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The spin-
2 antiferromagnetic Heisenberg model on a square lattice is used to describe the dynamics of the

spin degrees of freedom of undoped copper oxides. Even though the model lacks an exact solution, a
solid, accurate, and rather conventional picture emerges from a number of techniques —analytical (spin-
wave theory, Schwinger boson mean-field theory, renorrnalization-group calculations), semianalytical
(variational theory, series expansions), and numerical (quantum Monte Carlo, exact diagonalization, etc.).
At zero temperature, the effect of the zero-point fluctuations is not strong enough to destroy the antiferro-
magnetic long-range order, despite the fact that we are dealing with a low-spin low-dimensional system.
The corrections to the spin-wave theory, which treats perturbatively the effect of such fluctuations around
the classical Neel ground state, appear to be small. At any nonzero temperature the order disappears and
the correlation length at low temperature T(k& T/J « 1, where J is the antiferromagnetic coupling) fol-
lows the singular form g( T)=C exp(a J/k& T). In the long-wavelength limit and at low T, the model has
the same behavior as the quantum nonlinear o. model in two spatial dimensions and one Euclidean time
dimension, which we also study with available analytical and Monte Carlo techniques. The quasiparticles
of the theory are bosons; at low T and for wavelengths shorter than the correlation length they are well-
defined spin-wave excitations. The spectrum of such excitations and the temperature-dependent correla-
tion length have been determined by neutron and Raman scattering experiments done on La2Cu04. The
good agreement of the experimental data with the predictions of this theory suggests that the magnetic
state of the undoped materials is the conventional ordered state. We discuss, within a simple mean-field
theory, the effect of weak three-dimensional antiferromagnetic coupling and the role of an antisymmetric
term, introduced to explain a hidden ferromagnetic behavior of the uniform susceptibility. We find that
understanding the copper-oxide antiferromagnetic insulator is only the first essential step towards the de-
velopment of a theory of the superconductor created upon doping such materials.
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I ~ INTRODUCTION

A. History of the problem
and experimental facts

The discovery of copper-oxide superconductors with
critical temperatures as high as 120 K (Bednorz and
Muller, 1986; Chu et al. , 1987; Maeda et a/. , 1988;
Sheng and Hermann, 1988; for references see Sleight
et al. , 1989) raised hopes that one day we may be able to
manufacture materials that superconduct at room tem-
perature. This discovery also raised doubts about the
common belief that, due to the nature of the phonon-
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mediated electron-electron interaction (Bardeen, Cooper,
and Schrieffer, 1957), there are upper bounds on the criti-
cal temperatures much lower than those achieved with
the copper oxides. In addition, the lack of a significant
isotope effect with substitution of the oxygen sites seems
to rule out the possibility that the phonon Debye fre-
quency is the characteristic energy scale entering in the
fundamental equations. Because of a number of peculiar
properties of these materials, there is a growing suspicion
that a difterent mechanism may be responsible for their
superconductivity. Their phase diagram is rich because
the superconducting phase occurs near a metal-insulator
transition, an antiferromagnetic as well as a structural in-
stability, and this fact has generated many ideas and pro-
posals for new mechanisms. It is natural to imagine that
such high temperatures and pairing energy scales may
arise as low-energy scales of the interacting electronic de-
grees of freedom in specific lattice structures of appropri-
ate stoichiometry, where the lattice dynamics do not play
the key role. Anderson's original suggestion (Anderson,
1987; Anderson et al. , 1987) that novel quantum spin
fluctuations in the CuQ2 planes, common in all these ma-
terials, may be responsible for the superconductivity has
received significant attention. Interesting magnetic prop-
erties revealed by neutron-scattering experiments provide
further support for this idea. The La2CuO4+y material
has a susceptibility anomaly at a three-dimensional (3D)
Neel temperature T& that is sensitive to the value of y
(Yamada et al. , 1987). Furthermore, the instantaneous
two-dimensional (2D) antiferromagnetic correlations

0
exceed 1000 A for T-200 K, with no average staggered
magnetization (Shirane et al. , 1987; Endoh et al, 1988).
It was conjectured that such fauctuations might destroy
the antiferromagnetic 1ong-range order in the ground
state, giving rise to a new state of the spin system, a
quantum "spin-liquid" state (Anderson, 1987). The su-
perconductivity in these materials was then conjectured
to arise from the behavior of a novel quantum Quid creat-
ed out of a highly correlated set of electronic degrees of
freedom.

The Hubbard model, one of the simplest models to go
beyond the independent electron approximation, was
designed to study eftects of electron correlations in such
narrow-band systems and in Anderson-Mott insulators.
Anderson argued that the appropriate model is the two-
dimensional single-band Hubbard model in its strong on-
site Coulomb repulsion limit. In this model the fermion
creation operators create electrons at the outer d & 2 or-

bital of the Cu atoms, which is hybridized in an anti-
bonding symmetry with the p and p orbitals of the two
oxygen atoms in the CuQ2 cell. This is valid if the atom-
ic energy for the creation of an additional Cu hole is
lower than the atomic energy for an additional O hole
and if the energy difFerence is larger than the Coulomb
repulsion U on the Cu site. Let us momentarily accept
this assumption for pedagogical purposes. Standard
strong-coupling perturbation treatment of the single-
band Hubbard Hamiltonian produces the following

effective Hamiltonian (Harris and Lange, 1967; Brink-
man and Rice, 1970):

II,~=IIi+H2, (l. la)

H, = —r g (c, c. +H. c.), (1.1b)

where n; =c, c, , t is the hopping matrix element, and
J =4t IU. The first term (Hi ) produces the constrained
hole hopping which avoids double occupancy. The
second term (Hz) is obtained from the Hubbard model

by integrating out virtual processes in which the electron
hops momentarily to a neighboring site occupied by an
electron of opposite spin and then, in the final state, the
two electrons return either to the original configuration
or to one with spins exchanged. In this reduction
scheme, a three-site interaction term emerges that, for
simplicity, has not been included in the above expression;
this paper deals with the undoped case in which both H i

and the three-site interaction are inactive. At half-filling,
II2, apart from a constant, is equivalent to the spin- —,

' an-

tiferrornagnetic Heisenberg model on a square lattice
with

H=J QS S
(Ij&

(1.2)

The Heisenberg Hamiltonian (1.2) is assumed to describe
the antiferromagnetic undoped insulator LazCu04 or the
oxygen-deficient YBazCuO6 or other undoped copper-
oxide materials. Doping the insulator La2Cu04 to create,
for example, La 2 Sr„CuQ4 introduces holes on the
CuO2 planes. Increasing the oxygen content in the
YBazCuO6+ controls the electron filling factor of the
2D CuQ2 planes in a less obvious way because of the
presence of the CuO chains. The doped CuOz planes in
this rather simple formulation may be described by Eqs.
(1.1) where holes are introduced. Ignoring the three-site
interaction term, this eIIFective Harniltonian is now
known as the t-J model.

The t-J Hamiltonian is an interesting model on its own,
and its derivation from the single-band Hubbard model
may serve as an illustration only. This model can be ob-
tained in the strong-coupling limit from a more realistic
model that takes into account the more detailed orbital
structure of the CuOz cell even when the holes created by
doping sit primarily on the oxygen sites (Zhang and Rice,
1988). In this case the Cu—0 hybridization binds the
added hole on each square of O atoms to the central

~See also Hirsch, 1985 and, for a simple derivation, Huang and
Manousakis, 1987.

H2 g (C) ~C; ~B; —o.C; ~C~ 0+C~ gC; ~C; O. CJ. ~)
(i,j ),o-

(l.lc)
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Cu ion to form a local singlet. The motion of this hole
from one CuOz unit cell to the next can be described by
the effective Hamiltonian (1.1). More importantly, the
spin- —,

' Heisenberg antiferromagnet on a square lattice,
which is the subject of this paper, can be obtained under
even more general assumptions. Furthermore, there are
phenomenological reasons to believe that Eq. (1.2) is an
appropriate model to describe the 2D spin Auctuations in
the insulator and, when supplied with a hole-hopping
term, could be an appropriate model to describe the
doped materials. For example, the neutron- and
Raman-scattering results from the undoped insulator
La2Cuo~ can be understood in terms of Eq. (1.2) as dis-
cussed in this paper. Furthermore, it has been argued
(Mila and Rice, 1989; Millis et a/ , 19.90; Monien,
Monthoux, and Pines, 1990; Monien, Pines, and Slichter,
1990; Monien, Pines, and Takigawa, 1990; Pines, 1990)
that the results of NMR measurements (Walstedt et a/. ,
1988; Hammel et a/. , 1989) are consistent with a single-
component quantum fIuid with an intimate coupling be-
tween charge and antiferromagnetically correlated spin
degrees of freedom. In addition, it seems plausible that
the t-J model may be the relevant reduction of the com-
plex problem of copper oxides to a low-energy set of vari-
ables (see also Shastry, 1989). Pairing in the Hamiltonian
(1.1) has been studied by several authors using mean-field
theory (Baskaran, Zou, and Anderson, 1987; Rucken-
stein, Hirschfeld, and Appel, 1987, Aleck, 1988;
Kotliar, 1988), variational theory (Gros et a/. , 1987;
Gros, 1988; Yokoyama and Shiba, 1988) and exact diago-
nalization of finite-size systems (Kaxiras and
Manousakis, 1988; Riera and Young, 1989). These stud-
ies indicate that pairing between holes in the model may
be energetically favorable in a certain range of t/U.
Motion of a single hole in the t-J model has also been
studied by several authors using analytical (for example,
Schmitt-Rink et al. , 1988; Shraiman and Siggia, 1988;
Kane et a/. , 1989) or numerical techniques (Dagotto
et a/. , 1990; Dagotto and Poilblanc, 1990).

The Hamiltonian (1.2) can be thought of as a simple
and rather general model to describe the copper-copper
superexchange antiferromagnetic interaction (Anderson,
1959) mediated by the intervening oxygen ions via virtual
hopping processes involving doubly occupied Cu sites.
The problem of quantum antiferromagnets is rather old
and longstanding; however, a number of questions arose
following the discovery of copper-oxide superconductors.
The goals of this paper are to review calculations per-
formed on the spin- —,

' quantum antiferromagnetic Heisen-
berg model (1.2), draw conclusions about its T=O and
low-temperature properties, and connect it with the phe-
nomenology of the undoped antiferromagnetic insulator
LazCu04. We first review the properties of the model
(Secs. II—VI) and then attempt to establish its relevance
to the physics of the pure LazCu04 and compare the cal-
culated magnetic properties and excitations to those ob-
served (Sec. VII).

The spin-wave theory was developed by Anderson

(1952) and Kubo (1952) to study the ground state of anti-
ferromagnets with large spin S. Spin-wave theory is an
expansion in powers of I/(zS), z being the coordination
number, and it is based on two assumptions: (a) that an-
tiferromagnetic long-range order exists in the ground
state and (b) that the amplitude of quantum fluctuations
about the classical Neel state is small. It is, therefore,
natural to raise doubts about the convergence of this ex-
pansion for low-spin and low-dimensional (low-z) sys-
tems. Anderson (1973), for instance, conjectured that the
ground state of the 2D spin- —,

' antiferromagnet, the
lowest spin case, might be disordered and postulated the
resonating valence bond state as a possible lowest-energy
state. More recently, these questions received significant
attention due to their relevance to the copper-oxide su-
perconductors. Even though there is no exact theorem
that proves it, we shall present significant evidence that
strongly supports the hypothesis that the ground state of
the spin- —,

' antiferromagnetic Heisenberg model on a
square lattice is characterized by antiferromagnetic
long-range order. The role of the zero-point quantum
Auctuations is to reduce the value of the staggered mag-
netization from its classical value by about 40%%uo.

The idea that the 2D spin- —, antiferromagnetic Heisen-
berg model may be relevant for the physics behind these
materials is supported by a comparison of the correlation
length g(T) obtained from this model or the equivalent
quantum nonlinear a model with that inferred by neu-
tron scattering experiments. Due to practical difFiculties
in creating large single crystals of YBazCu307 sys-
tematic neutron studies have been performed only on the
LazCu04. The results of the numerical calculations are
consistent with the neutron scattering data when a value
of the antiferromagnetic coupling J is chosen =1500 K.
This value is close to that estimated by high-energy neu-
tron (Aeppli et a/. , 1989) and Raman scattering experi-
ments (Lyons et a/. , 1988; Singh et a/. , 1989b).

Chakravarty, Halperin, and Nelson (1988, 1989) used
the renormalization-group approach to study the quan-
tum nonlinear o model in two spatial dimensions and one
Euclidean time dimension (which is equivalent to the
2D antiferromagnetic Heisenberg model). They calcula-
ted the correlation length at low temperatures with
the P function calculated in one- and two-loop order.
Their one-loop calculation suggests that g( T~0)

27rp~/T .=XAc/Te ' in the ordered phase; Chakravarty et al.
show that in the renormalized classical regime, where the
model maps to a 2D nonlinear o. model with a renormal-
ized spin-stiffness constant, they can use the P function
for the classical nonlinear o. model calculated up to
two-loop order. This improved calculation suggests a

zap /T
difFerent prefactor, namely, g( T)=Ce ' . Chakravar-
ty et a/. (1988, 1989) adjust the parameters (with values
for the spin-wave velocity c and spin-sti6'ness constant p,
not far from those expected on microscopic grounds) and
provide a good fit to the correlation length g(T) obtained
by neutron scattering experiments with both expressions.
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The Schwinger boson mean-field theory of Arovas and
Auerbach (1988) and Takahashi's calculation (1989) sug-
gest the form calculated by Chakravarty et al. in one-
loop order. Manousakis and Salvador (1988) have shown
that the expression obtained in one-loop order does not
fit the g( T) calculated with quantum Monte Carlo simu-
lations of the spin- —, antiferromagnetic Heisenberg mod-

el. The improved form, obtained in two-loop order by
Chakravarty et al. , has been shown to agree with the re-
sults of the quantum Monte Carlo simulations of the
spin- —,

' antiferromagnetic Heisenberg model on a square
lattice (Gomez-Santos et al. , 1989; Manousakis and Sal-
vador, 1989b, 1989c). Direct simulation of the quantum
nonlinear o model (Manousakis and Salvador, 1989b,
1989c) shows that the correlation length at low T and in
the regime controlled by the ordered phase can be ap-
proximated by the form calculated by Chakravarty et al.
in two-loop order, which also agrees with the g(T) ob-
tained from the quantum Monte Carlo study. Further-
more, the g(T) agrees reasonably well with the neutron
scattering data obtained on different single crystals of
La2Cu04 using values of J close to that estimated by neu-
tron and Raman scattering experiments. Therefore the
undoped material LazCu04 can be described by a spin- —,

'

antiferromagnetic Heisenberg model on a square lattice
whose behavior is controlled by the spin-wave excitations
around a state characterized by long-range order.

The spin excitations have been observed by neutron-
scattering (Shirane et al. , 1987; Endoh et al. , 1988; Aep-
pli et al. , 1989) and Raman-scattering experiments
(Lyons et al. , 1987, 1988). At any nonzero temperature,
the long-range order of the 20 Heisenberg model should
be destroyed by thermal fiuctuations (Mermin and
Wagner, 1966). At low T(ks T/J « 1), where the corre-
lation length g(T) is exponentially large, the spin-wave
excitations are well de6ned for wavelengths significantly
smaller than g(T). An appropriately extended spin-wave
theory for low T (described in Sec. IV) can account for
the observed peaks in the neutron scattering data within
experimental resolution. These experiments determine
the spin-wave velocity, from which an estimate for the
antiferromagnetic coupling J= 1500 K is found. High-
frequency peaks (at about 3000 cm ') seen in the Raman
scattering intensity can be explained as mainly two-
magnon excitations from near the Brillouin-zone bound-
ary and traveling with almost opposite momenta. With
approximate corrections for magnon-magnon interaction
effects, the value of J has also been estimated from these
measurements. This value of J is in reasonable agree-
ment with those found either from the correlation length
or from neutron scattering.

The interplanar coupling J' is of the order of 10 J as
estimated by Chakravarty, Halperin, and Nelson (1989).
This small J' has a small effect on the 20 spin correla-
tions above the 3D Neel ordering temperature. Further-
more, the zero-temperature properties calculated for an
isolated Cu02 plane are only weakly affected by such a
small value of J'. Thio et al. (1988) have examined the

role of possible Ising-like anisotropies, by considering
different values for couplings J,J,J„i.e.,

H = g (J„S;S'+J S(S~+J,S S'),
(~j)

(1.3)

and they found that such anisotropies are weak. Clearly,
on-site Ising anisotropy of the form g, (S ) plays no
role for spin 1/2. They discovered, however, that an an-
tisymmetric term is needed to explain hidden fer-
romagnetism manifesting itself below T&, this fer-
romagnetism cants the spins away from the direction of
the staggered magnetization (which lies in the a-c plane,
the copper-oxygen plane) towards the b axis (the axis per-
pendicular to the copper-oxygen plane) by a small angle.
This term is also small compared to the antiferromagnet-
ic coupling J ( I

J 'I /J —10 ).
The first part of this paper (Secs. II—III) deals with re-

sults for the ground state of Eq. (1.2) obtained with
several analytical, semianalytical, and numerical tech-
niques. The model (1.2) provides one of the simplest
quantum-mechanical Hamiltonians to test our analytical
and computational techniques. For this reason we give a
brief overview of the techniques applied to this problem
and we compare and discuss the results obtained. We
conclude that there is solid evidence that the picture sug-
gested by spin-wave theory is qualitatively correct.
Despite quantum fluctuations, giving rise to a rather
large contribution to the ground-state expectation values
(for example, the staggered magnetization is reduced by
40%%uo), the ground state of the model for spin- —,

' on a
square lattice is characterized by antiferromagnetic
long-range order. At T=O, the staggered magnetization,
the spin-wave excitation spectrum, and certain response
functions of the model (1.2) are consistent with those pre-
dicted by spin-wave theory. It is interesting to note that
Schrieffer et al. (1989), starting from the itinerant pic-
ture, have reached a similar conclusion by including
corrections to the mean-field theory due to fluctuation
effects.

The second part (Secs. IV—V) reviews the low-
temperature behavior of the Hamiltonian (1.2) on a
square lattice, as found by a modified spin-wave theory
(Takahashi, 1989a), by mean-field theory (Arovas and
Auerbach, 1988; Afileck and Marston, 1988), and by
quantum Monte Carlo calculations. We also review the
renormalization-group approach of Chakravarty et al.
and the saddle-point calculation for the quantum non-
linear o. model. We find that all these calculations agree
in the exponential behavior of the correlation length,
namely g( T)—e ~; the low-order analytical calculations,
however, disagree in the prefactor. The results of the
quantum Monte Carlo calculations on the spin- —,

' Heisen-

berg antiferromagnet on a square lattice and those on the
quantum nonlinear o. model agree with the two-loop cal-
culation of Chakravarty et al. , which gives a constant
prefactor. In Sec. VI, we briefly discuss results on the
lifetime of the magnon excitation at low temperatures.

In the last part of this paper (Sec. VII), a direct com-
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parison is attempted between the theoretically calculated
magnetic properties of the La2Cu04 and those observed.
We discuss whether or not the model (1.2) can describe
the physics of the La2Cu04 and we compare the calculat-
ed correlation length, staggered magnetization, spin-wave
velocity, and uniform susceptibility with the experimen-
tal data. The behavior of the uniform susceptibility and
the staggered magnetization have been studied by intro-
ducing a weak 3D antiferromagnetic coupling and the
antisymmetric coupling only within the mean-field theory
introduced by Thio et al. (1988). We find it interesting
that such a basic model can give a good quantitative
description of the spin dynamics in such complex materi-
als.

S„,= gs, (1.7)

(1.8)

H =H+h y ( 1)ll IIS (1.9)

we may choose to work in a subspace with well-defined
eigenvalues of S„,and S;„.Specifically, Marshall (1955)
proved that the ground state of the antiferromagnetic
Heisenberg model on a bipartite lattice is characterized
by S„,=0.

In order to define the ground-state staggered magneti-
zation, we add a field h to the Hamiltonian (1.5), which
couples to the spins of the two sublattices difFerently,

B. Statement of the problem

Here we give some of the preliminaries and we define
the problem to be studied. We consider an L XL square
lattice of lattice spacing a and X =L sites. The degrees
of freedom are vector spin operators S, attached to the
site at r and obey the usual commutation relations

(1.4)

JII= g JS;S;+ (S,+S, +S, S,+) (1.5)

where S+=S"+iS and S =S —iS and J =J. Al-
lowing J„ to be not necessarily equal to J, we obtain a
more general model with anisotropic coupling between
the three components of the spin operator. When J =J,
the Hamiltonian (1.5) reduces to the isotropic Heisenberg
model, which is invariant under rotations of the internal
(spin) space. (Notice that in our units 6=1 and the lat-
tice spacing a = 1.)

We wish to find the eigenstates and eigenvalues of Eq.
(1.5). Although we are interested in the spin —,' antifer-
romagnet, some of the techniques and statements are val-
id for the general spin-S case. Let S; ) denote the eigen-
states of the operator 5 ', with eigenvalue S',. The Hilbert
space in which the Hamiltonian (1.5) operates is spanned
by the basis

Since the Hamiltonian commutes with the operators of
total spin and the z component of the total spin, namely,

where the superscripts a, 13, and y stand for the x, y, and
z components or any cyclic permutation of them. We
consider periodic boundary conditions and, at the end of
the calculation, take the thermodynamic limit.

The dynamics of the degrees of freedom are controlled
by the spin- —, antiferromagnetic Heisenberg Hamiltonian
which, for convenience, we express as

where IIrII =x +y and x,y are the two components of the
vector r. Then, we define

1)II IIS

r

mt:—lim lim (0Im tI0) .
h ~ON~ oo

(1.10a)

(1.10b)

Provided that we take the thermodynamic limit before
we set the external sublattice field h to zero, if the
ground-state expectation value m remains finite we shall
say that the ground state is characterized by antiferro-
magnetic long-range order. In other words, even though
in the limit of h ~0 the symmetries of the Hamiltonian
fthe translational invariance and, if J =J, the internal
space O(3) invariance] are restored, the ground state can
spontaneously break them.

Qne-dimensional antiferromagnetic spin chains de-
scribed by the Hamiltonian (1.5) have a ground state with
no long-range order. The ground-state energy of the
spin- —, antiferromagnetic Heisenberg chain can be calcu-
lated exactly using the Bethe ansatz (Bethe, 1931;see also
Orbach, 1958). However, for chains of spins higher than
—,
' there is no exact solution. The excitation spectrum of

such spin chains may exhibit interesting properties.
More specifically, it follows from the Bethe ansatz that
the correlation function decays following a power law,
and it has been conjectured (Haldane, 1983a, 1983b) that
when J ~ J~~ half-integer spin chains have a gapless exci-
tation spectrum. For integer spin chains, however, there
may be a finite gap, and the spin-correlation function de-
cays exponentially with distance.

Beyond one dimension, the exact solution for the
ground-state energy or wave function of the Hamiltonian
(1.5) on an infinite lattice is unknown. There are some
rigorous proofs regarding the nature of the ground state,
however. It has been shown that the ground state of the
three-dimensional antiferromagnetie Heisenberg model
for spin S ~ 1 (Dyson, Lieb, and Simon, 1978) and quite
recently for S =

—,
' (Kennedy, Lieb, and Shastry, 1988) is

characterized by antiferromagnetic long-range order.
The long-range order disappears at some finite critical
temperature in 3D. In two space dimensions (2D), the
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Heisenberg model cannot exhibit long-range order for
any spin at finite temperature (Mermin and Wagner,
1966). The situation may be quite different for the
ground state (T=O) of these models. It has been shown
that antiferromagnetic long-range order exists in the
ground state of the isotropic antiferromagnetic Heisen-
berg model on a square lattice (Neves and Perez, 1986)
and on a hexagonal lattice (Afileck et al. , 1988) for any
S ~ 1. More general rigorous statements have been ob-
tained for J not necessarily equal to J. There is proof
(Kubo and Kishi, 1988; see also Nishimori et al. , 1989
and Kubo, 1988) that antiferromagnetic long-range order
exists in the ground state of Eq. (1.5) on a square lattice
for any S ~1 and arbitrary J/J, and for spin —,

' when
0~J/J &0.13 and J/J ) 1.78. So far, no rigorous
proof is available for the existence or nonexistence of an-
tiferromagnetic long-range order in the ground state of
the isotropic spin- —, antiferromagnetic Heisenberg model

on a square lattice, which is the model of our interest.
We wish to study the ground-state properties of the

Hamiltonian (1.2) on a square lattice in the isotropic
case. In particular, we shall examine whether the ground
state of the model possesses antiferromagnetic long-range
order and calculate the ground-state energy and wave
function, the staggered magnetization, the structure fac-
tor, and the elementary excitations above the ground
state. We shall also study this model at finite tempera-
ture and calculate certain thermodynamic functions and
correlation functions. For instance, although there is no
long-ranger order at any TWO, the temperature depen-
dence of the correlation length is an interesting quantity.
Since there are no exact results for the case of our in-

terest, we need to employ several techniques available for
studying systems with many degrees of freedom and ex-
amine whether a consistent picture emerges from a
variety of different studies.

II. CALCULATIONS AT 2ERO TEMPERATURE.
ANALYTICAL APPROACHES

Anderson (1952) extended the spin-wave theory intro-
duced by Holstein and Primakoff (1940) for ferromagnets
to the study of the ground state of antiferromagnets with
large spin S. Following Anderson, during the same year,
Kubo (1952) using the Holstein-Primakoff'transformation
and an expansion in powers of 1/S, derived Anderson's
results. The foundation of spin-wave theory is the as-
sumption that antiferromagnetic long-range order exists
in the ground state and that the amplitude of zero-point
motion of quantum fluctuations about the classical Neel
state is small. Initially, this approach was thought to be
an expansion in powers of 1/S. Since the role of quan-
tum ftuctuations becomes more important for small S, it
is natural to question the speed of convergence of this ap-
proach for the smallest possible spin case, the spin- —,

' anti-

ferromagnet, which is the case of our interest. Later,
however, it became clear that the result of spin-wave
theory is the leading order in a perturbation-theory ex-

pansion in the number of loops, which is also an expan-
sion in powers of 1/z, z being the coordination number.
Still, this expansion is strictly valid for higher-
dimensional lattices, where z is large and the fluctuations
al e suppl essed.

In more recent years it was argued (Anderson, 1973)
that large-amplitude quantum fluctuations in the two-
dimensional spin- —, case might give rise to a new state. It
was speculated that such a state might be characterized
by short-range order, in which a "spin liquid" could be
formed; this state would be a superposition of states in
which the spins are locally bonded to one another, form-
ing a resonating valence bond state (Anderson, 1987).
According to the original resonating valence bond
theory, superconductivity arises when such a state is
doped and hole hopping leads to motion of the preexist-
ing pairs. The validity of this as a superconductivity
theory does not depend critically on the existence of anti-
ferromagnetic long-range order at half-filling because we
expect the long-range order to be destroyed with a small
amount of doping. Liang et al. (1988) show that the en-
ergy of such a resonating valence bond state is very close
to the exact ground-state energy of the spin- —,

' antiferro-
magnetic Heisenberg model. This paper, however,
presents strong evidence that the square-lattice spin- —,

' an-

tiferromagnetic Heisenberg model possesses antiferro-
magnetic long-range order in its ground state. Therefore,
such a resonating valence bond state could be an ap-
propriate approximation of the ground state far enough
from half-filling where there is no antiferromagnetic
long-range order.

It is important to make gradual steps towards the full
understanding of the problem based on sound techniques
and conclusions. It is therefore useful to clarify the situa-
tion at half-filling. In Sec. III we shall review computa-
tional methods that have been recently used to study the
nature of the ground state of the spin- —,

' antiferromagnet-
ic Heseinberg model on a square lattice. We shall con-
clude that the picture suggested by spin-wave theory is
qualitatively correct. Even though the spin-wave theory
is standard and can be found either in the original papers
(Anderson, 1952; Kubo, 1952; see also Oguchi, 1960) or
in standard books (e.g. , Marshall and Lovesey, 1971;
Mattis, 1982), it is useful for easy reference first to review
the main results of spin-wave and related theories in
some detail.

