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Results concerning the rigorous justification of the effective Hamiltonians for band electrons in the pres-
ence of weak homogeneous electric and magnetic fields are reviewed. In the electric-field case the ex-
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points of the theory, such as the justification of the
"Peierls-Onsager effective Hamiltonian" and the ex-
istence of the Stark-Wannier states, have remained unset-
tled and debated until very recently.

The simplest way to deal with the dynamics of Bloch
electrons in the presence of external electromagnetic
fields is to use the heuristics of the "generalized effective
mass approximation. " The basic assumption is that, in
the presence of weak and slowly varying external fields,
the electrons in crystals behave like free electrons but
have their inertial properties changed by the presence of
the periodic crystal potential. This amounts to the re-
placement of the usual parabolic relation between the
momentum and the energy by the energy band A,(p) of
the crystal considered. If the external fields are described
by the vector and scalar potentials A(x) and P(x), re-
spectively, then the classical Hamiltonian, according to
the usual rules, is

p ——A +eP.
C

The problem of the dynamics of Bloch electrons in the
presence of slowly varying external perturbations is as
old as the quantum theory of solids. The literature on
the subject is enormous, and even at present the subject is
very much alive. The reasons are obvious: On the one
hand it is very hard to overestimate the importance of
the subject for the theory of metals (see, for example,
Lifshitz, Azbel, and Kaganov, 1971). Even more, with
the advance of modern technologies, more subtle aspects
of the physics involved are coming to light experirnental-
ly, such as the confirmation of the Stark-Wannier levels
in superlattice devices (Voisin et al. , 1988) and the pro-
posal to use the "Bloch-Zener oscillator" as a source of
terahertz electromagnetic radiation (Esaki and Tsu, 1970;
Roblin and Muller, 1986). On the other hand, due to the
fact that the perturbation created by a homogeneous
electric or magnetic field is a singular one, the problem is
subtle from the mathematical point of view. According-
ly, rigorous results are hard to come by, and if the matter
is not handled with sufhcient care unclear or even errone-
ous statements arise. This explains why some central

For the homogeneous magnetic-field case, P
—=0,

A(x)= =B hx/2, the Hamiltonian (1.1) known as the
Peierls-Onsager effective Hamiltonian, properly quan-
tized and used in the weak-field limit, has met with fabu-
lous success in describing the properties of metals in the
presence of magnetic fields (Lifshitz et al. , 1971). The
use of Eq. (1.1) in the homogeneous electric field case
A=O, P(x) =E x leads to somewhat paradoxical, at least
at first glance, behavior of the Bloch electrons (oscillato-
ry rather than uniformly accelerated motion), and this
triggered a long-term debate about the validity of Eq.
(1.1) in this case. The point is that the Hamiltonian (1.1)
is at best an approximation, whose justification and range
of validity need to be carefully studied.

At a more basic level the quantum-mechanical Hamil-
tonian of the problem is

2
1 P ——A(x) + V(x)+eP(x),e (1.2)

2m c

where as before A(x), P(x) stand for the potentials of the
external fields and V(x) stands for the crystal potential.
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92 G. Nenciu: Dynamics of band electrons. . .

At this point the following remark is in order. We shall
describe many rigorous results concerning (1.2) and use
the word "rigorous" advisedly. Qne should keep in mind
that the whole theory is based on the one-electron ap-
proximation; in this approximation the medium appears
as a static potential and, in particular, there is no
electron-phonon interaction. The word "rigorous" is to
be understood in terms of this theoretical framework.

From the theoretical point of view the main problem is
to relate Eqs. (1.1) and (1.2) or, in others words, to decide
to what extent and under what conditions (1.1) is a
reasonable approximation of (1.2). It is quite difficult to
give a complete list of all relevant papers dealing with the
problem of deriving (1.1) from (1.2). For the early period
we just mention a few reviews (Wannier, 1962; Blount,
1962a; Zak, 1972; Fischbeck, 1977) where complete lists
of references as well as extended discussions on the sub-
ject can be found. In spite of all this considerable effort,
mainly due to the mathematical difhculties, the
justification of the Peierls-Onsager Hamiltonian

eP ——A
C

was considered even recently (Obermair and Schel-
lenhuber, 1981) "one of the few unsolved problems of
one-particle quantum mechanics. " Similarly the main
consequence of Eq. (1.1) in the electric-field case, namely,
the existence of the Stark-Wannier ladder of states, has
been debated over a period of almost three decades and
even now there is a constant Bow of papers on this very
topic.

The aim of this paper is to review some of the rigorous
results concerning the spectral properties of Eq. (1.2) ob-
tained during the last decade, leading to a rigorous
justification of Eq. (1.1) under appropriate conditions.
Since in most cases of physical interest the external fields
are much smaller than the internal fields, the natural ap-
proach to a study of the spectral properties of (1.2) is the
use of perturbation theory. One should stress, however,
that there are some very important phenomena, such as
the quantum Hall effect, electric and magnetic break-
down, etc. , which are beyond the reach of perturbation
theory and consequently will be not covered by the
theory presented in this review.

Unfortunately, as already mentioned above, the pertur-
bations created by homogeneous fields are singular, and
the naive perturbation theory cannot be used. For a
better understanding let us consider the situation for the
simpler case of the atomic Stark and Zeeman effects. Al-
though the Stark and Zeeman effects were the first exam-
ples of quantum-mechanical perturbation theory, it has
taken half a century to develop a satisfactory mathemati-
cal description (see the references in Hunziker, 1980,
1988, Herbst, 1981, and Nenciu, 1981). Actually, asymp-
totic perturbation theory, as beautifully reviewed in Hun-
ziker (1988), has been largely motivated by the Stark and
Zeeman effects in atomic physics (the other major source
was the anharmonic oscillator). Unfortunately, as it

stands, the theory in Hunziker (1988) can be applied only
to finitely degenerate isolated eigenvalues having local-
ized eigenfunctions, while for the problem at hand a
theory powerful enough to cope with infinite-dimensional
subspaces corresponding to energy bands and spanned by
delocalized Bloc:h functions is needed. In this context
Howland (1981)posed the question whether the theory of
spectral concentration could be generalized to cover the
analog of the Stark effect in solid-state physics (see also
the discussion about the "physical stability" of the bands
in Avron and Zak, 1974). The theory in Nenciu (1981)
gives a positive answer to this question. Concerning the
magnetic field it should also be mentioned that even for
the most basic questions, such as the stability of matter,
it adds one more level of difficulty (Frohlich, Lieb, and
Loss, 1986; Lich and Loss, 1986; Loss and Yau, 1986).

Let us make a little more precise the meaning of the
"effective band Hamiltonian" as it will be used in the
present review. Let II be the "true" Hamiltonian at hand
I(1.2) in our case] acting in the Hilbert space &. Suppose
there exists a subspace AC:& invariant under H (i.e., M
is block diagonal with respect to the decomposition
&=VISA ) such that, if P is the orthogonal projection
on the states in%', PIIP is the unitary equivalent with a
simpler Hamiltonian in another space L, i.e., there exist
UW~X such that UPHPU '%~X is either exactly
soluble or at least, from the physical point of view, has a
simple and transparent, form amenable to a detailed
analytical or numerical study. Then UPIIPU ' is called
an effective Hamiltonian. In solid-state physics the name
"one-band effective Hamiltonian" is used due to the fact
that A is usually related to the subspace of states corre-
sponding to an isolated energy band of the zero-field
Hamiltonian. Unfortunately such an exact reduction is
very rarely possible, and some kind of perturbation
scheme needs to be used in which the true Hamiltonian
H, depends on a small parameter E (the magnitudes of
the external fields in our case), %', can also depend on s,
and H, is not exactly block diagonal but the off-diagonal
part P,H, (1 P, )+H.c. of—H, is sufficiently small as
E~O. Qf course the last requirement needs to be made
precise in specific cases. I.et us point out that the use of
"effective Hamiltonians" in the sense described above is
not specific to solid-state physics. Other famous exam-
ples are the Born-Oppenheimer approximation in atomic
physics and the Bohr-Mottelson collective Hamiltonian
in nuclear physics. While a rigorous justification of the
Born-Qppenheimer vibrational-rotational Hamiltonian
for biatomic molecules has been achieved during the last
two decades (Combes et al. , 1981; Hagedorn, 1988), the
similar problem of the Bohr-Mottelson Hamiltonian
seems to be open.

For the problem at hand the first choice for & was the
band subspace corresponding to an isolated energy band
of the zero-field Hamiltonian. It was soon realized that
this choice was not appropriate. Indeed, for the electric-
field case the neglected off-diagonal matrix elements are
linear in the field strength, i.e., of the same magnitude as
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the spacing between the Stark-Wannier levels. As for the
magnetic-field case, the matrix elements of Eq. (1.2) re-
stricted to the zero-field band subspace do not have the
right structure to produce an effective Hamilionian
resembling (1.1). The problems to be solved are the fol-
lowing (E stands for the external field strength):

(El) The identification of the "band subspace" A', .
(E2) The estimation of the ofF-diagonal term

P,H, (l P, )—+H. c. .
(E3) The identification of X (which should not depend

on c,) and U, .
(E4) The computation of H, ,fr.

(E5). The spectral analysis of H, ,~.
In this review we shall describe rigorous results, ob-

tained during the last decade, concerning problems
(El)—(E5) above the case in which the "true" Hamiltoni-
an is Eq. (1.2). The results below are proved for the case
in which only electric or magnetic fields are present.
Rigorous results when both electric and magnetic fields
are present have not been obtained (to the best of our
knowledge) so far. The starting point for almost all
rigorous results and their proofs is the heuristics put for-
ward in the physical literature on the subject. This re-
view is in some sense the updated rigorous counterpart of
the beautiful review by Wannier (1962) embodying earlier
ideas of Peierls (1933), Luttinger (1951), Adams (1957),
Onsager (1952), Kohn (1959b), and Wannier (1937, 1960),
to name only a few. For (El) and (E2) the periodicity of
V(x) is not used, so the results obtained are valid for
nonperiodic systems as well.

The content of the paper is as follows. For readers not
interested in the mathematical aspects, we give in Sec. II
a resume of the main results. In the same section we also
discuss the controversy over the existence of the Stark-
Wannier ladders of states (see also Avron, 1982; Krieger
and Iafrate, 1988). The topic is still in a confused state;
unclear or even erroneous claims appear, and sometimes
it is concluded that the whole matter ought to be
thoroughly reviewed (Churchill and Holmstrom, 1983).
Section III contains proofs of some results on the zero-
field Hamiltonian HO=P + V(x). The main result is the
existence of exponentially localized Wannier functions.
There are two reasons for a full-scale discussion of this
topic. The first is that the Wannier functions played a
central role in most earlier attempts to derive the
efFective Hamiltonians [recall that the textbook presenta-
tion of the subject (Lifshitz et al. , 1971; Ziman, 1964) is
via the "Wannier theorem" and that the first rigorous
proof of the existence of the exponentially localized Wan-
nier functions (Kohn, 1959a) for one-dimensional systems
was an explicit attempt to provide justification for the
Peierls-Onsager Hamiltonian (Kohn, 1959b), and the
same Wannier functions are central to the recent
rigorous developments (Bellissard, 1987, 1988; Nenciu,
1989; Helffer and Sjostrand, 1989a, 1989b). The second
reason is that, contrary to the superficial widespread im-
pression, the matter is far from being trivial and has nev-
er been reviewed thoroughly. Section IV contains the

derivation of the effective Hamiltonian for the electric
field case. Section V treats the magnetic field case.

As stated above, the literature on the dynamics of
Bloch electrons in external fields is enormous. Moreover,
due to the mathematical difficulties, many techniques
have been used. As a consequence it seems almost im-
possible to cover in detail all the significant results.
However, in Sec. VI we shall comment briefly on other
approaches. A few important technical points of more
general character are given in the Appendix.

II. RESUME AND DISCUSSION OF THE RESULTS

A. Generalities

As already mentioned in the Introduction we shall give
here a nontechnical resume of the main results. We shall
consider only one- and three-dimensional systems, so that
in what follows n ~ 3. To simplify notation, the system
of units in which A=2m =c=1 is used. Moreover, the
electron charge will be absorbed in the definition of the
field strength. If not explicitly stated V(x) will not be
supposed to be periodic. The only technical condition
(besides its reality) on V(x) is that

sup I i V(x)i dx( ~ . (2.1)

B. The zero-field Hamiltonian

As stressed above the answers to problems (El) and
(E2) in the Introduction depend on the existence of the
energy gaps and not on the periodicity of the potential.
Usually the existence of the energy gaps is related to the
periodicity of the potential. While for completely disor-
dered systems one cannot expect to have forbidden gaps,
they still can exist if short-range order is present. The
following result (Nenciu and Nenciu, 198 la) gives an ex-
ample. Suppose Ho, with V(x) periodic, has an energy
gap. Let y(x)=x+5h(x) where h(x) is a vector-valued
function with bounded partial derivatives up to the order
3. Then for 5 positive and sufficiently small
—b, + V(y(x)) still has an energy gap.

The steps (E3)—(E5) in obtaining and analyzing the
e(Fective Hamiltonians depend on the periodicity of V(x).
Suppose that V(x) is periodic with respect to a Bravais
lattice I . Let oo be a simple band: oo= IA,O(k)I where

Concerning the zero-field Hamiltonian Ho= —b, + V(x),
we assume, as is crucial for all that follows, that it has a
bounded isolated energy band oo. In what follows A'0

stands for the band subspace corresponding to o.
o and Po

for the orthogonal projection on A'o. In order not to ob-
scure the main ideas, in this section we shall confine our-
selves to some particular cases: one-dimensional systems
in the electric case and simple bands in the magnetic
case.
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Ao(k) is a nondegenerate (for all k) eigenvalue of Ho. Let

go k(x) be the Bloch functions corresponding to the band
cro. The Wannier functions w, (x) are defined as the
Fourier coefficients of go k(x) (for a more complete ele-
mentary discussion see Weinreich, 1965):

w, (x)= f itjo k(x)exp( i—k a)dk,

C. The electric-field case

As already said, we consider here only one-dimensional
systems and homogeneous fields. The field strength (with
the electron charge absorbed) is denoted by F. For the
available electric fields F is very small: F (10 ' Jm
The Hamiltonian is

where the integration extends over the Brillouin zone.
Due to the orthonormalization of the Bloch functions
and the fact that

go k(x —a) =iso k(x)exp( —ik a),
one can verify at once that (as long as w, are normaliz-
able)

w, (x)=wo(x —a), f w, (x)w„(x)d x=5

Suppose now that go k are differentiable and periodic as
functions of k. Then by integration by parts, from the
very definition, it follows that as a~ ~ ~

w, (x)=wo(x —a) —1/~a~"

for any natural number n, which means that wo(x) falls
oft' faster than any power of 1/lx~. Moreover, if go k(x)
are analytic and periodic in k in a complex neighborhood
of IR', then by a famous theorem of Paley and Wiener
(see, e.g. , des Cloizeaux, 1964) wo(x) falls off'exponential-
ly. At first sight one can believe that the existence of
smooth and periodic Bloch functions is an easy matter.
Unfortunately this is not so, and the difficulties are of the
topological origin. The basic fact we shall prove in Sec.
III is the existence of Bloch functions analytic and
periodic with respect to k in a complex neighborhood of
IR'. As a consequence the corresponding Wannier func-
tions are exponentially localized and form an orthonor-
mal basis in the band subspace corresponding to o.o.
Note that wo(x) is not uniquely defined due to the fact
that the analyticity and periodicity requirements fix

itto k(x) only up to an analytic and periodic phase factor.
The Wannier functions constructed in Sec. III are real
and if the crystal has a center of inversion then, in addi-
tion, wo( —x) =+wo(x —ao) for an appropriately chosen
ao&I . Actually one can show that, without restricting
the generality, one can consider only the case ao=O. By
a direct computation one can see that, in the Wannier
basis Iw, I,~r, Ho takes a "tight-binding-approx-
imation" form

HF= d —/dx + V(x)+Fx =Ho+FXo .

FBo=PoHF(1 Po)+H. c. =—FPoXo(1 Po)+H c—.

=F(1—2Po)[Xo,Po] .

Under the provision that Bo is bounded, consider

H) =Ho+FBO . (2.3)

For sufficiently small F, H& still has an isolated energy
band cri which coincides with pro in the limit F~O.
and I'& stand for the energy band subspace and the spec-
tral projection of H& corresponding to o. &. Define

In spite of the smallness of F, the electric potential FLO
diverges as ~x~ ~ ao so that one cannot consider FXo as a
small perturbation in the usual sense: we have to deal
with a singular perturbation. The singularity of the per-
turbation manifests itself in the fact that it completely
changes the spectrum of Ho. as far as F~0 the spectrum
of HF is absolutely continuous and fills the entire real
axis (Avron et al. 1977; Reed and Simon 1978). Let us
stress that absolute continuity of spectrum has a clear cut
mathematical meaning; in particular, it excludes the ex-
istence of eigenvalues with square integrable eigenfunc-
tions. In other words, all the eigenstates of HF are ex-
tended. The fact that there are no gaps in the spectrum
of HF makes the identification of the band subspace for
nonzero fields a difficult matter. At the heuristic level
the way out from this difficulty was indicated a long time
ago by Adams (1957), Kane (1959), and especially by
Wannier (1960): in the presence of the electric field, the
band subspace Ao corresponding to the band o o of the
zero-field Hamiltonian is slightly "deformed" to a field-
dependent band subspace %'„which is to be found by
some perturbation scheme. Note that according to this
heuristics, while the behavior of the spectrum is patho-
logical in the limit F~O, the behavior of the band sub-
spaces is smooth. The result below (Nenciu and Nenciu
1981b) substantiates these ideas.

Consider the off'-diagonal part of H, with respect to
the decomposition JVOEB&o

Howe= g ho(a —b)wb ~

beI-

H, f(a)= g h (b —a)f(b) .
beI-

(2.2)

where ho(a) are the Fourier coefficients of ko(k). This
leads to the fact that Ho, restricted to the band subspace
corresponding to o.o, is unitary equivalent to the follow-
ing operator in / (1 ):

Xj =Xo —Bo .

By construction

Hy'=Hi +FXi [HI; FBo Po]=0

Continue the procedure by defining

8, =(1—2P, )[X„P,],
etc. At the qth step

(2.4)

(2.5)
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8 =(1 2—P )[X,P ],
H +]=H +F8, X +i=X —S

(2.6)

(2.7)

X=L [—,', —,']= f(k) f f (k)I dk & oo—1 /2
(2.13)

Note that since FBq is the nondiagonal part of HF with
respect to the band subspaces of H,

and Hp, & is unitary equivalent to

Hp, ff
= ( iF—a, /2~ )( d /d k ) „+Yp( k ), (2.14)

[HF FB Pq ] 0 (2.8) acting on functions f (k) EX satisfying

The main fact about this recurrent construction is that
8 are of order F~. More exactly, for every q = 1,2, . . .
there exists b ( ~, F & 0 such that

IIB II
&Fib for 0&F &F (2.9)

E, =e-'F, =6X10' Vm-',

bi =80 m J '
( =10 aH/R ),

E2 =e 'F2 =3 X 10 V m

b2=5X10' m J (=10 a /R „) .

