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This review covers recent experimental and theoretical investigations into cooperative phenomena in crys-
tals containing off-center ions. These phenomena have attracted much attention in recent years because of
a general interest in disordered systems, in particular in spin glasses, whose electrical analog is the dipole
glass. Specific features of the dipole glass state in alkali halide crystals with off-center ions are discussed
and compared with spin glasses. Experimental studies performed in recent years have demonstrated that
off-center ions in highly polarizable crystals can at certain concentrations induce ferroelectric domains
with regions of macroscopic spontaneous polarization. The physical causes of this phenomenon are exam-
ined and some physical properties of crystals exhibiting such an impurity-induced phase transition are an-

alyzed. Primary emphasis is placed on the range of low impurity concentrations, where system properties
differ substantially from predictions of mean-field theory.
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I. INTRODUCTION

The ordering of dipole particles, although a subject
having a very long history, dating back to the studies of
Langevin and Debye, has continued to be important up

to the present. This is particularly true of those systems
containing impurities, which are highly sensitive to the
effect of spatial "disorder, " the random or irregular ar-
rangement of the impurities. Thus, according to the
Langevin-Debye theory, in which interaction between
particles is described within the framework of an effective
self-consistent field (the Lorentz field for dipole systems),
a "polarization catastrophe, " i.e., an unlimited increase
in the polarizability of the system, resulting in a fer-
roelectric instability, should be expected as the tempera-
ture is lowered.

However, even the earliest experiments (Kanzig et al. ,
1964; Peressini et a/. , 1969; Fiory, 1970) with alkali
halide crystals containing dipole impurities showed that
nothing of this kind actually occurred; no ferroelectric
phase transition was taking place. The explanation lies
in the specificity of the dipole-dipole interaction poten-
tial: not only the magnitude, but also the sign of the in-
teraction is strongly dependent on the relative orienta-
tions and positions of the dipoles. In systems containing
impurities this in turn leads to considerable Auctuation of
local fields acting on various dipoles due to adjacent im-

purities, with the result that the approximation of a
homogeneous self-consistent field becomes invalid. Al-
though early theoretical studies (Zernic, 1965, 1967) at-
tempted to describe experiments on the basis of various
versions of the self-consistent field method, neglecting
spatial fIuctuations of particles, it became clear from sub-
sequent analysis (Klein, 1966; Lawless, 1966a, 1966b)
that such fluctuations greatly reduce the effective polari-
zability and therefore prevent the onset of ferroelectric
instability.

It may now be regarded as established that, due to a
great spread of local fields at various crystal points, di-
pole moments at low temperatures get frozen into ran-
dom orientations, with a total absence of ferroelectric
long-range order. The situation then strongly resembles
that occurring in CuMn-type dilute magnetic alloys,
where localized magnetic moments coupled by a
varying-sign exchange interaction give rise to a spin-glass
state characterized by random orientations of magnetic
moments with zero total magnetization. Alkali halide
crystal-type dielectrics with dipole impurities can there-
fore be considered as electrical analogs of spin glasses
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and are generally called dipole glasses. Although a truly
equilibrium behavior of dipole glass, as well as many of
spin glasses, has not been fully revealed so far, the ob-
served low-temperature properties can be qualitatively
described by use of the concept of long-lived metastable
states, in which every dipole is oriented along the random
local field acting upon it.

The question of the nature of ordering in crystals con-
taining dipole impurities has recently been raised again in
view of the discovery of impurity dipoles in the highly
polarizable dielectric KTa03. Thus Vugmeister and
Glinchuk (1980) demonstrated that the possibility of a
ferroelectric phase transition in such compounds is in-
creased by spatial dispersion of permittivity, which is
usually considerable in highly polarizable media. The ex-
istence of spatial dispersion, characterized by the polar-
ization correlation radius r„changes the effective in-

teraction potential between dipoles so that the interac-
tion between impurities separated by distances r & r,
turns out to be predominantly ferroelectric and more
complicated than is the usual dipole-dipole interaction;
hence the interaction is not specifically a dipole one. Be-
cause of the specific nature of the interaction,
configurational fiuctuations of local fields (which prevent
the ferroelectric phase transition in weakly polarizable al-
kali halide crystals) decline, and a long-range order can
appear in the system at high enough impurity concentra-
tions. A dipole glass phase can also form under certain
conditions.

Which of the above-mentioned ordering types does
occur~ This question has been the subject of numerous
arguments and discussions continuing to the present day.
It can nevertheless be stated by now that the situation in

highly polarizable crystals is radically different from that
in traditional dipole glasses, and quite a number of exper-
iments show convincing evidence for the occurrence of
dipole impurity-induced ferroelectric phase transitions.

The most typical representatives of dipole impurities
exhibiting cooperative properties are off-center ions, the
so-called substitutional impurity ions, whose equilibrium
positions are displaced from a lattice site. It is clear that
an off-center impurity/vacancy (due to an absent site
atom) set in an ionic crystal has an effective electric di-

pole moment. The direction of such dipoles, i.e., the po-
sition of an ion, which may have several positions, is not
random, but is determined by the crystal symmetry.
Thermal or tunnel jumps between various positions may
occur. Therefore the dipoles are not frozen and, like di-

pole molecules, such as OH, can be oriented by both
external and internal electric fields, which is the prere-
quisite for the appearance of temperature-dependent
cooperative effects.

The first off-center ion to be detected was Li+ in KC1
(Lombardo and Pohl, 1965). After this, off-center ions
were found in many other substances, including not only
classical dielectrics, such as alkali halide and alkaline-
earth crystals, but also more complex compounds under-

going structural phase transitions or being near the sta-

bility threshold. The appearance of the off-centrality was
as a rule encouraged by the great difference between ionic
radii and polarizabilities of substituent and substituted
atoms, upsetting the balance of polarization and repul-
sive forces at the centrally symmetric point of the unit
cell.

The presence of off-center ions changes considerably
the crystal properties, giving rise to anomalies in the
specific heat, thermal conduction, and sound absorption,
as well as to specific features in Raman and infrared spec-
tra and to changes in electric, dielectric, magnetic, and
other properties. The research conducted to date has
been partly systematized in reviews by Narayanamurti
and Pohl (1970), Dejgen and Glinchuk (1974), Barker and
Sievers (1975), Bridges (1975), and Kopvillem and Sa-
burova (1982). These reviews, however, are primarily
confined to discussing individual properties of off-center
ions and their independent individual effects on the host
crystal. In contrast, the present review will focus atten-
tion on features of cooperative phenomena stemming
from the interaction of impurity dipoles.

This review will therefore be aimed at discussing the
principal features of cooperative behavior of dipole im-
purities in dielectric crystals. We shall not consider the
so-called structural glasses in polar materials, such as
ADP-RDP systems, which are dealt with in numerous
publications [e.g., the reviews of Courtens (1983, 1985)].
The term '"dipole glasses" will further imply systems con-
taining dilute impurities and featuring dipole-dipole in-
teraction forces, i.e., only the cooperative behavior of di-
pole impurities in dielectric crystals will be dealt with.
Due to the similarity of such systems to magnetic spin
glasses, the opinion is often expressed that dipole glasses
are fully analogous to spin glasses, and general proposi-
tions of spin-glass theory are sometimes even illustrated
by use of an example from the dipole glasses (Binder and
Young, 1986). One of the objectives of this review is to
demonstrate a certain specificity existing here and to at-
tract the attention of readers to this problem. In particu-
lar, no experimental data for dipole glasses give evidence
of the occurrence of an equilibrium phase transition to
the state of dipole glass. This was most clearly shown by
measurements of nonlinear dielectric susceptibility
(Saint-Paul and Gilchrist, 1986). The experiment detect-
ed no critical growth of the susceptibility, as is the case
in spin glasses such as CuMn and others; hence the situa-
tion in dipole glasses differs radically from that occurring
in classical spin glasses. Such a difference appears to
stem from the specificity of the dipole-dipole interaction
potential, since recent experiments with magnetic dipole
glasses (Reich et al. , 1986) likewise revealed no indica-
tions of an equilibrium phase transition to the state of di-

pole spin glass.
This review has a limited goal: to consider a specific

class of systems with dipole impurities in dielectric crys-
tals. The authors therefore have deliberately avoided re-

peating information that can be found in other reviews
and, on the contrary, have tried to cover those aspects of
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the problem which were dealt with only a little or not at
all in other reviews.

We did not set ourselves the task of discussing various
theoretical models of spin glasses (as applied to dipole
glasses). This has already been done in sufficient detail in
other reviews (Fischer, 1983; Binder and Young, 1986)
and besides, as mentioned above, applying spin-glass
models to dipole glass fails to explain many observed
phenomena. Rather, we tried to show that specific prop-
erties of dipole glass stem from the specificity of the po-
tential of the dipole-dipole interaction at a random ar-
rangement of particles. This, as will be seen, makes it
possible within the framework of a single formalism to
trace the changes in system properties with varying
dipole-dipole interaction potential in highly polarizable
crystals.

The review includes a discussion of experimental and
theoretical studies of the dipole-glass state in alkali halide
crystals (Sec. II). The causes of the appearance of fer-
roelectric ordering in highly polarizable crystals contain-
ing dipole impurities (off-center ions) are presented in
Sec. III. Section IV deals with the results of experimen-
tal and theoretical research into specific features of such
crystals. In the Appendix, by the use of some model sys-
tems, the random-local-field method which is employed
in this review is tested, and, as will be shown below,
makes it possible to understand at a qualitative and semi-
quantitative level many distinguishing features of disor-
dered dipole systems.

II. DIPOLE GLASS IN WEAKLY
POLAR I ZA 8LE D I ELECTR I CS
CONTAINING OIPOLE IMPURITIES

This section will discuss the efFect of dipole forces act-
ing between oA'-center ions and other similar impurities
on low-temperature properties of weakly polarizable
dielectrics whose typical representatives are alkali halide
crystals.

A. Observed properties

IO2 lQ4
cu (Hz)

FIG. 1. Real part of permittivity of KC1:Li as a function of fre-
quency co (n =3X10' cm ). Values for T (K): curve 1, 1.5;
curve 2, 0.8; curve 3, 0.25; curve 4, 0.4. After Fiory, 1970.

behavior. When impurities are introduced, permittivity c
increases and becomes strongly dependent on frequency
(Fig. 1). As can be seen, the permittivity decreases mono-
tonically with increasing frequency in the range from
10 to 10 Hz, which indicates a considerable spread in
relaxation times. At not-too-low temperatures, however,
the frequency dispersion of E practically ceases at fre-
quencies of about 10 Hz, and therefore the tempera-
ture anomalies in s, observed at these frequencies (Fig. 2),
may be regarded as not resulting from the usual relaxa-
tion eAects.

Figure 2 shows the temperature dependence of the ex-
cess permittivity Ac=a —E0 of KCl:Li for various con-
centrations of ofF-center ions. As can be seen from Fig. 2,
at high temperatures Ac. is directly proportional to the
concentration of lithium dipoles and it decreases with
temperature as T ' in accordance with the Langevin-
Debye law. At low concentrations of ofF-center ions, the
efFects of interactions do not show up at a11, and the be-
havior of AE is determined by the magnitude of the tun-
neling splittings. As the concentration is increased, a
maximum appears in the temperature dependence of Ac,
becoming sharper at higher concentrations. The temper-
ature T of the maximum of AE, determined by Fiory
(1970) for various dipole systems, is proportional to the

We begin by discussing typical experimental results in
which characteristic properties of dilute dipole systems
show up most markedly.

IQ—
~yeV'M

1. Dielectric susceptibility

The first observations of dielectric properties in dilute
dipole systems were described by Kanzig, Hart, and
Roberts (1964). This study was then substantially ex-
tended and generalized by Fiory (1970), who investigated
KC1:Li, NaBr:F, KC1:OH, and RbC1:OH systems. These
studies have recently been continued by Potter and An-
derson (1981a, 1981b), Moy et al. (1983), Saint-Paul
et al. (1983), de Yoreo et al. (1984), and Saint-Paul and
Gilchrist (1986).

All the systems studied by the above exhibit a similar

Q.I—
I

Q. I

I

I.Q
T(K)

IQ

FICs. 2. Temperature dependence of permittivity excess Ae of
KCI:Li. Values for n (cm }:curve 1, 10'; curve 2, 4.5X10';
curve 3, 10' . Solid curves were calculated from Eq. (2.2).
After Fiory, 1970.
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FIG. 3. e'( T) in KCl:OH (Fiory, 1970; Medina et al. , 1984).
FIG. 5. Residual polarization in KCl:Li as a function of time
(Fiory, 1970).

kT =nd* /C.0, (2.1)

mean energy of the dipole-dipole interaction and approx-
imately corresponds to the relation

the E maximum is more pronounced than that in Fig. 2.
The frequency dependence of the temperature of the
maximum is adequately described as T ~ —1/1n(co/v).

where n is the concentration of impurities and d ' is their
effective dipole moment with allowance for the Lorentz
field correction. In simple cubic crystals,
d*=(so+2)d/3, where d is the intrinsic dipole moment,
determined by the off-'center displacement magnitude.

Figure 2 also shows that the excess permittivity values
observed at T ) T are considerably lower than those
predicted by the self-consistent mean-field theory in the
form of the Clausius-Mossotti equation

c.—1 ~p 1 4m.+ ngp,6+2 Ep+2 3

where go=(2d /3b, )th (b, /2kT) is the single-particle po-
larizability of noninteracting impurities and 6 is the tun-
neling energy (for Li in KC1, b, /klan

—1 K). These results
can be explained only if go in Eq. (2.2) is replaced with

go(1 —(B /T) ), where B = T . Hence the high-
temperature behavior of permittivity clearly sho~s that
the dipole correlations reduce the polarizability of the
system and therefore prevent the ferroelectric instability
(E~ ~ ) allowed by Eq. (2.2).

Figure 3 presents the dielectric susceptibility in the
KC1:OH system (Medina et al. , 1984). Since for OH
molecules the tunneling splitting value is 6/k~ (&1 K,

p {p.K/m2)

2. Residual polarization

The observed (Fiory, 1970) hysteresis loop and residual
polarization are direct evidence that interacting impurity
dipoles can orient one another. The effect becomes ap-
preciable at n ) 10' cm and temperatures below 0.3
K. A typical hysteresis curve is shown in Fig. 4. At
higher temperatures the loop area decreases, and at T & 1

K the hysteresis vanishes altogether. The hysteresis
loop shape is quite different from that observed for
ferroelectrics. Moreover, the residual polarization
(P„=10%nd" ) as well as the coercive field are very small
in comparison wi. th ferroelectrics.

Hysteresis has been found to be accompanied by a heat
release both when the electric field is increased and when
it is reduced. At low temperatures, the heat release due
to the hysteresis impeded the observation of the electro-
caloric effect, which was investigated at higher tempera-
tures by Kapphan and Luty (1968).

The residual polarization has also been measured after
cooling the specimens in an electric field and then turn-
ing off the field. Figure 5 shows the time dependence of
the residual polarization to be logarithmic. The polariza-
tion decays very rapidly initially, but then varies very
slowly. The dependence of the residual polarization on
the dipole concentration is close to quadratic, P, ~ n (see
Fig. 6).

IQQ Speclflc heat

IO 20 50
E (kV/sm)

FIG. 4. Hysteresis loop of KC1:Li (T=0.06 K; n =3X10'
cm ). After Fiory, 1970.

The temperature behavior of the specific heat changes
with increasing concentration of off-center ions. For
KCl:Li, a maximum due to the presence of tunneling
states exists at low concentrations (Peressini et al. , 1969),
but at higher concentrations the specific heat increases
monotonically with temperature over the entire attain-
able temperature range. No marked anomalies have been
found near T . The temperature range of the measure-
ments was, however, limited, since the contribution by
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4. Absorption of ultrasound

40 IOO 200
nd (p.Klm )

FIG. 6. Concentration dependence of residual polarization in
KC1:Li {t=60 s; T =0.2 K). After Fiory, 1970.

—1/2 T3/2
V (2.3)

the lattice specific heat, which increases approximately at
T, begins to predominate at higher temperatures. Due
to the high specific heat of the tunneling states, highly
concentrated samples had to be selected to observe the
interaction effects. Beginning from a concentration
n =7X10' cm, the low-temperature behavior of the
specific heat followed the relation (Fiory, 1970)

Bayer and Sack (1968) detected evidence of cooperative
effects in experiments with ultrasound. The effect of off-
center ions on the scattering and absorption of sound is
due to the interaction of the elastic moment of an off-
center ion with the lattice distortions produced by the
sound wave, which increases the elastic compliance of
the crystal. At high temperatures, where no interaction
between impurities shows up, the change 5s/s in the elas-
tic compliance is determined by the susceptibility of iso-
lated elastic quadrupoles and, like the temperature
dependence of the permittivity, should follow the relation
6s/s ~ T '. Experiments have shown a departure from
this relation to occur with decreasing temperature, the
actual relation being approximately 6sls o- (T+0) '. It
follows that the interaction effect reduces not only the
polarizability of electric dipoles coupled to off-center
ions, but also the susceptibility associated with elastic di-
poles. The 0 value is close to T, which indicates the
governing role played by electric dipole-dipole forces in
this phenomenon. This conclusion has been confirmed
by numerical estimates (Bayer and Sack, 1968) which
have shown the elastic interactions between off-center
ions to be indeed of minor importance here.

m 0.4

0.2

I 2
I

T(K)

FIG. 7. Comparison of calculated specific-heat values with ex-
perirnental results and theoretical predictions: Curve 1, experi-
ment {de Yoreo et al. , 1984); curve 2, calculations of Vugmeis-
ter; curve 3, theoretical predictions of Klein et al. , 1976. Ex-
perimental data correspond to x =0.002 (n=3X10' cm ).
C =C,„pp/n, where p=2gcrn, is the single-particle specific
heat.

