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Non-neutral plasmas, like electrically neutral plasmas, exhibit a broad range of collective properties, such
as plasma waves and instabilities, and the ability to support long-lived, large-amplitude coherent struc-
tures. This paper reviews the equilibrium and stability properties of intense non-neutral electron flow in
crossed electric and magnetic fields. Following a description of equilibrium properties for magnetically in-
sulated electron Aow in planar geometry, extraordinary-mode stability properties are investigated for rela-
tivistic non-neutral electron Aow between planar conductors. Particular emphasis is placed on the magne-
tron and diocotron instabilities, and detailed stability behavior is shown to exhibit a sensitive dependence
on the self field intensity (as measured by the dimensionless parameter s, =y, co, /co„) as well as on the
shape of the equilibrium profiles. The inAuence of cylindrical effects (such as the centrifugal and Coriolis
accelerations of an electron Auid element) on stability behavior is then investigated for rotating electron
Aow in cylindrical geometry. Finally, the properties of large-amplitude coherent structures in non-neutral
plasmas with circulating electron flow are investigated. Topics covered in this area include particle-in-cell
computer simulations of dense (s, —1) electron Aow in relativistic magnetrons which show large-
amplitude spoke formation in the circulating electron density, and application of a cold-Auid guiding-
center model to investigate large-amplitude vortex structures in low-density (s, ((1)non-neutral plasma.
The accessibility and stability of such stationary structures {in the rotating frame) remain important topics
for future investigation.
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I. INTRODUCTION

*Permanent address: Plasma Physics Laboratory, Princeton
University, Princeton, New Jersey 08543.

A non-neutral plasma is a many-body collection of
charged particles in which there is no overall charge neu-

trality (Davidson, 1974, 1990). Such systems are charac-
terized by intense self-electric fields, and, in high-current
configurations, by intense self-magnetic fields. Non-
neutral plasmas, like electrically neutral plasmas, exhibit
a broad range of collective properties, such as plasma
waves, instabilities, and Debye shielding. Moreover, the
intense self fields in a non-neutral plasma can have a
large inhuence on detailed plasma behavior and stability
properties.

Since the early II970s, interest in the physics of non-
neutral plasmas has grown substantially in such diverse
areas as investigations of basic equilibrium, stability, and
transport properties (Roberson and Driscoll, 1988, and
papers therein; Davidson, 1990); high-current electron
induction accelerators (Kapetanakos and Sprangle, 1985;
Humphries, 1986) and alternating-gradient accelerators
(Keefe, 1987; Lawson, 1988); phase transitions in strong-
ly coupled, two- and three-dimensional non-neutral plas-
mas (Malmberg and O' Neil, 1977; Grimes and Adams,
1979; Dubin and O' Neil, 1988; Gilbert, Bollinger, and
Wineland, 1988); coherent electromagnetic wave genera-
tion by free electrons interacting with applied magnetic
field structures (Marshall, 1985; Granatstein and Alexeff,
1987, and references therein; Roberson and Sprangle,
1989); astrophysical studies of large-scale isolated non-
neutral plasma regions in the magnetospheres of rotating,
magnetized neutron stars (Michael, 1985); and the devel-
opment of positron (Surko et al. , 1986) and antiproton
(Gabrielse et al. , 1986) ion sources. In addition to devel-
oping a basic physics understanding of many-body
charged-particle systems in which there is no overall
charge neutrality, there are many practical applications
of non-neutral plasmas. These include coherent elec-
tromagnetic wave generation by intense electron beams,
as in free-electron lasers (Marshall, 1985; Roberson and
Sprangle, 1989), magnetrons, and cyclotron masers
(Granatstein and Alexeff', 1987, and references therein);
the development of advanced accelerator concepts (Ka-
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petanakos and Sprangle, 1985; Humphries, 1986), includ-
ing high-current accelerators such as the modified beta-
tron (Sprangle and Kapetanakos, 1978; Rostoker, 1980;
Petillo and Davidson, 1987), and periodic focusing ac-
celerators for heavy ions (Keefe, 1987; Lee and Hovingh,
1989); the equilibrium and stability of intense non-neutral
electron and ion flow in high-voltage diodes (Antonsen
and Ott, 1976; Miller, 1982; Desjarlais, 1987, 1989), with
applications that include particle beam fusion (Miller,
1982; VanDevender and Cook, 1986), to mention a few
examples.

The very early research on non-neutral plasma predat-
ed, by many decades, the common usage of the terms
"plasma" or "non-neutral plasma" in the lexicon of
modern-day physics. [The term "plasma" was intro-
duced by Tonks and Langmuir (1929) to describe collec-
tive electron plasma oscillations in an ionized gas, al-
though widespread use of this descriptor did not occur
until the 1960s.] Indeed, the classic papers by Child
(1911), Langmuir (1923), Lewellyn (1941), Brillouin
(1945), MacFarlane and Hay (1950), Pierce (1956), Kyhl
and Webster (1956), and Buneman (1957) represent some
of the earliest efforts to investigate theoretically and ex-
perimentally the equilibrium and stability properties of
non-neutral electron How in planar diodes and in
geometries with crossed electric and magnetic fields.
This and other early research on non-neutral plasmas
predated the major international development of the
theoretical foundations of modern plasma physics, which
occurred to a large extent during the 1960s. Moreover,
advances in the understanding of non-neutral plasmas
during this early period appear to have proceeded largely
uninAuenced by the seminal works of Vlasov (1945), Lan-
dau (1946), and Bogoliubov (1946) on collective interac-
tions in many-body charged-particle systems. This is
due, in part, to the fact that the emphasis during this ear-
ly period was mainly on the practical use and control of
space-charge waves on non-neutral electron beams in mi-
crowave generation devices (such as klystrons, traveling-
wave tubes, and magnetrons) and vacuum tube diodes.
Excellent accounts of the early work on microwave de-
vices and vacuum tube diodes are given by Sinter (1969),
Okress (1961),and Birdsall and Bridges (1966).

With the advent of modern plasma theory and im-
proved instrumentation techniques in the late 1960s and
early 1970s, our understanding of the fundamental prop-
erties of non-neutral plasmas received new impetus.
Basic theoretical and experimental studies of one-
component pure electron plasmas showed that many of
the equilibrium, stability, and collective oscillation prop-
erties of non-neutral plasmas (Davidson and Krali, 1969,
1970; Trivelpiece, 1972), including Debye shielding
(Davidson, 1971), are directly analogous to the collective
properties of electrically neutral plasmas, appropriately
modified by equilibrium self-field effects due to the space
charge. In addition, rapid advances in pulsed power
technology during this period, and the improved ability
to produce and accelerate high-current electron beams
(Hammer and Rostoker, 1970), led to increased research
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FIG. 1. Planar electron Bow in the crossed electric and magnet-
ic fields E {x)e and B,(x)e, . Here, V~, (x)= —cE„(x)/8, (x) is
the average Aow velocity, and the cathode and anode are as-
sumed to be perfect conductors maintained at a potential
di6'erence V.

on non-neutral plasmas in several of the diverse areas
enumerated in this section.

An extensive treatment of the basic equilibrium and
stability properties and several applications of non-
neutral plasmas is presented in Physics of Nonneutral
P/asmas (Davidson, 1990). The present article has a con-
siderably narrower focus. In particular, we review here
the equilibrium and linear stability properties of intense
non-neutral electron flow in crossed electric and magnet-
ic fields (Secs. II—IV) and examine the properties of
large-amplitude coherent-structures in non-neutral plas-
mas with circulating electron Aow (Secs. V and VI).

Typical crossed-field configurations are illustrated in
Fig. 1 (planar geometry) and Fig. 15 (cylindrical
geometry) below. Here, 8,(x)e, is the total equilibrium
magnetic field (externally applied magnetic field plus
self-magnetic B.eld produced by the electron current

en, —V, )( x)e~, and E„(x)e is the equilibrium electric
field produced by the electron space charge, —en, (x), as
well as any externally applied potentials on the parallel
conductors located at x =0 and x =d in Fig. 1. These
conductors are labeled, respectively, as the cathode
(x =0), which emits electrons, and the anode (x =d),
which is maintained at potential V relative to the
cathode. (Similarly, in Fig. 15, the cathode and anode
are located at r =a and r =b, respectively. ) It should be
emphasized, however, that the equilibrium and stability
analysis presented in Secs. II—IV applies equally well if
the non-neutral electron plasma is created externally and
then introduced (e.g. , injected) into the region between
the conductors in Fig. 1 (or Fig. 15). Indeed, the details
of the formation of the non-neutral electron plasma are
not treated in Secs. II—IV. Rather, the analysis in Secs.
II—IV makes use of a macroscopic model based on the
cold-Auid —Maxwell equations to investigate detailed
equilibrium and stability behavior for extraordinary-
mode fute perturbations (c)/Bz=0) about a preformed
non-neutral electron plasma with equilibrium density
profile n, (x) and relativistic Aow velocity V, (x)e in pla-
nar geometry (Fig. 1), or with equilibrium density profile
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n, (r) and azimuthal Aow velocity Ve, (r)ee in cylindrical
geometry (Fig. 15). The main boundary condition as-
sumed regarding the equilibrium Quid motion corre-
sponds to space-charge-limited liow (see, for example,
Miller, 1982). Specifically, under quasi-steady-state con-
ditions, it is assumed that the normal electric field at the
cathode surface is equal to zero; i.e., E (x =0) for the
case of planar Ilow (Fig. 1), and E„(r=a ) =0 for the case
of cylindrical Row (Fig. 15).

Referring to Fig. 1, macroscopic force balance on a
cold-Quid element in planar geometry shows that the
equilibrium Sow velocity is V, (x)= —cE (x)/B, (x) in
the region where the electron density n, (x) is nonzero.
Denoting the relativistic mass factor by y, (x)
=[1—V, (x)/c ] ', it is convenient to introduce the
quantity s, (x) defined by

4am, (x)e /y, (x)m, y, (x)co~, (x)
s, (x)=

e B,(x)/y, (x)m, c co„(x)

which is a measure of the strength of the self-electric field
produced by the electron space charge. Here,
co~, (x ) =4vrn, (x )e /m, is the nonrelativistic electron
plasma frequency-squared, and co„(x)=eB,(x)/m, c is
the nonrelativistic electron cyclotron frequency. Note
that s„(x) is directly proportional to the electron density

n, (x) and inversely proportional to B,(x). Therefore
s, (x) is a dimensionless measure of the ratio of the (de-
focusing) force associated with the self-electric field to
the (focusing) force associated with the confining magnet-
ic field. A similar definition of the self-Geld parameter
pertains in cylindrical geometry, with s, ( r)
=y, (r)co„,(r)/co„(r) and y, (r) = [1—Ve, (r)/c ]
Not surprisingly, it is found (Secs. II—IV) that the equi-
librium and linear stability properties of non-neutral elec-
tron Aow exhibit a sensitive dependence on the self-field
intensity as measured by s„as well as on the detailed
shape of the equilibrium profiles for n, , y„etc.

A second important focus of the present article per-
tains to large-amplitude coherent structures in non-
neutral plasmas with circulating electron liow (Secs. V
and VI). In this regard, the formation and evolution of
large-amplitude coherent structures play an important
role in describing the nonlinear dynamics of non-neutral
plasmas. This is true in systems ranging from low-
density (s, « 1) rotating non-neutral plasmas initially
subject to the diocotron instability, to high-density
(s, —1) circulating non-neutral electron layers in conven-
tional and relativistic magnetrons. Use is made of a
cold-Quid guiding-center model to investigate the proper-
ties of rotating, two-dimensional large-amplitude vortex
structures in a low-density non-neutral-plasma column
(Sec. VI). In addition, particle-in-cell computer simula-
tions are presented which describe the nonlinear evolu-
tion of a high-density non-neutral electron layer in a rela-
tivistic cylindrical magnetron, including the formation of
a large-amplitude "spoke" structure in the circulating
electron density (Sec. V).

To further orient the reader, it is convenient to provide
additional background information. The study of intense
non-neutral electron Aow began with the classic works of
Child (1911) and Langmuir (1923), who examined the
steady How of electrons between two parallel planar con-
ductors in the absence of an applied magnetic field, treat-
ing one conductor as the cathode (which emits electrons)
and the second conductor as the anode (maintained at a
voltage V relative to the cathode). Investigations of the
equilibrium and stability properties of non-neutral elec-
tron (low in such "conventional" diodes [with B,(x)=0
in Fig. 1] have continued for more than three-quarters of
a century. Areas of study have ranged from nonrelativis-
tic electron Row at low voltages (Lewellyn, 1941; Birdsall
and Bridges, 1966), to relativistic electron flow at high
voltages (Jory and Trivelpiece, 1969), to analytical and
numerical investigations of detailed stability behavior us-
ing both macroscopic (Antonsen et al. , 1984) and kinetic
(Antonsen and Chang, 1989) models.

As indicated earlier, an important emphasis in this re-
view article is on the equilibrium and stability properties
of intense non-neutral electron Aow in crossed electric
and magnetic fields. Early work in this area was motivat-
ed in large part by the use of crossed-field electron de-
vices such as magnetrons to generate coherent mi-
crowave radiation (Collins, 1948; Brillouin, 1951;Okress,
1961; Slater, 1969). Following Brillouin's classic paper
(1945) on magnetically focused electron Ilow at high elec-
tron density (s, =1), it was realized that low-density

(s, « 1) non-neutral electron layers with shear in the flow

velocity are also subject to instability (the so-called
diocotron or slipping-stream instability). The early treat-
ments of the diocotron instability in planar geometry by
MacFarlane and Hay (1950) and Buneman (1957) were
followed by theoretical investigations of equilibrium and
stability behavior in cylindrical geometry (Levy, 1965;
Daugherty and Levy, 1967; Levy, 1968a, 1968b; Briggs,
Daugherty, and Levy, 1970; Davidson and Tsang, 1984),
investigations of quasilinear stabilization of the diocotron
instability for multimode excitation (Davidson, 1985a),
and inclusion of the (stabilizing) influence of relativistic
and electromagnetic effects (Davidson, Tsang, and Uhm,
1988). In experimental investigations of the diocotron in-
stability, one of the most ubiquitous properties of low-
density non-neutral plasma initially subject to the diocot-
ron instability is the development of long-lived, rotating
vortex structures during the nonlinear evolution of the
system (Prasad and Malmberg, 1986; Davidson et al. ,
1990). This has been observed experimentally in annular
electron layers (Kyhl and Webster, 1956; Pierce, 1956), in
intense propagating annular electron beams (Ka-
petanakos et al. , 1973), in non-neutral plasma columns
with a central conductor (Rosenthal, Dimonte, and
Wong, 1987; Rosenthal and Wong, 1990) and without a
central conductor (Malmberg et al. , 1988; Driscoll et al. ,
1989; Fine, Driscoll, and Malmberg, 1989), and in com-
puter simulation studies (Rosenthal and Wong, 1990).

For magnetically insulated electron Aow in the planar
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diode configuration illustrated in Fig. 1, the electrons are
emitted from the cathode at x =0 and flow with average
velocity Vy~(x) — CE~(x)/B z(x) palallel to flic colldllc-
tors at x =0 and x =d. For specified voltage V, provided
the axial magnetic field B,(x)e, is sufficiently strong, the
outer edge of the electron layer will be insulated from
contact with the anode at x =d (Lovelace and Ott, 1974;
Ott and Lovelace, 1975). Interest in the equilibrium and
stability properties of magnetically insulated relativistic
electron How between parallel conductors received con-
siderable impetus in the 1970s and 1980s. This was due
in part to technological advances in the generation of in-
tense relativistic electron beams by high-voltage diodes
(see, for example, Miller, 1982 and Guenther and Kris-
tiansen, 1987), the application of high-voltage diodes
with magnetically insulated electron flow to generate
high-power microwaves in relativistic magnetrons (Bekefi
and Orzechowski, 1976; Orzechowski and Beke6, 1979;
Palevsky and Bekefi, 1979; Gleizer et a/. , 1980; Benford,
1987; Nokonov et al. , 1987; Benford et al. , 1989), and
the application of high-voltage diodes with magnetically
insulated electron How to generate intense ion beams
originating from a thin plasma layer on the anode surface
(Sudan and Lovelace, 1973; Humphries, Lee, and Sudan,
1974; Antonsen and Ott, 1976; Dreike et a/. , 1976; Hum-
phries et a/. , 1976; Miller, 1982; Johnson et a/. , 1983,
1985; Desjarlais, 1987, 1989). Early analyses of the mag-
netron instability for magnetically insulated electron How
between parallel conductors assumed nonrelativistic elec-
tron Row and validity of the electrostatic approximation
(Buneman, Levy, and Linson, 1966). Stability behavior
under Brillouin How conditions with s, =y, co, /co„= 1

was examined at that time for the case of relativistic elec-
tron Aow allowing for extraordinary-mode Gute perturba-
tions with 8/Bz =0 (Swegle and Ott, 1981a, 1981b; Swe-
gle, 1983). Subsequently, extraordinary-mode stability
properties were investigated for the general value of the
self-field parameter s, (Davidson, Tsang, and Swegle,
1984); the inAuence of the equilibrium profile shape on
detailed stability behavior was examined (Davidson and
Tsang, 1985); and stability properties for oblique propa-
gation were investigated for electromagnetic perturba-
tions with 8/Bz&0 (Chang, Ott, and Antonsen, 1986).