(2.10)

We shall use these estimations when discussing the ex-
istence of the Stark-Wannier levels in the next subsec-
tion. As the limit q~ oo is concerned, due to the singu-
larity of the perturbation, the recurrence procedure given
above is not convergent but only asymptotic. More ex-
actly, as q~ oo, F —+0 and b diverges (probably as q!).
So one cannot take the limit q ~ oo and obtain for FWO a
"closed"-band subspace (i.e., a band subspace with
respect to which the ofF-diagonal part of H„ is rigorously
zero).

The next step is to analyze the one-band Hamiltonian
of order q, defined as

Hp, b =P HFP (2.1 1)

Consider first the periodic case [ V, T, ]=0, where T, is
the translation operator. In this case

[H, T, ]=0, [X,T, ]=aT, (2.12)

and moreover the spectral properties of Hq are similar to
those of Ho. In particular, o~= {A$(k)] where A$(k)
has an analytic and periodic extension to a complex
neighborhood of the real axis. Moreover the phase factor
in the Bloch functions it[ k corresponding to A.~(k) can be
chosen as to make g$ k analytic and periodic in a com-
plex neighborhood of the real axis. Writing Hp, b in the
basis f$ „one obtains the following form of the effective
one-band Hamiltonian:

In other words, with respect to the decomposition
A'~63%~, the off-diagonal part of HF is of order Fq+'.
From the physical point of view, in order to decide
whether or not an efFect can be seen experimentally, es-
timations of F, bq are necessary. - The proof in Nenciu
and Nenciu (1981b) gives the means to estimate Fq and
b . For example, the estimations (Nenciu, 1987) for the
case when the potential V(x) satisfies

I
V(x)I &200 eV,

and the width of the energy gap is 4 eV, lead to

b0=3X10 m (=10 aH) independently of F,

&=i'(I )= f. g If..l'&
aEI"

(2.15)

and Hp, „is unitary equivalent to

(2.16)

where A.$, are the Fourier coefficients of X$(k)
The Hamiltonian (2.14) is "exactly soluble. " Actually,

via the "gauge transformation" (Avron, 1979)

(Gf)(k)=exp f [ YF(h) —cp]dh (2.17)

where

cP= f YP(h)dh,

(2.14) is unitary equivalent to

( iFa, /2'�) ( d /d—k ) „+cP; (2.18)

i.e., up to an additive constant, (2.14) is unitary
equivalent with the free motion on a circle with radius
I /2'. It follows that the motion is periodic in time with
the period T=2rtlFa „and the spectrum of HP,„is

o (HP, b ) = {nFa, +cPj, n =0, +1,+2, . . . (2.19)

The eigenfunctions P$ „ofHP are exponentially localized
(Haker and Obermair, 1970; Nenciu and Nenciu, 1982).
The spectrum (2.19) is the famous Stark-Wannier ladder.
Note that the spectra of Hp, b, for different q, are the
same up to a q-dependent shift.

As is well known (Lifshitz et al. , 1971;Blound, 1962a),
the Wannier representation (2.16) is related to (1.1).
More exactly, it is assumed that f, is a "smooth" func-
tion of a and then f, can be interpolated by a sufficiently
smooth function f(x). Then, since at the formal level

f(a b) = [exp( —iPb )f—](a),
one obtains from (2.16) the following expression:

[k$ (P)f ](x)+Fxf(x ) (2.20)

which is nothing but (1.1) with A(x)=0. Note that the

(dldk)f(k)CX and f( —
—,')=f( —,') .

The function Yp(k) is the restriction to [——,', —,'] of a
function analytic and periodic with period 1 in a complex
neighborhood of the real axis.

By Fourier representation, one can obtain the "Wan-
nier representation" of the one-band Hamiltonian (Haker
and Obermair, 1970). In this case
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passage from (2.16) to (2.20) is largely uncontrolled. First
of all the Hilbert space has been changed and, in addi-
tion, the error introduced by the interpolation of the
wave function and of the electric potential can be large.
Actually, by a Fourier and a gauge transformation, (2.20)
is unitary equivalent to iF—(d/dk) on the whole real
axis, whose spectrum is the whole real axis instead of
(2.19). So, although reasonable at the first sight, the in-
terpolation scheme leads to qualitative diIterences.

The results above about HPob rely heavily on the
periodicity of V(x). It is a natural question what can be
said in the general nonperiodic case. The answer is that
(Soukoulis et al. , 1983; Delyon et al. , 1984; Jose et al. ,

1985; Bentosela et aI. , 1985; Bentosela et al. , 1983; Cota
et al. , 1986; Nenciu and Nenciu, 1989) for a large class
of nonperiodic systems the spectrum of HP, & is discrete,
i.e., consists of at most finitely degenerate eigenvalues ac-
cumulating only at + oo.

D. The Stark-Wannier ladder controversy

It was realized very early that the use of the e6'ective
Hamiltonian (1.1) in the case of homogeneous electric
field leads to an oscillatory motion in the x space (Zener,
1943; Lifshitz et al. , 1959). Moreover, if A, belongs to the
spectrum of HF, then due to the commutation relation
[HF, T, ]=FaT„A+Fan, n =0,+1,+2, . . . , also belong
to the spectrum of HF. In other words the spectrum of
HF has a ladder structure. The real story started with
the remark by Wannier (1960, 1962) that if H~ has
closed-band subspaces then HF has ladders of eigenvalues
with square integrable eigenfunctions. Callaway (1963)
wrote down the Stark-Wannier ladders in the approxima-
tion that the transitions between di6'erent zero-field band
subspaces are neglected and suggested that the ladder
structure can be seen experimentally in direct optical
transitions. Since the only approximation in the Calla-
way computation was the neglect of the interband transi-
tions, apart from some misunderstandings of purely tech-
nical character, the real controversial point was whether
the Stark-Wannier ladder survives with the inclusion of
the interband matrix elements. The survival of the
ladder structure was questioned mainly by Zak (1968,
1969, 1972) (see also Rabinovitch and Zak, 1972). The
doubt is well founded since both the spacing between lev-
els and the neglected matrix elements are linear in the
field strength I'. So, as Wannier clearly pointed out, "the
central problem is the status of the interband matrix ele-
ments. " It has been argued by Wannier and Fredkin
(1962) and by Wannier (1962) that actually the interband
transitions are "nonessential" in the following sense: the
band subspaces themselves are deformed by the electric
field, and with respect to these field-dependent band sub-
spaces the interband transitions vanish exactly. Unfor-
tunately, as pointed out by Zak (1968), there is a subtle
error in the Wannier-Fredkin argument. Actually, it is
easy to prove by reduction ad absurdum that closed band
subspaces cannot exist (Zak, 1972; Nenciu and Nenciu,

1981a, 1981b). In short, the existence of closed band sub-
spaces would imply the existence of eigenvalues of HF
with square-integrable eigenfunctions, which contradicts
the rigorous results by Avron et al. (1977) that all the
states of HF are extended. [Let us stress that this result
applies to bounded potentials. For 6-like potentials there
is convincing evidence, both analytic and numerical
(Berezhkovski and Ovchinnicov, 1976; Bentosela, Grec-
chi, and Zironi, 1985), that at low fields the eigenstates of
HF are localized. ] Let us mention that there are recent
claims by Emin and Hart (1987, 1988) that closed band
subspaces exist and, even more, that they are easily
identified. It is not hard to see that their argument con-
tains an error. Then, as already recognized by Wannier
(1969), due to the nonexistence of exactly decoupled
bands, Stark-Wannier ladders of eigenvalues do not exist.
However, the results presented in the previous subsection
lead to the existence of ladders of well defined resonances.
A word of caution is in order here. As is well known, a
unique and precise definition of resonances in quantum
mechanics does not exist. Therefore, the existence of the
Stark-Wannier resonances should be understood in the
sense given below. We shall adopt the attitude that a res-
onance means a long-lived state.

Let A,$ „and itr$ „be an eigenvalue and its correspond-
ing eigenfunction of Hp, b [see (2.19) above]. Then, from
(2.9) and the time-dependent Schrodinger equation,

l(y', „,exp( tH, t )@&„—) I

~ 1 bqF'+'I t—l, (2.21)

which shows that at low fields P$ „ is a metastable state.
If the oscillatory motion is to be observed experimentally,
the lifetime of QP„must be at least a few times larger
than the period T=2~/Fai. This imposes the condition

b, F't 'T=(2~/a, )b F'«1 . (2.22)

From (2.10), for a lattice constant ai =5X10 ' m, one
obtains for q = 1

(2'/a&)b2F (10' F m/J, (2.23)

which shows that the lifetime of g$ „ is larger than T, at
least up to fields of order 10 V/m. This is really impor-
tant from the experimental point of view since one ex-
pects to observe the ladder structure only at rather high
fields; at low fields the period of the oscillatory motion is
larger than the lifetime, due to the scattering on pho-
nons, impurities etc. , so that the ladder structure is
washed out by eAects not considered in the present
theory. Actually, the situation is much better in semi-
conductor superlattices, where a i is much larger, so that
the period T of the oscillatory motion is much smaller.
This explains why recently the Stark-Wannier states have
been seen in semiconductor superlattices (Voisin et al. ,
1988).

Alternatively, if following Avron et al. (1975) we take

)"= ((H, —~~ „)qy „,(H, —~y „)qy „))
as the measure of the width of the resonance, then, due to
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(2.8), (2.9), and (2.10), for q = 1

y bF (80F
which is smaller than the spacing a j F up to the fields of
order 10 V/m.

The rest of this subsection is devoted to the discussion
of some other aspects of the dynamics of the Bloch elec
trons in electric fields related to the Stark-Wannier
ladder controversy. Let us start with the questions relat-
ed to the use of the vector potential to describe the elec-
tric field (Kittel, 1964; Nenciu and Nenciu, 1980; Krieger
and Iafrate, 1986, 1988; Zak, 1968). The first remark is
that the use of the time-dependent vector potential leads
to an easy proof of the acceleration theorem (Kittel,
1964; Nenciu and Nenciu, 1980). For another nice proof
of the acceleration theorem using the kq representation,
see Zak (1972). Consider the subspaces

&k =
[f (x ) ~f (x)=exp(ik x )u (x), u (x) = u (x +a ) ] .

[Actually &k are not bona fide subspaces, but fibers in a
direct integral decomposition of I. (E ) (Reed and
Simon, 1978)]. As is well known, &k =&& for ~k —

l~

=2~/a, . Consider the evolution f, =exp( iH+t )f—with

fH&k. Also consider the gauge transformation

6 (t) =exp(iFxt) (2.24)

and denote f, =6(t)f, . By a routine calculation (Kittel,
1964),

(id/dt)ft=HO k(Ft)f, (2.26)

where Ho k(Ft) is the restriction of (P Ft) + V to gf-„.
Now from the fact that f, H&k, it follows that

f, =exp( iFxt )f, =exp[i(k —Ft)x ]u, (x) H—&
&

which is nothing but the exponentiated form of the ac-
celeration theorem.

The evolution (2.26) has exactly the form to which one
can apply the adiabatic theorem of quantum mechanics
(Messiah, 1969). Note that the singular term due to the
electric-field potential disappeared at the expense of
(slow) time dependence. Let A,J.(k) be the eigenvalues of
Ho l„and g~ t, =exp(ikx )u~ k(x) the corresponding Bloch
functions with some fixed (see the previous subsection)
phase factor. The eigenvalues and the eigenvectors of
Hp k (Ft) are XJ (k Ft) and exp(ikx )uj—k z, (x ). Let
[k~(k)] be an isolated band of Ho and suppose thatat,
t =0 fo =l/lo t ~ Then, by the adiabatic theorem of quan-
tum mechanics, in the limit of weak fields

f, =exp i f Xo(k Fs)ds— —

Xexp[ —ig(t)]exp(ikx)uol, F,(x)+O(F+F t),

(id/dt)f, =[(P Ft) +V(x)]—f, , P= id/dx . (—2.25)

As [(P Ft) + V, T,—] =0, f, C&k for all t, and one can
write

whereof

f, =exp —i f A,o(k F—s)ds exp[ —ig(t)]f0 k
0

+O(F+F2t) . (2.27)

P(t)=iFf (uk ~,.(d/ds)uk ~, )ds .
0

(2.28)

The evolution f, with P(t) given by (2.28) is nothing but
the famous Huston function (Huston, 1940) with the
correct phase factor as given by Fritsche (1966) and Zak
(1972). Note that the Huston function (2.27) represents
accurately the evolution on intervals of time of order
F . Recent refinements of the adiabatic theorem (Nen-
ciu and Rasche, 1989) provide "deformed" Huston func-
tions that accurately describe the evolution f, on inter-
vals of time of order F ~, provided F is sufficiently small.

The next remark concerns the free-electron limit
(Churchill and Holmstrom, 1981). At the heuristic level
the main point was emphasized long ago by Lifshitz and
Kaganov (1959): in the free-electron limit the interband
transitions become important so that the one-band ap-
proximation with all its consequences breaks down. This
fact is clearly rejected in the behavior of the constants b

in the free-electron limit. The dependence of b on the
width d of the energy gap is b -d i (Nenciu, 1987) so
that b blows up in the free-electron limit, and the con-
trol on the interband transitions is lost.

Let us consider now the weak-field limit, F~0. Strict-
ly speaking, as emphasized many times (Churchill and
Holmstrom, 1983; Krieger and Iafrate, 1986), the limit is
singular. However, from the physical point of view,
nothing pathological happens in this limit. Note that in
this limit the period of the oscillatory motion and the
spatial extent of the eigenfunctions of the one-band Ham-
iltonian tend to infinity. On bounded intervals of time
and regions in space (which are the interesting ones from
the physical point of view) the dynamics at low fields
converges smoothly to the zero-field dynamics [see, e.g. ,

Eq. (2.27)].
The rigorous results described in the previous subsec-

tion, as well as other rigorous results described in Sec.
VI, are obtained for infinite systems. The reason is that
on the one hand the methods of modern mathematical
physics are powerful enough to cope with continuous
spectra, singular perturbations etc., and on the other
hand the infinite systems avoid the complications due to
the boundary conditions. Let us stress that these compli-
cations are especially severe for the problem at hand, due
to the fact that the electric-field energy diverges as

~

x
~

~ ~. Actually, a significant part of the Stark-
Wannier 1adder controversy originates in such technical
difficulties (see, e.g. , Krieger and Iafrate, 1986, 1988;

The phase factor P(t) (Berry's phase) is fixed by the con-
dition (Kato, 1950, Simon, 1983)

(exp[ i/(t)—]go I, ~, (d/dt)exp[ —iP(t)]iio k ~, ) =0,

which gives
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Zak, 1968; Churchill and Holmstrom, 1981, 1983).
The motion of Bloch electrons in weak fields is often

considered to be "semiclassical. " A word of caution is in
order here: the use of the word "semiclassical" in this
context does not mean h ~0 as usual. Rather (see Sec.
VI.C), it indicates that the methods of the semiclassical
limit are applied, with the strength of the field in the role
of the Planck constant.

To summarize, for bounded potentials the situation is
as follows.

(i) Closed bands or equivalently Stark-Wannier eigen-
values do not exist.

(ii) Stark-Wannier resonances do exist for weak fields,
provided the zero-field Hamiltonian has isolated bands.

(iii) Generically the existence of the Stark-Wannier res-
onances does not depend on the periodicity of the poten-
tial.

(iv) Recent experiments confirm the existence of the
Stark-Wannier states.

For 6-like potentials, the existence of Stark-Wannier
eigenvalues is not ruled out.

E. The magnetic-field case

The Hamiltonian is

Hii=(P —Bhx/2) + V(x), B=Bn (2.29)

Hob, B PBHBPB~B~~B ' (2.30)

To find out an explicit form of R,b 8 we have to re-
strict consideration to periodic potentials and homogene-
ous Aelds. Moreover, we suppose the band o.

p to be sim-

ple. The limit B~O of P& is quite pathological. More
exactly,

where B stands for the magnetic field strength, n for the
direction of the magnetic field, and R, denotes the vector
product.

The first major step towards the rigorous justification
of the Peierls-Onsager effective Hamiltonian is the proof
of the stability of the spectrum. It has been proved (Av-
ron and Simon, 1985; Nenciu, 1986; Helffer and
Sjostrand, 1989a, 1989b) that the perturbation given by
an extended magnetic field is not very singular as far as
the location of the spectrum is concerned: the boundaries
of the energy gaps depend continuously on the strength
of the magnetic field. As has been proved in Nenciu
(1986), this result is of a very general genre: it does not
depend on the periodicity of V(x) and the homogeneity
of the magnetic field. In particular, if the zero-field
Hamiltonian has an isolated energy band o.p, the Hamil-
tonian (2.29) has, for sufficiently weak fields, an isolated
band o.B. Then it is natural to define Az as the band sub-
space corresponding to crz. Let PB be the orthogonal
projection on AB. Since by definition PBHB(1 Pn) =O, —
the problem of the one-band Hamiltonian, as far as its
very existence is concerned, is solved by taking

wii(x) =w ii(x),
and if the crystal has a center of inversion,

w~ B( x) =+w ~ ii(x)

(2.33)

(2.34)

This result settles an old question concerning the ex-
istence of orthonormal and exponentially localized mag-
netic Wannier functions (Brown, 1964; Dana and Zak,
1983). Note, however, that the result holds true only for
the whole band: if, for BWO, o o splits into magnetic sub-
bands, nothing is said about the existence of the Wannier
functions for each subband; actually there are strong ar-
guments that, in general, they do not exist.

(ii)

H., Bw, ii= g exp[iB (ahab)/2]hB(a —b)wb B,
bel-

This means in particular that for arbitrarily small B there
are states in AB almost orthogonal to all states in Ap.
This pathology is a manifestation of the singularity of
the perturbation, combined with the fact that the states
in Ao are extended (in the atomic case
»ma ollPn

—Poll=o)
The way out of this difficulty was indicated long ago by

Peierls (1933) in the tight-binding approximation, by Lut-
tinger (1951), and especially by Wannier (1962) in the
general case: take, as the "zero-order approximation"
for %'B, instead of %'o the subspace JVB generated by

{v B,],~ „, where vii, are obtained by applying the
"magnetic translations" (Zak, 1964) to the Wannier func-
tion w ( x ) corresponding to %'o:

vii, (x) =(TB,w)(x)=exp[ —i(B/ix) a/2]w(x —a) .

