
Electron self-trapping in liquids and dense gases
John P. Hernandez

The basic physics regarding self-trapping of light particles in simple fluid hosts is reviewed pedagogically.
Electron and positronium self-trapping in fluid helium is taken as a historical starting point. The theoreti-
cal context consists of simplified continuum models with averaged interactions, but required improve-
ments are discussed. Experimental examples are chosen to illustrate bulk, surface, and impurity effects.
Equilibrium and dynamical aspects of the field are illustrated. In noting applications to more complex
systems, reference is made to recent developments using path-integral and computer simulation methods.
The article spans certain aspects of studies in this fascinating area over the last 30 years.
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I. INTRODUCTION

The subject matter considered in this article focuses on
the states available to a light quantum-mechanical parti-
cle either in a host whose structure may be locally altered
by the interaction with the particle, or in a host that is
statically disordered. The possibility that light-particle
localization may be highly probable in such systems has
important experimental consequences; thus the require-
ments for such localization are worthy of study. The to-
pic to be addressed can be considered either as an aspect
of a broader one dealing with the study of small polarons,
particles that are self-consistently accompanied by a local
distortion of the host material, or as part of the study of
the properties of disordered materials. Therefore the
ideas introduced have an applicability beyond the nar-
rower focus discussed. The article treats the basic phys-
ics of particle self-trapping in Auid hosts and notes exam-
ples of experimental consequences. The theoretical basis
is mainly described in terms of a density-functional ap-
proach, and recent developments based on path integrals
and molecular dynamics are discussed near the end of the
article. As an introduction to the topic, the following ex-
ample gives some motivation.

If one is asked to consider the behavior of an excess
electron (from those required for charge neutrality) in an
insulating Quid, the first approach that seems suitable is

to treat the Quid in some average sense as the source of a
potential field in which the electron finds itself and then
to deal perturbatively with the intrinsic density Auctua-
tions of the Auid. However, the uncritical application of
this philosophy yields results that cannot account for ex-
perimental observations of the properties due to excess
electrons in a wide spectrum of materials under a variety
of experimental conditions. Similar statements are also
appropriate regarding other light particles such as the
positron or positronium.

As an example, imagine such an approach taken by a
naive condensed-matter physicist on being asked, out of
the blue, to estimate the drift mobility (p=drift velocity
per unit electric field, in the low-field limit) of excess elec-
trons in liquid helium at 1 atm and 4.2 K. The thoughts
of such a physicist might proceed as follows: "What is
the low-energy e-He interaction'7 Basically, it is dominat-
ed by the repulsive exchange interaction. This domi-
nance results from the Pauli repulsion, the very small po-
larizability of helium and the instability of He (with two
electrons in the ls state of He ). Thus the interaction
looks like a hard-sphere repulsion (Jortner et al. , 1965)
with a radius a that can be estimated from the low-
energy s-wave scattering length for e-He scattering

0

[a =0.62 A for He; had the average interaction been at-
tractive, a would have been negative (O' Malley, 1963)].
Next, how far are the atoms from one another, on aver-
age'? For the liquid, p=1.88X10 cm, p '=4~A /3,
so R =2.33 A=—3.76a; thus the volume of the sphere
available to an atom is 53 times larger than that of the
hard-sphere interaction volume, on average. Therefore
the electron is free except for a negligibly small [sic] ex-
cluded volume. " Following this back-of-the-envelope
thought, our naive physicist decides that the electron is
delocalized in the conduction band and is scattered oc-
casionally. Since the atoms are not really in an ordered
array, a quick estimate for the electron mean free path is
(p~a ) '=41 A=18R and, blithely forging ahead, the
mobility can be estimated as the charge-to-mass ratio
times the mean scattering time: "p=erlm =(e/
m)(para ) '(m /3kT)'~2= 1.6X 10 [cgs]; dividing by 300
to convert to practical units yields p =520 crn /V s."

An unfortunate experimentalist, armed with this esti-
mate, consults nature. He looks, struggles, checks, and
finally returns with his measurement: p =2 X 10
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with spherical symmetry and a value for ko to be deter-
mined by the boundary condition. To satisfy the average
translational symmetry, the derivative of the function u

(or better, of its logarithm) must vanish at R, the cell
boundary. Therefore

tanko(R —a) =koR .

The bottom of the band is at

Eo & ko/2m

(2)

(3)

Expanding the tangent in a power series yields Eo linear
with density at low densities (the so-called optical poten-
tial),

Q2
Eo(p =0)— 4vrpa,

2m
(4)

but it has a stronger density dependence for the case be-
ing considered. A numerical solution of the transcenden-
tal equation (2), which uses R, a, and the free-electron
mass, yields Eo =0.98 eV above the vacuum level. Thus
the liquid presents a substantial barrier to the injection of
electrons. Stop, look, and note: 0.98 eV is 10 kT! Now,
backpedal: wouldn't the electron be much happier in a
region of lower than average density' After all, the heli-
um atoms are also repelled by the electron)"

Consider the extreme model suggested by the above
(Kuper, 1961). Suppose that in the most probable state
the electron is localized in a "bubble" of radius Ro, de-
void of helium inside and with essentially the average
helium density outside. In lowest order the electron is
confined to the bubble and has a zero-point energy, ap-
proximately A ~ /2mB&. The mechanical work that is
needed to clear the cavity of atoms is I'V= 4~R DP; also, —

a surface (vacuum-liquid helium) has been made at a cost
o'A =4mR oo, where o is a surface tension (which we es-
timate as that of the liquid in equilibrium with its own
vapor, with a tlat surface —two crude approximations).
Proceed to minimize the energy (use I' =1 atm and the
macroscopic cr =0.096 ergs/cm ) to obtain Ro;„=22
0
A. The minimized energy is 0.077 eV for the zero-point
energy, 0.028 eV for the I'V work, and 0.037 eV for the

cm /Vs! (Meyer and Reif, 1958.) He faces the theorist,
who is not only upset by getting the number wrong but is
also faced with incorrect p and T dependences, since p is
found not to be proportional to p 'T

The theorist looks for refinements and argues with
himself: "a and R are OK, so what I should do is neglect
the atomic motion and assume that the electron is near
the bottom of an average conduction band; i.e., using the
Wigner-Seitz model (Ashcroft and Mermin, 1976), take a
Bloch state for the electron in the band: P(r) =e'"'uk(r)
with only a phase shift e'" resulting from a displace-
ment by R' to an equivalent position in another unit cell
of an average crystalline model. Then, for the bottom of
the band, take k =0. Thus, with an atom at the origin,

uo(r (a)=0, uo(r )a) =( 2 /r)sin[ko(r —a)], (1)

surface energy. A preferred configuration has been ob-
tained, as this total energy of 0.14 eV is much smaller
than that of the electron at the bottom of the average
conduction band, the 0.98 eV which was previously es-
timated. Surely this model is not totally self-consistent,
but it is not bad. To put an atom in the cavity would cost
an energy of the order of an electron volt, the repulsive
potential it would feel due to the electron (which can be
crudely approximated by Eo~g~ p, where p is the average
density and ~g~, obtainable from the particle-in-the-box
model, is the average electron probability density over
the atomic dimension). Now, with this alternative model
for the most probable electron-liquid state, the observed
mobility Inay be estimated as due to a charged sphere of
radius Ro moving in a viscous medium (Stokes s law),
with kinetic-theory corrections. Stokes s law is

ep-
6mgRo

where g is the viscosity of the medium (31.7 pgm/cms,
0

for liquid He). Using Ro =22 A in this equation yields a
mobility of 1.2X10 cm /Vs. This time the result
qualitatively agrees with observations to be detailed later,
including the temperature and density dependence. Hav-
ing a short memory, the theorist is no longer upset with
himself or the experimentalist!

The lesson to be learned from the above description is
that particles, such as electrons, may be trapped in an un-
stable density Auctuation; once trapped, the particle sta-
bilizes a density inhomogeneity —thus the particle be-
comes self-trapped. Alternatively, for a static disordered
host, although a given local structure may be very im-
probable in the material, a very small electron energy
may be associated with such a structure and, despite the
improbability of the local structure, the result is a popu-
lation of such regions that is strongly favored. This
phenomenon is widespread. It is observed in all phases of
matter: clusters, solids, liquids, and, as will be shown
below, in gases. It occurs in many materials, and the
eA'ect also applies to particles other than electrons. This
phenomenon falls in the generic class of defects often de-
scribed as "polarons, " although in some cases the in-
teraction may have nothing to do with polarization.

In this review a brief description will be given of "self-
trapped" states for electrons, positrons, and positronium
in fluids. Emphasis will be placed on a description of the
states required to understand experimental observations.
As far as materials are concerned, monatomic Auids will
be discussed, for simplicity, and only a few comments
will be made about more complicated materials, includ-
ing polar Auids.

II. SELF-TRAPPING IN LIQUID HELIUM

A. Bulk effects

Early work on electron self-trapping due to polariza-
tion of the medium was begun by Landau (1933). It is
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peripheral to this review; so it will not be discussed here.
On the other hand, much of the initial impetus to consid-
er the short-range particle-medium interaction was due
to electronic phenomena in helium; so we begin with
such work (Fetter, 1975; Schwarz, 1975). In the sense of
being able to "see" what happens, it is fitting that the
original observations and explanations were for positroni-
um (Ps). Ps is the bound electron-positron "atom"
which, in vacuum, survives for 10 ' s in the singlet spin
state before annihilation by emission of two gamma rays.
In the triplet state, Ps survives for the much longer 10
s, since in that case a three-gamma annihilation is re-
quired to conserve angular momentum. In a medium,
the long-lived species can decay more rapidly than in
vacuum because the positron can always find an electron
with opposite spin among those of the host material
(pick-off'annihilation); naturally, spin conversion process-
es may also be possible. If the positronium center of
mass is delocalized and thus samples the average medium
density, the pick-off rate is proportional to the number
density in the medium. However, experimental measure-
ments of the decay rate in helium by Paul and Graham
(1957), and also by Wackerle and Stump (1957), showed
an anomalously slow decay. The observations were im-
mediately explained by Ferrell (1958), who observed that
the Pauli-principle repulsion between the electron in Ps
and the helium electrons of like spin, in the liquid, would
cause a "bubble" to form around Ps and thus decrease
the pick-off rate. In the case of Ps interacting with a
medium, polarization is negligible, since the Ps atom is
neutral. Ferrell assumed that the helium density in the
bubble would be that of the coexisting vapor; this as-
sumption was later found to be incorrect.

Observations of electron self-trapping soon were made.
Meyer and Reif (1958) measured the electron mobility in
liquid helium (below 4 K) and found it to be extremely
small. Careri, Scaramuzzi, and Thompson (1959)
confirmed the measurements and indeed mentioned the
word "bubble" in trying to understand their results. The
long-range polarization idea was quickly developed by
Atkins (1959) for both positive ions and negatively
charged species. He suggested that electrostriction
would enhance the density of the material in the neigh-
borhood of charged particles, resulting in the formation
of "snowballs. " Careri et al. (1960) demonstrated the
difference between the local environment of positive ions
(the snowball) and electrons (the bubble) by extraction ex-
periments across the liquid-vapor surface for T(2 K.
They could extract electrons with much more ease than
positive ions. They quoted Ferrell in order to account for
the electron behavior. A detailed "bubble" model for
electrons was suggested by Kuper (1961). The theory for
electrons in liquid helium became well established and
was thoroughly explored in the next few years.