A. Spin-wave theory

n, =S —S', , (2.1a)

First, we introduce the Holstein-Primakoff transforma-
tion as implemented for antiferromagnets. Since it does
not entail any loss of simplicity, we derive the results of
spin-wave theory for a general hypercubic d-dimensional
lattice. An equivalent representation to that obtained us-
ing the basis (1.6) is obtained by labeling the basis states
by the eigenvalues of the "spin-deviation" operator

Rev. Mod. Phys. , Vol. 63, No. 1, January 1993



't

E. Manousakis: The spin- —Heisenberg antiferromagnet. . .

when the site r is on one sublattice, say 3, and

n, ,:—S+S', , (2.1b)

IIn, I
&—= / In, &, (2.2)

for a site r on the other sublattice B. In this representa-
tion the Hilbert space is spanned by

when r is on the B sublattice.
In Eqs. (2.5) the eigenvalue n, is free to take any value

from 0 to oo rather than from 0 to 2S. There is no
discrepancy, since the sector of states with 0 ~ n, ~2S
will not be connected to states with n, )2S because
In, =2S & is annihilated by S, (S, ) when r is on 2 (B)
sublattice:

The operator S ' is diagonal in this representation, while

S,+ and S, when r is on the 3 sublattice have the fol-
lowing properties:

n 1

S,+In, &= 2S 1—
1/2

(2.4a)

and the eigenvalues of n, are 0, 1, . . . , 2S. A general
state can be expressed as

(2.3)

S, In, =2S & =0 . (2.9)

H = Nd JS—+ 2dJS g n,

+J„S g [fz(n, )a,fs(n, )b, +a,fs(n, )bt fs(R, , )]
(r, r')

The Hamiltonian (1.5) can be expressed in terms of a, a",
b, and b operators using the expressions for S', S, andS, and therefore the spin problem is transformed to an
equivalent problem of interacting bosons:

1/2

—J g nR, ' (2.10)

S, In, &
= 2S(n, + I) 1—

2S
(2.4b) The operator fs(n, ), if we allow n, to take values from 0

to ~ can be expanded as

at In, & =Qn, + 1 In, +1&,

a, In, &
—=Qn, In, —1&,

(2.5a)

(2.5b)

and similarly b, and b, when r is on the B sublattice.
The operators a, , a„and b, , b, obey the usual comrnuta-
tion relations for a two-component system of bosons,

When the site r is on the B sublattice, the action of the
above two operators is interchanged. It is a convenient
bookkeeeping device to introduce the operators 6, 6',

s(R, )=1-
32S' (2.1 la)

We emphasize that if we truncate this expansion at any
order, condition (2.9), which decouples the physical from
the unphysical states, is no longer satisfied. If, on the
other hand, we restrict ourselves in the physical subspace
of 2S + 1 dimensions, then this operator can be written as

[a„a,, ] = [b„b,, ]=6„, , (2.6a)
2S

fs(R, )= g d (S)n, (2.11b)

la„, ]=[a,, a, ]=[b„b,]=[b,,b;]=0, (2.6b)

[ „b,, ]=[a,, b, , ]=[a„b,]=[at,b;]=0 . (2.6c)

These equations can be obtained by applying the opera-
tors to a general state (2.3) and using the definitions (2.5).
We find

In the linear spin-wave approximation introduced by
Anderson (1952) for antiferromagnets, one retains in Eqs.
(2.10) terms up to quadratic in the boson operators. This
means that fs(R, ) is approximated by 1 and the last term
of Eq. (2.10) is neglected, i.e.,

S,+ =&2Sfs(n, )a, ,

S, =v'2S a,fs(n, ),
S',=S —&, ,

1/2
&r

fs(n, )—:1—
2S

for r on the A sublattice and

S„+=&2Sb,fs(n, ),
S, =&2Sfs(n, )b, ,

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

(2.8a)

(2.8b)

HLggr = NdJS +2dJS g R&

+J S g (a,b, +a,b, ).
(r, r')

(2.12)

a„=+2/N g e'"'a, ,
rEA

(2.13a)

This Hamiltonian connects the physical states with
O~n, 2S with states having n, )2S. If the ground-
state expectation value of n, is small compared to 2S (1
for spin- —,), this approximation makes sense. This condi-
tion can be checked once the spectrum of (2.12) is found.

A quadratic Hamiltonian such as (2.12) can always be
diagonalized. We introduce the Fourier transforms of
these operators as

S;=—S+n, ,

6', =b,b, ,

(2.8c)

(2.8d)
b„=+2/N g e '"'b

rEB
(2.13b)
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where the wave vectors k correspond to the reciprocal
space of sublattice 2 or 8. We perform a canonical
transformation to new operators ak, uk, /3„, and P„,
which also obey boson commutation relations,

Ak =cosh6kQk +slnhOk& k

Pk = sinhOka k +cosh 0kb„.

(2.14a)

(2.14b)

where ~=J~~/J,

We invert the transformation (2.14) by expressing ak, akt

and b„,bk in terms of ak, ak, pk, and /3k and substitute
these in (2.12). The function Ok is determined so that the
coelficient of akPk, akPk is zero. We obtain

tanh(20k) =Ayk

for the spin- —,
' isotropic model on a square lattice is

Ep/JX = —0.6705. Since the energy of the Neel state is
—0.5 and in the linear spin-wave approximation is
—0.658, and the next correction in the 1/S expansion is
small, one might conclude that there is an apparent con-
vergence in the case of the ground-state energy. It is very
different, however, to justify an expansion in powers of
1/S for S =

—,'. After a more careful consideration of Eq.
(2.11a) we might agree that the expansion is in powers of
n, /2S and therefore the expansion parameter for S =

—,
' is

really the expectation value of n, . That is to say, the
ground state of Eq. (1.2) is in a linear superposition of
states (2.2) with very small amplitude for those with large
n, . Therefore the convergence of the expansion could be
explained if

1
yk= g cos(k e~),

p

where e„ is the unit vector in the p direction, and

H„~=E,'+ y ~,(k)(n„+nk~),

(2.15b)

(2.16a)

e-—=—g (nk) ((I .
1

%'e obtain

e== 1 1

(2.19a)

(2.19b)

where

n k ~k+k n k pkpk
a T P

Eo= —dJSX(S+g),

1 —Ql —
A, yk

2
N

coo(k)=2dJS 1/ I —k yk .

(2.16b)

(2.16c)

(2.16d)

(2.16e)

and, for a square lattice, @=0.197, which is a rather small
number.

The elementary excitations above the ground state are
spin waves of two Ilavors (due to the two sublattices) and
are created by ak and Pk acting on the ground state. The
energy of these states is given by co(k) [Eq. (2.18b)] and,
in the long-wavelength limit, and for A, = 1 (isotropic lim-
it) co(k~0)=ck. We define

+ & t(1 —Ciz)(nk, nk, +nk, nk, )

kl, k~

—2(1+C,z)nk n~k ]+, (2.17)

where

E = —dJSX 1+0

2

(2.18a)

co(k) =coo(k) 1+

Ciz=+1 —
A, yk Ql —

A, yk (2.18c)

The ground-state energy per site in this approximation

The ground state
~
it o ) is defined by the conditions

uk~i/0) =0 and Pk~i/o) =0 for all k in the Brillouin zone.
For the square lattice and the isotropic case (A, = 1),
/=0. 158 and the ground-state energy per site in the
linear spin-wave approximation is —0.658. Keeping
terms up to order 1/S in the expansion (2.11a), we find
that the diagonal terms of the Hamiltonian have the form

H =ED+ g co(k)( n+kn )~k

Zq —C /Cp (2.20)

where cp is the "bare" spin-wave velocity obtained in the
linear spin-wave approximation, namely, co =—i/2Ja. For
the isotropic spin- —, antiferromagnet on a square lattice
in the above approximation the ratio Z, = 1+/= 1.158.

The ground-state expectation value of the staggered
magnetization operator, as defined by Eq. (1.10), for
S =

—,
' is obtained as

m~= —' —e2 (2.21)

and for a square lattice m =0.303. Hence spin-wave
theory predicts an ordered ground state with finite stag-
gered magnetization approximately 61% of its classical
value. In one dimension the integral in Eq. (2.19b)
diverges logarithmically due to the long-wavelength
modes. This instability can be attributed to the fact that
the ground state fails to develop long-range order in one
dimension. The fact that the integral (2.19b) diverges
also means that there is no small expansion parameter,
and that the perturbative expansion around an ordered
state is incorrect for spin chains.

We wish to add to the Hamiltonian (1.9) a term of the
form Hi g; S ", . The perpendicular susceptibility is
defined as yi—:B(Mi ) /BHi, where (Mi ) is the ground-
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state expectation value of I/Xg, S";. yi describes the
response to an external magnetic field in a direction per-
pendicular to the staggered magnetization. We define

XJZI-=
�+., O

(2.22)

where gi o= 1/(4dJ). Including the next correction in
the 1/S expansion, we obtain the value
Z = 1 g

—2e—=0 448. for an isotropic spin —,' square-
lattice antiferromagnet.

The cross section for inelastic neutron scattering
from an antiferromagnet with staggered magnetization
in the z direction contains the response func-
tions (O~S q(t)sq(0) 0) and (O~s~q(t)s~(0)~0). The
(O~sq(t)sq(0)~0) part leads to elastic scattering; since
the Heisenberg Hamiltonian commutes with the total S„
terms of the form S S or S S are not contained in
the total cross section (for details see Marshall and
Lovesey 1971; Lovesey, 1984). It is straightforward to
calculate the response function

Si(q, co)= g ~(n~sq~0) ~
6(co —co„o) (2.23a)

using linear spin-wave theory. Here ~n ) are the eigen-
states of the Hamiltonian and Am„o=E„=Eo, with E„
the corresponding eigenvalues. In this approximation
only one-magnon excitation contributes, giving

Si(q, co) =SLsii (q)5(co —co ), (2.23b)

1 —y(q)—
1 pq

(2.23c)

B. Beyond spin-wave theory

One of the criticisms of spin-wave theory is that the
truncation of the series (2.11) to a finite order may lead to
a spectrum that has admixtures of unphysical states with
quanta of spin deviations n, )2S. This problem was first
addressed by Dyson (1956) for the ferromagnetic case. In
this section we discuss two different attempts to eliminate

Clearly, when one goes beyond the simple linear spin-
wave theory some strength will be removed from the sin-

gle spin-wave excitation and will be shifted to two-
magnon or multimagnon excitations neglected in this
single-mode model. At low temperature the single-
magnon peak will broaden due to its scattering from
thermally excited magnon excitations, as discussed in
Secs. V and VI.

The Hamiltonian (2.17) can be used to calculate finite-
temperature properties of Eq. (1.2) in 3D. In the case of
2D, this theory needs to be properly modified, however,
since at any TWO the staggered magnetization is zero
due to the Mermin-Wagner theorem. We discuss the
finite-temperature properties of Eq. (1.2) in Sec. IV. Next
we study the ground state further, using other methods
that support the picture suggested by spin-wave theory.

this problem for the antiferromagnetic case. First, in
Sec. II.B.1, we outline the perturbation expansion in the
number of loops. In this approach, instead of the boson
operators (2.5), the spin operators are used, and so the
constraint is taken into account by their commutation
rules. For the perturbation expansion a Wick's theorem
appropriate for spin operators will be used. Second, in
Sec. II.B.2, the method known from the theory of quan-
tum fiuids as "paired-phonon" analysis (Feenberg, 1969)
is generalized to the case of quantum antiferromagnets to
take into account the nonorthogonality of spin waves. In
this method one starts from a correlated basis which
takes into account the short-range correlations due to the
constraint. Another technique for dealing with this
problem is a series expansion method that considers the
Ising part of the Hamiltonian (1.2) as unperturbed and
the x-y part as a perturbation. This approach will be dis-
cussed in Sec. II.C.

1. Perturbation theory and loop expansion

Significant effort has been invested in ordinary
perturbation-expansion treatment of the Hamiltonian
(1.2) in the original spin-operator representation. Again
this treatment is based on the assumption that there is
antiferromagnetic long-range order in the direction of the
external staggered field (z direction). In this section we
discuss this formulation of the perturbation expansion,
which leads to a systematic loop expansion.

For a spin- —,
' system, we write

S,= —
—,'+S,+S, , rH 2,

S ——' —S, S, , r&B,
(2.24a)

(2.24b)

and the Hamiltonian (1.9) is separated into two parts

II'=IIO+II

Ho = dS JN +co~ —g S,+S, +coii g T,+ T,
rE A r68

(2.25a)

(2.25b)

J
H, =J y S+S;T+T;, + " y (S+T++T;,S;),

(r, r') (r, r')

(2.25c)

where we have defined ~z=dJ+h, ~z=dJ —h, and

T, :—S, and T, =S,+ when r is on the B sublattice; h is
the sublattice field introduced in Eq. (1.9). The ground
state ~0) of Ho is the state with no spin deviations (i.e.,
the Neel state), which is annihilated by both S, for r on
the 2 sublattice and T, for r on the B sublattice.

In the present formalism the Ising term has been divid-
ed into one-body and two-body terms, and the latter gen-
erates the so called "longitudinal" spin-wave interaction
and has been regarded, together with the transverse part
(J ~ ), as a perturbation. The terms arising from the
transverse interaction alone, in this approach, can be
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G„(r' r, t' t—) —= i —( p—olPS, , (t')5,+( r)lito),

Gii(r' —r, t' —t):— i ( P—ol PT,. (t') T,+(t)
l $0),

(2.26a)

(2.26b)

summed up to infinite order. Although J and J„„appear-
ing in the perturbation cannot both be assumed to be
small, we shall develop a formal perturbation expansion
in powers of them. The terms of the expansion will be
classified according to the order in H' and according to
the number of loops. The terms can be summed up to
infinite order for a given number of loops, leading to an
expansion in powers of 1/z, where z is the number of
nearest neighbors (Wang et a/. , 1966).

The usual time-dependent perturbation expansion is
implemented with the use of Green's functions for the
propagation of a spin deviation defined as

(a)

r +

C&
CD

CD
'CD

,
CD

,
CD

. CD
; ID

CD

,
CD

where litto) is the ground state of H'. The time depen-
dence of the spin operators arises by expressing the
operators in the Heisenberg representation, e.g. ,

S,+(t) =e' 'S,+e ' '. In the zeroth order, the Green's
functions are defined as

FIG. 1. (a) Diagrammatic representation of the longitudinal in-
teraction line. (b) Diagrammatic representation of the trans-
verse interaction line. (c) All the zero-loop diagrams (the chain
diagrams).

G'„(r' r, t' —r):——i(o—lPS, , (r')S,+(t)lo)
I

ie —" 9(t' t)6. .. . —(2.27)

and similarly for Gz. The operators are in the interac-
iHO t + —i Ho t

tion representation S,+ (t) =e ' S,+e . Then, utiliz-

ing the Gell-Mann and Low theorem and the standard
strategy of performing a Feynman perturbation expan-
sion, we obtain

(olPs;, (r )s,+ (r) U( ) lo)

«IU( )lo)

(2.28)

and G& is given by a similar expression. Here
U(t)=P exp[ —i I' Hl(t')dt']. We have assumed

one-to-one correspondence between the eigenstates of Ho
and those of H' (adiabatic turning-on of the interaction).
The unperturbed part commutes with the staggered mag-
netization m, defined by Eq. (1.10), and the full H' does
not; hence m, is a constant of motion for the dynamics
controlled by Ho but not for that controlled by II'.
Therefore the above theorem and the applicability of the
expansion make sense if the expectation value of the stag-
gered magnetization behaves like a classical vector in the
thermodynamic limit.

We may then proceed to expand the evolution operator
U( co ) in both the numerator and the denominator of
(2.28) as a power series of time integrals of the perturba-
tion III. The terms are conveniently represented by dia-
grams (Fig. 1) with the following rules. A directed hor-
izontal solid line joining the external or an internal point
(ri, t, ) with an internal or the external point (ri, t2)
represents a factor G„(o,t2 —t, ) given by Eq. (2.27).
Similarly the directed horizontal dashed line denotes the
other Green's function Gz. There are two types of in-
teraction lines denoted by vertical wavy lines connecting

the propagation lines. A transverse interaction line con-
nects the terminal point of Gz with the terminal point of
Gz or the initial point of Gz with the initial point of Gz
Isee, for example, Fig. 1(a)]. It gives a contribution
J ~(ri2), which, in our case, is nonzero only for nearest
neighbors given by J /2. A longitudinal nearest-
neighbor interaction line connecting two incoming and
two outgoing Green's functions, as shown in Fig. 1(b)
gives a contribution —iJ. We must sum over all internal
sites and integrate over all internal times. The final con-
tribution needs to be divided by the usual symmetry fac-
tor of the diagram, which gives the number of ways in
which the diagram can be rotated or rejected onto itself.
Lastly, we need to determine the appropriate sign of the
diagram. For S =

—,', terms in which a string of operators
like S„+(t~) . S,+ (r, ) acts on lo), and in which no S,

1 1 1

is encountered in between the time t, and time tz, will
vanish. Similar conclusions are obtained for the case of
S and T+ and T operators. Therefore the fact that
each site has only two possible states introduces con-
straints in the summation over the internal points and
times. It is more convenient to release the constraints
and subtract the diagrams in which the Green's functions
overlap. This introduces spurious diagrams which occur
with a negative sign. More precisely, the sign of the dia-
gram is (

—l)~ where Q is the number of "half-
overlapping" pairs of Green's function in the diagram.
For example, the diagrams of Fig. 2(a) have a minus sign
and can be thought of as spurious contributions which
have to be subtracted, since the case r'=r has not been
excluded from the diagram of Fig. 1(c).

Finally, Goldstone's theorem is valid in this case also;
it states that the disconnected diagrams of the numerator
cancel the denominator, and therefore the ratio of the ex-
pectation values (2.28) can be written as a sum of only the
connected numerator diagrams.
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(a)

The sublattice magnetization is obtained as

&q, l~;ly, &= —
—,+&@,ls, s;lq, &

= —
—,'+i lim g dco G~(co, k)e

o 2m%

The terms of this series can be classified either by the
order in perturbation theory (power of J or J, i.e., num-

ber of interaction lines) or by the number of loops. The
loop expansion is an expansion in power of 1/z where
z is the number of neighbors and therefore a meaning-
ful expansion in the large-z limit. Furthermore, the
significance of higher-loop diagrams decreases due to
phase-space limitations.

All the zero-loop diagrams are the chain diagrams
shown in Fig. 1(c), and they can be summed to infinite or-
der to give

G„(k,co) =6~ (co)+ G„(co)J(k)G~ ( —co)J (k)G„(co)+

1

f6~(co)] ' —6))( ra)J—(k)
(2.29)

where Gz(co) and Gz(co) are the Fourier transforms of
Eq. (2.26), i.e.,

G~,a(~)=
co cog g+l5 (2.30)

(c)

FICi. 2. (a) Example of spurious contributions which have to be
subtracted, since the case r'= r has not been excluded from the
diagram of Fig. 1(c). (b) Diagrammatic representation of
Dyson's equation to sum up the one-loop contribution to the
self-energy. (c) Diagrammatic representation of Dyson's equa-
tion to sum up the one-loop contribution to the interaction ver-
tices. The line with the double arrow is the sum of the chain di-
agrams shown in Fig. 1(c).

Using the approximation (2.31a) for Gz and closing the
integration contour in the upper half-plane, we obtain the
same expression for the staggered magnetization as Eq.
(2.21) obtained in spin-wave theory. The above diagrams
include all contributions to order 1/z .

The next correction to order 1/z is the sum of all the
one-loop diagrams. One can still use Dyson's equation to
sum up to infinite order in J and J and obtain the one-
loop contribution to the self-energy and interaction ver-
tices as shown diagrammatically in Fig. 2(b)—2(c). Equa-
tions for the Green's function corresponding to the B
sublattice can be obtained by interchanging the dashed
and solid lines. The diagram with the "triple point" is a
notation for the sum of the two "1ock diagrams" shown
in Fig. 2(a). The results in this approximation are identi-
cal to the results of Anderson, Kubo, and Oguchi ob-
tained in the next correction in their 1/5 expansion, i.e.,
in the nonlinear spin-wave theory. The pole of the
Green*s function is renormalized by a factor 1+/ where

g is given by Eq. (2.16e), and hence the spin-wave ener-
gies are given by cu(k) of Eq. (2.18b). There are no one-
loop corrections to the staggered magnetization.

Two-loop contributions have also been calculated with
the Green's function formalism (Pikalev et al. , 1968; So-
lyom, 1968; Stinchcombe et al. , 1971). The corrections
to the ground state, staggered magnetization, and spin-
wave velocity are negligible, which provides certain
justification for the validity of the spin-wave approxima-
tion.

2. Paired-magnon analysis

In this section we outline a diA'erent method that deals
with the single-occupancy constraint directly. We shall
define a basis set of multimagnon states which respects
short-range pair correlations arising from such con-
straints.

We start by defining a set of "multimagnon" states as
follows:

and where 6~0. Taking the limit h ~0, we obtain

A+(k) (k)
G„(co,k) = +

co coo(—k ) +i 6) co+ coo(k ) i52—(2.31a)

where co&(k) is the same as Eq. (2.16) obtained in linear
spin-wave theory and

z
)

n (k)
l y &

k

z ikr z1
k ~g r

r

where n (k)=0, 1,2, . . . , Rand cr,'=2S;

(2.33a)

(2.33b)

(2.33c)
A+(k) = —,

' 1+ 1
(2.31b)

and the sum is over all possible spin configurations c of
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spins on the lattice, and I. (c) is the number of up spins in
one sublattice contained in the configuration c. Another
way of writing the state

~ P ) is

rCB
(2.34a)

(I+ &+I —&),
2

where ~+ ) and
~

—) are eigenstates of o.,' with eigenval-
ues + 1 and —1, respectively. Since the states

~
r ) + and

~r) form a complete basis of the Hilbert space of the
electrons at r, all possible states of the Hilbert space for

X spins can be obtained by acting on ~P) by all products
of cr', o', for any l difFerent sites. The state (2.33c) or

1 I

(2.34a) has zero staggered magnetization in the z and y
directions and has full staggered magnetization in the x
direction. If we rotate the Neel state with staggered or-
der in the z direction around the y axis by ~/2 we obtain
the state (2.33c).

The set of states defined by Eq. (2.33) form a
nonorthogonal basis and therefore we need to orthonor-
malize them. %'e first de6ne states having I and n
"magnons" at states with momentum k and —k, respec-
tively, as

~mn & =C g exp[ik (r+ +r —r +, —. —r +„)]Q f cr; . o',
Ir( I i (j

(2.35)

with k&0 and C—:I [X—(m +n)]!/m!n!¹!]'~. Here, f, =0 if r, =-r, and f, =1 other"wise. This definition of mul-
timagnon states takes into account the constraint that no two spin deviations can be at the same site. These states are
orthogonal, but they do not form a complete set. The entire Hilbert space is spanned by

mg m —k''' &=
k, k„&0

C„ge px[ik (r+ +r —r +, —. —r + )]

X g f;,o', cr,' cr', o,' ly),rl mk mk+1 mk+m
1 (J

(2.36)

where Ik and m k are the number of magnons in the momentum states k and —k, respectively. These paired mul-

timagnon states are nonorthogonal. We can proceed further by introducing a separability approximation in the calcula-
tion of the matrix elements of the unit operator and the Harniltonian. This approximation was introduced in the theory
of quantum fluids (Feenberg, 1969) in the context of "paired-phonon analysis" of strongly correlated Bose liquids. Next
we shall extend the method of "paired-phonon analysis" to a "paired-magnon analysis" to study the spin- —,

' Heisenberg
antiferromagnet. The separability approximation neglects the coupling of paired multimagnon states, and so we obtain

n &-'.-'-.~-'--. &= rr ~
k, k &0 )0 k™k —k' —k

(2.37a)

and

( mkm' k
. . ~H E~! mkm— k ) g (m', m' ~H —E~~m, , m „)

q, q )0 kWq, k )0
&mk, m' k~mk, m k),

(2.37b)

k, k, &0
(2.38)

The state F!„~P) can be written as a linear superposition
of states (2.35) with m =n, namely, Fk ~ P )

0 C
~ m, m ) . The eigenvalue problem can be

where E& = (/Heart! ) = —dX/4. Since we have orthogo-
nalized the states (2.35) for all k, within the separability
approximation the states (2.36) are orthogonal. This ap-
proximation makes sense only in a limited function space
characterized by gi, mk ((X.

The matrix elements of Eq. (1.2) can be calculated in
the separability approximation analytically. In this ap-
proximation, the ground-state wave function can be writ-
ten as

solved analytically for the ground state and, after some
algebra (Manousakis, 1989), we find the same energy as in
linear spin-wave theory and the ground-state wave func-
tion

~!to& =A exp
' —

—,
' g u; o',.o' '

~P &, (2.39a)

where

1
0 (J

1/2
1+y(k) i k. ( r,. —r . )—1 e
1 —y(k)

(2.39b)

The expectation value of the staggered magnetization
operator in the paired-magnon analysis is identical to
that obtained from spin-wave theory.

The average number of virtually excited magnons in
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the interacting ground state for an infinite square lattice
is small compared to the number of sites. We find that
this fraction is (I/Xgzmz) =0.197. Hence this cri-
terion for the validity of the separability approximation
may be reasonably satisfied.

In analogy with other interacting Bose systems, the
"momentum distribution" of the spin degrees of freedom
in the interacting ground state is given in this approxima-
tion by

=1 1

'Vk

(2.40)

The condensate fraction, i.e., the fraction of degrees of
freedom occupying the zero-momentum state for a
square lattice, is mo= 1 —

( I/X) gkmk =0.803. That is,
there is a significant fraction of degrees of freedom at
k=O, even in the interacting ground state. We can con-
clude that the square-lattice spin- —,

' antiferromagnetic
Heisenberg model relative to helium is not as strongly in-
teracting a system. In the former, the "condensate" frac-
tion is —80%, whereas in helium the strong interactions
leave only —

9%%uo of the atoms in the condensate
(Manousakis et al. , 1985).

As a next step one can imagine performing perturba-
tion theory in a basis of correlated multimagnon states
defined by using the correlation operator
6 =exp( —

—,
' g; &z. u;~ &;.cr '). Such a perturbation expan-

sion can be expected to converge quite rapidly because,
for example, the ground state in zeroth order is given by
the expectation value of H with the state (2.39), which is,
as we shall see, close to the exact value, and therefore the
perturbative corrections are small. Such a technique has
been used to calculate the excitation spectrum of liquid
He giving accurate results (Manousakis and Pandhari-

pande, 1984).

C. Series expansions

—0.007 442 9A, —0.004 376 91A,'—
4ep/J = —2 ——'A, +0.0037K, —0.00632628k,

—0.003 300 85K, —0.001 247 40A, '—

(2.41a)

(2.41b)

and the perpendicular susceptibility yj,

There are series expansions in which one considers the
Ising part of Eq. (1.5) as the unperturbed part and the J,
as a perturbation (Parrinello and Arai, 1974, and refer-
ences therein). This is an expansion in powers of
A, =—J /J, and we need to extrapolate to the A, =1 limit.
The coeKcients of the expansions are known (Singh,
1989; Singh and Huse, 1989) up to the tenth order for the
ground-state energy per site ep, the staggered magnetiza-
tion I,
m~= —' ——'A, —

A, —0 00947134
225

—,
'
yqJ =

—,
' —

6 A. +0. 177 083K, —0. 189 814 8A,

+0. 191 761K, —0. 196 579K,

+0.197934K, —0.201447K +. . . (2.41c)

where A, must be smaller than unity for convergence.
There is no small parameter (for the isotropic Heisenberg
model A, = 1), and therefore one needs a justified extrapo-
lation scheme.

Huse (1988) changed variables from X to 5 such that
1 —5=+1—

A, , so that the singularities of m or eo at
X=1, expected from spin-wave theory, were removed.
He performed an extrapolation to the 6=1, limit, using
the series (2.41a), which at that time was available up to
sixth order only, and found rapid convergence of the
staggered magnetization series. Singh (1989), using the
series up to tenth order, noticed that when the variable k
was changed to 6, I took the form

@pe
~ —& —26+Q 0862 —Q QQ9 31963

—0.046426 +0.082 576 + (2.42)

and the contribution of the last term was larger than all
other terms except the first two, a fact that raised doubts
about the convergence of the series at 6=1. The trans-
formation from A, to 6 can bring other unphysical singu-
larities inside the circle of unit radius in the 6 plane; in
such cases, the physical singularity at 6=1 would not be
the closest one to the origin about which the expansion is
performed, and this limits the radius of convergence to
6(1. Thus a series may be divergent at 6=1 and the ap-
parent convergence found by Huse (1988) could be spuri-
ous.