(2.32)

Let Qii be the orthogonal projection on A'B. Note that

[TB»PB]=[TB „QB]=0 while [TB„Po]WO. It has
been shown at the heuristic level (Wannier, 1962) that the
matrix elements ( vB „HBvB, ) have the right structure
to produce an effective Hamiltonian. At the rigorous lev-
el, there are two problems to be solved. The first one is
that the set I v B,],~ r is not orthonormal, so it is not
clear whether {vB,],E„ is a basis in JVii (i.e., every
PEJVii can be uniquely written as it =g,~rg, vii, ). We
shall prove that for weak fields {vB,],Er is indeed a
basis in A'B, and, moreover, we shall construct an ortho-
normal basis {y,],~r in A'ii such that (y„HByb) still
have the right structure to produce a Peierls-Onsager
effective Hamiltonian. The second problem is the rela-
tion between QBHaQB and PiiHB B We shall prove
that one can apply the regular perturbation theory
around QBHBQB. In particular, lima ollPa Qa II

=O.
The Anal result is that the description of H, b B is very

similar to the description of POHOPp' . one has only to re-
place the usual translations with the magnetic transla-
tions (2.32). More exactly, there exists Bo)0 such that,
for O~B &Bo, (i) there exists wB(x), a)0, such that
e p(xal l)xw ( B)exL (R ) and {w,B—= T, iiwii], Ei- is an
orthonormal basis in PBL (IR ). Moreover,

lim llPB
—Poll= 1 .

B~O
(2.31) (2.35)

Rev. Mod. Phys. , Vol. 63, No. 3, January 1991



G. Nenciu: Dynamics of band electrons. . .

where

hii(a)=(HBwB, w, ii) . (2.36)

hu(a) =h ii(a), hii(a) =hB( —a),
and if the crystal has a center of inversion,

hii(a) =h B(a) .

(iii) hz(a) has an asymptotic expansion in B,

(2.37)

(2.38)

hii(a) =ho(a)+B h, (a)+ (2.39)

where

There exists P) 0 such that sup, ~rexp(P~a~ ) ~h B(a) ~
( ~,

where (2.43) is understood as the Weyl quantization of
the symbol A, o( k ).

As in the electric-field case, uncontrolled approxima-
tions are involved in passing from (2.41) to (2.42), and
this leads to doubts concerning the validity of (2.42) (Zak,
1986). Fortunately, in this case, by a result of Helffer and
Sjostrand (1989b), the spectra of (2.41) as an operator in
l (I ) coincide (as a set) with the spectra of (2.42) as an
operator in L (E ). In Sec. V we shall give an easy proof
of this fact. Let us stress that, while the spectra of (2.41)
and (2.42) coincide as sets, the degeneracies of the spectra
are quite different (see also Obermair and Schellnhuber,
1980, 1981).

h, (a)=((P Rx+x RP)w, w, )

i g—( wi„(x R b)w, )ho(b) .
bcI

(iv) H, & ii is unitary equivalent to the following opera-
tor in l (I"):

I I I. THE 2ERO-FIELD HAMILTONIAN

In this section we shall recall, in a suitable form, some
properties of the unperturbed Hamiltonian

H, ff Iif(a)= g exp[iB (b Ra)/2]hB(b —a)f(b)
beI-

= g exp[ —iB (aRc)/2]hB(c)f(a+c) .
HEI

(2.40)

H', ffIii
= g ho(b)exp[i(P —BRa/2) b] .

baal"

(2.41)

By an interpolation argument similar to the one used in
the electric-field case (see the discussion at the end of Sec.
II.C) one "extends" (2.41) to L (E ),

Hpo f(x) = g ho(c)exp[i(P —BR x/2)-c]f (x), (2.42)

which is nothing but the famous Peierls-Onsager effective
Hamiltonian in the Fourier representation. Note that
(2.42) coincides with

Ao(P —BR x/2), (2.43)

Note the similarity between (2.2) and (2.40). However,
one should not take this similarity too seriously: while
HQ ff is a very simple operator [by inverse Fourier trans-
formation it becomes multiplication with A(ko)], Hii, ff is
everything but a simple object, and its spectral analysis
poses a very difticult problem. A detailed presentation of
the results concerning the spectral properties of Hz, z is
outside the scope of this review (see Bellissard, 1987,
1988; Helffer and Sjostrand, 1989a, 1987b, and references
therein).

The zeroth-order term in (2.40) [i.e., in (2.40) hB(a) is
replaced by ho(a)] is related to the famous Peierls-
Onsager effective Hamiltonian. Indeed, at the formal lev-
el, writing

exp[ —iB (a Rc)/2]f(a+c)=exp[i(P —B Ra/2) c]f(a)
one obtains

Ho= —b, + V(x), xEE", n &3, (3.1)

where Vis real and —6 bounded with relative bound 0:

(3.2)

This is not a restrictive condition: by Theorem XIII 96
in Reed and Simon (1978), the condition (3.2) is implied
by (2.1) for n ~ 3. As a consequence of (3.2), Ho is self-
adjoint on the domain of —A.

DeS~ition 3.1. A bounded set o.pC:R is an isolated band
of HO if

o (Ho ):o 0 U o i dist( o'0 o i ) =d )0

where cr(HO) denotes the spectrum ofHo.

(3.3)

For an isolated band op of Hp I'p denotes the spectral
projection of Hp corresponding to o.p. Usually the ex-
istence of isolated bands, or in other words the existence
of energy gaps, is associated with long-range order, i.e.,
with the periodicity of V. The problem of the existence
of the energy gaps in the spectrum of electrons in systems
without long-range order is an old one (Lieb and Mattis,
1966; Mott and Davis, 1979). While for completely
disordered systems one cannot expect to have forbidden
gaps, the general belief is that the existence of the energy
gaps depends to a great degree on the short-range order.
For one-dimensional systems this belief has been substan-
tiated by a result of Borland (1961). The Borland result,
considered to be one of the basic results in the theory of
the disordered systems (Lieb and Mattis, 1966), was
proved by using methods of ordinary differential equa-
tions not available in higher dimensions. A proof for ar-
bitrary dimensions was given in Nenciu and Nenciu
(1981a). The surprising fact is that the proof is quite sim-
ple, almost trivial. The basic idea of the proof, which at
the heuristic level goes back to Gubanov (1954, 1955) is
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where 6 is a sma11 positive number. The periodic system
is recovered for 5=0. For small 6 there is still a short-
range order, but the long-range order is lost, the charac-
teristic length being of order a/5, where a is the linear
dimension of the unit cell.

Theorem 3.1. Suppose that [a,p]C:E is in the resolvent
set of Ho, i e , [a. , P. ]Cp(HO). Then for sufficiently small
5, there exist a & as & Ps &P such that [a&,Ps] C:P(Hs ).
Moreover,

limas= a, limPs=P .
5~0 5~0

(3.5)

Proof The di.fficulty is due to the fact that the problem
does not have a small parameter on which a perturbation
approach could be based. In the first step we sha11 shift
the disorder, by a change of variable, from the potential
energy to the kinetic energy. In the new representation
the kinetic energy can be written as the sum of the usual
term —5 and a perturbation. The second step is to show
that the perturbation can be controlled.

There exists 60 & 0 such that, for 0 (6 ~ 60,

J (x)=detjB[x+6h(x)];/Bx j (3.6)

Then one can define the unitary operator

Ys L(E )~L (.E. ),
Ysf(x)=[js(x)]' f(x+6h(x)) .

Consider

H~ = FgH~ F~ = Y~KF~ + Y~ V~ F~

By direct computation,

Ys Vs Ysf(x)= V(x)f (x), YsKYt, =K+5Ds, (3.7)

where D& has the form

3 3

D&= g 2, .(x)B /Bx, .Bx + QB (x)B/Bx +C(x),

to "shift" the disorder from the potential energy to the
kinetic energy. [For another nice application of a similar
technique, see Hunziker (1986).]

Let V be a periodic function and h(x) be a C vector-
valued function with the property that all the partial
derivatives up to order 3 of its components are uniformly
bounded by 1. VVe shall represent disordered systems by
the following type of Hamiltonian:

Hs = —b, + V[x+6h(x)] —=K+ Vs,

The condition (3.2) assures the existence of do & ~ such
that, for z HRd,

0

jjV« —z) 'll& —,
'

~

Then using the identity

(K+ V —z) '=(K —z) '[1+V(K —z) ']

one obtains, for 0 ~ 5 ~ 50, z H Rd,

jjDs(K+ V—z) 'll &2c(do);

and the use of Theorem VI 5.12 from Kato's book (1966)
finishes the proof of the theorem. R

A detailed description of the spectral properties of H0
is available if V(x) is periodic, i.e. , there exists a Bravais
lattice I in IR" such that V(x+a) = V(x) for aEI . Let
[ a; j,". be a basis in I, [ g. ] ", the dual basis

a, g =2+5, (3.10)

and 1 =[g g=g", mj. gj, mj integers]. If x, k&E",
(x„.. . , x„), (k„.. . , k„) denote their coordinates in
the bases [a; ] and [g l, respectively:

x=gx, a, , k=gk, g,
1 1

(3.11)

The basic period cells corresponding to [a; ] and [g ] are
denoted by Q and 8, respectively:

Q =
[ x EE"

j

—
—,
' & x; & —,

' ),
8=[keE"j—

—,
' &k, & —,'] .

Sometimes k will be regarded as complex, k&(t "; i.e., in
(3.11) k, eC.

Theorem 3.2. L,et

u=l'(I )= 1i, y jul, j'&
gEI

m= f ~dk=. f, (k) f dkyjf, (k)j'&
g

From (3.8) and (3.9) it follows that, for 0 & 5 & 5o and
zeR„,

jjD&(K —z) 'jj&c(d) .

(3.8)

and all the coefficients appearing in (3.8) are uniformly
bounded with respect to x&E and 5&(0,5o).

From functional calculus, one has,
z ERd = [z ECjRez & —d &0],

V =(volg) ' f exp( —ig x)V(x)dx .
g

Q

For k H C" defiine Ho(k) in A, by

[Ho(k)4)s=«+g)'4s+ X NhVs —h
hef-

with the domain

(3.12)

jj(B /Bx, Bx, )(K —z) 'll & 1,
jj(B/Bx; )(K —z) 'll & (4d)

(3.9) X(H, (k))=X,= yeW yjg'j j@',j &
r
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SHOS*= Ho k dk .
B

(i e., (SHOS*f )z(k)=(k+g) +gt fh(k)f' hj

(3.14)

Proof. See Reed and Simon (1978) and references therein.
The formula (3.14) is nothing but the Bloch theorem in
the momentum representation. ~

Although Ho(k) has nice analyticity properties, it is
not periodic in k, so we need another representation in
order to discuss the periodicity properties of the eigenval-
ues and eigenfunctions of Ho(k). Consider the following
shift operator in JR:

(3.15)

The operators 8'. are unitary, and since —1 is not an ei-
genvalue of 8' there exist unique self-adjoint operators
C such that ((Ci)[ vr and

W~ =exp(iC~) . (3.16)

Consider now the bounded operator-valued function
(note that C commute)

Then
i. For k&E", Ho(k) is self-adjoint;
ii. Ho(k) is an entire analytic family of type A;
iii. for k&C", Ho(k) has compact resoluent;
lv. let S:L (E,cix )~& be glUen by

(Sf )s(k) =f(k+g), (3.13)

where f denotes the Fourier tvansform off. The operatov
S is unitary and

(&g)s=g s .

Lemma 3.2. For k&R",

(3.20)

BHO(k)6 =Ho( —k),
BW(k)8= W( —k) .

(3.21)

(3.22)

Proof. Noting that the reality of V implies f' = P'

(3.21) follows from (3.12) by routine computation. From
the definitions of 8 and 8'-,

6W 6= W~ '=exp( i'—) .

On the other hand,

(3.23)

8W 0=8exp(iC )0=.exp( iBC~8) . — (3.24)

From (3.23) and (3.24) and from the uniqueness of C,
one obtains

which implies (3.22).
Suppose now that the crystal has a center of inversion,

i.e., V(x)= V( —x), that is equivalent to V = V . Con-
sider the following involution in AL:

does not leave 2)o invariant. The representations
I~Ho(k)dk and j~Ho(k)dk of Ho complement each
other: the first is suited for discussing the analyticity
properties while the second is suited for discussing the
periodicity properties.

Let us exploit now the reality of V(x), or in other
words the time-reversal invariance. Consider the follow-
ing (antiunitary) involution 8:JR~JK:

W(k)=ge px(ik CJ~)=exp igk C
1 1

(3.17)

Obviously W(k) is an entire function of the n complex
variables, k „k2, . . . , k„and

W*(k, , . . . , k„)=W '(ki, . . . , k„) .

IHO(k)I =Ho( —k),
IW(k)I= W( —k).~

(3.25)

(3.26)

An argument similar to the one in the proof of Lemma
3.2 gives

Lemma 3.1. Let Ho(k) be given by

Ho(k) = W(k)HO(k) W '(k) .

Then fov all g & I,k E C",

Ho(k)=HO(k+g) .

(3.18)

(3.19)

If J=BI, then by combining Lemma 3.1 with (3.25) and
(3.26),one obtains the following.

Lemma 3.3.

JW(k)J= W(k)

Proof. It is sufiicient to verify (3.19) for g =g . ,

J=1,2, , n;

Ho(k+g, )= W(k) WJHO(k+g ) W 'W '(k),
and the only thing to do is to verify that

W~HO(k+g, )W) '=Ho(k)

which is routine computation. ~

Note that Ho(k) is not an analytic family of type A
since its domain is k dependent due to the fact that W(k)

and, if V(x) = V( —x), then in addition

o(k)=cr(k+g) . (3.27)

Definition 3.2. A nonuoid pavt oo(k) of cr(k), k&E", is
said to be a direct isolated band of Ho(k) if there exist
continuous periodic functions f;(k):E"~E, f;(k)

JHO(k) J=Ho(k) .

As a consequence of Theorem 3.2.iii, at fixed k,
o(k)—=cvo(H(k)) is discrete; and as a consequence of
Lemma 3.1, o (k) is periodic as a set:
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=f;(k+g), graf', i =1,2, and a positive constant d )0
such that f i(k) (fz(k) and

oo(k) C [f,(k),fz(k)],
cr(k) 6 [f (k) —d/2, f;(k) +d/2]=E, i =1,2 .

Let Po(k) be the spectral projection of Ho(k) corre-
sponding to a direct isolated band o 0(k ), and

Po(k) = W(k)PO(k) 8'(k) (3.28)

In a slightly different. form the following result goes
back to des Cloizeaux (1964a, 1964b).

satisfyi ng

Po(k) =Po(k+g), kH J,", g& I

iso(k)il=P(i( —k) .

Moreover, if the crystal has a center of inversion then

IPO(k)I =Pa( —k) .

(3.29)

(3.30)

(3.31)

Proof. The analyticity of Po(k) is a direct consequence of
the theory of analytic perturbations (Reed and Simon,
1978; see also Bentosela, 1979). Then the analyticity of
Po(k) follows from this and from the fact that W(k) and
W(k) ' are entire functions. Now (3.29)—(3.31) follow
from Lemmas 3.1 and 3.2, via the Riesz formula for the
spectra projection

Po(k) =(2iri )
' J (Ho(k) —g) 'dg,

where C is a contour enclosing o.o(k). ~

From Theorem 3.3 it follows in particular that
m:—dimPo(k) does not depend on k, and due to Theorem
3.2.iii, I ( oo. An isolated band is said to be simple if
dimPO(k) = 1 and complex otherwise.

We are going to discuss now the analyticity and
periodicity properties of the eigenvalues and eigenfunc-
tions corresponding to a direct isolated band. %'e shall
consider first simple bands: o.o= [A,o(k)]. There are no
problems for A,o(k): since A,o(k) is isolated for all k, the
analytic perturbation theory for isolated eigenvalues and
(3.27) lead to the following.

Theorem 3.4. For simple direct isolated bands, Ao(k) is
analytic in 2," and

A,o(k+g)=A, O(k) for all kH J,", gP I

Note that this result does not depend on the reality of
the Hamiltonian: in particular, it holds true if magnetic
interactions are present.

For the eigenfunctions, the situation is much more in-

Theorem 3.3. There exists a )0 such that Po(k) is the re
striction to E of a bounded proj ection valued -function an
alytic to

J,"= lk&C"
I

IImkI «]

volved. Let yo(k) be the normalized eigenvector of
Ho(k) corresponding to A,o(k) (unique up to a k-
dependent phase factor). At first sight, due to (3.29), one
can believe that it is a trivial matter to choose the arbi-
trary phase factor to make

go(k) = W(k)yo(k) (3.32)

analytic and periodic. Unfortunately this is not so.
Indeed, the analytic perturbation theory provides yo(k)
analytic in J," and normalized in IR", but one cannot
guarantee that f(k)o is periodic. On the other hand, one
can make the "consistent" choice of the phase factor by
which yo(k) coincide whenever Ho(k) coincide. But now
one cannot guarantee that such a go(k) can be made ana-
lytic. The point is that the phase factor in yo(k) is fixed

by analytic continuation, which is a local procedure, and
may not fulfill the periodicity condition, which is of glo-
bal nature. Actually, it turns out that if the magnetic
field is present and consequently (3.21) does not hold
true, analytic and periodic fo(k) in general do not exist
[this accounts for the fact that some vector bundles over
the three-dimensional torus are nontrivial; see, e.g. , Du-
brovin and Novicov (1980), Novicov (1981), Lyskova
(1985)].

The main technical result of this section is contained in
the following.

Theorem 3.5. Suppose that o.
o is a simple direct isolated

band. There exists go(k) analytic in J,", normalized in IR"

such that

Ho(k)yo(k) =Ao(k)yo(k),

8'(k)yo(k) = W(k+g)yo(k+g), gH f',
Byo(k) =go( —k),

(3.33)

(3.34)

(3.35)

Moreover, for crystals ivEth a center of inversion,

Iyo(k) =+exp(iao k)yo( —k) for some ao& I . (3.36)

Remark. The first proof of the existence of analytic and
periodic Bloch functions for one-dimensional systems
was given by Kohn (1959a) using methods of the theory
of ordinary differential equations. His proof does not
generalize to higher dimensions. The next major step
forward was made by des Cloizeaux (1964), who proved
Theorem 3.5 for crystals with a center of inversion. The
restriction to the crystals with a center of inversion was
removed by Nenciu (1983). A more elementary proof of
Theorem 3.5 has been given recently by Helffer and
Sjostrand (1988b), but it seems that their proof gives a
strip of analyticity for the Bloch functions narrower than
the strip of analyticity of Po(k). Theorem 3.5 [without
(3.35) and (3.36)] and even more general results can be
proved starting from the results in Theorem 3.4 by using
some significant results in the theory of analytic func-
tions of several complex variables concerning the second
Cousin problem (see, e.g. , Range, 1986, Chap. VI and
references therein). Actually, by "Oka's principle" it is
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sufhcient to prove that there are no obstructions at the
topological level, and this follows in a variety of cases
from the reality of the Hamiltonian by using the theory
of characteristic classes.

