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The electronic transport theory of semiconductors is not, from a first-principles point of view, as well un-
derstood as is that of metals, where the degeneracy of the Fermi system leads to a simplified but
comprehensive theory. In the case of semiconductors, degeneracy usually plays no simplifying role at all.
However, in many transport problems of current interest one is effectively dealing with the equivalent of a
single particle interacting with an environment, e.g., a heat bath or a random potential. In view of this,
the author presents a simple formalism for the quantum dynamics of a single continuous degree of free-
dom. The quantum-statistical description is in terms of the density matrix, and the Feynman rules for a
standard treatment of the density matrix are presented and illustrated by applications to problems of
current interest. It is shown that such an effect as, for example, the intracollisional field effect, which in
the past has been dealt with using complicated formalisms, in the present treatment is described in an ele-
mentary way. The single-particle approach conveniently displays the interference aspect of quantum-
mechanical transport, as is discussed in a treatment of the weak localization effect in disordered conduc-
tors. The real-space representation of quantum transport is stressed, as is appropriate for a proper discus-
sion of mesoscopic physics. The author treats the connection between the linear-response formalism and
the Landauer approach by expressing the conductance in terms of the scattering properties of a sample.

He also discusses the conductance fluctuations of mesoscopic samples.
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I. INTRODUCTION

In recent years, great progress in controlled construc-
tion of new and smaller material structures has been

*Present address.
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made possible by the introduction of fabrication tech-
niques such as, for example, molecular-beam epitaxy. To
describe electronic transport in these new artificial subm-
icron structures, in many cases we cannot resort to a
classical Boltzmann description but must include the
quantum-mechanical aspects of electronic transport. For
reasons of material and device functioning, semiconduc-
tor materials play a major role in this new development.
The important quantum aspects of electronic transport in
these structures are therefore those associated not with
the degeneracy of the Fermi system, but rather with the
interference aspect of quantum mechanics.

A wide variety of electronic quantum transport prob-
lems of current interest in solid-state physics are essen-
tially one particle in nature. A full many-body formalism
to treat such problems, formulated conveniently in terms
of the many-body Green’s functions (Abrikosov et al.,
1965), is therefore not mandatory, since such complete
information is unnecessary. This observation would only
be a matter of simplification if we always had controlled
approximation schemes for converting a first-principles,
full many-body formulation into a manageable form for
extracting information about the transport properties in
a general nonequilibrium state. This, however, is not the
case for the important area of electronic transport in
semiconductors.

For the case of metals, both for the normal and the su-
perconducting state (Eliashberg, 1971), we have a con-
sistent approximation scheme that allows us to reduce
the full many-body problem to a manageable form under
the minor restriction that we consider only states that are
perturbed on length scales larger than atomic distances.
But the very nature of semiconducting materials excludes
them from such a scheme. The physical reason for the
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existence of a successful approximation scheme for the
case of metals is the fact that we are here dealing with a
degenerate Fermi system in which all relevant energy
scales are small compared to the Fermi energy. In conse-
quence, the kinematics is essentially quasiclassical, and a
consistent and compact description of the transport
properties of metals over essentially all ranges of parame-
ters can be obtained, elegantly formulated in terms of the
so-called quasiclassical Green’s functions. The only
severe limitation of the quasiclassical theory is its in-
herent assumption of particle-hole symmetry, so that
within the quasiclassical scheme all thermoelectric
coefficients vanish, and no conclusions can be drawn
about many-body effects on the thermoelectric proper-
ties. Similarly, the degeneracy assumption does not allow
for immediate inclusion of the orbit-bending property of
a magnetic field. A remedy to these limitations has been
suggested for special cases (Eckern and Schmid, 1981). A
recent review of the quasiclassical method applied to
metals is that of Rammer and Smith (1986).

The full many-body Green’s-function approach is
clearly just as valid a starting point for the study of trans-
port in semiconductors as for the case of metals. Howev-
er, the approach is not as fruitful, since irrelevant infor-
mation cannot in general be eliminated in a controlled
manner to obtain a manageable description of nonequili-
brium states of interest as in the case of metals or other
degenerate Fermi systems, such as, for example, normal
and superfluid 3He (Serene and Rainer, 1983). Further-
more, in many cases of interest, the nondegenerate limit
is considered, and the inclusion of the Pauli principle in
the description is irrelevant.

In view of these features of electronic transport in
semiconductors, a description of electronic transport in
solids that makes use of the one-particle simplification
from the very outset would seem desirable. We present
such a description below. That is, as far as the electronic
system is concerned, we are dealing with one-particle
properties. Clearly, a first-principles treatment of the
electron-electron interaction requires the full many-body
formulation. However, even when the electron-electron
interaction is of importance, a one-particle formulation is
often adequate for the calculation of specific properties.
The electron-electron interaction can, for particular situ-
ations, be dealt with separately, say in the random-phase
approximation, resulting in an effective bosonic interac-
tion. For the calculation of specific physical properties
the effect of the electron-electron interaction can then be
ascertained at the one-particle level. An example of a
case in which such a mean-field description is sufficient is
the calculation of the phase-breaking rate due to the
electron-electron interaction in weak localization theory
(Al'tshuler, Aronov, and Khmel’nitskii, 1982). The ra-
tionale for the approach is that, in describing transport in
a nondegenerate Fermi system, there is no generally valid
consistent approximation scheme. Therefore a simple
and physically transparent description, though limited in
scope, is valuable for the simplifications it affords in each
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particular transport situation. In the following, we shall
be dealing with the nonequilibrium quantum-statistical
mechanics of a single degree of freedom, and we shall
demonstrate that this allows a treatment that employs
only elementary methods of quantum mechanics and
statistics. However, we shall employ a field-theoretic
language, thereby demonstrating its usefulness in a
quantum-mechanical context. An acquaintance with the
following formalism apart from its own merit, should
therefore be helpful to the reader with interests in the ap-
plication of quantum field-theoretical methods in trans-
port theory, since the complicating temporal aspect of
quantum dynamics is the same in both quantum mechan-
ics and quantum field theory.

At this point, we note that we shall favor a real-time
formulation of the nonequilibrium problem, since it con-
stitutes a direct physical representation. We thus prefer
that the doubling of the degrees of freedom characteristic
of a treatment of nonequilibrium states be generated by
the quantum dynamics itself. The presentation parallels
previous discussions of nonequilibrium statistical physics,
since in essence it is an application of the methods of
Schwinger (1961), Feynman (1963, 1965), and Keldysh
(1964) to the physical problem of concern.

The quantum-statistical mechanics of a single degree
of freedom is described by the density matrix. Density-
matrix description dates back to the early development of
quantum mechanics (Landau, 1927; von Neumann,
1932). Up until recently most electronic transport prop-
erties of solids could quite adequately be accounted for
classically and dealt with through the Boltzmann
description, and the density-matrix approach was used to
justify such quasiclassical descriptions as appropriate
limits of the quantum-mechanical description (Green-
wood, 1958). The Boltzmann description can be success-
fully applied even to strong-coupling situations after suit-
able renormalization as for instance in the case of strong
electron-phonon interaction (Prange and Kadanoff,
1964), and the polaron problem (Kadanoff and Revsen,
1964; Langreth, 1967). It is even successful when the un-
derlying equilibrium state is quite exotic and owes its
very existence to quantum-mechanical effects. This is,
for example, the case for the superconducting and
superfluid states, where a Boltzmann description in terms
of the quasiparticle excitations of the equilibrium state
accounts quite well for a vast range of nonequilibrium
phenomena in superconductors and superfluids. Howev-
er, over the last decade we have witnessed a wealth of
transport phenomena that are genuine manifestations of
quantum-mechanical interference, and we shall see below
how the density-matrix method can also provide a useful
description of quantum transport. In particular, we shall
take advantage of a diagrammatic technique that
enhances physical insight into the phenomena over that
possible with purely algebraic formulations of quantum
mechanics. The diagram technique we shall introduce is
considerably simpler than the one introduced by Kon-
stantinov and Perel (1960), as we use the closed-time-path
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formulation of Schwinger (1961) and consequently intro-
duce only real times. The diagrammatic approach to the
density matrix was used by Iche and Nozieres (1978) to
study the quantum Brownian motion of a heavy particle.
In the following we shall present the general diagram-
matic description, apply it to the electron-phonon in-
teraction in external fields, and give a detailed descrip-
tion of the physics of disordered conductors.

Due to technological advances in the fabrication of
submicron structures, the study of quantum transport in
strong electric fields has grown in importance; we shall
show how the intracollisional field effect is easily dealt
with by the presented formalism, with no more labor
than that involved in obtaining the usual Boltzmann lim-
it. The intracollisional field effect was considered for the
many-electron case by Barker (1973). He derived the ki-
netic equation by the use of the super-operator method,
which provides a proper description. However, this
method lacks physical transparency, and, as already not-
ed, we prefer to have the quantum dynamics directly
double the degrees of freedom necessary for the descrip-
tion of nonequilibrium states, as this allows for a direct
physical interpretation. The intracollisional field effect
was considered first at the one-electron level by Levinson
(1969).

Another reason for illustrating the method to be
presented by applying it to the intracollisional-field-effect
problem is that recent applications of the nonequilibrium
many-body Green’s-function technique have given er-
roneous results, as noted by Jauho and Wilkins (1984).
The reason for this is precisely the uncontrolled approxi-
mations alluded to above. The very introduction of a dis-
tribution function that depends on only one time variable
(usually euphemized as an ‘“‘ansatz”) is a crucial step in
obtaining a quantum Kkinetic equation from the full
many-body Green’s-function description. Lipavsky
et al. (1986) demonstrated how to make the choice such
that the ensuing kinetic equation agrees with the result of
the super-operator method for the case of the intracol-
lisional field effect. A similar but more general choice
was used by Altshuler (1978), based on the kind of
decomposition used in the quasiclassical theory of elec-
tronic transport in metals. In the quasiclassical theory
the systematics of such a decomposition can be explicitly
demonstrated, as shown by Shelankov (1985), whereas in
the general case one is restricted to almost homogeneous
nonequilibrium states, the gradient approximation. The
question arises whether a systematic decomposition in
terms of a single-time distribution function is possible
quite generally in the many-body case. The answer to
this question is no. In the general case the distribution
function will depend on two time variables. An
affirmative answer would be tantamount to a fluctuation-
dissipation theorem for general nonequilibrium states.
The problem is that we need correlation functions to de-
scribe the full many-body transport situation in quantum
mechanics, and for general nonequilibrium states we
have no general scheme for decomposing the correlation
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function into parts describing instantaneous quantum
states and their occupation. In the one-electron theory
to be presented, this decomposition problem never arises,
as we are dealing directly with the density matrix. The
theory to be presented is therefore particularly important
in cases where the treatment of the many-electron prob-
lem is nontrivial.

We shall use the diagrammatic technique to discuss the
physics of disordered conductors. Besides providing a
simple framework for performing quantitative calcula-
tions in this important area of quantum transport, the di-
agrammatic approach leads to very useful physical pic-
tures of quantum transport in random media. In particu-
lar, it gives a simple geometric interpretation for the
theory of weak localization.

Due to the smallness of a structure, the electronic
transport through it can take place quantum mechanical-
ly coherently. This is the regime of mesoscopic physics,
where the individual features of a structure, such as
geometry, distinct impurity configuration, etc., are mani-
fested in the transport properties of the structure. The
properties of mesoscopic systems can in many cases be
adequately discussed in terms of single-electron proper-
ties. In certain cases, the influence of the environment,
for example its temperature, can be assessed by simple
means; however, in general, the full quantum-statistical
mechanics of a single degree of freedom will be neces-
sary. It is therefore of importance to pursue a descrip-
tion that favors transparency in order to allow for im-
mediate physical interpretation, especially with respect to
the interference aspect of quantum transport. In the fol-
lowing we describe how the standard method of none-
quilibrium statistical mechanics can be formulated to
deal effectively with such situations; in particular, we
shall obtain a representation of the density matrix in
terms of standard Feynman diagrams. The finite size of
mesoscopic systems makes the choice of appropriate
boundary conditions particularly by important. There-
fore, in our presentation we shall emphasize the real-
space representation, in which boundary conditions can
be properly imposed as illustrated by deriving from the
linear-response theory the scattering formula for the con-
ductance, central to the Landauer approach to quantum
transport. Likewise, the real-space representation is
necessary for the description of mesoscopic fluctuations,
and we describe in detail the quantum-interference-
induced conductance fluctuations.

We believe that the formalism to be presented is
relevant to quantum transport theory in general. It does
not deal with degeneracy, which in many cases is ir-
relevant, but offers a gain in simplicity and clarity in
displaying the interference features of quantum-
mechanical transport.

In the following we describe the single-particle ap-
proach to quantum transport and by using only elemen-
tary methods develop a formalism that allows a
comprehensive quantitative discussion of problems of
current interest in transport theory. Several of these to-
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pics are presented in the literature in their quantum
field-theoretic context. Here we shall present the same
topics in a quantum-mechanical context and, in a simple
fashion, create the apparatus for performing quantitative
calculations. In Sec. IT we introduce the density-matrix
description of the dynamics of a particle coupled to a
heat bath and derive its Feynman diagrammatics. In Sec.
IIT we describe the kinetic-equation approach to quan-
tum transport, and to illustrate the method we treat the
problem of a particle in an external field weakly coupled
to a heat bath. Section IV treats the density-matrix
description of a particle in a random potential. The in-
tracollisional field effect is immediately included in the
approach. In Sec. V, we use the diagrammatic approach
to discuss linear-response theory. In particular, we
present the general one-particle theory of conductivity
necessary for a discussion of the conduction properties of
disordered conductors. The quantum interference phe-
nomena of weak localization are discussed with particu-
lar emphasis on the quantum-interference-induced anom-
alous magnetoresistance. The mesoscopic phenomena of
disordered conductors are discussed, and contact be-
tween the conventional Hamiltonian linear-response
theory and the Landauer approach to quantum transport
is made. We end the section on disordered conductors by
discussing quantum-interference-induced conductance
fluctuations. Section VI offers a summary and con-
clusions.

1l. DENSITY-MATRIX DESCRIPTION
OF QUANTUM DYNAMICS

In this section we present, in a form suitable for our
purpose, the basic notions of the quantum-mechanical
description of physical states for which only partial infor-
mation is available, or for which only some of the infor-
mation is relevant to the situation in question. In such a
case, a description in terms of wave functions or,
equivalently, projection operators, must be abandoned in
favor of a quantum-statistical description in terms of the
statistical operator. Knowledge of the statistical opera-
tor allows us to assess only the probabilities for the oc-
currence of a given state and not, as in quantum mechan-
ics, the relative phases between state vectors constituting
a superposition. We have in mind situations in which
measurements are performed only on the electronic de-
grees of freedom of the solid, such as, for instance, in an
electrical conductivity measurement, and the physical
quantity of interest can therefore be expressed in terms of
the reduced statistical operator for the electron, not ex-
plicitly involving the lattice degrees of freedom.

A. Reduced density-matrix description of
a particle interacting with a heat bath

Let us consider a single continuous quantum-

mechanical degree of freedom, labeled by coordinate x
and referred to as the particle, interacting with an envi-
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ronment that constitutes a heat bath. In the present case
of a solid, the particle degree of freedom represents that
of the electron and the ionic lattice degrees of freedom
that of the heat bath. The Hamiltonian for such a system
has the form

A=A,+1,, .1
where the Hamiltonian for the noninteracting subsystems
A,=8,+1, 2.2)

consists of a term H describing the particle and a term
ﬁ the heat bath. A heat bath can quite generally be
modeled (Feynman and Vernon, 1963; Caldeira and Leg-
gett, 1983) by a set of harmonic-oscillator degrees of free-
dom represented by the position and momentum opera-
tors X, and p, labeled by g,

2

Ay 2 " ~M2R% |, 2.3)

1
2
The oscillators are characterized by their mass M, and
frequency w, and in the considered case describe the lat-
tice vibrations.

Bearing in mind the particle degree of freedom
representing an electron in a solid, subject to an external
classical force F, for the particle Hamiltonian we choose

/\2
A,=2——F% . (2.4)

Here, m is the mass of the electron, and X and p are the
position and momentum operators for the particle, re-
spectively.! We have above chosen the external force to
be spatially homogeneous and time independent. The
method presented in the following may be straightfor-
wardly extended to arbitrary external forces.

When the lattice vibrations of the crystalline solid of
volume V is the realization of the heat bath, the interac-
tion part has the standard normal-mode expansion form

A, =T/LT7 S(gea,—gre al), 2.5)
q9

where fi; and @, are creation and annihilation operators
for the normal modes of the lattice vibrations

i

8,= ————(p,—iM
VoMo, Pa

0,%,) , (2.6)
ﬁ; is the Hermitian conjugate, and % denotes complex
conjugation. The ionic mass is denoted by M, and g, is
the coupling constant for the gth mode.

The normal-mode representation of the bath Hamil-
tonian has the standard form

Hy=3 to,@la,+1) . 2.7
q

IFor simplicity we have at this point chosen a one-dimensional
notation since the description is trivially generalizable to arbi-
trary dimensions.
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After presenting the model for the physical system, an
electron in a solid interacting with the vibrations of the
lattice and acted upon by an external force, we turn to
studying the quantum dynamics of the model.

In quantum-statistical mechanics, the averaging neces-
sary when only partial information is available leads
directly to a description of the statistical ensemble of
quantum-mechanical systems in terms of the statistical
operator p, which is a Hermitian operator whose trace
(sum of diagonal matrix elements) equals one (Landau
and Lifshitz, 1980). The diagonal matrix elements of the
statistical operator represent the probability that a mea-
surement will reveal the number corresponding to the
quantum state in question; moreover, any expectation
value of a physical quantity is expressible in terms of the
statistical operator.

The Schrodinger equation governing the temporal evo-
lution of a quantum state leads to the following temporal
evolution of the statistical operator determined by the
Liouville-von Neumann equation:

d Py
7l =—iA
dt (
Here, [ , ] denotes the commutator.
The formal solution of the Liouville~von Neumann
equation is given in terms of the evolution operator U of
the system

p)=0(t,t,)p0t)0 (1,1,) ,

Pl (2.8)

(2.9

the evolution operator is specified in terms of the Hamil-
tonian

O(t,t")=exp (2.10)

—%ﬁ(r —t") l ,

and p(¢;) is the statistical operator at some initial time ¢;.

Since the degrees of freedom, other than that of the
particle, are considered as representing a heat bath, they
are left unobserved, and we are only interested in the
measurable properties of the particle.? This is the situa-
tion pertaining to the measurement of electrical conduc-
tivity which we have in mind. We must therefore per-
form the trace over the bath degrees of freedom, that is,
allow for all possible final states of the bath, and are led
to study the reduced statistical operator f for the particle

Flo=trp(r) ,

where tr denotes the trace over the bath degrees of free-
dom. All physical properties pertaining to the particle
can be expressed in terms of the reduced statistical opera-

(2.11)

2In cases where nonequilibrium states of the lattice degrees of
freedom need to be considered (as, for instance, in the case of
the phonon-drag effect), we must in addition introduce the re-
duced density matrices for these degrees of freedom, which in
turn leads to a set of equations coupling the density matrices of
all the degrees of freedom.
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tor. As an example, the expectation value of the current
density j of the particle at time ¢ is given by the expres-
sion

d d

T (2.12)

f(xrx’yt)lx'"——x >

where e denotes the electronic charge, and the reduced
density matrix in the spatial or x representation,
f(x,x',t), is given by

fOo,x",t)y=tr{x|p(t)|x") . (2.13)

Having described the model for a particle interacting
with lattice vibrations, we now turn to the Feynman di-
agrammatics for the reduced density matrix.

