
Coupling impedance in modern accelerators

S. A. Heifets and S. A. Kheifets

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94909

A systematic review of theoretical results for the longitudinal and transverse impedances obtained by
different methods is presented. Definitions, general theorems, modal analysis, diffraction model, and
analytical results comprise the content of the paper. Several new results are included. In particular,
necessary and sufficient conditions for the independence of the impedance on the beam longitudinal direc-
tion are given. The impedances of two basic simple structures —that of a cavity and that of a step —are
studied in detail. The transition from the regime of a cavity to the regime of a step is explained, an ap-
proximate formula describing this transition is given, and the criterion for determining the applicability of
each regime is established. The asymptotic behavior of the impedance for a finite number M of periodical-
ly arranged cavities as a function of M is studied. The difference in the behavior of the impedance for a
single cavity and that for an infinite number of cavities is explained as the result of the interference of the
diffracted waves. A criterion for determining the transition in the impedance behavior from small M to
large M is presented.
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I. INTROOUCTION

The major problem of accelerator physics today is to
increase the stored beam current. This is important for
both existing and future high-energy accelerators, since
the rate of events in experiments with high-energy parti-
cles drops with the energy 4 and increasing the beam
current improves the yield.

The current stored in a modern high-energy accelera-
tor is limited by collective instabilities (provided, of
course, that the single-particle motion is stable, as is the
case for all accelerators). Collective instabilities could
arise either from direct electromagnetic (EM) interaction
of particles in the same bunch or, - indirectly, since a par-
ticle beam in an accelerator generates an electromagnetic
field while passing through discontinuities and variations
in the cross-sectional shape of the vacuum chamber.

Direct interaction between relativistic particles of the
same bunch on a straight trajectory becomes negligible
with the energy increase, since the Coulomb repulsion be-
tween the particles is compensated with an accuracy
1/y «1, y=C/mc by their magnetic attraction. All
the space charge effects [such as the Laslett tune shift
(Laslett, 1963)] which are dominant at low particle ener-
gies, can be disregarded as y~ao. The interaction of
particles on a bend trajectory comprises a very interest-
ing subject (Talman, 1986) but will not be considered in
the present paper (see also Keel, 1985; Piwinski, 1985;
Bassetti and Brandt, 1986; Channell, 1986; Lee, 1990).

Stability of the ultrarelativistic particle motion de-
pends mostly (apart from the beam-beam interaction) on
the interaction of the particle with electromagnetic
wakefields generated in accelerator structures by the par-
ticles moving ahead of it. The wakefields in turn interact
with the particles and may cause such collective effects as
single- and multibunch collective instabilities, bunch
lengthening, increase in the bunch energy spread, its
emittance growth, etc. (Gygi-Hanney, 1983; Zisman
et al. , 1986). The discussion of the collective effects can
be found, for example, in the papers by Hoffman (1976),
Chao (1982, 1983), and Pellegrini (1982). The properties
of the wakefields and the methods for their calculation in
the ultrarelativistic limit y —+ao are the subject of the
present paper.

The wakefield can be considered as a linear response of
the system to an external excitation produced in our case

by a beam current. In general, the response may be ex-
pressed in terms of a Careen's function. However, in most
cases it is suScient to consider the average effect of the
accelerator structure: an energy loss of a particle and a
transverse abrupt change in the particle momenta
("kick"), which a particle experiences when passing
through the structure. Wake functions describe such
average effects of an accelerator structure. They depend
both on the beam current distribution in the bunch and
on the properties of the beam environment.

To find the bunch wake function excited in a given
structure by a bunch of particles, it appears very helpful
first to find the point wake function excited in it by a point
charge. After the point wake function is found, the
bunch wake function can be determined by its convolu-
tion with the charge distribution. Finding the point
wake function requires study of the propagation,
diffraction and interference of the radiated EM waves.

In general, the point wake function has three com-
ponents. In what follows, we distinguish between two
types of point wake functions:

(1) The longitudinal point wake function, i.e., its pro-
jection on the axis of the structure.

(2) The transuerse point wake function, the two dimen-
sional vector perpendicular to the axis of the structure.

.fhe point wake function describes the interaction of a
particle with its environment in the time domain (Bane
et al. , 1984). The same interaction can also be described
in the frequency domain by the Fourier transform of the
point wake function —the coupling impedance (Bane and
Wilson, 1980; Wilson, 1982). Correspondingly, in what
follows we consider the longitudinal and transuerse im-
pedances.

The range of frequencies ~ studied in the present paper
extends up to some high-frequency which is well above
the cutoff frequency of the beam pipe of radius a, but at
the same time, such that the corresponding dimensionless
wave number is still small in comparison to the particle
Lorentz factor: 1( &boa/c (&y. This range is sufficient
for studying the stability of the shortest bunches used in
or designed for modern accelerators. Below the cutoff
frequency, impedance is defined by a few eigenmodes and
can easily be found by means of existing numerical codes.
For co ) c y/a the impedance falls off exporientially.

E rom its definition it is clear that the coupling im-
pedance is a property of the beam environment, but not
of the beam itself. This is the main advantage of the cou-
pling impedance concept. The real (resistive) part of the
longitudinal impedance describes the energy loss. The
imaginary part of the impedance is responsible for an in-
coherent tune shift and bunch lengthening. If the fre-
quency shifts of any two low-order synchrotron modes
lead to the degeneracy, transverse mode coupling (also
called fast hea, d-tail instability) occurs. Other instabili-
ties, such as the microwave longitudinal instability and
transverse fast blowup instability, depend on the absolute
value of the impedance. It is worthwhile to mention that
single bunch instabilities are due to the high frequency-
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impedance, whereas the multibunch instabilities depend
on the low-frequency narrow-band impedance.

The narrow-band impedance may be described as a
sum of narrow resonances. Each resonance is produced
by a localized mode whose frequency is below or not
much above the cutoff frequency of openings present in
the structure. In the time domain, this corresponds to a
slow-decaying oscillating wake function. In the high-
frequency region, well above the cutoff frequency, the
resonances overlap producing a smooth frequency depen-
dence of the impedance. In the time domain, this defines
the short-range behavior of the wake function.

The high-frequency impedance describes interaction of
particles due to the presence of abrupt changes of the
beam-pipe cross section as well as high-frequency tails of
resonant structures such as RF cavities, bellows, vacuum
ports, etc. It is significant if the bunch length is small in
comparison to the beam-pipe radius. Until recently the
bunch length in all accelerators has been larger than the
beam-pipe radius, and consequently the detailed behavior
of the high-frequency impedance was not of a major con-
cern. It was usually approximated by single broad reso-
nance parameters that were estimated from an experi-
ment. This model of the high-frequency impedance is
usually referred to as a broadband impedance (Hofmann
and Zotter, 1989). However, the new generation of ac-
celerators, such as high-energy colliders, synchrotron
light sources, storage rings designed to yield large num-
bers of mesons (P and B factories), etc. , utilizes very short
bunches. In this case, the energy loss is largely defined
by the high-frequency impedance. That makes desirable
a careful analytic analysis of the high-frequency behavior
of the longitudinal impedance (Bisognano, 1990a). Our
paper emphasizes this subject.

We restrict ourselves to theoretical methods and re-
sults for the impedance, and do not discuss measurement
techniques or purely numerical methods of the im-
pedance calculations.

The impedance of a given structure can be measured
on a test bench either by using a small dielectric probe
and then interpreting the results according to the Slatter
(1950) theory, or by using a short current pulse sent
through a wire (Sands and Rees, 1975; Gluckstern and
Li, 1990). The impedance of the whole accelerator can
be estimated from measurements of bunch lengthening,
the coherent tune shifts, etc. We refer the reader to the
lectures by Lambertson (1989) and by Palumbo and Vac-
caro (1989)on this subject.

Numerical calculation of the point wake function is
not a simple task due to the singularity of the charge dis-
tribution. Numerical methods are more appropriate for
finding the bunch wake functions for nonsingular charge
distributions (Weiland, 1980, 1982). They are also the
only methods applicable to complex structures. Never-
theless, such calculations require significant time even
with the most advanced computers.

A more conventional method consists of finding the
impedance and using its inverse Fourier transformation

to find the point wake function. Clearly, the utilization
of this method demands knowing the impedance up to
very high frequencies.

Direct numerical calculation of the impedance similar-
ly faces difficulties from the enormous number of reso-
nance contributions that should be taken into account
(Wang and Zotter, 1989), which justifies development of
the analytical and semianalytical methods described in
the present paper. Such methods not only provide useful
formulas for estimating the impedance but also give in-
sight into the physics of the wakefield generation.

Whenever possible we check our results by the numeri-
cal code Tact (Weiland, 1983a), which allows one to cal-
culate the bunch wake functions in the time domain.
Another useful code existing for this purpose is ABCI
(Chin, 1988).

Throughout our discussion we assume that the particle
energy is constant and does not change as the result of
the radiation in the structure. We will also neglect small
oscillations of a particle moving in an accelerator. In
other words, we assume that the vector of the particle ve-
locity v is constant (at least while traveling through the
structure under consideration) and is directed parallel to
the axis of the structure, which is the z axis in the coordi-
nate system we have chosen. The particular case of a
beam circulating in a toroidal cavity where

~
v

~

=constant
is considered in papers by Warnock and Morton (1988,
1990), Ng (1988, 1990), and Ng and Warnock (1989).

We also neglect the resistivity of the metal walls (ex-
ception in Sec. II.D). In the ultrarelativistic limit, the
resistive corrections are negligibly small and are outside
the scope of the present paper. The assumption of super-
conductivity allows us to impose simple boundary condi-
tions on the EM field, which substantially simplify our
derivations.

The main objective of the present paper is to review
properties of the point wake function (in the time
domain) or, equivalently, the behavior of the coupling
impedance (in the frequency domain). The remainder of
the paper is organized as follows: The basic concepts are
defined in Sec. II. In Section III several general theorems
concerning the impedances are stated. Here we give the
Panofsky-Wenzel (1956) relation of the transverse and
longitudinal point wake functions, and consequently the
relation of the transverse and longitudinal impedances.
We then present the radial dependence of impedance
modes due to Weiland (1983b). Two useful results fol-
low. . One is an expression of the impedance in the high-
frequency region in terms of low-frequency eigenmodes;
the other is a proof of the independence of the impedance
on the direction of the bunch motion along +z.

Section IV is devoted to evaluation of the narrow-band
impedance for a step, a cavity, and a collimator using the
field matching technique. A perturbation method is
developed which simplifies calculations, and a hypothesis
explaining the appearance of trapped modes is suggested.

In Sec. V, a simple diffraction approach for evaluating
the high-frequency impedance is developed. For two
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structures for which exact methods exist and the im-
pedances are known, this simple approach is shown to
give correct results.

In the last section (Sec. VI), we present some analytical
calculations of the high-frequency impedance. This can
only be done in limited, cylindrically symmetric simple
cases, such as a cavity or a step in a waveguide cross sec-
tion. Nevertheless, there are several reasons to consider
these cases analytically.

~ First, analytical considerations help us to better un-
derstand the details of the radiation process.

~ Second, analytical results complement the purely nu-
merical results of existing codes, and provide an answer
in parameter regions where existing codes have
difhculties.

Third, analytical results for a cavity and for a step
are interesting in themselves. Sometimes, other more
complicated structures can be considered as combina-
tions of cavities and steps. A good approximation for the
coupling impedance of such a structure could be a sum of
contributions of its parts. Solutions for several interest-
ing structures can be obtained from the two cases studied
here. For example, a cylindrical pipe of radius a ending
with an infinite Qange is a special case of a step in a pipe
cross section from radius a to radius b in the limit as
b~ oo.

Due to the immensity of the field, we do not pretend to
present here a comprehensive description of all the re-
sults obtained up to now. Neither were we able to men-
tion all the papers relevant to our subject. Our aim was
to give a rather representative list which will provide a
reader with an introduction to the present status of the
field. We regret, if by our oversight, some work was not
referred to.

II. BASIC DEFINITIONS

QO

wi(s, r)= —— dt v E(z, r, t), „, „U=c .
q

(2.2)

f(co)= f dt f(t)e' '. (2.3)

The longitudinal impedance Z& (co,r ) is defined as a
Fourier harmonic of the point wake function:

00

Zl(co, r) =— ds w&(s, r)e' '~' .—oo
(2.4)

If the particle velocity has only the longitudinal com-
ponent U„ the longitudinal impedance is expressed in
terms of the Fourier harmonic of the longitudinal electric
field.

Note that the field E(z, r, t) does not include the self-
interaction of the particle. The radiated part of the field
satisfies the homogeneous wave equation and the radia-
tion condition

~
E

~
~0 as z ~+~ (Jackson, 1975).

Equations (2.1) and (2.2) can also be derived by consid-
ering the energy Aow of the EM field. The field of a par-
ticle moving along the axis z of a smooth pipe has only
two nonzero components: the radial electric E, and the
azimuthal magnetic H&. The energy Bow described by
the Poynting vector P —EXH is directed along the axis z
and remains constant. There is no energy loss in this
case. The field of a particle changes at a discontinuity of
the vacuum pipe causing the energy loss. In the first ap-
proximation, the loss is given by the product of the z
component of the electric field E, at the discontinuity
and the unperturbed azimuthal component H. This
gives a nonzero radial energy Aux, producing Eqs. (2.1)
and (2.2).

In general, the radiated field depends on the transverse
offsets of both the trailing and the leading particles. The
dependence on the transverse offset of the trailing parti-
cle r is explicitly indicated in Eq. (2.2).

We define the Fourier harmonic of a function f (t) by

A. The longitudinal impedance Z&(co, r)= —— dz E, (z, r)e
q

(2.5)

b, C, —:eqw, (s) . (2.1)

If the electric field E excited by the charge q is known,
then the point wake function can be found by integrating
the instantaneous work' produced by the field on a trail-
ing ultrarelativistic particle with an offset r:

The longitudinal point wake function ml is defined as
the energy loss b, 8, of a test particle with charge e, that
follows, at a distance s, a pointlike bunch having total
charge q =elV (Bane and Wilson, 1980; Bane 1986):

Xp(s&, rz)w&(s& —sz, r&, r&) . (2.6)

In the case when the transverse dimensions of the bunch
are small, p(s, r) can be approximated by p(s)5(r) and the
loss factor is

For a single bunch, the energy loss vI per particle aver-

aged over the particle distribution in the bunch is given
by the convolution of the point wake function with the
normalized longitudinal particle density p(s, r )

f ds drp(s, r)=1:

(w, (s)) =f &—, &r,ds2&r2p(s„r, )

~The dimensions of the longitudinal wake function are V/C
(volt per Coulomb) in the MKS system and 1/cm in the CCATS

system. For this reason we chose not to call this quantity the
wake potential as is usually done. Correspondingly, dimensions
of the longitudinal impedance in these systems are 0 (ohm) in
the MKS system and sec/cm in the CCATS system.

fd~Z, (co)Pi(co)i' .1

2n
(2.7)

Here Zl(co):—Z&(co, 0) and P(co) is the Fourier harmonic
of p(s).

For a particular case of a Gaussian longitudina1 distri-
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bution of the bunch density with the rms length 0

its Fourier harmonic is real

(2.8)

on average —,
' of its own charge. Since there is no EM

field in front of an ultrarelativistic particle, it follows
from the causality principle that wI(s) =0 for s (0.

The energy loss per particle into a single mode A, of an
infinitely short bunch is

2 2 2—co o /2c (2.9) k8g/X=e K~ . (2.15)

and there is no need to take the absolute value in Eq.
(2.7).

For resonance structures such as radio frequency (RF)
resonators, cavities, etc. , the impedance has narrow max-
ima at the resonance frequencies. Hence, the narrom-
band impedance may be represented by the sum of reso-
nances:

K 4U. (2.16)

The loss factor ~z can be expressed (Wilson, 1978) in
terms of the eigenfunction E, corresponding to the mode

ZP (co)=t glrz . +1 1

CO COg+ l fg 6)+COg+ I gg
—f d F A,

( )
icuz/U (2.17)

where cu&, y& and K& are the frequencies, widths, and loss
factors of the A,th resonance, respectively. In the corn-
plex co plane these parameters define the positions of the
poles and their residues. Equation (2.10) is usually writ-
ten in the form

R~
Z NB(

1+iQ & ( coq/co co/coq )— (2.1 1)

where K& and y& are related to the shunt impedance R&
and the quality factor Qz ..

MgR g
~ 'Yx (2.12)

The action of a bunch on a trailing particle at some dis-
tance s is dominated by a few low-frequency higher-order
modes (HOM). On the other hand, for s=0 (Wilson,
1978)

w&(0) = g ~z .

The seeming discrepancy of this formula with Eq. (2.13)
is a consequence of the fundamental theorem of beam
loading (Wilson, 1978). The factor —,

' appears from the
fact that a particle is subject to the wake function pro-
duced only by the charge preceding it and, hence, "feels"

Sometimes the loss factor is expressed in the units of volts per
picocoulomb (V/pC), 1 V/pC = 1.11 cm

For example, for the fundamental mode of a typical RF
resonator (R/Q)0=200 0, and for coo=500 MHz, the
loss factor Ko 0.35 cm '. In the time domain, the
point wake function which corresponds to the narrow-
band impedance Eq. (2.10) is

1
—co&s /2Q& v

w&(s) =2 g ~icos(cozs/U )e, s )0 . (2.13)

sinhx
coshx cos+

(2.18)

If Qz )) 1 and the condition for the resonance excitation
k&s~ =2mn, n an integer, is fulfilled, the loss factor can be
substantially enhanced, i.e.,

F—4Q&/2vrn . (2.19)

Modal analysis is an effective way to calculate the im-
pedance for frequencies below or comparable to the
cutoA frequency co, , -c /a, where a is the beam-pipe ra-
dius. For higher frequencies, the density of the reso-
nances increases. In addition, since such an EM field
may propagate in the beam pipe, the widths of the reso-
nances get large. In this case the impedance as a func-
tion of the frequency becomes extremely complicated.
Observable effects though, can always be. described by an
expression containing the convolution of the impedance
with the spectral density of the bunch. Hence, only the
average impedance plays a role. Such a high fvequency-
impedance is a smooth function of the frequency.

and U& is the energy stored in the mode A,.
In practice, the loss factors and the resonance frequen-

cies of the low modes are found numerically using a suit-
able computer code such as URMEL (Weiland, 1983c),
SUPERFISH (Halbach and Holsinger, 1976), AMus (De-
Ford et al. , 1989) or others for two-dimensional (2D)
structures. For 3D calculations one can use code MAFIA
(Klatt et a/. , 1986), ARGUS (Mankofsky, 1988) or MAGIc
(Coplen et al. , 1988).

