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We compute all the three-dimensional quasicrystallographic space groups with n-fold axial point groups
and standard lattices by a method that treats crystals and quasicrystals on an equal footing. We do not
rely on projecting higher-dimensional crystallographic space groups, our results are valid for arbitrary n,
and our analysis is elementary. We regard space groups as a scheme for classifying diffraction patterns to
be carried out in three-dimensional reciprocal space. The familiar three-dimensional crystallographic
space groups with axial point groups emerge simply and directly as special cases of the general n-fold
three-dimensional quasicrystallographic treatment with n=3, 4, and 6. We give a general discussion of
extinctions in quasicrystals and give a simple (three-dimensional) geometrical specification of the extinc-
tions for each axial space group. The paper is intended both for people trying to systematize quasicrystal
diffraction patterns and for people interested in a simple alternative approach to the computation of crys-
tallographic or quasicrystallographic space groups.
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I. INTRODUCTION

We shall have mevcifully little to say about the 230
space groups, except to point out that the number is larger
than one might have guessed.

Ashcroft and Mermin, 1976 (p. 125)

*Current address: Department of Theoretical Physics, Univer-
sity of Oxford, Oxford OX1 3NP, England.

The well-known classification by Fedorov, SchonAies,
and Barlow of the 230 crystallographic space groups in
three dimensions applies to periodic arrangements of ob-
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jects, all alike in shape and orientation. Generally (and
certainly before tunneling microscopy), direct imaging of
atomic positions has been difficult, and crystallographers
have used diffraction to deduce structure. The perfect
translational order of a crystal implies 5-function Bragg
peaks in the diffraction pattern, while the requirement of
discreteness —atoms or arrangements of atoms take up
space, so there must be a minimum distance between
them —restricts the possible symmetry axes of' a crystal,
and hence of the diffraction pattern, to 2-, 3-, 4-, and 6-
fold. The discovery in 1984 of icosahedral quasicrystals
(Schechtman, Blech, Gratias, and Cahn, 1984), materials
with forbidden rotational symmetry whose diffraction
patterns nevertheless demonstrate long-range positional
order, has motivated a reassessment of conventional crys-
tallography.

The standard approach to extending crystallography to
quasicrystals has relied on viewing quasicrystals as real-
space projections of crystals in a higher number of di-
mensions; the number of dimensions required to describe
a quasicrystal of arbitrary symmetry can be arbitrarily
large. As a consequence, space-group computations fol-
lowing this approach have been limited to a six-
dimensional projection yielding the icosahedral space
groups (Levitov and Rhyner, 1988)' and to space groups
with 5-, 8-, 10-, and 12-fold rotational axes, which are the
only axial space groups obtained from five-d. imensional
projection (Gahler, 1988, 1990).

Rokhsar, Wright, and Mermin (1988a, henceforth
RWM), have provided an alternative (but equivalent) for-
mulation in a space with the physical number of dimen-
sions, based on Bienenstock's and Ewald's reworking of
ordinary crystallography (1962) in reciprocal space.
Since reciprocal-space structure is generally more acces-
sible to experiment than real space (or "real" hyperdi-
mensional space!), we find this approach more natural.
Using the reciprocal-space formulation, we derive here
all the axial space groups on standard lattices in a
unified and elementary scheme —not limited to the 5-, 8-,
10-, and 12-fold cases —in which crystals are merely par-
ticular members of general families.

Janssen (1986) had previously applied the method to
icosahedral space groups but arrived at the wrong number. A
correct derivation (Rokhsar, Wright, and Mermin, 1988b) uses
the purely three-dimensional approach that we follow here.

~The only non-axial non-crystallographic space groups are the
icosahedral, which have been treated elsewhere (Rokhsar,
Wright, Mermin, 1988b). In a companion paper to be published
in Reviews of Modern Physics, one of us (N.D.M. ) will apply the
reciprocal-space approach to a unified treatment of the
icosahedral and (three-dimensional} cubic space groups, as we11

as to the other nonaxial crystallographic space groups (ortho-
rhombic, monoclinic, and triclinic).

Nonstandard lattices do not exist for rotational symmetries
less than 23-fold. See Sec. II.A.

We shall begin with a lattice which is not a crystallo-
graphic lattice in a higher dimensional real space, but a
lattice in three-dimensional reciprocal space, determined
by a simple generalization of the crystallographic rule
giving the reciprocal lattice in terms of the wave vectors
in the diffraction pattern. There is also a point group
that permutes lattice vectors and is a suitable subgroup
of the full set of symmetries of the diffraction pattern.
Operations in the point group leave the density Fourier
coefficients invariant except for a phase factor. These
phases are central to our definition of the space group.

In Sec. II.A we review the concept of a standard lattice
(Rokhsar, Mermin, and Wright, 1987; Mermin, Rokhsar,
and Wright, 1987) and the classification of three-
dimensional standard axial quasicrystallographic lattices
(Mermin, 1989; Mermin, Rabson, Rokhsar, and Wright,
1990). We describe the two categories of standard axial
lattices: vertical stackings (V lattices) and staggered
stackings (S lattices) of standard two-dimensional quasi-
crystallographic lattices. The staggered stackings (of
which the crystallographic examples are centered tetrag-
onal and rhombohedral) exist only for rotational sym-
metries n that are powers of prime numbers. In Sec. II.B
we organize the well-known catalog of three-dimensional
axial point groups along lines particularly well suited to
the computation of the space groups. In Sec. II.C we re-
view the RWM definition of the phase functions N (k),
which relate the density Fourier coefficients at wave vec-
tors connected by point-group operations. The values of
these functions for those pairs g and k with gk=k deter-
mine the extinctions and the space groups. This refor-
mulation agrees with the conventional one when applied
to ordinary crystals. In Sec. II.D we give a brief over-
view of the procedure we shall be carrying out in Secs.
III—V, and in Sec. II.E we specify which point groups are
compatible with a given lattice.

Section III reviews and simplifies RWM's classification
of two-dimensional crystallographic space groups on
standard lattices as a preliminary to extending it to the
three-dimensional axial space groups in Secs. IV and V.

In Sec. IV we compute the space groups for vertically
stacked standard lattices, and in Sec. V for staggered
stackings. Each section concludes with a compact tabu-
lar specification of all the quasicrystallographic space
groups.

In Sec. VI we discuss the general nature of extinctions
in quasicrystallographic diffraction patterns, compute the
extinctions for all the axial space groups, and character-
ize those extinctions by a simple set of three-dimensional,
geometric rules.

In Sec. VII, we give a much lengthier (but no more in-
formative) specification along the lines of the Internation-
al Tables (International Union of Crystallography, 1987)

4Rabson, Ho, and Mermin (1988) (Appendix) have also de-
scribed how a space group so defined has a formal group struc-
ture, but this structure has no importance in our treatment.
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to emphasize the close resemblance to the three-
dimensional axial crystallographic space groups. In each
case, we also give the results of applying the extinction
rules of Sec. VI.

In the Appendix, we collect together a series of "gauge
transformations" (corresponding to choices of origin in
the crystallographic case) used in the course of our
analysis, which are likely to prove useful in further exten-
sions of our method.

Readers more interested in the conceptual basis of our
approach than in its detailed application may want to
skip Secs. III—V and read only the introductory part of
Sec. VI. Readers more interested in results than their
derivation may limit their perusal of Secs. III—V to an
examination of Tables V and VI, from which the extinc-
tion rules of Sec. VI follow.

from crystallographic reciprocal lattices is that the form-
er are dense in k-space: for quasicrystals there are
bounded regions of k-space in which more and more
Bragg peaks can be found as the resolution becomes
better and better. Since there is no shortest distance be-
tween reciproca1-lattice vectors, there are no grounds for
prohibiting 5-fold or higher than 6-fold symmetry axes,
and indeed quasicrystal diffraction patterns of Bragg
peaks have been reported with 5-, 8-, 10-, and 12-fold
symmetry axes.

Since the only lattice we can associate with a quasi-
crystal in the physical number of dimensions is the re-
ciprocal lattice of wave vectors determined by the Bragg
peaks, throughout this paper the term "lattice" wi11 al-

ways mean reciprocal lattice.

II. PRELIMINARY FACTS 1. Two-dimensional lattices

A. Lattices

Traditional crystallography begins with periodicity in
real space; this periodicity and the requirement of a
minimum distance between atoms (discreteness) permit
axes of 2-, 3-, 4-, and 6-fold symmetry only. The set of
translations that bring an infinite crystal into coincidence
with itself constitutes the real-space lattice.

The reciprocal lattice is traditionally defined in terms
of the real-space lattice, as its mathematical dual. A
diffraction experiment directly specifies the reciprocal
lattice. Each Bragg peak determines a wave vector ac-
cording to the familiar Laue rules, and the set of integral
linear combinations of all these wave vectors is the re-
ciprocal lattice.

Because quasicrystals lack global translational symme-

try, they have no real-space lattice. Most approaches to
classifying their symmetries have viewed quasicrystals as
two- or three-dimensional projections of ordinary crys-
tals in an unphysically large number of dimensions,
thereby reintroducing a "real-space" lattice in the
higher-dimensional space. Quasicrystals, however, have
we11-defined Bragg peaks, so without the intermediary of
a higher-dimensional real-space lattice we can directly
define the reciprocal lattice to be the set of all integral
linear combinations of wave vectors determined by the
diffractio pattern.

The feature that distinguishes quasicrystallographic

The simplest example of an X-fold-symmetric lattice in
two dimensions consists of the Nth roots of unity
g, =exp(2mij/N) and all their integral linear combina-
tions, a set known as the cyclotomic integers of order X.
Since the negative of a lattice vector is also in the lattice,
the lattice is invariant under a rotation through m, and
we can take X to be even. Mermin, Rokhsar, and Wright
(1987) call this the standard N lattice and show that for N
less than 46 (and greater than 2), all two-dimensional lat-
tices are standard up to an overall scale and arbitrary ro-
tation. The twofold lattices, although pathological from
this point of view, are crystallographic and therefore well
understood. For X ~ 46 more exotic "nonstandard" 1at-
tices exist. Here we shall consider only three-
dimensional axial lattices with standard two-dimensional
sublattices. Our classification of axial space groups is
nevertheless complete for symmetry axes less than 23-
fold.

We say that a lattice is generated by any set of vectors
all integral linear combinations of which define the lat-
tice, and we call any X-fold-symmetric set of vectors
(such as the ¹hroots of unity) that generate the lattice a
generating star (or, when there is no possibility of ambi-

guity, simply a star).
The Nth roots of unity are integrally dependent; i.e.,

there are vanishing linear combinations with integral
coefficients. Often it will be convenient to generate the
lattice with the integrally independent subset of star vec-
tors gz, (Iv, . . . , gz ', where v is the smallest number of
vectors that together can generate the lattice. This num-

5Less formally, as the set of wave vectors of plane waves with
the periodicity of the real-space lattice.

See, for example, Janssen (1986; this article, however, over-
looks a consequence of scale invariance of the icosahedral lat-
tices, for which see Rokhsar, Wright, and Mermin, 1988b), Lev-
itov and Rhyner (1988), and Gahler (1988, 1990).

7See, for example, Wang, Chen, and Kuo, 1987 (8-fold); Kor-
tan et al. , 1989 (10-fold); and Chen, Li, and Kuo, 1988 (12-fold).
Most relevant to the present work, Idziak, Heiney, and Bancel
(1987), Yamamoto and Ishihara (1988), Idziak and Heiney
(1990), and Yamamoto et al. (1990) report nonsymmorphic
space groups in the decagonal system.
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ber is called the rank of the lattice and is given by the
Euler totient function,

iIE
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$ ~

$ ~
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~ $
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where p; are the distinct prime factors of X. An integral-
ly independent generating set is called primitive.

When iV=4 or 6, there is a minimum distance between
cyclotomic integers, and they therefore cannot be invari-
ant under a rescaling. When X)6, however, the cyclo-
tomic integers are invariant under multiplication by cer-
tain complex numbers whose modulus is not unity. As a
result, the common magnitude of the vectors in a gen-
erating star is not unique in a quasicrystallographic lat-
tice, nor need the star have a unique orientation. What is
important for our analysis below is the possible ambigui-
ty in orientation. When X is twice a power of a single
prime number, the vectors of any generating star point
uniquely along the directions of the roots of unity g, : no
star of vectors pointing between Xth roots of unity can
generate the whole lattice. However, when X is not twice
a prime power, there is a second possibility: the vectors
in a generating star can lie either along or between the
loath roots of unity.

A cautionary point: When X=2n and n is odd, one
can also generate the N lattice with an n-fold star of the
vectors P„=gg (from which the vectors with

j=0, . . . , v —1 again generate the lattice primitively. )

We shall generally make this choice when describing the
two-dimensional sublattice of the "staggered lattices" in-
troduced below. However, the second, inequivalent set of
directions for n-fold generating stars is no longer between
the directions of the first n-fold star. " It continues, of
course, to be between the directions of the original 2n-
fold star, and is therefore rotated from the directions of
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FIG. 1. Lattice directions along and between roots of unity
(star vectors) for (a) n =N twice even, (b) n =N twice odd, and
(c) n odd, N=2n. Note that in case (c), the directions we desig-
nate "between" lie between 2nth roots of unity, rejecting the
fact that the nth and 2nth roots of unity generate the same two-
dimensional lattice. Note also in cases (b) and (c) that the direc-
tions between roots are perpendicular to directions along.

8See Lang (1984) p. 313 or Marcus (1977) p. 17 for the proof
that the rank equals the Euler P function. See the Appendix to
Mermin, Rabson, Rokhsar, and Wright (1990) for a simple

proof that v angularly consecutive roots of unity do in fact gen-

erate the lattice.
One of the attractions to viewing standard lattices in the com-

plex plane is that rotations and rescaling are both represented

as multiplication by a complex number.

See RWM and references therein. For example, one can
show that the vectors

the n-fold star by a quarter of the angle between adjacent
n-fold-star vectors. ' This is illustrated in Fig. l.

2. Three-dimensional axial lattices

An axial lattice has a unique axis of highest rotational
symmetry (greater than twofold); while most crystallo-

constitute just such a star when N is not twice a prime power.
See Rabson (1991).

' The star between the directions of the first n-fold star is just
its negative —i.e., the original star rescaled by the real factor
—1

One easily sees that these directions are perpendicular to the
directions of the original n-fold star.

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991
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TABLE I. Lattices and point groups. The possible stackings into three-dimensional axial lattices of
the two-dimensional standard 1V lattice depend on N (which is necessarily an even number). If N is
twice a prime power, the stacking may be vertical or staggered (extreme top and bottom rows). Other-
wise, only the vertical stacking is possible (middle rows). The column on the right shows the rotational
orders n of the points groups compatible with each lattice as discussed in Sec. II.E.

