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This article is a review of recent developments in the phenomenological description of unconventional su-
perconductivity. Starting with the BCS theory of superconductivity with anisotropic Cooper pairing, the
authors explain the group-theoretical derivation of the generalized Ginzburg-Landau theory for uncon-
ventional superconductivity. This is used to classify the possible superconducting states in a system with
given crystal symmetry, including strong-coupling effects and spin-orbit interaction. On the basis of the
BCS theory the unusual low-temperature properties and the (resonant) impurity scattering effects are dis-
cussed for superconductors with anisotropic pairing. Using the Ginzburg-Landau theory, the authors
study several bulk properties of such superconductors: spontaneous lattice distortion, upper critical mag-
netic field, splitting of a phase transition due to uniaxial stress. Two possible mechanisms for ultrasound
absorption are discussed: collective modes and damping by domain-wall motion. The boundary condi-
tions for the Ginzburg-Landau theory are derived from a correlation function formulation and by group-
theoretical methods. They are applied to a study of the Josephson and proximity effects if unconventional
superconductors are involved there. The magnetic properties of superconductors that break time-reversal
symmetry are analyzed. Examples of current and magnetic-field distributions close to inhomogeneities of
the superconducting order parameter are given and their physical origin is discussed. Vortices in a super-
conductor with a multicomponent order parameter can exhibit various topological structures. As exam-
ples the authors show fractional vortices on domain walls and nonaxial vortices in the bulk. Furthermore,
the problem of the possible coexistence of a superconducting and a magnetically ordered phase in an un-
conventional superconductor is analyzed. The combination of two order parameters that are almost de-
generate in their critical temperature is considered with respect to the phase-transition behavior and
effects on the lower and upper critical fields. Because heavy-fermion superconductors—which are possi-
ble realizations of unconventional superconductivity—have been the main motivation for the phenomeno-
logical studies presented here, the authors compare the theoretical results with the experimental facts and
data. In particular, they emphasize the intriguing features of the compound UPt; and consider in detail
the alloy U, _, Th, Be,s.
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discovered, first in CeCu,Si, by Steglich et al. (1979),
then in UBej; (Ott et al., 1983) and UPt;, (Stewart
et al., 1984). In 1986 the general public also became
aware of the new developments when Bednorz and
Miiller (1986) opened the era of high-T, (or CuO) super-
conductors by their discovery of superconductivity in
(La,Sr),CuO,. There followed an intense investigation of
the class of copper-oxide materials, which led to further
discoveries of superconducting systems, one exceeding
the other in their critical temperatures: the Y-Ba-Cu-O
system (Wu et al., 1987), the Bi-Sr-Ca-Cu-O system
(Maeda et al., 1988), and the TI-Ca-Ba-Cu-O system
(Sheng and Hermann, 1988). These new superconductors
exhibit unconventional properties, the heavy fermions
much more significantly than the Cu superconductors.
For the latter the ordinary BCS theory seems to fit most
of the features of the superconducting state. A great
effort in experiment as well as in theory has been stimu-
lated and is still going on. Even if there is a difference of
more than two orders of magnitude between the 7,.’s of
the two classes, they share the common feature of being
systems of strongly correlated electrons.

Another class of recently discovered superconducting
materials are the so-called organic superconductors. The
first superconducting compound, (TMTSF),PF,, was re-
ported in 1980 by Jérome et al. Further investigations
led to various compounds of the type (BEDT-TTF),ReO,
(Parkin et al., 1983) with higher transition temperatures,
actually reaching 12.8 K (Kini et al., 1990). The most
intriguing aspect of this class of superconductors is the
fact that in the normal state they are low-dimensional
conductors.

In this article we shall concentrate on the heavy-
fermion superconductors, since they show the most
significant differences from conventional superconduc-
tors. Heavy fermions are compounds containing rare-
earth or actinide ions whose f-shell electrons are strongly
correlated. These f electrons determine the properties of
quasiparticles at the Fermi level, giving rise to a large
effective mass, observed in an extremely large y factor of
the linear part in the low-temperature specific heat, and
at the same time a similarly enhanced Pauli spin suscepti-
bility x(0). Hence the characteristic temperature is also
quite small: T, ~10-50 K. When we consider the su-
perconducting members of this group of materials-—the
transition temperature is in the range of 0.5~1 K (see
Table XIII)—a measurement of the ratio (C,—C,)/C,
at T, gives in all compounds a value of the order of one.
This suggests that the superconductivity is produced
mainly by the heavy quasiparticles. It was argued, using
the picture of the BCS theory of superconductivity, that
these quasiparticles with f characters would have
difficulty forming ordinary s-wave Cooper pairs due to
the strong Coulomb repulsion. To avoid a large overlap
of the wave functions of the paired particles, the system
would rather choose an anisotropic channel, like a p-
wave spin triplet or a d-wave spin singlet state, to form
pairs, as is done in superfluid *He (p-wave spin triplet
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pairing).

In many respects the analogy with *He is a good guide
for the interpretation of experimental results in the
heavy-fermion superconductors. The first experimental
support for the idea of anisotropic pairing was found in
the observation by Ott et al. (1984) of the T2 law in the
specific heat of UBe,;. It is a property of superconduc-
tivity due to anisotropic pairing that the gap in the quasi-
particle excitation spectrum can have points of zeros or
lines of zeros. These yield an excitation spectrum that
gives rise to power laws in the low-temperature behavior
of various physical quantities instead of the exponential
behavior expected for conventional superconductivity.
This idea has gained further support as such power laws
have been measured in other quantities, such as ultrason-
ic attenuation, NMR relaxation rate, thermal conductivi-
ty, and London penetration depth. Furthermore, the
pronounced peak in ultrasonic attenuation observed im-
mediately below 7, in UBe;; (Golding et al., 1985)
confirmed the similarity to *He, which shows this feature
too. At least in conventional superconductors the sound
attenuation decreases rapidly below the transition tem-
perature. The discovery of double transitions in
(U,_,Th,)Be,; by Ott et al. (1985) and in UPt; by Fisher
et al. (1989) has a natural place in this picture, since it
allows for the existence of several superconducting
phases with different symmetry, a well-known feature of
*He, where we find different phases, the so-called 4, 4’,
and B phases.

Thus it became common to speak of anisotropic super-
conductivity in heavy-fermion compounds. This term is
applicable in a rotationally invariant system, but becomes
ambiguous if the rotational symmetry is reduced due to
the presence of a crystal field. Therefore we shall avoid
this name in this article and use instead the term uncon-
ventional superconductor, which will include all supercon-
ducting states with any deviation from the ordinary BCS
type of pairing state. It will become clear later that this
corresponds to a classification according to the sym-
metries broken by the superconducting state. In this
respect a superconductor is conventional if it breaks only
the U(1) gauge symmetry.

Even if the analogy between superfluid 3He and
heavy-fermion superconductors provides a rather fruitful
basis for understanding the latter, it should not be
pushed too far. There are important differences between
these two systems—to mention only one, the presence of
a crystal field. Furthermore, in heavy-fermion supercon-
ductors charged particles are paired instead of neutral
atoms as in *He. The strong correlation effects and the
spin-orbit interaction in heavy-fermion systems may also
change the picture. Throughout this article we shall
point out these differences wherever they are important.

For the superfluidity of *He the responsible mechanism
could be identified. Spin fluctuations play a major part in
the potential which produces the anisotropic pairing (for
a review, see Leggett, 1975). In heavy-fermion materials,
the problem turns out to be much more complicated,
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since for most systems a simple Fermi-liquid theory is
not sufficient to describe their normal-state properties.
At present no satisfactory explanation for their supercon-
ductivity has been given. On the other hand, problems in
the identification of the symmetry of the superconducting
phase have motivated a widespread effort at working out
the properties of unconventional superconductors on the
level of phenomenological theories, applying the idea of
the Ginzburg-Landau theory. This type of theory based
on group theory allows us to describe the specific proper-
ties of each system in a simple way, without a detailed
knowledge of the microscopic background. The main
purpose of the present article is to review these recent
theoretical developments and their application to the
heavy-fermion superconductors. For general aspects of
the heavy fermions and their superconductivity various
reviews are available—in theory by Varma (1985), Lee
et al. (1986), Gor’kov (1987), and Fulde et al. (1988), and
in experiment by Stewart (1984), de Visser et al. (1987),
Ott (1987a, 1987b), Rauchschwalbe (1987), Fisk et al.
(1988), and Grewe and Steglich (1989).

We give here a short outline of this article:

In Sec. II we develop the phenomenological theory
(Ginzburg-Landau theory) of unconventional supercon-
ductivity using the concept of the Landau theory for the
second-order phase transitions. For that purpose we
briefly review the BCS theory of superconductivity with
anisotropic pairing, to introduce the symmetry properties
of the order parameter. The order parameters will be
characterized by irreducible representations of the sym-
metry group of the Hamiltonian. The relevant symmetry
group is specified and the action of the group elements on
the order parameter is described there. To determine
stable superconducting states, we examine the Ginzburg-
Landau free energy constructed as an expansion in the
order-parameter space of each representation. The re-
sulting symmetry classification of superconducting states
and the generalized Ginzburg-Landau free energy will be
the starting point of the analysis in the following sec-
tions.

In Sec. IIT we discuss bulk properties of the unconven-
tional superconductors. As a first point we consider the
power-law behaviors mentioned above and analyze the
effects of impurity scattering using typical examples of a
spherically symmetric system. As a next point, phenom-
ena associated with the phase transitions are discussed
using the Ginzburg-Landau formulation. We consider
first spontaneous crystal lattice deformation due to the
breakdown of the crystal symmetry by the superconduct-
ing order parameter. Conversely, if the symmetry of the
crystal is externally lowered, a splitting of the transition
may occur for order parameters that originally belong to
a multidimensional irreducible representation. Next we
look at the anisotropy of the upper critical field H_,. Fi-
nally, we consider a possible mechanism for the ultrason-
ic attenuation peaks close to T,: the existence of collec-
tive modes and the domain-wall damping mechanism.

In Sec. IV we turn to problems connected with the
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boundary of a superconductor. In an unconventional su-
perconductor the order parameter is strongly influenced
by the boundary, in contrast to an ordinary s-wave super-
conductor. After a derivation of the boundary condition
by the correlation function method, we discuss the corre-
sponding formulation in the Ginzburg-Landau theory on
the basis of group-theoretical arguments. As an exten-
sion of vital experimental importance, we consider the
problems of the Josephson effect and the proximity effect.

The breakdown of time-reversal symmetry at a
second-order phase transition is a general feature of ma-
terials with magnetic ordering. Among the unconven-
tional superconducting states are several that likewise are
not invariant under time-reversal operation. We shall in-
dicate how magnetic behaviors occur in these systems.
In particular, we concern ourselves with magnetic prop-
erties associated with inhomogeneous structures of the
superconducting phase.

Vortices are magnetic properties of unconventional as
well as conventional superconductors. However, the vor-
tices in an unconventional superconductor can show vari-
ous structures. We explain the possibility of fractionally
quantized vortices and stable nonaxial vortices for a su-
perconducting phase with multicomponent order param-
eter. The discussion of magnetic properties in Sec. V is
completed by an analysis of the possible coexistence of
superconductivity and antiferromagnetism.

In Secs. II-V we restrict our analysis to a single repre-
sentation in order-parameter space. However, such a
decoupling of a single representation is not always al-
lowed. Section VI is devoted to the special phase-
transition behavior and the lower and upper critical fields
of two representations that have only slightly different
transition temperatures.

In this review we try to describe some of the basic phe-
nomena expected for unconventional superconductors
and at the same time illustrate them by typical simple ex-
amples. To this end we conclude with a discussion of ex-
perimental results on heavy-fermion systems in the light
of the theories developed in this article (Sec. VII).

The theories presented here were developed mainly to
describe effects in heavy-fermion superconductors. Nev-
ertheless, the general aspects of these theories may also
be applicable to the class of CuO or organic supercon-
ductors. Regardless of the microscopic mechanism caus-
ing the superconducting instability, which may be essen-
tially different in these classes, the concept of the
Ginzburg-Landau theories is based only on very general
properties of second-order superconducting transitions.
It is our hope that many of the phenomena discussed in
this article might offer possible tests for the unconven-
tional nature of the superconductivity.

Il. CLASSIFICATION OF THE
SUPERCONDUCTING STATES

A. BCS theory of anisotropic superconductivity

In 1957 Bardeen, Cooper, and Schrieffer proposed
their theory of superconductivity as the first successful
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explanation for the microscopic origin of this
phenomenon (Bardeen Cooper and Schrieffer, 1957).
Their theory is based mainly on the discovery that the
degenerate state of a normal Fermi gas is unstable if an
attractive potential between the fermions is present
(Cooper, 1956). The stable ground state is a coherent
state in which the electrons are combined into pairs (so-
called Cooper pairs), but with a rather large extension
compared with the spacing between electrons in the gas
and with a vanishing total momentum. Effectively, it is a
pairing in momentum space rather than in real space.
The potential has its origin in electron-phonon coupling,
which yields an attractive region in a thin layer near the
Fermi surface in the momentum space. It has been found
that the only attractive channel of this potential is the
isotropic channel which leads to electron pairs with a rel-
ative s-wave symmetry (spin singlet configuration). Most
of the known superconductors can be described in a con-
vincing manner by this theory.

The electron-phonon interaction may not be the only
possible mechanism to obtain an attractive potential.
Other interactions could favor anisotropic pairing, with
spin triplet configurations too. Anderson and Morel
(1961) and Balian and Werthamer (1963) examined this
general type of superconductivity. At the beginning of
the sixties a more academic problem, it later became im-
portant in the theory of superfluid *He, in which a spin-
fluctuation mechanism is assumed to be responsible for
the creation of p-wave (spin triplet) pairs (for a review see
Anderson and Brinkman, 1975, or Leggett, 1975). We
briefly review here this generalized BCS theory, focusing
our attention mainly on the symmetry properties of the
superconducting states as the basis of our further studies.

Let us consider a pairing potential in momentum space
which leads to the effective Hamiltonian

‘ﬂ:zs(k)altsaks
k,s
S I 7

’ T T
51523354(k’k Ja ~kslakszak's3a —k'sy

k,K',51,5,,53,5,4
2.1)

where e(k) is the band energy measured relative to the
chemical potential u. The quantity I/Slxzszszt(k’k,)
denotes the matrix element

(—k,5.;k,5,| V| —Kk',54;k',55)

[note that V¥ has the
V51s23334(k k )——Vszsl S3S (
=V 51005, (KL,
electron-electron interaction which is attractive in a
small range near the Fermi surface [where
—e. Zelk)=¢,;e, is the cutoff energy]. Its physical ori-
gin will not be discussed here. In the presence of this at-
tractive potential, the degenerate Fermi gas is unstable.
The Hamiltonian in Eq. (2.1) needs to be treated as a

many-body problem. It can be treated in a reasonable

following symmetries:
k,k')=— Vs 5y54s,(Ks —k’)
The operator V is a general effective
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way by a mean-field approach. We define a mean field,
which is often called a pair potential (we shall later also
name it a “gap function”),

Assl(k)z—— 2 55548 4(k k') <ak/ a_ —K's, ) s
k' 183,54
+ + (2.2)
A:s(w_k)_ 2 ssss( 1()(a~k'slak’sz> )
K's|,s,

The brackets (A4) denote the expectation value
trlexp( —pBH) A V/trlexp(—BF)]. We replace the two
operators aﬁ(s)a(TLS in Eq. .1 by <{(ala’).)
+(aPa®) —(ala") . )). The term in the brackets
() is interpreted as the fluctuations of the operator
around its mean-field value. If these fluctuations are con-
sidered to be small compared with the mean-field value,
we can neglect them in orders higher than one, so that #
can be approached by a one-particle Hamiltonian,

j{ EE k)aksakv+ 2 [As1 (k)aksla —ks,

ksl,sz
; 52( —k)a—kslaks2 ] .
2.3

Here we also omitted one term containing only the mean
field but no operators, since it gives only a contribution
to the ground-state energy. This effective one-particle
Hamiltonian is easy to diagonalize in order to find its
eigenvalues and the correspondmg elgenoperators
a,(a,) with the property 9,ca, —1[7{05 1=E, a and
d,a,= [Y{,ab]———Ebab. They can be obtained by a
(unitary) Bogoliubov (or canonical) transformation,

aks:z(ukss'aks'+vkss'atks') . (2.4)

s’

The new operators ag) satisfy the anticommutation rela-

tions of fermions and generate the elementary excitations
(Bogoliubov quasiparticles) of the system. The use of a
four-component notation [a,= akT,akl,aT xpd kl) and
ak=(ak7,akl,a1“,a‘k1)] leads to a more compact for-

mulation of Eq. (2.4): a,=U,a, with
de Dy ;
Uk: A~ % A % and UkUk:]‘ N (2.5)
Vg U

where the second equation is the unitarity condition of
the transformation. The 2X2 matrices #, and D, are
defined by Eq. (2.4). Using this formalism, we can write
diagonalization of # as

Ek Uk 61( Uk (26)

where we used the 4 X4 matrices

E.. O 0 0

. 0 E,_ 0 0

E=|o o —E.. o 2.7)
0 o0 0 —E_,_



M. Sigrist and K. Ueda: Unconventional superconductivity 243

and

~

Ax)
—e(k)8, |

(k)&

6= —A*(—K) (2.8)
The diagonal elements of £, correspond to the excitation
spectrum of the system, and &) is the representation of
#, where 8 is the 2 X2 unit matrix and A(k) the matrix
defined in Eq. (2.2). To find the transformation U in the
general case we need more insight into the structure of
A(k). From Eq. (2.2) or (2.3) it is clear that A(k) must
have the symmetry of a pairing wave function in k space.
The antisymmetric nature of a fermion wave function re-
quires therefore

Ak)=—AT(—k). (2.9)

For singlet pairing the effective pairing potential A has to
be an even function k. Therefore A(k) is an antisym-
metric matrix which can be described by a single even
function ¥(k),

0 k)

A)=ie, ()= | _,q) o

(2.10)

On the other hand, triplet pairing requires odd k depen-
dence. The matrix is symmetric and, by following the

notation of Balian and Werthamer (1963), can be
parametrized by an odd vectorial function d(k),
Ax)=i(d(k)-8)5,
—d, (k)+id, (k) d,(k)
. . (211
d,(k) d,(k)+id,(k)

We use & to denote the Pauli matrices. This notation is
particularly practical because under spin rotation opera-
tion d transforms like a three-dimensional vector under
rotation. Other transformation properties are also easier
to handle in this notation than in the matrix form, as will
be seen towards the end of this section (Table I). For
these A matrices we distinguish two types. A matrix
J

A(k) is called unitary if the product ARTis proportional
to the unit matrix &,; otherwise it is called nonunitary.
Clearly, only triplet pairing matrices can be nonunitary:

33T=|d|230+q'6\ (2.12)
with q=i(dXd*), which is only finite for d(k)#*d*(k),
i.e., according to Table I, d(k) is not invariant under time
reversal. The physical interpretation of q(k) is of special
interest because it denotes a net spin average
tr[A(k)'6¢A (k)] of the pairing state for k. From that one
should not simply conclude that the total spin average
[the average of q(k) over the whole Fermi surface] is
finite. In many cases its average over the Fermi surface
is zero. The meaning of a finite vector q(k) is more that
the structure of the pair correlation is different for up-
and down-spins in different directions of k. Clearly, this
can only occur if time-reversal symmetry is broken.
However, we shall see in Sec. V that in some cases this
can give rise to a finite net magnetic moment associated
with Cooper pairs, which can couple to a magnetic field.
This effect is well known for the (nonunitary) 4 phase of
superfluid 3He.

The solution of Eq. (2.6) is different for the two types
of A matrices. In the case of a unitary A(k) the Bogo-
liubov transformation matrices have a rather simple
form,

o [E, +e(k)]o,
T By e P+ 1eAA (02
- (2.13)
o —A(k)
Vg —

([Ey +e(k) P+ LtrRA T(k)}172 7

where E,, =E,_ =E,=[eXk)+1trAAT(k)]'"/? is the
energy spectrum of the elementary excitations with a gap
[+trRAA T(k)]'/? depending on k. Since E,; =E;_ the
excitation spectrum is twofold degenerate.

For a nonunitary A(k) the transformation matrices are
more complicated:

. Ey, +ek) |17 o E,_+ek) |'? . ~
i, =Q —r (1q169+q8)6y+6,)+ — 5 (1ql69—q8)6,—5,)

k+ k— (2 14)

1 1 . ~
Dy =—i lqld—i(dXq)]-66,(6,+6,)+ [lqld+i(dXxq)]-68,6,—56,)
S BV v b Aoy VE, (B te] v
[

where

Q ?=8lql(lq| +g,)

and

E i =Ve(k)2+d(k)*£[q(k)| .

The degeneracy of the excitation energy is lifted because
the value of q(k) is finite. Thus there are two k-
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dependent gaps |d(k)|*t|d(k)Xd*(k)| in the energy
spectrum. This split in the excitation energy can be un-
derstood as a consequence of the reduction of symmetry
through the loss of time-reversal symmetry. (For a de-
tailed calculation of these transformation matrices see
Appendix A.)

From these results we can derive the self-consistency
equation for the mean-field potential in Eq. (2.2), using
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the fact that ag) is a Fermi operator:

Ass’(k):— 2 Vs’ssss4(kak1)7s3s4(k’a[3)) (2.15)
k';53,5,
where in the case of a unitary pairing state
2 Ak) BEy
k,B)= h|—— .
F(k,B) 2E, tan > (2.16)
and in the case of nonunitary pairing states
~ BE
Fk,B)= | =o— |d+9Xd | app [Z2kE
2E 4 lql
1 qXd BE,_ N
+ d— h o, .
2Ek~ lql tan > 100,
(2.17)

The variable 3 denotes (k5 T)~'. These equations deter-
mine the temperature dependence of A(k) and the criti-
cal temperature T,. At temperatures very close to 7, the
gap function is very small, so that a linearization of the
self-consistency (or gap) equation is allowed:

VA, () == TV, (KA (KD (2.18)
S3S4
where
Le(k)
) . tanh Bee ]
;:N(O)fO de =P =In(1.14B,e,)  (2.19)

gives the weak-coupling definition of v and ), denotes
the average over the Fermi surface with the density of
states N(0). Equation (2.18) is an eigenvalue equation for
A(k). The largest eigenvalue v defines the superconduct-
ing instability, the real 7., and the form of the ordered
state, A(k). For the solution of Eq. (2.18) we need the
precise form of the pairing potential V. Certain informa-
tion about these solutions, however, can be obtained even
without a detailed knowledge of I/}, as will be studied in
the next section. The important instrument for this pur-
pose is group theory, making use of the symmetry prop-
erties of Eq. (2.18).

The Hamiltonian in Eq. (2.1) has a certain symmetry
represented by a group §. This group consists of the
point group G of the crystal lattice symmetry, the spin-
rotation symmetry group SU(2), the time-reversal sym-
metry group #, and the gauge symmetry group U(1).

The behavior of A(k) under transformation by the ele-
ments of § is determined by the invariance condition of
F. An element g of the point group G acts only on the
k-vector,

gals=ali i, ~gAU=RD{5) ()0, 220

where D|g)(g) is the three-dimensional representation of
G in the k-space. The SU(2) spin-rotation group trans-
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forms the matrix space of A(k) as [g €SU(2)]

ga II,S :ED(S)(g)s,s'ach,s’
s

—gA(k)=D [5(g)Ak)D 5 (g) . (2.21)

The 2 X2 matrix D g is the representation of SU(2) in the
spin-1 space (the symbol D " denotes the transposition of
the matrix D). The time-reversal K €% leads to

T .
Kak,s—z( lay )s,s’a~k,s’
o

—KAX)=D 5 A(—k)Dy=6,A*(—k)5 (2.22)

y b
where ﬁw = —i6,C with C as an operator that changes
the sign of the k-vector and a state |¢) to |¢)7, i.e.,
CA(k)C=A*(—k). Finally, the application of an ele-
ment ¢ of U(1) is a multiplication of a phase factor,

Pal  =e't%a] >DR(k)=e?A(K) . (2.23)

As already suggested above, it is more convenient to
express these transformation properties for the functions
(k) and d(k) in the notation given in Egs. (2.10) and
(2.11). The transformation rules are shown in Table I.
Clearly, the symmetry properties of a paring state can be
more easily recognized in this form, so that this notation
is preferable whenever one wishes to consider symmetry
properties of a superconducting state.

Finally, we should like to point out one case of symme-
try reduction that will be of special interest in the next
section, namely, that caused by the presence of strong
spin-orbit coupling. For strong spin-orbit coupling the
point-group transformation of k and the spin transforma-
tions can no longer be treated independently. The spins
have to be considered as “frozen” in the lattice. There-
fore the spin-rotation group is ‘“absorbed” by the point
group G. Any symmetry operation on the crystal lattice
has also to be followed by the spins. Thus the transfor-
mation properties of the triplet states are changed in the
following way. Under a point-group transformation g
the gap function transforms as

gd(k)=D {H)(g)d(D {5)(g)k) , (2.24)
where D {)(g) is the representation in three-dimensional
space with positive (spin-space) or negative (k-space) in-
version operation, respectively.

TABLE 1. Symmetry transformation properties of the gap
functions (k) (even parity) and d(k) (odd parity) without spin-
orbit coupling.

Transformation Even parity Odd parity

Fermion exchange ¥(k)=v(—k) d(k)=—d(—k)
gv(k)=%(D (5lgk) gdk)=d(D (5)(g)k)
g(k)=1(k) gd(k)=D {$)(g)d(k)
Ky(k)=¢*(—k) Kd(k)=—d*(—k)
(k) =e*P(k) dd(k)=e'*d(k)

Point group
Spin rotation
Time reversal
U(1) gauge
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B. Symmetry classification and the
generalized Ginzburg-Landau theory

We pointed out in the Introduction that we are dealing
in this article with special superconducting systems in
which the origin of the superconducting phase transition
is still obscure. This means that we are not able to give
the specific form of the basic Hamiltonian [Eq. (2.1)]
which was discussed on a more general level in the previ-
ous section. On the other hand, we also discussed there
the symmetry properties of this Hamiltonian and of the
mean-field A (gap function) with the motivation that it
would be helpful in gaining some insight into the super-
conducting phase of the system. It is the purpose of this
and several further sections to exploit these symmetry
properties by means of group-theoretical techniques in
order to explain several very intriguing features of uncon-
ventional superconductors.

Since we are mainly interested in explaining the prop-
erties of the heavy-fermion superconductors, mentioned
in the Introduction, we want to concentrate especially on
their symmetry properties as a basis for further studies.
The three most prominent superconducting materials
among them are CeCu,Si,, UBe,;, and UPt;, and we shall
restrict our discussion to the corresponding three crystal
lattice symmetries represented by their point groups,
Dy, (tetragonal), O, (cubic), and D¢, (hexagonal), re-
spectively. Furthermore, these compounds contain
heavy ions, Ce or U. Hence, in addition to the crystal
field, the spin-orbit interaction (which is proportional to
the square of the nuclear charge number) may play an
important part in the Hamiltonian, including the pairing
interaction, as was emphasized by Anderson (1984).

First of all, we have to be aware that the single-particle
states are affected by spin-orbit coupling, since they can-
not be eigenstates of the spin operator anymore. Howev-
er, they can be labeled rather similarly as pseudo-spin-
states,

k,a)=cl,l0), (2.25)

using a as the pseudo-spin-index. These states are super-
positions of spinor states. Their field operator can be
written as

W)= S Xy s (Dls Ye™el, |
k,s

(2.26)

where Y ,:(r) is a function periodic in the crystal space.
The pseudo-spin-state is generated from a spin eigenstate
by turning on the spin-orbit interaction adiabatically.
This leads to a one-to-one correspondence between the
original spin state and this pseudo-spin-state (let us define
T—a and | —f). Hence the transformation properties
under the symmetry group §=G XA X U(1) must be for-
mally identical, with the restriction, of course, that spin
space and orbit space do not transform separately.
Cooper pairs in such a system are composed of two
particles belonging to energetically degenerate states and
combining to a total of zero momentum. For even-parity
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pairing, the pseudo-spin-state |k,a) is paired with its
time-reversed state K|k,a)=|—k,B). In the case of
odd-parity pairing, four degenerate states can be in-
volved: |k,a), Klk,a)=|—k,8), JIlk,a)=|—k,a),
and K J|k,a)=1k,B). In this case the parity J has to be
a symmetry of the system (all systems we consider con-
tain J). Since the pseudospin and the spin are symmetri-
cally closely related, the even-parity states correspond to
(pseudospin) singlet states and the odd-parity to (pseu-
dospin) triplet states, as we introduced them in the previ-
ous section. That we are dealing with pseudo-spin-states
rather than with ordinary spin states leads to some im-
portant effects, if we consider the junction between two
materials of different strength in the spin-orbit coupling,
as will be a matter of discussion in Sec. IV. Here, howev-
er, we shall not further emphasize this point.

A first step towards finding the stable superconducting
state (the form of the gap function) is the solution of the
linearized gap equation [Eq. (2.18)], which has the form
of an eigenvalue equation. The largest eigenvalue gives
us the transition temperatures (the first occurring insta-
bility of the normal state if we scan the temperature
downwards) and the eigenfunction space of A(k). We
shall now use the well-known property of an eigenvalue
problem, that the eigenfunction spaces for every single ei-
genvalue form a basis of an irreducible representation of
the symmetry group of the equation. For example, in the
hydrogen atom the eigenstates of the electron for each
energy eigenvalue are basis functions of the irreducible
representation belonging to the symmetry group generat-
ed by the angular momentum operator L (total rotational
symmetry) and the Pauli-Lenz vector J(PXL+LXP),
both of which are conserved quantities of the correspond-
ing Hamiltonian. On this basis we can classify the possi-
ble gap-function spaces of Eq. (2.18) with respect to their
symmetry behavior, as being the basis of the irreducibile
representations of G. .

Let us first explain the procedure, how to obtain such
basis functions, in a rotationaly symmetric system with
the group G=S0(3)X J, neglecting both the spin-orbit
interaction and the crystal field. In this system the repre-
sentations of the symmetry group are

G‘D(Q)Z.ﬁl)(,)@.ﬁl)(s)@.ﬁl)(y{)@i)@) s (2.27)

where D, denotes the k-space representation and Dg
the spin-space representation of G. The indices / and S
have, in the case of particle pairing, the physical meaning
of relative angular momentum and total spin, respective-
ly. D4 and D4, are the representation of time-reversal
and U(1) gauge symmetry, respectively. The product
D(4y®D g represents the transformations ® and K&.
These transformations conserve the function space of the
two other representations, D,®Ds,. Hence the eigen-
values can be labeled S and / and the eigenfunctions can
be expressed by spherical harmonics Y, (k) for D,
and the spin functions x,(0,00 for Do and
X.(1,5,) or {X,§,2} for Ds—y, [x,(1,+1)=—%+i7,
x:(1,—1)=%+i§ and x,(1,0)=v22]. In this sense the
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representations of time-reversal and U(l) gauge symme-
try may be neglected. The eigenfunctions to the eigenval-
ue 7T,(/,S) can be written in the form

Zch,m(/lE)iﬁy singlet (/=even) ,
Alk)= ¢, Y, (R)i(6-7)5

mA=%,9,2

, triplet (/=odd),

(2.28)

where the ¢, and c,, are complex numbers. These
eigenfunction spaces have the dimensions 2/+1 for a
singlet and 3(2/-+1) for a triplet. In this case the eigen-
functions are unique, because each representation has
only one set of basis functions, which just corresponds to
the eigenfunctions. This is not in general the case.

If we introduce spin-orbit coupling the symmetry of
the system is lowered (k-and spin-space do not transform
independently), and these eigenfunction spaces split into
subspaces with different eigenvalues. To obtain the new
eigenfunction classes we have to decompose the represen-
tation product (Kronecker product) of k- and spin-space,

@(1)®$(0):$(1) Singlet (I=even) N
(2.29)

1)(1)@@(l)=$(1A“®$u)@;D([+U trlplet (I:Odd),

where [, even or odd, also denotes the behavior under the
parity J. The basis functions of the new representations
can be derived by the Clebsch-Gordan formalism and the
new eigenvalues can be labeled by the total angular
momentum. However, one total angular momentum J
[representation 2 ;] has in most cases several sets of
basis functions obtained from the Clebsch-Gordan pro-
cedure. These sets are in general mixed together by /4
and are not the true eigenfunctions. On the level of this
symmetry consideration the eigenfunction spaces can
only be specified in classes [D ;] according to their sym-
metry behavior. Their concrete form, however, cannot
be found without detailed knowledge of .

We now turn the crystal field on. Again the symmetry
is lowered from a continuous rotation group with an
infinite number of irreducible representations to a
discrete point group with only a few representations.
Hence only a few classes of eigenfunction spaces exist. In
the case of the cubic group O, there are 10 classes corre-
sponding to the representations I't, 'y (1D), ' (2D)
and F;"L, th (3D) (£ denotes the property under parity).
For the hexagonal symmetry group D, we have 12 rep-
resentations I't T3, I'y, Ty (ID) and I'Y, I'§ (2D), and
for tetragonal symmetry D, 10 representations I't, 'y,
'y, I'y (1D) and I'YT (2D). We shall use for the represen-
tations this notation, which is found for example in the
table book of Koster et al. (1963).

Thus we have reached the stage where we can classify
the eigenfunctions of Eq. (2.18) with respect to the repre-
sentations of their symmetry groups which are listed
above. A list of all classes is given in Tables II-IV, each
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with a representative set of basis functions A(T,m;k).
The chosen basis functions are projections of the D
with small J on the space of the crystal field representa-
tions. This type of gap function is therefore often called
s-, p-, or d-wave, etc., according to its k-space symmetry
[K(ak)zalﬁ(k) with [=0,1,2,..., respectively]. One
exception is the totally symmetric, nonconstant basis
function, which is often labeled as ‘“‘extended s-wave.”
However, this nomenclature should not be confused with
the effective form of the eigenfunctions, which in the
crystal field can be any superposition with large-J contri-
butions.

Among the representations I' there is one that contains
the eigenfunctions with the largest eigenvalue T,,. We as-
sume that this 7,(T") is much larger than the T,’s of all
the other representations. Hence the stable supercon-
ducting state immediately below 7, is described by a
linear combination of the basis functions K(F,m;k) of
the corresponding eigenfunction space:

Ak)=39(T,m)A(T,m;k) , (2.30)

where the n(I',m ) are complex numbers. As a solution

TABLE IL (a) Even-parity basis gap functions
K(I‘,ni;k)=i6y1//(I‘,m;k) and (b) odd-parity basis gap func-
tions A(T,m;k)=i[&-d(T',m;k)]&, for the cubic lattice sym-
metry (Oy,).

Irreducible

representation I Basis functions

(a)

T YIHK)=1, k2+k2+k2
ry WSk = (k2 — k) k}—k2)(k2—k2)
ry YT, k) =2k~ k2 —k}
YT, 2k)=V3(kI—k})
Ty WE, )=k k,(k2—k2)
W, 2K) =k k, (k2—k2)
WS, 3K =k k, (k2 —k?)
ry WS, k) =k k,
¢(F;)2’k)=kzkx
TS, 3k)=kk,
(b)
Iy d(I7 k) =%k, +3k, +2k,
r; d(T5 k) =Rk, (k2—k2)+§k, (k2 —k2)
+2k,(k}—k?)
ry d(T5, 1;k) =22k, — Rk, —§k,
d(Ty,2;k)=V3(&k, —k,)
Ty Ay, ;k)=§k,—2k,

d(T;,2;k)=2k, —Rk,
d(Ty,3;k) =%k, —§k,
rs d(T5, 1;k) =9k, +2k,
d(T'5,2;k) =2k, +Rk,
d(T5,3;k) =%k, + 9k,
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TABLE III. (a) Even-parity basis gap functions
ﬁ(r‘,m;k):ic’i},wnm;k) and (b) odd-parity basis gap func-
tions 3(1",m;k)=i[6-d(l",m;k)]6y for the hexagonal lattice
symmetry (Dg, ).

Irreducible

representation I' Basis functions

(a)
ry WIk)=1, k2+k}, k?
ry Y5k =k, k,(k}=3k2)(k}—3k})
ry W k) =k,k,(k}—3k})
ry WIFk)=k,k,(k}—3k2)
rs W, Lk)=k,k,
WS, 2k)=k,k,
| WS, Lk)=k2—k}
WIS, 2:k) =2k, k,
(b)
ry d(I'{;k)=%k, +§k,,2k,
ry d(I'7;k)=%k, —k,
ry d(T'5;k)=2k, (k2—3k2),
k [(k2—k}DR—2k, k,§)
ry d(T7;k) =2k, (k2 —3k2),
k,[(k2—k2)§—2k k,X]
ry d(I5, k) =%k,,2k,
d(T'5,2;k)=k,,2k,
re d(Ty, k) =%k, —Fk,

d(Ty,2;k) =%k, — 9k,

of the linearized gap equation any linear combination in
Eq. (2.30) is allowed. As we are going beyond this linear
approach only a finite number of combinations can satis-
fy the (nonlinear) gap equation. We could perform this
step by an expansion of the gap equation with respect to
the gap function, assuming A to be small if the tempera-
ture is very close to the instability point. To perform the

TABLE 1IV. (a) Even-parity basis gap functions
3(F,rr/z\;k)=i6y¢(l“,m;k) and (b) odd-parity basis gap func-
tions A(T,m;k)=i[6-d(I",m;k)]&, for the tetragonal lattice
symmetry (D).