Emphasis in Secs. II—IV of this review article is placed
on the application of a macroscopic Inodel based on the
cold-Auid —Maxwell equations to investigate the equilibri-
um and stability properties of intense non-neutral elec-
tron Aow in crossed electric and magnetic fie1ds. It
should be pointed out, however, that a kinetic model
based on the Vlasov-Maxwell equations can also be used
to investigate detailed equilibrium and stability behavior
in circumstances where the momentum-space depen-
dence (as well as the configuration-space dependence) of
the equilibrium distribution function f&(x„p) plays an
important role (Davidson, 1985b; Davidson and Uhm,
1985, 1989a, 1989b, Uhm and Davidson, 1985). More-
over, in high-power ion diodes with magnetically insulat-
ed electron How, ion-driven instabilities that involve a

ll. EQUILlBRIUM PROPERTIES
FOR PLANAR ELECTRON FLOW

A. Theoretical model and assumptions

For present purposes, we make use of a macroscopic
cold-Quid model to describe intense non-neutral electron
flow in the planar geometry illustrated in Figs. 1 and 2
(Davidson, Tsang, and Swegle, 1984; Davidson and
Tsang, 1985; Davidson, 1990). Here, under steady-state
conditions (i)/Bt=0), the electron motion occurs in the
crossed electric and magnetic fields

E (x)=E„(x)e„,
B (x)=B,(x )e, .

(2.1)

The cathode (at x =0) and anode (at x =d) are assumed
to be perfect conductors at a voltage difterence V.
Without loss of generality, the zero of potential is chosen
such that

Po(x =0)=0 and $0(x =d) = V, (2.2)

where E„(x)=—Bgo/Bx, and P„(x) is the electrostatic
potential. In addition, space-charge-limit flow (Miller,
1982) is assumed with

E (x =0)=0, (2.3)

which corresponds to zero normal electric field at the
cathode.

For 8/Bt =0, the electron density profile in the anode-
cathode region is denoted by n, (x), and the average Aow

coupling between the ion and electron components can
also have a significant growth rates and can afFect diode
performance (Davidson, Tsang, and Uhm, 1985; Ott
et a/. , 1985; Chang, Chemin, et a/. , 1986; Chang, Ott,
and Antonsen, 1986).

The organization of this paper can be summarized
briefly. Following a review of equilibrium properties for
magnetically insulated electron Qow in planar geometry
(Sec. II), we investigate extraordinary-mode stability
properties for relativistic non-neutral electron Aow be-
tween planar conductors, placing particular emphasis on
the magnetron and diocotron instabilities (Sec. III). The
influence of cylindrical eFects (such as the centrifugal
and Coriolis accelerations of an electron Iluid element) on
stability behavior is then investigated for rotating elec-
tron flow in cylindrical geometry (Sec. IV). Finally, the
properties of large-amplitude coherent structures in ro-
tating non-neutral plasmas are investigated (Secs. V and
VI). This includes particle-in-cell computer simulations
of dense (s, —1) electron Bow in relativistic magnetrons
which shows large-amplitude spoke formation in the cir-
culating electron density (Sec. V), and application of a
cold-Quid guiding-center model to investigate large-
amplitude vortex structures in low-density (s, &&1) non-
neutral plasma (Sec. VI).
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FIG. 2. Electron layer extends from x =0 to x=xb (d, and
B pe, is the axial magnetic field in the vacuum region
~~b (~

velocity of the electrons is V, (x)= V~, (x)e . Treating
the electrons as a cold Quid, it follows that equilibrium
force balance on a Quid element in the x direction can be
expI essed as

0= —en, (x)[E„(x)+(1/c) Vy, (x)8,(x)], (2.4)

where —e is the electron charge and c is the speed of
light in Uacuo. Solving Eq. (2.4) in the region where the
electron density is nonzero gives

V, (x)= cE„(x)/8,(x), — (2.5)

which corresponds to E X8 How in the crossed electric
and magnetic fields. As illustrated in Fig. 2, the electron
density profile n, ( )xextends from x=O to x=xb &d,
and the magnetic field in the vacuum region (xb &x & d )

is denoted by Boe, . For specified voltage V, a sufficiently
strong magnetic field Bo is required in order to ensure
that the electron Aow is insulated from contact with the
anode (xb & d ).

The equilibrium electric and magnetic fields, E (x) and
8,(x), are determined from the steady-state Maxwell
equations

Of course, Eqs. (2.6) and (2.7) are to be solved subject to
the boundary conditions in Eqs. (2.2) and (2.3), as well as
8,(x ) =80 =const in the vacuum region (xb &x & d ).
Equations (2.6) and (2.7) constitute two equations relating
the three equilibrium profiles E„(x), B,(x), and n, (x).
Therefore, generally speaking, there is considerable lati-
tude in describing equilibrium properties within the
framework of a macroscopic cold-fiuid model (Davidson,
Tsang, and Swegle, 1984; Davidson and Tsang, 1985;
Davidson, 1990). For example, the functional form of
the electron density profile n, (x} can be specified arbi-
trarily over the layer cross section, and the correspond-
ing field profiles, E, (x) and 8,(x), calculated self-
consistently from Eqs. (2.6) and (2.7). Alternatively, Eqs.
(2.6) and (2.7) can be solved subject to some additional
constraint condition, and all of the equilibrium profiles
calculated self-consistently from Eqs. (2.6) and (2.7). An
example is the case of Brillouin Aow considered in Sec.
II.B, where Eqs. (2.6} and (2.7) are solved subject to the
assumption that the total electron energy is uniform,

[y, (x)—1]mc —ego(x) =const, in the region 0 & x & x&.
In any case, Eqs. (2.6) and (2.7) can be integrated once

to give a relation between the field profiles, 8,(x) and
E„(x), for general density profile n, ( x). In this regard,
we eliminate n, (x} in Eq. (2.7) by means of Poisson's
equation (2.6). Integrating (2.7) with respect to x then
gives

8, (x ) E„(x) =c—onst (2.8)

y, (x)= [1—V, (x)/c ]

=[1—E,(x)/8 (x)] (2.9)

it also follows from Eq. (2.8) that

8,(x)/y, (x) =const (2.10)

within the electron layer (0&x &xb). That is, whatever
the equilibrium profiles, the functional forms of 8,(x)
and y, (x ) are identical in the region 0 & x & xb.

within the electron layer (0&x & xb ). As expected, it fol-
lows from Eq. (2.8) that the depression in the magnetic
field 8,(x) is largest at the cathode (x =0) where
E (x =0)=0. Moreover, 8,(x) increases monotonically
from x =0 to the value 8, (x =x& ) =Bo at the outer edge
of the electron layer (x =xb), where E, (x) assumes its
maximum value determined from E (x =x& )
= —4~e f bdx n,o(x). Introducing the relativistic mass
factor y, (x) defined by

a E (x)= —4+en, (x) (2.6) B. Relativistic Brillouin flow

and

8, (x) = 4men, (x—) V,.(x)

4~en, (x )E„(x)

B,(x) (2.7)

For relativistic Brillouin flow (Brillouin, 1945, 1951;
L'ovelace and Ott, 1974; Ott and Lovelace, 1975; Anton-
sen and Ott, 1976; Swegle and Ott, 198la, 198lb), the
condition is imposed that the total energy of an electron
Quid element is uniform across the electron layer. This
condition can be expressed as

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991
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[y, (x) —1]m,c —ego(x) =const, (2.1 1)

where y, (x)=[1 E—(x)/B, (x)] ' is the relativistic
mass factor and m, is the electron rest mass. Here,
$0(x =0)=0 and y, (x =0)=1, so that the value of the
constant in Eq. (2.11) is equal to zero. Taking the deriva-
tive of Eq. (2.11) with respect to x gives

By, /Bx =(e/m, c )Bgo/Bx, which can also be expressed
as

E, (x) B E, (x)
B,(x) Bx B,(x)y, (x)

eE„(x)
m~c

(2.12)

where E (x)= —Bgo(x)/Bx. Using Eqs. (2.6) and (2.7) to
eliminate BB,/Bx and BE /Bx in Eq. (2.12), we obtain
the relativistic Brillouin Aow condition

eB,(x) 4~n, (x)e

y, (x)m, c y, (x)m,
(2.13)

B2
B,(x) KB,(x) =—0, (2.14)

Note that Eq. (2.13) corresponds to the condition
that the relativistic electron cyclotron frequency,
eB,(x)/y, (x)mc, is equal to the relativistic electron plas-
ma frequency, [4mn, (x)e /y, (x)m, ]', locally (at every
x) within the electron layer. Because B,(x)/y, (x)
=const [Eq. (2.10)], it follows from Eq. (2.13) that
n, (x ) /y, (x ) =const within the electron layer
(0(x (xb). Therefore the profiles for B,(x),y, (x), and

n, (x) have identical spatial dependences in the interval
0 X (Xb.

Taking the derivative of Eq. (2.7) with respect to x,
and making use of n, ( x) /B( x)=const and BE /Bx
= —4~en, , we obtain

ego(x)

pl~ c

[cosh(Kx) —1], 0(x (xb,
= ~ [cosh(Kxb )

—I ]+K(x —xb )sinh(Kxb ), (2.21)

xb(x ~d .

Evaluating Eq. (2.21) at the anode (x =d ) where
Po(x =d)= Vgives

eV = [cosh(Kxb ) —I ]+K(d —xb )sinh(Kxb ),
ftzq c

(2.22)

which relates the normalized voltage eV/m, c to Kxb

and K(d —xb ).
It is useful to relate the vacuum field Bo in Eq. (2.16) to

the initial fill field B/ (assumed uniform in the region
0(x (d) prior to the formation of the electron layer.
Assuming magnetic-fiux conservation with I dx B,
=const, we obtain

within the electron layer (0(x &xb). Note from Eq.
(2.17) that the electron density n, (x) increases monotoni-
cally from the value 8', /cosh(Kxb ) at the cathode (x =0)
to the value R', =const at the outer edge of the electron
layer (x =xb ). Similarly, from Eq. (2.19), the equilibrium
fiow velocity V, (x) increases monotonically from zero at
x =0 to the value c tanh(Kxb) at x =xb. The profile
functions cosh(Kx ) and tanh(Kx ) occurring in Eqs.
(2.16)—(2.19) are plotted versus x/xb in Fig. 3 for the
case Kxb = 1.317 and y, =—y, (x =xb ) =2.

The electrostatic potential $0(x) can be determined
from [y, (x ) —1 ]m, c —eII)0(x ) =0 within the electron
layer (0(x &xb), and from B po/Bx =0 in the vacuum
region (xb (x (d ). Making use of Eq. (2.18), and enforc-
ing continuity of po(x ) and Bpo(x ) /Bx at x =xb, we ob-
tain

where ~ is defined by
B/d = (Bo/K)tanh(Kxb )+Bo(d —xb ) . (2.23)

K=4men, (x)/B, (x) =const.

The solution to Eq. (2.14) is

(2.15)

2.0
I I I I

i
I I I I

I
I I I

cosh(Kx )
Q

0~X &Xb,
B (x), cosh(Kxb )

Z

8Q, Xb (X d (2.16)
1.5

where BQ=const denotes the uniform value of the axial
magnetic field in the vacuum region (xb (x (d). Simi-

larly, the electron density n, (x), the relativistic mass fac-
tor y, (x), the flow velocity V, (x), and the electric field

E„(x)can be expressed as

I.O

0.5

cosh(Kx )
n, x =8',

cosli(Kxb )
(2.17)

0.5 ).0

y, (x) =cosh(Kx ),
V~, (x)=c tanh(Kx ),

sinh(Kx )

cosh(Kxb )

(2.18)

(2.19)

(2.20)

X/Xb
d/xb

FIG. 3. Plots vs x/xb of the profile functions cosh(~x) and
tanh(ax) occurring in Eqs. (2.16)—(2.19) for ax& =1.317 and

y =y (x =xb ) =2.
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In terms of 8, (x =0)=Be/cosh(axb ) at the cathode, Eq.
(2.16) can be expressed in the equivalent form

eB&d eB,(x =0)
z [sinh(axb )+ic(d —xb )cosh(lcxb )] .

m~c mac K

(2.24)

l.0

0.6

0.25 B) =0.5

I

'
I

1.0

I I I

2.0 4.0 8.0

The coefflcient eB,(x =0)/m, c lc in Eq. (2.24) can be fur-
ther simplified. In terms of the nonrelativistic frequen-
cies co„(x)=eB,(x)/m, c and co, (x)=4~n, (x)e /m„
the Brillouin fiow condition in Eq. (2.13) can be ex-
pressed at the cathode [where y, (x=0)=1] as
co~, (x =0)=co„(x=0). Equation (2.1S) then gives
ac =co~, (x =0)/co„(x =0) or, equivalently,

0,4

0.2

0—
-2.0 0

Log (eV/me c )

0.5

lcc =co~, (x =0)=co„(x=0) . (2.25)

Therefore eB,(x =0)/m, c ic= 1, and Eq. (2.24) reduces
to

eB&d /m, c =sinh(lcxb )+Ic(d —xb )cosh(lcxb ) . (2.26)

eV /m c2=(1+e 8 d /m c") (2.27)

For specified values of the normalized voltage
eV/m, c and fill field eB&d/m, c, Eqs. (2.22) and (2.26)
can be solved numerically to determine the self-consistent
values of the normalized layer thickness xb ld and elec-
tron density a d =co,(x=0)d /c . Typical numerical
results are illustrated in Fig. 4, where xb/d is plotted
versus eV/m, c for several values of the magnetic fill
field ranging from eBfd/m, c =0.25 to 8 (Davidson,
1990). As the electron fiow become increasingly relativis-
tic, we note from Fig. 4 that the curves asymptote
abruptly to xb Id = 1 as the voltage V approaches the rel-
ativistic Hull cutoff' voltage VH (Hull, 1921; Lau, 1987).
To calculate VH, we set xb =d in Eqs. (2.22) and (2.26)
and make use of cosh (axb ) —sinh (lcxb ) = 1. This readi-
ly gives

FIG. 4. Plots of the normalized layer thickness xb/d vs
eV/m, c obtained numerically from Eqs. (2.22) and (2.26) for
several values of the normalized fill field ranging from
B&

——eBId/m, e =0.25 to 8.

Ic(d —xb ), we combine Eqs. (2.22) and (2.26) to give

eV

mec

e8y d 1
tanh(Kxb )

— 1—
mec cosh axb

(2.29)

Setting V, (x =xb ) =c tanh( xab ) = /cok =P~c, and

y, (x =xb)=cosh(axb)=(1 P~) '/—
, it is readily shown

from Eq. (2.29) that the Buneman-Hartree threshold volt-
age VBH is given relativistically by

e VBH e8&d

Lpga

[ (' pp)
2 1/2

m, c' m, c' ' (2.30)

For phase velocity in the range 0&/3 & 1, it readily fol-
lows from Eqs. (2.27) and (2.30) that V~(B&) ~ VaH(B&),
where the equality holds when eB&d /m, c =

p~ /
(1—p )'/ . For purposes of illustration, Fig. 5 also

In the nonrelativistic regime with e BId /m, c «1 and
e VH /m, c « 1, Eq. (2.27) reduces to e VH /m, c

f=e282d2/2m ~c4

Shown in Fig. S is a plot of eVH/m, c versus the nor-
malized fill field eB&d Im, c . Magnetically insulated
equilibria with xb & d exist provided the applied voltage
satisfies

5.0

2.5

2.0

1.5

«Ve (2.28)
1.0

For V« VH, it is evident from Fig. 4 that the layer is
thin (xb «d). However, as the voltage is increased to
V= VH, the layer thickness increases to xb =d.

For efFective interaction between the layer electrons in
a relativistic magnetron (Sec. IV), the layer thickness xb
should be at least large enough that the (fastest) electrons
at x =xb resonate with the excited wave with phase ve-
locity U =co/k =p c. This requires that the voltage V
exceed a value known as the Buneman-Hartree threshold
voltage VBH (Buneman, 1961; Lau, 1987). Eliminating

0.5

0
0 1.0 2.0 3.0 4 0

eB&d/mec

FIG. 5. Plots vs the normalized fill field eB&d /m, c of the Hull
cutoff voltage e VH /m, c [Eq. (2.27)] and the Buneman-Hartree
threshold voltage eVsH/m, c [Eq. (2.30)] for P» =co/ck» =0.5.
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shows a plot of eVBH/m, c versus the normalized fill

field eBfd!m, c obtained from Eq. (2.30) for the choice
of phase velocity P~=co/ck~=0. 5. The allowed region
of magnetron operation ( VBH & V & VH ) for P =0.5 then
corresponds to the shaded region in Fig. 5.