1V-fold
standard two-
dimensional
sublattice

stacking

Lattice
Crystallographic ' ~oint
Examples Group

(holohedry)

Rotational
orders n of
compatible
point groups

N twice an odd
prime power

N twice an odd
n»aber not an
odd prime power

N twice an even
number not a
power of two

N a power of two

Staggered 2
N-fold

Vertical
N-fold

Staggered X-fold

rhombohedral

hexagonal

none

none

simple
tetragonal

centered
tetragonal

—Em1
2

n= ~N, X

graphic lattices are not axial, among quasicrystals only
the icosahedral lattices' have more than a single axis of
highest symmetry. We have calculated elsewhere the
ways of stacking two-dimensional standard lattices to
give three-dimensional axial lattices (which we shall refer
to as "standard axial lattices, " reminding the reader that
all axial lattices with less than 23-fold symmetry are stan-
dard). We state below the pertinent elementary facts
about standard axial lattices, referring the reader to Mer-
min, Rabson, Rokhsar, and Wright (1990) for proofs.

The obvious stacking places standard two-dimensional
lattices directly atop each other: to generate it, one adds
to the horizontal generating star of the two-dimensional
sublattice an additional vertica1 lattice vector z of arbi-
trary length. ' The rotational symmetry of the vertically
stacked lattice is just the rotational symmetry N of its
two-dimensional, horizontal sublattice, which is always
even. Except when N is twice a power of a single prime
number, this vertical stacking of standard lattices is the
only standard axial lattice.

When X is twice a prime power there exists one addi-
tional standard axial lattice, which is a staggered stack-
ing of X-fold standard lattices, with a horizontal shift
from layer to layer, analogous to the rhombohedral
(%=6) and centered tetragonal (%=4) crystallographic
lattices. ' When X is a power of 2, the staggered stack-
ing continues to have the full N-fold symmetry; when N
is twice an odd prime power, however, the rotational
symmetry n of the staggered lattice is half that of its
two-dimensional horizontal sublattice. This is the only
way to get a three-dimensional axial lattice with odd ro-
tational symmetry; the threefold rhombohedral lattice,
for example, is such a stacking of sixfold hexagonal plane
lattices.

The staggered lattice with n-fold symmetry (n =p', p
prime) repeats every p layers and so includes the vector
pz but not z itself. A vector connecting neighboring lay-
ers in the stacking is z+u, where the horizontal shift a
between layers is given (up to an arbitrary horizontal lat-
tice vector) by'

3The three icosahedral lattices are derived from the present
point of view by Rokhsar, Mermin, and Wright (1987); the
icosahedral space groups are derived in Rokhsar, Wright, and
Mermin (1988b).

In the crystallographic case %=4, there is a restriction on
the magnitude of z to avoid accidental cubic symmetry.

' Mermin, Rabson, Rokhsar, and Wright (1990) show that, for
given N, all possible staggered stackings differ only by scale fac-
tors and rotations.

~6The reader may easily confirm that this gives the right shift
for the rhombohedral (N=6) and centered tetragonal (N=4)
lattices. The magnitude of z is again arbitrary except that in
the crystallographic cases, there are restrictions to prevent ac-
cidental cubic symmetry.

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991
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We shall always treat the three-d. imensional axial lat-
tices as generated primitively by horizontal vectors (cy-
clotomic integers) and a single out-of-plane vector, z
(vertical lattice) or z+a (staggered lattice).

Table I summarizes the basic facts about standard axi-
al lattices.

TABLE II. Symbols for point-group elements. We shall take
every axial point group to be generated by at most three of
these operations.

e identity

r n-fold rotation
r n-fold rotoinversion (r' = ir)I vertical mirror including n-fold axis
h horizontal mirror perpendicular to n-fold axis

d, dihedral axis perpendicular to n-fold axis

B. The axial point groups and their
generators

In constructing the space groups we shall make essen-
tial use of the fact that every point-group operation can
be expressed as a product of powers of a small number
(three, in the most complicated case) of group generators,
a judicious choice of which can simplify the task consid-
erably. In this subsection we therefore organize the axial
point groups —three-dimensional point groups with a
unique axis of highest symmetry at least threefold—
according to their generating elements, giving the partic-
ular choices of generators we shall use throughout the
paper, together with the relations among the generators
that determine the group multiplication tables. Nothing
foreign to conventional crystallography appears in this
subsection, so knowledgeable readers Inight wish to skip
it except to glance at Table III to note our particular
choice of point-group generators.

We shall take each point group G to be generated by at
most three of the following operations: an n-fold rota-
tion r, an n-fold rotoinversion v =ir (where i is the three-
dimensional inversion), a vertical mirror m whose invari-
ant plane includes the n-fold axis, a horizontal mirror h
whose plane is perpendicular to the n-fold axis, and a
twofold (dihedral) axis d perpendicular to the n-fold axis.
We list these elements in Table II. We follow the con-
vention of the International tables (International Union
of Crystallography, 1987) by using the rotoinversion
(rather than the rotomirror) as a generator. '

We now enumerate the axial point groups according to
the elements from Table II that generate them, listing the
generating relations and remarking on other features that
will later prove useful. Although the particular choices
of generators that follow are not unique, we shall adhere

A major advantage of the International scheme persists in
the quasicrystallographic case: when n is an odd prime power
I,'the only case where the problem arises) the International
nomenclature provides a simple way to determine on which of
two possible types of lattice a given point group can exist.
Every n-fold point group is compatible with both the n-fold
staggered lattice and the vertical 2n-fold lattice, while every
2n-fold point group is compatible only with the vertical 2n-fold
lattice. (In the SchonAies scheme some n-fold groups are com-
patible only with the 2n-fold lattice, and one 2n-fold group is
compatible with the n-fold lattice. )

to them throughout the remainder of the paper: whenev-
er we refer to the generators of a point group we shall al-
ways mean one of the seven sets that follow.

(r): The n-fold rotation r generates the point group
called n in International notation; the generating relation
is r"=e.

(r): The n-fold rotoinversion r generates the point
group n. If n is odd, r is the inversion, and the generat-
ing relation is r "=e. When n is even, the inversion is
not present, and the generating relation is r "=e. When
n is twice odd, the group includes the horizontal mirror

—n/2

( r, h ): We may add the horizontal mirror h to the
group generated by the rotation r to get the group called
—" or n, /m when n is even. When n is odd, the Interna-
tional convention is to regard the group generated by r
and h as the group 2n generated by the 2n-fold rotoinver-
sion alone, as noted in the preceding case. ' (Thus one
regards 3/m as 6. ) The generating relations are
r ' =h 2 =e and rh =hr.

To each of these three groups, we may add vertical mir-
rors or dihedral axes.

(r, m): The group generated by r and a vertical mirror
m is called n —or nm, if n is odd, and n2m if n is even.
This group also contains the dihedral axis d =rm, so
(r, d) generates the same group, and so does (m, d). As
noted above, when n is twice odd, r" is the horizontal
mirror h, so the dihedral axes lie in the planes of the vert-
ical mirrors. When n is not twice odd, the planes of the
vertical mirrors interleave the dihedral axes. To the gen-
erating relation for n, we add m =(rm) =e.

We can add to the group generated by r either d or m,
but not both, without introducing h.

8Warning: when n is odd the n-fold rotoinversion —the prod-
uct of an n-fold rotation with the inversion —is of group-
theoretic order 2n, as noted above; it should not thereby be con-
fused with the 2n-fold rotoinversion, which is also of group-
theoretic order 2n.

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991
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TABLE III. The three-dimensional axial point groups. %'e list here the point-group generators we

shall use throughout the paper and a complete set of independent generating relations for each point

group. %henever we subsequently refer to the generators of a point group, we shall mean the particu-

lar choice of generators specified here. The group operations are defined in Table II. Our choice of r as

a generator agrees with the International scheme, in which there are seven axial point groups for even

rotational order n and five for odd. (The SchonAies scheme uses the rotomirror r =br rather than the

rotoinversion r as a generator. The International scheme is preferable because it incorporates naturally

the compatibility of point groups with certain lattices, as noted in footnote 17).

generators generating relations
International

(Hermann-
Mauguin)

8chon8ies

r2" = e

n evea

A 01(i

S„n twice even
C I, n twice odd

2

S2„or C„; n odd

m =r = rm

m =r = rm =e -2
n od(i A —= nm

m

D g n twice even
D p, n twice odd

2
A G81 D A OM

r" =m = rm =e

rn =d2=(rd) =e
n even

n 081

r, h
(n even only)

z, h, m
(n even only)

rn I 2

rh=hr

r" =h2 =m~ =(rm) =e;2

rh= hr
mh = hm

n22 = n mmm
mmm

(r, d): When n is odd, the dihedral axes d and d'=rd
are conjugate, ' and the group generated by r and d is
called n2. When n is even, d and d' are not conjugate,
and the group is called n22. The generating relations are
r"=d =(rd) =e.

(r, m ): When n is odd, the vertical mirrors m and
m'=rm are conjugate and the group is called nm. When
n is even, m and m' are not conjugate, and the group is
called nmm. The generating relations are
r"=m =(rm) =e.

(r, m, h): Either d or m added to the group generated

by (r, h) implies the other; the resulting group is called
—"—' —' or n/mmm. As noted for the generators (r, h), this

case arises only when n is even. When n is odd, the Inter-
national convention adds d or m to the group generated
by the 2n-fold rotoinversion, yielding the group 2n2m.
The generating relations are just those for (r, m) and

( r, h ) with the additional fact that h commutes with m.

Tables III summarizes the axial point groups, the gen-
erators we shall be using, the generating relations, and
the International (and Schonflies) nomenclature.

%"hen we come to consider extinctions (Sec. VI) we shall
need to examine one element from each conjugacy class of the
point group, so we pause to remark that if n is odd then all
dihedral axes d are conjugate in every point group, as are all
vertical mirrors m. If n is even, however, then d'=rd is a
member of a second family of conjugate axes that are not conju-
gate to d (and similarly for m'=rm and m). The conjugacy for
odd n is easily established analytically. The generating relations
d =(rd) =e imply r d =dr ", so when n =2k+1, multiplying
by r +' on the left gives the relation d =r (rd)r, which
expresses the conjugacy of d and rd.

C. Space groups and point groups in reciprocal space

We review here the theory and terminology of Rokh-
sar, Wright, and Mermin (1988a, "RWM"), who general-
ize the reciprocal-space derivation of crystallographic
space groups by Bienenstock and Ewald (1962) to include
quasicrystals as well.

Two materials with density Fourier coefficients p(k)
and p'(k) have identical translationally invariant macro-
scopic properties if

p'(k~)p'(k2)p'(k3) =p(ki)p(k2)p(k, )
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for all sets of reciprocal-lattice vectors with vanishing
sums gk, . =0. We may equivalently write this condition
as

e 2nir(k) (2.4)

p(gk)=e ' p(k) . (2.5)

The gauge functions +g are called phase functions.
Equation (2.5) defines phase functions only up to integers;
we use the symbol=to indicate equality modulo an in-
teger.

Two sets of phase functions N and +' describing
gauge-equivalent densities p and p' (2.4) must be related
by

@' (k) =—4 (k)+y((g —1)k) (2.6)

where g, called a gauge function, is hnear modulo an in-
teger on the reciprocal lattice. Two densities so related
by a gauge function are called gauge equivalent and cor-
respond to macroscopically indistinguishable systems.

The point group 6 of a material with density p is the
set of operations g that do not change any of the macro-
scopic properties of a sample. These are just the opera-
tions for which there is a gauge function linking p(gk) to
p(k) for every lattice vector:

and the axial space groups as traditionally defined.
In a small number of the axial quasicrystallographic

cases, there can be two gauge-inequivalent families of
phase functions that describe the same structure, viewed
with respect to the two alternative families of lattice-
generating stars described in Sec. II.A. 1; those two fami-
lies should clearly be viewed as constituting only a single
space group. A closely related identification of gauge-
inequivalent families occurs in the icosahedral case
(Rokhsar, Wright, and Mermin, 1988b), where the ambi-
guity that results in the identification of gauge-
inequivalent families of phase functions stems not from a
nontrivial reorientation of the lattice-generating vectors
but from a change in their scale at fixed orientation. (In
the axial case the change in orientation is accompanied
by a change in scale as well. ) Gauge-inequivalent families
of phase functions that have been further identified in
this way are called scaIe equivalent.

The quasicrystallographic space groups are the scale-
equivalent families of gauge-equivalent phase functions.
The question of scale equivalence, which never arises in
the crystallographic case, is easily settled (although also
easily overlooked). The main part of determining the
space groups lies in establishing the distinct classes of
gauge-equivalent phase functions.

A space group is called symmorphic if there is a gauge
in which all its phase functions vanish.

for every g in the point group and every k in the lattice; '

we call such sets of phase functions gauge equivalent and
Eq. (2.6) a gauge transformation. Note that since
g(0) —=0, if gk=k then the value of @ (k) is gauge in-
variant. This simple fact will be of critical importance in
enabling us to establish the inequivalence of distinct
space groups. It also plays a crucial role in the treatment
of extinctions, since Eq. (2.5) requires p(k) to vanish if
gk=k and 4& (k)%0.

All the symmetry-determined properties of a material
reside in the phase functions defined by Eq. (2.5), but a
gauge transformation changes none of these properties.
%'e are therefore interested in classifying families of
gauge-equivalent phase functions. We say that the
members of each family of gauge-equivalent phase func-
tions belong to the same space group. In the crystallo-
graphic case there is a one-to-one correspondence be-
tween the families of gauge-equivalent phase functions

2oBy linearity we mean only that y(ki kz) =p{k,) —y(k2)
(modulo 1) for all reciprocal lattice vectors ki and k2. In ordi-

nary crystals, the most general gauge function, y(k) =a.k, cor-
responds to a uniform translation by a. A general quasicrystal-

lographic change of gauge corresponds to a real-space transla-

tion and a phason shift.
2~By (g —1)k we mean, of course, the lattice vector gk —k.

D. Determination of the phase functions (overview)

The phase functions for the point-group generators en-
tirely determine the phase functions for the whole point
group, G. This follows from the trivial fact that
p((fg)k) =p(f (gk)) for any f and g in G. It then follows
from the definition (2.5) of the phase function that

exp[27ri4&fs(k) ]p(k) = exp[2iriC&f (gk) ]p(gk)

=exp[2iril&f(gk) ]

Xexp[2iriC (k)]p(k) . (2.7)

2 See Bienenstock and Ewald (1962) and the Appendix to Rab-
son, Ho, and Mermin (1988), as well as RWM. This will also
emerge explicitly from our computations below. In the more
general crystallographic cases (e.g. , cubic, orthorhombic) there
can be a further identification of gauge-inequivalent classes
analogous to that described below for axial quasicrystals. This
will be illustrated in the companion paper.

