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The concept of boson realization (or mapping) of Lie algebras appeared first in nuclear physics in 1962 as
the idea of expanding bilinear forms in fermion creation and annihilation operators in Taylor series of bo-
son operators, with the object of converting the study of nuclear vibrational motion into a problem of cou-
pled oscillators. The physical situations of interest are quite diverse, depending, for instance, on whether
excitations for fixed- or variable-particle number are being studied, on how total angular momentum is

decomposed into orbital and spin parts, and on whether isotopic spin and other intrinsic degrees of free-
dorn enter. As a consequence, all of the semisimple algebras other than the exceptional ones have proved
to be of interest at one time or another, and all are studied in this review. Though the salient historical
facts are presented in the introduction, in the body of the review the progression is (generally) from the
simplest algebras to the more complex ones. With a sufficiently broad view of the physics requirements,
the mathematical problem is the realization of an arbitrary representation of a Lie algebra in a subspace of
a suitably chosen Hilbert space of bosons (Heisenberg-Weyl algebra). Indeed, if one includes the study of
odd nuclei, one is forced to consider the mappings to spaces that are direct-product spaces of bosons and
(quasi)fermions. Though all the methods that have been used for these problems are reviewed, emphasis is

placed on a relatively new algebraic method that has emerged over the past decade. Many of the classic
results are rederived, and some new results are obtained for odd systems. The major application of these
ideas is to the derivation, starting from the shell model, of the phenomenological models of nuclear collec-
tive motion, in particular, the geometric model of Bohr and Mottelson and the more recently developed
interacting boson model of Arirna and Iachello. A critical discussion of those applications is interwoven
with the theoretical developments on which they are based; many other applications are included, some of
practical interest, some simply to illustrate the concepts, and some to suggest new lines of inquiry.
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A. Early history and general outline

In this paper eve review the methods of boson map-
pings or boson expansions as applied to the nuclear shell
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model. These methods may also be applicable to other
many-fermion systems. It is well known in many-body
theory that under suitable circumstances pairs of fer-
mions can exhibit bosonlike behavior, especially when
the density of such pairs is sufficiently low that they do
not get in the way of each other, thereby minimizing the
effects of the Pauli principle. Under these circumstances
the low-lying excitations of such systems can often be
identified as a collection of a relatively small number of
weakly interacting, nearly harmonic oscillators. But
even in situations where interactions may be strong and
where large deviations from independent harmonic
motion occur for these degrees of freedom, the introduc-
tion of a Hilbert space of small dimensionality, which can
be considered to be decoupled from the remaining de-
grees of freedom, can confer both conceptual and techni-
cal advantages. The overriding aim of the present review
is to provide substantiation for this assertion. Though
the emphasis will be on the representation of the decou-
pled degrees of freedom, the idea that the decoupling
must occur is a uniform, though not always su%ciently
explicit, feature of all applications.

The boson methods are intended to exploit this kind of
situation by replacing the degrees of freedom of fermion
pairs directly with exact boson degrees of freedom. Con-
tact with the actual fermion problem is maintained by
performing a mapping from the original many-fermion
Hilbert space into another Hilbert space called the ideal
space. In the case of a system with an even number of
fermions, the ideal space is generated by boson creation
and annihilation operators, with one-boson degree of
freedom corresponding to each fermion pair of interest.
For an odd number of fermions, in one approach, the
ideal space is usually taken to be the tensor product of
the boson space with the space of a fermionlike object
called the "idea1 odd particle" that represents the odd
fermion. In another approach currently much in vogue,
which relates either to even or to odd systems, only a
subset of all the fermion-pair degrees of freedom is
mapped into bosons, the remaining degrees of freedom
being represented as kinematically independent "quasi-
fermions. " What one gains through either metamor-
phosis is the potential for new kinds of many-body ap-
proximations for describing collective motion that would
be difficult to implement in the usual fermion formula-
tion, for example, approximations that allow for small
violations of the Pauli principle. Moreover, since boson
degrees of freedom have their counterparts in classical
canonical variables, they have more of an intuitive appeal
than fermion operators and are more readily related to
semiclassical approximations. In addition, boson map-
pings provide a direct link between microscopic models
of nuclear structure and phenomenological collective
models.

Indeed the Copenhagen collective model (Bohr 1952;
Bohr and Mottelson, 1953), which evolved from a quan-
tized description of the oscillations of a liquid drop, pro-
vided an early precedent for regarding collective excita-

tions as bosons. This idea was reinforced by the intro-
duction of the random-phase approximation (RPA) into
nuclear physics (Arvieu and Veneroni, 1960; Baranger,
1960; Marumori, 1960). The RPA, which is a microscop-
ic approach, had first been consistently derived in a bo-
son framework by Sawada (1957) for the electron-gas
problem and was often referred to as the "quasiboson ap-
proximation" by nuclear physicists. The derivation of
the RPA as the small-oscillation limit of the time-
dependent Hartree-Fock (TDHF) equations (Thouless
and Valatin, 1962) made the bosonic interpretation of the
excitations particularly natural. In this review, we shall
encounter the same approximation several times within
the framework of a boson space. In this context, the
equivalence of this approximation to the standard prob-
lem of small oscillations in classical mechanics becomes
obvious.

It was Belyaev and Zelevinsky (1962) who actually
took the first major step in the development of boson ex-
pansions in nuclear physics, although similar concepts
had been invoked in isolated instances in solid-state phys-
ics (Blatt and Matsubara, 1958; Usui, 1960). Now, it was
already well known that the RPA gives corrections to the
nuclear mean-field approximations of the order of 1/0,
where Q measures the average shell capacity. Belyaev
and Zelevinsky proposed to carry this expansion to
higher orders by literally expanding fermion-pair opera-
tors as infinite series in boson polynomials, with
coefficients chosen so that the commutation rules of
fermion-pair operators [now well known to be equivalent
to the algebra of SO(2n) for a space of n single-particle
levels] would be satisfied order by order in the smallness
parameter. This means that their expansion is a true
Taylor series in this parameter. Belyaev and Zelevinsky
perturbatively calculated the next higher correction to
the RPA, equivalent to including cubic and quartic
anharmonic corrections to the harmonic RPA.

The seminal paper of Belyaev and Zelevinsky left
unanswered the essential question of the formal
justification for replacing fermion-pair operators with
infinite boson expansions. Is the mere fulfillment of the
commutator algebra equivalent to SO(2n) sufficient to
guarantee the equivalence of the boson and fermion sys-
tems? Of course, we now know that the answer to this
question is in general negative. It is also necessary to
demonstrate a correspondence of fermion to boson states
that preserves the matrix elements of the generators, i.e.,
that the boson space actually carries a full spinor repre-
sentation of SO(2n). The next major step was carried out
by Marumori and co-workers (Marumori, Yamamura,
and Tokunaga, 1964; Yamamura, 1965), who, taking a
hint from the earlier work of Usui (1960), attacked the
problem from the viewpoint of mapping state vectors,
relegating commutation rules to a secondary role. The
idea is extremely simple and can be described as follows.
Let &F be the finite-dimensional fermion Fock space
generated by creation and annihilation operators c;~,e;
corresponding to n single-particle levels, and let I ~p, ) J
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be any complete orthonormal basis for &F (in reality,
any well-defined subspace of S~, such as a collective sub-

space, could also be mapped). Also, let gji, be the boson
Fock space generated by creation and annihilation opera-
tors B,--,B; -, with one antisymmetric boson B,J BJ foI
each fermion pair c;"ct, and let [ ~p, ) I be an orthonormal
basis for the physical subspace of &z, defined as a sub-

space chosen to be in one-to-one correspondence with the
original shell-model space. That is, &~ is mapped injec-
tively into the physical subspace with the correspondence

lp;) (1.1)

Then for an arbitrary fermion operator A~,

A~= g A,, ~p, &(p, ~,

there is a corresponding boson operator A~ given by

Az= g A;J ~p;)(p, ~, (1.3)

Thus, in the formalism of Usui and Marumori et al. ,
the many-fermion problem can be neatly tucked away in
the finite-dimensional physical subspace of the ideal (bo-
son) space while the unphysical orthogonal complement
is annihilated. Moreover, it is clear that the physical sub-
space can be chosen arbitrarily as long as it has the same
dimension as the fermion space. (In fact, from the above,
it is clear that almost any system, not necessarily a fer-
mion one, can be mapped into a boson space. ) The trick,
of course, is to choose a physically useful mapping. Both
Usui and Marumori et al. elected to map an independent
fermion basis, with Usui choosing a corresponding boson
basis of simple boson product states with an ordering
convention for the indices, and the Marumori group
choosing a basis of antisymmetric boson states, which
has proven easier to work with. In both cases, the fer™
mion vacuum is mapped into the boson vacuum. Of
course, if one has prior insight into the correlations in the
system, it might be more profitable to map correlated
bases. Yamamura also extended the formalism to odd-
particle systems by appending the ideal odd-particle
(IOP) degree of freedom mentioned above. The main
characteristic of the IOP is that the physical vectors can
have at most one of them, since any pair of fermions
would be preempted by a boson. Yamamura chose the
IOP to obey fermion anticommutation rules, and vectors
having more than one of this species were relegated to

with the property

(p, ~w, ~p, )=(p, w, ip, )=w„.
Hence the mapping of state vectors (1.1) together with
the mapping of operators A~ —+A~ preserves all matrix
elements in the physical subspace. On the other hand, if

~
u) is any unphysica/ vector, i.e., a vector lying entirely in

the orthogonal complement of the physical subspace, it
immediately follows that

Aiiiu)=0 .

the unphysical subspace. However, there is another pos-
sible way to handle this degree of freedom, discussed
later in Sec. X, that makes use of IOP operators that do
not obey fermion anticommutation rules but automatical-
ly satisfy the condition that no more than one can exist.

Now the operator image (1.3) implicitly contains the
boson vacuum projector Po= ~0)(0~ in every term of the
sum. By using the well-known expression for this projec-
tor, namely,

Po =:exp —,
' g 8;J8;J. .

IJ

(:: is the normal-ordering symbol), one can develop the
operator image (1.3) as an infinite normal-ordered expan-
sion, called the Marumori expansion [in the case of odd-
particle systems, Po should be multiplied by (1 —6'),
where & is the IOP number operator]. A reader new to
this subject might expect at this point the pronounce-
ment that the expansions of Belyaev and Zelevinsky and
those of Marumori et al. are one and the same. In fact,
the expansions as we have defined them are diferent, but,
as we shall show later, there is an intimate connection.
At the time, however, this difference led to considerable
confusion. Although superficially similar, the expansion
of Belyaev and Zelevinsky has only linked intermediate
indices, while that of Marumori et al. also has unlinked
terms. The Marumori expansion has the property that,
for any finite truncation, there is always some subspace of
the physical subspace in which the exact fermion matrix
elements are preserved. In other words, with the restric-
tion to even fermion numbers for definiteness, as the
series is extended, this subspace enlarges to include states
with 1, 2, 3, etc. antisymmetric bosons, which reproduce
the matrix elements of the corresponding states with 2, 4,
6, etc. fermions. The truncated expansion of Belyaev and
Zelevinsky did not seem to have this property at all,
prompting Marumori et al. to assert that it violated the
Pauli principle and was thus inferior to their expansion.

Other works on boson expansions began to appear
within a few years. For example, Banville and Simard
(Simard, 1967, 1969a, 1969b; Banville and Simard, 1970a,
1970b, 1973; Simard and Banville, 1971, 1972) developed
an expansion similar to that of Marumori et al. , but util-
izing a different formal approach. They adopted the an-
tisymmetric physical subspace of Marumori and
Yamamura, including the IOP, introduced an ansatz for
the expansion of the image of a single-fermion creation or
annihilation operator in terms of boson and IOP's, and
determined certain of the coeKcients by sequentially
operating on the physical basis vectors starting with the
vacuum and requiring that all fermion matrix elements
be exactly preserved up to a certain number of fermions
(five was the maximum in practice). Undetermined
coefBcients were set equal to zero afterwards for the sake
of simplicity, which accounts for the differences between
the Marumori and Ban ville-Simard expansions. To
uniquely determine all coefticients, it is necessary to
specify the action of the operators in the whole ideal
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space, not just the physical subspace. This is done in the
Marumori expansion by requiring the strong condition
(1.5) that all unphysical vectors be annihilated. In the
Ban ville-Simard approach, the situation is reversed;
operator coefficients not determined by the action in the
physical subspace are arbitrarily set equal to zero, which
effectively determines the action in the unphysical sub-
space. One does not really care about the latter as long
as the physical subspace is invariant under the operator
images, which is certainly the case for both the Maru-
mori and the Banville-Simard expansions. Banville and
Simard utilized their expansions to show that particle
and quasiparticle shell-model calculations could be repro-
duced, which is not surprising in view of the construc-
tion. This could just as well have been done using the
Marumori expansion, or, for that matter, without boson
mappings at all, although Banville and Simard seemed to
imply some technical advantages using the boson ap-
proach.

At about the same time, an ambitious, calculationally
oriented program utilizing boson expansions was initiat-
ed by Sorensen (1966a, 1966b, 1967, 1968a, 1968b, 1969,
1970a, 1970b, 1971, 1973; Broglia and Sorensen, 1968).
Sorensen's aim was not to reproduce shell-model calcula-
tions, for which bosons were not really needed, but to
calculate the properties of collective states by diagonaliz-
ing the Hamiltonian in a sizable multiboson basis. He ex-
pressed the view that the rigorous order-by order Pauli-
principle constraints satisfied by the Marumori expansion
made its practical convergence too slow. On the other
hand, the Belyaev-Zelevinsky expansion was designed to
calculate small anharmonic corrections to the RPA,
whereas Sorensen was interested in soft nuclei with large
anharmonicities. For these reasons, he introduced a new
expansion that was designed, like that of Belyaev and
Zelevinsky, to satisfy the SO(2n) algebra of fermion-pair
operators, with no explicit consideration being given to
the underlying mapping of state vectors. The chief inno-
vation in Sorensen's mapping compared to that of Be-
lyaev and Zelevinsky was the addition of a constant term
to the boson images of fermion-scattering operators c;~c .
This constant, called yo, which was taken to be an adjust-
able parameter, was alleged to perform various useful
functions„ including speeding up convergence, introduc-
ing ground-state correlations from the outset, and
correcting for particle-number fluctuations introduced by
the Bardeen-Cooper-Schrieffer (BCS) quasiparticle repre-
sentation (Bardeen, Cooper, and Schrieffer, 1957). How-
ever, as shown many years later, the introduction of yo,
which is zero in the Belyaev-Zelevinsky expansion, to-
gether with certain other differences, may have the unfor-
tunate consequence that, in spite of fulfillment of the
algebra up to a certain order, no physical subspace exists
because there is no analog of a fermion vacuum state in
the ideal space (Marshalek, 1980b). While a rigorous
proof of such a catastrophe is dificult to give because of
ambiguities in Sorensen s definition of his expansion, it
can be demonstrated for certain reasonable choices of

those coefFicients left undefined by the commutation
rules. Even if there were an underlying physical sub-
space, no attempt was made in the diagonalization pro-
cedure to insure reasonable confinement of the wave
functions to the physical subspace. Thus, although
Sorensen introduced some interesting ideas, there is
reason for doubting the validity of his calculations.

The Era of Confusion with its diversity of disparate bo-
son expansions that followed the pioneering papers of Be-
lyaev and Zelevinsky and of Marumori et a/'. gave way to
the Era of Enlightenment (relatively speaking) and
unification in 1971. First, Marshalek (1971a) effectively
summed the Belyaev-Zelevinsky expansion by brute force
for the algebra of particle-hole operators of a system with
fixed-particle number, equivalent to U(n) for n single-
particle levels, and showed that a physical subspace
indeed existed and was just that of Marumori et a/. In
addition, it was shown that the Marumori operator (1.3)
is just the projection onto the physical subspace of the
corresponding infinite Belyaev-Zelevinsky expansion.
The latter is well defined only in the physical subspace,
but multiplication by the projector defines the resulting
Marumori operator in the unphysical subspace as well,
with the property (1.5). It was also remarked that the
summed form of the Belyaev-Zelevinsky expansion is
analogous to the well-known Holstein-Primakoff repre-
sentation of the SU(2) algebra (Holstein and Primakoff,
1940). The summation of the Belyaev-Zelevinsky expan-
sion into the Holstein-Primakoff form for the SU(2) case
had, in fact, been done earlier (Pang, Klein, and Dreizler,
1968). This paper also introduced both the Holstein-
Primakoff mapping and method into nuclear physics. ' It
failed to distinguish, however, between the Marumori
mapping and a normal-ordered form of the Belyaev-
Zelevinsky mapping.

All these points and more were made independently in
the paper of Janssen et al. (Janssen, Donau, Frauendorf,
and Jolos, 1971). In this tour de force, the authors started
with the mapping of Marumori et a/. for the general
SO(2n) case and showed that the image of a two-fermion
creation operator, for example, could be decomposed as
the product of an operator involving a formal square root
and the projector to the physical subspace. The former
operator was properly identified as the summation of the
series initiated by Belyaev and Zelevinsky and a direct
generalization of the Holstein-Primakoff expansion. In
addition, Janssen et a/. derived a finite boson mapping
that, unlike the Marumori mapping, did not preserve
Hermitian conjugation. They identified this as the

'The authors were saved the embarrassment of claiming a
fresh discovery twenty-eight years after the event by the good
fortune of communicating the results to their colleague, Henry
PrimakoA; prior to publication. It is somewhat surprising that
this mapping was completely overlooked by the earlier workers
in the field.
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SO(2n) generalization of the Dyson-Maleev mapping as-
sociated with SU(2) (Dyson, 1956; Maleev, 1958) used in

the theory of ferromagnetism. The authors showed that
this mapping is equivalent to the Marumori mapping, the
equivalence transformation being one that normalizes the
basis vectors for the physical subspace. Many other in-
teresting results were obtained as well, including the rela-
tion between the boson mapping method and the
generator-coordinate approach to collective motion.

From this point onward, the theory and application of
boson expansions developed more quickly and rationally.
The achieved unification was extended to systems with
odd particle number (Marshalek, 1974a, 1974b; Okubo,
1974b, 1974c) including a new form of the expansion
with an independent odd particle. It was also proven
(Marshalek and Weneser, 1970; Marshalek and
Holzwarth, 1972) that in the classical (c-number) limit
boson expansion theory reduces to the Hartree-
Bogoliubov approximation (Valatin, 1961), or, put anoth-
er way, the Hartree-Bogoliubov approximation can be re-
garded as a classical field theory, whose canonical quanti-
zation leads back to the exact many-body problem but in
the boson form. This connection was exploited to pro-
vide a heuristic justification of the self-consistent crank-
ing model (Marshalek and Weneser, 1970; Marshalek,
1971b). Another advance occurring during this time was
the adaptation of the Belyaev-Zelevinsky expansion for a
perturbative treatment of deformed (broken-symmetry)
systems (Marshalek and Weneser, 1969, 1970). We also
remark here that the expansion initiated by Belyaev and
Zelevinsky was first rechristened the generalized
Holstein-Primakoff (GHP) expansion and lately has been
often referred to as the Belyaev-Zelevinsky-Marshalek or
BZM method, unjustly omitting credit due Janssen
et al. , but seven-letter acronyms are awkward.

Many applications of boson mappings have been
developed in the past eighteen years. In addition to ap-
plications to instructive toy models there have been many
more serious applications. Most of these fall into one or
two broad categories. The first consists of perturbative
calculations using the BZM expansion, while the second,
which is more appropriate to soft anharmonic systems,
involves diagonalizations in a multiboson basis. The gen-
eralized Dyson-Maleev mappings have been especially
popular in recent years because the mapped operators are
finite expansions. There has been an increasing aware-
ness of the need to satisfy the Pauli principle. Very re-
cently, boson mean-field approximations have been
developed that are diA'erent from the familiar fermion
ones, such as the Hartree-Bogoliubov approximation,
and that incorporate more correlations. There is also a
growing interest in thermal boson expansions, but that is
still a Aedgling field. All of these developments will be
described in the review.

The successes of the phenomenological interacting bo-
son model (Iachello and Arima, 1987) in the past fifteen
years have greatly sparked the interest in boson map-
pings. While several attempts have been made in the past

ten years to derive the interacting boson model micro-
scopically from boson mappings, the problem is far from
settled. This is not surprising to the old-timers who re-
call the attempts to derive the old Copenhagen phenorne-
nology from a microscopic basis. In any case, many of
these developments are covered in our review.

The general interest in the theory of Lie groups
sparked by the interacting boson model has probably
been at least partially responsible for stimulating a more
group-theoretical approach to the derivation of boson
mappings in the past decade. This is quite natural in our
context, in which we are deriving boson realizations of
Lie algebras of operators, in whose enveloping algebra
are contained the Hamiltonian and transition operators
of interest. For the most part, we have adopted this
more modern Lie-algebraic viewpoint in our derivations
of boson mappings, but we believe we have done so in a
manner that requires only a modicum of technical exper-
tise. There has been a mutual feedback between practical
boson mappings and the formal theory of induced group
representations, and these developments are also briefly
discussecI.

B. Guide for the reader

Since we have not followed historical sequence in our
exposition, some remarks addressed more specifically to
organization are in order before finally allowing the re-
view to speak for itself. Our aim has been to provide a
complete work of reference, and therefore it is hardly
necessary that it be read linearly. In a general sense this
paper consist of three large subdivisions: the first part,
Secs. II—VIII, studies the simplest algebras, and it is here
that the reader not versed in the field may discover the
basic ideas and encounter illustrative applications, not all
devoid of physical interest; the second part, comprising
Secs. IX—XVIII, addresses the core subject, the realistic
description of collective motion in nuclei within the
framework of the nuclear shell model, and contains
derivations of all the relevant mappings and accounts of
all the major programs of application; in the third subdi-
vision, Secs. XIX—XXII, one finds a variety of relatively
recent and only partially developed ideas, representing
areas that call for further theoretical and practical ex-
ploration. We now turn to a somewhat more detailed ex-
position of the contents of these parts. A detailed sum-
mary of the results of this paper, organized somewhat
differently, can also be found in Sec. XXIII.

For pedagogical reasons, we have chosen to describe
the basic mapping ideas with the help of the simplest
algebras for which useful closed-form mappings are
known. This material, presented in Secs. II—VIII, runs
the gamut from the early work of Pang et al. (Pang,
Klein, and Dreizler, 1968), which first called attention to
the possible interest of studying such simplified models,
to a recent study of the quantized Bogoliubov-Valatin
transformation (Hahne and Klein, 1989), now understood
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as an alternative (see below) to the boson-fermion map-
pings approach that was developed historically and de-
scribed above. We see in these sections that semirealistic
and realistic applications have been possible with these
algebras, though application to the one fundamental
problem that originally stimulated interest in boson map-
pings in nuclear physics, the microscopic description of
nuclear vibrations and rotations using the full shell mod-
el, is not included. This problem is first attacked in Sec.
IX.

Before turning to this material, we interpose some re-
marks about the quantized Bogoliubov-Valatin transfor-
mation. In this approach, as now understood, one boson-
izes only a fraction of the pair degrees of freedom, for ex-
ample, those associated with a subalgebra of the full
shell-model algebra. The remaining degrees of freedom
are mapped as quasifermions, kinematically independent
of the bosons, whose modified algebraic properties have
to be established as part of the procedure. The original
fermions, which do not commute with the bosons, are
mapped in terms both of bosons and of quasifermions.
[For the case of SU(2), where the concept was first intro-
duced (Suzuki and Matsuyanagi, 1976), this mapping ap-
pears in the guise of an operator-valued Bogoliubov-
Valatin transformation, thus the origin of the name. ] Al-
together, the extension of the idea of the quantized
Bogoliubov-Valatin transformation is one of the main
new themes emphasized in this review (Klein and
Marshalek, 1988, 1989; Hahne and Klein, 1989; Klein
and Walet, 1990), of immediate interest mathematically
in the theory of group representations, and of ultimate
interest physically in providing a basis for the study of
the coupling between collective and individual degrees of
freedom.

Beginning with Sec. IX and running though Sec. XIII,
one finds an account of the main contributions of one of
the co-authors of this paper (E.R.M. ) and of related
work, including derivation of the BZM mapping for even
and for odd nuclei, classical limit, perturbative applica-
tion to vibrations, and the most recent work, formal com-
pletion of the Marshalek-Weneser program. The next
three sections, XIV—XVI, are concerned with programs
designed to study collective motion nonperturbatively
with the aid of boson mappings. In Sec. XIV we describe
such work as exists for doing dynamics exclusively in the
boson space. We then focus on the program of Tamura,
Kishimoto, and their associates in Sec. XV and follow
that by a discussion in Sec. XVI of the more recently
launched program for utilizing the generalized Dyson
mapping, by Takada and his collaborators. (See the sec-
tions named for the many publications of these authors. )

One other section, XVIII, is fully devoted to a critical re-
view of the attempts at a microscopic derivation of the
interacting boson models.

The remaining sections are primarily but not exclusive-
ly devoted to interests developed during the past decade
by the other author of this review (A.K.) and his colla-
borators. Thus Sec. XVII contains an account of

symmetry-conserving mappings of possible interest in
connection with derivations of the interacting boson
model. In Sec. XIX we discuss the concept of the vector
coherent state and its applications, not so much on its
own merits, but rather to emphasize that the algebraic
techniques used throughout the review to present modern
derivations of even classical results are equivalent in
power to what can be achieved through this technique.
A second goal of this section has already been em-
phasized above in the discussion of the quantized
Bogoliubov-Valatin transformation.

The final three sections are accounts of programs in an
early stage of development: Sec. XX on the idea of quan-
tum coherent states as the basis for a fully quantum
theory of coHective motion, Sec. XXI on boson mappings
and large-amplitude collective motion, and Sec. XXII on
thermal boson mappings.

C. Apologia

The authors set out to write an exhaustive scholarly
account of a subfield of theoretical nuclear physics that is
more than a quarter of a century old. We have touched
many bases, but we have also omitted some topics that
other authors might have included. In making such
difticult choices, we have been guided by the thought that
our subject was the theory and application of boson map-
pings of Lie algebras that arise in the nuclear shell model.
We are aware of at least five principal omissions made in
conformity with this criterion. There is first of all the ex-
tensive literature on the development of the phenomenol-
ogy associated with the Bohr-Mottelson program. [See,
for example, Bohr and Mottelson (1975) and Eisenberg
and Greiner (1970). Also belonging to this category is a
phenomenological boson coherent-state model such as
that developed most extensively by Raduta and his asso-
ciates, reviewed by Raduta (1987).] Second, we have
omitted the purely phenomenological aspects of the in-
teracting boson model (Iachello and Arima, 1987; Bonat-
sos, 1988). Third, we have not included the work of Ku-
mar and Baranger (1967, 1968) and Kumar (1983, 1984).
Though bosons enters this microscopic theory of collec-
tive motion in a way related to the considerations
developed in Sec. XXI, our reason for omitting this sub-
ject is that it has been well reviewed in the standard texts
and in the cited work of Kumar. Fourth, we have not
discussed the Sp(6,R) collective model, which involves a
noncompact Lie algebra in an essential way; though this
work stimulated the discoveries concerned with the vec-
tor coherent-state method, until recently, bosons map-
pings have not played an essential role in the working out
of the physics. Furthermore a good review exists (Rowe,
1985). Fifth, we have chosen not to give an account of
the ingenious mapping method of Wu and Feng because
it is sui generis and does not fit naturally into our ac-
count. Again these authors are the best source for review
(Wu and Feng, 1981, 1982).
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Another limit set on this work, made with considerable
regret, was not to venture beyond the borders of our mu-
tual expertise in nuclear physics, and thus to omit work
on boson mapping stimulated by other many-body prob-
lems.

A word about style and notation. We have tried to be
reasonably consistent in our notation for fermion opera-
tors, fermion pair operators, generators of an algebra, bo-
sons, bras, and kets. Nevertheless, it was too dificult to
completely homogenize the notation of material taken
from so many diverse sources and styles. In extreme (but
rare) instances, we have even changed notation within a
given major section.

I I. MAP P lNG METHODS
FOR THE Al GEBRA SU(2)

A. Holstein-Primakoff mapping

&n+1IJ+ ln & =[(n+1)(2j—n)]'" . (2.7)

One recognizes immediately that Eqs. (2.6) and (2.7) are
the matrix elements of the boson operators
b, b ([b,bt]=1),

(Jo)ii = —j+ blab, (2.8)

(2.9)

acting on a subspace of the infinite boson Fock space
with basis

(2.10)

The form of Eq. (2.9) reminds us that it is defined only
in the subspace n ~ 2j, the physical subspace as previous-
ly defined. With this understanding, Eqs. (2.8)—(2.10)
provide us with all the irreps of SU(2). Let us indeed re-
mark that within the allowed subspace Eqs. (2.8) and
(2.9) can be inverted. The formula

In this section, we study realizations of the Lie algebra
SU(2) in terms of boson operators, i.e., operators obeying
the Heisenberg-Weyl algebra. An irreducible representa-
tion (irrep) of the corresponding group is then carried by
a subspace of the boson Pock space called the physical
subspace. Subspaces orthogonal to the physical subspace
that do not carry irreps are called unphysical.

The reason for choosing to study elementary algebras
first and, in particular, SU(2) is that it allows us to exhibit
in a relatively short span almost all of the mathematical
techniques that will be used or alluded to throughout this
review. It will also permit us to illustrate in succeeding
sections a wide variety of applications, though admitted-
ly some are only illustrative of the concepts entering into
realistic physical applications.

Thus we consider the usual SU(2) generators
J+ = (J ) and J, satisfying the commutation relations

(2.11)

converts Eq. (2.9) to the standard form of the basis vec-
tors for the representation j, including the correct nor-
malization factors. In Eq. (2.11) b is to be understood as
an operator that obeys boson commutation relations
within the limited vector space of an irrep of SU(2).
Within this space it is a well-defined operator. We shall
later exhibit similar operators for some more complicated
algebras.

The formulas (2.8)—(2.10) were first applied to a nuclear
physics model by Pang, Klein, and Dreizler (1968).
Marshalek (1971a) suggested that a refinement was neces-
sary to avoid errors when carrying out further manipula-
tions with Eqs. (2.8) and (2.9): Let p=+ or 0, let P be
the projection operator onto the physical subspace, and
let I be the unit operator. Then

[J+,J ]=2JO,

[JO,J+]=+J+ .

(2.1)

(2.2)

2l oo

P = y ln)(nl =I— y ln)(nl .
n =2j+1

(2.12)

The progenitor of boson mappings is the Holstein-
Primakoff mapping (Holstein and Primakoff, 1940; Pang,
Klein, and Dreizler, 1968). Here one examines the non-
vanishing representation matrices in the space of states
lj, m &,

—j&m & j,
& j,mlJ, lj, m &=m,

&j,m+IIJ+ Ij, m &=[(j—m)(j+m+1)]'",
(2.3)

(2.4)

I = j+pl (2.5)

Thus Eqs. (2.3) and (2.4) become, in an obvious notation
that suppresses the eigenvalue j,

(2.6)

and notices, first, that one can map the sequence of in-

tegers or half integers m onto a set of non-negative in-

tegers n, 0 ~ n ~ 2j, by the displacement

It follows that the operators

(J„)ii=P.(J„)iiP (2.13)

have the same matrix elements as (J„)ii in the physical
subspace and that they annihilate the unphysical sub-
space. [Actually the projection operator on the left may
be removed, for a very fundamental reason: The (J„)z
leave the physical subspace invariant. ]

The introduction of Eqs. (2.12) and (2.13) may appear
pedantic as long as we work directly with Eqs.
(2.8)—(2.10) where the separation between physical and
unphysical is obvious. On the other hand, under one of
at least two circumstances the caution entailed in the in-
troduction of Eqs. (2.12) and (2.13) is fully warranted.
The first of these, which will be encountered imminently,
occurs when we try to expand Eq. (2.9) in powers of
(b b/j) and thus lose sight of the branch point of the
operators (J+)ii. The second, to be encountered later,
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/n &~ln), (2.14)

where the angular bracket refers to the basis constructed
directly from the raising operators J+ acting on the state
with Jo= —j. In the literature of nuclear physics, Eq.
(2.14) is usually replaced by the more explicit

occurs when we mix the physical and unphysical sub-
spaces by a unitary transformation dictated by the phys-
ics of the particular Hamiltonian under consideration.

We shall indicate the mapping involved in Eqs.
(2.8)—(2.10) by the notation

where

ck= g ( —1)" ~(2j+p)' /p!(k —p)!,
p=0

with pI, =k for k ~ 2j, pI, =2j f«k ~ 2j, and

(I )
—g d (bt)kbk

k=0

dk= g ( —1)" ~(p —j)/p!(k —p)! .
p=0

(2.23)

(2.24)

(2.15)

where F refers to the ferrnion and 8 to the boson space.

B. Marumori, Yamamura, and Tokunaga mapping

2JG= g &n/G/ n&/ )n(n'/,
n, n'

(2.16)

is replaced under the mapping (2.14) by its boson image
G~,

2J
G = y (n[G[n')l )(nn'l .

n, n'

It is clear that

(2.17)

Before attention was called to the Holstein-PrimakoIt
mapping, two dial'erent methods already had currency in
nuclear physics. %'e shall discuss them in reverse histori-
cal order. In the method of Marumori, Yamamura, and
Tokunaga (1964; Marumori, Yamamura, Tokunaga, and
Takada, 1964; Yamamura, 1965), as applied to SU(2), the
formula for the generator or any function G of the gen-
erators,

In the early literature (Pang, Klein, and Dreizler, 1968;
Kleber, 1969) one encounters the normal-ordered
Holstein-PrimakofF mapping misidentified as the
Marumori- Yamamura-Tokunaga mapping. In the form-
er, Eqs. (2.22) and (2.23) remain valid except that now the
coef5cients ck are defined by the condition pj, =k for all
k, and Eq. (2.24) is replaced by Eq. (2.8). With this new
definition of the coefficients in Eq. (2.23), one observes
that they become imaginary for k &2j. Such terms con-
tribute, however, only if spurious basis states intervene in
a calculation. For the examples quoted in the next two
sections, the admixture of unphysical states is sufficiently
small that for all intents and purposes the results for the
two mappings are almost the same. In any event, in any
approximation, the Marumori- Yamamura- Tokunaga
mapping also strictly loses its salient property of fully ex-
cluding the spurious subspace.

The difI'erence between the two mappings suggests
another possibility that has not been investigated in any
systematic manner. Let ~p) be a member state of the un-
physical space. Then if we replace Eq. (2.17)

G =G + g Ic„„~p)(n~+c„„~n&(@~I

& nlG/n'& =(n/G~ /n') (2.18) + pc„„,~p&&p'!, (2.25)

l0)(0~ =:exp( bb):, — (2.21)

where the customary notation for normal ordering has
been utilized. In the present case when Eq. (2.21) is ex-

panded, the generators can be shown to take the forms

(J+)ii=b g c„(b )"(b)",
k=0

(2.22)

and that all matrix elements of Gz that couple to unphys-
ical states vanish. Formally, Eq. (2.17) may be written as

G~ = UGU (2.19)

where U is the operator
2J

(2.20)
n=0

We shall henceforth refer to Eq. (2.20) as the Marumori
operator. It is a unitary version of an operator previous-

ly studied by Usui (1960). Given the basis (2.10), U can
be constructed explicitly, provided one utilizes the easily
verified expression for the boson projector ~0)(0l,

Gz is completely equivalent to Gz in its actions on the
physical subspace, but is no longer so if approximations
are made. Can one invent criteria for choosing the
coefficients in Eq. (2.25) that will improve the approxima-
tion to a prescribed order?

C. Method of Belyaev and Zelevinsky

The introduction of bosons into nuclear physics (as a
microscopic concept) dates back to Belyaev and Zelevin-

sky (1962). Though it is simplest to describe their
method within the context of the SU(2) algebra, we shall
attempt to do so in a manner that lends itself to easy gen-
eralization for more complicated algebras. %'e should
also remark that Belyaev and Zelevinsky (BZ) did not
present their method in the spirit of group theory, nor
did they make any attempt to sum the full expansions as
will be done later. Let us then consider an irrep of a Lie
algebra. Generally speaking, the generators can be divid-
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ed into three sets: The raising operators [J+ for SU(2)]
that are used to construct the basis by operating on a
reference state ("state of maximum weight" ); the lower-
ing operators (J ) that construct the dual basis; and the
remaining generators (Jo ) that contain as a subset (JD)
diagonal operators whose eigenvalues are, up to a dis-
placement, the non-negative integers (Gilmore, 1974;
Wybourne, 1974). (A more precise separation into sets
will be found in Sec. XIX in connection with the concept
of the vector coherent state. ) For each raising operator,
we introduce a boson creation operator b, which in the
simplest case has the same selection rules with respect to
the chosen basis as the raising operator. Under these
conditions the diagonal operators, such as Jo, are linear
in the boson number operators and can be written down
by inspection. Here we regard Eq. (2.8) as a part of the
mapping that is given to us, or rather forced on us by the
consideration above. Turning to the form of J+, one sees
that it can only be a function of boson operators with the
same selection rule as b, which restricts us to operators
of the form b multiplied by any function of b~b. In the
original BZ method, J+ is taken in the form

(J+ )s = g c„bt(btb)",
n=0

(2.26)

(2.27)

(J+ )~ = (J )s =b f ( b b ) =b f ( R). '

With the help of the relations

b f (n )=f (O—I)bt, '

f (n )b =bf (6' —1),

(2.28)

(2.30)

the commutation relation (2.1) can be evaluated in closed

which satisfies our requirement in series form. The un-
known coe%cients c„are to be determined from the com-
mutation relations (2.1) and (2.2) "order by order. " Let
us examine what this means.

First, the choices already made for Jo and J+ satisfy
Eq. (2.2), so that only Eq. (2.1) need be studied. Without
evaluating the commutator in detail, we see that the re-
sult of commuting J+ with J is a power series in (b b),
whose coeScients are equated power by power with the
corresponding coe%cients of 2Jo. While in the present
example each power of (b b) is divided by j, the deter-
mination of the coe%cients t.", is not formally dependent
on the presence of an obvious small parameter, though
the domain of convergence of the resulting series surely
is. In any event, the coefTicients discovered are precisely
those which encourage the summation of the series to the
form of Eq. (2.9). Thus the BZ method provides the ex-
panded form of the Holstein-Primakoff mapping.

This suggests the development of a modified version of
the BZ argument that will lead directly to the summed
form, an argument that will furthermore prove its value
for more elaborate algebras. Our previous reasoning as-
sured us that (J+ )s can be chosen in the form

form, yielding the difference equation

nf (n —1)—(8'+1)f (n)=2(R' —j), (2.31)

with the expected solution

f (6)=(2j —n)'~ (2.32)

We have thus regained the results of the original
Holstein-Primakoff mapping and all that is thereby im-
plied, including the mapping of states (2.14) or (2.15).

Let us nevertheless examine this last point with some
care. The mapping of the original states

where

(j —m)!
2j!(j+I)!

)j+m (2.34)

D. Dyson-Maleev mapping

So far we have dealt with mappings that preserve the
orthonormality of the bases and also thereby preserve the
formal relation (J+) =J . We consider next a map-
ping, the Dyson-Maleev mapping (Dyson, 1956; Maleev,
1958), that does not preserve the orthonormality. In ac-
cordance with custom we shaH call it the Dyson mapping
or, when extended to other algebras, the generalized
Dyson mapping. The motivation for seeking such a map-
ping was to avoid the convergence questions associated
with the expansion of square-root operators. This
motivation also applies to nuclear problems, and there-
fore the Dyson mapping has attracted increasing atten-
tion here as well. In Sec. XVI we shall describe what has
been accomplished in a practical sense by the use of this
mapping. Here we shall be concerned only with the for-
mal aspects of the mapping —with its direct derivation
and with its status as an intermediate step in obtaining
unitary mappings.

There are essentially two ways of deriving the Dyson
mapping, either algebraically or as a realization of the
algebra in the space of coherent states.

Let us consider the algebraic approach erst. The argu-
ment is very much the same as for the BZ method. We
introduce the bosons b and b~ and choose Jo diagonal as
in Eq. (2.8),

may be summarized in two steps: (i) vacuum maps to
vacuum, ~0& —+~0) and (ii) P (J+ ) —+P ((J+ )s). The
result of these steps in the present example is that the re-
sulting boson basis is Eq. (2.10). However, the two steps
just given and the corresponding steps for the dual space,
where these are distinct, always apply when we deter-
mine the mapping by the algebraic requirement that the
commutation relations be preserved. This will prove a
useful formulation when we turn below to nonunitary
mappings, where the precise forms of the mapped states
is not so obvious.
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(Jp)D= —j+b b ~ (2.35)

(Diagonal operators remain diagonal under the map-
ping. ) We also insist that J+ and J have the selection
rules as previously understood, but we no longer insist
that they be formal Hermitian conjugates in the mapped
space. Thus we generalize Eq. (2.28) to

(2.36)

(2.37)

(2.43)

lz &
=e' 'lo&, (2.44)

and defines a mapping from the space of states lF& to a
space f (z) of holomorphic functions of the complex vari-
able z. The state (ol satisfies

contains the dual of the un-normalized coherent state of
SU(2) (Gilmore, 1972; Perelomov, 1972, 1977),

forms that are guaranteed to satisfy Eq. (2.2) for arbitrary
f+. (We return below to a discussion of the meaning of
such a step. ) The commutation relation (2.1) then re-
places Eq. (2.32) by the condition

f+(R')f (6)=2j —8'

and shows that we have some freedom in the choice of
the functions in Eqs. (2.36) and (2.37). The Dyson map-
ping corresponds to choosing either f+ or f equal to
unity. We make the conventional choice f = 1. Thus

&olJ, = —1&ol,

(olJ+ ——o .

The mappings

(zl J lF & =(d/dz)f (z),

(zlJplF & =( —j+z(dldz))f (z),

(zl J+ lF & =z(2j —z(d ldz) }f(z)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

f+ (n) = (2j bb) .— (2.39) are special cases of the formula, valid for a general opera-
tor 8,

It follows from the state mapping rules reviewed after
Eqs. (2.33) and (2.34) that the basis of right vectors &zl@IF&=&ole' Ge

' e' F&,

I n)D =y„((J+ )g) ) lo) (2.40) =&0IIe+ [J,0]+ Ie' lF &, (2.50)

consists still of orthogonal states, which are, however, no
longer normalized, but rather have unit overlap with a
corresponding member of the left or dual bases (dis-
tinguished by a bar)

(2.41)

We now face more squarely the question of whether we
have the right to give up the formal relation J+ =(J)
Isn't this relation a part of the definition of the algebra?
The answer is that it is, as long as we insist on a unitary
representation, but it is lost if we go over to a nonunitary
representation, which we can certainly do without losing
the property of having a representation. The loss of uni-

tarity is related, of course, to the lack of normalization of
the basis vectors Eq. (2.40). We do maintain the Hermi-
tian conjugation property for matrix elements in the
sense

D(n 'l(J+

)kiln�

)I, =D(n l(J )Dln'}D (2.42)

which is the mapped version of the corresponding state-
ment in a unitary basis. This elementary point will play
an essential role when we consider applications in Sec.
XVI.

We turn next to a very brief exposition of the use of
generalized coherent states. To obtain equivalent results
from the viewpoint of coherent states, let lF & be an arbi-
trary state vector defined on the space of the irrep of
SU(2) with angular momentum j, i.e., it is a linear com-
bination of the states

l j,m &. The formula

that simplifies by persistent application of the commuta-
tion relations and of Eqs. (2.45) and (2.46). But these
equations are immediately identified with the set
(2.35)—(2.39) when we notice that the mapping

b ~z,
b ~(d Idz)

(2.51a)

(2.51b)

E. Unitarization of the Dyson mapping

For the present we consider the Dyson mapping as an
intermediate stage in the problem of producing a unitary
mapping. We thus seek to unitarize the mapping. This
can be done with the help of a similarity transformation
S, with the properties

S(Jp)DS =(Jp )~

S(J+)DS =(J+)g,
(2.52)

(2.53)

where we require (since it is already Hermitian)

(Jp)g =(Jp)D (2.54)

is a. valid realization of the boson commutation relations.
The use of coherent states to obtain the Dyson map-

ping has a long history in nuclear physics, though the
language and viewpoint utilized has often been that of
generator coordinates (Jancovici and Schiff, 1964; Brink
and Weiguny, 1968; Ui and Biedenharn, 1968; Hage-
Hassan and Lambert, 1972; Holzwarth, 1972; Dasso and
Klein, 1973).
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and

(J+)g=(J )~ .

From Eqs. (2.53) and (2.55), we derive

V '(J )D V=(J+ )D,

where

V=S S.

(2.55)

(2.56)

(2.57)

equivalent to the result of the next method.
(iv) The Marumori-Yamamura-Tokunaga method by

its very nature produces a mapping that annihilates the
unphysical sub space if carried to completion. It is
equivalent to the modified Holstein-PrimakofF result, Eq.
(2.13).

F. Schwinger mapping

From Eqs. (2.52) and (2.53), it follows that Vis the metric
tensor for the right vectors In)D,

D(nI VIn')D =5„„ (2.58)

V(n + 1)= V(n)(2j —n) (2.59)

Since Vis Hermitian and positive definite, there is no loss
of generality in identifying S with the square root of V,
i.e., we may take S to be real and symmetric.

To find S, observe that Eqs. (2.52) and (2.54) imply that
S commutes with Jo and is thus at most a function of
fi'=b b. Thus let us take the matrix element of Eq. (2.56)
between the (unitary) basis states (n I

and
I
n + 1). Substi-

tuting Eqs. (2.36)—(2.38) and noting that the matrix ele-
ment of b cancels from both sides, we derive

Two additional types of mappings of SU(2) will prove
of practical and theoretical interest. In one, a boson-
fermion mapping to be discussed in Sec. III.E, we utilize
the notion of SU(2) as a subalgebra of a shell-model alge-
bra and shall be interested as well in the mapping of
single-fermion operators that decompose into simple ten-
sor sets under the subalgebra. In the other, the famous
Schwinger mapping (Schwinger, 1965), we remain strictly
within the confines of SU(2) Ior U(2)]; we complete this
section with a discussion of this mapping.

The original derivation can be paraphrased as follows:
Consider two bosons b+, b+ such that b+ increases J, by
one-half and b decreases it by one-half (in units of vari).

It follows that possible allowed values of J, can be ex-
pressed as a difference of number operators

S (n + 1)=S(n)(2j n)— J,= ,'(b+b+ —bb )
—=

—,'(n+ —0 ) .

(2.60) Clearly also

(2.61)

When we apply this result to the appropriate nonvanish-
ing matrix element of Eq. (2.53) and repeat the argument
leading to Eq. (2.59), it is a simple exercise to regain the
Holstein-Primakoff formulas for (J+)ii. In eff'ect, Eq.
(2.60) reestablishes the normalization lost in the Dyson
mapping. This method will also find extensive use for
more general algebras.

To summarize thus far, we have presented at least four
distinct methods of boson mapping, all designed to yield
the same boson realization of a given irrep of SU(2):

(i) The Holstein-Primakoff method works directly from
the matrices representing the generators —in the excep-
tional case that these are available.

(ii) The BZ or commutator method determines the
mapping from restricted but essential information about
the basis, coupled with the application of the commuta-
tion relations. When it can be carried to completion, it
produces the same result as (i); in other cases the result is
an "approximation" to (i).

(iii) In a modified Holstein-Primakoff method, one first
obtains the nonunitary Dyson mapping and subsequently
unitarizes it. Again the result duplicates (i). The com-
mon feature of (i)—(iii) is that the mapping yields correct
results only when applied to the physical subspace of bo-
son states that are in one-to-one correspondence with the
finite-dimensional starting basis. When applied in the
unphysical space, the result is nonsense. This defect can
be avoided by surrounding the mapped operators with
suitable projection operators onto the physical subspace.
This modified Holstein-Primakoff result is then exactly

J+ =b+b, J =b b+, (2.62)

are unit raising and lowering operators. Furthermore it
is easily verified that Eqs. (2.61) and (2.62) satisfy the
SU(2) algebra.

But how do we select an irreducible representation?
Calculate J and find

J =
—,'N( —,'N+ 1), (2.63)

where

X=n+ +6' (2.64)

With n the eigenvalues of the operator (2.64), we there-
fore have

J =2n (2.65)

n+, n = n, m

=((b ) +(b ) &V n !Qn !)I0)
= ( ( b t+ )1+m( b t

)1 IV (j+m )!u'( j —m )!) I 0) .

(2.66)

The Schwinger mapping has so far found its main ap-
plication to nuclear physics in phenomenological models
(see Secs. V and VIII).

Equation (2.64) is an operator constraint in the space of
each irreducible representation. Finally the basic states
are
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III. APPLICATION TO THE LIPKIN MODEL.
A BOSON-FERMION MAPPING

A. Vibrations in the LMG model

0
Jo= —

—,'Q+ —,
' g (a a +1st P )

m=1
0 0

J+= gatP, J =J+= QP a

(3.1)

(3.2)

satisfy the SU(2) algebra [Eqs. (2.1) and (2.2)] if the fol-
lowing anticommutators are satisfied

In this section and in the succeeding two, we shall de-
scribe a number of illustrative applications and exten-
sions of the mappings derived in the previous section.
These applications involve mostly oversimplified shell
models, though applications to phenomenology will also
prove illuminating.

We start with the well-studied LMG or Lipkin model
(Lipkin, Meshkov, and Glick, 196S). As seen below, in
this model the SU(2) algebra is realized by bilinear forms
in single-particle fermion operators: Consider two levels,
each of degeneracy 0, separated by energy e; in the ab-
sence of interaction, Q particles fully occupy the lower
level. This state, designated ~0&, will be our reference,
and excitations will be measured relative to it. We intro-
duce fermion operators P,P, m = 1, . . . , Q that create
and annihilate holes in the lower level and a, a that
create and annihilate particles in the upper level. Thus
the coherent sums

(3.3)

other anticommutators vanishing. The reference state
~0& is defined by

a io&=p io&=0.

We study the Hamiltonian

(3.4)

H =eJD+ —,
' V(J+ +J ), (3.5)

II =—
—,'n+I 'I (3.6)

and thus a perfect harmonic spectrum of 0+1 states
(within the physical subspace). The first question to ask
is whether this b degree of freedom remains the natural
choice for describing the system as one turns up the value
of the interaction. We describe briefly an early investiga-
tion of Pang et al. devoted to this subject (Pang, Klein,
and Dreizler, 1968). This work exploited the normal-
ordered Holstein-Primakoff mapping [see the discussion
following Eq. (2.24)], which to fourth-order terms re-
places Eq. (3.5) by the expression

which belongs to the enveloping algebra of SU(2). This
means that we are describing a simplified shell model
with a high degree of symmetry, since the spectrum
decomposes into irreps of SU(2); our description above
implies, as is obvious from Eqs. (3.1) and (3.4), that the
ground-state "band" belongs to j =

—,'Q.
Indeed, for V=O, introducing the Holstein-Primakoff

mapping Eqs. (2.8) and (2.9) and choosing e= 1 (or in
units of e), one obtains

H = 'Q+b b—+——'5[1—Q ')' ((bt) +b )+—'5[1—Q ']' [[1—2Q ']' —l]((b ) b+b b ), (3.7)

where 5—= (QV/e) measures the size of the interaction.
In addition, there is the "parameter" (b b)/Q measuring
the ratio of anharmonic to harmonic interaction terms.
In the work cited, it was shown that, if one carried out a
linear Bogoliubov transformation (Bogoliubov, 1958) to a
new boson B~ according to the equations

b =c,B +c28 (3.8)

and chose c„c2 from the twin conditions of canonicity
and that the coescient of the "dangerous" terms
(B +B ) should vanish (equivalent to the random-phase
approximation), the resulting Hamiltonian, when diago-
nalized, correctly described the low-lying eigenstates for
6&0.9. In this regard, full fourth-order results were
markedly superior to the quadratic approximation (RPA
in the boson space) or even to approximate quartic re-
sults obtained by further expansion in 0 '. Numerical
results will not be illustrated here, but comparisons of
various approximations with exact results will be shown
for a related calculation in Sec. IV.A.

Our immediate interest resides mainly in the observa-
tion that the transformation (3.8) necessarily introduces
spurious components of the boson space into the treat-

b =b t=x /&2, if 5 & 0,
b =b =ix/&2, if 5)0, (3.9)

where x can be considered as the collective coordinate of
the system. We then find that Eq. (3.7) becomes a
potential-energy function dominated by an unstable quar-
tic interaction.

B. Phase transition

We turn next to the notion that the system under dis-
cussion undergoes a phase transition as a function of the

I

ment, even if we restrict the size of the original vector
space to the physical size. The numerical results indicate
that these components have little effect for the range of
parameters considered. The treatment breaks down as
5~1 for the completely different reason that the model
exhibits a phase transition: for larger values of 5 the ap-
proximation (3.7) develops an instability that no longer
rejects the behavior of the full Hamiltonian. This point
can be established by the substitution, sensible for large 6
and justified below,
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parameter 5. Though the idea of phase transitions in nu-
clear systems (for instance shape transitions) is widely un-
derstood in qualitative and approximately quantitative
terms, it has been rendered mathematically precise only
for certain simplified models, the simplest of which is the
one under discussion. In such models there is a degen-
eracy parameter D, which counts the number of single-
particle orbits and a total occupation number X of these
levels. By studying the limit X and D ~ &x, iV /D
remaining finite, as a function of the parameters that
occur in the Hamiltonian, we can derive rigorous con-
clusions concerning the possible phase transitions in such
models.

We now describe a method (Klein 1980a; Klein and
Vallieres, 1980; Klein, Li, and Vallieres, 1981), based on
the results of the previous section, that can be utilized,
not only to discuss phase transitions, but also to treat the
dynamics in each of the phases. We start by substituting
the Holstein-Primakoff mapping (2.8) and (2.9) into Eq.
(3.5), with the result (subscript B omitted)

H =@( ,'0+—b —b)+—,
' Vl [b (0 bb)'/ —

] +H. c.],

5) 1 has critical points at

x =+(1—5 (3.15)

In the latter case these points are equivalent minima
separated by a maximum at x=O, giving a symmetric
double well. This is the domain of large-amplitude col-
lective motion for this model. In the limit 0—+Do, the
system would have to reside in one or the other of these
minima, i.e., one would have calculated the transition to
a phase in which the reAection symmetry of the underly-
ing Hamiltonian [cf. Eq. (3.14)] has been broken.

The behavior just noted is one of the simplest rigorous
examples of a "nuclear" system exhibiting a phase transi-
tion. The most famous of nuclear shape transitions, from
spherical to quadrupole shape, retains reAection symme-
try, but tentative evidence for octupole shape transitions
in the actinides (Zylicz, 1986) may be an example of a
shape transition breaking reAection symmetry.

For the finite system, one can add the previously dis-
carded kinetic-energy (and zero-point energy) terms and
proceed to study the dynamics of each "phase. "

(3.10)

where H.c. stands for Hermitian conjugate. H now ap-
pears to be an explicit function of 0, the degeneracy pa-
rameter, and our task would seem to be straightforward,
but the matter is more subtle than that. To get at the
physics, let us introduce canonical variables x and p,
satisfying [x,p] =i, according to the standard definitions,

bt=2 1/2(Q1/2x, .
Q

—1/2p) (aild H. c. Eq. ) . (3.11)

Here the scale used has no absolute significance but is
simply convenient. The argument of the square root in
Eq. (3.10) becomes

n —-'nx' —-'p'yn+-' .2 2 2
(3.12)

u (x) =lim(b =b ~2 ' Q' x)H/Qe,
one finds the simple function

(3.13)

Now in the small-vibrations domain, previously studied,
one has b b —1 and equipartition between the x and p
contributions. This dictates that x —0 ', p —A'
which implies that the entire square root can be expand-
ed in powers of (b b I0). We thereby obtain (for 5 small
enough) a stable polynomial Hamiltonian describing
small oscillations about x =0, as previously studied.

As 5 increases, the frequency of this oscillation tends
to zero and the Hamiltonian passes to a new domain
where x —1 and p —1, which means that we can expand
only in powers of the last two terms of (3.12) rather than
the last three, as in the vibrational domain. Because the
leading term of this expansion yields a potential-energy
function that can "change shape" as a function of the pa-
rameter 6, it determines different phases. By defining

C. Transition-operator boson

A study, particularly of the "deformed" phase (5) 1),
was carried out previously for the LMG model using a
method related to that described, but obtained by rather
difFerent reasoning (Klein, 1972; Dreizler and Klein,
1973). Though the detailed results for the model are of
no current interest, this work contains a proposal of a bo-
son mapping which appears distinct from anything
presented in Sec. II. A rigorous connection with the
Holstein-Primakoff mapping will follow, but the "physi-
cal" argument leading to the result will be presented first.

For an attractive interaction V = —
l V, one can write

Eq. (3.5) as

H=e Jo —l V(J„—J ) . (3.16)

Thus for large lV~, the structure of Eq. (3.16) implies
that the energy can be minimized by maximizing (J ).
This suggests further that one look for a boson mapping
in which J -X, the "coordinate" with a large amplitude.
It is easily seen that the tentative choice

J =IVX, J = P, Jo= —A', — (3.17)

where A is a constant, will satisfy the commutation rela-
tion

[J„,Jy ] =iJo, (3.18)

but, to fully satisfy the commutation relations, this
choice must be complicated by adding to the operators in
Eq. (3.17) powers of P and X . One is soon led to the
ansatz

u (x)= —
—,'+ —,

'x' —
—,'5x'+ —,'5x', (3.14) J =

—,'A'[sinX, Q(P )], (3.19)

which always has a critical point at x=0 and which for J = —P, (3.20)
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J,= —
—,
' JVI cosX, Q( P )], (3 21) mula [cf. Eq. (2.5)]

which is certainly not unique, though the simple form of
Eq. (3.20) is suggested by the decreasing importance of J
and P at large

~
V~. The assumptions (3.19)—(3.21) satisfy

exactly all the commutation relations except that be-
tween Jo and J„,which must be used to determine g(P ).
This leads to the difference equation

(3.22)

m = ——'0+6'
2

and to change the definition of the vacuum state,

~
0) —

( cg)( i/2)Q
~
0)

It follows that

~n)=—~m)=(e) ~0)

(3.27a)

(3.27b)

(3.28)

(3.23)

For reasons that have been explained, the quantity X ap-
pearing in Eqs. (3.19)—(3.21) was termed the transition-
operator boson. An equivalent final form of the mapping
is quoted below in Eq. (3.29) and therefore an explicit
form for the operator P will not be given here.

In their account, Dreizler and Klein failed to em-
phasize the obvious fact that X and P above must be
angle-action variables rather than a Cartesian canonical
pair. These authors were interested in the physics of the
strong-coupling limit, as had been explained in a previous
communication (Klein, 1972). In this domain a semiclas-
sical approximation, in which X and P are treated as a
canonical pair, is valid, and the lack of mathematical
rigor in the appiication of the mapping had no practical
consequences. The oversight was gleefully corrected by
Okubo and Marshalek (Okubo, 1974a; Marshalek,
1976b). In the following new account, we show how to
transform the Holstein-Primakoff mapping into a map-
ping equivalent to Eqs. (3.19)—(3.21)

To transform the Holstein-Primakoff result, we define
an operator Vl by the formula

'iI=bt/'t/tn+1 . (3.24)

For any function f (R)of the numbe'r operator, we have,
clearly,

%f(8') =f(8—l )6' . ' (3.25)

If I is the unit operator, it follows from Eqs. (3.24) and
(3.25) that

'lit 'l/. =I,
Vl'V/' = 1 —Po,

(3.26a)

(3.26b)

where Po is the vacuum projector. Thus the operator %
is "not quite" unitary, and herein lies the need for some
care.

It is convenient at this junction to reintroduce the con-
ventional magnetic quantum number by means of the for-

where gi„=f((P+A, ) ). Equation (3.22) determines f up
to the scale JV; the latter is fixed by the one remaining
condition not yet imposed in the present development,
namely the value of the Casimir invariant. This gives the
equation

—,'N( —,'%+1)=P + ,'JV [2$—+2/(g,+g, )

If we substitute Eqs. (3.24) and (3.27a) into Eqs. (2.8) and
(2.9), with j =

—,'0, the results are

Jo=

J+ ='ll[( —,'0+m+1)( —,'0 —m )]'

(3.29a)

(3.29b)

Equations (3.29a) and (3.29b), acting on the basis (3.28),
constitute a simple, rigorous transformation of the
Holstein-Primakoff mapping. To implement the formula-
tions and to make contact with previous work, we go to a
representation first utilized by Nodvik (1969) and studied
further by Marshalek (1976b): we map the physical sub-
space to the 2j + 1 functions (p~ m), —m ~ p ~ m,

(P~m)= exp(imP) .I

2' (3.30)

It follows from the given formulas [except Eq. (3.26b), see
below], that on this space of states the operators ll andI are realized by the mappings

Vl~exp(ig),

m —& id/d—P .

(3.3 la)

(3.31b)

J+ =exp( —,'iP)[ —,'(Q +1) m]'~z—exp( —,'iP) . (3.29c)

Though all previous results have thus been found, the
mapping (3.31a) has at least one fault, in that it does not
satisfy Eq. (3.26b). However, this blemish can be re-
moved by replacing Eq. (3.31a) by the mapping

'M +(I P)eop(xi/) —.— (3.3 lc)

At first sight this would seem to lead to a violation of Eq.
(3.26a), but as long as exp(iP) acts first on any state in
the physical subspace, including the vacuum, the projec-
tor may be dropped since the result is orthogonal to the
vacuum, and thus (3.26a) is in fact satisfied. For the
same reason, the projector may be dropped from Eqs.
(3.29b) and (3.29c), and we regain the old results.

We refer the reader to the literature for further discus-
sion of the use of action-angle variables in quantum

Thus when Eq. (3.31) is substituted into (3.29), we obtain
operators that, acting on the periodic functions (3.30),
have the following desirable properties: they reproduce
the well-known angular momentum matrix elements with
which we began this review; they yield an equivalent of
the Klein-Dreizler form (3.19)—(3.21) (after a cyclic per-
mutation of axes); they can be transformed to the Nodvik
form for J+, namely,
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mechanics (Carruthers and Nieto, 1968; Moshinsky and
Seligman, 1978, 1979; Deenen, Moshinsky, and Seligman,
1980; Newton, 1980; Oliveira and Malta, 1984; Leacock
and Padget, 1987). In the material immediately following
we illustrate a semiclassical approximation without the
use of action-angle variables.

D. Semiclassical approximation

,' V(b b "+—b—b)+O(1/II) . (3.32)

The result, Eq. (3.22), leads under the transformation
(3.11) to a Schrodinger equation, albeit of fourth order in
the momenta as well as in the coordinates. This is no
hindrance, however, to treating it by the WKB approxi-
mation using Keller's method (Keller, 1958). Notice that

We have thus far indicated how to discuss the LMG
model in both the weak-coupling and the strong-coupling
limits with the help of boson mappings. There is one fur-
ther limit where, surprisingly, progress can be made.
This is the semiclassical limit (Klein and Li, 1981).
Referring to Eqs. (3.10) and (3.11), the semiclassical limit
corresponds to the domain of large x and large p. In
terms of the quantities defined in Eq. (3.11), we now have
x —1 and p -0, '~ . This means that in Eq. (3.12) only the
zero-point energy can be expanded compared to every-
thing else and the mathematical situation appears to be
hopeless. The special structure of the Hamiltonian (3.10)
together with Eqs. (2.29) and (2.30) allows us, however, to
approximate (3.10) by the following expression, which
correctly includes terms of order 0 and unity (i.e.,
sufficient to yield WKB accuracy) and is straightforward-
ly obtained:

II =e( —
—,
' f1+b b) + —,

' V [b the(Q b tb) + H—.c. j

the error of the Hamiltonian itself is beyond the WKB
order, since the first two orders in 0 ' are correctly in-
cluded (II ' here plays the role of A'). The impressive re-
sults found for %=30 are reproduced in Table I. Here
2J =X, and 5 was defined after Eq. (3.7). The levels are
symmetrical with respect to zero energy and therefore
only half are listed. For 6=5, we are well into the
strong-coupling region and thus the doublet structure of
the energy levels of a symmetric double well are clearly
in evidence.

E. Boson-quasifermion mapping

The model and the applications of it described above
are far too restricted to accord with reality. The Hamil-
tonian (3.5) describes a set of uncoupled bands. The ap-
plications described th.us far have all referred to the
ground-state band of the system with 0 particles, i.e., ex-
actly half the total single-particle degeneracy. this is the
prototype of a close-shell nucleus. We shall now turn to
the consideration of an extended description which sub-
sumes at once all the bands implied in the LMG model.
Moreover, this will enable us to describe the cases in
which several particles or holes are added to the closed
shell of the LMG model. The idea about to be described
was first proposed within the context of the theory of
pairing correlations (see the next section) by Suzuki and
Matsuyanagi, 1976; see also Geyer and Hahne, 1980a,
1983; Marshalek, 1981; Matsuyanagi, 1982) and termed
the "quantized Bogoliubov transformation. " (The reason
for this name will be explained in Sec. IV.E.) The devel-
opment that follows is isomorphic in physical content to
that given by Suzuki and Matsuyanagi. The derivation
will be distinct, however, in that they applied the
Marumori- Yamamura-Tokunaga method (to eventually

TABLE I. Negative energy eigenvalues (in units of e) of the Lipkin-Meshkov-Glick Hamiltonian for 6=0.6, 1, and 5 for J=15 com-

pared with the results of the WKB quantization. Prom Klein and Li, 1981.

6 =0.6

0
1

2
3
4

6
7
8

9
10
11
12
13
14
15

WKB

—15.100
—14.263
—13.382
—12.464
—11.S17
—10.543
—9.546
—8.531
—7.498
—6.452
—S.394
—4.3264
—3.2512
—2.1705
—1.0862

0.0000

—15.094
—14.258
—13.378
—12.461
—11~ 514
—10.540
—9.544
—8.529
—7.497
—6.451
—5.393
—4.3256
—3.2507
—2.1702
—1.0860

0.0000

—15.359
—14.808
—14.094
—13.275
—12.375
—11.411
—10.396
—9.337
—8.241
—7.116
—5.966
—4.796
—3.610
—2.4131
—1.2084

0.0000

Exact

15.314
—14.800
—14.087
—13.269
—12.370
—11.407
—10.392
—9.334
—8.239
—7.114
—5.964
—4.795
—3.609
—2.4125
—1.2081

0.0000

WKB

—38.025
—38.02S
—31.410
—31.410
—2S.388
—25 ~ 388
—20.047
—20.047
—15.704
—15.704
—12.805
—10.457
—7.955
—5.354
—2.691

0.000

Exact

—38.049
—28.049
—31.436
—31.436
—25.422
—25.419
—20.142
—20.0S3
—16.135
—15.244
—12.633
—10.466
—7.933
—5.348
—2.688

0.000
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extract a Holstein-PrimakoA' representation), whereas we
shall apply an algebraic technique based on satisfying the
commutation relations and passing through the in-
termediary of the Dyson mapping, a method we favor
frequently in this review.

Let us begin by generalizing the boson description of
the ground state given in Eqs. (2.8)—(2.11), where j =

—,
' Q.

The simplest class of excited states for X =0 are those
built on one hole in the lower level and one particle in the
upper one. In the fermion space such states have the
form

m m') =at Pt ~0) . (3.33)

We should like to carry out a mapping

m;m' —+ m;m' (3.34)

= —
—,'(0—2)+v; m, m '), (3.35)

i.e., the irrep has j=
—,'(0 —2) because the two orbits m

and m'

(mmmm'

or m =m') have been rendered inert and
(Jo),„=—,'(&—2).

There are two related conceptual problems that must
be solved before the program just described can be car-
ried out: (i) how to take into account our inability to
define an excited-state band for every state (3.33), since
according to Eq. (3.2), setting m = m

' and summing gen-
erates a state in the ground-state band and (ii) how to
realize the mapping (3.34). In this connection, recall that
the fermion operators, cx, etc. , do not commute with the
SU(2) generators. Indeed, one has

[a,JO]= —,'a, [P,JO]= —,'P (and H. c. Eqs. ),
(3.36)

[a,J+]=P, [P,J+)=—a (and H. c. Eqs. ) .

analogous to Eq. (2.14), for each m and m' and then con-
struct an irrep of SU(2) with Eq. (3.34) as a reference
state,

v;m;m')= —(b ) ~m;m')1

V.

=—~j =—'(0 —2) J

mions commute with the bosons. (iii) the states (3.38)
generate the correct number of linearly independent
two-quasiparticle bands and at the same time no linear
combination of these states belongs to the ground-state
band. This can be satisfied by the operator condition

gatbt =gb a =0. (3.40)

Operators satisfying such a constraint cannot be garden-
variety fermions but must satisfy a new algebra. Never-
theless, it is an interesting consequence of our approach
that the discovery of this algebra can be postponed until
the end of the considerations. The reason for this is the
following: we introduce a formal quasifermion number
operator & (the boson number in Sec. II will henceforth
be written gii ),

8'= g(a a +b b ), (3.41)

and assume that whatever the algebra of the quasifer-
mions, the very convenient relations

[a,n]=a, [b,n]=b (and H. c. Eqs. ) (3.42)

(Jo)D= J+B B, —

(J ) =0,' B,
(J ) =0 'i Bt[2J BtB]—

(3.43)

(3.44)

(3.45)

where the only difFerence compared to Sec. II, other
than the capitalization of the boson operators, is that the
value j of the angular momentum has been replaced by a
Hermitian operator

continue to hold, the same as for normal fermions. This
assumption will turn out to be a consistent one and is all
that one needs for most of the computations.

The most important further consequence of this as-
sumption is that the boson mappings of Sec. II are easily
generalized to boson-fermion mappings applicable not
only to the set of irreps associated with Eq. (3.38) but
with representations associated with any allowed set of
inert particles. Of the various mapping methods utilized
in Sec. II, we shall here follow the one of first obtaining
the generalized Dyson form and then unitarizing it. The
SU(2) mapping can be written

~m;m') =at b, ~0),

a ~0)=b ~0)=O.

(3.38)

(3.39)

(ii) The states (3.38) are all orthogonal to the ground-state
band. This is guaranteed by requiring that the quasifer-

It also follows that these fermion operators do not com-
mute with the bosons.

As we shall show, the above requirements can be
satisfied by replacing the given fermions by a set of ideal
(quasi)fermions, a ~a, P ~b, whose properties
must include the following: (i) The mapping (3.34) is
realized by the equations

(3.46)

which commutes with the bosons and becomes a c-
number with the correct value of the angular momentum
in any irrep in which the states are formed as has been
described. From Eq. (3.42) it follows that

[J,at ]=—
—,'at, [J,bt ]= ,'bt——

(and H. c. Eqs. ) . (3.47)

To describe interband transitions, we must also map
operators other than the SU(2) generators and, in partic-
ular, the single-fermion operators. Here we must recog-
nize a property of the quasifermions that distinguishes
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(a. ) =a. +&nf(e)b.'B,
(P )p=b —&Qg(&)a B .

(3.48)

(3.49)

Here an overall scale factor has been chosen by requiring
the fermion and quasifermion operators to coincide in
the absence of bosons. That f and g must be independent
of the boson number operator follows from Eqs. (3.44),
(3.36), and (3.37). The commutation relations (3.37) then
provide the following representations:

them from the fermions. The latter can change the angu-
lar momentum by +—,

' unit. However, according to Eq.
(3.47), a and b can only decrease the angular momen-
turn by —,

' unit each, while a, b accomplish the corre-
sponding increase. Thus even if we dictate, by analogy
with Eq. (3.44), that a and p carry the simplest possi-
ble operator structure, the minimum number of terms is
two, each of which must separately satisfy Eq. (3.36). We
write

Surprisingly, the derivation has been carried through
without allusion to Eq. (3.40). The latter does play a role,
however, in the verification of the consistency require-
ment that when we form the SU(2) generators from Eqs.
(3.58) —(3.61) we thereby recover the mapping
(3.43)—(3.45).

The last step in the technical development is the uni-
tarization of the mapping (3.43) —(3.45) and (3.58)—(3.61).
The algebraic technique, to be exhibited in sufhcient de-
tail below, will again prove a model for much of our later
work. Let us first consider Eqs. (3.43)—(3.45). We utilize
the technique of the S operator introduced in Eq. (2.52)
and sequel. This first of all requires

S(JO)pS '=(Jo)g=(JO)p, (3.62)

so that S commutes with (Jo )p and is thus a function of
X~ and n only. Next come the same steps as carried out
in Eqs. (2.56) —(2.59), which need not be repeated. The
result is

(~z )p=(2J+1 Nii)ga —+f4 '~ b B

(P )p =(2J+1 Nii)fb ——0 ' a B

(3.50)

(3.51)
is

(J+ )~=(J }~=B }/ 2J N~ . — (3.63)

Turning to Eqs. (3.58)—(3.61), the analog of Eq. (2.56)

We now assert that
V '(a )p V=(a )p, (3.64)

f(n)=g(&)=(Q —n+1) '=(2J+1) (3.52)

This follows from the requirements

(P P )o=(b b )o,

(a a )o=(a a }o,

(3.53)

(3.54)

[a,bt }=f(&)b a

[a,at ~ ] =5,„—f (R')b b

[b,b, ) =o, f (n )a a— (3.56)

(3.57)

The remaining anticommutators, except for the Hermi-
tian conjugate of Eq. (3.55), all vanish.

We can summarize the results found for the "singles"
by the mapping equations

(a )p=a +O' B(2J+1) 'b

(P )p=b f}.'i B(2J+1) 'a—

(u )p =(2J+ 1 Nz )(2J+ 1) 'a" —+0 '~2Btb

(3.58)

(3.59)

(3.60)

(P ) =(2J+1—N~)(2J+1) 'bi —fl ' Bta

where the notation designates the subspace with no bo-
sons present. These requirements follow from the struc-
ture of the basis states, of which Eq. (3.38) is an example,
plus the commutation relations (3.42). It is then straight-
forward to verify that the fermion anticommutation rela-
tions are satisfied provided the quasifermion operators
satisfy the "anomalous" anticommutators

which leads directly to the equations

S '(Nii, n +I) S(Ai,in)='[(2J —N~)/2J]'

S '( Nz +l, n —1)S(N&,n)=[(2J+ I)/0]'~

(3.65)

(3.66)

To use these relations, we write the direct mapping con-
ditions, for example,

S(a )pS '=(a )ii,
S(iz )pS '=(a )ii =(a )~

(3.67)

(3.68)

These equations imply both Eq. (3.64), already exploited,
and the determining relation

S '(a )pS=(a )~=/, a +B b (3.69)

P, = [(2J+ 1 —Nii )/(2J+ I ]'i~,

P =(2J+1)

(3.70)

(3.71)

and

(~z )g =[(2J+1 Nii/(2J+1)]'~ a—t

+B b (2J+1)

(P )g = [(2J+ 1 N~ )/(2J+ 1)]' ~b—t

—B a (2J+1)

(3.72)

(3.73)

where the assumption of the form of Eq. (3.69) reilects
again the fact that, there are only two independent ten-
sors that contribute, or equivalently the two independent
matrix elements (3.65) and (3.66). Utilizing these latter
conditions, we determine
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Applications of this formalism will be given in the next
section.

IV. APPLICATION OF SU(2) MAPPINGS
TO PAlRING PROBLEM

A. Pairing vibrations

picture to describe these processes. To answer this ques-
tion, Kleber carried out a normal-ordered Holstein-
Primakoft'mapping for each SU(2) [see the discussion fol-
lowing Eq. (2.24) for a definition of this mapping and its
limitations]. It is thus unnecessary to repeat the details
of this mapping except for one important change. For
index 2, the mapping is as before, i.e., J2+ ~b2, and

The Lipkin model discussed in the previous section
may be considered to be a (not very realistic) model of a
monopole excitation or other giant resonance at closed
shells. Somewhat more realistic applications of the SU(2)
mappings may be made by consideration of the pairing
interaction. The most important application, to nuclear
superconductivity, will be taken up in Sec. IV.C and
sequels. The most direct application is to what are
dubbed pairing vibrations, which we shall consider first.
For our purposes it is convenient to follow the schematic
account of Kleber (1969). For a more exhaustive treat-
ment of the theory and comparison with experiment, see
Broglia and Sorensen (1968); Jolos (1969, 1971);Sorensen
(1969);Jolos, Donau, Kartavenko, and Janssen (1973).

For simplicity, consider a two-level model (Hogaasen-
Feldman, 1961)with pairing force interaction

2

H =e,N, +e2N2 —G (4.1)

where G ~ 0, ei (e2, and both levels are assumed to have
the same degeneracy 20=2j+ 1. The operators N; and
3; are defined in terms of the individual fermion opera-
tors, 0.;

N;=pa; a;

A; =(A;)t= g ( —1)' at at
m)0

(4.2)

The phase factor ( —1)J is proportional to the
Clebsch-Gordan coefficient for coupling the two-fermion
creation operators to angular momentum zero. The
product ( —1)~ a; also creates the time-reversed or-
bit to a; . (The association of operators with time-
reversed orbits continues to be the appropriate method
for describing pairing for nonspherical systems. )

For each value of i, we have an SU(2) algebra with the
identification J;+= A, , J;o= —T'(Q; —N;). We confine
ourselves to a particle number X =2Q simulating a
closed-shell nucleus like Pb. The ground state in the
absence of interaction would be

~0& =(0!) ' (At) ~vac& (4.3)

i.e., a state with the first level fully occupied. The pro-
cesses of interest to us are those in which we add a pair of
particles coupled to angular momentum zero to the
ground state described by Eq. (4.3) (two-particle strip-
ping) or remove such a pair of particles (two-particle
pickup). We ask to what extent one can use the boson

( g t) —y (bt)k+ lb'
k=0

k

ck= g (
—I)"(0—k+n)' /n!(k n)!, —(4.&)

(N, )ii —2(Q —b,b, ), (Ni)~ =2b~b2 . (4.6)

The series (4.5) should converge rapidly as long as
( ( b; b; & /0 ), i = 1,2 are small, i.e., as long as we study nu-

clei only a few pairs away from the closed shell. It is
then sufticient to carry the expansion of the Hamiltonian
to fourth order only. We thereby find

H =H' '+G(b b +b b )

+G [0—(Q(O —1))' ][(bib2+b, b, )b, b2+H. c.],
(4.7)

HiI '= (O~HjO&F+2Gb, b, —AG(b, b2+b2b, )

—(2e, +AG)b, bi+(2ei —GQ)bib' . (4.8)

Diagonalization of this Hamiltonian was carried out for
%=6 and %=40. The fourth-order terms are essential
for precise agreement with the exact eigenvalues (as we
also found for the Lipkin model). This implies that the
addition and subtraction eigenbosons are (slightly) non-
linear transforms of the kinematic bosons. Nevertheless
a linear transformation of the type described by Eq. (3.8)
yields qualitatively correct results for these pair-transfer
degrees of freedom.

These conclusions are illustrated in Fig. 1, which con-
tains two sets of plots, for 0,= 3 and 0=20, respectively,
of the energy of the first excited state as a function of the
pairing strength. Five values are given in each case: The
letter 2 designates the exact result, 8 the value obtained
by diagonalizing Eqs. (4.7) and (4.8), and C and D further
approximations to Eqs. (4.7) and (4.8), whose exact
definition need not concern us here, except that they ig-
nore some terms of higher order in Q '. These approxi-
mations should be justified for 0 large enough, as is evi-

(4.4)

A'z= [(II—p)!/II!p!]', but in view of the structure of
Eq. (4.3), the mapping for index 1 must be made with
3 ]

—+ 3 i, i.e., one interchanges particles and holes.
With that interchange the formulas described in Sec. II
carry over. They can be summarized as follows:
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dent from the graphs in Fig. 1. Also shown is the RPA,
which breaks down at the superconducting transition.
By contrast, the value of the boson mapping, at least for
the pairing interaction, was clearly established.

2

B. Variational method
for choosing collective variables

We turn next to an application that illustrates the
problem of choosing collective degrees of freedom from a
larger space of fermion-pair variables (Klein and
Vallieres, 1981). We again take the Hamiltonian (4.1) but
now extended over three nondegenerate levels e, ,
i =1,2,3, of diferent pair multiplicity 0, . Once more we
carry out a normal-ordered Holstein-PrimakofF mapping,
restricted, however, to the vacuum state as reference
state, so that only Eq. (4.6) needs to be modified to

(X, )ii =2b;tb; . (4.9)

We compute the Hamiltonian again to fourth-order
terms.

Now let us look for new bosons 5&, X=1,2,3, related to
the b; by a linear transformation with coe%cients o.;&,

(4.10)

{Qj~ 1) 6
i i i i i

3.5 2

and assume that the lowest-lying states can be construct-
ed largely from the basis states generated by two of these
new bosons, S =Si and T =Sz (Cooper pair and "pairing
vibration, " respectively). We thus truncate the sum
(4.10), writing u;, =a;, a;2=P; and imposing orthonor-
malization conditions

2

g ~;a; = g 13';= 1,

ga;P;= +Pwca, =0.

(4.1 1)

(4.12)

) 5

How shall one determine the transformation (4.10)?
Klein and Vallieres applied a variational condition re-
quiring that in an average sense the states constructed
from S, T, i.e., from the basis

(4.13)

t'2j~&) 6
i i i i i i l i l i

l.5 2

FIG. 1. Lowest excitation energy for the symmetric two-level
model (0

&

=Oz =0 ) with pairing force interaction. (a)
Ã =20=6. All values are in units of the sing1e-particle excita-
tion e&

—e&. A, exact solution; B, fourth-order expansion; RPA,
nonsuperconducting branch of the random-phase approxima-
tion; C and D are approximations of no interest for the present
discussion. (b) Same as (a) but N=40. From Kleber, 1969.

lie lower in energy than any other eigenstates. (Notice
that, in this example, the choice of a number-conserving
Hamiltonian is merely a convenience, whereas in the
treatment of pairing vibrations it was a natural choice
dictated by the physics. ) Since the average energy of a
set of states is proportional to the trace of the Hamiltoni-
an over the subspace considered, a necessary condition
for determining this subspace is

5(TrH) =0 . (4.14)

The trace is over the eigenstates, which are linear corn-
binations of (4.13), but by the invariance of the trace can
be taken over the set (4.13) itself. This simplifies the cal-
culation, as only terms of H diagonal in the basis (4.13)
need be retained. The variational principle subject to the
constraints (4.11) and (4.12) yield nonlinear algebraic
equations to determine a, , P, . This procedure determines
a definite approximate collective Hamiltonian under the
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transformation (4.10), which then can be further diago-
nalized in the basis (4.13). From the results found in this
and other examples (Cohen and Klein, 1981), the method
appears to be promising. To achieve its full potential,
however, requires a generalization of Eq. (4.10) to non-
linear transformations. First efforts in this direction
(Pannert and Ring, 1987) will be described in Sec. XVI.

It is apparent that the application of the trace varia-
tional principle is not restricted to the boson space. It
was first conceived for application in this space for the
purely technical reason that the traces are more easily
evaluated for the Heisenberg-Weyl algebra than for the
Lie algebras relevant to shell-model calculations with fer-
mions.

2x(b. &=2e. &b. & Q—n. (b—.'b. )a
+ [n. (—b.'b. ) ~-'"(b.'b. )~ . (4.20)

This equation can be further rewritten (e, =e, —
A, )

2e, l~, =(n, —p, )6, (4.21)

be rather cavalier in evaluating the right-hand side of Eq.
(4.16), keeping the difference of the square roots to first
order only and replacing b. (b, ) by (b, )h. The major
approximation, however, is the replacement of b~b, by
( b, b, ) under the square root. (This approximation is
evaluated at the end of the discussion. )

From Eq. (4.16), with the help of the above approxima-
tions, we thus obtain

C. Derivation of the BCS theory
from a number-conserving boson Hamiltonian

We next show how to utilize a Holstein-Primakoff-
mapped Hamiltonian in order to derive the number-
conserving version of the BCS theory of superconductivi-
ty. What is suggested here is a way of exploiting the
square-root operators that intervene in this mapping.
Though deriving the BCS approximation involves only
the crudest of approximations for these square roots, we
shall brieAy consider afterwards how the approximations
can be improved.

Again consider the Hamiltonian (4.1) extended to an
arbitrary number of levels. We apply a Holstein-
Primakoff mapping for each SU(2) in the form (j, =

—,'n, )

where

~.=(b.')Qn. (blab. —),
p. =2& b.'b. ),
b.=GQ~, .

(4.22)

(4.23)

(4.24)

n, —p, = '1/ n, —4~, .

From Eqs. (4.21) and (4.24) one finds

(4.25)

(4.25a)

Equation (4.21) is of standard BCS form. From Eqs.
(4.22) and (4.23) one then derives the relation

N, =2b, b„A, =b,+n, bJb, . — (4.15) E, =QE +6 (4.25b)

We then study the problem by the equation of motion
method:

[b„H]j=2e,b, —Qn, b, b, b, —

b[+n,—b, b, —1 ——Qn, btb, jb, b, —

I+n, b, b, —1 —Q—n, btb, Jb, b, , —

and

p, =n, (1—e, /E, ) .

By combining Eqs. (4.24) and (4.26), one obtains

0,
2E,

(4.26)

(4.27)

where

(4 16) and from Eq. (4.26) one finds

N = g n, (1—e, /E, ) . (4.28)

2—:Gg+n, b, b, b, ,
— (4.17)

and evaluate Eq. (4.16) between states IN —2) and IN ).
De6ning

(4.18a)

(4.18b)

2A, = W(N) —W(N —2), (4.19)

we assume that (b, b, ) = I(b, ) I
-N ))1. We can then

where the states involved are the ground states of neigh-
boring even nuclei, with energies W(N —2) and W(N)
and with A, , the chemical potential, given by

We recognize in Eqs. (4.27) and (4.28) the standard equa-
tions of the BCS theory, determining the parameters 5
and A..

How can we go beyond the crude approximations
presented above? The trick is to write

b.'b. =(b.'b. )+5(btb. ) (4.29)

btb. = y (rIb.'b. Ir )Ir)&r'I, (4.30)

and to expand the square root operators in powers of
5(b, b, ). The actual form of 5(b, b, ), useful within the
context of the equations of motion method, is obtained
by writing
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&b.'b. &=&0lb.'b. lo& y I &&Il, (4.31)
r

g(z) = (vaclexp g [z,*z,(Q, —z, d, )] lvac & .
a

(4.40)

where lI & refers to a complete set of states of given N
and angular momentum zero (more precisely, "seniority"
zero), including the ground state l0 &. A program of this
type combining the equation of motion method with the
"quantized Bogoliubov transformation, " introduced in
the previous section, has been carried through (Hasegawa
and Kanesaki, 1980a, 1980b, 1980c).

g, (t, )
e ' (4.41)

The further evaluation of Eq. (4.40) is simplified by not-
ing that from the definition (4.39) it follows that S(z ) can
depend only on the variables lz, l

. Thus we write, with
t, = z, l, as a definition of the function g, (t, ),

D. Coherent-state calculation

As the next application of this section, we shall give
another derivation of the BCS theory with the help of the
fermion coherent state and the associated Dyson realiza-
tion of SU(2). The un-normalized BCS state has, in fact,
the form

z, Q, —z, z,*g,'(t, ) =z,g,'(t, ),
which easily yields the solution

(4.42)

4= Q(1+t, )
' (4.43)

We then obtain a first-order di8'erential equation for the
function g, (t, ) by equating from Eq. (4.38) the two
definitions of ( A, & (with prime meaning derivative),

lz&=exp 'gz, A, lvac&,
a

(4.32)
From Eq. (4.43), we calculate, for example,

where the z, are complex parameters. This is a fermion
coherent state for SU(2)XSU(2)X . . Now we obtain,
by reasoning similar to that utilized in Eqs. (2.47)—(2.49),

and

(N, &
—=p, =2t, Q, l(1+t, ) (4.44)

~.'l & =(a/a .)l & =—d. l &,

N, lz&=2z, d, lz&,

2, lz &=z, (n, —z, d, )lz & .