C. General eqoilibrium profiles

choice of the equilibrium profile y, (x). For the special
choice y, (x ) =cosh(~x ), where ~=4ireR', /Bo and
fi',:—n, (xb), it can be shown that Eqs. (2.33)—(2.35) re-
cover (exactly) the equilibrium Brillouin fiow profiles in
Eqs. (2.16), (2.17), and (2.20). For general profile y, (x),
we note from Eq. (2.34) that the average electron density,

n, =xb ' J o'dx n, (x), can be expressed as

[
~ 2

1 ]1/2B

4~exb y,

E„(xb)
4~exb

As indicated in Sec. II.A, there is considerable latitude
in making use of Eqs. (2.6) and (2.7) to describe equilibri-
um properties within the framework of a macroscopic
cold-fiuid model (Davidson, Tsang, and Swegle, 1984;
Davidson and Tsang, 1985). For example, if the func-
tional form of the equilibrium density profile n, (x) is

specified, then Eq. (2.6) can be integrated to give

E (x)= —4m.e f dx n, (x) . (2.31)

Here, use has been made of the boundary condition
E (x =0)=0 at the cathode [Eq. (2.3)]. In this case, the
axial magnetic field B,(x) obtained from Eq. (2.7) [or Eq.
(2.8)] is given by

[E„(xb ) —E„(x)]
B,(x)=Bo 1—

B
(2.32)

in the interval 0&x &xb. Here, E (x) is defined in Eq.
(2.31), and y, (x) has the same spatial dependence as

B,(x) within the electron layer [Eq. (2.10)].
As a second example, let us assume that the functional

form of the relativistic mass factor y, (x)=[1 E,(x)/—
B,(x)] '/ is specified within the electron layer, with

y, (x) increasing monotonically from y, (x =0)=1 at the
cathode to the value y, (x =xb ) =y, at the outer edge of
the electron layer. It then follows from Eqs. (2.6), (2.7),
and (2.10) that the remaining equilibrium profiles are
given self-consistently by

0
XeBo, O~x &xb,
XeB,(x)=

O~ Xb &X ~d

Bo
[y02( ) 1 ]1/2

n 0(x)= 4vrey,

0, xb (x d

0 x &xb

(2.34)

BO 02 &/2[y02(x) —1]'/, 0 & x & xb,
3 eE (x)= '

(2.35)E (xb), xb &x &d .

(2.36)

which determines n, explicitly in terms of y„B0,and xb.
As a general remark, it follows from Eq. (2.10)
that the relativistic electron cyclotron frequency
co„(x)/y, (x)=eB,(x)/y, (x)m, c is uniform over the lay-
er cross section. On the other hand, from Eq. (2.34),
the relativistic electron plasma frequency-squared,
co&, (x)/y, (x) =4irn, (x)e /y, (x)m„generally varies
with x over the layer cross section. The special equilibri-
um profile y, (x) =cosh(vx ) is the only exception to this,
in which case n, (x)/y, (x)=BO~/4~ey, =const. For
purposes of illustration, we choose y, (x) to have the
functional form

[1—~2(xb —x )]'/
y, (x)= A, cosh(l~, x )+(1—

A, )
(1—I~.2xb )'/

(2.37)

over the interval 0 x & xb. Here, ~&
' and ~2

' are con-
stant scale lengths, and A, is a variable parameter in the
range O~A. ~ 1 which can be used to alter the shape of
the equilibrium profiles. [The special case 1=1 corre-
sponds to y, (x)=cosh(~, x ).] Note from Eq. (2.37) that

y, (x) increases monotonically from y, (x =0)=1 at the
cathode to y, (x =xb)=y, at the outer edge of the elec-
tron layer (x =xb ), where

(1—
A, )

y, = A, cosh(~, xb ) +
[1—i~',xb']'" (2.38)

The equilibrium profile for n, (x)/y, (x) calculated from
Eqs. (2.34) and (2.37) is illustrated in Fig. 6 for three
values of the shape parameter corresponding to A, =1,
0.5, and 0 and to fixed values of K&xb = 1.317,
~2xb=0. 866, and y, =2. Note from Fig. 6 that the
profile for n, (x)/y, (x) exhibits a sensitive dependence
on A, , ranging from a uniform profile when A, = I (similar
to the case of Brillouin fiow) to a profile that decreases by
a factor of 2 over the layer cross section when X=O. We
shall find in Sec. III that the growth rate of the magne-
tron instability exhibits a sensitive dependence on the
shape of the equilibrium profile n, (x)/y, (x), as mea-
sured by A, .

Here, Bo=B,(xb ) and —[y, —1] Bo /y, =E„(xb ) a«
the fields in the vacuum region (xb & x & d ), and

y, =y, (xb ) = [1 E(xb ) IBo ]
' is th—e relativistic

mass factor at the outer edge of the electron layer
(x =xb ). Equations (2.33)—(2.35) are valid for the general

III ~ EXTRAORDINARY-MODE STABILITY
PROPERTIES FOR PLANAR ELECTRON FLOW

In this section, use is made of a macroscopic cold-Quid
model to investigate stability properties for
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2.0

1.8
5'(x,y, t)= g 5E (x,k)exp(iky i—rot) .

k = —oo

(3.2)

0&

1.6

1.2

1.0

0.8—

0.6—

0.4—

0.2—

--1.52

--1.26

--1.00

Here, co is the complex oscillation frequency with
Imago) 0 corresponding to instability (temporal growth);
k=2rrn/1. is the wave number of the perturbation,
where n is an integer; and L, is the fundamental periodici-
ty length in the y direction (the equilibrium Sow direc-
tion).

The linearized, cold-fluid equations of continuity and
momentum transfer give coupled equations for the per-
turbation amplitudes 5n, (x, k), 5 V„,(x,k), 5 V~, (x, k),
5E (x, k), 5E (x, k), and 5B,(x, k). We obtain

i [ro—kV—,(x) ]5n, = —ikn, (x)5 ', — [n, (x)5 V„,],
(3.3)

0 I ] I l I

0 0.2 O.4 0.6 0.8 1.0 1.2 JI

d/xb
i [c—o kV—, (x)]5V„,+ [ai„(x)/y, (x)]5',

x/xb

FIG. 6. Plot of the normalized profile [n, (x)/y, (x)]y, /n, vs

x/xI, calculated from Eqs. (2.34) and (2.37) for fixed values of
x,x& =1.317, a2x~ =0.866, and y", =2, and three values of the
profile-shape parameter k= 1, 0.5, and 0.

y, (x)m,
5E„+—V, (x)5B,

c

co„(x) + o [y(x) Vy(x)] 5V„,
y, (x) y, (x)»

(3.4)

extraordinary-mode Ilute perturbations (r) IBz =0) about
the general class of planar Bow equilibria described in
Sec. II (Davidson, Tsang, and Swegle, 1984; Davidson
and Tsang, 1985; Davidson, 1990). Following a deriva-
tion of the eigenvalue equation (Sec. III.A), detailed
properties of the magnetron instability are examined for
nonrelativistic (Sec. III.B) and relativistic (Sec. III.C)
electron How. For low-frequency perturbations about a
tenuous electron layer, it is then shown that relativistic
and electromagnetic effects can have a strong stabilizing
inAuence on the diocotron instability for sufficiently in-
tense electron liow (Sec. III.D). Finally, for a tenuous
electron layer, the inhuence of a periodic anode resonator
on stability properties is discussed (Sec. III.E).

A. Extraordinary-mode eigenvalue equation

i [cu —kV, (—x)]y, (x)5 V~, = — 5E
y,'(x)m,

(3.5)

( 0V0 ) y02 (3.6)

where ai„(x) and co~, (x) are the nonrelativistic electron
cyclotron and plasma frequencies defined by

where V, (x)= cE (x)/B, (x—), y, (x) = [1 E(x)I—
B,(x)] '~, and 5y, (x,k)=y, ( x)[ V~, ( x)l c]
X5V~, (x, k). Here, making use of the equilibrium Pois-
son equation (2.6), it is readily shown that

5E(x, t)=5E (x,y, t)e +5E (x,y, t)e

58(x, t)=5B,(x,y, t)e, .
(3.1)

The field components 5E (x,y, t ), etc. , are expressed as

We make use of a macroscopic cold-Auid model to in-
vestigate the electromagnetic stability properties of mag-
netically insulated, relativistic electron Bow in the planar
geometry illustrated in Figs. 1 and 2. The present
analysis assumes Ilute perturbations (8/~3z =0) about
general equilibrium profiles n, (x), E„(x),and B,(x) con-
sistent with Eqs. (2.6) and (2.7) and the boundary condi-
tions in Eqs. (2.2) and (2.3). In addition, the electromag-
netic field perturbations are assumed to have
extraordinary-mode polarization with

eB,(x)
n~„(x)=

mec
and co, (x)=

4m.n, (x)e
(3.7)

N„(x)= (i Ik )5E~(x, k ) . (3.8)

After some straightforward algebra, the linearized
Maxwell equations give

The perturbed field components 5E„,5E, and 5B, are
related self-consistently to 5n„6V „and 5V, by the
linearized Maxwell equations. In this regard, it is con-
venient to introduce the effective potential Nk(x) defined

by

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



350 Davidson et aI. : Intense non-neutral electron flow

5E (x,k)=— 1

(1 —co/ck )

X C&k(x)
a

+
2 4vren, (x)5V, (x, k)

c k
(3.9)

V, (x)
yi(x, k, co) = — 1—

c ck

co, (x)y, (x)

(1—co /c k )v, (x, k, co)

co, (x)
y (x, k, co)=-

c k y (x)v(xkco)

(3.14)

58(xk)=
2 2 z

1

(1 —co/c k )

X 4k(x)+ 47ren, (x)5V, (x, k)
ck Ox ck

(3.10)

where

v, (x, k, co)

co~~(x )+
c k y, (x)c k

(3.15)

5E, (x, k) —k 4k(x)= —4~e5n, (x, k) .
BX

(3.1 1)

In addition, the linearized Poisson equation becomes co~, (x)/y, (x)c k
=y, (x)[co—kV, (x)] 1+

1 —~2/c 2k 2

—[co,', (x )/y, '(x) —co„',(x)/y, (x)] . (3.16)

Note from Eqs. (3.8)—(3.10) that the perturbations are
electrostatic with 5E, = —M&k/c}x, 5E = ik@k—, and

M, =0, only in the limit where ~co/k i
((c~ ~.

Substituting Eqs. (3.3) and (3.9) into Poisson s equation
(3.11) gives

02 2—k 1—2

BX c k
Nk(x)

4mei

[co—k V, (x) ]

Vy, (x)
1 — [n, (x)5V, ]

C Ck BX

2

+ik 1 — [n, (x)5V, ]2k 2
(3.12)

Furthermore, substituting Eqs. (3.8)—(3.10) into Eqs. (3.4)
and (3.5), we can express the perturbed fluid velocities
5V, (x, k) and 5V, (x, k) directly in terms of the effective
potential 4k (x ). Without presenting algebraic details
(Davidson, Tsang, and Swegle, 1984), this gives the eigen-
value equation

Nk(x =0)=0=@k(x=d), (3.17)

which correspond to zero tangential electric field
(5E =0) at the cathode (x=0) and the anode (x=d).
As a general remark, it is found that the eigenvalue equa-
tion (3.13) supports unstable solutions (Imco) 0) corre-
sponding to the magnetron instability when the
Doppler-shifted cyclotron resonance condition

y, (x;)[Reco—kV, (x;)] =co„(x;)/y, (x;) (3.18)

is satisfied at some internal location (x =x;) within the
electron layer (0&x; (xb). Moreover, the growth rate
depends on the strength of the self-fields (Davidson,
Tsang, and Swegle, 1984) and the shape (Davidson and
Tsang, 1985) of the equilibrium profiles.

The eigenvalue equation (3.13) can be used to investi-
gate detailed extraordinary-mode stability properties of
the electron how for a wide range of self-consistent equi-
librium profiles n, (x), E, (x), and B,(x). In this regard,
it should be emphasized that Eq. (3.13) includes the full
inAuence of relativistic and electromagnetic effects on
stability behavior in planar geometry. The complex
eigenfunction N k( x)=(i /k)M (x, k) and the eigenfre-
quency co are to be determined from Eq. (3.13) subject to
the boundary conditions

Vy, (x)
c ck

k@k(x) 1—
[co—k V, (x) ]

co, (x )co„(x)
X

y, (x)v, (x, k, co)
(3.13)

Here, the susceptibilities occurring in Eq. (3.13) are
defined by

B. Magnetron instability for
nonrelativistic electron flow

Before making use of the eigenvalue equation (3.13) to
investigate stability properties for relativistic electron
Aow, we summarize briefly the stability behavior calcu-
lated from Eq. (3.13) in the electrostatic regime, assum-
ing nonrelativistic electron Aow. Specifically, for
waco /c k

~
(&1, co~, (x)/c k &&1, V, (x)/c &&1, and

y, (x) =1, it follows from Eqs. (3.13)—(3.16) that the ei-
genvalue equation can be approximated by (Davidson,
1990)
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co~, (x) c)

[~—k V„(x)] —[~„—~„(x)] ax
cI&„(x) —k

co, (x)

[co—k V, (x)] —[co„—co, (x)]

kco„+k(x) co, (x)

[co—kVy, (x)] c)x [co—kV, (x)] —[co„—co, (x)]
(3.19)

in the nonrelativistic, electrostatic regime. Here,
co, (x)=4mn, (x)e /m, and co„=eBO/m, c, where n, (x)
is the electron density profile, and the magnetic field

B,(x)=BO is taken to be uniform when V, (x)/c (& l.
Similar to the case of relativistic electron fiow (Sec.
III.C), it is found from Eq. (3.19) that the electron cyclo-
tron mode is subject to the magnetron instability for per-
turbations with sufficiently short wavelength (sufficiently
large kxb ).

One interesting choice of equilibrium density profile in
Eq. (3.19) corresponds to

8', =const, 0 ~ x & xb,"" '='0 ( (3.20)

That is, co~, (x) =co~, =4mb, e /m, =const within the
electron layer, and the equilibrium Aow velocity
V, (x)= cE,(x)/—Bo is given by

V, (x)=s,co„x (3.21)

in the region 0 ~ x (xb. Here, s, is the self-field parame-
ter defined by

CO epe
e

CO~e

4~R', m, c

Bp
(3.22)

Reco= —,'s, (kxb —1 —
—,'s, )co„,

Imco = (7v/2)s, co„exp( —2/s, —1),
(3.23)

for short-wavelength perturbations with k xb))1/s, .
Equation (3.23) has been derived for an arbitrary value of
the self-field parameter s, . Note that the real oscillation
frequency Reer scales linearly with the wave number k,
which is consistent with the numerical results obtained in
Sec. III.C for relativistic electron Aow. Moreover, under
Brillouin fiow conditions (s, =co, /co„= '1 ), the max-

Note that s, is a (dimensionless) measure of the strength
of the equilibrium self-electric field. Because the electron
layer is in contact with the cathode at x =0, the equilib-
rium described by Eqs. (3.20) and (3.21) is not subject to
the classical diocotron instability (Levy, 1965). However,
the cyclotron mode is subject to the magnetron instabili-
ty (Buneman, Levy, and Linson, 1966).

For the choice of equilibrium profiles in Eqs. (3.20) and
(3.21), Buneman, Levy, and Linson (1966) have per-
formed an elegant analytical calculation (confirmed by
numerical solution) of the asymptotic growth rate and
real oscillation frequency of the magnetron instability for
large values of k xb. Without presenting algebraic de-
tails (Buneman, Levy, and Linson, 1966), it is found that

I

imum growth rate in Eq. (3.23) corresponds to
Imco/co„=sr/2e =0.08 for short-wavelength perturba-
tions.

C. Magnetron instability for
relativistic electron flow

We now make use of the eigenvalue equation (3.13) to
investigate stability properties for relativistic electron
Bow. There is clearly a wide range of equilibrium profiles
n, (x), E (x), and B,(x), consistent with Eqs. (2.6) and
(2.7), for which stability behavior can be examined. For
present purposes, we specialize to the case where the rel-
ativistic mass factor y, (x) has the functional form
specified by Eq. (2.37), and the corresponding equilibrium
profiles for B,(x), n, (x), and E„(x) are calculated self-
consistently from Eqs. (2.33)—(2.35) (Davidson and
Tsang, 1985). Here, keep in mind that the con-
stant A, is a profile-shape parameter, where X= 1

corresponds to y, (x ) =cosh(~, x ) in Eq. (2.37) and

n, (x)=(Box,/4rcey, )cosh(Icix) in Eq. (2.34), and A, =O
corresponds to a monotonically decreasing profile for
n, (x)/y, (x) (Fig. 6).

Magnetron instability fov X=1. We first consider the
case of strong magnetron instability corresponding to
A. =1. In this regard, it is useful to introduce the self-field
parameter s, defined relativistically by

co, (xb )/y,
Se =

co„(xb ) ly,
4mn, y, rn, c

B
(3.24)

Here, y, =y, (xb )=cosh(lc, xb), 8', =n, (xb )=Boric, /4~e,
and BO=B,(xb) are evaluated at the outer edge of the
electron layer (x =xb ). Indeed, for I,= 1 and

y, (x ) =cosh(x ix ), it is readily shown from Eqs. (2.33)
and (2.34) that the profiles for n, (x) and B,(x) are both
proportional to cosh(~, x). Therefore the local self-field

parameter defined by s, (x) = [co~,(x)/y, (x)]/
[co2„(x)/y02(x)] is uniform over the layer cross section
and equal to the value of s, defined in Eq. (3.24) at x =xb.
The condition s, = 1 corresponds exactly to the Brillouin
fiow condition (Swegle and Ott, 1981a, 198lb; Swegle,
1983) assumed in Sec. II.B, but is not required in the
present stability analysis.