In the case when the bunch wake functions are excited
by a train of equidistant bunches with the bunch spacing
s~, the interference of the fields excited in the same struc-
ture by different bunches of the train has to be taken into
account (Wilson, 1982). The loss factor of a given mode
in the limit v ~c should be multiplied by a factor
F(kiss/2Q&, kiss), where kz=coz/c and Qz are the
mode wave number and the quality factor, respectively.
The function I' of two arguments is
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B. The transverse impedance

The particle moving in a cylindrically symmetric struc-
ture that is uniform in the longitudinal direction with an
offset, generates transverse EM field propagating with the
particle. However, in the ultrarelativistic case, the trans-
verse electric and magnetic forces cancel each other and,
hence, the net transverse kick in this case is zero. Any
distribution of the uniformity demotes this balance, and a
particle experiences transverse force which depends on
both the bunch and the particle offsets. For a small mag-
nitude of the bunch offset rp, the transverse EM field is
proportional to rp. The dependence on the bunch offset
can be removed from all the expressions by dividing them
by rp. The conventional definition of the transverse wake
function is done in this way. The price for this is
different dimensions of the respective transverse and lon-
gitudinal wake functions, loss factors, and impedances.

Correspondingly, the transverse point wake function is
defined as the integrated transverse kick caused by the
transverse component of the radiated field divided by the
bunch offset rp ..

of the eigenfunctions V&..

c V~ VxV
Kg-

~~&p

where Vz means the derivative over r.

(2.26)

C. The loss factor for a step

q ikz=2
CT

=2
cr

(2.27)

(2.28)

To illustrate the concept of a longitudinal loss factor,
we estimate it here for a simple example of an abrupt
change in the cross section of a circular waveguide from
radius a to radius b (a "step") (see Fig. 1).

We start by considering a particle moving in free
space. It is convenient to direct the x axis along the par-
ticle trajectory. For an ultrarelativistic particle, a good
approximation for the nonzero components of the field in
the region r &y/k is

wi(s, r):——] OO V
dz E+—XH (z r t)l, (+)~, .

qrp c

(2.20)

The field propagates synchronously with the charge. In
the region kr )Py the field is exponentially small. The
total field energy of the charge is given by

Zi(co, r)= ——f ds wi(s, r)e'"'~",
—oo

(2.21)

or, cf. Eq. (2.5),

The transverse impedance Zi(co) is defined as the cath

Fourier harmonic of —iu~:
8'=2m f dt f r dr (EXH),

2~c f—" r dr f '""d~lE.„l' .
min

(2.29)

Using the field from Eq. (2.27), the integral diverges at
small r:

Zi(co, r) =— f" dz E„+—"XH„e-'"'"
qrp —~ " c I'min

(2.30)

(2.22)

The transverse loss factor is defined analogously to Eq.
(2.7):

Ki—:(wi) = f dcolpg~)l Zi(~) .2' (2.23)

Here Zi(co):—Zi(co, 0).
The transverse narrow-band impedance can be

represented by a sum over the pole terms:

1( ~

I &k

b

~8 t'
V z

(a)

N/XYNXN/Ã/XN/Ã////
3L

&//////NAY////////////z

Zi (co)—i g Ki
1 1

CO COg+l Pg co+cog+l Pg

(2.24)

/Px///////Ã////////////i
(b)

NPÃPPX/XXXP8PX/XXXXXX//z

That gives the transverse point wake function

—co&s /2Q& Uwi(s)=2 +Kisin(rois/U)e ", s &0 . (2.25)

Similarly to Eq. (2.16), the transverse loss factors Ki can
also be expressed (Bane, 1980; Bane et al. , 1984) in terms

FIG. 1. Geometry of the waveguide cross section step and the
coordinate system; (a) incoming charge, (b) outgoing charge.
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(If r;„ is the classical electron radius e /mc the energy
of the synchronous component of the field 8'is of the or-
der of the energy of a particle 8: 8'= 8, and it actually
depends on the definition of the electron mass and the
charge of a particle. For a rigid bunch of X particles the
contribution of all particles

2

cr
ik (z. —z. )j (2.31)

can be found replacing the sum of the integral over the
normalized distribution function p(z):

2

2 2' ik(z& —z&)IE., I

= dz, dz, p(z, )p(z, )e
cr

(2.32)

For a Gaussian bunch with the rms length cr the energy
per particle is

Xe yo.2

r;„ (2.33)

Consider now a particle moving in a circular
waveguide of radius a. For yo. )a the energy of the syn-
chronous component of the field moving with the particle
is

JY(a) = — ln
Xe a

&7r o
(2.34)

Suppose now that the particle passes through an
abrupt change of the pipe cross section. Then the change
to the energy of the synchronous component of the field
EWis the difference W(a) —8'(b):

than given by Eq. (2.38). Nevertheless, the difference is
always the constant

~,„,—a;„=26,8'= — in —.
cr o a

(2.39)

Since below the cutoft frequency of a pipe no radiation
occurs, 6„d=0, for a long bunch o- )a it follows from
Eqs. (2.36) and (2.37) that a „=—58'and K',„,=b, W; i.e.,
the absolute value of the energy loss or gain 68'in such
a case equals half the value of the energy loss ~,'„, for a
step-out. The above consideration for the energy loss is
also applicable to the longitudinal impedance; see Sec.
IV.C.

l3. The resistive wall impedance

1 c
w& (s)= 2' o R

3/2
1

for s&0. (2.40)

One particular source of the high-frequency impedance
is the resistivity of the beam-pipe walls. Although the
efFects of the resistivity in the ultrarelativistic case are
small and neglected in the present paper, we give here
formulas for the point wake functions and the im-
pedances for comparison with those produced by discon-
tinuities of the waveguide.

The longitudinal point wake function generated by the
image current f1owing in the wall of radius a with the
resistivity o.R decays asymptotically with the distance s
behind the leading particle as s ~ (Morton et ai. , 1966;
Chao, 1982);

68 = — ln-Xe b

&7ro. (2.35) The corresponding resistive impedance per unit length is
inductive and increases with frequency:

s,'„,=6@„d+hW .

(2.36)

(2.37)

For the step-in case, the radiation propagates in the
opposite direction with respect to the particle motion.
Hence, the interaction of the field with the particle is
small, ~„=0. The energy of the radiation is taken out
from the synchronous component of the field:

hB„d -—b, W. From Eq. (2.37) for the step-out case, we
obtain

We must distinguish two cases: a particle entering a
narrowing pipe (a "step-in") and a particle exiting into a
broadening pipe (a "step-out"). The energy loss in these
two cases is defined by the term 68'and the radiated en-

ergy AD„d..

Zo
Z( =(1 i)—

47M 2~0.R
(2.41)

R 1 c
wa ORs3

1/2

for s&0. (2.42)

The corresponding resistive impedance per unit length

decreases with frequency:

Here Zo =4m/c —=377 Q.
Similarly, the transverse point wake function decays

asymptotically with the distance s behind the leading par-
ticle as s

2%e b
OIIt

— lnV'~ o- a
(2.38)

1/2

Z~ =(1 i)—
a 27TO R Cg

(2.43)

More accurate calculation shows that ~ „ is not exactly
zero, but has a small negative value. That corresponds to
the gain of energy (Kheifets and Heifets, 1986a; Chan
and Schweinfurth, 1987) that can be interpreted as the at-
traction by the image charge. Respectively, ~,'„, is less

ill. SOME GENERAL THEOREMS

In this section we discuss several useful general state-
ments regarding the coupling impedances.
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A. The Panofsky-Wenzel theorem

The Panofsky-Wenzel theorem (Panofsky and Wenzel,
1956) gives the relation between the longitudinal and
transverse point wake functions:

Btvi(s, r)
Bs

1
Vi ivy (s, r ) .

rp
(3.1)

limEi(z, r, t ) =0 as z ~+~ . (3.2)

This relationship follows directly from the definitions of
Eqs. (2.2), (2.20), and Maxwell's equation ikH=VXE,
provided that transverse components of the radiated field
are zero at infinity:

(3.8) which are finite on the axis r =0 are

E"(k r)= Y"(k)r- m ~0

E' +—'(k r) =Y' +—'(k)r —' (m+1) ~ 0,
(3.9)

(3.10)

ZIm
E"(k,r) Y"(k)r, m~0,

q
(3.11)

where functions Y"(k) and Y' —'(k) are defined by the
boundary condition for Ek(r, 8) Under the conditions
considered here, the longitudinal and transverse im-
pedances for each mode m can be expressed in terms of
E"(k,r):

By applying the Fourier transformation in the longitu-
dinal coordinate s to both sides of Eq. (3.1), one obtains
the expression for the transverse impedance in terms of
the transverse gradient of the longitudinal impedance:

BE"(k,r)
Zrm

qk Br

mr"(k)
qk

(3.12)

UZi(s, r)= ViZ, (s, r) .
for p

(3.3) im E"«r)
Om

im Y"(k)
qk

(3.13)

B. The radial dependence of the impedance

For cyli ndrically symmetric structures the radial
dependence of the coupling impedances in the ultrarela-
tivistic case is found explicitly by Weiland (1983b). To
obtain his result, note that the radiated part of EM field
satisfies the homogeneous wave equation. For its Fourier
harmonic E„,the equation is

7 E +k E„=O, k =co/c . (3.4)

The synchronous component of the field, i.e., the com-
ponent whose phase velocity equals the velocity c of the
particle, is then defined as follows:

Ek(r, O)= I dz E (z, r, 0)e (3.5)

El, (r, 8)= g E (k, r)e' (3.6)

Hence, the azimuthal harmonics can be treated indepen-
dently from each other.

The equations for the projections of the azimuthal har-
monics are easy to obtain using Eqs (3.4) and (3.5):

The boundary conditions for E (z, r, 8) mix components
of Ek(r, 8) with diFerent k. However for cylindrically
symmetric structures, the boundary conditions do not
mix the azimuthal harmonics E, which are the
coefFicients in the expansion

These formulas, which are in agreement with the
Panofsky-Wenzel theorem Eq. (3.3), give the scaling of
the impedance with the offset r of the trailing particle. In
the dimensionless form, Z& -(r/a), and
Zi -(r/a) where a is a characteristic transverse
dimension —for example the pipe radius. Usually the
transverse size of the bunch o i is much smaller than a [to
prevent particle losses, usually a ~(10—20)oi]. Hence,
the monopole mode (m =0) dominates the longitudinal
impedance, while the dipole mode (m =1) dominates the
transverse impedance. Higher-order modes m ~ 2 can di-
lute the transverse emittance of a bunch. However, the
efFect is usually negligible

From Eqs. (3.11)—(3.13), it follows that the longitudi-
nal impedance of the azimuthally symmetric monopole
mode (m =0) is independent of the coordinate r. The
transverse impedance of this mode is zero. Hence, in this
case the longitudinal impedance can be calculated by in-
tegrating the field over z at any value of the coordinate r.
In particular, it is convenient to integrate the field along
the pipe wall and its continuation inside the structure.
Since the longitudinal field on the wall is zero, the in-
tegration is restricted to the line inside the structure only.
With subsequent rescaling of the respective impedance
with the ofFset r, this procedure can be applied to any
other mode m as well.

For the dipole mode m =1 from Eq. (3.12), it follows
that

2

r Br Br r
(3.7) z„~„.

r1 (3.14)

B (m+1)
Qr Qr r2

(3.8)

where E'*'=E'"'+iE' '. The solutions of Eqs. (3.7) and

In what follows we consider the longitudinal im-
pedance. The transverse impedance can be obtained
from it by applying either Eq. (3.14) for m =1, or the
Panofsky-Wenzel theorem for any m.
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C. Dispersion relations and the finite frequency sum rule

Zi( —co*)=+Zi'(co), (3.15)

where an asterisk indicates the complex conjugate value.
As follows from this equation ImZ&(0)=0. [Note that
according to the definition of the transverse impedance
Eq. (2.22), Zi( —co*)= —Zi (co).]

Next, causality requires that in the ultrarelativistic
limit y ~ oo there is no field in front of the charge:

to (s)=0 for s (0 . (3.16)

Therefore, all the singularities of the impedance must
lie in the lower half of the complex co plane. Provided
that Z&(co) tends to zero as

~
co~ —+ ~, the Cauchy integral

formulas give the following Kramers-Kronig dispersion
relations between Zi(co) and Zz(co), the real and imagi-
nary part of the longitudinal impedance, respectively:

Several important properties of th8 impedance can be
derived from the analytic continuation of the impedance
into the complex co plane. First of all, the point wake
function is real by definition. Therefore,

The function Z(co) decreases asymptotically, at least as
Its real part Z& satisfies the dispersion relation,

Eq. (3.17). Its imaginary part Zz has an additional pole
at co =0. Hence the dispersion relation for it must be

2~Z2(co)= —~— PVf dv
V CO

(3.21)

To assure the correct asymptotic behavior
Zz(co) =co for ~co ~ co, the following "superconver-
gence relation" must hold:

f dvZ, (v)=
0 2

(3.22)

Z, (co)= — 1+o (3.23)

Then, for any 0)co„Eq. (3.22) give

Otherwise, Zz(co) would fall o6' as co ', which is too
slow.

Define now a sufficiently large frequency co, such that
for any co) o),

vZ2(v)
Zi(co)= PVf—dv

V
(3.17) f dv Z (v) — = 1+o

0 Qj 2 0 (3.24)

2a)Z2(co)= — PVf dv
7T V CO

(3.18)

Z&(co) =a — + " +o(co ),(1+i) i E

V~ co
(3.19)

where a and g are two unknown real constants. We keep
here the first few terms of the impedance expansion.

Consider the difFerence

Z(co) =Zi(co)—a(1+i) i
V~ co

(3.20)

where PV denotes the principal value of the integral. If
the impedance tends to a finite limit as ~co~ —+ ~, similar
dispersion relations hold for the difFerence of the im-
pedance at finite and infinite co, respectively. The disper-
sion relations allow one to find the impedance by calcu-
lating either the real or the imaginary part only.

The dispersion relations can be used to determine the
asymptotic behavior of the impedance from the parame-
ters of its low-frequency resonances (Heifets, 1990d).
Derivation of this formula is similar to that of the finite-

energy sum rule (Horn et al. , 1968). Analogously, we
call this the finite-frequency sum rule.

Suppose, for example, that the high-frequency tail of
the impedance of 'some structure decreases with frequen-
cy as co '~; see Eq. (6.32), and that it can be expanded
for large co into a power series in co

' (to the end of Sec.
III.C, we restrict frequency co to positive values, co) 0).
We know that such asymptotic behavior has, for exam-
ple, the impedance of a cavity with side pipes (Lawson,
1968, 1990; Dome, 1985; Heifets and Kheife4s, 1987,
1990). In this case, Eq. (3.15) gives

or

a= f dvZi(v)—1

2&n 0
' 2

CO

1+o &n

=2~v „&„" 2
L

(3.26)

Equation (3.19) now defines the impedance for all co in
terms of the parameters of several low-frequency reso-
nances:

ZI(co) =i B(Q co)—
67 COg+ l Pg

N+COg+l gg

+8(co—0) vr(1+i)
2v coA ~ (n

(3.27)

Here 6(x) is the step function: 8(x)=1 for x )0 and
8(x)=0 for x (0. The parameters zi, coi, and yi can
easily be found for any given structure by one of the ex-
isting computer codes; e.g. , URpcEL. If Q is large enough,
Z&(co) obtained in this way is independent of the particu-

(3.35)

Note that the right-hand side of this expression is in-
dependent of Q, since e is a constant independent of co.

In the region m (0, Z, (co) can be represented as the
sum of resonant terms. Using Eq. (2.10) we obtain
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Q/2x [GHz]

FIG. 2. The finite frequency sum rule [see Eq. (3.28)]. Crosses
represent results of numerical calculations. The curve is a pa-
rametrization by Eq. (3.29).

We follow here his idea in a somewhat simpler way
(Heifets, 1990c) to obtain a more general and physically
transparent proof of this property for both longitudinal
and transverse impedances. The result is valid for a cavi-
ty with no azimuthal symmetry, and for arbitrary parti-
cle velocity as long as it Inay be considered constant. At
the same time it is shown that the impedance is direction-
ally symmetric only if the entrance and exit side beam
pipes have the same cross sections.

Consider the cavity of an arbitrary configuration and
let a bunch travel through it along the axis z. We attach
a subscript, "+"or "—", to all quantities pertaining to
the respective cases when the bunch travels in the posi-
tive or negative direction parallel to the z axis. To exam-
ine both the longitudinal and transverse impedances, we
assume that the bunch trajectory is offset from the axis
by a transverse vector a.