Using an analogy with ferromagnets, where the relation
C, ~ T is due to the contribution of spin waves, Fiory
(1970) suggested that polarization waves may exist in di-
lute dipole systems, but his detailed studies revealed no
indications of the existence of such collective excitations.

More detailed measurements of the specific heat were
conducted for the KC1:OH system by de Yoreo and
Pohl (1984; see also Kapphan and Liity, 1968). A diffuse
maximum, typical for disordered systems, was observed,
whose temperature somewhat exceeded that of the per-
mittivity maximum (de Yoreo and Pohl, 1984). At an
atomic concentration X =0.1% the low-temperature
behavior of the specific heat is fairly accurately described
by the relation C, ~ T ~, but at X =0.2% (Fig. 7),

C, ~ T over a wide temperature range.

5. Thermal conductivity

The effect of off-center ions on the thermal conductivi-
ty is due to scattering of phonons by tunneling states.
The maximum thermal resistance should therefore be ob-
served when the energy of thermal phonons becomes
comparable with the tunneling splitting energy. The
dipole-dipole interaction shows up as an increase in tun-
neling energy due to the Stark effect, which is accom-
panied by an increase in the scattering cross section for
higher-frequency phonons and shifts the thermal resis-
tance maximum towards higher temperatures (Peressini
et al. , 1969; Fiory, 1970).

Manifestations of electric dipole-dipole interactions be-
tween impurities have also been observed in some other
experiments. In particular, Liity (1967) has found a con-
centration dependence of the electro-optic and elasto-
optic effects. Data on the concentration dependence of
the infrared absorption coefficient have been reported by
Barker and Sievers (1975).

B. Theoretical concepts

The experimental data presented above allow the fol-
lowing basic features of cooperative behavior of dipole
impurity systems in weakly polarizable dielectric hosts to
be identified: (1) Interaction effects reduce the polariza-
bility of the system and produce no spontaneous polar-
ization. (2) The presence of residual polarization and a
logarithmic frequency dependence of the permittivity in-
dicate that the low-temperature behavior of the system is
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characterized by metastable states having very long re-
laxation times.

Let us now consider the physics of the observed phe-
nomena.

1. Decrease in dielectric susceptibility
due to dipole interaction

(2.4)

contains the effective rather than the true dipole mo-
ments (we shall discuss this point in greater detail in Sec.
IV); E, is the effective local field (in energy units) acting
on the ith dipole from adjacent impurities; n =r/r; and I,
is the unit vector indicating the dipole-moment direction,
l, =d, /d, .

We shall hereafter neglect tunneling effects, consider-
ing all dipoles as classical ones. This, as a rule, is not a
serious limitation, since cooperative effects manifest
themselves only when the mean dipole-dipole interaction
energy exceeds the tunneling energy. In fact, from the
Hamiltonian of Eq. (2.4) with classical dipoles it follows
(Lawless, 1966a) that at T ) T,„ the effective single-
particle polarizability y becomes smaller than the polari-
zability of noninteracting particles neo. To explain this
fact, we use the virial expansion and represent g as

x &Xo+& d& —,xi2 I' xo (2.5)

where g&z is the polarizability of a pair of dipoles in-

teracting in accordance with the Hamiltonian of Eq.
(2.4). The integration in Eq. (2.5) allows for the spread in
the mutual positions of interacting pairs and brings g to
the form

y =neo(1 B /T) . — (2.6)

The value of the coefficient 8 depends on the number of
possible directions of a dipole in the lattice. Thus, for
orientations along the [100]direction, B =0.25d" n/kEO,
which is somewhat smaller than the experimental value,
B =T [Eq. (2.1)]. Lawless (1966a) has shown that the
agreement with experiment can be significantly improved
by excluding from Eq. (2.S) the contribution of "frozen"
pairs whose energy exceeds kT, although the necessity

The fact that temperature T [Eq. (2.1)] is proportion-
al to the mean dipole-dipole interaction energy is direct
evidence that it is just this interaction that is dominating,
although elastic interactions may also be substantial in
some cases.

It has been shown (Mahan, 1967; Mahan and Mazo,
1968) that when interaction between electric dipoles in a
polarizable medium is considered, the difference between
the field acting on a dipole and the macroscopic electric
field should be taken into account. As a result of this
de'erence, the dipole-dipole interaction Hamiltonian

V„d =—g 3 [d,"d,*—3(n;, d,*)(n;,d,*)]1 1

Ep . I",

for such an exclusion of close pairs was not clear from his
study. Vugmeister and Stefanovich (1988a) demonstrated
the exclusion of close pairs to be due to the fact that the
dynamic rather than the static susceptibility is measured
in experiments of the type conducted by Fiory (1970) and
de Yoreo et al. (1984) (although the measurement fre-
quencies are ultralow). The calculation of the second dy-
namic virial coefficient B (co), carried out by Vugmeister
and Stefanovich (1988a), yielded a value that indeed con-
siderably exceeded that of the second static virial
coe%cient, the dependence of the second virial coefficient
on the frequency of the applied field being logarithmic
(see Sec. III C). The values of T calculated by Vugmeis-
ter and Stefanovich (1988a) are in agreement with experi-
ment.

At T~ T, as can be seen from Eqs. (2.1) and (2.6) the
virial series diverge and the pair approximation becomes
invalid. Hence the conclusion, derived by means of pair
approximation, that the system polarizability at T )T
decreases due to the dipole-dipole interaction (which
prevents the ferroelectric phase transition) cannot as yet
serve as a convincing argument of the impossibility of a
spontaneous polarization at T ( T (elucidating this
point calls for other approaches, which will be discussed
below).

2. Residual polarizations

—W//GT (2.7)

where v is the frequency of reorientation of isolated di-
poles.

When the residual polarization is measured at the ini-
tial time, all the dipoles are aligned in the external elec-
tric field 6 and their average dipole moment is
d*~cosO~ =d*/2, where 0 is the angle between 8 and r,
and the bar denotes spatial averaging. After the field has
been turned off; most of the dipoles depolarize rapidly in
a time 1/v, but those dipoles with close neighbors will
take much longer to depolarize, namely, a time 1/v,

The pair approximation can, however, explain the ex-
istence of the residual polarization, whose appearance re-
sults from the fact that reorientation of every dipole in a
pair is dificult since it requires surmounting an addition-
al potential barrier produced by an adjacent dipole. The
closer the dipoles are to one another, the higher the po-
tential barrier, and hence the longer the relaxation time
of the dipole moment of the pair.

Let us now estimate the magnitude of the residual po-
larization on the assumption that the dipoles ean rotate
freely (Fiory, 1970). In this case the minimum pair ener-

gy corresponds to two configurations in which the two
dipoles are either parallel or antiparallel to the radius
vector r that connects them. The mean frequency v of re-
orientation of the total dipole moment of a pair is deter-
mined by the potential barrier 8 =d* /d'or separating
the two minima:

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990
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since the potential barrier has to be surmounted for a
pair to depolarize. The spacing of the dipoles in a pair
being random, the resultant residual polarization is given
by

P =—'nd n dre
2

(2.8)

For long enough t in Eq. (2.8) we can approximate

exp[ —v( W)r] =0[ W —T ln( vt) ],
(Ma, 1980), which greatly simplifies the integration and
finally yields

nd*'
3 Eok T ln( vt)

(2.9)

3. Dipole glass: Comparison with spin glasses

The presence of residual polarization clearly shows
that at low temperatures the system is characterized by
metastable states separated from one another by potential
barriers. A minimum of the dipole-dipole interaction
Hamiltonian of Eq. (2.4) with respect to possible direc-
tions of every dipole, i.e., a local minimum (Bray and
Moore, 1981) occurs in the metastable states. The condi-
tion for this minimum yields

Thus P, ~n, which agrees with experiment. Howev-
er, Eq. (2.9) predicts an inverse logarithmic time depen-
dence of P„, while the experimental data shown in Fig. 5

give a better fit to the relation P„~c onst —In(vt). This
difference can be attributed (Ma, 1980) to a more accu-
rate integration in Eq. (2.8), which is to be performed at
not too great t. Moreover, allowance for a discreteness of
dipole orientations reduces the value of the numerical
factor in Eq. (2.9); for example, at d~~[100] the factor is
0.4.

tions. Such a low-temperature state of dipole moments
randomly oriented in internal fields is commonly referred
to as a dipole glass state, by analogy with a spin-glass
state, which features similar properties (Edwards and
Anderson, 1975; Fischer, 1983; Binder and Young, 1986).

Note, however, that the term "spin glass" is not as yet
narrowly defined in the literature. It is sometimes used
to denote only a special "nonergodic" state for which the
relaxation time tends to infinity when the specimen di-
mensions tend to infinity, in contrast to, say, ordinary
glasses for which the relaxation time is a characteristic of
the material. No experimental evidence of such nonergo-
dicity originating in dipole glasses is available so far. In
other words, there is so far no final answer to the ques-
tion of whether the dipole glass state occurs in real physi-
cal systems as a thermodynamic equilibrium one or
whether it differs from the paraelectric state only by the
presence of long-time relaxation modes. Although in an
experiment it is rather difficult to distinguish nonequili-
brium freezing from a truly equilibrium phase transition
(these phenomena differing in an experiment only by the
degree of pronouncedness of characteristic anomalies),
studies of nonlinear dielectric susceptibility in KC1:C)H
(Saint-Paul and Gilchrist, 1986) revealed no effects of a
critical increase of the susceptibility at all (see below), in
contrast to the situation in CuMn-type spin glasses,
which obviously argues against an equilibrium phase
transition to the dipole glass state.

Therefore, when speaking of an analogy between the
dipole glass and the spin-glass state, we mean simply an
analogy between systems of randomly distributed spins
and dipoles, whose interaction potential can change its
sign. Just such systems of spins are denoted by the term
"spin glass" in most publications.

4. Absence of long-range order

E;=A,;d;, (2.10)

where A, , are the Lagrange factors corresponding to the
conditional extremum of Eq. (2.4) at ~d;~ =const. It can
also be shown (Bray and Moore, 1981) that A, ,

~ 0 for all

Consequently, in metastable states at T =0, every di-
pole is oriented parallel to its local field, i.e., the system is
characterized by "frozen" configurations of dipole mo-
ments. At finite temperatures (but lower than charac-
teristic heights of barriers between metastable states), the
local field strength determines the average thermal value
of the dipole moment. Due to this, the local-field distri-
bution function f (E)=6(E E; ) is the basic charact—eris-
tic of metastable states. (The overbar denotes averaging
over impurity configurations. At T =0, thermal Auctua-
tions of E, may be neglected. )

Because of the variable-sign nature of the dipole-dipole
interaction potential and the random spatial distribution
of dipoles, local fields at the impurities have different
directions, and therefore, at low temperatures and no
external actions, dipoles are frozen in random orienta-

Let us now discuss why disordered dipole systems ex-
hibit no spontaneous polarization or long-range fer-
roelectric order. We assume that, as usual, the crystal is
under conditions of a zero depolarizing field. ' The ab-
sence of spontaneous polarization is in this case not obvi-
ous, since with all the dipoles coherently oriented in one
and the same direction, the mean local field E, equal to
the Lorentz field E, =(4ir/3)(d "n/Eo) in the system will

be nonzero. With small configurational fluctuations of
local fields, the presence of a nonzero mean field is known
to result in the energetic favoring, at low temperatures,
of a state with coherently aligned dipoles; this state may
therefore arise spontaneously. It has, however, been
shown (Aharony, 1978; Vugmeister, 1984a; Vugmeister
and Stefanovich, 1987a, 1990) that configurational fiuc-
tuations in a disordered dipole system are substantial, so
that states with a preferred orientation of dipole mo-

'For example, between the plates of a shorted capacitor.
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ments are not energetically favored because they do not
meet the condition of a local minimum of the Hamiltoni-
an (Vugmeister, 1984a).

Following Vugmeister (1984a), we introduce a unit
vector l(E) which indicates the direction of the dipole
moment of an impurity in a local field E. It follows from
Eq. (2.10) that l(E)=E/E at T~O. If some preferred
orientation of dipole moments exists in the system at low
temperatures, then the value

(2.1 1)

(E)=— 6
(2.12)

rr (E EoL) +6-
where 6 =5. 1nd /c0 is the half-width and
E0=3.5nd'/E0 is the maximum most probable local
field. Substitution of Eq. (2.12) in Eq. (2.11) shows that a
solution with LAO is possible only with (2Eolir6) ) 1,
which cannot happen for the above values of E0 and 6.
A similar result is also valid for randomly oriented dipole
moments.

Consequently, ferroelectric long-range order in dipole
glasses with the dipole-dipole interaction Hamiltonian
(2.4) is completely absent. This was first inferred by
Aharony (1978), who considered the case of a continu-
ously degenerate dipole system and analyzed its stability
with respect to transverse fluctuations of the internal
field. The above proof demonstrates (Vugmeister and
Stefanovich, 1990) that, in a purely dipole system, long-
range order is destroyed not only by transverse, but also
by longitudinal Auctuations and is therefore equally appl-
icable to discretely oriented dipole moments. Moreover,
the above analysis shows that even a small change of the
ratio between the E0 and 6 values would su%ce for fer-
roelectric ordering to occur. The next section will show
that just such a situation takes place in highly polarizable
crystals.

5. Main properties of dipole glasses

L—:I= jdE f (E,L)l(E)
will not be zero; the L value determines the relative num-
ber of coherently aligned dipoles and may be considered
as a long-range order parameter. The solution of Eq.
(2.11), the dependence of f (E) on L, having been found
beforehand, will answer the question of whether such a
nonzero order parameter does exist in a dilute dipole sys-
tem whose Hamiltonian is given by Eq. (2.4).

The function f (E) is readily calculated by neglecting
the correlations between orientations Qf dipole moments
and making use of the random-local-field approximation
(for more detail, see Sec. III C and Appendix). When di-
pole moments have only two possible orientations, i.e.,
l(E)=+1, then

random-mean-field approximation, which corresponds to
replacement of E; with (E; ) in Eq. (2.4). This yields

f (E)=&(E —(E; ) ), (2.13)

where ( ) is the thermal average. In contrast to the
T =0 case, not all the dipoles, but only those whose ener-
gy exceeds kT, are in this case frozen in local fields.

The relative number of frozen dipoles is

(2.14)

~ 0.6

0.4

Q.2

and this quantity may be considered as an order parame-
ter of dipole glass (angle brackets denote a statistical
averaging at a given local-field value). Klein et al. (1976)
assumed a priori that L =0. The function f (E) found by
them is a Lorentzian which is symmetric relative to E =0
and whose width is 5~@. Calculated values of p(T) are
shown in Fig. 8, where an arrow indicates the tempera-
ture T corresponding to the permittivity maximum
which is also presented by these authors.

In particular, it can be seen that about 80% of all the
dipoles (p=0. 8) are completely frozen in local fields at
T= T . With increasing temperature, p( T) decreases
rapidly and becomes practically zero at T=10T; how-
ever, this function does not become strictly equal to zero
at any temperature, since configurations were assumed to
exist in which two dipoles could be spaced at an arbi-
trarily small distance from each other, and therefore
closely spaced frozen pairs whose energy exceeds kT will
be found for any temperature. Fischer and Klein (1976)
attempted to consider a somewhat more realistic model
by introducing a minimum possible finite spacing of di-
poles. This model eliminates the nonphysical contribu-
tion of closely spaced pairs (whose spacing is less than
the lattice constant) and predicts that above T the per-
mittivity should exhibit a considerable cusp at the tem-
perature T ~n . At T) T, p=0, and the behavior
of p( T) is described by the Langevin-Debye law.

However, careful attempts (Potter and Anderson,
1981a, 198lb; de Yoreo et al. , 1984) to detect experimen-
tally any cusp of AE at T & T have proven unsuccessful.
The absence of such a cusp appears to be due to the fact
that pairs of dipoles whose spacings are on the order of

Klein et al. (1976) described the thermodynamics of
dipole glass at finite temperatures in terms of the 0

I I

2
T~/ T

It is clear from the foregoing that only quasiequilibrium prop-
erties in metastable states have actually been dealt with.