B. Feynman diagrammatics for the
reduced density matrix

In this subsection we are not so much interested in
transient properties as in properties of stationary states,
and we shall therefore assume that at some initial time ¢;
the statistical operator is separable,

p(t)=F(t,)pp

and that the bath degrees of freedom are in thermal equi-
librium at the temperature T, so that initially the statisti-
cal operator for the bath is given by
_ exp(—Hy/kyT)
P8 ttlexp(—Hy /kyT)]

(2.14)

(2.15)

Subsequent to the initial time the two subsystems are al-
lowed to interact, and the dynamics of the particle is de-
scribed by the reduced density matrix, which, according
to Eq. (2.13), is given by the expression®

foox,0)= [dx [dx'J(x,x",t;%,% 1) fi(%,% "),
(2.16)

where J, the propagator of the reduced density matrix,
according to Eq. (2.9) is determined by
J(x,x",t;%,%',t;)
=tr[pp{(x |0 T(t,t))|x" Y (x| O(1,2,)|%) 1,
(2.17)

and the initial reduced density matrix is the matrix ele-
ment

fiZx)=(x|fu)lx") . (2.18)

3We note that we of course include all transient effects of the
chosen initial condition, Egs. (2.14) and (2.15). Whether this
choice is appropriate for the study of transient effects depends
on the given physical situation.
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We shall be interested in the perturbative structure, in
the coupling to the environment, of the density matrix,
and shall therefore express the evolution operator in the
interaction picture with respect to A 0

S iftoae
O(t,t")=exp hﬁot T exp ﬁft'dfﬁ,(t)l
X exp éﬁot’] , (2.19)
fxx, )= [dx [dx ' [dx, [dx, [dx} [ dx}
Xtr ﬁB<5c“’ exp éﬁpt, x’1><x’1
><<x exp —;—ﬁpt x1><x1

Here, T denotes the anti-time-ordering operation.

To obtain a diagrammatic expansion, we introduce an
iterative solution for the evolution operator, that is, we
expand the time-ordered and anti-time-ordered exponen-
tials, e.g.,

i pt —
__zftidt"f-},-(t)

(-—z fdt
0

T exp

oo

t A oA
[ Can By, - By

n=

(2.22)
We then insert complete sets of particle eigenstates,

1=fdx|x,t)(x,t[ s (2.23)

where {|x,2)},.z is the complete set of eigenstates for
the position operator in the interaction representation
x (1), that is,

()x,t)=x|x,t) . (2.24)
We obtain products of terms of the form

(x3,t3|ﬁ'(t2)|x2»12>

T exp

T exp

where

A, (t)=exp ——ﬁ t (2.20)

ﬁ t]ﬁ exp

describes the interaction term in the interaction represen-
tation and T denotes the time-ordering operation neces-
sary due to the non-commutativity of the operators. In-
serting complete sets of particle states on the right-hand
side of Eq. (2.16), we obtain for the reduced density ma-
trix

fd_ﬁ(t ><x2 exp ;ﬁpt x'>f,.(f,x')
_éft:dz_ﬁ,-(t_) x2><x2 exp —é—ﬁpti f> (2.21)

f

where @,(¢) is the annihilation operator in the interaction
representation

a,(t)=exp @, exp , (2.26)

i
ZﬁBt

i
——ﬁ_ﬁBt

and H.c. stands for Hermitian conjugate. The matrix ele-
ment (x3,%;]x,,t,) is the quantum-mechanical ampli-
tude for propagation of the particle between space-time
points

(x,tix',t'>=<x exp —ZHP t—t') x’> , (2.27)
and g,(x) is the éoupling function
 (x)=g,e'" (2.28)

The time-ordering restriction on the integration limits in
Eq. (2.22), demanded by the time-ordering operation, can
be lifted by introducing the step function 0, resulting in
the appearance of the retarded Green’s function for the
particle

=“—7 % g (%208 (1) —H.c. ]{xs5,13025,15) GR(x,t;x",t")=—i6(t —t')x,t|x",1") . (2.29)
(2.25) For the matrix element of interest, we then obtain
|
(x|0(z,1, )|x)-— f dz,, 'f[_tdtlfdxn -fdxl
XV 2GR(x,t5%,,t, )GR(x,,t,3%, 1,8, 1) = - GR(x |, t3%,1;)
X 3 {[gqn(x )aqn(t,,)—H.c,]-'-[gql(x])aql(tl)—H.c.]} , (2.30)
Gi>---59y
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which has the typical structure of a product of propaga-
tors with interactions occurring at intermediate space-
time points, labeling the various alternatives or inter-
mediate states.

For the anti-time-ordered exponential we obtain a
similar expression, the difference being that the advanced
Green’s function G 4 appears instead of the retarded

GAAx,t;x",t")=[GR(x",t";x,0)]* . (2.31)
The only operation left to perform in Eq. (2.21) is then
the trace over the bath states, which can be accomplished
by the following procedure. For any order in perturba-
tion theory, we have in Eq. (2.21) a corresponding string
S of bath operators which are explicitly time ordered or

anti time ordered,
S=tr{ﬁBT[’éqn(T,,) cee ’6q1(71 )]
XTle,

(1) -2, ()]}, (2.32)

m

~

where ¢, denotes either a creation or an annihilation
operator for the normal modes of the lattice vibrations.
This expression is most easily evaluated by introducing
the closed-contour description. Consider the time-
ordered and anti-time-ordered times as lying on a pair of
different real axes—the time-ordered ones on a forward
and the anti-time-ordered ones, distinguished by a tilde,
on the return part of a closed contour ¢, starting and
ending at ¢;, as depicted in Fig. 1. Equation (2.32) can
then be subsumed under one contour ordering along the
contour ¢,

S=tr(ppT, (2, ()2, (718, (t,,) 2, (1]},

(2.33)

where TC; orders the operators according to their posi-

tion on the contour ¢, (earliest positions to the right).
Such an expression can be decomposed according to the
statistical Wick’s theorem, which relies only on the sim-
ple property

(24,08 1=ppC,lexp(A Fiw, /kpT)—1], (2.34)
valid for a quadratic bath Hamiltonian (A, =*1, depend-
ing upon whether ¢, is a creation or an annihilation
operator). Using this property, by moving creation

operators to the right, one obtains for Eq. (2.33) a sum
over paired products

S= 3 TI(T.[e,(r)2,()]) ,

a.p.p. 4,q°

(2.35)

\V

<
<€

FIG. 1. The closed-time-path contour.

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

where the sum is over all possible ways of picking pairs
(a.p.p.) among the n +m operators* and where

( Tct[f)\q(’r)/(}ql(T' )]) =tr(py T, [e,(r)e(r)]) (2.36)
defines the bracket as the weighted average with respect
to the equilibrium bath state, with 7 and 7’ being arbi-
trary times on the contour ¢,. So, for example (we
suppress, for the present consideration, the immaterial g
labels),

te(pp T, [a(r)a’(my)a(r3)a ()]
=(T,la(r)a"(r) (T, [a(rya’(r)])

+(T, [a(r)a (r) (T, [a(ra’(r)]) . (2.37)
Detailed proofs of Wick’s theorem, Eq. (2.35), exist in a
multitude of forms in the literature. We shall not, there-
fore, repeat them here, but refer the reader to the elegant
and simple proof of Mills (1969). Performing the trace
over the bath states in Eq. (2.21) therefore corresponds to
pairing the interaction points in all possible ways.

We can now state the Feynman diagrammatics for the
reduced density matrix in the spatial representation: The
Feynman diagrams for the reduced density matrix f
comprise all the topologically different diagrams of the
type depicted in Fig. 2 (showing only the lowest-order
terms). The reduced density matrix, being a single-time
object, is represented as vertical, and the identifying
mark of the single-particle approach, that the retarded
and advanced particle lines are separated by the initial
reduced density matrix, is displayed.

The diagrams are transcribed according to the follow-
ing Feynman rules:

The stipulated vertical line represents the reduced den-
sity matrix,

- X

=f(x,x',t) . (2.38)

x_
~———e

An upper solid line represents the retarded-particle
Green’s function,

..___(._——QR R
'y =G (x,t;x',t').
xt xt

(2.39)

A lower solid line represents the advanced-particle
Green’s function,

0——6——& =G Ux',t';x,1) .

xt xt

(2.40)

41f n +m is odd, the expression for S equals zero, since the ex-
pectation value is with respect to the quadratic bath Hamiltoni-
an.
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FIG. 2. The Feynman diagrams for the reduced density matrix.

A wavy line represents the phonon propagator,

xt xt =D(x,t;x't") . (2.41)
In accordance with the derivation, integration over inter-
nal space-time points should be performed.

With the chosen convention (as illustrated in Fig. 2)
for assigning direction to the phonon line, we need only
introduce one type of phonon propagator, the so-called
“greater”’ phonon propagator:

D(x,t;x',t'Y=D > (x,t;x't")

—i
V#

>(lg,(x)a,(t)—H.c.]
qq’

X[gg(x")a,(t')—H.c.]) .
(2.42)

The different convention in which the arrow on the
phonon line is opposite to the one chosen in Fig. 2 would
necessitate the introduction of the ‘“lesser” propagator:

D<(x,t;x",t")=D>(x",t";x,t) . (2.43)

The convention of distinguishing times on the back-
ward part of the contour by a tilde is now superfluous
and will henceforth be omitted.

The reason for the absence of an explicitly time-
ordered phonon propagator in the theory, as the Wick
decomposition, Eq.(2.35), suggests, is that we are dealing
with only one particle (besides the oscillator bath), so
that no particle-hole (pair) creation can take place as in
the many-body case. This diagrammatic structure of the
density matrix is closely related to the diagrammatic
structure of, for example, the fermionic Keldysh Green’s
function (or the so-called lesser Green’s function) in the
many-body problem (Kadanoff and Baym, 1962), except
for the above-mentioned one-particle feature. In the
many-body problem additional retarded and advanced
phonon propagators would appear in accordance with
the possibility of creation of particle-hole pairs.

The final ingredient needed to turn a diagram for the
reduced density matrix into an analytical expression is a
knowledge of the particular analytical form of the
Green’s functions and propagators for the problem in
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question. Again, the one-particle feature allows us to as-
sert these in elementary quantum-mechanical terms. As
can be seen from the definition (2.29), the retarded-
particle Green’s function, GR(x,t;x't"), is nothing but
the solution of the one-particle Schrodinger equation

()
#2Y —h g 2.44
ey Y ( )
at times ¢ later than ¢’, for the given initial condition that
at time ¢’ the particle be prepared in a state of definite
position x’,

limy(x,1)=8(x —x') ,

t—t'

(2.45)

while prior to time ¢’ it be absent in accordance with the
presence of the step function in the definition, Eq. (2.29).
The phonon propagator of Eq. (2.42) is readily calcu-
lated, since it involves only an equilibrium average with
respect to the bath state. For compactness in notation,
we include the particle-phonon coupling constant g, in
the definition of the phonon propagator, so that the
analytical expression following from Eq. (2.42) is

D(x,t;x’,t’)=iV§exp %q(x —x') D,(t,t'),
(2.46)
with the Fourier component
Dq(t,t’)=é;|gql2[(l+nq je et
+n_qem“"(ht,)] . (2.47)

Here, n denotes the Bose function.

The double time diagrams of Fig. 2 for the density ma-
trix are generic to quantum-statistical mechanics. The
diagonal elements of the density matrix, which are real
numbers, are expressed as sums of complex numbers, but
they come in pairs that are each other’s complex
conjugate’s as is characteristic of quantum-mechanical
interference. In this single-particle approach the
quantum-mechanical interference aspect of electronic
motion is directly displayed, and we shall exploit this
feature, demonstrating that the Feynman diagrammatics
give a useful physical picture of quantum transport.

C. Temporal evolution on differential form
of the reduced density matrix and the
corresponding diagrammatic representation

In the preceding section, we examined the time evolu-
tion of the reduced density matrix in integral form and
described the diagrammatic expansion in the spatial rep-
resentation. In the next section we shall take the kinetic
approach, which amounts to studying the differential
time evolution of the reduced density matrix. This will
permit us to eliminate the initial density matrix and
thereby pave the way for describing the steady-state situ-
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ation, so important to transport theory, as is well known
from the Boltzmann description.

In order to do this, we now display the spatial repre-
sentation of the Liouville-von Neumann equation for the
reduced density matrix, and interpret it diagrammatical-
ly. This means that we must look at the change in time
of the reduced density matrix. From Eq. (2.8) we obtain,
by employing Eq. (2.19) and taking the trace over the
bath degrees of freedom,

The spatial representation of the operator equation
(2.48) leads to the following equation for the reduced
density matrix:

of (x,x',t) i

o (xI[F(0),8,]lx")=—iF[f,],

(2.49)

where F is a functional of the reduced density matrix at
the initial time (suppressing the parametrical dependence

%:“’[ﬁp,f(l)]_itf{[ﬁi(t)’ﬁ(”]} . (2.48)  5nx, x’, and 9):
J
1 — LA | Texp | L ['ar D)
Ffil=— [dx [ax'u |pp(x " |exp | — 2Byt | Texp | - [, dT B,
xexp [L8,0 >ﬁ(x (2,(0,8,(0) )25, % x| On1)|%)

+%fd5c’fd3c'tr

exp T exp

x(x

i
“Zﬁpt

The  operator in the interaction picture
ﬁ (x,{x, (2),p,(t)},) is now only an operator with
respect to the bath degrees of freedom and has the expli-
cit form

B,(x,{2,(1),p,(1)},) g,e%a, (1)
q
g* —tha ( )] .
(2.51)
The functional F has, according to Egs. (2.50) and

(2.21), a diagrammatic representation obtained from the
diagrams for the reduced density matrix f by the follow-
ing prescription: Remove the external retarded particle
line or the external advanced one. The functional F thus
has the diagrammatic structure shown in Fig. 3, where
the box signifies that we can have arbitrary entangle-
ments of phonon lines. A conventional minus sign has
been inserted for diagrams in which the initial phonon
line begins on the lower line. A typical diagram for the
functional F, containing three phonon lines, thus has the
form shown in Fig. 4.

For problems that are not concerned with transient be-
havior, such as nonequilibrium steady-state problems, it
would be preferable to have a representation in which the
initial condition does not appear explicitly. Such a for-
mulation is provided by introducing the concept of ir-
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- é fl:di’ﬁi(t—) ]exp

Pe{x' 10 (4,1 |x" ) B(x, {2,(0),5,(1)},)

i
7ot (2.50)

X’)f,-(k‘,f ')} .

reducibility. A diagram is reducible if it can be cut in
two by cutting only two electron lines. Using this con-
cept, we can now eliminate the explicit appearance of the
initial-time reduced density matrix f; by observing the
following resummation of diagrams: Take an arbitrary
diagram from the expansion of F, say, the one depicted in
Fig. 4. It is by construction reducible. Move back in
time along the particles lines to the first time #,, where
the diagram can be cut in two by cutting only the particle
lines, as illustrated in Fig. 4. At times prior to t;, any
process, that is, appearance of phonon lines, can take
place and can be imagined as one of all the possible dia-
grams not depicted. The total sum of processes prior to
t, is thus the same as the sum of processes for the density
matrix at time ¢, so that in the process the initial-time

density matrix f; is propagated to time t,. This argu-
ment demonstrates the identity
F[f;1=F[f], (2.52)
where F is the functional
X '%: X X 0—3—77
t ?/‘ t - t t;
A e

FIG. 3. Diagrammatic representation of the functional F.
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FIG. 4. Typical three-phonon line diagram for F.

ﬁ[f]zfdxlfdxllf,.tdtlj(x’x"t;xl’x'l’tl)

Xfx,x7,t), (2.53)

and where the diagrammatic expansion of J, the “‘irre-
ducible” reduced density-matrix propagator, consists of
all irreducible diagrams, of which the lowest-order ones
are shown in Fig. 5. We note that irreducibility of a dia-
gram is determined not by topology alone, but also by the
relative time ordering between times on the upper and
lower branches. This feature, which distinguishes the
present diagram technique from the many-body tech-
nique, is the result of dealing with a single-time object
such as a density matrix.

Instead of pursuing the general discussion at this point,
and in order to gain familiarity with the Feynman rules
and the general features of the method, let us look at the
lowest-order contribution to the irreducible propagator
J. This contribution is depicted by the four diagrams in
Fig. 5. We observe that for all lowest-order diagrames, ir-
reducibility is trivial. As illustration, we note that the
first diagram in Fig. 5 corresponds to the analytical ex-
pression J ‘) given by

T V=GR(x,t;%,7)GAUx",T;x",t)D(x,t;X,T), (2.54)

by application of the Feynman rules. The full calculation
of the lowest-order irreducible propagator will be de-
ferred to the next section, where the kinetic approach to
transport is considered.

Up to this point we have stressed the spatial represen-
tation. Besides providing a very useful pictorial repre-
sentation of quantum transport, it also allows proper in-
clusion of boundary conditions, thus making it applicable
to the description of a general, inhomogeneous, situation.
The general formalism presented is therefore of impor-
tance for a full quantum-statistical description of physi-
cal systems of finite size, a feature we shall take advan-
tage of in the later discussion of mesoscopic phenomena.

Il. THE KINETIC APPROACH

In this section, we shall consider a treatment of quan-
tum transport that resembles the kinetic description of

~ R ~~ R ~
xtd‘%xT x‘rO——B—-xt x X1 xt T
— + -—
~ A o~ ; z ~
' X 't i X't X x't X7
X te—>—ex't Xte——>—p 2 2

FIG. 5. Lowest-order diagrams contributing to the irreducible
propagator J.
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the dynamics of classical gases due to Boltzmann (1872).
The virtues of a transport description in terms of kinetic
equations are (1) the simple physical interpretation it can
produce and (2) its ability to describe nonlinear behavior.
Furthermore, it allows a straightforward description of
thermal properties, such as heat conduction, whereas a
treatment of nonmechanical induced nonequilibrium
states in linear-response theory is more complex.

A. The Wigner function

The central object to the Boltzmann approach to none-
quilibrium classical statistical mechanics is the one-
particle probability distribution function over phase
space. In quantum mechanics the Heisenberg uncertain-
ty principle excludes the existence of a probability distri-
bution function with such a physical interpretation, but
not, however, the introduction of a function with a for-
mal resemblance to it. This so-called Wigner function
(Wigner, 1932) is definable in terms of the (reduced) den-
sity matrix by Fourier transformation with respect to the
relative spatial coordinate

f(o,R,0= [drexp F(R+Lr,R—1r1). 3.1

_i
hp

For a spatially homogeneous state (that is, one for
which f is independent of R), the Wigner function is
identical to the momentum distribution function, and for
a spatially localized state (f independent of p), it is identi-
cal with the density distribution function.> Furthermore,
in the classical limit, where all relevant actions are huge
compared to Planck’s constant, the Wigner function
reduces to the Boltzmann distribution function. Howev-
er, caution must be exercised in interpreting the Wigner
function in a probabilistic sense. Although the Wigner
function is always a real function, there is no general
physical principle guaranteeing that it be non-negative.
In any event, the Wigner function is a valid construction,
and all physical quantities are expressible in terms of it.
For instance, for the previously introduced current densi-
ty we have, in terms of the Wigner function,

; —e [
JRD=— [ *Fpf (p,R,1) . (3.2)

The integro-differential equation for the density ma-
trix, Eq. (2.49), can be turned into an equation for the
Wigner function by Fourier transformation,

5This is simply a restatement of the fact that only the diagonal
elements of the density matrix have a physical interpretation,
here for the cases of momentum and spatial representations, re-
spectively.
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3f(p,R,1) | Of(p,R,1)
at ap

dp ~ Lt o~ ~ s
= [ 525 [dR [ a0 T(p,R,1;,R,D)f (B,R,D) ,
(3.3)

where the irreducible propagator J in the Wigner or
mixed representation is

J(p,R,t;p,R,T)

i

=fdrfd7exp l——-—pr+éﬁ7

#

XJ(R+1r,R —1r,t;R +17,R —17,T),

(3.4)

and the second term on the left-hand side of Eq. (2.49)
reduces to the usual driving term of the Boltzmann equa-
tion in the case of a spatially uniform external force.
Each diagram for the irreducible propagator in the spa-
tial representation can, by simply Fourier transforming,
be labeled in the Wigner representation.