Singh (1989) used a diFerent method for summing the
series (2.41). He considered the sequence of the partial
sums S„of the series (2.41) truncated at the nth
order; in the limit n ~ ~ the convergence is controlled
by the physical singularity. Using the formula
S„=S +C/(n +a)", with p, = —,', and determining a
and C by fitting the five points S,—2 ]p he found that
the extrapolated value for n —+ Oo lays between
rn =0.305 and 0.312. Extrapolation along these lines
gives ep= —0.6696+0.000 25 for the ground-state energy
per site. For the case of the perpendicular susceptibility,
Singh changed variables from A, to z =2k, /(I+A, ) to re-
move the simple pole at A, = —1 that corresponds to the
staggered perpendicular susceptibility. Then, using cer-
tain constraints in his extrapolation procedure (see Singh,
1989), he found that both the sequence S„and the series
expressed in the 6 variable gave similar values; he es-
timated Z+ =0.52+0.03 and, by similar analysis,
Z, = 1.18+0.02. This technique has been also used
(Singh et a/. , 1989) to calculate the moments of the
Raman-scattering intensity and extract the value of the
antiferromagnetic coupling J. We shall discuss this work
in Sec. VII, where we compare the theory with experi-
ment.
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D. Analogy with Bose fluids

Next, we shall outline another useful representation in
which an interesting analogy with the physics of Bose
Auids is pointed out. The similarity of hard-core Bose
Auids and spin systems was pointed out by Matsubara
and Matsuba (1956), who have shown that liquid He
when approximated as a quantum lattice gas model is
equivalent to the ferromagnetic spin- —,

' Heisenberg model.
Using a unitary transformation of the basis (Marshall,
1955), we make use of this analogy for quantum antifer-
romagnets. The eigenstates of the spin- —,

' antiferromag-
netic Heisenberg model can be expressed as

P(ri r2 . rx )( —1)"'

(2.43)

where the configuration lc ) is labeled by the location of
one kind of spins (say, the up-spins, in which case X„ is
the number of up-spins) on the lattice and the function
g(r„rz, . . . , r~ ) gives the amplitude of that

ll

configuration in the state lg). The phase (
—1) "has

been defined earlier [after Eq. (2.33(c)] and is separated
from the amplitude g in order to have a non-negative g
for any ground-state configuration (Marshall, 1955). In
this representation, it is straightforward to show that the
eigenvalue problem, H

l
4 ) =E

l

ip ), reduces to a
difference equation for the amplitude itj(r„rz, . . . , rz ),

identical to the many-particle Schrodinger equation on a
square lattice:

For J„((J, the "potential" energy term dominates, and
the particles prefer to stay predominantly at the
configuration that minimizes the Ising interaction, thus
creating a quantum solid, which for "particle" density
p= —,'(S'„„=0) corresponds to an antiferromagnetic or-

dered state in the z direction. When J„))J, the "kinet-
ic" energy dominates, and the system behaves as a quan-
tum liquid. The ground state of the system, in this case,
has a condensate that corresponds to oft:diagonal long-
range order in the one-body density matrix and

(Plbo lt/r) =n, &0 where bo creates a "particle" at the
zero-momentum state and n, is the condensate fraction.
Going back to the spin variables, this means that

I'p&=('plm~ I~I'&=n, ~he~e m„~ are the com-
ponents of the staggered magnetization. Therefore, in
this case, the magnetic system is characterized by antifer-
romagnetic long-range order in the x-y plane. In the iso-
tropic case J„=J there is spherical symmetry and hence,
by a rotation in the spin space, the "potential" and the
"kinetic" energy terms can be interchanged; thus, assum-
ing for a moment that the system prefers to be a quantum
liquid instead of being a quantum solid, this can be
changed to the opposite by such a rotation. The ground
state, however, can spontaneously break such symmetry
by choosing a given direction to develop staggered mag-
netization aided by the presence of an external staggered
Geld, which will be removed after we take the thermo-
dynamic limit.

The simplest nontrivial ground-state wave function of
a Bose Quid that takes into account short-range correla-
tions due to the existence of the hard core [V(r=0)= ~]
is the Jastrow (1955) wave function,

"' y V,'q(r„r„. . . , r~ )
4 ' '

u

it 0(ri rz rx ) =+f,
EC i&j

(2.45a)

where f, =0 for i ja"=nd f, )0 for i'. It is"customary
to write

(2.44)
—

U, /2
f;, =e (2.45b)

where V ', y(r„. . . , r, , . . . , riv )
—=ys(q(r„. . . ,

r;+5, . . . , rz ) —g(r„. . . , r;, . . . , r~ )) is the Lapla-
Q P

cian operator on the discrete square lattice and 5 is a vec-
tor of unit length that connects the site located at r; with
each of the four nearest neighbors. Here
E =E—XJ/2+2%„J +X„J~y, with E being the ground-
state energy eigenvalue of Eq. (1.2). The "particles" cor-
respond to up-spins, and the wave function g is sym-
metric with respect to "particle" permutations; hence
this is a quantum lattice gas of bosons with "mass"
m =2/J ~ (we use units where a = 1 and A'= 1) and the
particles interact via a pair potential V, having an
infinite on-site repulsion. If ij are nearest neighbors
V; =J, otherwise V; =0.

This is a useful representation because our knowledge
about the system of Bose particles can be used for the
magnetic system as well. Depending on the relative mag-
nitude of J and J, Eq. (2.44) has different consequences.

lit', ) =g( —1) "exp —,'g fJ,,S,'S'. lc) (2.46a)

where the sum now runs over all lattice sites with
u; =4U; . If we extend the sum not only over those
configurations with X„up-spins but over all possible
configurations, this state takes the form

i/0) =exp —
—,
' g u,,S,'5'. lP), (2.46b)

where lP) is the Neel state with antiferromagnetic order
in the x direction defined by Eq. (2.34). The variational
state (2.46b) is characterized by reduced antiferromagnet-

The state (2.45) is known to have a broken symmetry as-
sociated with the Bose condensate. Inserting Eq. (2.45)
in (2.43) and going back to the spin variables by replacing
p,. =S,'+ —,

' Iwhere p, = 1 or 0 depending on whether there
is a "particle" (up-spin) at site i or not], we find the
Marshall state
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ic order, with (S~)=(S,') =0 and (S, ) =+m . If we
restrict the sum in (2.46a) over configurations with zero z
component of the net spin, we find that (S;") = ( S~ )
=(S,') =0; however, each of the two correlation func-
tions, (S;"S ) and (S~S~), at large distances approaches
the value —,'( —1)'+Jm, while (S SJ') approaches zero.

The elementary excitations in the Bose Quid are densi-
ty fiuctuations (phonons in the long-wavelength limit),
which in the magnetic system correspond to spin waves.
In the Bose system they are created by the density opera-
tor pz acting on the interacting ground state (Bijl, 1940;
Feynman, 1954), while in the spin system they are creat-
ed by the o' operator. Chester and Reatto (1966) have
shown that the zero-point motion of the long-wavelength
modes (zero-sound) of the Bose system gives rise to a
long-range tail in the Jastrow wave function. For a 2D
system, we obtain

mcu(r~ ~ )= ,'U(r~ oo —)=
4Po~r

(2.47)

where, for the spin- —,
' system, c is the spin-wave velocity

and m =2/J (when J„=J). The ground state of the
Heisenberg antiferromagnet has zero total S„and the
number of up-spins is exactly equal to half the total num-
ber of sites, giving p0= —,'.

Using Eq. (2.39b) for u;, we find

v'2
u (r~ co )= (2.48)

Comparing the tails (2.47) and (2.48), we find c =+2Ja,
which is the value found by linear spin-wave theory.

The Jastrow wave function (2.45) possesses antiferro-
magnetic long-range order with the staggered magnetiza-
tion in the x-y plane, and therefore the dynamic structure
function defined by Eq. (2.23a) corresponds to

S(q, co)= g I(n IS', IO) I'5(co —co„,) .
n&0

(2.49)

Notice that S(q, co) defined by this equation in the
equivalent hard-core Bose representation corresponds to
the density-density correlation function.

The co moments of the dynamic structure factor,
known as "sum rules", are useful because S(q, co) is not
directly accessible to simulations of quantum systems and
its calculation from exact diagonalization is restricted to
systems of small sizes (Chen and Schiittler, 1989).

The structure factor is obtained as

S(q)—= (OIS' S' IO) =j des(q, co) .
0

(2.50)

f= —(OIS,+s,—,+s,-s,+„Io) . (2.5 lb)

A third sum rule can be derived (Liu and Manousakis,

The ~ moment of S (q, co) can be obtained as the double
commutator (OI [S',[If,S& ] ] I 0), which gives

f de cps(q, co) =2df (1—yq), (2.51a)
0

where

I&nls,'Io&I'
=lim g

q 0 ~0 E„—E0
(2.52)

where e" is the second derivative of the ground-state en-

ergy per site e(M) as a function of the magnetization
M = I/X(OI g,.s IO). pi = 1/e" is the perpendicular

susceptibility in units of gpz = 1, where pz and g are the
Bohr magneton and g factor of the electron.

Feynman's assumption (Feynman, 1954; Feynman and
Cohen, 1966), introduced for the elementary excitations
of liquid He, states that in the long-wavelength limit a
single-phonon (in this case, single-magnon) excitation
dominates the dynamical structure function. This is
equivalent to the statement that only excitations created
by the S' acting on the interacting ground state dom-
inate in this limit. This leads to the following approxima-
tion for the spin-dynamical structure function (Pines and
Nozieres, 1966; Hohenberg and Brinkman, 1974)

q-0
lim S(q, co)=Z 5(co —co ), (2.53)

and from the sum rule (2.50) we find that Z =S(q), and
the combination of (2.51) and (2.53) gives

2df (1—
yq)

CO

S(q)
(2.54a)

Furthermore, lim of 0"cps(q, co)dco=d/2 fq, and

co(q ~0)=cq and the spin-wave velocity for d =2 is
given by

c=
S

(2.54b,

where s is the slope of S(q) in the long-wavelength limit,
i.e., S(q~O)=sq. Using the sum rule (2.52) and Eqs.
(2.53) and (2.54b), we find that

c=&2fe" . (2.55)

Equation (2.55) is a microscopic derivation of the
equivalent expression

c —
p~ /gi, (2.56)

derived by Halperin and Hohenberg (1969) looking at the
problem from a somewhat different angle. The spin-
stiffness constant in the approach explained above can be
identified as p, =2f. Halperin and Hohenberg used the
analogy between the spin system and liquid helium and
the hydrodynamics of the two-Auid model. The present
derivation allows identification of the phenomenological
parameters and furthermore their evaluation from the
microscopic Hamiltonian.

1989) by studying the response of the spin system to an
external magnetic field in the z direction. This is analo-

gous to the compressibility sum rule known in the theory
of quantum Ouids and in this case is translated to the
"magnetic susceptibility sum rule. " We obtain

1 . ~ S(qco)„=lim j2E q —+0 0 co
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ill. CALCULATIONS AT ZERO TEMPERATURE.
COMPUTATlONAL APPROACHES

ical results obtained by Monte Carlo and variational
Monte Carlo calculations at the end of this section.

In this section we review results obtained for the
ground-state properties and elementary excitations of the
spin- —,

' antiferromagnetic Heisenberg model on a square-
lattice by means of exact numerical diagonalization tech-
niques or stochastic methods such as "world-line" Monte
Carlo, projector Monte Carlo, Green's function Monte
Carlo, or variational methods. We start by briefly re-
viewing the methods.

A. Exact diagonalizations

The Hamiltonian (1.2) for systems with a finite number
of spins can be expressed in a basis such as Eq. (1.6) and
then diagonalized exactly to obtain all the eigenvalues
and eigenstates. The applicability of this approach is
limited to small-size systems, since the dimensionality of
the Hilbert space increases exponentially with the size of
the lattice —for a lattice with X sites, the total number of
possible states is 2 . Considering the global symmetries
of H, we can restrict ourselves to working inside invari-
ant subspaces with reduced dimensionality, since these
subspaces are not coupled by the Hamiltonian. We can
work in subspaces characterized by definite eigenvalues
of S,'„and S„,. In practice, the [II,S'„„]symmetry that
leads to reduction in an invariant subspace of well
defined S«, and the translational symmetry that leads to
a subspace with well defined momentum can be easily
taken into account. If the Hamiltonian is a small-size
matrix inside the invariant subspaces, it can be diagonal-
ized using standard diagonalization routines; otherwise
iterative schemes known as Lanczos algorithms are gen-
erally used.

The first such diagonalizations for the spin- —, antiferro-
magnetic Heisenberg model on a square lattice contain-
ing up to 16 spins were performed by Oitmaa and Betts
(1978). Recently, Dagotto and Moreo (1988), Kikuchi
and Okabe (1989), and Tang and Hirsch (1989) have ex-
tended these calculations to lattices with up to 24 and 26
spins. The results of the numerical exact diagonaliza-
tions published by the above authors for the finite-size
lattices studied are all correct; however, finite-size
analysis to obtain infinite-size values in certain calcula-
tions was carried out using a different extrapolation for-
mula from that predicted by spin-wave theory. The re-
sults of all the numerical calculations are carefully ana-
lyzed in Sec. III.F, where an extrapolation formula that
can be theoretically supported is used. The conclusions
of these calculations support the picture that the ground
state of the spin- —,

' antiferromagnetic Heisenberg model
has long-range order with an extrapolated value for the
staggered magnetization not too far from the prediction
of spin-wave theory. Their results are also consistent
with a gapless excitation spectrum in the thermodynamic
limit. These results will be compared to the other numer-

B. World-line Monte Carlo simolations

The "world-line" Monte Carlo method introduced by
Suzuki (1976) has been applied to spin systems by several
authors, and the reader is referred to two reviews, by
Suzuki (1986) and de Raedt and Lagendijk (1985), for fur-
ther details. This approach has been applied in low-
dimensional fermion and spin systems by Hirsch, Scalapi-
no, and collaborators (see Hirsch et al. , 1981, 1982; Loh
et al. 1985; Scalettar et al. , 1985); recently, it has been
applied to the square-lattice spin- —, antiferromagnetic
Heisenberg model by Miyashita (1988), Okabe and Kiku-
chi (1988, 1990), Reger and Young (1988), and other au-
thors.

In this technique, the Hamiltonian (1.2) is broken up
into components H, and H2, arranged in a checkerboard
pattern as shown in Fig. 3(a). The H&(H2) involves only
the bonds in the dark-(light-) shaded squares. While such
separation is convenient because H, or H2 separately
contain noninteracting squares, [H &, H2]WO. This
method uses the Trotter formula (Trotter, 1959) for the
operator,

@~1+~2) PII] ~~ P~2~~ me ' '=lim (e ' e '
) (3.1)

PclD IVI56 IM I

g:-I IK'0 $8 I

.IH B%1

FIG. 3. (a) The checkerboard breakup of the Hamiltonian in
the world-line Monte Carlo method. The piece H, (FI~) in-
volves only the bonds in the dark-(light-) shaded squares. (b)
The checkerboard evolution after the Trotter "time" dimension
is introduced.
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in the calculation of the trace in the thermodynamic
average of an operator 0, i.e.,

(3.2)

where the sum is over X, configurations c distributed ac-
cording to the Boltzmann weight P(c). When we are in-
terested in the ground state, we can restrict ourselves to
the subspace with S«, =0, and we need to take the limits
m ~ ~ and P~ ~. The elementary local move that con-
serves 5«, is to take an unshaded cube having shaded
cubes above and below it and replace the common
configuration of the top and bottom squares with a new
configuration. The move is accepted with probability
R /(1+R), where R is the ratio of Boltzmann weights for
the new and old configurations.

The local moves, however, do not cover the entire sam-
ple space. Each configuration is characterized by the fol-
lowing two "winding numbers" (see, for example, Marcu,
1987):

n„=g( —1)~+'s,(~), (3.4a)

n„=g( —1)' 's, (~), (3.4b)

where x and y are the components of I'. Here n is in-
I

dependent of y, and n independent of x. The local
2

moves do not sample configurations with different wind-
ing numbers and configurations in which the world lines
of two like spins twist around each other. Sampling of
these configurations allows the system to explore parts of
the configuration space close to local minima of the ener-
gy. These could cause transitions to phases with topolog-

Inserting the resolution of the identity operator using the
complete set of states (1.6) between the different factors
of Eq. (3.1), one transforms the original quantum spin
system into an equivalent system of classical spins which
involves an additional dimension with 2m (Euclidean)
"imaginary time" slices. The expectation value of an
operator is expressed as a classical ensemble average over
configurations of Ising-like variables s, (r), which live on
an L XL X 2m cubic lattice shown in Fig. 3(B) and
1 ~ z ~ 2m. We have to impose periodic boundary condi-
tions at the boundaries in the "time" direction because of
the trace, i e , s,.(2. m + l)=s, (1). The Boltzmann weight
P(c) for a configuration c is the product Q;M; of the ma-

astrix elements M, =(n'~e c~cL) for the ith shaded
cube of Fig. 3(b), where Hs& is the Hamiltonian of the
light- and dark-shaded squares and Ar=P/m and ~a),

~

a' ) are the spin configurations at the base and top of the
shaded cube.

In the Monte Carlo simulation the thermodynamic
average of the operator 0 is obtained as

QO(c)
(3.3)

ical order; for example, this is believed to be the case for
J )J. One way of producing twists is to offer changes of
the spins at the corners of the same noninteracting cube.
The winding number n of the configuration Is, (r) I can

1

be changed by making global moves along the x direction
s,(r)~s, (r)+( —1)"+ and similarly for n . When one

2

adds the twists, and the above g1obal moves, to the local
moves, one obtains an ergodic Markov process for this
model.

C. Projection methods. Random walks

A method, first used by Metropolis and Ulam (1949),
in which the ground state is projected out from a trial
state will be the subject of our discussion in this section.
This method can be improved significantly by guiding the
random walk using the "importance sampling" approach
of Kalos (1962, 1966), which will be explained in Sec.
III.D. In its first simplest formulation, the method uses a
trial state ~fT ) which has nonzero overlap with the true
ground state ~$0); applying the imaginary "time" evolu-
tion operator e ' to the trial state, we obtain the
ground state asymptotically:

(3.5)

This can be shown by expanding the trial state in the
complete set of the eigenstates of H. After a long enough
time, ~DE &)1, where AE is the energy gap from the
ground state to the first excited state of the system, the
evolution operator filters ~Po) from ~QT) apart from a
constant C. The constant C =e /( $0~ PT ), where Eo
is the true ground-state energy. More generally, these
equations can be cast in iterative form,

(3.6)

6(H)=1 b,~(H —8 ) . — (3.7)

Here Dr ~2/(E, „—W), where E,„=%J/2 is the max-
imum energy eigenvalue for the Heisenberg mode1. The
largest eigenvalue of G must be equal to unity, which im-

where, for the case (3.5), C(H )=e ', ~1to) = ~gT ), and
Eq. (3.6) needs to be iterated until convergence is
achieved. The operator e ' is chosen because Eq. (3.5)
is the formal infinite-time solution to the imaginary-time
Schrodinger equation. Several other choices for C(H)
can be made in order to isolate the lowest-energy state;
for instance, the resolvent operator Cr(H) =E z/H —z, —
with z & Eo, has been used in certain of the Green's func-
tion Monte Carlo studies from which the name origi-
nates. For the case of a Hamiltonian with spectrum
bounded from above and below, such as the Heisenberg
model on a finite lattice, the following operator has re-
cently been used (Gross, Sanchez-Velasco, and Siggia,
1989a; Trivedi and Ceperley, 1989):
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18 1E. Manousakis: The spin- —Heisenberg antiferromagnet. . .

plies that W=Eo. This choice of G is advantageous
since it does not require a small A~ in the evaluation of
its matrix elements.

There are several choices of G depending on the author
and the physical problem; here, we restrict ourselves to a
specific choice to illustrate the method. First, we discuss
how a stochastic method can be used to sample the pro-
jection operator. Consider the spin- —, antiferromagnetic
Heisenberg model and the basis lc ) defined by multiply-
ing the basis (1.6) by the phase factor ( —1) ", where
L (c) is the number of down-spins in one sublattice, as
discussed in Sec. II. In this basis Eq. (3.6) takes the form

& y, lo I@,&0
& Polio &

(q, lG "aG"lq, &= lim (3.12)

D. Importance sampling

requires forward walking for another set of 2V genera-
tions, where one keeps track of the progenitors of the
final population of configurations that were born at the
nth generation (see Chin et al. , 1984).

go(R) =g G(R, R')ito '(R'), (3 8)

Jl
+b,r gPo '(r, , . . . , r; +6, . . . , r~ ),4 14

where V;,. is defined in Sec. II.D. Equation (3.9) can be
thought of as an eqUation describing the motion of ran-
dom walkers that are initially distributed according to

' and remain either in their position R or move to
another configuration R'=(r, , . . . , r;+5, . . . , r~ ), with

relative probabilities P„=1 —b,r(g;& V,"—8') and P
=b,r(J /4), respectively. Therefore we can define a sto-
chastic process that produces the distribution Po(R)
starting from itjo '(R). We begin with a population of
configurations distributed according to ij'jo(R)=QT(R).
Each random walker moves in an X,-dimensional space.
In the nth iteration, i.e., after "time" ~=nA~, the nth
generation of random walkers should be distributed ac-
cording to 1Ito(R). The random walkers from R either
move to R or remain in their original positions with rel-
ative probability P or P„, respectively.

The energy can be obtained as

(3.10)

The true ground-state energy is obtained by applying the
Hamiltonian to the left, on lgo). Therefore the ground-
state energy can be obtained as ratio of averages,

QFIgr (R )

Eo=
g@T(R)

(3.1 1)

where the sum is over configurations R distributed ac-
cording to go(R), which is the output distribution of the
iterative stochastic process (3.9). The expectation value
of operators that do not share eigenstates with the Ham-
iltonian, i.e.,

R'

where R=(ri, r2, . . . , r~ ), as introduced in the boson

representation in Sec. II.D and G( R, R')
= (Rl0(8)lR'). With the choice (3.7) for G we obtain

Qo(R)= '1 Ar —g V„—W Po '(R)

P"(R)=g G~(R, R')P" '(R'), (3.13)

where p"(R)=go(R)1t r(R) and GM(R, R')
=QT(R)G(R, R')/gT(R'). In the case of the spin- —,

' anti-
ferromagnetic Heisenberg model, Eq. (3.9) takes the form

P"(R)= '1 —ar y V,, —IV y"-'(R)

(3.14)

The projection operator moves each particle to each
neighboring site with the same probability. The pro-
cedure of obtaining configurations distributed according
to the ground-state wave function becomes very efficient
if the walkers are guided in their moves by a reasonable
guiding wave function itG. This method is called "im-
portance sampling" or, more commonly, the Green's
function Monte Carlo method. The former term is also
used for a diferent meaning in the field theory literature,
we shall use the latter for any projection method that
uses a guiding function, as explained below. The method,
an important step forward in treating the ground state of
quantum many-body systems using a trial wave function,
was originally developed by Kalos (1962, 1966, 1970). It
has been successfully applied to several continuum sys-
tems, including liquid helium (Kalos et al. , 1974;
Whitlock et al. , 1979; Kalos et al. , 1981), helium drop-
lets (Pandharipande et al. , 1983, 1986), molecular phys-
ics (Anderson, 1975, 1981; Moskowitz et al. , 1982; Rey-
nolds et al. , 1982; Schmidt and Kalos, 1984), electron
gas (Ceperley and Adler, 1980), liquid and solid hydrogen
(Ceperley and Adler, 1981), nuclear physics (Koonin,
1981;Zabolitzky and Kalos, 1981;Negele, 1982), and lat-
tice models, including lattice gauge theories (Heys and
Stump, 1983; Chin et al. , 1984, 1988); recently it has
been applied to the spin- —, antiferromagnetic Heisenberg
model (Carlson, 1989; Trivedi and Ceperley, 1989).

The guiding action of the wave function reduces the
statistical fluctuations, and this allows simulation of
much larger systems. To see how this works, we multiply
both sides of Eq (3.8) by. the guiding function gT(R) and
we rewrite Eq. (3.8) as
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Hence the random walks are biased and [because of the
ratio ttjT(R)/gT(R')] certain regions of the configuration
space are sampled more often. The price we have to pay
is that the limiting distribution of the walkers, as n ~~,
is P(R) =go(R)tt T(R). The ground-state energy can be
easily calculated by rewriting Eq. (3.10) as

ply, (R) l'
HtttT(R)

g lg, (R) I'
HQT(R)

~, q, (R)
T

(3.16)

HgT(R)
+go(R)gr(R)

gtfjo(R)QT(R)

HQT(R)
X~(R)

~ (R)
gP(R)

(3.15)

E. Variational calculations

In the "importance sampling" technique, it is very im-
portant to have accurate variational wave functions. In
systems where the Careen's function Monte Carlo method
has been applied with success there was a prior or paral-
lel search for accurate variational wave functions. Ex-
pectation values of operators that do not commute with
the Hamiltonian need to be calculated using an extrapo-
lated estimate that assumes that the trial state is accu-
rate. Inversely, having a trial wave function and using
the Green's function Monte Carlo approach, we can
determine the accuracy of this wave function. Further-
more, an accurate wave function gives us a useful insight
into the dominant physical processes, which are impor-
tant in a determination of the properties of the system.
Following this line of reasoning, it is highly desirable to
obtain accurate ground-state wave functions for the anti-
ferromagnetic ground state and the excited states. The
use of these wave functions may not be limited to the un-
doped antiferromagnet, since they may be modified to in-
clude hole hopping and hole-hole pairing when hopping
terms are present in the Hamiltonian.

In this case the calculation part is straightforward; the
expectation value of the Hamiltonian can be written as

where the second sum is over all configurations. There-
fore the expectation value (3.15) can be calculated as the
average of HQT(R)If'-(R) over configurations R gen-
erated by Eq. (3.14) after a long enough time. However,
there is a problem in obtaining expectation values of
operators that do not share eigenstates with H. In this
case only the mixed estimate (0 )M is given by Eq. (3.10)
or (3.15) when we replace H with the operator O. The
mixed estimate can be corrected to give a true extrapolat-
ed estimate by assuming that the difference between the
true and the trial state is small. The extrapolated esti-
mate is obtained as (0)=2(O)M —(0)T, where (O)T
is the expectation value of 0 with the guiding (or varia-
tional) wave function. The correction to the extrapolated
estimate is of order ($0 tt T) and —therefore small, pro-
vided that PT is close to the exact fo.

The sum in the second part of the equation is over 2V,

configurations R distributed according to
l lt T(R) l,

which can be treated as a probability distribution gen-
erated by the Metropolis algorithm.

The nontrivial part is the construction of forms of vari-
ational wave functions which emphasize the correlations
and configurations that are energetically important and
suppress those that give a large positive contribution to
the energy expectation value. Next, we give some simple
wave functions that have been used for the spin- —,

' antifer-
romagnetic Heisenberg model.

In Sec. II.D we discussed the analogy with the hard-
core Bose fiuids and showed that the wave function (2.39)
is the Jastrow ansatz, which, for the amplitude go(R), is
expressed by Eq. (2.45). Variational wave functions of
the form (2.39a) have been studied by Hulthen (1938),
Kastelijn (1952), Marshall (1955), Taketa and Nakamura
(1956), Bartkowski (1972), and Suzuki and Miyashita
(1978). More recently this wave function was studied by
Horsch and von der Linden (1988), Huse and Elser
(1988), Liu and Manousakis (1989), and Manousakis
(1989) using the variational Monte Carlo approach.
Huse and Elser took u (1)=u i and u (r) =a lr for r ) 1,
where r =

l R, —R, , and treated u „a, and b as variation-
al parameters. They obtained ——0.664J for the
ground-state energy per site for u

&
-0.65, a -0.475, and

b-0.7. Horsch and von der Linden (1988), using only
u (1) as a variational parameter [and u (r ) 1)=0], found
—0.644J for the ground-state energy. The function u in
general is not a function of the distance r between two
points on the lattice, but rather a function of the two
components x and y of the vector R,". In Fig. 4, we plot

~ ~ ~ I
l

I ~ ~ I
(

~ I I
(

'I 1 ~

(
I I I I

0.6—

O 04-
Il

~ 0.2—

0.0
0

X

I

6 8 10

FIG. 4. Companson of u (x,y =0) obtained by Huse and Elser
(crosses), Manousakis (open circles), and Liu and Manousakis
(open squares). The dash-dotted line for x ~ 2 is the asymptotic
tail [Eq. (2.48)j. The other lines are to guide the eye.
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u(x, y =0) (open circles) obtained by numerical evalua-
tion of the sum (2.39) and compare it with the results of
Huse and Elser (crosses). The function (2.39b) has a
long-distance behavior given by Eq. (2.48), which is con-
sistent with the existence of long-wavelength spin-wave
excitations. The form (2.48) is shown by the dash-dotted
line for x 2 in Fig. 4; notice that the asymptotic form
agrees very well with the numerically evaluated sum
(2.39b) for essentially x ~2. The rest of the lines are
drawn as guides to the eye. Monte Carlo evaluation of
the ground-state energy with the parameter-free wave
function (2.39b) gives the same energy within error bars
as that obtained with the Huse-Elser wave function. The
advantage of Eq. (2.39a—b), however, is its simple physi-
cal origin and the fact that it is a parameter-free wave
function. The wave function (2.39a) has been optimized
further by Liu and Manousakis (1989). It is well known
that the ground-state energy is not very sensitive to the
exact long-range tail of the wave function. Liu and
Manousakis have performed a variational Monte Carlo
calculation which determines the wave function by re-
quiring it to be consistent with the sum rules of the spin-
dynamic structure factor and long-wavelength excita-
tions. It is discussed next.

Liu and Manousakis (1989) used the Jastrow-Marshall
form (2.39a), including in the sum (2.33c) only states with
zero magnetization, and took u (1) and u (&2) as varia-
tional parameters and

u(r)=auLR(r) for +x +y~~2, (3.17)

where ui R(r) is given by Eq. (2.39b) [and can be approxi-
mated by (2.48)] and a is a parameter of order 1. The tail
u (r ~~ ) of Eq. (3.17) is given by the Chester and Reat-
to relation (2.47) with c =aco, where co=+2Ja. This
value of c and that obtained from Eq. (2.55), by calculat-
ing f and e" using the same variational wave function,
must agree. Therefore u (1) and u (v'2) are determined
by minimizing the ground-state energy, while the param-
eter n can be determined self-consistently: given a value
of a, the spin-wave velocity c is obtained by calculating f
and the curvature of e(M). A new value of a is then ob-
tained via e=c/co. This is iterated until the input and
the output value of a are the same. The wave function
obtained with this approach is shown in Fig. 4 by open
squares and the solid line is used as a guide to the eye.
The extrapolated values to the infinite system for the
ground-state energy, staggered magnetization, spin-wave
velocity, and perpendicular susceptibility are accurate;
they will be presented and compared with the other cal-
culations below.