Before giving the proof of the Theorem 3.5, let us dis-
cuss the general case of complex bands. Consider a
direct isolated band o.o, of dimension m. Then
o p= t A, „(k)] i . The labeling of the eigenvalues A, „(k) is a
matter of convention. The generally accepted convention
(Herring, 1937; Weinreich, 1965), is A.„(k)~ A,„+,(k),
r =1,2, . . . , I —1. This labeling has the advantage that
each A,,(k) is periodic. Unfortunately (we exclude the
trivial case when A,„(k) do not touch each other] A, „(k)
given by this convention are not analytic; at the intersec-
tion points they are not even differentiable. The problen1
occurs whenever it is possible to label the eigenvalues in
such a way that all of them together with their corre-
sponding eigen vectors are analytic in some complex
neighborhood of E". The answer seen1s to be negative in
more than one dimension. The reason is that analytic
matrices of more than one complex variable can have
nonanalytic eigenvalues and eigenvectors, as can be seen
from the following simple example (Kato, 1966):

k, k~
T(k„k2)=

2

whose eigenvalues k+(k„k2)=+Qk, +k2 are nonana-
lytic at k& =k2 =0. Concerning the eigenvectors, one can
still question whether there exist m linear combinations
of the eigenvectors of Hp(k) corresponding to o.

p with
appropriate analyticity and periodicity properties. The
same question applies to the case of an orthonormal basis
Iy„(k)] i in Pp(k)JK such that all y„(k) are analytic and
periodic. The functions y„(k) in the "x representation"
are named quasi-Bloch functions (des Cloizeaux, 1964).

A complete solution to the above questions can be ob-
tained for the case when all but one of the variables k.
are kept fixed. More exactly, consider the properties of
Hp(k) as a function of k, at ki—:(k2, k3, . . . , k„) fixed.
In order to emphasize this we shall write
Hp(ki, kz ) =Hp k (ki ),—and moreover when no confusion

is possible we shall omit k~ and write k for k, . Obvious-

ly, Hp, k, (ki) W(ki, ki)Hp, k, (ki)W(ki k

and periodic tin the sense that both Hp & (k, ) and

W(k„ki ) are entire; note, however, that the domain of
H p i, (k, ) depends on k, ] i.e., the analyticity and periodi-

city of Hp k (k, ) are the same as in the one-dimensional
J

case. However, while in the one-dimensional case the
bands are simple, the bands of Hp I, (ki ) are generically

con1plex.

Theorem 3.6. Let op(k) be a direct isolated band of
Hp(k ), Pp(k) its corresPonding sPectral Projection, and 2,
the analyticity strip ofPp(k).

i. There exist positive integers m, p; p m; functions
A, (k), j=1,2, . . . ,p analytic in the strip 2b for some

b )0 and real for k&R; positive integers ri, r2, . . . , r
satisfying g&&rj. =m, such that o p(k) =

I A. .(k) ] &&, each
Ai(k) having the multiplicity r~ li.e., XJ(k) are eigenvalues
of H' p(k) of multiplirity r ;at the points where some A,

coincide, the total multiplicity is gi ski i„r j T. he funcj
tions X (k) are periodic with periods p. p. The spectral
projections Pp (k) corresponding to A, (k) are analytic in
Jb and periodic with periods p~.

ii. There exists an orthonormal basis in Pp (k)JR,

i, such that f, (k) are restrictions to IR offunc
tions analytic in 2b and satisfy

Remark. Theorem 3.6.ii implies that, in the "one-
dimensional" case, analytic and periodic Bloch functions
exist even for complex bands. Note, however, that the
analyticity strip of the Bloch functions can be by far nar-
rower than the analyticity strip of Pp(k). Moreover,
while the theory gives the means to estimate a it does not
give any information about b.

Proof of Theorem 3 6 i T.he. .existence of A, ;(k) as well as
their analyticity properties follows from the standard
theory of perturbations for analytic families of type A

(Kato, 1966; Reed and Simon, 1978). In particular, the
analyticity of A, ; (k ) at the degeneracy points follows from
the famous Rellich theorem. Consider next the periodici-
ty properties. Due to (3.27), op(k) is a periodic set.
Since, because of the analyticity, the number of points at
which two or more A,;(k) coincide is finite in every com-
pact, one can assume without loss of generality that the
origin is not an intersection point. If t; is the smallest in-

teger for which X;(t;)=A,;(0), then the period of A, ;(k) is
t, . Since for all integers t the set o.p(t) does not depend
on t and contains p points, it follows that t; ~p. Consider
now Pp (k). Again by the Rellich theorem, Pp (k) are
analytic in Jb, and due to the Reisz formula and (3.19),
W(k)Pp (k) W(k) are periodic with periods p ..~ .

Theorems 3.5, 3.6.ii, and 3.6.iii are corollaries to the
existence of solutions of the following abstract problen1
concerning projection valued functions.

Problem C. Let & be a separable Hilbert space, s be a
positive integer, and Q(z):&~& be a projection valued-
function analytic in J', satisfying

Q(z)=Q(z)* for z&E',

Q(z) =Q (z+p), pEZ' .

(3.37)

(3.38)

Find a bounded, and with bounded inverse, operator-
valued function A (z):&~&analytic in 2', satisfying

W(k)g, , (k)= W(k+p )g, (k+p, ) .

iii. There exists an orthonormal basis I g; (k) ] i in
Pp(k)JR such that all y, (k) are restrictions to E ofjunc
tions analytic in J,' and satisfy

W(k)y;(k)=W(k+1)y, (k+1) .
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A '(z) = A (z)* for z EE',
Q(z)=A (z)Q(0)A(z) ', A(0)=1,

(3.39)

(3.40)

there exist bounded self-adjoint operators D, such that

A (z)Q(0) = A (z +p)Q(0), z H J', , p&Z' . (3.41)

In general, because of topological obstructions. Prob-
lem C does not have solutions. However, the existence of
solutions can be proved under additional conditions.

Theorem C.i. In the cases below, Problem C has solu-
tions:

T=exp(iD), D =D, D2 .

Now [D, Q ( ——,
'

) ] =0, and then

[ Q( —
—,
' ), exp(izD ) ] =0 .

We claim that

A (z) =8 (z)exp( —izD )

(3.51)

(3.52)

a. sup, iig(z) —Q(0)ii ( I; (3.42)

b. s=l;
c. dimg(z)=1 and there exists an antiunitary inuolu

tion 8:&—+& such that

satisfies all the required conditions. The analyticity and
the invertibility are obvious. From the fact that 8(z)
satisfies (3.40) and (3.51), one obtains (3.40) for A (z). Us-
ing (3.51), the differential equation for 8 (z) and the fact
that K (z) is self-adjoint, one can verify recurrently that

BQ(z)6=Q( —z) for z HE' . (3.43) (d "/dz") A (z) ~, i~2=(d "/dz") A (z) ~,

ii. If (3.43) is fulfilled then solutions satisfying

6 A (z)BQ(0) = A ( —z)Q(0) for z H IR' (3.44)

Ig(z)I =g( —z),
then solutions satisfying

exist If i. n addition there exists unitary inuolution
I:& +& such —that

which implies the periodicity of A (z). Finally, since
8(z) is unitary for real z and D is self-adjoint, A (z) is un-

itary for real z.
i c Le. t.8 (z) be constructed as in the one-dimensional

case with respect to z, [z=(z„z~, . . . , z, )] at
s —1 (z (zi)z2) )zg i )

Suppose that (3.43) holds true. Then for real z

BK(z)8=K( —z)
S

IA(z)IQ(0)=+exp i~gi3, zj A( —z).Q(0), i3J=0, 1 .
1

(3.46)

exist.

which, via the differential equation for 8 (z) implies

68(z)8 =8( —z), zCR'.

In a similar way, if (3.45) holds true, one obtains

IB(z)I=8( —z) .

(3.53)

(3.54)

Proof i.a In this case. a solution is given by the Sz-Nagy
formula (Kato, 1966; Chap. II, 4.6)

Define

T(z' ') =8(z' ' ')8(z' ' ——'—) (3.55)

A (z)= II —[g(z) —g(0)]']

X IQ(z)Q(0)+[1 —Q(z)][1—Q(0)]] .

i.b. Consider 8 (z) given by

i (d/dz)B(z)=K(z)B(z),

K (z) =i [1—2Q(z)](dldz)Q(z);

8(0)=1 .

(3.47)

Clearly T(z' ') is analytic, invertible, and periodic in
J', ', but unfortunately we do not know whether
T(z' ') admits an analytic and periodic logarithm.
Since [T(z' '), Q(z' ', —,')]=0, for fEQ(z' ', —,')&

T(z' ')f =A, (z' ')f, (3.56)

where [recall that dimg(z)=1] A, (z' ') is a complex-
valued function. We shall prove that there exists a
unique function P(z' '), analytic and periodic in J',
real for real z' ', P(0) H (

—m, n], such that
Then (Kato, 1966; see also the Appendix) 8 (z) is analytic
and invertible in J', and satisfies (3.39) and (3.40) [but not
(3.41)]. Consider

(3.49)

A(z' ') =exp[i/(z' ')], (t(z' ') =P( —z' '),
and if (3.45) is fulfilled then P(z' ') is constant:

P(z' ')=0, ~ .

(3.57)

(3.58)

From (3.40) and (3.38) one obtains Taking this for granted, it is easy to finish the proof of
the theorem. Indeed, as above, if

[T,Q( —1/2)]=0, (3.50)
A, (z)=exp[ —iz, P, (z' ')]8(z), (3.59)

i.e., T= T,e T2, where the orthogonal sum is according
to the decomposition &=Q( —

—,
' )&e [1—Q( —

—,
'

) ]&.
Since T, are unitary, one can take the logarithm; i.e.,

one can verify that

A, (z)Q(z' ', 0)= A, (z+p)Q(z' ', 0), pEZ' . (3.60)
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A, (z)Q(z' ', 0)A, (z) '=Q(z) . (3.61)

Moreover, (3.44} and (3.46) for A, (z) follow from (3.52),
(3.53), (3.57), and (3.58). Repeat the construction in one
dimension less, starting from Q (z' ', 0). Clearly,

(3.62)

P(z' ') =i/(z' ')+2' g p z (3.63)

where i/j(z' ') is periodic and p~ are integers. We shall
show now that (3.53) implies

is a solution of the Problem C.
We shall prove now (3.57) and (3.58). The invertibility

of T(z' ') implies X(z' ')%0. Let fHQ(0, —,'). There
exists a neighborhood X of 0 in (I

' ' such that
(f,Q(z' ', —,

' )f}%0. Then

A, (z' ')=(f,g(z' ', —,')f ) '(f, Q(z' ', —,')T(z' ')f )

and hence A, (z' ') is analytic in X. By an analytic con-
tinuation argument, )i,(z' ) is analytic in J', '. Hence,
the first relation in (3.57) holds true with P(z' ') analytic
in J', '. The reality of P(z' ') for z' ' E E' ' follows
from the unitarity of T(z' '). The periodicity of
A(z' ') is obvious. Since dk, /dzj =ik(dP/dz, ), dP/dz~
are periodic, and hence

s —1

fEQ(z)& then IBf=+f, which, together with (3.56)
and (3.67) implies that A,(z' ') is real. Since A, is of
modulus 1 for real z' ', it follows that A, (z' ') is actual-
ly constant: A, (z' ') =+1, whereof P(z' ') is either
identically zero or equal to n F.rom this and (3.54) one
obtains

where f3, equals either zero or 1. Combining (3.68) with
(3.62), one obtains (3.46).~

Proof of Theorem 3.5. Consider

go(k) = A (k)yo,

where yo is a normalized vector in Po(0)JR and A (k) is a
solution of Problem C applied to Po(k). From
dimPO(0)=1 and from (3.30) and (3.31) it follows that
Xo= yo, Igo= yo. If Byo= —yo replace go by iso. In
other words, one can chose yo such that

Xo =so Iso —+Xo . (3.69)

Obviously yo(k) is analytic and periodic in J, . Writing
ivrg"i/3J k, =i ao k, (3.35) and (3.36) follow from (3.44) and
(3.45) and (3.69).~

IA, (z)IQ(z' ', 0)=+exp(i~/3, z, ) 2, ( —z)Q(z' ', 0),
(3.68)

Q(z' ')=f( —z' ') . (3.64)
The proof of Theorems 3.6.ii and 3.6.iii is similar.

Indeed, from (3.53) and (3.55) it follows that

i')T(z' ')6= T( —z' ') (3.65)

From (3.38) and (3.43), one has

yg( s i i )y —g( s i i
) (3.66}

which proves (3.64). Now (3.64) implies p =0 in (3.63).
Indeed, for example,

P( —
—,', 0, . . . , 0) =i/j( —

—,', 0, . . . , 0)—p, /2

=
i/ ( —,', 0, . . . , 0 ) +p i /2,

and the periodicity of i/ implies pi =0. This completes
the proof of (3.57). Suppose now (3.45) holds true. Then
from (3.54) it follows that

(zs i )I T(zs i
)

i

which, together with (3.65), implies

IBT(z' ')BI= T(z' ') . (3.67)

Since I6 is an involution and tIi), Q(z)]=0, if

Let now fHQ(z' ', —,')&. Using (3.65) and (3.66) and
the reality of i/} one has

BT(z' ')B=expI 2~i/( —z'—')]f
=expI —2~i/(z' ')]f,

Remark. Theorem C.i.a implies the existence of analytic
and periodic quasi-Bloch functions in the tight-binding
limit where (3.42) for Po(k) holds true. Moreover, if the
crystal has a center of inversion (3.35) and (3.36) are
fulfilled with ao=0 (see also des Cloizeaux, 1964). Actu-
ally, the existence of analytic and periodic quasi-Bloch
functions can be proved for complex bands outside the
tight-binding limit by the use of a "continuity" argument
based on the following.

Proposition 3.1. Suppose that Q;(z), i = 1,2 satisfy (3.37)
and (3.38), and that Problem C for Qi(z) has a solution
Then if

sup IIQi(z) —Q2(z)ll & 1
zC J,"

Problem C for Qz(z) has a solution

Proof. Apply the Nagy formula (3.47).~

Consider now

Po= I Po(k)dk,

i.e.,
Poly=If(k)If(k)=c(k)yo(k),

c(k)HL (B,dk)] .

There are two distinguished based in Po&. The first one
(which is actually a basis in generalized sense) is
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o(k)]i,o~e = I5(k —ko)Xo(k)]koE

The second one is

twa(k)]acr Iexp(ik a)yo(k)] ~r
The orthonormality of m, comes from

(3.70)

(3.71)

where c, are the Fourier coefficients of c(k).
All the results above are written in the "momentum

representation. " We shall translate some of them in the
"x representation. " If xER" it can be uniquely written
as

(exp(ik a)go(k), exp(ik b)yo(k))=exp[ik (b —a)]
x=a„+r„, a„EI, r„= g r, a, ,

j=l
——'(r & —'.

2 J 2

and the completeness from the fact that

c(k)yo(k) = g c,exp(ik-a)yo(k),

Obviously [see (3.13)], IS 11k]k~ii is a generalized basis
in PoL (E") and tS 'w, l,~r is an orthonormal basis in
P L2(E n)

Theorem 3.7.i.

(S 'fbi, )(x) =—1l'o „(x)=(2~) "
(volQ )' exp(ik x)ui, (r„)

=(2~) " (volQ)' exp(ia„k)exp(ir„. k)uk(r„)—:exp(ia„k)uk(r„), (3.72)

where uk&L (Q), ~~uk~~= l. As a family of Uectors in
L (Q), ui, is the restriction to E" of a Vector valued f-unc
tion analytic in J,".

11.

(S 'w, }(x)=w, (x)=w(x —a) =( T,w )(x), (3.73)

I

where

u =(volQ) ' f exp( —ig r)u(. r)drg
Q

are the Fourier coefficients of u. Then (3.80) can be
rewritten as

where

w(x):—(S 'wo )(x)

has the properties

Auk =go(ko) .

Consider now that the operators Rj in L (Q):

(R u)(r)=2vrr, u(r) (r=gr/a, ) .

(3.82)

(3.83)

w(x) =w(x),

w( —x)=+w(x —ao) for some aoEI

and for 0 ( b (a and arbitrarily fi'xed constants a,

(3.76)

A simple computation shows that [see (3.15) and (3.16)]

A '8; A =exp(iA 'C A ) =exp(iR ),
) 1 y 2p ~ ~ ~ 9 fL

n

exp(b ~x~ ) 1+ g a~8/Bx, w(x) E-L (E") .
J =1

Proof From (3.13.) it follows that for fE&
(S 'f)(x)=(2~) " +exp(ig x)f exp(ik x)f (k)dk .

g

(3.78)

Consequently, the "subspace" J1tk = I6(k —ko)f ~If EA ]

corresponds to A„= If(x)
~ f(x) =exp(iko. x)u(x);

u(x)=u(x+a), aEI ]:S 'At„=&k . In particular,
0 0

(S 'Q„)(x)=(2~) " (volQ)' exp(iko. x)uk (r„),

whereof 2 'C 2 =R and then

A '8'(k)A =exp ig k R (3.84)

Note that the right-hand side of (3.84) is nothing but the
operator of multiplication with exp(ik r) From (.3.32),
(3.82), and (3.84)

'yo(k) = A '8'(k) A A 'yo(k) =u„. (3.85)

From (3.85) and Theorem 3.5 it follows that, as a family
of vectors in L ( Q), u i, is analytic in J," and the proof of
Theorem 3.7.i is finished.

Consider w(p), pEE", given by

w(k+g)=go (k) . (3.86)

where

u„(r„)=(volQ) ' g exp(ig r„)yo s(ko) .
ge f'

Let A:L (Q}—+J11, defined by

(Au )s=(volQ)' us,

(3.80)

(3.81)

From the definition of w(p) and Theorem 3.5, it follows
that w(p) is the restriction to E" of a function analytic in

J,'. From Theorem 3 2 and the fact that
yo(k) &2)(Ho(k) ), it follows that

sup g f (1+~k+g+iq~ )~yo (k+iq)~ dk( ~,
Iql t «
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whereof for arbitrarily fixed
( 1+g;e p )w ( p ) is analytic in 2," and

constants

2

sup f 1+pa)(p~+iq, ) w(p+iq) dp( oo .
Iql ~«

w(x) =—wo(x) =(S 'wo)(x)

=(2~) " g f exp[ix. (g+k)]go (k)dk
g

=(2~) " f exp(ix. p)w(p)dp,

By definition and (3.78)

(3.87)
which together with (3.87) proves (3.77), due to the
Paley-Wiener theorem (Paley and Wiener, 1934).

Now, by (3.35) and (3.36),

w(x)=(2~) " g f exp[ —ix (g+k)]go z(
—k)dk=w(x),

B

w( —x)=(2') " g f exp[ —i(x —ao) ~ (g+k)]go ( —k)dk=w(x —ao) .
B

Finally

w, (x)=(S 'w, )(x)

=(2') "~ g f exp[i(x —a) (g+k)go s(k)dk
g

=w(x —a) =(T,w )(x).~

O Tg /2 ~ T—a /2 O~ —Ta /2 ~ (3.92)

In other words, by an appropriate choice of the origin
one can take ao=0 in (3.76). As a consequence, without
restricting the generality, we shall consider in Sec. V that
for crystals with a center of inversion one can choose the
Wannier function m such that

Corollary 3.1.i.