We summarize these formulas by the notation

D(A, )=d, ,

D(N, )=2z, d, ,

D(A, )=z, (A, —z, d, ) .

(4.33)

(4.34)

(4.35)

(4.36a)

(4.36b)

(4.36c)

(~.&=~.= zn. /(I+ t). (4.45)

A short calculation shows that Eqs. (4.44) and (4.45) are
related by Eq. (4.24) of BCS theory. Similarly, all the
other results of BCS theory can be reproduced from the
generating function S(z). In the above derivation, we
have followed the reasoning of Dasso and Klein (1973),
but similar methods, which have become very popular
lately (Blaizot and Ripka, 1986), appeared quite early in
nuclear physics, as we have already remarked following
Eqs. (2.50) and (2.51).

D(A, )=d,*,
D(N, ) =2z,*d,*,
D ( A, ) =z,*(0,—z,*d,* ) .

(4.37a)

(4.37b)

(4.37c)

The average of any operator S is given by the equivalent
formulas

(8 &
= (z l8lz & l(z lz & =D(8)$!S=SD(8)/4,

(4.38)

where

Z—= &zlz& . (4.39)

It follows that the entire theory can be constructed from
the scalar product S.

We calculate 4 by applying Eq. (4.38) to the operator
A, with the help of Eqs. (4.36a) and (4.37a). First we
evaluate directly

Similarly, when acting on ( z
l

= ( vac
l
exp( g, z,* A, ), we

have the representation

E. Quantized Bogoliubov transformation

We turn now to some simple applications of the results
of Sec. III.E, restricting ourselves to the same pairing
Hamiltonian as has been discussed throughout Sec. III.
The applications in this and in the following subsection
are again meant to be partial and illustrative. Treatment
of the full problem, with coupling of all modes, will be
carried out in Secs. XI—XIII by an alternative, but
theoretically equivalent, method. Here we follow the dis-
cussion of Suzuki and Matsuyanagi (1976).

We must first transcribe the results of Sec. III.E. To-
ward this end, we collapse the two levels of the LMG
model into a single j level with 20, =2j+ 1 and

~m~~m ~

P ~( —1)J at =a t (4.46)

We replace J+ O~S+ o and J~S, which is a change of
notation compared to earlier parts of this section. Thus
we have the following (Hermitian) mappings for the
SU(2) generators:
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(Sv)~ = S—+b b,
S=—,'(0 —n ),

(4.47)

(4.48)

assumption, we expand the square root up to first-order
terms; the expansion parameter is 0 ' . We then ob-
tain

amam ~

(S+ )~ =(S )~ =b +2S b—tb

For the fermions, we have

G. ='(/1 btb—/(2S+1)a +b a
2S+1

(4.49)
H= 8 +H;„„+H „, ,

W= +2(e, —k)Q~u —6 /G,
J

VJH;„„=g (e, —k+ b, )n, ,
J J

(0) (&) (2)
Hpair H pair +H pair + pair

(4.58)

(4.59)

(4.60)

(4.61)

=ua +a u

Notice that the operators u and u satisfy

(4.51) H', ';, = g 2(e —k)XtX + b, [2(4u~ +uj )X.

u u+u u=1 . (4.52) +(2u +u )(S"Xt+S.X)] '., (4.62)

The form of the operator identity (4.52) immediately sug-
gests the name quantized Bogoliubov transformation for
(4.51). As we shall consider below, this name is not com-
pletely apt.

Finally the quasiparticles satisfy the anticommutation
relations

H",,'„=g [2u u (e —
A, )

—(u,. —uj )b, ](%~+X~),
j J

(4.63)

[a,a ~ ]=5,—a a
2S+ 1

(4.53)

b' (b') =&2Su =(b) . (4.54)

Then Eq. (4.51) becomes

at ='1/1 —u a +ua

The BCS limit of the pairing theory, as we shall verify
below, is reached by the replacement (compare also Sec.
IV.C)

X [(2u —u ' )X~' —u~ XJ'],. —2 (4.64)

with b, =G g~ Q u v~ and uj =+1—v .
At this stage the parameters u are determined either

by minimizing 8'or equivalently by requiring the vanish-
ing of the "dangerous diagrams" (4.63). By setting the
square bracket in Eq. (4.63) to zero, we obtain the usual
BCS conditions. Under these conditions the term H;„„
reduces to

= —va ++1—u a
(4.55)

H;„„=gE n~ , E =Q(e .—A, ) +6
J

(4.65)

This has the BCS form, but it must be remembered that
the a cannot form j=0 pairs, whereas the Bogoliubov-
Valatin quasiparticles do. In the present theory the j=O
pairs are constructed from the bosons.

To see this point, let us treat the Hamiltonian
H =H XN, where H —is given by Eq. (4.1) and we have
an arbitrary number of single-particle levels. Thus ~J & J J ' 1J & 1 J (4.66)

which implies that the energy of an ideal quasiparticle is
the same as that of the Bogoliubov quasiparticle. Next
we diagonalize H', ;', by the unitary transformation

Bj =g'J.Xij+g~ÃJ,

H= g(e —A) gn a~
—. 6 gS~+SJ'

J m JJ

= g (e —
A. )[n, +2btb]. Then H„',';, becomes

(4.67)

—6 g b +2S bb (/ 2S ' b—'b 'b. —(4.56)

where we use the same symbol H for the mapped opera-
tor. To study the superconducting phase transition, we
write [cf. Eq. (4.54)]

and H pair reduces to

H', ;'„=—6 g QQ QQ fu, Bt, uB]-
JJ

X[u'BJ v'BJ ] . —2 . —2 (4.68)

bj =QQ, ,u, +Xt (and H. c. Eq. ), (4.57)

where the first term represents the mean field defined in
Eq. (4.54) and the second the fiuctuating field. With this

The operator part of Eqs. (4.67) and (4.68) provides the
harmonic approximation to the pairing vibrational
modes, including a spurious zero-energy solution if b,%0.
The next order in the expansion of the square roots in
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Eq. (4.56) will provide the anharmonic correction. Al-
though a full and systematic treatment of the pairing in-
teraction can be laid out along the lines so far indicated,
we halt the general development at this point because of
the study promised in Secs. XI—XIII. A special line of
inquiry is developed below.

F. Pairing rotation

As is well known (Marshalek and Weneser, 1969), howev-
er, Eq. (4.77) does not lead to a normalizable ground
state. In the present case, this problem can be solved ex-
actly, as we now show (Suzuki, Fuyuki, and Matsuyana-
gi, 1979a, 1979b).

Recalling the definition Eq. (4.57) of the script boson
operators, we see that the BCS state in the boson space is
a coherent state ~coh ) defined by

H = —GS+5
= —6 [S —S() +So], (4.69)

We consider the formalism of the previous section in
more detail for the special case of a single level. In that
case it is, of course, trivial to find the exact eigenvalues,
and the procedure starting with Eq. (4.57) and culminat-
ing in Eqs. (4.66)—(4.68) is superliuous, for we then have

Xicoh)=(b —&Qu) coh)=0

OI

lcoh)=exp[(b —b)&Qu]~0) .

In this case H can be written (exactly)

H = 8'+En + 6(5%) + Gn 6N,

where

5X=b b —Au =&Au(% +X)+SX

(4.78)

(4.79)

(4.80)

(4.81)

E (X,n) = ——'6(X — )n(2A —% n+—2),

= W+En+8(~")'y2&,
where J=26 ' and

N"'=&Au u(X t+%) .

If we also introduce the operator

y( I ) — (~1' ~)1

2i&nuu

(4.71)

with the motivation that p"' is canonically conjugate to
X'", then

where X is the total number of particles and n the num-
ber of unpaired quasiparticles.

Nevertheless, we study the approximate method as an
introduction to another treatment of the pairing theory
embodied in the Hamiltonian (4.58). In that event, tak-
ing note of the fact that the single-particle energy
E =

—,
' GA, we have two terms of the order of GA,

H = &+En +6 [&fluu (S +X) ]

is the exact number-Auctuation operator. Now in terms
of the operator H =—6%+—,'n, which differs only by a con-
stant from half the total number of particles, H may be
rewritten as

H = 8'+ En + ( 11 /2 J ) ——,
' Gn (4.82)

V. APPLICATION OF SU(2) MAPPINGS
TO PHENOMENOLOGY

Thus, in the exact case, as we expect, the coupling of the
quasiparticles to the pairing rotation disappears when the
latter is suitably defined.

One may be tempted to carry the discussion further by
seeking an operator p canonically conjugate to II. Such
an enterprise is subject to the same limitations mentioned
in connection with the study of the transition-operator
boson in Sec. III and will not be pursued here. One must
also introduce the equivalent of a pairing rotation in the
case of many levels. A general treatment will be found in
Sec. XIII.

[y()) g ())]—i. (4.74) A. Equivalent descriptions of a breathing mode

and also

[H, Ã'"]=0,
[H, iy")]=X'"yS .

(4.75)

(4.76)

Thus % resembles a two-dimensional angular momen-(&)

turn operator and the last term of Eq. (4.71) appears as a
(pairing) rotational energy uncoupled from the quasipar-
ticle energy. As we shall see below, X "' also has the in-
terpretation of number-fluctuation operator; since the
average number has been fixed by the BCS calculation,
one is tempted to try to define an improved ground state
by the condition

g (1)~)II(0))—()

For didactic purposes we shall invent nuclear proper-
ties to illustrate ideas which will have some application
to the real nucleus, requiring only a change of mathemat-
ical details (Klein, Li, and Vallieres, 1982a). Thus imag-
ine that in some region of the periodic table even-even
nuclei exhibit a spectrum of relatively low-lying 0+
states, which we label n =0, 1,2, 3, . . . , n=0 represent-
ing the ground state. These bands are observed to have
the following properties: (i) The spacing is nearly har-
monic. Thus the spacing E„relative to the ground state
is represented by the formula

E„=a,n +a2n (n —1)+a3n (n —1)(n —2)+ .
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where a, &)az »a3 &) . (ii) Monopole transitions
between neighboring states are observed to be enhanced
compared to single-particle values and depend on n in a
characteristic way prescribed below. The monopole
operator is defined by the expression

M= g(r') (5.2)

(5.3)

where 1)&q, ))qz)) . and Mo)) &r &, with &r & a
typical single-particle matrix element. (iii) Crossover in-
traband transitions are suppressed compared to the
direct transitions described in (ii), i.e.,

l&n+ llMln & I
» l&n+2IMin & I

. (5.4)

(iv) The relative change of the average mean-square ra-
dius in going from state to state in the band is small. (v)
Interband monopole transitions are not much enhanced,
if at all, over single-particle values.

Given the above "experimental data, " it would not
take us long to conclude that the systems under discus-
sion could sustain a well-developed "breathing mode" of
oscillation. The most obvious representation of the data
is by means of a one-dimensional nearly harmonic oscilla-
tor, with variables b, b,

[b, bt]= 1, (5.5)

such that the exact eigenstates are represented as uncou-
pled harmonic-oscillator states,

The matrix element of M between neighboring states is
given by the expansion

&n+lIMIn &=Mov n+1[1+q,n+q2n(n —1)+ . . ],

man, 1965; Das, Dreizler, and Klein, 1970; Bohr and
Mottelson, 1975).

If the nuclei imagined above exhibited this breathing
mode for a sequence of neighboring nuclei, we might ex-
pect the various phenomenological parameters to vary
slowly and regularly from nucleus to nucleus. If, in addi-
tion to the breathing mode, the sequence of nuclei were
also superconducting, we might also end up inventing a
monopole version of the interacting boson model (Arima
and Iachello, 1976a, 1976b, 1978, 1979). For this pur-
pose we introduce two monopole bosons s and t, where
s creates the superconducting pair and t the monopole
vibration. The latter differs from b, which does not
change the number of fermions, whereas t and s are
each assumed to add two particles to the nucleus. Thus
the sum

X =s~s+t t, (5.10)

+wz(s t tt+ttttts) . (5.1 1)

Our interest in this model stems from the fact that H is
a polynomial of degree two in the generators of the Lie
algebra U(2), namely, s s, t t, s t and t s. Under the
given condition (5.10), the remaining linearly indepen-
dent combinations may be identified with the generators
of SU(2),

which represents half the number of nucleons added to
some reference nucleus, is conserved. We then postulate
the simplest possible phenomenological Hamiltonian
(e, ( e2) that commutes with X, namely,

H=e&s s+e2t t+U&s s ss+U, 2s t~ts+Uzt~t~tt

+u(s s tt+ttt ss)+w, (s t ss+s s ts)

In &~I )=n( !)n' (b )"lo)t, ,

bio), =o .

(5.6)

(5.7)

J+=(J ) =s t,
J,=-,'(s ts t tt), —

(5.12a)

(5.12b)

In terms of these variables, the Hamiltonian that yields
the eigenvalues (5.1) is

K„a=a,b b+a2(b ) b +a3(bt) (b) + (5.8)

The transition data, of which Eq. (5.3) is a sample, is
reproduced by the operator

M=M, b [1+q,b b+q2(b ) b + . ]+H.c.

and if we use Eq. (5.10), K may be rewritten in terms of
these In E.q. (5.12) we recognize the Schwinger realiza-
tion of SU(2). The best known example of a Schwinger
realization of SU(n) occurs for n= 6 within the context of
the interacting boson model.

If we focus now on the Lie-algebraic structure of the
model defined by Eq. (5.11), we would expect the leading
terms of the monopole operator to have the form

+q)(b b+ ' +q)0[(bt) +b ]+ ' ' ' (5.9) M =a(stt + t ts)+I3t tt, (5.13)

where the additional parameters q&&. . . have been includ-
ed to describe a possible change in mean-square radius
with excitation; the additional parameters q2O. . .

represent crossover transitions when n changes by two or
more units. Other, less "natural" choices of boson vari-
ables are possible, but will not be pursued here. The
method of phenomenological description given above has
actually been applied to the vibrational regime of the
Bohr-Mottelson model (Ferreira, Alcaras Castilho, and
Agiulera Navarro, 1964; Brink, de Toledo Piza, and Ker-

In2, n, )=(n2!n, !) ' (t ) '(s ) 'Io), (5.14)

where (n, +nz) =X and Io) is the "vacuum, " the ground
state of the reference nucleus, assumed to remain unex-
cited by the processes under discussion.

We come now to the main reason for including the

namely a linear combination of generators. The final
point in the definition of the model is that the eigenstates
are obtained by diagonalizing the Hamiltonian (5.11) in
the space specified by the basis
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present discussions: We show that there is a one-to-one
correspondence between the monopole interacting boson
model we have been discussing and a suitably defined ver-
sion of the model for a breathing mode introduced at the
beginning of this section. This is established by mapping
the Schwinger realization of SU(2) onto the Holstein-
Primakoff realization according to the formulas [actually
a mapping of U(2)]

ttt =b~b,

tts =bt(IiI bt—b)' '=(stt)t,
ss=N —b b,

(5.15a)

(5.15b)

(5.15c)

(n ~—)-'"(b')"'~O, X), (5.16)

which are a set of states (5.6) (corresponding to a fixed
N). Notice next that Eq. (5.15) may be inverted to yield a
formula for b,

b t = [X+I t tt] '"t—ts .

If we substitute Eq. (5.17) into (5.16), using the commuta-
tion relations and the condition s~0)=0, we are led im-
mediately to the states (5.14). The transformation can
also be performed in the reverse sense. The equivalence
is predicted on the assumption that the breathing mode is
described in a finite vector space whose size is that of the
appropriate irrep of SU(2). There is thus, strictly, a
mathematical distinction between the concept of the
original Bohr-Mottelson model, which worked in the full
boson Hilbert space, and the algebraic limitations of the
interacting boson model. This distinction is physically
interesting only for small enough N.

B. Triaxial rotor at high spin:
Approximate treatment of the spectrum

We next describe another application of the HP map-
ping that appears to have some relevance to high-spin
states of nuclei, if one admits the approximation that
such motion can be described in terms of the quantum
triaxial rotor (Tanabe and Sugawara-Tanabe, 1971, 1976);
Sugawara-Tanabe and Tanabe, 1973; Tanabe, 1973; Bohr
and Mottelson, 1975; Marshalek, 1975b). Consider the
Hamiltonian

H= g I /2J;
i =Z, 2, 3

=I /(223) —
—,'(I/J3 —I/Z, )I',

where N fixes the representation and is to be identified
with the operator in Eq. (5.10) (Blaizot and Marshalek,
1978b; Klein, Li, and Vallieres, 1982a).

The proof actually consists in showing that under the
mapping (5.15) the basis (5.14) is converted into the basis
(5.6). We define the basis vectors

~ „~)=—(.,W )-'"(b')"'(")"i0)

In ihe classical theory of the asymmetric top, the motion
reduces for high spin to a simple rotation without preces-
sion of the axes, if the angular momentum is along the
axis corresponding to the largest or smallest moment of
inertia (which our reexpression of Eq. (5.18) has already
taken to be the third axis). Correspondingly„ in the quan-
tum theory, the states of smallest (or largest) angular
momentum I acquire a simple structure, which can be ex-
ploited with the aid of the Holstein-Primakoft mapping
[trivially modified for the sign change in Eq. (5.19)]. We
write

I+ =I', + iI,' =(I' )'=(2I)'"b'[1 b'b/2—I]'"

I3=I—b b .

(S.20a)

(5.20b)

Then states that are near1y equal in energy to the simple
states and correspond classically to the precessional
(wobbling) motion of the angular momentum vector with
respect to the axes can be studied by expanding I'+ in
powers of (b b/2I). The quadratic part of the Hamil-
tonian has the general form seen, for example, in Eq.
(3.6), and can be diagonalized by a linear transformation

b =g+B +g B

b =q B +q+B

(5.21a)

(5.21b)

(5.22)

Standard calculations yield for the diagonal part of the
Hamiltonian

H =I(I +1)/2J3 —2I[p—(a p)/2I](B B—+ —,
'

)

where
+a(B B) (5.23)

a= —,'(2/2, —1/J, —I /Ji),
P=+—,

' [(1/J, —1/J i )( I /2, —1/J, ) ]'i'
(S.24a)

(5.24b)

Here the upper sign corresponds to the prolate-like shape
(J3 minimum) and the lower sign to the oblate-like shape
( Ji maximum). The last term in Eq. (5.23) has been in-
cluded because of stability requirements. Sugawara-
Tanabe and Tanabe (1973) have shown that, with this
term, the theory connects smoothly with the symmetric-
rotor limit.

C. Triaxial rotor at high spin:
Electromagnetic transitions

where the I are intrinsic components of the angular
momentum along the principal axes satisfying the com-
mutation relations with the famous sign change,

(5.19)

—
—,'( I /S3 —I/J2)I2 (5.18)

The treatment of the high-spin asymmetric rotor by
Tanabe and Sugawara-Tanabe did not handle elec-
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tromagnetic transitions in a manner consistent with that
of the angular momentum and Hamiltonian. The remedy
can be found in the work of Marshalek (1975b), who pro-
vided a Holstein-Primakoff boson mapping of all the ele-
mentary operators associated with the quantized rotor.
In this treatment, a separate Holstein-Primakoff mapping
is provided for the laboratory components II, (k =x,y, z)
of the angular momentum and for the body-fixed com-
ponents I' (a=1,2,3). Now, an electromagnetic transi-
tion operator T„ is a spherical tensor of rank k and thus
can be written in the form (Bohr and Mottelson, 1975)

(5.25)

where the operators T„' depend on intrinsic degrees of
freedom (including possibly the I' ) and where the action
of the operators D„on the rotor eigenstates lIMK ) is
given by the well-known decomposition

I+A,
D„'.lrMK &

= g, (r),M~lr'M+~ &

I'= ~r —X~

X (IAKvlr'K +v) lr'M+@K +v) .

(5.26)

The set of angular momentum components together with
the operators D„satisfy the following algebra:

r, lrMK) =M IMK),

r lrMK) =[(r+M)(r+M+1)]'"lrM+1K &,

r, lrMK & =KlrMK &,

I+ lIMK) =[(I+K)(I+K+I ))'i lIMK+1) .

(5.30)

I] =I—Nb ~

I+ =b S,b~
I' =S,bb,

(5.31)

Nb=b b,
I,=I—N, ,

It is clear from Eq. (5.30) that the matrix elements for a
given value of the angular momentum I can be realized
by taking the direct product of two Holstein-Primakoff
representations, therefore requiring the introduction of at
least two independent bosons. However, looking ahead
to the inclusion of the D„, one sees that these operators
change the quantum number I, so that the physical sub-
space must contain all the irreducible representations and
thus a third boson to carry the quantum number I. By
"inspection, " it is not hard to see that the Holstein-
Primakoff representation of the angular momentum com-
ponents is given by

[I+,I ]=2I„[I„I+]=+I+,
[I'+,I' ]=—2I), [II,I+ ]=+I+,
[I',Ik ] =0, (5.27)

(5.28)

I+ =S„c, I =cSb,
S„=(2I N, )', N—, =c c,

acting on the boson states

( t)2I(bt)l —
K( t)I —M

IIMK) =
[(2I)!(I—K)!(I—M)!]'

(5.32)

[I+,D„]=[(A, +p)(X+@+1)]'~D +, 0+I (~, —I+K,M~I . (5.33)

[I„D„]=pD„,,
[I+,D„]= [(k+v)(A, +- v+ 1)]' D„+, ,

(5.29)

The subalgebra (5.27) is readily recognized as that corre-
sponding to SU(2) X SU(2), and since the D generate an
Abelian group, as indicated by Eq. (5.28), the addition of
(5.29) shows that the full algebra corresponds to the semi-
direct product of SU(2) X SU(2) with this Abelian group.
In Eq. (5.27), I+ =I +ir, while I—'+ =Iz+ir3 In the.
case of the body-fixed components, a cyclic permutation
was performed so that the first axis, which is the conven-
tional axis of rotation in the cranking model, would also
be the axis of quantization. (From the mathematical
viewpoint, we could just as well choose I'+ =I', +iI'z as
we have done in the previous subsection. )

Consider now the Holstein-Primakoff boson represen-
tation of the rotor basis states and the angular momen-
tum components. The action of the latter on these states
is given by

In Eq. (533) one has [aa ]=1, [bb ]=1, [cc ]=1,
with all other combinations commuting, and l0) is the
vacuum state satisfying alO) =blO) =clO) =0. N««hat
the convention chosen here is blIII ) =clIII ) =0, where
lrrI ) =at21/[(2I)!]'"lo& is the fully aligned state of
maximal weight. The extra a boson is introduced to label
basis vectors with different values of I, which are eigen-
states of the operator I=—,'N, . It may be noted that the
representation (5.31) and (5.32) satisfies the requirement
that the laboratory and body-fixed components commute.
In addition, the condition that the sum of the squares of
the laboratory and of the body-fixed components must
equal the square of the length of the angular momentum
vector is satisfied, i.e.,

]+r,'= ,' Ir'„r' ]+I', =-I(r+I), (5.34)

as may be directly verified. A similar situation, in which
one introduces a boson that changes the value of the total
angular momentum, will be encountered in somewhat
more detail in the next section, in the discussion follow-
ing Eq. (6.10).
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Next, the D„,can be determined in principle from the
commutators (5.29), together with the well-known re-
quirement that they form a unitary matrix:

g D„~„~=5
p

simple, and then synthesize the operators for higher
values of A, using the composition rule

D„,= g g (A, ,X~,pzlAp)

(S.35) X (X,zzv, vzjzv)D, , D, , (5.36)

In practice, it is easier to invoke the action of these
operators on the basis vectors (5.33) directly, using Eq.
(5.26). An especially convenient procedure is to begin
with the case A, =—,', since these operators are relatively

which can be derived from Eq. (5.26). Thus, for example,
application of Eq. (5.26) to the case A, = —,', with lIMK)
denoted by lN, , Nb, N, ), where N, =2I, Nl, =I K, —
X, =I —M, gives

1/2
(2I + 1 Nb )(—2I + 1 —N, )

D 1/2
(2I +1)(2I+2) 2I (2I + 1)N, +INCAN, +

1/2

IN. —1N, —IN, —»,

D 1 /2 1 /2
=S&b S&& A + A Ac1/2

D 1/2 1/2 6 S& A AS gc1/2
(5.38)

with a similar expression for the action of D, /2 1/2. It is
then straightforward to obtain the boson representation
of the D„' by replacing the numbers I, Ab, X, with the
corresponding operators and taking into account the
changes in the boson numbers of the basis vectors. One
is then led to the fo11owing compact1y written expres-
sions:

D z. PD z.Q (5.42)

where P = glx lIIK ) (IIKl is the projector to the M =I
subspace. The resulting expressions are considerably
simpler, since they involve only the bosons a, b, with
X, =0 in this subspace. Of particular interest for high-
spin states are the D „associated with electric quadru-
pole (E2) transitions. For example, one obtains

(5.37)
l

D„one needs only the restriction of these operators to
the M =I subspace, i.e., the operators

where the operators A and A are defined by

g = ( 2I + 1 )
~ E (2I + 1 )

3"=(2I+ I )
' E+ (2I+ 1)

and where E+ are defined as

(5.39)

z —(bt t)4

(5.43)

where

D zz=(S,~a ), D z, =2(S,qat) a I'~at,
D =&6(a I' a ) D =2(a ) b I' b (a )

E =a (2I+1) ' E =E =(2I+1) ' a

(5.40)
a =(2I+1) ' E+ =(2I+1) ' a (2I+1)

(5.44)
The operators (5.40) change N, by one unit (and I by a
half-unit), while maintaining the normalization of the
basis vectors. The operator E+, which satisfies

E E+=Et+E+=I, E+E =1—l0)«l, (5.41)

is isometric, rather than precisely unitary, since E+E+
annihilates the vacuum (or, for that matter, any boson
vector with no a t bosons).

All other D „' can be obtained from the relation
Dz„=(—1) "D z As previousl. y mentioned, addi-
tiona1 D„with higher values of k can be synthesized
with the aid of Eq. (5.36). Marshalek (1975b) lists all the
operators with A, =1. For many purposes it is sufhcient
to work with the D„defined in the subspace with M =I;
this is especially true when calculating electromagnetic
transitions of lower multipole order between high-spin
states (Marshalek, 1975b). In that case, in place of the

D zz=E+, D z&=(2/I)' b E+

D2 =0 for v~0. (5.45)

From Eqs. (S.25) and (5.43), the E2 transition operator
T22 is then approximated by

Tzz ——[Tzz+(2/I)' b Tz) ]jE+ (5.46)

where E+ changes the quantum number I by 2 units.
The intrinsic E2 moments T2„are constants in the simple
asymmetric-rotor mode1 discussed earlier. In the same

[The remaining D „are given in Marshalek (1975b)].
When operating on a high-spin state with a large value of
I, one may replace I by its eigenvalue I in Eq. (5.43). One
then obtains the following approximations to Eq. (5.43),
correct through order I
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T~o= —(3/I)' bT', +T20+(3/I)' b T' (5.48)

In Eq. (5.47), the operator E+ changes I by one unit,
while Eq. (5.48) involves b,I=0 transitions.

Formulas equivalent to Eqs. (5.46)—(5.48) have been
derived by Bohr and Mottelson (1975) for the asymmetric
rotor at high spin by using a large-I approximation for
Clebsch-Gordan coefficients. The boson operators b and
b may be expressed in terms of the normal-mode bosons
B, B" introduced earlier [Eq. (5.21)] to obtain the re-
duced transition probabilities. For our purposes, it is
sufficient to observe that the AI=2 term T22E+ in T2z is
the largest, all others being of order (n/I)' . It is this
large term that is responsible for the "parallel tracks" of
the yrast cascade, while the other terms, which give rise
to transitions between the tracks, lead to transition prob-
abilities that are smaller by factors of order n /I.

The extended Holstein-Primakoff representation dis-
cussed in this subsection has also proven useful in eluci-
dating the structure of the self-consistent
cranking+RPA approximation, which describes small
oscillations (including the wobbling motion) about a state
of steady rotation (Marshalek, 1977). It has also been
used to obtain approximate solutions for the model of a
particle in a large j shell coupled to a rotor (Marshalek,
1982b).

way, we can show that other components of the E2
operator are approximated by

T2, =[—(2/I)' bT~2+T2, +(3/I)' b T20]E+,
(5.47)

body-fixed components are needed for the Hamiltonian.
However, the representation of the D„ then becomes
quite complex. Because of the complexity of the formu-
las and the fact that no new physical results emerged, the
interested reader is referred to the original papers.

Another closely related work is that of D. Janssen
(1977), who used SU(2) coherent states to derive a func-
tional representation for the quantized rotor, equivalent
to a Dyson representation. By averaging with respect to
the coherent state, he derived the classical Euler equa-
tions for the asymmetric top. He also sketched the appli-
cation of the averaging to the cranking model at high an-

gular momentum.
As a further contribution to the present topic, we men-

tion the work of Badea and Raduta (1979), who applied
the Holstein-Primakoff and also the Dyson mappings to
the asymmetric rotor at high spin. Aside from a discus-
sion of the connection between the two mappings, the
main purpose of the work was to obtain improved ap-
proximate eigenvalues. The authors studied two
methods: a variational Bogoliubov transformation that
takes into account higher orders in the I expansion,
and, second, a boson coherent state as a variational wave
function. Both methods when appropriately employed
give excellent approximations to the true eigenvalues.

A true Schwinger representation for the quantal rotor
that also satisfies Eq. (5.34) was first found by Gulshani
(1979a, 1979b), who provided generalizations as well. In
the simplest version, Gulshani began by parametrizing
the system in terms of the Cayley-Klein parameters a, b,
c, and d, related to the Euler angles by

D 1/2 (~ 0 y) ei(q&+&)&)/2cos 0

D. Triaxial rotor at high spin:
Schwinger mapping and other results

From the above work, Yamamura, Suzuki, and
Ichihashi (1978) and Ichihashi and Yamamura (1978) set
out to develop a Schwinger representation in place of the
Holstein-Primakoff one for the quantized rotor. Since a
Schwinger representation does not lend itself a priori to
an I ' expansion, these authors used a variant of the
cranking model (with effective "Routhian"
H =H ficoI) in the—framework of oscillator coherent
states. Now, a four-boson Schwinger representation ob-
tained in a straightforward extension from SU(2) to
SU(2) X SU(2) does not automatically fulfill the condition
(5.34), although one could arrange for Eq. (5.34) to hold
within some appropriately defined physical subspace. In
order to preserve Eq. (5.34) identically over the whole bo-
son space, the authors chose a representation of the
Schwinger type for the body-fixed components of the an-
gular momentum, i.e., one that is bilinear in the bosons.
However, the representation of the laboratory com-
ponents is not of the Schwinger type, but involves a com-
plicated square-root function. Fortunately, only the

D I/2 (~ g q) e&'(v —g)/2sin t9

2
'

D —1/21/2(v & ~& e)

D —1/2 —1/2 ('P& ~& 0 )

(5.49)

where the conventional zyz definition of the Euler angles
is used. The angular momentum components represent-
ed by differential operators in the Euler angles are then
transformed into the space of Cayley-Klein parameters,
using the relations

BQ 0+Bb 8+ Bc 0+Bd
By Ba By db By Bc B&p Bd

and similar equations for

a a
ae' a@

After a straightforward but tedious calculation, one ar-
rives at the following expressions for the angular momen-
turn components:

I+ =a +b, I =c +d8 cl 8
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a a „a
2 BQ B& BC BGE

is I—s—&=o, I' is I—s—&=o,

I 'Is —I —I & =s(s+1)is I—s—
& .

(5.56)

(lab. components), (5.51a)

I'+ =b +d, I' =a +c8
aa ac'

1 8
b

8 + 8 ~ 8
2 'aa bab+cac ~a~

a
v'2 ad

d+1

aa

(principal-axis components) . (5.51b)

Next, the angular momentum components (5.51) are
expressed in terms of four kinds of bosons 2, A, 8, 8,
C, C, and D, D de6ned by

By inspection, using Eqs. (5.54a) and (5.54b), one finds
that the normalized eigenvector satisfying (56) is given by

iI I —I &
—= (Dt)"io&,1

v (2I)!
(5.57)

where io& is the true boson vacuum. We note that the
condensate form of Eq. (5.57) is characteristic of a true
Schwinger representation as well as the quadratic form of
the generators. The general eigenvectors isMK & can
then be generated as usual from the formula

1/2
iSMK &

— I M I K '] I&I+IcsI+MiS I I &(2I)!

(5.58)

8 = — b+1 8
ac

1, 8
v'2, ab

C:— — c+, C= —b+
Bc

which obey the commutation rules

1

v'2 aa ' v'2 ad

(5.52)

For a closed form of Eq. (5.58) written in terms of the
four boson creation operators, the reader is referred to
the paper of Gulshani (1979b). Since the generators con-
serve X, the states (5.58) all have the same number of bo-
sons, n =2I, as follows from Eqs. (5.55) and (5.56).

From Eqs. (5.49) and the inverse of (5.52), the Cayley-
Klein variables, which are just the D„', can be expressed
as linear combinations of bosons as follows:

1a = Dgiiyi=i—(c4 +D)
2

[A, A "]=[8,8"]=[C,C ]=[D,D ]=1, (5.53) 1
Pz —in —(8 C), —

2
(5.59)

all other pairs commutating. Substitution of the inverse
of Eqs. (5.52) into (5.51) then gives the final Schwinger
boson image of the angular momentum components:

I+=~~C+&~D, I =I~+,

I, =
—,'(A A +8 8 —C C DD)—

(lab. components), (5.54a)

I+ =8 A+D C, I'

Is
=

—,
'

( 2 t2 BB+C C —DD)—
(intrinsic components) . (5.54b)

It is readily checked that the commutation rules [Eq.
(5.27)] are satisfied, as well as Eq. (5.34). Unlike the
"Schwinger" mappings of Yamamura er al. , Eq. (5.50)
represents both the laboratory and principal-axis com-
ponents by simple quadratic forms in the bosons. In this
representation, the total angular momentum operator I
is given by

I '= ,'E( ,'X+1) (~ '-D' -8'c')(—~D —Bc—), (5.55)

where 8'is the total boson number operator.
The physical subspace of angular momentum eigenvec-

tors iIMK& can be generated by first constructing a
"vacuum" state iI I I & satisfying th—e co—nditions

c =D'" = —S' a =D'/2 =a'—1/2 1/2 & —1/2 —1/2

Other D„can then be synthesized with the help of Eq.
(5.36) and thus must always be expressable as finite poly-
nomials in the bosons.

Finally, Gulshani pointed out that the Schwinger rep-
resentation can be generalized by choosing as coordinates
the rotation matrix elements D„ for any j, not just j =

—,'.
Moreover, the coordinates need not be limited to the
DJ, but can be replaced by any set of abstract double
tensors under SU(2). By going through a procedure
analogous to the one just described, Gulshani obtained
the generalized Schwinger representation, in which

J
&j v'p'IS Ij vp & W „"',~a„",',

)MVPV= J
(5.60)

(Iv p is+ igvp & A 'J'. 3 'J',
PVIM V — J

where the 3„'' are creation operators for independent
bosons.

VI. MAPPINGS OF SO(4) MODELS
AND APPLICATIONS

A. Oefinition of models studied

We now consider a model that is only slightly more
complicated than SU(2) [and is in fact isomorphic to the
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algebra of SU(2) X SU(2)], which can be used to illustrate
a number of different physical ideas. (Piepenbring,
Silvestre-Brac, and Szymanski, 1980, 1982; Klein, 1982;
Marshalek, 1982a; Matsuyanagi, 1982). We begin with
the two-level pairing model with equal pair degeneracy 0
for each level, as described by Eqs. (4.1) and (4.2). The
linear combinations of the quasispins,

J=Ji+J2 E=Ji J2

generate the algebra SO(4) with the commutators

[J+,J ]=[K+,X ]=2Jp,

[J+,K ]= [X+,J ]=2ICp,

[K+ Jp ]= [J+,Kp ) = IC+ —(and H. c. Eqs. )

[J+,Jp]=[K+,ICp]= —J+ (and H. c. Eqs. ) .

(6.1)

(6.2a)

(6.2b)

(6.2c)

(6.2d)

We shall, for example, study a model in which we ignore
the single-particle splitting of the two levels and choose a
Hamiltonian of the form

H = —GJ+J —I'E+K (6.3)

2, lml~ 23,p =(1,

l, lml~-, ',p; 1, —lml~ —
—,',p .

(6.4)

If we interpret k(=+—,', +—,') as a projection of angular
momentum along a symmetry axis, then in the language
of nuclear physics the model is one of Nilsson levels
(Nilsson, 1955) with axial symmetry, where k =—,'and
k =

—,
' are split, but each is p-fold degenerate. By using

the notation (2,p), (2p), (l,p), (l,p )~(i,p), (i,p ) for the
sets described in Eq. (6.4), these authors consider a Ham-
iltonian of the form

For I'=0, Eq. (6.3) describes the strong-coupling limit of
superconductivity with SU(2) symmetry associated with
the total quasispin J. The remaining term is a
monopole-monopole interaction that breaks this symme-
try in analogy with a quadrupole-quadrupole interaction.

A completely different physics for the same mathemat-
ics has been achieved by Piepenbring et al. (1980, 1982)
by the following mapping of single-particle indices [refer
to the definitions associated with Eqs. (4.1) and (4.2)]:

splitting, has been discussed within the context of the
"mode-mode" coupling theory by Matsuyanagi (1982) as
an example of what can be done with the "quantized Bo-
goliubov transformation. " We shall take this matter up
in Sec. VI.D and indeed generalize Matsuyanagi's con-
siderations. More recently (Jammari, Piepenbring, and
Silvestre-Brac, 1983), the model of Piepenbring et al.
(1980, 1982) described above has been extended to in-
clude octupole coupling. This was done by exactly dou-
bling the degeneracy, adding a set of odd-parity levels in
a model that is isomorphic to SU(2) X SU(2) X SU(2)
X SU(2). The main object of this and their previous work
was to establish, as they succeed in doing, the accuracy of
the multiphonon method, a modified version of the
Marumori- Yamamura-Tokunaga mapping that we shall
discuss in Sec. XIV.

A third physical model associated with the SO(4) alge-
bra has been studied in considerable detail by boson
methods (Marshalek, 1982a) and therefore will be of in-
terest to us. Consider a system of nucleons confined to a
single major shell, N, of a two-dimensional harmonic os-
cillator. The orbitals are labeled for fixed N by m+, +
for spin up or down, and m =N, N —2, . . . , —N. The
single-particle operators (mass=cop= 1 for the oscillator)

t. =-,' [(x'—y')+(p.' —p„')]

t = —,
' [xy +p p ],

t, =-,'l, =
—,'(xp —

yp )

(6.7)

are the components of a vector under SU(2). It follows
that, for p=+1,0 (spherical components), if a +, a +
are the single-fermion creation and annihilation opera-
tors, the operators

T„(+)= g (Nmlt„lNm')a +a +
mm'

(6 8)

= —
—,'G'(T' —Tp) —C(Tp(+) —Tp( —)) . (6.9)

are generators of two commuting SU(2) algebras. Let
T= T(+ )+T( —), as in the first of Eqs. (6.1). For this
model, the physical total angular momentum is 2To. We
shall then study the Hamiltonian

H= —
—,'G (T+T +T T+)—C(Tp(+) —Tp( —))

H = g e; N, GJ+J —
—,'yq —(N2 —N) )

where

N;= +[at a; +at a, ]

(6.5)
For C=O, this is the two-dimensional version of the Elli-
ot model (1958a, 1958b). The term proportional to C is a
two-dimensional spin-orbit coupling that breaks the
SU(2) symmetry (Moszkowski, 1958).

is a number operator for each level. Thus we have a
single-particle splitting, a pairing interaction, and a
monopole-monopole interaction. In the literature under
discussion the latter is often referred to as a quadrupole-
quadrupole interaction, by analogy with more realistic
models that truly include angular momentum.

This model, in a version that drops the single-particle

B. Two SO(4) mappings
of type SO(4)&SU(2)aSU(1)

For detailed study, we turn first to the model of SO(4)
embodied in the Hamiltonian (6.3). This model suggests
the mappings that can be used in subsequent treatments.
For the problem at hand we are interested in the irrep of
the algebra containing the vacuum state. We shall apply
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the method described in Eqs. (2.28) —(2.32), that we
henceforth call the commutator method, which generates
the Holstein-PrimakofF mapping without our having first
to calculate all the matrices of the generators. These ma-
trices, in fact, are a result of the calculation. The irrep
we wish to map is that obtained by orthonormalizing the
set of vectors

(6.10)

b—b cP(n, —1), (6.16)

Ko =c br(nb+2n, )P(n, )+P(n, )r (nb+2n, )b c, (6.17)

where

form (6.13) and (6.14), we are led to dift'erence equations
that are easily solved and yield the results (Klein, Rafel-
ski and Rafelski, 1981;Klein, 1982; Matsuyanagi, 1982)

K+ =Kt =c"r(nb+2n, )r (ni, +2n, —1 )$(n, )

under the restriction |see Eq. (6.14) below]

(6.11)
2A —n +1

(20 2n——1)(20—2n + 1)

1/2

(6.18)

The essential remark is that the only information
necessary to proceed is contained in Eq. (6.10), which

suggests by analogy with the previously studied SU(2)
case that we look for a mapping onto a boson basis

~n„, n, )=(n„!n,!) '~ (b ) '(c ) '~0) . (6.12)

Jo= —0+n, +@I, ,

J+ =b [20 2n, nb I':b!r(—n—b+2n, )—,

(6.13)

(6.14)

where nb and &, are the boson number operators. Since

~0 ) is, in a more informative labeling, the state
~
Q, —0 ),

these formulas already show that the boson c decreases
the total quasispin by unity and increases its zero com-
ponent by the same amount. To obtain formulas for the
remaining operators, we recognize that K is a vector
operator under the transformations generated by J. Its
selection rules are thus well known. The general form of
K+, for example, is

K+ etc 1(nb, n, )+b'——b'ce2(nb, n, ), (6.15)

which states that K+ must increase Jo by one unit and

may increase or decrease J by a unit. (The absence of a
term in which J does not change is a simplification appl-
icable only to the special representation considered here,
as will be shown later in this section. ) By studying the
commutations relations (6.2) in conjunction with the

Equations (6.10) or (6.12) are understood to represent a
basis described by the group chain SO(4)&SU(2) DU(1)
where 0 is an SO(4) label (we are dealing with an espe-
cially simple class of irreps), n, defines the pseudospin of
the SU(2) associated with J, and nb is the corresponding
magnetic quantum number. The latter point is obvious
from Eq. (6.10). The meaning of c will emerge in rapid
course, but it is clear from the structure of Eq. (6.10) and
the analogy with the well-known Lenz vector for the
bound-state spectrum of hydrogen that K+ must change
the eigenvalue J of the quasispin. Actually, the introduc-
tion of a boson that changes the value of the angular
momentum has already been encountered in the previous
section in connection with the study of the triaxial rotor.

An essential aspect of this method is that we build on
solutions previously established. Thus we write down by
inspection the appropriate mapping for the SU(2) algebra
associated with the quasispin J, namely,

We shall generalize these results in Sec. VI.D, where
some details of the derivation will be given.

For application to the analysis of the physical content
of the Hamiltonian (6.3), we need a second mapping that
can be written down by inspection. Toward this end,
note that K+,Jo also constitute an SU(2) algebra and,
consequently, by examination of the commutation rela-
tions (6.2), we see that by interchanging K+~J+ and
b++c in th-e relations (6.13)—(6.18), a distinct mapping is
obtained. In fact, there are no further chains of subalge-
bras available for the classification of mappings.

We now study the Hamiltonian (6.3). The concept of a
phase transition first discussed in Sec. III in connection
with the LMG model is also applicable here. We shall,
however, consider only well-defined limiting regimes,
corresponding to definite phases, where one term or the
other of Eq. (6.3) dominates. For E=O, H has the eigen-
values

0(I' =0)= —Gnb(2$1 2n, —n„+—1)

= —G (n —n, )(20—n n, + 1),— (6.19)

H(G =0)= —F(n nb )(2A n ri„———1), —(6.20)

which interchanges the roles of n& and n„as previously
stated. Here, the low-lying states have (nb/0) ((1. Ap-
proximations incorporating this condition would then be
valid for the low-lying states in the deformed phase
6 «F.
C. Application to the Moszko~ski model

Turning next to the Moszkowski model (Moszkowski,
1958), Marshalek has proposed a boson mapping ap-

where n =nb+n, is half the number of ferrnions. For
fixed n, we may interpret n, as a vibrational quantum
number. For low-lying states, (n, /fl, )((1. We expect
this condition to hold even if FWO as long as we are in
the phase dominated by the first term of Eq. (6.3). Thus
we expect to be able to expand all formulas in powers of
(n, /0). The mapping under study may thus be called
the seniority mapping by analogy with the seniority limit
of the shell model.

By the same token, in the limit 6—+0, using the alter-
native mapping, one obtains
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propriate to the study of the deformed limit of this model
(Marshalek, 1982a). The derivation given in this refer-
ence and the application for which it was intended will be
described below. First we shall show that Marshalek's
result can be obtained by transformation of the mapping
(6.13)—(6.18). The reason for expecting such a transfor-
mation to be possible is that physically one is dealing
with the same basis SO(4) &SU(2) DU(1). The first point,
then, is to transform the basis (6.12) to the form utilized
by Marshalek. Generalizing the method described for
SU(2) in Sec. III.C, one introduces the "phase operator"
4' and, in addition, a boson B,de6ned by the equations

0)~=8' 0) .

With the further definition

(6.23)

I.,=2JO= —2A+28b+26', —=M (6.24)

whose eigenvalues are designated by M, we find from Eq.
(6.12), after setting J = II—n„

(II t)n —J
~n„n, ) =

~
J, ,'M) =—n " ~0), .

( fl —J)!
By introducing Eqs. (6.21) and (6.22) into (6.14), (6.16),

and (6.17) [Eq.(6.13) has already been rewritten], and by
utilizing the mapping

b =VtQni, + I,
which duplicates the previous definition, and

c ='MB =B S' .

(6.21)
M~( —id/d8),

'M +(I I—'o )exp(2—i 9)

(6.26a)

(6.26b)

We conclude that the phase operator raises Jp by unity
and that B therefore lowers J by a unit without chang-
ing Jo. Next, we define a new vacuum state ~0)ii,

and the fact that nb and 6', can be eliminated, the latter
from the relation J=Q —6', and the former from the re-

A. A.
lation nb =J+—,'M, we obtain the equations

J =—'e' [(2J+1) —M ]' e' (6.27)

1;g (2J+ 1 —M ) t (2J+ 1 —M)(J+0+ I)
2J+1 2J+1

1;g (2+&+1)[(2J+1)—M ] e'
2' 2J+1 (2J+1)'" (6.28)

We have suppressed the projection operator for the reason explained in Sec. III.E. The factor of 2 in Eq. (6.26b) can be
understood by reference to Eq. (6.24).

These results agree with those found by Marshalek with the transcription B —+6, Q~Tz, J~T, M ~I, . The
derivation given in the original paper is based on the calculation of a set of matrix elements of J

&
and J2 in the coupled

basis ~Q/2, 0/2, Q, —,'M ) by standard methods of the theory of angular momentum, followed by the utilization of the
original Holstein-PrimakoIt' method to transcribe these to a boson basis in which the mapping of the above coupled
states is to the basis (6.25).

Let us describe, brieAy, the treatment of the Hamiltonian (6.9) in terms of the bosons just introduced. In units of G
and with Marshalek's notation, we have (n =b b)

FI = —
—,
' To ( To + 1 ) + Ton

—
—,
' n ( n —1 ) +(I., /8 )To, t (2TO+1 n)[4(TO —n) —,]-

(2TO+1 2X)' b-
2x 2To+ 1 2n

+H. c. (6.29)

b ~P, b "~P*, (6.30)

and the classical minimum P=PO is found. The substitu-
tion

Here x =6 To/C)&1 in the domain of interest to us,
that is, the deformation energy dominates the spin-orbit
coupling. The steps taken to investigate Eq. (6.29) are as
follows.

(i) One replaces the boson operators by c numbers,

b =P,+a, b'=P,*+II',
[B,B ]=1

(6.31)

~0)s = ex[ pP( otbb)]~0)&, — (6.32)

is then made and an expansion in powers of B and B is
carried out. The linear terms disappear when Po has the
value determined by the minimization. In this approxi-
mation the ground state is the coherent state
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P —
7 1

/2
( 1 ~ )1/2

ao=[1—(1/x )]'
(6.33)

(ii) The transformed Hamiltonian is quadratic and
higher in B,B. The quadratic terms are diagonalized by
a linear transformation (RPA), and residual cubic and
quartic terms are treated by perturbation theory, which
mixes bands. As is well known, the second-order efFect of
cubic terms is comparable to the first-order eAect of
quartic terms. In practice, the cubic terms are eliminated
by a unitary transformation to new bosons such that the
Hamiltonian depends only on their number operator,
similar to the so-called physical monopole boson de-
scribed at the beginning of Sec. V. Energy values are
computed as well as transition matrix elements of a suit-
ably defined quadrupole operator.

The results just described provide a paradigm for the
treatment of deformed systems when an exact boson
mapping is at hand. In this respect, it should be com-
pared with corresponding treatments of the pairing in-
teraction described in Sec. IV. The main purpose of the
exercise, however, was to compare the results thus ob-
tained, which are guaranteed to be valid, with the results
of another boson method (Marshalek and Weneser, 1969,
1970; Marshalek 1987a, 1987b) that can be applied to ful-

ly realistic shell models where no exact mappings are
available for the description of the deformed regime. In
this way the correctness of the Mar shalek-Weneser
method can be substantiated. This part of the exercise
will be described in Sec. XIII as an introduction to the
general case, also treated there.

D. Generalization
of the quantized Bogoliubov transformation

In Sec. III.E we described a boson-fermion mapping
that was referred to as the quantized Bogoliubov trans-
formation. In objective terms, we are given a Lie alge-
bra, in practice associated with a shell model, together
with a subalgebra (the quasispin) associated with collec-
tivity in a limiting physical situation (pairing). The col-
lective pairs are replaced by bosons under a mapping.
We wish first to generalize the mapping of the subalgebra
so that it is defined in the full shell-model space of the
algebra. This requires an extension of the mapping so
that it contains all representations of the subalgebra real-
ized in the full space. But it also means that we must
map the individual fermion operators to quasifermions
with two salient properties. One is that, in contrast with
the original fermions, they must commute with the bo-
sons. The second, related property is that, in order to
avoid a redundant description, there must be no quasifer-
mion pairs corresponding to the collective bosons.

It is very natural then to ask how we may extend this
idea when the collectivity is not exhausted by the quasi-
spin. Here two cases should be distinguished. In the

first, one deals with a larger subalgebra of the shell mod-
el. A simple example is the algebra treated in this sec-
tion. The second case involves additional collectivity but
no precisely defined subalgebra. As an example, in the
usual j-j coupled shell model, the interpretation of the
observated quadrupole collectivity cannot be associated
with a subalgebra, at least in a straightforward way (see
below, however). Nevertheless, it would be of interest to
bosonize the J =2 pairs as well as the J =0 pairs and
have modified quasifermions that describe the remaining
"strength. "

Subalgebras subsuming J =0 and J =2 pairs can be
realized by recoupling of angular momenta utilizing the
related concepts of pseudospin and pseudo-orbital angu-
lar momenta first applied to the pseudo-SU(3) scheme
(Arima, Harvey, and Shimizu, 1969; Arvieu, 1969; Hecht
and Adler, 1969; Ratna Raju, Draayer, and Hecht, 1973).
Two significant developments have built on this recou-
pling in quite distinct ways only tangentially related to
boson mappings. In the work of Draayer and his associ-
ates (Draayer and Weeks, 1984; Draayer and Rosensteel,
1985; Leschber and Draayer, 1986; Castanos, Draayer,
and Leschber, 1988), the pseudo-SU(3) model has provid-
ed a new algebraic basis for the description of deformed
nuclei. Boson mappings for the underlying symplectic
shell-model algebras, described at the end of Sec. XVII,
have not yet been applied in a systematic way to this
problem. The second implementation, based on several
models of Ginocchio (1980), is the fermion dynamical
symmetry model (Wu, Feng, Chen, Chen, and Guidry,
1986, 1987). This scheme has produced impressive phe-
nomenological results, but it is not yet understood how
this truncation can emerge as a dynamical approximation
to the conventional shell model. This model is, however,
a prime candidate for the application of the ideas that
follow.

We turn then to the specific task of studying an ex-
tended mapping for SO(4). Here again previous work
(Matsuyanagi, 1982; Kaup and Ring, 1987) makes a
sharp distinction between the pairing degree of freedom
and a possible second collective degree of freedom or, in
terms of the operators appearing earlier in this section,
between the vector J and the vector K. In both of these
works one carries out a two-step process. First one per-
forms the quantized Bogoliubov transformation, intro-
ducing quasifermions as in Sec. III.E. One then seeks
further to bosonize the remaining quasifermion pairs.
This procedure was carried out fully by Kaup and Ring,
requiring the introduction of modified quasifermions.
Their work, which will be examined in the next section,
has the additional feature that it utilizes a Schwinger-
type boson mapping, but this latter point is not germane
to the current investigation.

In the work following below (Hahne and Klein, 1989)
we shall show how the quantized Bogoliubov transforma-
tion can be derived in a straightforward way by general-
izing Eqs. (6.13)—(6.18). A further difference in this case,
even compared to Sec. III.E, is that we shall produce a
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unitary mapping directly, i.e., without the intermediary
of a generalized Dyson mapping.

To fix clearly the particular model to be employed we
write

in which J, Jo, and J + are diagonal, the number opera-
tors being equivalent to these four operators (see below
for details).

We first generalize Eqs. (6.13) and (6.14) to
0J —(J )t—g g at Pt

m =1o=+1

Jo= —0+ —,
' g (a a +Pt P ),

m, o.

K+=(K ) = boa P
m, o

Ko= go(at a +Pt P ).
m, u

(6.34a)

(6.34b)

(6.35a)

(6.35b)

where

R'= g(a a +bt b )=R++'R'

(6.42)

(6.43)

(6.44)

The picture here is of a Lipkin model with each level pos-
sessing an additional two-valued variable cr=+. The
physics is trivially converted to two-level pairing, as pre-
viously described.

In addition to the algebra given by Eq. (6.2), one has
now to consider the commutation relations between the
fermion operators and the generators of SO(4), of which
we record only one-half, the remaining set following by
Hermitian conjugation or interchange of a and p

[a,J ]=[a,K ]

=0,
[am~»Jo]=2am~ »

[a,KO] =
—,'o a

[a,J+ ]=Pt

[P,J+ ]= a-
[a,K+ ]=crPt

[P,K+ ]= —a.at

Finally there are the anticommutation relations

(6.36a)

(6.36b)

(6.37a)

(6.37b)

(6.38a)

(6.38b)

(6.39a)

(6.39b)

(6.40)

all other anticommutators vanishing.
The method to be followed is first to generalize the bo-

son mapping of Sec. VI.B and then to study the mapping
of the fermion operators. Following the reasoning of Sec.
IV.B, we introduce the bosons B and C with the same
properties assigned there (but notice the shift to capital
letters), and in addition quasifermions a, b corre-
sponding to the fermions a, /3 . These must com-
mute with the bosons and satisfy

J:—0—8 —
—,
' 6'

C (6.45)

satisfies

J =J(J+1) . (6.46)

Thus the eigenvalues of J specify the total angular
momentum. It is also convenient to define

JV=2R'c+ &~+ R'

and to write

J+:Btr(A') . —

The generalizations of Eqs. (6.16) and (6.17) are

(6.47)

(6.48)

=Ctr(A)r(JV+1)P('Ro, & )

BtBtCQ(Rc ——1,& )'+B r(JV)g(RC, R' ), '

(6.49)

KO=C Brg+QrB C+( —J+8'ii)y . (6.50)

—(n, +1)P (n, )(2J —1)—y (6.51)

%"e note the occurrence of an additional term involving
the operator g, which will naturally turn out to be pro-
portional to (R+ —R' ), thus explaining its previous ab-
sence. In Eq. (6.50), we have also suppressed the argu-
ments of r, P, and y. In the following these will be shown
only when they are shifted up or down by some integer.

In writing Eqs. (6.49) and (6.50) we have already
satisfied the Wigner-Eckart theorem as well as Eq. (6.2b).
From the second part of Eq. (6.2d), we then find the
difference equations (also dropping the hats, which dis-
tinguish operators from their eigenvalues)

—1=ncg (nc —l)(2J+3)

ga b =pa b =0. (6.41)
y(nc —1)(J+2)—y(nc)J=O . (6.52)

It also turns out to be consistent that aH creation or an-
nihilation operators mutually commute. Selection rules
for the quasifermions are as specified in Sec. III.E. We
thus have four number operators, nz, n&, n+, which is
precisely what is needed to specify the basis of an arbi-
trary irrep of SO(4) or SU(2) XSU(2). We work in a basis

Equation (6.52) has the solution

y(nc, n )=A(n )/J(J+1) .

%'ith the substitution

P =g /(nc+1),

(6.53)

(6.54)
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Eq. (6.51) is reduced to the form

1 —[A /J (J+1) ]

=(2J —1)i)'j (J)—(2J+3)g (J+1) . (6.55)

P =F2 (n +1)rb —Fi (n —1)at B

+F4 (nc+1, n —1)rat C

F—
3 (nc —l, n +1)b C B . (6.64b)

P (J)=[CO/(2J+1)] —
—,'+[A /J ], (6.56)

The solution of this difT'erence equation is a sum of the
general solution of the homogeneous equation and a spe-
cial solution of the inhomogeneous equation,

F2 (n +1)=F,
F4 (nc+1, n —1)= F3—

(6.65a)

(6.65b)

From Eq. (6.36b), we obtain eight homogeneous condi-
tions on the F;,i =1, . . .4 which yield the solutions

where Co and A are both functions of n+.
The last task in this initial part of the work is to deter-

mine the functions Co and A. This can be done by
evaluating suitably chosen algebraic constraints in the
subspace containing no bosons. From the equations

J =—'J +—'K + '(K J+—J K)+ 4 4 4

=(—,'Q —
—,'n+ )( —,'0 —

—,'n++ 1),

J (J„+1+J)
J(2J+1)

=f3 (na. )[J /J(2J+1)]'~

where J+ =J+, and

f3 =f, (n —1) .

(6.66a)

(6.66b)

(6.67)

we deduce

J —J = '(K J+J—K)

= —
—,'(J„+1)(k+ n), — (6.58)

These relations completely exhaust the content of Eqs.
(6.36)—(6.39).

The analog of the normalization argument associated
with Eqs. (3.53) and (3.54) provides values for the func-
tions f i . We find that

where f, —:f (n )=[2(Q—n )] (6.68)

(6.59)

Equating the expectation values of the two forms of Eq.
(6.58) in a state with arbitrary allowed n+, but with

nc =na =0, we easily find {a,a ~ ] =5 —b (0—n ) 'b (6.69)

The anticommutation relations of the fermions then yield
the following nonvanishing anticommutators among the
quasifermions:

A (n+, n )=—,'(n n+ )—(J„+1). (6.60)

To evaluate Co, we than calculate the average of the
second commutator in Eq. (6.2a) for the same class of
states and find

{b,bt ~ I
=5 —at (0—n ) 'a

{a,bt.
l
=b" (0 n) 'a—

(6.70)

(6.71)

Co=(J„+—,')(J„+—', )[1 (n ——n+ ) ] . (6.61)

The generalization of Eq. (6.18) that results from Eqs.
(6.54), (6.56), (6.60), and (6.61) has the form

P(J, n+, n )= J+J (J„+1+J )

J (2J —1)(2J+1)
(6.62)

where (in a notation not to be confused with a previous
designation for angular momentum operators)

An interesting, largely open problem is the extension
of these results to other exact subalgebras. [See Sec. XIX
for the case of U(3).]

If the Hamiltonian of a system of interest belongs to
the enveloping algebra of the subalgebra, it is clear from
the concepts already discussed that there will be simple
numerical relations between observables of a "nucleus"
and its neighbors, an observation that carries the essence
of the idea of supersymmetry. [For an introductory dis-
cussion, see Bonatsos (1988).]

E. Schwinger mapping
J =Q —nc —n =Jc—n (6.63)

+F3 rb C+F4 a C B, (6.64a)

We turn then to the task of mapping the fermion
operators. %'e outline the. slightly tedious calculation.
From the commutators of a and /3 with the com-
ponents of J, we determine the forms

As remarked previously, Kaup and Ring (1987) have
pursued ideas related to those presented in the previous
subsection, their prior work difT'ering from ours in three
respects: (i) They sought to reach the final result in two
steps, the first of which is the usual quantized Bogoliubov
transformation. (ii) For the bosonization they proposed a
Schwinger-type mapping. (iii) They utilized the
Marumori- Yamamura- Tokunaga method. Without at-
tempting to reproduce their reasoning in detail, we shall
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J+ =vtu, J =utv, Jo= —,'(6', n) .— (6.72)

where

nv V V, nu —u u (6.73)

in the notation of Ring and Kaup. In this representation
we also have

now apply the method of the previous subsection in order
to present the essence of their results. We consider only
the simplified situation without quasifermions, analogous
to Eqs. (6.13)—(6.18), since exactly the same methods as
we have developed above can then be applied to include
the latter.

As described in Sec. II.F, we replace the mapping
(6.13), (6.14) by the representation

J=—,'(n„+n„)=n, —0—k =0 —nd, (6.79)

or

n, +n„=2n+k,
n, —nd —k =n„+n, .

(6.80a)

(6.80b)

By combining Eqs. (6.76) and (6.80), we can derive vari-
ous formulas for X, for example,

X=2nd +2nU (6.81)

Kaup and Ring choose k = 1 (their 0 is our 20), but it
seems to us that any value of k ~ —Q will serve. Below
the choice k =1 is made.

If we now apply the algebraic method of the previous
section, the result

(6.74) N& = —
C&z =@z(n„+n„,n„nd ) (6.82)

and

iQ, —0 }—:ivac }=(2Q!) ' (ut) ~0} . (6.75)

satisfies a difference equation that with proper normaliza-
tion [determination of the constant corresponding to the
Co of Eq. (6.56)] can be written as

2V =20—n„+n, , (6.76)

these are a sufficient set to complete the mapping, but we
shall not pursue this remark, since it is not the path
chosen by Kaup and Ring.

They choose to introduce two additional bosons s and
d and (in our transcription) write

E+ =d suu N &++2v ~v ts ~d, (6.77)

where N; are, as usual, only functions of the number
operators. What can such an ansatz mean? Since the
products uu and v~v already carry the needed selection
rules, the operator products d s and s d must e6'ect no
change in quantum numbers. The simplest way to
achieve this result is to choose these bosons to carry no
quantum numbers, but to perform a bookkeeping func-
tion only. From Eq. (6.76) it is clear that the vacuum
state must now be occupied by a sum. cient number of s
bosons so that K+ can act a requisite number of times in
order to generate the correct number of states of the ir-
rep. To achieve this result, we postulate a representation
of the vacuum of the form

I&, —&& =(2nt)-'"(u')'"[(2n+k)t]-'"
~ (~t)2n+ k~0} (6.78)

When we turn to the operator E, which may change the
values of J (consider, for example, K+ ), notice the availa-
bility of the two operators u u, v v, both of which in-
crease J by unity but also alter Jo by +1, respectively.
Since these operators can also be used to keep track of
fermion number X [defined as the number of particles
plus number of holes for the realization (6.34) and (6.35)
of the algebra], according to the formula

1/2(0+ 1 J)(Q+ 1+J)
(2J+ l)(2J —1)

=[(n, —1)ln, ]' [(n, nd —1)(n, —
nd

—3)]—
(6.83)

where Eqs. (6.78)—(6.80) have been utilized. For the sake
of comparison, the second square root may be identified
in Eq. (4.5a) of Kaup and Ring. As previously remarked,
the calculation can be extended to include the quasifer-
mion mapping.

Vll. SO(5}=Sp{4}MAPPINGS
AND APPLICATIONS

A. Physical models associated with algebra

In this section, we shall study some properties of the
algebra SO(5) [isomorphic to Sp(4)], which has served as
a basis both for approximate realistic physics and for toy
models (Hecht, 1965a, 1965b, 1967; Agassi, 1968;
Goshen and Lipkin, 1968; Schutte and Bleuler, 1968;
Ichimura, 1969; Evans and Kraus, 1971; Krumlinde and
Syzmanski, 1971; Chattopadhyay, Krejs, and Klein,
1972; Eichler and Yamamura, 1972; Dasso and Klein,
1973, 1974; Dasso, Krejs, Klein, and Chattopadhyay,
1973; Krumlinde and Marshalek, 1973; Krumlinde and
Syzmanski, 1973; Vassanji and Klein, 1978; Klein, Rafel-
ski and Rafelski, 1981). Given a set of single-particle fer-
mion states labeled by m, o. where

k to be determined. The only way this can make sense is
if one imposes the constraints

—j ~m ~j, o. =+1, 20=2j+1,

one may define the ten operators

(7 1)
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At ~ =[20(1+5 )] 'i g( —1)' a a B. Characterization of the mappings
to be studied

= A =( A ~ ) (6 operators),

B =(20) ' pat a

(7.2a)

—= (2Q) ' X (4 operators) . (7.2b)

Jo =(N++ —X ), (7.3)

and an admissible Hamiltonian is one that commutes
with

N=N++ +N (7.4)

and with Jo. Hamiltonian operators in this set can de-
scribe rotations and vibrations in two dimensions and
thus can provide tractable analogs for the collective be-
havior found in real nuclear systems. Furthermore, by
considering more than one level, we can study models
with the symmetry SO(5) X SO(5)X, still relatively
tractable. We can thus refer to this version of SO(5) as
the vibration-rotation model.

Notice that the scaling of the pair operators is different
from that previously employed in this work.

In the history of nuclear physics, the algebra of the set
(2) has been utilized in at least three distinct ways, ac-
cording to the physical interpretation given the quantum
numbers, m, o.. In the earliest use, the model is that of a
single j level and o. =+1 distinguishes neutrons from pro-
tons which, neglecting the Coulomb interaction, are as-
sumed to occupy a degenerate single-particle orbit. The
problem of interest is that of charge-independent pairing,
since in this interpretation the ten operators (2) carry an-
gular momentum zero. Here N+, N +, and

2 (N++ —X ) are the generators of an SU(2) subalge-
bra describing the isospin and A ~++, 3 +, 3 ~ form a
vector under this SU(2). The basic requirement of this
model is that the Hamiltonian H be a scalar under the
same subalgebra.

In the second interpretation of the algebra, j is again
an angular momentum coupled to a resultant of zero, but
o.=+I distinguishes two separated single-particle levels
of equal degeneracy. In this form a scalar Hamiltonian
need only conserve fermion number. This model is often
referred to as the monopole-plus-pairing model because
of the usual form chosen for H, which makes the model a
generalization both of the Lipkim model and of the two-
level pairing model.

In the third interpretation, we again (as in the first in-
stance) choose a completely degenerate orbit, but now in-
terpret 0.=+1 as a unit of angular momentum along or
opposed to a fixed (spatial) axis. For example, the opera-
tor 3 ++ creates two particles and two units of angular
Inomentum; 3+ creates two particles and no angular
momentum; B+ conserves number but adds two units
of angular momentum, etc. The physical angular
momentum for this model is

In the following, we shall derive and study three
different boson mappings for the irrep of SO(5) that con-
tains the vacuum state for fermions (Klein, Cohen, and
Li, 1982). Before describing how to derive these map-
pings and what we use them for, it is appropriate to ex-
plain why three is a natural number to consider [just as
we found two mappings for SO(4) for the corresponding
reasonj. We start with the fact that a basis for the repre-
sentation in question can be obtained by orthonormaliza-
tion of a linearly independent subset of the vectors

(7.5)

C = —,'QI A, A I+ —,'(X —0)
=

—,'(A —(no),„)—,'(0 —(no),„+2), (7.6)

where (no),„, half the usual seniority quantum number,
is the maximum value of no that occurs in any com-
ponent of the form of Eq. (7.5) contributing to a basis
vector. Thus the two quasispins are equal and yield just
one quantum number. The other two quantum numbers
are provided by the operators

N++ =2n+ +no, (7.7a)

=2n +no, (7.7b)

both values allowing mixing of components (7.5) with no
changing by two and n+, n changing by one each in
the opposite sense. By applying the commutator method,
we find that the information provided above suffices for a
determination of the mapping.

(ii) A+, A+, and (2Q N++ —X ) generate—an
SU(2). In the vibration-rotation model, this is the natural
SU(2) associated with the pairing limit of the model. In
this case the seniority is 2(n++n ),„, with a second
quantum number provided by

%=2(n++n +no) . (7.8)

This SU(2) supplies only two quantum numbers, but a
third is provided by the angular momentum operator

For a physically interesting choice, the three quantum
numbers needed to specify basis states should be eigen-
values of operators associated with closed subalgebras of
SO(5). These basis vectors will also be eigenstates of lim-
iting forms of a suitably chosen model Hamiltonian.
There are precisely three subalgebras of SO(5) that can be
used for this purpose:

(i) A++, A++, and (X++ —0) form an SU(2) that
commutes with the corresponding SU(2) formed fromA, A, and (N —0). This SU(2) X SU(2)—=SO(4) is a natural choice of subalgebra for the
monopole-plus-pairing model in the pairing limit. In the
rotation-vibration model, it plays a very special role that
will be described later. In the basis under discussion, one
can compute the eigenvalue of each Casimir operator,

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



A. Klein and E. R. Marshalek: Boson realizations of Lie algebras 413

Jo =2(n+ n—) . (7.9) n =l, I+2, l+4, . . . . (7.16)

X++ =2n+ +no =2a+a+ +aoao,
=2n +no =—2a a +aoao .

(7.10a)

(7.10b)

These operators are diagonal in the direct product basis

(a+) + (a ) (ao) '
In+, n, no)= +

I0) . (7 11)
n+l n l

(iii) The operators v 2QB+, v'2QB +, and —,
' Jo gen-

erate an SO(3) subalgebra. For a mapping based on this
subalgebra, the pair of quantum numbers l, m, using
standard angular momentum notation, is supplemented
by Eq. (7.8). This SO(3) is useful in all three interpreta-
tions of SO(5)—as the total isospin for charge-
independent pairing, for the monopole limit of the
monopole-plus-pairing model, and for the rotational limit
of the vibration-rotation model. This form of the map-
ping is actually a special case of mappings developed for
realistic shell-model algebras, where they are commonly
referred to as 8elyaev-Zelevinsky-Mar shalek (BZM)
mappings. These will be studied in the general case,
starting with Sec. IX.

We shall describe mappings from each of the orthonor-
mal bases characterized above to a basis of orthonormal
states in a space of three bosons. We begin with the bo-
son bases, which are very simple. (It will be unnecessary
to specify the fermion bases in any more detail than we
have done). For example, it is almost immediately evi-
dent from our discussions under (i) and (ii) above that for
mappings associated with some seniority quantum num-
ber, the integers n+, n, no, introduced in Eq. (7.5), are
natural choices for boson occupation numbers. Thus we
introduce boson creation (annihilation) operators
ai (ai ), A, =+, 0 with the identifications

Without providing any details, we record the basis in the
form (n =l+2v)

In, l, m)= (2l + 1)!! (Ct)„II I )
2 v!(2l +2v+1)!!

(7.17)

where the scalar operator

Ct=2a+a —(a t
) (7.18)

commutes with J+, Jo and implies the selection rule
(7.16). It is easy to verify that

C2 —=CtC =R(6+'1') —J
Further, the states

I I, I, m ) have the form
1/2

Il, l, m)= (J+ ) II, I, I)—( I —m )!
(I +m)!(2l)!

(7.19)

(7.20)

(7.21)

l+o. I 1

nIa (o) (7.22)

in terms of the Wigner 3j symbol. Only the values
o. =+1 yield nonvanishing elements according to the
selection rules established. The matrix elements required
can be calculated easily from sum rules for number and
angular momentum. We find

Finally we shall require reduced matrix elements a„&(o.)
of the boson operators, defined by the formula

(nlmIai In —1,l+o, m —A, )

We define the mappings (i) and (ii) to be from the distinct
fermion bases described under these subheadings to the
single basis (7.11).

The boson basis needed for the mapping described un-
der (iii) is characterized by the states

I n, l, m ), where n is
the total boson number,

a„i(1)= [(n —l)(l + 1)]'~

a„i( —1)= [I (n + I + 1)]'~

C. Derivation of seniority mappings

(7.23a)

(7.23b)

n =n++n +no= ,'(N+++N )—,

l and m are the eigenvalues, respectively, of

J =
—,
'

I J+,J ]+J, =l(1+1),

J, =
—,'Jo=(n+ n), —

(7.12)

(7.13)

(7.14)

We are finally ready to derive the mappings. In fact,
two derivations of each mapping were given in the paper
under review (Klein, Cohen, and Li, 1982). It turns out
that the commutator method is most convenient for map-
pings (i) and (ii), which we study first. Consider, for ex-
ample, mapping (ii) appropriate to the pairing limit of the
vibration-rotation model. It is convenient to change no-
tation for the generators:

J+ V'2QB+ =V'20——(B + ) =&2(a+ao+aoa ) .

(7.15)

&++~&+ &+ + ~&+

A+ + —+A+, A+ —+HO . (7.24)

Note that this is a Schwinger realization of SU(2).
From the Bose statistics, for given l and I, n takes on

the values

Now in the mapping to the basis (ii), we interpret
(n+ + n ) as the seniority. We start with a Holstein-
Primakoff mapping of the associated SU(2) defined in
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connection with Eq. (7.11), i.e., with a knowledge of four
operators, X+ given by Eq. (7.10), and A o, Ao given by

A Ot =a Ot [ 1 —(2n +no ) /2Q ]
' =g tr (~)

Qf the remaining six operators, four are determined from
the prototype form

A+ =a +F&(n +n, no)+(a o) a F2(n+, n, no)f 2

(7.26)

and the remaining two from the commutation relations

The mapping corresponding to basis (i) in the fermion
space and appropriate to the monopole-plus-pairing mod-
el can be derived by the same method. It is actually con-
tained as a special case of a more general class of map-
pings first obtained by Evans and Kraus (1971). See also
Klein, Rafelski and Rafelski (1981). Here an appropriate
notation refers to levels 1 and 2 (lower and upper), so
that we write

N+ —+&2, B+—+B21, 3 + —+ A 2, A 0~ 3 21, etc. ,t

(7.30)

[A A )= —0 ' B+ . (7.27) a+ ~a2, a —+a, , aO~a2, , (7.31)

—(20) '(ao ) a f(n —1 n )+, (7.28a)

QB+ =a+aor(JV)f(n+, n )+r(JV)f(n, n+ )aoa

(7.28b)

where (nd=n++n )

f (n+, n )=r(n+ —
—,')/r(nd —

—,')r(nd+ —,') . (7.29)

Let us consider the justification of the form (7.26),
which is a paradigm of the arguments that led to the re-
sult for SO(4) in the preceding section. The operator 2 +
increases or decreases the seniority by two units and in-
creases particle number by two. (It can also leave the
seniority unchanged, but such terms do not occur for the
irrep under study. ) Now the operator a+ only increases
seniority. Thus two tensors 0+ aild (ao) a (up to
powers of the number operators), can contribute to A +.
Each does part of the job that 2+ can do by itself. The
simplicity of the results to be obtained thus arises from
the relatively small number of independent tensors obey-
ing the required selection rules that can be constructed
from the given bosons. The form of the functions I", and
I"

2 can be obtained from a suitable set of commutation
relations that yield easily solvable diIterence equations.
The techniques are the same as described for SO(4). The
result is

At+ =at+r(A')v(JV+ —,')f(n+, n )

i aI. ~i & n21 a 21021 (7.32)

The mapping is specified by the equations

Ã, =2n;+n2, (i =1,2),

r; =[1 fl '—(n;+n2i )]'

(7.33a)

(7.33b)

(7.34)

From the algebra, we then derive the representations

~ 21 a 21ri ~24(+21 ) + 0(n21 )+2+ ia2i
—1

+B21 ~1 P(n21) 2 21++21 10(+21 'r2

where

Q(Q+ I ,'n )——1/2

(0—n +1)(Q n)—

(7.35a)

(7.35b)

(7.36)

Before going on to derive the remaining mapping, we
discuss just once more the observation made in connec-
tion with Eq. (2.11). It is that, when properly viewed, the
boson basis (7.11) within the physical subspace can be un-
derstood to represent an orthonormal basis in the fer-
mion space. This can be seen, for example, by formally
inverting the mapping (ii), specified by Eqs.
(7.25) —(7.29). We derive [see Eq. (7.25) for the definition
of A]

( a (~) )F = A to [r (JV) ] ' = [r (A' ——,
'

) ]
' A o,

(a+ )F=[ A ~r(JV ,')r(JV 1)+[2Qr(JV———,')r(A—'—1)] '(—Ao) A }

X If(n+, n )[r (A'+ —,
' )r( JV)r(JV —,

' )r(A' 1)]—(20)——no(no —1)]

(7.37)

(7.38)

U =2(n++n ) (7.39)

with a corresponding equation for (a )F. The notation
is chosen to emphasize that these are fermion operators
that behave like bosons within the finite-dimensiona1 vec-
tor space of the irrep. The specification of the right-hand
sides of Eqs. (7.37) and (7.38) as a fermion operator is
completed by the replacements

and Eqs. (7.8) and (7.9), namely,

n+ =—'(u+J),

no= —,'(X —U) .

(7.40a)

(7.40b)

Thus, as a result of the mapping, we can now give the
orthonormal basis in the fermion space.

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



A. Klein and E. R. Marshalek: Boson realizations of Lie algebras 415

D. Derivation of the Belyaev-Zetevinsky-Marshalek
(BZM) mapping

We turn finally to mapping (iii), the BZM mapping.
Although the result can be derived by a suitable adapta-
tion of the commutator method, in this case we have
found that it is more systematic to use the method al-
ready illustrated for SU(2) in which the Dyson mapping
is used as an intermediary.

We begin with the appropriate SO(3) mapping as well
as the mapping for the number operator,

(N)D =2(aoao+a+a++a a ),
(Jo)D =2(a+a+ —a a ),

(7.41a)

(7.4 lb)

(wi. )D ——a

(Ai )D=ait(/ —0 ' n)+(2Q) 'C ai

(7.42a)

V n(B+)D V'n(B ——)tD (a+ao+——aoa ) . (7.41c)

[As remarked below Eq. (7.9), the usual angular momen-
tum operators are half of Eq. (7.41b) and the root two
times Eq. (7.41c), respectively. ] The remaining six opera-
tars are given by an easily verified Dyson form

matrix elements in the orthonormal basis ~n, /, m) in
which V is diagonal. In this case the reduced matrix ele-
ments of a&~ simply cancel out, and we obtain the equa-
tions

V '( n + 1, l + 1)V(n, l) = 1 —(2Q) '(n +/),
V '(n +l, l —1)V(n, l)=1—(2fl) '(n —l —1) .

(7.50a)

(7.50b)

S '(n +1,/ —1)S(n, l) = [1—(20) '(n —l —1)]'~

(7.51b)

With these matrix elements, we can return to Eq. (7.46b),
for instance. To utilize this condition, we need a general
form of 2&,

Ai =f (n, l)ai, +g(n, l)a iC

Assuming (without loss of generality) that S =S=real
or V=S, we can take the square root of Eq. (7.50) in the
form

S '(n + 1, l + 1 )S (n, l)= [1—(20) '(n +/) ]'~

(7.51a)

=a&(1 0'n )+—(4A) '[C2, ai ], (7.42b) =f (h, l )ai„+g(R', l )—,'[ai, C2] . (7.52)
where C2 is the Casimir operator defined by Eq. (7.19),
and

Taking matrix elements of both sides of Eq. (7.46b) and,
proceeding as before, we derive

ai=( —1)' a (7.43) (2l+ 1)f(n, l)=(l+n +1)[1—(2Q) '(n +/)]'~

Next we seek a similarity transformation S, which first of
all leaves Eq. (7.41) unaff'ected

(7.44a)

(7.44b)

These conditions tell us that S commutes with X and J&.
Consequently [we use l instead of l =—/(l+1)],

—(n —l) [1—(20) '(n —l —1)]
'

(7.53a)

(2l + 1)g (n, /) = [1—(2Q) '(n —l —1)]'~

—[1—(2A) '(n +l)]' . (7.53b)

These results can also be used to define an orthonormal
fermion basis.

S=S(R', l ) . (7.45)

Given Eq. (7.45), we shall determine S from the condi-
tions

(7.46a)

(7.46b)

and

E. Applications

We next apply the results found above to the
vibration-rotation model. Consider first a single SO(5)
for which the most general admissible quadratic Hamil-
tonian may be written

From Eqs. (7.46) and (7.47) we deduce

(7.47)
Hi, ~ = —GAoAo —Gi(A+A++ A 2 )

,'F IB+,B ]+DJ—o+CN (7.54)

V '(Ai, )tD V=(Ai„)D, (7.48)
For the study of excitation spectra, we can set C=O.
Furthermore, since the quadratic Casimir invariant is

where V=s S or, substituting Eq. (7.42) into (7.48), we
have

V 'a&V=a&[1 —Q 'n]+(40) '[Cz, a&] . (7.49)

Equation (7.49) can be studied by taking nonvanishing

A=A+3= [ Ao, Ao j+ [B+,B I+ I 2+, 2+ I

+ [ A, A I+(40) '[Jo+(2Q —N) ],
(7.55)
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where 0+3 is the value for the irrep under study [ob-
tained by calculating the vacuum expectation value of
Eq. (7.55)], we can drop one of the remaining terms in
Eq. (7.54). This we do by setting 62=0. Finally, since
Jo will always be diagonal, we can add its eAect at any
time.

Thus we are left with the two-term Hamiltonian

where (o.=+) [cf. Eq. (7.6)]

(7.57)

(7.58)

(H/G)=[1 —(20) 'X]—
—,'A+0 '(C++C ),

H = —GA OAO ,'F—[B—+,8 (7.56)

the sum of a pairing plus quadrupole-quadrupole interac-
tion, which was first studied numerically by Chatto-
padhyay (Chattopadhyay, Klein, and Krejs, l972). For
F=O or 6 =0, we have well-known limiting cases corre-
sponding for F =0 to single-level pairing with an almost
harmonic excitation spectrum, and for 6 =0 to the two-
dimensional Elliott model discussed in the previous sec-
tion.

In Fig. 2, a series of spectra that demonstrate this lim-
iting behavior is shown, calculated for diIterent values of
the ratio x =(F/4G 0,). These calculations exhibit one
surprising feature. As F increases from zero, one expects
to see the originally degenerate multiplets of fixed senior-
ity but diA'erent angular momentum split apart increas-
ingly with F (anharmonic splitting of phonon multiplets).
This fails to occur because of a special symmetry associ-
ated with the value F=6. For this value, using Eq.
(7.55), we may rewrite Eq. (7.56)

The eigenvalues of C can be evaluated in terms of boson
variables from the mapping results (7.33)—(7.36), and we
find

Ci =C =—,'(0 —no)(Q —no+2)

= —,'(0 —n+ —,'U)(fl —n+2+ —,'U) . (7.59)

H =e&Xj +e2%2

Thus the excitation spectrum for a fixed n depends only
on U, which means that phonon splitting will be largely
absent for this model in the immediate neighborhood of
the phase transition from spherical to deformed shape.
This is in sharp contrast to the usual three-dimensional
situation.

As a second application of the mappings derived
above, we consider a system with two levels, each de-
scribed by the SO(5) algebra. We take the Hamiltonian

O.O

—1.0—

.= -2.0—
C

0+4,+ 8+ )Z ——

+g eg +~0

—0, +4. +8

eg +6

0, 4O

-C,+4.~6, + it

—+2,+6, + to

+ g

+2

+2 +6 +~0

+g 0

+io

0
+e

4a

++
+ ~0
+ g

+e

—-O. 5

q 0.0
+I

+ia,o

C9

4kz -3.0—
LLI

— 0
0

+e
0

I I

Q.4 0.8 1.0
0 I

O. O

FIG. 2. Energy levels of the Hamiltonian (7.56) for various values of the ratio (x/4GQ). Notice that at x=1 the scale of the abcissa
has been changed to x . For x 1, the energy scale on the left applies, and for x) 1 the energy scale on the right is appropriate.
The levels correspond to the system 0=22, %= 12. From Chattopadhyay, Klein, and Krejs, 1972.
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where A, =1,2 distinguishes the two levels. We now have
a system with two J =0 degrees of freedom and two J=2
degrees of freedom. In the spirit of the interacting boson
model, we are interested in finding a single collective de-
gree of freedom of each kind to describe a set of low-

I

lying collective states. Toward this end we shall apply
the trace variational principle described in Sec. IV.