Irreducible

representation I Basis function

(a)
Iy Wk =1, k2+k2, k2
i YTk =k, k,(kZ—k})
ry W k)=k2—k]
| g WIS k)=kk,
rs W, k) =k k,
(I, 2,k)=k,k,
(b)
ry d(T[;k) =Rk, +§k,, 2k,
r; d(T';;k)=%k, —§k,
| d(T'5;k)=%k, —§k,
jo d(T;;k) =%k, +§k,
ry d(I'5,1;k) =%k, 2k,

d(r5,2;k)=9k,, 2k,
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resulting k and spin-sums we had to use simplifications
like a spherical Fermi surface or particle-hole symmetry,
as well as a simple form for the interaction potential with
€. /kgT,.>>1 [see Eqgs. (2.18) and (2.19)]. This is known
as the “weak-coupling” limit. However, for systems with
strong-coupling effects we have to tackle this problem in
a more general way.

One possible way of describing second-order phase
transitions like the superconducting transition is to apply
the relevant phenomenological Landau theory. The con-
cept of the Landau theory is based on the fact that the
equilibrium of a macroscopic system usually has a lower
symmetry at low temperatures than at high tempera-
tures. The high-temperature symmetry corresponds to
that of the microscopic structure of the system, which is
expressed in the Hamiltonian. The breakdown of this
symmetry is introduced by a macroscopic order parame-
ter, which vanishes for high temperatures but starts to be
finite below a certain critical temperature. It is possible
to analyze the rules of this symmetry breakdown purely
by group-theoretical arguments. However, for a physical
description of the system it is more convenient to use the
formulation of the Landau theory, expanding the free en-
ergy F with respect to the order parameter close to the
transition point.

As we have seen in the previous section, the gap func-
tion as the mean field in the Hamiltonian is an appropri-
ate quantity to describe the superconducting state in
terms of its symmetry properties. This symmetry is the
same as that of the pair wave function (alsaiksJ and
can be described by a set {n(I',m)} [Eq. (2.30)]. We
shall use the set of n(I",m) as the order parameter that
describes the system. Restricting the description to one
representation I', we construct the free energy as an ex-
pansion in these 7(I',m). They transform like coordi-
nates in the basis function space {K(F,m;k)}. The time
reversal acts on them as 7—n* and the gauge transfor-
mation by a multiplication of all components with the
same phase factor —mne'?.

Since the free energy originates from the Hamiltonian,
it has the same symmetry as #. The free energy as a
function of the order parameter has to be a scalar under
all symmetry transformations. To maintain U(l) gauge
and time-reversal symmetry only real even-order prod-
ucts of 7(I",m ) can occur in the expansion of F. To en-
sure invariance under the point-group transformation it
is convenient to use the Clebsch-Gordan formalism for
the construction of the invariant terms. We have to
decompose the products I'*®I" for the second-order
terms and T*® '@ '*® for the fourth-order terms in
n(I',m) and »*(T',m) and so on. In the decomposition
we keep only the terms that are invariant, namely, those
which belong to the trivial representation I of the
point group.! These invariant terms are introduced in

IThis decomposition is very easily carried out by using any
group-theory table book (for example, Koster et al., 1963).
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the free energy, each with a coefficient ;. Terminating
the expansion at fourth order, we find that the free ener-
gy has the form

Fr(T,q)=F,(T)
+V [A(DI 9T, m) >+ fr(n") ], (.31

where Fy(T) is the free energy of the normal state of the
system (with volume V). The second-order term has a
simple, isotropic form. Its coefficient is of the form
Ap(T)=a'[T/T,(I')—1]. The symbol fr(n*) denotes
all fourth-order terms of 7(I',m) invariant under the
symmetry group §. They are listed in Table V(a)-(c) for
the different representations of the point groups. These
fourth-order terms are required to be positive definite
[fr(n*)>0] in order to maintain the overall stability of
the free energy (the coefficients 3; have to satisfy special
conditions). Above T (I") with A >0 the second-order
terms are also positive definite, so that the minimum of
the free energy is realized for the vanishing order param-
eter n(I',m ). However, at T.(I') A changes sign, pro-
ducing a minimal free energy for finite n(I',m) for
T <T,. The latter minimum points of F determine the
symmetry of the stable superconducting state below
T.(T). _

The superconducting system is characterized by
several parameters f3;, the coefficients in the fourth-order
terms [Table V(a)-(c)]. These parameters can be calcu-
lated in the weak-coupling limit as mentioned above.
However, strong-coupling effects may change them con-
siderably. It is an advantage of the Landau formulation
that we can take these unknown strong-coupling effects
into account by introducing only very few parameters
(here maximally three under the restriction of only one
irreducible representation). So we consider the [3; param-

TABLE V. Fourth-order invariant terms in (a) the cubic sym-
metry O, (b) the hexagonal symmetry Dy, and (c) the tetrago-
nal symmetry D,,. The coefficients 3, are material-dependent
constants.

r Fourth-order terms fr(7*)
(a)
F%z /31|"]|4
TE  Blml+|ml P +Bynin,—nm3

Tis B2+ Ima>+ 1?2+ Bl mi+md+ 3l
+B3(|7I1|2|772‘2+|7]2‘2‘7)3|2+|773‘217]1‘2)

(b)
Fli,‘2,3,4 /31|71|4
T B2+ 1nl»2+BnFn—nm3)?

(c)
F%—z,;u 31|77|4
I-\si Byl |771‘2+ ‘Wz'z)z“}“ﬁz(ﬁf’flz_ﬂmf )2+f3’3|77112"72|2
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eters as undetermined, material-dependent constants.

On this basis one obtains all possible stable supercon-
ducting phases in a system, including crystal field, spin-
orbit coupling, and strong-coupling effects, by a simple
minimization of the free energy below T.(I') (Volovik
and Gor’kov, 1984, 1985; Blount, 1985; Ueda and Rice,
1985a, 1985b).2 In Table VI(a)-(c) we give a complete
list of all these states specifying their dependence on the
parameters 3;. Many of these states are degenerate. Due
to the presence of the crystal field and the spin-orbit cou-
pling this degeneracy must be discrete [apart from the
U(1) gauge freedom]. In most cases the fourth-order
terms are sufficient to generate this discrete degeneracy.
However, in some cases even sixth-order terms have to be
included in the free-energy expansion, because a spurious
continuous degeneracy appears if only terms up to fourth
order are taken into account. Examples of these are the
two-dimensional representations of oh,r3i, and of
Dy,,TF, and T'Z, for the choice of the coefficient 3, > 0.
The corresponding sixth-order terms which lift the de-
generacy are

7/1(|"’71|2+|772|2)3+7/2(|711|2+"’72}2)|7’I%+7’I%|2

+yslm PBni—nil? (2.32)
for the I's -representation of O,,, and
71U P4 a2 o P+ oD i +m3 2
32— Uy 2= [,]2)?
—=3(ntna+m3)?) (2.33)

for both the I's-and the 'z -representation of Dg,. De-
pending on the sign of the coefficient 3, either the state
(11,m,)=(1,0) (y;<0) or the state (1;,77,)=(0,1) (y5>0)
is stabilized in both cases.

The important point in this classification of supercon-
ducting states is not the specific form of the order param-
eter (or the gap function) A(k), but its symmetry. At the
transition several symmetries of the system can be bro-
ken. One is of course the U(1l) gauge symmetry causing
the superconducting state, since our order parameter is
complex. Some states also break the point group, yielding
a symmetry corresponding to a subgroup of G. This sub-
group is defined as the largest point group to leave the
energy spectrum E, defined in the previous section, in-
variant. It corresponds to the point group given under

2A classification of possible superconducting states neglecting
spin-orbit coupling has been given by Ozaki, Machida, and
Ohmi (1985, 1986a). In this case the order-parameter spaces of
odd-parity pairing states are larger and the minimization of the
corresponding free-energy expansion is in general difficult.
These authors used the group-theoretical methods of the subor-
dination scheme of symmetry groups in the second-order phase
transition to find the so-called “inert” states. We shall not con-
sider this method in this article.
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TABLE VI. (a) Stable superconducting states of the representations I';" (even parity) and I';” (odd parity) in the point group G for
given relations between the coefficients 3; of the fourth-order terms: (a) for the cubic point group O; (b) for the hexagonal point
group Dy, ; (c) for the tetragonal point group D,,. Columns: (i) degeneracys; (ii) structure of the zeros in the gap of the quasiparticle
excitation spectrum, (L) lines, (P) points, and (-) none; (iii) symmetry G'(I") of the state; G’ is the largest subgroup of G in which the
quasiparticle excitation spectrum E (k) is totally symmetric (basis function of the trivial representation I';) and I" denotes the repre-
sentation of the gap function in this subgroup. The states marked by an asterisk are pure states with no admixture of order parame-
ters belonging to other representations: w=exp(i27/3).

r B (k) /d(k) (i) (ii) (iii)
(a)
r{ - 1, k2+k2+k? 1 0, (T)*
r;y - (k2= kD(k}—k2)(k2—kK2) 1 L 0,(I;)*
ry B, <0 k2—k? 3 L D, (Ti)*
B,>0 k2 +ok}+o’k? 2 P 0,(T)*
| B;<0<B, k,k, (k2 —k2)+ ok k, (k2—k2)+ ok, k,(k}—k?) 8 P D3, (T5)
Ba,B3<0 kk (k}—k2)+k,k (kZ—k2) +k Kk, (kZ—k?) 4 L D,,(T5)
483,< B, B;>0 kk,(k}—k2) 3 L D, (TH)*
0<B;<4B, k ok, (k2 —k2)+ik,k, (k2—k2) 6 L D, (T)
rs B;<0<p, k,k, +ok,k, +ok. k, 8 P D, (T5)
B,,B;<0 kk,+k,k,+k .k, 4 - D, (T)
4I32<ﬁ3, B3>0 kykz 3 L D4h(rz— )*
0<B;<4B, k,k, +ik .k, 6 L D, (TF)
T - Rk, +9k, +2k, 1 - 0,(TH*
ry - Rk (k2—k2)+9k, (k2—k2)+2k,(k}—k?) 1 P 0,(I';)*
ry B, <0 Rk, — 5k, 3 P D, (T5)*
22k, — %k, —§k, 3 - D, (T7)
B,>0 Rk, + ¥k, + 02k, 2 P 0,(I'7)*
ry B;<0<p, Rwk, —w?k,)+9(k, — ok, )+2(0’k, —k,) 8 P D, (T7)
B>,B;<0 Rk, —k,)+3(k, —k,)+2(k,—k,) 4 P D,,(Ty)
4BZ<B3’ B3>0 ’y\kz —,z\ky 3 P D4h(r{)*
0<B;<4B, R(k, +ik,)—(§+i2)k, 6 P D,,(T5)
rs B;<0<pB, Rk, +ok,)+9(k, + ok, ) +2(0’k, +k,) 8 P D, (T5)
By,B;<0 Rk, +k,)+k, +k)+2(k, +k,) 4 - D, (I'7)
43, <Bs, B3>0 Yk, +2k, 3 P Dy, (T7)*
0<B; <48, Rk, +ik,)+(§+izk, 6 P D,,(T5)
(b)
ry - Lk24 k2 k2 1 - D, (D)*
ry - ko k,(k2—3k2)(k2—3k2) 1 L D, (TH)*
ry - k.k, (k2—3k?2) 1 L D, (T)*
| - k,k (k}—3k}) 1 L D, (THH*
rs B, <0 k.k, 3 L D,,(T5)
k k. 3 L D, (L)
B,>0 k (k. +ik,) 2 L D, (TH)*
r¢ B, <0 k2—k} 3 - D,,(T{)
ki k, 3 L D,,(T'{)
B,>0 (k. +ik,)? 2 P D, (T&)*
ry - Rk, +9k,, 2k, 1 P D, (T7)*
ry - Rk, —k, 1 P D, (T5)*
ry - 2k, (k1=3k}), k,[(k}—k})R—2k k,§] 1 P D, (T7)*
ry - 2k, (k}—3k?), k,[(k}—k2)§—2k k%] 1 P D¢, (T7)*
rs B,<0 Rk,, 2k, 3 - D,,(T5)
Vk., 2k, 3 P D,,(T7)
B>>0 2k, +ik,), k(R+iF) 2 P D, (T5)*
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TABLE VI. (Continued).
r B: P(k)/d(k) (i) (ii) (iii)
Ty B,<0 Rk, —¥k, 3 - D, (')
/iky_'_?kx 3 P D,,(Ty)
B,>0 (R+i9)k, +ik,) 2 P D, (T5)*
(c)
ry - 1Lk2+k2,k? 1 - D, (T)*
| - ko k,(kZ—k}) 1 L D, (TH)*
ry - k2—k? 1 L D, (TH)*
r; - kek, 1 L D, (I';)*
rs 4B,>B;, B,>0 k.(k,+ik,) 2 L D, (I'$)*
BZ’BS<O kz(kx+ky) 2 L D2h(F;)
4B2<B3’ /33>0 kxkz 2 L Dlh(r;)
Iy - Rk, +k,, 2k, 1 - D, (T7)*
r; - Rk, — 9k, 1 P D, (T;)*
ry - Rk, —k, 1 P D, (T7)*
ry - Rk, +§k, 1 P D, (T7)*
rs 4B,> B, B,>0 2k, +ik,), k,(R+i¥) 2 P D, (T5)*
Bo,B; <0 2k, +k,), k(R+Y) 2 P D,,(Ty)
4B,<B3, B;>0 Zk,, Rk, 2 P D, (Ty)

column c in Table VI(a)—(c). Furthermore, time-reversal
symmetry can also be lost. In this case the state is intrin-
sically complex and cannot be transformed to a real state
by the application of a U(l) gauge transformation. We
shall see below that the symmetry breakdown of the
point group or time-reversal symmetry leads to various
physical effects, that are unknown in conventional super-
conductors, which only break the U(1) gauge symmetry.
It is found that the classified states can have line or
point nodes of zeros in the gap (column a of Table VI).
This fact is important for the low-temperature behavior
of various thermodynamic quantities, as will be discussed
in the next section. It can be proved that odd-parity
states in general do not generate line nodes if spin-orbit
coupling is present (Blount, 1985). Only some special
basis functions have line nodes in the above classification
(see Table VI). If we consider a superposition of several
such basis functions due to spin-orbit coupling these line
nodes are removed. The zero nodes listed in Table VI
correspond to the general symmetry properties of the
state and may differ from that of the special examples
given for ﬁ(k), which may have more nodes due to their
simple form (see Volovik and Gor’kov, 1984, 1985).
Considering the superconducting states classified, the
question arises whether they really can be “pure” states,
belonging to only one irreducibile representation for all
temperatures below T,. Even if we assume that the tran-
sition temperature of the dominant representation is
much higher than all the others, there is the possibility of
finding a small admixture of basis functions of other irre-
ducible representations in the solution of the gap equa-
tion at all temperatures below 7,. This was already men-
tioned by Leggett (1975) and Wojtanowski and Woélfle
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(1986) in the case of continuous space symmetry and
confirmed by Monien et al. (1986a, 1986b) for point-
group symmetry. Such an admixture with other repre-
sentations can be caused by the breakdown of the point-
group symmetry below 7., because this changes the sym-
metry properties of the gap equation. We can write the
gap equation in the form

A== 3 Voo, (GKA (K, (2.34)
12 k’,s3s4
where
Vi sy5,5, K=V, oo (kK tanh(Ey/2kp T) /2E .

Since the gap function enters in the excitation spectrum
E,, below T, the function ¥ has the symmetry of
tr(A TA)(k). If 7 has a lower symmetry than the original
one, the gap function A(k) is no longer an eigenfunction
in general. The problem of which gap functions A '(k) of
other representations can mix with the original A(k) is
determined by the existence condition of matrix elements
of the form

1914

51523334

A

k,K',51,5,5,53,5,

(k, kA’ (k') . (2.35)

8152( S3$4

This matrix element can be finite only if both gap func-
tions belong to the same representation of the point
group where ¥ is invariant. Therefore the possibility of
such an admixture is determined by the following neces-
sary conditions:

(1) The gap function A(k) breaks the point-group sym-
metry G. The new point group G’ is defined to be the
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largest subgroup of G in which E, is an invariant func-
tion of k.

(2) The basis function A ’(k) belongs to the same irre-
ducible representation of G' as A(k).

We consider three examples of the cubic point group:

e The gap function Y¥(k)=k?+wk}+w’k? has no ad-
mixture because it does not lower the point-group sym-
metry.

e The gap function ¢(k)=k,k, breaks the point-group
symmetry (O, —D,, ), but there exists no other gap func-
tion that belong to the same representation (I';)) of D,.
Therefore no admixture appears.

e The gap function 1/1(k)=2kz2—kf-—ky2 (D4, ()]
satisfies both conditions and is mixed with the basis func-
tion of T’ of 0,,.

The relation of the admixture varies with the tempera-
ture. Close to the transition point where A(k) has the
temperature dependence (T, —T)'/?, the admixed A '(k)
is proportional to (T, —T)*/? (we call it a “driven” order
parameter). This result can be found by constructing the
Landau free energy of both representations including the
mixing terms. We shall touch on this point in Sec. VI,
where we discuss the combination of different representa-
tions. In Table VI, states that are pure below T, are
marked with a star.

The Ginzburg-Landau theory of superconductivity, as
an extension of the simple phase-transition theory, also

takes into account the spatial variation of the order pa-
rameter and includes the gauge-invariant coupling of the
order parameter to the magnetic field. This formulation
is well known for the conventional case, where it was
used as a very good description of the superconducting
state even before the microscopic theory was developed.
It is a simple procedure to extend the free energies above
to complete Ginzburg-Landau theories of unconventional
superconductors. The construction of these lowest-order
coupling terms is similar to that for the homogeneous
terms. We have to combine the gradient D=V —2ie A /c
with the order parameter 7(T",m ) into invariant second-
order terms (A is the vector potential). These terms are
obtained by decomposition of the product,

Dipy@T*@Dp®T . (2.36)

The representation of D is denoted by Dp,. Again
only the invariant T’} component enters in the free-
energy expansion. In the point-group symmetries under
consideration, D, is Iy for O, with the
basis {D,,D,,D,},I'y®l's for D¢, with the basis
{D,}®{D,,D,}, and T, ®I's for Dy, with the basis
{D,}®{D,,D,}. In Table VII(a)-(c) the gradient terms
are listed. With these terms additional parameters K; are
introduced in the free energy. In the strong-coupling
limit they are material constants undetermined by this
theory, similarly to the [3; parameters.

Finally, adding the magnetic-field energy term, we ob-
tain the complete Ginzburg-Landau theory:

TABLE VII. Gradient terms of (a) the cubic symmetry O,, (b) the hexagonal symmetry Dy, and (c)
the tetragonal symmetry D,;,. The coefficients K; (mass tensors) are material-dependent constants.

r Gradient terms
rt, K\[|Dn*+|D,q|*+|D,7|*]
ry K [[Dymi |2+ Dy |2+ D, 3, |+ | Dy |+ Dy my >+ D, m, 7]
+K,[2(1D,m,1>— | D, [*) = (| Dy, |*— | Dy ) — (1 Dy |*— | Dy [*)
+V3{(D)(Demy)* = (Dymy )(Dyy)* +c.c.}]
FZ:S KlHDxnl|2+IDyn2|2+|Dzn3|2]
+K2[|Dx772|2+ |Dx773'2+ |Dy71112+ |Dy773|2+ |D2771f2+ ‘Dz'ﬂ2|2]
+K3 (D) (D7) + (D) *(D,m3) +(D,m3)* (D) +e.c. ]
+ K, [(D,)*(D,m1)+(Dy13)* (D, 1)+ (Dym3)*(D,my) +c.c.]
(b)
T4 K, (IDy*+|Dynl*)+K, D,y
s KD, n,+D,n,|*+K,| Doy — Dy |?
+K;{|D;n;—D,n,|*+|Dymy+ D,y |*} + K[| D,y + | D, m,|?)
(c)
T 5 K (|Dyn>+|D,nl)+K,|D. 9|
FslL Kl[leW1|2+ny"lz|z]+K2[|Dx”’72|2+’Dy”’h‘zl

+K3[(D,n)*(D,,)+e.c ]+ Ky [(Dem)*(Dymy) +c.c.]
+K5[lDz”71[2+{Dz772|2]
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B2
F=F0+ f Fhomogeneous+Fgradient+-8-; d’x . (2.37)
These generalized Ginzburg-Landau theories describe the
phenomenology of unconventional superconductors,

close to T, disregarding fluctuation effects.

. BULK PROPERTIES OF UNCONVENTIONAL
SUPERCONDUCTORS

A. Low-temperature properties

1. Power-law behaviors

In a conventional s-wave superconductor the order pa-
rameter is totally rotationally symmetric. Therefore the
low-energy excitations have a gap except for the case of a
gapless superconductor with magnetic impurities. For
the s-wave state there is moreover no low-lying collective
mode, since in the case of charged particles the collective
density fluctuations are nothing but plasma modes. The
existence of the gap in the excitation spectrum naturally
leads to the exponential temperature dependence of vari-
ous physical quantities, such as the specific heat, relaxa-
tion rate of nuclear magnetic resonance (NMR), and
Knight shift. On the other hand, in an unconventional
superconductor the order parameter can have point or
line zeros. Due to the excitations across these points or
lines, the excitation spectrum starts from zero energy.

The density of states of the quasiparticles is defined by

plo)=F8lw—E L), (3.1)

k,t

where E, , is the quasiparticle energy given in Sec. IL.A.
In this section we shall restrict ourselves to the case of
unitary states, E; . =E.

Let us consider several typical examples. In an ordi-
nary s-wave superconductor the density of states is

0 (0)<A0) >

—_— (3.2)
NO)o/V 0* =A% (0> A,) ,

plo)=

where N (0) is the density of states at the Fermi energy in
the normal phase and A, is the magnitude of the gap
function. The density of states has a gap of A, and it
diverges at w = A,,.

Now we turn to examples of the p-wave states in rota-
tionally symmetric space. In *He two superfluid phases
exist under different pressures. The low-pressure B phase
is the so called Balian-Werthamer (BW) state of p-wave
pairing and the high-pressure A4 phase is the so-called
Anderson-Brinkman-Morel (ABM or axial) state. The
gap function in the BW state,

“R+ik, R
3

z

A (k)=A, (3.3)

~

k +ik, |’

Rev. Mod. Phys., Vol. 63, No. 2, April 1991

has a constant product AATZA%. Thus the density of
states has the same form as the ordinary s-wave state.
Consequently the equilibrium thermodynamic properties
of the BW state and the s-wave state are identical. This
should not be misunderstood that all their properties are
identical. Nonequilibrium properties of the BW state
like spin susceptibility exhibit certain differences from
those of the BCS state.

On the other hand, the gap becomes zero at two points
in the ABM or axial state, where the gap function has the
form

k, +ik, 0
A (k)=A4A, 0 k\x-i—ifc\y . (3.4)
Here the density of states is given by
2
p(w)=N(0)%5:—°|Aﬂo+% Aio —1]
><1og—%—mLIAOI . (3.5)
lo—1A0ll

It varies as »® at low energies and has a logarithmic

divergence at o = A,,.
The third example of the p-wave state is the polar state

(not realized in *He), where the gap function is

k, 0

0 k

z

A (K)=A, (3.6)

z

Obviously the gap has line zeros on the equator. For the
density of states we obtain

T ©
N(O)2 A

plw)= 3.7)

A
N(O)fgarcsinf (0> A,) .

(CO<A0) )

It has a form linear in o for low energies (w <A,) and is
finite at 0 =A,,.

The three states of p-wave pairing considered here are
representative examples offered in order to discuss the
density of states of quasiparticles in unconventional su-
perconductors. The important point is that the generic
form of p(w) at low energies depends solely on the topol-
ogy of the gap zeros.®> If they are line zeros, then
plw) <o, and if they are point zeros, then p(w) < »?. The
difference in the energy dependence of p(w) is reflected in
the temperature dependence of various physical quanti-
ties at low temperatures. As a first example we consider
the specific heat. At low temperatures where the T
dependence of the order parameter can be neglected, the
specific heat is given by

3A generalization to the case of a multiband Fermi surface is
discussed by Volovik (1989) and Vasil’chenko and Sokol (1989).
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=2 (- 2
c Tfo dE p(E)E (T<<T,), (3.8

where f(E) is the Fermi distribution function. Therefore
it is obvious that the T dependence of the specific heat
depends on the topology of the gap structure in the fol-
lowing way:

T gapless ,

C < 1T? line zeros , (3.9)

T3 point zeros .

Ty 2

_(Ak) (ank)

Another example is the NMR relaxation rate, which is
given by (Moriya, 1963)

/T =y} Afeks T SImy~ " (q,w0) /ey ,
q

(3.10)

where w, is the nuclear resonance frequency, vy, the
gyromagnetic ratio of the nuclear spin, A4, the hyperfine
coupling constant, and ¥~ *(q,®) the dynamical suscep-
tibility transverse to the magnetic field at the nucleus. It
is straightforward to extend the standard BCS result
(Hebel and Slichter, 1959) to include the unconventional
case,

_df

f0°°dE p(E)p(E +w,) |1

T, N(0)? E

where 1/Ty is the relaxation rate in the normal state
and (A;,(k)) denotes the average of the order parame-
ter on the Fermi surface. This average vanishes for the
unconventional superconductors, which belong to other
representations than I';". The resonance frequency is
generally small compared with energy scales of electrons.
Therefore we may take the limit of wy— 0 if the integral
converges. However, for the s-wave or the BW state, the
integral diverges logarithmically if @, is set equal to zero.
For superconducting states with point or line zeros, the
integral converges and the temperature dependence of
1/T, at low temperatures is given as

T gapless ,

1/T,« {T* line zeros , (3.12)

T° point zeros .

One remark is in order here. As mentioned in Sec.
11.B, in heavy-fermion systems that have ions with heavy
mass like Ce or U, spin-orbit coupling should also be im-
portant for the Cooper pairs (Anderson, 1984). An im-
portant consequence of group theory is that, with spin-
orbit coupling, line zeros are not allowed for odd-parity
superconductors (Volovik and Gor’kov, 1984, 1985;
Blount, 1985; Ueda and Rice, 1985a, 1985b). Blount, in
particular, gave a general proof of this. Therefore at very
low temperatures pure samples should obey power laws
corresponding to the point zeros when they are odd-
parity superconductors.

Various power-law behaviors are reported in heavy-
fermion materials for many properties, including the
specific heat and the NMR relaxation rate discussed
here. We shall say more about these experimental results
in Sec. VII. The accumulated body of data from this
type of experiment indicates clearly that there are many
low-lying excitations associated with nodes of gap func-
tions in heavy-fermion superconductors. However, in
some cases there is no consistency about the gap struc-
tures among the results for different quantities experi-
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E+awq

dE |’ (3.11)

[
mentally observed, if we assume exponents for a pure ma-
terial. One possible explanation for this kind of incon-
sistency is that the temperature range experimentally ac-
cessible is not yet sufficiently low to derive the genuine
exponents. Another, probably more plausible, explana-
tion is that this discrepancy can be resolved when we in-
clude the effect of impurity scatterings, which is the sub-
ject of the next section.

The power-law behaviors discussed here are a manifes-
tation of the anisotropy of the gap function of unconven-
tional superconducting states. However, these power
laws give information only about the generic form of the
gap function. Recently another experimental method
was proposed to determine the wave-vector dependence
of the gap function directly, namely, Andreev scattering
(Bruder, 1990). The idea is to use a point contact
to inject electrons into the normal part of a
normal/superconductor (NS) junction. An electron with
wave vector k and kinetic energy E (above the Fermi en-
ergy), such that E <A(k), cannot be simply transmitted
to the superconductor but will be Andreev reflected (An-
dreev, 1964). This means that the electron, together with
another electron of the normal Fermi sea, will enter the
superconductor as a Cooper pair and a hole-like quasi-
particle will be reflected along the path of the incoming
electron. Andreev scattering has been seen in experi-
ments involving silver/lead interfaces (Bozhko et al,
1982; Benistant et al., 1983), in which the magnitude of
the gap function could be determined from the energy
dependence of the Andreev reflection coefficient. What is
required for the purpose of identifying unconventional
superconductors is an angle-resolved version of these ex-
periments, i.e., a measurement of the directional depen-
dence of the differential conductivity of an NS junction
where S is a candidate for unconventional superconduc-
tivity. Although a satisfactory solution for the problem
of collimating and focusing the reflected holes has not yet
been found, the experiment has the potential advantage
that it couples to the k dependence of the gap function in
a very direct way.
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2. Effect of impurities

It is well known that nonmagnetic impurities in s-wave
superconductors do not change the thermodynamic
properties (Anderson’s theorem, 1959). Only paramag-
netic impurities act as depairing centers. On the other
hand, the depairing effect of nonmagnetic impurities on
unconventional states was already recognized in the early
work of Balian and Werthamer (1963). In addition to the
suppression of T,, impurities will also modify the low-
temperature properties. For the BW state, Buchholtz
and Zwicknagl (1981) discussed the change in density of
quasiparticle states due to a magnetic field, impurities,
and a surface and showed that the response to these per-
turbations are quite different from those of conventional
superconductors. In this section we shall consider the
effect of impurities on unconventional superconducting
states.

The most natural framework in which to discuss the
effect of impurity scattering on superconductivity is the
Abrikosov-Gor’kov theory (Abrikosov and Gor’kov,
1960; see also Skalski et al., 1964, and Maki, 1969). The
essential properties of the impurity scattering may be
seen in the simple example of s-wave scattering. It is
convenient to simplify the calculation by neglecting
spin-orbit coupling.

In the Abrikosov-Gor’kov theory, the gap function is
given by

Ay (k)= —TEka')

Ko

AKio,) (3.13)

where F is the anomalous Green’s function (see Appendix
B). In this formalism the gap function can be considered
as the (anomalous) self-energy due to the pairing poten-
tial. Impurity scattering gives additional contributions to
the self-energy. First, we treat this problem in the Born
approximation (Gor’kov and Kalugin, 1985; Ueda and
Rice, 1985b). One contribution to the self-energy is of
the normal type, Fig. 1(a),

3MNiw,)=nu*S Gk, io,), (3.14)
*

where n; is the impurity concentration and u character-

izes the s-wave scattering potential [G, .(k,i®,)

=G (k,iw,)8;]. There is also a contribution of the

anomalous type, Fig. 1(b),

3 2iw,)=n;u 2 (Kiw, (3.15)

In the case of nonmagnetic impurities in s-wave super-
conductors, Anderson’s theorem manifests itself in the
following fact. For the s-wave state =V is simply pro-
portional to iw, and ='? is proportional to A, and their
proportionality constants are the same under the assump-
tion of a constant density of states near the Fermi energy.
Therefore the effect of impurity scattering can be taken
as a simple renormalization of the energy scale without
any influence on thermodynamic properties. In contrast,
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FIG. 1. The two types of self-energies of impurity scattering:

normal and anomalous. In the Born approximation the
normal-type self-energy is expressed by the diagram (a) and the
anomalous one by (b). In the T-matrix approximation,
multiple-scattering processes (c) are also taken into account.

for any unconventional state ='?) is zero, since the sum-
mation in Eq. (3.15) vanishes. Therefore simple scaling
no longer works in this case. Generally, a difference be-
tween the two proportionality constants leads to depair-
ing effects.

With the self-energies due to impurity scattering, the
Gor’kov equations for the Green’s functions (Appendix
B) are modified as

liw, —e(k)—32iw,)]1G(k,iw,)]

— 3 A (KF (K io,)=1 (3.16)
liw, +ek)+Z(—iw,)FL(kio,)
—AlL(KG(k,iw,)=0. (3.17)
For the unitary states they are easy to solve:
io, t+e(k)
G(k,iw,)= : (3.18)
(id,)*—e(k)*—A(k)A'(k)
' +Al(k)
Fl(kio,)= 5 T,  (3.19)
(io, )?—e(k)?—A(k)AT(k)

where i@, =iw,—2'"iw,). By substituting Egs. (3.18)
and (3.19) into Egs. (3.13) and (3.14), we obtain self-
consistency equations for A (k) and 3'V(iw, ). We show
the self-consistency equations for the BW, ABM, and po-
lar states as typical examples in a rotationally invariant
system:

(a) BW state:

1
1=7N(0 VkBTE , (3.20)
Va2 +AL
& o (3.21)
W, —w . .
N Veital

(b) ABM state:
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1 N(0)Vk TE n 1 i jog2n B0 (3.22)
___7,. — 1o )
B 2A0 A, o] |2 %ia, +a,
i Wy *AO
o,=w,— = lo —_— . 3.23
"2 Pia, + A 623
(c) Polar state:
27172 2
3 _ 1 @, AO+\/ 2+ A}
1==aNOWkyTS— 1|1+ - |
> (0)Vkpg % A, Ao J A, >, (3.24)
B, AtV a2+l
&, =w, +T—log——nm—" "0 (3.25)
Ay @,
[
In the above expressions ¥ is the strength of the pairing 1 ]
interaction defined by V(k,k')= 3Vk k’ (rotationally p(w):N(O)FIm[z&‘)n ]Iiwn:w+,-5 . (3.26)

symmetric form) and I'=7n;N(0)u* is the strength of
the impurity scattering, i.e., half of the scattering rate,
I'=1/27y. Equations (3.20) and (3.21) have the same
form as for magnetic impurities in an ordinary s-wave su-
perconductor.

The three sets of equations reduce to the same set of
equations when they are linearized. The transition tem-
perature obtained by the linearized equation decreases as
a function of T in the same way as in ordinary gapless su-
perconductors with magnetic impurities.

In this formalism the density of states of quasiparticles
is given by

-3

2
T | T
O —_ —_—— | —
N(0) A [1 2 |4 (/A <2/7),
plo)=
N(O %o S T /Ay>2
)Fcotr (T/Ag>2/1) .

The most remarkable result is obtained for the polar state
[Fig. 2(c)]. In this case, when there are impurities, zero-
energy excitations always exist and their density of states
at the Fermi level is given by

p(0)=N(0

)Ao/T sinh(T' /A,) . (3.29)

The main conclusion of the Born approximation is that
the most serious effect would be on any polar state, i.e., a
state with line zeros, since in this case the low-
temperature behavior is modified by any concentration of
impurities. In contrast, a state with point zeros has a
critical concentration before an essential modification of
the power laws sets in. Although the analysis was carried
through only for the simplest forms of p-wave states, the
results depend merely on the generic form of the density
of states and therefore should be applicable with slight
modification to any state with the same generic form.

In a single-site Kondo problem, resistivity becomes a
constant at T=0 after a logarithmic increase. The con-
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In Fig. 2(a) we show the density of states for the BW
state. For a weak impurity scattering, there is a gap in
the density of states given by

=Ag[1—(T /4031372 .

@ (3.27)

i
When I' /Ay=1 the system is in a gapless regime. This
behavior in the BW state is the same as for the usual
paramagnetic impurity effect in an s-wave superconduc-
tor. The density of states for the ABM state is shown in
Fig. 2(b). The density of states at low energies is given by

(3.28)

stant corresponds to the phase shift of 7/2, the unitary
limit. In many heavy-fermion systems, resistivity in-
creases as temperature is lowered, reaches a maximum,
and then decreases rapidly. The value of the resistivity at
the maximum, in many cases, is consistent with the value
of the unitarity limit. Therefore it would not be surpris-
ing if scatterers in heavy-fermion systems had large phase
shifts, as Pethick and Pines (1986) pointed out. To treat
scattering with a large phase shift, the Born approxima-
tion is not sufficient, and multiple scattering processes
should be included.

Multiple scattering of electrons by magnetic impurities
in ordinary superconductors was studied by Shiba (1968),
using a T-matrix approximation. He found that there ex-
ists a localized excited state around a classical impurity
spin, which at finite concentration forms an impurity
band. For the investigation of the impurity effect in the
BW states mentioned before, Buchholtz and Zwicknagl
also employed the T-matrix approximation, as did
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Schmitt-Rink, Miyake, and Varma (1986) and Hirschfeld,
Vollhardt, and Woélfle (1986), independently, in studying
the consequences of resonant impurity scattering in
heavy-fermion systems.

p(®)

ABM(Axial)

I/A0=0.0
1.5+ 0.01
03
0.6
1.0 — /f
10 L5
0.5 -
° : : l
(c) Polar
T'/A0=0.0
15+
0.1
0.3
1.0k -
06 10 L5
0.5
0 1 1 |
0 0.5 1.0 1.5 2.0

W/AQ

FIG. 2. Density of states of quasiparticles obtained by the Born
approximation: (a) for the BW state; (b) for the ABM state; (c)
for the polar state (Ueda and Rice, 1985b).
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In the T-matrix approximation the self-energy due to
impurity scattering is given by [Fig. 1(c)]

3Wiw,)=nu’SGk,in,)/ [1-u3Gk,in,)] .
k K

(3.30)

A self-consistent theory is obtained by using the odd part
of the self-energy, [2'V(iw,)—2"(—iw,)]/2, in Egs.
(3.16) and (3.17). The even part of the self-energy,
(2 Wiw,)+32(—iw,)]/2, is just a shift of the chemical
potential and can be neglected. In this theory impurity
scattering is characterized by two parameters. One is the
phase shift defined by

tand= —7uN(0) , (3.31)

and the second is the scattering rate I'=1/27,sin%$ in
the unitarity limit §=m/2.