FICz. 8. Temperature dependence of dipole glass order parame-
ter (Klein et al. , 1976).
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the lattice constant are responsible for the singularity of
Ae at T=T~; the possibility of describing such closely
separated particles within the framework of the random
mean-field approximation, neglecting the correlation
effects, is very doubtful. Moreover, it is not at all clear to
what extent a description in terms of the local-field distri-
bution of Eq. (2.13) is applicable at high temperatures,
since this equation ignores the thermal fIuctuations of lo-
cal fields.

It is obvious that, with an allowance for thermal Auc-

tuations, the local-field distribution function should be
represented as

(2.15)

rather than by Eq. (2.13).
It can be shown, in particular, that, when we use Eq.

(2.15), Eq. (2.11) is formally strictly valid, at least for the
cases of two and eight possible orientations of dipole mo-
ments (Gallen, 1961; Thomsen et al. , 1984; Vugmeister
and Stefanovich, 1988b). It is, however, clear that practi-
cal use of Eq. (2.15) calls for certain approximations.
Vugmeister and Stefanovich (1987a) suggested that in
calculating f (E) one neglects the correlations between
orientations of dipole moments of different particles. In
this case f (E) can be shown to assume at finite tempera-
tures the same form as at T=O, i.e., the temperature
dependence of f (E) is governed by the dependence L (T)
alone and the dipole glass order parameter of Eq. (2.14)
does not appear in the theory. Therefore, ignoring the
correlations in Eq. (2.15), we lose the possibility of
achieving a phase transition to the dipole glass state.
However, as has already been noted, just such a point of
view is substantiated by experiments with alkali halide
crystals containing dipole impurities, since indications of
an equilibrium phase transition to the dipole glass state
were not observed in any experiment.

Figure 7 compares the specific-heat values for d ~~[111],
calculated by Vugmeister and Stefanovich (1987b, 1989)
using Eq. (2.15), with experimental values for KCl:OH
and the theoretical predictions of Klein et al. (1976).
(Although, for OH, the experimental values were for
d~~[100] rather than [111], this difFerence should not
significantly affect the specific-heat behavior. ) As can be
seen from Fig. 7, the theory developed by Vugmeister
and Stefanovich shows a fairly good qualitative agree-
ment with the experimental data on the specific heat in
classical dipole glasses, such as KCl:OH, and describes
the experiment much better than does the theory of
Klein et al. (1976). Although, according to Klein et al. ,
C, ~ T at T~O, the linear portion of the specific-heat
curve presented by them is not reproduced within the ex-
perimental temperature range, the C, dependence on T
being weaker than linear. In contrast, the theory of Vug-
meister and Stefanovich (1987b, 1989) reproduces a con-
siderable linear portion of the specific-heat curve ob-
served at 0.2 at. % OH . Moreover, the high-
temperature behavior of the specific heat presented by
Klein et al. (1976) is seriously off, whereas the high-

(2.16)

where g& is the linear and y„, the nonlinear susceptibility.
A graph of the dependence y„,( T) obtained by Vugmeis-
ter and Stefanovich (1988b) is shown in Fig. 9. As can be
seen, y„&(T) increases continuously with decreasing tem-
perature. Figure 9 also shows experimental values of the
susceptibility, calculated from the values of the
coefficient a3(T), presented by Saint-Paul and Gilchrist
(1988); this coefficient, according to these authors, is
determined by the relation

where

9 s, (E, —eo)a3( T)
5 (2E, +co)(2Ei+Eo)(kT)

(2.17)

c, , =—,'[(co+a ')+Q(r '+so)2+8EO];

k, T
ifd /eo

'Curve 1b in Fig. 9.

temperature portion of the specific-heat curve calculated
by Vugmeister and Stefanovich (1987b) is asymptotically
exact as it follows from a comparison with a virial series.
Note also that the linear low-temperature portion of the
specific-heat curve in the random-field approximation
stems from the fact that f (E) [Eq. (2.12)] tends to const
at E~O. According to Baranovskii et al. (1980), who
examined the part played by correlations at T~0, taking
account of correlation effects for a dipole system results
in only an insignificant change in the linear dependence
of the specific heat, which turns into a T/~lnT~' -type
dependence, as a consequence of the fact that (E)~0 at
E~O. Kirkpatrick and Varma (1978) conducted a nu-
merical Monte Carlo modeling of f (E) at T=O, which
confirmed that f (E) becomes zero at E =0, but they in-
terpreted the derived dependence as f (E) ~ &E, which
resulted in C~ T. However, as Baranovskii et al.
(1980) have asserted, the accuracy of the numerical ex-
periment conducted by Kirkpatrick and Varma (1978)
does not permit us to distinguish between T/~lnT~' and
T3/2

In a recent paper Klein (1989) also took into account a
tunneling splitting using a pair approximation.

We also note that isotropic correlations of length
R, ~n ' arise in KC1:OH type dipole glasses at low
temperature (Vugmeister and Stefanovich, 1989).

Vugmeister and Stefanovich (1988b, 1989), using the
random-local-field method, calculated the nonlinear sus-
ceptibility of KC1:OH, measured by Saint-Paul and Gil-
christ (1986).

The dielectric susceptibility of dipoles can be accurate-
ly represented, to the terms quadratic with respect to the
external electric field 8, as
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FIG. 9. (a) Temperature dependence of nonlinear dielectric sus-
ceptibility and (b) coefficient a3. Curve 1, experimental results
(Saint-Paul and Gilchrist, 1986); curve 2, theoretical predictions
(Vugmeister and Stefanovich, 1988b).

Saint-Paul and Gilchrist (1986) demonstrated that Eqs.
(2.17) separate out from the total susceptibility the eft'ects

of macroscopic dipole correlations, phenomenologically
described by Qnsager's reactive field. The coeKcient a3
then takes into account only the correlations not de-
scribed by the Qnsager theory. Since the theory of Vug-
meister and Stefanovich (1988b) requires no such
artificial subdivision of the correlation effects, Eqs. (2.17)
may be simply considered as the determination of the
coeIIIicient a3 and of its relation to g„~.

It is essential to emphasize that in the case of a critical
increase in nonlinear susceptibility the coe%cient a 3

should have increased with lowering temperature. The
experiment, however, demonstrated the opposite behav-
ior, in agreement with the theory of Vugmeister and
Stefanovich (1988b), namely, a decrease in the coe%cient
a3 with lowering temperature. The same behavior was
also observed for the coeScient a ~, which determines the
nonlinear susceptibility of the fourth order.

From Fig. 9 it can be seen that the latter theory quali-
tatively describes the experiInental results on the non-
linear susceptibility without the use of any fitting param-
eters (the value of the eAective dipole moment of OH
d*, was measured from independent experiments). This
evidence supports the adequacy of the proposed theory,
based on the random-local-field method with allowance
for the interaction potential of Eq. (2.4), to account for

the experimental situation.
Moreover, in our opinion, it is rather doubtful whether

such systems can be described in terms of the cluster
model with an antiferromagnetic interaction, proposed
by Saint-Paul and Gilchrist (1986), where the number of
particles effectively interacting in a cluster is independent
of the temperature.

Vugmeister and Stefanovich (1988a) have described the
effects of long-time relaxation in disordered dipole sys-
tems by combining the method of the random field and
the method of clusters. They calculated the frequency-
dependent dielectric susceptibility by using a dipole pair
as the smallest structural unit interacting with the local
field generated by the rest of dipoles. The theory de-
scribed a logarithmic frequency dependence of the per-
mittivity maximum observed for KCl:QH . The esti-
mate of the temperature of the maximum, Inade by these
authors, is in good accord with the experimental data.

Let us now briefly summarize the results presented in
this section. We have tried to draw attention first of all
to the fact that when off-center ions or other similar di-
pole impurities are introduced into weakly polarizable
crystals, such as alkali halide crystals, the dipole-dipole
interaction between the impurities brings about no fer-
roelectric ordering of dipoles. The low-temperature
anomalies that arise, while in many aspects similar to
those observed in CuMn-type spin glasses, nevertheless
differ considerably in one important aspect, namely the
absence of an equilibrium phase transition to the dipole
glass state, which is Inost characteristically exhibited in
experiments on the nonlinear susceptibility. The above-
presented theoretical results have turned out to be cap-
able of explaining why the dipole-dipole interaction does
not result in the ferroelectric ordering of off-center ions.
The question of why there is no equilibrium phase transi-
tion to the dipole glass state in such systems remains as
yet uIlanswered.

Subsequent sections will consider distinguishing
features of the cooperative behavior of off-center ions in
highly polarizable crystals.

II I. PQSSI 8ILITY QF FEB RGELECTRIC
LGNG-RANGE GRI3ERING
IN HIGHLY PGLARIZABLE CRYSTALS
WITH GFF-CENTER IQNS

A. Hamiltonian for dipole-dipole interaction

Studies of ordering in crystals containing off-center im-
purities acquired new impetus after Yacoby and Just
discovered in 1974 that Li is an off-center ion when it
substitutes for K in the highly polarizable dielectric
KTaQ3, whose permittivity is two to three orders of mag-
nitude greater than typical values for alkali halide crys-
tals. The anomalies in the physical properties of
KTaQ3:Li, which depend on the concentration of off-
center ions, are pronounced at temperatures of T—100
K, while in alkali halide crystals they are appreciable
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only at T-1 K. Although this fact is not unexpected
and can be attributed to a great increase in the effective
dipole moment d* [which is evident, for example, from
Eq. (2.1)], the question naturally arises whether there is a
qualitative difference between the cooperative behavior of
off-center ions in highly polarizable crystals and their be-
havior in classical dielectrics where the dipole glass state
is attained. Such a difference may occur if the Hamil-
tonian for the interaction of dipoles in a highly polariz-
able dielectric does not reduce to the usual form of Eq.
(2.4).

Let us therefore discuss in greater detail the basic as-
sumptions making it possible to derive an explicit form of
the interaction energy of impurity dipoles in a dielectric
crystal. We shall see that highly polarizable hosts do
indeed exhibit singularities stemming from spatial disper-
sion of permittivity, which is substantial in highly polar-
izable media. We shall present a derivation of the energy
of interaction between dipoles in a highly polarizable
dielectric medium„ following Vugmeister and Glinchuk
(1980).

Note first of all that an additional interaction between
dipole impurities in a dielectric arises due to the fact that
every one of the dipoles polarizes the lattice, and this
dipole-induced polarization acts on adjacent impurities.
The interaction of every dipole with the lattice polariza-
tion P(r) is accomplished by the field acting on the di-

pole, which is given by

Ei„(r)= g e'~' yP 4ir (q.P—)(1—5 o)
q q

(3.1)

where P are Fourier components of the polarization.
The second term in Eq. (3.1) corresponds to the macro-
scopic field (averaged over the unit cell). The Kronecker
symbol 6 0 takes into account that the crystal is under
conditions in which the macroscopic field is zero at a uni-
form polarization. The first term in Eq. (3.1) allows for
the difference between the field acting on the dipole and
the macroscopic field and is presented in the Lorentzian
form that is valid for wave vectors q & a [a is the lattice
constant (Born and Huang, 1954) and y is the Lorentzian
factor at the dipole location (for a purely ionic, simple
cubic crystal, y = 1)].

The validity of the first term in Eq. (3.1) implies that
dipole impurities may be treated as point electric dipoles,
i.e., the dipole size must be much smaller than the unit-
cell size. Just this condition holds, in particular, for off-
center ions. For definiteness, we shall consider slightly
anharmonic crystals, whose high polarizability is due to
the presence of soft phonon modes.

We represent the Hamiltonian for a system of X di-
poles interacting with the lattice polarization as

~ = —g d, E„,(r, )+ g A'co, at, a, , (3.2)
gS

where a „a, are operators of creation and annihilation
of phonons of a frequency cv, (s is the polarization in-

dex). In the case of multiatomic lattices, we shall confine
ourselves in the sum over s in Eq. (3.2) to only one group
of soft optical branches, threefold degenerate at q =0,
which are responsible for the anomalous value of permit-
tivity so. At qWO, this corresponds to taking into ac-
count two transverse (si ) and one longitudinal (s~~ )

branches.
Introducing, as usual, the normal coordinates

Q, = (A'/2', )
' (a, +aq, ),

we represent I' as

2z —1P = QE, Q, A, ,
(mX, ) v, ,

(3.3)

(3.4)

where z and m are, respectively, the effective charge and
the mass of the oscillator; Xp is the number of unit cells
of volume Up', A, , is the polarization unit vector; c, =c
is the high-frequency permittivity; c, = 1.

Using the equation of motion for the normal coordi-
nates and the equilibrium condition (Q, ) =0, we deter-
mine the value of Ei„(r) for a fixed configuration of im-

purities (angle brackets denote the quantum-statistical
averaging), and, as a result, obtain

&; i„(;)=y [~i~j(;, )+~~~p(;J)](d)/3),
jb

4m 1
y (so —E„)g cosqr9~p, 1+r„q'

(3.5)

X[6 p
— (1 —5 o)],

q

(3.6)

and

2= 2
Co

$ Cpmp /c 7 rg j U J /Cc)07 rc
~~

U
~I

/67 i

(3.8)

Here Vo =Novo is the crystal volume, and a, /3 are Carte-
sian coordinates.

In the sum over j in Eq. (3.5), the term with j =i
should be discussed separately. This term represents the
mean reactive field due to dipole-induced polarization,
which acts on the dipole. Such a reactive field may lead
to a "local phase transition" in a system of isolated di-
poles in the lattice (Hock and Thomas, 1977; Hock
et al. , 1979). The remaining terms in the sum in Eq.
(3.5), i.e., those which will be considered further,
represent a random field associated with indirect interac-

4w ~p 1 qaqp
A~~~(r)= — (3—y) g cosqr-

q~p 1 + r~~~q

(3.7)

where the well-known relation between the soft-mode
frequency and the crystal permittivity, cp —c.

=4~z /mvpcop, is used and the dispersion of oscillations
is assumed to be (Born and Huang, 1954)

2 2+ 2 2 2 2+ 2 2
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tion between dipoles through the field of optical phonons
(the randomness being due to a random arrangement of
impurities). According to Eq. (3.5), the Hamiltonian for
such an indirect interaction has the form

(3.9)

where %=A'i+%~~. Thus Ai and %'~~ are constants of
the indirect dipole-dipole interaction through the trans-
verse and the longitudinal optical phonons, respectively.

Note that while r,
~~

~a (a is the lattice constant), the
value of r, j is dependent on the value of the permittivity
Ep and can greatly exceed a in highly polarizable crystals.
However, for crystals with ordinary permittivity values
(where r, 5 a as well), considering dipole spacings of
r )a, it may be assumed that r, =0 in Eqs. (3.6) and (3.7).
Taking into account, along with Eqs. (3.6) and (3.7), the
interaction between dipoles in a medium with permittivi-
ty c. (at E„=1 this corresponds to allowing for the in-

teraction of dipoles in a vacuum), we arrive at the Hamil-
tonian of Eq. (2.4), where d*=d [1+y(Eo—1)/3]. In
highly polarizable crystals, however, the dipole-dipole in-
teraction does not reduce to Eq. (2.4). Let us determine
this interaction in an explicit form as a function of the di-

pole spacing.
From Eqs. (3.6) and (3.7) it follows that at so))E the

interaction between dipoles is predominantly through
transverse phonons, and the contribution of longitudinal
phonons can be neglected; we shall therefore consider Ai
alone. Extending the summation over wave vectors in
Eq. (3.6) to infinity, which is possible at r )a, and
proceeding to integration, we obtain

F.„,= (4~/3)yP (r), (3.13)

where d* =yEpd /3 is the effective dipole moment of the
impurity in a highly polarizable crystal.

Note also that, as follows from the above, the
specificity of a highly polarizable medium in the energy
of interaction between impurity dipoles reAects the need
to take into account the dispersion of the soft optical
phonon. Because of the anomalously small value of the
soft-mode frequency ~o, the dispersion of co shows up
even at small q (q —r, ' &a '), justifying the use of the
long-wave approximation.

Note further that, since the crystal permittivity E is
~ I /m, the spatial dispersion of the permittivity may be
believed to be responsible for the specificity of interaction
between dipoles in a highly polarizable medium.

The Hamiltonian of Eqs. (3.11) and (3.12) is valid only
for classical dipoles or if we neglect tunneling, which is
possible at b, ((coo (where b, is the tunneling frequency),
as otherwise the retarding eff'ects will be significant [see,
for example, Aminov and Kochelaev (1962)].

The Hamiltonian for the interaction of classical dipoles
in a highly polarizable dielectric can also be derived in a
different way, without explicit use of the soft-mode con-
cept. For this purpose we note that the optical rigidity,
associated with the transverse part of the polarization, is

small in highly polarized crystals when the polarization is
nonuniform throughout the specimen, and therefore, as
has already been shown, it is the transverse polarization
that makes the principal contribution to the magnitude
of E„, [Eq. (3.1)], so that only the first term need be left
in this equation, i.e.,

A ~(r)=%' ~(r)=(yE /3)K ~(r) '

1 2 1 —rtr, 4~K ~(r)= —,— e '+ 5
E 3 Ir 3V

(3.10) since, if the polarization is transverse, then (q P ) =0,
and the macroscopic field is zero.

