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In the more than half century since the semiclassical Thomas-Fermi theory of the atom was introduced,
there have been literally thousands of publications based on that theory; they encompass a broad range of
atomic bound-state and scattering problems. (The theory has also been applied to nuclear physics and
solid-state problems. ) We will concentrate here on the essence of the theory, namely, its implementation
of the uncertainty and exclusion principles and of the Coulomb or Newton force law. Since we are often
far more interested in physical concepts than in numerical accuracy or rigor, we will sometimes consider
the implementation in a qualitative rather than quantitative fashion. The theory is then capable of giving
only qualitative information about a system —one obtains the dependence of the total ground-state bind-
ing energy E and radius R of an atom on the nuclear charge Z, for example, but one obtains only rough
estimates of the numerical coefficients; in compensation, the calculations are often literally trivial, very
much simpler than the already simple Thomas-Fermi calculations. A point to be emphasized is that in the
course of obtaining an estimate of E and R of an atom in a Thomas-Fermi approach, one also obtains an
estimate of the electronic density, and, particularly if the analysis is more than simply qualitative, an
electronic-density estimate can be very useful in a wide variety of problems. We include a short comment
on alternative formulations of Thomas-Fermi theory in a D-dimensional space. We will review the appli-
cations of the theory, from both qualitative and (Thomas-Fermi) quantitative viewpoints, to heavy atoms,
where we are concerned with a Coulomb interaction, and to neutron stars and white dwarfs, where we are
concerned with a gravitational interaction and with gravitational-plus-Coulomb interactions, respectively.
In the latter case, the first two Coulomb corrections are evaluated. Very rough (relativistic) estimates are
made of the conditions under which heavy atoms, neutron stars, and white dwarfs collapse. A one-
dimensional Thomas-Fermi-like theory also exists for heavy atoms in a uniform strong magnetic field 8, of
the order of the field believed to exist at the surface of a neutron star. Here, too, the qualitative picture
immediately gives some of the main results, namely, the dependence of E and R on 8 and Z. We also
comment brieAy on some relatively recent and very recent developments in Thomas-Fermi theory. These
include a proof of the stability of matter. Though it was first proved by Dyson and Lenard, we consider
the Lieb-Thirring proof, both because it is much simpler and because it makes extensive use of Thomas-
Fermi theory, including a no-molecular-binding theorem that follows in the Thomas-Fermi approxima-
tion: Teller proved that, in that approximation, atoms could not form molecular bound states. These de-
velopments also include (a) the Lieb-Simon proof that the prediction of the theory that E = —c7Z
with c7 a specified coefficient, becomes exact at Z —~, (b) the Scott-c6Z correction term, with c6
specified and now known also to be exact, and (c) the Schwinger estimate of the coefficient c5 of the Z
term, which there is good reason to believe is exact. The many digressions include comments on QED, on
lower bounds on the ground-state energy of a system, and on mini-boson stars.
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I. INTRODUCTION

A beautiful and correct theory can be disfigured by an
approximation introduced to simplify a calculation, but
there are also approximations that retain the elegance of
the correct theory and provide new and deep physical in-
sights. An extraordinarily simple approximation to the
Schrodinger theory of a many-electron atom, one that is
extremely useful in providing quick numerical estimates
and a physical feel for many problems, is the model pub-
lished independently by L. H. Thomas (1927) and E. Fer-
mi (1927). [I am not aware of any remarks by Fermi as
to the extent of the eA'ort he put into the development of
the theory, but, as one indication of the simplicity of the
theory, it is interesting to record that Thomas has stated
that he spent no time at all on the development of the
model (and did it to get practice in the numerical solu-
tion of differential equations). ] The model is normally

known in the United States, where Thomas has long
resided, and surely in Wales, where he was born, as the
Thomas-Fermi (TF) model, but in Italy it is also known
as the Fermi-Thomas model. (Lieb has commented that
he prefers the order Thomas Fermi since it then sounds
like the name of a person. )

It is of course impossible to patent an idea. If it were,
it would be interesting to contemplate how profitable it
might have been for Thomas and Fermi, following their
independent publications in 1927, to have formed a
Thomas-Fermi Model Company. It would certainly have
been a growth industry, for there have been literally
thousands of published articles based on the model. (An
all-encompassing review is therefore precluded. ) As will
be clear from the discussion, many very distinguished
physicists have played a role in the further development
of the theory; the model is so well known that the origi-
nal papers are almost never referred to. The longer re-
views include a book by Gombas (1949), articles by Lieb
and Simon (1977) and by Lieb (1976, 1981), and long sec-
tions of books by March (1975) and Thirring (1983).
March s book, incidentally, contains the original paper
by Thomas and an English translation of the original pa-
per by Fermi. Most quantum mechanics texts devote at
least one or two sections to the model. The model has
been heavily used by atomic physicists in studying funda-
mental questions and in applications, including areas of
astrophysics and plasma physics. [There have also been
many applications in condensed-matter physics, and the
model has been used a fair number of times in nuclear
physics; Serber (1976) is one example. To my knowledge
the model has not been a popular item among axiomatic
field theorists. ] We note that the model is a universal
one —since the TF potential for a neutral atom scales,
one calculation provides the charge distribution for a
neutral atom of any nuclear charge Ze in its ground state;
the model can therefore immediately be used, in the Born
approximation, for a wide range of elastic-scattering
problems. The model has also been used to provide nu-
merical estimates for an enormous range of bound-state
properties. [Since TF calculations are relatively simple,
they are often used to scale results. One starts with a
more reliable value than that estimated by TF theory it-
self of, for example, the elastic di6'erential cross section at
0&, o. (0&), provided by experiment or by a more complete
calculation. One then uses TF theory to estimate o(0)
for all L9, obtaining the angular distribution from TF
theory and the normalization constant from the value of
cr(0&) obtained elsewhere. ] The TF model also has been
used to study exotic questions such as the value of Z for
which an orbital angular momentum quantum number I
of an individual electron, an f' or a g state, for example,
first appears (Fermi, 1928); see, also, Rau et al. (1972),
and references therein.

With the passage of time, the nature of its use has
shifted somewhat. It is still very useful for making nu-
merical estimates, as, for example, in the use of model
potentials based partially on the TF potential, but with
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the advent of high-speed computers simple TF estimates
are often preliminary ones, to be supplemented by, for ex-
ample, Hartree-Fock or variational-principle calcula-
tions. Relatively recently, an ingenious positive use (Lich
and Thirring, 197S) of the main failure of the TF model,
its inability to allow atoms to combine to form a mole-
cule (Teller, 1962), provided by far the simplest proof of
the "stability of matter;" that is, a proof that the nonrela-
tivistic binding energy of a system of electrons and nuclei
is bounded from below by a negative multiple of the
number of particles. [That matter is stable was first
proved by Dyson and Lenard (Dyson, 1967; Dyson and
Lenard, 1967; Lenard and Dyson, 1968; see, also, Dyson,
1968).] It is an astonishing fact that a theory developed
to study a single atom with Z —oo can be used to study
the interaction of an arbitrarily large number of atoms
with, for example, Z=1~ Very recently it was realized
(Martin, 1988a, 1988b) that a knowledge of the nonrela-
tivistic energies of a system can lead to an upper limit on
the coupling constant if the (model) relativistic system is
to have an energy bounded from below.

It is important to try to understand why the TF model
has been so useful in so many diA'erent ways. The most
obvious reason is that it provides an exact result for the
energy of an atom in the limit Z —~. [This has been
"known" to physicists since the TF model was first intro-
duced, but it was proved only recently (Lieb and Simon,
1977).] A second reason is its universality, noted above.
Perhaps the best reason is that, for many problems, it in-
corporates in the simplest possible form so much of the
essential physics, namely,

(i) the uncertainty principle,
(ii) the Pauli exclusion principle,
(iii) the Coulomb force law.

(As we shall see, and as is hardly surprising, it works just
as well for the gravitational case; it can therefore be used
to study neutron stars and white dwarfs as well as normal
atoms. ) Many of the discussions in the present article are
watered-down versions of TF theory, encompassing (i),
(ii), and (iii) in a more rudimentary fashion than does TF
theory.

It is interesting to observe (Lich and Simon, 1977) that,
whereas a standard simplifying approximation is the re-
placement of a nonlinear equation by a linear equation,
the TF model is obtained by proceeding in the opposite
direction, with the approximation of the linear
Schrodinger equation by the nonlinear TF equation,
which involves the number density n (r). The TF equa-
tion is nevertheless an enormously simplifying approxi-
mation, with the object to be determined simply n (r),
rather than the wave function, which depends upon the
coordinates of each of the electrons.

Section III consists of preliminary material, much of
which many readers will wish to omit, but the material
on the Sobolev inequality, which, for the particular case
considered (and probably for a number of other cases),
gives a more useful (lower) bound on the kinetic energy
of a particle than is obtained directly from the uncertain-

ty principle, and on an extension of the virial theorem,
which gives two relations among components of the total
energy, may be unfamiliar. In Sec. IV we develop the TF
formalism, progressing from a qualitative picture that is
even simpler than the TF theory but gives about the same
results. In Sec. V we give some results in TF theory, for
real and model atoms. In Sec. VI we apply TF theory to
neutron stars and to white dwarfs, at the qualitative and
semiquantitative level, while in Sec. VII we do the same
for a TF-like theory of atoms in an intense magnetic field,
such as that at the surface of a neutron star. Thomas-
Fermi theory gives a ground-state energy E = —c7Z
Rydbergs, with c7 a known constant, for a neutral labo-
ratory atom. Section VIII begins with some comments
on the no-molecular-binding theorem of Teller, which
shows that TF theory is such a poor theory, with respect
to molecular applications, that it does not allow for the
formation of molecules from atoms. It then gives a brief
discussion of developments in the study of the stability of
matter, a subject of general conceptual interest, and one
which, in the author s opinion, has lent itself to some of
the most beautiful work in mathematical physics of the
last 25 years; that opinion is shared by a number of com-
mittees that award prizes. That matter is stable was, as
noted above, first shown by Dyson and Lenard (Dyson,
1967; Dyson and Lenard, 1967; Lenard and Dyson, 1968)
in a stunning tour de force. The exquisite proof of Lieb
and Thirring (1975) is of greater interest to us, for, capi-
talizing on a major defect of TF theory, they base their
proof on the no-molecular-binding theorem which arises
in a TF context. [Dyson (1967) also showed that the fer-
mion property of electrons was not only a sufFicient but a
necessary condition for the stability of matter; matter
would be unstable, that is, the energy would increase fas-
ter than the number of electrons, and matter would
therefore have no extensive properties, if electrons were
bosons. ] In Sec. IX we discuss the leading correction to
TF theory, associated with the strongly bound inner elec-
trons, the Scott Z term, first suggested by Scott (19S2),
and contributions to the analysis of this term by Bal-
linger and March (19S5), by Lich (1976), and, most re-
cently, by Schwinger (1980). Section X gives the analytic
evaluation of the coefFicient of the Z term by
Schwinger (1981), which contains an exchange-term con-
tribution (Dirac, 1930), and a quantum kinetic-energy
correction associated with the bulk of the electrons. Sec-
tion XI contains a number of notes.

Many of the sections can be read independently. In par-
ticular, much of the later material can be read indepen-
dent of the material in Secs. IV and V on atoms under
the usual laboratory conditions.

Remarks on the foundation of the theory

The need for a review of some of the recent develop-
ments in TF theory may be clear, but a comment on the
need to discuss the foundation of a theory now some 60
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that is, it is often assumed that the maximum energy
eF(r) of an individual electron at r must be zero in order
to prevent the electron from escaping to infinity. But es-
cape is prevented if

eF(r) (0;
there is no physical argument that requires the electrons
at r to pile up until p~(r)/(2m) is equal (and opposite) to
V(r). To see that the assumption that eF(r) must be
equal to zero can be wrong, consider a positive ion, with
a nuclear charge Ze and X( (Z) electrons. Assuming
spherical symmetry, the shielding of the nucleus by the
electrons will be incomplete in certain regions, and we
have, for all r,

V(r)( —(Z X)e /r, — (1.3)

with the inequality approaching an equality as r —~. If
Eq. (1.1) were correct for positive ions, we would have,
for all r,

p (i") [2m (Z —X)e ]' /r' —=K/ '

Now an essential underpinning of TF theory is statistical
quantum theory [which incorporates items (i) and (ii)
above]; for the temperature T=O, the number of elec-
trons allowed in a volume of phase space drdp is then
equal to 2drdp/h, the factor of 2 originating in the
spin of the electron. If then X' is the number of electrons
that can be supported by V(r), we have

X'=(2/h )f f dr dp

=(2/h )(4~) f r dr p (r)F/3 .

years old, as we do in Sec. III and part of Sec. IV, may be
in order. We include this material not for completeness
but because most of the treatments in the literature em-
phasize the applications rather than the foundations, and
some are very misleading in their treatment of the foun-
dations; the logic used is faulty, and the fact that the re-
sult obtained is correct for the case of the neutral
atom —often the only case treated, although, to be sure,
the most important case —is largely accidental. (It is as-
tonishing but true that very few textbooks give the TF
differential equation in its correct form!) We shall con-
sider the problem in some detail in Secs. IV and V, but
the essential points are easily made. First, in using the
calculus of variations to obtain the TF differential equa-
tion, one often treats the number density n (r) as if it al-
lowed an arbitrary variation; in fact, there are regions
where n (r)=0, and there one must have 5n (r) )0. We
shall return to this matter later. The second point is the
following. Let p~(r) be the Fermi momentum at r, that
is, the upper range of the momentum distribution
demanded by the Pauli principle and determined by the
local electron density, and let e~(r) be the associated Fer-
mi energy. Further, let V(r) be the effective potential en-

ergy at r. It is then often stated that

e~(r)—:pF(r)/2m + V(r) =0,

If Eq. (1.1) and the inequality for pF(r) to which it leads
were correct for positive ions, we would find

(32vr /3h )K f r' dr = oo
0

Eq. (1.1) is simply not valid for positive ions.
We assumed just above that T was zero, or, more pre-

cisely, that kT is negligible with respect to the Fermi en-
ergy. That would of course not be true (to cite one coun-
terexample) for the Sun.

[Note that the potential in TF theory is that seen by a
test particle of infinitesimal charge. Thus all of the elec-
trons, including the one whose potential energy is to be
determined, contribute to the potential. It is for that
reason that we took the coefficient in Eq. (1.3) to be
Z —X rather than Z —(X —1). When we consider nega-
tive ions in TF theory, the effective potential at large r,
where the outermost electron will tend to be, will be
dominated by a repulsive Coulomb component, even for
only one additional electron, that is, even for X =Z+1.
In a real atom, on the other hand, for a negative ion with
X=z+1 the potential seen by the outermost e1ectron
will be zero in a first approximation, and small correc-
tions, such as the attractive polarization potentials in-
duced by the outermost electron, may be strong enough
to bind the extra electron. That can scarcely be expected
to happen in TF theory, and, indeed, one of the failures
of TF theory is that it cannot account for any negative
ion. Without giving any details, we note that a simple
modification of TF theory can account for the fact that
there are negative ions with X=Z+1 but none with
X )Z+ 1 (Benguria and Lieb, 1985).]

Not only can we have pF(r)/2m less than rather than
equal to —V(r), but in TF theory we can have pF(r) =0,
and therefore n (r)=0, over three-dimensional regions
where V(r) is nonvanishing (and negative). This situa-
tion is quite different from that which exists for the true
atom, described by a (linear) Schrodinger equation. Con-
sider a spinless particle with a wave function 4(r).
Apart from regions where the potentia1 is infinitely posi-
tive, n (r)= f ~@(r)~ dr and therefore W(r) cannot vanish

over a three-dimensional region, for then %(r) and its
derivatives would vanish and the only solution of the
Schrodinger equation would be the trivial solution
4(r)=0 everywhere. For a many-electron system, the
Schrodinger wave function 4 is a function of all of the
spatial and spin coordinates, but n(r), obtained from

by summing over spins and integrating over all but
one spatial coordinate, remains a function of just one
coordinate, r, and it is again true that n (r) cannot vanish
over a three-dimensional region lest 4 vanish every-
where. As noted above and as will be discussed later, one
important consequence of the fact that n (r) in TF theory
can vanish over a three-dimensional region is that the
ground-state energy of a positive ion in TF theory will
not be stationary with respect to smaH variations of the
number density about the number density for the ground
state.

There are a number of excellent treatments of the ap-
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plications of TF theory, and there are of course some
good treatments of the foundations of the theory, includ-
ing some listed above and Bethe and Jackiw (1986). An
extremely careful and thorough treatment of the founda-
tions of TF theory is given in Lieb and Simon (1977),
which also contains a wealth of new theorems, but this
article was written for a mathematical journal and will
have its strongest appeal for the mathematically oriented
reader; an experimental physicist poorly trained in
mathematics will not find it bedtime reading. Parts of
Sec. III represent watered-down versions of a brief por-
tion of the Lieb-Simon article, which may well remain,
with the section of the book by Thirring (1983) and re-
views by Lieb (1976, 1981), the most complete treatments
of the subject for some time to come. (Lieb's 1981 review
not only contains a number of new results in TF theory,
but also presents a rather thorough mathematical treat-
ment of TF theory as modified by Dirac to include ex-
change and as modified by von Weizsacker to include
kinetic-energy corrections originating in the variation in
the electron number density. ) One of the objectives of
the present unsophisticated review is to interest some
readers enough to get them to study these treatments.
Unless there is some compelling reason to include them,
"mathematical" questions are largely ignored in our
treatment. (The tastes and abilities or lack thereof of the
author make this almost necessary. ) Thus, in obtaining
the TF di6'erential equation for the electron number den-
sity n (r) from the Lenz energy functional E[n], it will be
assumed that there is an n (r) that minimizes E[n].
Theorems obtained under such assumptions and yet
widely held in the physics community are referred to by
Lieb and Simon (1977) as "folk theorems. "

We close Sec. I with a remark that may make TF
theory more appealing to "practical" readers. It is cer-
tainly true, as stressed by Lieb, that as an atomic theory
which becomes exact as the number of electrons
(the only other exact atomic theory being that for one-
electron systems), TF theory warrants careful study. But
since it is almost certain (and will henceforth be assumed)
that corrections to the theory are of the order of 25%
even for Z as large as 64, the pragmatic reader might well
ask: "What can the theory do for me?" In response, we
note first that the two leading corrections, of relative or-
der Z '~ and Z ~, have been obtained (Scott, 1952;
Ballinger and March, 1955; Lieb, 1976, 1981; Schwinger,
1980, 1981); the Z '~ correction is known to be exact
and the Z correction is believed to be exact. Fur-
ther, it has been observed in the past that the corrected
theory works much better for small Z than might be ex-
pected of a theory with corrections that seem to fall ofF as
powers of Z '; indeed, at least for some very simple
models, Shakeshaft and Spruch (1981) showed that
E, ,h(Z), the smooth and dominant part of the energy of
an atom as a function of Z —we shall be more precise in
Sec. XI.C—has an expansion in powers of Z ' that
converges for Z ) ( 18 X 3' ~

)
' =0.0323, an expansion

that converges rapidly even for Z equal to unityf We can

therefore hope that corrected TF theory will be reason-
ably accurate even for Z quite small. We note second, as
a far more significant matter, that some recent work by
Englert and Schwinger (1984, 1985) uses TF theory as a
starting point, but attempts to go well beyond it. The
hope of the authors is not simply to obtain the first two
corrections to the energy, in an expansion in powers of
Z ', corrections which come from the inner electrons
and from the bulk of the electrons, but to obtain the
corrections associated with the surface electrons; one ob-
tains at the same time corrections to n (r). Although
their fractional contribution to the total energy of the
atom is not especially great, the surface electrons are, of
course, of great significance, since they play the dom-
inant role in the formation of molecules and in low-

energy scattering processes. The modified version is
much more complicated than the TF formulation, but
preserves the essential simplifying feature of TF theory,
namely, that one does not solve for a wave function of
many variables but for n(r). The modified version will

therefore surely be simpler to use, for a sufficiently com-
plicated system, than Hartree-Fock theory. We shall not
discuss the modified version, since it lies well outside the
range of normal TF theory, but wish simply to alert the
reader to the possibility that a significant breakthrough
may be in the offing.

II. NOTATION

Our primary concern will be with various energies, and
a comment on the notation used for the different energies
will therefore be useful. The symbol T denotes the
kinetic-energy operator —(A /2m) g, V, , where the sum
is over the different particles. The symbol E [n ]
represents the energy of the system as a functional of the
number density n (r). The symbol E(x), with no sub-
script and with x denoting one or more coordinates,
represents an approximation, usually arrived at by some
semiclassical argument, to the full Hamiltonian H. The
symbol E(x), with E having one or more subscripts,
represents one term in H, either the term as it actually
appears in H or an approximation; in particular, the sub-
scripts K, V, e, and v refer to kinetic energy, potential en-

ergy, electron, and nucleus, respectively. Thus Ex(x)
and E~(x) refer to kinetic-energy and potential-energy
functions, respectively, while E, (x) and E„(x) are par-
ticular potential-energy functions, namely, those associ-
ated with the electron-nucleus and electron-electron in-
teractions, respectively. We shall sometimes use V(x)
rather than Ez(x) for a potential. We shall use eF to
represent the Fermi energy. This is not quite a contra-
diction of our convention that total energies do not have
a subscript, since eF is the energy of an individual elec-
tron rather than of the entire system; in any event, eF is
the usual convention. The symbol E, with or without a
subscript, denotes not a function but a numerical value of
some energy. E without a subscript is the total ground-
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state energy of the system, the minimum value of the true
Hamiltonian, of E[n] or of E(x), while Ex, E~, E„,and
E, , for example, are the values of Etr [n], E~[n], E„[n],
and E, [n], respectively, for the n(r) that minimizes
E[n]

In the discussion of molecules, energy functions that
differ from their atomic counterparts are indicated by the
inclusion of a prime. The subscript TF is sometimes used
when there is the possibility of confusion between a TF
energy and some other energy.

It is the hope —the expectation —of the author that
only initially will the notation seem to be more difFicult to
grasp than some of the proofs.

A note on references: while an attempt has been made
to include the latest references, a number of outdated
(and even incorrect) references have also been included,
not simply as a matter of proper accreditation (and "de-
creditation"), and not only for their historical interest,
but because a knowledge of earlier developments often
leads to a better understanding and reduces the mystery
in the procedures used in later developments. Further-
more, it is not uncommon for ideas to be concentrated on
in earlier papers and details in later papers.

III. PRELIMINARIES

A. The uncertainty principle

1. The usual form

%'e then have the rigorous result that for an arbitrary
normalized wave function for a particle in a three-
dimensional space

5x Ap ~ A/2 (3.1)

with similar inequalities for the other Cartesian coordi-
nates and momenta. These results enable us to obtain a
lower bound on the product (p ) (r ) (Heisenberg,
1927). If we work in a frame in which the center of mass
has zero momentum and is at the origin, so that
(p)=(.)=0, ~ h - &p')=&(p —&p))') —= (bp)' ~ d
(r ) =((r—(r) ) ) =(b.r) . It follows that

(r') (p') =[(b«p )'+ . ]

+ {{(bxbpy ) +(bye„) j+ . . j

=—[A]+ {Bj .

The use of Eq. (3.1) immediately gives us [A] ~ 3(A'/2)2
and, further, enables us to bound {Bj. We have

It is well known that the uncertainty principle lies at
the heart of quantum mechanics. We let ( ) represent an
expectation value for an arbitrary normalized wave func-
tion, and bf the root-mean-square deviation off for f an

arbitrary function, that is,

bf =((f—(f ))')' '

{Bj ={(bxbp ) +(bybp„) + .

~(&/2) {{(bx/by) +(by/bx) j+ . j
~ 6(A'/2)

where in the last step we used (a/b) +(b/a) ~2, valid
for any real numbers a and b. We therefore have(")&p') &(9/4W', o.

(p /2m ) ~ (9/4)A' /(2m(r~) ) . (3.2)

This is the form we shall normally use. [For a single par-
ticle not in a three-dimensional but a D-dimensional
space, we need merely replace 9=3 in Eq. (3.2) by D .
With D thought of as a parameter and as large, this re-
sult is of interest in connection with the 1/D expansions
that have been so popular recently in quantum field
theory and in a number of other areas. For an elementa-
ry review, see Witten (1980). See also Herschbach (1989)
and references therein. ] To within a numerical coefficient
of order unity, the legitimately derived bound (3.2) is ob-
tained very simply as an estimate of ( p /2m ) if we use

p =Ay ~A/Ar =A/r, (3.3)

where p=lpl, bp=lbpl, »—= lrl, and «=—I«l.
crude form of Eq. (3.3) is suggested by Eq. (3.1) and its
Cartesian analogs, but has no proper justification. The
crude form is, nevertheless, normally the simplest form
to apply, and it is the form we shall often use. We shall
return to this point in the following paragraph. %'e
stress the fact that the expectation values in Eq. (3.2) are
with respect to an arbitrary normalized wave function,
which need bear no relation to the physical wave func-
tion for the problem under consideration.

That the relationships in Eq. (3.3) have no rigorous
basis is clear. The more important observation, one that
has been pointed out and stressed by Lich (1976), is that
the classical Hamiltonian combined with the rigorous
form in Eq. (3.2) does not encompass, even qualitatively,
the full physical content of the Schrodinger equation.
Thus, in studying the hydrogen atom or a hydrogenlike
ion, one can choose a normalized function P(r) to be
sharply peaked at two widely separated points, one at the
origin and one at a great distance L, from the origin.
With the integral over each peak normalized to 1/2, the
distant peak will cause (r ) to be close to 1. /2, which
can be arbitrarily large, so that the lower bound on
(p2/2m ) will be arbitrarily small. On the other hand,
the peak near the origin will cause ( Ze /» ) to be ar—bi-
trari1y large and negative. Formally, therefore, the in-
equality (3.2) cannot be used to prove that a hydrogen
atom or hydrogenlike ion is stable, that is, that the ener-

gy is bounded from below. To the author at least, how-
ever, it seems fair to say that despite its formal weakness
the usual form in which the uncertainty principle is used,
Eq. (3.3), can represent one of the most powerful tools
available to the physicist if he wishes to make quick
rough estimates. Indeed, if the problem is reasonably
simple, that is, if the physics is reasonably well
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understood —which will be the case not only for one-
electron atoms, but, for example, for normal many-
electron atoms, for many-electron atoms in strong mag-
netic fields, for white dwarfs, and for neutron stars —one
has to be not simply perverse but clever to obtain a bad
answer, and the physical Aaw in the argument leading to
a bad answer may well be obvious; in the example dis-
cussed just above, for example, it would take very-high-
momentum components to have a i'(r) with one or more
sharp peaks.

On the other hand, if the physics is not well under-
stood, or if one is interested in rigorous proofs or in
bounds, it is quite clear that one must proceed diA'erently.
One possibility is to use a stronger version of the uncer-
tainty principle, the Sobolev inequality (Sobolev, 1938,
1963), which we shall now discuss briefiy.

2. The Sobolev inequality

Q= f IVitj(r)l dr f lit(r)l dr (3.4)

The differential equation satisfied by hatt;„(r) follows easi-

ly from the calculus of variations on setting the variation
of Q equal to zero. One is spared any numerical calcula-
tion by the pleasant circumstance that the (spherically
symmetric) solution g;„(r) of the differential equation
can be obtained in (simple) analytic form, the r

The Sobolev inequality represents a stronger version of
the uncertainty principle, or, more precisely, a stronger
version of the lower bound on (p /2m ) than that pro-
vided by Eq. (3.2). As we shall show in Sec. III.B, the use
of this inequality does enable one to prove rigorously that
a hydrogenlike ion is stable, and, further, provides a
lower bound on the ground-state energy. However, the
primary reason for our interest in the inequality is that
its beautiful many-particle fermion extension plays an
essential role in by far the simplest proof yet given of the
stability of matter. For matter with its large number of
(charged) fermions, and even more so for a system with a
larger number of positively and negatively charged point
bosons, the determination of the ground-state energy and
wave function is a very dificult problem with many sub-
tle aspects, and an approach based on Eq. (3.2) could
very easily give incorrect results. (Even for the boson
case, however, it can be shown, though we shall not do
so, that the results can be most easily interpreted—
though not readily until after the calculation has been
completed —in terms of the usual uncertainty-principle
formulation, giving an enormous increase in one s physi-
cal understanding. )

We shall only sketch the determination of a bound on
the kinetic energy Ez of a single particle in terms of an
integral involving the one-particle number density n (r);
details can be found in Lieb s review paper (Lieb, 1976).
It can be shown rigorously —but we shall simply
assume —that there exists a function, to be denoted by

;„(r),which minimizes the ratio

dependent factor being (1+r ) '~; that itj;„(r) is not
normalizable is irrelevant with regard to the minimiza-
tion of Q. Insertion of g;„(r) into the ratio in Eq (3.4)
gives, for the minimum value of the ratio,

K, =3(~/2) i =5.478 .

%"e now have the Sobolev inequality

f IV/(r)l dr~K, f Ig(r)l dr

(3.5)

(3.6)

with K, given in Eq. (3.5) and f(r) arbitrary; it(r) need
be neither normalized nor the solution of any particular
difFerential equation. If f(r) is normalized, we can intro-
duce the number density

n (r)—:litt(r) I',
which then satisfies

f n (r)dr= 1,
and rewrite (3.6) as

(p /2m ) K, (iii /2m) f n (r)dr
'

1 j3

(3.7)

(3.8)

(3.9)

%'e now use the Holder inequality —see, for example,
Problem, 8.2 in Byron and Fuller (1970)—which states
that

(p /2m ) ~K, (A' /2m) f n'~ (r)dr . (3.10)

Having been obtained from (3.9) by means of a further in-
equality (the Holder inequality), (3.10) gives a poorer
bound on ( p /2m ) than does (3.9); the interesting
feature of the latter bound is that its integrand contains
the same n ~ factor that appears in the integrand of the
Thomas-Fermi estimate of the kinetic energy of a system
of fermions, an essential element in the rigorous proof,
based on TF theory, of the stability of matter (see Sec.
VIII). The bound (3.10) can be improved by the replace-
ment of K, by K& & K„ thus, rather than using the circui-
tous route of passing through (3.9) to arrive at (3.10), one
proceeds directly, with K

&
de6ned as the minimum value

of

f l&@«)I'« f lq«) lio"« .

One finds (Lieb, 1976)

K) =9.578 . (3.11)

As noted in Sec. III.B.1 below, (3.10), preferably with K,
replaced by K„can be used to provide a lower bound on
the ground-state energy of a hydrogen atom. As a
mnemonic, note that the assumption that there exists an

f lf(x)g(x)ldx ~ f If(x)l'« f Ig(x)l'«

for p '+q '= 1 and p ~ l. (This reduces to the
Schwarz inequality for p =q =2.) Choosing x =r,
f (x)=n (r), g(x)=n (r), p=3, and q=3/2, one finds,
using (3.8) and (3.9), that
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inequality of the form

f I
V'g(r)

I
dr ~ K' f n r(r)dr,

with IC' dimensionless and g(r) normalized, demands, on
dimensional grounds, that y = S/3.

B. The hydrogen atom and hydrogenlike iona

1. The nonrelativistic approximation

We consider the hydrogen atom and hydrogenlike ions
[even though a one-electron problem is not fit subject
matter for the (statistical) TF model] since the approach
to be used —the usual approach —is and later will be
readily adapted to the problems of the estimation of the
energy of a many-electron atom in the laboratory or in
the intense magnetic field at the surface of a neutron star,
of a neutron star itself, and of a white dwarf. The nonre-
lativistic Hamiltonian is

H ( r, p ) = (p /m, ) Ze /r, —

where I, the electron mass and Ze the nuclear charge.
(We have dropped a factor of 1/2 in the kinetic-energy
term. Since we wish to emphasize the physical picture
rather than numerical details, we shall often set constants
such as 1/2, 3', or ~ equal to 1, unless doing so changes
the result qualitatively. In the old days at MIT, these
were known by those of us who had the pleasure of work-
ing with him as Weisskopf units. ) Classically, r and p are
independent and therefore, with p fixed, r can approach
zero, the energy can approach —~ —problems with
OPEC would disappear and cold fusion would, even if
possible, not be so exciting —and the atom is unstable.
Quantum mechanically, we proceed by using the crude
result (3.3) to write

p /I A /I r

We can therefore write

H(r, p)=(fi Im, r ) (Ze Iv)=E(r) . — (3.12)

and let E~ =Ek(ao/Z) and Ev =—E~(ao/Z), we find that
the expectation values Ez and Ev satisfy

Setting dE /dr =0 and inserting the values of r thereby
obtained into Eq. (3.12) gives the desired results,

r(H-like)=ao/Z, E(H-like)= —Z (e /ao),

where ao=A /m, e is the Bohr radius. The ao factor for
the radius r and the (e /ao) factor for the ground-state
energy E would follow from dimensional analysis alone.
The success of the simple procedure just used is its
correct prediction of the Z dependence of r and E. (The
extension of the above procedure to the estimation of the
lowest energy for an angular momentum quantum num-
ber l is trivial. ) If we rewrite Eq. (3.12) as

E(R)=E~(v)+E~(v),

Zx+&v=O

so that the approximations used have not altered the re-
lation obtained from the virial theorem.