Typical numerical solutions (Davidson, Tsang, and
Swegle, 1984) to the extraordinary-mode eigenvalue
equation (3.13) are illustrated in Figs. 7 and 8 for the
choice of system parameters corresponding to A, = 1,
d=(3/2)xb, and xb=2c/co„. Here, co„—:co„(xb)/y,
=eBp/y, m, c is the relativistic cyclotron frequency at
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the outer edge of the electron layer. Figure 7 shows the
normalized growth rate (Imago)/Q„and the real oscilla-
tion frequency (Reer)/co„of the magnetron instability
plotted versus the normalized wave number kc/co„ for
the two cases corresponding to s, =l [Fig. 7(a)] and

s, =0.5 [Fig. 7(b)]. Several points are noteworthy from
Fig. 7. First„ the bandwidth of the magnetron instability
is quite broad, with the maximum growth rate occurring
for kc/co„-3 when s, = 1, and for kc/co„-2 when

s, =0.5. Second, the maximum growth rate decreases by
about a factor of 4 when the self-field parameter s, is re-
duced from s, = 1 to s, =0.5. Finally, the real frequency
Redo exceeds co„and scales approximately linearly with
wave number k over the entire range of the instability,
similar to the nonrelativistic case considered in Sec.
III.B.

The strong dependence of stability properties on the
strength of the equilibrium self-fields is further illustrated
in Fig. 8(a), where (1m')/co„and (Redo)/co„are plotted
versus the self-field parameter s, for fixed wave number
kc/co„=2, and system parameters otherwise identical to
those in Fig. 7. Note from Fig. 8(a) that the growth rate
of the magnetron instability is negligibly sma11 for
s, ~ 0.3, but increases monotonically to Im~=0. 0168co„
for s, =1.
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FIG. 8. Linear growth properties of the magnetron instability:
(a) the normalized growth rate Imago/co„and the real oscillation
frequency Redo/co„vs s„' (b) the eigenfunction components
Re@&(x) and Im+k(x) vs x /xb for s, = 1, obtained numerically
from the eigenvalue equation (3.13) for Axed wave number
ck/&„=2. The choice of system parameters is otherwise iden-
tical to Fig. 7.
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FIG. 7. Linear growth properties of the magnetron instability.
The figures show plots vs ck/co„of the normalized growth rate
Imago/Q„and the real oscillation frequency Redo/Q„obtained
numerically from the eigenvalue equation (3.13). The choice of
system parameters corresponds to k = 1, d = (3/2)xb, and
xb =2c/co„. The two values of the self-field parameter s, corre-
spond to (a) s, =1 and (b) s, =0.5.

Shown in Fig. 8(b) are eigenfunction plots of Re@k(x)
and 1m@I,(x) vs x/xz obtained from Eq. (3.13) for s, = 1

and fixed wave number kc/Q„=2. The corresponding
complex oscillation frequency is co=(1.83+0.0168i)co„.
Note from Fig. 8(b) that the outer extremum of Re&5k(x)
occurs near the boundary of the electron layer (x =x~)
where Bco„,(x)/Bx is large, corresponding to a large sur-
face perturbation on the right-hand side of the eigenvalue
equation (3.13). The strong peaking of Re+k(x) at
x =xb is expected, since it is this large variation of co„,(x)
at the plasma boundary that supports the surface wave
which is driven unstable. Close examination of Eq. (3.13)
and Fig. 8(b) shows that the inner extrema of Red&k(x)
and Im@z(x) occur near the point (x =x; ) where
I +Reyj (x;,k, m) =0. After some straightforward alge-
bra that makes use of Eqs. (3.14) and (3.16), it can be
shown that

y, (x)[~—kV~, (x)] —co„(x)/y, (x)
1+y~(x, k, co) =

v, (x, k, co)

(3.25)
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where ro„(x)=eB,(x)/m, c. For small growth rate with
~lmro~ && ~Reto~, the solution (x; ) to 1+Remi(x;, k, co) =0
is determined approximately from the Doppler-shifted
cyclotron resonance condition

0.06

0.05—

0.04—

(a)

y, (x; )[Rero —k V, (x, ) ] =9 2, , (3.26)

where use has been made of co„(x)/y, (x)=ro„=const
across the electron layer. It is precisely the occurrence of
this cyclotron resonance condition within the electron
layers that leads to the magnetron instability.

As a final point, for A, = 1 and y, (x ) =cosh( ~,x ), it is
readily shown that n, (x)=tt, cosh(lr, x)/[c osh( Ir, xs)],
where c~i=4~R, ec/'Bo=s, ro„and Kixb s (xbco /c).
Furthermore, solving Poisson's equation (2.6) for $0(x)
and enforcing Po(x =d ) = V gives

A.
eV ~ce

2
=s, z 2 [ [cosh(lr, xb ) —1]

Pl C C IC)

(3 0.03—
3
E

0.02—

0.01

1.0

6.0

5.0— (b)

2.0 3.0

C k/Ulcc

4.0 5.0

+Ir, ( d —xb )sinh( ~,xb )j, (3.27)
4.0—

where c~, /co„=s, and ro„=eBO/y, m, c For s. , =1 (and
therefore cd, =ra„), Eq. (3.27) reduces to the familiar
voltage relation (2.22), valid for Brillouin fiow conditions.
For the choice of parameters in Figs. 7 and 8, however,
xb =2c/ro„so that Ir, xb =2s, . Therefore the normalized
voltage eV/m, c required to maintain d=(3/2)xb and

xb =2c/9„ in Figs. 7 and 8 is different for each value of
the self-field parameter s, . For example, for s, =l in

Figs. 7(a) and 8(b), the voltage relation (3.27) [or Eq.
(2.22)] gives e V/m, c =6.39, corresponding to V=3.26
MV.

Influence of profile shape on the magnetron instability.
To illustrate the strong inAuence of profile shape on the
magnetron instability, the eigenvalue equation (3.13) has
been solved numerically (Davidson and Tsang, 1985) for
the case in which y, (x) is specified by Eq. (2.37) for
several values of the shape parameter A, . The correspond-
ing equilibrium profiles for B,(x), n, (x), and E„(x) are
determined self-consistently from Eqs. (2.33)—(2.35).
Typical numerical results are illustrated in Fig. 9, where
(Imago)/&„and (Redo)/ro„are plotted versus kc/co„ for
several values of k. Here, the choice of system parame-
ters corresponds to d=3x&, xb =c/ro„, lr,xb=1.319,
tc2xb =0.866, and y, =y, (xb ) =2. As before,
co„=eBO /y, m, c is the relativistic cyclotron frequency at
x =xb. Moreover, the average electron density n,
defined in Eq. (2.36) is the same for each value of A, in
Fig. 9, and the value of the average self-field parameter is

s, =4am, y, m, c /Bo =0.866. For 1=1, it is evident
from Fig. 9(a) that the growth rate of the magnetron in-
stability is quite robust, with general features similar to
those in Fig. 7(a). On the other hand, as A, is decreased
from A, =l, and the profile for n, (x)/y, (x) decreases
monotonically with increasing x (Fig. 6), it is evident
from Fig. 9(a) that the instability growth rate Imago is re-
duced substantially, at least at longer wavelengths.
Indeed, for the range of kc/Q„shown in the figure

&3 3.0—
3

2.0—

1.0—

1.0 2.0 5.0 4.0 5.0

Ck /(u

FIG. 9. Linear growth properties of the magnetron instability
shown by plots vs ck/co„of (a) the normalized growth rate
Imago/co„and (b) the normalized real frequency Redo/co„ob-
tained numerically from the eigenvalue equation (3.13). The
choice of system parameters corresponds to d =3xb, xb = c/co„,
lcxb =1.319, szxb =0.866, y", =2, and s, =0.866, and several
values of the profile-shape parameter A, . The plots of Rem/9„
vs ck /co„ for A, in the interval 0.06 ~ A, ~ 1 are virtually identical
to the A, = 1 curve in (b).

(kc/ro„&5), instability ceases (Imago=0) for A, &0.06.
On the other hand, the plots of (Reer)/ro„vs ck /ro„ for
A, in the interval 0.06 ~ A, + 1 are virtually identical to the
curve plotted in Fig. 9(b) for A, = l. That is, the real fre-
quency of the magnetron mode is relatively insensitive to
the profile shape.

It should be noted that the voltage V required to main-
tain d = 3xb and xb =c/co„ in Fig. 9 is difFerent for each
value of A, . For example, for A, =0, Poisson's equa-
tion (2.6) can be integrated from x =0 to x =d to give
eV/m, c =4.33, which corresponds to V=2.2 MV.

D. Diocotron instability for a
tenuous relativistic electron layer

The diocotron instability (MacFarlane and Hay, 1950;
Buneman, 1957; Levy, 1965; Davidson, 1990) is one of
the most ubiquitous instabilities in low-density non-
neutral plasmas with shear in the Aow velocity. For ex-
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co„,(x) «co„(x)/y, (x),

y, (x)~co —kV, (x)~ &(co„(x)/y, (x) .

Here, co, (x)= [4~n, (x)e /m ]' and co„(x)
=eB,(x)/m, c are the nonrelativistic electron plasma fre-

quency and cyclotron frequency, respectively; ~ is the
complex oscillation frequency; k is the pertur-
bation wave number in the y direction; and

y, (x)= [1—(Z /B, ) ]
' is the relativistic mass factor

of an electron fiuid element. In Eq. (2.10) it was shown
that B,(x)/y, (x)=const across the extent of the electron
layer. Within the context of Eq. (3.28), the electrons are
treated as a massless (m, ~0) guiding-center fiuid in

which co~, (x)/co„(x) —+0, but the ratio

co~, (x) 4~n, (x)ec =

chic(x)

co„(x) B,(x)
(3.29)

ample, it can occur in a rotating non-neutral plasma
column with off-axis density maximum (Rosenthal, Di-
monte, and Wong, 1987; Fine, Driscoll, and Malmberg,
1989), in propagating non-neutral electron beams and
layers (Kyhl and Webster, 1956; Pierce, 1956; Ka-
petanakos et a/. , 1973), and in microwave generation de-
vices such as magnetrons, traveling-wave tubes, and ubi-
trons (Lau, 1987). An important feature of the diocotron
instability is that it can be completely stabilized by rela-
tivistic and electromagnetic effects (Davidson, Tsang, and
Uhm, 1988) for sufficiently intense non-neutral electron
Aow. To illustrate this point, we now make use of the ei-
genvalue equation (3.13) to investigate linear properties
of the diocotron instability for extraordinary-mode per-
turbations about a tenuous electron layer that is detached
from the cathode in the planar geometry illustrated in
Figs. 1 and 2.

For purposes of describing the diocotron instability,
we specialize to the case of low-frequency perturbations
about a tenuous electron layer satisfying

equations (2.6) and (2.7). For nonrelativistic electron
fiow with V, /c ((1 and B,(x)=Bo=const, and slow-
wave perturbations with lco /c k

l
« 1, we note that Eq.

(3.30) reduces to the familiar electrostatic eigenvalue
equation (Davidson, 1990) used to investigate the dio-
cotron instability for nonrelativistic Aow in planar
geometry.

As a particular example that is analytically tractable,
we consider perturbations about the class of equilibrium
profiles where n, (x ) /y, ( x ) has the simple rectangular
shape (Fig. 10)

n, (x)

y, (x)

0, O~x &xb

= ~ R', /y, =const, xb (x & xb

0, xb & x

(3.31)

In Eq. (3.31), fi', = n, (x =xb+ ) and y, =—y, (x =x&+ )

denote the electron density and energy, respectively, at
the outer edge (x =x„+) of the electron layer. Moreover,
Eq. (3.31) generally allows for the inner edge of the elec-
tron layer (x =xb ) to be detached from the conducting
wa11 at x =0, although the case xb =0 is not excluded.
A configuration like that illustrated in Fig. 10 or Eq.
(3.31) could occur in a high-voltage diode if the magneti-
cally insulated electron sheath becomes detached from
the cathode (at x =0).

For n, (x)/y, (x) specified by Eq. (3.31), it can be
shown from the steady-state Maxwell equations (2.6) and
(2.7) that the self-consistent equilibrium profiles for the
magnetic field B,(x), the electric field E„(x),the relativis-
tic mass factor y, (x), and the fiow velocity V, (x) can be
expressed as

remains finite.
Making use of Eq. (3.28) to simplify the

extraordinary-mode eigenvalue equation (3.13) derived
for arbitrary co and co, /co„, we obtain (Davidson, Tsang,
and Uhm, 1988)

co (x)+ " — @k(x)ck ckco„(x)

nO(x)

yo(x)
e

4ireck cI&k (x )

[co—k Vy, (x) ]

V, (x) ~ g n, (x)
c ck c)x B,(x)

(3.30)

where @k(x) =—(i /k )5E~(x, k ). Although a tenuous elec-
tron layer and m, —+0 have been assumed, the eigenvalue
equation (3.30) is fully electromagnetic and valid for rela-
tivistic fiow velocities. In this regard, Eq. (3.30) can be
used to investigate the low-frequency stability properties
of a low-density electron layer for a broad range of equi-
librium profiles consistent with the steady-state Maxwell

0 xb

X

FIG-. 10. Plot of n, (x)/y, (x) vs x for the rectangular profile in

Eq. (3.31).
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cosh[K(x —xb )]
B,(x)=Bo

cosh[K(xb xb )]

sinh[K(x —xb )]
E„(x)= B—o

cosh[K(xb+ —xb )]

pe(x) =cosll[K(x xb )]

V, (x) =c tanh[K(x —xb )],

(3.32)

(3.33)

(3.34)

(3.35)

within the electron layer (xb & x & xb ). Here,
Bo=B,(x =xb+) is the applied magnetic field in the outer
vacuum region (xb+ &x &d) in Fig. 10. Moreover, the
constant ~ is defined by

a), (x =xb+ ) 4m 6;ec
CK=

co„(x=xb+) Bo
(3.36)

where 8', and 80 are the density and magnetic field at the
outer edge of the electron layer (x =xb+). Indeed, be-
cause n, (x)/B, (x)=const follows from Eqs. (3.31) and
(3.32), it is readily shown that

cK(x) —=co, (x)/co„(x) =cK=const (3.37)

throughout the cross section of the electron layer
(xb &x &xb ). Here, K is the constant defined in Eq.
(3.36).

Making use of Eq. (3.37), it follows that 47rec(d/
Bx)[n, (x)/B, (x)]=cK[5(x—xb )—5(x —xb+)] for the
choice of equilibrium profiles in Eqs. (3.31) and (3.32).
Therefore the eigenvalue equation (3.30) can be expressed
as

Eq. (3.39) that K (x,co) is constant (independent of x) in
each of the three regions. It is clear from the eigenvalue
equation (3.38) that the relativistic flow parameter

4~&,e(xb+ x—
b )0=K(x+ —x )=b b

0
(3.40)

will play an important role in determining the detailed
stability properties. For example, from Eq. (3.35),
Vd = V, (x =xb+ ) can be expressed as

Vd=c tanhO . (3.41)

sinh[K„(co)x ]4k(x)=B ",0&x &xb
sinl [K„(~)xb ]

'

slnh[Kb(co)(xb x )]e'„'(x)=B
slnh[Kb(co)(xb xb ) ]

sinh[Kb(co)(x xb )]+C )xb (x (xb
sinh[Kb (co)(xb xb ) ]

(3.42)

The right-hand side of the eigenvalue equation (3.38)
vanishes, except at the inner and outer surfaces of the
electron layer at x =xb and x =xb+. We therefore solve
Eq. (3.38) separately in each of the three regions in Fig.
10, enforcing the continuity of C&k(x) at x=xb and
x=xb, and setting 4k(X=O)=0=@k(x =d), which
corresponds to zero tangential electric field,
'6E = —ik@k =0, at the conducting walls. The solutions
to Eq. (3.38) in the three regions are given by

82
@„(x)

—K (x, co)@k(x )
X

K@k(xb )5(x —xb )
ck
CO

ckKC&i, (xb+ ) Vd+ 1 — 5(x —xb+) .
co —k Vd c ck

(3.38)

sinh[K, (co)(d —x )]@"'(x ) =C x + &x & d
sinh[K, (co)(d —xb+ ) ]

(3.43)

(3.44)

The remaining boundary conditions are obtained by in-
tegrating the eigenvalue equation across the layer sur-
faces at x =xb and x =xb . This gives

Here, Vd = V, (x =xb+)=c tanh[K(xb+ —xb )] is the flow
velocity at the outer edge of the electron layer, and
K (x, co) is defined by

C II
Bx

ck~
X =Kg CO

(3.45)

2

K„(co)=k 1 — 2, 0&x &xb
2 2 CO

c k

2 2
K (x,co)= K (co)=k 1 — + EC

2k2 k2 ' bx &x&xb

and

q) III
Bx Bx

ckK@k(xb+ )

m —kVd

c ck

K„(co)=k 1—
2

z 2, xb+ &x &d . (3.39)
c k

(3.46)

Note that the right-hand side of Eq. (3.38) corresponds to
surface perturbations on the outer (x =xb ) and inner
(x =xb ) surfaces of the electron layer. Note also from

where Vd =c tanhO.
Substituting Eqs. (3.42) —(3.44) into Eqs. (3.45) and

(3.46), we can eliminate the constants B and C to obtain a
closed dispersion relation for the complex eigenfrequency
co. After some algebraic manipulation, we obtain (David-
son, Tsang, and Uhm, 1988)
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IK„(co)cotll[K„(co)(xb d )] Kb(co)cotll[Kb(co)(xb xb )] Icv(co)f (co) J

Kb(CO)
X IK„(co)coth[K„(co)xb ]+Kb(co)coth[Kb(co)(xb+ —xb )]—K„(co)f (co)I ——

sinh'[Kb(~)(xb+ —xb )]
(3.47)

Here, K, (co) and Kb(co) are the dielectric functions defined
in Eq. (3.39), and f (co) and f (co) are the coupling
coefficients at the surfaces of the electron layer defined by

f (CO) =

b.; =xb /d,

hb =(xb+ —xb )/d,
5,0= ( d —xb+ ) /d .