For illustrative purposes we utilize the seniority-
adapted mapping called (i) above, with Eq. (7.60) as an
operator on the space of six bosons with basis

In+„n „no„n+2,n 2, no&)=A'(a+, ) (a+2) (a, ) (a z) (ao, ) (ao2) IO),
Pl + J f . 71 +2 f n ] f Pl 2 t 7lQ] f PlQ2

+1 n+2 n 1 n —2 n01 n02 ~ ]~~v~= s
~I t t t t I

&

~1/2 (7.61)

p,4

Q,4 p,4
- I IO

-I20—

2

0
0
p,4

-110—
4
0
Q
4

0
4

6

Q 2
0
Q,4

4-0
4

We introduce new bosons c t;, which are linear in the old,

c;= g a";&a I (o =+,0, i =1,2),
/=1, 2

(7.62)

conserving angular momentum in the transformation.
The a*;& define a unitary (ultimately orthogonal) transfor-
mation. In the method in question, in the inverse trans-
formation,

-130

-140—

-!30—

-I40—'0

2
2 -!30—

-!40—

2

(7.63)

we suppose c 1
=c to be the collective boson and drop

the dependence on c 2,
0

0 J
J -0

0
J

(o) G=1, F*O

-85—

(b) G=&, F =05

60

-70—
0

p p
4

0
2,6
p,4

0.4
S.I2
2
0
6
6
4
IP
4

(c) G=&, F ~ t

8

0, !2

4
Ip
2
0

75 ~

-80—
0 p

~~~p
J

EXACT VAR IATI ONAL 6XACT VARI ATIQNAL

(e) G~O, F~ 1

EXAC T VARIAT I ON A L E XACT VARIATI ONAL EXAC T VA R I AT IONA L

Q ul O!alC (7.64)

When Eq. (7.64) is substituted into Eq. (7.60), one obtains
an operator function of the c and c depending also on
the unknown coefficients a+ &

=n
&

and n01. This can be
determined from the variational principle 6 TrH =0,
where the trace is taken in the space of states

In+n no)=(n+!n !no!) ' (c+ ) +(c ) (co) 'IO),

(7.65)

from which the collective states are supposed to be con-
structed. The results for the spectrum are quite satisfac-
tory (Cohen and Klein, 1982), as illustrated in Fig. 3.
Here we see five spectra calculated for various values of
the pairing and quadrupole interaction strengths. The
trace variational principle yields only a subset of the en-

ergy levels, of course. The reader should ignore the
dashed lines, which represent an approximation of no in-
terest to the present discussion. The quadrupole matrix
element connecting the ground and first excited state was
also computed and excellent agreement found.

For the many other applications of the SO(5) model to
schematic models, the reader is referred to the references
quoted in the first paragraph of this section.

FIG. 3. Energy-level diagrams for the SQ(5) X SQ(5) Hamjltonj
an: {a) A, =Q =10, e, = —10, e =0, %=12, G=1, F=O; (b)
G= 1, F=0.5; (d) G= 1, F= 1; (e) G=O, F= 1. The calculations
are done exactly, by the trace variational method and by a trun-
cation of the trace variational method (the interacting boson
model analog). The IBM analog is given on the same plot as the
trace variational calculation. Where they differ, the IBM ana-
log states are represented by dashed lines. From Cohen and
Klein, 1982.

F. Boson mappings
for a general representation

The developments described in this section have so far
been confined to the so-called vacuum representation, the
one which contains the state with no particles, We have
emphasized that the states in this representation are
specified by three quantum numbers. Of course there is a
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JV .= g a am~' (7.66)

or, removing the total number,

X am~am~ ~

m, o.
(7.67)

fourth quantum number 0, which is equivalent to the
specification of the (two) Casimir invariants. That only
one quantum number is thus provided signals that the
vacuum representation is degenerate in the sense that the
two Casimir operators of SO(5) are not algebraically in-
dependent. The states of a general irrep of SO(5) must be
specified by six quantum numbers (one half the sum of
the number of generators and the number of Casimir
operators). By generalizing the ideas associated with
boson-fermion mappings of the type studied so far for
SU(2) and SO(4), one can understand how to assign the
additional two quantum numbers and what their physical
significance is.

Thus for a boson-fermion mapping we introduce in ad-
dition to the three bosons utilized so far a set of quasifer-
mions a, a, o =+, which are subject to the con-
straints that they cannot form the pairs that define the
pair generators of SO(5). We can, however, form a U(2)
algebra, generated by

Kraus, 1971) or leaves it in abstract form (Klein and
Zhang, 1986). We refer to the literature for details of this
work. The second (Hecht and Elliott, 1985) is a deriva-
tion of the general irrep in the BZM representation car-
ried out by the new method based on the concept of the
generalized coherent state (Deenen and Quesne, 1984,
1985; Rowe, 1984; Rowe, Rosensteel, and Gilmore, 1985;
Quesne, 1986; Rowe, Le Blanc, and Hecht 1988). This
method is closely allied to those mapping techniques uti-
lized throughout this review to build a final unitary map-
ping through the intermediary of a Dyson mapping; it
will be discussed in Sec. XIX.

We dwell somewhat upon the third result in the litera-
ture, the work of Geyer and Hahne (1980b), because it is
informed by a viewpoint that divers from the one de-
scribed by us so far in this section. We have emphasized
the importance of identifying the quantum numbers of
the fermion basis, from which one maps, and of the bo-
son basis to which one maps. Geyer and Hahne only
worry about the second of these sets. In addition, they
stress the simplicity of the generalized Dyson mapping.
They succeed in imposing a simple structure on this map-
ping without having to consider which operators are di-
agonal in the fermion basis. We quote their results: In
their notation (only the creation operators given)

from the algebra, an SU(2). It can be shown that, despite
the altered algebra of the quasifermions, the algebra
(7.66) of the multipole operators will be the same as that
of the N, Eq. (7.2b). This algebra is conventionally
identified with the concept of reduced isospin t, because
of the historical connection with the problem of charge-
independent pairing (Hecht, 1965a, 1965b).

Thus we introduce a state of maximum weight in the
quasifermion space,

s, =(2n)'"~'
I.,=(4n)'"a',
l, =(4n)'"~'

[cf. Eq. (7.2)]

5, = —,'(N++ +N ) —n,
L, =

—,'(N++ —n),

(7.70)

K

Im„. . . , mx &= ~ at lo& . (7.68) l, =
—,'(N —n) . (7.71)

This state carries t= —,'E. In additional to the raising
operators A, introduced in Eq. (7.5), the JV+ will

now be raising operators acting on Eq. (7.68), but they
cannot change the value of t, which is fixed for the repre-
sentation and provides a fifth quantum number. The
operator

They insist that (in our notation for bosons)

5 =ao, I. =a+, l =a (7.72)

S+ =ao(2n —u no 2n+ 2n——)—The commutation relations are then satisfied by the equa-
tions

t, =
—,'(JV++ —JV ) (7.69) —a+a ao —a+t —a t+, (7.73a)

defines the sixth quantum number. None of the work on
boson mapping of general SO(5) reported in the literature
(Evans and Kraus, 1971;Geyer and Hahne, 1980b; Klein
and Zhang, 1986) realizes the reduced isospin in this way,
which is the natural road to take to generalize the quan-
tized Bogoliubov transformation (Hahne and Klein,
1989).

Turning to the results available in the literature, we
find that they are of three kinds. The first represents the
generalization of the mapping that utilizes the group
chain SO(5)&SU(2)XSU(2) and either realizes the re-
duced isospin in terms of an extra boson (Evans and

L+ =at+ (n —
—,'u t, n+ no)— — —

—(a(~) ) a —a(~)t+,

l+ =a" (n —
—,'u+t, n no)— —

.

—(aot) a+ aot—
L, =n++ —,'no+ —,'( —,'u+t, —n),

l, =n + ,'no+ —,'( —,'u t, ——n), —

(7.73b)

(7.73c)

(7.74a)

(7.74b)

N+ =—T+ =2aoa +a+ao+t+ =(T ) . (7.74c)
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These are remarkably simple formulas. The implication,
which remains to be justified, is that these formulas will
be simple to apply. For this point we must defer to the
discussion in Sec. XVI. Finally, we refer the reader to
the original work of Geyer and Hahne for ways of realiz-
ing t in terms of additional bosons. As remarked earlier
in this section, for nuclear applications, it seems more
natural to realize the reduced spin in terms of quasifer-
mions.

Finally, Geyer (1986b), following a suggestion of Kim
and Vincent (1987), has shown how to construct (for the
case t =0) a similarity transformation connecting the re-
sults just quoted with one of the sets of results discussed
earlier in this section.

Vill. SU(n) SYMMETRiC REPRESENTATiON

Mi=TrA, M2=Tr(AA), M3=Tr(AAA), . . . ,

M„=Tr(AA A ) (8.6)

commute with all the U(n) generators A", and hence
with each other. Here the product (A A A )", for example,
is defined by

(AAA)"= g A, (AA)~i= g A A~iA" . (87)
k=1 A,,p=1

These n quantities M (j=1,2, . . . , n) are the algebrai-
cally independent Casimir operators of the U(n) group
and specify its irreducible representations ( Biedenharn,
1962; Klein, 1963; Umezawa, 1963, 1964a, 1964b.) Irre-
ducible representations of U(n) may be characterized by
n integers

A. Introduction

Before we turn to the general shell-model problem, we
consider a set of examples associated with the algebra
SU(n) (Li, Klein, and Dreizler, 1970; Louck and
Biedenharn, 1970; Meshkov, 1971; Okubo, 1975; Klein,
1980b; Klein and Vallieres, 1980; Marshalek, 1980a;
Klein, Li, and Vallieres, 1982a, 1982b). We begin with
some general remarks.

The Lie algebra of the n-dimensional unitary group
U(n) is specified by the commutation relations

[ A ",A Ii ]=5)A —5 A p~, (8.1)

in terms of n generators A", where all Crreek indices

p, v, a,P assume n values 1, . . . , n For t.he SU(n) sub-

group, we have only to replace 2"by a traceless tensor

n

B"=A" ——5" g Ai .
A, =1

(8.2)

An operator T", is called a vector operator under U(n) if
it satisfies the commutation relations

Then M is a polynomial of degree j in f„.. . ,f„. The
explicit form for M1 is simply

M, =f, +f2+ +f„. (8.9)

(8.10)

For this set of representations all the M are algebraically
dependent. This can be seen by means of an example.
Consider n bosons (a„,a„),@=1, . . . , n, satisfying

[a,at]=5, etc . (8.11)

It is easily checked that the operators

Convenient formulas for evaluating the M are known
(Perelomov and Popov, 1966). Above and in the follow-
ing discussion we use the same symbols for operators and
for their eigenvalues, depending on the context to distin-
guish them.

The simplest class of representations are the complete-
ly symmetric ones for which

[ A"„Tti]=5~pT, 5Tp . — (8.3)
A"=a a„ (8.12)

We see from Eq. (8.1) that A& itself is a vector operator.
It follows from Eq. (8.3) that the trace of a vector opera-
tor

satisfy the commutation relations (we have already stud-
ied the case n =2). Further, we have

TrT= g T~z

A, =1
('4) and

( A A )"=(n —1+N) A" (8.13)

commutes with all the generators 2".
If we have two vector operators S" and T", we can

define a product vector R" by

PR"=(ST)~= g S Tlt', .
A, =1

(8 5)

It is easy to verify that R satisfies the definition (8.3) of a
vector operator. Combining this observation with the
observation associated with Eq. (8.4), we conclude that
the n operators

Mi =N= g alai .
A, =1

(8.14)

It follows from Eqs. (8.13) and (8.14) that by specifying a
value of N=f we have completely specified the irrep,
and all the MJ are given polynomials in f (or N). The
basis for this irrep is the subspace with N =f of the n

dimensional harmonic oscillator. For U(2), this is the
Schwinger realization (Schwinger, 1965). [For SU(2) and
SU(2) alone, as we have shown, we can obtain all the rep-
resentations this way. ]
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B. Relation of interacting boson model
to Bohr-Mottelson model

The most important application of the algebra (8.12) to
nuclear physics is the interacting boson model known as
IBM-1 (Arima and Iachello, 1976a, 1976b, 1978, 1979;
Iachello and Arima, 1987; Bonatsos, 1988), which works
with U(6) and consists of a monopole boson s (s) and a
tensor of rank 2, d„(d ), (p= —2, —1, . . . , 2). Thus the
operators s s, s d„, d„s, and d„d generate U(6). The
physics of a given nucleus is confined to subspaces that
are defined by a fixed value of the number operator

N=sts+ gd„d„—:sts+dt d=n, +6'd.
p

(8.15)

Thus each nucleus is described by a given irrep of SU(6).
The simplest way of characterizing this space is in terms
of the states

2

l[n„),n, )= + (n !) '~ (dt ) "(n, !) '~2(st) 'l0),

and by restricting nb, the number of b bosons to satisfy
the equality nb =nd, where then

0~nb +X . (8.20)

We are thus led to consider a modified Bohr-Mottelson
basis

2

l[n], N)= Q (n„!) ' (b ) "(N') ' (s ) l0) .

(8.21)

where the designation l0)z implies that the Hilbert space
is constructed independently for each nucleus.

We would like to restrict the set (8.18) and connect N
to the eigenvalues of (8.17) so as to establish a relation-
ship between IBM-1 and the Bohr-Mottelson model. In
analogy with the considerations of Sec. V, we can do this
by postulating the relation

(8.19)

subject to the restriction

(8.16)
The proof of the equivalence of the bases (8.16) and

(8.21) is made via a mapping that generalizes the
Holstein-Primakoff mapping for SU(2) to the symmetric
irrep of SU(n). For our case, n =6, it reads

N= g n„+n, =nd+n, =const .
p

(8.17)

(8.18)

For present purposes, we define IBM-1 as follows: For
the nucleus characterized by X, there is a class of eigen-
states that can be modeled by suitable linear combina-
tions of the states (8.16), carrying, in particular, a definite
value of the total angular momentum. With this
definition the Hamiltonian can be any well-behaved rota-
tionally invariant function of the generators and is not re-
stricted to a simple polynomial in the generators.

In Sec. V, we "invented" a corresponding SU(2) model
in order to illustrate the idea of two mathematically
equivalent versions of the model connected by a mapping
from the Schwinger realization of the algebra to the
Holstein-PrimakoA' version. Here we shall do the same,
since, particularly for the symmetric representation, a
similar mapping exists and may be said to establish the
link between IBM-1 and the conventional Bohr-
Mottelson model (Bohr and Mottelson, 1975). We con-
sider a definition of the Bohr-Mottelson model in its sim-
plest terms, in which we work with boson operators
(b„,b„), (p= —2, —1, . . . , 2), the creation operator con-
stituting a tensor of rank two under three-dimensional
rotations. Otherwise (i) b„(in contrast to d„) conserves
the number of nucleons; (ii) the Hamiltonian IIsM of this
model may be any well-behaved, rotationally invariant
function of the b„,b„and the transition operators may
be any well-behaved tensors of appropriate rank; (iii) the
vector space is the Hilbert space of the five-d. imensional
oscillator, i.e., the set of states

d„d =b„b
dts=(s d„) =b„[N—g b b

(8.22a)

(8.22b)

s s =N gdtd„=—N gb„b„.—
p P

(8.22c)

b =2 '~ (x ip )—p v

b„=(—1)"b „=2 ' (x„+ipt ),

[x„,p ]=[ xpt]=i5„

(8.23a)

(8.23b)

(8.24)

(8.25)

Setting p =0 defines a potential-energy surface whosep
geometrical structure determines the "shape" of the sys-
tem [Klein and Vallieres, 1981; Klein, Li, and Vallieres,
1982b).

The problem of geometrical shape in the interacting
boson model was first studied using a coherent-state
method (Dieperink, Scholten, and Iachello, 1980; Ginoc-
chio and Kirson, 1980a, 1980b). In contrast to the map-
ping method described above, which provides a full
"geometrica1" Hamiltonian, this method is limited to
computing the potential energy. To obtain a full Hamil-
tonian by this route requires the introduction of the

It is an elementary exercise to show that under (8.22) the
bases (8.16) and (8.21) map into each other, one to one.

If we start with a Hamiltonian in IBM form, it maps
under (8.22) to a Bohr-Mottelson form. The mapping
also gives a natural method for discussing phase transi-
tions in terms of geometric shape, as described in Sec. III
for the Lipkin model. Toward this end, one changes to
canonical coordinates,
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method of generator coordinates. By editorial decision
this topic has been excluded from the present review.
However, a brief survey of the relevant literature can be
found at the beginning of Sec. XIX.

C. Generalized I ipkin model

(8.26)

are a set of generators of the Lie algebra U(n). We select
a Hamiltonian

H =Ho+Hi, (8.27)

where Ho is the Hamiltonian of the individual levels with
energies g„

We study next a distinctly different application of the
symmetric representation of SU(n), namely, as it occurs
in the n level generalization of the Lipkin model (Okubo,
1975; Klein, 1980b). This generalization was first con-
sidered in some detail for SU(3) (Li, Klein, and Dreizler,
1970; Meshkov, 1971). We consider n nondegenerate lev-
els, each with sublevel degeneracy X. Let a;~ be the
creation operator for a fermion in level r and its ith de-
generate sublevel, a,, the corresponding destruction
operator. The bilinear operators

A,'+1' =b~b„r, s =1, . . . , n —1,
g i

( g r+1 )1' btg(~)

3', =(0(X))
' 1/2

(8.34a)

(8.34b)

(8.34c)

(8.35)

With the help of this mapping, we obtain a Hamiltonian
describing n —1 interacting bosons. It is most straight-
forward to discuss the vibrational domain (small interac-
tion), where an expansion in powers of (JV/N ) can be car-
ried out. The possibility of phase transitions has been
discussed by the method already described several times,
namely, by making a transformation to canonical pairs,

We now consider the simplest problem, in which there
are N particles, exactly the degeneracy of each level. In
effect, this is a "closed-shell" nucleus in which, in the ab-
sence of interactions, all particles are in the lowest level.
Such a state is one of minimum weight of SU(n), for each
Jo"' [from Eq. (8.32a)] has the same eigenvalue
= —

—,'X, r =1, . . . , n —1. The equality of these eigenval-
ues implies that one is dealing with the symmetric repre-
sentation, which can be mapped by the generalized
Holstein-Primakoff mapping (Janssen, Jolos, and Donau,
1974; Okubo, 1975)

(8.28)
2

—1/2[+1/2x i+ —1/2p ] (8.36)

and H, is an interaction that we choose, for illustration
only, in the form

H, = —G g [(A') +(A") ]
1' =2

(8.29)

"anchored" at the first level, taken to be the lowest one.
The number of parameters can be reduced by one and

the algebra reduced to SU(n) by choosing a zero of ener-

gy according to the relation

and then setting p„=O (Klein, 1980b).
Of these models, the SU(3) model, in particular, is rap-

idly overtaking the original MGL model as a favorite for
testing many-body approximation schemes. Two recent
kinds of applications have some connection with the sub-
ject of this review —the study of semiclassical approxi-
mation schemes (Williams and Koonin, 1982) and of
large amplitude collective motion (Holzwarth and Yu-
kawa, 1974; Villars, 1977; Klein, Marumori, and Une,
1982, 1984; Umar and Klein, 1986). The latter subject
will be described in Sec. XXI.

g g„=O

and by defining new parameters and operators,

(8.30)
D. Relation of the interacting boson model
to the geometrical model: Method
of Hahne and Scholtz

~r =29r+1

J'+'=(J'"')t—:3„'~,, r= 1, . . . , n —1 .

Thus Ho and Hl become

(8.31)

(8.32a)

(8.32b)

(8.33a)

H = —G g [(J")'+(J'"')'] (8.33b)

For n =2, this is the standard LMCx model and for n =3
has been studied before, as previously asserted.

Although the material presented at the beginning of
Sec. VIII.B provides a complete method for the the study
of the relationships, mathematical and physical, between
the IBM and the Bohr-Mottelson picture, it has been ap-
plied only sparsely and then only to IBM-1. Recently an
alternative method has been introduced, which is most
useful for the study of the deformed limit. Detailed in-
vestigations have been described for a U(3) model
(Scholtz and Hahne, 1987), an IBM-1 model (Scholtz,
1987), a U(3) XU(3) model (Hahne and Scholtz, 1988a),
and a U(6) XU(6) model (IBM-2; Hahne and Scholtz,
1988b). The major results not covered by previous work
are contained in this last work.
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We consider the underlying physical idea within the
framework of IBM-1. The objective is to make the tran-
sition from the IBM (Schwinger) description of the bo-
sons to the Holstein-Primako6' version appropriate to the
study of the geometrical limit. This involves first of all
the mapping (8.22). Next, one introduces shape-
positional operators according to the equation

a„= —(bt +b„),
2

(8.37)

which are precisely the x„operators of Eqs.
(8.23)—(8.25), although it is convenient here to change
notation because of Eqs. (8.40) and (8.41) below. Refer-
ence to "sharp position" will mean definite orientation
and definite quadrupole shape, as becomes clear from any
standard discussion of the meaning of the variables o.„
(Bohr and Mottelson, 1975).

The essential new point is the introduction of eigen-
states of the positional operators. It is shown that the
states

2la) —= ~&4exp( —,'a a)exp( —
—,
'bt b +&2a bt)l0),

{a = {0 exp( ,' b b +&2—a—b)exp( —
—,
' a a )

(8.38)

where the complex numbers a„satisfy a*=(—1)"a
are simultaneous eigenstates of the u„with eigenvalues

a„. Together with the dual space of states

defined above, then the matrix element {alQla') must be
strongly peaked in the dift'erences a„—n„'. Consequently
the matrix element can be expanded in terms of delta
functions of these differences and of their derivatives. It
follows that an expansion in powers of the collective mo-
menta is valid. ]

Returning to the work of Scholtz and Hahne, they
study the transition matrix element

{JMIIQIJ'I I-
&

= J (da)(da'){ JMI la) {alQla') {a'lJ 'M'I" ) .

(8.42)

Here it is assumed that the observed collective states
l
JMI") span the same space as the la), I specifying the

additional quantum numbers necessary for this purpose.
In the deformed case, the states la) are conveniently
transformed to the intrinsic frame. It then follows from
Eq. (8.42) and the related discussion that one can derive
the full phenomenology of the geometrical model.

Hahne and Scholtz have another aim, however. Since
they are interested in the extent to which the geometrical
model can be reached starting from a single irrep of
SU(6) [or in the case of IBM-2, SU(6) X SU(6)], they must
decompose the resolution of unity (8.40a) into a direct
sum (of irreps) of SU(6) with the help of the projection
operators

P~ — g ln2, n»no, n»n z)

they provide a resolution of unity

(8.39) X {n2n1 no —ln —2I 1~ . (8.43)

Then Eq. (8.40a) is replaced by

ddt A' CX
= 1 (8.40a) de PN CX A =1N (8.44)

and

(da)—:Q (dx dy„)dao,
p)0

(8.40b)

cxp=xp+lg, P )0

a„=(—1)"(x „iy „), p (0 .—

We also have an orthogonality relation

(8.40c)

{ala') = Q [5(x„—x' )6(y„—y„')]5(a —a') .
p)0

(8.41)

where the integration is over the entire five-dimensional
space,

The essence of their work is then the evaluation of a for-
mula like (8.42) when all quantities in the latter are re-
stricted to an irrep of SU(6). This involves transforming
the states (8.38) to an intrinsic system, assuming there is
a large static deformation, and expanding the resulting
expression in powers of the ratio of the quantum-
mechanical fluctuations to the static deformation, which
turns out also to be an expansion in reciprocal powers of
the number of bosons. We refer the reader to the pub-
lished work for details of the procedure.

IX. BZM MAPPINGS FOR SHELL-MODEL ALGEBRAS.
EVEN NUCLEI

[The concept of strictly localized states in the space of
collective coordinates can be found in the early work of
Kerman and Klein (Kerman and Klein, 1962; Klein,
Dreizler, and Johnson, 1968; Klein et al. , 1982). In these
investigations no efI'ort was made to find explicit forms
for the states, but rather the work was based on a funda-
mental notion of collectivity: If Q is a one-body operator
and the state la) is a sharp positional state in the sense

A. Introduction

The problem of obtaining formally exact mappings of
realistic shell-model algebras for both even and odd nu-
clei has been solved by a number of authors (Janssen,
Donau, Frauendorf, and Jolos, 1971; Marshalek, 1971a;
Marshalek and Holzwarth, 1972; Donau and janssen,
1973; Marshalek, 1973, 1974a 1974b, 1975a, 1980a, 1983;
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Okubo, 1974b, 1974c). In this section we shall discuss
only even systems. The extension to odd systems is made
in the next section. Though we shall borrow from all
these authors, we begin our account with ideas from
more recent studies of the appropriate algebra (Bonatsos,
Klein and Zhang, 1986b; Rowe and Carvalho, 1986,
Klein and Marshalek, 1988). The basic method to be fol-
lowed will be first to obtain the non-Hermitian Dyson
mapping and subsequently to unitarize it.

We shall illustrate the approach for a class of algebras
that will include, of course, the one of major interest, be-
cause it provides the basis for the nuclear shell model,
namely, the j-j coupled shell-model algebra. But we shall
also include a larger class of shell-model algebras, ob-
tained by the well-known device of contraction with
respect to a suitably chosen subset of the indices that la-
bel the generators, a device that in physical terms is de-

=(2A) '~ g ( —1)' ~a czm, p m,
p

(9.1)

+mm' X t"m', p+m, p
p

satisfy the algebra

(9.2)

scribed as the decomposition of each individual j into a
sum of pseudo-orbital and pseudospin angular momenta,
where the latter may have any mathematically compati-
ble half-integral value (Hecht and Adler, 1969; Ginoc-
chio, 1980). Thus consider a set of fermion creation and
annihilation operators, o', „, o, „, —l ~p ~ I,
2l+1=2A, l integral, —j ~m ~ j, 2j+1=20, j half-
integral. The pair and multipole operators

A ~ =(4 )=—A

[+m&m2r+m3m& 1 ~m&m4+m3m& ~m&, rn3+m&m4

[ ~mr m& r~rn3m4] ~mr m3 ~m&m4 ~m2m3 ~mr m&

[A, A ]=5 5 —5 5

(9.3)

(9.4)

(9.5)

The algebra represented [which can be put in stan-
dard form by the replacement N ~N

1 2 1 2

+( I /4A)5 ] is SO(4Q). In this connection, although
1 2

the requirement that l be integral is essential, the index m
need not be associated with a given value of angular
momentum. A number of j values could be involved or
indeed the index could have a di6'erent significance alto-
gether. The commutation relations (9.3) imply that X
span the unitary subalgebra U(2Q), and Eq. (9.4) informs
us that the At transforms as a tensor under this

1 2

subalgebra. The same is true of the operators A
1 2

We use the notation SO(4QIA) to distinguish difFerent
values of A.

In the present discussion, we consider only the vacuum
representations of the algebra SO(4Q I

A ), i.e., those
which, in the language of shell-model theory, contain the
vacuum state, satisfying

, Io&=o, (9.6a)

, Io&=o. (9.6b)

A (generally) nonorthogonal basis for such an irrep is
provided by the vectors

[In, ]&= ~ (~', )™m'Io&, (9.7)
m (m

where the maximum allowed value of n ~ is determined

by the value of A. We shall study mappings character-
ized by the subgroup chain SO(4Q) DU(2Q) (BZM map-
ping). As is well known (and was reviewed brieAy in Sec.
VIII), the irreps of U(2Q) are characterized by a se-

=X Ifi»i . f;+1 f;+l, ,f fn],n (9.8)

if the term is allowed, i.e., if f, &f,

I

quence of nonincreasing integers, [f, ,f2, . . . ,fzn ], that
constitute a partition of N, the number of particles in the
state. In the usual shell-model case ( I =0,
A =

—,
' ), n ~ =0, 1 and for each X, one has an irreducible

representation of U(2Q) consisting of the set of all
Slater determinants that can be formed from N particles
in 2Q orbitals. This is the representation
[1, . . . , 1~,0, . . . , Ozn], where the notation indicates X
ones and (2Q —X) zeros, often represented by a column
of X boxes (Young diagram). Thus the entire representa-
tion of SO(4Q) decomposes into a direct sum of irreduc-
ible representations of U(2Q), each corresponding to a
definite number of particles.

For general A the story is a little more complicated.
The space of N particles contains a number of irreps of
U(2Q) that can be deduced from several well-known re-
sults (Wybourne, 1974): (i) The tensor 3 ~ transforms
as [1,1,0, . . . ]—= [1 ] (two-particle state). (ii) A state
such as (2 ) Io& belongs to an irrep
[2,2, 0, . . . ]—:[2 ]. Building on this, one can conclude
that the irreps for U(2QIA) consists of partitions with

f, =f2,f3 =f&,f5=f6. . . and f, ~2A. An equivalent
expression of this result is that, when one applies 3 ~ to
such a state, it corresponds to the reduction of the direct
product according to the Clebsch-Gordan series (branch-
ing rule)

[I]'Ifi fi f~ f2 fn fn]
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B. Generalized Dyson mapping

We are now ready to consider the mapping problem.
As usual, one introduces one boson creation operator
b~ ~

= —b~ ~ for each "raising" operator A ~ thereby
raising the fermion number by two. This boson operator
b ~ and its associated destruction operator, b ., satisfy
the commutation relations

by the reestablishment of the mutual Hermiticity of the
A and A sets, and with establishing the detailed struc-
ture of the basis. Below, an alternative form of Eq. (9.13)
will be required, namely,

(A )D =b +(1/8A)[b . , C2]

(9.14)

where[b,b - ~ ]=6 -5 - —5 5 (9.9)

A central task is to find the mapping of the operators be-
longing to the subgroup U(20), namely the operators
N .. Here we recall that the diagonal operators

, 2Q in number, mutually commute, and that distinct
sets of eigenvalues of stretched states (states of maximum
weight) are precisely the sets of integers that define the
partition [f, . . .f2n] that specifies the representation.
The solution

(9.15)

20
C2= g f, (f, +2 2i )—. (9.16)

is the two-particle part of the quadratic Casimir operator
for U(2Q); it has the eigenvalues (Perelomov and Popov,
1966)

(N )D=gb b =b .b
m"

(9.10)

is often written down as an ansatz, but it can be argued
on the basis of the above observations and the require-
ment, which we impose as part of the definition of the bo
sons, that bt ~ transforms like A ~ under U(20). It
follows from the commutation relation (9.4) that N
must be an operator of structure (b b ) (multipole opera-
tor), the exact form being verified by the commutation re-
lation (9.3).

We turn next to the mapping of 3 ~ and 3 . Here
the essential point is that, in addition to b, there are
an infinite number of [1 ] tensors, namely (summation
convention),

(1) — f (2)
~mm' bmm'~ tmm' bmm bm'm bm m

1 2 1 2

(3)
mm' bmm bm'm m m bm m bm m

1 2 3 4 3 1 4 2
(9.11)

In order to satisfy both the commutation relation (9.5)
and the Hermiticity requirement stated in (9.1), we need
to form A ~ from a linear combination of all the possi-
bilities in (9.11). The result to which one is led by this
means will be discussed below, at least for the case %=—,',
the usual shell model. If we give up the Hermiticity re-
quirement on the mapping, then we can utilize one of the
Dyson solutions, e.g.,

C. Unitarization procedure. General method

As regards the unitarization process, in this subsection
we study the general case. We subject the mapping
(9.10), (9.12), and (9.13) to a similarity transformation S,
intended to eA'ect the unitarization (specified by the sub-
script B)

S(N )DS '=(N )ti=(N )D,

S(A )DS '=(A )ii,

S(A )DS '=(A )ii=(A ~ )ii

(9.17)

(9.18)

(9.19)

V=S S=S (9.20)

is a metric tensor for a real vector space. By combining
Eqs. (9.14), (9.18), and (9.19), we can easily deduce

Since, according to Eq. (9.17), S commutes with all
operators N, it can depend only on the Casimir opera-
tors of U(20), or equivalently, it is a function of the par-
tition "operators" f„.. . ,f2n. Without loss of generali-
ty we can choose S to be a real operator, since, as pointed
out in Sec. II, the operator

(A )D=b

( A )D =b —(2A) 'b b ~ b

(9.12)
V 'b V=( A ~ )D

=b ~ +(1/8A) [b,C2 ] . (9.21)

=bt, —(2A) '[b (b b) ] (9.13)

where boldface indicates matrix and T signifies transposi-
tion with respect to the matrix indices only. The form of
Eqs. (9.12) and (9.13) means that we have mapped to a
nonunitary basis, as discussed in detail later in this sec-
tion. For the remainder of the present discussion, we
shall be concerned with unitarizing this basis, as rejected

The consequences of Eq. (9.21) may be obtained by
evaluating it in the mapped basis, which is also taken to
be composed of irreducible representations of U(20). In
this basis, V and C2 are diagonal and the nonvanishing
matrix elements of b ~ are specified by the branching
rule or decomposition (9.8). It thus follows from Eqs.
(9.16) and (9.21) that
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f +1 f +I fn fnl)I'([fi fi . fn fn])=1—(2&) '(f;+2 —»),
the matrix element of b canceling from both sides. In practice we need the square root of Eq. (9.22),

S '([f„f„.. . , f, + l,f, +1,. . . . , fn, fn])S([f„fi, . . . , fn, fn])=[1—(2A) '(f, +2—2i)]'~~ .

(9.22)

(9.23)

The last step that can be carried out in full generality is
to derive from Eqs. (9.18) and (9.21) the formula

(A )s=S 'b S . (9.24)

In order to apply this formula, we need the essential re-
sult [of which the transition from (9.13) to (9.14) is a spe-
cial case]

S-'b.'.,S=[b.' „Z], (9.25)

where K is an operator function of the Casimir operators
(or of the partition). The existence of K follows from the
fact that every tensor in Eq. (9.11) is a special case of
(9.25), and the right-hand side of Eq. (9.25) must be a
linear combination of such tensors.

D. Completion of mapping for shell-model algebra

[1~])=al[2, 2, 1~ '])+Pl[1 (9.26)

To make further progress, we must choose a value of A
(or I), since the detailed form of K depends on this
choice, K growing in complexity for increasing A. Fur-
ther reasoning will be restricted to two special cases.

Consider first the familiar case l =0. Because of the
Pauli principle only completely antisymmetric irreps of
U(2Q) occur, namely the irreps [1 ], where N~ 20. As
a special case of Eq. (9.8) we write

(2 ~ )ii=A. "' (1+N) ' P, (9.30)

where P is the projector onto the physical subspace of the
total boson space. Equation (9.29) or (9.30) is just the
tool required to construct the basis in the boson space, as
we shall emphasize below.

Next, we remark that an even simpler form than Eq.
(9.30) can be given, but with a different significance. In-
stead of Eq. (9.27), we write

(& )s=S 'b S=b F(N) (9.31)

and evaluate (9.31) by studying the overlap
([1] + 2 l[1 ]) with the help of Eq. (9.23). We
thus obtain

F (N) =(1+N)'" (9.32)

It should be emphasized once more that Eqs. (9.31) and
(9.32) are correct only if the formula is surrounded by
projection operators, i.e., strictly

(2 )ii=Pb .(I+N)'i P . (9.33)

Here only the right-hand projector may be removed, and
this may limit the value of this formula in practice, as we
shall argue when we consider applications in Sec. XIV.

l

ly antisymmetric states in the physical subspace. Anoth-
er way of saying this is that Eq. (9.29), which is under-
stood to be correct only within the physical subspace, can
be replaced by the expression

=b f(N)+ ,'[bt, C2]g(N) —. (9.27)

The condition a=( [2,2, 1 ]l 2 ~ l[1 ])=0, yields

by the same calculation as led to Eq. (9.22),

Note that this equation is in part symbolic because we
have suppressed all quantum numbers other than the par-
tition numbers. In Eq. (9.26), however, we must require
a=O and PRO (if N(20), the former being a conse-
quence of the Pauli principle. We then write, as a variant
of (9.25) applicable to the special case under study,

(A ~ )s=S 'b S

E. Ginocchio model

Before completing the discussion of the shell-model
case, we wish to include at least one additional example
of the application of Eq. (9.25), namely, to the case j =

—,',
I arbitrary. For all intents and purposes, this is the SO(8)
model of Ginocchio (1980). Here the simplifying feature
is the value 0=2, so that we are dealing with the U(4)
subalgebra. Recalling the discussion associated with Eq.
(9.8), we encounter the U(4) irreps

0=[f(N) —g(N)](bt . ), (9.28)
[f„f„n f„n f„0, . . . , 0 ] =—[(—f, ) ( n f, ) ], —

( A ~ )s =A "'~.( 1+N) (9.29)

or f (N) =g(N). Evaluating 13 by the same means, we ob-
tain f (N)=(1+N) '~, or altogether [cf. (9.14)] where n =f, +f2 is the number of bosons. Provided

(n f i ) (f i, there are two —nonvanishing contributions
to Eq. (9.23):

which di8'ers from the Dyson form only by the square-
root operators. We emphasize again that this result has
been constructed to satisfy the Pauli principle constraint.
It produces antisymmetric states when acting on proper-

'([(f, +1)'(n f, )'])S([f', (n f, )'])— —
—[1 (2A)

—if ]i/2 (9.34)
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S '([f, (n f—, +1) ])S([f,(n f—, ) j)
=

j 1 —(2A) '[(n f—, +2) ] I
'~ (9.35)

A ~ =S 'b,S=b,g, (n, f, )

+ (1/8A) [b,C2 ]p~(n, f, ),
Thus one can satisfy Eqs. (9.24) and (9.25) for this case by
writing and find with the help of Eqs. (9.34) and (9.35)

(9.36)

$2(n, f, ) =2A[n —2f, —2] '[[1—(2A) 'f, ]'~2 —[1—(2A) '(n f,—+2)]'~2],

p, (n, f, )=[l —(2A) 'f, )'~ +f, (2A) '$2 .

(9.37)

(9.38)

This result is equivalent to one given by Arima et ah.

(Arima, Yoshida, and Ginocchio, 1981).
We add a few remarks before returning to our primary

study of the shell model. First, the result (9.36)—(9.38)
has the same status as Eq. (9.33), and we would have to
work harder to derive the analog of (9.30). For larger
values of A and/or larger values of 0, the procedure de-
scribed for the two examples studied can be generalized,
at the expense of increasing algebraic complexity, which
can, however, be handled by a suitable computer pro-
gram.

An extension of the Ginnochio model to include iso-
spin, utilizing the methods of this section, has been car-
ried out recently by Peres Menezes (Peres Menezes and
Bonatsos, 1989; see also Peres Menezes, Brink, and
Bonatsos, 1989).

F. Further discussion of shell-model case

Let us return now to the shell model to complete our
discussion. So far, we have derived two forms of the
mapping in Eqs. (9.30) and (9.33). A difFerent mapping
was given by several authors (Marshalek, 1971a, 1973,
1974a, 1980a, Janssen, Donau, Frauendorf, and Jolos,
1971}in the form

—P [bt[I (btb)T]1/2I P (9.39)

where again the right-hand P may be dropped in prac-
tice. This apparently more complex form has been more
widely applied so far than the other forms, and it there-
fore behooves us to establish its equivalence to Eqs. (9.29)
and (9.33), in particular the latter. The proof follows
from the identity

Pb N= —P[b (b b) ] (9.40)

This relation is a consequence of the equation

—P[b (b b) ] ~ =P—,'[bt ~,C2], (9.41)

used in deriving Eq. (9.14). Equation (9.40) can be de-
rived from (9.41) by noting that in addition to the form
(9.15), Cz may also be written in the form

C~ = —A(N —2), (9.42)

which can be derived from Eq. (9.16) by evaluating the
latter for the antisymmetric representation. [The relation

in)=Q A, iO)=a;a, . . . , a;a iO)
I& =1

(9.43)

constitute an orthonormal set. Equation (9.29} implies
that the mapping is to the boson states

~n )=Q [A,'. ".t(1+N) ' ]~0)

=[(2n —1)t ]

(9.44)

In this equation P is the parity of the permutation of all
2n indices from a standard order. The last line of Eq.
(9.44) is most easily derived by induction, establishing the
case n =2 directly and then showing that A'"

~ annihi-
lates the state if m or m' already appear in the list of in-
dices to the right and otherwise multiplies by b ~ and
antisymmetrizes among m, m' and all the other indices
(Okubo, 1974c).

G. Early work

Concerning the seminal efforts in this area, we first
comment on the work of Janssen et al. These authors
obtained all the results in this section pertaining to the
final unitary mapping by applying the Marumori opera-
tor

U =y~m)&m~ (9.45)

in the manner explained in detail for SU(2) in Sec. II.
They derived the Dyson results independently by using
an analogous operator, first introduced by Usui (1960),

(9.46)

between (9.41) and (9.42) was actually the main result
needed to derive (9.29) and (9.33)j. Equation (9.39) then
follows from (9.33) by repeated application of (9.41) as a
formal expansion. The problem of convergence in the
present setting was discussed by Okubo (1974c). The in-
troduction of a small parameter by angular momentum
coupling will be discussed below.

We found off the present discussion with remarks
about the mapping of states, which has been implicit up
to now. For the shell-model problem, the fermion states
(n =

—,'N)
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where

(9.47)

These satisfy the algebra

[1»2] =r(1 —p1p2p3»(1» 2)+3
3

(9.49a)

are the non-normalized states corresponding to the map-
ping. An independent derivation of the mappings, using
the generator-coordinate method, can also be found in
their work, as weH as suggestions for applications.
Though the same remarkable paper also contains a
derivation of Eqs. (9.29) and (9.33), there is, perhaps
surprisingly, no discussion of their possible utility
(Marshalek, 1989).

We turn then to the contributions of Mar shalek
(1971a, 1974a), which will be more heavily in evidence in
succeeding sections as we seek to describe the possible
applications of these results. The derivation of
Marshalek can be summarized as follows. Recognizing
that there is an implicit underlying mapping of states, he
nevertheless emphasizes determination of the operator
mapping from a study of the commutation relations
(9.3)—(9.5), which are to be satisfied order by order, as ex-
plained below. After the mapping of the U(2Q) subalge-
bra by Eq. (9.10) is imposed, and it is recognized that

~ must be chosen as a linear combination of the ten-
sors t'"', k =1,2, . . . , of Eq. (9.11), then only Eq. (9.5)
of the algebra remains to be satisfied. If a multipole
operator -(b b) is said to be of order one and the kth
power of order k, as long as there are k b and k b ~ opera-
tors in some order, then from the fact that
[t'i't, t'i']=0((blab) +~ '), it follows that equating left-
and right-hand sides of Eq. (9.5) order by order uniquely
determines all expansion coefficients, once Eq. (9.10) has
been specified. This procedure, when carried out fully,
was recognized to be the formal expansion of Eq. (9.39)

Though the rigor of this procedure may be questioned
because of the absence of a visible small parameter, the
final result is correct and, as we shall demonstrate in the
next sections, directly useful. However, even the expan-
sion is useful as an intermediate step in the transition to a
different result, essential for the major applications. The
reference here is to the form taken by the mapping when
the generators are combined so as to carry a definite an-
gular momentum, i.e., when the generators are assembled
into irreducible tensors under the rotation group. It
turns out to be much easier to obtain the series or order-
by-order solution in this case by recoupling the uncou-
pled solution than by doing the algebra freshly with the
coupled operators.

%"e shall now record this expansion, which is needed
for later application, and then comment on its salient
property. We start with the spherical tensors

I +i~~2]=2 g —,(1+p2 )—,
' (1+p3 ) Y(2, 3, 1)A 3t,

3
(9.49b)

[A, ,A ]=0,
[A „A2t]=5,2(

—)

—4 g —,'(1+p, )—,'(1+p2) Y(1,2, 3)%3,
3

(9.49c)

(9.49d)

derived from Eqs. (9.3)—(9.5). The compact notation
means, for example, 1=(JiMi', v, vi) as in

A, =AJ I (viv', ). The symbol p, changes the order of
1 1

coupling as follows:

Pid(1) =Pi%(JiMi'vivi)

(9.50)

(9.51)

Finally, the important symbol Y(1,2, 3), introduced by
Belyaev and Zelevinsky (1962), is defined by

Y(1,2, 3)=5 5, ,5,+(2J2+1)(2J3+ I)
x ~(J3J IJ3J2 Jlj 2 )

X(J2J3M2M3~ JiMi ) (9.52)

where 8'is a Racah coefficient.
Introducing the average shell size of the single-particle

space 2A:
n

20—=—g (2j,+1)," +=i
(9.53)

Belyaev and Zelevinsky noted that in the asymptotic lim-
it of large j values, there is the proportionality

It acts on the quantities Y(1,2, 3) and generalizations of
these denoted by Y(1,2, 3, . . . , n) to be defined below.
The symbol 5,z(

—) means

A ]~(vv')= g (jj'mm'~JM)at at
mm'

(9.48a) Y'(1,2, 3) ~ [(2ji +1)(2j2+1)(2j3+1)]

X~~(vv')= g (jj'm —m'lJM)( —1}J a, a ~

mm'

(9.48b)

where (jj'mm'~ JM) is a Clebsch-Gordan coefficient.

(9.54)

It will turn out that this provides the small expansion pa-
rameter we have been seeking. In carrying out the alge-
bra, we encounter linked sums over products of the 7's
for even numbers of indices,
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Y(1,2, 3,4)=g Y(1,2, 5)Y(3,4, 5),
5

(9.55a)

Y'(1,2, 3,4, . . . , 2n +2)=
2n +3, . . . , 4n +1

Y'(1,2, 2n +3)

X Q [ Y(2n +4+2k, 4+2k, 2n +3+2k)
k=0

X Y(2n +4+2k, 3+2k, 2n + 5+2k) ]

X Y(2n +1,2n +2, 4n +1), n ~2 . (9.55b)

It is convenient also to record the Y with odd numbers of indices, although these are first useful for the angular momen-
tum recoupling of the mappings involving an odd number of fermions, described in the next section:

Y(1,2, 3,4, 5)=g Y(1,2, 6)Y(6,4, 7) Y(5,3,7),
6, 7

Y(1,2, 3, . . . , 2n+1)=
2n +2, . . . , 4n —1

Y(1,2, 2n +2) (9.56a)

J1 3

X g Y'(2n +2+2k, 4+2k, 2n +3+2k) Y(2n +4+2k, 3+2k, 2n +3+2k)
k=0

X Y(4n —2, 2n, 4n —1)Y(2n +1,2n —1,4n —1), n ~ 3 . (9.56b)

It is important to note that asymptotically the orders of the coefFicients are given by

Y(1,2, 3, . . . , 2n+1)=—(20)' (9.57a)

Y'( l, 2, . . . , 2n +2)—= (2Q) (9.57b)

Finally, the expansions of the operators can be written as follows in terms of the coupled bosons:

BJM(v, v') = g (jj 'mm't JM)b,
mm'

Xi =+ Y(3,2, 1)B2tB3,
23

(9.58)

(9.59)

(2n —3 )!!
2"n f

2, 3, . . . , 2' +2
Y(1,2, . . . , 2 +2)B + B k,B k

k=1
(9.60)

It follows from the analysis of the Y's that all terms pro-
portional to a coefficients (2n —3)!!/(2"n!)should be re-
garded as being of order (20) ", so that the series con-
tains at least a kinematic expansion parameter. This does
not settle the question of convergence completely, as we
saw already in Sec. III for the case of the Lipkin model,
where there was a dynamic parameter determining the
occurrence of a phase transition that strictly limited the
convergence. Nevertheless, the appearance even of a ki-
nematic convergence factor where none was apparent be-
fore recoupling must be accounted an encouraging devel-
opment, implying that the recoupling can be viewed
roughly as an analytic continuation of the original series.
At the same time the detailed structure of the basis vec-
tors underlying the mapping has been modified.

X. BZM MAPPING FOR SHELL-MODEL ALGEBRA.
BOSE-FERIVII MAPPINGS

A. Introduction and mathematical preliminaries

Before describing some applications, it is convenient to
extend the arguments of the previous section to include

[a;,NJ&]=5;ka;J (and H. c. Eq. ),
[a;, A)k]=0 (and H. c. Eq. ),

(10.1)

(10.2a)

[a;, A k]=5,jak —5;~a. (and H. c. Eq. ), (10.2b)

[a;,a~ ]=5;J
—2N;. ,

[a,', a,']=2~,', .

(10.3a)

(10.3b)

It may be noted that (10.3a) and (10.3b) are a rearrange-
ment of the fermion anticommutation rules. A boson or
boson-fermion realization of this algebra requires not
only the mapping of pair transfer and multipole opera-
tors, which are bilinear in the fermions, but also the map-
ping of single-fermion operators. Such a mapping was
first given in the Holstein-Primako6' form by Marshalek
(1974a, 1974b, 1980a) and in the generalized Dyson form

l

the important case of a single odd particle. The algebra
of even nuclei, if there are 2fl orbits is SO(4A), as previ-
ously noted. %'hen one brings in the single-fermion
operators, the algebra becomes SO(40+1), and the com-
mutation relations (9.3)—(9.5) are augmented by the set
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by Okubo (1974). The presentation that follows rejects
the recent work of Klein and Marshalek (1988).

In the present case the physical subspace will be the
direct sum of the space for even systems as mapped by
Eq. (9.44) and the subspace for odd nuclei. For the ex-
pression of the latter, one introduces an ideal quasiparti-
cle ak and adjoins to Eq. (9.44) the mapping,

atat . . atatat~o&
f

1 J1 i„j„k
(10.4)

a a,. =a, a- =0,

~fjPo

oa,~ ——a, Po =O

Po=Po o

(10.9a)

(10.9b)

(10.9c)

(10.9d)

The resolution of this ambiguity in the current applica-
tion, where the correct algebra for the IOP operators is
that of neither fermions nor bosons, is described in Klein
and Marshalek (1988). The required rules, which are in-
tuitively clear, are listed:

where

b, 0)=ak~0)=0 . (10.5)
where Po, the projector to the purely bosonic sector, may
be represented by

The mapping to be described is appropriate for problems
in which an odd particle can make transitions from one
of its substates k to another, but the total number is re-
stricted to zero or one, since all other particles are paired
as bosons. It is intuitively clear that the Hamiltonian can
only depend on the ideal fermion multipole operator
(a;aj). Any state containing more than one ideal fer-
mion belongs to the unphysical subspace, by definition.
This implies that ideal fermon pair operators (a;aj ) or
(a;aj ) must annihilate the physical subspace. This re-
striction imposes algebraic constraints upon these opera-
tors that alter their algebraic properties compared to
"normal" fermions, as will be seen. (We have already en-
countered this phenomenon in Secs. III and VI.)

Let us assemble first the needed properties of the ideal
quasiparticles. In addition to Eq. (10.S), we require the
correspondence

(10.6)

and therefore the ideal odd-particle (IOP) operators
transform under U(2Q) in the same way as the original
fermion operators. To accommodate this, we may postu-
late the following algebraic properties for the ideal odd-
particle operators:

Po=1 —6, (10.10)

with

(10.11)

(recall the summation convention!) being the IOP number
operator, satisfying

(10.12)

Equation (10.12) expresses the property that the ideal
space is the direct sum of the even subspace, in which &

has the eigenvalue zero, and the odd subspace, in which 6'

has the eigenvalue unity. The algebra (10.9) is easily seen
to imply Eqs. (10.7) and (10.8), but the additional proper-
ties are essential for the mapping of single-fermion opera-
tors given below.

In order not to interrupt the main How of the argu-
ment, we assemble next some mathematical preliminaries
that rewrite and extend some of the results utilized in
Sec. IX. These refer to the unitary subalgebra U(2A) of
SO(40+ 1). Again one maps an irrep of the latter, which
is a direct sum (one for each particle number) of irreduc-
ible representations of this unitary subalgebra. The gen-
erators of U(20),

[a; a, akai]=5 ka; ai 5;iaka— (10.7) X,k =uk';, (10.13)

and
are mapped uniquely by a generalization of Eq. (9.10),

[a, a~, ak]=5~ka; (and H. c. Eq. ) . (10.8) (~ik )D bklbil+akai (10.14)

Equations (10.7) and (10.8), which are the only algebra-
ic properties of the ideal particles entering into the
derivation of the Dyson mapping for bilinear operators,
are certainly satisfied if the ideal particles are chosen to
be fermions. However, Eqs. (10.7) and (10.8) are equally
compatible with the choice of the ideal particles as bo-
sons. In fact, other choices that correspond to neither
fermions nor bosons, such as the one utilized here
(Marshalek, 1974a, 1974b, 1980a; Okubo, 1974c) are also
compatible. This ambiguity is the natural consequence of
the restriction that the representation map contain no
more than one ideal odd particle, imposed since the de-
grees of freedom of pairs is preempted by the bosons b; .

Consistent with our previous practice, we utilize
parentheses with a suitable subscript to indicate mapped
operators, omitting the subscript on occasion if the vari-
ous mappings coincide. In turn, this yields for the num-
ber operator N the image

(X)=(X)D =(N)~ =2Kb+ n,
where

iVb
—= g b,"b, .

(10.15)

(10.16)

is the boson number operator and 8' is the IOP number
operator, Eq. (10.11).
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The importance of the Casimir invariants of U(20)
has already been established in Sec. IX. We consider
them in more detail here. The mapped invariants have
the form

C2b = 2—Nb (2Nb —2),
and the difference by

C2 —C2b = —4Xbn .

(10.24)

(10.25)
C, =(N),
C2=(N; )(N,;),
Ck=(N;; )(N;; ) . (N;; )(N;; ) .

(10.17a)

(10.17b)

(10.17c)

Note that the images of the Casimir operators under the
mapping (10.14) depend on both the boson and the ideal
odd-particle operators. However, we may also consider
the purely bosonic parts of the Casimir operators associ-
ated with the boson sector of the representation. Of par-
ticular importance is the quadratic Casimir operator,
which, after normal ordering, is given by

C2 =20(2', +n ) 2'+—b,~bkibk~b;,

+a; a b kb;k+0 a, b,kb k, (10.18)

where Eq. (10.9) was invoked to obtain the simplification
a a, a, a-=2Qn. It will also be convenient to define the
two-body part of Eq. (10.18), Cz.

C2 = C2 —2Q(2 N„+n ) +2Nb (10.19)

and its purely bosonic part

C2b =bij bklbkj bil

The relative simplicity of the derivations to follow is
based on the use of a small number of identities associat-
ed with the quadratic Casimir operators for U(20) and
Ub(20). According to Perelomov and Popov (1966), the
eigenvalues of the Casimir operators Ck for the antisym-
metric representations [1 ], which are the ones under
consideration, are given by the simple formula

Ck =N(20 —N + 1)" (10.21)

using the convention of denoting the Casimir operator
and its eigenvalue by the same symbol. Thus, within the
physical subspace only, which is the direct sum of an-
tisymmetric representations, the Casimir operators
(10.17) may be replaced by a function of the number
operators obtained by replacing N~N in Eq. (10.21). In
particular, for the quadratic Casimir operator this gives

C2 = (N )[20—(N )+ 1]

=(2Nb+n )[2Q —(2Nb+n )+1]

=2A(2', + n ) 2', (2Nb —1) 4—Nbn—(10.22)

C~ = 2N~(2Nb —2) 4N—bn, — (10.23)

where, in the last step, the property n n=0 [Eq. —
(10.12)] was used.

From Eq. (10.19) one immediately obtains for the two-
body part of (10.22)

Next, we may calculate the commutators of b; with
Eqs. (10.24) and (10.25), as well as the commutator of a;
with (10.25). We may also calculate commutators with
the generic forms (10.18)—(10.20) and thus altogether ar-
rive at the following identities:

[b;, —,
'

C2b ] =2b, Nb ="—[bt(btb)T],

[ ~'j l«z C2b)—]=2b n =b,t k br'k—a'ak

[a;,—,'(C~ —
C2& ) ]= 2a; Nb = —a (btb)—

(10.26)

(10.27)

(10.28)

2', n = —(b b),. a;a (10.29)

which will also be needed later. This identity can also be
obtained by postmultiplying Eq. (10.28) by the
SO(40+1) generator (n;)D [cf. Eq. (10.31a) below] and
summing over repeated indices, taking account of Eq.
(10.9a). A simpler procedure yet is to postmultiply
(10.28) by a, , but since this is not a group generator, fur-
ther justification would have to be provided.

B. Dyson mapping

We can now proceed to the Dyson mapping, beginning
with the bilinear operators. The mapping NJ —+(N;J. )

given by Eq. (10.14), as we have already seen, satisfies the
unitary subalgebra (9.3). This is the crucial first step that
guarantees that, as long as ( A," )D transforms like b; and

( 3,
&

)D like b,
&

under U(20), then the commutators (9.4)
will be satisfied. It is the commutators (9.5) that provide
a stronger restriction. In order to find the mappings that
satisfy these comrnutators, one must in principle con-
struct the totality of operators that transform like b; and

b; , i.e., one must g.eneralize the set (9.4). A systematic
procedure for generating these is to construct the com-
mutators of b," and b; with the hierarchy of generalized
Casimir invariants. For the Dyson mapping, only a sub-
set of such relations, already expressed by Eqs. (10.26)
and (10.27), is required.

Having discussed preliminaries at considerable length,
it suffices to record the mapped pair operators. We
choose

We emphasize again that the identities (10.26) —(10.28)
hold only in the physical subspace, so that some care is
required in further manipulations. Postmultiplication of
these equations by operators that leave the physical sub-
space invariant, such as group generators, however, is al-
ways safe. Thus, if Eq. (10.27) is postmultiplied by the
group generator b;~ [cf. (10.30a) below] and summed
over repeated indices, the result is the identity

whose boson part is given by ( A,, )D =bj. , (10.30a)
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which then necessitates that

= J- 'k '1 k1+ k J k- k k (10.30b)

(a; )D =isa,"—p(b b);at+Ah, ta (10.37)

where g is another arbitrary constant. The last commu-
tator, (10.34b), is then satisfied by Eqs. (10.36) and
(10.37), providing only that

(a, )D =a;+b;~a~. (10.3 la)

We also remark that all commutators of bilinears are
preserved if the ansatz (10.30a) is rescaled by an arbitrary
constant ~, provided that the right-hand side of Eq.
(30.b) is also rescaled by a. '. The choice ~=1 corre-
sponds to normalizing the state ( A;J )D IO) = b;z IO).

Next, we consider the Dyson mapping of single-
fermion operators, first stating the results and then out-
lining the derivation. The Dyson images of the singles
are then given by

(10.38)

This still leaves two free parameters, A. and p.
These, in turn, can be fixed by invoking Eq. (10.6), i.e.,
the condition (n,. )D IO) =a, IO), and also requiring
(a~ )D(a; )D IO) =5J IO). This yields A, =p= 1 and the final
result (10.31). Another means of fixing the scales is to
consider the fermion anticommutation rules. Finally, we
remark that the calculation of the commutator s
(10.32)—(10.34) requires the full algebra (10.9), i.e. , (10.7)
and (10.8) are not sufhcient.

(n;)D=a; +b; a —(b b) a

=a; +b;~ a~+ [.a, , —,'(Cz —C2b )], (10.31b)

I:«;)D (Nkj)]=&;,«k)D

[(iz; )D (N, k ) 1=—&,«k )D

[(a', ),(W,'„) ]=0,
I. (;»b,k]=o

[(~';)D b,k]=~;k(~, )D
—

&;,«k)D

I (+ )D ( ~ 'k )D ] ~ j(+k )D ~'k(+j )D

(10.32)

(10.33a)

(10.33b)

(10.34a)

(10.34b)

Equations (10.32) imply, of course, that (a, )D and

(a; )D must transform like a; and a, , respectively. Furth-
ermore, it is easily seen that (a; )D and (a; )D can only de-

pend linearly on a, a as follows:

(a;)D=a;+f; (b, b )a +g;.(b, b )a

(a;)D=a;+PJ;(b, b )a +y; (b, b )aj .
(10.35)

Substitution of Eq. (10.35) into (10.32) shows that these
commutators are satisfied as long as f; and P;. are vecto. r
operators under Ub(20), the boson unitary subgroup,
i.e., they transform like the generators (b b);., while g;
transforms like b; and y; like b;.. The same is true of
the commutators (10.33a). The commutator (10.33b),
however, places a very stringent restriction on (n,. )D, lim-

iting it to the form

where the identity (10.28) was used.
Equations (10.31) can be obtained from the mapping of

the commutators (10.1)—(10.3) of the single-fermion
operators with the bilinear products. Thus inserting the
Dyson images (10.30) provides the following commutator
equations to be solved for the singles:

C. Derivation of the unitary mapping of Okubo

We now come to the central problem of transforming
the nonunitary Dyson representation into a unitary one.
We seek a real positive-definite similarity transformation
S such that for any operator 0 under consideration

S(o)i,s '=(O)U,

s(o') s-'=(o') =(o)'
(10.39)

(10.40)

where ( ) U denotes the image under the unitarized map-
ping. Equations (10.39) and (10.40) imply that

(O)i, V= V(o )D, (10.41)

V—=S S=S (10.42)

=S,(2Nb )+ [S,(2Nb ) S,(2Nb )]n, —(10.43)

where S,(2Nb ) acts in the subspace of even particle num-
bers and S,(2Nb) acts in the subspace of odd particle
numbers.

We now proceed as we have done on previous oc-
casions. Equation (10.41), written in the form

From Eq. (10.41) it follows that V commutes with any
operator that satisfies (Ot)D=(o)Dt, which is certainly
the case for 0 =N;, the generators of U(20), and func-
tions thereof, such as the number operator. This, in turn,
implies that V, and therefore S is a function of the
Casimir invariants and hence, in the present case, of the
particle numbers 2Kb and n. Because n is a projector, it
must occur linearly in V or S. Thus, for example, S can
be written in the form

S(2 Nin ) =S,(2Nb )(1—& )+S,(2Nb )n

(a, )D =la, +pb, a (10.36) v-'(o)' v=(o') (10.44)

where A, and p are arbitrary constants. Likewise, the
commutator (10.34a) places a very stringent restriction
on (a; )D, limiting it to the form

is applied to the lowering operators 3, and a;, these be-
ing the ladder operators with the simplest Dyson images,
in order to determine the essential properties of S= V'
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The unitarized images of the corresponding raising
operators is then obtained from

(0'),=S-'(0)' S . (10.45)

=b; (I+2Nq+2n ) . (10.46)

For the case 0 = A;, we obtain from Eqs. (10.44),
(10.30), (10.26), and (10.27)

V '(2Nb, n)b; V(2Nb, R)

b j+l.be 4C2b)+lbj y(C2 C2b)] =
a, t(1 +2 Nb)+b;ja, . (10.50)

In the last step of Eq. (10.49), the square root was ex-
panded in powers of 2n (1+2Nt, ) ', and, using the idem-

potency of n, the result then was resummed.
Next, we apply Eq. (10.44) to 0 =a;, making use of

Eq. (10.31) and (10.28) to obtain

V '(2N
b, n )(a, +b,ta )V(2Nb, R')

=a, + [a, , —,'(C2 —
C2b ) ]+b; a

With the help of the identity

f ( 2N„, R )b;i =b; f ( 2Nb +2, R' ) (10.47)

From the identity (10.47), as well as the additional identi-

ties

for an arbitrary function f (2N„, n ), one may move b;j to
the far left on the left-hand side and extract the result

f (2Nb, n)a; =a; f(2N„, 1),

f (2Nb, n )a, =a;f(2Nb, 0),
(10.51)

This implies for S= V' the formula

b; S '(2Nb +2, R' )S(2Nb, R )

=bj (1+2Kb +2R )
'

=b;.[(I+2Nb)' (1—R)+(2Nb+3)' n] . (10.49)

b; V '(2Nb+2, R)V(2Nb, R)=b,,(1+2Nb+2n) .

(10.48)

one obtains from Eq. (10.50) the results

a,~S '(2Nb, 1)S(2Nb, n ) =a; ( I +2N~ )'

b; ajS '(2Nb+ 2,0)S (2Nb, n ) =b; a, .
(10.52)

The unitarized mappings then follow from E~s. (10.49)
and (10.52). Thus, applying (10.4S) to 0 = A;~, one ob-
tains from Eqs. (10.47) and (10.49)

( A,t ) U =( A;j )U =S '(2Nb, n )b;"S(2Nb, n )

=b,tS '(2Nq+2, n )S(2Nb, R)

=b,', (I+2N„+2R )'"
=b, (1+2')' (1 n)+(—1+2Nb)' b~jR

,b(tj1 +2N)b'I +l (I+2Nb )', b,~j]n .

Finally, applying Eq. (10.45) to 0 =a;, one obtains from Eqs. (10.51) and (10.52)

(a;)~=(a;)U=S '(2Nb, n)(a~+b~a )S{2Nb,R

=a; S '(2N„, 1)S(2Nb, n )+bta)S '(2Nb+2, 0)S(2N„,R)

=a;t(1+2N„)' +Jb;t a

(10.53)

(10.54)

(N[g)U (N[j)D bjkb/I„-+aj a;

( 2," ) U =bt(1+2Nb )' + [(1+2N& )'~, b, ]n, "

( &;, ) U
= ( &,J )

(a; )U=a (1+2N )' +b;ta. ,

(10.5Sa)

(10.55b)

(~;)U=(;)U . (10.55c)

Note that, for an even number of particles, 8'=0 and Eq.
(10.55b) reduces to Eq. (9.33), apart from notational

We now summarize the unitary mapping obtained in this
section:

differences. This unitary mapping, which was first de-
rived in toto by Okubo, is however, formally different
from that of Marshalek, which is the one usually referred
to as an example of a generalized Holstein-Primakoff
mapping.

D. Unitary mapping of Marshalek

We now proceed to transform the unitary mapping of
Okubo (1974c) into that of Marshalek (1974a) with the
aid of previously derived identities. By iterated postmul-
tiplication of Eq. (10.26) with the Ub(20) generators
(b b),~. and recursive use of Eq. (10.26) one readily ob-
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tains the identity

b,i(2Nb)~= Ib [—(b b) ]P], , (10.56)

for arbitrary powers p. Application to the formal series
expansion of the square-root operator then gives the
identity

b,t(i+2N, )
/ = [bt[1—(btb) T] / ], , (10.57)

(2Nb )Pn =
[ [ —(b b) ]P]; a,. a (10.58)

which implies that

(1+2Nb) / fi =
I [I—(b"b) ]'/

I
. .ata. . (10.59)

Application of Eqs. (10.57) and (10.59) to (10.55b) gives

( A J )Hp = ( A ~~j ) U

= [bt[1—(blab) ]'/
I

+ [ j(I—(btb) )' ] bt ]ata

(10.60)

where I denotes the identity matrix. Next, by repeated
exponentiation of both sides of Eq. (10.29), using 6 =R'
as well as Eq. (10.9b), one easily arrives at the identity

It can also reproduce results of both nuclear field theory
and the nuclear version of Fermi-liquid theory. These
applications and others will be reviewed in Secs.
XI—XIII. Although the generalized Holstein-Primakoff
expansions appear to be nonconvergent at first sight, be-
cause of the absence of an explicit expansion parameter,
the corresponding expansions of operators coupled to
good angular momentum (as reviewed in Sec. IX) or ex-
pansions in random-phase approximation bosons intro-
duce an explicit smallness parameter.

On the other hand, the Okubo form of the unitary
mapping (see also Janssen et al. , 1971) seems most suit-
able for nonperturbative applications. As already noted
by Okubo, the mapping of a Hamiltonian that conserves
the number of fermions takes a simple, finite, and Hermi-
tian form. Therefore, this mapping may have a role to
play in understanding the microscopic foundations of the
interacting boson model, although this has not yet been
studied. Such applications as have used this form are re-
viewed in Sec. XIV.

XI. APPLICATION OF BZM MAPPING: DERIVATION
OF HARTREE-BOGOLIUBOV THEORY FROM THE
MAPPING AND THE INVERSE PROBLEM

where the notation ( )HP was used to denote the general-
ized Holstein-Primakoff form, and a commutator occurs
in the second term of (10.60).

Finally, iterated use of Eq. (10.28) yields

a; (2Nb)p=aj [[—(b b) ]PIi;,

leading to the identity

a t( I+2N )1/2 a'II [I (blab)T]1/2]

(10.61)

(10.62)

Consequently, the single-fermion operators (10.55c) are
transformed into

(&; )Hp (i2; )U

(btb)T]1/2]

(+i )HP (+i )HP (10.63)

The U(211) generators are, as always, unchanged in the
generalized Holstein-Primakoff mapping.

A. Hartree-Bogoliubov theory as classical
limit of a boson-mapped theory

(iztnt)~ =[bt&I —(b b) ]);=(iz, ~;)21,

(atcij )21
= (b b),i,

(11.1a)

(11.1b)

where

The Belyaev-Zelevinsky-Marshalek (BZM) mappings
have thus far proved most useful when applied to the
quasiparticle representation of fermion algebras. This in-

cludes closed-shell nuclei, if one uses the language of par-
ticles and holes. The main requirement is that the
definition of quasiparticle be such that occupation proba-
bilities are small near an equilibrium configuration; the
latter can be spherical or deformed, normal or supercon-
ducting. In this section, the boson images of quasiparti-
cle pairs a;n and multipoles e;a are therefore given by
the expressions

E. Concluding remarks

(blab ); =b Jib;1, . (1 1.2)

We remind the reader that the equivalence between the
two unitary forms of the mapping holds only in the phys-
ical subspace, as do the identities used in deriving them.
Nevertheless, the structure of the two mappings is
different, and thus the possible range of applications also
differs. As already remarked, the generalized Holstein-
Primakoff form has a perturbative structure, satisfying
commutation rules order by order. It is therefore most
suitable for perturbative applications, as in the regions
near closed shells and also in strongly deformed nuclei.

and b, b are the bosons defined in Eq. (9.9). In the appli-
cations of this section, the bosons will be replaced by c
numbers, i.e., we go to the classical limit. Of course, the
ordering of the boson operators prior to the c-number re-
placement affects the results obtained. We choose an or-
dering that replaces commutators of mapped operators
by the corresponding classical Poisson brackets, which
has been dubbed "c ordering" (Marshalek and Weneser,
1970; see also Johnson, Klein, and Dreizler, 1968);
Marshalek and Holzwarth, 1972; Yamamura and Nishi-
yama, 1977; Yamamura, 1980). This turns out to be ex-
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actly the ordering obtained by freezing the operators in
Eqs. (11.1) and (11.2) in the positions shown.

Below we shall also need the BZM representation for
particle creation and annihilation operators (a, , a, ),
which are easily obtained from Eq. (11.1). The two sets
of ferrnion operators are related by a general Bogoliubov
transformation

(a; aj )li —+pj;(c",c), (11.12b)

p x
I—p

(11.13)

where y is antisymmetric and p is Hermitian. Let us
define the matrix

a a~

a T8 (11.3)

It follows from Eq. (11.5) that

%'=ll* KS'* . (11.14)

U V
(11.4)

Because V/ is unitary, Eq. (11.11) implies that

2=JY . (11.15)

The boson
related by

(a a)li
(a a)li

images of the pair operators are consequently

(a (a ) )li

(a(a) )

(atcgla)li (a (a ) )li

(a a)li (a (a") )li
(11.5)

6j&'~ c&j & 6&j ~clj

Then we have

(1 1.6)

(a;aj)li ~a, (c*,c),
( a' aj )ll ~Ki~j ( c ' c )

(a;a; )li ~rj;(c*,c),
(11.7a)

(11.7b)

where Ic is an antisymmetric matrix and r a Hermitian
matrix given by

a =+I+cc*c=c+I+c*c,
r= —cc* .

(11.8a)

(11.8b)

These matrices, as one checks, identically satisfy the
equations

where (3 denotes the direct product.
Suppose now that the boson operators in Eq. (11.1) are

replaced by c numbers:

[A,B]~—,
' g aw aa

Bc„* ac,j
(11.16)

It is therefore guaranteed that the algebra of the pair
operators is replaced by the Poisson bracket relations,

It is therefore established that if the boson operators are
replaced by c numbers, then the images of pair operators
can be interpreted as elements of the generalized density
matrix % of Hartree-Bogoliubov (HB) theory (Valatin,
1961). In particular, p may be identified with the one-
particle density matrix and g with the pairing tensor.
The reason for making the identification with HB rather
than with Hartree-Fock-Bogoliubov (HFB) theory will be
clarified later. It should perhaps be emphasized that the
parametrization of an HB or HFB density matrix by the
substitution (11.6) works only for the BZM mapping and
not for the (normal-ordered) Marumori- Yamamura-
Tokunaga mapping (see below, however).

The substitution (11.6) can be considered as a passage
to the classical limit by means of the Wigner transform
(Carruthers and Zachariasen, 1983), in which a product
of operators is replaced by the same product of average
values, i.e., a function of the classical canonical variables.
In this case (c;j,ic;*) play the role of (complex) canonical
variables. Commutators go over into (i times) the classi-
cal Poisson bracket,

r —r —ace* =0,
rsvp

—Icr* =0 .

Assembling a matrix K,

—sc* I—r

we can write Eq. (11.9) as

(11.9a)

(11.9b)

(11.10)

[rji ~ rlk ]P 8jkrli ~li rjk

l. rik~+ji ]P ~jk+il ~ki+jl

I+j' +lk ]P

I+" +kl ]P ~jk~l' ~k 8lj+~k'rjl

+&,I&;k
—

&,I I',v
—&I &,k

(11.17)

K =K. (11.11)

(a;aj )~~yj,.(c*,c),
(a,"aj~)li ~y,*j(c*,c), (11.12a)

Under the replacements (11.6) and (11.7), the boson
images of pairs in the particle representation become

with similar relations involving matrix elements of p and
X.

Another way of "deriving" the substitution (11.6) is to
consider average values in a boson coherent state. But in
such a case, the substitution is only strictly justified for
the normal-ordered operator. There is no contradiction
because the commutators arising from normal ordering
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are quantum Auctuations and should be husbanded for
use in the study of quantum corrections. The result is
then the same as for the Wigner transform method. We
turn then to the application of these results.

B. Application to general schematic Hamiltonian

The BZM expansion stemming from Eq. (11.1) has
proved its usefulness when employed in conjunction with
a Hamiltonian of the form

H=y (~/J
—

&&/J )a/~aJ+ —,
' y F/J k/a/~a/ aja/

the density-dependent interaction of Migdal s Fermi-
liquid theory (Sorensen, 1971).

We have two choices for proceeding with the study of
Eq. (11.18). The first is to make a transformation to
quasiparticles before boson mapping, a method we shall
use in succeeding sections. Here we shall pursue a
second approach, which is to introduce particle bosons
immediately according to the transcription

HB=g (e;.—5;.A, )(a; a )B
lJ

+—,
' p F/ k/(a, ak )B(aj.a; )B

ij kl

+ —, g G,j k/a; a/a/ak,1

ij, kl
(11.18) + ,' X G-,, „,(a,'a,')B(a/ak )B

ij kl
(11.19)

where the one-body operator includes the Lagrange-
multiplier term A,N, the second term is an effective
particle-hole force, and the last term is an effective
particle-particle force, with antisymmetrized matrix ele-
ments G;J kl

= —
Gii kl G J lk. Included in such

schemes are the schematic models such as the
quadrupole-quadrupole plus pairing force model and also

Next we set

/M= tV] . (11.20)

Setting b„,b„=O initially, Hz becomes a c number,

HB ~6'0(c*,c)= g (e/j 5;JA, )pj;(—c",c)+ ,' g F/j k/p—k/(c*, c)p/j(c*, c)+ ,' g G—/j k/yj(c*, c)yk/(c*, c),
IJ ij kl ij, kl

(11.21)

which is nothing other than the HB energy functional as-
sociated with the original Hamiltonian. In this case the
elements of the generalized density matrix have already
been parametrized (in terms of the c;j,c;j ) so that the
(Pauli principle) constraint %' =A is automatically
satisfied. It follows that the equations

Bho(c*,c)/Bc„=0, ///,
= fij ] (11.22)

and complex conjugates are equivalent to the HB equa-
tions and therefore determine the equilibrium
configuration specified by the set c„' ', c„' '*. The corre-
sponding value of Eq. (11.21) is the equilibrium HB ener-
gy. The vacuum of the shifted bosons (b„,b„) is given by
the boson coherent state

~c(0))=exp[iS(c )]~0),

S(c' ')= i g (c' —'bt c' '*b ) . —
P P P P

(11.23a)

(11.23b)

The solution of the many-body problem is continued
by expanding HB about 60(c' '*,c' '). It is guaranteed
that there are no linear boson terms, and the quadratic
terms yield the standard RPA (without exchange). Ex-
change terms are taken care of in higher order. Higher
RPA effects will be studied in the next section.

Suppose one starts with a general nuclear Hamiltonian,
rather than a schematic one. If this is put into normal
form with respect to a chosen quasiparticle vacuum, one
certainly obtains the HFB energy from the constant
term, rather than the HB result. The problem is to de-
cide how to map the remaining operator part of the

I

Hamiltonian. This problem is of considerable interest
and importance for future applications. We postpone a
full discussion of the possibilities until Sec. XIV.

C. Time-dependent Hartree-Bogoliubov theory

Next we go a step further and show that, in the c-
number limit, the equations of motion in the BZM theory
reduce to the time-dependent HB equations. The time
dependence of the boson operators is given, of course, by
the equations

db„
ih "=[b„,H ] .

dt
(11.24)

d(a; aj)B
2 I~J (ak; ak )B] ~ I(ak, aJ)B, j/k/]dt

+X I~ki(akaj )B ~jk(aka' )B ]

(11.25a)

d(a;a )B 1
I~jk (a'ak )B ] X l (ak j )B k/]dt 2 k 2

X ~(akaj )B~k'+(aka')B ~jk ]

where

(11.25b)

Since all the commutators are preserved, the equations of
motion for fermion pair images are the exact equations
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~'8 jg +g +ki, im (t'ai ~ipg )ii
Im

~k;= ,'X—Gk;,i (& «)a .
Im

In the c-number limit Eqs. (11.25) become

dc„Bbo(c*,c)
dt Bc„*

i A = [h,p j+yb, *—h.y*,dp
dt

i fi =hy+yh* —ph —hp',dX
dt

(11.26)

(11.27)

(11.28)

=tX @olpdt
(11.30)

with ho, defined by Eq. (11.21), playing the role of Ham-
iltonian.

We have thus recovered the time-dependent HB equa-
tions, which differ from the exact equations only in lack-
ing quantization. Put in another way, the boson repre-
sentation seems to be the most rigorous way to quantize
the time-dependent HB equations. This is an elegant
"theorem, " which has been utilized extensively by Kuri-
yama and Yamamura (1981a, 198lb, 1981c, 1981d,
1981e; Iwasaki, 1981; Yamamura, 1983; Raduta et al. ,
1984; Yamamura and Kuriyama, 1987b, 1987c) to dis-
cover or rediscover boson mappings starting from Pois-
son bracket relations, i.e., classical-mechanical realiza-
tions of Lie algebras. We turn next to this inverse prob-
lem, which has ramifications much wider than the
rediscovery of known boson mappings.

D. The inverse problem: Quantization of tine-dependent
Hartree-Fock theory. Canonical formulation of TDHF

For the discussion of this problem we shall omit the
pairing correlations and confine our attention to time-
dependent Hartree-Fock theory (TDHF). It is well to
recognize three aspects of the problem: (i) First one es-
tablishes that the TDHF equations are a disguised form
of Hamilton s classical equations of motion. The sim-
plest way is to find at least one mapping of the equations
to the Hamiltonian form. This, in essence, is what has

where h and h. are the self-consistent field and pairing
potentials, respectively:

ki ~ki ~~ki +2 +kl, impml(c
lm

(11.29)
~kl g Gk i gi (C,C),

Im

and where the condition A =A' holds at each instant.
With the aid of the Poisson bracket notation (11.16), one
may write

dp
&&

P =(P @o]pdt

been accomplished in Eq. (11.27), where the average
values of the boson operators are revealed as complex
canonical variables. The more complex method, which
will be exemplified in the present discussion, is to provide
an existence theorem for the canonical form. To be use-
ful the existence theorem must be constructive, providing
a means for choosing a specific set of canonical variables.
(ii) The second and most important part is to discover in
teresting mappings. We shall explore this aspect in more
detail below. (iii) Finally we quantize the classical sys-
tem. This procedure also requires elaboration.

Interesting mappings are of at least three kinds. The
first leads to canonical variables that yield the classical
limits of the exact BZM (and extended BZM) mappings
derived in Secs. IX and X. If this has been done indepen-
dently of knowledge of the exact boson mappings, then
upon quantization we have, up to operator ordering, a
new derivation of these mappings. This approach is of
considerable formal interest, especially in the case of the
boson-fermion mapping of Sec. X, where we have con-
straints. Here one may call upon Dirac's theory of
quantization of systems with constraints (Dirac, 1950;
Ruggeri, 1988). Below, for illustrative purposes, we shall
describe the method as applied to the boson mapping
alone, since we have already established methods of ob-
taining the appropriate operator algebras when there are
constraints.

A second class of problems arises when one is near the
vibrational or rotational limit. Here one starts with the
uncorrelated canonical variables furnished by the classi-
cal version of the BZM model and introduces linear
transformations to RPA variables. Further canonical
transformations are then required to diagonalize the
Hamiltonian to higher order. For this type of problem,
initial passage to the classical limit does not appear to
offer great advantages. In fact, the following two sec-
tions are devoted to a relatively detailed study of these
problems entirely within the quantum framework estab-
lished at the start of this section.

A third class of problems may provide the natural
hunting ground for the classical dynamical analysis,
namely, the problem of large-amplitude collective
motion. Here one must develop techniques for decou-
pling collective modes —where they exist but cannot be
treated by small-amplitude approximations —from a sys-
tem with many degrees of freedom. This problem is
much too extensive (and complicated) to be wedged into
the end of this section. Several aspects of this problem
will be discussed in Sec. XXI.

Concerning quantization in realistic problems, one
cannot, in dynamically interesting cases, obtain other
than an approximately valid requantization of a system
that has been taken to the classical limit. Even if we be-
gin with a system described by Cartesian coordinates, a
nonlinear transformation will take us to a curved space,
leading to ambiguity in the requantization of the kinetic
energy. As will be discussed, if the classical limit can be
justified in the first place, then numerical errors resulting
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from the ambiguities will be small.
We devote the remainder of this section to an illustra-

tion of the work of Kuriyama and Marumori, following
the account of Yamamura and Kuriyama (1987b). If lo)
is a reference Slater determinant that is the solution of a
static HF calculation, we utilize below the particle-hole
formali. sm, introducing particle and hole creation opera-
tors, a and b . Thus if the set a is divided into subsets
h and p, a= jh,p J, occupied and unoccupied, respective-
ly, in lo), then

b„lo) =a, lo&=o. (11.31)

U=exp g(~,"4r~, 4&,r—~, )
ph

(11.33)

The I h and I h are time-dependent parameters, totaling
2NM =2f in all, where N is the number of hole and M
the number of particle states, respectively. In place of
the set I we wish to substitute canonical variables Q„and
P„. We next describe a general method for doing this
proposed by Marumori, Maskawa, Sakata, and Kuriya-
ma (1980).

The TDHF theory can be based on the variational
principle

5f L dr=0,
1 (11.34)

L=y i —Hy
where Q„and P„are chosen as variational parameters.
These can be determined in a manner that leaves open
the possibility of a canonical transformation, by means of
the equations

(
. a os~=—P, +

The Slater determinant ly ), which is a solution of the
TDHF equations, will be taken in the form

l7 &=Ulo), U'U=UO'=1, (11.32)

where

specification of the generating function S(Q„,P„).
To apply this procedure we utilize the fact already es-

tablished in Secs. XI.A and XI.B, namely, that the expec-
tation value of any operator in the state

l y ) may be re-
garded as a classical image of that operator. For exam-
ple, H in Eq. (11.36) (called 6'0 earlier in this section) is a
classical image of H. In this sense, TDHF theory gives
us a classical image of the original many-fermion system.
By requantization of some choice of canonical variables,
one can regain the quantum domain from which one
started, at least in some special cases.

E. Boson expansion derived from canonical quantization
through the Poisson bracket

(11.39)

(A) .=—(C C), (A)~h —= (C*C )h.~ .

Here C is a matrix whose hp element has the value

(c)„,= [r(r'r)-'"sin(r'r)'"], „
= [sin( rrt) in( rrt) —i re

hp

(11.40)

(11.41)

It is convenient to use complex canonical coordinates,

X„= —(Q„+iP„), X„*= —(Q„iP„), —1 . ~ 1

2
" "' "

2
(11.42)

i [X„,X, ]p =i [X„*,X,*]p=0,
i [X„,X,*]p=|i„, .

(11.43)

The essential role played by the canonicity condition
(11.35) is illustrated by the choice

To illustrate the technique, we quote the results for the
classical limits derived by Yamamura and Kuriyama
(1987b). These authors show that

&ylbh~ply&=[(1 —~)'"C]~,=[(1—~ )'"C
]pi

(11.38)

(11.35) S= —
—,
' g Q„P„ (11.44)

It follows from Eq. (11.35) that L can be expressed as

L =g P„Q„H+S, —

and by the evaluation

y y =—Tr C~ BC 1BX„2
H= & ylHly &

(11.36)

2

(11.45)
aC'

C = ——X„.
It follows from Eqs. (11.34) and (11.36) that the TDHF
equations take the Hamiltonian form

BH
P gp & I'

BH
BQ„

(11.37)

Equations (11.35) are called the canonicity conditions. A
definite choice of canonical variables emerges from a

A possible solution of Eq. (11.45) is

(C)i~ =X„, (C*)h =X„', r=(hp) . (11.46)

Substitution of Eq. (11.46) into Eqs. (11.38)—(11.40)
yields the classical limit of the BZM mapping. Maintain-
ing the order as written, and interpreting Xh as a boson
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operator satisfying the commutation relation

[X„~,X„J.]= [X„~,X„.J, ]=0,

one obtains the mapping

(11.47)

(11.48)

In accord with most applications, only l=0 pairing will
be assumed, in which case the simpler Bogoliubov-
Valatin transformation is sufhcient, provided that the so-
called canonical single-particle basis is used (Valatin,
1961). The quasiparticle creation operators a, are then
given by

(b„a, ),= [(1—X'X)'"X]„
=[(1—(xtx) )' 'x ] „,

(a a )~ =(Xtx)
T

(11.49)

(11.50)

which agrees with the results of Sec. IX, except for nota-
tion.

The extension of these results to the boson-fermion
case is rather more complex, and, in any event, obtaining
the exact quantum system requires "malice
aforethought, " which can only succeed for the purely
kinematical mappings considered here.

Let us remark in closing that results equivalent to
those described in the last part of this section, i.e., the
derivation of the BZM mapping by requantization, are
also to be found in the work of Blaizot and Marshalek
(1978a, 1978b). A primary aim of these papers, however,
was to obtain finite boson mappings of the Schwinger
form.

XII. PERTURBATIVE APPLICATIQN QF BZM MAPPINGS:
BEYQND RPA AND CGNNECTIQN
WITH FINITE FERMI-SYSTEM THEQR Y
AND NUCLEAR FIELD THEQRY

(12.1)

a;a ~(a,. a )~

= V, 5;, + U, U (a;a )I —9;O. V, V, (at .(z,. )l

+ U, VJ. H (a;a ))I+UJ V~(a;a )I,
a;ta

~
~(a;ta t )I

= U;Vig;5; +U, U (a;a z)l

(12.2)

where the coeKcients satisfy U; + V; = 1, thereby
guaranteeing that the transformation is unitary and the
quasiparticles obey fermion commutation rules. The no-
tation a;=0;Ta; T ' is used, where T is the time-
reversal operator. Since the index i may refer to either
time-positive or time-negative orbitals, the phase factor
0;, defined by 6P; =1 for i )0 and 0; = —1 for i (0, is in-
troduced in order to satisfy T = —1. It should also be
noted that in the case of closed-shell systems, V; =1 for
orbitals below the Fermi sea and V;=0 for those above,
so that the transformation (12.1) just introduces the par-
ticle and hole operators for which the Fermi sea is the
vacuum.

In order to take into account the possible presence of
an odd nucleon, we map into the full ideal space (Sec. X).
The mapping is given by

A. A boson-fermion Hamiltonian for the study
of vibrational nuclei

In this section, we present some examples (Marshalek,
1974b, 1975a) of the perturbative application of the gen-
eralized Holstein-PrimakoÃ (BZM) boson expansion to
spherical nuclei; deformed nuclei are discussed in an en-
suing section. The basic assumption of the approach is
that the mean-Geld plus random-phase approximation
provides an adequate basis for treating higher-order
anharmonic corrections by perturbation theory. The
Hamiltonian is assumed to have the form given by Eq.
(11.18). However, instead of mapping particle pairs onto
boson operators and then performing the boson-shift
transformation to eliminate linear boson terms, we now
map quasiparticle pairs, where the quasiparticles are
defined by the general Bogliubov transformation (11.5).

—8;Oi V, VJ.(a;ai )I —U, Vi8, (a;aj )I

—U V.O;(a a;)I (and H. c. Eq) .

where ( )I denotes the Holstein-Primakoff image derived
in Sec. X.D. The corresponding image of the Hamiltoni-
an (11.18), denoted by (H)I, takes the form

(H)~ = Wo+(H„)1+(H22) +I(H3f+H. c. )I

+(H40+H. c. )I+(Hqq )I, (12.3)

where 8'0 turns out to be the Hartree-Bogoliubov
ground-state energy, H» is the image of the independent
quasiparticle Hamiltonian, and the remaining terms
represent residual interactions among the quasiparticles.
Specifically,

IVO = g e; V, —
—,
' g F, ;V; V —

—,
' g b, , U, V, , . (12.4a)

(H„),= yE, (u,'a, )l, (12.4b)
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(H22)1= —,'&F1,jkf~+'fkI+ [(a a j—)I (a —Iak)j] 4+G j—k —I[U'UjUkUI(a a —j)l(a I—ak)j
ij kl ijkl

—
VI V, Vk Vi(a iak)I(a;a . )I],

H31 2 Flkjlf j gkl I( la —j )I (ak I )I ] + g G' —j, l —k~k [ Uk V!V' Vj(akal )1(a'a — )I
ij kl ij kl

—Ui Vk U, UJ(a; —a )I(akai)I ],
H4o =

—,
' 2 [;k,,if j'+ 'fki+ '

&
G J, I —k~—k~1(g,"j+'gkI+' g—, ''gkl ')](a;'a' , )1(—aka' l )I—,

ij kl

H22 g [ F k jig jgkl '+O' —;I—k U' Vj UI Vk~'~k ](a' j )I(ak I )I
ij kl

(12.4c)

(12.4d)

(12.4e)

(12.4f)

where f,~.—1 and g;I
+—' are defined by

f,' —'=(U, V+U V;)OI,
(+)

g,',
-'—= U, Uj+V, V, .

(12.5)

where the 8, are self-consistent single-particle energies
and the 6, are the gap parameters obtained from the
simultaneous diagonalization of the matrices 8; and

as follows:

The quasiparticle energies E, in Eq. (12.4b) are given by
the BCS formula

(a;a )I= QB,."Bk+c;tc =(BtB);+. c;tc
k

(12.10a)

which Eqs. (12.6) are satisfied and then map onto
quasiparticle-based bosons. In both cases, the linear bo-
son terms are removed to lowest order in the smallness
parameter and all final physical results are the same.
Note, however, that the shifted bosons of the previous
section have an oscillator coherent state as the vacuum,
while the bosons discussed in this section have as vacuum
the boson image of the HB state, which is not the same.

To proceed further, we introduce the generalized
Holstein-Primakoff images of the quasiparticle pairs in
the ideal space, given by

6,, = e,, + g F,k,k Vk —8;5;
k

g G j, k —k Ui, Vk —= —5;j6
k)O

(12.6)

(a a, ) =
I [I—(8 8) ]' 8];.
—g [(I—(8 8) )ki, B;,]ckci,

kl

(12.10b)

+ —,
' b, ( U,. Uj —V, VJ ) ](a;a, )I (12.7)

is eliminated, i.e., the condition (H2o)I=0 is achieved,
first of all, by satisfying Eq. (12.6) and, second, by deter-
mining U;, V; so that

(e; —A ) U; V; ——,'b, ;( U; —V2) =0, (12.8)

which, together with the condition U; + V; = 1, yields the
BCS occupation probabilities

V, =
—,'[1—(8, A, )/E, ], —

U, =
—,'[1+(6, A, )/E, ] . — (12.9)

Equations (12.6), (12.8), and (12.9) are equivalent to the
Hartree-Bogoliubov approximation. We have seen in the
last section that this approximation can be achieved by
mapping the Hamiltonian onto particle-based bosons in
an arbitrary single-particle basis and then performing the
boson-shift transformation. Equivalently, one may first
introduce the so-called canonical single-particle basis in

A possible term (H20);+H.c. in the Hamiltonian (12.3),
given by

(H20)I = g [ ( b,j —A5,, ) U; V, OJ

g (C; CkBkl C& CkBk; )
k

(12.11)

Compared to the first term B; on the right-hand side, the
other terms should be regarded as O((2Q) '), while

(a, aj)I, given by Eq. (12.10a), is O((20) '~ ). Then, for
example, the following terms contribute to (H4O )I ..

(a tat )I = (a,a, )lt, (12.10c)

where the 8,- are the boson creation operators, while ck
creates an ideal odd particle. These equations reproduce
Eqs. (10.14) and (10.60), except that we have changed
symbols both for the bosons and for the quasifermions.

In order to lighten the notation we have not intro-
duced angular momentum coupling, and thus an explicit
smallness parameter is absent. Nevertheless, in expand-
ing Eq. (12.10) and then substituting in the Hamiltonian
defined by Eqs. (12.3) and (12.4), one should keep in mind
the implicit relative orders of the terms determined by
the kinematic expansion parameter (20) ', as dis-
cussed in Sec. IX. For example, to obtain the leading-
order corrections to the RPA, one must retain the follow-
ing terms in the expansion of (a;a )J.

(a;a )I = B;,——,
' gB;kBI BIk

kl
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(IX~Ia j) I(aka I)I= BI~ jBk I
—

—,
' g (B; jB IBk„Bm„+B jB;„B „Bk I)

mn

(12.12)

where the B B term in the right-hand side provides the
backward-going graphs of the RPA. The quartic boson
terms provide anharmonic corrections to the RPA of rel-
ative order (2Q) ', while the B B c c terms are also of
order (2Q) ' compared with the ideal odd-particle term

g; E;c; c; arising from (H»)I. As another example, we

note that the leading-order contributions to (H3, )I arise
from

(~'+ —j )I(~k+I )I y Bi jBk —BI +B jCkC!—

second-order perturbation theory terms of relative order
(20) ', which are comparable to the diagonal contribu-
tions arising from quartic terms.

For the purpose of calculating the leading-order
corrections to the RPA, it is only necessary to expand
through quartic terms as in the above examples. Indeed,
we know of no perturbation applications that have been
carried out to higher orders. To the order of interest
then

(12.13) (H)I Wo+ g Eici ci +H.B +HB +HBF+HB +HBF

which should be considered as O((2Q) '~
) compared to

the RPA and ideal odd-particle terms. Since (H» )~ has