E(H-like) is finite for any finite Z, no matter how
large. This is a consequence of the fact that the kinetic-
energy operator [in the approximation given in Eq.
(3.12)] increases as 1/r as r-O, while the potential-
energy operator increases only as 1/r. For an attractive
1/r potential, the system would be unstable independent
of the strength of the coeKcient of the 1/r potential.
For an attractive 1/r potential, the system would be
stable for a small coeKcient but unstable for a suKciently
large coe%cient. In the relativistic case, the effective
kinetic-energy operator for a very deep energy level will
be approximately pc and therefore proportional to 1/r. It
follows, as is well known and as will be spelled out in the
following subsection, that in relativistic theory the stabil-
ity of a system with an attractive 1/r potential will be
determined by the size of the coe%cient; a system with an
attractive 1/r potential will be unstable independent of
the strength of the potential.

A simple yet interesting application of the Sobolev in-
equality is the determination of a lower bound (the more
dificult bound) on the ground-state energy E of a hydro-
genlike ion (Lieb, 1976). We simply sketch the argument.
Writing (H) =(p /2m ) —(Ze /r), we find that the
use of (3.9) and of ( —Ze Ir ) = —e j [n (r)/r]d v gives
a lower bound on E in the form of a functional E[n]
which contains no gradients. Varying E[n] subject to
the normalization condition Eq. (3.8) gives an equation
for n (r) that can be solved trivially. [For later reference,
we note that the n (r) obtained vanishes identically
beyond some given value of r, and that the Lagrange
multiplier used in connection with the normalization
condition does not vanish. We are here concerned not
with the true hydrogen problem nor even with the hydro-
gen problem in the TF approximation, but these
properties —especially the vanishing of n (r)—should
give us pause; they are properties quite difFerent from
those that arise in a TF treatment of a neutral atom. ]
The lower bound obtained by Lieb in this simple analysis
is oA by only 33%.

We note that it would make little difFerence if the dis-
tance r of the electron from the nucleus were reinterpret-
ed as the radius r of a sphere within which the electron is
confined; this viewpoint simplifies the transition to the
many-electron atom. We also note that the ground-state
energy of the neutral helium atom can be approximated
in much the same way as it was approximated for H-like
atoms. The Pauli principle does not play a role other
than, efT'ectively, to require that in the ground state one
electron have spin up and the other spin down. [In the
usual treatment the only new wrinkle is the approxima-
tion of 1/r, 2 by 1/(r, +r2), which is physically reason-
able since the two electrons repel one another. ] As we go
to Li and beyond, however, the Pauli principle plays an
essential role.
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2. A note on the relativistic problem
and the question of collapse

The analysis of a hydrogenlike ion in its ground state
in the nonrelativistic approximation gives

0/c =p/m, c =iri/(m, cr) =ZA'/(m, cao) =ciZ,

where a—:e /Ac. For the nonrelativistic approximation
to be consistent we must therefore demand that aZ « 1.
If this condition is not satisfied, we can study the hydro-
genlike ions along the above lines, that is, by using Eq.
(3.3), if we are willing to make certain further approxima-
tions, including the neglect of the spin of the electron.
Making these approximations, we write

H(rel;r, p) =[(m, c ) +(pc) ]'~ Ze —/r,
and define

E(rel;r) =H(rel;r, A/r) .

Minimization of E(rel;r) with respect to r and the substi-
tution of the value of r thereby obtained into E(rel;r)
gives

r(rel;H-like)=(ao/Z)(1 —a Z )'

E(rel;H-like)=mc (1—a Z )'~

The expressions for r and E cease to have meaning for
aZ) 1, because of the factor (1—a Z )'~ . (This same
factor occurs often in a correct treatment of the Dirac
equation. The fact that our approximate treatment gave
exactly this factor is accidental. Had we used p —+sA/r
with s&1, we would not have obtained precisely that fac-
tor. ) A mathematician might say that H(rel;r, p) is no
longer Hermitian, or, better, that it has no self-adjoint
extension. A physicist might say that is not relevant,
since the nucleus is not really a point and has finite mass,
and, further, there are quantum-electrodynamic correc-
tions. Further, the Z of a nucleus is limited from above
to well below 137 by the nature of nuclear forces. One
does not therefore expect to observe collapse for hydro-
genlike ions. However, as stressed by Lieb and Yau
(1988a, 1988b), as one approaches conditions under
which a simple theory predicts collapse, one expects that
dramatic changes in the theory will be necessary to pro-
vide an adequate description of the system. Thus, for ex-
ample, in the present context, if a pair of heavy nuclei are
brought very close together by means of a heavy-ion ac-
celerator, "strange" behavior, such as positron produc-
tion, occurs (Cowan et al. , 1985; Cowan and Greenberg,
1987).

That aZ of order unity is the value at which strange
behavior begins can be seen more easily than by the
above analysis. Since strange behavior can be expected
only if the speed of the electron is of order c, we can
study the ultrarelativistic limit, with p ))I,c and
Ez(r)=pc=Pic/r We then have, . in a treatment that is
even more cavalier than for the nonrelativistic case,

H(ultra;r, p) =iric(1 a—Z)/r =—E(ultra;r) .

E(ultra;r) has no minimum for aZ) 1, and we then ex-
pect the one-electron ion, for the point-nucleus model as-
sumed, to collapse. [We note that J. D. Garcia (1986) has
recently given a simple argument for the breakdown at
HZ=1; he uses classical relativistic mechanics to study
circular orbits, whose properties can be expressed in
terms of the orbital angular momentum I, and quantizes
I. using Bohr theory. ] Collapse considerations are of
very great importance in the neutron star and white
dwarf, to be considered shortly —the collapse there is
due to the cumulative effect of very many (gravitational)
interactions rather than to the great strength of an indivi-
dual pair interaction —and the fact that H(ultra;r, p)
gives roughly the same collapse condition as does the
generally more reliable H(rel;r, p) suggests that the ul-
trarelativistic approximation may be suScient for a
rough estimate of the collapse condition for a many-body
system. We shall use that approximation in Sec. IV.A.2
to study the conditions for the collapse of a heavy atom,
assumed to have uniform density, and in Sec. VI.D to
study the conditions for the collapse of neutron stars and
of white dwarfs. (With the observation and data analysis
of Supernova 1987a having changed the concept of the
formation of a neutron star via the collapse of a star from
a fantastic theory to a fantastic fact, one need hardly jus-
tify studies of the conditions for collapse. ) Results have
been obtained by Lieb and Yau (1988a, 1988b) and Mar-
tin (1988a, 1988b); see also Thirring (1986). First,
though, we obtain a rigorous bound, for a model Hamil-
tonian for a heavy atom, on the strength of the coupling
constant u=e /fzc.

As noted above, it was only very recently realized that,
under certain assumptions, a knowledge of the nonrela-
tiuistic ground-state energy E~i, (mo, N, y~ ) of a system of
X particles of mass mo, interacting via potentials charac-
terized by coupling constants y, can be a very useful
tool in the analysis of conditions for the collapse of the
corresponding relativistic problem. This makes it possi-
ble to extend considerations of collapse from the hydro-
gen atom to many-body systems. We shall here confine
ourselves to a very simple approach, that of Martin
(1988a, 1988b), which provides bounds on the collapse
conditions. To be precise, we make the unjustified but in-
teresting assumption that the dominant relativistic eA'ect

is obtained by replacing the nonrelativistic Hamiltonian

H&R(mo, &,y )=%mac + g (p, /2mo)+ V(yi )

by the relativistic Hamiltonian —the term semirelativis-
tic is used sometimes—

Hii(mo, X,y )= g (p, c +moc )'~ + V(y ) .
I

[For %=1 and V= —Ze /r, for a nucleus of infinite
mass, it is then known that collapse occurs for aZ ~ 2/~
(Herbst, 1977), not all that different from the condition
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aZ) 1 for the Dirac equation. ] The trivial operator in-

equality

(p;c +moc )' ~
—,'[(p;c +moc )/(mc )]+—,'mc

follows from (a' b'—) )0 with a =(p;c +moc )/
(2mc ) and b =mc /2. It is valid for arbitrary m and
leads immediately to

Hz(mo, N, y )~ ,'N. m—c + —,'N(moc /m)

+Htv~ ( m, N, y )
—Nm Oc

For inverse-square-law forces it follows by scaling (let
m —+A,m and r, ~r;/A, ) that

EJv~(m, N, y )= mF(N—, yj ),
with y the Coulomb or gravitational coupling constants.
With the upper bound (the bound simple to obtain) E~R
on E&R providing a lower bound F on I', we arrive at the
upper limit on the relativistic ground-state energy

E~ ( m 0,N, y . ) ~ m [ ,' Nc F—(N,y i
—

) ]

+-,'Xm,'c'/m —Xm, c' .

Since I can be arbitrarily large, collapse will occur if

F(N, yj ) ) —,'Nc

With X replaced by Z and y by the fine-structure con-
stant a (and mo by m, ), we apply this to a neutral atom,
using

F= E~~(m„Z—, a)/m,

=CZ u e C)0 447

(The bound on C is obtained using known results for E~z
and scaling techniques. ) The Z factor is dictated by
the desire to have the same form for all Z and the fact
that, as given by TF theory, the Z dependence for large Z
is Z . We thus have collapse for a relativistic neutral
atom (or a collection of neutral atoms) for

Z a ) (2X0.447) ', or a) 1.05Z

Similar methods can be applied to neutron stars and
white dwarfs. There is a very brief discussion of the col-
lapse condition for a boson star at the very end of Sec.
VI.A.

We shall henceforth almost always and unless other-
wise noted restrict our considerations to situations for
which the nonrelativistic approximation is expected to be
reliable, or at least meaningful. However, before closing
this subsection on relativistic effects in one-electron and
many-electron ions, we observe that the simple argu-
ments above may have profound consequences with re-
gard to the possibility of constructing a relativistic TF-
like theory. As noted by Lieb, the instability in relativis-
tic theory of an electron in the Geld of a point nucleus of
very high Z strongly suggests that it wi11 not be possible
to obtain a relativistic TF-like theory, for a TF-like

theory should get better as Z is increased. If these re-
marks suggest that one cannot construct a relativistic
TF-like theory of the universality and simplicity of non-
relativistic TF theory, the remarks by no means preclude
the possibility that TF theory itself, or a relativistic
modification, can be useful in a treatment of relativistic
eAects. Thus, for Z less than perhaps 80, one might treat
relativistic e6'ects as a perturbation on normal TF theory.
For somewhat higher Z, one might avoid the singularity
by accounting for the finite size of the nucleus; for
Z «170, "strange" behavior would not yet have begun.
As a far more significant example, consider the condi-
tions for the collapse of a white dwarf. We shall examine
this in some detail in Sec. VI. Here, we simply note that
by far the dominant contributions to the energy are the
kinetic energy of the electrons and the gravitational ener-

gy of the nuclei, the sum of the two terms constituting
the zeroth-order Hamiltonian H' '. Since the nuclei are
moving slowly, the gravitational interaction of a pair is
simply the Newtonian potential. As the number of elec-
trons and nuclei approach the critical number at which
collapse occurs, the electrons move with speeds ap-
proaching the speed of light, but one would expect that
the only relativistic e6'ect of significance would be the ki-
nematic one, so that the kinetic energy of the ith electron
would not be p; /2m„but t; =(p; c +m, c )', or, more
simply, p, c. Ho is then a sum of Newtonian potentials
and of the t, . Since the number of particles involved here
is enormous, we have a situation in which the TF solu-
tion to the problem defined by H'' ' is eA'ectively exact.
To be more precise, consider, for example, a white dwarf
containing electrons of mass I, and protons of mass I .
We neglect the kinetic energy of the protons, all
Coulomb interactions —they saturate while the gravita-
tional interactions do not —and the gravitational interac-
tions of the electrons. (The justification of these approxi-
mations will be considered in more detail in the treat-
ment of white dwarfs in Sec. VI.) Finally, we neglect the
I, term in t, , defined just above, replacing t; by p;c.
(This is justified by the fact that the spectrum with t, re-.
placed by p;c extends to —oo if the spectrum with t, ex-
tends to —oo, so that the condition for collapse is not
affected by the replacement t; ~p, c. See Lieb and Thir-
ring, 1984, on which the. present discussion is based. )

The Hamiltonian is then given by

II~ = g p, c —g g Gm ~/r„

%'e then construct the relativistic TF energy functional
corresponding to HR. The procedure is very similar to
that used in constructing the standard nonrelativistic TF
energy functional, described in Sec. IV.B below; in con-
structing the kinetic-energy functional, one uses p, c rath-
er than p; /2m, . Let X«,, TF be the critical number for
which the TF energy functional is unbounded from
below, that is, the number of protons, or electrons, for
which collapse is first possible. The (numerical) deter-
mination of N„;, T„ is rather simple, and its value is that
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determined by Chandrasekhar (1931a, 1931b) and Lan-
dau (1932). X„;,T„ is expected to equal the true value

1V„;,—we are dealing with very large numbers. Lieb and
Thirring (1984) have shown rigorously that X„;,r„ is a
lower bound on %„;„and Lich and Yau (1987a, 1987b)
showed that the Chandrasekhar theory of stellar collapse
is the quantum-mechanical limit as the number X of pro-
tons or electrons approaches infinity and the gravitation-
al constant G approaches zero; fixing GX and taking
the limits, one obtains Chandrasekhar's results.

C. The virial theorem and some extensions

1. Systems with one characteristic length

2E~+E~=0, (3.14)

where E~ is the sum of the expectation values of the
two-particle interactions. One normally demands of an
approximation technique that it preserve the virial
theorem result; this was found to be the case for the sim-
ple uncertainty-principle treatment of hydrogenlike ions
in Sec.III.B.1 and will be the case for the Thomas-Fermi
approximation for heavy atoms, as well as for almost a11

approximate treatments of white dwarfs and neutron
stars, for which the kinetic energy originates in the un-
certainty principle and exclusion principle, and of stars
for which the kinetic energy is associated with thermal
motion.

Let us now assume that in some approximation we
have reduced our one-body or many-body Hamiltonian
to a simple functi'on of some one variable R, of the form

E(R)=EI(R)+E (R)—= (C(/R )+(C /R ), (3.15)

The viria1 theorem is an immediate consequence of
Newton's second law or, for our purposes, of the
Schrodinger equation. For a system of particles with
vanishing probability of being found outside a given
volume of space and interacting via two-particle forces
F;z(r;1 ) = —V; V; (r;. ), with no external forces, one finds

2E~ = r,~.V; V;J r,j, 3.13

where the sum is over all pairs of particles; in classical
physics the angular brackets represent a time average,
but in the present quantum-mechanical context, with the
particles in a given state, the angular brackets represent,
as almost always in this article, an expectation value.
The virial theorem of Eq. (3.13) reduces to a particularly
simple form if V, (r, ) =C,, rf~, with r, —:~r; —r, ~

the sepa-
ration, namely, 2' —pE~=O. For Coulomb or gravita-
tional interactions, that is, for p = —1, one has the
famous result

equal to zero gives

lE +mE =0, (3.16)

where EI=E&(R q) and E:E(R,—q). The point to
note is that the ratio of EI to E depends upon l
and m but is independent of C& and C . For
Ei(R)=Ex(R) ~ 1/R and E (R)=Ev(R) o-1/R, that
is, for l=2 and m=1, we have the usual virial result,
Eq. (3.14). For E&(R)=Ez, (R) =C(B)/R with C(B)
an arbitrary function of some parameter 8 and
E (R)=E&(r) ~ 1/R, which will be seen later to be the
case for an atom in a strong uniform magnetic field B,
with Ex, (R) the kinetic-energy function associated with
motion parallel to the field, we have

6E~, +E~=O . (3.17a)

We shall comment on this relation in Sec. VII.
The relationship (3.14) is of some interest for the hy-

drogen atom but of much greater interest for an atom
with two or more electrons, since the latter problem is
not a solvable one. For the many-electron atom it is
often convenient to decompose Ev, writing

E~ =E, +E„, (3.17b)

where E, and E„are the expectation values of the sums
of the electron-nucleus and electron-electron interac-
tions, respectively. With this notation, Eq. (3.14) be-
comes

2E~+E, +E„=O . (3.18)

It would be exceedingly useful to be able to deduce the
ratio of E, and E„on the basis of some simple principle.
One cannot use the two-characteristic-lengths approach
of Sec. III.C.2 below, because each of the two terms is of
the same order, Z e /R, where R is the characteristic di-
mension of the atom. Indeed the ratio is not even known,
except in the limit Z —oo; the same remark obtains for
atoms in magnetic fields. There is a simple principle, due
to A.R.P. Rau (unpublished) and Thirring (1983), which
gives the correct ratio in the Z —~ limit. We sha11 dis-
cuss this principle in Secs. V.B.2.c and VII.B.2.

If particles are confined to a region of space of volume
w by a pressure P, the forces are no longer simply the
two-particle forces F," but now include forces exerted by
the walls. One then finds (Clayton, 1983) that the result
for the arbitrary potentials, Eq. (3.13), and the result for
Coulomb potentials, Eq. (3.14), must be replaced by

R„=( l—C, /mC )'"'--'
The use of this value of R, enables us to determine E,
the equilibrium value E(R, ) of E(R). More interesting
for present purpose is that setting

dE(R)/dR = —(1/R)[lEr(R)+mE (R)]

with l W m, CI and C known constants, and
(lc&/mc ) &0. Equating dE(R)ldR to zero gives the
equilibrium value R, of R, 2' =3P, + r;j V ' V'j r j' (3.19a)
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2E~+Ei/= 3I' (3.19b)

respectively. The concept of an external pressure is use-
ful not only when one considers particles in a container
but also when one considers an infinite number of parti-
cles with a specified constant number density. This
occurs, for example, in the study of a system of charged
bosons.

For the energy of a simple function of a distance R, as
in Eq. (3.15), we have seen that it can be trivial to obtain
a relationship between components of the energy. It is
also often simple to obtain such a relationship when the
energy is a functional of the number density n (r). With
no attempt at generality, we assume that E[n] has the
form

E[n]=C&f n'(r)dr+Cf f n(r)f (r)dr

+ Cg f f n (r)n (r')g (r, r')dr dr'

E, [n]+E—f[n)+E [n], (3.20a)

Finally, we assume that n (r) )0 for all r other than at
the point at infinity, where it is zero. (We shall, unfor-
tunately, have to belabor this seemingly trivial but actu-
ally very important matter in Sec. IV, and we shall spare
the reader a discussion of the matter here. ) We introduce
a new functional F [n ] defined by

F[n]=E[n]+p f n(r)dr —X

with p a Lagrange multiplier. Then we proceed to ex-
tremalize the energy with respect to an arbitrary varia-
tion 5n (r) of n (r) by setting 6F/on =0 and obtain

IC&n' '(r)+Cff (r)+2C f n (r')g(r, r')dr'+@=0 .

Multiplication by n (r) and integration over r gives the
sought-for relation among the energy components
(though it still involves p ) for the total energy an
extremum —normally a minimum —namely,

where the C's are arbitrary constants and where f (r) and
g(r, r') are arbitrary other than for the restrictions that
g(r, r')=g(r', r) and that the integrals exist. We further
assume that the total number of particles is fixed at X, so
that

f n(r) dr=N .

tron-nuclear interaction contribution. With Csg(r, r )

=(e /2) ~r —r'~ ', Es[n] =E„[n] represents the
electron-electron interaction. The relationship between
the energy components is especially simple for p =0,
which will later be seen to be true for some very impor-
tant cases.

A second relationship between the energy components
can often be obtained by using a scaling technique, as we
shall show in Sec. V [see Eqs. (5.10) and (5.11)].

It is often the case, as in the treatment of the white
dwarf in Sec. VI, that one proceeds in a perturbation-
theoretic fashion. To allay any possible confusion, it may
be useful to set up a straw man by questioning the validi-
ty of the virial theorem in a perturbation-theoretic ap-
proach. Assume that H =H' '+ V'", where
H' '=T+ V' ', where both V' ' and V"' are Coulombic
or gravitational potentials, and where V' ' is attractive
while V"' can be attractive or repulsive. The energy
components E~ ' and Ez ' of the minimum energy
E' '=Ez'+Ez' associated with H' ' satisfy the virial
theorem in the form 2E& '+Ez'=0. With V'" treated
as a perturbation, there is a correction Ez", so that E"',
the ground-state energy associated with H through terms
of first order in V'", is given by E'"=Ez '+Ez '+Ez".
We clearly do not have 2Ez' '+[Ez '+Ez" ] equal to
zero, but the virial theorem remains valid nevertheless,
for there is a readjustment of the zeroth-order energy be-
tween kinetic- and potential-energy components, with
E' ' fixed. To make the discussion more concrete, con-
sider the simple example

E(R)=

=E "'(R)+V'"(R),

where 8 ))
~
C~. (With A /R the kinetic energy and

8 /R and C/R —the gravitational and Coulombic-
potential energies, respectively, this equation arises in
studies of white dwarfs. ) The minimum energy
E' '(R', ') associated with E' '(R) is stationary with
respect to small changes in the equilibrium radius Rpq
but the kinetic- and potential-energy components of
E' '(R,' ') are not separately stationary under the small
change in the equilibrium radius ( 2AC/8 ) indu—ced
by the perturbation V"'(R). Thus we have

2A B (o] 2A——=0, for R =R,
R

IEI +Ef +2' +pX 0 (3.20b)
but also

With CI appropriately chosen, EI[n] represents, as will

be seen later, the kinetic energy in the TF nonrelativistic
theory, with I=5/3 in the absence of a magnetic field and
I=3 in the presence of an intense magnetic field, while
EI [n] with 1=4/3 can represent either the kinetic energy
in an ultrarelativistic TF-like approximation or the ex-
change potential energy contribution calculated by Dirac
(1930), a correction to nonrelativistic TF theory. With
Cff ( r) = Ze /r, Ef [n ]=E, [n ] re—presents the elec-

2A B +C (o)for R =R,R2 R ' q B2

2. Systems with two characteristic lengths

If the system has more than one characteristic length,
it may be possible by means of general principles to ob-
tain more than one relationship satisfied by different
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=(CI/A')+(C /A A~)+(C /A~), (3.218)

where the C's and the I, I, p, and q are known constants,
A is a measure of the linear dimension of the system, k is
a screening length, and A and A, are to be determined.
[In the boson problem E&(A) and E (A, k) are kinetic
energies, while E (A, ) is a potential energy and A, «A,
but these considerations need not here concern us. j The
use of both

aE(A, X) /aA =a (3.21b)

and

(3.21c)

gives us A and A, and therefore also the equilibrium value
E of E(A, A, ). Of greater interest at the moment is that,
proceeding precisely as for the one-characteristic-length
case, Eq. (3.21b) gives

lE, +mE =0, (3.22)

components of the total energy E. For a neutral system
of a finite number of point-charge bosons, for example,
the quantum problem of determining the ground-state
energy reduces in a certain approximation (Dyson, 1968)
to the simple problem of determining the minimum of an
expression of the form

E(A, A, ) =EI(A)+E (A, A, )+Eq(A, )

lV. MANY-ELECTRON ATOMS:
SOME FORMALISM

A. A uniform number density n:
a qualitative picture

1. Energies and radii

Many problems require much more information, such
as energies of excitation, but it remains an interesting
problem to estimate the total energy E of the ground
state of a neutral heavy atom, with a nucleus of charge
Ze. Furthermore, in the course of estimating E one ob-
tains an estimate of the number density and therefore of
the potential generated by the atom, and this can be use-
ful for many problems. (Most of our considerations can
be extended immediately to positive ions, but we shall
temporarily restrict our attention to neutral atoms. ) We
assume that each electron (e ) lies in one of a set of
nonoverlapping small spheres of radius r0,' we thereby
satisfy the Pauli principle. By the uncertainty principle,
the kinetic energy of an individual e is then of order
p /m, =A' /m, ro, independent of the location of the
small sphere. To maximize the magnitude of the poten-
tial energy, which will be seen shortly to be dominated by
an attractive central potential, we distribute our small
spheres uniformly within a large sphere of radius R, so
that the number density n(r)=n (r) is a constant within
the large sphere and zero outside. Volume considera-
tions give

while Eq. (3.21c) gives
Zr =R0 (4.1)

pE +qE =0 . (3.23)

EI, E z, and E are the equilibrium values of E&(A),
E ~(A, A, ), and E (A, ), respectively. (The fact that A and
A, are ultimately related does not affect the derivation. )

We have thereby by rather general procedures obtained
two relationships satisfied by the components of E, with
each relationship independent of the C's. The relation-
ships will be exact if the form of E(A, A, ) is correct, even
though the C's are surely not exact.

In the charged-boson problem just commented on, it
turns out to be rather simple to obtain the forms of EI ( A )

and E (A, ) and, independently, two relationships satisfied

by the three components of E, but rather difFicult to ob-
tain the form of E (A, A. ). One could have worked
backwards; knowing the two forms and the two relation-
ships, one could easily have derived the form of
E (A, A, ). One further remark in this area may be in-
teresting. The two relationships noted just above are the
virial theorem for a finite number of bosons and the virial
theorem for an infinite number of bosons; that these are
different has already been observed —see Eqs. (3.14) and
(3.19b). Ciiven the two relationships, we can obtain the
ratios EI.E:E immediately, without even knowing the
forms of EI(A), E (A, A, ), and Ez(X).

(4.2)

where we have set p;=fijro=z'~ AIR and where we
have approximated both 1jr, and 1jr, by 1/R. Actua"lly,
we are interested for the moment only in whether it is the
attractive electron-nucleus or repulsive e e interaction
which dominates. The attractive term dominates —if it
did not, there would be neither atoms nor physicists-
because of the factor of —,

' in the repulsive term and be-
cause, as follows from geometric considerations, the aver-
age value of 1jr; is somewhat larger than the average
value of 1/r, .&. Having retained the schematic factor of 2
in the electron-electron term only to determine the
overall sign of the potential-energy term, we now rewrite
Eq. (4.2) as

M(r„. . . , pz)=Z'~ (A' Im, R ) —(Z e /R)

Elr (R ) +Er ( R ) =E—(R ) . —(4.3)

and it follows that, for the ground state,

. . ~rz~pi~. ~pz)

= g [(p, /2m, )
—(Ze Ir;)]+—,'e gg(l/r,j).

lWJ

Z(/2/m )(Z~~ /R ) —Z(Ze /R)+ ~ Z e /R
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Setting dE/dR=0 gives the equilibrium radius and then
substituting back into E(R) gives two of the most
significant results obtained from TF theory (but TF
theory gives much more accurate numerical coe%cients),
namely,

R(atom)=ao/Z' and E(atom)= —Z '(e /ao) .

(4 4)
The Z dependences are the interesting results, the ao and
e /ao factors following, as for the H atom, from dimen-
sional arguments. It is important to recognize that the
forms of R(atom) and of E(atom) would in no way be
changed if there were no electron-electron interaction

[Attractive interactions are not merely stronger than
the repulsive ones, with the factor 2 playing an important
role, but in a sense are almost completely dominant; thus
it will be seen later that for a neutral atom of large Z
their contribution to the total energy of the atom is seven
times greater. This is the underlying reason that a
central-field approximation can provide good results.
The origin of the factor of 2 might therefore be worth
noting; no such factor appears, for example, in a neutral
plasma of protons and electrons. In the atomic case of
present interest, there are Z attractive interactions, each
of strength —Ze, giving rise to the —Z e factor, and
Z /2 repulsive e e interactions, each of strength e,
generating the +(Z e )/2 factor; there are also Z /2
repulsive (Coulomb) proton-proton interactions, each of
strength e, within the nucleus, but in the present context
these are irrelevant, having been absorbed in the
definition of the zero-energy reference level. ]

One immediate objection to the above approach is that
the Pauli principle was satisfied in an unnecessarily re-
strictive fashion; wave functions need not be nonoverlap-
ping in order to be orthogonal. That this is not a prob-
lem, within the limited accuracy we seek, is suggested by
considering A" noninteracting fermions moving in the
one-dimensional region 0 ~ x ~ L. To simplify the discus-
sion we assume that all of the fermions have the same
spin projection. For the true ground state, the fermions
have overlapping wave functions, with the ith fermion
having a wavelength 2L/i, and we find for the ground-
state energy

E(L)= g i
8IL

In the last step we assumed that X )&1. If, in analogy to
placing each electron in its own sphere, we place each
fermion in its own strip, of length I /X, with each fer-
mion having a wavelength 2L /X, the approximate
ground-state energy is readily found to be 3E (L ). The
error is therefore merely a factor of order unity, indepen-
dent of X. [The lowered energy associated with the
better (overlapping) wave functions can play the crucial
role in some areas, for example in the formation of solids,
but that need not here concern us. j It is simple to see
why the error is of order unity. The wavelength of the
ith state is A, ; =2L /i in the exact formulation, and

A, =2L /X in the approximate formulation, where
1 ~i ~ X. It follows that k, is very difFerent from A, , for
i (&X, but that A, , =A, ; for i =X, and the sum of the ki-
netic energies is strongly dominated by the particles with
very small wavelengths.

In our estimation of E(R), in Eq. (4.3), we ignored the
fact that ttoo electrons (with spins up and down) could be
placed in each small sphere, for we are not here normally
concerned with "mere" factors of 2, but it is of interest to
consider the general case of fermions of spin S with asso-
ciated multiplicity q

—=2S+1. We can then place q fer-
mions in each of Z/q small spheres, and volume con-
siderations now give (Z/q)ro=R rather than Eq. (4.1),
which might indeed have been written (Z/2)ro—-R
The expression for Ex (R) in Eq. (4.3) therefore becomes

E (R)=q ~ Z'~ (fi /I, R ),
and Eq. (4.4) is replaced by

(4.5)

R =ao/(q Z' ), E= —Z q (e /ao) . (4.6)

The choice q =Z allows as many projections as there are
fermions, and the analysis, developed for fermions, is
applicable to bosons. For q =Z, Eq. (4.6) gives, for an
"atom" consisting of a heavy nucleus of charge Ze and Z
bosons of charge —e and mass m„

R ( "atom, " bosons ) =a o /Z,
E("atom, " bosons)= —Z (e /ao),

(4.7)

2. Conditions for collapse

We discuss the collapse of a heavy neutral atom in Sec.
III.8.2. We shall here again discuss that question, but in
the rougher ultrarelativistic approximation, using the

as expected, since each of the Z bosons can occupy a K-
shell orbital. These results emphasize the well-known
fact that the fermion character of electrons greatly in-
creases the size and greatly raises the energy of atoms
(and ultimately of matter) over the values that would fol-
low from quantum mechanics without a Pauli exclusion
principle. (Indeed, as noted earlier, Dyson has shown
that matter would collapse if there were no exclusion
principle. )

Some of the results just obtained may seem obvious. If
so, that might be more a consequence of familiarity than
of 1ogic. Thus, for example, it had long been generally
believed that it was primarily the Coulomb repulsion be-
tween electrons which prevented the formation of stable
highly negative ions, but in fact the formation of such
negative ions for "bosonic electrons" is quite possible. It
is the Pauli principle that plays the dominant role in
preventing highly negative ions from being stable (see
Benguria and Lich, 1983). Even those of us with a kin-
ship for physical arguments and a distaste for epsilonics
must occasionally recognize that hand-waving has its
limitations.
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The condition for collapse is therefore

Z (e /Pic)=Z a~ 1

in good agreement with the result obtained in Sec. III.B.2
using a less brutal approximation.