Schmitt-Rink er al. and Hirschfeld et al. assume that
in a Kondo lattice each magnetic ion leads to a phase
shift of conduction electrons 6=m/2. However, the net
effect is zero because of the periodicity; the resistivity of
a periodic system is zero at zero temperature. Therefore
a nonmagnetic ion in such a lattice would appear to offer
a phase shift 7/2 with respect to the background. With
this assumption, the impurity scattering is characterized
again by a single parameter I'. Figure 3 shows the calcu-
lated density of quasiparticle states for a polar state for
various scattering potentials, setting as the pair-breaking
parameter I'/A;=0.01. At low energies there is a reso-
nance peak and at higher energies the density of states is
almost identical to its value without impurities
(cotd— o). The same statement can be made for the
ABM (axial) state. In both cases the width of the reso-
nance peak increases as I' /A, gets larger.

From the density of quasiparticle states, we can im-
mediately see the effect of resonant impurity scatterings
on specific heat. At very low temperatures (7/7T, <0.1)
it shows a small T-linear specific heat due to the appear-
ance of the resonance, while at elevated temperatures it
follows closely the power law expected without impurites
(Hirschfeld et al., 1986, 1988; Miyake, 1986; Ott et al.,
1987). Similarly, the NMR relaxation rate shows a
Korringa-like behavior at very low temperatures and fol-
lows a power law for the pure case at higher tempera-
tures (Hirschfeld et al., 1988).

The situation is very different for transport properties
in heavy-fermion superconductors. For these quantities
the Born approximation is inadequate not only quantita-
tively but also qualitatively. As an example we consider
thermal conductivity x. In a simple kinematic theory it
is given by k=1v37C. In the Born approximation, it can
be shown that the product of the relaxation time 7(®)
and the density of states p(w) is almost energy indepen-
dent (Coffey et al., 1985; Pethick and Pines, 1986). In
this result, the modification of p(®) discussed in this sec-
tion is neglected, which gives only a minor change when
the impurity concentration is small. Therefore the
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thermal conductivity in the Born approximation is al-
most linear in T and the coefficient remains the same or-
der as its normal-state value, which contradicts the ex-
perimentally observed T? behaviors. Pethick and Pines
proposed that the discrepancy may be resolved when the
resonant nature of the impurity scattering in the unitari-
ty limit is taken into account.

Calculations of the thermal conductivity using the 7-
matrix approximation were carried out independently by
Schmitt-Rink, Miyake, and Varma (1986) and Hirschfeld,
Vollhardt, and Woélfle (1986). Their results may be sum-
marized as follows. At very low temperatures, « /T goes
to a finite value due to the appearance of the low energy
resonance. At higher temperatures, in a wide tempera-
ture range, « follows a T'? law for the case of line zeros
and a T° law for the point zeros. This result means that
the product of 7(w) and p(w) shows almost the same be-
havior as 7yp(w) where 7y is the scattering rate in the
normal state. This fact cannot be understood by the
Born approximation, as we discussed before. It should
also be mentioned that vertex corrections to the thermal
resistivity are discussed by Hirschfeld, Wolfle, and Einzel
(1988).

The T-matrix approximation is also applied to the
study of ultrasonic attenuation in heavy fermions
(Hirschfeld et al., 1986; Schmitt-Rink et al., 1986). The
temperature dependence of the sound attenuation de-
pends on its polarization and propagation direction. Mi-
yake (1986) and Schmitt-Rink et al. (1986) have conclud-
ed that the assumption of a state with line zeros, together
with a scattering in the unitarity limit, leads to results

consistent with the experimental observations in UPt;,
CeCu,Si,, and UBe,;.

An anomalous temperature dependence of the London
penetration depth in UBe,; was reported by Gross et al.
(1986); AM(T)—A(0) follows a T? law. These authors ana-
lyzed the temperature dependence by the Born approxi-
mation and concluded that the behavior is consistent
with an energy gap with point nodes. Recently, Choi and
Muzikar (1988,1989b) developed a theory of the
superfluid density tensor which determines the penetra-
tion depth. They treated the impurity scattering by the
T-matrix approximation and pointed out the possibility
that impurity scattering enhances the anisotropy of the
density tensor. Turning to the electromagnetic proper-
ties, the electromagnetic absorption in unconventional
superconductors was studied by Hirschfeld et al. (1989).
They found a new structure at w~ A, associated with
transitions into the resonance state.

In summary, impurities modify the power laws, espe-
cially at low temperatures. The consequences of resonant
scattering in unconventional superconductors for specific
heat, thermal conductivity, ultrasonic attenuation, NMR
relaxation rate, and electromagnetic absorption have
been examined by several authors, as we have seen in this
section. In particular, Miyake (1987) and Schmitt-Rink
et al. (1986) have pointed out that the experimentally ob-
served power laws are more consistent with line zeros
than with point zeros. However, to draw a definite con-
clusion about the gap structure we need further experi-
ments that are directly related to the symmetry of the or-
der parameter.

p(w)
N T T T T T T T
) Polar (b)
L6  T/A0=0.01 =
_.‘
ﬂ
ABM(Axial)
I/A0=0.01
_
| | |
0.8 1.2

FIG. 3. The density of states of the polar and the ABM states obtained by the T-matrix approximation for a pair-breaking parameter
of I'/Ay=0.01 and different values of the phase shift. The inserts illustrate the resonance peaks in the low-energy, gapless region

(Hirschfeld et al., 1986).

Rev. Mod. Phys., Vol. 63, No. 2, April 1991



258 M. Sigrist and K. Ueda: Unconventional superconductivity

B. Phenomena associated with the phase transition

One purpose of the study of phenomenological theories
of the superconducting phase transitions is to identify the
symmetry of the superconducting phase in heavy-fermion
compounds or at least to establish the assumption of un-
conventional superconductivity. As we mentioned
above, one very important feature of the phase transition
of unconventional superconductors is the eventual break-
down of various symmetries, such as the crystal point
group and time-reversal symmetry, as well as the U(1)
gauge symmetry. It is expected that such loss of symme-
try will be manifested in several observable phenomena,
even if it might not be so drastic as the occurrence of su-
perconductivity itself. In the case of the breakdown of
point-group symmetry, one effect is the spontaneous de-
formation of the lattice (Joynt and Rice, 1985; Ozaki,
1986). On the other hand, an externally produced lower-
ing of the crystal symmetry eventually causes a splitting
of the superconductivity phase transition for a supercon-
ductor described by a multicomponent order parameter
(Sigrist et al., 1987a, 1987b; Volovik, 1989). Effects re-
lated to the breakdown of time-reversal symmetry are
also very interesting. However, their discussion is post-
poned to Sec. V. The superconducting state can also
affect the propagation of ultrasound in these systems. A
multicomponent order parameter allows various cou-
plings to the ultrasound waves. Via damping in super-
conductivity domain walls (Joynt et al., 1986) or by ex-
citing collective modes (Hirashima and Namaizawa,
1985, Monien et al., 1986a, 1986b; Wolfle, 1986) an ex-
planation of the experimentally observed ultrasonic at-
tenuation peaks may be possible. Another proposed ap-
proach to confirming unconventional superconductivity
is to investigate the unconventional direction dependence
of the upper critical magnetic field H,, (Gor’kov, 1984;
Burlachkov, 1985; Machida et al., 1985).

1. Spontanous crystal lattice deformation

The spatial symmetry of the superconducting phase is
manifested in its quasiparticle excitation spectrum E or,
especially, in the term tr[A T(k)A(k)]. Joynt and Rice
(1985) examined the question of whether there is an ob-
servable effect, similar to magneto striction, connected
with lowering of the spatial symmetry in £,. How can a
coupling between the superconducting order parameter
and the crystal lattice be imagined? The basic idea be-
comes obvious when we write the condensation energy
(energy gain with respect to the normal state if the sys-
tem undergoes a superconducting transition) at 7=0 in
the form

Ec=—%%S(E(k)—u)tr[ﬁT(k)ﬁ(k)], (3.32)

where 3,8(e(k)—p) is the (normal-state) density of
states at the Fermi surface. It is reasonable to assume
that a superconducting system with an anisotropic A(k)
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maximizes its condensation energy by an enhancement of
the density of states in the directions along which the gap
is larger and by a decrease along the directions of a small
gap. This increase in the density of states can be pro-
duced by a change of the crystal lattice. The coupling
between lattice deformation (strain) and the band energy
can be approximated in lowest order by

e(ke)=e(k)+ 3 A€,kk; (3.33)

ij
where €;; is the strain tensor and A;; a coupling tensor.
The form of A;; depends on the symmetry of the original
lattice structure. Therefore the minimization of Eq.
(3.32) with respect to €;;, together with the elastic energy
50j,,mCijim €1 €1 Of the lattice, leads to the description
of the deformation.

In order to treat this effect close to the transition tem-
perature, Ozaki (1986) has introduced a formulation of
the strain—-order-parameter coupling on the basis of
group theory. Following this formulation we add to the
Ginzburg-Landau free energy F, given in Sec. II, (a)
terms that couple the order parameter 7, in second order,
to the strain tensor ¢, in first order, and (b) the elastic en-
ergy of the crystal lattice. The restriction for the con-
struction of these terms is again only that they be invari-
ant under all symmetry transformations of the system:

Fr,strain(n’e): - EC(V)CV(%’",”O)G(VJ” )
Y.-m
+13 B(y)ely,m)*. (3.34)
Y,m

The sum goes over all representations ¥, which are com-
ponents of the decomposition of T'*® T, and their basis
functions labeled by m. The symbol €(y,m ) denotes a
combination of e-tensor elements and has the symmetry
property of the basis function m in the representation y
of the original point group: e(y,m)=3; x;€; (see
Table VIII). Similarly, V(y,m ;7) is the bilinear form of
7n([,m) with the symmetry of the basis function (y,m)
(see Table IX). The coupling constants C(y) and the
elastic constants B(y) are real numbers characterizing
the system.

With these additional terms it is possible to describe
the behavior of the lattice by minimization of F with
respect to e(y,m). Clearly, the order parameter is
affected by the presence of this coupling. We shall, how-
ever, neglect this minor effect now and use in the follow-
ing example only the “bare” order parameter calculated
without the coupling terms in Eq. (3.34). Let us consider
the superconducting phase ¥(k)=nk, k,[n=(0,0,7) with
[n|?=— A(T)/4(B,+B,)] in the representation I“; of the
cubic point group O,. Inserting this in Eq. (3.34) and
minimizing with respect to e(y,m ), we find

c(riHlyl?
dri)=— "1
B (3.35)
oy 26Dl '
(D 1)= 3 e
3 B(T'{)
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All other components €(y,m) are zero. The first term
corresponds to a uniform change of the volume, but the
second to an anisotropic deformation. In notation that is
easier to understand it is

e e — C(Tf) V2C(ry) | |y

= B(r{)  B(ry) |2v3’

o, |E@h VeI | Iy -39
= 2B(T'}) B(riy) |(v3~’

This result describes a deformation of the cubic lattice to
a tetragonal symmetry D,, with the fourfold axis parallel
to the z direction. The resultant symmetry corresponds
to the symmetry of the excitation energy E, (the gap
maxima lie in the x-y plane along the diagonals, whereas
in the z direction there is a minimum). Therefore the
column “symmetry” in Table VI shows just the lattice

TABLE VIII. Strain tensor combinations as basis functions of
the representations of the point group G: (a) for the cubic point
group O, where the coefficients of the elastic energy in Eq.
(3.34) have the following relations to the elastic tensor c;y:
B(I')=c,+2¢cp,, B(TF)=cy —cyp, B(TF)=cu/4; (b) for

the hexagonal point group Dy, with B(T'{,1)
=[(e;Fep)es3—ch /ey e tey—2e3), B(I'{,2)
=(cy—ecp) /ey +ep+ey—2ep3), B(TS)=c4/2, B(T{)

=(C11_C12), and a=(C]1+012“C13)/(C|3'_C33); (c) for the
tetragonal point group Dy, with B(T'{,1)
=[(cy; +epdess—cl1/(ey +epnte—2ep3), B(T'{,2)
=(es3—c3) /ey +epteyy—2cy;), BT )=cyy—cp, B(TY)
=ce6/2, B(TT)=cy/2,and a =(cy; +cp—¢y3)/ (€13~ c33).

(a)

er) (e tente)
e(T5,1) = (26— —6y)
e(I'¥,2) —‘—/1—5—<en —c,)
e(rs,1) V2e,,
«(T7,2) Ve,
eT{,3) V2e,,

(b)
eIy, 1) €xte,te,
e(Tf,2) ale, te,)te,
eT,1) V2e,,
eT$,2) V2e,,
e(T¢,1) 5 (e —6)
&«rd,2) V2e,,

(c)
i, € T €, e,
e(T'f,2) ale..+e,)te,
ery —‘/Tz(exx —€,)
;) \/éexy
eT,1) \/Zexz
e(r,2) V2e,
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TABLE IX. Bilinear forms of the order parameters in I" corre-
sponding to the basis functions of the irreducible representa-
tions of (a) Oy, (b) D¢, and (c) Dy, constructed by the decom-
position of I'eT'.

Representation Bilinear forms
(a)
I V(I )=y
ry V(D)= [2+ |, [?

‘V(l"j",l)=|771|2—|1]2|2
V(LT 2)=n{m+nm;

Ffs CV(r;f)z|"71\2+|"]2'2+\"73|2
V(TT, D=2|n;|>—|m|*~ |n.]?
WV(TT,2)=V3(|n,[*—[7,|%
V(TS D=n3n5+nm}
V(TS 2)=n n+nm
V(TS 3)=n{n+mn

(b)
F%z.u V(T ,m)=|q|*
T : V(LT ,m)=|m,| >+ n,|?
VTS, D =|m|*—|n./?
V(T ,2)=nfn+mmn5
(c)
F?—f2,3,4 V(T ,m)=|q|?

rs V(LT ,m)=|n, >+ |n,|?
V(L) =|m[>— |,/
VIO =nin+mn;

symmetry produced by the superconducting transition.
In the region close to T, the temperature dependence of
the strain tensor is proportional to |y|XT)~|T—T,|.
For T=0 Joynt and Rice (1985) gave an estimate for the
magnitude of this deformation using experimental data
about the dependence of T, on uniform pressure:
€(T'})~107° and &(T';,1)~10"". Since this is a very
small effect, it may not be detected by x-ray experiments.
One possible way to observe it may be to measure the
macroscopic deformation of a single crystal. However,
for this purpose it is required that the whole sample
choose only one among the degenerate superconducting
phases. Otherwise the creation of many domains would
destroy this macroscopic effect.

2. Splitting of the phase transition

Another aspect of the superconducting phase transi-
tion including multicomponent order parameters occurs
if the symmetry of the crystal lattice is externally
lowered, e.g., by the application of uniaxial stress.
Remembering the argument for the effect explained in
the previous section, we notice that uniaxial deformation
of the lattice could support or suppress certain com-
ponents of the order parameter due to an anisotropic
change of the density of states. In the group-theoretical
view, this appears as a lifting of degeneracy when the
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symmetry of the system is lowered, since in most cases
the originally degenerate states no longer belong to one
single irreducible representation of the new symmetry.
The gap functions then have, in principle, to be classified
with respect to the new symmetry.

Therefore the application of uniaxial stress to a crystal
lattice yields a slight difference of the transition tempera-
tures among the originally degenerate basis gap functions
of a multidimensional representation. This problem may
be conveniently treated by using the group-theoretical
formalism introduced in Sec. II. To illustate this effect
we consider here the example of the two-dimensional rep-
resentation 'y of the cubic group O,.

First we analyze the case of uniaxial stress along the z
axis. The cubic lattice is transformed into a tetragonal
one. The strain tensor (Table VIII) has therefore a finite
component €(I'y, 1), since €, is different from €, =€y,
and also e(I';"), if the volume is changed. The coupling
to the order parameter [Eq. (3.34)] leads to a correction
of the second-order terms in the Ginzburg-Landau ener-

gy,
[A(T)+C(IHe(T)+C(T)e(Ty, )],

+H[A(T)+C(INe(T)—C(THe(T5, D][n,l?

= AT >+ A,(Dn, >, 3.3

with A (T)=a(T;/T,(T/T;—1). The new transition
temperatures T; are determined by the zero of the prefac-
tors of |7;|?,

T,~T. 1—$[C(r1+)e(rr>+C(r;)e(r;,1)] ] :

(3.38)

T,~T, 1—%[0(1‘?)6(1“?)—-0(1‘;“ ey, 11| .

The uniform deformation €(T';") produces simply a shift
of the transition temperature. However, the component
e(T';, 1) yields a split of T,. Note, that for a volume con-
serving deformation, an enhancement of the supercon-
ducting transition temperature takes place. The lift of
degeneracy is explained by the fact that the two-
dimensional cubic representation 'y splits in tetragonal
symmetry into I'J7@ 'y of D,, (both 1D). We proceed
further in the analysis of the Ginzburg-Landau free ener-
gy (for the fourth-order terms see Table V in Sec. II) as-
suming that C(I';7) <0 (T, >T,) (the treatment of the
case T| < T, is exactly analogous),

F=A(Dn*+ A, (D), |2+ By gy |2+ |, ]2)?

—4B,|n,12n,[%sin%(Ag) , (3.39)
where we use the parametrization 7;=|; \eld’j and
Ap=¢,—¢,. Since only the last term contains the rela-
tive phase A¢, the minimization condition implies for
B,>0 sinA¢=x=x1 and for 3, <0 sinA¢$=0. Immediately
below T'; the phase
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I, |2 A 0 (3.40)
=— an = .

T 26, M2

appears with the nondegenerate gap function

Y(k)=n,(2k}—k}—k})/V'6 having the symmetry

D,,(T'{"). This phase breaks only the U(1) gauge symme-
try. Inserting this |7,|? in F the effective Ginzburg-
Landau theory for 7,, we obtain

_ 2
F=F,+ | A,(T)— 1——5—2sin2A¢ A(T) ||n,)?
1

+Bylm,l* . (3.41)

The second-order term of 7, is renormalized by the pres-
ence of the finite order parameter 17, so that its transition
point is not situated at T',, but is determined by the zero
of the total prefactor of |1,|2. It is obvious that this ex-
pression remains positive for all temperatures if sinA¢=0
(B, <0). In that case Eqg. (3.40) is the stable phase for all
temperatures below 7;. On the other hand, for
sinA¢==1 (3,>0) an additional instability occurs at

_ 2
T0=T2—1~£T~ with G=l—% . (3.42)
2 1

1-G

Below T, the free energy in Eq. (3.39) has to be mini-
mized for both components 7;,

e [A,(T)— A,(T)]—2B, A,(T)

I 86,8, —B,) ’
(3.43)
L 8/32(31—32)

This new phase is twofold degenerate and has the sym-
metry D, (T ),p(k)=a(Tk}+b(T)kZ+b*(T)k}. The
transition to this phase is continuous, i.e., of second or-
der, and breaks the time-reversal [¢*(k)7 (k)] and the
point-group symmetry. This analysis shows that uniaxial
stress can split a superconducting phase transition, gen-
erating two superconducting phases different in symme-
try. It is also clear that such an effect can only take place
for multicomponent order parameters.

Successive second-order phase transitions could be ob-
served, for example, in the specific heat C(7T) measure-
ments. Each transition is accompanied by a discontinui-
ty of C(T). The specific heat is given by

o°F
C(N=—T—7. 3.44
372 ( )
In our example the first transition leads to
a 2
AC,=——T, (3.45)
ZBch
and the second
2
a’“T,
AC,= ) 0 (3.46)
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Comparing the two we find
AC, B, T,

AC, Bi—B, T,

(3.47)

This ratio can be of the order of unity when we assume
that the coefficients 3, and B, are of the same order.
Only the splitting of the transitions is proportional to the
strain €, but the magnitude of the discontinuities of C(T)
at the transitions is mainly determined by the four-order
terms in Eq. (3.39) and is therefore almost independent of
the strain €. Hence measurements of the specific-heat
discontinuities could give a relation among the
coefficients 3; (Sigrist et al., 1987; Hess et al., 1989; Ma-
chida et al., 1989).

Stress along the [1,1,1] direction produces a rhom-
bohedral deformation of the cubic lattice with the point
group D,,;. However, no splitting of T, is expected in
the T’y representation of O, because it is compatible
with the two-dimensional representation I'; of Dj,.
Therefore both basis states are still degenerate.

In the same way one finds a large variety of transitions
between different superconducting phases for the three-
dimensional representations I‘;t s of O, in a deformed cu-
bic lattice. Even first-order transitions can occur among
different superconducting phases (Sigrist et al., 1987).

In the hexagonal system (Dyg,) the two-dimensional
representations I' and I'f split by the application of
uniaxial stress in any direction in the basal plane. The
behavior is exactly the same as in the cubic representa-
tion T'y” analyzed above.

The property of the two-dimensional representation
I's in the tetragonal group D, is similar. Orthorhombic
deformation by uniaxial stress along the [1,0,0] or [1,1,0]
direction leads to a splitting of 7,. There are two
different types of additional second-order transitions
(crystal-symmetry and time-reversal breaking) possible,
depending on the coefficients 3; of the fourth-order terms
of the Ginzburg-Landau free energy (Volovik, 1989).

Even if the degeneracy of T, is lifted, regions may be
found in the B; space where additional transitions are
suppressed, as we also discussed in the example above.
Thus a negative result in such an experiment still cannot
rule out unconventional superconductivity. On the other
hand, the occurrence of more than one superconducting
transition is strong evidence of unconventional supercon-
ductivity, since in a conventional superconductor only
one superconducting phase exists. Only the possibility of
an additional breakdown of symmetry, as allowed by a
multicomponent order parameter, could produce further
transitions inside the superconducting phase. With re-
gard to this see also Sec. VII.C, where we discussed the
double transition observed in UPt,.

3. The upper critical field H_,

A further typical effect of unconventional (multicom-
ponent) superconductivity is connected with the upper
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critical field H_,. In several theoretical studies it has
been proposed that the anisotropy of H,, be considered
in order to prove unconventional superconductivity in
the heavy-fermion systems (Gor’kov, 1984; Burlachkov,
1985; Machida et al., 1985). In conventional supercon-
ductors the angular dependence of H,, is restricted to the
anisotropy produced by the mass tensor (the coefficients
K; of the gradient terms). No anisotropy is expected in
the basal plane of a tetragonal or hexagonal system and
none at all in a cubic system. A multicomponent order
parameter, however, can produce anisotropy even in
some of these cases.

To illustrate this we consider the example of the two-
dimensional representation 'S’ in a tetragonal system
with a magnetic field in the basal (x-y) plane:
H=(H cosf, H sinf, 0). The Ginzburg-Landau free en-
ergy is given in Sec. II. The procedure for calculating
H_, is exactly the same as in conventional superconduc-
tors (see, for example, de Gennes, 1966). If the external
field is close to H,, the order parameter is assumed to be
small. Therefore the Ginzburg-Landau equation, ob-
tained by variation with respect to 7, and 7,, can be
linearized:

(K\D?+K,D}+KsD2)n,
+(K3D,D,+K,D,D, )n,= A(T)n,

(3.48)
(K,D}+K\D}+KDM)m,

+(K3D Dx+K4DXD )TIXZA (T)nz ’
y y

with D=V —i(2e/c)A. These equations have the form
of a two-component Schrodinger equation with an exter-
nal magnetic field, where 4 (T) corresponds to the energy
eigenvalue, the “Landau levels.” In the considered case
the most convenient form for the vector potential is
A= A(z)=Hz(sin0, —cos6,0), because then we can as-
sume homogeneity in x and y directions. The supercon-
ducting instability is given by the smallest eigenvalue of
the equation [A4(T)= —w,/2 with o, as the cyclotron
frequency],

2

ngz (K, sin®0+K, cos0),

+[(K;+K,)sinf cosO]n,} —Ks32n,=— A(T)n,

(3.49)

2
—2;—Hz ] {(K, sin’0+ K cos?0)n,

+[(K;+K,)sinOcosf1n,} —Ks32n,=— A(T)7, .

Therefore, by a diagonalization of the equation, we
derive the maximal magnetic field below which a finite
order parameter can exist:
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Ki+Ki—(K5+K,)* K ,K,

172

H02(6)=—A(T)§

where f(0)=sin?(20) and g(0)=4(cos*0+sin*0). The
upper critical field is in general angular-dependent, and
its anisotropy factor
Hy(m/4) [ K +K,—|K,—K,| |
K1+K2'~(K3+K4)

3.51
H_,(0) 351

can be rather large. It has to be mentioned that the
values K; obtained in the weak-coupling limit assuming a
spherical Fermi surface lead to an isotropic H,, field
(K:K,:K3:K4=3:1:1:1; Machida et al., 1985). Similar
results are found in the case of cubic symmetry for all
multidimensional representations. The hexagonal sys-
tem, however, has no anisotropy in the basal plane. This
case corresponds to the above calculation when we re-
quire additionally that the coefficients K; satisfy the con-
dition K|, =K, +K;+K, (Burlachkov, 1985).

Another interesting feature of the superconducting
state at H,, can be studied if we consider a magnetic field
parallel to the high-symmetry axis (z axis) in a tetragonal
or hexagonal system [H =(0,0,H)]. This case has been
investigated recently by Zhitomirskii (1989) and Sun-
daram and Joynt (1989). It is convenient to introduce a
pair of operators Il.=(D, +iD,)q/V2 with g*=c /2eH
and the commutation relation [IT_,II,]=1. Substitut-
ing I into Eq. (3.48), replacing the order parameter by
n+=(n,xin, )/V'2, and omitting D, (the system is
homogeneous along the z axis), we obtain

(RO T_+K,II_TI )y,

+(I?3H2++I?4H€)n_:—§A(T)n+

o (3.52)
(K, 0% + K310 )y

+(I?1H;H++I?2H+H4)n_=—;CH—A(T)n“

with K,=K,+K,+K,—K,, K,=K,+K,—K;+K,,
K,=K,—K,+K;—K,, and K,=K,—K,—K;—K,.
The symbols II, and II_ can be considered as creation
and annihilation operators, respectively, in an occupation
number representation:

N ln)=Vn+1ln+1) and N_|n)=Vn |[n—1) .

(3.53)

Therefore we expand the order parameters 7. in this rep-
resentation space: 7,.=3_oa,+|/n). With Eq. (3.52)
this leads to an infinite linear equation system, whose
lowest eigenvalue has to be determined. However, in the
case of a hexagonal system (K,=0) it can easily be
decoupled, since the space {|n )} breaks into small, dis-
]

—1 N T il
Hosir =222 2 Vsi5y555, KD g0 k5, @72 1k5,%q/2 4105, Fq /2K,

q kk’ 5155535,
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(K,+K,)?

f(e)— -8(6) (3.50)

(K, +K,)

}~1/2
[

joint subspaces: {n_,n.}={ln),|n+2)}.

The two possible ground states are (I)
M—,m:)=0,a0410)) and AD (9_,n4)=(ay,_|0),
a,,12)). The lowest eigenvalues in these subspaces give
again the corresponding upper critical fields,

C
oK,

HL(T)=—A(T)

s

(3.54)
HI(T)=— ,«1<T)%[3(f<‘1 +&,)

—V/(R,+3K,?+8K 27" .

Depending on the coefficients K, the field HY, or HY is
the relevant (higher) upper critical field. Thus two types
of high-field superconducting states are possible. The
vortices corresponding to state (I) are axial and yield a
conventional hexagonal vortex lattice, as expected, along
the symmetric axis (z axis) of a hexagonal system. On the
other side, state (II) breaks axial symmetry and its vortex
lattice need not be hexagonal.

Finally we should mention that the symmetry of the
order parameter induced by the field need not be the
same as that of the zero-field parameter. Therefore phase
transitions can occur if the applied magnetic field is de-
creased. At the same time, a change of the vortex lattice
is also expected (Joynt, 1988; Volovik, 1988). An appli-
cation of this example will be considered in Sec. VII.C to
explain experimental results in UPt;.

4. Collective modes

One of the special properties of unconventional super-
conductors is the existence of collective modes with small
frequencies. Such modes have been clearly observed in
superfluid 3He by ultrasonic attenuation; see Wolfle
(1978). Observation of a sound attenuation peak near T,
in UBe;; (Golding et al., 1985) and in UPt; (Miiller
et al., 1986) have stimulated the investigation of the col-
lective modes in unconventional superconductors.

In the conventional s-wave pairing state, the important
collective modes are longitudinal collective modes (zero
sound) in the neutral Fermi gas and the plasma modes in
the charged case (Anderson, 1958). Therefore for con-
ventional s-wave superconductivity the collective modes
are important theoretically from the point of view of
gauge invariance but have little relevance to experiments.
In unconventional superconductors, on the other hand,
there can be several low-energy collective modes due to
multicomponent order parameters.

The pairing interaction, Eq. (2.1), can be generalized as

(3.55)
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to include the finite total momentum q of the Cooper
pairs. It reduces to Eq. (2.1) when only the q=0 terms
are retained. Once the linearized gap equation in Sec. II
is solved, the matrix element of the interag\tion is ex-
pressed by the basis gap functions ASISZ( I,m;k) as

V0005, (K K)
=§V(F)§,ASZSI(F,m;k)A;*354(I",m;k') ,  (3.56)
where V(T') is the coupling constant for an irreducible

representation I'.
We define field operators for Cooper pairs,

¥, (@)= AY (T,m;Kag i qnk, (3.57)
515, 1 2

V(@)= A, (D,miKal,y alpn - 359
515, 2 1

With the field operators the interaction Hamiltonian can
be expressed as

FHoir =SSV S (W, (q) . (3.59)
q I m

The gap function ASlSz(k) is given by the average of the
field operators,

By, (K== VT ZAy (0 miR) (B, (=0))

(3.60)

Collective modes are essentially the oscillatory motion
of the order parameter around its equilibrium value.
Some of them can couple with charge and spin-density
fluctuations. Therefore it is necessary to consider the
fluctuations of the order parameter around the expecta-
tion value, Eq. (3.60), and the charge and spin-density
fluctuations simultaneously. This can be done by solving
the equation of motion for the field operators using the
random-phase approximation in the presence of external
perturbation, for example in the presence of electromag-
netic fields. In the charged case the Coulomb interaction
has to be taken into account in addition to the pairing in-
teraction. Thus we obtain a set of linear coupled equa-
tions whose eigenvalues give frequencies of the collective
modes. An alternative method is the kinetic equation
formalism developed by Wolfle (1978).

The collective modes in triplet p-wave states in a neu-
tral Fermi gas have been investigated extensively in con-
nection with SHe. These modes consist of vibrations of
the internal structure of the order parameter, with fre-
quencies of the order of the amplitude of the order pa-
rameter Ay. One typical example is the real and imagi-
nary ‘“‘squashing modes” in the BW state. The name
comes from the fact that they describe an oscillatory
motion in which the amplitude of the order parameter is
squashed in its real and imaginary parts. Another exam-
ple is the “clapping modes” in the ABM phase. The or-
bital part of the order parameter in the ABM state is
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characterized by a set of two unit vectors n; and n, [in
Eq. (3.3) n; =% and n,=¥]. The clapping modes describe
a relative oscillation of the two unit vectors about the
equilibrium configuration n,ln, within the plane spanned
by these vectors. Experiments on sound attenuation in
superfluid phases of *He were successfully analyzed by
the absorption mechanism due to these collective modes.
This fact was taken as an important support for the
identification of the *He-A and *He-B phases as the ABM
and the BW states of triplet pairing, respectively.

Hirashima and Namaizawa investigated collective
modes in triplet p-wave superconductivity (charged Fer-
mi gas) (1985, 1987; for d-wave pairing, 1988). They in-
vestigated the collective modes in four possible phases:
polar, ABM, planar, and BW phases. An essential
modification in the charged case is again that the zero
sounds of the neutral case are lifted up to plasmons. The
other collective modes remain unchanged in the long-
wavelength limit. The forms of the collective modes and
their frequencies are found in Hirashima and Namaizawa
(1987).

Another essential difference between the superfluid and
superconductors is that the relevant symmetry for a su-
perconductor is discrete, while it is the continuous SO(3)
for the superfluid. Therefore there is no Goldstone mode
in a superconducting state in a crystal lattice with spin-
orbit coupling and all collective modes have finite fre-
quencies. In most cases their frequencies are comparable
to the order-parameter amplitude A, (Monien et al.,
1986a, 1986b).

It is not yet clear whether the sound attenuation peaks
observed in UBe ;3 and UPt; are due to collective modes.
We shall discuss this point in Sec. VII. In the following
we discuss another mechanism of sound attenuation due
to domain-wall damping.

Recently another phenomenon related to the collective
modes has been studied, namely, electromagnetic absorp-
tion. Hirschfeld et al. (1989) studied the contribution of
the collective modes to the electromagnetic absorption
for the BW phase. Their conclusion is that the collective
modes of the order parameter contribute significantly to
the power absorption at frequencies well below the quasi-
particle gap edge of 2A,; however, at the same time, they
pointed out that it is also sensitive to impurity scattering
and will be broadened when 7yAy < 1.

5. Ultrasonic attenuation due to domain walls

Anisotropic superconductors with multicomponent or-
der parameter can bear domains of different discretely
degenerate superconducting states. These domains are
separated by walls, regions where the order parameter is
converted from one to another stable states (see Sec. V).
Due to the discrete degeneracy of the superconducting
states, the extension of these domain walls cannot be
large, because the order parameter is strongly pinned to
its stable bulk states due to its anisotropy energy (de-
scribed by the fourth-order terms in the Ginzburg-
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Landau free energy). Therefore the order parameter has
to overcome a certain energy barrier to pass from one
state to the other. The competition between this energy
barrier and the rigidity of the order parameter deter-
mines a finite width in space for this conversion, so that a
well-localized domain wall is created. The existence of
such domain walls has led to the proposal that they could
give a contribution to the unconventionally large ul-
trasound absorption mentioned before (Joynt, Rice, and
Ueda, 1986). We shall base our explanation of this mech-
anism on the work done by Truell and Elbaum, who con-
sidered attenuation of sound due to planar defects in
solids (Truell and Elbaum, 1962).

A domain wall lowers locally the condensation energy
of the superconducting state, i.e., a certain energy ex-
pense gy per unit area has to be invested for their creation
(see Sec. V). Therefore, to keep the total energy small,
they may be fixed at pinning centers where the supercon-
ducting condensation energy is lowered anyway, e.g., due
to the presence of impurity atoms or crystal lattice de-
fects. Fixed by these pinning centers, the domain wall
behaves like an elastic membrane trying to be as flat as
possible (equilibrium position). We assume that the aver-
age distance between pinning centers is L. Therefore, for
a reference example, we consider a domain wall pinned at
the corners of a square with side length L. For small de-
viations { from its equilibrium position in the plane we
find an energy increase

€
7°f[vx,y§<x,y>]2ds (3.61)
with V, , as the gradient in the x-y plane. The integral
goes over the square.

We now consider the coupling mechanism between the
superconducting domain wall and the sound waves. We
assume that the wavelength of the sound is much larger
than the average size a of the domains. Therefore the
strain €;; induced by the sound is practically homogene-
ous over the range of several domains. With this as-
sumption we can write the energy density due to lattice
deformation as

=13 B(y)e(y,m)

Y,m
a 2 EACV(V’m;)\),’]e(’}’,m)fgdS
Y,m
€ R
t aL? S 19, 6y Pds (3.62)

The symbols e(y,m), B(y), C(y), and V(y,m;A) have
been introduced in Sec. II1.B.1. To get the average con-
tribution of the domain walls to the energy density we
have to take energies concerning the domain wall per
unit area (L ~2) and to multiply them by a factor a?/a3,
the ratio of the surface region to the volume of the
domain. The second term describes the coupling. Since
the strain € can couple differently to the superconducting
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phase in different domains, it induces an energy-density
difference between the domains i and j given by
Sy mAV(y,m;L); ;e(y,m) with
A‘V(}/,m;MZCW)[‘V(y,m;?»)|,-—‘\/(y,m;7u)[j]. (3.63)
The bilinear form V(y,m;))|; is evaluated in the super-
conducting phase i. Note that AV(T']) is always zero.
The coupling term between domain wall and strain is
determined by the change of energy if the domain wall is
deformed.