no diagonal matrix elements, it first contributes in where

(12.14)

HB"=HRpj = ——,' X «+&, »(~j ij+ ,' X I,,kf~'—j+'fkl+'I i, k II—
—.
' X 6 .k i( U UJ—Uk—UiB jBk i— —

ijkl

+
8 p I I Fik jlfij+ fk! z 6i —j I —k8k8l(gij gkl gij gk! jBi jBk —k +—H c

ij kl

is the RPA Hamiltonian arising from (H» )I, (H22 )I, and (H40) &+H.c., and where

HB = 4 g Fikj lfij gkl I i —j& kmBlm I
(3) & (+) ( —)

ijklm

(12.15a)

and

+ —,
' g [6; I I k8k(Uk VIV;VjBk Bl B; j —UIVkU;U~ B; kBk Bl ).+H. c. ]

ij klm

(12.15b)

BF 2 g [Fikjlf(I' gki p 6i —j, l —k(flk gj+flk gij ) l'Bi jk I+-
ij kl

with both arising from (H3, )I +H.c. Furthermore,

(12.15c)

HB =
&p Q Fil jkfij fkl I i j&BmnBknBm——I I

ij klmn

8 X i jk —I ( j k—! i jmn kn m——I i j k I mn kn m —I i j)—
ij klmn

+
4 g (Fikjigij gkl +26i —j, l —k8j 8k Ui Vj Ul Vk )BimBjm knBIn

ij klmn

(Fik jlf j+'fki+' —26; j I k8k8IU; Uj Vk Vl)B; jBm IBk„B
ijklmn

(F;k If +'fkI+' —26; I
. k8k8I Uk Ul V;V.)B,Bk„B „B; +H. c. of all terms, .

ij klmn

(12.15d)

and, finally,
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(12.15e)

Hji~ =——
—,
' g Fi!jkf j+'fki+'tB; j,B~ iIcmck+ —,

' g G; jk i(U;UjUkUiB, jB~ !—V, VjVkViBk iB; j)CmCk
ijklm ijklm

+
2 g I. i!jkgij gk! +

p i —j,k —i(fij fk! +fij fk! ]BimBjmcl k
ij klm

(+) (+) (+) (+) (
—) ( —

) t t tikjifij fk! 2 i —j,!—k ~k ~!(gij gk! gij gk! ) Ãi jB—m —! k I
ij klm

+ —,
' g (F;j jkg j 'gkj '+26; jk jU; Vj Uk Vj)c; ck+H. c. of all terms .

ijk

The contributions (12.15d) and (12.15e) arise from
(H2p )I & (H2p )I y and (H4p )I +H.c ~

In the Hamiltonian given by Eqs. (12.14) and (12.15),
the Hartree-Bogoliubov energy is of the order of (2Q),
the RPA Hamiltonian (12.15a) is of the order of unity,
Hj! ' and Hjj~ are of order (2Q) ', while Hji ' and HjiF'
are of order (2Q) '. Since HjI

' and Hj'i'F! have vanishing
diagonal matrix elements in an RPA basis, they first con-
tribute to the energy in second-order perturbation theory
and are thus of the same order as the diagonal contribu-
tions of H~ ' and H~F'.

B. Perturbative diagonalization.
The random-phase approximation and beyond

We have carefully avoided contracting operators up to
this point. The reason, of course, is to avoid mixing up
terms of different orders, which is easy to do in the ab-
sence of an explicit expansion parameter. However, once
all of the terms of a given order have been accounted for,
there is certainly no harm in normal ordering. Thus, for
example, Hz ', when rearranged into normal order, gives
rise to quadratic terms, but these are smaller by a factor
of the order of (2Q) ' than those included in the RPA.
Likewise, the linear boson terms arising from normal or-
dering of H~ ' are smaller by a factor of the order of
(2Q) ' than those of (H2p)i! removed by the choice of
the HB basis.

SRp~ being the correction to the ground-state energy.
The 8,8 are normal-mode bosons ("phonons") corre-
sponding to nonzero eigenfrequencies cu and related to
the S, ,B," by a Bogoliubov transformation

8t= —,
' g [X; (cr)BJ —1; (cr)B"; ] (12.17)

IJ

whose coeKcients are the eigenvectors of the eigenvalue
equation (Rowe, 1970; Ring and Schuck, 1980),

X(cr ) Xcr

Y(0) Y (12.18)

where the submatrices A and X are obtained by writing
Eq. (12.15a) in normal order:

Hj! '= const+ g Aij kiB jBk!
i &j,k &I

+ —,
' g (X;j kiB;t.Bk!+H.c. ) .

i &j,k &l

Specifically,

(12.19)

The zero-order basis vectors for the perturbation treat-
ment are provided by the Hamiltonian g; E;c;tc; +HI! '.
The RPA Hamiltonian Hz ' can be brought into the gen-
eral diagonal form

Hj'! '=IVRpA+ gA'cp 8 8 + —,
' QP„IS„, (12.16)

~i —j,k —! (~ki ~lj ~k —j~!—i )( i ++j )+Fi!jkfij fk! p i —j,k —!(gij gkl +gij gk! )~k ~l

(+) (+) (+) (+) ( —) ( —)+i —j,k —! ik,jifij fk! 2 Gi —j,!—k~k~1(gij gk! gij gk!
(12.20)

In addition, the P„ in Eq. (12.16) (the J„are inertial pa-
rameters), which commute with the 8,8 and can be
chosen to commute among themselves, represent the
linear boson approximations to generators of broken
symmetries, i.e., those constants of motion not conserved
by the HB approximation. If the system is superAuid,
i.e., for some range of single-particle levels 6,%0, then
the total particle number of the paired nucleons is cer-
tainly among these constants of motion, with other possi-
bilities including linear momentum, isospin, and, in the
case of deformed nuclei, the total angular momentum.
Such degrees of freedom, together with canonically con-
jugate coordinates, are often referred to (misleadingly) as

"spurious modes, " since they are associated with vanish-
ing RPA frequencies. In the present section, zero-
frequency modes will be disregarded, but as shown in the
next section, the expansion of (H)I contains all the infor-
mation necessary to correctly reconstruct the dependence
on such constants of motion.

We now are prepared to discuss the perturbative diag-
onalization of (H)I using the (nonzero-frequency) RPA
states plus those of the odd particle as a basis. A con-
venient technique consists of applying successive unitary
transformations to diagonalize the Hamiltonian to the
order of interest. Since Hz ' and Hzz have no diagonal
matrix elements, it is clear that to proceed one order
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beyond the RPA, the unitary transformation must entire-
ly remove these terms. This is conveniently accom-
plished by means of two successive unitary transforma-
tions. The first, given by

the neighborhood of a phase transition, such as the tran-
sition from spherical to deformed shapes, perturbation
theory necessarily breaks down in such a situation.

(H)s ~ (Hs )' =exp( —iSs's ')(H)s exp(iSs') ')

= (H)s+ [(H)s, iSs's ']

—
—,
' [[(H)s,Sss '],Sss ']+ (12.21)

may be chosen to remove H~ ' through the requirement

[a(2) iS(3)] a(3) (12.22)

In the absence of an odd particle, H~F', of course, can be
neglected. Otherwise, a second transformation

C. Anharmonic corrections to observables

In the viewpoint taken here, operators get transformed
while state vectors remain unchanged and equal to the
zero-order vectors. To calculate matrix elements of tran-
sition operators, we must take into account the transfor-
mation of the pair and density operators, which, to
lowest order, are given by

(as )' (as )"

=exp( iSss'F')(H—s )'exp(iSsI'F'),

with Szz chosen to satisfy

(12.23)

(a!a; )s =Bs+ [Bs&iSss ']+ [Bss&iSsIF ] &

(a, a )s =(a, as)s= QBkB k+c; cs,
k

(12.26)

gE;c; c;+ass ', iSss's-' = HssF' &— (12.24)

eliminates H~„" to lowest order.
Subsequent to the two transformations, the Hamiltoni-

an takes the form

(Hs)"= W'0+ g E;c; c;+ass '

+ ,' [a,"),is,'"-]+a,"'+[a,",', is,")],
+

2 [HBF, )SBF ]+HBF+ (high««d«s) . (12.25)

The corrections to the RPA are now all of relative order
(2Q) ', with those of relative order (20) 's having been
removed. Thus, to ob'.-ain corrections to the RPA ener-
gies to this order, it is only necessary to calculate expec-
tation values of Eq. (12.25). Of course, one could per-
form an additional unitary transformation to remove oQ
diagonal terms of relative order (2A) ', but that would
only be necessary if the energies through relative order
(2Q) were desired [in which case the oF-diagonal terms
of order (20) s would also have to be removed] or if
one wanted the effects of these off-diagonal terms on
transition matrix elements. In principle, the method of
successive unitary transformations could be used to
transform the Hamiltonian into the diagonal form of a
polynomial in the boson and odd-particle number opera-
tors 6,8,. and c; c;, respectively, with coefficients given
as expansions in a smallness parameter of the order of
(2Q) '. [This is the quantum analog of the classical
Birkhoff-Gustavson method (Birkhoff, 1966; Gustavson,
1966). Since the classical method is known not to con-
verge, the same is expected for the quantum expansion.
Nevertheless, it may still provide a useful asymptotic ex-
pansion. ] The physical expansion parameter is of the or-
der of the product of the kinematic parameter and the
RPA zero-point amplitudes. Since the latter blow up in

The quasiparticle transition density matrix is given by

ii; (ab): (a~(a —a;)s b),
r;(ab):—(aI(a,.as )s'~b ),

(12.27)

where a) and ~b) denote any two eigenstates of
g; E;c; c; +ass '. With a knowledge of the matrix ele-
ments (12.27), we may calculate all particle-transition
density-matrix elements and thereby all moments and
transition matrix elements.

In order to compare these matrix elements with results
of the theory of finite Fermi systems, it is convenient to
introduce the quantities

5)(:; (ab) =!i;s.(ab. ) 5,b(0/((a a—; ) '/s0},

5r;.(ab) =r, (ab) 5,b. (0((a—;as)s /0},
(12.28)

where ~0) is the RPA vacuum satisfying 8 ~0) =c; l0) =0.
The commutators (12.22) and (12.24) can be converted to
linear inhomogeneous equations for the quantities (12.28)
by first commuting them with a B;. and using the Jacobi
identity, to obtain

and

g E;c; c;+ass ', [B,s, iSsIs']

+
p 2 [~ij,k) [Bk!&)SBF]

kl

+%;s,ki[Bki, iSss's']] = [HssF'&Bs ] . (12.30)

By taking matrix elements of both sides of Eqs. (12.29)

[Hss ', [B&s&iSss ']]+—,
' g [A(s ki[Bk, &iSsI ']

kl

+X,s ki[Bki&iSs) ']I =[ass '&B;s]

(12.29)
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and (12.30), one obtains integral equations for the correc-
tions to the quasiparticle transition density matrix. We
consider first an even-even nucleus with arbitrary eigen-
states le) and e') of Hz i. Then 5ir(ee')

I

=—5ic' ' j(ee')+5ic;''j(ee'), where, according to Eq.
(12.26), 5icI'i .(ee')=(elB; le'), an RPA amplitude.
From Eq. (12.29) one readily finds the inhomogeneous
equation for 5ic; (ee'):

(e —e')5ic',. ' j(ee')+ —,
' g [A; J k i5ic'k ' i(«')+&; j k /5ic'k i(e—e)]

kh

=(el [a~i ',B;,] le') —5, , (0l [~i',"»;,]I0), (12 31)

where

5ic,'' (ee')=(Ol[B, , iSjI ']IO) —5„,(OI[B, j,iSjI ']IO) . (12.32)

To the present order of approximation, 5r; is determined entirely by the RPA, as can be seen from the second of Eqs.
(12.26).

As a more specific application of Eq. (12.31), we consider the case when both states are of the one-phonon type, so
that e =fico and le) = lcr ) =6 IO). Then Eq. (12.31) becomes

~(~o ~o')5+i —j(oo )+ i +[~i—j,k —l5+k —I(oo )++i—j,k —I5+k —I(o o)]
kl

= g [ —V,k j,(Xk* (mo)X, (o')+ Yk (o')Yi* (o )) ,'V„, i
—(X—k,(o )X j(o')+ Y„,(o')Y'. J(o ))

klm

—
—,'Vk~ ij8j8~(Xk i(o )X; ~(o')+ Yk i(o')Y;* ~(o ))

+
2 V!i,km 8k 8l ( Yk —I ( o )Xm —j ( o ) Xk —I ( o ) Ym —j ( o ) )

+ ,'Vi kj8j8—k8i8 (Yk i(o)X; (o')+Xk i(o')Y,* (o ))],
where

(+) (-) ( —) (+) (+) ( —)Vikj 1
=+ikjlfij —gkl 2 Gi jl ——k,(g'j flk +gj flk

(12.33)

(12.34)

we have

2

& il "YzMIj & & il "YzMlk &* (12.35a)

plus the particle-particle pairing interaction with con-

Since 5ic,"' (ee') =0 in this case,
5ic, (ee') =5icI i j(ee').

Equations having exactly the form of Eqs.
(12.31)—(12.34) have also been derived within the frame-
work of the theory of finite Fermi systems by using
Green's functions (Birbrair, 1976, Speth, Werner, and
Wild, 1977). The latter approach makes use of a specific
form of the residual interaction, namely, a density-
dependent delta interaction due to Migdal (1967).

From the solution of Eq. (12.33) for the diagonal case
o. =o' one may, for example, calculate the electric quad-
rupole moments of the one-phonon 2+ states of spheri-
cal nuclei. A relatively simple closed form emerges for
the popular interaction consisting of the quadrupole-
quadrupole particle-hole interaction given by

stant matrix elements given by

G, kI= —65;5I kO, Ok . (12.35b)

Since the interaction is a sum of separable forces, the in-
tegral equation (12.33) has a degenerate kernel, thus al-
lowing a simple closed solution. With allowance for
diFerent strengths of the interaction (12.35a) for nn, pp,
and np pairs, denoted by y„, g, and y„, respectively, it
can be shown that the E2 moments are given by

1/2
16m

5
e„(pol) +e (pol)

Banco BAco

BAn BAp

(12.36)

where the quantities BAco/Bcx„and BAco/Bo. , which can
be shown to represent the changes of the lowest RPA fre-
quency with no respect to neutron and proton deforma-
tions of the average field, are given by the microscopic
sunls

BAco qi2q23q3if $p g23 f i3 2E]3 E/QEi3+~aa„—,23( t )
J1 ~2 ~3 E, —%CO2 0 —2 2 2 2

]2 E)2 i5 COE 2 2 2
(12.37)
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'f12 —(

Illa''~&

II» (12.38)

where the sum runs over neutron single-particle levels,
and an analogous sum for BA'co/Ba runs over proton lev-
els. The reduced matrix elements in (12.37) are given by e„(pol) ~ g

B(E2,0 +~2 +)

i5cO~

that to a good approximation

(12.46)

Ei2:E &
+E2 a two-quasiparticle excitation energy; Am

is the RPA frequency of the 2+level; the symbol ( ) is a
3-j symbol; and I J is a 6-j symbol. The factors Z„and
Z are given by

X (co)(1—
2y~ X~(co))Z= ~

n Q2

X„(co)(1—2y„X„(co))
Z =

P +2

(12.39)

I q i21'f i2
' Ei~

X( )= —,', g
E)2 —fz co

(12.40)

which occur in the RPA dispersion equation

[1—2+„X„(~)][I—2&~X~(co)]—4y„X„(co)X (co)=0,

(12.41)

and where X is the RPA normalization factor

N =co[ X (co)(1 2y~X~(co—))B„

+X„(co)(1—2y„X„(co))B ], (12.42)

B„and B being the neutron and proton contributions,
respectively, to the sum

g —1

5

Iq I'f'+"E'
(~2 g2 2)2

(12.43)

which is proportional to an RPA mass parameter.
The quantities e„(pol) and e (pol) in Eq. (12.36) are the

neutron and proton polarization charges, where e„(pol),
for example, is given by

where X„(co), X (co) are the neutron and proton contri-
butions, respectively, to the sums

i.e., it is proportional to a sum over all B (E2)'s from the
ground state to the various RPA one-phonon 2+ modes,
inversely weighted by the excitation energy.

In the work of Broglia et al. , it was assumed that this
sum is saturated already by just the one contribution for
the first excited state, which can be obtained empirically.
This leads to a considerably smaller value than the purely
microscopic expression, especially for the single-closed-
shell nuclei which were calculated, since their 2+ states
are not very collective. The result was that the calcula-
tions of Broglia et al. agreed much better with experi-
ment, but that agreement must be considered as an ar-
tifact of the drastic approximation. The quadrupole-
quadrupole interaction probably provides excessive col-
lectivity. In this connection, the work of Meyer-ter-Vehn
(1979) should be mentioned, in which an equivalent
theory was derived entirely within the framework of the
classical time-dependent self-consistent field method.
This is not surprising since, in fact, Eq. (12.36) was first
derived by the self-consistent cranking method
(Marshalek and Sabato, 1971), taking advantage of the
connection between the c-number limit of the boson ex-
pansion theory and the self-consistent field, as discussed
in Sec. XI. The main point here, however, is that
Meyer-ter-Vehn showed that the addition of quadrupole
pairing (particle-particle channel) considerably tempered
the excessive collectivity from the quadrupole-
quadrupole force, thereby reducing the quadrupole mo-
ments. As far as we know, the theoretical status of the
quadrupole moments of vibrational nuclei is still an open,
if generally forgotten, question.

Next, let us brieAy turn to odd nuclei, where we con-
sider states of the form Im) =c IO), i.e., an odd particle
added to the RPA vacuum. Taking matrix elements in
Eq. (12.30) between two such states, we obtain the equa-
tion

X.[ .X,C, +,X.,(l —C, )l
e„(pol) =

X.X,C.C, -X'.,(I-C.)(I-C, )
' (12.44)

(E —E„)5lrI2 (mn)

+ —,
' g [A, „,5scP', (mn)

kl

with a similar expression for e (pol) obtained by inter-
changing "n" and "p" subscripts. In Eq. (12.44), e„,e
are the ejective neutron and proton charges, and C„,C
are given by

C„=1 —2y„X„(0), Cq=1 —2y X (0) . (12.45)

Equation (12.36) with y„=y =y„has been applied to
the Sn isotopes, with the calculated quadrupole moments
coming out generally larger than experimental values by
factors of two. Almost exactly the same equation had
been derived within the framework of nuclear field theory
(Broglia, Liotta, and Paar, 1972), with one difference. It
can be shown (Marshalek and da Providencia, 1973b)

where

+%, k i5~'i, '*((nm)]= —V; )„, (12.47)

5~, =5~', 2, (mn) =(mI [B, ,iSiI~]In), (12.48)

with the interaction matrix element on the right defined

by Eq. (12.34). To the given order, 5r; (mn)=5;„51
Solution of Eq. (12.47) permits the calculation of transi-
tions between single-particle states, the renormalization
of the single-particle states by the vibration-particle cou-
pling II~F', and determination of the changes in the static
moments of the ground state due to the addition of the
odd nuclei. Again, the integral equation, (12.47) is for-
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mally identical to results of finite Fermi-system theory
and nuclear field theory (Bortignon et a/. , 1977).

One can go beyond Eqs. (12.29) and (12.30) to include
the effects of Hzz. In particular, in order to calculate the
splittings of the multiplet formed by the coupling of the
odd nucleon to the one-phonon vibrational state, it is
essential to take into account the diagonal contribution
of H~~ [Eq. (12.15e)] along with the off-diagonal contri-
bution of H~F'. The latter is just the conventional
particle-vibration coupling taken into account, for exam-
ple, by Kisslinger and Sorensen (1963), while Hi'iF is the
Pauli principle correction for the antisymmetrization be-
tween the bosonized "core" and the odd particle. The
effects of H~z are in complete agreement with nuclear
field theory (Bortignon et al. , 1977).

In summary, we can say that the results of perturba-
tive boson expansions for spherical nuclei formally agree
with the corresponding results, derived from both the
theory of finite Fermi systems and nuclear field theory,
although the formalisms of the three methods appear to
be quite different. This is not really so surprising, since
all three methods share the common assumption that the
self-consistent field plus random-phase approximation
constitutes a good starting point for treating higher-order
corrections as perturbations. Since all three methods in-
volve a perturbation expansion in powers of (2Q)
the concordance suggests that they are all equivalent and,
hopefully, correct. However, outside of the results of
specific applications, we are not aware of any general
proof of equivalence between the boson expansion ap-
proach and either the theory of finite Fermi systems or
nuclear field theory. However, derivations of the latter
starting from the method of Green's functions have been
given, as well as demonstrations that nuclear field theory
sums all Feynman graphs to all orders for some simple
models (Reinhardt, 1975, 1977; Kleinert, 1977). Since
boson expansions, when carried to infinite order, are
equivalent to the exact many-fermion problem, they too
must sum all Feynman graphs. On this basis, one expects
order-by-order agreement between boson expansions and
nuclear field theory, but that hardly constitutes a
rigorous proof.

XIII. PERTURBATIVE TREATMENT
OF DEFORMED SYSTEMS

A. The problem of Goldstone modes

The success of the perturbative boson expansion in
spherical nuclei hinges primarily on the smallness of the
RPA zero-point amplitudes, although some resonance
denominators can provide an additional source of
difficulty (Marshalek and Sabato, 1972). In the case of
deformed systems, the occurrence of Goldstone modes in
the RPA presents yet another problem, but, as we shall
show, a problem that can be completely overcome. Thus
perturbative boson expansions are at least as viable in

H, = W, +H'"+H"'+H"'+ (13.1)

where 8'o is the mean-field energy and H'"' is an nth-
order polynomial in the bosons. Now, the RPA Hamil-
tonian H' ' can be diagonalized in the following form
(Marshalek and Weneser, 1969):

H' '=QIA b b+ 'B [b b +bb]]—

= II'"'+ X —,'[P), +~~Q~] (13.2)

where the b,~ represent the two-quasiparticle bosons b f3

while P), Qi are Hermitian normal-mode canonical
momentum-coordinate pairs corresponding to the fre-
quency m&. The quantity 8" ' is a constant. The gen-
erator of each broken symmetry, denoted generically byI, is necessarily nondiagonal in the deformed basis and
therefore has a linear term, J"', in its boson expansion.
Since Hz must preserve the symmetry, i.e.,

[Hi),J ]=0, (13.3)

and since the boson expansion satisfies commutation
rules order by order, it follows that

[H(2) g(1)] () (13.4)

This implies that one of the normal-mode momenta Pq is

strongly deformed nuclei as in spherical ones, perhaps
even more so, since the zero-point amplitudes of the vi-
brational modes tend, generally speaking, to be smaller in
deformed nuclei. We remark, parenthetically, that there
may be some evidence for larger-amplitude "y vibra-
tions" in some deformed nuclei (Bohr and Mottelson,
1982). Nevertheless, a theoretical method essentially
equivalent to one described in Sec. XII has been applied
to these phenomena by Matsuo and Matsuyanagi (1985,
1986, 1987).

The mean field of a finite nucleus can (and normally
does) violate one or more continuous symmetries obeyed
by the full Hamiltonian. Thus the localization of the
center of mass by the mean field violates momentum con-
servation; if the mean field is spatially deformed, the lo-
calization of its orientation violates angular momentum
conservation and, if the system is superQuid, particle-
number conservation and possibly isospin conservation
as well. These broken-symmetry solutions are always
part of a degenerate continuum, for example, the set of
states corresponding to different orientations of a spatial-
ly deformed field. Since real nuclei are finite systems, the
solutions with broken symmetry cannot be real eigen-
states, which must fully reAect the symmetries of the
Hamiltonian; thus the continuous degeneracy is spurious.

We shall first describe the problem of Goldstone modes
and later present the solution. For simplicity, the discus-
sion will be limited to even-even systems, which can be
treated by means of expansions in pure bosons. Just as in
the case of spherical nuclei, the Hamiltonian Hz is ex-
panded in the form
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proportional to J"' and the corresponding frequency
=O. Such a mode with vanishing frequency is called a

q
Goldstone mode. Although Jq has a discrete spectrum in
all cases except when it is a component of the total
momentum, Jq, being a linear combination of b; and b;,
necessarily has a continuous spectrum. As a conse-
quence, the eigenstates of H' ' have infinite norms, with
an infinite-norm factor arising from each Goldstone
mode (Marshalek and Weneser, 1969). Of course, the
physical reason for this problem is that the coordinate
corresponding to a Goldstone mode is really a cyclic
variable that ought not be treated as a small displace-
ment. For the nonzero-frequency modes, one may intro-
duce boson annihilation and creation operators X„and
S„in the usual way:

shown by Villars (1965) and Klein, Dreizler, and Johnson
(1968), the IotRtIonRlly Illvarlant HRIIllltoIIIRII CRII be ex-
panded in powers of the angular momentum J as follows:

H = g H„J"/(n!),
n=0

(13.7)

(13.8)

where

where the H„are intrinsic operators; i.e., they commute
with both J and any canonically conjugate Hermitian an-
gle variable P, satisfying [P,J]=i Moreover, the H„can
be expressed in terms of multiple commutators of P with
H, as follows:

X„=(2%co„)' (Pp iha—I„,Q ),
X„=(2%co )

'~ (P +i%co„Q ) .

Then, the RPA Hamiltonian can be written as

(13.5) Co:H, Ck——= [[ . [[H,ip],i/], ],ip] (k )0) .
k iP's

(13.9)

(13.6)

where the constant 8 RpA is essentially the RPA correla-
tion energy, and J is an inertial parameter associated
with the Goldstone mode. In the case when J is a com-
ponent of the angular momentum, it can be shown that
J is identical to the self-consistent cranking-model mo-
ment of inertia (Marshalek and Weneser, 1969). In spite
of the correct identification of the moment of inertia, the
eigenstates of H' ' obviously cannot be used as the zero-
order basis for a perturbative treatment of the higher-
order terms H' ', H' ', etc.

Because of this difIiculty, it has been widely assumed
that perturbative boson expansions are unsuitable for de-
formed systems. However, this is not the case. As first
shown by Marshalek and Weneser (1969, 1970), although
the expansion (13.1), which is a loca/ Taylor expansion,
cannot be used directly for a perturbative treatment, it is
possible to reconstruct from the local expansions a global
expansion of the Hamiltonian and other operators (i.e.,
one not restricted to small displacements of the variables
conjugate to the symmetry operators); it is the global ex-
pansions that can be treated directly by perturbation
theory. The Marshalek and Weneser reconstruction
method will first be discussed and illustrated for the case
of two-dimensional rotation, which was the scope of the
original 1970 method. However, the method has recently
been generalized to the non-Abelian case of three-
dimensional rotation (Marshalek, 1987a, 1987b), dis-
cussed later in this section.

where J' "is the first term of the Taylor expansion of J:
J —J(&)+J(2)+J(3)+. . . (13.11)

The notation X„") and X(" for the creation and annihila-
tion operators of the true RPA vibrational modes em-
phasizes that these operators are the leading-order ap-
proximations in a Taylor expansion that is yet to be
found. Within the RPA, one can find a real angular vari-
able p'" canonically conjugate to J'",

Equations (13.7)—(13.9), which constitute what is called
the Villars expansion, emphasize the central role of the
angle variable P. This angle variable, which is not
unique, determines the convergence rate of the angular
momentum expansion (13.7). For a certain choice of' P,
H can even be made diagonal. In practice, we require an
expansion of the intrinsic operators H„ in a small param-
eter of the order of 0 ' . Equations (13.8) and (13.9)
suggest that a Taylor expansion of H and P may be used
to compute the desired expansion of the H„. Of course,
the H„must be expressed afterwards in terms of intrinsic
variables, such as the creation and annihilation operators
for the nonzero-frequency vibrational modes. This will
provide the global expansion alluded to above. We
proceed to outline a practical program for achieving this
a1m.

We assume that the mean field of the system breaks
SO(2) invariance. The Hamiltonian then has the Taylor
expansion (1), and the RPA Hamiltonian corresponding
to Eq. (13.6) can be written in the form

H = 8 Rp~+ g flCO X % +(IIJ ) /(2J) (13~ 10)

B. Two-dimensional rotation
[y(1) J())]—i (13.12)

We consider first an intrinsically deformed many-body
system that can only rotate about a single axis. As

which, like J"', commutes with all the X")t,X"'. Hence,
P") must be the solution of the inhomogeneous linear
equation [cf. Eq. (4.76)]
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[H(2) y(()]— ig2J(()yg (13.13)

By using the first form of H( ' given in Eq. (13.2), and
writing J'" and P(" as linear combinations of the elemen-
tary bosons b; and b;, one sees that Eq. (13.13) together
with the normalization (13.12) is just the Thouless-
Valatin equation of the self-consistent cranking model
(Thouless and Valatin, 1962), whose solution determines
the moment of inertia

g&yg —[y()) [H(2) y(()]] (13.14)

The complete set of RPA variables
(J'",P'",%„"',%„'") can be used as a starting point for
generating a new set (J,P,X„,%„)with the same mutual
commutation relations. One way to proceed is to seek
first an expansion of the angle variable (t that commences
with the RPA value:

—y(1)+y(2)+y(3)+. . . (13.15)

The corrections are determined from the requirement
that

(13.16)

be satisfied order by order as follows:

[y()) J(1)]—E

[y(2) J(1)]+[y(1) J(2)] 0 (13.17)

from the requirements

[%,$t]=5„„[%„,%„]=0(and H. c. Eq. ),

[S,J]=0, [X„,P]=0 (and H. c. Eqs. ),

(13.19a)

(13.19b)

which are to be satisfied order by order.
An equivalent but more convenient procedure is to

construct a formal unitary transformation exp(iS)
defined by

exp(iS)J'"exp( iS)=J" +J '+J' +— (13.20)

where S is given by an expansion beginning with cubic
terms:

s =s"'+s"'+- (13.21)

so that upon separation of orders, Eq. (13.20) is

equivalent to

[y(" k+)) J(k)]=0 (7g ) 1)
k=1

Since the expansion of J is known a priori, the hierarchy
of Eqs. (13.17) can readily be solved order by order to
determine the expansion of P. With a knowledge of the
expansions of both J and P, one may obtain the expan-
sions of the boson creation and annihilation operators %
and X„for the true vibrational modes,

X =%'"+X' '+%' '+ . (and H. c. Eq. ), (13.18)P P P P

[S' ' J"']= —iJ' '

[S J ]
— iJ( ) 1 [S( J( )]

(13.22)

~ ~ ~

After solving the hierarchy of equations successively for
the S'"' up to the order of interest, one can then generate
the expansions of (t, Xt, and X„from the RPA variables
as follows:

F=—exp(iS)F (J"', P' ",X"',X(') )exp( —iS)

=F(J,P,X„,X„) . (13.24)

By inversion, the original operator F may be expressed in

P =exp( iS)$"'exp( —iS),
X„=exp(iS)X("exp( —iS) (and H. c. Eq. ) . (13.23)

Since the transformation is unitary, it is clear that Eq.
(13.23) must satisfy the commutation relations (13.16)
and (13.19).

At this point, two remarks are in order. First, it would
appear that Eq. (13.20) involves the unitary transforma-
tion of J"', an operator with a continuous spectrum, into
J, an operator with a discrete spectrum. Of course, no
such unitary transformation exists. Equation (13.20)
should be viewed only as a formal trick for generating the
expansion of J. Because of the improper treatment of the
rotation as a small oscillation, both the expansions of J
and exp(iS) contain divergent parts associated with P(".
The final results, however, are independent of these
divergent parts. Moreover, no difIiculties occur with the
solutions of the hierarchy of Eqs. (13.22).

The second remark is that the solutions of Eqs. (13.17)
and (13.19), or, equivalently, (13.22) are not unique. It is
obvious that to any solution S'"' one may add an arbi-
trary nth-order polynomial function of J(", %~", and
%„"),which all commute with J"', and still have a solu-
tion. This arbitrariness provides the freedom to shape
the final forms of the intrinsic operators H„, including
the possibility of diagonalizing them. The arbitrary func-
tions can always be chosen as zero if desired, in which
case additional unitary transformations can be used to di-
agonalize H afterwards:

Having obtained the expansions of H, J, ((t, X„,and %„,
one may proceed in one of two ways. The first is to make
use of the Villars expansion (13.7). Leaving the powers of
J intact, one can obtain the expansions of the intrinsic
coefficients H„by evaluating the multiple commutators
(13.9) up to the order of interest and then expressing
them as functions of the bosons X„and %„. The second
and equivalent way is to transform the local expansion
(13.1) directly from the RPA variables
(J"', (t (",X' ",X„"') to the variables (J,P,%„,X„). In
practice, this turns out to be the more convenient ap-
proach. Following this approach, we define for any func-
tion of the RPA variables F (J"', (t)'",X"',X'") thev
transform I', given by
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terms of the final variables as follows:

F=exp( is—)F exp( is )

=F(J,y, x,',x„) [i—s "',F(J,y, x„',x„)]+
(13.25)

Of course, S=S ' '+S ' '+ . . =S=S' '+S' '+
Thus for II one obtains through quartic terms in the new
variables

a = p +0""+a""+II'"'+0 (13.26)

where

II' "'=II '",
H~ (3) H (3) (is (3) ~ (2))

J

(13.27a)

(13.27b)

H& (4) ~ (4)
( 's (4) H (2)] (is (3) II (3)]

+ ' [is "' Iis "' H '"]] (13.27c)

In particular, the quadratic contribution II' ' ' is explicit-
ly given byII:WRpA+ g flCO X % +R J /(2J) (13.28)

which differs from the RPA Hamiltonian (13.10) mainly

by the replacement of J"' by J. The final result (13.26)
must be independent of P because of the commutation of
H and J, which is satisfied order by order.

The method described is not limited to the Hamiltoni-
an but can be extended to any transition operator. Thus,
if TM is a two-dimensional analog of a spherical tensor, it
obeys the commutation rule

I
J T~]™)ir

H= —C|T,(+)+T,(
—)]——,'6 (T+T +T T+),

(13.32)

(T, is the same as To) may be expanded about a de-
formed Hartree extremum so as to generate a Goldstone
mode. This procedure may be carried out in several
equivalent ways. One way, for example, would be to ex-
press Eq. (13.32) in terms of two kinds of bosons via an
SU(2) X SU(2) Holstein-Primakoff mapping to spherical
(circular?) bosons, followed by a boson-shift transforma-
tion to deformed bosons that eliminates linear bosons
terms of lowest order. We follow instead the method
used by Marshalek, which is first to express Eq. (13.32) in

terms of the deformed Hartree basis, followed by an
SU(2)XSU(2) Holstein-Primakoff mapping to deformed
bosons. In this way, the linear boson terms never appear.
It is easily shown that the transformation to the de-
formed Hartree basis is given by the pseudospin rotation

T, (+)= coysT'(+) + sinyT, '(+),
&y(+) = &y'(+),

T,(+ ) = + siny T„' (+ ) +cosy T,'(+ ),
(13.33)

expansion in normal-mode bosons %,S and powers of
the angular momentum J=L,„this is an expansion in
powers of the small parameter Tp ' . Since this pro-
cedure does not involve small-angle expansions at any
stage, the result may be regarded as the "exact solution"
against which the outcome of the reconstruction method
should be compared. On the other hand, the model
Hamiltonian, given by Eq. (6.9),

where M is an integer. It follows that TM can be written
in the form

siny = 1—
L

:—CLp
x

(13.34)

T (
I

iMQ (13.30)

where TM is a scalar and therefore has a Villars expan-
sion like the Hamiltonian. The local expansion of TM
can be transformed to the variables J,P,%t, and X„in ac-
cord with Eq. (13.25). The resulting expression will con-
tain powers of P arising from the expansion of the ex-
ponential of Eq. (13.30). The operator T can then be
obtained from

TM 11m TM
P —+0

(13.31)

and used in the global expression (13.30), where the full P
dependence is resummed.

The Moszkowski SO(4) model discussed in Sec. IV.C
provides an illustration and a test of the Inethod for two
dimensions (Marshalek, 1982). On the one hand, the
Hamiltonian (as well as transition operators) may be
written in the "action-angle" variable representation, as
is done in Eqs. (6.27)—(6.29). Following the procedure
outlined in Eqs. (6.30)—(6.32), one obtains a polynomial

and, as defined earlier, x =6 Tp!C. The deformed solu-

tion exists, provided that x & 1, with the perfect rotor
limit (two-dimensional Elliott model) corresponding to
x = ~, so that the deformation parameter 0&up~1.
The Hartree energy for the deformed solution is

8 = —G T()(l ——'a )0 (13.35)

In the Hartree basis, the angular momentum is given by

J=L, =2T, =2(T,(+ )+ T, ( —))

=2[cosyT,' —si y[nT'(+ ) —T„'( —)]] . (13.36)

T'+ (+ ) =b +. ( T() n+ )
'—

T+(+)=(T() n+. )'~ b+, —

T,'(+)=+(—,
'

T() n~ ), n+:bt~b+ —. —
(13.37)

After expanding these expressions in powers of Tp ' and

As shown by Marshalek, the correct Holstein-Primakoft'
transformation is given by
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introducing the RPA normal modes one obtains, the
Hamiltonian in the form of expansion (13.1), where the
RPA normal-mode operators referred to in Eqs. (13.10)
and (13.12) are given by

X"'t=—,'(2ao) '
[ (1+ao)(bt++bt )

—(1—a())(b++b )],
")= —

—,'(2a )
' [(1 a—)(bt +b )

with the vibrational frequency

A'~ =G2Touo,

and rotational parameter

G

8a()

(13.39)

(13.40)

—(1+a() )(b+ +b )], (13.38)

J"'=L,"'=—T' a (b b—+b b)—,

y(1) (a2T )
—I/2(bt bt b +b )

Since there is only one vibrational mode, the index p has
been dropped.

The higher-order terms of the expansion (13.1) ex-
pressed in terms of the RPA operators in normal order,
are given by

2&0

+(1—a )(3—a )(X"' +X"')]

~(3) 62 0 0
[ (1 2)(~(1)t3+~(1)3)+(3+ 2)(~(1)t2~(1)~H c )

To(1 —ao)'
4

&0 CK0

1G2 01 —a
2T0&0

(cg(1)$++(I))J(1)2+G2[2T3aS( 1 a2) ]I/2(+(1)t+g(1) )(I)(l)2 (13.41a)

G2H' '= [2(3—Sao —3ao —3ao)$"'t~%~" +4(1—ao)(3+2ao —4ao —2ao —3ao)$"'"%")
320!0

G2
+3—8a —3a +16a —15a +8a —3a )]— J"'

0 0 0 0 0 0 128T2o&o

G2+ [2(3+a )(1—2a )S"'tJB'"+3—5a +8a —2a ]J'"
64T 0 0 0 0 0

0&0

+(off-diagonal terms in S'", %"), J"' and P'") . (13.41b)

J(2)—

J(3)— J(1)3 1a2[y(1)2 J(I)]1

32T2 2 4

Omitted in Eq. (13.41b) are terms that give corrections two orders higher than the RPA, while those included give the
leading-order corrections to the RPA. The corresponding higher-order corrections in the expansion (13.11) of the angu-
lar momentum operator are given by

1/2

,
2T ' (Q I t+S )J " 2i [2T a—3(1—a )]' (S' "t—X"')P'"

0 0 0 (13.42a)
0+0

1
[(3 2)(~(1)t2+~(l)2)+2(3+a2)Z(1)1'~(1)+3 8a + 2]J(1)+ I ia2(~(1)t2 Z(1)2)y(1)

16T u
ao ao Tiao

00
(13.42b)

g (&)—

g (4)— 1
[y J3] 1(1 3a2)[$3 J] I ia2y2($2 Q2)

64T2 2 ' 6 T 0 ' 4
0o

At this point, Eqs. (13.22) can be readily solved for S' ' and S' ', from which S ' ' and S' ' are immediately obtained
with the aid of Eq. (13.25) as follows:

1/2

IP,J](X +X)+i [2Toao(1 —ao)]'/ P (Xt—S), (13.43a)
0+0

+
3 [(p,J][(4—a() —a())(% +S )+2(4—a()+a())St%+4—a()—8a()+a()] .

32Tocxo
(13.43b)

As mentioned previously, the solutions (13.43) are modulo arbitrary functions of J, (t, S, and %. These functions have
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been set equal to zero. They could have been chosen to diagonalize the Hamiltonian to the given order, but that can al-
ways be accomplished afterwards by an additional unitary transformation. Cxiven the transformation (13.43), one may
obtain the expansion of H in terms of J, %, and % [Eq. (13.26)] with the aid of Eqs. (13.27). The result, of course, must
be independent of the angle variable P because of the rotational invariance of H. The cancellation of P-dependent con-
tributions through quartic terms can be verified with the aid of Eqs. (13.43). The result then is the expansion (13.26)
with

(13.44)

where the frequency and rotational parameter are given by Eqs. (13.39) and (13.40) and

MRNA — GT0—(1 ~ao) . (13.45)

The higher-order correction terms are
1/2

To(1 —ao)
4 20.0

1/2
1 —ao 2 —ao+(1—ao)(3 —ao)(% +X)]——G (% +X)J
2 Too.'0 0!0

G2H' = [2(3—Sa —3a —3a )X
32 o o

(13.46a)

+4(1—ao) (3+2ao —4ao —2ao —3ao)X S—(1—ao)(1+9ao+6ao —10ao+Sao —3ao)]

+ [2(1—ao)(6 —ao+ao)$ X+(1—ao)(6 —ao —4ao+ao)]J +
»To~0 128Too,o

+omitted off-diagonal terms . (13.46b)

The higher-order terms (13.46a) and (13.46b) are not identical to the corresponding terms arising from the "exact ex-
pansion" in the action-angle representation, but, in fact, may be shown to be equiualent by unitary transformation (or by
a suitable choice of the arbitrary functions). Moreover, comparison with the original expansion given by Eq. (13.41)
shows that, although the pure vibrational terms can be obtained by a simple renaming of variables, the vibration-
rotation coupling terms are substantially changed. With the RPA Hamiltonian (13.44) as the zero-order term, the
next-order corrections in the To ' expansion of the eigenvalues are obtained by treating H' ' in second-order perturba-
tion theory and, at the same time, H' ' in first-order. The omitted off-diagonal terms of H' ' do not contribute to this
order. The resulting expansion for the eigenvalues E„M (units of G ) to the order of interest as a function of the eigen-
value n of the boson number operator X % and the angular momentum quantum number M is

E = —T(1——'a) —T—
n, M 0 2 0 0

3(1+ao) + Toao+ (n + —,
' )—

16eo
o o

(3 —ao)
(n +—,')

4ao

1

8(xo2

(1 —ao) (1—ao)(6 —ao) (1—ao)

oo 8 Tocxo 32To ciao

(13.47)

This expression is exact to the given order. Equation
(13 47) was rearranged as a function of n + —,

' to facilitate
comparison with semiclassical methods (which also
simplifies the coefficients). In addition to the "8
coe%cient" of the M term, which agrees with the self-
consistent cranking model, there is also a quantal correc-
tion to the cranking moment of inertia in this order. The
{n+—,')M term can be interpreted either as an angular
momentum dependence of the vibrational frequency or as
an n dependence of the moment of inertia. All of these
effects depend sensitively on the interference between the
vibration-rotation term proportional to (X +%)J and
the anharmonic terms proportional to Xt %+St% and

I

X +X in H' '. In addition to the vibration-rotation
effects, one picks up anharmonic vibrational corrections
proportional to n and a higher-order renormalization of
the RPA frequency.

For the corresponding treatment of transition opera-
tors in this model, the reader is referred to the original
paper of Marshalek (1982a). As in the case of the ener-
gies, complete agreement with the exact treatment was
found.

Finally, it should be emphasized that the applicability
of the Marshalek-Weneser method for two dimensions is
not restricted to toy models, but can also be applied to
the problem of pairing rotation in realistic cases, where
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the role of J is played by N —(N ), where N is the parti-
cle number operator, and where 2P is then called the
gauge angle.

C. Three-dimensional rotation of axially symmetric
systems: Bohr-Mottelson and Villars representations H = g A „—,'

[J', J'+ ], (13.51)

coincide with the intrinsic angular momentum.
In the Villars representation, the Hamiltonian has the

same general form as Eq. (13.48), but there is no intrinsic
angular momentum. We write the Hamiltonian in the
Villars representation as

HiiM g&~„—,'[I' »I'+ ]» (13.48)

where I'+ I, +iI2, Ik (k=1,2——,3) are interpreted as the
components of the total angular momentum along the
principal axes of the nucleus, and the 3-axis is designated
as the symmetry axis. The components of I are usually
represented as differential operators in the space of Euler
angles. The operators & „=&„are intrinsic opera-
tors, i.e., they commute with all components of I and ar-
bitrary functions of the Euler angles. What makes the
Bohr-Mottelson representation unique is the occurrence
of an additional operator J3, which commutes with all
components of I and is interpreted as the intrinsic angu-
lar momentum along the symmetry axis. However, J3
does not commute with the intrinsic coefticients, which
have the property

[J3,& „]=(m —n)& „. (13.49)

Moreover, the Hamiltonian can have spurious eigenvec-
tors, but the physical ones satisfy the requirement

The extension of the two-dimensional Marshalek-
Weneser reconstruction formalism to the Abelian case of
several commuting constants of motion is trivial. The
generalization to the non-Abelian case is nontrivial, espe-
cially in the case of axially symmetric systems in which
the intrinsic excitations carry good angular momentum
AE along the symmetry axis. It is this situation that will
concern us in this section. As shown elsewhere
(Marshalek, 1982a), if K=O for all vibrational modes, the
extension of the formalism is quite straightforward. It is
also fairly straightforward for the cases of nuclei at high
spin (Marshalek, 1977) or isospin (Ginocchio and
Weneser, 1968), although these applications have not
been carried out beyond the RPA. The key to extending
the reconstruction method to deformed axial systems is
the understanding of the relation between what we call
the Bohr-Mottelson and the Villars representations
(Marshalek, 1987a).

The aim of the Marshalek-Weneser method is to trans-
form the local microscopic boson expansion of the Ham-
iltonian and associated transition operators into the gen-
eral global form of the Bohr-Mottelson (1975) representa-
tion for strongly deformed nuclei. In the Bohr-Mottelson
representation, which was originally applied to phenome-
nological models, the Hamiltonian has the angular
momentum expansion

(K =0,+1), (13.52)

where the DMz(y, 8, $) are the matrix elements of the
spin-1 irreducible representation of the rotation group,
parametrized by a set of Euler angles @,8, $. As shown
by Villars (1966) and Mikhailov (1971), the intrinsic
coefficients A' „are expressable in a series involving
multiple commutators of H with the DMz(&p, 8, $) analo-
gous to Eqs. (13.8) and (13.9) in the two-dimensional
case, but this result, which has not been derived in a
closed form to all orders as in the two-dimensional case,
will not be explicitly utilized here. The reason for the
different notation used for the angular momentum in
Eqs. (13.48) and (13.51) will become apparent shortly.

The advantage of the Bohr-Mottelson representation
(13.48) is that the intrinsic coefficients & „carry angular
momentum in the sense of Eq. (13.49) and, therefore,
may be expressed as functions of RPA-like vibrational
quanta in the case of even-even nuclei. This option does
not seem to be available in the case of the Villars repre-
sentation, in which the intrinsic coefficients A „must
commute with all components of the angular momentum,
laboratory, and principal axes. Nevertheless, we shall
show that the two representations are connected by a un-

itary transformation.
Within the Villars representation, one may proceed as

follows. The Euler angle P describing a rotation about
the symmetry axis is canonically conjugate to J3, which

may be expressed by

[J3,exp(ig)]=exp(iit») .

The operator & „defined by

& „=4' „exp[i(m —n)f]

(13.53)

(13.54)

then satisfies an equation of exactly the same form as
(13.49), since J3 commutes with A „. Combining Eqs.
(13.51) and (13.54), one may write Villars' Hamiltonian as

where the m „=m „are intrinsic operators andArf

J+ —=J,+iJ2 are combinations of principal-axis corn-
ponents of angular momentum. Since the latter are sca-
lars, Eq. (13.51) is manifestly rotationally invariant. The
relation between the spherical-vector principal-axis and
laboratory components is given as usual by

1 1

Jk r DMK(v» ~» P)JM rf JMDMK(v» ~ 0»)

(I,—J, )~) =0; (13.50)
H= g& „exp[i(n m)g] ,' IJ™,J'+ ] .——(13.55)

i.e., the component of I along the symmetry axis must Although the coefficients & „ in the Villars Hamiltonian
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(13.55) carry angular momentum along the symmetry
axis, as in the Bohr-Mottelson representation, they do
not commute with any angular momentum components
and therefore are not intrinsic operators with respect to
J. Thus this simple substitution certainly does not pro-
duce the Bohr-Mottelson representation. Moreover, the
form (13.55) also carries the unesthetic g-dependent ex-
ponential factors.

At this point, we pull a rabbit out of a hat, although
the basis for the trick is indirectly hinted at by Bohr and
Mottelson (1975). First, we introduce a redundant vari-
able P. That is, all operators such as H and the transition
operators may be regarded as defined on an extended Hil-
bert space that is the direct product of the original (nu-
clear) Hilbert space with the space of periodic functions
e' ~. To emphasize again the difference: the variable g
is a function of the original (nuclear) degrees of freedom,
whereas g is a dummy variable, destined, however, to as-
sume the role of g. In the extended space, one may
define the operator I3 by

and the principal-axis components by

J+ =Ji+iJ2

1 8 +i —i tanOJ3
cosO Bcp Bo

(13.60)

'll= exp(i/J3 )exp( i QI3—) . (13.61)

Since the two factors do not commute, the order is im-
portant. With the properties (13.53) and (13.57) taken
into account, elementary calculations give, first of all,

VlJ38' =I3,
and for an arbitrary function f (g)

(13.62)

In contrast to the standard definition of the Euler angles,
there is no problem in expanding Eqs. (13.59) and (13.60)
about 0=0.

Consider now the following unitary transformation 8'
defined on the extended Hilbert space:

which is canonically conjugate to iT, i.e., 'llf (Q)'iJ"=f (g+g) . (13.63)

[I3,exp(ig)]=exp(ig) . (13.57) This transformation has no efFect on the other Euler-
angle degrees of freedom:

On course, I3 and g both commute with all of the origi-
nal degrees of freedom.

The reason for introducing the redundant variable is
that it enables one to relate the Villars and Bohr-
Mottelson representations by means of a unitary trans-
formation defined on the extended Hilbert space. Before
introducing this transformation, however, it is useful to
display explicitly the angular momentum components in
terms of the Euler-angle degrees of freedom. In the im-
mediate context, the conventional zyz definition of the
Euler angles would do perfectly well. On the other hand,
as will be discussed later, this definition of the Euler an-
gles is unsuitable for the small-angle expansion, since the
expressions diverge when 0=0. It will be seen that the
ideal definition is the xyz definition (Pio, 1976), in which
an arbitrary rotation R is represented by

R =exp( i@J„)exp( —i 8J )ex—p( i gJ, ) . —(13.58)

(13.59)

8Jz+ Jy ie '+ —tanO +i + J3
Bc@ BO cos0

With this definition, the angle g has essentially the same
significance as it has in the conventional definition,
describing a rotation about the symmetry axis. For the
sake of economy, then, the xyz definition is adopted
forthwith. In the space of these Euler angles, the labora-
tory components of J are represented by the differential
operators

6'g y, , 8, R =g y, , 8, , (13.64)
8

for an arbitrary function g. As a consequence, the only
effect of 'M on the laboratory components of J [Eq.
(13.59)] is to replace J3 by I3 to give

QJ&Vl =Ik (k =x,y, z), (13.65)

where

(13.66)

Iz +iIy—:—ie '+ —tanO +i + I3
+I 8 . 8 E

Bcp BO cosO

'l/J+ 'lit = e + '~I+ =I~e + ' &, (13.67)

where

I+ =—Ii+tI2

ie +i/ 1 +i i tan8I3—. (13.68)
cos0 Bqo 9g

In summary, what the transformation 'g accomplishes
is to replace the components of J, which depend only on
the nuclear degrees of freedom, with components of a
vector I (apart from a possible phase factor) that have the

The effect on the principal-axis components (13.60) is
similar, but with an additional phase factor arising from
the property (13.63) as follows:
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same commutation relations as the angular momentum
but replace itj and J3 with the redundant variables f and
I3, respectively. The operator & „,which carries angu-
lar momentum along the 3-axis and thereby fails to com-
mute with all components of J, is easily seen to commute
with all components of I, as compactly summarized by

where the coefficients (t )~) „are intrinsic operators with
respect to J. Upon applying the transformation (13.61)
to the transition operator (13.73), one obtains with
the aid of Eqs. (13.63)—(13.65) and the relation
DMz(@, 0, 1t))=exp(1'Kf)de(y, 8), the result

(13.75)
[& „,I]=0 . (13.69)

where
Since & „also commutes with all Euler angles, it cer-
tainly qualifies as an intrinsic operator with respect to I.
Moreover, since it satisfies Eq. (13.49), it also carries an-
gular momentum along the symmetry axis, playing the
role of the "intrinsic" angular momentum. In other
words, & „has all the attributes necessary for the
Bohr-Mottelson representation.

To clinch the case, it must be shown that the transfor-
mation (13.61) in fact maps operators and state vectors
from the Villars to the Bohr-Mottelson representation.
The Hamiltonian (13.51) or (13.55) is easily transformed
with the use of Eqs. (13.63), (13.67) and the fact that
A „, being an intrinsic operator, is invariant under Vl.

The result is

VlH&t= g& „,'II', I'+—I=HsM, (13.70)

which meets all of the requirements for the Bohr-
Mottelson representation (13.48) of the Hamiltonian.

Next, consider the state vectors. The introduction of a
redundant degree of freedom is inevitably accompanied
by spurious states that must be eliminated by a suitable
subsidiary condition. Prior to the transformation ('I, the
subspace of physical states may be chosen to satisfy the
condition

(13.71)

From the definition of 'M [Eq. (13.61)], it is easily found
that

VEI3% =I3—J3 . (13.72)

L
TM —— g T i(.DMx((I, O, Q),

K =—I.
(13.73)

where DM&(y, g, g) is a rotation matrix element corre-
sponding to the spin-L irreducible representation, and
where the T &, the principal-axis components of the
spherical tensor, are scalars, and therefore, like H, may
be expanded in powers of the angular momentum com-
ponents:

(13.74)

Therefore transformation of Eq. (13.71) yields Eq. (13.50)
where

~
) —= 'M

~

)' are the physical states after the transfor-
mation.

The treatment of H can be generalized to arbitrary
transition operators. Thus, in the Villars representation,
spherical tensor operators T~ can be written in the form

(13.76)

(tl( ) „:(t )r) „—exp[i(K+m —n)it)], (13.77)

with the property

[J3,(tl() „]=(IC+m —n)(tx. ) (13.78)

This shows that (tx ) carries angular momentum along
the symmetry axis, but it is an intrinsic operator with
respect to I. It may be noted that the rotation matrix in
(13.75) involves the angle 1t in place of p. The represen-
tation defined by Eqs. (13.75)—(13.77) has all the proper-
ties required for a transition operator in the Bohr-
Mottelson representation. Thus we conclude that

+TM+ ( TM)BM (13.79)

We shall implement the relation between the Villars and
Bohr-Mottelson representations in Sec. XIII.E below.

—J(&) +J(2) +J(3)+. . . (13.80)

The unbroken symmetry generator J, in the generalized
Holstein-PrimakoC' expansion is a finite quadratic form
J, =J,' ', as will be assumed here. The angular momen-
tum components must obey, of course, the usual SU(2)
commutation rules [J+,J ]=2J, and [J„J+]=+J+,
and these must be satisfied order by order, as follows:

[J(1) J(1) ]
—2J(0)—0

[J(1) J(2) ]+[J(2) J(1) ] 2J(1) ()

n+1
[J(n —k+2) J(k) ] 2J(n) (an ~)

k=1

(13.81a)

(13.81b)

(13.81c)

D. Three-dimensional rotations of axially symmetric
systems: Taylor expansion of the Hamiltonian
in the generic model

Just as in the two-dimensional case, the Hamiltonian
can be subject to the boson Taylor expansion (13.1) about
the mean-field solution. Since the stability of the axially
symmetric mean-field extremum is neutral, it is always
possible by means of a rotation to choose the z axis as the
symmetry axis. The broken-symmetry generators are
then the total angular momentum operators J and J,
or, equivalently, J+ =J +iJ, which then have the Tay-
lor expansions commencing with linear boson terms:
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[J J(n) ]
—+J(n) (13.82)

In Eq. (13.81a), J,' ' is the mean-field average, which van-
ishes for all components of the angular momentum for an
even-even nucleus. In addition, since J,=J,' ', the right-
hand side of Eq. (13.81c) vanishes unless n=2 and for
any n

symmetry axis with the moment of inertia J. The
normal-mode variables J'+' and J'" commute with each
other according to Eq. (13.81a), and with the X„"),S„")
from the definition of normal modes. As in the two-
dimensional case, these variables do not sufFice to form a
complete set. The set can be completed by adding a pair
of mutually commuting angle variables P(+) and
P( "=P'+ '" such that

Since H is rotationally invariant, for any component of
angular momentum JM one has [H, JM ]=0, which must
also be fulfilled order by order. In the RPA order, this
becomes

[y(1) J(1) ]
—1. [y(1) J(1) ]

—()

[P(+",%("]=0 (and H. c. Eq. ) .

(13.87a)

(13.87b)

[H(2) J(1) ] () (13.83)
It will be seen later that the variables cp"' and 0'" defined

by

and in higher orders y() ) —
( (1)+1g(( )

) /2 (13.88)

[H(k) J(n —k+1)
]
—()

k=2

while for any order n

(13.84)
are the leading terms in the expansion of appropriately
defined Euler angles (p and 8. From Eqs. (13.86) and
(13.87), it follows that the RPA angle variables may be
obtained by solving the linear inhomogeneous equation

[H'"' J ) =0 (13.85) [H y ]= —lg2J(1) /(2g) (13.89)

Instead of invoking a specific model, the technique for
three dimensions can be illustrated by starting with the
most general Taylor expansion of H (as well as transition
operators) that can be constructed from the RPA modes,
commensurate with conservation laws. This has been
dubbed the generic model. The reconstruction of the gen-
eric model then holds for any specific model, whether mi-
croscopic or phenomenological. The Hamiltonian of the
generic model is constructed with the aid of the following
assumptions: (i) the mean field is axially symmetric; (ii)
H is Hermitian; (iii) H is even under time reversal; (iv) H
is rotationally invariant, i.e., Eqs (13.83)—(13.85) apply.
It is also implicitly assumed that the mean field has
reAection symmetry, to preclude tunneling modes that
would be inconsistent with a small-oscillation ansatz.
For simplicity, Goldstone modes other than the rotation-
al ones will be omitted.

We begin with the RPA. The diagonalized form of the
RPA Hamiltonian H' ' for an axial system is given by
(Thouless and Valatin, 1962; Kammuri, 1967)

(13.86)

where the notation is the same as in the two-dimensional
analog given by Eq. (13.18). The last term on the right-
hand side of Eq. (13.86), which can also be written as
A' (J'" +J"' )/(2g), corresponds to a pair of Croldstone
modes, one for each broken symmetry, as implied by Eq.
(13.83). Physically, of course, this term represents the
collective rotation about an axis perpendicular to the

which is the Thouless-Valatin equation. From Eqs.
(13.87a) and (13.89), the moment of inertia may be ex-
pressed in terms of a double commutator as

g2/(2g) —[y(1) [H(2) y())]]
—[y(1) [H(2) y(1)]] (13.90)

To complete the story of the RPA, consider the angular
momentum component J„which, being purely quadratic
in bosons, must take the form.

(13.91)

The first term on the right follows from the fact that the
RPA phonon %„") carries K units of angular momen-
tum along the z axis, while the next two terms are re-
quired in order to satisfy Eq. (13.81c) for n =2.

It should be noted that for K WO, each vibrational
mode is doubly degenerate, with creation operators dis-
tinguished by X(" and X"„). With the proper choice of
phases, the two operators may be related by
X"„'

= TX'" T ' where T is the time-reversal operator.
One has, of course, that K „=—K„. In general, X„
denotes summation over both signs.

The next task is the construction of the higher-order
terms H' ', H' ' in the Hamiltonian and J+',J+' in the
angular momentum operators, using as building blocks
the RPA normal modes. The most general form of H' '

compatible with Hermiticity and invariance of H under
both time reversal and arbitrary rotations is given by
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H(3) —& ~ h(3)(00) g(()t~(()t~(()+H e + 1 ~ h(3)(00)' g(()t~(i)tg(i)t+H e
2 PVA, P V

PVA, PVA,

+ y h (3)(00) [~(1)t+~(1)]+ J(1) y h (3)( 1()) ~(1)t~(1)+H ep p p P P V

+J'"J("gh( )(20) [S"'t+X(')]+ J(') gh( )(20)'[X'"t+X(') ]+H c+ p p p p p p

+ —,'i[[/(+', J("]+[(t(",J(+'] ] g h' )(11)„[%(')—%(')]+ iQ'"J'" g h' '(ll)„'[%„")—%") ]+H.c.

iy()) y h(3)(()1) ~(1)t~(1)+ t y h(3)(()1)~ [~(1)t~(1)t+~(1)~(1)]p p PV P V p

+P'"P")g h'3'(02) [%"'t+%(')]+ —'P() g h 3 (02)' [%'))t+X()) ]+H c+ p p p p p p (13.92)

Equation (13.92) re(lects the following notation for general coefficients: in h '"'(kl), n denotes the order of the polynomi-
al, k the number of J'+' factors, and I the number of P(+) factors. The coefficients may be chosen to be real without loss
of generality. They are arbitrary in the generic model except for certain restrictions arising from invariance require-
ments and exchange symmetries of indices. For example, the coefficient h' '(00)„vanishes unless 1(.„=0as a conse-
quence of J, conservation, and h' '(10), „=—h' '(10)„as a consequence of Hermiticity and time-reversal invari-
ance. Since the full list of such restrictions is rather lengthy and not absolutely essential for the present discussion, the
reader is referred to the literature (Marshalek, 1987b).

Continuing in the same vein, one may construct the most general form of the quartic polynomial H' ', which contains
a large number of different kinds of terms (34, to be exact). Fortunately, for the purpose of evaluating the leading-order
corrections to the RPA, only a small subset of these terms is actually needed. Thus it is sufficient to write

H' '= h' '(40)[J'"J"'] +h' '(00)+ ~ h' '(00) +"'S'"+—' ~ h' '(00)+ P P V 4 PV KA, P V K

PV PVKA,

+J'+'J"'[h' '(20)+ g h' '(20)„+„"'%'„"]+dispensable terms . (13.93)

The coefficients are all real and subject to additional symmetry restrictions.
Next, we give the required higher-order terms in the generic expansion (13.80) of the broken-symmetry generators:

J(2) J(1) ~ ~ (2)(1()) [~(1)t+~(1)]+J(1) ~ ~ (2)(1())~ [~(1)t+~()) ]

y(1) y ~ (2)(P1 ) [~(1)1' ~(1)]+ y(1) y (2)(01 ) [~())t ~(1) ]

~ (2)(00) cg(1) +t(1)+ & ~ ~ (2)(()())' [cg(1)t(l)t Q(1)Q(1) ] J(2) J(2)t
P P V 2 PV P V — —P ~ — + (13.94)

and

J'+'=J'+'[j' '(10)+ gj' '(10)„+„'"S',"]+j' '(30)J'+' J'"+dispensable terms, J' '=J'+'t .
PV

(13.95)

The coefficients in Eqs. (13.94) and (13.94) are assumed to
be real and subject to further restrictions arising from
time-reversal considerations and the commutator (13.82)
with J„which are omitted for brevity. It is important to
note, however, that the highest-order rotational invari-
ance condition (13.84) implies relations between certain
coefficients of H'"' and J+ ",. in particular, for n=3,
one 6nds

$2
h' '(ll) =i)ice~~' '(10) + j' '(01)p w p p

2
h' '(ll)' =i)iso i( '(10)' + j' '(01)',

p p p p

h' '(02)~= —A'cop (01)„,
h' '(02)„'= —i)icop (01)„',
h' )(01)„=fi(~ co„)j' '(0—0)„, ,

h' '(01)„' =Pi(~„+co )j' '(00)~

(13.96)

It may be noted that only the coefficients of the P(+)-
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dependent terms of H' ' are fixed by the rotational in-
variance. It is precisely such angle-dependent terms that
must be eliminated in the final reconstructed Hamiltoni-

E. Outline of the reconstruction method tor axially
symmetric systems

We first describe briefIy a viable scheme employing
commutators. First, Eq. (13.97a) determines the expan-
sion of p as identical to that of J . The expansion of y
can then be obtained from the requirement that Eq.
(13.98a) be fulfilled order by order commencing with the
RPA order. Next, from the pair of equations (13.97b), p()
is easily derived in the explicit form

From Eq. (13.91), it follows that IX'",J, ]=E„M(".
This result implies that neither the RPA phonons nor
reconstructed phonons given by the expansion (13.18)
can be chosen to commute with all the components of J
(except when K„=O). It therefore follows that if the in-

trinsic excitations are described by such phonons, the an-
gular momentum J cannot be used directly to reconstruct
a Bohr-Mottelson representation. For some time, this
fact appeared to be an impasse to extending the
Marshalek-Weneser method to three-dimensional rota-
tion. But from the previous analysis in Sec. XIII.D,
there is an obvious way out. One can first construct a
Villars representation in the form of Eq. (13.55), with the
& „as functions of the phonon operators. In this repre-
sentation, the & „do not commute with components of
the angular momentum J as implied by Eq. (13.49). In
the second step, the unitary transformation (13.61) can be
invoked to pass over to the Bohr-Mottelson representa-
tion (13.70). In effect, this step amounts to setting /=0
and replacing J by I in Eq. (13.55).

We are now in a position to outline a viable recon-
struction scheme. The first step is to establish a
correspondence between the known boson expansion of
the laboratory components of J and their representation
in Euler-angle space. As mentioned previously, the con-
ventional zyz representation is unsuitable for a Taylor-
series expansion about vanishing values of the angles, but
the xyz representation may be used instead. With the
choice of the xyz convention for the Euler angles, the lab-
oratory components of J can be expressed in terms of the
Euler angles and Hermitian canonically conjugate mo-
menta p, p, and p~ =J3 as follows:

(13.97a)

p()= —[e '~, J, i'—]
—

—,'Ie'~, J,+iJ I . (13.99)

(t+ = (@+i8) /2 (13.100)

and the canonically momenta p+ given by

p+ =pq +Ip'o

and satisfying

(13.101')

l0+ i+ ]=i
I 0+,i+]=o, (13.102)

which is equivalent to Eq. (13.98). From Eqs. (13.97a),
(13.99), and (13.101), one readily finds for p+ the expan-
sion

(1) + (2) + (3) + . . .p+ —p+ p+ p+ (13.103)

(1) —J(&) (2) —J(2)p+ + op+ +

Once the expansion of y is obtained, that of p@ is then
fully determined, and the expansion of 0 can subsequent-
ly be obtained from Eq. (13.98b). Finally, the expansion
of the phonon operators can be obtained by requiring
them to commute with the angle variables and their con-
jugate momenta. In this way, the expansions of a com-
plete set of canonical variables can be determined, which
are clearly related to the laboratory components through
Eqs. (13.97a), (13.99) and the principal-axis components
through Eq. (13.52). Inversion then allows the Hamil-
tonian and other operators to be expressed in terms of
these canonical variables, thereby providing the Villars
representation.

In practice, it proves convenient to introduce the com-
plex combinations of Euler angles P+ defined by

J,+iJ = —tanO —,
' Ie '",p I+ie+'"p()+e '~sec& J3,

(13.97b)
(3) J(3)~

I
y(1)+y(1) J-+ —

2

(13.104)

I:~us]=i,

(13.98a)

(13.98b)

whereas g satisfies Eq. (13.53) or, equivalently, I itj, J3]=i,
but as is clear from Sec. XIII.C, ((t) need not be deter-
mined explicitly. All other combinations of pairs from
the set (y, (9, g,p„,J3) are required to commute.

in accord with Eq. (13.59). The first term on the right-
hand side of Eq. (13.97b) has been symmetrized to ensure
that J„and J, are manifestly Hermitian. The moInenta
p„and pg must satisfy

Thus p+ first difFers from J+ in the cubic terms.
Just as in the two-dimensional case, it is more con-

venient to use the formal unitary transformation method
than the commutator method. The applicability of this
method is based on the fact that the set of final variables

(P+,p+,X„X„) and the set of RPA variables

( +t)(', J(+X)„(S)'' ))involve the same mutual commuta-
tion relations, allowing the possibility of connecting the
two sets by a canonical transformation. Specifically, the
procedure is to seek a formal unitary transformation
exp(iS) such that
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exp(iS)J+"exp( —iS)=p+" +p' '+p' '+
(13.105)

of P+,
—y(1)+y(~2)+. . . +y(n)+. . . (13.109)

where the right-hand side, is given by Eqs. (13.104). The
generator has an expansion commencing with cubic poly-
nomial terms:

and that of X„and %t, as in Eq. (13.18), can be generated
directly by applying the unitary transformation to the
corresponding RPA variables as follows:

S =S"'+S"'+ (13.106)
(I)+ =exp( iS)P(+ 'exp( —iS)

Equation (13.105) in the first two orders leads to the fol-
lowing linear inhomogeneous equations:

—y(()+ [iS(3) y(1)]+. . .

[iS(3) J(1)]
—J(2) (13.107) %„=exp( iS)%„"'exp( —iS)

[iS( ) J( )]— & [iS( ) J( )]+J( )+ [y( )+y( ) J j2

+ 1 [y(1)+y(1)]2[J(1) J(l) ] (13 108)

Just as in the two-dimensional case, the solutions for S'"'
are arbitrary to the extent that any solution may be aug-
mented by an arbitrary nth-order polynomial function of
J'+', S(",and S„"',all of which commute with J'+'. This
arbitrariness is entirely equivalent to that occurring in
the commutator approach.

Once the expansion of S has been found, the expansion
I

=X„'"+[iS' ',%„"']+ . (and H. c. Eq. ) .

(13.110)

The unitary transformation ensures that the Anal vari-
ables satisfy the same commutation relations as in the
commutator method.

The transformations of an arbitrary function of the
RPA variables F(p '+ ', P'+ ',%„"),%„"') to the set

(p+, P+,S„,X„) can be accomplished with the following
formula analogous to Eq. (13.25) in the two-dimensional
case:

F =exp( iS)F exp(—iS) =F(p+, P+,S„,S„)—[iS' ', F(p+, (t)+,S„,X„)]+
where

(13.111)

F=exp(iS)F( J(+', P(+),S„"),X&" )exp( iS)=F (p—+, (t)+,S„,X„), (13.112)

i.e., each RPA variable is replaced by its transform: J (+'=p+, P (+) =P+, %„("=S„,%„")=X„. In the case of H, one

then obtains the expansion given by Eqs. (13.26) and (13.27), where, of course, the solutions of Eqs. (13.107) and (13.108)
for S' ' and S'"' must now be used. In the subsequent step, p+ should be eliminated in favor of the principal-axis com-

ponents of J.

F. Reconstruction of the generic Hamiltonian

The solutions of Eqs. (13.107) and (13.108), transformed via Eq. (13.112) are readily found to be

iS"'=—
—,'i[[(t),p+ j+ IP+,p j ] g j")(10)„[X„+%„]iP p g j"—)(10)„'[%„+%„]—H. c.

+P+P g j' )(01)]„[St—S„]+ —,'P g j' )(01)„'(%t—X )
—H. c.

P P

i(t) g [j—' )(00)„+„%+ —,'j' '(00)„' (%„%,—% + „)]—H. c. (13.113)

and

iS' '= 'i IQ p -j[j' '(10)—-'g j' (10)

y [2,(3)( 10) +2 (2)( 10)+(2)(1()) + j(2)( 10)+(2)(lp) +j(2)( 10) +( )( 10)

X(%„% + —,'5„)——,'ij' '(30)IP,p+p j
—H. c. of all terms

+dispensable terms . (13.114)

To Eqs. (13.113) and (13.114) arbitrary functions of p+, p, %„,and X„may be added, but these are chosen to be zero

here. In the case of S ' ', we retain only contributions that are actually needed to evaluate the leading-order corrections
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to the RPA. This abbreviation is consistent with that for H' ' [Eq. (13.93)] and J+' [Eq. (13.95)].
We are now in a position to evaluate the expansions given by Eqs. (13.26) and (13.27). The result is

H =8' +H' '+II' '+H' '+-
where

(13.115)

H' '= WRpA+ g fico„%~X„+ p+p2J

H' '= ,' g h'—'(00)„q(%„%+q+SqS+„)+g h' '(00)„(X„+X„)
PVA, p

+,' y h"'(00),'.,(X„'Xt~',+Jl,X~„)+ p y r'"(10)„~„'%.+H. c.
PVX PV

+-,'p y rI "(10)„',(W„'g', —X ~ „)+H.c.

(13.116a)

+p p g I'"(20) (X„+X„)+p g I'"(20)„'(X +X )+H. c.
p p

with the coe%cients given by

(13.116b)

I' '(10)„ =—h' '(10)„ — j' '(00)„ , I' '(10)„' =h' '(10)„' — j' '(00)„'Pv 2g Pv pv pv

Q2 $2
I ' '(20) =h' '(20) — ' '(10) I' '(20)'—:h' '(20)' — ' '(10)'

p P 2g~ P p 2J

(13.117)

and finally

H'"=w"'+-,'yr"'(00)„.(x,'%„+-,')(x~@.+-,')+ gr'"(00)„(x,'x„+-,')+r"'(20)p p +I' '(40)p p'

+p+p g I'"'(20)„(%„%„+—,
' )+off-diagonal terms+ 0 p —20p„g IC„X„X

p
2J (13.116c)

In Eq. (13.116c), only the diagonal terms, which are of order fl relative to the RPA, have been retained, whereas the
off-diagonal terms, which lead to correction of relative order Q, have been suppressed. In addition to the constant
8' ', a higher-order correction to the ground-state energy of no compelling interest in the present context, the other
coefficients may be expressed in terms of original coefficients as follows:

I' '(00)„=—,
'h' '(00)„,„—2j' '(00)„h' '(10)

—2j' ~(00) „h' '(10) „—j' '(00)„' h' ~(10)„' —j' '(00)' „h' '(10)'

2

+ I4[j' '(00)„ ] + [j' '(00)„',] +[j' '(00)' „ ] ],4J
r"'(oo)„—=h"'(oo)„„——,

' y h"'(oo)„.„.
(13.118a)

2

+ l2[j' '(10)„] —2j' '(10)„„+[j' '(10)„'] + [j' '(10)' „]],
I' '(20)—:h' '(20) —

—,
' g h' '(20) „,

I ' '(40) =h' '(40) — j' '(30),

(13.118b)

(13.118c)

(13.118d)

I' ~(20)„—=h' '(20)„—4j' '(10) h' '(20)„—4j' '(10)„'h' '(20)„' —4j' '(10)' „h' '(20)' „
2

+ [2[j' '(10)„] + [j' '(10)„'] + [j'~'(10)' „] ] . (13.118e)

We remark that in the derivation of Eqs. (13.116)-(13.118), the rotational invariance conditions (13.84) or, equivalently
(13.96) play an essential role in eliminating the dependence of the Hamiltonian on the Euler angles. The residual depen-
dence in the last term of H' ' is due, of course, to the fact that the Hamiltonian has so far been expressed in terms ofp+
rather than the principal-axis components of J.
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The next task then is to replace p+ in H by principal-axis components of angular momentum. Beginning with the
identity J, +Jz+ J3 =J, +J +J„substituting on the right-hand side from Eqs. (13.97) and expanding in powers of the
Euler angles, one may readily arrive at the result

Ji+J~ —
—,
' [J+,J ] =p+p +8 p„—28@„J3——,

' (13.119)

This result is valid through quartic terms. After multiplying Eq. (13.119) across by fi /(2 J ), we see that the right-hand
side, accounts for the rotation term in H' ' [Eq. (13.116a)] as well as for the last Euler-angle-dependent term in H' '

[Eq. (13.116c)]. That is, these two contributions to H may be replaced to the given order by the single contribution

g2

2J [J,+J2] .

[To arrive at this result requires the identification

J3= gK„X„X„, (13.120)

which can be derived from Eq. (13.52)]. This replacement then removes the angle dependence in H' '. In general, as
mentioned earlier, p+ can be related to the laboratory components of J using Eqs. (13.97a) (13.99), and (13.101), and
subsequently to the principal-axis components through the inverse of Eqs. (13.52). It is then not difficult to show that

p+ =exp(+i P)J+ +cubic terms= J+exp(+i i(1)+cubic terms, (13.121)

where the exp(+i g) dependence arises from the rotation matrix in Eq. (13.52). Since H is expanded only through quar-
tic terms, substitution of Eq. (13.121) in H' ' and H' ' does not require the use of the cubic terms, i.e., effectively one
makes the replacement p+~exp(+if)J+ =—J+exp(+if) Wit.h the elimination of p+ in favor of the principal-axis
components of J, M may finally be written as the Villars expansion

a = m +II""'+II""+a""'+0

where

(13.122)

(13.1238)

H""=-,' y h"'(00)„.,(x„'x~~,+x,'x~„)+y h "'(00)„(s„'+x„)+-,'
yh "'(00)„'„(s„'s~&",+x,x~„)

PVA, p PVA.

+J' e '&g [I' '(10)„+% + —,
'I' '(10)„' (S„X —X + „)]+H.c.

+(J, +J2) g I' '(20)„'(%„+% )+ J' e '~g I' '(20)„'(X„+X „)+Hc.
p p

H"'"= w'"+ ' y r'"(oo) (x'x +-')(xt~ + ' )+ y r'"(oo) (x'x +-')

(13.123b)

+I ' '(20)(Ji+ Jz)+I i i(40)(Ji+J2) +(Ji +J2) g I' '(20)„(%„%„+—,')+off diagonal terms . (13.123c)

The final step in the reconstruction of the Hamiltonian is the application of the unitary transformation (13.61) in order
to pass over to the Bohr-Mottelson representation, as discussed in Sec. XIII. In effect, this amounts to the replacements
$~0 and J~I in the Villars Hamiltonian. Thus we immediately obtain

HBM +H+ ~0+HBM +HBM +HBM +
where

HBM —WRPA+ 2'Ii~p% % + (Ii+I2),

HBM =
—,
' g h' '(00)„g(%tXt+q+Xi%+ )+ g h' '(00)„(%„+%„)+—,

' g h' '(00)„' g(%„%t+q+%i%+ )

PVA, p PVX

+r' y [r"'(10)„~„'X.+-,'r'"(10),'.(X„'X'.—% ~ „)]+H.c.

(13.124)

(13.1258)

+(I', +I', ) y r"'(20)„(Xt+X„)+ I"g r"'(20)„'(X„'X „)+H.c. (13.125b)
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II',"= w'"+-,' g r"'(00),.($„'%,+-,' )(St~.+-,' )+ y rI "(00)„(X„'X„+-,'
)

+I' '(20)(I, +I2)+I' '(40)(I, +I2) +(I, +I2) +1'"'(20)„($„%„+—,')+off diagonal terms . (13.125c)

G. Reconstruction of transition operators

A spherical tensor operator Tz may be expanded like
H in a Taylor series in the RPA normal-mode variables
(J+', P~+', S„'",%"'), and then transformed into an ex-
pansion in (p+, P+,%„,%„),using Eq. (13.111). The vari-
ables p+, in turn, can be eliminated in favor of J+. The
resulting form of Tz may be treated with the aid of the
formula

&Mac(0 0 P)=e' (13.126)

The principal-axis components of the spherical tensor in
the Villars representation are obtained from Eq. (13.73)
as follows:

The Bohr-Mottelson Hamiltonian (13.124) is more con-
venient for a perturbative treatment than the Villars
Hamiltonian (13.122). In order to obtain the leading-
order energy corrections to the RPA, one should treat
HBM in second order and add it to the diagonal matrix
element of HzM'. For details, see Marshalek (1987b).

1

subspace. There are also the Dyson formulas (9.12) and
(9.13). These play a role in some of the calculations re-
ported in this section, but we shall nevertheless postpone
most of the discussion of the application of the Dyson
mapping until Sec. XVI. It is somewhat remarkable that
the overwhelming number of applications of the BZM
model have utilized the most complicated of the three al-
ternatives, namely, Eq. (9.39). There are various histori-
cal and practical reasons for this, some of which are im-
plicit in the discussions of the previous sections. It ap-
pears that although the alternatives (9.29) and (9.33) can
be found in the early literature (Janssen et al. , 1971;
Marshalek, 1989), they have been largely neglected in ap-
plications.

To our knowledge, the first attempt to utilize Eq. (9.33)
occurs in a series of papers by Hirsekorn and Weigert
(Hirsekorn and Weigert, 1976, 1977; Hirsekorn, 1980,
1981). They apparently rediscovered that Eq. (9.39) can
be transformed into (9.33) provided one guaranteed to
stay in the physical subsp ace. Under these cir-
cumstances, a general fermion shell-model Hamiltonian
(with antisymmetrized V &zs ),

]im TLeM M (13.127)
H —g 6 pQ Qf3+ 4 g V gysa QpQsay

ep apy6
(14.1)

Upon applying the transformation to the Bohr-Mottelson
representation, one obtains the result (13.75), where the
principal-axis components T~ are obtained by making
the replacements $~0 and J+ +I'+. For furthe—r details,
see Marshalek (1987b).

XIV. NONPERTURBATIVE METHODS
FOR DOING DYNAMICS AFTER MAPPING

A. Early work

In this section we consider nonperturbative shell-
model applications in which the mapping from the fer-
mion to the boson space is purely kinematic and all the
dynamics are subsequently carried out in the boson
space. This is to be contrasted with the applications con-
sidered in the succeeding two sections, where at least
some preliminary dynamics are carried out in the fer-
mion space. A further restriction to realistic applications
makes the available subject matter rather sparse pickings,
but there appears to be much room for further develop-
ment. The basic formulas that condition what has and
what can be done are, first of all, Eq. (9.10) for the map-
ping of the multipole operators and the three alterna-
tives, Eqs. (9.29), (9.33), and (9.39), for the mapping of
pair operators. In addition, there is the constraint that
state vectors have all their components in the physical

can be transformed into a Hermitian boson Hamiltonian
that is essentially no more complicated in structure than
Eq. (14.1). In order to guarantee (one of the main selling
points) that their theory does not violate the Pauli princi-
ple, these authors expand their eigenstates in terms of the
basis (9.44) (since the applications are all to closed-shell
nuclei, the boson operators b;. here refer to particle-hole
excitations). Herein lies the rub. The calculation, except
for certain approximations to be detailed, is indistin-
guishable in form or complexity from a shell-model diag-
onalization in the space of one and two particle-hole exci-
tations. It is less general than the above because three-
particle/one-hole and one-particle/three-hole matrix ele-
ments of V & & are omitted; it is more general because
three-particle/three-hole amplitudes are included ap-
proximately by a factorization approximation into an an-
tisymmetric product of one-particle/one-hole and two-
particle/two-hole matrix elements.

The equations can be compared in their structure with
an approximate version of the RPA (approximate since
the latter contains some multiparticle, multihole excita-
tions because of the ground-state correlation amplitude).
The most important di6'erence emphasized is that the
new formalism contains corrected single-particle energies
compared to HF values. It has been applied to the LMG
model, to He, and to ' 0 (negative-parity states). Using
relatively simple interactions, typical "good" agreement
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with experiment is achieved. The formalism has also
bccn applied successfully to 0 and O. No ful thci
efforts in this direction have been reported.

B. Recent work

We turn next to work (Kuchta, 1988a—1988e) based on
a different philosphy. This work is rather fresh and con-
tains a core methodology that certainly deserves further
independent study. An essential part of the procedure is
some imposition or test of the necessary Pauli principle
restrictions. One of the problems encountered by a
reader of this work is the lack of uniformity in the way
this is done. For example, in 1988a, 1988b, and 1988e,
the method reported is the inverse of the method used by
Takada (fully described in Sec. XVI), whereas in 1988c
and 1988d a method based on Park's operator (Park,
1987; also discussed in Sec. XVI) is utilized. However,
Dobes (1989) has argued that Kuchta's imposition of the
Park constraint is inconsistent with the results reported
in 1988c. In the opinion of the writers, the work of
Kuchta, though it may well contain some elements of an
important new approach, has not yet crystallized
sufficiently to warrant a presentation of detailed results.
We therefore limit ourselves to a brief description of the
underlying philosphy.

To begin with, one rewrites Eq. (14.1) as

the pairing interactions will be severely underestimatedf
In this objection, we have made the tacit assumption that
we drop the contributions of bosons with large values of
J. But Kuchta does not do this. He makes an exact
mapping and keeps all terms. Therefore the Hamiltonian
is exact, in the shell-model sense. Approximation enters
through the method of finding the spectra and wave func-
tions. Here Kuchta adopts the program of Dukelsky
et al. (Dukelsky, Dussel, Perazzo, Reich, and Sofia,
1984; Dukelsky, Perazzo, Reich, and Sofia, 1985), in
which it is suggested that given a many-body boson
Hamiltonian, one should initially investigate its proper-
ties by applying the analogs of the methods that have
proved so popular and enduring for fermions, namely
Hartree-Fock ( —+Har tree-Bose) followed by Tamm-
Dancoff or random-phase approximation, followed by
projection, etc.

As stated initially, all of this is worthy of further study,
but the ultimate success of such an approach is depen-
dent on finding a cogent method of dealing with the Pauli
principle. In our opinion, Kuchta has not yet shown that
he has solved this problem. Quite recently Li (1991) has
suggested a new variational approach that combines
Kuchta's suggestion for mapping the Hamiltonian with a
new use of the Park operator. There is some relation to
Li s previous work on the Pauli principle described in
Sec. XVI.

H = ge'pa ati+ —' g V t3rs(a ay)(a@s),
ap apy5

(14.2) C. Mapping of the Hamiltonian

where

& r~
~ap ~ap 4 " ayyp (14.3)

It should be noted that this rearrangement is only one of
four different possible multipole forms. Since the Hamil-
tonian has been expressed completely in terms of mul-

tipoles, why not, as Kuchta does, substitute the multipole
mapping (9.10)? The mapped Hamiltonian is then in the
simplest conceivable form. The objection to such a step,
which has certainly been thought of many times before, is
immediate for anyone who has been schooled in the
Copenhagen tradition. We all know that the matrix ele-
ments V p & can be expanded either in the pairing form
[which couples (a/3) and (y5) to good angular momen-
tum J] or in the multipole form in two ways [in one of
these, one couples (ay) and (P5) to good angular
momentum J]. We also know that the two expansions
are complementary, in the sense that an interaction that
has a narrow spread in J in one form has a broad distri-
bution in J in the other. Finally, we have been taught
(and many of us believe) that for the study of the collec-
tive aspects of nuclear structure the essential content of a
realistic interaction can be represented by the sum of the
lowest J contributions from each form of writing the in-
teraction as in Eq. (11.18).

Therefore, the objection to Kuchta's procedure would

appear to be obvious. Though his ansatz should give an
excellent account of the multipole-multipole interaction,

One problem that cannot be sidestepped, as we have
seen, is that of nonuniqueness in the mapping of the
Hamiltonian. In the course of the discussions up to this
point that have included dynamics, it was necessary to
adopt some solution, explicit or implicit, to this problem.
We first summarize these various approaches and then
ask what can be done, if anything in a systematic ap-
proach.

Consider first the group-theoretical schematic models.
In every case the Hamiltonian is presented uniquely as a
polynomial in the generators. The mapping of the gen-
erators then determines the mapping of the Hamiltonian.
Here there is no ambiguity because one uses exact map-
pings. A second, more widely applicable, class that in-
cludes the previous one was encountered in Secs.
XI—XIII, where we assumed a form of the Hamiltonian
that contained multipole and pairing parts clearly labeled
as such. This was the Hamiltonian (11.18), mapped ac-
cording to (11.19) so as to preserve the physics. Even for
this case, more than one mapping procedure has ap-
peared in the literature. If one maps perturbatively, with
a small parameter, then clearly the mapping of the Ham-
iltonian is determined to a consistent order by the map-
ping of the generators. We shall encounter a fresh exam-
ple of this point of view in Sec. XVII, which treats
number-conserving mappings that are perturbatively val-
id near the limit of good seniority. On the other hand,
the modified Marumori- Yamamura-Tokunaga mapping,
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to be discussed in the next two sections, is not strictly
perturbative. In such cases, an independent Marumori-
Yamamara-Tokunaga mapping for the Hamiltonian, as
discussed below, has been applied widely, since it was
first used in the work of Otsuka et al. (Otsuka, Arima,
and Iachello, 1978), especially in connection with studies
of the interacting boson model. This work is described in
Sec. XVIII.

In the general case represented by Eq. (14.1) we must
admit, however, that the mapping of the Lie algebra does
not in and of itself solve the mapping problem, and
indeed two different solutions have already been de-
scribed in this section. In Eq. (14.1) the "natural" order-
ing of the interaction term as products of pair annihila-
tion and pair creation operators suggested the mapping
utilized in Sec. XIV.A. On the other hand, Kuchta went
out of his way to rewrite the interactions in the multipole
form as described in Eqs. (14.2) and (14.3) so that he
could take advantage of the relative simplicity of the
mapping of the multipole operators.

Finally, we describe two methods for mapping the
Hamiltonian that do not involve the direct substitution of
the generators and that can be carried out in practice, at
least through the first few orders. For the first, the
modified Marumori- Yarnamura- Tokunaga method al-
ready mentioned above, one deviates from the previous
focus on the operators and emphasizes instead the map-
ping of states. Thus if

I
A ), IB ), . . . denote the states in

the shell-model space and
I A), IB), . . . the correspond-

ing mapped space generated by a set of bosons b, , b, ,
then we can determine II~, an approximation to a boson
Hamiltonian, from the requirements

( AIHIB) =(AIH, IB) (14.4)

and, for example, the specification that H~ be written in
some series form (normal form or otherwise) in the boson
operator set [b;,b; ]. Of course, this is nothing other
than the Marumori prescription. It is also the epitome of
the shell-model point of view. If only a subspace of the
space I

A ) is utilized, as will be the case in practice, then

H~ is a polynomial perfectly accurate in the correspond-

ing subspace of the boson space. The philosophy of the
mapping method then calls for its application to a larger
space, as a test of the validity of the approximate map-

ping method utilized. This method has been the most
popular approach to the study of the microscopic deriva-
tion of the interacting boson model and therefore, as al-

ready mentioned, will play an extensive role in the work
to be described in Sec. XVIII.

A second method of mapping seeks to preserve the
equations of motion (RPA with exchange and higher
RPA with exchange; Li and Klein, 1971; Marshalek and
da Providencia, 1973a). A systematic way of achieving
this result is to adopt the equations of motion approach
of Rowe 1970; Ring and Schuck, 1980). We illustrate the
particle-hole case: Let C IHF) be a complete set of
particle-hole (p-h) states (including the state IHF) itself).
Thus C~ corresponds to certain product of p-h operators.

Let (C )iiIO) be the mapped basis and C, (C )~ the
corresponding Hermitian conjugate operators. The bo-
son Hamiltonian. H~, as a polynomial, is defined up to an
additive constant by the equations

(HFI[C, [H, C&~]]IHF)=(OI[(C ) [H, (C&~) ]]IO),

(14.5)

(HFI [C,[H, Cp]] IHF) =(OI [(C.4, [Ha (Cp)a ]]Io)

(14.6)

and H.c. equations. [The additive constant is the HF ap-
proximation to the ground-state energy, but further con-
tributions to this energy, the correlation energy, will arise
from Hz. In connection with the latter there is a delicate
problem of double counting, which has been discussed
thoroughly in the literature (da Providencia and
Weneser, 1970)]. If the set C is limited to a single (p-h)
creation operator, then Eqs. (14.5) and (14.6) will yield a
boson Hamiltonian quadratic in the boson operators. Di-
agonalization by a Bogoliubov transformation is
equivalent to solving the RPA with exchange. This ap-
proach could be used to generalize the theory described
in Secs. XI—XIII to a realistic interaction.

For both general methods described above an impor-
tant object of the mapping exercise is to apply the result
in a larger space than the subspace used in the derivation,
i.e., a definite gain in dynamical power is anticipated. Of
course this will require a property that we have em-
phasized repeatedly, namely, the appearance of a small
parameter as we proceed to higher-order terms in the po-
lynomial. Here, however, previous considerations should
apply, the method being applicable with greatest
confidence in the immediate vicinity of a stable mean-
field configuration.

We mention briefIy a further form of mapping, which
has (possibly) less dynamical interest than the methods
above, but may have some value as a way of characteriz-
ing or framing the results of a calculational procedure.
In this approach, one has already done one's best calcula-
tion in the fermion space and one has accurate energies
and matrix elements of various one-body operators
within a finite subspace including the ground state.
Without going into detail (for examples see Dreiss and
Klein, 1969; Cxinocchio and Talmi, 1980), assuming that
one is describing collective motion, it is easy to invent a
boson subspace and a polynomial representation of ob-
servables, in the sense of the phenomenological ideas de-
scribed in Sec. V, that reproduces the theoretical calcula-
tions in the fermion space. In this sense, the calculation
plays the role of the data and the "correspondence" the
role of a phenomenological model. In such a representa-
tion the Hamiltonian is particularly simple in that it is a
polynomial in diagonal operators; higher-order results
are also easily predicted for all observables.
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D. Iterated boson mappings

The application of the Hartee (Pock) approximation to
a problem of interacting fermions implies that one is in-
cluding only mean-field effects. The application of a Har-
tree (Bose) approximation following one of the boson
mappings discussed in this paper implies that one is also
including particle-hole or particle-particle correlations,
depending on what kind of fermion pair has been mapped
into the boson. It is intriguing to take this idea one step
further and introduce a mapping from the bosons to bo-
son pairs in the hope that a Hartree approximation at
this stage could lead to a reasonable first treatment of
four-particle correlations.

The most serious problem that arises in connection
with this idea of iterated boson mappings is that the rela-
