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For more than 40 years it was thought that polaron- and exciton-phonon systems exhibited unexpected lo-
calization properties. Particular attention was paid to the so-called phonon-induced self-trapping transi-
tion, which, it was believed, should manifest itself as a point of nonanalyticity in the ground-state energy
as a function of the electron-phonon coupling parameter. It will be demonstrated for a large class of (gen-
eralized Frohlich) models that no such transition exists. The dimensionality of space has no qualitative
influence; insofar, an application of the authors' results to problems in lower dimensions (e.g. , polarons in
quantum wells) is straightforward. The same holds true if homogeneous external fields are involved; for
example, a discontinuous mass stripping for magnetopolarons can be excluded. On the other hand, a
phase-transition-like behavior will be found, if a polaron or exciton is exposed to a short-range potential,
allowing a so-called pinning transition. The authors emphasize, however, that even in this case the transi-
tion is only modified, and not induced, by phonons.
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I ~ INTRODUCTION

In this review we are concerned with qualitative
analytical properties of polaron systems. Studies of this
type have a long history; in fact, since the introduction of
the terms "polaron" and "exciton" as such, it has been a
controversially discussed question whether or not the
corresponding wave functions, energies, masses, etc. were
analytical functions of the electron-phonon coupling pa-
rameters, the total momentum, external fields, and other
variables. To the best of our knowledge, L. D. Landau
was the first to argue that a polaron system might exhibit
unexpected localization properties. This can be
exemplified by the following quotation from his early
publication on the electron motion in crystal lattices
(Landau, 1933; see also 1965).

"We can now differentiate between two essentially
different cases. For, the energetically most favourable
state of the system may correspond, firstly, to the undis-
torted lattice and the electron moving about 'freely' and,
secondly, the electron trapped at a strongly distorted re-
gion. "

The intention of Landau's extremely short paper was
to point out the possibility of a delocalization-
localization transition rather than to prove its existence;
in this context, we refer to the interesting remarks of Pe-
kar (1954) in his textbook on electrons in crystal lattices.
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64 B. Gerlach and H. Lowen: Analytical properties of polaron systems

Moreover, one should realize that all studies at that time
were semiclassical, the lattice properties being incor-
porated into a classical macroscopic polarization (see Pe-
kar 1946, 1948 and Landau and Pekar, 1948). In
response to this work, Frohlich, Pelzer, and Zienau
(1950) proposed the first microscopic model; the corre-
sponding Hamiltonian now bears Frohlich's name.

This model soon proved to be of basic importance for
various branches of solid-state physics and, until now,
has attracted the attention of numerous physicists. In
particular, it became clear before long that Pekar's semi-
classical results could be reproduced by a variational an-
satz, which was adequate in the strong-coupling regime
but inadequate in the weak-coupling regime (Tjablikov,
1952a; Frohlich, 1954). Clearly, the latter was well un-
derstood by perturbation theory. Therefore it was highly
desirable to find a (variational) procedure that would give
correct results in both the weak- and strong-coupling
limit and that could provide an interpolation scheme. To
the best of our knowledge, the first to achieve this was
Buckingham (1954). Interestingly enough, his variational
calculation led to a discontinuous transition in the wave
function and the derivative of the ground-state energy,
considered as functions of the coupling parameter. It is
obvious that these results support Landau's hypothesis.
It is also obvious that they cannot provide a formal
proof: The analytical behavior of an exact wave function
may deviate considerably from that of a variational ap-
proximation. Frohlich (1954) stressed this aspect im-
mediately. Analyzing the significance of variational
discontinuities in connection with polaron physics, he
wr ites,

"These unsatisfactory features are I think largely due
to some unsatisfactory properties of the method
used. . . . The difficulty is closely connected with the
fact that in this method the total wave vector is not on
principal axes. "

It is an apparent shortcoming of every variational cal-
culation that a nonanalytical behavior, of, for example,
adapted wave functions, may be an artifact of the ap-
proximation. Nevertheless, variational calculations are
an indispensable tool for numerical work. Until now, an
enormous number of publications treated polarons and
polaronic excitons that way. In many of them the locali-
zation problem was studied and Buckingham's results or
generalizations thereof were frequently stated (we give a
representative list of references in Sec. III). After all,
assertions such as "self-trapping, " "delocalization-
localization transition, " "phonon-induced symmetry
breaking, " "stripping transition, " etc. were so common-
place that they hardly seemed to deserve a comment. We
stress explicitly that the objections of Frohlich were oc-
casionally rediscussed or rediscovered in a generalized
context (Haken, 1955; Hohler, 1955; Toyozawa, 1961;
Peeters and Devreese, 1982b). Nevertheless, there was a
widespread belief (at least in the solid-state community)
that nonanalyticities should occur in polaron systems un-
der various circumstances —a "polaronic phase transi-

tion" seemed to be well established.
The contrary is true. We shall prove for the standard

Frohlich systems, namely, the free optical polaron, the
magnetopolaron, and the polaronic excitation, that no
phase transitions exist. It is only for the specific case of a
polaron in a short-range potential that a delocalization-
localization (or pinning) transition may occur.

During our studies we realized that strongly related
work had been done in constructive quantum field
theory. It seems to be widely unknown that a complete
discussion of the ground-state energy E of a free optical
polaron was available as early as 1974. We refer to the
paper of Frohlich (1974) and the detailed comments and
extensions of Spohn (1987a). E was proven to be an
analytical function of the coupling parameter a for all
values of a. Moreover, Spohn (1986) provided analytical
arguments for a polaronic pinning transition in a suitable
short-range potential. A considerable part of the
methods to be used in Sec. IV was directly initiated by
those pioneering papers.

The organization of this review is as follows: Follow-
ing the introduction, we establish the basic notations and
state a formalized version of the problems with which we
are concerned. Section III contains our results, com-
bined with some comments and a compilation of refer-
ences. The heading "proofs" for Section IV is self-
explanatory; we hope that the clear separation of the re-
sults (Sec. III) and the technically involved proofs (Sec.
IV) will facilitate reading. We close with some extensions
and a short summary in Secs. V and VI, respectively.

I I ~ BASIC NOTATIONS
AND STATEMENT OF PROBLEMS

To begin with, we fix the class of models that will be
discussed in this article. Consider the Hamiltonian

H: =Hp+Hph+Hi, (2.1)

(2.2)

R'p„:= g Id khan~ (k)a*(k)a (k),
1

(2.3)

H, := g g f d k[g „(k)a (k)e " +H. c.],
m=1 n=l

%~2 . (2.4)

H describes a system of X distinguishable, interacting
particles coupled to M branches of phonons. The spatial
dimension is D. The particles have momenta p„, posi-
tions r„, and charges q„. k and co (k) denote the wave
vector and dispersion of a phonon; c„, V„, and V charac-

where the subscripts P, Ph, and I indicate "particles, "
"phonons, " and "interaction. " In particular, let

N

Hp g IE.(p. —q. A(r. ))+ I „(r„))+&~2&(r&—r&)
n =1
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terize the band structure, the one- and two-particle po-
tential; A(r) is the vector potential due to a homogene-
ous magnetic field; a (k) and a+(k) are annihilation and
creation operators for phonons; g „(k) is the particle-
phonon coupling and B„aD-dimensional, symmetrical,
and positive-definite matrix, incorporating an eventual
anisotropy of the coupling.

It is obvious that H is a generalized Frohlich Hamil-
tonian, which is to exist on a Hilbert space

(2.11)

of total momentum. Following Lee, Low, and Pines
(1953), we can profitably use this fact to eliminate the
electron coordinates from H; we define the unitary trans-
formation

Notice that for any coupling g (k) the Hamiltonian com-
mutes with the operator

P„,:=p+ f d k laika *(k)a (k) =p+Pph

&:= [L,(R ) ]"eF =:&,e&,„, (2.5)
lU:=exp ——r.Pph (2.12)

c,„(p)=p /2m„. (2.6)

co (k) and g „(k) are to be rotational invariant. Furth-
ermore, we put 8, =1. We stress that our discussion is
not restricted to these cases and refer to Sec. V.

Having introduced the model, we fix the precise mean-
ing of the heading "localized. " A wave function

it'll of a
particle-phonon system is called localized if P is an ele-
ment of &, that is, normalizable with respect to the par-
ticle and phonon part; otherwise, we call it delocalized.

Let us now turn to specific problems.

A. The free polaron

In this case we have N =M= 1, 2 =0, and V& =0. As
indicated, we discuss a quadratic band structure. Furth-
ermore, we extract a dimensionless coupling parameter
&a from g(k). The physically relevant domain of &a is
0(&a( oo. However, from a mathematical standpoint
it proves profitable to admit —~ (i/a ( ~ or even v a
as an arbitrary complex number. There is no technical
difficulty in so doing, and we shall use this possibility in
the course of Sec. IV. The total Hamiltonian has the
three constituents

Hp=p /2m,

Hph= d kAco ka' ka k

H, =&af d k[g(k)a(k)e'"'+H. c. ] .

(2.7)

(2.8)

(2.9)

Without loss of generality, we may assume g(k) to be
real.

The standard model, introduced by Frohlich, Pelzer,
and Zienau (1950), assumes additionally

D =3, co(k) =co,

g(k)=(&/2m')'~ iiico/(&2~k) .
(2.10)

Our discussion, however, is not restricted to that case.

where I- ()R ) is the usual one-particle Hilbert space of
square-integrable functions and I' the Fock space for
phonons. Details will be discussed in Secs. III and IV.

In Secs. II through IV we treat a simplified version of
H so that the essential steps of our approach will be made
more clear. As for E„(p), we assume the simplest non-
trivial band structure available, namely,

and calculate P,'„:=U 'P„,U and H':= U 'HU. The
result is

~tot p &

H'=Hp+Hph+Hi,

(2.13)

(2.14)

where

Hp. =(p —Pp„) /2m,

H', :=&af d k [g(k)a (k)+H. c. ] .

(2.15)

(2.16)

Conservation of total momentum is now equivalent to
[H', p] =0 and permits us to restrict H' to the subspace
of H, which is spanned by the eigenfunctions of p with a
given eigenvalue A'Q. This restriction leads to the Hamil-
tonian

H'(Q): =(&Q —Pph) /2m +Hph+Hi =:Ho(Q)+H

(2.17)

Problem 1. What is the domain of analyticity of E (a, Q)
and f(a, Q) as functions of a, Q?

We know from perturbation theory that for sufficiently
small values of a the ground state of H is delocalized and
given by

1i(a):= e ~'Uq(a, Q) l~ p,
E(a):=E(a,Q)lg p.

(2.18)

of Lee, Low, and Pines. Clearly, H'(Q) is defined on
Mph =F alone, the electron coordinates having been elim-
inated. Moreover, it is suKcient to discuss H (Q) instead
of H.

Let E(a,Q) be the ground-state energy of H'(Q), that
is, the lower limit of the spectrum of H'(Q). The ex-
istence of E(a, Q) is directly connected with a proper
mathematical definition of H (Q), which in turn presup-
poses the specification of admissible functions co(k) and
g(k). We examine this point in more detail in Secs. III
and IV. For the moment, we take the existence of
E(a,Q) for granted. Even more, we assume E(a,Q) to
be a simple eigenvalue of H'(Q), the corresponding
eigenfunction being g(a, Q); P(a, Q) has to be an element
of Mph. All these properties will be proven in Sec. IV un-

der specific circumstances. In view of our introductory
discussion, we state as
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There is no a priori reason that this should be true for all
values of a. Let us assume that E(a, Q, ) (E(a,O) could
hold for some Q, AO and a) a, . This would demon-
strate the appearance of quantum-mechanical symmetry
breaking (Gerlach and Lowen, 1988a). Moreover, be-
cause of rotational symmetry, E ( a, Q) is a function of
lQl; if the minimum of E(a,Q) should occur for a subset
of Q vectors with different length (a being fixed), a suit-
able superposition of functions (2.18) might produce a lo-
calized state as ground state of H. Summarizing, we state
as

G ( ~ ):=cosh(/3A'co /2 —A(v
l
~

l
) /[2 sinh(/3A'co /2 ) ] .

(2.25)

On the other side, Z (a, /3) is connected with the formal
free energy F(a, /3) as follows:

Z(a, /3)=expI —/3[F(a, /3) —F(O,P)]] . (2.26)

From F(a, /3) we may derive all spectral properties of H
by familiar manipulations. We state as

Problem 2. Does E (a, O) (E(a, QWO) hold for al/
values of a in the interval 0&a ( oo7

Problem 3. Is F(a, /3) —F(0,/3) a real analytic function
of a and /3 for 0 & a & ~, 0 & /3 & ~?

p(a, /3): = trp„( rl e PHl r ) . (2.19)

Here, trph( ' ' ' ) indicates the tiace operatloil coilcern-
ing phonons; /3) 0 is a formal inverse temperature and r
is the particle position. The right-hand side of Eq. (2.19)
is independent of r, if H is translational invariant (as in
the present case). It proves useful to relate p(a, /3) to the
readily accessible expression p(0, /3) for an uncoupled
electron-phonon system and to define a formal partition
function

Z (a, /3): =p(a, /3)/p(0, /3) . (2.20)

Our solution of Problems 1 and 2 will rely heavily on
theorems of operator analysis. An alternative and, in
part, complementary approach to spectral properties of
Hamiltonians is possible by means of functional-integral
techniques [in connection with polaron physics, we men-
tion the marvelous paper of Feynman (1955) and the later
extensions of Schultz (1963) and Adamowski, Gerlach,
and Leschke (1984)]. Let us introduce the diagonal ele-
ment of the reduced density operator, that is,

B. The magnetopolaron

A(r) =(0,8x, O), 8 )0 . (2.27)

Throughout Sec. B, we assume D=2,3. For D=2, the
last component of 2 has to be skipped. Then, the total
Hamiltonian H has the following constituents:

Hp = (p+
1 el A(r) ) /2m,

Hph = f d k ih'co(k)a*(k)a (k),
H&=V'a f d k[g(k)a(k)e'"'+H. c. ] .