Positronium work lagged behind that for electrons,
despite its head start. But it soon provided a startlingly
clear verification of the bubbles through measurement of
the angular correlation of the two gamma rays emitted in
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FIG. 1. Two-gamma coincidences, at an angle 0 relative to
0=0 (the collinear case), from annihilation of singlet Ps. The
crosses are experimental (Briscoe et al. , 1968; Triftshauser
et al. , 1968); the line is theoretical for a particle in a well of
finite depth and only ground-state occupancy. The discrepancy
at large angles was attributed to incomplete thermalization
(Hernandez and Choi, 1969).

self-annihilation of singlet-Ps in liquid and solid helium
(Briscoe, Chai, and Stewart, 1968). As previously noted,
the gammas provide for conservation of angular momen-
tum (zero), about the ground-state Ps center of mass, in
the annihilation. Naturally, they also conserve the sys-
tem energy (2mc ) and linear momentum. Conservation
of linear momentum was used beautifully to "see" the
bubble. The "atom" has a probability distribution of
linear momenta, which the coincident gamma rays, from
annihilation, faithfully reproduce. The most probable
annihilation has antiparallel emission of gamma rays,
defining an angle 0=0. The experimental gamma coin-
cidences with one component of linear momentum equal
to mc8 are compared with theory in Fig. 1 (m is the elec-
tron mass and c is the speed of light). Annihilations with
He-core electrons have been subtracted from the data.
The detector geometry consists of long parallel slits and
thus integrates over two linear momentum components.
Elementary quantum mechanics translates the measured
linear momentum distribution of the coincident gammas
to

~
g(r) ~

of the Ps center of mass. The particle in a box
was beautifully illustrated (Triftshauser et al. , 1968); in
the theory, the well depth is obtained from the Wigner-
Seitz model and the radius from energy minimization
(Hernandez and Choi, 1969), leaving no free parameters.
The large angle discrepancy, apparent in the figure, was
attributed to incomplete thermalization. More recent po-
sitronium work has been reviewed by Iakubov and Khra-
pak (1982).
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For probing the properties of electrons in liquid heli-
um, the drift velocity in an applied electric field is the
easiest experimental tool to use [in superAuid helium,
note the excellent agreement of theory and experiment
for both the phonon-limited and roton-limited mobility
regimes (Baym et al. , 1969)]. Difficulties arise with ob-
servations using other experimental techniques, as the
electron density that can be studied is limited to very
small values ( —10 cm ) due to the electron-electron
repulsion and the absence of a compensating positive
charge. Nevertheless, clever experimentalists have in-
directly probed the electronic optical absorption, using as
a basis the argument that photo-ejection of the electron
from a bubble should enhance its mobility until retrap-
ping. An ac square-wave electric-field was applied be-
tween electrodes in the liquid, with field strength and fre-
quency adjusted to just prevent the drifting bubbles from
getting to either of the electrodes. The enhanced mobili-
ty on photo-absorption could be demonstrated by apply-
ing the light only when the electrons move, say, to the
right, and collecting charge. Long integration times can
be used to balance small mobility enhancements, and the
spectral response can be determined. This is the experi-
ment of Northby and Sanders (1967 and, later, of Zipfel
and Sanders, 1968). They observed a photo-ejection
threshold corresponding to a well depth of —1.0 eV,
though the line shape is affected by the vibrational modes
of the system. In addition, complications arose due to
the surprising fact that bound-bound excitations (-0.7
eV, for the ls-2p transition) also yielded an enhanced mo-
bility (at T(Ti ). That phenomenon can be understood
as arising from the optically induced release of bubbles
from traps. Bubbles bind to vortex lines, regions of quan-
tized mass rotation in the superftuid, by excluding atoms
that otherwise would have a rotational kinetic energy
(Rayfield and Reif, 1963; Parks and Donnelly, 1966;
Springett and Donnelly, 1966; Springett, 1967). On
bound optical excitation, thermal energy is released
(Jahn-Teller effect) as the environment distorts spontane-
ously to lift the degeneracy of the excited p state (the
populated-state energy is lowered by the distortion). The
localized thermal energy generated in this relaxation can
release the bubble from its vortex trap; its mobility then
increases until retrapping (Fowler and Dexter, 1968; Mi-
yakawa and Dexter, 1970). In the absence of vortices, no
such effect is observed for T) T&. Recently, Grimes and
Adams (1990) used a technique similar to that described
above for detecting the lowest energy absorption by elec-
trons in bubbles (ls-lp at -0.15 eV for 1.3 K). They
note the excellent agreement among various experimental
techniques for determining the bubble radii, as a function
of pressure and temperature: capture of bubbles by vor-
tices (Springett, 1967), phonon-limited mobility measure-
ments (Ostermeier, 1973), bubble acceleration measure-
ments (Ellis et al. , 1983), and their own absorption mea-
surements. Moreover, good agreement is obtained be-
tween theory and experiment for the absorption (Mi-
yakawa and Dexter, 1970), and for radii (Padmore and

Cole, 1974, if a pressure-independent surface tension is
used). Grimes and Adams note that the detailed mecha-
nism for generating the photocurrent they observed,
while clearly having to do with release of bubbles from
vortices, needs clarification. Finally, there has now been
direct observation of the infrared absorption due to elec-
trons in bubbles, obtained by using a long, narrow cell
(Grimes, 1991).

B. Near-surface effects

It is appropriate to mention the topic of electrons on
the surface of liquid helium (Cole and Cohen, 1969; Cole,
1970; Shikin, 1970), although it is somewhat peripheral
to the discussion in this article (see the early review by
Grimes, 1978). A two-dimensional electron gas may be
established on the surface of liquid helium. This possibil-
ity is due to the large barrier against injection of elec-
trons into the liquid, which was described above, coupled
with a weak attraction of external electrons toward the
surface. The attraction is a polarization effect that will
trap electrons just outside the surface. The trapping po-
tential may be further reinforced by an applied electric
field directed perpendicularly outward from the liquid.
On charging the surface, the electrons are confined in the
perpendicular direction but are still able to move parallel
to the surface. As the system is not charge-neutral, a
macroscopic potential must be applied to overcome the
electron-electron repulsion and prevent total discharge,
via a surface current, to the walls of the vessel. It is also
possible to trap electron "bubbles, " or positive ion
"snowballs, " just inside the helium surface. The polar-
ization effect repels the charged species from the surface
and into the bulk (see early work by Bruschi, Maraviglia,
and Moss, 1966, for example), but on applying a suitable
electric Geld, attracting the particles toward the surface,
a potential minimum is formed, which causes trapping.
Pointrenaud and Williams (1972) measured effective
masses for such trapped species by monitoring the fre-
quency of their oscillations perpendicular to the surface;
coupling to fluid and surface excitation could also be
monitored.

Coupling of the external electron plasma to surface ex-
citations was studied at an early stage by Shikin (1971),
Sommer and Tanner (1971), and Brown and Grimes
(1972). Near-surface charging produces a two-
dimensional plasma, which can be probed via the disper-
sion relation of the plasma waves (see the recent review
by Dahm and Vinen, 1987). Grimes and Adams (1976)
measured such waves for an electron gas outside the sur-
face. Ott-Rowland et al. (1982) looked at plasmons due
to interior positive ions, and Barenghi et al. (1986) at
those due to interior electron bubbles; the damping of the
resonances can be used to probe coupled excitations,
such as phonons, and quantized capillary waves, rip-
plons. As the surface electron density can be controlled,
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Crandal and Williams (1971) were quick to realize that
the competition of the coulomb (E, ) versus the thermal
energies would lead to solidification of the high-density
electron plasma in the classical (E, »EF ) regime (EF is
the electron Fermi energy). This suggestion was verified
by Cirimes and Adams (1979); solidification took place by
indentation ("dimpling" ) of the helium surface accom-
panying the electron lattice. Fisher et al. (1979) provid-
ed a more detailed theoretical picture, also noting that
quantum melting (Ez&E, ) would take place at even
higher densities in accord with the two-dimensional mod-
el of Kosterlitz and Thouless (1973), which was later
developed in work such as that by Nelson and Halperin
(1979). Such melting was observed by probing shear
waves, in the work of Deville et al. (1984). Magneto-
plasmons were studied in the electron gas (Mast, Dahm,
and Fetter, 1985) and in the electron solid (Glattli et al. ,
1985).

It was realized that strong dimpling of the surface due
to suKciently strong fields, holding the electrons at the
surface, would, at low temperatures, cause trapping of
the electrons —a polaron effect that would prevent melt-
ing of the solid, as E, could then become large. The
theoretical background for such an effect has been dis-
cussed and reviewed by Degani and Hipolito (1985), and
the effect may have been observed in mobility studies by
Andrei (1984), although the theorists suggest that in the
experimental situation there are many electrons per dim-
ple. Situations have been discussed (Leiderer, Ebner, and
Shikin, 1982) in which large dimples are formed with
—10 electrons in a dimple; in such cases, for minimiza-
tion of the Coulombic effects, the surface buckles, and
bubbles with such a large total charge are driven into the
bulk of the liquid.

Finally, methods for altering electron-ripplon coupling
and the ripplon dispersion relation have been devised in
which helium films, rather than bulk liquid, underlie the
charged arrays. The films are grown on neon, hydrogen,
or metallic substrates. Mobility measurements, with film
samples, are the subject of work by Kajita and Sasaki
(1982) and by Paalanen and Iye (1985); effects of electron
scattering by gas atoms, rotons, ripplons, and film defects
are observed as well as those due to variations in the film
thickness.

As pointed out earlier there is a barrier for injecting
electrons into liquid helium, of order 1 eV. But the elec-
trons may reside within bubbles, with an electronic ener-

gy of order 50 meV (which depends on pressure and tem-
perature). In addition, there is a barrier for injecting
electrons into the vapor, with the barrier height approxi-
mately proportional to the vapor density. %Pith this
background, the situation can be considered in which
electrons reside in bubbles within a liquid that is at coex-
istence with its own vapor; then, an electric field is ap-
plied so the bubbles drift toward the liquid-vapor inter-
face. Under what conditions will it be possible to extract
the electrons from the liquid and inject them into the va-
por? There is, of course, the question of the mechanism

by which particles may be extracted. This depends on
the details of the interfacial potential. It was previously
noted that charged particles in the liquid would be re-
pelled from the surface due to the polarization effect and
that applied electric fields could cause subsurface trap-
ping. Carei et al. (1960) were able to extract electrons at
low temperatures, but not positive ions. Such results
were extended, for example, by Bruschi, Maraviglia, and
Moss (1966) and by Schoepe and Rayfield (1973); Cole
and Klein (1979) provided theoretical interpretation for
the previous paper, and Bruschi et al (19.75) carried out
experiments of this type in neon. A temperature regime
in which the electron extraction is temperature indepen-
dent was found, indicating that the electrons were no
longer being activated thermally and that tunneling
through the barrier was taking place. In such cases, the
electrons emerge with a kinetic energy hE =E

d~&~—Eo„,with the first energy being that of the electron
in the bubble ground state within the liquid and the last
energy being that of the barrier against electron injection
into the vapor at the temperature in question. As the
system temperature is raised, the saturated vapor density
also rises and eventually coincides with the liquid density
at the critical point. Schoepe and Wagner (1975) pointed
out that AE would be negative for T & 4.2 K and that the
tunneling current, observable at low temperatures, would
be inhibited. Performing the experiment, they indeed ob-
served an inhibition on raising the temperature. In fact,
the inhibition was observed to start at 3.2 K, but there
may have been an impurity effect for 3.2& T &4.2 K,
which is discussed in a later section. The observed inhi-
bition is a test of the energy contributions, in the two
phases, to AE.