The crystal energy associated with the transverse part
of the polarization can be represented as

+(3n ng —5 p)

—r/'r, 1 1 1—e
r r r r rr

Hi =2~VO g (Eo—E ) 'PqiP
q

where P z =gP and g is the projection operator
2

g &=5 &
—

q q&/q

(3.14)

(3.15)

(3.1 1)

where n =r /r; r, =r,~.
The second term in Eq. (3.11) does not affect the in-

teraction between dipoles spaced at finite distances, but
allows for the boundary condition used in Eq. (3.1), i.e.,
that the mean macroscopic field in the specimen be zero.
In this case every dipole is acted upon by an additional
Lorentzian field from other impurities proportional to
the mean dipole moment of the entire system.

Taking into account Eqs. (3.9)—(3.11), we can rewrite
the Hamiltonian for the interaction of impurity dipoles in
a highly polarizable crystal (at eo)) E ) as

(3.12)

Using a long-wavelength aPProximation of E —Eo in the
form

Eq Eo

1 (1+r,q ),
Eo E~

(3.16)

and taking into account that Eo&&E, we represent the
Hamiltonian for a system of dipoles interacting with the
lattice of a highly polarizable dielectric as

H = — y g d, P(r,. )+4m

l

2m Vo g(1+r, q )P iP
E,p

(3.17)

Now, we determine from the condition BH/BP =0 the
magnitude of the polarization P(r) induced by dipoles in

the crystal. From Eq. (3.17) we obtain
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P (r, )=+ QK,,~(r; )d",
jp

(3.18) (d;* ) =spd;*e ""/spe (3.19)

and after substituting Eq. (3.18) into Eq. (3.17) we arrive
again at the Hamiltonian for the dipole interaction in the
form of Eq. (3.12).

The above-presented derivation, however, does not re-
quire the concept of long-lived phonons as elementary ex-
citations of the crystal and is valid not only for a reso-
nant, but also for a relaxational response of the lattice to
an external perturbation. The only requirement is that
there be a small value of the transverse optical rigidity
(inverse permittivity) of a pure crystal.

Note also that, according to Eqs. (3.18) and (3.11), the
total lattice polarization Jdr P(r) induced by an indivi-

dual dipole in the crystal is equal to d*, and therefore the
d* value may be regarded as the effective dipole moment
of the impurity in the crystal. The change in the nature
of the dipole field in a highly polarizable crystal can be
attributed to the fact that the effective dipole moment
can no longer be considered as a point dipole, since it has
a finite characteristic size on the order of r, . Only at
r ))r, can the effective dipole size be neglected, and the
usual expression for a dipole field in a dielectric becomes
approximately valid.

Thus, in a highly polarizable crystal, the medium not
only renormalizes the dipole moment of the impurity, but
functionally changes the dipole-dipole interaction energy
dependence on the spacing of dipoles.

B. Suppression of local-field fluctuations
and the possibility of a ferroelectric
phase transition

The change in the dipole interaction potential in highly
polarizable crystals leads to a number of important
consequences. First of all, for impurity spacings r ~r„
the interaction fluctuations due to configurational Auc-

tuations of particles are weakened because at r ~ r, the
function K (r) is smoother than r [K (r) ~ r ' at
r «r, ]. Moreover, as can be seen from Eq. (3.11), not
only does the anisotropic part of the interaction, whose
average (as in weakly polarizable crystals) is zero,
change, but a new isotropic part appears which increases
the most probable value of the local field acting on every
dipole from adjacent impurities. Since with decreasing
spacing of dipoles the isotropic part of the interaction in-
creases while the interaction fluctuations diminish, it can
be expected that at a high enough concentration of im-
purities, when the mean spacing becomes small enough,
K ( r) fluctuations may be neglected and the self-
consistent mean-Geld approximation which predicts the
existence of the ferroelectric phase transition will become
valid.

Indeed, the phase-transition temperature T, is deter-
mined by the appearance of a nonzero mean dipole mo-
ment

where the overbar denotes averaging over spatial
configurations, and the angle brackets statistical averag-
ing over orientations of dipole moments. Near T„as
usual, the right-hand side of Eq. (3.19) can be expanded
into a series in terms of Vdd, which yields

(3.20)

Because of the random arrangement of impurities, the
configurational average in Eq. (3.20) can be replaced by a
product of averages,

which qualitatively reflects the small value of interaction
fluctuations. Using the explicit form of K(r) from Eq.
(3.21), we obtain a qualitative estimate of the applicabili-
ty of the mean-field approximation beyond the critical re-
gion as

12vrnr, ))1 . (3.22)

Using the mean-field approximation, we obtain from
Eq. (3.20) the temperature of the ferroelectric phase tran-
sition in a system of dipole impurities,

4~ d" n 4~
(3.23)

Since E0 in highly polarizable crystals is a function of
temperature, Eq. (3.23) is in fact an equation in T, . If,
for example, we approximate Eo(T) by the Curie-Weiss
law, Eo(T) ~ (T —To) ', then, at T, ))To, Eq. (3.23)
yields

Simultaneously with the ordering of dipoles, a spon-
taneous polarization of the lattice appears because of the
existing linear relation between the average dipole mo-
ment of the impurities and the lattice polarization.
Indeed, it follows from Eq. (3.18) that

(3.24)

This means that at a high enough concentration the di-
pole impurities induce in a highly polarizable crystal a
ferroelectric phase transition.

The above rough estimate, however, gives no indica-
tion as to what impurity concentrations suffice for the
ferroelectric phase transition to occur. This point will be
discussed in more detail in the next section.

only neglecting the fluctuations, which corresponds to
the introduction of the mean field. The applicability of
the mean-field approximation can be roughly estimated
from the condition

2

(3.21)
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C. Concentrational ferroelectric phase
transition. Random-field theory

As has been shown above, in highly polarizable crys-
tals the conditions under which the mean-field approxi-
mation is valid are more likely to occur at a high concen-
tration of dipoles. The ferroelectric phase-transition
temperature has been estimated in the mean-field approx-
imation. However, the domain of applicability of these
results remains unclear unless we can find an approach
enabling us to go beyond the framework of the mean-field
theory.

The simplest and most natural generalization of the
mean-field method in disordered systems is the so-called
random-field method, where, as in the mean-field one, the
correlation between dipoles is neglected, but the random-
ness of the field acting on every dipole from its adjacent
impurities is taken into account. As a result, the local-
field distribution function

f (E)=(&(&—&;)) (3.25)

[where E, is determined by Eq. (3.12)], which in the
%'eiss mean-field approximation is

f (E)=&(&—(E; ) ), (3.26)

is replaced in the random-field approximation by a
smooth function of finite width, determined in a self-
consistent manner. We shall show (Vugmeister, 1984)
that the random-field approximation allows us to under-
stand clearly why a ferroelectric phase transition is im-
possible in dilute dipole systems operating under the usu-
al law of the dipole-dipole interaction; the random-field
approximation, moreover, allows us to estimate the criti-
cal concentration at which ferroelectric long-range order-
ing "originates" at T=O in highly polarizable crystals
containing dipole impurities, i.e., when a concentrational
phase transition occurs.

Consider a system of dipole impurities, randomly dis-
tributed in a crystal, at temperatures much lower than
the characteristic interaction energy for dipoles spaced at
average distances from one another. At such low tem-
peratures the orientation of every dipole may be con-
sidered parallel to the local field acting on it from adja-
cent impurities (we neglect tunneling effects). Although
such states, as has already been noted, are not fully in
equilibrium, being metastable with respect to simultane-
ous reorientations of many dipoles while the total dipole
moment of the system remains unchanged, they can be
approximately treated as equilibrium states for times
shorter than their relaxation times, which are rather
long.

Due to the varying sign of the interaction potential
[Eqs. (3.11) and (3.12)], the local fields acting on every
impurity may have various directions, and therefore at
low temperatures the dipoles are generally frozen in ran-
dom orientations.

The task is to find out in what cases such a random dis-
tribution of dipole orientations is fully chaotic, so that

the dipole moment of the whole system, averaged over
configurations of the particles, is zero and, conversely,
under what conditions a nonzero average dipole moment
can appear.

To answer this question, we resort to the random-field
method. The essence of the random-field approximation
is as follows. First, we change Eq. (3.25) to an integral
representation, assuming

f (F)= dpeiPEe —F(P)I

(2~)
—&(p) —e ~j a 'j jp

—1&.P J.~t.

(3.27)

(3.28)

F(p)=F)(p) —iF~(p) .

The real part of the function F(p), i.e., F), describes
the spread of local fields in a disordered dipole system,
which prevents ferroelectric ordering of the dipoles,
while the imaginary part I'z determines the most prob-
able magnitude of the local field that tends to orient the
dipoles coherently.

If some preferred orientation of dipole moments exists
in the system at low temperatures, then the relative num-
ber of coherently oriented dipoles is given by Eq. (2.11),
which determines the value of the order parameter L. If
the dipoles can be oriented in only two possible direc-
tions, Eq. (2.11) transforms to

2 —F (p) sin[EO(p)pL]
L =— dpe

77 p

where

F, (p)=n f dr[1 —cospJ"(p)],

F2(p) n
Eo(p) = — =— dr sinp J"(p) .

pL p

(3.30)

(3.31)

(3.32)

The problem thus consists in finding out the conditions
under which this system has a solution with LAO.

Equations (3.30)—(3.32) with K ~(r) in the form of Eq.
(3.11) have been numerically solved (Vugmeister, 1984;
Vugmeister and Stefanovich, 1987a) for various values of
the parameters nr, ,

' the results are shown in Fig. 10.
This figure shows that at some critical concentration fer-
roelectric ordering occurs, i.e., a solution with a nonzero
average dipole moment appears.

where J; ~=d K,"~ has been introduced for conveni-
ence.

The explicit form of the function F(p) is very difficult
to find because of correlations between orientations of the
dipole moments of different particles. The problem is
greatly simplified if we neglect the correlations and con-
sider the quantities l, as independent random variables.
In this case F(p) converts to the form

F(p) =n f dr f dl(p(1)(1 —e'~' ' ), (3.29)

where the thermodynamic limit X~co, V0 —+ ao,
n =X/Vo =const is used and (p(l) is the distribution
function of the dipole moments in the orientations,
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(2.11) that

l (E)= tanh/3E, (3.35)

0 l. . . , , , i

33.IO Io lO i

which results in the following expression for the fer-
roelectric long-range order parameter:

—~, (p)
sin[pEo(p)L]e ' d pL=

~

~

sinh(vrpks T/2)

For T, we obtain from Eq. (3.36) (with L ~0)

FIG. 10. Ferroelectric long-range order parameter as a func-

tion of nr, (Vugmeister, 1984).

—+l (P)

( pEo(p»)e

ke T, " sinh(vrpks T, /2)
(3.37)

Thus it may be asserted that a concentrational fer-
roelectric phase transition is brought about in highly po-
larizable crystals by increasing the dipole impurity con-
centration at low temperatures ( T~O). The critical con-
centration for such a phase transition corresponds to the
condition (Vugmeister and Stefanovich, 1987a)

n„r, =0.3X10 (3.33)

It may also be seen that within the range
0.3 X 10 ' & nr,' & 10 ' the order-parameter value differs
from L=1, which corresponds to a parallel orientation of
all the dipole moments. This means that over this con-
centration region the spread of orientations of dipole mo-
ments of different impurities is substantial, and there can
be no approximation of a mean field that is the same for
every point of the crystal. The mean-field theory is appl-
icable only at nr, ~ 10 ', where, as can be seen from the
figure, the difference of I from unity may be neglected,
whereas near the critical concentration the solution of
Eq. (3.30) yields

L ~ (n n,„)'~—, n ~n,„. (3.34)

The value of the critical exponent in Eq. (3.34) is closely
connected to the random-field approximation. In close
proximity to n„ this approximation is obviously inade-

quate, as correlation effects should show up here. At the
same time, the estimate of the critical concentration
value, obtained by us by use of the random-field method,
should be qualitatively correct (see Appendix).

From the above analysis it also follows that there is no
long-range order in the case of an ordinary dipole-dipole
interaction potential. Note that this conclusion, which
we obtained for the case of dipoles with discrete possible
orientations, is quite different from the proof by Aharony
(1978) for a continuously degenerate dipole system, based
on its instability with respect to transverse fluctuations of
the internal field. From our analysis it follows that in a
purely dipole system, J ~~ r (5 &

—3n n&), long-range
order is destroyed not only by transverse, but also by lon-
gitudinal fIuctuations.

To generalize the random-local-field method for the
case of finite temperatures, it should be assumed in Eq.

where T, " is the phase-transition temperature in the
mean-field approximation. This limit is, however, at-
tained only with a very high concentration of impurities,
while in the more general case the dependence of the
functions F.0 and F, on p is quite substantial.

Assuming T, ~O in Eq. (3.37), we obtain an equation
determining the critical concentration of dipoles, below
which a ferroelectric phase transition does not take place,

2 ~ Fl(P)

0
(3.38)

Note that Eq. (3.38) can be derived directly from Eq.
(3.30), assuming L ~0. Equation (3.38) leads to the con-
dition presented by Eq. (3.33).

Substituting the explicit form of the potential into Eq.
(3.37) yields (Vugmeister and Stefanovich, 1987a) the fer-
roelectric phase-transition temperature as a function of
nr, . The authors have obtained the T, (nr, ) dependence
for eight possible dipole orientations, as shown in Fig. 11,
where the critical concentration is n„=4.65 X 10 r,

D. Long-time relaxation effects

We have shown above that the simple random-local-
field theory gives a qualitatively correct description of
the main equilibrium properties of disordered dipole sys-
tems. However, an attempt to extend these simple con-
cepts to account for dynamic effects entails additional
difficulties. Vugmeister and Stefanovich (1988a) have
shown that application of the random-local-field theory
to dynamic effects preserves the nature of the relaxation
unchanged, i.e., retains the single exponent, while reduc-
ing the effect of dipole interaction merely to a change in
the single-particle relaxation rate v,

If we substitute for the functions Fi (p) and Eo(p) jn Eq.
(3.36) their values as p —+0, i.e., if we assume F, (p) —+0,
Eo(p) Eo then

Eo= lim Eo(p)=n J dr J"(e),
p —+0

and the well-known equation of the Weiss mean-field
theory results,

L =tanh(LEo/k&T), i.e. , k&T, "=Eo,
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FIG. 11. Phase diagram of the random dipole system
(d~~/111/) with Hamiltonian (3.11): P, paraelectric phase; DG,
metastable dipole glass [Tg:—Ts(co/v= 10 g)] with no long-
range order, F+DG, mixed phase with coexisting ferroelectric
and dipole glass properties. From Vugmeister and Stefanovich,
1987a, 1988a.

proximation is valid and v= v(1 —T, /T)].
In disordered systems, however, at nr, & 1 there is an

additional long-time relaxation mechanism, associated
with the presence of closely spaced particle clusters. The
relaxation of such clusters is impeded because the in-
teraction of dipoles in a cluster gives rise to additional
potential barriers, which impede the reorientation of the
dipoles. As noted in Sec. II B, it is just such a mechanism
that is responsible for the long-time relaxation in dipole
glasses. Because of the random spacing of dipoles in
clusters, a distribution of relaxation times takes place,
which results in the observed nonexponential relaxation
of the system.

The existence of long-time nonexponential relaxation
in a dipole system can be ascertained by a virial expan-
sion of the dynamic susceptibility (Vugmeister and
Stefanovich, 1988a).

The dynamic susceptibility g(co) can be, accurately to
the second virial coefficient, represented as (Vugmeister
and Stefanovich, 1988a)

v=v 1 —f dE l(F. )E
BI.

(3.39)

8 (d* /k&TEor, , co/v)
y(co) =go(co) 1+

4~ nd* 1 —m /v
3 kg Tcp 1 +Q) /v

(3.40)

Since the expression in square brackets goes to zero at
T = T„Eq. (3.39) describes the critical slowing down of
the relaxation, associated with the presence of a phase
transition. Moreover, according to Eq. (3.39), the slow-

ing down of the relaxation occurs only in a narrow region
near T, . Such a slowing down is the single source of
long-term relaxation in ordered systems [as well as in
disordered systems at nr, ))1, when the mean-field ap-

The third term in Eq. (3.40) represents the contribu-
tion of the Lorentzian field, i.e., this equation describes
the response to the mean macroscopic rather than the lo-
cal field [see also Vugmeister and Stefanovich (1985), who
used such a procedure when calculating the second virial
coefficient of the static susceptibility].

At co/v((1 the function 8(d* /k~TEor, , co/v) has
the following asymptotic representations:

3kg TcpI"

nd
C

k~cp

SENT

v 6) lid
zv +67 kg TE0I'

4~ 0. 16+ 8 nd ((1, co/v(&1 .
3&3»[(2v—co)/co] k~ TEor,'

(3.4 la)

(3.41b)

Equation (3.41a) describes the high-temperature behavior
of the dynamic susceptibility in the mean-field approxi-
mation. From the equation it follows that within the
domain of applicability of the mean-Geld approximation
the frequency dispersion of the second virial coefficient is
determined solely by the frequency scale of reorientation
of isolated dipoles (the relaxation is single exponential),
and at co/v (& 1 there is no frequency dispersion of B.