(3.49)

f+( )
k CK

1
d coV

K„(co) co —kVd c ck

(3.48)
It is found that the necessary and sufficient condition for
instability (4c —b )0) in the long-wavelength regime
(k d «1) can be expressed as (Davidson, Tsang, and
Uhm, 1988)

~0—
ca~

Oa
CU

Unst

I

2.5

FIG. 11. For lang-wavelength perturbations (k'd'«1), the
diocotron instability is stabilized by relativistic and electromag-
netic efFects whenever 2(hoh; ) /Ab & (sinh 0)/0.

The dispersion relation (3.47) is a transcendental equa-
tion that determines the complex oscillation frequency co

in terms of the wave number k and equilibrium layer pa-
rameters such as K, Vd, xb+ —xb, etc. In Eq. (3.47), we
note that perturbations on the outer surface of the elec-
tron layer (the first factor on the left-hand side) are cou-
pled to perturbations on the inner surface of the layer
(the second factor on the left-hand side) through body-
wave perturbations within the layer (the right-hand side).
The dispersion relation (3.47) is fully electromagnetic and
valid for relativistic electron Aow in the limit where the
electrons are treated as a massless, guiding-center Quid.
In this regard, Eq. (3.47) can be used to investigate de-
tailed stability properties for low-frequency perturbations
about a tenuous electron layer [Eq. (3.28)] for the class of
equilibrium profiles described by Fig. 10 and Eqs.
(3.31)—(3.35).

As a limiting case that is analytically tractable, we first
assume long-wavelength perturbations k d « 1. For
co /c k

i

( 1, it readily follows from Eq. (3.39) that
K„(xb+ —d)~ «1, ~K,xb ~

«1, and Kb(xb+ —xb )i
=K(xb+ —xb )=8, when k d (&1. Examination of Eq.
(3.47) in the long-wavelength regime shows that the
dispersion relation can be approximated by the quadratic
equation co —bco+c=0, where the coefficients b and c
are independent of co, but depend on 8=K(xb+ —xb )/c
and the dimensionless geometric factors

g
—=2(bob, ;

)'~ /hb ) (sinh8)/8 . (3.50)

X cosh8+ . (b, ;cosh 8+60)0
AbsinhO

(3.51)

and

Redo I sinh0+ 0 coshO
ck 2 Ab

X cosh8+ . (b, ;cosh 8+bo)
~b slnh

(3.52)

where g=2(bah;)' /bb. It readily follows that g=0
for 6,; =0 or for ho =0. Because g ) (sinh8) /8 is a neces-
sary and sufficient condition for instability (Imco) 0), we
therefore conclude that the system is stable (Imco=())
whenever the electron layer is in contact with the
cathode (6, =0) or the anode (60=0), as expected.
In the nonrelativistic, electrostatic regime (8« 1),
we further note that Eqs. (3.51) and (3.52)
reduce to Imco/c ik~ =(8/2)[4h;bo —5b]'~ and Reco/ck
=(8/2)(kb+26, ; ).

With the restriction k d « 1 removed, the full disper-
sion relation (3 47) has been solved nuinerically for
Imco /c

~
k i and Reco /ck (Davidson, Tsang, and Uhm,

1988). Typical results are illustrated in Fig. 12 for
b,; =xb /d=0. 3 and ho=(d —xb+)/d=0. 6. As a gen-
eral remark, for increasing values of kd, it is found that
there is a concomitant decrease in both the maximum
normalized growth rate and the range of 0 corresponding
to instability. Moreover, the long-wavelength stability
criterion, 2(hoh;)' /b. b &(sinh8)/8, is found to be a
sufficient condition for the diocotron instability to be sta-
bilized at all perturbation wavelengths.

This is illustrated schematically in Fig. 11, where the
solid curve corresponds to 2(b,oh;)' /hb=(sinh8)/8,
which separates the unstable and stable regions. More-
over, for k d &(1, whenever the inequality in Eq. (3.50)
is satisfied, the corresponding normalized growth rate
Imco/c

~
k

~

and real oscillation frequency are given by
1/2

Imago 1 2 slnh 0
cikf 2 8'

Rev. Mod. Phys. , Vol. 63, No. 2, April 1991



Davidson et aI. : Intense non-neutral electron flow 357

0.3
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E
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2.5
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1.0—
hi = o.z
~o = 0.6 kdc&1

3
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The preceding analysis represents a rather striking ex-
ample in which an instability that is highly ubiquitous in
the nonrelativistic, electrostatic regime can be completely
stabilized by relativistic and electromagnetic effects.

As a final point, for an electron layer in contact with
the cathode (xb =0), it readily follows that the general
dispersion relation (3.47) reduces to

0
8

FIG. 12. Plots of (a) 1m'/ ~ck~ and (b) Redo/ck vs the relativis-
tic Aow parameter 8 obtained numerically from Eq. (3.47) for
b; =0.3, Do=0. 6, and several values of kd.

E. influence of periodic anode
resonator on stability properties

=0

x=0 +X= X

Po=o
x=d x=cl+dy

As indicated in Sec. III.D, for low-frequency perturba-
tions about a tenuous electron layer with equilibrium
profiles described by Eqs. (3.31)—(3.35), the
extraordinary-mode eigenvalue equation (3.30) supports
only stable oscillations when the electron layer is in con-
tact with the cathode (xb =0) and the anode is a smooth
planar surface (Figs. 1 and 2 ). In this case, the disper-
sion relation (3.47) reduces to Eq. (3.53), which generally
supports solutions with Imp=0. In contrast, the possi-
bility of instability exists when the planar anode is re-
placed by the periodic anode resonator illustrated in Fig.
13. Here, the electron layer is assumed to be in contact
with the cathode (xb =0); the outer edge of the electron
layer is located at x =xb+, the anode surface closest to
the cathode is located at x =d; the depth of each resona-
tor vane is d, ; the vertical height (in the y direction) of
each resonator is h„and the periodicity of the resonator
structure in the y direction is I.. In the presence of the
periodic anode resonator in Fig. 13, the surface perturba-
tion excited on the electron layer can experience an un-
stable coupling to the vacuum electromagnetic wave
whose phase velocity is slowed by the resonator struc-
ture.

The eigenvalue equation (3.30) has been analyzed by
Uhm et aI. (1989) for the choice of equilibrium profiles in
Eqs. (3.31)—(3.35) (with xb =0), including the effects of
the periodic anode resonator in Fig. 13. Specifically, the
analysis assumes that the electromagnetic field amplitude
within each resonator can be represented by the lowest-

= —«, (co)coth[a, (co)(d —xb+ ) ]co —k V~ c ck

—Irb(co)coth[a. b(co)xb+ ] .

Cathode

(3.53)

Here, ca=4rr&, ec/Bo, Vz =c tanhO, 0=1rxb+, and a„(co)
and Irb(co) are defined in Eq. (3.39). As expected, for an
electron layer in contact with the cathode, the dispersion
relation (3.53) supports solutions corresponding only to
stable oscillations (Imago=0). That is, for xb =0, the sur-
face perturbation excited on the electron layer at x =xb
does not experience an unstable coupling to the elec-
tromagnetic wave in the vacuum region (xb+ (x ~d).
This behavior is different from the case in which the pla-
nar anode surface in Figs. 1 and 2 is replaced by a period-
ic series of resonators (so-called vanes) that correspond to
a corrugated anode surface (Sec. III.E).

O
ye

Jl

y

X

Electron
Layer

FIG. 13. Planar anode surface in Fig. 2, replaced with a period-
ic anode resonator. Here, the depth of each resonator vane is
d„ the vertical height (in the y direction) is h„and the periodi-
city of the resonator structure in the y direction is I .
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order field pattern (Uhm et al. , 1989)

oE (x,y) =iB sin[(co/c )(x —ci —ci„)],
5B,(x,y) =B cos[(co/c )(x —ci —ci, )], (3.54)

and 6E =0 in the resonator regions d &x &d+d, and
nL —h„/2(y (nL+h, /2, n =0, +1,+2, . . . . Here, B
is a constant amplitude. The eigenvalue equation (3.30) is

l

then solved within the electron layer (0(x (xb+) and in
the vacuum region between the layer and closest anode
surface (xb+ (x (ci); the solution obtained in the region
x&+ (x (d is matched to the field pattern in Eq. (3.54)
across the resonator openings at x =d. Without present-
ing algebraic details (Uhm et al. , 1989), the resulting
dispersion relation can be expressed in the diagonal ap-
proximation as

clc I d co cos h[lc U( co)(8 xb )] g„( co)sl nh[K U(co)d ]slnh[KU(co)xb ]
k 1 — = —Ic, (co) . + + Ic& (c—o)coth [Icb (co)x&+ ] .

sinh[lc, (co)(d —xb+ ) ]+g„(co)sinh[lc, (co)d ]cosh[le„(co)x~+ ]

(3.55)

N, (co)

D, (co) N„( )co—

where

2co/~„(co)c sin (kh„/2)
N, (co)=-

sinh[2lc, (co)d] (kh /2)~
(3.57)

As in Sec. III.D, Ic, (co) and vb(co) are defi~ed in Eq.
(3.39), and Vd =c tanhO, where 8= Icxb+ and
Ic=4~n, e/BO. Moreover, the effective admittance g, (co)

of the resonator structure in Fig. 13 is defined by

Eq. (3.55) are illustrated in Fig. 14 (Uhm et a/. , 1989).
Here, the normalized real oscillation frequency (Reco)d/c
and growth rate (Imco)d /c are plotted versus the normal-
ized wave number kd, for the choice of system parame-
ters xb+/d =0.75, h, /L =0.624, L /d = 1.25, several
values of O=Kxb+, and two choices of the depth parame-
ter ci„/ci corresponding to d, /d =1.75 [Fig. 14(a)] ancl

ci, /ci=2. 25 [Fig. 14(b)]. Several points are noteworthy
from Fig. 14. First, the bandwidth (in k space) of the in-
stability increases significantly as 6 is increased from
L9=0. 15 to 8=0.45. Second, the wave number corre-

and

L
D„(co)= cot

V

coth[lci(co)d ]
ic (co)c

10
(a) dv/d = 1.75

sin (kj.h, /2)
X —

~
. (3.58)

(k h, /2) -g 10
3

10
(9 —045 g 0 &

0225
I is
I tI

In Eq. (3.58), k =k+2rjc/L, where j is an integer, and
lc (co) is defined by ~ (co)=k —co /c .

In the limit where the resonator depth approaches zero
(d, ~0), the anode structure in Fig. 13 becomes a planar
surface similar to that in Fig. 2. For d, ~0, it follows
that cot(cod, /c)~~ and D, (co) +~ in Eq. (—3.58).
Therefore, in the limit of a planar anode with d, —+0, the
admittance of the resonator defined in Eq. (3.56) ap-
proaches g, (co) =0. As expected, Eq. (3.55) then reduces
to the dispersion relation (3.53) derived ab initio for a pla-
nar anode surface, which supports only stable oscillations
with Imago =0.

The dispersion relation (3.55) can be used to investi-
gate detailed stability behavior for a wide range of values
of the geometric parameters xb /d, d, /d, L/d, and
h„/L, and the How parameter O=~xb+, which measures
the intensity of the electron layer. generally speaking,
for g, (co)WO, the dispersion relation (3.55) can support
unstable solutions in which the surface perturbation on
the electron layer couples to the vacuum electromagnetic
wave whose phase velocity is slowed by the anode resona-
tor structure in Fig. 13. Typical numerical solutions to

0.1 5

10
0

kd

10

'10 — (b) d v/d 2.25

10-'

10
I

10

10
0

.=;---- . 0.225
', 0.5;,,-

I I
I
I 0.15

FIG. 14. Plots of the normalized real oscillation frequency
(Redo)d/c (solid curves) and growth rate (Imago)d/c (dashed
curves) vs the normalized wave number kd obtained numerical-
ly from the dispersion relation (3.55) for the choice of system
parameters xb /d=0. 75, h, /L =0.624, L/d=1. 25, and
several values of the How parameter 0=ax&+. The two cases
correspond to (a) d, /d=1. 75 and (b) d, /d=2. 25.
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sponding to maximum growth rate shifts to smaller
values as 8 is increased and/or d, /d is increased. As a
final point (not illustrated in Fig. 14), the growth rate cal-
culated numerically from Eq. (3.55) decreases to zero as
the resonator depth d, ~0.

IV. EQUILIBRIUM AND STABILITY
PROPERTIES FOR CYLINDRICAL
ELECTRON FLOW

The equilibrium and stability analysis presented in
Secs. II and III for planar electron flow (Figs. 1 and 2)
can be extended in a relatively straightforward manner to
cylindrical geometry (Fig. 15), including the full infiuence
of cylindrical effects, such as finite diode and layer aspect
ratios, Coriolis and centrifugal acceleration effects,
discrete azimuthal mode numbers l, etc. (Chemin and
Lau, 1984; Lau and Chemin, 1984; Davidson and Tsang,
1986). As a general remark, detailed properties of the
magnetron and diocotron instabilities can exhibit a
strong dependence on cylindrical effects, particularly at
moderate values of (ri, —a)/(b+a) and (b a)/(b+—a).
As illustrated in Fig. 15, the cathode and anode surfaces
(assumed to be perfectly conducting cylinders) are locat-
ed at r=a and r=b, respectively', r =r& denotes the
outer radius of the electron layer. In this section, we
summarize briefly some of the key results obtained in cy-
lindrical geometry, with particular emphasis on extend-
ing the planar treatment of the magnetron instability.

Po(r =a) =0 and Po(r =b) = V,
E„(r=a)=0 .

(4.1)

Here, E„(r)= ditio—(r)/dr is the equilibrium radial elec-
tric field, and V is the applied voltage at the anode (r =b).

It is convenient to introduce the angular velocity of an
electron fiuid element defined by ai„,(r) = Ve, ( r) /r.
Within the framework of a macroscopic cold-Quid model,
radial force balance on a Auid element can then be ex-
pressed as

co„,(r)r
y, (r)m,—co„,(r)r = —e E„(r)+ 8,(r)

C
(4.2)

in the region where the electron density n, (r) is nonzero
(a &r &ri, ). Here, y, (r) is the relativistic mass factor
defined by

and e, in the radial, azimuthal, and axial directions, re-
spectively. Under steady-state conditions (i)/Bt =0), it is
assumed that i)/Be=0 and 8/Bz =0, and that the equilib-
rium electron density profile n, (r) extends from the
cathode (r =a) to some outer radius (r = rb & b ), where
r = (x +y )

' is the radial distance from the axis of
symmetry in Fig. 15. In addition, the average Aow veloc-
ity in the crossed electric and magnetic fields, E„(r)e„and
B,(r)e„ is in the azimuthal direction with V, (x)
= Ve, (r)ee Si.milar to Eqs. (2.2) and (2.3), space-charge-
limited Bow is assumed with boundary conditions

yo(v) —[1 v2 2
( )/ zj —i/2 (4.3)

A. Equilibrium model

In cylindrical geometry (Fig. 15), we introduce cylin-
drical polar coordinates (r, 8,z) and unit vectors e„,ee,

Note that Eq. (4.2) is a statement of radial force balance
on a fiuid element between the (outward) centrifugal and
electric forces and the (inward) magnetic force. Of
course, Eq. (4.2) contains a centrifugal force term that is
absent in the planar limit [compare with Eq. (2.4)]. For
present purposes, we consider solutions to Eq. (4.2) with

Anode co„,(r =a) =0 (4.4)

at the cathode, which is consistent with E„(v =a) =0 in

Eq. (4.1). Therefore the centrifugal force term in Eq.
(4.2) is expected to be largest at the outer edge of the
selection layer (r =r&). Evidently, the centrifugal force
term in Eq. (4.2) can be neglected only in circumstances
where ~ai„, (r&)~ &&eBO/y, (v&)m, c. Here, Boe, is the axi-
al magnetic field in the vacuum region (r& & r & b ).

For aximuthally symmetric equilibria, the steady-state
Maxwell equations can be expressed as

rE„(r)= —4+en, (r)
1 8 p

r 3r
(4.5)

y, (r =t )=v

FIG. 15. Cylindrical cathode at r =a and anode at r =b, as-
sumed to be perfect conductors maintained at a potential
difference V. The average electron Aow velocity is Vz, (r)eo in
the crossed electric and magnetic fields E„(r)e„and B,(r)e, .
The electron layer extends from r =a to r = rb (b.