IIow = g ho(a —b)wb
beF

(3.88)

w(x)=+w( —x) . (3.93)

with

ho(a)=(volB) '~ f exp( —ik a)Ao(k)dk . (3.89)

IV. THE ELECTRIC-FIELD CASE

A. The deformed-band subspaces

Ho, of(a) = g ho(b —a)f(b) = g ho(a —b)f(b) .
beI- beI-

iI.. POHOPO is unitary equivalent to the following opera-
tor in l (I ): Consider the Hamiltonian

—b, + V( x ) +Fn x =Ho +FXo =HF, (4.1)

(3.90)

Of(x)=f( —x),
then as one can easily see

OT, =T,O, (3.91)

which implies, taking into account that [Ho, T, ]=0,
0

[O, T )2HoT, )2]=O,

i.e., T, /2HpT /2 still has a center of inversion. More-
0 0

over, the Wannier function of T, /2HO T, /2 corre-
0 0

sponding to o o is T, &zw, and from (3.91) and (3.76)
0

Proof. Straightforward verification. The unitary
equivalence is given by Uf (a) = ( w„f ). The last equali-
ty in (3.90) follows from the fact that both Ho and w are
real.

Suppose now that the crystal has a center of inversion
and that ao&0. Let us shift the origin in IR in the point
—ao/2. This amounts to considering, instead of Ho, the
Hamiltonian T, /2HOT, /2. If 0 is the operator given

0 0

by

where n is the unit vector along the Geld direction. Actu-
ally, the theory below applies to the more general case of
nonhomogeneous but still slowly varying fields (see re-
mark below).

The problem at hand is an example of the general
theory of asymptotic invariant subspaces as developed by
Nenciu (1981).

Definition 4.1. Let H„P„E 0 be families of self adjoint
and orthogonal projections, respectively, in a Hilbert space
& satisfying the following conditions:

i. lim //P,
—Po //

=0.
c~O

(4.2)

ii. Let p be a positive integer. There exist b

E~ )0, and bounded self adjoint operators B-, defined for
E E [O, e ] such that

(4.3)

and P,gf are invariant subspaces for H, —eB,. Then
P,& is said to be asymptotically invariant family of sub
spaces of order p for H, .
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As expected P,& are almost invariant under the evolu-
tion given by H, .

Proposition 4. I. Suppose H, has an asymptotically in-
variant family of subspaces of order p. Then

Note that, by construction,

so=(1—2Po)[Xo Po]

co, .

(4.10)

II(1 —P. )exp( ~H, t )P. II
~ b, s' (4.4)

Consider the self-adjoint operator
In particular, ifH, —eB, has a normalized eigenvector P„
then X) =Xp —Bp . (4.11)

(4.5)

Proof. The inequalities (4.4) and (4.5) follow from
Definition 4. 1 and

By the Stone theorem, for all fHX(Xo ),

(id /dt) [exp(i EXot )exp( —i EX, t ) ]f
=Ko(t)exp(iEXot )exp( i—EX~ t )f

exp( iH, t ) =—exp[ —i (H, —EB, ) t ]

—i 8 exp[ i (H—, —EB, )(t —s)]

X B,exp( iH, s )d—s.R (4.6)

Suppose now that H, is of ihe form Hp+EXp. The
problem is to find conditions on the pair Hp, Xp under
which one can prove the existence of asymptotically in-
variant subspaces for H, .

which together with Lemma A. 1 implies

3o(t) =exp(i eXot )exp( —i EX& t ) .

From (4.12) and Lemma A. l one has

Po =exp(ieX& )Poexp( —ieX, ),
which implies that, for f&2)(Xo)A2)(Ho ),

Po(Ho+EX] )f—(Ho+EX, )Pof =0 .

(4. 12)

Theorem 4. 1. Suppose that
i. H, =Ho +EXo is essentially self adj oint on

2)(Ho ) 8X)(Xo ).

ii. exp(iXot )(Ho i ) exp—( —iXot ) is P + 1 times norm
differentiable.

iii. There exist —~ & 1,, & A, 2 & ~ such that
cr(Ho) croUo ], ooC[k»Az], dist(oo&o ]) d )0.

Let Po be the spectral projection of Ho corresponding to

oo. Then P &, q =1,2, . . . , P, constructed below jsee also
(2.4) —(2.7)j are asymptotically invariant families of sub
spaces oforder q for H, .

[Po, exp [ i (H, ——EBo )t I ]=0 . (4.13)

Consider now H, (t) given by

H, (t)= Ao(t)*[Ho(t) —Ko(t)]Ao(t) . (4.14)

From the identity

R, (t;z)= Ao(t)"Ro(t;z)[1 Ko(t)Ro(—t;z)] 'Ao(t)

(4.15)

Since Hp+EX, =H, —cBp is essentially self-adjoint on
2)(Xo ) A2)(Ho ), it follows that

Proof. Having in mind the problem at hand, we shall
consider the case p = ~. The proof is by construction.
Consider Ho(t)=exp(iEXot)Hoexp( —iEXot). It is not
hard to see that its resolvent Ro(t;z) and the spectral
projection corresponding to o.o, Po(t) are infinitiy norm
differentiable, and that there exist finite constants rp

cp m such that

and from the fact that Ro(t;z) is infinitely norm
differentiable, it follows that R &(t;z) is infinitely norm
differentiable. Note that if H, is defined by [see (2.3)]

H, =Ho+8&o

then

II(d /dt )Ro(t;z)II ~ ro

II(d /dt )P (t)II c E

(4.7)
H& (t) =exp(iEX, t)H& exp( —i EX& t ), H, =H& +EX, .

Bo= —E 'Ko(0) . (4.9)

Indeed, for z=i, (4.7) holds by hypothesis. For arbi-
trary z Ep(Ho ), one has to use the identity

Ro(t;z) =Ro(t;zo)[1+(z —zo)Ro(t;zo)]

The inequality (4.8) follows from (4.7) and the Riesz for-
mula for the spectral projection.

Let Ko(t), Ao(t) be as given by the Lemma Al (see the
Appendix) applied to Po(t) and

For E (Eo—:d /2IIBo II
the spectrum of H, is still

separated, and we can repeat the whole construction.
Obviously one can continue this process indefinitely.
Namely, for q =0, 1, . . . , starting from H, written in the
form

where cr(Hq):o'o Uo~ q» dist(oo o~ ):dq &0 (croq
coincide with cro in the limit c,~0), we define
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P =the spectral projection of H
corresponding to 0 p q

H (t)=exp(i sX t)H exp( —i EX t),
P (t)=exp(iEX t)P exp( i EX—t), (4.16)

Lemma 4. 1. Let C be a contour (of finite length) sur
rounding cro, satisfying dist(C, o o) =d/2. Then there ex-
ist constants pq ~p cq ~s /p 0) 1&2&, t7l 1&2~

such that for E ( sq & (by definition s
&

= ~) and z E C,

K, (t) =i [1 2P,—(t) ](d!dt )P, (t),
B E K (0) Hq+, H +EB Xq+) Xq Bq

Obviously

/«)R, (t;z)ll ~r,
R (t;z)—= [H (t) z]—

ll(d Idt )P, (t)ll & c,,
E

(4.17)

(4.18)

H E Hq + 1 +~+q + 1

and the whole procedure can be carried further as far as

2 IIB, II2

(which assures that the spectrum of Hq+& is still separat-
ed). Since by construction

[P,exp[ i(H—, EB )t I
]=—0,

the only thing we have to do in order to finish the proof
of the theorem is to obtain bounds on IIBq II. The needed
bounds are consequences of the following lemma.

Proof The . proof is by induction over n. The case q=0
is given by (4.7) and (4.8). Suppose (4.17) and (4.18) are
true for q

—1. Then (4.17) for q follows from an identity
similar to (4.15), relating R (t;z) and R &(t;z) and the
induction hypothesis. For (4.18), observe that from

P,(t) = A, (t)P, (0)A, (t)"

it follows that P, (0) is, for all t HIE, the spectral pro-
jection of Aq &(t)*Hq &(t) Aq &(t) corresponding to
o. &. Then one can write

Pq(t) P)(0)=—(2 re) 'A, (t)* & I [H, (t) —K,(t) —z] 'K, (t)R, (t;z)dz .A, (t)c (4.19)

Now, (4.19) and the induction hypothesis implies (4.18)
for q. Q

IIBO II
qr 'll J (Ho —z ) 'P.n(HO —z ) 'dz II, (4.20)

From the definition of K (t) and (4.18) for m =1 it fol-
lows that

IIB, II cq, ,E,
which finishes the proof of Theorem 4.1.~

Let us apply the above theory to (4.1) with the obvious
identifications. According to Theorem X.38 in Reed and
Simon (1978), (4.1) is essentially self-adjoint on

Co (R ) C:2)(Ho ) A2)(Xo ), so the hypothesis (i) of
Theorem 4.1. is fulfilled. A simple computation
[G(t)=exp( —iFn.xt)] gives

Ho(t) —=G(t)HOG(t)* = (P—Fnt )'+ V(x),

whereof the infinite differentiability of [Ho(t) —z] at
t =0 is obvious. For an arbitrary t, observe that

(d /dt )Ro(t;z)=G(t)[(d Idt )Ro(t;z)], OG(t)* .

In particular,

[(d Idt )Ro(t;z ) ], O=F (Ho —z ) 'P n(HO —z )

The connection between the recurrent construction in the
proof of Theorem 4.1. and the recurrent construction
given by (2.2) —(2.8) is given by the well-known formula

i (d Idt)exp( —iSt ) T exp(iSt ) =exp( iSt )[S,T]exp(iSt ) . —

From the definition of Bp,

where C is a contour enclosing oo. Formula (4.20) gives
the means to estimate IIBOII. For details as well as for the
estimations of IIB & II, IIBz II, we refer to Nenciu (1987).

HF =Hp +FN] +F&2=Hp +F+2

one can develop the whole theory for the pair Hp C 2.

B. The one-band Hamiltonian

In this subsection V is considered to be periodic. We
shall consider the case in which n is parallel to one of the
vectors of the dual basis, say g&. If x=+3 &x a, then

X,f(x) =(2m-Ilg)
I
)x )f(x) . (4.21)

Remark. Actually, the theory presented above does not
require the homogeneity of the electric field. If instead of
Xo given by (4.1) we take

(Xof )(x)=4&(x )f(x),
then, for example,

IIBOII (2qr) 'll f (Ho —z) '(P gradC&+grad@ P)c
X (Ho —z ) 'dz II,

so what is needed is the boundedness of the derivatives of
the field energy. Even more, if &1&(x)=N&(x)+C&z(x),
where N& is uniform, locally I. and N2 has bounded
derivatives, then writing
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110 G. Nenciu: Dynamics of band electrons. . .

We shall rewrite & (see Sec. III) as

1/2

&=(volB)f f fA, dk, dk2dk3
—1/2

1/2

=(volB) f f dk2dk3JK¹,
—1/2

where

JR¹=f JRdk, =
jf (k, )}

We shall use the self-explanatory notation

&=f M¹dk~,
8~

Ho= f Ho k dkj

Let Xo~ be the operator in A, ~ given by

(Xo¹f) (k))= —i lg)l (d/dk, )fs(k, )

with the domain

X)(XO¹) = [fg(k, )I(d/dk, )fs(k, ) HW¹,
fs( —,')=fs+s ( ——,')} .

Lemma 4.2.

SXoS ' = Xo~d k

Proof. The Fourier transform Xo of Xo is

x, = —i Ig, I
-'a/ak, ,

and then taking into account (3.13), on $(IR )

(SXoS f) (k)= Ig~l '(r)/~)k))f (k)

and

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

In what follows, we shall consider the spectral proper-
ties of HF k at fixed k~, and for notational convenience

we shall omit k~ as well as the index of k1.
Applying the general theory to the pair Ho~, Xo~, one

constructs P~, B~, H~, X~ such that

HF =H +FX +1+FB =H ' +FB (4.31)

=.[y, (k)}, , y f
1

—1/2

and (d /dk) „the usual first-order differential operator in

[L (
—

—,', —,
'

) ] with periodic boundary conditions.

Theorem 4.2. For euery q=0, 1,2, . . . , there exists a
positive constant a (F), limF Oa (F)=a (see Theorem
3.6), an m Xm Hermitian matrix valued fun-ction YP(k),
and a unitavy operator, Z:P¹At¹+[L ( ——,

'—, —,')] such
that

H;„=zP¹H¹P¹z'= iFlg I

'(d—/dk)„„+ Yp(k),

(4.33)

and the matrix elements of YP(k) are vestvictions to

[ ——,', —,'] of analytic functionsin the strip J „satisfying
q

[H¹' P¹]:Q IIB¹ll&F&b for Q&F&F (4 32)

Remark. Since the above construction substantiates the
ideas in Wannier (1960), we shall call H¹' the Wannier
Hamiltonian of order q. Note that, by construction,

Hkq —P4H4P4 —P4H4, ~PCFob —
q F q q q q

Let [L (
—

—,', —,')] be the Hilbert space

[L2( 1 j )]m

f, (gi/2+kzg2+k3g3)=f, +„(—gi/ + ~g+ 3g3»

which finishes the proof. ~

The next remark is that

YFq(k)= YP(k+1) . (4.34)

Moreover, YP(k) have asymptotic expansions of any ordev
in F. The asymptotic expansions of YFq(k) and Yp+'(k)
coincide up to terms of ordev O(F~+'). Up to the second
order,

[B,T, ]=0, q=0, 1,2, 3, . . . , (4.28)
YP „,(k) = (X,(k),H, (k)X, (k) )

Proposition 4.2.

SHFS = f HF¹k dki (4.29)

where

where T„aH I, is the translation operator
T f(x)=f(x—a). For q =0, (4.28) follows from
(4.10), [T„PO]=0, and [Xo, T, ] =n.aT, . By (4.16),
[H&, T, ]=0, [X&,T, ] =n aT„which gives (4.28) for
q=1, etc.

Combining (4.25) with (4.26), one obtains the follow-
ing.

—iFlg) I
'(X„(k ),dX„(k)/dk ) +

(4.35)

where [X„(k)}is the basis in Po(k)1k' given by Theorem
3.6.iii.

Remark. The main points of this theorem are the
analyticity and periodicity properties of Yg. At the non-
rigorous level, simple bands, and q =0, the formula (4.33)
is a familiar result (see, e.g., Callaway, 1974). The (4.33)
is the main result of this section: it gives the effective
one-band Hamiltonian for the electric case.

HF~k =H(~)k +FX(~) (4.30) Proof. The proof consists essentially in writing H~~~ in
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the "Bloch representation. " Consider first the case q =0.
Let [g (k)] be the basis in Po(k)JR given by Theorem 3.6
and jj(k)= W(k)g~ (k). If QEPO¹Ai¹,then

g(k) = g c,(k)g, (k),
s=1

where

c, (k) = (y, (k), itj(k) )~

Define Z by

(Zg), (k) =c,.(k) . (4.36)

The only thing we have to do is to compute
ZP o HI; P o Z . Qbserve first that, because of Theorem
3.6.iii and the definition of W(k),

(1/2)=y s+s ( —1/2),

which together with (4.27) and (4.36) implies that
/&2)(Xo¹ ) if and only if c (k) are in the domain of
(d/dk)~, „. A straightforward computation using Lemma
4.2 gives

m

(ZPO¹HF¹PO¹Z 'c)~(k) = —iFlg, l
'dcj(k)/dk+ g (yi(k), [Ho(k) —F lg, l

'd /dk ]y„(k))~c„(k)
r=1

m= —iF lg, l
'dc/(k)/dk+ y (gJ(k), [Ho(k)+F lg$ l

'c, —iF lg, 'd /dk]g„(k) )~c„(k),
r=1

(4.37)

which together with Theorem 3.6.iii and Lemma 3.1

proves (4.33) for q =0.
Consider now

2P¹)[~¹P¹]
A computation similar to the above one (Nenciu and
Nenciu, 1982) leads to the conclusion that

Bo¹= f Bo(k)dk,—1/2

and Bo(k) = W'(k)BO(k) W(k) is the restriction to
[ ——,', —,

' ] of an operator-valued function analytic and
periodic in 2,'. Then

H¹, =f [Ho(k)+FBO(k)]dk = f H, (k)dk—1/2 —1/2

and the whole construction can be repeated starting from
H&(k) instead of Ho(k): by Theorem 3.6.iii one con-
structs an analytic and periodic basis in P, (k)At, etc. If,
at the qth step, [y~~(k)] is the basis in P (kMgiven by,
Theorem 3.6.iii, then

Yp „,(k) = (fq(k), [Ho(k)+F lg~ l

—iFlg, l
'd /dk ]g,'(k) )~ . (4.38)

The existence of the asymptotic expansion for Yp(k) fol-
lows from the fact that, during the above construction,
only the regular perturbation theory is used. Moreover,
due to the fact that at the qth step the perturbation is of
order O(F~), the coefficients of the lower powers of F
remain unchanged. Since in H~(k) =Ho(k)+FBO(k) the
perturbation FBO(k) is off-diagonal, up to terms of order
Q2

YF'.„,(k)=(y„(k), [HO(k) —iFlg, l
'd/dk]g, (k))~,

which gives (4.35).

Remark. Suppose that the crystal has a center of inver-

sion. Then from Theorem 3.5 (according to the discus-
sion at the end of Sec. III, one can take ao=0),

Proposition 4. 1. Suppose m = 1. Then

o(HP, ,~)=[+„=2irFlg, l
'r+cPlr=o, +1,+2, . . . ],

(4.39)

where

cp= f Yp(k)dk .—1/2
(4 40)

2/l the eigenvalues are nondegenerate and the correspond-
ing eigenvectors are

g$ „(k)=exp[ iF 'lg, lgP(k) ]ex—p(2irirk ), (4.41)

gp(k)= f" [ Yp(k) cp]dk . —(4.42)

Proof. Observe first that g~(k) is analytic and periodic in

2,' . Consider the gauge transformation
q

Gf (k)=exp[ —iF 'lg, lgP(k)]f(k) . (4.43)

The point is that the domain of (d/dk ) „is invariant un-
der the action of G. A simple computation gives

Xo,s(k) =+so,s(k»
and then

2(yo(k), dyo(k)/dk )~=d (yo(k), yo(k) ) /dk =0,
i.e., for crystals with a center of inversion, the coefficient
of the linear term in the asymptotic expansion of Fp van-
ishes.