The sound attenuation due to the domain walls can be
calculated starting with the equation of motion in terms
of strain €;; and stress o,

a ot 3? af
axj Pa 2 l] and 0’] aeij ’

(3.64)

where p is the mass density. For simplicity we consider a
longitudinal sound wave along the z axis; o0 =0 ,, and
€=¢€,,. The relation between €,, and o, is given by

-0 _
B BLZ

ZA‘V(Y m;A); ;bly,m) [&dS,  (3.65)

where b(y,m)=e(y,m)/€,, is a constant. Note that the
second term is small compared to o /B. We now need an
equation of motion for . To consider the return of the
deviated wall to its equilibrium position we neglect the
kinetic energy of the wall, assuming that the movement is
characterized by overdamping (relaxational motion).
Thus the equation of motion of { has the form

y=_8f
V=" (3.66)

Finally we obtain the following system of coupled
equations:

d
Yatg‘,‘(x

1 9 1
a20— L :__——[ as |
v Zat av? ot? fé‘
. v (3.67)
gV, E— Y= &

where v,=V'B /p is the sound velocity. The deviation £
does not directly depend on z. To solve this system we
introduce the ansatz
z
—z ] .
v

Here o is the absorption coefficient and v the effective
sound velocity. Using only the lowest-frequency mode
for the deviation &, we find

o(z,t)=o04e  “expiw (3.68)
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4 w? )
alw)= AV (y,m;A); ;bly,m) |°,
‘n'zanvg a)z—l-a)% [,% J
(w)= 1— 4oy 1 AYV(y A); by
ymM3A); ,
v Yo wzanvé a)2+co% [VE;” J

with the lowest mode frequency w,=m?e,/YL? for the
square. Ultarsonic attenuation occurs if the energy-
density difference [AV(y,m;A);b(y,m)] induced by the
sound wave is finite. At the same time the sound velocity
is renormalized v <vy.

As an example we consider the superconducting phase
in the cubic representation I's” with the three degenerate
states [Dy, (L)1,

Y (K)=Ak,k,, ¥ (k)=Ak,k,, and Py(k)=Ak.k, .
(3.70)

For longitudinal sound waves along the z axis, only the
strain  component €, and thus b(I'})=1/V3 and
b(I'y,1)=2/V6 are finite. With the bilinear forms in
Table IX we obtain

3C(T)IA? i=3 and j=1,2,

+ -
Therefore the absorption coefficient o has the form
2
alw)=—— O _3crpIAPE, (72

m*aYpvy 0*+w?

and a similar expression can be derived for the sound ve-
locity.

To show the temperature dependence of o we assume
that the only T-dependent quantities are the order pa-
rameter (|A|<|T—T,|?) and the domain-wall energy
(g0 |T— T, |32, see Sec. V):

wz
*+a3|T—T,]?

alw,T)x |T—T,|%, (3.73)
where @, is the constant in the lowest mode frequency o,
after extraction of the temperature dependence. From
this equation we see that a has a peak immediately below
the transition and decreases like |T—T,| ! for lower
temperatures. This behavior is modified if other quanti-
ties such as Y are temperature-dependent. The frequency
dependence of a for a fixed temperature is quadratic in
the low-frequency region (&|T—T,|*”?>>w) and be-
comes constant in the high-frequency limit.

IV. BOUNDARY CONDITIONS
AND INTERFACE EFFECTS

In this section we turn away from bulk properties to
problems related with the boundary of a superconductor.
It is well known that a conventional s-wave superconduc-
tor is not affected by the presence of an interface to a
nonconducting medium. The situation is essentially
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(3.69)

m) ]2] ,
[
different for most of the non-s-wave superconductors.
Anisotropic superconductivity is strongly influenced by a
boundary within the range of its coherence length. This
was first noticed by Ambegaokar et al. (1974) for the p-
wave superfluid *He. They found that the internal angu-
lar momentum of the Cooper pairs always turns perpen-
dicular to the vessel wall confining the fluid. Considering
the Cooper pairs as rotating quasimolecules, this is a very
natural result. A similar effect is also expected in aniso-
tropic superconductors. However, there the situation is
slightly different. The rotational symmetry SO(3) is re-
duced to a discrete point-group symmetry of the crystal,
and spin-orbit coupling destroys the independence of or-
bit and spin degrees of freedom. The latter, especially,
yields a “‘magnetically active” boundary, which is able to
produce spin scattering processes (Millis et al., 1988).
The Cooper pair angular momentum is no longer a good
quantum number and therefore cannot be used to de-
scribed the boundary conditions. Nevertheless, for the
derivation of appropriate boundary conditions we shall
essentially follow the method given by Ambegaokar
et al. (1974). If we consider the reduction of symmetry
by the boundary, group theory turns out to be a very
powerful instrument in this field too.

Related problems occur in the study of the proximity
effect or the Josephson effect. These are more related to
the direct observations. Because of different behavior un-
der time-reversal symmetry, no Josephson coupling be-
tween singlet and triplet superconducting phases is ex-
pected in lowest order. This type of effect has been sug-
gested as a proof of triplet superconductivity in heavy-
fermion systems (Pals et al., 1977). However, it has been
shown that this effect may be less significant than initially
expected if strong-orbit coupling is present (Fenton,
1985a, 1985b; Sauls et al., 1985; Geshkenbein and
Larkin, 1986).

A. Boundary conditions of an unconventional
superconductor

1. Correlation function formulation

The interface of a superconductor with an insulator or
with the vacuum is a region where scattering of quasipar-
ticles due to total reflection determines the behavior of
the order parameter. Its influence on the superconduct-
ing state depends on the interference of the incident and
the reflected Cooper pair wave function. For isotropic
wave functions no effect is expected. Anisotropy of the
pair wave function, however, can lead to drastic effects.

In the analysis below of this interference problem we
restrict ourselves to the weak-coupling limit and follow



266 M. Sigrist and K. Ueda: Unconventional superconductivity

essentially the treatment of Ambegaokar et al. (1974). 1971). This formulation is very useful for studying a su-
For this purpose we briefly introduce the correlation perconducting state if it is inhomogeneous in space. The
function formalism for unconventional superconductors, starting point for this description is the linearized gap
developed by de Gennes (1966) for the case of conven- equation for a spatially varying gap function written in a

tional superconductivity (see also Liiders and Usadel, Green’s-function formalism (see Appendix B),
J

—_ ' 0
AL ==k TS 3 Vo (k)G

kl ku ’ SZSIS3S4
n ,k”,q

53,854,555

k’+%,k"+—qz—;iwn

XGO, ‘—k’+%, —k+1—io,

A, (K",q) . 4.1)

The pairing interaction is assumed to be homogeneous. As we did earlier in Sec. III.B, we write VS1 (k,k’) in spec-

525354
tral form, using the basis gap function of the homogeneous linearized gap equation (Sec. II),

V5152S334(k,k')=§ V(1“)§ASZS1(1",m;k)AS+ (T, m;k") , 4.2)

354

where k denotes k/kr and the potential is restricted to the Fermi surface. We shall restrict ourselves to the com-
ponents of the dominant representation and write its basis functions in the shorthand notation A( I'm ;k)ZK(m (k) and
V(I')= —V in further equations. In principle this restriction is allowed only in the homogeneous region of a supercon-
ductor, where the full crystal symmetry applies, as we shall point out below. Changing to the r space, introducing the
combination

A&, r)=3 1, (0)&,.(k), 4.3)

and using the orthonormality condition of K(m)(k), we obtain a nonlocal relation between the components of the order
parameter (coordinates) 7,,:

(=3 fd3r’K,~j(r,r’)nj(r’) , (4.4)
J

where the kernel has the form

v,—V, VeV
2ikp ) Bep 2ikp

SIS

Kj(r,t)=VkyT 3 Al

@,,51,59,53,54

0 ] 0 re .
Gy s, (n15i0,)Gy (1,1 —iw,)

r—r ’
5354

1"14»1"
4.5)

This kernel may be understood as the probability amplitude of a Cooper pair to propagate from a point r’ to a point r.
The Green’s function G2.(r,1';iw, ) is the normal-state Green’s function, which will include spin-orbit coupling (s, indi-
cates pseudo spin). It may be represented by

.. o (1), A(1")

GO(r,r ;,wn)=§ ﬁa (4.6)
with the single quasiparticle wave function defined by #,d,,(r)=¢,¢,,(r)(H, is the single-particle part of the Hamil-
tonian). Equation (4.6) then leads to the following form of the kernel:

m, >
v

tr<v ‘2‘k—F‘J ,Ll.> <,LL

lio, —e,)(—iw,—¢,)

Ag (r) ﬁ(ﬁ

T yr')
2k, T

K;i(r,r')= VkpTY> 3,

©, Qv

, 4.7)

where
(V|3((me /2kF )J(l'))l.u>ss': {Ass’[(vr_vrl)/ZikF]¢:s(r)¢,us'(rl)]rl—u' .

Thus J(r) is the current operator (m, is the electron mass). Rewriting the denominator (for o, > 0) as
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*(Iw |—ie )t

1 ei(eﬂ—ev)t

" dt

(i, —e ) (—iw, —¢, ).., 0 iw,—¢,
we can change Eq. (4.7) to the form
ka w —ie)t
K;(r,r')=

g f dtfdez 2<v

The correlation function ¥, {v|trA (“;)A(j)Iv)S(e

trA (‘::)

(4.8)

—~J(r t)

2k, ) (e—e,) . 4.9)

Moy A
2k, (r)

—e,) can be replaced by the average value N(0){v|trA 1A ;|v), _,,

since only a_small energy range at the Fermi energy (¢=0) is relevant in this problem. Furthermore, it can be

shown that (v|trA }HA

»l¥)e, o may be replaced by the classical average (trR 1A ;)) for particles at the Fermi surface.

This is possible because only the slow varying (classical) parts of the particle wave function contribute to the kernel
K;i(r,r’) (for a detailed analysis see, for example, Liiders and Usadel, 1971):

-~

yrkg TS fo“’dt o Hlen "<trA &

K;;(r,r')=N(0

me
J
2k,

J(r',t) (4.10)

2kF >EF,classwal .

The symmetry properties of the kernel become immediately clear in this formulation, since the transformation proper-

ties of the gap function are well known.

In the homogeneous case, K;; depends only on the differences r—r": K,;(r,r')=K;(r—r’'). Following de Gennes
(1964, 1966) in the pure-metal limit we obtain
tr |A L R, |5
. VN(O)kzT [r—r'| [r—r'| 2]w, ||r—r1'|
K;i(r—r")= 3 exp| ———
p 5 lr—r| VF
Ayl r—r |~ r—r
_ VN(0)kpT lr—r'| lr—r'| 1
2vp lr—r'|? sinh27|r—r1'|kg T /vp) ’ @.11)

where vy is the Fermi velocity. We see immediately that
Kij(r—r')=Kj(r—r')=K;(r'—r).

Let us now turn to the surface scattering problem. In
this consideration we restrict ourselves to a planar specu-
larly reflecting surface as the boundary of a supercon-
ducting half-space. In that geometry the order parame-
ter 7,,(r) depends only on r=n-r and is homogeneous
parallel to the boundary (n is the unit vector normal to
the surface). Close to the surface the kernel consists of
two parts, a direct (K9) and a reflected (K") component.
As becomes clear in Fig. 4, we can formally replace the
reflected part by a direct kernel with the reference point
T, which is the mirror image of r’ with respect to the
boundary,

(0= [ [K§(oe)+K (e ] (e)d

_f [K (r,r')+x; K d(r,f’)]nj(r’)d3r' s (4.12)

where ‘“h.s.” denotes the integral over the superconduct-
ing half-space. For K(r,r’), Eq. (4.11) can be inserted.
The coefficient y; descrlbes the scattering property of the
basis order parameter A j(k). In the s1mplest case it can
be derived from Eq. (4. 10) that y; is +1if A(j (k) is even
under a reflection at the boundary and —1 if it is odd.
The reflection at the boundary is defined by
k—k—2(n-k)n. We call this transformation ?(n) pari-
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M
ty. Because of spin-orbit coupling, the spin is also
transformed by the reflection (spin scattering). The dis-
tinction with respect to even- and odd-parity functions is
appropriate, since off- diagonal elements K;; do not exist
in Eq. (4.12) if A ;) and AU) have different parlty P(n):

insulator

superconductor

FIG. 4. Geometry of the scattering at a specularly reflecting
surface. The kernel between r’ and r has two contributions:
one direct via 1 and one reflected via 2. The reflected path can
formally be replaced by a direct path 3, where the starting point
T’ lies in the insulating region and is the mirror image of r’.
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J Ky (R,r —r"m;(rd*Rdr’
:fKij(—R,r—r')‘r]j(r')dszr'
:fK,-j(R,r’—r)nj(r')dszr’

=— [K;(R,r —r')n;(r")d*Rdr'=0 , (4.13)

with R=nX(r—r') and » —r'=n-(r—r’). Therefore the
diagonalization of K,-j—since it is Hermitian, this is al-
ways possible—always yields basis functions with well-
defined parity P(n).* Using Egs. (4.11) and (4.12) in diag-
onalized form, it can be easily seen that 7);(r) keeps the
bulk value if y; = +1, but is forced to zero if y;=—1 at
the boundary. In the former case specular reflection
leads to constructive, in the latter case to destructive in-
terference.

As an example, we examine the order parameter be-
longing to the two-dimensional representation 'y in the
tetragonal point group D,,. The basis functions are

Ayk)=i6,k .k, and R,\(k)=ig kk, . (4.14)

If the surface normal vector n points along [1,0,0], this
basis [Eq. (4.14)] is just the correct basis to diagonalize
the kernel leading to x;= —1 and y,= +1. Thus 1,(x) is
suppressed towards the boundary, whereas 77,(x) remains
constant in this lowest-order approach. On the other
hand, for n=(1,1,0) the following basis is appropriate:

. k,(k, +k,)
A(l)(k):iﬁyT

and (4.15)
R k,(k, —k,)
A(z)(k):lay ‘/5

The coefficient 7,(r'n) in the new basis is stressed to
zero, since P(n)A (k)= *3“)(k), and 7,(r-n) remains
constant because P(n)A,(k)=A(, (k). For a surface

4In general A, (k) is not restricted to the space of the basis
functions of the representation I' under the transformation
k—k—2(n-k)n. Therefore in principle the restriction to one
representation, as done for Eq. (4.4), is not justified, since kernel
matrix elements between different representations can occur,
leading to admixtures of other order parameters close to the
surface, even if their critical temperature is far below the dom-
inant T.(I'). These admixtures are required to generate gap
functions that have a clearly defined parity 7(n). Consequently,
this corresponds to a classification of states with respect to the
direction of their total angular momentum (see Ambegaokar
et al., 1974). If the angular momentum is parallel to n, the
?(n) parity is + 1, and if it is perpendicular it is —1. We shall
not go into this problem further here, because the main features
we want to consider later can be understood in the restricted
version.
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perpendicular to the z direction, both basis functions
have negative parity 7. Thus both components are
suppressed there.

2. Boundary conditions in the Ginzburg-Landau formulation

The linearized gap equation in the form of Eq. (4.4) is
the basis for the microscopic derivation of the second-
order terms in the Ginzburg-Landau free-energy expan-
sion (Gor’kov, 1959). Excluding the gradient and fourth-
and higher-order terms, we find that the corresponding
part of the Ginzburg-Landau equation is

n(0)=3 [K;(r,e')d’r'y;(r)
j

=3 Q;(r)n;(r) . (4.16)

J
This is the local limit of Eq. (4.4), assuming that the vari-
ation of 7 is slow compared to the range £, of the kernel
[£o<<&(T)]. In the homogeneous region, Q;; is always
diagonal and proportional to the unit matrix for one sin-
gle representation. However, close to the boundary these
second-order terms do not have the same form, since the
kernel is changed due to quasiparticle scattering. To add
these boundary corrections in their most general form to
the Ginzburg-Landau functional, we shall again use a
group-theoretical method. The boundary lowers locally
the spatial symmetry of the system. The remaining sym-
metry group §' is a subgroup of the bulk symmetry
group &, which we represent further simply by the corre-
sponding point groups G (G'). This means that we can
add further terms to the Ginzburg-Landau free energy
which are invariant under this lower symmetry G’ and
are restricted to the boundary. We need not extend these
terms to higher than second order, since the second-order
terms will describe the essential effects of the boundary as
did the linearized gap equation in the previous section.

A convenient way to find the invariant terms is to
derive the coupling terms of the order parameter to the
normal vector n of the surface in a manner similar to that
used in Sec. III.B for the strain tensor (Gor’kov, 1987).
Since the normal vector n (written in the crystal lattice
basis) belongs to the vector representation D (I'; for
O,; 'y oIy for D, and Dy,), we can derive these terms
by the decomposition of

DErer*eT (4.17)
where I' is the representation of the order parameter.
Because the vector representation has negative parity,
the exponent m has to be an even integer
(D®"=D®D® ‘- ®D, m times). In Table X a list of
these terms is given. Their restriction to the surface is
represented by a & function located there. The real ex-
tension is of the order of &, which is negligibly small
compared to the length scale &£(7T) in the Ginzburg-
Landau regime close to T,. We should mention that in-
variant terms of the form
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Erelr*eI+c.c. (4.18)
also exist, combining two different representations, and
these can lead to admixtures of other representations (see
footnote 4). However, for simplicity, we neglect them in
further considerations without loss of the main surface
properties we want to describe. To complete the bound-
ary conditions we have to consider the variation
of the Ginzburg-Landau free energy with respect to the
vector potential. There we find the condition
nX(B—H,,,)| =0, which is also known from the con-
ventional Ginzburg-Landau theory (H,,, is the external
magnetic field; however, we shall concentrate on the case
of zero field). This condition is obtained from variational
minimization if we add the term —(1/47) [d*r H,,-B
to the free energy.

Let us now consider the example of the previous
section—the two-dimensional representation of Dy,.
The surface free energy has the form

Fye={[g,(ni+n2)+g,n1(|n >+ |n,[*)

| 2

+g3(n,f—ny2)( Iy 2= 1m,1%)

+gan,n, (nin+m3)}8[n-(r—ry)], (4.19

where 1, is a point on the boundary. It is easy to see that
the choice of coefficients g;=g;=g,/2>0 and
g1=a'§y> 0 reproduces the result for specular scattering,
already seen in the previous section [@’ has the dimension
of energy per volume and is defined by the second-order
coefficient A(T)=a'(T/T.—1); &, takes the spatial ex-
tension of the kernel K into account]. For a surface per-
pendicular to n=(1,0,0) we find

Fye=2g,|n|%8(x) . (4.20)

The component 7, is suppressed at the surface. To
give an approximate solution of the boundary problem
in the Ginzburg-Landau region we consider a supercon-
ductor with the homogeneous phase A(k)
=i6,k,(k,tik,)no(T). The magnitude of 7, derived
from the minimization of the corresponding free energy
(Sec. IL.A) is

— A(T)
(T))P=—rr— 4.21
Ino( T 25—, + B, 4.21)
with the free-energy density
fo=A(D)|ny(T)|? . (4.22)

TABLE X. Surface terms of the Ginzburg-Landau theories in (a) cubic symmetry, where n is the sur-
face normal vector and g; are real constants describing the surface properties, (b) hexagonal symmetry,

and (c) tetragonal symmetry.

Irreducible
representation I'

Fsp(n;7m)

Fli 81|77|2
ry (g1 &2 {(ni—n))ni—n2)nZ—n})}?]Inl?
ry g2+l +g,[(2n2 —ni—n )| [*— I )+ 3(ng —n) )0y +mm3)]
I‘%S g1 P+ 1+ nsl®)
+g2["3(2|1’h‘2— [”12'2“‘ ,173|2)+ny2(2|712|2— l171|2“‘ I”fls|2)+nzz(2|°73|2— |"7112_ 1172[2)]
+g;3[n,n (¥ ns+0m¥) +non (¥ st +neny, (nF im0
ri [g1(ni+n))+gnl]lnl?
rf [g1(n2+n2)+g,n2+gyn.n,(n2—3n2)(n2—3n2))]|nl?
Iy [g1(n2+n})+gont+gs(n.n,(ni—3n]))Iql?
ry [g1(ni+n))+gonl+gs(n,n.(n]—3n) 1Inl?
Fsis [g1(n2+n2)+gyn21(g >+,
+gs[(nf—ny2)( !"71]2“ lnz!2>+2nxny(17?“nz+nm§‘)]
s [gi(n2+n})+gon2]Inl
ri [gi(n2+nl)+gon2+gs(nen, (ni—n)))]|nl?
ry [g1(ni+n})+gont+gs(ni—n} gl
r¥ [g:(n2+n))+gon2+gsninllinl®
F;i [gl(”3+ny2)+gznz2](l771|2+|772|2)

+g3(n2—n2)(|n,?

- |"72|2)+g4nx"y(77?772+77177;)
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Approximating 1, by i|7,| =const and varying the free
energy with respect to |7,(x)|, including the gradient
terms (Table VII), we obtain the differential equation

2B

E),%ImlJr—K1 Iy (2= 1) =0 . (4.23)
1

With the surface terms we find the boundary conditions

[_Klax|771|+2g1 |771| lx=0=0,
(4.24)

“K1[771|

2e
axd’l-TAx

x =0

We parametrized the order parameter 1, =|7;|exp(i¢;)
and separated it into a real and an imaginary part. The
second equation corresponds to the natural condition—
well known from the conventional Ginzburg-Landau
theory—that no supercurrent is allowed to flow perpen-
dicular to the surface (for the complete expression of the
current see Sec. V.A). The first equation together with
Eq. (4.23) gives the analytic solution

10| =Imol tanh | ===
ol= an —
Mix) o V2E
and (4.25)
—.g_ i1 K,
Xo=—=sinh — ,
) V2ég,

with & “X(T)=2B,Im4(T)|?>/K as the coherence length in
the x direction. This result is restricted to the range
|x| >>£&,.5 In this analysis |7%,(0)| is finite and can be
connected with an extrapolation length b defined by
3, [7,(0)|=179,(0)] /b, which leads to b=K,/2g,
=~K/2a’&y,. The length b is of the order £, and there-
fore negligibly small compared with &(T).

To calculate the surface energy F, per unit area we in-
sert Eq. (4.25) in the free energy. By a partial integration
and using Egs. (4.23) and (4.24), we find

Fo= [ = foddx =B, [ (mol* =l [*ax
:%315!770‘4-

Generally the surface energy is proportional to
Ino( 3~ |T— T, |372, whereas the bulk energy has a
quadratic temperature dependence |7 —T,|%. This
different T dependence is due to the fact that the region
of reduced condensation energy at the surface is confined
within a length &~ |, ™!, which changes with tempera-
tureas |T— 17,7172

This solution does not take into account that the two
order-parameter components are coupled by the fourth-
order terms (28,—4B,+B3)|n,%|n,1*> for Ap=Hm/2.

(4.26)

SIn the range |x|<§&, the spatial extension of the kernel
K;;(r,r') in Eq. (4.4) has to be taken into account. Hence a non-
local problem has to be solved.
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Hence in general the component 7, also varies at the sur-
face. Roughly we can say that its modulus is lowered if
(23,—4B,+B;) <0 and enhanced if (23,—4B,+3;)>0.
The analytic solution of the complete problem is more
complicated. However, the given solution is a good ap-
proach under the condition |28, —4B,+8;| <<23, [note
that —2f, <2, —43,+B;<2p, is required for the stabil-
ity of the state in Eq. (4.21)]. _

Considering the direction n=(1,1,0)/V'2, it is useful
to diagonalize the bilinear form in Eq. (4.19) by

s 1 , 1
771“"\/_5(771"‘772) and 772—‘/—5(771—772) .

4.27)
This yields the basis gap functions

AlK)=i6 k,(k,+k,)/V2
and

AL(K)=i6 k,(k,—k,)/V2,

which are the states classified by the parity operation
P(n) in the previous section. The component 7] is
suppressed, and 7, has similar properties to those of 7,
above. Finally, in the case of n=(0,0,1), the surface
term treats both components equally, reconfirming the
earlier result. These last two examples can be treated
similarly to the first case. However, one has to keep in
mind that in unconventional superconductors the coher-
ence length &(n) is in general direction-dependent.

As we have seen, the group-theoretical treatment is ap-
propriate for analyzing the problem of specularly
reflecting surfaces. It is, however, more general, since it
is based only on the symmetry properties of the surface.
Hence this formulation can be used for all surfaces with
scattering properties that do not further lower its symme-
try. This is the case if the scattering behavior is homo-
geneous parallel to the surface, considered on a length
scale £,. Therefore diffuse scattering may also be includ-
ed. The phencmenological parameters g; depend on the
quality of the surface and describe the scattering of the
Cooper pairs off the surface.

In the A phase of superfluid *He the geometry of the
confining vessel has a significant influence on the
superfluid phase. At the wall the angular momentum is
aligned parallel to the surface normal vector n. Since the
direction of the angular momentum is continuously de-
generate, the bulk phase is determined by the shape of
the surface. A similar effect is not expected in anisotrop-
ic superconductors. The degeneracy of the supercon-
ducting phases is discrete, and therefore a certain phase
is fixed in the bulk region. Thus no defect, and so no sur-
face, can have a long-range influence except just at the
phase transition. Additionally, in the case of heavy-
fermion superconductors, the range of the surface
influence is rather short, because the zero-temperature
coherence length &, is of the order of 10X the lattice
constant, so no essential effect on the superconducting
phase is expected except for very thin films. On the other
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hand, we shall see in Sec. V that the boundary conditions
derived here can lead to magnetic effects if the supercon-
ducting phase breaks time-reversal symmetry.

B. Josephson and proximity effects

In the previous section we analyzed a completely
reflecting interface. An experimentally more interesting
situation, however, is a partially transparent interface of
a superconductor with a normal metal or with another
superconductor. The former configuration leads to a
penetration of Cooper pairs from the superconducting to
the normal region, even if the normal metal has a much
weaker or vanishing pairing interaction. This is the prox-
imity effect (de Gennes, 1964). The latter leads to the
Josephson effect, a macroscopic visualization of the
coherence of the superconducting state via the current
flow through the interface (Josephson, 1962). Both
effects have been studied for unconventional supercon-
ductors. It was suggested that very significant properties
should occur if the pairing interaction favored on one
side of the interface a singlet but on the other a triplet
pairing state. Since the two pairing states transform
differently under time reversal—the triplet state is even
and the singlet state is odd—it was concluded that no
Josephson coupling could occur between them in lowest
order, at least if the interface were not magnetic. This
means that the matrix element T.(k,k’) in the tunneling
Hamiltonian,

__ 1 2
Hr= 3 [Tulkk)allad)
k,k',s,s’

+ T (kK )aall)], 4.28)

where a|’) is a quasiparticle operator labeled by i=1,2
for the two sides of the interface, is invariant under time
reversal and spin. rotation (7, ~8.) (Pals, van Haer-
ingen, and van Maaren, 1977). Thus in the ac Josephson
effect the frequency w=2 eV /% should not be observed,
but rather o =4 eV/# due to higher-order effects, which
are not forbidden by time-reversal symmetry. It was pro-
posed that this very clear result be used as a test for the
parity of an unknown superconducting phase by a con-
nection with a well-known s-wave (singlet) superconduc-
tor. In contrast to the experiments examined in Sec. III
to determine the spatial symmetry of the pairing state
(excluding parity), this effect could give information
about the parity of the unconventional superconducting
phase.

Heavy-fermion superconductors seem to be good can-
didates for this test. However, strong spin-orbit interac-
tion in these materials makes this method less significant.
Several authors have revised the results of Pals er al.,
proving that in the presence of spin-orbit interaction an
ordinary (ac) Josephson effect is not excluded (Fenton,
1985a; Sauls, Zhou, and Anderson, 1985; Geshkenbein
and Larkin, 1986; Millis, Rainer, and Sauls, 1988). The
key point is that the materials on either side of the inter-

Rev. Mod. Phys., Vol. 63, No. 2, April 1991

face are very dissimilar with respect to spin-orbit cou-
pling. We consider an interface separating a heavy-
fermion compound with strong spin-orbit coupling and a
light electron metal, which is an s-wave superconductor
with very weak spin-orbit coupling. Spin-orbit coupling
yields a superposition of different spinor states, so the
quasiparticles are not eigenstates of the spin, but can be
labeled as pseudospin states, as mentioned in Sec. II.
Consequently, passing through the interface, the quasi-
particles have to convert between two different spinor-
state combinations. Due to the difference of spin-orbit
coupling, the tunneling Hamiltonian #; [Eq. (4.28)] pro-
duces spin flips. Thus T is no longer spin independent.
Since this spin-flip tunneling is generated by the superpo-
sition of spinor states under strong spin-orbit coupling,
its order of magnitude is the same as for non-spin-flip
tunneling (Geshkenbein and Larkin, 1986).° However,
the absolute magnitude of the tunneling matrix is also
determined by the transmission rate of the interface. The
large effective-mass mismatch leads to a rather small
rate. Considering the solution of the Schrodinger equa-
tion for a free particle under the assumption of a sudden
change of its effective mass at the interface, we obtain a
transmission rate | 7| ~4m, /m,r~10"2 (Fenton, 1985a).

1. Josephson effect

In this section we concern ourselves with the Joseph-
son effect in unconventional superconducting phases,
especially for the case of unequal parity on the two sides
of the interface. The coupling mechanism explained
above can be very easily formulated for a Josephson junc-
tion by the assumption of a “magnetically active” inter-
face, i.e., an interface that is able to produce spin flips
due to different spin-orbit coupling on either side (Millis,
Rainer, and Sauls, 1988). The corresponding tunneling
Hamiltonian [Eq. (4.28)] has a matrix of the general form

T(k,k')=Ty(k,k" )&+ T(k,k')-& . (4.29)
The second term produces transitions between different
spin states. The invariance of # under time reversal
gives the following relations for the four components of
the tunneling matrix:

6Fenton has shown that even with non-spin-flip tunneling, a
coupling of even- and odd-parity superconductivity can be
found. This effect is due to the local breakdown of parity be-
cause of the spatial variation of the unconventional supercon-
ductivity order parameter at the interface. The order of magni-
tude is T, /T (~0.1 for heavy-fermion compounds) compared
to the equal-parity coupling (Fenton, 1985a, 1985b).
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To(k,k')=T¢(—k, —k') ,
(4.30)
T(k,k')=—T*(—k, —k') .

Following the Ambegaokar-Baratoff formulation of
J

J=2ekyTIm3 Str[F || (k,iw,) T(k,K)F ) (K, io,)T (—k,—k')],

o, kK

the Josephson current, in which one considers
j=ed(N;)/dt=ed3 {a)Tal) /3t =—ie{[N, %1,
we obtain in the lowest order of the perturbation theory
the following form expressed in terms of anomalous
Green’s functions:

(4.31)

where we have neglected the normal-current component (Ambegaokar and Baratoff, 1963). The symbol 7' 7 denotes the

transposed matrix.

Note that time-reversal symmetry leads to the relation f"(—k,—k’)=T§(k,k’)60

+6y3T*(k,k’)6y. The anomalous Green’s function F(k,iw, ) is given in Appendix B.
We assume that side (1) is a singlet superconductor describes by a scalar function ¥(k) and side (2) a triplet supercon-
ductor with a vectorial gap function d(k) according to Egs. (2.10) and (2.11). For unitary states, therefore, the Joseph-

son current has the form

; *(k)d(k')-W(k,k')
s« = 2ekp TIm L2 ’
T g %k,zk’(wzr+E(21)k Ny, +Efyye)

with
Wk, k") =(T,T*+T§T+iT*XT)k,k') .

(4.32)

(4.33)

The current depends on the relative phase A¢g=¢(1)—4(2) between the two superconductors, but also on the relative

phase between the matrix elements in T,
between two states of equal parity can be obtained:

IHK)Yo (K )Wk, k')
ju =20k, TImS. S, 'J’(zl) 12(2) otk
o, ki (@ FEfy o), +Efye)

with
Wo(k,k')=[|T,|*+|T|*1(k,k")

for singlet-singlet coupling and

s> represented by ¢ [j ~sin(¢+Ad)]. In a similar way the Josephson current

(4.34)

(4.35)

(k) (K Wo(k, k') +i[dF,(k) X d (o) (k') - W(k, k")

Ju=2ekpTIm3¥ 3
@, KK

for triplet-triplet coupling. In contrast to j,, these latter
two currents still remain finite if we remove the spin-flip
part (T-&') from the tunneling Hamiltonian.

The invariance of the tunneling Hamiltonian under
spatial transformation that leaves the interface invariant
leads to the transformation property

gTo(k,k)=T,[D Ug)k,D T Agk'],
gT(k,k)=D H(g)T[D ~Agk,D Agk'] .

The matrices D ($)(g) are the vector transformation ma-
trices for axial and polar vectors, respectively (see also
Sec. II.A). Consequently Wy(k,k’) and W(k,k’) trans-
form in the same way. There are twice as many restric-
tions on the allowed transformations as are described in
Sec. IV.A, since the orientation of the crystal axis of both
sides of the interface enters in the problem. Thus two
interface normal vectors n; [side (1)] and n, [side (2)]
determine the symmetry of the interface, where n; and n,
are defined with respect to the corresponding crystal lat-
tice bases. Obviously, the current j is invariant under

(4.37)
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(CL)%7 +E(2])k )(wi +E(22)k')

(4.36)

I
these transformations, since the vector d transforms like
T.

Such symmetry properties give once more the basis for
a group-theoretical treatment in the framework of the
Ginzburg-Landau theory, similar to the boundary condi-
tions (Geshkenbein and Larkin, 1986; Yip er al., 1990).
The superconducting phases in the two media (1) and (2)
obey the equilibrium conditions given by the free energies
F (1) and F(,), respectively. Tunneling and reflection of
the quasiparticles are properties of the interface. The
reflection leads to boundary terms separately in (1) and
(2), as given in Sec. IV.A. The tunneling, however, pro-
duces a connection of the two sides, introduced here by
coupling terms which are invariant under all spatial
transformations g mentioned before, under time-reversal
and gauge symmetry. In general, the crystal symmetry in
mediums (1) and (2) is different, as are the corresponding
point groups G, and G,, respectively. With the normal
vectors n; and n, in the corresponding crystal lattice
basis, these terms can be written in the form
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 coupling(TH, T?)= [ [T*z q>(r<”,m;n1)n*<r<”,m)] [T’E@(F(Z),m’;nz)n(l“(z’,m') ]-l—c.c.]

In this equation ®(I'"?,m;n;) is a function of n; with the
symmetry of the basis function (I''”,m) in the group G;.
In Table XI we give a list of the simplest possible func-
tions ® with the correct symmetry for the point groups
O, D¢, and D4,. The coupling constants T and T’ are
complex numbers representing the tunneling properties.
According to Eqgs. (4.32)-4.36), they should be taken to
be equal for even-even-parity junctions and may be
chosen to be different for other junctions, in order to in-
clude the effect of a finite relative phase in the tunneling
matrix possible for odd-even and odd-odd-parity junc-
tions. With this combination, the f i, is invariant
under all spatial transformations separately in sides (1)
and (2), and under a parity transformation of the whole
system. It is clearly invariant under U(1) gauge transfor-
mations. Time-reversal invariance is ensured with the
transformation condition KT =T%*. In the case of odd
parity, these terms have been given by Geshkenbein and
Larkin (1986). Higher-order coupling terms, where the

(4.38)

interface

[
order parameters occur in fourth or higher-order com-

binations, are here neglected since they correspond to
higher-order couplings in the perturbation by %, pro-
portional to | T'|" with N > 4.

By variation of the free energy with these interface
terms, boundary conditions are found which couple the
order parameters of the two sides. As an example we
consider the configuration G,=G,=D,, and I'V=Tj,
r= F;F with the general form of the free energy

F= fd3r[f(l)+fsf(1)(nl)+f(2)+fsf(2)(n2)

+fcoupling(nl’n2)] ’

where f; are the surface terms on each side of the in-
terface (Sec. IV.A) and

e ()% _ (1)%
fcoupling_[T T'(nym; RixTy "Ny,

X("zxn(12)+"2y77(22))+0-0- ]interface . (4.39)

TABLE XI. Symmetry basis function ®(n) of an interface (Josephson junction) in (a) cubic symmetry, where n is the surface normal
vector of the interface in the basis of the crystal lattice, (b) hexagonal symmetry, and (c) tetragonal symmetry.

