
Equilibrium properties of the Vlasov functional:
The generalized Poisson-Boltzmann-Emden equation

Frangois Bavaud

Department of Mathematics, Heriot- Watt University, Edinburgh EH f4 4AS, Scotland

This article investigates in a systematic way the properties of the classical continuous mean-field theory
governed by the generalized Poisson-Boltzmann-Emden equation p(x)=A exp[ —/3f dyp(y)V(x —y))
together with the associated variational problem inf —' f dx f dy p(x)p(y) V(x —y)
+kTf dx p(x) Inp(x). Origins of the theory are traced back. Past studies (freezing theories, electro-

static and self-gravitating systems) are relocated in a broader framework. New results concerning the
thermodynamic limit, phase transitions, metastability, and the shape of density profiles are provided. In
particular, the question of ground states (in relationship to condensation and wetting phenomena) is illus-
trated by numerous explicit solutions.
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where

P(x):=f dy p(y)V(x —y),
(2)

f dy exp( —Pt('i(y))

p(x) is a positive measure normalized to N with support
in the container A(:R, V(x) is the two-body interaction
potential, and P(x) is the potential induced by the density
profile )o(x). Equation (1) is known in the literature as
the Poisson-Boltzmann equation in the case of Coulomb
systems (Hill, 1956; Davidson, 1962) or the Emden equa-
tion for isothermal gas spheres (Emden, 1907; Chan-
drasekhar, 1967) in the case of self-gravitating systems.
We shall subsequently refer to it as the generalized
Poisson Boltzmann -Emden (GP-BE) equation. Equation
(1) is the Euler-Lagrange equation associated with the
minimization of the functional

FIp):= U[S ] TS[p)—
where

U[)o]:= ,' f dx —fdy)o(x)p(y)V(x —y);
(4)—TS[p):=kTf dx)o(x) in)o(x) .

U[p] is the energy part and —TS [p] (that is, the negative
of the entropy) is the entropy part of the functional F[p),
which we shall refer to as the Vlasov functional. F [p] is
a mapping from %(A, Ar ) to R, where

%(A,X):=[)oI)o(x)~0, supp(p)(:A, f dx p(x)=X)
The central equation we shall deal with in this article is

the nonlinear integral equation for p(x):

)o(x) = A exp( —PP(x)) (tx HA,

New address: Institut de Mathematiques Appliquees, Univer-
site de Lausanne, BFSH2, CH-1015 Lausanne, Switzerland.

is the set of admissible densities. The presence of the en-
tropy term allows us to consider absolutely continuous
densities only.

Provided a minimizing profile p (x) HW(A, i') exists,
the corresponding value of the Vlasov functional
F (A, N):=F[p ) will be called the (equilibrium) Vlasov
free energy.

As a general rule, we have attemptec, ". to concentrate on
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the study of the GPBE equation and the Vlasov function-
al for their own sake, that is, without seeking to model a
specific phenomenon or treating the former as byprod-
ucts resulting from an approximate treatment of some ex-
act theory. (In Sec. II, however, we describe the classical
routes leading to the GPBE equation, and in Sec. III we
investigate the relationship existing between Vlasov and
ordinary free energies; the X-body formalism will not
otherwise be considered. )

This approach allows for a greater unity and homo-
geneity in the presentation and provides a natural cutoff
to the scope of what should or should not be included.
The generality of results is also enhanced. Qn the other
hand, standard and new physical applications (such as
freezing, metastability, wetting, condensation, etc.)

emerge so to speak naturally in their direct relation to
mathematical questions (such as unicity and stability of
stationary solutions, location of their support, existence
of a singular part, etc.).

The study of the thermodynamic limit in Sec. IV en-
tails a natural taxonomy of interactions: positive definite,
nonpositive definite and stable, unstable. The second
class turns out to be only of thermodynamic interest.

The existence of a solution is demonstrated in Sec. V;
the question of uniqueness is investigated and solved for
some situations. Bifurcation from the uniform profile has
been widely used in previous theories of freezing. An ex-
actly solvable model undergoing such a transition is de-
scribed in Sec. VI.

Section VII gathers basic facts concerning Newtonian
and Coulombic potentials. A criterion for the stability of
self-gravitating systems is proposed.

Section VIII deals with the dependence of the density
profile on both container and potential. We pay particu-
lar attention to the rotational invariance of the former.
The relationship between pressure and density at the
boundary (the wall theorem) is derived in Sec. IX.

Finally, in Sec. X, systems at zero temperature are
studied. In the absence of an entropy part, minimizing
profiles {ground states) might possess a singular part
(condensation). Simple criteria (involving the value of
the slope of the potential at the origin) are shown to pro-
vide direct information on the existence of condensation,
as well as on the presence of wetting (defined as the pres-
ence of Auid in immediate proximity to the boundary of
the container). The exact ground states associated with
typical potentials (Yukawa, cosine, Gaussian, Morse, rec-
tangular, etc.) are determined, thus illustrating condensa-
tion and wetting phenomena.

As far as we are aware, Secs. IV, VI, VIII, IX, and X
(X.A excepted) are entirely new. In particular, the study
of ground states (which appears to have been neglected in
the past) presumably constitutes a promising field for fu-
ture investigations.

II. DERIVATION OF THE GPBE EQUATION

A. Classical mechanics

Consider a system of X classical point particles of iden-
tical masses I, interacting through a smooth pair poten-
tial V(x ) and enclosed in a container A C:R . In the
mean field lim-it (Spohn, 1980), the particle number and
the potential are rescaled, respectively, as X( )e=X/ e
and V( e, x ) =e V(x ), with e~0. Let

p(e, x,p, t ):=eg 5(x —x;(t))5(p —p;(t)) (6)

be the one-point distribution function (normalized to N),
where x;(t) and p;(t) are the position and the momentum
of particle i at time t, evolving in the rescaled potential.
Neunzert (1978) and, independently, Braun and Hepp
(1977) have established that if, initially,

limp{e, x,p, O) =r(x,p, O)
e~O

weakly on R, then

(7)

limp(e, x,p, t ) = r(x,p, t )
e~O

(8)

for all subsequent times t ~ 0, where r(x,p, t) satisfies the
Vlasou equation (Vlasov, 1938)

As a general rule, the GPBE equation has been used by
previous workers as an approximate, simple tool for ex-
tracting information on some underlying, more complex,
"true" system. Having said that, we must remark that
the different approaches, techniques, and results of
relevance we have so far been able to identify constitute a
strongly inhomogeneous class: this mainly reflects a wide
variety of motivations in previous studies.

The pure Coulombic and Newtonian cases expected
(see Hill, 1956; Davidson, 1962; Chandrasekhar, 1967;
and references therein), the first-principles derivations of
the GPBE equation (1) and its associated Vlasov func-
tional can be fit into the following three main categories.

Br(x,P, t ) Pa r)r(x, P, t ) dr(x, P, t) QV(x —y)
dp r 3'~P~t (9)

with initial condition r (x,p, O).
Equation (9) is clearly time-reversible and, unless a col-

lision term is added (Gogny and Lions, 1989; Bouchut,
1990; Desvillettes and Dolbeault, 1990), there is no possi-
ble relaxation towards any kind of equilibrium: typically,

solutions will behave in an oscillatory or (in the absence
of a container) indefinitely expanding way, as explicitly il-
lustrated by Kurth (1978) in an astrophysical context (see
»so Batt et al. , 1986). (In the case of strongly attractive
potentials, the collapse of the system remains of course
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another possibility. )

In fact, the metaphorical "equilibrium properties" ap-
pearing in the title of this paper actually refer to the
capacity of stationary solutions of the Vlasov equations
to mimic (sometimes surprisingly well) some of the prop-
erties encountered in ordinary statistical mechanics, i.e.,
in N-body systems. This is the essence of mean-field
theories. In this spirit, let us consider a stationary solu-
tion r(x,p) of Eq. (9) with a Maxwellian distribution of
momentum, at temperature k T =l3 '. The density
profile p(x) = J dp r(x,p), normalized to N, then satisfies

Bp(x) ~ ( ) d ( )
BV(x —y) (10)

whose integrated form is nothing but the GPBE equation
(1).

The GPBE equation can also be derived directly from
ordinary equilibrium statistical mechanics. With the re-
scaling N(F. ) = I /E (corresponding to N = 1),
V(e, x) =@V(x), Battle (1977), in the C*-algebras frame-
work, and Messer and Spohn (1982), in a more classical
context, show that the N(e)-point canonical distribution
function tends in the limit e~O towards a symmetric su-
perposition of products of one-point distribution func-
tions which turn out to be global minimizers of the
Vlasov functional [Eq. (3)] (with N= 1). Were the minim-
izer unique, the resulting state would be completely fac-
torized. This is the static expression of molecular chaos.
It can be compared to the dynamical result (Braun and
Hepp, 1977) that an initially factorized state remains fac-
torized for all subsequent times, in the limit e~O.

B. Functional expansion of the partition function

In an astrophysical context, Horwitz and Katz (1977)
obtain a mean-field formalism by saddle-point expansion
of the functional-integral expression of the partition
function. More directly, Cally and Monaghan (1981)
show the potential Wo=g;P(x;) [where P(x) is the in-
duced potential (2)] to be [up to O(N ') corrections] the
best one-body approximation to the two-body potential
V=+;& V(x; —x ), in the sense that, among all one-
body potentials W, W0 best minimizes the right-hand
side of the Gibbs-Bogoliubov inequality (Falk, 1969)

Fv ~Fw+ t, V W~w .

efFective potential V*(x,y), generally differing from the
interaction potential V(x —y):

p(x)=A exp —Pf dy V*(x,y) p(y)
A

(12)

V,p(x) = —Pp(x) f dy g(x, y ) p(y) V„V(x —y), (14)

corresponding to Eq. (10) with V V*(x,y)
=g (x,y)V'„V(x —y). In the aforementioned approaches,
the correlation function g(x,y) generally undergoes fur-
ther approximations. For instance, the functional form
of g (x,y) is restricted (for all temperatures and densities)
to a form corresponding to the uniform phase. A typical
output (Raveche and Stuart, 1979; Raveche and Kayser,
1978) is V*(x,y)=P 'g(a)0(x —a) for a system of hard
spheres of radius a, where 8( ) is the unit-step potential.

