Ott
et al. (1980), Bornatici et al. (1983), Batchelor et al.
(1984), Timofeev (1989), and others cited in these papers.
In general, finite-temperature effects force the cutoffs and
resonances to occur at locations corresponding to-higher
values of the magnetic field for the same value of the
wave frequency.

To complete this section on basic physics, we discuss a
few simple properties of magnetic confinement in toroidal
devices. A detailed presentation of tokamak physics is
found in the excellent monograph by Wesson (1987). Be-
cause of the gyration of charged particles in a strong
magnetic field, a magnetic field retards the expansion of
plasma across the lines of force. However, streaming
motion can occur along the field lines. By wrapping the
field lines around a torus, a configuration of field lines
that close on themselves can be established, which im-
proves the confinement. However, in order to insure sta-
bility, the field lines must twist in the poloidal plane (the
minor cross section) so that the field lines spend some of
the time on the inside or high-field side of the magnetic
axis. This renders a stabilizing force on the plasma when
it tries to expand away from the torus into an increasing
magnetic field on the inside of the device. Magnetohy-
drodynamic stability in both stellarators and tokamaks
derives in part from the twist of the magnetic field.

As the particles follow the magnetic field around the
torus, the magnetic field strength increases toward the in-
side of the torus because it is proportional to the inverse
of the major radius. However, the spatial variation of the
magnetic field is very weak on the scale of the Larmor ra-
dius; in consequence, the magnetic moment is an adiabat-
ic invariant. The invariance of the magnetic moment,
which is proportional to p? /B, and energy conservation
in the absence of collisions lead to a retarding force on a
charged particle directed along the magnetic field line
and opposite to the direction of increasing field strength.
Particles with insufficient parallel kinetic energy are
turned around, i.e., these particles are mirror-trapped on
the outside of the torus, while particles with sufficient
parallel kinetic energy can circulate all the way around
the torus. The toroidal current carried by a trapped par-
ticle averages to zero over the orbital period, but a circu-
lating particle can carry current. Thus, trapped particles
can degrade the efficiency of a number of current-drive
schemes and must be taken into account when devising
strategies for efficient current drive (Fisch, 1987). The
basic physics concepts of this section will be elaborated
in the detailed calculations and applications in the subse-
quent sections.
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D. Outline of succeeding sections

The plan of the rest of the paper is as follows. In Sec.
II we present the relativistic Hamiltonian and a calcula-
tion of the particle dynamics including considerations of
wave-particle trapping and stochasticity. A discussion of
several nonlinear electron cyclotron heating and
current-drive mechanisms is given in the second half of
this section. The heating mechanisms considered are in-
tense, pulsed ECH as envisioned in the MTX, including
the effects of rising buckets, stochastic heating, and beat
waves.

Current-drive applications with intense ECH are de-
scribed in detail in Sec. III. The concept of pulsed
current drive is reviewed first. The degradation in ECH
current drive produced by magnetically trapped particles
is briefly discussed next. The section is concluded with a
comparison of current-drive efficiencies for various non-
linear mechanisms.

The stability of an intense electron cyclotron wave in a
plasma is surveyed in Sec. IV. Intense electron cyclotron
waves can nonlinearly couple to other waves in the plas-
ma leading to parametric instabilities that compete as en-
ergy sinks with the intended heating or current-drive ap-
plications. We next review an instability in which the
wave-trapped electrons induce the growth of sidebands of
the incident wave. We also summarize the calculation of
a virulent nonlinear self-focusing instability of an intense
coherent O mode. We conclude the section with some re-
marks concerning the possible instability of a strongly
heated plasma.

In Sec. V, we present the results of numerical simula-
tions of intense, pulsed electron cyclotron heating and
current drive. We begin the section with a brief discus-
sion of the particle-orbit codes and the self-consistent
particle simulations used to study the nonlinear phenom-
ena. Numerical results are then reviewed that address
nonlinear ECH, stochastic heating and current drive, ris-
ing buckets, beat-wave current drive, and parametric in-
stability. In Sec. VI we present a discussion of two exper-
iments that may provide tests of some of the theories re-
viewed here. Conclusions and comments on future
research directions are given in Sec. VIL

Il. WAVE-PARTICLE INTERACTION

A. Relativistic Hamiltonian
and particle dynamics

There have been a number of analytical treatments of
relativistic electron dynamics in a monochromatic elec-
tromagnetic wave in a strong magnetic field, for example,
Kitsenko et al. (1975), Bolis and Spyrou (1986), Zvonkov
and Timofeev (1986), Nevins et al. (1987), Zaslavskii
et al. (1987), Villalon and Burke (1987), Davidson (1987),
Davidson et al. (1989), Suvorov and Tokman (1988),
Taylor et al. (1988), Menyuk et al. (1987 and 1988), Kar-
imabadi and Angelopoulos (1989), Karimabadi et al.
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(1990), Cohen and Cohen (1988a, 1988b), Kotel’nikov
and Stupakov (1990 and 1991), Farina and Pozzoli
(1988), and references therein. In this section, we present
a concise derivation of the nonlinear, relativistic electron
dynamics following the presentation of Karimabadi et al.
(1990). The nonlinear dynamics are deduced from a rela-
tivistic Hamiltonian which is expanded perturbatively in
the applied wave amplitude. Fixed points and the oscilla-
tion frequencies of wave-trapped electrons are calculated
for fundamental O and second-harmonic X modes. A
wave-amplitude threshold for the onset of stochasticity is
presented based on the condition for the overlap of
neighboring cyclotron resonances.

The relativistic Hamiltonian for a plane wave of gen-
eral polarization in a strong magnetic field expressed in
terms of canonical variables is (Karimabadi et al., 1990)

H=V(cP—q AP?+m2*+qbd=ymc’+qd , 2.1)

where

A=A,, +xBg,

k k
=4, —kl—lsim,b’é,C + A,cosye, — A4, fsimﬁ’éz +xBg€, ,

(2.2a)

O=ysinyg , Yy=k x+kz—ot, (2.2b)

P is the canonical momentum, A is the vector potential,
and P is the electrostatic potential. A canonical trans-
formation is introduced to remove the explicit time
dependence. The generating function is

s=p), 9—“’Tt , (2.32)
from which follows
as wt as
Py=Py,=">, 0=60—""= 2.3
=Py 30 ° 0 ] oP, , (2.3b)
and the transformed Hamiltonian is
H'=ymc>— %P9+qd>osin¢=H+ %—f‘— ) (2.3¢)

The Hamiltonian H' is now independent of time and a
constant of the motion. We next expand the Hamiltoni-
an to first order in the perturbing wave fields and evalu-
ate the ¥ phase factor at zero order using x =X +p cos0,
where X is the guiding center position and is a constant
of the motion, and p=P”/mQ,=(2PY /mQ,)"2
After introducing the Bessel function expansion used in
Sec. I and the identities 2J,(k,p)=J;_{(k p)—J; (k. p)
and J;(—x)=(—1)",(x), we obtain

o

H'=Hy+eH,, Hy=ymc*— ;

Py,

H\= 3 Z,sin[kz+n0'—(1—n/Dot],

n=-—o0

(2.4)

where
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me? | | g Pig
Yo

qg O
gl ‘me —~——n cosa

= £
" ! |QI k.c

Jn(klp)

p,

+52%J;(klp)+s3Tg—|yan(klp) ,  (2.5)

where k, =k sina, k;=k cosa, s,,2=|q|A1,2/mc2 and
£;=|q|®y/mc?. The validity of the linear expansion of
the Hamiltonian requires that |g;|<<1, and |P'V|
<< [P to justify the use of the zero-order Larmor ra-
dius in the argument of the Bessel functions and
dz'%/dt=p }IO) /v m in the phase factor.

The zero-order equations of motion are straightfor-
wardly calculated from the H, in Eq. (2.4). Using
d@'/dt=0H,/0Py=Q—w/Il and dz /dt=v,=p,/ym at
zero order, we deduce that a particle can experience a
large phase-synchronous acceleration from the perturb-
ing wave fields if the phase of the /th term in H, is nearly
time-independent, which recovers the relativistic cyclo-
tron resonance condition given in Eq. (1.10).

The analysis of Karimabadi et al. (1990) addressed the
structure of the resonances, the constant energy surfaces,
the trapping widths and frequencies, the heating charac-
teristics, and the condition for resonance overlap which
leads to stochastic motion for the Hamiltonian of (2.4).
Here we specialize the wave polarization to two cases of
specific interest to tokamak heating, the O mode at
0~Q, and the X mode at w~2€Q, perpendicularly in-
cident from the outside of the torus, where there is easy
port access and wave propagation into the magnetic axis
is straightforward. For the O mode near perpendicular
incidence, 4, =~ A4,, 4,=®,=0, k, >k, ~0, and

_mc* 44, p,
Y rn(:2 mc

H, Ji(kplsin(0—wt) . (2.6)
We further specialize to conditions for which the elec-
tron Larmor radius is small, which is valid for most cir-
cumstances of interest and allows the Bessel functions to
be expanded for small argument. The fixed points are

determined from Hamilton’s equations

- 172
2 kA4, |Q

%Pe:‘—‘%:_ \/Epymc ;; : 0P29 ] mcsin(@' +7/2)=0 (2.7a)

o mc

and
1 172

d0 _ oH 1 5} p, k A, (1+P}/m??) me?
Tar op, M|y o, "+7/2)|=0. 2.7
dt 3P, " °|y Q, 2mc B, 7 20.P, cos(@’' +m/2) (2.7b)

If (p,/mc)(k, A,/By)mc?/QuPy)"* << 1, then the per-
turbation expansion remains valid; and the fixed points
corresponding to dP,/dt =0 and d6'/dt =0 satisfy both
0'=m/2+nm and the cyclotron resonance condition for
small kv,, viz., »=Q,/y. Around an elliptic fixed point
there is a set of closed nested orbits corresponding to
wave-trapped trajectories. For small excursions from the
elliptic fixed point, the Hamiltonian can be expanded to
second order and put into the form of a simple-harmonic
oscillator. The wave-trapped particle bounce frequency
can then be readily calculated:

. 172
, | *H *H | _ _,| Pz kodi | PeQo
@p = 2 apz |- 0|3 2
90'* dPj v*me By |2mc
(2.8)
This specific result was obtained by expanding

J(k,p)=~k p/2 and agrees with the results of Bolis and
Spyrou (1986) and Nevins et al. (1987). Note that the
trapping frequency scales as | 4|72

The constant-energy surfaces and the fixed points have
been examined in detail by Nevins et al. (1987),
Kotel’'nikov and Stupakov (1990), and Farina and Pozzoli
(1988). The fixed-point values P, of P4 are determined by
Eq. (2.7b). If we adopt units such that m=c=le|=1,
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[
the fixed points for the O mode at perpendicular in-

cidence can be obtained from the solution of

1—-12)_. a(O)

S — 2.9
‘Q'O 2,}/2(1)900)1/2

cosy=0,

where a'®'=(1/v2)p,(k, 4,/Bo)1+p?), ¥=nm, and
y*=14+2P,Q,+p2. Figure 4 is taken from Kotel’'nikov

FIG. 4. Constant energy surfaces in the Py, 6’ plane for ordi-
nary mode heating at the fundamental cyclotron harmonic and
different values of B=1—w/Qy: (@) B<B,, (b) B=B., (c)
B.<B<2'B,, and (d) 2'°B.,<B, where B,~a¥2/3
(Kotel’nikov and Stupakov, 1989).
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and Stupakov (1990) and illustrates the constant energy
surfaces and the locations of the fixed points and the con-
stant energy surfaces as functions of the parameters a‘©’
and 745 ' —w/Qq, where y3=1+p2 and p, is treated as a
constant [this is only approximately true and has been
quantified by Farina and Pozzoli (1991)]. For
infinitesimal a©’, the value of P, at the fixed points can
be determined perturbatively by expanding in powers of
a'9). The zero-order solution is determined by 0 =Q,/7,
which sets PyQo=~P,=1/y,—w/IQ, For the weakly
relativistic case, y =~1+P,Q,+p2/2 in the second term
of Eq. (2.9), and we can set y2—1 in the third term if
a'® is small. In this limit, P,=1/y,—w/IQ, where

=1. At Yy=m+2nm there is an elliptic fixed point la-
beled 1 in Fig. 4. For small '©, a'9?/3 << [1—y0/Q,|,
there are another two fixed points at ¥y=0+2ns, which
are labeled 2 and 3 in Fig. 4. The X point lies above the
O point. As the magnitude of a/© increases, the X and
O points labeled 2 and 3 approach one another, merge,
and disappear when a'©?*>|1—y,0/Q,l. For small
a'9), the trapped-particle excursion amplitude OPg scales
as (@'9'P!7?)!1/2 deduced from (2.7a) and a quadratic ex-
pansion of H,, Eq. (2.4). The trapping frequency calcu-
lated in (2.8) scales as Q,0P,. We deduce from balancing
the P, term in the Hamiltonian with the term propor-
tional to a'©’/P}/%, or by considering Egs. (2.7a) and
(2.8b), that the resonance oscillation scales as
8P, ~a!??/3 and the trapping frequency scales as Q8P
when a©273 > |1—y.0/Q,| in the strongly nonlinear re-
gime. These results were obtained by Nevins et al.
(1987) and Kotel’'nikov and Stupakov (1990). The results
for the weakly trapped limit agree with Kitsenko et al.
(1975) and Bolis and Spyrou (1986), while the results in
the strongly nonlinear limit agree with Kitsenko and
Pankratov (1984) and Davidson (1987).

The calculation of fixed points, resonance oscillation
amplitude, and trapping frequency for the X mode at
o=~2Q, and perpendicular incidence proceeds similarly.
The X mode at second harmonic with k| =0 is dominant-
ly electromagnetic with 4, =0, 4, >>®, and

me? 1g4,] P, Ji(kp)
Y  metr mc 2

_mc? ki A, QP
Yy By 2mc?

H1:

sin(260—wt)

sin(26 —wt) (2.10)

for k)p<<1. Equations for dPy/dt and d6’'/dt analo-
gous to Eq. (2.7) are calculated directly, from which the
fixed points are then determined. For small wave ampli-
tudes, there is a fixed point near
PyQy=P,=1/yy—w/IQ, where ] =2 and we again have
set m =c=|e|=1. In analogy to the solutions to Eq.
(2.9), we consider the weakly relativistic limit to obtain
PyQy=P,+a'X), where a'X'=k, 4,/2B, and the upper
sign corresponds to an X point at 6’ +#/2=2n1 (Fig. 5).
For small values of a'*), there are closed nested surfaces
around the O point, and the trapping frequency deduced
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FIG. 5. Constant energy surfaces in the Py, 6’ plane for extraor-
dinary mode heating at the second harmonic.

from a quadratic expansion in Py and 6’ around the O
point gives

k, 4, 2Q,P
2 __ 2 1442 4
G|

Wp =39 (2.11)

By, vy*mc

The structure of the fixed points and the scaling of both
the trapping frequency and the excursion of P, can be
deduced easily from the Hamiltonian by expanding H, to
second order in P, for P,Q,/mc?<<1 and balancing
terms in Hy+H,. When |a®| <<P,, the excursion 8P,
scales as la(X)P,II/ 2 and the trapping frequency scales as
QBP,. As a'® grows, the trapping region swells and the
X points migrate downward, finally reaching P,=0 when
a®X=P,. In this limit the trapping excursion scales as
8P9~a(X), and the trapping frequency scales as Q,0P,.

The effective width of the separatrix can be further
quantified by calculating the action enclosed; this allows
a precise determination of the range of energies of in-
cident electrons which become trapped. This has been
carried out for / =1 by Kotelnikov and Stupakov (1991)
and Farina and Pozzoli (1988), and for both / =1 and 2
by Farina and Pozzoli (1991). Cohen and Rognlien
(1991) have shown that the action can be calculated in
closed form through / =6. They further note that, for
I <4, the separatrix energy width can be comparable to
the resonant electron energy for |E /Byl << 1, so that the
perturbation expansion of the Hamiltonian remains valid.
For 1>4, |E/By| 21 is required, which invalidates the
perturbation expansion of the Hamiltonian and makes
other nonlinear effects like overlap of neighboring
cyclotron-harmonic resonances important.

So far in this section we have calculated the resonant
interaction of an electron with a single cyclotron har-
monic. However, it is well known that neighboring
cyclotron-harmonic components of a wave can interact
with a charged particle leading to stochasticity when the
trapping excursions in phase space overcome the separa-
tion between resonances (Chirikov, 1979). To calculate
the stochasticity condition, the independent variables in
the Hamiltonian are reduced by canonical transforma-
tion to a single pair of canonically conjugate coordinates
(Py,9¥). The separation 8P, between adjacent cyclotron
harmonic resonances is determined by solving for the
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values of P, for / and / +1 in the resonance condition
Eq. (1.10). The trapping halfwidth AP, for weak trap-
ping is calculated by expanding H expressed in terms of
P, and 9 to second order around an elliptic fixed point at
P,=P, and using

AP,=2|H,/(3°H,/3P3)|'/*, (2.12)

where H, is the amplitude of the interaction Hamiltoni-
an. The trapped-particle bounce frequency from Eq. (2.8)
is

172 172

3’H,
1 2
oPy

9’H, 3’H,
93 oP}

@y (2.13)

Karimabadi et al. (1990) express Chirikov’s stochasticity
condition (Chirikov, 1979) as

24P,
8P,

=4&>1

90/')/ ~

(2.14)

where v is calculated at the O point and 8P, gives the
separation between neighboring resonances. The explicit
expressions for w,, AP, and 8P, and the expressions re-
lating P, to Py and P depend on the wave polarization
and the propagation characteristics. The results of Eq.
(2.12) and (2.13) correspond to the weak trapping limit.
The stochasticity condition will differ somewhat when
the trapping around one resonance is strong, while the
trapping around the neighboring resonance is weak.

The electron receives a succession of uncorrelated
kicks from the wave and follows a diffusive path in phase
space when the stochasticity condition is satisfied. The
exceptions to this are in regions of phase in which the
trajectories remain regular. We deduce from Hamilton’s
equations that the electron energy changes by de
=dt(dH /dt)=dt(dH,/dt) and the parallel momentum
changes by dP =dt(dP/dt)=—dt(dH,/3z) for an
infinitesimal time dt. These increments define the heating
characteristics with the sum over all cyclotron harmonics

included in H,,
is___:ﬂ:_c_. 2.15)
dP; kN,

By comparison, the local value of the tangent to the reso-
nance curve determined by (1.10) is given by
de/dP =N c. Thus, for N, very close to unity, the heat-
ing characteristic can align itself with the resonance
curve (Fig. 6). This is the condition for cyclotron au-
toresonance. Furthermore, Karimabadi et al. (1990)
show that the surfaces of constant H, are open for
N, =1: they are parabolic for N, =1 and hyperbolic for
N <1 Thus, while maintaining constancy of H(H =H,,
for H, << H,), the particle can be resonantly accelerated
to very high kinetic energies for N =~1.

The expression (2.15) is correct only in a uniform mag-
netic field; otherwise, P, is not constant even in the ab-
sence of the wave. The expression is locally correct but
not particularly useful if B, is constant but k| varies. A
modified description which allows such variations but in-
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FIG. 6. Cyclotron resonance curves in momentum space for
1Q0/0=0.96 and N;;=0.8 and 0.99 illustrating cyclotron auto-
resonance as Ny—1. A heating characteristic is shown with a
dashed curve.

cludes only a single harmonic will be presented in the fol-
lowing [Eq. (2.34)]. For a single harmonic, the charac-
teristics in a varying magnetic field are easily obtained
from Hamilton’s equations for the rate of change of € and
the canonical momentum P,: e =(w/l)Py+const.