A somewhat related class of wave functions is obtained
using the Gutzwiller (1963, 1964) projection operator act-
ing on a Hartree-Fock-type wave function,

~

ql &
=+ ( 1 —&;t n; g ) I

c'( ~ ) & (3.17a)

where @(b,) is a Hartree-Fock wave function to describe
antiferromagnetic long-range order,

(3.17b)

ak ~k ck +sgn(a)+k ck++ (3.17c)

Qk — 1++
2

1/2
'Vk

Qy2+ g2
(3.17d)

Here ck is the Fourier transform of c; and sgn(cr) is

+1 or —1 for cr =1 or cr= $ and m=(n, vr). The states
with doubly occupied sites in the Hartree-Fock state are
eliminated using the Gutzwiller projection operator. In
this variational wave function, 6 is the only variational
parameter, and its optimal value controls the antiferro-
magnetic order parameter. Yokoyama and Shiba (1987),
using Eq. (3.17), have calculated the expectation value of
Eq. (1.2). Their extrapolated value for the ground-state
energy and staggered magnetization for the infinite
square lattice are higher ( —0.642 and 0.43, respectively)
than those obtained with Marshall-Jastrow-type wave
functions. It is clear that this wave function only ac-
counts for the on-site constraint and does not describe
the short-range correlations. That is, two particles are
only statistically correlated if they are at neighboring
sites and there are no dynamical correlation factors in
the wave function induced by the hard core. Wave func-
tions for which the Gutzwiller projection operator acts
on BCS or other mean-field-type wave functions have
been used by Gros et al. (1987) and Gros (1988) to study
superconducting instabilities in the strong-coupling Hub-
bard model. These states may be energetically favorable
when the antiferromagnetic order is destroyed by intro-
ducing holes into the system.

There is another class of wave functions closely related
to the resonating valence bond theory of superconduc-
tivity. Generally speaking, these are states that can be
written as linear superposition of states in which all pos-
sible spin pairs are paired in a singlet state. Following
Anderson's suggestion (1987), several studies of such
wave functions have been published. For instance,
Liang, Doucot, and Anderson (1988) considered only
short-range bonds and found an estimate for the ground-
state energy of —0.604+0.0004, while including long-
range bonds they found —0.6682+0.0004, which is very
close to the best estimate of —0.6692 obtained with the
Green's function Monte Carlo method. However, such
states have no long-range order, which contradicts the
picture suggested by quantum Monte Carlo simulations
of the model. The latter picture agrees with the idea of
an ordered state suggested by spin-wave theory, both in
the qualitative sense (finite-size scaling of the observables)
and in the quantitative sense as discussed next. Such
resonating valence bond states may be relevant in the
case where mobile holes are introduced which destroy
the antiferromagnetic long-range order. In this paper,
however, we restrict ourselves to the half-filled case. A
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the Green's function Monte Carlo result, while that re-
ported by Barnes (1988) and by Barnes and Swanson
(1988) lies above the Green's function Monte Carlo value

by roughly the same amount. A more recent report by
Barnes et al. (1989) gives —0.669+0.001. The result of
the "world-pline" Monte Carlo study (Reger and Young,
1988) has a much larger error bar; it is, however, very
close to that obtained by series expansion about the Ising
limit (Singh, 1989) and quite close to the Green s function
Monte Carlo value. These results are very close to a
value of —0.6674 calculated by Becker et al. (1989) us-

ing a recently developed projection technique for the
ground-state energy. The differences, however, between
the results of all the ground-state energy calculations
given here are rather small (all are in (2% agreement
with the Green's function Monte Carlo result).

It is worth mentioning that a variational Monte Carlo
calculation with a quite different wave function, per-
formed by Liang, Doucot, and Anderson (1988), which
does not assume antiferromagnetic long-range order,
gives an accurate ground-state energy. This wave func-
tion with the inclusion of long-range resonating valence
bonds gives an energy of —0.6688+0.0004, which is very
close to the best estimate of —0.6696. This state, howev-
er, assumes zero staggered magnetization, which contra-
dicts the nonzero value of about 0.3 found by the accu-
rate calculations presented next. The more recent work
of Zivkovic et al. (1990) summarizes the results obtained
with the various resonating-valence-bond-type wave
functions.

2. Staggered magnetization

In a finite Heisenberg spin system there is no symmetry
breaking and the ground state is spherically symmetric.
Since the Hamiltonian does not commute with any com-
ponent of the staggered magnetization, the latter cannot
be a conserved quantity. Furthermore, the ground state
must be a singlet (Marshall, 1955; Lich and Mattis, 1962),
and therefore the antiferromagnetic ordering of this
quantum-mechanical system is more interesting and quite
different from that occurring in a classical or a ferromag-
netic model. The first question we wish to address is
whether the ground state of the model possesses antifer-
romagnetic long-range order. Following the definition
given by Eqs. (1.9) and (1.10), we need to introduce an
external staggered field, perform the calculation for vari-
ous size lattices, extrapolate to the infinite-lattice limit,
repeat this calculation for various values of the external
field, and finally extrapolate to the zero-field limit. This
is a rather involved task and assumes knowledge of two
extrapolation formulas. Instead, in most numerical cal-
culations, the staggered magnetization is defined as the
square root of the expectation value

calculated in the absence of external fields. We expect
that, in the thermodynamic limit, this definition coin-
cides with the definition (1.9), (1.10). This has recently
been questioned by Kaplan, Horsch, and Linden (1989).
We believe, however, that in the thermodynamic hmitI is a macroscopic quantity and therefore free of Auc-

tuations. Miyashita (1990), with his Monte Carlo simula-
tion, gives support to these expectations. Another, close-
ly related, definition uses the asymptotic behavior of the
staggered spin-spin correlation function

tlrii

C(r)= (3.19b)

m" =C(L/2, L/2), (3.19c)

where r=(L/2, L/2) is the longest possible distance in
the I. size square lattice with periodic boundary condi-
tions. Assuming that there is long-range order, it is
straightforward to verify that the definitions (3.19c) and
(3.19a) diff'er only by corrections of order I/X(X =L )

and can be ignored because the leading finite-size correc-
tion with either definition is of order 1/I. . Assuming
that I ~ is finite in the thermodynamic limit, based on the
spin-wave analysis and on arguments given by Huse
(1988), Reger and Young (1988), Gross et al. (1989), and
Neuberger and Ziman (1989), we expect the leading
finite-size dependence of m (L) to be of order 1/L,

m (L)=m (~)+pL '+ (3.20)
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The results for the staggered magnetization are com-
pared in Fig. 6 and are summarized in Table II. We give
the result of the exact diagonalization (cross) of a 4 -size
system (Dagotto and Moreo, 1988; Tang and Lin, 1988;
Tang and Hirsch, 1988). In the Green's function Monte
Carlo calculation, m (L) is calculated from the correla-
tion function, that is, using Eq. (3.19c). We notice that
the size dependence of the Green's function Monte Carlo
results of Trivedi and Ceperley and the variational results
of Liu and Manousakis (1989), who used the definition

(3.19a)
FICx. 6. Comparison of the results for the ground-state stag-
gered magnetization obtained with various calculations. See
text for details.
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TABLE II. Comparison of the infinite-lattice extrapolation of ground-state staggered magnetization
calculated with various methods.

Method

Linear Spin-Wave Theory
Spin-Wave Theory
Series expansions (Davis, 1960)
Series expansions (Parrinello-Arai, 1974)
Series expansions (Huse, 1988)
Series expansions (Singh, 1989)
Green's function Monte Carlo (Trivedi-Ceperley, 1989)
careen's function Monte Carlo (Carlson, 1989)
Variational Monte Carlo (Yokoyama-Shiba, 1987)
Variational Monte Carlo (Huse-Elser, 1988)
Variational Monte Carlo (Liu-Manousakis, 1989)
Variational Monte Carlo (Shankar-Murphy, 1989)
World-line Monte Carlo (Reger-Young, 1988)
Projector Monte Carlo (Gross et al. , 1989)
Forward Walking (Runge-Runge, 1990)
Exact diagonalization (Tang-Hirsch, 1988)
Exact diagonalization (Tang-Lin, 1989)

Staggered Magnetization

0.303
0.303
0.382
0.362
0.313
0.308+0.008
0.31+0.02
0.34+0.01

-0.43
-04

0.349+0.002
0.29
0.31
0.29

-03
0.25
0.245

&3.19a), agree with the scaling law (3.20). The value ob-
tained by Liu and Manousakis for an infinite lattice is
m (~)=0.349+0.001. The extrapolated estimate ob-
tained from the Green's function Monte Carlo calcula-
tion of Trivedi and Ceperley is m (~ )=0.31+0.01,
while that obtained by Carlson is 0.34+0.01. In this case
the discrepancy is due to the fact that the mixed estimate
of the expectation value of an operator that does not
share eigenstates with the Hamiltonian is not exact, and
the corrections depend on the accuracy of the variational
wave function used as guiding function in the calculation.
Calculations (Runge and Runge, 1990) using forward
walking can avoid the problem of the mixed estimate.
The open circles with error bars are the results of Runge
and Runge, who used the definition (3.19a) for the stag-
gered magnetization. It may be noted that these results
are also consistent with an extrapolated value of similar
magnitude to that of the Green's function Monte Carlo
value of Trivedi and Ceperley. The results of the spin-
wave approximation (Anderson, 1952; Kubo, 1952; Ogu-
chi, 1960), the series expansion (Huse, 1988; Singh, 1989),
the "world-line" Monte Carlo simulation (Reger and
Young, 1988), and the random walk (Gross et al. , 1989)
are close. Series expansions have been obtained earlier
(Davis, 1960; Parrinello and Arai, 1974) which are low-
order and slowly convergent. Huse (1988) and Singh
(1989) and Singh and Huse (1989) have calculated terms
up to tenth order and used extrapolation techniques to
calculate the staggered magnetization at the isotropic
limit; they found the value 0.308+0.04. Oitmaa and
Betts (1978) used 1/L to extrapolate to the infinite-size

2The points corresponding to lattices 10X 10 and 12 were ob-
tained from private communication.

lattice, which contradicts Eq. (3.20); furthermore, they
calculated the mean-squared staggered magnetization
along the z direction, m, , instead of Eq. (3.19). Their
ground state is a rotationally invariant singlet; thus one
needs to multiply their value for the root-mean-square z
component of the staggered magnetization, i.e., m, , by
&3 and perform the extrapolation given by Eq. (3.20)
(Huse, 1988). It seems, however, that the lattice sizes ac-
cessible to the exact diagonalization calculations are not
1arge enough for an accurate extrapolation to the I.—+ oo

limit. Notice that the value of the staggered magnetiza-
tion for the 4X4 lattice, given by the cross in Fig. 6, is
too far from the value at I '=0 when plotted as a func-
tion of 1/1.; thus we believe that other numerical calcula-
tions, such as the Green's function, forward walk, or ran-
dom walk Monte Carlo can give better estimates for
m ( ~ ). Moreover, we believe a value around 0.31+0.02
to be a good estimate, because the estimates obtained by
the Green's function Monte Carlo work of Trivedi and
Ceperley, world-line Monte Carlo, series expansions, ran-
dom walk Monte Carlo, spin-wave theory, and an extra-
polation obtained from the forward walk Monte Carlo
method (Runge, 1990) all are within this range. Shankar
and Murthy (1989) found that mt for spin- —,

' is somewhat
smaller than calculated using spin-wave theory; they did
so by using Pade approximants to approximate the series
for m~ in powers of 1/S, the facts that the leading 1/S
correction is known from spin-wave theory, and the fact
that m -(S—5, )~ at the critical point S =S,.

The wave function of Liang, Doucot, and Anderson
(1988) gives zero staggered magnetization, in contradic-
tion with the results of all the above methods. The au-
thors initially argued that the 2D spin- —, antiferromag-
netic Heisenberg model is close to criticality, because
their energy is close to the "true" ground-state energy.
Anderson (1990), however, in a reply to a recent com-
ment by Kaplan (1990), suggests that such resonating
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valence bond states should be and are currently modified
to possess the necessary antiferromagnetic moment re-
quired in a spin- —, Heisenberg antiferromagnet on a
square lattice.

If the square-lattice spin- —,
' quantum antiferromagnet

lacks antiferromagnetic long-range order, then the spin-
spin correlation function must satisfy a rigorous upper-
bound requirement shown by Kennedy, Lieb, and Shas-
try (1988). Liang (1990) used the projector Monte Carlo
method to calculate the spin-spin correlation function
and found that this model must exhibit antiferromagnetic
long-range order because this upper-bound requirement
was violated.

3. Excitation spectrum

Assuming that the picture suggested by spin-wave
theory is correct, we expect a gapless excitation spectrum
in the limit L ~ 0o. Furthermore, the gap should be pro-
portional to L according to the arguments given by
Gross et al. (1989) and Neuberger and Ziman (1989), so
that we expect the scaling

AE =E]—Eo = (3.21)

where E&(Eo) is the total energy of the system in the
lowest-energy state with total S, =1 (S,=0). In Fig. 7,
we plot AE versus 1/L as obtained by the Green's func-
tion Monte Carlo calculation of Carlson (1989). The cal-
culation agrees with the scaling (3.21). The cross that
overlaps with the Green's function Monte Carlo result
for the 4X4 lattice is obtained from exact diagonaliza-
tion (Dagotto and Marco, 1988).

The parameter f [Eq. (2.51b)] can be calculated to the
same accuracy as the ground-state energy. The varia-
tional Monte Carlo calculation of Liu and Manousakis
(1989) and the Green's function Monte Carlo calculation
of Triverdi and Ceperley (1989) give f =0.125J, a value

very close to what one might expect from the analogy
with Bose Auids using the continuum version of the sum
rules. The second derivative of the energy with respect
to the magnetization, e", can also be calculated accurate-
ly because the ground-state energy and its derivatives
have small error in both calculations. There are no
Green's function Monte Carlo calculations of e". The
variational calculation (Liu and Manousakis, 1989) gives
e"=12.00+0.08J; therefore the spin-wave velocity ob-
tained from the variational Monte Carlo calculation is
Z, =c/co=1. 22+0.02(co ——V'2Ja), which is in reason-
able agreement with the result of spin-wave theory,
Z, =1.156. The result of spin-wave theory is in good
agreement with those of the Green's function Monte Car-
lo calculation by Trivedi and Ceperley (1989), who found
Z, =1.14+0.05 and the result Z, =1.18+0.02 obtained
by series expansions (Singh, 1989; Singh and Huse, 1989).

In Fig. 8 the structure function S(q) along the [10]
direction is shown. The dashed line gives the result ob-
tained with the linear spin-wave theory [Eq. (2.23c)]; the
crosses with the error bars are the results of the Green's
function Monte Carlo calculation of Trivedi and Ceper-
ley, while the open circles with error bars the results of
the variational Monte Carlo calculation of Liu and
Manousakis. The solid line has slope f/c [Eq. (2.54b)]
(using for f and c the results of the variational Monte
Carlo calculation). In the inset the co(q) obtained from
Eq. (2.54a) is shown. The straight line is co=cq with
c =1.22co. Table III compares the spin-wave velocity
obtained in spin-wave theory with the values reported by
Green's function Monte Carlo, series expansions, random
walk, and variational Monte Carlo calculations. In this
Table we also give the results for Z& ——gt/gt o, where

yt o—:I/8J (the perpendicular susceptibility obtained in
linearized spin-wave theory). For easy reference, in
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FIG. 7. The results for the energy gap obtained with the
Green's function Monte Carlo calculation.

FIG. 8. The results for S(q) obtained from the variational cal-
culations with Marshall- Jastrow-type wave function and
Green's function Monte Carlo calculations compared with that
obtained in linear spin-wave theory. In the inset we give co(q)
along the [10]direction obtained from Eq. (2.54a).
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TABLE III. Comparison of the ratios Z, and Z~. Here, c is the spin-wave velocity, co =2' Ja, g is the perpendicular susceptibility,
and y«=—1/8J. We also give the spin-stiffness constant p, = —'Z~Z, J calculated by various methods for comparison.

Method

Linear Spin-Wave Theory
Spin-Wave Theory
Series expansions (Singh, 1989)
Green's function Monte Carlo (Trivedi-Ceperley, 1989)
Variational Monte Carlo (Liu-Manousakis, 1989)
Projector Monte Carlo (Gross et al. , 1989)

Z =c/co

1

1.158
1.18+0.02
1.14+0.05
1.22+0.02
l.18+0.10

Xl/Xl, O

I
0.448
0.53+0.04

0.667+0.004
0.71+0.04

Spin stiffness (p, /J)

0.25
0.1505J
0.183+0.01

0.25+0.01
0.25+0.05

Table III we give the spin-stiffness constant p„which is
not an independent parameter and is given in terms of c
and g~ by Eq. (2.S6).

IV. CALCULATIONS AT FINITE TEMPERATURES.
ANALYTICAL APPROACHES

S=——'(u u, +v; v;)=S . (4.1d)

In the case of a square lattice we can perform the unitary
transformation u ~ —

U and U —+u in the 2 sublattice,
and so S;+= —u;U;, etc. With the above transformation
the Hamiltonian (1.2) takes the form

. In this section we study the low-temperature proper-
ties of the spin- —,

' Heisenberg antiferromagnet on a square
lattice with analytical techniques. In 20, antiferromag-
netic long-range order is destroyed at any finite tempera-
ture (Mermin and Wagner, 1966) by thermal fluctuations.
Hence conventional spin-wave theory or series expan-
sions around the Ising limit cannot be applied without
appropriate modification. First, we discuss the mean-
field approximations in a path-integral formulation of the
theory using the Schwinger-boson representation used by
Arovas and Auerbach (1988), the fermion representation
used by AfBeck (1988), and Marston and Aleck (1989),
and a modified spin-wave theory introduced by
Takahashi (1989a). Second, we derive the quantum non-
linear o. model from the large-S quantum Heisenberg an-
tiferromagnet in the long-wavelength limit and we dis-
cuss the role of the Hopf term in one and two space di-
mensions. Third, the renormalization-group calculations
of Chakravarty, Halperin, and Nelson (1988, 1989) with
the P function calculated in one-loop and two-loop order
will be discussed. Finally, we study the quantum non-
linear o. model using the saddle-point approximation.

A. Path-integral formulation. Schwinger
boson representation

Arovas and Auerbach (1988) used a path-integral for-
mulation in the Schwinger representation (Schwinger,
1952). Let us introduce two operators u; and v; at the
site i, obeying standard boson commutation relations and

0= ——g L;~L;J+XdJS.
&ij &

L/gJ Qg 0J +Uf UJ

(4.2a)

(4.2b)

while the constraint (4.1d) remains the same. Consider-
ing the two kinds of bosons (u and v) as the two flavors of
an SU(2) symmetry, Arovas and Auerbach generalize the
symmetry to one of SU(n) by considering bosons
a = 1, . . . , n of n different flavors. In this generalization
the link operator is given by

(4.3a)

and the constraint (4.1d) is written as

S:——g P; P;=S. (4.3b)

The Hamiltonian

(4.3c)

for n =2 reduces to Eq. (1.2) within a constant equal to
XdJS . Note that this generalization to an SU(n)-
invariant Heisenberg model, by allowing the spin index
to run from 1 to n, is different from letting the electrons
have higher spin. In the latter case the coupling between
the spins does not have the simple form given by Eq.
(4.3c). The partition function Z=Tre ~ can be ex-
pressed in a path integral using the coherent basis

(4 4)

S+=u vi i i

S =
—,
'

( u, u, —v; v; ) = u, tu, —S,
where the last equality follows from the constraint

(4. la)

(4.1b)

(4.1c)

for every lattice site i (~0) here denotes the vacuum
state). Here P, is a complex number and we

consider only those states that respect the constraint
(4.3b). First, we write the partition function as
Z=lim, OTr iiM &(1 —FH), with Me=P. Next, we in-

troduce the resolution of the identity operator in the
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coherent basis (4.4) for every site, between the operators
1 —eH, and we evaluate the matrix elements using

Finally, we take into account the constraint (4.3b) and
the limit e~O to obtain

Q,"=Qts where Itsl =1. The partition function (4.7),
when Q is a constant, can be obtained from the following
mean-field Hamiltonian:

H "= —Ndg —nNSA,J

and

Z= D, , A, exp —S (4.5) + —,
' X [~(4k 4'i'+0 —"k4—k)

k, a

+2dg(&k 4k% —k+ti 4k 0—k)] (4.10a)

S[4 0* ~l= f, « —,'X(4,* 0; 0,*"—0;) „—X—L„*L;,

+g A, , ((5,* P, —S) (4.6)
(4.10b)

i, a

where L; =g" &P, P . The notation fD[P, P*,k]
denotes a path integral over all independent fields P, (r)
and P,*. (r) and a field A, (r). The auxiliary field k;(r) is
introduced at every site in order to take care of the con-
straint (4.3b); it can easily be seen that by integrating out

using 5(x)= f ', (dA/2' ),e ", the constraint is

recovered in the form of a 6 function.
Introducing a Hubbard-Stratonovich field Q,J on each

bond of the lattice to decouple the quartic interaction
term, we obtain

Z= fD[P,P",Q, Q*,A] exp( S'[Q, Q*,—Q, Q*,A]),

(4.7a)

where

Performing the Bogoliubov transformation

LUi =coshokpk+slnhOi f
M „=coshOi $„+slnhl9„$

we find that H™takes a diagonal form,

Ndg —nNSA. +—g cok(wk &i, + —,'),
k, a

~k —~V'1 —q'I &k I',
il =2dg /A, ,

and the angle Ok is chosen such that

tanh20k=gtk .

(4.11a)

(4.11b)

(4.11c)

(4.12a)

(4.12b)

(4.12c)

S'= f d~ —,
' g(P,* P; P,

*
P; .)+ ——g Q,,*Q,,

l, a

+ g (Q;*.L; +Q;,L;)*)+gA, ;(P;"P; S)—
(4.7b)

Let us change integration variables in the path integral
from the fields Pk, P* to new fields corresponding to the
operators &i, and wk . These new fields can be integrated
out to obtain

1~MF l Z

This action is quadratic in the P fields, which implies that
they can be integrated out to obtain

=dg —
—,'(2S+1)A,+——g ln[2sinh( —,'Peek)] .11

Z = D, *,A, exp —nS,& (4.8) (4.13a)

In the saddle-point approximation the extrema of S,~ are
determined from

6S,~ 6S,~ 6S,~ =0. (4.9)
5Q,, (r) 5Q,,*(r) Q, , (r)

In general, the solutions of (4.9) can be (Euclidean) time
dependent and nonuniform, with perhaps a nontrivial
phase factor. Because it is dificult to find all possible
solutions and calculate their contribution to the generat-
ing functional, it is common to seek the uniform and
time-independent solutions: Q,"(r)=Q,*(r)=Q and
A, , (r)=A, . Aleck and Marston (1988) used the fermion
representation and allowed for a simple spatial variation
of the phase of the Hubbard-Stratonovich field, and their
results will be discussed in Sec. IV.D. Let us allow for a
simple spatial variation of the phase of Q by writing

1 V'I —q'I& I'
coth

2 kB T~

V'I —g'Irk I'
(4.13b)

1
V'I —q'Irk l'

coth
B TA.

V'I —n'Irk I'
(4.13c)

where T&—= T/A, . Assuming that t&=1, we have tk=yk.
For given values of S and T& we can solve Eq. (4.13b) to
obtain i) =q( T&,S) We substitute . rl( T /A, ,S ) in Eq.

The saddle-point equations 5F "/5Q =5F "/5A. =O
give
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(4.13c) and solve to obtain A, (T,S), which can then be
substituted back in rI( T/A, ,S) to find q as a function of T
and S. These equations will be solved in Sec. IV.C. In
the next section we derive Eq. (4.13) again, using a
modified spin-wave theory proposed by Takahashi (1989).

f (r, )—:&a;ta )+—,'5,

=&b,'b, &+-,'S,,

g cosh(28k)e "(nk+ —,
' ),

k
(4.19c)

B. Modified spin-wave theory

S;+ =(2S —a; a; )a, , S; =a;

S =S —a;a;,
for i on the A sublattice and

(4.14a)

(4.14b)

S+= bt(2S b—b ), S—= bj, — (4.15a)

S'-= —S+b b (4.15b)
for j on the 8 sublattice. In terms of these operators the
Hamiltonian is given by

Low-dimensional quantum ferromagnets at finite tem-
peratures have been studied using conventional tech-
niques by several authors (see, for example, Dalton and
Wood, 1967; Yamaji and Kondo, 1973; Takahashi, 1987,
1990). The standard spin-wave theory is not applicable
without modification. In this section we discuss a varia-
tional density-matrix approach proposed by Takahashi
(1989a) for antiferromagnets.

The consequence of the Mermin-Wagner theorem in
Takahashi's approach is enforced by hand, as explained
below. Takahashi uses the Dyson-Maleev (Dyson, 1956;
Maleev, 1957) transformation for antiferromagents in-
stead of the Holstein-Primakoff transformation [Eqs.
(2.7) and (2.8)]. In this transformation the boson opera-
tors are defined as

g(r,, )—:&a, b,")

=&a, b, )

1 —ik r,=—g sinh(28k)e "(n k+ —,
'

) .
k

(4.19d)

The summation is over the entire Brillouin zone and

k = & +k~k~ &PkPk l
k B

(4.19e)

Takahashi approximated the entropy X by the expression
for an ideal gas of noninteracting quasiparticles created
by ak or Pk operators,

2=2+ [(nk+ I) ln(nk+1) —nk In(nk)] .
k

(4.20)

The minimization of the free energy F(8k, cok, T) is per-
formed subject to the constraint

& S ) =S + ,' f (0)=—0—. (4.21)

The minimum of F is found via B(F—p&S ) )/80k=0
and B(F—p&S ) )/Bcok=0, where p is the Lagrange mul-
tiplier that enforces the constraint (4.21). The minimiza-
tion and the constraint (4.21) give equations identical to
(4.12) and (4.13) obtained in the previous section with the
Schwinger boson mean-field theory, with Q and A, in this
case defined as

H = NdJS + g [S—(ata, +b, bj a; bt a;b, —)—
(~j)

+ —,'a; (b —a;) b~ ], (4..16)

Next, Takahashi introduces the following ansatz for the
density matrix:

Q:—& a,tb;t+s ) =g (5),
A, =2dJQ —p .

The correlation function is obtained as

(4.22a)

(4.22b)

p =exp —(kii T) ' g a~k(akczk+P „P k)
k

(4.17) &S; S ) =f (r,j )
—

—,'6;~ —g (r;~) . (4.23)

ak =coshOkak —sinhOkb k,
P„=—sinheka k +cosh 9kb k .

(4.18a)

(4.18b)

Here, cok and the angle 6k are variational parameters to
be determined by minimizing the free energy,

F =E —TX,
E=&H)

(4.19a)

where ak and pk are operators that are related to the
original boson operators ak and b„via the canonical
transformation

Using the combination of (4.19) and (4.12c), we find that
f (r) =0 for (

—1)II'll = —1 and g (r) =0 when ( —1)II'll = 1

(here, ~~r((=x+y where x and y are the coordinates of r
in lattice spacing units). Therefore the correlation length
can be found by looking at the asymptotic behavior of
f (r) or g (r) in the A or B sublattice.

The same equations have been obtained by Hirsch and
Tang (1989b, 1989c; see also Tang et a/. , 1989) with the
aid of the Holstein-Primakoff transformation. In the
next section we solve Eqs. (4.13b) and (4.13c) at T =0
and low T and discuss the correlation functions.

g IS+ ,' f (0)+g(5)]——(4.19b) C. Low-T solution and correlation functions

where X denotes the entropy and Equations (4.13) can be written as
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2S+1=,f dt %[+1—t']
coth

8 A,

(4.24a)

2S+1— =
2 f dt %[+1 t —]coth — +1—i) t

2 1 +1 rt't—'
2 ~ 0 2 k~Tq

(4.24b)

where K(x) is the complete first-order elliptic integral,
i.e., (1/X)+„5(t t„)=—(2/~ )IC [+1 t ],— with
0(t (1. At T=O, the right-hand side of Eq. (4.24a) is
bounded from above by its maximum value attained at
g= 1. This maximum value is 2m+ 1, where e is given by
Eq. (2.20) and e=0. 197 for a square lattice. Hence, in
order to satisfy (4.24), S must be less than e. Since this
condition is not satisfied for S ~

—,', at T=0 and S =
—,
' the

disordered solution does not exist. This is consistent
with the existence of a ground state having broken sym-
metry such as antiferromagnetic long-range order. In or-
der to satisfy Eq. (4.24a), we need to go back to the step
where we replaced the summation over the k by the in-
tegral. If we allow for 1/X corrections to 1 —g, we find
that Eq. (4.24a) is satisfied with 1 —

rI =1/4(S —e) N .

These corrections vanish in the thermodynamic limit;
thus the T =0 value of q is ilo= l. From Eq. (4.24b) we
obtain the T =0 value of k as

X =4SJ 1+0 2S
(4.25)

where g is given by Eq. (2.16d). Substituting in Eqs.
(4.12) and (4.13) the values of rj and A, for T =0, we find
that the ground state and spin excitation energy mk are
the same as those given by Eqs. (2.18a) and (2.18b), re-
spectively.