tive weight of unphysical states becomes greater at each
step. As we shall see in Sec. XVI, the problem of
separating physical from spurious states, though well un-

derstood from a theoretical point of view, is still not
solved from a practical standpoint for realistic models,
except for a procedure, to be described, that leans heavily
on the shell-model formalism. For example, in the boson
space, we can construct states that either satisfy the Pauli
principle or transform under other representations of the
permutation group. Most physical Hamiltonians will

bring the more symmetric representations down in ener-

gy, and thus, in a variational calculation of the ground-
state energy, for example, one may anticipate serious
mixing of unphysical (symmetric states) with the physical
antisymmetric state.

For this reason, in a first application of the idea of
iterated mappings (Bijker, Pittel, and Dukelsky, 1989),
application was made to a starting boson system that has
the advantage of having a symmetric ground state. A
further simplification was achieved by writing a typical
one-plus-two particle boson Hamiltonian in the particle-
hole form, so that the simple Hermitian mapping of
particle-hole operators, identical for the Dyson mapping
and for the generalized Holstein-Primakoff mapping,
could be applied. The system chosen for study was an
IBM-1 model with the simplified (nonphysical) Hamil-
tonian

HisM = —(1—X)CzsU(3~+yCzo(6& (14.7)

where the strengths, determined by the parameter y, tak-
en in the range (0,1), multiply the appropriately identified
second-order Casimir invariants. At one end of the
range, y=O, we have a (deformed) boson mean field, and
at the other, y=1, boson pair correlations dominate. In
between there is a phase transition, which occurs at
y-=0. 85. The ground-state energy of the system de-
scribed was calculated for 16 bosons in three Hartree-
Bose approximations, namely, calculations for the origi-
rial, for the once-mapped, and for the twice-mapped bo-
son Hamiltonians, thus providing the possibility of
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FIG. 4. Di6'erences between the ground-state energies calculat-
ed in the Hartree-Bose approximation and by exact diagonaliza-
tion for the boson system described in the text. Curve A refers
to Hartree-Bose calculations carried out in the original interact-
ing boson model boson space, curve B to calculations carried
out in the pair-boson space, and curve C to. calculations carried
out in the quartet-boson space. From Bijker, Pittel, and Dukel-
sky, 1989.

describing mean-field, pair, and quartet correlations. The
results are compared with the exact energy in Fig. 4. Be-
sides the evident successive improvement upon iteration,
it is equally evident that correlations of all orders play a
role at the phase transition.

A beginning has also been made on the fermion prob-
lem by Dukelsky and Pittel (1989). This paper contains a
useful review of many of the issues discussed in Sec. XVI.
It approaches the problem of iterated boson mappings,
starting from a shell-model Hamiltonian, by considering
a two-level pairing model, confining attention to the
senority-zero subspace. For this model, the spurious
state problem is avoided entirely on the fermion-to-boson
mapping simply by choosing the size of the boson sub-
space appropriately, i.e., by making a one-to-one
correspondence as was done for the corresponding model
earlier in this review. Unphysical states are, however,
unavoidable in the further iteration. The matter is dealt
with in part by the use of the Park operator discussed in
Sec. XVI. As stated above, the use of this constraint
after the fermion-to-boson mapping has been called into
question; this point is also discussed by Dukelsky and
Pittel. However, these authors make a convincing argu-
ment that by adding to the Hamiltonian of the first
iterated mapping a multiple of the Park operator, one
can raise the energy of unphysical solutions compared to
physical ones. There is, however, a delicate balance be-
tween that desirable end and an undesirable feature that
this also weakens multiparticle correlations. It remains
to be seen what can be done in more realistic cases.
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XV. MAPPING OF TAMM-DANCGFF BOSONS

A. Introduction

Up to now we have studied boson mappings largely as
a problem in kinematical transformation to a boson
space. The dynamics is then to be studied exclusively in
terms of bosons. It has been seen that this is a very natu-
ral procedure for the simplified models with which we be-
gan this review, but it is practically a fledgling field for
realistic studies of nuclear properties. Much more practi-
cal attention has been paid to a procedure whereby one
carries out at least minimal dynamical studies in the fer-
mion space in order to choose the most important de-
grees of freedom determining the low-energy structure of
nuclei. In the work to be summarized in this section, a
uniform procedure can be discerned: after a
Bogoliubov-Valatin transformation to quasiparticles, a
Tamm-Dancoff calculation based on quasiparticle pairs
allows one to select the most collective quadrupole exci-
tation, although, in a more refined approach, some subset
of the noncollective excitations is also retained. We refer
to all of these excitations as phonons, though strictly we
should reserve this name for the corresponding boson ex-
citations. Qrthonormal states constructed from the pho-
non operators define a subspace of the fermion shell-
model space. One then maps this subspace onto a suit-
ably defined boson space using either the commutator or
the Marumori- Yamamura- Tokunaga method.

In fact, the commutators of any subset of the Tamm-
Danco6'operators do not generally form a closed algebra.
If we use the commutator method, we can satisfy the
algebra only in an approximate sense, as an expansion in
a suitable small parameter. As we shall show in Sec.
XVII, an extended use of the commutator method can
lead to con.sistency requirements on the number and type
of included excitations. In the modified Marumori-
Yamamura-Tokunaga method, which has been used
widely for carrying through the mapping of a restricted
subspace, no apparent inconsistency forcing a
redefinition of the subspace can occur. On the other
hand, one can be certain, on the basis of previous work,
that some failure of the commutation relations must
occur (Matsuyanagi, 1982). In either case, because the
algebra is not rigorously satisfied, some violation of the
Pauli principle is unavoidable. This observation also ap-
plies to the work reported in Sec. XVI.

In any event, once the mapping has been carried out,
we are confronted with a polynomial boson Hamiltonian
that represents an approximation to the original fermion
Hamiltonian. Since orthonormal boson bases are simpler
to construct than fermion bases, we have now hopefully a
tractable problem of matrix diagonalization, though the
physics sometimes dictates additional transformations of
the Hamiltonian before this is done, as will be seen.

This section will be devoted mainly to the work of

Tamura, Kishimoto, and their collaborators, who are
the authors of one of the most extensive theoretical and
practical efforts in this field. However, around 1980, this
work came under attack on two fronts. On the one hand,
questions were raised (Silvestre-Brac and Piepenbring,
1977b, 1979; Marshalek 1980a, 1980b) about the theoreti-
cal foundations of the work as so far reported (Kishimoto
and Tamura, 1971, 1972, 1976). On the other hand, the
accuracy of-the results in describing experiments, in com-
parison with the interacting boson model, for instance,
was also called into question (Arima, 1980; Arima,
Yoshida, and Ginocchio, 1981). We shall comment more
fully on this second point in Secs. XVII and XVIII in
connection with our discussion of the foundations of the
interacting boson model, but we wish to deal substantive-
ly with the first criticism in this section. Not to keep
readers in suspense, let it be noted here that Tamura and
Kishimoto responded effectively to all criticisms.

B. Summary of the model of Tamura and Kishimoto

Before providing a more detailed technical account of
the work under review, we shall first make a reasonable
assessment of the present status of the problem of appli-
cations, with the understanding that currently there are
no theoretical objections to the basic formulation: (i) An
extensive body of applications with overall impressive
agreement with experiment has been reported, for Sm
isotopes (

' " Sm) (Tamura, Weeks, and Kishimoto,
1979), for ' Ru and ' " Pd (Weeks and Tamura,
1980a), for ' ' Os and ' ' 'Pt (Weeks and Tamura,
1980b, 1980c), and for the Ge problem (Weeks, Tamura,
Udagawa, and Hahne, 1981). Several of the ideas in
these calculations were tested earlier (Kammuri and
Kishimoto, 1976a, 1976b, 1978). Some results of this
work will be reported at the end of this section. (ii) What
actually entered these calculations of energy levels,
8 (E2)'s, static quadrupole moments, isomer shifts, and
two-particle transfer amplitudes is never completely stat-
ed in any one of the references, but from the 1976 paper
(Kishimoto and Tamura, 1976), the above quoted arti-
cles, and several conference reports (Tamura, Weeks, and
Kishimoto, 1980; Tamura, 1982, 1983a) one can extract a
largely complete and unambiguous statement of the in-

2The bulk of this section was written before the untimely
death in October, 1988 of T. Tamura. Though his fame in the
nuclear experimental community is based on his pioneering
work on the coupled channel analysis of nuclear reactions, to
the theoretical community he was equally known for the work
described below, which was his primary interest during the last
decade.

3It is devastating to note the more recent death of T. Kishimo-
to in April, 1990.
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gredients of the calculations: The Hamiltonian is
schematically of the form

H =H +Hp() +Hp2 +Hgg (15.1)

the sum of an independent-particle part H, , rnonopole-
pairing part Hpo quadrupole pairing Hp2, and
quadrupole-quadrupole interaction H&&. Considerable
attention was paid to the (fixed) choice of single-particle
energies for each set of nuclei, making use of various pre-
vious studies. It should be emphasized that these calcu-
lations exceed the conventional shell model in the num-
ber of j shells included, going both below and above the
Fermi surface. For instance, the Sm calculations includ-
ed eleven neutron levels and (generally) eight proton lev-
els. The pairing parameters were fitted to odd-even mass
differences, thus leaving in effect two parameters to ad-
just for each nucleus, an overall strength for each of Hp2
and H&& (assuming equal strength for pp, nn, and pn
components). These scale factors varied slowly with
atomic number, within a range of roughly 10% and with
a median very close to the value predicted by a famous
self-consistency argument (Bes and Sorensen, 1969).

For the mapping, only a single collective quadrupole
phonon was chosen initially. The first three orders of the
boson expansion (see below) were retained, yielding a
sixth-order boson Hamiltonian. This Hamiltonian con-
tained nondiagonal quadratic pieces, so that a linear
transformation diagonalizing this part was carried out
first. This RPA-like transformation introduced strong
ground-state correlations, which were very important in

rescaling the spectrum to be in better accord with experi-
ment than spectra found by previous workers. One fur-
ther step was included to improve the physical content of
the Hamiltonian. The mapped space was enlarged to in-

clude at most one noncollective phonon in any basis state
in addition to a variable number of collective phonons.
The collective-noncollective coupling was eliminated by
second-order perturbation theory to yield an effective
Hamiltonian (and other operators) defined in the collec-
tive subspace only. The size of this space was sufhcient
to guarantee numerical convergence of results. For the
Ge calculations, where one has an unusually low-lying 0+
excitation, a monopole-pairing phonon was also included.

Admittedly all the approximations involved in this ap-
proach have not been fully evaluated, but the results pub-
lished are impressive. An ad hoc feature of the method is
that the true Tamm-Dancoff collective excitation is re-

placed by the corresponding excitation in the strong-
coupling limit, obtained by neglecting the spread of the
single-particle spectrum. This choice probably also in-

creases the collectivity. A possible source of error that
one can pinpoint, that has been studied for a single-j
model (Li, Pedrocchi, and Tamura, 1985) and for the
SO(8) model (Li, Pedrocchi, and Tamura, 1986), is the
BCS or number nonconserving approximation; here the
error increases with increasing excitation. It is believed
that this source of criticism can be removed without a
major overhaul of the programs (Tamura, Li, and

Pedrocchi, 1985).
Recently an improved version of the Kishimoto-

Tamura program has been proposed (Sakamoto and
Kishimoto, 1988). The main substantive changes are
three: A larger array of noncollective phonons is includ-
ed in the mapping for coupling, as described, to the col-
lective degree of freedom; a procedure is developed for
eliminating spurious states that enter because of number
nonconservation; finally the Hamiltonian includes for
self-consistency reasons, three- and four-body forces
developed in other studies (Kishimoto et al. , 1983;
Marshalek, 1984). Results of this extended version of the
theory are awaited.

C. Method of mapping

Let us return briefly to the theoretical questions that
arose in connection with the early formulations. Tamura
and his co-workers responded to the criticisms with a
series of papers (Tamura, Weeks, and Pedrocchi, 1981;
Pedrocchi and Tamura, 1982; Kishimoto and Tamura,
1983; Pedrocchi and Tamura, 1983; Tamura, 1983b,
1983c). These papers contain roughly two types of ma-
terial: much space is devoted to the independent
discovery of ideas and results that were largely available
in the literature, though often in a different guise. More
important for our purposes, this work serves to clarify
how, in fact, Tamura and Kishimoto applied boson ex-
pansions in their practical work, and shows that this ap-
plication is in our present understanding, correct. The
source of confusion was the following: In Kishimoto and
Tamura (1972), a formally exact boson expansion was
developed (equivalent to the full Marumori-Yamamura-
Tokunaga mapping) in which there is no sign of a small
parameter except for a single quantity (1/x), where x
may be thought of as the numerical coefBcient multiply-
ing the linear term in the boson expansion. It is now un-
derstood that, for vacuum states to map properly, this
parameter must have the value unity. [For further dis-
cussion of this point, see Marshalek (1980b).] Therefore
this series cannot be applied, it appears, to the physical
problem. Instead, an approximate perturbative solution
of the commutation relations with a different small pa-
rameter, the one established in Sec. IX, is utilized in
Kishimoto and Tamura (1976) with a value of x chosen
empirically to be near unity. That this procedure, which
is almost consistent, is followed, is unambiguously stated
on p. 345 of Kishimoto and Tamura, 1976. (All final cal-
culations reported from 1980 on use the correct value
x =1).

The upshot of the recent developments is finally that
the current theoretical underpinning of the work being
reported is the modified Marumori- Yamamura-
Tokunaga mapping. Here modified means that one maps
from a basis constructed by orthonormalization of prod-
ucts of quasifermion pairs, A„which are chosen as
Tamrn-Dancoff pairs. Together with the pairs, there are
suitably defined multipole operators B~ such that the
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commutation relations, symbolically, take the form

[ A, Abt]=5 b
—g P,'~b'Bt,

Atj —yP(P)At
b

(15.2)

(15.3)

where the three-index symbol I", b depends on both kine-
matic and dynamic factors, but need not otherwise con-
cern us in detail except that for fixed a, b, p it should, for
large A, behave as Q '. We now map onto a subspace of
a boson space, assigning a boson b ~ to every 2, .

Consider the Hilbert space

~n;a ) =g (b, )"'~0), b, ~0)=0 .
Qn. ,

(15.4)

A.'A t~0) b.'b,' 0) . (15.5)

In fact we can consider the right-hand side to be a sym-
bolic representation of the fermion state, as we have ex-
plained several times in connection with our study of
SU(2) and SO(5) mappings. In general, the mapping as
usually written,

(A, )~ = A, (b„,b, ), (15.6)

has an inverse, defined within the physical subspace only,

(b, )F =b, ( Abt, A, ), (15.7)

We can always assign a subspace of the set (15.4) to be
the physical boson space. In the language of Tamura, in
this problem a subspace of this ideal boson space can be
chosen as the physical boson space. This can be under-
stood as follows: returning to the ferrnion space, let us
build an orthonormal set. We start with 0) and the set
A, ~0) . In general, different members of the set

A, A& ~0) are not mutually orthogonal; furthermore, be-
cause of Pauli principle restrictions, the states are not all
linearly independent in the space of four particles. Next,
we order ihe Tamm-Danco6'solutions according to some
criterion (collectivity and/or energy of excitation) and as-
semble enough two-phonon states until we have a com-
plete set. %'e map the state whose largest component is

A, Ab ~0 ) to the state b, bb ~0), which we present symboli-
cally as

D. The norm matrix

We turn next to a brief account of the main technical
problem associated with the application of the modified
Marumori- Yamarnura- Tokunaga mapping identified
above as the method utilized in the work under discus-
sion. This method was first developed and applied by
several different groups (Lie and Holzwarth, 1975;
Holzwarth, Janssen, and Jolos, 1976; Iwasaki, Sakata,
and Takada, 1977). The basic element entering such cal-
culations is a quantity called the norm matrix, defined
below. This quantity also occurs as the fundamental en-
tity in studies of K =0+ states in deformed nuclei
(Silvestre-Brac and Piepenbring, 1977a, 1978, 1979). The
papers above for the most part develop methods for cal-
culating the norm matrix for a single collective boson.
Iwasaki et al. gave an exact recursion formula in the
multiphonon case in a spherical representation, which is,
however, cumbersome to apply. More recently,
Silvestre-Brac and Piepenbring have extended and ap-
plied their analysis to the multiphonon case (Silvestre-
Brac and Piepenbring, 1982; Jammari, Piepenbring, and
Silvestre-Brac, 1983). (These authors work exclusively in
shell-model space, however; i.e., in terms of fermions. )

As we shall see below, the norm matrix is a construct in
the fermion space that can play an essential role in shell-
model calculations that have nothing to do with boson
mappings. It also plays a basic role, however, in the
modified Marumori- Yamamara- Tokunaga method.

Another important development —important because
it involves a powerful method for improving the treat-
ment of the pairing degree of freedom (Suzuki and
Matsuyanagi, 1976) and because it bears on the micro-
scopic foundations of the interacting boson model —also
uses the modified Marumori method and involves a study
of the properties of the norm matrix (Suzuki and
Matsuyanagi, 1979; Suzuki, Fuyuki, and Matsuyanagi,
1979a, 1979b, 1981). This work has been reviewed previ-
ously (Matsuyanagi, 1982). We have also discussed some
of the ideas in Secs. III, IV, and VI.

We turn then to some elementary remarks on how the
norm matrix enters the problem and how one utilizes it.
For practical details, we refer to the references already
given. In the Marumori- Yamarnura-Tokunaga method,
the boson image O~ of a fermion operator OF is given by
the formula

that provides a construction of this orthonormal state.
The procedure described may be extended in principle to
multiboson states.

In practice, if we make a further approximation and
limit ourselves to the mapping of one or two bosons, we
normally assume that all mapped states are physical and
in this we are unlikly to be far wrong. To find this map-
ping, it is perfectly acceptable and as useful as any other
approach to employ the commutation relations in an ap-
proximate way not dissimilar to the method we shall de-
scribe in Sec. XVII. This has been applied, for instance,
by Pedrocchi and Tamura (1984).

O~= UOFU (15.8)

U= g g~n, a)(n;a~ . (15.9)

Here U is a modified Marumori operator in the sense that
the set ~n;a ), an orthonormal set of fermion states that
should in principle span a complete irrep of the fermion
algebra, is chosen in practice as a collective subspace in
the fermion space. For the boson states, one takes ideal
states,
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~n;a)= g (b.')" ~0),
Qn. !

(15.10)

whereas, as described above, the states ~n;a ) must be
constructed from elements that are not generally ortho-
normal, namely,

that we have preselected a linearly independent subspace
of Eq. (15.11). How this is to be done is described after
Eq. (15.17). [It may be noted that Z is the Gram matrix
of the set (15.11).]

Let us convince ourselves that any matrix element of
the form

~!n;a »= g (A,t)"'~0& .
Qn. !

(15.11)

~
n; a &

= g (Z„'), , ~ n; b &&;
b

(15.12)

If the states (15.11) were at least linearly independent we
could express the orthornormalized states in the form

«',.1O. m;b », (15.15)

where OF is a polynomial in the generators A„A„and
8, is a linear combination of norm matrix elements. It
follows from the commutation relations (1S.2) and (15.3)
plus the relations B,~0) = A, ~0) =0 that this can always
be arranged. It follows from the same properties that

then the inverse relation

~n;a )) =y (Z„),.$ ~!n;b )
b

(1S.13) (15.16)

would yield the definition

(Z„), 5 „=«n;a~m;b)) (15.14)

of the norm matrix Z . Equation (15.14) is well defined
even if (15.11) is overcomplete, but in order for Eqs.
(15.12) and (15.17) below to make sense, we must assume

I

where n =g„=g„can itself be defined by recursion

relations and the values of the simplest (n =g„=l)
such quantities, is proved by commuting one factor A, at
a time to the right.

Finally, writing out Eq. (15.8) we have

Os=UOFU —= g g /n;a)&n;a/0 /
Fmb)(m;b/

n, m a, b

in; a)(Z„-')... « n; a'~ O, ~
m; b'))( Z-')„,, ( m; b~,

n, m a, a', b, b'
(15.17)

which is then completely determined, insofar as numeri-
cal coefficients of fermionic origin are concerned, by the
norm matrix. To have a definite mapping, we must put
in an explicit boson expansion for the vacuum projector
io)(oi.

In the discussion just completed, we have assumed that
the matrix Z„has an inverse. This will be true provided
we have preselected a linearly independent basis in the
shell-model space. If this has not otherwise been done, a
nonredundant basis may be selected by diagonalization of
this matrix and discarding of the eigenstates with zero ei-
genvalues. At this juncture a nonsingular norm matrix
can be defined, and we may proceed as described above.
Further discussion of this procedure will be found in Sec.
XVI.

E. Some results

We conclude this section by reporting some of the re-
sults published by Tamura and his associates. The refer-
ences have already been given in the opening paragraph
of Sec. XV.B, and therefore it suffices below simply to
identify the nucleus under discussion. The results quoted
were all obtained using a sixth-order boson Hamiltonian.
The first question to be addressed is then that of the con-
vergence of the numerical results. We may take for
granted the trivial aspect of this question: that the size of

the basis was chosen sufficiently large. The nontrivial as-
pect concerns the convergence of the boson expansion for
the states included in the comparisons with experiment.
This was the first question addressed in the Sm paper. It
was tested by comparing spectra calculated with a
fourth-order boson Hamiltonian (second-order boson ex-
pansion) with those calculated with a sixth-order boson
Hamiltonian (third-order boson expansion). This com-
parison is shown for a series of Sm isotopes in Fig. 5.
First of all, these figures already define the range of the
states described by the program, namely, up to an excita-
tion energy of about 2 MeV. For vibrational nuclei, this
includes, as one sees from the first column, collective
quadrupole states up to the three-phonon level. For de-
formed nuclei, the number of collective states included is
considerably larger. The main conclusion from the figure
is that for levels below 1 MeV, and for the vibrational nu-
cleus in general, the fourth-order Hamiltonian already
suffices, but for deformed nuclei, the positions of the
high-lying levels are substantially modified by going to
the next order. It is implied that changes coming from
still higher orders will be smaller or even negligible, but
strictly speaking this question is still open.

We turn next to what is perhaps the stickiest question
in this whole business. What constitutes "good agree-
ment" with experiments Here, as a fiducial mark, let us
remind the reader that the most elaborate and sophisti-
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cated shell-model calculations (in the s-d shell) fit spectra
with an average rms deviation of more than 100 KeV
(Brown, 1987). What then should one expect from a
theory of collective motion? On the one hand the Hamil-
tonian is much cruder. On the other hand, the
configuration space is larger and we preselect more care-
fully the part of the spectrum to be studied. Tamura
et al. consider energy levels agreeing within an average
deviation of several hundred KeV and transition proba-
bilities within a factor of two to be good agreement, but
do much better for the most prominent collective states.
Further, the trend with neutron or proton number will
often be more impressive than absolute magnitudes. In
what follows, we shall adopt these criteria. What is
unambiguous is the relative merit (in purely numerical
terms) of two competing theories. But, in fact, the only
full competitor in the sense of being a microscopic theory
with a similar starting Hamiltonian is the work of Ku-
mar (Kumar and Baranger, 1967, 1968; Baranger and
Kumar, 1968; Kumar, 1983, 1984). As explained in the
Introduction, this theory falls outside the scope of the
present work.

Turning to questions of detail, we show first some re-
sults for vibrational nuclei, for a series of Ru isotopes-
in Fig. 6 some energy level comparisons, and in Table II,
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levels for ' Ru. Starred experimental levels are tentatively
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2.0 w,
4
3~6c
2

8~~pc~ 2~4~4
Y

0

6y
12C
osa

2.0

~ 0-
8g

1.0

~6c
2y

2
4y
6a
3y

2y
lpc
4c

3y
48
2g

6S
Og
2T

~ 4c
~pg ~6c

OI

~4 ~6

2c ~2c
0

~ I

K.

FIG. 5. Comparison of fourth- and sixth-order calculations for
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From Tamura, Weeks, and Kishimoto, 1979.

FIG. 7. Comparison of the sixth-order spectrum (Th) with ex-
periment (Exp.), as well as with the result of Kurnar (1973) (K)
for- ' Sm. Only the experimental levels are labeled and are con-
nected to corresponding levels in the theoretical spectra.
Theoretical levels are also labeled when there is no counterpart
in experiment. From Tamura, Weeks, and Kishimoto, 1979.
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FICx. 8. Same as Fig. 7, except that this is for "Sm. From
Tamura, Weeks, and Kishimoto, 1979.

B(E2) values and quadrupole moments. Most of the
latter agree within 20%, and the energies satisfy the cri-
terion set above. Nevertheless it is worth pointing out
that the relative ordering and splitting of the two-phonon
levels is not given correctly. (These splittings are gen-
erally within 100 keV. ) This at least suggests a very chal-
lenging problem, namely, to formulate a theory of collec-
tive motion so that at least the lowest-lying levels can be
described with greater accuracy.

Turning to the Sm isotopes, we limit ourselves to two
comparisons. In Fig. 7, one sees an energy level diagram
for ' Sm compared with boson expansion theory and the
theory of Kumar. The same comparison is made for

Sm in Fig. 8. For the latter case, which concerns a
well-deformed nucleus, both theories give excellent agree-
ment, whereas in the former case, which involves a tran-
sitional nucleus, the boson expansion theory agrees rath-
er better with experiment. The difFerences are not nearly
as apparent when one examines the quadrupole transition
probabilities and quadrupole moments, for which we
refer the reader to the original paper. In any event, be-
cause it involves an adiabatic assumption, one expects the
Kumar work to be most accurate for well-deformed nu-
clei. What remains somewhat of a mystery is why the
boson expansion theory works so well in this limit.

The boson expansion theory has also proved successful
in the interpretation of the properties of the y-unstable
isotopes of Qs and Pt. In Table III, the energy levels of
several isotopes of Os are presented. The energies of the
ground-state band up to angular momentum eight are
quite accurately given, those of excited bands less so. In
Fig. 9, a selected set of branching ratios is compared with

TABLE II. 8 (E2;I;~If ) in units of 10 e b, quadrupole moments in units of eb, and magnetic moment gz factor in units of pz,
for ' Ru. An asterisk after the theoretical 8 (E2) denotes that the matrix element is negative. From Weeks and Tamura, 1980b.
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experiment. Despite the logarithmic scale, what is im-
pressive here is the correct trend with neutron number.

The Ge isotopes are particularly interesting because of
the occurrence of an anomalously low first excited 0+
state, reaching its minimum for Ge. To correctly de-
scribe this and other properties of these nuclei requires
an extension of the boson expansion theory, as so far for-
mulated. Here one must take due note of the occurrence
of a pairing vibration, as described at the beginning oV

Sec. IV, and include in the Hamiltonian the coupling be-
tween the quadrupole degrees of freedom, and (according
to Tamura et al. ) the neutron pairing vibration. When
the collective Hamiltonian is diagonalized in a space in-
cluding the additional excitation, good things happen, as
exemplified by Fig. 10, which shows twe important
features. The first is the convincing correlation between
the neutron energy gap and the importance of the pairing
vibrational degree of freedom. The second is that several
simpler forms of the theory simply do not work.

We have given only selected examples of a very de™
tailed set of analyses, to which we must refer the reader
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FIG. 10. Energies of the boson expansion theory: first excited
0+ state (BET); the RPA neutron pairing vibration (RPA);
twice the neutron gap (2hz); the coupled erst excited 0+ state
(BET-RPA); and experiment for Ge. From Weeks, Tamu-
ra, Udegawa, and Hahne, 1981.

with a deeper interest in the subject. That the results are
impressive is indubitable. Since boson expansion theory's
natural domain is the description of vibrational nuclei,
one must still wonder why it works so well for transition-
al and deformed nuclei. It is reasonable to surmise that
the success of boson expansion theory for transitional
and especially deformed nuclei can only be attributed to
the ad hoc character of some of its elements. The incor-
poration of these elements, in particular, the strong-
coupling phonon and the way ground-state correlations
are included in the boson space, renders the connection
with the shell model less than fully deductive at the
present time. It was these puzzles that stimulated, at
least in part, the work of Takada described in the next
section.

XVI. APPLICATIONS OF THE GENERALIZED
DYSON MAPPING. PROBLEM OF IDENTIFYING
PHYSICAL SOLUTIONS

A. Introduction

~I

I(y5 i j

108 112 116 120
NEUTRON NUMBER (N)

FIG. 9. Selected ratios of 8(E2)'s. X, theory; , experiment.
Arrows indicate upper limits. From Weeks and Tamura, 1980c.

Up to this point the generalized Dyson mapping has
appeared as a convenient intermediate stop on the road
to a unitary mapping. However, even the original au-
thors of this mapping in nuclear physics (Janssen, Donau,
Frauendorf, and Jolos, 1971; Donau and Janssen, 1973)
gave serious thought to the practical application of the
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mapping because of its superficial simplicity. Since then
this beguiling method has attracted increasing attention.
In this section, we first describe recent theoretical investi-
gations concerned with implementing the Pauli principle
in a practical manner. Such a discussion is long overdue,
since it is germane to all mappings, Hermitian or non-
Hermitian, though a number of treatments have em-
phasized the problem within the framework of Dyson
mappings. We shall follow this discussion with a report
on recent applications. But first we describe the theoreti-
cal problems that had to be addressed.

We have seen in Sec. XIV.A that, if one attempts to
satisfy the requirements of the Pauli principle in a boson
basis in too literal a sense, then one is simply reproducing
all the technical di%culties of the original shell-model
calculations, without any apparent gain. Let us consider
a familiar example. In the shell-model space all pair
creation operators represent independent excitation
operators. However, the set of all products of such pairs
creates a redundant basis in the four-particle space, be-
cause suitable antisymmetrization between pairs, as re-
quired will lead to linear dependencies. In the boson
space, as we have noticed in the previous two sections, it
is convenient not to worry about this problem. In gen-
eral one introduces one boson per independent fermion

pair. Therefore the full two-boson space will contain
spurious elements. A number of authors have studied the
four-particle shell-model problem by finding the eigenval-
ues of the Dyson-mapped Hamiltonian in the four-
particle space (Ring and Schuck, 1977; Geyer and Lee,
1982). Two-particle/two-hole test cases have also been
carried out (Ring and Schuck, 1974; Schuck, 1976;
Shuck, Wittman, and Ring, 1976). In these investiga-
tions it was observed that the exact physical eigenvalues
emerged unscathed (as verified by an exact shell-model
diagonalization) but were accompanied by a set of spuri-
ous solutions that all occurred at the unperturbed energy.
It has since been shown (Kim and Vincent, 1985) that
this is a special property of the four-particle space and
will not recur for larger numbers of particles. A warning
was issued concerning the use of the four-particle test
case for other theories involving redundant bases, such as
that of Wu and Feng (1981). This difficulty can lead us
back to the view that one should work with properly an-
tisymmetrized states in the boson space (Gambhir, Ni-
kam, et al. , 1985; Gambhir, Sheikh, et al. , 1985). Though
such an approach is theoretically correct, we have made
a reasonably strong case that it is not practical. For the
remainder of the discussion we shall study the boson
problem in a basis that has been chosen for technical con-

TABLE III. Energies in keV predicted by the boson expansion theory, with the corresponding experi-
mental energies in parentheses for ' ' "Os. From Weeks and Tamura, 1980c.
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B. Theoretical methods for selecting physical states

We turn then to an account of the individual contribu-
tions. We start with the work of Takada (1986), but shall
intermingle elements of the other methods. Let HHp and
HD be the boson Hamiltonians in the Holstein-PrimakofT'
Hermitian boson theory and the Dyson theory, respec-
tively. If the Marumori mapping technique is employed,
these are obtained in the form (see Sec. II).

HHp PJiIHpP IIHpP& IID PHDP H'DP (16.1)

venience, what is often called the ideal boson basis.
We then ask how the Pauli principle can be satisfied

within the chosen framework. Here we distinguish two
cases. In the first, the boson basis is of sufhcient size to
include the entire physical subspace, but it contains as
well spurious elements. For this problem, the literature
contains three rigorous methods, which we shall describe
below, for distinguishing the full complement of exact
eigenstates of the Hamiltonian from the remaining un-
physical solutions. However, this is not the case of prime
interest. The more usual situation is the one in which the
problem cannot be solved without some truncation of the
Hilbert space. The cleanest examples of this occur in the
recent works of Takada and his associates (Takada, 1985;
Takada and Tazaki, 1986; Takada and YaInada, 1987;
Tsukuma, Thorn, and Takada, 1987). Here one of the
above methods (Takada, 1986) has been applied success-
fully, in that it has been established that the bases used in
the above calculations, which are severely limited in size,
are entirely nonspurious. (As we shall ultimately under-
stand, this is by construction. ) Thus there is at least one
method applicable to both undercomplete and redundant
bases.

A second method has been described by Geyer et ar.
(Geyer, Engelbrecht, and Hahne, 1986; see also Dobac-
zewski, 1981b; Hahne, 1981). This method has not yet
been tested for "dirty cases, " where the truncation corre-
sponds at best to an approximately decoupled subspace.
It is rigorous if the truncation corresponds to an exactly
decoupled subspace, i.e., if a collective subalgebra of the
original Lie algebra exists. The third method (Park,
1987) may be of limited value for the truncated case
(Hahne, Geyer, and Engelbrecht, 1988). For a more op-
timistic approach, see Li {1991).

These methods are concerned with testing or sorting
the results of a completed calculation. A difFerent
viewpoint has been developed by C. T. Li (1984b; see also
Li, 1983, 1984a), who studies the problem of trying to
salvage calculations made in a truncated space where an
initial mixing of physical and spurious components has
occurred. He describes an approximate method for pro-
jecting out the physical part of a state. The method is
reminiscent of related methods for approximate projec-
tion of good particle number and angular momentum.

(16.2)

(16.3)

(16.4)

we thus encounter three eigenvalue problems,

(16.5)

(16.6)

(16.7)

where h," =(i~HHP
~j) and h,"=(i HD ~ j). In wr'iting

Eqs. (16.5), (16.6), and (16.7), we have begged one of the
essential questions: apparently, we have assumed that all
three problems yield the same set of eigenvalues. Actual-
ly it turns that that it does not matter whether or not
they yield the same set of spurious eigenvalues, as long as
one can identify these values. It is essential, however,
that they yield the same physical spectrum.

At first sight, this does not appear to be a problem.
We have only to remember the equation connecting the
Hermitian and Dyson forms that we have utilized repeat-
edly for generators, namely,

HHp —SH~S (16.8)

where 5 is the unitarizing matrix that has been calculated
for a number of cases, as in Secs. IX and X. Since the
operators diAer by a similarity transformation, they have
the same spectrum. But now we must remember that the
rules of the game have been changed. Equation (16.8)
refers to an irrep of a Lie algebra, which means that we
are dealing only with physical states. Now, with the
hope of simplifying calculations, we have enlarged the
space to include unphysical states in the boson space,
and, as well, are utilizing the tilde Hamiltonian operators
that may connect the physical and unphysical states in
the enlarged space. With respect to the tilde operators, 5
will generally not be defined.

To help clarify the situation, it is useful at this point to
turn to some observations of Geyer et al. (Geyer, Engel-
brecht, and Hahne, 1986). Consider, for example, the ei-

where P is the projector onto the physical subspace, and
the tilde operators are obtained by one of the algebraic
methods described in earlier sections. Since P is techni-
cally unwieldly, it is discarded at this point, and in conse-
quence one is immediately led back to the problem of
spurious states.

Let I ~i )I be an orthonormal basis in the boson space.
In the Hermitian boson theory, we need to consider only
the eigenket ~%'z) belonging to an eigenvalue A, , whereas
in the Dyson theory we have to consider both the eigen-
ket ~gz) and the eigenbra (Pz~. Expanding these eigen-
vectors as
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genvalue problem (16.6) (the conclusions also apply to
Eq. (16.7)]. Since the spectrum is independent of the
choice of basis, let us choose one consisting of two ortho-
normal sets, I li)] belonging to the physical space (irrep)
and I Ii)] belonging to the unphysical space. Let P and
Q, P +Q = 1, be the projection operators for the respec-
tive subspaces. Now HD belongs by construction to the
enveloping algebra of the Lie algebra associated with the
irrep. Therefore HD leaves the P space invariant. In
general, as a result of its action on the Q space, there will
be components in both subspaces. This means that the
Hamiltonian matrix h," has the form

h~g
h= 0 hgg

(16.9)

(16.10)

or

(16.11)

As shown by Dobaczewski (1981b), S, the square root of
the norm matrix in the boson space, is the reciprocal of
Z, the square root of the norm matrix in the ferrnion
space. The latter matrix, associated in this way with a
linearly independent basis in the ferrnion space, is non-
singular. As pointed out in Sec. XV, however, an extend-
ed Z matrix is also readily defined in a redundant fermion
space; for this extended matrix the reciprocal connection
with S is lost. As further noted, the zero eigenvalues of
the extended Z matrix will identify the redundant states.
Subsequently, a reduced norm matrix can be defined and
the connection with S established. In fact, Takada and
his associates use this method of excluding spurious
states, so that they map only nonspurious states.

The approach just described provides a sound method
for applying the Dyson mapping if one already has the
necessary shell-model programs to perform the calcula-
tions. We may still ask if it is possible to solve the prob-

[for the case of HHP, (16.9) simplifies further to a block-
diagonal form. Appropriate modifications have then to
be made in some of the statements below]. It follows that
a subset of eigenvalues of dimensionality equal to that of
the P space has associated eigenvectors confined to the
latter space. The remaining "spurious" states may have
components in both subspaces. For the physical sub-
space, Eq. (16.8) (or a suitable approximate form of it, if
for some reason the P space is less than the full irrep) will
guarantee that the physical eigenvalues will be the same
irrespective of whether we use the Hermitian or the non-
Hermitian calculation. It remains to specify how to sort
the physical from the nonphysical solutions, since in
practice we do not know how to choose a basis that leads
to Eq. (16.9).

Toward this end, let us first consider the case in which
all solutions are physical. Then we can use Eq. (16.8). If
we apply that equation to Eqs. (16.5)—(16.7), assuming
that S is a real, symmetric matrix, we can derive

where only the orthogonality is de rigeur. But the rela-
tions (16.12) are invariant under compensating changes
of scale, which we write as

(16.13)

where the k&, k&
' are chosen to be real. The correctly

normalized states, which are assumed to be the barred
states, are identified in principle by transforming from
the unitary basis by means of the transformation S
and consequently they satisfy Eq. (16.11).

To apply this observation, let 0 be the operator of in-
terest and OHP and OD its representations connected by
an equation similar to (16.8). By transforming the rela-
tion between the matrix of an operator and the matrix of
its Hermitian conjugate, in a unitary basis, to the corre-
sponding relation in a nonunitary basis, we find the equa-
tion

(y, lo I@,, )=(y,, l(o') ly, )*. (16.14)

Combining Eqs. (16.13) and (16.14) yields the relation

(ki. Ni, )'=(yi
I oD I@i. ) &(yi. I(o')D I)i )* (16.15)

ol

(p, loD I@, ) = [(p, loD I@, )(4, l(o')D I@i,)*]'"
—=(+&lo„,I+g ) . (16.16)

Thus we can calculate the observable matrix elements of
any operator without having to know the "correct" nor-
malizations for the non-Hermitian eigenvalue problem.
Equation (16.16) was derived by several authors

lem of identifying physical solutions entirely within the
boson space. Perhaps the simplest way of separating the
physical from the unphysical eigen values is by the
method of Cieyer et a1. Let 0 be a physical operator dis-
tinct from the Hamiltonian, i.e., another operator in the
enveloping algebra, chosen for convenience. Logical
choices would include transition operators or a part of
the Hamiltonian. Let [IA, )I and [IA, )I be the physical
and unphysical eigenvectors, respectively. Then, since 0
leaves the P space invariant, it follows that (XISIX)=0
for fixed A, and varying A,. We can thus identify and ex-
clude the unphysical states

I
X ) . As noted above, this

method has not been used for "dirty" problems, but it
certainly deserves a try.

There is still an element missing from both methods, as
so far described. The method of Geyer et al. consists of
the two steps: (i) solve Eq. (16.6) and (ii) select the physi-
cal solutions. In Takada's method, the order is reversed.
What is missing is a prescription for calculating the ma-
trix elements of physical operators other than the energy.
To see the difficulty here, we note that the solution of the
eigenvalue problems (16.6) and (16.7), considered jointly,
provide a set of eigenvectors p, and an associated dual
set y'; '. These may be normalized according to

(16.12)
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(Ciambhir and Basavaraju, 1979; Hahne, 1981; Li, 1983,
1984a).

But one can go further. If 0 is a Hermitian operator,
then in Eq. (16.14) and sequel we may replace (0 )D by
OD. Moreover, the states need not be eigenstates of H
but can be members of any pair of mutually dual bases,
provided the basis states are eigenstates of the boson
number operator (Takada, 1988). In this case we have
the formula S=H +NH (16.22a)

(16.17) to provide a tractable approach.
Before turning to the main applications, we first com-

plete our account of the most recent theoretical contribu-
tions to the subject. We describe first the contribution of
Park (1987). In the fermion space the operator (not to be
confused with the previously occurring matrix with the
same symbol)

(i I~D Ij)= i:(i IHD 1 j)(jlHD li )*]'"
—:(&I~Hp j), (16.17)

is the zero operator, since

(16.22b)

so that the Hermitian Hamiltonian matrix can again be
computed from the simpler matrix of the Dyson Hamil-
tonian taken between "simple" boson states. Since the
diagonalization of this matrix will yield the unitary basis
lV&) from which all other observables can be computed,
this would appear to be a highly desirable approach,
though not an indispensable one. This is, in fact, the pre-
ferred method of Takada et al.

We describe one additional element of the procedures
actually utilized. Rewriting Eq. (16.13) in terms of com-
ponents and inserting this into the square root of (16.15)
gives

and

g NH
= g a; a; —g a; a a;a~

2

I IJ

(16.22c)

(S)D =g —g —I(. , (16.23)

where

are difFerent forms of the square of the number operator.
The subscripts allude to the fact that one form remains
self-adjoint under the Dyson mapping (9.10), (9.12), and
(9.13), whereas the other does not. Under this mapping,
5 becomes

k~
ku. =

k~
IJ

(2. )*( l(O )tl )p (2. )
(16.18)

&= Xb~b;k
ik

is twice the fermion number,

(16.24)

where the primed expansion coefficients refer to an arbi-
trary normalization of states. One now chooses a refer-
ence state X=O and writes kz =kokomo. From Eq. (16.11),
one can then derive the equations

y(Z 2) y~(2) k2 P~(2. )

J

(Z ),i=(Z ),I/O() .

(16.19)

(16.20)

For fixed i and varying A, ,j, these are a set of linear inho-
mogeneous equations for (Z ); . Provided this matrix is
nonsingular, the results of solving Eq. (16.19) can be used
to rewrite the second form of (16.10) as

(A, ) k
—1 ~ Z 1(A, )

I A,O ~ IJ. XJ
J

(16.21)

which should agree with the results obtained by diagonal-
izing Eq. (16.17). In the examples worked out by Takada
and his associates and summarized below, this required
concordance is achieved with high numerical accuracy.
Actually, their method of choosing a basis, described in
Sec. XVI.C below, guarantees this result, except for nu-
merical errors. In practice, therefore, this procedure was
a check on the numerical accuracy.

If Z were singular, the last calculation described
above would be useless, but precisely in that case, where
there are redundant solutions, the method of Czeyer et al.
could be combined with the method associated with Eq.

K= +At„b,„,
ik

(16.25)

(S)D =(S)2) =IV —P(20+1)+C2,
where

(16.26)

C2 g

%krak

ik
(16.27)

and can be calculated from the formula related to (9.16)
(Perelomov and Popov, 1966)

2Q

( C )(f)= g f;(f; +20+ 1 —2i) . (16.28)

One can conclude from Eq. (16.28) that, for a given
particle number, ( C2 ) has its minimum value for the an-

and A, k is defined in Eq. (9.14), in a slightly different no-
tation.

The operator (S)D still vanishes in the physical boson
space, but now can be applied to all boson states. If 2Q is
the number of single-particle levels, both A,k and b;k are
tensors under U(20), as emphasized in Sec. IX. Further-
more, K commutes with all the generators N;J=b;JbkJ-
and from its structure is necessarily a sum of X and the
second-order Casimir invariant. In fact, rearranging K
with the help of the commutation relations for the ele-
mentary bosons, we find that
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(K & =2n (2n —1) . (16.29)

We then consider a vth approximant,
V

P = QC(n)E~,
q=0

(16.30)

in the n-boson space and determine the coefficients C~(n)
from the conditions

tisymmetric representation, and thus (S)ii takes on ex-
pectation values larger than zero for spurious states,
which may be mixtures of states belonging to any repre-
sentation other than the antisymmetric one. Thus, in a
calculation with a redundant basis, the operator (S)ii
would certainly serve to distinguish physical from un-
physical states.

As pointed out by Hahne et al. (Hahne, Geyer, and
Engelbrecht, 1988), when a truncation is made in the bo-
son space, even if there is an invariant subspace under
the Hamiltonian, the subspace will not be invariant under
S. The latter may be represented in the subspace by a
multiple of the unit operator, but the multiple will not be
zero and thus S in its approximate form will no longer
clearly distinguish physical from unphysical states.
Thus, to use Park's method, it appears that one cannot
truncate the basis.

Earlier, C. T. Li (1984b) had suggested a use of the
operator S that is not subject to the limitations stated
above. Actually Li formulates the problem diff'erently
from any of the previous authors who considered the
question: Given that the solutions fall into two sets, one
consisting of states that are physical (or almost physical)
and the other of states that are unphysical (or mostly un-

physical), how does one identify the members of each set?
Li takes for granted that we know the states that are
largely physical. Assuming now that even the best of
such states has some admixture of nonphysical com-
ponents (this is not always true), he provides a technique
for approximate projection of the physical part by a
method analogous to approximate number projection (Li,
1983a). A description of Li's method follows. (As for-
mulated, this method applies to number-conserving situa-
tions. )

Let ~P„& be an eigenstate of HD for n bosons. We
want to construct P~P„&, where P is the projector onto
the physical subspace. It is not difficult to show (Li,
1984b) that P can be written formally as a power series in
the operator K, defined in Eq. (16.25). In the following
we shall utilize the expectation value of this operator for
the antisymmetric representation,

2n (2n —1)—(A & (16.33)

where

C. Applications

The most extensive set of applications of some of the
above ideas has been carried out by Takada and his asso-
ciates, who, in each application, have used the method
described above [starting with Eq. (16.18)] to verify that
their basis is nonspurious (never mentioning that this is
guaranteed). This is the first such verification in realistic
applications to collective motion. In three out of four in-
itial applications the agreement with experiment is
"promising, " but (to be discussed) there is one acknow-
ledged failure. This has led to a second round of work
(Takada, Yamada, and Tsukuma, 1989; Yamada and Ta-
kada, 1989; Yamada, Takada, and Tsukuma, 1989), in-
tended to cure some of the acknowledged deficiencies of
the previous eff'orts. Below we give a brief account of
these works.

The standard schematic collective Hamiltonian,

H H +Hp()+Hp2+Hgg (16.35)

a sum of single-particle, monopole-pairing, quadrupole-
pairing and quadrupole-quadrupole interactions, is uti-
lized. The quasiparticle representation is then intro-
duced. [The problem of spurious states associated with
number nonconservation has been dealt with, especially
in Takada and Tazaki (1986), and results in some
modification of the formulas presented below. We refer
the reader to the literature for these modifications. ] If
AM'' (ab) is the quadrupole pair formed from quasiparti-
cle levels a and b, the most collective linear combination

(16.34)

Finally, Li envisions that if ~P„& is actually a trial func-
tion with some free parameters, P ~P„) provides an im-
proved trial function for a variational calculation of the
associated energy.

The theoretical method described above was applied to
the standard pairing model with single-particle energies
and pairing force strength appropriate to the isotopes of
Ni and of Sn, respectively. Ground-state energies and
single-particle occupation probabilities compare favor-
ably with the results of exact diagonalization. We refer
the reader to Li's paper for details.

(P„~K "P ~P„)=[2n(2n —1)]", (16.31)

which, according to the properties of the operator S,
would be exact conditions if I', were replaced by I'. For
example, for the case v=1, we get two equations from
Eq. (16.31) that have the solution

(16.32)

X~M = g P(ab) A ' ' (ab)
ab

(16.36)

is determined from a Tamm-Dancoff'calculation, and the
collective subspace is limited, either to the space generat-
ed by these phonons or, as physical requirements suggest,
to additional elements to be specified individually later.
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The excitation (16.36) is, however, a uniform ingredient
of all applications.

The collective space is thus the orthonormalized space
of direct product states obtained from the operation of

Eq. (16.36) upon the vacuum. In practice this construc-
tion is carried out as follows: Let us define the n-phonon
(fermion) state vector with total spin (JM) and additional
quantum number P as

lnpJM»= —y (d" '(pJ, )dl]d"pJ} y & J,M, 2M, IJM &Xt ln —1 p J,M, )),
n ti J M)M2

(16.37)

where (d" '(p)Ji)dl]d "pJ) is the dboson (J=2) coefficient of fractional parentage. These multiphonon state vectors
are not necessarily orthonormal, nor are they all necessarily linearly independent. (The double-bracket notation for
these states matches the notation of the previous section. ) To find an orthonormal set, one diagonalizes the norm ma-
trix (called Z in previous discussions),

y M(n, J)(P P )u(n, J)(P' ~)—M(nJ~)u(n, J)(P 7 )
p'

M'""(p,p')=« pJI p'J» .

(16.38)

(16.39)

We must have eigenvalues M (nJy ) ~ 0. If there are any zero eigenvalues, these are excluded from the following con-
struction. %'e can then define orthornormalized basis vectors as

InyJM) =M (nJy) g u'"' (P, y)lnPJM)),
p

which satisfy the orthonormality relations

&nyJMln y J M & 5-5 5~g5~M

(16.40)

(16.41)

Next, one defines the orthonormalized n-boson state vector
I
n pJM ) ) corresponding to the n-phonon state vector (16.37),

lnpJM))= —g(d" '(p)J()dlId"pJ) g &J)M(2M2 JM)b2~ ln —1 p,JM))),
Ml M2

(16.42)

where bzM is a d-boson creation operator. The n boson s-tate vector (16.42) is just the counterpart of the n-phonon state
vector (16.37). Similarly, the counterpart of the orthonormalized n-phonon state vector (16.40) is defined by

I
n yJM ) = g u ' "' )(P, y ) I

n PJM ) ), (16.43)

which is also an orthonormalized n-boson state vector.
It is time to explain why these constructions have been carried out. It is to provide the necessary elements for the ap-

plication of the modified Marumori mapping as described in Sec. XV. To obtain the Dyson form, Takada utilizes a
Usui mapping, as discussed for example by Tamura (1983c). We shall not describe this construction because it is un-
necessary for the derivation of the mapping, which can be obtained by algebraic means alone, as indicated below. What
is important to notice concerning the construction described above is that, as long as the Hamiltonian is diagonalized in
the nonsingular space of states (16.42), nonspuriosity (with respect to the Pauli principle) is guaranteed, and therefore
the check based on the calculation of the Z matrix outlined in connection with Eqs. (16.19) and (16.20) appears
superAuous.

The previous discussion suggests a possible alternative method of calculation in which no use whatsoever is made of
Eqs. (16.38) and (16.39): One utilizes the basis (16.42) in the boson space, computes HD from the mapping (obtained by
purely algebraic means below), calculates the Hermitian matrix from Eq. (16.17), and checks for physical solutions by
the method of Cseyer et aI.

The approximate Dyson mapping needed in the present work can be derived by using the approximate algebra ob-
tained by truncating to the collective space

I
keeping only J =2 and replacing 2 ' ' (ab) ~g(ab)X2~]. One then arrives

at the approximate algebra

M2 J 2 2
IX2M, X&M ]=5M I +10(—1) ' g @(ab)g(ca) g ( —1). . . '&2M)2 M2I2M)BM)(bc), —

abc Ja Jb Jc
(16.44)

2 2 J
[X2M,BM(ab)]=2&5(2J+ I) g g(ac)g(bc)( —1) ' ' '. . . &2M) JMI2M2)X2M

I Ja Jb Jc 2
' (16.45)
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[X,M, , [X,~, ,X,'M, ]]=—2 g C, (2M, 2M, ~L,M ) (2m, 2m, ~I.M )X,M,
L =0,2, 4

(16.46)

Ja Jb 2

CL, =50 g P(ab)P(cd)g(ac)P(bd) j, jz 2 . .
abed

2 2 I.

(X2„)D=b2„,

(B„' ' (ab))D =10+ (
—1) ' 'P(ac)P(bc)

(16.48)

(16.49)

2 2 2X. . . .[b,8 b, ],„, (16.50)
Ja Ja Jc

(Boo(aa))D = g f (ac) g bz„bz„,
2

+2j, +1
(16.51)

(16.47)

It is to be emphasized that these relations do not define a
Lie algebra. We can then apply the commutation rela-
tions order by order to derive the mapping

(Xzt„)D =b t~
— —g CL &21. + 1 [[b 2 b 2 ]L Sb 2 ]~„,

1

5

and Sakata, 1982; Weeks, Tamura, Udagawa, and Hahne,
1981); the last of these papers was described in the previ-
ous section. The collective space consists of the Tamm-
Dancoff quadrupole phonon and pairing phonons for
neutrons and protons. With the standard Hamiltonian,
the experimental energies and quadrupole transitions can
be reproduced with somewhat less precision than in the
test examples previously discussed. In Figs. 13 and 14
the EO transition elements betw'een the first excited 0+
and the ground state are shown for the two sets of iso-
topes. In each case there is one scale factor 5e0=0.6e.
This paper, as well as the succeeding one, have the un-

pleasant feature that experimental and theoretical spectra
are plotted in different figures, and for that reasons we

have not reproduced the results.
Takada and Yamada (1987) extended the basic formal-

ism once more to include the odd particle and applied it
to the odd-mass isotopes of Rh, where the lowest single-

particle state is Og9/2 and the ground state is uniformly
—', + (anomalous J =j —1 ground state) followed by
J=—,'+ first excited states. The J=—', + arises mainly

from the one-phonon, one-particle mixture, but only in

the sense that the effects of two-phonon and three-
phonon admixtures, which are non-negligible, cancel
each other. The resemblance between the remainder of

(A„' '"(ab))D =g(ab)(X2„)D,

( A„' '(ab))D =p(ab)(X2„)D .

(16.52)

(16.53)

Turning to results, in the first paper Takada (1985) ap-
plies the above formulas and method of calculation to the
yrast bands of Se, " Cd, and ' Xe. No comparison
with experiment is offered, but three methods of calcula-
tion are compared. First, a space of fixed maximum pho-
non number is chosen. The three calculations are direct
diagonalization (in the corresponding fermion space), the
Dyson method being tested, and a so-called SU(6) ap-
proximation, developed previously by Takada and his as-
sociates (Marumori, Takada, and Sakata, 1981; Takada,
Kaneko, Sakata, and Tazaki, 1981; Takada, 1984), which
is a form of the modified Marumori method (Lie and
Holzwarth, 1975). We reproduce the results for "Cd,
which are typical. Figure 11 shows the energies and Fig.
12 the ratio B(E2; J+2~J)/B(E2;2,+/0,+). On the
basis of the results found, the authors register optimism
concerning the basic validity of the method. The calcula-
tions utilize up to seven phonons, and it is verified that
the results have converged for this number.

In Takada and Tazaki (1986) the formalism is extended
to include pairing vibrations, so that the results may be
applied to the famous low-lying 0+ states in the Se and
Ge isotopes which had previously been treated, among
other ways, by the modified Marumori mapping (Iwasaki,
Marumori, Sakata, and Takada, 1976; Sakata, Iwasaki,
Marumori, and Takada, 1978; Tazaki, Takada, Kaneko,

MgV
t 5.0

---- ORSON

"---.SU(6)

& 0.0

5.0

00.
4 10 12

FICx. 11. Calculated energy eigenvalues of the even-spin yrast
states in " Cd with the quadrupole force parameter go=430
MeV: solid line, direct diagonalization in the multiphonon sub-

space; dashed line, the Dyson boson theory; dotted line, the
SU(6) model. From Takada, 1985.
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the theoretical spectrum and the experimental spectrum
is not impressive. The formalism for odd nuclei has re-
cently been applied, as well, to the problem of the cou-
pling of the quadrupole and pairing vibrational degrees
of freedom (Yamada and Takada, 1988).

Takada regards all the previous works as promising.
The one acknowledged failure (Tsukuma, Thorn, and Ta-
kada, 1987) is an attempt to describe the famous phase
transition in the Sm isotopes, taking into account the
coupling between the most collective 2+ Tamm-Dancoff
boson and a set of noncollective bosons, in which the in-
cluded basis states contain at most one of these nonco1-
lective excitations. Without the latter, theory and experi-
ment are widely divergent. With the latter one does
better, but the spectra remain too spread out. This
phenomenon had, in fact, already been noted by Tamura
(see Sec. XV), and he got around it in two ways: first, he
chose his collective boson as the TaInm-Dancoff boson in
the strong-coupling limit, where all single-particle levels
are degenerate. This should and apparently does enhance
the collectivity. Approximate inclusion of RPA correla-
tions also has a major effect, perhaps the chief effect.
Thus it appears that the straightforward method based
on an "honest-to-goodness" Tamm-Dancoff boson is not
suFlclcnt foI' thc pl oblem at hand, no mat tci which
specific boson mapping is adopted, and additiona1 recipes
are necessary, within the linear boson approach, to ob-
tain agreement with experiment. The omission of g bo-
sons may also be of some importance in this respect.

&0 "e'cm"
20.0-

'4Se DD

—I.O

- 0.8

—loo-
QQ

In the very latest work, the problem of the shape tran-
sition from spherical to quadrupole, observed in the Sm
isotopes, is attacked with renewed vigor. This work is
based on methods developed in several formal contribu-
tions (Shimizu and Takada, 1987; Takada and Shimizu,
1987; Takada, 1988). In the last of these papers, it is
shown how an approximate Dyson mapping can be car-
ried out when the most collective Tamm-Dancoff boson
is replaced by the most collective RPA boson, further
modified in order to be able to satisfy algebraic con-
straints imposed by the nature of the mapping. This pro-
cedure is dynamically equivalent to finding the lowest
mode of the RPA subject to an additional constraint that
in efFect extends the range of validity of the theory
beyond the usual point of breakdown, where the phase
transition occurs.

There are two elements of this procedure that are
worthy of special notice. The first concerns the
modification of the RPA itself. Let I&, y& be the usual

B(E2) ~g ~ ~ ~ ~ roe ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~

2.0
0.0

&eV

- 0.2

0.0

0.0—
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4J $ ~
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1
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3+2 =j

&0~8 l2 ~~6

FIG». 12. Calculated values of the ratio
B(E2;J+2~J)/B(E2;2&+~0&+) among the even-spin yrast
states in " Cd: solid line, direct diagonalization in the multi-
phonon subspace; dashed line, the Dyson boson theory; dotted
line, the SU(6) boson model. From Takada, 1985.

FIG. 13. Calculated energy eigenvalues of the 0&+ and 2&+ states
and calculated values of B(E2;2& ~0,+) in "Se: solid lines,
direct diagonalization in the multiphonon subspace; dashed
lines, the Dyson boson theory; dotted lines, the SU(6) boson
model. The abcissa (N,„) denotes the maximum number of
phonons (or bosons) in the truncated multiphonon (or boson)
subspace. The quantity p(0+) denotes the square of the abso-
lute value of the amplitude of the zero-phonon (or zero-boson)
component contained in the 0&+ state, and the quantity p(2 )

denotes that of the one-phonon (or one-boson) component con-
tained in the 2,+ state. From Takada and Tazaki, 1986.
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x~= &»~«~~ q~+ i&1~~~p~»

y~=&»2( —&~~9~+~&»~~p~) .

(16.54a)

(16.54b)

In the standard RPA these amplitudes are subject to the
usual quasiboson normalization condition

(16.55)

In the modified RPA, the trick is to replace the frequen-
cy of the lowest mode, which passes through zero (on the
way to imaginary values) at the phase transition, by
another parameter s, according to the equ. ation

MO~S 2 (16.56)

The parameter s is now to be chosen so as to extend the
validity of a modified RPA formalism beyond the phase
transition. In earlier work, Matsuo and Matsuyanagi
(1985) had introduced the ad hoc condition

,4 Trr. qq')
Tripp't

(16.57)

"forward-going" and "backward-going" amplitudes com-
posing a solution of the RPA belonging to an eigenvalue
co~, and let A, =O designate the most collective solution.
In place of these amplitudes, we introduce coordinates
and momenta according to the standard equations

A slightly different condition appears in a more natural
fashion in the work under discussion. The aim here is to
introduce an approximate Dyson mapping using bosons
associated with the modified RPA mode. However, the
conventional linear and trilinear structure of this map-
ping cannot be derived unless one can justify an approxi-
mate closed algebra of the structure recorded in Eqs.
(16.44)—(16.46). In particular, it turns out that the analog
of Eq. (16.46) can be achieved (only approximately in the
general case) provided one chooses

r(qp qq t=T (16.58)
Trl qp'pp'1

The result of this effort is an approximate Dyson map-
ping of the most collective mode including ground-state
correlations. This improvement on the corresponding
mapping of Tamm-Dancoff bosons turns out not to yield
a su%ciently improved agreement with experiment.
Some coupling to noncollective coordinates is necessary.
A convenient way to include these effects within a frame-
work that retains the ground-state correlations and that
is something akin to the Dyson structure of the mapping
is to utilize a formalism developed in Shimizu and Taka-
da (1987) and Takada and Shimizu (1987). We refer the
reader to these papers for details.

This formation has been applied to Sm (Takada, Ya-
mada, and Tsukuma, 1989; Yamada and Takada, 1989;
Yamada, Takada, and Tsukuma, 1989). Noncollective
modes with J=0,2, 4 were included. The overall agree-

10 crn
20.0

-00

PV

10.0
CQ

~ ~ ~ ~ ~ ~ f ~ I ~ ~ l ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

~ '8'

.06

p

8

0.0
MeV

0.0

0 0

-2.0-4J
X
4J

E {0')

FIG. 14. Calculated energy eigenvalues of the 0&+ and 2l+ states
and calculated values of B(E2;2&+~0&+) in "Cd. See caption
for Fig. 13. From Takada and Tazaki, 1986.
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FIG. 15. Yrast levels of "Sm: 2, calculated results with the
Dyson boson mapping based on the quadrupole Tamm-DancofF
phonons; 8, the erst-order SCC method; C, results including the
coupling efFect arising from the J=O (pairing-vibrational), non-
collective phonon degrees of freedom; D, results including cou-
pling efFect from J=2 noncollective phonon degrees of freedom;
E, results including coupling from J=4 degrees of freedom; I',
result including all these coupling efFects; 6, the experimental
data. From Yamada, Takada, and Tsukuma, 1989.
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+e
e

F 5

FIG. 16. Yrast levels of ' Sm. For further explaIIatioI1 see
caption for Fig. 15. From Yarnada, Takada, and Tsukuma,
1989.

ment of energy levels and 8 (E2) rates for the ground-
state band was greatly improved over the previous results
of this group. Fits are, in fact, impressive, except for

Sm, where the Auctuations associated with a phase
transition may be at a maximum. The energy levels
found by Yamada, Takada, and Tsukuma (1989) for

Sm and ' Sm by a succession of approximations are
compared with experiment in Figs. 15 and 16.

The application of the Dyson mapping to an RPA-like
model has also been carried out for several exactly solv-
able models (Takada, Shimizu, and Thorn, 1988; Thorn,
Shimizu, and Takada, 1988). The authors view these pa-
pers as contributions to the theory of large-amplitude
collective motion, a subject discussed in Sec. XXI. The
method applied is valid, however, only for the domain of
anharmonic vibrations, and therefore complements the
work described in Sec. XXI. We refer the reader to the
literature cited for details. There have been some efforts,
not without their interest, to apply the Dyson mapping to
the derivation of the interacting boson model. These will
be described in Sec. XVIII, which is devoted to this sub-
ject.

D. Other recent work

The study of nuclear structure using equations of
motion methods related to Heisenberg matrix mechanics
has had some currency in nuclear physics, mainly in the
approach of Rowe (1970), Kerman and Klein (1962), and
Klein (1983a, 1984b), but the bulk of this work has been
only indirectly connected with bosons. Such efforts as
exist to use the equations of motion in connection with
unitary boson mappings have been described tersely in
Sec. IV.C. Recently Pannert and Ring (1987) undertook
to apply an equation of motion method after carrying out
a Dyson mapping. Since this work is in its infancy, we
confine ourselves to a qualitative description of its main
elements.

(i) In the first step, the general Dyson mapping de-
scribed in Sec. IX is carried out.

(ii) The second step is a nonlinear polynomial transfor-
mation to new bosons that are assumed to contain collec-
tive varieties among them. This generalizes the usual
linear transformation that is utilized in most of the appli-
cations reported in this review. A restriction to cubic
terms identifies the class of applications as anharmonic
vibrations. Another restriction adopted by these authors,
but not discussed by them, is the condition that the
creation and annihilation operators of the collective
modes be Hermitian conjugates. This implies that a simi-
larity transformation to a unitary basis has been incor-
porated into the procedure.

(iii) A collective Hamiltonian is defined as the restric-
tion of the full Hamiltonian to the collective subspace.
In practice this means that, after the Hamiltonian is ex-
pressed in terms of the new bosons, terms containing the
noncollective bosons are dropped. To obtain a well-
defined problem, this has to be done before normal order-
ing, though at the same time this implies that some quan-
tum fluctuations are being neglected.

(iv) Pannert and Ring describe this last step in a some-
what different fashion. They simply assume the existence
of a collective Ham1ltonian of the I'equ1I'ed form. Equa-
tions for the parameters of the collective Hamiltonian are
then obtained by requiring that the full and collective
Hamiltonians give the same equations of motion for the
collective bosons. This is enforced by equating
coeKcients of the same operator polynomial, yielding
nonlinear equations that determine the unknown parame-
ters.

(v) Diagonalization of the collective Hamiltonian will
yield the collective states. There is no discussion of other
observables, but these can be studied by methods de-
scribed earlier in this section.

The method described above was applied to the pairing
Hamiltonian, considered as a model for the ground state
of the even isotopes of Ni, Sn, and Pb. A second method
of using the equations of motions, essentially equivalent
to the mean-field method described below, was also ap-
plied. Rather impressive results were found for the
ground-state energies up to midshell for the Ni and Sn
cases by the use of a single collective boson, the
equivalent of the Cooper pair. In the Pb case, however,
the nonlinear equations have no solution unless a second
mode 1s 1ncluded.

We next report on a related project (Cambiaggio and
Dukelsky, 1987) that in practice involves the application
of the pairing Hamiltonian to the Sn isotopes. The first
main difference from the work of Pannert and Ring is
that after the Dyson mapping these authors recognize
that, since they work in a nonunitary basis, there may be
some advantage to maintaining the distinction between
the bra and ket bases in their second transformation,
which is, however, required to be linear (a second
dilference). The ground state is then taken to be a
number-conserving coherent state, but, as stated, the col-
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lective boson creation and annihilation operators, though
canonically conjugate, are not Hermitian conjugate.
Thus the bra and ket descriptions of these states remain
distinct. To obtain these states, one applies the variation-
al principle. One has here a non-Hermitian version of
the boson mean-field method described in Sec. XIV, and,
as stated above (without proof), one that is methodologi-
cally equivalent to one of the methods applied by Pannert
and Ring. Some improvement in the results of the calcu-
lation are achieved by including a second boson obtained
by a Tamm-DancofT' calculation based on the coherent
ground state. The results of this paper play a role in the
work of Dukelsky and Pittel (1989) described at the end
of Sec. XIV.

Another recent work (Sheikh, 1988a) describes an algo-
rithm for performing diagonalizations in the boson space
after the usual Dyson mapping, utilizing an antisym-
metric basis and thus avoiding the problem of spurious
states. Though tentative claims for its utility in a general
dynamic situation are put forth, its efFectiveness is estab-
lished only by solving once more the pairing problem for
Ni and for Sn. We mention finally an investigation of di-

ag onaliz ation of a Dyson-mapped pairing plus
quadrupole-quadrupole Hamiltonian (Vincent, Henry,
and Kim, 1988). It was concluded that any truncation
has an adverse inhuence both on the accuracy of the par-
tial spectrum and on one's ability to separate mainly
spurious states from those that are mainly physical.
These authors emphasize, for example, that the physical
states in the practical works described in this section and
in the prior one cannot be spuriosity free, simply because
they are based on approximate algebras that violate the
Pauli principle. In a related investigation, Navratil and
Dobes (1989) have applied the Dyson mapping to a sys-
tem of four neutrons and four protons, each confined to a
single-j shell and described by a standard schematic
Hamiltonian. They show that the spurious eigenstates
found by diagonalizing a Dyson-transformed Hamiltoni-
an are so numerous at low energies as to render the pro-
cedure worthless. They observe, however, that applica-
tion of a form of the seniority-dictated boson mapping
described at length in the next section gives good results
for the model near the good-seniority limit. This agrees
with results to be described.

XVII. NUMBER-CONSERVING MAPPINGS

A. Introduction

In the previous sections it has been demonstrated that
the BZM mapping can be applied to both vibrational and
rotational physics provided that one introduces suitable
quasiparticles from the beginning and maps the algebra
of quasiparticle pairs and multipoles rather than the alge-
bra constructed from the original shell-model fermion
operators. As we have seen, this brings in from the be-
ginning the problem of spurious states associated with

symmetry breaking, and methods for dealing with these
had to be developed. With the advent of the interacting
boson model, attention was addressed to a new problem,
that of finding useful mappings of number- and angular-
momentum-conserving algebras. The present section is
devoted to this problem.

Why is it that a perturbative boson expansion of the
BZM type fails (or is likely to fail in any event) for such a
problem? It was emphasized in Sec. IX that the BZM
angular-momentum-coupled expansion has a small pa-
rameter, 0 ', the average level degeneracy, but in fact
the small parameters are ((&z)/0), where (&J ) is an
average occupation number of bosons carrying angular
momentum J. For a spherical superconducting nucleus,
we have ((8'o)/0) —1. For this reason, we introduce
quasiparticles, redefining the vacuum so that the inequal-
ity is satisfied if (R'J ) is the quasiparticle occupation
number. For deformed nuclei, moreover, (6'z) becomes
large, and we are forced to introduce deformed quasipar-
ticles.

If we wish to eschew quasiparticles and the attendant
formalism of broken symmetry, then the only alternative
is to resum the large terms, so that for spherical super-
conducting nuclei the operator (6'o/A), where R'o is the
number operator for s (J =0) bosons, does not appear in
expanded form. It turns out that this is not difficult to
do, at least in principle. The progress made on this prob-
lem to date will be the main topic treated in this section.
On the other hand, when d-boson (J=2) occupation
e8'ects become of comparable importance to s occupation
e6'ects, the a priori expectation is that the method de-
scribed, which distinguishes the s boson from all others,
will break down. A di6'erent approach to the deformed
limit has been adopted, provisionally, that utilizes the
symplectic shell-model algebra (I. Scoupling) -rather
than the usual j-j coupled shell-model algebra. Our dis-
cussion of this case will omit the technical details because
they are repetitive.

B. Method of Bonatsos, Klein, and Li applied
to seniority-determined mapping

The physical basis for the method of this section will
now be described. For the sake of simplicity, we provide
the details only for the case of a single j level and at the
end quote the work on the multilevel case. We shall rely
in this subsection on the most extensive corpus of results
in this area (Klein, Li, Cohen, and Vallieres, 1983; Bonat-
sos, Klein, and Li, 1984; Bonatsos and Klein, 1987;
Bonatsos, Peres Menezes, and Klein, 1987, 1988), ob-
tained by an approach that was conceived as a variant of
the commutator method.

Consider the angular momentum algebra as recorded
in Eq. (9.49) specialized to a single value of j. In order to
quote correct results, we note a change in the scale of the
operators used by Bonatsos et al. (1984) compared to the
notation of Sec. IX. These authors define
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AJ~='i/1/2 g (jjmm'~JM)a a
mm'

BJM=(2J+1) ' g (jjmm'~JM)( —1)J+ a a
mm'

(17.18)

(17.1b)

&=&2j+IB,"'=2@,+2n, ,

Ao=aoVr =(Ao)t,

r = 1 —
( 8'0 +282 ) /II .

(17.2)

(17.3)

(17.4)

The generalization of these expressions to include bosons
of other angular momentum is obvious. Next we consid-
er the possible form for the J =2 pair operators, A 2„. In
general, this will involve an expansion, of which for the

In the BZM mapping, essential use is made of the fact
that there is a U(2j+1) subalgebra, that the total fer-
mion basis chosen is a direct sum of irreps of U(2j+1),
and that the mapping of the generators of this subgroup
is "trivially" discovered. In the present case we utilize in
like fashion the fact that there is an SU(2) subalgebra
made up of the J =0 operators. We shall construct the
fermion basis as the direct sum of irreps of this subalge-
bra. Of course, this is just the pairing algebra, and the
basis is none other than a seniority basis (DeShalit and
Talmi, 1963). Assuming that one maps onto a seniority
basis in the boson space, which has as a subspace that of
the Holstein-Primakoff mapping described in Sec. II, the
mapping of the SU(2) subalgebra is fixed from the start
and, as will be seen, sets restrictions equivalent to the
Wigner-Eckart theorem on the mapping of the remaining
generators. The Aavor of the reasoning below is also con-
ditioned by a desire to avoid the preliminary detailed
construction of a fermion basis. Finally, we shall refer to
Eq. (9.49) rather than record the commutation relations
anew.

We impose one further restriction, which is physically
rather than algebraically motivated, but which turns out
to be algebraically sound. If the Hamiltonian were pure-
ly of the pairing type, then, as we know, we would need
to consider only the SU(2) subalgebra, mapped by a sin-

gle boson (ao, ao). We believe on good experimental
grounds that near the seniority limit the main perturbing
effect on seniority conservation comes from J =2 effects.
We shall be looking for a mapping that sums J=0 effects
but that is an expansion in 0 otherwise. Can we satis-
fy the commutation relations or a subset of them to a
given order in 0, ' with only a limited number of other
bosons7 In particular, we erst ask how far we can get
with J =0,2 only, i.e., s and d bosons.

Thus we introduce six bosons, a scalar, a o, and a ten-
sor of rank two, a2„. The destruction operator ao is also
a scalar and, as is well known, a2„=(—1)"a2 „ trans-
forms like a2„. The associated number operators are no
and n2. Following the procedure outlined above, we im-
pose an exact solution for the SU(2) subalgebra, namely
(N is the fermion number),

moment we consider only the leading terms. In order to
construct the appropriate expression, we must specify
tensor properties of the bosons, just as we did in Sec. IX.
We first assign to az„, in addition to its angular momen-
tum properties, the property that it increase the seniority
v by two units, i.e., it definitely adds two nucleons that
are not coupled to J=0. On the other hand, A 2„has, as
is well known (Lawson and MacFarlane, 1965), the selec-
tion rule hv=+2, 0. To leading order we have the form

A~„=a2+, {no,n2)+(ao) a~ f, {no,n2)f 2-

+ Ol. 2 2]2pf2( 0 2) (17.5)

[Ao, A~„]=0, (17.6)

we obtain difference equations that determine the rela-
tions

f i (no, n, ) =&r &r —( I /Q)P(n, ), (17.7)

f i(no, n2) =y(n2),

f2(nQ n2)=&r y( )n2

(17.8)

(17.9)

which define the functions p, p, and g. Next, using the
commutator

0 2 2
I A 0, A ~„]= 10 ' . (17.10)

involving a 6j symbol, we discover that the form of B2„ is
also determined by Eqs. (17.7)—(17.9). Furthermore the
condition B2 = (

—1 )"B2t fixes

P(n~)= —0 'P(n~ —1) . (17.11)

We summarize the results found thus far by the more
explicit expressions

In detail, this expression is determined by the following
restrictions:

(i) Each term increases the fermion number by two.
(ii) Each term is a tensor of rank two under rotations.
(iii) Each term carries a definite seniority selection. rule

(AU = +2, —2, 0, respectively). Basically, the boson
decomposition transforms the vectorial selection rules of
seniority into a series of algebraic selection rules.

(iv) Terms with more than two d bosons are omitted.
Here it is assumed that each d boson carries with it a fac-
tor 0 '~ (buried in the f functions) and thus we have
the two leading terms in an expansion in Q ', or rather
an expansion in powers of (0'z /fI )'~ .

We shall now brieAy outline the further steps by which
the functions f are determined. The method is analogous
to that described in Sec. VII for the seniority SO(5) map-
pings. From the vanishing commutator (equivalent to
applying the Wigner-Eckart theorem)
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A z„=a~„&r&r —(1/Q)P(n2) ——(ao) az„g(n2 —1)+ ao[ at2IIa 2]z &r P(n2), (17.12)

10 '. . . B'2 = ——az„ao&r P(n2) ——aoa2„&r+(1/Q)P(n2 —1)+[a&az]2„[r —(no/Q)]g(n2) . (17.13)

To determine the remaining unknown functions P and g, we have at our disposal the commutator

4 2 2 J
[&2„,&p, ]=&„,+10(—1)" g &2J+1(22—pv~Jv —p) '. . . BJ

J=O J J J (17.14)

To use this expression we first drop the J =3,4 terms
on the right. This is consistent with the approximation
being described, since these terms play a role only in the
next approximation. We already know Bo [Eq. (17.2)]
and the form of B2„. The B,„operators close by them-
selves under commutation (angular momentum algebra)
and are given by

1 1 1

J J J
B)p= —v 1/3::[a2a2], „.

1 1

2 2 2

(17.15)

For the rest, the information contained in Eq. (17.14)
must be extracted with care. Equation (17.14), as ap-
proximated, is a linear combination of tensors of ranks
zero, one, and two under rotations. The tensors of rank
two are either linear in a2, „(or a2 „)or quadratic in
these operators. From the linear dependence, we find by
comparing both sides of Eq. (17.14),

2

2v'g j
2 Q 0

1

2

J

(17.16)

r =1—
2

p(n2 )= [r2 —(1/Q) ] (17.18)

We thus conclude that, to the given order, we have
found a consistent solution involving only s and d bosons.
The question that arises naturally is how we should uti-
lize the result. We shall postpone this discussion until
after we have given a summary of the extended results
found by this method.

2"2 no=1"+ (17.17)

This result is sound because, when we study the structure
of higher-order corrections, we can show that further
contributions to the commutator (17.14) linear in the d
boson, will not occur. On the other hand, the coefficient
of [a z Csa 2 ]2 „will be modified, and therefore, to avoid
inconsistencies, we must draw no conclusions from this
term at the present level of approximation. Finally, from
the spherically symmetric part of the commutator, we
learn in a consistent order (omitting inconsistent higher-
order terms),

The next step is thus to calculate 3 2„ to the next order
in (n2/Q)', i.e., to include terms cubic in the d bosons.
The methods have been established, but the details are
considerably longer and more tedious to carry through.
A major surprise (in view of the existing experience with
the Marumori method, see below) was that a consistent
solution could not be found unless g bosons (a4„,a~„)
were included linearly in the expressions for 3 2„. More
properly put, there occurs a major difference from the re-
sults of the Marumori- Yamamura-Tokunaga method, but
one that should not have been a surprise after all: once
seniority conservation is broken, all the angular momenta
are coupled in products and commutators and must suc-
cessively be brought in. We refer the reader to the litera-
ture (Bonatsos, Klein, and Li, 1984) for the details and
results of this laborious calculation.

After the original single-j calculation, a calculation
was carried out for two nondegenerate j shells with

~ j, —jz ~

=2 up to the same order of approximation as for
the single-j case (Bonatsos and Klein, 1987). Both the re-
quisite number of g bosons (3 for two levels) and an f bo-
son (J =3) were required to obtain a consistent approxi-
mate mapping. Thus in this case as in the previous one,
the mapping has been established to two orders in
(nz/Q)' or (n4/Q)' beyond the leading order. How-
ever, for multilevel cases, interesting bosons with angular
momentum other than zero and two already appear in
leading order (Bonatsos, Peres Menezes, and Klein, 1987,
1988). For example, the physically interesting case
j, =j2 —1=j3 —3, the last shell having parity opposite to
the other two, was analyzed in some detail because of the
occurrence of negative-parity bosons, in particular, octu-
pole bosons.

The results of this section for the single-j case have
been applied recently (Peres Menezes, Yoshinaga, and
Bonatsos, 1989). Spectra and quadrupole transition rates
obtained from several approximate mappings were com-
pared with the results of exact shell-model calculations.
Since the mappings discussed in the next subsection were
included in the comparisons, it is appropriate to delay
further discussion until these have been described.

For the realistic case of a multi-j shell model, there is,
in addition to the kinematic mapping, an associated
dynamic problem, that of determining the collective
s, d, . . . degrees of freedom in accordance with the philo-
sophy of the interacting boson model. Here one possibili-
ty is the use of the trace variational principle, as de-
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scribed in Sec. IV.B, or some nonlinear generalization
thereof. Equivalently one may study the equations of
motion in the boson space. So far, however, almost all
semiplausible attempts other than those discussed in Sec.
XIV have first done some dynamics in the fermion shell-
model space followed by a mapping of only the collective
degrees of freedom. These will be discussed in Sec.
XVIII on the derivation of the interacting boson model.

C. Application of the Marumori, Yamamura,
and Tokunaga (OAI) method

The paper that officially inaugurated the problem of
using number-conserving mapping s to derive the in-
teracting boson model was that of Otsuka et al. (Otsuka,
Arima, and Iachello, 1978). Though presented as a new

mapping method, referred to in the literature as the OAI
method, this paper uses essentially the approach of
Marumori, Yamamura, and Tokunaga, with an addition-
al prescription for the mapping of the Hamiltonian, that
described in connection with Eq. (14.20). (A mapping of
operators is defined so that the matrix elements of the bo-
son image in the physical boson space equal the matrix
elements of the corresponding fermion operators in the
fermion space. )

A particularly noteworthy feature of the OAI paper,
which confines itself to a single j shell, is that the struc-
ture of the lowest-lying, i.e., lowest-seniority states is elu-

cidated, with particular attention paid to the method of
constructing states of definite seniority involving opera-
tors carryin~ J=2. The difficulty here arises from the
fact that 22„can increase, decrease, or not change the