The stochasticity accompanying the overlap of cyclo-
tron resonances sets in at relatively higher wave ampli-
tudes than for those required for the overlap of bounce
resonances in a nonuniform magnetic field (Bernstein and
Baxter, 1981; Rognlien, 1983a; Smith and Cohen, 1983;
Hafizi and Aamodt, 1988). A quasilinear diffusion model
has been found to adequately describe stochastic diffusion
due to overlap of bounce resonances over much of the ve-
locity space (Smith, Byers, and LoDestro, 1980; Cohen,
Cohen, and Rognlien, 1983).

Another consequence of the wave-particle interaction
that can be deduced directly from the Hamiltonian is the
wave-driven cross-field transport of the heated electrons.
For a single plane wave with k=k X +kZ, it is easy to
extend the analysis of Smith and Cohen (1983) and show
that

H gB, .

—_— Y

@ kic
where H is the time derivative of the Hamiltonian and ¥
is the time derivative of the guiding-center position in y.

Therefore, for a given kick in particle energy Ag, there is
a displacement in the guiding-center position given by

Ae ¢
1
me? Qg

AY=—

where N, =k, ,c/w. Thus, significant heating will be ac-
companied by cross-field displacements that may be ap-
preciable in units of ¢ /Q,. However, it should be kept in
mind that ¢ /Q, in a 5 T magnetic field is less than 0.04
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cm, which is several orders of magnitude smaller than
typical tokamak minor radii. Kupfer (1991) has used a
similar analysis to deduce the radial diffusion coefficients
accompanying quasilinear ECH.

The second half of this section illustrates the physics of
wave trapping, stochasticity, and other nonlinearities in
four mechanisms for heating and driving current in
tokamaks.

B. Heating and current-drive mechanisms

Heating and current drive are closely linked in the four
heating and current-drive mechanisms analyzed in this
section. All four mechanisms depend on the cyclotron
resonance condition (1.10). By introducing a wave hav-
ing a finite k| of definite sign, electrons transitting in a
preferred toroidal direction will be heated and collide less
often with other electrons and ions. This results in a net
contribution to the toroidal current in addition to heat-
ing the plasma (Fisch, 1987).

The first heating and current-drive mechanism re-
viewed in this section is that introduced by Nevins et al.
(1987) and is directly relevant to FEL heating in the
MTX. Consider first, for simplicity, O-mode heating at
normal incidence to the magnetic field and neglect any
change in N or B, over the axial extent of the mi-
crowave beam. Because of the finite width of the wave
envelope, electrons streaming along the magnetic field
enter the edge of the wave and experience a wave ampli-
tude that rises smoothly, peaks, and then decreases back
to zero as the electrons exit the other side of the wave en-
velope. The following ordering of characteristic frequen-
cies corresponds to high-power FEL operation in MTX
(Nevins et al., 1987; Thomassen, 1986).

Q, >>w, >>v, /w >>Teg >0, /27R >>v, > Trg
(2.16)

where Q, is the electron cyclotron frequency, w, is the
trapping frequency of the resonant particles (which could
be most of the illuminated electrons at the peak of the
pulse and near ®=1Q, in MTX), v, is the parallel elec-
tron velocity, w is the width of the wave envelope along
the magnetic field line, v, is the electron 90° collision fre-
quency, R is the major radius of the tokamak, 7gg; is the
FEL pulse length, and T'gg; is the time in between FEL
pulses. Figure 7 shows a sequence of (P,,60) phase space
snapshots illustrating the evolution of principal separa-
trix and fixed points as experienced by the electrons tran-
sitting the pulse. The O point labeled 3 in Fig. 4 has been
omitted in Fig. 7 in the interest of simplicity; its inclusion
does not significantly alter the following arguments.

With the ordering of frequencies indicated in (2.16),
the electron trajectories evolve adiabatically as the wave
amplitude they see slowly changes; and the action is con-
served except near the separatrices and the X points.
Adiabaticity fails near the separatrices and the X points,
because the trapping frequency w, decreases to zero so
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FIG. 7. (a)-(f) A sequence of snapshots of electron phase space
moving across the microwave beam illustrating the heating
mechanism in the strongly nonlinear regime (Nevins et al.,
1987). The thin lines are surfaces of constant H. The particles
are indicated by the heavy lines. Particles are first pulled
through the hyperbolic fixed point from below [(a)-(c)], and
then half are expelled above the separatrix [(d)—(D].

that @, >>v, /w is no longer true (v, /w is a measure of
the characteristic rate of change of the wave amplitude
seen by the electrons). After the electrons enter the FEL
pulse and the wave amplitude swells, the X points and
the lower separatrix migrate to smaller values of Py.
Electrons are swept up by the growing wave and trapped.
Their orbits take them around the O point on constant-
energy surfaces with a relatively uniform distribution of
phases. After the amplitude peaks and then decreases,
the lower separatrix and X points rise; and the volume of
phase space trapped by the wave within the separatrices
shrinks. As the trapped particles get closer to the separa-
trices and to the X points, their action is no longer con-
served because the trapping frequency decreases to zero.
Electrons are detrapped as the wave amplitude further
shrinks, and the volume of trapped particles decreases.

Nevins et al. (1987), Kotel’nikov and Stupakov (1990),
and Cohen and Rognlien (1991) have calculated the rate
of increase of untrapped phase-space volume above and
below the trapped region as the decrease of the wave am-
plitude causes detrapping. For both the O mode at
o=, and the X mode at w=2Q,, the phase-space
volumes above and below the separatrix grow at the same
rate, so that half of the resonant particles are expelled
from the separatrix at significantly higher kinetic ener-
gies and heating results. To prove this, one expresses the
Hamiltonian in action-angle variables, P¢ and i, where
P, is the action and is adiabatically conserved as the
wave amplitude slowly varies. The volume in phase
space is given by

d A=dP,dy=dP,dH /(3H /3y)=—(dP,/P,)dH ,
(2.17)

where H=H —H, is the value of the Hamiltonian rela-
tive to its value H; at the separatrix, and where P, is the
total time derivative of P, along the particle orbit. The
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time derivative of the area surrounding the separatrix is
then

, dap, H
A=—[ P‘i ,

which is a sum of equal contributions from above and
below the separatrix (Kotel’nikov and Stupakov, 1990).
Here H=a(3/3a)(H —H, ), where a represents the wave
amplitude. Thus, the finite spatial width of the electron
cyclotron wave in the direction parallel to the magnetic
field causes the detrapping and heating of the resonant
electrons.

The nonlinear heating has been estimated analytically
and evaluated numerically by Nevins et al. (1987), and
quantified analytically by Kotel’nikov and Stupakov
(1991), Pozzoli and Ronzio (1989), and Farina and Pozzo-
li (1991). Following Nevins et al. (1987), define an opaci-
ty mnp =P, /Py, where P, is the absorbed power when
wave attenuation is ignored, and P, is the incident
power. The model will be applied to the O mode at
w={1, and the X mode at w=2(}, that are normally in-
cident on a plane stratified slab, and we allow gradients
in B, only parallel to the wave propagation. There are
several regimes of absorption depending on the values of
the dimensionless parameters

p1=AP(m,c*/T,), p,=(m,c*/T,)2w/w1,),
(2.19)

(2.18)

where 7, =w /v is the transit time (which, for this simple
case, is also the linear correlation time) and AP is the
characteristic resonance excursion of P, in dimensionless
units. It was deduced earlier that AP ~a!'/?7% in the
limit of strong wave trapping, where g =4 for the O
mode, ¢ =1 for the X mode; and a!® and a'*’ were given
after Egs. (2.9) and (2.10). Thus, p, is the ratio of the
nonlinear energy excursion to the thermal energy width;
and p, is the ratio of the resonance width due to the finite
correlation time to the thermal resonance width. In the
first of two linear regimes, p; <p, and p, <1, a resonant
electron acquires an amount of energy, Ag; , of order

Ag;,  myc?

7 =T Pyr,~aQr (T, /m,c?)? 1~pt~9/p, .
e

e

(2.20)

The relative resonance width Avy is calculated by equat-
ing the relativistic shift in the cyclotron resonance condi-
tion to the decorrelation frequency 27 /7., from which
one obtains Av; ~p,v,. Thus, the fraction of resonant
electrons is approximately p, for p, <1. The relative de-
formation of the heated electron distribution function for
electrons heated by Ag; is of order Ag; /T, over the
linear resonance width Av;. Then the energy gain of the
electrons averaged over the distribution function is

(Aep) /T, ~p,(Ae /T, ~pt~ % /p, . 2.21)
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The absorbed power P, in this first linear regime is then

(Agy ) m,c? |7 >
P(/(ILI)’Vneve TehdL = nevehdLl - )
e Te D)
(2.22)
where A is the height of the ECH beam,

dy,~4(T,/m,c?)R is the width of the linear absorption
layer due to thermal broadening of the cyclotron reso-
nance, and R is the major radius of the tokamak, which
is an adequate estimate of the magnetic scale length. The
incident power is

Py~Nchw(E */87)~a*Bichw(m,c*/T,* */N ,
(2.23)

where N =kc /o is the index of refraction. We define the
opacity to be the ratio

T = =4 -— N, (2.24)
L Po me(:2 7»0 QZ

where A is a dimensionless constant that must be set
equal to 7? to match linear absorption theory (Nevins
et al. (1987).

In the second linear regime, p; <p, and p, > 1, the res-
onance width is now determined solely by the inverse of
the correlation time 7, ! rather than by thermal effects.
In consequence, there are two compensating changes in
the estimate of the optical depth. With p, > 1, the entire
electron distribution is resonant with the wave. Hence,
Avy ~p,v, in the first linear regime is replaced by v, and

(Aep,) /T, ~(Ae /T, ~pt~2 /p3 . (2.25)

The other change in the calculation of the opacity is that
the width of the absorption layer is now set by the in-
verse correlation time rather than by thermal broadening
of the cyclotron frequency, so that d;,=R/Q,7,
=~p,dy,. These two changes cancel one another in deter-
mining the absorbed power, which is given by

PLD~p v, T, hdy,(m,c/T,)* % /p3 ~PY  (2.26)
and the opacity is unchanged from (2.24),
P(LZ)
a
Tr,= =7, - (2.27)
12~ "p L1

For larger wave amplitudes so that w,7, =1 for most
of the resonant electrons, nonlinear effects limit the reso-
nant energy excursion Ae. The condition w,7,.=>1 is
equivalent to the linear step size Ae; /T,~p3~9/p, in
(2.20), exceeding the relative linear resonance width in
energy Avy /v, ~p,. Here w, is the bounce frequency for
a weakly trapped electron. In this regime the step size
for energy gain or loss is the island width
mv,Av ~Ae~m,c28p, where 8p~a'/?~pl~?2 For
P1 <1, not all of the electrons are trapped; the weakly

trapped fraction scales as Ae/T,~p} 9/ and thermal
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effects determine the depth of the resonance layer. The
trapping causes both heating and cooling of the resonant
electrons, but there are more colder particles being heat-
ed than hotter particles that cool. The fraction of the
trapped electrons that experiences net heating by an
amount equal to the step size scales as an additional fac-
tor of Ae/T,. Thus, the energy gain averaged over the
distribution function is

Ae

T,

e

3

(Aeny ) =T, ~T,p3 3972 . (2.28)

Hence, the absorbed power is

3
PMNWD=n v, T,hdy, % ] ~pi M, (2.29)
e
and the nonlinear opacity is
P(NLD P,
TNLIE— 5 =55 7L - (2.30)
NL1 PO P} g2 'L

In physical parameters,
= AR /AN @2, /Q2N (27 /or,)
X(T, /m,c*) /2By /k, A,)">
and
o~ AR /ANl /Q2N 27 /o)
X(T,/m,c)V 2By /k, A,)V? .

The strongly nonlinear regime of absorption corre-
sponds to even higher wave amplitudes p; >max(1,p,).
The width of the wave-trapped region in phase space is
large, and essentially all of the electrons passing through
the microwave beam become trapped. Half of the elec-
trons gain energy Ae/T,~p, as they pass through the
separatrix and X points on leaving the microwave pulse.
Because p;>p, in this regime, nonlinear effects also
determine the absorption depth, which is increased by a
factor of p, relative to the linear absorption depth dy ;.
Hence,

PN ~n v, T,hp,dy,(Ae/T,)~p? , (2.31)
and the opacity is given by
P‘gNLZ) D
TNszT% p%_zq TL . (2.32)

In physical parameters,
72~ A(R /M) 2w /o7 Nwl, /Q2)
XN(T,/m,c*)*’*(By/k, A)*"?
and
(X) ~ 2 2
™2 = AR /M) 2T /0T @y /Q)IN .
Table I summarizes the four regimes of absorption as

determined by the parameters p; and p,. The depen-
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TABLE I. ECH absorption regimes.

Regime D1 D2 T/TL
L1 p1<p§/‘17”/2) p2<1 1

L2 P1<Dp2 p2>1 1

NL1 pi<l P2<p; p2/pi7 "
NL2 P1> (1,P3)max Pr<pi p2/pi ™

dence of the nonlinear opacities on wave amplitude
enters through the parameter p;. We observe that the
opacity either remains unchanged or decreases as a func-
tion of increasing wave amplitude for O-mode heating at
the first harmonic and X-mode heating at the second har-
monic. The opacities join smoothly at each boundary be-
tween regimes except for the X mode at the boundary
p1=D,>1 between the second linear and second non-
linear regimes. This suggests that there is an additional
absorption regime for the X mode that has been missed
by these arguments.

We note that Kotel’nikov and Stupakov (1991) have
obtained the same scaling for the O-mode opacity in the
strongly nonlinear regime and have calculated the multi-
plicative constant 4 =~1 in the following manner. They
deduced the energy gain of an electron transiting a large
amplitude ordinary mode from the relativistic Hamiltoni-
an analysis using Eq. (2.18) and their calculation of the
50% probability of being detrapped above or below the
sepatrix on the exit from the wave. Their result for the
absorbed energy is parametrized in terms of the parallel
momentum of the electron p, (whose change is assumed
to be small) and the magnetic field location x relative to
the cyclotron resonance. By assuming a Maxwellian dis-
tribution for p, and a linear dependence of the magnetic
profile on x near the resonance, they were then able to in-
tegrate the absorbed energy per electron over the elec-
tron distribution function and with respect to x to obtain
the energy absorbed per unit time and per unit length in
y. The ratio of the absorbed power to the incident power
per unit length in y is the nonlinear opacity. The resuit
has been further substantiated in the analytical and semi-
analytical calculations of Farina and Pozzoli (1991) and
in earlier numerical orbit calculations by Nevins et al.
(1987). Farina and Pozzoli (1991) included the effects of
nonconstant p, in their work. For the parameters pro-
posed for high-power FEL experiments in MTX, p,;>1
and p, <1, which puts the expected absorption into the
second nonlinear regime. However, the heating in MTX
is expected to be dominated by the rising-bucket mecha-
nism reviewed later in this section. Current drive will ac-
company the nonlinear heating if the incident electron
cyclotron waves have a k| with a definite sign. Current
drive and current-drive efficiency will be addressed later
in the paper.

This picture can be substantially modified by variations
in N or B over the axial extent of the microwave beam
(Cohen and Rognlien, 1991; Cohen, Cohen, Nevins, et al.
1988, Cohen et al., 1989). Variations in N, or B cause
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the resonance to move in momentum space. If the varia-
tions are adiabatic, so that the time for the resonance to
move a separatrix width exceeds the trapping time, then
trapped electrons remain trapped as the resonance
moves, and consequently can extract more energy from
the microwave beam. The process is sometimes referred
to as acceleration by a rising phase-space bucket. At the
limit of marginal adiabaticity, it is analogous to accelera-
tion in a synchrotron (Bethe and Rose, 1937; McMillan,
1945); and more generally, it is analogous to acceleration
in a linear rf accelerator (Humphries, 1986). The process
is the inverse of the deceleration of resonant electrons in
a free-electron laser with a tapered wiggler (Colson and
Sessler, 1985; Roberson and Sprangle, 1989).

Variations in B over the extent of the beam are typical-
ly very small in a tokamak, at most of order
(r/R)w /2mRq), where here q is the safety factor; the
resultant change in energy Ay /y~AB /B is typically
small. On the other hand, variations in N can appreci-
ably increase the energy gain and, hence, the opacity.
This is essentially true if one deliberately spreads the mi-
crowave beam with, for example, a cyclindrical mirror as
shown in Fig. 8(a); but the modifications are important
even for the variations in N I which result from the com-
bination of the natural divergence of the microwave
beam as it emerges from the transmission system and
curvature of the magnetic field lines. The effect is illus-
trated in Fig. 8. The parallel index of refraction increases
from point (1) to point (2) in Fig. 8(a). The correspond-

(a)

Microwave
beam

(b)

Resonance
curves

FIG. 8. Rising bucket concept (R. Cohen et al., 1989). (a) Mi-
crowaves launched into a tokamak and reflected by a convex
mirror to spread k. (b) Resonance curves and heating charac-
teristics in momentum space.
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ing resonance curves are shown in Fig. 8(b). An electron
initially resonant at (1) can be trapped and adiabatically
lifted to a higher energy at (2) along a heating charac-
teristic.

The heating characteristic here differs in a subtle way
from that described by Eq. (2.15) derived for the stochas-
tic regime, in which all cyclotron harmonics were includ-
ed and it was assumed tacitly that k|| did not vary. Here,
the heating characteristic is specific to a single harmonic
number; and weak variations of the wave quantities and
the applied magnetic field in z are allowed explicitly. The
heating characteristic is derived from de/dP,
= —(3H /dt)/ (3H /360)=w /I, where H is given by Eqgs.
(2.4) and (2.5) with kz — f kdz; and the heating charac-
teristic for the harmonic is given by (Hafizi and Aamodt,
1987; Rognlien, 1983b)

e=uB,+const , (2.33)

where B, =m,cw /el [the | appearing here in the denomi-
nator of B, was omitted by Cohen, Cohen, and Nevins,
et al. (1988a) and Cohen et al. (1989)] and p=ePy/m,c
is the relativistic magnetic moment.

The energy gain for a typical situation in which mag-
netic gradients are insignificant across the beam is

a2 1122

Ae=pyc P
1—=Niy

—N+N, , (2.34)

where N|; and N, are the initial and final parallel in-
dices of refraction, and Dyi is the initial parallel momen-
tum. )

An important feature of Eq. (2.34) is that the energy
gain becomes large and in fact diverges as N ,—1,
which, as noted earlier, is the cyclotron autoresonance
condition. This is particularly significant for current-
drive applications, since current-drive efficiency increases
with the energy of the accelerated electrons. Hence, we
can devise “rising-bucket” current drive schemes which
are optimized for diverging beams where the maximum-
N, ray is nearly tangent to the flux surfaces where the ab-
sorption is large.

The energy gained by individual electrons varies from
that given by Eq. (2.34) by an amount of the order of the
nonlinear resonance width, as electrons can be trapped
from below resonance and detrapped above or vice versa.
The absorption can be calculated (Cohen and Rognlien,
1991) from Eq. (2.34), the expressions for the nonlinear
resonance width, the probabilities of trapping and de-
trapping above versus below resonance for fixed N and
B (L for either fundamental or second-harmonic heating),
and energy conservation. The absorption coefficient is
nonlocal: the absorption from a specific ray depends on
the number and distribution of trapped electrons travers-
ing the ray, which in turn depends on the intensity and
N, of all rays previously traversed. In a “sudden adiabat-
ic” turn-on and turn-off approximation, in which an is-
land is assumed to grow adiabatically at a fixed initial en-
ergy until all electrons destined to become trapped have
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been trapped, then accelerate without trapping or detrap-
ping electrons, and then decay adiabatically at a fixed en-
ergy, the procedure outlined above yields closed-form ex-
pressions for the beam-averaged optical thickness.