III. SELF-TRAPPING IN A FLUID

It might have been expected that self-trapping in heli-
um takes place only in the liquid, but this is not the case.
The requirements for electron self-trapping, as the most
probable state, are a compromise between a large density
of the average medium that makes the delocalized elec-
tron energy uncomfortably high, and a compliant medi-
um that allows distortions, needed for electron trapping,
without a prohibitive cost in energy. Deviations from the
average environment are most prevalent in a Quid; thus a
wider spectrum of possible localization environments are
available to a light particle in Quid hosts. Since, for heli-
um, the vapor-liquid critical temperature (T, ) is 5.20 K
and the critical pressure is modest (2.25 atm), experi-
ments can readily be done in the supercritical regime,
with the temperature and average density as continuous
variables in the gas. Even below T„electron self-

trapping in lower than average density regions has been
shown to exist in the vapor at macroscopic Quid densities
corresponding to or below that of the saturated vapor, if
T is not too low. The alert reader will have noticed that
the original argument for localization in a bubble fails for
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FIG. 2. Effective electron mobility vs helium number density at
various temperatures. (The Harrison-Springett data are from
1971a and 1971b. The solid line is data of Jahnke et a/. , 1975.)

sufficiently low helium density; in that case, either the
smallness of Eo fails to produce bound states, or the
binding energy is less than the distortion energy. Indeed,
the transition from a high mobility value in the dilute gas
to the low mobility at higher fIuid density was reported
by Levine and Sanders (1962), though full details with an
explanatory model were not reported by them unti1 a
later paper (1967). Examples obtained later for the mo-
bility transition, as a function of helium number density
and temperature, are given in Fig. 2; note evidence of the
increased probability of self-trapping on increasing the
helium density and lowering the temperature. There is
now a report (Borghesani and Santini, 1990b) of similarly
compelling data for the mobility transition of electrons in
supercritical Quid neon, and related theoretical calcula-
tions have been published (Hernandez and Martin,
1991a).

Another example of the transition from a delocaiized
particle at low Quid density or high temperature to locali-
zation on increasing the fIuid density or lowering the
temperature is the following. In a set of experiments, the
mean helium density seen by triplet-Ps in helium was
probed. It is rejected by the pick-ofF rate as a function of
the medium density and temperature, as previously not-
ed. At room temperature and helium densities up to
—10 gmcm, the decay rate A, of triplet-Ps is con-
sistent with X=A,„,+bp, where b is a constant, i.e., the
vacuum rate plus an average pick-ofF rate. At lower tem-
peratures and on increasing the helium density, the decay
rate turns over and approaches k„, as T decreases
and/or p increases —a decreased pick-ofF rate, as the
particle-in-an-empty-cavity model becomes appropriate.
Measurements are shown in Fig. 3 (Daniel and Stump,
1959; DufF and Heyman, 1962; Roellig and Kelly, 1967;
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FIG-. 3. Triplet-Ps annihilation rate as a function of the mass
density of the helium host Quid at various temperatures, as la-
beled; unlabeled points denote room-temperature data. The
measurements are from a variety of experiments (see text). The
solid line is characteristic of a delocalized "atom. " Note evi-
dence of a localization threshold, with localization taking place
more abruptly with density and occurring at lower density for
lower temperature (Hernandez, 1976).

Canter, McNutt, and Roellig, 1975); the solid line is the
linear dependence of the room temperature, low-density
data. Note that the decay rate shows evidence of locali-
zation that takes place more abruptly in density, and at
1ower densities, for 1ower temperatures.

To discuss the more general case of self-trapping in the
gas, one should be forewarned of a series of complica-
tions. In the dense liquid, it was adequate to consider
only the most probable state —the empty cavity of a ra-
dius —20 A with large potential depth and small
ground-state energy in this potential weil. As the
medium-particle interaction weakens (as is the case with
a lower density medium), the most probable state should
be expected to have some atoms in the region of low po-
tential for the electron, providing a smoother density
profile. Moreover, the distribution of states with non-
negligible probability of occupation, in thermal equilibri-
um, may not be as well defined as in the dense, low-
temperature medium. Such a distribution implies that
the observable transition from properties characteristic
of the delocalized electron to those of the localized elec-
tron need not be sharp. There are conditions in which
both localized and delocalized states have appreciable oc-
cupation. With these qualitative warnings in mind, dis-
cussion now follows of the example that treats the most
probable state for a particle interacting via short-range
forces with atoms of an ideal gas, at a given temperature.
With that example as a basis, the approximations may be
reexamined in order to treat a self-interacting Quid, a
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more general particle-atom (or molecule) interaction, and
to examine the distribution of states. Finally, dynamical
questions may, at least, be glanced at.

A. Ideal gas

Consider a particle of mass nz, interacting pairwise
with much more massive atoms via a contact potential
y5(r —R), where y )0, r is the particle coordinate, and
R that of an atomic center. In the average medium, the
assumed potential leads to a lowest-energy delocalized
state at an energy Eo =yp, the same result as that ob-
tained previously [Eq. (4)] with a Wigner-Seitz calcula-
tion for the low-density Quid. Only one particle is con-
sidered, since for a low density of such particles one can
ignore interactions among them. Further, the large
atomic mass implies that the particle can be considered
as interacting with a static atomic distribution; this is the
Born-Oppenheimer approximation (1927), which is used
throughout the article. In a statistical sense, we shall
consider that the atoms constitute a continuum with
number density p(R) whose average value is p. In the
most probable state of the particle-medium system, we
denote the particle wave function as g(r) and normalize
it. In fact, this is an envelope function, since the details
of the particle-atom interaction have been hidden by the
contact potential (an average pseudopotential approach).
The potential energy felt by the particle is yp(r), due to
its interaction with the atoms in the medium. Symmetri-
cally, an atom at position r feels a potential energy
y~P(r) ~

. Since we demand that the atoms be in thermal

g2
V +yp(r) E—%'(r) =0,

2m
(7)

with E as the particle eigenvalue. Finally, the system free
energy can be written as the particle energy, which in-
cludes particle-medium interactions, plus the medium
free energy referred to the system with the particle in its
lowest-energy delocalized state,

bF=(E —yp)+ fp(r)kT in[p(r)/p]dr

—kT f [p(r) —p]dr .

In this equation for the free energy, the last two terms
are the integrals of ApdlV —AP d V, i.e., the chemical po-
tential [p=kT inP+y(T), P =pkT, with y(T) being a
function of temperature only] and mechanical energy
contributions (other entropy contributions are neglected,
for now). The solution of the Schrodinger equation for
the particle that minimizes hI' is to be sought.

Before examining more general questions, it is instruc-
tive to look at the general features of -the solution of the
illustrative ideal-gas problem that has been posed. Cer-
tain limits are easy to solve (Hernandez, 1973). In three

equilibrium and that they be described as an ideal gas in-
teracting with the particle, their potential energy statisti-
cally determines their number density:

p(r)=pexp( —y~g(r)~ /kT) .

The equation to be satisfied by the particle is self-
consistently determined to be

200-
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IO 12 14 16
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FIG. 4. Locus in density-temperature space of two values of E„, (AF in this article) for electrons in helium, along with points at
which the observed mobility is 10 ' and 10 of that expected, semiclassically, for a delocalized electron in helium; the mobilities are
from Levine and Sanders (1967); Harrison and Springett (1971a), (1971b);Jahnke et al. (1975). The dashed line is the coexistence line
of helium (Hernandez, 1975a).
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FIG. 5. Density profiles (and also electron potential energy,
since it is proportional to the local host density; the arrows
denote the electron binding energy) for lowest free-energy elec-
tron self-trapped states in helium at 20 K and for the average
densities noted. Electron and total free energies (i.e., AF) are
noted as well as r„ the radius of the mean sphere per atom at
the average density. The classical turning point of the electron
is noted as the intersection of the horizontal line and the density
profile (Hernandez, 1975a).

dimensions, the limits that lead to delocalization as the
most probable state are p —+0, y~0, or T—+co. The
self-consistent solution in such cases is g(r)= V '~ (the
delocalized state, normalized within a large box of
volume V, with zero kinetic energy) and p(r) =p, bI' =0.
A coupling constant, which must be suIIIiciently large for
bound solutions, can be constructed out of ratios com-
paring a potential versus a kinetic energy for the particle
and also potential versus thermal energy contributions
(Moore, Cleveland, and Gersch, 1978). Results of calcu-
lations yielding values of AF =0 and —2kT are shown in
Fig. 4 for helium and can be seen to track the mobility
drop of electrons. There is, in fact, also a high p limit for
binding, due to the atomic size —a physical eftect ignored
by the ideal-gas model. This new physics leads to a
sharply reduced compressibility of the physical system at
high density and thus to a positive total energy on locali-
zation (Nieminen et al. , 1980; Cleveland and Gersch,
1981). Solutions to the nonlinear equation for the ideal-
gas case can be obtained directly from computer calcula-
tions (Hernandez, 1973, 1975a). Alternatively, a two-
parameter analytic approximation can be used, with the
parameters fitted to ensure self-consistently at two points
and then further improved by perturbation theory (Her-

nandez, 1975a). A brief discussion of this approach,
which is useful to visualize the type of solutions obtained,
follows.

The method consists of parametrizing the atomic den-
sity profile by a function,

P(r)
1

C

p cosh br
(9)

for which the electron Schrodinger equation has known
solutions as a function of C and b. In this method, C
gives the fractional Quid density decrease at the localiza-
tion center, r =0, and b ' is a radius for the distortion.
There is a self-consistent requirement that the chemical
potential of the atoms, as a function of their position,
when augmented by their interaction with the electron be
a constant. This requirement,

p kT
(10)

B. Generalizations

Based on the above example, generalizations could be
attempted to treat the problem in which the atoms in-
teract with each other (for example, Miller and Reese,

allows the parameters C and b to be determined in order
to satisfy Eq. (8) at two points (r =0 and b ' are usual).
The free energy is then calculated and may be improved
with perturbation theory.

The solutions may be visualized, for example, for fixed

m, y, and T as a function of p. For small p, the delocal-
ized state has lowest free energy and there is no localized,
self-consistent solution. On increasing p, localized self-
consistent solutions are found, but the system state is
metastable in comparison with delocalized solutions.
Only for large enough p is the self-consistent localized
solution stable. In such solutions, C increases from -0.3
toward unity with increasing bulk p, so the atoms are in-

creasingly excluded from the localization center. The
"radius" (b ') decreases with increasing p and the densi-

ty profile sharpens. At very high p, the empty-cavity
square well is a better starting approximation. See Fig. 5.