A diagrammatic technique is only useful for calcula-
tional purposes if the structure has easily recognizable
features to ensure that fundamental properties of physi-
cal quantities are respected. For example, what in the di-
agrammatic structure reflects the property that the
Wigner function is a real function? As we shall see short-
ly, it is an easily recognizable symmetry between dia-
grams of the irreducible propagator J. For any diagram
J4x,x',t;%,%",D of J, labeled by its external points,
there is a symmetric one J %x,x’,#;%,% ',7) obtained by
mirror reflection of the phonon lines in a line that is
parallel to the upper and lower lines and in between
them. The general structure of the diagrams, as
displayed in Fig. 3 clearly allows for such a symmetry
operation. Figure 5 is an example containing two such
pairs of mirror diagrams. Exploiting the relationship be-
tween the retarded and advanced Green’s functions, Eq.
(2.31), and the properties

[D3(x,t;x",t)*=—D3(x",t";x,t) , (3.5)

it follows, with the conventional minus sign as intro-
duced in Fig. 3, that

(T 4x,x"t;%,% D) *=T %x,x",t;%x ", %,7) . (3.6)

Transforming to the mixed or Wigner representation, we
therefore have the property

(T %p,R,t;5,R,D)]*=T “p,R,t;p,R,0) . (3.7)

The fact that the Wigner function is real is thus
reflected in the diagrammatic structure by the two sym-
metric classes the diagrams fall into, as allowed in gen-
eral by the two classes of Fig. 3.
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B. The intracollisional field effect
for electron-phonon interaction

As an example of the usefulness of the kinetic ap-
proach, we shall in this section study the time evolution
of the density matrix or, equivalently, the Wigner func-
tion in the weak-coupling limit; that is, the coupling to
the heat bath is treated to lowest order. Since this is the
only limitation imposed, we are treating the effect of the
external field completely, and we shall see that the so-
called intracollisional field effect is quite simply incor-
porated.

The irreducible propagator in the weak-coupling limit
is given by the diagrams depicted in Fig. 5. The retarded
and advanced Green’s functions include the external
field, as is evident in Eq. (2.21). The retarded Green’s
function G®(x,¢;x",t’), represented by a line in the dia-
gram in Fig. 5 and defined in Eq. (2.29) describes the
propagation of a particle created at space-time point
(x',t"), this being the information content of Egs. (2.44)
and (2.45).

This information is compactly combined
Green’s-function-type equation

in the

5O —H |GR(x,t;x",t)=#8(x —x")d(t —1') ,
ot P
(3.8)
GR(x,t;x",t")=0 for t<t’', (3.9)

where the particle Hamiltonian, Eq. (2.4), in the position
representation is

# d?
=- — —F.
H, am dn? x

(3.10)
The particle propagator, the Green’s function, can be ob-
tained by solving the differential equation directly or by
simply recalling that for quadratic Hamiltonians the
propagator is given, up to a prefactor determined by the
initial condition, in terms of the classical action

172
R el gy — . ’ m
G x,t;x",t")=—i6(t —t') A —1) ]

Xexp

i

—=S(x,t;x',t' , 3.11
P (x,t;%x )] ( )
where the classical action

S(x,t;x’,t’)=ftfdt{ém[X(t)]2+Fx(t)} 3.12)
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is evaluated for the classical path x (¢) with start and end

points x’ and x, that is, the solution of the problem

x(t")=x"', x(t)=x

(3.13)

Inserting the solution of Eq. (3.13), we obtain for the

classical action

GR(R,t,0')= [ drexp GR(R,r1,1")

-
ﬁP

— —i6(1 —t)exp ep)t —t)+ L

_L
#

where we have introduced the single-particle energy €(p),

PZ

2m

e(p)= (3.16)

With all the necessary ingredients explicitly at hand,
we can now evaluate the irreducible propagator. We
start by calculating the contribution from the diagram
depicted in Fig. 6. Let us assume that we start from a
spatially homogeneous state (if this is not the case, we
must examine the spatial extension of the irreducible

J

1L f1= 2fd‘f 57 Dp—p (D (p' = LF (1 =T),Dexp | —

i(t—
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m(x —x')?
2(t —1¢")
_ F¥t—¢')

24m )

As dictated by the introduction of the Wigner repre-

sentation, we need the propagator in this representation
(obtainable by a simple Fourier transformation),

S(x,t;x',t")= + = F(t—t Wx +x')

(3.14)

(3.15)

propagator J). The Wigner function will then be in-
dependent of its spatial coordinate, and, along with the
integration over r and 7, we can perform the integration
over R [as a consequence of which the right-hand side of
Eq. (3.3), or specifically [dR J(p,R,t;p,R,7), becomes
independent of R].

Introducing the Fourier expansion for the propagators
G®, G4, and D appearing in Fig. 6, we are able to carry
out the resulting integrations, and we obtain for this dia-
gram the following contribution to the right-hand side of
Eq. (3.3):

7)

P [elp'—

1F(t—1)—elp—L1F (1 —1))] (3.17)

For the contribution from the diagram in Fig. 7, the only change from the above calculation involves the phonon propa-

gator, and we obtain

ISf1==2f a"f (D) f(p—LF (¢t —T)

hPP

(e —7)

Xexp P

,F)

[elp’—L+F(t—1))—elp

—1F(t—D))] (3.18)

The two equations (3.17) and (3.18) have been indexed “in” and “‘out,” since they correspond to the scattering in and

out terms in the Boltzmann picture.

Utilizing the fact that symmetric diagrams give complex-conjugate contributions, as demonstrated in general in the
previous section, we obtain the collision-type integral I'!’ for the sum of diagrams in Fig. 5.

J=sha

R

*~—>—o
A

FIG. 6. Lowest-ordered scattering “in” diagram.
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FIG. 7. Lowest-order scattering “out” diagram.
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1=

-~y

2Re(I“’[f]+I‘”[f])

out

—fp (D, Dn_ ) Alp,p,t, 1)+ (1+n,_ AR, p,t,D)]} ,

lg,, P D,y Alp',p,t, D)+ (141 ,))A(p,p'st,7)]

(3.19)

where Re implies taking the real part of the subsequent expression, and we have introduced the shorthand

A(p,p’,t,?)=%cos

and

ptt)=p— [dr"F . (3.21)
"

We then have the following equation for the Wigner
function in the weak-coupling limit:

of L of _ ;)
31 +F—= o =I'"[f].

This is the quantum kinetic equation originally ob-
tained by Levinson (1969). In passing we note that we
have written Eq. (3.21) in a form such that, had we con-
sidered a time-dependent force, F =F (t), we would have
obtained the same equation, Eq. (3.21), except for F being
time dependent. Had we considered a degenerate Fermi
system, the only change from Eq. (3.19) would be the ap-
pearance of the characteristic blocking factor 1— f, due
to the Pauli principle, but now for the accelerated states
as described by Eq. (3.21) (Barker, 1973; Lipavsky et al.,
1986).

The quantum kinetic equation differs from the corre-
sponding Boltzmann equation as a consequence of the in-
tracollisional field effect, that is, the appearance of the
external field on the right-hand side of Eq. (3.22), and the
nonlocal temporal form of the functional I'’[f]. In the
classical limit, where Planck’s constant is assumed to be
zero, #i—0, the function A of Eq. (3.21) becomes a delta
function, and we recover the corresponding Boltzmann
equation for electron-phonon scattering which does not
exhibit any intracollisional field effect. That is, the exter-
nal field enters only through the usual driving term. The
classical concept of an instantaneous energy-conserving
collision emerges in this way. In the quantum case, the
intracollisional field effect effectively broadens the
energy-conserving delta function of the classical collision
integral to a nonzero width (AFAp /2m)!/?, where Ap is
the effective momentum transfer.

Finding a numerical solution for a quantum Kkinetic
equation such as Eq. (3.22) has proven to be a formidable
task, and even with additional assumptions no
comprehensive understanding has emerged. For a recent
description of the status of these efforts we refer the
reader to Jauho (1991). An important point to note is
that, once the interaction is treated beyond the lowest or-
der, the interaction itself will give rise to a similar but in-
trinsic broadening, the collisional broadening effect,

(3.22)
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l t ’ ’ ’ ’
5 L drlep (e —ep (,6)) +Hiw, _ ]

(3.20)

which should therefore be treated on an equal footing
with the intracollisional field effect. An effort to imple-
ment both effects in a numerical simulation is currently
underway (Bertoncini et al., 1990).

A different line of numerical work based on the Feyn-
man path-integral formulation of quantum transport
(Feynman et al., 1962), as previously investigated by
Thornber and Feynman (1970), is also being pursued.
Recently Mason and Hess (1989) succeeded in obtaining
the exact time evolution of the density matrix in the pres-
ence of an external field for the linear-coupling model.
Such a result, in view of modern computing capabilities,
lends hope for obtaining a numerical solution of the
physically relevant Frohlich model presented here.

Due to the enormous complexity of the quantum trans-
port equations for semiconductors, as exhibited above,
uncontrolled approximations used in the past to simplify
matters have led to an inconclusive state of affairs. In
view of the importance of understanding dissipative
properties of semiconductor structures under high-field
conditions, much further effort will be invested, and the
simplified approach presented here should therefore
prove useful.

IV. DENSITY-MATRIX DESCRIPTION OF A
PARTICLE IN A RANDOM POTENTIAL

In the preceding sections we assumed that the environ-
ment of the particle constituted a heat bath with which
the particle could exchange energy. Another important
environment for transport in solids is that of impurities
where no energy exchange takes place. During the last
decade astonishing progress in the understanding of
transport in disordered systems has been achieved. We
shall in the remaining sections discuss the physics of
disordered conductors in the light of the recently ob-
tained insight.

A. Feynman rules for the impurity-averaged
density matrix

For the case of an electron moving in a solid and being
scattered mainly by static impurities, we have instead of
Eq. (2.1) the Hamiltonian
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A=A8,+1,, 4.1)
where now
B=v®), 4.2)

V being the potential due to the presence of impurities,
with the environment of impurities assumed to have no
internal dynamics.

Jex',;%,% 1) ={x|O(6,t)|x Y(x'10 T(1,2,)|x") .

The density matrix is, as demonstrated in Sec. II, pro-
pagated from its value at time ¢,,

plx,x',0)= [dx [ds'J(x,x",t;%,% ",1;)p,(%,X ),
(4.3)

by the propagator of the density matrix J,

(4.4)

As in Sec. II, we go to the interaction picture with respect to the particle Hamiltonian A » and obtain, quite analogously

to Eq. (2.21), the expression for the density matrix,

p(x,x',t)=fdffdi”fdxlfdxzfdx'lfdx'2<5c“'

exp

><<x',

x(x

We can now expand the time-ordered exponentials and
insert complete sets of states as in Sec. II, and we obtain
the diagrammatic expansion of the density matrix p as
depicted in Fig. 8.

The Feynman rule for dealing with the impurity poten-
tial is therefore the following: A cross designates the ac-
tion of the impurity potential,

—— =1y,
#
and we have integration over such a space-time point
(x,1).

Assuming that the sample under consideration is mac-
roscopic,® so that the electron experiences a random po-
tential, we need only discuss the average properties of
physical quantities, which can be done in terms of the
statistically averaged density matrix. Assuming the im-
purity potential to be Gaussian distributed with zero
mean (a nonzero mean would only lead to an irrelevant
shift in energy), we have ({...) now denotes the statisti-
cal average with respect to the ensemble of impurity po-
tentials, that is, different samples)

(4.6)

SThis length scale has been established only recently and is
physically the distance L4 over which the electronic wave func-
tion maintains phase coherence. Over smaller length scales, the
electronic motion is quantum-mechanically coherent. In the
subsequent sections a detailed account is given of this new con-
cept in transport theory.
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i
'—;ﬁpti

T exp

'
x1)

—;—ft‘tdf V(%;) exp x'>p,~()?,f ")

.

x> . (4.5)

x'2><x'2
x1><x1

><<x2

% p

Ly t]

exp -——;;I?pt T exp

it N
- ftid? V(R;)

exp b

i
Zﬁ ti]

(Vx)..Vix,)N=3 [I{V(x)V(x;)), @7

a.p.p. 4Jj

for n even, and zero for n odd. The sum is over all possi-
ble ways of picking the pairs (a.p.p.). For example,

(V(x )W (x)V(x3)V(x4))
=V (x )V (x, NV (x3)V(x4))
FV(x IV (x3)){V(x)V(x4))
HV (X IV (x )V (x)V (x3)) .
4.8)

The physical realization of this statistical average cor-
responds to a model in which the positions r; of the im-
purities in the sample are assumed to be randomly distri-
buted (Kohn and Luttinger, 1957). In terms of the poten-

R R R R
) —<—9q —c—%—c—9 —s—e
: = ! + ‘ +
i —>—d —>d —>—h—>—s

A A A A

R R R R R R

4
. R
. D S
A A A A AA

FIG. 8. Diagrammatic representation of the density matrix for
a particle in an external potential.
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tial ¥V, of a single impurity at position r;, we have

imp

V(X)=3 Vigplx —1;) . (4.9)
The impurity correlator given by

V(x —x")=(V(x)V(x')) (4.10)

is related to the potential of the individual impurity by
V(x —x)=n; [dr Vigp(x = )WVipp(x'—r) 4.11)

where n; is the impurity concentration. Furthermore,
the above Gaussian description neglects multiple scatter-
ing off the same impurity, which is appropriate in the
Born approximation. Beyond the Born approximation an
identical analysis is carried out in terms of the ¢ matrix
(Langer, 1960).

The diagrams for the impurity-averaged density matrix

fle,x't)={p(x,x",t)) , (4.12)

describing the particle motion in the random potential
have, according to the above analysis, the form shown in
Fig. 9. Performing the impurity average corresponds to
pairing the impurity vertices in Fig. 8 in all possible
ways. The impurity correlator is represented graphically
by a broken line terminated by crosses, and transcribed
according to the Feynman rule
*——— 1

xt x,t,=?°\f(x —x').

(4.13)
An important point that will enable us to obtain a physi-
cal picture from the diagrammatic representation, and
that explains the two crosses at the end of the impurity
correlator, is that, for an impurity potential with range
smaller than the inter-impurity separation, the impurity
correlator corresponds to scattering off the same impuri-
ty.

B. Quantum kinetic equation
for weak impurity scattering

Let us perform an analysis of quantum dynamics in a
random potential similar to the one we performed for the
interaction with the heat bath, and obtain the temporal

J

2

V(x —%)GR(x,t;%,1)GUx ", T;x",t) .

X P S
XT X.—(—qlx R R R .—(——.‘
tho= I+ {
x'é x'o-_z-—_i? o————K———d é-;—é—*—&—$
e
R R
—<—x<9
.
+ // | + oo e
> > —$
A A

FIG. 9. Diagrammatic representation (lowest order) of the
impurity-averaged density matrix.

evolution of the impurity-averaged density matrix in the
presence of an external force. We consider the weak-
coupling limit and treat the interaction with the impuri-
ties perturbatively and to lowest order. In the next sec-
tion on disordered conductors we shall discuss in detail
the wvalidity of such a treatment and its physical
significance. To obtain the quantum kinetic equation,
treating the interaction with the random potential to
lowest order, we expand the exponentials in Eq. (4.5) to
second order in the impurity potential, perform the im-
purity average, and take the time derivative. The equa-
tion of motion for the impurity-averaged density matrix
then becomes

af(x,x',t)_’_i(xl[ﬁ

ot % p’f(t)]lx'>:_iﬁl[f] , (4.14)

where we have for the functional in the spatial represen-
tation

Fiif1= [ax’ [ax [ dt T, (x,x",1:%,% ", Df (2,2 D),
(4.15)

and J,, the lowest-order irreducible propagator for the
impurity-averaged density matrix, has the diagrammatic
representation shown in Fig. 10.

As an example of using the Feynman rules, the contri-
bution to J, from the first diagram in Fig. 10 is given by

(4.16)

We can now perform the Fourier transformation as we did in the case of coupling to the heat bath and obtain the
equation of motion for the impurity-averaged density matrix in the Wigner representation in a lowest-order treatment

of the coupling to the random potential

df 4 pdf _
5 e, =hlT,
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(4.17)
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where the functional 7, in the Wigner representation has the form

2 dp’
Il[f]=_“ﬁ7nift:d7f E%[Vimp(l’ —p")|?cos

X[flp —F(t—0),0)—f(p'—F(t—7),0)],

and V;,,,(p) is the Fourier transform of V;,,(x).

The quantum kinetic equation (4.17), which includes
the intracollisional field effect for scattering in a weak
random potential, has to our knowledge not been con-
sidered before, and we shall therefore discuss the assump-
tions made in arriving at Eq. (4.17), thereby establishing
its region of validity. We have assumed that a lowest-
order treatment of the random potential is sufficient, that
is, higher-order quantum interference effects (to be dis-
cussed in detail in the next section), which would result
in localization effects, are rendered ineffective by assum-
ing that the length of the sample L is smaller than the lo-
calization length £, implying that the de Broglie wave-
length of the electron is smaller than the impurity mean
free path. On the other hand the necessary assumption
for the statistical averaging to be meaningful requires the
sample dimension to be larger than the phase coherence
length L, (an account of this concept and its role in
diffusive electronic transport will be given in the section
on weak localization). The phase coherence length in
turn must be larger than the impurity mean free path,
since inelastic scattering is absent in Eq. (4.17). The
phase coherence length is determined by the inelastic col-
lisions (electron-electron or electron-phonon scattering)
and thus dependent on the temperature. The application
of Eq. (4.17) thus assumes that the impurities, rather than
inelastic scattering, give rise to the dominant scattering,
but quantum interference effects due to impurity scatter-
ing can be neglected. The collisionlike integral, Eq.
(4.18), is considerably simpler than in the electron-
phonon case, Eq. (3.19), since it corresponds to setting all
the phonon frequencies equal to zero (elastic scattering)
and the Bose function equal to zero (zero temperature).

In the derivation of Eq. (4.18), we assumed a spatially
homogeneous state and did not need to invoke any spa-
tial properties of, say, the irreducible propagator J,. To
discuss spatially nonhomogeneous states, or to assess the
field range of the external force, we need to introduce the
skeleton representation of J, depicted in Fig. 11, where
the upper (retarded) Green’s function is given by the set
of diagrams depicted in Fig. 12, and similarly for the ad-

—e—X % ——X
R _ + \\\ _ e
A ~ -
_— x——% —>X e
A N A A

FIG. 10. Diagrammatic representation of the irreducible prop-
agator J;.
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e(p’—%F(t—T))-—e(p-—%F(r—-?))1 1

(4.18)

—

vanced Green’s function. The resulting change, which is
discussed in detail in the next section, consists in the sub-
stitution

|x —x’|
21

GR(x,t;x",t')—>GR(x,t;x',t")exp , (4.19)

where [ is the impurity mean free path. The substitution,
Eq. (4.19), corresponds to inclusion of the collisional
broadening effect due to impurity scattering. The ap-
proximation to the impurity-averaged Green’s function
constituted by the partial summation of diagrams in Fig.
12 is sufficient if the de Broglie wavelength is smaller
than the impurity mean free path, pl >4, where p is the
momentum of the particle. This is a condition well
satisfied for electrons in disordered conductors. The
neglected diagrams will involve impurity correlators that
cross and, simply due to phase-space restriction for such
processes, they are suppressed by the factor 7/pl. Ob-
taining an equation local in the spatial coordinate can
now be justified for a spatially nonhomogeneous state if
the spatial scale of J,, namely /, is smaller than the spa-
tial scale of f, which is set by the spatial variation of the
external field, A.,,. Thus we require / <A.,,. In this case,
we can substitute R for R in f and then perform the R in-
tegration as before.

The quantum kinetic equation (4.17) determines the
temporal evolution of the Wigner function when the
effect of the impurity scattering is weak while the exter-
nal field can be arbitrarily strong. The quantum nature
of the evolution is reflected in the nonlocal temporal
form of the influence of the environment, and Eq. (4.17)
describes ballistic transport in a field of arbitrary
strength. In the classical limit where Planck’s constant is
assumed to be zero, 7i—0, the rapidly oscillating cosine
function in Eq. (4.18) becomes an energy-conserving delta
function, and we recover the corresponding Boltzmann
equation for hard-sphere scattering, which does not ex-
hibit any intracollisional field effect.