For the axial space groups we discuss here it arises only for
the two entries of "3" in Table V (which would have been 4 if
scale equivalence had not been taken into account), as discussed
below in Sec. IV.B.1 and as noted in the caption of Table XII.
This was first pointed out for dodecagonal quasicrystals by
Gahler (1988, 1990).
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Therefore the phase functions Nf and N determine

4fg up to an integer:

Nf (k)=—@f(gk)+@ (k) . (2.8)

We shall refer to Eq. (2.8) as the group compatibility con-
dition. As a special case of (2.8) [or directly from the
definition (2.5)], note that

N, (k) —=0, (2.9)

O=C& (f(1 +f + . . +f' ')k) (f'=e) (2.10)

OI

0—:C&f(gfk)+Cg(fk)+Of(k) —@'s(k) (fgf =g) .

(2.1 1)

Because the phase functions are linear on the lattice,
phase functions at arbitrary lattice vectors can be ex-
pressed as integral linear combinations of phase functions
at a set of vectors that generates the lattice. " It there-
fore sufFices to determine the phase functions only for the
group generators and only at the lattice-generating vec-
tors. This set of phases is restricted only by the applica-
tion of constraints of the form (2.10) or (2.11) evaluated
at each lattice-generating vector. Application of the con-
straints leads to an infinite family of solutions for each
gauge equivalence class, reAecting the freedom to alter
any set of phase functions by an arbitrary gauge transfor-

More precisely, linearity is modulo an integer because phase
functions are defined only to within an integer. We shall not
continually remind the reader of this, understanding phase
function arithmetic always to be conduced modulo an integer.
[We shall, however, distinguish in equations between strict
equality ("="}and equality modulo an integer ("—:").]

where e is the identity operation in G.
Since any element of G can be expressed as a product

of generators, by repeatedly applying the group compati-
bility condition we can express all phase functions in
terms of the phase functions at the generators of 6, of
which there are at most three. There are, however, many
different ways of expressing an element of 6 as a product
of generators. The group generating relations can be
viewed as a set of identities satisfied by the generators
that insures the identity of all such expressions. If they
are to yield unambiguous phase functions for every ele-
ment of 6, the phase functions at the generators must
therefore be constrained by the application of the group
compatibility condition (2.8) to all of the group generat-
ing relations.

The generating relations in Table III can be cast into
just two general forms: either they relate some power of a
single group generator to the identity, f'=e, or they re-
late two group generators f and g by fgf =g. Corre-
sponding to these two forms, the group compatibility
condition (2.8) requires either

mation. The analysis is greatly simplified by not carrying
along this considerable degeneracy, seeking instead a
unique representative of each gauge equivalence class, by
introducing a series of particular gauges (summarized in
the Appendix) that pin down the values of the phase
functions. We do this in stages, first (Sec. III) introduc-
ing gauges that fix the values of the phase functions in
the z=O plane and then tSecs. IV (vertical lattices) and V
(staggered lattices)] introducing gauges that further
determine the values of the phase functions at the single
out-of-plane lattice-generating vector.

In this way we arrive at a finite number of choices for
the phase functions. We note that any two of these
choices disagree in some of their gauge-invariant values,
which insures that each choice provides a single
representative for a distinct class of gauge-equivalent
phase functions.

This procedure thus establishes for the axial space
groups by explicit computation that two phases functions
that agree in all their gauge-invariant values are gauge
equivalent. (The converse is trivial. )

E. Compatibility of a quasicrystal's
point groop with its lattice

The point group (about any lattice point) of the verti-
cal lattice with n-fold symmetry, and of the staggered
lattices with n =2', is n/mmm. The point group of the
staggered lattices with n an odd prime power is n2/I
(Mermin, Rabson, Rokhsar, and Wright, 1990).

Since the point group of a quasicrystal is the point
group of all its macroscopic translationally invariant
properties, the point group of a quasicrystal must be a
subgroup of the point group of the lattice determined by
its diffraction pattern. We also adopt the crystallograph-
ic rule that the point group of a vertical or staggered lat-
tice should be no larger than required to accommodate
the point group of the quasicrystal with that stacking.

For an alternative proof of this result for axial space groups
that does not rely on explicit computation, see Rabson, Cornell
Ph.D. thesis (1991). For a few nonaxial crystallographic cases,
the result need not hold, as will be noted in the companion pa-
per.

Recall that the rotational symmetry n of the vertical stack-
ing is the same as the rotational symmetry N of its horizontal
sublattice, which is always even.

In the crystallographic case there is nothing to prevent a lat-
tice from distorting to the minimum symmetry compatible with
that of the unit cell. For example, a square lattice decorated at
its vertices with scalene triangles would distort to a skew lattice.
In a quasicrystal there is no real-space unit cell, and the
grounds for imposing a similar restriction are not well estab-
lished. We do not pursue the point further here, but warn the
reader that it has not been resolved.
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The two rules together require that: (1) If a quasicrystal
with a point group of even order n has a vertical lattice,
the rotational symmetry of the lattice is also n-fold; (2) If
a quasicrystal with a point group of odd order n has a
vertical lattice, the rotational symmetry of the lattice is
2n fo-ld; (3) A quasicrystal with a point group of order n

can have a staggered lattice only if n is a prime power
equal to the rotational order of the staggered lattice. The
last column of Table I lists the point groups of quasicrys-
tals compatible with each type of lattice.

When discussing point groups of rotational order n, we
shall always use the star of nth roots of unity g~ to gen-
erate the lattice. Henceforth, we drop the subscript and
write g for g„. By v we shall mean the rank of the hor-
izontal sublattice, so the rank of the full three-
dimensional lattice is always v+ 1.

gauge function

j=O, . . . , v —1. (3.1)

n =(1—g)(1 —g ) . (1—g" ') . (3.2)

Since r/3=$13 for any vector I3 in the z=O plane, the
gauge transformation (2.6) determined by Eq. (3.1)
changes &P„(gj) by

(By linearity, this form extends to j =0, . . . , n —1. )

Since N, is defined only at lattice vectors, it is important
to note that nP/(I —g) is indeed a lattice vector, as a
consequence of the identity '

III. THE PHASES IN THE z'=0 PLANE (3.3)

We show below for both primitive and staggered lat-
tices that if the rotational order n of the 1attice is not a
power of 2, then we can choose a gauge in which all
phase functions vanish in the z=O plane. When n is a
power of 2 we can choose a gauge in which all phase
functions vanish in the z=O plane, with two possible ex-
ceptions: (a) If the horizontal mirror h is a generator of
6, then it is also possible for the associated phase func-
tion to be nonzero, with @h(g ) = —,

' (for all j); (b) If a
vertical mirror I or a dihedral axis d is a generator of 6,
then it is also possible for the associated phase functions
to be nonzero with 4&d(gj) = —,

' or 4& (g~) —= —,'. If the gen-

erators of G include both h and m (as happens only when
G is n /mmm), then both possibilities can be indepen-
dently realized, leading to four gauge-inequivalent
choices of phase functions in the z=O plane.

The steps leading to these conclusions are simple but
require breaking the problem up into many diferent
cases. As an aid to the reader, we give in Fig. 2 a dia-
gram of the logical structure of Sec. III.

X(g )=—4, J'=0, . . . , v —1
~

~ ~ ~

n " I+/ (3.4)

(which form also extends to j=0, . . . , n —1). The fact
that ngj/(I+/) is a lattice vector follows directly from
n /( I+()=n (1—g)/(I —

g ) in view of the identity (3.2).
Since the rotoinversion gives rP= —gP for any P in the
z=O plane, the gauge transformation given by Eq. (3.4)
changes 4 (g~) by

~ 1=y(( —
g
—1)g'):——@-„(—n g')—:—+-„(g') .

(3.5)

Thus N„vanishes in this gauge for all lattice-generating
vectors in the z=O plane and hence for the entire plane.

Similarly, if r is a generator of G, we can make N (g~)

vanish with a gauge transformation given by the gauge
function

A. Making N, and N-, vanish in the &=0 plane

If r is a generator of G, we can make C&, (g') vanish in
the z=O plane with a gauge transformation given by the

Thus N vanishes in this gauge throughout the z=O
plane.

We next investigate the phase functions for the remain-
ing generators of G in the gauges in which N„(P) or

~8Many of the results that follow were established by Rokhsar,
Wright, and Mermin (RWM, 1988a) in the course of classifying
the two-dimensional space groups on standard lattices. We
rederive them here in a somewhat simpler way from the slightly
different three-dimensional perspective.

For vertical lattices, the in-plane phases are completely in-

dependent of the out-of-plane phases, and all of these possibili-
ties are available. For staggered lattices, the in-plane and out-
of-plane phases are not always independent, and we shall find
further restrictions on the in-plane phases.

Because they are linear, gauge functions are defined by their
values on a set of vectors that generate the lattice. Throughout
this section we require the value of the gauge function only in
the z=O plane, so there is no need to specify y(z) for the verti-
cally stacked lattices or y(z+u) for the staggered lattices. We
shall examine the consequences of this additional gauge degree
of freedom in the sections that follow.
3'This follows from factoring z —1 from both sides of the poly-

nomial identity z"—1=(z —1)(z —g) (z —P '), and then
setting z to 1.
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@„(g ) vanishes. Note that if a generator is either a verti-
cal mirror m or a dihedral axis d, then it does not matter
which particular such mirror or dihedral axis we exam-
ine. Consider, for example, the case in which r and m are
generators. Any other vertical mirror m' is related to m
by m '= r "m, so an application of the group compatibility
condition (2.8) gives 4& (P)—=@ &(mgj)+4& (P). But if

vanishes in the z=0 plane, then Eq. (2.10) gives
@ ~(mP)=—C&„{(1+r+ . +r" ')mgJ)=0, and there-
fore N —=N ~ in the z=O plane. The same argument can
be given when the rotoinversion r is a generator instead
of the rotation r or when a dihedral axis d is the group
generator instead of a vertical mirror m.

We now consider separately the cases in which the ro-
tation r or the rotoinversion r is a generator of G.

B. The point groups with r among the
generators

1. The horizontal mirror

When r is a generator, G may also have the horizontal
mirror h as a generator. Since h leaves every vector in
the z=O plane invariant, the generating relation h =e
leads via Eq. (2.10) to

k in horizontal plane

gauge (3.1) gauge (3.4)

(B.2)

kg=0 IAQM n even

Does g(g~) = g& for some j?

Yes

(3.is) (a.2)
(3.2i) (c)

@g=O, ng2'
Og(g~)—:~~, n = 2'

FIG. 2. The logical structure of Sec. III. Conclusions are in boxes with heavy borders. If an arrow passes through a box marked
"gauge, "a gauge (specified by the accompanying equation number) is required to reach the conclusion to which the arrow points.
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2@~(P)=0 . (3.6) g(g') = 1/p (3.13)

Because we are in a gauge with C&„(P)=0, the generating
relation hrh =r gives via Eq. (2.11) the further condition
@I,(P)—=@},(P+'), or, equivalently,

for the entire star. We then have

&@ (g )—:g((g —1)g )=—g( —2g )—= —2/p . (3.14)

Note, finally, that if n is divisible by a, then

go+ gn/a+ g2n/a+. . . +g(a —}}n/a 0

(3.7)

(3.8)

If 2 does not divide p, repeated application of this gauge
transformation can change the phase 4& (P) by an arbi-
trary multiple of 1/p. Note, finally, that the gauge trans-
formation does not change the value of 4&„(P)—=0, since

which, with Eq. (3.7) and the linearity of phase functions,
gives

a@I,(gj)—:0 . (3.9)

With Eq. (3.6) this requires C&1, (g~) =—0 if n has any prime
factors a other than 2.

We have thus established that the tI&},(P) vanish unless
n is a power of 2, in which case they can also all have the
value —.

2. Vertical mirrors or dihedral axes

In addition to (or instead of) h there can be a generator
g of G that acts as a mirror line in the z=0 plane (either a
vertical mirror m or a dihedral axis d). Since we are in a
gauge with &b„(gj)—:0, the generating relation rgr =g
gives via Eq. (2.11) the further condition
@g(gj+')=4&g(P), or

+'s(g')—:C'g(g ) .

As in the case of C&}, this condition with the identity (3.8)
requires that if a divides n then

ass(g~) =—0 . (3.1 1)

If n has two distinct prime factors, it follows immediately
that C, (gj) —=0.

Furthermore, if g is a mirror or dihedral axis that
leaves one of the gj invariant, then the generating relation

g =e requires 2C& (gj)—=0, which, with Eq. (3.11), re-
quires @g(P) to vanish unless n is a power of 2, when it
can also have the value —,'.

There remains the case in which g is a mirror or
dihedral axis that leaves no gj invariant. We show that if
n is a power of an odd prime p, then there is a gauge in
which @s(P)—:0, just as in the other case. It suKces to
consider the mirror or dihedral axis that contains the
imaginary axis, satisfying

(3.15)

Thus, for either type of mirror or dihedral axis, we can
take 4s(P)—=0 unless n =2', when it can also have the
value —,'.

C. The point groups with r among the generators

When r is a generator of G, the only other generator
we have to consider is a vertical mirror I (see Table III).
The generating relation I =rmr and the vanishing of
N (g~) lead via Eq. (2.11) to

c (g')=—@ (~g')—:—c' (p+') . (3.16)

When n is odd, repeated application of this condition
gives

(g )= —c' (g')=+@ (g )—: = —&& (g ),
(3.17)

leading to the requirement

(P)—=&5 (g ):—0 or —,
' (3.18)

If n has two distinct odd prime factors a and b, we can
apply @ to the identity (3.8), noting that only even
powers of g appear there, to conclude from Eq. (3.19)
that both aC} (g~)—=0 and b@ (g~)—:0, which again re-
quires @ (P)—:0. This leaves only the case n =2p' and
the condition

Since, however, g +/+ +g" '=0, we also have
nC& (g )=0, which with n odd is consistent only with
the alternative @ (g )

—=0.
It remains to consider the case of even n, where repeat-

ed application of Eq. (3.16) gives

(3.19)

(3.12)
pC& (g~) —=0 . (3.20)

Equation (3.11) with a =p requires that 4& (P)—:c/p for
some integer c. Consider now the gauge function
g(g~)=1/p for the lattice generators gj,j =0, . . . , v —1.
Since n =p', each of the remaining g~ can be expressed
[using Eq. (3.8) with a =p] as minus the sum of (p —1)
of the generating vectors. For j =v, . . . , n —1, we then
have g(gj) —= (1—p)g(g ) = 1/p, and therefore

As in the corresponding case with r a generator, if I is
a mirror that leaves one of the gj invariant, then we must
also have 2C& (g~)=—0, which with Eq. (3.20) requires

Since hg'=g', the C&},{g') are gauge invariant and therefore
wi11 also be unshifted.
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(g~) =0 unless @=2. If m leaves no g~ invariant, then
it again suftices to consider m to be the mirror that takes
P into —g J, and we can again eliminate the phases

(P) —= ( —1)~c/p compatible with Eq. (3.20) by a gauge
transformation, unless p=2. We choose

lations m =e and r"=e constrain these phases:

0—= 4& &(z) —=4 (mz)+4& (z) =2@ (z),

or

(4.1)

y(g')=( —1)'/p . (3.21)
(z)—:0, —,'; (4.2)

As in the preceding case this can be taken to hold for the
entire symmetric star.