8, (r) = 4vren, (r)co„,(r)—r .1 p

3r c
(4.6)

Fquations (4.5) and (4.6) are to be solved subject
the boundary conditions in Eqs. (4.1), as well as

B,(r)=Bo=const in the vacuum region (r& &r b).
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Note that Eqs. (4.2), (4.5), and (4.6) constitute three cou-
pled equations relating the four equilibrium profiles
co„,(r), E„(r), B,(r), and n, (r). Therefore the functional
form of any one of the equilibrium profiles can be
specified and the remaining three profiles calculated self-
consistently from Eqs. (4.2), (4.5), and (4.6).

As a general remark, the centrifugal force term in Eq.
(4.2) makes an equilibrium analysis of Eqs. (4.2), (4.5),
and (4.6) for the case of cylindrical electron fiow more
difficult than an analysis of Eqs. (2.4), (2.6), and (2.7) for

planar electron flow. In this regard, Eqs. (4.2), (4.5), and
(4.6) have been solved numerically for a wide range of
self-consistent equilibrium profiles (Davidson and Tsang,
1986; Tsang and Davidson, 1986), although the details
will not be presented here. To illustrate the increased
complexity in cylindrical geometry, let us assume that.
the functional form of the equilibrium density profile
no(r) is specified. Then, integrating Eqs. (4.5) and (4.6)
for the field profiles E„(r) and B,(r), and substituting into
the force balance equation (4.2) gives

~„,(r)r 4~e „ego„,(r)r2 2

f dr n, (r) — Bo—— dr res„, (r)n, (r)
1 co„,(r)r—/c ]' m, r a

'
m, c c r

(4.7)

within the electron layer (a ~ r ( rb ). For specified densi-
ty profile n, (r), Eq. (4.7) is a transcendental integral
equation for the angular velocity profile co„,(r), which
must generally be solved numerically.

B. Extraordinary-mode
eigenvalue equation

5E(x, t)=5E„(r,g, t )e, +5E&(r, 6, t)eo,

5B(x, t ) =5B,(r, 0, t )e, .
(4.8)

Similar to Sec. II.A, we make use of a macroscopic
cold-Quid model to investigate the electromagnetic stabil-
ity properties of magnetically insulated electron Aow in
the cylindrical geometry illustrated in Fig. 15. The
present analysis assumes electromagnetic Aute perturba-
tions (8/Bz =0) about general equilibrium profiles co„,(r),
E„(r), B,(r), and n, (r) consistent with Eqs. (4.2}, (4.5},
and (4.6) and the boundary conditions in Eqs. (4.1) and
(4.4). In addition, the field perturbations are assumed to
have extraordinary-mode polarization with

The perturbed field components 5E&(r, O, t ), etc., are ex-
pressed as

5E&(r, 0, t ) = g 5E&(r)exp(il8 icot—),
/= —oo

(4.9)

@i(r)=(ir /I )5Et (r), (4.10)

which is the cylindrical generalization of Eq. (3.8). The
linearized cold-Auid —Maxwell equations can be reduced
to a single eigenvalue equation for 4&(r). Without
presenting algebraic details (Davidson and Tsang, 1986),
we obtain

where / is the azimuthal mode number and co is the com-
plex oscillation frequency, with Imago & 0 corresponding to
instability.

The linearized Maxwell equations, together with the
linearized cold-Quid equations of continuity and momen-
tum transfer, give coupled equations for the perturbation
amplitudes 5E's(r}, 5E„'(r), 5B,'(r), 5n,'(r), 5V„',(r), and
5 Vt, (r). It is convenient to introduce the effective poten-
tial N&(r) defined by

r —[1+y„(r,co)] 4i(r)
r Br [1 (d'or/lc) ]—

I2
, [I+ye(r, to)]@i(r)

Ni(r) I [1—(to„,r/c)(ror/Ic)] g co, (r)[co„(r)—2&,(r)]
(ei —Ico„, ) r [1 (d'or/Ic) —] &r y, (r)v, (r, co)

(4.11)

Here, co„(r) and to, (r) are the nonrelativistic electron
cyclotron and plasma frequencies g„(r,co) = — 1— co~, (r)y, (r)

lc t I (d'or/Ic) ]v, (r, co—)

eB,(r)
co„(r)=

m~c

4vrn, (r)e
and to, (r) =

the eff'ective Coriolis frequency Q, (r) is defined by

(4.12) co, (r)

y, (r)v,'(r, co)

[co„(r)—2Q, (r) ]+

ye(r, co) =—
(4.14)

i+ ~', (r)r'/yo(r)I'c'
1 (d'or /Ic )—

Q, (r) =
—,'y, (r)co„,(r)[l+y, '(r)] .

Moreover, the radial and azimuthal susceptibilities
occurring in Eq. (4.11) are defined by

(4.15)
2(d'or /Ic )

2

y, (r)v, (r, co) [1 (cur/Ic) ]—
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where

co, (r)r /y, (r)1 c
v, (r, co) =y, (r)(co lc—o„, ) 1+

1 (c—or /lc )

[co„(r)—2Q, (r) ]
yo2(r)

X co„(r)—— (y, r co„, )
0 2

r Br
(4.16)

The eigenvalue equation (4.11) is to be solved subject to
the boundary conditions 5E&(r =a)=0=5E&(r =b) at
the cathode and anode, or equivalently,

C&i(r =a)=0=4&(r =b) . (4.17)

2 2 2
l d'or a) ~pe r ~pe

r Ic ck I c c k2 2 2 2

(4.18)

To summarize, the eigenvalue equation (4.11) can be
used to determine (numerically) the eigenfunction 4I(r)
and the complex oscillation frequency co for a wide range
of cylindrical equilibrium profiles E„(r),B,(r), n, (r), and
co„(r) consistent with Eqs. (4.2), (4.5), and (4.6). In addi-
tion, it is straightforward to show that the cylindrical re-
sults in Eq. (4.11) and Eqs. (4.14)—(4.16) reduce directly
to Eqs. (3.13)—(3.16) in the appropriate planar limit with

2
eV ~po

cosh[a(rb —a ) ]—1+(1+A )v(rb —a )
C C Ke

bAX sinh[x(rb —a )]ln

3 =a /(rb —a ) (4.21)

is a measure of the aspect ratio of the electron layer (see
Fig. 15). Gther important dimensionless parameters that
characterize the equilibrium are lc(rb —a ), co,o(rb —a )/c,
(b —a )/(r„—a ), and

2 / 2
so =~ 0&'~ o ~ (4.22)

where co,0=ego/m, c is the nonrelativistic electron cy-
clotron frequency in the vacuum magnetic field 80. Note
that so =4mn, (r =a )m, c /Bo is proportional to the elec-
tron density at the cathode. Substituting Eq. (4.19) into
Poisson's equation (4.5) and evaluating at r =a gives

co,o(rb —a )
S0

ic(rb —a )

cosh[K(rb a }]
(4.23)

(4.20)

In Eq. (4.20), V is the applied voltage,
co~o=[4vrn, (r =a)e /m, ]' is the nonrelativistic elec-
tron plasma frequency at the cathode, and

urer V~, (x) Vy, (x)
, lco„,~kV~, (x), co„,~ ~0 .

C r

A planar description is expected to provide a good ap-
proximation whenever (b+ a )/(b —a ) )) 1 in Fig. 15.

C. influence of cylindrical
effects on the magnetron instability

For present purposes, we illustrate the inhuence of cy-
lindrical e6'ects on the magnetron instability for the case
in which the equilibrium radial electric field E„(r) is as-

sumed to have the form

which relates the dirnensionless parameters so,
co,o(rb —a )/c, and lc(rb —a ).

For equilibrium profiles consistent with Eqs. (4.2),
(4.5), (4.6), and (4.19), the extraordinary-mode eigenvalue
equation {4.11) has been solved numerically (Davidson
and Tsang, 1986) to determine detailed properties of the
magnetron instability for a wide range of system parame-
ters 2 =a/{rb a} so copoico 0 K(rb } eV m c
etc. Typical results are summarized in Figs. 16—18
(Davidson and Tsang, 1986).

To illustrate the dependence of stability properties on

sinh[x(r —a ) ] (
cosh [Ic(rb —a ) ]

'

E„(r)= ' (4.19)
rb—Botanh[lc(rb —a )], rb (r ~ b .

3
3
E 005-

0
0
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X
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0
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X ~y ~ ~ fog~ 0 ~ (i
A 70 ~ x 0 ()X 0 X

0 A= l0 ~
'

x

X 0 Xxx
0 00

0
X 0 ~

0 ~

0~
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5 l 0 l 5 20 25 30 35

Here, lc is a constant and Bo=B,(r =rb ) is the axial mag-
netic field in the vacuum region outside the electron layer
(rb (r ~b). The corresponding profiles for n, (r), B,(r),
and co„,(r) can be calculated self-consistently from Eqs.
(4.2), (4.5}, and (4.6). In addition, we make use of
E„(r)=—Bgo/(}r and integrate Eq. (4.19) from r =a to
r =b. Enforcing Po( r =b ) = V then gives

FIG. 16. Plots of Imm/m, p vs azimuthal mode number obtained
from Eq. (4.11) for K(rb —a ) =0.6931, (b —a) = 1.5(rb —a ),
sp =0.4 co p( rb a ) /c = 1.386, and several values of layer as-

pect ratio 2 =a /(r& —a ) corresponding to A =4 and
eV/m, c =0.796; A =7 and eV/m, c =0.803; and A =10 and
eV/m, c =0.807.
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FIG. 17. Plots of Imago/cu, p vs azimuthal mode number obtained
from Eq. (4.11) for x(rI, —a ) =0.6931 sp =0.4,
co,p(rI, —a)/c =1.386, 3 =a/(r& —a) =4, and several values of
(b —a)/(r& —a ) =g corresponding to q= l. 5 and
eV/m, c =0.796; q=2.0 and eV/m, c =1.158; and g=3.0
and eV/m, c =1.799. b —a

1
rb —a rb —a (4.24)

evident from Fig. 16 that the growth rate Imago exhibits a
sensitive dependence on the layer aspect ratio A. In par-
ticular, as 2 is increased from 2 =4 to 2 = 10, there is a
decrease in the maximum growth rate. Furthermore, as
3 is increased from 3 =4 to 3 =10, it is clear from Fig.
16 that there is a shift in the growth rate spectrum to
shorter azimuthal wavelengths (higher l values). In Fig.
16, the normalized diode voltage eV/m, c has been ad-
justed for each value of 2 to be consistent with Eq.
(4.20).

Detailed stability properties also exhibit a sensitive
dependence on anode-cathode spacing, b —a, relative to
the layer thickness, rb —a. This is illustrated in Fig. 17,
where Im~/~, o is plotted versus azimuthal mode number
l for fixed values of v(r& —a ) =0.6931, so =0.4,
co,o(ri, —a)/c=1. 386, layer aspect ratio a/(r& —a)=4,
and several values of (b —a)/(r& —a)= 2(li —a)/a cor-
responding to 1.5, 2.0, and 3.0. In effect, in Fig. 17, the
layer thickness r&

—a, applied (vacuum) magnetic field

Bo, cathode electron density nb ( r =a ), etc. , have been
held fixed, and the normalized width of the vacuum re-
gion

3.0—

2.0—
3
Q)

I.O—

~ ~

0
0 5 I 0 15 20 25

FIG. 18. Plot of Redo/co, p vs azimuthal mode number obtained
from Eq. (4.11) for ~(r& —a ) =0.6931, sp =0.4,
~ =«(rb a) =4 ~co(rb a)/c =1.386, (I —a) =2(r& —a),
and eV/m, c =1.158. (See also Fig. 17.)

layer aspect ratio 2 =a/(r& —a ), plots are shown in Fig.
16 of the normalized growth rate Imago/co, o versus azimu-
thal mode number l for 2 =4, 7, and 10. Specifically, in
Fig. 16, the layer thickness rb —a, the cathode electron
density ni, ( r =a ), the applied (vacuum) magnetic field

Bo, and the anode-cathode spacing b —a are held fixed
with ~( r&

—a ) =0.6931, so =0.4, co,o(ri, —a ) /c = 1.386,
and (6 —a)=1.5(ri, —a ). Moreover, in Fig. 16, the layer
aspect ratio 3 =a /( r&

—a ) is increased from 2 =4 to
3 =7 to A =10 by increasing the cathode radius a. It is

is increased from (b rt, )/(rI,——a)=1/2 to 1.0 to 2.0.
The resulting dependence of the growth rate Imago on the
width of the vacuum region is evident from Fig. 17. In
particular, there is a significant decrease in the instability
bandwidth as (b —a)/(ri, —a ) is increased from 1.5 to 3.0
in Fig. 17, with a concomitant shift to lower l values. In
Fig. 17, the normalized diode voltage eV/m, c has been
adjusted for each set of parameters to be consistent with
Eq. (4.20).

Finally, for (b —a ) =2. 0(r& —a ) and parameters other-
wise identical to Fig. 17, Fig. 18 shows a plot of the nor-
malized real frequency Redo/co, o versus azimuthal mode
number l. As in the planar case [see, for example, Fig.
7(b)], it is found that the real oscillation frequency in Fig.
18 increases approximately linearly over the range of un-
stable l values.

To summarize, for prescribed equilibrium profiles, the
extraordinary-mode eigenvalue equation (4.11) can be
solved numerically for the eigenfunction @&(r) and com-
plex eigenfrequency co over a wide range of system pa-
rameters. As a general remark, the numerical results
show that detailed stability properties exhibit a sensitive
dependence on cylindrical effects. For example, at low
values of the mode number l, the properties of the eigen-
function 4&I(r) are qualitatively difFerent from the planar
case, and from the cylindrical case for large l values.
Furthermore, it is found that the instability growth rate
Imago exhibits a sensitive dependence on the layer aspect
ratio 2 =a /( r&

—a ), the normalized anode-cathode
spacing (b a)/(r& —a ), etc. , particul—arly when the elec-
tron Aow is relativistic and centrifugal effects play an im-
portant role in modifying the equilibrium profiles.
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V. RELATIVISTIC MAGNETRONS

In conventional magnetrons, voltages of a few hundred
volts to tens of kilovolts are applied between the anode
and a heated, thermionic cathode (Slater, 1969). Power
levels from tens of watts to hundreds of kilowatts can be
achieved in the decimeter and centimeter wavelength
range with conversion efficiencies as high as 80%. In rel-
ativistic magnetrons, however, pulsed high-voltage
diodes (operating in the several hundred kV to MV
range, say) are used to generate microwaves at gigawatt
power levels, although at reduced efficiencies (Bekefi and
Orzechowski, 1976; Orzechowski and Bekefi, 1979;
Palevsky and Bekefi, 1979; Gleizer et al. , 1980: Benford,
1987; Nokonov et a/. , 1987; Benford et a/. , 1989). In
this section, we present a brief summary of the classic ex-
periments by Palevsky and Bekefi (1979) on the so-called
A6 relativistic magnetron (Sec. V.A). Recent particle-
in-cell coinputer simulations (Chan et a/. , 1990) of this
magnetron configuration are then described (Sec. V.B).

A. Multiresonator magnetron
experiments

Figure 19(a) shows a schematic of the cross section of
the A 6 magnetron (Palevsky and Bekefi, 1979). The

(5.1)

cold, field-emission, graphite cathode is located at radius
a=1.58 cm. The inside radius of the anode block is
b =2. 11 cm, and six vane-type resonators with outer ra-
dius d =4. 11 cm are used, with angle P =20 subtended
by the resonators on axis. The axial magnetic field B&e,
prior to formation of the circulating electron layer (the
so-called fill field in Sec. II.B) ranges from 4 to 10 kG in
typical operation. The length of the anode block for the
A 6 magnetron is L =7.2 cm, and the operating voltage
in the experiments is 300—400 kV. The annular interac-
tion space between r=a and r =b, together with the
periodically spaced vanes, can be viewed as a coaxial mi-
crowave resonator. For transverse electric (TE) modes
with 6E perpendicular to B&e, and 5B parallel to BIe„
the vacuum electric-Geld pattern is illustrated in Fig.
19(b) for the / =3 and / =6 modes (the so-called ~ and 2m

modes, respectively). The circular dashed lines in Fig.
19(b) show schematically the outer radial boundary of the
electron layer prior to the onset of electromagnetic Auc-
tuations. The A6 magnetron is found to oscillate prefer-
entially in the 2~ mode, which is characterized by the
fact that the electromagnetic fields in all of the resonators
are precisely in phase [Fig. 19(b)].

Assuming applicability of the Brillouin How model for
magnetically insulated electron fiow (see Sec. II.B), the
cylindrical generalization of the Hull cutoA voltage V~
and the Buneman-Hartree threshold voltage VBH can be
expressed relativistically as (Lovelace and Young, 1985;
Lau, 1987; Davidson, 1990)

2 2 2
21/2

e B~1+ —1
m2C4

ev~„eBq
fPZe C foal ~ C

b2 2

P —[1—(1—P )'~ ],p (5.2)

(b)

FIG. 19. Schematic of the 2 6 relativistic magnetron (Palevsky
and Bekefi, 1979): (a) emitting cathode located at a =1.58 cm
with anode located at b=2. 11 cm; six vane-type resonators
with outer radius d =4. 11 cm subtend an angle of /=20' at the
axis; and the fill field BIe, points into the page; (b) vacuum
electric-field pattern for the so-called vr and 2m modes of excita-
tion. The outer radial boundary of the electron layer is indicat-
ed by the dashed curves.

where P is the normalized phase velocity of the elec-
tromagnetic wave. Note that Eqs. (5.1) and (5.2) are
identical in form to the planar expressions derived in
Sec. II.B, provided we make the replacement
d +(b a)—/2b in—Eqs. (2.27) and (2.30), respectively.
For steady Brillouin Aow in a cylindrical diode with
specified fill field B& the inequality V & VH is required to
ensure magnetic insulation of the electron Aow from con-
tact with the anode at r =b, whereas V) V~H is required
for interaction of the outermost electrons with the wave
fields.