7’ \ R R R
W ;
R _ + N _ P 7
~.
A L -
p— —y —X @:
A 7 A A

FIG. 11. Skeleton diagram representation for the impurity-
averaged irreducible propagator J.
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FIG. 12. The upper (retarded) impurity-averaged Green’s func-
tion.

V. LINEAR RESPONSE
OF DISORDERED CONDUCTORS

In the preceding sections we have shown how to derive
kinetic equations using a diagrammatic method for the
density matrix. The Kkinetic-equation approach to trans-
port theory is a general method, since it allows, in princi-
ple, all nonlinear effects to be considered, whether they
be classical or quantum in nature. However, in many
practical situations of interest one is interested only in
the linear response of the system to the external force,
and in the following we shall discuss the linear response
of disordered conductors. In the linear-response regime
it is possible to obtain diagrammatic representations
directly of the physical quantities of interest, such as con-
ductivities and susceptibilities in general. A general
feature of the kinetic-equation approach, as compared to
the linear-response approach, is that in the former one
needs to consider far fewer diagrams. This apparent
simplification can in actual calculations, however, soon
be overshadowed by complications due to the fact that in
the kinetic approach the diagrams represent nonequilibri-
um quantities.

The linear-response limit is a tremendous simplifica-
tion in comparison with general nonequilibrium condi-
tions, since linear-response properties are uniquely deter-
mined by the equilibrium properties of the system, as ex-
pressed through the fluctuation-dissipation theorem (Cal-
len and Welton, 1951). Linear-response theory is of
course a well-known textbook subject (Kubo et al.,
1983); however, in the standard presentations homogenei-
ty is assumed, an assumption appropriate for discussing
the response properties of macroscopic bodies. In the
following we shall discuss mesoscopic phenomena for
which such an assumption is invalid, and we shall there-
fore present the general formulation of linear-response
theory. In contrast to the standard treatments (Lax,
1958), we shall base our presentation on the diagram
technique developed above for the density matrix and
thereby benefit from the simple physical picture of
single-particle transport.

In this section, we shall therefore apply the diagram-
matic technique for the density matrix to a discussion of
linear response. We shall specifically discuss electrical
conductivity, and in particular discuss quantum effects
due to impurity scattering. For completeness, in the fol-
lowing we shall represent the external electric field E by a
vector potential A (we shall in this section use an explicit
many-dimensional notation),

JdA

E=—? s (5.1)
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and not, as in Sec. II, by a scalar potential. The two rep-
resentations can be handled with an equal amount of la-
bor, as they are equivalent by gauge invariance.

A. The conductivity tensor

In this section we derive the general expression for the
conductivity tensor for a noninteracting electron gas in
an impurity field. We start by considering a single parti-
cle and show that, since the scattering is elastic, we can
easily incorporate the fermionic character of the elec-
trons.

We wish to calculate the current response to lowest or-
der in the electric field. The system we shall have in
mind is that of a particle interacting with impurities
through an impurity potential ¥. The Hamiltonian in
question is therefore

iszin
A= 2"; +Vv@R)=H,+H,, , (5.2)
where
ﬁ%al’l
A,= S TV ®) (5.3)

is the Hamiltonian for the particle in the impurity field,
and the interaction of the particle and the classical field is
given by

H,y0= fdx’j\(x)- A(x,1)

= fn—[f’m' AR+ AR, )P,

e2
— AXR,1) . (5.4)

_+_
2m

In the presence of a vector potential, the current-density
operator is ({ , } denotes the anticommutator)

Tx)= 5 Py (1)) (5.5)

where 7 (x) is the density operator,
A(x)=8(x—%), (5.6)

and the kinematical momentum operator is related to the
canonical momentum operator through the minimal cou-
pling relation
Pkin:Pcan_e A(’x\,t) . (5.7)
For the current density at time ¢ in a quantum-
statistical ensemble characterized by the statistical opera-
tor p(t), we have
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j(x,6)=Tr[p(£)](x)]

Since the second, diamagnetic, term in Eq. (5.8) is ex-
plicitly linear in the external field, we can to linear order
replace p(t) by py(t), the statistical operator evolved by
the unperturbed Hamiltonian A o

To calculate the density matrix to linear order in the
external electric field, we write the evolution operator o
in the interaction picture with respect to the unperturbed
Hamiltonian A 0

O(t,t")=exp —%ﬁot T exp —é—ft’tdfﬁ,,(t_)
Xexp ;i{ﬁot' , (5.9)
where
H ,(t)=exp —éﬁot I?A(,)exp éﬁot] (5.10)

is the perturbation in the interaction picture. In the
linear-response regime, we can in the perturbation A ne)
omit the quadratic term in the external field.

_

-

GR(x,t;xl,tl) [—a—

(1) ray=_€ [
P (X,X ,t)_ 2im fdxlfdxlftidtl aXI

+GR(x,t;x,,t,)G Ax, 1%, 1) [i-A(x;,tl)— A(x),t,)

X polx1,X7,2;)

Let us assume that prior to the time the field is switched
on, the particle has been in contact with a heat bath, so
that its statistical operator is the thermal one,

Pi=3 FrlA)(Al, (5.13)
Y

where the |A)’s are the exact impurity eigenstates of H,,
B\ =¢r) .

At this point we could continue the discussion of a single
particle, which in many cases would be appropriate, for
example, for electron dynamics in semiconductors. Since
we wish to be able to consider the dynamics of an elec-
tron gas, we must bear in mind that in quantum mechan-
ics identical particles are indistinguishable, which has

(5.14)
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2
—— A(x,t)p(x,x,t) .
m

(5.8)

If we now expand the density-matrix propagator to
lowest order in the field, for the linear corrections to the
density matrix p we obtain the expression given by the
first two diagrams of Fig. 13. In linear response, we can
let the initial density matrix be evolved in time by H; up
until the time of interaction with the external field, to ob-
tain the second set of diagrams of Fig. 13. The current
vertex couples the particle current density to the vector
potential at the space-time point in question according to
the Feynman rule

__e |d. _ 3
= Zim | 3 A(x,t)— A(x,t) ax |’

(5.11)

where the upper arrow on 9/0x is meant to designate
that the differential operator operates on the Green’s
function to the left.

The linear correction to the density matrix is therefore,
according to the application of the Feynman rules to the
diagrams of Fig. 13, given by the expression

axl

cA(x,t)— A(xy, 8 )-—a— ]po(xl,x'l,tl )G A(xy, ;%' t)

-

ox} E)x—'l

(5.12)

FIG. 13. Linear-response diagrams for the density matrix.
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consequences even for noninteracting particles. In the
linear-response regime we can take advantage of the fact
that for noninteracting electrons the fermionic feature
can be incorporated immediately. Instead of continuing
discussing a single particle in the impurity potential, we
therefore let p; denote the statistical operator describing
a noninteracting electron gas, at temperature 7 and with
density n, in the impurity potential by choosing the prob-
abilities f, in accordance with the Pauli principle so that

_ 1
exp[(e;, —€p)/kgT]+1 "~

fa (5.15)

where €. is the Fermi energy of the electron gas.

The descriptions of a single particle and of a nonin-
teracting electron gas in an impurity field are equivalent
because the scattering is independent of the electron dis-
tribution, thereby rendering the Pauli exclusion principle
inoperative on the dynamics. We could also explicitly in-
troduce the spin degree of freedom of the electron. How-
ever, since the spin in the following plays no dynamic
role, but would only amount to multiplying in equations,
such as the right-hand side of Eq. (5.21), by a factor of 2,
we shall neglect the spin in the following. We note, how-
ever, that this choice is made for simplicity in presenting
the fundamental features of quantum transport in disor-
dered conductors and represents no limitation in princi-
ple. We could straightforwardly introduce the spin de-
gree of freedom of the electron and thereby discuss
scattering off magnetic impurities and the effects of spin-
orbit scattering.

In linear response, each monochromatic contributes
additively, so without loss of generality we can concen-

799
so that the vector potential is given by
A(x,1)= A (x)e "o, (5.17)
with the Fourier component
Am(x)ZiEw(x). (5.18)

Since we are interested in the steady state, we can let
the initial time ¢; in which the external field is switched
on be in the remote past so that #; approaches minus
infinity. The final ingredient we need in order to extract
the temporal Fourier component at frequency o of the
current density, Eq. (5.8), is to make use of the fact that
the retarded and advanced Green’s functions have the
spectral representation in terms of the complete set of
eigenstates of the Hamiltonian, A o> for the particle in the
impurity field

X (x")Yy(x)
GR(A)(X,X';€)=h2 &X_‘?}:—_

, (5.19)
% €—eL)i0"

where GR(4)(x,x';€) is the temporal Fourier transform of
GRA(x,1;x',1'), and ¥,(x)={(x|A) is the exact impuri-
ty eigenstate corresponding to the energy eigenvalue ;.
Equation (5.19) is readily obtained from the definition
(2.29) by inserting complete sets of energy eigenstates.
Upon inserting into Eq. (5.12), and subsequently using
Eq. (5.8), we then obtain for the frequency-dependent
current response

trate on a specific frequency o of the electric field Jjox,0)= fdx’aaﬁ(x,x',w)[Ew(x’)]B , (5.20)
E(x,1)=E,(x)e ", (5.16)  where the conductivity tensor is
J
2
aaﬁ(x,x’,w)=-—rlﬂ~ Tf;— l f_wwdef(e)—j;(e_'_ﬁw) [GR(x,x";e+%w)—G Ax,x";e+Fiw)]
X (V) oV ) gl GR(X', x;6)— G 4(x', x56)] (5.21)

and where we have introduced the abbreviated notation

(5.22)

In the course of the derivation of Eq. (5.21), the di-
amagnetic current has cancelled the off-shell part in the
first term on the right-hand side of Eq. (5.8), so that only
the thermal layer near the Fermi surface contributes to
the conductivity, as expected.

The current density Eq. (5.20), is expressed in terms of
the exact solution of the Schrdodinger equation or
equivalently the Liouville-von Neumann equation. The
conductivity tensor, Eq. (5.21), contains all information
specific to the sample, such as impurity configuration,
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geometry, and connection to leads. The linear-response
relation, Eq. (5.20), therefore does not immediately de-
scribe the dissipative experimental linear relationship be-
tween macroscopic currents and voltages. In order to do
this we must explicitly deal with the interactions of the
system under investigation, the coupling of the sample to
the environment, and the fact that electrons are entering
and leaving the sample. In the present case this is not a
delicate matter and can be done by simply imposing
boundary conditions, and as we show in Sec. V.D we are
led to a description equivalent to the Landauer approach
for mesoscopic samples, in which phase-randomizing
electron reservoirs, sources and sinks for electrons, pro-
vide the necessary means for destroying coherence, that
is, the dissipation necessary for establishing the steady
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state of linear response. In the case of macroscopic sam-
ples we expect such an issue as the presence of leads to be
irrelevant, as we indeed subsequently demonstrate. How-
ever, what is nontrivial is the length scale defining the
macroscopic scale, the quantitative understanding of
which constitutes a major recent advance in the descrip-
tion of disordered conductors. In the following sections
we shall discuss the conductance of macroscopic samples
with particular emphasis on quantum-mechanical effects,
and subsequently the sample-specific properties due to
quantum effects in mesoscopic samples.

B. The classical conductance

As mentioned above, we are here interested only in
macroscopic samples. The properties of a macroscopic
sample can be ascertained through a few macroscopic pa-
rameters. In the present case of electrons scattered by
impurities, the mean concentration of the impurities (as-
sumed to be constant on the average) or, equivalently, the
elastic mean free path [ characterizes the conduction
properties. A macroscopic sample is therefore character-
izable by its average conductance (inverse resistance) ten-
sor

(6 @Y=L2[dx [dx'(o4xx,0), (523
where (0 ,4(x,x',)) is the impurity average of the con-
ductivity tensor, Eq. (5.21), and L is the length of the
sample. We shall show that the macroscopic length scale
is determined by quantum-mechanical effects, thereby in-
troducing a new concept in transport theory, the phase
coherence length L ;.

The impurity-averaged conductivity tensor is described
by diagrams like those in Fig. 14, as can be seen from the
following consideration. The typical structure of the
impurity-averaged conductivity diagram is the impurity
average of a product of Green’s functions, for example,

oR1=(GR(x,x";e+%w)G 4x' x;€)) , (5.24)

where the Green’s functions contain complete informa-
tion on the electronic motion in the impurity potential.
This impurity average is analogous to the one we per-
formed in Sec. IV for the density matrix: Expand G¥
and G 4, according to Eq. (2.29), in terms of the impurity
potential as in Fig. 8, and perform the pairwise connec-
tions as in Fig. 9. As in Figs. 9, 10, and 11, there are two
distinct classes of diagrams: a class in which the retarded
Green’s function G® and the advanced Green’s function
G are not connected by impurity correlators, and a
class in which they are connected, as depicted in Fig. 14.

g R R R BB, R
A A

AAA

FIG. 14. The classical conductance diagrams.
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In these and subsequent diagrams we have, for visual
clarity, depicted the impurity-averaged Green’s functions
by a single line and not as a double-line object as in Fig.
12. The contribution to the impurity-averaged conduc-
tivity tensor of a given diagram is therefore calculated by
the same Feynman rules as stated for the density matrix.

For purposes of this discussion, we shall assume that
the electron gas is degenerate, that is, all other energies
are small compared to the Fermi energy €. Since the
scattering is elastic this is no restriction; had we pre-
ferred to discuss the mobility of a single particle we could
equally well have concentrated on any other energy. The
energy integration in Eq. (5.21) can then be performed,
since for frequencies and temperatures that are small
compared to the scale set by the Fermi energy,
fiw, kg T <€p, we can exploit the degeneracy of the elec-
tron gas to substitute for the temperature-dependent
term the delta function

fle)— flet+Hw) ~

. Sle—ep) .

(5.25)

Therefore only electrons on the Fermi surface contribute
to the conductivity, as expected according to the Pauli
principle.

Here we digress briefly to obtain the expression for the
impurity-averaged Green’s function, Eq. (4.19). Without
loss of generality for our discussion, we can assume a
delta-function correlator for the impurity correlator, Eq.
(4.10),

V(x—x")=u?8(x—x') , (5.26)

which according to Eq. (4.11) corresponds to the limit of
dense point scatterers.

As noted earlier, the impurity-averaged Green’s func-
tion is determined by the set of diagrams depicted in Fig.
12, provided that the electronic (Fermi) wavelength is
small compared to the impurity mean free path or,
equivalently, the energy uncertainty is small, er >,
where the impurity mean free time 7, is related to the im-
purity correlator strength by

#

— =27N(e)u?,
Te

(5.27)

where N (€) is the density of states (per spin) of the elec-
trons. This result is readily obtained by Fourier trans-
forming the analytical expression in the spatial represen-
tation corresponding to Fig. 12. For the retarded
impurity-averaged Green’s function we then obtain

#i

_—, (5.28)
e—e,—=R(e,p)

(GR(e,p))=

where the retarded self-energy, that is, the insertion in
the rightmost diagram of Fig. 12, is given by

2 . 4
ER , =u_ P
(ep =7 f (2m#)

Substituting the free-particle propagator [obtained from

(GR(e,p)) . (5.29)
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Eq. (3.15) by setting the external force equal to zero,
F =0]

#
R _—
Gy (€,p) c—e,+i0 ’ (5.30)
into Eq. (5.29), we obtain
SRe,p)=—i % +c(e) . (5.31)

27,

€

The real part of the self-energy, c(¢), is, in the present
free-electron model with short-range impurities, in fact
infinite. The contribution from large momenta are:in
reality cut off, since contributions from processes with
large momenta are small. A finite range of the impurity
potential will then transform c(€) into a slowly varying
function of energy €, which only results in an irrelevant
shift in the chemical potential €. The effect of the ran-
dom potential is therefore to shift the pole of the Green’s
function off the real axis, thereby giving momentum
eigenstates a finite lifetime 7. The slow energy depen-
dence of the lifetime, or equivalently the density of states,
can be neglected when considering the electric current, in
contrast to the case of the thermoelectric current. The
particular energy picked here is the Fermi energy, or if
we consider only one particle, its energy, and we shall
henceforth at times drop the ‘energy subscript. Since the
other relevant quantities, density of states and range of
impurity potential, involved in the calculation of the
self-energy vary only on the scale of the Fermi energy,
the result for the imaginary part of the self-energy in Eq.
(5.31) is not dependent on the substitution in Eq. (5.29) of
the free propagator for the full propagator provided
€x7>#, and we therefore have for the impurity-averaged
retarded Green’s function

(GR(e,p))=—T———=G

e—ep+iﬁ/27_ (), (5.32)

where the shorthand notation has been introduced in or-
der to avoid brackets. Equation (5.32) for the impurity-
averaged Green’s function corresponds by simply Fourier
transforming to an exponential decay of momentum
correlations with the rate 1/7 as in the classical Drude
theory (Ashcroft and Mermin, 1976).

By Fourier transforming Eq. (5.32) and calculating the
integral by the residue method, we obtain the spatial rep-
resentation

m exp{|x—x'[(ik,—1/21,)}
2mh |x——xw

=GR(x,x),

(GR(x,x",€))=—

(5.33)

where k. =(1/#)V2me is the electronic wave vector,
and [,=(#/m)k 7, the impurity mean free path. Equa-
tion (5.33) applies to the case in which the sample dimen-
sions are larger than the impurity mean free path, so that
the motion in the impurity field is three dimensional. In
the strictly two-dimensional case, which can be realized
for instance in MOSFET’s, one should use the corre-
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sponding two-dimensional expression. The impurity-
averaged Green’s function, Eq. (5.33), is translationally
and rotationally invariant, as the average over all impuri-
ty configurations leaves no preferred direction.
Neglecting, for the moment, diagrams in which the im-
purity correlator connects the retarded and advanced
Green’s functions, we obtain by inserting Eq. (5.33) into
Eq. (5.23) for the conductance, and using the property

GA(x,x)=[GR(x,x)]*, (5.34)

the well-known Drude expression for the macroscopic
conductance

ne 27'

(W) y=___ "¢ 7
(G“B> m(l—ioT)

L7724, (5.35)
where d is the dimension of the sample.

The diagrams depicted in Fig. 14 are all formally of the
same order of magnitude, since an impurity correlator
with its two accompanying Green’s functions is of order
unity and must be treated on an equal footing. Inclusion
of the diagrams in Fig. 14, where the retarded and ad-
vanced particle line is connected, leads again to the con-
ductance formula, Eq. (5.35), except that the impurity
mean free time 7 is now replaced by the transport time
for a general impurity potential (Edwards, 1958; Langer,
1960), expressing the simple fact that forward scattering
is not effective in degrading the current. In the present
delta-function correlator model, Eq. (5.26), these times
are identical, as each scattering direction is weighted
equally.

The typical term in the conductivity tensor, Eq. (5.21),
is according to Eq. (5.24) seen to be basically the proba-
bility for the particle to move between different points in
the sample. In obtaining the classical result for the mac-
roscopic conductance we have assumed that the quantum
interference terms are averaged to zero when the impuri-
ty average is performed. This corresponds to neglecting
the wave nature of electronic motion and is therefore
only correct to lowest order in the electronic wavelength
over the impurity mean free path. In the following sec-
tion we shall see that a certain class of self-intersecting
classical paths are resilient to the impurity average, giv-
ing rise to the phenomenon of localization in random
media.

C. Weak localization

The theory of weak localization dates back to the semi-
nal work of Abrahams et al. (1979) on the scaling theory
of conductance and developed rapidly to a comprehen-
sive understanding of the quantum corrections to classi-
cal conductivity (Al'tshuler, Aronov, Khmel’nitskii, and
Larkin, 1982). The weak-localization effect was soon
realized to be the result of a simple type of quantum-
mechanical interference (Larkin and Khmel’nitskii, 1982;
Khmel'nitskii, 1984), and the resulting physical insight
eventually led to a quantitative understanding of mesos-
copic phenomena in disordered conductors. Below we
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use the diagrammatic technique to examine weak-
localization phenomena, paying particular attention to
the quantum-mechanical interference.