We now have
0—=@ „(z)—:C&„((1+r+ +r" )z) —=n4„( z), (4.3)

(g')—:g((m —1)P)—:y( —g ' —g')

=——( —1)'2/p . (3.22)
14„(z)—:0, —,. . . ,'n' (4.4)

&@„(g')=y((r —1)g') =y( —P+' —g') —=0 . (3.23)

IV. THE SPACE GROUPS FOR VERTICAL
LATTICES

The vertically stacked lattices are given by adding to
the generators of the z=O sublattice the vector z perpen-
dicular to the plane. The group compatibility conditions
(2.8)—(2.11) applied to the generating relations of the
point group determine the distinct classes of phase func-
tions. Since every element g of the point group either
leaves z invariant or takes it into —z, these constraints
on the additional phases 4 (z) do not couple them back
to the in-plane phases Cis(gj) determined earlier. We
may therefore independently determine the phases Ng(z)
associated with the out-of-plane lattice-generating vector

34

A. Determination of the phase functions

1. The gauge-invariant phases @ (z) and @„(z)

The operations m and r leave z invariant, so the phases
(z) and C&„(z) are gauge invariant. The generating re-

Thus, as before, unless p=2, by repeated application of
this gauge transformation we can change the phase

(P) by an arbitrary multiple of (
—1)~/p. The gauge

transformation given by Eq. (3.21) does not, however,
alter the values 4& (P)=0, since

We shall see below that the presence in the point group
of a horizontal or vertical mirror further restricts @„(z).

2. Gauge-transforming away the phase
@g(z) when gz= —z

In addition to I and r, each of the seven point groups
in Table III may also have among its generators at most
one of the operations g =r, d, or h that take z into —z.
Since we have earlier specified the gauge function y only
in the z =0 plane, we may still choose a value for y( z )

without altering the phase functions in that plane. We
exploit this additional gauge freedom to make C&g (z) van-
ish for g = r, d, or h by taking

y(z) = -,'@g(z), (4.5)

3. General form for the remaining
generating relations

Since the generating relations r "=e (or r "=e), d =e,
or h =e impose no further constraint on a phase func-
tion that already vanishes, the only additional generating
relations we need consider are those involving two dis-
tinct generators f and g. As noted above, these can al-
ways be cast in the form fgf =g, so that the correspond-
ing group compatibility conditions take the previously
derived form

since we then have

A@,(z)—:y((g —1)z)=y( —2z)—:—2y(z) = —C, (z) .

(4.6)

0:—@f(gfz)+ 4& (fz) +Nf (z) —C (z) . (2.11)

In this case take as the independent vectors at which y is
defined g ',j=0. v —l. The extension to the remaining even
powers of g is exactly as in the previous case, and since the odd
powers of g are just the negatives of even powers, the rest of Eq.
(3.21) follows from linearity.

In contrast, when the lattice is staggered, the compatibility
conditions couple the in-plane phases &5g(P) to those at the
out-of-plane generating vector, +g(z+ a).

Since every element of the point group either leaves z in-
variant or takes it into —z, the particular realizations of
Eq. (2.11) are quite simple.

4. Restriction of N, (z)
in the presence of mirrors

The relation (2.11) further constrains the form (4.4) for
C&„(z) if 6 also contains either the vertical mirror m or
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712 Rabson et al. : Space groups of axial crystals and quasicrystals

TABLE IV. The out-of-plane gauge-invariant phases (vertical stacking}. %Then n&2', these are the
only nontrivial gauge-invariant phases. [When n =2', one can also have NI, (P)—:0, 2, @d(P)—:0, 2, and

e (gj) =0, —,'.]

1. m present: 4 (z) = j/2, j =0, 1 (n2m, n2/m, nmm, nm, n/mmm)

2. r present:

a) m and h absent: 4„(z) = j/n, j = 0, . . . , n —1 (n, n22, n2)

b) m or h present anti n even: 4„(z) = j/2, j = 0, 1 m $

c) m present and n odd: C'„(z) = 0 (nm)

the horizontal mirror h. Since z is invariant under both r
and m, Eq. (2.11) applied to the generating relation
rmr =I immediately gives

The nonzero out-of-plane phases for each of the seven
point groups are summarized for vertical lattices in Table
IV.

2C&„(z)=0 . (4.7)

Applying Eq. (2.11) to the generating relation hrh =r,
and noting that h reverses the sign of z, leads to the same
condition.

If n is even, Eq. (4.7) reduces the range of possibilities
allowed by (4.4) to two:

@„(z)—= 0 or —,', n even, m or h generators .

If n is odd (which is never the case when h is taken as a
generator), then all possibilities are excluded except for

@„(z)—=0, n odd, m a generator .

B. Determination of the space groups
with vertical lattices

The number of space groups for each point group is
not the same as the number of distinct phase functions
Ng(z) listed in Table IV for two reasons. The first stems
from the question of whether or not there is a unique
orientation of the point group with respect to the lattice.
The second (and simpler) reason is that when (and only
when) n is a power of 2, in addition to the phases at z we
have just determined, there can be gauge-invariant
nonzero phases in the z=O plane, as noted in Sec. III.

5. Absence of additional constraints on
the phase functions

1. The orientation of m or d with
respect to the lattice

The above analysis exhausts the generating relations
for four of the seven point groups [n, n, nmm (or nm),
and n/m J; we next show that the remaining generating
relations impose no further constraints on the other three
point groups (see Table III):

(1) For the group n2m (or n2/m) generated by the
pair ( r, m ), there is an additional generating relation
rmr =m. Since 4& (z):—0, the additional group compati-
bility condition (2.11) becomes 0—:—24& (z), which Eq.
(4.2) already guarantees.

(2) For n22 (or n2) generated by the pair (r, d), there is
an additional relation rdr =d. Since we work in a gauge
with @d( z ) =0, the additional compatibility condition be-
comes @,( —z)+ @„(z)=—0, which linearity insures.

(3) We can view n/mmm generated by (r, m, h) as
given by adding h to the pair (r, m). There is then an ad-
ditional relation hmh =m. Since 4&(z):—0, the addition-
al compatibility condition becomes @ (

—z) —@ (z) —=0,
which Eq. (4.2) already guarantees.

a. N twice a prime power

If the rotational symmetry X of the lattice is twice a
prime power (i.e., when the rotational symmetry of the
point group n is either a prime power or twice a prime
power), then as noted in Sec. II.A. 1, the vectors of any
generating star must lie along the cyclotomic integers g, .
A group element I or d may be oriented either along one
of these directions or between two adjacent ones.
When n is an odd prime power, this choice doubles the
number of space groups for the point groups with n verti-
cal mirrors (nm), n dihedral axes (n2), and n mirrors in-
terleaved with n dihedral axes (n2/m). When n is either
twice an odd prime power or a power of 2, the doubling

As noted earlier, when we say the vertical mirror rn lies
along a horizontal direction we mean the direction is in the in-
variant plane of the mirror.
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TABLE V. The space groups for vertically stacked lattices. We summarize here the complete
classification of axial space groups on vertically stacked lattices. The lattice is n-fold symmetric if the
rotational order n of the point group is even and 2n-fold symmetric if n is odd. By p we mean any
prime (including 2), while p, stands for any odd prime. The appropriate column on the right gives the
number of space groups. The ticks mark the possible nonzero gauge-invariant out-of-plane phases at z.
(The parameter j can assume any integral value between 0 and n —1.) The number of space groups is
simply the number of choices of out-of-plane phases, with the following exceptions (described in detail
in Secs. IV.B.1 and 2): (1) When neither n nor n /2 is a prime power, the two entries of 3 are down from
4 because the orientation of two families of vertical mirrors with respect to the lattice cannot be dis-
tinguished, resulting in the scale equivalence of two gauge-inequivalent choices of phases for the two
families; (2) when n or n/2 is a prime power (odd or even), the two orientations can be distinguished,
and some entries are doubled; (3) when n is a power of 2, there is an additional doubling if the genera-
tors include either m or h, and a quadrupling if they include both, because N (g ) and independently
4&h (P) can be either 0 or —'.

point
generators groups

parity
ofn

either

even

nonzero
out-of-plane phases

numbers of
space groups

C (z)
= 0 1/~

4„(z) 4„(z) n g p', n = p'. ,= i/„=o, t/, ng2p n=2p'.

088

either

nmm even

o(iB

n22 even

even

r, h, rn even 16

cannot occur for nmm, n22, or n /mmm, because mirrors
or dihedral axes necessarily lie along both families of
directions; the doubling occurs only for n 2m, which can
still discriminate between the two families of directions,
either because it interleaves mirrors and dihedral axes
(when n is twice even) or because its n mirrors and n
dihedral axes lie along the same family of directions
(when n is twice odd).

b. N not twicea prime power

two possible orientations of mirrors or dihedral axes, and
no doubling can occur. There can, however, be a reduc-
tion in the apparent number of space groups for even n
and the point groups nmrn and n/mmm. This is because
these groups possess two distinct families of nonconju-
gate vertical mirrors, m and m ' = rm, oriented along the
two possible sets of directions for a star of primitive gen-
erating vectors for the horizontal sublattice. We are free
to take a mirror from either family as the group genera-
tor. The phase functions for the two are related by the
group compatibility condition (2.8):

When N is not twice a prime power (i.e., when neither
n nor n/2 is a prime power), the lattice admits a second
set of generating stars whose vectors lie in the directions
between those of the original star, as described in Sec.
II.A. 1. There is then no way to distinguish between the

A perusal of Table III confirms that this exhausts all cases.

.(z) =N„(z)—=@„(mz)+N (z) —=C&„(z)+@ (z) .

(4.10)

Therefore, when 4„(z)—:—,', the two choices of phase
(z)=0, —' can equally well be viewed as 4 (z)= —,', 0.

Since the lattice-generating stars provide no basis for dis-
tinguishing the two types of mirrors (as they do when
n =2'), these two choices of phase correspond to a single
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space group, and the number of space groups when n is
even and not a prime power drops from four to three for
the point groups nmm and n/mmm. (This reduction
first occurs at n = 12.)

2. The nonzero phases in the z=O plane
when n =2'

Therefore only in the case of the point group n 2m with
n =2' is there an issue of how the point group is to be
oriented in the staggered lattice. In all other cases we
may take a generating dihedral axis d to lie along g and
a generating vertical mirror rn to lie in the plane of z+a.

A. Constraints on the out-of-plane phases

As we found in Sec. III, when (and only when) n =2',
if the horizontal mirror h is present, the phases &1&h(g~)

can either all be zero or all be —,'; independently of this, if
the point group has a generator m or d (either of which
reduces to a mirror line in the z=0 plane), then the
phases associated with that generator, C (g~) or &bd(g~),

can also either all be zero or all be —,'.
Consequently when n =2' there is a doubling of the

number of space groups for those point groups (n/m,
n22, n2m, and nmm) that have just one of h, m, or d as a
generator, and a quadrupling for the point group
(n /mmm) that has both h and m.

Table V collects all these results together and specifies
the space groups for the vertically stacked lattices.

V. THE SPACE GROUPS
FOR STAGGERED LATTICES

The rotational symmetry n of a staggered lattice is
necessarily a power of a prime number, n =p'. These are
precisely the values of n for which the vectors of a star
generating the horizontal sublattice lie along a unique set
of directions. Except when n =2' and the point group is
n 2m, however, there is no freedom in the orientation of
mirrors or dihedral axes with respect to this unique set of
directions, for when n is an odd prime power the shift
vector a [Eq. (2.2)], which lies between adjacent vectors
in a generating star, breaks the full symmetry of the vert-
ical stacking. As a result, vertical mirror planes are re-
quired to lie in directions between star vectors, and
dihedral axes can lie only along the directions of star vec-
tors (Mermin, Rabson, Rokhsar, and Wright, 1990).
Only when n is a power of 2 is it also possible to have
things the other way around, with dihedral axes in direc-
tions between star vectors and mirrors along such direc-
tions. When n =2', however, every point group that has
a faII11ly of II111101s (ol dihedral axes) 111 011e of tile possi-
ble orientations also has a second family of mirrors (or
dihedral axes) in the other, with the sole exception of the
point group r72m, which has a single family of mirrors in-
terleaved with a single family of dihedral axes.

1. The gauge-invariant phase @ (z+a)
for m along a

Except for the one case noted above, the generator m
can be chosen to leave z+cz invariant, so the phase func-
tion 4 (z+u) is gauge invariant. The generating rela-
tion I =e then gives

(z+cz) =c/2, c =0, 1 whenever m (z+a)=z+a .

(5.1)

Other group compatibility conditions may further re-
strict Eq. (5.1).

2. The gauge-invariant phase C,(pz)
and the phase C,(z+a)

We show here that @„(z+a)can have only the values
c /n, c =0, 1, . . . , ( n /p ) —1.