seniority, as we have learned. Therefore a projection
operator P is defined such that PA z„only increases U by
two. This means that this operator is proportional to a 2„
when the latter is viewed as an operator in the fermion
basis, a concept we have explained in the context of the
SU(2) and SO(5) models. As described in the next para-
graph, the OAI result in any order is simply related to
the corresponding approximation obtained by the corn-
mutator method. For j= —", a comparison was made be-

tween multiparticle matrix elements of various operators
calculated numerically in the fermion basis and their ap-
proximate values obtained by using the lowest-order bo-
son mapping. This was done in order to justify the opti-
mism of using the lowest-order images to construct a
mapped Hamiltonian. The latter is guaranteed, accord-
ing to the Marumori-Yamamura-Tokunaga method, to
give exact matrix elements in a small subspace, but it is
then used for diagonalizations in a considerably larger
space, a procedure that is justified for small values of
(n /0).

We call attention to another distinction found in the
literature, that between the OAI and OAIT expansions
(Otsuka, Arima, Iachello, and Talmi, 1978). We can ex-
plain this distinction most simply by referring to Eqs.
(17.12), (17.13), (17.17), and (17.18). The point is that the
various scalar operators that we have been at pains to

H = —xAOAO —5(1—x)B~ B2, (17.19)

where x varies from 1 (spherical limit) to 0 (deformed
limit), and the operators are defined by Eq. (17.1) (the
second term representing the standard scalar product in
spherical components). In the work based on the com-
mutator method, referred to below as the Bonatsos-
Klein-Li approach, the point of view is taken that the im-
age of the Hamiltonian is to be calculated directly from
the image of the generators to a consistent order in the
small parameters. In the OAI approach, as previously
explained, a separate image of H is obtained directly by
the Marumori- Yamamura- Tokunaga method. The
difference in the two approaches can be understood by
imagining that we evaluate a given matrix element of Eq.
(17.19) by introducing a sum of intermediate states be-
tween the pair of generators. The QAI method, in effect,
includes all possible intermediate states, so that it con-
tains a selective sum of higher-order contributions.
Whether this improves or worsens results is not a priori
clear.

What emerges from a computation is that both kinds
of mappings work well in the "vibrational" regime near

calculate, the so-called Pauli reduction factors, which are
partial resummation effects, depend in general on 6'0 and

82. This identifies our result with the OAIT form. We
can also rework the expansion by substituting every-
where &o=R' —6'z and subsequently expand the various
square roots in powers of (8'2/0). The resulting reduc-
tion factors depend only on 6'. This is the OAI result.
From a theoretical point of view, the OAI result is more
consistent as an expansion, since all dependency on the d
boson other than in the number operator has perforce ap-
peared in power-series form. There is no a priori way of
deciding which form will yield more accurate results.
The distinction is of some conceptual importance because
only the OAI form strictly leads to an interacting boson
model Hamiltonian.

It should be remarked that the extension of the OAI or
OAIT method to multi-j situations, which we would view
as the parallel development to the commutator method
described above, has not been carried out. Instead, fur-
ther developments have involved preliminary dynamics
in the fermion space, so that generally only a single boson
of each included angular momentum is ultimately
mapped to the boson space. This approach will be de-
scribed in some detail in Sec. XVIII.

Actually, the first discussion of the Marumori-
Yamamura-Tokunaga method for the seniority mapping
was undertaken for a rather different reason (Li, Dreizler,
and Klein, 1970, 1971). It was to discuss the problem of
the apparent nonconvergence of the Marumori "expan-
sion" even for the angular-momentum-coupled form.
The purpose and results of this paper have already been
discussed in Sec. XV.

We return to a discussion of the work of Peres
Menezes et al. (1989). They study the standard pairing
plus quadrupole-quadrupole interaction Hamiltonian,
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the seniority limit and neither works well in the de-
formed region. As an example, in Fig. 17, computed
spectra are shown for the case j = —", , six identical parti-
cles (three bosons), and x =0.7, near but not too near the
seniority limit. Every binding energy has been pushed up
by 15(1—x)/0, and the energy scale is arbitrary. The
results in the various columns are: (a) exact shell model;
(b) Bonatsos-Klein-Li (solid lines) s-d approximation and
Suzuki-Fuyuki-Matsuyanagi (dotted line), defined as the
same mapping of generators but the OAI mapping of the
Hamiltonian (Suzuki, Fuyuki, and Matsuyanagi, 1979a);
(c) s-d-g Bonatsos-Klein-Li; (d) OAI; (e) Zirnbauer and
Brink (1982; see Sec. XVIII). Except for a small
compression of the spectrum, the results of (c) are
perhaps the most impressive. On the other hand, a corre-
sponding plot for x =0.3, not reproduced, shows that all
the seniority approximations fail in the deformed regime,
but that (c) fails not disastrously.

A related calculation (Yoshinaga, 1989) involves a
study of the Hamiltonian (17.19) with the OAI mapping,
the object being a comparison of the s-d approximation
with an s-d-g approximation. Qualitative conclusions are
similar to those discussed above, the s-d-g approximation
yielding a clearly superior result.
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FIG. 17. Spectra of j = 2, three bosons (six particles) and
x=0.7 for (a) shell model; (b) s-d Bonatsos-Klein-Li (solid line)
and Suzuki-Fuyuki-Matsuyanagi (dashed line); (c) s-d-g BKL;
(d) Otsuka-Arima-Iachello and (e) Zirnbauer-Brink methods.
Every binding energy is pushed up by 15(1—x)/Q. The spins
are calculated up to 6. The unit of energy is arbitrary. From
Peres Menezes, Yoshinaga, and Bonatsos, 1989.

D. Li's method. Other methods

C. T. Li (1983) has developed a method for transform-
ing the Dyson mapping into the OAI form of the
seniority-based mapping. (Recall that the general
method for unitarizing the Dyson mapping discussed
previously transforms it to the BZM mapping. ) We de-
scribe the procedure for the single-j case without giving
detailed formulas. The first step is to map a standard
pairing Hamiltonian, such as was studied in Sec. IV, util-
izing the full Dyson mapping (9.12) and (9.13) in
angular-momentum-coupled form. It is to be emphasized
that under this mapping the representation of 3 o con-
tains pairs of all angular momenta and that therefore the
mapped Hamiltonian is far from trivial, although it is
limited to terms at most quartic in the bosons. Under
this mapping, furthermore, the basis of kets is complicat-
ed, since it is determined by Eq. (9.13), whereas the corre-
sponding basis of bras, determined by Eq. (9.12), is sim-
ple.

The relative simplicity of the basis of bras remains
even after one introduces states with good angular
momentum. This last point is one of the two secrets for
the success of the calculation. It turns out that the eigen-
functions of seniority and angular momentum zero and
of seniority and angular momentum two are readily com-
puted in analytic form by diagonalizing the mapped
Hamiltonian in the mapped bases.

The second ingredient of success is to apply Eq. (16.16)
in order to obtain the matrix elements of the pair and
multipole operators between states of low seniority in a
unitary basis. The remainder of the calculation is then
the same as the OAI one in that each matrix element
found can be identified as a coefficient (reduction factor)
in a boson expansion of the type we have described.

This result has not been extended fully to the multilev-
el case. As a first step in this direction, Li (1983) maps
the approximate algebra defined by a single Cooper pair
and a single Tamm-Dancoff quadrupole phonon. He
leaves open whether the expansion coefficients are to be
determined by a calculation in the fermion space or by
one in the boson space.

Several other exact or approximate equivalents of the
single-j results have been derived in the literature. For
example, Li (1984a) starting with boson expansion
theory, defined in Sec. XV, which (we remind the reader)
operates in a quasiparticle space, introduces a sequence
of successively more accurate approximations to exact
number projection, analogous to the ideas described fol-
lowing Eq. (16.30), and thereby generates a series of bo-
son expansions approximating better and better the
number-conserving seniority mapping considered in this
section. For the single-j model, the first step is sufficient
to produce exact number conservation and a mapping
that has been utilized to illustrate how the program of
Tamura et al. , described in Sec. XV, can be improved (Li,
Pedrocchi, and Tamura, 1985). The successful applica-
tion of the same method to the SO(8) model (Li, Pedroc-
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chi, and Tamura, 1986) will be described below. In de-
tail, the method approximates the quantized Bogoliubov
transformation introduced in Secs. III and IV.

Essentially the same results as found by Li can be ob-
tained by the term-by-term bosonization method (Tamu-
ra, Li, and Pedrocchi, 198S).

Finally, Geyer (1986a) has applied a method due to
Kim and Vincent (1987) to the unitarization of the Dyson
mapping and to a simultaneous change of basis to a
seniority basis. This method is based on a special proper-
ty of the pairing Hamiltonian (that it is tridiagonal in an
ideal boson basis). The case of more than one level has
been treated successfully by Navratil and Dobes (1990).

E. The SO(8) Glnocchio model

In a seminal paper, Ginocchio (1980) discovered two
methods of constructing subalgebras of a shell-model
algebra that contained only fermion pairs carrying angu-
lar momentum zero and two. Of course, there are two
elementary ways of doing this. In one of these, germane
to the work of this section, one sees immediately that this
requirement is satisfied for the single-j level with j =—„
described by the algebra SO(8). Another solution, within
the framework of symplectic algebras, can be found in
the L Scoupled -p shell, yielding the algebra Sp(6). In or-
der to create interesting physics, however, one must
somehow associate the above with subalgebras of shell-
model algebras describing heavy nuclei. Ginocchio sup-
plied the "trick" for doing this, in eItect reinventing an

I

idea already incorporated in the pseudo-SU(3) model
(Arima, Harvey, and Shimizu, 1969; Arvieu, 1969; Hecht
and Adler, 1969), though differently motivated. The
current interest in these models may be attributed mainly
to the roles that they play in the fermion dynamical sym-
metry model, a subject that will be discussed briefly in
Sec. XVIII. In this section, we shall carry the account
up to that point.

Starting with the usual j-j coupled shell model, one
decomposes the angular momentum j, into the sum of a
pseudo-orbital and a pseudospin part, j=k+i, and com-
poses new fermion operators by means of the equation

b„~,m = g(«'m„m, . ljm)a,
Jm

(17.20)

The operators (17.20) are then combined in pairs so that
the pseudo-orbital momentum is coupled to a total of K
and the pseudospin is coupled to a total of I, the two an-
gular momenta then coupled to a resultant of J. It turns
out then that there are precisely two solutions to the
problem specified by restricting the latter to J =0 and
J=2, and it is perhaps not surprising that the resulting
algebras are isomorphic to the simple algebras already
specified. One solution is to choose I =0 and k =1 (for
then K and J are confined to the values 0 and 2), and the
other is to choose K =0 and i =

—,
' (and then I and J have

the values 0 and 2). These two possibilities generate pre-
cisely the algebras Sp(6) and SO(8). We shall now devote
our attention exclusively to the latter case.

Written in terms of the original shell-model fermions,
the generators of this algebra are the pair operators

St= —g (
—1)' a a,

jm

(17.21)

J JDL y ( 1)k+3/2+ j[(2j + 1 )(2j'+ 1 )] 1/2, , [a ta t ]2
)M j' v'

J&J
2 2

and the multipole operators with K =0 and i coupled to r =0, 1, 2, 3,

(17.22)

J JP" =—2(2k+1)' [b b ] "=2+(—1)"+ + + [(2j+1)(2j'+1)]' ' .[a a. ]"
J~J 2 2

(17.23)

these formulas involving the standard Wigner 6j symbols. In terms of these definitions, the SO(8) algebra takes the
form

[S,S ]=(0 n)—:—2S—O, (17.24a)

J J
[D„,,D„]=—25„„,SO+ g (

—1)"(22 —p'p~ltp p') 3 3 k
P„'— .

t odd 2 2

[D„,S]=P„,
[P„",St]=25„2D„+25,. O5 OS

2 2 p
[P",,D„]= —4[S(2r + 1)]' (r2p'pl 2p'+ p) 3 3 3 D„+ ~ +2( —1)~5„25' „S.

2 2 2

(17.24b)

(17.24c)

(17.24d)

(17.24e)

r s t
[P",,P„']=2( —1)" '[(2r + 1)(2s + 1)]' g (rsp'p~ tp'+ p) [1—( —1)" '+']

3 3, P', .
t 2 2 2

(17.24fl
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The monopole-multipole operator is just twice the
valence nucleon number,

—,'P =8'= gaj a =0+2So . (17.25)

The dipole operator P„' is proportional to the total pseu-
dospin operator I„,

A.

1(25
(17.26)

which, within the (St,D ) space, is the total angular
momentum operator.

The most general rotationally invariant Hamiltonian
that can be constructed from the generators of the alge-
bra and that describes at most two-body interactions has
the form

H =GOS S+G2D D+ . g b„P".P" .
«=1,2, 3

(17.27)

For a general choice of the coupling strengths, this Ham-
iltonian must be dealt with numerically. For special
values, specified below, the eigenvalues of H can be given
by purely group-theoretical considerations. These corre-
spond to cases where the Hamiltonian can be written as a
linear combination of the quadratic Casimir operators
corresponding to one of the three possible chains of
subalgebras available for the construction of a basis of
states carrying good angular momentum. These are

SO(8) «SO(7) ~ SO{5)~SO(3),
SO(8) &SO(6) &SO(5)D SO(3),

(17.28a)

(17.28b)

SO(8)DSO(5)SSU(2)DSO(5)DSO(3) . (17.28c)

If b2 =G2 the group chain (17.28c) is realized as a
dynamical symmetry; if 60=62, the chain (17.28b) is
realized as a dynamical symmetry; and if b2=GO, the
chain (17.28a) is realized as a dynamical symmetry.

The bulk of the Csinocchio (1980) paper under discus-
sion is, in fact, devoted to a calculation of the matrix ele-
ments of the generators for a single representation of
SO(8) for each of the two chains (17.28b) and (17.28c).
These were singled out in preference to (17.28a) because
of their presumed relation to the y-unstable and vibra-
tional limits of IBM-1. The representation in question is
that in which the states are linear combinations of states
made up of monopole and quadrupole pairs (called
favored pairs below),

~XX„pZM&=(S") "(D') ' lO), (17.29)

where X is the total number of pairs and Nd is the total
number of quadrupole pairs, characterized by angular
momentum quantum numbers and by an additional set of
quantum numbers p necessary for a unique specification.
It is expected that the most collective states are made up
largely of states in this representation, characterized as
the representation in which all the fermions are coupled
in favored pairs. To distinguish this representation from
those in which one or more fermions remain uncoupled,

the quantum number u, a kind of generalized seniority, is
utilized. It measures the number of fermions not coupled
to favored pairs. To distinguish it from the usual seniori-
ty, the name heritage has been adopted.

We shall not repeat any of this analysis, except to re-
mark that the results are obtained in the form of a prod-
uct of two factors, the first depending on the quantum
numbers of the Casimir operators of the chain and the
other on a matrix element of a simple boson operator
taken in a boson realization of the same basis. In other
words, the matrix realization is only one step away from
a boson mapping. That 1ast step was taken in one of the
initial applications of these ideas discussed below. We
note, however, that the mathematical analysis of Ginoc-
chio has been extended to the subchain of groups (17.28a)
and to the representations with u = 1,2 (Hecht, 1987b;
Lii et al. , 1988). We shall discuss the mathematical basis
for this extended work in Sec. XIX.

We begin the discussion of applications with a passing
mention of a direct application of the SO(8) model (with
a suitable choice of the degeneracy parameter 0) to the
properties of the low-lying states of the Sm isotopes (Ari-
ma, Ciinocchio, and Yoshida, 1982). Except for the de-
formed nuclei, where it was necessary to add three-body
forces, surprisingly good fits were obtained with a Hamil-
tonian of the simplest type in the algebra of SO(8) X SO(8)
(to describe neutrons and protons).

In a work that has been more widely noticed and is, in
any event, more germane to the purposes of this review
(Arima, Yoshida, and Ginocchio, 1981), the boson map-
pings that are implied (with only a small additional effort
required) by the matrix elements computed in the origi-
nal Ginocchio paper were applied for the purpose of
comparing the accuracy of interacting boson model
Hamiltonians, obtained by one of these mappings from
Eq. (17.27), with the corresponding mapping that would
be used in the same problem in the boson expansion
theory approach of Tamura, described in Sec. XV. In all,
three mappings are used in this comparison, the unitary
mappings through the chain (17.28b), also called the
BZM mapping (obtained by us in one form in Sec. IX); a
unitary mapping for the chain (17.28c), also called the
OAI mapping; and the boson expansion theory mapping.
The last is given from the first as a truncated series,
whereas the first two are given in closed form, involving,
however, square roots of operators that can only be eval-
uated by expansion, except at the special symmetry
points, where one or the other of the mapped forms can
be evaluated exactly. The comparison is weighted
against boson expansion theory by making the compar-
ison only at these symmetry points. Remembering that
boson expansion theory does not conserve particle num-
ber, it nevertheless fares reasonably at low excitations, as
might be expected. At excitations above a few MeV, it
fares poorly compared to the number-conserving map-
ping s.

This was not to be the final word on this subject, how-
ever. We recall that C. T. Li (1984a) had developed a

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



488 A. Klein and E. R. Marshalek: 8oson realizations of Lie algebras

practical method for restoring number conservation to
expansions based on quasiparticles. It involved a number
of successive steps, each of which was designed to bring
the system closer to exact number conservation. Howev-
er, for the single-j shell model and for the SO(8) model,
the first step was already sufhcient to restore number
conservation exactly. The result is an exact equivalent of
the mapping involving the SO(6) chain, i.e., the BZM re-
sult. [This observation was not made in the paper in
which the Li result was applied (Li, Pedrocchi, and
Tamura, 1986)]. It remains to be seen, however, to what
extent Li's ideas can be incorporated into the full boson
expansion program.

The remainder of this discussion alludes briefly to
work concerned with Dyson mappings of SO(8) and relat-
ed algebras. The works involved attempt, in one manner
or another, to exploit the simplicity of the Dyson map-
ping. The question Kim and Vincent (1988) ask is wheth-
er they can introduce a similarity transformation that un-
itarizes the Dyson Hamiltonian and still retains its one-
and two-body character. They obtain a positive answer
for SO(8), but cannot guarantee that the corresponding
generators will be free of higher-order terms. It is well to
emphasize that this work and the further papers men-
tioned below take a rather unconventional view toward
boson mappings compared to the usual group-theoretical
practitioners, whom we have taken as our model. The
latter very clearly define the pair of bases involved in a
boson mapping, namely, the basis in the fermion or other
starting space and the boson basis of one's final focus.
The work under discussion gives up this control for the
sake of other aims. What may be missing, then, is the
ability to specify the physical regime where the results
apply.

In a paper related to SO(8), Geyer and Hahne (1981)
first derive the Dyson form of the mapping correspond-
ing to the SO(6)—=SU(4) subalgebra. This is the usual
chain used for the Dyson mapping and is the only one
that gives the standard simple result. [In fact, Arima,
Yoshida, and Ginocchio (1981), in the paper described
above, also give a Dyson mapping for the SO(5) X SU(2)
chain, where one can verify the truth of this assertion. ]
Geyer and Hahne then extend the mapping to include an
odd particle. Finally, they ask the following amusing
question: Suppose one carries out the Dyson mapping
for a general shell-model algebra, but one with an ar-
rangement of subshells allowing the decomposition into
pseudo-orbital and pseudospin angular momenta leading
to the SO(8) subalgebra. Suppose further that one carries
out this recoupling and drops from the maps of the SO(8)
generators all terms containing no s and d bosons. Does
the remainder constitute a mapping of SO(8)? The result
is affirmative. In a recent work (Kim and Vincent, 1988),
one finds a general discussion of this phenomenon.

We call attention, finally, to the work of Kaup, who
has discovered and studied a Schwinger mapping for
SO(8) (Kaup, 1987, 1988; Kaup, Ring, and Nigam, 1988).
Here we shall only describe the mapping itself, referring

the reader to the literature cited for applications to the
Hamiltonian (17.27). Kaup realized the SO(8) algebra by
a generalization of the scheme he had already used for
SO(4), described in Sec. VI. In addition to the physical
angular momentum, one introduces a kinematically in-
dependent quasispin and two boson double tensor s
(where in the following two equations the first superscript
and subscript represent the quasispin and its component
and the second pair fixes the ordinary spin in the corre-
sponding way).

b" '=(u, s, u),
b'"'=d

0)M p

[I„b,]=[b,', b']=0, [b, ,bt]=S„,

(17.30a)

(17.30b)

(17.31)

where in the last equation i,j clearly each represent a
quartet of indices. Altogether there are eight bosons.
This number is sufhcient to permit a bilinear realization
of the generators of SO(8) defined in Eqs. (17.21)—(17.23),
according to the equations

S =2' (su —Us),
D„=2' (d„u+U d„), d„=(—1)("d

So=v~u —u~u,

P( ) =2(dts+std )P P p

P(1) 23/2[d t X d ](1)
p p

'2"[d'Xd ]'" .P p

(17.32)

(17.33)

(17.34)

(17.35)

(17.36)

(17.37)

S~vac) =Dz ~vac) =I'„'") vac ) =0 .

These requirements are satisfied by the state

(17.38)

i
vac ) = (A!)

' (u ) i ), (17.39)

where the round ket ~) denotes the boson vacuum state.
The value of the integer A is 0/2, where 0 is the value
of the average ( vac ~SS

~
vac ) . We refer the reader to the

literature cited for more of the mathematical details. It
is clear that the Schwinger mapping can be quite useful
in providing a convenient basis for diagonalizing Hamil-
tonians belonging to the set (17.27). Kaup has also car-
ried out an extensive study of the associated model
within the mean-field approximation, utilizing the for-
malism associated with the concept of coherent state.
Again we refer the reader to the literature for details.

Recently, Scholtz and Geyer (1988) have given a gen-
eral solution to the problem of embedding the physical
shell-model algebra by a generalized Schwinger mapping
into a larger unitary algebra. They despair that the re-

The realization just given corresponds to the embed-
ding of SO(8) into the larger group SU(8). To complete
the mapping we must specify the irrep of SO(8) CSU(8)
isomorphic to the vacuum" irrep in the fermion space.
This requires only that we specify the map of the vacuum
state satisfying
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suits will be of practical value because of the large num-
ber of unphysical (supernumerary) bosons introduced in
such a mapping.

F. Symplectic shell-model algebras

Interest in symplectic algebras has two distinct origins.
One source is the development of the Sp(6, R) model of
collective motion [for a review see (Rowe, 1985)]. This
subject is considered outside the bounds of the present re-
view and, in any event, has been described clearly in the
review cited. Independently, interest has been regenerat-
ed in the compact unitary syrnplectic algebras Sp(2A),
with A an integer, motivated by the problem of providing
a microscopic basis for the interacting boson model. Dis-
cussion of an Sp(6) model was initiated by Ginocchio
(1980) and has been followed by suggestions (Chen, Feng,
and Wu, 1986; Wu et al. , 1986, 1987) that this symmetry
may manifest itself in actual nuclear problems. The toy
models associated with Sp(4) [isomorphic to SO(5)] have
been reviewed in Sec. VII of this paper.

In further work stimulated by the continuing search
for a microscopic basis of the interacting boson model for
deformed nuclei, Bonatsos and Klein (1985, 1986; Bonat-
sos, Klein, and Zhang, 1986a; Wybourne, 1986) studied
the shell-model algebras for identical nucleons coupled to
intrinsic spin zero. These are the algebras Sp(2A), the
value of A depending on the shell, which were analyzed
through the chain Sp(2A) &U(A) &SU(3), with boson
realizations constructed in an angular-momentum-
coupled basis. This chain is the one utilized in the
pseudo-SU(3) approximation applied to the deformed
rare-earth nuclei (Draayer, Weeks, and Hecht, 1982) as a
shell-model approximation and more recently as the basis
for an algebraic treatment of deformed nuclei (Draayer
and Weeks, 1983, 1984; Draayer and Rosensteel, 1985;
Leschber and Draayer, 1986, 1987; Castanos, Draayer,
and Leschber, 1988). Our interest is in a boson realiza-
tion of this algebraic model, and in particular in a repre-
sentation of the algebra containing the vacuum state of
the shell model. An improved method for carrying out
this program was described by Bonatsos, Klein, and
Zhang (1986a). It should be remarked that this work was
influenced by papers on the corresponding noncompact
symplectic algebras (Deenen and Quesne, 1982, 1984,
1985; Castanos, Chacon, Moshinsky, and Quesne, 1985;
Castanos, Kramer, and Moshinsky, 1985a, 1985b;
Chacon and Moshinsky, 1987). Derivations of mappings
for more general irreps (Hecht and Elliott, 1985; Hecht,
1985, 1988) have been carried out using the method of
the vector coherent state described in Sec. XIX.

To apply these results, one needs the reduced matrix
elements of the boson operators between irreps of U(A),
the unitary subgroups, that occur in various cases. Con-
siderable efFort has gone into this problem. For example,
very explicit results for the Sp(6)DU(3) reduction have
been given recently by Hecht (1988), where references to
earlier work can be found.

It may also be remarked that mappings of the square-
root BZM form, analogous to Eq. (9.39) of Sec. IX, can
also be derived for the symplectic algebras (Deenen and
Quesne, 1982, 1984, 1985). In further work, a mapping
of an isospin-invariant generalization of Sp(6) has been
studied by Peres Menezes (Peres Menezes, Brink, and
Bonatsos, 1989).

Quantitative applications of the results for the sym-
plectic algebras remain to be carried out. Bonatsos
(Bonatsos and Klein, 1986) has analyzed all the possible
examples of pseudo-SU(3) shells that might occur for
realistic shell-model calculations, constructing those
linear combinations of the generators of the appropriate
symplectic algebra which form irreducible tensors under
SU(3). The most complicated case studied was the neu-
tron (or proton) p f-h shell -corresponding to Sp(42). It
turns out that there is an important point of fundamental
difference between pseudo-SU(3) and the deformed SU(3)
limit of the interacting boson model in how they assign
the low-lying bands to irreps. In a qualitative analysis
Bonatsos (Bonatsos and Klein, 1986) has argued that the
experimental evidence may favor the pseudo-SU(3)
analysis. At the very least, the question is open. In this
connection the phenomenological algebraic analysis of
Draayer et al. and its microscopic basis, quoted earlier,
are of exceptional interest.

XVIII. MICROSCOPIC FOUNDATIONS
OF THE INTERACTING BOSON MODEL

A. Introduction

with

epd~dp+~~g~ Q~
p 7j, v

+g V +g(J[(d dt)' '(d d, )' ']' ',
p J

(18.1)

d „=(—1)"d

(18.2)

Here d is the creation operator for a d boson, carrying

Before turning our attention to the details of various
methods that have been utilized in the attempt to justify
the interacting boson model from a microscopic point of
view, we include the briefest possible sketch of the ele-
ments of IBM-2 and IBFM. We have already described
IBM-1 for present purposes in Sec. VIII.B. The IBM-2 is
an extension of the IBM-1 that explicitly takes into ac-
count neutron and proton degrees of freedom, dis-
tinguished by the labels v and m., respectively. For a re-
view of the phenomenological aspects of these models,
see Iachello and Arima (1987) and Bonatsos (1988). For
a viewpoint on microscopic foundations that contrasts
with the one to be presented in this section, see Iachello
and Talmi (1987).

The IBM-2 Hamiltonian is given by
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angular momentum I.=2, and s is the corresponding
object for L =0. (In presentations of the phenomenologi-
cal model, the factor Kp is usually omitted, but it is con-
venient to retain it for microscopic investigations. ) The
interaction between bosons of the same kind, which de-
scribes at the same time the two-boson part of the Hamil-
tonian of IBM-1, has the general form

y' = (y C [(dtdt )'J'(d d )(J']'0)
PP 2 P1J P P P PJ

+2—(/2 — [(did t )(2)(d s )(2)+H ](0)
P~ P P P P

+ —,)U 0[(d d )' 's s +H. c. ] . (18.3)

Finally the last term in Eq. (18.1) is an operator (the Ma-
jorana operator) (Scholten, 1983), introduced to guaran-
tee that the low-lying states of IBM-2 resemble those of
IBM-1. This operator will not receive any further atten-
tion in this review.

In Eq. (18.2) we have insisted on maintaining a distinc-
tion between the quadrupole operator appearing in the
Hamiltonian and the boson E2 operator, which we write

Q (E2)=e 2)[d s +s d +yg(dtd )' '] . (18.4)

ab

[(std+dan +~(dtd)(2))(ctc) 2)] 0)

++A,b:[(c,d)' '(cbd )' ']' ': .
abj

(18.5)

Here the dots indicate the normal product, the indices a
and b denote single-particle states for the fermion, and j
is the angular momentum for the coupled fermion and
boson. In an effort to simplify the analysis of data, one
often assumes simplified microscopically motivated rela-
tions for the parameters in Eq. (18.5), namely,

A, = AO(2j, +1)' (18.6)

For odd nuclei (Iachello and Scholten, 1979) one adds
a fermion (actually a quasifermion) (c,c ) to the in-

teracting boson model. The additional fermion-boson in-
teraction, which then defines the IBFM, is taken to be

V» ——y ~.(c.'c. )(0)(d'd )"'

a system of three valence nucleons (Talmi, 1981;Gelberg,
1983; Kaup, 1983). Finally, the parameters u, and U, are
the well-known BCS parameters, with a, =(v, /u, ). The
latter is the BCS approximation to the parameters that
appears below in Eq. (18.11). We turn to an account of
the efforts to derive these parameters from the starting
point of the broken-pair approximation.

B. The broken-pair approximation

l 1)',„(U,=0) ) =lV, (S')'I0 & . (18.10)

In the following we shall rely heavily (though not ex-
clusively) on review papers of the group that has done the
most extensive work in this area, Allaart, Bonsignori, Sa-
voia, and Paar (1986a, 1986b); Allaart, Boeker, Bonsig-
nori, Savoia, and Ghambhir (1988). (For early work, see
Akhermans, Loriaux, Allaart, and Bonsigniori, 1983; Al-
laart and Bonsigniori, 1983.) For other applications of
this method to the derivation of the IBM, see below and
Duval and Barrett, 1981; Gambhir, Ring, and Schuck,
1982a 1982b, 1984; Sage, Goode, and Barrett, 1982; van
Isacker et al. , 1986. For a brief survey, see Barrett
et al. , 1989. Our interest in the broken-pair method is
that it provides the soundest approximation to the shell-
model description of vibrational nuclei that incorporates
the essential physical ideas of superconductivity or gen-
eralized seniority (Talmi, 1971) without breaking the
symmetries of the Hamiltonian. Since the collectivity is
studied and extracted by calculations in the fermion
space, this approximation is a natural tool for implement-
ing the seniority-based OAI mapping (see Sec. XVII). As
we shall see, a corresponding symmetry-conserving basis
for mapping of deformed nuclei has not been established,
and such work as has been done on this problem, al-
though quite suggestive, is nevertheless much cruder in
quality. We describe first the broken-pair or
generalized-seniority approximation for semimagic nu-
clei.

The method is based, first, on the assumption that the
ground state of the system with 2p nucleons is well ap-
proximated by a state of the form

r2r.b =10(1l 1lb U Ub)(a b2
(18.7)

Here Xo is a normalization constant, while S is the
creation operator for a Cooper pair,

Ajb =20AO(2j+ 1) '~
QJ, QJb(aj+a, )(aj +ab ),

St=+ u, S+(a), (18.11)

(18.8)

(18.9)

Here b, occurring in the denominator in Eqs. (18.7 and
18.9), is the standard harmonic-oscillator parameter, not
to be confused with the indices of the same name. Equa-
tion (18.7) is the conventional quasiparticle-phonon cou-
pling in the BCS model, and relations (18.6) and (18.8)
are approximations of expressions for matrix elements in

characterized by the coefficients a„which measure the
distribution of pair strength over the single-particle states
a, and S+ (a) is the j=0 pair creation operator studied in
Sec. IV, proportional to 2; defined in (4.2). The accura-
cy of the state (18.11) has been established by comparison
with more accurate shell-model calculations (Allaart and
Boeker, 1971) or even exact shell-model calculations
(Gambhir, Rimini, and Weber, 1969, 1973), provided the
coefficients a, are determined by a variational calcula-
tion based on the state (18.10). Although there are spe-
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cial circumstances under which these coefFicients may be
independent of particle number (Talmi, 1971), for all in-
teractions used in practice a smooth variation with parti-
cle number is to be expected.

Starting with this generalized seniority, ug =0 (Obp)
state, one constructs the u =2 (lbp) states by replacing
one S creation operator by a two-particle creation
operator, leading to the configurations

0015

0010-

E
0005-

~ ~ ~ ~ ~ ~ CQIC. 0%4)----- CQIC. 28~
QXQ

(18.12) 0 2.0 4.0 6.0
= r{fm)

0 2.0 40 60 80- r{frn)

AJ M (ab)AJ M (cd)(S )~ ~0), (18.13)

For J =0 we must restrict the set (18.12) to linear com-
binations orthogonal to Eq. (18.10). By convention, all of
the configurations defined, even those with angular
momentum zero, are said to carry generalized seniority,
v =2. Similarly the v =4 states are constructed as
linear combinations of

FIG. 18. The transition charge density for a neutron boson (2&+

in ' Nil and a proton boson (2&+ in "Sr). The calculations were
performed with a broken-pair model in a 0%co and in a large
model space that included all 2'~ excitations. From Allaart,
Bonsigniori, Savoia, and Paar, 1986b.

E(u =2)~E(u =0)+u 6, (18.14)

where 6 is half the energy gap between the ground state
and the lowest (noncollective) state.

For odd nuclei, one may establish a similar
classification that can be made the basis for a discussion
of the interacting boson-fermion model. This will be con-
sidered in Sec. XVIII.G.

Rather complete calculations have been carried out for
v ~2, but for higher seniority, further truncation has
been necessary. A general local interaction was em-
ployed, including spin-dependent and tensor forces. We
refer the reader to Allaart et al. (1988) for details.

We are now prepared to make contact with IBM-2 and
to consider what features of the broken-pair approxima-
tion make it an excellent candidate for the problem at
hand. But first let us remark on some limitations that
cannot be overcome within the present framework. Both
the shell-model approximation (for the most part) and
the phenomenological boson model (so far) work within
the confines of a single valence shell. This means that for
all observables, and not only the Hamiltonian, we need
effective operators. In favorable cases this involves main-
ly a rescaling of the simplest operator one can write
down, introducing the so-called effective charge. We
show in Fig. 18, taken from Allaart et al. (1986b), a case

orthogonalized to the previously obtained set of v 2
states. The construction of an orthonormal set of states,
characterized by the v~ quantum number, requires the
overlaps and nontrivial normalization factors of the vari-
ous states, a matter beyond the purview of the present
section, though the techniques are similar to those de-
scribed brieAy in Secs. XV and XVI.

The validity of the generalized seniority truncation is
well established for semimagic nuclei and was also the
basis (somewhat more obliquely) for the mean-field
methods applied to vibrational nuclei in Sec. XII. The
truncation scheme is based mainly on the empirical rela-
tion

(D )„=y /3 (ab)( A "' )„ (18.15)

be that linear combination of the v =2 configurations
which creates the lowest (collective) 2+ state for the
respective semimagic nuclei. The next impulse would be
to define an orthonormalized direct product basis made
up of two excitations each [S and Eq. (18.15)] for neu-
trons and protons, constructed by means like the norm
matrix method discussed in Secs. XV and XVI. Using
such a basis, one could map a microscopic Hamiltonian
onto the Hamiltonian (18.1) by the OAI method de-
scribed in Sec. XVII. Here it is permissible to drop some
terms of the phenomenological Hamiltonian, since there
are, in any event, too many parameters to obtain a
unique phenomenological fit to the data. In the ensuing
discussion, we focus on the single-boson terms and the
quadrupole-quadrupole interaction, though the fitting
procedure also requires some combination of the Majora-
na parameters in order that the IBM-1 states, i.e., the
states of maximum symmetry, occur much lower in ener-

gy than the states of mixed symmetry.
This naive method does not work. We emphasize two

reasons for its failure. The first is that the quadrupole

in which this cannot be done. What is shown is the ex-
perimentally deduced transition charge density for the
transition from the ground state to the first excited 2+
state for two semimagic nuclei in comparison with a
valence-shell calculation (Ohio) and with an augmented
calculation including 2Aco excitations. The latter, though
of small individual amplitude, add up coherently to give
much of the required surface peaking. The implication is
that we must anticipate similar problems for the nuclei of
interest to us, which are not semimagic.

Let us consider, then, possible methods of adapting the
broken-pair technology to this problem. We might start
by doing the separate broken-pair calculations for neu-
trons and protons and then forming the direct product
space for the combined system. Let
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neutron or proton excitations should depend on the pres-
ence of the other particle, i.e., on the neutron-proton in-
teraction. This can be accounted for approximately (Pit-
tel, Duval, and Barrett, 1982a, 1982b; Barrett, Duval,
and Pittel, 1983; Druce et al. , 1987) by adjusting the
single-particle energies of one species as a function of the
number of the other. Since one needs only the ground
state, the 2+ excitation of each species, and the OAI
mapping method to map the fermion quadrupole opera-
tor onto the form of Eq. (18.2), we consider this applica-
tion immediately. The relevant formulas, one set each
for neutron and proton, are

(18.16)

and (p is the number of pairs)

(18.17)

In Fig. 19, from Barrett et al. (1983), we show some
neutron results obtained by these authors for the shell
%=82—126. The results are shown for several diferent
choices of single-particle states that we shall not explain
in detail. Except near the closed shells, where there is
sensitivity to this choice, the trends are roughly con-

sistent. More important, these parameters are in good
agreement with parameters determined from phenome-
nological fits. This type of result must be accounted a
success of the program under study.

The second reason for the failure of what might be
called the naive method of mapping, i.e., any mapping
procedure that utilizes only S and D degrees of freedom,
will now be considered. If the spectra are compared with
experiment for the parameters obtained by this fitting
procedure, it is found generally that the correct order of
low-lying levels is obtained, but the energy splittings are
too large by a factor of two or more. This discrepancy
has been attributed to the need to take into account the
coupling to the multitude of states omitted from the
mapping procedure, since the Pauli principle, as well as
the dynamics, precludes any exact decoupling of these
configurations from the included space. Various approxi-
mate renormalization schemes have been proposed and
carried out (Pittel, Duval, and Barret, 1982a, 1982b;
Scholten, 1983; van Egmond and Allaart, 1984; Allaart
et al. , 1986a, 1986b). Particularly extensive calculations
were performed by van Egmond. He obtained an im-
proved version of the basic 2+ state by diagonalization
of the shell-model Hamiltonian within a model space of
the old 2, , U =2 state and a thousand U ~4 states
formed from the direct product of the separate U =2
spaces for the neutrons and protons:

sa$$P

D,(s,')" (s,', )'~' &„„

=ao~D (S ) (Sp ) &+ g a li& .
iEU ~4

(18.18)
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FIG. 19. The interacting boson model parameters ~ and g
calculated for X= 82—126 from the Otsuka-Arima-Iachello
mapping procedure and the broken-pair approximation. The
labels refer to different choices of single-particle energies de-
scribed in the original paper. From Barrett, Duval, and Pittel,
1983.

The main conclusions were the following:
(1) The coeKcient ao does not become much smaller

than 0.9, so that the dominant structure remains that
built with S and D pairs.

(2) Typically the excitation energy of the state (18.18)
is decreased by 30—S0%. About half of this eff'ect is due
to J =4 pairs (6 pairs).

(3) The adm. ixtures also reduce the calculated interac-
tion parameter v between bosons by about 40%%uo.

(4) No indication was found for a force that pushes up-
wards states with building blocks that are antisymmetric
for interchange of proton and neutron bosons, but in-
stead a force was found that pushes the symmetric ones
further downwards in energy. This yields an additional
compression of rotational bands.

A typical result (Allaart et a/. , 1986b) of this fitting
procedure for ' Ba is shown in Fig. 20. The crosses indi-
cate mixed-symmetry states, not confirmed by experi-
ment.

In conclusion, it is clear that, though there is a qualita-
tive basis for optimism that the IBM-2 may be viewed as
a phenomenology with a rational basis in the shell model,
the uncertainties in the parameters of the latter, the fact
that they are chosen by calculations made for near-
closed-shell cases, as well as the possible sensitivity of de-
tailed results to high-lying configurations, suggests that
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FIG. 20. Spectra of "Ba obtained in an IBM-2 calculation
with boson parameters that were obtained by a mapping pro-
cedure based on the broken-pair approximation. The states
marked with a cross distinguish those states obtained for the
first time in an IBM-2 approximation as opposed to those that
are common to IBM-1 and IBM-2. From Allaart, Bonsigniori,
Savoia, and Paar, 1986b.

any expectation of detailed quantitative agreement is
somewhat naive and, where such agreement is claimed, it
is at least in part the result of phenomenological adjust-
ment of parameters.

C. Unitary mapping for deformed states

The method described in the previous subsection is
based on an approximation scheme valid only for spheri-
cal nuclei. As we have previously stated, this approxima-
tion scheme incorporates the same physics as the mean-
field approximations erected on the basis of the spherical
Hartree-Bogoliubov approach, but it has the distinct con-
ceptual advantage of preserving the symmetries of the
Hamiltonian. In choosing to discuss the problem of pro-
viding a microscopic foundation for the interacting boson
model for deformed nuclei, we are faced with the situa-
tion that no analogous systematic approximation scheme
has been applied to this problem. Note that we have
been careful not to assert that no such approximation
scheme exists, since we have already pointed out in Sec.
XVII that the pseudo-SU(3) scheme fulfills the necessary
criteria:

(i) If we choose the unitary-symplectic (pseudo —L -S
coupled) form of the shell-model algebra, there is an
SU(3) subalgebra.

(ii) In the strongly deformed limit, the irreps of this
algebra define an energy ordering, i.e., a Hamiltonian be-
longing to the enveloping algebra of SU(3) will provide a
zero-order description of the spectrum and other proper-
ties.

(iii) One can introduce symmetry-breaking terms into
the Hamiltonian and study the mixing of SU(3) irreps re-
quired to fit the data.

~x) —
( ~'t)Ã/2

~
0 ) (18.19)

a condensate of A pairs, where each such pair can be
decomposed in terms of pairs coupled to good angular
momentum (the magnetic quantum number has the value
zero and is suppressed),

A~=xoS~+x2D +x 6 + (18.20)

In addition to the constants xL that characterize the ad-
mixtures of different angular momenta, there are, for the
multilevel shell model, additional structure constants

What is missing so far is an investigation of how to ex-
tract from such calculations basic excitation operators
that can be mapped onto the bosons of the IBM-1 or -2.
It is far from clear how this is to be done or even if one
can anticipate having success with a single set of bosons.
What is clear is that only this type of approach will pro-
vide a method that can be viewed as fully complementary
to the broken-pair approximation, in contrast to the in-
genious but fragmentary approaches that we shall de-
scribe below. Here it is appropriate to mention once
more the work of Draayer and associates (Leschber and
Braayer, 1987). This program does respond to the prob-
lem of associating a successful phenomenology with the
pseudo-SU(3) model, but it does so by algebraic methods
that so far have not utilized concepts of boson mappings
in an essential way. This work therefore falls outside the
boundaries of this review. Nevertheless, for anyone in-
terested in pursuing the investigation we are proposing, it
would appear to be a good starting point.

It may be appropriate at this point to introduce a
tangential suggestion that may have some significance for
those famihar with the Kumar-Baranger (Kumar and
Baranger, 1967, 1968; Baranger and Kumar, 1968) ap-
proach to the study of deformed nuclei and its further
refinement by Kumar (1983, 1984). Without intending to
be facetious, we note that insofar as the results of his pro-
gram fit the data, one may assert that the calculations of
Kumar (1983) are only a few, relatively straightforward
steps away from a microscopic derivation of IBM-1. One
would first have to fit the Bohr Hamiltonian for a given
nucleus, as calculated by Kumar, to a polynomial or oth-
er convenient form in terms of the so-called Bohr-
Mottelson bosons discussed in Sec. VIII. Interpreting
the latter as Holstein-Primakoff bosons, we could then
use the simple transformation (8.22) to Schwinger-type
bosons utilized in the standard interacting boson model
formulation. The resulting Hamiltonian would not gen-
erally be of the required polynomial form, but if this is
deemed important, further adjustments could be made to
the fitting procedure to yield such a form.

We turn finally to the mainstream of the actual work
done involving unitary mappings. Work on the Dyson
mapping will be considered in the following subsection.
All the work about to be discussed is based on a single in-
trinsic state in the fermion space, a number-projected,
axially-deformed Hartree-Bogoliubov state. This has the
form
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IA~) Ig~) (18.21)

where

characterizing the admixture of elementary fermion pair
operators, such as the coe%cients P(ab), defined in Eq.
(18.15). After performing a self-consistent calculation
based on the standard pairing-plus-quadrupole Hamil-
tonian, one examines the angular momentum makeup of
the A pair and subsequently compares the values of ob-
servables calculated from the full wave function (18.19)
with values obtained from approximate wave functions
that retain only I.=0,2 (S D) tru-ncation or L =0,2, 4
(S D G) -tru-ncation. The uniform conclusion of all the
investigations (Bes et al. , 1982; Maglione et al. , 1983,
1984; Pittel and Dukelsky, 1983; Maglione, Catara,
et a/. , 1984; Cohen, 1985; Pannert, Ring, and Gambhir,
1985) is that, even though the S Dtru-ncation gives
80—90% of the probability, accurate approximations to
the intrinsic quadrupole moment, to the moment of iner-
tia, and to pair-transfer matrix elements can only be ob-
tained by including the G pair. Here, use of a number-
projected trial function as in Eq. (18.19) is important, but
these conclusions are not sensitive to whether angular
momentum projection is done before or after the dynam-
ics. It appears to be an unavoidable conclusion from
these investigations that, even in the simplest conceivable
problem, the mapping of the intrinsic state (18.19), which
generates an approximate version of the ground-state ro-
tational band, one must include an L =4 degree of free-
dom in the dynamics. We turn then to the description of
the explicit proposals put forward for mapping this state
or one of the approximations to it.

We consider first the method of Otsuka and Yoshinaga
(1986). These authors proposed the mapping

C1
C7

CD

C)

FIG. 21. The rotation matrix element as a function of the angle
P for '"Gd with 6=0.3: solid line, the matrix element for the
multi-A-pair system; dash-dotted line, bosons obtained with the
same amplitude as the A pair (xL =xL ); dashed line, boson ob-
tained for optimized amplitudes. From Otsuka and Yoshinaga,
1986.

satisfying the condition (18.24) at 8=0. An improved
solution is obtained by requiring also that the second
derivative of (18.24) with respect to 8 at 8=0 be satisfied.
Equivalently, this is the condition that the average angu-
lar momentum content be the same in the two intrinsic
states. From calculated examples, for instance, for

Gd, with an assumed deformation parameter of 0.3, as
shown in Fig. 21, the criterion (18.24) is well satisfied
once it is fit near the origin.

However, the mapping of operators is still not deter-
mined. For any number-conserving operator 6, one
would like to impose the condition that generalizes
(18.24), namely,

—x s +x d +x g + ' (18.22)

is the intrinsic boson pair-creation operator and

lgN) (gt)x/2I()) (18.23)

Below, for the normalized intrinsic states, we employ the
notation IC&F ) and l@~ ), respectively. The criterion for
choosing the coe%cients xl is taken to be

&e IR(e)lc ) =-&4 IR(e)lc ), (18.24a)

where

R (8)=exp( i OJ )— (18.24b)

is the rotation operator for a rotation about the (intrinsic)

y axis, assumed, semiclassically, to be the axis of collec-
tive rotation, and 8 is the usual polar angle. IWithout
taking a full detour to justify this assumption in detail, it
may nevertheless be useful to remark that Eq. (18.24a)
was motivated by a desire to have angular-momentum-
projected results correspond in the two spaces (Ring and
Schuck, 1980).] In an earlier communication (Otsuka,
1984), the mapping had been defined by choosing
xL =xl. To a good approximation this is equivalent to

Again one makes the same compromise as was made for
the overlap (unit operator), namely, one equates values
and second derivatives with respect to angle, both evalu-
ated at (9=0. It turns out that these are not enough con-
ditions, for example, to give a unique determination of
the mapping of the quadrupole operator. This permits a
creative adjustment that yields a mapped quadrupole
operator agreeing well with its fermionic counterpart.
The test of this agreement comes from a comparison of
values of diagonal matrix elements in states of definite
angular momentum, obtained by a standard projection
procedure applied to each space.

By considering intrinsic states for neighboring values
of X, we can also extend the procedure described above
for number-conserving operators to pairing operators,
with only a small loss of cogency. The results for the
pairing energy are ofF'by a factor of two, although the in-
dividual angular-momentum-projected pairing matrix
elements are accurately reproduced. Improved pro-
cedures are promised for the future.

Before going on to describe an alternative procedure,
we remark on an interesting and important side issue, the
renormalization of g-boson eAects. This subject was
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treated previously for spherical nuclei by perturbative
methods (Otsuka, 1981; Sage et al. , 1982; Scholten, 1983;
van Egmond and Allaart, 1984). However, for deformed
nuclei these renormalization effects are large enough that
a nonperturbative treatment is necessary. Otsuka and
Ginocchio (1985) have applied a unitary transformation
to an IBM-2 Hamiltonian containing a description of the
coupling between g bosons and the s-d space and have
shown how to determine the parameters of this transfor-
mation so as to decouple the two spaces as much as possi-
ble.

We turn now to a description of an alternative partial
solution (just as the previous work is at best a partial
solution) to the problem of mapping the intrinsic A-pair
state. This work is based on the following hypotheses
(Dukelsky et al. , 1986; Dukelsky and Pittel, 1986a,
1986b):

(i) The values of the xL mapping coefficients are to be
chosen so that the matrix elements of the single-particle
density operator are preserved.

(ii) This proposal is made definite by choosing the
BZM mapping, wherein we recall from Eq. (9.10) that the
elements of the density operators map as linear combina-
tions of elements of the boson density operator. This
makes it easy to satisfy (i) and guarantees that the values
in the intrinsic state of one-body operators will be
preserved under the mapping. This is verified for the
quadrupole operator, as shown in Fig. 22, which illus-
trates a test calculation for a major shell of protons. An
interesting result of this particular rule of mapping, as il-
lustrated by the figure, is that, in contrast to the previous
rule, where the importance of angular-momentum four
effects in the fermion space is directly rejected in the bo-
son space, this form of mapping yields S-D dominance.

The mapping of pair operators presents a special
difBculty in view of the nontrivial square-root operators
that occur and the fact that, since "spherical" bosons are
used in the mapping, a straightforward expansion of the
square root is not permissible. An alternative suggestion,
the expansion of the square root about its deformed aver-
age, appears to provide only a partial solution to the
problem at hand. Here, as well, further developments are
awaited.

We close this discussion with remarks concerning an
intrinsic limitation of both approaches summarized
above. It is well known that the description of the
ground-state band by a fixed intrinsic state is not an ac-
curate basis for calculating the moment of inertia of such
a band, which is well described by the self-consistent
cranking formula (Thouless and Valatin, 1961). The
latter corresponds to a intrinsic state that varies with an-
gular frequency, this variation providing approximately
for the restoration of rotational invariance, as demon-
strated by several authors (Dreizler and Klein, 1965;
Kamlah, 1968; Beck, Mang, and Ring, 1970). The point
is that. , even if one constructs a mapping procedure that
duplicates the properties of the Hartree-Bogoliubov state,
this is far from duplicating experiment, except for

ground-state properties. We remain convinced that the
difficult problem under discussion is still far from a satis-
factory solution.

Precisely this question has been addressed in a recent
paper (de Winter, Walet, and Brussaard, 1988b). These
authors calculate number-projected, constrained
Hartree-Fock-Bogoliubov states as input to separately
done, i.e., one-variable, generator coordinate calculations
for a /3 band, a y band, and a K =1+ state (scissors
mode). The model space was restricted to one major
shell, 50~Z ~ 82, 82~N~ 126, and specifically the nu-
cleus ' Gd was studied. We emphasize that the con-
strained solutions (cranking) provide a continuous mani-
fold of intrinsic operators that, upon angular momentum
projection, further provides a continuous manifold of
S,D, G, . . . , pairs. It is found that keeping the structure
of each pair fixed and varying only their relative ampli-
tudes in the intrinsic pair operator provides a poor ap-
proximation to the potential-energy surface and to the
low-lying intrinsic states. Most of the inaccuracy can be
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Flax. 22. Intrinsic quadrupole moment as a function of P. The
solid curve (denoted Total) was obtained using either the
Hartree-Fock-Bogoliubov intrinsic state or the full boson in-
trinsic state. The s-d and s-d-g curves were obtained by truncat-
ing to only s-d and s-d-g bosons, respectively. From Dukelsky
and Pittel, 1986b.
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repaired by including two fixed sets of pair excitations,
which may roughly be described as ground-state pairs
and 13-band pairs. This raises a serious question. If the
road to a microscopic interacting boson model descrip-
tion is through a band picture, then the clear implication
is that in the deformed region single s, d, . . . degrees of
freedom will not su%.ce for a phenomenological descrip-
tion. But there is the obverse side of the coin, namely, if
the simple interacting boson model picture works, then
the band picture is not necessarily the way to derive it.

D. L. M. Yang's method

The work to which we now turn is closest in spirit to a .

method suggested by Klein (1980b) for attacking the
problem of microscopic foundations, namely, to first map
a subspace of the fermion space, containing only the s
and d degrees of freedom, and subsequently to do re-
stricted dynamics in the boson space. We shall describe
this work (Yang, 1983; Yang, Lu, and Zhou, 1984) in
language that permits us to take advantage of notations
that have been developed previously in this review
without reproducing technical details. (The authors
present their work in rather different terms. ) One deals
throughout with a seniority-based mapping. In addition
to the conventional applications described below, a con-
tribution to the problem of deformed intruder states in
the Sn isotopes should be mentioned (Yang, Song, and
Wang, 1986).

The first conceptual step is to consider a multilevel
mapping of s and d degrees of freedom. As opposed to
the method of Bonatsos (Bonatsos, Peres Menezes, and
Klein, 1988), the technique of mapping utilized by Yang
resembles most closely the OAIT method (Otsuka, Ari-
ma, Iachello, and Talmi, 1978) described in Sec. XVII.
These two methods resemble each other in that the
"coeScients" of the various terms in the expansion are
operator functions of the occupation numbers of s and d
bosons. As we have pointed out in Sec. XVII, they differ
in how the Hamiltonian is mapped as well as in the prop-
erty of the mapping of states that one is not forced. in
higher order to introduce additional degrees of freedom.

The next step is to construct the collective subspace in
the boson space. This is done by linear transformations
of the bosons that preserve number and angular momen-
tum, i.e., they are the boson analogs of Eqs. (18.11) and
(18.15). A technical di%culty appears because the map-
ping of the fermion pair and multipole operators con-
tained square roots of the boson number operators of the
individual levels. Under linear transformation of the bo-
son operators, these become intractable. We faced this
problem as early as Sec. IV, in the discussion of the quan-
tized Bogoliubov transformation. (In fact, Yang's ac-
count makes use of this transformation. ) The square
roots involved are approximated as linear functions of
the number of d bosons with coe%cients depending on
the total number of bosons, i.e., as a first-order expansion
in the number of d bosons.

Using the procedure outlined above, the mapped
operators, including the Hamiltonian, are determined to
the order required to yield a formalism of the IBM type,
except for the extra dependence on the number of d bo-
sons, provided one has done appropriate dynamics to
determine the correlated bosons. To solve the latter
problem, it is natural to apply the Hartree-Bose method,
first described in Sec. XIV. One is finally free to con-
struct the eigenstates of the determined Harniltonian in
an IBM basis. The formalism can also be extended to
odd nuclei.

Calculations have been carried out with a standard
schematic Hamiltonian of the same form as used in Sec.
XV. Because of the unavailability of suitable computers,
the calculations are not su%ciently realistic, compared to
some of the work discussed earlier in this section, for us
to quote at this time. In effect, coupling strengths were
adjusted unrealistically in order to reach agreement with
experiment. We believe, however, that the method (still
incomplete because the problem of renormalization
effects of neglected parts of the space has not been con-
sidered) is a promising one that is deserving of further
study.

A final comment of a technical nature is required.
Yang would have us believe that he does the theory com-
pletely in the fermion space, in contrast to the descrip-
tion we have given of his work. But we have explained
several times in this review that the orthonormal boson
basis can be thought of, equivalently, as a basis in the fer-
mion space. Yang's assertions must be understood in this
sense.

E. Non-Hermitian mappings

We study next methods based on versions of the gen-
eralized Dyson mapping. The first work of this kind
(Zirnbauer and Brink, 1982; Zirnbauer, 1984) was also
the first actually to produce a spectrum from an IBM-like
Hamiltonian, albeit a non-Hermitian one. If Zirnbauer
had utilized a schematic Hamiltonian such as that dis-
cussed in Sec. XVI and preceding sections, we could have
described his work as the Dyson mapping of the broken-
pair approximation, in that the fermion 5 pair was deter-
mined as a number-conserving Cooper pair (albeit in an
approximate manner), and the fermion D pair was deter-
mined as a one-phonon state in which the angular
momentum can be carried either by a neutron pair or by
a proton pair, in short, as a Tamm-Dancoff phonon. The
details of the mapping can be understood by reference to
the more recent work of Takada described in Sec. XVI.
As we have explained there, when the Hamiltonian con-
tains a sufBciently general two-body force, the mapping
of the Lie algebra fails to determine a unique mapping of
the Hamiltonian. In order for the mapping of the Hamil-
tonian to preserve both the pairing and the multipole
properties of the interaction, a general procedure is to
map so that the equation of motion, i.e., a set of commu-
tators of generators with the Hamiltonian, are preserved
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=exp —gy, 2(~, A)a, a2 IO&,
1

12

(18.26)

where the numerical subscripts each stand for a complete
set of single-particle labels, and the pair operators S and
D are special cases of Eqs. (18.11) and (18.15). Since we

in a suitably chosen subpace. Alternatively, one may ap-
ply the OAI method of preserving the matrix elements of
the Hamiltonian in this subspace. Zirnbauer applies a
version of the latter method in which the space chosen is
a six-parameter space of intrinsic states.

The calculation is based on the fermion intrinsic state

ly&=ly(~, ~)&—=exp rs'+yX„D„' Io&
P

a 1 2 b 12 x b 11'b 22'b 1'2'
1'2'

(18.27a)

a2a 1 ~612

a,a2~+ b, 3b2
3

(18.27b)

(18.27c)

The mapping is then defined in the first place by a
correspondence of states

want to consider different values of the parameters ~ and
A, in the bras and in the kets, we utilize subscripts I. and
R to render this distinction. To define the mapping pro-
cedure, we introduce the usual Dyson mapping to an-
tisymmetric bosons,

IP(+R ~~R ) & INB(+R &~R )) exp g x12(+R ~~R )(b12 g b 11'b22'bi'2')
2 12 1'2'

(18.28a)

1
(pB(&L, ~L ) I

=(ol exp —&X12(&L ~L )b i2
12

(18.28b)

To the prescription just given, we must add a mapping of operators. In particular, we seek a boson Hamiltonian H~, to
be determined by the requirement

(18.29)

We are interested in finding an approximate version of Eq. (18.29) such that the boson Hamiltonian is a non-
Hermitian version of an IBM-1 Hamiltonian,

HB=e, s s+e'dd d+uos s ss+u2s d ds+(uo"s s d d+uo 'd d ss)

+(u2's d (d Xd)' '+u'"'(dtXd )' ' ds)+ g cL(d Xd )' '(d Xd)'
1.=0,2, 4

(18.30)

It is, however, impossible to satisfy Eq. (18.29) by the form (18.30) unless the left-hand side of the former is suitably ap-
proximated. The procedure for doing this requires several steps that we give in outline only. One first demonstrates
that the Hamiltonian overlap can be written in the form

&p(~L, ~L)IHI&(rR, &R) & =&&(~„~L)lp(~R,&R) &I &01[&L,H]& tR I0&+-,'&0l[&L, [&L,H]]& tR& R I0&i

=
& y(r„XL ) ly(rR, XR ) & X I &ol&L [H, &,'] I0&+ ', & 01&L&L[[H,-&Rt ],&Rt ]10& ], (18.31)

where the undefined quantities are

~L g +12(TL XL )a ia2
2 12

(18.32a)

+ R g [X(+R ~R )( +X(+L ~L )X( R ~R ) ) ]12 1 2
12

(18.32b)

Now for the mapping (18.29) to be exact [with HB given by Eq. (18.30)], in the sense that the energy eigenvalues are the
same in the two spaces defined by the corresponding intrinsic states and a one-to-one correspondence between fermion
and boson eigenstates can be established, it is necessary that the S-D subspace completely decouple from all other
states. This happens if and only if &Ol[B,H] and &Ol[8, [B,H]] lie in the S Dsubspace for any-8 that is a linear corn-
bination of S and D„(Ginocchio and Talmi, 1980). In situations where these stringent conditions are not satisfied ex-
actly, one projects on the S-D subspace:

&y(~„X,IHIP'(~„X„)&
—= & y(r„z, )IHIP'(~„z, ) &,„.,
= & p(rL, ~L ) I p(rR, ~R ) & I & 0I [&L,H ]I'»& ', I0 &+ ,' & 0I [&L, [&L,H ]]I'»-& tR ] lo & . (18.33)
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The substitution of Eq. (18.33) for the left-hand side of
(18.29) now provides a consistent condition that serves to
determine the parameters of (18.30). For the technical
details of this determination we refer the reader to the
original papers.

The discussion above pertains to IBM-1. The exten-
sion to IBM-2 was made by adding a quadrupole-
quadrupole interaction between neutrons and protons.
The resulting Hamiltonian was applied to the low-lying
levels of the samarium isotopes. The spectra found sufFer
from the same disease as was encountered by many early
workers in the field, namely that the energy levels are
much too far apart. This point has already been dis-
cussed several times, in this section in connection with
the broken-pair approximation and previously in connec-
tion with our account of Tamura's program; it will not be
dealt with further here. Both in this regard and because
Zirnbauer was not aware of how to calculate transition
rates within the Dyson formalism, this work, elegant
though it is from the formal point of view, remains quite
incomplete from the practical side.

Sugita (Sugita, Sugawara-Tanabe, and Arima, 1984)
has studied the validity of the Zirnbauer mapping for a
system of neutrons and protons, each moving in a single-j
level and described by a standard schematic Hamiltoni-
an, namely, pairing-plus-quadrupole interactions. Not
surprisingly, it is found that the S-D truncation is ap-
propriate for spherical or for weakly deformed systems,
in that the Dyson procedure yields the same spectrum as
a diagonalization of the Hamiltonian in the 5-D sub-
space. For strong deformation, there are large devia-
tions. Since neither of these calculations is exact, it is not
clear whether either is accurate.

Next we discuss briefly recent work of Sambataro
(1986, 1987, 1988a, 1988b; for related earlier work see
Sambataro and Insolia, 1986; Sambataro, Schasser, and
Brink, 1986). This work is confined to the single-j level
and quadrupole-quadrupole interactions; it is not yet
clear that it will work for more realistic systems. In-
spired by the "simple correspondence" idea of Ginocchio
and Talmi (1980), Sambataro first constructs a (non-
Hermitian) boson Hamiltonian that reproduces exactly
the appropriate set of low-lying levels of his model sys-
tem for two and four particles (we discuss only even sys-
tems of one type of nucleon). As a general mapping pro-
cedure, he adopts the same criterion, in principle, as uti-
lized by Zirnbauer, namely, the preservation of the Ham-
iltonian overlap between intrinsic states. The Hamiltoni-
an that works for the few-particle system then fails this
test, but he makes the interesting observation that by
shifting the ground-state energy and rescaling his boson
Hamiltonian, both changes depending on particle num-
ber and level degeneracy, he is able to satisfy his mapping
criterion to good accuracy. So far, Sambataro's work is
restricted to single-j descriptions and to quadrupole-
quadrupole interactions.

An important critique of those mapping procedures for
the quadrupole operator that omit all contributions but

those of the collective operators has been made by de
Winter (de Winter, Walet, and Brussaard, 1988a).
Though the calculations are carried out within the frame-
work of the Dyson mapping, the results are equally ger-
mane to Holstein-PrimakofF work. De Winter et al. first
carried out a number-projected HFB calculation for a
model system with one kind of nucleon, in a model space
representing a realistic version of the 50-82 major shell
and with a schematic Hamiltonian consisting of pairing-
plus-quadrupole-quadrupole forces. The strength of the
latter was varied in order to control the deformation pre-
dicted by the model. The quantity chosen for study un-
der the mapping was

(x g, Ix) (XIg x)
(xIx) xIx

(18.34)

where the operators on the left and right are the fermion
quadrupole tensor and its mapped boson counterpart, re-
spectively, and the states in question are

Ix ) = I(s'+xD,'P)
in the fermion space, with the bra

(x
I
=((s+xdo)

(18.35)

(18.36)

1 (1., )

(AL M I.AJM AL M j j g Zbd I. b d j
L2 M

(18.37)

yields a set of primed coefficients that can be used to
define primed bosons that almost commute with the
unprimed ones and that prove most efFective to solve the
problem at hand. What we have here is a possible basis
for a renormalization procedure.

F. Fermion dynamical symmetry model
and the interacting boson model

The fermion dynamical symmetry model (Casten
et al. , 1986; Chen, Feng, and Wu, 1986; Wu et al. , 1986;
Wu et al. , 1987; Lu et al. , 1988) is a simplified shell mod-

in the boson space taking this simple form because of Eq.
(18.27b). By the same token, because of Eq. (18.27a), the
mapping of the kets is more complicated. The latter in-
volves the mapping of collective linear combinations of
both sides of Eq. (18.27a). Because of angular momen-
turn coupling, bosons other than the collective ones will
occur in the trilinear term. What these authors demon-
strate rather convincingly is that, unless one includes
some contributions other than the purely collective ones,
the numerical requirement (18.34) cannot be satisfied.
They show that in addition to the usual s and d bosons,
they require an additional pair of bosons s' and d' in or-
der to achieve their goal. The structure of these addi-
tional bosons is determined by the following algebraic ar-
gument: Let Z,b be the expansion coefficients of the s
and d bosons in terms of the elementary bosons of Eq.
(18.27), and define a fermion pair by means of the same
linear combination, A~M =

—,'Z, b [a,ab ]M. The calcula-
tion of a double commutator
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el and, as such, does not strictly belong in this review. In
fact, no effort will be made to do the model justice by
entering very deeply into its confrontation with data.
Rather we shall be concerned with broad technical issues,
mainly the relation between this model and the interact-
ing boson model, insofar as light is shed on the questions
of interest by boson correspondences. The fermion
dynamical symmetry model proposes a way of converting
the Ginocchio models, SO(8) and Sp(6), into a useful phe-
nomenological description of collective motion that
operates in the original shell-model space. We have al-
ready remarked how the SO(8) model contains the vibra-
tional and y-soft limits of the interacting boson model.
Furthermore, the Sp(6) model contains an SU(3) subalge-
bra that one might wish to associate with the deformed
limit of the IBM. If it is assumed, however, that all the
subshells participate in the representation, then because
of Pauli principle restrictions, it can be shown that the
most symmetric representation, that utilized in the de-
formed limit of the IBM, cannot occur. For this reason,
Sp(6) was excluded initially as a candidate for the micro-
scopic basis of the interacting boson model. What has al-
tered the picture is the assumption that the unnatural
parity level (which occurs in each major shell beyond the
lowest few because of spin-orbit coupling) does not, in
fact, participate in the scheme, but instead forms, in
lowest approximation, a system with seniority zero.
With this assumption, it then turns out that the remain-
ing levels of every major shell can be analyzed and as-
signed as being either k-active [Sp(6)] or i-active [SO(8)].
For the heaviest shells, this assignment is unique, and
otherwise both possibilities can occur. [The notion of k-
active or i-active was essentially introduced in Sec. XVII,
referring to either the pseudo-orbital (k) or the pseudo-
spin (i) angular momentum's not being coupled in pairs.
As indicated above, the former leads to Sp(6), the latter
to SO(8) symmetry. ]

Both of the algebras under discussion can be mapped
onto an s-d boson space, and because of number conser-
vation these mappings can always be expressed in terms
of the generators of U(6). We may therefore ask in what
sense the fermion dynamical symmetry model is more
general than the IBM, and also in what sense, if any, it is
less so. In this connection, we take what may not be a
universally accepted view, but one that we have already
espoused in Sec. VIII.B. Forgetting for the moment
about g bosons and other necessary complications of real
life, we take the point of view that IBM-1 is defined sim-

ply as physics in a symmetric representation of U(6),
whose size X (the number of bosons) may or may not be
determined by the nearest closed shell. While hoping for
simplicity, of course, it then becomes the business of the
experimentalist to tell us if the Hamiltonian can be re-
stricted to two-boson terms or if transition operators are
linear in the generators. In this sense, any physics con-
tained in the fermion dynamical symmetry model can
also be accommodated within our definition of the in-
teracting boson model.

As is well known, U(6) has only three (linear) chains of
subalgebras, ending with the physical angular momentum
and corresponding to the vibration, y-soft, and rotational
limits, all of which have some experimental underpin-
ning. On the other hand, the fermion dynamical symme-
try model, in its SO(8) incarnation, has, in addition, an
SO(7) chain. There may well be evidence for the oc-
currence of this symmetry in the Ru and Pd isotopes
(Casten et al. , 1986). Another general type of evidence
for the specific validity of the fermion dynamical symme-
try model arises if one makes the assumption, for in-
stance, that the quadrupole generator of the appropriate
fermion dynamical symmetry algebra is to be used as the
physical quadrupole operator in confronting experiment.
Its boson map then contains unique Pauli reduction fac-
tors that can be tested against experiment. Though there
may be some positive evidence for the model in this re-
gard, it should be noted that any bona fide mapping from
the shell model to the s-d boson space will contain Pauli
reduction factors other than those that appear explicitly
in the phenomenology of the interacting boson model, so
that one must be careful to distinguish between evidence
for the Pauli principle, and evidence for a specific fer-
mion model. Nevertheless, the data can be read as sug-
gesting that the fermion dynamical symmetry model may
be, at the very least, a useful first approximation to the
shell model. In this regard, there intrudes the most seri-
ous question concerning its basis: 'Where is the effect of
the splitting of the single-particle levels?

To terminate this all-too-brief discussion, we return to
one of the issues discussed above, where bosons inter-
vene. In a recent contribution (Geyer, Hahne, and
Scholtz, 1987), it was pointed out on the basis of a
specific mapping that, since the SO(7) limit could be ac-
commodated within the s-d boson framework, it was not
clear what purpose, if any, is served by the fermion
dynamical symmetry model. Though we were in danger
of approaching such a viewpoint above, because our
definition of IBM-1 renders the observation of Geyer
et al. a truism, we nevertheless cannot follow them to
their conclusion. To have a theory as relatively simple as
the fermion dynamical symmetry model as a halfway
house between the full complexities of the realistic shell
model and the interacting boson model is manifestly of
interest and importance. Furthermore, the fermion
dynamical symmetry model can be viewed in the same
light as the broken-pair approximation in that an entire
major shell can be decomposed into subspaces of different
heritage quantum number u (defined in Sec. XVII). In
the sense that collectivity at low energies can be associat-
ed largely with the u =0 subspace, the scheme may have
great advantages for approximate shell-model calcula-
tions in heavy nuclei (Novoselsky, Vallieres, and CTil-

more, 1988; Chen et al. , 1989; Wu and Vallieres, 1989).

G. Interacting ferrnion-boson rnodeI

Though the IBM-1 is generally understood to be a phe-
nomenological model, the interacting boson-fermion
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In this formula, the coefficients 13jj, are normalized
coefficients defining the collective D pair,

model (IBFM) is often referred to as semimicroscopic.
This can be understood if we elaborate on the very brief
allusion to the derivation made in the introduction to this
section. From the point of view that has been most con-
sistently followed in this review, the most satisfactory
method of founding a boson-fermion model would be to
utilize a generalized quantized Bogoliubov transforma-
tion, as advocated in Sec. V, in which the s and d degrees
of freedom are bosonized and the remaining degrees of
freedom are treated as quasifermions. Precisely this ap-
proach, carried out approximately, can be found in the
work of Scholten (Scholten and Dieperink, 1981). To the
lowest order in the d bosons, the mapping of the original
fermions a ~ onto s and d bosons and quasifermions c.
is rendered by the formula

The most painstaking effort to check the IBFM from a
microscopic broken-pair calculation for odd nuclei is
found in a work of van Egmond and Allaart (1983),
where the IBFM form (18.5) was applied to two isotopes
of Xe, 125 and 131, without utilizing the special assump-
tions (18.6)-(18.8). A comparison of the microscopically
computed parameters I,b with those given by Eq. (18.7),
shown in Fig. 23 is impressive. A corresponding compar-
ison of the values of AJb of Eq. (18.8) was given by these
authors only for a&b, because the phenomenological fits
do not include the term (18.6), and this prevents our
disentangling the diagonal elements. The results, not
reproduced, are quite reasonable.

The well-developed approach described above is, of
course, applicable only to vibrational nuclei. A first
effort to develop an IBFM formalism applicable to de-
formed nuclei has been reported (Wood and Morrison,
1988) that has detailed formulas applicable only to the
s-d shell model. It is suggested, however, that the for-
malism may be extended to heavy deformed nuclei by
means of the pseudo-SU(3) model.

An important critique of the IBFM methodology has
appeared recently (Geyer and Morrison, 1989). In princi-
ple, the mapping of single-fermion operators should be

~JJ ~JJ 'I J 'Ill ~ (18.39)

0- -0
Thus Eq. (18.38) is to be understood as an approximate
mapping formula within the framework of the broken-
pair approximation.

The initial application of Eq. (18.38) was to the
quadrupole-quadrupole interaction as the major source of
the terms of Eq. (18.5) depending on I,&, the so-called
direct interaction, and of the terms depending on A,b,
the exchange interaction. It was later remarked (Bijker
and Scholten, 1985) that the quadrupole pairing interac-
tion was an important source of the exchange interaction,
or perhaps the most important source (Otsuka et al. ,
1987; de Kock and Geyer, 1988). The form of the
boson-fermion interaction actually used to confront ex-
periment, as given in Eqs. (18.6)-(18.8), involves further
simplifications, the main ones being that

m3
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I I
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gjj, =&t—,'jll&"'III' j'& .

(18.40)

(18.41)
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The former follows from the assumption that the D pair
carries the full E2 sum-rule strength (Scholten and
Dieperink, 1981), whereas the latter assumes that the ra-
dial integrals in a given shell are equal, with a value that
can be incorporated into an overall scale factor. The
various constants that appear in Eqs. (18.6)-(18.8) are
now taken as fitting parameters, and with this phenome-
nological viewpoint the model has been rather successful
in fitting data. For a review, see Scholton (1985).

k 4 L I L L I k 4 a I I I I
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FIG. 23. Comparison of microscopically calculated values of
I,b (solid line) and those obtained from the formula used
in the interacting boson-fermion model: I,b=i (allr /
b Y'2llb)(u, ub v, vb); I =0.13—MeV (dashed line). From van
Egmond and Allaart, 1983.
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su%ciently accurate that one be able to recover the map-
ping of generators of the shell-model algebra by forming
suitable products (and possibly taking linear combina-
tions). This is true for the examples of the quantized
Bogoliubov-Valatin transformation that appear in this re-
view, but it is not true for Eq. (18.38). This remains an
open problem, whose solution should be amenable to the
methods described in Sec. XIX.

H. Other contributions

We conclude this section with a description of works
that clearly have some relevance to the subject matter at
hand, but do not fit neatly into any of the categories pre-
viously established. We start with a recent algebraic con-
tribution (Kyrchev and Paar, 1986, 1987, 1988). A brief
account of related work appeared earlier (Baktybaev and
Strygin, 1981). The inspriation for this work goes back
to a paper that contained an independent proposal of
U(6) (IBM) ideas, with a derivation that was weakly mi-
croscopic and utilized the quasiparticle picture (Janssen,
Jolos, and Donau, 1974). By weakly microscopic, we
mean that an algebraic argument was presented to justify
the emergence of an SU(6) boson picture without in any
way providing a reliable method of computing the pa-
rameters. The main purpose of the new work is to
strengthen the algebraic arguments. BriefIy, the treat-
ment utilizes the quasiparticle RPA phonon creation
operators Qz„;, whose Hermitian conjugates annihilate
the RPA vacuum. The three subscripts denote angular
momentum, its z component, and a label to resolve solu-
tions with the same angular momentum content. The
collective operators are assumed to be those with k=2,
i =1. The quasiparticle shell-model algebra is written in
terms of these operators. The subalgebra generated by
the commutators involving the collective operators is
then forced to close under itself by the common ex-
pedient of simply dropping the unwanted ("scattering")
terms. This is trivial, but unfortunately what remains
does not constitute a Lie algebra. The nontrivial step
comes next in forcing the Q, the Q, and their mutual
commutators, 35 operators in all, to satisfy appropriate
Jacobi identies. This leads to constraints on the RPA
solutions that they do not necessarily satisfy. Kyrchev
and Paar talk about redefining the dynamical problem so
as to incorporate the new constraints, but how well this
can be done remains a key question with their approach.
This is, however, the same problem that arises in most re-
cent work of Takada et al. discussed in Sec. XVI, who
solved it approximately by the introduction of a single
scaling parameter that modifies the definition of the most
collective mode. In any event, the method of Kyrchev
and Paar is still weakly microscopic, in the sense defined
above, since it is difIicult to see how even the modified
RPA excitations will serve for the physics of all the re-
gimes to which the interacting boson model is applicable,
though one may be able to go beyond the point of break-
down of the usual RPA.

Still another novel attempt to derive the interacting
boson model starting from the language of quasiparticles
has been described in the recent literature (Ivanova,
Jolos, and Pedrosa, 1989). The basic new theoretical con-
tribution here is the derivation of approximations to the
square-root operator (which occurs in the Holstein-
PrimakoF mapping) that avoid perturbative expansions,
in part at least. It is not clear from this first account if
this approach ofI'ers any advantage over the seniority-
dictated mapping described in Sec. XVII.

It is important to mention, finally, a unique and pre-
cisely formulated program in the course of execution by
Elliott, Evans, and their collaborators (Evans, Elliott,
and Szpikowski, 1985; Elliott and Evans, 1987; Thomp-
son, Elliott, and Evans, 1987; Elliott, Evans, and Van
Isacker, 1988; Evans, Van Isacker, and Elliott, 1988).
This work is devoted to the study of a mapping of a sin-
gle j shell of neutrons and protons to the IBM-3 form. In
IBM-3, because one is dealing with a situation in which
charge independence is being enforced, it is necessary to
adjoin a neutron-proton (v-n. ) boson to the v-v and vr 7r-
bosons of IBM-2 to constitute altogether a T = 1 isospin
triplet. One then investigates —in the sense of the
OAI —the mapping of an isospin-invariant seniority
shell-model basis to a boson basis. Consider first the
two-fermion system. Focusing on the s and d degrees of
freedom only, one identifies the states that will have a bo-
son counterpart and refers to these as the boson states;
the exact shell-model energies of these states provide the
single-boson energies of the boson Hamiltonian (specific
calculations refer to the f7&2 shell). Next, the OAI pro-
cedure and the chosen subspace fix the membership of
the two-boson (four-fermion) states. An exact shell-

model diagonalization in the four-fermion space will

yield —if the seniority coupling scheme that underlies the
procedure is germane to the shell-model Hamiltonian
chosen —a number of eigenstates that are predominantly
of bosonic type, and, from these, matrix elements of the
boson-boson interaction can be deduced. Finally, the va-

lidity of the entire procedure is tested by comparing the
exact spectrum and wave functions of the six-fermion
system with the three-boson results derivable from the
IBM-3 Hamiltonian. A corresponding program was also
carried out for odd systems, thus defining IBFM-3. We
remark, finally, that in studies of the nuclear s-d shell an
additional v-m. , T=O boson was introduced, thus defining
IBM-4 (Halse, Elliott, and Evans, 1984).

XIX. BOSE-FERMI MAPPINGS AND QUANTIZED
BOGOLIUBOV TRANSFORMATIONS: FURTHER
EXAMPLES AND RELATION
TO COHERENT-STATE METHODS

A. Survey of literature on generator
coordinates and boson mappings

The remainder of this review is concerned with recent
theoretical developments. Before turning to the main
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business of this section, we feel duty-bound to mention
some prior developments that are of more than tangential
interest. As we have already pointed out as early as Sec.
II and shall emphasize again below, Dyson mappings can
be derived either algebraically, as we have done in this
work, or by a method based on coherent states. There is
at least one topic of interest to physics, however, for
which the use of coherent states is almost indispensable,
namely understanding the foundations of the method of
generator coordinates and its connection with boson ex-
pansions. Though we shall not provide the technical de-
tails (because competent reviews exist, see below), a brief
survey of the relevant literature is in order.

The method of generator coordinates was introduced
into nuclear physics to treat collective motion (Griffin
and Wheeler, 1957) and to restore symmetries broken by
Hartree-Fock calculations (Peierls and Yoccoz, 1957;
Peierls and Thouless, 1962). In this latter connection, the
projection of states of good angular momentum from in-
trinsic deformed states and the projection of states of
sharp particle number from BCS states remains a funda-
mental tool of the nuclear shell-model theorist (Ring and
Schuck, 1980). A decisive turn may be said to have been
taken with the paper of Jancovici and Schiff (1964),
which introduced complex generator coordinates in a
derivation of the RPA, and with the subsequent quasibo-
son interpretation of this work (Brink and Weiguny,
1968; Ui and Biedenharn, 1968; da Providencia, 1970).
This work is reviewed by Wong (1975). More recent de-
velopments in this field are reviewed by Reinhard and
Goeke (1987).

Our main interest in this subject, however, is in the
theoretical connection between generator coordinates
and boson expansions. Here the ground-breaking papers
include a series of works by Holzwarth (1968, 1969, 1970,
1971) which apply generator coordinate methods in a bo-
son basis, microscopically derived, culminating in the
derivation of a complete boson mapping (Holzwarth,
1972) that may be characterized loosely as a summed
form of the Marumori mapping, non-normal ordered.
Simple applications (da Providencia, Urbano, and Fer-