To examine nonequilibrium situations and an adiabatic
evolution, one may calculate AI' for the electron in the
ground state of a variety of density profiles, characterized
by b ' and C, for fixed I, y, p, and T. The self-
consistent constraint (10) is not imposed. At high
enough bulk p and low T, the total-energy contours ob-
tained, as a function of b and C, will have a minimum
(the localized self-consistent solution), a delocalized
metastable regime (C~O, b arbitrary), and a saddle-

point configuration connecting the stable and metastable
configurations, as a low pass connecting valleys in a
mountainous region. With a fixed function for the densi-

ty profile and a ground-state occupation for the particle,
the possible states of the system have not been exhausted,
but one will have a reasonable idea of the energy corre-
sponding to various density profiles. See Fig. 6.
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1989 treat a van der Waals fiuid) and in which an atom
centered at R interacts with the particle at r via a more
general potential, defined by U(r —R). In that case the
particle potential would be given by V(r) = fd R
U(r —R)p(R). Note that in this continuum model U(r)
must be integrable at short range, otherwise a nonvanish-
ing density function leads to a divergent V(r). A 5 func-
tion may be used to reAect the short-range electron-atom
repulsion, as was done previously, and longer range in-
teractions may be included explicitly. The generalization
can be cast as modifications of Eqs. (7) and (8) to

5p(r) 5P (r)
5p(r) 5p(r)

+ (p(r) —p)+ =0 . (11)5V(r) ~@(r)~'

5p r

In a local-density approximation the first two terms in
Eq. (11) cancel, as required for equilibrium of a "homo-
geneous" Quid. Then, the requirement that the last two
terms in (11) cancel becomes the self-consistent implicit
relation between p(r) and P(r). For example, applying
Eq. (11) to the ideal gas yields

V + V(r) Ef—(r)=0,
2m

bF =E+I [p(r)[p(r) —p] —[P(r)—P]]dr .

(7')

(8')

5(kTln[p(r)kT]) 5(p(r)kT)
5p(r) 5p(r)

In Eq. (8'), p(r) and P(r) refer to the local chemical po-
tential and pressure associated with the density p(r),
while p and I' are similarly related to the average Quid
density p. V(r), in Eq. (7'), is a difference between local
and average values, so that it vanishes asymptotically.
Extremizing (8') with respect to the local-density func-
tion implies

+ kTI &(")+5V(") '&(""' =0
p 5p( )

The first set of terms indeed vanishes and setting the
remaining terms equal to zero yields Eq. (6) for
V(r)=yp(r). An adiabatic treatment of system excita-
tions can also be attempted, in which the Schrodinger
equation is solved and AF determined for arbitrary
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FI~. 6. Total-free-energy contours in units of kT for electrons in helium at 51 K and an average density of 5.5 X 10 ' cm . The axes
describe the parametrized helium density profile [Eq. 9, where C is the fractional density decrease at the center of the localization re-
gion and b ' is a characteristic radius of the density distortion]. The electron occupies the ground state of the Potential associated
with the density profile. Note the stable, metastable, and saddle-point configurations, the last being bounded by the dashed and dot-
dashed curves (Hernandez, 1975a).
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bF~= R o+R[V(R+)—V(R )] (13)

Two thirds of o. A has been canceled by part of the sur-
face pressure, the last term in Eq. (12), while a contribu-
tion due to the particle surface pressure, which depends
on R, is now explicit. The definition of R as the
equimolecular dividing surface is not adequate to obtain
it, since the space dependence of the density is not known
in the interfacial region. However, as long as the average

configurations p(R). Such an approach may be examined
as a guide to population of states other than the most
probable one in thermal equilibrium or as a crude guide
to the system dynamics, if the adiabatic approximation
were considered appropriate as the system evolves to-
ward equilibrium.

Another type of generalization (Martin, 1991;Hernan-
dez and Martin, 1991b) that may be considered consists
in inserting the light particle into a Inuid, at a tempera-
ture below that of its vapor-liquid critical point, and at a
density at which it may be expected that the particle will
nucleate a local region of the other phase within the aver-
age system. For example, an electron in liquid helium
may nucleate a bubble; the generalization is then applic-
able to the problem discussed in the introductory section.
The system is defined using Eq. (7') and (8'), but the latter
is generalized by the addition of the term o JdA, where

the surface tension o. is taken to be curvature indepen-
dent, for simplicity. Extremizing b,Ewith respect to p(r),
as before, yields Eq. (11), except in the region in which

pi. &p(r) &pl (the subscripted densities correspond to
those of the vapor and liquid at coexistence). A usual ap-
proach to the interfacial problem consists of neglecting
its detailed structure and assuming that throughout that
region p(r)=pi, or pl, with a jump at r =R (the
equimolecular dividing surface; see Hirschfelder, Curtiss,
and Bird, 1954). As the free energy is a function of a new
variable, AF should be extremized with respect to R; the
functional dependence is contained in E, 4~o.R, and the
pressure term with P(r). This last dependence is made
explicit by the extremization (at constant p, P, total num-
ber of atoms, and volume) as a generalization of the usual
procedure:

[P(R -) P(R+—)]+[ V(R—-)—V(R+)]

lg(R) + 2o.

(ply)
The potential terms correspond to those at the coexisting
densities of the Auid, with the inner region being the
heterophase one; the wave function is continuous at the
potential jump. This pressure difference adds a constant
pressure term within the new phase region, beyond the
dependence of pressure on density from the equation of
state; but being a constant, it does not affect Eq. (11).
There are now surface terms that contribute to AF,
beyond those in Eq. (8'), where the surface pressure con-
tributions are not included:

system density is not too close to the coexistence curve,
all dependences on R, and R itself, may be bracketed by
the limiting cases defined by the vanishing of (11) at the
coexistence densities and the choices p(R ) =p i, or pl, im-

plying that the density is pL or p~ throughout the inter-
facial region. The desired results are narrowly bounded
by those obtained using these two choices for R. The
bracket for the results may not be narrow as p ap-
proaches the coexistence condition, rejecting the model's
ignorance of the interfacial region itself. Moreover, as
the critical temperature is approached, Eq. (13) tends to
zero, due to the vanishing of both o. and p&

—pL. Ap-
parently this formulation, which takes into account the
curvature of the surface and the resulting pressure
difference, has not been considered previously.

The type of model described in this section suggests
that self-trapped bubble states for electrons may be the
most probable ones in materials whose gas-phase s-wave
scattering length is positive: He, Ne, H2, and N2, at
sufficiently high p and low T (see experimental data by
Harrison and Springett, 1971a, 1971b; Bruschi, Mazzi,
and Santini, 1972; Loveland et a/. , 1972; LeComber
et al. , 1976; Borghesani and Santini, 1990b). Ps will have
such states in almost all materials (the short-range repul-
sion is always dominant). Returning to electrons, in Ar,
Kr, and Xe it is no longer reasonable to neglect atomic
polarization effects due to the excess electron in compar-
ison with the short-range electron-atom repulsion.
Indeed, Ar, Kr, and Xe have negative s-wave scattering
lengths showing that, in a space-averaged sense, the po-
larization overwhelms the Pauli repulsion. In Auid Ar
there have been suggestions that the effective scattering
length changes sign as a function of density (Lekner,
1968a, 1968b), and the experimental mobility studies are
most unclear as to localization (Jahnke, Meyer, and Rice,
1971; Huang and Freeman, 1981). For such materials,
one should not use a contact potential for the long-range
part of the interaction, which should be appropriately
screened (Lekner, 1967); and one should consider if self-

trapping can arise from enhanced density regions, com-
pared to the average, similar to Atkins's (1959) "snow-
balls. " In these cases the interatomic forces may not be
neglected, since the short-range interatomic repulsions
are required to prevent the density from growing without
bound in the region of electron localization. Such calcu-
lations have been performed (Ebner and Punyanitya,
1979; Hernandez, 1983). They delimit density-
temperature regions (as in a phase diagram) in which the
most probable electron state is predicted to be self-

trapped, though no such region was found for argon.
Similar calculations have been performed for positrons in
helium (Stott and Zaremba, 1977). They resulted in pre-
dictions of snowball trapping in regions of the helium

phase diagram including the dense vapor, the dilute
liquid, and a supercritical region below -9 K. In the
positron case, a direct comparison with experiment is
sometimes possible, since the annihilation rate probes the
immediate environment of the positron. It is well estab-
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lished that there is positron self-trapping in snowballs for
helium, methane, argone, hydrogen, nitrogen, CO2, and
SF6 (see Iakubov and Khrapak, 1982, who also review
positron work, and the recent work by Tuomisaari et al. ,
1988, who discuss their data in argon and reference work
in a variety of other materials).

In contrast to positrons, the experimental situation re-
garding electron trapping in snowballs is not well estab-
lished, as electrons are usually probed via mobility stud-
ies. These studies may indicate self-trapping by a re-
duced mobility, but cannot specify the environment of
the particle. However, there are several effects, unrelated
to self-trapping, that lead to mobility changes associated
with delocalized electrons; for example, multiple-
scattering effects (O' Malley, 1980; Braglia and Dallacas-
sa, 1982), scattering from Quctuations (Basak and Cohen,
1979), and energy dependence of the scattering cross sec-
tion (Ramsauer-Townsend effect, for example, or the case
of neon: see Borghesani et al. , 1988 and Borghesani and
Santini, 1990b). The studies in the heavier rare gases, in
which snowball trapping might be expected, were re-
viewed by Holroyd (1987). Measurements along the va-

por coexistence line often show decreasing electron mo-
bility on increasing the average Quid density, for some re-
gime. That data could be taken to indicate at least a
self-trapping tendency. However, with further density
increases (often in the liquid), the mobility increases to a
peak that has been correlated with a minimum in the
density-dependent average potential felt by electrons in
that Quid [Eo(p)]. The theoretical approximations for
the distorted Quid structure for these cases are much less
reliable than for those materials in which bubble trapping
is predicted (the structure of a dense gas is more difficult
to approximate than that of a dilute one). Further dis-
cussion will be deferred to a later section.

over a wide density range, at 46.5 K.) For simplicity, im-

agine the electrons with energy corresponding to the bot-
tom of the average conduction band of the Quid (Ec). As
a beginning, ignore self-trapping and the energy distribu-
tion of the electrons; both effects are of order kT for the
modest helium density cases investigated. The energy Eo
is above the vacuum level and can be estimated using the
Wigner-Seitz model, fi 4~pa/2m in the low-density ap-
proximation. If such an electron were to be trapped by
an Oz molecule, the attachment would initially take place
at an energy Eo+ A above the ground state of Oz ( A is
the electron aftinity, i.e., the energy difference between
the ground state of O2 and that of O2,' it might be
affected by the host Quid, but the effect in the case of heli-
um should be negligible). The probability of such an at-
tachment would be strongly enhanced if there were a res-
onance between the energy of a vibrationally excited state
of the molecular ion and that of the electron. Therefore
the vibrational energy levels of the molecular ion can be
probed by investigating the attachment rate resonance as
a function of Eo, i.e., of the helium density. After initial
attachment, the molecular ion is stabilized by collision
with a third particle, most probably a host atom, which
carries away the excess vibrational energy; once molecu-
lar vibrational energy has been lost, the electron cannot
be easily rereleased from the molecular ion. The attach-
ment is experimentally detected by a reduction of the
electron mobility, from its value characteristic within the
host to that of 02 in the Quid. Figure 7 explains the
basis of the phenomenon. The left side of the figure
shows the potential of the oxygen molecular ion as a
function of internuclear separation. The vibrational
states are also shown, and the energy scale is that of Vo.
The energy zero corresponds to the ground state of the
neutral molecule. The top right side shows a plot of the

IV. ELECTRONS IN A FLUID AS A PROBE

It has been mentioned that electron bubbles in helium
below T& bind to vortices. This binding has been used to
observe the position of vortices at the liquid surface and
their motion (see Williams and Packard, 1974 and the re-
view by Cxlaberson and Schwarz, 1987). The observation
is accomplished by extraction of the electrons, made to
move along the vortex lines to the liquid surface. Upon
emerging, the electrons are accelerated to impinge on a
phosphorescent screen, which is then photographed.