Irreducible Irreducible
representation T ®(T,m;n) representation I’ d(I,m;n)
(@) rf (L sn)=n,n,(n}—3n?)
ry ®(I'f;n)=1 rs ®(I',1;n)=n,n,
O(IFin)=(nl—n)nl—n}(n?—n}) ®(If,2;n)=n,n,
ry ®(Ty,1;n)=2n2—n2—n? Iy (T, ;n)=n2—n}
®(I'y,2;n)=V3(n2—n2) ®(I¢,2;n)=2n,n,
+ + 1. j— 2,2
Ly q)(ri’l’n)—"ynz("yz ”zz) ry (T ;n)=n,nyn,(ni—3n})(n}—3n})
(I}, 2sn)=n,n,(n;—n;) = el
1"+ 3. — 2 __ 2) F2 <I>(I‘2 ,Il) n,
(LS, 3m)=nyn,(ny—ny Ty ®(T'530)=n,(n}—3n})
| &(I'f, ;n)=n,n, ry ®(Ty;n)=n,(n}—3n}?)
+ . —
@(T's,2;m)=n.n, rsy (T3, 5;n)=n,
@(I's,3;m)=n.n, &(I'y,2;n)=—n,
ry (T sn)=n.n,n,(n2—n2)n2—n})n2—n?) |y (T, ;n)=2n,n,n,
- 9. = — 2,2
_ _ P(Ig,2;n) (ny—nj)n,
r; o(I'y;n)=n,n,n,
ry ®(I5,15;n)=V3n,n,n,(n2—n?) (e)
®(Iy,2n)=nn,n,(2n2—n2—n?) r ®(I'f;n)=1
B ~ | (IS n)=n,n,(n2—n})
T, ('), ;n)=n, + 2
®(I'y,2;n)=n, ri (I n)=n2—n?
®(T;,3;n)=n, ri @(Fr;n)znxny
rs OIS, 5;n)=n.n,
rsy (s, n)=n,(n}—n?) ®(TF,2n)=n,n,
®(I's,2;n)=n,(n}—n})
®(T'5,3n)=n,(n;—n}) ry ®(I7sn)=n,n,n,(n}—n?)
ry O(I';;n)=mn,
. . (b) ry ®(I'y;n)=n.n,n,
Iy (I'sn)=1 ry ®(Fysn)=n,(nl—n}?)
| 0y (L sn)=n,n,(n;—3n))n?—3n2) rs O(T'5,1n)=n,
ry @5 ;n)=n,n,(n2—3n}) ®(T'5,2;n)=—n,
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Before performing the variation of F, it is convenient to
diagonalize the bilinear surface terms f ;) and f,) (see
Sec. IV.A). For simplicity we fix n;=(1,0,0), leaving the
basis in (1) unchanged, whereas n, will be arbitrary, with

M= npenP+ny )V wi o,
and
12 =(—npy P +ny )V 03, +n3,

[diagonalizing Eq. (4.19) with g,=g;=g,/2]. In the
new basis the variation of F with respect to 7]}” leads to
the boundary conditions

1
axn(ll)d— b(l 7]1 ’
_T*T S5
axn(Zl) K“) nszn2x+n2ynl(2) ’
! (4.40)
U D=1 2
n, VT]] b(12)(ﬂ )771
T'*T _—
+———n z\/n +n? s
2K (n,) 2 2x 2y772
, 1
nz'V’ﬂzm—‘ 757
> (n,)
All equations are restricted to the interface. The gra-

dients are taken with respect to the basis of the crystal
lattice (1) or (2), respectively. Terms containing the ex-
trapolation lengths b }1) describe the reflection property of
the interface (Sec. IV.A.2), while the others describe the
transfer property [K(n,) is a combination of coefficients
K in the free energy f(,, depending on mn,]. These
terms exhibit their physical interpretion if we introduce
the order parameter in the form 7\ =|7{"|expi¢;(/) and
separate them into real and imaginary parts. From the
first two equations [connected with side (1)] we obtain
(T*T"=|T|2"*7)

1
.lml =~ Il
1

D=— |T|?
2KV
Xcos[pr+¢,(2)—¢o(1)],

Ini" 8,1 (1)=

75718, a(1)=—

axl”fl(z nZZVn%x+n%ylni(2)|

(4.41)

\T|?
2K 5V

Xsin[¢r+¢(2)—¢,(1)] .

nZZVn%x +n%y|77,1(2)|

The other two equations lead to similar expressions as
boundary conditions belonging to side (2). The imagi-
nary part [the third and fourth equations of Eq. (4.41)]
can be combined into an expression for the current densi-
ty at the interface,
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J= S K {20, 1D+ K Ing 28, 6 1)]

T 22‘/n2x+n2y|n12)l‘nl)l

£
2c
XSln[¢T+¢l(2)_¢2(1)] .

The real part [the first and second equations of Eq. (4.41)]
is the effective boundary condition for the superconduc-
tor on side (1). Solving the Ginzburg-Landau equations
and these interface equations of both sides self-
consistently, as a one-dimensional problem, we obtain the
characteristics of the current j versus the phase
difference at the interface. In that calculation it has to be
taken into account that the order parameter in the bulk
region is also suppressed by a finite current density. In
general, for good coupled (1D) superconductors, the
characteristics deviate considerably from the simple form
j=Jjnsin(¢r+A¢d) (Baratoff, Blackburn, and Schwartz,
1970).

However, let us now consider the case of very weakly
coupled superconductors ( b}” <<2K /|T|*). Then the
boundary conditions are dominated by the reflection
terms. The tunneling terms can be neglected for the cal-
culation of the order parameters at the interface, and the
current j is small enough not to affect the order parame-
ters. Thus the result of an almost totally reflecting
boundary is appropriate for the problem. In our example
[75"] keeps its bulk value [5{"’|. For |7}?|, however, a
reduction is found at the interface. Regarding Eq. (4.25)
we estimate |7?|=|n|b? (n,)/V2E P (n,), where
&(¥(n,) is the coherence length of 7}*’ along the direc-
tion n,. Thus the Josephson current has the form

(4.42)

J=imsin[¢r+¢1(2)—¢y(1)] (4.43)
with
in =5 | TPIng, [V n3 03, |
b (n,)
V2ED(n,) (4.44)

as the critical current of the junction. Since not only
Ini"| but also & is temperature dependent, the increase of

o |T—Tc1“ is determined by whether and how the
coupled order parameters are suppressed at the interface.
Obviously, the fact that the interface reflection properties
can lead to a drastic suppression of some of the order pa-
rameters in the coupling region can reduce the Josephson
current considerably. We see also from Eq. (4.44) that j,,
strongly depends on the orientation of the crystal axis
relative to the interface, reflecting the symmetry of the
superconducting state. This can lead to an anisotropy in
Jjm with lower symmetry than the crystal structure.
However, the observation of this property is difficult. In
addition to the problem of preparing optimal and
equivalent junctions for different directions, a junction
that connects only to a single domain of the supercon-
ducting phase is required. For the case of a connection
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to many domains, the averaged angular dependence has
just the symmetry of the crystal, and all information
about the symmetry of the order parameter is lost.

The phase difference A¢=¢(2)—¢,(1) determines the
current with a 27 periodicity and leads to an ac frequen-
cy w=2 eV/#, as in conventional Josephson junctions.
However, the phase difference, where the current van-
ishes, does not necessarily correspond to the zero value
or 7 value of Ag, but to some value —¢,, which is deter-
mined by the tunneling matrix (Geshkenbein and Larkin,
1986). This fact could also be noticed in the microscopic
expressions for j.

2. Proximity effect

The theoretical study of the mutual proximity of the
superconducting states between two superconductors of
different parity led to the conclusion that their order pa-
rameters might suppress each other strongly (Scharn-
berg, Fay, and Schopohl, 1978; Fenton, 1980). A super-
conductor with an attractive triplet channel is not likely
to be attractive in any singlet channel and vice versa.
Based on this idea several experiments have been suggest-
ed to test the parity of the heavy-fermion superconduc-
tors.

Millis (1985) considered an arrangement in which a
thin film (thickness a) of an s-wave superconductor is
placed on a bulk heavy-fermion superconductor (Fig. 5).
The bulk critical temperature (7) of the s-wave super-
conductor is supposed to be smaller than that of the bulk
heavy-fermion superconductor (T?). The measurement
of the superconducting order parameter on the film sur-
face (point M) opposite to the interface by a tunneling
effect gives information about the parity of the supercon-
ducting state of the bulk material. This arrangement can
easily be studied as a one-dimensional problem in the
Ginzburg-Landau approach. The behavior of the system
is mainly determined by the boundary conditions at the
interface. However, we do not go into details here, since
the treatment is very similar to that of the Josephson-

M

T

=—a
|

A\

FIG. 5. Arrangement for the experimental study of the proxim-
ity effect between an unconventional bulk superconductor and a
conventional s-wave superconducting film (Millis, 1985).

————— Film:singlet
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junction problem.

If the bulk superconductor has s-wave symmetry, it
will also induce a finite, detectable superconducting order
parameter in the film via the proximity effect. Im-
mediately below the bulk transition temperature T,
the film order parameter behaves as [9g,(7)l
~ Mo DI /o T)~(1—T /T?)*?  that is, as a
“driven” order parameter. Below T the order parame-
ter Mg m ‘‘has its own life”” and is then essentially propor-
tional to (1—T/T2)!/2.

In the case of an odd-parity (triplet) superconductor in
the bulk, it is assumed that a driven s-wave order param-
eter in the film is absent or only very small, because the
effect of a magnetically active interface, which is able to
convert even- and odd-parity states, is considered to be
negligibly small in this picture. Therefore the effective
boundary condition for a thin film would have the form

1
ax M film + Enﬁlm i interface 0, (4.45)

acting suppressively for 7y, at the interface. The extra-
polation length b is determined by the tunneling and
reflection properties of the interface and by the proper-
ties of the bulk superconductor (the effective coherence
length of the s-wave order parameter in the bulk, etc.).
With this boundary condition the transition temperature
of a film of thickness a is reduced compared to TCO, as
may be easily calculated in the Ginzburg-Landau formu-
lation,

2

l—g—gr(b/a)
a

T,

.= TC , (4.46)

with £, as the zero-temperature coherence length of the
film superconductor ( «!/? for the dirty limit, where [ is
equal to the mean free path of the film) and r a function
of the ratio b/a with r—/2 for b <<a. For tempera-
tures larger than T, the s-wave order parameter detected
at the M would essentially be zero. From these two qual-
itatively different behaviors one could distinguish experi-
mentally whether even- or odd-parity superconductivity
were present in the bulk superconductor.

A similar arrangement was studied by Ashauer et al.
(1986). Taking the opposite approach, they assumed
T°> T? and calculated the effective transition tempera-
ture of the film (at the point M) in the presence of
different bulk phases. They found a significant difference
in the film transition temperature depending on whether
singlet or triplet superconductivity was present in the
bulk. Their result for the temperature-a-phase diagram
is plotted in Fig. 6(a) for a clean and in Fig. 6(b) for a dir-
ty film [by renormalization of the film thickness by the
transmission rate T of the interface (@=a /T)]. It is re-
markable that the reduction of the s-wave superconduc-
tivity of the film by a triplet bulk superconductor is quan-
titatively almost the same as by a normal (non-
superconducting) metal. Thus their effective extrapola-
tion length [Eq. (4.45)] has to be almost equal. Obvious-
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ly, for an experiment, good films of a thickness a of the
order §,7 or smaller are required, where &, is the coher-
ence length of the s-wave superconductor. Therefore a
large mass mismatch, mentioned initially, could suppress
T strongly, so that this experiment is rather difficult to
realize with heavy-fermion superconductors.

&3

S-WAVE STATE

B -
S o _

/(Tc /T2=0.6) /

ABM STATE /

-5 (T;‘/Tf._’=o.6>%

1 ¥*

ABM STATE
P -
i (T8/712=0.6)

NORMAL METAL

and
POLAR STATE

p o._
(T2/12=0.6)

T, S-WAVE STATE

/(Tg /T2=0.6)

]
5 | ABM STATE |
: (TP/T2 =\o\.‘s)

POLAR STATE
(t8s72=0.6)

NORMAL METAL

FIG. 6. Critical temperatures 7, of clean and dirty films (thick-
ness a) in proximity contact with various bulk materials
(different types of p-wave superconductors, normal-metal, and
s-wave superconductors with smaller 77). The critical tempera-
ture is defined by the vanishing of the s-wave order parameter in
the film. T? and T? are the unperturbed transition tempera-
tures of the film and the p-wave superconductors, respectively;
& is the coherence length of the s-wave superconductor, and
a=a/(1—R) is an adjusted thickness which includes the effect
of reflections at the interface: (a) clean thin film; (b) a dirty film.
From Ashauer, Kieslemann, and Rainer, 1986.

Rev. Mod. Phys., Vol. 63, No. 2, April 1991

V. MAGNETIC PROPERTIES OF
UNCONVENTIONAL SUPERCONDUCTORS

Listing the possible superconducting phases in Sec. II,
we found that most of them break not only U(1) gauge
symmetry but also additional symmetries. In this section
we concern ourselves mainly with phases that break
time-reversal symmetry. The violation of time-reversal
invariance is in general a property of magnetic systems.
Indeed, it is found that these superconducting phases
breaking time-reversal symmetry have magnetic proper-
ties too (Volovik and Gor’kov, 1984; Blount, 1985; Ueda
and Rice, 1985a). A first demonstration of these proper-
ties was given by Volovik and Gor’kov (1985), who ana-
lyzed the current and magnetic-field distribution close to
a domain wall in such a superconducting phase. The oc-
currence of magnetic fields in these superconductors is
associated with the spatial variation of the superconduct-
ing order parameter. Such fields are completely absent in
the homogeneous bulk region. We shall show in this sec-
tion that they can have two different origins: (a) a ten-
sorial response of the supercurrent to the spatial varia-
tion of the phase of the order parameter, and (b) an in-
trinsic magnetic moment due to spin polarization (triplet)
and the relative angular momentum of the Cooper pairs.

Another magnetic structure of a superconductor is the
vortex, a line defect in the superconducting phase, which
includes a filament of magnetic flux. For topological
reasons, in conventional superconductors only vortices
with a flux quantum ®,=n X hc /2|e| can exist, induced
by a winding of the order parameter phase around a line.
Since anisotropic superconductors with multicomponent
order parameters can have more than one phase factor,
several structures of vortices are topologically possible.
It will be shown that even vortices with fractional flux
quanta can occur as energetically stable structures.

Another aspect of the magnetic properties of aniso-
tropic superconductivity arises if the superconducting
state forms in the presence of magnetic ordering in the
system. The question arises under which conditions this
coexistence is favored.

A. Magnetic properties of inhomogeneous structures

Clearly, only multicomponent superconductors can
yield time-reversal-breaking (complex) states. These
states are transformed by the time-reversal operation into
another state, which is not simply related to the original
one by a U(1) gauge transformation (KA#Re'?). They
can produce unconventional magnetic behavior, which is,
however, compatible with the general properties of a su-
perconductor. To illustrate this fact we concentrate, as
in some previous sections, on the simplest nontrivial ex-
ample of an anisotropic superconductor with a time-
reversal-breaking state, whose order parameter is in the
2D representation 't of the tetragonal symmetry D,,.
It includes most of the interesting effects of an unconven-
tional superconductor. The free energy has the form
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F= fd3"' A >+, +By( |711|2+ |77212)2+32(77T772”“77177; )2+/33!771i2|"72|2

+K,(|Dym, >+ |Dym,| )+ K, (1D |2+ D, %)
+K3[(Dx771)*(Dyﬂ2)+(Dx77|)(Dy”lz)*]+K4[(Dx”’lz)*(Dy771)+(Dx"12)(Dy771)*]

+Ks(|D,m|*+|D,n,1*)+ éBZ

as determined in Sec. II.B (D=V —2ie A/c). For the
coefficients f3; in the range f,>0 and pB;<48,
[4(B,—B,)+B;3>0], the time-reversal-breaking, twofold-
degenerate bulk phase [D,,(T'5)]

(1,m) =mo(1, £i)
with (5.2)
o 4B, —B,y)+Bs

minimizes the free energy in the homogeneous region.
This state has a bulk energy density

_ —4AXD _ H?
S a0 , (5.3)

B,—B,)+B;, 8«

which determines H,(T), the thermodynamic critical
magnetic field. To introduce a length scale of the mag-
netic field (Meissner effect), we consider the London
equation obtained by variation of F with respect to the
vector potential. From this equation the London
penetration depth A in the basal plane along the main
axis is found to be

(,‘2

ANT)= .
87m(2e)X(K |, +K,)| 0

(5.4)

(5.1

Note that the effective London penetration depth is an-
isotropic in this system, depending on the direction of the
field and the boundary.

Further, using the conventional relation for the
“Ginzburg-Landau parameter” k,’

K=—)-\'*=\/§—2|e| H_\?
& c

_c \/4(/31—/32)+B3 (5.5)
2e Varm(K,+K,) ’ '

we define the basal plane “coherence length”

24w
§ HXT)

(K, +K,)|nol? . (5.6)

The effective coherence length is also anisotropic and de-
pends on the components of the order parameter. These
quantities are the basis for a dimensionless formulation of
the Ginzburg-Landau function [Eq. (5.1)], which is ap-
propriate for studies of inhomogeneous structures of the
superconducting state. We define

r'=£r, A(r')=V_iHcka(r) ,
B(r')=V_,X A(r')=V2H_ kb(r) ,

with  b(r)=V_Xa(r) and the order

(n1,m,)=Imol(u,v). Then

parameter

F=£;H3§3fd3r —1(ulP+ )+ 18 u 24 w22+ 1B, (u *v —uv *)?

B
8

(lul?—=P?P+k (ldu > +1d,v ) +ky(ld,u > +d,v]?)

+E[(du)*(dyo)+(dw)*(dyu) +e.c. ]+ AR [(dyu)*(d,v)—(dew)*(d,u)+e.c.]

+ks(ldul*+1d,v]?)+x*? |,

where the  coefficients are  renormalized as
B:=B;/[4B,—B,)+B;), k;=K,/(K,+K,) (that is,
k,+k,=1) and the gradients d=V,—ia (the charge e is
taken to be positive here). Furthermore, we combined
the k3 and k, terms so that k=(k;+k,)/2 and
Ak =(ky;—k,)/2. Note that, in the weak-coupling limit,
Ak is vanishing (see, for example, Machida, Ohmi, and
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(5.7)

f
Ozaki, 1985). In this formulation we see that the form of
this Ginzburg-Landau theory depends effectively on eight
parameters (in the simplest case a conventional supercon-
ductor has only one parameter, i.e., k).

The complicated gradient terms lead to an unconven-
tional supercurrent density, which 1is defined by
j=VXb(=—9f /2«*da). For j in the x-y plane we find
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szzl;lm[klu*axu +kyv*d,0+E(u*d,0+o*d,u)

+Ak(u*d,0—v*d,u)]

1 —
—-’;Re[(kl|u12+k2lv]2)ax+ku*vay] ,

(5.8)
jYZ%Im[kzu*ayu g0 *3,0 +E (13,0 +0*d 1)
—Ak(u*d,v—v*d,u)]
1 ~
—?Re[(klIv!2+k2|u|2)ay+ku*vax] .

The terms proportional to Imu*(V—ia)u and
Imv*(V—ia)v are familiar from conventional supercon-
ductivity. However, the terms with the coefficients k£ and
Ak contain gradients perpendicular to the current direc-
tion. This is a consequence of the multicomponent struc-
ture of the order parameter, as we shall discuss in more
detail below. The z component in this system has a con-
ventional form and is not tensorially coupled with the
other components due to its special symmetry property
in a tetragonal lattice.

1. Domain walls

The easiest way to examine the effect of the unconven-
tional current expression is to consider a domain wall be-
tween two degenerate states of a superconductor (Volo-
vik and Gor’kov, 1985; Sigrist et al., 1989). We shall use
this section also to give some insight into the structure of
a domain wall in an unconventional superconductor. For
the superconducting phase D,,(T'F) two types of
domains are possible, represented by (u,v)=(1,+i) and
(1,—i). To analyze the structure of the domain wall be-
tween these two states it is convenient to reduce the
problem to one spatial dimension in the following
geometry:

(1,—i)or y=—mw/2 for x —>— oo,

(u,v)=
(1,+i) or y=+7/2 for x — + 0,

(5.9)
where we have assumed homogeneity in the y and z direc-
tions (u =|ule’®, v=|v|e™¥ and y =¢—y).

The first step in the study of the domain-wall structure
is to classify it according to its symmetry properties. We
define the symmetry group g by taking all group ele-
ments out of $=G XA XU(1), which leaves the bound-
ary conditions in Eq. (5.9) invariant,

§={E,KCer”’,Czy,KCZZei”,azei”,axei”,KUy,KI} ,
(5.10)
This group is isomorphic to the point group D,,
(={E,Cy,C,, Cy,,1,0,,0,,0,}). Since E and o,e'”
(~1I) act in the same way on the order parameter, only

even-parity irreducible representations of D,, need be
used for the classification. Due to the finite values of the
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order parameter in the boundary conditions, the order
parameter itself is not appropriate for the classification,
but the following functions are: du(x)=wu(x)—1 and
Sv(x)=v(x)—vy(x) with vy(x)=i tanh(ax) (a>0 real),
so that du(f oo )=08v(X e )=0. The following types of
basic domain-wall structures are possible:

I: Su: real, even Sv: imaginary, odd
Iy:  8u: imaginary, even  Sv: real, odd
F3+: Su: imaginary, odd dv: real, even
[y:  8u: real, odd Sv: imaginary, even.

(5.11)

Let us now derive the specific structure of the domain
wall from the Ginzburg-Landau theory. Even if the
problem is only one dimensional, the solution of the cor-
responding Ginzburg-Landau equations is difficult, since
the variation of F leads to at least six coupled nonlinear
differential equations (four for the order parameters and
two for a, and a,), if we neglect the vector-potential
component a, by reason of its symmetry. Under special
conditions, however, an approximate result can be ob-
tained.

In the case (I) B, << 1 it is reasonable to set |u| =~ |v|. If
there is no imbalance in the Josephson phase between the
two sides (see Sec. IV), the current through the domain
wall has to vanish,

K=k |ul?0,¢—a,)+k,|v/*d,x—a,)
—2k|ul [v]a,cos(x —¢)
=0. (5.12)

At the same time, this equation corresponds to the Lon-
don equation of the a, component restricted to one di-
mension. If we neglect the vector potential for the mo-
ment, the following two differential equations result from
the variation of F with respect to |u| (=|v|), ¢ and ¥, us-
ing Eq. (5.12) to eliminate one equation:

02 Jul + |u| — |ul3(1+4B,cos>y)=0

2 (5.13)

229 +2]ul(3,u )3,y )+ ——— |ul*sin(2y)=0 ,
kik,

with the boundary conditions |u|(£w)=1 and

y(too)=x7/2(y=x—¢). These equations are approxi-
mately solved by

L
cosh?(V'2x /&)
y(x)=arcsinh[tanh(V2x /€)]+O(B2) ,

lul(x)=1— +0(B2)

(5.14)

where €=1/k k, /B, is the length scale (thickness) of
the domain wall [this length scale must not be confused
with that introduced in Eq. (5.6)]. The order parameter
is slightly suppressed in the center of the wall, and the
relative phase has a continuous kink solution. The ener-
gy of this wall per unit length is given by
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€0

H2
cgfdx(f(x)—fo)

4
H??  — _
= 4; 4V 2B,k k,+0O(B3?), (5.15)
where f,=-—1 is the dimensionless bulk energy density

of the superconductor. The temperature dependence of
€ is proportional to |T —T,|3/2 close to T, for the same
reason as at the surface (see Sec. IV).

If we consider the case (IT) B, >>1 another domain wall
structure occurs. The simplest approximate solution of
the Ginzburg-Landau equations is given by
xV2

u(x)=1 v(x)=itanh s (5.16)

gl
with & =41k, /(1+4B,—f3,) and the domain-wall ener-
gy

ch —_— =
§\/2k2(1+4/32—/33) )

L —
fo™ 617

(5.17)
This solution is a good approach for 1 —4f3,+5; << 1 and
ky<k;.

Comparing these two solutions with the symmetry
classification given above, we find that domain wall (II)
corresponds to the I';" representation, whereas domain
wall (I) belongs to a combination of I'f and I'j:
I'fely. It can be shown that there is a continuous
transition between the two types of domain walls, de-
pending on the coefficients 3,, B; as well as on k;. Clear-
ly, the symmetry of domain wall (IT) is higher than that
of (I) which is twofold degenerate due to the different be-
havior of the two representations under symmetry trans-
formation. This degeneracy can be easily understood in
the following way: the relative phase y going from
—m/2 to +/2 can pass through O or through 7. Both
are solutions with the same energy g,. For domain wall
(IT) this type of degeneracy cannot occur, since the rela-
tive phase changes discontinuously in the center of the
wall. Other representations than '} and I'j are not
realized as stable domain walls within the region 3,> 0,
4f3,> B, and assuming the above given boundary condi-
tions.

The symmetry group of domain walls in an arbitrary
direction is usually isomorphic to a subgroup of G (one
exception is the domain wall lying in the x-y plane, which
has a symmetry group larger than G, i.e., Dy,; G is iso-
morphic to a subgroup therein). If the normal axis of the
domain wall lies in the x-y plane, the subgroup is mostly
isomorphic to C,,(z), whose trivial representation I';" is
compatible with both '}’ and T’y of D,,. Thus there
cannot be any symmetry distinction between two
domain-wall structures of the types (I) and (II) nor, there-
fore, any transition between them. Furthermore, the de-
generacy for the case 5, << 1 is lost. However, this lifting
of degeneracy may be small compared to the domain-wall
energy. This twofold degeneracy is exactly established
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only if the domain wall is parallel to the x, y, xy or (—x)y
axis.

Our original aim was to consider the magnetic proper-
ties of these domain walls. Hence we must now treat the
variational equations (London equations) for the vector
potential. The only component we need to consider is a,,
since a, has already been dealt with in Eq. (5.12):

1

aiay-—“(k1|v!2+k2|u|2)ay +j,=0

5.18
= (5.18)

where the second term is the diamagnetic current in-
duced by a magnetic field, and j}j is the current driven by
the spatial variation of the order parameter in the
domain wall. This j; is calculated from Eq. (5.8) to be

Im[k(u*d,v+v*d u)+Ak(u*d,v—v*d.u)]/k* .

Using Eq. (5.12), we derive the functions j}f(x),

V2 ~ 1
iD= "2 1Fk ky(k,—k,)—Ak]—————— (5.19)
Jy K2§[ ILFALS 2 ]coshz(\/Zx/é‘)
for domain wall (I) and

V2o - 1
(1) —
=—(k—Ak)—————— (5.20)
¢ 2% cosh*(V2x /&)

for (II). In both cases there is a current peaked in the
center of the wall and flowing parallel to the y axis. The
origin of these spontaneous currents will be discussed
more generally in the next section.

To see the behavior of the magnetic field
induced by this current, we approximate j, by
jo2V2 exp(—2V2|x| /&) /(k*E) [j, is chosen to give the
same total current as the current expressions above
where, for the domain wall (I), g has to be replaced by
€] and set k, |u|>+k,|v|>=1 everywhere. Then the Lon-
don equation can easily be solved, leading to a magnetic
field
(5.21)

b,(x)= 8 ‘WXI/K_e*N/_ZIXl/E)lL )

o= (e
Jo 8K2"§2

This field has opposite sign on the two sides of the
domain wall and is screened towards the bulk region on a
length scale « (the London penetration depth in dimen-
sionless units). The effective current, including the di-
amagnetic contributions, is given by j, = —0,b, and con-
tains a peak in the center, as before, and additionally two
wings of counter currents on both sides. Thus both the
field and the current vanish on the average, and no net
magnetization is associated with a domain wall. The
maximum value reached locally by the field is
|B,| ~8H,j,/V2k(2V'2k+E). The weak-coupling limit
(ky=2, k,=k=1, Ak=0, j, <1/8) leads, for large «, to
a value well below the conventional lower critical mag-
netic field along the z axis: H,;=H, Ink/V'2«. The con-
tribution of this magnetic field and the current to the
domain-wall energy is small, of the order of k! in the
large-« limit.

The solution of all six Ginzburg-Landau equations in a
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consistent way requires numerical calculation. In Fig. 7
the result is given for the small-B2 limit, confirming the
validity of the approximate solution.

Finally, we should like to mention that domain walls in
time-reversal-conserving superconducting states can also
yield magnetic properties. For example, the region
B,,B;<0 with the twofold-degenerate bulk state
(u,v) < (1,%1) has similar domain walls between the two
degenerate states. In the limit |5,| <<1 these domain
walls can break time-reversal symmetry locally and have
similar magnetic properties to those described above.
Due to the breakdown of time-reversal symmetry, the
structure of the domain wall is twofold degenerate too.

2. Magnetization at the surface

The surface of a superconductor has properties similar
in many respects to the domain wall (Sigrist ez al., 1989).
The order parameter also varies spatially towards the
surface in a range £, as already described in Sec. IV. We
consider the example of a surface perpendicular to the x
axis demonstrated there (x >0: superconductor and
x <0: vacuum). The component |u| is assumed to be
stressed to zero as

lu (x)| =tanh(V2x /E) and X—¢=i§=const ,
(5.22)
3
10 4+ 1
2
4
(a)
0
1.0 (b)
1
2
0 V——
1 Il
T T
0 2 4 6
X
FIG. 7. Result of a self-consistent solution of the domain-
wall problem for the parameters [,=0.1, B;=—0.6,
k,=0.7, k=0.1, and «=4: (a) order parameter

1 lul; 2 vl; 3 7; 4 10X4. (b)
1 10°Xb,; 2 10°X},

(u,v)=exp(id)(|ul, |vlexp(iy)):
magnetic field and current distribution:
(Sigrist et al., 1989).
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j,=—(k+Ak)V2sin(x —¢) /k’E cosh’(V2x /E),

with £2=16k,/(1+4B,—f;), whereas |v| is assumed to
remain constant (=1) (the same approach as in Sec.
IV.A). The boundary condition in Eq. (4.24) prohibits a
current perpendicular to the wall: j, =0. Thus the Lon-
don equation for a, has the form

3?2 1 ) )
?“y_;?(k””' +k,lul?a

k+Ak

—v I—lulsmx é)= (5.23)

Substituting Eq. (5.22) in (5.23), we see that the last term
denotes a supercurrent flowing parallel to the surface:
similar
to the domain wall. The induced magnetic field can be
obtained by an approach analogous to that of Sec. V.A.1,
replacing j, by

—(k+ Ak )2V 2sin(x —¢) exp( —2V2|x| /&) /& .
Then the magnetic field is
_ 8
8k2— &
X (e 7X/K_e A*Z\/_Zx/g‘)

b,(x)=(k +Ak)

z

sin(y —¢) , (5.24)
where we take the external magnetic field to be zero. The
maximal magnitude in real units is about the same as in
the case of the domain wall. Because the sign of the mag-
netic field depends on the relative phase (x—¢), it is
different in the two domains (u,v)=(1,=xi). Contrary to
the case of the domain wall, there ex1sts a finite net mag-
netization at the surface:

|M|=~4V2(k+AK)H, /(2V 2k +E)

per unit surface area. This has the consequence that a
single domain superconductor has a finite, macroscopi-
cally observable magnetic moment due to the time-
reversal-breaking state.

Even if the currents found at the surface and the
domain wall seem to be rather unconventional, their ori-
gins are in some ways analogous to those of super-
currents in conventional superconductors. They are the
response to a spatial variation of the phase of the order
parameter In a multlcomponent order parameter
[A=3,[n;l expli¢;)A;], the behavior of this phase is
determined by several variables, first of all by the phase
of each component. However, the total phase is also
clearly changed if the magnitude of the moduli |7;| of
each component varies in a different way, and the value
of the relative phase among them is somewhere between
0 and £ (note that the latter is the condition for a time-
reversal-breaking state). The multicomponent structure
of the order parameter yields a tensorial behavior, so that
currents can also be induced by gradients of the phase
variation perpendicular to its direction.
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In the weak-coupling limit the gradient terms of a which can be derived from Eq. (4.4) by assuming a slow
Ginzburg-Landau theory of a multicomponent order pa- variation of the order parameter [£(7)>>£,] and gauge
rameter can be written in the form invariance (see, for example, Abrikosov, Gor’kov, and

Dzyaloshinski, 1963). The kernel has the structure
=% 3 [[@RERR,R, |

& aimn . K;(R)=f(IRDt[A F(RA(R)], (5.26)
2ie
2ie

X | 19,,———4,,(r)
c
a,,—TAn(r) m

m

as given in Eq. (4.9). The constant C is chosen to give the
correct units. From this equation the supercurrent can
(r) l R (5.25) be calculated by the derivative with respect to the vector
potential (J=—cdF;/d A),

X

J(r)=Celm [d°R f(IR)Rtr |& *(5;R) |V,— 2% A |A(r;R) | R . (5.27)

We now introduce ﬁ(r;R)ZZ j nj(r)ﬁj(R)‘ For our discussion of the current induced by the phase variation, we
neglect the diamagnetic currents, the part that depends on the vector potential.

Let us consider the case of a planar surface. It is convenient to characterize the spatial variation of the order parame-
ter at the surface by separating it into components, which are classified by the parity 7(n) (reflection at the boundary,
which is represented by the normal vector n): even components are assumed to be constant and odd components are
suppressed at the boundary (see Sec. IV). This assumption allows us to write a simple expression for the final result
without losing the general content. Therefore we decompose the order parameter,

A(r;R)=A,(R)+A,(n';R)=4,(R)+3 R V(R)y;(n'1) (5.28)
j

where the indices e and o denote “‘even” and “odd,” respectively. If we choose the basis gap function to be orthogonal-
ized {also with fd3R (n-R)*tr[A TO(R)A V(R)] 8;;1, it is easy to see that there is no current perpendicular to the
surface: n-J=0. On the other hand, we find for the currents parallel to the surface

J,=J—n(n-J)
=nxCelm [ d’R f(IRDRXn)(n-R)tr[A *(n-r;R),A(n-r;R)] . (5.29)

By making use of Eq. (5.28) and by partial integration we obtain

J=—nXx % [ @R £(R)(nRARX V) tr[A F(R)3,A,(n';R)—&,(R),A f (nr;R)] . (5.30)
This can be reduced to the form
J,=—V,XCelm [ d°R f(IRN(n-R)*r{[P(n)A *(n-;R)(RX Vg)A(n'5;R)} , (5.31)
[
using the fact that the operator n X (R X Vg) changes the netization, sincE for these states the expression
P(n) parlty of a function Ae O(R) The expression Im[A *(R X Vg)A] vanishes.
?(m)A *(n-r;R) is defined as AT [n:r;R —2n(n-R)]. Applying this formula to our example (I's of D,,) for

From this final equation we can very easily obtain the both even- and odd-parity states, we find a finite magneti-
magnetic  field, using the Maxwell equation zation along the z axis, with the same sign as for any nor-
47J(r)/c =V XB(r). Since the diamagnetic current was mal vector in the x-y plane for a fixed bulk state. How-
excluded from our discussion, in this expression the mag- ever, for n parallel to the z axis, all currents are vanish-
netic field is finite and constant in the bulk region. ing. Similarly, the time-reversal-breaking state O, (I';")
Therefore, inserting the bulk-state gap function into the generates a current for any direction of the surface ex-
formula for the magnetic field, we obtain a criterion for cept for n parallel to the main axis (Bares, 1988). In this

the existence, magnitude, and direction of a local magne- case, however, the magnetization has different directions
tization at the surface with the normal vector n. Clearly, for differently oriented surfaces. Consequently, this
the result is that a time-reversal-invariant state phase need not yield a finite magnetization for a single
[¥*(R)=¢¥(R) or d*(R)=d(R)] produces no such mag-  domain sample, in contrast to the former example.
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Since the behavior of the surface and the domain wall
are analogous, these results can also be transferred to the
domain wall with the only difference that the sign of the
current and the field can depend on the choice of some
parameters (in our example on the ratio k,/k,). More
precisely, the current direction depends on whether the
even- or the odd-parity 7°(n) components of the order pa-
rameter are varying more strongly in the domain wall.

The weak-coupling approach in our example requires
k; and k, to be equal, leading to Ak =0. Beyond this
limit these two coefficients are in general different. It can
be shown that their difference, due to particle-hole asym-
metry, is smaller by a factor of the order of (T, /T)*
than the weak-coupling coefficients [in conventional su-
perconductors 7T, /Ty is very small, ~10~* but for
heavy-fermion superconductors it is considerably larger,
~0.1; (Serene and Rainer, 1983)].7 Therefore this term
has to be discussed separately, since it is not included in

Eq. (5.25),
|

B(r)=e77fd3R g(IR)tr

i

where g(|R|) is a function that includes strong-coupling
effects. Obviously this expression is related to an intrin-
sic magnetic moment of the superconducting phase de-
scribed by the operator

ﬁl(m:%mkawa , (5.34)
which is composed of the relative angular momentum
and the spin polarization of the Cooper pairs (Leggett,
1975). In this formulation we neglect corrections due to
spin-orbit coupling. Considering this magnetic moment,
Volovik and Gor’kov classified the time-reversal-
breaking states to be “ferro- or antiferromagnetic” by the
following natural definition:

~ ~ 0, antiferromagnetic,
(tr[A T(R)f(R)A(R)]) =

" |finite, ferromagnetic,

(5.35)

where { ) denotes the average over the direction of R.
Obviously, the magnetic field in Eq. (5.33) is only finite
for ferromagnetic states. Our example considered above
[D,,(T'F)] is a ferromagnetic state in that sense. On the
other hand, the cubic state O,(I'y) is an antiferromag-
netic one. The total list of the classified ferromagnetic

It should be noted that in the weak-coupling limit impurity
scattering effects can also lead to a finite Ak, close to the
scattering center (Choi and Muzikar, 1989a). This can be un-
derstood if we consider the change of the kernel K;(r,r’)
around an impurity (see Sec. V.A.3). This effect can be impor-
tant in the dirty limit.
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A T(n-5;R) ‘ L (RXVg)+8&

Ak[(d,u)*(d,v)—(d,u)*(dv)+c.c.,],

AR=1(k;—ky) . (532)

1
2

Even if it looks rather similar to the k term in Eq. (5.7), it
has essentially different properties in generating spon-
taneous currents and magnetic fields. It does not contrib-
ute at all to the diamagnetic current for the Meissner
effect. In a time-reversal-breaking superconducting state,
any inhomogeneity of the order parameter, even without
spatial variation of the phase of the order parameter—all
|n;| have the same spatial dependence and the phases ¢;
are constant—Ileads to a current and a local magnetiza-
tion. To understand the origin of this gradient term we
consider a planar inhomogeneity. We now take the op-
posite approach to that used earlier. Starting with the in-
duced magnetic field, we show that it leads to that kind
of gradient term. Neglecting all screening effects, as
above, we write for the magnetic field

ﬁ(n-r;m] , (5.33)

[
states is D3,(I'Y), Dy, (T'F), D, (TT), D¢, (TE); the only
antiferromagnetic state is 0, (T'5).