reira, 1971; Caldeira, Pascoal, Ruivo, and Silva, 1972)
and fundamental mapping theory (da Providencia, 1974)
were also carried out by da Providencia and associates.
Other seminal works (Janssen, Donau, Frauendorf, and
Jolos, 1971; Hage-Hassan and Lambert, 1972) contain
complete derivations of the Dyson and Marumori map-
pings on the basis of the method of generator coordi-
nates, understood as a mapping between two Hilbert
spaces. The work of Janssen et a/. , in particular, has
been a rich source of inspiration to subsequent workers.

We have already sprinkled this review with some ex-
amples of the ideas involved in this approach (Secs. II
and IV). We have indicated that the Dyson mapping can
be obtained naturally in two ways, either algebraically, as
we have mostly favored doing it, and as di8'erential
operators on generalized coherent states —which in nu-
clear physics means either Slater determinants or BCS

states. A rigorous systematization of the latter approach
has been given by Dobaczewski (1981a, 1981b, 1982),
whose work, in our opinion, has not received the atten-
tion it deserves. An updated version of some of the ideas
developed by Dobaczewski, influenced as well by the
more recent work described below, can be found in Xu,
Wang, and Yang (1987).

B. Survey of main ideas

One chief purpose of this section is to relate some of
the methods of this review to a recent development of
great practical significance in the theory of matrix repre-
sentations of Lie algebras, including all representations of
compact algebras and the analogous ladder representa-
tions of associated noncompact algebras. This develop-
ment is associated with the rubric "vector coherent state
theory" (Deenen and Quesne, 1984; Rowe, 1984; Rowe,
Rosensteel, and Gilmore, 1985), and, as such, has already
been reviewed in the monograph by Hecht (1987a). The
accomplishments of this program to date are amply do-
cumented in Hecht's book as well as in the introductory
sections of several recent papers (Rowe, Le Blanc, and
Hecht, 1988; Hecht, 1989). The papers most directly
linked to the contents of this section are those of Hecht,
Le Blanc, and Rowe (1987); Le Blanc and Hecht (1987);
and Le Blanc and Rowe (1987), though in many respects
these papers develop detailed results well beyond any-
thing we shall describe.

It is not our aim in this section to give a detailed ac-
count of this work, which includes generalizations of
some of the results described in this review. Aside from
limitations of space, our reason for avoiding most of the
details of these papers is that they are not couched in the
language of boson realizations, though the authors are
fully aware of many direct and indirect relations. In-
stead, our purpose will be to describe and illustrate the
elements of the method within a framework that is com-
pletely adapted to the needs of the nuclear shell model.
We shall then And that the natural language for our pur-
poses is that of boson-quasifermion mappings. In this
respect, the work described in Sec. III.E, on the quan-
tized Bogoliubov transformation, and in Sec. X
represents the equivalent of fully worked out examples of
the new technique. Though this work is not sufficiently
complex to illustrate all the strengths of the method, it
contains enough information to permit us to describe its
elements in general form, illustrating the arguments with
these examples. (Some readers may find this exposition a
useful reprise. ) Following these general arguments (and
reinterpretations), we shall illustrate with two examples
the case of U(n), which has already been fully worked out
previously (Hecht, Le Blanc, and Rowe, 1987; Le Blanc
and Hecht, 1987) and a special case of SO(20+1) (Klein
and Marshalek, 1989) that we shall present first.

The first point to recognize is that for the Lie algebras
of interest to us, the generators can be divided into three
subsets: raising (creation) operators, lowering (destruc-
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tion) operators, and members of a core subalgebra. For
SU(2), the most trivial case, each set has a sole member,
J+, J, Jo, respectively. The core subalgebra here is
U(1). For the orthogonal algebra SO(4Q), discussed in
Sec. IX, the sets comprise the fermion pair creation
operators, the pair annihilation operators, and the mul-
tipole operators, respectively. The latter span the core
subalgebra U(2Q). Note that in this case the raising
operators all commute and are Hermitian-conjugate to
the lowering operators. The elements of the core
subalgebra are or can be chosen to be Hermitian. For the
algebra SO(4Q+1), studied in Sec. X, the core algebra
remains the same, but the single-fermion creation opera-
tors are added to the set of raising operators and their
Hermitian conjugates to the set of lowering operators. In
constructing the boson-quasifermion mapping, we treat
the single-fermion operators differently from the pair
operators. This extra complication is quite natural from
a physical point of view.

The next element to recall is the special (simple) char-
acter of most of the mappings discussed in this paper,
namely, mappings in which we introduced one boson
creation operator per raising operator. We also restrict
further considerations to the mapping that utilizes the
core subalgebra in the group chain that specifies the
basis. Furthermore, we perform the mapping to a uni-
tary basis in two steps, going through the intermediary of
a generalized Dyson mapping. Concentrating on the
latter, we have already emphasized that it can be derived
in two ways. One approach makes use of the coherent
state, leading to a realization in terms of differential
operators acting on a space of holomorphic functions [cf.
Eqs. (2.47) —(2.51)]. The other is the algebraic approach
that we have emphasized in this review, which provides a
standard, uniformly applicable procedure that has been
described several times: first, lowering operators are
chosen proportional to the appropriate boson destruction
operator. Since the raising and lowering operators form
irreducible tensors under the core subalgebra, this im-
plies that the bosons are also such tensors. The genera-
tors of the core subalgebra are thus uniquely determined
as bilinear forms in the bosons, and the raising operators
are then necessarily a linear combination of linear and
trilinear forms in the boson operators. The remarks
above imply that this trilinear operator must have the
form of a commutator of the boson creation operator
with an invariant of the core subalgebra, called A, that is
a linear combination of the quadratic Casimir operator
and a polynomial of second degree in the linear Casimir
operator. The operator A plays an essential technical
role in the further development. [These observations,
made independently by Rowe (1984) and by Klein,
Cohen, and Li (1982), have been dubbed the "Toronto
trick" by Hecht (1987a)]. The algebraic method just de-
scribed is well defined and completely equivalent to the
use of the coherent state.

The special class of boson realizations described above
is referred to in the literature on vector coherent state

methods as the class of collective realizations. They can
be characterized by the property that the state of max-
imum weight (the vacuum state) is itself a one-
dimensional irrep of the core subalgebra. The essential
new observation is that all the irreps (of ladder type) can
be constructed by letting the same set of boson operators
act on the states of an arbitrary irrep of the core subalge-
bra. (These latter irreps are said to define the intrinsic
space. ) The proof of this assertion is that it can be shown
that the direct product of the boson space with the in-
trinsic space provides the correct number of labels for a
unique specification of the basis for a general irrep. This
direct-product (commuting) character of the two spaces
plays an essential role in the construction of mappings.

The Dyson mapping for the general irrep can now be
constructed by allowing the generators of the algebra to
act on vector-valued or generalized coherent states which
are related to the scalar coherent state by the replace-
ment of the single state of extreme weight by an irrep of
the core subalgebra, the intrinsic representation. Though
somewhat more complicated in detail, the structure of
the generalized Dyson mapping is quite similar to the
scalar case. The lowering operators are unchanged, but
the generators of the core subalgebra are now a direct
sum of the previous collective (bosonic) part and of an in-
trinsic part, in consequence of the direct-product charac-
ter of the basis states. The raising operators must once
more be commutators of the boson creation operators
with group invariants of first and second order in the
generators of the core subalgebra. As we have already
seen in Sec. X, it is straightforward in the general case to
derive the Dyson mapping by purely algebraic means;
this point will be illustrated again in this section.

The unitarization of the Dyson mapping proceeds in
the same manner as has been illustrated on numerous oc-
casions in this paper, except that applications to consid-
erably more complicated examples have been carried
through. An important contribution of the new method
is to provide a natural solution to the vexing problem of
missing labels that occurs when a group chain whose
choice is dictated by physical considerations does not
provide enough labels associated with the Casimir invari-
ants of the subgroups to fully specifiy the basis. We shall
illustrate this point in subsection D for the famous case
of SU(3).

The most important new point we have to contribute
to this section is the observation that, for application to
nuclear physics (and probably for other cases as well),
there is a most natural realization of the intrinsic repre-
sentations of the core subalgebra, namely, that in terms
of quasifermions. This was certainly made completely
explicit for the case of the quantized Bogoliubov trans-
formation for the SU(2) algebra, which in the language of
coherent states involves only the scalar case. It is amus-
ing to observe, however, that the material presented in
Secs. IX and X can be viewed in two different ways.
From the standpoint of the algebra SO(4Q+ 1), the map-
ping developed in Sec. X constitutes a single irrep and an
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example of the scalar coherent state (or, in our approach,
of its algebraic equivalent). Qn the other hand, from the
point of view of the algebra of pairs only, the algebra
SQ(40), these same results constitute an application of
the vector coherent state, in that the realization of the
pair operators comprises not only a representation based
on the vacuum state as intrinsic state, but also represen-
tations based on one-fermion states, i.e., intrinsic states
that form the defining representation of the core subalge-
bra U(2Q). Within this framework, the mapping of the
single-fermion operators is interpreted as that of special
tensors under the smaller group and can furthermore be
understood to define implicitly (i.e., in operator form) a
class of Clebsch-Gordan series. This was also the role of
the quantized Bogoliubov transformation and is an idea
that we wish to emphasize as the basis for future develop-
ments. In any event, the observations recorded above
will be illustrated fully in the two examples worked out in
this section.

C. Boson-quasifermion realization
of the particle-hole SO(20+1) algebra

lc„cJj =61J, [cI cJj = lc~, cI j =0,
lc„,c'j = Ic, ,c"j= [c',c j =Ici., c, } =0 .

(19.1a)

(19.1b)

As is well known, the set of all bilinear fermion opera-
tors

[C C, COCCI, C C, chic;, 2(C CJ=CJC ), C Cp, c C; j (19.2)

spans the Lie algebra corresponding to the group
SO(2A), while the set obtained by adjoining the linear
fermion operators i(cI+c )/2, i(cI —c )/2 spans the
algebra of SO(2Q+ 1). We now introduce the notation

I—IAJ =c CJ

R 'p=c'c p, R =c c-
EP P E

(19.3a)

(19.3b)

—=c c, RIJ =cJcI, 2 ' —=c'c„, A,E':c"c, ,—(19.3c)

throughout an equation by either hole or particle values,
i.e., there are really two equations, one for holes and one
for particles. Unless stated otherwise, the summation
convention for repeated indices is assumed to hold. Thus
the fermion anticommutation relations are given by

1. Introduction
=c, AI=cI—I (19.3d)

The boson-quasifermion mappings of the particle-hole
algebra were first derived independently by Marshalek
(1980a, 1981) and by Geyer and Hahne (1980a, 1983) us-

ing traditional techniques. While both obtained the
nonunitary generalized Dyson realization, Marshalek de-
rived in addition the unitary generalized Holstein-
Primakoft realization. Afterwards, Kuriyama and
Yamamura (1981c, 1981d) showed that the same map-
pings can be derived by means of a Dirac-bracket quanti-
zation of the time-dependent Hartree-Pock self-
consistent field equations. The present account (Klein
and Marshalek, 1989) is intended to supersede previous
work by providing derivations within the framework de-
scribed in Sec. IX.B.

We start with a review of the properties of the fermion
particle-hole SO(20+ 1) algebra and its fermion carrier
space and show that one may proceed through the group
chain U, (0„)XU, (A, ) C:U(Q) C:SO(2Q) C SO(20+1),
the first subgroup corresponding to the core subalgebra,
with O, h being the number of hole levels and A the nurn-

ber of particle levels.
I.et cI, c =cI, I= 1, . . . , , denote a set of A fermion

destruction and creation operators. We partition this
into a subset of Qz destruction and creation operators
c„,c"=c„, p = 1, . . . , 0&, associated with what we call
hole states, and a set of A destruction. and creation
operators c;,c'=c, , i =Q&+&, . . . , 0, associated with
what we call particle states, with the equality
Q, =Q&+0 . Throughout this discussion, we adhere to
the following conventions: greek indices denote hole
states, lowercase roman indices denote particle states,
and uppercase roman indices can be replaced consistently

These operators have the following behavior under Her-
mitian conjugation:

I J

R '"=E.
ip~ A IJ& E p

(19.4a)

(19.4b)

as well as the antisymmetry properties

+PE g EP

JI IJ

(19.5a)

(19.5b)

The set of operators (19.3a) consists of the subsets
and A'. , the former generating the unitary subalgebra
Uh(Qh ) based on the hole levels and the latter the uni-
tary subalgebra U (II ) based upon the particle levels.
The long list of commutation rules for the operators
defined in Eq. (19.3) that follow from the anticommuta-
tion relations (19.1) and define the algebras and subalge-
bras of interest in this discussion will not be exhibited
here. Instead, we shall simply identify the members of
each set. Thus the operators (19.3a) span the group
Uh(Q&)XU (II ). It is this subalgebra that will be
chosen as the core subalgebra. The remaining generators
in Eq. (19.3) are three sets of ladder operators, consisting
of the particle-hole creation and destruction operators
(19.3b), the two-particle transfer operators (19.3c), and
the one-particle transfer operators (19.3d). When we add
the first set to the core algebra, we arrive at the algebra
U(O), the further addition of the second set brings us to
the algebra SQ(20), and the addition of the remaining
set yields the algebra SO(2Q+ 1).

An orthonormal basis for the 2 -dimensional fermion
vector space &F is provided by the set consisting of the
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c, lo& =c„lo&=0,
for all i and p, together with the vectors

N~
'" ""lo&,

n=1

(19.6)

(19.7a)

h

lv) vn 11pl N~pN~ &
—II c "li )p1

. .
2N~pN~ &

n=1

normalized vacuum l0& (the closed-shell system), satisfy-
ing

Our aim is to map the algebra discussed above, togeth-
er with the finite-dimensional fermion carrier space &z,
into a subspace of a Hilbert space, denoted here by J.
The space J is generated by the boson destruction and
creation operators B,.„,B'"—=B;„, respectively, together
with a set of what we call quasifermion destruction and
annihilation operators, a„,a"=a~ associated with hole
levels and a;,a'=a; associated with particle levels. The
bosons B;„and B '", which replace the degrees of freedom
of particle-hole pairs c„c;and c'c", respectively, obey the
Heisenberg-%'eyl algebra

(19.7b) [8 „8'"]=5'5", [8'",B~']=[8„8; ]=0 . (19.11)

Ij)' ' J„&)p)' '1N, pN, &= + c li, p, .
1N,pN, &,

n=1

(19.7c)

which span the subspaces with an equal number Xz of
particles and holes and subspaces with an excess nI, of
holes and n of particles. In Eqs. (19.7b) and (19.7c) it is
understood that in the case X~ =0, the ket on the right-
hand side becomes the vacuum l0&. The fermion space
&F carries the solitary spinor irrep of SO(2Q+1), while
the subspaces with even and odd particle numbers sepa-
rately carry the two 2 '-dimensional spinor irreps of
the subgroup SO(2Q). The fermion space also carries
Q+1 antisymmetric irreps of the subgroup U(Q), each
of which may be labeled by N —Xz, the difference in the
number of particles and holes. These irreps may be fur-
ther decomposed into a total of ( Qk + 1)(Q~ + 1 ) an-
tisymmetric irreps of the subgroup Uk(Qk) XU~(Q~),
each labeled by the number of particles and the number
of holes.

Of central importance in our later analysis are the
Casimir invariants of Uk(Qk) and U~(Q~). In terms of
the generators, the corresponding Casimir operators of
order k are given by (summation convention)

p(k) —g11gk"2. . . yak (p(k) g 1g 2. . . g k

(19.8)

Upon inserting the fermion realization (19.3a) and per-
forming a trivial rearrangement, one obtains for Eq.
(19.8) the diagonal forms

C'"'= j(I)' (Qk —8'„+1)"
(19.9)e(")=8' (Q —A' +1)"-'

P 7

where NI, and X are the hole and particle number opera-
tors

(19.10)

Each of the number operators (19.10) commutes with all
the generators of Uk(Qk)XU~(Q&), thereby providing
labels for the antisymmetric irreps. The difference
8' —j(I)'k commutes with all the generators of U(Q), there-
by providing a label for its irreps.

The quasifermions, which are to represent valence parti-
cles or holes, are assumed to commute with all the boson
operators,

[a,B; ]=[8'",aI]=[a,B'"]=[8;„,aI]=0, (19.12)

and also obey an algebra to be discussed presently.
To describe the physical subspace of the Hilbert space

2, one may introduce the orthonormal basis spanned by
the vectors.

g (a ) 'Q (n,„!) ' (8'") '"l0),
I 1P

(19.13)

where l0) is the normalized vacuum state (tensor product
of the quasifermion and boson vacua), satisfying

a„l0)=a; Io) =8;„Io)=o . (19.14)

Ia, a"] =5"Q~, [a, , a'] =5JQ„,

Ia, a ]
= Iaj, ar] =0 .

(19.15a)

(19.15b)

Here, the operators Qk and Q~ are defined by the equa-
tions

The physical subspace is obtained, first, by forming an-
tisymmetric combinations of the vectors (19.13). Second,
since a particle-hole combination c c" is represented by a
boson 8')', the quasifermions (thus the reason for the
name) are required to satisfy the constraint a'a"=0. It
turns out that, although this constraint modifies the an-
ticommutation relations of the quasifermions, the prod-
ucts that look like generators of the core subalgebra, as
defined in Eq. (19.3a), also act like generators in that they
satisfy the core subalgebra. This is, of course, necessary
if they are to be used to realize the intrinsic space.

These assertions can be proved in two ways. A method
that works in all known examples is to assume that the
core subalgebra is satisfied when the appropriate bilinear
forms in the quasifermions are chosen as generators. One
further assumes that the commutators of single quasifer-
mions with these generators are the same as if they were
ordinary fermions. (In fact, this assumption implies the
preceding one. ) One then succeeds in constructing a
Dyson mapping of the algebra, provided that, in addition
to these assumptions, one has anomalous anticommuta-
tors, which in the present instance have the form
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Qh
——1 —a~(1+Rh ) 'a

p t

Q~—:1 —a'(1+R~) 'a;,
(19.16)

(summation convention!) where Ri, and Rz are quasihole
and quasiparticle number operators. The Hermitian
operators (19.16) satisfy

Qi'=Qi Q,'=Q, Qi Qi =Qi, Qi . (19.17)

Qh is the projector to the subspace of J having zero
quasiholes, while Q is the projector to the subspace hav-

ing zero quasiparticles. For the present example, the an-
ticommutation relations (19.15) were first established us-
ing the projector character of Eq. (19.16). The argument
is given in all of the papers cited above, but will not be
reproduced here.

i[B i C ~»]= B—
JV

i [Bigs (2) P (2)
] B ivaPa

h B v

[BiP @{2) P(2)] Bjtaia

(19.23a)

(19.23b)

These additional tensors suffice to provide the simple
mappings (see below)

R;„=8;„,
pic BiP+ & [Big P(2)+P(2) P(2)]

h p

(19.24a)

crated by calculating commutators of 8'" and 8;„with
the Casimir operators or combinations thereof. Thus, for
example, from Eqs. (19.21) and (19.22) one obtains the
following additional tensors with the required transfor-
mation properties:

2. The generalized Dyson mapping
=8'~—8' BJ"8. —8' a"a —BJ"a'a

JV V J (19.24b)

2"=8'"8 +a "a 2 ' =8'"8 +a 'a
V LV v~ j JP J (19.18)

For construction of the particle-hole operators, we
need the maps of the quadratic Casimir invariants of the
core subalgebra. By substituting the generators (19.18)
into Eqs. (19.9), we find

In this subsection we shall use the symbols defined in
Eq. (19.3) to denote the Dyson images of the quantities
that these symbols previously denoted. The first task is
to find the mapping of the Uh(Qh)XU~(A~) core
subalgebra. This can be accomplished with the aid of the
additional requirement that under the core subalgebra
the boson operators 8'", 8;„transform like particle-hole
operators and the quasifermion operators a, az trans-
form like one-particle transfer operators. These require-
ments, coupled with the definitions of the vacuum state,
yield the unique solution

The mapping of U(Q) contained in Eqs. (19.18) and
(19.24) is isomorphic to the result that we could have
found by the method of vector coherent states. The con-
tent of the latter appears in our formalism in two places:
in the introduction of the intrinsic space as a space of
quasifermions and in the specification of Eq. (19.24a).
The scale chosen for the latter has the advantage that it
normalizes the image vector of a one-particle/one-hole
state.

It is convenient to discuss next the mapping of the
single-fermion creation and annihilation operators [Eq.
(19.3c)]. These must transform like c and cI, respective-
ly, under the core subalgebra. The simplest such opera-
tors are a" and 8'"a, , which transform like c", and a'
and 8'"a„, which transform like c', as well as the corre-
sponding H.c. operators. More complex operators of this
type can be constructed by taking commutators with
Casimir invariants, as, for example,

C h"=f), (~,+.-, )+C h", i [aP P (2)]

avgas

& [ai P (2)]— aJ'gi (19.25)

C,"'=n, (E,+R, )+C,"',
where XB is the boson number operator

=8 '"8;„,

(19.19)

(19.20)

C '=C '+a"a'a a +2B'"B a ah B P V &V P

C ' '=C ' '+a'a'a a +2B'"B a'a
p B J JIM I

with C B ', the common boson part, given by

e "'=8'~8J.B. 8B JP 1V

(19.21)

(19.22)

and C ih ', C ' ' are the two-body parts of the respective
operators, given by

A"=(a"—a'A P)(1 +R&)
' B'"a;—

=(a"—a A i,')(1+n )
' B'Pa, , —

3 '=(a' —a'2, ')(1+R ) '+B'"a„,
=(a' —a'A, ')(1+0) '+B'"a„;

A„=a„B;„a'(1+n )
' =—a„B,„a '(1+&)—

(19.26a)

The addition of these last tensors provides a sufficient set
for construction of the required mapping. We refer the
reader to Klein and Marshalek (1989) for the details.
The final expressions for the Dyson images of the single-
fermion operators are given by

Given the realization (19.18) of the core subalgebra, the
images of the particle-hole pairs R'" and A;„are deter-
mined by the requirements that they be irreducible ten-
sors under Uh(Qh ) XU (0 ) and transform like B'" and
8,„,respectively. Such tensors can be systematically gen-

2, =a, +B,„ai'(1+nh ) '=a;+B; a "(1+n )

The creation operators can be rewritten as

(19.26b)
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A"=(a"+ ,'[a—",C P'])(1+8') ' —8'"a;,
A'=(a'+ —,'[a' C' '])(1+6') '+8'"a (19.27)

It is worth remarking that these results were not com-
pletely determined by the commutation relations of the
fermion operators with the generators of U( fl ). There
remained, naturally, a single overall scaling function de-
pending on R'. This was fixed by the requirement that
particles and quasiparticles be equivalent when no
quasiholes are present and that holes and quasiholes be
equivalent when no quasiparticles are present. The same
result is found from the requirement that the fermion an-
ticommutation relations be satisfied, which can also be
used to derive or verify Eqs. (19.15). There is a subtlety
here, however, that must be remarked on. Whereas all
the commutation relations used up to now could be
satisfied in the full direct-product space of bosons and
quasifermions, it is perhaps not surprising to find that the
anticommutators must be restricted to the appropriately
antisymmetrized physical subspace, namely, the correct
image from the fermion space. This is true not only for
the anticommutation relations themselves but also for all
other algebraic relations, such as those discussed below,
that distinguish between fermions and bosons.

Equipped with the Dyson images R'", A;„, 2, and

AI, one can construct the Dyson mappings of all other
fermion operators, in particular for the remaining gen-
erators of SO(20+ 1), the elementary pair-transfer
operators. For these one may take

R =—'[A A ], RI~= —,'[Aq, AI],
A„'= —,'[A', A„], AP'= ,'[A", A—,],

(19.28a)

(19.28b)

these expressions possessing the virtue of automatically
fulfilling commutation relations and antisymmetry re-
quirements.

In summary, we have obtained a Dyson realization of
the algebra U(Q) as well as of the core subalgebra

UI, (QI, ) XU (0 ). This result was obtained by methods
equivalent to the utilization of the full machinery of the
vector coherent state. With the inclusion of a convenient
normalization requirement, the realizations of one-
particle transfer operators with the correct tensor prop-
erties under U(O) are also uniquely determined. This
also holds for higher tensors, such as the two-particle
transfer operators. But so far, nothing has been said
about the mutual commutators of the two-particle
transfer operators, the commutators of the one- with the
two-particle transfer operators, and, except parentheti-
cally, the fermion anticommutation relations. These ad-
ditional commutation rules must be satisfied if one is to
have a realization of the full SO(20+1) algebra. Now it
is a straightforward exercise to check that, in general,
they are not identically satisfied, as we have already
remarked above for the anticommutation relations.
However, it can be shown that they are satisfied in the
finite-dimensional physical subspace, which is all that is
needed. For the proof of this and the further assertions

needed to round out the discussion of the present exam
pie, we refer the reader once more to the original work
(Klein and Marshalek, 1989).

It should be apparent to the reader that there is a con-
siderable resemblance between the methods presented so
far in this discussion and those described in Secs. IX and
X. The emphasis here has been on their equivalence to
the method of the vector coherent state. The essential re-
lationships have been established in carrying the discus-
sion through the derivation of the Dyson mapping and in
emphasizing its essential tensorial structure. We shall
therefore also omit the discussion of the unitarization of
the mapping, which is the final step of the established
procedure, especially since we shall describe that pro-
cedure once more for the further example considered in
the next subsection.

D. Boson-quasifermion mapping
for generalized Lipkin model

1. Dyson mapping for U(n)

We consider once more n single-particle levels, each of
degeneracy 0, that we label 0, 1, . . . , n —1. The vacuum
state is taken to be the one in which the level 0 is fully oc-
cupied, and, as has been done previously, we utilize a
particle-hole formalism to describe excitations of this
state, in immediate generalization of the description of
the simple Lipkin model found in Sec. II. We take the
algebra in the form

0
~+k= X o" kp' =(~—k)' (19.29)

m=1

1 1
JOI = 0+ g (cx glx k+p p )

2 2
(19.30)

&or= X& k& I (19.31)

xp= gpt p (19.32)

gatkbt =0 (and H. c. Eq. ) . (19.33)

Though it is convenient to utilize all of the operators
(19.29)-(19.32) in the discussion, it is obvious that the set
(19.30) is a linear combination of the sets (19.31) and
(19.32). For each value of k=1, . . . , n —1, the triple
2+k, Jok generates an SU(2) subalgebra, whereas Xz& are
the generators of a U(n —1) algebra associated with all
levels exclusive of the lowest one. For the application we
have in mind, the core subalgebra is the direct sum
U(n —1)eU(1), associated with the generators (19.31)
and (19.32) respectively. The raising and lowering opera-
tors are those given in Eq. (19.29).

We shall realize the mapping we are after in terms of
bosons Bk, Bk, k = 1, . . . , n —1, as well as a set of quasi-
fermions, a k and b, that replace the fermions, one to
one, although their algebra will be different because of
the imposed constraints
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Nevertheless the operators

~kl X mk mk (19.34)

constructed from the intermediate basis

l n. Z At~ nb X u~ &

also generate U(n —1), despite the altered algebra. This
assertion is ultimately established as a self-consistent one.
What follows is a summary of the work of Klein and Wa-
let (1989).

Utilizing ideas that have been explained repeatedly,
one can now establish easily that the following formulas
provide a boson-quasifermion mapping:

Nki =BkBi+~ki

Np =6'b+N~,

Jok 20+ 2g~+ 2Nk+T~(Rk+nb)

(19.35)

(19.36)

(19.37)

(19.38)

Nk =BkBk,

N~= QNk,
k

@k kk

(19.40a)

(19.40b)

(19.40c)

and

&b= gb b (19.40d)

Little need be said concerning the derivation of these for-
mulas, which can all be written down by inspection, with
the sole exception of Eq. (19.39); the latter can be derived
from the appropriate SU(2) subalgebra.

Next one verifies that Eq. (19.39) can be rewritten in
the form

J+k =Bk I 0—g~ —R'k —R'b I
—g Bi A'ki, (19.39)

1&k

where

i,j,k

(19.44)

Here, the notation
~

0 ) refers to the reference state with
the lowest level fully occupied. The six quantities chosen
to label the basis in question, specified on the left-hand
side of Eq. (19.44), have the following significance. The
first three are U(2) labels associated with the intrinsic
representation. Here n, is the eigenvalue of the operator
[cf. Eq. (19.40c)]

O', = QR'k,
k

(19.45)

the linear Casimir invariant, whereas the other two are
angular momentum and magnetic quantum numbers, re-
spectively. Next comes the U(l) label, associated with
the bottom level, and finally we have the angular momen-
tum and magnetic quantum numbers associated with the
collective U(2). For the problem of unitarization of the
Dyson mapping, we shall find it convenient to introduce
a basis in which the square of the total angular momen-
tum,

(19.46)

C2(U(2)) =NkiNik =
—,'N'+2J ',

where

(19.47)

is diagonal. The new basis is specified as
~nb, n„J,A, , S,X ), where At is a total magnetic quantum
number. Note that the label X, in contrast to the others,
is not associated with a subalgebra of the original U(3).

We next turn to the derivation of some essential identi-
ties associated with the mapping of the quadratic Casimir
invariant of the core subalgebra (summation convention
used below),

1+k =(Bk &),
where

(19.41)
N~ =—Nkk (19.48)

aIld

A= —,'C2(U(n —1)) NiiIQ —nb+ —,
'—(n —1)] (19.42) J —

—,'(N2iN, 2+N, 2N2, )+ —,'(Nii —N22) . (19.49)

With the help of Eq. (19.46) and the equations

C2(U(n —1))= gN;kNk;

is the quadratic Casimir operator.

(19.43)

and

=6, +X~

=
—,'N~( —,'N~+ 1),

(19.50)

(19.51)

2. Basis and special algebraic relations for n =3

In the further exposition we specialize to the case
n =3, since this is the only case for which we have so far
derived the mapping of single-fermion operators in the
form of a quantized Bogoliubov transformation. In this
subsection we develop some auxiliary tools that are vital
for the achievement of this goal.

For U(3), the mapping is to a final basis that will be

we can transform Eq. (19.47) into

Cq(U(2)) =
—,'R, +Nii(Ning+1)

+n.N~+2'+4 L . (19.52)

Another form obtained by direct substitution of Eq.
(19.35) into the defining expression is

C2(U(2)) &q JV +2% B B +N~(N~+1) (19 53)
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Further profitable comparison of Eqs. (19.52) and
(19.53) can be made by noting that, in analogy with Eq.
(19.47), one can write (19.62a)

=
—,'R', +24 =R', (R', + I)+2K,

where

X=/ —
—,'R', ( —,'n, +1)=K(K+&, + 1)

(19.54)

(19.55)

a NN„a =a,N Na „
= [(R', —1) +X]N„t, + (6', —3)X5„k,

(19.62b)

at, N, N„N „a =[(&,—1) +2(R', —2)X]N„„

K—=4——'n

S(S+11)—:4'

(19.568)

(19.56b)

+[(R', 4n—, +7)X+X ]5„k

(19.62c)

[The quantity in Eq. (19.56a) has been introduced be-
cause it vanishes for one-rowed representations of U(2).]
Incorporating Eq. (19.54) into a comparison of Eqs.
(19.52) and (19.53), we find a relation that will prove use-
ful in the unitarization procedure, namely,

2N' B B =XsR, +4/X, (19.57)

where the last scalar product can be evaluated in the
standard way, in the chosen basis, by means of the rela-
tion

4S X=22' —4' —X ' . (19.58)

(19.59)

and the H.c. relation, from which it also follows that the
N are generators of U(2).

Thus, by commuting a quasifermion annihilation
(creation) operator with Eq. (19.54), we derive

N„a =R,a „+[a k, X]

+H. c. relation .

(19.60a)

(19.60b)

By examing each side directly for the difterent possible
independent choices of available indices, we can verify ei-
ther of the relations

N„kNqp =(n, —1)N k+5 k(R+X),

N, N „=(n,+1)N „+5,„X,
(19.61a)

(19.61b)

the other following from a simple commutation. By con-
traction of the remaining free indices, we are naturally
led back to Eq. (19.54). [We cannot overemphasize that
the preceding as well as the following relations are all re-
stricted to U(2).]

Finally, by repeated application of Eqs. (19.59) and
(19.61), we can derive the useful identities

The remainder of the current discussion will be devot-
ed to the study of relations needed in the derivation of
the mappings for the single-fermion operators. In the
following we shall utilize the notation introduced for
quasifermions, but, according to our assumptions, the
same relations hold a fovtiovi for fermions, since the most
basic manipulations depend on the validity of the com-
mutation relation

3. Mapping of fermion operators

The first step of this procedure is to satisfy the commu-
tation relations of the fermion operators Uis a Uis the gen-
erators of U(3). The relevant commutation relations are

(19.63a)

(19.63b)

(19.64a)

(19.64b)

(19.65a)

(19.65b)

We shall first consider the mapping of the operator
o. k. We want to write the latter as a linear combination
of operators in the mapped space that themselves satisfy
Eq. (19.63a) (and decrease fermion number by unity).
From our previous studies of the quantized Bogoliubov
transformation, we see that the candidates a k and b 8k
are obvious charter members of the required set. Further
members are obtained by commutation of these with
quadratic invariant operators associated with the collec-
tive, intrinsic, and total U(2) algebras. This procedure
adds the operators a ~B~Bk, N~ka ~, and b B~N„'k. Of
these, the first can be ruled out because it violates Eq.
(19.64a). Further commutation with the invariant opera-
tors will not produce any additional independent opera-
tors in consequence of the identifies (19.61). We can thus
write

ti k=ea „+fb Bk+gb N~„B~+hN~„a ~, (19.66a)

where e, f, g, h can depend on the invariants other
than Ps, which is ruled out because Eq. (19.64a) would

be violated. We choose the set 6'b, 6'„X. The latter ar-
guments will be suppressed below except when it is neces-
sary to indicate a shift of value from a standard one.

By a similar argument, we can arrive at the representa-
tion

(19.66b)

where E, F, 6 are once more invariant operator func-
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tions. Equations (19.63) and (19.64) have thus been
satisfied. The only remaining condition to be satisfied is
Eq. (1965a) for k&1. The study of this condition leads to
the relation

f=(0 0+—2)g,
&=&.+&, .

(19.67)

(19.68)

(19.69a)

With the aid of Eqs. (19.59) and (19.61), we find that
Eqs. (19.65) now consistently determine the remaining
mappings,

P =
If[0 &i, +1—]—g(&, )+X]bt

this investigation, as in all succeeding ones of a similar
nature, we argue that if a vanishing operator is itself a
linear combination of a number of independent nontrivial
operators, then the coefficients of each of these must van-
ish. We thereby eventually establish the result

ta „,b J =fb a .k+gApkb a (19.72)

where f and g are the functions specified by Eqs. (19.67)
and (19.71).

A strategem for finding two of the remaining three un-
known functions, namely, I" and G, can be worked out
next. First we take the Hermitian conjugate of Eq.
(19.72) and move the operators f and g through to the
left. The technique for doing this is implied by the iden-
tities (19.61) but will not be discussed here. The result is

a k =EBkb + IF[A nb] ——G[2(n, —1)+X]]a
+ [G(Q —8+3) F]a t —JVk

(19.69b)

tb, a .k)=fa „b +ga b,A'k

where

g=g, f=(0 n+3—)g .

(19.73)

(19.74)

The unknown invariant functions that appear in Eqs.
(19.66) and (19.69) must now be chosen to be consistent
with the standard fermion anticommutation relations.
We shall give in outline the most succinct line of argu-
ment we have been able to find to produce the needed re-
sults.

We start with the assertion that without loss of gen-
erality the functions e and E can be chosen to be unity.
It follows from the nonvanishing anticommutators that a
di6'erent choice for e rescales F and G, whereas a diIterent
choice of E rescales f and g. In particular, it can be
shown that the nonvanishing anticommutators among
the quasifermion operators are invariant under this re-
scaling. Next, we notice that we can determine f and g
immediately by the requirement [cf. Eq. (19.36)]

Np(N~ =0)=R'b . (19.70)

g=(&, ) '(D, )

D) =0—n —K+1,
D~=Q —nb+K+2 .

(19.71a)

(19.71b)

(19.71c)

Notice that Di and D2 go over into one another under
the transformation K —+ —K —6', —I, which corresponds
to the replacement S~—4—1, leaving the square of the
intrinsic angular momentum invariant.

We can take immediate advantage of the information
contained in Eq. (19.71) to determine the anticommuta-
tor Ia ~, b ] by studying the vanishing anticommutator
Ia k, p ~ ]. This anticommutator contains the same in-

formation as Ia k, a k, ], but is algebraically simpler to
manipulate than the latter, which has been used as an a
posteriori check of the final results of the calculations. In

This leads to the condition that the coefficient of 6 in

Eq. (19.69a) must be unity. Coupled with the relation
(19.67), we then find

One can now guess that

g=G f=F. (19.75)

N (Ning =0)=&, (19.76)

yields the value zero for the remaining unknown operator
coefficient h. Thus all the operator coefficients have been
chosen consistently or determined.

The remaining nontrivial quasifermion anticommuta-
tors, each having its source in the obviously related fer-
mion anticommutator, now follow rather straightfor-
wardly and have the forms

I bm ~bm' t ~mm' amp m'p Gamp~qp m'q

k a 'k'] ~ '~kk' f~kk'b b ' g~k'kb

(19.77)

(19.78)

We summarize the results found in this subsection: the
fermion mappings have been simplified to the forms

a k=a k+fb'Bk+gb'~pkBp

P:b Bpa p fb N~ gb BpBqJVqp

+mk ~mk ++k ~m +amp~k+p G mp~qp k q

(19.79a)

(19.79b)

(19.79c)

(19.79d)

That this is indeed the correct identification is verified by
a study of the anticommutator [p,p ~ ], which leads to
an alternative to Eq. (19.73), involving F and G, that is
compatible with the latter, provided Eq. (19.75) holds.

The relation between F and 6 expressed in Eqs.
(19.74) and (19.75) leads to the vanishing of the
coefficient of a pJVk in the expression (19.69b) for a
and thus to a significant simplification of subsequent ma-
nipulations. In fact, the evaluation [cf. Eq. (19.50)] of the
requirement
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This mapping, together with the anticommutators
(19.72), (19.73), (19.77), and (19.78), is completely deter-
mined by the operator functions f, g, F, and G given in
Eq. (19.67), (19.71), ()9.74), and (1975). We note that the
structure of a11 the quasifermion anticommutation rela-
tions is compatible with the basic assumption (19.59) as
well as with the concomitant relations

D+ =A(Nii —1,J+ ,' )—A—(N~, 7)

=&+2+2 —
—,'(n, +Nii+2nb),

D =A(NIi —1,2 ,' ) —A—(N—s, g)

=0—2+1—
—,'(n, +Nii+2nb) .

(19.87a)

(19.87b)

[a k, Np]=0,

[b,JV ]=0,
(19.80a)

(19.80b)

all proofs making use of the constraint (19.33).
Et can be verified that the mapping of the fermion

operators leads back to the mapping of the generators ex-
hibited in Eqs. (19.35)—(19.39).

4. Unitarization of the Dyson mapping

As has been done many times in this review, we intro-
duce a unitarizing operator S and its square V and carry
through a procedure that utilizes the three equations

S(O)DS '=(O)U,

(8 )D=V '(8) V

(et) U
=S '(O)AS,

(19.81)

(19.82)

(19.83)

where, in the following, 0 wi11 refer either to one of the
generators or to one of the fermion operators. A sub-
script D or U will be necessary to distinguish Dyson from
unitarized mappings. We recall that Eq. (19.81) is the
definition of S and that Eqs. (19.82) and (19.83) are
consequences of that definition. Because the generators
of the core subalgebra already satisfy the required Her-
miticity conditions, it follows that S commutes with a11

these generators, which have the form of a direct sum of
a co11ective and of an intrinsic part. It follows that S can
be chosen to be an operator-valued function of the invari-
ants (for the remainder of the discussion the hats on
number and angular momentum operators will be
suppressed, the context serving to distinguish them),

In these equations, only those labels that change between
initial and final states are indicated explicitly. We shall
follow this practice for the remainder of the section.

Since there are only two reduced matrix elements, we
can therefore write, with a special choice of independent
operators,

(~+k U +I ( nb ~ ~B ~ na ~ ~~ ~)Bk +@2IBk ~ A ]

Entering this form into Eq. (19.83), we find

(22+ 1)@2=(QD+ QD —),

(19.88)

(19.89a)

,'Nein—, +J
A~(n„S) =n, ,'n, ——

(19.90)

(19.91)

We observe that with the help of these operators, Eqs.
(19.79) may be written,

a k=~ k+fb Bk+g[b Bk Ail (19.92a)

a k=a k+B„b +F[a k, A, ]+6[[a k, A, ],A2],

P =b Fa B„—G[a —~B,A2],

I3 =b fB~a ~ fb N—ii gb~A—, . —

(19.92b)

(19.93a)

(19.93b)

(2J+1)4&i=+D+D (QD+ QD —) . (19.89b)

%e repeat the above processes for the slightly more in-
volved case of the single fermion operators. We first
define the invariant operators [cf. Eqs. (19.51)—(19.58)]

A, (NIi, n„S,%=A' BtB

S =S(nb, Nii, na, S,J ) . (19.84)

We apply Eq. (19.82) first to the raising operators
(19.41); the equation in question has the form

[Bkt A)= V 'B V (19.85)

Taking nonvanishing matrix elements in the coupled
basis defined after Eq. (19.46), cancelling the reduced ma-
trix element, and taking the (positive) square root of both
sides, yields the two recursion relations

If we apply Eqs. (19.82)—(19.92), we find six nontrivial
conditions, leading in a straightforward way to the rela-
tions

S '(nb, Nii, 2)S(ni, +1,Nii —1,J+ —,
'

)

(0 n —K)—(Q nb+K+1—)

0 n —2+ —'(n —N )——:(L+)
a 8

(19.94a)

S '(N, J)S(N —1,J+—,')=QD

S '(N„S)S(N, 1,S-,') =QD— ——

where

(19.86a)

(19.86b)

S '(nb, Nii, J)S(ni, + 1,Nii —1,J—
—,
'

)

(0—n —K )(0 nb +K+ 1)—
0+n + 1+2+ —,

'
( n, —Nii )

—:(I. )

(19.94b)
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S '(n„S,ÃS(n, —1,$+—,', J+—,
'

)

1/20+J —
nt,

—
—,'(n, +N~ )+2

0—n~ +%+2

With the ansatz

(p ) U
=V, b t +%~B

"a (19.100)

to be used in conjunction with Eq. (19.83), we easily find

(19.95a) 4', =(1 fN—~
—gA, )'~ (19.101a)

S '(n„S,J)S(n, —1,$+—,', J—
—,
' )

0—J nt,
——

—,'(n, +N~ )+1 1/2

0—n~+K+2
—:M+

(19.95b)

S '(n„S,J)S(n, —1,4—
—,', 2+ —,')

1/2Q+ J nq
———,'(n, +N~ )+2

=—M0—n —%+1

(0—n+2)
(0—n E)—(0—n IC+—1)(Q—nq+K+2)

1/2

(19.101b)

The interpretation of the core subalgebra in terms of
quasifermions, with the possibility of applications to
core-particle coupling models, is a subject that is in its in-
fancy, with much work remaining to be done both in
mathematical development and in physical application.

S '(n„S,J)S(n, —1,$—
—,', J—

—,')
(19.95c) XX. FORMALLY EXACT QUANTUM VARIATIONAL

PRINCIPLES FOR COLLECTIVE MOTION BASED
ON BOSON TRIAL FUNCTIONS

1/20 J —
n&

——
—,'(n, +N~ )+ 1

=M
0,—n —%+1 A. Introduction

(19.95d)

Since there are six reduced matrix elements, we look
for a form of (a z ) z that will simplify the algebra arising
in the subsequent study of Eq. (19.84). The form

(a k)&=X,a k+2X2[a k, 4]+2X3[a k, J]
+4X4[[a k, S],J]+Y, Bktb + Y~[Bqtb, A, ],

(19.96)

in terms of the six operator-valued functions
X;, i = 1, . . . , 4 and Y;, i = 1,2 easily yields the solution

M++ =X1+X2+X3+X4,

M+ =X1+X2—X3 —X4,
M + =X1—X2+X3—X4,
M =X1—X2 —X3 +X4,
(2J+1)Y2=(L+ L);—
(22+ 1)Yz =(2+ ,'n, —2N~ )L+——

(19.97a)

S '(nq )S(n~ —1)= (1 fNg —g A))'—
S '( n„N&, $)S( n, + I,N~ —I,4+ —,

'
)

(19.98)

(0—n+2)(Q —n —X)
(0 n IC+ —1)(II—nt, +K+—2)

(19.99)

+(J+1 ,'n, +—,'N~)L . (1—9.—97b)

It only remains for us to carry out the same calcula-
tions for the fermion hole operators. If we apply Eqs.
(19.82)—(19.93) we encounter two reduced matrix ele-
ments and two relations (remembering that the value of J
cannot change),

The purpose of this section is to describe a formally
complete quantum theory of nuclear collective motion
that utilizes the concept of boson mapping in an essential
way (Klein, Marumori, and Une, 1982, 1984; Klein and
Tanabe, 1984). Though motivated by ideas developed by
Marumori and his associates (Marumori, 1977; Maru-
mori, Hayashi, Tomoda, Kuriyama, and Maskawa, 1980;
Marumori, Maskawa, Sakata, and Kuriyama, 1980), the
implementation is to be distinguished from this previous
work.

Generalized coherent states of the form

~+(p, p*, t)) =exp[bt /3(t) —p (t) b]~@,) (20.1)

have been used widely as trial states for the variational
principle of the time-dependent Schrodinger equation.
Here pt(t ) is a row matrix,

p (t)=[p*(t)]=[pf(t),p2(t), . . . ], (20.2)

b is a corresponding operator-valued row matrix, and
p(t ) and b are the associated column matrices. If, for ex-' ~

ample, b is a particle-hole creation operator and the in-
dex a runs over a complete set associated with a fixed
Slater determinant ~&0), then Eq. (20.1) is itself, accord-
ing to Thouless' theorem, an arbitrary determinant, and
the equation that follows from the variational principle is
time-dependent Hartree-Fock. By further specialization
we can derive the random-phase approximation or adia-
batic time-dependent Hartree-Fock approximation which
provides a foundation for the study of large-amplitude
collective motion. Here we shall be concerned with
another interpretation of Eq. (20.1), which arises if we
take b, b as boson operators that may, in practice, be
complicated functions of fermion pair operators, with
~4&0) the vacuum for these bosons,
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(20.3) [b,bt] =I (20.7)

or at least of a subset of them and of any other boson de-
grees of freedom of the system not explicitly contained in
the set b. If the vector space constructed from products
of the b operating on

~ Np & is invariant under the action
of the Hamiltonian H, it follows that these states span a
subspace, equally well spanned by a subset of eigenstates
of H. The main purpose of the developments that follow
is to show how this subspace can be studied with the help
of a variational principle. In fact, it is well known
(Marshalek and Weneser, 1970; Klein, 1972) (and will
emerge again in this section) that a collective Hamiltoni-
an, valid in the classical limit, can be extracted complete-
ly from the associated theory.

In this section, we go beyond these results to a formal-
ly complete quantum theory by applying the time-
dependent variational principle to a state that bears a
superficial resemblance to Eq. (20.1), but which is a for-
mally exact solution of the time-dependent Schrodinger
equation, namely (Ep is the ground-state energy),

H (b;b)i%' &=0 . (20.8)

We may thus write

Here, if we are truly dealing with bosons, I is the unit
operator. To include the situation of fundamental in-
terest to us, the nuclear shell model, I will, in general, be
a projection operator onto a finite set of the states (20.6),
and b, b may be defined as (generally rather complicat-
ed) functions of fermion pair or particle-hole operators,
as we have seen in Secs. II and VII.

We wish then to determine the properties of the space
generated by ~%'„&, supposing that n =0 corresponds to
the exact ground state. Because of assumptions (20.6)
and (20.7), regarding ~4„&, there exists a Hamiltonian
H&(b; b ), where the notation (b;b ) implies normal or-
dering, which has the same excitation spectrum as H in
the collective subspace. By adjusting an additive con-
stant, we can choose

~%(P,P*,t ) & =exP[i(H Ep)t ]-
Xexp[b P—P b]~4& . (20.4)

H =Hc(b; b )+H,„,
where H;„, the intrinsic Hamiltonian, must satisfy

(20.9)

In elect, Eq. (20.4) replaces the time-dependent parame-
ters in Eq. (20.1) by time-dependent Heisenberg operators
b(t) and b (t).

Though Eq. (20.4) is more difficult to work with than
Eq. (20.1), it turns out, nevertheless, to be quite tractable.
For illustrative purposes, we shall carry out the formal
manipulations in this section with a single collective
coordinate. The basic approach, which exploits the as-
sumption that an operator pair b, b ~ exists such that

exP[i(H Ep)t]~%(P, P—*)
& = 0'(P, P*,t) & (20.5)

(20.6)

where b, b satisfy the commutation relations

lies in the same subspace as
~
4(p, p* ) & itself, has been

called the "invariance principle of the Schrodinger equa-
tion" (Rowe and Basserman, 1976; Marumori, 1977). In
Eq. (20.5), we are allowing a more general form than
(20.4) (see Sec. XX.G). The results that can be derived
from Eq. (20.5) contain as a special case those that follow
from Eq. (20.4). Furthermore, states of the form (20.5)
are a special case of what we shall call intrinsic states.
We turn to a discussion of this concept.

Consider a subset of eigenstates ~ql„&, n =0, 1, . . .N,
of the many-body system described by the Hamiltonian
H, where the possibility X~~ is also admitted. Under
the action of H, the subspace generated by l%„& is invari-
ant. Because of the special structures we have in mind,
we shall call the space in question a decoupled collective
subspace. Restricting this space to a single degree of
freedom, we assume that the states ~'P„& can be expand-
ed in terms of a set of oscillatorlike states.

H,„i+„&=E, i+„&, (20.10)

with Eo the ground-state energy, i.e., H,.„ is completely
degenerate in the collective subspace, or effectively a
multiple of the unit operator in that space,

[b,H;„]=[b,H;„]=0 . (20.11)

(20.12)

where

U '=e, G =/3b /3'b, — (20.13)

which resembles a coherent state, except that
~ Pp& as

the exact ground state, need not be the vacuum for the
operator b. We shall show that, from Eqs. (20.12) and
(20.13) and the general time-dependent variational princi-
ple, one can derive a number of useful time-independent
variational principles, several quite familiar. In the ma-

Our goal is to develop a means of decomposing H into
the form (20.9). The techniques to accomplish this must
also provide the means for transforming any other opera-
tor of interest. Thus, if H is some shell-model Hamiltoni-
an, a natural inference from Eq. (20.9) is that we shall be
seeking a boson mapping that will express the fermion
pairs in terms of the b, b and other less collective canon-
ical pairs. We can expect this mapping or series of map-
pings to be determined by both the kinematical criterion
(20.7) and the dynamical ones (20.8)—(20.11).

In any event, we may view the problem as the deter-
mination of the collective variables b, b ~. As a dynamical
criterion, we shall initially apply the variational principle
of the time-dependent Schrodinger equation to study the
wave packet that evolves in time from a special initial
state in the collective subspace, of the form
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UbtU '=b +P*, UbU '=b+P, (20.14)

leads to a great simplification. Other reasons for choos-
ing this form will emerge. It should be noted, however,
that Eq. (20.14) is strictly valid only when the operator I
that appears on the right-hand side of Eq. (20.7) can be
replaced by unity. , This possible source of error in the
following account remains to be investigated.

nipulations, the role of the operator U as a displacement
operator,

equation (with the reversed sign of )/ —1) and which, ac-
cording to our assumptions, belongs to the invariant sub-
space, provided the operators b, b and the state ~%0)
have been properly chosen. [The reason for this choice
of sign is to have the conventional sign in Eq. (20.19)
below. ] By utilizing Eqs. (20.7)-(20.11), we can write Eq.
(20.15) as

~!)II(p,p*, t ) ) =exp(iE()t ) U '(p, p*, t ) ~%o), (20.16)

where

B. Time-independent variational principles
from the time-dependent variational principle

U '(P, P*,t)=eG'"

G(t) =/3b (t) P*b(t—),
(20.17)

(20.18)

We study the state [diifering by a phase from Eq. (20.4)]
b (t) =exp(iHct )b exp( iHct) —. (20.19)

%(p,p*, t ) =exp(iHt ) U '(p, p*)~%'0), (20.15)

which is a solution of the time-dependent Schrodinger
I

We characterize the state (20.16) by means of the time-
dependent variational principle

5f dt&%'(pp', t)~[H+ ()]~%(pp*,t)) =5f dt&%'
~
U(pp*, t)[H+ 'B, ]U '(pp*, t)!%' ) =0,

1 1

where

(20.20)

(20.21)

is used to eliminate an irrelevant phase factor. The name invariance principle of the Schrodinger equation has been ap-
plied particularly to the form (20.20) of the variational principle.

We next manipulate the variational form so as to eliminate the time dependence. The main tool for this transforma-
tion is a well-known formula that permits us to calculate the time derivative of U '(p, p", t )

—= U '(t ),

U
—l(t) e G(t) dv e G(t)v[dG(t )/dt ]e G(t )() —v) — dv e G(t)

v[ dG( t)/dt ]e
—G(t)vU —)

dt dt 0 0

With the aid of the multiple commutator expansion of exp( A )b exp( —2 ), the equation of motion,

dG(t)/dt = i [G(t ),Hc(t )—],
and the formula

[b,H, ]=aH, /ab',

together with its Hermitian conjugate, one can readily derive the result

Gv
(X)

f dve (dG/dt)e =i g (
—I)"+'(I/n!)(pB/(3b+p"()/Bb )"Hc

0 n=1

=i IHc(b;b) Hc(b P*,b ——P)] . —

(20.22)

(20.23)

(20.24)

(20.25)

(20.26)

In these equations we have suppressed the explicit time dependence, i.e., set t =0, since it is a trivial consequence that
once the forms (20.25) or (20.26) have been reached, the time dependence embodied in the time-development operators
cancels out between operators and state vectors. Thus the time integration yields (t2 —t, ), which is divided out.

One thus derives two forms of the variational principle. From Eq. (20.25), one obtains (as form I)

0=v&+(P, P*)~ H —g ( —I)"+'(I/n!)(PB/Bb+P*Bb )"Hc ~%(P,P*)) .
n=1

(20.27)

For the special case He=cob b, this coincides with a re-
sult given previously in the literature (Rowe and Basser-
man, 1976). To derive a second form, one utilizes Eq.
(20.14) followed by Eq. (20.8), in order to observe that

(20.28)

& e(P,P*)~H, (b" P*;b P) ~q (P,P*)—&-
=&+,~H, (b', b)~e, &=0.

In consequence of Eq. (20.28), the second term of Eq.
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(20.26) disappears, and one is left with the variational
principle (form II)

0=5(%'(p,p*) [H H—c(b;b)]l%(p,p*) &

=5(e(p, p")lH, „le(p,p*)& . (20.29)

5le(p, p*) &=5U-'(p, p*)fe, &, (20.30)

i.e., we are seekin~ to optimize the choice of the collec-
tive operators b, b for a given ground state. Writing

6U
—1 G+5G G (20.31)

we must then distinguish two cases:
(i) 56 commutes with G, i.e., with b and b . Such vari-

ations correspond to 56 in the space of operators
kinematically independent of b and b . Remarkably,
such variations can be obtained equivalently from a vari-
ation of the ground-state vector l+0& with fixed U
namely,

To reach form II, we have utilized the specific form of
the trial state. This seems a little surprising, since II is
not only a familiar variational principle for a special in-
trinsic state, but also a variational characterization of
any intrinsic state. In Sec. XX.E we return to this ques-
tion and show that a derivation can be given for any in-
trinsic state. This is also true for variational principle III
derived belo~.

We shall find variational principle form II extremely
useful in application, and we therefore turn to a study of
the admissible variations for it. Initially we take the view
that

The second form of III may also be considered to be a
trivial consequence of form II.

C. Elementary applications to vibrations

Before continuing with the theoretical development, it
may be useful to illustrate the ideas presented so far with
elementary examples based on the two-level LMG (Lip-
kin) model that was the core of Sec. III and the various
n-level generalizations of it (Li, Klein, and Dreizler,
1970; Meshkov, 1971) studied in Secs. VIII and XIX.
For the latter, returning to the notation of Sec. VIII, we
consider n single-particle levels, each with the same de-
generacy X. The operator a;„creates a "nucleon" in lev-
el r (r=l, . . . , n), sublevel i (i =1, . . . , N); a;„ is the
corresponding destruction operator. The number-
conserving bilinear sums

N
A'=(A" )t= g ata (20.40)

the version involving 56~, this implies first that Eq.
(20.34) holds for all variations, and thus our care in dis-
tinguishing what is to be varied turns out in practice to
be unnecessary. We have learned, however, that we may
vary U ' or l+o& and that varying both is redundant.
Finally, the first form of Eq. (20.36) holds for all G.

We may summarize the results of this discussion by
stating a third form of the variational principle, which
can be given in two forms, namely,

0=(%' i[56, (UHU ' —UH U ')] 'p &

= ( %(p,p* ) l [56,(H Hc ) ]—%(p,p* ) & . (20.39)

5le, &=56le, & . (20.32)

5U-'=56U-'= U-'66, (20.33)

(56 is, of course, skew-Hermitian. ) This can be seen easi-
ly, since with [5G,6 ]=0, Eq. (20.31) may be written

are generators for U(n ), whereas the operators

J(k) ] [gk+i g 1]
J~ i=(J )t=g, k=1, . . . n —1

(20.41)

(20.42)

and, in consequence, for Eq. (20.30),

5l+(p, p*)&=U '56 +,&=U '5l p, & .

Second, since we have, together with Eq. (20.33),

5U= —U5G = —56U,

(20.34)

(20.35)

together with the remaining 2„'+,', res, generate SU(n ).
We study a very special Hamiltonian within the alge-

bra of SU(n ),
n —1

H=~ g I rjk Jo"'+(f12N)[(J'+')'+(J'"')'] I, (20.43)
k=1

we may write from variational principle II X )k 1~ 9k+ i —lk (20.44)

0=('I' l[5G, (UHU ' —UH U ')]le, &

=&+,1[56,UHU ']I+,&, (20.36)

since 56 commutes with UH& U
(ii) [56,6 ]%0. We may still write

6U '=561 U '= U '66~,
5U= —U56, = —66, U,

(20.37)

(20.38)

where 56%561%56+, in general. Nevertheless, as we

vary 56 over a complete set of noncommuting variations,
we expect 6GL and 66& to form a complete set. Using

which is a sum of a single-particle term and a
"monopole-monopole" interaction. This class of models
has the virtue that it can be studied profitably using ei-
ther the Lie algebra or, as is our current interest, a map-
ping to bosons.

We confine our attention to the standard problem in
which the number of nucleons is X, the degeneracy of
each level. The ground state then belongs to the sym-
metric representation (N, O, . . . , 0)=—(N) of SU(n). For
this representation, we can map to a space of n —1 bo-
sons by means of a generalized Holstein-Primakoff trans-
formation, such as was utilized in Sec. VIII,
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(J" )'=J'"' = „'&N e- ,

Jo(k ) = —
—,'(N —n )+ ,'a/t—ak,

3k+', =aka/ (k, l= 1, . . . , n —1),
A1=%—&,

fl = akak
k=1

where

(20.46)

(20.47)

(20.48)

(20.49)

[b,H c] ~
q/o) =0 . (20.57)

Equations (20.56) and (20.57) imply that as a function of
b, b, H~ has no "dangerous diagrams, " i.e., no terms of
the form b~+(b )/' for any (integer) value of p. Thus Hc
will have the form

Hc =h11b b+h31[(bt) b+H. c. ]+ (20.58)

To find the relationship between a and b, it suffices to
write

(20 45) Combined with Eq. (20.8) this further requires that

[ak «) =~k/ ~ (20.50)

With the help of Eqs. (20.45)—(20.49), Eq. (20.43) becomes
[ (bt)2r+1+ (b )2r+1] (20.59)

H =Ho+H1,

Ho = — e(N —8)+——g'7/)/, aka/, ,
1 1

k

(20.51)

(20.52)

We may choose the x2„+, and y2„+, to be real. In detail,
consider the approximation which includes r =0, 1 only.
We then have four coefficients to determine. From the
commutation relation

H', = fr g [ak—ak [1—(8+1)/N]'~1

2 k
[a,at]=1, (20.60)

X[1—(&/N)'~ ]+H.c. ] . (20.53)
we can conclude, consistently, by substituting Eq. (20.59),

To the first two terms in powers of X ', the interaction
H1 may be replaced by the simple polynomial H „

1=x1—y, +6(x3 —y3),
O=x, x3 —yiy3 .

(20.61)

(20.62)

H, = fe 1 — —y (a/, a/, +a/, a/, )
2 21'

For the remaining conditions, substitute Eq. (20.59) and
its Hermitian conjugate into Eq. (20.55) abd reorder into
normal form. The result can be written

[akta/tn+ 6'akak ] .E
(20.54) H = g g„,(b )"(b )'=ED+ Hc . (20.63)

We shall work with the sum of Eqs. (20.52) and (20.54).
The discussion that follows is applicable only to the vi-
brational regime.

Let us first consider the case n =2. Then the effective
Hamiltonian takes the form utilized in Sec. III,

77$

By comparing Eq. (20.63) with Eq. (20.58), (which has lit-
tle, at first sight, to do with the variational theory
presented above, but see below), we conclude that, for
those terms in H and H& that are sufficiently well ap-
proximated,

H= — EN+ca a+ fe —1 — (a a—+aa)1 g 1 1

2 2 2% g„=h„, (r&0, sAO) . (20.64)

—(fe/2N)[a a a a+a aaa) . We also have
(20.55

Of course, from the dynamical point of view, this model
is trivial. There is no subspace to decouple. Up to an ad-
ditive constant required to ensure the condition (20.8),
Eq. (20.55) is already the collective Hamiltonian Hc. It
seems that the only reasonable procedure at this point is
to diagonalize it numerically. Nevertheless, something
can be learned from this ~odel by proceeding along the
lines suggested by the theory developed in the preceding
subsections. For example, how is the boson a related to
the boson b of those sections? The point is that this ques-
tion does not have a unique answer. There are instead
several possibly interesting answers:

(i) a =b as already stated
(ii) As we shall see below there is some simplification in

the theoretical structure if we define b to annihilate the
exact ground state,

goo Eo =H (20.65)

g20 g40 (20.66)

These are the conditions for the vanishing of the
"dangerous diagrams. " On the other hand, if h„&0, we
have a definition of h„, rather than a condition.

This procedure, as stated above, is clearly of interest
only in the vibrational or weak-coupling regime. In this
regime, as can easily be checked for the particular case
under study,

(x 2 + 1 /x 2« —1 ) (y 2 + 1 /y 2 —1 ) (20.67)

The remaining conditions that determine x 2, +1 and

y2, +, come from the values of r and s in Eq. (20.64) for
which h„, in Eq. (20.58) vanishes, namely,

bl~, & =0. (20.56) and
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O(~1 —() /2)(r +s)
)rs (20.68)

—:g (g„,—& „,)(p*)'()33)' (20.69)

and, treating P and P* as variational parameters, we have

aE, /ap* =aE, /op= 0 . (20.70)

The resulting double power series can only vanish if Eqs.
(20.64) and (20.66) are satisfied. The special condition
(20.65) is not included. However, (20.70) now reduces
(20.69) to (20.65).

Since all conditions necessary to determine the trans-
formation (20.59) have been found, there should be no
further variational requirements. Nevertheless, we can-
not help wondering whether the expansion coeScients x„
and y„can be treated as variational parameters so that
we would have, for example,

0=(}Eo/(}x„=g ((}g„/(}x„)(P*)'()(3)', and x„y„.
(20.71)

For the simplest possible example, x3=y3=0, it is ele-

mentary to verify that the conditions (20.71), which can
also be understood as the equation 5Eo =5goo =0, togeth-
er with (20.61), imply g2o =0. This result should general-
ize, as will be evident from the further considerations.

The same results as follow from Eq. (20.70) can be de-
rived from variational principle III, Eq. (20.39). Choos-
ing 6 =(b —P) or its Hermitian conjugate, we find that
the calculation equivalent to (20.70) is

i.e., the expansion in powers of b, b converges because
the operators are 0( 1) and the successive coeII(cients de-
crease in the stated way.

Now how do the variational principles of the previous
subsections enter, if at all? In place of the reasoning fol-
lowing Eq. (20.63), let us apply the variational principle
II, Eq. (20.29). We calculate

E = ( (P(I3,Pt )
~
[H Hc ] ~

—)P(P,P* ) )

ak =xkXbX+~kXb~

ak =xkXbX+~kXb~

~kHk

(20.74a)

(20.74b)

(20.75a)

(23.75b)

The eight coe%cients xkz and yk& satisfy four kinematical
constraints following from the canonical commutation
relations (summation convention),

~kk' Xki+k'A, ~

0=X1a~2S

(20.76)

(20.77)

Eo+KC . (20.78)

Proceeding as in the sequel to Eq. (20.63), we find that
the conditions that determine the remaining transforma-
tion coefficients are the vanishing of the terms propor-
tional to (b, ), (bz ), b, b2, and b, b2 (plus H.c. in every
case). These are the four conditions:

g20, 00 g02, 00 g11„00 g10, 01 (20.79)

If gio, io (go) oi, as we suppose, after Eqs. (20.76),
(20.77), and (20.79) are solved, we set further terms de-
pending on b2, b 2 in K, such as b 2b2, to zero, in order to
be able to satisfy Eq. (20.78), since Hc depends only on

bi, b1. Though this last step appears to be arbitrary, it is
equivalent (as we shall now see) to what the variational
principles require for maximal decoupling of the two de-
grees of freedom.

Consider variational principle II, Eq. (20.29). As in
Eq. (20.69), we now find

E()= g (g„() () &„,)(P*)"(0) (20.80)

Substituting Eq. (20.74) into H we find that the sum of
Eqs. (20.52) and (20.54) yields the form

H = g g„,„...,,(b', )"'(b', )"'(b, )"(b, )"

(q(p, p')~[b, (H —H, )]~q(p, p*))=o, (20.72) Here Eq. (20.70) yields, in a consistent order, only one

dynamical condition, namely,
leading to the same consequences.

This is about all we can learn from the two-level mod-
el, unless we want to define b as the boson in the presen-
tation in which H is diagonal,

H=Eo+h)btb+Ii (bt) b + (20.73)

We still have Eq. (20.56), but Eq. (20.59) has to be re-
placed by a more general expansion. The same principles
apply, however, to the determination of the expansion
coefficients.

To augment our knowledge, we turn next to the three-
level model and two bosons ak. In order to reach the un-

derstanding sought in the simplest possible terms, we re-
strict our study of the decoupling problem to quadratic
terms and thus introduce two bosons b1 and b2, each
satisfying Eq. (20.56), related to a, and a2 by the equa-
tions (k=1,2; A, =1,2)

20, 00 g 00, 20 (20.81)

and we are missing three conditions. This tells us that we
were correct to pay attention to the arguments associated
with Eq. (20.71). The appropriate form appears to be

0=5E()—g A 53/ =5goo()() —gA 5JV . (20.82)

Here JV =0 are the four kinematical constraints (20.76)
and (20.77), and A are associated Lagrange multipliers.
Since there are eight variables, when the A are eliminat-

ed, we obtain four conditions that must be equivalent to
Eq. (20.79). In this case, Eq. (20.80) is redundant. It thus
appears that for variational principle II, the procedures
based on Eq. (20.71) or Eq. (20.82) are the natural ones
for the case in which one 6rst evaluates the expectation
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value of (H H—c) and then considers c-number varia-
tions.

Though the ground-state variational principle (20.82)
suKces, as we know from experience, to fix the harmonic
approximation, it is almost certain that when we go
beyond this approximation the optimum determination
of the transformations must involve the "p dependence, "
i.e., must bring in excited eigenstates. How to make this
determination within the present framework is a question
worthy of further study, though it can be avoided in
practice by utilizing the method described below.

If we turn to variational principle III, Eq. (20.39),
where we utilize q-number variations, the direct deriva-
tion of Eq. (20.79) is the natural outcome. To be specific,
we have, in a consistent approximation,

g 00,00 +~ 10, 10b 1~ 1 +g 01,01 ~ 2~ 2

g20, 00l. (b i ) +(bi ) ]+g02,00((b2 ) +(b2)

+gll, 00i bl b2 +b2 b il+gio, oi lb ibz+b2bi 1 (20 83)

Hc=h»b1b, . (20.84)

We apply variational principle III with the variations
5G=(b —

i p), b2, and (bz) taken in turn and find easily
that these yield the four conditions (20.79). For instance,

0=&+(p,p*)l[b„(H—H, )] e(p, p*) &

=g i i,oop*+g io, oi p ~ (20.85)

which yields two of the conditions.
The considerations of this section apply on1y to the vi-

brational regime. The extension to large-amplitude col-
lective motion can be carried out (Klein, Marumori, and
Une, (1984), but will not be recorded here because the al-
ternative approach described in the next section has been
developed much more thoroughly.

D. Reconstruction of the collective Hamiltonian
from the intrinsic state

The aim here is to formalize the procedures of the previ-
ous section, as well as to consider one generalization,
necessary in the long run. We describe the reasoning
within the context of the three-level mode1, in order to be
concrete. We have previously written H in the form

H =H(b„bi;b„b2)

and imposed the condition

b, le, &=0.

(20.86)

(20.87)

In the regime of large-amplitude collective motion, as
well as under certain approximate circumstances, where
we do not insist on using the exact ground state as refer-
ence state, it is inconvenient to impose condition (20.87)
on the collective mode. We retain it, however, for the
noncollective modes. Under these more general cir-
cumstances, with b1 =b, we have, assuming

Hc= g h„, (bt)"(b)' (20.88)

and using Eq. (20.14),

&q(p, p*)lH, lq(p, p*) &=&q, lH, (b'+p*;b+p)le, &

= g h„,(p*)"p, ,

where by straightforward expansion we find

(r+n, )!(s+nz)!h„= h„+rs n ),s+ n2
n), n2

7".II 1.S.02.

x &e,l(b')"'b"'lq, & .

(20.89)

(20.90)

As we have seen in the preceding subsection, once the "b
bosons" are introduced, H will take the general form

H= g g„(b )"b'+H': Eo+Hc+—H', (20.92)

where H' contains all dependence on the noncollective
bosons and therefore includes coupling between the col-
lective and noncollective spaces. As long as we retain
Eq. (20.87) for the noncollective bosons, we must have
the equations

o= & q (p,p*) lH'l e(p, p*) &

=&~(p,p*)ll~G, H jl~(p, p*)&, (20.93)

where the second condition holds for 66 completely
within the collective subspace. Both conditions (20.93)
follow from (20.87) and the dual condition & Volb;* =0 for
the noncollective degrees of freedom.

Another important conclusion to be drawn from the
preceding subsection, as well as from the remarks just
made, is that all that can be learned from variations
within the collective subspace using variational principle
III can be learned from linear variations,

56=eh —e*b . (20.94)

This could be gleaned from our examples, but follows in
general from variational principle II, since the latter is
equivalent to Eq. (20.70). We can thus conclude that the
most general set of variations consists of the direct sum
of Eq. (20.94) and variations that commute with the col-
1ective operators. From variational principle III with
5G = Eq. (20.94), we learn that

grs=jrs . (20.95)

As pointed out previously, these conditions fall into

In the vibrational domain, the series (20.90) should be
rapidly convergent in consequence of condition (20.68).
Therefore, given h„„Eq. (20.90) can be solved by itera-
tion for the h„, starting from the approximation h„, =—h„, .

Of course, the determination of the h„, must trace back
to the properties of the given Hamiltonian. In fact, we
have

H (pt;p)=&%(p, p*)lH %1(p,p*)& —&%', l Hl q,I& .

(20.91)
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two sets. Where h„,&0, they are determinations of h„, in
terms of the known (or to be computed) quantities g„, . If
h„, =0, g„=0 is a condition for the determination of the
b] bosons. Further conditions are obtained by choosing
5G outside the collective subspace or, as in Eq. (20.82),
by applying energy minimization conditions.

E. Cranking variational principle

We are finally in a position to derive yet another form
of variational principle. We shall deal directly with the
case

put into the form of Eq. (20.92), we find by evaluating Eq.
(20.20),

0=(t, —t, )5E,

+5I dt [H (P*;P) iP—*(t)P(t )+iP(t )P*(t)],
1

(20.103)

where H& is discussed below but is temporarily under-
stood to be given by the last form of Eq. (20.89). Thus
varying with respect to p(t) and p*(t) yields Hamilton's
classical equations of motion (note again the unconven-
tional sign of i )

blq, &ao. (20.96)

Details simplify when the right-hand side of Eq. (20.96)
vanishes, but the same general forms will hold. We write

&~(pp*)lH, (b', »lq(pp") & =H, (p",p)

= g h„, (/3*)"P' . (20.97)

We have from variational principle II, Eq. (20.29),

0=5&%(p,p*)lHle(p, p*)& 5H (/3*, p)—. (20.98)

Since the h„, are not variational quantities, the second
term on the right can be rewritten

(20.104a)

(20.104b)

H =H (bt;b)=h, b b+h (b ) b +. . . (20.105)

If Eq. (20.87) is satisfied for all degrees of freedom includ-
ing b, then

To make further progress, let us suppose that Hc has
the form appropriate to vibrations,

5H, (p*,p) =(aH, yap*)5p*+(aH, yap)5p

—=A,5P*+A, *5/3

=5& ~(p, p*)
l
[~b'+ ~*b ] lq (p,p*) & .

(20.99)

Hc(/3*, P) =Hc(P*,P),
and from Eq. (20.104) we find, for example, that

i/3(t ) = [h, +2—h2n+ . ]p(t )

—=cg)(n )p(t )

and that

(20.106)

(20.107)

In the last form of Eq. (20.99) we recognize that A, and A,
*

are to remain fixed and thus play the role of Lagrange
multipliers. We have thus transformed the variational
principle into form IV:

0=5(q(/3, p*) [H kbt A, *b)l'P—(p, p*—) &

=5(e(k, k*)l[H ~b A, b]le(~, X')&

=—5[&H & „—A, (bt&, A*(b &—, ], , (20.100)

where we have written

n(t) =n (0)=p*(t)p(t ) (20.108)

p(t ) ice(n)tp(0) (20.109)

Classically n is a function of the energy E, so that we
may write

co(n ) =h, +2h2n+

is a classical constant of the motion, corresponding to the
quantum operator n =b b Equation .(20.107) has the
solution

C(A, , X*)=—q(P, /3*) . (20.101) =co(E )

Applications of form IV (as of form I) will not be con-
sidered in this section; see Klein, 1972, however.

F. Classical equations of motion

—co +co E+0 1

Furthermore, from Eq. (20.105),

E(n)=h, n+h2n(n —1)+ .

(20.110)

(20.111)

In contrast to our completely quantum starting point
in the trial state [Eq. (20.5)], one encounters most fre-
quently in the literature a trial state in which G(t ) [Eqs.
(20.18) and (20.19)] has been replaced by

G,I(t)=p(t)bt p*(t)b . — (20.102)

Under these conditions, if we imagine that H has been

From Eqs. (20.110) and (20.111)together we conclude

co —A co h 2h0 l~ 1 1 2~ (20.112)

Since in practice a classical calculation would give us
co(E) (see below), the calculation outlined above shows
that if indeed we could obtain Hc in the form (20.105),
with the associated conditions on l+0&, a classical calcu-
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(p pe +ice(A)tb lp pe & (20.113)

since the quantum analog of Eq. (20.109) holds. Further-
more, Eq. (20.113) now yields Eq. (20.109).

In practice we usually find ourselves studying the clas-
sical equations of motion in a representation in which H~
is not diagonal in form and in which the condition
bi@0&=0 is not truly satisfied. Nevertheless, the con-
siderations of Sec. XX.D lead us to the conclusion that
solution of the classical equations of motion by a Fourier
series will yield co(E) from which a set of quantities
hi, hz, . . . , can be constructed from Eqs. (20.110) and
(20.111). These can be associated with the corresponding
quantities discussed in Sec. XX.D and thus identified
with the true quantities up to corrections of order 0,
in general.

Furthermore, if we are not in the representation in
which H is diagonal, then the exact equation of motion
for /3(t ) no longer coincides with the classical equation.
Solutions of the latter yield essential information on the
collective Hamiltonian. Higher-order corrections to the
classical equation undoubtedly contain important
dynamical information. However, the exact connection
with the fully quantum methods developed earlier in this
section remains to be investigated, perhaps through vari-
ational principle I.

G. Relation to the trace variational principle

In this subsection, we refine the previous analysis by
proving first that variational principles II and III are true
for any intrinsic state, i.e., any state in the decoupled sub-
space. We shall then show how the trace variational
principle, described in Sec. IV, is contained in the extend-
ed framework.

In the following we utilize Eqs. (20.9)—(20.11), with
Eq. (20.10) generalized to any linear combination of
1%„&,namely, for an arbitrary state, 1%;„(b,b ) &. From
these equations and the associated assumptions it follows
that

l~,„(b,b', t ) &
—=exp(iH, t ) I ~,„(b,b') & (20.114)

is an exact solution of the time-dependent Schrodinger
equation (with reversed sign of &—1). When the state
(20.114) is utilized as a trial state in the variational prin-

lation would allow us to determine the parameters of the
collective Hamiltonian. In reality, we cannot know the
Hamiltonian in the form (20.105) without having diago-
nalized H, in which event we hardly need the aftermath
of classical mechanics. It is nevertheless an amusing ob-
servation that, in a suitable representation, we can obtain
exact quantum results from a classical Hamiltonian.
Another way of saying the same thing is that in this case
the quantum theory reduces to a classical theory. This
can be seen by studying the matrix element

p(t)=(p, p*lb(t) p, p*&

ciple (20.20), the time dependence is observed to cancel
out because of the relation

[Hc, (H —Hc)]=[Hc(b, b"),H;„]=0 . (20.115)

As a consequence, we obtain variational principle II,

5 ( 4;„(b,b t )1[H Hc—]1%;„(b,b ) &, (20.116)

from which follows immediately variational principle III,

(+;.1[5G,(H Hc)]le;. & =o, (20.117)

(20.118)

Upon substitution into variational principle II, we find
that

5 Tr(H Hc ) =0, — (20.119)

where Tr is the trace over the collective subspace and
where we have discarded a factor X '. Below we study
two formal applications of Eq. (20.119). The first estab-
lishes the basis for the application described in Sec. IV.

Toward this end, consider a Hamiltonian with q boson
degrees of freedom (a;,a; ), i =1, . . . , q, H =H(a;, a, )

and a transformation (that might but need not be linear
in practice)

a;=f;(b, b~ ),
b, =f, '(a. , a. ),

(20.120)

(20.121)

where b
&
=b is the collective boson. Thus

H(a;, at)=H(b;, bt;c, c* ), (20.122)

where c are a set of unknown transformation coefficients
that determine the explicit form of the transformation
(20.120). Since the trace operation is invariant under a
unitary transformation within the space of states con-
sidered, we choose to evaluate the trace using the basis
states (20.6). The result

TrH =TrH =F(c,c* ) (20.123)

is a stationary c-number functional F, that is to be varied
subject to constraints on the transformation coefficients
following from the requirement that Eq. (20.120) preserve
the boson commutation relations. This is precisely the
form of variational principle proposed and implemented
in Sec. IV. (In this application, Hc is not varied and

where 51'0;„&=i5G1%;„&. Though we now have a more
general basis for these variational principles, it should be
emphasized that the applications in Secs. XX.C and
XX.D utilized the properties of the coherent state. In
the following discussion we aim to show that useful
consequences can be obtained with different choices of
the trial state.

We assume as before that the decoupled subspace is
spanned by a set of exact eigenstates of
H, 1'I'„&, n =1, . . . , %, and choose the intrinsic state to
be a normalized unweighted sum of all these states,
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therefore can be dropped. )

As a second application, we shall see that Eq. (20.119)
has the same consequences as the variational principle

5Tr H H—c g [a;,a; ] (20.124)

where the elements to be varied are the operators a, , a, ,
and Hc is treated as a Lagrange multiplier matrix. The
variational principle (20.124) has been studied previously
(Klein, Li, and Vassanji, 1980) as a basis for a formula-
tion of Heisenberg matrix mechanics. The equations of
motion that follow from Eq. (20.124) using the cyclic in-
variance of the trace operation, are

BH
&

=[a;,Hc] and H. c. Eq.
Ba;~

(20.125)

XXI. BOSONS AND THE THEORY OF
LARGE-AMPLITUDE COLLECTIVE MOTION

A. Introduction

The formulation of a quantum theory of large-
amplitude collective motion presupposes the presence of
a general quantum theory of collective motion as a suit-
able starting point. One such theory has been described
in the previous section. A number of other methods, in-

cluding the generator coordinate method (Reinhard and
Goeke, 1987), the equation of motion method (Klein,
1983b, 1984a, 1984b), and the Born-Oppenheimer
method (Villars, 1984), have proved to be useful starting
points for the development of a description of large-
arnplitude collective motion. Toward this end, the most
important part of the theory is its classical limit, al-

though the quantum formulations play an essential role
in providing a basis for computing quantum corrections.
The justification for the emphasis on the classical limit is
that, in order to develop a large-amplitude mode, many
degrees of freedom JV must participate in the motion. In
an expansion in JV =Pi/(fiJV), the correspondence prin-
ciple assures us that the leading term is the classical lim-
it. This section will be largely devoted to a study of that
limit and the part that bosons can play both in the basic
formulation and in selected applications.

To begin this exploration, it is not in fact necessary for

On the other hand, the corresponding derivation for
Eq. (20.119) replaces the right-hand side of Eq. (20.125)
by the corresponding partial derivative. In consequence
of the standard formula (20.24), these two forms are
equivalent. Second, since the collective Hamiltonian Hz
is the generator of time displacements within the decou-
pled subspace, the right-hand side can be replaced by the
time derivative a;, which yields a standard form of
Heisenberg's equations of motion.

We remark finally that still other intrinsic states have
been utilized in dynamical calculations involving nuclear
models (Dasso, Krejs, Klein, and Chattopadhyay, 1973).
The examples given nevertheless suffice to indicate that
we have at hand a dynamical tool of some Aexibility.

us to describe any of the quantum theories referred to
above. All the results we need have been derived in Sec.
XI. There it was shown that after the BZM mapping
from the shell-model space to the boson space, a simple
c-number substitution —equivalent to taking the average
in a coherent state and neglecting quantum
Auctuations —reduces the equations of motion to the
form of the time-dependent Hartree-Bogoliubov equa-
tions or, if one neglects pairing as we shall do, to the
time-dependent Hartree equations. In Sec. XIV, we indi-
cated how the exchange terms could be included, so that
one could arrive at the time-dependent Hartree-Pock
equations. A second result of major interest to us is that
the time-dependent Hartree-Fock equations are
equivalent to a set of classical Hamilton's equations, with
the Hartree-Fock functional playing the role of Hamil-
tonian. Again a proof for the Hartree case was given ex-
plicitly, and the elegant treatment of the Hartree-Fock
case by Yamamura and Kuriyama (1987) was outlined.
In the course of this section we shall provide yet other
proofs, but the main point allowing us to proceed has
been vouchsafed, encouraging us to study large-
arnplitude collective motion in the classical domain.
Thus, in the next subsection, we shall describe a recent,
useful formulation of this theory (Do Dang and Klein,
1985; Bulgac, Klein, and Do Dang, 1987a, 1987b; Do
Dang, Bulgac, and Klein, 1987). Following that, we shall
describe some applications to simple boson models
(Umar and Klein, 1986; Bulgac, Klein, and Do Dang,
1988). Other applications are conveniently studied
within the usual time-dependent Hartree-Pock frame-
work. A classical boson mapping of the BZM type then
makes a useful tool for carrying out this transformation.
We shall actually derive the formulas necessary to apply
the previously developed theory within the framework
provided by the time-dependent Hartree-Fock approxi-
mation in the adiabatic limit. This is as far as we shall
carry the matter, since algorithms necessary for realistic
applications are in a state of development and, though
some elementary applications have been carried out (Bul-
gac, Klein, Walet, and Do Dang, 1989; Walet, Klein, Do
Dang, and Bulgac, 1990), this work is in an early stage of
development.

It would take us too far afield to give a detailed ac-
count of previous and concurrent work that has
inAuenced the ideas to be described below. Particular
mention should be made, however, of the work of Maru-
mori and his associates (Marumori, 1977; Marumori,
Hayashi, Tomoda, Kuriyama, and Maskawa, 1980;
Marumori, Maskawa, Sakata, and Kuriyama, 1980);
Rowe and Basserman (1976), and Kuriyama and
Yamamura (Kuriyama and Yamamura, 1984a 1984b;
Yamamura, Kuriyama, and Iida, 1984; Yarnamura and
Kuriyama, 1984, 1986a, 1986b, 1987a, 1987c).

B. Classical theory of decoupled motion

The study of collective motion in the classical domain
is based on the idea of decoupled motion, i.e., motion
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H= ,'~ 8 ~(—g)~p+V(g), (21.1)

and consider the transformation to "collective" coordi-
nates by means of a point canonical transformation,

(21.2)

confined, under the Hamiltonian Aow, to a submanifold
of the total phase space. As has been amply documented
in the references on the quantum theory of collective
motion, this idea is the classical analog of the notion of
an invariant subspace of the Hilbert space that we stud-
ied in one form in the previous section. Furthermore, a
complete and usable theory of decoupled motion exists
only for the case in which the classical Hamiltonian is
quadratic in the momenta, i.e., is equivalent to a La-
grangian system. We shall therefore discuss only this
case, following the work of Bulgac, Do Dang, and Klein
cited above. From the references cited in these works,
the interested reader can trace all the germane literature,
both theoretical developments and the much smaller
number of applications.

We study a classical system with X canonical pairs g
and rr (the single-particle coordinates) described by the
Hamiltonian

permit us to reexpress Eq. (21.8) in the form

(21.10)

The conditions that characterize X are derived most
readily from the equations of motion for the set q', p, .
These are

q '=OH/Bp, =B 'p;+B pb,
—p, =OH/Bq'= V, +—,'B '~p;p +B,'p;p

bc+ —,'B apbp

(21.11)

(21.12)

The requirements q '=p, =0 can be compatible with
the requirements q'=p, =0 only if the equations

B "p;=0,

V, + —,'p;p. B,'~ =0

(21.13)

(21.14)

are satisfied, as one sees from Eqs. (21.11) and (21.12).
Equations (20.13) and (20.14) are equivalent to three sets
of conditions, provided none of the p,. are constants of
the motion, for in that case (21.14) yields two indepen-
dent conditions, and altogether we have

with inverse

q"=f"(g), (21.4)

V, =O,
B'~ =0.

, a

(21.15)

(21.16)

(21.17)

(21.5)

P=g (q' .
q )=g'(q), — (21.6)

designated as the surface X. In geometrical terms, if the
system point is initially on X and the initial velocity is on
TX, the tangent plane to X at the given point, then, pro-
vided the subsequent motion of the system is confined to
this surface, X is said to be decoupled. It is as if the sys-
tem had imposed on itself a set of holonomic constraints.

Before deriving the conditions that characterize such a
motion, let us note that under the point transformation
(21.2) and (21.3) the Hamiltonian becomes

H(g, vr)=H(q, p)= ,'p„B" (q)p + V(q—),

where

(21.7)

where the comma indicates partial derivative.
We assume that in the new coordinate set we can iden-

tify a decoupled surface, defined as follows: We divide
the set q into two subsets, q', i =1, . . . , E and q',
a =%+1, . . . , N, and suppose this division to be such
that if at time t =0 both q'=0 (by convention) and
q '=0, then q'(t)=0. Such motions evolve on a K-
dimensional submanifold

gaPfi gijga
, p

V =V;f'
(21.18)

(21.19)

(21.20)

The physical significance of these equations is ap-
parent. The first tells us that we may choose the mass
tensor to be block diagonal, i.e., it restricts the choice of
noncollective coordinates at each point. The remaining
two equations then demand the absence of both "real"
and "geometric" (centrifugal) forces orthogonal to the
decoupled surface. In the event that there are additional
constants of the motion, the necessary modifications
(Bulgac, Klein, and Do Dang, 1987b) can be made, but
will not be discussed here.

It follows readily from the decoupling conditions that
the Hamiltonian that governs the motion on X, the "col-
lective" Hamiltonian, is the value of H, [Eq. (21.7)] on
the surface.

Though Eqs. (21.15)—(21.17) are the most physically
transparent form of the decoupling conditions, it has
proven of value to transform them in order to obtain a
constructive procedure applicable to a wide range of ap-
plications. The first, trivial stage of transformation is to
replace (21.15)-(21.17) by the equivalent set,

g pv fp gaffv-
,p

Moreover, the chain-rule relations

fP ga =Qij

(21.8)

(21.9)

Of these relations, Eqs. (21.19) and (21.20) are chain-rule
relations that have been simplified by the imposition of
Eqs. (21.16) and (21.17), respectively, whereas Eqs.
(21.18) is a simplified version of Eq. (21.10) obtained by
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X"i=—V B PV =V B" V,a )P )p )v

(21.21)

(21.22)

X' +"—=X' 'B PX' ' =X ' 'B p X '
, CX «P )p , v (21.23)

Then, for oWr, we define a sequence of double-index
point functions,

X' '=—X' 'B PX"=X' 'B"X" .
) CX )P )p , v (21.24)

Thus the single-index sequence is constructed with the
help of the mass tensor, here in its role as metric tensor,
by forming the gradient of the previous point function