The current densities have only z components. The
Fourier harmonics are

j,+ =q5(r —a)exp(iruz/u), p +=j,+/u, (3.30)

j„, = —q5(r —a)exp( iroz—/u), p = —j„, /u .
lar choice of Q. The sum

x(Q) =—
Note that

(3.31)

can be parametrized as j6) jco+ & pro pcs+ (3.32)

x(Q)=~+ &Q+o
2 ~ v'~ (3.29)

The fields E + and E excited by such sources satisfy
the following wave equations:

from which both unknown parameters a and g can be
found.

Figure 2 (Heifets, 1990a) illustrates this procedure.
The sum Eq. (3.28) was calculated with the help of the
code URMEL for the CEBAF cavity (the fundamental and
cutoff frequencies are 1.5 and 3.2 GHz, respectively) and
is plotted here as a function of Q. Parametrization by
Eq. (3.29) (solid line in Fig. 2) gives /=0 and shows that
a is independent of 0 for 0 larger than, say, twice the
cutoff frequency.

D. The directional sYmmetrY of the impedance

The independence of the impedance on bunch moving
either in +z or —z direction is an important feature of
an accelerator structure. Recently, Gluckstern and
Zotter (1988) considered a cylindrically symmetric but
longitudinally asymmetric cavity with side pipes of equal
radii. They were able to prove that for a relativistic par-
ticle, the longitudinal impedance of a cavity with arbi-
trary shape is independent of the direction along the z-
axis in which the bunch travels. Their result corro-
borates numerical observations of the independence of
the bunch wake function obtained with the code TBCI.
Bisognano (1990b) gives an elegant proof of the same
statement. His approach is based on a reciprocity rela-
tion applied to the tensor Green's function.

co 4&lcd .V' + E +=4m.V'p + — j +,c c
(3.33)

2

C C
(3.34)

as well as the boundary conditions for their tangential
components:

E.+1,.„=0, E. I,.„=0, (3.35)

and the radiation conditions for the radiated part of the
EM field:

limE~+(z, r, t ) ~, ~, +,~&„=0, limE" (z, r, t ) ~, ~, +,~&„=0

as z~+~ . (3.36)

The longitudinal impedances Z+ and Z are [see Eq.
(2.5))

Z+(co, r) = ——I dz E, +(r,z)e
g —oo

Z (co,r)=+ — dz E, (r,z)e+' '~" .
g —oo

(3.37)

(3.38)

Let us find out under what conditions the fields E„+
and E„are complex conjugates of one another. Substi-
tuting Eqs. (3.32) into (3.34) and taking its complex con-
jugate, we obtain
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07 + 4&I co
V + E* =4~(7'p„+ — j + .

C C
(3.39)

The boundary conditions shown in Eq. (3.35) are also val-
id for E„.We now need only one additional assump-
tion, that there are no incident waves accompanying par-
ticles "+" and "—"; then the equations and all the
boundary conditions for E and E„+ are the same, and
we may conclude that

(3.40)

From the Maxwell equation i (cole)H+=V'XE+, it fol-
lows that

(3.41)

We now multiply Eq. (3.33) by E and Eq. (3.34) by

E„+, subtract the results, and integrate the difI'erence

over the volume of the cavity and the side pipes bounded
by imaginary cross sections at z =+/, g—+ ~. We then
obtain the I.orentz reciprocity theorem (Collin, 1966):

fdV(E j + —E+ j )

=fdS (E +XH —E XH ~) . (3.42)

4~q [Z (co, r) —Z+ (co, r)]
C

= fdS [(E + XH . —E XH +)t
—(E + XH EXH +)g ]—, (3.43)

where the subscripts R and L, refer to the beam-pipe
cross section at z =+/, respectively. Using Eqs. (3.40)
and (3.41) this equation can be rewritten in the form:

[Z ( co, r )
—Z+ (co, r ) ]

= fdS [(E +XH*++E*+XH„+)~
—

( E + X H *++E*+X H „+)~ ] . (3.44)

The right-hand side of this equation is real. Hence, the
imaginary parts of the impedances are equal:

ImZ+ (co, r) =ImZ (co, r) . (3.45)

The integration on the right-hand side is performed over
the surface enclosing the volume over which the integra-
tion on the left-hand side is performed, i.e., over the walls
of the cavity, the walls of the side pipes, and the bound-
ing cross sections. Since the tangential electric field on
the walls is zero, it is sufIicient to perform the integration
only over these cross sections. The integration over the
transverse coordinates in the left side of Eq. (3.42) is per-
formed easily by using Eq. (3.30). The remaining integra-
tion over z gives the longitudinal impedance; see Eqs.
(3.37) and (3.38). We obtain the following expression for
the diA'erence of the impedances for two directions of the
bunch travel:

The integrals in the right-hand side of Eq. (3.44) have a
simple physical meaning. They give the EM field energy
Aow through the cross sections of the side pipes. If these
cross sections are far enough from the cavity, then the
only part of the EM field impinging on them is the syn-
chronous component accompanying the bunch. This is a
direct consequence of the radiation condition, Eq. (3.36),
which is assumed to be fulfilled here. For the case when
both side pipes have similar and equal cross sections, the
synchronous components of the field at z=+~ are the
same. It follows then from Eq. (3.44) that both longitudi-
nal impedances are equal. Applying now the Panofsky-
Wenzel theorem, Eq. (3.3), we see that the same is true
for the transverse impedances.

However, for unequal or nonsimilar pipe cross sec-
tions, the synchronous components of the two fields are
different, even at z =+ oo. We cannot say that Eqs. (3.40)
and (3.41) are necessarily true. In this case the real parts
of the impedances for two directions may difI'er by a con-
stant.

In the ultrarelativistic case, y~ (x, for the side pipes
with round cross sections, the difFerence of the energy of
the synchronous components in the pipes with radii a
and b is proportional to the constant ln(bla) (Balakin
and Novokhatski, 1983); see Sec. II.C. Hence, the
difterence of the real parts of the impedances is propor-
tional to the same constant. The impedance for soch a
case is calculated in Sec. IV.C (Kheifets, 1986, 1987).

IV. THE MODAL ANALYSIS OF THE IMPEDANCE

We now turn to the study of the narrow-band im-

pedance given by the sum of resonant contributions of
eigenmodes, Eqs. (2.13) and (2.14). Effectively, only the
modes which have frequencies below or comparable to
the cutofF' frequency ~, , =c/a of the beam pipe with ra-
dius a contribute to the narrow-band impedance (Heifets,
1989). The widths of the resonance peaks above the
cutofF' frequencies rapidly become large and their height
decreases. The resonance curves overlap, producing a
smooth high-frequency impedance considered in Secs. V
and VI.

The narrow-band impedance can be found analytically
in the case when the structure may be divided into
several parts for which the solution of the Maxwell equa-
tions is known. The field for the whole structure can
then be found by the field matching technique (Keil and
Zotter, 1972; Zotter and Bane, 1979), i.e., by requiring
the field to be continuous across contiguous regions.

The field-matching technique is described in Sec. IV.A.
Using it, one can derive the exact infinite system of linear
equations for unknown coefficients of the field expansions
into eigenmodes. For low-frequency modes, the system
of the coupled equations can be solved either by pertur-
bation methods or by series truncation. We demonstrate
the method of truncation for a cavity and a collimator in
Sec. IV.B, and for a step in the waveguide cross section in
Sec. IV.C. The method of perturbation, applicable for
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an arbitrary cylindrically symmetric cavity, is described
next in the Sec. IV.D. Comparison of the two methods
shows a good agreement. In Sec. IV.E., we briefly dis-
cuss the problem of trapped modes.

In cases of smoothly varying boundaries, the field
matching technique is hard to apply. Structure of this
type is widely used in accelerators in the form of bellows.
Several methods have been developed for such cases
(Chatard-Moulin and Papiernik, 1979; Krinsky, 1980;
Cooper et al. , 1982; Kheifets, 1981; Krinsky and Gluck-
stern, 1981; Kheifets and Zotter, 1986; Kheifets and
Gygi, 1985; and Kurennoy and Purtov, 1989). As an il-
lustration of an approach for such cases, in Sec. IV.F we
describe the calculation of the longitudinal narrow-band
impedance for bellows (Krinsky and Gluckstern, 1986).
Calculations of the transverse narrow-band impedance
can be found in papers by Kheifets and Zotter (1986) and
Kurennoy and Purtov (1989).

A. Field matching

The field matching technique (Keil and Zotter, 1972)
will be demonstrated for axially symmetric structures,
such as those sketched in Fig. 3 for a cavity (a) and a col-
limator (b). The symmetry axis is the z axis. We chose
the interfaces to be at z+g/2. The point charge q is as-
sumed to move on the axis with the speed U. The Fourier
harmonic of the current density; cf. Eq. (3.30), has only
the z component:

j,=q5(r)exp(ikz/P), (4.1)

Q =qklmcy P

G)(r, d) =K)(rr)+I, (rr)KO(rd)IIO(rd),

Go(r, d) =Ko(rr) Io(rr)KO(wd) IIO(rd)—,

(4.2)

(4 3)

where d stands for a, or a 2, and w = k lyP. Ko, K„Io,
and I& are modified Bessel functions of the second and

where k =co/c, P= u/c, and 5(r) is Dirac's radial 5 func-

tion.
The Fourier components of the solution of the

Maxwell equations which satisfy the boundary condition
E,(z) =0 on the pipe wall and the radiation condition at
z = oo are known (Stratton, 1941). We shall denote such
a solution for the region z )g/2 by the superscript "+"
and for the region z & —g/2 by the superscript "—." It
is convenient to introduce the following notations:

2 rrrrrrrrr
rrrrrrrZr- b

(() Ii ( az
I W I (

z

(a)

rrrrrrrrrrrrrr

rrrrrrrrrrr'. 32r),
q 0 Z

-g/2 g/2

a

(b)

FIG. 3. Cylindrically syrnrnetric structures of radius b and
length g with side pipes of radii a

&
and a&', (a) a cavity, (b) a col-

limator.

first kind of the zeroth and first order, respectively. For
y))1, yQG~(d, d)=Zoq/4n d, where Zo=377 Q. With
these notations

E ,= —iQ—GO(r,d)exp(ikz IP)

+ +8„—(v„ld )Jo(v„rid)exp(+ized, d„), (4.5)

H s= yPQG—, (r, d)exp(ikz/P)

ik g—B„(v„ld) J, (v„r—ld)e px(+ized„) . (4.6)

Here Jo and J, are Bessel functions of the first kind of
the zeroth and the first order, correspondingly, and

v, &vz& & ~ are the roots of Jo. The sign of the
imaginary parts of the propagation constants
&d„=Qk —v„ /d should be chosen positive:

Imbed„) 0. Such a choice is defined by the radiation con-
dition; see Eq. (3.36).

The first terms in Eqs. (4.4)—(4.6) correspond to the
synchronous component of the EM field. Each term in
the sums of these expressions describes either (a) the nth
diffracted wave propagating in the positive z direction, if
k )v„/a2, or (b) an evanescent wave, if k & v„/a2. Simi-

larly, for the refiected field each term describes either (a)
the nth wave propagating in the negative z direction, if
k )v„/a&, or (b) an evanscent wave, if k &v„/a, . For
any given k, there are finite numbers of propagating
waves and an infinite number of evanescent waves.

We also need to define similar expressions for the re-
gion —g /2 & z & g /2 with radius b (region 2 in Fig. 3):

E „=yQ—G&(r, d)exp(ikzIP)

i +8„——( v/d)J, ( vrld)A, de xp(+ized), , (4.4)

E „=yQG&(r, b)exp(ikz/P) —i g (v„/b)J&(v„rib)ib„[C+e'xp(izAb„) —C exp( —izAb„)], (4.7)

E,= —iQGO(r, b)exp(ikz/P)+ g (v„lb )Jo(v„rib)[C+exp(izAb„)+C exp( izkb„)], —(4.8)

H s=yPQG&(r, b)exp(ikz/P) ik g (v„/b)J&(v—„rib)[C+exp(izAb„)+C exp( —izkb„)] . (4.9)
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E „(r)=0, (4.10)

and for r & a2,

For certainty, the same positive sign is chosen for the
propagation constant in region 2: Imkb„) 0.

Expansions of the EM field are constructed in such a
way as to fulfull the boundary condition on the wall of
the pipe in any region with a constant pipe radius. For
example, for r =a2 and for all z )g/2, E,+(z)=0. On
the other hand, unknown coeKcients 8„+—and C —have to
be defined by the boundary and continuity conditions in
the planes z =+g/2 between adjacent cylindrical re-
gions:

(a) the radial component of the electric field on the
inner side of the wall should be equal to zero for all r,

(b) all three components of the field should be continu-
ous through the opening. For example, in the case of a
cavity at z =g/2 for a2 (r & b,

ty interface at z = —g/2, and for a collimator.
Introduce new dimensionless variables:

k =kb,

p,-=a;/b, i =1,2
(4.13)

(4.14)

(4.15)

In these variables the propagation constants are

X„„:A„—„b=Qk —v„/p, , i =1,2

Xb„At——,„b.=Qk —v„.
(4.16)

(4.17)

x„=(i 7rc l2bg )exp [ig ( k Ip+ X„„)]B„

t„=(i ~c l2b Q )exp [ ig ( k I—P+ Xt,„)]C„

y„=(i 7rc /2bQ)exp [ig (k /p Xt,„)—]c„+,

(4.18)

(4.19)

(4.20)

It is also convenient to redefine the expansion coefFicients

E+,(r) =E,(r), (4.11) z„=—(i7rc/2bg)exp[ —ig(kIP X,z„)]B—„+ . (4.21)

E+„(r)=E „(r) . (4.12)

Analogous expressions can be written for another cavi-
I

The expressions for the field components (Kheifets,
1987) in the planes z = —g/2 and z =g/2 in these vari-
ables are, correspondingly:

E „=(2Q/7rcb)exp( i' IP—) (k/2yP )G!(r, a!)+(1/p! ) g x„v„J!(v„rja! )!(,,t„ (4.4a)

E „=(2Q/7rcb)exp( ikg Ip) (—k/2yp )G, (r, b)+ g v„J,(v„rjb)Xt,„ I t„exp[2ig(kjp+Xt, „)]—y„]
n

E„,= —(2ig/7rcb)exp( ikgjP—) (k/2y P )Go(r, a, )+(1/p, ) g x„v„JO(v„rla, )

(4.8a)

(4.4b)

E„,= —(2ig/7rcb)exp( ikg /p) —(k l2y p )Go(r, b)+ g v„JO(v„rib) I t„exp[2ig(k Ip+Xt,„)]+y„]
n

(4.8b)

TABLE I. Coefficients AL& and right-hand sides PL of Eq. (4.23) for a cavity.

PI

Xb„J21 (Vn )5In ~bn J 1 (+n )~nlE+
Jo(&lpi )

Io{7a, ) [v', +(7b )']

AI,„J1( „)5„I&

—2p, v„f„({p&)E+

J2i{~„)6 2p2 X 2 {i'! {P2)

—(~b )p i &IJi(&I )Io(~a 1 )F(a 1 )

[v!+ (7a, )']y

Jp(+lp2 )

ID{7ap )[v!+ (7b ) ]

~2 J2(~ )$
—(~b )p 2 vIJ1 (&I )Io(~a 2 )F(a 2 )

[v!+{7a))']y

E+ =exp[2ig {a/P+ X!,„)], E =exp[ 2ig {!!:/i3 A!,„)—], —

F{a)=K0(~b)/Ip(~b) Kp{7a)/Ip(7a), p, =a, /b, p, =a, /b, g =g/2b
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E„+„=(2Q/~cb)exp(ikg /13) (k/2yp )G, (r, a2)+(1/p2) g z„v„J,(v„rla2)i1,,2„ (4.4c)

E „=(2Q/mcb)exp(ikg/p) (k/2yp )G, (r, b)+ g v„J,(v„rib)Xb„t t„—y„exp[ 2—ig(k lp X—b„)]I
n

E+,= —(2iQ lrrcb)exp(ikg IP) (k /2y P )Go(r, a2) —(1/pz ) g z„v„JO(v„rla2)

(4.8c)

(4.4d)

E,= (—2iQ/rrcb)exp(ikg/p) (k/2y p )Go(r, b)+ g v„JD(v„r/b) I t„+y„exp[ 2ig(—klp+Xb„)]]
n

(4.8d)

These expressions are valid both for a cavity for which

p; ( 1, and for a collimator for which p; & 1.
The unknown coefficients x„,y„,t„, and z„are defined

by the set of linear algebraic equations that are obtained
by substituting expressions for the field components into
Eqs. (4.10)—(4.12) for z =g/2, and into similar equations
for the second interface, z = —g/2.

If we introduce a matrix of coefficients:

Xn

Equation (4.23) constitutes an infinite system of linear
algebraic equations for unknown coefficients X„. The
coefficients AL"~ and the right-hand sides PL of Eq. (4.23)
are presented in Table I for a cavity and in Table II for a
collimator (Kheifets, 1987). There

v„JO(v p)J, (v„)/(v„—p v ), if v„Wpv
„(p)= 2 . (4.24)v„J,(v„)/(v„+pv ), if v„=pv

~N
n

x'
n

&n
N =1,2, 3,4,

n

zn

(4.22)
In particular,

then the set of equations can be written in a compact
form:

„(1)=5„J,, (v„)/2 .

g g A"' X =P' I. %=1,2, 3,4;
N n

n, l =1,2, . . . , Do . (4.23)

In a smooth pipe for which p, =p2=1, all I'I =O.
Since Det~ AL&~%0, only the trivial solution X„=O ex-
ists. This means that no radiation occurs in a smooth
pipe.

TABLE II. Coefficients Al"& and right-hand sides I'I' of Eq. (4.23) for a collimator.