In the preceding section we derived the expression for
the classical conductance as the limiting case in which
the quantum-mechanical wave nature of electronic
motion is neglected. The type of diagram we have so far
neglected is that in which impurity correlators cross. As
noted earlier, such contributions are smaller by a factor
#i/€p7 and thus constitute the quantum corrections to the
classical conductance. All the diagrams in Fig. 15 are
formally of the same order of magnitude and must be
summed. In the time-reversal-invariant situation, the
maximally crossed diagrams in Fig. 15 in fact exhibit
singular behavior, and we shall therefore consider the ex-
plicitly time-dependent situation in which the external
frequency o is not equal to zero. We note that, for con-
ductance diagrams where impurity correlators connect
the upper and lower particle lines, we need only consider
those in which retarded and advanced are connected; the
other combinations exhibit no singular behavior, as the
impurity scattering effectively separates the momentum
integrations. The maximally crossed diagrams were orig-
inally studied by Langer and Neal (1966); however, their
physical significance was not realized, and consequently a
wrong regularization of their singular behavior was em-
ployed. As previously, the free-electron model with iso-
tropic scattering will be used for convenience; band
structure and anisotropy can be handled with equal ease,
(Rainer and Bergmann, 1985).

The impurity-averaged Green’s function, Eq. (5.33),
decays exponentially with a spatial range equal to the
mean free path /=v,7, where v, is the Fermi velocity.
As will become clear, the spatial scale of variation of the
so-called Cooperon, the sum of the maximally crossed di-
agrams of Fig. 15, is quite different and typically much
larger; this is the phase coherence length. In the dia-
grams of Fig. 15, the impurity-averaged Green’s func-
tions attached to the sum of the maximally crossed dia-
grams, C,(x,x’), therefore require the starting and end
points of the Cooperon to be within a mean free path,
which on the scale of variation of the Cooperon amounts
to setting its spatial arguments equal. The conductivity
diagram depicted in Fig. 15 can therefore be evaluated,
leading to the quantum correction to the macroscopic
conductance

R R
RRR R R
A A A A
A A A

FIG. 15. The quantum correction conductance diagrams.
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where D =vyl/d is the diffusion constant in d dimen-
sions. For samples of size larger than the mean free path,
L > [, the diffusion process is effectively three dimension-
al, so that one should use the value d =3 in the diffusion
constant.

The sum of the maximally crossed diagrams, the
Cooperon C,(x,X’), is generated by the iterative equation
depicted in Fig. 16, whose analytical expression, acccord-
ing to the Feynman rules, is given by [with the normali-
zation convention chosen in Eq. (5.36)]

C,(x,x")=8(x—x")+ fdx"fg(x,x”)Cm(x",x’) s

8(Gly )=~ L7%,5[dxC,(x,x),  (536)

(5.37)
where the insertion J ¢, is given by
Teax) =GR (5,562 (5,%) (5.38)
o XX ﬁZ €p+Hio X,X & XX ). .

The slow variation of C,, on the scale of the mean free
path, which is the spatial extent of the function J ¢ as evi-
dent from Eq. (5.33), makes a low-order Taylor-
expansion in Eq. (5.37) sufficient, so that we obtain on a
length scale much larger than the mean free path

[ (1= [arT o]

_._1__. 2F ¢ 2 'y — —
> [fdrer(r)]Vx C,(x,x)=5(x —x') ,

(5.39)
where J ¢(r) equals J¢ (x,x’) for r=x—x'".
The integrals needed in Eq. (5.39) can now be per-
formed by substituting Eq. (5.33); assuming €x7># and
fio < €, we obtain

1
1—ior ’

JarT o= (5.40)

DT

_—. (5.41)
(1—iwr)?

_1_ 2Fc —
5g JarrTim

The moments in Eqs. (5.40) and (5.41) have a simple
physical interpretation. J (r) for @ equal to zero is the
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FIG. 16. The iterative equation for the sum of the maximally
crossed diagrams.
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probability density, on the length scale of the mean free
path, for finding the particle at position r as seen from
the definition, Eq. (5.38). The normalization of this prob-
ability, that is, particle conservation, is therefore ex-
pressed by Eq. (5.40), and Eq. (5.41) is the statement that
the motion in the random potential is diffusive. Hence,
for small frequencies, w7 <1, and for length scale varia-
tions 1/q larger than the mean free path, g/ <1, we ob-
tain the following equation determining the Cooperon:
(—iw—DVi)Cw(x,x’)z%S(Jl—x’) . (5.42)
The solution of Eq. (5.42) is immediately obtained by
Fourier transformation. Inserting it in Eq. (5.36) for the
conductance, we find that in a quasi-two-dimensional sys-
tem, where the thickness of the film is smaller than
V'D /o, the quantum correction to the conductance ex-
hibits the singular behavior (Gor’kov et al., 1979)

1

T

(G )=— 8,510 (5.43)

e?
Amh

We note that the quantum correction to the conduc-
tance, in the limit of a large two-dimensional sample
which we considered here, is finite only because we con-
sidered a time-dependent external field. This feature can
be understood once the physical origin of the weak-
localization effect has been realized. We shall shortly
demonstrate that the structure of the diagrams involved
lends itself to a simple physical interpretation. Before
doing so, we note that the quantum correction to the
conductance, Eq. (5.43), compared to the classical contri-
bution, Eq. (5.35), is of relative order 1/kg/ (in the con-
sidered quasi-two-dimensional case). This is the fraction
of a wave with wave vector kp scattered back to its
source by a random medium with mean obstacle separa-
tion /, when the wavelength is smaller than the obstacle
separation, kpl > 1.

The physical process describing the classical conduc-
tance is velocity relaxation or, equivalently, according to
the Einstein relation, diffusion. which in our diagram-
matic language is described by the diffusion propagator

depicted in Fig. 17. Employing the diagrammatic tech-

nique for the impurity-averaged density matrix, we see
from Fig. 9 that the diffusion propagator is just the

R R_R R R R R R R R
1 [ L I B |
+ 1 + [ + o +
ox MR ok .
A ATA ATAA ATATATA
R R R
<o
= +
*>-e
A A A

FIG. 17. The diagrammatic representation of the diffusion pro-
cess.
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leading-order, in 1/kgl, contribution to the impurity-
averaged diagonal density matrix when the particle ini-
tially, at time t’, is prepared in a state of definite position,
say x':

fi(x,x1)=8(x;—x")8(x|—x') . (5.44)

That is, the diffusion propagator is the leading-order con-
tribution to the propagator of the impurity-averaged di-
agonal density matrix, J?(x,x,¢;x’,x’,¢’), and according-
ly the classical conditional probability for diffusing be-
tween space-time points. .

For calculation purposes it is convenient to introduce
the “Diffuson,” obtained from the diffusion propagator
JP by deleting the external legs, and denoted by the box
in Fig. 17. The Diffuson is determined by a similar itera-
tive equation to that used for the Cooperon, depicted di-
agrammatically in Fig. 16, with the important difference
that one of the particle lines, say the advanced one, is re-
versed. The Diffuson will therefore be determined by the
same equation as the Cooperon, Eq. (5.37), except that
J ¢ is now replaced by the diffusion insertion J 2 given by

¥ D U’ R NEA (g
J J(x,x )—%—Z—GEF+ﬁm(x,x )G . (x',x) . (5.45)

In a time-reversal-invariant situation the two inser-
tions are equal, ~2,=.7 2, and the Diffuson satisfies the
same diffusion equation as the Cooperon, Eq. (5.42).
However, the Diffuson and the Cooperon will no longer
satisfy the same equations once quantum coherence is
disrupted by interaction effects, which must be taken into
account when the analysis is not limited to zero tempera-
ture, or when the coherence is influenced by an external
magnetic field, magnetic impurities, or spin-orbit scatter-
ing. The Diffuson, or rather the diffusion propagator,
will in all cases describe the conditional probability for
diffusion, whereas this is not the case for the Cooperon.
In view of the reversal of one of the particle lines, the
Cooperon is therefore also referred to as the particle-
particle ladder, and the Diffuson as the particle-hole
ladder. For the present one-particle situation, however,
physical insight may be gained by interpreting the dia-
grams as products of amplitudes for various alternative
classical paths. The diffusion propagator or, equivalent-
ly, the Diffuson is, according to the diagrammatic repre-
sentation seen to describe the “amplitude for scattering
sequence times the complex conjugate of the same ampli-
tude,” thus describing a probability, the spreading of the
probability density of the diffusing particle. Although
the Cooperon in a time-reversal-invariant situation is de-
scribed by the same diffusion equation, Eq. (5.42), its
physical content is quite different. We can see from the
diagrammatic representation that the Cooperon describes
“amplitude for scattering sequence times the complex
conjugate of the amplitude for the opposite scattering se-
quence.” According to Eq. (5.36) we need only consider
scattering sequences that start and end at the same point
(on the scale of the mean free path). The quantum
correction to the conductance is thus the result of
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quantum-mechanical interference between amplitudes for
waves traversing closed classical diffusion loops in oppo-
site directions, as depicted in Fig. 18. In Fig. 18 the solid
line corresponds to the retarded line in Fig. 16, and the
broken line to the advanced line, or, equivalently, the
complex conjugate of the amplitude for transversing the
loop in the opposite direction. The maximally crossed di-
agrams thus describe the interference part of the proba-
bility for the electron in a random medium to be scat-
tered back to its source. In the momentum representa-
tion the Cooperon describes the singular contribution
that arises when the momenta of the Green’s functions
are opposite, whereas the Diffuson singularity comes
when the difference of the momenta is small. The weak-
localization phenomenon is therefore also referred to as
coherent backscattering. In a time-reversal-invariant sit-
uation the amplitudes for traversing a closed loop in op-
posite directions are identical, and for such a coherent
situation one must trace the complete interference pat-
tern of wave reflection in a random medium, where one
encounters the phenomenon of localization (Anderson,
1958). The above standard impurity averaging technique
is insufficient to trace the complete wave pattern. For
such an accomplishment the impurity average must be
performed from the outset, and one is led to the field-
theoretic description of transport properties; for the im-
purity case this reduces to the nonlinear sigma model
(Wegner, 1979; Efetov, 1984). The renormalization-
group technique can then be applied, thus making an in-
teresting connection between transport theory and the
theory of phase transitions. In order to get a finite result
for the first quantum correction to the conductance at
zero temperature, we therefore need to consider a time-
dependent external field which will give us a valid pertur-
bative result in the expansion parameter 1/k;l. The first
quantum correction leads to a smaller conductance, ex-
hibiting the precursor effect of localization, the weak-
localization regime. An elegant and physical description
of the weak-localization effect, based on a detailed
description of the tracing of backscattered waves, has
been given by Chakravarty and Schmid (1986).

The coherence between pairs of time-reversed trajec-
tories is interrupted when the environment, besides the
dominating random potential, is taken into account. At
nonzero temperatures energy exchange due to interaction
with the environment will partially upset the particular

FIG. 18. The quantum interference process giving rise to the
weak-localization effect is reflected in the two possible ways a
diffusive loop can be transversed.
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coherence between time-reversed paths involved in the
weak-localization phenomena. The effects of electron-
electron  interactions (Altshuler, Aronov, and
Khmel'nitskii, - 1982) and electron-phonon interactions
(Rammer and Schmid, 1986), have been studied in detail
theoretically, and can be adequately accounted for by in-
troducing a phase-breaking rate 1/74 in the equation for
the Cooperon, Eq. (5.42), describing its exponential decay
in the long-time limit. A comprehensive understanding
of the length scale L¢=\/ D, over which the electron
diffuses quantum mechanically coherently has been estab-
lished and has given valuable information on inelastic
scattering. The phase coherence length L, at low tem-
peratures is much larger than the impurity mean free
path [, explaining the slow spatial variation of the Coope-
ron on the scale of the mean free path, which we have re-
peatedly exploited.

The basic feature of the interaction effects can be un-
derstood by the observation that the single-particle
Green’s function will be additionally damped due to in-
teractions, resulting in the substitution in Eq. (5.32)
1/7—1/7+1/7;,, where 1/7;, is the inelastic scattering
rate. This will in turn lead to the change in the Coope-
ron equation, Eq. (5.42), o—w+i/7;,. In most cases the
inelastic scattering rate 1/7;, is identical to the phase-
breaking rate 1/7, as for example in the case of
electron-phonon interaction (Rammer and Schmid,
1986). However, one should keep in mind that the inelas-
tic scattering rate is not defined through a physically
measurable quantity, but is a useful estimate, and all en-
ergy transfers are weighted equally, whereas for phase
breaking, processes with small energy transfers,
#iw <#/7,, are inefficient in destroying the phase coher-
ence between time-reversed trajectories of duration less
than the phase coherence time 74 In terms of the dia-
grams this is reflected by the fact that interaction lines
can connect the upper and lower particle lines in the
Cooperon, whereas there is no such process for the in-
elastic scattering rate (Aronov, 1984). This is of impor-
tance in the case of a thin film, the quasi-two-dimensional
case, where there are multiple scatterings with small en-
ergy transfer due to electron-electron interaction
(Al'tshuler, Aronov, and Khmel’nitskii, 1982; Eiler,
1984). Calculating the phase-breaking rate is, however,
closely related to calculating interaction effects in disor-
dered metals. For general reviews on interaction effects
we refer the reader to Al'tshuler and Aronov (1985) and
Schmid (1985).

From an experimental point of view the breaking of
time-reversal invariance by an externally controllable
magnetic field in the low-field regime, where classical
magnetoresistance is absent, is the tool by which to study
the weak-localization effect and obtain important infor-
mation on inelastic scattering times. Magnetoresistance
measurements in the weak-localization regime have con-
siderably enhanced the available information regarding
inelastic scattering times (Bergmann, 1984). The
influence of a magnetic field on the Cooperon is readily
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established in view of the already presented formulas. In
the weak magnetic field limit, [?<] 12;, where
lz=(#/2le|B)!/? is the magnetic length, we can neglect
the Landau quantization of the electronic motion and ob-
tain, as in the field-free case, Eq. (5.36). The Green’s
function in the presence of such a weak magnetic field is
then described by the line integral of the vector potential
A and, according to Eq. (3.11), changed by the addition-
al action due to the magnetic field,

GR(x,x')—GR(x,x )exp %f’,‘dl-A(l) ,  (5.46)
resulting in the change
.75(x,x’)—>7$(x,x’)exp 2—;:—ffdl- A(l) (5.47)

Repeating the Taylor expansion leading to Eq. (5.39), we
now obtain in the Cooperon equation additional terms
due to the presence of the magnetic field (Al’tshuler
et al., 1980),

2
—io—D VX—EA(X)I +1/74 | C,(x,x")

#

=Lsx—x). (548
.

Here we have inserted the phase-breaking rate for whose
detailed derivation we refer the reader to the above refer-
ences. Since the magnetic field itself influences the phase
coherence, the phase-breaking rate can be influenced by
the magnetic field. This is of importance in the quasi-
two-dimensional case where the quasi-elastic electron-
electron scattering gives the dominant contribution to
the phase-breaking rate (Eiler, 1985). The theory of weak
localization can be conveniently formulated in the
quasiclassical Green’s-function scheme (Rammer, 1985),
which is particularly useful for treating time-dependent
fields.

The Cooperon equation (5.48) is, according to Eq.
(3.8), identical to the equation for the Green’s function
for a fictitious particle with mass equal to 1/2D and
charge 2e in a magnetic field. The well-known solution of
the Schrodinger equation for a particle in a magnetic
field in terms of the Landau states allows us to write
down, analogously to Eq. (5.19), an expression for the
Cooperon in the presence of a magnetic field of strength
B and direction perpendicular to a film of thickness a (we
can now safely assume that the external electric field is
static, so that its frequency is equal to zero, =0),

e (XY (x)
Co(x,x')=i2 ¢k_1 [/
a % —4DeBth™ (n +1)+7/74

. (5.49)

Here 9, are the Landau wave functions (Landau and
Lifshitz, 1965), where n is the orbital quantum number
and k the quantum number describing the position of the
orbit. The three-dimensional case can be treated similar-
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ly (Kawabata, 1980), but there the anomalous magne-
toresistance is less pronounced.’

The quantum number describing the motion along the
magnetic field has dropped out of Eq. (5.49), since only
the term with lowest value, equal to zero, contributes,
provided the thickness of the film is smaller than the
phase coherence length, a <L, the thin film, or quasi-
two-dimensional criterion, in conjunction with the weak
restriction a <Ig. In the case of pure films where the
elastic scattering is dominated by the surface scattering,
I > a, the above diffusive description must be abandoned
in favor of the Boltzmann type (Dugaev and
Khmel'nitskii, 1984). We have in Eq. (5.49) safely as-
sumed that the external electric field is static, so that its
frequency is equal to zero, » =0, since the magnetic field
is seen to cut off the singularity in the Cooperon, thus
depressing the tendency to localization. We should
therefore expect Eq. (5.49) to lead to a positive magneto-
conductivity. In accordance with the derivation of the
Cooperon equation (5.48), we can only describe varia-
tions on length scales larger than the mean free path, so
that the sum over orbital quantum number # in Eq. (5.49)
should terminate at values of the order /3 /I%. The mag-
netoconductance of a thin film is now obtained by insert-
ing Eq. (5.49) into Eq. (5.36) and subtracting the zero-
field conductance. When we utilize the series representa-
tion of the digamma function ¢ (Gradshteyn and Ryzhik,
1980), the low-field magnetoconductance of a thin film

has the form (Al'tshuler, Aronov, Larkin and
Khmel’nitskii, 1981)
8(GEY=(GE)—(GY)= 4;zﬁf(4D|e|Bﬁ”17¢)8aB ,
(5.50)
where the function f is given by
f(x)=Inx+¢(1/2+1/x) . (5.51)

The magnetoconductance is seen to have a quadratic
upturn at low fields and to saturate beyond a characteris-
tic field of the order of #/|e|D 7.

In the above derivation we assumed that the magnetic
field is <weak, that is, the cyclotron frequency,
.= |e|B /m, is much smaller than the inverse mean free
time 1/7: w,7<#/€p7. From Eq. (5.49) or Eq. (5.50) we
see that the weak-localization magnetoconductance is
sensitive to very small magnetic fields, namely, fields for
which the magnetic length becomes comparable to the
phase coherence length, Iz~L,, or equivalently,
o, 7~#/€pT4 Since the impurity mean free time 7 can

"In the strictly one-dimensional case there is no weak-
localization regime due to the absence of the small expansion
parameter, which in general is given by (kz/)! "¢ However, in
the one-dimensional case methods are available that can give
exact results (Berezinskii, 1974; Abrikosov and Ryzhkin, 1978).
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be much smaller than the phase coherence time 7,, the
above description can be valid over a wide magnetic-field
range where classical magnetoconductance effects are ab-
sent, since they are governed by the orbit-bending scale,
.7~ 1, whereas the above quantum effect sets in when a
loop of typical area Li encloses a flux quantum. Beyond
this low-field limit, the expression for the magnetocon-
ductance cannot be given in closed form, and its deriva-
tion is more involved, since we must account for the orbit
bending of the magnetic field (Kawabata, 1984). When
the impurity mean free time 7 becomes comparable to the
phase coherence time 7,4, we are no longer in the diffusive
regime, and a Boltzmann-type description must be intro-
duced (Wittmann and Schmid, 1987).

According to Eq. (5.50) the magnetoconductance is
positive, which is a distinct sign that the effect is not clas-
sical. Any magnetoconductance calculated on the basis
of the Boltzmann equation is negative. The positive mag-
netoconductance can be understood qualitatively from
the geometrical properties of diffusion in two dimensions.
The presence of the magnetic field breaks time-reversal
invariance and partially upsets the identify of phase fac-
tors for time-reversed paths, so that the negative contri-
bution from each loop in the impurity field to the con-
ductance is, in accordance with the phase-shift prescrip-
tion for amplitudes, Eq. (5.46), now multiplied by an os-
cillatory factor

(G(B))—{(G(0))

2 - T
= <2[1—cos(277<1>c/<1>0)]e ’0/4’).