A more surprising use for electrons in Auids was in
molecular spectroscopy. In the only case documented to
date, they were used to compare the energies of the v' =4
and 5 vibrational states of 02 with that of the ground
state of O2. Observations of such molecular oxygen im-
purities in helium were first made and explained by Bar-
tels (1973) at 77 K; there were studies by Jahnke et al.
(1975) at temperatures from 160 to 52.8 K, and by Brus-
chi et al. (1984a) between 50 and 100 K. (Some data in
neon, 77.4 and 293 K, were reported by the last group,
1984b, and they have reported data very recently, 1990a,
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FICi. 7. Resonant electron attachment to molecular oxygen im-

purity as a function of host, helium, and density. Vo is derived
from the Wigner-Seitz model [in this article it is called Eo; see
Eq. (4)j. The Oz formation rate is derived from Bartel's (1973)
work. See discussion in the text.
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lowest-energy delocalized electron state as a function of
the host, helium, and density [in this article it is called
Eo—see Eq. (4)]. Thus electrons in such states, the ini-
tial state when considered along with a ground-state neu-
tral molecule of oxygen, will be in resonance with vibra-
tionally excited molecular ion states, the final states, at
helium densities denoted by the dashed lines. Finally,
lower right, the formation rate of molecular ions, as de-
duced from mobility measurements by Bartels (1973), is
shown versus helium density. The peaks in the formation
rates clearly reAect the electron attachment resonances.
Further experimental details are given below.

The experiment proceeds as follows. A pulse of elec-
trons is made to traverse the Quid contained between two
electrodes, and the transit time is measured. If there is
attachment of some of the electrons to oxygen impurities,
the receiving electrode will first record the arrival of the
unattached electrons and only later the arrival of Qz
Since the ratio of the electron mobility to that of Oz is
at least a factor of 100, the arrival of the 02 is readily
discriminated from the electron signal, regardless of the
place of electron capture within the drift space. The ra-
tio of the number of electrons in the molecular ion group
to the total number is a measure of the attachment prob-
ability in the electron transit time. This ratio is a func-
tion of the helium density, which determines Eo. Thus
the probability of attachment versus energy is determined
by the signal ratio as a function of helium density. To

give some feeling for the numbers involved, the average
electron mobility at 77 K is 10 (cm V 's ') at a helium
density of 3 X 10 ' (cm ) and falls to a mobility of about
10 (cm V 's ') at a density of 6X10 ' (cm ). The Oz
concentration in the h.elium under these conditions was
estimated as 0.15 ppm, in the work by Jahnke et al. ,
(1975) and controlled to a fraction of —3 X 10, in that
of Bruschi et al. (1984a). The mobility of 02 is -0. 1

(cm V 's ') for these helium densities. In addition, the
electron affinity of the molecular ion is known to be 0.44
eV. The states of the molecular ion are in fact doublets,
II ] /2 and II3/2 The relevant vibrational energies of 02
(above the 02 ground state) are 81 and 101 meV (v'=4),
and 198 and 216 meV ( v

' =5) (Bartels, 1973). Instead of
these doublets, only a single line per vibrational state was
detected in all the experiments, although kT-6 meV.
The diferent vibrational states were, however, well
resolved. At the peaks of the resonance attachment, cor-
responding to helium densities near 3 and 7 ( X 10 '

cm ), there was saturation in that all electrons were
captured for a drift space of —1 cm and a driving field of
100 V/cm in Jahnke's work (see Fig. 8). There is evi-
dence in that work that attachment from self-trapped
states is more eKcient than from delocalized states, prob-
ably due to the immediate stabilization of the molecular
ion by the collapsing bubble. Attachment from self-
trapped states would imply that the electron energy in
such a state, rather than Eo, is the relevant variable (see
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FIG. 8. Apparent mobility vs helium density at 77.3 K. The dot-dashed line is that expected, semiclassically, for delocalized elec-
trons. The upper line is due to unattached electrons, the lower one to 02 . The insert shows the relative intensity of the low-mobility
species. The dashed-line fit is that obtained from Bartels's work {1973)with an assumed 02 concentration of 0.15 ppm (Jahnke et al. ,
1975).
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Hernandez, 1975b; also recall the impurity effect men-
tioned at the end of the "near-surface" section).

Bruschi et al. (1984a) attempted a more detailed
analysis of the resonant attachment hne shape in order to
investigate if it could be used to detect the occupied elec-
tron density of states. They had reasonable success using
the low-density side of the resonance to obtain a shifted
free-particle density of states. However, the high-density
side, which would be expected to reAect the density of
self-trapped states, was not fit by the semiclassical model
they used (that, discussed later in Sec. VI, is due to Eg-
garter and Cohen, 1970, 1971). The absence of the ex-
pected doublet structure in the data is still mysterious
and raises questions as to whether the electron density of
states is indeed probed directly by the observed line
shape. In any case, to within a few millivolts, with a
known Eo(p) —for example, in helium —the vibrational
energies of other molecular ions can be studied; alterna-
tively, a known molecular impurity, say 02, can be used
to obtain points for Eo(p) in other host fluids. The obser-
vations in neon (Borghesani and Santini, 1990a) are an
example of attempting to use oxygen to probe electron
states in that Quid. Resonant attachment is indeed ob-
served to two vibrational states with an energy separation
as expected from the variation of the Wigner-Seitz values
for Eo(p) and the vibrational separation of the molecular
ion. However, the neon densities corresponding to the
attachment resonances reAect an increase in the electron
afFinity of oxygen, due to the polarizable host medium
(Hernandez and Martin, 1991a). There are still questions
to be investigated before this type of probe can be used to
full advantage; the method is sensitive to extremely small
impurity concentrations and has excellent energy resolu-
tion.

V. REEXAMINATION OF FORMALISM

Up to this point a quite simplified theoretical frame-
work has been used to describe the problem of a light
particle in an atomic Quid and to deduce experimentally
observable effects in such a system. It is worthwhile to
reexamine the methods and approximations that have
been introduced in order to describe improvements and
to expose more clearly the problems that remain. There
are several aspects of the treatment that deserve reexam-
ination. First, there is the Auid itself: a collection of
essentially classical particles, at fixed average density and
temperature, which interact via a superposition of pair
potentials. Then, there is the interaction between the
light particle and an isolated atom, the superposition of
such interactions corresponding to a collection of atoms
at some set of fixed positions, and many-body corrections
to such a superposition. Next, there are effects due to
atomic motion. Finally, there is the description of the
light-particle states and the thermal occupation of the
states of the system.

In the description of the Auid itself a thermodynamic
approach has been described using a continuum density

and an equation of state to relate a local chemical poten-
tial, pressure, and Quid density. Such an approach is
clearly only consistent with a very slowly varying density
profile in an inhomogeneous Quid. A direct approach us-
ing the interaction potential among the Auid atoms
would bypass the above approximations. Such an ap-
proach suggests molecular-dynamics calculations, to be
described later.

The particle —isolated-atom interaction has been intro-
duced as parametrized through the low-energy s-wave
scattering length a, an average of the interaction, and a
contact potential. Such a description can and should be
improved through the use of the energy-dependent
electron-atom pseudopotential, an effective interaction
that ignores the details internal to the atom but faithfully
reproduces the scattering of the electron, due to the
atom, in the external region (see, for example, Bachelet
et al. , 1982; Plenkiewicz, Plenkiewicz, Houee-Levin, and
Jay-Gerin, 1988; Plenkiewicz, Plenkiewicz, and Jay-
Gerin, 1988). Superposition of such interactions for the
particle —many-atom case has merely been taken into ac-
count, on average, through the Wigner-Seitz (WS) bound-
ary condition. This feature is also susceptible to im-
provement. If average properties of the fluid are to be
used, the short-range part of the interaction with an atom
can be supplemented by long-range features —such as
polarization, due to other atoms, using the average pair-
correlation function and appropriate screening effects-
and then used in the WS cellular model (an early treat-
ment along these lines was that of Springett, Jortner, and
Cohen, 1968).

As an aside, the previous description has been used to
determine Eo(p), within this average approximation, for
Auid Kr at various densities by Plenkiewicz, Plenkiewicz,
and Jay-Gerin (1989); the results are in reasonable agree-
ment with metal-Auid Kr photoemission measurements
(see, for example, Tauchert et a/. , 1977 and von Zdro-
jewski et a/. , 1980). The method described above ignores
the inherent disorder in the Quid and thus the generic
problem of localization in a statically disordered system
(Anderson, 1958). To date there exists no adequate treat-
ment of Eo(p) including disorder. Semiclassical attempts
have been made to explore a treatment of the problem in-
cluding disorder (Eggarter and Cohen, 1970, 1971; Eg-
garter, 1972; Simon et al. , 1990). These attempts are
based on the semiclassical idea that a particle of
sufficiently high energy ( )Eo ) may "percolate"
throughout the material (as water may percolate through
the interstices of impervious rock grains, if the packing
fraction is sufficiently small). Clearly, a quantum particle
may tunnel through classically forbidden regions
[E(V(r)], possibly leading to delocalization, but the
phase interference due to scattering in the disordered
Auid does lead to localization at su%ciently low energies
(Anderson, 1958). The relationship between such a clas-
sical percolation threshold and quantum delocalization
has not been established.

Throughout the previous discussion the atomic posi-
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tions have been kept fixed, at least in some average sense,
in contrast to the actual situation in a Auid. The basis for
such a treatment is, in principle, the Born-Qppenheimer
approximation (1927), a perturbative expansion in terms
of a small parameter related to the particle-atom mass ra-
tio. Lowest-order considerations lead to fixed atomic po-
sitions. The next-order corrections yield that the particle
responds to a potential arising from the instantaneous
atomic positions; the particle wave functions are continu-
ously deformed with the changing atomic positions, and
the particle energies change adiabatically. It is only in
even higher order in the small parameter that the atomic
motion causes nonadiabatic transitions of the particle. In
equilibrium, such transitions are usually not treated in
detail and are replaced by a thermal distribution of parti-
cle occupation among its adiabatic states. Alternatively,
the time-dependent Schrodinger equation for the light
particle may be treated, given the coupled atomic
motion. Naturally, the atoms are also coupled to the
light particle through an interaction, as well as being
coupled to each other. The coupled particle-atomic
motions have been examined directly using the adiabatic
Born-Oppenheimer approximation; direct propagation of
the particle in momentum space is followed by fast
Fourier transformation, which allows calculation of the
interaction due to the particle acting on the atoms. The
process is then repeated. This approach will be discussed

later.
The overall description of the light-particle states and

thermal occupation of the states of the particle-host sys-
tem have been discussed in the context of Anderson lo-
calized states of a particle in a statically disordered sys-

tem; the atomic motion is suppressed or thought to be in-

cluded in the description of the disorder. This approach
is discussed in the next section. Alternatively, path-
integral techniques have been applied to the thermally
averaged motion of the particle coupled to an average or
molecular-dynamic treatment of the Auid atoms, as dis-

cussed later.