Finally, the so-called density-functional theory (see, for
example, Baus, 1987; Jones and Gunnarsson, 1989, and
references therein) leads in practice (despite the view
sometimes advocated by its zealots) to very close ap-
proaches. In numerical applications, the excess free ener-

gy &F[p]=F[p] F[p„], wher—e p„=const. is the uni-
form profile, is approximated as

bF[p]= ,'kT f dx f —d—y c(x,y)[p(x) —p„][p(y)—p„]

+kTf dx p(x) ln —1
p(x)

A Pu
(15)

For instance, Eq. (12) is exact (Kirkwood and Monroe,
1941; Hill, 1956; Jancovici, 1965) with

V*(x,y) = V(x —y) f d g g (x,y; g'),
0

where /&[0, 1] is a parameter coupling the interaction
between the particle located at x to all the other particles
(g= 1 for the real system); g(x,y; g) is the corresponding
correlation function. V*(x,y) can be further approxi-
mated by using the Percus-Yevick or hypernetted-chain
equation (Jancovici, 1965); alternatively, the "indirect
coupling" method (Weeks et al. , 1970) yields
V*(x,y) =g(x,y)P '[exp(PV(x —y)) —1] or, at high
temperatures (Brout, 1963), V"(x,y) =g(x,y) V(x —y).
It is also possible (Raveche and Stuart, 1975; Lovett,
1977; Raveche and Kayser, 1978; Jacobs, 1983) to start
from the (exact) first BBGKY equation

C. Truncation of higher-order correlations

where c(x,y) is the fiuid direct correlation function. To
first order in density (Stell, 1964)

We regroup here several approaches initiated by Kirk-
wood and Monroe (1941), all sharing the following com-
mon features: they seek to model the freezing transition
as a bifurcation problem governed by a nonlinear integral
equation. This equation is obtained by means of an ap-
proximation eliminating the higher-order correlations,
and most of the time it coincides with our GPBE equa-
tion (1) with a (possibly nontranslationally invariant)

c(x,y)=exp[ —PV(x —y)] —1 .

At high temperatures and low densities, the variational
problem associated with Eq. (15) then becomes identical
to the GPBE equation (1) with the same interaction po-
tential.

As a general comment, one should be well aware of the
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necessity for the Vlasov potential to be integrable. Oth-
erwise, functionals like Eq. (4) are simply not defined. Of
course, this requirement does not apply to the bare in-
teraction potential appearing in situations depicted
above, in which the Vlasov potential stands as a meso-
scopic, efT'ective potential.

III. BOUNDS FOR THE N-BODY FREE ENERGY

We first address the question of the relationship be-
tween the Vlasov functional and the ordinaIy free-energy
functional of the X-body problem. Using the notation
x ~:= [xi, . . . , x~], we find that the latter is

V[n~]:=f dx~ n~(x ~) g V(x; —xi)+kT In[nA'(x ~)] +kT lnN!,
A"

i &J

where n~(x &) is the N-point distribution function, nor-
malized to unity. n, (x} and n2(x, y) stand for the corre-
sponding one- and two-point distribution functions, nor-
malized to N, and N(N 1), re—spectively. The minimum
of the free-energy functional under the constraints

n~(x ~) ~0,
supp(n~) L:A,

f dx ~n(x ~)=I
A

(18)

0 if any cell is empty,

Q p(x; ) otherwise .I

Here n~(x ~) is a classical analog of the Hartree-Pock
wave function (Conlon, 1984). It is a simple matter to
show

V[ng, ]= 1 ——U[p] —TS[p]+kT ln(N!N ), (20)

&I n~]= U[p] TS[p]—
—

—,
' g f dx f dy p(x) p(y) V(x —y), (21)

i =1 i

where U[p] and —TS[p] are the functionals introduced
in Eq. (3). Let us emphasize the fact that the N- and 1-

point correlation functions appearing in Eqs. (20) and
(21) are by no means supposed to be solutions of a minim-
ization problem. Evidently, V[nz] ~ V[ng ],V[n&]
~ V[n~]. V[ng ] coincides with V[n~] for noninteract-
ing systems [V(x)—:0] for p(x)=const, whereas V[n&] is
worth considering for potentials strongly repulsive at the
origin. It is instructive at this stage to consider the

is the (equilibrium) free energy and will be denoted by
9 (A, N). V[n&] being a convex functional of n&, its
minimizer n~ (the normalized Boltzmann factor) is
unique.

Given a one-point density p(x ), together with a parti-
tion lro;]; i & of A= U, ,co, , satisfying f dx p(x)
= 1 for i =1, . . . , X, one constructs the tria1 A-body dis-
tribution functions:

N

n$ (x ~ ):= —
@[p(x, ),~X

I

Gibbs-Bogoliubov inequality (11) with W=WO. Explicit
calculation yields

V[n~] ~ 1 ——U[p ]—TS(p )+kTln(N!N ),

j f V(x —y)p(dx) p(dy }~0 . (23)

The potential is said to be ofpositiue type (see, for exam-
ple, Dixmier, 1964; Dobrushin, 1964; Fisher and Ruelle,
1965; Ruelle, 1969; Lewis, 1984) if the same inequality
holds for each bounded signed measure p, which, by
Bochner's theorem, amounts to saying that the Fourier
transform V(k):= Jdx V(x) exp(ikx) of the potential is

almost everywhere non-negative. [Bochner's theorem
can be shown to hold for "slowly increasing" distribu-
tions also (Schwartz, 1966); more severely singular situa-
tions like the one-dimensional Coulomb potential must,
however, be excluded. ] Clearly, any positive-type poten-
tial is stable, but the converse generally does not hold.

When V(x) is of positive type, any pair of one- and
two-point correlation functions n, (x ),n2 (x,y ) satisfies
(Conlon, 1984)

f dx f dy V(x —y)nz(x, y)
A A

~ f dx f dy V(x —y)n, (x)n2(y) —NV(0) .

We turn now to lower bounds for the N-body entropy.
For a system of X particles endowed with a symmetric
probability density f (x &) normalized to unity, the N
body entropy (up to the Boltzmann constant) is defined as

$[f~]:—f dx ~ f(x ~) lnf(x ~) . (25)

We consider also the k-point entropy (k ~ N ):

w»ch again expresses V[n~] ~ V[n~].
Before introducing lower bounds on the X-body free

energy, let us recall (see, for example, Dobrushin, 1964;
Fisher and Ruelle, 1965; Ruelle, 1969; Lewis et al. , 1984;
Gielerak, 1989) that the (real, even) potential V(x) is
called stable if, for each bounded positE'Ue measure p on
R,
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with

S[fk]:=—Jdx kfk(x k)»fk(x k) (26) to F/N, UIN, etc. as the free energy and energy per par
ticle.

fk xk
J dx k fk(x k) ln &0 .jxj k —jxk —j

The equality is attained if and only if

fk(xi .

(28)

Therefore

fk —j(X i &
'

& Xk —j )fj (Xk —j+1& ' '
& Xk )

S[fkl Slf, ]+S(fk, ] for I &k,
and generally

S[fk]&QS[fk ] for gk, =k .

(29)

(30)

In information-theoretical language, the higher-order
correlations contained in the state fk and absent from
the factorized state [fk ] reduce its uncertainty with

respect to the latter. In particular, S[f~]&NS[f, ];
with n&. =f~ and n,::—N f» this a—mounts to

dx~n~ x ~ nn~ x ~

& I dx ni(x) lnni(x) N lnN (31)—

fk(x k): Jdxt+i . ..dxwf(x x) .

For k )j, the following inequality holds (see, for exam-
ple, Kullback, 1968; Falk, 1969): f(p)= —,'pV(0)+kTlnp if V(x) is of positive type,

kTlnp& f(p) &
—,'pV(0)+kTlnp if V(x) is stable,

f(p)= —ao if V(x) is unstable .
(3&)

Proof. The arguments entering the proof are standard
(Ruelle, 1969; Lewis et al. , 1984): First of all, the entro-
py term attains its minimum kTlnp with the uniform
profile p„(x)=p. In the stable case, the energy term is
bounded below by 0. In any case, the free energy is
bounded above by the free energy corresponding to the
uniform profile. For a positive-type potential, the quad-
ratic form K[p,p] is positive definite, and therefore
K(p, p ] &2K[p,p„] K[p„,p—„]; on the other hand,
limz (1/N)(K[p, p„] K[p„,p—„])=0 for an integr-
able potential. Finally, if V(x) is unstable, there exists an
No and a density p(x) supported in the container A(NO)
such that K[p,p]= —e&0 and —TS[p] & ~ (if neces-
sary, the proNe can always be slightly spread to get a
finite entropy; the continuity of the potential ensures that
this can be done while keeping the energy negative). By
construction

Theorem 1. I.et the potential be continuous and integr-
able. Then the Vlasov free energy per particle
f(p):=lim~ F [A(N), N]/N satisfies

and therefore

V[n&] & U[ni ]
—

TS[ni ]
——V(0)+kT ln(N!N ) .

f(p) & lim
+—+ oo

= lim [ —
—,'eN+0(1)]= —~. R

&~ oo

(36)

(32)

[We observe in passing that the superposition approxima-
tion (Fisher, 1964)

Corollary la. The N body free energ-y per particle
f(p):=hm& ( p[n~ ] /N ) of a system interacting
through a positive type pair poten-tial V(x) satisfies

~Up
fz(x,y)f2(x, z)f2(y, z)

f, (x)fi(y)f i(z)
(33)

—kT —
—,
' V(0) & lim [ f(p) —

—,'p V(0) —k»np]
does not satisfy the normalization condition. The alter-
native approximation &min[ kT, —

—,
' V(0)] . — (37)

f3 (x,y, z):=—,
' [f2(x,y)f, (z)+f~(x,z)f i(y)

+f, (y, z)f, (x)] (34)

does, but generally violates requirement (30):
S[ff ] & S[f,]+S(f2]by Jensen's inequality. ]

The lower bound stems from Eq. (32); equations (20)
and (21) provide the upper bounds. Recall that a
positive-type potential satisfies

l V(x)
l

& V(0) Vx H R .
The bounds coalesce for a noninteracting system or, as
already obtained by Conlon (1984), at zero temperature.