B. A variable number density n (r)

1. The Lenz energy functional

We can readily drop the overly simplifying assumption
that n (r) is a constant, n =Z/R, for r (R and is zero
for r )R. (This generalization to a variable density will
enable us to concentrate the electrons near the origin,
with the increase in kinetic energy and electron-electron
repulsion more than compensated for by the increase in
electron-nucleus attraction. ) Under that assumption the
kinetic energy per unit volume in the inner region was,
using the expression for Er, (R ) in Eq. (4.3),

Err(R)/Vol=(A' Im, )(Z ~ /R )=(A' /m, )n (4.8)

If the kinetic energy per unit volume is slowly varying,
an adequate expression for Ex(R ) would therefore be the
integral over all coordinate space of the right-hand side
of Eq. (4.8), with n replaced by n(r). Inserting the
correct numerical coef5cient k —we shall return to this
point shortly —we obtain the ground-state energy of an
atom or ion within the TF model as a functional of n,
with n now a function of r,

E [n] =Et' [n]+E, [n]+E„[n],
where

Etr [n] =k (A' /m, )f n ~ (r)dr,

(4.9a)

(4.9b)

E„[n]= Ze f— dr, (4.9c)

e f f n(r)n(r')
dee n

f n (r)dr=A,

n(r) ~0,

(4.9d)

(4.9e)

(4.9fl

k =—( 3~ /10)( 3/~) (4.9g)

[Though we had been concerned with neutral atoms, Eq.
(4.9) is valid also for ions. It was only necessary to im-
pose a normalization condition, Eq. (4.9e), in which the
number of electrons is X, with X arbitrary. We shall see
later that TF theory says little for % )Z, but, though the

qualitative picture for a uniform number density just dis-
cussed. Thus we replace g, (p, /2m, ) in W of Eq. (4.2)
by g;p;c and once again use p;=Z' fi/R. Equation
(4.3) is then replaced by

H(ultra;r„. . . , pz)=(Z A'c —Z e )/R .

(4.10)

The prime on the integral denotes the fact that for a
given r the upper limit on p is the Fermi momentum
p~(r), defined by

2(4'/3)pF'(r)Ih =n (r) . (4.1 1)

In arriving at Eq. (4.11) we again recognized that two
electrons can be accommodated in a volume of phase
space equal to Ii . Integration over p in Eq. (4.10) and
the use of Eq. (4.11) gives Eq. (4.9b), with k defined by
Eq. (4.9g).

2. Derivation of the Thomas-Fermi differential
equation from the Lenz energy functional

We seek the lowest energy for the E[n] defined by Eq.
(4.9). (In the course of doing so, we hope to clarify some
of the brief comments made in the subsection "Remarks"
in Sec. I.) We demand that the variation 5E[n] of E[n]
satisfy 6E[n]~0. We cannot demand stationarity, that
is, oE[n]=0; there is no physical or mathematical basis
for making such a demand. (It should be made perfectly
clear to the reader that the author has not suddenly
developed an interest in rigor or completeness, nor has he
become pedantic. Rather, there are important cases in
which there are nonvanishing first-order corrections to
E[n] in the neighborhood of the n (r) that minimizes
E[n]. The positive ion, to be discussed briefiy in Sec. V,
is one such example. A second example, which involves
a modified form of E[n] and which will be considered in
some detail in the present section and in Sec. V, is a sim-
ple model of an atom in which the electron-electron in-
teraction is turned off; the appropriate E[n] is then ob-
tained from Eq. (4.9) by simply dropping the E„[n]
term. ) Now we can find the stationary values or the ex-
tremum values —the latter need not be stationary;
f (x) = IxI is not stationary at its minimum at x =0—of

results obtained do not scale as they do for X=Z, TF
theory is useful for X &Z. The Z that appears in Eq.
(4.9c) defines the nuclear charge, not the number of elec-
trons, and therefore remains unchanged. ] Note that Eq.
(4.9) does not contain any element of discreteness, no
sum appearing. X need therefore no longer be thought of
as an integer —the number of electrons —but can be tak-
en to be continuous. Z can of course also be taken to be
continuous. The TF model energy functional was first
obtained by Lenz (1932).

(Note that for n spherically symmetric and for X(Z, a
case discussed below, 1/Ir —r'I ~1/'r

& (1/r, and
E„[n]~ (N/—2Z)E„[n](—,'IE, [n]I, as for the simpler
model discussed above. )

To obtain the value of k given by Eq. (4.9g), we recall
that two electrons can be accommodated in a volume of
phase space drdp equa1 to h . It follows that the TF
kinetic-energy functional is
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a function, subject to constraints, by means of one
Lagrange multiplier for each constraint. The same is
true of functionals. In particular, we seek the minimum
value of E[n], defined by Eqs. (4.9a) —(4.9d) and (4.9g),
subject to the normalization constraint, Eq. (4.9e), and to
the constraint defined by Eq. (4.9f), namely, n (r) )0. To
incorporate the normalization constraint, we introduce
the functional

r

F [n]—:E[n]+p f n (r)dr N—
with p a Lagrange multiplier. We cannot demand that
5F [n] vanish; rather, we demand that

5F [n])0,
subject to the restriction n (r) )0. We must consider the
possibility that n (r) =0 over some three-dimensional re-
gion, not simply at the point at infinity. [This may not
seem "natural, " since, as noted above, for a real atom or
ion, and indeed for any quantum-mechanical problem,
the number density vanishes over an extended region if
and only if the potential is positive and infinite over that
region. In the Schrodinger equation with a nonsingular
potential, for example, a wave function that vanished
over a region would vanish everywhere. In the TF
differential equation, n (r) appears to the two-thirds

power, so that derivatives of n (r) are singular for
n (r) =0, and n (r) can vanish identically in a region and
yet not vanish everywhere. The crucial point is not sim-

ply the nonlinearity of the TF differential equation, but
the appearance of a fractional power. We shall consider
the nature of the singularity —when there is a
singularity —in Sec. V.B.3. The possibility that n(r) can
vanish over a three-dimensional region including the
point at infinity can perhaps best be understood by recal-
ling that TF theory is semiclassical, and that in a classi-
cal theory the space available to a particle with energy
below zero is limited. In a positive ion, the energy of the
least-bound electron, which is nothing other than ez, lies
below zero. We therefore expect to find, and do find, that
n (r) =0 over a three-dimensional region. For a neutral
atom, on the other hand, the energy of the least-bound
electron in TF theory is vanishingly small, that is, eF =0,
and n (r) should not be expected to be identically zero ex-
cept at infinity. In Sec. V.C, where we consider a
quantum-mechanically solvable model of the atom in
which there is no electron-electron interaction, we show
that, not surprisingly, the radius of the sphere beyond
which n (r)=0 in TF theory follows precisely from a
study of the WKB approximation to the exact wave func-
tions. ] We now have

5F = f —k n ~ (r) — +e f, dr'+p 5n (r)dr) 0 .
5 iri ~q3 Ze ~ n (r')
3 m, r /r —r'/

(4.12)

5 A'
z&3 Ze z n(r') d, +

m,
" '

~
'

ir ri (4.13a)

for r in the region where n (r) )0. If, however, there is a
three-dimensional region in which n (r) =0, then 5n (r) is
not arbitrary in that region; since any trial number densi-
ty is to be positive, it follows that 5n (r) )0 when
n (r) =0. The restriction on the term in large parentheses
in Eq. (4.12) can then be relaxed; it need not vanish, but
need only be non-negative. Further, the n term van-
ishes. We thereby arrive at

Where n(r))0, the (infinitesimal) variation 5n(r) of
n (r) is arbitrary, and the quantity in large parentheses in

Eq. (4.12) must vanish identically. If it did not, one
would find a subregion in which the term in large
parentheses was of definite sign, one could choose 5n (r)
to be of opposite sign in that subregion and zero else-
where, and one would have 5F(O, in violation of the re-
quirement. Thus, where n (r) )0, the requirement 5F )0
is equivalent to the requirement 5F=O, requiring the
coefficient of 5n (r) to vanish, as is usual in the calculus
of variations. We therefore have

(5/3)k (iri /m, )n (r) =p~(r)/2m, . (4.14)

Furthermore, the potential energy of an electron at the
point r is, in the TF approximation,

V(r)=—Ze + z n(r') d,+8 dr' .
r [r—r'/

(4.15)

[Note again that n (r') contains a contribution from the
electron whose potential energy is being determined.
This defect of the TF approximation will have little effect
on the ground-state energy of the atom or ion for iV ~Z
and X sufficiently large. For X )Z the defect is of great
importance, being a primary reason why the TF approxi-
mation cannot account for negative ions. Thus, as noted
in Sec. I, in lowest approximation the effective potential
seen by the outermost electron, for X =Z+ 1, does not
fall off asymptotically as an attractive r polarization
potential, as for a real atom. The r term exists but is
not the dominant term; the effective potential is repulsive
and is given asymptotically by e /r. As discussed in Sec.
V.B.2, this defect is also responsible for the zero value of
eF for a neutral atom in TF theory. ] We can therefore
write Eqs. (4.13a) and (4.13b) as

Ze 2 f n(r') d, + )
r '& (r —r[ (4.13b)

for r in the region where n(r)=0. By Eqs. (4.9g) and
(4.11), the first term in Eq. (4.13a) can be rewritten as

pF(r)/2m, + V(r) =eF,
for r in the region where n (r) )0, and

V(r) )eF,

(4.16a)

(4.16b)
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for r in the region where n (r) =0, where we have written

with eF the Fermi energy. We must have

The first term in 5 E[n] is clearly non-negative since
n (r) &0. We can show that S is also non-negative using
a mathematical or physical argument. Thus, mathemati-
cally, since

eF~O. (4.18)
iq (r —r')

I
r —r'

I

dq,
This follows from Eq. (4.16b) under the reasonable as-
sumption that n ( ~ ) = V( ~ ) =0. [It is simple enough to
prove Eq. (4.18) without that assumption. ] Operating on
Eq. (4.15) with the Laplacian gives the Poisson equation

V V(r)=4vrZe 5(r) 4vre —n(r), (4.19)

with 5(r) a Dirac delta function. Operating on Eq.
(4.13a) with V gives

(5/3)k(A' /m, )V n (r)+4~e [Z5(r) —n(r)]=0,
(4.20)

5 E[n] =(1/2)(5/3)(2/3)k (fi /m, )

X f n ' (r)[5n(r)] dr+S[5n],

where

e f f 5n (r)5n (r')" —
2 r —r'

for r in the region where n (r) )0. We have not proved
it—it is not hard to do so—but it is physically clear that
the region defined by n (r) =0 does not include the origin.
If then we operate on Eq. (4.13b) with V, we obtain the
trivial result that n (r) & 0 where n (r) =0.

The condition on n (r) arrived at above is a conse-
quence of having demanded that 5E[n] &0. There is
therefore no guarantee that the condition on n (r), given
by Eq. (4.20), leads to the minimum value of E[n ]. With
5E[n] and 5 E[n] the first- and second-order variations
of E[n], the possibilities to be considered include the fol-
lowing:

(a) 5E[n]&0: E[n] has a minimum that is nonsta-
tionary, that is, a minimum with a cusp at the n(r)
defined by Eq. (4.20).

(P) 5E[n]=0 and 5 E[n] &0: E[n] has a local max-
imum at the n (r) defined by Eq. (4.20).

(y) 5E[n]=0 and 5 E[n] &0: E[n] has a local
minimum at the n ( r ) defined by Eq. (4.20). (Note:
5E[n]=0 implies that there is no first-order error.
5E[n])0 implies that, for any n(r) other than that
defined by Eq. (4.20), there is a first-order error. )

We shall not consider the possibility that 5E[n] and
5 E[n] both vanish.

We show in Appendix A that E[n, j)E[n] for any
normalized n, (r) different from the n (r) defined by Eq.
(4.20). Here, we limit our considerations to a proof that
E [n] is at least a local minimum, that is, that
E[n +5n] &E[n], where n (r)+5n(r) is normalized.
For case (a ), with 5E [n ])0, this is immediately true. If
5E[n]=0, we must show that 5 E[n])0. By Eq. (4.9),
we have

we can write

S[5n]= f I f e'q'5n(r)drI &0 .
2'77 g

Physically, S represents the self-energy of a charge distri-
bution 5n (r), where 5n (r) need not be of one sign, and
self-energies are non-negative. (The self-energy S can
readily be cast into the form of an integral over the
square of the electric field, with a positive coefficient, so
that we surely have S)0.) Finally, we do indeed have
5 E[n] &0. This establishes the local-minimum property
of E [n j for the n (r) defined above.

We note that we can eliminate any two of the three
variables n(r), pF(r), and V(r), related by Eqs. (4.14),
(4.16), and (4.19). The differential equation satisfied by
n (r) has already been given, in Eq. (4.20). It will be use-
ful to record also the diff'erential equation for V(r),
which follows from Eqs. (4.19), (4.11), and (4.16) and is
given by

4e~ 2[eF—V(r)]
V V(r)=4vrZe 5(r)—

3m e ao

V V(r) =0, V(r) & eF .

V(r) & eF, (4.21a)

(4.21b)

We shall obtain a simplified version of Eq. (4.21) in Sec.
V. We can readily invert Eqs. (4.20) and (4.21) and ob-
tain integral equations for n(r) and V(r), respectively.
For the neutral atom, the integral equation for n (r) is

' 3/2 3/2

n(r)= ——f, dr'1 2 Z n(r')

For the spherically symmetric case, this reduces to
1/2

16
n (r)=

3
n (r') ———, (r') dr'

r r r'~ao3

3/2

(4.22)

There is an alternative to a direct numerical solution of
Eq. (4.20) or Eq. (4.21). Since Eq. (4.21) follows from the
minimization of E[n] as given by Eq. (4.9), we can as-
sume a particular form for n (r), one that contains one or
more variational parameters c and that allows one to
perform the integrations in Eq. (4.9) analytically; one
then varies the c to minimize the energy. In general,
this procedure introduces a first-order error in 5n (r). If,
however, n (r) )0 for all r but the point at infinity, which
will be seen to be the case for the neutral atom, for exam-
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pie, the error is of second order in 5n (r), that is, the pro-
cedure is a variational one.

3. Direct derivation of the Thomas-Fermi
differential equation

The TF differential equation (4.21) was seen to follow
from Eqs. (4.14), (4.16), and (4.19). We can simply write
down two of the three equations: Eq. (4.19) is the Pois-
son equation, while Eq. (4.14) gives n (r) in terms of the
available volume in phase space. The third equation, Eq.
(4.16), was obtained by varying the Lenz energy function-
al. It will be interesting to derive Eq. (4.16) directly. We
define eF (r ) by the relation

eF(r) =pF(r)/(2m, )+ V(r) .

As noted in the Introduction, it is often asserted, on
(false) physical grounds, that eF(r) =0, but in general
that is not true. The error is associated with the natural
but incorrect assumption, discussed above, that n (r) can
vanish only at infinity.

To begin, consider the region where n (r) )0. If eF(r)
were not a constant in that region, one could lower the
energy of the system by moving an electron from the top
of the Fermi sea at any point where eF(r) did not assume
its minimum value to just above the top of the Fermi sea
at a point where eF(r) was lower. But one cannot lower
the energy of the system when it is in its lowest state. It
follows that eF(r) =const —= eii where n (r) & 0, that is,

pF(r)/(2m, )+ V(r) =@~, where n (r) )0 .

Now consider the region, if such a region exists, where
n (r) =0. Since there are no electrons to move around in
that region, there need be no contradiction if eF(r) is not
constant in that region. There mill be a contradiction if
e~(r) at any point in the region where n (r) =0 lies below

eF, for then the energy of the system could be lowered by
moving an electron from the top of the Fermi sea with an
energy eF, in the region where there are electrons, to the
point where n (r) =0 and where the energy lies below eF.
Since p~(r) =0 where n (r) =0, the energy in that region
is simply V(r). We therefore conclude that we must
have

e~ ~ V(r), where n (r) =0 .

These last two equations are identical to Eq. (4.16) ob-
tained earlier from the Lenz energy functional.

Note that if the system is in its ground state and an
electron in the region where n (r) )0, with an energy eF,
is moved to a point r' in the region where n (r') =0 and
where V(r')) eF, the change in energy will not be of
second order but will be the first order term e~ —V(r');-
E[n] for n in the neighborhood of the minimizing distri-
bution is not stationary, and in seeking the minimizing
distribution we can demand that 5E[n] ~0 but we can-
not demand that 6E[n]=0. We can restate the above re-
mark in terms of surfaces. The surface E[n] in the

neighborhood of the minimizing number density is hor-
izontal for variations of n (r) that represent the move-
ment of charge between two points at which there are
electrons, but the surface has a discontinuous derivative
for variations of n (r) that represent the movement of
charge from a point where there are electrons to a point
where (initially) there are not.

We replaced the Lagrange multiplier p, used in the
minimization of the energy to account for the constraint
on the number X of electrons, by —eF. The concept of
the Fermi energy, the energy of the least-bound electron,
is a very useful concept, one we have already used, but
we have justified our identification of p with —eF only
for the E[n] defined by Eq. (4.9). We now justify that
identification for the more general form of the energy
functional,

F[n]= fK (n)dr,

with the energy density K (n) arbitrary. [It is very useful
these days to consider the more general case, for whereas
n (r) had long been assumed to be a useful but not basic
construct, less fundamental than the wave function be-
cause it does not contain phase information, one now
knows from the work of Hohenberg and Kohn (1964)
that the ground-state energy is uniquely defined by n (r). ]
We then have, for arbitrary n (r), and for N large enough
to be considered continuous,

dE pdK dn
dX ~ dn dX

To obtain the n (r) which, for fixed N, minimizes the en-

ergy, we minimize

F[n]= fK(n)dr+@ f n(r)dr —N

with respect to variations in n and arrive at

We therefore have, with E reducing to E for n the
minimizing n,

d= —p X=—p.dX

Since X )& 1, it follows that dE/dX, and therefore —p, is
the change in energy on adding one electron, which by
definition is eF.

V. REAL AND MODEL MANY-ELECTRON
ATOMS: SOME RESULTS

A. Noninteracting ferrnions
in a one-dimensional interval

Before turning to real and model atoms, we consider
the problem of the determination of the ground-state en-
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ergy E(L) of N noninteracting fermions moving in the
one-dimensional interval 0 ~ x ~ L, where, to simplify the
discussion, we assume that all of the fermions have the
same spin projection. We considered this problem in Sec.
IV.A, where we solved it both exactly —more precisely,
we obtained the leading term of the exact solution —and
in the approximation in which the fermions were in non-
overlapping strips, to see the efFect of implementing the
Pauli principle in the somewhat crude but simple way.
We are now interested in the accuracy of the TF approxi-
mation, and we therefore solve the same problem in the
TF approximation, and exactly.

The fermions have only kinetic energy, and we must
therefore have pF(x) =const=p~, for otherwise we could
move fermions around and lower the energy of the sys-
tem. The value of pF follows from the normalization
condition

B. Real atoms

1. Spherical symmetry

It would be possible to add to the two restrictions built
into Eq. (4.9) a third, on the angular momentum, and to
seek the lowest energy for a given angular momentum.
Not having built in such a restriction, we might expect
that in the TF approximation the state of lowest energy
will be spherically symmetric for all values of Z. We
shall now show this to be the case. [Those who find the
result we are about to prove physically obvious can skip
ahead to the paragraph containing Eq. (5.3).] To begin,
we decompose n (r) into its spherically symmetric com-
ponent n o( r ), and the spherically asymmetric residue

n, (r). Thus we write

~FN= f f dx dp /Ii =2LpF/h,
0 PF

with dx dp„/h the one-dimensional analog of dr dp/h .
We then have, as the TF approximation to E (L),

n (r)=no(r)+n, (r),
where

no(r)=—(1/4~) f n (r)dA~ )0,

(5.1a)

(5.1b)

ETF(L)= f f (dx dp /h)(p„/2m)
0 PF

=LpF'/3mb =X h /24mL

where dA& is the di6'erential solid angle associated with
r, and the inequality in (5.1b) is a consequence of the in-
equality n (r) )0. It follows from Eqs. (5.1a) and (5.1b)
that

The exact answer, since the ith wavelength is X, =2L, /i,
1s

f n, (r)dQ~=O. (5.2)

E(L)=
2m

2Ii

SIL

X h 3 1

24~L 2 2&

It follows that
(a) the TF approximation gives the leading term ex-

actly, and
(P) the relative error is of the order of 1/N.
We also note that eF=pz/2m =N h /(8mL ) is ex-

actly the same as the energy of the most energetic state
occupied by a fermion. Further, the uniform density
N/L predicted by TF theory agrees to lowest order, oth-
er than for x =0 and x =L, with the exact density, which
is simple to evaluate since the ith wave function has the
form (2/L)'~ sin(imx /L). (In the true problem the prob-
ability of finding a fermion at x=0 or L, where the wave
function must vanish, is zero; to preserve normalization,
the probability of finding an electron in the real problem
at points other than in the immediate region of x =0 or L
must, on average, be slightly enhanced relative to the
uniform distribution for the probability obtained in our
TF approximation. )

It is simple to check that the above remarks are not re-
stricted to the one-dimensional case but remain valid for
noninteracting fermions in a cube.

This result is in any event obvious since, by construction,
ni(r) has no zero-angular-momentum component. In-
serting n (r) given by Eq. (5.1a) into Eq. (4.9) for E[n],
we use Eq. (5.2) to eliminate a term in E, [n] linear in

n, (r), and we use the fact that ~r —r'~ ' cannot connect
no terms (with angular momentum zero) to ni terms
(with angular momentum other than zero) to eliminate
the no(r)n, (r') and n, (r) no(r') terms in E„[n]. We
thereby obtain

E [n] =E [no]+ (kiri /m, )M +S [n, ],
where

M= f [n (r) —n05~3(r)]dr,

The proof that S [n, ] )0 is identical to the proof used in
Sec. IV, in the course of proving that 52E[n] )0, to show
that S [5n] )0. Turning to M, we write

f no (r)dr= f no(r)no~ (r)dr

= f [n(r) —ni(r)]no (r)dr

= f n(r)no~'(r)dr,

u»ng Eq. (5.2) in the last step. With the identifications
x =r, @=5/3, q=5/2, f (r)=n(r), and g(r)=n02~'(p),
the Holder inequality given below Eq. (3.9) yields, when
applied to the equation just above,
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or

f no~ (r)dr~ f n'~ (r)dr

f no~ (r)dr~ f n (r)dr,

3/5 f n,'"(r)dr 2/5 V(r)- (Z—e /r)+[eF —Z P'(0)(e /bao)]+O(r'~ ),
(5.8b)

2. Neutral atoms
or M ~0 and therefore, finally,

E[n])E[no] .

In other words, the addition of an element of spherical
asymmetry will necessarily increase the energy of the sys-
tem. [Note that the proof that E[n])E [no] does not re-
quire no to be the minimizing number density; for E[n]
defined by Eqs. (4.9a) —(4.9d), and (4.9g), the inequality is
satisfied for any normalized no(r)=no(r) and any nor-
malized n(r)=no(r)+n, (r). ] The proof is valid for
atoms and ions.

We therefore have pF(r)=pF(r), n(r)=n(r), and
V(r) = V(r). We now define &P(x) by means of

V(r) e~= —(Z—e /r)P(x), (5.3)

where

r =ba, x/Z—'",
b =—( I/2)(3m/4) i

(5.4a)

(5.4b)

P, x, and b are dimensionless. Since V(r)- Ze /r —as
r -0, we have

d P(x) P (x)
dx' x '" (S.6a)

d P(x) 0 y( ) (0
dX

(5.6b)

One of the two boundary conditions necessary, in addi-
tion to Eq. (5.6), to uniquely define P(x) is that given by
Eq. (5.5). In arriving at Eq. (5.6) we used

P(x) = 1+[P(x)—1] to obtain

P(x) ~2 1 1 d P(x)
r r r

We can of course combine Eqs. (5.6a) and (5.6b) into the
one equation

d P [max[/(x), 0]]'~
dX 1/2 (5.7)

We shall later need to know the behavior of P(x) for very
small x, and we therefore record the result

P(x)-I+xP'(0)+(4/3)x i +O(x ), x-O, (S.8a)

a consequence of Eqs. (5.5) and (5.6a); the value of P'(0) is
yet to be determined. It follows from Eq. (5.3) that

$(0)=1 .

Using Eqs. (5.3), (5.4), and (5.5) in Eq. (4.21), we arrive at
the dimensionless form of the TF differential equation,

a. The va!ue of the Fermi energy eF and the
physicalinterpretation of that value

For positive ions, V(r) behaves asymptotically as a
Coulomb potential. It follows, as noted in Sec. I, that for
positive ions we cannot have p~(r)/(2m, )+ V(r)=0,
that is, eI; =0, since N = f n (r)dr, which is proportional
to fpF(r)dr, would be proportional to f [

—V(r)] ~ dr,
and would therefore be infinite. The divergence would be
at a more rapid rate if we had eI, (0. Since eF cannot be
positive if the electrons are not to escape to infinity, the
only possibility that remains is that there is a value
ro( ~ beyond which n(r)=0. We shall briefly pursue
this further in a moment. [The positive-ion problem is
discussed —if not always completely —in many texts. It
cannot be scaled, as the neutral-atom problem can, and it
cannot be handled analytically; further, the model of the
atom in which the electron-electron interaction does not
exist is a problem which also contains a region in which
n (r) =0 but which can be solved analytically, and which
we shall have occasion to discuss in both this and the
next section. ]

The situation for the neutral atom is quite different.
As opposed to the situation for a real neutral atom,
the potential seen at large distances in a neutral atom in
the TF approximation is not Coulombic. Now

f [
—V(r)] dr is finite provided V(r) falls off faster

than r . There is, then, no a priori reason for not hav-
ing eF=O for the neutral-atom case, nor is there any
reason for not having n (r) )0 for all r but r = oo for that
case. To check for self-consistency, we note that we then
have, using Eqs. (4.9e), (4.11), (4.16a), and (5.3), each with
eF =0, (5.4) and (5.6a),

N=(8~/3h )f [ —2m, V(r)]3~2dr

=(32vr /3h )(2m Ze ) (ba /Z' )

X fP (x)x' dx

=Z fP"(x)x dx,

with x ranging from 0 to co. Integrating by parts, using
P(0) =1, P'(0) ( ~, P(x)-0, and xP'(x)-0 as x —oo, we
do indeed find X =Z.

The statement that n (r) )0 for r&ao implies e~=O,
for Eq. (4.13a) is then valid for all finite r, and
p= —@~=0 follows on letting r —ao. The fact that EF
and therefore p has the value zero has an interesting
physical interpretation, which was pointed out to me by
E. Lieb. For p=0, that is, for a vanishing Lagrange mul-
tiplier, the constraint f n (r)dr =Z plays no role whatso-
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ever. The solution for n (r) obtained for p=O, which is
the solution for a neutral atom, is the lowest-energy solu-
tion, for the fixed number of protons Z, for any value of
J n (r)dr. On physical grounds, it is clear that the bind-

ing energy increases monotonica11y with X as X increases
from 0 to Z. (Recall that we can take N to be a continu-
ous variable. It might be preferable conceptually to take
eX rather than N, that is, the total electronic charge rath-
er than the total number of electrons, to be the continu-
ous variable. ) Further, we have argued that negative
ions could not readily exist in the TF approximation, and
the p=O result "confirms" that argument. [Never hav-
ing proved that there exists an n (r) that minimizes the
Lenz energy function, we have not proved anything, but
the discussion will probably satisfy most physicists. ]

Consider n (r) versus r for fixed Z for three values of
a value X (Z, the value X=Z, and a value X)Z.

The solution for X (Z vanishes for r ~ ro, where
pp =pp(N) ( Op, and a small change in n ( r) can give a
first-order error. The solution for X =Z does not fall off
exponentially, as for a real atom, but falls off slowly, be-
cause the outermost electron does not experience a
Coulomb attraction. It is simple to see that Eq. (5.6a) has
as one solution (Sommerfeld, 1932), physically acceptable
only for large x,

P(x) = 144x

where the normalization factor 144 is uniquely deter-
mined, the TF equation being nonlinear; the exact solu-
tion of P(x), for N=Z, approaches this function for
x —oo. There is no physically acceptable solution for
X &Z.

Having concluded that at most Z electrons can be
bound to the nucleus, we find it reasonably clear, physi-
cally though not mathematically, that the TF equation
for n (r) does not have a unique solution if N )Z; the en-

ergy will, however, be seen to be unique. Thus, for
X )Z, having placed Z electrons near the nucleus, we
must decide where to place the remaining X —Z
electrons —or, equivalently in the TF context, the
remaining (continuous) charge (N —Z)e —if the energy
is to be minimized. We surely expect to have to place
that charge at great distances from the nucleus. Since
there is then no electron-nuclear interaction, the problem
reduces to the minimization of the sum of the kinetic-
energy term and of the e e term, both positive. The
lowest energy of the residual charge will therefore be
zero, so that in TF theory E (N )Z) =E (N =Z), and is
achieved by any distribution in which the residual charge
density is everywhere arbitrarily small. Some further in-

sight may be gained by considering models for which the
minimum energy associated with the residual charge
di6'ers from zero. Thus, following Lieb (1981),we consid-
er the Thomas-Fermi-Dirac (TFD) model, in which we

account for the exchange potential energy, to be dis-
cussed in Sec. X.B, by adding a term

E,„[n]=—C,„fn ~ (r)dr

to the Lenz energy functional of Eq. (4.9), where C„ is a
fixed positive constant. One again finds that at most Z
electrons can be bound in the nucleus and that the resid-
ual charge Q =(N —Z)e should be far from the nucleus
to minimize the energy of the residua1 charge. %'ith n&
the charge density associated with Q, we must now mini-
mize not Ez[n&]+E„[n&], as in the analysis of the
energy of the residual charge in TF theory, but
Elr[n~]+E„[n&]+E,„[n&], and since E,„ is a negative
term, the minimum energy of the residual charge need no
longer be zero. Rather, the minimum is achieved by di-
viding Q into a very large number v of widely separated
very small charges q =Q/v~. The contribution of the

E„[n&] term will then be found to be of lower order, it
being bilinear in n p while the other terms are proportion-
al to n& and n&, respectively —having made this as-
sumption, we can check it for self-consistency after the
solution for n&(r) has been obtained —and the problem
reduces to the minimization of the energy of vq isolated
charges,

E&[n ]=v ( )=(N —Z) ( )/f n (r)dr

where

)= (kh' /m, )f n ~ (r)dr —C,„f n ~ (r)dr

and where n (r) is the number density of one of the
charges. Since the integrands contain no explicit coordi-
nate dependence but are functionals of n only, the
minimizing equation will involve only n, and the solu-
tion for each small charge must be of the form
n =const—:n&0 in some volume ~ and n =0 elsewhere.
The integrations are now entirely trivial, I ] is a simple
function of n, and minimizing with respect to n, one finds
in the TFD model

E(N )Z) =E (N =Z) C(N —Z), —

with C& 0 a known constant. This result is clearly com-
pletely unphysical —isolated electrons cannot have a to-
tal energy that is negative. Obviously one cannot Use an
approximation such as Thomas-Fermi-Dirac blindly,
however useful it may be in some applications. A review
of the above treatment sho~s the source of the error: v
is so large that the charge Q =(N —Z)e is broken down
into pieces with charge q smaller than that of an
electron —indeed, so much smaller that the vq (positive)
self-energy terms become negligible.

b. The ground-state energy Eof a neutral atom

By the virial theorem —see the following subsection-
we have E = Ez. Using Eqs. (—4.16a) and (5.3) with

eF =0, and Eq. (5.4a), we have
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f f2dl dp p
2m,

16ir
(2 Z 2)s/~

ba

g 3 ~ Z]./3
APE q

( 2b )
i /2Z 7 /3

5m 2a0

1/2

The value of s that minimizes E[n, ] follows from
diff'erentiation of this last expression and is given by

2sEx+(E„+E„)=0.

But since n is the number density that minimizes E, the
value of s that minimizes E[n, ] is s= 1, and we therefore
have

It follows from this last equation that we can write

J= —(5/7)P'(0) .

Using Eq. (5.4b), we find that

E =(16/7~)(37r/4)' P'(0)Z (e /2ao) .