The spectral properties of Hp, z are very simple. In or-
der not to obscure the very simplicity of the problem, let
us consider first the simple band case (Avron, 1979).
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G*Hp, frG = —iF lg, l

'(d /dk)„, „+cp,
whereof (4.39) and (4.41) are obvious. R

Consider, instead of (4.43),

Gf (k ) =%(k)exp(ikD )f(k) . (4.47)

(4.45)

and M=X( —,') the monodromy matrix of (4.45). Since
M =M ', it can be written as

M=exp(iD), D =D*, (4.46)

The general case, m ) 1, is similar, but the gauge trans-
formation cannot be constructed explicitly. Let X(k) be
the solution of the differential equation

—iFlg, l
'dN(k)/dk = —Yp(k)X(k ), X( —

—,
'

) = 1

By direct computation

6"'Hp, 6= iF—lg&l '[(d/dk) „+D] . (4.48)

Theorem 4.3. Let 2wd, g be the eigenvalues and an
orthonormal system of eigenuectors of D, respectively
Then

By construction, G(k) is the restriction to [——,', —,'] of a
matrix-valued function analytic and periodic in J, .
Summarizing the above discussion one obtains the fol-
lowing.

o (Hp, fr ) = IA,„J= 2~ F
l g, l

'( r +d, ) l
r =0, + 1, . . . , j= 1, . . . , m ],

and V. THE MAGNETIC-FIELD CASE

( k) =exp(2vrirk )6 ( k)P

is an eigenuector of H~~, fr corresponding to A,„.
All the theory above has been done at some fixed

k J kj o Writing again all indices, the eigenvectors are

1l „J(k„k~)=5(k~ —k~ 0)f„~(k, ) .

A repetition of the argument in the proof of Theorem
3.7. gives the following.

Proposition 4.2.

S 'g„~(x)=exp[2mi(kp 2xp+ko 3x3)]uk, „-(x),

A. The stability of the spectrum

Consider the Hamiltonian

[P —A (x) 8A'(x)]—+ V(x), xER

where A (x)EC'(R ), A,'(x)EC (IR ) and

lcurlA'(x)l ~ 1, l(B/Bx, )[curl A'(x)]kl ~ 1 . (5.2)

According to the general theory (Reed and Simon,
1975; Theorem X.34), (5.1) is essentially self-adjoint on
Co (R ), and we shall denote by H~ its self-adjoint clo-
sure. Note that in this subsection Ho=(P —A ) + V.
The following result (Nenciu, 1986) gives the stability of
the spectrum of Ho.

where uz .„(x) is periodic in xz and x3, and exponen

tially localized in x i.

Using the Fourier transform one can write the "Wan-
nier representation" of HF ~b. Consider, for notational
convenience, the one-dimensional case. If 9:L ( I )

~L [ —
—,', —,

' ] is given by

Vf(k ) = g exp(2~ika/a, )f, , a =na „n=0,+1, . . . ,
a&1

then a direct computation gives the following.

Proposition 4.3.

Theorem 5. 1. Let (a,p)EIR, If (a,p)(:p(Ho) (= the
resolvent set of Ho), then for su+ciently small 8 there ex-
ist

cx ~ exp (pg ~ p, llm cxB —ct, 11m pB —pB~O B~O

(a~, P~)C:p(H~) .

Remark. The result above is of a very general nature; in
particular, it covers the situations met in the theory of
the quantized Hall effect for periodic as well as for non-
periodic systems. The idea behind the proof is gauge in-
variance: for an arbitrary domain D C:R having finite
diameter, there exists a gauge transformation GD such
that GDIIB GD —Ho is small on functions localized in D.

where
1/2

YP, =f exp( 27rika /a
~ ) YP( k—)dk .

Proof. Let AE(ct p), 5&0, (A, —5,A+6)C (a p). We
shall prove that there exist c )0 independent of A, , 5, and
8; g(8 )~0 as 8 ~0, such that for all gH C o (IR ) and 8
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sufFiciently small,

ll(Ha —~)@ll )c&[1—n(B ) ]IIIII, (5.3)

which imPlies [Ha is essentially self-adjoint on Co (IR ) ]

The next step is to control the second term in the right-
hand side of (5.11). According to the Theorem 2.4 in Av-
ron, Herbst, and Simon (1978), there exists 0 ( a ( 1,
6 ( oo such that

(A, —c5/2, A, +c5/2) C:p(Ha), (5.4) II Vit'oil —& II(P —A' —B A')'foll+b ll@oll

IIHa it II
( fillit'll (5.5)

for sufficiently small B. Since Ha is self-adjoint, (5.4)
proves the theorem.

Without restricting the generality (a constant can be
absorbed into V), one can take A, =O. Moreover, it is
sufficient to consider only those gH C o (E ) for which

from which

IIHa Coll —(1 —& &II(P —A' —B A')'atoll —b Il@oll .

On the other hand,

ll(~, —~,' B~,—')Poll'=(ito (I') ~,' B/1,—')'0o)

—llitoll ll(P —A' A')'Poll .

[otherwise (5.3) is satisfied with c =1 and il(B) =0]. Let,
for c=(ci,c2, c3)HIE and L )0 (in this subsection an
orthonormal basis in E is used)

From (5.5), (5.12), and (5.13), it follows that

(5.13)

C(I., c)= Ixl lx, —c, &L/2),

and let yL, ( x ) be the characteristic function of C ( L,c ),

II(~J —~,'—B~,')toll —[(~+b &/(1 —& ) ]'"Ilwoll (5.14)

from which, taking into account (5.8),

i.e.,

1 for x&C(L,c),
0 otherwise . (5.7)

Il@o(P 0') 2(PW) '(P A' B A' W'oil (vL llitoll

(5.15)
lim pL =0,

I —+ oo

Define PL,(x) by the following properties:

QI, &Co" (IR ), 1)QL, (x) )0,
I(a/ax, )y„(x)I

(&, ,

1(a'/ax, ax, )y, ,(x) I

(&, ,

lim yL =0,
L~ oo

(5.8)

and consequently [see (5.11)]

IIHaitoll —IIHa@foll —
vL, llfoll . (5.16)

Let us estimate now the first term in the right-hand side
of (5.16). Consider, for fixed c,

1A'(c;x) = sn(c+sx —sc) h (x—c)ds, (5.17)
0

where

1 for xEC(L,c),
0 for xFC(2L, c) .

Let now go E C~o (IR ), satisfying (5.5). Obviously,

lllioyL, II
is a continuous function of c. Let co be a Point

of maximum for lifo&L„cll Consider Pi=go(1 gsl, ~ )

and repeat the procedure, taking c& to be a point of max-
imum «r llglxL, CII defining Q, =P, (1—

psz, c, ), etc. At

some k ( ~, it k(1 —ysL, ):—0 and the procedure stops.

Consider now

n(x) =curl A'(x) . (5.18)

A'(c;x). (x—c)=0,
curl A'(c; x) =n(x) .

By direct computation, from (5.2) and (5.17)

max IdivA'(c;x)I (constXL .
xH C(2L, c)

(5.19)

(5.20)

(5.21)

A'(c;x) is the vector potential of n(x) in the transversal
gauge corresponding to c; that is,

P, =foAL., j=0
(5.9)

Since by definition n(x)=curl A'(x), (5.20) implies that,
for xEC(4L, c), there exists a twice differentiable func-
tion g(c;x) such that (Spain, 196S)

By construction, itj have

supp/, . C: C(2L, c, ); I P(x) I

( 1 and

125114'Poll —
II foll .

disjoint suppor ts,

(5.10)

A'(x) gradg(c;—x) = A'(c;x) .

Consider the gauge transformation

(G,f )(x)=exp[ig(c;x)P~L, (x)]f(x) .

(5.22)

(5.23)

Now

IIHa Poll —
II @Ha Coll —IIHa @itjoll

—lifo(P'0 )

—2(P@) [(P—A BA')Po]11 . —

(5.1 1)

If suppf C C(2L, c), one obtains from (S.22) and (5.23)

G,*(P—A BA')G,f= [P——A BA'(c; . ) ]f, —

(5.24)

from which
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~ IIHoG." P&II 8—III(P —A'). A'(c; )+ &'(c;.) (P —A')]G.* Pill
—8'III: A'«;. )]'G.* it, ll

.
J J J

(5.25)

Due to (5.20),
3

)+ &'(c )(P —A')]G." @ill ~28 & ll(Pk —~k)G.* O, ll
m»

1 ~1,'(c, ,x)l

+ m»
C(2L, c - }J

(5.26)

The factors containing (Pk —Ak ) are controlled by Ho. Indeed, the repetition of the arguments leading to (5.12) and
(5.13) gives

ll&P
—~')G.", i)', ll' —110, II II&p

—A')'G:, 0, II
—If, I

& IIHoG.*, 0, II+b lit, II)/(1—

~
I: IIHoG.* Pill+(6+1)Ilia'i 11]'/(1 —a ) (5.27)

and then

A'«, ;x)l(1 —a) '"I:IIHoG.".P, ll+(b+1)IIW, II]
J C(2L;c. ) J

—I:8' m»
I A'(c, x)l'+8 m» ld»&'(c, x)1]III, IIC(2L;c. ) C(2L,c. )J

(5.28)

From (5.2) and (5.17), (G, nf )(x) =exp[ —i(B R x) a/2]f(x) (5.34)

maxc(2t c) I
A (c;X)

I
coilstXL (5.29)

Since by assumption (
—5,5)(:p(H ), for all f H Co (IR ),

IIHofll ~ 5llf II
and then for all sufficiently small 8 and

L =8 ', one obtains from (5.30)

Inserting (5.21) and (5.29) in (5.28), one obtains

IIHiig 11~ (1 —constBL )IIHoG,* P II

—const(BL+8 L ) .
J

(5.30)

(T, Bf )(x)=exp[ —i(8 Ax) a/2]f(x —a) . (5.35)

By simple computations,

[T, B,HB]=0 (5.36)

T, B Tb 8 —exp[i B.(a h b) /2] T,+„B

are gauge transformations and T, are the usual transla-
tions. In other words,

IIH&@ II [5(1—constB '
)
—constB '

]ll@ II

~6(l —constB' )11$.11
. (5.31) In particular,

la, b; BTa+b, 8 (5.37)

Observing that pito=g" og and using the disjointness
of the supports of gi, one obtains from (5.31)

IIHa Atoll —&(1—constB '")lldfoll

T 8 T g

whereof, taking into account that T, z are unitary,

T g T 8 T Q e

(5.38)

(5.39)

which, together with (5.10) and (5.16), proves (5.3).R

B. The one-band Hamiltonian

The Hamiltonian considered in this subsection is

He =(P—Bi) x/2) + V(x), (5.32)

where Vis periodic with respect to I". In what follows, B
denotes the magnetic-field strength, i.e. , B=Bn, Inl = l.
By T, ~, a& I we denote the magnetic translations II b g I BHBPB (5.40)

From (5.37) and (5.38) it follows that [ T, ii],E)- form a
projective representation of the group I of the discrete
tlallslatlolls. Note tllat T~ B Tb i'd% Tb ii T~ B.

Let a.
o be a simple isolated band of IIo. By Theorem

5.1, for su%ciently small 8, H~ has an isolated band o.~
coinciding with o.

o in the limit 8~0. As before, I'I,
denotes the spectral projection of II& corresponding to
Og, and

T, B=G, ~T

where

(5.33) Theorem 5.2. There exists Bo )0 such that, for
0&8 (Bo,

i. There exist wii(x), ct )0 such that
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and

exp(alxl)wB(x)HL (E ), (5.41) Lemma 5. l.i. If u, u are exponentially localized, then,
uniformly in B,

I Ta, BwB =wa, B I aEI

is an ovthonormal basis in PBL (IR ). Moreover,

w~ B(x)= w~ n(x)

and if the crystal has a center ofinvevsion, then

w, n( —x) =+w, a(x)

(5.42)

(5.43)

(5.44)

f(a) =
I & u, T. Bu & I (5.51)

is exponentially localized.
ii. If fCl (1 ) and v is exponentially localized, then,

uniformly in B,

(5.52)

iii. Let w be the Wannier function corresponding to cvo

Then fov sufficiently small B theve exists 13)0 such that
fov a&0

H b,B,B HBw, B X V,b;BhB( b) b, B
bar

where

(5.45)
l&w, T, w &I cB exp( —13 al) .

IffEl (I ), then

(5.53)

hB(a)=&HBwn, w, a& . (5.46) B)llf II' — Xf(»T., Bw '((1+cB)llfII' .

There exists P) 0 such that

exp(Plal)hB(a)ei "(1 ),
hB(a)=h B(a), hB(a)=hB( —a),

and if the crystal has a center of inuersion,

hB(a)=h g(a)

iii. hn(a) has an asymptotic expansion in 8,

(5.47)

(5.48)

(5.49)

(5.54)

iv. If u(x), f(a) are exponentially localized, then, uni
formly in B,

u(x) =gf(a)(T, Bu )(x)

is exponentially localized.
v. If u is exponenetially localized and fEL (IR ),

& T,u,f & I' (c Ilf II' .

with

hB(a)=ho(a)+B. h, (a)+ .
Proof i. Observe that if y =minI n, PI, ct, /3) 0, then

exp( —a
I
x

I )exp( —Pl x —a
I ) ( exp( —y I

a
I ),

h, (a) =
& (P h x+x h P)w, w, &

i g &
w—„,(x hb)w, &ho(b) .

bEI-
(5.50)

If the crystal has a center of invevsion, then the coefficients
of the odd powers ofB uanish

Proof. We start with some technical preliminaries. A
function u(x) will be called exponentially localized if
exp(alxl)u(x)HL (E ) for some o. )0. Similarly, g(a)
will be called exponentially localized if
exp(alai)g(a)&l "(1 ). A finite number of "localization
lengths" o, will appear during the proof; their minimum
is strictly positive. A finite number of constants will ap-
pear during the proof; for the sake of simplicity we shall
denote aH of them by the same letter c. In what follows
"for sufFiciently small B" is a shorthand for "there exists
Bo such that uniformly for 0 (B (Bo." Since the proof
is somewhat complex, in order not to obscure the main
ideas, some of the technical points are stated as lemmas;
their proofs can be skipped at the first reading. The
proof follows essentially Nenciu (1989).

The first lemma is of purely technical nature and de-
scribes some simple properties of the exponentially local-
ized functions. We shall abbreviate g, ~ r . by g~.

and then

f(» I
—exp( —y I

a
I ) llexp«l I » II ll exp(PI I » II

.

ii Let g (a) .=
I & u, T, Bu &. By the Young inequality

&f(»T., Bv (&If(»l lf(b) lg(a —b) ( llgllillf II'
a, b

for O. HIR and

gf(a)T, aw 2=+f (a)f(b)& T, Bw, Tb aw &

a a, b

X lf(»l
a&b

x If(b)
I I & w, Tb ., Bw & I

.

The use of (5.53) and the Young inequality prove the left

and, by i , Ilgll, ( ~. .
iii Using . lexp(ia) —1

I

(
Ical

& w, T,w & =0 for aAO,

l&w, T. Bw&l B(l l&aI Iw, T.w & .

Due to sup &ay exp( —ay)=(ea) ', lxlw is exponential-
ly localized (with a localization length of, say, half the lo-
calization length of w), and then, by i
k(a)=&

I lw, T,w & is exponentially localized. As above,
la k(a) is exponentially localized. Using the fact that, by
(5.37) and (5.39) I & T,,aw, Tb, aw & I

=
I & w, Tb —,, aw & I
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inequality in (5.54). The proof of the right inequality in
(5.54) is similar.

iu .Let a, /3 be the localization lengths of f and u, re-
spectively. Then, for )/ ~ min[ cz/2, /3],

llexp(1' 'I )ull &exp( —~2lbl/2) Iexp(o'lbf )f(b)lllexp(PI —bl )Tbu II
—cllexp(PI I )ull .

u. Let, for P) 0, s(x)=exp(/3lxl)u(x). Then by the
Schwartz inequality

I(T.u, f &I' lisll'& Ifl, exp( —2/3I —al)ff I &,

whereof

Va, B Ta, B~

Ga, b=~ub, a u~, B& .

By Lemma 5.2, 6 HW,

6 b =I) b BgB(.a b)=11 b. ii( w, T b iiw &

(5.63)

(5.64)

(5.65)

~cllfll' +
Obviously gII(0) =1, and, by Lemma 5.1.iii for a&0 and
8 suIticiently small,

Most of the algebraic structure we shall use is con-
tained in the following simple lemma.

Lemma 5.2. Let K be an operator such that [T, B,K]=0.
and f eX)(K). Then

fgII(a) f
~c8 exp( —/3faf), /3) 0 .

Note that 6 is Hermitian. Let 2 be defined by

6=1—2

Obviously, A HW, A, b =I), b.na(a —b), with

(5.66)

(5.67)

(KTb Bf, T, Bf & =I), b. iikifi(a —b),
u)here

kfB(a) = (Kf, T, nf & .

Proof. Use (5.37) and (5.39).R

(5.55)

(5.56)

0, a=0,
gB(a), a&0 .

By (5.66), for sufficiently small 8,

so that, for sufficiently small 8, ll
/1

ll
( 1 and

(5.68)

(5.69)

Consider the following "twisted" convolutions in
»(r):

6=1—2 &c&O, (5.70)

(f g)(a)=gil, b.Bf(a—b)g(b) .
b

(5.57)

(fClg) h=f (g h),
and the Young inequality holds,

(5.58)

The convolution has properties similar to the usual
ones. In particular, it is associative,

G
—i/2 1+~ (2k —1)" ~k

k!2' (5.71)

Due to (5.62), 6 '/ CJN, ,

From (5.70) it follows (Achieser and Glazman, 1977) that

[ u II ]a& 1 Is a (IlolloI'tlloI101Illal) basis 111 QBL (H ) (tile
closed subspace generated by l u, B ],~ i-). Since

ll
3

ll
( 1,

one can define

llf gll, —llfll, llg II, s '=p '+Il

Note, however, that it is not commutative, which makes
the corresponding algebra a highly nontrivial object.

Let m (a) be exponentially localized and M be the ma-
trix

M, b=il, b. Bm(a —b) .

Let Af be the set of matrices of the form (5.60). Easy
computations show that

G
—I/2, —1/2( b )

- I /2 (2k —1)" ~r—I/2( ) g +y " Elk(

1

Lemma 5.3. For sufficiently small 8,
lg-'"(a) —S„i~8k(a)

with k (a) exponentially localized

(5.72)

(5.73)

and M, %HA, implies MXHJM and

(M%), b=Ii, b. a(m n )(a—b) .

(5.61)

(5.62)

Proof By (S.65) and (5.68) .(here e means the usual con-
volution)

Consider now the Gramm matrix ( Achieser and Glaz-
man, 1977) corresponding to

~ gc "8"[exp( —/3I.
I
)]"".

1

(5.74)
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Let e(k) be the inverse Fourier transform of exp( —P I ),
1.e.,

Let us compute now QBHBQBg, B. By (5.36) and
Lemma 5.2,

e(k)=+exp(ik a —Plal) . (5.75) QBHBXa, B g (Xb,B7HBXa, B )Xb, B
b

gc "8"[e(k)] =cBe(k)[1—ce(k) ]
1

(5.76)

Since le(k)l ~c ( cc in a complex neighborhood of E,
the right-hand side of (5.76) is, for sufficiently small 8,
analytic and periodic in a complex neighborhood of R .
Then, by the Paley-Wiener theorem, the right-hand side
of (5.74) is exponentially localized and the proof is
finished. E

By Paley-Wiener theorem for Fourier series (see, e.g. , des
Cloizeaux, 1964), e(k) is analytic and periodic in a com-
plex neighborhood of R . The inverse Fourier transform
of the right-hand side of (5.74) is

, b;Bh B(a b)Xb, B
b

(5.79)

Lemma 5.5.i. Let g be a real differentiable function with

Igradql ~y .