The generating relation r"=e gives from the group
compatibility condition (2.10)

0—:4 „( z+ c)I=4„((1 +r +. +r" ')(z+a))

=@,(nz) . (5.2)

Since pz is a lattice vector and is left invariant by r, Eq.
(5.2) gives the gauge-invariant phases

N„(pz)—= , c =0, 1, . . . ,
——1 .n/p' ' ' 'p (5.3)

c c4„(z+a)=——+—,
fl P

c'=0, . . . ,p —1 . (5.4)

If we wish to determine N„at arbitrary 1attice vectors,
we need, in addition, to specify the gauge-dependent
phase C&„(z+a). The stacking repeats after p layers, so
po,'is a vector in the two-dimensional sublattice. Since

vanishes in that sublattice, we have
4, (pz)=C&„(pz+pa) =p4&„(z+a), and therefore

Recall that when n is odd, as it is in staggered lattices except
when n =2', the phrases "between" and "between star vectors"
refer to directions lying between the vectors of the 2n-fold star
consisting of the n-fold star vectors and their negatives, as illus-
trated in Figs. 1(b) and 1(c). (This possibility for confusion does
not exist for "along. ")

%"e now make a further gauge transformation that
shifts C&„(z+a) by —c'/p, thereby allowing us to set c'
to zero. De6ne

C
J Oy 1 y ~ ~ ~ y v 1 e (5.5)

When n =p', each of the remaining gJ in the full star can
be written as minus the sum of p —1 of the powers of g
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appearing in Eq. (5.5). We then have y(g~)—= (1—p)y(g )—:—c'/p for j =v, . . . , n —1. We can
therefore drop the restriction in (5.5):

4. General form for the remaining
generating relations

y(z+a) =0, y(P) =

We now have

c j arbitrary . (5.6)

As noted in the vertical case, all generating relations
between two distinct generators can be put in the form

fgf =g. This gives the group compatibility condition
(2.11), which can also be cast in the form

b C „(z+ a) =y((r —1)(z+a) )

=X (0—1} 1
=X(g )= c'/p— , (5.7)

0=&f((gf +1)(z+a))+Cog((f —1)(z+a)),

(fgf =g) (5 14}

so that Eq. (5.4) can indeed be simplified to the set of
values

B. Determination of the space groups with
staggered lattices

c 7lC&„(z+a)—:—,c =0, . . . , ——1 . (5.8)

The gauge transformation given by Eq. (5.6) does not
alter any of the phases 4 specified in Sec. III in the z=O
plane, for every point-group element g takes g~ into some
other power g", so that

b@,(0') —=X«g —1)P)—=X(k")—X(P)—=0 . (5.9)

Although the values of iI&„(z+a) given by Eq. (5.8) are
not themselves gauge invariant, they imply the distinct
values (5.3) for the gauge-invariant phases 4„(pz) and
are therefore associated with distinct space groups.

We now examine each of the seven point groups. We
always work in the gauges constructed above. If r is a
generator, we take &b„(z+a) to be one of the gauge-
inequivalent choices (5.8), and if r, d, or h is a generator,
we work in a gauge that makes @ (z+a), &Pd(z+a ), or
C&h(z+a) vanish. If m is a generator and leaves z+a in-

variant, 4& (z+a) is determined by the gauge-invariant
relation (5.1). Our task is to determine the additional
constraints on the out-of-plane phases iI& (z+ a ) imposed
by the group compatibility conditions (5.14) and (when

relevant) the conditions coming from generating relations
d =e, h =e, and (in the single case where m does not
leave z+a invariant) m =e.

3. Gauge-transforming away the phase
&bg(z+a) forgz= —z

As noted in the vertical case, we can pick generators of
each point group so that at most one of the operations r,
d, or h that reverse the sign of z is among them. We can
then find a gauge in which the phase 4 (z+a) vanishes
for g =r, d, or h:

Generator: I-, point group: n

Since @„(z+a)=0, there is only one (symmorphic)

space group.

Generators: r, m; point group: n2m (n even), n2/m (n odd)

y(z+a) =
—,'4& (z+a),

g=O in the z =0 plane .

This changes Ns(z+a) by

(5.10)
Since 4& —=0 and r(z+a) = —z —ga, the group compa-

tibility relation (5.14) for the generating relation rmr =m
gives

O=C& ((r —l)(z+a))
b&b (z+a) =y((g —1)(z+a) )

—:y( —2z —2a)+g(ga+a) .

Since go+a is in the z=O plane, where y vanishes,

(5.1 1)

( —2(z+a) —(g—l)a} .

Since (g —1)a= 1 =g, we have

2N (z+a)—:—iI& (g ) .

(5.15)

(5.16)

EC& (z+a)= —4& (z+a), (5.12)

bC „(z+a)=y((r —1)(z+a))

=y((g —1)a)=y(g ) =0 .

[We have used the specific form (2.2) of a. ]

(5.13)

as required.
The gauge transformation given by Eq. (5.10) clearly

changes no phases in the z=O plane, nor can it alter
C&„(z+a) from the form (5.8), since

If m leaves z+a invariant, Eq. (5.1) holds, requiring
2@ (z+a)=—0. Since N (g )—=0 where n is an odd
prime power, Eq. (5.16) has no additional content except
in the case n =2, where it prohibits the additional possi-
bility 4& (g )—=—,'. For this orientation of the mirrors,
there are thus just two space groups, and the only
nonzero phase is the one allowed by Eq. (5.1}:

(z+a) = —,'.
When n is a power of two, however, and only for the

point group n2m, the mirror I may instead lie along the
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lattice generator g, so that ma=a*. In this case the
generating relation m =e yields

0=4 (m(z+a)}+4 (z+a):—4 (2z) —4 (g ),
(5.17)

since a+ a = —
g as a consequence of a = 1/( g

—1).
We may rewrite Eq. (5.17) as

tions of the vertical mirrors, for a total of four space
groups with point group n2m, n =2'.

Generator: r, point group: n

The only generator is r, so the phases at z+ a are given
by Eq. (5.8), and there are n/p =p' ' space groups.

2N (z+a) —=@ (g ),
because when n =2',

(2a) —=0 .

Since @ (g ):—c/2, c=0 or 1, Eq. (5.18) gives

(5.18)

(5.19)

Generators: r, d; point group: n22 (n even), n2 (n odd}

This group adds to r the generator d, which we may
take to lie along the vector g . Since d(z+a) = —z+a*,
the generating relation d =e gives

0—=4 d(2 z+a) =Cd((d +1)(z+a))
C C(z+a)—:—+—,c,c'=0, 1 .2' =Cd(a+a*)—:—4d(g ), (5.25)

The gauge function

y(z+a) = 1/4,

y( g'):—1/2,

gives

bN (z+a) —=y((m —1)(z+a))=y(a' —a)

=y(a*+a —2a )

(5.21)

so 4d(go) must vanish (modulo 1) even in the one case
(n =2') where for the vertical stacking it could have had
the value —,'. The remaining generating relation, rdr =d,
leads via Eq. (5.14) to the same conclusion:

0:—C&„((dr + 1)(z+ a) )+@d((r —1)(z+a) )

=4„((*a*+a ) +C&d ((g
—1 )a )

(5.26)

(5.22)

b 4 (z+a) —=y((r 1)(z+ a)—)
=y( —2z —ga —a )

=y( —2z —(g —1)a—2a }

:——2y(z+a) —y(g )=—0 . (5.23)

Nor does this gauge transformation (5.21) alter any of the
phases in the z=O plane —see the paragraph containing
Eq. (5.9).

We conclude that when n =2' and g lies in a vertical
mirror plane, there can be a nonsymmorphic space group
with the nonvanishing out-of-plane phase

(z+a) —= 1/4 (5.24)

accompanied by the in-plane phases @ (P)—:~~. When
combined with the case in which a vertical mirror plane
contains z+a, this results in one symmorphic and one
nonsymmorphic space group for each of the two orienta-

3sNote that (g—1)(p+g'+ . +p ')=p —p= —2 when
n =2', so that N (2a)=@ [2/(g —1)]—= —v4 (P)= —2' '&0 (P). But 4 (g ) is 0 or 1/2.

permitting us to set c' to zero in Eq. (5.20).
We must verify that the gauge transformation given by

Eq. (5.21) does not change the phase @ —=0:

since 4, vanishes in the z=O plane.
Thus adding d as a generator to the point group n

changes nothing. There continue to be n /p space
groups, associated with the n/p =p' ' choices for the
phase @„(z+a), corresponding to n/p distinct choices
for the gauge-invariant phase N„(pz).

Generators: r, m; poirit group: nmm (n even), nm (n odd)

This group adds to r the generator m. The gauge-
invariant phase N (z+a) is given by Eq. (5.1). The ad-
ditional group generating relation rmr =m gives for the
compatibility condition (5.14)

0=4„((mr+1)(z+a))+4& ((r —1)(z+a))
—:4&„(2z+a+ (*a) +@ ( g )

=2@„(z+a)+@ (g ), (5.27)

the last equivalence following, again, because /*a —a is a
lattice vector in the z=0 plane, where 4„—:0.

When n is an odd prime power, 4' (g ) =0, so this re-
quires @„(z+a ) =0 or —,', which is compatible with
4„(z+a)—=c/n [Eq. (5.8)] only if C&„(z+a)=—0. There
are thus only two space groups for odd n, the nonsym-
morphic one coming from the choice @ (z+a) =—,'.

When n =2', however, Eq. (5.27) again restricts the
range of choices (5.8) gives for @„(z+a) to 0 when

(g )—:0, and to 1/4 when 0& (g )=——,'. There are
therefore four space groups, associated with the two ine-

Rev. Mod. Phys. , Vol. 63, No. 3, JUly 1991



Rabson et al. : Space groups of axial crystals and quasicrystals 717

quivalent choices 0 or —,
' for N (z+a) and the two addi-

tional choices 0 or —,
' for 4„(z+a) [going with the

choices 0 or —,
' for 4 (P)].

4&(g )—= —,'. There are therefore just two space groups,
the nonsymmorphic one being associated with the phase
@„(z+a)—:—,', @~(g~)—= —,'.

Generators: r, h; point group: n/m Generators: r, m, h; point group: n/mmm

0=@&((rh + l)(z+a))+N„((h —1)(z+a))
—=@~((/+1)a)—C&„(2z) . (5.28)

Because 4 z (2a )—:0, because 4„vanishes for any lattice
vector in the z=0 plane, and because (g —1)a=(, Eq.
(5.28) can be rewritten as

24&„(z+a)—=4q(g ) . (5.29)

This restricts the range of choices allowed by Eq. (5.8)
for cp„(z+a) to 0 when 4z(g )—:0, and to —,

' when

(This occurs only for even n —i.e., for n =2' in the
staggered lattices; the case of odd n is described as 2n. )

The generating relation h =e gives 0—=4&z((h
+ l)(z+a))—=4&z(2a), which is consistent with either of
the values 0 or —,

' available to @I,(g~) when n =2', for ex-

actly the same reasons as in the case of N (see footnote
38). Applied to the remaining generating relation,
hrh =r, Eq. (5.14) gives

(This occurs only for even n; the case of odd n is de-
scribed as 2n 2m ).

The phases 4„and 4 for this group are subject to all
the conditions we found above for nmm. Additional con-
ditions are imposed by the presence of the third genera-
tor h. As noted in the case of n/m, the generating rela-
tion h =e imposes no restrictions, and the generating re-
lation hrh =r imposes the condition (5.29). Since our
analysis of nmm led to the condition (5.27) that
2C&„(z+a)= —4& (g ), we conclude that

@g(p)—= —@ (p)—=@ (g ) (5.30)

The final generating relation, mhm =h, gives

0=4 ((hm +1)(z+a))+4&((m —1)(z+a)), (5.31)

which reduces to 0=4 (2a), the validity of which we
have already noted [Eq. (5.19)]. The same four solutions
for the phases we found in the case nmm are therefore
still available, and the additional phase @s(g~) produces

TABLE VI. The space-groups for staggered lattices. We summarize here the complete classification of axial space groups on stag-
gered lattices. The rotational symmetry of the staggered lattice is n =p' for a prime number p. The horizontal shift from layer to lay-
er is a= 1/(g„—1). Except for the single case noted, ma = a* (m along star vectors), we always take the vertical mirror m to leave a
invariant (n between star vectors). In each row, the number of space groups in the right-most column is simply the number of
choices of phases in the previous two.

generators
point

groups parity of n

even or odd

nonxero nonzero number of
out-of-plane phases in-plane phases sp&ce groups

even
mn = n* C (z+ n) = ztC ((o)

C (z+ n)—:0, t/2

4 ((') =O, t/2 2

2

r, h, rn

n/m

odd

even or odd

even

odd

even

Qclcl

even

even

C (z+n) =—0, t/,

4„(z+n)—:i/„,
q =0, . . . , /„—1

C„(z+n) =— —,'C,„(q');
4 (z+ n) —= 0, &/z

e„(z+n) —= 0, t/,

C„(z+ n) = ~/,
j =0, . . . , "/J, —1

4„(z + n) = -' C ), ((o)
4,(z + n):—-'4I, ((o);

e (z+n) =0, t/,

@~(&')—:o '/2

c'~(&') —= c' ((')
= 0 1/2
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no further possibilities because it is constrained by Eq.
(5.30) to be the same as 4 (g~).

Table VI collects these results together and specifies
the space groups for the staggered lattices.

Vl. EXTINCTIONS

Extinctions —lattice vectors that do not correspond to
points in the difFraction pattern —are the most direct ex-
perimental manifestation of the space group. As noted in
Sec. II.A, the Bragg peaks in a difFraction pattern deter-
mine a set of wave vectors, and the lattice is the set of all
integral linear combinations of those wave vectors.
When the space group is symmorphic, nothing prohibits
a Bragg peak from being associated with any lattice vec-
tor, although its intensity may well be below the thresh-
old of observability. When the space group is nonsym-
morphic, however, density Fourier coefficients must van-
ish at certain wave vectors, whose corresponding Bragg
peaks are forbidden from appearing in the difFraction
pattern.

The condition for a lattice vector k to be extinct is that
there should be some point-group operation g which
leaves k invariant, such that Ng(k) does not vanish
(modulo an integer). This follows directly from the
definition (2.5} of the phase functions which, when
gk=k, reduces to

2mi+ (k)
p(k) =e ' p(k), (6.1)

thereby requiring p(k) to vanish for nonintegral N~(k).
It follows from the definition (2.6) of a gauge transforma-
tion that Ng(k) is gauge invariant when gk=k, so this
condition for an extinction is (as it clearly must be) in-
dependent of the choice of gauge.

To determine the extinctions for a given space group
we simply note the invariant space of every point-group
operation (not just those we have chosen to be genera-
tors); we calculate the phase functions on these invariant
spaces by expressing each element in terms of the group
generators and applying the group compatibility condi-
tion (2.8) to the values we have already determined for
those generators.

It sufFices to determine the extinctions for one element
from each conjugacy class of the point group. This is
geometrically obvious since the invariant spaces of conju-
gate vertical mirrors —the same remarks hold for
dihedral axes —difFer by point-group operations, under
which the difFraction pattern is invariant. It also follows
analytically from the group compatibility conditions. If
m ' and m are conjugate mirrors so that m ' =gmg ' for
some g, then gk and k are corresponding points in their
respective invariant subspaces, and we have

(gk) —=4&g(k)+@ (k)+N &(gk)—:N (k) [the last

equivalence following from the expansion of
O=C i (k}].