Writing

(5.9a)

e /2a0=Ry,

the Rydberg, and inserting the value of P'(0) for the neu-
tral atom determined numerically by Tal and Levy (1981)
by demanding that the solution of Eq. (5.7) vanish at ~,
we obtain the result

E = —~,Z'/3Ry, c7 = 1.537 490 24. . . . (5.9c)

[The notation c7 as the coe%cient of the Z
term in E is useful in expressing the leading terms
in E in an expansion of powers of Z ' as

c. Relations among the three contributions to E

It is often simply assumed that the virial theorem, val-
id of course for a real atom, is valid in the TF approxima-
tion, but it is not obvious that this is the case. The proof
is simple (Lieb, 1981). With n (r) representing the num-
ber density that minimizes E, we introduce a scaling fac-
tor s and define a scaled number density,

n, (r) =s n (sr) . (5.10)

By construction n, (r) has the same normalization as
n (r), and we find immediately from the definitions given
in Eqs. (4.9b) —(4.9d) that

E [n, ]=E~ [n, ]+E, [n, ]+E„[n,]
=s Ex [n]+s(E, [n]+E„[n])
=s Eir+s[E, +E„].

J=f P (x)x ' dx .
0

If we evaluate J on the one hand by using Eq. (5.6a) and
then integrating by parts, and on the other hand by in-
tegrating by parts, using Eq. (5.6a), and integrating by
parts again, we find

J= —P'(0) —f [P'(x)] dx

,' f—[P'(x)]dx .

2Eir +(E„+E„)=0, (5.11)

which is just the usual virial theorem.
We can find a second relation among the components

of E. For the neutral atom under consideration, Eq.
(4.13a), with p=0, is valid for all r. Multiplying by n (r),
integrating over d r, and comparing with Eqs.
(4.9b) —(4.9d), we obtain

—',E~+E, +2E„=O . (5.12)

Comparing Eqs. (5.11) and (5.12), we find a result first ob-
tained by Fermi:

E~.—E, :E„=3:7:1 . (5.13)

As opposed to the virial theorem result given in Eq.
(5.11), which is exact for all Z, Eq. (5.12) and therefore
Eq. (5.13) become exa,ct only when the TF approximation
becomes exact, that is, only for Z —~.

The virial theorem result of Eq. (5.11) is independent
of the TF approximation, and it is natural to ask if the
result E, /E„= —7 can be obtained without invoking
the TF apparatus. We need two relations between E&,
E„,and E, , and we saw in Sec. III that we can And two
relations among energy components if the problem has
two lengths to be determined, but the atom has only one
such length, its radius R. (In a more detailed analysis,
there are a number of other lengths, such as the skin
depth of the surface, but the contributions to the energy
of the regions defined by these lengths are of lower order
than the Z / term under consideration. ) There does,
however, exist an elegantly simple procedure, pointed out
by A.R.P. Rau (unpublished) and Thirring (1983), for ob-
taining the ratio —7. Essential features of TF theory are
that the lowest energy, for fixed nuclear charge Ze, is
that with X=Z electrons, and that eF —0, and it turns
out that those are the only TF features required to get the
desired ratio. In other words, we can completely ignore
TF theory and simply assume those features on the basis
of our knowledge of real atoms and ions. (There are of
course negative ions in nature, and eF is not identically
zero, but we need merely assume that the number of elec-
trons beyond Z which can be bound is of lower order
than Z, and that eF is negligible. ) Our starting point is
now not a functional, but simply the function E(R ) given
by Eq. (4.3). The equation was derived for the case of Z
electrons, and we modify it to allow an arbitrary number
X of electrons. In addition, we insert the coefficients c',
c, and c, which are assumed to be independent of X and
Z and are expected to be positive and of order unity; the
values of these coefficients need not be known in advance
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in the present rederivation of the result given in Eq.
(5.13). For fixed Z, we then have

E(R,N)=c'N (fi Im, R ) —(cNZ c—N )e /R

(5.14)

g (y ) = ( 36c /c 7 )y
' '/(7 —y) . (5.16c)

(For N =Z, this gives R proportional to ao/Z', the TF
result, but with an unspecified coefficient. ) For R given
by Eq. (5.16b), E(R,N) reduces to

The ratio of E, to E„ is then ( —cZ/cN), which is
—c /c for N =Z. Since the effective potential must be at-
tractive for N ~ Z, we must find c lc) 1; in fact, we now
show that the assumptions that there are no negative ions
and that ez =0 lead to the desired result, that
—c/c = —7. To minimize the expression for E(R,N),
we first set

E (N) =f (N/Z)E», '

where

ET„=—c7Z'"Ry

and

f (y ) =y '~'(7 —y)'l36 .

(5.16d)

BE(R,N)/BR =0

and find that

R =2c'[N ~'l(cZ —cN)]ao

(This reduces to the correct functional form ao/Z' for
N =Z.) Inserting this value of R into E(R,N) gives

E (N) = —[c l2c']N' [(clc )Z N] Ry . —

In line with our assumption about negative ions we set
dE (N) ldN=O at N =Z, and this immediately gives

C =7C (5.15a)

as desired.
It is amusing to go a bit further. For X =Z and c =7c,

E (N) reduces to

E = —[18c /c']Z ~ Ry .

We have not yet used the TF approximation in any way.
We now use that approximation by setting

18C /C =C7 (5.15b)

in order to obtain the TF estimate of the energy of the
system; E then becomes exact for Z —oo. Equations
(5.14) and (5.15) give

1 8
—2 ~5 I'3g2 2

E(R,N) = c(7NZ —N—) . (5.16a)
c7 I R2 R

This relatively simple expression for E(R,N) is based on
(i) a form of the kinetic energy that follows from the un-

. certainty principle and the exclusion principle, (ii) a
knowledge of the energy of a neutral atom for Z —~,
and (iii) the knowledge that negative ions barely exist, if
at all. E(R,N) has some nice features:

(a) As can be seen by inspection, it gives E, = 7E„—
for % =Z.

(P) Since it is of the form (a/R )
—(b/R), it satisfies

the usual virial theorem, giving 2E~ +E,~+E„=O.
Combined with the result given in (a), it therefore repro-
duces the 3:—7:1 ratio of Eq. (5.13).

( y ) Minimization with respect to R gives

Note that E (N =Z) =E».
E (N) is also of the form of Eq. (5.16d) in TF theory, as

shown for example in March (1975), but in TF theory
f (N /Z) must be calculated numerically.

(5) There are no negative ions. Note that the above re-
sults did not require the specification of c, but while the
energy E associated with E(R,N) of Eq. (5.16a) is in-
dependent of c, for E obtained by minimization with
respect to R —that has to be so, since we can scale out c
by simply defining a new length, equal to R/c —other
properties are not independent of c; c can be fixed by
demanding agreement with some other atomic property,
but we shall not do so.

The "classical" Hamiltonian E(R,N), of Eq. (5.16a)
becomes a quantum-mechanical (hydrogenlike) Hamil-
tonian H (R,N) if we reverse the usual procedure and re-
place A /R by p = —A V . We then have

( )
18c N iA'V

C7

2—c (7NZ N)—
R

(5.16e)

H (R,N) also gives the results (a) through (5) noted just
above.

It should be stressed that while the relationship
2Ez+E~=0 is entirely independent of the choice of the
c', c, and c, the same is not true of the relationship
E, +7E„=O, the derivation above notwithstanding, for
we have assumed that the coefBcients are such that the
energy minimum as a function of X, for Z fixed, is at
N =Z.

We have now given two arguments that the ratio of
—E, to E„ is 7, one based on TF theory and one start-
ing from Eq. (5.14). The result is a very important one
since it provides considerable insight into why an
eA'ective central potential works so well. We shall there-
fore try brieAy to provide some further physical under-
standing of the factor 7. We have

E,„/E„=Z X —,'Z (e —/r )/(Ze /r, ~)

=
—,
' (1/r ) /( I/r, z) .

R =g ( NZ/)a 0Z/'~

where

(5.16b)
For a uniform spherical distribution, we readily find that
—E, /E„=2.5, far from the factor 7. In actuality, of
course, the electron distribution is far from uniform, be-
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ing heavily concentrated toward the origin. As a very
simple model of a nonuniform distribution, assume that a
fraction f of the electrons is close to the nucleus and has
a uniform spherical distribution, and that the remainder
are relatively far from the nucleus. We then have

E,—/E„=2. 5 If, larger than 2.5.

r =Ro

Using dN(r)ldr =4nr n (r), we find on differentiating
Eq. (5.20) that

3. Properties of n(r) for positive ions

n

dI"

2 dn 1 dn 18m n

ao

Thomas-Fermi theory is much less appealing for ions
than for neutral atoms, the element of universality having
been largely lost, but, as it happens, there are more ions
than neutral atoms, so let us proceed.

Equations (4.14), (4.16a), and (5.3) lead immediately,
for the spherically symmetric case of interest, to

= 3 Z
n 2/i(r) P(x), where n (r) )0 .

k aor
(5.17)

We define

N(r)= J n (r')47r(r') dr' (5.18)

and note that N(0) =0 since P(0) = 1, so that n (r') is pro-
portional to (r') for r' —0. [That n(0) is infinite is, of
course, an unfortunate property of TF theory. ] N(r), the
number of electrons within a sphere of radius r centered
on the nucleus, is a monotonically increasing function
where n (r) )0, and N ( ~ ) =N. We rewrite Eq. (4.20) as

5k'' „, Ze'
V n / (r) — =4vre n(r),

3Plq I"

At r =Ro, the first and third terms vanish, and, using Eq.
(5.20), we are left with

r=Ro
d n

dI

27 [N(r) —Z]
look'a'R4 n '"(r)

where r is to approach R o from below. Since
N(RO) =N (Z and n (Ro)=0, the second derivative is
infinite, which is hardly surprising, since n (r) vanishes
for r ~ ro but does not vanish for r (Ro.

On the basis of previous discussions, we do not expect
to have Ro finite for X =Z, that is, we then expect to
have n (r) vanish only at infinity and to vanish smoothly.
Without proving anything, we simply observe that for
X =Z, even allowing for the possibility that Ro is finite,
we have N(RO) —Z=O; to obtain d n /dr at r =Ro we
must therefore evaluate IN(r) —Z] /n ' (r) at r =Ro
by means of de l'Hopital's rule. Doing so, we find that
d n /dr is proportional to n / (r) at r =Ro and there-
fore is not infinite but rather vanishes. Indeed, all deriva-
tives of n (r) and indeed n (r) itself vanish at r =Ro for
X =Z.

where n (r) )0 . (4.20')

Using Eqs. (5.17) and (5.8a), we find that the quantity
within the large parentheses in Eq. (4.20') is well behaved
at the origin. Integrating Eq. (4.20') over a sphere of ra-
dius r centered at the origin, we find, with Ro the ionic
radius —n (r) )0 if and only if r & Ro—

5k 2 dn (r) N( ) Zaors (5.19)

or

dn (r) 9 N(r) —Z i/3n r, r(RO.
dr 10k "2ao

(5.20)

Equation (5.20) shows immediately (once again) that we
cannot have a negative ion in the TF approximation, for
by assumption we would then have N( ca )=N )Z, so
that there would necessarily be an R ( ~ such that
N ( R ) =Z; we would therefore have dn ldr & 0 for r )R,
and finally we would not have n(~ )=0. For positive
ions, we have seen that there exists a value Ro, where
0&RO & ~, such that n (r)=0 for r &Ro [and n (r) &0
for r (Ro]. We must have N(r)=N for r &Ro [and
N(r)(N for r &Ro]. Since n(RD)=0, we see from Eq.
(5.20) that

C. Independent-particle model for atoms and ions

We turn our attention now from real atoms and ions to
an independent-particle model for atoms and ions in
which the electron-electron interaction does not exist.
(This solvable model will be useful when one considers
the leading corrections to TF theory. ) The functional
E [n] for this model follows from the E [n] of Eq. (4.9) on
simply omitting the double integral E„[n] term. The
differential equation for n (r) obtained by seeking the
minimum of the modified version of E[n] is then that
given by Eq. (4.20) with the 4~e n(r) te—rm omitted.
The analog of Eq. (5.19) is obtained by simply omitting
the N(r) term; we therefore have

dn'"(r)
dI"

3Z r~Ro .
5kaor

(5.21)

Integrating, we arrive at

n (r)= t(3Z/5kao)(1/r —1/Ro)] /, r (Ro . (5.22)

The value of Ro follows from the normalization condi-

n (r)=(3Z/5kao)[(1/r)+constant], r &Ro .

To satisfy n (R 0 ) =0, we set the constant equal to
—(1/R0 ). We then have
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tion of Eq. (4.9e) and is given by

Ro=(2ao/Z)(3N/2) i (5.23)

We record the result —a consequence of the vanishing of
n (r) and therefore of pJ,-(r) at r =Ro—

Ze Ze
r Rp

(5.24)

5' R ] /2

with Ro given by Eq. (5.23). We therefore have as the TF
approximation for our model ion

ET„(model ion) = —2Z (3N/2)'~3Ry .

For % =Z, we therefore have

(5.25a)

The explicit solution for n (r) given by Eqs. (5.22) and
(5.23) has the following properties:

(a) As opposed to the case for real atoms, there is a
TF bound solution for all X, that is, for X &Z, for
N =Z, and for N )Z. (Since there is no e e interac-
tion, it is clear that the nucleus can bind an infinite num-
ber of electrons, each in a hydrogenic state. ) We also
have Rp& ~ for all X.

(13) n (Ro) vanishes by construction, for all N. Taking
derivatives, we also have dn/dr =0 at r =Rp for all 1V,

while d n /dr = oo at r =Rp for all X.
We have studied the model as a special case of the

atom. It would have been simpler to study the model
directly, since we know immediately that V(r) = Ze /r-
for all r, for any X.

To obtain the ground-state energy E of our model, in
the TF approximation, we can proceed along the same
lines as for a real atom, and we can therefore omit most
of the steps. Beginning with the virial theorem, and us-
ing Eq. (5.24), we have

f J 2dldp p
h3 2m,

2
(2m, Ze )

~ J',
5~m, h

where
5/2

RoJl r dr
0 I' Rp

where 2n is the degeneracy factor and where, for simpli-
city only, we ignore the relatively few electrons that may
be present in an open shell with principal quantum num-
ber Q+1. To lowest order the true ground-state energy
is then

Q Z2 2

g(2n )( —
)

2apn

Z e

ap

1/3
Z e 31'

Qp 2
(5.27)

in agreement with Eq. (5.25a). The TF estimate of Ro
given in Eq. (5.23) also agrees, to leading order, with the
exact result, but an additional element of care is required.
The expectation value of r in the hydrogenic state with
quantum numbers n and I is

(r )„i=[3n —l(l +1)]ao/(2Z) & 3n ao/(2Z) .

The weighted average ( r )„of ( r ) „I with respect to l is
therefore ( r )„&3n ao /(2Z), and, in particular, we
have, to leading order,

(r )& &3Q ao/2Z=(3ao/2Z)(3N/2) ~ =(3/4)RO .

It is scarcely surprising that (r )& is less than Ro, since
( r )(i is a weighted average with respect to l of the mean
value of r for principal quantum number Q, while Ro is
the distance beyond which (in the TF approximation)
n(r) vanishes identically. For Q))1, the bulk of the
electrons will have large orbital angular momenta, and it
will be adequate to approximate the exact hydrogenic
densities by their WKB approximations. As is to be ex-
pected and as was shown by, for example, Shakeshaft and
Spruch (1979), one readily finds that the WKB approxi-
mation approaches the classical density, that associated
with ellipses. For a given value of Q, the energy is in-

dependent of I, or, speaking classically, the energy is
determined by the semimajor axis, being independent of
the semiminor axis. For l = n =Q, ( r ) &&

is approximate-
ly a circle of radius Q ao/Z. For 1 « l « Q, the energy
remains the same and therefore the semimajor axis
remains the same, Q ao/Z, while the semiminor axis be-
comes negligible, and the elliptic orbit approaches a
straight line of length 2Q ao/Z, with the nucleus at the
end point. Thus, to leading order, the furthest away an
electron can be found will be

ET„(model atom) = —2(3/2)'~ Z ~ Ry . (5.25b) 2Q ao/Z =(2ao/Z)(3N/2) ~ =Ro,

QN= y2n2- —'Q3
1

(5.26)

The Z dependence is the same as for the real atom in the
TF approximation. The TF energy estimate of Eq.
(5.25a) —and the special case in Eq. (5.25b) —give the
leading term of the true ground-state energy exactly.
Thus, for X))1, there will be a maximum principal
quantum number Q))1 associated with the last closed
shell, defined by

Zc
F Rp

Ze Ze
2ao(3N/2) ~ 2aoQ

which follows from Eqs. (5.24), (5.23), and (5.26), is, as it
should be, the energy of an electron in the outermost
shell.

the desired result. Finally, we note that to lowest order
the estimate of the Fermi energy
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D. Thomas-Fermi theory in a Q-dimensional space

Thomas-Fermi theory in D-dimensional space can arise
from a study of a particular problem in three-
dimensional space in the TF approximation, which, in a
further approximation, leads to a TF-like approximation
in D dimensions. Thus, for low-Z atoms or ions in the
strong B field of a pulsar, the Coulomb field plays a
significant role only with respect to motion of the elec-
trons parallel to 8, and one obtains a D=1 TF-like re-
sult. We shall elaborate on this in Sec. VII. Alternative-
ly, one can study TF theory in D dimensions in the hope
of shedding light on the D=3 TF theory. In this case
there is some freedom in the approach to be used. The
two most natural possibilities are to continue to interpret
the Coulomb potential as 1/r, with r now defined by
r = g; (x; ) with 1 ~ i ~ D and with 1/Ir —r'I analogous-
ly defined, or to interpret 1/r as the Green's function
defined by

V G(r)= —4ir5' '(r)

and the usual boundary conditions, with r D-dimensional
and 5' '(r) the D-dimensional delta function. Similarly,
1/Ir —r'I is to be interpreted as G(r —r'). We then have
(Gelfand and Shilov, 1964)

—2mr, D =1
G(„)= . —21nr, D =2

4vrr /[(D —2)AD ], D ~ 3,

where

QD=D~ ~ /I ( ,'D+1)—
is the solid angle in D dimensions, that is, the area of the
D-dimensional unit hypersphere. We use g (r) =g (r) to
represent I/r or 6 (r) and g (r —r') to represent 1/Ir —r'I
or G(r —r').

In extending E[n] of Eq. (4.9) to the D-dimensional
case, we replace the three-dimensional r in (the spherical-
ly symmetric) n (r) by the D-dimensional r, the three-
dimensional d r by the D-dimensional volume element
d r, 1 /r by g (r), and 1/Ir —r'I by g (r —r'). Further,
with pF =pF(r) the llpper limit on p, we liow have

n(r)=2f d p/h =2(Q /D)(p /h)

while Eq. (4.9b) is replaced by

DI dD 2 g2
E [n]=f ~ ~ =k f [n(r)]'D+"'DdD. ,

2me me

where

kD =2~ [D/(D+2)](D/2AD )
i

Consider the choice g =G. This case was analyzed by
Kventsel and Katriel (1981), who obtained analytic solu-
tions for both neutral atoms and positive ions for D=2
(the spectra for D=2 are discrete) and found, for D ~4,
that n (r) is not integrable at the origin. We shall exam-

ine only the D ~ 4 result. The authors used the
difFerential TF equation approach, but we shall use the
Lenz-energy-functional approach because it more clearly
exhibits the physical aspects of the problem. Since we
have a spherically symmetric situation, we can replace
the 1/Ir —r'I factor in G(r —r') by

&»lr —r'I '& —= f (»lr r—'I

Since Ir —r'I = [r +(r') —2rr' cosO]' is independent of
the D —2 angle variables P, which, with the length and
polar angle, define r, the P dependent factors cancel.
Using material in Sommerfeld (1949) one can then show,
with r & the larger of r and r', that

1 1 ( 1
i D —2 D —2 D —2

As for D=3, the inequality is intuitively reasonable on
geometrical grounds. It follows that, as for D =3,
E„[n](E„[n]. To prove that there is no acceptable
solution for the Lenz energy functional for a given D, it
will suffice therefore to show that there exists an n(r)
which, for that D, leads to finite values of Ez[n] and X
but to —~ for E, . It is trivial to show that the choice
n (r) —1/r'i for r —0, with 2 ~q (D /(D +2) q then—
exists for D ~4 but not for D =3—and n (r) —0
suSciently rapidly as r —oo for the various integrals to
converge at infinity, leads to the values stated.

The analysis seems not to have been carried out for the
choice g(r)=1/r, but it is simple to show that E[n] is
not bounded from below for D= 1. This follows from the
choice n (r) —1/r ~ as r -0 for D —1 ~ q (D /(D +2); q
then exists for D=1.

[Parenthetically, we note that the anthropic principle
might suggest that space must be three dimensional
(Hawking, 1988). Thus a space with D=2 might not al-
low systems as complicated as people to develop—
Hawking gives an amusing argument —while for D) 3
the orbits of systems bound by a 1/r potential, whether
gravitationally bound planets or Coulombically bound
electrons, are unstable. ]

E. An application: photoabsorption by cesium

The very strong emphasis of the present paper on gen-
eral results and insights might unfortunately give the im-
pression that there have been few down-to-earth applica-
tions of TF theory. In fact, there have been myriads of
such applications. We shall discuss an application that
utilizes a model potential, since many of the applications
utilize such potentials. Our one example should give
some flavor of the nature of those applications. That ex-
ample concerns photoabsorption by cesium; we shall give
only a brief sketch of a calculation by Norcross (1973),
who used a two-parameter semiempirical model potential
based on the lowest few spectroscopic term values.

The potential in the wave equation for the radial part
of the wave function of the outer electron is taken to be
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V(A, ,r)+ V~(r)+ V„(r) .

The scaled TF potential V(A, , r) generated by the core in
the absence of the outer electron is supplemented by
V„(r), a spin-orbit potential, and by V (r), a polarization
potential. V (r) represents the efFect of the moments in
the core induced by the outer electron and is taken to be

ad aq —6pao
V (r)= ~ [1—f (r)]+ [1—f' (r)] .

Here f (r) —=exp( r lr, —), ad and a are the static electric
dipole and quadrupole polarizabilities of the core, and p
is a nonadiabatic electric dipole core polarizability, a
measure of the inability of the induced core dipole mo-
ment to respond instantaneously to the motion of the
outer electron. The cutoff radius r, =r,' ', a function of
the orbital angular momentum l of the outer electron, is,
for a given I, one of the open parameters; it is of the or-
der of the radius of the core. The leading terms in V~(r)
for r well beyond r„where the outer electron is primarily
situated, behave as r and r; the coefFicients ad and
a'—:a —6pao of these terms are formally exact, and
there is available a fair amount of information concern-
ing ad and a' . The forms of the cutoff factors have been
chosen to give Vz(r) the appropriate dependence on r for
r small. V„(r) is given by

V„(r)= —,'a — [1+—,'a V(r)] L.S,21 dV

where a is the fine-structure constant, V(r):—V(A, ,r)+ Vz(r), and the square bracket term is an addi-
tional relativistic correction which gives V„(r) the prop-
er behavior near the origin. The details of how to choose
the form of V(A, , r) can be found in Eissner and Nussbau-
mer (1969), who chose a modified TF potential based on a
description given by Gombas (1956).

With k, r,' ', and r,"' approximately chosen, Norcross
obtained excellent agreement with the experimentally
determined energies of the low-lying states ns, &2, np, &2,

and np3/2 for n=6, 7, 8, and 9. With the effects of Vp

accounted for in both the model potential and the dipole
transition matrix element, and without normalizing to
any experimental data on phoioabsorption, Norcross ob-
tained very good agreement with the photoabsorption
data. [Later work by Zhou and Norcross (1989), based
on the Dirac rather than the Schrodinger equation, deter-
mines other properties of cesium but is not relevant to
our discussion. ]

In summary, the use of spectroscopic data to fit open
parameters in a model potential seen by the outer elec-
tron, where the model potential utilized TF theory and
incorporated as much of the physics as was known and
deemed relevant, led to good agreement with photoab-
sorption data.

Vl. NEUTRON STARS, WHITE DWARFS, AND THE
DIVERGENCE OF PERTURBATION SERIES
IN QUANTUM ELECTRODYNAMICS

The discussion in Sec. V can be adapted readily to sim-
ple models of neutron stars and white dwarfs, assuming
the thermal energy and nuclear interactions to be negligi-
ble and the nonrelativistic approximation to be valid.
The subject of divergences in quantum electrodynamics
might seem to lie outside of the domain of TF theory.
Nevertheless, an understanding of the presumed origin of
the divergence requires an estimation, which can be quite
crude, of the energy of systems of particles of imaginary
charge, an estimation quite similar to that for neutron
stars. In any event, the argument, which is due to Dyson
(1952), is so simple and beautiful that the reader not fa-
miliar with it might be pleased by the digression. We
shall consider neutron stars and white dwarfs first. The
numbers of papers on these subjects, if not quite compa-
rable to the number of such stars, is large. For the mo-
ment we arbitrarily cite only Orear and Salpeter (1973)
on neutron stars, and Van Horn (1979) on white dwarfs,
for introductory treatments, and Thirring (1983) and
Shapiro and Teukolsky (1983) for advanced and
comprehensive treatments of both. There are two not
unrelated points to consider at the outset.

(a) There are two kinds of charged particles in both
the white dwarf and the atom, namely, nuclei and elec-
trons, and the kinetic energy in each case is almost en-
tirely that of the light particle. The reasons are not quite
the same. Roughly speaking, in the atom the nucleus is
subject to a set of pairwise interactions, —Ze /r;, no
1arger than and indeed equal to the largest of the pairwise
interactions to which the ith electron is subject, namely,
the same electron-nucleus interaction; the momenta of
the nucleus and of an electron can therefore be expected
to be comparable, and the kinetic energies of the nucleus
and of an electron can be expected to be inversely pro-
portional to their masses. In the white dwarf, on the oth-
er hand, the nuclei are subject to gravitational interac-
tions, the largest of which are larger than the largest of
the gravitational interactions to which electrons are sub-
ject by a factor equal to the ratio of their masses, and one
has to be more careful if one is to justify the neglect of
the nuclear kinetic energies. In the white dwarf the
Coulomb interaction of a pair of (point) particles is, of
course, many many orders of magnitude greater than the
gravitational interaction of a pair, with the repulsive
Coulomb interactions tending to dominate over the at-
tractive Coulomb interactions. (If the positive and nega-
tive charges were each continuous and if the net charge
were zero, an approximation we shall later make in our
zeroth-order estimate of the energy, the minimum energy
would be identically zero and would be achieved for per-
fect charge neutrality. ) This places a high premium on
having near-perfect charge neutrality at the local level,
and there is indeed near-perfect local charge neutrality
for a large enough number of particles. (To lowest order
there is, therefore, no Coulomb interaction. ) This in turn
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demands that the spatial distribution be almost the same
for the two sets of particles. The nuclei and the electrons
therefore have the same uncertainty in position and
therefore the same uncertainty in momentum, and, thus,
the same characteristic momentum. Their kinetic ener-
gies therefore vary inversely with their masses. One finds
the curious but readily understandable result —see (13)
immediately below —that despite the fact that the
Coulomb pair interaction so dominates the gravitational
pair interaction, the energy of the white dwarf does not
to lowest order depend upon the charge of the electron
nor of the nucleus. This does not imply that the
Coulomb interaction plays no role; as we shall see, the
energy of the white dwarf would be very different if there
were no Coulomb interaction.

(P) The totally dominant interaction in the atom, pair-
wise or overall, is the Coulomb interaction, that between
electrons and that between electrons and the nucleus. In
the neutron star and in the white dwarf the dominant
overall interaction is the gravitational interaction be-
tween nuclei; the smallness of the gravitational relative to
the Coulomb interaction pairmise is more than compen-
sated for, for a suKciently large number of particles, by
the fact that the Coulomb interactions are both attractive
and repulsive and therefore saturate, while all gravita-
tional interactions are of one sign.

A. Neutron stars: the ground-state energy

We begin with a neutron star, assumed for simplicity
to consist exclusively of neutrons, X„ in number. With
n (r) now the neutron number density, and m„ the neu-
tron mass, E[n] is obtained from Eq. (4.9a) by replacing
m, by m„, dropping the E, [n] term, and replacing e in
the E„[n] term by —Gm„, with G the gravitational con-
stant; in Eq. (4.9e) we replace X by X„. Though the ter-
minology is never used, we then have a TF theory of a
neutron star, a theory that has been shown by Hertel,
Harnhofer, and Thirring (1972) to be exact in the limit
X„—~, assuming the nonrelativistic theory to be valid
in that limit. Corresponding changes can be made in the
more rudimentary form, Eq. (4.3). Replacing m, by m„,
Z by X„, and Z e by X„Gm„, one immediately
finds by minimization [or by the appropriate replace-
ments in Eq. (4.4)] that

g2 1 an
R (neutron star) = X

m„(GI„) X„' X„'~

approximation to be moderately accurate. We find

M(neutron star)R (neutron star)=A /(G I„),
(6.1c)

H= gp;/2m„—
1~i (j~N

Gm, /ri (6.2)

As a further refinement of a trick of Fisher and Ruelle
(1966), reformulated by Dyson and Lenard (1967, 1968),
Levy-Leblond (1969) rewrites Eq. (6.2) as

g [p, /2(X„—1)m„—Gm„/2r, , ]
i =1 jAi
X„

gh, .

Here h, represents the Hamiltonian of X, —1 particles
(jWi) of inertial mass (X„—1)m„and gravitational mass
m, /2 in the gravitational field of one fixed particle, the
ith, with gravitational mass m„; the X„—1 particles do
not interact with one another. The ground state of h,- is
the state in which the neutrons occupy the X„—1 lowest
hydrogenlike energy levels. The (degenerate) energy lev-
els of h, are given, letting e —+ G ( —,

' m„)m„and
rn, —+(X„—1)m„ in the usual hydrogenic expressions, by

e = —(X„—1)(G'm„'/A )/(8q ), q =1,2, . . . ;

the corresponding hydrogenlike radii are

r =q A /[(N„—1)m„(Gm„/2)] .

By using the lowest eigenvalues for each h, and summing,
we do not obtain the lowest eigenvalue of H, for we then,
incorrectly, treat the h; as independent, whereas the h;
have common coordinates. We do, however, obtain a
rigorous lower bound E(neutron star) on the ground-state
energy of H. [As an interesting variant of the above type
of inequality, consider two distinguishable particles in-
teracting with one another and with a center of force; in
an obvious notation we have

the right-hand side containing only fundamental con-
stants.

A quite different approach is possible for neutron stars.
This approach is unrelated to the TF approximation but,
since the argument is short and since it is so pretty, it
would be almost immoral not to mention it. We have

N

g 2 5~7/3
E(neutron star) =-

f2
Q 2

7l

a
H =T/+ v](r})+[T2+vp(r2)+ v/2(y/p)] .

(6. lb)

Formula (6.1a) can be rewritten in an interesting form in-
volving the mass M(neutron star) =m„X„ofthe neutron
star, where we ignore the correction to the mass associat-
ed with the binding energy of the neutron star, a reason-
able procedure since we are assuming the nonrelativistic

We can obtain a lower bound on the ground-state energy
Esd of the system by solving (numerically) a sequence of
two one-body problems; one involves two centers. Thus
we freeze particle number 1 at a distance r& from the
center of force and determine the ground-state energy
Asd(r, ) of particle 2 in the potential generated by particle
1 and the center of force. Since
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T2+ ~2( 2 )+ ~12(r12 ) —@ d( 1 ) (6.3)

the ground-state energy of T, + V, (r, )+@sd( r, ) provides
a lower bound on Egd. This simple theorem, with minor
variants, has been used to prove that certain systems,
such as e +H (Aronson et al. , 1971) and e + +He
(Gertler et al. , 1968), cannot form a bound state. It can
also be used (Hahn and Spruch, 1974) to obtain a lower
bound on some scattering lengths. The theorem provides
one of the few means available by which one can attempt
to prove the nonexistence of bound states. ] Levy-
Leblond preserves the rigorous lower bound on the
ground-state energy E(neutron star) by using further ine-
qualities, but to avoid a bit of algebra we shall be satisfied
with an estimate of E(neutron star). Since there is a de-
generacy factor 2q associated with the energy level e,
we write

Q
N„= g 2q =2Q /3, (6.4)

the X„ in front of the sum accounts for the number
(N„—1)( =N„) of h, 's. We also have

R(neutron star)= r& =2(3/2) ~ N„'~ (1rt /Gm„) .

These results are of course of the same form as those of
Eq. (6.1).