The optical thickness 7 is given by (Cohen and
Rognlien, 1991):

T:Tb1+7'bw (2.35)

where 7, and 7, respectively, are contributions arising
from the acceleration of the phase-space island (“buck-
et”) and the finite width of the bucket. The bucket-width
term is that derived earlier (7, or Ty1,) for the absorp-
tion in the absence of gradients (with p, generalized as
below), while 7, is given by

7= 4,713 PBE, (2.36)
where
4= O/NY p@7!
2T =N =1
R s A
AN+A*N

and

¥, =AN7'28E /(4T)+¥ ,
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with w,, and , the electron plasma and cyclotron fre-
quencies, and

8E,=8E,/T=min(1,(8/m)p{?@ 1T1/4)

Other quantities appearing in these expressions are:
I =harmonic number, Q;=(2'?E_+N yEu, /c)/E, is
the polarization factor; E; and E_ are the amplitudes of
the electric field and its left-hand circularly polarized
component;  ®=T/mc?,  po=ay/(1—N%), p,
=p{’?7 9/ @ (a generalization of the previously given
definition to oblique propagation), a=2"""%(E,Q,/
yB)M'2N{"1/(1—1), p;=(AN+A *N)/(20)'72,

]1/2

A*N(Nyj,Np)=AN(—N;, —N,,) (and similarly for ¢),
R =R /cos¢, R is the major radius at the cyclotron res-
onance, ¢ is the angle of the poloidal projection of the
central microwave ray with the major-radius direction,

Yy=min(¢,, ¥, +,5E /2T),

_ AT2
1—Nj,

(I—Nﬁl) ’

AN= [—N +Np |——~
it 12 N2
1-N3,

¢ =_§.7T1/2 N|2|2 AN — Nﬁz—Nil M_l_]vnz(l——jvﬁl)s/z _’_(2®)—1/2(3L)2
4 0 |1-N} 3 3.3 (1=NH)\2 (1-N}) °
YWV N )=(20)- 12 | N7 — NN 1—N}, 172 N ,(arcsinN ; —arcsinN ;)

= 1124V 2 1 1=v2 I_N(2|2 (I_NﬁZ)I/Z 4

8E /T=max(n,p,,(8/m)@ 11!/4p1/2)

and 7,=2(27/16)"*~2.38 for fundamental heating,
while 1, =2 for second harmonic. These expressions ap-
ply for fundamental or second-harmonic heating (ex-
traordinary and ordinary modes) of a Maxwellian elec-
tron distribution, with diverging beams [N sgn(v,) in-
creases as electrons cross the beam], and assume that the
variation of N, over the extent of the microwave beam
dominates over the change in B,. Generalizations to
other harmonics, non-Maxwellian plasmas, and converg-
ing beams can be found in Cohen and Rognlien (1991).
An important qualitative feature of Eq. (2.36) is that
the optical thickness increases with the spread of N and
can even exceed the linear value for rather moderate
spreads (includes those which can arise from the com-
bination of toroidal curvature and natural beam diver-
gence). This will be explicitly demonstrated in Sec. V.
The derivation of Eq. (2.36) assumes that the buckets are
lifted adiabatically. When this is not the case, the ab-
sorption becomes linear. An interpolation formula
describing partially adiabatic bucket lift is given by
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Cohen and Rognlien (1991).

An implicit assumption in the preceding discussion of
nonlinear absorption was that the trapping regions of
phase space centered on neighboring cyclotron reso-
nances did not overlap. However, as the wave amplitude
increases the trapping regions swell; and with sufficiently
large wave amplitude there is overlap of the neighboring
trapping regions (Menyuk et al., 1987, 1988; Karimabadi
et al., 1990). The principal cyclotron resonance, the
neighboring interacting resonances, and the heating
characteristics are all determined by the same values of
wave frequency and k. Thus, electrons with a preferred
sign of v, can be stochastically accelerated leading to
current drive in addition to heating.

Stochastic electron diffusion along heating characteris-
tics occurs when resonances overlap. When the principal
cyclotron harmonic number is relatively low, the separa-
tion of the neighboring resonances in p, and p, is sub-
stantial. As a result, just preceding the onset of reso-
nance overlap, the trapping around the principal reso-
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nance will be described typically by the strong trapping
physics presented earlier in this section. The closest
neighboring resonance in momentum space will corre-
spond to the next higher cyclotron harmonic number in
most circumstances, and the energy of the resonant parti-
cles will be significantly higher than those in the princi-
pal resonance (see Fig. 3 and Figs. 1 and 2 of Meynuk
et al., 1988). In consequence of the larger value of y, the
island width of the neighboring resonance will have a
smaller amplitude. The width of the neighboring reso-
nance need not be very large to induce stochasticity be-

cause the primary resonance width is already large. -

Thus, the trapping around the neighboring resonance is
typically in the weak regime while the trapping around
the primary resonance is strong (Lichtenberg and Lieber-
man, 1983). The appropriate overlap condition is not
given by (2.14) for this case, and the correct analytical ex-
pression for intense ECH has not appeared in the litera-
ture as yet. However, numerical determination of the
stochasticity thresholds has been made by Rognlien and
Nevins (1987) based on explicit orbit integrations (see
Sec. V).

Figure 9 displays the values of the right-hand circular-
ly polarized electric field component E,, /B, for the ex-
traordinary mode and in circumstances representative of
MTX operation as calculated by Rognlien and Nevins
(1987). Here, N y =0 and N, =1; and infinitely wide plane
waves were considered. The orbit integrations demon-
strate that for k,p <<1 initially, the right circularly po-
larized component is dominant over the response to the
left circular component. The threshold amplitudes
shown for the X mode are systematically lower than for
the O-mode case (the O-mode threshold amplitudes satis-
fy E/B;=0.3 with the minimum value at perpendicular
incidence occurring near «/;=0.9) and significantly
exceed the electric field strengths expected in MTX,
E /B, 50.02, unless substantial focusing is introduced or

C”t/B o
)

T T
X 9

3 3
& 8

______ £ 7T TEMTX with 8 GW
0 === F I 4

0 1 2 3

FIG. 9. Stochasticity threshold values of the normalized right-
hand component of the electric field E.; /B, for the extraordi-
nary mode for different values /€, at perpendicular incidence.
For this low-density example, the total electric field is
Ey=V2E.;. For the O-mode case, the threshold is
E|/B,~0.3 as indicated.
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occurs nonlinearly. The stochasticity threshold can be
lowered by introducing a second FEL at a different fre-
quency. For the case of right circularly polarized X
modes with frequencies w/Q,=1.7 and 1.96 at normal
incidence, numerical orbit integrations determined that
the total power at the threshold for stochasticity was re-
duced by ~1 over the single-wave case (Rognlien and
Nevins, 1987).

Because of the significant amplitudes required to
achieve stochasticity, a matter of particular concern for
the application of stochastic heating and current drive is
the possibility of parametric instability (Porkolab and
Cohen, 1988), which will be addressed in Sec. IV. The
question of parametric instability is closely related to
whether ponderomotive effects are important. The pon-
deromotive force is important compared to the thermal
pressure in influencing force balance in the plasma when

(2.37)

Operation at high power in MTX with 7,=1-2 keV in
the core plasma is expected to satisfy E*/B3 << T, /m,c.
Only at the edge of the plasma where the temperature
falls is the ponderomotive force likely to be appreciable.
However, if the stochastic regime could be achieved in
MTX, (2.37) would be satisfied before the plasma sub-
stantially heated; and ponderomotive effects and self-
focusing could be important. Consideration of pondero-
motive self-focusing is presented in Sec. IV.

Electron dynamics in the stochastic regime have been
studied by numerically integrating the orbits in the work
of Menyuk et al. (1987, 1988), Rognlien and Nevins
(1987), Hizanidis et al. (1989), and Karimabadi (1990),
and analytically by Hizanidis (1989). Hizanidis (1989)
derived a Fokker-Planck model of the electron diffusion
appropriate for an infinite plane wave with amplitude
well above the threshold for stochasticity. Near the
threshold, not all of the momentum phase plane is sto-
chastic: some islands of regular motion remain. For
higher wave amplitudes the stochasticity is more com-
plete [for example, see Figs. 3 and 4 of Hizanidis et al.
(1989)]. The numerical results of Hizanidis et al. (1989)
demonstrate that as a function of increasing angle of
propagation with respect to the magnetic field, the trap-
ping widths for a right circularly polarized mono-
chromatic wave increase; and the resonances are more
closely spaced in momentum space so that the threshold
for stochasticity decreases. The numerical results also
exhibit a relatively short initial transient after which the
mean-square deviations of various moments of the elec-
tron distribution grow linearly in time in fairly good
agreement with theory. The dependence of the diffusion
coefficient on wave amplitude predicted by theory and
calculated numerically is approximately quadratic. How-
ever, later in time the stochastic motion is not described
very well by Fokker-Planck theory. In the stochastic re-
gime, nearly all of the electrons passing through the mi-
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crowave pulse will be strongly heated and the plasma be-
comes strongly absorbing. For MTX applications, in the
stochastic regime electron energies grow by order of their
rest-mass energy; and large opacities result (Rognlien and
Nevins, 1987).

The fourth heating and current-drive mechanism is
beat-wave current drive. In beat-wave current drive, two
intense, high-frequency transverse waves nonlinearly mix
to resonantly excite a low-frequency longitudinal wave
that imparts energy and momentum to the plasma as it
damps. This application of beat-wave excitation to
current drive in a magnetized plasma was suggested by
R. M. O. Galvao and T. Tajima in 1983 in unpublished
work. At about the same time, Cohen independently cal-
culated the nonlinear coupling of transverse waves to a
Langmuir wave and determined the resulting current-
drive efficiency when the Langmuir wave was Landau
damped by passing electrons (Cohen, 1984). Since then
there have been additional one- and two-dimensional cal-
culations and simulations by Tajima (1985), Mendonca
and Galvao (1986), Mendonca (1986), Cohen, Cohen, Lo-
gan, et al. (1988), Heikkinen et al. (1989), Amin and
Cairns (1990), and references therein. Recently there has
been an experimental demonstration of beat-wave cou-
pling in a toroidal plasma, the Davis Diverted Tokamak
at Lawrence Livermore National Laboratory; and the ex-
periment will attempt to observe a driven current
(Rogers et al., 1989).

Beat-wave excitation is an example of a resonant
three-wave interaction. The frequency and wave-number
matching conditions required to ensure a strong, phase-
coherent interaction are o, — @, =ws, ki —k,=k;.

There are a number of requirements to be met for the
achievement of high efficiency in beat-wave heating and
current drive (Cohen, Cohen, Logan, et al. (1988). The
difference frequency of the two microwave pump beams
must match the local electron plasma frequency to excite
a large-amplitude plasma wave. It is advantageous to ex-
cite the beat wave and damp it on resonant electrons on
or inside thé magnetic axis to minimize the degradation
of the current drive due to magnetically trapped elec-
trons [the same consideration is true for the other rf
current-drive schemes (Fisch, 1987)]. Furthermore, the
beat-wave phase velocity parallel to B, must fall in an ap-
propriate velocity range so that there are sufficient num-
bers of electrons to damp the Langmuir wave and carry
all the current. The two transverse waves should be simi-
larly polarized to permit nonlinear coupling. Finally, the
wave momentum and energy deposited in the plasma de-
pend nonlinearly on the product of the two microwave
beam powers.

The physical mechanism at work in beat-wave excita-
tion is as follows. The electron equation of motion is
influenced by quadratically nonlinear driving forces, e.g.,
the Lorentz force and the electric field force at the linear-
ly displaced particle position. The contributions to these
forces coming from the low-frequency beat produced by
the bilinear mixing of orbit perturbations and fields from
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the two high-frequency transverse waves (o = (1,) consti-
tute the ponderomotive forces at the low frequency and
can produce an acceleration that resonantly excites a lon-
gitudinal wave. The nonlinear beat of the electron densi-
ty perturbation with the high-frequency velocity pertur-
bations produces high-frequency current-density pertur-
bations that drive changes to the microwave beams in the
mixing region. This process is an example of stimulated
Raman scattering.

The nonlinear beat-wave equations have been present-
ed in several papers. Here we use the formalism of
Cohen, Cohen, Logan et al. (1988) for parallel and anti-
parallel beat-wave coupling. Amin and Cairns (1990)
have generalized this formulation to two dimensions.
The nonlinear wave equation that describes the conserva-
tion of wave action flux at steady state and from which
the efficiency of beat-wave current drive can be deduced
is

—27Tk§ ~
— 7 Sl Imlx (1+x,)/e]=—k,-VJ,
2

ﬁl‘lez klk

(2.38)
for parallel or antiparallel orientations of the pump
waves with identical polarization, where J;,
=(ky,/2m)|uy,/c|* are the transverse-wave action flux
densities in natural units, u,;, are the linear electron
quiver velocities in the waves, ¥, and X; are the conven-
tional linear electron and ion dielectric susceptibilities
evaluated at (w;—w,, k;—k;), and e=1+4+y,+x;. The
perturbation theory leading to (2.38) assumes
lu),/¢] <<1 and |0, —w,| <<w;, w,~Q,. The high-
frequency wave energy flux densities, i.e., the power den-
sities, are given by w; ,J ,.

Conservation of wave action for collinear wave propa-
gation follows directly from (2.38), which leads to
AJ,==xAJ, for parallel (+) or antiparallel (—) wave
orientations. Relative to the energy introduced in the
two transverse waves, only a fraction g¢,~w;/
[w,(14+w,p/w,)] can be acquired by the beat wave as a
consequence of action-flux conservation (p=JI /J is
the input ratio of action fluxes). Analytical calculations
(Cohen, 1984) have determined that the pump-depletion
factor R, =AJ, /JP—1 for (wk3L /k)|u u,/c?|>1 in
a plasma with a linear density gradient, L ~!=|VInn,|.
Detailed solutions for R, are shown in Fig. 1 of Cohen,
Cohen, Logan, et al, (1988). Good pump depletion
enhances the heating and current-drive efficiencies associ-
ated with this scheme. Examples of the power require-
ments to achieve high beat-wave current-drive
efficiencies in both MTX and a reactor plasma using
FEL’s are given by Cohen, Cohen, Logan,
et al. (1988) and Sec. IIL.C here.

Beat-wave current drive offers the possibility of good
efficiency and precise control over where and when the
current is driven. Unwanted competition from neighbor-
ing cyclotron harmonics is easily avoided, and degrada-
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tion of the current drive by magnetically trapped parti-
cles is weak. The accessibility of the beat wave is readily
guaranteed by the easy accessibility of the driving waves.
The penalty for this is the requirement of two intense mi-
crowave sources and the reduction of the heating and
current-drive efficiency by the factor ¢,R,, where g, S 1
in most practical applications. The dependence of the
beat-wave excitation mechanism on both the relative an-
gle of the two microwave beams and the transverse beam
profiles has been addressed in the calculations of Amin
and Cairns (1990). Two-dimensional effects are impor-
tant in determining optimal strategies for efficient beat-
wave heating and current drive; the work of Amin and
Cairns shows that collinear orientations are preferable
and g, R, =0.35 can be achieved.

When the two transverse waves are aligned parallel to
one another, the lower frequency transverse wave that is
amplified by the beat-wave process can nonlinearly mix
with the beat wave to excite a third transverse wave at
frequency w,—(w;—w,) which acts as an additional
pump wave to reinforce the generation of the beat wave.
In fact, a cascade of frequency down-shifted transverse
waves can be induced (Cohen et al., 1972; Heikkinen
et al., 1988). Each cascade step can deposit another
quantum of energy into the beat wave and the plasma
which would circumvent the limitation associated with
g, <1 at each cascade step. Another potential benefit
when the transverse waves are aligned parallel is that the
beat wave produced has a high phase velocity approach-
ing the group velocity of light in the plasma. This would
facilitate the acceleration of electrons to relativistic ener-
gies (Tajima and Dawson, 1979; Heikkinen et al., 1988).
The principal disadvantages of the cascade are that ow-
ing to the dependence of the nonlinear coupling in (2.38)
on k3, which is much smaller for parallel beat-wave cou-
pling than it is for the antiparallel orientation, much
higher transverse-wave intensities are required and the
competition with nonlinear self-focusing and parasitic
parametric instabilities, e.g., stimulated Raman and Bril-
louin backscatter, may greatly inhibit beat-wave coupling
in the parallel orientation and inhibit its efficiency
(Cohen, Cohen, Logan, et al., 1988).

Another variation of beat-wave current drive that
overcomes the limit set by g, <1 has been devised by
Matsuda (1988). Only a single intense transverse pump
wave is introduced to nonlinearly induce a parametric de-
cay to a scattered transverse wave and a longitudinal
wave, e.g., a Langmuir wave whose Landau damping on
passing electrons heats the plasma and drives current. If
the parametric instability can show a strong preference
for producing a Langmuir wave propagating along the
toroidal magnetic field line and lead to good depletion of
the pump wave, then the product g,R, appearing in the
heating and current-drive efficiency can be replaced by a
factor that can approach unity in value.

In the examples of beam-wave excitation cited here,
only Langmuir waves propagating parallel to the applied
magnetic field have been analyzed. However, the cou-

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

pling to other beat waves propagating at an oblique angle
with respect to the magnetic field might provide a better
vehicle for current drive. For example, a cyclotron-
auto-resonant, upper-hybrid beat wave might lead to im-
proved current-drive efficiencies by producing very hot
electrons whose collisionality is significantly reduced.

Calculations of the current-drive efficiencies for the
four mechanisms introduced in this section will be given
in the next section. Examples of the simulations of these
heating and current drive mechanisms are presented in
Sec. V.

I1l. CURRENT-DRIVE APPLICATIONS

A. Pulsed current drive

The physics of quasisteady current drive using pulsed
electromagnetic waves has been analyzed by Nevins
(1987). The important time scales for current drive using
intense, pulsed FEL’s are

T <<V, '< Ty <<Ty /g » (3.1

where 7, is the pulse length of the electromagnetic wave
source, v, is the electron collision frequency, T is the
time between pulses, and T ,r is the inductive/resistive
decay time of the tokamak plasma. Because of the rela-
tively high inductance and relatively low collisionality
and resistance of a hot tokamak plasma, the T z time
scale over which the plasma responds to changes in the
toroidal current is long compared to the pulse length of
the wave heating and the collisional relaxation time of
the electrons. As a result, the following picture of
current drive emerges.

The pulsed ECH shifts resonant electrons to higher en-
ergy where they collide less often and give rise to a
current (Fisch and Boozer, 1980). Parallel momentum as
well as energy can be delivered to the resonant electrons
leading directly to current, especially for the beat-wave
mechanism. The plasma’s rapid response to the local in-
fusion of current is to generate a backwards electromo-
tive force (emf), which is produced by the time derivative
of the magnetic flux according to Faraday’s law. This ac-
celerates the bulk electrons counter to the wave-heated
electrons and cancels all but O(T /T, ,z) of the injected
peak current as calculated by Nevins (1987). In between
pulses, electron collisions relax the deformed electron ve-
locity distribution; and both the back-emf and the fluc-
tuating component of the current concomitantly decay.
Because the peak cyclical perturbation of the current is
smaller than the total average current by T/T; ,p <<1,
a large average current can be sustained with pulsed in-
jection. Nevins (1987) calculated this cyclical process in
detail using circuit equations introduced in earlier work
by Karney and Fisch (1986). Nevins also considered
current-profile effects and the possibility of runaway pro-
duction.