We shall specify the orientations of vertical mirrors
and dihedral axes by the horizontal directions of their in-

variant spaces. In all cases those directions lie either
along or between the directions of the vectors in the star
of Nth roots of unity. We also describe a lattice vector
as along or between star vectors according to the direc-
tion of its horizontal component. When the point group
contains mirrors (or dihedral axes) both along and be-
tween star directions (which can happen only when n is
even), we must consider the extinctions produced by one
of each type of mirror (or dihedral axis), since the two

types are in difFerent conjugacy classes.
When we mention values of the phase functions that

are not gauge invariant„we shall always have in mind the
particular gauges used above to construct them —i.e., we
shall always be referring to the values given in Tables V
and VI. (The condition for extinctions, as noted above, is
gauge invariant. ) Similarly, when we refer to the genera-
tors of point groups, we shall always be referring to the
particular set of generators specified in Table III.

In the following two subsections we derive the extinc-
tions for all the axial space groups. Readers interested
only in the conclusions can skip to Sec. VI.C, where the
results of this analysis are concisely summarized.

A. The extinctions when n%2'

When the rotational order n of the point group is not a
power of 2, all phase functions vanish modulo unity in
the horizontal plane, so there are no extinctions in that
plane. The only point-group operations that leave out-
of-plane vectors invariant are rotations about z and verti-
cal mirrors containing z. Among the rotations, it suffices
to examine just the generator r, since N, =j+, every-

where on the z axis, so that @,can be nonintegral only if
4„ is.

The rules for the extinctions when n&2' are con-
veniently extracted by considering two cases:

1. No vertical mirrors in the point group

This case includes the point groups generated by r, the
pair (r, d), or the pair (r, h). ' (The only other point
group without m, generated by r alone, has no nonsym-
morphic space group. )

The International system specifies a dihedral axis in this way
but specifies a vertical mirror by the direction of its normal.

4~When the rotational order n of the point group is odd,
X=2n. Putting it another way, for purposes of defining "be-
tween, " the star should be thought of as containing both the nth
mots of unity and their negatives, as noted in Sec. II.A. 1 and as
illustrated in Figs. 1(b) and 1(c).

4 In discussing extinctions it is most convenient to identify the
point groups by their generators; to connect these point-group
specifications with the International nomenclature, see Table
III.
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Vertical stackings: When the generators are r or the
pair ( r, d ), the only nontrivial phase function is

4&„(z)—=c ln, c =1,2, . . . , n —1, (6.2)

which assigns the phases

N„(jz) =cj/n (6 3)

on the z axis. The vector jz is therefore extinct unless cj
is a multiple of n W. hen the generators are ( r, h ), the
only nonintegral phase is

N„(z) —= —,', (6.4)

which gives extinctions along z at all odd layers.
Staggered stackings: These occur only when n =p' for

a prime number p. The lattice vectors along the z axis
are multiples of pz. The pair of generators (r, h) does not
occur when p%2. When the generators are r or the pair
(r, d), there are nonsymmorphic space groups if s is at
least 2, with

@„(jpz):—cj/p' ', c= 1, . . . ,p' (6.5)

The vector jpz is therefore extinguished unless cj is a
multiple ofp'

2. Vertical mirrors in the point group

This case includes the point groups generated by the
pair (r, m), the pair (r, m), or the trio (r, m, h). Extinc-
tions now turn out to be entirely determined by the
phases associated with the vertical mirror m and, if n is
even, the nonconjugate vertical mirror m'=rm.

Vertical stackings: In all cases (see Table V) there are
nonsymmorphic space groups with @ (z) = —,', which ex-
tinguishes all lattice vectors in the plane of the mirror in
odd layers. When n is even there is a second nonconju-
gate family of mirrors containing m'=rm that inter-
leaves the first. It follows from the group compatibility
condition (2.8) that

(z) =4&„(z)+4& (z), (6.6)

so that when N„(z)—:0 both (or in the symmorphic case
neither) families of mirror planes have these extinctions,
but when 4„(z)=—,

' (the only other possibility in this
case) just one of the families has the extinctions. (As not-
ed in Sec. IV.B.1, only when X is twice a prime power is
it possible to specify whether the family with extinctions
is along or between a lattice-generating star. ) Note that
the extinctions associated with @„being nonintegral on
its invariant space (a twofold screw axis) add nothing
new, since when @„(z)=—,', one or the other families of
mirrors will have extinctions in the odd layers in its
planes.

Staggered stackings: The trio of generators ( r, m, h )

does not occur when n is an odd prime power; for either
of the other two pairs (r, m) or (r, m), the mirror m can
be taken in the plane of z+a (so that the family of mir-

rors is necessarily between the directions in a generating
star) and the only nonsymmorphic space group has

(z+u) = —,'. Thus, as in the case of vertical lattices, all
lattice vectors in the planes of vertical mirrors with
nonintegral phase functions are extinct when they lie in
odd layers of the stacking.

The extinctions when n&2' can thus be summarized in
two simple rules:

Rule I. If the point group lacks vertical mirrors, then
only points on the z axis can be extinct (screw axis) Fo. r-
bidden lattice points occur wherever @„%0[as specified
in Eq. (6.2) for vertical lattices or (6.5) for staggered lat-
tices].

Rule II. If the point group contains vertical mirrors,
then the only extinct points are those in odd layers lying
in the planes of the mirrors with nonintegral phase func-
tions (vertical glide p/anes)

B. The extinctions when n =2'

When (and only when) the rotational order is a power
of 2, there can be nonvanishing gauge-invariant phases in
the z =0 plane. This modifies the conclusions of the
preceding section in two ways: (1) There can be addition-
al extinctions at horizontal invariant vectors of the
point-group elements (dihedral axes or the horizontal
mirror) that reverse the sign of z; (2) When the phases

(g ) do not vanish, there is a nontrivial contribution
to N (k) from the components of k along the P, which
alters the character of extinct points in the planes of vert-
ical mirrors. Note that the mirror m'=rm (which is not
conjugate to I for even n) has C&~ (gj)—:4& (P) as a
consequence of the group compatibility condition (2.8)
and the fact that N, —:0 in the z =0 plane.

1. Extinctions from dihedral axes or
horizontal mirrors

If the horizontal mirror h is present with N&(P):——,',
then a point in the z =0 plane of the form gn/P is ex-
tinguished if and only if g n is odd. We call points
"odd" or "even" depending on the parity of this sum,
and note that for n =2' whether a point is odd or even
does not depend on the particular primitive (or nonprimi-
tive) collection of star vectors in which we expand it.
We also call "odd" points in other layers of the stacking
directly above the odd points in the z =0 plane. Odd

42The rotoinversion also reverses the sign of z but has no hor-
izontal invariant vectors (and, in fact, we always chose a gauge
with 4„=—0).

This follows simply from the fact that when n =2' all primi-
tive subsets of the stars are the same except for the signs of their
vectors.
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points can thus be distinguished in all layers of the verti-
cal stacking and in even layers of the staggered stacking
with n =2'.

If a dihedral axis d is present with 4&d(gj)—:—,', then odd

points in the z =0 plane along its invariant line are ex-
tinct. Since all points in directions between star vectors
have even parity, a dihedral axis can produce extinc-
tions only if oriented along a star direction. [If that
direction is gj, then only the coefficients of g' (and —g')
have to be examined to determine the parity. ]

These conclusions give two additional rules for extinc-
tions that come into play only when n =2':

Rule III. If the point group contains a horizontal mir-
ror with a nonintegral phase 4z (g~) (a horizontal
glide plane), then all odd points in the z =0 plane are ex-
tinct.

Rule IV. If the point group contains dihedral axes
along star directions with nonzero phases 4d(P) (hor-
izontal twofold screw axes), then all odd points along star
directions in the z =0 plane are extinct.

2. Vertical mirrors

only in even layers.
When the point group is generated by the pair (r, m),

vertical mirrors can lie either along or between star direc-
tions (alternating with dihedral axes between or along the
star directions. ) When the vertical mirrors lie between
star directions, @ (P) always vanishes, and, as earlier,
all points in odd layers in the plane of the mirror are ex-
tinct when 4 (z+a)—= —,'. When the vertical mirrors lie

along star directions, then we need consider only even
layers of the stacking (since the only points along star
directions occur in even layers). We have

(2z+2a)—:4& (g )—:0 or —,
' . (6.7)

When 4& (g )=——,
' this gives extinctions in the plane of

the mirror at points of odd parity in layers a multiple of 4
away from the z =0 layer and at points of even parity in
the other even layers.

If the generators are (r, m) or (r, m, h), then the possi-
bility 4 ( gj ) = —,

' is always accompanied by
C&„(z+a)—:—,'. There are now mirrors both along (m, )

and between (mb) star vectors. Since mb=rm„ the
phases associated with the two types of mirrors are relat-
ed by the group compatibility condition (2.8):

(k)—:@„(m,k)+N (k) . (6.8)
Vertical stackings. If a mirror lies between star vec-

tors, then N (P)=——,
' has no consequences, since, as not-

ed in footnote 44, lattice vectors between star vectors al-
ways have even parity. For a mirror along a star vector,
the effect of changing @ (P) from 0 to —,

' is to reverse the
status of odd-parity points in the plane of the mirror.
Thus they are extinct if @ (z) —=0; if @ (z) = —,

' odd-

parity points along star vectors are extinct in even layers,
but only even-parity points along star vectors are extinct
in odd layers.

Staggered stackings. An additional complication when
n =2' is that in this one case a staggered stacking can
have vertical mirrors along as well as between star direc-
tions; this complication is mitigated by the fact that 2'-
fold staggered lattices have points along star directions

44Suppose there were such a point P with odd parity. Expand
P in the integrally independent set consisting of the v/2=2'
pairs of vectors angularly closest to it, next closest, etc. Since P
is invariant under mirroring in itself, interchanging the
coefficients in each pair must also give an expansion of P. Since
the set is integrally independent, however, there can be only one
expansion. Therefore both members of each pair must have the
same coefficient, and the parity of p is even.
45We say an out-of-plane lattice vector is along or between star

vectors if its horizontal component is along or between star vec-
tors.

Because all vectors between star vectors in the z =0 plane
have even parity, for the mirror mb whose plane contains
z+o;, any vector in that plane in the jth layer di6'ers
from j(z+a) by an even-parity vector and therefore has
phase j@ (z+a) whether or not 4& (p)—=0. Thus

b b

when 4 (z+a) —= —,
' all points in the plane of the mirror

mb in odd layers continue to be extinct. For the addi-
tional mirrors along generating vectors, we need consider
only even layers (there being no points along generators
in odd layers). An application of the group compatibility
condition (2.8) gives 4 (2z+2a)—=4 (g ) indepen-

a m

Proof: It follows from the general form (2.2) of a that if
n=2' then a= —zg. :0 p. Thus the horizontal part p of any

lattice vector in an odd layer has an expansion in any primitive
set of star vectors in which every coefficient is half integral (i.e.,
an integer plus —'). Given any horizontal part P and any star

vector, we expand P in the integrally independent set built up
by taking the given star vector, the pair of star vectors angular-

ly closest to it, the pair next closest, etc., until we finally add a
single unbalanced star vector (since v is even) perpendicular to
the given one. If P were invariant under mirroring in the given
star vector, then, since an. integrally independent set is also
"half-integrally independent, " not only would both members of
each pair have to have the same coefficient, but the coefficient of
the unbalanced star vector would also have to be zero. This last
requirement is impossible, since every coefficient must be half
integral.
47Applied to I,= r 'mb and using the fact that

N„(z+ a)—:
2

4& (P).
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dently of whether N (z+a) is 0 or —,'. Thus when
b

(g )—= —,
' this produces extinctions at points of odd

parity that are multiples of four layers from the z =0 lay-
er and at points of even parity in the other even layers.

Rule IV. If the point group contains dihedral axes
along star directions with nonzero phase functions (hor-
izontal twofold screw axes), then all odd-parity points
along star directions in the z =0 plane are extinct.

C. General rules for extinctions
Vll. QUASICRYSTALLOGRAPHIC
NOMENCLATURE

We summarize the rules derived above, stating them in
a form that unless otherwise noted applies to both lattice
types (vertical or staggered) and all values of n:

1. Extinctions out of the z =0 plane

Rule I. If the point group lacks vertical mirrors, then
extinct points are on the z axis. Extinctions occur at
points with nonintegral values of N„, given by Eq. (6.2) in

vertical stackings or (6.5) in staggered stackings
(screw axes).

Rule II. If the point group contains vertical mirrors
between star vectors, then the extinct points are all those
in odd layers lying in the planes of the mirrors that have
nonintegral phase functions 4& (z) or 4 (z+a) (vertical
glide p/anes)

Rule IIA. Rule II also holds for vertical mirrors along
star vectors with two exceptions that can arise only when
n =2'. (i) In a vertical stacking, if 4~(g~)—:—,', then the
extinct points in the plane of the mirror have odd pari-
ty if N (z)=0; if 4& (z):——,', they have odd parity in
even layers and even parity in odd layers; (ii) In a stag-
gered stacking, if N (P)=——,', then the extinct points in
the plane of the mirror have odd parity when they are
multiples of four layers from the z =0 plane and even
parity in the other even layers. (There are no points
along star vectors in odd layers of the staggered lattice. )

2. Extinctions in the z =0 plane (n =2' only)

Rule III. If the point group contains a horizontal mir-
ror with a nonintegral phase function (a horizontal
gilde plane), then all odd-parity points in the z =0 plane
are extinct.

Note that for given n the extinctions produced by the phase
functions (6.2) or (6.5) can be identical for many different values
of j. (If n is prime, for example, all values of j between 1 and

p —1 give the same extinctions. ) This contrasts with the crys-
tallographic case, in which only j and n —j (enantiamorphic
pairs) give the same extinctions.

See the erst paragraph of Sec. VI.B.1 for the definition of
parity, which applies only when n =2'.

Tables V and VI contain in compact form the complete
classification of all the axial space groups, crystallograph-
ic and quasicrystallographic, on standard lattices, and
the Rules I—IV at the end of Sec. VI, used in conjunction
with these tables, specify the extinctions that character-
ize each space group. We present this information below
in a more expanded form, along the lines of the Interna-
tional Tables of X-ray crystallography. We do this to
emphasize that the conventional crystallographic axial
space groups are quite naturally contained within the
general quasicrystallographic scheme (or, if you prefer,
the quasicrystallographic categories are very simple gen-
eralizations of the crystallographic ones) and also to sug-
gest some obvious generalizations of conventional crys-
tallographic nomenclature that apply to all the standard
axial quasicrystallo graphic space groups. We stress,
however, that all five of Tables IX—XIII contain no in-
formation not in the very brief Tables V and VI and the
extinction rules I—IV given in Sec. VI.C.