The finite ferromagnetic moments do not occur ma-
croscopically in the bulk region of a superconductor due
to complete screening by diamagnetic currents. Howev-
er, inhomogeneities of the superconducting state can pro-
duce a local occurrence of magnetic field, especially if the
screening length is large compared to the characteristic
length scale of the inhomogeneity (mostly the coherence
length). Then the screening of the spatially modulated
magnetic moment cannot be perfect.

What is the physical basis for the gradient term in Eq.
(5.32)? Clearly, we can include the magnetic moment of
the superconducting state in the Ginzburg-Landau
theory by a Zeeman term,

F,=—4me [d*x d°R [V,X A(n)]g(|R])
X tr[A T (r;R)@(R)A(r;R)]

=—C [d*[V,X A(1){m(r)) , (5.36)

which is finite only for a ferromagnetic superconducting
phase. This term does not produce additional boundary
conditions, since the magnetic moment turns parallel to
the normal vector n at the surface (see footnote 4),

ff[ A(r)X {m(r))]-nd2S,=0 . (5.37)
Therefore Eq. (5.36) is equivalent to
F;=—C [d’x A(D[V,X(m(r))], (5.38)

which leads straightforwardly to Eq. (5.33) for the mag-
netic field. However, this term can also be expressed by
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F=—4melm [ d* [d°R g(|R]) tr([ DA(r;R)]" [@(R)X[DA(r;R)]}) , (5.39)
I
which corresponds to a gradient term of the Ginzburg- produce a local magnetization (Gor’kov, 1987). This was
Landau free energy (D=V—2ie A/c). Therefore the analyzed quasiclassically by Choi and Muzikar (1989a),
Zeeman term can be transformed to an equivalent gra- based on an earlier work of Rainer and Vuorio (1977),
dient term, which is included in the group-theoretical who considered the influence of small scattering centers
derivation given in Sec. IL.B, since it is one of the invari- on superfluid *He [another treatment of the problem was
ant terms. It is clear that this type of gradient term ex- offered by Mineev (1989)]. We shall here consider the
ists only for “ferromagnetic” states. For “antiferromag- Ginzburg-Landau approach to this problem, which is
netic” states all magnetic properties are due only to the only valid in the region of a slow variation of the order
tensor character of the gradient terms and the corre- parameter. Therefore, for regions very close to the
sponding currents. scattering center, we refer the reader to the above-
A very simple criterion for the possible existence of a mentioned authors.

ferromagnetic state in an order-parameter representation We have seen in Sec. IV.A that a kernel K;;(r,1’), re-

I" can be derived by considering Eq. (5.36). Since VX A lating the order-parameter component 7; at the point r
transforms according to the vector representation D),  to 7; at r’, can be expressed by a correlation function of
and the magnetic moment is a bilinear form of the order  classical particles [Eq. (4.10)]. Therefore the kernel in

parameter, the existence of such a term requires that the the presence of a scattering center at r, can easily be cal-
decomposition of D@ '*®I" contain the representation culated using this classical picture for the correlation
FFL- function. For a kernel between r and r’ in the vicinity of
r, we have to include the path via the scattering center

3. The magnetic effect of impurities or lattice defects (r'—ry,—r), as well as the shadow effect if the scatter-
ing center lies on the line between r and 1’

From the previous discussion it is clear that an inho- [(r'—rg)-(ro—r)=|r'—1,| [ry—r|]. The classical correla-
mogeneity of the superconducting phase at an impurity tion function then leads to the following additional con-
or a defect of the crystal lattice—where the order param- tribution to the homogeneous kernel in Eq. (4.11) (see

eter is slightly suppressed within a length scale §—can Rainer and Vuorio, 1977):
J

ry—r r—r
N+ 0 ~ 0
A(i) ( IrO——r] ]A(J) [ lr'_fol ]

KSatt(p ) VN(O)kpT
seatt(y ') =
Y 2vp lro—rl?[r' —ro|?
. do | To—r ' —rg r,—r r'—r, ro—r 1
dQ | |lrp—r|’ |’ —x,) Iro—r|  |r'—ryl |ry—r| sinh(27ky T(|ry—1| 4+ |1’ —10|) /0F)

(5.40)

where do(T,7')/dQ is the differential cross section [o(T)= f dQ'do(,7')/dQ]. This formula contains both the
scattering (first cross-section term) and the shadow scattering (second cross-section term). To include the effect of this
scattering center in the Ginzburg-Landau theory we can use this kernel in the local limit at T close to T,

—Ir] /¢,
NO) < T §0 0

2 & arir|?

N(O

2 [ d’r d? pH(OKE (0 (x) — T} (r)Qym, (1) , (5.41)

where we take 1, the scattering center, at the origin and §,=vp/27ky T, (Rainer and Vuorio, 1977).% The influence of
a scattering center is characterized by a cross section & and the matrix Q,; [generally of the order O(1 )], which are

defined as
o {L H . (5.42)
|t

8In the next order of the local limit, second-order gradient terms of the form E,.,j’a,ﬁQ,j(Dan,-)*Map(Dﬂnj) can be derived. So, on
the basis of the weak-coupling limit, generally several additional terms can occur which are not present in the bulk. However, we
neglect them here, since they give no contribution in the perturbative approach used below.

do

UQ:]

I r |_5 li_ r

A
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In the limit of slow variation of the order parameter [£(T)>>£,], we can neglect the spatial extension of this kernel and
write it in the form

Focan = E%le [ @ mrn)S m;(0E8(r)
l’]

(5.43)
with ;=0 VQ;; /&3, which is very small, under the reasonable assumption that o << &3 (for Q,; we take its angular aver-
age). Thus it is possible to analyze the effect of this scattering term perturbatively.

To fix the idea let us turn back to our example [D4h(1"§:)]. We introduce for simplicity a symmetric scattering term

H2 3
4“5 J @3 S{lu(o+lu(o)218(r)

with S=(0 /E3)[&y/E(T)PQT, /2|T —T,| < |T —T,|'/? in dimensionless quantities. To calculate the distortion of the
order parameter in first order of S, we expand u and v: u =u,+u’ and v =v,+v’, where u, and v, are the homogene-
ous order parameter components. Only the moduli of the order parameter are affected by this scattering term, so the
Ginzburg-Landau equation can be linearized in |u’'| and |v’|,

(k32 +k,02+ksd2—B)|u'| +(kd,9,—B")|v'|=S8(r) ,
(k32 +k,3%+ksd2—B)v'|+(kd,0,—B")|u'|=S8(r) ,

(5.44)

Foar =

(5.45)

where B=(1+43,—pB;)/2> 1 and B'=(1—4B,+p;)/2 < 1. Transforming these equations into the Fourier space and

solving them algebraically, we obtain

—S(B —B'+k2q3+k1qy2+k5q3—k'qqu)

la'(q)|= — ,
d (B+k g} +kyq)+ksqg?)(B+kyql+k gl +ksq?)—(B'+kq,.q,)
2 2 2_ 7 (5.46)
lf)-r(q)|= —S(B_B'+qux+k2qy+k5qz_—kaqy)
(B+k g2 +k,q2+ksq?)(B+k,qi+k g +ksq?)—(B'+Kq,q,)”
[
The essential form of this solution is ~(B+kg2)™!, b(r)=—~l~ dsr,(r“r')xj(r')
which means in real space a |r|~! dependence for a re- 41 x—x'|3
gion |r| <&(T) and an expon ntial behavior for large |r| 3 ¥
_.r dq aXjq) 4
>&(T)].° =i [ =2l piar (5.49)
[>&(D] / (2m)?  qf?

In order to analyze the current induced by this distort-
ed order parameter, we consider j in the lowest finite or-
der in #' and v’. Obviously, the z component always van-
ishes. For the two other components we obtain

Je(D) =23, [ lv'(r)] —|u'(r)]]sin(x — ¢) (5.47)

from the k term and
Jxp(t)=—+(— )A—fay(x)ﬂv’(r)l +|u'(r)|sin(xy — @)
K

(5.48)

as the Ak contribution. From these current expressions
we can calculate the magnetic field by the Biot-Savart
formula,

%A more detailed study of the distortion of the order parame-
ter around a scattering center was given by Rainer and Vuorio
(1977) and Choi and Muzikar (1989a, 1990) on the basis of the
quasiclassical approach.
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Let us consider the magnetic field at x=0. We simplify
the solution Eq. (5.44) by neglecting the coupling terms
between the two components, i.e., the terms with k& and
B’. In doing so we obtain an estimate of b(0) in the limit
kik,—1,

b,(0) = — 5 2k, — k) E D Gin(y—¢) .
2 5o

The factor £(T) /&, appears due to a cutoff at the inverse
length £; !, since we neglected the extension of the kernel
in Eq. (5.41). The magnetic field and its sign strongly de-
pend on the difference between k; and k,, similarly to
the domain-wall magnetization. The current around the
scattering center is induced by the different spatial varia-
tion of the two components. This difference in the varia-
tion is determined by the parameters k, and k,. If these
coefficients are equal, the distortion is rotationally sym-
metric around the z axis. Then no currents or magnetic
fields occur due to the term in Eq. (5.47).

On the other hand, the magnetic field induced by the
current in Eq. (5.48) does not lead to such a k,-k, depen-

(5.50)
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dence. We obtain in that case approximately

o)~ AKS &(T)
=

As pointed out before, the magnetic field produced by
this term has its origin in the screening defect of the in-
trinsic magnetic moment varying in space around the im-
purity. Any distortion of the order parameter leads to a
finite current distribution at the impurity.

For this ferromagnetic superconducting phase we find
a local magnetization around an impurity. In a similar
way, antiferromagnetic phases can generate a magnetic
field at such scattering centers. However, in this case the
intrinsic magnetic moment is vanishing and gives no con-
tribution, as pointed out earlier. Furthermore, the field
b(r=0) vanishes for a totally symmetric scattering
center, since no direction is specified in an antiferromag-
netic system. The field is situated around the impurity in
a complex pattern, obeying the symmetry properties of
the superconducting state.

In all cases the magnetic field cancels itself as can be
seen in

b, (

z

sin(y —¢) . (5.51)

¢ d’q gXi(q)
d¥br)=i [-SL- 92T 5q)=0,
f ¥ b(r) zf(27)3 PE q)

where we used Eq. (5.49). This canceling takes place on a
length scale £, so diamagnetic currents do not participate
strongly in this effect if the Ginzburg-Landau parameter
k is much larger than 1. Choi and Muzikar (1990) dis-
cussed whether there might be cases in which this cancel-
ing is not complete, leading to a net magnetic moment.
Then the diamagnetic currents, which could be neglected
up to now, would have to be taken into account in order
to screen this moment. However, this is only the case if
the long-distance recovery of the distorted order parame-
ter is not exponential but like |r| ™!, as easily can be
found from Eq. (5.52). Such a long-range behavior is
only possible for continuous (‘“soft”’) modes of the order
parameter. In a system with crystalline structure, how-
ever, no such modes exist that could couple to the
scattering center.

In real units the magnetic field obtained for our exam-
pleis

(5.52)

_ o H/(T
V220 (1)

&

—1k(k,—k;)
sin(y —¢) .

(5.53)

The temperature dependence of B is linear, as for the
thermodynamic critical field in the Ginzburg-Landau
limit. To estimate the order of magnitude of the field in a
specific system, we can assume that the cross section is of
the order of the atomic radius squared and H,/k can be
approached by the measured lower critical field. Howev-
er, the magnitude of the magnetic field induced from a
region very close to the impurity may be several times
larger, at least in the case of a ferromagnetic supercon-
ducting phase (see Choi and Muzikar, 1989a, 1990;
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Mineev, 1989). We shall discuss in Sec. VII how this oc-
currence of local magnetization at impurities or crystal
lattice defects can give an explanation for detected inter-
nal magnetic fields in a heavy-fermion superconductor.

B. Vortices

In this section we are concerned with a more familiar
magnetic property of superconductors, the existence of
vortices. A vortex is a line defect in the superconducting
phase and can be energetically stabilized by an externally
applied magnetic field. Its structure is described by a
singularity of the order-parameter phase, which winds
around the line by an integer times 27, and determines a
topological charge. This charge is physically manifested
by the existence of magnetic flux in this line, exactly one
flux quantum (Ac /2e) per unit winding of the phase. In
fact, the single-winding vortex, containing one flux quan-
tum, is energetically the most stable. For conventional
or one-component superconductors, this vortex is the
only form to carry magnetic field in the bulk region. A
multicomponent order parameter, however, can yield
various types of vortex structures, since from the topo-
logical point of view each component separately can pro-
duce a vortex by winding its phase around a line. This
problem has been very intensively investigated for
superfluid 3He (see, for a review, Salomaa and Volovik,
1987). The results found there, however, cannot simply
be transferred to the case of the superconducting phases,
since unconventional vortex structures in *He are strong-
ly related to the complete rotational symmetry of the sys-
tem. For very weak spin-orbit coupling, even in a system
with a crystal field, a certain kind of nonsingular, coreless
vortex is possible, rather similar to those found in *He.
This type of vortex corresponds to a continuous spin tex-
ture around a center line (Burlachkov and Kopnin, 1986).
However, when a strong spin-orbit interaction is includ-
ed, the superconducting states have no continuous degen-
eracy, so that these types of structure are no longer
stable. Nevertheless, even under these circumstances an
unconventional superconducting phase can produce vor-
tex structures deviating essentially from the well-known
conventional vortex. Vortices for unconventional super-
conductors have been investigated mainly for time-
reversal-breaking superconducting states, because the
connection between magnetic flux lines and intrinsic
magnetic properties is an attractive field in which to find
new effects.

1. Fractionally quantized vortices

Each component of a multicomponent superconductor
can produce independently a topologically stable vortex
with its own topological charge (Volovik and Gor’kov,
1984). From the point of view of energy, however, the
behavior of the other components has to be strongly
correlated. If the phase of only one component is wind-
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ing around a line, it transforms the superconducting state
in the whole system by varying the relative phase(s) with
the other component(s). Since the superconducting state
is not continuously degenerate with respect to such a
change, this structure leads to an increase of the energy
density in almost the whole system and is therefore not at
all favorable. This can only be avoided by a winding in
all components of the order parameter to conserve the
energetically stable superconducting state, at least at a
distance far from the vortex core (>>£&). Thus it seems
rather unlikely that stable ““one-component vortices” will
be found. However, in a special environment they can
exist, i.e., on a domain wall that preexists in the super-
conductor (Sigrist, Rice, and Ueda, 1989; Izyumov and
Laptev, 1990).

To fix our ideas, let us consider again the example ex-
amined in the previous section: a domain wall lying in
the yz plane. As we have mentioned there, the structure
of the domain wall is twofold degenerate for the parame-
ters B,<<1, since the relative phase y =Y —¢ has two
possible ways to move (continuously) from —w/2 to
+1/2, by passing through O or 7. These two structures,
present in the same domain wall, have to be separated by
a line defect, an analog to the Bloch line in a ferromag-
net. Obviously, this line corresponds to a winding of the
phase of one component, since the relative phase y takes
continuously the values —7/2—>0—+7/2—7—317/2
= —q/2, going around the line. The variation of the
phase takes place mainly in the domain wall, which ab-
sorbs all energetically unfavorable long-range effects of
this winding. Hence the distortion of the order parame-
ter is effectively concentrated in a small region of length
scale &, similar to a conventional vortex.

The flux carried by this line defect can easily be calcu-
lated by considering the integral

b, (Vo—a)ds=¢ Vods —d(p)

on a special path p, which we choose rectangular, par-
tially parallel and partially perpendicular to the domain
wall. The parallel parts of p may be so distant from the
wall that they do not give any contribution to the in-
tegral. The perpendicular parts cross the wall far enough
from the line defect that the domain-wall structure is
completely recovered. Using the condition that the
current component j, =0 in a stable domain wall [Eq.
(5.12)], we obtain
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which inserted in Eq. (5.54) leads to the flux quantization
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where we again made use of the approach |u|~=|v|. The
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symbol ®, denotes a standard flux quantum (in dimen-
sionless units 27), which corresponds to the total topo-
logical charge if both phases are winding. The number n
is an integer counting the simultaneous winding of both
components. The last term is comparatively small due to
the fact that a, is of the order k /k and cosy only con-
tributes in a range £ at the domain wall. The smallest
possible flux quanta are ® ==tk Py, tk,P, smaller than
the standard flux quantum, since 0<k;, k, <1 and so
they are fractional flux quanta.'®

In a certain limit the energy of the line can be estimat-
ed as for the Abrikosov vortex, taking mainly the mag-
netic field and the kinetic energy of the circular currents
into account, but neglecting the core energy. The latter
is very small compared to the former two if Kk >&=1.
This neglect is even more justified in the case under con-
sideration, since only the component with the winding
phase has to vanish in the center of the line defect.
Hence no normal conducting core is present, in contrast
to conventional vortices.

Three length scales enter this problem, the London
penetration depth k, the length scale of the domain wall
£, and the coherence length of the order parameter £~ 1
(in the x-y plane). Assuming the limit x>>E>>£, we
consider a line defect located at r=0 and directed along
the z axis, carrying a magnetic flux ®=®,k, =27k,. Let
us fix the gauge so that only the phase Y of the com-
ponent v is winding, whereas ¢ is set to zero everywhere.
Thus we can write the free energy F in units H2£% /4 per
unit length along the z axis outside the core region
(lul=lv|=1),

F= [d*{2Bycos’x+k,[a2+(3,x—a,)]

+kyla}+@,x—a,)?1+kD*} ,  (5.57)

where we subtracted the bulk energy density —O0.5 in the
integrand. For simplicity we neglected the terms that
lead to the domain-wall current, K =Ak =0.

This functional can be rewritten as

F= [d% [k +K*)+2Bc0s?y +k  ky (V)]
(5.58)

where j is the current derived from Eq. (5.57) by
j= —9F /2«?da. The symbol V denotes here the 2D gra-
dient in the x-y plane.

The magnetic-field part can be estimated in the same

10A change of direction of the domain wall leads to
a change in the fractional flux quanta. The flux quanta
are P(n)=k(n)d, [1—k(n)]d, with k(n)=k (k,—k,)
X [(nXZ)-X/|nXZ|]? where n is the normal vector of the wall.
In our example we obtain half-quantized vortices for the wall
with the normal vector n=(%+1,4+1,0). Note, however, that the
domain walls in arbitrary directions need not be degenerate, as
mentioned above.
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way as in conventional vortices (see, for example, de
Gennes, 1966),
e =2 K
Voap g
where £ is the radius of the core.
To estimate the contribution of the phase y we have to
consider its variational equation derived from F,

1

r2

(5.59)

%a,(ra,xwr oy + —,El—zsin(2)()=0 (5.60)
in polar coordinates. For large r this differential equa-
tion is solved by the domain-wall kink solution (see Sec.
V.A.1). For small r( <<€=4"k, k,/B,), the second term
is dominant and bears asymptotically the solution y=0.
Since in the intermediate region a simple solution is not
available, we give an upper limit to the energy contribu-
tion of y by taking this latter solution in the range
&<r <& and the domain-wall kink solution in the range
r>E&. The dominant term in the integral Eq. (5.58) (in-
tegral range r>§) is contained in the gradient term:
(dgx)?/r®. Subtracting the domain-wall energy and
neglecting smaller contributions, we obtain the total vor-
tex energy

£
£

and the critical field, the lowest external field which sta-
bilizes this line defect,

K
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which is generally smaller than the bulk lower critical
field k., if we assume that the extension of the core re-
gion for both cases is about the same.

Two neighboring line defects on a domain wall have in
general different flux quanta and critical fields. The sum
of their flux is an integer number of ®,. This fact is easi-
ly understood by considering the relative phase that
winds oppositely around the two lines. However, the
sum of their line energies is smaller than that of one con-
ventional vortex including the same finite flux. The
difference is given by Ae= —4wk k,In(k/E). Therefore a
pair of such line defects can be produced by the decay of
a bulk vortex (one flux quantum) into two fractional vor-
tices. Then domain walls would act as very strong pin-
ning regions for vortices.

These considerations can also be extended to domain
walls whose structure is only nearly degenerate, i.e., to
domain walls with arbitrary direction mentioned in Sec.
V.A. A line defect—also in this case a fractional
vortex—separates two domain-wall structures with
different energy per unit area. Therefore a force is acting
on the line defect supporting a movement that enlarges
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the low-energy domain wall. The movement of such line
defects is one way to convert a domain wall with higher
energy into one with lower energy. If the difference be-
tween the two energies per unit area is small, the decay of
a bulk vortex can take place even on the domain wall
with the lower energy per area. Between the two frac-
tional vortices generated, an energetically more expensive
portion of the domain wall is created, supported by the
gain of vortex line energy. In this case, too, the domain
wall acts as a strong pinning region for bulk vortices.

2. Bulk vortices

As we have already pointed out, in the bulk region
there is no chance of generating an energetically stable
fractional vortex. From this fact we should not jump to
the conclusion that the structure of a bulk vortex has to
be axial as in conventional superconductors. Indeed, it
has been found in numerical calculations that under cer-
tain conditions bulk vortices can yield a nonaxial struc-
ture, even if the phases of all components are winding
(Schenstrom et al., 1989; Tokuyasu, Hess, and Sauls,
1990).!! These calculations have been performed for the
two-component time-reversal-breaking superconductor
Dy, (I'S) in a hexagonal lattice, which is very similar to
our example. In that case the system makes use of the
possibility that each component can form its singularity
spatially separated. In doing so it can avoid generating a
normal core region, i.e., a zero of the total order parame-
ter, because each component vanishes at a different line.
The displacement of the singularities was found to be
small, of the order of the coherence length £. Clearly,
this separation can be also rather large under extreme
conditions, e.g., for a very low energy barrier between de-
generate superconducting phases, a case analyzed by Iz-
yumov and Laptev (1990). Then the distance between
the two singularities is of the order £, the length scale of
the domain wall, which is a measure for the barrier ener-
gy-

The splitting of the core leads to a configuration in
which a different state occurs in the center of the vortex
than in the surrounding region, which is similar to the
time-reversed state. This structure can be roughly inter-
preted as a splitting of the conventional vortex into two
fractional vortices by creating domain walls connecting
the two centers (Fig. 8). If the spatial separation of the
two fractional vortices is small compared to the length
scale of the magnetic field (London penetration depth),
this effect costs mainly core energy.

There are other important aspects of these multicom-
ponent vortices associated with the breakdown of time
reversal in the original bulk superconducting phase

1Note that the possible existence of nonaxial vortices was in-
dicated in Sec. III.B.3 when we considered the upper critical
field H,,.



288 M. Sigrist and K. Ueda: Unconventional superconductivity

(1,1)

FIG. 8. Schematic structure of a split bulk vortex in a two-
component superconductor with a bulk phase of the type
(1,+1i). Between the two singular lines, marked by ®, the
time-reversed state (1, —i) occurs. The two connecting lines
mark the region of energy loss due to the change of the relative
phase (structure similar to a domain wall).

(Tokuyasu, Hess, and Sauls, 1990). As we explained in
Sec. V.A, the spatial variation of the order parameter can
lead to a local magnetization in a time-reversal-breaking
superconductor. Considering vortices parallel to the
magnetization axis (in hexagonal and tetragonal symme-
try the z axis), it was found that the line energy of a vor-
tex depends on the sign of its magnetic flux, whether it is
parallel or antiparallel to the magnetization direction.
This points clearly to a coupling of the external magnetic
field to the intrinsic magnetization, as is confirmed by the
dependence of this effect on the magnitude and sign of
the parameters kK and Ak. The difference in the line ener-
gy (and critical field) is also accompanied by a certain
difference in the vortex symmetry (nonaxial symmetry).
On the basis of this fact, Tokuyasu and co-workers pro-
posed the measurement of the critical magnetic field in a
single domain sample for magnetic fields parallel and an-
tiparallel to the z axis of the system as a test for uncon-
ventional superconductivity with a time-reversal-
breaking superconducting state, especially for the heavy-
fermion compound UPt;.

The anisotropic symmetry of the vortex core extends
to larger distances in the magnetic field and current dis-
tribution. In the case of an anisotropic magnetic-field
shape, the orientation angle of this structure is involved
as an additional degree of freedom in the problem of
creating a vortex lattice. In particular, there is the possi-
bility of frustration if the symmetry of the magnetic field
is not compatible with the symmetry of the vortex lattice.
As an example, Tokuyasu and co-workers examined tri-
angular vortices in a triangular lattice. They suggested
that, due to frustration, a change of the lattice structure
should take place from a triangular to a hexagonal or to a
honeycomb lattice if the density of vortices reaches a
critical value (see Fig. 16 below). Such structure
modifications could yield several unconventional phase
transitions in the superconducting mixed state depending
on the external magnetic field. We shall take up this
point in Sec. VII.C as a possible explanation of experi-
mental data in UPt,.
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C. Coexistence of antiferromagnetism
and superconductivity

In some heavy-fermion superconductors the supercon-
ductivity occurs in the presence of antiferromagnetism.
In this section we consider phenomena in which the two
different kinds of order parameter coexist. We start from
a microscopic derivation of the coupling term between
the two order parameters by a weak-coupling theory.
This enables us to discuss what constitutes favorable con-
ditions for the coexistence. In the presence of antiferro-
magnetic ordering, the symmetry is lowered from the
original symmetry group § to a subgroup &’. If an irre-
ducible representation in § is multidimensional, in gen-
eral it splits into lower-dimensional representations of §’
with different critical temperatures, another example of
the splitting of the phase transition studied in Sec. III.B.

To derive the coupling term by a weak-coupling
theory, we first note that the lowest-order coupling term
is a biquadratic form of the two order parameters.
Therefore we may start from the magnetic part of the
free energy (Ueda and Konno, 1988; Konno and Ueda,
1989). The magnetic free energy in second order can be
written as

Fi =13 M;[(x" ")y
ij

—18;1M; , (5.63)
where M;(i=x,y,z) is the staggered magnetization, ;; is
the staggered susceptibility in the superconducting state,
and I is the interaction constant responsible for the anti-
ferromagnetism. The coupling term is obtained by ex-
panding the susceptibility in terms of the superconduct-
ing order parameter as

[Bx™N1y=—=3 (™ Dby (X )y 5 (5.64)
i'j'

where 8Y;; is the change of the susceptibility due to the
superconducting order parameter. When we use a stag-
gered magnetic field defined as

M;=3 x;B; , (5.65)
J
the coupling term has the form
Fay=—723 B;8x;B; . (5.66)

ihJj
Hence the problem is reduced to a calculation of the
staggered susceptibility

xy=Jldr(s,(Q1)s;(—Q0)) (5.67)

with

sj(Q):Eclt+Qa(o'j)af)’ck/3 > (5.68)
k

where the contribution of the orbital moment is neglect-
ed for simplicity. The susceptibility can be expressed by
the Green’s functions
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Since we need to calculate the susceptibility up to the second order of the superconducting order parameter, we use the
following expansion form for the Green’s functions, easily derived from the results in Appendix B,
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After frequency summation in the expression for the susceptibility, the coupling term is obtained as

Fupu =y +72){p(k)yP*(k)+d(k)-d*(k))B-B+7,{¢(k)¢*(k+Q))B-B

+7,{([d(k)-B][d*(k+Q)-B]—[d(k)XB]-[d*(k+Q)XB]) ,

(5.73)

where { ) denotes the average on the Fermi surface. For the gap function we have used the parametrization intro-

duced in Egs. (2.10) and (2.11). The coefficients are given by

-1 1 ) 1 Be(k)
T2 Qe dek) | e P 2 |
1 1 Be(k)
- tanh ,
V2 %E(k—FQ)Z—E(k)Z ek) 2

where an energy cutoff is assumed for (k) in ¥; and 7, is
defined by the same equation as y, with an additional
cutoff for e(k+Q). 12

From the expression we see that the coupling
coefficients are of the order of N(0)/T2 where N (0) is
the density of states at the Fermi energy. These
coefficients are expected to be positive (repulsive) for
most cases (Kato, Machida, and Ozaki, 1987; Konno and
Ueda, 1989; Ozaki and Machida, 1989) and are assumed
to be positive in the following discussions even though
there is no rigorous proof for that. By the coupling term
the superconducting transition temperature is shifted by
a factor of the order of (B /Ty)?. Since the effective Fer-
mi temperature for heavy-fermion materials is of the or-
der of 10 K, the effect can be large. Coexistence is re-
ported for UPt; (Aeppli et al., 1988) and URu,Si, (Pals-
tra et al., 1985; Schlabitz et al., 1986). The magnitudes
of the antiferromagnetic moments are extremely small,
0.02 up for UPt; A(Aeppli et al., 1988), and 0.03 ujp for
URu,Si, (Broholm et al., 1987). It is natural to assume
that the smallness of the ordered moment makes the
coexistence possible and that the superconducting transi-

2We thank H. Fukuyama for this simpler form of y, com-
pared with Konno and Ueda (1989).
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tion will be suppressed when the moment becomes larger.

Furthermore, the compatibility of superconductivity
and antiferromagnetism depends on the translational
symmetry of the superconducting order parameter under
Q. For a singlet (even-parity) state, it is relatively favor-
able to coexistence if the translational symmetry is odd
[¥(k+Q)=—1(k)] (Kato, Machida, and Ozaki, 1987;
Ozaki and Machida, 1989). On the other hand, if the
translational symmetry is even (mixed), the state is
classified as unfavorable (intermediate) for coexistence.
In the absence of spin-orbit coupling, a triplet state is al-
ways favorable to coexistence when the relative orienta-
tion of the d and B are fixed in an appropriate way, if it
has a pure (not mixed) translational symmetry: d||B for
odd translational symmetry, d(k+Q)= —d(k); and d1B
for even translational symmetry, d(k+Q)=d(k). A trip-
let state is also classified as intermediate for coexistence if
its translational symmetry is mixed. When there is a
spin-orbit coupling, the odd-parity states are in most
cases intermediate, since the freedom of rotation of the d
vector is limited by the spin-orbit coupling. It should be
mentioned that once the spin-orbit interaction is included
there can be additional terms in the coupling term which
break the rotational symmetry of the spin space. In sum-
mary, an unconventional superconducting state, general-
ly speaking, can be more favorable to coexistence than
the conventional s-wave state. The compatibility de-
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pends on the translational symmetry of the order param-
eter. This type of classification, including the transla-
tional property, is found in Putikka and Joynt (1988), and
Konno and Ueda (1989), and Ozaki and Machida (1989).

In the presence of antiferromagnetic ordering, the
symmetry group §' of the system is a subgroup of & con-
taining all transformations which leave the antiferromag-
netic wave vector Q and the magnetic moment invariant.
The coupling term F,,, introduces this lower symmetry
in the system of the superconducting order parameter. A
general group-theoretical method for obtaining the sub-
group ' and the coupling terms is described by Ozaki
and Machida (1989).

The most important effect of the coupling term may be
the possible lifting of degeneracy in a multidimensional
irreducible representation, in certain cases. Let us con-
sider an example with experimental relevance, UPt;.
This system has hexagonal-close-packed structure (hcp)
with the space group P6;/mmc, D¢,. According to the
neutron-scattering experiments by Aeppli et al. (1988),
the ordering vector is Q=b, /2 where

*4;7»,0,0

. 5.76
V'3a ( )

b=

The Q vector corresponds to the M point in the first Bril-
louin zone, and the direction of the moment is along Q,
B=(B,0,0).

We consider the two-dimensional irreducible represen-
tations of Dy, namely, ['s and I'y. For these order pa-
rameters the gap function is described by the two-
component order parameter n=(7n,,7,). Here it is as-
sumed that, in the antiferromagnetic phase too, only
Cooper pairs with total zero momentum are considered.
The remaining symmetry of the system in the presence of
antiferromagnetic long-range order is D,,, an ortho-
rhombic subgroup of the hexagonal point group Dyg,.
Therefore all irreducible representations in the presence
of antiferromagnetic ordering are one-dimensional. The
coupling term that introduces this lowering of the sym-
metry is described by a symmetric tensor A;.

Fau =22 miMjm; - (5.77)
ij

The tensor A;; is proportional to B? to satisfy the transla-
tional symmetry. In the weak-coupling theory, the expli-
cit form of the coupling term is obtained from Eq. (5.73).
As an example, let us consider an even-parity gap func-
tion, ¥(k)=2,9,(k)+n,¥,(k), where ¢,(k) and 9,(k) are
the basis functions. Then the coupling tensor is given by

Aij=[(71+72)<¢i(k)¢i(k))5ij

+72(¢;(k)y;(k+Q))1B? . (5.78)

A similar expression is obtained for the case of an odd-
parity order parameter. If there is no spin-orbit cou-
pling, the coupling term breaks rotational invariance of
the spin space, as can be clearly seen from Eq. (5.73).
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Diagonalization of the symmetric tensor A;; leads to
the simple form

Fae=[vUm P+, )+ 9/ (g > = 9,10 182,

where the first term expresses the shift of 7. on the aver-
age and the second term describes the splitting of the
transition temperature. The structure of the free energy
is exactly the same as that discussed for uniaxial stress in
a cubic system (Sec. III.B.2). Actually, such a T, split-
ting has been observed in UPt; experimentally (Fisher
et al., 1989), as will be discussed in Sec. VII. One of the
important consequences of the lowering of symmetry in
the magnetically ordered state is the appearance of an-
isotropy of H,, in the basal plane. Machida and Ozaki
(1989) and Hess et al. (1989) discussed the phenomena of
T, splitting based on this coupling term.

To include the effect of rotation of the antiferromag-
netic moment, which may accompany the occurrence of
superconductivity, we need additional degrees of free-
dom, B=(BX,BJ,,0). The rotation is assumed to be in the
basal plane. In the presence of spin-orbit coupling, the
two components B, and B, are not degenerate and hence
have different antiferromagnetic transition temperatures.
Note that B, describes a longitudinal and B, a transverse
spin-density wave. The coupling term including the rota-
tion of the antiferromagnetic moment is generalized as

FAM:(VXB,V2+YyB),2)( |71+ [,
+(y, B2 +y, BH (> =, |?)

(5.79)

+v"B,B,(nin, 130 . (5.80)

Microscopically, the last term originates from the spin-
orbit coupling that we neglected in the derivation of Eq.
(5.73). Blount et al. (1990) have introduced this coupling
term to discuss the phase diagram of UPt, in the magnet-
ic field (see also Sec. VII.C).

The second example is URu,Si,, which has a body-
centered tetragonal structure, space group I4/mmec, D}]
(Palstra et al., 1985; Schlabitz et al., 1986). The antifer-
romagnetic vector of URu,Si, is Q=(0,0,27/c), corre-
sponding to the Z point in the Brillouin zone, and the
magnetic moment is parallel to the ¢ axis (Broholm et al.,
1987). Therefore the symmetry of D, is not modified by
the antiferromagnetism. Hence no qualitative change of
transition behavior, except for the shift of T, is expected
for URu,Si,.

VI. COMBINATION OF TWO ALMOST
DEGENERATE ORDER PARAMETERS

In the previous sections we always supposed that one
representation I' of the point symmetry group is dom-
inant, i.e., that it has a critical temperature far above
those of the other representations. Consequently, the re-
striction of our discussion to one single representation
seemed to be justified. However, as we mentioned al-
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ready in Sec. II, this simple decoupling of the representa-
tions is not in every case correct. It is the purpose of this
section to describe the typical phase-transition properties
in a system where two representations are involved with
almost equal transition temperatures. Additional phase
transitions are possible, similar to the case of splitting of
transitions discussed in Sec. II1.B. However, the stability
conditions of the superconducting states are in general
much more complex than in that simple case. This type
of consideration was first motivated by experimental data
on thorium-doped UBe,;, which we shall study in Sec.
VILB in connection with experimental data on this ma-
terial. We treat here an example of cubic lattice symme-
try, a combination of the representations I'f” (1D) and
'S 3D) of O, (in subsequent notation we shall neglect
the index =, supposing both representations to have the
same parity). This example will later be referred to in in-
terpreting some physical properties of the alloy
U,_,Th,Be;.