Then, for sufficiently small a and 8,

(5.80)

llexp«l. I ) [QB,it ]exp( —~
I I ) II cy . (5.81)

which is nothing but the fundamental formula (5.45) for
QBHBQB

We turn now to the relation between QBHBQB and
PBIIBPB. The next lemma is again of technical nature.

Consider now
—1/2

+a,B XGa, b Ub, B
b

Sinceg ' Hl'(I"), y, B are well defined.

(5.77)

ll&L, o(Po QB ) II
—cBL (5.82)

Proof. Due to the fact that

ii. Let gL o be the characteristic function of C(L,O)

[see (5.7) ]. Then

Lemma 5.4. For sufficiently small 8,
i. [y, Bj,~r is an orthonormal basisin QBL (E ).
~ ~

+a, B Ta, B+B& +B=+O,B '

(5.78)

iii. y~ is exponentially localized. Moreover,

IgB(x) —w(x)l ~Bu(x)

with u (x) exponentially localized

[QB, it') =QBit'(1 —
QB )

—(1 —
QB )QQB

it is sufFicient to prove that

Ilexp(al l)(1—QB)i)7QBexp( —ctl I)II ~cy . (5.83)

Let fHL (E ), h =QBexp( —al l)f, h, =(y, B,h ). Us-
ing the orthogonality of y, B, one obtains

(1—
Qii )it7h =gh, I [it7 —itj(a)]y, B

Proof l. Ua B=gbGa' blab B and IU, B ]cubi- is a basis iil

QBL (E ). Now by (5.77) and the fact that G '~ is
Hermitian,

+a87XbB) X bd GdcGca ~ab
C&d

ii. By (5.38) and (5.65)

Ta, B+B XGo,b Ta, B Tb, Bw
b

X la, b;Bg ( b) a+b, Bw
b

—1/2XGa, c Tc, BW Xa, B
C

iii. By Lemma 5.3, for some /3) 0,

IyB(x) —w(x)l =
I gg '

( —b)Tb Bw(x)l
b&0

~ cBg exp( —PILI ) I T„w(x) I

b&0

and the application of Lemma 5.1.iv. finishes the proof. R

y(Xb, B I. P e(a)]X,B)Xb,B]
b

Taking into account (5.80)

I(1 —Q, )gh (x) I yg lb. I I I
x —a

I IX., B(x) I

+&(IXb,BI I.—a IX.,BI) IXb, B(x)II .

Since lxl IyB(x)l is exponentially localized, using Lemma
5.1.i and Lemma 5.1.iv, one obtains

I exp(tzlxl )(1—
QB )@h,(x) ~ @+exp(alai ) lb, I T,u (x) .

Now exp(alai)lh, l

~ ( Iy, Blexp(al —al), Ifl) and the
use of Lemmas 5.l.ii and 5.1.v finishes the proof of (5.83).

ii Denoting f, =. (w„f ), f, B=(y, B,f ),

&L,o(Po —
QB )f

X(fa fa, B)+L,OWa+Xfa, BXL,O(Wa +a, B)

(5.84)

Using Lemma 5.4.iii,

Rev. Mod. Phys. , Vol. 63, No. 1, January 1991



118 G. Nenciu: Dynamics of band electrons. . .

If, f—, al =
I (f, T,w —G, aT, wa ) I I(f, T, (w —xa) I+ I(f, [1—exp[ —i(8hx). (a —x)/2]]T,xa) I

—llf II& llw
—xall+B lal II I Ixall) —cB(1+lal ) llf II

. (5.85)

On the other hand,

llxL, ow II —sup, xi, o(x)exp( 2Plx al ) Ilexp()lllxl )w II

xEIR

Since by assumption (
—5, 6) A o (Ho ) & cro=E,

IIHOG, *, ,sf, I
—IIHo&1 —Po)G.*, , a fjll

«c exp [
—2P dist[a, C(L, O) ] I . (5.86) ~&ll(1 —Po)G.* afjll . (5.90)

From (5.8S) and (5.86) the first sum in the right-hand side
of (5.84) is bounded by cBllf IIL . Analogously, using
Lemma 5.4.iii,

llxLo(w. x. 8)ll —cB&1+lal)exp[ —13dist[a, C(L,O)]I,
whereof

2 If,a I llxr„o(w x, a)ll —cB llf IIL

Now

ll(1 —Po)Gc, a fj G . , 8(1—Qa)f, II

=ll&Po Qa)T , ,af —II

and, since suppT, af C:C(2L,O), the application ofj F

Lemma 5.5.ii gives

and the proof of (5.82) is finished. ~
II&1

—Po)G.*, af, ll
~ II(1 —Qa)f, ll

cBL'.— (5.91)

The next lemma is the technical core of the proof of
Theorem 5.2.

Lemma 5.6.i.

Observing that f =P f=PjX2L, f, from Lemma 5.5.i,
(5.8), (1 —Qa)f =f, and the definition of c, it follows
that

lim dist[a (QaHaQs), cro] =0,
B~O

(5.87)
Qa )fq II —& 1 81'I, )Ill II

. (5.92)

lim dist[o ((1—Qa )Htj(1 —Qa ) ),o (Ho ) ho o] =0 .
B~O

(5.88)

ii. For sufficiently smal/ B,

II&1
—

Qa )Ha QB II
—cB .

Proof i. The proofs of (5.87) and (5.88) are similar: mim-
ic the proof of Theorem 5.1. Consider the example
(5.88). Let fEX)(Ha) A(1 —Qa)L (IR ). The whole con-
struction in the proof of Theorem 5.1 can be done for f
(the sum over j contains an infinite number of terms, but
this does not affect the proof) and one obtains

IIHafll- IIHabfll —
s illfll* lim s L

Taking in the case at hand G, =G, 8 and then

G, 8(P —Bhx/2)G, 8=P—Bh(x —c)/2,
one obtains [see (5.30)]

IIHaf, ll
—&1 —cB)IIHoG,* sfjll —c(BL+B L )llf, ll

.

(5.89)

Xlg. l'«(1 —c» 'llgll'. (5.93)

Hag =gg, H8T, aw =gg, T, 8(Ho+BH( )w . (5.94)

By Thoerem 3.7, H& w is exponentially localized, and then
by Lemma 5.l.ii and (5.93), for sufficiently small B,

gg, T, 8H, wll cBllgll cBllf (5.95)

Further

Taking B sufficiently small and L =B ', one obtains
from (5.89), (5.90), (5.91), and (S.92)

IIHsf, II
~ ~(1—cB '")llf, II

and from this point the proof of (5.87) coincides with the
proof of Theorem 5.1.

ii Let f .EL (R ), g=Qaf =g,g, T, aw. By Lemma
5.1.iii, for sufficiently small B,

gg~T, aHOW =gg~ho( —b)T, 8Gb 8Tb aw
a, b

ggaho( b)9a, b;8Ta+b, aw+Qgaho( b) a 8( b 8 ) b, a (5.96)
a, b a, b
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Since the first term in the right-hand side of (5.96) be-
longs to QBL (E ), it is sufficient to estimate the second
one.

+ho( —b)(Gb a —1)Tb aw(x)
b

From Lemma 5.7, for sufficiently small o;,

ffexp«l I ) Uaexp( —al.
I ) II

& c .

Consider now

wa B
—UB+a, B& wB =wO, B

(5.102)

(5.103)
-»lho( —b)I Ibl ITbw(x)l »(x),

where u(x) is exponentially localized by Lemma 5.1.iv.
Then by (5.93) and Lemma 5.1.ii, the second term in the
right-hand side of (5.96) is bounded in norm by cBfff ff,

and this together with (5.94) and (5.95) finishes the
proof. ~

Lemma 5.6 allows the use of regular perturba-
tion theory (Kato, 1966) by considering QBHB Qa
+(1—Qa)HB(1 —Qa) as the unperturbed operator and

QBHB(1 —Qa ) + ( 1 —Qa )Ha Qa as the Perturbation.
Denoting

R, (z) =Qa(HB —z) 'Qa,

R, (z) =(1—Qa )(Ha —z ) '(1 —Qa ),

Due to (5.101), (5.102), and the fact that U is unitary,
(5.41) and (5.42) are fulfilled and I w, BI,~r is an ortho-
normal basis in PBL (E ).

From (5.97) and Lemma 5.6.ii, for su%ciently small 8,

gall —c& &1 . (5.104)

From ffgay, Bff= 1, [Qa, T, B]=0, and (5.104),
'= IIPBX., BII

= IIPBXO, BII
) 1 IIPB

—
Qsll » an«hen

one can define

P., B=&~Br., B=&T., B~BXO,B . (5.105)

By construction, If p, a II
= 1. Moreover, from the fact that

yo B is exponentially localized and from Corollary Al (see
Appendix), it follows that p, a is exponentially localized.
Consider

V12 QBHB( 1 QB ) & V21 ( 1 QB )HBQB

Pa =Qa+(2vri )f [R2(z) V21R1(z)

+R, (z)Vi2R2(z)]dz+O(8 ),
whereof, for sufficiently sma11 B,

Qall &c

(5.97)

(5.98)

Fa, b &Pb, a&Pa, a ~ )a,b;Bfa

where

fB(a)=&no, B T., ai20, B~ .

Obviously fa(0) = 1 and for aAO

fa(a)=&'&(Pa —
Qa)XO, B Xa, a& . (5.106)

Lemma 5.7. There exists a) 0 such that, for sufftciently
small B,

Ifexp(a I I )(Pa —Qa )exp( —a
I I )

I I
& 1 .

Let p) 0 be the localization length of (Pa —Qa)go B.
Then, from (5.104)

IlexP(131 '
I &2)(PB Qa )Xo,all' —IlexP(1t31 I )(Pa Qa)XO, BII .

Proof. Il(PB —
QB)XO, BII

& c& (5.107)

exp(al. l)Qaexp( —al I) —Qa

f exp(tl I)[I I, QB]exp( —tl I)« .

The application of Lemma 5.5.i gives for a small enough

Starting from (5.106) and (5.107) and repeating the
analysis for 6, one finds that, for F)0, F ' can be
defined, and the analogue of Lemma 5.3 holds true.

Consider

ffexp(al f )Qaexp( —al f )
—ga ff

& ca . (5.99)
Wz B

—~i'~ b Pb B, Wg =WP B
b

(5.108)

From (5.98), (5.99), Corollary A. l, and the triangle in-
equality it follows that

Ilexp(al'I)(PB Qa)exp( al I)II &c(a+&) ~
Let Ua be the Nagy transformation matrix (Kato,

1966) relating Qa and Pa.. Kf(x)=f (x) . (5.109)

Then the repetition of the proof of Lemma 5.4 shows that
(5.41) and (5.42) are fulfilled and I w, a],~„ is an ortho-
normal basis in PBL (E ).

Consider now the symmetry properties of w, B. Let K
be the time-reversal operator in L (E )

PB UBQB UB

Since [PB,T B]=[QB,T B]=0,

(5.100)

U =[1 (P —Q ) ]
'~ [P Q —+(1 P)(1—Q )] . —

U is unitary and

A simple computation leads to

KHBE =H

ET BK —T,

and, from Theorem 3.7,

(5.110)

(5.111)

[Ua, T, a]=0 . (5.101) (5.112)
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One can easily verify that

Ku, B =u, B, gB(a)=g B(a)

and, due to g, b.B=g, b.

(5.113)

Using (5.43) and (5.105), from (5.46) it follows that

hB(a) = (KHBwB7Kwa B ) = (H Bw B,wa B )

=h B(a),

from (5.110) and (5.114), KPBK=P B, KQBK=Q
which implies

AU~K = U (5.115)

which together with (5.114) gives (5.43).
Suppose now that the crystal has a center of inversion,

i.e., if 0 is given by

i.e., the first equality in (5.48) holds true. Now, from the
fact that HB is self-adjoint and from (5.36) and (5.39),

hB(a) —(HBwB, wa, B ) ( W a B~HBwB ) —hB( a)

i.e., the second equality in (5.48) holds true.
Similarly, if the crystal has a center of inversion, from

(5.44)

hs(a) =hB( —a),
Of (x)=f (

—x), (5.116)

then (see the remark following the proof of Theorem 3.7)

OH&O =H&, OP&O =PB,Ow =+w .

As above, by straightforward verifications

(5.117)

OT, BO=T, B, Ou, B=u, B, OQBO=QB,

g'B(a) =gB( —a), OX, B=+X,B, OUBO = UB,

which implies (5.44), and the proof of the first part of the
theorem is Anished.

The relations (5.45) and (5.46) follow at once from
(5.36), (5.37), (5.39), and (5.42). Due to Lemma 5.1.i, to
prove (5.47) it is sufficient to verify that, for B sufficiently
small, HB w 8 is exponentially localized. This follows
from

HBwB=PBHBPBwB=(2nt )
' J z(HB —z) 'dzwB

C

and Theorem A. l (see Appendix).

h (a)=(g '~ h g
'~ )(a), (5.118)

where

h B( a)=( HBw, T, Bw) .

Indeed, note that

UB =PBQB+ (1 PB )(1—QB—)+O(B ) .

On the other hand, since R z(z) is analytic inside C,

(5.119)

(5.120)

which together with (5.48) gives (5.49).
Consider finally the asymptotic expansion of hB(a).

Clearly, U, B has an asymptotic expansion in B. Then Oz
has an asymptotic expansion, and by (5.97) PB has also
an asymptotic expansion. Now (5.98) and (5.46) imply
the existence of the asymptotic expansion for hB(a).
Note that, due to the fact that the perturbation is off di-
agonal, up to terms of order B [see (5.79)],
h B(a) = h rB(a), i.e. , up to terms of order B,

PBHBPB=(2iri) 'f z(Hii —z) 'dz=QBHBQB — (2in) ' I z(R)V)2R2+RiV2)R))dz +O(B ) .
c C

(5.121)

From (5.120) and (5.121) it follows that

QB UB BHBPB BQB QBHBQB+o(B )

Vf(a)=(w, B,f ) .

By direct computation, VPBH~PB V '=H,
il ~.S

Now

(WB~HBwa B ) (+0 B~QB UBPBHBPBUBQB+a, B)
Consider now the following bounded operator in

L(E):

Corollary 5. 1. PBHBPB.PBL (E )~PBL (E ) is unitary
equiualent to the following operator in l (I"):

H, ft Bf (a) =gilb, .BhB(b —a)f (b) .
b

(5.123)

Proof Consider the operat. or V:PBL (IRi)~l (I ):

which gives (5.118).
Using (5.118) and (5.119), one obtains (5.50). The fact

that the coe%cients of the odd powers of B vanish follows
from (5.49).~

Hpo Bf(x) = g hB(c)exp[i(P —8 px/2) cjf(x) .
cEl

(5.124)

Theorem 5.3. The spectra of (5.123) and (5.124) coincide
as sets.

Proof. Let, for r E Q,

I,= I a, =a+r~r e Q, a & I I .

Note that IR = U I „and then L (E ) can be written as a

direct integral of l (I,):
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Observe that exp(iP c)f(x)=f(x+c) and
IP c, (Bhx)/2]=0. It follows that Hpo n, as given by
(5.116), is nothing but

HPQ 8 f Heff 8 rdr (5.126)

Since the spectra of H, & z, are independent of r and
coincide with the spectrum of H,zz, the Theorem fo1-
lows from the fact that by (5.126) the spectrum of Hpo ii
equals the union over Q of H, ff B R

Let us remark that, if

XB(k)= g hii(b)exp(ik b),
beI

then Hpo ii is the Weyl quantization of Aii(k). From the
proof of Theorem 5.3 it fo11ows the spectrum of Hpo 8 is
infinitely degenerate with respect to the spectrum of
Heff, B

Finally, let us prove (2.31). This follows from (5.99)
and the fo11owing.

Lemma 5.8. For all 8 &0,

IIQa Poll =1 . (5.127)

Proof. The argument in the proof of Lemma 5.1.i gives

I ( vB „w,+b ) I

& const &&exp( —albl ) . (5.128)

By the Riemann-Lebesgue lemma (Reed and Simon,
1975), for fixed b

(5.129)

On the other hand,

IIQB
—Po II - 1 —inf g I ( v B,.w. +b & I' .

aEI
(5.130)

From (5.128), (5.129), and the Lebesgue-dominated con-
vergence theorem, the second term in the right-hand side
of (5.130) vanishes. ~

Vl. OTHER APPROACHES

A. The Stark-Wannier states

The Stark-Wannier states can be described not only (as
in Sec. IV) in terms of spectral concentration, but also by
resonances understood as complex poles of the analytic
continuation of certain matrix elements of the resolvent
to the nonphysical sheet. This point of view, having its
roots in the famous Breit-Wigner formula, has been very

L (R )=f l (I,)drl f,(r)=f(r+a)] .

In each l (I,) consider the operator

H, ff B,f(a, )

= g expl —iB (a, bc)/2]hB(c)f(a, +c) . (5.125)

successful in the atomic case, where a very detailed
description of the Stark effect in atoms and molecules ex-
ists (see, e.g., the reviews by Hunziker, 1980, and Herbst,
1981).

As for the periodic (one-dimensional) case, one of the
first results in this direction was obtained by Herbst and
Howland (1981),as follows.

Suppose V(x) is the restriction to R of a function ana-
lytic in Ilmzl &ao and satisfies a growth estimate. Then
the "translated" Hamiltonian

HF( ia—)= —d /dx + V(x ia—)+F(x —ia), lal &ao

inhas its essential spectrum
R i aF =—

I A, H C
I
A, =x i aF—, x H IR I .

The point of this result is that if HF( ia) —has some
discrete spectrum outside K—i aF, then due to
IHF, T, ]=aFT, , this discrete spectrum has the form of
Stark-Wannier ladders of complex eigenvalues. The ex-
istence of the discrete spectrum for H~( ia) ha—s been
proved by Agler and Froese (1985) for the case when
V(x) is a trigonometric polynomial and the field is
sufficiently large. The last condition is very unpleasant
from the physical point of view, and it will be very nice
to remove it.

Much more detailed results have been obtained recent-
ly by Bentosela and Grecchi (1991) and by Combes and
Hislop (1990). Using the ideas recently developed about
shape resonances in quantum mechanics —spectral defor-
mations, geometric perturbation theory exponential de-
cay estimates of eigenfunctions (Combes et a/. , 1987;
Hei''er and Sjostrand, 1986; Hislop and Segal, 1989)—
they were able to prove (in the semiclassical limit) the ex-
istence of the Stark-Wannier resonances as well as to ob-
tain bounds on the imaginary part of the resonance posi-
tion, leading to exponential bounds on the width of the
resonances for some regimes of the fields (e.g. , Combes
and Hislop require F) consth', 0&a & 1). Even more
precise results have been obtained by Buslaev and Dmi-
trieva (1991): by pushing very far the semiclassical
method (see Sec. VIc) they were able not only to prove
the existence of the resonances but also, under some sim-
plifying assumptions, to give an asymptotic formula for
the imaginary part of the resonances.