I Y. THERMODYNAMIC LIMIT

Consider an increasing nested sequence of containers
A(N) tending to infinity in Van Hove's sense (Ruelle,
1969), at constant density p=N/A(N). Although we
deal with a continuous fluid p(x), it is convenient to refer

CoroHary lb. In a V1asov system interacting through a
two-body positive-type potential, the pressure P, compressi-
bility modulus 8 =gT (gT is the isothermal compressi
bility), configurational energy per particle u,
configurational specific heat at constant volume ci,, and
configurational chemical potential p are, respectively,
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134 Franqois Bavaud: Generalized Poisson-Boitzmann-Emden equation

P=p = ,'p —V(0)+pkT,2 ~.~
Bp

BI'B=p =p V(0)+pkT,
Bp

u = =—'pV(0),2

c = —P =0,2 Bu

ap

p, =f+p =pV(0)+kT(lnp+1) .
Bp

The principal merit of these expressions is to provide
reference thermodynamic quantities for comparison
when dealing with a stable, nonpositive definite interac
tion, which, according to Theorem 1, is the only case of
interest as far as thermodynamics is concerned. A nice
study of finite, unstable N-body and Vlasov systems can
be found in Posch et al. , 1990.

2U[p&]= f dx pzPz f dx pjgo+ f dx p (re. Po)

+ f dx p, (P~
—Po) .

J

The first term goes to 2U[po]. The remaining terms are
bounded by ellP. —poll„~0 and Mlle —

Poll, ~0, re-
spectively. Therefore

(39)

B. Uniqueness

Theorem 2. For a bounded potential, the Vlasov free ener
gy F[p] attains its global minimum in %(A,X). The cor-
responding GPBF. equation has at least one solution in
%(A, iV). R

Remark. The exponential form (1) of a density satisfying
the GPBE equation makes any minimizer pointwise posi-
tive (or negative —in that case, one could make F[p]
even by taking kT f ~dx lpl lnlpl as the entropy part).
The unilateral constraint p(x) ~ 0 can then be discarded.

V. EXISTENCE AND UNIQUENESS

A. Existence

In the thermodynamic limit, the GBPE equation (1) is
always satisfied by p(x ) =const. , which of course might
or might not be the global minimizer of the Vlasov func-
tional. For finite systems, we shall now demonstrate the
existence of a global minimizer p EA(A, iV) to the
Vlasov functional. It follows that the associated Euler-
Lagrange solution (the GPBE equation) always has a
solution in %(A, iV); this approach is known as the varia
tional method (see, for example, Krasnosel'skii, 1963;
Vainberg, 1973; Chow and Hale, 1982).

Assume the potential V(x) to be bounded. Let I pj ] be
a minimizing sequence in A ( A, iV ), i.e.,
lim F[p.]=inf,stF[p]. By hypothesis, sup F[p ]

and therefore sup&
—TS[p~] ( co. On the other

hand, the integrand in the functional —TS[p] is super-
linear; by the de la Valee-Poussin theorem (see, for exam-
ple, Ekeland and Temam, 1974) Ip I then contains a
subsequence converging weakly (in I. , ) to poH%. It
remains to check the lower semicontinuity of F[p], i.e. ,
to verify F[po]=F[lim p ]&lim. F[p ]. By con-
vexity, the entropy part is lower semicontinuous. Con-
sider now a sequence of profiles Ip ] converging towards
po. By equi-integrabiliiy, there exists, for each e) 0, an
M(e) with the property f ~Mdx p. (x) ~ e. Hence

J

When many solutions to the GPBE equation are
present, there are, besides the global minimizer of F[p],
other density profiles which might or might not be local
minima. Physically, they correspond to metastable or
unstable states, respectively. Uniqueness of a solution is
known to hold a priori in two situations.

1. Convexity of the Vlasov functional

A sufTicient condition for the uniqueness of the solu-
tion is the convexity of the Vlasov functional F[p] on
A(A, iV), i.e.,

F[kpi+(I —
A, )p~] ~ XF[pi]+(1—

A, )F[p2],

VA, H [0, 1] . (40)

The entropy part —TS[p] is always convex. Let us in-
troduce the notation

K[f„f2]:=f dx f dy f, (x) fz(y) V(x —y) . (41)

A sufhcient condition for the energy part
U[p] = ,'lC [p,p] to be con—vex is that the potential
V(x —y ) be positive definite: In that case, the inequality
K[p, —

pz, p, —p2~0 is equivalent to K[—,'(p, +p2), —,'(p,
+p2) ] —,'& [pi]+ —,'& [pz]. Therefore systems interacting
through a positive-type potential cannot sustain a meta-
stable state, nor can they undergo phase transitions; this
was already latent in Eq. (35). In the general case, the
following holds.

Lemma 3. F[p] is convexin A(A, iV) if and only if

g]+ [(I+llg I, )ln(1+ llg II, )+(1—
llgll, )ln(1 —

llgll, )]~0,+2 kTX
(42)

where 0:=Iglsupp(g)cA, llglli ~ 1, f~dx g(x)=0] and llglli:= fdx Ig(x)l.

Proof: F[p] is a convex functional if and only if

Rev. Mod. Phys. , Vol. 63, No. 1, January 1991



Franqois Bavaud: Generalized Poisson-Boltzmann-Emden equation 135

q z cx(A ~i~F[pi p2] —0

where

~FI pi p2.]:=—,'FI:pi]+-,'F[p2] FI. pl+ p2] . (43)

We set

1 Pl(x)+P2(x) 1 Pl(x) P2(x)f(x):=—
2 '

1V 2
g(x):=— (44)

to get

QF[pi, p&] =:QF[f,g] = K[g,g]+ f dx (f+g) ln 1+—+(f—g ) ln 1 ——kTN g g (45)

We leave it to the reader to verify that the minimization
of bF[f,g] over f for g fixed gives f (x)= Ig(x)l/Ilgll, .
Provided we take g H Q(A) as required by Eq. (44), the p,
and p2 corresponding to g and f both belong to
%(A,N). Thus the minimization procedure is
a posteriovi justified. When we split A into
A+. = [x EAlg(x) ~0] and its complementary A& A+,
the computation of bF[f,g] presents no difficulty and
yields Eq. (42). ~

As it stands, the minimization problem (42) is no
simpler than the original problem inf ~&iz ~iF[p]. It
warrants some comments, however.

~ The energy part in Eq. (42) has become the self-
interaction of a neutral fluid [ J ~dx g(x)=0]. Alterna-
tively, the energy part can be considered as the self-
interaction of a charged fluid [(g*(x)~0,f zdx g*(x)
= 1] with the modified potential

V*(x,y):= V(x —y) — f dz [V(x —z)+ V(y —z)]+ f dz f dw V(z —w) .1 1

IAI

I

—llglli+ 3llglli . (47)

The lower bound is characteristic of information theory,
where a similar result holds for the so-called Kullback-
Leibler information number (see, for example, Devroye,
1987). On the other hand, the natural estimate for the
energy is K[g,g ] ~ k fAdx g (x) where A, is the lowest
eigenvalue of the linear operator L [f ](x):
= f ~dy V(x y) f(y). The ina—bility of the L, -norm to
estimate the L2-norm makes the entropy part unable to
compete with the energy part as far as unicity of profiles
is concerned. One could in that respect qualify the
Vlasov functional of energy-dominated, in contrast to
Cahn-Hilliard-type, theories (Penrose and Fife, 1990),
whose functionals contain the Dirichlet integral

f Adx IVg(x)l susceptible, via Sobolev's inequality, to
estimate the L2-norm of g.

By construction, f ~dy V*(x,y):—0. Equation (46) stems
from the identity K[g,g]=K[g*—(g*),g* —(g*) ]=K *[g *,g *]. In both cases, indications of the convexity
of F[p] are obtained from auxiliary density profiles,
minimizers of a related variational problem. Neutral sys-
tems are most frequently encountered in electrostatics.
However, a purely Coulombic potential (see Sec. VII) is
positive definite, and the convexity problem does not
arise in that context.

4 The entropy part satisfies the estimates

llgll'~(1+llgll »n(1+llgll )+(1—
llg II »n(1 —

llgll )

~ Finally, a straightforward consequence of Eq. (42) is
the fact that uniqueness of a solution is more likely to
hold for low densities and/or high temperatures (see next
subsection).

2. Low densities, inverse temperatures,
and fugacities

In a finite system, uniqueness of the solution p(x) holds
for sufFiciently high temperatures and/or low densities.
Consider the nonlinear operator T:%(A,N)~%(A, N),

N exp[ 13(f+ V)(x)]-
f dy exp[ P(f + V)(y)]—

Under the proviso of convergence, successive approxima-
tions to the density profile can be numerically generated
as p„+,(x)=T[p„](x). We observe in passing that if we
start the iteration by taking po(x ) as the energy minimiz-
er in W(A, N), then (poe V)=const. in A (under the as-
sumption that po wets A everywhere; see Sec. IX), and
therefore p, (x)=p=const. , i.e., the first iteration gen-
erates the entropy maximizer. This exemplifies the
effects of successive applications of the operator T as a
tennis game between energy and entropy, temperature
playing the role of the arbiter. The following estimate,
(Messer and Spohn, 1982; see also Battle, 1977)
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IIT[p pb]lli —»Nll(p. —Pb)* VII-

—2/3N
I
VII- lp. P—b I )

ensures by contraction the uniqueness of the GPBE equa-
tion p(x)=T[p](x) for 2/3NII Vll (1. Note the presence
of the factor N, which stems from the fact that p(x) is a
material density normalized to N, whereas p(x) in Messer
and Spohn (1982) represents a probability density nor-
malized to 1. (Another contraction estimate involving
the maximal and minimal values of the potential can be
found in Posch et al. , 1990.)