VI. l3ISTRI8UTION OF ELECTRON STATES

In order to understand the results of many experi-
ments, it is sufficient to focus on the behavior of particles
in the most probable eigenstate of the particle-host sys-

tem, as far as average occupation is concerned. This is

the situation that has been discussed. However, for some
experiments such an approach is neither adequate nor
reasonable. In some mobility measurements, for exam-

ple, the most probable eigenstate of the system may not
have the ensemble-averaged mobility; in fact, there may
be no important eigenstate of the system that has the
ensemble-averaged mobility. Some investigators have at-
tempted to circumvent such averaging problems by try-
ing to understand experiments with the idea of a particle
with the average properties (leading to concepts such as
"quasifree" or "quasilocalized" electrons) or postulating
a two-state model (see Young, 1970) in which an electron

~2 N

M(r, p, [RI )= + g v(r —R,. )+u„,»,2m
(14)

in which the interaction with the atoms, at fixed posi-
tions, is given by the sum in the second term, and the last

is sometimes "free" and sometimes "self-trapped" —thus
it spends some time in a "fast" state (weakly coupled to
the atomic positions) and the remainder in a "slow"
(self-trapped) state (see, for example, Huang and Free-
man, 1978, regarding experiments in Xe). While it is true
that in a system the particles make transitions, it seems
more appropriate to recognize that experimental observa-
tions, of an ensemble, result from observing an equilibri-
um or a steady-state distribution over all the states of the
system.

The search for the distribution of electron states occu-
pied in thermal equilibrium, as contrasted with focusing
only on the most probable state, was first pursued based
on a host with a statically disordered set of scatterer posi-
tions and a semiclassical treatment of the electron-
scatterer interaction (Eggarter and Cohen, 1970, 1971;
Eggarter, 1972). In this model, the electron is assumed
to sample the scatterer distribution within boxes of side
I., which are small compared to the sample size. The
average potential felt by the electron in such a box is
given by the Wigner-Seitz energy [Eq. (3)], with a scatter-
er density that fluctuates from box to box according to a
distribution function characteristic of the material (for
example, an ideal gas would have a Gaussian distribution
of the number of scatterers per unit volume, with a vari-
ance equal to the square root of the average number of
scatterers in such a volume). Then, the semiclassical ap-
proximation consists in assuming that, within each box,
the local electronic density of states is that of a free parti-
cle for energies above the local Wigner-Seitz energy. The
convolution of the distribution of Wigner-Seitz energies
and the local densities of states give an averaged density
of electron states, which is then thermally occupied. The
model is then extended to predict observed electron
mobilities by assuming that there exists an energy-
dependent electron mobility, which is to be averaged over
the occupied electron states to yield predictions that may
be compared with experiment. In this model, electrons
are considered able to percolate through the system of
boxes if their energy is sufficiently high; then they would
have a high mobility. For energies lower than the per-
colation threshold, given the classically forbidden boxes
of high Wigner-Seitz energy, the electrons are localized
and have low mobility (allowing atomic motion). The
model can be parametrized reasonably to give good fits to
experimental measurements. The physical idea of the
model is quite appealing, though the semiclassical ap-
proximations are a problem.

Alternatively, the distribution of electron states has
been pursued using a variational formalism originally due
to Luttinger (1976a, 1976b) and suited to disordered sys-
tems. The argument proceeds with an electron Hamil-
tonian
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is averaged:

(Z(T)) = fP(IR;I)Z(T, tR;I) g dR, ; (16)

the thermodynamic limit is then taken. A variational es-
timate of (Z(T) ) is available, as shown below. The elec-
tron density of states (g (E) ) may be obtained by inverse
Laplace transforming ( Z ( T) ), since

( Z ( T) ) = J~
™

(g (E) )exp( E /kT)dE—.
0

(17)

A fictional "electron temperature" T, is used as a vari-
able for the inversion; so one may probe various available
energy regions in the spectrum. In contrast, the function
P ( I R; I ) depends on the physical temperature of the sys-
tem, not on such an electron temperature.

The random example [P ( I R; I ) =V, suitable to de-
scribe an ideal gas] is instructive. Luttinger found that in
this case

3/2

(Z(T) ) & m
e

—&(xi&I r
2~8

(18)

2

&Igl=(g 2 g)+kr J'&r(p —p~r~l,

r(r(r) /(kT
(19)

and (y~y) = 1, but y(r) otherwise arbitrary. Therefore
the lower bound for (Z(T)) could be maximized by
variation of the functional C [y]. It may not be a com-
plete surprise that the lower bound is optimized for a
normalized g, which satisfies the equation

2

+yp(r) —E y(r)=0,
2m

(20)

and that the minimized functional is

C[y];„=E yp+kT J dR p ——p(R) ln —1
p(R)

(21)

These are the equations obtained previously for the
ideal-gas example [Eqs. (6)—(8)], with b,F =C [y]

term (u„,(() merely confines the electron to a large but
finite volume V. The thermodynamic limit, X, V—+~
with N/V~p, will eventually be taken. An ensemble is
treated in which the atomic position distribution is given
by a probability density P ( [R; I ), determined by the
atomic interactions, the atomic density, and the system
temperature. The properties of an ensemble of electrons
in a given disordered material are identified with those of
electrons in an ensemble of materials with a given
P( I R; I ). To perform the calculation, the electron parti-
tion function, defined by

Z(T, I R;] ) =Trt exp[ H(r—, p, IR; I )/kT]], (15)

This formulation reemphasizes the interpretation of the
optimizing g, p(r), and bF as descriptive of the most
probable configuration of the particle-host system at a
temperature T. Although P( IR;] ) is uniform, optimiza-
tion leads to a very particular configuration of scatters
[p(r)] in the environment of the particle [y(r)].

The formalism has been generalized to consider corre-
lations among the atomic positions and several diA'erent

types of scatterers in order to model interacting fIuids
and Inixtures. For model systems, numerical Laplace in-
versions have also been carried out to obtain approxima-
tions to the average electron density of states (g(E))
(Hernandez, 1977; Hernandez, Berger, and Smith, 1979;
Berger and Hernandez, 1982; Smith and Hernandez,
1982). The advantage of pursuing this approach is that
the density of states allows averaging of the system prop-
erties over the distribution of thermally occupied states
rather than focusing exclusively on the most probable
state of the system. For example, in gaseous helium at
low density, the most probable state is the delocalized
electron —but the observed isothermal drift Inobility de-
creases faster than p

' (the behavior expected for a delo-
calized electron; Schwarz, 1980). These observations can
be ascribed to the increasing number of localized states as
density increases —even though such states are improb-
able in the low-density gaseous system.

Vll. DYNAMICS OF THERMALIZATIGN

For completeness, consider the dynamical question of
how injected electrons (or, alternately, positrons or Ps)
thermalize and self-trap in the case where such states are
indeed most probable, once the system achieves thermal
equilibrium. This question has not been fully answered,
but there does exist experimental information that is yet
to be completely understood and assiinilated, since it
sometimes seems contradictory. The problem to be con-
sidered is that of the mechanisms by which an electron,
injected with excess kinetic energy into a fIuid, achieves
ther malization.

It is clear that if the electron is injected with large ki-
netic energy, energy loss proceeds initially through ion-
ization and excitation of the atomic electrons. Once the
energy of the injected particle falls to a level such that it
is insufficient to excite the atomic electrons, the only
remaining method for energy loss consists in transferring
its energy to the motion of the atomic system; the cou-
pling need not be adiabatic. If the system is weakly in-
teracting, one can envision the electron-atom interaction
as two-particle elastic scattering. In the case of a more
strongly coupled system, energy transfer to collective
modes (phonons) is an appropriate description.

In the example of positrons (e+) injected with an ener-

gy of 0.5 MeV (from the decay of Na ) into saturated
helium vapor at T =4 K (k T =0.34 meV), the number of
annihilations as a function of time after injection can be
followed, since injection is accompanied by a 1.28 MeV
gamma ray from the daughter nucleus. This is the case
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in which the interaction (e -He) is the long-range polar-
ization that results in self-trapping in snowballs. The ex-
periments (Tawel and Canter, 1986) and Monte Carlo
simulations (Farazdel, 1986) agree, with thermalization
proceeding via elastic scattering (after the positron kinet-
ic energy falls first below 19.8 eV, the lowest excitation
energy of He, and then below 17.7 eV, the difference be-
tween the ionization energies of He and Ps). These slow
positions, which are only elastically scattered, appear to
be localized below the mobility edge of the disordered
material, i.e., belo~ the energy separating extended and
localized states, when they reach a kinetic energy of
(E,+)—15 meV, at about 26 ns after injection. They then
self-trap on reaching a kinetic energy of —5 meV (Ez ),
after about 32 ns, by binding to a cluster of atoms. It is
presumed that such an atomic cluster arises due to intrin-
sic density fluctuations. The experimental signal for lo-
calization is the inability of the positron to respond ap-
preciably to an applied electric field (in contrast to the
response in a delocalized state). The annihilation rate is
assumed constant for energies down to Ez, whether lo-
calized or not. Self-trapping by binding to a nucleating
cluster is signaled by an enhanced pick-off annihilation
rate. The kinetic energy, referred to above, is measured
from the average potential in the system. There is no
problem with this procedure in the (classical, except for
quantum-mechanical cross sections) Monte Carlo simula-
tions, but, since the potential fluctuates, the kinetic ener-

gy is not well defined in the quantum system. Clearly,
the localization energy refers to a total energy, positron
plus quid. Time and positron energy become correlated
in this system due to a deep minimum in the energy-
dependent-scattering cross section, at positron energy of
about 1 eV, which monoenergizes the positrons.

In contrast to the above picture are the results of mea-
surements for electrons injected into helium, among oth-
er materials, using a tunnel diode with a gold surface in
contact with the fiuid (Onn and Silver, 1969, 1971;
Smejtec et al. , 1973). The electrons are injected with an
excess kinetic energy of order 1 eV. After injection, they
"see" an image potential attracting them back to the gold
electrode and an applied electric field aiding injection.
The sum of these two potential contributions has a max-
imum whose position, relative to the gold electrode, may
be varied by adjusting the strength of the apphed field.
An electron that backscatters into the gold or thermal-
izes on the gold side of the potential maximum has negli-
gible probability of being collected far from the electrode.
Thus a distance scale for thermalization is established in
the experiment. The backscattering is determined from
measurement of the maximum available current (injec-
tion into vacuum) and of the actual current collected
through the medium, in the limit of large applied field.
The collected current as a function of field (i.e., as a func-
tion of the position of the potential maximum), after
corrections for backscattering, allows calculation of the
fraction of electrons that thermalized beyond the poten-
tial maximum. The distance scale can be converted into

an estimate for the thermalization time using the average
speed of electrons before thermalization.

For injection into argon, where the self-trapping of
electrons remains to be clearly demonstrated, the experi-
mental results for the thermalization time are consistent
with the elastic-scattering model; but this is not the case
for helium .The difFerence seems to reside in the
electron-medium interaction, even beyond differences in
the elastic-scattering cross sections (Nakanishi and
Schrader, 1986a, 1986b). For helium, the short-range
repulsion is clearly dominant and results in self-trapping
within bubbles. In the experiments described above, for
liquid helium at 4.2 K and 1 atm, the electrons appear to
thermalize in a time of -2X10 ' s, instead of the ap-
proximately 10 ' s predicted by the two-particle
elastic-collision model. The range of densities and tem-
peratures covered in these experiments was large: it en-
compassed the liquid and vapor regimes. Furthermore,
variation of the injection energy by a factor of 2 did not
affect the thermalization time by large factors. More-
over, the measurements indicate that the thermalization
time varies with the reciprocal of the Auid density; this
dependence is consistent with the two-particle elastic-
collision model as the rate-limiting step. If all the col-
lisions were indeed simply two-particle elastic ones, the
electrons could have lost at most only 10 percent of their
initial kinetic energy in the thermalization time observed

experimentally. Thus it is concluded that inelastic col-
lisions are required and that the thermalization process is
more complicated in this case.