A. Phase transitions

If the transition temperatures of the gap functions of
two irreducible representations are very close to each
other, it is not possible to consider them independently.
We have to extend the Ginzburg-Landau free energy to
both representations, including also coupling terms be-
tween the order parameters,

]

F(p)=Fp(n(T,m))+Fr(n(I'',m))

+Fp o (n(T,m),n(T',m)) . 6.1)

The coupling term Fr - can be derived again by apply-
ing the condition that F is invariant under all symmetry
transformations. The procedure is analogous to earlier
cases. No second-order coupling terms exist, since the
decomposition of I'® I'" never leads to scalar terms (I";
components). The next higher order is four, where we
have to decompose the four products

rorer'*er',

rser*er'el'+c.c. ,
r«r'err'*er'-+c.c. ,
rerer*er'+c.c. ,

(6.2)

The asterisk again denotes the complex-conjugate order-
parameter basis. Note that in these combinations the in-
variance under time reversal and U(1) gauge transforma-
tion is satisfied. In Table XII we give these fourth-order
terms for the example I'=T'5 (3D) and I'"=T"; (1D). A
complete list of all terms of all combinations of represen-
tations in the cubic point group can be found in Sigrist
and Rice (1989)!* and for other point groups in Sahu,
Langner, and George (1988).

It is convenient for further analysis to write the com-
plete free energy in the parametrization n(I"))=|nle’

, so that we obtain the free-

m

and (Ts,m)=|n,, [el¢
energy density

f=4,(DnlP+BInl*+ As(D)Un, >+ 0,2+ 32 + By |2+ [, ]+ 93]
+ByL I [* [ * [+ 21, [Py Pcos(2, —26,) + 2|, 12 5] 2cos(2, — 263) + 2] m3] 2|, [*cos(2¢3— 2¢,) ]
B30 Pl [ P32+ I3 Pl 1) 464 [ Py [P [y 12+ g3
+ 6,912 |7;1%cos(2¢, —2¢) + |1, |*cos(2¢, —2¢) + |75 2cos (245 —24)]

+93|77H771||772|17731[005(4’3“‘/’2)005(‘1’1—¢)+COS(¢2‘"¢1)COS(¢’3“¢)+C°5(¢1‘“¢3)005(¢2—¢)] ,

where B;, B;, and 6, are real coefficients that are material
dependent. The coefficients of the second-order terms
are A,(T)=a(T/T,—1)[T;,=T.(T,)].

A general analysis of the phase transitions for all possi-
ble values of the coefficients is rather complicated in this
system and even numerically hard to handle, since a large
number of local minima of f make the search for the glo-
bal minimum rather difficult. Therefore we restrict our-
selves to some typical cases which allow simple analytic
argumentation.

As we have seen in Sec. IL.B, the superconducting
states of the I'5 representation are determined by the re-
lation between 3; and 35. The different types of states are
separated by lines in the 3}-8; plane. However, if we in-
clude coupling terms to other representations, these lines
are in general modified and the regions close to them are
not at all simple to analyze. To avoid such complications
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(6.3)

T
we concentrate below on regions far from any original

borderline in the B5-3; diagram.

As a first example let us consider the case 0 <<f3; and
—4f3| <4, <<fB;. With the assumption Ts>T,, the
stable superconducting state immediately below the onset
of superconductivity at T'5 is clearly a single representa-
tion (SR) state,

2(Bi+Bs)

=

Iny and n=n,=1=0, (6.4)

13Note that these authors use for some coupling terms com-
plex coefficients that are also supposed to transform under
time-reversal symmetry to the complex conjugate (see also Sec.
VILB).
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TABLE XII. Invariant coupling terms between the irreducible representations I'; and I's of the cubic

symmetry O,,.

Product Invariant coupling terms Coefficient
rfererier; (221l |2 a2+ |3 1%) 0,
rerfelr®r; n* i +n3+n3)+c.c. 0,

rfeleliel; n* (s +mmy s+ mmami) +e.c. 0;
Irfereryer; No invariant term -

which is threefold degenerate with the symmetry , 1—G'

D,,(T',) according to Table VI(a). This state is generally Ts=T; 1—G'T5/T,

not stable for all lower temperatures. For example, an

additional second-order (continuous) transition can occur with (6.8)

at a certain lower temperature, say T}, leading to a com- )

bined representation (CR) state where the I'; order pa- G =§E; FoleTs

rameter also becomes finite,

AIQ—ZBIAS
4B,(B+B5)—Q*’

=

I, 7,=713=0,
AsQ—2B+B3) A4,
4B(B+B5)—Q?

Inl?=

, (6.5)

0,7, 0,<O0,

T 37
—,—, 6,>0,
2’ 27 2

with Q=60,—10,|. The transition point T'] is determined
as the temperature where |7|? vanishes in these equa-
tions. This corresponds to the zero of the effective
second-order term of 7 obtained in f by inserting |7,
from Eq. (6.4):

o 1-G
n=n 1—GT,/Ts
with (6.6)
G=,—Q,* sl els .
2(8,+85)

This transition is defined for Q <2(Bj+f}), and T is
enhanced compared with T, if Q is “attractive” ( <O0)
and suppressed if Q is “repulsive” (>0). Obviously at
this transition the point-group symmetry is broken, and
for 6,>0 even time-reversal symmetry is lost [C,,(I"})
for 6, <0 and D4, (I'j®T',) for 6,> 0, both sixfold degen-
erate].
A further transition is possible to the SR state of '},

e — D)

| _, =n,=1,=0, 6.7)
n 28, M=M= "13

with the transition point
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determined by the zero of the numerator of |7,|? in Eq.
(6.5). The transition can take place only under the as-
sumption Q >2f3;>0. In that case the coupling between
the two superconducting order parameters is repulsive,
and because of B, < 8]+, the I'; order parameter is able
to suppress the I's order parameter. The CR state has
the existence condition T'{ > T'5, which can also be ex-
pressed as Q%<4f3,(B;+3,). If all these conditions are
fulfilled, we find three consecutive second-order transi-
tions: normal state —SR(I'5)—CR(I";@T'5)—SR(I;).

In the case T'5> T} —for which the CR state cannot
exist—a direct transition can take place between the
SR(T'5) and the SR(T";) states. Generally this transition
is discontinuous, a first-order transition. The transition
temperature T is defined as the point where the free ener-
gies of both SR are equal,

ANT) A3(T)

=Fp (T)y=—-—2"—_ .,
48, Ts 4B +BS)

For a physical solution (T5>7>0) the condition
Bi1+B5>pB, is required. Then it leads to a transition
series: normal state —SR(I'5)—SR(T).

In Figs. 9(a)—9(d) the qualitative phase diagram of the
transitions is drawn for varying Q [Figs. 9(a) and 9(b)]
and varying 2(B)+f;) [Figs. 9(c) and 9(d)]. Regions
where the SR(I's) state is stable for all temperatures
below T's can also be found in this phase diagram. Note
that an examination of the opposite case T'; > T'5 leads to
completely analogous conclusions.

In this example the conditions (0<<p3; and
—4B] <4B5 << 33) have been chosen so that only coupling
terms are involved which contain the two order parame-
ters in the same order. The term with the coefficient 0,
which is linear in the I'; order parameter and in the
third-order I's order parameter, gives no contribution,
since it requires that all three components of the I'5 order
parameter be finite, which is energetically rather unfavor-
able in this parameter range. To see the mode of opera-
tion of this type of coupling term (unequal order cou-

Fr (T)=— 6.9)
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2p, 2epepp) Q@ 2piopy) 2, Q
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Ty feeee SR(IG) === Ty g S R
CR CR
SR(})
» Q 2pi+p3) Q 2 2pppy)

FIG. 9. Phase diagrams of additional phase transitions in the
Ginzburg-Landau theory combining the two representations I';
and I's: T versus the coupling constant Q for (a) 3; <8} +B; and
(b) B, > B1+B3; T versus the parameter 2(;+3) for (c) 2B, < Q
and (d) 23, > Q.

pling), we consider the case 0>f3;,3; [also far from the
borderlines in the 35-3; phase diagram, but additionally
Bi>—(B3+pB5/3)], which leads to a state with
71 ="7,=73=7] by minimization of Fr [D,(I',) accord-
ing to Table VI(a)]. Making use of this form of the I'5 or-
der parameter, we can write the free-energy density f
[Eq. (6.3)] as

F, )= A4,(Dq|*+By|nl*
+3{A5(D72+[3(B;+By +B3]174)
+[6,+0,c08(26—26)]|n|2|7?

+305cos(6—¢)Inl|7]* , (6.10)

where we set ¢;=¢,=d;=¢. We assume for our discus-
sion that the form of this I's order parameter is not
changed for any temperature. For T'5s > T; we would ex-
pect that, in analogy with the former example, immedi-
ately below T's the SR(I's) state would appear with

_ — A5(T)
6(B1+By)+2B;

However, this is prohibited by the 8; term, which leads

to an admixture of the I'; order parameter even if T’ is

very small compared with T's. So we find for T close to
Ts

712 6.11)

n

65

=AM
1

-, (6.12)

Kl
with the relative phase
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_ 0, 6;<0,
¢ - ¢ - T, 63 >0.
The TI'; component increases proportionally to

|T —Ts|*?% i.e., a “driven” order parameter. This CR
state conserves time-reversal symmetry and is fourfold
degenerate [D;;(I';)]. We have already discussed this
effect in Sec. II.B, when we noted that not all states that
are classified as SR are really pure SR states. According
to the conditions for an admixture of another representa-
tion mentioned there, the actual I's state can mix with
the I' representation, since it has the symmetry D, (T,),
compatible with I';. The CR state maintains the symme-
try of the originally classified state (Monien et al., 1986a,
1986b; Wojtanowski and Wolfle, 1986).

For lower temperatures an additional second-order
phase transition can appear. The only symmetry that
can be broken in our restricted free energy is time-
reversal symmetry, by a change of the relative phase
#—¢. Obviously, this is favorable only if 6,>0, since
both §—¢=0 and == minimize the 6, term for 6, <O0.
Differentiating the free energy with respect to the relative
phase, we obtain the extremum condition

sin(¢—#)[40,|n|cos(g—¢)+0,]7]1=0 .

The expression in brackets gives a temperature-
dependent solution for §—¢ only if |0;|7|/46,|9|| <1.
Thus a continuous transition from a state with §—¢=0
or m takes place at the temperature 7T, with
165 191(T )| =46,|m(T,)|. Obviously, for 8,<0 no such
transition is possible.

Turning to the opposite case, T; > T's, we obtain im-
mediately below T'; the SR (I';) state [Eq. (6.7)]. This
leads to an effective free energy for % which contains, in
addition to even-order terms, a third-order term of the
form

(6.13)

172

—A,(T)
— 2 mP. (6.14)

23,
This term can produce an instability to a CR state via

a first-order transition if the coefficients in the free energy
satisfy the relation

30;cos(¢—¢)

03> 4(0,+16,))[3(B1+B5)+B5] . (6.15)
Otherwise the transition is continuous. This condition
can be derived by the minimization of the free energy
with respect to |7j| for a given 7 at the transition point
for the continuous transition from the SR(I';) to the
CR(I'\@®T;) state [ A5(T)—|n|*(6,—16,/)=0]. If a finite
7] minimizes the free energy, then a first-order transition
has already taken place above this second-order transi-
tion point. The symmetry of the CR state is D;,;(T";) for
0,<0and Dy, (I')®T,) for 6,>0. In the latter case there
is an additional continuous phase transition possible to
the time-reversal-conserving state according to Eq. (6.13),
but only if the first additional transition was of second or-
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der [Eq. (6.15) is not satisfied]. As in the former example,
a series of three continuous transitions is possible here.
A more detailed discussion of this example has been
given by Lukjanchuk and Mineev (1989).

Finally we should like to mention that in general the
treatment of first-order transitions in a multicomponent
Landau theory is not simple. There is no obvious rela-
tion between the high- and the low-temperature states
like the group-theoretical arguments available for
second-order phase transitions. The search for the global
minimum in a high-dimensional order-parameter space is
then more or less a matter of trial and error, whether one
uses analytical or numerical methods.

B. The critical magnetic fields

Having studied the homogeneous properties, we now
consider effects on the upper critical and lower critical
fields for a system with two almost degenerate order pa-
rameters. Let us first consider the upper critical field
H_,. Such an investigation has recently been carried out,
including the order parameters of two representations, by
Joynt (1990). Several other groups have also considered
the problem of a single representation whose degeneracy
is lifted by the presence of a magnetic ordering (Sec.
V.C), as we shall discuss in Sec. VII.C. We have to ex-
tend our free-energy expression [Eq. (6.3)] by including
the gradient terms. Apart from the coupling terms be-
tween the two representations we find them in Table
VII(a). The coupling terms can again easily be derived by
the decomposition of a Kronecker product I'f®T
oIjel,+cc. (=r'olL,e2le30,040 ), where Ty is
the representation of the gradient D=V —2e A/c. Only
one term can be found in this example:

K[(D,m)*(D,n3+D,n,)+(D,n)*(D,n;+D,n3)

+(D,m)*(Dym,+ D,y +c.c.]  (6.16)

As an example, let us consider the critical field along one
of the main axes, say, the z axis. We can perform the cal-
culation as we did before in Sec. III.B for H,.. By
neglecting D, and setting I1,=q(D,+iD,)/V'2 and
ny=(n,%in;)/V2 (g*=c /2eH), we obtain the linear-
ized Ginzburg-Landau equations

J

C

K (I I+ I )n+K (I3 +12 3= — 4,(T)g’y
(6.1

KOS T+ T I s+ K (I + 12 )p - — 45(T)g?y; ,

which are completely decoupled from the other two
equations for 7, and n_ [we use primed K coefficients
for the I's representation analogous to Eq. (6.3)]. These
latter two equations have exactly the same form as was
given in Eq. (3.52) with A (T)= A(T), so that their solu-
tion leads to a linear temperature dependence of the criti-
cal field,

cAS(T)
eC(K',K},K},K})

H ()=~ , (6.18)

where C(K|,K},K3,K}) is a constant depending on K/
and is obtained from the lowest eigenvalue of an infinite
matrix as we have seen before.

A more interesting problem is connected with the 1-7;
equation system, where the coupling term also enters.
These equations, moreover, lead to the problem of
finding the lowest eigenvalue in an infinite-dimensional
system. However, a good insight into the properties of
the solution can be obtained if we treat the problem in a
perturbative way, assuming that the coupling term is
very small (K <<K|,K) (Joynt, 1990).

Starting with the zeroth order, we find two solutions
(let us assume T's > T, ), which correspond to 7=]0) and
17;=10), respectively, in the occupation number repre-
sentation introduced in Sec. II1.B,

(0) CAs(T)
HQ(T)=——>2""~, (6.19)
2eK,
H'O(T)=— A7) (6.20)
2 2eK, ’ )

where H'Y’ represents the upper critical field (the lowest
eigenvalue) immediately below T's. If K| <K}, there is a
crossing point of the H'9' and H/” line at some T’
defined by 4,(T")K5= A5(T")K,. Below T’, HS® is the
critical field.

Going to first-order perturbation, we write the two or-
der parameters as linear combinations of the states |0)
and |2). Diagonalizing the matrix in this subspace, we
obtain corrections to our two former solutions
[(9,m3)=(ay]0),b,]2)) and (7,7;)=(a,|2),b,|0)), re-
spectively],

Hc(é):;AlAS[{(SKIAS—K’ZAI)2+8KA1A5}1/2—5K1AS—K'ZAI]_‘>HC“2” ,

C

(6.21)

H;(znzzAlAs[{(KlArSK’zAl)2+81‘€A,A5}1/2—K1A5—5K;A1]*1>H;<2°) ,

where H'!) is the upper critical field close to T, =T and
HSP occurs below a certain temperature 7°. It can easi-
ly be seen that the sharp change of slope of H,, between
the two solutions exists in all orders of perturbation, be-
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f

cause there is no finite matrix element between the two
states (17,77;)=(]|0),0) and (n,773)=(0,]0)) in any higher
order of perturbation in the coupling term. This is
different if the magnetic field is pointing along some arbi-
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trary direction. Then all four components of the order
parameter (7,1;,7,,13;) are coupled. In such a case a
slope change in the critical field is mostly smooth.

We have three typical situations:

(a) Ky>C(K{,K5,K5,Ky): the critical field goes
linear as in Eq. (6.17), with the possibility of a change to
H/, [as in Eq. (6.20)] if K, < C [Fig. 10(a)]; otherwise, see
Fig. 10(b).

(b) K3 <C(K{,K5,K5,K}), K,: the critical field is
H_, as in Eq. (6.20) without any kink [Fig. 10(b)].

() K| <K} <C(K|,K5,K%,K}): the critical field has
a kink, as discussed above [Fig. 10(a)].

Finally we mention the possibility of a phase transition
with decreasing field when the fourth-order terms in the
free energy become important and favor a state with oth-
er symmetry than that induced by the magnetic field.
This would, for example, be the case if we assumed situa-
tion (a) and the coefficient 3; with the condition (483, < 35,
B3>0). At high fields a state appears with two finite
components of the I's order parameter (time-reversal-
breaking), whereas for low fields a one-component state
and, depending on the temperature and field, a finite T,
order-parameter component is more favorable.

We turn now to the lower critical field H,, which is
more closely related to the zero-field behavior of the sys-
tem. The effect of an additional phase transition on this
quantity is of special interest, since it allows a direct ob-
servation of an additional phase transition, as we shall

Magnetic Field H

Temperature T

FIG. 10. Possible behaviors of the upper critical field H,, in a
superconductor with two almost degenerate order parameters:
situation (a) a crossing of the lowest Landau levels leads to a
kink and a change of the high-field superconducting state; situa-
tion (b) no crossing occurs.
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show here, and will be compared with experimental data
in Sec. VII (Kumar and Wolfle, 1987; Langner et al.,
1988; Hess et al., 1989; Sigrist and Rice, 1989).

In the limit of a London penetration depth very large
compared with the coherence length of the order param-
eter, the main contribution to the line energy of a vortex
comes from the magnetic field and the kinetic energy
stored in the circulating supercurrent (Abrikosov limit).
The structure of the core, whether there is one line or
several split singularities as discussed in Sec. V, is not so
important in this case. However, it is essential to take
into account that the London penetration depth is not a
scalar, but a tensor quantity in an unconventional super-
conductor. Thus the London equation has the general
form

VX[AXVXH)]+H=0, (6.22)

where the tensor A? is defined as A’=c2p ~!/87e? with p
as the superfluid density tensor, defined by the expression
for the diamagnetic current (Jg,=2e’pA/c?). The
equation for the field around a vortex is obtained from
Eq. (6.22) by replacing the right-hand zero by
®nd(nXr) (where n is the direction of the external field
and @, is a flux quantum). If the applied field (n) is
parallel to one of the main axes of A2, the vortex line will
also be parallel to n. For an arbitrary n, however, these
directions need not coincide, as discussed in detail by
Balatzkii et al. (1986; see also Gor’kov, 1987).

Consider the case of the CR phase, discussed in the
previous section, D4, (I' /@ T',). For this phase the tensor
p has the rather simple form

p=K  (RX +9D +22)|n|?

+[K R +K5(99 +28)] |, 12, (6.23)

with 77 denoting the tensor element p;;- For this exam-
ple the crystal axis is the main axis of the tensor, because
there are no coupling terms between the order-parameter
components. We choose n parallel to such an axis. Then
the field calculated from the modified Eq. (6.22) is

@,

2 2 2 2
2ﬂxaxBK°(‘/xa/7‘a+xﬁ/Kﬁ) ;

H=n (6.24)
where x5 denote the directions perpendicular to n hav-
ing the corresponding London penetration depths A,
(K, is a modified Bessel function). This form becomes

very simple if we choose n parallel to the x axis, because
c? 1
8me? K, |n|>+K,|n,|?

A =Ap=A2= (6.25)

leads to a completely axial vortex. The line energy is ob-
tained in general from

a=——1~fdxadx,;[H2+(VXH)A2(VXH)] ,  (6.26)
8

where the integration 1is restricted to the region
\/(xa/ga)2+(x5/§ﬁ)2>l. Evaluating this integral in
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the usual way (see, for example, de Gennes, 1966), we
find (n||X)

L]
H__47re_ 0

=——=——Ink, 6.27
el D, 8mA2 ( )

with the Ginzburg-Landau parameter k=A/£ (for this
case £ also is constant in the y-z direction). To define &
or « directly, we may use Eq. (5.5).

Now let us consider the change of H,; at the transition
from the high-temperature phase D,,(T',) to the low-
temperature phase D, (I";®T,), the example given in the
previous section. Using the equations for A? and «, we
obtain a sharp change in the slope of H,,, since A de-
creasing due to the additional contribution of the I'; or-
der parameter to the superfluid density. The Ginzburg-
Landau parameter drops rapidly from a constant value in
the high-temperature phase down to a lower, almost con-
stant value (Sigrist and Rice, 1989). Comparing the two
slopes H. (=dH_,/dT), above and below the second
transition at T'}, we find

H,(T{=8)  M(Ti=8) [
H!(T{+8) MN(T}+8)

+—1~>1 s
Ink

Ink

(6.28)

where A'=dA/dT and § is an infinitesimal number. This
ratio is larger than 1 in the large-« limit where Ink> 1 («
taken at T), if the London penetration depth is decreas-
ing faster below the additional transition at 7'} than
above (Hess et al., 1989). Comparing the ratio
A(T1—8)/AM(T7+8) with the one of the specific heat
C(T]—8)/C(T|+8) we find that this condition is usu-
ally satisfied if the discontinuity of the specific heat AC is
positive, provided that all coefficients K in the tensor p
are of the same order of magnitude. This qualitative be-
havior is in agreement with experimental results found in
several materials (see discussion in Sec. VII).

Vil. ARE HEAVY-FERMION SUPERCONDUCTORS
UNCONVENTIONAL SUPERCONDUCTORS?

In the previous sections we have developed a theory
describing phenomena expected for unconventional su-
perconductors, mainly based on the generalized
Ginzburg-Landau theory. The character of this section
is different. Here we examine the relevance of these
theoretical studies to experiments on heavy-fermion su-
perconductors. First we survey briefly the most impor-
tant experimental observations in the three typical
heavy-fermion superconductors, CeCu,Si,, UBe;3;, and
UPt;. For more experimental details on heavy-fermion
systems we refer the reader to reviews by Stewart (1984),
de Visser, Menovsky, and Franse (1987), Ottt (1987a,
1987b), Rauchschwalbe (1987), and Grewe and Steglich
(1989).

Further, we consider in more detail the two probably
most exciting topics in heavy-fermion superconductors:
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In Sec. VIL.B we discuss the peculiar phase diagram of
thorium-doped UBe,3, and in Sec. VII.C we concern our-
selves with the exotic T-H phase diagram of UPt;. Both
fields are still under intense discussion. Therefore the
ideas discussed there are more hypothetical than estab-
lished explanations of these phenomena. However, as
will be seen, it is remarkable that the idea of unconven-
tional superconductivity can reasonably account for vari-
ous unusual behaviors that are hard to understand in the
picture of conventional superconductivity. Therefore we
believe that the concept of the unconventional supercon-
ductor is the most promising explanation for these
unusual phenomena in heavy-fermion materials.

A. The three typical compounds

The most prominent heavy-fermion superconductors,
CeCu,Si,, UBey3, and UPt;, also exhibit as heavy-fermion
materials rather peculiar normal-state properties. At
high temperatures their susceptibilities follow a Curie-
Weiss law. In CeCu,Si, the resistivity increases as the
temperature is lowered and shows a maximum around 10
K (Stewart et al., 1983). The resistivity of UBe,; shows a
similar increase, with a narrow peak around 2.5 K (Ott
et al., 1983). The ratio of specific heat to temperature
C /T in both materials reaches about 1J/mole K? at the
superconducting transition temperature (Table XIII).
These features are indications that the f electrons of the
rare-earth or the actinide atoms can be regarded as al-
most localized at high temperatures, where they act as
spin scattering centers, yielding what is known as the
Kondo effect (an increase in resistivity). However, ar-
ranged in a lattice (called a Kondo or Anderson lattice),
they form a quasiparticle band with a heavy effective par-
ticle mass (m * ~10?m, ) below about 10 K. This temper-
ature is considered as the characteristic temperature of
the low-temperature region of the system, T, and is of
the same order as the single-impurity Kondo temperature
Tk in the three systems. Although the resistivity in UPt;
decreases monotonically, inconsistent with this picture,
the C/T also reaches a large value at T,, indicating
heavy quasiparticle bands. Thus UPt; may be considered
as an f-electron Fermi liquid over a wider temperature
range than the other two compounds.

At the transition point to superconductivity, the
specific heat shows the usual discontinuity of a second-
order phase transition. The ratio of the magnitude of the
discontinuity to the normal-state specific heat is of the
order of unity (Table XIII). This fact is the experimental
evidence that heavy quasiparticles with an f-like charac-
ter condense into Cooper pairs. When we take into ac-
count that the origin of the heavy mass is clearly the
strong repulsive interactions among the f electrons, it is
very natural to assume that the Cooper pairs avoid resid-
ual interactions among the quasiparticles by forming
some anisotropic pairing state, as pointed out in the In-
troduction.
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The slope of the critical magnetic field —(dH,,/dT) at
T, is remarkably large. One of the key questions con-
cerning H,, is the problem of Pauli limiting of H_,. (As
the magnetic field is increased, the normal state becomes
energetically favored when the difference in the magnetic
energy due to spin-state splitting exceeds the condensa-
tion energy.) The spin susceptibility in the superconduct-
ing state has to be smaller than or equal to that in the
normal state. Considering two extreme cases, in a con-
ventional pure superconductor the spin susceptibility is
suppressed to zero at T"=0, while in a special triplet
state, called equal spin pairing, it is unaffected (see, for
example, Leggett, 1975). Therefore the limiting of H,,
due to Pauli paramagnetization depends on the spin
structure of the superconducting state. From an analysis
of the upper critical field as a function of the tempera-
ture, Rauchschwalbe et al. (1985) suggested a singlet
pairing for CeCu,Si, and an unconventional state for
UPt;. The upper critical field of UBe;; can only with
difficulty be fitted by a simple model of even-or odd-
parity pairing. The peculiar structure of H,, as a func-
tion of temperature led to the interpretation that there
might be two phase transitions involved (see
Rauchschwalbe, 1987). However, recent measurements
show no indication of such an event in the lower critical
field H,, (Heffner et al., 1990).

In an unconventional superconductor it is possible for
the gap of the excitation spectrum to have points of zeros
or lines of zeros in some special directions in the k-space.
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If such nodes exist in the gap, low-energy excitations are
possible which lead to power-law behaviors of physical
quantities, in contrast with the exponential temperature
dependence in a conventional s-wave state (see Sec.
III.A). The specific heat of UBe,; follows close to a T3
law below T, (Ott et al.,, 1984). Subsequently,
MacLaughlin et al. (1984) reported a T3 law for the
NMR relaxation rate with some deviation at very low
temperatures. Power-law behaviors are also reported for
the ultrasonic attenuation by Golding et al. (1985) and
for the penetration depth by Einzel et al. (1986).

The temperature dependence of the specific heat in
UPt; can be fitted by the relation C/T =y ,+ BT, as re-
ported by Sulpice et al. (1986; see also Hasselbach et al.,
1989). However, the entropy balance is not satisfied with
that expression and therefore the true dependence is not
yet established in the low-temperature range
(0<T<T,/5). The origin of the residual T linear
specific heat is not yet clear. One possible explanation is
the depairing effect due to impurities discussed in Sec.
III.B.2. An alternative explanation is proposed by Bur-
lachkov and Kopnin (1988), based on their finding a finite
density of excitations in the domain-wall structure in the
superconducting order parameter. The NMR relaxation
rate 1/T; varies in proportion to T at low temperatures
in this compound (Kohori et al., 1988). For the ul-
trasonic attenuation, various power-law behaviors, de-
pending on the frequency of the sounds, their propaga-
tion direction, and their polarization, are reported by

TABLE XIII. Experimental data collection.

CeCu,Si, UBe,;3 UPt;
Point group Dy, 0O, Dgy,
T, (K) ~0.6%4 0.85° 0.5¢
y(T>T,) (J/molK?) 12 1.1° 0.45°¢
AC/C,(T,) 1.3¢ 2.5¢ 0.5°
—(dch/dT)TC (kOe/K) 2304 420f 60 (H|c)®
40 (Hlc)
Power laws (T")
Specific heat 2-3h 3¢ -
NMR 1/T, 3 3k 3!
Ultrasound attenuation Peak at 7, ™ Peak at T,"
Josephson® Current with Al No current with
Al, Nb, UPt,
Proximity? Negative s-wave

proximity

Steglich et al., (1979).
%Ott et al. (1983).
‘Stewart et al. (1984).
dAssmus et al. (1984).
°Ott et al. (1984).
Maple et al. (1985).
8Chen et al. (1984).
hSteglich et al. (1984).
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iC /T =y,+BT, Sulpice et al. (1986).
iKitaoka et al. (1985).
“MacLaughlin et al. (1984).

'Kohori et al. (1988).

"Golding et al. (1985).

"Miiller et al. (1986).

°Steglich et al. (1985).

PHan et al. (1986).
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several authors (Bishop et al., 1984; Miiller et al., 1986;
Shivaram et al., 1986).

The specific heat of CeCu,Si, does not follow the ex-
ponential form of the BCS theory, but at the same time
cannot be described by a specific power law over a wide
range of temperature (the exponent varies in the range of
2 <n <3; Steglich et al., 1984). The NMR relaxation
rate 1/T, in CeCu,Si, obeys the T3 law (Kitaoka et al.,
1985). In zero external field there is a deviation from the
T? law at low temperatures, which Kitaoka et al. as-
cribed to paramagnetic impurities, noting that external
magnetic fields suppress this deviation. The power laws
reported for specific heat and NMR relaxation rate for
the three typical heavy-fermion superconductors are
summarized in Table XIII.

Although these power laws seem to point rather clear-
ly towards superconductivity with anisotropic pairing, it
has to be mentioned that the power laws are not in all
cases consistent and do not lead to a clear decision of the
topology of the gap zero nodes. For example, in UBe;
the power law with n =3 for the specific heat is compati-
ble with point zeros, while n =3 for the relaxation rate
favors line zeros in the gap. Furthermore, in the real
low-temperature region (7' <0.17,) measurements of the
thermodynamic quantities could not be performed with
good accuracy, mainly due to self-heating by nuclear pro-
cesses in the material (>3°U-decay).

The peak structure in ultrasound attenuation close to
T,, observed in UPt; and UBe,;, has been the motivation
for studying collective modes in unconventional super-
conductors. The real mechanism explaining the attenua-
tion peak is still under debate. As we discussed in Sec.
III.B, the collective modes have finite frequencies in a
crystal. However, Monien et al., (1986a, 1986b) pointed
out that if the spin-orbit coupling is not very strong there
are modes with low frequencies which couple to the den-
sity fluctuations due to particle-hole asymmetry. In
heavy-fermion systems this asymmetry can be large, and
therefore they argued that these modes may be responsi-
ble for the peak. A detailed calculation including impuri-
ty scattering effects led to the conclusion that supercon-
ducting states with a nonspherically symmetric gap
structure do yield ultrasound attenuation peaks (Monien
et al., 1987; Lenck et al., 1988). The two essential mech-
anisms responsible for this effect had already been pro-
posed earlier, first by Wolfle (1986), who emphasized that
near T, the dynamics of all non-Goldstone order-
parameter components is purely relaxational and in this
case critical slowing down of the relaxation time may
lead to the attenuation peak, and secondly by Miyake
and Varma (1986), who proposed a Landau-Khalatnikov
mechanism. In this theory, too, critical slowing down of
the relaxation time of fluctuations of the order-parameter
amplitude gives rise to the attenuation peak near T,. Fi-
nally, ultrasound damping, due to dissipative domain-
wall motion, is also possible (Joynt et al., 1986). This
mechanism strongly depends on the symmetry of the
(multicomponent) superconducting order parameter and
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could be used to determine its symmetry.

Recently, an alternative explanation has been offered
by Coffey (1989). According to his picture the ultrasonic
attenuation peak could also arise due only to the
normal-state properties, or more explicitly, due to the
large ratio m*/m,, and would not significantly depend
on the Cooper pairing symmet(ry. Therefore this effect
cannot simply be taken as a confirmation of unconven-
tional superconductivity. On the other hand, we shall see
in the next section that in the alloy U, o;Th, ¢;Be;; two
transitions occur, one with and the other without a peak,
depending possibly on the quality of the transition.
There this picture of a peak induced by the large effective
mass might fail.

As pointed out in Sec. IV.B, the Josephson effect may
be an informative probe of an unconventional supercon-
ductor. In a point contact of CeCu,Si, with Al (a singlet
s-wave superconductor), Steglich et al. (1985) observed a
Josephson current with conventional behavior. Thus
singlet superconductivity was claimed for this material.
However, according to the arguments given in Sec. IV.B,
in systems where spin-orbit coupling plays an important
role, this experimental result does not exclude a triplet
superconducting state. It is also still in doubt whether
one should take a similar experiment for UPt; in point
contact with Al and Nb, where no Josephson current
could be found, as a clear indication for triplet pairing
(Steglich et al., 1985). As we saw in Sec. IV.B, the struc-
ture and symmetry of the interface plays an important
role in the Josephson experiment. For an unconventional
superconductor, the order parameter may be suppressed
at the interface due to boundary effects. Moreover, the
large mismatch between the effective masses of the
heavy-fermion and the usual superconductor carriers can
lead to very small tunneling rates. Hence it is extremely
difficult to obtain decisive information purely from the
properties of the tunneling effect.

In spite of this fact, a very significant experiment has
been presented by Han et al. (1986). They investigated
the Josephson effect in a contact between UBe,; and Ta.
The latter is an s-wave superconductor with a higher crit-
ical temperature than the former and therefore, induces,
for T > T, UBe3, an s-wave order parameter in UBe 3 in
a small region around the contact. Between the induced
and the Ta-superconducting state, a Josephson coupling
is observed, i.e., a proximity-induced Josephson effect.
With decreasing temperature the critical current is in-
creasing and reaches a maximum at 7, of UBe,;. Below
that critical temperature it is decreasing again. Because
in experiments where UBe,; was replaced by the conven-
tional superconductor Mo, the increase of the critical
current was for all temperatures monotonic, it can be
concluded that the s-wave order parameter induced by
the proximity effect is suppressed due to the occurrence
of the UBe,; order parameter. This pronounced negative
s-wave proximity effect indicates that this order parame-
ter might have odd parity (triplet superconductivity), as
discussed for similar problems in Sec. IV.B.2.
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B. The alloy U,_,Th,Be,;

Thorium-doped UBe;; has produced one of the most
exciting fields in heavy-fermion superconductivity, in ex-
periments as well as in theory. Thorium, even as a non-
magnetic impurity, should suppress superconductivity
with increasing concentration, if the superconductor is
anisotropic, as pointed out in Sec. III.A. It does so, but
the decrease of the critical temperature is not monotonic,
as can be seen in the experimental phase diagram (tem-
perature versus Th concentration x) in Fig. 11(a). The
transition temperature 7.(x) has a sharp anomaly at
x(~0.018. An additional irregular point has been found
very recently at x,=~0.045. Therefore the phase diagram
may be divided into three regions, (I) for 0 <x <x,, (I)
for xy <x <xy, and (ITI) for x; <x. Region (II) yields a
special property. In specific-heat measurements an addi-
tional second-order transition below the onset of super-
conductivity has been discovered [Fig. 11(a); Ott et al.,
1985, 1986; Felder et al., 1989].

The results of a series of experiments at this additional
transition point (T"=7T,) have given rise to controversy
over the origin of this additional transition. From the
fact that both transitions are strongly shifted to lower
temperatures if an external field is applied, one can con-
clude that the lower transition is not a structural phase
transition (Ott, 1987a, 1987b). On the one hand, mea-
surements of the critical magnetic fields, especially H,,,
indicate clearly an increase in the superconducting con-
densation energy below this transition (Rauchschwalbe,
1987; Rauchschwalbe, Steglich, et al., 1987; Heffner
et al., 1990). This fact suggests the interpretation that
we have an additional superconducting transition (Volo-

©) | @ l @
0 2 4 6 O 2 4 6
Th (%)
FIG. 11. Experimental and model phase diagram of

U,_,Th,Be;;. (a) Phase diagram temperature versus Th con-
centration: O, onset of superconductivity; @, the additional
second-order transition found in specific-heat measurements
(Ott et al., 1986; Felder et al., 1989). (b) Model for the anomaly
at x, and xq: the transition temperatures of two superconduct-
ing states with different symmetry (I" and I'’) are crossing at x,
and x.
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vik and Khmel’nitskii, 1984; Joynt, Rice, and Ueda,
1986; Kumar and Wolfle, 1987; Hirashima, 1988; Keller,
Scharnberg, and Monien, 1988; Langner, Sahu, and
George, 1988; Lukjanchuk and Mineev, 1988, 1989;
Sigrist and Rice, 1989).