The region of experimental operation of the A6 mag-
netron is illustrated by the dashed line in Fig. 20(a), with
the point corresponding to maximum microwave power
(Palevsky and Bekefi, 1979). Here, the voltages VH and

VBH, calculated from Eqs. (5.1) and (5.2), are plotted
versus the applied magnetic field B&, and V&H has been
evaluated for p~ corresponding to the /=6 mode (2'
mode) at frequency f =co/2vr=4. 55 GHz. The mea-
sured microwave power (Palevsky and Bekefi, 1979) emit-
ted by the A 6 magnetron is plotted versus the fill field B&
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FIG. 20. Microwave generation by the A6 relativistic magne-
tron (Palevsky and Bekefi, 1979). The dashed line in (a) corre-
sponds to the region of experimental operation, and the solid
point corresponds to the maximum microwave power. The
measured microwave power is plotted vs the applied magnetic
field Bf in (b), where the peak rms power is -0.45 GW at
Bf=7.6 kG.

in Fig. 20(b), where the maximum power at 7.6 kG is ap-
proximately 450 MW. Note from Fig. 20(b) that mi-
crowave emission occurs for magnetic field in the interval
4.2 kG &Bf & 10.4 kG. On the other hand, the intersec-
tion points of the dashed line in Fig. 20(a) with the two
curves corresponding to VH and VBH would predict that
microwave emission occurs in the interval
4.9 kG&Bf &8.8 kG. Even though the vane structure
was neglected in the derivation of the expressions for V~
and VBH in Eqs. (5.1) and (5.2), and the numerical simu-
lations (Chan et al. , 1990) of the A 6 magnetron present-
ed in Sec. V.B indicate that the Brillouin How model does
not accurately describe the simulation profiles (even at
early times), the agreement between experiment and the
operating range predicted by theory based on the Bril-
louin Aow model is remarkably good.

B. Numerical simulation studies

Although magnetrons are widely used as microwave
sources, a fundamental understanding of the underlying
interaction physics is still being developed, particularly in
the nonlinear regime (Lau, 1987). Magnetron design re-
lies largely on two criteria —the Hull cutoff' condition
(V( VH) for magnetic insulation of the electron layer,
and the Buneman-Hartree threshold condition (V) VBH)
for the onset of magnetron oscillations. Much of the
theoretical challenge in describing magnetron operation
arises from the complexity introduced by the corrugated
anode boundary and the fact that the electrons emitted
from the cathode interact with the electromagnetic waves
in the anode-cathode gap in a highly nonlinear way. This
is manifest through strong azimuthal bunching of the
electrons and the formation of large-amplitude "spokes"
in the circulating electron density. In this regard, com-
puter simulation studies (Yu, Kooyers, and Buneman,
196S; Palevsky, Bekefi, and Drobot, 1981; Palevsky
et al. , 1981; Chan et al. , 1990) provide a particularly
valuable approach to the analysis of the interaction phys-
ics and nonlinear electrodynamics in magnetrons.

In this section, we summarize recent computer simula-
tions (Chan et al. , 1990) of the multiresonator A6 mag-
netron configuration (Palevsky and Bekefi, 1979) using
the two-dimensional (Blitz =0) particle-in-cell code MAG-
ic' (Goplen and McDonald, 1989). The code includes cy-
lindrical e6'ects, and relativistic and electromagnetic
eftects in a fully self-consistent manner. Unlike earlier
computer simulations (Yu, Kooyers, and Buneman, 1965;
Palevsky, Bekefi, and Drobot, 1981), the magnetron oscil-
lations are excited from noise, i.e., without preinjection
of a finite-amplitude rf signal or preferential excitation of
2~-mode or ~-mode oscillations.

In the simulations (Chan et al. , 1990), Maxwell's equa-
tions and the particle orbit equations are solved rela-
tivistically and electromagnetically, using (typically)
more than 3000 macroparticles and a nonuniform, two-
dimensional grid consisting of approximately 3000 cells.
In addition, the simulations assume one open resonator,
which is modeled by a dispersive window placed along
the dashed line in Fig. 21 at r =d =4. 11 cm. At the win-
dow, the boundary condition is such that most of the
electromagnetic wave energy is absorbed by the window,
while a small fraction of the wave energy is rejected back
into the cavity. Such a window yields a finite Q factor for
the system. The rf power delivered to the window (i.e.,
the rf power output) is given by the net flow of elec-
tromagnetic energy expressed as an area integral of the
Poynting Aux over the window surface. A radially
nonuniform grid is used to resolve small-scale variations

IThe MAcxIc simulation code was developed by researchers at
Mission Research Corporation. The sixnulation results present-
ed in this paper use the code version dated 1988.
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W ENDOW

FIG. 21. Schematic of the A 6 magnetron used in the computer
simulations. The rf power is partially absorbed by the output
window (dashed line) located at r=d=4. 11 cm in the open
resonator. Here, a=1.58 cm, b=2. 11 cm, d=4. 11 cm, and
i/

=20'.

the voltage pulse, respectively. The rise time assumed in
the simulations is to =4.0 ns, corresponding to the exper-
imental value (Palevsky and Bekefi, 1979). Although the
applied high-voltage pulse is described approximately
by Eq. (5.3), it should be emphasized that all
extraordinary-mode rf excitations (58=58,e, and
5E=5E„e„+5E&es)are treated fully electromagnetically
in the simulations. Typical numerical results (Chan
et a/. , 1990) are presented in Figs. 22 —25 for the ideal
case in which the external power supply has zero im-
pedance (Zp =0).

Figure 22 shows the time history of the integrated rf
P~

field profile Ve(t)= f p'd0 r&5Es(r, , O, t) and the magni-

0.4

0.2

in particle velocities and positions and in field quantities,
particularly in the interaction region (a ~ r ~ b ). The
electron emission and absorption processes in the simula-
tions can be summarized as follows. The electrons are
emitted from the cathode through a space-charge-limited
emission process in which the instantaneous electric field
normal to the cathode surface vanishes (at r =a =2. 11
cm). On the other hand, electrons are absorbed by the
anode or cathode whenever they strike the anode or
cathode surface. Here, both the anode and cathode are
treated as perfect conductors.

Another important aspect of the simulation model
(Chan et a/. , 1990) concerns the propagation of the
high-voltage pulse from the power supply to the magne-
tron diode. Because the voltage pulse rises slowly com-
pared with the electron cyclotron period and the rf oscil-
lation period, the magnetic field induced by the voltage
pulse is neglected. Therefore a quasistatic model is used
to describe the high-voltage pulse applied to the magne-
tron diode. In such a model, the diode voltage is given
by VD(t)=Z(t) Vp(t)l[Zp+Z(t)], where Vp(t) is the
voltage pulse provided by the power supply, and
Zp =const and Z (t) are the power supply impedance and
the magnetron impedance, respectively. Here, the mag-
netron impedance Z(t) and the diode voltage VD(t) are
determined self-consistently in the simulations. For an
ideal power supply (Zp =0), the diode voltage is given by
VD(t) = Vp(t). In the simulations, the voltage pulse Vp(t)
is assumed to have the form

0, t(0,
Vp(t)= '(tltp)V, o~t (tp

V, t ~to,
(5.3)

where to and V are the rise time and maximum value of

0.0
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FIG. 22. (a) time history of the integrated rf field profile

P~
Vg(t) = J„dg r(5Eg(rI, O, t)

1

obtained in the simulations at radius r = rI =3.7 cm in the open
resonator for the choice of system parameters 8&=7.2 kG,
V =350 kV, to=4.0 ns, and ZO=O; (b) Fourier spectrum
~
P'z(f)~ of the signal in (a). The two distinct peaks at f=2.0

GHz and f=4.0 GHz correspond to ~-mode (/ =3) and 2n-
mode (I =6) oscillations, respectively.
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the simulations is 4.3 GW/m (Chan et al. , 1990). For
the 36 magnetron, which has an axial length L =7.2 cm,
this corresponds to P =0.3 GW, which is somewhat less
than the maximum rf power P=0.45 GW measured in
the experiment (Pa@vsky and Bekefi, 1979). (The values
of power quoted here are rms values. ) Apart from a con-
stant scale factor between the rf powers measured in the
experiments and in the simulations, it is evident from
Fig. 23 that the dependence of the rf power on applied
magnetic field obtained in the simulations is in very good
agreement with the experimental results. The difFerence
in scale factor may be due to the fact that a larger frac-
tion of the rf power in the simulations is rejected back
into the cavity, and the efFective Q value in the simula-
tions (Q —100) is greater than that in the experiment
(Q-20 —40). As the applied magnetic field Bf is de-

creased, crossing the Hull cutoA' curve at the diode volt-

age corresponding to VD =350 kV, it is found that the
Sm. /3 mode (l =5) becomes the dominant rf excitation in
the simulations.

Figure 24 shows radial plots of the charge density,
e(n, )(r, t)=(1/2m) f o en, (r, 0, t)d0, averaged over the
azimuthal angle 0, at several instants of time for the same
values of system parameters as in Fig. 22. In Fig. 24, the
outer radius of the electron layer [r =rb(t)], designated
by the arrows, is calculated from a simple Brillouin Aow

model (see Sec. II.B) for Bf=7.2 kG and diode voltages
VD(t) =0.5V, 0.75 V, 1.0V, corresponding to t =2.0,
3.0, 4.0 ns. It is clear from Fig. 24 that a substantial frac-
tion of the electrons occupy the region between r=rb
and the anode (r =b). The existence of a long tail in the
electron density profile indicates that the electron Aow is
significantly diQ'erent from the ideal Bnllouin flow model
(Davidson, 1990). For the A6 magnetron operating at
V~ =350 kV, cylindrical and relativistic eftects are rela-
tively mild. For example, at t =to=4.0 ns, the layer as-

pect ratio is 3 =a /(rb —a ) = 15, and the relativistic mass
factor at r =rb is y, (rb ) = l. 15. We define the local self-
field parameter s, ( r ) by

(5.4)

Note from Eqs. (2.13) and (5.4) that s, =l under ideal
Brillouin flow conditions (in the planar approximation).
In the simulations, however, it is found that s, (r) de-
creases considerably as r increases from r=a to r=rb
and beyond. For example, at t =to=4.0 ns in Fig. 24,
the self-field parameter decreases from s, (r =a)=1 at
the cathode to s, (r = rb ) =0.5 at r =rb.

Although the azimuthal bunching of the electrons is
relatively small for times up to 4 ns, by t -6 ns the sys-
tem begins to enter a nonlinear regime characterized by
spoke formation (Chan et al. , 1990). Highly developed
spokes are evident in Fig. 25(b), which shows density
contour plots at t = 8 ns for the choice of system parame-
ters Bf=7.2 kG, V =350 kV, and to=4 ns (similar to
the conditions in Figs. 22 and 24 and the maximum

power simulation point in Fig. 23). As the system
evolves, the spokes rotate as coherent nonlinear struc-
tures in the azimuthal direction for many circulation
periods around the magnetron. In addition, by t =7 ns,
there is current Aow from the cathode to the anode. At
saturation, which occurs at t = 10 ns, the time-averaged
diode current per unit axial length is ID ——100 kA/m, and
the amplitude of the integrated rf field profile

f,dr 6E„(r,8, t ) is comparable to the diode voltage

VD ——V =350 kV.
To summarize, with regard to the dependence of rf

power on magnetic field, the simulation results (Chan
et al , 19.90) are in very good agreement with the experi-
ment (Palevsky and Bekefi, 1979) within a constant scale
factor. Moreover, in terms of rf power output, the simu-
lations confirm that the A6 magnetron oscillates with
dominant excitations in the m and 2m modes. In the
preoscillation regime, even under the condition of space-
charge-limited emission, it is found that the electron fIow
di8'ers substantially from Brillouin Aow conditions. In
the nonlinear regime, the saturation mechanism is dom-
inated by the formation of a large-amplitude spoke struc-
ture in the circulating electron density. As a general con-
clusion, based on the results presented here, it is expected
that computer simulations can be used as an e6'ective tool
for developing a fundamental understanding of the
large-amplitude spoke dynamics and saturation in mag-
netrons, as well as for experimental magnetron design.

Vl. LARGE-AMPLITUDE COHERENT STRUCTURES
IN ROTATING NON-NEUTRAL PLASMA

One of the most ubiquitous properties of low-density
non-neutral plasma initially subject to the diocotron in-
stability (MacFarlane and Hay, 1950; Buneman, 1957;
Levy, 196S; Davidson, 1990) is the development of long-
lived, rotating vortex structures during the nonlinear
evolution of the system (Prasad and Malmberg, 1986;
Davidson et al. , 1990). This has been observed experi-
mentally in annular electron layers (Kyhl and Webster,
19S6; Pierce, 1956), in intense propagating annular elec-
tron beams (Kapetanakos et al. , 1973), in non-neutral
plasma columns with a central conductor (Rosenthal, Di-
monte, and Wong, 1987; Rosenthal and Wong, 1990) and
without a central conductor (Malmberg et al. , 1988;
Driscoll et aI., 1989; Fine, Driscoll, and Malmberg,
1989), and in computer simulation studies (Rosenthal and
Wong, 1990). The fact that long-lived coherent struc-
tures exist in these systems for many rotation periods and
thousands of cyclotron periods suggests the existence of
large-amplitude solutions that are stationary in the rotat-
ing frame. In this section, use is made of a cold™fIuid
guiding-center model (Sec. VI.A) to investigate the prop-
erties of stationary coherent structures in a rotating non-
neutral plasma column (Sec. VI.B). Particular examples
of large-amplitude /=1 and l=2 vortex structures are
then presented (Sec. VI.C).
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A. Nonrelativistic
guiding-center model

We consider a low-density non-neutral electron plasma
in cylindrical geometry with

co, 4rrn, (x, t)m, c
2 2

&(1
~ce Bo

(6.1)

The electrons are confined radially by a uniform axial
magnetic field Boc„and cylindrical conducting walls are
located at r =a and r =b (Fig. 15). The case in which the
central conductor is absent is treated by setting a =0. In
the present analysis, a cold-Auid guiding-center model is
adopted in which electron inertial e6'ects are neglected
(m, ~O), and the motion of a strongly magnetized elec-
tron Quid element is determined from

which corresponds to zero tangential electric field at the
conducting walls. Making use of V„,(r, 8, t ) = —(c /
Bor)(8/BO)P(r, &, t), it follows from Eq. (6.4) and (6.8)
that

V„,(r, &, t)=0, at r=a and r =b, (6.9)

U„=f drr f d&r n, (r, &, t),
a 0

(6.10)

which corresponds to zero radia1 Aow of the electron
Quid at r=a and r=b.

The nonlinear equations (6.6) and (6.7) possess certain
global conservation constraints that provide important
insights regarding the nonlinear evolution of the system
(Davidson, 1984). In particular, it is convenient to intro-
duce the density-weighted mean-square radius of
guiding-center locations, defined by

0= —en, (x, t) E(x, t)+ V, (x, t) X—Boe,
1

C
(6.2)

and the generalized entropy, defined by

UG= f dr r f d&G(n, ) .
Q 0

(6.11)

V, (x, t)= (c/Bo—)V'P(x, t ) Xe, (6.3)

for the perpendicular motion. In cylindrical geometry,
Eq. (6.3) reduces to

In the electrostatic approximation, E(x, t)= —V'P( xt).
Therefore Eq. (6.2) gives

Here, G(n, ) is a smooth, difFerentiable function with
G(n, ~0)=Q. Making use of Eqs. (6.6) and (6.7) and the
boundary conditions in Eq. (6.8), we can readily show
that

(6.12)

V„,(r, &, t) = — $(r, &, t ),C

Bor 88

V&, (r, &, t)= P(r, &, t),C 8
Bo Br

(6.4) and

(6.5)
UG =0

dt
(6.13)

where 8/Bz=O is assumed. Because V' V, =O follo-ws
from Eq. (6.3), the continuity equation can be expressed
as

8 c BP 8 + c BP (6.6)

Of course, Eq. (6.6) must be supplemented by Poisson's
equation

j. 8 8 Ir +
2 $(r, &, t)=4rren, (r, &, t),r Br Br I 2 Qt92

(6.7)

at r =a and r =b, (6.8)

which relates self-consistently the electrostatic potential
i'(r, &, t ) to the electron density n, (r, &, t ).