A different situation occurs at the opposite limit [Eq.
(3.41b)], which corresponds to the case of weakly polariz-
able dielectrics with the usual law of interaction between
dipoles [i.e., if r, —~0 is assumed in Eq. (3.11)]. Equation
(3.41b) describes the logarithmic frequency dependence
of the second virial coefficient, which has already been
discussed in Sec. II 8. The numerical value of the dy-

I

namic virial coefficient substantially exceeds that of the
static coefficient.

For highly polarizable crystals the dispersion of the
second virial coefficient is generally governed by the
value of the parameter g=d* /kbTEor, . It should be
noted here that the two limits, Eqs. (3.4la) and (3.41b),
are not equivalent. The former can always be attained by
increasing the temperature, while the possibility of at-
taining the latter is determined by the applicability of the
virial expansion, requiring the sum af the second and

4The contribution of closely spaced pairs to the long-term re-
laxation decreases with increasing parameter nr,'.
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for example, Vaks, 1973), is not fully equivalent to the
latter in that the interaction between clusters is effected
through the random Geld rather than through the mean
Geld used by Bethe and Peierls.

Vugmeister and Stefanovich (1988a) calculated the
frequency-dependent maximum temperature of dielectric
susceptibility for n «n„ to be

T = —15nd* /coin(co/v) .

FICz. 12. Dynamic second virial coefficient as a function of nr,'
for difterent values of parameter co/v. From Vugmeister and
Stefanovich, 1988a).

third terms in Eq. (3.40) to be less than unity. This
means that the permissible range of temperatures and
hence also the range of values of the parameter g are lim-
ited by the condition g& g*, where the value of g* is
determined from the condition of equating of the sum of
the second and third terms in Eq. (3.40) to unity. Figure
12 shows the dependence 8 (g', co/v) as a function of nr, .
As can be seen, the frequency dispersion of B (g*,co/v) at
~/v«1 is appreciable right up to values of nr, ~0. 1, at
which the mean self-consistent Geld theory is already
applicable with adequate accuracy to describe the equi-
librium properties of the system under consideration,
i.e., dynamic effects are more sensitive to spatial disorder
in the arrangement of particles than are equilibrium
properties.

Vugmeister and Stefanovich (1988a) have shown that
the concept of slowly relaxing dipole clusters (in particu-
lar, pairs) that are responsible for a low-frequency disper-
sion of the dielectric response can also be useful in
analyzing the susceptibility at low temperatures; this is so
despite the fact that the virial expansion in this tempera-
ture range is inapplicable, since at low temperatures the
interaction is substantial not only between particles in
clusters, but also between different clusters. These au-
thors suggested that both the interaction between dipoles
in a cluster and the interaction between clusters be taken
into account by introducing a random local field acting
on every dipole in a cluster from dipoles belonging to
other clusters. This implies a generalization of the
random-local-field theory for describing the clusters.
Note that the approach proposed by these authors, while
resembling the usual Bethe-Peierls cluster method (see,

5The condition B(g'*)=0 indicates roughly the occurrence of
a ferroelectric phase transition (Vugmeister and Stefanovich,
1985).

The similarity between T and the frequency-dependent
dipole glass transition temperatures T is obvious. Such
a dipole glass state is a nonequilibrium metastable state,
as was discussed in Sec. II.

Figure 11 shows the phase diagram of a random-site
dipole system taking into account the obtained values of

and Ts. The approach (1988a) of Vugmeister and
Stefanovich also predicts that in the narrow region of di-
pole concentration at n ~ n„(but T, & T ) the
frequency-dependent susceptibility will develop two max-
ima. The broad high-temperature maximum is connect-
ed with the freezing of close pairs, whereas the low-
temperature maximum comes from a long-range-order
phase transition.

IV. COEXISTENCE OF FERROELECTRIC
AND DIPOLE GLASS PROPERTIES
IN HIGHLY POLARIZABLE CRYSTALS
CONTAINING DIPOLE IMPURITIES
(KTaOs:Li, Na, Nb)

The preceding section presented a qualitative picture
of the phenomena to be expected in highly polarizable
crystals containing dipole impurities. As will be shown
below, although the experimental situation is much more
complex, the principal theoretical inference, namely, that
new properties stemming from the change in the dipole-
dipole interaction potential arise in highly polarizable
crystals containing dipole impurities, is nevertheless in
agreement with experiments.

The number of experimental studies of the cooperative
behavior of dipole impurities is at present much greater
for highly polarizable crystals than for alkali halide crys-
tals, described in Sec. IIA. These systems have been
studied by dielectric, optical, x-ray, NMR, EPR, acous-
tic, and other techniques. The large number of studies is
a result of the fact that such substances exhibit under
certain conditions both ferroelectric and dipole-glass
properties. As a result of inadequate understanding of
such behavior, various researchers expended much effort
in attempting to prove that one or another of these crys-
tals were either ordinary ferroelectrics or close to tradi-
tional dipole glasses, such as KCl:Li+. Scientists even di-
vided into groups advocating one or the other opinion. It
has, however, becoIne clear by now that such a discus-
sion, which lasted over a decade, was mainly due to the
need to expand the current terminology, since the ob-
served anomalies in highly polarizable crystals containing
dipole impurities are incompatible with both traditional
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dipole glasses, such as KCl:OH, Li+, and ordinary fer-
roelectrics, such as BaTi03 and KH2P04.

Practically all workers in this field now recognize the
existence in KTa03..Li, Na, and Nb crystals of large mac-
roscopic polar regions with a length scale at least

0

1000—10000 A, where the polarization is approximately
uniform. This situation divers substantially from that in
traditional dipole glasses, where the short-range order ex-
tends over a much smaller scale. At the same time, be-
cause the uniform polarization regions are small com-
pared with the sizes of domains in ordinary ferroelectrics
and because long-time relaxation effects occur in impuri-
ty systems due to spatial disorder, as was shown in Sec.
III D, some phenomena are similar to those observed in
dipole glasses.

Before presenting below a description and analysis of
experimental results, we wish to emphasize once again
that, although the body of experimental work is much
richer and much more complex than the simple physical
notions described in the theoretical part of this review,
and many details of the experiments still call for a deeper
theoretical interpretation, the principal theoretical con-
clusion is beyond doubt: that introduction of dipole im-
purities into a highly polarizable crystal (provided that a
corresponding criterion is met) induces ferroelectric
domains, i.e., macroscopic spontaneous polarization re-
gions.

Let us now look at the experimental data.

A. KTa03:Li (KTL)

The situation in KTa03.Li will be discussed in the
greatest detail since, first, the oIII'-center position of Li has
been reliably established, allowing it to be classed with
confidence as having dipole impurities, and, second, the
physical phenomena are fairly well understood for this
crystal.

The oA-center position of Li in potassium tantalate was
first discovered in Raman experiments (Yacoby and Just,
1974), where a first-order scattering peak was observed,
ascribed to a resonance impurity mode induced by the
off-center Li. Subsequent high-precision measurements
(Prater et a/. , 1981a,1981b) of Raman spectra demon-
strated, however, that although the conclusion (Yacoby
and Just, 1974; Yacoby et al. , 1977) of the oft'-center po-
sition of Li was correct, the observed scattering peaks
were due not to a resonance mode (only peak 8 in Fig. 13
is due to such a mode), but to the action of quasistatic
fields of lithium dipoles, which change the selection rules
and permit first-order scattering by lattice modes to be
observed. Figure 13 shows that the intensity of ihe first-
order scattering by acoustic and optical vibration
branches increases with increasing Li concentration
(peaks A, TOz). However, the first-order peaks are dis-
tinct even for nominally pure specimens, indicating the
presence of extraneous impurities.

The oA-center position of Li is borne out by dielectric,
NMR, and EPR studies. Measurements by Hochli et al.

T0p
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FIG. 13. Rarnan spectra of K& Li Ta03 (Prater et al. , 1981a).
Peaks A and 8 are due to first-order scattering by acoustic and
soft optical vibrations, respectively.

(1978, 1979) of the frequency dependence of the permit-
tivity of KTL have shown that the presence of Li leads to
a low-frequency dispersion of c. This indicates a relaxa-
tional behavior of reorientations of impurities between
diAerent oA-center positions. The reorientation frequen-
cy follows the Arrhenius law

v=v e0 (4.1)

with v0-—1.6X10' s ' and U=1000 K. As a result of
such a high barrier, characteristic reorientation times
exceed tens of second, which is much longer than the ex-
perimentally attainable observation times, and hence the
low-temperature dynamics of Li turns out to be frozen in
experiments. This freezing, however, is of a single-
particle nature, i.e., it occurs at arbitrarily low concen-
trations of Li, and should not be confused with the
cooperative eftects discussed in Sec. III D. Because of
the single-particle character of the thermal freezing of
the oA-center ions, the residual polarization at low Li
concentrations should be a linear function of n, and this
has been indeed been observed experimentally. Based on
measurements of the residual polarization at various
orientations of the external electric field, Hochli et aI.
(1979) have shown the oA'-center displacement of Li to be
along the [100] direction.

This was subsequently confirmed by analysis (Borsa
et al. , 1980; van der Khnk et al. , 1983) of the quadrupole
splitting of Li+ NMR lines. The quadrupole structure
appears in the spectrum because of the interaction be-
tween the quadrupole moment of the nucleus of the ofT'-

center ion and the gradient of the intercrystalline electric
field. Since in a cubic crystal the electric-field gradient is
zero at the centrally-symmetric site of the unit cell
(which follows from the Laplace equation), the appear-
ance of quadrupole splitting unambiguously reveals the
oA'-center positions of the ion. The direction of the off-
center displacement, which lies in the axis of the
electric-field gradient, is determined from the dependence
of the number and position of quadrupole satellites on
the magnetic-field orientation. Measurements of the
quadrupole splitting v& make it possible to estimate, as
well, the absolute value of the oA'-center displacement x„;
the relationship between v& and x0, necessary for this,
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was obtained by van der Klink and Khanna (1984) by the
use of the point-ion model and by taking into account po-

0
larization and repulsion forces. This yielded x0 = 1.2 A.

Thermal reorientations of Li should lead to averaging
of the spectrum and disappearance of the quadrupole sa-
tellites at v) v&, which occurs at T ) 50 K. In this
high-temperature region the modulation of the intercrys-
talline field gradient by the motion of the ion gives rise to
nuclear spin-lattice relaxation. The reorientation fre-
quency determined by spin-relaxation experiments (van
der Klink et al. , 1983) agrees with the dielectric mea-
surement data.

Since the reorientating impurities also affect the elastic
properties of crystals, measurements of the velocity of
sound in KTaO3. Li have been undertaken (Hochli et al. ,

1982; Smolensky et al. , 1983). The observed softening of
the elastic moduli c» -c

] ~ and lack of change in the
modulus c«argue for Li displacement along the [100]
direction (with such a displacement, the off'-center ion in-
teracts only with the Es deformation).

The reorientational dynamics of Li has also been inves-
tigated by the FPR method (Vugmeister et al. , 1984,
1987), axial Fe + centers having been used as paramag-
netic probes. Because of the random spatial positions of
Li relative to the paramagnetic probes, the EPR line was
broadened by internal electric and elastic fields produced
by the off-center ions. At low temperatures the broaden-
ing is quasistatic and nonuniform, and at T )90 K,
where the v values are great enough, a dynamic narrow-
ing of the line occurs, which is similar to the effect of
averaging of the quadrupole structure in NMR. From
the observed temperature dependence of the broadening,
Vugmeister et al. (1984) determined the parameters vo
and U, which were in agreement with dielectric rneasure-
ments.

The dielectric (Hochli and Baeriswyl, 1984) and EPR
data permitted the effective dipole moment d* of Li to be
determined, which turned out to exceed by 20—30 times
the intrinsic dipole moment d =ex 0. The EPR data
show the d value to agree with the result d*=ycod/3
presented in the preceding section [ y ~

=0.1 in the
point-dipole model (Vugmeister and Glinchuk, 1979)].
These findings, however, were strongly criticized by
Hochli and Maglione (1989), who asserted, quoting Slater
(1950), that y is equal to zero for the Ba(K) site in the
perovskites BaTiO& (KTaoi). Apparently this assertion
is based on a misunderstanding. Actually, the Lorentz
factor y, which did not figure at all in Slater's article
(Slater, 1950), is the ratio of the local field acting at the
given cubic site of the polarized lattice to the Lorentz
form of the local field for a cubic crystal E'L„=(4'/3)P,
where P is the total polarization of the unit cell. Based
on Slater's approach one can easily estimate Lorentz fac-
tors for different lattice sites. For example, for the Ba
site we have according to Eq. (18) of Slater's article

PT; +Pii, + (1—3p)PO, +(2+ 3p)Pob

PT +P~ +P0a +2P0I

where p =8668/4~, and P is the polarization for ap-
propriate sublattices (P = g P ). Using the expressions
for P given on page 757 of Slater's article we obtain

yB, = —0. 19. In the same manner it is easy to estimate
the Lorentz factor yK for the K site of KTa03. For this
purpose Vugmeister and Glinchuk (1979) used for oxygen
and K+ polarizabilities the data of Tessman et al. (1953)
leading to y~ = —Q. 12. %'ith the more exact values of K,
Ta, and oxygen polarizabilities given by van der Klink
and Khanna (1984), one can obtain yz-——0. 13. A simi-
lar value, yK- —0.09, was obtained by Vihnin (1984), in
contrast to an earlier mistaken assertion that @K=0 by
Vihnin and Orlov (1983).

Specific features of the EPR linewidth's dependence on
the Li concentration have also been observed (Vugmeis-
ter et al. , 1982,1984) and shown to stem from an unusual
dependence of the dipole-dipole interaction potential on
the spacing between the off-center Li ions.

Thus the above experimental data convincingly show
the off-center position of Li in KTa03 and confirm the
dipole-dipole interaction potential form [Eq. (3.11)],
characteristic for highly polarizable crystals.

Note that it is quite clear that a decrease in repulsive
forces and an increase in polarization forces for an im-
purity ion relative to the lattice ion it replaces favor the
appearance of off-center positioning. Therefore, it is the
impurities, whose ionic radius is smaller and polarization
forces are greater, that generally become off-center ions.
Experimental data on the polarizabilities of ions and pa-
rameters of repulsion made it possible to calculate the
adiabatic potential for some impurities in alkali halide
crystals (Dienes et al. , 1966; Wilson et al. , 1967; Quigley
and Das, 1967, 1969, 1972) and in KTa03.Li (van der
Klink and Khanna, 1984) and to show theoretically that
off-centrality should indeed take place.

From the standpoint of electronic structure, off-
centrality is encouraged by the existence of closely
spaced levels of opposite parities. In this case the dis-
placement of an impurity from a site (Glinchuk et al. ,
1973) is promoted by the pseudo-Jahn-Teller eft'ect (Ber-
suker, 1971), whose action is equivalent to that of polar-
ization forces.

Hock and Thomas (1977); Hock, Schafer, and Thomas,
1979) were the first to draw attention to the fact that in
soft, highly polarizable lattices or in crystals with
structural phase transitions, which exhibit a strong tem-
perature dependence of lattice vibration frequencies, off-
centrality (i.e., a multivalley pattern of the adiabatic po-
tentia, l) can occur below some well-defined temperature

T] . This situation is sometimes called a "local phase
transition" or "local freezing, " as follows from a rough
description based on the mean-field approximation. In
actual fact, there is no freezing, but slow reorientations of
the ions between different minima occur below T&„
(Hock et al. , 1979; Bruce and Cowley, 1981). The
characteristic feature of the phenomenon is the tempera-
ture dependence of the activation barrier height in Eq.
(4.1) [ U = U( T) ].
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When considering off-centrality as the result of the
pseudo-Jahn-Teller eff'ect it has been shown (Kristofel',
1979) that a temperature-dependent barrier between the
off-center positions can also arise in ordinary weakly po-
larizable lattices.

We pass now to a discussion of cooperative effects in
KTL.

Pure potassium tantalate is a virtual dielectric and ex-
hibits paraelectric properties at any temperature. Its
dielectric permittivity increases with lowering tempera-
ture, reaching co=5X10 at T=4 K. Introduction of Li
(x ) l%%uo) gives rise to a sharply defined permittivity
peak, which shifts towards higher temperatures as the
concentration of the off-center ions increases. We shall
place primary emphasis here on the case of low Li con-
centrations, since it is in this field that a great body of
contradictory data has been obtained and it has become
the subject of controversy.