On the other hand, Heffner and co-workers (1987,
1989) presented uSR data that point to the appearance of
an additional internal magnetic field in the material
below T,. As very recent measurements indicate, this
magnetic effect is clearly restricted to region (II) (Heffner
et al., 1990). This can be considered as support for the
other interpretation of the additional transition, that at
T, a SDW state occurs, coexisting with the supercon-
ducting state (Batlogg et al., 1985; Kato et al., 1987;
Machida and Kato, 1987; Gulasci and Gulasci, 1989).
This idea seems not unlikely, since in the compound
URu,Si, a similar situation was found, though with the
opposite conditions, as mentioned earlier (the magnetic
instability occurs at higher temperature than the super-
conduction one).

How we can find a consistent picture for these two
seemingly contradictory experimental results? One at-
tempt was recently presented by Gulasci and Gulasci
(1989) to establish the latter proposal. Basing their argu-
ments on the work of Psaltakis and Fenton (1983), they
found that the occurrence of a spin-density wave state in
a superconducting state produces an additional supercon-
ductivity order parameter, which breaks the translational
symmetry [independently a similar idea based on group-
theoretical arguments was presented by Ozaki and Ma-
chida (1989)]. It has been argued that this could be the
origin of the increase in superconducting condensation
energy in that model. On the other side, we have seen in
Sec. V that unconventional superconductors that break
time-reversal symmetry have rather pronounced magnet-
ic properties. So the transition at T, could be interpreted
as a superconducting transition that breaks time-reversal
symmetry, producing internal magnetic fields in the su-
perconducting state (Mineev, 1989; Sigrist and Rice,
1989).

We shall concentrate our attention in this section on
the aspects of a phenomenological theory based purely on
superconductivity transitions. The reader has to be
aware that this field is still a matter of controversy and
should not take the following considerations as uncon-
tested.

1. A model for the phase diagram

Since the anomaly of T,(x) at x,~0.018 is very sharp
and cusplike, it has been proposed that it is the crossing
point of transition temperatures belonging to supercon-
ducting states of different symmetry [I" and I'’ in Fig.
11(b); Joynt, Rice, and Ueda, 1986; Kumar and Wolfle,
1987; Keller, Scharnberg, and Monien, 1988; Langner,
Sahu, and George, 1988; Lukjanchuk and Mineev, 1988;
Sigrist and Rice, 1989]. The other anomaly at x; can
then be explained very naturally as a second crossing of
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the two lines [(I), (III): T,(I)>T.(T’'); A): T.I)
<T.(I'); see Fig. 11(b)]. Several experimental data can
be considered as confirmation for the main point of the
model, that in regions (I) and (II) different superconduct-
ing states appear at the onset of superconductivity. Such
data are not yet available for phase (III).

Under uniform pressure the transition temperature
T.(x) decreases, but the slope is different in the two re-
gions,

9T.(x) 0.022 K/Kbar, x <x,,

3P~ |0.07 K /kbar, x>x,, (7.11)

where P is the pressure (Lambert, Dalichaouch, Maple,
Smith, and Fisk, 1986). Due to this difference, the posi-
tion x, of the anomaly is shifted: x,(P)=0.018
+1.7X1073P (kbar) (Sigrist and Rice, 1989). In these
experiments it has also been demonstrated that for pres-
sures higher than 9 kbar regions (I) and (II) are separated
by a nonsuperconducting region in the 7T-x phase dia-
gram.

Further support for this model comes from the
specific-heat measurements. There is an obvious contrast
between the discontinuities of specific heat at the onset of
superconductivity in the two regions (Ott et al., 1985),

Ac  [1:56 Jmol 'K™!, x=0,0.017<x,,
T, = 1.9 Jmol"!K™!, x=0.033>x, .

c

(7.12)

As can easily be seen, in a weak-coupling theory this ra-
tio AC/T, should not be changed for a superconductor
by a shift of T, so the change in this value may also sug-
gest different superconducting states in the two regions.

A more significant, qualitative argument for this model
was found in the ultrasound measurements. As men-
tioned earlier, pure UBe,; has a sharp ultrasonic attenua-
tion peak located below the superconducting transition.
Such a peak is completely missing at the upper transition
for x, <x <x;. However, a similar peak occurs at the
second phase transition (Batlogg et al., 1985; Bishop
et al., 1986).

In the model proposed, the critical temperatures,
T.(I',x) and T,(I'",x), of the two representations are of
the same order of magnitude, at least in some regions of
the phase diagram [Fig. 11(b)]. Thus the Ginzburg-
Landau free-energy expansion of this system should in-
clude both representations, I' and I'’, with their coupling
terms. We have treated this type of theory already in
Sec. VI and will here take that example (the combination
of T'; and I's) as the basis for further considerations. In
general the coefficients in this theory, especially in the
coupling terms, may depend on the thorium concentra-
tion x. It is also not unlikely that in the doped materials
time-reversal symmetry is lost with increasing thorium
concentration, since these impurities destroy the inver-
sion symmetry of the system, and furthermore the system
U,_,Th,Be;; may be close to a magnetic instability. To
include these types of effects, Sigrist and Rice (1989) in-
troduced coupling terms which implicitly assume break-
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ing of time-reversal symmetry. It has to be emphasized
that for very low concentrations of thorium such terms
should disappear.

With regard to the example analyzed in Sec. VI, there
are several possible ways to fit the phase diagram of
U,_,Th,Be;s. Let us assume that the superconductivity
in pure UBe,; belongs to the representation I's (=T),
producing a state with line or point nodes [D,,(T,)] to
reproduce the low-temperature data (see Sec. VIL.A).
Then the additional transition in region (II) can be inter-

(a) (b)
1N
Iy I
—TI's —— T
N N
< Fs\ N
g« (c) (d)
f
I
Ts —
N

I®Ts

N

Thorium concentration x

@0 \
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FIG. 12. Possible phase diagrams of U,_,Th,Be;;. Provided
that the coupling parameter Q is decreasing monotonically
with increasing x, several phase diagrams are possible
(smooth lines correspond to second-order transitions): (a)
Q(x0) <2B,,2(B1+B3); (b) 2B1+B2)>Q(x0)>2B1, Q*xo)
<4B(B1+By); (©) QX xo)>4B(B+B), Bi>Bi+B5; x >xg ex-
ists with Q%(x)=<4pB,(Bi+pB) [the wavy line denotes a first-
order transition between the two single representation (SR)
states]; (d) B,<Bi+B5 two cases are possible: (1)
Q%(x0) <4B,(B1+B), 2(B1+B3)>0(x0)>2B;, x>xo exists
with Q(x)=<2f3, [the wavy line corresponds to two closely
neighboring second-order transitions confining a combined rep-
resentation (CR) state]; (2) Q2%(x,)>4B,(B1+65), x >x, exists
with Q%(x)<4B,(8+;) and Q(x)=<2p3, (the wavy line corre-
sponds to a first-order transition).
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preted as the superconducting transition from the SR(I")
state to the CR(I";®I'5) state, with To=7T75 [Eq. (6.8)].
However, there is a further transition possible in this
model, which has to date no experimental reference. The
corresponding transition line could be located in region
(I) as well as in (II), but in both cases be strongly
suppressed so that it was experimentally not observable
[Figs. 12(a) and 12(b)]. The criterion for the location of
the “leftover” line is given by the relation between Q and
2(Bi+pB;3) in Eq. (6.6). Due to the variation of the
coefficients [e.g., Q@ =Q(x); see Egs. (6.5)-(6.8)], there
may be some range of x where a first-order transition
connects the two SR states [Fig. 12(c)] or where the
SR(T";) state is stable for all temperatures [Fig. 12(d)].
However, the main criterion for the form of the phase di-
agram is the existence condition for the CR state,
Q?<4B1+pB5). Rough estimates for the coefficients of
the free energy obtained from the specific-heat data favor
the phase diagram in Fig. 12(a) or that in Fig. 12(d)
(B; <Bj=+B3; Sigrist and Rice, 1989). The other crossing
point x  can be discussed analogously.

2. Experiments at the second phase transition

The transition from the SR(I"}) to the CR(I'&Ty)
state has physical properties that are in qualitative agree-
ment with several experiments. First of all, it produces
an increase in the superconductivity condensation ener-
gy. This is an essential point in explaining the experi-
ment of Rauchschwalbe, Steglich, and co-workers [1987,
recently reproduced and confirmed for various Th con-
centrations in region (II) by Heffner et al., 1990]. The
measurement of the lower critical field in the sample
Ug97Thy o3Be;;  shows a  significant change in
dH_|(T)/dT at the second transition (Fig. 13). Apart
from the correct temperature dependence of H,(T) away

Bar T T T T
(mT) ~
o Uo.97 Thoos Beis
3+ ~
2+ .
Ay
1F ' ‘\ -
Teb
\
\
1 TN 1 1
0 0.1 0.2

TXK?)

FIG. 13. Lower critical magnetic field B,, in the alloy
Up.97Thg o3Be;; (second transition at T,,) (Rauchschwalbe
et al., 1987a).
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from the Ginzburg-Landau regime, this agrees complete-
ly with the analysis of H,, at the additional transition
given in Sec. VI. The change of k upon passing through
the transition point was estimated by Rauchschwalbe
from his experimental data: «=37+5 above and
k=25%16 well below T, for x =0.033. Additionally,
measurements of H, in region (I) show no similar indica-
tion for any additional phase transition (Heffner et al.,
1990).

As another example let us consider the ultrasound ex-
periments done in the compound U 46, Th, o33Be;;, re-
gion (II) (Batlogg et al., 1985; Bishop et al., 1986). No
effect is observed at the onset of superconductivity, as we
mentioned above. However, below the transition at T, a
sharp peak in the ultrasonic attenuation is found for lon-
gitudinal sound in both the [100] and the [111] direction.
Since in our phase diagram the high-temperature phase
belongs to a one-dimensional representation, neither col-
lective modes nor the domain-wall damping mechanism
(Sec. III.B) can produce any absorption, in agreement
with the experimental result. At the second transition,
however, both mechanisms can lead to an effect. It was
pointed out by Hirashima (1988) that close to T, a
softening of a collective mode occurs due to the presence
of the second-order instability (neglecting the crystal-field
effects). Similarly, Kumar and Wolfle (1987) proposed a
coupling to the mode of the relative phase between the
order parameters of the two representations.

Joynt et al. (1986) have shown that for a cubic system
the domain-wall damping mechanism only leads to a cou-
pling for both sound directions if the symmetry of the su-
perconducting state is lower than tetragonal (this is never
the case for an SR state in O, ). The sound waves have to
induce a difference of the free-energy densities in different
domains for both directions (see Sec. IIL.B). This is
satisfied for the CR state C,,(I";), but not for the time-
reversal-breaking state D, (I' ;@) (see Sec. VI).

Finally, the challenge for the model is to explain the
magnetic properties of the low-temperature phase ob-
served in uSR experiments (Heffner et al., 1987, 1989,
1990). Measurement of the zero-field relaxation rate o g
shows a significant continuous increase of the internal
magnetic field in region (II) below T, (Fig. 14). No simi-
lar effect is observed at the onset of superconductivity in
this region or anywhere in region (I) and (III).

The zero-field relaxation rate is a measure of the mag-
nitude of a randomly distributed internal magnetic field
in a material. Such a field leads to the depolarization of
the muon spin. The average polarization of the muon
spin relative to its original direction behaves in time as

P()=1[1+2(1—o}k t?)exp(—Ltok,t2)],  (7.13)
where 0% is proportional to the second moment of the
magnetic-field distribution function (see, for example,
Schenck, 1985).

As we explained in Sec. V, a time-reversal-breaking su-
perconducting state can produce a local internal magnet-
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FIG. 14. Zero-field relaxation rate data for Uy gsThg g35Be;s
(Heffner et al., 1989).

ic field around impurities. Its spatial average (B) is van-
ishing and leads to no net magnetization of the material.
In a sample where 3.5% of the U atoms are replaced by
Th atoms, the average distance between the impurities is
of the order of the lattice constant (where the unit-cell
lattice constant @ ~14.5 A~ 10_1§0), because every unit
cell contains eight U atoms. Thus the magnetic field in-
duced is present practically over the whole sample, with
some random modulation. Moreover, a certain scatter-
ing of the muon trapping points due to the presence of
impurities may lead to an additional randomness of the
detected internal field distribution.

The time-reversal-breaking state D,,(I';&I',) in our
example is antiferromagnetic according to the definition
given in Sec. V.A, since it has a magnetization in the k-
space as
k-2

kk, |fx),

~

o~
kxz

m(k) < (n*n,—nn}) (7.14)

with zero average (m(k)) [f(k) is totally symmetric in
k]. However, we have seen before that » and 7, usually
vary differently in space leading to a current and field
distribution whose magnitude 1is proportional to
[9(T)| |n,(T)|. Then the square root of the second mo-
ment of the magnetic field produced in the sample is pro-
portional to the zero-field relaxation rate,

oxp(T) < | (D) (D) <V |To—T||T*=T|, (7.15)
where T* is the “transition point” for the third transi-
tion, corresponding to T’} in Eq. (6.6). The experimental
data suggest that we take a negative value for T*. This
equation describes a continuous increase of o g, like an
order parameter, with its onset at T;, which is in qualita-
tive agreement with the experimental data (Fig. 14).
From a consideration of single-impurity case studied in
Sec. V an estimate of the magnitude of the induced mag-
netic field cannot be given directly. That treatment, re-
stricted to distances much larger than £, cannot be ap-
plied in this form in a regime where the impurities are
closer to each other than &,. However, considering the
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short-distance region (k; ' <r <§&;), Mineev estimated a
magnetic field that could, very close to the impurity,
reach a maximal value of the order 10G (for a ferromag-
netic superconducting state). The experiments give a
field spread width ~1G, which is in reasonable agree-
ment with this estimate. Furthermore, with the assump-
tion that the measured internal field comes from a field
around the impurities, one would expect that o g1 should
be enhanced with increasing Th concentration. This fact
is confirmed by the experimental data too.

A conclusion that certainly can be derived from these
investigations is that the superconducting state for pure
UBe;; does not break time-reversal symmetry. Other-
wise, an effect on o x4 should have been observed some-
where in region (I) of the phase diagram. The same is
true for region (III). Concerning the phase diagram a
further point may be concluded. Because the uSR exper-
iments indicate no loss of time-reversal symmetry for
both regions (I) and (III), in contrast to the low-
temperature phase of region (II), the existence of phase-
separation lines between them is indirectly proved.

The inconsistency in the present model, that the time-
reversal-breaking phase has a spatial symmetry too high
to satisfy the condition for coupling to the domain-wall
damping mode, could be avoided by the assumption of
time-reversal-breaking coupling terms mentioned above
(Sigrist and Rice, 1989). Then all CR states would have
orthorhombic symmetry.

An analogous argument can be applied to the com-
bination of the two representations I'; and I', of the cu-
bic point group. For this example, however, ferromag-
netic superconducting CR phases do exist, since the con-
dition for such a state is satisfied by I'|® I'y=T, (see Sec.
V.A). The present experimental data do not permit a
clear decision about the symmetry of the superconduct-
ing states in any of the phases occurring in this alloy.

In this phenomenological treatment we could not ad-
dress the problem of why doping with thorium changes
the system UBe,; in such a way. This behavior seems
even more mysterious if we compare it with that of the
La- or Lu-doped systems, which respond to increased
doping with a monotonic suppression of superconductivi-
ty. Clearly, this is a problem related to the microscopic
mechanism for superconductivity in this material, a
problem that is beyond our scope here.

C. Unconventional superconductivity in UPt;

Very recently UPt; has taken center stage as the most
intensively discussed topic in the field of heavy-fermion
superconductivity. The new experimental data seem to
confirm that the superconductivity in this compound is
not conventional. Even though the information from ex-
periments is rather rich, no unambiguous identification of
the symmetry of the superconducting state could be
made to date, since a consistent picture covering all phe-
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nomena found in this material is still lacking. We give
here a brief review of the actual situation in experiment
and theory.

In neutron-scattering experiments, antiferromagnetic
ordering has been discovered below a temperature
Ty=5-6 K with very small magnetic moments
(~0.02up /U atom) lying in the basal plane of the hexag-
onal crystal lattice of UPt; (see Sec. V.C; Aeppli et al.,
1988, 1989). When the material undergoes additionally a
superconducting transition at T,=0.5 K, the two states
coexist in a manner similar to that in URu,Si,.

Specific-heat measurements show a clear splitting of
the superconducting transition by a value of ~60 mK at
zero external field (Fisher et al., 1989). The two ob-
served transitions seem to have their origin in the super-
conductivity, as measurements of H,, indicate by a
significant change in the slope of this quantity (Taillefer,
1990). It was (previously) proposed that such a split
could be produced by the coupling of the superconduct-
ing and the antiferromagnetic order parameters, causing
a lifting of degeneracy in the superconducting order-
parameter space due to lowering of symmetry in the mag-
netically ordered state (Joynt, 1988; Hess, Tokuyasu, and
Sauls; 1989; Machida and Ozaki, 1989; Blount, Varma,
and Aeppli, 1990; see Sec. V.C). In the case of hexagonal
crystal symmetry, four two-dimensional irreducible rep-
resentations are available, which have quite similar prop-
erties for this type of effect. To obtain two consecutive
phase transitions it is required that the coefficients of the
fourth-order terms in the Ginzburg-Landau theory
[Table V(c)] both be positive, according to the treatment
in Sec. III. Comparing that treatment with the experi-
mental result for the ratio of the two discontinuities in
specific heat, we obtain the relation [3;~43,—5p3, for
these coefficients, which is larger than the weak-coupling
estimate 3, =343, (Hess, Tokuyasu, and Sauls, 1989; Ma-
chida, Ozaki, and Ohmi, 1989; Schenstrom et al., 1989).

From this point of view the low-temperature phase
corresponds to the time-reversal-breaking states D, (I's)
or D¢, (T'E), which have in the background of antiferro-
magnetic ordering a lowered point-group symmetry,
D,,(TF¥@eT¥) or D,,(I'feT'y), respectively. The high-
temperature state is real and has the symmetry D,,(T'Y)
or D,, (T'{) [see Table VI(c)].

Blount and co-workers (1990) additionally discussed
the influence of the superconducting order parameter on
the staggered magnetic moments in this model. They
found a slight rotation of the staggered moment, because
the presence of the superconducting state allows coupling
between the longitudinal and the transverse parts of this
moment (see Sec. VI.C). This rotation is also reported
from experimental results (Aeppli et al., 1989).

In experiments it is observed that the application of a
magnetic field parallel to the basal plane leads to a nar-
rowing of the transition split up to complete suppression
at some critical value H . ~5 kG (see Fig. 15; Hassel-
bach, Taillefer, and Flouquet, 1989). At this point a clear
kink in the upper critical field H ,(T) also occurs. This
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FIG. 15. Phase diagram of UPt; for a magnetic field in the
basal plane (7 vs H): @, second-order transitions found in
specific-heat measurements; /\, the observed anomaly in the ul-
trasound absorption measurements (Hasselbach, Taillefer, and
Flouquet, 1989).

kink is absent if the magnetic field is applied along the ¢
axis.

This kink and the merging of the two transitions have
been traced to a crossing of two H ,(T) lines each belong-
ing to one of the split superconducting states (Hess,
Tokuyasu, and Sauls, 1989; Machida, Ozaki, and Ohmi,
1989; Blount, Varma, and Aeppli, 1990; Joynt, Mineev,
Volovik, and Zhitomirsky, 1990). The analysis is very
similar to that presented at the end of Sec. VI for two al-
most degenerate representations. However, the antifer-
romagnetic state responsible for the splitting introduces
an anisotropy in the behavior of the calculated H, lines.
The two lines can only cross if the magnetic field is per-
pendicular to the antiferromagnetic moments. Fields in
arbitrary directions mix the two split states in such a way
that the kink changes to a smooth crossover and disap-
pears completely if the field is parallel to the moments.
Moreover, the additional degrees of freedom in the stag-
gered moment introduced by Blount et al. (1990) do not
solve this problem. One can speculate whether the an-
isotropy energy of the antiferromagnetic state might be
small enough that the external field could align the mag-
netic moments perpendicular to the field for any direc-
tion (Machida, Ozaki, and Ohmi, 1989).

Two other ideas for ways to sidestep the anisotropy
problem have been presented by Joynt et al. (1990):

(1) The experimental analysis of the antiferromagnetic
ordering shows a domain structure with a very small size
(~150 A), which is comparable with the zero-
temperature coherence length of the superconducting
state (£,~50 A; Aeppli et al., 1989). In the background
of such a short-range modulated antiferromagnetic state,
the first stable state to be realized by the two-component
superconducting order parameter (F;-L or I‘éi) may be a
glass state. This is a real state of the form
n=|n(r)|e’*[cosd(r),sind(r)], which varies randomly in
the sample, taking advantage of the spatial fluctuations
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of the coupled antiferromagnetic moments without a
high expense of kinetic energy (gradient terms). It is as-
sumed that for low temperatures the time-reversal-
breaking state Dﬁh(l"g—té) is stable and homogeneous be-
cause it does not couple to the direction of the magnetic
moments. The transition between the glass and the
homogeneous state is claimed to be of weak first order.
[A similar idea was earlier proposed in connection with
the U,_,Th,Bes-alloy (Volovik and Khmel'nitskii,
1984)].

(2) It is also possible to ignore the antiferromagnetic
ordering and to assume that the transition temperature of
the order parameters of two irreducible representations
are close to each other, leading to the two observed tran-
sitions (similar to the model proposed for U, _, Th Be;
in the previous section).

Both proposals have the advantage that the anisotropy
introduced by the magnetic ordering does not occur.
However, very recently Taillefer (1990) discovered a
peculiar anisotropy of H,, in the basal plane. It is ques-
tionable whether this may be interpreted as a manifesta-
tion of the anisotropy appearing in the other theories.

Another class of experiments considers the high-field
region of the 7-H phase diagram of UPt;. In ultrasound
measurements an absorption peak has been observed for
a magnetic field H ~0.6H_, (~ 1.2 T), applied parallel to
the ¢ axis of the hexagonal crystal lattice (Qian et al.,
1987; Miiller et al., 1987). This may be an indication of a
phase transition in the system. This effect has been
confirmed for other field directions, including fields in the
basal plane (Schenstrom et al., 1989). Similar anomalies
have been reported in the dissipation of the torsional os-
cillation of UPt; samples under high magnetic fields
(Kleiman et al., 1989).

The theoretical discussions of this phenomenon con-
centrate on fields parallel to the ¢ axis. The first propo-
sals, offered by Volovik (1988) and Joynt (1988), consider
different superconducting states for the low- and high-
field regions. In low fields the superconductor is in the
London regime, where the state is determined by the bulk
zero-field properties. Beyond this region the magnetic
field determines which state is realized (see Sec. VI.B).
At the transition between the two states in the
intermediate-field region the vortex lattice symmetry can
also be changed. However, the particular superconduct-
ing states proposed in the two treatises are controversial.
Volovik’s high-field state is the axial time-reversal-
breaking Dy, (I's) state [7(1,+i), where + depends on
the sign of the applied field], which lead to a hexagonal
vortex lattice. At low field the vortex lattice symmetry is
broken, and the real state 7(1,0) or 5(0,1) is realized. In
contrast, Joynt proposes a time-reversal-breaking high-
field state y=m(1,ri) (|r] <1), which breaks the hexago-
nal symmetry, whereas for low fields the axial state is
favorable, yielding a triangular vortex lattice. More re-
cent investigations, discussed in Sec. III.B, show that
there are two possible high-field solutions, an axial one
yielding axial vortices arranged in a triangular lattice and
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an asymmetric one with nonaxial vortices in a distorted
lattice (Sundaram and Joynt, 1989; Zhitomirskii, 1989).
The latter phase is very similar to that considered by
Joynt (1988).

Other possibilities for field-induced phase transitions
have been suggested by Schenstrom et al. (1989) and
have been worked out in detail by Tokuyasu et al. (1990).
Unlike the idea mentioned above, in this picture the su-
perconducting state as a background need not change
essentially over the whole range of the magnetic field. It
is assumed to be D¢, (T's ). In such a state unconvention-
al nonaxial vortex structures can be more stable than axi-
al ones, as we pointed out in Sec. V.B. In the actual sys-
tem the magnetic-field distribution of the vortex has tri-
angular symmetry, which may be, at least close to the
core (~5-10&,), rather pronounced. Due to this fact the
equilibrium state of the vortex lattice should also take
into account the additional degree of freedom, the orien-
tation of the vortex. For a field close to H,; a triangular
lattice is formed. With increasing density of the vortices
in higher fields, their anisotropic structure becomes im-
portant in the arrangement of the lattice, leading in gen-
eral to frustrations in a triangular lattice. Tokuyasu
et al. proposed the change to be a honeycomb lattice or
the conversion of a part of the vortices to axial symmetry
(—hexagonal) as a possible reaction of the system to
avoid these frustrations (Fig. 16). In all models the
change of the vortex lattice structure is considered to be
the cause of the anomaly in the ultrasound absorption
measured in the experiments. Such a change could addi-
tionally lead to an observable anomaly in the magnetiza-
tion curve M (H).

Summarizing this section, we can say that experimen-
tal facts clearly show that heavy-fermion superconduc-

e
P
&g&
Vav.

FIG. 16. The triangular lattice built of triangularly shaped vor-
tices becomes frustrated when the density of vortices is large.
To escape this frustration, two possible new vortex lattices can
be formed: a honeycomb lattice or a hexagonal lattice also in-
volving axial vortices (Tokuyasu et al., 1990).



M. Sigrist and K. Ueda: Unconventional superconductivity 305

tivity is unconventional in many respects. Especially in
the compounds UBe,; (and the related alloys) and UPt;,
the quality of evidence is so high that superconductivity
due to a conventional s-wave pairing mechanism can be
ruled out. Even with these very significant experimental
data, no unambiguous statement can be given about the
symmetry of the superconducting state realized in these
materials. At least, it seems likely that some of the
occurring superconducting states break time-reversal
symmetry, yielding a series of unconventional magnetic
effects. According to the argument presented in Sec.
VIL.B, the question of time-reversal-breaking states may
have been solved for UBe ;. In the case of UPt;, howev-
er, no decisive experiments to settle this problem are
available to date. Neither have the experimental investi-
gations yet led to a consensus about the microscopic ori-
gin of the superconducting instability. Many com-
ponents seem to play an important role in these materi-
als.

Surveying this article we find that the Ginzburg-
Landau theories of anisotropic superconductivity contain
a rich structure which could only partially be analyzed
here. One essential feature, as we have seen, is the break-
down of various symmetries at the onset of superconduc-
tivity or at additional transitions. Especially in the case
of multicomponent Ginzburg-Landau theories, several
new topological structures are possible due to the pres-
ence of degenerate superconducting states. Domain walls
and fractional and nonaxial vortices are only a few exam-
ples. These theories have been used to find explanations
for several unconventional effects as well as to motivate
new experiments, not only in heavy-fermion supercon-
ductors but also in other, e.g., high-7, or organic super-
conductors.

The starting point for the formulation of these
Ginzburg-Landau theories was a BCS-like theory of an-
isotropic Cooper pairing. This should not lead to the
opinion that these theories are valid only within this
background. The final formulation, as presented in Sec.
11, is based on very general principles and is independent
of the microscopic mechanisms producing superconduc-
tivity. The order parameter may be different from the
pair wave or gap function in general; however, the struc-
ture of the Ginzburg-Landau theory describing an un-
conventional superconductor as a mean-field approach
close to the phase transition should always be of the form
discussed above. '
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APPENDIX A: BOGOLIUBOV TRANSFORMATION
FOR NONUNITARY GAP FUNCTIONS

In order to evaluate the unitary transformation Uy, it
is convenient to use a modification of Eq. (2.6),
UkE\k=é°kUk. In components of 2X2 matrices this
equation can be written as

U (B, —ek)=—AkD*, ,

~ o (A1)
D* (B +e(k))=—AT (k)i
with
 [Ews 0
E = : (A2
k 0 E,_ )
We eliminate 9%, in Eq. (2.15) and obtain
U (E2—eX k) =AK)AT (k)i . (A3)

If we assume a unitary A(k), the solution is very simple.
The excitation spectrum is E,, =E,=[eXk)
+ 1tr(AR*)(k)]'/2. For @, any 2X2 matrix can be used.
Profiting by this freedom we choose %, proportional to
&, With Eq. (Al) and the unitary condition we obtain
Eq. (2.13).

In the case of nonunitary superconducting states the
solution of Eq. (A1) is not so simple, since the freedom of
choice of %, in Eq. (A3) is lost if AA™ is not proportional
to the unit matrix. From this equation we obtain the fol-
lowing condition for #:

u,lql6,=6qi, , (A4)

where q denotes i (dXd*). This equation can be solved
by the ansatz

i,=allql6y+q&NE6y+5,)
+5(ql6,—q:8)6,—5,) . (AS5)

We choose the parameters a and b to be real. With Eq.
(A1) we obtain for Dy

= —AK)af[ By —e(O) ][ E}—e(k)] ™! (A6)

with
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By —e(0) B —e2(k)] 1 = ke T B

+28(k)]60+(Ek+ _Ek— )62

(A7)

Note that 4§

[Ek+ +8(k)][Ek_

is related to #, via the Pauli-matrix identity * =

+e(k)]

—&,06,. The Bogoliubov transformation has to satisfy

the unitarity condition #, %, +9, D, =1. This leads to the equatlons for aand b,

2E, _

T rek) | L
(A8)

2 2Ek+
Ek+ +£(k)

E, . +e(k) E,_ +e(k)

+b?

4|ql(Iq|+g,) |a

with the solution
2 E, . +e(k)
8Ey+ lql(lql+g,)
Ek* + E(k)
8Ey_lql(lql+g,)
Under the assumption that %, is a real matrix, the given
solution is unique. If we insert a and b in Egs. (A1) and

(A3) and use the definition Z/SZiG-dﬁy, we obtain the re-
sult in Eq. (2.14).

(A9)

b=

J

ﬂ:ﬂ0+~7{pair
2 <kSl7‘[()|kS >aks ak252+% 2 152 354
k,K',s,5 kk.q
$1555,53,54

(k k’ ) (q/2) k,Sla

APPENDIX B: GREEN’S-FUNCTION FORMULATION
OF UNCONVENTIONAL SUPERCONDUCTIVITY

The Green’s-function formulation of the theory of su-
perconductivity allows us to consider a much wider
range of effects than the treatment given in Sec. II.A
(Gor’kov, 1958). It is useful for the investigation of im-
purity scattering effects, but also gives a description of in-
homogeneous situations and leads finally to the micro-
scopic derivation of the Ginzburg-Landau theory of con-
ventional s-wave-type superconductivity (Gor’kov, 1959).
The extension of this formulation to non-s-wave super-
conductivity is straightforward. Since the derivation is
essentially parallel to the conventional version found in
several textbooks, we keep the derivations short here.

Let us first write the Hamiltonian introduced in Eq.
(2.1) in a more general form in the momentum represen-
tation,

:
(a/2)+k,5,%(q/2)+K,5,F(q/2)—K's, - (B1)

where #£, denotes the one-particle part of the Hamiltonian, including the effects of inhomogeneities like impurity or
surface scattering. The pairing interaction is taken in a form which allows interaction between pairs of finite total

momentum.

The finite-temperature Green’s function in the imaginary-time momentum space is defined as

G, (k,k';7)=— (T, {a( T)ak, 0}, (B2)
and the anomalous Green’s function as
F o (k,k;7)=(T {a(Pag(0)}), FlL.(kk;7)=(T {al (ral,(0)]) . (B3)

The operator a,,(7) denotes exp(ﬂf)aksexp(/—ﬂf).

momentum space leads to

iw, T

Gk K;7)=kyT S Gk ,kKjiw,)e ",

—lw, T

Fo(k,k';7) kBTEF (k,K'io,)e ",

iw, T

FL(kK;7)=ky T 3 FL(k,Kjiw,)e ",
n

The transformation of these Green’s functions to the frequency

(B4)

where o, is the Matsubara frequency for fermions wkz T (2n +1).

Using now the equation of motion for the Green’s functions (day, /07=

(Gor’kov equations) for G (k,k’;iw, )
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[#,ay;]), we obtain the equation system
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kz (kslio, —Holk"s" )G (k" Kiw,)— 3 AyA(k",q" )F.. —qz’—l —k"Kiw, (84 p1krk | =0k ks » (B5)
o o
for Fl.(k,K;im),)
kg Fl (kK" i, )(K"s" liw, +FHo|k's") — qz Al (k",q")G,n, 92~ +k", ki, JSqlrmk/:,k' =0, (B6)
and for F.(k,k';iw,)
kz (ksliow, —Holk"s" YFu (k" Ksiw,) =3 Ay (k”,q" )G | K, 921—’ —k";—iw, |8g piwx | =0, (B7)
ot o

where the four-operator term in the pairing Hamiltonian #,;, has been decoupled by the introduction of a mean field
analogous to that in Sec. II.A. It is defined by
Ass’(k7q): - 2 Vs'sslsz(k’kl)<aq/2+k’,s1aq/z——k’,s2 )

k',5,,8,

:_kBTE 2 Vs'sslsz(k’k,)Fslsz (B8)

n k’,xl,s2

L BT B W
2 +k’, > yiw,

Let us first consider a homogeneous system. In this case the two momenta in the argument of the Green’s function
G, (k,k';im,) have to be equal (k=k’) and for the anomalous Green’s function F(k,k’) to be equal with opposite sign
(k=—k’). Thus the mean field K(k,q) in Eq. (B8) becomes independent of q. The one-particle Hamiltonian is sup-
posed to be diagonal in the momentum space (and for simplicity also in the spin space): {k,s|#,|k’,s") =e(k)8y ;s
Therefore the Gor’kov equations can be written in a much simpler form,

liw, —e(k) ]Gk, iw,)— 3 Ay(K)F) g (K iw,) =5 , (B9)
liw, +e(K)IFL (kio,)—3 AL(K)G(k io,)=0, (B10)
liw, —e(k)F(k,io,)— 3 Ayl k)Gl —k, —ia,)=0 . (B11)

Since the equations are not coupled in the momentum space, they can easily be solved. We find

iw, +e(k) A(k)

G(k,w)=— 6o and F(k,0)= (B12)
© ol +EL ° T Bt
for singlet superconductivity and
[w2+e2(k)+|d(k)|?)]6,+q-F
Gthiv,)= (@B Nad +EL)  Lenteol
@Dy k+ @y k—
(B13)

. {02 +[eX(k)+|d(k)[2]}d(k)—igXd(k)
F(k,iw,)= 3 5 3 3 (i6¢),)
(Cl)n +Ek+ )(CO" +Ek*‘ )

for triplet superconductivity, where the case of nonunitary states (d*d) is included by q(k)=id(k)Xd* (k).

Inserting the solution for the anomalous Green’s function in Eq. (B8) leads to the self-consistency equation for A(k),
which is exactly the gap equation as we found it in Egs. (2.15)-(2.17) if the sum over all w,, is performed.

For a general inhomogeneous system, the solution of the Gor’kov equations is much more complicated. Equation
(B7) can be solved for the anomalous Green’s function

FolkK5io)= 3 A, (k",q)G0 |k, +K"iw, |G, |k, L~k —i0, |, (B14)
k",q",5(,5, 2 ! 2 2 2
where G is the normal-state Green’s function defined by
S (k,sliow, —FHlk”,s" )G (K", K'jiw, )=8; By ke - (B15)
K",s"
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We can substitute Eq. (B14) into Eq. (B5) to obtain an equation only for G.

For temperatures close to Tc,z/i is very small. Then

G may be replaced by G° in Eq. (B14). With this approximate

anomalous Green’s function we find the linearized gap equation

Assl(k,Q):_kBTz 2 2 Vs’sslsz(k’k')GSOIS3

n k',k",q 5185535,

XGys,

2 2

T+, +xsio,

", __ -
-k —iw,

A, (K",q"), (B16)

3354

which we used in Sec. IV to develop the correlation function formalism. Further expansion in A using the normal-state
Green’s function is the basis of the microscopic derivationAfor the higher-order terms of the Ginzburg-Landau theory.
Finally, let us consider the interpretation of k and q in A(k,q). Introducing the field operator ¢, (r)= 3, a,exp(ikr),

we can write the anomalous Green’s function in the r space

Fss’(r’rl;T)z _<T7¢s(r’7)¢s’(r,)>zsts’ 2
k.q

g—{~k,%—k;r

eik(r*r’)eiq(r+r )/2 .

Obviously, k corresponds to the internal degree of freedom of the pairing state (symmetry of the pair wave funftion),
whereas q is related to the motion of the center of mass (r-+r')/2. From Eq. (B8) it becomes clear that k in A(k,q)
represents the internal degree of freedom of the gap function and q its spatial variation.
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