An alternative approach consists in considering the
function ro(x):=ln[p(x)/A ]=—/3$(x) instead of p(x).
The former satisfies

co(x)+z I dy V(x —y) exp[re(y)]=0 Vx CA,

where z=/3A depends on /3, A, N through Eq. (2). Explic-
itly,

(3Z Z

BX X
=—( 1+2/3u ),

=—(1—cr +2/3u ),
where u = U/Ã is the energy per particle and c](, the
specific heat at constant volume. The derivation of the
first identity presents no difhculty; to get the second one,
one can first substitute relationship (1) in the
Vlasov functional, which yields F(N, /3) = —U(N, /3)

+N/3 'inA(N, /3), and then apply on both sides the
operator ()(/3 . )/B/3, taking into account z=/3A(N, /3),
cv. = —P r)u /()/3 as well as r)[/3F(N, /3) ]/()/3= U (see Sec.
IX).

By Eq. (51), z is an increasing function of the density
(for stable potentials) and a decreasing function of the
temperature (at least for positive-type potentials; a more
general proof is lacking at present).

Indeed, z plays very much the role of a fugacity in the
"grand-canomcalii description (50), to be compared with
the equivalent "canonical" description of Eqs. (1) and
(2). ' In the latter, the density normalization N is given.
In the former, the family [N, /3] corresponds to a given z
and a given solution ro(x), with N/3=z J zdx exp[co(x)].
The possible existence of different solutions to Eq. (50)
makes the question of the equivalence between the two
descriptions delicate.

To avoid confusion, we shall in fact refer to Eq. (50) as
"the Hammerstein description, " (since that is the name
under which this nonlinear integral equation is known in
the mathematical literature) and reserve the appellation

"grand canonical" to situations related to the minimiza-
tion problem

(p(x) 0, supp(p)eA) I UI p] T~[p] p I dx p(x)]
A

(52)

[An analysis of a variational problem close to Eq. (52)
occurring in mean-field studies of boson gas can be found
in Lewis et al. (1990) and Van den Berg et al. (1990).
The main difference from Eq. (52) is the use of the boson
entropy instead of the Bolzmann entropy (4). This allows
for the possible existence of a singular part of the minim-
izer, even at finite temperatures, which is Bose-Einstein
condensation (the density is here a distribution in energy
rather than in configuration space). ]

Coming back to Eq. (50), the latter satisfies a simple
gauge invariance property: suppose co(x) satisfies Eq.
(50) for some given z and V(x); then n), (x):=n)(x)—etc

satisfies the same equation for z, =z exp(ac ) and

V, (x)= V(x)+c, where a:=z Jzdx exp[a)(x)]. By com-

parison, the solutions p(x) to the GBPE equation are of
course invariant under the transformation
V(x)~ V, (x) = V(x)+c.

Mathematical properties of the Hammerstein equation
(50) have been more extensively studied than those of the
GPBE equation. Many relevant results are available in
Dolph (1949), Tricomi (1957), Krasnosel'skii (1963),
Amann (1976a), and Hudson and Pym (1980) [as well as
in Gel'fand (1963) and Joseph and Lundgren (1973) for
the case of a Newtonian interaction]. We shall here con-
tent ourselves with the following elementary contraction
estimate: assume V(x —y) to be pointwise positive for all

x,y H A. Then co(x) satisfying Eq. (50) is pointwise
cob II- ~z sup. eA JAdyv(x

—
cob II

. Therefore, the uniqueness of the solution holds
for z sup ~A f Ady V(x —y ) ( 1.

C. Stability of the uniform phase

As mentioned in Sec. I, the investigation of the freezing
transition (i.e., the transition [uniform phase]
~[modulated phase]) has constituted one of the main
motivations in past studies of the GPBE equation. The
analysis of uniqueness and stability turns out to be
dramatically simplified when applied on the uniform
profile (for a reasonably smooth interaction):

Theorem 4. In the thermodynamic limit, the uniform
profile p(x)=p=const. is locally stable (i e , is a l. o.cal
minimum of the Vlasov functional) if and only if

Pp inf V(q) ~ —1 . (53)

To be precise, the Vlasov chemical potential is
p:=r)F{P,A, N)lr)N=kT{1+1nA ) and, strictly speaking, the
Vlasov fugacity should then be identified with
exp(p)M)=eA =ep 'z.

Proof. The relevant quantity is the sign of the variations
of the free energy F(e):=F[p+eh (x)] in the neighbor-
hood of e=O. We can restrict ourselves by choosing
h (x) to be periodic, with a period Q that is as large as we
wish: h(x+0)=h(x). The fixed-density constraint re-
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quires (using a self-explanatory notation) f odx h (x)=0.
As observed before, the uniform profile satisfies the
GPBE equation in the thermodynamic limit, and so
F'(0) =0. The second variation F"(0),

f dx f dy h(x) h(y) V(x —y)+ f dx h (x),
0 R p

(54)

has its minimum governed by the eigenvalue problem

transition in the one-dimensional system.
Let us finally note that Theorem 4 does not exclude the

possibility of the uniform phase's ceasing to be the global
minimizer for temperatures lower than the critical tem-
perature (53).

The next section illustrates the onset of freezing [for
temperatures below the critical temperature defined in
Eq. (53)] for an exactly solvable class of systems, enabling
us to tackle the full nonlinear problem rather than its
linearized version around @=0.

h(x)= Pp—f dy h(y) V(x —y) . (55)

[We note in passing that Eq. (55) yields
[1+PpV(0)]fodx h(x)=0, and so f ndx h(x)=0 be-

cause of the stability of V(x)]. The eigenfunctions of Eq.
(55) are h~ (x ) =cos ( qx ) (with ( q A ) E2irZ) with associ-
ated eigenvalues A, ~

= —ppV(q). Substituting this back
into (54) completes the proof. ~

Let us note in passing that criterion (53) could also
have been satisfied by the (X-body) Ornstein-Zernike
equation, n z(k)=p c(k)/[1 —pc(k)], for the truncated
two-point correlation function (see, for example, Reichl,
1980), together with the high-temperature approximation
for the structure factor (Stell, 1964), c(x)= —PV(x).

As an example, consider the rectangular potential
V(x —y) =yo(a —lx —y l ), where y )0, a )0 and 0( ~ ) is
the unit step function. According to Theorem 4, the
uniform phase ceases to be stable for k T (k T,
= —p min~ V(q), where

Vl. A CLASS OF SYSTEMS UNDERGOING
A SECOND-ORDER PHASE TRANSITION

P(x) =p V(0)+a V(k) cos(kx), (58)

where k:=2irll Inse.rting Eq. (58) into Eq. (1), with
A=[0, l], we get

exp[ —a cos(kx) ]p(x) =p (59)

where a:=Pa V(k), and Io(a) denotes the modified Bessel
function of order zero. Finally, a in Eq. (58) must be the
first Fourier coefficient of p(x); this yields the consistency
condition

We consider a one-dimensional infinite system at densi-
ty p together with a band-limited pair potential V(x), i.e. ,

V(q) =0 for q l

)qo )0. We look for even, periodic solu-
tions p(x+l ) =p(x), with l ~ 4ir/qo. Under those condi-
tions, the induced potential (2) reads

V(q)= .

2/a
sing for v=1,

7l

27TQ a J, (g) for v=2,

4~pa
(sing —gcosg) for v=3,

(56) with

I, (a)
K(X =

Io(ct )

'.= —2PpV(k) .

(60)

(61)

for lxl a,
Vx ='

0 otherwise . (57)

with g=qa. As mentioned in Sec. I, the mean-field freez-
ing transition involving efFective potentials of the form
(56) has been analytically and numerically investigated
(Kirkwood and Boggs, 1942; Weeks et al. , 1970;
Raveche and Stuart, 1975, 1976; Co et aI. , 1976; Lovett,
1977; Raveche and Kayser, 1978; Lovett and BufF; 1980;
Feijoo and Rahman, 1982) in the hope of gaining some
information concerning the (supposedly existing) freezing
transition for X-body hard-core systems at v=2 and 3 di-
mensions, characterized by the two-body interaction

f (p) =,~

p V(0)+ kT lnp —kTK(i~) (62)

The function II (a)/Io(a) is increasing, odd, with limits
+1 for a~+ ~, strictly convex for o, )0, with a slope of

at the origin. As a consequence, Eq. (60) possesses
three distinct solutions, —cto, 0, and ao, for Ir&(0, —,'),
whereas only the trivial solution a =0 is possible for K ~ 0
or ir) —,'. [Incidentally, the similarity of Eq. (60) to the
magnetization equation in the Curie-Weiss model
p=tanh(PJp) (Huang, 1963) is striking, emphasizing the
common mean-field origin of both models. ] Notice that
a =0 corresponds to the fiat density profile p(x ) =p,
while the replacement of ao& 0 by —o.o amounts to shift-
ing the profile by half a period. The free energy per par-
ticle is evaluated by direct substitution of p (x) in Eq.