The estimate of E—better, the rigorous lower bound
E on E—has recently been improved by a method that
entails no additional effort (Basdevant, Martin, and
Richard, 1989). Thus, rather than starting with the iden-
tity

N„ N„

I =1 J&l

used in obtaining Eq. (6.2 ), one starts with the identity

N„

XX(p —p, )'+ Xp; '

where we have assumed that N„ is so large that Q, the
highest principal quantum number associated with a fully
occupied state, satisfies Q ))1, and we have ignored the
relatively few neutrons in the state with principal quan-
tum number Q+ 1. We then have

Q
E(neutron star) )E(neutron star) =N„g 2q e

q=l

= —(N„/4)(G m„/A' )Q

= —(1/4)(3/2)' N (G m /A' )
'

(6.2")

This approach can be very useful for small values of X, .
If we are interested in large values of %„and ignore the
difference between N„and N„—1, Eq. (6.2") generates a
lower bound on the energy which represents an improve-
ment by a factor of 2 over that obtained from Eq. (6.2').

The brief remarks above concern only the most rudi-
mentary aspects of neutron stars. There are presently
under way investigations of the origin of neutron stars-
we shall have one brief comment on this later —of the
changing structure of a neutron star from the origin to
the surface and to the plasma region beyond, of the effect
of the intense magnetic field, of the accretion of mass
onto a neutron star when it is one component of a binary,
etc. (One can almost expect that in the near future there
will be universities with Departments of the Interiors of
Neutron Stars, and Departments of the Exteriors of Neu-
tron Stars. )

There has recently been considerable interest in the
possible existence of stars consisting of bosons. The
determination to within a numerical constant of order
unity of an upper limit on the mass of a boson star, for
bosons of mass m~ interacting gravitationally, follows
easily. Proceeding along the lines used often above, we
consider the ultrarelativistic approximation and, since
the Pauli principle does not apply, approximate the total
kinetic energy of Xz bosons in a sphere of radius R by
%~pc =N&Ac /R. The total energy is then
[Nzfic —G(N&m21 ) ]/R, and we have collapse when the
square bracket vanishes. The maximum mass of a boson
star is then

M,„(boson star) =A'c/Gm21 .

Proceeding more formally, we assume the Hamiltonian
to be the semirelativistic form Hz(ming, N~, yj =Gm21)
used by Martin (1988a, 1988b; see Sec. III.B.2) in obtain-
ing the collapse condition of an atom. One can bound
II& by the sum of a known term and a nonrelativistic
Hamiltonian IIN~ as Martin did, and eliminate the kinet-
ic energy of the center of mass of each pair, as discussed
just above. Using an upper bound on the ground-state
energy of HN~, obtained by a Rayleigh-Ritz calculation,
Basdevant, Martin, and Richard (1989) find as an upper
limit on the mass of a boson star

M(boson star) & 1.51(A'c/Gm21 ) .

The term g; p; is the momentum of the center of mass
and can be dropped; it is the elimination of the energy of
the motion of the center of mass of the pair which
represents the advantage of the new form of g,.p, . The
canonical momentum conjugate to r; —

r~ is not p; —pj
but —,'(p; —pj ) =n; We can now w. r.ite

The numerical coefficient is not much more than twice
the value, 0.633, obtained in previous general-relativistic
calculations of the bound. (The term "mini-boson star"
is often used, since, for the values of m~ expected to be
relevant, M „is so much smaller than the mass of a typ-
ical star. )
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B. White dwarfs: the ground-state energy

In studying a white dwarf, we assume for simplicity
that it consists of N electrons, with number density n (r),
and the same number % of protons with mass I . Fur-
ther, in line with remarks (a) and (P) above, we assume
that the protons have the same number density n (r); this
will be justified somewhat more formally later. Presum-
ably, we have thereby almost fully accounted for
Coulomb interactions, which we henceforth ignore in the
preliminary treatment of white dwarfs in this subsection.
E[n] for the white dwarf is then obtained from Eq. (4.9a)
by replacing m, by mz in the Err [n] term, dropping the
E, [n] term, and replacing e in the E„[n] term by
—Gm; in Eq. (4.9e) we replace Z by N. For a simpler
rougher estimate, we could in Eq. (4.3) replace Z ~ by
N ~, and Z e by N Gm; m, remains as is. (Recall
that the kinetic energy is that of the electrons, while the
potential energy is that of the protons. ) Minimizing the
simpler version of E(R) thereby obtained, we find

R(white dwarf)=A /(Gm, m N'~ )—=a IN'~

Gm
E(white dwarf)= —N G m m /A' = —N

(6.5a)

The "Bohr radii, " a of Eq. (6.5a) and a„of Eq. (6.1a),
are quite difFerent, their ratio being (on setting m„= m~ )

a, /a =I,/I (6.5c)

With M(white dwarf) =mz N, the mass of the white
dwarf, Eq. (6.5a) can be rewritten as

M(white dwarf)R (white dwarf) =iii /(G m, m ) .

(6.5d)

As for neutron stars, we neglect mass corrections associ-
ated with the binding energy.

In arriving at Eqs. (6.5) we assumed that there are so
many protons that the (nonsaturating) gravitational in-
teractions of the protons dominate over all Coulomb in-
teractions of protons and electrons, but we have as yet
made no estimate of the critical number of protons that
must be present if that is to be the case. As will be seen
in the next subsection, it will be true for neutral systems
with the number of nuclei of the order of or larger than
the number of nuclei in planets. (Their odd, nonspherical
shapes make it clear that gravitational interactions have
not yet taken over for objects the size of asteroids. )

Indeed, Coulomb interactions might seem at first blush to
play no role whatever for white dwarfs, since the charge e
does not enter Eqs. (6.5), but in fact Coulomb interac-
tions play a decisive role, as suggested by the presence of
m, in Eqs. (6.5). If protons and electrons were un-

charged, the uncharged protons and uncharged electrons
would remain coupled, but only by their gravitational in-
teraction, and a white dwarf composed of uncharged pro-

while Eqs. (4.4), or Eqs. (6.5), are replaced by

R(white dwarf)=Z' fi l(Gm, mzNz~ ),
E(white dwarf)= —Nz 'G m, mz/(Z' 'A' ) .

(6.5a')

(6.5b')

As noted in the Introduction, the TF model is not
applicable to our Sun, since there the kinetic energy orig-
inates not in the exclusion principle but in thermal
motion.

C. White dwarfs: the critical numbers

We turn now to the estimation of the critical number
of nuclei, N„;,(nuclei) and N,'„,(nuclei), which must be

tons and electrons would consist of a small uncharged
proton star embedded in a much larger uncharged elec-
tron star; there would be two spherical distributions,
with the same center. The properties of the uncharged
proton star would be almost independent of the presence
of the uncharged electron star. R(unch. proton star) and
E(unch. proton star) would be obtained from Eqs. (6.1) by
simply replacing N„by N and m„by m . (If the protons
were uncharged, m, and I would presumably be equal;
for equal numbers of neutrons and protons, our un-
charged proton star would, ignoring the negligible gravi-
tational eA'ect of the uncharged electrons, be identical to
a neutron star. ) From Eqs. (6. la), (6.1b), and
(6.5a) —(6.5c) it follows that, for a comparable number of
nucleons, R(unch. proton star) would be very much small-
er than R(white dwarf), by the factor m, /mz, while
E(unch. proton star) would be very much larger than
E(white dwarf), by the factor m /m, . While the un-

charged electrons would scarcely aAect the uncharged
protons, the converse would not be true; the gravitational
field generated by the small uncharged proton star would
be the dominant attractive force forming the uncharged
electron star.

We can reword the above discussion as follows. In a
white dwarf composed of X protons and X electrons,
with X sufTiciently large, the Coulomb force so dominates
at the local level that the white dwarf can be thought of
as consisting of N neutral (spin-1/2) fermions, each with
the inertial mass of the lighter particle, m„and each
with the gravitational mass of the heavier particle, m .
The argument can be readily extended. To quote Levy-
Leblond (1969), "even when the nuclei obey Bose statis-
tics, the exclusion principle operating on the electrons to
limit their density is 'transmitted' to the nuclei by the in-
terplay of Coulomb forces. " It is therefore entirely trivi-
al to generalize the above treatment of an electron-proton
model of a white dwarf to a white dwarf model in which
the protons are replaced by alpha particles, or by an arbi-
trary but specified mixture of protons, alpha parti-
cles, . . . ; the electrons generate the kinetic energy and
the nuclei the gravitational potential energy. For the
particular case of X =XzZ electrons and Xz nuclei of
charge Ze and mass mz, Eq. (4.3) is replaced by

E(R)=(NzZ) ~ (fi Im, R ) NzGmz/R, —
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E „,(R)= NGm /—R . (6.6)

The average nearest-neighbor distance ro will then be
defined roughly by Nro=R . Taking into account the
self-screening property of electrostatic interactions, as
noted by Dyson and Lenard (1967)—see the discussion
of Onsager's theorem in Sec. VIII.B—we see that the
Coulomb energy will be of order

present if the gravitational interactions are to begin to
dominate over the Coulomb interactions at the inter-
atomic and intra-atomic levels, respectively. In the form-
er case only the outer electrons are in states quite
different from the outer electron states in normal matter,
while in the latter case even the inner electrons are in
states quite different from the inner electron states in nor-
mal matter. In both cases, the gravitational force rather
than the Coulomb force has become the origin of the
cohesiveness of matter. We first consider the interatomic
case. We make the rough assumption, which should be
sufficiently accurate for our purposes, that the binding
energy of a pair of "compressed atoms" —the energy
measured with respect to the sum of the energies of two
isolated "compressed atoms" —is of the order of the
binding energy of the last electron of an isolated
"compressed atom"; this in turn is of the order of the
Coulomb energy of the last electron. N„;,(nuclei) is then
the number of nuclei for which the total gravitational po-
tential energy of the system begins to dominate over the
sum of the Coulomb energies of the last electrons for all
of the "compressed atoms. " We begin by considering the
case for which all of the nuclei are protons. Since each
"compressed hydrogen atom" has only one electron, one
cannot speak of inner and outer electrons, but our treat-
ment of the proton case is the analog, for heavy nuclei
with many electrons, of the interatomic case. (For heavy
nuclei, we shall study the interatomic case by considering
just one electron for each "compressed atom, " the outer-
most electron, and we shall study the intra-atomic case
by considering the Z electrons in each "compressed
atom" statistically. ) If the N protons and N electrons are
in a sphere of radius R, the gravitational energy will be of
the order of

Coulomb energy of the inner electrons is irrelevant to an
analysis of interatomic bonds; the relevant Coulomb en-

ergy will therefore remain of the order of that given in

Eq. (6.7). The above analysis is then vahd if we merely
replace mz by mz, so that we have

N„;,(nuclei) =(e /Gmz) (6.9)

%"e turn now to an estimation of the value of the
second critical number, N,'„,(nuclei), for which the intra-
atomic bonds begin to be overcome by gravitational
forces, the inner as well as the outer electrons no longer
being in bound states attached to the nucleus. Assuming
again that we have Nz atoms of nuclear charge Ze and
mass mz, we can obtain the gravitational energy from
Eq. (6.6) by simply replacing mz by mz and N by Nz, so
that we now have

E „„(R ) = —Nz Gm z /R (6.10)

The intra-atom Coulomb energy is a sum of the individu-
al atomic energies. Each "atom" is now confined to a
cell, which we take to be a sphere of radius R„&& with the
nucleus at the center, where R„&& varies from point to
point, as it is determined by the local number density. A
characteristic value of R „~& is given by R „»=Nz ' 'R,
and will be significantly smaller than ao. The Coulomb
energy of an "atom" will not therefore be of order
—Z ~ e /R„~&, as might be expected for a normal atom.
Rather, the Coulomb energy of the "atom" will be of or-
der —Z e /R„l~, for at the very high electron densities
in a white dwarf the Coulomb field is not very effective
and the electron density will be nearly uniform over the
dimension of an "atom. " We shall give some more de-
tails on this point in Section VI.E. (The distinction be-
tween the Coulomb energy of an atom and an "atom"
has sometimes been missed in the literature. Of course,
there is not that much difference normally between Z ~

and Z, and the argument is in any event a crude one. )

We have

Ec,„,;„„,(R)= NzZ (e /—R„,))= ZNz (e /R—) .

(6.11)

Ec,„&(R ) = N( e /vo ) = N— ( e /R ) . —

Equating the two energies gives

(6.7) Equating Eqs. (6.10) and (6.11) gives

N,'„,(nuclei) =Z N„;,(nuclei) . (6.12)

N„;„(protons)=(e /Gm~) =10 (6.&)

N„;,(protons) is the number of protons (and of electrons)
at which the interatomic bonds begin to be overcome by
the gravitational forces.

An almost identical analysis is applicable to the inter-
atomic case for matter consisting of Nz nuclei of charge
Ze, mass number A, and mass mz, and of NzZ electrons.
We assume that we can describe matter as consisting of
atoms with almost all of the electrons in an atom in an
inert core, and with a number of order unity of electrons
in an atom that are not rigidly bound to the nucleus. The

For ironlike matter with Z =25 and mz =10 g, not
too bad a description of the matter of the inner planets,
we find N„;„(nuclei) = 10, with an associated mass
= 10 g. This is indeed of the order of the masses of the
inner planets, for which we know that both the gravita-
tional and Coulombic interactions are important. As
noted earlier, Coulombic interactions dominate for ob-
jects of the order of asteroids; on the other hand, gravita-
tional interactions dominate for objects of the order of
white dwarfs.

Levy-Leblond (1969) not only presented much of the
above heuristic proof but gave a rigorous proof, starting
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with a Hamiltonian that contains nuclear and electronic
kinetic energies and Coulombic and gravitational interac-
tions.

We close this subsection with some brief historical re-
marks on white dwarfs. To begin, we note that in the
very year of the introduction of the Schrodinger equation,
Fowler (1926) realized that "a star was like a giant mole-
cule in its ground state, " with the zero-point pressure of
the electrons preventing collapse of the star. The realiza-
tion that gravitational pressure could overcome the
zero-point pressure in the relativistic domain —for much
the same reason that a one-electron ion collapses for Z
large enough in relativistic theory but not in nonrelativis-
tic theory —was first recognized by Frenkel (1928) and,
with some errors, by Anderson (1920); neutron star col-
lapse is discussed in the next subsection. Further ad-
vances include work by Stoner (1930), Chandrasekhar
(1931a, 1931b), and Landau (1932). In a lecture at the
Erice Summer School, Thirring, in a brief account of the
early history of stability which includes the above com-
ments, also observes that "none of the authors so far
mentioned quotes any of the previous work on that prob-
lem. " Plus ga change, plus c'est la meme chose. The
great theoretical activity had little experimental data to
serve as guidance; though many young astrophysicists
think of white dwarfs as having been known to Hip-
parchus, they were first observed in the 1910s, and as of
1940 there were of the order of half a dozen white dwarfs
that had been reasonably carefully observed. As late as
the 1950s, few if any physics texts gave the white dwarf
as the magnificent example that it is of the dramatic
effects of the Pauli exclusion principle. Theory and ex-
periment and text books have since made great strides.
In theory, one is concerned with many matters such as
the formation, structure, and evolution of white dwarfs,
and with the effect of the strong magnetic Geld on the po-
larization of the radiation emitted. Those interested in
the history of science might look at pages 506 through
509 of Kobold (1926), which indicates some of the ideas
about white dwarfs that were prevalent before the
currently accepted concepts were introduced; the ideas
should but probably will not give pause to some sure-of-
themselves present-day theorists.

D. On the collapse of neutron stars and ophite dwarfs

E(R ) =N„pc —(N„Gm„/R )

=(N„ Pic N—Gm )/R

We therefore have collapse if

N &(itic/Gm ) =N' .

10 g =Mo (6.13)

where Mo is the mass of our sun. For the white dwarf,
with Ãz nuclei of atomic energy Z and mass mz defining
the gravitational energy, and Ã =ZAz electrons defining
the (ultrarelativistic) kinetic energy, we have R =N' ro,
with r o the volume associated with an electron, and

E(R) =Npc Nz(Gm—z/R)

=[Z N ~ fic —N Gm ]/R

We therefore have collapse if

N, & Z'(rc/Gm, ')'"=N" . —

The mass beyond which a white dwarf will collapse, the
Chandrasekhar mass Mch, is therefore given —ignoring
binding-energy corrections —by

Mc„=mzN" = (Pic/6) (Z/mz )

If our nucleus of atomic number Z has a mass number
A =2Z, we have mz = Am„=2Zm„and therefore,
dropping a factor 1/4,

M „=(ih' /6) „=M~ (6.14)

We make a few small remarks.
(ct) In general we have

n (r) =(8'/3h ')pF(r) = [p+(r)/rrfi]' .

For the ultrarelativistic approximation to be reasonably
accurate we require pF &&m, c for the white dwarf and

pz &)m, c for the neutron star. We therefore require

The neutron star mass beyond which the gravitational at-
traction overwhelms the repulsion originating in the ex-
clusion principle is therefore —ignoring binding-energy
corrections, no longer such a reasonable
approximation—

M(collapse neutron star) = N' m„=(A'c/ 6) ~ m„

We noted in Sec. III.B.2 that the method used there to
obtain a bound on the collapse condition for an atom (or
a collection of atoms) could also be used to study the col-
lapse of a neutron star or a white dwarf. We shall here
approach the question rather differently; to obtain a very
rough estimate of the conditions for the collapse of a neu-
tron star or of the white dwarf, we proceed in the ultrare-
lativistic approximation, along the lines we used in study-
ing the collapse of a one-electron ion. For the neutron
star, with each neutron in a small sphere of radius I'o,
with p =A/rz, and all %„neutrons in a large sphere of ra-
dius R =X,' ro, we have

n (r) ))(m, clerk) for the white dwarf,

n (r) ))(m„c/sr') for the neutron star .

The condition on n (r) for the neutron star is therefore
much stronger than for the white dwarf, and indeed neu-
tron stars are much smaller —compare Eqs. (6.la) and
(6.5a), valid for precollapse conditions. The masses at
collapse are roughly the same.

(P) Our model of a white dwarf is somewhat more real-
istic than our model of a neutron star. The neutron star
is far from consisting of neutrons alone, nuclear forces
cannot be ignored, and even the eff'ects of general relativi-
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ty are not completely negligible.
(y) If a white dwarf accretes mass slowly, it will build

up to the Chandrasekhar mass Mcb and then collapse,
perhaps to a neutron star, and perhaps without much loss
of mass. One might then expect to find neutron stars, at
least those neutron stars which developed as just de-
scribed, with masses very close to Mcb. There is one
binary that almost certainly consists of two neutron stars,
each of which does have a mass very close to Mc„.

(5) Corrections to the TF approximation to the
ground-state energy of an atom, which is of order
Z Ry, are of order Z Ry. Since Z ' is hardly negli-
gible for the Z s of interest, the TF approximation, while
useful for the atomic insights it provides, may not pro-
vide an accurate estimate. In stars, on the other hand,
one will be concerned with collections of particles of or-
der X = 10 or so, and the neglect of a correction of or-
der 10 ' will be very tolerable.

(e) For the white dwarf and neutron star, a particle at
a great distance r from the center will experience an at-
tractive 1/r potential, which is also the case for a positive
ion. As for the positive ion, therefore, a white dwarf and
a neutron star in the TF approximation will have n (r) =0
for r beyond some given point.

(g) For the neutral atom, with % =Z electrons, one
can scale the TF differential equation so that one solution
is applicable to all Z. This is not the case for positive
ions, for which one is concerned with Z and X. For neu-
tron stars there is only one large number, the number X„
of neutrons, and for white dwarfs, which are assumed to
be neutral, or essentially neutral, there is effectively only
one number, Xz, with the number of electrons then equal
to ZXz. (The argument is almost identical for a specified
mixture of nuclei. ) One can therefore expect to be able to
scale the TF-like equations for neutron stars and white
dwarfs.

(r)) As noted above, the Coulomb interaction in the
white dwarf plays a fundamental role in keeping the elec-
trons close to the nuclei. In addition, the Coulomb in-
teraction makes a direct contribution to the energy, a
small but not negligible correction which we shall now
consider.

E. The Coulomb contribution to the energy
of a white dwarf

1. The first Coulomb correction

Having solved numerically in a TF-like approximation
the problem in which % electrons of inertial mass I,
generate the kinetic energy and Xz =N/Z nuclei of grav-
itational mass mz generate the gravitational potential en-

ergy, one knows the electron number density n (r) and
the nuclear number density n (r)/Z. Let the average
electron number density in the neighborhood of some
point rp be n:—n (rI, ). In that neighborhood, we know
the effective volume ~ occupied by each nucleus and its E, [n, R„&&]=—(3/2)Z e /R„&&, (6.15a)

associated electrons. We surround each nucleus by a
Wigner-Seitz cell, which we take to be simply a sphere of
that radius R„&& which gives the volume ~. Up to this
point, the nuclear and electronic charges have been as-
sumed to be smeared out, neutralizing one another so
that there are no electric fields. To account for Coulomb
effects, we must be more realistic and take the nuclei and
electrons to be point charges. Since the charge and mass
distributions within each cell remain spherically sym-
metric, the interaction of any two cells is unaffected by
the collapse within each cell of the nuclear charge to a
point and of the electron charge to a set of Z points. The
Coulombic and gravitational self-energies of point nuclei
and point electrons define the zero-energy reference level
and can therefore be omitted. The gravitational interac-
tion between the nucleus and the electrons in any one cell
and the change in that interaction under the collapse to
points are negligible, and the determination of the charge
correction reduces to the estimation of the Coulomb en-
ergy of a point nucleus at the center of a cell of specified
radius R„&& and of a spherical distribution of neutralizing
(point) electrons within that cell, with the charge distri-
bution of the electrons to be that which minimizes the
energy. Thomas-Fermi theory was used to estimate the
energy in the zeroth-order approximation in which the
charges were spread out, and TF theory can also be used
to estimate the Coulomb correction. (Note, though, that
in zeroth order all of the enormous number of electrons
and nuclei are considered at once, and the TF estimate is
effectively exact, while in the Coulomb correction one
considers the cells one at a time and the TF estimate may
not be very accurate, since the number of electrons in one
cell, Z, is quite small. ) Thus we could now set up a Lenz
energy functional for a neutral atom confined to a sphere
of radius R„&& by using Eqs. (4.9), with X =Z, restricting
the range of integration from 0 to R „&&, and imposing the
boundary condition dn/dr=0 at r =R„&&. (This last
condition is a symmetry condition, which can most easily
be understood by thinking of the case for which the cells
are rectangular parallelopipeds. ) The n (r) that mini-
mizes this Lenz functional would not scale, but would
have to be solved numerically for different values of Z
and n or, equivalently, of Z and R„&&. One can, however,
obtain a simple reasonably accurate estimate of the
Coulomb energy of the cell, for in the high-density limit
the kinetic energy dominates and it is a good approxima-
tion to use n(r)=n. The contribution associated with

Ex [n, R„&&] of Eq. (4.9b) is the kinetic energy that has al-
ready been considered; the corrections are E, [n, R„» ] of
Eq. (4.9c) and E„[n,R &] dof Eq. (4.9d). [We use E rath-
er than E', since n (r) and therefore n are known, so that
the energies are not functions but numerical values. ]
These corrections are readily evaluated, for they are the
usual expressions for the Coulomb energy of a uniformly
charged sphere of total charge —Ze interacting with a
point charge Ze at the center and with itself, namely,
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E„[n,R„„]=(3/5)Z e /R„„.
For later reference, we record the ratio

—E, [n, R„ii]/E„[n,R„„]=5/2 .

(6.15b)

(6.16)
E(&)

E(white dwarf) ao

theorem, the total kinetic energy is equal in magnitude to
the total energy E(white dwarf). It follows that

The Coulomb correction per cell in the uniform density
approximation, that is, the first-order correction
E' "(cell), is the sum of the expressions in Eq. (6.15). We
have

E~ "(cell)= —(9/10)Z e /R„ii

(9/10)(47m /3 )1/3Z 5/3~ 2 . (6.17)

in the second step we used

n =Z/(4~R„„/3) .

(6.19)

The kinetic energy per cell was calculated as a zeroth-
order term and will therefore be denoted by Ez' '(cell).
Since n is a constant, it follows immediately from Eq.
(4.9b) that

E( i(cell)=(A' /m )n ' „R

=e aoZ /R„)),
using Eq. (6.18) in the second step. Comparing this with
E'"(cell) as given by the first form of Eq. (6.17), we have

(Although the virial theorem is satisfied in the zeroth-
order expression for the energy —the nuclear gravitation-
al potential energy having twice the magnitude of the ki-
netic energy of the electrons —and although our first-
order correction is a potential-energy term, the virial
theorem is not violated. Sec Sec. III.C.1.) Dividing
E'"(cell) by the volume Z/n of the cell gives the energy-
density correction to first order, and, finally, replacing r7

by n (r) and integrating over the volume of the white
dwarf gives as the total first-order energy correction

2. The second Coulomb correction

We can go beyond the leading Coulomb correction,
that associated with the uniform density approximation,
and determine, to next order, the Coulomb correction as-
sociated with the variation of the number density within
the cell. With n the average number density within the
cell —n will depend upon where in the white dwarf the
cell is located —we write, with r here representing the
distance from the center of the cell, where the nucleus is
located,

n (r)=[1 +q(r)]n . (6.21)

Here q (r), to be determined, is assumed to be a perturba-
tion. Since we have

f n (r)dr= f n dr(=Z),

we must have

n fq(r)dr=0 .

Z'~ R(white dwarf)

aoXz1/3

2e 2

Gm Nmz z

using Eq. (6.5a') in the last step. The condition that this
ratio is to be small compared to unity is nothing other
than the condition (K,'„,(nuclei)/Xz)' && I, with the
critical number defined by Eqs. (6.12) and (6.9); clearly,
the perturbation must be small whether viewed at the cel-
lular level or at the level of the entire white dwarf.

E'"(cell) /Ez' '(cell) =Z' (R„i&/ao):—p . (6.20)
We introduce

If our perturbation-theoretic approach is to be correct,
this expansion parameter p must be small. Since a
characteristic density in a white dwarf is 10 g/cm, while
a characteristic density of ordinary rnatter is of order
unity, the volume per atom compared to the volume of
an isolated atom will be reduced by a factor, very rough-
ly p of 10

& so that R
&&&~ /a p will be of order 10 and p will

indeed be small. E'"(cell) represents the second term in
a power series in p for the TF energy of an atom confined
by great pressure to a volume very much smaller than a p.
We shall calculate the third term in the expansion 111 the
next subsection.

The ratio E' "(ceil)/Ez' '(cell) is equal to the ratio
E'"/Ez' of their volume integrals. But, by the virial

I

F[n]—:E„»[n]+pn fq(r)dr,

where E„„[n]is defined by Eq. (4.9), but with the range
of all integrals defined by the radius R„&& of the cell. We
expand in q(r), retaining terms of order q (r) in the ex-
pansion of the dominant kinetic-energy term but only
terms of order q (r) in the potential-energy terms. We ar-
rive at

F [n] =E„ii[n ]+E,',ii[q]+pn f q (r)dr

=E„„[n]+F[q],
where

E,',i'i[q]—:(5/9)(kA /m, )n f q (r)dr Ze n f [q(r)/r]dr+e n f—f [q(r)/~r —r'~]drdr' . (6.22)

E„ii[n ] comprises the kinetic-energy contribution and two potential-energy contributions already accounted for. Set-
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ting oF [q]/5q=O, we obtain, writing R, for R„&&,

(10/9)kaon q(r) —(Z/r)+2rrn(R, —
,'r—)+(p/e )=0, (6.23)

where we divided by ne and used

f d r'/I r —r'1 =2 ir( R, —
—,
' r ) .

To evaluate p, we integrate Eq. (6.23) over dr and use

I q(r)dr=0 and (6.18).
We find that

p = ( 3/10 )(Ze /R, ) (6.24)

and therefore, from Eq. (6.23), that

—,Okaon ~ q(r) =Z —+1 r
2R,'

9
SR,

(6.25)

[q (r) is clearly not small for small r, but the volume in-
tegral in q (r) of the offending Z/r term and of the terms
in Eq. (6.22) are perfectly well defined; without further
justification, which should not be difficult to provide, we
assume that it is legitimate to treat q(r) as a perturba-
tion. ] With the q(r) just obtained, we use the virial
theorem in the form

E,',It[q]= —(5/9)(kh' /m, )n ~ f q (r)dr

to obtain

(2) 324 4
cell

2/3

Z'" Ry. (6.26)

[We used the fact that the virial theorem for the terms in
Eq. (6.22) is of the usual form, that is, the total energy is
the negative of the kinetic energy. The proof differs
slightly from that given in Eqs. (5.10) and (5.11) for the
Lenz energy functional. Thus, since J q(r)dr=0, one
can introduce q, (r) =s'q(sr), with t arbitrary; further,
Eq. (6.22) contains n, and under r ~sr one has n ~s n].
It is interesting that for fixed n both the first- and
second-order Coulomb corrections, the second and third
terms in the expansion of the TF energy, can be obtained
analytically. As expected, the ratio of E,', ll to E,",l'l,
where E,",

I&
is defined by Eq. (6.17), is of the order of the

expansion parameter p defined by Eq. (6.20). The value
of E,', I&

was first obtained by Salpeter (1961), who refers
to it simply as the TF correction. Salpeter used TF
theory in its differential equation form; here, as in many
applications, the Lenz-energy-functional approach is not
particularly simpler in terms of the calculation to be per-
formed, but makes the direction along which to proceed
almost obvious, requiring much less ingenuity. The
straightforward rederivation above of E,',&&

as an exercise
in the use of the Lenz energy functional is due to R.
Shakeshaft and the author (unpublished).

Salpeter's result is more accurate than that obtained in
Eq. (6.26), since he used the relativistic form
(p c +m, c )'~ —m, c for the kinetic energy rather
than p /2m, . One must be careful here. In studying the

collapse condition of the white dwarf, it is reasonably
clear that it is consistent to treat the kinetic energy rela-
tivistically and the (gravitational) potential energy nonre-
lativistically, for the former originates in the rapidly
moving electrons while the latter originates in the slowly
moving nuclei. In the present case, however, both the ki-
netic energy and the (Coulombic) potential energy origi-
nate in the rapidly moving electrons. Salpeter checked
that the relativistic effects on the interaction are of
higher order. He also studied a number of other effects
that we have not considered at all.

F. Divergence of perturbation series
in quantum electrodynamics

F(e )=ao+a2e +a4e + (6.27)

If all pair interactions have an attractive component,
that component, even if relatively weak pairwise, can be-
come dominant for a sufficiently large number N of parti-
cles. The energy of the ground state of the system can
then increase faster than X as X increases, and this can
lead to systems with very interesting physical properties.
In neutron stars and white dwarfs, the always attractive
component is the gravitational interaction. Coulomb in-
teractions play a somewhat similar role in atoms of large
Z. There the attractive electron-nucleus interaction
dominates the repulsive e e interaction. Approxi-
mately, therefore, we have only attractive interactions,
and the ground-state energy does increase faster than Z,
namely, as Z . However, no atom can have a very
large number of electrons, for the magnitude of Z is lim-
ited by the nature of the nuclear forces. There can be an
arbitrarily large number of electrons in matter, but there
the repulsive Coulomb interactions almost counteract the
attractive ones. There is one (unphysical but nevertheless
very interesting) case for which, with an arbitrarily large
X, there is an attractive Coulomb interaction between
each pair. It occurs in the study of the convergence of
perturbation series in quantum electrodynamics. The
charge e of the electron is the perturbation parameter,
and, as in many convergence studies, one replaces func-
tions of a real variable, here e, by functions of a complex
variable, which we denote by e': the charge e' can be
complex, and in particular it can be +Ee. The nonrela-
tivistic e /r&2 interaction between a pair of like particles
becomes (e') /r&z, which can assume the value
(+ie) /r, 2, that is, e /r, 2; the interaction —is then at-
tractive. Correspondingly, the interaction between a pair
of unlike particles is then repulsive.