A simple model of non-inductive current drive was fur-
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nished by Cohen, Cohen, Nevins, et al. (1988). The
toroidal current-balance equation deduced from electron
momentum conservation and continuity is

2
d . _ .k b, € Me
Ej¢-S¢(t)—vhj¢—vbj¢+—m—

e

E,, (3.2)

where j,=j g-ﬁ- jg is the total current summed over the
heated component and the bulk electrons, v, and v, are
the characteristic collision rates for the two electron
components (v, <v;,), and S4(#) is the time-dependent
source of toroidal current introduced by electromagnetic
waves, for example. The toroidal current j; acts as a
source for the poloidal magnetic field as described by
Ampere’s law; and the time derivative of the poloidal
magnetic flux induces a toroidal electric field E, as dic-
tated by Faraday’s law. At steady state, dj,/dt =E,=0;
and, if we assume that {v,j}) <<(v,jk), because j} is
driven by E, (which is zero at steady state) and collision-
ally relaxes more rapidly than does j(hf,, then Eq. (3.2)
leads to j,~jh~(S,(2))/v,, where (S,(z)) is the
time-averaged current source. A current-drive efficiency
is then readily obtained by dividing the current density
integrated over the current channel by the input power in
the electromagnetic waves. Examples of current-drive
efficiencies that can be attained using various applica-
tions of intense, pulsed ECH are given later in this sec-
tion. Detailed calculations of noninductive current drive
based on solutions of the Fokker-Planck equation
describing the collisional relaxation of the plasma and
circuit equations for the evolution of the toroidal current
and voltage have been presented in the comprehensive re-
view of current drive by Fisch (1987).

B. Trapped-particle effects

By definition, trapped electrons are reflected by the in-
creasing magnetic field as they follow field lines which
wind around the torus to smaller major radius. Thus,
trapped electrons carry no current on average. Their
presence degrades current-drive efficiency in two different
ways. Trapped electrons absorb energy without contrib-
uting to the current, and when initially passing electrons
absorb energy so that they become trapped, there is a
current increment produced opposite to that produced
when the accelerated particle remains passing. There
have been several calculations of trapped-particle effects
on ECH (Start et al., 1983; Chan et al., 1982; Antonsen
and Hui, 1984; Yoshioka et al., 1986; Yoshioka and An-
tonsen, 1986; Harvey et al., 1989; and R. Cohen, 1987).

R. Cohen (1987) used the adjoint methods of Yoshioka
et al. (1986) to analytically solve the generalized Spitzer-
Harm problem for the wave-driven current and the col-
lisional relaxation of the perturbed distribution function
including trapped-particle effects. It is assumed that the
collisions are well described by scattering off a Maxwelli-
an background. The introduction of a square-well ap-
proximation for the magnetic field facilitates an analyti-
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cal solution. R. Cohen’s calculation either models or re-
tains all important relativistic effects. A Green’s function
for the linearized Fokker-Planck equation is derived from
which the current drive can be calculated once the wave-
induced particle flux I'y, is specified for a particular
current-drive mechanism.

The starting point of R. Cohen’s calculation is the ex-
pression of Antonsen and Hui (1984), or, equivalently, of
Fisch and Boozer (1980), for the wave-induced current:

J I 3 . _a_
= <fd pCy 5 G) , 3.3)
where ( ) denotes a flux-surface average and
G=e(B,/R ) g exp(e/T). Here R _IE|V¢|, ¢ is the
toroidal angle, € is the electron energy, T is the tempera-
ture of the background electrons, B, is the toroidal mag-
netic field, and g is the Spitzer-Harm distribution func-
tion modified to include magnetically trapped particles.
The equation satisfied by g at steady state is

v,6-Vg+C(g)=—v,b-Vexp(—e/T), 3.4)

where C(g) is the collision operator linearized about a
background Maxwellian of temperature 7. This equation
is bounce-averaged with g expanded in increasing powers
of the ratio of the collision frequency to the transit (or
bounce) frequency. The bounce-averaged collision opera-
tor is evaluated in the high-energy (but nonrelativistic)
limit mv%/2T>>1. Introducing h=g exp(e/T) and
h= (R¢/R YeF(v)H(n)/(4w}), where R¢=B4¢/B0,
F(v)=v/c in the nonrelativistic limit, v=4mne*lnA/
mzv,3, v,=2T/m )12, n=vf/vz, and v is the speed, R.
Cohen obtained the following inhomogeneous Legendre
equation for H to leading order in T /mv?,

i _
dr

where k=(1—n)1/2=v||/u, Z is the charge state of the
ions, and the sign of the right side is determined by the
sign of v,. The bounce-averaged collision operator was
replaced by the local operator evaluated at the bottom of
the magnetic well in obtaining Eq. (3.5). With the bound-
ary conditions that H is regular at 7=0 and vanishes at
the trapped-passing boundary n=,=B,/B,,,, because

H is finite only for passing particles, the analytic solution
of (3.5) is

1 d 2
— = -~ (1—- (
4H+2(1+Z)d7».(1 A7) 41, (3.5)

A Pa(lAD)
Al PL(A)

) (3.6

where P, is a Legendre function with index a satisfying
the relation a(a+1)=—8/(1+2Z). With this expres-
sion, g and, hence, G are determined; and with Ty,
specified for the particular current-drive mechanism, a J I
can be calculated from (3.3) that incorporates both rela-
tivistic and trapped-particle effects. R. Cohen (1987)
used this Green’s function approach to calculate analyti-
cally the current-drive efficiencies for conventional ECH
and lower-hybrid current drive with continuous wave
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sources. For this purpose, quasilinear diffusion
coefficients were employed for I'y,. In addition, this
analysis has been used as the basis of a current-drive di-
agnostic in particle simulations of intense, pulsed ECH
and beat-wave current drive (Cohen, Cohen, Logan,
et al., 1988), whose results are reviewed in the following
discussion of current-drive efficiencies.

C. Current-drive efficiencies

The most precise calculations of the current-drive
efficiencies for the four mechanisms using intense pulses
described in Sec. II are based on numerical particle-orbit
calculations and self-consistent particle simulations. Ex-
amples of these calculations are presented in Sec. V.
Here we will summarize the current-drive efficiencies ob-
tained from orbit calculations and the particle simula-
tions. These current-drive efficiencies for intense, pulsed
ECH are quite attractive when compared to present ex-
perimental standards and equal or exceed the best
theoretical current-drive efficiencies for conventional
lower hybrid and ECH current drive (Cohen, Cohen,
Nevins, et al., 1988; Cohen et al., 1989).

To calculate the current-drive efficiency in the numeri-
cal orbit integrations and particle simulations, a diagnos-
tic (Cohen, Cohen, Logan, et al.,, (1988) has been
fashioned based on R. Cohen’s (1987) analytical expres-
sion for J| reviewed in Sec. IIL.B. The diagnostic incorp-
orates relativistic and trapped-particle effects, and is
applicable to situations where the pulse length of the
electromagnetic waves is short compared to the charac-
teristic collision time of the particles accelerated by the
waves so that the arguments of Sec. III.LA and Nevins
(1987) are applicable. Thus, the net effect of the wave
pulse is a finite displacement of the particles in phase
space, which is instantaneous on the collisional time
scale. The diagnostic then calculates the current driven
both directly and by the subsequent collisional decay.
While the calculation of Sec. IIL.B is nominally steady
state, it is easily verified that the driven current derived
from the Green’s function in Egs. (3.3)—-(3.6) is valid even
for time-dependent and nondiffusive radio-frequency
operators. By retaining time derivatives in the Fokker-
Planck equation for the velocity distribution function
and integrating over time, the expression given in (3.3)
remains valid, provided that J, and I'y, are replaced by
their time-averaged values. Equation (3.3) can be put
into the form

J
h—
~1—;~—<fd3pDG> , (3.7)
where G was defined after Eq. (3.3) and

for a finite instantaneous displacement of a particle by a
wave from (x;,p;) to (x;,ps). Thus, the total time-
integrated current from the wave-induced deformation of
the electron distribution function is
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Jat1=e(h;—h,) (3.8)

where h =g exp(e/T). The time-integrated current pro-
duced by a pulse is summed over particles and then di-
vided by the sum of the absorbed energies to obtain a
current-drive efficiency
e —n.
o= L= 2B (3.9)
P Y(es—g;)

In addition to the analytical expression for 4 given in
Egs. (3.5) and (3.6), R. Cohen (1987) derived a description
based on a numerical solution for the angular part of A
for circular flux surfaces that relaxed the square-well ap-
proximation for the magnetic field. The numerical ex-
pression was used in calculating 7.4 by Cohen, Cohen,
Logan, et al., (1988) and Rognlien and Nevins (1987) for
their particle simulations and orbit integrations; their re-
sults for 7.4 differ at most by a few percent from those
based on the analytical expression for A.

We now compare the current-drive efficiencies for
three options exploiting the intensity of FEL pulses: ris-
ing buckets, stochastic acceleration, and beat waves. A
relatively simple analytical formula for the current-drive
efficiency of the beat-wave mechanism is reviewed here,
which agrees fairly well with detailed numerical calcula-
tions over a range of beat-wave phase velocities. Cohen
and Rognlien (1991) have derived a prescription for nu-
merically calculating the rising-bucket current-drive
efficiency, which is closely related to the numerical
prescription used in conjunction with beat-wave current-
drive simulations (Cohen, Cohen, Logan, et al., (1988).
The same kind of numerical prescription has been used to
compute the current-drive efficiency for stochastic
current drive. The Fokker-Planck analysis of Hizanidis
(1989) has not been used to estimate the current-drive
efficiency in the stochastic regime, because the orbit cal-
culations of Hizanidis et al. (1989) have shown that the
Fokker-Planck description for stochastic ECH is not val-
id for early or late times in a pulse. We have used the
analysis reviewed in this section to determine the
current-drive efficiencies numerically for the three op-
tions mentioned using intense FEL pulses and will sum-
marize the results for the three representative examples
of interest in magnetic fusion.

The first heating and current-drive mechanism de-
scribed in Sec. II is superseded by rising buckets, because
in practical applications b-VB, and b-Vk, are both finite.
A conventional measure of current-drive efficiency is
defined by 7.4 =nIR /P, where n is the density in units of
10 m~3, I is the current in MA, R is the major radius in
meters, and P is the power in MW. All three options can
yield 7j4 in excess of the quasilinear value, which would
be obtained in the limit of weak, diffusive ECH. For
MTX applications (Thomassen, 1986; Jong et al., 1989),
stochastic current drive can yield the best efficiency in
the range 0.1 to 0.2, neglecting ponderomotive effects,
but is likely to be degraded by parametric instabilities,
nonlinear self-focusing, and synchrotron radiation.
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Rising-bucket current drive could yield efficiencies
around 0.1 if a tail in the electron energy distribution can
be drawn out to about 8 keV and if waves with N, =0.9
can be propagated into the plasma. With less stringent
conditions, %,4~0.05 for rising buckets can be achieved.
Beat-wave current drive can produce 7.4~0.05 with con-
siderable control over where the current is deposited, but
requires two intense microwave sources. Beat-wave
current drive is the only one of the three options that
does not generate loss-cone-like distributions, which may
excite microinstabilities. All three options yield %4~0.3
when applied to the International Thermonuclear Experi-
mental Reactor (ITER), which has a much hotter plasma
(T,=20-25 keV in ITER and 2 keV in MTX). Current-
drive calculations for the Compact Ignition Tokamak
(CIT, renamed the Burning Plasma Experiment, BPX) at
T,=10 keV lead to efficiencies that are intermediate be-
tween MTX and ITER (see Table II).

We next review the current-drive efficiencies for the
three options using intense pulses in more detail. The
case of conventional low-amplitude ECH current drive,
which infinitesimally displaces resonant electrons, is a
useful standard of comparison. The quasilinear ECH
current-drive efficiency has been evaluated using the cal-
culation of R. Cohen (1987). Cohen points out that the
efficiency is greatest for absorption on the low-field side
of resonance and at the inside of the flux surface (the
former so as to have additive direct-momentum and an-
isotropic resistivity contributions to the driven current;
the latter so as to minimize trapped-particle effects). The
efficiency varies almost linearly with the energy of the
resonant electrons. For MTX parameters with T,=2
keV and /1Q,/0=0.92, 7.4 varies from 0.028 for e /T, =3
to 0.042 for €/T,~5, where € is the resonant energy.
For ITER parameters, T, =20 keV and /Q,/w0=0.8, we
have 7,4=~0.3 for €/T,=5 and / =1. At higher energies
g, there is competition from the second-harmonic reso-
nance that degrades 7 4; and this competition sets in at
lower values of € for /> 1. Rising-bucket physics can
enhance the current-drive efficiency in two ways. First,
there is the direct effect of acceleration to high energies,
particularly if the range of N extends to near unity [see
Eq. (2.34)]. When the absorption is on the inside of the
flux surface and power is launched from the outside, this
effect enhances the efficiency on that flux surface. (When
the absorption is on the outside or power is launched
from the inside, the accelerated buckets can deposit their

TABLE II. Representative ECH current-drive efficiencies
nIR /P (10®° A/m?W).

Mechanism MTX CIT ITER
Quasilinear 0.03-0.04 0.1-0.15 0.2-0.3
Beat waves 0.03-0.05 0.2 0.2-0.4
Rising buckets 0.05-0.1 0.2-0.4 0.3-0.6
Stochastic 0.1-0.2 0.15-0.3 0.2-0.4
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electrons in or close to the trapped-particle region of
momentum space, resulting in a decrease in efficiency.)
Additionally, there is an indirect benefit, which can be
even more significant, resulting from the possible increase
of opacity over linear values. Increased opacity implies
absorption farther from the cyclotron resonance layer,
which, for outside launch, implies absorption by higher-
parallel-energy electrons and, hence, higher current-drive
efficiency.

Rising-bucket current drive has been studied using nu-
merical integration of particle orbits (Sec. V) and an
analytical model. The current-drive efficiency is deduced
from Eq. (3.9) in both calculations. The analytic estimate
proceeds as follows (Cohen and Rognlien, 1991); the
current-drive efficiency is estimated by evaluating it
[from the relation (3.9)] on a representative characteristic
whose minimum energy (in the illuminated portion of
momentum space) €., is greater by T than g, the
minimum energy in all of the illuminated portion of
momentum space. Since rising-bucket current drive is
primarily of interest for a spread of N sufficient to make
the range of energy along the representative characteris-
tic large compared to the temperature T, we evaluate the
current-drive efficiency by assuming that all particles are
moved along this characteristic from energy ¢.;,+ 7T to
Emax the maximum energy on the illuminated portion of
the characteristic. The choice ¢,;,+7T accounts for
phase-space displacement effects: in the ‘“sudden adia-
batic turn-on and turn-off”’ approximation described in
the discussion of the opacity calculation, electrons would
be trapped at €,;,, but phase-space displacement fills in
the empty hole in phase space. The net effect is
equivalent to electrons being trapped at energy T above
the minimum. Finally, if we wish to estimate the
current-drive efficiency for the entire ray-bundle rather
than a single flux surface, the evaluation is done on a
representative flux surface where much of the absorption
occurs, chosen so that eo= T In(1+ 7y /2).

In order to benchmark this procedure and also assess
the direct enhancement of the current-drive efficiency on
a given flux surface, Cohen and Rognlien (1991) carried
out this simplified procedure and compared the
efficiencies with those inferred from orbit-code calcula-
tions (for a single flux surface, with specified ¢, for
several sets of plasma parameters, as shown in Table III.
The €, values chosen are representative of the bulk elec-
tron temperatures in MTX (2 keV) and ITER (20 keV)
(although, in ITER, the opacities for harmonics such that
the bucket mechanism is effective are sufficiently high
that the microwaves would not be expected to penetrate
to flux surfaces where ¢, is this low). The various values
of T serve to mock up the effect of previous FEL pulses
in producing a tail in the resonant portion of the electron
distribution function. We observe from Table III that
the analytic procedure tends to underestimate the numer-
ical efficiency, by anywhere from O (one case) to over
50%. Also shown in Table III are efficiencies for conven-
tional (quasilinear) ECH evaluated on the representative
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TABLE III. Comparison of analytic and numerical current-drive efficiencies for intense ECH and
weak-ECH (quasilinear) efficiency. Here 6 is the poloidal angle at which absorption occurs (6=0 is the
outside of the flux surface); n=n(10* m~3)I(A)R(m)/P(W), where P is the absorbed power, and &, is
the minimum resonant energy (consistent with Y and N,).

€y (keV) Y N||2 T (keV) 0 nanal nnum nweak
20 0.8 0.846 20 T 0.22 0.30 0.22
/2 0.20 0.26 0.20

0 0.18 0.21 0.19

50 T/2 0.34 0.39 0.28

20 0.78 0.917 20 /2 0.25 0.29 0.20
50 T/2 0.43 0.42 0.29
2 0.93 0.835 2 T 0.032 0.054 0.020
T/2 0.018 0.034 0.017
0 0.001 0.008 0.014

6 T 0.071 0.104 0.036

7/2 0.046 0.071 0.033
2 0.923 0.914 2 T 0.048 0.075 0.020
T/2 0.026 0.048 0.017
6 T 0.106 0.126 0.036

T/2 0.072 0.087 0.033

characteristic. As anticipated from the preceding discus-
sion, the rising-bucket efficiencies (particularly the nu-
merically calculated values) exceed quasilinear for ab-
sorption on the inside of the flux surface, but not neces-
sarily for absorption on the outside.

Assessment of the indirect effect of increased opacity
on global current-drive efficiency is more difficult, as it
involves issues such as the tradeoff of opacity with com-
petition from absorption at higher harmonic numbers
(Smith et al., 1987); the required ray-tracing studies have
not yet been done. A measure of the effect is provided,
however, by the simple criterion gy~ 7T In(1+ 7y /2) in-
troduced above. In the limit where the energy gained by
a bucket, Eq. (2.34), is small compared to €;,, the non-
relativistic current-drive efficiency scales approximately
with e ;; hence the efficiency would increase by a factor
of roughly [1+In(1+7y/2)]/[1+In(1+7/2)]. For
fundamental O-mode current drive in ITER, this factor
would be about 1.4. The finiteness of the energy incre-
ment will tend to increase this ratio, while relativistic
effects decrease it. More detailed studies can be found in
Cohen and Rognlien (1991).

The combination of increased opacity, increased
current-drive efficiency, and harmonic selectivity of the
bucket adiabaticity criterion can assist in overcoming the
limit on conventional ECH current-drive efficiency im-
posed by harmonic competition (Smith et al., 1987). It is
not difficult to arrange for a particular harmonic to be
adiabatic, while higher harmonics are not. Hence, one
can exploit the advantage of increased opacity to plow a
larger fraction of the wave energy into absorption at the
desired harmonic, and it will do so with enhanced
current-drive efficiency. With proper ray aiming, the
higher harmonics, for which current is driven in the
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wrong direction, absorb less of the power and drive
current with the relatively lower linear-ECH current-
drive efficiency.

The primary outstanding issues associated with rising-
bucket current drive are microstability (see Sec. IV.D)
and the degree of penetration of individual ECH rays.
The success of the direct enhancement of the current-
drive efficiency depends on the highest N rays penetrat-
ing to where they are needed; they must not absorb at a
significantly larger minor radius than where the lower N
rays are absorbed. Assessment of this requirement, as
well as quantitative evaluation of the global effect of in-
creased opacity on current-drive efficiency, requires im-
plementation of nonlocal, per-ray absorption coefficients
into a ray-tracing code.