The first observation of dielectric anomalies in KTL
appear to have been made by Davis, but these remained
unpublished [the literature sometimes quotes a paper by
Davis (1972) which, however, reports only the results for
KTa03:Na]. Yacoby and Just (1974) pointed out that
dielectric anomalies resulting from the introduction of Li
(and ascribed by these authors to the ferroelectric phase
transition) could not be accounted for by a simple change
in the size of the unit cell, caused by the impurity ions, as
is often the case in virtual dielectrics. The addition of Li
reduces the unit cell size (Yacoby and Just, 1974), but hy-
drostatic pressure experiments (Abel, 1971) have demon-
strated that as the unit cell size decreases, so does the
permittivity, and the crystal does not become ferroelec-
tric. It is therefore natural to relate the anomalies in
KTL properties to the off-center position of Li.

The earliest studies (Hochli et al. , 1979; Borsa et al
1980; van der Klink et al. , 1983) assumed the situation
for KTa03.Li not to differ basically from that for KC1:Li
right up to Li concentrations of x=24%. However, as
will be seen below, even the dielectric experiments, whose
results are the closest to the situation for alkali halide
crystals, demonstrate that a substantial difference exists
between these two classes of systems. Thus, in KTL, as
in alkali halide crystals containing off-center ions, no
spontaneous polarization has been detected by direct
dielectric measurements, while residual polarization has

IOO—
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0.02 0.04 0.06 0.08
X

FIG. 15. Ferroelectric phase-transition temperature as a func-
tion of Li concentration in K.

&
Li Ta03, obtained by di8'erent

methods: C) birefringence;, dielectric measurements; + and
X Raman scattering. Solid curve corresponds to T, =300+x
K. After van der Klink et al. , 1983.

IO'
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been observed (Hochli er al. , 1978), whose increase
slowed down with increasing x (Fig. 14). Such a depen-
dence is substantially different from the relation P, ~ x
(x =na ) found for alkali halide crystals. The tempera-
ture dependence P„(T) is also different: it rises rapidly
(van der Klink et al. , 1983) at T (T, (T, is the tempera-
ture corresponding to the permittivity maximum, near
which all Li concentration-dependent properties of the
crystal are observed to exhibit anomalies). The concen-
tration dependence of T, is weaker than linear (Fig. 15),
in contrast to the linear concentration dependence of Eq.
(2.1).

At low Li concentrations, as the frequency decreases,
the maximum of the frequency-dependent permittivity
shifts towards lower temperatures (Fig. 16), but to a con-

0.2—
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E
O. I

Q

0
40 50
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FIG. 14. Residual polarization in K, Li Ta03 at T=4 K as a
function of Li concentration. After Hochli et al. , 1978.

FIG. 16. Temperature dependence of frequency-dependent per-
mittivity of KTaO, :Li. Numerals at curves indicate frequencies
in Hz; x =0.026. After Hochli, 1982.
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FIG. 19. Quasi-nonergodicity temperature T* as a function of
electric field for Kp 984Lip p, 6TaO, . After Torre, 1987.
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FIG. 17. Temperature dependencies of PFc and I'zFc for
Kp 9$4Lip pi6Ta03 in external field E =30 kV jm. After Torre,
1987.

siderably smaller extent than for KCl:OH . The fre-
quency dispersion of the permittivity also exhibits other
unusual properties.

Hochli et al. (1985) and Torre (1987) found that polar-
ization irreversibility eA'ects, characteristic of dipole
glasses, show up at low temperatures. Thus there are
differences between the field-cooled (FC) and the zero-
field-cooled (ZFC) polarization (Fig. 17), which usually
occurs in spin glasses, but, in contrast to KC1:OH -type
dipole glasses, the FC polarization is time independent
after the field is turned off (Fig. 18). Hochli et al. (1985)
have also demonstrated that at x=0.016 the "nonergodi-
city" temperature T (at which differences between the
FC and the ZFC polarization begin) is dependent on the
applied electric field E, as in spin glasses. These authors
endeavored to interpret the dependence Tg(E) in terms
of the equation derived by de Almeida and Thouless
(1978),

E =[Ts(0)—T (E)]r,
for the model by Sherrington and Kirkpatrick (1975)
with an infinite interaction range, which is not very
relevant to the systems under consideration. Indeed, ac-
cording to de Almeida and Thouless (1978), y = 1.5.

S a
~% ~
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E
o IP
E

CL

I I

5000 10000
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Hochli et al. (1985) and Torre (1987) note that the agree-
ment is better at @=2.3. However, as is clear from Fig.
19, even in this case insufhcient agreement with experi-
mental results is observed to assert that a relation of the
type E = [Ts(E)—Ts(0)] holds. Experiments indicate
only that T (E) decreases with increasing field.

Several studies (Poplavko et al. 1983; van der Klink
et al. , 1983; Hochli and Baeriswyl, 1984; van der Klink
and Borsa, 1984; Maglione et al. , 1987) have demonstrat-
ed that two diAerent relaxation mechanisms responsible
for dielectric dispersion show up at x &0.04. A high-
frequency relaxation mechanism has an activation energy
U=1000 K and is associated with independent motions
of the off-center ions (far from T, ). A low-frequency
mechanism whose nature is not yet clearly understood, is
activated at an energy approximately 2.5 times higher.
Characteristic frequencies of the two relaxation processes
decrease as T~T, with a broadening of the relaxation
time distribution. Smolensky et al. (1986) observed a
splitting of the permittivity peak, ascribed by these au-
thors to the motion of domain walls.

The above-presented experimental data, although
demonstrating that the behavior of off'-center ions in po-
tassium tantalate divers from the situation in alkali
halide crystals, proved inadequate to resolve the nature
of the low-temperature state: ferroelectric or dipole
glasses? —as in alkali halide crystals (at least, within a
limited range of Li concentrations); so, at least, the ques-
tion has been posed in the experimental studies under dis-
cussion. This point of view, stressing the similarities of
the alkali halide systems, was expressed by Hochli et al.
(1979), Geifman et al. (1981), Hochli (1982), and van der
Klink et al. (1983), and, in the opinion of van der Klink
et al. (1983), was also supported by experiments (Borsa
et al. , 1980) where no anomalies in the rate of the spin-
lattice relaxation near T, were found. Various groups
of authors (Cornaz et al. , 1981; Courtens, 1981; Prater
et al. , 1981a,1981b; Yacoby, 1981; Chase et a/. , 1982;

FIG. 18. Time dependence of residual polarization of
Kp 984Lip pl 6TaO3 (E=30 kV/m' T= 30.5 K.). After HOchli There were no anomalies of the specific heat either (Lawless

et al. , 1984; Strukov et al. , 1986).
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Yacoby et ah. , 1983; Vugmeister et a/. , 1989) conducted
additional experiments which greatly cleared up the na-
ture of the phenomenon and enabled these authors to
infer that ferroelectric domains with large regions of
homogeneous spontaneous polarization are present in
KTa03-.Li.

For example, birefringence studies indicated that rath-
er large polar regions appear below T„which have the

0
form of domains of about SOOO A in size (Prater et al. ,
1981a,1981b), oriented along the [100] direction and
separated by irregularly arranged (Cornaz et al. , 1981)
domain walls. It is clear that this picture is not con-
sistent with traditional concepts of the dipole glass state,
where the short-range order covers only a few nearest
coordination spheres.

A still more convincing argument in favor of a fer-
roelectric phase transition in KTaO3..I.i at T =T, was
provided by the observation (Prater et al. , 1981a; Yaco-
by, 1981) of a splitting of the Raman scattering peak cor-
responding to the soft-mode frequency (peak B ln Fig.
13), which clearly indicated a reduction in the symmetry
of the low-temperature phase below T, . The temperature
dependence of the position of the Raman peaks for
diA'erent Li concentrations is shown in Fig. 20, which
also demonstrates that at T = T, the soft-mode frequency
has a finite value, this being characteristic for phase tran-
sitions of the order-disorder type.

An anomalous rise in the nonlinear dielectric response
was found by Yacoby et al. (1983) to occur within a cer-
tain temperature range with increasing external electric
field (Fig. 21); this is in contrast with KCl:OH dipole
glass behavior, for which the anomalies are smoothed out
in the electric field. At the same time, it was shown by
these authors that the character of the dielectric
anomalies was in complete agreement with the assump-
tion that a ferroelectric phase transition of the first type
took place, whereas above T, the dielectric nonlinearity

T' = 55K

e
e

l20—
lQQ

K

500 500
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FIG. 21. Permittivity of K, ~L~ TaO3 at x=0.035 as a func-
tion of applied voltage: , increasing voltage; D„, decreasing
voltage. After Yacoby et a/. , 1983.

factor b i changed its sign. Indications of a first-order
transition were also found in earlier experiments (Cour-
tens, 1981). Vugmeister (1984b) has shown the appear-
ance of the first type of phase transition to be associated
with additional electrostrictional interactions in a crystal
containing impurities, which stem from the fact that the
oA'-center Li ion has not only an electric, but also an elas-
tic quadrupolar moment.

The acoustic anomalies discovered by Chase et al.
(1982) and Smolensky et al. (1983) argue as well in favor
of a ferroelectric ordering.

The observation of a shift of the EPR line of the cubic
center of Fe at x =0.045, proportional to the square of
the spontaneous polarization (Vugmeister et al. , 1989), is
additional evidence of a reduction in the low-temperature
phase symmetry.

Andrews (198S) investigated structural changes in
KTL by the use of the x-ray scattering technique, which
allows structural changes in a crystal and the amount of
spontaneous deformation to be directly observed from
the splitting of the Bragg peaks. The temperature depen-
dence of the lattice parameter, measured in this way, is
shown in Fig. 22, where it can be seen that the splitting
of the Bragg peak at x =0.05 is clearly defined; this en-
abled Andrews to determine the tetragonal deformation
of the lattice. The obtained c /a ratio amounted to
1.001 38+0.0005 at 10 K. Andrews noted that the ab-
sence of Bragg-peak splitting at x =0.016 was due to the
small magnitude of the spontaneous deformation, which
at x =0.016 should be 25 times smaller than at x =0.05.
At the same time, experiments on disuse scattering of x
rays, conducted by this author, indicate that homogene-
ous deformation regions with an average size of at least

O

1000 A exist in the crystal even at x =0.016. This con-
clusion was supported by subsequent experiments (Kami-
takahara et al. , 1987) using neutron ditfraction, where
specimens with concentrations of x =0.017 and x =0.04
were investigated; the intensity of the Bragg reflections
was measured as a function of temperature. The two

FIG. 20. Temperature dependence of soft-mode energy of
K l Li Ta03 and of pure KTaO3 (curve TO, ). Vertical bars
indicate the magnitude of unresolved splitting at x =0.022.
After Prater et al. , 198lb. The factor in the term ( —')b, I' of the crystal free energy.
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FIG. 22. Temperature dependence of lattice parameter in
KTL. After Andrews, 1985.
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FIG. 23. Temperature dependence of Bragg intensities in KTL.
After Kamitakahara et al. , 1987.

specimens exhibited qualitatively identical effects due to
the presence of a cancellation relief. These authors as-
serted that this effect would not be noticeable if the two
crystals had not contained homogeneous polarization re-

0
gions of at least 1000 A. However, in contrast to ordi-
nary ferroelectrics, the specimen with x =0.017 also ex-
hibited long-time relaxation phenomena characteristic of
dipole glasses; namely, after cooling to below 40 K, the
intensity of the Bragg reflexes reached their final values
within several hours. The temperature dependence of the
Bragg peaks is presented in Fig. 23.

Summarizing this brief review of the experimental situ-
ation for KTaO3:Li, which is typical of highly polarizable
crystals containing dipole impurities, we may say that the
basic features of the experimentally observed phenomena,
the coexistence of ferroelectric domains and long-time re-
laxation effects, are in qualitative agreement with the
theoretical concepts presented in the preceding section.
The principal distinction of these systems is the existence
of a disordered configuration of impurities, which results
in phenomena more complex than those predicted by the
self-consistent field approximation. A specific role is
played by clusters of dipoles separated by less than aver-

age spacings, whose relaxation is impeded as described in

Sec. II 8. It was noted (Vugmeister, 1984a) that such

closely spaced dipoles may be treated as quasistatic de-

fects which, according to the theory of Imry and Ma
(1975), should lead to division of the crystals into
domains, the latter originating not only in spherical-
symmetry systems (Imry and Ma, 1975), but also in an-

isotropic ones (Imry and Wortis, 1979). Dipole glass and
domain states are similar in that polarization by an exter-
nal field after cooling in a zero field is difficult to produce
in both cases. Residual polarization after cooling in a
constant field and long-time relaxation exist in both these
cases.

It should, however, be pointed out that the long-time
relaxation effects in KTa03.Li are far more pronounced
than could be expected from the cluster model of the for-
mation of frozen defects. Indeed, the probability that
strongly coupled clusters of particles will form at less-
than-average distances is high at concentrations x not
greatly exceeding the critical concentration x„—10
[Eq. (3.33)], while with Li in KTa03 cooperative eifects,
can be observed only at x &0.01, due to an extremely
slow single-particle relaxation of Li at T(30 K [in ac-
cordance with Eq. (4.1)].

Some new ideas concerning this problem have been
suggested by Kleemann et al. (1987), who reported new
data on birefringence and dielectric permittivity at Li
concentrations of x =0.011, 0.016, and 0.063. These au-
thors note that, since single-particle relaxation of Li even
at T =40 K is very slow, hence, by virtue of the distribu-
tion of relaxation times, a large proportion of single di-
poles that may be regarded as frozen with respect to the
remaining dipoles may well exist. The relative number of
frozen dipoles would be greater the lower the tempera-
ture. They stated that the boundary concentration x,„
between a true dipole glass of the KC1:Li type and the
domain states could be determined from the
birefringence data and made the estimate x„=0.02.
Such a critical concentration value substantially exceeds
the theoretical estimate (3.33) and agrees with the sugges-
tion that additional static random fields (not to be con-
fused with dynamical random fields caused by reorienting
Li dipoles) play an important role in the ordering phe-
nomena in KTa03:Li. At the present time we can con-
sider it as established that the existence of static random
fields leads to destruction of the long-range order in
three-dimensional Ising-like systems (KTa03.Li is such a
system) only when the width of the static random-field
probability distribution exceeds its definite critical value.
The conditions for destruction of long-range order by

SThe second low-frequency dispersion of the dielectric
response in KTL, which appears to be associated with closely
spaced dipole clusters, supports this assumption (Hochli and
Baeriswyl, 1984).
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static random fields for the Ising model were first ana-
lyzed by Schneider and Pytte (1977) for spin systems
based on the mean-field approximation of the spin-spin
interaction (dipole-dipole interaction in our case). It is
clear, however, that in the system under consideration
when ordering dipoles are randomly located in the lattice
sites, the random-field theory developed here is more ap-
propriate.

As one can show (Vugmeister and Stefanovich, 1990),
in order to take into account the static random field we
should replace F, (p) in Eq. (3.37) with

Fi(p) =Fi(p)+F 1
"(p)

where F& (p) is the logarithm of the Fourier transforma-
tion of the static random-field probability distribution.
Estimates based on Eq. (3.37) (Vugmeister and Stefano-
vich, 1990) show that in order to get an experimental
critical concentration x„=0.02, the width of the
random-field probability distribution should be put ap-
proximately equal to the width of the f (E) function
(3.25). This value is much greater than one can assume if
frozen Li dipoles are the only source of static random
fields. Therefore we can conclude that additional defects
of unknown chemical composition, perhaps the same as
have been observed in Raman scattering experiments
(Uwe et al. , 1986), are responsible for the ferroelectric
critical concentration in KTaO3. Li.

Moreover, the dilatational part of the strain field in-
duced by ofI-center ions can be the source of static ran-
dom fields. The concept of static random fields is able to
provide a natural explanation of the domain states in
KTa03..Li because nowadays ii is well known that, in

spite of the prediction of thermodynamic theory (Imry
and Ma, 1975; Imbrie, 1984) that long-range order in the
three-dimensional case does exist for a vanishingly small
static random-field probability distribution, such an equi-
librium state is not reached in random-field cooled exper-
iments. Instead we have metastable domain states in
which domain walls are pinned by the random fields.
The long-time relaxation observed in KTaO3 Ll and de-

veloping in experiments much more distinctly than pre-
dicted by the simple theory of Sec. III may also be caused
by metastable domain states. Recently Schremmer et al.
(1989) have shown that domain states in KTa03:Li can
be oriented by an external electric field leading to the ap-
pearance of an additional maximum in dielectric permit-
tivity (after switching off the field), which Schreinmer
et al. (1989) considered as evidence of a true ferroelectric
phase transition. The smeared permittivity peak ob-
served earlier at E,„,=0 is of the relaxational type, in the
opinion of these authors. It should be mentioned, howev-
er, that such an interpretation is in contradiction with
the point of view of Yacoby et al. (1983), and therefore
additional investigations are needed to clear up the ques-
tion. Note also that the existence of domain states in-
duced by static random fields can smear a ferroelectric
phase transition, as was observed, for example, in the
mixed system Sr, Ca TiO3 with oA'-center Ca ions

(Bednorz and Miiller, 1984; Kleemann, Kutz, et al. ,
1988; Kleemann, Schremmer, and Rytz, 1989). Ca dop-
ing leads to the appearance of two kinds of defects in

SrTi03.. reorienting and frozen dipoles (Kleemann, Kutz,
et al. , 1988). Reorienting dipoles (off-center ions) are
created initially when one increases the Ca concentra-
tion, which leads to an increase in the ferroelectric transi-
tion temperature. However, a further increase in Ca con-
centration leads to formation of frozen dipoles and
smearing of the ferroelectric transition. Random-field-
induced domain states in Sr& „Ca„Ti03 are orienting in

an external electric field even at T=0 (Kleemann, Kutz,
et al. , 1988).