(2.28)

(2.29)

(2.30)

As in the case of a free polaron, we carry out the uni-
tary transformation U, defined in Eq. (2.12). Calculating
H'= U 'HU, we get

In comparison with the preceding, Sec. II.A, we have
to include a homogeneous, external magnetic Geld 8,
which we choose to point into z direction. For the vector
potential A(r), we use a Landau gauge, that is,

On the one side, Z (a, /3) can conveniently be
represented as a functional integral, namely,

H' =Hp +Hph+H i, (2.31)

Z (a, /3) = (exp( —S, ) ),
where the expectation value is generally defined as

f 5 R exp( —S [R])A [R]

f 5 R exp( —So[R])

where Hi is given by Eq. (2.16) and
(2.21)

H' =(p+lel A(r) —Pph) /2m . (2.32)

For 8%0, only the 2- and 3-components of total
momentum are conserved: [H',pz]=[H', p3]=0. We
denote the corresponding eigenvalues of iriQ2 and irtQ3

and define

In Eq. (2.22), f 5 R exp( . . ) indicates Wiener-
Feynman integration over all real, closed D-dimensional
paths R(r ) with R(0)=R(/3) =r. Moreover,

(2.33)

In analogy to Sec. II.A, it is sufficient to discuss the re-
striction of H' onto the subspace of &, spanned by the
eigenfunctions of p2, p3 with fixed eigenvalues irtQz, A'Q3,

that is,

H'(Q):=(G —Ppi, ) /2m +Hph+H, ',
where

So[R]:=f d~ R'(~), (2.23)
0 2

S,[R]:=—a f dDk lg (k)l'f f d~dr'G„((, )(~ r')— (2.34)

)( ik (R(7.)
—R(~') ) G:=(p„lel8x +h'Qz, irtQ3 ) . (2.35)

(2.24) Let E(a,Q, 8) be the ground-state energy of H'(Q)—
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its existence will be proven in Sec. IV under specific con-
ditions. Assume for the moment that E(a,Q, B) is a sim-
ple eigenvalue of H'(Q), the corresponding eigenfunction
being g(a, Q, B). Then we may state

Functional-integral techniques can be introduced in ex-
actly the same manner as was done in Sec. II.A [see Eqs.
(2.19)—(2.26)]. Admitting B as an additional variable in
the formal partition function Z and the reduced density
matrix p, one finds

Z(a, P, B):=p(a, P, B)/p(O, P, O)

= ( exp( —SI —Ss ) ),
where SI was given in Eq. (2.24) and

(2.36)

Sii[R]:=——~~~B f drR, (r)R2(r) . (2.37)

Generalizing the formal free energy I" correspondingly,
we are led to

Problem 5. Is F(a,p, B)—F(O,p, O) a veal analytic func
tion of a, p, Bfor 0 & a ( co, 0 &p & oo, 0 &B & ao?

C. The polaron in a potential

It is a simple task to generalize the Hamiltonian from
Sec. II A. We extract a dimensionless coupling constant
k from the one-particle potential Vi and define V& =.A, U,

v+0. If not otherwise explicitly stated, we assume A. )0
and v (0 (these are technical assumptions, which can
partially be removed; see Sec. IV.C). One finds

Hp =p /Zm +Av(r),

Hpi, =f d k h'co(k)a*(k)a(k),

H, =&af d k[g(k)a(k)e'"'+H. c. ] .

(2.38)

(2.39)

(2.40)

as parts of H. Once again we perform the unitary trans-
formation, defined in Eq. (2.12). Calculating
H'= U 'HU, we arrive at

H'=Hp+Hph+H, ',
where H', was given in Eq. (2.16) and

Hp =(p —Pp„) /2m +Av (r) .

(2.41)

(2.42)

Let E(a, A, ) be the ground-state energy of H' —its ex-
istence will be proven in Sec. IV under specific condi-
tions. If E( ka) is a simple eigenvalue of H', we denote
the corresponding eigenfunction by 11(a,A, ). What about
the analytical properties of E(a, A, ) and g(a, A, ) in this
case?

It is well known that E(a, A, ) (E(O, A, ) is true for a) 0,
E(O, A, ) being the ground-state energy of Hp —the pres-

Problem 4. What is the domain of analyticity of
E(a,Q, B) and P(a, Q, B) as functions ofa, Q, B?

Problem 6. What is the domain of analyticity of E(a, A. )

and f(a, A, ) as functions of a, A,, if H~ is known to have a
localized ground state for any A, )0?

Problem 7. What is the domain of analyticity of E (a, A, )

and tl(a, i, ) as functions of a, A,, if H p is known to have a
localized ground state only for k ) A, c )0?

Having posed the problem thus far, one realizes that it is
only for D=3 that the existence of a localized ground
state of H p may be questionable (Reed and Simon, 1978).
Therefore we restrict our discussion in this case to D=3.

Finally, we turn to functional-integral techniques.
Again, they can be introduced in complete analogy to
Sec. II.A. Admitting A. as an additional variable in the
formal partition function Z and the reduced density ma-
trix p, one finds

Z(a, P, iL):=p(a, P, A )/p(O, P, O)

= ( exp( —Si —S& ) ), (2.43)

where Si was given in Eq. (2.24) and

Si„[R]:=kf dr v(R(r)) .
0

(2.44)

We notice that H is not translational invariant. In-
sofar, trpi, (r~ exp( —pH)~r) will explicitly depend on r.
Nevertheless, we skip this r dependence, as it is irrelevant
for our considerations. Generalizing the formal free en-
ergy correspondingly, we shall study

Problem 8. Is F(a,p, A, ) —F(O,p, O) a real analytic func
tion of a p A fov 0 (a ( 0O, 0 (p ( ~, 0 & A & ~?

D. The polaronic exciton

In comparison with the cases presented in Secs.
II.A —II.C, this one is more complicated and exhibits a
considerably richer structure. Nevertheless, our discus-
sion will proceed along similar lines. The total Hamil-
tonian can easily be abstracted from Eqs. (2.1)—(2.4). We
assume as constituents of H

p„/2m„+ V(r, —r2),
n =1

Hp„= fd k Ace(k)a'(k)a(k), (2.46)

2

H, =v a g ( —1)"f d k [g (k)a (k)exp(ik r„)+H.c. ] .

(2.47)

ence of phonons lowers the ground-state energy in any
case (Adamowski, Gerlach, Leschke, 1984). Therefore
we expect the analytical properties of E(a, A, ) to be criti-
cally dependent on those of E(O, A, ). The latter are
directly connected with the existence or nonexistence of a
localized state as ground state of Hp, nonanalyticities can
occur in this case. Summarizing, it is tempting to study

Rev. Mod. Phys. , Vol. 63, No. 1, January 1991
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Hp=P /2M+p /2@+AU(r), (2.48)

2

H, =&a g ( —1)"fd k[g(k)a(k)exp(ik. R+iy„k.r)
n =1

It is for reasons similar to those in the previous case
that we choose D=3 again. Normally, V(r, —r~) is tak-
en to be a Coulomb potential. Our discussion is not re-
stricted to that case. Extracting a coupling constant
k)0 from V and deAning V=AU, our only premise is
that A, U(r) is negative and binding for any k) 0. It
proves useful to introduce center-of-mass and relative
coordinates R and r as well as total and reduced mass M
and m in the normal way. One finds

of eigenfunctions of P with a fixed eigenvalue Q. So we
are led to

H'(Q):=(A'Q —Pph) /2M+p /2p

+A, U(r)+Hp„+H, ' . (2.54)

Introducing I for the two mass parameters available,
we now turn to the ground-state energy E(Q, ct, k, , m) of
H'(Q) —its existence will be proven in Sec. IV under
specific conditions. Assume for the moment that
E(Q, o.', k, m) is a simple eigenvalue of H'(Q), the corre-
sponding eigenfunction being g(Q, a, k, m). In view of
our central topic, we state as

+H. c.], (2.49)
Problem 9. What is the domain of analyticity of
E(Q, a, k, m) and P(Q, o., k, m) as functions of Q, a, k, , m?

Pt.t:=P+Pph (2.50)

of total momentum. In complete analogy to the free-
polaron case, this fact enables us to eliminate the center-
of-mass coordinates from H. Performing a Lee-Low-
Pines transformation, we find

H'=Hp+Hph+Hi, (2.51)

where

where y1.=m 2/M, y2..= —m1/M. Of course, Hph
remains unchanged. One may verify that H commutes
with the operator

Extending our localization-delocalization discussion from
Sec. II.A to the present case, we shall study

Problem 10. Does E (0,a, A, , m) & E (QWO, a, l(, , m) hold
for all values of cz, X, m„ in the intervals 0 (o.'( ~,
0 &P & ~, 0(m„( ao?

Finally, we generalize the functional-integral concept.
Introducing the diagonal element of the reduced density
matrix and a formal partition function Z as functions of
a, P, A. , m and repeating the steps in Eqs. (2.19)—(2.26), we
arrive at

H p =(P—Pph) /2M+p /2@+A, U(r), (2.52) p(n, P, A, , m):=trp„(Ro, ro~e ~ ~Ro, ro), (2.55)

H,'=&a g (
—1)'f d k[g(k)a(k)exp(iy k r„).

n=1 Z(a, P, l, , m): =p(a, /3, A, , m)/p(O, P, O, m)

+H. c. ] . (2.53) = (exp( —
S&

—S~)), (2.56)

Conservation of total momentum is now equivalent to
[H', P]=0 and permits us to restrict H' to the subspace

where R(0)=R(P) =Ro and r(0) = r(/3) =ro. Further-
more,

So[R,r]:=f d7.[MR (~)/2+pi (~)/2],
0

S,[R,r]:=—ct g (
—1)"+"f d'/c ~g(k)~

n, n'=1

(2.57)

Sz[r]:=Afd~U(, r(~)) .
/3

0

(2.58)

(2.59)

P PX f f d7. d~'G„(()(~ r')expIik. [R(~)——R(~')+y„r(~) y„r(~')]j, —

Expectation values are defined as follows:

(A):=f5Rore ' ' 2[Rr]/fSR6re (2.60)

We note that p(ct, p, A, , m) depends also on the end
point ro of the path r(z). We skipped this dependence in
our notation, as it is irrelevant for the considerations to
follow. Cseneralizing the free energy E correspondingly
we close with

Problem 11. Is F(a,P, i, , m) —F(O,P, O, m) a real analyt

ic function of ct pram fov 0(a & oo, 0&/3( oo,
0&A. & ~, 0& m„& (x) 7

III. RESULTS

In this section we present our results, compare them
with previous work, and include some comments. The
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structure of the section is such that for any problem n to
be found in Sec. II, we formulate a statement n. More-
over, the subheadings in Secs. II and III are identical.

A. The free polaron

Statement 3. Take the existence of F(a,/3) F—(0,/3), or,
equiualently, the boundedness of Z(a, /3), for granted:
0 & Z(a, /3) ( ~. Then, F(a, /3) F—(0,/3) is a real analytic
function of a, /3. Sufjicient conditions for the existence of
F (a, /3) —F (0,/3) in 0 & a ( oo, 0 & P( co are

f d klg(k)l /co(k) & ~ (short ran-ge case), (3.2)

Statement 1. Consider the polaron Hamiltonian H'(Q)
as defined in Eq. (2.I7). Assume

~(k)) ~», ~(ki)+~(ki)) ~(lki+kil),

Jd klg(k)l /[1+(ak) ] & oo
(3.1)

to be valid, inhere a:=V'fi/mao is the polaron radius.
Then, the ground state en-ergy E (o., Q) exists and is an iso
lated, simple eigenualue for 0&a& ~, A Q /2m (fico.
E(a,g) and 1/(a, Q) are real analytic functions of a, Q in
the specified domain

We add some comments on this statement and begin with
the three inequalities (3.1), the importance of which differ
for our proof. co(k) )co) 0 is decisive to guarantee the
existence of an energy gap above the ground state: we
pick up this point in Sec. V. co(k~)+co(k2) )co(lk&+kzl)
has a more technical character; this condition is needed
to construct a lower bound for the energy of one- or
more-phonon excitations, which will be shown to pro-
duce the continuum edge of H'(Q). Finally, the inequali-
ty Jd k lg(k)l /[1+(ak) ] & ~ ensures that H'(Q) will

be bounded from below. This condition on g(k) can be
weakened in the large-k domain (see, e.g. , Nelson, 1964).

We now turn to applications of Statement 1. The most
prominent is the qualitative analytical analysis of the
standard model (2.10) for optical polarons. A more gen-
eral application is the calculation of many ground-state
observables as derivatives of E(a, g) with respect to Q or
as expectation values of type (i/(a, Q)lXli/(a, g) ), X be-
ing an operator independent of a and Q. As examples,
we mention the polaron mass, the polaron radius, and the
mean phonon number associated with i/r(n, g). State-
ment 1 assures us that these observables are smooth func-
tions of a, g, provided fi Q /2m (h'co is valid. Interest-
ingly enough, the latter condition can be removed totally
for D = 1,2 and under slightly stronger conditions as (3.1);
for D=3, the domain of Q can be extended, but Q
remains finite (Spohn, 1988).

const
co(k) )co) 0, lg(k)l ( (long rang-e case) .

k -'

E(a,O)= —[a+f,a +O(a )]fico,

m (a)=[1+a/6+ f2a +O(a )]m,

(3.4)

(3.5)

a v'~/3ficoIO (/pro� /2 )
F(a, /3) =F(0,/3) — . +O(a ) /ice .

2 sinh A'co /2

(3.6)

(3.3)

Statement 3 is surprisingly general, one reason being the
simple a and /3 dependence of the actions So and S,;
furthermore, the hard part of the proof is to establish the
existence of F(a, /3) (see Gerlach and Lowen, 1987a).
The familiar electron-phonon couplings are of type (3.2)
or (3.3); combinations of several couplings are admissible
(see Sec. V).

Having established the analytical properties of the
free-polaron system, we now comment in some detail on
previous work that is related to ours. In view of the
enormous number of relevant publications, we apologize
in advance for being incomplete. We hope, however, to
be representative. Let us begin with the weak-coupling
case o. ((1. Then, standard perturbation theory is appl-
icable. We refer to Frohlich, Pelzer, and Zienau (1950);
Tjablikov (1952a); Frohlich (1954); Krivoglaz and Pekar
(1957); Hohler and Miillensiefen (1959); Grosjean (1962);
Roseler (1968); Myerson (1975); Whitfield and Engineer
(1975); Alvarez-Estrada (1979); Arisawa and Saitoh
(1983); Peeters, Wu, and Devreese (1986a); Peeters, War-
menbol, and Devreese (1987).

Due to this work, analytical results for E (a,Q) and
F(ci, /3) are available up to fourth-order perturbation
theory. As important examples, we mention the explicit
equations concerning E(n, O), F(a, /3), and the polaron
mass m (a) for the original Frohlich model (2.10);

Statement 2. Under the conditions of Statement I, the in
equality E (a, O) & E ( QciWO) holds for 0 & a ( oo.

Recalling the remarks concerning Problem 2, we see that
the preceding statement disproves the existence of a
delocalization-localization transition. The specified pola-
ron system can show neither self-trapping nor quantum-
mechanical symmetry breaking (Gerlach and Lowen,
1988a).

Algebraic formulas for f &
and f2 were given by, for ex-

ample, Grosjean (1962) and Roseler (1968); in digits, one
finds f i

=0.015 92. . . , f2=0.02362. . . .
We stated in the Introduction that in the very begin-

ning polaron theory was a strong-coupling theory,
developed by Pekar (1946) and Landau (Landau and Pe-
kar, 1948; compare also Pekar, 1954). Later studies of
the strong-coupling case o. ))1 were usually announced
as "adiabatic perturbation theory" (Bogoliubov, 1950;
Tjablikov, 1951, 1952b, 1954; Allcock, 1956, 1963;
Whitfield and Platzman, 1972; Hattori, 1975c; Miyake,
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1975, 1976; Gross, 1976). Nonperturbative studies are
due to Adamowski, Gerlach, and Leschke (1980a),
Donsker and Varadhan (1983), and Spohn (1987a).
Again, we include the results for Frohlich s case (2.10):

lim F(n, P)ln = —yA'co,
+~ CO

(3.7)

y:= — inf —,
' d r 7' r

@ 11411=~

3 3 i/~( r ) I

'
I i/~( r' )

I

'
v'2 lr —r'l

=0.108 51. . . , (3.8)

The infimum i/i(r) in Eq. (3.8) does exist (Lich, 1977) and
has to be inserted in (3.9). One should notice two pecu-
liarities of these formulas: First, the right-hand side of
(3.7) is independent of /3. Secondly, admissible functions
i/i(r) of (3.8) have to be normalized; a localized ground
state does exist in this case. The latter property is in
marked contrast to the weak-coupling behavior and may
have caused the first conjectures that a delocalization-
localization transition should occur for 0 & n & co (Tjabli-
kov, 1951).