and then calculating the length of the new vector. The
double-index scalars are mixed scalar products of gra-
dients. By finding the gradients of these, we can form
still additional sequences of point functions, all of which
are subsumed under the considerations that follow.

The basic assertion is that, for a decoupled surface, the
gradient of every scalar, either defined above or alluded
to, is a vector field that lies in the tangent plane to X.
The proof depends on induction. We first note that, ac-
cording to the fundamental decoupling condition (21.16),
the gradient of X' ' lies in the tangent plane, i.e.,
X ', '=0. Now let us assume that X', '=0 and show that,
in consequence of this statement and all the remaining
decoupling conditions, X ', +"=0. We simply compute

X' +"=2X' 'X' B" +X' 'X' 'B"
, a ,pa, v ,p , v , a

=2X' X'- B "i+2X' 'X' B 'j+X 'X .B'J
,ba, i ,ia, j , l )J )a

=0 (21.25)

remembering Eq. (21.15). Geometrically, Eq. (21.18)
states that the quantities g, and f ' are equivalent sets of
basis vectors on X, and Eq. (21.19) affirms that the gra-
dient of Vlies in TX.

Next we study the transformation of the above condi-
tions into the form to be utilized. The basic idea that un-
derlies the following considerations is that we should be
able to construct the surface g =g (q) provided we can
specify the tangent plane at each point. We shall do this
by constructing a complete set of basis vectors for the
tangent plane from the "ingredients" of the given Hamil-
tonian.

To carry out this program, we define a sequence of
single-index point functions according to the definitions

linear array designated X' ', in the notation used previ-
ously only for the single-index scalars. In the same way
that Eq. (21.16) implied Eq. (21.19), we have more gen-
erally

Equations (20.26) and (20.27) both state, one in covariant,
the other in contravariant form, that the vector fields in
question lie in the tangent plane to X.

The remainder of this section is devoted to the applica-
tion of the theorem. to examples that represent cases
where the decoupling is not exact. In those cases, the
best one can do is to define a collective submanifold as
the solution of a suitably chosen subset of the ensemble of
conditions derived for exact decoupling. The most com-
plicated case that has been studied (Bulgac, Klein, and
Do Dang, 1987) is the case K =2, i.e., a two-dimensional
manifold. Here one utilizes the simplest point functions
V=X' ', U=X'", and T=X' " in the notation of Eq.
(20.24). For example, Eq. (20.27) becomes in this case

V, A V, ig A

U, a U, lg a

TA T lgA
~

)

(21.28)

(21.29)

(21.30)

In the following, we shall treat several one-dimensional
cases, where we need only the first two of the above equa-
tions.

C. AppIication to an SU(3) model

As a first application (Umar and Klein, 1986) we con-
sider the three-level generalization of the Lipkin model
described and utilized in Sec. XX. For the purposes of
this account, it suKces to pass immediately to our work-
ing Hamiltonian, obtained from Eqs. (20.51)—(20.54), in
the polynomial approximation, by a standard linear
transformation from boson creation and annihilation
operators to coordinates and momenta. In dimensionless
form and with parameters defined below, we have

(21.26)

By using B P in the entire space and B '~ on X to raise in-
dices, and by remembering Eqs. (21.18), we can convert
Eq. (21.26) to the form

(21.27)

In passing to the second line of Eq. (21.25), we have used
only the statement X', '=0; in order to obtain zero
overall, we have then used Eqs. (21.15) and (21.17) in the
first and third terms, respectively, whereas the second
term vanishes because X'„'=0. The vanishing of the
gradients of the multiply-indexed scalars follows from the
same mode of proof.

The results obtained can be summarized in two
equivalent forms. Let us suppose for the moment that all
the point functions of interest have been arranged into a

h =(H/eJ) =t +u,
where

u = — 1+ + —g (rlk+1)xk

fx + —f(x )—
2 8

(21.31)

(21.32)

(21.33)
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These equations contain a number of parameters from
the original model: There are n levels leading to n —1

canonical pairs (the summations over k running from 1

to n —1); e is an overall scale factor for single-particle en-
ergies; gk gk+, is an ordering parameter for these lev-
els with gqk = 1; 2J is the degeneracy of each level; and

x =r (xk) P =X(pk)
k k

f=f(1+n /4J) .

(21.34)

(21.35)

The commutation relations for x, p are

[xk,pi]=(i /J)5k' . (21.36)

Here J ' plays the role of A. It is thus seen that the
model describes coupled quartic oscillators. Further dis-
cussion will be confined to the case n =3.

Since the starting Hamiltonian (21.31)—(21.33) is quar-
tic in the momenta, the first step in applying the theory
of large-amplitude collective motion is to identify a range
of coupling strengths f for which the adiabatic approxi-
mation is valid. This is done by looking for phase transi-
tions within the model associated with critical points of
the potential where v, =—(Bv/Bx, ) vanishes. From Eq.
(21.33), we find the conditions (let r)2= 1 —il, }

[—,'(I+ ),i) f+ ,'fx —]x, =0, —

[ —,'(2 —il, ) f+ —,'fx —]x2=0 .

(21.37)

(21.38)

[Note that gi ~
—,', (2 —r)i) )(1+rji). ] Defining two criti-

cal values of f, namely,

f, = —,'(I+il, ),
f~

=
—,
' (2 —

ri i },
(21.39)

(21.40}

we obtain the following solutions:
(I)f (fi. The only solution is

(a) x, =x2 =0 (absolute minimum of v ) . (21.41)

(II) f2 )f )f, . There are two solutions,

(a) x, =x2=0 (saddle point),

(b) x2=0, (x, ) =2[f—
—,'(1+g, ) j/f

(symmetric minima) . (21.42)

(III) f)f2. There are three solutions,

(a) x i =x2 =0 (local maximum),

(b) x2=0, x „=2[f——,'(1+ii, ) ]If
(symmetric minima),

(c) x, =0, x2, =2[f—
—,'(2 —g, ) jlf

(symmetric saddle points) . (21.43)

The above presupposes that r)&%0.5. This limiting case
is discussed in Umar and Klein (1986), but will not be
considered here.

x =g (q), a=1,2, (21.44)

in an obvious change of notation. Since Eqs. (21.28) and
(21.29) require the gradients of V and of U to be parallel
to the tangent to the collective path, they must necessari-
ly be parallel to each other. This is expressed by the van-
ishing of a two-by-two determinant,

y 1 y2
(21.45)

The solution (solutions) of this equation is (are) most nat-
urally obtained as a relationship between the two original
coordinates, and we therefore choose

x =g(x'),
(21.46)

(21.47)

the latter representing the collective path. In Fig. 24, the
contours of the potential-energy function v(x', x ), in re-
gion III, are shown for a convenient choice of parame-
ters, J=14, i), =0.1, f=2.5. The relevant solution of
Eq. (21.45) is actually a closed valley connecting the
minima to the saddle points. One quadrant of this path
is shown for various values of f in Fig. 25. For values
not too near the transition point between the regions, it is
well approximated by an ellipse, and for very large values
off it approaches a circle.

According to the theory presented in Sec. XXI.B, the
collective potential energy follows directly from a
knowledge of the collective path, but the computation of
the collective mass requires also the tangent vector to the
path. Here some care is required in understanding exact-

These results are suScient to indicate the domain of
validity of the adiabatic approximation. In region I,
where quantum fluctuations about x

&
=x2 =0 are

governed by Eq. (21.36), we have the usual relationships
for small vibrations, namely (xk ) -(pk ), and each, in
consequence of Eq. (21.36), is 0(l/&J ). (Here ( ) indi-
cates a dominant nonvanishing matrix element. ) Under
these conditions, the adiabatic approximation is not valid
for any of the coordinates. In region II, on the other
hand, the same remarks used in region I apply to x2 and
p2', however, now (xi ) —1, consequently (pi ) —J
and therefore this canonical pair is in the large-
amplitude, small-momentum regime. In region III there
is also, as we shall see, an appropriate collective coordi-
nate, which may be taken to be an angle around a closed,
almost elliptical, path passing through the points de-
scribed by (b) and (c) in Eq. (21.43). Along such a path
the collective coordinate is on the average 0(1) and the
corresponding momentum is small. Though the theory
described in Sec. XXI.B can thus be applied to both re-
gions II and III, we shall give only the more interesting
results for region III.

One is seeking to decouple one collective coordinate
from a system with two degrees of freedom. For this
purpose one need apply only Eqs. (21.28) and (21.29), and
the hypersurface X is simply a collective path,
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D. Application to a model with tunneling

N i N
II= g —(p, +q, )+a. g q,

i=1 i =1

N

g o.„
2

The system to be studied is described by the Hamil-
tonian

N

P=~y QP& ~

i=1
N

S„=—,
' g o.

,„, k=x, y, z .
i=1

(21.49b)

(21.50)

Then the interesting part of the Hamiltonian (21.48)
reads

(21.48) H'= ,'p +—,'q +—21r&%qS, —4AS„. (21.51)

q= —g q, ,
i=1

(21.49a)

where, for reasons explained by Arve et al. (1987), the
parameters are chosen to have the values ~=0.006403,
A, =0.0005, and %=40. It is easy to see that only the
center of mass motion is coupled to the total spin, and
the internal motion is unaffected by the interaction. We
take advantage of this observation to introduce the new
variables

Henceforth we replace H' by H. We shall also set
iV=2J, where J is the value of the angular momentum
for the band of states that includes the ground state.

In order to study the Hamiltonian (21.51) by the
methods of this section, we have to take two steps: we
must first map the spin system to a system of bosons, and
second we must go to the classical limit. For the first
step, it is convenient to utilize the mapping of the SU(2)
algebra onto a pair of quantum action-angle variables H
and g, according to formulas identical, except for nota-
tion, with those derived in Sec. III.C,

-]6- S+ =(S ) =S,+iS„

-]7-

5 =H,
where

=exp( —,'ig)Q( J+—,
'

)
—II exp( —,'ig)

=exp(i g)&J(J + 1)—II(II+ 1), (21.52)

(21.53)

[II,exp(ig)] =exp(ig) . (21.54)
-]9—

-2]—

From these formulas, we obtain approximate formulas
for S, and S, , required for the evaluation of Eq. (21.51),
by expanding in powers of 1/J, assuming H to be no
larger than of order unity. These formulas are

S, =VJ(J+1)cos(g)— 1
l cos(g), 11'I,4v'J (J +1)

(21.55)

-23—

2

22

S„=&J (J + 1 )sin( g )— 1
l sin(g), 11'I,4&J(J+ I)

(21.56a)

S„=J(J+1)sin (g) ——„' [sin(g), [sin(g), 1123 I,

(p3
2 % & % u W & & Ot 2

[ (- 3

(21.56b)

where the braces stand for the anticommutator of the
corresponding operators. The Hamiltonian (21.51) thus
becomes

FIG. 26. Comparison of the eigenvalues of the exact diagonali-
zation, shown in column I,a), with the eigenvalues of the collec-
tive Hamiltonian shown in column (b). Parameter values are
JV=28, r)=0.1, and f=2.5 (region III). Column (c) corre-
sponds to the eigenvalues arising from the case of a modified
kinetic-energy quantization. From Umar and Klein, 1986.

H = V(q, g)+ T,

V(q, g')= —,'q +2~q+2J (J+1)cos(g)
—4M(J+1)sin (g),

(21.57)

(21.58)
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T=—2P
—z9 Icos(g), II I

We now turn to th
lective path. We c

e machiner usy used to calculate a col-
e construct the point function

+ A, l sin( g), ( sin( g'), II ) I . (21.59) U(q, g)= —,'(V +BV ) (21.65)

The ababove expression for H contains
e corrections of order 1

'bl d i E
h II

in qs. 21.52)—(21.54
remains small corn ar

domain of intere teres to us, as alread

Passing to the classical limit, we ma
ic energy as

'mi, we may rewrite the kinet-

T,»» =
2p + 'B—(q, g)I—I (21.60)

where

B(q,g)=8k, sin (g) —aq coq ~2(J+1 (k) (2161)

The profile of the potential-ener fun ', , is
di 1 d i Fi 27 h'g. , w ere one can easil
precise course of h' h

si y see a valley, the

W k gi h 0~
w ic is defined b

&
=n mand q = .—2i~ +2J (J + 1 cos

and solve the equations

V —AU =0, (21.66a)

(21.66b)

(21.67a)

q=g(x) . (21.67b)

g collective potential enerThe resultin c
from the calculation is

ia energy that emerges
n is computed from the formula

V(x)=V(q(x), g(x)) . (21.68)

V~
—co U~ =0,

where b sy ubscnpts we denote the corr
derivatives and hw erecoisaLa ran eg g p

'ons o a valley on the ot
face as seen from th

e potential-energy sur-

the classical kin t'
m e standpoint of a

'ne ic energy (21.60).
a metric defined b

We parametrize th 1e co lective ath
lective coordinate x define x efined by the equations

V;„=—4~ J (J+1 (21.62)

V&&dd~e
= 4AJ( J + 1 ) (21.63)

We thus identif a
'

y a potential barrier ofh '
0 elg

and Vhas saddlee pomts at q =0 g'=(2 +n 1)vr/2, with

Turnin to a
'

g a consideration of the coollective mass, a

1

e in connection with the
pe, the theory provid

' c
agree only when the

rovi es two distinct fc ormulas, which
ere is exact decou

at is determined b h
up ing. The mass

the formula
yt etan enttg o the path is given by

Vo=4J(J+1)(J ' —X) (21.64)
2

dg 1

dx B

2 1+Bg
(21.69)

where

1 0

0 B

(21.70)

is the inverse of t
2

t e metric tensor assoc'
( 1.59). [E io (21.69 i h

ce e ecoupling is not exac
at an lt ti eformula for the mas

components of the t
e mass by replacing the

e tangent vector in

~ ~

a corresponding vector
This gives the formula

(21.71)
V +BV~

(Vqg + V~)

As a measure of the ogoodness of deco li
e ractional difference f h

up ing, we choose

by the equation
nce o t e two massses, as expressed

B—B
B

(21.72)

FICy.G. 27. The profile of the potential-p - gy
ated with a mod g.

, an ein, 1988.
The nnumerical result is that thet t th q t'ty D

on any point of the collective path.
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TABLE IV. The mean excitation energies and the decimal logarithms of the splittings of the energy
levels below the barrier for the tunneling model introduced by Arve et al. , 1987. The first two columns
list the exact and approximate mean excitation energies of the doublets. The remaining columns record
the decimal logarithms of the energy splittings of the first five levels. From Bulgac, Klein, and Do
Dang, 1988.

Energy
Arve et al. (1987)

G.S.
0.154
0.289
0.403
0.489

Energy
(Large-amplitude

collective
motion)

G.S.
0.154
0.288
0.401
0.487

Exact
Arve et al. 41987)

13.00
8.96
5.92
3.51
1.92

Imaginary
time-dependent
Hartree-Pock

Arve et al. (1987)

13.00
8.57
5.39
2.85
1.00

Large-amplitude
collective

motion

12.89
8.89
5.87
3.51
1.92

This means that, in the present case, the collective
branch of the spectrum is almost completely decoupled
from the noncollective one.

The last point that we shall discuss is the quantization
of the collective Hamiltonian in order to find the collec-
tive states. This procedure is standard. We choose the
form

that one transcribe the previous theory back into time-
dependent Hartree-Fock language. This part of the
theory has a clear connection with boson mappings and
is the last subject that we shall describe in this section,
since algorithms for applying these ideas to realistic ex-
amples are still in the course of development.

H =
—,
'

l II, I II,8 l l + V(g), (21.73) E. Transcription to time-dependent Hartree-Fock theory

where [g, II]=i are the collective coordinate and momen-
ta, 0 ~ / ~ 2', and periodic boundary conditions are im-
posed. The results obtained by solving Eq. (21.73) are
compared with the exact results and with results ob-
tained by other approaches (Arve et a/. , 1987) in Table
IV. Of course one obtains a spectrum of doublets charac-
teristic of the tunneling process. In the first two columns
we list the exact and approximate mean excitation ener-
gies of the doublets. The resulting decimal logarithms of
the energy splittings for the first five levels are given in
the remaining columns of the table.

For all the levels below the barrier, the agreement with
the exact result from Arve et al. (1987) is very good. The
fact that both the mean excitation energies and the split-
tings are well reproduced means that the formalism
presented is accurate for the description of both the clas-
sically allowed and the forbidden regions. The values of
the mean excitation energies are defined by the collective
mass and potential energy in the classically allowed re-
gion, while the splittings depend on the properties of the
collective Hamiltonian in the classically forbidden re-
gion.

The theory applied above to the decoupling of one de-
gree of freedom from a two-dimensional system has also
been applied to the decoupling of two degrees of freedom
floII1 a 'tlllcc-dlmcns1onal systcl11 (Bulgac, Kicln and Do
Dang, 1987b). Furthermore, it appears to be completely
feasible to write down a coupled system with many de-
grees of freedom, with application to tunneling problems
in molecular systems, and to derive an eItective Hamil-
tonian for the tunneling (Walet, Klein, and Do Dang,
1989). The problems of nuclear physics are, however,
more difficult and at the present moment seem to require

We take the time-dependent Hartree-Pock equations in
the form

'Pab t~ P~ab ~ (21.74)

~.b
=h.b+ I'-bdPd. (21.75)

ab ba & ~abed Vbacd ~abdc ~cdab (21.76)

are the traditional elements of a nuclear Hamiltonian.
The labels a, b, . . . refer to a complete orthonormal set of
single-particle functions P„ this set will be further subdi-

vided into a set h occupied in the reference Slater deter-
minant and an unoccupied set p. We have

P=X 4b4'b (P').b=P.b .
h

(21.77)

~HF [P f abPba +
2 ~abcdPcaPdb (21.79)

the Hartree-Pock functional, serves as "Hamiltonian. "
Remarkably Eqs. (21.78) are already in Hamiltonian
form, where we identify ppQ and php ppQ as complex

The most convenient choice of basis for exhibiting the
canonical structure of Eq. (21.74) is the one in which p is
instantaneously diagonal. In this basis Eq. (21.74) is
equivalent to the pair of equations

'P b
=~

b (o~~&Pb )
(21.78)
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canonical variables. We may introduce real canonical
coordinates g and m,

(2ab) (0) (2ab) + (2ab) (0) + ( la) (1b) + (1b) ( la)

(21.91)
1

Pph —(P +''rrph ) r
2

1 ph . 1
Php

= —(P" H—
rph

)= —(g P+ivrhp) .
(21.80)

Next, if we carry out a formal expansion of Eq. (21.81),
after having substituted Eq. (21.85), we find to second or-
der

The canonical coordinates (21.80) that provide such a
concise proof of the canonicity of the time-dependent
Hartree-Fock equations are, however, not suitable for the
study of the adiabatic limit. Note, in particular, that
Eqs. (20.80) vanish at the particular instant of their utili-
zation, though of course their derivatives do not. We de-
scribe brieAy the alternative method that we utilize,
based on a classical version of the Holstein-Primako6'bo-
son mapping (Blaizot and Marshalek, 1978).

The formulas

(21.81)

(21.82)

(21.83)

(21.84)

P= —(g+ivr), P = —-(g —im ),1 . f 1

V'2 (21.85)

where tilde means transposed. We have

P =0'h h (21.86)

In this transcription the classical Hamiltonian is given by
the formula

define a mapping from the elements of the density matrix
in an arbitrary basis onto a set of complex numbers p h,
which, together with their complex conjugates, are a set
of complex canonical variables, convenient for the discus-
sion of vibrational degrees of freedom. For the study of
large-amplitude motion, we introduce real canonical vari-
ables g and m, distinct from the variables in Eq. (20.80),
according to the standard formulas

g( 1 1(2)1/2+ ~

( 1 1 g2)1/2

2[1 1g2)]—1/2 (21.92)

The consequences of Eq. (21.92) are, first, that in the rep-
resentation in which p' ' is diagonal we have

(
(0)

)
—

[g( 1 1 g2)1/2] —() (21.93)

and therefore p =ghp=0. It follows that Eq. (21.92)
reduces to

&2Pph =i ~ph +O(~ ) . (21.94)

Upon comparison with Eq. (21.88), we conclude that

(1p'h') (1p'h')
Pph Php . ~pp'~hh' ~v2

(21.95)

(2p'h 'p "h "
) OPph (21.96)

The adiabatic expansion of the Hamiltonian leading to
the form (21.1) can be obtained by collecting the above
results, substituting into Eq. (21.87), and expanding to
the required order. A more elegant derivation is to ex-
pand directly in powers of ~ h and then notice that, for
variation about the chosen representation, we have from
Eq. (21.92)

&2 5p =@+i5~, ' (21.97)

which is also a consequence of Eq. (21.80). Following
this latter procedure and remembering Eq. (21.97), we
can write

H(g, m) = WHF(p(g, n)) . (21.87) WHF[P(k ~)]

In the adiabatic limit by far the most convenient represen
tation appears to be the one in which p(g, sr=0) =p' '(g) is
diagonal. This choice greatly simplifies the ensuing for-
mulas.

In order to expand H(g, ~) in powers of ~ to second-
order terms, we first expand p(g, ~),

p(g, ~)=p' '(g)+p")(g)~, +(1/2)p'" )(g)~.m„+

(21.88)

= V(g)+ ,'m. B ~(g)~)s, — (21.98)

where the linear term vanishes,

6W i 6W
5~ph +2 5Pph

W[p($, 0)] +'~ h~p h (5 W/5' h5vr h )

where the different orders are subject to the well-known
constraints following from the idempotency of p,

2
(21.99)

(0) (0)2

(la) (0) (1a)+ (la) (0)

(21.89)

(21.90)

since the matrix elements of & can be chosen real if the
system under study is time-reversal invariant. Further-

more
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26 8'
6m h6~ h.

1 68'
6P,h6P, h

6 8'
6Pph 6Ph p'

68' 68'
6Php 6Pp'h' 6Php 6Ph'p'

(21.100)

gPh gPh( Q i)

Q'=Q'(g) .

(21.104)

(21.105)

convenient in the nuclear case to utilize the covariant
form of the equations, since Eq. (21.28) will then be
thoroughly familiar as the equation of the standard
cranking method. It is also natural to make a change in
the notation, this change being partly defined by writing
the point transformation equations (21.2) and (21.4) in
the form

The evaluation of Eq. (21.100) yields the formula

B " "
26hh (—&—

pp +&~ )
—

—,'5 ~ (&hh +Ah h )

+
2 ( ~ph'hp'+ ~hp'ph' ~pp'hh' ~hh'pp')

(21.101)

U=& B~"~
ph p'h' (21.102)

More explicitly, with the help of the simplified form of
Eq. (21.101), we can write the resulting expression as a
trace,

U =Tr Ip&( 1 —
p )&( 1 —

p )&—
( 1 p)&p&p& J, —

(21.103)

where in all such formulas we henceforth mean the densi-

ty matrix in the limit of vanishing momenta, i.e., the first
term of Eq. (21.88).

Our final task is to transcribe Eqs. (21.28) and (21.29),
which determine the collective path. In practice it is

The preceding formula simplifies if we consider either se-
parable interactions in the Hartree approximation or
Skyrme interactions in conjunction with spin- and
isospin-saturated systems, for in those cases the last set of
terms depending explicitly on the two-body matrix ele-
ments cancels. The remaining formulas of the transcrip-
tion will, for the sake of simplicity, apply only to these
cases. It is straightforward to elaborate formulas corre-
sponding to the general case.

We shall restrict further attention to the case of a sin-

gle collective coordinate. Thus the point function U
takes the form

For a collective path, the superscript i becomes
superAuous. We also set

(21.106)

& U/6p„=&„"',

&Q/&ph, =fih .

(21.107)

(21.108)

With this nomenclature Eqs. (21.28) and (21.29) take the
concise forms

~ph ~~ph

(&)—
~ph =Amph .

(21.109)

(21.110)

V,h,d =y K (q )„(q )hd, (21.111)

where q is a single-particle operator and ~ an associat-
ed interaction strength. One then calculates

where A, =dV/dQ and p=dU/dQ. Each of these equa-
tions is of the cranking form, differing in the structure of
the cranking Hamiltonians and in the definition of the
cranking parameters, but both driven by the same crank-
ing operator f. The cranking operator that accomplishes
this heavy burden is no longer freely at our disposal, but
must be a self-consistent solution of the two sets of condi-
tions.

The specification of the contents of Eq. (21.110) is not
yet complete, since we must evaluate the additional
cranking Hamiltonian &"'. We shall do so for the
choice

&' "=&( 1 —
p )&( 1 —

p )& 2&p&( 1 —
p )&—2&( 1 p)&—p&+&p&p&—

+g ir q Tr[pq (1—p)&(1 —p)&+p%'(I —p)q (1 p)&+p&(1 —p—)&(1—p)q

~NL +~L

—(1 p)q p&p& (1—p)&pq p&—(1—p)&p&pq —]—
(21.112)

Here the terms proportional to one of the q have been
designated by the subscript I., for local, and the remain-
ing terms recognized as nonlocal. This formula is not as
forbidding as it appears, since its evaluation involves
straightforward matrix multiplication in a shell-model

basis.
The formalism described above has been applied suc-

cessfully (Bulgac, Klein, Do Dang, and Walet, 1989; Wa-
let, Klein, Do Dang, and Bulgac, 1990) to the model de-
scribed in Sec. XXI.D (with obvious modifications for bo-

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



A. Klein and E. R. Marshalek: Boson realizations of Lie algebras 531

sons) and to an exactly soluble model for nuclear mono-
pole vibrations (T. Suzuki, 1973). More realistic applica-
tions are under study.

XXII. THERMAL BOSON MAPPINGS

A. Introduction

Fock, thermal RPA, and thermal boson expansion tech-
niques to nuclear models. The most important point that
we shall attempt to elucidate, given a Hamiltonian with a
dynamical symmetry, is the way this symmetry is neces-
sarily broken by the thermal vacuum state, requiring bo-
son mappings of a larger algebra. A further effect that
will be studied is the dependence of the result on the sym-
metry properties assumed for the heat bath.

In this section we shall give an introductory account of
a rather new area of application of boson mappings to
nuclear physics. This development was stimulated by the
accumulation of experiments on highly excited nuclear
systems where, for instance, the concept of temperature-
dependent excitations appears to be germane (Abrikosov,
Gor'kov, and Dzyaloshinskii, 1963). Standard
temperature-dependent equation of motion methods
(Sugawara-Tanabe and Tanabe, 1986; Tanabe and
Sugawara-Tanabe, 1986; Tanabe, 1988) and linear-
response theory (Ring et al. , 1984) have been applied to
these problems. By contrast, the techniques to be de-
scribed in this section remain to be applied to realistic
problems in nuclear physics, though there is nothing to
prevent their application other than the problems men-
tioned in the earlier pages of this review, once the foun-
dations of the method have been understood. Our main
goal in this section is to provide and illustrate this under-
standing. The account that follows is based largely on
the work of Walet and Klein (1990), which was stimulat-
ed by the prior work of Hatsuda (1989). The latter con-
tains a complete and satisfactory formal account of a
method for the utilization of temperature-dependent bo-
sons. An application to the Lipkin model, however,
raised some issues that were treated more fully by Walet
and Klein. This explains the order of the exposition.
Following an account of the results of Hatsuda and Wa-
let and Klein, we shall discuss prior work (da
Providencia and Fiolhais, 1985; Brajczewska, Fiolhais,
and da Providencia, 1986), based on a different mapping
procedure. We finally mention a most recent paper,
which develops a time-dependent Hartree-Fock theory of
mixed states with the aid of the thermofield formalism
(Yamamura, da Providencia, Kuriyama, and Fiolhais,
1989).

In the following, thermal boson mappings will appear
within the framework of the method of thermofield dy-
namics (Takahashi and Umezawa, 1975; Umezawa,
Matsumoto, and Tachiki, 1982; Umezawa, 1984). In this
method, it is shown that the use of thermal averages, i.e.,
mixed states, in the standard version of statistical
mechanics, can be replaced by computation of an expec-
tation value with respect to the vacuum state of a dou-
bled Hilbert space, whose precise definition is tempera-
ture dependent. After the briefest resume of the funda-
mentals of thermofield dynamics, we shall study the ap-
plication to the Lipkin model, though most results
translate to more general cases. With the help of this
model, we shall show how to apply thermal Hartree-

B. Thermofield dynamics

The idea behind thermofield dynamics is to define a
thermal vacuum Io(p) ) such that the thermal expecta-
tion value of any operator,

( 0 )&
—=tr(exp( —pR') 0 ) Itr( exp( pH ) )—, (22.1)

equals the expectation value with respect to the thermal
state,

&o&~=&0(p) oIo(p)&, (22.2)

The problem in the construction of Io(p) ) is that, when
thermal averages are taken, only diagonal matrix ele-
ments of the operator 0 enter. From this one can infer
that the state 0(p)) cannot be defined in the original
Hilbert space, i.e., as a linear combination of the eigen-
vectors In ) only, but if we multiply each state In ) with a
state n ), chosen from a second, independent, Hilbert
space and endowed with the same orthogonality proper-
ties as

I
n ), we can write

+exp( (p/2)E, }In & In )—
Io(p)&= "

g exp( PE„)— (22.4)

If we require that the Kubo-Martin-Schwinger condi-
tion hold (Kubo, 1957; Martin and Schwinger, 1959),
namely,

(0(p)Ia(t)a(t') o(p))
= (0(p)la(t') ~(t+t p)lo(p) &, (22.5)

we find some extra conditions on the second space.
These are satisfied when we require that we have a Ham-
iltonian and operator structure in the "tilde-conjugated"
space similar to that in the original space. Introducing a
tilde conjugation operator that maps from the original
Fock space V to the new one 9', we can prove the follow-
ing rules:

where, as usual, P= ( k T) '. Using an eigenvalue-
eigenvector decomposition for the Hamiltonian H, we
can thus write in the standard way

&o(p) Io Io(p) )

'g exp( PE„)& n
I

—0
I
n & g exp( PE„) . —

n

(22.3)
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AB=A B
The operator b, no longer annihilates the thermal vacu-
um, since we calculate that

C1 A +C2B =C1 A +C2B

(22.6)
b, lo(p) ) =. b ', lo(p) ), (22.12)

A =+A

l0(p)) = l0(p) &,

where in the penultimate equation the plus sign (minus
sign) refers to bosonic (fermionic) operators. From these
relations we can derive that the Schrodinger equation in
the original space translates to a Schrodinger equation in
the doubled space, but now with Harniltonian

(22.7)

Qg SCALSgS (22.8)

and l0(p) ) HA to be the relevant symmetry group. This
contains those collective excitations that are strongly
connected to the thermal vacuum. Clearly this in general
entails collective operators not present in the Hamiltoni-
an. The corresponding modes will be shown to be mass-
less in the thermodynamic limit, in analogy to the Gold-
stone modes found in dynamical symmetry breaking.

In general, we are not able to calculate the eigenstates
exactly and have to resort to some form of mean-fie1d
theory. Suppose that we have a Hartree-Fock-
Bogoliubov —type mean field, with quasiparticles b;
(creation) and b, (annihilation) that obey Fermi statistics.
The Hamiltonian can always be reduced to

H=HMF+ V„, ,

where HM„ is the (thermal) mean-field Hamiltonian

(22.9)

HMF=+e;(p)b;b, . (22.10)

If we wish to remain within the framework of mean-field
theory, we should use a mean-field form for the thermal
vacuum. In a grand canonical average in a mean-field
approximation, the sum in Eq. (22.4) can be carried out
and the result written as

l0(P) ) =Z(P) ' exp[ P(HMF pN )/2]— —

X exp y b, b; lo) lo) . (22. 11)

This Hamiltonian is generally unbounded from both
below and above, and the thermal state is one of the
states at eigenvalue zero (note that all states that are sym-
metric under tilde conjugation occur at this eigenvalue).

There is an important difference between thermofield
dynamics and the usual (T=0) quantum mechanics. If
the Hamiltonian has a dynamical symmetry QC: 4, where
4 is the shell-model algebra of all bilinear operators, the
thermal Hamiltonian has the direct product group 0 0
as dynamical symmetry group. In general, the thermal
vacuum breaks this dynamical symmetry, since it usually
has components in several irreps of QQ. We shall
define the minimal group A such that

a, =+I—f(e,. ) b,. Q—f(c, )b t. (22. 13)

HMF=g e;b; b; . (22.14)

In this case we find

l0(P)&=z(P) ' 'exp( —HMFP/2)gin &ln ), (22. 15)

and the sum over n is now over a set of orthogonal states
that spans the subspace with fixed particle number N,
Nln ) =Nln ). In this case, it is not possible to carry out
the Bogoliubov-Valatin transformation. Nevertheless, as
we illustrate below, if we can identify a dynamical sym-
metry group 9 associated with the Hamiltonian, we can
use this to construct the states needed in the expansion of
the thermal vacuum. In these models a coherent state on
the direct product group 5's 5' is very convenient in the
evaluation of the sum over states in Eq. (22.15}, which
may lead to simple expressions for the thermal Hamil-
tonian. This will be illustrated in the next section for the
Lipkin model.

C. Lipkin-Meshkov-Glick model in the restricted
canonical ensemble

We turn once more to the model described in Sec.
III.A, with Hamiltonian given by Eq. (3.5). We find it
convenient here to use lowercase letters for the quasi-spin
operators and to employ a particle rather than a
particle-hole formalism. This entails the definitions

Jp — g (C+pC+p C pC
p =1

J+ = g c+pc —p =gJ+p~
p=1 p

—,)=Xjo,
p

j =(j+ )

(22.16)

where c+ (c ) creates a fermion in the upper (lower)
level, and the vacuum is the completely filled lower shell,

does! (Note: f(co)=1/[e xp(pro)+I], the usual Fermi
statistics factor. }

Equation (22. 13) is referred to as the transformation to
thermal quasiparticles It illustrates the extreme ease of
applying thermofield dynamics to the grand canonical en-
sernble, where we can use a thermal Bogoliubov-Valatin
transformation to take into account the effect of tempera-
ture. Before illustrating the use of the grand canonical
ensemble as the basis for a thermal boson mapping in the
Lipkin model, we shall first consider a case in which re-
strictions imposed on the heat bath render the canonical
ensemble the one of choice.

Let us consider a mean-field theory for such a case.
Let HMF again denote the mean-field Hamiltonian,
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p=l
(22.17)

with

HMFJ «=Joe x—(~J+, +~*i , )— (22.21)

where we use I

—
& to denote the state with both levels

empty.
In terms of the individual spin- —,

' operators j, the
Hamiltonian reads

H=&g JoJ,
—

2
Vg (I+I,J+, +Z Ii q-»-

p pWq

(22.18)

where we use the fact that we cannot have more than one
particle-hole excitation in each substate —p, +p. If we
perform the standard mean-field approximation at T =0,
we find

HMF=Q[no, —V« —1)(~J+,+~*i ,)]—(22.19)

with b, =(j+ &. There is a well-known self-consistency
condition for a deformed solution (b,&0),

+1+4[V(Q —1)b, ] =1.
V(Q —1)

(22.20)

We now assume that no correlations other than the
ones discussed above will appear at finite temperature.

Since one usually considers only those states in which
half the available sites are filled (%=0), it is natural to
ask whether the canonical ensemble can be profitably em-

ployed in this problem. It turns out that this task can be
performed with least eCort if we allow only for excitation
and deexcitation between levels of the same index p,
which is a very strong restriction on the behavior of the
bath. This corresponds to taking into account the excita-
tions indicated in Fig. 28(a), but leaving out effects of
operators outside the group SU(2), arising from diagrams
such as Fig. 28(b).

Turning to the construction of the mean field, we shall
follow the derivation for the T =0 case given in Ring and
Schuck (1980) as closely as possible. The Hartree-Fock
approximation for the pth particle-hole substate reads

(0 1 ), 6= (0(/3) Ij+& IO(/3) &

V
(22.22)

Having defined the mean field, we can now use Eq.
(22.15) to define the thermal vacuum. To simplify the
formulas, we drop the normalization factor contained in
the definition of this state; when calculating thermal ex-
pectation values, we have thus to divide by the norm.
This has the additional advantage that the partition func-
tion Z(P) can be evaluated as Z(P)=(0(/3)IO(P) &. The
state IO(/3) & can be written as

IO(/3) & =exp
' —& H „ /3/2 &In & In &

p n

=exp —gHMFpP/2 + (IOO& +
I
ll & )

p=1

= + exp( H /3/2—)(IOO& + 11&,)
p=l

p( H„ /3/2)ID —», . (22.23)

The notation Iij & denotes a state with i particle-hole ex-
citations in substate p in the ordinary space, and j
particle-hole excitations in substate p in the tilde-
conjugated space. Using this last equation, we find

p

((D Ie MFP ID »
(22.24)

It is not difficult to evaluate this quantity; one finds

Here we use the subscript p to indicate that the operator
acts only in the two-dimensional space +p, —p. The to-
tal mean-field Hamiltonian is a sum over all the substates
p. Since all the mean-field Hamiltonians are the same, ir-
respective of the index, the value of 6 is independent of

Q )fc

tanh(/3'R ),R
(22.25)

where we have introduced the dimensionless "reduced
thermal energy"

(22.26)

and the factor

(22.27)

FICx. 28. A schematic indication of the various excitations pos-
sible in the thermal Lipkin model. The two lines indicate the
upper and lower level, the black blobs indicate particles and the
white blobs indicate holes in the lower level. In the set of
Agures labeled (a) only excitations from upper to lower levels
with the same index p are allowed, corresponding to the
definition of a restricted heat bath. In the second set (b), excita-
tions that change the value of p are also permitted, correspond-
ing to a general heat bath. From Walet and Klein, 1990.

From Eq. (22.25) we can derive two conditions. First, we
see that 6 should be real, and second, we see that self-
consistency is required for a solution with b,&0,

1=—tanh(/3'& /2) .
R

(22.28)

Using the fact that R ~ 1, we can derive that a deformed
solution (b,AO) will only occur when
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y tanh(P'/2) )1, (22.29)

Since j+, etc. , are operators within the j =
—,
' representa-

tion of SU(2), what we have shown is that in the normal
phase the mean-field approximation can be constructed
from states that are direct products of % independent
j=—,

' representations. This is formally equivalent to a
noninteracting system of spins in a homogeneous external
magnetic field, a problem that has been discussed within
the thermofield method by M. Suzuki (1985). The
thermal state (22.30) can be rewritten as

10(p) ) = Q (u+uj, j,) l0) I0) .
p=1

(22.31)

Following Suzuki we now use the fact that the thermal
vacuum is unitarily equivalent to the original vacuum, to
show that we can define a new set of thermal spin opera-
tors of which l0(P) ) is an eigenstate, namely

J+p =uJ+p +2vJ0pJ +p

J+p =uJ+p +2vJ0pJ +p

2 2Jo =u jo —u jo —uu(j+j+ +j j ),
(22.32)

2 2
Jop u j op u j op uu(j +pj +p+j pj—

where J l0(P) ) =J l0(P) ) =0, and

from which we infer that we only find a phase transition
for y) 1, at P'=2 tanh '(1/g).

Further detailed calculations will be reported only for
the normal phase. What is usually referred to as the nor-
mal phase of the Lipkin model is the high-temperature
phase where 6=0. In that case the first part of the Ham-
iltonian (Ejo) plays the role of a mean field. Using this
we can rewrite the definition of the thermal vacuum, Eq.
(22.4), as

l0(13)) =exp( —P'jo/2)exp gj+pj +p l0) l0) .
. p

(22.30)

u = 1/&exp( —I3e/2)+ 1,
u=&1 —u'. (22.33)

These transformations between the operators have some
very peculiar but useful properties: Even though they
are nonlinear in the generators of SU(2) X SU(2), the final
form again spans an SU(2) X SU(2) algebra. Such a trans-
formation can be found only for the j =

—,
' spinor irrep of

SU(2).
We also need the inverse relations, which will be useful

to calculate the thermal Hamiltonian,

j+ =uJ+p —2VJ0 J+p,
j+ =uJ+ —2VJ0 J+p,

jop =u Jo —u~J, +uu(J+p J+p+ J p J ),
jop =u Jop uJop+—uu(J+p J+p+J J ) .

(22.34)

The nonlinear transformation (22.34) is a linear trans-
formation for the operators

J, J, Yp =J Jp (22.35)

These 15 operators close under commutation and form
the algebra SU(4). When we sum over the spin index p,
we thus obtain operators that are the complete equivalent
of the operators in the Wigner supermultiplet
classification of nuclear states (Wigner, 1937) and thus
generate the group SU(4). As a clarification of this re-
sult, consider the fact that each substate ( —p, +p) con-
taining one particle is a j =

—,
' state. In constructing the

thermal state, we take a direct product of such substates
in the original space and in the tilde space. If we identify
the original space with the spin in the Wigner model and
the tilde space with isospin, it becomes clear that the
present procedure parallels Wigner's original construc-
tion.

From the transformation (22.34), using the notation
(22.35), we find that the Hamiltonian becomes

e(Jo —Jo)——(u [J+J++J J' J+J+ J' J ]+4u [Yo Yo +Yo+ Yo+ Y o o +o +o]0 0

—2uu[[J+, Yo }+IJ,Yo+}—[J+,Y—o}—[J— Y+o}]) . (22.36)

[J;,J, ] =i e,jk Jk,
[J;,J, ]=i@;k Jk,
[J;,J, ]=0,
[J, , Yjk ]=i e.j.Yik

[J, , Y&k ] =i eikl Yjl ,

[ Yij, Ykl ] —l Eikm Jm 6jl + l Ej lm Jm 5i k

(22.37)

The commutation rules of the basic operators are most
readily given in the Cartesian form

I

The operators that give a nonzero result on the vacuum
are the step-up operators J+, J+, Y0+, Y+0, and Y++,
and the diagonal operators Jo, Jo, and Yoo (with eigen-
values —0/2, —0/2, and 0/4).

We now try to build an SU(4) irrep on the extremal
state l0(/3) ). Although the state l0(P) ) has a complex
structure in terms of the lowercase generators of SU(4), it
has a simple structure in terms of the uppercase genera-
tors, with SU(2) X SU(2) labels J =J=0/2. Since we are
considering states with 0 particles, the sum of all the
rows of the SU(4) Young tableau is at most Q. Using
Littlewood's analysis (Littlewood, 1950) of the group
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reduction SU(4)&SU(2) X SU(2), we find that the only
SU(4) irrep containing a state with the quantum numbers
of IO(P) & is the one-row irrep t Q}. In order to under-
stand the problem, it is also useful to know the spin and
"tildespin" quantum numbers of the states contained in
this irrep. Again using Littlewood s rules, we can find
the SU(2) X SU(2) labels

SU(4) &SU(2) X SU(2)

the Wigner-Eckart theorem. Thus it follows that

a, (Ns, Nli, Nc ) = r(N, )r(Nz )b, (Nc )

a2(Ns, N&, Nc ) =r(N& )r(N& + 1)r(Nz )r(N2+1)b2(Nc ),
(22.43)

a3(Ns, N~, Nc ) =b3(Nc ),

x tj}x
j=0

(22.38) where we have introduced the shorthand notation

r(N)=(Q —N)', N, =2Nc+Nii, N2=2Nc+Ns .

The boson mapping for this irrep is not too difficult to
construct using commutator techniques often used previ-
ously in this review. We introduce two bosons (8 and 8)
for the Holstein-PrimakoF mapping of the two SU(2)
algebras, and one extra boson ( C =C ) that decreases
both J and J by one. Using the commutation relations,
we can now derive the form of all operators. The details
that follow should be sufficiently familiar in outline so
that some readers may wish to skip beyond Eq. (22.50).

We emphasize that we consider here only one specific
boson realization of the Wigner supermultiplet algebra,
corresponding to the case in which we have the SU(4) ir-
rep IQI with the states labeled by the SU(2)XSU(2)
quantum numbers

IJ mJ'J mJ &=IQ/2 j,m;Q/2 —j,m & . (—22.39)

The selection rules for the bosons introduced in the pre-
vious paragraph are thus

BtlQ/2 —j,m;Q/2 —j,m &

(22.44)

All operators Y & can now be determined by laddering
down with J and J . We can calculate difference rela-
tions for the three functions b by evaluating the commu-
tator of Y++ with Y

I:I'++ I'——)=Jo+Jo . (22.45)

= &0141„lo& =Q . (22.46)

We ultimately find

0+2
(Q —2Nc )( Q —2Nc+ 2)

b2(Nc) =bi(Nc+1),

We need only a boundary condition at N&=0. This is
provided by b, (0)= 1/Q as follows from the condition

&olJ —J—&++ lo& =Q'b, (o)

= IQ/2 —j,m+1;Q/2 —j,m &,

8 IQ/2 —j,m;Q/2 —j,m &

0—Nc+2
Q —2Nc+2 (Q —2Nc+3)(Q —2Nc+1)

1/2

=IQ/2 —j,m;Q/2 —j,m+1&,

(22.40)

C
I
Q /2 —j,m; Q /2 —j,m &

=
I
Q /2 —j—1,m + 1;Q/2 —j—1,m + 1 & .

We first use the Holstein-PrimakoF mapping for SU(2), in
an obvious notation,

We can now derive that

I'o+ = —-,'tJ — I'++ I

=8 t( Q/2+Ns+N—c)r(N2)b, (Nc)

+BCtr(N& )r(N2)r(Nz+1)b2(Nc)

(22.47)

J+ =8"(Q 2Nc —Ng )'—
Jo = 0/2+Nc+Na

=(J+ )

(22.41)

BtB Cr(N, —1)b—3(Nc), (22.48)

from which we can obtain Yp Y+p Y o by either com-
plex or tilde conjugation;

+8 8 Ca3(N~, Ns, Nc) . (22.42)

and a similar expression for J (obtained by replacing 8 by
8). It is easy to give the most general form of the step-up
operator Y++ compatible with all selection rules, name-

ly,

Y++ =8 8 a, (N~, Nii, Nc )+C a 2 (Na, Ns Nc )

I'—+ =I:J— I'o+ 1

=BB tr(N, —1)r(N~)b, (Nc)

BC r(N2 )r (N2+ 1—)b2(Nc )

BCr(N, —2)r (N—,
—1)b3(Nc ), (22.49)

We can determine the dependence on Nz and Nz from from which Y+ follows by tilde conjugation, and
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=( —0/2+N~+Nc)( 0—/2+N~+Nc)b, (NC)

+BBC r(N, )r(Nz)b2(Nc)

+8 8 Cr(N, —1)r(N2 —1 )b3(NC) . (22.50)

Using this boson realization we can construct a boson
expansion, assuming that the expectation value of all bo-
son number operators in the states of interest is much
smaller than Q. Including all terms up to order 1/0, we
find for Eq. (22.36) (go=tV/e)

&/e =N~ —N~ —
—,'yo

[8 +8 8 —8—] u 1—
2

+ ' [(8'+8")N, (8—'—+8")N, ]

[ 8 t 8—8+8 BtB +Bt BB B—B 8 ]
— —[BBt BtB—][C—Ct]

A &n

4uv [(Bz 8 z)Ct (Bt2 8 t2)C] .
0

(22.51)

&/e =N~ —N~— [8 +8 8 8— ]-go(u —v )

2

From this equation we can read off that the correct ex-
pansion parameter is 1/&Q. The boson expansion in-
cludes effects of the Anite size of the system. In the ther-
modynamic limit we obtain the Hamiltonian

and an identical transformation for B and B to remove
the dangerous terms B, etc. This leads to the usual
RPA-type Hamiltonian

% /e= —,'(co —1)+cvN& —
—,'(co —1)—coN&+(higher order)

(22.54)

where

We wish to diagonalize this last Hamiltonian while re-
taining the antisymmetry under tilde conjugation. Since
the Hamiltonian can be separated into a piece containing
only B and B and its tilde conjugate, we can apply tech-
niques that are commonly used for deriving the RPA
from a boson expansion and write

r

cc P
(22.53)

co='1/ 1 —yo(u —v (22.55)

The constant in &, which is canceled by its tilde conju-
gate, gives a 1/0 correction to the ground-state energy
when calculated in the RPA.

Corresponding results have been derived for the de-
formed case, but these will not be presented here.

We conclude this discussion with some numerical ex-
amples. We take two cases with go= —,

' and 2. Only the

0.0

0.5

0.4

0.3

-0.2

CQ
-0A

LLI

0.2 -0.6

0.0
0

kT/a

-0.8 I

kT/a

FIG. 29. The deformation parameter 5 vs temperature for
gp =2. From valet and Klein, 1990.

FICr. 30. The ground-state energy vs temperature for yp=2
(solid line) and gp= 2 (dashed line). From valet and Klein,
1990.
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method very similar to that discussed for the canonical
ensemble to calculate the partition function Z(p). We
evaluate all the individual contributions separately as in
Eq. (22.4) and find (p' =p /e)

, (o(p)le
'" " """lo(p)),

"P+1+ "~ ((Dl ™PlD)) (22.57)

2 3

kT/a

Here the first two terms come from states that are com-
pletely filled or completely empty. The remainder of the
calculation parallels that necessary in the case of the re-
stricted canonical ensemble. We now find that

FIG. 31. The RPA approximation for the excitation energy of
the first excited state for go=2 (solid line) and go= ~

(dashed

line). From Walet and Klein, 1990.

Z(P)=(coshP'p'+coshP'R ) e

The self-consistency condition for 6 now reads

sinhP'R
R coshP'p'+ coshP'R

(22.58)

(22.59)

larger of the two has a deformed solution; in Fig. 29 we

give the temperature dependence of the deformation 6
for this case. If we look at the ground-state energy, Fig.
30, where the solid line indicates the larger value of yo
and the dotted the smaller value, we see that the deriva-
tive of the ground-state energy is singular across the
phase transition. The model thus exhibits a second-order
phase transition, very similar to a paramagnetic-to-
ferromagnetic transition. The most interesting quantity
is the thermal excitation energy, Fig. 31. This quantity is
very smooth for go= —,

' (dotted line) and becomes zero at

the phase transition for go=2. For very large tempera-
tures both RPA frequencies approach 1, indicating that
for very high temperatures only the single-particle energy
determines the excitation energies.

D. Grand canonical ensemble

The only operators entering the Hamiltonian are the four
generators of U(2),

N p
——gc;cp, , (22.60)

(a,p=+), and their tilde conjugate N 13. Looking at the
operator in the rightmost exponent of Eq. (22.56), we can
easily see that the algebra closes if we add eight more
operators,

M &
—=pc;c&;, (22.61)

and their Hermitian conjugates M. We thus have a total
of 16 operators that span the algebra U(4), which could
have been expected from the results obtained in the pre-
vious section.

The linear Casimir operator of this algebra is the

difference between the number of particles and its tilde
conjugate,

lo(/3) ) ~ exp[ P(HM„pN )/2—]—
xexp g(c+;c+;+c;c;) lo&lo& . (22.56)

Here we again define the vacuum of the Lipkin model as
the completely filled lower shell. The two terms in the
rightmost exponential in Eq. (22.56) thus correspond to
creating a particle in the upper level and annihilating a
particle in the lower level.

Since the Hartree approximation to the Hamiltonian
commutes with the number operator E, we can use a

If we lift the symmetry restrictions imposed on the
heat bath, it is still possible to carry through a calcula-
tion based on the canonical ensemble (Walet and Klein,
1989), but the manipulations become more cumbersome.
They will not be described here. Instead we turn im-

mediately to the grand canonical ensemble.
For the grand canonical ensemble the thermal state be-

comes

O' =X—X=X++ +X —N++ —X (22.62)

c'lo(p)) =o, (22.63)

so that any U(4) irrep that has any overlap with the vacu-
um must have the sum of its row-lengths zero! This does
not imply that this is the irrep t OI, however, but that it is
a mixed-symmetry irrep with rows of both positive and
negative length, with sum zero (Weyl, 1946). The reader
who is not familiar with such irreps may find it useful to
consider a single representative of such an irrep as a ten-
sor that has two types of indices, some that transform co-
variantly and others that transform contravariantly. The
usual representation of a Lie algebra then amounts to a
tensor with covariant indices only; the negative-length
row indicates that there are also indices that transform
contravariantly.

Let us now introduce the thermal quasiparticles

Since the thermal vacuum is symmetric under tilde con-
jugation, we find
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a;=uc; +vc;, a,- =uc,- +vc

a;=uc;+vc;, a;=uc;+vc
a+;=u c+;+v c+;, a+;=u c;+v c+, ,

a +; =u'c +, +v'c+;, a+,. =u'c+;+v'c~+, .

(22.64)

(22.65)

Here we have different weight factors for the upper and
lower levels,

larger than the total particle number 2Q, the U(4) irrep
built on this state is I Q, O, —0].

We next outline a derivation of the boson realization
associated with this irrep. The main thread of the argu-
ment resumes after Eq. (22.74). Since the techniques are
very similar to those used in Sec. XXII.C, we shall give
very few details of the derivation.

The generators of the group are JV p, A p, J11, p, and
A, &. The nonzero commutation relations are

[JV p, JV s]=5psJV y
5sJ—V'rp,

Since the thermal Bogoliubov transformation (22.15) is
unitary, the relevant group is still U(4). The thermal vac-
uum has the very simple form

(22.66)

[JV p, JV s]=5psJV r 5sJ—Vrp,

[A,tp, JK s]=5 JVp +5psJV —5 5psO,

[Wtp, JV s]=5 sA, typ,

[A, tp, JV s] =5psAtt

(22.68)

where
~

—
& is the state with no particles (empty upper

and lower shells). The group operators when expressed
in terms of the new fermion operators will now be indi-
cated by script letters such as JV++ =pa+~a+ . Let us
now analyze what kind of U(4) weights are associated
with the individual operators, since the weights are addi-
tive and will thus indicate the relevant irrep(s) contained
in ~0(13) &. We follow an analysis similar to that given on
pages 270 —271 of Wybourne's book (Wybourne, 1974),
from which we also derive our notation.

The maximal set H; of commuting operators can be
chosen as H i

=JV, Hz =JV++, H3 = —JV++ and

H4 = —A' (the minus signs insure that the linear
Casimir operator is the sum of these four operators).
From the nonzero commutation relation of a ~ and a
with the operators H;,

[H„a ]=a, [H&, a ]= —a, (22.67)

we find that a belongs to the weight-space (1,0 ) and
that a t

~ belongs to the weight-space (0, —1). Since the
weights are additive, we find from Eq. (22.66) that the
thermal state thus has unique weight (Q, O, —fl), and
since the absolute sum of the column length must not be

j

JV+ =J+ =B (/J

JV + =J =+J B

JV++ N=2JO = —J—+2Nii
(22.69)

J=Q (Nc+ND)/—2 .

We can derive similar relations for JV by replacing B by B
in all the above equations.

From the selection rules we can easily derive that
[again r(N) =&Q N]—

and two relations involving JM that can be obtained from
the last given above by Hermitian conjugation. The
operators JV form the U(2) algebra corresponding to J,
and JV to J.

It follows that we need a minimum of four bosons to
map the algebra. These are the bosons B and B similar to
those introduced for the mapping of SU(4) and two more
bosons, C and D. Here the effect of C is simultaneous
creation of a particle in both the normal- and tilde-
conjugate upper level, and D annihilates a similar pair
in the lower level. The Holstein-Primakoff mapping for
the operators JV is again readily given:

Aft++=r(N&+Nc+ND)r(N +Nc+ND)ai(N&, N-D)C +a2(Nc, ND)DB B (22.70)

where a
&

and a2 are functions of N~ and XD only. We can also derive that

A, t +=[J,JRt++]

=r(Nii+Nc+ND )a2(Nc, ND )DB r(N +Nc+ND —l)a, (N—c,ND -)C B,
JR" =[J,[J,Mt++ ]]

=r(N~+Nc+ND)r(N~+Nc+ND)a2(NC, ND)D+a, (NC, ND)CtBB .

Equating commutation relations between the various AI's, using an heuristic form for

JV+++A'+ ~ Ns +Ns +2NC, J——V +JV = N~ Ns —2ND+ 2—A, —

(22.71)

(22.72)

we find recursion relations for the quantities a i and a z. From these relations together with a@(0,0)=&1/fl, we derive
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ai(Nc, ND)=
Q —Nc+2

(0 N—c N—D+2)(Q —Nc N—D+ 1)

0—XD+1
a2(Nc, N~ ) = (fI —Nc ND+ 1)(Q—Nc N—D )

(22.73)

This can be used to give the realization of all the operators AL, A, . Since we have already given the form of those
operators above, one should just substitute the explicit values for a, and az, Eq. (22.73). It remains only to give the ex-

plicit form of the diagonal operators JV, which are

Ã++ Nc——+N~, A' =f1 N—D Na—, JV++ =Nc+Ng~ JV =0 ND ——N- . (22.74)

Expanding the realization of the operators in 1/0, we find for the normal phase that

A/e=N~ N~ ——yo(uu' vv—')(8 [1 (N~—+Nc+ND+ —,
' )/0]' +[1—(N~+Nc+ND+ ,' )/0]—'~8

—[8 [1—(N~+Nc+ND+ —,')/0]'~ +[1—(N~+Nc+ND+ ,')/0]'—~8 I )

—go/&A[(u 'vD —uv'C)[8 (uu'8 —vv'8 ) 8(u—u'8 —vv'8 )]
—(uv'D —u'vC)[B (uu '8 —vv'8 ) B(uu—'8 —vv'8 )]

+(uv'D u'vC —)[8(uu'8 vv'8) ——B(uu'8 —vv'8)]

—(u'vD —u v'C t)[B( uu'Bt —vv'8) B(uu'8— vv'8)]]— (22.75)

In the limit p =0, which corresponds to ( N )&
——0, we

find that the terms of order 0 ' disappear. This corre-
sponds to the case studied by Hatsuda (1989), who used
the symmetry to classify the thermal state as belonging to
an SO(5) irrep.

This is once more a manifestation of the fact that it is
the thermal vacuum and not the thermal Hamiltonian
that determines the minimal symmetry group of the
thermal dynamics. The extra symmetry found in the lim-
it p~O is a clear manifestation of this fact; we find that
one mode exactly decouples in this special case. This im-

plies that we should make a smaller choice of dynamical
symmetry group, in this case SO(5) instead of U(4). The
extra symmetry is also reAected by the Bogoliubov-
Valatin transformation, where p =u ' for p =0.

From inspection we find that, for p=0, the thermo-
dynamic limit of Eq. (22.75) gives the same result as Eq.
(22.51) thus showing that the RPA frequencies are identi-
cal. This is similar to the usual situation in which the
canonical and grand canonical ensembles give identical
results in the thermodynamical limit, and can be traced
to the fact that symmetry-breaking Auctuations are
suppressed by at least a factor (1/&0).

E. Comments on other work

The work by Hatsuda takes an approach similar to
that described in this section as far as application to the
Lipkin model is concerned. (In fact it was this work that
stimulated the research we have described. ) The major
difference between it and the present approach is that it
deals only with the grand canonical ensemble. However,
in application to the Lipkin model, where we have given
a general expression, valid for any value of the thermo-
dynamic potential p, the derivation in Hatusuda s paper

l

is valid only for the special case p=O. For this special
case the algebra generated by the thermal vacuum ap-
pears to be SO(5), since the number operator is no longer
contained in the thermal weight factor. Our general re-
sult is that the relevant algebra is U(4).

In the first part of this paper, Hatsuda carried through
a Hartree-Fock-Bogoliubov and RPA analysis for the
general shell-model case within the framework of
thermofield dynamics. This development has not been
bosonized and therefore falls outside the scope of this re-
view.

Hatsuda raises another interesting question, namely,
the commutability of the two processes, introduction of
thermofield dynamics and bosonization. We have uti-
lized the order thermofield dynamics followed by bosoni-
zation. It is reasonable to suppose, as does Hatsuda, that
properly done, the order does not matter. However, Ha-
tusuda does not verify this supposition when he tests it
on the Lipkin model. The reason for this discrepancy ap-
pears to be that in mapping the Lipkin model he maps
only the representation containing the ground state of the
system, namely, the representation with which we begin
this review. This would be the correct choice if one im-
posed on the heat bath the condition that it allow transi-
tions only within this band. This is much more restric-
tive even than what we have termed the restricted canon-
ical ensemble and appears to be the origin of the results
found in this case, differing from those described above.
One can map all irreps by introducing a boson-
quasifermion mapping, as has been fully described for the
case of SU(2). It remains an open problem to carry out
the transition to thermofield dynamics utilizing this rep-
resentation.

We turn finally to the earlier work of da Providencip
and Fiolhais (1985). The method employed by these au-
thors is very different from that used in the present work,
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even though the claim is made that they have a pro-
cedure that leads to the thermal Hartree-Fock energy
functional. Let us first take a closer look at the form of
the density operator D used by them: If we employ Eqs.
(6.3) and (6.4) of da Providencia and Fiolhais, we find
that D is equivalent to the temperature one-body density
matrix as employed in the present work,

Questions concerning the foundation of the method
remain, however.

It is clear that the study of thermal boson mappings is
in its infancy. It would be of considerable interest to
work out the details for models containing richer physics
than the Lipkin model.

D=C exp[a(cos8jo+sin9j )j . (22 76) XXIII. SUMMARY AND OUTLOOK

This shows that da Providencia and Fiolhais make the
same assumptions about the heat bath as are made ex-
plicitly in the present work in the case of the restricted
canonical ensemble. However, expression (6.5) in da
Providencia and Fiolhais, E=tr(DH), is not the thermal
Hartree-Fock energy functional. Straightforward calcu-
lations show that, if we use the states of the restricted
canonical ensemble,

= ——'cosHP —sin 0 (0—1)P
4e

(22.77)

What appears to be evaluated in da Providencia and
Fiolhais is the expectation value of the square, ( j„& in-

stead of the square of the expectation value. This result
contains corrections of order 1/fl relative to the
Hartree-Pock result. Note, however, that the value of
( j~ & that is not evaluated by da Providencia and Fiolhais
is of the same order of magnitude as these corrections.
We have not been able to reproduce their Eq. (6.5), which
leads to an implausible normal-to-deformed phase transi-
tion at large temperature. Even if such a transition is
present, it should be rejected as due to finite size
[8(1 /0)] effects. These objections to the detailed treat-
ment of the Lipkin model do not apply to their subse-
quent work on the Heisenberg ferromagnet (Brajczewska,
Fiolhais, and da Providencia, 1986).

The boson expansion introduced in da Providencia and
Fiolhais bears no resemblance to our work. As an exam-
ple of their procedure, consider once more the Lipkin
model. There they introduce a modified Holstein-
Primakoff mapping of SU(2) that requires the algebra to
be satisfied exactly, as usual. However, the boson vacu-
um, instead of being the map of the fermion vacuum, is
required to reproduce the known thermal averages in a
mean-field approximation. Thus it is a kind of thermal
vacuum, but there is no precise sense of broadening of
the original symmetry. These ideas certainly deserve
(and require) further investigation. Whatever the mean-
ing of the mapping, it does not correspond to an irrep of
a Lie algebra, the idea to which this review has been re-
stricted. From the results obtained, we have already sur-
mised that this procedure may be equivalent to the use of
a restricted canonical ensemble, but this remark remains
a conjecture rather than a conclusion. In a recent note
(da Providencia and Fiolhais, 1990), the computations for
the Lipkin model have been corrected and the detailed
prescription upon which the results are based clarified.

In this review, we have presented three distinct types
of subject matter:

(i) an essentially complete survey of all known boson
and boson-quasifermion mappings of compact Lie alge-
bras that have appeared in the literature of nuclear phys-
1cs;

(ii) an essentially complete survey of viable and/or re-
cent applications of the above algebras to models ranging
from standard toy models of varying complexity to the
fundamental problem of collective motion within the
framework of a realistic shell model;

(iii) a potpourri of other uses of boson mappings both
for the elucidation of concepts and for unusual applica-
tions. Let us review each of these categories in somewhat
greater detail.

A. Methods and varieties of boson rnappings

The problem of realization of the generators of a com-
pact Lie algebra as operator-valued functions of a suit-
able set of boson operators becomes a problem in nuclear
physics when the generators are realized first as bilinear
fermion operators that form the building blocks of ob-
servables within the framework of the shell model. For
the study of the latter, a fundamental task is the con-
struction of bases for irreps of the associated algebras.
The fundamental technical problem addressed in this re-
view is the mapping of such finite-dimensional vector
spaces onto subspaces of boson (boson-quasifermion)
spaces, called physical subspaces. There are a number of
distinguishable aspects of this problem that need to be
considered before the variety of results found in the
literature can be understood:

(a) A mapping is always from a definite fermion basis
with defined diagonal operators to a definite boson or
boson-quasifermion basis with the same (mapped) or pos-
sibly different diagonal operators. Thus, two boson map-
pings of the same algebra may differ because either the
fermion basis or the mapped basis involved is different.
Though this observation may appear to be trivial, it is re-
markable how often it has been overlooked, especially in
the early literature, leading to incomplete or wrong re-
sults.

(b) Mappings may differ even if the same starting and
ending bases are utilized. This is because the only re-
quirement on a mapping is that it reproduce the correct
matrices of an irrep when the generators act within the
physical subspace. Mappings between the same bases
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may therefore be distinguished by the action of the gen-
erators on the basis vectors of the unphysical subspace.

(c) Several diff'erent derivations of the same mapping
are known in a number of cases. The continued search
for simplified techniques is relevant because there are
physically important mappings that are not known in
closed form.

(d) The most general physically motivated mapping is a
boson-quasifermion mapping, which also provides an im-
portant new technique in the theory of group representa-
tions.

Instead of following the historical development of the
subject, which was described in Sec. I, we chose to try to
illuminate the four elements identified above by starting
with the simplest non-Abelian algebra, SU(2). Actually
element (a) was not encountered in full generality until
Sec. VI, where we studied the algebra SO(4), or even
more clearly, until Sec. VII, where the effects of choosing
different bases, each with special interest for different ap-
plications, was emphasized for the algebra SO(5)
[=Sp(4)]. For SU(2), we always mapped the standard ir-
rep in which J and J, are diagonal. Even here, and for
the simplest subclass of mappings, those without quasi-
fermions, i.e., the irreps containing the physical vacuum
of the given nuclear model, we described four
mappings —the Holstein-Primakoff, the Marumori-
Yamamura- Tokunaga, the Dyson, and the Schwinger
mappings. Qf these, the first three have a structural rela-
tionship that has made them all of value for microscopic
studies of collective motion. On the other hand, the
Schwinger mapping, which is the most useful of the lot
for reproducing all the mathematical apparatus of the
algebra, has not played any role in the microscopic
theories of collective motion, though it has proved of
value in phenomenological studies.

We described how a Holstein-Primakoff mapping can
be found by direct transcription if one is given the ma-
trices of an irrep. The Marumori- Yamamura-Tokunaga
mapping is then the normal-ordered product of the
Holstein-Primakoff mapping with the projection opera-
tors onto the physical subspace. Whereas the Holstein-
Primakoff generators, when acting between unphysical
states, will generally yield values that contradict required
Hermiticity properties of these operators, the
Marumori- Yamamura-Tokunaga mapping, by definition
requires that these matrix elements vanish. The Dyson
and Schwinger mappings were also described fully.

It is often not possible to implement the simple
definition of a Holstein-Primakoff mapping, namely, that
based on direct transcription. This is because for most
examples of physical interest we do not have explicit
forms for the matrices of the required irreps. For such
cases, we described a general algebraic technique for ob-
taining approximate, or, in special instances, exact boson
mappings. In this method special emphasis is placed on
the tensor character of the bosons with respect to the
various subalgebras used to characterize the basis. Using
this knowledge, we can then combine the bosons algebra-

ically and compile lists of those that transform in the
same way as the various generators. The generators
themselves can then be represented as linear combina-
tions of these basic tensors, each multiplied by an un-
known scalar operator. For the simple algebras treated
early in the review, there are only a small number of such
terms, and by applying the commutation relations one
can obtain difference equations for the scalar operators
that prove readily solvable, as shown particularly by the
examples in Secs. II, VI, and VII. In more complicated
cases, where exact results are not presently achievable, if
the basis were chosen in some sensible way related to the
physics one was trying to describe, one could arrange the
terms in powers of a small parameter and solve the com-
mutation relations to some prescribed power in that pa-
rameter. The best pure example of this technique is con-
tained in Sec. XVII.

In the general case, that is the best one can do at the
moment for deriving Holstein-Primakoff mappings. In
the special case when the physics dictates the use of a
basis that includes the core subalgebra, as defined in Sec.
XIX, in the chain of subalgebras specifying the basis, a
more powerful special technique is available. This con-
sists first of carrying out the Dyson mapping. This is the
simplest part of the procedure and can be done either by
the purely algebraic technique used throughout this re-
view or through the intermediary of coherent states, as
we illustrated in a few instances. The second part of the
procedure is a systematic technique for transforming to a
unitary basis. This method solves, at least in principle,
the problem of deriving a Holstein-Primakoff mapping,
not only for the pure boson mappings currently under
discussion, but also for the boson-quasifermion mappings
that we shall discuss below. For Lie algebras of
sufticiently large order, detailed calculations remain to be
carried out. Illustrations of this technique are to be
found, for example, in Secs. II, VII, IX, X, and XXI.

In Sec. XVII, we have discussed brieAy two other tech-
niques found in the literature for deriving Holstein-
Primakoff mappings from Dyson mappings, where the
aim was to provide an alternative to the derivation
featured there of the seniority-determined mapping, i.e.,
the object was to carry out a unitarizing similarity trans-
formation that also changed the quantum numbers of the
basis. Finally, for the examples of SU(2) and SO(4), we
showed how to introduce quantum action-angle variables
into the Holstein-Primakoff mappings, transformations
that are convenient for the treatment of strong-coupling
and semiclassical situations.

We also showed that there is an important difference
between the kind of approximation achieved by the com-
mutator method employed to derive approximate
Holstein-Primakoff mappings and the method used to
derive approximate Marumori- Yamamura-Tokunaga
mappings. In the former case all matrix elements are
guaranteed to be correct up to a certain order in a small
parameter, whereas for the latter a subset of elements is
guaranteed to be exact. A further modification of the
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Marurnori- Yamamura- Tokunaga method was introduced
(the OAI method) in connection with the derivation of
the interacting boson model: in mapping operators such
as the Hamiltonian that are polynomials in the genera-
tors, one does not map the product of operators as prod-
ucts of the individual maps, but instead exactly calculates
the matrix element of the product in the same subspace
as was previously used for the generators. If one thinks
of the completeness relation, this corresponds to a selec-
tive summation of higher-order terms, removing this
method further from the perturbative realm. Other
problems relating to the mapping of polynomials in the
generators were discussed in Sec. XIV.C.

Turning to the discussion of boson-quasifermion rnap-
pings, although we discussed in Sec. X a case where we
bosonized all bifermion operators, leaving just one un-
paired fermion, we argued that in general the physics dic-
tated the bosonization of at most a subalgebra of the full
shell-model algebra. For purposes of concise expression
we refer to these degrees of freedom as paired. The origi-
nal shell-model subspace can be decomposed into sub-
spaces containing varying numbers of paired and un-
paired fermions, the previous mappings discussed refer-
ring to the subspace with no unpaired fermions. When
we seek to generalize the rnappings to include unpaired
fermions, we must be cognizant of the fact that the origi-
nal fermion operators are not kinematically independent
of the bosons. It was both useful and interesting to intro-
duce objects called quasifermions, which are kinematical-
ly independent of the bosons, sharing all the properties of
ordinary fermions except that their anticomrnutation re-
lations must be modified to refi.ect the constraint prevent-
ing them from combining into the pairs represented by
the bosons. It turns out that when one has finished car-
rying through the mapping to this "hybrid" space, in-
cluding the mapping of single-fermion operators, one has
invented a new technique for obtaining all irreps of the
subalgebra. Furthermore, in the mappings of the single-
fermion operators, one has the fundamental tool for corn-
puting the matrix elements of all shell-model tensors out-
side the subalgebra. This is a fundamental tool of shell-
model technology.

We return below to the physical uses of the hybrid
mapping. Concerning the technical means of achieving
these extended mappings, we have given one example of
the application of a brute-force algebraic means, the ex-
ample of SO(4) in Sec. VI. Otherwise, all the examples
have utilized an extension of the unitarized Dyson tech-
nique that is our alternative to the method of the vector
coherent state.

B. Applications to simple models

Bosons first appeared in nuclear physics within the
framework of the Bohr-Mottelson description of the
quadrupole degree of freedom of the nuclear surface.
The unified model later recognized the relation between
this phenomenological collective description and the un-

derlying single-particle degrees of freedom and of their
interaction, as described by core-particle coupling mod-
els. The study of boson and boson-quasifermion map-
pings in nuclear physics was stimulated by the need to
understand the success of these models, as well as the col-
lective description of giant resonances, from a more fun-
damental point of view, here taken to be the many-
particle shell model. However, progress along these lines
was delayed until the development of suitable many-body
theory for the description of nuclear vibrations and the
introduction of the concepts of the theory of supercon-
ductivity. Considerably later, the study of boson map-
ping was reinvigorated by the success of the various ver-
sions of the interacting boson model. These core prob-
lerns will be discussed below. We first consider the
variety of applications of the simpler models that were
developed to explain how boson mappings work or to
treat specialized problems. We list and describe these ap-
plications:

(i) Vibrations Thi. s is the application pay excellence of
boson mapping. Applications to the Lipkin model, to
pairing vibrations, and to the SO(4) and SO(5) models
were described. The criterion for the applicability of the
concept, that the number of phonons excited be small
compared to the total degeneracy of the collective sub-
space, was most clearly in evidence for these models.
From the well-known theory of the harmonic oscillator,
this is also the domain where the kinetic and potential
energies are of comparable size.

(ii) Phase transitions at zero temperature The con.cept
of phase transition for a finite system at zero temperature
arises from the observation of a rapid change in the na-
ture of the ground-state wave function as a result of a
small change in some parameter of the system. The most
outstanding realistic example is the spherical-to-
deformed phase transition and its inverse, which occur in
a number of places in the periodic table. This can be
simulated in model systems by changing the ratio of two
coupling strengths, thus determining the dominance of
one or another term in the Hamiltonian. Though not a
necessity, it is nevertheless a convenience to study this
phenomenon within the boson framework. A number of
examples were described, beginning with a phase transi-
tion in the Lipkin model, going on to the superconduct-
ing phase transition, and culminating in the SO(4) and
SO(5) models of the spherical-to-deformed phase transi-
tion.

(iii) Strong coupling li-mit. Several examples were given
of the study of the strong-coupling limit, defined as the
domain where the potential energy of collective motion
dominates over the kinetic energy. To study this domain,
it is useful to transform from boson operators either to
canonical variables or to action-angle variables. In this
review, we emphasized the latter approach for the
simpler systems, describing the transformation in detail
for the SU(2) and SO(4) cases. In particular, for the latter
case, we gave an account of an application to a system
with collective modes corresponding to rotations about a
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fixed axis and vibrations in a plane perpendicular to that
axis. Aside from the intrinsic interest of the system, the
results were used to establish the validity of a perturba-
tive method later applied to realistic systems, since for
the SO(4) model the perturbative method and the method
based on exact action-angle variables were shown to yield
the same results to a specified order. Though we shall re-
turn to this point below, it is worth remarking here that
the work on large-amplitude collective motion, described
in Sec. XXI, also belong to the strong-coupling category.

(iv) Semiclassica/ limit. The same transformations to
canonical or action-angle variables may be useful in the
study of the semiclassical limit of simple models. As ex-
plained, this domain is more difficult to study than either
the vibrational or the strong-coupling regime, and results
of high quality have been reported only for an SU(2)
model.

(v) Phenomenological applications. In general, the ap-
plication of boson concepts to phenomenology falls out-
side the scope of this review, for the reason that they con-
cern mainly the introduction of bosons, without any
direct concern with their origin in mappings of Lie alge-
bras. We have, however, made two exceptions to this ex-
clusionist policy because, though concerned with phe-
nomenology, each exception makes use of a boson map-
ping. One problem concerned the connection between
the interacting boson model and the Bohr-Mottelson
descriptions of the quadrupole degrees of freedom. We
showed that the most direct way of exhibiting this rela-
tionship is as a mapping between the Holstein-Primakoff
and the Schwinger forms of boson realization of the com-
pletely symmetric representation of SU(6). A second ap-
plication was made to the study of the triaxial rotor at
high angular momentum. Here the largest body of useful
results was obtained by the application of Holstein-
Primakoff mappings with expansions carried out about
the well-known configurations of dynamical equilibrium
corresponding to rotation about a principal axis. Howev-
er, an elegant application of the Schwinger mapping to
this problem was also described.

C. Mainstream applications

We can divide these applications into bins according to
several criteria. The first is the form of the shell model
employed. In older work, mainly aimed at deriving (or
replacing) the unified model, it seemed advisable to in-

corporate the pairing correlations from the very begin-
ning and thus to carry out the boson mapping procedures
starting from the quasiparticle form of the shell model.
On the other hand, much recent work, inAuenced by the
advent of the interacting boson model, has taken the
original number-conserving form of the shell model as a
starting point. A second basis for classification was
whether the application was perturbative or nonpertur-
bative. A third distinction was whether the application
was to experiment or to the clarification of theoretical
concepts.

(i) Quasiparticle shell model. Perturbatiue methods
This heading refers to the material presented in Secs. XII
and XIII for which the theoretical basis was provided in
Secs. IX and X. The expansion in a relevant small pa-
rameter takes place only after an appropriate mean-field
configuration has been established in the shell-model
space, describing either a spherical or a deformed super-
conductor. The mapping is of the BZM type. Initially
the expansion parameter measuring the validity of the
mapping is the ratio of the average number of quasiparti-
cles to the average degeneracy of a shell. After the intro-
duction of correlated bosons by means of an RPA calcu-
lation that permits the identification of the collective de-
grees of freedom, one subsequently recognizes two expan-
sion parameters; for a theory of anharmonic vibrations to
work, the ratio of the number of phonons to an average
degeneracy parameter must be small for low-energy
states and, for the coupling of collective and noncollec-
tive degrees of freedom to be subject to a perturbative
treatment, the ratio of the collective phonon energy to
twice the minimum quasiparticle energy must be small.
Cxiven the validity of these conditions, the method de-
scribed is the most systematic microscopic method avail-
able within the boson framework for the study of vibra-
tions in the spherical regime or of rotations and vibra-
tions in the deformed regime, including the proper res-
toration of the broken symmetries. Unfortunately, the
method has not been widely disseminated. Applications
to the vibrational case, described in this review, were car-
ried out long ago. The theory for the deformed case, de-
scribed in the text, has only recently been completed. As
presently constituted, the method is not applicable to
transitional nuclei.

(ii) Quasipavticle shell model Konpev. turbative
methods. This category encompasses the main parts of
Secs. XV and XVI, referring to the work of Tamura,
Kishimoto, and their associates on the one hand and of
Takada and his associates on the other. Together with
the classical work of Kumar and Baranger and of Ku-
mar, these constitute the major applied programs to real-
ize the concepts of the unified model from a microscopic
starting point. As opposed to the perturbative approach,
where one maps uncorrelated bifermion degrees of free-
dom, here one first does Tamm-Dancoff or RPA dynam-
ics in the fermion space and then carries out an approxi-
mate BZM-type mapping, in one case, or a closely related
approximate Dyson mapping, in the other. Furthermore,
one maps only a few degrees of freedom, namely, the
most collective quadrupole phonon and selected other de-
grees of freedom. The coupling of these additional de-
grees of freedom is eliminated by a perturbational pro-
cedure, leaving an effective Hamiltonian describing only
the collective degrees of freedom. The nonperturbative
aspect enters at this juncture, in that the collective Ham-
iltonian is diagonalized within its appropriate subspace
rather than treated as a quadratic form plus anharmonic
perturbations. From the results found, it is not ruled out
that, even though one begins with spherical quasiparti-
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cles, this method has the capability of describing transi-
tional and deformed nuclei. In the course of this work,
one must face the problem that the introduction of corre-
lated bosons may well mix parts of the unphysical boson
space with the physical space. A full discussion of this
problem and a description of all suggestions for dealing
with it led to the conclusion that the most satisfactory
method presently available is built into the mapping pro-
cedure utilized in this nonperturbative approach.

(iii) Derivation of the interacting boson model. In Sec.
XVIII we surveyed all the work designed to provide a
microscopic foundation for the interacting boson model
and the interacting boson-fermion model. In the end, we
also rendered some judgments. Since the new and the
previous phenomenologies, properly expanded, are
mathematically equivalent (this is not a judgment about
which approach is more fruitful to apply to a specific
problem), one can take the extreme point of view that a
derivation of one is a derivation of the other. We have
not taken this viewpoint. Rather we have almost insisted
that, insofar as a new task has been defined, it requires
derivations to be carred out within the framework of a
shell model, with number conservation and rotational in-
variance preserved. Applying this criterion, we have
concluded that some understanding has been achieved of
the origin of the interacting boson model for spherical
(vibrational) nuclei by the approximate mapping of shell-
model bases associated with the broken-pair (generalized
seniority) coupling scheme. The most elaborate work of
this type reported is qualitatively convincing, but quanti-
tatively there remain difFerences with the most successful
form of the phenomenology, even after one has pushed
the technology as far as seems feasible at the current
time. At the same time, we found all efII'orts to derive the
interacting boson model for deformed nuclei to be pale
imitations of the microscopic theory of the unified model.
We have suggested that the only ideologically pure way
of approaching this subject is through the pseudo-SU(3)
model, through which meaningful contact has already
been made with the geometrical and other aspects of the
unified model. Finally, we also pointed out in this section
and briefIy in Sec. XIX that the current forms of the in-
teracting boson-fermion model can be interpreted as ap-
proximate version of boson-quasifermion mappings. and
furthermore that present technology leaves room for im-
provement.

(iv) Dynamics in boson space. All the successful ap-
plied programs reported above share the feature that at
least some of the dynamics is carried out in the fermion
space before any approximate mapping is carried out.
For some simplified models, in Secs. IV.B and VII.E and
for realistic models in Sec. XIV, we have reported
methods that propose mappings of uncorrelated bifer-
mion operators, defined as products of spherical shell-
model operators, leaving all dynamics to be carried out in
the boson space. It is too early to render a judgement
concerning the promise of this work. For realistic situa-
tions, it appears to be dificult to avoid the problem of in-

trusion of unphysical states into the low-energy part of
the spectrum, and until this problem is solved this avenue
for possible progress remains closed.

(v) Classical limit of boson mapping In. Sec. XI we de-
scribed applications of boson mappings of a character
quite distinct from anything else presented above, appli-
cations that appear quite formal, but that, in fact, form
the theoretical basis for important practical efForts still
underway. The main theoretical result reviewed in this
section was the proof that the classical limit of the
mapped Heisenberg equations of motion are of the Ham-
iltonian form, the classical limit of the boson creation
and annihilation comprising pairs of (complex) canonical
coordinates. The most important application of this re-
sult is the method of first deriving a classical collective
Hamiltonian and then requantizing. For one thing, it
can be argued that, for well-developed collective motion,
the errors necessarily attendant upon ambiguities in re-
quantization are quite tolerable and, in some cases, even
controllable. For another, it leads to unique methods of
studying the large-amplitude (strong-coupling) limit, in
particular, as described in Sec. XXI. One of the main
goals of the latter work is to provide a self-consistent
generalization of the Kumar-Baranger theory.

D. Recent work and open problems

Our summary thus far has included some recent work,
but not all that has been reported in the review. In the
listing that follows, we wish to emphasize that there is no
dearth of interesting problems remaining, both of a tech-
nical and of an applied nature. In addition to the items
listed below, we note the importance of efForts to deepen
our understanding of the older programs that have al-
ready proven their worth, in particular the work de-
scribed in Secs. XII, XV, XVI and some of the work de-
scribed in XVII.

(i) Boson fermion map-pings and the quantized
Bogoliubov transformation-. The most important new
technical development that has emerged in the course of
this review is the understanding of the connection be-
tween the method of the vector coherent state in the
theory of group representations and the concept and util-
ization of boson-quasifermion mappings in nuclear phys-
ics. The appellation "quantized Bogoliubov transforma-
tion" refers to the special example of the mapping of
single-fermion operators to the hybrid space furnished by
the algebra SU(2). The importance of such formulas both
for the general tensor analysis of group algebras and for
the problem of core-particle coupling has been stressed in
this review. Though a few additional examples have been
developed and reported in the body of this paper, the
prob1em remains largely untouched.

(ii) Application of the pseudo SU(3) scheme to-derivation
of the interacting boson model. This point has been made
before, but we believe that the absence of a believable
foundation of the interacting boson model in the de-
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formed regime represents the most important lacuna in
the structure of this formalism. We have also expressed
the opinion several times in this review that the appropri-
ate tool for such a study is at hand, the symplectic shell
model in pseudo-SV(3) mode.

(iii) Iterated boson mappings and dynamics in boson
space. We emphasized the current impasse concerning
proposals to carry out all dynamics in the boson space,
opinions differing about whether one can avoid the in-
tertwining of physical and unphysical parts of the boson
space. In Sec. XIV.D we reported a proposal to utilize
iterated boson mapping s in order to ameliorate this

difhculty. This suggestion has another possible virtue
that may make it even more important to pursue: it may
represent a method of studying more-than-two-fermion
correlations.

(iv) Variational principles based on boson trial func
tions. The material described in Sec. XX represents a
foundation for a quantum theory of collective motion
with a well-defined classical limit, on the one hand, and a
systematic method of including quantum corrections, on
the other. It has hardly been developed thus far and is
worthy of further study.

(v) Thermal boson mappings. The method proposed in
Sec. XXII for the application of boson mappings to sys-
tems at finite temperature also cries out for further devel-
opment.

More generally, our review has been concerned mainly
with the problem of collective motion near the ground
state of a many-body system. Though this problem can
hardly be said to have been "solved, " the focus of much
effort in nuclear-structure physics has shifted to the study
of systems with high spin and/or finite temperature, and
one may well ask if there is any future for the methods of
boson mappings in these domains. We have already indi-
cated that one can deal with finite temperature, but, as
always, these problems are never simpler to solve than
the corresponding problems at zero temperature. Even
for zero temperature, but high spin, one encounters the
coupling of collective and individual degrees of freedom;
the natural machinery with which to deal with these
problems is at hand in the form of boson-quasifermion
mappings.
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