A,,i„Ji(v„)5„1 2P 1 ~b Pl {P1
—2P, '

A b 41 {P1 )E+
Jo ( VI /p i )

Io{«,)[vi+{rb) ]

2pi v„P„&{p, ') —v„JI ( v„}5(„ —v„Ji (v„)5(„E+
—(~b)vI Ji(vI )lo(~a] )+(a) )

p', [v,'+ (~a1)']y

2P2 '~b. 4'1.{P~ ')E- —
2P»~ ~b. 01.{P2 ~a2n 1(vn )5nl

Jo(vI /p2 )

Io{«2)[vi+(rb) ]

—v„Ji (v„)5I„E —v„Ji (v„)5In
—(~b )vIJ~ (vI )10(~a2 V'(a2)

pHvi+{«. )']y

[E+ =exp[2ig{a/p+Xb„)], E =exp[ 2ig{~/p Xb„)], — —

F(a }=To(~b)/Io(~b )—Eo(~a )/Io(~a ), p, =a&, /b, p2 =a2/b, g =g /2b
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An equivalent system of equations can also be obtained
by matching the field on the surface r =a (Henke, 1985a).
For small openings, matching at z =+g/2 is preferable,
because the field in the structure under consideration, in
this case is close to the field of a pillbox cavity. This type
of matching is also the only one possible when the tubes
have different radii. In calculations with equal side-pipe
radii, the two types of matching are in close agreement.

B. The impedance of a cavity and a collimator

Suppose that the coefricients X„, defined as the solu-
tion of the system Eq. (4.23), are found. Using definitions
Eqs. (4.18)—(4.21), we can now find the longitudinal com-
ponent of the electric field E,(z) from Eqs. (4.5) and (4.8).
Substituting it into formula Eq. (2.5) and performing the
integration in it, we find

Zo x„(k /P X i„—) y„(k /P+ A,„)
Z (k) = — g + exp [ [2ig(Xb k /P—) ]—1]1+(~a, /v„) 1+(rb /v„)

t„(k/p Xb ) — z„(k/p+X, 2„)
exp [ [2ig(Ab+ 0 /P)] —I ] +

1+(rb/v„) 1+(ra 2/v„)
(4.25)

quantities k, g, and X are defined in Eqs. (4.13) through (4.17). Formula (4.25) is valid for both a cavity and a collima-

tor, if the expansion coeKcients x„,y„, t„, and z„ in it are understood to be given by the solution of Eq. (4.23) for a cavi-

ty and for a collimator, respectively.
In the ultrarelativistic limit, y~ ~, the impedance can be found by integrating the field along any path displaced by

r; see Sec. III.B (Weiland, 1983):

Z (k) = —(Zo lvr) g (x„JO(v„r/a, )(k —X„„)+y„JO(v„r/b)(k+Xb ) [exp[2ig(Xb —k ) ]—I ]

t„JO(v„r—/b)(k X„)[exp[—2ig(Xb+0 ) ]
—I ]+z„JO(v„r/az)(k+X, 2„)) . (4.26)

The remarkable feature of this formula is that the right-hand side of it does not depend on r in spite of its explicit pres-
ence there.

In particular, for a cavity with equal side-pipe radii a, b =pa, a convenient choice is r =a, since then the regions
z )g/2 and z (—g/2 do not contribute to the value of the integral:

Z„„(k)= —(Zo/~) g Jo(v„ji)(y„(k+X„)[exp[2ig(Xb —k )]—1]—t„(k Xb ) [exp[2ig—(Xb+k )]—I] ) . (4.27)

800 600

600— 400—

400— 200—

200— 0—

(

2.4 2.6 2.8 3.0 3.2
ka = ace/c

-200—

2.4
I

2.6 2.8 3.0 3.2
ka = am/c

FIG. 4. The rea1 part of the 1ongitudina1 impedance of a cavity
as a function of dimensionless parameter ka =a co/c;
a =a& =a2, g/2b =0.302, a/b =0.152.

FIG. 5. The same as in Fig. 4, but for the imaginary part of the
impedance.
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For a collimator a convenient choice is r =b. In this
case, the region —g/2 &z &g/2 does not contribute to
the value of the integral

Z„„(k) = (—Zo/vr) g [x„JO(v„/iii, )(k —X,b )

+z„JO(v„/p2)(k+Xb )] . (4.28)

In general, a solution of Eq. (4.23) can be found only
numerically. Two computer codes, RCVTY [for the
geometry sketched in Fig. 3(a)I and RCLMTR [for the
geometry sketched in Fig. 3(b)], exist for this purpose
(Kheifets, 1987). An approximate solution is found by
truncating the system to a finite size, inverting its matrix
and solving for the coef6cients. One can expect that such
a solution is valid for modes with wavelengths larger
than the diameter of the opening. For parameter values
that are not too extreme, a matrix size of 20 X 20 is usual-
ly sufIicient to obtain reasonable accuracy for the values
of ka in the range 0~ ka ~ 3.0. The results are indepen-
dent of the matrix size up to the maximum size of
100X 100 allowed by the codes.

The impedance of the same structure was also calculat-
ed by Henke (1985a) who matched the field on the sur-
face r =a, —g/2&z &g/2. In Figs. 4 and 5 (Kheifets,
198'7) we present the respective real and imaginary parts
of the impedance calculated using the code RcvTY. One
finds good agreement with the impedance calculated by
Henke (1985a) for all frequencies except for a small re-
gion around the cutoff frequency of the pipe ka=2.405.
More calculations of the narrow-band impedance of a
cavity with the beam pipes can be found in papers by
Warnock et aI. (1982), Warnock and Bart (1984), Vos
(1986, 1987), and van Rienen and Weiland (1986).

The dependence of the impedance on the particle ener-
gy is illustrated in Figs. 6 and 7 (Kheifets, 1987), where

400

200—

-200—

I

2.6
ka = a(o/c

I

2.8

FIG. 7. The same as in Fig. 6 but for the imaginary part of the
impedance.

the real and imaginary parts of the longitudinal im-
pedance of a cavity are plotted for several different
Lorentz factors y. As we can see, the impedance at
y = 10 is indistinguishable from its value at y = oo.

To illustrate the behavior of the impedance of a colli-
mator, the respective real and imaginary parts of the im-
pedance of a thin collimator for the SLAC geometry are
plotted in Figs. 8 and 9 (Kheifets, 1987).

The transverse impedance of a cavity was calculated in
papers by Kheifets et al. (1987a, 1987b) and by Henke
(1985b).

200 I
I

l

400— 150

(
100

200—
M

CC

N

50

0

I

2.4 2.6
ka = am/c

I

2.8

-50
0 2 4 6 8

ka = aco/c

10

FIG. 6. An illustration of the dependence of the real part of the
impedance on y for the same cavity as in Fig. 4: {1)y=100, (2)
@=10,I,

'3) @=5,(4) y=2, {5)@=1.4.

FIG. 8. The real part of the longitudinal impedance of a very
thin collimator as a function of dimensionless parameter
ka =ace/c; a =a& =a2, g/2b =0.217, a/b =0.281.
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50 Z,„,(k) = (Z—0/rr) g [x„(k—Xb )+z„(k+X,)] .

0— (4.30)

CoeKcients x„and z„here are defined by solving an
infinite system of linear algebraic equations which follow
from Eq. (4.23) and Tables I and II:

X [Ti +&i ~.iJi(vi)]g+=I'i (4.31)

-200
0 2 4 6

ka = ace/c

10

PI =J0(vip)/vi,

T, =4v'p'J, (v p)J, (v,p)

Abxg
(v2 v2 p2)(v2 v2p2)

(4.32)

(4.33)

FIG. 9. The same as in Fig. 8, but for the imaginary part of the
impedance.

C. The impedance of a step

Another important case is an infinitely-long straight
pipe with an abrupt change of its cross section (a "step").
The coupling impedance of a step for a planar geometry
was considered by Hereward (1975). We give here the
calculation of the coupling impedance of a step in a cylin-
drical pipe (Kheifets and Heifets, 1986a, 1986b).

The geometry and the coordinate system are sketched
in Fig. 1.

As discussed in Sec. III.D, one needs to distinguish
two cases when considering a step:

In: A charge coming out of the bigger pipe of the
cross section radius a and entering the narrow pipe of the
cross section radius b (We use a. subscript "in" for this
case. )

Out: A charge exiting from the narrow pipe and enter-
ing the bigger one. (We use a subscript "out" for this
case. )

Both of these cases are included in the solution derived
in the previous section. For example, case In of a charge
passing through a decreasing cross section can be ob-
tained by assuming a 2

=b (or equivalently, p 2
= 1), and

g=O, in the equations describing a collimator. Similarly,
case Out of a charge passing through an increasing cross
section can be obtained by assuming a, =b (or
equivalently, p, = 1) and g=0, in the same equations.

Using Eq. (4.25) we find that the narrow-band longitu-
dinal coupling impedance for a charge entering the nar-
row pipe is

1 z„=O,
v J(v)+ka —v

(4.34)

which gives the radiation produced in a Faraday cup.
An approximate solution of Eq. (4.31) has been found

numerically by truncating its matrix to a finite size, in-
verting it and solving for the coefticients. For moderate
values of parameters, a 20X20 matrix is sufhcient to ob-
tain reasonable accuracy. Since the magnitude of the
coefticients g

—fall off with increasing m rather rapidly,

400—

300—

( 200—

CD

100

-100

0 20
l

40 60
ka = ace/c

l

80 100

g—:x, g =z, p b/a, k—,&
=ak, l, Xbl = bkbI', and

Q =Q ), 6 =Q2 fOI ln,
= (, Q =Q2 fOr ZOUt.

It is instructive to consider two limiting cases. If there
is no step, i.e., b =a, then I'I =0 for all l, x& =0, z& =0 and
no radiation occurs. In the opposite limit, when the pipe
is closed, i.e., b=O, @=0,one obtains the exact solution

Z;„(k)=—(Z0/~) g [x„(k—X, )+z„(k+Xb)] . (4.29)
n

For a charge exiting the narrow pipe, respectively,

FIG. 10. The real part of the longitudinal coupling impedance
of a cross section step as a function of parameter ka =aco/c;
b/a =0.1; the matrix size is 60X60; (1) ReZ;„, (2) ReZ,„,.
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-250—

N
E

-500—

-750—

-1000

20 40 60
ka = ace/c

80 300

FICx. 11. The imaginary part of the longitudinal coupling im-
pedance of a step as a function of parameter ka =ace/c;
b/a =0.1; matrix size is 60X60. The imaginary parts of both
Z;„and Z,„, are found to be equal in agreement with Eq. (3.45).

the result does not change with a larger matrix size. An
illustration of the narrow-band impedance behavior is
presented in Figs. 10 and 11 (Kheifets and Heifets,
1986a), where the respective real and imaginary parts of
longitudinal impedance are plotted for p=0. 1 as func-
tions of the normalized frequency ka. The resonant char-
acter of the impedance is clearly exhibited.

The impedances of narrowing and widening steps are
similar except that the latter is shifted up by a constant.
The shift is basically proportional to the difference of the
EM field energy of a particle traveling in pipes with radii
a and b. For a narrowing step, the radiated energy is tak-
en out of the excess of the particle field energy in a wide
pipe. As a result, the loss factor is small; see the area un-
der curve 1 in Fig. 10. A careful examination shows that
the loss factor is negative, corresponding to the ga'n of
energy. The increase of the particle energy can be inter-
preted as a result of acceleration due to attraction by the
image charge in the fIange of the step. This effect is also
noticed in a paper by Chan and Schweinfurth (1987). For
a widening pipe, a restoration of the particle field takes
place. The energy for this is taken away from the parti-
cle energy. Correspondingly, the loss factor is positive
and large; see curve 2 in Fig. 10.

D. A perturbation method

An approximate solution of Eq. (4.23), obtained by
truncation, is discussed in the previous sections. Another
approximation for the narrow-band impedance of a cavi-
ty is achieved by using a perturbation method (Heifets,
1988, 1990a).

In a cavity with an opening to a waveguide (beam pipe,
RF coupler, etc.), a mode above the cutoff frequency is

where the coefficient g„=+1—(v„/kb) is the effective
surface impedance of the opening. For example, the fre-
quency shift of a nth mode caused by the opening can be
calculated using the well-known result (Landau and
Lifshitz, 1982) for the frequency shift due to surface im-
pedance:

J dS g„[H„['
2 J dS.r(/H„/' —/E„/')

(4.36)

The same idea that modes in the cavity with a small
opening are almost the same as modes in the closed cavi-
ty may be utilized for an effective truncation of the exact
system of equations obtained in the previous subsections.
To obtain a set of equations suitable for the perturbation
solution, we exclude coefficients x„and z„ from Eq. (4.23)
and make the following substitution:

y =i (d++d )e (4.37)

(4.38)

where y„=gA, b„/2, with A, b„defined in Eq. (4.17), and
p=gk/2. Such substitution corresponds to the decom-
position of the field into standing waves. CoefFicients d„+—

are amplitudes of the longitudinal even (cosinelike) and
odd (sinelike) modes, respectively. They satisfy two
separate systems of equations:

l

sing„
P„sinp+ —g T „d cosy

2 m

(4.39)

and

d. =
cos+n

P„cosy ——g T „d sing . (4.40)
1

mn m

The coefFicients T„and P„are defined as

coupled to modes propagating in the waveguide. That
produces a finite width of the corresponding resonance in
the narrow-band impedance (in addition to the width due
to the finite wall resistivity). The existence of the
narrow-band impedance is a consequence of the fact that
this coupling is small. A perturbation theory in this
small parameter can be developed.

In the zeroth approximation, the field pattern inside
the cavity is the same as that of the closed cavity, and
tangential components of the electric field are zero on the
opening. In the first approximation the matching of the
normal component of the electric field defined amplitudes
of the longitudinal components of the waves propagating
in the waveguide. The transverse components in the
waveguide are then uniquely defined which, in turn,
defines the tangential components of the field on the cavi-
ty opening. As a result, the relation between the normal
and tangential components of the field on the opening in-
side the cavity can be written as

(4.35)

Rev. Mod. Phys. , Vol. 63, No. 3, July 1991



650 S. A. Heifets and S. A. Kheifets: Coupling impedance

where

Onm
Q(ka) —vi

[vi —(v„a/b) ][vi {v —a/b) ]

and

4gv ~ Jo(v„a /b) Jo{v a/b)
by.

(4.41)

(4.42)

From this follows the estimate of the external Q factor:
Q =2@„ /co„. The expression on the right-hand side of
the first equation in Eq. (4.49) is simply the ratio of the
energy Aow 8'„of the mode labeled n, m, which is given
by the integral of the Poynting vector over the cross sec-
tion of the pipe to the energy 8'„& stored in this mode:

(4.50)

I'„=(g/2by„)J (v„a/b)/2v'„J', (v„) . (4.43)

For the impedance in terms of d„+ and d„we have

The loss factor ~„' [see Eq. (2.10)] for a mode (n, m)
can be found from Eqs. (4.44), (4.47), and (4.48). For a
mode g„=m~, it is

Z(co) = — —g v„JO(v„a/b)2

b

sin(p —y„)
X (d„++d„)

X

sin(@+y„)+(d„—d„)
V+X.

16 Jo(va/b) co„g
~nm S1Il

g v J (v) 2c

and for a mode y„=(m + —,
' )~, it is

16 Jo(va/b) co„g
g v Ji(v) 2c

(4.51)

(4.52)

(4 44)

sing„=O, g„=g„=rn~, for n even,0 (4.45)

and

cosy„=0, y„=y„=(m + —,
' )vr, for n odd, (4.46)

only diagonal modes d„+—need to be retained in the sums
in Eqs. (4.39) and (4.40). This gives

iP„sinp
siny„+ ( i /2) T„„cosy„

(4.47)

The concept of narrow-band impedance presumes that
the openings are small in comparison to the cavity sur-
face. In this case, we may expect that the field pattern in-
side the cavity is perturbed by the presence of the side
tubes only slightly, and is similar to that of the closed
cavity (Dome, 1985). Therefore, in the vicinity of the
eigenfrequencies of the unperturbed cavity for which

In calculating the longitudinal impedance, it is instruc-
tive to compare two approximate methods with each oth-
er and with purely numerical methods. The solid line in
Fig. 12 (Heifets, 1990a) represents the real part of the
longitudinal impedance ReZ ( ka ) obtained from Eq.
(4.44) by the following procedure. For a given frequency,
we find the number n0 of the nearest resonance which
satisfies Eqs. (4.45) or (4.46). Then the impedance is cal-
culated, retaining in Eq. (4.44) a single term with the
number n0 while the coe%cients d„—are defined by Eqs.
(4.47) and (4.48). The dashed line gives the contribution
of the nonresonant modes in some band +An around the
resonance. The parameters used are a/b=0. 318 and
g/2b=0. 600. Figure 13 shows for comparison the real
part of the impedance calculated by truncating the set of
Eqs. (4.39) and (4.40). In this example, the width of the
band was An=10 (in total, twenty equations were re-
tained). The agreement between the results shown in

iP„cosp
d. =

cosy„—(i/2) T„„siny„
(4.48) 400

'Ynm = 4c X
Tnn ~ ~nm

R ~nm

2 1/2
~n 4~ I"+
b g

(4.49)

Other amplitudes d&
—+, where 1&n, describe the mixing

of the modes of a closed cavity and are zero in this ap-
proximation. This approximation can be refined, howev-
er, by substituting Eqs. (4.47) and (4.48) into the right-
hand side of Eqs. (4.39) and (4.40). This will give d —%0.
Repeating the substitution further refines the approxima-
tion.