The intermediate coupling regime was predominantly
studied by variational techniques, providing upper
bounds on E( nQ) and F(n, P). According to their pur-
pose, the corresponding literature can be divided into
two groups.

In the first group, the main purpose was to construct
bounds as low as possible. Early papers of that type are
due to Lee and Pines (1952); Gurari (1953); Lee, Low,
and Pines (1953); Yokota (1953; see also Osaka, 1959);
and Hohler (1955), (1956). The Lee-Low-Pines procedure
(see Sec. II.A) was particularly influential and became an
important part of many subsequent publications. We
mention Gross (1955); Haga (1955); Fulton (1956); Pines
(1963); Dichtel (1966); Larsen (1966) and (1968); Roseler
(1968); Barentzen (1975); Cahill (1975); Huybrechts
(1976) and (1977); Tokuda (1980a, 1980b); and Bogo-
liubov, Kireev, and Kurbatov (1987). A significantly new
development began with the advent of functional-integral
methods (see the pioneering work of Feynman, 1955); in
combination with refined variational procedures, they
proved to be an extremely powerful tool, if not the most
powerful. We refer to Osaka (1959); Schultz (1959) and
(1963); Marshall and Mills (1970); Abe and Okamoto
(1971); Okamoto and Abe (1972); Kochetov, Kuleshov,
and Smondyrev (1975) and (1982); Sa-yakanit (1979);
Adamowski, Gerlach, and Leschke (1980b); Saitoh
(1980a); Saitoh and Arisawa (1980); Kochetov and Smon-
dyrev (1981);Fedyanin and Rodriguez (1982); Kholoden-
ko and Freed (1983); Castrigiano, Kokiantonis, and Stier-
storfer (1984); Wu, Peeters, and Devreese (1985a); Fisher

lim m(n)/(mn')= Jd'r li/(r)l'=0. 02270. . . .
4~&Z

—+ CO 3

(3.9)

and Zwerger (1986); and Gerlach, Lowen, and Schliffke
(1987).

In the second group of papers, the problem of phase
transitions is directly addressed (Buckingham, 1954;
Haga, 1954; G-ross, 1959; Larsen, 1969b; Porsch, 1970;
Matz and Burkey, 1971; Manka, 1978, 1979; Lepine and
Matz, 1979; Luttinger and Lu, 1980; Manka and
Suff'czynski, 1980; Toyozawa and Shinozuka, 1980; Shoji
and Tokuda, 1981; Farias, Studart, and Hipolito, 1982;
Lu and Shen, 1982; Tokuda, 1982; Bodas and Hipolito,
1983; Feranchuk, Fisher, and Komarov, 1984; Das Sar-
ma, 1985; Lepine, 1985; Mason and Das Sarma, 1986).
In most cases, phase transitions were claimed to exist un-
der condition (3.1), (3.2), or (3.3). The weak point of
these assertions is that they have to rely on approximate
equations for, say, the energy. Without underestimating
the merits of those calculations as such, the nonanalytici-
ties have to be classified as artifacts of the approxima-
tions made.

We close this compilation of literature with references
concerning non variational calculations and functional
analytical work. First, we mention a Pade approxima-
tion for E(n, O) and m(n), which was performed by
Sheng and Dow (1971); the authors find strong indica-
tions that both quantities should be analytical functions
of o.. Secondly, there exist several Monte Carlo studies of
the ground-state energy E( nO). The starting point for
these papers is formula (2.21) for the partition function
Z(n, P). Reliable results for E(n, O) are available up to
n =4 (Gelfand and Chentsov, 1957; Sabelfeld, 1980;
Becker, Gerlach, and Schliffke, 1983; Alexandrou,
Fleischer, and Rosenfelder, 1990). Similar statements
can be made for the polaron mass m (n), which was dis-
cussed by Gerlach, Lowen, and SchliAke (1987).

Last but not least we stress once more the importance
of the work of J. Frohlich (1974) and of Spohn (1986,
1987a, 1988): These authors were the first to study pola-
ron problems by means of modern operator theory.

B. The magnetopolaron

Statement 4. Consider the Hamiltonian H'(Q) for a
magnetopolaron as defined in Eq (2.34). Assu. me condi
tion (3.)) to be Ualid Then, the g. round state energy
E(n, Q, B) exists and is an isoIated simple eigenvalue
for 0(n( co, h' Q3/2m &fico, and 0&B & co.
E(n, Q, B) and %(n, Q, B) are real analytic functions of
n, Q, B in the specified domain

Statement 5. Take the existence of F (n, f3,B)
—F(0,f3, 0), or, equivalently, the boundedness of
Z (n P B), for granted: 0 (Z (n P B) & oo. Then,
F(n, P,B) F(0,/3, 0) is a real —analytic function of n, P, B.
Sufhcient conditions for the existence of
F(n, P, B)—F(O,P, O) in 0(n & oo, 0(P( co, 0(B ( co

are (3.2) or (3.3).
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A comparison of Statements 1,3 and 4,5 makes clear that
the earlier comments can be generalized appropriately.
If a physical quantity may be represented as derivative of
E( a, Q, B) or I' (a, /3, B), it must be a smooth function of
a, Q, B or a, /3, B in the specified domains. An important
example is the mass of a magnetopolaron, which can be
defined as

2

m(a, B) ':=A ', E(a,Q, B)lg 0.
QQ

2 (3.10)

Statement 4 proves that a discontinuous mass stripping is
impossible; m (a,B) is a real analytic function of a, B for
0~ cx ( oo, 0(8 ( oo. The same statement can be made
for the so-called cyclotron mass m'(a, P), given by

le BAlm'(a, B):=E'(a,O, B) E(a,—O, B), (3.1 1)

where E'(a, Q, B) is the first excited Landau state, which
we assume to be nondegenerate and below the continuum
edge.

A third comment is concerned with expectation values
of type (%'(a, Q, B)lXl%'(a, Q, B)), where X is an opera-
tor independent of a, Q, B; as examples; we mention the
mean phonon number and the polaron radius. Again,
such quantities are analytic functions of a, Q, B in the
specified domain (see Statement 4).

Finally, we turn to the previous literature on magneto-
polarons related to our work. To the best of our
knowledge, systematic perturbation studies for o. ((1 ap-
peared only in the last few years: we mention Lindemann,
Lassnig, Seidenbusch, and Gornik (1983); Das Sarma
(1984); Larsen (1984) and (1986); Peeters and Devreese
(1985a); Devreese and Peeters (1986); Peeters, Wu, and
Devreese (1986b); and Broderix, Heldt, and Leschke
(1987). An earlier semiclassical calculation is due to Ba-
jaj (1968).

A Green's-function formulation of the strong-coupling
regime a))1 was given by Porsch (1970). Unfortunate-
ly, final numerical results for E(a,Q, B) are missing.

At first glance, functional-integral methods would
seem to be well suited for the discussion of magnetopola-
rons. In fact, magnetopolarons were discussed that way
(Hellwarth and Platzman, 1962; Saitoh, 1980b, 1981,
1982; Peeters and Devreese, 1981, 1982a, 1982c, 1982d,
1983, 1985b; Gerlach and Lowen, 1987b). One runs into
severe difFiculties, however, when trying to combine the
functional-integral approach and variational procedures:
In general, Jensen's inequality does not hold for BWO
(Gorshkov, Zabrodin, Rodriguez, and Fedyanin, 1985;
Larsen, 1985; Br oderix, Heldt, and Leschke, 1987;
Leschke and Wonneberger, 1989). Hellwarth and Platz-
man, Peeters and Devreese, and Saitoh all used this in-

equality in their calculations, cited above. Clearly this is
a shortcoming of these otherwise important papers (we
refer to the corresponding remarks of Hellwarth and
Platzman in their article). The same restriction must be
applied to a series of publications that are based on those
just listed and that discuss, for example, the optical-
absorption spectrum of polarons (for an example, see

Peeters and Devreese, 1986 and further references
therein).

As for strictly variational calculations, we quote Lar-
sen (1964, 1969a, 1972); Evrard, Kartheuser, and De-
vreese (1970); Kartheuser and Negrete (1973); and Beck-
er, Gerlach, Hornung, and Ulbrich (1987, 1988). The re-
sults of a paper by Pfeft'er and Zawadzki (1986) can be
shown to be variational. Lepine and Matz (1976) claim
without proof that the same holds true for their results.

In many of the aforementioned publications a discus-
sion of the phase-transition problem is implicitly con-
tained; direct references are Peeters and Devreese (1981,
1982a, 1982c, 1982d, 1983, 1985b), Lepine (1985), Wu,
Peeters, and Devreese (1985b), and Erqelebi (1989). In all
these papers phase transitions were found under condi-
tions (3.1), (3.2), or (3.3). In view of Statements 4 and 5,
these must be artifacts of the approximations made.

We close this compilation of literature with four refer-
ences concerning rigorous results. Alvarez-Estrada
(1979) made the first attempt to establish the existence of
the perturbation series for E(a,Q, B) as a function of a,
but succeeded only for a ((1. Lowen (1988a) established
the proof of Statement 4, and Statement 5 was shown by
Gerlach and Lowen (1987b, 1988c).

C. The polaron in a potential

Before noting three statements, some remarks are
necessary. Recalling the Hamiltonians under discussion,
namely, H from Eqs. (2.38)—(2.40) and H' from Eqs.
(2.41) and (2.42), we see that the potential Av (r) appears
as an additional variable. If not explicitly stated other-
wise, we choose X)0 and u (r) (0. As indicated in Sec.
II.C, we should know about the analytical properties of
the ground-state energy E(O, A, ) of H =p /2m +Xv(r).
This is the case for the so-called Rollnik class R of poten-
tials kv, defined by the inequality

x'jd'r d r'l v (r)
I lu (r')

I /I r (3.12)

R'=R +L, (R ), E)0 (3.13)

of R. For any positive c., an element Xv&R' can be
represented as A, v =kv'+kv", where A,v'HR and

The left-hand side is proportional to the Birman-
Schwinger bound on the number X (A, ) of (localized)
eigenfunctions of Hp. Therefore we conclude the follow-
ing for A, u ER: (i) E(A, ) is finite for 0(A, ( ao; (ii)
X(A, ) =0 for sufficiently small A, ; and (iii) if we know that
X(k) )0 is only true for A, ) A,„the ground-state energy
of Hp is nonanalytic for X=X,. As for references, we
mention Glaser, Martin, Grosse, and Thirring (1976);
Reed and Simon (1978); and Simon (1979).

One realizes that the familiar short-range potentials
(e.g., Yukawa potential, potential well) belong to R. On
the other hand, the Coulomb potential is not an element
of R. To incorporate this important case, too, we consid-
er the extension
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~A,u"
~

& c.. Clearly, the Coulomb potential is contained in
R'. As for a discussion of R', we refer to Simon (1971)
and the references from above. Two properties are im-
portant for us: First, A, v, is infinitesimally form bounded
with respect to p /2m; secondly, Hp is self-adjoint and
bounded from below in the sense of forms. We stress
that the latter addendum is mathematically important.
Normally, we should demand D (A u) &D (p /2m ) for the
domains of both operators in order to have Hp properly
defined. For A, v ER', this is true only in the sense of
forms. To avoid mathematical subtleties, we assume A, v

to be such that Hp is also essentially self-adjoint and
bounded from below on D (p /2m ). We are now
prepared to note

Statement 6. Consider the Hamiltonian H' for a polaron
in a potential, as defined in Eqs. (2.41) and (2.42). For
the phonon dispersion and coupling, assume (3.1) to be
ualid (D =3). The potential ) u (r) is supposed to be an
element of R'. HI has to be essentially self adjoint, -

bounded fvom below, and should haue at least one bound
state with a strictly negatiue energy for any A, ) 0. Then,
the ground state en-evgy E( ak) exists and is an isolated,
simple eigenualue fov 0&a& oo, 0&A, & ~. E( aA, ) and
%(a, A, ) are real analytic functions of a, A, in the specified
domain.

Statement 7. Consider H' as defined before and assume
(3.1) to be ualid Let .) u be an element of R and u &0.
Hti has to be 'essentially self adj oint, bou-nded from below,
and should have bound states with strictly negative energy
only for A, )1,, )0. Then, E (a, l. ) exists and is nonanalyt
ic for A, =A,, (a), where A,,(a) is a unique, continuous func
tion ofa and bounded by 0& A, ,(a) & A,

Statement 7 guarantees the existence of the first (and
only) nonanalyticity in connection with Frohlich models;
we are concerned with the so-called pinning transition.
One may notice from Statement 7 that the analytical
properties of E(0, )i, ) are, in fact, essential for those of
E(a, A, ), as was conjectured in Sec. II.C. Therefore the
concept of pinning transitions should be carefully dis-
tinguished from that of phonon-induced self-trapping,
which might well exist in models that are different from
ours. The important ingredient for pinning to occur is
the attendance of a short-range potential Au (r), which al-
lows for a bound state only if A, )k, .

Statement 6 demonstrates that no transition can occur
if polarons are exposed to a long-range potential of, for
example, Coulomb type. The physically important point
concerning this potential is the existence of a bound state
of Hp for any A, )0.

Statement 8. Take the existence of F(a,p, A, ) —F(O,p, O),
or, equivalently, the boundedness of Z(a, /3, A, ), for grant
ed: 0&Z(a, P, A, ) & ~. Then, ( FPa, X)—F(O,P, O) is a
real analytic function of a, /3, A, . Sufficient conditions fov
the existence of F(a,p, A, ) —F(0,p, O) in 0 & a & ~,

0&P& ~, 0&k& ~ are giuen by Eqs. (3.2) ov (3.3) and
(additionally)

iu(k)/ &
k

(3.14)

where u(k) is the Fourier transform of u (r) and c is a con
stant.

D. The polaronic exciton

We remarked in Sec. II.l3 that this system has a more
complicated structure than the previous ones. We have
to clarify this point in some detail, as it is essential for
the formulation and understanding of the statements that
follow.

The Hamiltonians under consideration are H, H', and
H'(Q), as defined in Eqs. (2.45)—(2.49), (2.51)—(2.53), and
(2.54). One can nicely deduce from H' that the exciton-
phonon problem incorporates aspects of a free and a
bound polaron: the center-of-mass part mimicks free-
polaron motion, the relative-coordinate part bound-
polaron motion, if A, U(r) is properly chosen. To ensure
this, we may use the conditions of Statement 6, which we
abbreviate conveniently as follows:

It is interesting to contrast Statements 7 and 8 directly:
one may easily find potentials v (r), which meet both as-
sumptions. Therefore we conclude that finite tempera-
ture destroys the pinning transition.