4t
(5.52)

The summation in Eq. (5.52) is over all loops; that is, the
closed classical orbits in the random potential returning
to within a mean free path to a given point, and ¢, is the
duration for transversing loop c¢; @, is the enclosed flux
of loop ¢, and @ the flux quantum ®y,=# /2le|. The sum
in Eq. (5.52) should be weighted with the probability for
the closed classical loop, which we express by the brack-
ets. In weak magnetic fields, only the longest loops are
influenced by the phase shift due to the magnetic field
[loops that are longer than the phase coherence length
are not counted, as their coherence is destroyed by inelas-
tic scattering according to Eq. (5.52)]. It is evident from
Eq. (5.52) that the low-field magnetoconductance is posi-
tive and quadratic in the field. The continuing positive
magnetoconductance is, however, simply a geometric
property of diffusion, namely, that small loops are
prolific. In the present two-dimensional case the number
of closed loops is inversely proportional to the their area.

We shall not describe the theory of weak localization
any further, as our aim was to show that the effect can be
described in quantitative manner by the elementary
method we have introduced, thus providing a simple con-
nection between the formal treatments (Al'tshuler, Aro-
nov, Khmel’'nitskii, and Larkin, 1982; Lee and Ramak-
rishnan, 1985) and the more intuitive description of
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Chakravarty and Schmid (1986). We shall, however,
mention the many further interesting quantum effects
due to weak localization in solids, which can be described
by the presented single-particle approach. The weak-
localization Aharonov-Bohm effect in multiply connected
macroscopic samples, such as a cylinder, is an illuminat-
ing manifestation of the quantum interference feature of
weak localization (Al’tshuler, Aronov, and Spivak, 1981;
Al'tshuler, Aronov, Spivak, Sharvin, and Sharvin, 1982;
Aronov and Sharvin, 1987), as is the Andreev-reflection-
induced sensitivity of the conduction properties of a nor-
mal conductor to the phase difference of the order pa-
rameter of two surrounding superconductors in a SNS
junction (Spivak and Khmel’nitskii, 1982). Additional
important phase-breaking and scattering mechanisms not
dealt with here are phase breaking due to superconduct-
ing fluctuations (Larkin, 1980; Gordon, 1984; Brenig
et al., 1986); the effect of spin-flip and spin-orbit scatter-
ing (Hikami et al., 1980), the latter leading to the
phenomenon of weak antilocalization; suppression of
weak-localization effects by electromagnetic radiation
(Al'tshuler, Aronov, and Khmel’nitskii, 1981; Fal’ko,
1987; Wang and Lindelof, 1987; Vitkalov et al, 1988);
magnetoresistance in a longitudinal magnetic field
(ATtshuler and Aronov, 1981); weak localization in inho-
mogeneous magnetic fields (Rammer and Shelankov,
1987; Geim, 1989; Bending et al., 1990); and weak local-
ization of electrons in a classical gas (Afonin et al.,
1987).

We close this section by noting that the weak-
localization phenomenon is a general feature of wave
propagation in random media, be the wave nature of clas-
sical origin, such as light and sound, or quantum origin.
The effect was in fact investigated in connection with
multiple scattering of electromagnetic waves (Watson,
1969). It is amusing that it took the quantum nature of
electronic motion to understand the fundamentals of the
problem and to develop the formalism for quantitative
calculations. For a recent set of reviews on classical
wave propagation in random media we refer the reader to
the book edited by Shen (1989).

D. Landauer conductance formula

In the preceding section on weak localization we dis-
cussed the first quantum correction to the macroscopic
transport properties of disordered conductors. In the
macroscopic limit only the average properties of a sample
manifest themselves. Thus a macroscopic sample can be
adequately discussed in terms of the impurity-averaged
density matrix and characterized by a single average
quantity, the impurity mean free path. However, with
today’s fabrication technology it is possible to pro-
duce samples that exhibit their unique impurity
configurations. Such samples are in the realm between
the microscopic level, set by the elastic mean free path,
and the macroscopic level, set by the phase coherence
length, and exhibit so-called mesoscopic phenomena.
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Mesoscopic phenomena show up when inelastic scatter-
ing is weak, allowing the phase coherence length to
exceed the sample size, and thus enabling quantum in-
terference to take place throughout the sample. In the
mesoscopic regime an average quantity is insufficient for
characterizing a sample. Sample-specific “fingerprints”
of the impurity configuration, such as the noiselike oscil-
lations in the magnetoconductance, will manifest them-
selves in the universal conductance fluctuations
(Al’tshuler, 1985; Lee and Stone, 1985).

A quite different approach to quantum transport due
to Landauer (1957, 1970, 1985) has played an important
role in the development of mesoscopic physics (Imry,
1986). In the conventional Hamiltonian approach, as
presented in the preceding sections, the current is calcu-
lated as the response to an external field. However, since
only elastic scattering takes place in the sample region,
the transport problem can equally well be viewed as a
scattering problem, where the current is the externally
fixed quantity; in fact, it is the typical control parameter
for experiments.

In the previous discussion of the conductance of mac-
roscopic samples, we did not need to address the question
of the actual measurement situation, such as the presence
of leads and the manufacturing of the external field. This
is not the case for mesoscopic phenomena, since there the
extension of quantum-mechanical coherence defines the
sample extension and is not an artificial distinction im-
posed on our part (Benoit et al., 1987; Skocpol et al.,
1987).

Now, by imposing the same physical conditions as in
the Landauer approach, we shall see how the linear-
response expression for the conductance reduces to a
Landauer-type expression. In the Landauer approach
the transport process is viewed as the scattering of imp-
inging charges from incoherent current sources, reser-
voirs, off an obstacle, the disordered region, whose prop-
erties are completely characterized by its reflection and
transmission coefficients. An expression for the conduc-
tance is then obtained by counting the net charge flux
from current sources at different chemical potentials. In
the linear response approach as presented above, we shall
assume that the disordered region is attached to two per-
fect leads, that is, disorder-free regions, as depicted in
Fig. 19. In view of the counting strategy underlying the
Landauer approach, we integrate the current density, Eq.
(5.20), over a cross section S far out in one of the leads,
say the right one, at position x, giving the current in the
right lead

1x)= [ ds:j0)= [dx' [ ds:5(x,x)Ex) .
(5.53)

We shall be interested in the dc case, and shall hence-
forth delete the external frequency w =0 from the formu-
las. As depicted in Fig. 19 the x direction is chosen along
the leads. Writing the electric field E as the gradient of
the scalar potential $, E=—V¢, and using the diver-
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S/

FIG. 19. The schematics of a disordered region attached to
perfect leads.

gence theorem we obtain
I(x)= [dx [ ds-&(x,x')-V d(x’
(x) f xfs $-0(x,x")-Vyo(x')

fS,qb(x )fsds o(x,x')-ds’ . (5.54)

The first term in Eq. (5.54) can be shown to be zero by
explicitly ~ differentiating the conductivity tensor,
o(x,x')-V,=0, as is generally true due to charge conser-
vation (Martin and Schwinger, 1959). In the present case
of impurity scattering the identity is readily established
(Kane, Serota, and Lee, 1988), according to Eq. (5.21), by
repeated use of the equation of motion for the Green’s
function

(e—Hy)GR(x,x";€)=#8(x—x') , (5.55)

where H is the Hamiltonian for the particle in the im-
purity field and the confining potential defining the sam-
ple and leads.

From the symmetry property of the conductivity ten-
sor

08X, X")=0pg,(X',X) , (5.56)

which can be immediately read off from Eq. (5.21), we
therefore also have

V,&(x,x")=0. (5.57)
The non-divergence of the conductivity tensor reflects
charge conservation and is, for the considered dc case,
according to Eq. (5.20), equivalent to the statement that
the divergence of the current density is zero, V-j=0, or,
equivalently, that the current in the lead does not depend
on the position x of the chosen cross section, so that I (x)
in Eq. (5.53), in fact, is independent of position once we
are out in the lead. According to Eq. (5.53), the volume
integration merely has to enclose the spatial region where
the electric field is nonzero. Choosing the corresponding
enclosing surface S’ to lie far away from the sample and
gauging the potential to be zero in the left lead and —U
in the right lead, that is, choosing the direction from left
to right as the positive current direction, we obtain from

Eq. (5.54) for the current in the leads
I=U ds-&F(x,x')-ds’ . 5.58
fS,sza(xx) s (5.58)

In the derivation above we calculated the current in the
right lead. However, as noted above, by interchanging
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the introduction of the surfaces S and S’, we could of
course obtain the same expression (5.58), for the current
in the left lead, as is evident from the symmetry of Eq.
(5.58). We therefore have for the conductance

G= fs fS’ds-‘&’(x,x’)'ds’

=fsdpfSIdp'axx(x,x') . (5.59)

G= JJ;dPJ;ﬂP’»

sﬂme d[

|l

)
9 GR
l—a—- (x,x";€)—G 4x,x";€)]

GR(x,x';€)— G 4(x,x';€)]

5}
ax’

The retarded Green’s function GR(x,x’,€) is, according
to its definition, the component of the wave function, for
energy €, at the cross section S in the right lead for a
point-source emitter in the cross-sectional plane S’ in the
left lead. In the leads the Green’s function therefore has
the asymptotic expansion in terms of outgoing waves

Etrl Xl

—ikfx' ik x

GR(x,x';€) *x,(ple ",

(5.61)

where ), denotes the transverse, r-channel wave function
in the right lead, and similarly for the left lead. The
wave vector in the propagating direction in the right
lead, kS, corresponding to total energy € and transverse
mode r, satisfies (#kf)?/2m =e—e¢,, where €, is the
transverse-mode energy, and similarly for the left lead.

GR(x',x;€)—

(GR(x',x;€)—G

(G

3G R(x,x';€)
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The vectors p and p’ denote the two-dimensional vectors
in the cross-sectional planes S and S’, respectively,
x=(x,p). That the conductance is a real number is
reflected by the existence of pairs in Eq. (5.59) that, if
written out explicitly according to Eq. (5.21), are each
other’s complex conjugates, due to Eq. (2.31), so that we
can in fact write Eq. (5.59) as

Ax',x;€))

Rix’,x;€)—GAx',x;€)]

I . (5.60)

Using the expansion (5.61) and the property (2.31), one
readily verifies the identity

3’°GR(x,x';¢€) Afur o,
fdp 9% o’ G “(x’,x;¢€)
AGR(x,xze) | | 3G 4Ux",x5€) || _
=0,
dx ax’
(5.62)

and similarly for R and A interchanged. For the remain-
ing terms we need only consider two of them, since the
other two are accounted for by simply interchanging
variables. Again, using the asymptotic expansion of the
Green’s function, Eq. (5.61), we find by using the ortho-
gonality of the channel states that the remaining terms
add,

AGR(x',x;€)

e*'e"'e

[ap[ap'

3*GR(x,x';€)
dx dx’

dx

The transmission amplitude, which we denote by ¢,;, is
the amplitude for propagation from channel state / in the
left lead to channel state r in the right lead, and therefore
given by the corresponding matrix element

7V kfkS
=—e¢

e —ikfx—ikfx’
=

m

X [dp [dp'xr(p)GR(x,x5€)x,(p") . (5.64)

In the Landauer approach all modes up to the Fermi
level are populated by the current reservoir, emitting
electrons towards the sample. This corresponds to the
usual normalization condition of scattering theory that
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-2 2 kfk (5.63)

r rltlr .

ox’

[

each channel carries unit flux. Inserting Eq. (5.61) into
Eq. (5.64) we obtain the relationship between the
transmission amplitudes and the expansion coefficients in
Eq. (5.61), mtS=#\kfkT. Making use of the fact
that ¢5=(¢)* by time-reversal invariance, we obtain the
scattering formula for the conductance

_of
o ]z 5+ l251)

2 [+2]
;rﬁ f—wdel_“

G=

47hi

S legl?,  (5.65)
Lr
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in agreement with Fisher and Lee (1981).

In the above two-probe situation the leads, with the
imposed boundary condition, adequately function as the
reservoirs of the Landauer approach, ensuring that an
electron never reenters the sample without having its
phase randomized. The conductance formula (5.65) ap-
plies, therefore, according to its derivation, to coherent
wave propagation between two phase-randomizing reser-
voirs. The conductance formula (5.65) differs from the
original Landauer formula (Landauer, 1957, 1970, 1985),
which relates the current in a four-probe measurement to
the chemical potentials of completely phase-randomizing
voltage probes eliminating interference between incoming
currents (Engquist and Anderson, 1981). The derivation
of the original Landauer formula from linear-response
theory similarly attributes an effective chemical potential
to the leads (Thouless, 1981; Langreth and Abrahams,
1981). In the realm of mesoscopics there is no possibility
for a distinction between the phase-randomizing proper-
ties of current and voltage leads, and they should accord-
ingly be treated on an equal footing. The obstaclé giving
rise to scattering need not be an impurity configuration;
scattering can also originate simply from the geometry of
the sample, as in the case of constrictions showing quan-
tized resistance steps (van Wees et al., 1988). The con-
ductance formula for the present two-probe case, Eq.
(5.65), as well as its generalization to an arbitrary number
of probes can be derived using the Landauer approach
(Bittiker, 1986a, 1986b) and further generalized to in-
clude a magnetic field, as is necessary for a discussion of
the Hall effect (Biittiker, 1988). The derivation of the
scattering formulas from linear-response theory can be
generalized to the case of an arbitrary number of probes
with the inclusion of a magnetic field (Baranger and
Stone, 1989).

In addition to making contact between the Landauer
approach to quantum transport and linear-response
theory, Eq. (5.65) paves the way for treating situations in
which inelastic scattering within the sample is non-
negligible. Such situations pose no problem in principle
in the linear-response approach, whereas in the intuitive-
ly appealing but heuristic Landauer approach a realistic
inclusion of these processes is less obvious. A description
within linear response that includes the effect of linear
coupling to an environment has been given by Feng
(1990). :

Just as in the present section, we shall in the following
be interested in the conductance of a specific sample.
Clearly, a complete description is impossible and unwar-
ranted when the sample contains many impurities. In the
Landauer approach in such cases one can with benefit
treat the transmission coefficients in the equation for the
conductance as phenomenological parameters. In cases
where the impurity scattering is weak or solely due to
geometry, so that the mean free path exceeds the sample
length, /> L (the ballistic regime), one can in fact calcu-
late the relevant transmission coefficients analytically for
special cases, such as for a smooth constriction (Glazman
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et al., 1988), and for other geometries use the scattering
formula (5.65) as a starting point for a numerical solution
(Datta, 1989; Ravenhall, 1989; Sols et al., 1989; Stone,
1989). For samples containing many impurities, howev-
er, one is only interested in obtaining a statistical charac-
terization of the sample-to-sample variations. In the fol-
lowing section we give a simple demonstration of how
such statistical information can be obtained by use of the
standard diagram technique.

E. Conductance fluctuations

Quite recently it has been realized that due to quantum
interference effects a sample will exhibit its individuality
on length scales much larger than expected; at zero tem-
perature this scale is in fact infinite. Thanks to the ad-
vances in fabrication of microstructures it has therefore
been possible in recent years to produce samples that
reflect individual differences due to their specific impuri-
ty configurations. An estimate shows that at tempera-
tures of the order of a few Kelvins the sample size should
be in the micrometer range or smaller. In the following
we shall show that, when the extension of a sample be-
comes comparable to the phase coherence length, the in-
dividuality of the sample will be manifest in its physical
properties. Such a sample is said to be mesoscopic.
Characteristically the conductance will exhibit sample-
specific, noiselike but reproduceable oscillations as a
function of, say, magnetic field or chemical potential
(Umbach et al., 1984; Stone, 1985; Webb et al., 1985;
Washburn and Webb, 1986). The sample behavior is thus
no longer characterized by its average characteristics,
such as the average conductance or impurity concentra-
tion. The statistical assumption of phase-incoherent and
therefore independent subsystems, allowing for such an
average description, is no longer valid when the transport
takes place quantum mechanically coherently throughout
the whole sample. As a consequence, mesoscopic sam-
ples do not possess the property of being self-averaging,
that is, the relative fluctuations do not vanish in a
central-limit fashion inversely proportional to the volume
in the large-volume limit. To describe the fluctuations
from the average value we need to study the higher mo-
ments of the conductance distribution such as the vari-
ance AG .5 .5 (Al'tshuler, 1985; Lee and Stone, 1985),

AGaB,y8=((Gaﬁ—<GaB>)(G78_<G'y6>)> . (5.66)

The diagrams for the variance can still be managed with
the standard impurity diagram technique, and a typical
conductance fluctuation diagram is depicted in Fig. 20,
where the box denotes the Diffuson as in Fig. 17. The
construction of the conductance fluctuation diagrams fol-
lows from the conductivity equation (5.21): Draw two
different conductance diagrams like the first diagram of
Fig. 14, but with the propagators including the impurity
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FIG. 20. Typical conductance fluctuation diagram.

scattering. Treating the impurity scattering perturba-
tively, we get impurity vertices, which we have to pair in
all possible ways. Since we subtract the squared average
conductance in forming the variance AG, the diagrams
for the variance consist only of diagrams in which the
two conductance loops are connected by impurity lines.
As already noted in the discussion of weak localization,
the dominant contributions to such loop-type diagrams
are from the infrared, long-wavelength divergence of the
Diffuson or Cooperon,

1

(5.67)
w~+Dg?

»(q)

(GupGs)p=L"*

477%2
XGR(p)GA(p')G A
In order to obtain Eq. (5.68), we have noted that
D,_r,')=[D_ (r,r')]*,

et ,of of
]f df daeae

f(zwwf

P)GE(P)IGR(PIGA(PIGA(PIGE(p) [dr [dr'|D,_.(r,r)]? .

as obtained by Fourier transformation of Eq. (5.42).

To calculate the contribution to the variance from the
diagram in Fig. 20, we first imagine writing the corre-
sponding expression down in the spatial representation in
accordance with the usual rules for conductance dia-
grams, as specified by the conductivity tensor (5.21) and
the conductance as in Eq. (5.23), but for the unaveraged
conductance. If we assume that the sample dimensions
are bigger than the impurity mean free path, L >, the
spatial extension of the integration over the external, ex-
citation and measuring, vertices is essentially infinite,
since the propagators have the spatial extension of the
mean free path, according to Eq. (5.33). We can there-
fore introduce the Fourier transform, Eq. (5.32), for the
propagators, since no reference to the finiteness of the
system is necessary for such local quantities. Further-
more, because of the long-range spatial character of the
Diffuson, we can set the spatial labels in the Diffusons in
Fig. 20 equal to each other: that is, ry=r and r}=r'. All
the spatial integrations, except those determined by the
Diffuson, can then be performed, leading to the momen-
tum labels for the propagators depicted in Fig. 20. Let us
study the fluctuations in the dc conductance where the
frequency o of the external field is zero. The energy la-
bels have for visual clarity been deleted from Fig. 20,
since we have only elastic scattering and therefore one la-
bel, say €, for the outer ring and one for the inner, €.
According to the Feynman rules, we obtain for the dia-
gram in Fig. 20 the following analytical expression:

3papypép}s

(5.68)

(5.69)

which follows from the relationship between the retarded and advanced propagators, Eq. (2.31). At zero temperature,
the Fermi functions are seen to set the energies in the Green’s functions in the conductance loops to the Fermi energy,
and the Diffuson frequency to zero. At zero temperature, therefore, we get for the diagram depicted in Fig. 20,

2
ey’

4rHim?
><[G p)GA (p)] [GR

(GopGys)p=L""*

In the momentum representation the integration over all
current vertices leads to momentum conservation at each
vertex in the diagram, just as integration over time leads
to energy conservation at each vertex.

It is important to note that the Diffuson appears with
the same positions, or in the momentum representation
with the same wave vector, twice. This is the leading

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

NGA (p)2 [dr [dr|Dy(r,r)|? .

f(zmwf(z ﬁ>3p“p’pap’3

(5.70)

[

singularity we need to keep track of. If we try to con-
struct variance diagrams containing, say three Diffusons,
we will observe that they cannot have the same wave vec-
tor and thus give a contribution smaller by the factor of
1/€epT.