Equations (4.47) and (4.48) have the typical resonance
structure with width y„and frequency ~„ofthe reso-
nance given by

4
ka = ace/c

FIG. 12. The real part of the impedance according to the per-
turbation model. A single mode nearest to ka is taken into ac-
count, a/6=0. 318, g/2b=0. 600 (the solid line). The dashed
line gives the contribution of the nonresonant modes (see text).
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400

gives the low-frequency radiation from a small hole in a
vacuum chamber. Sands' derivation is based on the per-
turbation analytical solution obtained by Bethe (1944).

200
CC

E. Trapped modes

ka = ace/c

FIG. 13. The real part of the impedance obtained by truncating
the system of equations; a/b =0.318, g /2b =0.600.

Figs. 12 and 13 could be even better if, instead of one, the
two nearest resonance modes were retained in Eqs. (4.39)
and (4.40). The broadening of the resonance obtained by
the perturbation method for the CEBAF cavity is illus-
trated in Fig. 14. The real part of the impedance

~n Xn ~n'V nReZ(co)= g 2 2
+

(co —k„c) +y„(co+k„c) +y„
(4.53)

200—

100—
CC

0
0

ti
II t
It I
II I
II I
II I
II l
II I
tt I

It
tt It I

It

It II

It II tt

It It II
I It
I II II

I i q I I I I II

I( II II tt
I II It It II

I
I

I 1

tt

It

It

tt

tt

II
I

II
(1

ka = aco/c

FICx. 14. The broadening of the higher resonances due to radia-
tion; solid line, loaded Q; dashed line, unloaded Qo.

is shown here (the solid line). The loss parameters a„and
frequencies k„c were calculated with the help of the pro-
grarn URMEL (Weiland, 1983c). The widths y„(related to
the external Q factor) were calculated as defined in Eq.
(4.49). The dashed line gives the impedance calculated
with the widths caused by the finite conductivity of the
walls (unloaded Qo ).

It is worth mentioning a calculation by Sands (1977)—
closely related to the subject of the present paper —which

Trapped modes are narrow resonances observed aboUe
the cutoff frequency, both in experiments (Fornaca et al. ,
1987) and in numerical calculations (Heifets, 1988).
Their field pattern corresponds to modes localized within
a cavity with a relatively large Q factor. A trapped mode
of the pillbox cavity with side tubes can be seen. in Fig. 13
as a small spike near ka =4.5. Its amplitude is actually
much higher than it appears in Fig. 13 if plotted with
higher resolution.

Calculations with different pipe lengths using URMEL
confirmed the existence of a trapped mode for a cavity
with parameters a /b =0.318, g /2b =0 600 .For . the
mode with the frequency f=233.3 MHz, which corre-
sponds to ka=4. 5, the field outside of the cavity de-
creases rapidly to zero, thus conforming to the definition
of trapped modes. The ratio R/Q for this mode is
unusually small.

The origin of trapped modes is unclear at the present
time. Several explanations have been suggested for this
phenomenon. One of them maintains that the sharp
edges of the cavities can cause multiple reAection of a
wave and, as a result, give a long decay time to the mode.
This explanation seems unsatisfactory, because above the
cutoff frequency the refIection rate is relatively small,
even for the sharp edges, and it goes rapidly to zero if the
edges are rounded up. The reAection rate becomes ex-
ponentially small, when the function describing the edge
boundary and all its derivatives are continuous.

Another hypothesis is that certain modes of a cavity
produce waves in the tube that cancel each other. This
assumption is probably also unsatisfactory if the modes
are to be understood as those of a closed cavity unper-
turbed by the beam-pipe openings (Heifets, 1988).

However, a trapped mode may occur if two degenerate
modes of the closed cavity are mixed by the perturbation
brought about by the pipe openings. One of the mixed
modes may become a trapped mode.

This idea was studied on a mode corresponding to
ka=4. 5. The mode was chosen because at the frequency
ka=4. 5 there is only one wave that can propagate in the
tube. This wave is mostly generated by the coupling of
the two degenerate modes in the cavity. The degree of
the degeneracy of the modes can be varied by changing
the parameters of the cavity. The analytical and numeri-
cal analysis supports the hypothesis of the connection be-
tween the mode degeneracy and the existence of the
trapped modes. In particular, using the code URMEL it is
shown that the mode remains trapped in a wide range of
the cavity parameters, provided that the mode degenera-
cy is maintained.
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F. The narrow-band impedance of bellows

r =rb(z),

which is periodic in z with the period L. If the source
particle moves along the axis of the waveguide, ro 0,
only the axial symmetric modes m=0 are excited. The
series which gives the general solution of the Maxwell
equations suitable for this case is found in the paper by
Krinsky and Gluckstern (1981). The respective expan-
sions of the longitudinal and radial components of the
electric field with unknown coeKcients 8 in the limitp

y —+oo are

COZ crea „~ Io(a~ )
(4.55)

tt z a + g B zi~pzgl.
~ca I p Lp= OO

I, (a r/a)X, (4.56)
~,I,(a„)

Consider axially symmetric and longitudinally smooth
periodic variations of a wall of a waveguide commonly
known as bellows. Figure 15 illustrates the geometry and
the coordinate system. In this case the application of the
field matching technique used in previous subsections is
very difticult. A more appropriate method for such cases
will be described here. In general, all the Fourier har-
monics of the polar angle 0, i.e., modes characterized by
the number m, exist. However, our considerations will
be restricted to an axial symmetric mode I=O and, cor-
respondingly, only the longitudinal impedance will be de-
rived. Results for the dipole mode m=1 and, corre-
spondingly, the transverse impedance, can be found in
the paper by Kheifets and Zotter (1986).

Let us assume that the waveguide wall in the plane
0=constant is described by the function

V

I'0

FIG. 15. Geometry of be11ows and the coordinate system.

'2
2~ay a

L +4~kap —.
L (4.57)

The expansion coefIicients 8 in this case are defined bp ne y
the boundary condition (Krinsky and Gluckstern, 1981):

E,(rb, z) = E„(rb,z)drb —/dz, (4.58)

which leads to the following infinite set of linear algebra-
ic equations:

M„B =X„n = —ca, . . . , 0O,
7

P= QO

(4.59)

where Io and I& are modified Bessel functions of the first
kind of the zeroth and first order, respectively. The
quantity o, is defined by

2E &nz
P

2

i
1 ——krb(z) exp

Mnp
2&a 2&a Io(a r„(z)/a)

pn+ ka(p +n) exp
a Io(a )

2i~(n —p)z p&0,
(4.60)

and

2i ~a a drb (z)N„= exp
2i~nz

L
J

(4.61)

ZI(k) = iZOLBO(k)/2vra . — (4.62)

Here the brackets (f ) are used to define the value of
function f (u) averaged over its period L. The longitudi-
nal impedance per one period of bellows can be found us-
ing Eq. (2.5):

The system of Eqs. (4.59) can be solved numerically. The
computer code IMPAss [Impedances of Periodic Axiallxa y
Symmetric Smooth Structures (Kheifets and Gygi, 1985)]
enables one to calculate coefficients of the field expan-
sions and to find both the longitudinal and the transverse
impedances for I=0 and I= 1 in the low-frequency re-
gion. The approach used here is not valid for the high-
frequency region, where the impedance has a very com-
plicated resonance structure.

Figure 16 (Kheifets and Gygi, 1985) presents the
coefIicient Bo found with the help of IMPAss as a function
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0.6 equation and its value inside the volume is defined by the
fields on its inner surface (Jackson, 1975):

Bp

0.4

0.2

E = fdS'[ik(n'XH' )Gk+(n'. E„').V'Gk

+ ( n' XE' ) X V"Gk ],
H = f dS'[ ik—(n' X E„')Gk + (n' H' ) V'Gk

+(n'XH.') XV'6„],

(5.1)

(5.2)

0
0 2

ka = k(o /c

where n' is the unit vector normal to the surface pointed
inside of the volume and

FIG. 16. Coe%cient 80 which defines the longitudinal im-

pedance of bellows, see Eq. (4.62), for bellows with the bound-
ary defined by equation r„(z)=a[1+@+(4e/m)co.s(2mz/L)] as
a function of the parameter ka for three values of the parameter
q=2ma/L: (1) g=31.42, (2) g=20. 94, {3)g=12.57. The depth
of corrugations is defined by e—:d /2a =0.09.

of the normahzed frequency ka for three diFerent values
of bellows parameter 2~a /I. and for the relative depth of
the corrugations d/2a= 009. More results can be found
in the paper by Kheifets and Zotter (1986).

ikR

Gk(r, r') =
4aR

R = ~r —r'~ =')/(z —z') +r +v' —2rr'cos0
(5.3)

is the Green's function of the wave equation. It satisfies
the equation

Gk(r, r') = f dp e'i' ' 'Gk~(r, r'), (5.4)

(V +k )6„=—5(r —r') .

In Eqs. (S.l) and (5.2), the derivatives in expression V"Gk
are taken with respect to r'.

For k & 0 it can also be represented in the equivalent
form:

V. A DIFFRACTION MODEL FOR
THE HIGH-FREQUENCY IMPEDANCE

In this section an approximate method is developed
which is suitable for the study of the high-frequency be-
havior of the impedance. The integral equation which is
equivalent to the Maxwell's equations is solved by itera-
tion using approximate boundary conditions (Novo-
khatski, 1988; Heifets, 1989). This approach is very close
to the diFraction models discussed by Bane and Sands
(1987, 1990) and by Palmer (1986, 1989, 1990).

In the next subsection we define appropriate boundary
conditions for the first iteration and study the implication
of such a selection for a number of cases. In the next ap-
proximation the field on the boundary is assumed to be
the field obtained on the previous step. For some
structures —such as an array of irises —for which the in-
terference of waves diFracted on diFerent irises is of im-
portance, the correct answer may be easily found by such
a method (Sec. V.D). For other structures —such as a
taper —for which there exists no known solution, the
method gives an estimate of the impedance (Sec. V.E).

A. A method of iteration

Consider an arbitrary metal structure with openings.
Let its volume be bounded by the surface S. The total
field inside the volume excited by a relativistic particle is
the sum of its synchronous field and the radiated field E„,
8„. The radiated field satisfies the homogeneous wave

where

Ck (r, r')

J (Qr)H' "(Qr')cosm 0, for r') r,
m=0

A J (Qr')H"'(Qr)cosm8, for r'(r .
m=0

(5.5)

Here A =1 for m=O, A =2 for all other m, and J
and H"' are the Bessel and the Hankel functions of the
order m, respectively. Function Q(k,p) has a cut along
the negative axis in the plane of its argument p. We
define it in the following way:

Q=+k p+2ike, e—+0—.

Correspondingly, functions H"' of the purely imaginary
argument ix are defined as H'"(ix)=2( i) 'K (x)—/~
(Gradshteyn and Ryzhik, 1980). For k (0, Gk is defined

by Gk =G* k.
Consider now the azimuthally symmetric structures

with a particle traveling along its z axis with the velocity
of light. Let the metal wall of the pipe be described by
equation r =rb(z). In this case it is sufficient to consider
only the monopole modes m=0. The method can also be
extended to a general case m %0.

The system of the integral equations (5.1), (S.2), can be
solved approximately by the method of iteration. The
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In other words, the assumption is that in the high-
frequency limit in the first approximation the boundary
conditions for the normal component of the radiated
electric field is zero on any conductive boundary, as it is
for a smooth pipe; i.e.,

E"„'=0, for r =a(z —0) .

Ai the same time, the sum of the tangential component
of the synchronous field of a particle E,' ' and the tangen-
tial component of the radiated field E,'„" on the metallic
surface has to be zero:

E,'."=—E,'.", for r =a(z —0) . (5.7)

Hence, the components of the radiated field on the con-
ductive boundaries are

E"'=—E' 'sincx E'"= —E' 'cosar~ tee ZA) t CO

where

E ( ' =E' 'sin&a+ E( ) cosatao rem ZAP (5.9)

Here E„' ' is given in Eq. (2.27) and E,' '=0. The angle
a=a(z) is defined by tana=drb(z)/dz.

The magnetic field in the azimuthally symmetric case
has only azimuthal component H . It can be shown
(Heifets, 1989) that from Eq. (5.6) follows

8"z =0, for r =a(z —0) . (5.10)

field on the boundary chosen on the first iteration defines
the field on all the successive steps. The choice of the
field for the first iteration is crucial for the convergence
of the solution.

To define the field on the surface of a pipe of arbitrary
shape, let us first consider the situation in a straight pipe
Ib =a=constant. The EM field is a sum of the field of
the particle in free space and the field of the image
current in the wall (or the induced field). In the ultrarela-
tivistic case, the electric field of a particle E„' ' has a large
radial (i.e., the normal to the beam-pipe wall) component
and a small longitudinal (tangential) component. The
longitudinal component induces an image current in the
wall. Since the image current has only a tangential com-
ponent, it produces only a small tangential component of
the induced field E„'",which compensates for the tangen-
tial component of the particle field. The normal corn-
ponent of the induced electric field E„",' and the tangen-
tial (azimuthal) component of the induced magnetic field
H„t' are zero on the pipe wall.

We now conjecture that in the high-frequency limit in
the first approximation the boundary conditions for the
radiated field in a pipe with a variable shape r =rb(z) are
locally similar to those for a smooth pipe a=constant.
The necessary condition for this assumption to be valid is
that the length I. of variation of the pipe shape,
drb/dz =a/I, has to be large in comparison to the typi-
cal wavelength X:

L»1/k .

The radiated field on the cross sections z=O and z =g
is the same as that in a straight pipe. For the azimuthal-
ly symmetric mode m=0 that means that the radiated
field is zero.

Equations (5.8) and (5.10) specify the field on the
boundary for the first iteration.

Equation (5.1) together with the radiation condition at
infinity gives the component E,"' inside the pipe as the
surface integral over the metalhc walls of the pipe:

E(1) jdpi E(0)(BGI,
Z (5.11)

For a smooth pipe rb(z)=a, dS =2vra dz, and E,' ' is
defined in Eq. (5.9). In this case Eq. (5.11) gives

E,"'= I(rr)-K (ra)e'"' P= 1,2l
(5.12)

B. A diffraction model for a cavity

Consider a pillbox cavity of length g, radius b, and
with side pipes of radius a. The surface integral Eq. (5.1)
for this geometry is the sum of two integrals. The first
integral, and the main contribution to the sum, is over
the sides of the cavity at z=0 and z =g for a &r &b.
This is given by Eq. (5.11) with E,' ' defined in Eq. (2.27).
The second integral is over the cylindrical wall r =b for
0&z &g, which gives a negligibly small contribution of
the order (1/y) . Similar considerations are used in the
papers by Gluckstern and Neri (1985, 1987a, 1987b) to
obtain the narrow-band longitudinal impedance above
the cutoIIF frequency of the beam pipe.

For the region 0&r &a,

E, '"(r,z) = dp e'~'[1 —e'" e' ]J (Qr)COZ 0

X [a',"(nb) —II',"(na)] . (5.13)

This expression gives the first approximation for the
diFracted field inside the cavity. Hence, to find the im-

which agrees with the exact solution for a straight pipe
given by the first term in Eq. (4.5). Note that in this ap-
ploxlmatlon Io(ra) 1.

Equation (5.1) may be used to find the radiated field in
a cavity iteratively. The field in the cavity found in the
first approximation defines the radiated fie1d on the boun-
daries, including beam-pipe openings. It may be taken as
the value of the field on the boundary for the next itera-
tion. The series obtained in this way are analogous to the
Born's series of scattering theory. The expansion param-
eter of the series is the ratio of the amplitude of the
tangential component of the radiated field E,"to the am-
plitude of the tangential component of the particle field
in Eq. (2.27). Note that the first approximation allows
one to estimate this parameter and find the amplitude of
the difFracted waves in the side pipes.

This method is next used to evaluate the impedance of
a pillbox cavity with side pipes.
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pedance as defined in Eq. (2.5), we have to choose the
path of integration along the beam-pipe wall r =a in ac-
cordance with the discussion in Sec. III.B (Weiland,
1983b). Since on the pipe wall outside the cavity
E,(a,z)=0, the range of integration in Eq. (2.5) is
0 &z &g. For k &0, we therefore have

0.8

0.6

Z, (k) = ' f" "" J,(na)[H~'~(na) —H~'~(nb) I2~ —~ k —p
0.2

Xsin —(k —p) .
2

(5.14)

An estimate of the integral in Eq. (5.14) is obtained in
the paper by Heifets (1990d). For the region of parame-
ters where g «ka (a "cavity" regime) it reproduces the
Lawson-Dome formula (Lawson, 1968, 1990; Dome,
1985):

0
0 10

Qg/2ka2

20

FIG. 17. The transition from a cavity regime to a step regime.

Z„„(k)=(1+i) Z0 g
2~a k~

E

1/2

(5.15) and z =g, for a (r (b. In the high-frequency region
ka ))1, neglecting terms of order of 1/ka, we obtain

For the region of parameters where ka «g (&kb,
there is a transition regime

2
E"„'(r,z)= g (z —z„)e

27TC

Z„,„,(k) = ln
ZQ g

ka
(5.16)

ikR„(a)
X d8

0 (a rcos8)R„(a—)

and for the region of parameters where g )&kb, one ob-
tains the impedance of a "step" found by Balakin and
Novokhatski (1983) and independently by Kheifets
(1987); see Eq. (6.79) in Sec. VI:

ikR (b)
e

(b —r cosO)R„(b)

(5.20)

Zs(k) = Zo b
ln —.

a
(5.17)

ReZi(k) = f Jo(Qa)[Jo(Qa) Jo(Qb)—]2~

Xsin —(k —p) .
2

(5.18)

The difference between the impedances of a cavity Eq.
(5.15) and a step Eq. (5.17) corresponds to difFerent
diffraction regimes. For g « ka the transverse dimen-
sion of the area illuminated by the diffracted wave in-
creases with z as r-&2z/k, which characterizes the
Fresnel diffraction. For larger g for which r-z/ka, the
Fraunhofer diffraction occurs.