Let us now turn to earlier publications related to this
work. With only few exceptions, all authors assume
A, v (r) to be a Coulomb potential. Therefore we first con-
centrate upon this case. It is well known that second-
order perturbation theory (in a ) is already troublesome
and was controversially discussed for some years. We
quote Platzman (1962), Stoneman (1970), Sak (1971), Ba-
jaj and Clark (1972), Engineer and Tzoar (1972) and
(1973), Larsen (1974), Fedoseyev (1976), Fedoseyev and
Pork (1977), Matsuura (1984), and Higashimura (1987).
As for a critical comparison, we particularly refer to
Matsuura's paper. Variational treatments without re-
striction to a certain (a, A, ) domain are due to Platzman
(1962); Larsen (1969b) and (1970); Matsuura (1974); Hat-
tori (1975b); Tokuda, Shoji, and Yoneya (198la); and De-
vreese, Evrard, Kartheuser, and Brosens (1982). In two
papers (Larsen, 1969b; Tokuda, Shoji, and Yoneya,
198 la), phase transitions were found under condition
(3.1). Statement 6 proves that these are artifacts of the
approximations made.

The interest in non-Coulomb potentials in connection
with a pinning transition of polarons was stimulated by
papers of Toyozawa (1980) and Spohn (1986); these are
directly related to Statement 7. A proof of Statements 6
and 7 as well as a numerical study of the pinning transi-
tion of a polaron in a Yukawa potential can be found in
two papers by Lowen (1988b, 1988d).
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P: A, U(r) is negative and belongs to R'.
H„,:=p /2@+A, U(r) is essentially self-adjoint, bounded
from below, and has at least one bound state for any
A, )0, the corresponding energy being strictly negative.

Let us now turn to H'(Q) and try to establish the ex-
istence of a localized ground-state eigenfunction
%(Q, a, k, , m). We proceed in two steps: first, we discuss
the position of the continuum edge E, —=E,(Q, ct, l., m) of
H'(Q); second, we concern ourselves with the question of
whether or not the spectrum of H'(Q) contains points E
with E &E, .

Intuitively, one can imagine two paths to continuum
states: On the one side, electron and hole could be
separated so far that A, U ( r ) becomes negligible. As a
consequence, the energy of relative motion becomes con-
tinuous. Defining

co(k) =co, &erg (k) =&ficod /(2irk), (3.18)

The second alternative in inequality (3.17) is E,' (E, .
This case cannot be treated in closed form. We need fur-
ther assumptions. To demonstrate this, let us choose

Q =0 (this property will prove to be characteristic for the
ground state of H and H'). Now, recall the functional-
integral considerations summarized in Eqs. (2.55)—(2.60).
It is a simple task to reformulate these in the original
coordinates r& and r2 of electron and hole. Direct inspec-
tion of Eq. (2.57) shows that the phonon-induced
electron-hole interaction can be positive definite and may
well overcompensate ("overscreen") A, U(r& —r2), unless a
is sufficiently small. If overscreening takes place, the lo-
calization of relative motion (which is guaranteed for
a~O by property P) will disappear. To exclude such a
phenomenon, one has to specify the system parameters in
detail. As an interesting example, we mention

E,'(Q, a,

m):=info�„,

[H'(Q, a, O, m)], (3.15)
(3.19)

where o„,[H'] d. enotes the essential part of the spectrum
of 0', we expect E,' to be one upper bound on E, . On

the other side, a ground-state exciton of energy
E(Q —k, a, k, , m) might absorb a phonon of energy
fico(k), thereby reaching a continuum state, too. If we
define

E, (Q, ct, k., m): =inf[E(Q —k, a, A., m)+ih'co(k)], (3.16)

we should obtain a second upper bound on E, . We shall

prove in Sec. IV.D that

E, (Q, ct, k, m) ~ min[E, '(Q, a, m), E, (Q, a, k, m)] (3.17)

is true, providing us with a lower bound on E, . Summar-
izing all arguments, it is highly plausible that (3.17) is an
equality rather than an inequality. In any case, this in-

equality is sufficient to proceed with step 2 as indicated.
The right-hand side of (3.17) admits two alternatives.

Let us first discuss E, (E,'. We shall prove in Sec. IV.D
that in this case (3.17) becomes an equality; moreover, we
demonstrate by variational arguments that H'(Q) has ei-
genvalues with E (E,. We are now prepared to formu-
late

We believe that this statement is true for fi Q /2M (A'co,

which would be in accordance with Statement 1. One
should notice, however, that our proof in Sec. IV.D is re-
stricted to a smaller Q regime. Apart from this fact, we
can repeat the former comments (see Sec. III.A).

Statement 9a. Consider the exciton Hamiltonian H'(Q)
as defined in Eq. (2.54). Assume A, U(r) to haue the prop
erty P as listed above. For the phonon dispersion and cou-

pling, (3.1) is taken for granted. Finally, let E, (E,'
Then the ground state energy E(Q-, a, ,1m)exists and is
an isolated, simple eigenvalue of H'(Q) fov 0(a& ~,
0 & A, ( ~, 0& m„& co, and Q in a certain surrounding of
Q=O. E(Q, a, l, , )mand 0'(Q, a, k, , m) ave real analytic
functions of Q, a, A, ,m in the specified domain

In (3.18), d is an open parameter. If we fix d as

d =(1—E /Eo)k & A, ,

we recover the standard exciton-phonon problem (see,
e.g. , Pollmann and Biittner, 1977). Concerning this, we
note

Statement 9b. Considev the exciton Hamiltonian H'(Q)
as defined in Eq. (2.54), specified according to Eqs.
(3.18) (3.20) (stan—dard exciton phonon pro-blem) Then, .
the ground state ener-gy E (Q, A., m)exists and is an isolat
ed, simple eigeiiUalue for 0 (1,( ~, 0 & m„( oo, and Q in
a certain surrounding of Q =0. E (Q, A, , m ) and
ij'j(Q, A, , m) are real analytic functions of k, m and Q in the

specified domain.

The notation in Statements 9a and 9b is slightly diferent:
no o,' dependence appears in 9b. The reason for that is
obvious: In 9b we use conditions (3.18)—(3.20); conse-
quently, the only independent coupling parameter is A, .

Statement 10. Under the conditions of Statements 9a and
9b, the inequality E (O, a, k, , m)( E(QW ,Octa, , m) holds

for 0 (a ( co, 0 & k & ~, 0 (m „(co .

Statement 10 is completely analogous to Statement 2; it
disproves the possibility of a delocalization-localization
transition for the exciton system under consideration.
We close our compilation of statements with a last one,
concerning the formal free energy.

Statement 11. Take the existence of F(a, p, k, , m)
—F(O,p, O, m), or, equiualently, the boundedness of
Z (a,P, k, , m), for granted: 0 & Z (a,P, k, , m) & ~. Then,
F(a,p, k, , m) F(O,p, O, m) is a r—eal analytic function of
a, p, k, m. Sufhcient conditions fov the existence of
F(iz,p, l, , m) —F(O,p, O, m) in 0&a & ~, 0&p& oo,

0 & A. & ~, and 0 & m„& ~ are giuen by Eqs. (3.2) or (3.3)
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and (additionally) (3.14).

Let us now turn to the earlier literature related to this
work. Most authors are concerned with the standard
model, defined by Eqs. (3.18)—(3.20). Therefore we con-
centrate on this case. Perturbation theory of second or-
der with respect to the exciton-phonon coupling was per-
formed by Mahanti and Varma (1970, 1972); Sak (1972);
Matsuura and Wang (1973); and Wang and Matsuura
(1974). Moreover, the perturbational results can be de-
duced as limiting cases from most of the variational
treatments, quoted below. We mention that there was a
controversial discussion concerning the correct weak-
coupling limit for the polaron exciton. After all, Sak's
results were confirmed.

In general, the variational approach was particularly
inAuenced by the procedure of Lee, Low, and Pines
(1953) for the free polaron. Pioneering papers are due to
Haken (1956a, 1956b) and Meyer (1956). These served as
the basis for the refined calculations of Mahler and
Schroder (1974); Barentzen (1975); Fock, Kramer, and
Biittner (1975); Pollmann and Biittner (1975, 1977); Bed-
narek and Suffczynski (1976); Hattori (1976); Bednarek,
Adamowski, and Suffczynski (1977); Behnke and Biittner
(1978, 1979); Kane (1978); Bednarek (1979); Matsuura
and Biittner (1980a, 1980b, 1980c, 1980d); and Iadonisi
and Bassani (1983, 1987). Not too surprising,
functional-integral methods gave significant results also
in this case (Haken, 1957, 1959; Moskalenko, 1958;
Atzmuller, 1979; Adamowski, Gerlach, and Leschke,
1981, 1983; Gerlach, Lowen, and Schmidt, 1990).

The phase-transition problem for polaronic excitons
was directly addressed in the papers of Sumi (1977) and
Pekar, Rashba, and Sheka (1979), as well as in those of
Shimamura and Matsuura (1983a, 1983b). In all cases
nonanalyticities were found, partially under the condi-
tions of Statement 9b; these have to be classified as ar-
tifacts of the approximations made.

We close this section with three references concerning
Statements 9—11: extensive discussions can be found in
the publications of Lowen (1987) and Gerlach and Lowen
(1988a, 1990).

IV. PROOF OF THE RESUI TS

We begin this section with some general remarks. Pre-
vious analytical studies of Hamiltonians of type (2.1) uti-
lized two different mathematical approaches: the first ap-
proach stems from functional analysis and is usually
denoted as operator theory; the second approach is pro-
vided from the calculus of functional integration.

From a strictly mathematical standpoint, the Hamil-
tonian (2.1) is only a formal expression representing an
intuitive frame for a whole class of models. It is one of
the particular merits of operator theory that it furnishes
specific conditions on the couplings g (k), the dispersions
co(k) and E(k), and the potentials V(r), which, if fulfilled,
guarantee the existence of properly de6ned model Hamil-

tonians H; because of physical reasons, these should be
self-adjoint and bounded from below. If this can be taken
for granted, a whole functional-analytic machinery be-
comes available for the discussion of bound and scatter-
ing states. As for the general operator theory, we quote
the well-known books of Kato (1966) and Reed and
Simon (1978). Applications to special cases of (2.1) can
be found in the papers of Kato (1961), Nelson (1964),
Eckmann (1970), Cannon (1971), Albeverio (1972), L.
Gross (1972) and (1973), J. Frohlich (1973) and (1974),
Sloan (1974a, 1974b), Blanchard and Tarski (1978),
Alvarez-Estrada (1979), and Arai (1981a, 1981b, 1981c)
and (1983).

Direct inspection of these publications shows that
some of them, particularly those of J. Frohlich, are high-
ly relevant for the solution of the phase-transition prob-
lem in polaron systems. Unfortunately, up to 1987 this
had not been realized by either the above protagonists of
Hamiltonian strategy or those who were concerned with
a realistic polaron system. The necessary link was estab-
lished in a paper by Spohn (1987a).

Functional-integration methods, on the other hand,
were developed in close contact with physical applica-
tions. This can easily be seen from such standard text-
books as Feynman and Hibbs (1965), Glimm and Jaffe
(1981), or Schulman (1981). As far as polaron systems
are concerned, there existed a special connection to func-
tional integration, caused by Feynman's famous paper
from 1955. Nevertheless, an analytical approach to the
phase-transition problem is new. To the best of our
knowledge, the present authors were the first to exclude
phase transitions in standard polaron systems at A.nite
temperatures (Gerlach and Lowen, 1987a, 1987b).

Before going into detail, we include some comments
concerning the following, Secs. IV.A—IV.D: We shall not
repeat involved proofs that were completely given in pre-
vious publications. Instead, we want to present the basic
ideas and relevant theorems to be used. It will be ap-
parent in the course of this section that all analyticity
proofs to follow have a strong conceptual similarity.
Therefore we decided to take the free polaron as our spe-
cial example and to treat this in greater detail (Sec.
IV.A). The discussion in the subsequent Secs. IV.B—IV.D
will be cut short, with only the necessary modifications
being given.

Throughout the whole section, we use dimensionless
variables; the units of mass, charge, frequency, and angu-
lar momentum are m, ~e~, co, and A'. To render a quick
comparison with the problems and statements in Secs. II
and III, we again use the same subtitles as before.

A. The free polaron

1. Analyticity of the ground-state energy
and wave function of H'(Q)

In this section, we prove Statements 1 and 2; in doing
so, we resolve Problems 1 and 2 under the specific condi-
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tions (3.1). Because of technical reasons, we have to
separate the discussion of ground-state and finite-
temperature properties. We shall make extensive use of
J. Frohlich s work (1974). To facilitate reading of the
rather technical discussion, we brieAy sketch the basic
steps: Firstly, we determine the position of the continu-
um edge E, of the Hamiltonian H under consideration,
that is, E, =info. „,[H]; as usual, cr„,[H] denotes the
essential part of the spectrum of H. Secondly, we must
show that the ground-state energy E of H exists and is
below E„' stated otherwise, E has to be a point of the
discrete spectrum of H. Thirdly, we must guarantee the
nondegeneracy of E. If all this has been done, we can
finally apply analytical perturbation theory to ensure the
analyticity of ground-state quantities as a function of cer-
tain parameters (a, Q, B, etc. ) contained in H.

Eventual nonanalyticities of a specific system may
show up at some of the steps indicated above. One possi-
bility is that E & E, may be true only in a certain param-
eter region, whereas E=E, occurs elsewhere; in fact,
this behavior is characteristic of the pinning transition
(see Secs. III.C and IV.C). Another source of nonanalyti-
cal behavior is a degeneracy of E for certain admissible
parameters.

In the following three subsections a —c, we proceed
along the lines indicated above.

IIHi(o)'pll —EIIHph+II+b II+II

—sllHo(Q)'P II+6 II +II (4.2)

Ad =2"Ao, Ao)0, j =1. . .D) . (4.3)

Additionally, to each k&R we associate kd&I d,
namely,

kd. =(n„n2, n3)/Ad, n =(k Ad ),
where

(4.4)

for any 4 in the domain D of Ho(Q), D being dense in F.
Thus H,'(cT ) is bounded with respect to Ho(Q) with rela-
tive bound zero. Ho(Q), in turn is self-adjoint and
bounded from below. We conclude from a theorem of
Rellich and Kato (see Reed and Simon, 1975, p. 162) that
H'(Q, cr ) =Ho(Q)+H', (o ) is also self-adjoint and bound-
ed from below. In summary, the cutoff (4.1) has provided
us with a properly defined Hamiltonian H'(Q, cr) on the
Fock space F.