In the limit T&~0, Takahashi worked out the asymp-
totic forms of Eqs. (4.24a) and (4.24b) in the interval
1 —g((T& ((1;he found

2S+1= K [0]Ti —ln —21n
2 +, f dt K[(/1 —t'](1 q't') '"—+O(T3~),2

(4.26a)

2S+1—~ = f dt K[+1—t ](1 il t )
'~ + —K[ ]0((3) Ti+O(T )i.2 2 2 2 —&/2 (4.26b)

The first part of Eq. (4.26a) is the most singular part of the integral (4.24a) arising from the 1/x singular term of cothx
when x ~0, and the second part corresponds to the T& =0 value of the integral. The low-T solutions to the above two
equations are

T ark, O(S —e)g=i —— exp — [1+O((T/I) )],
2 ~0 ka T

3

A, =AD — +O(T ) .
7T Ap

(4.27a)

(4.27b)

Using Eq. (4.19c) for f (r) and Eq. (4.12c) to calculate sinh20i, with the above approximation for r), we can find

1/2ffdk-""" =2T
k'+(2g) '

for r such that (
—1)~~'~~ = 1 and

1 SAc 2~Ps
exp [1+O(T )],

8(&2—1) k~ T ks T

—r /2( (4.28a)

(4.28b)

p, =S 1+ (S —e)J .
2S

(4.28c)

For the spin- —, square-lattice antiferromagnet, p, =0.175 66J. The spin-spin correlation function is given by

(4.28d)

The uniform susceptibility is defined as y= T 'g, (SOS", ) and at low T is given by (Takahashi, 1989a)
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y( T~O) =
12J 1+

2S

. (S —e)+ . +O(T ). (4.29)

The zero-temperature classica1 value of y is —, times the classical perpendicular susceptibility.
Auerbach and Arovas (1988) have calculated the dynamical structure function at finite temperature T as the Fourier

transform of the imaginary part of the spin-density correlation function

S(q, co, T) =—Im(S'(q, co)S'( —q, co) ),1
(4.30a)

using the Schwinger boson mean-field Hamiltonian (4.10). They obtained

S(q, co, T) =
—,
' g [cosh[2(0k+ 0&+ )]+1 I nk(nz+&+ 1)5(cok+&—cok

—co)
k

+ —,
' g I cosh[2(Oq+Ok+ )]+1 I [n k+O( co)][n k+ +O(co)]6(cok+ +co&—

lcol ),
k

k k+q k k+q (4.30b)

where O(co) is the step function and q=q —(vr, ~) This.
expression includes processes where the incident particle
creates quasiparticle excitations as well as scattering
from thermally excited quasiparticles. Auerbach and
Arovas calculated S(q, co, T) by expanding cok up to order
quadratic in k and k. They defined a dimensionless fre-
quency v and a dimensionless momentum ~ as

(4.31a)

(4.31b)

There are two distinct regimes. The first is (v, tc) & (1,1),
where S(q, co, T) has a quasielastic peak that increases in
strength and narrows with increasing g(T). This peak
turns into a magnetic Bragg peak at T =0, where there is
antiferromagnetic long-range order. The second regime
is (v, ~)))(1,1). In this case the wavelength of the in-
cident neutron is shorter than the correlation length and
the energy is higher than the spin-wave energy. Two
quasiparticle peaks at positive and negative energy ap-
pear, corresponding to standard spin waves. In this case
the integrations in Eq. (4.30) are dominated by the re-
gions of the Brillouin zone around k =0 and k =0. Au-
erbach and Arovas find that

S(q, co) 0, T) =
&ZS 1 —'

2S
' (n + 1)5(co—cq ),

(4.32)

where terms of order cq /T or higher have been neglect-
ed. The quantity e is the same as that defined by Eq.
(2.19), and its numerical value for a square lattice is
@=0.197. This expression is similar to the T=0 result
obtained with the linear spin-wave theory [Eq. (2.23)] for
scattering near (vr, vr) There i.s a numerical difFerence in
the prefactor, presumably due to 1/S corrections and to
the fact that the rotational symmetry, which is spontane-
ously broken in the ground state, is restored at any TWO.

Chen and Schuttler (1989) have studied S(q, co, T=0)
using exact numerical diagonalization on a 4 periodic
square lattice. They compared their results to those ob-
tained from Eq. (4.30) for the same fnite lattice and
found good agreement.

Kopietz (1990b) was able to perform the integral in
(4.30b) analytically in the case of low T and for wave-
lengths larger than the thermal de Broglie wavelength
A.,h=kc/T. Since the correlation length is exponentially
large for T~O, it is larger than A,,h. Kopietz finds that
the dynamic structure function takes the scaling form

S(q, co, T~O) =
2

f (lc)~4(lc, v),
~th c (4.33a)

In(lc++I+Ic )

Ic+ I+ Ic
(4.33b)

C&(lc, v) =
[ r

.O(v' —Ic —1)+O(lc —v ) —tan '
lvl

2f (~)lvl&~'+(~' v')'— K V
2 2

Ic +(Ic —v )

1/2

(4.33c)

There are two contributions [(Ic )v ) and (v ) lc +1)]
to the scaling function N, which are separated by a gap.
These two regions contribute equally to the normaliza-
tion of @(Ic,v)[ f C&(lc, v)dv= 1]. The static structure fac-

I

tor S(q)=(4~$'/A, ,h)2f (gq) is in reasonable agreement
with the semiphenomenological scaling form proposed by
Tyc, Halperin, and Chakravarty (1989), as explained in
Sec. VI. For Ic(1 (q ')g), the two contributions are
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separated by a rather large gap. In this range, however,
long-wavelength low-energy spin waves, having wave-
lengths longer than g(T), are not well defined excitations
(see Sec. VI); Kopietz notes, however, that the gap might
be an artifact of the mean-field approximation. For
~)) 1, N has peaks at ~ =v, i.e., at the spin-wave ener-

gy co =cq and the gap 6 ()~) relative to the peak energy,
i.e., 6 ()~ ) /~ ((1; the width of the peaks is
I /co —I/qg, which, as we discuss in Sec. VI, disagrees
with experiment and with other more accurate calcula-
tions.

Further microscopic calculations of the dynamic struc-
ture factor would be most welcome in order to make
more definite predictions about this theory at finite tern-
peratures.

D. Path-integral formulation.
Fermion representation

AfHeck and Marston (1988) have used the fermion rep-
resentation to perform a 1/n expansion. The spin- —,

' anti-

ferromagnetic Heisenberg model in terms of the fermion
operators is given by the H2 part of the r Jmode-l (1.1).
We can write

J t XdJ
ij lj

(ij)

F;.—c;yc t +cigcjg (4.34b)

n

a=1

and the constraint is now written as

(4.35a)

n

n

Apart from a constant, the Hamiltonian is obtained as

JH = ——$:F;,F) . .
n ( )

Using the coherent basis

(4.35c)

(4.36)

where it),. is a Grassmann number, we obtain formally the
same path-integral representation as that in Eqs. (4.5)
and (4.6), with p replaced by Grassmann variables itr.

troducing a Hubbard-Stratonovich field Q; as in the bo-
son case, we find

in = f D ()t) 0* Q Q* ~j

Affleck and Marston generalized Eq. (4.34) « the SU(&)

case by allowing for n fermion flavors. In this case

+ g (Q,*F; +Q. , F~*")
&ij)

+y g (playa
I) a

(4.37b)

Here F,&=g" i P,
* g, and antiperiodic boundary con-

ditions at (Euclidean) times &=0 and r=/3 are imposed.
The mean-field Hamiltonian is now given by

H "= Xd—g ,'nX—A—+A,g. c; c;
1)a

+lgl g (t etc +H c ),
(ij ),a

(4.38)

"=—2XQ ——'nXX+ g (Ek dk~ +dk~ +J k, a

+ F.„dk dk ),

E„+- =X+lhkl,

hk=2(cosk +e'~cosk ),

(4.39a)

(4.39b)

(4.39c)

where Q; =Qt, ,
ip,In one dimension, the phase factor t,"=e " can be ab-

sorbed into the fermion operator via a local gauge trans-—it,.

formation c, —+c, e ', where P;.=P —P;. In a square
lattice, however, there are two link variables t;. per site
and only one fermion; hence the phase transformations
cannot be absorbed. The Hubbard-Stratonovich fields

Q; act as gauge fields due to particle conservation at
each site: a local and time-dependent gauge transforma-
tion of the fermion operators must be accompanied by a
transformation of Q,z

in order to leave the Hamiltonian
invariant. This means that the phases P; act as com-
ponents of a gauge field, and the sum of P," around a pla-

quette (which corresponds to magnetic fiux through the
plaquette) is gauge invariant. Such compact gauge sym-
metries cannot be spontaneously broken on a lattice,
which means that only gauge-invariant quantities have
nonzero expectation values. In the simplest saddle-point
solution Q," has a uniform real value on all links. How-

ever, Aleck and Marston have shown that there is
another solution with lower free energy called "Aux"

phase. In this case the phases of all y-directed links

P, , + =0, while those of x-directed links P, , +„=P if the

electron hopping in the H " is from the sublattice A to
B, and P, , +

= —P if the hopping is from sublattice B to
)

A. In this case the Hamiltonian (4.38) can be diagonal-
ized to obtain

(4.37a)
A + 8

ka+ ~2 lh l

ka —ka
k

(4.39d)

where where the prime to the summation symbol means that
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that the Baskaran et al. mean-field theory is equivalent
to that of AfHeck and Marston when the phase /=0.
They have also shown that Kotliar's mixed phase s +id is
equivalent to the "fiux" phase, i.e., with /=0. This was
shown as a straightforward consequence of the SU(2)
gauge symmetry of the Heisenberg model; these local
gauge transformations, defined as

kx C(t ~(X;C;t +P;C;t

C;i~ P; C;t +(X; C;t

(4.42a)

(4.42b)

FIG. 9. The Brillouin zone of the original square lattice and the
Brillouin zone (shaded area) that corresponds to the magnetic
unit cell in the real space.

F "=2Q ——'A, — g [ln(1+e "
)2 2Nk

+ln(1+e " )] . (4.40a)

The summation here is over the entire Brillouin zone.
The minimum of the above free energy is obtained at

2 '

A, =O,

(4.40b)

(4.40c)

the sum is over the "half-Brillouin" zone, which is the
square defined by the vertices at the four points
k=(0, +n), (+sr, O) (see Fig. 9), and where ck (ck ) is
the Fourier transform of the fermion operator c; with i
being only on the A (B) sublattice and k taking values
from the "half-Brillouin" zone.

The free energy per degree of freedom of a system of
noninteracting fermions such as those described by the
Hamiltonian (4.39) can be easily calculated to obtain

~12 Q 12 & ~23~ Q23

~43~ Q43~ ~14~Q14
(4.43)

It is interesting that the Baskaran, Zou, and Anderson
mean-field theory, which assumes /=0, is unstable
against the "Aux" phase. However, the free energy for
the "Aux" phase at T =0 is E = —0.458n, which is
higher than that obtained in Schwinger boson mean-field
theory or spin-wave theory, i.e., E = —0.671n. How-
ever, the "Aux" phase could be a better starting point
when a fraction of holes is present and the antiferromag-
netic long-range order is absent, as discussed by Marston
and AfReck (1989) and by Nori, Abrahams, and Zimanyi
(1990).

The quasiparticle spectrum in the "Aux" phase is given
by

with the constraint ~a; ~
+ ~P, ~

= 1, mix particles of spin
o. and holes of spin —o.. Under such local gauge trans-
formations the spin- —, antiferromagnetic Heisenberg
model remains invariant. The three independent parame-
ters in these transformations give rise to the three genera-
tors of SU(2) local gauge symmetry. Note that the U(1)
gauge symmetry, sometimes discussed for this model, is a
subgroup of the SU(2) transformation obtained by setting
I3; =0. Using the transformation c;&

~c; ~
and

c;~~—c;~, the order parameter 6," transforms to the
AfBeck and Marston Hubbard-Stratonovich field as

Q =
2 f dyy K[2yi/1 —y ]tanh

2v'2 Ek =+2Q+cosk„+cosk (4.44)

(4.40d)

A,J
—( c;t cj t c; i c~ t ) (4.41)

is nonzero for nearest neighbors. Later, Kotliar carried
out a mean-field calculation in which allowance was
made for b, ; to be difFerent for links r; =x,y (running in
the x or y directions). At half-filling, he found that the s
wave, i.e., LL=A, and the d wave, i.e., b = —6, werex y' X

equivalent. He found, however, that a mixed state hav-
ing A„=i LL has lower energy.

Aflleck, Zou, Hsu, and Anderson (1988) have shown

In the Baskaran, Zou, and Anderson (1987) mean-field
theory, a Bogoliubov-Hartree-Pock factorization of the
four-fermion J interaction in the t-J model is used, as-
suming that the expectation value

(s s )=fd~(s(~) s (0)), (4.45a)

and in Fig. 10(b) a low-energy correlation function
defined as

(S S „) = f dcoe ~ (S (co) S „(())), (4.45b)

as computed by Marston and AIIleck (1989). The low-

with zero gap at the four points k=(+rr/2, +m. /2). Only
the dispersion relation for particle-hole excitations is
meaningful. At these four points of the Brillouin zone
the density of states vanishes linearly, the specific heat at
low T is C —T, and the susceptibility y- T. The struc-
ture factor S(q) is nondivergent at T=0. The spin
correlation function decays algebraically with distance.
In Fig. 10(a), we give the instantaneous spin-spin correla-
tion function
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A 7—
E. Path-integral formulation.
Nonlinear cr model

1~
1M

V
CD

I I I
i

I I I I I I ) J

In this part we derive the path-integral representation
of the partition function of the antiferromagnetic Heisen-
berg model using coherent states for spins. From this
representation we can pass to the continuum limit, where
the quantum-mechanical nonlinear o. model in two space
and one time dimension is obtained as a field-theoretical
model that describes smooth spin fluctuations. In this
formulation the state of a spin at a given site is expressed
in the following coherent basis:

10
A

1F 8
1~

61~
103 4

V

2

I I

2

FIG. 10. (a) The instantaneous spin-spin correlation function
(structure factor) in the "flux" phase, as calculated by Marston
and Affleck (1989). (b) The low-energy correlation function, as
defined by Eq. (4.45b) using 5=0.14J.

energy correlation is used for illustration purposes and
because, in the neutron scattering experiments, one has
to use a cutoff (in these plots the value of b, =0.14J is
used). There is a peak at (~,vr) in both the Baskaran-
Zou-Anderson uniform phase and in the "Aux" phase. In
the low-energy correlation function there are peaks at
(O, m) and (~,0). In the neutron scattering experiments
from the undoped La2Cu04, the instantaneous correla-
tion function has a sharp peak at (~,~), whose width,
however, is only 5% of the zone width. Furthermore, it
is not sensitive to the energy cuto6' and there are no
peaks at other points.

Arovas and Auerbach (1988) find that if they allow t;,
to acquire a phase in their Schwinger boson mean-field
calculation, the energy of the uniform link field Q = iQi
is lower. This makes the conventional antiferromagnetic
ordered ground state the lowest free-energy state.

in&—= ie@&= ' 'I», (4.46)

in&= y c.(e, y)im),
m= —S

(4.47a)

where
i
m ) is the eigenstate of S, with eigenvalue m and

C (6 P)=e' '~&mie 'iS)
1/2

—tmg (2S)!
(S+m)!(S—m)!

0X sin—
2

S —m
0

cos
2

S+m

(4.47b)

A proof of the above equation can be found in Baym's
Lectures in Quantum Mechanics (1969, p. 386). There-
fore it follows that

where Q is a vector on the unit sphere with spherical
coordinates (1,9,$), 0~0(~ and 0~$(2~, and the
state iS ) is the eigenstate of S, with the largest possible
eigenvalue S. Note that with the definition (4.46) we
have established a one-to-one correspondence between
coherent states and points on the unit sphere except for
the case of the south pole. This is a singular point of the
mapping, since all the states

i
0=~,$) =e &i —S ) differ

from one another by only a phase factor and correspond
to the south pole. We need to calculate the matrix ele-
ments of the unit operator and the Hamiltonian (1.2) in
order to write down the partition function in the basis
(4.46). We shall follow an elementary procedure to do
this; the state (4.46) can be written as

&n in)= y (2S)!
e '& &'sin —sin-;( ). 0 . 0'

s (S+m)!(S—m)! 2 2
' 2S

cos—cos—+e ' .sin —sin—
2 2 2 2

' S+m
0 0'

cos cos
2 2

(4.47c)

Let us write

&n'in) =i&n'in) ie-'

and it can be easily verified that

(4.48a)
i&n in)i=[-,'(1+n n)]'. (4.48b)

Assuming smooth paths in imaginary time, i.e., that the
vectors Q and Q' are close, we obtain
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C =(1—cosO)kg+. . . (4.48c) the identity operator

where the ellipsis stands for higher-order terms in hP
and 60. Notice that N coincides with the area of the
spherical triangle formed by the north pole and the tips
of the unit vectors Q and O'. Inserting the resolution of

I =I In&&nI (4.49a)

at each site and writing e ~ = ii~ i(1 EH—), with
P=Me', the partition function Z takes the form

M
Z= DQ Qt ~+& &x ~+ (4.49b)

I & n'In & I =expI ~1«1—
-„' In' —Q I') ]

2
S BQ=exp e

4 B~
r

Furthermore, it is straightforward to show that

&nIsIn&=sn,

(4.50)

(4.5 la)

from which it follows that

(4.51b)

The real part of the overlap between neighboring (in
time) coherent states is

four pieces. The summation is over the first half-
Brillouin zone. The other four pieces can be shifted by
one of the four vectors (+~,+7r) to the origin. The fac-
tor (

—1) ' with IIr, II =x, +y, comes from the phase fac-llr; II

i (+sr, +~)-r,-

tor e
' ' as a result of the shift. All the coe%cients

a& and bi, are of order I/X, except bk for k=O which, if
there is Neel order, is of order l. In an antiferromagnet,
smooth paths can be written as combination of two fields,

2 1/2
a "L,.(Q(r)=( —1) ' 1—

l S
a"+ L;(r),

Hence the partition function is given by

Z = DQ exp —iS I —cos8 d

—S JJ QQ Qdr
(ij)

The first term is the total solid angle a;, which is the area
of the closed trajectory of the vector Q;(r) characterizing
the state of the ith spin to start from the north pole and
end up at the same point at r=P, as shown in Fig. 11.
Using Stokes' theorem, we can write the area on the
sphere as I JQ Qdo. = f A dn, where der is the sur-

face element of the sphere and the vector potential A is
given as a solution to the equation

where n, (r) is a slowly varying field that describes tluc-
tuations around the corners of the original Brillouin
zone, and the second slowly varying field L,.(r) describes
fluctuations around k=O, both being low-energy Auctua-
tions; L;(r) takes into account fluctuations of the local
ferromagnetic spin density. The square-root normaliza-
tion factor puts n;(r) on the unit sphere. In the original
Hamilionian formulation of the model, the field n corre-
sponds to the local expectation value of the staggered
magnetization operator and L to the total spin in a small

I
i

I
1
i
I
I
I
i
I

VnX A(Q)=Q . (4.53)

The vector potential A(Q) is known up to a gauge trans-
formation A~ A+T&k. The phase factor iSn,- is also
known as the Berry phase (Berry, 1984) for the adiabatic
motion of a quantum spin.

Haldane (1988) has derived a continuum field theory of
the 20 Heisenberg antiferromagnet using the coherent
spin-basis representation (4.52) as follows. The Fourier
expansion of ihe field 0; can be written as

Q;(r)= g ak(r)e '+( —1) ' g bk(r)e
HBZ HBZ

(4.54)

where the entire Brillouin zone has been divided into two
parts as shown in Fig. 9. The first is the square with ver-
tices (+sr, +n) and the second part consists of the other

I'"IG. 11. The trajectory of the unit vector Q(~) on the unit

sphere during the Euclidean "time" evolution in the nonlinear
o Ioodel.
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Sy( —1)ll'IIX(n;)+ fd"x f dr(n B~XL)
0

(4.56)

where X(n) is the area covered by the unit vector n on
the unit sphere during the entire Euclidean time evolu-

region of space containing a large number of microscopic
degrees of freedom. Therefore I, is the generator of rota-
tions in spin space and satisfies the constraint I .n=O.
Substituting Eq. (4.55) in the expression for the Berry
phase, expanding about the Neel state, and keeping terms
quadratic in I. and Vn, we obtain

tion. Furthermore, substituting Eq. (4.55) in (4.51b) and
keeping terms up to ord« I

V'~ I' and I, ', we obtain

2

II = ,' f—d'r, +p,'IVnl' (4.57)
XJ.

where g~ and p, are the bare perpendicular susceptibility
and spin-stiffness constant. These constants at the cutoff
level are given by p, =JS " and g&=1/4dJa", and
they are correct in the classical limit S~~. The result-
ing action is quadratic in the field L, which can be in-
tegrated out to yield the nonlinear o. model,

0

Z = f IDn]exp — f drd r(IVnl'+c. 'l~~l')+i8
2 0

(4.58)

where c =Qp, /g~=2&d SJa is the bare spin-wave ve-

locity. Here 0 is the purely topological part of the Berry
p~ase O=S y (

—1)~~'~~r(n ).
The nonlinear o. model can be derived directly from

the spin-operator representation of the Heisenberg model
(Aflleck, 1985, 1986, 1988) by changing variables and tak-
ing the large-S continuum limit. In one dimension and in
the continuum, the Berry phase can be interpreted as
O=S/2 fdx (8 2), which is equal to 5/2 times the area
of the unit sphere. Therefore this phase distinguishes
integer- from half-integer-spin chains and, in the case of
half-integer-spin chains, we have fermion (topological)
excitations due to the Berry phase factor of e' . The dy-
namics of such configurations can lead to destructive
quantum interference between the paths because of the
antisymmetry with respect to the interchange of these
neutral fermions. Hence the continuum limit of the anti-
ferromagnetic Heisenberg spin chain is a different field
theory for integer and half-integer spins.

In 2+1 or higher dimensions this phase vanishes for
smooth configurations. In 2+1 dimensions, assuming
smooth configurations, the phase 0 can be interpreted as
O=S g ( —1)~O, where 8~ = Jdx (8 X(n (x,y, r)).
For a continuous field n(x, y, r), O~ is a continuous func-
tion of y and, since it can only take integer multiples of
4w, it must be a constant. Therefore 0 vanishes in 2+1
dimensions. This result, obtained by Haldane (1988),
shows that the conjecture of Dzyaloshinskii, Polyakov,
and Wiegmann (Dzyaloshinskii et al. , 1988; Polyakov,
1988; Wiegmann, 1988) of the existence of a Hopf term
that. distinguishes half-integer from integer spins in 2+1

dimensions cannot be justified on the basis of the quan-
tum antiferromagnetic Heisenberg model. Several other
authors (Dombre and Read, 1988; Fradkin and Stone,
1988; Ioffe and Larkin, 1988; Wen and Zee, 1988) have
given arguments leading to similar conclusions.

The quantum nonlinear sigma model can be intro-
duced using arguments based on more general grounds.
As long as the continuous 0(3) symmetry is spontaneous-
ly broken, the symmetry of the problem requires that the
interaction of the Goldstone modes of the system in the
long-wavelength limit be described by this model regard-
less of the details of the microscopic Hamiltonian and the
value of the spin (Shankar, 1989a; Rosenstein et al. ,
1989). Thus the quantum nonlinear o model on its own
deserves further study, with or without the addition of
holes in the model (Shankar, 1989a, 1989b; Bitar and
Manousakis, 1991).

F. Renormalization-group calculations

In this section we discuss the renormalization-group
approach of Chakravarty, Halperin, and Nelson (1988,
1989). We shall outline the approach and certain main
results; for more details the reader is referred to the long
paper of Chakravarty et al. (1989). In addition, for a dis-
cussion of certain aspects of the critical behavior of quan-
turn spin systems the reader is referred to a review article
by Hertz (1976). First we discuss their one-loop calcula-
tion. Chakravarty et a/. regularize the integrals by intro-
ducing a momentum cutoff A. The partition function
(4.58) of the cr model with 0=0 can be written as

Z = f Q dn(x, xo)5I'ln(x, xo)l —1]exp f «o f d'x(l&nl'+I& nl')+h f f dxod x ~(x x )
2g0 0 0 0

(4.59)

where the space and "time" coordinates have been rescaled, respectively, as x =Ar and xp =~c A, and

Ac A"
go= 0

Ps
(4.60a)

u=Pc A, (4.60b)

Rev. Mod. Phys. , Voi. 63, No. 1, January 1991



E. Manousakis: The spin- —Heisenberg antiferromagnet. . .

so that in Eq. (4.59) all the parameters are dimensionless. The field o(x,xo) is one of the components of the vector field

n(xxo) = (m(xxo), o (xxo) ) coupled to the external field h; m(x xo) is an M —1 component field (for the case of our in-
terest M =3). Integrating out the 0. field, we obtain higher-order terms in the m. field due to the 5 function, which
expresses the constraint

dm(x, xo)
rr
x,x, +I—

m (x,xo)

1 (~ a„~)2f"dx, fd"x (a„~)'+
2go 0 1 —~

+h f dxod x')/I —m. (4.61)

The field m. can be Fourier expanded as follows:

d "k
m(x, xo) = g f „m(k, co„)exp(ik x+ico„xo)

(2m )"

(4.62)

where k (1 (because we have rescaled the space coordi-
nates by A) and the Matsubara frequencies are
cu„=2~n /u with n =0, +1,+2, . . . . The factors
(1 m) —' and +I mean—be expanded to obtain ver-
tices such as m, (n"B„m.),((n. ) ),m (m B„m.), . . . . Fol-
lowing Wilson and Kogut {1975)and Nelson and Pelcov-
its (1977), Chakravarty et al. (1988) break up the m. de-
grees of freedom as

m. ((k, co„), 0&k &e

Here I is the one-loop integral and
Kd '=2" 'm."~ I"(d/2). Hence the dimensionless slab
thickness u in the imaginary direction scales trivially.
The spin rescaling factor g is determined such that the
external field term also transforms trivially under
momentum-space renormalization-group transforma-
tions, i.e., h 'u'= ghu, so we obtain

g=e 1 — {M—1)Igo

2u
(4.66)

Setting the external field to zero, one finds the following
equations:

dg K~

dl 2
=(1—d)g + (M —2)g coth(g/2t), (4.67a)

(k, co„)=-.
+ &(k, co„), e (k (1, (4.63)

dl 2
=(2—d)t + (M 2)gt coth—(g/2t), (4.67b)

k'=Re',

~'=sr(lg,
(4.64a)

(4.64b)

so that the effective action takes the same form as the ex-
panded form of Eq. (4.61). The new parameters must be
defined as

u —ue

I

g2e
—(d+2)l u +I

80 So

h'u'=g e "'[hu + —,'hgo(M —1)I],

(4.65a)

(4.65b)

(4.65c)

where

d "k 1

& (2~)d k +co, +hgo

E~u kd —1

,dk
Qk +hgo

coth —Qk +hgo

(4.65d)

and integrate out the fast degrees of freedom m &, keeping
terms up to one-loop order in perturbation theory. How
one carries out such a procedure is described in the
pedagogical review paper by Wilson and Kogut (1975)
for the one-component case and for the classical O(3) 2D
model by Nelson and Pelcovits (1977) and Polyakov
(1975). After completion of such integration the effective
action involves only ~&. Let us rescale the k's so that
their range is 0 & k ~ 1 and the field m. by a renormaliza-
tion factor g, i.e.,

where t—:g/u =k&TA" /p, . The dimensionless slab
thickness is obtained as du/dl = —u. These di6'erential
equations can be solved subject to the initial conditions
t = to =—ks TA" /p, and g =go [Eq. (4.60a)].

It is straightforward to see, using Eq. (4.67a), that at
T =0 there is a fixed point at g =g, for d & 1 and M =3
given by

2(d —1)
g, (d ) 1)= (4.68a)

Furthermore, from Eq. (4.67b) we see that for d ~ 2 there
is no finite-temperature fixed point, while for d )2 there
is a fixed point at

2
r, (d &2)=

K~
(4.68b)

In Fig. 12(a) we show the renormalization-group fiows
for d &3. The shaded region is characterized by long-
range order. For d —+2+, t, ~0 and the shaded area col-
lapses to a line as shown in Fig. 12(b). From now on we
focus on the d =2 case. The renormalization-group Aows
are also shown in Fig. 12. At T&0, there is no long-
range order, as expected. At T=t =0, there is a non-
trivial critical point at g, given by Eq. (4.68a) that
separates the ordered from the disordered phase.

It is straightforward to solve Eqs. (4.67a) and (4.67b)
with initial conditions t (1 =0)= to and g(l =0)=go,' for
d =2 and M =3 we find
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C

determined within the renormalization-group method
alone, since it is a function of the constant of integration
of the renormalization-group diA'erential equations. At
the critical point go=1, and for low T we find

g(go =1)=C,„ T
(4.71)

where C„=inde/2+')/I+(e/2) ]C*/2. When go & 1

and to ~0, from Eq. (4.70) we obtain

Ac 2~ps
g(go & 1)=D expT g T

(4.72)

where D =C*/e, and where we have defined

c,=i,'(1 —go) . (4.73)
c i

FIG. 12. (a) The phase diagram and the renormalization-group
Aow in the nonlinear o. model in more than two space dimen-
sions. (b) The same as part (a) in two space dimensions.

—t

No to
(4.69a)

to . ) . go
e = sinh ' sinh exp

No to t tp

2 8'o 1
sinh sinh exp 1 ——

tp

(4.70)

where C*—= /*A is a dimensionless number that cannot
be determined within the renormalization-group ap-
proach. Therefore the value of the prefactor depends on
the value of the correlation length at the matching point;
the result depends weakly on the matching condition, as
Chakravarty, Halperin, and Nelson have pointed out.
The actual value of C* must be supplied and cannot be

where we have defined g =g/g, =g /4~, gp =go/4~~
r =t/2 errand tz=to/2'. The renormalized correlation
length is given by g(l)=pe ', where g is the correlation
length when l =0.