In recent years the role of elastic interactions between
ofF'-center ions in KTaO3 and the efFects of quadrupolar
ordering have been discussed extensively. Although
these questions are beyond the scope of this review,
which is primarily concerned with the ordering in polar-
izable media associated with the electric dipole-dipole in-

teraction, we shall mention them briefly because they are
now of interest.

How strong is the interaction between e1astic quadru-
poles and is a ferroelastic phase transition possible here?
These questions are important because if a ferroelastic
phase transition is more readily attainable than a fer-
roelectric one, the theory presented above should be
corrected to describe more accurately the ordering phe-
nomena in real crystals.

Ultrasound absorption experiments (Hochli et al. ,
1982) made possible an estimate of the coupling parame-
ter g between the elastic quadrupole moment of a Li ion
and the strain field in KTaO3. The temperature T& of
quadrupole ordering in the mean-field approximation is

equal to

kg Tg =g El /3C

where C=C» —C, z is the elastic modulus of the host
lattice. Taking into account that, according to Hochli
et al. (1982), g = 1.7 X 10 ' CGSE we have T ( 5 K for
Li concentrations less than 10 at. %, which is much less
than typica1 values of the ferroelectric transition temper-
ature at these concentrations.

Alinchuk and Smolyaninov (1988, 1989) took into ac-
count that the interaction of quadrupole moments with
lattice polarization of the type V&

= g &Q &P P& leads

to additional indirect quadrupole-quadrupole interac-
tions, which can be significant in a soft lattice. More-
over, the isotropic term in such an indirect interaction
appears similar to the isotropic term in dipole-dipole
Hamiltonian (3.11) for a ferroelastic phase transition.
But the numerical estimate of Glinchuk and Smolyani-

nov (1988, 1989) showed that indirect quadrupole-
quadrupole interaction does not increase T& significantly
in KTaO3.Li and therefore a ferroelastic phase transition
does not occur here, at least for x ~0. 1. Glinchuk and
Smolyaninov (1990) have investigated some additional
peculiarities connected with an internal elastic field in
mixed crystals.
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An essential feature of the system under consideration
is that host-lattice tetragonal distortions in the low-
temperature phase are not completely homogeneous, but
the distribution of the strain field created by ofF'-center
ions may be observed in neutron (Hochli, Doussineau,
and Ziolkievich, 1989) and EPR (Pechenyi et a/. , 1989
experiments, Kleemann, Schafer, et al. , 1988); see also
Kleemann et al. , 1987) observed a logarithmic time
dependence of the birefringence, ascribed by them to the
manifestation of quadrupolar ordering. The remarkable
feature of these results is that such quadrupolar ordering
exists even below the critical concentration x„=0.02.
As was pointed out by Kleemann, Schafer, et al. (1988),
the observed phenomena can be attributed to local
tetragonal distortion induced by internal strains. Howev-
er, as they rightly noted, substantiation of this hypothesis
calls for experiments on the effects of pressure.

The present authors are inclined to the opinion, based
on the strength of the available experimental evidence
and on the estimate of Eq. (3.33), that domain states
whose sizes fIuctuate greatly at low Li concentrations,
where the mean-field theory is invalid, occur in
KTa03 Li over the entire range of x 0.02.

An obvious success of the theory is its good descrip-
tion of the observed concentration dependence of the
phase-transition temperature using a single theoretical
parameter, the quantity yd, where d is the dipole mo-
ment of Li and y is the parameter of the local field at the
location of the Li (see Sec. III). Comparing the theory
with experimental results (Vugmeister, 1985; Vugmeister
and Stefanovich, 1987a), yielded ~y~d =0.08e A, which
excellently agrees with the EPR data (Vugmeister et al. ,
1984) of yd=0. le A. Taking into account the NMR
data (van der Klink and Borsa, 1984) on the off-center

0
displacement X0L; ——1 A, this allows us to state that the
local-field parameter value ~y ~

=0. 1 at the Li location is
well enough (even unexpectedly) predicted by a purely
ionic model within the framework of the Slater (1950)
theory for a perovskite lattice.

to-critical concentrations the behavior of the critical tem-
perature T„permittivity, and other physical quantities
differed considerably from the predictions of mean-field
theory; this was attributed to the manifestation of quan-
tum fiuctuation effects (see also Miiller, 1985). As an ex-
ample, Fig. 24 shows the dependence of the maximum
permittivity temperature (assumed equal to T, ) on the
Nb concentration. It can be seen that at x &0.05 the
dependence T,(x) is practically linear, whereas at low
concentrations it is T, (x) ~(x —x„)',which is typical
for quantum ferroelectrics (Oppermann and Thomas,
1975; Schneider et al. , 1976).

In the earlier studies mentioned above an attempt to
describe the phase transition in KTN in the framework
of the quantum ferroelectric model was undertaken and
it was suggested that the niobium impurity was situated
in the usual slightly anharmonic potential. But such a
treatment did not describe the observed concentration
dependence of the phase-transition temperature T, (x)
without the additional assumption of strong temperature
dependence of the local niobium frequency (Kugel et al. ,
1987). The possibility of such a strong temperature
dependence follows from a model of Migoni (Migoni
et al. , 1976) in which the nonlinear polarizability of oxy-
gen ions is taken into account explicitly. But such an ap-
proach does not account for the appearance of relaxa-
tional dynamics in KTN at low temperatures, which we
shall discuss below. Vugmeister and Antimirova (1990)
suggested that the crossover from an order-disorder-type
phase transition to a displacive one takes place with in-
creasing Nb concentration. To describe such a phase
transition a semiphenomenological approach was used
with the assumption that the Nb is moving in an eight-
well off-center potential with sufIiciently low barrier. The
barrier height U =60 K and off-center displacement
X0 ——0.08 A of the Nb ions were estimated by the best fit
to T, (x) experimental data (Fig. 24).

It should be mentioned that because of the large co-
valency of the Ta—0, Nb —0 bonds, the Slater theory

B. KTaO, :Nb (KTN)

It is at present clear that the behavior of potassium
tantalate with Nb differs little in principle from the situa-
tion with Li. At Nb concentrations x ~0.02 the experi-
ments give evidence for the existence of ferroelectric
domains, whereas symptoms of dipole glass, showing up
as long-time relaxation, appear at 0.008 &x &0.02. His-
torically, the experimental study of phenomena in
K& Nb Ta03 (KTN) proceeded in the opposite order
to that of KTL. The first dielectric and acoustic mea-
surements (Triebwasser, 1959; Kind and Miiller, 1976;
Boatner et a/. , 1977; Hochli and Boatner, 1979; Rytz
et al. , 1980, 1983) assumed that a ferroelectric phase
transition, which had been shown to begin at the critical
concentration x„=0.008, took place in KTN. At close-

K Ta( „NB„Op
loo

(D

CL
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0 0.05
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FIG. 24. Temperature of permittivity maximum as a function
of Nb concentration. After Muller, 1985.
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(Slater, 1950) is not applicable to KTN, in contrast to
KTL (Vugmeister and Antimirova, 1990).

A series of optical experiments similar to the KTL
studies were conducted in an efIIort to gain a deeper un-
derstanding of the nature of the phase transition and of
the mechanism by which a low Nb impurity concentra-
tion changes the properties of the crystal so drastically.
The first study of KTN using Raman scattering was car-
ried out by Manlief and Fan (1972). Yacoby (1978) ob-
served at x =0.06 Raman scattering of the first order, re-
sulting from 'rigid" TQ2 phonons. The possibility of
such first-order scattering, forbidden for a pure crystal by
the selection rules, was ascribed to the fact that Nb pro-
duces in an odd-symmetry crystal microdeformations
that cover a few lattice constants. This opinion was sup-
ported by detailed experiments and calculations conduct-
ed by Uwe et al. (1986), who observed peaks of the first-
order scattering from low-frequency soft phonons of the
TO, branch for various wave-vector values. They inves-

tigated KTa03 both pure and doped with SR and Ca im-

purities. These authors demonstrated that regions polar-
ized by defects, regions whose size I", =—4a at low temper-
atures and r, = 1.3a at T = 100 K (where a is the lattice
constant), do indeed exist in the crystal. Such a point of
view is fully identical, both qualitatively and quantita-
tively, to the theoretical concepts discussed in Sec. III A
[see, for example, Eq. (3.18)], where the size of defect-
polarized regions was related to the correlation radius r,
for a pure crystal. Using the definition r, =s/aio , [Eq.
(3.8)], presented in Sec. III A, and taking the values of
the soft-mode frequency m0 and s from the study by Axe
et al. (1970), we obtain for r, about the same numerical
cstliilatcs as tllosc reported by Uwc et al. (1986).

The definition of the polarized regions in KTN by Nb
alone rather than by other impurities was contested by
Prater et al. (1981a, 1981b) who observed no depen-
dence of the first-order scattering intensity on the Nb
concentration. These authors claimed that the presence
of Nb results only in softening the soft-mode frequency,
i.e., in inducing a ferroelectric phase transition, whereas
the appearance of the first-order scattering peak was as-
cribed by them to the interaction of the optical TO&
mode with the acoustic TA branch; they attributed the
eAect of Nb on the intensity of the TO2 mode close to T;
to the smearing of the phase-transition temperature in
diAerent ferroelectric domains. The opinion of Yacoby
(1978) may, however, happen to be valid if
aiTo (v(a~To (where v is the frequency of the Auctua-

1 2

tional motion of Nb) close to T, In this case, Nb will in-
duce the first-order scattering spectrum associated with
the T02 mode alone. This opinion is borne out by subse-
quent, more precise, experiments (I.ee et al. , 1985; Lyons
et al. , 1986), which indeed demonstrated that, in accord
with Prater et al. (1981), the intensity of the first-order
scattering by the TO& mode is independent of the Nb
concentration at temperatures above 20 K, but exhibits a
strong concentration dependence below 20 K. In the
opinion of Lyons et al. (1986), this is due to a strong tem-

perature dependence of the Nb fluctuation frequency
below 20 K.

Prater et al. (1981a, 1981b) employed two different
techniques to deterlnine the phase-transition tempera-
ture. One of these was to observe the change in the Ra-
man spectrum at T (T, . Such a change is illustrated in
Fig. 25, which shows an intense peak in the first-order
scattering by the TOi mode appearing below T, . With
decreasing temperature the intensity of the peak in-
creases and it shifts towards higher energies. Splitting of
the peak into two peaks was observed at T=4.2 K in
specimens containing 3% Nb and more. As T, is ap-
proached, the frequency of the soft TO, mode decreases,
as it should for a displacement-type transition [this has
also been detected in neutron experiments (Fontana
et al. , 1984)]. However, at T~T, the soft-mode fre-
quency does not go below ILO cm ', this was taken as evi-
dence of a central peak, which has been studied in greater
detail by Lee et al. (1985) and Lyons et al. (1986).

Prater et al. (1981) also observed the depolarization of
light. In the cubic phase the optical properties of the
crystal are isotropic, and there is no depolarization. It
arises in the presence of optically anisotropic ferroelec-
tric domains because of repeated changes in the polariza-
tion from different domains (Fig. 26). Depolarization ex-
periments clearly demonstrate the existence in KTN of
ferroelectric domains whose sizes exceed the wavelength

KTQG

0 4G BG IPG IGG ZGG

Energy Shift (cm ) )

FIG-. 25. Raman spectrum transformation with decreasing tem-
perature for KTap 98Nbp pp03 ~ After Prater et al. , 1981a.
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FIG. 26. Temperature dependence of the degree of depolariza-
tion of light after passage through KTN containing diA'erent Nb
concentrations. After Prater et ai., 1981a.

of light and which difFer somewhat in their phase-
transition temperatures. At x ~ 0.02, however, the polar-
ization is incomplete even at T=4.2 K, which indicates
that either the anisotropy in every domain is small or
only a small part of the specimen has transformed into
ferroelectric domains.

A decrease in symmetry below T, is also indicated by
hyper-Raman experiments on second-harmonic genera-
tion (Kugel et al. , 1984). A firm conviction existed till
1984 that a displacement-type ferroelectric phase transi-
tion to a rhombohedral symmetry phase at x 5 S%
(Boatner et al. , 1977) occurred in KTN, with indications
of a defect-induced central peak corresponding to the
theory of Halperin and Varma (1976). The dependence
of the soft-mode frequency on the Nb concentration and
on the temperature was explained in terms of a shell
model in which the strong electronic polarizability of an
oxygen ion played a substantial part (see Kugel et al. ,
1985, 1987, 1988, where references to earlier studies are
presented).

Samara (1984, 198S) was the first to strike a major
blow at the established concepts on the character of the
phase transition in KTN. At a Nb concentration
x =0.009 he observed a low-frequency (right to 10 Hz)
dispersion of permittivity at T (10 K (Fig. 27), which
could be accounted for if thermal fluctuations of Nb at
low temperatures were of an activational character. This
meant that Nb at low temperatures is an oA'-center ion,
i.e., a reorienting dipole defect. Analysis of the disper-
sion curves permitted the magnitude of the activation
barrier U in Eq. (4.1) to be determined, which turned out
to be U =60—70 K (Samara, 198S; Glinchuk et al. ,
1987). This conclusion by itself only defined more exact-
ly the character of the individual motion of Nb at low
temperatures and did not contradict the possibility of a
ferroelectric phase transition; an order-disorder phase
transition can be accomplished at low temperature be-
cause of slow Nb motion. A difhculty arose, however, in
interpreting the experimental data, reported by Samara,
in terms of the ferroelectric phase transition', it arose
when one attempted to match within the framework of
Eq. (4.1) such a low Nb reorientation frequency at low

4—
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FIG. 27. Temperature dependence of the real part of the dielec-
tric constant of KTN Cx=0.009} crystal, showing a strong fre-
quency dispersion. After Samara, 1985.

v= voexp[ —Ul( T —To)], (4.2)

with physically reasonable parameters U =70 K, To =3
K, and vo=300 cm ' (see also Glinchuk et al. , 1987).
However, in deriving Eq. (4.2), Lyons et al. (1986)
neglected the possibility that an interaction between im-
purities might afFect the distribution of reorientation fre-
quencies. Such a spread of reorientations, resulting in a
logarithmic time dependence of various physical quanti-
ties, is, as has been shown in Secs. II B and IV A, rather
substantial both in classical dipole glasses, such as

temperatures, observed by Samara, with the results of
Raman experiments at high temperatures, which show
the Nb motion frequency to be not less than 10' —10'
s . Processing the dielectric and the Raman experi-
ments, based on Eq. (4.1), yielded vo- 10 ' s ', which has
no physical meaning. Due to this, Samara (1984, 198S)
suggested that a cooperative freezing mechanism
afFecting the Nb motion goes into action at low tempera-
tures, which is similar to the situation for spin glasses
(Binder and Young, 1986). Further study of the mecha-
nism of such a cooperative freezing was undertaken by
Lyons et al. (1986, 1987). In the 1986 paper, as has been
noted, Lyons et al. investigated in detail the dependence
of the first-order Raman scattering intensity on the Nb
concentration at x =0.009. They observed a pronounced
central peak, which showed up not only at
T=T (T =6—7 K is the temperature corresponding to
the permittivity maximum), but also right up to T = 14 K
(Fig. 28). This indicated that the central peak stemmed
from reorientational motion of Nb. The temperature
dependence of the central peak width, which, in the
opinion of Lyons et al. (1986), determines the averaged
frequency of reorientations of Nb-induced clusters, was
approximated by the Vogel-Fulcher law
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l4K, x 5
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Lyons et a/. (1987) discovered that at arbitrarily low
values of the applied electric field E the polarization
P (E) induced by the field is a nonlinear function of E and
is described by the relation

P (E)=pi, zFcE+ sign(E)BE (4.3)

where the coeKcient B is given in Fig. 29. After the field

is turned off; the polarization decays according to the
logarithmic dependence

P (r) =Po+P, ln(tvo)

-40 -20 0 20 40
Frequency Shift b v(6Hz)

FICx. 28. Spectrum vrith a central peak in a zero field at
di6'erent temperatures. After Lyons et al. , 1986,
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FICx. 29. Value of coe%cient B in Eq. (4.3) for E~~[111](Lyons
et al. , 1987).