Now, we introduce the second (lattice) cutoff,
parametrized by a positive number d. In detail, we re-
place the original space IR of phonon momenta by a
momentum lattice I"d, defined as

I d. = (k E IR
I k~ =

n~ /Ad, nj. EZ,

largest integer &a if a &0
smallest integer) a if a )0 . (4.5)

a. On the position of the continuum edge of H'(Q)

The main result of this subsection will be an equation
between E and E„which —if combined with later
results —will prove that E =E(a,Q) be—longs to the
discrete spectrum of H'(Q), provided Q &2 (recall that
from now on we use natural units; instead of
A' Q /2m &fico, we have Q /2&1). To start from a
well-defined Hamiltonian, we introduce a first cutoff; this
is of UV type and changes the coupling g (k) appropriate-
ly. Later on, we need a second, more technical (lattice)
cutoff, creating a discrete lattice of wave vectors. After
that, we establish the desired relation between ground-
state energy and continuum edge of the cutoff Hamiltoni-
an. Of course, the final task will be to remove these
cutoffs consecutively and to show that the relation be-
tween E and E, survives such a procedure.

Now, recall the specific form of the Hamiltonian
H'(Q) from (2.17). Furthermore, remember condition
(3.1) for Statements 1 and 2. We introduce the first (UV)
cutoff by defining

g Osm
dm=0

Fd. =F dOsFd .

g LOS m
dm=1

(4.6)

(4.7)

The abbreviations used are nearly self-explanatory:
denotes direct sum; Os symmetrical tensor product; and
l, orthogonal complement. The original Fock space F is
split into

F =F„F„.
Now, we introduce the cutoff Hamiltonian:

H'(Q, o,d): =Ho(Q, d)+Hi(cr, d),

(4.g)

(4.9)

where

Ho(Q d):=—,'(Q —
Pphld )'+ f dDk co(k)lda*(k)a(k),

It proves useful to construct appropriate Hilbert spaces
before we introduce the new cutoff Hamiltonian. To do
so, we consider a subspace Sdcl. (R ) of step functions.
For f t 1. (IR ) we define fES&, if f (k) =f (kd ). Furth-
ermore, we build up corresponding Fock spaces:

g (k, o ):=g (k)O(o —k) o )0 (4.1) (4.10)
If we insert this coupling into (2.7) instead of g(k), we
find a new Hamiltonian H'(Q, cr ) and a corresponding in-
teraction H,'(o ). According to a result by Nelson (1964),
we can now state that for any c)0, there exists a number
b =b (o, s) & ~ such that

Ppi ld, fd k kda*(k)a (k)

H', (cr, d):=i/cc f d k [g(k, o. )lda (k)+H. c. ] .

(4.1 1)

(4.12)

Here, f (k)l& denotes the orthogonal projection of f (k)
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on Sd. At first, such a definition makes sense only for
functions fHL (R ); it can be readily extended to local-
ly integrable functions.

As H'(Q, cr ), the Hamiltonian H'(Q, cr, d) is self-
adjoint and bounded from below on F. Let E'(cc, Q, o. , d)
denote the ground-state energy of H'(Q, o. , d). We are
now prepared to state

Lemma 1. Suppose Q to be such that

inf [E( cr, Q kd—, cr, d ) + co( k ) I d ] E(l—x, Q, cr, d )
kd

case, lkz (cr+&D /A„ is valid, if k (o.. In the follow-
ing considerations, we skip this point, as it is presently ir-
relevant.

Let I d be divided into

I d .=(klk&I d, k ~ cr) (4.14)

and I d&I d . In accordance, we split the space Sd of
step functions by defining a subspace Sd as follows: An
element fHSd is contained in Sd if f (k)=0 for k )o..
The associated Fock spaces are

=: A( ccQ, o. , d) )0 . (4.13)
Sosm F . Sl Osm

d, o' d, o. & —d, o'' d, o.
m=O ' ' m=1

(4.15)

Then, the part of spec H'(Q, cr, d ) [ Fd contained in the in
terval [E(a, Q, o, d), E (cc,Q, o, d)+A(cc, Q, cr, d)[ is pure
ly discrete ( [ Fd is to indicate the restvietion on Fd ).

Fd .=F
d, ~QsF (4.16)

(4.17)
Before we give the proof of this lemma, some comments
may be appropriate. Firstly, one should realize the re-
striction of H'(Q, o, d) to the subspace Fd of step func-

tions, which is necessary at the moment; we remove this
technical assumption in Lemma 2. Secondly, inequality
(4.13) can be nicely interpreted: For a given total
momentum Q, any one-phonon excitation of the ground
state has to have a higher energy than the ground state
itself.

Proof of Lemma 1. Let fz(x) be a positive function from
C, which is defined on R and has the additional proper-
ties fz(0)=1 and fA(x)=0 for x )A. We shall demon-
strate that f~(H'(Q, r, cd) E(cr,Q, o,—d)) I' Fd is com-
pact for A=A(cc, Q, cr, d). This proves Lemma 1 (as co-
reference, see Reed and Simon, 1978, p. 259).

In detail, we distinguish between phonons with mo-
menta k larger and smaller than o., the reason being that
these are not intermixed by Hi(o, d) because of the o
cutoff in g(k, cr). We insert as a technical remark that
for a given k, k & 0., the associated vector kd may have a
length larger than cr because of definition (4.4); in any

&xlH'(o, d)lx&=&q'I+&&qlH'(o, d)lq &,
(4.19)

With Eq. (4.17) we have finished the technical
preparations. Our first conclusion is that
f~(H'(Q, o', d) E(cc,Q—, o, d)) [ Fd is compact. The
reason is that the restriction on Fd admits only a finite
number of phonon modes, namely, those that are charac-
terized by I d

Secondly, it is important that we can calculate a lower
bound on inf spec H'(Q, o, d) ) Fd . To prove this, we
consider an element yCFd of type y=%'Qsy, where
'0HF d and @EFd [see Eq. (4.16)]. Moreover, we
choose 4' as an eigenfunction of the phonon-number
operator such that

N

Pphld+ g kd+& kd +FdiFg, , & —1 (4 18)
j=1

Then, we find

&xlH'(Q, o, d)ly&= & ~(k')Id&mix&+&+I+&&q IH' Q —& k'd, ~,d q &

N N

g ai(k')I„+E cc, Q —g k'„, cr, d) &mix& . (4.20)

Because of g+, co(k~) )co(l g~, k I) according to Eq.
(3.1), we find

&xlH'(Q, , d) lx &

infspecH'(Q, cr, d) [ Fd

) i f[nco(k)l d+(EQcckd—crd,)] ,.
kd

(4.22)

) inf[co(k)I„+E(cc,Q —kd, cr, d)]&ply& .
kd

(4.21)

The same inequality is true for finite linear combina-
tions of pairwise orthogonal elements y of the type qrQsy.
As these are complete on Fd, we arrive at the inequality

Consequently, fA(H'(Q, o, d) E(a, Qo, d)) ) F—d =0.
Because of Fd =Fd Fd and our above conclusion that
the corresponding expression for Fd is compact, we

finally find that f&(H'(Q, o, d) E(a,Q, cr, d)) I' Fd—is

compact —this proves Lemma 1.
We shall now remove the lattice-cutoff. Turning to the
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ground-state energy E (a, Q, cr ) of H'(Q, cr ) (which is
known to exist), we state

=H'(Q, A, )+ W(Q, o, A. )+X(o,A, ), (4.29)

H"(Q, o, 1,) =Ho(Q)+H', (A, )+ W(Q, o, A, )+X(o, A, )

Lemma 2. Suppose Q to be such that

inf[E(a, Q —k, o )+a~(k)] —E(a,Q, cr)
k

=:A(a,Q, o ) )0 . (4.23)

Then, the part of spec H'(Q, cr ) [ F contained in the inter
Ual [E(a,Q, cr), E(a,Q, cr)+A(a, Q, cr)[ is purely
discrete.

where

W(Q cr A, ) =(Z+Z*) /2 —(Q —Pp„) Z

—Z' (Q —Ppi )

Z:= J d k kP i(k)a (k),

r( cr, i):=, f d k[co( k) Ip i(k) '

(4.30)

(4.31)

Proof of Lemma 2. For a moment, we return to
H'(Q, o,d) and note that

inf specH'(Q, cr, d ) [ Fd

) inf[co(k)Id+E(a, Q —kd, cr, d)] . (4.24)
kd

f~(H'(Q, o,d) —E(a,Q, o,d)) ) Fd=0 . (4.25)

On the other hand, we know from Lemma 1 that the
corresponding expression for Fd instead of Fd is com-
pact. Both properties yield the following:
f~(H'(Q, cr, d) E(a,Q, o,d))—[ F is compact.

Now, the striking point is that H'(Q, cr, d)~H'(Q, o )

on F in the norm resolvent sense, if d ~~. This can be
shown directly by comparison of both resolvents; as for
details, see Frohlich (1974). Combining this property
and the preceding one, we finally have demonstrated
[compare also with Reed and Simon (1978), pp. 259, 260]
that fA (H'(Q, cr) E(a,Q, o )) I F i—s compact; the zero
A':=A(a, Q, o ) of f„(x) is now given by Eq. (4.23) and
evolves as the limiting value of A(a, Q, a, d) for d —& oo.
Thus Lemma 2 has been proven.

The remaining task is to remove the UV-cutoff o.. To
achieve this, we use a well-known unitary transformation
known as "oscillator transform"; in our context, it was
introduced by E. P. Gross (1962) and Nelson (1964). We
define

Inequality (4.24) can be proven in analogy to inequality
(4.22), the only modification being that Fd, Fd, and

Fd have to be replaced by Fd, F d, and Fd. In terms of
the function fA(x) from the proof of Lemma 1, we thus
have

+v'a[g(k, o )P (k)*+H.c. ]I . (4.32)

From Eqs. (4.30)—(4.32) and (3.1) we derive three impor-
tant properties of H "(Q,cr, k. ), which are the basis for the
removal of cr. Firstly, X(cr, A, ) is finite and uniformly
bounded from below:

X(o,A, )) —2a Jd k Ig(k)I /[co(k)+k /2]

) 2a—f d k Ig(k)I /(1+@ /2) (4.33)

Lemma 3. For the resoluent [g—H"(Q, cr, l, )] ', the lim
it

lim [g—H"(Q o A, )] '=:[g—H"(Q &)] (4.35)

exists in the norm sense and is the resolvent of a self-
adj'oint Hamiltonian H "(Q,A, ), bounded from below on F.

We add as a comment that Lemma 3 provides us with a
proper mathematical interpretation of the primarily for-
mal expression H'(Q) from Eq. (2.17). According to Eq.
(4.28), we find

(we are using natural units; co( k ) ) co = 1). Secondly,
H,'(A, ) appears in Eq. (4.29) instead of H,'(o ). Finally,
H', (A, ) and W(Q, o., A, ) are form bounded with respect to
Ho(Q) with relative bound zero: For any E &0, there ex-
ists A,, and b (A, , ) & ~ (independent of Q and cr ) such that

I & &IHi(~)+ W(Q, a, ~)
I P) I

& s( ~/JIHO(Q) I1/f) +b (A,, )( ~/~IT/l) (4.34)

for any g in the domain of [HIi(Q)]'~ . This proves [see
Nelson (1964) and J. Frohlich (1974)].

T i .=jd k [P z( k )a ( k ) —H. c.], (4.26) H'(Q)=exp( —T„i)H"(Q,A, )exp(T i) . (4.36)

P (k) = —&ag (k cr )e(k —
A, )/(co(k)+k~/2)

0 & A. & o. . (4.27)

Because of (3.1), exp( T i ) is a well-defined unitary opera-
tor on F for 0 & o. ~ Oo. Now, we consider

H'(Q) is self-adjoint and bounded from below on F.
Consequently, E(a,Q) exists. We are now prepared to
state

Lemma 4. Suppose Q to be such that

inf[E(a, Q —k)+co(k)] E( aQ)=: A( aQ—))0 .

H(Q, o, A, ):=e x(pT )iH( Qo)e px(
—T i, ) .

Explicit evaluation of the right-hand side yields

(4.28) (4.37)

Then, the part of the spec H'(Q) contained in the interval
[E(a,Q), E(a,Q)+A(a, Q)[ is purely discrete
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Summarizing thus far, we have found a lower bound on
the continuum edge of E,(a, Q) of H'(Q):

E,(a, Q) & inf[E(a, Q —k)+a~(k)] .
k

(4.38)

This result is nicely complemented by the following
one:

Lemma 5.

E,(a, Q) & inf[E (a, Q —k)+co(k) ] .
k

Spohn (1988) provided a proof of Lemma 5, which uses a
Rayleigh-Ritz argument: For an infinite number of pair-
wise orthogonal trial functions, the variational bounds on
the energies of H'(Q) accumulate at the right-hand side
of (4.39).

A combination of inequality (4.38) and Lemma 5 leads
us to the central result of this subsection, namely,

Theorem 1. The continuum edge of H'(Q) is produced by
one-phonon excitafions and is given by

E,(n, Q) =inf[E(a, Q —k)+co(k)] .
k

(4.40)

We enclose a useful inequality that can be derived from
Theorem 1 in combination with co(k) &co= 1 [condition
(3.1)] and an earlier estimate of I.. Gross (1972), namely,
E (a, Q) & E (a, O). Starting from Eq. (4.40), we find

E, (a, Q) & I+E(o., O) . (4.41)

We recall that ai(k) =co is true for the standard Frohlich
model, defined in Eq. (2.10). In this case, (4.41) becomes
an equality.

b. Uniqueness of the ground state
of H'(Q) and proof of Statement 2

To begin with, we specify an upper bound on E (a, Q):

Lemxna 6.

E(iz, Q) ~(E, ct) 0Q+/2 . (4.42)

To prove this result, it is sufficient to consider H (Q, o )
and the corresponding energy E (a, Q, cr ) as discussed in
the preceding subsection. In analogy to E (a, Q),
E(a, Q, o ) depends merely on ~Ql. We split II'(Q, o ) as
follows:

To prove this lemma, we recall from the proof of Lemma
2 that f~.(H'(Q, o ) E—(a, Q, o )) [ F is compact, where
A'=A'(a, Q, o ). The same holds true if H'(Q, o ) is re-
placed by H" (Q, cr, A, ), being a unitary transform of
H'(Q, o ). Therefore we conclude from Lemma 3 that
fA (H "(Q,&)—E(o,Q)) [' F is compact, where
A" =A(cz, Q) is the limiting value of A(a, Q, o. ) for
cr +—~. As H'(Q) is a unitary transform of H" (Q, A, ), we
finally deduce that fA. (H'(Q) —E(ct, Q)) [' F is compact.
This proves Lemma 4.

H'(Q, o)—. Q /2= —(Pph) +Hph+Hi(cr) Q'Pph

=:h (o. ) —Q Pp„. (4.43)

h (cr ) is bounded from below, and Q Pph is form bounded
with respect to h (o ) with relative bound zero. Conse-
quently, the ground-state energy of H'(Q, o ) —Q /2 is a
continuous and monotonously decreasing function of

~ Q
(as a reference, see Reed and Simon, 1978, page 98). This
proves Lemma 6.

A combination of this lemma and inequality (4.41)
yields directly

Lemma 7. For Q (&2, E(e,Q) belongs to the discrete
part of the spectrum ofH'(Q).

The proof is very simple: For Q (&2, a successive ap-
plication of (4.41) and (4.42) shows that
E, (ct, Q) & Q /2+E(iz, O) &E(a,Q) is true. This proves
Lemma 7.