The real part ReZi(k), Eq. (5.14), is produced by the
values p in the range —k (p &k:

where R„(x)=r +x —2rx cosg+(z —z„), n=1,2, and
the summation is performed over two waves radiated
from the surfaces z& =0 and z2 =g. It is easy to see that
the wave radiated from the surface z=0 does not contrib-
ute to E„'" at z=O. Only the wave scattered from the
other surface changes the field in the next approximation.
This is similar to the situation in scattering theory. The
phase of this wave is proportional to the wave vector k
and is large for kg))1, giving, on average, a small
correction. E"„'(r,z) has a singularity (r —a) '~ at r =a
as is well known (von Meixner, 1949). Note that at least
in this approximation, a similar singularity appears also
at r =b. These singularities leave the field energy finite.
They are not essential in the evaluation of the integral in
Eq. (5.1).

The results of the numerical integration Eq. (5.18) are
shown in Fig. 17 (Heifets, 1989), together with the esti-
mate Eqs. (5.15) and (5.17). According to these calcula-
tions, the transition from the cavity to the step regime
occurs for values of the cavity parameters such that

k(b —a)
(5.19)

Let us now evaluate the radial component of the radi-
ated field E„"~. It can be derived from Eq. (5.1), where
the surface integral has to be taken over the surfaces z= 0

C. Loss factors in the diffraction model

The total impedance of the accelerator vacuum
chamber is usually approximated by the sum of the im-
pedances of its elements. This is equivalent to calculating
the impedance of a given element while neglecting the
diffracted EM field arising from all the other elements.
In general this is incorrect. The interference of the EM
field generated on different elements can be important.
This will be illustrated below for an array of cavities. But
even neglecting the interference, the estimate of the im-
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pcdancc of a glvcn element 1s not a s1mplc task, especially
for the high-frequency impedance.

Fortunately, in most cases an element can be
represented either as a pillbox cavity with the beam pipes
or as an abrupt change of the beam-pipe radius. The
second structure (a step) can be considered as a very long
cavity. The estimates of the impedances for these two
types of structures (Bisognano et al. , 1988) according to
the diffraction model discussed in the previous subsection
give the correct dependence on all the physical parame-
ters. This was verified by numerical calculations using
the code TBCI over a wide range of parameters. The re-
sults are also valid for a very short bunch where direct
numerical calculations require too much computing time
and computer memory.

The high-frequency longitudinal impedance of a
pillbox cavity with gap g, radius b, and side pipes of radii
a, which is valid for ka ))1, is given by Eq. (5.15). The
impedance falls off as k ' in an agreement with the re-
sults of the papers by Lawson (1968, 1990) and Dome
(1985). For a short Gaussian bunch, for which o. (&a,
this high-frequency tail of the impedance gives the main
contribution to the energy loss for a cavity:

1/2 I ( —,')
—=1.154 . (5.21)

Equation (5.21) has been checked by the TBct calcula-
tions for three different sets of parameters of CEBAF RF
structures: (a) the fundamental power coupler, a=3.5

cm, g=2.5 cm, b=5.5 cm; (b) the higher-order mode
coupler, a=3.75 cm, g=3.75 cm, b=5.5 cm; and (c) the
gate valve a=1.75 cm, g=2 cm, b=3.5 cm. The rms
length of the bunch o. was varied over the range 0.75—1.5
mm. The observed agreement is within 10%; see Fig. 18
(Bisognano et al. , 1988).

The transverse impedance can be estimated from the
longitudinal impedance of the dipole mode using the
Panofsky-Wenzel theorem (see Sec. III.A). The estimate

2.00
E

C3

1.75
TBCt

1.25
0.5 0.6 0.8 1

a [mm]

FIG. 19. The transverse loss factor ("kick") as a function of the
rms bunch length; a =3.5 cm, b =5.5 cm, g =2.5 cm.

for the transverse loss factor is

( )
+'rrg0'

a
(5.22)

(5.23)

The exact expression for the transverse loss factor of a
step is unknown. In the paper by Bisognano et aI.
(1988), the following estimate is obtained:

2 b b
Irs(o )= ln —ln —.v'~a' a a (5.24)

This formula also agrees well with the results obtained by
the code TBct; see Fig. 19 (Bisognano et al. , 1988). For a
very long cavity (a step), Eq. (5.21) is not applicable. The
longitudinal impedance of a step is given by Eq. (5.17).
Note that the frequency-independent impedance corre-
sponds to a point wake function which is proportional to
a 6 function. The longitudinal loss factor for a step is

0.8
C3
CL

0.7
Eq. (5

TBCl
o Eq. (5.21) normalized to

~=0.75 mm

0.2

0

0.5
0.5 0.6

I I I

0.8

o [mm]
0.5 1.0

b [m]

1.5 2.0

FIG. 18. The longitudinal loss factor as a function of the rms
bunch length; a =3.5 cm, b =5.5 cm, g =2.5 cm.

FIG. 20. The longitudinal loss factor as a function of b;
a =0.25 m, g=6.0m, o.=0.06 m.
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50
I l I ! I II

0.02

0.01

Eq. (5.23)

E
(3
CL

~ 10

0
0 0.5 1.0

[m]

2.0 I I I I I I I (

a [m]

FIG. 21. The longitudinal loss factor as a function of o', a = 1.5
m, b=2.0 m, g=20.0 m.

FIG. 22. The transverse loss factor as a function of o.; a =1.5
m, b=2.0m, g=20.0m.

2go.

(b —a)' (5.25)

is small, g«1, the formulas for a cavity are valid. In
the opposite case when g&&1, the regime of a step is
fulfilled. This is illustrated in Fig. 20 (Bisognano et al. ,
1988), where the dependence of the longitudinal ~1 loss
factor on the radius b of the cavity is depicted. The lon-
gitudinal and transverse loss factors, as functions of the
rrns bunch length o., are plotted in Figs. 21 and 22. In all
cases the agreement of the estimates with numerical cal-
culations is quite good. Equations (5.21)—(5.25) are con-
venient for a fast and reasonably accurate estimate of the
impedance budget of an accelerator. However, Eq. (5.24)
should be presently considered to be an empirical esti-
mate.

These formulas contain both radii a and b, in contrast
with Eqs. (5.15) and (5.21) for a short cavity. The regime
of the cavity differs from the regime of the step by the
fact that in the second case the signal from the outer wall
of the cavity has enough time to reach a bunch traveling
inside it, thus probing the outer radius of the cavity. If
the parameter rI, Eq. (5.19), for k —1/cr,

pedance for the whole system is, in general, nontrivial.
In the high-frequency region, the previously described

method of iteration is applicable. As an example of its
application, we consider here a periodic structure. For
an array of cavities where the number of cavities is large,
the interference can drastically change the impedance.
Another example where the interference is of importance
(two adjacent cavities) is considered by Heifets (1989).

Let us consider a RF structure of a linear accelerator.
It can be approximated by a periodic array of cavities
built of irises in a waveguide. The irises, having equal
round beam holes of radius a, are separated by a distance
I.. In the high-energy accelerator the signal rejected
from the outer cavity wall does not reach the bunch mov-
ing with the velocity of light along the accelerator axis.
For simplicity we therefore assume the outer radius to be
infinitely large.

The radial component of the radiated field at location z
of the accelerator, to good approximation, is the sum of
the field Eq. (2.27) and a field of unknown amplitude

f (k, r) diffracted on the upstream irises:

E' „'(z, r) = — e'"' ~8(r —a)
2
cr

D. A periodic array + f (k, r)e'"'B(a —r) .2g
c

(5.26)

The EM waves generated in one element of an ac-
celerator propagate into the elements downstream of the
system. There the waves interfere with the locally radiat-
ed field. Even if the impedance of each element assumed
to be mutually independent is known, finding the im-

I

Here 8(x) is a step function. We use this expression as
the zeroth approximation for E, in Eq. (5.1). For the lon-
gitudinal field between the irises, 0 & z & L, Eq. (5.1)
yields

E'„",(z, r)= f dp e' '(1 —e'~k ~

)
2c

X f dv'[g(r' —a) —r'f(k, r')8(a —r')]
0

x, I' Jo(Qr)&0" (Qr')B(r ' —r) +Jo(Qr')H (')" (Qr)6( r r') ], — (5.27)
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where Q=+k —p . The impedance per cell is

Z&(k)= f sin —(k —p)JO(Qa)HO' '(Qa)[1+af (k, a)]2~ —-k —p 2

——f sin —(k —p)HO" (Qa) f dr'Jo(Qr'), v'f (k, v') .
C —ook P 2 0

' Or' (5.28)

The first term here is the same as that for a single cavity, as given by Eq. (5.14), except for the additional factor
[1+af(k, a)]. We will see that this factor is of order 1/k. The second term in Eq. (5.28) is small. Hence, the high-
frequency impedance of a periodic array becomes Z&(k) o- k

The equation defining function f (k, r) can be obtained from the condition of periodicity for the radial component of
the field E „(z,r). The expression for E"„'(z,r) can be found from the equation 7' E=O and Eq. (5.27). At z =L this
y1.elds

E",'(L, r) = — f p dp e'" f dr'[8(v' a) r'f—(r')8—(a r')]-
2C 0

X [J,(Qr)HI" (Qr')6(r' r)+J, (Q—r')HI, "(Qr)8(r r')] . — (5.29)

f (k, r)= N(r)+ f r'dr'V(r', r)f (k, r')
0

+ f r'dr'+(r, r')f (k, r'),
r

(5.30)

For f (k, r) we thus obtain the following integral equa-
tion:

I

nth step is found by substituting f„,for f (k, r) (with

f, =40) in the integrand of Eq. (5.34). Subsequent itera-
tions take into account the diffraction from the consecu-
tive irises of the array. The iterative solution on the nth
step is

where f„(k,r) ~exp (r —a)
ik

2L n+1 (5.36)

V(r, r')= — p dp e ' ~' J, (Qr)H', "(Qv')~ =1
4

(5.31)

and

@(r)=—f dr'%(r, v') .
a

(5.32)

Note that f (k, O)=0.
Function 'P(r, r') describes the Fresnel dift'raction on a

circular hole. An estimate of the integral in Eq. (5.31) in
the diff'raction zone r =a, r' r)) &2L—/k gives

4(r, r') =%0(r, r')

This function has a width which increases with n as
(a r) =&(2L—/k)(n + 1). Its amplitude decreases rapid-
ly when the width becomes of the order of a; i.e., for
n )M=ka /L. Palmer (1987) noticed that M defines
the minimal number of cavities sufficient for the im-
pedance of a finite array to be approximated by the im-
pedance of an infinite periodic structure. We discuss this
in more detail in Section VI.

Function 4 (r0, r') has a sharp peak as a function of
r —r'. In the limit as k ~ ~ it can be approximated by
the 5 function:

k
2~Lrr'

1/2 1
lim %0(r, v')= —5(r r') . —

k~ co r (5.37)

X exp i (r —r') —i. k
2L 4

(5.33)

Equation (5.30) in this approximation simplifies to

f (k, r)=Co(r)+ f v'draco(r, v')f (k, r'),
0

where

—EL 1
C&o(r) = %'0(r, a),

k a —r

(5.34)

for a —r ))&2L/k . (5.35)

Function No(r), describing the dift'raction on a single iris,
rapidly oscillates for (a r) ) i/2L /k, a—nd in this region
is negligibly small. A solution of Eq. (5.34) can be found
by an iterative procedure in which the solution. f„on the

The solution of Eq. (5.34) in this limit is f ( ~,a) = —1/a.
For finite but large k ))L/a, we have 1+af (k, a)
—(1/k); see below Eq. (5.41). The amplitude of the radi-
ated field f (k, r) at the iris increases from f=0 at r=O to
f= —1/a at r =a, and then decreases as —1/r for r )a.
Recall that, for a single cavity, E",' has a discontinuity at
r =a changing from zero to —1/a. The continuity of the
function f (k, r), and, correspondingly, of the radiated
field E'„'„' at the point r =a arises from the interference of
the diffracted waves in the periodic structure. This is the
reason that the asymptotic frequency dependence of the
impedance for a single cavity differs from that of a
periodic array of cavities.

To solve Eq. (5.34) numerically, it is convenient to in-
troduce a new function, F(a —r), defined by the expres-
sion
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rf (k, r) = A—I' (a —r),
87

where

50

40—
A= 1+af (k, a),

The function F (a —r) satisfies the integral equation

F (a —r) = &ra 'Po(a, r)

(5.39)
30—

+f dr'F(a r')&—rr'4'o(r, r'), (5.40)

with %o(r, r') defined in Eq. (5.33). Equation (5.40) was
solved numerically for different wave numbers k. The
typical behavior of function rf (k, r) is depicted in Fig. 23
(Heifets, 1989). The parameter A(k) has been found
from these calculations and its dependence on ka /2L is
shown in Fig. 24. It wobbles around (Heifets, 1989)

20—

10
100

ka /2L
200 300

FIG. 24. Parameter A ' as a function of ka /2L (see text).

(5.41)

Function I' (a r) osci—llates rapidly (see Fig. 25);
therefore, the last term in Eq. (5.30) is small. The
remaining term has the same structure as that for a single
cavity, but has an additional factor A ~ 1/k. Hence, the
impedance of the periodic array decreases with the wave
number as k . For the real part of the impedance we
obtain

3/2
2 l I.ReZ (k) =Zo

vr ka
(5.42)

while the same quantity decreases as k ' for a single
cavity. The same dependence on k, i.e., ReZ (k) ~ k
was obtained in the optical resonator model (Vainshtein,
1963; Keil, 1972; Sessler, 1972; Brandt and Zotter, 1982).
We give a more rigorous analytical derivation of these re-
sults in Sec. VI.D.

E. A taper

Consider a gradual transition —a taper —between two
cross sections of the beam pipe from a smaller radius a to
a larger radius b. We can expect that in such a case the
energy loss of a bunch will be sma11er than it would be
while passing through a step. Until recently, no analytic
methods for evaluating the effects of a taper were avail-
able. Here we use the method of iteration to derive an es-
timate of the effect of a linear taper; i.e., a taper in which
the slope of the wall is constant. For short bunches,
o. &(a (b, the energy loss is dominated by the high-
frequency modes kb &ka »1. This allows one to esti-
mate the loss and the impedance using Eq. (5.11).

Let us characterize the taper by an angle n at which
the taper wall is inclined to the axis a: cota =g, /(b —a),
where g, is the length of the taper. For a step we have

gi =0, and a=a/2. Based on the previous discussion,

0
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Im (rf)

40

20

I I

Im(aF)
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FICy. 23. Function rf(k, r ) (see text). FIG. 25. Function aF(a —r ) (see text).
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we can expect that the main contribution to the im-
pedance comes from the waves with large k diffracted at
small angles. The taper may be expected to reduce the
impedance or the loss factor of the transition effectively,
if its angle is comparable to or smaller than the Fresnel
diffraction angle.

As shown below, for a bunch of rms length o., the loss
factor decreases with increasing taper length g, until it
reaches a minimal value at g&

——(b —a) /o. , and it

remains constant with further increases of g, . A short
taper, for which g, o. /2(b —a) « 1, is not effective in re-
ducing the energy loss.

Consider a cylindrical cavity of total length g with
slanted side walls comprising two symmetrical tapers of
length g& on both sides. The symmetry of the cavity
significantly simplifies calculations. %'e follow here the
considerations of the paper by Heifets, 1989. Equation
(5.11) for such a cavity gives

(1) ~9 I i z ~ r ~
a~,'"(nr )E",'(r, z) = f dr' f dp e'~'(exp[i (k p)(r' ——a)cota] —exp I i (k —p) [g —(r' —a)cota] ] )Jo(Ar)

2c a oo Br'

(5.43)

Here 0='t/k —p and cota=g, /(b —a). The two terms in Eq. (5.43) describe correspondingly the wave generated at
the two tapers: the taper-out at z=0 and the taper-in at z =g. For g, =0, it gives Eq. (5.14). The longitudinal im-

pedance of a taper-out can be obtained by integrating the first term over z in the interval 0 (z &I. and considering the
limit I.~ oo. A taper-in is considered in a similar way. This gives

b aH~~'~(n')
Z&(co) = lim (

—1/c) f Jo(Qa) I 1 —exp[+-i (k p)1.]]f—dr'exp[+i (k p)(—r' —a)cota], , (5.44)
I.—+ oo k —p

'
a Br

where the signs + correspond to a taper-out and a taper-in. In the limit I.—+ oo,

lim (1—e '" ~' )= +irr5(k —p);
L k —p k —p

hence, the impedance is

BHO" ($),r')
Z((co) =+—ln —— f Jo(Qa) f dr'exp[+i(k —p)(r' —a)cota]

c a 2c — k —p Br

(5.45)

(5.46)

The first term corresponds to the difference in the field
energies of a particle in the beam pipes of different radii.
It is independent of the angle cx. The real part of the
second term describes the loss to the radiation, which is
the same for a taper-out and a taper-in. The sum of the
impedances of two tapers, calculated from Eq. (5.43),
gives the impedance of the long tapered cavity. The
difference of the losses for two tapers with the same angle
a is independent of o.:

ReZ((co) =ReZs(co) —AZI(co), (5.50)

bZ(= f Jo(ka'(/1 —x )2c —1 1 x

X[JO(kr (/1 —x )
—Jo(kb+1 —x )] .

where Zs is the impedance of a step, Eq. (5.17), and the
correction term is

2 b
OUt 1Il

g v'~ a
(5.47)

Here,

(5.51)

This was noticed in numerical simulations (Chan, 1987).
As was shown in a paper by Heifets (1988), a substantial
contribution for a step is given by the region of variable

p, for which 1/b &(0« 1/a. Hence, if

b —a
tana )

2ka

the exponent in Eq. (5.46) may be replaced by unity and
the impedance of a taper is the same as the impedance of
a step. In the opposite case of a small u, the exponent os-
cillates rapidly unless

(k p)(r' a)cota —&(1 . —

tanaI 0& 0 k(b
(5.52)

1 1
AZ =—ln —,I (5.53)

To estimate the integral, we notice that AZI may be large
only if the argument of the Bessel function in the in-
tegrand P=kr (/1 —x is small within the range of in-
tegration. This is possible only if ka tano. «1. If this
condition is fulfilled, the correction term is

Restricting the area of integration by this condition, we
obtain for the real part of the impedance

a/b, if kb tana(1,
2ka tana, if 2kb tana) 1 . (5.54)
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1 b—ln —, if tana«o/b .
2cr v'~ a '

(5.55)

Thus, the energy loss for a taper-out may be smaller than
that for a step-out (a =m /2) maximum by a factor of 2,
even if the angle a is very small (Heifets, 1989; Yunn,
1989). For a long cavity tapered symmetrically from
both ends, the correction Eq. (5.55) doubles, reducing for
a sufficiently small angle, tana « o /b, the loss for a cavi-
ty to zero.