KC1:Li, OH, and in the case of KTa03:Li. Recent ex-
periments (Lyons et a/. , 1987) have demonstrated that
KTaO3 Nb is not an exception in this respect. The latter
authors undertook a study to determine the extent of the
analogy between cooperative phenomena in KTN and in
spin glasses. Their principal goal consisted in ascertain-
ing the behavior of the nonlinear dielectric susceptibility,
which they believed to be a test for dipo1e glass behavior.
Although, as can be seen in Fig. 29, the nonlinear suscep-
tibility exhibits a clearly defined maximum, in the case
under consideration this is not an unambiguous indica-
tion of an equilibrium phase transition to the dipole glass
state, since a similar behavior should also be observed in
the presence of ferroelectric domains [the possibility of
whose existence at x =0.009 is not denied (Kleemann
et a/. , 1985)], as follows from an analysis in terms of the
mean-field theory.

over the entire temperature range from 1.8 to 15 K. This
behavior is obviously inconsistent with a description in
terms of the Vogel-Fulcher law and indicates a cluster
mechanism associated with slow relaxation of closely
spaced Nb dipoles, similar to the situation for KTL.
Lyons et al. noted that the cluster model provides an ex-
planation not only of the logarithmic relaxation, but also
of Eq. (4.3). It should be mentioned, however, that the
experimental procedure used by Lyons et a/. (1987)
differs from the method used in spin glasses and electric
dipole glasses. Usually one increases the static field while

measuring the ac complex susceptibility at optimal fre-
quencies. Different experimental techniques can lead to
different results.

Sommer and Kleemann (1990) have performed careful
measurements of frequency-dependent dielectric permit-
tivity for different temperatures. They established that
the frequency dependence of the permittivity can be de-
scribed by the superposition of two independent relaxa-
tion mechanisms: (i) a monodispersive relaxation process,
which the authors ascribed to reorientation of individual
Nb ions surrounded by clouds of host-lattice polariza-
tion; (ii) a polydispersive relaxation process, which Som-
mer and Kleemann (1990) connected with the glassy state
due to the interaction between different Nb ions. No
signs of the Vogel-Fulcher law were observed.

A similarly complicated picture of Nb relaxation con-
sisting of two different relaxation mechanisms was ob-
served by electron paramagnetic resonance (Pechenyi
et a/. , 1988; Antimirova et a/. , 1990). The continuous
saturation EPR experiment described by Pechenyi et al
and Antimirova et al. revealed an additional low-
frequency (-10 Hz) dynamics. It was shown that this
phenomenon is connected with reorientation of the elas-
tic degree of freedom of the off-center ions.

Sommer and Kleemann (1990) have also been observ-
ing stretched exponential temporal decay of the permit-
tivity after quenching the sample and exposing it to an
external electric field or to the built-in long-range stress
fields accompanying lattice strains (due to crystal growth,
cutting, and polishing).

Kleemann et a/. (1985), have demonstrated, on the
basis of the birefringence data and measurements of the
refractive index, that ferroelectric domains exist in KTN
at x =0.012, the polarization fluctuations in the domains
being, however, (P ) )P, (where P, is the spontaneous
polarization). The (P )/P, ratio found by them corre-
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lates with the EPR data (Vugmeister et al. , 1988).
There are no specific-heat anomalies in KTN, as in

KTL (Lawless et al. , 1981, 1985); however, in contrast to
KTL, a critical increase in the spin-lattice rate of the K
nuclei, indicating a phase transition, was observed in
KTN at x =0.02 by van der Klink et al. (1986). Using
data on the concentration dependencies of intensities of
the NMR signal of the Nb and Ta nuclei, these authors
were able to demonstrate that in the low-temperature
phase all the Nb ions displace from the lattice sites,
which is not the case f'or Ta: only those Ta ions displace
that are close to Nb, at a distance on the order of the
correlation radius r„so that every Nb ion polarized an
adjacent region containing 100 unit cells of the crystal.
But in the paper by Rod et al. (1988) a displacement of
the order of 0.04 A was reported for all Ta ions. More-
over, according to Rod et al. (1988), this phenomenon
takes place in KTa03 containing defects as well as in

pure KTa03. The displacement of Nb ions x0 &0.15 A
obtained by these authors is in agreement with the esti-
mate of Vugmeister and Antimirova (1990)xo =0.08 A.

C. KTSOg. Na

Our understanding of cooperative phenomena occur-
ring when Na atoms are substituted for K in KTaO3
evolved in approximately the same way as for KTN, but
far fewer experimental studies have been conducted with
KTaO3:Na than with KTN and KTL, and therefore the
character of the phenomena occurring here is at present
much less clear.

The first studies of mixed K& Na Ta03 crystals were
conducted by David (1972) and Perry and Tornberg
(1969). Investigating the dielectric and the soft-mode
properties, they demonstrated that the ferroelectric
phase-transition temperature T, first rises to the value

T, =65 K at x =0.48 and then decreases. A large num-
ber of studies have been conducted in the range
0 (x (0.28, where departures from classical ferroelectric
behavior, similar to the situation for KTN, were ob-
served. The departures have been interpreted as manifes-
tations of quantum Auctuations, known to be substantial
at low temperatures. In the quantum region it has been
found that T, ~ (x —x, )'~, where the critical concentra-
tion of the ferroelectric phase transition is x, =0.012.

The off-center position of Na in KTa03 was first deter-
mined in a pioneering study by Yacoby and Just (1974).
Nuclear-magnetic-resonance studies (Hochli and
Rig amonti, 1983; van der Klink and Rytz, 1983;
Rigamonti and Torre, 1986) made it possible to deter-
mine from the spin-lattice relaxation the amount of the
oF-center displacement x0, which turned out to be very

0
small: x0=0.04 A. The off-center position of Na com-
pletely disappears at T„,=200 K. The NMR studies
also determined the most probable frequency of Na reori-
entations, which satisfies Eq. (4.1) with the parameters
v0=2X10 s ' and V=200 K.

Thus Na in KTa03 is, as well, a reorienting dipole de-
fect. The comparison of experimental T, (x) values with
the theoretical formula [Eq. (3.2.3)] made possible an in-

dependent estimate of the amount of off-center displace-
0

ment of Na, which amounted to approximately 0.08 A
(Vugmeister and Glinchuk, 1979); this correlates fairly
well with the NMR data.

Lanzi et al. (1987) observed a splitting of the soft-
mode frequency, indicating a reduction in the symmetry
of the low-temperature phase below T„but the magni-
tude of the splitting was considerably smaller than that
for KTL, apparently because of the small value of the di-
pole moment of Na. As T, was approached, the soft-
mode frequency decreased, which indicated a displace-
ment type of phase transition. However, these authors
discussed the additional possibility that the splitting ori-
ginated not in ferroelectric, but in structural domains
where random antiparallel spontaneous polarization
takes place. Such domains, in the opinion of these au-
thors, would yield in Raman experiments the same effect
as do domains with a homogeneous distribution of the
polarization, but in dielectric experiments the crystal
would exhibit dipole glass properties. Just such proper-
ties were observed by Maglione et al (1986), who found a
logarithmic frequency dependence of the imaginary part
of the permittivity (ez ~ co ' '), indicating the existence of
a distribution of- relaxation times, as for KTN and KTL.
These authors also observed an increase in the nonlinear
dielectric response, which they interpreted in terms of
the spin-glass theory. However, as we have noted in Sec.
IVB, for a correct analysis the critical increase in non-
linear susceptibility associated with the domain state
must be separated from the true dipole-glass behavior.
There is an ambiguity in Maglione et al. , (1986) separa-
tion of the ferroelectric domain contribution from full
nonlinear susceptibility because the authors could not
measure the static linear permittivity e(T) exactly. They
could only calculate e(co&0) by use of the Kramers-
Kronig relation. With such treatment of the experimen-
tal data Maglione et al. (1986) did not obtain divergency
of e(T) and therefore attributed all of the increase in e„&

to a dipole glass phase transition.
Hochli, Banfi, et al. (1989) reported on second-

harmonic light generation and birefringence data in

KTa03.Na. They calculated that a transition to a polar
phase occurs at 12 K. The transition is characterized by
an increase in the polar correlation length from 300 to
1500 A for 15% Na doping samples. The maximum
correlation length is 2.5 orders of magnitude below that
of a conventional ferroelectric and one order of magni-
tude above the spin-coherence length in CuMn. Thus it
can be seen that KTaO3..Na displays at certain concentra-
tions more complex properties than those in dipole
glasses and conventional ferroelectrics.

Ultrasonic investigation by Hochli, Doussineau, and
Ziolkievich (1989) gave evidence of coherent tunneling of
Na ions, within a correlation volume containing many
impurities, through barriers with various heights and
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asymmetry parameters. The tunneling was correlated
with low-temperature phase formation (see also Torre
and Rigamonti, 1987). The number of tunneling centers
contributing to the sound velocity was about 10 times
the total number of Na ions in the crystal.

Thus the phenomena in the KTaO3:Na system are on
the whole quite similar to those in KTN and KTL.

V. CONCLUSION

We have tried to acquaint the reader in adequate detail
with the experimental work being done on the coopera-
tive behavior of dipole impurities in dielectric crystals
and to discuss the theoretical concepts underlying this
field. The principal feature of such systems is spatial dis-

order in the arrangement of particles, due to which the
observed properties difFer greatly from the predictions of
the mean self-consistent field theory. The main goal of
this review was to show the relation between the form of
the dipole-dipole interaction in dielectric crystals and the
character of dipole ordering. To this end we looked first

at KCl:OH, Li+ as a pattern for a dipole impurity sys-

tem in weakly polarizable dielectrics with the well-known
form of a dipole-dipole interaction Harniltonian. We
then turned to the dipole-dipole interaction in highly po-
larizable crystals, where changes lead to the appearance
of macroscopic ferroelectric domains, and the crystal as a
whole displays the properties of ferroelectricity as well as
of a dipole glass. However, as we saw in the experimen-
tal and theoretical part of this review, the experimental
results are much richer and more complex than the sim-

ple theoretical notions presented here. Up to now,
theory has not described in sufFicient detail such phenom-
ena as small domain size, competition between dipolar
and quadrupolar ordering, and specificity of dynamic
efFects. Because of this discrepancy between theory and
experiment it seems that internal static electric and elas-
tic random fields as well as elastic quadrupolar interac-
tions between impurities must play an important role in
determining the physical properties of the system.

The systems under consideration are in many ways
close to magnetic spin glasses, although they exhibit a
certain specificity determined by the dipole-dipole in-
teraction potential (in this sense they resemble dipole
spin glasses). One of the most interesting unsolved prob-
lems in this field is the question of why the dipole forces
in dilute systems do not lead to an equilibrium phase
transition to the dipole glass state. A number of other
unclear points exist regarding the comparison of
KC1:OH dipole glass with magnetic spin glasses, in par-
ticular, why the long-time relaxation is well described
within the framework of a simple pair interaction model
without the need to allow for intercluster interaction.
We hope that the present review will attract the attention
of researchers to this problem.

A better understanding of systems containing oft:
center ions will probably be useful in studying the phe-
nomena in magnetic spin glasses and in structural glasses,

where the situation is greatly complicated by the ex-
istence of difFerent types of interactions. Of particular in-
terest are investigations of highly polarizable crystals
containing off-center ions, where a concentration phase
transition from a dipole glass to a ferroelectric should
occur at low temperatures. It is clear that near the criti-
cal concentration the system will exhibit anomalous
properties difIering from those of both a "classical" di-
pole glass and an ordinary ferroelectric.

So far, only the first steps have been taken both in
theory and in experiment, and detailed analysis has been
performed only in the random-field approximation.
Moreover, no systems have as yet been found in which a
concentrational phase transition could be induced experi-
mentally by continuously increasing the concentration of
dipoles. For KTa03.Li, for example, this is prevented by
the need to use low temperatures (below 30 K) where,
due to a higher barrier, thermal motion is completely
frozen even for Li ions isolated from one another, so that
no cooperative phenomena can be observed.

Therefore a purposeful search for new systems with
oIt'-center ions in highly polarizable crystals would be
very desirable.

NOTE ADDED

After this article was submitted for publication a num-
ber of papers appeared that have supplemented
significantly the picture of the phenomena represented
above.

(i) M. G. Stachiotti and R. L. Migoni [J. Phys. Con-
dens. Matter, 2, 4341 (1990)] applied the shell model to
the calculation of lattice polarization near oA'-center Li
ions in KTa03. Their results showed in particular that in

highly polarizable crystals an efI'ective dipole moment d*
of the off'-center impurity does exceed significantly its
proper dipole moment d, as follows from the macroscop-
ic treatment presented in Sec. 111.A based on the
Lorentz field Inodel.

(ii) T. Nattermann, V. Shapir, and I. Vilfan [Phys. Rev.
8 41, 8577 (1990)] and T. Nattermann [Ferroelectrics
104, 171 (1990)] investigated the eff'ect on dynamic sus-

ceptibility of metastable domains induced by static ran-
dom fields. According to these authors the existence of
metastable domains results in a logarithmic dependence
on the frequency of the dynamic susceptibility in
KTaO3:Nb, SrTi03.Ca.

(iii) B. E. Vugmeister (to be published), using the
random-field approximation developed above, has shown
that an explanation for the very difFerent critical concen-
tration values of Li, Nb, and Na in KTaO3 can be given
self-consistently if one assumes that they are caused by
random static fields existing even in updoped KTaO3.
This finding allows us to understand why x „' is almost
an order of magnitude higher than the critical concentra-
tion of Li and Nb, a fact that has been unexplained up
until now.

(iv) Neutron scattering experiments in KTN with
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x =0.0012 [H. Chou, S. M. Shapiro, K. B. Lyons, and
D. Rytz, Phys. Rev. B 41, 7231 (1990)] did not show any
tetragonal distortions that could be seen as evidence of a
ferroelectric phase transition. It seems to us the experi-
ments can be understood if one takes into account the
nonergodicity effects, which would be significant near
critical concentrations x„=0.008 where spontaneous
polarization (long-range order) is less than the remanent
polarization caused by clusters with short-range order.

(v) B. Recheav and Y. Yacoby (Proceedings of the
W.EXAFS Conference at York, England, 1990) have
made EXAFS studies of mixed perovskite systems. They
managed to measure directly the local rotation of oxygen
octahedra in K, „Na„TaQ3 as a function of x. The re-
sult suggests an antiferrodistorsive phase transition prob-
ably of the displacive type.
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APPENDlX: TESTS OF THE RANDOM-FIELD
METHOD ON MODEL SYSTEMS

The random-local-field method, in the formulation
used by us, relies on an exact formula [Eq. (2.11)],

L = f dE f (E,L)l(E), l(E)=tanhI3E, (Al)

behavior of the susceptibility curves gives no indications
of the existence of an equilibrium phase transition to the
spin-glass state, which occurs in the system described by
the Hamiltonian (A2). This discrepancy results form the
limitations of the two approximations being compared.
However, as has been noted in the principal text, experi-
ments do not indicate the existence of an equilibrium
phase transition in dipole glasses, and therefore the
random-local-field method is particularly preferable for
these systems.

let us consider also a model for the concentrational
phase transition described by the Hamiltonian (A2), with

and on neglect of correlation effects in the orientations of
different dipoles in calculating the function f (E). To
evaluate the degree of error brought about by such an ap-
proximation, a comparison with some model systems has
been made (Vugmeister and Stefanovich, 1987b).

Let us compare, for example, the susceptibility and
specific-heat values calculated by the random-field
method for the Edwards-Anderson (1975) spin-glass
model with corresponding values calculated by Binder
and Stauffer (1976) and Soukoulis et al. (1983) by com-
puter simulation. The Edwards-Anderson model is de-
scribed by a Hamiltonian,

and by a Gaussian distribution of J;, the interaction con-
stant between z nearest neighbors. For such a model,

+q(p)=0; +~(p)= —,'p 6; 5 = g. J~ =zJ . The results
of the calculation by Soukoulis et al. (1983) are shown in
Fig. 30, along with the susceptibility and specific-heat
values calculated by these authors and by Binder and
Stauffer (1976) for a simple cubic lattice (z =6). It can be
seen that the thermodynamic values, obtained by
different methods agree well enough with one another,
which serves as a certain test of the reasonableness of the
random-local-field approximation. At the same time, the

J='
0, r)r, . (A3)

The value of the critical concentration for this model,
calculated by the Monte Carlo method, satisfies the rela-
tion (4n/3)nr, =2 7(Korenbli. t and Shender, 1978).
Equation (Al) yields a value of (4w/3)nr, 3=1.8 (Vug-
meister and Stefanovich, 1987a).

Let us now consider another, frequently encountered,
mode1 with the potential

J(r) =Joe

Equation (Al) yields a close value of the exponent: 0.62
instead of 0.87. Moreover, Eq. (Al) makes it possible to
obtain the dependence T, (nr, ) at any nr, value and to
pass continuously to the mean-field limit at high enough
nr, values (Vugmeister and Stefanovich, 1989, 1990).

We thus conclude that the random-local-field method

In such a system, in contrast to that above, the long-
range order exists at any concentration of particles. The
T, (nr, ) values at nr, « 1, obtained from the percolation
considerations, satisfy the relation (Korenblit and
Shender, 1978)

T, =Joexp[ —0.87(nr, )
' ] .
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provides good qualitative accuracy for describing the
thermodynamic characteristics of disordered systems.
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