Summarizing thus far, we have established the ex-
istence of (normalizable) eigenfunctions of H'(Q) for
Q (&2. The admissible Q domain may be larger in
specific cases such as Eq. (2.10). This can be easily
demonstrated by perturbation theory. As for a more in-
volved discussion, we refer to Spohn (1988). We are now
prepared to give the

Proof of Statement 2.

E(ct, O) &E(ct,QWO) . (4 44)

The inequality (4.44) is certainly true, if E(cz, Q) does not
belong to the discrete part of spec H'(Q). In that case
(4.41) provides us with E (o., Q) & 1+E(a, O) )E (cz, 0).

Therefore it is sufhcient to find a proof for the case
when E (a, Q) is an eigenvalue. Let us assume that (4.44)
was not true for some Q, WO, that is,
E( 0o) &E(a, Q)= E( ,ct—Q, ). Then the ground state
of II' would automatically be degenerate. Our strategy
will be to reject this assumption. To achieve this, we
shall use two powerful theorems from operator theory
that enable one to decide whether or not a ground-state
eigenvalue is simple. As an insertion, we list these
theorems [proofs can be found in the book by Reed and
Simon (1978, pp. 204, 205)]:

I. Let the Hamiltonian H be self-adjoint and bounded
from below on a certain Hilbert space, the ground-state
energy being E. Choose a fixed representation of the
Hilbert space. If E is an eigenvalue and exp( —tH) is po-
sitivity improving for all t) 0 within the chosen repre-
sentation, then E is a simple eigenvalue.

Here, an operator 2 is called positivity improving if for
any positive 4%0 the function AO is strictly positive.
Clearly, this property depends on the representation of
the Hilbert space. If 2 4 is only positive and 2 OWO,
the operator 2 is called positivity preserving.

The second theorem provides a manageable criterion
to decide whether exp( —tH) is positivity improving.

II. Let H =Ho+ U and choose a fixed representation
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of the Hilbert space. Suppose that U is a multiplication
operator (that is, diagonal) in the chosen representation
and that there exists a sequence of bounded multiplica-
tion operators U„such that Ho + U„~H and
H —U„~HO in the strong resolvent sense. Then,
exp( —tH) is positivity improving, if this is true for
exp( —tHO).

To apply these theorems, we consider the Hamiltonian
H' [not H'(Q)] according to Eq. (2.14). H' depends on

p, but not on r, and is usually defined on H: =L (E )F.
An essential point of our proof is that we redefine H'
on another Hilbert space &,:=L ([—a, a [ )ISF,
a:=h'/Q, —we restrict the electronic part of the wave
function to a finite cube of length a. It is only in this way
that we can apply the preceding theorems I and II, as
will become clear in a moment. One should notice three
facts or properties:

(i) By periodic continuation, we can define functions on
E that were originally given on [ —a, a [

(ii) The momentum operator p works as a multiplica-
tion operator in the Fourier space, associated with
L ([—a, a[ ). Application of exp(ia p), a&E to a
wave function X(r)EL ([—a, a [ ) induces a translation
about a.

(iii) The existence of ground-state eigenfunction(s) of

H' is guaranteed in H, ; because of [H', p]=0, they can
be parametrized as follows:

P(a, Q„):=exp(iQ„r)%'(a,Q„) . (4.45)

Here, Q„ is a discrete wave vector (by construction), and
%'(a, Q„) a ground-state eigenfunction of H'(Q„). There-
fore $(a, Q„) has the eigenvalue E(a, Q„). If H, is re-
placed by H, property (iii) is no longer valid.

We shall now demonstrate that exp( tH—') is positivity
improving. As fixed representation, we choose the posi-
tion representation for the electronic coordinates, and
the so-called Q representation for the phonon coordi-
nates. The latter is obtained by rewriting the operators
a(k) in a+(k) in terms of position and momentum
operators q (k) and p (k), and by choosing once more a
position representation (for details, we refer to Ginibre,
1971 and Simon, 1974). In this representation, H', acts as
a multiplication operator. Furthermore, the analysis of
J. Frohlich (1974) makes clear that Hi can be approxi-
mated by bounded multiplication operators as required in
Theorem II. All that remains to be done is to show that
exp( —tHp) is positivity improving, where now
Hp'. =

& (p Pph ) +Hph ~ We proceed as follows:

exp( tHp) =—exp( tHp„)(2') —Id a exp( —a /2)exp(i i/t ap)exp( i &t a Pp„—) . (4.46)

Now, exp( tH ph ) is p—ositivity improving with respect to
the phonon coordinates and positivity preserving with
respect to the electron coordinates; exp( iV't aPp—h) is
positivity preserving in both cases. The positivity of
exp( —a /2), and the fact that exp(i&t a p) acts as a
translation operator, assures us that exp( —tHp) is posi-
tivity improving in the chosen representation of H, .

We can now apply Theorem I to H', defined on H„
and conclude that the ground state has to be nondegen-
erate. If E(a, O) ~E(a, Q, )=E(a, —Q, ) were true for
some Q, WO, however, the ground state of H' would be
degenerate. Therefore we have to reject this assumption,
and Statement 2 has been proven.

We close this subsection with a remark. J. Frohlich
(1973) applied Theorems I and II to H'(Q). Proceeding
along lines similar to the above, he arrived at the follow-
ing result: If E(a,Q) belongs to the discrete part of spec
H'(Q), it is a simple eigenvalue. In complete analogy,
one may discuss the cutoff Hamiltonians H'(Q, o ) and
H"(Q, o, A, ). We can profitably use these results in the
following, final step of our analyticity proof.

c. Proof of Statement 1

Having established the existence of a nondegenerate,
discrete ground state of H'(Q) for Q & V 2, we now apply
analytical perturbation theory to show that E(a,Q) and
%(a,Q) are real analytic functions of a and Q for

0 & a & ~, Q & i/2 (Statement 1).
It proves useful to start from the cutoff Hamiltonian

H"(Q, cr, k, )—= H(v' aQ, o, k), which was introduced in
Eq. (4.28). In this subsection, it is necessary to indicate
the a dependence explicitly. In particular, we define

h (&a,Q o A, ):=H"(&a Q o. A, )—
2

(4.47)

= —
( Q —Qp) [Pph+ Z+ Z* ] (4.48)

is true. Pph, Z, and Z' are form bounded with respect to
h (+~a, Qp, o', A, ). Consequently, the Hamiltonians
h (Qap, Q, o, A, )—Q is considered as variable —form a
holomorphic family of self-adjoint operators of type 8
(see Kato, 1966, in particular, Chapter VII, Sec. 4).
Furthermore, as the form boundedness of Pph, Z, and Z
with respect to h (Qap, Q, o, k) is uniform in cr, the limit
o ~~ can be performed (see Lemma 3). Therefore the
Hamiltonians

2

h (Qap, Q, A, ):=H"(Qap, Q, A, )— (4.49)

To apply analytical perturbation theory, the basic
quantity to discuss is the deviation of h (v'a, Q, cr, k)
from h (Qap Qp o, A, ), where ap, a and Qp, Q are admis-
sible parameters in the specified domain and ap, Qp are
fixed. Direct calculation shows, for example, that

h (Qap, Q, a, l, ) —h (Qap, Qp, o., iL)
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form a holomorphic family of self-adjoint operators of
type 8, too. If we combine this property with the nonde-
generacy of the discrete ground state of H"(Qao, Q, A, )

for Q (&2, we can conclude that the ground-state ener-

gy and wave function of H "(Q ao, Q, A. ) are real analytic
functions of Q for Q (&2. As H'(Q)—=H'(V'a, Q) is a
unitary transform of H"(iIa, Q, X), the transformation
operator T & being independent of Q, we arrive at the
result that E(ao, Q) and %(ao, Q) are real analytic func-
tions of Q for Q ( iI2 (and a given value ao).

Proceeding along similar lines, we can prove the corre-
sponding result for the &a —dependence of E(a, QO)
and 4'(a, go). As the perturbation series for E( aQ o)

and %(a,QO) around a=O contain only even powers of
&a, we have finally proven the real analyticity of
E(a, Q0) and 4(a, QO) with respect to a, even for a=O.
This completes the proof of Statement 1.

We close this subsection with a remark concerning
discrete excited states (if they exist at all): If they are
nondegenerate, Statement 1 will hold again.

2. Analyticity of the forrnal free energy of H.
Proof of Statement 3

In this section we sketch the basic ideas for the proof
of Statement 3. A detailed discussion can be found in
two papers by the present authors (Gerlach and Lowen,
1987a, 1987b).

As a starting point, we use Eqs. (2.21) and (2.26),
which relate F(a, /3) and Z(a, p) to the action
Si —=Si(a,P) as defined in (2.24):

Z (a,P) =exp [
—P[F (a, /3) —F (O, P) ] ]

=(exp( —Si)) . (4.50)

Clearly, it is sufhcient to study the analytical properties
of Z (a, /3). To do so, let us consider

N

Ziv(a, P):= g, (
—S, )"

nt

exists and

Z(a, P)= g f„(P)a" .
n=0

(4.53)

f„(ReP) (4.54)

by direct inspection.
Having in mind that f„(p) is an analytical function of

p for 0 &Rep& oo, we may state the following result:
(4.53) exists as a complex series for all a and 0 (Rep & m

and represents an analytical function of a and p in the
quoted domain, if (4.53) exists as a real series for
0 & a & oo, 0 (p & oo. As the latter is strictly positive, we
have proven the first part of Statement 3.

The remaining task is to ensure the convergence of the
real series (4.53) under conditions (3.2) or (3.3). We begin
with the comparatively simple case of short-range cou-
pling. To get an upper bound on an arbitrary term in the
series (4.53), we replace the exponential factor in S,[R]
by 1 [see Eq. (2.24)]. Using condition (3.2), a positive
function C (p) ( ~ exists such that

f„(p)& C(p)"In! . (4.55)

Clearly, this inequality proves convergence of (4.53).
The case of long-range coupling is much more involved

and was treated in detail in the quoted reference. We
give the final result. Condition (3.3) leads to

On the other hand, we may assume that Z(a, p) exists.
Then, Z(a, p))Z~(a, p) is true, and Eq. (4.53) holds
again. Insofar, Z (a,p) exists if and only if this is true for
Z (a,P).

Therefore we examine Eq. (4.53) in more detail.
Despite its introduction as a function of positive a and p,
the right-hand side of (4.53) may be discussed as an
infinite series of complex a and p. This complex series
converges absolutely for all a and 0& Rep( oo, if (and
only if) the original series (4.53) converges for 0&a & oo,
0(p& ca. To prove this, one has to recall that f„(p) is
positive, if p is positive; for complex p, one derives

2n

, (( —s, )") .
o

nt (4.51)
Ci(P)"

f„(P)& Ci(P)
Now, —S, is positive and the functional integral in

(( —Si )") can be evaluated for any n )0. In fact, direct
inspection of Eq. (2.24) shows that

1

,
(( —Si)")=:a"f„(P) (4.52)

is true, where f„(p))0 can be represented as a finite-
dimensional integral. Therefore Z&(a, /3) is strictly posi-
tive and monotonically increasing as a function of X (a
and P being fixed). If we can prove that Z&(a, P) is uni-
formly bounded from above by some function
C(a, P) & ~, we can apply the monotone-convergence
theorem to assure that

lim Z~(a, P) =:Z (a,P)
N —+ oo

where C, (p) and C2(p) are finite positive functions of /3

Therefore convergence of (4.53) is guaranteed again.
This completes the proof of Statement 3.

Conditions (3.2) and (3.3) are sufhcient, but not neces-
sary, to establish convergence of (4.53). Up to now, a
necessary and sufhcient condition is not known.

B. The magnetopolaron

As in the preceding part, Sec. IV.A, we have to
separate the discussion of ground-state and finite-
temperature properties. We shall proceed along similar
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lines. Therefore many details can be skipped; necessary
modifications, however, will be stressed. Throughout
this section we assume a nonzero magnetic field pointing
into z direction: 8= (0,0,8), 8)0.

1. Analyticity of the ground-state energy
and wave function of H'(Q)

In this section we prove Statement 4, which is con-
cerned with the ground-state energy E(a,Q, B) and the
corresponding wave function %'(a, Q, B) of Hamiltonian
H'(Q) [see Eq. (2.34)]; as a general reference, we quote
Lowen (1988a). The first component of Q is zero [see Eq.
(2.33)]; if not stated otherwise, we suppose this property
for any wave vector to follow in this section.

a. On the position of the continuum edge of H'(Q)

Theorem 2. The continuum edge of H'(Q) is produced by
one-phonon excitations and is given by

E,(a, Q, B)= inf[E (a, Q k—, 8)+co(k) ] .
k

(4.60)

We include a useful inequality, which (again) generalizes
our previous results for the free polaron. We mentioned
in the latter case that E (a, Q) ~ E (a, O) was proven by L.
Gross (1972). Gross applied the Trotter formula and a
sequence of estimates to show the inequality

/[I exp[ PH—'(Q)] )4// ~ //(exp[ /3H'(—0) ] ] %f/ for any
'I'EF. Lowen (1988a) demonstrated that this result holds
true also for 8WO. In combination with cv(k) ~ co= 1, we
conclude from (4.60),

(see Lowen, 1988a). A combination of the inequalities
(4.58) and (4.59) leads us to the central result of this sub-
section, namely,

One key result is the generalization of Lemma 4, name-
E, (a, Q;8)~1+E(a,0,8) . (4.61)

ly,

Lemma 8. Suppose Q to be such that

inf[E (a, Q —k, B)+co(k)] E(a,Q, B)—
k

=:b,(a, Q, B))0 . (4.57)

Then, the part of spec H'(Q) contained in the interval
[E(a,Q, B), E(a, Q, B)+A(a, Q, B)[ is purely discrete

E,(a, Q, B)~ inf[E (a, Q —k, 8)+ca(k) ] .
k

(4.58)

Recalling the results from Sec. IV.A, we are not
surprised to find that the above inequality can be re-
versed. In fact, it is comparatively simple to generalize
the Rayleigh-Ritz argument of Spohn (1988) to prove

To prove this lemma, one has to introduce an UV-cutoff
as well as a lattice-cutoff in complete analogy to Sec.
IV.A. 1.a. Following the procedure used in the proof of
Lemma 1, we see that the essential difference now is that
the first component of the total momentum is not con-
served; the electronic variables x and p remain in
H'(Q). We notice, however, that x appears only in an os-
cillator potential of the type (Bx +Q2 —Ppi, z) . Conse-
quently, for B)0 the additional electronic degree of free-
dom causes a purely discrete spectrum; the further con-
clusions in the proof of Lemma 1 are not affected.

To remove the cutoffs, one uses the procedures out-
lined in Lemmas 2—4. As for full details, we refer to
Lowen (1988a).