Particle orbits have been numerically integrated to cal-
culate the current-drive efficiency for stochastic accelera-
tion (Rognlien and Nevins, 1987). The particle-orbit cal-
culations determine the final momentum-space distribu-
tion resulting from a Maxwellian population passing
through the intense FEL pulse. This data is then used in
the current-drive diagnostic Eq. (3.9) to calculate the net
current driven during the subsequent collisional relaxa-
tion. The current drive is then obtained from the ratio of
the integrated current to the energy absorbed. Results
for stochastic acceleration on the magnetic axis are
shown in Fig. 10 for two angles of propagation with
respect to B, as a function of the right-hand circularly
polarized electric field strength, E_ /B,. Ponderomotive
effects have been omitted here. The threshold for sto-
chasticity at 70° is lower than at 45°, but the maximum
obtainable efficiency is higher at 45° because that wave
has more parallel momentum. The initial temperature of
the distribution in these examples is 1 keV. For an initial
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FIG. 10. Stochastic current-drive efficiency nIR /P (10®° A/m?
W) on axis as a function of the normalized right-hand electric
field amplitude E_ /B, for 6=45° and 70° angles of incidence,
0/Qy=1.9,and T,=1keV.

temperature of 20 keV, the maximum efficiencies are
similar but the threshold for stochastic acceleration ex-
tends to lower E_ /B,. Current-drive efficiencies as high
as 0.2 can be obtained for values of E_ /B, correspond-
ing to a 8 GW pulse with focusing to a2 0.5 cm beam ra-
dius and By=35 T, but the results are quite sensitive to
the electric-field strength. Trapped-particle effects are
not included in the results plotted here and reduce the
efficiencies by factors of 0.5 and 0.7 for angles of 70° and
45°, respectively.

Beat-wave current-drive efficiencies have been calculat-
ed analytically and in self-consistent particle simulation
(Cohen, Cohen, Logan, et al., 1988). The electron
current density introduced on each toroidal transit of the
electrons is directly calculated from the momentum flux
density liberated by the resonantly damped beat wave,
whose damping is assumed to be complete if the phase
velocity of the beat wave does not fall too far out on the
tail of the electron velocity distribution. Because the
three-wave interaction producing the beat wave con-
serves wave-action flux as well as momentum and energy
flux, the momentum and current sources for the electrons
are proportional to the wave power available to the beat
wave, which is given by ¢g,R, times the input power in
the high-frequency pump wave, where g, is the quantum
efficiency and R, is the relative action transfer defined
and discussed in Sec. II. It is shown by Cohen, Cohen,
Logan, et al., (1988) that the current-drive efficiency for
beat waves can be derived from Eq. (3.2) and is given by

e 1

e 1 (3.10)
m,v, 2TRyv,

ﬁbw:qeRa

where v, is the classical collisional slowing-down rate for
a fast electron and v, =(@;—®,)/(k; —k;) b is the paral-
lel velocity of the electrons resonantly damping the beat
wave.

A careful relativistic treatment of radio-frequency
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current drive for an electrostatic wave that is completely
damped by resonant particles gives a current-drive

efficiency (Fisch, 1987)

1
Ry(m)n,(10°m™3)

o _dea 312

Ned™p " A

, (3.11)

I
P

where J/P is a function of the momentum of the
current-carrying particles. In the nonrelativistic limit
with v, >>v,, J/P=8x%/(5+Z4) and x2=2e/mc?
where € is the energy of the resonant electrons. The
beat-wave current-drive efficiency #),,=nIR/P is re-
duced by ¢, R, so that

ﬁbwzqeRaﬁcdzo'sx 10—2qeRa5 (keV) (3.12)

in the nonrelativistic limit, with 8/(5+Z.4)~1 and
31.2/InA=2. There is good agreement between (3.12)
and (3.10). For resonant velocities where relativistic
effects begin to be important, the current-drive efficiency
saturates with increasing electron energy: J/P=0(1)
for x=p,/mc>0(1) and p, <<p,. The current-drive
efficiency depends on both the peak electromagnetic wave
power (to achieve a satisfactory value of R,) and the en-
ergy of the current-carrying electrons (which determines
J /P and thus fl.q). Trapped-particle effects should have
little influence for beat-wave current drive involving an
acceleration of the electrons that is mainly parallel to the
magnetic field and which can be done on the inside of the
magnetic axis.

Particle simulations of beat-wave current drive were
performed with the EMONE electromagnetic code (Cohen
et al., 1975; Cohen, Cohen, Logan, et al., 1988). The
current-drive diagnostic described in this section was in-
corporated in the simulations. The results of parameter
studies, in which the absolute phase velocity of the beat
wave Aw/Akv, was varied with the initial plasma tem-
perature fixed at a value of 3 keV representative of MTX
and 20 keV for ITER, are shown in Fig. 11. The
current-drive efficiency ,, peaked at Aw/Akv,~4.5
with ), ~0.05. For the significantly hotter ITER plas-
ma, 7, peaked at Aw/Akv,~2.5 with #,20.3. The
simple analytical expressions (3.10) and (3.12) are reason-
ably accurate in predicting ), for Aw/Akv, less than
the optimal values, although they slightly underestimate
the current-drive efficiencies obtained in the simulations.
Furthermore, because the analytical expressions assumed
that the plasma wave was completely damped by the
electrons for all beat-wave phase velocities, the analytical
expressions grossly overestimate the current-drive at high
phase velocities where the Landau damping becomes too
weak and there are insufficient numbers of electrons to
carry the current. Specific beat-wave current-drive
scenarios were calculated for MTX by Cohen, Cohen,
Logan, et al., (1988) using particle simulations and a
ray-tracing code.
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FIG. 11. Beat-wave current-drive efficiency fy,, and %y, /R, (to
correct for the incomplete action transfer in artificially short
simulations) as a function of the beat-wave relative phase veloci-
ty Aw/Akv, for MTX and reactor cases (Cohen, Cohen,
Nevins, et al., 1988).

IV. STABILITY OF AN INTENSE
ELECTRON CYCLOTRON WAVE

Numerous nonlinear effects can occur when an intense,
coherent electromagnetic wave impinges upon a plasma.
We have already reviewed several nonlinear aspects of
the wave-particle interaction. In this section we review
the possible parametric destabilization of waves in the
plasma as the result of ponderomotive effects and trapped
particles induced by an intense electron cyclotron wave.
We also review nonlinear self-focusing and a first theoret-
ical study of the microstability of an FEL-heated plasma.
These nonlinear phenomena are important because they
can result in the absorption, depletion, scattering, or
modulation of the FEL, which may be deleterious to the
intended application of the FEL to heating, current
drive, or control of magnetohydrodynamic instabilities
through localized current drive. If the heated electron
distribution is unstable, the resulting wave turbulence
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can lead to anomalous heat and particle transport. In ad-
dition, electron microinstability can be used as a diagnos-
tic of the plasma heating.

A. Parametric instabilities

The parametric instability of the plasma heated with
cyclotron waves is a mature area of research, and there
have been numerous theoretical analyses and papers re-
ported experimental observations. A number of theoreti-
cal reviews and surveys have been published. The litera-
ture is so extensive that we shall direct the interested
reader to only a few exemplary papers and the references
therein, which will serve as an introduction to the litera-
ture. We shall present the general dispersion relation
describing the parametric decay of an electromagnetic
plane wave in a uniform magnetized plasma into both
electromagnetic and electrostatic waves. We shall identi-
fy some of the most important parametric instabilities
that might be encountered for an intense electron cyclo-
tron wave.

Porkolab (1977, 1978) reviewed the theoretical analysis
and experimental status of parametric instabilities associ-
ated with wave heating of magnetically confined plasmas.
Porkolab’s theoretical calculations assumed that the in-
cident electromagnetic wave had a negligible wave num-
ber in the region where it nonlinearly decayed into elec-
trostatic waves in the plasma. A number of possible de-
cay products were considered. Ott, Hui, and Chu (1980)
analyzed electrostatic decay instabilities for finite-wave-
number pump waves with frequencies near the electron
cyclotron frequency. Stefan and Bers (1984) surveyed
parametric instabilities associated with electron cyclo-
tron heating that lead to nonlinear absorption; they ana-
lyzed a dispersion relation for finite-wave-number ordi-
nary and extraordinary pump waves which decay into
electrostatic waves and were particularly interested in the
secondary decay instabilities of the parametrically desta-
bilized electrostatic waves. Stefan and Krall (1985) re-
viewed nonlinear conversion and parametric absorption
of finite-wave number electron cyclotron waves as ap-
plied to the heating of bumpy torus plasmas. The secon-
dary parametric decay and possible cascade of the decay
products, as well as pump depletion, were among the sat-
uration mechanisms analyzed by Stefan and Krall.

The generalization of the dispersion relations describ-
ing parametric decays into electrostatic waves to include
stimulated scattering has been presented by B. Cohen
(1987a), Stefan er al. (1987), Stenflo (1989), and others.
In stimulated scattering, an incident electromagnetic
wave can parametrically couple to a scattered elec-
tromagnetic wave and another mode that is typically an
electrostatic normal mode or quasimode in the plasma.
In a uniform magnetized plasma, the dispersion relation
for both stimulated scattering and a parametric decay
into electrostatic modes for weakly nonlinear incident
electromagnetic wave is (B. Cohen, 1987a; Stefan et al.,
1987)
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e— Ly . (1+x;)
arne ! ka_D+ ka_ a)2+8+
k2 k_Xvol?  kHk_-vy)? —o
k2D_ k% wre_
4.1)
for v2,v§ <<c?, koip, <<1, and wy>>w,Q;,,;, where p,

is the electron Larmor radius, v, is the electron thermal
speed, w,; is the ion plasma frequency, x, and x; are the
linear susceptibilities in a warm, magnetized plasma eval-
vated at (w,k), e=1-+Y,+Y; is the linear longitudinal
dielectric function evaluated at (w,k), D E(kiko)zc2
—(0twy) ey, 1 =e(wtw, ktky), and v, is the linear
oscillation velocity of an electron in the electromagnetic
pump wave in the presence of an applied magnetic field.
The derivation of (4.1) depends on a perturbation expan-
sion in the pump-wave amplitude and does not include
relativistic or trapping effects. The stability of an intense
electromagnetic wave to the growth of sidebands in the
presence of wave-trapped electrons is reviewed in Sec.
IV.B.

Equation (4.1) describes stimulated scattering, filamen-
tation, and parametric decay instabilities with o <<,
Parametric decay into two upper-hybrid waves or two
obliquely propagating, magnetized plasma waves is not
included in (4.1), in analogy to the similar observation for
an unmagnetized plasma (Drake et al., 1974). Stenflo
(1989) showed that Eq. (4.1) can be straightforwardly
generalized to include collisions. The dispersion relation
Eq. (4.1) acquires additional terms for an amplitude-
modulated electromagnetic pump wave, as has been illus-
trated for ion-cyclotron pump waves by Similon and
Kaufman (1984), D’Ippolito and Myra (1985), Cohen and
Rognlien (1985), and Otani and Cohen (1988). Equation
(4.1) yields the dispersion relation for parametric decay
or stimulated scattering by a low-frequency electrostatic
normal mode when e(w,k) nearly vanishes. The elec-
tromagnetic pump wave couples the low-frequency mode
to upper and lower-frequency sidebands (w*wgktk,).
When D or D_ nearly vanish, and £, and e_ are finite,
the pump wave couples the low-frequency electrostatic
mode to an electromagnetic sideband; this corresponds to
stimulated scattering. When € or £_ nearly vanish, and
D, and D_ are finite, the dispersion relation describes
parametric decay to electrostatic decay products. When
the coupling is strong enough, a sideband can couple
unstably to a low-frequency quasimode or to a heavily
damped mode (nonlinear Landau damping or stimulated
Thomson scattering) for which ¢ is finite. Filamentation
is an example of two electromagnetic sidebands coupling
equally strongly to a low-frequency quasimode. The os-
cillating two-stream instability is an example of two elec-
trostatic sidebands coupling equally strongly to a low-
frequency quasimode.

Porkolab and Cohen (1988) used Eq. (4.1) to survey the
potential for parametric instabilities associated with in-
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tense electron cyclotron heating in the MTX. They ana-
lyzed the parametric instability of ordinary modes per-
pendicularly incident from the outside of the torus at a
frequency near the fundamental electron cyclotron fre-
quency and extraordinary modes perpendicularly in-
cident from the outside of the torus at the second har-
monic of the electron cyclotron frequency. Both non-
linear decays into electrostatic modes (absorptive insta-
bilities) and stimulated scattering (reflective instabilities)
were considered for a collisionless plasma with parame-
ters appropriate to MTX. Local growth rates, threshold
conditions, and convective stabilization criteria were cal-
culated for several important parametric instabilities.
When the pump wave decays into two normal modes, the
local threshold condition is 3> I';T",, where 7, is the lo-
cal growth rate, and I'; and T', are the damping rates of
the decay products. In a nonuniform plasma, the
threshold condition for instability to overcome convec-
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FIG. 12. Schematic of parametric processes associated with (a)
ordinary-mode (wy=£2,) and (b) extraordinary mode (w,=21,)
wave heating. eB denotes an electron Bernstein wave, eC
denotes an electron cyclotron wave, PDI is the parametric de-
cay instability, and OTSI is the oscillating two-stream instabili-

ty.
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TABLE IV. Parametric instabilities for ordinary-mode heating in MTX.

(w,k) matching Importance,
Instability satisfied comments
Reflective
1. Raman scattering by upper hybrid wave No No
2. Raman scattering by lower hybrid wave Yes No, convectively stable
3. Brillouin scattering by ion cyclotron wave Yes Unstable, maybe important
4. Brillouin scattering by ion quasimode Yes Unstable, maybe important
5. Brillouin scattering by ion Bernstein wave Yes No, convectively stable
Absorptive
6. Decay to upper hybrid and ion quasimode Yes No, convectively stable
7. Oscillating two-stream Yes Unstable
8. Parametric decay to two magnetized
plasma waves Yes Probably important if 1 <o}, /Q2=<1

tive losses is yi>K'V, V,,, where K'=V-(k,
—k,—k,), and V,, and V,, are the group velocities of
the decay waves in the direction of the inhomogeneity.
When the low-frequency wave is a quasimode and the
sideband is a normal mode, the local threshold condition
is y¢>I, and the convective threshold is
Yo0> |V, (de_/dx)|. Figure 12 displays a schematic of
the important phenomena, and Tables IV and V summa-
rize the conclusions of Porkolab and Cohen (1988) and
Perkins (1988) for MTX. Perkins (1988) corrected the as-
sessment of Porkolab and Cohen of the oscillating two-
stream instability for the ordinary mode and showed that
it can be important in MTX.

There are several absorptive parametric instabilities
that are likely to occur at high power in MTX. The ab-
sorptive instabilities will divert wave power into other
waves, which will heat the plasma, but will also increase
the level of wave turbulence. The increased level of tur-

bulence can be deleterious to particle and energy
confinement. The reflective instabilities are dangerous
because they can result in scattering significant amounts
of the incident wave energy from its intended purpose.
In this regard, Brillouin backscatter by forward and
backward electrostatic ion cyclotron waves have the
lowest local and convective thresholds, and have appre-
ciable local growth rates, yo=0();). Brillouin back-
scatter is predicted to exhibit significant convective
amplification for the 8 GW and 50 nsec pulses anticipat-
ed in MTX unless nonlinear effects limit the backscatter.
For larger and hotter target plasmas than in MTX, the
area of the laser spot size can be increased and both
v /v, and vy /c can be reduced, which will diminish the
possibility and strength of parametric instabilities. In-
creasing the frequency bandwidth and using very short
laser pulses can also lessen the risk of parametric instabil-
ities (Porkolab and Cohen, 1988).

TABLE V. Parametric instabilities for X-mode heating in MTX.

(w,k) matching Importance,
Instability satisfied comments
Reflective
1. Raman scattering by upper hybrid waves Yes Yes, convectively unstable
2. Raman scattering by lower hybrid waves Yes No, convectively stable
3. Brillouin scattering by ion cyclotron wave
or quasimode Yes Yes, convectively unstable
4. Brillouin scattering by ion Bernstein waves Yes No, convectively stable
Absorptive
5. Parametric decay: X—2 upper hybrid waves Yes Yes, convectively unstable,
maybe absolute
6. Parametric decay: X-—2 electron Bernstein or Yes Yes, convectively unstable,
electron cyclotron or two magnetized plasma waves maybe absolute
7. Parametric decay: X-—>upper hybrid + ion No No, cannot satisfy matching
quasimode
8. Oscillating two-stream: 2X—2 upper hybrid + No No, cannot satisfy matching
quasimode
9. Parametric decay: X-—2 electron Bernstein Yes Yes, convectively unstable

wave + ion wave
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B. Trapped-particle sideband instability

When a large-amplitude, monochromatic wave reso-
nantly accelerates particles and traps them, the cyclical
motion of the trapped particles causes a beating with the
principal wave that can destabilize sidebands separated in
frequency by the trapping frequency from the principal
wave. This phenomenon has been observed experimen-
tally and analyzed theoretically for Langmuir waves by
Kruer et al. (1969) and for whistlers by Denavit and Su-
dan (1975). More recently, Cohen and Cohen (1988a,
1990) derived the dispersion relation for an electromag-
netic trapped-particle sideband instability for a large-
amplitude ordinary mode at perpendicular incidence as
proposed in the FEL experiments in MTX.

A sideband instability could have at least two possibly
important effects on FEL heating experiments. For the
case that V“k“o=0, the modulation induced by unstable
sidebands could broaden the power spectrum, detrap the
resonant electrons, and improve the overall absorption.
In the second case, consider V”k“o?&O, V”BO#O, and FEL
heating exploiting the rising-bucket concept. A strong
sideband instability could detrap resonant electrons and
“spill”” the buckets, preventing improved absorption. For
parameters appropriate to high-power FEL operation in
MTX, Cohen and Cohen find a weakly unstable sideband
instability with growth rates that are steeply peaked at
the frequencies wytw,, where w, is the frequency of the
principal ordinary mode and w, is the trapped-particle
bounce frequency calculated in Eq. (2.8). The local
growth rate y is sufficient in MTX to exceed the thresh-
old condition set by collisional damping of the sidebands,
v3>T,T_ where Fiz(wf,e /wd3)v,; /2 and v, is the
electron-ion collision rate. However, the growth rate is
weak (y,=~107°Q,); and the sidebands convect rapidly at
the group velocity of the ordinary wave with a spatial
gain length that greatly exceeds the minor radius of
MTX.

The derivation of the dispersion relation due to Cohen
and Cohen (1988a, 1990) is reasonably straightforward,
and only a brief synopsis will be given here. The relativ-
istic Hamiltonian introduced in Sec. II.A is expanded
about the principal elliptic fixed point to second order in
the excursions in P4 and 6 to describe the trapping in the
principal wave. The linear perturbation to this Hamil-
tonian due to the upper and lower sidebands (w=tw,
ktky) is introduced. The linear perturbation has the
form of H, in Eq. (2.6), but is summed over both side-
bands. The solution of the linearly perturbed motion
now resembles closely that of a harmonic oscillator
whose natural frequency is w, being driven by a plane
wave with frequency w,. From the solution of the linear-
ly perturbed motion, the linearly perturbed electron dis-
tribution function is obtained by introducing a Klimonto-
vich representation. The linearly perturbed current jz“)
is then calculated by integrating over the perturbed dis-
tribution function for use in Maxwell’s equations to
determine the sideband field amplitudes self-consistently.