The dependence of the longitudinal loss factor of a
one-sided taper on its angle can be approximated by the
formula

~T = — 1 — ln —,2 'Qi b
crv'~ 2 a ' (5.56)

where i), =min(1. 0, il& ), and

g)O
g]

(b —a)
(5.57)

For q&&1, the loss factor of a taper reaches half the
value of the loss factor for a step and remains constant
with further increase of g&.

A comparison of Eq. (5.56) with the calculations by the
code TBcI is presented in Fig. 26 (Heifets, 1990b) for a
cavity of length g/a=115, where a= 1 cm, tapered from
one side. The bunch length is assumed to be o /a=0. 3.
Curves are plotted for the two respective ratios b/a=4. 0
and b/a=2 0 The res.ul.ts of the TBCI calculations (solid
lines) are in reasonably good agreement with those ob-
tained from Eq. (5.56) (dashed lines).

For a symmetric taper, i), /2 should be replaced by il &..

TBCI

Eq. (5.56)

The loss factor for a taper may be obtained by the con-
volution of Eq. (5.50) with the bunch distribution of rms
length cr. In the case b &)a, the correction term to the
loss factor is

1 cota, if tana ))o./a,
2ma

~'T = ( 1 —il, )ln —.2 b
o.&m

(5.58)

VI. ANALYTICAL RESULTS FOR THE
HIGH-FREQUENCY IMPEDANCE

When the structure under consideration can be
separated into simple parts for which the solutions of the
Maxwell equations are known or can be found, a natural
method for obtaining the solution for the whole structure
is the field matching technique. The application of this
method for calculating the narrow-band impedance is
discussed in Sec. IV.A.

In the present section, using this method, we derive an
exact system of equations that are suitable for the high-
frequency region. An approximate solution of the system
is obtained for several cylindrically symmetric structures.
The high-frequency impedance is found for a step, for a
cavity and for a periodic array of a finite number of cavi-
ties. It is shown that the observed transition from one re-
gime (which is characteristic of a single cavity) to anoth-
er regime (which is appropriate for an infinite periodic
structure) can be explained by the interference of the EM
waves diffracted from different cavities. The criterion
governing such a transition is given. The results agree
with the results obtained in the previous section using
another approximation: the diffraction model. This sup-
ports the reliability of the approximations, and allows us
to use them in more complicated cases where analytical
methods do not exist. For example, a similar approach is
used in the paper by Gluckstern and Neri (1989) to ob-
tain the longitudinal impedance of a small obstacle.

The unique situation exists for a semi-infinite circular
waveguide. In this case, an exact solution of the Maxwell
equations can be found in a closed form. The Wiener-
Hopf technique used for that purpose, and the derivation
of the longitudinal impedance for that structure, are de-
scribed in Sec. VI.F.

A. The basic system of algebraic equations

A long symmetric taper reduces losses to zero.
The independence of the losses on the direction of

beam propagation is also confirmed in these calculations.
A quite different approach to the problem of a taper

was recently developed by Yokoya (1990).

b/a = 4

b/a = 2

I

20
f

40
g1/a

I

60 80 100

FIG. 26. The longitudinal loss factor of a taper as function of
the radiative taper length g & /a; a = 1 cm, o./a =0.3.

The starting point of the calculations of the high-
frequency longitudinal impedance is a system of linear
algebraic equations for unknown coeKcients of the field
expansion. We will derive the system of equations for the
general case of a periodic array of M equal cylindrical
cavities (Heifets and Kheifets, 1988, 1989) of radius b
placed on an infinitely long beam pipe of constant radius
a. A particle with charge q and velocity U -c(i.e. , P-1)
is assumed to move-along the axis of the system ro=0.
We choose the plane z =0 to coincide with the beginning
of the first cavity. Figure 27 gives the layout of the
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y =aO, 0='(/k p—+2ike, E—+0 . (6.3)

a

o z
N= 0 1

An infinitely small imaginary part c, is added to the wave
number k to comply with the radiation condition.

The radiation field components inside the Nth cavity,
a & r & b, XI. ~ z (XI.+g, are

FIG. 27. A periodic array of cavities. The layout of geometry
and the coordinate system.

and

E~= y X„D„"g("(r)sin(X„g„),
n=0

E, = g (p„/b)D„g( '(r)c os(A,„g~),
n=0

(6.5)

i f—dp A (p )
—J, (g r /a )e '~'

&C
(6.1)

E, = iQe' 'Go—(r, a)

+ f dp A(p)Jo(y~r/a)e'"',
KC —oo

(6.2)

where k=(o/e, Q=qk/crest, and Go, (r, a) are defined
in Eqs. (4.3) and (4.2), and

geometry considered and the coordinate system used.
A particular case of a single cavity can be obtained by

assuming M= 1. Likewise, a particular case of a periodic
array of cavities can be obtained in the limit as M —+ ~.

For the cylindrically symmetric (monopole) modes, the
Fourier harmonics of the electric field generated by a
particle can be written as a sum of the Peid of a particle
in a pipe and the radiation field due to the presence of the
cavities. The radiation Geld satisGes the homogeneous
wave equation, and has to be finite at r=0. It can be
represented as a superposition of cylindrical eigenfunc-
tions with unknown coefficients A (p ). For the region in-
side the pipe, r a, the radial and longitudinal Fourier
components of the electric field are, respectively,

E„=Qye'"'G, (r, a )

g„' '"(r)=Jo ((p„rib)&0(p„)—&o i(p„rib)JO(p„),

(6.6)

(M„=h Qk —
A,„, A,„=n ~/g, g~ =z NL, —(6.7)

and D„are unknown coefficients for the Nth cavity,
X=O, 1, . . . , M —1. Here, Po, are Bessel functions of
the second kind of the zeroth and first order, respective-
ly. The field components in Eqs. (6.1), (6.2), (6.4), and
(6.5) are constructed in such a way that their tangential
projections are equal to zero on all the metallic surfaces:
at r =a in the pipe and r =b in the cavities for appropri-
ate values of z, and at z =XI and z =&L, +g for arbitrary
values of r in the interval b ) r )a.

To Gnd the unknown expansion coefficients D„, one
can use the field matching method described in Sec.
IV.A. Matching the radial components of the field from
Eqs. (6.1) and (6.4) in the ¹hcavity on the surface
r =a, 0(g& (g, defines the coefficients D+ in terms of
the radial component of the radiation Geld. After that,
matching the z components of the field Eqs. (6.2) and
(6.5) at r =a produces the following integral equation for
the function A (p ):

M —i C„(k) V„(p) Ji(y~ )
A (p) = g g exp[i(k —p )NL ] V„*(k)+a f dp'V„*(p') exp[i(p' —k )NL ] A (p')

0 0 gag Jo(Q) ka Xp'

(6.&)

where the following notations are introduced:

p„g„(o'(a )
C„(k)=n b (i)( )

=+k 2 —X'„ tan[(b —a )Qk' —X'„],

4p sin —(p —
A,„)

IV„(p)'=
(p2 g2 )2

and that the functions V„(p )e '& are orthogonal

f dpV„*(p)V (p)exp[ ipL(N N')]— —

(6.11)

V„(p)=f dz e '~'cos(k„z) .

Notice that

(6.9)

(6.10)
~g~n m ~N N' (6.12)

The longitudinal impedance is given by the coefficient
A(k):
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Z(k)= —ZoA(k), Zo=377 Q . (6.13) matrix elements I „ is introduced:

In what follows we assume that b & a, since when b =a
all C„(k ) =0 identically. Consequently, all A (p ) =0
which means that no radiation occurs in a smooth pipe.

We seek a solution of Eq. (6.8) in the form

pN —N' P 1 Pd Ji(X )
nm

= J( )
np mp

Xexp[i(p —k)L(N —N')] . (6.16)
V (p)

A (p)=- g g B„exp[i(k—p)NL],
x=o =o

"
~o(&p)

(6.14)

which gives the following system of linear algebraic equa-
tions for B„:

M —1

B„= C„(k) V„*(k)+ g g r„B
a N'=0 m

(6.15)

Here %=0, 1, . . . , M —1, and the following notation for

To evaluate this integral, we use analytical continuation
of functions in its integrand into the complex plane of the
variable p. According to the radiation condition, see Eq.
(6.3), the path of integration in Eq. (6.16) must be shifted
above the negative real axis and below the positive of
that plane. Closing the path by a circle of large radius ei-
ther in the upper or in the lower half-plane, it is easy to
show that the integral is equal to the sum of residues of
poles located in the zeros of the Bessel function
Jo(vi ) =0:

V„'(u&)V (u&)exp[iL(ui —k)(N N')] f—or N&N',

V~(uI)V„(u&)exp[ iL(u&—+k)(N —N')] for N &N', (6.17)

where

Qk —(v, /a) for v, &ka,
Ql-

i V (v&la )
—k for v& )ka .

(6.18)

All terms with vI & ka in the sum of Eq. (6.17) are ex-
ponentially small. Hence, the summation over I may be
truncated at vl =ka. The imaginary part of the diagonal
term is

max

lmr'„„= y, ~V„(u, )~',
I —0 Qla

(6.19)

M —1 oo

Z (k) = —Zo g g V„(k )B„(k) .
N=O n =0

(6.20)

where the integer l, on the upper limit of the summa-
tion is defined by the inequality v&

~ ka.
max

The longitudina1 impedance in terms of the coe%cients
aN is

Then the impedance per cell is

oo

y ~V„(k)~'C„(k) .
M m.gka „

(6.22)

'2 (i+ )
)

1/2
2

b —a
(6.23)

defined by the equation C„'(k«)=0. The impedance
can be presented as a sum of the resonances with
infinitely small width. Representing C„(k ) in the vicin-

ity of a resonance as

C„'(k ) =R„& '(k —k„i+ ic, ), (6.24)

Notice that in the zeroth-order approximation the im-
pedance per cell given by this formula does not depend
on the number of cells in the array and, as we will see
shortly, is the impedance of a single cavity.

For large wave numbers k, the impedance, Eq. (6.22),
is a fast changing function of k and goes to inanity at the
resonance values

So far, the system Eq. (6.15) constitutes the exact set of
equations defining the radiation of an ultrarelativistic
particle.

with

[~(l + —,
'

) ]R„1=-
k„,(b —a )

B. The impedance of a cavity in
the zeroth-order approximation

iC„(k )B„= V„*(k) .
~gka

(6.21)

In the high-frequency limit, we can expect that the sys-
tem Eq. (6.15) can be solved by the method of iteration.
In the zeroth-order approximation, we neglect the second
term in brackets in Eq. (6.15): (i+ —,

'
)

x y ~
v„(k)~' ' S(k —k„, ) .

k„,n, 1

(6.26)

Practically, we are interested in ReZ averaged over some

the real part of the impedance is given by the sum of 5-
functional terms

ZOOTRe
gka(b —a )
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kg (6.28)

and decreases as (n no)— for nano. The square
brackets denote the integer part of an argument. The
main contribution to the impedance is therefore given by
mode np which, of course, is different for difterent k.
Hence, it is convenient to choose the interval of averag-
ing as

(6.29)

which is large in comparison to 6k if k is large.
For an estimate of the real part of the impedance in

Eq. (6.26), it suffices to consider only the term n =no.
The average impedance is then

z 2 z max (i +—)

4k. (b
(6.30)

interval of wave numbers Ak, which should be large in
comparison with the diff'erence between neighboring res-
onance frequencies 5k, given by

~l
Sk =k„(,+, )

—k„,= ——

k(b —a)
We can choose an appropriate Ak in the following

way. The factor V„(k)l given by Eq. (6.11) has a max-
imum value of order of (g/2) for n =no, where

the condition Eq. (6.33) with I,„ from Eq. (6.31).
The zeroth-order approximation does not take into ac-

count either the interference of the radiation from
diff'erent cavities or the energy escape into the cavity
openings. In the next two subsections we derive a
method which allows us to take into account both these
eff'ects.

C. The high-frequency impedance of a cavity
in the diagonal approximation

8„= C„(k )
Kg

i V„'(k ) +gr'„s
ka

(6.35)

In the zeroth-order approximation, the sum on the
right-hand side of this equation is neglected altogether.
In the next approximation, we include the main diagonal
term I=n contributing to the sum. All the other terms
give only small corrections and can be taken into account
by the method of iteration. In this diagonal approxima-
tion (Heifets and Kheifets, 1988, 1989), we obtain the fol-
lowing expression for the impedance:

We start with the somewhat simpler case of a single
cavity, M= l. In this case, the interference of the radia-
tion from diff'erent cavities plays no role, but the energy
How into the side pipes must be taken into account. For
M= 1, Eq. (6.15) takes the form

where

l,„=(b—a )&k/mg (6.31)

z, /
v„(k)l'z(k)= i-

ka' „y(k) (6.36)

This estimate of the real part of the impedance, with Ak
defined by Eq. (6.29), difFers from the real part of
Lawson's estimate (Lawson, 1968)

where we de6ne

y(k)—= C ' —1
a

Z . Zp — 1=(1+i) &g/~a-
M 2m &ka

~g cot[(b —a )Qk2 —A.„']" —r'„„. (6.37)

n=np and O~l &l (6.33)

This result has a simple physical meaning. The eigen-
mode with the eigennumbers (n, i ) ))1 is characterized
by the wave vector k with components ki =~i/(b —a)
and

klan
=nm/g, corresponding to the wave number k„& in

Eq. (6.23) and the frequency co=k„&c. The interaction of
a particle with a mode substantially contributes to the
impedance if, in the time of Aight through the cavity g /U,
the phase slippage is small:

only by a factor m/3. Numerical calculations confirm
that this result is independent of the choice of the size of
the interval Ak.

We conclude that the main contribution to the im-
pedance comes, with good accuracy, from eigenmodes
with eigennumbers

1 „„=(i—1)—p g ~g
a 2k

(6.38)

The resonance frequency shift given by ReI „„ is small,
and the expansion around a resonance frequency k„&
takes the form

The sum in Eq. (6.36) is again mainly determined by
terms n n p.

Similarly to the treatment of Eq. (6.22), the impedance
given by Eq. (6.36) can be represented as a sum over the
resonance terms with finite widths. The resonance fre-
quencies are now given by the condition Rey(k)=0,
while the resonance widths are de6ned by ImI „„.Evalu-
ation of I „„has been done by Heifets and Kheifets
(1989). For large k = nor/g, a good estimate for I o„ is

1/2

(ai —k~iv)(g/U) &~/2 . (6.34) y(k ) = R„( '(k k„i+iy„i ), — (6.39)

Substituting U =c and n =no from Eq. (6.28), we obtain where
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and

R nl
al

g (b —a)l

1 l
Y11l +2 I 3

max

(6.40)

(6.41)

quencies u&+k-2k. After averaging over a frequency
interval, their contribution is negligibly small. On the
other hand, all the matrix elements with N & N' contain
factors which oscillate with small difFerence frequencies
ul —k. These terms describe the interaction of a particle
with the waves traveling in the same direction. There-
fore, we may assume that

Hence, in the diagonal approximation, ReZ is not singu-
lar as it was in the zeroth approximation, Eq. (6.26), al-
though it may have rather sharp peaks if y„l is small.
This is the main qualitative feature of the diagonal ap-
proximation for a single cavity.

The ratio of the resonance width y„l to the distance 5k
between adjacent resonances is small for the resonances
with l &l „:

'V nl l
5k l,„

(6.42)

Therefore, averaging over Ak for resonances with
different l may be performed independently. Since the in-
tegral over a resonance curve does not depend on its
width, the real part of the impedance is the same as given
by Eq. (6.32). The diagonal approximation allows one to
estimate correction, given by the next iteration, and to
prove that such corrections are small in the high-
frequency limit (Heifets and Kheifets, 1989). Recently,
Gluckstern (1989a) has shown that Eq. (6.32) holds for a
cylindrically symmetric cavity of a general shape.

D. The high-frequency impedance
of an array of cavities

M —i
BN (k) + y I x—A'BN'

ka N~ —P
N'XN

(6.43)

where N=0, 1, . . . , M —1; I „„ is defined in Eq.
(6.17); and y(k ) is defined by Eq. (6.37).

It should be noted that the system Eq. (6.43) is difficult
to solve numerically for an interesting case, namely
M-ka »1. Indeed, the rank of the corresponding ma-
trix is M. In addition, the coefficients in Eq. (6.43) oscil-
late rapidly with a typical period of 1/M. Therefore, the
computational time for the calculation of the averaged
impedance increases with M as M .