A. The five axial quasicrystal types

Five tables are required to list the space groups for ar-
bitrary point-group rotational symmetry n: (1) n any
power of an odd prime (which contains as its two lowest-
order members the trigonal crystal system and the pen-
tagonal quasicrystal system); (2} n any power of 2 greater
than the first (which contains the tetragonal crystal sys-
tem and the octagonal quasicrystal system); (3) n twice a
power of an odd prime (which contains the hexagonal
crystal system and the decagonal quasicrystal system}; (4)
n even, but not twice a prime power (which contains no
crystal system and first occurs for the dodecagonal quasi-
crystal system); and (5) n odd, but not a prime power
(which first occurs at n = 15 and contains no crystal sys-
tem or previously investigated quasicrystal system).

Because the organization is by point group, the first
category contains space groups with p,'-fold point groups
on 2p,'-fold vertical lattices as well as p,'-fold staggered
lattices (p, any odd prime). The remaining space groups
on the 2p,'-fold vertical lattices (with 2p,'-fold point
groups) are in the third category. Space groups in the
third, fourth, and fifth categories must have vertical lat-
tices; only the first and second categories contain both
staggered and vertical lattices.

5 This follows the crystallographic convention of grouping all

space groups on rhombohedral lattices and space groups with
3-fold point groups on hexagonal lattices into the single trigonal
crystal system.
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We refer to these five categories as quasicrystal types
and name each type for the lowest-order structure (crys-
tal or quasicrystal) it can describe. Thus we have the (1)
trigonal, (2) tetragonal, (3) hexagonal, (4) dodecagonal,
and (5) pentadecagonal quasicrystal types. We call
members of a quasicrystal type with a given n quasicrys-
tal systems. (Thus the trigonal quasicrystal type contains
the trigonal (quasi)crystal system, the pentagonal quasi-
crystal system, the septagonal, the nonagonal, etc. )

B. Specifying a space group

The first column in the tables that follow (Tables
IX—XIII) identifies each type of space group in a way
that directly rejects the way in which we constructed it:

(1) We denote the vertical lattice by V and the stag-
gered by S. V corresponds to P (for primitive) in the In-
ternational nomenclature for simple tetragonal and hex-
agonal lattices, and S becomes R (for rhombohedral) and
most commonly I (for centered tetragonal with body-
centered real-space indexing) in the two crystallographic
examples of staggered lattices. '

(2) We specify the point group by the set of generators
(see Table III) used in our construction of the space
groups, e.g., (r, h, m) for n /'mmm. If one needs to be ex-
plicit about the order of rotation (or rotoinversion) (i.e.,
the quasicrystal system), one can aSx a subscript, e.g. ,
(r, h, m)s for 8/mmm. Since each of the tables that fol-
lows holds for an infinite family of rotational orders n (an
entire quasicrystal type), we specify the allowed values of
n at the head of the table and omit the generic subscript
n from individual entries.

(3) For mirrors and dihedral axes we use a prime (m'
or d') to indicate alignment between horizontal
reciprocal-lattice star vectors. (When n is odd, "be-
tween" means between the vectors of a 2n-fold star. )

Otherwise the mirror (m) or dihedral axis (d) is aligned
along star vectors.

(4) To indicate the nonzero values of the phase func-
tions associated with the generators at the reciprocal-

Note, however, that our Vand 5 denote only the lattice type,
making no reference to any indexing scheme. (Our analysis
above used only primitive indexing, and our description of ex-
tinctions is based on that primitive indexing. )

52In a few instances this generic rotational n clashes with the n

used to denote glide plane type in the International nomencal-
ture. Such glide planes arise for axial quasicrystals only of the
tetragonal type. The two n's can always be distinguished be-
cause the rotational n occurs only in primary position and never
in the denominator, while the glide plane n, if in primary posi-
tion, appears always in the denominator. In any specific case,
the rotational n would be a particular number.

lattice-generating vectors, we add a superscript or a sub-
script to the generators. A superscript specifies the phase
above the z =0 plane at z or z+a, depending on whether
the lattice is vertical or staggered. Subscripts (which
occur only in the tetragonal quasicrystal type) specify the
phases associated with vertical mirrors or dihedral axes
at g~. We always give these in a gauge in which all verti-
cal mirrors (or all dihedral axes) have the same phase for
all j.

Thus the symbol V(r, h, / ,2m,'/z) sspecifies the space
group in the octagonal quasicrystal system with
Nq (P)—:4 (g~):—C' (z) —= —,

'

Of course the symbol is not unique, depending as it
does on our original choice of point-group generators.
The above example can also be written as

1/2 I 1/2V(m, /27m i/2 ) h]/2)s.
The generalized International space-group symbol is

given in the second column. For purposes of comparing
the orthodox notation to the generalization we propose,
we also list, when one exists, the single crystallographic
case. The individual table captions comment on when
these diAer from the general form by more than simply
replacing the general n by 3, 4, or 6 for the first three
quasicrystal types.

The final column locates the extinct lattice vectors fol-
lowing the four rules of Sec. VI.

Readers unfamiliar with or uninterested in the Interna-
tional (Hermann-Mauguin) space-group notation should
go directly to a perusal of the tables, ignoring the second
column and the further discussion below.

C. Generalized International axial
space-group symbols

The remarks that follow and the accompanying Tables
VII and VIII are intended to explain in a little more de-
tail our treatment of the axial quasicrystallographic space

The phases for any other choice of generators or any other
point-group operations can easily be found from the informa-
tion given in any version of the symbol by expressing the opera-
tion in terms of the given generators and applying the group
compatibility condition {2.8). Indeed, as a consequence of
working in a gauge with @„=0or N„(Pl—=0, one easily estab-
lishes that, in going from the pair (r, m) to the pair (m, m') or
from (r, m) to {m,d) or (m, d'), the superscripts and subscripts
for the new generator (m' or d') are simply the sums of the su-
perscripts and subscripts of the original pair. In some cases, a
different gauge choice may further simplify this kind of derived
space-group symbol. The simple summation rule breaks down
when applied on a staggered lattice to a dihedral axis d =Am
expressed in terms of the horizontal mirror h and a vertical mir-
ror m lying along a star vector, for then one finds
@d(z+al=+„(z+a)+@„(P)+&0 (z+a). In this case, how-
ever, one can use the gauge function (5.10) to set either
Nz(z+0. ) or 4I, (z+a) (but not both) to zero.

54The last two types contain no crystal systems.

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991



Rabson et BI.: Space groups of axial crystals and quasicrystals 723

TABLE VII. Between and along directions in international no-
tation. When the rotational symmetry X of the horizontal sub-
lattice of the reciprocal lattice is twice a prime power (p, stands
for any odd prime), there is a unique orientation for an X-fold
star that generates the lattice. The dihedral axes or the planes
of vertical mirrors can lie either along (m and d) or between
(m' and d') these directions. The table indicates whether such
operations appear in the secondary or tertiary positions of our
generalization of the International space-group symbols (for
both the P and the S lattices). When N is not twice a prime
power, i.e., when the rotational order n of the point group is
neither a prime power nor twice a prime power, there is no dis-
tinction between secondary and tertiary positions: exchanging
the two entries does not change the space group. (The com-
monly used I setting for the centered tetragonal crystallograph-
ic space groups (N =4) implies a nonprimitive, face-centered in-
dexing of reciprocal space. This has the effect of rotating
through ~/4 the axes with respect to which "secondary" and
"tertiary" are defined. As a result, our generalization of the In-
ternational space-group symbols for lattices of the centered
tetragonal type differs from the I setting in interchanging secon-
dary and tertiary positions. )

N =2' N =2p',
GENERATQRS

( ~) (~ ~ or 1~) other N

ne along
m' between

d along
d' between

secondary

tertiary

secondary

tertiary

secondary

tertiary

tertiary
secondary

AO

distinction

groups to readers familiar with the International nomen-
clature.

We give each space group a generalized International
(Hermann-Mauguin) symbol. Because the rhombohedral
and centered tetragonal 1attices are simply the first two
members of the infinite quasicrystallographic family of
staggered lattices that exists whenever the rotational or-
der of the point group is a power of a prime number, we
have replaced the symbols I (or F) (centered tetragonal)
and R (rhombohedral) by the single symbol S (stag-
gered). We have retained the conventional symbol P

5~They may also serve a secondary purpose of introducing that
nomenclature to curious innocents, whose knowledge of space
groups is limited to what we have taught them above.

Although none of the primitive generators of the staggered
lattice lie along the z axis perpendicular to the layers, we con-
tinue to use a c to label glide planes for which the translation
(plus phason) required to undo the mirroring has a component
perpendicular to the layers of the stacking. Because our S lat-
tice is primitive, there are no "included extinctions. " Our
specification of the space group in the left-hand column requires
no further nomenclatural convention (a, b, c, n, or d) for identi-
fying glide planes, since specifying the phase associated with a
mirror entirely determines the translation (plus phason) that un-
does it. [For an ordinary crystal with phase functions C&s(k),
one readily establishes that p(gr) =p(r+ ga'&Ps(b') ), where the
vectors a' generate the real-space lattice dual to the reciprocal
lattice generated by b', so that a' b~=2vr5'J].

(primitive) for the vertically stacked lattices.
The International nonmenclatural treatment of the

alignment of mirrors and dihedral axes in axial point
groups is not perfectly adapted to the quasicrystallo-
graphic generalization. Internationa1 notation refers to
primary, secondary, and tertiary directions (information
about which is listed in the first, second, and third posi-
tions after the letter identifying the lattice). For axial
point groups, the primary direction is perpendicular to
the layers; the secondary and tertiary directions are
sometimes what we refer to as "along" and "between"
reciprocal-lattice generators and sometimes "between"
and "along. " Since the distinction between "along" and
"between" is meaningful in the quasicrystallographic
case only when n is a prime power or twice a prime
power, this problem arises only for the trigonal, tetrago-
nal, and hexagonal quasicrystal types (which, of course,
include all the crystallographic cases) but not the dode-
cagonal or pentadecagonal.

We specify the orientation of a vertical mirror by a
horizontal direction in the plane of the mirror. When n
is a prime power or twice a prime power, our "along"
directions for vertical mirrors or (horizontal) dihedral
axes lie along the unique set of directions in a star of vec-
tors, all integral linear combinations of which generate
the horizontal two-dimensional sublattice of the recipro-
cal lattice; our "between" directions lie between the
directions of a 2n-fold (n odd) or n-fold (n even) star.

In the International scheme, on the other hand, the
direction of a vertical mirror is given by its normal, and
the distinction between secondary and tertiary directions
is tied to a conventional choice of real-space lattice gen-
erators. The rules for translating between these conven-
tions are very simple but depend on quasicrysta1 type:

Dodecagonal and pen tadecagonal quasi crystal types.
Here the issue does not arise: there is no distinction be-
tween directions along or between generating stars, since
generating stars can be found in both sets of directions.
Rejecting this, generalized International space-group
symbols that differ only by an interchange of secondary
and tertiary positions describe the same space group.

Trigonal and hexagonal quasicrystal types. Here the
horizontal sublattice of the reciprocal lattice is generated
by an X-fold star, where N is twice an odd prime power.
The normal to a vertical mirror containing (i.e., along)
reciprocal-lattice generators lies between the generators
and vice versa. In the crystallographic case, %=6, direc-
tions along generators in real space lie between them in

57We do this so that the actions of mirrors and dihedral axes
on the horizontal two-dimensional sublattice can be treated on
an equal footing.

58This was pointed out by RWM for the two-dimensional
space groups with standard lattices.
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TABLE VIII. Space-group element symbols. We indicate the correspondence between the phases asso-
ciated with point-group generators and the generalized International symbols. A subscripted generator
xf means that @„(P)=f; a superscripted symbol xf means either 4„(z):f—or C&„(z+a)=f, depend-
ing on the lattice. A prime on the symbol I or d indicates that the operation lies between roots of uni-

ty; otherwise it lies along a root. Note that directions along or between roots of unity {and therefore en-
tries in secondary and tertiary positions) can be distinguished only for the trigonal, tetragonal, and hex-
agonal quasicrystal types. Symbols for the dodecagonal and pentadecagonal types that differ only by an
interchange of secondary and tertiary entries describe the same space group. [For the centered tetrago-
nal lattice {n =4), the International Tables use a nonprimitive I setting, which differs from the S setting
shown here in reversing secondary and tertiary positions and in replacing the glide n in the denomina-
tor of primary position with a glide a].

GENERATING SYMBOL

d without subscript (arbitrary superscript)

d&& (found only on vertical stacking, n = 2')

d' of any kind

INTERNATIONAL SYMBOL

primary n

primary n

primary n&

secondary 2 (n a multiple of 4)

tertiary 2 (n not a multiple of 4)

secondary 2q (n a multiple of 4)

tertiary 2 (n a multiple of 4)

secondary 2 (n not a multiple of 4)

no generator

(used when needed to clarify positional notation)
secondary or tertiary 1

m h (staggered stacking)
1

m h (vertical stacking)

mt& (found only on vertical stacking)

primary m

primary n (glide plane)

secondary m

secondary m, S setting

secondary c, P setting

secondary b

1/2m (found only on vertical stacking)
1/2

1/4 3/4m ~ or m (found only on staggered stacking)'/ '/

secondary n (glide plane)

secondary d

m OI fA
1//2

m"/2 or m"/'
1/g

tertiary m

tertiary c

reciprocal space and vice versa. Consequently, in ex-
tending the International notation to the trigonal and
hexagonal quasicrystal types, because of these two rever-
sals, we list vertical mirrors along (m) or between (m')

~9When Xexceeds 6, there is no real-space lattice.

reciprocal-lattice-generating stars in secondary or terti-
ary positions, respectively. On the other hand, dihedral
axes along (d) or between (d') reciprocal-lattice-
generating vectors are listed in tertiary or secondary po-
sition.