0

(3):

In those approaches (Weeks et al. , 1970; Raveche and
Stuart, 1975), the factor y in Eq. (56) is actually
temperature- and density-dependent, in such a way that
Theorem 4 cannot be invoked (as it must be) to justify a

with

K(rc):=InIO[ao(ir)] —
—,'i~no(~) . (63)

One verifies easily [taking K( —,')=0, lim +2&K(v)
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=1, as well as c)K(Ic)/cilc= —ao(v)/2 (0 for
ic&(0, —,') into account] that the free energy of the non-

trivial phase satisfies

kTlnp(f (p) &
—,'pV(0)+kTlnp (64)

in accordance with Theorem 1.
By construction, k =2~/I must verify k ~ qo/2, but is

otherwise arbitrary. The optimal choice for k is ko, the
value solving min &z k~ V(k). Were V(ko) & —kT/p,

qo 2 qo

then vP (0, —,
' },and our nontrivial solution would cease to

exist.
As lim +K(ic)=+ oo, the free energy (61) can in

principle be made arbitrarily low. However, at fixed den-
sity and temperature, the stability requirement of V(x)
(the absence of which makes the previous considerations
pointless) implies a lower bound on V(k) and therefore
on ic. Actually the potential must satisfy 2V(k) & —V(0)
as a consequence of Eq. (23) with p(dx) =g„~z5(x

nl )—dx.
To discuss the thermodynamic properties of the modu-

late (nontrivial) phase, we take the uniform (trivial) phase
as a reference system and consider the excess free energy

f,„,(p):=f (p) —f 0(p)= kT&(ic—). By Eq. (3g),

the excess pressure, compressibility modulus, energy,
specific heat, and chemical potential are, for

ac&�

(0, —,
' ),

P,„,= ,'pkTicao—(lc—)& 0,

exemplifying the general setup of Battle (1977), have con-
sidered the one-dimensional system with potential
V(x —y) =y cos(x —y). For y & 0, the potential is of
positive type and the GPBE equation has a unique solu-
tion. For y (0, the potential is unstable and the system
has no thermodynamic limit. In a finite container
A= [ farl.—, ~l. ] and for y (0, two cases need to be con-
sidered: for noninteger L, the GPBE equation has a
unique solution. For integer L„ the system undergoes a
first-order phase transition (discontinuity of the pressure)
from a uniform phase to a modulated phase, for
P & Il, = —2/Xy.

Vll. NEWTON AND COULOMB POTENTIALS

C(x)= .
1

ln xI for v=2,
2&

1 1
fol v 3

(v —2)Ic)co I

(66)

where co denotes the v-dimensional unit ball and IBco I

the measure of its boundary (Ic)co, I
=2, Ic)cozI =2', IBco3I

=4m). One can verify that, in the sense of distributions,
C{k):= Idx exp(ikx) C(x)= I

k
I

', and

We denote by C(x) the (v-dimensional) Coulomb po-
tential. Explicitly,

' —
—,
' xI for v=1,

c)ceo(ic)
B,„,=pkTic ceo(ic) & 0,

u,„,= —
—,
' kTlcao(ic) (0,

c,„,= —
—,
'

[cacao(ic)] &0,
BK

(65)

AC(x ) = —5(x) for x ER' .

Notice the equivalence of Eq. (67) to

=Inca, I5(x) for x ER (v& 1) .
c)x ~

(67)

p,„,= —kT[K(ic)+ —,'cacao(Ic) ] & 0 .

The physical picture is as follows: when isothermally
compressed, the system reaches a critical density

p, = kT/V(ko) be—yond which it prefers to develop a
periodic pattern, allowing it to lower its energy and pres-
sure, become more compressible, and so on; in other
words, the system manages to reduce its internal "stress"
by partly adapting to external perturbations. As
E(s)=4(—,

' —ic) +0[(—,
' —ic) ] for ~P(0, —,'), the transition

turns out to be of second order. In particular, the
compressibility modulus 8 jumps from the value

p [V(0)—V(ko)] in the uniform phase to
p [V(0)+ V(ko)] in the modulated phase. Similarly, the
(configurational) specific heat jumps from 0 to 2 (recall
that its kinetic part is the constant —,').

In conclusion, the above model is a tractable caricature
of solidification, for which we are guaranteed that no oth-
er local minimizer of periodicity I 4~/qo can exist.
Comparisons with profiles of larger periodicity would
clearly necessitate more information on the potential and
lack the same simplicity.

In a coinparable approach, Messer and Spohn (1982),

The equilibrium profile p(x) of a self-interacting fiuid
with potential y C(x —y) satisfies [differentiating (1)
twice]

hco(x)+ A,e ' ' =0, (70)

where A,:=—yz. Equation (70) is the Euler-Lagrange
equation associated with the functional

J[co]:=f dx ( —,'[V'co(x)] —A,e ' ') . (71)

A. Newtonian systems

Newtonian potentials are unstable and so (Theorem 1)
the thermodynamic limit does not exist. For rotationally
invariant finite containers A=B(O, R) [where B(O,R)
denotes a ball centered at the origin and radius R], a few

pbp=(Vp) +/3yp

Here y & 0 corresponds to the attractive Newtonian grav-
itational potential, whereas y )0 corresponds to the
repulsive Coulombic electrostatic potential. The corre-
sponding Hammerstein description [Eq. (50}]is
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1. y & 0, v=1, A= B(0,I)= [—I, I]
(Camm, 1950; see also Rybicki, 1971)

p(x ) = —
2 with b tanh(bl ) =2b 1 —N y

13y cosh (bx) 4

(72)

~( ) 2kT 1
cosh(bx)
cosh(bl)

f« lxl &I .Xyl
2

For x & l, the potential obeys P(x) = yNx —l2 as a conse-
quence of Newtonian screening. The solution exists for
all density and temperature ranges.

exact solutions are known; Theorem 7 below insures their
radiality:

In that case, the so-called singular solution

—2(v —2)
p(x) =

fly lx I'
(77)

F[p, ]= +k TN ln
2( v+ 2)( v —2) I ~.l

(78)

A presumably new criterion for the stability of solu-
tions in A =8 (0,R ) C:R" is given in the following.

satisfies the GPBE equation for all v~3. It should be
said that any finite (obligatory radial) solution p(x) is at
most a local minimizer of the Vlasov functional F[p],
since inf ert~z &~F[p]= —~ for all temperatures and

densities, when v& 3. This assertion is readily proved by
considering the limit e~ oo of F[p,], where p,(x) is the
constant profile in the ball B(0,e) C: A. Then

2. y&0, v=2, A=B(O, R)
(Liouville, 1853; Stoddikiewicz, 1963;
Ostriker, 1964; see also Padmanabhan, 1990}

Lemma 5. The profile p(r) is stable or metastable (i e.
p(x) is a local minimizer of the Vlasou functionalJ if and
only if

8b 1
p(x) =-

~y (Ixl'+b'}'
infH~~, yH r +R dr ~ [H'(r)]

0 v —1 p r
&o (79)

with b =2 8m R, (74)
13yN

P(x) =2kT ln
R +b

lnR for xl &R .Xy
2%

(75)

The solution (which is unique —see Bandle, 1975} exists
for kT )kT, :=(—8yN/rr) only. For kT & kT„ the sys-
tem collapses, its free energy diverging to —~. Note
that the X-body system undergoes a similar collapse with
the same critical temperature (Salzberg, 1965).

where &:=[HIH(r)=0(r ),H(R)=O, IH'(r)l &p(r)].

II'(lx I, ly I):= f dc@ C(x —y )
1

s~„

=min[C(x), C(y) I, (80)

Proof. Taking Theorem 7 (below) into account, it is
sufficient to check the sign of the second variation
F"(0)=(BF[p(r)+eh(r)]/Be )(e=O) for radially sym
metric variations h (r). One readily verifies that an ad-
missible H(r):= J odr r ' 'h(r) must belong to&. Lem-

ma 5 relies upon the Coulombic property

3. y &0, v&3, A=B(D, R)

2lr)co„lR = —NPy . (76)

No explicit solution is known, unless the external pa-
rameters satisfy the relation

where y denotes the image of y by the rotation cu. Equa-
tion (80) is a close relative of Gauss's law; its verification
should present no difFiculty. Using the argument of Sec.
VIII.C below, one can substitute W(x,y) for C(x —y) in
the expression for the second variation of the Vlasov free
energy:

F"(o)=yf dx f dy h(lx )h(lyl) ~(lxl, lyl)+kT f dx
A A p(lx I)

=2ylBco
I f dr h(r) C(r) r 'f dr r 'h(r)+kT f dr r ih (r)

0 0 o p(r)

(81)
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The integration by parts implied by the last step is legi-
timized by the properties of &. Use has been made of
BC(r)/Or= —lc)cu. l

'r' as well. ~

modynamic limit does not exist because of the long range
[ V(0) = ~ ] of the Coulombic potentials. Exact solutions
for finite systems are known in one and two dimensions:

As a simple application of Lemma 5, we show that the
singular solution (77) is always unstable for v) 3. To
that end, let us consider

cr for 0~r ~R/2,
c(R r) —for R/2~r~R,

1. y )0, v=1, A=B(0, /) =[—//]

2a 1p(x)=
Pl' cos (ax)

a tan a/ =NI3y /4
0&al &w/2 . (83)

where c = —2(v —2)/Py. One can verify that H(r) HW
and that the value of the functional (79) is
—(3—ln16)Rc /2 (0.

2. y) 0, v=2, A=B(O, R)

Remarks. As far as stellar objects are concerned, one
could argue that a constant energy-pressure ensemble
would be better adapted than the above constant
temperature-volume ensemble. Unfortunately, the ques-
tion of equivalence between ensembles is rather delicate
due to the instability of the gravitational interaction.
See, for example, Lynden-Bell and Wood, 1968, Lynden-
Bell and Lynden-Bell, 1977, for a discussion of the micro-
canonical ensemble and its relation to the canonical one.
In the Hammerstein description, the situation goes as fol-
lows: Equation (70), supplemented by Dirichlet bound-
ary conditions on BA, has two solutions for 0 ( A, (A, , in
the case of a disk (v=2), where A, , is an explicitly known
function of the external parameters (see, for example,
Dancer, 1988, and references therein). One of the solu-
tions is the global minimizer of the functional (71), the
other being unstable (Amann, 1976b). Equation (70) has
no solutions for A, )A, , . In the case of a sphere (v=3),
there is also a A, ~ beyond which no solutions exist; how-
ever, there are below A, ~ many solutions in general, even
an infinite number for the value of k corresponding to the
singular solution (77). More information is available in
Gel'fand, 1963; Joseph and Lundgren, 1973; Band1e,
1975; Amann, 1976b; Dancer, 1988; and Suzuki and
Nagasaki, 1988. Let us just mention that nonradially
symmetric containers have been tackled in two dimen-
sions by a complex-function method (Suzuki and
Nagasaki, 1988) going back to Liouville (1853). See
Dancer (1988) for the higher-dimensional case.