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

The determinant of the sideband coefficients matrix
yields the dispersion relation describing the normal
modes:

1 1

D((O+wo,k+k0) D(w_a)o,k_ko) 0 ’

4.2)

where D (wiwo,k:tko)=cz(kiko)2—(a)ia)o)2+co2 k

pe?
and kg, are parallel,
M=(w?/32y)p,/p P (kop)(kvy) 0l —o?) "',

y is the relativistic factor at the elliptic fixed point, p,
and p, are the corresponding momenta, and o, is the
electron plasma frequency for the density of trapped elec-
trons. This dispersion relation is identical in form to the
dispersion relations for the Langmuir (Kruer et al., 1969)
and whistler (Denavit and Sudan, 1975) sideband instabil-
ities. For |kkoc?/wo<w,| there is instability, and for
wF#w, the frequency is given by

o=kkoc?/wyti {BK*N*(1—N?)
Xy [k§(wl —k2kdc* /o)) 1}12

where N=koc/wy, B=(N*0w?/64yw})vov,p,/c?p,)?
and v, =p{),. The maximum growth rate peaks sharply
at kkgc?/wo=w, and

w=w,+(1/2+iV3/2)(8/2)'*w,N (1—N?)/3

There is stability for kkyc2/wy> wp.

The sideband coupling is relatively weak here because
the coupling coefficient of one of the sidebands with the
principal mode to excite the other sideband is propor-
tional to the product of (kop)?<<l and (vy/c)?
=(eE,/ymaoyc)*<<1. The proportionality to (kp)?
derives from the small-argument expansion of J,(kyp)?,
and the proportionality to (vy/c)? is due to the product
of v{% in the principal wave and the perturbed displace-
ment in the nonlinear current. We expect that the side-
band instability for the extraordinary wave nearly per-
pendicularly incident at the second harmonic is similarly
weak for the following reasons. The perturbed Hamil-
tonian Eq. (2.10) is again proportional to J,(k,p). The
dispersion relation for the X mode at wy=~2Q, is dom-
inantly electromagnetic; thus, the wave equations for the
sidebands require the perturbed currents j{!’ and j}(,”,
which depend on the products of v*’ and v}fm, respective-
ly, with the perturbed displacement in analogy with the
O-mode case. Thus, it is concluded that an electromag-
netic sideband instability exists; but it is a weak instabili-
ty for physical conditions similar to the FEL heating ex-
periments in MTX.

A one-dimensional electromagnetic particle simulation
of the sideband instability of a monochromatic ordinary
mode with frequency w =, was reported by Cohen and
Cohen (1988b). The initial-value simulation exhibited
significant wave attenuation of the ordinary mode due to
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electron trapping and deformation of the electron distri-
bution, and very weak growth of the sidebands predicted
theoretically to be weakly unstable. The attenuation of
the ordinary wave and the time dependence of its ampli-
tude preclude quantitative comparison with the analyti-
cal theory, which assumes a constant amplitude for the
main wave.

C. Nonlinear self-focusing

One of the parametric instabilities described by Eq.
(4.1) is ponderomotive filamentation. Porkolab and
Cohen (1988) calculated the linear convective growth
lengths for the coupling of an incident ordinary-mode
plane wave to linearly unstable, infinitesimal-amplitude,
ordinary-mode sidebands. This is an example of the
linear ponderomotive filamentation instability. For
MTX parameters, Porkolab and Cohen (1988) deter-
mined that the linear convective growth length for
filamentation is comparable to the minor radius of the
tokamak. However, a more realistic calculation of
filamentation or self-focusing models the incident ordi-
nary wave as having finite lateral extent, which corre-
sponds to a nonlinear modulation of the principal wave
by finite-amplitude sidebands and allows for the possible
nonlinear self-focusing of the incident wave. Analytical
and numerical calculations of nonlinear self-focusing for
ordinary-mode FEL heating in MTX suggest that there
may be appreciable nonlinear ponderomotive self-
focusing in proposed high-power experiments (Cardinali
et al., 1988; Cohen, Cohen, Nevins, et al., 1988; Lontano
et al., 1989; Cohen et al., 1991).

The analysis of nonlinear self-focusing begins with the
wave equation derived from Maxwell’s equations:

1 3°E 9 4 3T

o2 32 +V(V-E)—V°E+ o2 o 0.
For ordinary modes incident nearly perpendicular to an
applied magnetic field, or for an unmagnetized plasma, a
fluid model for the high-frequency plasma current car-
ried by the electrons gives (Kaw et al., 1973; Max, 1976;
Cardinali et al., 1988)

(4.3)

3y _ n.e’E
ot m,

(4.4)

e

For finite kv, and kv, the quasisteady magnetized
plasma response to the ponderomotive force produced by
the high-frequency electromagnetic waves is (Max, 1976;
Cohen, Cohen, Nevins, et al., 1988; Cohen et al., 1990)

n,=2Z;n;=nyexp[ —e*{ E?) /2m,0}(T,+T;/Z;)] .

4.5)
For laser amplitudes satisfying
vo/c <O(2)wy/wy, m, /m)'?, (4.6)

ponderomotive self-focusing is dominant over relativistic
self-focusing and modulational instability (Max et al.,
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1974), and the laser is stable to relativistic self-focusing
for powers P satisfying (Schmidt and Horton, 1985)

P < Heo/wp,e )* X 10° W . 4.7)

Max (1976) used Egs. (4.3)-(4.5) to derive a threshold
power condition for steady-state, self-trapped filaments
induced by the ponderomotive force:

P>Py(1—n,/n)"*n /n,), (4.8)

where Po=m,cXT,+T,/Z;)/e*=17 MW (T, +T;/Z,)
(keV) and n, is the critical density where the plasma and
laser frequencies are equal. Proposed high-power FEL
experiments in tokamaks satisfy all of the inequalities
(4.6)-(4.8).

Cohen, Cohen, Nevins et al. (1988) adopted the
analysis of Max (1976) to study steady-state self-focusing.
By neglecting V(V-) and introducing both an eikonal rep-
resentation and the paraxial assumption that 32/9z? is
small compared to ky(d/dz) and V? operating on the
slowly varying wave amplitude, a simplified wave-
envelope equation was derived. With the additional as-
sumptions that the wave envelope is cylindrically sym-
metric, varies radially as a Gaussian, and remains Gauss-
ian, the self-focusing calculation was reduced to a quad-
rature. The relative beam radius as a function of the
penetration distance into the plasma was calculated by
Cohen, Cohen, Nevins, et al. (1988) for MTX parame-
ters. For a simple slab density and profile, and a laser
beam composed of parallel rays at incidence, self-
focusing occurs very close to the magnetic axis for
v3/4X1+T;/T,)=0.03, T;=T,=1 keV, Z;=1, and
wlz,e /a)(2,=%. Introducing an angular divergence into the
laser beam or Gaussian profiles for the plasma density
and temperature forces the self-focusing to occur at a
greater distance into the plasma.

The work of Cardinali et al. (1988) and Lontano et al.
(1989) addressed the space-time dynamics of ponderomo-
tive self-focusing. This is relevant because the current
induction-linac driven FEL technology involves finite-
length pulses (30-50 nsec) in MTX. Cardinali and co-
workers incorporated a hydrodynamic description of the
plasma ion response retaining ion inertia and invoked
quasineutrality to determine the electron density. They
then applied both a self-similar analysis and numerical
integration to Egs. (4.3) and (4.4), and evaluated both
steady-state and space-time solutions for the location of
the first focus in the plasma assuming either strongly or
weakly magnetized ions. For uniform slab density and
temperature profiles, and with parallel electromagnetic
rays incident and no cyclotron absorption, Cardinali
et al. calculated that a first focus would appear in a dis-
tance less than 30 cm (twice the minor radius of MTX)
after 10—20 nsec for high-power operation P ~8 GW and
T,=T,=1keV.

A different approach to the space-time dynamics of
ponderomotive self-focusing was given in Cohen et al.
(1991). In this paper both steady-state and time-
dependent, paraxial solutions of Egs. (4.3)—(4.5) were ob-
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tained by numerical integration. The wave envelope was
not required to remain Gaussian. Computed steady-state
flux contours (the flux is defined as [ dr r|E|?) are shown
in Fig. 13. If the beam had retained its Gaussian shape,
the contours would have remained equally spaced.
Without the Gaussian assumption, intense beams focus in
shorter distances; and rings of increased intensity develop
downstream of the first focus. The time-dependent calcu-
lations of Cohen et al. (1991) retain time derivatives in
the wave equation (4.3), while assuming that the hydro-
static plasma response in Eq. (4.5) is valid. This assump-
tion is valid in a magnetized plasma if the self-focusing
time is longer than the ion and electron transit times
across the laser beam parallel to the applied magnetic
field and if k?A2 <<QZ/w}, for each species, where A, is
the ion or electron Debye length. The second condition
is satisfied if the Larmor radius of each species is smaller
than the laser beam width. The first condition depends
on the self-focusing rate and is more difficult to satisfy in
physical applications of interest.

Cohen et al. (1991) reduced Egs. (4.3)-(4.5) to the
scaled dimensionless nonlinear wave equation

700_1111'1111]1111111111ﬁ
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FIG. 13. Steady-state flux contours for an initial Gaussian
profile with vy/v.(1+T;/Z;T,)'/*=0.1, T,+T;/Z;=10 keV,
and an initial Gaussian half-width kq0 =700. If the beam had
retained its Gaussian shape, the contours would have remained
equally spaced (Cohen et al., 1990).
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with the scaling transformations dT=é§,2,0dt /@g,

dZ=&‘>j,0dz /ogvg(z), dR=&,dr/c, and E=(e/
m,w)E(x,t)/20,0(1+ T;y/Z; T,0)'?, where vZ=T,,/
m, and the unperturbed equilibrium density and temper-
ature profiles were allowed to vary in z (the propagation
direction of the incident wave): c’b:e(z)=6‘) pof (2),
T.(z)=T,.g(z), and T;(z)=T,g(z). The scaling trans-
formations collect the important parameter dependences
in compact form and allow the application of the solu-
tions of the scaled equation to an infinite number of
different physical systems. The boundary condition
E(Z =0, R, T) describing the incident pulse was defined,
and the radial boundary was set at a large enough R com-
pared to the beam radius so that E=0. The Z-vs-T tra-
jectories of the first focus were computed for various
values of vy /v,4, which depends on the wave strength and
the plasma temperature, the incident beam width a, the
angular divergence of the incident beam, and the density
and temperature profiles. For decreasing v, /v,, increas-
ing wga /¢, increasing angular divergences, and density
profiles that decrease faster than do the temperature
profiles, the self-focusing occurred at larger values of Z
and 7, i.e., farther into the plasma and later in time.
Other effects that weaken the self-focusing rate are ab-
sorption of the laser beam in the plasma [included in
some of the steady-state calculations of Cohen et al.
(1991)] and the scattering of the incident wave in the
edge turbulence of the tokamak which increases the an-
gular divergence of the laser.

The more restrictive condition on the validity of the
hydrostatic assumption Eq. (4.5) was found to obey the
following scaling. The self-focusing time scaled as
T ~500(v,0/vy) for wga/cZO(10%). With v,~10°
(cm/sec)[ T; (eV)]'/? in hydrogen, the critical temperature
above which the hydrostatic assumption is valid (provid-
ed that p; <a) is then

T;>(3.6 keV)(n, /n. ) wqa /c)(vy/v,0) .

Thus, for (n, /n,)(vy/v,0) <10~ % and 100 <wqa /c <200,
T;>5-10 keV is required for the validity of the hydro-
static assumption. This condition can be satisfied for
possible FEL applications in current large tokamaks like
the Joint European Torus (JET) and the Tokamak Fusion
Test Reactor (TFTR), and future tokamaks like CIT and
ITER. The validity condition for the hydrostatic as-
sumption is not satisfied for MTX applications at high
power: Cohen et al. (1991) calculate a self-focusing time
of 3-5 mnsec for (vy/v,)*=0.24, ®2,/w3=0.5, and
©o,/2m=140 GHz anticipated in MTX where the ion
transit time across the laser beam is approximately 30



Cohen et al.: Theory of free-electron-laser . . . 977

nsec. Nevertheless, by ignoring ion dynamics, the calcu-
lation based on the hydrostatic assumption remains use-
ful because it is pessimistic compared to the calculations
of Cardinali et al. (1988) and Lontano et al. (1989), i.e.,
it overestimates the self-focusing rate. Thus, when these
calculations determine that the self-focusing occurs in a
time longer than the given pulse length or in a distance
greater than the width of the plasma, one expects that
self-focusing will not occur when ion dynamics are in-
cluded. However, an important caveat is that the model
calculation of Limpouch et al. (1988) including ion dy-
namics indicated that if the laser pulse is initiated abrupt-
ly, there can be transient oscillations in which self-
focusing exceeds its steady-state amplitude.

D. Stability of the heated plasma

High-power microwave pulses from an FEL injected
into a tokamak for heating and current drive can pro-
duce spatially localized distortions of the electron veloci-
ty distribution function that are severe. The heating and
the distortion of the electron distribution alter the elec-
tron cyclotron emission of the plasma (Farina and Pozzo-
li, 1988) and can excite microinstabilities (Matsuda and
Smith, 1990). The enhanced wave turbulence accom-
panying microinstability can degrade particle and energy
confinement in the tokamak. Matsuda and Smith (1990)
have begun a study of the microstability of FEL-heated
electron distributions using a recently developed code
that solves the fully relativistic dispersion relation for a
uniform plasma with an arbitrary distribution function.
The distribution function can be given by an analytical
model or numerically defined on a velocity or momentum
grid as output from a code that calculates particle orbits.
With the distribution function defined, a relativistic con-
ductivity tensor is computed; and a linear dispersion rela-
tion for electromagnetic normal modes is then calculated.
Solution for the unstable roots of the electromagnetic
dispersion relation leads to the construction of a stability
diagram. The modes of most interest are near the elec-
tron cyclotron frequency:, the whistler (driven by temper-
ature anisotropy T, >T,: Sudan, 1963), upper hybrid
loss-cone (driven by a loss-cone electron velocity distribu-
tion; Ashour-Abdalla and Kennel, 1987), and cyclotron
maser (relativistic, loss-cone driven: Wu and Lee, 1979;
Lau and Chu, 1983) instabilities.

The linear dispersion relation that is solved in the code
by Matsuda and Smith is

det/lnX(nXE)+K-E|=0, (4.10)

where K=I+(47i/0)3;0;, n=ck/w, and o; is the
complex conductivity tensor for a uniform plasma with
an applied magnetic field. Integrals over the velocity dis-
tribution to evaluate o ; are performed numerically using
a Gauss quadrature, and special measures are introduced
to resolve resonances carefully (Matsuda and Smith,
1990). Orbit calculations (Rognlien and Nevins, 1987) in-

dicate that strongly heated electron hot electron distribu-
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FIG. 14. Contour plots of an FEL-heated electron distribution
function in momentum space from (a) an orbit code and (b) as
filtered and fitted with splines for use in a microstability code
(Matsuda and Smith, 1990).

tions produced by FEL heating are highly non-
Maxwellian and often have both a local minimum with
respect to the perpendicular energy and a loss-cone.
Matsuda and Smith devised a procedure using spline fits
and digital filtering to approximate the numerical distri-
bution functions obtained from the orbit code (Fig. 14).
After checking their microstability code results against

0.020 T T T

0.015 —

0.010 —

im(g )

0.005 —

FIG. 15. Whistler instability growth rates as a function of k;
for various values of w, /€, and with k, =0 (Matsuda and
Smith, 1990).
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the results of several published papers, they applied the
code to an MTX case with 2 GW of power at 140 GHz, a
beam cross-section of 6 cm X 8 cm, a toroidal field of 5 T,
and a density of 1.8 X 10 cm™3. Preliminary results in-
dicate that both the whistler and upper hybrid loss-cone
modes are unstable with growth rates Imw/Q,
=(5-7)X 1073 for ®p, /02, =0.6. Growth rates for the
whistler instability for k, =0 are plotted in Fig. 15.
These growth rates are rapid compared to the inverse of
typical pulse durations, and, hence, of concern, particu-
larly for current-drive applications. However, finite-
geometry effects, such as convective stabilization, have
not yet been evaluated but are under investigation. Addi-
tionally, study of the cyclotron maser instability is in pro-
gress; and calculations indicate instability with
Rew/Q,~0.99 and Imw/Q,~3.6X107° for w, /Q,
=0.6, and this growth rate has been maximized with
respect to k, and k (k, <<k,).

V. SIMULATIONS OF FEL HEATING
AND CURRENT DRIVE

A. Monte Carlo and self-consistent
particle simulations

In this section we present a few examples of computer
simulations of FEL heating and current drive. Analyti-
cal progress in describing aspects of the highly nonlinear
interaction of an intense, pulsed electron cyclotron wave
with a plasma is limited and subject to restrictive approx-
imations. In order to test the approximate analytical cal-
culations and obtain a more comprehensive picture of the
phenomena that is subject to fewer assumptions and is
closer to first principles, numerical simulations have been
undertaken (Rognlien and Nevins, 1987; Nevins et al.,
1987; Cohen, Cohen, Nevins, et al., 1988; Cohen, Cohen,
Logan, et al., 1988; Menyuk et al., 1987, 1988; Akimoto
and Karimabadi, 1989). The numerical simulations
should be viewed as computational experiments that pro-
vide qualitative and quantitative insight into the FEL
heating and current-drive phenomena.

The two most heavily used simulation methods for the
study of the nonlinear aspects of FEL heating and
current drive are orbit-following codes (so-called Monte
Carlo codes) and self-consistent electromagnetic particle
simulation codes. The orbit-following codes take the rel-
ativistic equations of motion for charged particles in
prescribed electromagnetic fields and integrate the trajec-
tories of an ensemble of test particles representing an ini-
tially Maxwellian distribution (Rognlien, 1983b). The
equations of motion are a set of ordinary differential
equations requiring a simple set of initial conditions for
their solution. When collisional effects need to be includ-
ed, a Monte Carlo scattering scheme has been adopted in
which the test particles scatter on a background plasma
with a prescribed density and velocity distribution
(Rognlien, 1983a). Much of the physics of FEL heating
and current drive separates cleanly into collisionless and
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collisional regimes because of the separation of time
scales between the relatively fast electron transit times
and the slow collisional time scale. The integration
schemes used in the orbit-following codes may be the
simple second-order-accurate schemes favored for self-
consistent particle simulations (Hockney and Eastwood,
1981; Birdsall and Langdon, 1985), because these are
readily optimized for efficient computer solution, or
higher-order-accurate integration schemes where accu-
rate integration through a resonance or turning point is
desired (Ruth, 1983, Keefe, 1986).