Summarizing so far, Lemma 8 provides us with a lower
bound for the continuum edge E, (a, Q, B) of H'(Q),
namely,

If cv(k) =co, as in the case of the standard Frohlich mod-
el, (4.61) becomes an equality. This is of particular im-
portance for the interpretation of magneto-optical data.

b. Uniqueness of the ground state of
H'(Q) and proof of Statement 4

E(a,Q, B)=E(a, (0,0, lQ, I),8) (4.62)

It demonstrates that the ground states of H [see Eqs.
(2.28)—(2.30)] and H' [see Eq (2.31)] .are highly degen-
erate. Statement 2 cannot be transferred to the present
case. Obviously, this is in marked contrast to the discus-
sion of a free polaron. However, interesting analogies
reappear, if we turn to H'(Q). A first example is

Lemma 10.

We begin with two introductory remarks, which are
concerned with the Q dependence of E (a, Q, B).

First, E(a, Q, B) is independent of Q2 for 8)0. To
understand this property, one has to recall that H'(Q)
contains Q2 and the electronic position x only in the
combined form Bx —Q2. Therefore Q2 can be eliminat-
ed by an appropriate unitary transformation of x [and
H'(Q) ].

Second, E(a, Q, B) depends only on ~Q3~. The reason
for this property is that we can unitarily transform
x,p, , a(k) and a*(k) into —x, —p„a( —k) and a*( —k),
proving that H (0,0, —Q3) is unitarily equivalent to
H'(0, 0, Q3 ).

A combination of both properties yields the useful re-
sult

Lemma 9. E(a, Q, B) ~E( aO, B) +Q~/32 . (4.63)

E, (a, Q, B)~ inf[E (a, Q —k, B)+co(k)]
k

(4.59)
For a proof, we refer to Lemma 6; the previous con-
sideration can be generalized directly.
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A combination of Lemma 10 and inequality (4.61)
yields

Lemma 11. For ~Q3 ~

& &2, E(a, Q, B) belongs to the
discrete part of the spectrum ofH'(Q).

In summary, we have established the existence of (nor-
malizable) eigenfunctions of H'(Q) for

~ Q3 ~
& ~2,

O(B (~, and O~n(~. According to our prevoius
scheme, the next step in the analyticity proof is to ensure
the uniqueness of the ground state of H'(Q). We find

Theorem 3. If E(a,Q, B) belongs to the discrete part of
the spectrum ofH'(Q), it is a simple eigenualue

Theorem 2 parallels the result of J. Frohlich (1973) for
free polarons and can be proven similarly. Again, the
main difficulty is to ensure that exp[ tH(Q) ]

—is po'sitivi-

ty improving for t) 0. For details, see Lowen (1988a).
Having established the existence of a unique, discrete

ground state of H'(Q) for ~Q3 ~

(i 2, we finally apply
analytical perturbation theory to show that E(a,Q, B)
and 4(a, Q, B) are real analytic functions of a, Q3, 8 for
0&a& oo& Q&~ (V2, and 0(B ( ~ (Statement 4). To
be explicit, let us write H'(Q)=H'(a, Q, B). In view of
our discussion in Sec. IV.A. 1.b, the only property
to show is the relative boundedness of
H'(a, Q, B)—H'(a, Q, BO) with respect to H'(a, Q, BO),
Bo being a fixed value of the magnetic field. As we may
assume Q2=0 (see the first introductory remark in Sec.
IV.B.l.b), this property can be easily demonstrated.

In summary, Statement 4 is proven.

2. Analyticity of the formal free energy of H.
Proof of Statement 5.

To begin with, we recall Eqs. (2.36) and (2.37) and their
relation to the formal free energy:

Z (a, /3, 8)=exp I /3[F (a, /3, 8) F—(0, /3, 0) ]]-
= ( exp [ —S,—SB ] ) . (4.64)

Let us consider

Z (,/3, 8):= g, (( —S, )" p[ —S ])n!
N=:g a"f„(/3,8) .

n=0
(4.65)

N

lZ~(a, /3, 8) I

( y (( —S, )")=Z (a, /3),
O

n! (4.66)

f„(/3,8) can be represented as a finite-dimensional in-

tegral (see Gerlach and Lowen, 1987b). In particular,
f„(P,B) is a real analytic function of /3, 8 for
0 & /3 & ~,0(8 ( ~ . What about the convergence of
Z&(a, /3, 8) for N~~'? As Sii is purely imaginary, one
can easily derive

exists and

Z(a, /3, 8)=Z (a, /3, 8) . (4.67)

Moreover, Z ( a, /3, 8 ) is a real analytic function of
a, /38 for 0 (a ( ~, 0 (/3( ~, 0 &8 ( ~. The results of
Sec. IV.B.1 show that Z(a, /3, 8) is strictly positive, and
Statement 5 is proven.

C. The polaron in a potential

In the first part of this section we are concerned with
ground-state properties of the Hamiltonians H or H', re-
spectively, which were defined in Eqs. (2.38)—(2.40) and
in Eqs. (2.41) and (2.42). In particular, we sketch the
proofs of Statements 6 and 7. In the second part we turn
to the formal free energy and Statement 8.

1. Analytical properties of the ground-state energy and
wave function of H. Proof of Statements 6 and 7

To begin with, we recall the specific form
of H Hp+Hph+HI and H Hp+Hph+HI ~

Throughout this part, we assume HP to be essentially
self-adjoint and bounded from below; if not explicitly
stated otherwise, A, u should be an element of R' as ex-
plained in Eq. (3.13). Moreover, let u (r) (0 (more or less
for the sake of illustration; we pick up this point at the
end of this part).

For the proofs in Secs. IV.A. 1 and IV.B.1, the first im-
portant step was to relate the continuum edge and the
ground-state energy. Trying to establish an equation as
before, we need here a specific modification. The physi-
cal reason for this can be easily found. The additional
potential A, U allows for a new type of continuum state: in
Secs. IV.A. 1 and IV.B.1, the continuum edge was formed
by one-phonon excitations; in addition, we are now con-
fronted here with the possibility of delocalized particle
states. An analogous phenomenon was discussed in Sec.
II.D in connection with polaronic excitons.

To be specific, let us denote H'= H'(a, A, ), the co—rre-
sponding ground-state energy being E(a, A, ). As a first
step we introduce an UV-cutoff o. and a lattice-cutoff d,
as before, and consider the restriction of H'(a, A, ) on
Fd I. (IR ). Effectively, we construct thereby a Hamil-
tonian H'(a, A, , N), which accounts for a finite number
N—=N(d, o ) of phonon modes. H'(a, A. ,N) is properly
defined and is, in particular, self-adjoint and bounded
from below. By construction, its continuum edge
E,(a, k, N) can only be caused by delocalized particle
states. In fact, one finds

E,(a, A, ,N)=infspecH'(a, O, N) . (4.68)

where Z&(a, /3) is the free-polaron expression from Sec.
IV.A.2 which does converge. Consequently, the dom-
inated convergence theorem assures us that

lim Z~(a, /3, 8)=:Z„(a,/3, 8)
N~ oo

Rev. Mod. Phys. , Vol. 63, No. i, January 1991



B. Gerlach and H. Lowen: Analytical properties of polaron systems 83

is compact.
To remove the cutoffs, one proceeds as in Sec. IV.A. 1

[until now we had no proper mathematical interpretation
of the primarily formal expression H (a, A, ); in particular,
the existence of the ground-state energy E (a, A, ) and
wave function %(a, A, ) is guaranteed]. Since we now in-
corporate an infinite number of phonon modes, phonon-
induced continuum states appear. In combination with
Eq. (4.68), we find for the position of the continuum edge
E,(a, A, )

Lemma 12.

E,(a, A, ) )min[E(a, k)+ l, E(a, O)] . (4.69)

Interestingly enough, one can reverse this
inequality —again in analogy to Secs. A. 1 and 8.1. Using
a Rayleigh-Ritz argument (see Low'en, 1988b), one proves
that the right-hand side of (4.69) is also an upper bound
for E,(a, A. ). Summarizing, we arrive at

Theorem 4. The continuum edge ofH'(a, A, ) is given by

E, ( aA, )= im[nE( aA, )+1,E( aO)] . (4.70)

Meanwhile it has become clear how to proceed: we have
to discuss whether E( Aa, ) &E,(a, A, ) is true. Clearly,
this inequality is fulfilled for the alternative
E, (a, A, )=E( aA, ) +1. So we turn to E, (a, k, )=E(a,O).

Lemma 13. Let E,(a, k)=E(a, O) and assume that Hp
has n bound states y with energies e,j =1. . .n, and
e, &e2 «e„&0. Then, H'(a, A, ) has at least n local
ized eigenstates.

To prove this lemma, we use once more a Rayleigh-Ritz
argument. Consider the product states 4 ' =y - N,
where N is the normalized free-polaron eigenfunction of
H'(Q=O), H'(Q) having been defined in Eq. (2.17). Be-
cause of & 4lPph l@ & =0, we derive

& +, IH'(a, ~) I+,'& =
& q, IHp lq,'&+fi,,'& ~'IH'(Q=O) l~' &

=5, '[e, +E(a,k=O)] . (4.71)

Equation (4.71) proves Lemma 13.
Summarizing thus far, we can state that E(a, A, ) is a

discrete eigenvalue of H'(a, A. ) if Hp has at least one
bound state with strictly negative energy. If this can be
taken for granted, then E ( a, k ) is a simple eigenvalue.
We omit the proof, as all technical details can be
transferred from Sec. IV.A. l.b (discussion of Statement
2). Therefore the final step is to apply analytical pertur-
bation theory. As for the a dependence, we refer to Sec.

Lowen (1988b) provides a formal proof of this equation
using Weyl's essential spectrum theorem (see Reed and
Simon, 1978, pp. 112, 118). The basic point of this
theorem is to show that the resolvent difference

[g—H'(a, A, ,X) ]
' —[g—H'(a, 0,%) ]

IV.A. 1.c. As far as the A. dependence is concerned, we
recall that v(r) is infinitesimally form bounded with
respect to Hp and H'(a, A, =A,o), A,o being fixed. There-
fore E(a, A, ) and itj(a, A. ) are real analytic functions of a,
k for 0 ~ a & ~ and 0 & k & ~. Statement 6 has been
proven.

As announced before, we add a comment on the as-
sumption A, v(r) &0. Reviewing our foregoing proof, one
notices that all we needed with respect to Hp was the fol-
lowing: For the given potential A, U HR' and any A, )0,
Hp has to be well defined and should have at least one
bound state with strictly negative energy. It is useful to
add the following result: If Hp is known to have a bound
state with strictly negative energy for some A. =A,o, this is
sufficient to guarantee the analyticity of E( ak) and
g(a, A, ) in a certain surrounding of A, =Ao.

We now turn to Statement 7 and the phenomenon of
pinning transitions. In this case we restrict A,v(r) to the
class of Rollnik potentials R as explained in Eq. (3.12).

As R is contained in R', we can transfer some general
results from the preceding discussion. Let us start with
k) A,, )0, k, having been defined in Sec. II.C. We know
in this case that Hp has at least one bound state with
strictly negative energy, and Statement 6 assures us that
E (a, A, ) is a real analytic function of a and A, for
0~ a & ao and A,, & k & oo; furthermore, we have
E(a, l, ) &E(a,O) according to Lemma 13. Now, we con-
sider the case A, &0: Theorem 4 is valid and yields
E( al, ) &E(a,O); on the other hand, Av(r) is positive
and therefore E(a, A, ))E(a,O). Consequently, we find
E( ak)=E( Oa) for A, &0. Contrasting the results for
A, ) A,, )0 and A, &0, we conclude that E(a, k. ) cannot be
analytic for the whole interval 0 ~ A, & A,„' the identity
theorem for analytical functions would require
E( ka)=E( Oa) for all A, .

We can discuss this nonanalyticity in greater detail.
For a given value of a, E(a, k) is monotonically decreas-
ing in A, . There exists a unique value A, =A, ,(a),
0&A,,(a) &A,„such that E(a, k, )=E(a,O) for A, &A,,(a)
and E (a, A, ) & E(a, O) for A, ) A,,(a). In the latter case the
ground-state energy is separated from the continuum
edge and (repeating earlier arguments) is a simple eigen-
value. Analytical perturbation theory proves that
E(a, A, ) is even real analytic in A, for A, ) A,, (a). Now,
consider different values for a. Then, A,,(a) is a continu-
ous function of 0.; one proves this property by assuming
the contrary —the analyticity of E (a, A, ) in A. for
A, ) A,,(a) and the monotonicity in A, provide a contradic-
tion. In summary, Statement 7 has been proven.

We stress that we made repeated use of A.v(r) &0 in the
course of the last proof; in connection with Statement 7,
this assumption cannot generally be abandoned.

2. Analyticity of the formal free energy of H.
Proof of Statement 8

The quantities of interest, namely, Z and F, are related
by the equations

Rev. Mod. Phys. , Vol. 63, No. 1, January 1991



84 B. Gerlach and H. Lowen: Analytical properties of polaron systems

Z(rr, P, X)= (exp( —S, —Sz) )

=exp[ —[F(a,P, A, ) —F(0,/3, 0)]]; (4.72)

S, and Sz were defined in Eqs. (2.24) and (2.44). Both
actions are negative. Let us consider

X 1 M
z~M(ag). ):= x, (

—s, )" x, (
—si) )nf , m!

M gm

,
f„(p) .

O
m.

f„(P)is positive for any n, I ~ 0 and can be represented
as a finite-dimensional integral. Moreover, it is an ana-

I

lytic function of p for 0 & Rep & ~. We conclude in anal-

ogy to Sec. IV.A.2: Z(n, P, A, ) exists as a complex series
for arbitrary a, A, , and p in the interval 0 (Rep & oo, is of
the type

oo n gm
Z(a, P, A ) =Z (a,P, A ) = g, f„(P), (4.74)

o n! n!

and represents an analytic function in the quoted
domain, if the right-hand side of Eq. (4.74) exists as a real
series in a,p, A, for 0(a, A. ( ~, and 0&p& ~. As the
latter is strictly positive, we have proven the first part of
Statement 8.

We now turn to the existence of the real series (4.74).
Starting from Eq. (4.73), we find

(4.75)

The first term on the right-hand side of Eq. (4.75) was
discussed in Sec. IV.A.2 and proven to be uniformly
bounded in % (a and P fixed) when either condition (3.2)
or (3.3) was fulfilled. Interestingly enough, the second
term can be treated similarly if we assume condition
(3.14) to be valid (as is done in Statement 8): Explicit in-
sertion shows that the estimation procedure for the first
term can be used again. Taking this for granted, the
monotone-convergence theorem completes the proof of
Statement 8.