Lynden-Bell and Wood (1968), Horwitz and Katz
(1977), Cally and Monaghan (1981), and Padmanabhan
(1990) contain various (and variously rigorous) discus-
sions on the stability of solutions. More on the classical
(N-body/mean-field) relationship for gravitational sys-
tems can be found in Kiessling (1989, 1990). For the
quantum case, see Baumgartner (1976), Messer (1981),
and Lieb and Yau (1987) and references therein.

B. Coulombic systems

y & 0 makes things much easier: The Vlasov function-
al being strictly convex, the unique solution to Eq. (69) is
the global minimizer of the latter. By Theorem 1, a ther-

p(x)=
2 22 witha = 1+ R

8a 1 ~ 2 8m

P)' (lx I' —a')' /3yN

(84)

This solution exists, as it must, for all ranges of tempera-
ture and density.

Note the obvious link between solutions for y )0 and
their counterparts for y (0, as well as the impossibility
of an analog of the singular solution (77) (for v ) 3 ). No-
tice also that the value of the functional in Lemma 5 is
always positive, as it must be.

For v~3, explicit solutions are not available. In the
case of neutral systems, i.e., those involving at least two
kinds of particles or an external field induced by a neu-
tralizing background (jellium), studies are generally car-
ried on at this stage by linearizing exp( —/3$)=1 —/3$.
This is the essence of the Debye-Hiickel theory (Debye
and Hiickel, 1923; Hill, 1956; Davidson, 1962) of electro-
lytes and plasmas, which we clearly cannot develop fur-
ther here. More on exact solutions to the COPSE equa-
tion for neutral and charged systems can be found in
Garrett and Poladian (1988). See Kennedy (1984) and
references therein for a derivation of the Poisson-
Boltzmann equation in some appropriate mean-field limit
for X-body neutral systems.

Vl I I. DENSITY PROF ILES

At fixed temperature kT and density p:=N/~A~, the
shape of the minimizing density p (x) is determined both
by the potential V(x) and by the shape of the container
A. This section deals with general results characterizing
this dependence.

A. Superharmonic potentials

Let us assume V(x)=u(~x~), where u(r) is C (R+).
Consequently (with r:= ~x

~
)

b, V(x)= —g5(x)+u "(r)+ u'(r)v I

with g:= —~Bco
~

lim r 'u'(r) .
r~O
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The occurrence of the 5 function stems from Eq. (68).
DiS'erentiating Eq. (10) once more yields

bp(x)=p '(x)[Vp(x) j +/3gp (x)

—Pp(x) f dy p(y)r '+' [r 'v'(r)],v+ 1

A Br
(86)

Theorem 6. If V(x —y) is superharmonic in A /i. e.,
D, V(x) ~0 Vx, lx I

diam(A)j, then p(x) is subharmonic
in A[hp(x ) ~ 0, Vx H A]. In particular,

p(x)
I

f dy p(y) rlB(x r)C A .1

B x r B(xr)
(87)

Observe that superharmonicity of the radial function
V(x) requires both g ~0 and (r' 'U'(r))' ~0. Coulomb
potentials [g =1 and (r 'U'(r))'=0] are superharmonic.
In one dimension, superharmonicity and concavity are
synonymous. The mean-value property (87) makes the
Auid less dense far away from the boundary than near the
boundary. In particular, the density attains its maximum
on BA. The presence of the fluid in the interior of the
container is uniquely due to entropic reasons: by
Theorem 12 below, a system interacting with a superhar-
monic potential undergoes complete condensation on BA
at kT=O.

B. Attractive potentials

where r now stands for Ix —y I. Recall that a function f
is called subharmonic (see, for example, Helms, 1975;
Gilbarg and Trudinger, 1983; Doob, 1984) if b,f (x) ~0
and superharmonic if f is—subharmonic. The value of a
subharmonic function f(x) does not exceed its mean
value over any ball centered on x. A direct consequence
of Eq. (86) is

arrangements can for instance be found in Hardy et al. ,
1967; Luttinger, 1973; Lieb, 1977; Kawohl, 1985.) With
f(x)=h(x)=p(x), g(x)= —V(x) and taking into ac-
count g *(x) =g (x ), one finds that the energy part is
lowered by the above rearrangement. On the other hand,
the entropy part is left unchanged, and so
F~[pj —P,*[p*] ~

Let us notice, in the case of a radial nonincreasing po-
tential, that the radial increasing rearrangement of p(x)
in A does not in general lower the value of the Vlasov
functional: the "conjugate" to Theorem 7 does not hold,
as can be seen in the one-dimensional example
V(x)=6(a —x ), where 0( ) is the unit-step function,
and

c)0 for r, ~ Ixl ~r2 and ri~ Ixl ~r4,
0 otherwise (89)

0 otherwise (90)

clearly enhances the energy.

C. Rotational invariance of density profiles

One might wonder at this stage if rotationally invari-
ant containers A=B(O, R)CR and potentials V(x) pro-
duce a rotationally invariant density profile. In what fol-
lows, (f(x)) will denote the angular average of the
function f(x), i.e.,

in the container A=[ —R,R], with a/2~r, &r2, r2
+a r3 ( r4 ~ R . The symmetrically increasing re-
arrangement of the density

c)0 for R+r, +r, r, —r, ~lxl~R—,

Another class of rather clear-cut situations is consti-
tuted by purely attractive potentials:

(f(x))„.
I I

f de f(x„),
V

(91)

Theorem 7. I.et V(x) be a nondecreasing radial function.
Then

(i) when A is a ball, the minimizing density profile is a
nonincreasing radial function,

(ii) among all containers A of fixed Uolume IAI, the
Vlasou free energy is minimal when A is a ball.

Proof. Theorem 7 is a direct consequence of Riesz's in-

equality,

f dx dy f(x ) g(x —y ) h (y)

where x is the image of x by the rotation ~. The answer
to the above question is positive in the case of

(i) nondecreasing potentials (Theorem 7),
(ii) positive definite potentials: E[(p)„] F[p] for all

p HA ( A, X ) by Jensen's inequality.
In the general case, we can show

Lemma 8. Let the container and the potential be rota-
tionally invariant. Then there exists a rotationally invari-
ant solution to the GI'BE equation.

Proof. Consider

dxdy *x g x —y h*y (88)
lV(lxl, lyl):=

~ f, d~V(x —y. ) .
1

which holds for non-negative functions f,g, and h. f* is
the spherically decreasing rearrangement of f, i.e. , the (al-
most everywhere unique) radial decreasing function with
the property that the sets I x If(x) ~ p] and

Ixl f*(x)~ p] have the same Lebesgue measure for all

p) 0. A* is a ball of volume IA*I = IAI. (More on re-

By construction, any profile p(x) satisfies

f dx p(x) f dy p(y) lV( lx I, ly I )

= f dx (p(x) ) f dy (p(y) ) V(x —y) . (93)
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Let p (x) be the minimizer of the modified Vlasov func-
tional, where W has been substituted for V. p (x), whose
existence is ensured by Theorem 2, obeys the GPBE
equation with 8'. On the other hand, the modified ener-

gy functional is insensitive to the angular averaging of
the profiles, whereas the value of the entropy part, by
convexity, is lowered. This shows p (x) to be radial;
therefore IVep = Vep, and so p (x) obeys the GPBE
equation with V. l5

It remains to be determined whether this radial solu-
tion p (x) is the global minimizer of the Vlasov function-
al. Although the value of the entropy part is lowered by
angular averaging, things are made delicate by the fact
that the value of the energy part is enhanced.

Lemma 9. For any rotationalhy invariant container and
potential, and for any density p(x),

(Lebowitz, 1960; Fisher, 1964; Siegert and Meeron, 1966;
Bavaud, 1986).

Theorem 10. The stress tensor r pis given by the formula

P=p(BA) kT . (99)

Proof. In an )V-body system, the pressure, stress tensor,
and elastic modulus tensor are obtained by successive
differentiation of the partition function with respect to
the matrix elements e & parametrizing the homogeneous
deformation (see, for example, Bavaud et al. , 1986, and
references therein):

urhere do is the (outtoard oriented) surface element in
BA. In the case of a density constant on BA, the pressure
P = —( I /v)r satisfies

UI &p) 1 —UIpj . (94) x~ =x~ +e~pxp (100)

Proof. By Eq. (1),

(p(x) —p(y) )(cb(x) —@(y)) ~ 0 for x,y H A .

By averaging the angular part in x we obtain

& p(x)P( ) & +p(y)P(y) & p( ) & P(y)+p(y) & P( ) &

We now set y =x and integrate over A:

4U[p] =2K [p,p] ~ 2K[p, & p) „]

(95)

(96)

(97)

In the Vlasov case, direct differentiation with respect to e
[as done, for example, in Eq. (38)j is only possible when
the e dependence of the free energy is explicitly known.
However, in the general situation, the free energy (3) de-
pends on e through p'(x), the minimizing density in
A(A, )V) where A is the container obtained from A by the
deformation (100). In the absence of explicit knowledge
of p', the following expedient can be used: Consider

1 p ) 1p*'(x ):= det(1+e) p ((1+e) 'x)=
det(1+e) p (x),

(101)

In view of the last result and of the "energy-
dominated" character of the Vlasov functional discussed
in Sec. V.B.1, our final conclusion is that radial con-
tainers and potentials do not in general produce radial
densities. The argument can be completed by consider-
ing the rectangular potential V(x) =9(a —Ix I ) in two di-
mensions: for a certain range of densities and tempera-
tures, one can show (Raveche and Stuart, 1975, as sup-
ported by numerical experiments of Raveche and Kayser,
1978; Feijoo and Rahman, 1982) that the minimizing
profile has square planar symmetry in the thermodynam-
ic limit. For a sufFiciently big circular container, surface
eff'ects become negligible and the same (slightly distorted)
nonradial pattern will constitute the global minimizer.