In a paper with the title almost the same as the head-
ing of this subsection, Dyson (1952) used the above ap-
proach to argue that, for any physical quantity F(e ), a
power series of the form obtained in perturbation theory,
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where s,2=c (t, t2) ——r, 2 is the square of the space-
time interval between the charges and 6+ is the Heisen-
berg delta function, a modification of the Dirac delta
function. The properties of 6+ need not concern us; for
our purposes, the important property of U is that it is pro-
portional to e, since it then follows that F(e ) will have
the form given in Eq. (6.27) if calculated in perturbation
theory. But if the expansion is to converge for the physi-
cal value of e, F[(e') j must have a range of conver-
gence at least equal to e, and, in particular, the expan-
sion for F (

—e ) must also converge. But F ( —e ) can be
reinterpreted as the value of the physical property for a
fictitious world in which like particles attract and unlike
particles repel. The "electrons" and "positrons" in that
world have the pure imaginary charges +ie and —ie,
respectively —or vice versa. We define the energy of the
vacuum in that fictitious world to be zero, and we show
that there exist states of the same net charge (zero) as the
vacuum, states which can therefore be coupled to the
vacuum, with lower energy. The vacuum will therefore
be unstable. (Arguments of this kind may or may not
have some relevance to an understanding of the Big
Bang. )

To study the stability of the vacuum, we consider
states with X "electrons" in one region of space and X
"positrons" in a distant region of space. The repulsion
between each "electron" and each distant "positron" can
then be neglected. We place each "electron" in its own
sphere of radius r, and the collection of the X "electron"
spheres in a large sphere of radius R =X' r. We choose
r to satisfy r ))A/m, c, so that it is consistent to calculate
the kinetic energy of an "electron" nonrelativistically, for
the nonrelativistic kinetic energy will be of the order of
A /m, r, much less than the rest energy m, c . It is then
also consistent to use the nonrelativistic Coulomb expres-
sion —e /r, 2 for the interaction of a pair. Proceeding as
usual, but including the rest energy of the "electrons, "
and expressing the result in terms of r rather than A, we
find

E(r)=Nm, c +N(A /m, r ) —N ~ (e /r) . (6.29)

A similar expression holds for the "positrons. " We can
of course give a more accurate TF estimate of E(F), but
it wi11 not be necessary. Since the attractive term has the
strongest N dependence, it is clear that E(r ) as given by
Eq. (6.29)—or by a TF approximation or exactly —will
have a range of negative values extending arbitrarily far

diverges. (Dyson noted that the argument is lacking in
mathematical rigor and in physical precision, and intend-
ed it to be suggestive, but believed it to be convincing
enough to merit publication. ) The significance of the re-
sult is dramatized by the simplicity of the argument. The
paper is two pages long and contains only two equations,
Eq. (6.27) above and Eq. (6.28) below. Following Feyn-
man (1949, 1950), Dyson took the interaction U between
like charges to be given by

U=e5 (s, ),

down as X increases. The vacuum is therefore unstable.
(States other than the vacuum, those containing a small
number of physical electrons and positrons, can similarly
be expected to be unstable. The state of large numbers of
physical electrons and positrons has not been studied in
the relativistic context, for that would require a many-
body QED analysis. Though the argument may not re-
quire such an assumption, we shall simply assume that
the energy of such a system increases less rapidly than
the five-thirds power of the number of physical electrons
and positrons; systems of large numbers of physical elec-
trons and positrons will then also be unstable. ) The spec-
trum of the Hamiltonian will therefore be quite different
for e )0 and for e (0. This difference persists for any
value of e, down to e=O. It is therefore to be expected
that F (

—e ) is not analytic, or equivalently that v cannot
be treated as a perturbation and that the power-series ex-
pansion of F(e ) will diverge. There may of course be a
nonperturbative formulation of quantum electrodynam-
ics, but even the nonconvergent series in Eq. (6.27) can be
expected to have a useful interpretation, for only the
high-order terms in the expansion will be very big, and
the leading terms should give a reasonable estimate of
F(e ). There is therefore no contradiction between the
extraordinary accuracy of perturbation-theoretic predic-
tions of @ED and the divergence of the perturbation
series.

There are other ways of "understanding" the diver-
gence. If the vacuum can decay, the energy of the vacu-
um has an imaginary component. But in any finite
perturbation-theoretic calculation, the energy will be
real. Alternatively, although the probability of decay of
the fictitious vacuum into any particular state of "elec-
trons" and "positrons" may be arbitrarily small, the ficti-
tious vacuum is infinite, and one can expect that some-
where some state of "electrons" and "positrons" will ap-
pear instantaneously.

The above difficulty does not arise in nonrelativistic
theory, even though there too the (static Coulomb) in-
teraction is proportional to e, since nonrelativistic
theory does not encompass positrons so that there are no
states in the fictitious world that are of lower energy and
that conserve charge. (There are of course perturbation
series that diverge in nonrelativistic theory. An example
is the Stark effect for an atom in an electric field F. The
spectrum is not analytic at I'=0, for the spectrum of an
atom in a field, no matter how weak, goes down to —~,
or, alternatively, the energy of any state has an imaginary
component, even when one turns off the radiation field,
since any state can decay. )

We return now to the stability of the vacuum with
respect to spontaneous pair production. Since
A /m, F «m, c, we see that E(r) becomes zero, so that
spontaneous pair production becomes possible, for

N=[m, c /(e /r )I ))(fee/e )
~ =(137) ~ ))1 .

One might object that for X that large a relativistic
analysis might be demanded. That objection, however,
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The lowest energy will then be positive for
X" A'c &X e, for any value of R, but for X Ac &% e
the lowest energy can be made negative by making R
small. We therefore obtain the same value of X for
which pair production is possible as that given by the
nonrelativistic analysis.

Vll. ATOMS AND POSITIVE IQNS
IN THE INTENSE MAGNETIC FIELD
OF A NEUTRON STAR

We seek an estimate of the ground-state energy of a
many-electron atom or positive ion in an intense uniform
8 field comparable in magnitude to those which almost
surely exist at the surface of a neutron star, of the order
of 10' or 10' G. To study this problem it will first be
necessary to understand the "free-electron" problem of a
single electron in an intense uniform 8 field but otherwise
free. This "free-electron" problem was solved by Landau
years ago. A proper discussion can be found in Landau
and Lifshitz (1965), but a qualitative picture will suffice.
Motion parallel to 8, which we choose to be along the z
axis so that 8=Su„ is unaffected by 8, and the kinetic
energy associated with motion along the z axis is arbi-
trary. Motion in the p=(p, P) plane perpendicular to 8
is defined by

1

2m~
Pz

eA Ei 'Pi(p) =0, — (7.1)

where we can choose A(p) = —(B/2)(p X u, ). It is con-
venient to introduce p, x, and itj(x), defined by

p =(2Ac/eB), x—:p/p, gi(x) ='Pi(p) . (7.2)

p has the dimensions of length; it is not a unit vector. (p
as a characteristic length for an electron in a uniform 8
field is a fairly standard notation. The reader is cau-
tioned, however, that two definitions of p, differing by a
factor of 2, can be found in the literature. As in the use
of both e /ao and e /2ao as the unit of energy in atomic
physics, the use of slightly different definitions of p is os-
tensibly to breed a generation of careful, critical —and,
somewhat unfortunately, mildly neurotic —physicists. )

We now have

[( iV„+xXu—, ) —[Eil(fi /2m, p )]]Pi(x)=0 . (7.3)

Ei is therefore proportional to A' /(2m, p ), with a pro-

cannot affect the argument that the vacuum is
unstable —the argument was based on conditions under
which the nonrelativistic approximation is valid—
though it might reduce the value of N for which instabili-
ty occurs. In fact it does not seem to do even that. Thus,
adopting the ultrarelativistic limit and assuming that the
Coulomb interaction remains valid, we find that the ener-

gy of X "electrons" confined to a sphere of radius R is

~4/3g ~2 2

portionality constant of order unity for the ground state,
and the dimension of the ground-state wave function will
be of order p. The argument depends upon the fact that
x is dimensionless and that one cannot decouple motion
in the p, P plane into, for example, independent motions
along x and y, respectively. [With pimp, p~r, Ei~E,
and gi(p)~g(r)„Eq. (7.1) defines motion perpendicular
and parallel to 8, and E the total energy. With x
redefined as x:—r/p, Eq. (7.3), with Ei ~E, is valid for a
description of the full three-dimensional motion, but E is
not simply proportional to A' /m, p; rather, it contains
an additional term, the kinetic energy associated with
motion parallel to 8, a motion uncoupled to motion in
the p, P plane. ]

It is useful to rewrite Eq. (7.2) in the dimensionless
form of Eq. (7.3), but if one were only interested in ob-
taining EL to within a dimensionless constant of order
unity one could simply note that e, 8, and t." enter only in
the combination e8/c and then use dimensional analysis.

Since the electron can be bound to any 8 line, each en-
ergy level of an electron in a uniform 8 field is infinitely
degenerate, adding a bit of spice to the problem. We also
note that for B =2.2X10' G, p is about ao/20, and the
ground-state energy is about 5 keV. The lowest excita-
tion energy AE is somewhat larger, so that one must have
exceedingly high temperatures before kT is of order AE.
The energy required to fIip the spin of the electron is also
in the keV range.

A. The magnetic Lenz energy functional

1. A uniform number density

Turning now to the problem of interest, we have a sys-
tem, in its ground state, consisting of X electrons and a
nucleus of charge Ze, where 1 &(X~Z, in a uniform 8
field strong enough for the motion of an electron perpen-
dicular to 8 to be practically unaffected by the electric
field E generated by the nucleus and by the other elec-
trons; motion parallel to 8 will of course be completely
determined by E. To begin, we assume a uniform num-
ber density; more precisely, we assume that n (r) =0 far
from the nucleus and n (r) =n, a constant, in some region
whose shape is yet to be determined, near the nucleus.
(The E field generated by the nucleus is spherically sym-
metric, while the 8 field is axially symmetric, so we ex-
pect to retain at least axial symmetry for the ground
state. ) To satisfy the Pauli principle, rigorously if some-
what crudely, we place one electron in each of a set of X
nonoverlapping cylinders of radius p and length I, with
the axes parallel to 8; l is to be determined. (For
sufficiently strong 8 fields, all electrons in the ground
state will have the same spin projection. ) The kinetic en-

ergy per electron in the plane perpendicular to 8 will be
the same whether or not the electron is in an atom, and
dropping both the total kinetic energy Ezj associated
with the perpendicular motion of the electrons and the
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energy E(spin) of the interaction of the electron spins
with the 8 field merely redefines the zero-energy refer-
ence level. The kinetic energy per electron associated
with motion parallel to 8 will be of the order of iri /m, l,
independent of the location of the cylinder (see Fig. 1).
To maximize the attractive potential energy of the
electron-nucleus interaction, we distribute the cylinders
uniformly in a large sphere of radius R. (Thus, somewhat
surprisingly, at least in our approximation the ground-
state system is spherically symmetric even in the presence
of the 8 field. ) Volume considerations give NP 1 =R .
The total kinetic energy associated with parallel motion
is therefore

R(B)=(zaop )', E(B)=—Z e l(aop )'

(7.6a)

As opposed to the laboratory atom, an atom in an intense
uniform 8 field is characterized by two lengths, ao and p,
and one cannot obtain the forms of R (B) and of E (B),
even apart from the Z dependence, on dimensional
grounds alone. Eliminating p in favor of B, we have

R (B)=(m, a,' c')'"Z'"B-'",
(7.6b)

E(B) Z e2/R (B) Z9/5B / e~(w 0 c )
I

E~, (R;B)=N(A Irn, l )=N(fi Im, )(Np /R ) . (7.4)

Proceeding as for the usual (laboratory) atom,
we can approximate the many-body Hamiltonian
II(r„.. . , p~;B), in the presence of an intense uniform
8 field, with Ezi and E(spin) subtracted, by

2. A variable number density

To allow for a variable number density, we note that
for n ( r ) =0 for r & R and n ( r ) a constant equal approxi-
mately to X/R for r (R, the parallel kinetic energy per
unit volume follows from Eq. (7.4) and is given by

E(R;B)=N fi p /(m, R )
—(NZ ,'N )e —/R—, (7.5) E~, (R;B)/Vol=(fi p Im, )(N /R )=(fi p Im, )n

where the factor of 1/2 has been retained only to em-
phasize the fact that, as for laboratory atoms, E„ is dom-
inated by E, for X~Z, the domain of present interest.
To simplify the algebra slightly, we now consider the
neutral-atom case, N=Z. [It is quite trivial to obtain
R (B) and E(B) for N (Z as well. ] Setting
dE(R;B)/dR=0 and then substituting the value of R
thereby obtained into Eq. (7.5) (with N =Z) gives

Ze

(7.7)

If therefore n (r) is slowly varying, we write

Ez, [n;B]=(vr /6)(fi p /m, ) In (r)dr . (7.8)

We have inserted as a factor the constant rr"/6, the ana-
log of the constant k in Eq. (4.9). To partially justify the
insertion of this constant, we note that the electrons are
tied to the magnetic field lines and that Ez, [n;B]
represents a one-dimensional kinetic energy which we
have already evaluated. Thus, given a long cylinder of
length L and radius p parallel to 8, and having specified
a constant number density n., we have as the number of
electrons contained in the long cylinder N, &=n~p L.
We do not now put one electron in each small cylinder of
length lV&y&/L but rather use the last equation of Sec.
V.A to obtain, as the exact expression, ignoring correc-
tions of order 1/X,y&,

0 ) 0 E~, [n;B]
Vol

acyl 1

24m, L ~p L
4 F2~4

n
6 m,

FIG. 1. An atom of nuclear charge Z, where Z ))1, in a strong
uniform magnetic field B, with a uniform distribution of N elec-
trons, where N))1. Each of the electrons is in a cylinder of
length l and radius p. The cylinders are nonoverlapping and
close packed, each has its axis parallel to 8, and all lie within a
sphere of radius R. Volume considerations give Np l =R '.

This does indeed difIer from the approxiInate expression
given in Eq. (7.7) by the factor rr /6. The only point that
remains to be justified is the use of p, rather than p multi-
plied by a constant of order unity, for the radius of the
cylinder. The justification begins with the realization
that one set of solutions of the Schrodinger equation (7.1)
for the infinitely degenerate ground state —excited states
play no role for the strong 8 fields with their large energy
separations and the relatively low kT values under
consideration —is given by

(p, g)=N (p/p) e ~ ~ ~ e™~/~2',
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with m the azimuthal quantum number. The value of the
normalization constant N need not concern us. One
immediately finds that the electron density ~P (p, P)~
has its maximum value at p „=I' p, with the rela-
tive width of the peak decreasing with m. For large I,
the electron can therefore be allotted an area in the p, P
plane of ir(p +, ,„—p, „) or irP . Alternatively,
each electron can be allotted its own small cylinder, of
area mp .

The "magnetic Lenz energy functional" is therefore
given by Eqs. (4.9), with Ez[n j of Eq. (4.9b) replaced by

Ez, [n;B] of Eq. (7.8). The differential equation for the
neutral atom, that is, the "magnetic TF differential equa-
tion, " follows readily, and has been obtained, and it
would be straightforward to obtain the differential equa-
tion for a positive ion.

The magnetic TF differential equation was first derived
by Kadomtsev (1970). The magnetic Lenz energy func-
tional was obtained by Mueller, Rau, and Spruch (1971);
the latter paper includes a study of the relative magni-
tudes of the kinetic energy and of the e e and e
nuclear potential energies, to be discussed in the follow-
ing subsection. Both papers include efforts to define the
domain of validity of magnetic TF theory. The 8 field
must of course be strong enough to cause motion in the
perpendicular plane to be largely unaffected by Coulomb
interactions. On the other hand, if the 8 field is "ultra-
strong, " the strong state will be one in which each e is
in a long cylinder of its own, the associated wave func-
tion will have no nodes with respect to the z coordinate,
and a statistical theory will not be possible. (A wave
function must have a fair number of nodes if the associat-
ed momentum is to be reasonably well defined. ) An (ana-
lytic) attempt to go beyond magnetic TF theory, in the
domain where magnetic TF theory is reasonably accu-
rate, was made by Rau, Mueller, and Spruch (1975).
Motivated by his interest in neutron stars, M. Ruderman
provided much of the leadership in studies of systems in
strong 8 fields. These systems include hydrogen atoms
and iron atoms. In the latter case, one is interested not
so much in the total energy of the ground state as in the
much more difficult problem of the ionization energy,
and numerical work is required. Furthermore, it is not
clear for atoms in strong 8 fields, as it is for laboratory
atoms, that the additional energy of binding associated
with the formation of molecules is very small compared
to atomic binding energies; atoms might therefore form
strongly bound long chains in strong 8 fields and, if so,
these one-dimensional chains could bind one another. A
considerable computational effort has gone into the study
of systems of large numbers of Fe atoms in strong 8
fields. Neuhauser, Koonin, and Langanke (1987) find
that molecular chains will not form for Z) 2 for B ) 10'
G, nor for Z) 4 for B ) 5 X 10' G; if matter on the sur-
face of a neutron star is bound at all, it is bound very
weakly. This is understandable in that all spins are paral-
lel, demanding a totally antisymmetric spatial wave func-
tion and thereby disallowing the predominant (spin-

B. Relations among the three contributions
to the energy

1. The ratio of the total kinetic energy E&,
to the total potential energy E~

When Eqs. (3.15) and (3.16) are used, it follows from
the form of Eq. (7.5), that is, simply from the R and
R ' dependences of the kinetic and potential energies,
independent of the values of the numerical coefFicients,
that

EK. +Ev=0 (7.9)
I

We seek further physical insight into the origin of this
equation. For a laboratory atom or positive ion, we have
the virial theorem in its usual form, 2EK+Kv=0. If the
electrons in the system have a velocity distribution that is
spherically symmetric at each point r, EK is three times
the kinetic energy associated with a motion along any
axis and in particular with motion along the z axis, and
the virial theorem becomes 6EK, +Ev =0, which is of the
same form as Eq. (7.9). However, the electron velocities
at any point for an atom or positive ion in a strong B
field are not spherically symmetric, for the velocities per-
pendicular to 8 are very much larger than velocities
parallel to 8, and it is accidental that one obtains the ap-
propriate form of the virial theorem by assuming a spher-
ically symmetric velocity distribution. The correct ap-
proach is to consider directly the velocities parallel to B.
We now do so, but to simplify the discussion we study
the problem classically. (In our considerations just above
of the velocity distribution at a point we were already
thinking classically. ) We let ( ) denote a time average,
and f„ the zth component of the force on the ith elec-
tron, and start from f„=m,d z, Idt . We can then write

(r,f., )= -.r*, "*,'

2
fPl dz; = —2E; (7.9')Kz

in the penultimate step, we recognized, in close analogy
to the argument used in the usual development of the
virial theorem, that for a system of bound particles

gm, z, =0.

singlet) zero-field bonding mechanism. These authors
also obtain (total) atomic binding energies, energies
which satisfy the Z and 8 dependences of Eq. (7.6b), and
the virial relation of Eq. (7.9), just below, rather well (see
Chen and Spruch, 1987).

Reviews of some related matters include those of
Ruderman (1974), Garstang (1977), and Canuto and Ven-
tura (1977).
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f„ is independent of B=Bu, . Proceeding along the same
lines as for a laboratory atom, we And, inserting the z
components of the Coulomb forces in Eq. (7.9'),

—2E~, = g — +

If the particles have a spherically symmetric spatial dis-
tribution, we can replace both z, /r. , and (z, —z~) /r, j. by
—,', and we obtain

2E~—,= ,' (E, —+E„)= ,
' E~,—

which is just Eq. (7.9). The essential point is that, in the
domain of B of interest, the atom or positive ion has lost
spherical symmetry at each point r of the velocity distri-
bution of the electrons, but the spherical symmetry of the
spatial distribution of the electrons with respect to the
origin has not been destroyed.

Although the numerical values of E&, and Ez are
changed when one goes from Eq. (7.5) for E(R;8) to the
somewhat more precise magnetic Lenz energy functional,
E(R;8), Eq. (7.9) remains valid. The proof is identical
in form to that used in Sec. V.B.2 for laboratory atoms.
Introducing the scaled number density defined by Eq.
(5.10), one finds Ez [n, ;8]=s Ez [n;8], and Eq. (7.9) fol-
lows immediately.

It is interesting to compare the ratio of —E, to E„ for
the three cases for which we have obtained the ratio [see
Eqs. (5.13), (7.10), and (6.16)]:

(a) neutral laboratory atom: E—, /E„=7;
(P) neutral atom in intense B field: E—, /E„=3;
(y) neutral "highly compressed" atom: E,—/E„=2.

We are concerned with the ground state (and with
Z —~ ), and the electrons will therefore organize them-
selves to give the lowest possible energy. As the extent to
which the nucleus "controls" the motion of the electrons
increases, the nonuniformity of the distribution should
increase, and, in line with the discussion at the very end
of Sec. V.B.2, we can expect the ratio of —E, to E„ to
increase as well. This is in agreement with the results for
the ratios just quoted. For the laboratory atom, the e
nuclear interactions inAuence electronic motions in all
directions; for an atom in an intense 8 field the inAuence
is exerted only on electronic motions parallel to 8; and
for "highly compressed" atoms, as in white dwarfs, the
distribution of the e 's to lowest order is uniform,
unafFected by the interactions with the nucleus.

Ylll. THE STABlLITY OF BULK MATTER

A. Teller's no-binding theorem for molecules

2. The ratio of the electron-nucleus and
electron-electron potential energies, E,.and E„

We turn now to the more interesting question of the
ratio of the electron-nuclear contribution to the energy to
the electron-electron contribution. We restrict our atten-
tion to the neutral-atom case. We can then readily ob-
tain the magnetic TF difFerential equation for n (r) and
proceed formally, as in the derivation leading to Eq.
(5.13), to obtain

—E, /E„=3 . (7.10)

E~, .—E, :E„=1:9:3. (7.11)

A simpler and more interesting derivation is one that is
similar to the derivation of Rau for the laboratory atom,
which led to Eq. (5.15a). We begin with Eq. (7.5) and in-
sert coeKcients c', c, and c, obtaining a new expression
for E(R;8), an expression which ditFers from Eq. (5.14)
only in the first term. [We absorb the factor —,

' in Eq.
(7.5) into c. ] We minimize the new expression for
E(R;8) with respect to R, obtaining an energy E(8), or,
to be more explicit, E(B,N, Z). As for the laboratory
atom, we assume that, for fixed Z, E(8) takes on its
minimum value at N =Z (or in the immediate neighbor-
hood of N =Z). This assumption is valid in the magnetic
TF approximation, an approximation we are not now
making, and it is the only aspect of magnetic TF theory
we shall need. Setting dE (B,N, Z)/dN=0 at N =Z gives
c =3c, which is the same result as that contained in Eq.
(7.10). Equations (7.9) and (7.10) give

E T„[n]=E~[n]+E,' [n]+E„[n]+E (8.1a)

Primes have been used, where necessary, to distinguish
between molecular and atomic energies. Thus Ez[n] and
E„[n]are of the same form as for an atom, and are given
by Eqs. (4.9b), (4.9d), and (4.9g). E '„[n] is now a sum of
terms,

N

E,',[n]= —Ze~ g J d'r, (8. lb)

and a term to represent the interaction energy of the nu-
clei a function, not a functional,

Z e + 1

i ~p/w~X ~ p

(8.1c)

Since TF theory leads so simply to some very interest-
ing information on atoms, it is natural to attempt to ex-
tend the TF approach to the study of molecules. We ig-
nore the kinetic energy Ek „„,of the nuclei, not only be-
cause Ek „„,wi11 be small but because we shall be interest-
ed primarily in a lower bound on the ground-state energy
of the molecule, and the inclusion of Ez„„, can only
(slightly) raise the ground-state energy. To simplify the
discussion we assume that there are N nuclei, each of
charge Ze, with (fixed) coordinates R„, 1 ~ p ~N, ; we
further assume charge neutrality, so that, with 2V, the
number of electrons, we have N, =ZN . (In the atomic
case, where the only particle number of interest was the
number of electrons, we wrote N for the number of elec-
trons. ) Our Lenz energy functional for a molecule is then
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has been added. Teller (1962) showed that in the TF
model the ground state was that state in which all nu-
clear separations were infinite, with the associated energy
the sum of the isolated atomic TF energies, that is,

E T„[n] N ET„= Nc—7Z Ry, (8.2)

B. Proof of the stability of bolk matter

By the stability of an atom one simply means that the
ground-state energy is bounded from below. By the sta-
bility of bulk matter one means much more, namely, that
for a system containing a total of X, electrons it is possi-
ble to obtain a lower bound on the ground-state energy
E (N, ) which is linear in N„ that is,

where c7 is given in Eq. (5.9) and where we are here using
ET„rather than simply E. We shall not give the proof,
but a few remarks about the result and the proof are in
order.

(i) The result was suggested by TF numerical molecu-
lar calculations (Sheldon, 1955), which failed to provide
binding, that is, to generate a total energy of the mole-
cule below that of the sum of the isolated atomic ener-
gies. The result is not remarkable and might perhaps
have been suggested by the following consideration: if
the TF model had given molecular binding, the results
would have been grossly in error, for TF energies scale as
Z ~ and TF distances scale as Z '~, whereas molecular
binding energies and distances are roughly independent
of Z. Thomas-Fermi theory gives the exact energy of an
atom as Z —Oo —more precisely the fractional
error-0 —because the fraction of electrons not handled
correctly, those in regions where the potential is not
suKciently slowly varying, becomes vanishingly smaH as
Z —~. However, that vanishing fraction includes not
only the innermost electrons —which, as shown in Sec.
IX.B, give the leading correction to ETF—but the outer-
most electrons, which are largely responsible for molecu-
lar binding.

(ii) If the result itself is not remarkable, the fact that
one can prove such a result under such general cir-
cumstances is remarkable. Teller's proof is a very clever
one, involving a fair amount of chitchat but almost no
mathematics, but the proof is not without weaknesses.
First, it assumes that one is free to move about arbitrarily
small charges, smaller than that of the electron. Second,
to avoid singularities, the nucleus is not taken to be a
point charge but is given structure, yet nuclear forces are
never introduced. A rigorous proof was given by Lieb
and Simon (1973, 1977).

(iii) The date of the proof, 1962, is not too flattering to
our profession. The proof was given 35 years after the
TF papers.

The reader might wonder why a major failure of the
TF model should be given much emphasis. We will
shortly see that that major failure was turned into a stun-
ningly simple proof of perhaps the most important prop-
erty of bulk matter, its stability.

E'(N, ) ~ —AN, Ry, (8.3)

with A a constant. (It would make little difl'erence for
present purposes if we replaced N, by N, +N . ) This
property is essential if matter is to have intrinsic proper-
ties, that is, if, for example, the conductivity of a piece of
copper is to be independent of its mass. That matter has
intrinsic properties is so well known that it seems obvi-
ous, but it was first proved in the 1960s! The stability of
matter is one of the very many important properties that
classical physicists at the turn of the last century could
not have proved when some were saying that all that was
left in physics was to obtain more significant figures. (It
is unnerving to try to imagine what physicists 90 years
hence will think of some of the things being said today. )

They could not have begun to prove the result for it de-
pends upon the fact that the electron is a fermion.

Before giving a formal proof of the stability of matter,
we note that a remarkably simple-looking theorem of On-
sager makes the stability as defined by Eq. (8.3) rather
reasonable. Consider I' particles at rest at locations r, ,
with charges e;. The theorem states that the potential
energy V of the system satisfies

where R;* is the distance from the ith particle to its
nearest neighbor. In other words, no matter how one ar-
ranges the particles, V of the system is saturated, that is,
is bounded from below by the potential energy of a sys-
tem of I' particles in which each particle interacts with
one and only one other particle, a particle of charge equal
and opposite to its own and located at the position, in the
original system, of its nearest neighbor. It is the single-
sum bound on (the double sum) V which leads to a linear
bound on V and therefore on the total energy of the origi-
nal system.

The proof of Onsager's theorem, as given by Dyson
(1968), is trivial; it is a statement in classical electrostat-
ics. Draw a sphere of radius (1/2)R;* about the ith par-
ticle, centered on the particle, and distribute the charge
e,- uniformly on the sphere. Do this for each particle.
Since (1/2)R; +(1/2)R * ~ rz, the spheres do not inter-
sect. The total electrostatic energy Ez. of the charged
spheres is therefore

P e 2

+V,
i 2(R;"/2)

where the first term is the sum of the self-energies of the
spheres. Since any total electrostatic energy is positive,
the theorem follows.

We turn now to the formal proof of the stability of
bulk matter. To simplify the discussion we again assume
the matter to be neutral and each of the X nuclei to
have the same atomic number Z. Since the energies with
which atoms bind to form molecules are small compared
to the sum of the binding energies of the atoms, we ex-
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pect E'(N, )/Ry to be of the order of —N Z ~, that is,
—N, Z . 2 in Eq. (8.3) is Z dependent; for Z= 1, we
have N =N„and E'(N, ) will be of the order of —N, Ry;
one then expects the constant A in Eq. (8.3) to be of or-
der unity. As noted previously, Dyson and Lenard
(Dyson, 1967; Dyson and Lenard, 1968; Lenard and
Dyson, 1968) first proved the existence of an inequahty of
the form (8.3). The result is exceptionally notable, but
the proof is an extremely dificult one and the constant A
obtained was of the order of 10'". (Dyson has stated in
print that he is not the deep creative thinker Oppenhei-
mer had hoped for when Dyson was hired by the Insti-
tute for Advanced Study, but only a problem solver. One
hesitates to disagree with Dyson, but the facts are quite
to the contrary. ) A very much simpler proof was provid-
ed by Lieb and Thirring (1975) in one of the most beauti-
ful papers it has ever been my pleasure to read; they also
reduced the value of 2 to of order 10. A more detailed
discussion is given in Lieb (1976). An essential element
in the proof is Tel1er s no-binding theorem. That this
theorem should prove useful in the proof is not, after all,
that surprising. Thus a mo1ecular physicist will find TF
theory useless, but, in fact, the no-binding theorem is a
very useful result if one is interested in the leading term
in the total energy E'(N, ). In fact, the leading term in
E'(N, ) is N, E,«m, where E„, is the exact energy of an
isolated atom, while TF theory gives X ETF as its esti-
mate of E'(N, ). Thus TF theory not only gives an esti-
rnate of the desired form, linear in X and therefore in
X„but is even moderately accurate, the more so for Z
large.

To begin the proof of stability we introduce the wave
function g(r„. . . , r~ ), which is antisymmetric in the

e

electron coordinates —the spin dependence has been
suppressed —and normalized to unity, but is otherwise
arbitrary. We then consider the functional

E[4)=(0 He)=E —[0)+E,.[e)+E„[0)+E..
(8.4a)

where H is the full quantum-mechanical Hamiltonian,
where the subscripts have their usual connotations, and
where, with spin summations understood,

proach used in bounding E[g] is to first bound each of
the g-dependent functionals in Eq. (8.4a) by n-dependent
functionals, where the one-body function n (r) is obtained
from g in the usual way, that is,

n(r)=N, f Ig(r, r2 '' rQ )I'«2 «~, (8.5)

with summation over spins understood; as required, the
n(r) so defined satisfies fn(r)dr=N, . The no-binding
theorem will be used to obtain a bound on E„[g]of the
desired form, and then again to bound a sum of n-
dependent functionals.

E„is independent of g and can be left as is. Since the
operator appearing in Eq. (8.4c) for E, [g] is a sum of
one-body operators, we can write

N

E, [g]=—Ze g f d r =E,' [n], (8.6)

using Eq. (S.lb). Lieb and Thirring (1975) bound Ex.[g]
by an extension of the one-body Sobolov inequality, Eqs.
(3.5) and (3.6), obtaining

Err [q]» cxEx[n], (8.7)

with cz a known number somewhat less than unity, and
the authors surmise that the inequality remains valid for
cx =1. That an inequality of the form (8.7) exists, and
that it might be valid even for cz = 1, is not unexpected,
for Err [n] was obtained assuming free electrons, or,
equivalently, noninteracting electrons in a constant po-
tential, and any variation in the potential can be expected
to increase the kinetic energy. We shall discuss the proof
of Eq. (8.7), with cl~=(4n) ~, in Appendix C; we also
show there that cz 1.