Alternatively, Avron (1979) has proved for general po-
tentials (i.e., for potentials without analyticity properties)
that, for comp/ex Ualues of F, Hz has only discrete spec-
tra. This result has been extended recently by Bentosela
et al. (1988) to a very large class of potentials (including,
e.g. , 5-like potentials). Moreover, they proved that the
Stark-Wannier states are analytic as functions of F in a
disc, IF iFo I &Fo, Fo )0, t—angent to the real axis at the
origin. An asymptotic expansion up to the second order
is also given. Unfortunately, again, the physical values of
the field lie outside the region for which the results are
proved.

Using the Livsic matrix theory (see, e.g. , Howland,
1975) and the Fermi golden rule, Avron (1982) proved,
for potentials with a finite number of gaps, that the width
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of the Stark-Wannier resonances is exponentially small.
Moreover, he discovered that the widths of the Stark-
Wannier resonances have an intrinsically complicated be-
havior: the width oscillates over different orders of mag-
nitude as the field changes slightly. One can understand
these oscillations as a consequence of a resonance
phenomenon. Suppose that the zero-field Hamiltonian
has many (generically an in6nite number) isolated bands.
Then at nonzero fields, if the interband coupling is
neglected, the spectrum contains the union of the corre-
sponding Stark-Wannier ladders of eigenvalues depend-
ing on F [see, e.g. , (2.19)]. The interband coupling turns
all these eigenvalues into resonances. Consider two reso-
nances with quite different widths y, &)y2, whose posi-
tions cross each other as the field changes. While away
from crossing, the widths are on different scales; at cross-
ing, via the "interaction" given by the interband cou-
pling, both resonance will have widths of order y, . Now
if one takes into account that, generically, the number of
the Stark-Wannier ladders is infinite so that the "frequen-
cy" of the crossing is in some sense dense, one obtains the
complicated behavior of the widths as the field changes.
Related results and numerical computations are con-
tained in Bentosela, Grecchi, and Zironi (1983). For
more details the reader should consult the above-cited
paper which contains a nice discussion of the subject.
Let us note that the main open problem of the subject is
to prove that the width of the Stark-Wannier reosnances
is exponentially small for the general case.

The approaches described above are in some sense
complementary to the result described in Sec. IV. While,
from the conceptual point of view, the resonances viewed
as complex poles have the advantage of being clearly
defined, the spectral concentration approach developed
in Sec. IV seems to be superior from the practical point
of view. In particular, it gives explicit algorithms for the
computation of the positions of the resonances and of the
bounds for their lifetimes, for physical values of the
fields. One can hope that a combination of the two ap-
proaches will produce in the near future results as precise
as the existent ones for the atomic case.

B. The Peierls-Onsager effective Hamiltonian

The Peierls-Onsager effective Hamiltonian is discussed
in recent papers by Bellissard (1987b) and Helffer and
Sjostrand (1989a, 1989b). Their effective Hamiltonians
are somewhat different from the effective Hamiltonian
given in Sec. V.

Bellissard defines the effective Hamiltonian by the
Feschbach projection method originating in nuclear
physics (Feschbach, 1958).

Let H be a self-adjoint operator in &, P an orthogonal
projection in &, %'=P&, Q=(1 P). Suppose tha—t
PHQ+QHP is bounded with respect to PHP+QHQ.
The resummation of the Neumann series for (H—z)'
(with PHP+QHQ as the unperturbed operator), at Imz
su%ciently large, gives

(H —z) '=R2(z)+ [1 R—2(z) V2t ][H,tt(z) z—]

X [1—V)qR2(z)], (6.1)

where R, (z) =(PHP —z)
V,2=PHQ, V2) =QHP, and

R (z)=(QHQ —z)

H",~(z) =PHP —V, ~R 2 (z) V2, W ~%' . (6.2)

The formula (6.2) gives at once the Feschbach lemma.

Lemma 6. 1. Let A, HIRAp(QHQ). Then A, belongs to the
spectvum of H if and only if it belongs to the spectvum of
H,~(X).

In this way the spectral problem for H has been re-
placed by the spectra problem for H, tt(z) in the subspace

where R+A —+A is given by

R+f=Pf
and R =R+

I emma 6.2. Suppose

E (z)
P '(z)=

E+ (z) H,„(z)—z

exists Then . (H —z ) exists if and only if
[H,~(z) z] ' exists —Actually, .

(H —z) '=E(z) E(z)[H,q(z—) z] 'E+ (z), —

[H,tt(z) z] ' = —R+ (H ——z ) 'R

Proof. Direct verification. ~
Again, by Lemma 6.2, the spectral problem for 0 is re-

placed by the corresponding spectral problem for
H, ttF(z) in A.

To apply the above results to the magnetic-field case
one takes g(= JVn (see Sec. II E). One can prove (Helffer
and Sjostrand, 1989a, 1989b) that Lemma 6.2 can be ap-
plied. Then, written in the (nonorthogonal) basis
[UB,],~r, H,z (z) take a form similar to (2.40), with hn
depending on the spectral variable z. Very recently, along
these lines, Helffer and Sjostrand (1989)c) were able to
construct an effective Hamiltonian in order to treat the
de Haas —van Alphen effect under more general condi-
tions on the zero-field Hamiltonian: the nondegeneracy of
A.o(k) is required only a small neighborhood of the Fermi
energy.

Let us stress that the spectral problems for H,z (z) in
the subspace A are nonlinear: the operators themselves

The Grushin (1970) method, used by Helffer and
Sjostrand, is (in this context) related to the Feschbach
method. Consider the Hilbert space &%A and the fol-
lowing operator in it:

H —z A
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depend on the energy. For methods to cope with such
nonlinear spectral problems we refer the reader to Helffer
and Sjostrand (1988). On the other hand, as already stat-
ed the Grushin method works also in the case of the
overlapping bands, which is the most common case in
real crystals. A review of the work of Helffer and
Sjostrand is contained in the recent CIME Lectures by
Sjostrand (1989).

Let us mention that the Feschbach scheme has been
used in the Born-Oppenheimer approximation problem
(Combes et al. , 1981). Also in this case it is possible to
obtain, via the perturbation theory, a "true" effective
Hamiltonian, i.e., an effective Hamiltonian which does
not depend on the energy.

C. The semiclassical approach

Another route to the "effective Hamiltonians" is based
on semiclassical techniques. This approach relies heavily
on the modern theory of pseudodifferential and Fourier
integral operators, and a detailed exposition is outside
the scope of the present review. At the formal level this
approach is beautifully described in a recent review by
Buslaev (1988). Rigorous results for the magnetic field
case were obtained independently by Guillot, Ralston,
and Trubowitz (1988). One can expect more results in
the near future.

There are many (essentially equivalent) ways to under-
stand these methods. The main point is that [for the sake
of simplicity we shall discuss the magnetic field case, but
the scheme in Buslaev (1988) is general] for 8 ~0 there
are two spatial scales in the system: the first one of the
order of the linear dimensions, a, of the periodicity cell
and the second one of order a/B, on which the vector
potential varies appreciably. This makes possible the use
of the method of two-scale expansions (homogenization)
(see, e.g. , Benssousan, Lions, and Papanicolaou, 1978).
This amounts to considering, in the first approximation,
x and Bx as independent variables. At a more precise
level, instead of the eigenvalue problem

[( i grad„——Bn 6 x/2) + V(x)]u(x) =Eu(x),
one has to consider the eigenvalue problem

[( i grad„—iB—grad„—n h y/2) + V(x)]u(x, y; 8)
=Eu(x, y;8) .

(6.3)

(6.4)

u(x, y;8 ) =exp[i'(y)/8]g(iB )"u„(x,y), r(y) E R .
0

Then, using the method initiated by Keller (Keller, 1958;

Note that, if in the solution u(x, y;8) of (6.4) we let
y=Bx, then it becomes a solution of (6.3). In the vari-
able x, u(x, y, B) is required to be periodic. Now if (6.4)
is regarded as an equation for the vector-valued function
y —+u(, y;8 ), then (6.4) has exactly the form on which
semiclassical methods can be applied; i.e., one looks for
local solutions of the form

Keller and Rubinov, 1960), and developed independently
by Maslov (Maslov, 1972; Maslov and Fedoryuk, 1976;
Duistermaat, 1974) to construct global solutions out of
local ones, one obtains approximate eigenvalues and
eigenvectors.

The basic steps of the construction involve an associat-
ed Hamilton-Jacobi equation and then a classical Hamil-
tonian system. Now, if EEOO and cro= IAO(k)] is a sim-

ple band, then the same Hamiltonian structure appears in
the semiclassical approximation for the "effective" Ham-
iltonian

H,&=AO( i g—rad„—B6 x/2) . (6.5)

As a consequence, to the leading order in B, the eigenval-
ues of Hz coincide (in the sense of spectral concentra-
tion) with the eigenvalues of the operator given by (6.5).
Note that, while the eFective Hamiltonian obtained in
Sec. V is exact, the Hamiltonian (6.5) is an approximate
one and corresponds to the leading-order hz(a)=ho(a)
in (5.123). Let us stress, however, that the semiclassical
theory is able to give the while asymptotic expansion in
powers of B for the eigenvalues and eigenvectors of H~
(see, e.g. , the remark following the main theorem in Guil-
lot, Ralston, and Trubowitz, 1988).

While the theory in Sec. V, as well as the related ap-
proaches of Bellissard (1987, 1988), Helffer and Sjostrand
(1989a, 1989b), originates in the heuristics put forward
by Peierls (1933), Luttinger (1951), and Wannier (1962),
the semiclassical theory is closer in spirit to the approach
developed by Blount (1962b), Roth (1962) and Zak
(1972). The rigorous theory along these lines is far from
being complete and new results are expected to appear.
For more references we refer the reader to Zak (1972),
Buslaev (1988), and Guillot, Ralston, and Trubowitz
(1980).

D. The Harper equation

The effective Hamiltonian H, f[ 8 is a generalization of
the famous Harper operator (Harper, 1955). Actually,
H ff B reduces to the Harper operator in the tight-binding
limit.

Consider for simplicity a two-dimensional system with
the magnetic field perpendicular to its plane. Moreover,
consider I to be a square lattice of unit length, so that
a= [m, n ], m, n HZ. Then the effective Hamiltonian
(2.40) takes the form

H, ft Bf(m, n)

exp[ iB(mq —np)/2]h—
(pB, q)f( +mp, n+q) .

p, qEZ

Suppose now that the crystal has a center of inversion,
and, moreover, make the tight-binding approximation;
this amounts to considering only hz(0, 0)=Eo,
hn(0, 1)=hB(0,—1)=h&, hz(1, 0)=hB( —1,0)=h2 to be
diFerent from zero. Then
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(H, tt a E—o )f ( m, n ) =HH f ( m, n ) = h i [exp( —iBm /2 )f ( m, n + 1 ) +exp( iBm /2 )f ( m, n —1 ) ]

+h~[exp(inB/2)f(m+ l, n )+exp( in—B/2)f(m —l, n )]

which is just the Harper operator. The most common
form of the Harper operator can be obtained by going to
the Landau gauge. More precisely, consider the gauge
transformation

Since U*H~ U commutes with translations in the second
variable, its eigenfunctions have the form

f(m, n)=exp( —ikn)f(m), k&[0,2w) . (6.7)

Introducing (6.7) into (6.6), one obtains that the spectrum
of U*HH U is the union over k E [0,2w) of the

spectra Xz & & of the operators

Uf ( m, n ) =exp( iBm—n /2)f( m, n ) .

By direct computation,

U*HHUf(m, n )=h2[f(m + l, n )+ f(m —l, n)]

+h, [exp( —iBm )f(m, n+1)

+exp(iBm )f(m, n —1)] . (6.6)

APPENDIX

Consider a continuously dN'erentiable family of or-
thogonal projections Q(s), s EE. A transformation func-
tion (Kato, 1966; Reed and Simon, 1978) for Q(s) is a
family T(s) of unitary operators satisfying

Q(s)=T(s)Q(0)T(s), T(0)=1 . (A 1)

Mouche (1989), and Choi et al. (1990). For a nice discus-
sion of the Hofstadter buterQy based both on rigorous re-
sults as well as on numerical computations, we refer the
reader to Guilement, Helffer, and Treton (1989). Basical-
ly, although the fact that X '" is a Cantor set for irration-
al cx has not been proved in full generality, one can say
that the Hofstadter buterfIy is well understood. The
main problem is to extend the results to H,~B. Up to
now only partial results for some small perturbations of
the Harper operator have been obtained (Helffer and
Sjostrand, 1988, 1989a, 1989b, 1989c).

Hz t, h f (m, n)=hz[f(m +1)+f(m —1)]

+2h, cos(Bm +k)fm . (6.8)

The following construction goes back to Krein and
Daletskii and to Kato [see the references in (Krein, 1967)
and (Kato, 1966)].

Factorizing hz and writing p=h, /h2, B=2~a, one ob-
tains that (up to a scale factor) the spectrum of HII
equals X '"= UXk'", where Xk'" are the spectra of

k

Hk'"f (m) =f(m + 1)+f(m —1)

+2@cos(2~am +k )f(m) .

Lemma A. l. IfK(s) is given by

K (s) =i [1—2Q(s) ](d /ds)Q(s)

then
i. K (s) is self adj oint. -

ii. Q (s)K(s)Q (s) =0 .

(A2)

In spite of its apparent simplicity, the spectrum of Hk '~ is
a very compacated and beautiful object. This fact has
been discovered by Hofstadter (1976) when he produced
numerically his famous "buterAy. " The main point is
that, by Floquet-Bloch theory, if n =p /q is rational, 2 '"
is the union of q bands. Now when q~ ~, the number
of bands increases indefinitely, and the idea of Hofstadter
was to show how the repartition of these bands depends
on the expansion of a as a continuous fraction (finite in
the case where o. is rational). This permits one to imag-
ine the spectrum in the irrationa1 case, which is usually
assumed to be a Cantor set. In the past two decades the
Hofstadter buterAy has been much studied. Basic ideas,
partially heuristic, appeared in Azbel (1964), Wannier
(1978), Claro and Wannier (1979), Wilkinson (1984, 1986,
1987), and Sokoloff (1985). Mathematical techniques
ranging from semiclassical analysis of pseudodiA'erential
operators to C* algebras have been used to prove
rigorously diAerent properties which appear on the Hofs-
tadter buterfly: Bellissard and Simon (1982), Simon
(1982), Helffer and Sjostrand (1988, 1989a, 1989b) van

iii. The (unique) solution of

i (d/ds) 2 (s)=K (s) 2 (s), 2 (0)= 1

is a transformation function for Q(s), ie.
Q (s) = A (s)Q(0) A (s)

iv. Q(s)[(d/ds ) 3 (s)]Q(0)=0.

v. If Q(s) is the restriction to E of a bounded
projection valued funct-ion, analytic in a complex neigh
borhood %' of E, then A (s) is the restriction to E of a
bounded with a bounded inverse operator valued function-
analytic in 'N.

Proofs. i—iv are direct verifications (Messiah, 1969). For
v, see Kato (1966), Reed and Simon (1978).~

The property (A6) has a nice geometric interpretation:
if dimQ(s) = 1, fo P Q (0)&, and P(s) = A (s)it~a, then
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( g(s), (d /ds) g(s) ) =0, (A7)

Ho=(P —A ) +V. (A8)

i.e., g(s) is a parallel transport in & (Simon, 1983).
In what follows we shall consider the "unperturbed"

Hamiltonian in Sec. V.A,

ishes exponentially when lx —
yl —+ ~. The idea of proof

is due to Combes and Thomas (see Helffer and Sjostrand,
1989b for related results).

Theorem A. 1. Let z Ep(HO). There exist a(z) )0,
M ( oo such that, for 0 & a (a(z), and all a &E

We shall prove that (see below for the precise meaning)
the Green function Go(x, y;z) corresponding to Ho van-

llexp(al —al)(Ho —z) 'exp( —al —a )ll(M .

Moreover,

(A9)

lim exp(a
I

—a
I )(Ho —z ) 'exp( —a

I

—a
I )

—(Ho —z ) 'll =0 .
a~O

The meaning of (A9) is that if f is exponentially localized then (Ho —z ) f is also exponentially localized.

Proof. Consider

g, (x)=[(x—a) +I]'~

Since

(A10)

(Al 1)

sup lg, (x)—Ix —al I
=1,

a, x& IR

it is sufficient to prove the theorem with x —al replaced by g, (x).
By direct verification,

I gradg, (x)
I
(1,

I
grad'g. (x)

I

(2 .

Consider, for a )0, f&2)(HO)

exp(ag, )(HO —z)exp( —ag, )f =[(P—A +iagradg, ) + V —z]f
=(Ho —z+aH, )f=[1+aH, (HO —z) '](Ho —z)f,

where

H& =2i gradg, (P —A )+i grad g, —algradg,

The main point of the proof is that H, is Ho bounded, i.e.,

IIHi(HO —z) 'll (u(z) ( ~

(A12)

(A13)

(A14)

(A15)

Since Vis (P —A ) bounded (Avron et al. , 1978), it is sufficient to prove that H, is (P —A ) bounded, and this is obvi-
ous from (A14). It follows that, for

lal (u(z)

[1+aHi(HO —z) '] is invertible, and then by (A13)

ll [exp(ag, )(HO —z)exp( —ag, )] 'll (M ( oo

On the other hand, for fE Co (IR ),

exp(ag, )(HO —z ) 'exp( —ag, )exp(ag, )(Ho —z )exp( —ag, )f =f,

(A16)

(A17)

which implies

[exp(ag, )(Ho —z )exp( —ag, ) ]
' =exp(ag, )(Ho —z ) 'exp( —ag, );

and the proof of (A9) is finished.
Now

llexp(ag, )(Ho —z) 'exp( —ag, )
—(Ho —z) 'll=ll(HO —z) 'll ll[1+aHi(HO —z) '] ' —ill

(au(z) [1—au (z) ] 'Il(HO —z )

which implies (A10).~
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(A18)

Corollary A. 1. Suppose Ho has an isolated band o& and let Po be the spectval pvofection of Ho corvesponding to on.
There exist ao&0, M ( ~ such that fov 0(a (ac, and all a&IR,

Ilexp(tz I aI »oexp(

lim IIexp(a I

—a
I )Poexp( —a I.—aI )

—Po II
=0 .

a~O
(A19)

Proof. By the Riesz formula,

Po = (2~) ' f (IIc—z ) 'dz,
C

where C is a contour of finite length enclosing cro, (A18) and (A19) follow from (A9) and (A10), respectively. ~
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