The momentum integrations at the current vertex can
easily be calculated by the residue method,
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) d
Jay=J GosPab | GE (RIPIGE (0) P
4
="‘3—ﬁp§-N(€F)T38aY , (5.71)
and we obtain for the diagram in Fig. 20
2
_4| e*Dr
(GopG s p=L"* o7 | Bardes
X [dr [dr'|Dy(r,r)|? . (5.72)

To calculate the Diffuson integrals we need to address
the finite size of the sample and its attachment to the
current leads, since at zero frequency the Diffuson has no
inherent length-scale cutoff. At the surface where the
sample, assumed to be a hypercube of length L, is at-
tached to the leads, the Diffuson vanishes,

Dy(r,r')=0, r or r’ on lead surfaces , (5.73)

in accordance with the assumption that once the electron
reaches the lead it never returns to the disordered-region
phase coherently. On the other surfaces the current van-
ishes; that is, the normal derivative of the Diffuson must
vanish,

aD(r,r’)

3 =0, r or r' on nonlead surfaces
n

with surface normal n . (5.74)

We shall assume, in accordance with the situation depict-
ed in Fig. 19, that the leads have the same size as the
sample surface. This thick-lead assumption can be re-
laxed, but due to the relationship between the fluctua-
tions in the density of states and the time scale for
diffusing out of the sample, that will in fact not change
the results (Serota et al., 1987). Solving the diffusion
equation (5.42) for the Diffuson, with the above mixed
boundary condition we obtain

2
> (5.75)

1/7
2

fdrfdr’[Do(r,r’)]2= > Da?

where n=(n,,n,,n;) is the eigenvalue index in the
three-dimensional case, and

-7 —
qnanzna’ na'—_nx’ny’nz ’
ne=12,..., n,,=0,1,2,..., (5.76)

in accordance with the convention of Fig. 19 for the
current leads. Lower dimensions correspond to neglect-
ing the n, and n,’s. We therefore obtain from the dia-
gram depicted in Fig. 20

2

2
e

< GaﬁG‘yﬁ >D = 'i’il‘ cd8a7,553 N (5.77)

where h is Planck’s constant and the constant ¢; depends
on the sample dimension. The summation in Eq. (5.75)
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should, in accordance with the validity of the diffusion
regime, be restricted to values satisfying n,%-!—nyz-l-nz2 =N,
where N is of the order of (L /I)2.. However, the sum
converges rapidly and the constants C; are seen to be of
order unity. The dimensionality criterion is essentially
the same as in the theory of weak localization, as we shall
show in the discussion below of the physical origin of the
fluctuation effects. The important thing to notice is that
the long-range nature of the Diffuson provides the L*
factor that makes the variance, average of the squared
conductance, independent of sample size. The diagram
depicted in Fig. 20 is only one of two possible pairings of
the current vertices, and we obtain an additional contri-
bution from the diagram in which, say, current vertices ¥
and 6 are interchanged.

In addition to the contribution from the diagram in
Fig. 20 there is another possible singular contribution to
the variance from the diagram depicted in Fig. 21. This
diagram contributes the same amount as the one in Fig.
20, but with a different pairing of the current vertices.
We note that the diagram in Fig. 21 allows for only one
assignment of current vertices. The contribution from
the diagram in Fig. 20 can, through the Einstein relation,
be ascribed to fluctuations in the diffusion constant,
whereas the diagram in Fig. 21 gives the contribution
from the fluctuations in the density of states, the two
types of fluctuations being independent (Al'tshuler and
Shklovskii, 1986).

Interchanging the retarded and advanced labels corre-
sponding to the additional term in the conductivity ten-
sor (5.21) gives rise to additional equal contributions.
Furthermore, reversing the direction in one of the loops
gives rise to similar diagrams, but now with the Coope-
ron appearing in Figs. 20 and 21 instead of the Diffuson.
Because the boundary conditions on the Cooperon are
the same, Eqgs. (5.73) and (5.74), as for the Diffuson, in
the absence of a magnetic field the Cooperon contributes
an equal amount. For the total contribution to the vari-
ance of the conductance, we therefore have (allowing for

FIG. 21. Density-of-states-type fluctuation diagram contribut-
ing to the conductance fluctuations.
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the spin degree of freedom of the electron would quadru-
ple the value) at zero temperature

eZ

2
AGaﬂ,yﬁz 7 J Cd(6a78§ﬁ+8a861/3+8a38},5) .

(5.78)

The variance of the conductance at zero temperature
and for the chosen geometry, Eq. (5.78), is independent of
the size and dimension of the sample and the degree of
disorder, and the conductance fluctuations in the above
metallic regime appear to be universal. However, for a
noncubic sample, the variance will be geometry depen-
dent (Al'tshuler and Khmel’nitskii, 1985; Lee et al.,
1987).

Since the average classical conductance, according to
Eq. (5.35), is proportional to L% 2, Ohm’s law, we find
that the relative variance AG /{G )? is proportional to
L*724, This result should be contrasted with the thermo-
dynamic fluctuations, L ~2¢, compared to which the
quantum-interference-induced mesoscopic fluctuations
are huge, reflecting the absence of self-averaging. The
mesoscopic conductance fluctuations can be viewed as
the volume average of the much larger local fluctuations
in the current density (Aronov et al., 1986). The local
fluctuations reveal themselves in the large non-universal
voltage or resistance fluctuations in multilead devices
(Benoit et al., 1987; Skocpol et al., 1987; Baranger
et al., 1988; Hershfield and Ambegaokar, 1988; Kane,
Lee, and DiVincenzo, 1988b; Hershfield, 1989).

The dominating role of the lowest eigenvalue in Eq.
(5.75) indicates that mesoscopic fluctuations studied in
situations with less invasive probes than the leads neces-
sary for studying conductance fluctions can be enhanced
over the universal value. This is the case, for example,
for the absorption fluctuations of a mesoscopic sample in
an ac electric field (Serota et al., 1987), or the fluctua-
tions in ultrasonic attenuation (Serota, 1988). In the case
of the conductance fluctuations, the necessary connection
of the disordered region to the external preparation and
measurement apparatus, battery and voltmeter, could
simply be reduced to the functioning of the leads, which
cut off the singularity in the Diffuson by the lowest eigen-
value, n, =1, reflecting the fact that due to the physical
boundary conditions at the interface between sample and
leads, the time scale for quantum interference processes
to occur uninterrupted is the time it takes the electron to
diffuse across the sample, L2/D. Alternative ways of ob-
serving the mesoscopic fluctuations will in turn introduce
the destruction of phase coherence, which is necessary
for the experiment to function as a measuring device.
With the discovery of the quantum interference effects
discussed above, we thus encounter in solid state physics,
in a rather practical matter, questions usually reserved
for the quantum measurement problem (Wheeler and
Zurek, 1980).

In order to understand the physical phenomena lead-
ing to Eq. (5.78) for the variance, we note that, just as the
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conductance essentially is given by the probability for
diffusing between points in the sample, the variance is
likewise the product of two such probabilities. When we
perform the impurity average, certain of the quantum in-
terference terms will not be averaged away, since certain
pairs of paths are coherent. This is similar in spirit to the
case of coherence involved in the weak-localization effect,
but in the present case of quite a different nature. For ex-
ample, the quantum interference terms described by the
diagram in Fig. 20 are depicted in Fig. 22, where the
solid line corresponds to the outer conductance loop and
the dashed line to the inner conductance loop. The wavy
portion of the lines corresponds to the long-range
diffusion process. When one takes the impurity average
of the variance, the quantum interference terms can pair
up for each diffusive path in the random potential, but
now they correspond to amplitudes for propagation in
different samples. The diagrams for the variance, there-
fore, do not describe any physical quantum interference
process, as we are not describing a probability but a
product of probabilities. The variance gives the statisti-
cal correlation between amplitudes in different samples.
The interference term corresponding to the diagram in
Fig. 21 is likewise depicted in Fig. 23. When a specific
mesoscopic sample is considered, effectively no impurity
average is performed as in the macroscopic case. The
quantum interference terms in the conductance, which
for a macroscopic sample averages to zero if we neglect
the weak-localization effect, is therefore responsible for
the mesoscopic fluctuations.

The result in Eq. (5.78) is valid in the metallic regime,
where the average conductance is larger than e?/k. To
go beyond the metallic regime would necessitate intro-
ducing the quantum corrections to diffusion, the first of
which is of the weak-localization type, which diagram-
matically corresponds to inserting Cooperons in between
Diffusons. Such an analysis is necessary for a study of
fluctuations in a strongly disordered regime (Al'tshuler,
Kravtsov, and Lerner, 1991).

The Diffuson and Cooperon in the conductance fluc-
tuation diagrams do not describe diffusion and return
probabilities, respectively, in a given sample, but
quantum-statistical between motion in

correlations

FIG. 22. The quantum interference process described by the
fluctuation diagram in Fig. 20.
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FIG. 23. The quantum interference process described by the
fluctuation diagram in Fig. 21.

different samples, that is, different impurity
configurations, as each conductance loop in Figs. 20 and
21 corresponds to different samples. In order to stress
this important distinction, we shall in the following mark
with tildes the Diffusons and Cooperons appearing as
ladder diagrams in fluctuation diagrams.

We now briefly assess the effects of finite temperature.
In addition to being temperature dependent due to the
Fermi functions appearing in Eq. (5.68), the ladder dia-
grams will be modified by interaction effects. The pres-
ence of the Fermi functions corresponds to an energy
average over the thermal layer near the Fermi surface,
and through the energy dependence of the Diffuson and
Cooperon introduces the temperature-dependent length
scale L;=1/D%#%/kyT. Since the loops in the fluctua-
tion diagrams correspond to different conductivity mea-
surements, interaction lines (due for example, to,
electron-phonon or electron-electron interaction) are not
allowed to connect the loops in a fluctuation diagram.
The diffusion pole of the Diffuson appearing in a fluctua-
tion diagram is therefore not immune to interaction
effects. This is only the case when the Diffuson describes
diffusion within a sample, since, as we showed in the pre-
vious section, the diffusion pole is a consequence of parti-
cle conservation and therefore is unaffected by interac-
tion effects. The consequence is that, just as in the case
for the Cooperon, inelastic scattering will lead to a cutoff
given by the phase-breaking rate 1/7,. In short, the tem-
perature effects will therefore ensure that up to length
scales near the phase coherence length the conductance
fluctuations are determined by the zero-temperature ex-
pression, and beyond this scale the conductance of
phase-incoherent volumes add, as in the classical case. A
sample is therefore said to be mesoscopic when its size is
in between the microscopic scale, set by the mean free
path, and the macroscopic scale, set by the phase coher-
ence length; I <L <L,.

An important way to reveal the conductance fluctua-
tions experimentally is to measure the magnetoresistance
of a given sample. Since the conductance loops can cor-
respond to samples placed in different field strengths, the
diffusion pole appearing in a fluctuation diagram will not
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be immune to the presence of magnetic fields, as in the
case when the particle-hole ladder describes diffusion
within a given sample, since particle conservation is, of
course, unaffected by the presence of a magnetic field. To
study fluctuation effects in magnetic fields, we must study
the dependence of the variance on the magnetic fields
AG.g(B;,B_), where B, is the sum and B_ the
difference in the magnetic fields of the outer and inner
loops. According to the low-field prescription for in-
clusion of magnetic fields. Egs. (5.46) and (5.45), we get
for the Diffuson

2

+1/74

DO(X,X')ILS(X—X') ’
T

D [—-iV——%A_(x)

(5.79)

where A _ is the vector potential corresponding to the
difference in magnetic fields B_, B_=VX A_, and we
have introduced the phase-breaking rate by hand in view
of the above remarks. In the case of the particle-hole
ladder, the magnetic-field-induced phases subtract, ac-
cording to Eq. (5.45), accounting for the appearance of
the difference in vector potential, A_. For the case of
the Cooperon, the particle-particle ladder, the two phases
add, and we obtain

2

< +1/7,

~ Y — 1 ’
p Co(x,x )—78(x—x ),

A+(X)

b|-iv-

(5.80)

where A, is the vector potential corresponding to the
sum of the fields; B, =VX A .

The “magneto-fingerprint” of a given sample, that is,
the dependence of its conductance on an external mag-
netic fields will show an erratic pattern with a given
peak-to-valley ratio and correlation field B.. This, how-
ever, is not immediately the information we obtain by
calculating the variance,

AG,p,5(B,,B_)
=([Gop(B))—(Gp(B)) [G,5(B,)—(G,5(B,))]) ,
(5.81)

where B; is the field in, say, the inner loop,
B,=1(B,+B_), and B, the field in the outer loop,
B,=1(B,—B_). In the variance (5.81), the magnetic
fields are fixed in the two samples, and we are averaging
over different impurity configurations, thus describing a
situation in which the actual impurity configuration is
changed, a hardly controllable endeavor from an experi-
mental point of view. However, if the magnetoconduc-
tance of a given sample G (B) varies randomly with mag-
netic field, the two types of averages—the one with
respect to magnetic field and the one with respect to im-
purity configuration—are equivalent, and the charac-
teristics of the ‘“magneto-fingerprint” can be extracted
from the correlation function in Eq. (5.81). The physical
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reason for the validity of such an “ergodic” hypothesis
(Lee and Stone, 1985), that changing magnetic field is
equivalent to changing impurity configuration, is that
since the electronic motion in the sample is quantum-
mechanically coherent the wave-function pattern is sensi-
tive to the position of all the impurities in the sample,
just as the presence of the magnetic field is felt
throughout the sample by the electron. The validity of
the ergodic hypothesis has been substantiated by
Al’'tshuler, Kravtsov, and Lerner (1986). The extreme
sensitivity to impurity configuration is also witnessed by
the fact that changing the position of one impurity by an
amount of the order of an atomic distance, 1/kp, is
equivalent to shifting all the impurities by arbitrary
amounts, that is, to create a completely different sample
(Al’tshuler and Spivak, 1985; Feng et al., 1986).

To calculate the variance in Eq. (5.81) we must solve
Egs. (5.79) and (5.80) with the mixed boundary value con-
ditions appropriate in the presence of magnetic fields,
and insert the solutions into contributions like that in Eq.
(5.72). However, determination of the characteristic
correlations of the magnetoconductance fluctuations can
be done by inspection of Egs. (5.79) and (5.80). The
correlation field B, is determined by the sample-to-
sample change in the magnetic field, that is, B_. Ac-
cording to Egs. (5.79) and (5.80), this field is determined
either by the sample size, through the gradient term, or
by the phase coherence length. When the phase coher-
ence length is longer than the sample size, the correlation
field is therefore of the order of the flux quantum over
the sample area, B, ~¢,/L?, where ¢, is the normal flux
quantum ¢,=h /e, since the typical diffusion loops, like
those depicted in Figs. 22 and 23 enclose an area of order
the sample size, L% We note that in magnetic fields
exceeding max{¢,/L 2,¢0/L§5} the Cooperon no longer
contributes to the fluctuations, as its dependence on mag-
netic field is completely suppressed according to the
weak-localization analysis.

We end this section by mentioning a few of the in-
teresting physical phenomena discovered in the field of
mesoscopic physics. These include, the anomalously
large thermoelectric effects in mesoscopic systems due to
the breaking of particle-hole symmetry by an impurity
configuration (Anisovich et al., 1987); Lesovik and
Khmel'nitskii, 1988; Gusev et al., 1990); mesoscopic
fluctuations in superconducting-normal-superconducting
junctions (Al'tshuler and Spivak, 1987); Aharonov-Bohm
oscillations in small rings (Washburn and Webb, 1986);
and the possibility of tomography in mesoscopic systems,
that is, determining the position of special, for example,
bistable, scatterers (Fal’ko and Khmel’nitskii, 1990). The
above effects are concerned with the linear-response re-
gime. There are also interesting mesoscopic effects in the
nonlinear regime, such as the nonlinear fluctuations in
the I-V characteristics of constrictions (Larkin and
Khmel'nitskii, 1986), and the photoconductivity effects
and the photovoltaic effect in mesoscopic systems (Bykov
et al., 1989; Fal’ko, 1989; Fal’ko and Khmel’nitskii,
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1989; Bykov et al., 1990).

Just as the phenomenon of weak localization was a
general feature of wave propagation in a random medi-
um, the same is equally true of the mesoscopic fluctua-
tion phenomenon. For a recent review of fluctuation
effects in the context of classical waves, such as light or
sound, we again refer the reader to Shen (1989).

For a complete characterization of the distribution of
mesoscopic fluctuations, the presented standard impurity
diagram technique is not feasible. Such an analysis, as
well as the study of strongly localized systems, the ap-
proach to the Anderson transition, requires that one take
the impurity average from the outset, and one is led to
the study of a field theory, for the present problem the
nonlinear sigma model (Al'tshuler, Kravtsov, and Lerner
1991). The result of the analysis, where quantum correc-
tions are included, is to show that certain aspects of
mesoscopic fluctuations, such as for example relaxation
currents, are nonuniversal and not described by a one-
parameter scaling theory.

Vi. SUMMARY AND CONCLUSION

We have presented a description of nonequilibrium
single-particle states in terms of the density matrix, and
shown its relevance to transport phenomena in solids of
current interest. The quantum dynamics of a single con-
tinuous degree of freedom interacting with various envi-
ronments was discussed in detail, and the standard Feyn-
man diagrammatic approach developed. The diagram-
matic technique made it possible to exhibit the interfer-
ence aspect of quantum-mechanical motion explicitly.
This interference aspect can dominate the transport
properties of devices constructable by present day tech-
nology, due, for example, to their small size. The general
description we have represented was therefore carried
out in the spatial representation, which provided a useful
pictorial, representation of coherent wave propagation,
and allowed proper inclusion of the effects of finite size.
The formalism presented should therefore prove useful in
future studies of such effects.

The presented diagrammatic technique was used to
discuss the intracollisional field effect as an example of
the kinetic approach to quantum transport, where such
nonlinear effects can be included; both the case of
electron-phonon interaction and that of electron-
impurity interaction was considered. Within the present
formalism the inclusion of the intracollisional field effect
was automatic and interpretable in a physically transpar-
ent way, as the result of the effect of the external field on
the effective interaction of the particle with the environ-
ment. The conflicting results in the literature on the in-
tracollisional field effect within the many-body formal-
isms were identified as the result of the uncontrolled in-
troduction of the quasidistribution function, as such a
problem never arose in the present single-particle ap-
proach.

In the latter part of the paper we reviewed the theory



Jgrgen Rammer: Quantum transport theory of electrons in solids 815

of disordered conductors in view of the progress made
over the last decade. The simple single-particle approach
was shown to be able to account for a vast range of phe-
nomena. The linear-response theory of a noninteracting
electron gas was presented using the diagrammatic tech-
nique and applied to a discussion of the conductance of
macroscopic and mesoscopic samples, with particular
emphasis on establishing the physical picture of the
quantum interference effects. The weak-localization
effect was discussed using the diagrammatic technique
developed for the density matrix, thereby in a simple and
direct way demonstrating its quantum interference na-
ture. Starting from linear-response theory we showed, by
imposing proper boundary conditions, how to arrive at
the scattering expression for the conductance of an obsta-
cle, thereby making contact with the Landauer approach
to quantum transport. Finally, we discussed the mesos-
copic conductance fluctuations, showing their physical
origin to be in quantum interference.

The present single-particle approach is of particular
relevance for consideration of quantum transport phe-
nomena in bulk semiconductors and structures made of
semiconductor material, for which in general we do not
have a controllable way of dealing with the complete
many-body problem. The simplicity and transparency of
the present formalism, however, should make it possible
to take advantage of the simplifications pertaining to the
particular nonequilibrium situation in question and
thereby provide the basis for a consistent treatment of
the many-body aspects. The formalism is useful not only
in analytical studies, but also for setting up consistent
schemes for numerical treatments of transport in compli-
cated realistic material models.

ACKNOWLEDGMENTS

Part of this work was performed while the author
benefited from discussions as a member of the quantum
transport group of Professor Karl Hess at the University
of Illinois. It is a pleasure to thank Professor Anthony J.
Leggett for a critical reading of a preliminary version of
the manuscript. This research was supported in part by
the John D. and Catherine T. MacArthur Foundation at
the University of Illinois under Grant No. 0-6-40129 and
by the National Science Foundation under Grant No.
DMR-86-12860. I thank NORDITA for the hospitality
extended to me during the fall of 1989 where part of this
work was performed. I thank Dr. Gaute T. Einevoll for
inviting me to the University of Trondheim to lecture on
results contained in the present article. This research is
supported by the Norwegian Research Council for Sci-
ence and the Humanities. I wish to acknowledge travel
support by the NATO Science Fellowships Program, and
the reception of a Nordic Research Stipend.