These experiments suggest that the electrons find, rath-
er than cause, a suitable localization region in the Quid
and then proceed to thermalize into that region very

efhciently. The conclusion that the initial localization re-
gion is found, not caused, is not unexpected, since the
medium has, intrinsically, a broad density-fluctuation
spectrum in thermal equilibrium and the electron cannot
aid substantially in establishing the trapping potential
unless it is already localized. But that the electrons
should thermalize efhciently into such regions is quite
surprising. There appears to be no reason to believe that
electrons are substantially localized, and therefore
strongly coupled, in the attractive region upon initially
finding it, since at that time they have a very large kinetic
energy compared to kT. Hence how is it that electrons
lose their energy to the distortion, in order to localize
rapidly? Might it be that the attractive potential wells
met by the electron have resonant states in the continu-
um and that in such states the electron does have a local-
ized component that leads to strong, local coupling with
the distortion via the short-range interaction? Such a
speculation might be investigated in order to try to devel-

op an explanation for the observed differences in the
dynamical localization time: the long time is characteris-
tic of elastic two-particle scattering, for systems with a
long-range interaction, and a much shorter time is ob-
served for systems in which the particle-medium interac-
tion is predominantly short ranged.
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VIII. MORE COMPLEX SYSTEMS AND TECHNIQUES

The problem of a light particle interacting with a rela-
tively simple material composed of spherically symmetric
atoms has been discussed. The case of Quid H2 or N2 can
be treated by the same methods by considering the small
molecule in an averaged sense. A natural progression
would be to turn to more complicated materials such as
He-Ne mixtures, to Auids of larger nonpolar molecules
such as ethane, to polar Auids such as water or ammonia,
and to molten salts; finite clusters of atoms with an excess
electron are also of interest. Indeed, some work along
the lines previously discussed exists in all these areas,
with a substantial amount for metal-ammonia solutions
(as discussed by Kestner, 1976, who also reviews the hy-
drated electron). In the case where alkali metals are dis-
solved in ammonia, each metal atom dissociated to yield
a cation and an electron: thus the overall system is neu-
tral, allowing for substantial concentrations of electrons.
In dilute solutions, the properties due to the electrons in
the medium are independent of the choice of cation; the
study of such systems has a history of over a hundred
years, beginning with Weyl's observation (1863) of the
characteristic blue color due to the "solvated" (i.e., self-
trapped) electrons in ammonia. At higher metal-atom
concentrations, the material develops a bronze color, in-
dicating that an insulator-metal transition has taken
place. In many cases of interest, a continuum theoretical
treatment is inconsistent because dimensions comparable
with the average interatomic spacing are relevant.

In the last half-dozen years, the treatment of the topic
in this review has undergone a revolution and a rebirth.
The interactions of interest are of moderate range, the
Quid atoms behave essentially classically, and the elec-
tron, though it must be treated quantum mechanically,
responds to the slowly varying atomic positions; thus the

8'(r(t), IR I )=—f dt + U„(r(t), IR I )o, 2

+/3U„( I R. I ), (23)

and D [r(t)] is the differential element of path. The path
is periodic in the interval 0~ t ~ pA'. The path integral is
then discretized into I' equally spaced time steps, and the
path between time steps is approximated by a straight
line. In the limit of an infinite number of steps, the for-
mulation becomes exact:

system can be considered to consist of a few hundred
atoms and an electron and is amenable to computer
simulation. Various theoretical bases for such simula-
tions have been developed. The most-developed methods
are based on Feynman's path-integral approach to quan-
tum statistical mechanics (Feynman and Hibbs, 1965).
For the present applications, the approach was suggested
by Chandler and Wolynes (1981; see also Chandler,
1984). Chandler et al. (1984) applied the method to an
electron interacting with a hard-sphere Quid, and numeri-
cal results were given by Nichols et al. (1984). This ap-
proach focuses on the canonical partition function (Z) of
the system composed of one electron and N solvent
atoms, where the electron-solvent interaction (U„) is
taken to be a superposition of hard-sphere potentials and
the solvent-solvent interaction is U„. Within the adia-
batic approximation, Z can be written as the integral of a
path-dependent action over all paths in imaginary time,
using P= 1/kT:

Z(p)= f dR, fdR f D[r(t)]
path

Xexp[ —W(r(t), tR;] )],
(22)

Z (P) = f d R, . f d Rzexp[ —/3U„( I RJ I ) ]

P
X f + dr' t(2nA, , /p) exp[ pu(~r' ——r +' ~)]exp[ —pU„(r', [Rz])/p];

a=1

the term in curly brackets in (24) is the free-electron den-
sity matrix, with the square of the electron de Broglie
wavelength being A,, =PA' Im, and u (x)=(PIPA, , )x /2.
The approximation becomes adequate (convergent) for a
finite number of steps, and the path periodicity is main-
tained with r" '= r' +". The crux of the method is that
the above problem is isomorphic to that of a classical,
fiexible ring polymer interacting with the solvent. The
number of particles within the ring is equal to the num-
ber of time steps (P), and there are only harmonic
nearest-neighbor interactions [u (x), with a spring con-
stant P Ipk, , ] among the particles making up the ring po-
lymer. Such a classical problem can be solved numerical-
ly or in some suitable approximation. Due to interaction
with the solvent, the electron (ring polymer) may be

I

forced to localize (i.e., self-trap). Results from this type
of approach will be discussed later in this section. An al-
ternative in this method is to use molecular dynamics to
evaluate path integrals; this alternative was followed by
Parrinello and Rahman (1984) to explore the localization
of an excess electron in molten KCl. Various path-
integral simulation methods were reviewed by Berne and
Thirumalai (1986), along with applications that had been
carried out.

Molecular dynamics have also been implemented using
a quantal time-dependent self-consistent-field approach
(see a review of methods by Kosloff, 1988). This ap-
proach uses the adiabatic Born-Qppenheimer approxima-
tion to decompose the problem into the atomic motion,
responding to their mutual interaction and a mean in-
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teraction due to the electron, and into the electronic
motion, developing in response to the time-dependent
Schrodinger equation with the instantaneous nuclear po-
sitions as parameters. In the most common approach,
the electron wave function is described in momentum
space and time propagated (discrete time steps); then it is
Fourier transformed (fast-Fourier-transform numerical
algorithms) to coordinate space, since it is needed in this
form to calculate the efFective interaction on the nuclei.
This approach is usually limited to electronic ground-
state occupancy, but may be extended to calculation of
electronic excited states, with the nuclei in equilibrium
with the electronic ground state, in order to calculate, for
example, optical-absorption spectra (see the review of the
hydrated electron problem, including optical-absorption
spectra, by Rossky and Schnitker, 1988). Details will be
discussed later. Cluster calculations have been recently
reviewed (Jortner et al. , 1989).

An explosion of results has appeared in the literature
and representative ones are quoted below. The problems
treated encompass an electron in fiuid helium (Bartho-
lomew et al. , 1985; Kalia et al. , 1989, 1990), an electron
in helium and comparison with one in xenon (Coker
et al. , 1987; also see Laria and Chandler, 1987), in a stat-
ically disordered material (Sprik et al. , 1985a, 1985b,
1985c), in polar liquids (Barnett et al. , 1989), in molten
salts (Parrinello and Rahman, 1984), and in finite clusters
(see references in Posey et al. , 1989). Once the system
has been equilibrated, the simulations can determine if
the electron becomes localized in dimensions small com-
pared to that of the system; the difFusion properties can
be determined (Selloni et al. , 1987); electron excited
states can be found for nuclear configurations in equilib-
rium with the electronic ground state; and optical-
absorption spectra can be calculated (Schnitker et al. ,

1988; Rajagopal et al. , 1990). In the case of finite clus-
ters, electron localization has been observed both within
the cluster and exterior to it (Barnett et al. , 1987). Gen-
erally, the simulations yield results in good agreement
with experimental observations. The general features
arising from previous discussion in this review are
confirmed in the simulations. The basic problem of simu-
lations is that results can only be obtained for the specific
system under simulation, rather than with some generali-
ty.

Calculations, applying these new techniques, for sys-
tems in which an electron interacts with a hard-sphere or
Lennard-Jones Quid, and for those in which it interacts
with a static disordered medium, are directly comparable
with the previously discussed work. The path-integral
approach was first implemented directly, without use of
simulation techniques but in a mean-field model, to inves-
tigate an electron interacting with a hard-sphere fIuid via
a hard-sphere potential (Chandler et al. , 1984 and nu-
merical results by Nichols et al. , 1984). These authors
obtained results that confirm that, at suKciently high
Quid density, electron self-trapping takes place in cavi-
ties. As the temperature is increased, the Auid density re-

quired to yield self-trapping also increases. The cavities
are essentially spherical, and at high Quid densities there
is total exclusion of atoms from the localization region.
The calculations consider thermal equilibrium and
deduce that only the electron ground state is of impor-
tance at high Quid densities —a result labeled as
"ground-state dominance. " All these results are in quali-
tative agreement with those previously discussed for an
electron in helium.

As an example of the methods and results obtained
with the above techniques, those of Nichols et al. (1984)
are sketched in what follows. The system is an electron
and a set of solvent atoms. The solvent-solvent interac-
tions are of the hard-sphere type with sphere diameter cr,
the electron-solvent interaction is also a hard-sphere one
with a distance of closest approach d. Localization of the
electron may be probed by examining the second moment
of the ring correlation function:

(25)

with 0~t t'~pA'. —The characteristic size of the poly-
mer is R (pA/2). For a free particle,

(26)

Thus Rt„,(PA'/2)=0. 87K,„which is usually large com-
pared to o. . For a localized electron, i.e., at high solvent
density, the correlation length R (b, t), becomes indepen-
dent of At (ground-state dominance), except for
~b. t~ ~ BIDE, where b,E is the lowest excitation energy of
the electron, and the correlation length becomes compa-
rable to the localization region. Figure 9 shows results
obtained by these authors for the correlation length, as a
function of the solvent density for two temperatures.
Note the relatively sharp localization threshold between
0. 10(po. &0. 15, for A,, =16o., and the rather broad
threshold between 0.3 (per (0.5, for A., =6cr (for heli-

0
um, for example, cr =2.57 A). This is a characteristic re-
sult: a sharp threshold for low temperatures and a broad
one for high temperatures. The lack of delocalization at
high temperature and high density constitutes a
discrepancy between these results and those of the older
continuum model.

Monte Carlo techniques to evaluate path integrals
(PIMC) were then used for the problem with an
electron-atom hard-sphere interaction and two treat-
ments for the atomic system: a disordered static medium
and a hard-sphere fiuid (Sprik, Klein, and Chandler,
1985a, 1985b, 1985c). The results at I,, =6o, pcT =0.2,
are essentially the same for the hard-sphere Quid or the
static disordered system. In the case of the static disor-
dered medium, this work confirms that at low tempera-
ture, when occupation of the low-energy states is more
pronounced, the electron dominantly resides in low-
density regions of the material —the so-called Lifshitz
traps, as was previously discussed in reference to
Luttinger's work (1976a, 1976b), though the authors con-
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elude that Luttinger's approximations underestimate the
solvent density required for a given localization (judging
from the free energy at a given density and temperature).
For the fIuid case, the authors obtained results indicating
that the approximations of Nichols et al. overestimate
the density required for a given localization (the results
of this work for po. =0.2 are the same as those of the
previous one for po. =0.39).