The self-consistent electromagnetic particle simula-
tions also integrate the relativistic particle equations of
motion (Birdsall and Langdon, 1985). However, these
codes additionally solve Maxwell’s equation for the self-
consistent electric and magnetic fields. To accomplish
this, the charge and current densities for the particles are
accumulated on a spatial grid by interpolation from the
particle locations. These charge and current densities
provide the sources in Maxwell’s equations which deter-
mine the electromagnetic fields on the grid. Maxwell’s
equations are a set of partial differential equations that
are solved on a spatial grid by fast Fourier transform or
by finite-differencing and matrix inversion. The fields are
interpolated from the grid back to the particle locations
to accelerate the particles. In addition to the constraints
on the particle-trajectory calculations, the self-consistent
simulation must also accurately and stably resolve the
propagation of the electromagnetic normal modes sup-
ported by its physics model. This leads to a set of con-
straints on the integration time step and the spacing of
the spatial mesh. Furthermore, because the discrete par-
ticles emit and absorb electromagnetic waves in a self-
consistent simulation, there are thermal fluctuations con-
tributing to an electromagnetic noise level that leads to
requirements on the number of particles to accurately
resolve linear and nonlinear phenomena (Birdsall and
Langdon, 1985). As the size of the simulation problem
increases in terms of a characteristic wavelength, the De-
bye length, Larmor radius, or skin depth, the self-
consistent simulation requires more grid points and more
particles, and the cost of the computation rises concomi-
tantly.

In what follows in this section, we shall review exam-
ple calculations performed with orbit-following and self-
consistent particle simulation codes addressing several
aspects of FEL heating and current drive. First we de-
scribe simulations of nonlinear electron cyclotron heating
in which electron trapping is important. This is followed
with simulations of heating and current drive in which
stochasticity or the rising-bucket mechanism is impor-
tant. Beat-wave current drive is illustrated next. The
section is concluded with examples of simulations of
stimulated Brillouin backscatter and filamentation.

B. Nonlinear electron cyclotron heating

The theory of the resonant nonlinear wave-particle in-
teraction for intense, pulsed electron cyclotron heating
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was reviewed in Sec. II. Owing to the finite transit time
of an electron crossing the width of the beam parallel to
the magnetic field for an electron cyclotron wave propa-
gating across the magnetic field, resonant electrons are
trapped and then detrapped nonadiabatically. Analytical
calculations indicate that the detrapped electrons have a
50% probability of being accelerated to higher energy for
first and second harmonic heating. The fraction of
trapped electrons depends explicitly on the wave ampli-
tude. At high wave amplitudes as described in Sec. II,
the opacity of the plasma depends on the wave ampli-
tude. In the absence of gradients in either the parallel
wave number or the magnetic field that lead to rising-
bucket enhancements of the opacity, the opacity is re-
duced from its linear value by nonlinear effects. The non-
linear absorption of intense, pulsed electron cyclotron
waves has been studied with both orbit-following and
self-consistent particle simulation codes (Nevins et al.,
1987).

Rognlien and Nevins (1987) used an orbit-following
code to study the nonlinear absorption of an ordinary
mode with frequency near the first harmonic that is in-
cident nearly perpendicular to the magnetic field. Initial
ensembles of Maxwellian test particles were launched on
a flux surface near the cyclotron resonance. The ab-
sorbed power as a function of the incident field strength
deduced from the orbit code is plotted in Fig. 16. Linear
theory predicts that the absorbed power should increase
as E}. The data points (crosses) for a uniform applied
magnetic field and k =0 show reasonable agreement
with the theoretical prediction for the strongly nonlinear
regime, for which the absorption is proportional to
E ;,‘/ 3, The simulation data determines the overall multi-
plicative factor that the scaling arguments of Sec. II can-
not set (Nevins et al., 1987). In the subsequent work of
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FIG. 16. Power absorbed per unit beam height for the O-mode
with @y/Qp=1 from an orbit code for two cases:
k| =0Bo/0s=0 corresponding to a minor radius of r=0
(squares) and for Kk;=1.4+0.5(s—s,) cm™' with
8B, /35s=3.7X107% T/cm corresponding to »=3 cm in MTX
(circles). Parameters are T,=1keV, B,=5 T, and n,=1X 10"
cm™?. The beam power width along B, is w=3.7 cm, yielding
p2=1.3 (Nevins et al., 1987). The line labeled ‘“complete
theory” is from Kotel’nikov and Stupakov (1991).
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Kotel’'nikov and Stupakov (1990), the multiplicative fac-
tor A =1 was calculated for the strongly nonlinear opaci-
ty of the ordinary mode which fits the data in Fig. 16 at
the largest field amplitudes. In the numerical calcula-
tions reported by Nevins et al. (1987), a value of 4 =1.6
was used as an overall fit to the numerical results. The
increased absorption observed in the orbit code for finite
dk /ds and dB /ds is caused by rising buckets.

The two-dimensional, relativistic, electromagnetic par-
ticle code ZOHAR (Langdon and Lasinski, 1976) was used
to perform self-consistent particle simulations of non-
linear absorption (Nevins et al., 1987; B. Cohen, 1987b).
This model was used to simulate wave propagation across
a prescribed plasma profile and includes wave attenua-
tion on multiple flux surfaces in a natural way. Wave at-
tenuation was omitted from the orbit-following code and
was not included in the opacity estimates given in Sec.
IL.LB. An ordinary mode with finite width in y was in-
cident on a finite plasma slab with density and back-
ground magnetic field B,y that varied in x. The bound-
ary conditions were periodic in y and open in x (out-
going boundary conditions on particles and radiation).

The predictions of the scaling theory of Sec. II were
compared to the particle simulation results, noting that
the width of the plasma slab in the simulation was com-
parable to the width of the linear absorption layer. This
reduced the opacity in all absorption regimes (by factors
of 2 or 3). The value of 7 given in (2.24) was reduced
from 7y =10 to 7y =3 for the smallest resonance zone and
to 7. =135 for a set of simulations with a wider resonance
zone. The limited resonance zone alters the scaling argu-
ments for the opacity. The range of wave intensities
varied over O<E 1/Bo=0.4  corresponding to
0<p;<2.66. Recall that p,=[N,(E /By)m,c?/
T, )1?/3 for the ordinary mode. From the relative temper-
ature of the plasma, T, /m,c?=0.09 and the width of the
incident beam along By, w =50k, !, p,=0.4, where p,
and p, were defined in Eq. (2.19). The first nonlinear re-
gime corresponded to 1>p,>p%/3, which was
1=p,20.3 for these parameters. The absorption layer
width d; was replaced by a shorter distance d in these
simulations, but the relative scaling of the opacity in the
first nonlinear regime was unchanged from
T™NL1 = T(p2 /p}Y) given in Eq. (2.30). In the second non-
linear regime p;>1. The absorption layer width was
shortened from p,d; to d, and the average energy ab-
sorbed was reduced by an additional factor of p; because
of the reduced layer width (Nevins et al., 1987). Thus,
the scaling of the opacity in the second nonlinear regime
was predicted to be T, =~TL(p, /P3).

Results from self-consistent simulations are shown in
Figs. 17 and 18. Figure 17 shows contours of the time-
dependent electromagnetic field B,(x,y) for a simulation
of a perpendicularly incident ordinary mode with
B./By=0.1 and frequency that is resonant with the fun-
damental cyclotron harmonic at x =30 in the interior of
the plasma. The background magnetic field varied
linearly, 0.85=Q, /wy=<1.35. There was 75% absorption
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B, (xy)

FIG. 17. Contours of magnetic field amplitude B,(x,y) in the
x,y plane for a particle simulation of ordinary mode heating at
perpendicular incidence and at the fundamental electron cyclo-
tron harmonic showing good absorption.

of the ordinary mode in the simulation. The definition of
7 in Fig. 18 is 7=—In (transmitted power/incident
power), which is plotted as a function of p,. Data for
narrow (circles) and wider (triangles and x) resonance
zones are shown. Increased absorption occurred for the
wider resonance zone. The simulations were performed
with 96000 electrons and ions with a mass ratio of
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FIG. 18. Particle simulation results for the opacity as a func-
tion of p; « E {3 for ordinary mode heating at perpendicular in-
cidence and at the fundamental cyclotron harmonic (Nevins
et al., 1987). The curves indicate the predictions of scaling ar-
guments as modified for the restricted spatial domain of the
simulations.
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m;/m,=10 and T;=T, when mobile ions were included.
The x-y mesh was 100X 128; w;e /wy=0.5 at the peak of
the electron density profile; and 3000 time steps were
used with wot=0.2. The system size was L, =120kq !
and L, =80k, ! or 100k, !. The data from the simula-
tions agree reasonably well with the modified scaling ar-
guments. At very low wave intensities, there is strong
linear absorption 7> 4, and the weak transmitted signal is
difficult to measure with precision because of the com-
petition with thermal noise. At high intensities, the ob-
served absorption was improved over the expectation of
the scaling theory. One possible mechanism that could
contribute to the enhanced. absorption is the resonant
parametric decay of the ordinary mode into two magnet-
ized plasma waves that is mentioned in Sec. IV.A. With
the inclusion of ions in the simulations, the enhancement
of the absorption was not as large for increasing wave in-
tensity. There was evidence of nonlinear self-focusing in
these simulations with mobile ions, which became more
pronounced with increasing incident wave intensity.
Nonlinear self-focusing depletes the local plasma density
and raises the local value of the wave intensity. These
two effects reduce the wave absorption and increase the
transmission, while the narrowing of the laser beam
reduces the correlation time 7., increases p,, and tends to
increase the absorption.

C. Stochastic heating and current drive

The threshold condition for the wave amplitude re-
quired to induce resonance overlap and stochasticity was
given in Sec. II. How stochasticity can be used as a heat-
ing and current-drive mechanism was also reviewed in
Sec. II. We presented results from Rognlien and Nevins
(1987) for the stochasticity threshold values of the wave
electric field as a function of the wave frequency for the
use of finite-width extraordinary and ordinary modes in
MTX. There have been several other numerical studies
of the onset of stochastic electron motion in the presence
of a uniform electron cyclotron wave, for example, Men-
yuk et al. (1987, 1988), Hizanidis (1989), Karimabadi
et al. (1990), and Akimoto and Karimabadi (1989). The
calculations of Akimoto and Karimabadi (1989) were
based on self-consistent particle simulations, while the
rest were based on orbit-following codes. Stochastic
current-drive efficiency calculations were reviewed in Sec.
ITI. These calculations were produced with an orbit-
following code (Rognlien and Nevins, 1987) omitting
ponderomotive effects from the finite microwave beam
profile. The calculation of the efficiency included effects
of both collisional relaxation and magnetically trapped
particles.

Figures 19, 20, and 21 further illustrate stochastic
heating and current drive. These results are taken again
from Rognlien and Nevins (1987). The surface of section
plots in Fig. 19 show the transition from regular to sto-
chastic motion for a right circularly polarized extraordi-
nary wave with 0,/Q%'=1.96, k=0, E;/B;=0.02 and
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Phase
FIG. 19. Surface of section plots in the P,,0 plane showing the
transition to chaos for a right circularly polarized extraordinary
wave with wo/Q=1.9, k=0, initial energies £,=¢|=1 keV,
and (a) E, /B, =0.0463 and (b) E,/B,=0.093. The lines denot-
ed by different s give the cyclotron resonances for small wave
amplitude.

0.2, and 1 keV electrons. The extraordinary wave was an

infinite plane wave. Plotted in Fig. 20 are the results of
orbit calculations for the initial and final momenta result-

ing from acceleration by an extraordinary wave with fre-
quency w,/Q?’=1.9 and well above the stochastic

pL/mc
I

FIG. 20. Final positions in the p, /mc,p| /mc plane of electrons
from an initial 1 keV Maxwellian after they pass through a 0.71
cm wide rf beam in the stochastic regime with E./B,=0.15
and wy/Qy=1.9. Results for the extraordinary mode at two an-
gles of propagation (70° and 45°) with respect to B are shown.
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FIG. 21. The stochasticity threshold electric field strength
E_ /B, for the right circularly polarized component of the ex-
traordinary wave at frequency w,=1.9Q, as a function of the
angle between k and By,

threshold for two different angles of propagation with
respect to the magnetic field. These trajectories follow
the heating characteristics calculated in Eq. (2.15). The
stochastic threshold electric field amplitude for a right
circularly polarized extraordinary mode with frequency
0o/Q°'=1.9 is plotted in Fig. 21 as a function of the
propagation angle with respect to the magnetic field.
When above threshold for stochasticity, the current-drive
efficiency increases with increasing kll /k, but the thresh-
old electric field increases also.

D. Rising buckets

The theory of electron cyclotron heating exploiting ris-
ing buckets was reviewed in Sec. II.B. Examples of the
current-drive efficiency for rising-buckets were presented
in Sec. III.C. Rising-bucket calculations have been made
with both an orbit-following code (Cohen and Rognlien,
1991) and a self-consistent electromagnetic particle simu-
lation (Cohen and Rognlien, 1989). We first describe
selected results from orbit calculations.

Figure 16 shows simulation data form Nevins et al.
(1987) for the absorbed power as a function of the electric
field strength for a perpendicularly incident ordinary
mode for both k =3B,/ds =0 on the magnetic axis and
k,=1.4+0.5(s —sy) cm™' with 8B,;/ds=3.7X107?
T/cm corresponding to » =3 cm in MTX. The other im-
portant parameters for the simulations were T, =1 keV,
B,=5T, n,=1X10" cm™3, and a beam width along B,
of w=3.7 cm, which yielded p,=1.3. The gradients in
B, and k", and the finite beam width facilitated rising-
bucket acceleration, which led to the increased absorp-
tion noted in Fig. 16. Representative electron trajec-
tories illustrating the difference between rising buckets
and the nonlinear heating for k; =0 described in Nevins
et al. (1987) are presented in Fig. 22. In the three cases,
dN, /dz was zero, positive, and negative, which corre-
sponded to normal incidence, a diverging beam, and a
converging beam. For each case, two electrons with
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FIG. 22. Electron trajectories calculated with an orbit code il-
lustrating bifurcation, and rising buckets and phase-space dis-
placement. (R. Cohen and Rognlien, 1990). Particle energies as
a function of z are plotted for (a) dN;/dz=0, (b) dN/dz>0,
and (c) dN|/dz <0. Two electrons with identical initial ener-
gies and differing gyrophases are shown in each plot. The reso-
nant energies are shown as dashed lines.

€,=g;=1 keV and different gyrophases are followed
from z=—10 cm through a pulse with E” =4X10°
V/cm, By=5.07 T, f =140 GHz, and a Gaussian profile
with 4 cm width centered at z =0. The resonant electron
energy is plotted as a dashed line. Figure 22(a) shows the
electrons becoming trapped and then detrapped, result-
ing in one electron being significantly heated and the oth-
er returning to its original energy. This illustrates the
basic heating mechanism described by Nevins et al.
(1987). Rising-bucket acceleration is demonstrated in
Fig. 22(b) when the resonant energy is made to increase
with increasing z. On the other hand, if the resonant en-
ergy decreases with z, the bottom of the separatrix (buck-
et) descends to the electron energy, as in Fig. 22(c); and
the electrons are displaced to the top of the separatrix as
the result of the strong but brief acceleration. This
phase-space displacement mechanism is included within
the rising-bucket theory of Cohen and Rognlien (1991).
Figure 23 displays the deformation of the electron distri-
bution function after passing through a microwave pulse
with E;=5X10* V/cm, AN;=0.25, B,=5 T, a beam
width of 10.4 cm, and 1 keV initial temperature. Reso-
nances and heating characteristics deduced from Eq.
(2.37) are shown in Fig. 23(b). The results from the orbit
calculations establish that with the appropriate spread of
k,, the nonlinear opacity can significantly exceed the
linear opacity. Figure 24 presents the ratio of the non-
linear opacity to the linear opacity from orbit calcula-
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FIG. 23. Contour plots in the p,,p plane from an orbit code
showing the electron distribution function (a) before and (b)
after passing through an O-mode rf beam with w,/Q,=1. Heat-
ing characteristics are denoted in (b) as dotted lines, and the res-
onance at the exit side of the beam at the 1/e point of the elec-
tric field is indicated with a dot-dashed line. Here, B,=5 T,
AN, =0.25, E;=5X10* V/cm, the beam power width was 14.7
cm, and the initial temperature was 7, =1 keV.

tions and analytical theory (Cohen and Rognlien, 1991)
for a spread of N, using parameters similar to those in
Figs. 22 and 23.

A set of self-consistent electromagnetic particle simula-
tions with the ZOHAR code (Langdon and Lasinski, 1976)
were reported by Cohen and Rognlien (1989), who com-
pared self-consistent simulations of rising-bucket ac-
celeration to simulations performed with an orbit-
following code. In the self-consistent simulations, an or-
dinary mode was launched with a square profile through
an aperture that was 20k, ! wide at an angle of 45° with
respect to a background magnetic field that varied linear-
ly across the simulation so that 1.342w,/Q,=1.08.
The relatively narrow aperture encouraged a beam diver-
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FIG. 24. A plot of the ratio of the nonlinear opacity to the
linear opacity 7w /71 as a function of N, /N as determined
by an orbit code and theory for parameters similar to those of
Figs. 22 and 23. The dashed curve reflects a small modification
of a coefficient in the theory to better fit the numerical particle
orbit calculations. Here N, is the value of N| at the 1/e
point of the electric field.

gence so that there was a spread of N, 0.5<N, <0.95.
The plasma density had a flat-top profile with a max-
imum density corresponding to w,, /wy=0.185, and the
electron distribution function was represented with
128000 particles. The ions were a fixed charge-
neutralizing background, and the duration of the simula-
tion was wyt =600 with a time step oot =0.2. The self-
consistent simulations included wave attenuation, refrac-
tion, diffraction, and scattering due to thermal fluctua-
tions in the electromagnetic fields. In these simulations,
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FIG. 25. (a) Contour plots of E,(x,y) in the x,y plane for a
ZOHAR particle simulation of ordinary mode heating and rising
buckets with 45° angle of incidence, peak amplitude at the aper-
ture E,/By=0.06 and 0.24, and frequency resonant with the
fundamental electron cyclotron frequency in the center of the
plasma slab. (b) Corresponding plots of the electric field and N,
on a flux surface in the middle of the plasma versus distance
along the magnetic field from an orbit code used to compare to
the particle simulation.
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the product of the trapping frequency w, and the transit
time across the beam 7, satisfied 27 = @, 7, > 1. The con-
dition that the bucket lift was adiabatic, i.e., that the
trapping time was shorter than at the time to lift the res-
onance in energy by the width of the separatrix, was only
marginally satisfied.

Results from the orbit-following and the self-consistent
particle simulations are shown in Figs. 25 and 26. Condi-
tions in the orbit code were established to mimic the elec-
tromagnetic field pattern and the spread of N achieved
in the ZOHAR simulations (Fig. 25). The results of two
sets of simulations with different wave amplitudes are
shown in Fig. 26, E /B,=0.06 and 0.24 at the aperture,
which translated to E/B;=0.03 and 0.13 at the reso-
nance point in the plasma. There was fairly good agree-
ment between the two types of simulations on the heated
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FIG. 26. (a) Scatter plots of the final momenta p, =p, and p,
from ZOHAR simulations of rising buckets for the two electric
fields shown in Fig. 25. (b) Electron energy distribution versus
energy in the particle simulation. (c) Contour plots in the p,,p,
plane from the corresponding orbit-code simulation. (d) Elec-
tron energy distribution versus energy from the orbit code
simulation illustrating rising buckets. The wave amplitudes
were below the stochasticity threshold.
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electron velocity distributions. Significant heating was
observed, with individual particles gaining energies that
exceeded their initial energies, T,(0)=0.04m,c%: many
electrons realized energy gains comparable to the
Ae~0.5m,c? predicted for complete bucket rise, Eq.
(2.34), for E;/B;20.1 at the aperture. After the in-
cident wave was adiabatically turned off in the ZOHAR
simulations, the power spectrum for the electrostatic
fields did not reveal any superthermal fluctuations nor
microinstability; and thermal fluctuations and collisions
(enhanced by particle discreteness) relaxed the anisotro-
pies in the electron velocity distribution produced by the
heating. Diagnostics of the single-particle orbits in the
orbit code indicated that the electrons were trapped and
experienced strong single-pass acceleration in the reso-
nant wave field, but that w,7, S7 in most cases. The
transit time in the particle simulations of rising buckets
was short, because the system size was compressed. As a
result, not all aspects of rising buckets were faithfully
modeled by the self-consistent particle simulations.