D. The polaronic exciton

In this section we complete the proofs of the state-
ments from Sec. III. Again, we begin with the discussion
of ground-state properties; this time we are concerned
with the exciton Hamiltonians H, H', and H'(Q) accord-
ing to Eqs. (2.45) —(2.49), (2.51)—(2.53), and (2.54). In the
first part we sketch the proofs of Statements 9a, 9b, and
10; the second part contains the discussion of the formal
free energy and Statement 11. General references are
Lowen (1987) and Gerlach and Lowen (1990).

as before, and consider the restriction of H'(Q, a, l, , m)
on Fd I. (R ). In doing so, we construct a Hamiltoni-
an H'(Q, a, l, , m, X), which accounts for a finite number
%=K(d, o. ) of phonon modes. This Hamiltonian is self-
ad)oint and bounded from below. Making usc of Wcyl s
essential spectrum theorem, we find for the continuum
edge E,' of H'(Q, cz, k, , m, X)

E,'(Q, a, m, X)=info. „,[H'(Q, cz, O, m, X)] . (4.76)

Removing the cutofFs consecutively as described in
Sec. IV.A. 1, we are led by Eq. (4.76) to an edge value
E,'(Q, a, m). Moreover, the one-phonon-assisted scatter-
ing states create a second (by now familiar) species of
continuum states with an energy edge E, , bounded as fol-
lows:

E, (Q, cz, k, m) ~ inf IE(Q —k, a, X,m)+co(k)] . (4.77)

In summary, we find for the continuum edge of
H''(Q, n, A, , m)

E,(Q, n, k.,m) ~ minIE, '(Q, a, m), E, (Q, a, l., m)] . (4.78)

1. Analytical properties of the ground-state energy and wave
function of H'(Q). Proof of Statements 9a, 9b, and 10

Our discussion will be similar to that of a polaron in a
potential. To begin with, we recall the general condition
P for the electron-hole potential XU(r), which we stated
in Sec. III.D; it guarantees that H„i.=p /2p+A, U(r) is
mathematically well defined and has at least one bound
state for any X)0. To display the relevant parameters
of the system, we shall use the notation
H'(Q) =H'(Q, a, k, , m).

Let us introduce an UV-cutofF o. and a lattice-cutofF d,

We believe that (4.78) can be replaced by an equality
and shall give a partial proof during our later discussion.
In any case the inequality is sufIicient to proceed.

For subsequent use we transfer some results from the
corresponding considerations in Sec. IV.A. 1:

E(Q, u, k, m) ~ E(O, cz, Am),

E(Q, a, k, , m) (E(O,a, k, , m)+Q /2M .

(4.79)

(4.80)

We mentioned earlier that the center-of-mass motion of
an exciton is of free-polaron type. In fact, the Q depen-
dence of the corresponding Hamiltonians is the same.
Therefore the proof of, for example, Eq. (4.80) is that of
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Lemma 6. Furthermore, we recall that E ( Q, a, l, , m ) has
to be a continuous function of Q, in analogy to the pola-
ron energy.

Now, let us discuss the alternative E, &E,' in (4.78).
In this case, the inequality (4.78) can indeed be replaced
by the equality E, =E, . To prove this, one may use a
Rayleigh-Ritz procedure as in Sec. A. 1. We derive from
(4.77) —(4.79) and (3.1)

E,(Q, a, k, , m) ~E(O, a, k, , m)+ I . (4.81)

2

E( Oa, ,0m)~ g E;(a), (4.82)

The comparison of (4.81) and (4.80) shows that
E(Q, a, l, , m) belongs to the discrete part of the spectrum
of H'(Q, a, i, , m), if Q & V'2M.

In view of our general outline for analyticity proofs,
the next property to be established is the nondegeneracy
of E(Q, a, k.,m). Let us try to transfer the corresponding
discussion from the free-polaron case. This is in fact pos-
sible up to Eq. (4.46), where we performed a Gaussian
linearization of exp[ —(p —

pph) ]. In the present case,
we find exp( —[Q —Pph] ) instead; on the right-hand side
of (4.46), this term produces exp(i&t aQ). It is only for
Q=O that we find positivity. Proceeding as in Sec. A. l,
we establish the nondegeneracy of E(Q=0,a, k, , m). Be-
cause of the continuity of E(Q, a, A, , m) with respect to Q,
this property will also be true in a certain surrounding of
Q=O. The application of analytical perturbation theory
completes the proof of Statement 9a.

We now turn to the second alternative E,'&E, in
(4.78). As indicated in connection with Statement 9b, we
need additional assumptions to proceed. Firstly, let us
choose Q =0; this is characteristic for the ground states
of H and H', respectively. We derive from the
functional-integral equations (2.56)—(2.59) for the pola-
ronic exciton

E(Q=O, a, l, , m) (E(QWO, a, k, , m) is certainly true, if
E(Q, a, k, , m) belongs to the continuous part of the spec-
trum of H'(Q, a, k, , m). To realize this, one has to recall
the inequalities (4.81) and (4.79), (4.83)—(4.84) for the
continuum edge of H'(Q, a, k, , m). Therefore it is
sufficient to demonstrate Statement 10 for the case in
which E(Q, a, l., m) is an eigenvalue of H'(Q, a, k, , m).
Then, however, the proof of Statement 2 can be directly
transferred to the present problem (see Gerlach and
Lowen, 1988a).

2. Analytieity of the formal free energy of H. Proof of
Statement 1 3

2—$, [R,r]& —2g $, [r, ], (4.85)

where $, [r, ] is the free-polaron action of constituent i of
the exciton. Using the inequality (4.85) in (4.75) and re-
peating the former arguments, we finally complete the
proof of Statement 11.

Our treatment of the polaron in a potential (see Sec.
IV.C.2) is such that we can completely transfer all re-
sults, even without a change in the notation —of course,
S& and S& have to be understood as the excitonic equa-
tions (2.57) and (2.58). We recall that the positivity of
—

S& was essential in the previous discussion; in fact, this
property can generally be shown for Hamiltonians of
type (2.1)—(2.4) and particularly for the polaronic exciton
(Adamowski, Gerlach, and Leschke, 1984). Proceeding
as in Sec. C.2, the only question to answer is whether the
right-hand side of Eq. (4.75) is uniformly bounded in N
and M. Again, we make use of the previously solved
problem: Rewriting Eq. (2.57) in the original coordinates
r1 and r2, one finds

2

E, (O, a, i,, m) & g E;(a) . (4.83)

For the standard exciton-phonon problem, which is ad-
dressed in Statement 9b, variational techniques (see
Adamowski, Gerlach, and Leschke, 1981, 1983) were
used to prove

2

E(O, A, , m) & g E;(a) (4.84)

for 0(k& ~, 0&m,. & ~. Therefore E( AO. , )mis an
eigenvalue. Because of the continuity of E(Q, A, ,m) with
respect to Q, this property holds true in a certain sur-
rounding of Q=O. Repeating the arguments of the above
discussion for E, ~E,', we complete the proof of State-
ment 9b.

Finally, we are left with Statement 10. The inequality

where E;(a) is the (hypothetical) free-polaron energy of
constituent i of the exciton. Consequently, we can state
for the continuum edge

V. EXTENSlONS

The original Hamiltonian (2.1) admits of a larger num-
ber of realistic models than we have treated in Statements
1 —11. We recall that we generally assumed a parabolic
band structure E(k) and isotropic expressions for the
phonon dispersion co(k) and coupling g(k); furthermore,
the particles of interest were supposed to interact with a
single branch of phonons only. In connection with
ground-state properties, we made extensive use of the ad-
ditional condition (3.1) and restricted the potentials to
one of the classes R or R', respectively. More general re-
sults could be achieved for the formal free energy: In-
terestingly enough, its existence as such is sufhcient to
guarantee a smooth behavior as a function of the cou-
pling parameters a, A, , etc.

We can extend our previous results considerably. As
in Sec. IV, we demonstrate this in detail for the example
of a free polaron. The corresponding extension for the
magnetopolaron, the polaron in a potential, and the pola-
ronic exciton can easily be done (Lowen, 1987; Gerlach
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and Lowen, 1987a, 1987b, 1988a, 1988c).
The simplest generalization is concerned with an elec-

tronic coupling to several phonon branches. One proves
by direct inspection that Statements 1 —3 can be corre-
spondingly generalized, if the quoted conditions are
fulfil'ed for every branch.

It is also simple to remove the condition of isotropy for
cu(k) and g(k). For the discussion of the free energy F,
one may replace the inequalities (3.2) and (3.3) by the
analogous ones for co(k) and g(k) and arrive at the same
analyticity results for I'. As far as ground-state proper-
ties are concerned, it is sufficient to assume
co( —k) = co(k) (Kramers's theorem) and g ( —k)
=g(k) —of course, (3.1) must be valid, too. We mention
a particularly simple example, which was extensively
studied in the literature: putting g (k) ~ ~Bk~ ', where 8
is a real, symmetrical matrix with strictly positive eigen-
values, one can qualitatively describe optical polarons in
anisotropic crystals. As for variational and Monte Carlo
calculations, we refer to Kahn (1968); Pekar (1969); Pe-
kar, Sheka, and Dmitrenko (1973); Okamoto (1974); Pe-
kar, Khazan, and Sheka (1974); Pokatilov and Tarakano-
va (1974); Hattori (1975a); Sheka and Khazan (1975);
Sheka, Khazan, and Mozdor (1975); and Gerlach and
Schliffke (1984).

It is notable that the treatment of an anisotropic band
structure E(k) is formally equivalent to the preceding
case. What about more complicated examples' These are
in fact admissible in connection with Statement 2. Re-
calling the proof in Sec. IV.A. 1.b, one will find only one
decisive step where the parabolicity e( k ) ~ k was
relevant: in Eq. (4.46), we introduced a Gaussian lineari-
zation of exp[ —tE(p —Pph)]. More generally, one may
perform a Fourier transform,

exp[ —tE(p —Pp„)]=J d ct f(a, t)exp[ia(p —Pp„)] .

(5.1)

If f (a, t) is positive, we can proceed as in Sec. IV.A. l.b
and prove an extension of Statement 2 for a band struc-
ture E(k). One may easily provide examples, using tables
of Fourier transforms. We note that the case
e(k) o= k +ek, c )0, cannot be treated this way; the cor-
responding Fourier transform is not positive. Neverthe-
less, we believe that Statement 2 is valid also in this case;
probably, one can find a more adequate representation of
the underlying Hilbert space.

Let us now turn to ground-state properties and partic-
ularly to condition (3.1). At the moment, it is unclear
whether or not the inequality co(k) )co) 0 is necessary to
block a nonanalytical behavior; we are not aware of any
analyticity proof admitting an acoustical dispersion.
However, studies on the localization of the ground state
do exist for this case and indicate that localization can
happen only for sufficiently singular couplings and lower
spatial dimensions: Assume m(k) and g (k) to be propor-
tional to k and k ", respectively, if k~0; furthermore,
let o".=(D +2—2p)/v. Spohn (1986) proved that the
ground state is delocalized for o. )3. Spohn and Dumcke

(1985), as well as Fisher and Zwerger (1986), performed a
Gaussian approximation of the exact polaron action and
thereby found indications that (i) the ground state is delo-
calized, but the eA'ective mass diverges for 2 (o. & 3; and
(ii) the ground state is localized for cr &2. We add that
the localization criterion of these authors is slightly
di6'erent from ours. In any case one should realize that
the familiar physical examples have 0.)3.

There exists a variety of numerical studies on acoustic
polar ons, mostly of variational type. We refer to
Whitfield and Platzman (1972); Sumi and Toyozawa
(1973); Whitfieid and Shaw (1976); Young, Shaw, and
Whitfield (1979); Tokuda (1980b); Toyozawa and Shino-
zuka (1980); Shoji and Tokuda (1981);Tokuda, Shoji, and
Yoneya (1981b); Matsuura (1972); Tokuda and Kato
(1982); Das Sarma (1985); Peeters and Devreese (1985c);
Mason and Das Sarma (1986); Peeters and Devreese
(1987); and Erqelebi (1988). With the exception of the
early papers of Whitfield and Platzman (1972), Whitfield
and Shaw (1976), Young, Shaw, and Whitfield (1979), and
Tokuda (1980b), all authors describe nonanalyticities of
the ground-state energy as a function of the coupling pa-
rameter. As approximation procedures were used, an ar-
tifact cannot be excluded.

We close this section with some remarks concerning
applications of the previously used methods to related
problems.

(i) In the involved discussion of "man-made" struc-
tures, potentials such as

V(r):=
I'x for x ~I.

for x &L, (5.2)

H'(Q ):=z(G —Pph) +Hph+H', +A, V,1

2m
(5.3)

where G:= (p &, ~

e ~8x +AQz, p3 ). Let, for example,
Q2=0; the ground-state energy (EBa,X) will be a real
analytic function of u, B,A, for 0 ~ cx & Oo, 0 &B & ~, and
0(A, & (x).

(iii) In connection with small polarons, many authors

were used to model a quasi-two-dimensional behavior of
free electrons in doped layered structures (the x-y plane is
chosen as the plane of symmetry). If an optical polaron
is exposed to such a potential, a relevant quantity to
study is the ground-state energy E—:E(a, Q, F), where a
is the electron-phonon coupling parameter and
Q=(0, Q~, Q3) the polaron wave vector. E(a, Q, F) has
to be a real analytic function of a, Q, F for 0& a & co,
0 & F & ~, and arbitrary Q.

(ii) Magnetopolarons in quantum wells (parallel to the
x-y plane) can be qualitatively discussed by a Hamiltoni-
an, which is the sum of the previous one for a magneto-
polaron [Eq. (2.31)] plus a potential term I,V(z) %0,
where A, V(z) & 0 and V HI. (R) may be assumed. In this
case we can combine our discussions from Secs. II.B and
II.C and apply our results from Secs. III.B and III.C. In-
corporating the translation symmetry into y direction, we
start from
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have studied discrete models: the electron is restricted to
a discrete lattice of sites and couples to a discrete phonon
system. We are not going to analyze the corresponding
literature (that is definitely beyond the scope of this arti-
cle), but remark that a similar analysis of analytical prop-
erties can be performed. We refer to Spohn and Dumcke
(1985); Leggett, Chakravarty, Dorsey, Fisher, Garg, and
Zwerger (1987); and Lowen (1987, 1988c, 1988e).

Vl. SUMMARY

The main purpose of this article is to clarify the quali-
tative analytical properties of a polaron system of
Frohlich type being characterized by parameters such as
total momentum, coupling constants, and homogeneous
external field strengths. The basic question to answer is
whether or not the ground-state energy and wave func-
tion or the formal free energy and related observables are
real analytic functions of the quoted parameters. Our re-
sults are

(1) If the formal free energy F exists at all, it is a real
analytic function of the coupling parameters, the external
field strength, and the inverse formal temperature P for
0 &P & ~. Sufficient conditions for the existence of F can
be specified [see Eqs. (3.2), (3.3), and (3.14)j; they cover
the familiar physical cases.

(2) If the ground state of the momentum-decomposed
Hamiltonian is simple and energetically separated from
the rest of the spectrum (at least in a certain domain D of
the parameters), the ground-state energy and wave func-
tion are real analytic functions of the parameters, if these
belong to D.

(3) For the case of optical polarons, the domain D of
analyticity can be specified (see Statements 1, 4, 6, 9a,
and 9b). In particular, no phonon-induced localization
transition exists; the ground state is always delocalized.

(4) If a polaron is exposed to a short-range potential of
coupling strength X, a pinning transition is known to ex-
ist: for a certain critical parameter k„ the ground-state
energy splits oA from the continuum edge of the Hamil-
tonian under consideration. Although this transition
cannot be induced by the electron-phonon interaction,
the actual value of X, is governed by the corresponding
coupling strength a; A,, is a continuous function of o..
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