The remaining g-dependent functional E„f g) contains
a sum of two-body operators and is therefore difficult to
bound by a functional of n. It can be done, however; the
method is imaginative enough to bring pleasure to even a
jaded theorist's heart. The proof of the no-binding
theorem did not in any way depend upon the mass I, of
the electron, and remains valid for fermions of massI=I, /y, for y &0, and, as a tool in the analysis, we
consider such fermions. Since Ex [n ] o- 1/m„while
Ry ~ m„ the theorem can be written as

e $2 f IV;ql2dr, dr~2' (8.4b) yEz[n]+E', [n]+E„[n]+E, »N, ETF/y, (8 8)

v e lql2E,„[P]=—Ze $ $ f dr, dr, (84c)
lr, —R

I

2

f
1 iWj

(8.4d)

E, is given by Eq. (S.lc). The proof consists in showing
that E[g)» —const N, Ry for any g, and therefore for
the true wave function, so thai E'(N, )» —const N, Ry,
where E'(N, ) is the true ground-state energy. The ap-

with the terms defined by Eqs. (4.9b), (8.6), (4.9d), (S.lc),
and (5.9), respectively. The clever move, which might re-
mind one of some brilliant castling move by Bobby Fish-
er in his prime, is to reinterpret the nuclear coordinates
as electron coordinates, a move which is possible only if
there are as many nuclei as there are electrons. We can
arrange to have X,=X by choosing Z=1, that is, by
considering a system with X, electrons, as in the system
under consideration, but with X, protons rather than
with X, /Z nuclei of charge Z. Changing variables from

p to i and from v to j, with the reinterpretation yet to be
made, Eq. (8.8) then becomes
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N 2

yEIr [n]—e g f ~, dr+E„[n]+ gg N, ET„I(yZ ),
1&i' &N I i j

(8.9)

with ET„ that for the original nuclei and with ET„IZ
to be interpreted as a TF estimate of the energy of a hy-
drogen atom. [The inequality is valid for any n (r) and
therefore for any g, including any 1t considered in the
study of nuclei of charge Z. ] The coordinates R; and RJ
are arbitrary numbers and can be reinterpreted as the
electron coordinates r,. and r .. We make that reinterpre-
tation, multiply by l pl, and integrate over the space and
spin coordinates of the electrons. The terms in Eq. (8.9)
independent of R; and R are unafFected. Since
1/lr —R; l

~ 1/lr —r; l
is a one-body operator, we have

and, therefore,

—e g fdrn(r) f dr, . dr& = —2E„[n] .
e

i =1 11

(8.10)

Qn integrating over l@l, the 1/lR; —R~l —+I/lr; —r~. l

term becomes the term of interest, E„[g],and, using Eq.
(8.10), we obtain from the inequality (8.9) a bound of the
desired (n-dependent) form,

For Z —ao, the lower bound in Eq. (8.13) reduces to
N E„, /err, which, apart from the I/cx factor, is the
leading term in E [N, ]. [The value cx =(4m. )

~ cited
below Eq. (8.7) was improved to roughly 1.5X(4m)
(Lieb, 1980) and has recently been improved further, by
some 10% (Martin, 1989).] As noted above, the no-
binding theorem, used in the proof, gives the leading
term in the total energy exactly for Z —Oo, consistent
with the result just quoted. Note that E„[gj, which in-
cludes direct and exchange contributions, is bounded by
an expression, (8.11), that does not contain any exchange
contributions. This too should not be too surprising,
since E„[gj is of the order of Z, while exchange
effects are only of the order of Z (see Sec. X.A). In
fact, since E„[n],Elr[n], and N, lETFl are comparable
for good approximations f and therefore n, and since
y ~ Z for Z ))1, the lower bound (8.11) on E„[f],
ignoring terms of order Z, is E„[n],an excellent ap-
proximation.

Apart from its use in stability studies, the inequality
(8.11) provides an interesting bound on E„[1(t]itself. The
minimizing y is now

y=(z'"E [n]IN, lE,„l)
which gives

E„[Q]~E„[n] yE~[n]+—N, ET„I(yZ ~
) . (8.11)

When used in Eq. (8.4a}, Eq. (8.6) and inequalities (8.7}
and (8.11) give

E[g] ~ [(cx —y)Ex [n]+E,' [n]+E„[n]+E
+N, ETF/(yZ ) . (8.12)

and, therefore,

E[g]~N, E»[(cx—y) '+(yZ ) '] .

The y that minimizes E[P] is

y=c (1+Z i
)

which, as required, is less than cx. The bound on E[g],
and therefore on E (N, ), reduces to

E[N, ] ~ N lET„l(1+Z ~
) /c—I~,

which proves the stability of matter.

(8.13)

The expression in curly brackets in Eq. (8.12) is the Lenz
energy functional for N, =ZN fermions of mass

m, /(cx. —y )—we therefore impose the restriction

y (cz, so that, since cz ~ 1, these fermions have a mass
greater than that of an electron —and N nuclei each of
charge Z so that, by the no-binding theorem, we have,
for the [ j in Eq. (8.12),

E„[@] E„[n]~ —2[EIr [n]N, IE»l Iz'"]'" .

(8.14)

The lower bound involves f n ~ (r)dr. A more interest-

ing lower bound on the difference defined by Eq. (8.14),
the "indirect Coulomb energy, " one which involves

f n (r )d r, the form expected for exchange effects, has
been obtained by different methods (Lieb, 1979).

In the above discussion, we assumed that the system
was neutral and that all nuclei had the same charge. It is
trivial to eliminate those assumptions. A more interest-
ing point is the extension of the above results to bosons.
To make that extension, we consider "electrons" with
spin s and with q =2s+1 projections, as opposed to the
two projections for the electron. In Eq. (4.11) relating
pF(r) and n (r), we must therefore insert a factor of q/2
on the left-hand side. In Eq. (4.9b) for Ex [n], one must
therefore multiply by q/2, to account for the different
number of projections; one must also divide by (q/2)~~3,
to account for the new relation that arises on expressing
@F5(r) in terms of n(r). The net effect is that Elr[n] is
changed by the factor (q/2) ~, which is equivalent to
having "electrons" of mass (q/2) ~ m, . The bound on
E (N, ) in Eq. (8.13) is therefore to be multiplied by
(q/2) ~ . To consider bosons we need merely set q =N„
since all of the "electrons" can then be accommodated in
the same state. We thereby arrive at
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E (~„bosons) ~ —ZX,'"~E» ~(1+Z -'")'/(2'"c~ ),
so that stability does not follow. A lower bound with an

factor was first obtained by Dyson and Lenard
(1967, 1968), and Dyson (1967) obtained an upper bound
with an X, form. It follows that a system of nuclei and
"bosonic electrons, " where the bosons interact via
Coulomb forces only, is not stable, and, as Dyson (1967)
pointed out, no such bosons are known. See also Dyson
(1968). Conlon, Lieb, and Yau (1988) have shown that
the correct power law is X,

Returning to ordinary matter, we note that the review
by Lieb (1976) contains many many theorems not dis-
cussed here, including, for example, a proof that the ra-
dius of a system containing X, electrons is, as expected,
at least of the order of X,'

IX. A FIRST STEP BEYOND THOMAS-FERMI:
THE SCOTT INNER-ELECTRON
Z CQRRECTION

We now consider some improvements that have been
made upon TF theory, restricting ourselves to atoms, and
unless otherwise noted to neutral atoms. Further, we
consider only the question of the total energy of the
atom, but the path to a better estimate of the total energy
leads simultaneously to a better estimate of the number
density n(r) and therefore to better estimates of the
many quantities that can be expressed in terms of n (r).
We make a brief remark on notation. In previous sec-
tions, where TF estimates were the only estimates con-
sidered, it was normally unnecessary to append sub-
scripts TF. We do so now to distinguish TF estimates
from other estimates and from the true values.

A. The accuracy of the TF energy estimate

Before attempting to go beyond TF theory, it is natural
to ask about the accuracy to be expected of the TF result,
Eq. (5.9c),

ETF= —c7z'" Ry .

Since this result is based on a (semiclassical) statistical
theory, it can be expected to improve in accuracy as Z,
the number of electrons, increases. Is ET„exact in the
limit Z —~, that is, with E the true total energy of the
atom, is the assertion that

(E ET„)/E-0 as Z——~

correct? We begin with a qualitative discussion of this
question and then cite some rigorous results that have
been obtained.

Thomas-Fermi theory involves two primary approxi-
mations. First, the theory neglects exchange, but the ex-
change contribution is known to be of the order of Z

as shown by Dirac (1930) and discussed below in Sec.
X.A. Second, it is assumed, in arriving at Eq. (4.9b) for
Ez[n], that the variation in the effective potential V(r)
can be neglected; it is to be expected that a more precise
formulation of this condition is the requirement

K(r) « I,1 dV
(9.1)

where K(r)=k(r)/2ir and A(r)=—h/pz(v) defines a local
wavelength. Over the bulk of the atom —normally this
will refer to regions neither too near the origin nor too
near the surface, but for the immediate consideration we
need only exclude the surface region —V ( r ) can be
reasonably approximated by V(r) = —(Ze /r)e " with
a of the order of Z'~ /ao; using p~(r)/2m = —V(r), ig-
noring numerical factors of order unity, and, since we are
concerned with the bulk of the electrons, choosing a
characteristic value of r to be ao/Z', we find that the
condition becomes

If terribly far from a rigorous proof, the argument
strongly suggests that TF theory becomes exact as
Z —oo. A formal proof was provided by Lieb and Simon
(1973); see also Lieb and Simon (1977) and Lieb (1981)
and references therein. Lieb and Simon partition coordi-
nate space into boxes with dimensions which shrink as
Z ' as Z —oo, in each of which they are able to obtain
upper and lower bounds on the energy which converge to
order Z ~ to the TF energy estimate. (The upper and
lower bounds are obtained by replacing the potential V in
each box by its maximum and minimum values, respec-
tively, and imposing Dirichlet and Neumann boundary
conditions on the wave function at the walls of the box. )

The above discussion suggests that the fractional error
for large Z might be of the order of Z ', which, for
Z=64, is 25%%uo (with the sign of the error undetermined).
In fact, a comparison with experimental results shows the
error to be somewhat less in magnitude. To put the dis-
cussion on a more quantitative basis we begin by seeking
the correction of fractional order Z ', the Z correc-
tion to ETF.

B. The Scott Z' correction

The effective potential near the origin is
V(r) = Ze /r, and the con—dition (9.1) reduces to
(ao/Zr)'~ ((I, which is obviously not satisfied for r
very close to the origin. The net eA'ect, as will be seen, is
that there is a correction to ETF which is proportional to
Z, as first suggested some 25 years after the work of
Thomas and Fermi (Scott, 19S2). It is clear that TF
theory also treats the electrons near the surface in-
correctly, since V(r) in that region varies rapidly so that
Eq. (9.1) is not satisfied. However, the energy per elec-
tron in that region is very small, so that even though
there are a fair number of electrons near the surface, the
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energy contribution of the surface electrons can be ex-
pected to be negligible compared to the Z dependence,
which is our immediate concern.

The exact numerical coefficient of the Z term has now
been rigorously established, upper bounds (Siedentop and
Weikard, 1987a, 1987b), and lower bounds (Hughes,
1986; Siedentop and Weikard, 1989) on the energy, to or-
der Z, giving the same result. Important as it is, the
proof is long and dificult, and we shall limit the discus-
sion to qualitative but reasonably convincing arguments
which, it so happens, give that same exact numerical
coefficient.

1. An analysis based on a model Hamiltonian

E"(N Z) E—"(N Z) =Z Ry+ .

(Since the difference originates in the effects of the inner
electrons only, it is not surprising that the result is in-
dependent of N. ) Now it is not unreasonable to assume
that E (N, Z) E—TF(N, Z) and E"(N,Z) ETF—(N, Z)
have identical Z coefficients, since the leading term of
each difference comes from inner electrons, and there the
true and model problems are presumably the same to
leading order, since the e e interaction in the true
problem can presumably be neglected in the inner region,
as can the interaction of the outer with the inner elec-
trons. We therefore expect —there is no question of
proof here —that

E(N, Z)=ET„(N, Z)+Z Ry+ (9.7a)
The Coulomb interactions with one another of the

inner electrons, in a region for which TF theory is not
valid, will be negligible compared to their interactions
with the nucleus. This suggests that we consider a model
in which the e e interactions are neglected throughout
the atom or ion. The Hamiltonian, to be denoted by
H", is then a sum of hydrogenic Hamiltonians and the
model problem is exactly solvable. For X electrons, the
ground-state energy E"(N,Z) is that for which the
lowest Q shells are filled, and a fraction P of the shell
with principal quantum number Q+1 is filled. [We are
following the heuristic argument of Lieb (1976), slightly
generalized to allow for an ion as well as a neutral atom. ]
We then have

E(Z)= —c~z Ry+Z Ry+ (9.7b)

2. A direct analysis of the inner electrons

The problem of the Z correction for the neutral atom
has also been considered by Schwinger (1980). He as-
sumes that TF theory is inadequate for individual elec-
tron energies below —e, where

This result applies to ions as well as atoms. However,
there is no analytic form for ETF(N, Z) for NWZ, but if
we consider N=Z and set E(Z,Z)=E(Z) and
ETF(Z, Z) =ErF(Z), we have the analytic form

Q
E"(N,Z)/Ry= g 2n ( —Z /n ) Ze Ze

ao/Z ao/Z'~'
' (9.8)

+2/(Q+I) [ —Z /(Q+1) ]

where

= —2Z (Q+P),

Q

g 2n +2/(Q +1) =N,
n=1

or

Q =(3/2)N —3( —,'+$)Q +O(Q) .

(9.2)

(9.3)

(9.4)

[If we express e as Ze over a length, Eq. (9.8) is
equivalent to the assumption that TF theory is inade-
quate from the origin out to some value of r much larger
than the K-shell radius ao/Z and much smaller than the
TF atomic radius ao/Z' . ) The contribution ET„;„to
ETF from the strongly bound inner electrons, those with
energies below —e, is therefore extracted and replaced by
a more accurate estimate to be described shortly and to
be denoted by Eb,«„,„. The energy correction associated
with the inner electrons is then

Q =(3N/2)'i ——' —P+2

Equation (9.2) can then be written as

E'i(N, Z)/Ry= —2(3/2)' Z (N/Z')'

(9.5)

For N greater than some very small value —we shall be
more precise later in Sec. XI.C—we can solve Eq. (9.4)
by iteration, to find

~+in +IF in ++better in (9.9)

dI dp p
(2~A)' 2m,

(9.10a)

where the range of integration is defined by

To evaluate ET„;n, we use the virial theorem to set
—ETF =E&, and to write

+z'+o(z'") . (9.6)

The first term on the right-hand side of Eq. (9.6) appears
in Eq. (5.25a) for Er„(model ion)/Ry; we label that first
term ET„'(N, Z). (Note that, as for a real atom, the TF
ground-state energy of the model problem becomes exact
as Z —~. ) We therefore have

0~p (r) ~pF(r), pF(r)/2m, + V(r) = —e . (9.10b)

The only electrons that can have an energy below the
low-lying value —e are those very close to the origin, and
we can therefore approximate V(R ) in Eq. (9.10b) by
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V;„(r)=—(Ze /r)+eo . (9.1 1) Q;„=[(Z Ry/e')'~ ], (9.17)

Here ep is the energy of interaction of an inner electron
with the potential generated at the origin by all of the
electrons. Equation (9.11) follows from Eq. (5.8b), where,
since we are here considering a neutral atom, we have set
eF =0, and where, using Eqs. (5.9a) and (5.9c),

Eb,„„,;„=—2Z Ry[(Z Ry/e')' ] .

With Eqs. (9.15) and (9.18), Eq. (9.9) becomes

(9.18)

where, using a standard notation [x] represents the larg-
est integer less than or equal to x. We therefore have

eo=( —,')ciZ ~ Ry .

(eo can be derived difFerently, in a line. Equate

dE/dZ = —( —', )c7Z Ry

(9.12) AE;„=2Z (y —[y])Ry,

where

y—:Z Ry/e' .

obtained from the TF result for E (z) with

dE/dZ = g ( e /—r, )=—. eo

obtained via the Hellmann-Feynman theorem. ) From
Eq. (9.10b), with V approximated by V,„, and from the
requirement that pF(r) )0„ it follows that the range of in-
teraction of r in Eq. (9.10a) is

0(r & Ze /e', (9.13)

where

6:—E'+6'p . (9.14)

Ze /g'—ETF in 3 2m,
5~Am,

5/2
Z8

I' dI'

[Using Eqs. (9.14) and (9.8), we find that Eq. (9.13) be-
comes 0&r &Ze /e((ao/Z'~, as expected. ] The eval-

uation of —ET„;„is now straightforward. We find

Z Ry
E26

But, by Eq. (9.12), eo is of order Z" Ry, while by Eq.
(9.8) e))Z Ry, so that e»eo and (e/2e')' is of order
unity. By Eqs. (9.17) and (9.19), we therefore have, not-
ing that r )& 1 implies [t]))1,

Independent of the precise value of y, and therefore of e'
and thus of e, y —[y] ranges linearly from 0 to 1 as y
ranges from one integer to the next, so that to leading or-
der y —[y] is to be replaced by 1/2, and we have
AE;„=Z Ry, in agreement with our earlier result, Eq.
(9.8). The fact that e did not have to be specified other
than through Eq. (9.8) adds greatly to the confidence one
has in the result; Schwinger emphasizes "the seamless
way in which the correct treatment of strongly bound
electrons has been grafted onto the Thomas-Fermi mod-

77

Now Eq. (9.8) can be rewritten as
. 1/2 - - 1/2

Z2R
' 1/2

Z Ry (9.19)
E

=2Z Ry(Z Ry/e') ' ~~ . (9.15) 1 «Q,„«Z'~' . (9.20)

We turn now to the evaluation of Eb,«„,„. Having
used the virial theorem to work with Ez in the evalua-
tion of ETF;„,the energy to be extracted, we find it natu-
ral to do the same in obtaining a better estimate of the
energies of the inner electrons. Since these electrons ex-
perience the potential V~„(r), and since kinetic energies
are unaffected by a constant potential, the kinetic energy
of the inner electrons, EK;„, is that of electrons in a
Coulomb field Ze /r, and w—e have

Q;„

Eb„„,;„= Ex;„=—g (—2n )(Z Ry/n2)
n=1

Q;„
2ii2 & Q3 2(Z2Ry/e')3/2

n=1

Using Q;„((Z'~, by Eq. (9.20), we also have

(9.21a)

Schwinger can therefore state "Any value of Q;„obeying
Eq. (9.20) is acceptable, or, inasmuch as the basic param-
eter Z'~ is supposed to be very large, Q;„can be chosen
to be any large Z-independent number. " (The notation
and numbering has been changed to that of the present
article. )

With Q;„&)1, we note for later reference that the
number of inner electrons is

= —2Z Q;„Ry, (9.16) X,„«-',Z . (9.21b)

where Q;„ is the maximum principal quantum number of
the inner electrons. {We neglect the relatively few inner
electrons in open shells, since these represent a correction
on the correction b,E;„.) The requirement that even the
least energetic of the inner electrons have an energy
below —e is given by

—(Z /Q;„)Ry+ eo & —e,
which leads to

One must, of course, have X;„«Z if the present ap-
proach of concentrating on inner electron eFects is to
have any meaning.

Schwinger's use of the virial theorem in the above
analysis shortens the calculation and warrants a further
comment. Thus the virial theorem is valid for the entire
system but not for the inner electrons alone. The net
effect of the outer electrons on the (strongly bound) inner
electrons is, however, of a higher order in Z, and that
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be = —2Z Ry(Z Ry/e')' (9.22)

A very similar analysis gives for the extracted electron-
nucleus interaction

justifies the use of the virial theorem in the study of the
inner electrons. A less clever though slightly more tedi-
ous approach, but one which is perhaps physically clear-
er, is to calculate the TF energy to be extracted by calcu-
lating the corrections to the individual terms whose sum
defines the energy. The kinetic-energy correction is given
by the right-hand side of Eq. (9.15), and its extraction
gives

X. A SECOND STEP BEYOND THOMAS-FERMI:
THE EXCHANGE AND BULK-ELECTRON
Z5~~ CORRECTIONS

There are two separate Z corrections. The origin of
the first lies in exchange effects, while that of the second
lies in the fact that even the bulk electrons, the very large
fraction (for Z)) 1) near neither the origin nor the sur-
face, experience a slightly varying potential. (Schwinger
refers to the Z term as the second correction, and the
Z term discussed above as the first correction. )

bE, =4Z Ry(Z Ry/e')' (9.23)
A. The exchange correction

and, as is to be expected, one also finds that AE„ is of a
lower order in Z. hET„;„=hEz+AE, is then again
given by Eq. (9.15). The evaluation of Eb««, ,„now in-
volves a sum of total energies rather than of kinetic ener-
gies. The only difference from the previous estimation,
given in Eq. (9.18), is the effect of the outer electrons,
through the generation of the potential approximated by
E'p an effect expected to be negligible. Indeed, that
difference is

5=%;„ep,

with N;„de fien dby Eq. (9.2la). Using Eq. (9.17), we see
that 5 is of lower order in Z than the term in Eq. (9.18),
so that the use of the full ET„gives the same result as
that obtained by using the virial theorem. [It is interest-
ing to observe, as can readily be checked by using Eq.
(9.21), that, to within numerical constants of order unity,
~bEz ~

as defined by Eq. (9.22) is just the energy of N~„
fermions of mass m, confined to a sphere of radius
Ze /e', which, by Eq. (4.3), is

~. ~3iri /[~ (Ze /p') ]

while b E, as given by Eq. (9.23) is just
N;„Ze /(Ze /e'). ]

As a consistency check, note that the calculation of
X;„via

drdp
(2miri)

where the range of integration is defined by Eq. (9.10b),
gives the same result, to leading order in Z, as that given
by Eq. (9.21).

Working with X;„,Schwinger also makes contact with
the original Scott (1952) calculation, and he also obtains
some relativistic corrections to the TF theory.

The reader is urged to study the paper by Schwinger
(1980). Even apart from the fact that the original papers
often provide special insights, there is the additional ma-
terial just referred to, and the pleasure to be derived from
reading a paper written in Schwinger's style.

We turn now to the Z correction.

Hartree-Pock theory is often used as a starting point in
the derivation of the exchange correction, but, following
Schwinger (1981), we give a much simpler derivation
which takes TF theory itself as the starting point.

Since there are no exchange corrections associated
with one-particle operators, we need only consider the
two-particle electron-electron interaction energy E„[n]
defined by Eq. (4.9d). n is given by

n(r)= f '[2dp/(2m%') ]1, (10.1)

where the range of p is defined by Eq. (9.10b). (In this
section we shall use m, rather than m„ for the mass of
the electron. ) Equation (4.9d) contains n(r) and n(r'),
and the upper limits pF(r } and pF(r') are difFerent. How-
ever, as will be seen very shortly, the momenta p and p'
appear in the factors expip (r —r') /A' and
expip' (r —r')/A', respectively. For r very close to r'
there is little difference between pF(r) and pF(r'); for
~r —r'~ ))A'/pF, with iii/pF having a characteristic value
a p /Z which is much smaller than the characteristic
TF radius a /Z0'~, the contribution to the integral is
negligible. [We used pF(r}= —2m V(r), with
V(r) = —Ze /(Z ' ao). ] We can therefore replace
both pF(r) and p~(r') by, for example, p~(R), where
R=(1/2)(r, +r2). We introduced a unit operator in Eq.
(10.1), which we now choose to write as

1 =gp(r)gp(r),

where

P~(r) =exp(ip r/fi) .

We have thereby "made explicit the underlying wave
functions. " E„[n ] then contains products of two-
particle wave functions,

[P~(r)P~.(r')][@ .(r')cP (r)]:—[4',(r, r')]4 (r, r')] .

(10.2)

The purpose of having introduced two factors of unity is
to be in a position to implement exchange effects, for two
electrons with the same spin projection must have a spa-
tially antisymmetric wave function. For electrons with
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R —= —,
' (r+ r' ) and p

—=r —r',
and noting that fdr fdr' . =f d Rfdp. . . , gives the

exchange contribution

E,„[n]=—
—,'X2f dRf dplI(p) e /p, (10.3)

where there is only one spin factor of 2 since the spin pro-
jection of one electron determines that of the other for
the spin case considered, and where

I(p) = f dp exp( —ip.p/A')/(2~6')

pF(,R)
=[1/(2vrirt) ]f 4mp dpj o(pplk)

= [p~(R)I2~ A' ](siny —cosy )ly, y =pF(R)pluri .

We now use

the same spin projection we therefore Inake the replace-
ment

(r, r')~ I+ (r, r') —4 .(r', r)] /2'

and we make a similar replacement for V*,(r, r'). This
leads to the replacement of the product [ ][ ] of Eq. (10.2)
by [ ][ ] P*—(r)P*(r')P (r)P„(r'). E„[n] is thereby re-
placed by E„[n]+E,„[n];changing variables from r and
r' to

B. The bulk electrons in a slowly
varying potential

1. The effect on the entire atom

The assumption that the effective TF potential VT„
satisfies Eq. (9.1), that is, that the relative change in
VTF(r) can be neglected over the minimum distance, of
order K(r), required to define the momentum well enough
to have Ap ((p, is reasonably well satisfied, but of course
VTF(r) does vary, and we shall now study the effects of
that variation on the bulk of the electrons. The first
effort to correct for the variation of the potential was
made by von Weizsacker (1935), but the result obtained
was shown to be too large by a factor of 9 (Kirzhnits,
1957; Kompaneets and Pavlovskii, 1957; Hodges, 1973).
Plindov and Dmitrieva (1978) obtained the presumably
true Z correction, but in doing so did not obtain the
correct Z correction. The first derivation to obtain
what we believe to be the true Z and Z corrections is
that of Schwinger (1981). Filling in a few steps and add-
ing a few disimprovements, we follow his derivation.

We begin by finding a new expression for n(r). Thus
we note that, for a real number a,

(1/2vri) f (dt lt)exp(iat) =e(a),
C

f y dy(1/y)[(siny —y cosy)/y ] =1/4

to arrive at

E,„[n]= —(e /4' ) f dr[pF(r)/fz] (10.4a)

where the contour C runs from —oo to + ~ along the
real axis, passing below the origin, and where e(a) is the
step function, defined by e(a) =1 for a ~0 and B(a)=0
for a (0. We then introduce the operator I', defined by

where we have changed the dummy variable R to r. In
terms of the number density n(r), we have

E, [n]= —(e 14~ )(3~ ) f n ~ (r)dr . (10.4b)

This result provides some justification for the addition of
a term of the form of Eq. (10.4b) to the Lenz energy func-
tional in Sec. V.B.2.a. A functional that includes such a
term is referred to as the Thomas-Fermi-Dirac (or TFD)
theory, but, even though the numerical coefficient in Eq.
(10.4) is replaced by an arbitrary coefficient, TFD theory
is somewhat Aawed, since it accounts for the Z energy
correction but not the (larger) Scott Z correction. [TFD
theory is of considerable mathematical interest and does
have some interesting physical features (Lieb, 1981)]. To
obtain numerical results it is convenient to work with
V(r)= (Ze /r)P(—x) rather than with n (r), for, by Eq.
(4.16a), one then has pz(r)=2mZe P(x)lr. Using Eq.
(5.4), Eq. (10.4a) then gives

P =(1/2vri ) f (dtlt)exp( iHtlk), —
C

(10.7)

so that

With a factor of 2 to account for spin, the electron num-
ber density, contributed to (by assumption) by all bound
electrons, is given by

n(r)=2&rlPlr& . (10.8a)

We let

and observe that if HP, =EIgi, then PQI=e( —Ei/&),
that is, P is a projection operator that reproduces
negative-energy (bound) states and annihilates positive-
energy states. P is therefore the sum over all (normal-
ized) bound-state wave functions,

E« = —(4/~ )(3'/4) Z Ry f P (x)dx (10.5) (10.8b)

E = —0.44 ~6Z5~3Ry (10.6)

and the numerical value of the integral is known to be
0.6154. The final result is therefore

be the time translation factor; for a system which is
known to be at precisely the point r at the time t =0,
(r, tlr, 0) represents the probability amplitude that the
system will be at precisely the same point at the later
time t.
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Equations (10.7) and (10.8) then give

n(r)=(1/~i ) f (dtlt)(r, t~r, o) . (10.9)

from Eq. (10.10b) that

cv„=( 1/m )d v„(x ) ldx (10.11a)

V(r)=v„(x)+v (y)+v, (z),
where

(10.10a)

v (x)=vo+(mdiv /2)(x —x)) (10.10b)

with v (y) and v, (z) having similar forms. It follows

Now (semiclassical) TF theory is a local theory, with
any one of the functions n(r), pz(r), and V(r) expressible
in terms of either of the other two at the same point r.
To go beyond TF theory, we must allow the value of, say,
the effective potential V at r, and in the neighborhood of
r, to determine n(r) and pF(r). We do so by introducing
a potential that is a reasonable approximation and that
allows a relatively simple analysis, namely, a harmonic-
oscillator-like potential. Thus we assume that by an ap-
propriate choice of origin, of axes, and of the parameters
vp, ro, and r, (with everything ro dependent), the potential
V(r) in the neighborhood of rv, where ro lies in the region
occupied by the bulk electrons, can be adequately
represented by

and that

mrs (x —x, ) =(I/m)[dv„(x)/dx] (10.1 lb)

We cannot deduce from Eq. (10.11a) whether co„ for r in
the neighborhood of ro is positive or negative. (Note that
co„ itself never enters, for we shall be concerned with
even functions of co„only; negative values of co therefore
pose no problem. ) It will be seen shortly [Eqs. (10.12)
and (10.13a) below] that (r, t ~r, o) contains an oscillatory
time-dependent exponential, so that the integral in Eq.
(10.9) converges; we can therefore introduce a conver-
gence factor when, later, we make approximations that
cause that integral to diverge.

It follows from Eq. (10.10a) that the motions along the
x, y, and z axes are independent. We therefore have

(r, t ~r, O) = (x, t ~x, O) (y, t ~y, O) (z, t ~Z, O), {10.12)

with the factors known since the potentials are
harmonic-oscillator-like; see, for example, Finkelstein
(1973). We have

(x, tax, O) = Pl CO~

2mi A since„ t

1/2

exp[ —(i/A)vot]exp[ —(i /fi)mro„(x —x, ) tan(cv„t/2)] . (10.13a)

Since v (x) is assumed to be slowly varying, it follows from Eq. (10.11a) that rv„ is small, and we expand about co„=o.
Retaining for the moment only the leading term in since t and in tan(ro„t /2) gives

(x, tax, O& =
2miht

1/2 iv„(x)t
exp

fi
= (x, t ix, O)TF, (10.13b)

where v (x) is given by Eq. (10.10a). The identification
in Eq. (10.13b) of the approximate form of (x, t~x, o)
with the TF time transformation function (x, t~x, o)TF
can be justified as follows. With that identification, Eq.
(10.12) is approximated by

' 3/2

2+i fit
itV(r)

exp (10.14a)

n TF(r) =
mr 2mik

3/2
dt itV(r)

exp

Setting u = —t V(r)/A and using

f &
—5/2eiud& (8/3)~l/2eim/4

C

we find

and the use of this expression in the TF version of Eq.
(10.9),

nTF(r)=(1 Imari )f (dtlt)(r, t ~r, o) T,Fc
gives

nT„(r)=(1/3m )[ 2mV(r)l—fi2] /

=(I/3m )[pF(r)/A'] (10.14b)

in agreement with Eq. (4.11).
Rather than validating the expression for (x, t~x, o)TF

given by Eq. (10.13b) by showing that it leads to an
nT„(r) which agrees with the number density of TF
theory, we can validate that expression itself. We begin
by noting that the (x, t~x, o)T„of Eq. (10.13b) can be
rewritten as

2
dr'x it px

exp —— +v„(x)—~ 2mA' A 2m
(10.15)

But now consider the one-dimensional version of Eq.
(10.8b), under the assumption that the momentum and
coordinate operators commute, that is, under the as-
sumption that corrections of order A can be neglected,
consistent with TF theory in which A enters only in
determining the number of states allowed in a given re-
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gion of phase space. The insertion of the unit operator a convergence factor understood. We write

(ro Isimo„t)' =t ' [1+(co„t /12)]

between the exponential and ~x ) in the one-dimensional
version of Eq. (10.8b) then gives Eq. (10.15). (Some relat-
ed material will be discussed in Sec. XI.D.)