E. Beat-wave current drive

The theory of beat-wave current drive was reviewed in
Sec. II.B, and self-consistent particle simulation results
for the current-drive efficiency were presented in Sec.
III.C. Two-dimensional fluid simulations of beat-wave
coupling were reported by Amin and Cairns (1990),
whose work showed that parallel and antiparallel
geometries were preferred. The one-dimensional particle
simulations of Cohen, Cohen, Logan et al. (1988) using
the self-consistent electromagnetic particle code EMONE
(Cohen et al., 1975; Birdsall and Langdon, 1985) have
given a detailed picture of many nonlinear aspects of
beat-wave current drive.

The particle simulations model the beat-wave coupling
from first principles and, therefore, incorporate in a natu-
ral way the nonlinear transfer of wave action between the
electromagnetic waves, electron Landau damping and
electron trapping in the longitudinal beat wave, the possi-
ble nonlinear coupling of the beat wave to other electro-
static modes in the presence of ions and ion waves, and
the possible multiple scattering of the two electromagnet-
ic pump waves. As pointed out in Sec. III.C, an impor-
tant finding in the simulations was the sensitivity of the
beat-wave coupling and the current-drive efficiency to the
ratio of the beat-wave phase velocity to the electron
thermal speed; values of this ratio in the range of 2 to 4
for wave propagation parallel to the background magnet-
ic field were found to be optimum to achieve good action
transfer and current-drive efficiency. The simulations
also demonstrated that the momentum transfer to the
plasma was in good agreement with the Manley-Rowe re-
lations governing conservation of wave action: Fig. 4 of
Cohen, Cohen, Logan et al. (1988).

Figure 27 shows simulation results from Cohen,
Cohen, Logan et al. (1988) for oppositely propagating
transverse pump waves, wherein a large-amplitude plas-
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ma wave is excited. There is significant heating and tail
formation in the electron velocity distribution, and there
is nearly complete transfer of wave action from the
higher frequency electromagnetic pump wave to lower
frequency transverse waves. This simulation and the oth-
ers reported in Cohen, Cohen, Logan et al. (1988) had no
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FIG. 27. Particle simulation results (Cohen, Cohen, Logan,
et al.,, 1988) for beat-wave current drive with opposed trans-
verse waves wiﬁh a)l'—“—2.24wpe, ®,=1.12w,,, v./c=0.13,
m;/m, =100, uf/c=u3/c=0.04, and (0,—w,)/(k,+k;)
=3.5v,=0.45¢c. (a) Higher-frequency pump-wave energy densi-
ty versus time. (b) Lower-frequency pump-wave energy density
components for left and right-going vacuum transverse waves
versus time. (c) Longitudinal field energy density spectrum
versus wave number at w,, ¢ =100 showing the beat-wave peak.
(d) The electron velocity distribution versus velocity parallel to
the beat-wave phase velocity at w,.t =1000 showing tail forma-
tion. The trapping width was as large as v,. 120% of the beat-
wave momentum was deposited in the electrons and —20% in
the ions.
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background magnetic field.

Additional simulations by Cummings and Cohen
(1989) including a background axial magnetic field
demonstrated the requirement that the two transverse
pump waves have the same polarization for good cou-
pling. For propagation parallel to the background mag-
netic field, the normal modes are right and left circularly
polarized. Simulations of a pair of linearly polarized
pump waves showed that they decompose into a pair of
right circularly polarized pump waves and a second pair
of left circularly polarized pump waves. Each pair of
waves had approximately one-half of the power of the
original pair of waves, which reduced the rate of action
transfer by one-half as predicted by -theory (Cohen,
Cohen, Logan et al., 1988). Simulations with one pair of
identically polarized, left or right circularly polarized
pump waves showed no reduction in the rate of action
transfer from the rate observed for two identically polar-
ized pump waves with no background magnetic field.

F. Parametric instabilities

Parametric instabilities associated with FEL heating
and current drive were reviewed in Sec. IV. Here we give
two simulation examples of parametric instabilities that
could occur in intense electron cyclotron heating. In
both cases, the ZOHAR self-consistent electromagnetic
particle code was used to simulate the interaction of an
ordinary mode propagating perpendicular to a back-
ground magnetic field and normally incident on a plasma
slab. Self-consistent particle simulation is well suited to
the simulation of laser-plasma interactions and paramet-
ric instabilities where kinetic detail and a model that is
close to first principles are desirable. However, the simu-
lations accommodate only limited ranges of time and
space scales, and typically use artificial parameters to
compress the disparate time and space scales. Neverthe-
less, considerable insight and valuable theoretical under-
standing have been gained with the use of simulations.

In the first example of parametric instability, Fig. 28
shows strong evidence of self-focusing  in two-
dimensional contour plots of the magnetic field of the
wave and the ion density. The electromagnetic beam
constricts and digs a channel through the plasma as it
propagates across a background magnetic field. A series
of two-dimensional simulations were performed by us
with mobile ions having a mass ratio m; /m, =10 and for
various values of the incident ordinary mode amplitude.
There was significant focusing of the beam in Fig. 28 for
vy/c=0.4, T;=T,=0.09m,c?, w,=le/m,|=c=1, a
beam half-width wya /c =15, and a flat-top density profile
with a)lz,e /@}<0.5. The cyclotron frequency in the
nonuniform background magnetic field varied linearly
across the simulation domain, 0.85<Q,(x)/w,=1.35.
With these parameters, the inequalities (4.6) and (4.7)
were satisfied, i.e., ponderomotive self-focusing dom-
inates relativistic self-focusing and modulational instabil-
ity. Inequality (4.8) is not satisfied, from which we infer
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FIG. 28. ZOHAR particle simulation of ponderomotive self-
focusing for a perpendicularly incident ordinary mode. The
background magnetic field was oriented in the y direction. (a)
Contours of the wave magnetic field in the x,y plane at
wot =300 showing focusing of the wave. (b) Contours of the ion
density in the x,y plane showing ducting of the plasma accom-
panying the self-focusing.

that steady-state, self-trapped filaments are not expected
according to the nonlinear analysis of Max (1976). How-
ever, some convective focusing is certainly evident in Fig.
28.

Porkolab and Cohen (1988) calculated the maximum
linear growth rate for convective filamentation of an or-
dinary mode:

-1

(5.1

Equation (5.1) suggests that the fastest growing linear
perturbation of a wide beam would grow by approxi-
mately two e-foldings in traversing the simulation plasma
for the parameters of Fig. 28. With wave amplitudes cor-
responding to vy /c <0.2, there would be less than one-
half e-folding, which agrees with the self-focusing that
was observed in a simulation with vy/c=0.2 and the
substantial self-focusing evident with vy/c=0.4. It is
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noteworthy that these estimates based on a linear theory
of self-focusing agree qualitatively well with the simula-
tions, because the analytical theory omits both the finite
beam width of the laser and the finite amplitude of the
plasma perturbation.

The second example of parametric instability is stimu-
lated Brillouin scattering of an ordinary mode that is
backscattered by a lower hybrid wave. Stimulated Bril-
louin backscatter was identified in Sec. IV.A as potential-
ly one of the most dangerous parametric instabilties for
intense, pulsed ECH, because it can result in the
reflection of a large amount of the laser energy before it
reaches the absorption layer in the plasma. The follow-
ing analytical arguments and results from one-
dimensional particle simulations illustrate some of the
physics of Brillouin backscatter in a magnetized plasma
and serve as a useful paradigm (Cohen, Cohen, Nevin
et al., 1988).

Consider the backscatter of a perpendicularly incident
ordinary wave (k-B,=0) by a perpendicularly propaga-
ting lower hybrid wave. The calculation of the frequency
and growth rate has been given in (B. Cohen, 1987a).
The local growth rate is given by

12
_kovo w;e Djp w;?;e
Vo= 2 o I+

2 Qe g Qe

where oy =0, /(11t},/Q2)'/>.  The steady-state
coupled-mode equations for the pump wave and the
backscattered radiation are readily deduced from
Maxwell’s equations and a simple fluid theory (Kruer,
1980),

3 on, P} 8n,

—ay,=—a a —a,=—a—a (5.3)
ax ¢ ng '’ ax ! ng °’

—1/2
) (5.2)

where 8n, is the perturbed electron density in the ion
wave, a, ; are the vector potentials for negligibly damped
transverse modes, a=(w/ 2)(6012,2 /A 11 -—a)lz,e /
®3)7 172, and A, is the vacuum wavelength of the incident
transverse wave. For backscattering over a uniform plas-
ma of length L, Eq. (5.3) can be integrated for constant
adn,/ny to obtain a reflection coefficient for Brillouin
backscatter

R,=la;(0)/ay(0)|*=tanh*(aLdn, /n,) . (5.4)

The reflection coefficient at saturation is then determined
by the amplitude of the ion wave.

On a relatively short time scale determined by the
growth rate of the instability and the initial fluctuation
levels, the ion wave can grow to large amplitude and trap
ions before significant heating or deformation of the equi-
librium density profile can occur. Because of the strong
background magnetic field across which plasma must be
transported in order to steepen the density profile, profile
steepening as a possible saturation mechanism is inhibit-
ed. An unmagnetized analytical description of the ions
suffices to describe their trapping in the limit that the
lower hybrid frequency and the growth rate greatly
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FIG. 29. One-dimensional particle simulation results for stimu-
lated Brillouin backscatter by a lower-hybrid wave (Cohen,
Cohen, Nevins, et al., 1988). (a) Ion phase space, momentum p,
versus x, showing the onset of ion trapping, which saturates the
backscatter. (b) The perturbed electron density 6n,/ng
and reflection coefficient for Brillouin backscatter
R, =|a,(0)/a,(0)|? at saturation as functions of the initial ion
thermal velocity.

exceed the ion cyclotron frequency. From a simple
waterbag model (Dawson et al., 1973), an approximate
trapping criterion can be derived:

edp , 1

m,-—2

Oy

2
e —ngi J

2
8n, Zl m; o
L) 2 m, Qz

_ kv, |?
1—1/3—”—’], (5.5)
(27

where 8¢ is the electrostatic potential perturbation,
k=2kg, v;=(T;/m;)'/?, and the electron response is as-
sumed to be linear. Use of Eq. (5.5) for &n,/n, in Eq.
(5.4) relates the reflection coefficient to the ion tempera-
ture. Figure 29(a) shows significant ion trapping in a
snapshot of the ion phase space from a ZOHAR particle
simulation, while in Fig. 29(b) we plot simulation results
for the relative density perturbation and reflection
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coefficient at saturation compared to the theoretical esti-
mates of Eqgs. (5.4) and (5.5) as a function of the ion
thermal velocity. Fairly good agreement with theory was
obtained, and the strong effect that increasing the ion
temperature on reducing the reflection coefficient was
evident. The analysis for backscatter by electrostatic ion
cyclotron waves is generally similar, but the ions are
magnetized, which alters the trapping criterion (Cohen
et al., 1982).

Two-dimensional ZOHAR simulations of stimulated
Brillouin scattering by lower hybrid waves showed a re-
duced level of backscattering as compared to the results
of the one-dimensional simulations. The two-
dimensional simulations were more (numerically) col-
lisional, which decreased the growth rates and increased
the thresholds; and competition with other parametric
instabilities that led to plasma heating was observed. A
likely candidate for a competing absorptive parametric
instability was an oscillating two-stream instability that
nonlinearly converts the incident O mode into upper hy-
brid or electron Bernstein sidebands and has growth rates
comparable to Brillouin backscatter growth rates for the
simulation parameters (Tripathi et al., 1984).

VI. EXPERIMENTAL TESTS

The first laboratory tests of some of the theoretical is-
sues associated with intense, pulsed FEL heating and
current drive will be provided by the MTX experiment at
the Lawrence Livermore National Laboratory
(Thomassen, 1986). In 1992, the MTX FEL using the
IMP wiggler is expected to deliver peak powers of 3 GW
at 140 GHz with an extraction efficiency of 25-30 %
(Jong et al., 1989). With a roughly elliptical spot pattern
whose radii are 3.6 cm laterally and 2.6 cm vertically,
this corresponds to 400 kV/cm or E| /B,=0.027 for the
O mode and B=5 T. This intensity will put the expected
absorption in the strongly nonlinear regime (p;~4,
P, ~1.3) as modified by rising-bucket effects. The field
intensity is well below the threshold for stochasticity.
The divergence of the ray bundle introduces a spread in
k, and should enhance the absorption. The predicted
opacity is 7=0.7 with a diverging ray bundle, and 7<0.2
without rising-bucket effects. The microwave power
transmitted and reflected by the plasma will be detected
by calorimeters and microwave horns, and the local elec-
tron energy increase measured, from which the absorp-
tion will be inferred. Plasma heating and current drive
will be negligible for single-pulse injection. Later in the
experimental plan, fifty pulses will be injected at a 5 kHz
rate. This will give sufficient energy to measurably heat
the plasma. Because the FEL pulses will be short (<50
ns), stimulated Brillouin backscatter is not expected to be
severe. Some self-focusing may occur, which will be
difficult to detect unless the self-focusing is extreme. By
adjusting the toroidal magnetic field strength, the cyclo-
tron resonance can be moved outside the plasma, which
could be used to separate resonant absorption and self-

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

focusing effects.

A second experimental facility at Livermore is being
used to study aspects of beat-wave current drive. The
Davis Diverted Tokamak (DDT) is a research tokamak
operated jointly by the University of California at Davis
and the Lawrence Livermore National Laboratory under
the auspices of the Plasma Physics Research Institute.
Two microwave sources with 140 kW peak power, fre-
quencies in the range 8.8-9.5 GHz, and pulse lengths of
2.5 us are launched in opposition to one another along a
chord of the torus (Rogers et al., 1989, 1990). The plas-
ma density is varied in the range 1.2X10% to 2X10°
cm 3 to test the resonant coupling of the microwaves to
a Langmuir wave. Both a dipole antenna and a mi-
crowave scattering diagnostic will be used to measure the
amplitude of electrostatic waves. The tokamak is operat-
ed without Ohmic current to make it easier to detect
current drive. With the relatively low microwave powers
in DDT, the relative action transfer and current drive ex-
pected are small. However, resonant excitation of a beat
wave has been observed (Rogers et al., 1990).

An important limitation on studying current drive in
the DDT experiment is that the L /R time (~ 100 us) is
much longer than the 2.5 us pulse length of the mi-
crowaves. Therefore, the beat-wave excitation will lead
to a back-emf to cancel most of the current drive. The
back-emf can be measured as a loop voltage. A distor-
tion of the electron distribution function can be measured
with an energy analyzer. In order to better drive current
with a single microwave pulse, microwave sources will be
installed with 1 ms pulse lengths that much exceed the
L /R time. Although the low microwave powers in DDT
restrict the expected beat-wave current drive to have a
low efficiency, experiments in DDT should be able to
quantitatively test the resonant excitation of beat waves
and electron acceleration in a bounded, magnetized plas-
ma. While there have been many experiments preceding
DDT that have studied the resonant excitation of beat
waves, beat-wave acceleration, and optical mixing (see
the review by Stefan, Cohen, and Joshi, 1989, and refer-
ences therein), the experimental observation of beat-wave
current drive in the toroidal geometry of DDT will be
significant for future magnetic fusion applications.

VII. CONCLUSIONS

This paper has reviewed recent theoretical analyses ad-
dressing the interaction of intense, pulsed, coherent elec-
tron cyclotron waves with plasmas. There are several
reasons for the current interest in this subject. There has
been dramatic progress in the development of induction-
linac-driven free-electron lasers. The application of these
high-power FEL’s to microwave heating and current
drive in the electron cyclotron range of frequencies has a
number of technical advantages and will be tested in the
MTX at the Lawrence Livermore National Laboratory.
The associated laser-plasma interactions are also poten-
tially relevant to ionospheric modification by radio-
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frequency waves, high-energy electron acceleration, and
the propagation of intense, pulsed electromagnetic waves
in astrophysical magnetized plasmas.

The physics of the interaction of an intense laser with a
magnetized plasma is highly nonlinear, and there are
many novel phenomena. Relativistic effects play an im-
portant role in the resonant wave-particle interactions.
The coherent, intense, pulsed nature of the FEL has
made possible considerable innovation and the invention
of several new concepts utilizing FEL’s for plasma heat-
ing and current drive that depend on stochasticity, rising
buckets, and beat-wave coupling. Out of these new con-
cepts may come efficient mechanisms for plasma heating,
sustaining the toroidal current in a steady-state tokamak,
controlling current and pressure profiles in order to stabi-
lize magnetohydrodynamic fluctuations and disruptions
(Hanada et al., 1991), and diagnosing conditions in a hot
plasma. The pulsed nature of FEL current drive is espe-
cially well suited to the possibility of doing feedback sta-
bilization of disruptions by modifying the current locally
in the profile. The new heating and current-drive con-
cepts have been studied by first analyzing the underlying
nonlinear wave-particle interactions. The analytical cal-
culations of the nonlinear dynamics, the implications for
current drive, and the stability of the laser-plasma system
have been supported with computer simulations in many
cases, which have both confirmed the analyses and ex-
tended the calculations beyond the limits of the analyti-
cal theories.

The calculations reviewed here need both extension
and refinement, and many new research questions have
been raised. For example, a comprehensive rigorous cal-
culation of the nonlinear opacities in the various non-
linear regimes needs to be done; calculations of the stabil-
ity of the heated plasma have only just begun; many more
calculations need to be done on parametric instabilities
and nonlinear self-focusing; and more simulations ought
to be performed. The cross-field particle transport asso-
ciated with intense, pulsed ECH has not been studied.
There is a direct influence of a cyclotron wave on the
electron guiding-center location related to the change in
the electron’s energy as described in Sec. II.A. There are
other cross-field transport mechanisms to be considered,
e.g., classical collisional transport and anomalous trans-
port due to electric field fluctuations. We expect that the
classical cross-field transport of the heated electrons in
the presence of collisions will decrease as the electrons
heat, because the square of the step size for the diffusion
process scales with the square of the Larmor radius, viz.,
proportional to the energy €,, while the collision frequen-
cy decreases as € 3’2, However, if there is an increase in
wave turbulence as a consequence of either parametric
instabilities in the presence of the FEL or microinstabili-
ty of the heated electron velocity distribution, then an in-
crease in anomalous cross-field transport is likely.

Experimental data from high-power FEL heating and
current-drive experiments is needed to give guidance and
direction to further theoretical modeling and analysis.
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The MTX experiment should yield such data in the near
future. The DDT experiment is expected to provide data
testing some of the principles of beat-wave current drive.

The theoretical research completed to date on FEL
heating and current drive indicates that the FEL technol-
ogy being tested in MTX makes possible new and novel
opportunities to improve the heating, confinement and
current drive in fusion plasmas. We have reviewed calcu-
lations indicating that the opacities for intense, pulsed
ECH mechanisms can much exceed the quasilinear opa-
city for ECH, and the corresponding current-drive
efficiencies are attractive according to current standards.
Thus, the application of FEL’s to tokamak heating and
current drive may lead eventually to improved prospects
for controlled fusion. The theoretical research in this
area has already led to a deeper understanding of the in-
teraction of intense electromagnetic waves in a magnet-
ized plasma.
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