For g & 1+t (i.e., at 7 =0, g ) 1), dg/dl &dt/dl and
hence t grows faster than g. In this regime we let I* be
such that t(l*)= 1 and we define g' =g(l* ). At the tem-
perature t =1 the thermal de Broglie wavelength Ac/kz T
is small, and the correlation length is of the order of the
lattice spacing. However, the precise value of g* cannot
be determined with the renormalization-group method.
In this case g= g*e', and we find

Ro

go
—1

(go —1)+ t~exp —4
to

(4.74)

Notice that in this case the correlation length tends to a
constant as T~O, and the leading correction to the con-
stant value at low T is exponentially small
( —Te """ ). This regime is characterized by a finite
correlation length even at T=O because the quantum
fluctuations are so strong that they destroy the long-
range order. This is a regime controlled by the quantum
disordered phase, and there are crossover lines separating
the three regimes.

The reader may notice that the correlation length g
given by Eq. (4.72) in the regime controlled by the T =0
ordered phase coincides with that given in Sec. IV.C by
Eq. (4.28b) obtained with either the Schwinger boson
mean-field theory or Takahashi's variational approach,
which are variants of spin-wave approximation. Howev-

Chakravarty, Halperin, and Nelson show that the T=0
renormalized spin stiAness in one-loop perturbation
theory is given by Eq. (4.73), and the renormalized per-
pendicular susceptibility also is given by pi=pi(1 —go).
They also note that the form (4.71) approximates the be-
havior of the correlation length in the regime
1 —t &g & 1+i called the quantum critical regime (see
Hertz, 1976). Note that in the quantum critical regime
the correlation length is controlled by the fixed point at
g= 1. The regime g &1—r, where g'(T) is given by Eq.
(4.72), is called the renormalized classical region, and the
exponential behavior of the correlation length is the same
as in the classical model with a renormalized value of the
ps

In the regime g ) 1+1 (i.e., at T =0, g ) 1),
dg/dl )dt/dl and hence g grows faster than t. In this
case we define l* such that g(l*)=2 and let the value of
g at this value of l* be g*, that is, g*—:g'(l*). The value
of g (I*) needs to be any value significantly larger than 1,
so that g* is of the order of the lattice spacing. The value
of g =2 is chosen for convenience. In this case, as t~0
we find
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er, as Chakravarty et al. suggest, the prefactor of the ex-
ponential will be canceled by higher-order corrections.
Such corrections are of two-loop order in the
renormalization-group approach. Hence Takahashi's at-
tempt to fit the neutron scattering data with a 1/T pre-
factor gives a somewhat underestimated value for the an-
tiferromagnetic coupling J. We discuss such corrections
next.

In the renormalized classical regime, the physical
meaning of Eq. (4.72) is that at T~0 the system behaves
as a classical 2D spin system with a spin-stiffness con-
stant reduced by zero-temperature quantum Auctuations
to a value given by Eq. (4.73). It is plausible to assume
that higher-order perturbative corrections would not des-
troy this picture. Let us split off the zero-frequency
mode from the rest,

m. &(k), co„=O,
n. ) (k, co„), c0„%0 . (4.75)

The non-zero-frequency components can be integrated
out in the one-loop approximation, in the same way as in
the momentum-shell integration, to obtain the classical
effective action

Sd=, jd x (Vn)
1

(4.76)

(4.77)

where p, is the zero-temperature spin-stifFness constant
renormalized by quantum Auctuations and given by Eq.
(4.73).

The model (4.76) in 2D is the classical nonlinear o.

model, which has been extensively studied by
elementary-particle theorists (for a review, see Kogut,
1983) because it is believed to share intimately aspects of
asymptotic freedom, dynamical mass generation via di-
mensional transmutation, and topological instanton exci-
tations with quantum chromodynamics. For example,
the renormalization-group P function has been calculated
to high order in weak-coupling perturbation theory, and
up to two loops is given by (Creutz, 1983)

where n(x) is a Euclidean time average (zero-frequency
component) of the field n(x, xo), which is still normalized
on the surface of the unit sphere. The effective coupling
constant g' is given by

k~ T(M —2)
Ps+ ln +O(T )

kBT ' 2~
"

kBT

2 Irpsg= C&exp
B

(4.80)

with C&=C Pic/p, .
The constant C& is determined in Sec. V directly, using

the results of the direct Monte Carlo simulation of the
quantum nonlinear o. model. There, it will be demon-
strated that the temperature dependence of the correla-
tion length obtained from both the spin- —,

' antiferromag-
netic Heisenberg model and the quantum nonlinear o.

model agrees with Eq. (4.80) and disagrees with the re-
sults of the one-loop calculation of Chakravarty et aI.
and the other low-order calculations.

G. Saddle-point approximation
for the quantum nonlinear cr model

In this section we calculate the correlation length using
a saddle-point approximation. In order to compare the
results of the saddle-point approximation with the results
of Monte Carlo simulation, we regularize the quantum
nonlinear o. model by putting the theory on the 2+1 di-
mensional lattice

Again the constant C /A cannot be determined within
the renormalization-group approach, and direct calcula-
tion of the correlation function at a given value of the
coupling constant is required.

Chakravarty, Halperin, and Nelson used the classical
Monte Carlo calculation of Shenker and Tobochnik
(1980) to determine the constant C . However, Shenker
and Tobochnik used a lattice regularization of the model
(4.76), while Chakravarty et al. used a momentum-space
regularization. Parisi (1980) has given a prescription that
relates two constants C& and C2 obtained in two different
regularization schemes by holding g fixed and relating
the two different values of the coupling constant at the
one-loop level. More specifically, he calculated C, /C2
for lattice and Pauli-Villars regularizations. Chakravarty
et ah. used this approach to calculate the ratio of the con-
stants CL for lattice and C for momentum-space regu-
larization schemes. With the aid of this formula and the
value of the constant CL obtained by the lattice calcula-
tion of Shenker and Tobochnik, Chakravarty et al. deter-
mined the approximate value of the C . The details of
this calculation are given by Chakravarty et al. (1989),
and we shall omit them here.

Substituting the values of P2, f33, and g' for n =3 in Eq.
(4.79), one obtains the expression

dl
=P2g'+P3g'+ (4.78)

m, P3/Pz &/t3zg'g' e
A

(4.79)

where Pz=(M —2)/2' and P3=(M —2)/(2n) . In-
tegrating these equations, in a way similar to the one-
loop case, we can And the correlation length up to an in-
tegration constant

3

g g n&(x) [nI(x+e„)+n&(x—e„)], (4.81)
x p=i

where x covers the 2+ 1 dimensional space-time lattice of
size L L& and lattice spacing a, that is, x &,x2
=1,2, . . . , L and x3=1,2, . . . , L&,
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PRc =L&a, (4.82a) Z[J]=f [dn]exp
' —S i++ J(x) n(x) (4.84a)

g =Ac /poa, (4.82b)
and using the identity

&a/mf dp(x)exp —a[p(x) —i~n&(x)~ ] =1, (4.84b)
where c is the "bare" spin-wave velocity, a free parame-
ter of the o. model. This parameter is different from the
real spin-wave velocity, which is an observable character-
izing the spectrum of the elementary excitations of the
theory. We need to impose periodic boundary conditions
in the Euclidean time direction, n&(x+L&e~) =nI(x).

The action (4.81) with the field nI constrained on the
unit sphere can be obtained from

n, (x)=y(x)+C(x), (4.85a)

we can introduce the auxiliary scalar field p(x) in the
generating functional on every site of the lattice. The
term A, ( ~n& ~

) can be canceled by choosing a=A, . Final-
ly, shifting the field n&(x) by a nonfluctuating vector field

C(x),

S
3

g n&(x). [n&(x+e )+n&(x —e„)]
2g

C(x)=g gK '(x, y)J(y), (4.85b)

and choosing C(x) such that the coefficient of the term
linear in P(x) vanishes, we find

+k( ~n, (x)
~

—1) (4.83) where K is the inverse of the matrix K with matrix ele-
ments given by

in the limit A, ~~. The additional term in that limit
gives 5(~ni~ —1). Hence we can study the theory (4.83)
and choose to take the limit k~ ~ at the end of the cal-
culation. We have considered the more general case in
which the field n has M components.

We define the generating functional in the standard
way,

3

K(x,y)= —g (5„„+,+5„„,—25„„)

—5„y[6+4Ag(1+ip(x))] . (4.85c)

K is diagonal in the internal space of the components of
the field. After some straightforward algebra we obtain

Z[J]=C'f + dp(x) +dtI) (x) exp —
A gp (x)+ g P (x)K(x, y)(h (y)+ —J (x)K '(x, y)J (y)

X x, a X x, y, a

(4.86)

The exponent of Eq. (4.86) is quadratic in the P field, and hence P can be integrated out to obtain

Z[J]=C'f Q dp (x) exp —S'+ —g J (x)K '(x, y)J (y)
X x, y, n

S'—:A, g p (x)+ Tr(ln(K)) .
M
2

(4.87)

(4.88)

The vector field n& has been eliminated at the expense of the scalar field p(x). From the saddle-point equation
5S'/5p(x) =0, and for a constant solution we obtain

p Mgi Tr(K ') =0, —

where

(4.89a)

Tr(K ) =—1 1

V 2g (1—cosp„)—[6+4Ag(1+ip(x))]
(4.89b)

and p„=2m.n /L„,p=1,2, 3 and L& =L2=L,L3=L& and n„=0, 1,2, . . . , L„—1 and V=L L&. We define

m o
—= —[6+ 4'(1+i p) ] . (4.90)

Here Io is the solution of
1 2(m o+4Ag+6) =—g=1 1 (4.91)

4M', g V 2 g (1 —cosp„)+mo

The two-point correlation function (second derivative of Z [J] with respect to J) in the saddle-point approximation is
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given by gK '(x, y), and in momentum space

G(p) =
2 g ( 1 —cosp„)+ m 2O

(4.92)

To find the correlation length, we transform the correlation function in Minkowski space and look for poles of the form

p& =p2 =0, p3 =g& '. The correlation length is given as a solution of 2(1 —cosh(& ')+m0 =0. We obtain

1

2sinh '(mo/2)
(4.93a)

and if mo «1 then
—1

gI ——mo (4.93b)

Taking the limit A, —+ oo, we find the equation

1 1=—X 2 g (1—cosp„)+I o

(4.94)

The above equation can be solved for mo numerically for any value of g and L„ to find gi using Eq. (4.93). A direct
comparison of the numerical solution for finite lattices with the results of Monte Carlo simulation for the same lattice
sizes has been made by Manousakis and Salvador (1989c). Here we shall discuss how to obtain an approximate solution
at low T. First we take the limit L~~, and we keep Lp finite. When we change p3=2vrn3/Lt3 to the variable
c=i 27m 3 /L &, Eq. (4.94) takes the form

d2
(4.95)

Mg Lp, =;z „&I
—~(2') 2(1 —cosh@)+2+ (1—cosp„)+mo

Notice that in Eqs. (4.94) and (4.95) the lattice-spacing constant a is assumed as a unit. The sum over e„can be
transformed to an integral over e along the contour, shown in Fig. 13, which encloses all the poles on the imaginary axis
(see Dashen et al. , 1975). Using

e = i2mn /L&

and Eq. (4.95), we obtain

de 1

Lp&
8

(4.96a)

1 ~ dp de 1 1

~g —~ 2~ 2~& ~'
1 2 1 —cosh@ +2 1 —cosp +mo

(4.96b)

The contour can be deformed into two closed contours, one enclosing the pole at e= e and another the pole at e= —e

(see Fig. 13), where

2mo
e~ =cosh 1+ + g ( 1 —cosp„)

p, =1,2

Calculating the residue of these poles, we find

(4.97)

= A (mo)+B (mo, Lp),
1 =

Mg
(4.98a)

2 (mo)= —f1 7T dp
2 —~ (2m)

'22
P1l 01+ + g ( 1 —cosp„) —1

p=1,2

(4.98b)

B(mo, Lti)= J—~ (2m)
22Pl o1+ + g (1—cosp„) —1

p= 1,2

1
1/2

e ~ —1

(4.98c)
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of Eq. (4.99), and, close to the critical point, g =g, where
mo is small by Eq. (4.100b). Taking the continuum limit
close to g„we find that g is a constant given by I ', the
constant used to remove the cutoff and to define the func-
tion g (a). There are corrections to g due to the 8 term
that are exponentially small.

(b) g (g, . In this case moL& +0 a—s L& +~.—Thus
only momenta with e small give significant contributions
to the integral (4.98c) because of the exponential factor.
Hence g„ I 2 (1 —cosp„)—+p /2, and p is small, and

Ep
—1/ mo+p (4.101a)

FIG. 13. The summation over the poles at even multiples of 2~i
[Eq. (4.96)] is converted to an integral over the closed contour
(vertical segments) which includes these poles. Since the contri-
bution at infinity vanishes, this contour can be deformed to in-
clude the two poles on the real axis.

8 (me~0, Lp +co )—
d p 1 1

n(2Ir)~—+ 2+ 2 L&imo+p )'~

(4.101b)

Since in this limit only the p~O part of the Brillouin
zone contributes to the integral, we obtain

At T=O, which corresponds to the L&~~, we find that
8 (mo&O, L& = 0c ) vanishes. In this case the equation

1 ==A(mo)
Mg

(4.99)

defines the function mii(g), from which we find the T =0
correlation length in lattice-spacing units, i.e., g&(g).
Holding g fixed at a given known physical value /= I
we can determine g (a). The critical point g, is defined as

mo(g =g, )=0, that is, g, = I/3 (0)M. Near the critical
point mo(g —+g, )~0, we can keep terms up to linear in

mp to obtain

1 —L mo8(m ~0 L —+co)= — ln(1 —e ~ ') .0 & P

Furthermore, for mpL& —+0, we find that

(4.101c)

1 1

Mg Mg,
1Io

— 1n(LI3m o ),
7T 27K p

(4.102)

Pic m Iric

kIIT 2 kIIT
T= exp (4.103a)

and in this limit the linear term vanishes faster than the
last term of Eq. (4.102). Using Eq. (4.82a), we find

= A (0)— me+1 1

Mg 4m.
(4.100a)

where

1
m =—4m

Mg
1

a
Mg,

(4.103b)

4m
mo(g g„T=O)= (g —g, ) .

Mg,
(4.100b)

Notice that 2 (mc) & A (0) for real nonzero values of
mc, and therefore we use Eq. (4.99) (when L&= ~ ) to
find that g )g, . For g (g„Eq. (4.98) can be satisfied
only if mo(L& +~ )~0 as show—n below. In other words,
in the phase with a broken symmetry (g &g, ) there are
massless modes as expected.

Let us now consider T~O, i.e., the case where L& is
finite but large. We need to distinguish three different
cases:

(a) g )g, . In this case there is a solution to Eq. (4.98)
in which mc(g, LiI) remains finite as L& +~. If-
mo(Lp~ ~ ) is finite, then 8(mp) will be expoIieIitially

small, namely, 8 (mc, L&~ Oo )-e ~ . The
temperature-independent part of mp is given as a solution

Notice that the solution satisfies the required property
that for g (g„mpL&~0. At constant T and in the con-
tinuum limit (g ~g, ), g should be independent of g and
a. This can be achieved by defining a function a =a(g)
such that, as g ~g„m is independent of g and a. Notice
that, at g~g„a (g) defined via Eq. (4.103b) is of the
same form as Eq. (4.100b).

(c) g =g, . In this case it is clear from Eq. (4.101c) that

mp=
Lp

(4.104a)

Lpa 1 Ac
g(T)=me 'a=

A, k~T
(4.104b)

where 1, is a constant given by A, =2 ln(2/I/5 —1 ).
Therefore the correlation length in physical units is given
as
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Similar results have been also obtained by Rosenstein
et al. (1990), and by Rodriguez (1990) using a 1/M ex-
pansion and a momentum-space regularization. The
same forms were obtained in Sec. IV.F with the one-loop
renormalization-group approach of Chakravarty et ah. It
is worth noticing that the same behavior as that given by
Eq. (4.103) was found by Arovas and Auerbach and by
Takahashi, as explained in Secs. IV.A and IV.B for the
spin- —, antiferromagnetic Heisenberg model, using very
similar approaches. The reader might have expected this
in view of the believed equivalence between the two mod-
els. However, as we discussed in Sec. IV, higher-order
corrections (two-loop) modify the prefactor and, as
Chakravarty et al. noticed, the prefactor is a constant
[Eq. (4.80)j.

A; =S;+S +S; S+, (5.1b)

( )
Tr(Oe ~ )

Tr(e ~~)

g g 11(c„)n(c„)
r=O C

g II(C„)
r=O C,

(5.2a)

where h; flips antiparallel spins and gives zero in the
case of parallel spins located at sites (ij). The matrix
elements of h; are zero except those diagonal elements
obtained with states in which the spin of i and j are anti-
parallel, which matrix elements are equal to 1.

An observable 0 can be calculated using the distribu-
tion II(C„)defined as

II(C,.)=( —1) ', Tr(Q, Q, Q, ), (5.2b)

V. CALCULATIONS AT FINlTE TEMPERATURES.
NUMERICAL RESULTS

Tr(OQ, Q,
. Q;)

Tr(Q, ;
. Q, )

(5.2c)

In this section we first review results obtained for the
low-temperature properties of the spin- —,

' antiferromag-
netic Heisenberg model on a square-lattice with quantum
Monte Carlo methods. Second, we review Monte Carlo
results obtained on the quantum nonlinear o. model at
low temperatures and in 2+1 dimensions. Finally, the
continuum limit of the latter model is studied and the
equivalence between the two models is investigated.

A. Quantum Monte Carlo calculations
on the Heisenberg model

—13& =13J/2 g (Ii;, h;~), —
(ij)

(5.1a)

The spin-spin correlation length has been measured by
neutron scattering on LazCu04 and has a clear 2D na-
ture. Other thermodynamic quantities of the material,
for instance specific heat, magnetic susceptibility, and the
staggered magnetization at finite temperature, have
significant contributions from other eA'ects; hence the cal-
culation of the correlation length has unique importance
for comparing theory with experiment. Therefore we
shall place particular emphasis on the calculations of the
temperature dependence of the correlation length.

Manousakis and Salvador (1988, 1989a, 1989b, 1989c)
and Gomez-Santos, Joannopoulos, and Negele (1989)
studied the spin- —, antiferromagnetic Heisenberg model
using Handscomb's quantum Monte Carlo method
(Handscomb, 1962, 1964) and suggested that the ob-
served correlation lengths can be understood using a
value of J of the same magnitude as the value reported by
neutron and Raman scattering experiments. Next we
briefIy explain this method as it has been extended to
study antiferromagnets (see Lyklema, 1982; Lee et al. ,
1984).

The Hamiltonian (1.2), apart from a constant, can be
expressed as

where Q; =h,
&

or h;~ . Here r i and r z are the number of
n

h's and h 's in the sequence C„=I Q, Q; Q, I of
r =r, +r2 operators. Note that Il(C„) can be nonzero
only if the h operators in the sequence form closed loops.
Therefore II(C„) for a bipartite lattice is non-negative,
because such closed loops involve an even number of h

operators. Imagine that we define a Markov process in
an abstract sample space consisting of sequences C„. If
we succeed in prescribing such a process, which provides
an ensemble of C, 's distributed according to II(C„), then
the thermodynamic average of the operator 0 can be cal-
culated as an average over the sequences that have been
drawn from the distribution II(C„). The first step is to
give an algorithm to calculate the trace (5.2b) and the
second to define the Markov process. Both steps are ex-
plained in the Appendix.

For illustration, Fig. 14 gives an equilibrium
configuration of clusters inside a 20X20 lattice, for tem-
perature T=0.5J (top figure), where the correlation
length is about 3.5. The black (white) circles denote up-
(down-) spins. A cluster is a set of points connected by
operators in the sequence. The clusters are drawn by
solid lines. There is a large cluster involving most of the
lattice sites and some other smaller ones. The lower part
of Fig. 14 shows the clusters for a 10X 10-size lattice and
temperatures 0.4J (left) and 1.5J (right).

The correlation length can be extracted by calculating
the z component of the staggered correlation function,
i.e., using Eq. (5.2) and

G(r)=( —1)ll II y (0 (R)o (R+r))1
(5.3)

where ~~r~~
=x +y, i.e. , the sum of the two components of

r in lattice spacing units. Depending on the boundary
conditions (BC), the large-distance behavior of the corre-
lation function is given by
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FIG. 14. The clusters in an equilibrium configuration inside a
20X20 lattice, for temperature T=0.5J (top figure), where the
correlation length is about 3.5. The black (white) circles denote
up(down) spin. The clusters are drawn by solid lines. There is a
large cluster involving most of the lattice sites and some other
smaller ones. The lower part of the figure shows the clusters for
a 10X10-size lattice and temperatures 0.4J {left) and 1.SJ
(right).

the correlation length, and the results are reasonably
close.

The correlation function (5.3) can be easily calculated
with Handscomb's method by noticing that in a given
state C„of the system, the sites R and R+r must belong
to the same cluster, otherwise they are uncorrelated.

When this paper was ready for submission we received
an interesting paper by Ding and Makivic (1990, 1991),
who studied the spin- —,

' antiferromagnetic Heisenberg
model on a square-lattice using the world-line Monte
Carlo method explained in Sec. III.B. Ding and Makivic
created an eAective algorithm by implementing the fol-
lowing ideas. First, instead of using the standard (Hirsch
et a/. , 1981, 1982) checkerboard breakup explained in
Sec. III.B, they used a "bond-type" breakup: they wrote
H =H, +H2+H3+H4, where H, (H2 ) is the sum of all
the bonds (r, r+x) oriented in the x direction and r is in
the A (8) sublattice; H3 or H4 is the sum of bonds
(r, r+y) oriented in the y direction, and r is in the A or 8
sublattice, respectively. This breakup couples only four
spins (each pair on different "time" slice) instead of the
eight spins involved in the checkerboard breakup of Fig.
3. To cover the entire sample space, they supplied the al-
gorithm with local and global moves of the kinds ex-
plained in Sec. III.B. Their vectorized code, which uses
32-bit words to represent the state of the spin in the
"time" direction, runs on a parallel computer very
efficiently because of the local interaction, which allows
fast communication between processors. Parallelism is
also achieved by running several independent lattices
simultaneously. This algorithm allowed them to calcu-
late correlation functions and extract correlation lengths
on large lattices (up to 128 ); their results are compared
to the other calculations next.

(5.4)

where I. is the size of the lattice. In general there is a
power of r in front of the exponential. At sufficiently
large distances, i.e. , in the interval ng& r &(n +m)g
with n ))1 and m (&n, the variation of the power can be
ignored and the correlation function behaves as an ex-
ponential. Several authors (Fox et al. , 1982; Parisi, 1982)
have used the projected correlation function G~(x),
defined by

G„(x)= (S,(0)S,(x) ) =—g G(x,y),1
(5.5a)

which is the correlation function of the operator

S,(x)=—QS, (x,y) .
1

The zero-momentum projection is used to avoid Auctua-
tions around the lowest mode. These Auctuations are re-
sponsible for the power law in front of the exponential,
and G (x) behaves according to Eqs. (5.4). Extraction of
correlation lengths from this correlation function, how-
ever, involves larger statistical errors. Manousakis and
Salvador (1989a) have used Eqs. (5.3) and (5.5) to extract

B. Comparison of the results
on the Heisenberg model

2&p
g( T~0)=C& exp k, T

(5.7)

In this section, we compare the results for the correla-
tion length obtained for the spin- —,

' antiferromagnetic
Heisenberg model using the various analytical and nu-
merical methods discussed in this and the last section.
The form (4.28b) derived with both Schwinger boson
mean-field theory by Arovas and Auerbach (1988) and
the modified spin-wave theory (Takahashi, 1989a) coin-
cides with Eq. (4.72) obtained by the one-loop calculation
explained in Sec. IV. These are low-order calculations,
and they give

Rc 2~ps
g( T—+0)=C exp (5.6)

k~T k~T
The improved two-loop calculation of Chakravarty et al.
(1988, 1989), however, shows that there are important
two-loop corrections; these corrections convert the 1/T
prefactor of the exponential into a constant,
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It is interesting to look at the historical evolution of
the ideas concerning the behavior of the correlation
length as a function of T. Manousakis and Salvador
(1988), who simulated the model (1.2) using Handscomb's
quantum Monte Carlo method, explained in Sec. V.A,
found that the form (5.6), g(T)=a/T exp(2';/k&T),
does not fit their results for the correlation length. Due
to the disagreement of the form (5.6) with the numer-
ical results, Manousakis and Salvador (1988) attempted
to fit their results to the Kosterlitz- Thouless form
g( T) = 2 exp(B/QT —T, ) (Kosterlitz and Thouless,
1973; Kosterlitz, 1974) to examine whether a phase with
topological excitations (Belavin and Polyakov, 1975) is
favored. The latter form fitted their data, and they con-
cluded that either (a) the form (5.6) is incorrect (possibly
valid at lower T inaccessible to their simulation) or (b) a
transition to a phase with zero staggered magnetization
and infinite correlation length due to topological defects
might be possible. The Schwinger boson mean-Geld
theory of Arovas and Auerbach (1988), the modified
spin-wave theory of Takahashi (1989a), and the one-loop
calculation by Chakravarty, Halperin, and Nelson sug-
gested the asymptotic form (5.6) also. It was subsequent-
ly, demonstrated by Manousakis and Salvador (1989b,
1989c) and by Gomez-Santos, Joannopoulos, and Negele
(1989) that Eq. (5.7), obtained by the two-loop calculation
of Chakravarty et al. , fits well their quantum Monte
Carlo; furthermore, there is no need to invoke the role of
topological excitations in the model.

Gomez-Santos et al. have performed similar simula-
tions of the spin- —, antiferromagnetic Heisenberg model.
In Fig. 15, we show their results for each reference. They
find overall agreement with the results of Manousakis
and Salvador at higher temperatures, but somewhat
smaller correlation lengths at lower temperatures.
Gomez-Santos et ah. argue that the origin of the
discrepancy may be that their new algorithm searches the

phase space more efhciently. Manousakis and Salvador
(1989b, 1989c) have argued that the discrepancy may also
be due to finite-size effects: the values of the correlation
length given by Gomez-Santos et al. at a given low tem-
perature increases when one increases the lattice size (see
Fig. 15), whereas in the Manousakis and Salvador calcu-
lation finite-size effects appear at larger correlati'on
lengths (somewhat lower temperatures). This difFerence
may be due to the different methods of calculating the
correlation function in the two approaches. In Gomez-
Santos et al. 's calculation, averages are not taken over
the entire lattice, i.e. , using Eq. (5.3), but by making some
selections of points. Hence it is possible that the results
of Manousakis and Salvador (1988), represented by the
dashed line in Fig. 15, approximate the infinite lattice
better. These arguments are supported by the results of
more recent quantum Monte Carlo calculation by Ding
and Makivic (1990, 1991),which we discuss next.

The results of the calculation by Manousakis and Sal-
vador (1988, 1989a), obtained with the projected correla-
tion function (5.5), are shown in Fig. 16. For illustration
the function T/J In/(T) is plotted. The function can be
clearly approximated by a straight line, strongly suggest-
ing that g'(T) can be approximated by Eq. (5.7). By
fitting the low Tdata point-s (the data points that corre-
spond to kii T/J(1) we obtain p, =0.22+0.02J and
C&=0.26+0.02; by fitting a much broader temperature
range, we obtain only slightly different parameter values,
namely, p, =0.22J and C&=0.25 (see Manousakis and
Salvador, 1989a, 1989b, 1989c) for which the line is
shown in Fig. 16. The results obtained by fitting the reg-
ular correlation function Eq. (5.3), as calculated by
Manousakis and Salvador, are p, =0.20+0.02J and
C& =0.27+0.02. To obtain the latter values, we excluded
the value of the correlation Manousakis and Salvador re-
ported (1988) at the lowest temperature, as it is subject to
significant finite-size effects. It is notable that this value
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FIG. 15. We show the results of Gomez-Santos, Joannopoulos,
and Negele (1989) for easy reference. Their results are the data
points and the solid line labeled GJN. The results of
Manousakis and Salvador (1988) are represented by the dashed
line labeled MS. The dotted line is the leading term 1/1n(4T/J)
of high-temperature expansion obtained by Manousakis and
Salvador.

FIG. 16. The function T/J in'(T), plotted to illustrate the va-
lidity of Eq. (5.7) obtained by the two-loop renormalization-
group calculation of Chakravarty et al. (1988, 1989). The re-
sults of the quantum Monte Carlo calculation by Manousakis
and Salvador (1988, 1989a) for g have been used in this plot.
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TABLE IV. Comparison of the results for the values of the parameters C& and p, that enter in Eq.
(5.7), which fits the results for the correlation length obtained from the various quantum Monte Carlo
simulations. The second column indicates whether the correlation length was extracted from the regu-
lar (Eq. 5.3) or from the projected (Eq. 5.5) correlation function.

Author Correlation function

Manousakis and Salvador (1988)
Manousakis and Salvador (1989b)
Ding and Maklvlc (1990)
Gomez-Santos et al. (1989)

Regular
Projected
Regular
Regular

0.27+0.02
0.26+0.02
0.276+0.006
0.32

0.20+0.02
0.22+0.02
0.199+0.002
0.159

of p, is very close to that found by two other independent
calculations of the ground-state properties (Gross et al. ,
1989b; Liu and Manousakis, 1989), namely p, =0.257.