Tetragonal quasicrystal type. Here the horizontal sub-
lattice of the reciprocal lattice is generated by an N-fold
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TABLE IX. The axial space groups —n a power of an odd prime (trigonal type). Note that the space
groups S(r "j and S(r' ",d) have no crystallographic analogs and first arise in the n =3 nonagonal

system. %'hen a vertical mirror is among the point-group generators for a staggered lattice with odd n,

it must lie between roots of unity, and we denote it here by I'. ("Included extinctions" in the R lattice
due to a nonprimitive basis are not shown; our primitively indexed S lattice implies no such extinc-
tions. )

V(&) Pn no extinctions

S(r)

V(r, m)

V(r, m'~')

V(r, m')

V(r, m"h)

S(r, m')

S(.—, m"»)

2Pn —1
m
2Pn —1
C

2Pnl-
m
2Pnl-
c

2Sn-
m
2Sn-
c

P3—1
2
m

P3—1
2

c

P31—2

P31—2
c

R3—2
m

no extinctions

Do extinctioas

odd layers along

no extiactions

odd layers between

Do extinctions

odd layers between

Pn no extinctions

j=1 - n —1

kz when jk not a
multiple of n

S(r) R3 no extinctions

S(„~/n)
~ =i, . . . , -/, —i Sn none

kpz when jkp not a
multiple of n

V(r, m) Pnm, 1

Pncl

P3m1

P3c1

Do extinctioas

odd layers along

star where X is a power of 2. The normal to a vertical
mirror containing ("along" ) reciprocal-lattice generators
is also along them, and similarly for "between. " In the
crystallographic case %=4 a star that primitively gen-
erates the real-space square lattice also lies along the
directions of the reciprocal-lattice-generating star.
Therefore mirrors (m) or dihedral axes (d) along
reciprocal-lattice-generating vectors are listed in sec-
ondary position, and mirrors (m') or dihedral axes (d')
between reciprocal-lattice-generating vectors are listed in
tertiary position. There is a further complication in the
case of the S lattice, because the International notation
favors the I (body-centered in real space) setting in its
description of centered tetragonal lattices. This setting
views the centered tetragonal reciprocal lattice as face-
centered, and the axes for the horizontal square lattice

are taken at 45' to the axes that generate the square lat-
tice primitively. Consequently the S symbol for the
tetragonal quasicrystal type di6'ers from the symbol for
the tetragonal crystallographic space groups in the I set-
ting by the interchange of entries in secondary and terti-
ary positions. '

These relations between our "along" and "between"
and the "secondary" and "tertiary" of the International
scheme are summarized in Table VII.

Table VIII gives the complete set of rules used to go
from our specification of the space groups on the left to
the generalized International symbols. In our opinion
the V and S symbols in the first column of Tables
IX—XIII are simpler and more informative than the con-
ventional generalized International symbols in the
second.

oThe complication does not arise when the F (face-centered in
real space) setting is used instead.

There are also three instances where the difference in setting
requires a glide plane to change its name from a to n.
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TABLE IX. (Continued).

V(r, m')

v(, -"')
S(r, m')

S(r, m' ~2)

v(~, d)

Pnlm

Pnle

Snm

no extinctions

odd layers between

no extinctions

odd layers between

no extinctions

v("~-, d)
j =1, . . . , n —1

P3~ 12
km when jk not a
multiple of n

v(r, d') no extinctions

v(„/n d~)'
j=1- - n —1

P3~ 21
kx vrhen jk not a
multiple of n

S(r, d) no extinctions

none
kpx vrhen jkp not a
multiple of n

TABLE X. The axial space groups —n a power of two (tetragonal type). The symbol n in the numera-
tor of primary position and in the subscripts —" and 4 refers to the n-fold rotation axis. Anywhere else

(denominator of primary position or anywhere in secondary or tertiary positions), n refers to a glide
plane. (This unfortunate clash between point-group rotational order and the conventional International
glide plane nomenclature arises only for the tetragonal quasicrystal type. ) When a point group on a
staggered lattice includes mirrors both along (m) and between (m') roots of unity, we choose the latter
as a generator, as we did in Sec. V. (Only the point group n2m has just one set of mirrors, and one of
its two orientations puts them along roots of unity). In deducing the extinctions it may be necessary
also to examine the phases for the "along" mirror m (or the "along" dihedral axis d). Since m'=rm,
one easily translates between the two choices of generator with the group compatibility relation (2.8).
If a, b, and c stand for arbitrary superscripts and subscripts, then (r', mb)=(r', m&'+'), on both Vand S
lattices. The same rule works for d=rm'. (It fails for d =hm on staggered lattices; see footnote 51.)
Extinctions in the centered tetragonal I lattice due to the nonprimitive basis ("included extinctions")
are not shown; our primitive S indexing has no included extinctions.

v(r) no extinctions

no extinctions

v(r, m)

v(r, mph)

v(p, m ~2) Pnc2

P4m2

P462

P4c2

no extinctions

all layers, odd parity, along

odd layers along

even layers, odd parity, along
odd layers, even parity, along
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TABLE X. (Continued).

V(r, m) Pn2m P42m no extinctions

V(r, m'~ )

V(r, m"»)

Pn2gm

Pn2c P42c

zero layer, odd parity, along

odd layers between

Pn2gc P42g c odd layers between
zero layer, odd parity, along

Snm2 no extinctions

I42d 2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along

S(r, m)

S(r, m"»)

Sn2m I4m2 no extinctions

odd layers between

Pn P4 no extinctions

V(r ~/n)

j =1,. . . , n —1 Png kz when jk not a multiple of n

S(r) no extinctions

S(r ~/n)

j —] n/2
Sn, 2kz when 2jk not a multiple of n

V(r, m)

U(r, mg/ )

V(r, m /2)

Pnmm

Pnbm

Pncc

P4mm

P4bm

P4cc

no extinctions

all layers, odd parity, along

odd layers,
along and between

P4nc
odd layers, even parity, along
even layers, odd parity, along
odd layers, between

v(. '», m) Pn mc P42 mc odd layers between

V(r /2, my/ )

V(r/, m»)

Pn„bc

Pn cm

P42bc

P42cm

odd layers between
all layers, odd parity, along

odd layers along

V(r», m /') Pn nm P42 nm
odd layers, even parity, along
even layers, odd parity, along

S(r, m)

S(r, m' /2)

Snmm

Snmc

r4mm

I4cm

no extinctions

odd layers between
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TABLE X. (Continued).

2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along

Sn„dc
2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along
odd layers between

V(r, d)

V(r, dpi )

V(r i", d)j=1 n —1

P42g 2

P4q 22

no extinctions

zero layer, odd parity, along

kz when jk not a multiple of n

V(p~ jn d~ )
j = I, . . . , n —1

Pn~2g2 P4~. 2g 2
zero layer, odd parity, along
kz when jk not a multiple of n

S(r, d) I422 no ext~nctions

Sn 22 I4g 22 2kz when 2jk not a multiple of n

V(r, h)

V(r, hei )

v(. '~2, h)

P —"
m

P—
n
nn

Y

m
P—

m

no extinctions

zero layer, odd parity

kz when k odd

V(r ~2, hy( ) P—
n

zero layer, odd parity
kz when k odd

no extinctions

S(r ~4, hy( ) I—
a

zero layer, odd parity
2kz when k odd

V(r, h, m)

V(r, h, mph)

V(r, h, m'h)

n 2 2P———
mmm
n 21 2P———
m6m
n 22P———
mac

4 2 2P———
mmm
42' 2P———mtm
4 22P———
m c c

no extinctions

aQ layers, odd parity, along

odd layers, along and between

V(r, h, m, ~) 4 2y 2P———
m n c

odd layers, even parity, along
even layers, odd parity, along
odd layers, between

V(r, hyh, m, )
n21 2P———
nmm

42' 2P———
n m m

zero layer, odd parity
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TABLE X. (Continued).

V(r, hy», mg( )
n2 2P———
nbm

42 2P———
nbrn

all layers, odd parity, along
zero layer, odd parity

V(r, hy», m») A 2g 2P———
A C C

42' 2P———
n c c

odd layers, along and between
zero layer, odd parity

V(r, hg», m, ») n22P———
AAC

422P———
nnc

odd layers, even parity, along
even layers, odd parity, along
odd layers, between
zero layer, odd parity

V(r'», h, m)
n 2 2

P mme
42 2 2P———
mme odd layers between

V(r», h, mg»)
"~ 2' 2

P
m 6 c

42 2y 2P———
m 6 c

odd layers, between
a11 layers, odd parity, along

V(. '», h, m'») n 2 2
P

m c m
422 2P———
m cm odd layers along

V(r», h, m») ";2' 2
P

m n m
42 2y 2P———
m n rn

odd layers, even parity, along
even layers, odd parity, along

V(r ~', hg», m)
A 212

P
n mc

42 2y 2P———
nrnc

odd layers, between
zero layer, odd parity

V(r», hy», my( )
n 22

P
n bc

42 2 2P———
n bc

odd layers, between
all layers, odd parity, along
zero layer, odd parity

V(r'» h,„, m'») n~ 2$ 2

n c m

42 2y 2P———
n c m

odd layers, along
zero layer, odd parity

n. 22
P

n n m

422 2P———
n nrn

odd layers, even parity, along
even layers, odd parity, along
zero layer, odd parity

S(r, h, m)

S(r, h, m"»)

n 2 2S———
mmm
n 2 2S———
mme

I———4 2 2

I———4 2 2
rncm

no extinctions

odd layers between

S(r ~4, hg», m', )
n 2 2

S
n dm

4y22I———
a md

2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along
zero layer, odd parity

n 22
S

A d C

4y22I———
a c

2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along
odd layers, between
zero layer, odd parity

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991



730 Rabson et al. : Space groups of axial crystals and quasicrystals

TABLE XI. The axial space groups —n twice a power of an odd prime I,'hexagonal type). Here the no-
tational correspondence between the general case and the one crystallographic example is perfect.

Pn no extinctions

V(r, m)

V(r, m'»)

V(r , m-)

V(r-, ' /')

P62rn

no extinctions

odd layers along

no extinctions

odd layers between

Pn no extinctions

V(r ~/~)

j=1.. . n —1

kz when jk not a
multiple of n

V(r, m)

v(. '/2, m)

v(. '», m'/2)

V(r, d)

V(r'/" d)
~ ~ ~ ) n 1

Pncc

Pn mc

Pn cm

P6cc

no extinctions

odd layers, along
and between

odd layers between

odd layers along

no extinctions

kz when jk not a
multiple of n

V(r, h)

v(. '/2, h)

V(r, h, m)

V(r, h, m /2)

V(r'/2, h, m)

V(. '/2, h, m'/~)

P —"
m
nn

m
n 2 2P———
mmm

6 22
Tmcc

632 2P———I cm

no extinctions

km with k odd

no extinctions

odd layers, along
and between

odd layers between

odd layers along

TABLE XII. The axial space groups —n even, not twice a prime power (dodecagonal type). The lattice
cannot distinguish mirror lines along generating vectors from those between them. Thus the space
group designated V{r',I '

) could equally well be called V(r', m' ), and the generalized Interna-
tional symbol Pn, ~,mc specifies the same space group as Pn„&2cm. Aside from this kind of
identification, the space groups are the same as for the hexagonal type.

V(r) Pn no extinctions

V(r, m) no extinctions
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TABLE XII. (Con tE'nued).

mirror lines in odd layers

Pn no extinctlons

V (r ~/n)

1) ~ ~ ~ ) n 1
Pnq

kz when g'k not a multiple
of n

V{r, m)

V(r'», m'»)

V(r, m»)

V(r, d)

Pn„cm

no extinctions

one of the two families of
mirror lines' in odd layers

both families of mirror
lines in odd layers

no extinctions

V(r'i-, d)
2=1 . n —1

kz when jk not a multiple
of n

V(r, a)

V(r», h)

V(r, 6, m)

V(r», h, m»)

V(r g m'i~)

n 2 2P———
mmm
n 2 2

P
m cm
n 22P———
mcc

no extinctions

kz with k odd

no extinctions

one of the two families of
mirror lines in odd layers

both families of mirror
lines in odd layers

TABLE XIII. The axial space groups —n odd, not a prime power (pentadecagonal type). The 2n-fold
lattice cannot distinguish mirror lines along and between generating vectors. Thus the space group
designated V(r, m' ) here could equally well be called V(r, m' ). Aside from such identification of
pairs, the space groups are the same as those for the trigonal type on vertical lattices. (For example, tri-
gonal Pnc 1 and Pnlc reduce to pentadecagonal I'nc. )

Pn no extinctions

V(, m)

V(.—, m'i2)

2Pn-
m
2Pn-
C

no extinctions

mirror lines in odd layers

no extinctions

V(r'i ) j = Z, . . . , n —Z Pn kz when j k not a multiple of n

V{r, m)

V(., m'i2)

V{r, d)

V{r i", d) j=l, . . . , n —1

Pne

Pn2

Pn) 2

no extinctions

mirror lines in odd layers

no extinctions

kE when jk not a multiple of n
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when applied

TABLE XIV. Gauge functions used in Sections III—V. The first four rows summarize the gauge func-
tions used in Sec. III to simplify the phases in the horizontal (z =0) plane. These gauge functions are
all zero at z (V lattice) or x+a (S lattice). They give gauge transformations that reduce all phase func-
tions in the horizontal plane to zero except when n is a power of two, in which case the phases C&sip i,
g =m, d, or h, can have nonzero gauge-invariant values. The gauge functions given by Eqs. (4.5) and
(5.10) are zero in the horizontal plane and therefore do not alter the effects of the gauge functions of the
first four rows in that plane. Gauge (5.21) is also useful in simplifying the phases at m and m' implied
by a given set of phases at r and rn '.

equation definition
purpose

make C„=0
in horizontal plane when r is a generator

(3.4)
make 4~ =—0
in horizontal plane

(3.2i)

make C—:O

in holizoIltal plRne' z is
m or d beAueen roots

make 4 =—0
in horizontal plane
m bettoeen roots of unity

when n is a power of an
odd prime p and either m
or d is a generator between
2n roots of unity
(perpendicular to an n
root of unity)

when n is twice a power of
an octa pr1Hle p ance M 1s a
generator between nt
roots of unity

(4.5) make 4g(z) —= 0

make Cg(z+ n):—0
(gis 6, d, orr)

when g is a group
generator, gx = —z

V lattice

1S lattice y(z+ n) = —4g(z+ n)

add —' to C„(z+n)
(p a prime)

staggered lattices for
gloups with P R geIleI'RtoI'
that do not contain vertical
IIllrI'OI'S Al X(z+n) =O

(5.21) add -' to I (z+ n) group (r, m) when m lies
along a root of unity
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tance in arriving at those phase functions, it is not neces-
sary to know them once the results are in hand, since the
most general set of phase functions for a particular space
group is given by applying an arbitrary gauge transfor-
mation to those listed in the tables. We gather them to-
gether here, because they are likely to prove useful in
subsequent extensions of this analysis, for example, to
double groups or magnetic groups.

APPENDIX: SUMMARY QF GAUGE FUNCTIONS

In Table XIV we list all the gauge transformations
used to reduce the phase functions to the forms listed in
Tables V and VI. We emphasize that although the gauge
transformations given by these functions were of impor-
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