To go beyond TF, we retain one further term in the ex-
pansions of sinco t and of tan(ro„t/2) in Eq. (10.13), with

I

exp( ib —ro" t ) = 1 i—b ro t

b =m(x —x, ) /(24fi),

and arrive at

~2 t2
&x, tax, o&=&x, tax, o&TF 1+

12

imro„(x —xi) t
24k'

Using Eq. (10.11), this becomes
T

d Ux
(x, tax, O) =(x, tax, O)T„1+

m dx 2 12
i d"x

m dx

'2
t3

24%

We can replace u„(x) by V(r), and then, again neglecting higher-order terms, we arrive at

2 3

(r, t ~r, O) = (r, t ~r, O)T„1+(V V) i (V V—)

On substituting this expression into Eq. (10.9), we find that the unit term on the right leads, as noted earlier, to n T„(r),
and, replacing t~ with j=2 or 3 by (ibid Id V)J, we obtain

fz d A dn(r) nTF—(r)= — V V
z nTF — (VV)

12m d V2 24m

m V V m (VV) =5n(r) .
12 R ( —ZmV)' 24 fi ( —2mV)

(10.16)

Since, in the region of the bulk electrons, V(r) will be
close to VTF(r), and since n TF(r) and VTF(r) are known,
we have an explicit expression for 5n(r) on replacing
V(r) by VT„(r) in Eq. (10.16). This explicit correction
for the number density may well be a more useful result
than the Z energy correction term which we are about
to obtain. Note that 5n is of order (

—mVT„/A )' /l,
or (Z/ao)'~ /l ~, where l is a characteristic distance of
a bulk electron from the nucleus, which can be taken to
be ao/Z'~ . 5n is therefore of the order of Z ~ lao.
Since n is of the order of Z/(ao IZ '~ ) =Z /ac, we have

5n In =O(Z ) . (10.17)

To obtain the change in the energy generated by the
change 5n in n given by Eq. (10.16), we cannot simply re-
place nT„ in the Lenz energy functional of Eq. (4.9) by
n =n TF +5n; since the functional is stationary with
respect to variations in n about nTF, the correction will
be of relative order (5n ln ), that is, by Eq. (10.17), of
relative order Z, and therefore of absolute order
Z XZ, or Z. To obtain the Z correction term,
we must change the Lenz energy functional E[n] in a
more significant manner; we must add a term to E[n]
such that the variation of the new functional leads not to
Eq. (10.14b), satisfied by n =nTF and V = VT„, but to Eq.

(10.16). We can rewrite Eq. (10.16), to the relevant order,
as

(5k%' /3m)n (r)= —V(r)+S(r), (10.18)

where we used Eq. (4.9g) and where

$25:—
24m

VV 1(VV)
V 4 V2

(10.19)

5g [ V] = —fS (r)5n (r}dr

= —fS(r) 5Vdr,dn
dV

(10.20)

g[V] will then represent the additional energy. It is
sufficient to use Eq. (10.14b) for the evaluation of dn Id V;
this gives

Schwinger expresses the additional term in the functional
required to generate S(r) in terms of n(r), since the Lenz
energy functional is normally expressed in terms of n(r),
and then reexpresses the additional term in terms of V.
We are interested in the energy correction rather than
the corrected functional, and we can proceed directly
(with some loss of insight). Thus we seek a functional
g[V] such that
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dn 3 3m

5I X'

Choosing

3/2

V) i /2
the identity

(10.20')
3/p

(
—V) (VV/V) = —2(VV).V( —V)2= 1/2

—2( V)i/2V2V+(4/3)V2( V)3/2

g[V]= 2 f dr( —2mV) /1 3n
96~'~p V

2
Equation (10.21) then becomes

(10.21)
g [ V] = (24m. A) '

I g, [ V]+g2 [ V] }, (10.23a)

one finds that 5g[ V] differs from the desired expression,
defined by Eqs. (10.20), (10.19), and (10.20'), by a term
proportional to

X—:f V Jdr, J:—5V(VV)/( —V)'

where

g i [ V]—:f d r( —2m V) ' V V,

g2[V]—:(3m) ' f drV (
—2m V)'/

(10.23b)

(10.23c)

When X is converted to a surface integral the contribu-
tion from the surface at r —ao vanishes. In obtaining the
contribution from the surface at r -0 we can use the fact
that

V(r)- (Ze —/r)+so =—V;*„(r), r-O, (10.22)

where eo is a constant whose value need not concern us.
[It will be close to eo, given by Eq. (9.12).] We then find

that

d V;*„(r)
X=4mr5 V(r).

dr [ Ve (r)]i/2

=4mZe r' 5V(r)~"=

r=0

Since we know that V(r) for -0 must have the form
given by Eq. (10.22), it follows that 5V(r)-const for
r-O, and therefore that X=O, and finally that Eq.
(10.21) would seem to be the desired functional.

We then observe that for electrons with energies below
—e the upper limit on pF(r) is not [—2m V(r)]'/~, as for
electrons required only to have energies below zero, but
[ —2m ( V+@)]'; furthermore, since strongly bound
electrons are present only for small r, we can replace V in
—(V+@) by V;*„, given by Eq. (10.22). [It would make
little difFerence if, throughout this discussion, we were to
use V;„, defined by Eq. (9.11), rather than V;*„.] Thus the
energy to be deleted is obtained by using Eq. (10.23), with
—V replaced by —V „—e; note, though, that whereas r
ranges from 0 to co in Eq. (10.23), in the term to be ex-
tracted r ranges only from 0 to r',* =Ze /e" (where
e"=co+@),the value of r at which ( —V;*„—e)'/ ceases
to be real.

We first consider gz[V]+gz[V;„+e]. Converting to
surface terms, the gz[ V] term vanishes at r = ~ while the

gz[ V „+e] term vanishes at r =r,', and we remain with
the difference

2. The extraction of the inner-electron effects

We are not yet home. In fact, since V(r) has a 1/r
singularity at the origin, the integral in Eq. (10.21) for
g [ V] diverges. The source of the difficulty is quite clear.
Recall that, in obtaining the "first correction" to TF
theory, we deleted the contribution given by TF theory
for electrons with energies below —e, where bounds on e
are given by Eq. (9.8). This was done because electrons
with energies below —e lie in the inner region, where the
condition (9.1), an assumption basic to the validity of TF
theory, is far from satisfied. We then added on the ener-

gy of inner electrons interacting Coulombically with the
nucleus, with an additional energy eo, given by Eq. (9.12),
for each inner electron by virtue of the interaction of
each inner electron with all of the outer electrons. But
the treatment presented above for the bulk electrons also
treats electrons with energies below —e incorrectly. We
must therefore delete the contribution of those electrons
from Eq. (10.21). We shall not, however, add anything;
to the required accuracy, that is, through terms of orderZ, the corrected energy contribution of the inner elec-
trons has been obtained, the correction being given by
Eq. (9.7).

To perform the deletion from g [ V], we begin by using

( —3m) i(2m )i/24~r2 [( Ve )3/2
in

and

(
—V)'"5(r)=( —V;*„)'"5(r)

while

( —V" )' V V' =4~Ze ( —V* )' 5(r)

the difference of the gi's is 4irn(r)e (
——2m V)', and,

deleting the inner-electron contribution from g [ V] of Eq.
(10.23a), the first quantum correction of the kinetic ener-

gy is

E „=(24~~6') '[(g, [V]+g,[V„+e])+(g2[V]

+g~[ V;*„+e])]

=(24ir iri) ' f ( —2m V)'/~( 4~eon )d—r . (10.24)

( Ve ~)3/2]
~

r =0

where we used —V- —V;"„as r-0. Using Eq. (10.22),
we find that this difference vanishes.

We turn now to g, [ V] —g, [ V;*„+e]. Since

( —V)' V V=( —V)' 4me [Z5(r) —n(r)]
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The small difFerence between n and n TF can here be ig-
nored. Using ( —2m V)' =pF and Eq. (4.11), and com-
paring the result with Eq. (10.4a), we obtain

E„(Z)
z(n —7)j3~nc~

y(n —6)c Z'"-"" '

Eq„=( 2/9 )E,„. (10.24')

The reader, urged at the end of Sec. IX to study
Schwinger's 1980 paper, is urged even more strongly to
study Schwinger's 1981 paper.

Xl. NOTES

A. A numerical study of E(Z) for large-Zatoms

The results obtained in Eqs. (5.9c), (9.7b), and (10.25)
give, for the energy of a neutral atom,

E(Z) =( —c7Z —c6Z —c,Z' )Ry+. . . ,

(The use of the subscript qu does not, of course, imply
that other corrections are not quantum in origin. ) The
total Z'~ correction is then, using Eq. (10.6).

E „+E,„=(11/9)E,„=—0.5398Z i Ry .

where each sum is over n =7, 6, and 5. Apart from its
intrinsic interest, the improved ratio can provide a useful
check on nonrelativistic energy calculations, and it is also
useful in the analysis of very low-energy P-decay process-
es (less than, or of the order of 10 keV for large Z), for
which the diA'erence in the atomic binding energies of the
parent and daughter nuclei is important, or even crucial.

As one example, consider the P decay of ' Re into
Os, a decay of great interest in studies of the age of our

galaxy (Clayton, 1983). On energetic grounds, by an
amount 6=3 keV, an isolated ' Re nucleus cannot de-
cay; the difFerence in atomic binding energies of Re and
Os atoms (with Z =75 and 76, respectively), of the order
of 15 keV, more than compensates for 6 and allows a Re
atom to decay. (See, for example, Chen, Rosenberg, and
Spruch, 1987, and references therein. )

where

c7=1.53749024. . . , c6= —1, c~ =0.5398 . (1 1.2)

C. The surprising accuracy of TF theory
for rather small values of Z

The values of c7 and c6 have been rigorously established,
and whatever small doubt there may be as to the result
for c5 can be reduced even further by a numerical study.
To minimize the eAect of corrections beyond Z, be
they lower powers of Z or trigonometric functions of Z,
one considers E (Z) for Z as large as one can readily per-
form the (nonrelatiuistic) calculations. This was done for
a few values of Z ranging up to Z =290. It was assumed
that the correction was of the form —c4Z Ry, and,
since the analysis was performed before the value of c6
had been firmly established, a few difterent values of c6,
including c6 = —1, were considered (Shakeshaft, Spruch,
and Mann, 1981). From the results of that analysis for
c6= —1, c5 is found to be 0.55, with an error of order
+0.02, quite close to the expected value, given in Eq.
(11.2), and c4 is found to be quite close to zero.

B. Improved estimate of the ratio
of lE..(z)l to E..(z)

Given the Z and Z corrections, it is trivial (( hen
and Spruch, 1987) to obtain a better estimate of the ratio
of lE, (Z)l to E„(Z) than its TF value of 7. One uses
the virial theorem in the form E, (Z)+E„(Z)=2E(Z),
one shows that in the TF approximation

E„(Z)=Z dE ( Z) /dZ

is in error by at most of order Z, and, using Eq.
(11.1), one thereby arrives at

In the model in which the electron-electron interaction
is neglected, one arrives at Eq. (9.4), and one then ob-
tains Q (the largest principal quantum number for which
the shell is full) in terms of the number X of electrons as
a power series in X ' . lt has been shown (Shakeshaft
and Spruch, 1981) that such an expansion converges for

X & I /(18v'3), (1 1.3)

a Uery small number, and converges rapidly for N) 1.
[For simplicity, consider only neutral atoms by setting
% =Z. For fixed Z, the value of Q defined by Eq. (9.3) is
a discontinuous function of Z, and this leads to 8 Eq.
(9.2); these discontinuities persist in models that include
screening eAects to some extent and in the solvable model
in which all pairs of particles interact via harmonic-
oscillator potentials. The discontinuities strongly suggest
that the energy cannot be expanded to all orders in a
power series in Z '~ .] Since lE, l /E„ is of the order of
seven, even the unscreened model is of some merit, and,
with % =Z, the domain of validity defined by Eq. (11.3)
makes it plausible that even though TF theory is often
thought of as being useful only for Z ))1, it in fact gives
meaningful results even for Z rather small. As
Schwinger (1980) points out, it even works reasonably
well for hydrogen, for which the application of a statisti-
cal theory makes no sense. [Keeping only the c7 term
gives E (Z = 1)= —1.53. . .Ry, off'by about 50%. Keep-
lllg tile c7 c6, and c5 terms in Eq. ( 1 1 .1 ) gives the ridicu-
lously good answer E (Z = 1)= —1.08Ry. ]
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D. Improvements upon TF theory: a slightly
different derivation and two applications

the number density of electrons filling the vth shell,
where the electrons interact with the nucleus (of charge
Z) but not with one another. In the TF approximation
we have

n T„(r)=J2dp/(2~4')

where the range ofp is defined by

E, ~ (p /Zm ) (Ze /r ) ~ E—

with E = —(Z /v )Ry. For v)) 1, we find
' 1/2

Ze
y

2 1/2Z 2 1/2
n T„(r)= ~ vhao

This result is not valid for y =0, but of greater present in-
terest is that the result breaks down at the classical ra-
dius, r

1
=2@ a /Z, the value of y at which E =Ze /y

(and the maximum value of r for the given v in the Bohr
model, which occurs for A, =O).

We now seek to improve upon the TF estimate of
n (r). The approach to be used is that of Shakeshaft and
Spruch (1981). It difFers from that of Schwinger (1981)
and Englert and Schwinger (1984) only in some minor
mathematical details and reproduces a number of their
results. Let n (r, E) be the number density for electrons
filling all shells with energy below E. For v&&1 we then
have

n, (r)=n(r, E ) n(v, E—i)
E=F.

rjn(r, E) 2Z
M' Ry

Semiclassical TF theory has been used by many au-
thors to estimate a wide range of entities. These include
various sums over normalized hydrogenlike eigenfunc-
tions, P i„(r)—see, for example, Sec. VII of Shakeshaft
and Spruch (1979)—sums that arise in a number of phys-
ical problems. The question arises to what extent im-
provements upon TF theory, such as those discussed in
Secs. IX and X, can be used to improve the di6'erent TF
estimates.

We consider, in particular,

n (r)—:2+ lP &„(r)l

I'F=(1/2') J (dtlt)exp(3 +8) .
C

[In lowest approximation, we assume that 2 and 8 com-
mute. We then have

e"+ lr&—=f e e "lp&dp(plr&,

with p& an appropriately normalized plane wave, and
the operator p in A can be replaced by the number p .
One then finds that n (r, E) reduces to the TF result. ] As-
suming that third- and higher-order derivatives of V(r)
are negligible in the region of y that makes a significant
contribution to n (r), we need only retain second-order
commutators in the Campbell-Baker-HausdorA expan-
sion of exp(A +8), as given, for example, by Hausner
and Schwartz (1968). The neglect of terms with three or
more derivatives in all, such as (V' V)V V, and some fur-
ther (reasonable) approximations on terms that are small
then reproduces some of the Schwinger (1981) and
Englert-Schwinger (1984, 1985) results. IThis is hardly
surprising since the omission of third- and higher-order
derivatives of V(r) is equivalent to the use of a
harmonic-oscillator potential. ] As applied to n (r), for
v=10 and Z =1, the improved result extends the region
where the approximation is meaningful from
r,i„,/ao=200 to roughly r/ao=230. [In obtaining the
result, an integral was evaluated numerically. It had not
been realized that the integral had been evaluated analyt-
ically, in terms of an Airy function and its derivative, by
Englert and Schwinger (1984).] The fractional extension
may not seem to be impressive, but the result may be
very significant nevertheless, since many atomic proper-
ties are determined by the outer electrons. It should be
stressed that the example chosen is a much harsher test
of the Schwinger and Englert-Schwinger modifications of
TF theory than a study of a neutral atom would be, since
the effective V (r) experienced by v-shell electrons is
much more variable than the V that would be experi-
enced by the electrons in a real neutral atom.

The improved TF form has also been used to estimate
the diamagnetic susceptibility y of the inert gases. This
too is a harsh test of the formalism, for since y is approx-
imately equal to g,.r,. —its form in the independent-
particle model —it depends strongly on the surface prop-
erties of the atoms. Although the results (De Rand and
Schwinger, 1982) were "considerably better than those of
Thomas-Fermi, the predictions are still significantly in
excess of the experimental values. "

the last factor being an approximation to E 1
—E . We

have

n(r, E)=2&rl&Elr&,

where, following Schwinger, with

i(H E)t/—A= [ ip t/2m A']+ [—i ( V E)t /—A']— —

we have

E. Shell structure

Even the very patient reader may wonder when, if
ever, the question of shell structure, so basic to atomic
theory, will be discussed. In fact, the discontinuities not-
ed in subsection X.B above are not at arbitrary values of
X but at values representing closed shells. However, the
energy corrections associated with these discontinuities
are rather small; important as it is, shell structure plays
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only a minor role in the determination of E(Z), and the
proof —or even an indication —of its existence in a study
from first principles of E(Z) is difficult. Very consider-
able progress along these lines has been made by Englert
and Schwinger (1985).

We here restrict ourselves to a few simple remarks.
We note that in the unscreened model (in which the
electron-electron interaction is ignored) the coefficient c~
of the Z term is not constant; rather, it is the sum of a
constant term and a term that varies sinusoidally with Z.
However, for a model that includes screening to some ex-
tent, such as the model in which an electron with a given
principal quantum number is shielded by all electrons
with smaller principal quantum numbers, cz is a constant
(Shakeshaft and Spruch, 1981). The existence of shell
structure suggests that an expansion of E (Z) as a power
series in Z ' breaks down at some point; it need not
suggest that that breakdown cannot be obtained from a
statistical model.

F. The potential value
of improved TF theories

As noted earlier, TF theory and its extensions have an
enormous advantage over the Schrodinger theory which
they approximate in that TF theory is expressed in terms
of a function of one variable, n (r), rather than a function
of I variables, %=%(r„r2, . . . , rr), where I" is the num-
ber of electrons and nuclei in the system. (That is of
course also true of density-functional theory, but the TF
approach is perhaps more basic. ) That n(r) satisfies a
nonlinear equation, as opposed to the linear
(Schrodinger) equation satisfied by ql, is a relatively
minor disadvantage. TF theory does have a number of
very serious disadvantages. It is neither sufficiently accu-
rate nor sufficiently wide-ranging for most present atomic
purposes. (The ground-state energy estimates are mean-
ingful but inaccurate, and useful wave functions are not
generated. Furthermore, it is not applicable to excited
states. In addition, the TF treatment of the outer elec-
trons, often the most important electrons in the study of
the interaction of an atom with an external electric or
magnetic field and of the scattering of an electron or
another atom, is very poor. ) Then, too, TF theory is not
applicable at all to molecules. An improved TF theory
that generated an n(r) accurate for all regions of the
atom and that was applicable and accurate for a molecule
could be extremely useful, even if the equation that
defined n(r) was quite complicated, since the complexity
of the determination of the many-variable 0' increases
much more rapidly as the, say, molecule becomes more
complex than would the determination of n (r), and
analysis of n(r) would surely be simpler than that of 4

for a suSciently heavy molecule. The work initiated by
Schwinger (1980, 1981), and continued in a series of pa-
pers which can be traced back from Englert and
Schwinger (1985), seems very promising in this regard. It
would be amusing if, more than half a century after Tho-
mas and Fermi introduced their theory, further improve-
ments of that theory could lead to a formulation that, for
a wide and important class of problems, was more useful
than Schrodinger theory.

Notes added in proof

(1) For a short interesting paper which includes a dis-
cussion of some recent developments, see Thirring, W.
E., 1990, Found. Phys. 20, 1103.

(2) The value of the coefficient c5 of Z cited in Sec.
X has now been shown to be exact; see Fe6'erman, C. L.
and Seco, L. A. , 1990, Bull. Amer. Math. Soc. 84, 1239.
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APPENDIX A: PROOF THAT E[n, ] ~ E[n]

Our Lenz energy functional is defined by Eq. (4.9).
The condition 5E[n] ~0 led to an n(r) defined by Eq.
(4.20}. We showed in Sec. IV.B.2 that E(n, ] ~E[n] for
n, (r)=n(r)+5n(r) normalized and 5n(r) small but oth-
erwise arbitrary. %'e now wish to generalize this to show
that E[n, ]~E[n] for n, (r)=n(r)+En(r) normalized,
where b, n(r) need not be small. The proof is of the same
form for a neutral atom and for a positive ion. We have

E[n, ]=E[n]+f bn(r) — +2 j,dr' dr+k(A' /m, ) J[n, (r) —n' (r)]dr+S[hn],
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where S[x] is given by the equations above Eq. (4.2la), so that S [b,n ] & 0. By Eqs. (4.13a) and (4.13b), the curly brack-
et in the expression for E[n, ] satisfies

j j
& —(5/3)k(fi /m, )nz/ (r) —p .

We therefore have

E[n, ] E—[n ] & k (A' /m, )f [n, / +(2/3 )n 5/3 —(5/3 )n 2/3n, jdr;

we used the fact that p I—
( n, n—)d r =0 since n,

and pf hav e the same nol malization. &1th
f (x)=n (r),g(x)=n, (r),p =5/2, and q=5/3, the
Hoder inequality given below Eq. (3.9) leads to

n 2/3n dr ( T2/5T3/5 T 3/5
t

where

T= n'"dr &0,
T, :—f n, /dr(&0), y—= T, /T&0.

We now have

E[n, ] E[n] & (—kA' /m, ) [y +(2/3) —(5/3)y3/5j T &0;

the curley bracket is non-negative for all (positive) y. It
follows that E [n, ] has its minimum at n, =n

(5/3)(p (r))/2m, (Z—e Ir)+V„(r)=0.
We multiply by the TF number density n (r), integrate
over dr, and use

f [(p (r)) /2m, ]n(r)dr=Ez,

Z—e f [n (r)/r)dr=E,

—,
' f V„(r)n(r)dr=E„.

The factor —,
' in the last relation is to avoid double count-

ing. We now have

(5/3)Elr+E, +2E„=O .

Since E, = 7E„ in T—F theory —see Eq. (5.13)—we can
write

APPENDIX B: THE "ESCAPE-VELOCITY
EQUATION" AND THE VIRIAL THEOREM

E, +2E„=(5/6)(E, +E„)=(5/6)Ei,
and we have the virial theorem result, 2E++E~=0.

One of the basic equations of Thomas-Fermi theory for
a neutral atom is

pF(r)/2m, + V(r)=0 .

An (obviously incorrect) interpretation of this equation
as implying that Ez+Ez is equal to zero would imply a
violation of the virial theorem. The point, clearly, is that
the virial theorem relates averages over all r of energies,
while pz(r)/2m, represents the maximum of the kinetic
energy, and at a particular value of r. It is simple enough
to check that the escape-velocity equation and the virial
theorem are consistent with one another. The paradox
can be resolved readily. To begin with, we note that the
momentum distribution at point r is proportional to p dp
for p ~pF(r) and is equal to zero for p &pF(r). It follows
that the average value ofp for the electrons at point r is
given by

pF(,v) pF(r)
(p'(r)) =f p p'dp f p'dp =(3/5)p'(r} .

Second, we decompose the efFective potential V(r) into

V(r)= —(Ze /r)+ V„(r),
thereby defining the contribution within the TF approxi-
mation of the electron-electron interaction V„(r) to the
effective potential V(r) seen by an individual electron.
See Eq. (4.15}. At this stage we have

APPENDIX C: A LOWER BOUND
ON THE KINETIC ENERGY OF A SYSTEM
OF ELECTRONS AND OF FIXED NUCLEI

A sketch of the approach to be Used

The determination of a lower bound on an energy level
is normally difficult. The problem of obtaining a lower
bound on Ex[/], defined by Eq. (8.4b), is made even
more difficult by the requirement, for present purposes,
that the bound be a multiple of Ex[n], defined by Eq.
(4.9b). The truly difficult part is not the mathematics; it
is to know how to proceed. A bound was first obtained
by Lich and Thirring (1975)—see also Lich (1976)—who
utilized upper and lower bounds on the ground-state en-
ergy lsd(&) of an appropriately chosen many-body
Hamiltonian & not the Hamilto—nian of physical in-
terest.

With ti the kinetic-energy operator of the ith electron,
and with V an as yet unspecified many-body potential,
we set

&=+ r;+V.

The Rayleigh-Ritz theorem then gives
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If we can find a lower bound @sd „(&)on 6'sd(&), we
shall have a (formal) lower bound on the quantity of in-
terest,

E [@]

%"e then have to express the right-hand side as a multiple
of Ez [n].

The number of eigenvalues below E
for a one-body problem

For reasons that will become clear later, we consider a
single electron in a potential V(r), as yet unspecified, and
let XE( V) be the nuinber of bound states with an energy
below the energy E, where E ~0. Assume for the mo-
ment that V(r) ~0 for all r. Let gb(r) be a normalized
bound-state wave function with energy E, for the poten-
tial Ab V(r). With 6 (r, r', E) defined by

(t E)6(r, r—';E)= —5(r —r'),
we have

GA.b Vgb =fb .

We set —V(r) = u (r ), and pb
= u pb, and arrive at

FIG. 2. Consider the potential A, V(r). As one increases A, from
zero, bound states appear at zero energy and move down mono-
tonically. The eigenvalues A, & are the values of k for which
there is a bound state at energy E. The bound states supported
by V are those with kq ~1. The schematic diagram is for the
case of three bound states.

e r/p =(1/2m) f a(k)e "~'dk,

one readily finds

a(k)=4m f e ~[(sinkp)/kp]dp .

We can therefore rewrite I, defined by Eq. (C3), as

I=(4') (2m, /fi ) (2')
(
—uGv )pb = ( 1/A, b )pb . (C2)

(The energy E is not an eigenvalue; it is fixed. The eigen-
values 1/A, b of the Hermitian operator —UGU determine
the diferent potential strengths A, b V which give bound
states of energy E). It follows that

Tr( —vGu) =Tr( G V) =g( 1/A b ),
b

but the result is useless since 6 (r, r;E) is infinite, as is
therefore the trace. However, Eq. (C2) implies

(uGu) pb=(l/kb)pb,

and it follows, since G is symmetric in r and r', that

g (1/Ab ) =Tr(uGu) =Tr(6VG V) .

dr dr'dk V r V r' a l e'" ~'-']

= fdka(k) f V(r)e'"'dr

Since sinx/x ~ 1, we have

a (k) & a (0)=4ir/2K,

and we obtain an upper bound on J by replacing a(k) by
a(0). Rewriting the

~ ~
in J as an integral over r and r',

and integrating over k, we find

J~(2') a(0) f drV (r),
=f f dr dr'V(r)G'(r, r', E)V(r')—:I . (C3) and therefore

Each A.b
~ 1 represents a bound state supported by V(r)

(see Fig. 2), and therefore

XE(V) ~I .

Xz(V) ~I ~ Q fdr V (r)/~E~'

where

Q—= (4ir) '
—,'(2m, /fi )

~

(C4a)

(C4b)
6 is given by

2 '22~ l e 2K Ir —r'I

6 (r, r';E)=
4~ )r —r'('

where E= —E A /2m, . Introducing the Fourier trans-
form

This result, in the slightly more general form discussed in
the next paragraph, was obtained by Schwinger (1961)
and Birman (1961). [Note that, since 6 (r, r';E)
=G (r r', E), I, as defined by Eq—. (C3), is a convolution
integral and can be bounded more readily by using
Young's inequality. ]
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If V(r) is not everywhere attractive, we replace it by
its attractive component, —

I
V(r) I;we employ the nota-

tion lf(r)l = —f(r)l if f(r)&0 and lf(r)l =0 if f(r))0. Since V(r) ~ —
I
V(r) I, it follows that Nz( V)

~N'z( —V(r)l ), and therefore that the inequality (C4)
remains valid for V(r) not everywhere attractive if V (r)
in the integral is replaced by (I V(r)l ) . [Note that
E(A, ), the energy of a particular energy level (continuous
in A) associated with H(X)=T+A, V, is monotonic in A,

even if V(r) is not everywhere attractive. A proof can be
based on the use of the eigenfunction $2 associated with
E(A, ) as a trial function in a Rayleigh-Ritz upper-bound
determination of E(k+dk). ]

It will be convenient to consider not Nb ( V) but

Nz&2(
—

I
V ,'E I

—),—and to observe that

[Had we directly used the bound on Nz( V) to bound

gb Ieb I, rather than proceeding through the use of Eq.
(C5), the bound would be proportional to

I dE/IEI' = oo. We could cut off the lower limit at

e; and obtain a finite result, but the result obtained
would not be in a useful form. ]

The sought-for bound

We are now in a position to choose a V for which a
lower bound on @ z(&) can be found. Thus, having ob-
tained a lower bound on geb for the one-particle poten-
tial V, we choose V to be a sum of Vs, that is,

&= g [r, + V(r; )] .
N~(V) ~NF)2( —

I
V —,'El ) . — (C5)

[The difference between h —= r —
I
V —

—,'El and h =—r + V

is

h —h = ,'IE wh—ere V(r) ~ ,'E, —

For this independent-particle Hamiltonian, the lowest en-

ergy can surely be no lower than that obtained by placing
two electrons (with opposite spin projections) in each
state —and then only if X, ~ 28. We therefore have

= —V(r) where V(r) ) ,'E, — 8 ~(&) ~ 2+ eb .
b

(C7)

that is, h —h ~ —,
' IEI. For each eigenvalue of h below E,

there will therefore be an eigenvalue of h below
E+—,'IEI= —,'E. h co—uld have additional eigenvalues
below —,

' E.]

The sum of the energy eigenvalues
for a one-body problem

For 1/' fixed there is an energy eigenvalue eb associated
with each strength parameter eigenvalue kb ~ 1. NF( V)
as a function of E is a staircase function (with unequal
horizontal lengths), rising abruptly by one unit as it
passes through an eigenvalue, ranging from 0 at E= —co

to B at E =0, where B=No( V) is the number of bound
states. We therefore have

With Eq. (Cl), we then have

EIr [P] ~ 2+beb —f n (r) V (r)dr,

where we exploited the fact that V is a sum of one-
particle operators. Inspecting Eq. (C6) and recalling that
the right-hand side of Eq. (C8) is to be proportional to
Ez[n], we choose

(2m, /~2)'"[ —V(r) ]'"=P(h2/2m, )n '"(r),
with P a dimensionless constant. Each of the two terms
in Eq. (C8) is then indeed a multiple of EK [n], and, with
the choice of P that gives the best lower bound, which is
readily found to be P= (3~/4), we have

f' N, (V)dE= f 'dE+ . + f'BdE E~[4]~(4~) '"Ez[n] . (C9)

=(e2 —e, )+2(e2 —e2)+ +B(—eb)

b=1
leb I

.

[A geometrical proof of this result follows immediately
from inspection of a plot of Nz( V) versus E; the area un-
der the curve is a sum of horizontal rectangles of unit
height and of width Ieb I.)] Using Eqs. (C5) and (C4), we
arrive at

y le, I

~ f N«2( I
v(. ) ,'EI )dE— ——

b

~g f dr f (
—IV(r) —

—,'E )'(2/IE )'"dE

g f dr f (V 1E)2 El 1/2dE
2V

=(4/15~)(2m, /fi ) f [
—V(r)] ~ dr . (C6)

We have at long last obtained the bound cited in Sec.
VIII, but the question remains as to the quality of the re-
sult, that is, the extent to which one might be able to im-
prove the bound by increasing the value of the coeKcient.
We gave a qualitative physical argument in Sec. VIII that
the coefTicient should be at most unity, and we now give a
proof of that result, based on a concrete example; recall
that the inequality (8.7) is to be valid for an arbitrary
Hamiltonian and for f normalized and antisymmetrized
but otherwise arbitrary. Thus consider the ground-state
kinetic energy Ez[g,„] of a large number N, of nonin-
teracting electrons in a cube L on a side, and ignore
corrections of order 1 /X, . Imposing periodic boundary
conditions, we find that the exact wave function P,„ is an
antisymmetrized product of plane waves of wave vectors
(2n/L)l, where the components of I are positive or nega-
tive integers or zero. We have
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Etc [P,„]= ( irt /2m, )( 2rr/I. ) g I

and we then find, for X, ))1,

where k is defined by Eq. (4.9g) and n,„=X,/L is the
exact constant number density, so that
E [f,.]=E [ ..].

It has been surmised that one might be able to raise
the coefficient (4sr) in Eq. (C9) to unity. This is
perhaps suggested by an examination of the semiclassical
value of gbeb, which, for V(r) ~0, is given by

geh
, semiclass

dI' dp p
(2srh')'

where the range of integration is defined by [ ] ~0. One
readily finds that the result is 1/4~ times the bound on
the quantum value of g eb, given by Eq. (C6). This
translates into the factor (4~) in calculating the
bound on Etr [ttj].
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