IX. WALL THEOREM

where 1 is the unit v X v matrix. By construction, p*' be-
longs to %(A,K) and satisfies F [p*']~F[p'j. As
F[p* ] =F[p ], the tangents of the two functionals coin-
cide at @=0and

1 BF[p'](e=0) 1 BF[p*'j(e=0)
IAI Be p IAI Be p

(102)

F[p*']=—' f dx f dy p (x)p (y)V((1+e)(x —y))
A A

+kT f dx p (x) lnp (x)—kT&lndet(l+e) .

As a consequence, the stress tensor ~ &
and the pres-

sure I' are correctly evaluated by the right-hand side of
Eq. (102), whereas an analogous computation involving
the second derivatives of the free energy F[p*'] with
respect to e would lead to upper bounds for the elastic
moduli 8 &&& and the inverse compressibility B.

With an obvious change of variables,

Another crucial feature of the density profile is its be-
havior near the boundary: as we shall show, the value of
the density at the boundary BA is directly related to the
pressure of the system: this constitutes a "wall
theorem, " in close correspondence to the 2V-body theory

Consequently

7 p
I

dx P (x)xp 5 pPkT
1 o BP (x)
A Bx~

(104)
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Taking Eq. (1) into account and integrating by parts
completes the proof. ~

Remark. Looking at the dependence in the temperature
rather than in volume, we see that a similar procedure,
involving a fake minimizer p*~ (many possibilities exist),
would show

U[p]= —,
' f dx p(x)P(x)

,' —f dx p(x)2u =Nu .
supp(p)

A. Positive-type potentials

(109)

P [P ] = K[PP pP]=U[PP] (105)
Not surprisingly, it turns out that Eq. (108) is also a

sufficient condition for positive-type potentials.

which is reassuring. A second differentiation of F[p*~]
yields an upper bound for the specific heat.

Theorem 11. Let V(x) be of positive type p.(x) is a
ground state if and only if it satisfies Eq. (I08).

X. GROUND STATES Proof. By convexity, any admissible profile p(x) satisfies

At zero temperature, one deals with the minimization
problem

inf e~(A )v) —,
' f dx f dy p(x)p(y) V(x —y)

A A

=:inf(,c~(A)v)2K[p p] '2(K[p, p ]=U[p ],

0 2K[p p, p —pj= U—[p]+ U[p ] K[p—,p] .

On the other hand, from Eq. (108),

K[p', p]= f dx P'(x)p(x) )2u f dx p(x)

=2uN=2U[p j,

(110)

(106) and so U[p] ) U[p ]. ~

whose solution(s) p (x) will be referred to as ground
state(s). Here one can no longer exclude a priori the
presence of a singular part in the density profile. Instead
we shall consider (with an abuse of notation)

B. Superharmonic and Coulomb potentials

Theorem 12. Let V(x) be strictly superharmonic
Then supp(p ) C BA. In particular N, =N and N, =0.

p(x) =p, (x)+p, (x), (107)

P(x) =2u =const. b'x &supp(p)

(t(x) )2u Vx HAg supp(p),
(108)

where p, (of total mass N, ) is the absolutely continuous
part of the profile, and p, (of total mass Nb) its singular
part (N, +N, =N). The nature of the singular part is in-

timately related to the nature of the potential: for in-
stance, all ground states of a strictly increasing potential
[i.e., V(x)=v( ~x ~), v'(r) )0 Vr &0] are of the form
p(x)=N5(x —xo) for some xoHA. On the other hand,
when the potential is decreasing, it is an easy matter to
prove [with the help of Eq. (108) below] that it is always
energetically favorable to spread any singularity interior
to A. That is, the only possible singularities are located
in the (v —1)-dimensional hypersurface BA, as is the case
in electrostatics.

In general, a necessary condition for p(x) to be a
ground state is

P( ))
~ ~

f, dy P(y)) 2u =P(x ) .
1

Or

(112)

As a corollary to Theorem 12, the unique ground state
of a strictly concave potential in the one-dimensional
container A = [ —l, l j is p (x)= (N /2) [5(x + l )

+5(x —l)].
A celebrated consequence of Theorem 12 is the Fara-

day eA'ect in the electrostatics: electric charges
[V(x)=C(x)] distribute themselves on the boundary of a
conductor. By Eq. (109), the value of the electric poten-
tial on BA is 2U[p ]/¹On the other hand, the capacity
cap(A) of a conductor A is defined as the ratio [total
charge]/[value of the potential]. As a consequence

Proof. Suppose the existence of a point xo interior to A
with p (xo))0. Let B(xo,r)CA for a sufficiently small
r. This, together with strict superharmonicity and Eq.
(108), entails the contradiction

where P(x) is given by Eq. (2). In other words, the in-
duced field P(x) must attain its minimum value in A
wherever p(x) )0. Equation (108) now plays the role
previously performed by (1). One can easily verify that
when Eq. (108) does not hold, there is a way of redistri-
buting the density p(x) (while ensuring its global conser-
vation and non-negativity) which lowers the energy. The
constant u in Eq. (108) is actually the ground-state ener-

gy per particle,

U[p ]=o 1

2 cap(A)
(113)

cap(A) =infi fE p(p) l f dx
~ Vf (x)~', (114)

where V(A): = If ~f((3A) =1, hml„l f(x)=0]. The
equivalence stems from the following facts: by Eqs.

For A ER,v ~ 3, the following equivalent characteriza-
tion holds:
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(108), (109), and (113), cap(A) is the total charge on r)A
needed to create the induced potential P (x)—:1 for
x MBA. On the other hand, P (x) is harmonic outside
BA, and therefore unique as the solution of a Dirichlet
problem, and turns out to be the global minimizer in Eq.
(114). The condition at infinity matches
limi„i C(x ) =0 for v )3.

The concept of capacity (together with its relationship
to potential theory, elliptic PDE's, and Brownian
motion) has undergone considerable development in the
mathematical literature. See, for example, Helms (1975),
Gilbarg and Trudinger (1983), and Doob (1984). Among
its basic properties are the following (for v) 3):

A, cAz
—cap(A, ) (cap(A~),

cap(A, U A2)+cap(A, 8 Az) (cap(A, )+cap(Az),
(115)

cap(A) )cap(A*) = (v —2)
I
Bru

I
R '

U[p'] =
21 K, (yR )2+
R Ko(yR )

(119)

aU[p']
B(mR ) y Ko(yR )

1

K, (yR)1+
yR Ko(yR)

(120)

In the thermodynamic limit, u(p) =pny and
I' =~p y, results which could have been obtained
directly from Eqs. (35) and (38). The second expression
for the pressure is by no means fortuitous, but a conse-
quence of a "wall theorem for Auids completely wetting
the boundary, "which we shall now discuss.

where A* =8(O,R) is the symmetric rearrangement of A:
IA* = IAI. In particular, among all containers of fixed
volume

I
A I, the electrostatic ground-state energy is maxi-

mal when A is a ball.

C. Yukawa potential

D. Wetting and condensation

At zero temperature, Eq. (98) for the stress tensor

1

J dx p(x)xts
BP(x)

A x (121)

We now turn to new types of situations. We consider
first V(x) =Ko(y Ix I ), the modified Bessel function of or-
der 0 ( y )0) in the two-dimensional disk A =8 (0,R ).
One recognizes in V(k) =2nl( k

I
+y ) the form of the

(two-dimensional) Yukawa potential. By positive
definiteness, one already knows the ground state p (x ) to
be a radial function. Making the supposition that
supp(p)=A, and so P(x) —=2u in A, one is led [by deriv-
ing Eq. (108) twice] to the ansatz

+
2~A

[Note that the structure (constant bulk
density+homogeneous singular part on BA) holds for
Yukawa potentials in any dimension, for instance
V(x)=exp( —yIx I) in dimension one. ] The expression
for the induced potential reads

2&, 2X,
P (x)= + N, KD(yR )

— K, (yR ) Io(y'Ix
I ) .(yR)'

(117)

Equation (108) will be satisfied (in which case we are
guaranteed, by Theorem 11, to have determined the
ground state) provided

K, (yR )

yR Ko(yR )
(118)

Equation (118), together with the condition
N, +%,=X=pmA, determines the profile entirely. The
energy and pressure of the system are

is still valid; however, Eq. (108) implies p(x)V'P(x) =0 for
all x interior to A, whence

I' )0=sup„Es~(x) = co .

Lemma 13 was to be expected in view of the finite-
temperature wall theorem (99), I' =p(BA)kT. As kT~0,
p(BA) —+ oo. This can essentially happen in two ways:
when BA supports the singular part p, (x ), or when the
absolutely continuous part p, (x) diverges on BA. In or-
der to determine which of these possibilities prevails, we
shall make at this stage the following assumptions:

(al) V(x) =u(IxI), where u (r) is C' in (0, oo ), and V(x)
is locally integrable.

(a2) A is a closed, convex subset of R . Its boundary
BA is ofclass C .

(a3) The singular part of p(x) (if existing) has support
in r)A. More precisely, p, (x)=5(dist(x, BA) )p(x), where
the hypersurface density or condensate p(x) does not itself
undergo concentrations on BA:J &&der p (x) ( 0D.