REFERENCES

Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, 1979, Phys. Rev. Lett. 42, 673.

Rev. Mod. Phys,, Vol. 63, No. 4, October 1991

Abrikosov, A.A., L. P. Gor’kov, and I. E. Dzyaloshinski, 1965,
Quantum Field Theoretical Methods in Statistical Physics (Per-
gamon, New York).

Abrikosov, A. A., and I. A. Ryzhkin, 1978, Adv. Phys. 27, 147.

Afonin, V. V., Yu. M. Galperin, V. L. Gurevich, and A.
Schmid, 1987, Phys. Rev. A 36, 5729.

Al’tshuler, B. L., 1978, Zh. Eksp. Teor. Fiz. 75, 1330 [Sov. Phys.
JETP 48, 670 (1978)].

ATl’tshuler, B. L., 1985, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530
[JETP Lett. 41, 648 (1985)].

Al’tshuler, B. L., and A. G. Aronov, 1981, Pis’ma Zh. Eksp.
Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)].

Altshuler, B. L. and A. G. Aronov, 1985, in Electron-Electron
Interactions in Disordered Systems, edited by A. L. Efros and
M. Pollak (North-Holland, Amsterdam), p. 1.

ATltshuler, B. L., A. G. Aronov, and D. E. Khmel’nitskii, 1981,
Solid State Commun. 39, 619.

Al’tshuler, B. L., A. G. Aronov, and D. E. Khmel’nitskii, 1982,
J. Phys. C 15, 7367.

Altshuler, B. L., A. G. Aronov, D. E. Khmel’'nitskii, and A. 1.
Larkin, 1982, in Quantum Theory of Solids, edited by 1. M.
Lifshitz (MIR, Moscow), p. 130.

Altshuler, B. L., A. G. Aronov, A. 1. Larkin, and D. E.
Khmel'nitskii, 1981, Zh. Eksp. Teor. Fiz. 81, 768 [Sov. Phys.
JETP 54, 411 (1981)].

Al'tshuler, B. L., A. G. Aronov, and B. Z. Spivak, 1981 Pis’ma
Zh. Eksp. Teor. Fiz. 33, 101 [JETP Lett 33, 94 (1981)].

AT’tshuler, B. L., A. G. Aronov, B. Z. Spivak, D. Yu, Sharvin,
and Yu. V. Sharvin, 1982, Pis’ma Zh. Eksp. Teor. Fiz. 35, 476
[JETP Lett. 35, 588 (1982)].

Al’'tshuler, B. L., and D. E. Khmel’nitskii, 1985, Pis’ma Zh.
Eksp. Teor. Fiz. 42, 291 [JETP Lett. 42, 359 (1985)].

Altshuler, B. L., D. E. Khmel’nitskii, A. I. Larkin, and P. A.
Lee, 1980, Phys. Rev. B 22, 5142.

Al’tshuler, B. L., V. E. Kravtsov, and 1. V. Lerner, 1986, Pis’ma
Zh. Eksp. Teor. Fiz. 43, 342 [JETP Lett. 43, 441 (1986)].

Al'tshuler, B. L., V. E. Kravtsov, and I. V. Lerner, 1991, in
Mesoscopic Phenomena in Solids, edited by B. L. Al'tshuler, P.
A. Lee, and R. A. Webb (Elsevier, Amsterdam), in press.

Al’tshuler, B. L., and B. I. Shklovskii, 1986, Zh. Eksp. Teor.
Fiz. 91, 220 [Sov. Phys. JETP 64, 127 (1986)]

ATl’tshuler, B. L., and B. Z. Spivak, 1985, Pis’'ma Zh. Eksp.
Teor. Fiz. 42, 363 [JETP Lett. 42, 447 (1985)].

Al'tshuler, B. L., and B. Z. Spivak, 1986, Pis’'ma Zh. Eksp.
Teor. Fiz. 43, 185 [JETP Lett. 43, 234 (1986)].

Al'tshuler, B. L., and B. Z. Spivak, 1987, Zh. Eksp. Teor. Fiz.
92, 609 [Sov. Phys. JETP 65, 343 (1987)].

Anderson, P. W., 1958, Phys. Rev. 102, 1008.

Anisovich, A. V., B. L. Al'tshuler, A. G. Aronov, and A. Yu.
Zyuzin, 1987, Pis’ma Zh. Eksp. Teor. Fiz. 45, 237 [JETP Lett.
45, 295 (1987)].

Aronov, A. G. 1984, Physica B 126, 314.

Aronov, A. G., and Yu. V. Sharvin, 1987, Rev. Mod. Phys. 59,
755.

Aronov, A. G., A. Yu. Zyuzin, and B. Z. Spivak, 1986, Pis’ma
Zh. Teor. Fiz. 43, 431 [JETP Lett. 43, 555 (1986)].

Ashcroft, N. W., and N. D. Mermin, 1976, Solid State Physics
(Holt, Rinehart and Winston, New York).

Baranger, H. U., and D. A. Stone, 1989, Phys. Rev. B 40, 8169.

Baranger, H. U., A. D. Stone, and D. P. DiVincenzo, 1988,
Phys. Rev. B 37, 6521.

Barker, J. R., 1973, J. Phys. C 6, 2663.

Bending, S. J., K. von Klitzing, and K. Ploog, 1990, Phys. Rev.
Lett. 65, 1060.



816 Jagrgen Rammer: Quantum transport theory of electrons in solids

Benoit, A., C. P. Umbach, R. B. Laibowitz, and R. A. Webb,
1987, Phys Rev. Lett. 58, 2357.

Berezinskii, V. L., 1973, Zh. Eksp. Teor. Fiz. 65, 1251 [Sov.
Phys. JETP 38, 620 (1974)].

Bergmann, G., 1984, Phys. Rep. 107, 1.

Bertoncini, R., A. M. Kriman, and D. K. Ferry, 1990, Phys.
Rev. B 41, 1390.

Boltzmann, L. W., 1872, Ber. Wien. Akad. 66, 275.

Boltzmann, L. W., 1896, Vorlesungen iiber Gastheorie (Barth,
Leipzig). English translation: Lectures on Gas Theory (Univer-
sity of California Press, Berkely, 1964).

Brenig, W., M. A. Paalanen, A. F. Hebard, and P. Woélfle, 1986,
Phys. Rev. B 33, 1691.

Bykov, A. A., G. M. Gusev, Z. D. Kvon, D. I. Lubyshev, and V.
P. Migal’, 1989, Pis’ma Zh. Eksp. Teor. Fiz. 49, 13 [JETP Lett.
49, 13 (1989)].

Bykov, A. A., G. M. Gusev, and Z. D. Kvon, 1990, Zh. Eksp.
Teor. Fiz. 97, 1317 [Sov. Phys. JETP, 70, 742 (1990)].

Biittiker, M., 1986a, Phys. Rev. Lett. 57, 1761.

Biittiker, M., 1986b, Phys. Rev. B 33, 3020.

Biittiker, M., 1988, Phys. Rev. B 38, 9375.

Caldeira, A. O., and A. J. Leggett, 1983, Ann. Phys. (N.Y.) 149,
374.

Callen, H. B, and T. A. Welton, 1951, Phys. Rev. 83, 34.

Chakravarty, S., and A. Schmid, 1986, Phys. Rep. 140, 193.

Datta, S., 1989, Superlatt. Microstruct. 6, 86.

Dugaev, V. K., and D. E. Khmel’'nitskii, 1984, Zh. Eksp. Teor.
Fiz. 86, 1784 [Sov. Phys. JETP 59, 1038 (1984)].

Eckern, U., and A. Schmid, 1981, J. Low. Temp. Phys. 45, 137.

Edwards, S.F., 1958, Philos. Mag. 3, 1020.

Efetov, K., 1983, Adv. Phys. 32, 53.

Eiler, W., 1984, J. Low Temp. Phys. 56, 481.

Eiler, W., 1985, Solid State Commun. 56, 917.

Eliashberg, G. M., 1971, Zh. Eksp. Teor. Fiz. 61, 1254 [Sov.
Phys. JETP 34, 668 (1972)].

Engquist, H. L., and P. W. Anderson, 1981, Phys. Rev. B 24,
1151.

Fal’ko, V. 1., 1987, Zh. Eksp. Teor. Fiz. 92, 704 [Sov. Phys.
JETP 65, 397 (1987)].

Fal’ko, V. 1., 1989, Europhys. Lett. 8, 785.

Fal’ko, V. I, and D. E. Khmel’nitskii, 1989, Zh. Eksp. Teor.
Fiz. 95, 328 [Sov. Phys. JETP 68, 186 (1989)].

Fal’ko, V. I, and D. E. Khmel’nitskii, 1990, Pis’ma, Zh. Eksp.
Teor. Fiz. 51, 166 [JETP Lett. 51, 189 (1990)].

Feng, S., 1990, Phys. Lett. A 143, 400.

Feng, S., P. A. Lee, and D. A. Stone, 1986, Phys. Rev. Lett. 56,
1960; 56, 2772(E).

Feynman, R. P.;, R. W. Hellwarth, C. K. Iddings, and P. M.
Platzman, 1962, Phys. Rev. 127, 1004.

Feynman, R. P., and A. R. Hibbs, 1965, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York).

Feynman, R. P., and F. L. Vernon, Jr., 1963, Ann. Phys. (N.Y.),
24, 118.

Fisher, D. S., and P. A. Lee, 1981, Phys. Rev. B 23, 6851.

Geim, A. K., 1989, Pis’ma Zh. Eksp. Teor. Fiz. 50, 359 [JETP
Lett. 50, 389 (1989)].

Glazman, L. 1., G. B. Lesovik, D. E. Khmel’nitskii, and R. I.
Shekter, 1988, Pis’ma Zh. Eksp. Teor. Fiz. 48, 218 [JETP Lett.
48, 238 (1988)].

Gordon, J. M., 1984, Phys. Rev. B 30, 6770.

Gor’kov, L. P., A. 1. Larkin, and D. E. Khmel’nitskii, 1979,
Pis’ma, Zh. Eksp. Teor. Fiz. 30, 248 [JETP Lett. 30, 228
(1979)].

Gradshteyn, I. S., and I. M. Ryzhik, 1980, Table of Integrals,

Rev. Mod. Phys,, Vol. 63, No. 4, October 1991

Series, and Products (Academic, New York).

Greenwood, D. A., 1958, Proc. Phys. Soc. London, Ser. A 71,
585.

Gusev, G. M., Z. D. Kvon, and A. G. Pogosov, 1990, Pis’ma
Zh. Eksp. Teor. Fiz. 51, 151 [JETP Lett. 51, 171 (1990)].

Hershfield, S., 1989, Ann. Phys. (N.Y.) 196, 12.

Hershfield, S., and V. Ambegaokar, 1988, Phys. Rev. B 38,
7909.

Hikami, S., A. I. Larkin, and Y. Nagaoka, 1980, Prog. Theor.
Phys. 63, 707.

Iche, G., and P. Noziéres, 1978, Physica A 91, 485.

Imry, Y., 1986, in Directions in Condensed Matter Physics Vol.
1, edited by G. Grinstein and G. Mazenko (World Scientific,
Singapore), p. 101.

Jauho, A.-P., 1991, in Granular Nanoelectronics, NATO Ad-
vanced Study Institute Series B, Vol. 91, edited by D. K. Fer-
ry, J. R. Barker, and C. Jacoboni (Plenum, New
York/London), p. 133.

Jauho, A.-P., and J. W. Wilkins, 1984, Phys. Rev. B 29, 1919.

Kadanoff, L. P.,, and G. Baym, 1962, Quantum Statistical
Mechanics (Benjamin, New York).

Kadanoff, L. P., and M. Revsen, 1964, Nuovo Cimento 33, 397.

Kane, C. L., P. A. Lee, and D. P. DiVincenzo, 1988, Phys. Rev.
B 38, 2995.

Kane, C. L., R. A. Serota, and P. A. Lee, 1988, Phys. Rev. B 37,
6701.

Kawabata, A., 1980, J. Phys. Soc. Jpn. 49, 628.

Kawabata, A., 1984, J. Phys. Soc. Jpn. 53, 3540.

Keldysh, L. V., 1964, Zh. Eksp. Teor. Fiz. 57, 660 [Sov. Phys.
JETP 20, 1018 (1965)].

Khmel’nitskii, D. E., 1984, Physica B 126, 235.

Kohn, W., and J. M. Luttinger, 1957, Phys. Rev. 108, 590.

Konstantinov, O. V., and V. 1. Perel, 1960, Zh. Eksp. Teor. Fiz.
39, 197 [Sov. Phys. JETP 12, 142 (1961)].

Kubo, R., M. Toda, and N. Hashitsume, 1983, Statistical Phys-
ics II. Nonequilibrium Statistical Mechanics (Springer, Berlin).

Landau, L.D., 1927, Phys. Z. Sowjetunion 45, 430.

Landau, L. D., and 1. M. Lifshitz, 1965, Quantum Mechanics
(Pergamon, New York).

Landau, L. D., and 1. M. Lifshitz, 1980, Statistical Physics (Per-
gamon, New York).

Landauer, R., 1957, IBM J. Res. Dev. 1, 233.

Landauer, R., 1970, Philos. Mag. 21, 863.

Landauer, R., 1985, in “Localization, Interaction, and Transport
Phenomena, Springer Series in Solid-State Sciences No. 61,
edited by B. Kramer, G. Bergmann, and Y. Bruynseraede
(Springer, New York), p. 38.

Langer, J. S., 1960, Phys. Rev. 127, 1004.

Langer, J. S., and T. Neal, 1966, Phys. Rev. Lett. 16, 984.

Langreth, D. C., 1967, Phys. Rev. 159, 717.

Langreth, D. C., and E. Abrahams, 1981, Phys. Rev. B 24, 2978.

Larkin, A. L., 1980, Pis’ma Zh. Eksp. Teor. Fiz. 31, 239 [JETP
Lett. 31, 219 (1980)].

Larkin, A. I, and D. E. Khmel’nitskii, 1982, Usp. Fiz. Nauk
136, 536 [Sov. Phys. Usp. 25, 185 (1982)].

Larkin, A.IL, and D. E. Khmel’nitskii, 1986, Zh. Eksp. Teor.
Fiz. 91, 1815 [Sov. Phys. JETP 64, 1075 (1986)].

Lax, M., 1958, Phys. Rev. 109, 1921.

Lee, P. A., and T. V. Ramakrishnan, 1985, Rev. Mod. Phys. 57,
287.

Lee, P. A, and A. D. Stone, 1985, Phys. Rev. Lett. 55, 1622.

Lee, P. A., A. D. Stone, and H. Fukuyama, 1987, Phys. Rev. B
35, 1039.

Lesovik, G.B., and D. E. Khmel’nitskii, 1988, Zh. Eksp. Teor.



Jgrgen Rammer: Quantum transport theory of electrons in solids 817

Fiz. 94, 164 [Sov. Phys. JETP 67, 957 (1988)].

Levinson, I. B., 1969, Zh. Eksp. Teor. Fiz. 57, 660 [Sov. Phys.
JETP 30, 362 (1970)].

Lipavsky, P., V. Spicka, and B. Velicky, 1986, Phys. Rev. B 34,
6933.

Martin, P. C., and J. Schwinger, 1959, Phys. Rev. 115, 1342.

Mason, B. A., and K. Hess, 1989, Phys. Rev. B 39, 5051.

Mills, R., 1969, Propagators for Many-Particle Systems (Gordon
and Breach, New York).

Prange, R. E., and L. P. Kadanoff, 1964, Phys. Rev. 134, 566A.

Rainer, D., and G.. Bergmann, 1985, Phys. Rev. B 32, 3522.

Rammer, J., and A. Schmid, 1986, Phys. Rev. B 34, 1352.

Rammer, J., and A. L. Shelankov, 1987, Phys. Rev. B 36, 3135.

Rammer, J., 1985, Ph.D. thesis (University of Copenhagen).

Rammer, J., and H. Smith, 1986, Rev. Mod. Phys. 58, 323.

Ravenhall, D. G., H. W. Wyld, and R. L. Schult, 1989, Phys.
Rev. Lett. 62, 1780.

Schmid, A., 1985, in Localization, Interaction and Transport
Phenomena, Springer Series in Solid-State Sciences No. 61
edited by B. Kramer, G. Bergmann, and Y. Bruynseraede,
(Springer, New York), p. 212.

Schwinger, J., 1961, J. Math. Phys. (N.Y.) 2, 407.

Serene, J. W., and D. Rainer, 1983, Phys. Rep. 101, 221.

Serota, R. A., 1988, Phys. Rev. B 38, 12640.

Serota, R.A., S. Feng, C. Kane, and P. A. Lee, 1987, Phys. Rev.
B 36, 5031.

Shelankov, A. L., 1985, J. Low. Temp. Phys. 60, 29.

Shen, P., 1989, Ed., Scattering and Localization of Classical
Waves in Random Media (World Scientific, Singapore).

Skocpol, W. J., P. M. Mankiewich, R. E. Howard, L. D. Jackel,
D. M. Tennant, and D. A. Stone, 1987, Phys. Rev. Lett. 58,
2347.

Sols, F., M. Macucci, U. Ravaioli, and K. Hess, 1989, J. Appl.
Phys. 66, 3892.

Spivak, B. Z., and D. E. Khmel’'nitskii, 1982, Pis’ma Zh. Eksp.

Rev. Mod. Phys., Vol. 63, No. 4, October 1991

Teor. Fiz. 35, 334 [JETP Lett. 35, 412 (1982)].

Stone, A. D., 1985, Phys. Rev. Lett. 55, 2692.

Szafer, A., and A. D. Stone, 1989, Phys. Rev. Lett. 62, 300.

Thornber, K. K., and R. P. Feynman, 1970, Phys. Rev. B 1,
4099.

Thouless, D. J., 1981, Phys. Rev. Lett. 47, 972.

Umbach, C. P., S. Washburn, R. B. Laibowitz, and R. A. Webb,
1984, Phys. Rev. B 30, 4048.

van Wees, B. J., H. van Houten, C. W. Beenakker, J. G. Willi-
amson, L. P. Kouwenhoven, D. van der Marel, and C. T. Fox-
en, 1988, Phys. Rev. Lett 60, 848.

Vitkalov, S. A., G. M. Gusev, Z. D. Kvon, G. I. Leviev, and V.
1. Fal’ko, 1988, Zh. Eksp. Teor. Fiz. 94, 376 [Sov. Phys. JETP
67, 1080 (1988)].

von Neumann, J., 1932, Mathematische Grundlagen der Quan-
tenmechanic  (Springer, Berlin). English  translation:
Mathematical Foundations of Quantum Mechanics (Princeton
University, Princeton, NJ, 1955).

Wang, S., and P. E. Lindelof, 1987, Phys. Rev. Lett. 59, 1156.

Washburn, S., and R. A. Webb, 1986, Adv. Phys. 35, 375.

Watson, K. M., 1969, J. Math. Phys. 10, 688.

Webb, R. A., S. Washburn, C. P. Umbach, and R. B. Laibowitz,
1985a, in Localization, Interaction, and Transport Phenomena,
Springer Series in Solid-State Sciences No. 61, edited by B.
Kramer, G. Bergmann, and Y. Bruynseraede (Springer, New
York), p. 121.

Webb, R. A., S. Washburn, C. P. Umbach, and R. B. Laibowitz,
1985b, Phys. Rev. Lett. 55, 2696.

Wegner, F., 1979, Z. Phys. B 35, 207.

Wheeler, J. A., and W. H. Zurek, 1983, Eds., Quantum Theory
and Measurement (Princeton University, Princeton, NJ).

Wigner, E., 1932, Phys. Rev. 40, 749.

Wittmann, H.-P., and A. Schmid, 1987, J. Low. Temp. Phys. 69,
131.