To simplify Eq. (6.43), consider the behavior of its ma-
trix elements given in Eq. (6.17). All the elements with
N & N' contain factors which oscillate with large sum fre-

Consider now an array consisting of M identical cells.
In this case the interference of waves generated in
different cells must be taken into account. We describe
the interaction of a particle with each cell in a manner
similar to the previous treatment of a single cavity.
Therefore, we consider Eq. (6.15) in the diagonal approxi-
mation for the lower indices, retaining only the termsI=n =n p, but keeping the summation over the upper
indices N . This gives (Heifets and Kheifets, 1988, 1989):

I-N„—N =0 for N&N'

and rewrite Eq. (6.43) in the form

N —i
BNy(k) — + g PN NBN

ka N —
Q

(6.44)

(6.45)

B„(s,k ) = g e ~'B+,
N=O

(6.47)

r„(s,k) = y e-"r"„„, (6.48)
N=1

with o. —=Res &0.
Then the Laplace transform of a solution of Eq. (6.45)

1s

iV„
B„(s,k)=

ka [y(k) —I „(s,k)](1—e ') (6.49)

The inverse transformation now gives the solution of Eq.
(6.45):

l or+ 0B„= . e 'B„(s,k), o )0 .—l /7+0 27Tl
(6.50)

Hence, the impedance of an array with arbitrary number
of cells M is given by the following expression [cf. Eq.
(6.20)j:

By omitting the terms with N' & N we neglect the interac-
tion of a particle with the waves traveling in the opposite
direction. In particular, we neglect the decay of the
modes inside cavities into these waves. Since we do that
in the nondiagonal terms, for consistency, the same
should be done in the diagonal terms as well. In other
words, ImI'„„ in the definition of y(k ), Eq. (6.37), should
be divided by 2.

Equations (6.45) are the recurrence relations between
coefFicients 8„. Thus the coefficients can be found
sequentially starting with the zeroth one:

~Q n
(6.46)

ka y(k)
Notice that this expression gives the impedance of a sin-
gle cavity.

It is also possible to solve the system of Eqs. (6.45) ex-
plicitly. To do that we notice that the Nth coe%cient is
expressed through coefficients with indices N'&N. Al-
though we are interested in only the first M coefficients,
the procedure can be formally extended to any N. Since
the matrix I „„depends only on the differences
N N', Eq. (6.45) can —be solved by applying the discrete
Laplace transformation. The Laplace transforms of B„
and I „„aredefined for a complex argument s as follows:
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Zo I&+0 Ms
Z(k)= —

i V„(k)i ds
4~ka~ „o " —i~+~ [y(k) —I „(s,k)](coshs —1)

(6.51)

Here

and

2@i
~ V„(uI )

~

iL(k —
uI )+sI=a a u~(e ' —1)

(6.52)
0 if gati& /M.

Then Eq. (6.56) can be simplified:

(6.61)

uI =+K —(vI/a) +2kie, v&=m. l . (6.53)
C&(k, M ) = — [R )(P)+R2(P)],

8 a 4L
(6.62)

y(k)=l „(s,k) . (6.54)

The integrand in Eq. (6.51) has the same value on two
parallel lines, s = —i~+o. and s =+in.+o., —~
&o. &0. Therefore, we can add and subtract integrals
over these two lines, thereby extending the contour of in-
tegration in the complex plane s from —~ —im, then
from —im. +o. to i~+0., and back to —~+in. The in-
tegral is then equal to the sum of the residues at the roots
of the respective equations cosh s = 1 and

where
P

R i(P) =I p dp=-(4»
0
PRz(P)= J p dp=($2),

0

a „Ji(p)

a
k

Ii(P)

(6.63)

(6.64)

(6.65)

(6.66)

(
Z 2Zo 2LRe
M (ka )3~' ~a

I /2

4(k, M),

It is easy to see that all the roots of Eq. (6.54) are pure-
ly imaginary. Using that fact, we average the impedance
over the interval 5k=~/2g; see Eq. (6.29), as in Sec.
VI.C for a single cavity (Heifets and Kheifets, 1987). The
result is

P=(2m.ka /LM)'~ (6.67)

M»ka'/L . (6.68)

We shall evaluate integrals R
&

and R2 in two regions of
the parameter I'.

(a) Suppose first that P « 1 or

where
2

1 ar etang
2

sin (Mt/2)F t,M =
M sin (t/2)

(6.55)

(6.56)

(6.57)

(6.58)

Z 2Zo 2LRe
M (ka )3~2 m'a

1 /2

for M »ka /L . (6.69)

Since P « 1, we can expand functions g, and g2 in the
vicinity of p=0: g&=gz=(a/4L)v' krgr. Both values
are large for large k everywhere inside the interval of the
integration in Eqs. (6.63) and (6.64). Hence, function

=(4L /a ) (1/nkg ). For t.he integrals R, and R2
we get R, =R 2 = 16L /gM and @(k, M )= 1. Thus we ob-
tain

km.g
a

pjo(p»)
' (6.59)

In other words, the real part of the average impedance
per cell decreases with frequency as co

(b) Suppose now that P » 1 or
and

1/2
2ka

L
' (6.60)

For an array with only a few cavities (M= 1) the ex-
pansion of the expression Eq. (6.51) is obtained in the pa-
per by Heifets and Kheifets (1989). Apart from small
corrections, the impedance per cavity is the same as that
for a single cavity; see Eq. (6.32).

To evaluate the average impedance for M &&1 we no-
tice that, for large M, function E(t,M) has a very sharp
peak at t -0. Hence, a good approximation for it is

1«M «ka2/I. . (6.70)

3+ [0'.(p —vi
(6.71)

This expression has the correct behavior in the vicinity of
the roots p =v, , and decreases as g far from them. The
estimate of the integral R, is then

In this case, the main contribution to the integral R,
comes from the vicinities of the roots of
J, (p ): p =v, , where g, =0. Near the root p, the
function = can be approximated by
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mka

M&gML

where we used the formula

[a/'~] &3
g v', =, P»1.

m=1

(6.72)

Unlike the situation with R&, the integrand of R2 does
not oscillate, and the relative contribution of R2 to Eq.
(6.62) is small [it is of order of (gM/L) '~ «I with
respect to R i j. The physical reason for such a difference
is that the interaction of a particle with the diffracted
waves is substantial only when both travel in the same
direction. Therefore, in this case

1/2
Z 0 g v'2L,

Re
~ka' &gM

1«M «ka'/L . (6.73)

In other words, the real part of the average impedance
per cell decreases as (kaM) '~ . This result was first
qualitatively obtained by Palmer (1987). A result similar
to Eq. (6.73) was later obtained by Gluckstern (1989b,
1989c), albeit with a difFerent coefficient.

An intermediate parameter region M-ka /I. is the
transition area. The transition from one regime to anoth-
er is illustrated in Fig. 28 (Heifets and Kheifets, 1989).
The curves represent function 4& versus ka /ML for

different values M, and were obtained by numerically in-
tegrating Eq. (6.56).

Let us summarize the results (Heifets and Kheifets,
1989). The real part of the impedance per cell for a small
number of cavities decreases with frequency as k
For a large number of cavities the asymptotic frequency
region is divided into two parts. For an extremely high
frequency, the real part of the impedance depends on fre-
quency in a way similar to that for a single cavity, i.e., as
k ', but falls off as M ', with the number of cells M
due to the interference of the radiated waves emitted
from different cavities. The interference also takes place
for moderate (but still large) frequencies satisfying the
criterion Eq. (6.70), resulting in a much faster decrease of
the impedance —k . There is a continuous transition
from the regime where the parameter M satisfies Eq.
(6.70) to another where M satisfies Eq. (6.68). This result
agrees both with numerical calculations performed for a
small number of cavities (Bane and Sands, 1990) and with
the optical resonator model (Vainshtein, 1963; Keil,
1972; Sessler, 1972; Brandt and Zotter, 1982).

The rapid decrease of the real part of the impedance as
k has a direct implication on the design of a short
bunch accelerator. Indeed, had the asymptotic decrease
of the longitudinal impedance followed the law k
the main contribution to the total energy loss would be
given by the high-frequency tail of the impedance and the
total energy loss would depend on the longitudinal rms
size of the bunch o. as o. ' . The situation is quite
different when the impedance falls off as k . In this
case, the total energy loss is de6ned by the low-frequency
range of the impedance and, in general, is smaller than in
the first case.

E. The high-frequency impedance of a collimator

0
0 0.1

I

0.2 0.3 0.4 0.5

The longitudinal impedance of a collimator in the
high-frequency region (and in the relativistic case y ))1)
can be found analytically using formula (4.28). Since
asymptotically k&=k, only the diffracted field, i.e., the
field depending on coefficients z„, contributes to the im-

pedance. Physically that arises from the fact that only
the diffracted field radiated forward can reach a relativis-
tic particle. Hence,

Z„i(k )= —2(ZO/m )k g z„J0(v„/p ), (6.74)

5Q

0
0.5

I

1.0 1.5 2.0
ka'lML

where p =b/a, a is the pipe radius, and b is the collima-
tor radius.

Coefficients z„can be found from the matrix Eq. (4.23),
with the matrix elements and the right-hand side taken
from Table II.

zI kJ, (vi ) = —Jo(vi/p )/vi

FIG. 28. The transition from a cavity regime to an array re-
gime. The function @ is plotted versus the parameter ka /MI.
for different values of the number M of cavities. (a) Blowup of
the region of small values ka /MI of (b). Curves are labeled as
follows: 1 M=500; 2, M=1000; 3, M=3000; 4, M=10000;
5, M=30000.

+2p k g (t yE )Pi (p '), —(6.75)

where quantities P& (p ') are defined in Eq. (4.24) and
E in Table II. Dividing Eq. (6.75) by J, (v&), multiply-

ing by Jo(v&/p ), and summing over l, we obtain
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"X i o( i/p)= —& Jo(vi/P)/viJi(vi)
I I

+2k g J (v, /p)J, (v&) g(t y—E )v J, (v )(v p —v, )
I PB

(6.76)

—Jo(x ) I'o(x /p ) ]/4Jo(x ), (6.77)

where Yo is a Bessel function of the second kind. From
here it follows that the second term of the right-hand side
of Eq. (6.76), containing coefficients t and y, vanishes,
since the sum over l is zero. The first sum in Eq. (6.76)
according to the same formula is

X Jo(vi/p»)/vl Ji(vr )
I

=(m/4)lim[ Yo(x ) —I'o(x /p)]„o=(lnp)/2 .

(6.78)

Hence, in the high-frequency region, the impedance of a
collimator does not depend on frequency and is the fol-
lowing constant:

Z(k)=(Z o/~)ln( a/b), for y) k))1 . (6.79)

The same expression holds for the high-frequency im-
pedance of a pipe cross section step for the case of a
bunch exiting the narrow pipe. In the opposite case, the
impedance is zero; see Sec. IV.C.

Formula (6.79) is not valid for k & y. In this range of
frequencies the impedance decreases at least as k

It is interesting to estimate the total energy loss b, A' of
a charge passing through a collimator; cf. Eqs. (2.1) and
(2.15). For a Gaussian bunch of rms length tr, the total
energy loss is

b, A'= —ln —.2q a
o&7r b. (6.80)

This expression is valid for o & I/y, and agrees with
the formula for the total energy loss of a charge passing
through a sudden change in a pipe cross section obtained
by Balakin and Novokhatski (1983) and by Kheifets
(1987).

If one assumes that Rez is constant for k (y and is
zero for k )y, as previously discussed, then the total en-

ergy loss of a point charge, o. =0, is proportional to y.
For a charge passing through a hole in a screen, this con-
clusion is in agreement with the estimate obtained by
Lawson (1968), and with numerical calculations (Dnes-
trovskii and Kostomarov, 1959a, 1959b).

Summation here can be performed explicitly using the
following particular form of the Kneser-Sommerfeld for-
mula (Watson, 1944; Erdelyi et al. , 1953)

g Jo(vi/p)(vi x) '—J, '(v, )
I

=~Jo(x /p )[Jo(x /p ) Y'o (x )

F. The impedance of a semi-infinite circular waveguide

E, (r, z)= ige'"'—Ko(rr)

2k f dPF(P)x JO X

X~,"'(~, )e'~' (6.81)

where k= /cco, r=k/y, Q=qk/vrcy, and
=a V kz —pi+2kiE In Eq. (6.8. 1) the unknown func-

tion Q (p ) was replaced by another function F(p ) accord-
ing to the formula

3 (p) = — y H"'(y )F(p)
2ka

(6.82)

As shown by the paper by Kheifets et al. (1985), function
F(p ) defined in this way can be interpreted as the Fourier
component of the induced current density. In Eq. (6.81)
we have also replaced Go(r, a ) by Ko(rr ) to take into ac-
count the fact that the second term in Eq. (4.4) also
comes from the induced current (see Sec. V.B), and thus
is already included in the second term of Eq. (6.81).

Function F(p ) is defined by the boundary condition
which here can be written as

E, (a,z)=0 for z&0. (6.83)

In this subsection we describe the application of the
Wiener-Hopf factorization method (Wiener and Hopf,
1931;Vainshtein, 1969), for calculating the impedance of
a semi-infinite waveguide with a circular cross section of
radius a (Kheifets et al. , 1985, 1987; Kheifets and Palum-
bo, 1987). A similar structure —a semi-infinite circular
pipe inside an infinite circular pipe of a 1arger radius —is
considered in the paper of Palumbo (1990). These struc-
tures have a unique feature: the Maxwell equations in
these cases can be solved exactly. The same method was
used by Levine and Schwinger (1948) to obtain an explicit
solution to the problem of the radiation of sound from
the end of a pipe.

As discussed in Sec. III.D, the impedance in this case
depends on the direction of the charge motion. Consider
for example, a charge entering a waveguide whose open
end is placed at z =0. Due to the axial symmetry of the
problem, the current density has only the z component,
and can be expressed as the sum of the current densities
of the source charge and the induced charge.

The starting point of the method is a set of integral
equations for the longitudinal current density distribu-
tion induced in the wall of the pipe. The system can be
obtained from Eq. (6.2). In the ultrarelativistic limit

y —& oo, Eq. (6.2) can be rewritten in the following way:
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We define

L (p) =~XpJo(X, )Ho" (X,); (6.84)

then Eq. (6.83) gives

J dp F(p )L(p )exp(ipz) =Q exp(ikz) for z )0,
(6.85)

N

CC

where Q = 2i—k aKo(ra )ly . Since there is no metallic
surface for z & 0, the induced current density for negative
z is zero:

0
O. l 10 10

ka = acolc

l

10

f dp F(p)exp(ipz) =0 for z &0 . (6.86)

Equations (6.85) and (6.86) constitute a system of linear
integral equations for function F(p). Provided the func-
tion F(p) is found, the longitudinal impedance can be
found by integrating Eq. (6.81) according to formula
(2.5).

The solution of the system (6.85), (6.86) can be ob-
tained by factoring the kernel L(p) in such a way as to
satisfy the following requirements (Vainshtein, 1969):

(1) In the upper half-plane of the complex variable p,
the product F(p)L(p) has one pole at po=k. The value
of the residue of this pole is Q /2i m. In all. other points of
the upper half-plane this product is an analytic function.
As ~p ~

~ ac in the upper half-plane, F(p )L (p )~0.
(2) In the lower half-plane F(p ) is an analytic function

and tends to zero as ~p ~

~~.

FICy. 29. The real part of the longitudinal impedance of a
semi-infinite circular waveguide as a function of parameter
ka =ace/c for three different values of the Lorentz factor y.

iQ (pa )
F(p)=

2ml +(ka)v ka (ka —pa) ~
(6.87)

where functions I + are

The analytic behavior of F(p ) and F(p )L(p ) listed in

(1) and (2) causes F(p) to be the solution of the system

defined by Eqs. (6.85) and (6.86). The function F(p )

satisfying both the above requirements is (Vainshtein,
1969):

u k, in[vcr 1Jo(o i)Ho(a i) l u 1n[2cr2Io(cr2)Ko(c72) 1
I +(u ) = [2pIo(p)Ko(p) ]

—'~ exp — dt
2 2

+ PV dt
lK' 0 u —t l& ka t2 —u2

(6.88)

where p=+u (ka),— cr, =+(ka ) —t, and
cr2=+t (ka ) . Not—e that at u =ka there is no singu-

larity.
In terms of these functions, the impedance produced

by the radiation on the open end of the waveguide
(Kheifets et aI , 1985) fo. r P= 1 is

ZokaKo(ra ) yI, (ra )Z(k)=
2nyIo(ra ) Io.(ra )

I"+(ka )

I +(ka )

1

4ka

(6.89)

Z(k)= ln
Z0 2
27T ka

(6.90)

This result is similar to that of a step with the infinitely
large outer radius.

Figure 29 presents the real part of the longitudinal im-
pedance ReZ(k), Eq. (6.89), for several values of the
Lorentz factor y.

In the asymptotic region ka ))1, the contribution of
the discontinuity to the longitudinal impedance is

Vll. CONCLUSIONS

Substantial progress has recently been achieved in un-

derstanding the physics of the bunch-environment in-
teraction in modern accelerators and, correspondingly, in
the development of analytical and numerical methods of
estimation of the coupling impedances and the loss fac-
tors. In this paper, we have tried to describe the present
level of understanding and the main theoretical results in
the field. Clearly, the presented methods are limited to
rather simple cylindrically symmetric geometries. Nev-
ertheless, it is dificult to overestimate the importance of
the comprehension and insight which they help to devel-

op. Certainly much more work is needed for other
geometries such as tapers, bellows, etc. This is especially
true for cylindrically nonsymmetric structures.
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