Without the local integrability condition in (al), the
energy diverges irrespective of the profile. One knows as-
sumption (a3) to be true

(i) for strictly decreasing C potentials [i.e., u (r) (0],
(ii) for superharmonic potentials (by a refinement of

Theorem 12),
(iii) for positive-type potentials, provided the ground

state is unique [because of V(0))
I V(x)I]. A simple il-

lustration of this point is provided by V(x)=cos(x) in
the one-dimensional box A=[ —1, l]. By convexity, the
ground state p(x) is an even (i.e., rotationally invariant in
one dimension) function, whence
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l '2
U[p j = —,

' f dx p(x) cos(x) (122)

1 BP(x)
7 p

—
I I

der p(x)xp (123)

Following a line of reasoning familiar in electrostatics
(see, for example, Jackson, 1962), we see that the tangen-
tial components of VP(x) are continuous across BA,
whereas its normal component is discontinuous. Explic-
itly, when x and x+ are two points arbitrarily close to-
gether in the neighborhood of BA, with x and x+ inte-
rior and exterior to A, respectively, the discontinuity is
given by

BP(x+ )

Bx~

BP(x )

Bx~
= —gp(x)g (x), (124)

where il (x) is the outer normal at x, and g is given by
Eq. (85). As far as the discontinuity of VP(x) across BA
is concerned, V(x) can be replaced by the Coulombic po-
tential gC(x). We say the density profile p(x) completely
nets the boundary BA is there is an e )0 such that

xEA
dist(x, BA) (e (125)

This condition, together with Eq. (108), makes P(x):—2u
in an interior layer of finite width e parallel to BA, and
therefore VP(x )=0 in Eq. (124). Combining Eqs. (124)
and (123), we have proven

Theorem 14. Under assumptions (al), (a2), and (a3), the
stress tensor of a ground state that completely wets the
boundary is given by the formula

r~p — do'~ xp p (x)2 (126)

For l ~(vr/2), one can verify [using Eq. (108)] that the
unique ground state is p(x) = (N/2)(5(x + l )+5(x + l) ).
For l ) (n/2), p(x)=(N/2)(5[x+(n/2)]+5[x —(7r/
2) ] ) is a ground state: the energy attains its lower bound
zero. However, uniqueness does not hold, for the convo-
lution of the latter profile with any even positive function
of support in [(~/2) —l, l —(vr/2) j yields another ground
state. Observe that the pressure satisfies I' )0 in the first
case and P =0 in the second (degenerate) case, in accor-
dance with Lemma 13: the overall repulsive character of
the interaction has been lost.

From now on, we assume the validity of assumptions
(al), (a2), and (a3). Equation (121) reads

cedure. One verifies that Eq. (120) is a particular case of
Eq. (127) with g=2vr. More generally, Eqs. (38) and
(127) yield the following sum rule, to be satisfied in the
thermodynamic limit for Auids that completely wet the
boundary with a positive definite interaction:

f dr r 'v(r)
p2(QA )

— A 2
—limr' 'v'(r) (128)

In addition to its intrinsic interest, Theorem 14 togeth-
er with Lemma 13 provides a most e6'ective characteriza-
tion of ground states:

Corollary 14a. (i) 3 system with g ~0 cannot completely
wet the boundary unless P=0. (ii) 2 system with g = ~
cannot undergo condensation on the boundary Ii.e.,
p(x):—Oj, unless P = oo.

[Part (ii) of the corollary can also be understood from
energetic considerations: g= Oo is the mark of a poten-
tial that is strongly repulsive at the origin. Any conden-
sation implied by p, (x) )0 causes the energy to diverge. ]

A simple illustration of part (ii) is provided by
V(x)=cos(x) in one dimension. An application of part
(i) of Corollary 14a consists of the result that one-
dimensional systems in A=[ —l, l] interacting through
the potentials V, (x):=1/(a +x ) and Vz(x):
=exp( —x /2a ) cannot have ground states wetting the
boundary, since g =0 (and P )0: the potentials are pure-
ly repulsive). Both potentials are of positive type, and
strictly concave for IxI ~a. As a consequence of
Theorem 11, Eq. (108) will be satisfied for
p(x)=(N/2)(5(x+l)+5(x —l)) for sufficiently small l.
When l )0.71a for V, (x) or l) 0.86a for V2(x), the
value of the potential P(x) so induced becomes less at
x =0 than on the walls, causing a certain amount of Auid
previously condensed on the walls to be transported to
the central region, until equalization of the wall and
central-region potentials occurs. When l increases (at
fixed N), so does N, . However, N, =N N, remains—
strictly positive for l ( ~ by Lemma 13. Moreover, the
central region and the wall always remain disconnected,
by virtue of part (i) of Corollary 14a.

Let us now illustrate part (ii) with the two-dimensional
example V(x)=IxI ', A=8(O, R). The potential is in-
tegrable and g= ~. As V(k)=2~/IkI) 0, the ground
state is, by convexity, radial. The guess
p(x)=c(R —IxI )

' for IxI ~R (c=N/2rrR) turns
out to be a good one: the induced potential

gp, '(aA)
2

gpss
2

2IBAI'
'

where g = —IBrv Ilim„or 'v'(r), and p(x) is the hyper
surface density. When the latter is constant on BA, the
pressure satisfies

c~' for IxI ~Z,
P(x) =

2m.c arccosec for IxI) &
(129)

Strictly speaking, a product of distributions is involved
in the derivation of Eq. (126). The latter can be justified
(together with the factor —,') by a regularization pro-

satisfies the necessary and sufficient condition (108).
Moreover, p(BA)= ~ in accordance with Lemma 13.
Notice that the whole profile is absolutely continuous,
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p(x)

X

FIG. 1. V(x)=Ko(y~x ~) (two-dimensional Yukawa potential)
in the disk 8 (0,R ) (radial section).

FIG. 2. V(x)=Iry exp( —
y~x~ )

—exp( —~x ~) (one-dimensional
Morse potential, ~) 1).

V(x) =ay exp( —y ~x ~
)
—exp( —~x

~
) (130)

i.e., no condensation occurs, as required by Corollary
14a.

A final consequence of Corollary 14a is the possibility
that condensation and complete wetting may coexist,
provided 0 (g & ~, as in the case of the Yukawa poten-
tial. Another example is provided by the one-
dimensional Morse potential

for y) 1, a) y . Then g=2(Iry —1))0. As

(Ir —1)y +(g/2)k
(y +k )(1+k )

(131)

the Morse potential is positive definite for ~ 1. It is a
somewhat tedious, but elementary, exercise to verify that
condition (108) is satisfied for

0,') CX3

2
[5(x —1)+5(x+1)]+ cosh(bx)+ for a) 1,

2 2

Ap A3
po(x)= [5(x —1)+5(x+1)]+ x + for 1~=1,

2 2 2

A') Ap 0!3

2
[5(x —l )+5(x+1)]+ cos(bx )+ for Ir( I,

2 2

(132)

for some strictly positive constants n&=X„a2,a3,b, and
b.

Choquard and Rentsch (1986), who suggested to the
author the above problem, have investigated the stability
properties of the corresponding X-body system.

E. Rectangular potential

Finally, we investigate the ground states of the poten-
tial V(x)=0(a —~x ~). [We take 8(0)=0 for conveni-
ence. ] Although the potential is repulsive, assumption

X X

FIG. 3. V(x)=exp( —
~x~ /2a ), with 1(0.86a (or any concave

potential).
FIG. 4. V(x) =exp( —~x ~

/2a ), with 1& 0.86a (symbolic
sketch of the central region).
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h, p(x) Q p(x)

Flax. 5. V{x)= Ix I

' in the disk 8(O, R) (radial section). FICJ. 7. V(x) =9(a —Ixl ) (one-dimensional rectangular poten-
tial), with 2l =4.5a (degenerate ground state).

(al) of Sec. IX.D does not hold, and a justification for
(a3) is lacking. We suggest to the reader (if there are any
left) spending a little while trying to guess the ground-
state structure in the one-dimensional container
A=[0,L]. When L &a, all admissible p(x)EJ7(A, N)
have the same energy U[p] =N /2. For a &L &2a, one
finds that the minimizing profile consists of two drops of
identical mass N/2 (but otherwise arbitrary shapes) at a
distance greater than a apart. In the general case I.)a,
one first observes that supp(p)AA, i.e., there must be
holes in the fi.uid, for otherwise one would have
P(x)= con—st , and . trying to satisfy this requirement for
all x &[0,a] would imply, via Eq. (108), p(x)=0 almost
everywhere in [a,2a]. There exists, therefore, a nonemp-
ty interval [x„x2]CA with p(x)=0 in [x„x2]. Ifx, =0
(x2 =L ), displacing (without deforming) to the left (right)
a fraction of the Quid creates a central hole without in-
creasing the energy. One can then safely assume
0&x~ &xz&L If lx2 —x~l &~, »ondeforming dis-
placement can be applied without energetic cost to an ad-
jacent part of the Quid until a hole of size a is obtained; if
lx2 —x, I &a, one can condense the total amount of fiuid
contained in [xt —a, x2 —a] into a singular measure of
the same mass concentrated at xz —a (and similarly con-
centrate [x, +a,x2+a] at x, +a). In both cases, new
holes are produced, to which the same displacement-
condensation process can be applied. What is eventually
left consists of n' & n: = [L + a /a ] Dirac peaks of respec-

p(x)

tive masses X&, %2, . . . , separated by distances at least
a. The energy

U[p] =
—,
' g N; with g N; =N (133)

is minimal for n'=n, N, =N/n for i =1, . . . , n. The
ground-state energy

U[p'] =
L+a

(134)

is a discontinuous function of L: for L =(n —l)a,
n EN, the ground state is unique and consists of n iden-
tical Dirac peaks at a distance a apart. For
(n —l)a &L &na, these peaks can be slightly spread out
while keeping their supports at mutual distances at least
a apart, without modifying the energy: the ground state
is strongly degenerate. At the transition, the pressure
jumps from 0 (in accordance with Lemma 13) to 0c. We
note in passing that part (i) of Corollary 14a remains val-
id.

One of the nice features of the above system is its abili-
ty to show how a Quid can be turned into particles (rather
than the other way around!).

A similar behavior is likely to hold in higher dimen-
sions; there will also be holes in the ground-state profile.
However„ the displacement-condensation argument re-
quires a more cautious treatment. In any case, the upper
bound

+2
min U[p] &

pox) eel Aw) , 2n (a, A)

X

-1 —/2 0 7t/2

FIG. 6. V(x) =cos(x), with l )m. /2 (degenerate ground state).

is presumably close to optimum. n (a, A) represents the
maximum number of balls of radius a capable of being
packed in the container A, :=[x HR ldist(x, A) & a I.

The energy per particle in the thermodynamic limit is
u =

—,'pa for v=1 and u ~
—,'pa for v=2. By comparison,

the corresponding quantities with a uniform profile are
u„=pa and u„=(vr/2)pa, respectively.
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By way of conclusion, we give the plots of a series of
ground. -state profiles, in an extort to show graphically
some of the phenomena encountered in this section. Un-
less otherwise stated, the container is A = [

—l, I] C:R.
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