Ding and Makivic (1990, 1991) studied the spin- —, anti-
ferromagnetic Heisenberg on a square lattice using the
method outlined in Sec. V.A. Their efFicient algorithm
allowed them to perform the calculation on large lattices
(up to 128 ). The calculated correlation length g(T) was
also consistent with the form (5.7), giving
C&=0.276+0.006 and p =0.199+0.0027. The results
for the correlation length obtained with the quantum
Monte Carlo calculations are compared in Table IV and
in Fig. 17. The results of Manousakis and Salvador
(1988), obtained from the regular correlation function
[Eq. (5.3)], are very close to those of Ding and Makivic.
The values obtained from the projected correlation func-

2.0
I

' '

I

1.0

0 5
I—

0.0

-0.5

-1.0
0 1.0

FIG. 17. Comparison of results for the correlation length ob-
tained with various calculations. The dashed line labeled
CHN1 represent the renormalization-group calculation of
Chakravarty, Halperin, and Nelson (1988) with the P function
calculated up to one-loop order. The dashed line labeled CHN2
shows the results of Chakravarty et al. (1988, 1989) with the /3
function calculated up to two-loop order. The results of Arovas
and Auerbach ( 2 2 ) and Takahashi (1989a, 1989b) are shown
by a solid line. The open circles and the solid 1ine fit are the re-
sults of Manousakis and Salvador (MS) {1988),extracted from
the regular spin-spin correlation function [Eq. (5.3)], while the
solid squares are those obtained from the projected correlation
function [Eq. (5.5) (Manousakis and Salvador, 1989). The dot-
ted line labeled DM represents the results of Ding and Makivic
(1990). The crosses joined by the wide "chain" line labeled
GJN are the results of a calculation by Gomez-Santos, Joanno-
poulos, and Negele (1989).

tion [Eq. (5.5)] are within 10% in agreement with those
reported by Ding and Makivic. The results of Ding and
Makivic, however, diA'er from those suggested by
Gomez-Santos et al. (C& =0.32 and p=0. 159J) by about
20%, which suggests that the results of Gomez-Santos
et a/. have strong finite-size effects.

Notice that the one-loop calculation of Chakravarty,
Halperin, and Nelson (denoted by CHN1 in the figure)
and the Schwinger boson mean-field theory (and the
modified spin-wave theory) are close. The differences be-
tween CHN1 and the Schwinger-boson mean-field theory
are due to differences in the value of the constant prefac-
tor C in Eq. (5.6). The solid squares and open circles
with error bars are the results of Manousakis and Salva-
dor extracted from the projected [Eq. (5.5)] and regular
[Eq. (5.3)] correlation functions. The solicl lines are the
straight-line fits to the regular and projected correlation
function. The crosses with the error bars are the results
of G-omez-Santos et al. , The dashed line labeled DM
represents the recent results of Ding and Makivic. The
dashed line labeled CHN2 shows the results of the two-
loop calculation of Chakravarty et al. (1989), obtained as
described in Sec. IV.F. As can be seen, there are large
difFerences between the one-loop and two-loop calcula-
tions. It is very important to know the correct tempera-
ture dependence of the correlation length before we at-
tempt to fit the experimental data. Notice that the re-
sults obtained by Ding and Makivic agree with those ob-
tained by Manousakis and Salvador from the regular
correlation function within error bars. For purposes of
comparison with the experimental results, we shall con-
sider these as the most accurate results, since they were
obtained on larger lattices. The results obtained from the
projected correlation function are less accurate, as men-
tioned earlier. Nevertheless, they are within 10% agree-
ment with the results reported by Ding and Makivic. In
order to clarify the situation further, Manousakis and
Salvador simulated the quantum nonlinear sigma model,
which makes these conclusions even stronger. This cal-
culation is explained in Sec. V.D.

Using the world-line Monte Carlo method, Qkabe and
Kikuchi (1988, 1990) have calculated the energy, specific
heat, and uniform susceptibility of the spin- —, antiferro-
magnetic Heisenberg model for up to 16 square lattices.
Their results for the susceptibility compare well (Okabe
et al. , 1988) with the results of the Schwinger boson
mean-field theory of Arovas and Auerbach at low tem-
peratures. At higher temperatures they are in good
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agreement with the high-temperature series-expansion re-
sults (Rushbrooke and Wood, 1958; Lines, 1970; de
Jongh and Miedema, 1974). The coefficient of the T
leading term in the low-temperature specific heat, defined
as 5=1imT 0 C, /[T/S(S + 1)J], is found to be
5=1.1+0.2 (Okabe et al. , 1988), in agreement with the
Schwinger boson mean-field theory.

C. High-temperature series expansion
for the correlation length

The structure function has been calculated with stan-
dard techniques of high-temperature series expansion
only up to fourth order (Collins, 1970). To extract the

correlation length, however, one needs to know the
correlation function G (r) at least up to an order n & gi,«,
where gi, « is the correlation length in lattice units. The
reason for this is explained below and originates simply
from the fact that, if G (r) is calculated only up to nth or-
der, then 6 (r ) n) =0. Here, we calculate the leading or-
der (see Manousakis and Salvador, 1989a) to the correla-
tion function G (r) directly.

The leading contribution to the expectation value of
S,( 0)S,(r) is of rth order. If the order n is less than r, the
sites 0 and r cannot be joined with a line of operators, be-
cause the available operators are only n, and therefore
the trace of such an unlinked term vanishes. In rth order
we obtain

lim 6(r)=
T~ oo

Tr(cr, (0)cr, (r)h& h& h& )
r

Tr(1) (5.8a)

where the sum is over all possible orderings (I„.. . , l„)
of the r links (0, 1),(1,2), . . . , (r —1,r) joining the sites
0,1, . . . , r. The application of the above r operators in
any order on the r links of the string with r+ 1 sites gives
the same result. Hence the factor 1/r I is canceled by the
I"t possible rearrangements of r operators corresponding
to links between the sites 0 and r:

pJ 'Tr(o, (0)cr, (r)h oih iz
. h„,„)

lim 6 (r) =
T~oo 2 Tr 1

tional terms, i.e., 6 (r) up to order r + n, by developing a
linked-cluster expansion for the correlation function in
the above spirit. Here, however, we restrict ourselves
only to the leading contribution, which compares re-
markably well with the Manousakis and Salvador results
for T/J) 1 (see the dotted line in Fig. 15).

D. Simulation of the quantum
nonlinear o. model

(5.8b)

r

6 (&)
) l~l —rig(T) (5.9a)

where the correlation length g is given by

lim g(T)=
T~ oo 4T

J
(5.9b)

The trace of the denominator is 2 because there are X
monomers. The trace of the numerator is 2 ' because
there are N —r —1 monomers and one cluster with r+ 1

sites. Therefore

In this section we discuss certain results obtained by
the direct simulation of the quantum nonlinear 0. model
(Manousakis and Salvador, 1989b, 1989c). Manousakis
and Salvador used the heat-bath algorithm to generate
configurations In&(x ) I distributed according to the dis-

tribution e ~ ' &, where S is the action of the
—S ( In (x ) I )

quantum nonlinear o. model on lattice regularization
given by Eq. (4.81).

Let us study the T=O case first. In this case we con-
sider L& =L~ oo, and the theory has only one parame-
ter, the dimensionless parameter g. Manousakis and Sal-
vador have calculated the staggered magnetization expec-
tation value, defined as

Higher-order corrections will be of order 1/T,
1

nl 3 nI +pL
(5.10)

lim g(T)=
g—+ oo

ln +0 (1/T)J
(5.9c)

Such corrections become important for T/J-1. Hence
we have shown that it is possible to calculate the correla-
tion function 6 (r) directly using high-temperature series
expansion, and the leading term is of rth order; it seems
to us possible to extend this approach to calculate n addi-

where the expectation value is taken with respect to the—s ( I nr(x ) I )
distribution e ' " . We expect the ground-state
staggered magnetization to obey the finite-size scaling
given by Eq. (3.20). In Fig. 18(a), n& is plotted versus 1/L
for 16 values of g: g=0.1,0.2, . . . , 1.6. There is a critical
value of g, = 1.45 such that n&(g )g„L~ ao ) =0. From
this figure, it is clear that n&(g (g„L~~) scale
with 1/L as expected. The extrapolated values
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FICJ. 20. The approximate /3 function calculated from no(g).

FICx. 21. The collapse of the calculated correlation lengths for
various values of g and L& to a universal curve g (to), using the
calculated a =a(g). The solid line represents the best fit to Eq.
(5.23).

T
TQ L/3lg gal

(5.22a)

where the constant temperature scale T0 is defined as

Ac
(5.22b)

Q0

Furthermore, substituting Eq. (5.13) in Eq. (5.14), we ob-
tain

function (5.13) with v=0.7; ao is an unknown physical
length scale, whose value is dictated by the specific physi-
cal problem. Notice that the results do not depend
strongly on the errors in the determination of the func-
tion a(g), i.e., the precise value of v. In this paper we
shall use the textbook value of v, and we shall find essen-
tially the same results as those obtained by Manousakis
and Salvador (1989c), who computed a (g) using the
finite-size scaling technique discussed previously.

Next we shall determine the temperature-dependent
correlation length. Using Eq. (4.82a) and a(g) we find
that

TO
g/ao= 3 exp 8 (5.23)

with A =0.093+0.002 and 8 =3.64+0.02. The con-
stants a0 and T0 cannot be determined within the non-
linear o. model. They correspond to the two free parame-
ters of the model, namely, g and c . Assuming that the
o. model describes the continuum limit of the spin- —, anti-
ferromagnetic Heisenberg model, we can determine a0
and T0 in terms of J and the lattice spacing aH of the lat-
tice, in which the spin- —, antiferromagnetic Heisenberg
model is defined. Comparing these results with those ob-
tained from the Heisenberg model in Sec. V B, i e.,
g( T) =0.276aH exp(2~p, /T), with p, =0 20J, w. e find
a&=3.0aH and T 00. 345J. Using Eq. (5.22b), we find
Ac =1.02JaII. Again we emphasize that c is not the
physical spin-wave velocity, but a free parameter of the o.
model. The generation of such finite length and energy
scales (here, the scales ao and To) from a continuum
model ~here the lattice spacing vanishes is known in

(5.22c)

Criven the value of the correlation length g, (g, L&) for
given values of g and L& using Eqs. (5.22), we can calcu-
late the physical correlation length in units of the con-
stant length scale a0 and the physical temperature in
units of the constant temperature scale T0 defined by
(5.22b). Using the calculated correlation lengths for vari-
ous values of g (g, and L&, we can calculate g'o and the
corresponding t and plot them to obtain a single curve
g'o(t), shown in Fig. 21.

The fact that g( T) obeys the expression obtained by
the two-loop calculation of Chakravarty et aI. , i.e., Eq.
(5.7), is demonstrated in Fig. 22, where the function
t In(g'o(t)) can be approximated by a straight line. A
straight-line fit gives

-6
I I I I I I I I I I I I

2 3
t = T/To

FIG. 22. The fact that Eq. (5.23) fits the data of Manousakis
and Salvador (1989c) for the o. model is illustrated. The func-
tion t 1n(go(t) ) can be approximated by a straight line.
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quantum field theory as dimensional transmutation
(Coleman and Weinberg, 1973).

e k
2+S

(6.1b)

Vl. DAMPING OF SPIN WAVES

A'1 /J = ln
2~S

2~S
~2

(6.1a)

where Cz is a constant of order unity and
e(k)=+1—

yi, . Here k (~) is a lower bound, because
at TWO the order is destroyed and the spin-wave excita-
tions can only be defined for wavelengths smaller than a
temperature-dependent cutoff of the order of the correla-
tion length.

Regime B: ~ /2~S &&k &&v&&1

In this section we briefly discuss finite-lifetime effects
for spin-wave excitations in 2D quantum antiferromag-
nets. At T=O and in the long-wavelength limit the spin-
wave excitations are well defined excitations because
their dispersion curve has negative curvature. A single-
magnon excitation created above the ground state cannot
decay into a three-magnon excitation or multimagnon ex-
citation unless the single-magnon dispersion curve is
anomalous (Pitaevskii, 1959, 1961). If the single-magnon
spectrum as a function of the magnon momentum k is a
convex function, it does not allow the spontaneous decay
of a single-magnon excitation into multimagnon excita-
tions. Studies of the linewidths of spin-wave peaks in
response functions at nonzero temperature, for the case
of the spin- —, square-lattice antiferromagnetic Heisenberg
model, have recently begun. Furthermore, from the ex-
perimental point of view, it is beyond our present capa-
bilities to measure these linewidths (Aeppli et al. , 1989).
Our feeling is that it will be more appropriate to review
this subject in detail at a later time, and here we discuss
only the results of the few calculations that are available
now.

Tyc and Halperin (1990) have calculated the spin-wave
damping I k(T), that is, the imaginary part of the mag-
non self-energy X(k, co) at the center frequency of the
magnon peak co=co(k), using spin-wave theory. Their
main conclusion is that at low T, where g is exponentially
large, spin-wave excitations with wavelengths short com-
pared to the correlation length, are well-defined excita-
tions; I z /m(k) ~0 when k ~0 and T—+0 in such a way
that kg(T)))1. A single-magnon excitation has a finite
lifetime at nonzero T, due to scattering of the magnon by
other thermally excited magnon excitations. Again the
contribution of spontaneous decay into multimagnon ex-
citation is zero, due to energy-momentum conservation.
The rate I k(T) assumes diA'erent forms in four regimes
defined by the relative size of the reduced temperature

2T/JzS (wher—e z is the number of nearest neighbors)
and the wave vector ka in lattice-spacing units, namely,

Regime 2: k (r) «k «r /2irS «1

where Cz is also a constant of order unity.
Regime C: ~&&k &(z &&1

7zg( —', )rr„/J = ' [e(k)r']'",8(2~)'"S (6.1c)

Regime D: v' (&k ((1
rr„/z =

8&2+Se(k)+f (k )

(6.1d)

where f (k ) is a weak function of the direction of the
wave vector k.

Since the correlation length diverges with decreasing ~
as —exp(const/i. ), there is a range of wave numbers
kg)) 1 where the I k( T) is much sinaller than the energy
of the spin-wave excitations. The results of this micro-
scopic calculation are presented in detail in the paper by
Tyc and Halperin (1990).

Kopietz (1990a), independently from Tyc and Halpe-
rin, has calculated the decaying rates using the Dyson-
Maleev boson formalism. In the regime D (which is short
wavelengths) his results agree with those of Tyc and
Halperin. In the regimes 2 and B his estimate for the
decay rates is I &

—~ k.
Becher and Reiter (1989) have calculated the spin-

wave damping by calculating the spin-dynamical struc-
ture function S(k, co) using the equation-of-motion ap-
proach in conjunction with projection-operator methods.
They find that, at T=O, I &

-k, which, however, contra-
dicts our expectation that the linear dispersion of the
single-magnon excitation at T=O at low k provides no
phase space for energy-momentum conservation and
makes its decay into multimagnon excitations impossible.
Later, Becher and Reiter (1990) located an error in their
previous work; their corrected work predicts that, at
least to order 1/S, at T=O and in the long-wavelength
limit, the damping of spin waves is zero; at T=O, they
find that there is no damping of order T .

Grempel (1988), in a short comment, has also given I
for excitations near the antiferromagnetic wave vector
and for kii T ( fico and k g ((1. He finds that
I k

—v rka /g(T) and concludes that, at low T where
g( T) is very large, the relaxation rates are very small. In
contrast, Tyc and Halperin find in this regime consider-
ably larger decay rates, which do not depend so strongly
on T. In Grempel's calculation, I (T) has a strong tem-
perature dependence through the temperature depen-
dence of the correlation length, whereas in Tyc and
Halperin's calculation I depends much more weakly on
T.

Similar results were obtained by Kopietz (1990b), who,
as explained in Sec. IV.C, carried out exactly the integra-
tion over the Brillouin zone for the dynamic structure
factor obtained by Auerbach and Arovas (1989), using
Schwinger boson mean-field theory. Kopietz pointed out
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that this theory gives I k/co& —1/gk, which is the same
as the results of Takahashi (1989b) for a quantum fer-
romagnet and contradicts seriously the results obtained
by Tyc and Halperin. Since the correlation length is very
large at low T, the decaying rates predicted by Schwinger
boson mean-field theory are too small to agree with ex-
perimental values of the linewidths. He concludes that
the theory of Tyc, Halperin, and Chakravarty (1989) and
the calculation of Tyc and Halperin are more accurate
than Schwinger boson mean-field theory.

Chakravarty er al. (1989) and subsequently Tyc,
Halp erin, and Chakravarty have used a semi-
phenomenological approach to calculating the dynamic
structure function, based on scaling arguments, hydro-
dynamics, and the equival nce of the spin 2

magnetic Heisenberg model with the nonlinear sigma
model. In particular, they used the equivalence of the
quantum nonlinear sigma model and the 2D classical
nonlinear 0. model, with an appropriately renormalized
coupling constant defined by Eqs. (4.76) and (4.77), and

by simulating the latter model with a molecular dynamics
algorithm they were able to predict an empirical form for
S(k, co) from which they also extracted the decay rate
I k(T). Tyc and Halperin (1990) also made a connection
between the microscopically calculated lifetimes and
those predicted by Tyc, Halperin, and Chakravarty.
They have shown that if we make the replacement in Eq.
(6.1) p, =JS and A'c =+8JSa, which is valid for large S,
the resulting formulae are more generally valid on the
basis of Tyc-Halperin-Chakravarty model.

Vll. COMPARISON WITH EXPERIMENTS

Interesting magnetic properties of the copper-oxygen-
based materials are revealed by neutron-scattering exper-
iments performed on undoped single crystals of La2Cu04.
The La2Cu04+& material has a susceptibility anomaly at
a 3D Neel temperature T~ which is sensitive to the value
of |i (Yamada et al. , 1987). The first neutron-scattering
experiments from a single crystal of La2CuO~ (Shirane
et al. , 1987) show that the instantaneous 2D antiferro-

0

magnetic correlations exceed 200 A for T-200—300 K,
with no average staggered magnetization. The energy
scale associated with spin fluctuations above T& is very
large compared to those of other 2D antiferromagnets
having the same crystal structure, such as K2NiF4 or
K2CoF4. In addition, the highly correlated but Auctuat-

ing spins in La2Cu04 do not show the dramatic critical
slowing down found in other 2D spin systems. Shirane
et al. (1987) conjectured that such fluctuations give rise
to a new state of the spin system, a quantum "spin-
liquid" state. Very quickly it became clear that one
needs to understand the model (1.2) in low-dimensional
systems and for the smallest-spin case, where the quan-
tum Auctuations are expected to be large. Antiferromag-
netic ordering has also been observed by neutron
diff'raction from powder of YBa2Cu06 (Tranquada et al. ,
1988) with T& —500 K. However, due to difficulties in

growing large single crystals of YBazCu307 to be used
for neutron-scattering studies, the studies of the magnetic

r
properties of this material are limited (Sato et al. , 1988).
In contrast, crystals of La&Cu04 close to exact
stoichiometry have been more systematically studied, and
in this paper the theoretical results are compared only to
those obtained on this material.

In this section we first discuss the extent to which the
square-lattice spin- —, antiferromagnetic Heisenberg model
can describe the spin dynamics of pure La2Cu04. We
discuss the role of possible Ising-like anisotropies, an-
tisymmetric terms, and interplanar coupling. We com-
pare the temperature dependence of the theoretically cal-
culated correlation length with that measured on single
crystals. The spin-wave excitations and the pair-magnon
excitations have been observed by neutron- and Raman-
scattering experiments. We compare the experimental
and theoretical excitation spectra. Finally, to understand
most of the thermodynamic properties of the materials,
we need to consider the interplanar coupling. We discuss
the role of a Dzyalshinskii-Moriya antisymmetric term,
which is responsible for a hidden ferromagnetic-like be-
havior of the uniform susceptibility below the 3D Neel
ordering temperature.

A. Can the isotropic 2D Heisenberg model
describe La,CUQ4'P

As we have briefly argued in the Introduction, the
spin- —, antiferromagnetic Heisenberg model arises natu-

rally as an effective low-energy theory to describe spin
degrees of freedom in a single copper-oxygen plane.
However, in order to establish its relevance, one needs to
examine the magnitude of the interplanar coupling and
the role of the possible anisotropies that may have to be
introduced in order to describe realistically the magnetic
properties of LazCu04.

Chakravarty, Halperin, and Nelson (1988) have argued
and Thio et al. (1988) have found experimentally that
the interplanar coupling J' is of the order of 10 J.
Hence J' has a small eA'ect on the 2D spin correlations
above the 3D Neel ordering temperature, and the zero-
temperature properties calculated only for an isolated
Cu02 plane will be weakly aA'ected by such a small value
of J' (see Chakravarty et Ql. , 1989). The 2D correlation
length g(T) is very large at room or lower temperatures
due to the large in-plane coupling J, and g(T) grows ex-
ponentially with J/T. As a result, a very small interpla-
nar coupling can still produce a rather high 3D Neel
temperature. To understand the behavior of the suscepti-
bility, the intensity of the antiferromagnetic Bragg peak
in neutron-scattering experiments ai finite temperatures,
and other pure 3D eA'ects c1ose to the Neel temperature,
one needs to consider the interlayer coupling. Certain
3D eftects can be qualitatively included in a simple way,
as Thio et al. have shown, using a mean-field treatment
of the weak plane-plane coupling. For such a treatment,
one needs the 2D staggered and uniform susceptibility
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calculated from the spin- —,
' antiferromagnetic Heisenberg

model given in this paper. We shall describe this mean-
field theory in Sec. VII.D, where we discuss the behavior
of the uniform susceptibility.

We need to discuss the role of other possible terms that
one might have to add to the Hamiltonian (1.2) in order
to make a meaningful comparison of the results present-
ed here with the experimental results. For example, we
need to study the role of Ising-like anisotropies, antisym-
metric terms, and further neighbor interactions. Peters
et al. (1988) have considered a more general neighbor
Hamiltonian expressed as

R' = g (J„SS'+ Jbb S; S +J„SS)'),
(~j)

(7.1)

H, = g D; (S;XS.),
(Ej)

which allows for spatial variation of D;.. This term is re-
sponsible for the canting of the spins away from the
direction of the staggered magnetization (which lies in
the c direction) towards the b axis by a small angle, as
observed by Kastner et al. (1988) using neutron-
scattering experiments. If D; is required to be along the
positive or negative a direction and change sign from one
bond to the next, the term (7.2) in combination with (7.1)
can produce the canting of the spins towards the b direc-
tion, as shown by Coffey, Bedell, and Trugman. They
have also shown that this is consistent with the sym-
metries of the La2CuO4 crystal, taking into account the
rotation of the Cu06 octahedra around the Cu site. This
can produce a ferromagnetic moment pointing in the b
direction, which can explain the behavior of the uniform
susceptibility and the magnetoresistance data of Thio
et al. (1988). Thio et al. considered a uniform D,"=Jb'a

where a, c are the axes on the Cu02 plane and b is the
axis perpendicular to the plane. Here we use the same
notation as Peters et al. (1988). By measuring the gaps
in the excitation spectrum and using the mean-field ap-
proximation, they found that J„=Jb„-—J„=Jwithin
&0.01%%uo accuracy. The fact, however, that the staggered
magnetization is along the c direction means that there is
a very small anisotropy of the three couplings that favors
this direction.

Peters et al. (1988) and Thio et al. (1988) have used an
antisymmetric term in the Hamiltonian (1.2) in order to
explain hidden ferromagnetism manifesting itself below
T~. Dzyaloshinskii (1958) proposed that weak ferromag-
netic behavior could be understood by adding an an-
tisymmetric term of the form D (S, X SJ ) in the antiferro-
magnetic Heisenberg Hamiltonian. Such a term is not
forbidden if the symmetry of the crystal is sufficiently
low. Later, Moriya (1960) showed that such a term
comes from the effect of the spin-orbit coupling on the
superexchange interaction; the order of magnitude of ~D~

is Ag/gJ, where g is the electron gyromagnetic ratio and
b,g is the change in the bare value of g due to spin-orbit
coupling. Coffey, Bedell, and Trugman (1990) generalize
this Hamiltonian to

H=JQS, S+J2 g S, Sq,
(NNN)

(7.3)

where the sum in the second term is over next-nearest-
neighbor pairs. Such a term with e=J2/J&0 is expect-
ed to frustrate the antiferromagnetic long-range order
and lead to a disordered phase for a) a, (Anderson,
1973, 1987). Classically, this model for u( —,

' has Neel
order, and for e & —,

' the lattice decouples into two Neel
sublattices with a highly degenerate ground-state; for
a= —,', states having uniform but arbitrary twists are de-

generate ground states. This model was also proposed by
Inui et al. (1988), in a semiphenomenological fashion, to
capture the physics of frustration introduced into the sys-
tem by the addition of holes. Recent calculations (Nori,
Gagliano, and Bacci, 1990), however, indicate that frus-
tration in the form of Eq. (7.3) does not properly describe
doping.

Doniach et al. (1988) studied the model (7.3) using
variational theory, and they found that with a-0.07 the
antiferromagnetic long-range order is unstable against a
resonating valence bond state. The same model, howev-
er, has been studied by Chandra and Doucot (1988}and

without the sign alteration; this, however, does not pro-
duce a ferromagnetic moment, as pointed out by Coffey
et al. The analysis of Thio et al. (1988) can be easily
corrected, however, without affecting the results of their
fit. This is discussed in more detail in Sec. VII.D. The
coupling J '=

~D;& ~, estimated from the angle of the
canted spins, was found to be small compared to the anti-
ferromagnetic coupling J (J '/J —10 ) and can be
neglected in the calculation of the 2D correlation length
and staggered magnetization. However, it plays an im-
portant role in determining the puzzling ferromagnetic-
like behavior of the susceptibility close to the 3D Neel
temperature, and we shall return to this point in Sec.
VII.D.

The addition of the antisymmetric term (7.2) opens a
gap at k=(m, m } in the spin-excitation spectrum. Linear-
izing the equations of motions for the spin operators with
respect to small deviations around the classical ground
state, Coffey et al. (1990) find for a square
lattice that co(k) =4SJ [A D(AD + y„)(1—y„)]', with
AD=[1+(J '/J) ]'~. Since there is still a continuous
symmetry, i.e., global rotation around the direction of D
(a axis), the system is entitled to have a Goldstone mode
in the long-wavelength limit and no gap at k=0. The
Ising-like anisotropies as in Eq. (7.1) open a gap at k=0
[as can be seen by examining Eq. (2.16)] and are responsi-
ble for giving a definite direction to the staggered magne-
tization. The excitation spectrum after the inclusion of
both terms has been given by Coffey et al. As mentioned
before, the gaps in the excitation spectrum of La2Cu04
are very small and consistent with small J"',

~

J„—Jbb ~,

Another possible term that one might need to add to
the Hamiltonian (1.2) is a next-nearest-neighbor (NNN)
interaction
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Chakravarty et al. (1989), using conventional spin-wave
theory, and by Dagotto and Moreo (1989a, 1989b), who
found that the Ne:el order is quite robust and a large
value of a is necessary to destroy the Neel order. More
recently, Kishi and Kubo (1989) have rigorously shown
the existence of antiferromagnetic long-range order in
the ground state of the Hamiltonian (7.3) on a square lat-
tice for spin values S ~ 1 and for n ~ u, (S). The nature
of the magnetically disordered state that appears for
o. ~ n, for spin- —,

' is controversial. Chandra and Doucot
suggested that this state should be a quantum spin liquid.
More recently, Gelfand et al. (1989), using series-
expansion techniques, find that the dimerized state with
the "columnar" pattern, suggested by Read and Sachdev
(1989), who studied the stability of antiferromagnetic or-
der against quantum Auctuations in a 1/n expansion, be-
comes the new stable state in a certain range of cx. In our
comparison with the experimental data we shall neglect
J2, even though we do not know its magnitude. The re-
sults of the spin-wave theory of Chandra and Doucot and
the numerical results of Dagotto and Moreo (1989a,
1989b) and Hirsch and Tang (1989a) suggest that a large
magnitude of n is required to have dramatic CA'ects on
the antiferromagnetic order. There is no clear experi-
mental evidence or arguments to suggest that Jz is of a
magnitude comparable with J in the real materials.

It has been argued (Aharony et al. , 1988) that the ad-
dition of holes in La2Cu04 introduces a local ferromag-
netic exchange coupling between Cu spins. In addition,
Aharony et ai. have suggested that such ferromag-
netic defects give rise to the spin-glass phases of
La2 Sr Cu04 (Huber and Chin, 1990). Lee and
Schlottmann (1990) introduced a single ferromagnetic
bond inside the 2D spin- —, antiferromagnetic Heisenberg
model and studied its cFect on the antiferromagnetic
correlated spins in the neighborhood of the bond, using
linear spin-wave theory. They found that the disturbance
of the antiferromagnetic order caused by the presence of
such a dcfcct is localized within the neighborhood of the
ferromagnetic bond and decays as 1/R far away from it.
In addition, the antiferromagnetic moments are rather
weakly dependent on the strength of the ferromagnetic
coupling, which is required to be comparable to J in or-
der seriously to aAect the antiferromagnetic order.