Equations (6.6) and (6.7) constitute a fully nonlinear
description of the evolution of the system in the cold-
Auid guiding-center approximation with m, —+0. Al-
though the ratio n, /m„=4mn, m, c /Bo approaches
zero in the limit of zero electron mass, the eQ'ective
diocotron frequency defined by aD =co~, /m„=4~v, ec/
S0 remains finite as m, —+0. Assuming that the cylinders
at r=a and r=b are perfect conductors, it is required
that

Ee(r, &, t)= —— P(r, &, t) =0,1 a

That is, U, =const and UG =const are globally conserved
quantities no matter how complicated the nonlinear evo-
lution of the system described by Eqs. (6.6) and (6.7). In
this regard, note that U„=const is a statement of
the conservation of canonical angu1ar momentum,

fd x (m, r Ve, eBor /2c )n, =co—nst, in the limit of zero
electron mass (m, ~0).

Not only are Eqs. (6.12) and (6.13) useful conservation
relations for describing the nonlinear evolution of the
system, these constraint conditions can also be used to
derive a sufhcient condition for azimuthally symmetric
equilibria n, (r) to be stable to small-amplitude perturba-
tions on, (r, &, t). In particular, for monotonicaliy de-
creasing profiles with

n, (r) ~0, for a ~r ~b,
r Br

(6.14)

it can be shown that the density perturbation 5„(r,&, t)
e

cannot grow without bound, and the system is linearly
stable (Davidson, 1984). That is, Eq. (6.14) is a sufhcient
condition for stability to small-amplitude perturbations in
the context of the cold-Quid guiding-center model based
on Eqs. (6.6) and (6.7). Therefore a necessary condition
for instability is that the density profile n, (r) have a max-
imum at some radius r =r~ intermediate between r =a
and r =b. An example of a profile subject to the diocot-
ron instability (Levy, 1965) is a sufliciently thin annular
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electron layer (see Fig. 10 and Sec. III.D) in which the
inner and outer radii of the layer (at r =r& and r =r&+,
say), are not in contact with the conductors at r =a and
r =b A. smooth density profile n, (r) with a sufficiently
large density depression n, (r =a)/n, (r =rM) (1 is also
subject to the diocotron instability (Briggs, Daugherty,
and Levy, 1970; Davidson, 1985a, 1985b).

B. Nonlinear stationary structures
in the rotating frame

A thorough review of the linear properties of the
diocotron instability has been presented by Davidson
(1990) and will not be repreated here. Rather, we focus
on the application of Eqs. (6.6) and (6.7) to describe
large-amplitude rotating structures in non-neutral plas-
ma. As indicated earlier, one of the most ubiquitous
properties of non-neutral plasma initially subject to the
diocotron instability is the development of long-lived vor-
tex structures during the nonlinear evolution of the sys-
tem. This has been observed experimentally in annular
electron layers, intense propagating annular electron
beams, non-neutral plasma columns with and without
central conductors, and in computer simulation studies.
The fact that long-lived coherent structures exist in these
systems for many rotation periods and thousands of cy-
clotron periods suggests that the nonlinear equations
(6.6) and (6.7) support large-amplitude solutions that are
stationary in the rotating frame.

To investigate this possibility, we look for solutions to
Eqs. (6.6) and (6.7) that depend on 8 and t solely through
the linear combination 0—co„t, where co, =const is the
angular rotation velocity of the disturbance (Davidson
et al. , 1990). In particular, we introduce the coordinate
transformation

0'= 0—co,t,
(6.15)

(6.19)

1 8, 8 1 8 4nec
~e 2~r .

r fir' Qr' r'2 g8'~
(6.20)

Note that introducing the term —co„r
' /2 in the

definition of the stream function g(r', 8') in Eq. (6.18) is
equivalent to reducing the density by a constant amount
(Bo/2rrec )co„ in Poisson's equation (6.20).

The general stationary solution to the continuity equa-
tion (6.19) in the rotating frame is

n, (r', 8') =n, [g(r', 8') ], (6.21)

where n, (g) is a (yet unspecified) function of g. Substitut-
ing Eq. (6.21) into (6.20) then gives

1 8, 8 1 8 4mec
, r', + 1t = n, (g) —2'„.

(6.22)

It is evident from Eq. (6.22) that there is considerable la-
titude in determining stationary solutions that depend on
both r' and 0' in the rotating frame. Once the functional
form of n, (P) is specified, then Eq. (6.22) is solved nu-
merically or analytically, as appropriate, for the stream
function g(r', 8') =cP(r', 8') IBO co„r' /2. The—bound-
ary conditions consistent with zero tangential electric
field at the perfectly conducting walls in Fig. 15 are given
by [see Eq. (6.8)]

ao , g(r', 8) =0= (6.23), P(r', 8')
r'=a r'=b

P(r'=a, 8') = —
—,'co„a

In addition, it is assumed that the inner and outer con-
ductors are at a constant potential di6'erence correspond-
ing to P(r'=a, 8)=0 and P(r'=b, 8)= V, or equivalently,

c gy c)n,
, =0

B0&
(6.16)

For stationary solutions n, ( r ', 8') and P( r ', 8' ) with
d IBt'=0, the continuity and Poisson equations (6.6) and
(6.7) can be expressed in the rotating frame as

g(r'= b, 8') =cV IBO ,'to„b——
where Vis the voltage difference.

C. Examples of large-amplitude
vortex solutions

(6.24)

1 8, 8 1
, r', +, $=4men, . (6.17)

It is convenient to introduce the stream function f(r', 8')
defined by

Depending on the choice of n, (f), there is consider-
able latitude in determining stationary solutions to Eq.
(6.22) that depend on both r' and 8' in the rotating frame.
In this section, we consider a simple example that is
analytically tractable and corresponds to a large-
amplitude vortex solution. In particular, it is assumed
that n, (f) is specified by the linear function

n, (Q)=R', ( Co+CP), (6.25)

Equations (6.16) and (6.17) then become

(6.18)
where C0 and C& are constants, and &, =const is a mea-
sure of the characteristic electron density in the interval
a ~ r ~ b. By introducing the eQ'ective diocotron frequen-
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cy co& =const defined by

coD =4vrR, ec'/Bo,
Poisson's equation (6.22) becomes

(6.26)

The (linear) di6'erential equation (6.27) can be solved ex-
actly for g(r', 8') subject to the boundary conditions in
Eqs. (6.23) and (6.24).

We examine solutions to Eq. (6.27) of the form

P(r', 8') =go(r')+ @&(r')cos(l8'), (6.28)

where I%0 is an integer. Substituting Eq. (6.28) into Eq.
(6.27) then gives

1
, +k 1t,(r )=~DC, —2~, (6.29)

and

1 8 8
, r', +kr' Br' Br'

l2
(6.30)

1 8, 8 1
, r',+, g = coD Co —2'�„+cot, C, Q .

[
BT BP' p Qg

(6.27)

cV 1
C = —C ——~ b0 1 B 2 r

0
(6.31)

We solve Eqs. (6.29) and (6.30) for 1to(r') and g&(r')
and substitute into Eq. (6.28). Enforcing the bound-
ary conditions in Eqs. (6.23) and (6.24) then gives the de-
sired solutions for the electrostatic potential
cP(r', 8')/Bo =g(r', 8')+co„r' /2 and the electron densi-

ty n, (r', 8')=tt, [Co+Cig(r', 8')]. In laboratory-frame
variables (r, 8, t), some straightforward algebra gives
(Davidson et al. , 1990)

where k =——coDC, )0 is assumed. The solutions to Eqs.
(6.29) and (6.30) in the interval a r ~ b are linear com-
binations of Jo(kr') and Y'0(kr'), and J&(kr') and I'i(kr'),
respectively. Here, J&(x) is the Bessel function of the first
kind of order l and I'&(x) is the Neumann function of or-
der I. For present purposes, we also consider the class of
solutions in which the electron density is equal to zero
at the outer conductor, i.e., n, (r ' =b, 8') =6, [C'o

+C, g(r' =b, 8')]=0. Making use of @(r'=b, 8')
=cV/Bo —a~„b /2 [Eq. (6.24)], we can use this condi-
tion to relate the constants Co and Ci = —k /aiD by

P(r, 8, t) = 4
B0 2

cV ~r 2 2 4
g2

Jo(kb)NO(kr) —No(kb) Jo(kr)
Jo(kb)NO(ka) —No(kb) Jo(ka)

2ai„No(ka) Jo(kr) —Jo(ka)No(kr) I Ji(ka)+
N (ka)J (kb) —J (k )N (kb) N, ka (6.32)

0 0

k ai I Ji(ka)
n, —Ji(kr) — Ni(kr)] cos[l(8 —a~„t)] .

COD N, (ka)

2'„NO(ka) Jo(kr) —Jo(ka)NO(kr)
n, (r, 8, t)=n, 1—'

coi, No(ka) Jo(kb) Jo(ka)NO(kb—)

cy co„4 ~ Jo(kb)NO(kr) —No(kb) Jo(kr)
b a+—'

a~D Bo 2 k~ J (kb)N (ka) —No(kb)JO(ka)

(6.33)

Jt(kb)Nt(ka) J,(ka)Ni(kb) =0—. (6.34)

Here, ah is a constant amplitude factor, and the parame-
ter k is chosen to satisfy

where

k
cog) B0

(6.35)

From Eqs. (6.32) and (6.34) it follows trivially that the
electrostatic potential P( r, 8, t ) satisfies the boundary
conditions [y]„.=O, [y]„„=V, [ay/a8]„. =O, and
[aP/a8]„b =0, consistent with Eqs. (6.23) and (6.24).
In addition, from Eqs. (6.33) and (6.34), the electron den-
sity is equal to zero at the outer conductor in Fig. 15, i.e.,
n, (r =b, 8, t ) =0. On the other hand, evaluating Eq.
(6.33) at r =a gives the steady value n, (r =a, 8, t ) =n, (a ),

Evidently, Eqs. (6.32) and (6.33) describe structured
potential and density profiles that rotate azimuthally
about the z axis in Fig. 15 with angular velocity
co„=const. Note that the profiles are stationary (in-
dependent of time) in the rotating frame. Furthermore,
for specified integer I, the profiles described by Eqs. (6.32)
and (6.33) have azimuthal periodicity 2'/l in the rotating
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n, (r, 8, t) ~0 (6.36)

in the entire region a ~ r b and 0 ~ 0 ~ 2~ between the
conducting cylinders in Fig. 15. This places restrictions
on the allowed values of the dimensionless parameters
kb, ~„/coD, and k cV/~DBo, and the dimensionless am-
plitude k at/coD of the oscillatory (8-dependent) term in
Eq. (6.33).

Figures 26 —29 illustrate properties of the solutions for
P and n, in Eqs. (6.32) and (6.33) for disturbances with
azimuthal mode number l = 1 (Figs. 26 and 27) and 1=2
(Figs. 28 and 29). Because the structures in Eqs. (6.32)
and (6.33) rotate azimuthally about the z axis with angu-
lar velocity co, =const, the information in Figs. 26—29 is
displayed at time t =0 without loss of generality.

The choice of system parameters in Figs. 26 and 27
corresponds to l = 1 and

frame. In particular, insofar as Eqs. (6.32) and (6.33)
represent a coherent vortex structure, l = 1 corresponds
to one vortex, l =2 corresponds to two vortices, etc. As
a further important point, for the solution in Eq. (6.33) to
be physically acceptable, it is required that the electron
density profile satisfy

8.0

6.0

(D
&C

D
ll

4 0

2.0

1.0 1.583 2.167 2.750 3.333

FIG. 27. Plots vs r/a of the density profile n, (r, 0, t =0) calcu-
lated from Eq. (6.33) for l =1 and values of 0 corresponding to
0=0, 0=+/2 (or 0=3~/2), and 0=~. The choice of system
parameters is the same as in Eq. (6.37) and Fig. 26.

—=0.3, kb =4.7058, =0.2,
b boa

k V =2.2144,
BODB0

k'a
=4.4289.

(6.37)

Here, kb =4.7058 is the first zero of Eq. (6.34) for 1=1
and a/b =0.3. Figure 26 shows plots of the equipoten-
tial contours, $(r, 8, t=0)=const, calculated from Eqs.
(6.32) and (6.37). From Eqs. (6.3)—(6.5), the fiow velocity
V, = —(c/Bo)VQXe, is tangential to the contours
/=const. Therefore the local fiow velocity circulates in

the direction indicated by the arrows in Fig. 26. Evident-
ly, the structure centered around 0=~ in Fig. 26 corre-
sponds to a large-amplitude vortex localized between
r =a and r =b. The corresponding radial dependence of
the density profile n, ( r, 8, t =0) calculated from Eqs.
(6.33) and (6.37) is illustrated in Fig. 27 for 8=0, 8=sr/2
(or 8=3+/2), and 8=~. It is evident from Fig. 27 that
the density compression is large at the center of the vor-
tex at 8=m (compare with the density profiles at 8=0
and m/2 in Fig. 27). Note also from Eq. (6.33) that the

FIG. 26. Plots of the equipotential contours
P(r, 8, t =0)=const calculated from Eq. (6.32) for I= 1 and the
choice of system parameters in Eq. (6.37). The arrows indi-
cate the direction of the circulating electron Bow
U, = —(c /Bo)VP Xe, .

FIG. 28. Plots of the equipotential contours P( r, 8, t =0)
=const calculated from Eq. (6.32) for l =2 and the choice of
system parameters in Eq. (6.38). The arrows indicate the direc-
tion of the circulating electron flow U, = —(c/Bo) VP Xe, .
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5.0

CP
CC

O
II

2.0

1.0

ary in the rotating frame. The question of accessibility of
such solutions from prescribed initial conditions
n, (r, 8, t =0) is not addressed by the present analysis, al-
though the constants co, /coa, k aI/coa, etc., occurring in

Eqs. (6.32) and (6.33), can be related to the initial condi-
tions by the global conservation constraints in Eqs. (6.10)
and (6.11). In addition, the stability of such large-
amplitude structures requires an analysis of the evolution
of small-amplitude perturbations, 5n, and 6$, about the
solutions in Eqs. (6.32) and (6.33).

0
1.0 1.583 2.167 2.750 3.333

Vll. CONCLUSlONS

profile for n, (r, &=n/2, t =0). plotted in Fig. 27 is the
same as the azimuthally averaged density profile
(n, )(r, t=O)=(2~) 'Jo d8n, (r, 8, t=O).

The choice of system parameters in Figs. 28 and 29
corresponds to I =2 and

—=0.3, kb =5.4702, =0.4,
(6.38)

k V' "=5.9847,
coDBp

k QI =2.9923 .

Here, kb =5.4702 is the first zero of Eq. (6.34) for /=2
and a/b =0.3. Figure 28 shows plots of the equipoten-
tial contours, P(r, 8t= 0)=c onst, calculated from Eqs.
(6.32) and (6.38). The direction of the local fiow velocity
is indicated by the arrows in Fig. 28. Evidently, for I =2,
there are two large-amplitude vortices centered around
O=n/2 and 0=3m. /2. Moreover, the density compres-
sion is large at the center of vortices. This is evident
from Fig. 29, which shows the radial dependence of the
density profile n, (r, 8, t=O) calculated from Eqs. (6.33)
and (6.38) for 8=0 (or 8=m. ) and 8=m/2 (or 8=3~/2).

To summarize, Figs. 26—29 and the analysis in Secs.
VI.B and VI.C demonstrate that a simple cold-Quid
guiding-center model of a low-density non-neutral plas-
ma supports large-amplitude vortex solutions that are
stationary in the rotating frame. What is most striking is
that the coherent structures described by Eqs. (6.32) and
(6.33) are very rich in detail for the case in which n, (g) is
assumed to have a simple linear dependence on f with

n, (f)=R', ( Co+CP). Even more structure would be
present in the nonlinear case where a quadratic term is
included with n, (P)=&, ( C+oC pi+ C$2). Finally, it
should be emphasized that the present analysis addresses
only the existence of coherent structures that are station-

r/a

FICx. 29. Plots vs r/a of the density profile n, (r, O, t =0) calcu-
lated from Eq. (6.33) for /=2 and values of 0 corresponding to
0=0 (or 8=m) and 0=m/2 {or 0=3m/2). The choice of system
parameters is the same as in Eq. (6.38) and Fig. 28.

This paper has reviewed the equilibrium and stability
properties of intense non-neutral electron Aow in crossed
electric and magnetic fields. Following a description of
equi1ibrium properties for magnetically insulated electron
fiow in planar geometry (Sec. II), we investigated
extraordinary-mode stability properties for relativistic
non-neutral electron How between planar conductors,
placing particular emphasis on the magnetron and
diocotron instabilities (Sec. III). Detailed stability behav-
ior was found to exhibit a sensitive dependence on the
self-field intensity (as measured by s, =y, co~, /co„) as
well as on the shape of the equilibrium profiles. The
inffuence of cylindrical effects (such as the centrifugal
and Coriolis accelerations of an electron fiuid element) on
stability behavior was then investigated for rotating elec-
tron fiow in cylindrical geometry (Sec. IV). Finally, the
properties of large-amplitude coherent structures were
investigated, including particle-in-cell computer simula-
tions of dense (s, —1) electron fiow in relativistic magne-
trons, which show large-amplitude spoke formation in
the circulating density (Sec. V), and application of a
cold-Quid guiding-center model to investigate large-
amplitude vortex structures in low-density (s, ((1) non-
neutral plasma (Sec. VI). The accessibility and stability
of such stationary structures (in the rotating frame)
remain important topics for future investigation.
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