A more realistic model calculation for an electron in
helium, using a pseudopotential electron-atom interac-
tion and a Lennard-Jones interaction among helium
atoms, was carried out for a temperature of 77 K by
Bartholomew, Hall, and Berne (1985). They considered
helium densities between 0.1 and 2 ( X 10 cm ) and
obtained results rejecting localization in smaller regions
for higher fIuid densities. There are quantitative but not
qualitative differences between the results in this work
and those of Chandler et al. (1984) and Sprik et al.
(1985a, 1985b, 1985c), partly rejecting a difference in
temperature (T-400 K in the previous work) and the
details of the interactions. Bartholomew et al. obtain lo-
calization (about 80 percent of the time) followed by
delocalization at 1.2X10 cm, though such results
may depend on the approximation. Other results at 77 K
are quoted below. In comparing with experimental elec-

l

po =00

12-

2-
ID

0
I

o = 0.03

0,2 0.4 0.6

((-(')/l)r

0.34

FIG. 9. Correlation length R (t —t') [Eq. (25)], for d =cr/2, as
a function of host density for two temperatures: A,, =16o

0

(upper curves) and A,, =6o. (lower curves); if o.=5 A, the upper
curves would correspond to 14 K and the lower ones to 100 K.
A time-independent region at intermediate times is characteris-
tic of localization with ground-state dominance (Nichols et aI.,
1984).

tron rnobilities (Bartels, 1975), the authors note that the
experiments appear to suggest either more effective local-
ization beginning at lower densities or explicitly dynami-
cal effects.

It has been noted that polarization efFects should be
considered in letting an electron interact with a Quid. A
first step in considering this problem in the path-integral
context was taken by Nichols and Chandler (1986), who
imbedded Drude oscillators in their hard spheres to allow
an electron a further interaction. In broad lines, this
work indicated that self-trapping was dominated by the
excluded volume interactions, though the polarization
efFects did afFect the solvation energy. Given possible
technical deficiencies in the previous electron-helium cal-
culations and the desire to explore the effects of polariza-
tion, Coker, Berne, and Thirumalai (1987) undertook
PIMC calculations of an electron in helium (309 K) and
in xenon (309 and 248 K), with realistic electron-atom
pseudopotentials and Lennard- Jones fIuids. Comparison
with the hard-sphere calculations of Sprik et ttl (1985a,
1985b, 1985c) may be aided by the structural differences
that have been noted between hard-sphere and Lennard-
Jones Auids (see Laria and Chandler, 1987). The results
of Coker et al. for electrons in helium (309 K) suggest
that beyond a helium density of 1.8 X 10 cm the cavi-
ty is well defined and there is ground-state dominance.
This is not the case for a density of 0.6X10 cm
These results should be compared with the predictions of
the old continuum model (Hernandez, 1975a) of metasta-
ble self-trapping, at this temperature, for a density of
1.2X 10 cm and stable self-trapping (by -2kT rela-
tive to the free state) by 1.6 X 10 cm . Parenthetically,
calculations by Kalia et al. (1990), to be briefly discussed
below, show metastable localization for the electron in
helium at 77 K, beginning at 0.6X10 cm, which is
also in excellent agreement with the older model referred
to above (see Fig. 4). The xenon work of Coker et al. in-
dicates that the polarization part of the electron-atom in-
teraction strongly influences the electron, in contrast to
the case in helium. This attractive interaction causes
substantial enhancement of the atomic density in the en-
vironments of the electron (substantial enhancements of
the electron-atom correlation function at distances
beyond the short-range repulsion distance) and appears
to lead to localization at subcritical temperatures (in the
metastable two-phase regime for bulk xenon), but not at
very low or very high densities; such behavior was previ-
ously discussed and had been very crudely estimated
(Hernandez, 1983). Coker et al. also obtained an
enhanced atomic density in the environment of the elec-
tron, in the regime where the bulk Quid has a stable sin-

gle phase, but do not observe obvious localization. The
experimental results (Huang and Freeman, 1978) are also
ambiguous.

Finally, quantum molecular dynamics in the adiabatic
Born-Oppenheimer approximation have been carried out
for an electron in helium at 77 K (Kalia et al. , 1989,
1990). The latter work may be used as an example of the

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991



694 John P. Hernandez: Electron self-trapping in liquids and dense gases

Xexp(ibtV /4 m) )t(tr, t)+O[(ht) ] . (27)

The atoms are treated classically and therefore obey

MR, = —V, U( I R; I ) —V, Id r I g(r, t) I'U (r —R, ) . (2g)

Implementation of Eq. (27) has three steps, two of which
use fast-Fourier-transform (FFT) techniques. First, carry
out the FFT to take g(r, t)~g(k, t), which is time pro-
pagated and then inverse FFT:

iatv /4m/(r t) y g(k t)e
—iatk l2meik r.

k

(29)

Then, multiply by the middle exponential in (27). Final-
ly, repeat FFT, time propagation, and inverse FFT. The
classical equation (28) is numerically integrated using
various algorithms. Carrying out these procedures in a
periodic box, for densities of n =pa =0.1, 0.17, and 0.25
(i.e., p=0. 61, 1.0, and 1.46X10 cm, with 512 atoms
for the lower densities and either 64 or 140 atoms for the
highest density), they obtained results that may be quoted
in terms of the participation ratios:

p(t)= 0f drip(r, t)l (30)

normalized to the volume of the n =0. 1 molecular-
dynamics box. A large value of this function corresponds
to a delocalized particle, a small value to localization.
For n =0.17, p(t) is essentially constant at —10

method and results. These authors use an electron-
helium interaction v described by the pseudopotential of
Kestner et al. (1965); the helium-helium interactions U
are of the Lennard-Jones type (E=10.22 K, t7=2. 576
A). The electron obeys the time-dependent Schrodinger
equation; thus the time development of the wave function
may be written as

g(r, t+b, t)= exp(ibtV /4m)exp iA—t g U(r —R~)

corresponding to a localized particle. Calculation of the
electron-helium radial distribution function G(r), rela-
tive to the electron center of mass, yields the results of
Fig. 10. It is clear that the electron occupies an essential-
ly empty cavity of radius —12 a.u. (atomic units). Such
excluded volume is also present for n =0.25. However,
for n =0.1, the p (t) obtained is shown in Fig. 11. It can
be seen that for this case the simulation was begun with a
localized electron; but it delocalized (3 ps), relocalized (4
ps), delocalized again (8 ps, to a dimension probably lim-
ited by the simulation cell), and then relocalized (10 ps).
This process was expected to continue. Therefore, for
such a helium density, it appears that localization is bare-
ly stable or metastable; the electron then samples local-
ized and delocalized states as a function of time. It ap-
pears that the electron localizes to form a bubble for den-
sities above 0.6 X 10 cm (as noted above); the bubbles
are nearly spherical and, at higher helium densities, have
excited states to which optical absorption is calculated by
these authors. Such results are in good agreement with
experiment and with older predictions with much more
simplified assumptions and continuum models, which
were previously reviewed.

In summary, path-integral and molecular-dynamics
calculations for an electron in a Quid can yield results of
high precision. The calculations are able to describe the
extent of electron localization in thermal equilibrium and
correlation functions between the electron and the Quid
atoms. Optical spectra and electron mobilities are also
accessible to this work. The results that have been ob-
tained confirm the physical description previously given,
which arose from simple continuum models. The onset
of localization in helium, as a function of temperature,
seems well described by the results quoted in Fig. 4.

There is insuIIIicient space in this article to do justice to
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FIG. 10. Electron-helium radial distribution function 6 (r)
measured relative to the localized electron center of mass, for a
helium density n =0.17 (i.e., 10 cm ') and 77 K (Kalia et al. ,
1990).

FIG. 11. Electron participation ratio p(t) [see Eq. (30)] vs time
in picoseconds, for a helium density n =0.1 (i.e., 6X 10 ' cm ')
(n =0.17 in inset) and 77 K. A small p(t) denotes electron lo-
calization. Note the changes between localization and delocali-
zation for the lower helium density. The calculated points have
been smoothed to a continuous line (Kalia et al. , 1990).

Rev. Mod. Phys. , Voa. 63, No. 3, July 1991



John P. Hernandez: Electron self-trapping in liquids and dense gases

all such recent topics. Therefore suKce it to note that
the concepts established in the previous sections have a
natural application to more complicated materials.
Moreover, these concepts and associated phenomena
must also be considered in discussing radiation chemis-
try, the rates of chemical reactions involving electrons in
fIuids, and even insulator-metal transitions in Quids.

IX. OVERVIEW

For the Auids of simple atomic systems, one can sum-
marize the available states for electrons as follows. The
high-kinetic-energy states are delocalized and the density
of states is free-electron-like; the potential Auctuations
are irrelevant to the density of states, compared to the ki-
netic energy. At low electron energy, in these systems,
the states are localized in space. The density of states de-
creases with decreasing energy, and such states are due to
inhomogeneities in the material that yield regions that
are more attractive than average to the electron. For low
electron energy, the region must not only be attractive
(low potential), it must also be large (low electron kinetic
energy). Thus, as the electron energy is decreased, the
suitable regions in the material become increasingly
improbable —decreasing the available density of states.
While the energy scale is determined by the average po-
tential (Eo), this does not mean that all states above Eo
are delocalized. Due to the potential fluctuations, the
relative potential-to-kinetic-energy scale plays a role in
determining where the localization threshold, also called
the mobility edge, is with respect to Eo. In thermal equi-
librium, the electrons in the system occupy the states
with a Fermi distribution appropriate to the system tem-
perature and the electron concentration (which fixes the
chemical potential). For low electron densities and low
temperatures, the energy range with non-negligible occu-
pation probability may be relatively narrow. In such a
case, all occupied configurations may be similar, and it is
adequate to describe them as a single state (particle in a
well of fixed radius, for example). In the case in which
the total density of localized states is small (a low fiuid
density, for example) and the temperature high, the most
probable occupied state may be delocalized, but some
fraction of the electrons must be in the (low electron en-
ergy) localized states. In the transition between these re-
gimes the density of electron states is smoothly varying.

The localized electron states in fiuid He and Ne (and in
H2 and N2) are associated with regions of lower density
than average, due to the dominant short-range repulsion
of an electron and an atom. On average, polarization
effects are minor in comparison with the Pauli repulsion,
even though the polarization interaction is long-ranged.
The situation reverses for the highly polarizable heavy
rare gases Xe and Kr; in these cases the Auids have a
higher density than average near the electron, although
the Pauli repulsion may lead to short-range density oscil-
lations. In fIuid argon the situation is very unclear; the
theory must contend with both the short-range repulsion

and the longer-ranged screened polarization without a
clear dominance.

In more complicated nonpolar materials (methane and
ethane, for example), the general features are as previous-
ly described, but with additional complications due to in-
termolecular interactions and steric constants. For polar
materials (as are ammonia and water) the situation is fur-
ther complicated by the permanent dipole moments and
hydrogen bonding. Localization in regions of a size corn-
parable to the intermolecular separations takes place in
this last class of materials and thus precludes a continu-
um model, at least in the immediate neighborhood of the
localization center.

In this article a discussion of the basic physics and
some phenomena concerning self-trapping of electrons
and other light particles in simple Auids has been present-
ed. Without deviating too far from this central topic,
some applications and related effects have been de-
scribed. It is hoped that the nonspecialist reader has
developed an appetite for looking further into this field
and that some specialists have been given a point of view
that will spur them to unravel fascinating phenomena
that exist in this area.
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