B. Correlation length

Assuming that the isotropic nearest-neighbor spin- —,

antiferromagnetic Heisenberg model can give a realistic
description of the spin dynamics in the Cu02 planes, we
proceed to compare the temperature dependence of the
correlation length, the spin-wave velocity, the zero-
temperature staggered magnetization, and the uniform
susceptibility with the experiments. The correlation
length is extracted from the static structure factor S(q),
which is obtained by integrating the measured spin-
dynamic structure function up to the energy of the in-
cident neutron. This integration assumes that the max-
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FIG. 23. The data points with error bars are values of the in-
verse correlation length, as obtained from the neutron-
scattering experiments of Endoh et ai. (1988) done on the
NTT-2 crystal with Neel temperature of T& = 195 K. The solid
line is obtained using the theoretical form (5.7) obtained from
the simulation of the spin-

2 antiferromagnetic Heisenberg mod-
el on a square lattice and J= 1350 K.
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FIG. 24. Similarly to Fig. 23, the results of Yamada et QI.
(1989), obtained on the NTT-7 crystal with T&=245 K. The
solid line was obtained using the theoretical curve (5.7) obtained
from the simulation of the spin- —antiferromagnetic Heisenberg
model on a square lattice and J= 1480 K.

imum possible energy transfer co (co ~ E, , where E, is the
energy of the incident neutron) is large enough to include
the total contribution of relevant spin excitations de-
scribed by Eq. (1.2). Endoh et al. (1988) have approxi-
mated the structure function by S (q) —1/I q
+[I/g'(T)] I, and this expression is used to extract an
estimate for the 20 correlation length. In Figs. 23 and
24, we plot the inverse correlation length versus T as ob-
served by neutron-scattering experiments (Endoh et al. ,
1988; Yamada et al. , 1989). The solid curves are ob-
tained using the expression g( T) =C&exp(2', /T),
which fits the results obtained from the spin- —,

' antiferro-
magnetic Heisenberg model on a square lattice (or the
equivalent nonlinear o model). The most accurate re-
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suits are p, =0.20J and C&=0.276aII, obtained as ex-
plained in Sec. V and given in Table IV. In the plots we

0
used aH=3. 8 A (the Cu-Cu distance). DifFerent samples
require different values of J to obtain a reasonable fit, be-
cause they are characterized by somewhat different corre-
lation lengths. In Fig. 23 the solid circles with the error
bars are the estimates for the correlation lengths of the
NTT-2 crystal of Endoh et al. having a Neel tempera-
ture T+ = 195 K. The solid line represents the theoretical
curve obtained with J=1350 K. In Fig. 24 the solid cir-
cles with the error bars are the experimental estimates for
the g(T) extracted for the NTT-7 crystal of Yamada
et al. (1989) having a Neel temperature T~ =245 K. The
solid line is obtained from the same theoretical curve
with J=1480 K. The data disagree with the theoretical

G

curves for correlation lengths of the order of 200 A or
larger. The differences and the fact that crystals with
higher T& give somewhat different correlation lengths
can be attributed to the high sensitivity of the spin-
correlation length to the doping fraction x (hole concen-
tration). For example, Birgeneau et al. (1988) have
shown that the correlation length is limited by the aver-
age hole distance, namely, g(x) =3.8 A/&x. A tiny
amount of hole concentration, about x —10, is enough

0
to limit the correlation length to about 200 A. In
La2CuO4+ & there is an effective hole concentration
x -25, and a slight amount of oxygen excess is expected
for such as-grown crystals (Yamada et al. , 1989). Clear-
ly the sample with T&= 195 K cannot be purely
stoichiometric, and the hole impurities reduce the value
of the Neel temperature. As the Neel temperature in-
CI cases thc quality of thc cr ystal is lmpl ovcd and the
value of J increases and approaches the value necessary
to give the observed spin-wave velocity discussed next.

C. Spin-wave excitations

The thermal neutron-scattering data provide a lower
bound for the spin-wave velocity of approximately
A'c ~ 0.6 eV A (Birgeneau et al. , 1988, Endoh et al. ,
1988). More recently, however, Aeppli et al. (1989), us-
ing high-energy inelastic neutron scattering and constant
energy transfer co scans, measured the intensity of the
outgoing neutrons as a function of the momentum
transfer q [see Fig. 25(a)]. They achieved good enough
resolution to measure c accurately (with only about 5%
error). Aeppli et al. approximated the scattering cross
section by the expression suggested by spin-wave theory
(Marshall and Lovesey, 1971); in the long-wavelength
limit it is given by

a'~
A [(n (cq)+1)5(co—cq)+n (cq)5(co+cq)],n

(7.4)

where k,. and kf are the wave vectors of the incident and
outgoing neutron, n (ro) is the Bose-Einstein occupation
factor [exp(I3A'co) —1] ', 2 is the square of the matrix
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FIG. 25. (a) Constant-energy transfer scan, collected in trans-
verse direction for momentum transfers near (2,0,1), from the
neutron-scattering experiment of Aeppli et al. (1989); q and 66I
represent deviations from the (2,0,1) in momentum transfer and
scattering angle, respectively. The dashed line represents a
measure of the experimental resolution. The solid line
represents the best fit using the spin-wave expression (7.4) with

0
a spin-wave velocity of A'c=0. 78 eV —A and with the delta
functions broadened by the instrumental resolution. (b) The
Raman-scattering data obtained by Lyons et al. (1989) for
E&iix' and E2iiy', where the directions x' andy' are along the di-
agonal of the square lattice that connects the coppers in the
copper-oxygen plane. In the inset, where the solid circles
denote the locations of copper atoms on the copper-oxygen
plane, the directions x,y, x', and y' are shown.

element thai couples the antiferromagnetic ground state
to the spin-wave state, and A —1/q for scattering near
the antiferromagnetic superlattice rejections. Notice
that Eq. (7.4) for positive energy co is the same as the ex-
pression (4.32) given by Arovas and Auerbach. The
dashed line in Fig. 25(a) gives the broadening due to in-
strumental resolution. The solid line gives the fit that
Aeppli et al. found by broadening the delta function
with the experimental resolution and using a spin-wave

0
velocity of Ac=0.78 eVA. Repeating the experiment at
different energy transfers, they found that their data in
the long-wavelength limit could be explained by the
spin-wave expression (7.4) with Pic =0.85+0.03 eV A and
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—1/q. Because of the resolution-broadening of the
data, it appears very difficult to say something about the
thermal broadening and the temperature dependence of
the spin-wave lifetime discussed in Sec. VI. In Sec. III
we found that c =Z, &2Ja, and the theoretical lines for
Z, obtained with various methods lie in the interval

Z, = 1.19+0.05. Using Z, = 1.19+0.05 and the value of
0

c=0.85 eV A inferred from these neutron-scattering
studies, we obtain J= 1540+60 K, in excellent agreement
with the figure obtained by comparing the correlation
lengths for the NTT-7 crystal.

Raman-scattering studies of LazCu04 have revealed
(Lyons et al. , 1988, 1989; Sugai et al. , 1988) a high-
frequency peak (at about 3000 cm '), which has been at-
tributed to scattering from magnon pairs with opposite
momenta. The Hamiltonian describing the scattering of
light of incident polarization Ei into a scattered light of
polarization Ez by a magnon pair is given as (Parkinson,
1969)

H~ = A g (E, e; )(E~ e; )(S;.S,),
&lj )

(7.5)

depends strongly on the light polarization relative to the
crystallographic axes, as is clear from Eq. (7.5). The
strong two-dimensional nature of the magnetism in
LazCu04 is evident from the strong dependence of the
peak on the polarization direction of the incident and
scattered waves. For example, there is no peak E&~~z and

E2~~z, with z being the direction perpendicular to the
copper-oxygen plane. In Fig. 25(b) we show the data ob-
tained by Lyons et al. (1989) for E&~~x' and Ez~ y', where
the directions x and y are the unit vectors connecting
copper atoms on the Cu02 plane and x' and y' are along
the diagonal of the square lattice formed by the copper
atoms [see inset of Fig. 25(b)]. An estimate of the antifer-
romagnetic coupling was initially obtained (Lyons et al. ,
1988) from the estimate of the two-magnon peak from
the Heisenberg model. The peak is expected near the
two-magnon energy for magnons near the peak of the
single-magnon excitation energy. Lyons et al. (1988), by
approximately correcting for the energy shift of the peak
due to magnon-magnon interaction (Hayes and Loudon,
1978, p. 273), estimated that J-1500 K. A better esti-
mate for J can be obtained as follows. We define the mo-
ments of the intensity I(co) by

f co I(co)dco
p„=(~"&—:

I(co) de
(7.7)

Assuming that the states ~n & in Eq. (7.6) are the eigen-
states of the spin- —, antiferromagnetic Heisenberg Hamil-
tonian H, the numerator and denominator of the right-

where e; is the unit vector connecting nearest-neighbor
sites. The scattering intensity I (co), defined as

I(co)= g [(,n~H~ ~0& [ 5(co —co„o),

hand side of Eq. (7.7) can be calculated as follows:

f I(co) dc@= (OiH iO&,

f~I (~) d ~ =
& OIH& [H H& ] IO &

f co I(co) dco= —(0/IH, H~ ] [0&,

f~'I(~)d~=(OI[H IH, Hg]][H, Hg]10&, (7.8d)

(7.8a)

(7.8b)

i.e., by calculating the ground-state expectation value of
the above commutators of H t'Eq. (1.2)] and Hz IEq.
(7.6)]. Singh et al. (1989) have estimated p&, p2, and p3
by calculating these expectation values with the series ex-
pansion technique explained in Sec. II.C. These mo-
ments can be measured by integrating the experimental
I(co). For example, p&, which is the average frequency of
the spectrum, is shown in Fig. 25(b). The value of the an-
tiferromagnetic coupling J can be found so that the
theoretical and experimental moments agree. Singh
et al. found that the spin- —,

' antiferromagnetic Heisen-
berg model with a single value of J close to 1500 K can
reproduce the experimental values of the three moments
within experimental errors. This is interesting because
these three moments are sensitive to different parts of the
frequency spectrum. Dagotto and Poilblanc (1990) and
Gagliano and Bacci (1990) have calculated the moments

p„ for n=1,2,3 on a 4X4 lattice using exact diagonaliza-
tion; their results are close to those obtained by Singh;
however, results on different sized lattices are unavailable
and this prevents extrapolation to an infinite sized lattice.
Liu and Manousakis (1990) have calculated the moments
p&/pO and p2/pO of the Raman spectrum using the varia-
tional Monte Carlo technique and their results are also
close to those obtained by Singh.

D. Uniform susceptibility

Most of the other experimental data require an accu-
rate treatment of the spin-spin interaction introduced by
the interlayer coupling J' and by J '= D,J ~ [Eq. (7.2)].
Here we brieAy discuss the mean-field theory developed
by Thio et al. (1988), which qualitatively explains the
puzzling behavior (Fukuda et al. , 1987; Yamada et al. ,
1987) of the uniform susceptibility y( T). For instance, if
the field 0 is applied in the direction parallel to the
copper-oxygen plane, y( T) does not have significant tem-
perature dependence. When 0 is applied in the orthogo-
nal direction, however, y(T) develops a peak at the Neel
temperature, as shown in Fig. 26. Thio et al. (1988) have
shown that this can be qualitatively explained using
mean-field theory to calculate the corrections to the uni-
form susceptibility close to the Neel temperature T&,
which are due to the 30 critical coupling J in combina-
tion with the effect of spin-canting due to the anisotropic
(J ') term (7.2). The following discussion takes into con-
sideration the correction to the Hamiltonian (7.2) pointed
out by Coffey et al. (1990).
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FIG. 26. The uniform susceptibility for the case where the field
is in the direction of the b axis (perpendicular to the copper-
oxygen planes), using the results of Thio et al. (1988). The solid
line is a fit using the mean-field expression (7.14) for the stag-
gered magnetization and the theoretical results for the
temperature-dependent 2D correlation length obtained from the
spin-z antiferromagnetic Heisenberg model with J=1480 K.
The dotted line is the best fit to this expression that requires
J=1200 K.

+k[(m, ) +(m~t) ]+J'mti m2t, (7.9)

where gzD is the staggered susceptibility of the CuO2
plane and h

&
and h2 are the staggered fields on each

plane, with k an additional parameter. The free energy
can be minimized with respect to the order parameters to
yield

)
—i+J~ ]mt

+A [(mt+ +m )m++2(m+ m )m+ ],
(7.10)

where m+ =mi+m2 and h+ =h i+h2. Removing the
external fields, in the ordered phase we find

(7.11)

Differentiating Eq. (7.10) with respect to m+, we obtain
the inverse symmetric and antisymmetric susceptibilities

(X2D)
' J'+3I:J' (X~D) '—1——1(X+) = '( t

) i+J, T) T (712)

The 3D Neel temperature is determined from the equa-

Let us assume that m i and m 2 are the staggered mag-
netizations of two successive a-c (copper-oxygen) planes
with canted moments alternating in the b direction.
Treating the weak plane-plane coupling in mean-field
theory, one can write the Landau free-energy density for
a pair of layers as

f= —m, h, —m2 h2t+ t (mt2+m2t2)1

+2D

tion J'gzD =1. At low temperatures gzD can be approxi-
mated by

(42D /aH )
+2D k TB

(7.13)

where (2D =C& exp(2', /T) is the calculated 2D corre-
lation length, with p, =0.20J and C&=0.276a~, as ob-
tained from the spin- —, antiferromagnetic Heisenberg
model. Equation (7.13) approximates XzD (within a con-
stant numerical factor of order unity) at low tempera-
tures, where g( T) is very large.

Next, we shall determine the uniform susceptibility y.
The Hamiltonian (7.2) in the mean-field approximation
takes the form 2J"'(mti, M, +mz, Mz), where M, and
Mz are the b components of the magnetization in the two
neighboring planes, and m &, and m 2, are the values of
the staggered magnetization of two successive planes
which is directed towards the c direction. This is identi-
cal to the result of Thio et al. ; however, it can only be
obtained using (7.2) with the alternating directions of D;
as derived by Coffey et al. (1990). Introducing an exter-
nal field H in the b direction induces a magnetization
M, 2 =XOH, where Xo is the uniform (perpendicular) 2D
susceptibility of the copper-oxygen plane. This induces a
staggered field along the c direction given by
h + =2J 'XOH and a staggered magnetization m +

bc=2J XOIIX+, where X+ is the symmetric staggered sus-
ceptibility. Self-consistency of the mean-field theory pro-
vides the susceptibility

X=Xo+Xo(2J")'X+ . (7.14)

In Fig. 26 we show the fits of the experimental results of
Thio et a/. for the uniform susceptibility to the formu1a
(7.14). The experimental results are obtained with the
field applied parallel to the b axis. The value of J' is au-
tomatically determined from T~ and J as J'=kT~/
[g(Tz)/aH] . The constant Xo is determined from the
value of the measured g at T )& T&. The solid line is the
fit obtained by adjusting go and J ' and taking J= 1480
K, the value obtained by fitting the correlation length of
the NTT-7 crystal. The results of the fit are
XO=2. 3510 cm /mol, J"'—1 K, and J'/J
=2.8X 10 . A better fit is obtained if we allow J to
vary as well; we obtain the dotted line with J=1200 K,
go=2. 29 X 10 cm /mol, J '=3.4 K, and J'/J
=6.5 X 10 . At H =0, the layers cant in opposite direc-
tions because of the weak antiferromagnetic coupling J'.
Thio et al. have estimated the magnitude of the angle of
the canted spins from the increase in magnetization at
the critical field at which the layers cant in the same
direction. J ' can be estimated from the value of' the an-
gle 8, since in mean-field theory 0=J '/2J, giving
J"'=6.4 K, which is of the same magnitude as the value
obtained by the fit. The va1ue of go is of similar magni-
tude to the value of the perpendicular susceptibility of
the S=

—,
' square-lattice antiferromagnetic Heisenberg

model. Using X=(gpi, ) / 8J, J=1200 K, we find the
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molar value y "-1.6X10 cm /mol. The diA'erence

may be due to core magnetization or other contributions.
We expect this simple mean-field theory to give us only

a qualitative picture; its apparent quantitative success for
the susceptibility could be attributed to the fact that we
have let the parameters of the model be free to provide
the best fit.

E. Staggered magnetization

The antiferromagnetic transition in La2CuO4 was first
observed in a powder diA'raction study by Vaknin et al.
(1987) who found that the staggered moment at T =0 is
about 0.5+0. lpga. The existence of antiferromagnetic
long-range order La2Cu04 was independently confirmed
by muon-spin rotation experiments (Budnick et al. ,
1987, Uemura et al. , 1987). The integrated intensity of
the 3D antiferromagnetic Brag g peak in neutron-
scattering experiments is proportional to the square of
the order parameter [i.e., Eq.(3.19a)]. Its behavior diff'ers
from the 2D Ising-like critical behavior observed in clas-
sical antiferromagnets such as KzNiF4 (Birgeneau et al
1971). From the intensity of the Bragg peak, Yamada
et al. (1987) and Endoh et al. (1988) find that the zero-
temperature staggered magnetization is strongly depen-
dent on the sample and is strongly correlated to the oxy-
gen content of the sample. For the crystal with the
highest T& -300 K, Yamada et al. find I -0.6p~,
which is close to the value found in Sec. III for the iso-
tropic spin- —, antiferromagnetic Heisenberg model on the
square lattice. For a crystal with T&-200 K, Endoh
et al. find m =0.4pz. The latter crystal, however, may
be slightly oxygen deficient, since T~ is somewhat low.

The mean-field expression (7.11) cannot accurately de-
scribe the temperature dependence of the staggered mag-
netization observed in neutron-scattering experiments
(Shirane et al. , 1987; Yamada et al. , 1987; Endoh et al. ,
1988) in a broad range of temperatures, as expected. The
presence of the rapidly varying function g2ii(T) forcesI + (T) to saturate to its T =0 value very quickly. Singh
and co-workers (A. Singh et al. , 1990; A. Singh, 1990)
start from the itinerant description (as in the approach of
Schrieffer et al. , 1989) and consider corrections to the
antiferromagnetic Hartree-Pock state due to the propa-
gation of spin-wave excitations. When they include an
interplanar coupling of the same order of magnitude as
that discussed previously, they bind a good fit to the data
for the temperature dependence of the staggered magne-
tization away from the critical region (A. Singh et al. ,
1990).

VIII. CONCLUSIONS

We have attempted to describe the two-dimensional
quantum fluctuations and the thermal spin Auctuations of
the undoped antiferromagnetic insulator La2CuO4 in
terms of the spin- —,

' quantum Heisenberg antiferromag-

net. Despite its simplicity, this model lacks an exact
solution in two space dimensions. Its derivation from
models that are designed to capture the physics of highly
correlated electronic systems, such as the Hubbard mod-
el, by taking the strong correlation limit, is only used as
an argument for its relevance to the case of copper-
oxygen based materials. We expect it to describe the
magnetic properties of an isolated copper-oxygen plane
on I1101e geIlel al grounds.

Despite the low spin and low dimensionality of the
model, a number of techniques of analytical, semianalyti-
cal, and numerical nature suggest that the ground state
possesses antiferromagnetic long-range order. Quantum
fIuctuations, however, are significant and reduce the
value of the staggered magnetization to m =0.62
+0.04p~, i.e., 62% of its classical value. We have ana-
lyzed a collection of the most accurate results from
several authors and performed finite-size scaling analysis
to obtain the value of m for the infinite-sized lattice us-
ing the scaling form (3.20); we find that the extrapolated
values of m fall in the above range. The elementary ex-
citations above the ground state are spin waves that are
well defined at zero temperature. The various calcula-
tions give values for ground-state energy, spin-wave ve-
locity, and perpendicular susceptibility close to those ob-
tained with spin-wave theory. These results are summa-
rized in Tables I—III. There are small difterences be-
tween them, and it should be the goal of more accurate
microscopic calculations to determine these more pre-
cisely.

At any nonzero temperature the 2D Heisenberg model
is prohibited from developing long-range order. At low
temperatures (ki, T/J ((1) the correlation length associ-
ated with antiferromagnetic order is large; we find that
g( T)= C&e

' with C~- 0.276aH and —p, =0.201
(where aH is the lattice spacing). At such low tempera-
tures spin-wave excitations with wavelengths short com-
pared to this long correlation length are well defined ex-
citations; their decay rate I (k) (the width of their
spectral-function peak) is very small compared to the en-
ergy of the excitation, specifically I (k)/co(k)~0 when
T~O and kg(T)» l.

The only parameter of the model is the antiferromag-
netic coupling J, which has been determined from
neutron- and Raman-scattering experiments done on the
undoped La2Cu04. The dispersion relation for spin-wave
excitations has been measured by neutron-scattering ex-
periments. Such measurements are consistent with the
expectations from spin-wave theory. Using the calculat-
ed spin-wave velocity in terms of J, the antiferromagnetic
coupling is estimated to be around 1540+60 K. Two-
magnon excitations have been observed by Raman-
scattering experiments that confirm the two-dimensional
nature of the magnetism in the material. The location of
a broad high-frequency peak in the scattering intensity is
close to the value of the energy of two Brillouin-zone
boundary magnon excitations with nearly opposite mo-
menta corrected for magnon-magnon interaction.
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The correlation length as a function of T is extracted
from neutron-scattering experiments. It is, however,
very sensitive to departures from the exact stoichiometry
of the La2Cu04 because it is limited by the average dis-
tance between holes or impurities in the crystal. The sin-
gle crystals used to measure the correlation length are
slightly oxygen deficient, having Neel temperatures
T~=195 K and 245 K. Using the exponential form for
g( T) given above, one obtains the value for the antiferro-
magnetic coupling J needed to give a reasonable fit to the
measured values of the correlation length, J=1350 K
and 1480 K for crystals with Neel temperatures 195 K
and 245 K, respectively. We find that the crystal NTT-7,
which is closer to the exact stoichiometry of the undoped
material, gives a value of J very close to that found by
measuring the spin-wave velocity or that determined
from the moments of the Raman-scattering intensity.

The semiphenomenological theory of Tyc, Halperin,
and Chakravarty (1989) for the dynamic structure factor
is in satisfactory agreement with the measurements of
Yamada et al. (1989). The basic ingredients of this
theory are scaling, hydrodynamics, and the equivalence
between the quantum nonlinear o. model and the spin- —,

'

antiferromagnetic Heisenberg model.
The staggered magnetization at T=0 is determined

purely by the dynamics of the Cu-0 plane. The values
extracted from the intensity of the (100) Bragg peak in
the neutron-scattering data depend strongly on exact ox-
ygen stiochiometry, as expected due to the sensitivity of
the Neel temperature to the Sr or Ba doping fraction x.
The highest value reported for a T~ —300 K crystal. by
Yamada et al. (1987) is about 0.6@~, in agreement with
the value obtained from the spin- —,

' antiferromagnetic
Heisenberg model.

Thermodynamic properties of the material, such as
specific heat, magnetic susceptibility, and the staggered
magnetization at low temperature close to the magnetic-
ordering temperature, depend on the value of the 3D an-
tiferromagnetic coupling J'. As has been suggested by
the experiments of Thio et al. (1988) and Kastner et al.
(1988), these properties also depend on the value of the
planar coupling constant J ' of an antisymmetric spin-
spin interaction term, arising due to the rotation of the
Cu06 octahedra, which is responsible for the experimen-
tal fact that the antiferromagnetically aligned spins on
the copper-oxygen plane cant away from the plane to-
wards b axis by a small angle. Using a mean-field theory
to treat the weakly coupled planes where the response of
the planes enters through the "exact" 2D staggered sus-
ceptibility, one can obtain a qualitative agreement for the
observed uniform susceptibility.

This review is an attempt to summarize the initial
efforts to understand the spin- —,

' antiferromagnetic
Heisenberg model on a square lattice and its connection
to the physics behind the spin fluctuations in undoped
La2Cu04. Due to the recent theoretical and experimen-
tal effort on the subject, we expect that the subject will be
clarified further. For example, more accurate calcula-

tions and experiments are needed for the zero-
temperature excitations of the model and their lifetime.
To treat the weak interlayer antiferromagnetic coupling,
we need to go beyond the simple mean-field theoretical
treatment to cover a broader range of temperature.
Furthermore, studies of hole hopping and pairing in
quantum antiferromagnets is a subject of intense current
theoretical interest. The instability of the antiferromag-
netic state upon a small amount of doping has been sug-
gested by several calculations and is expected from physi-
cal arguments. The nature of the new state emerging
from the competition of hole-hopping and the antiferro-
magnetic order remains to be clarified.

When this work was completed, we became aware of a
review article by S. Chakravarty (1990) on the "Magnetic
Properties of La2Cu04. " The reader is referred to it for
more details about the work of Chakravarty, Halperin,
and Nelson (1989) and work on the EPR signal in

La2Cu04.
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APPENDIX: CALCULATION OF TRACES
IN HANDSCOMB*S MONTE CARLO METHOD

The trace of any string of Q operators is zero unless
the h operators in that string form closed loops. There-
fore, for a bipartite lattice, II(C„) is always non-negative.
To give a nonzero trace, any string of operators must
satisfy another condition explained below. We define the
set of states So =

t I cr; I, i = 1,2, . . . , K I, where the lattice
sites have been ordered. In the following, we give an al-
gorithm for calculating the trace of a particular string of
operators, say C„=I Q, . . . Q, Q,. I, in this space.

r 2 1

We start from the set So and we apply the operators
contained in C„, one by one and in the same order, to
every state contained in the set So to produce the sets
S„Sz, . . . , S„defined as follows. S„with n ~ r, is the
set consisting of all the possible states produced by apply-
ing the sequence C„=Q,. Q; Q; on each state con-

tained in the set So and eliminating those states which
are annihilated by the operators in the sequence. After
all r operators have been applied, the trace of C, is sim-

ply the number of states contained in the set S„.
It is convenient to introduce the following vocabulary.

A set of lattice sites connected by h or h operators is
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called a cluster. An isolated site not connected to any
other site by h or h is also a cluster (monomer). If C„ is
the identity operator, there are X monomers and there-
fore 2 possible states giving nonzero contributions to
the trace. The presence of operators eliminates some of
the states and produces a subset, say, S„. For example, if
C„contains only one operator, say h, 2, then there are
X —2 monomers and a dimer, and therefore the set S&,
obtained after the application of h, contains states that
are the direct products of the 2 states of the mono-
mers with the two possible states of the dimer. Hence
the subset S& includes 2 ' states, in this example. It is
now clear that, at the nth step, we only need to keep a
record of one representative state from S, and the clus-
ters. It is also clear that, with our definitions, if there is
one state of a cluster giving a nonzero contribution to the
trace, there will be one and only one additional state giv-
ing a nonzero contribution: the state obtained from the
first by fIipping all the spins in the cluster simultaneously.
Knowing the clusters and the representative state, for
each cluster we can construct the entire basis of S„as the
direct product of the two possible states (the one given
and the other obtained by Gipping all the spins of the
cluster). Hence the spins in a given cluster are correlat-
ed, and all possible configurations of the lattice can be
obtained as direct products of the states of each cluster.

As we have already discussed, the trace can be calcu-
lated after the application of the last (rth) operator, and
it is given by the total number of states of the set S, . In
practice, we may start from the configuration where all
the sites are monomers, selecting the fully ferromagnetic
state (all spins up) as the initial representative state, and
then apply the operators consecutively. When an h or h
operator is applied on the spins of two sites that belong
to the same cluster, we obtain zero (nonzero) if the spins
of the sites are the same (different). When one of these
two operators is applied on two sites that belong to

T(C„' ~C„) II(C„'. )
P(C, ~C,'. )=min 1,

T(C„~C„',) 11(C„)
(Al)

T(C, ~C„' ) is the probability of selecting the
configuration C„' starting from C„. The probability P and
the ratio of T's do not depend on the specific path con-
necting the states C, and C„'.. When r') r, the ratio of
T's is equal to

difFerent clusters, we always obtain nonzero; in this case
we merge the two clusters into one, and if the current
spins on these sites are parallel we change all the spins in
one of the clusters. Finally, we perform the operation
prescribed by the specific kind of operator of the se-
quence. If the operator is h we exchange the spins; other-
wise, if the operator is h, we do not perform any opera-
tion.

Having explained how the trace is calculated, we
proceed to define a Markov chain that generates a distri-
bution Il(C„) of sequences C„. Imagine a random walk in
the sampling space of sequences C, ; the current state of
the random walk C, is in one-to-one correspondence with
S„,and hence can be specified by the clusters and by giv-
ing one state of the two possible states of the cluster. At
each step of the random walk we can add or remove any
number n, or nd of operators, respectively. Let
n, =n, +nd, the total number of operators we add or
delete. Being in the state C, with r operators, we decide
to add or delete an operator with probability f„and
1 f„, respec—tively. We select a given operator to be
added with probability 1/2Kb (Xb is the number of
bonds) and the specific location in the string with proba-
bility 1!(r+ 1). We remove a given operator with proba-
bility 1/r. The acceptance probability for a transition
from the state C, having r operators to the state C,' hav-
ing r'=r +n, —nd operators, and satisfying the detailed
balance, is given by

T(C„~C,' )

T(C„' ~C„)
fr+1

1 f,+2— (A2)

The function f„ in the simulation of Manousakis and Salvador is taken as f„&0=—,
' and f0 =1. For each value of n„ the

detailed balance is satisfied. If n, is selected from the interval [1,%b], it guarantees that the Monte Carlo steps cover
the entire sample space.
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