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In the first half of this article, theoretical treatments of the infrared divergence involved in the edge prob-
lem of soft-x-ray absorption, emission, and photoemission spectra of simple metals are reviewed historical-
ly. In the second half, recent developments in the work of the present authors using the Fermi golden rule
are described to show that the method permits an analytical treatment and provides exact results for vari-

ous aspects of the edge problem.
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LlST OF SYMBOLS

f the symbols and abbreviations that frequently
the text are summarized here.
overlap integral between yk and g,
index for the one-particle states below the
Fermi level in the ground configuration
prefactor of the orthogonality theorem
upper edge of the conduction band mea-
sured from the Fermi leve1
lower edge of the conduction band mea-
sured from the Fermi level
a cutoA' energy of the order of the Fermi
energy or the bandwidth
ground-state energy of X conduction elec-
trons in the ground configuration
ground-state energy including the energy of
core electron in the ground configuration
ground-state energy of X conduction elec-
trons in the excited configuration
Fermi energy measured from the bottom of
conduction band ( = ID I )

f (Ek)
Fermi distribution function for the energy E

l —f(E)
Hamiltonian for the conduction electrons in
the ground configuration
Hamiltonian for the conduction electrons
plus the core electron in the ground
configuration
Hamiltonian for the conduction electrons in

Some o
appear in

a~k
b

C0
D

EO

EO
C

E+0

EFermi

f(E)
f(e)
Jy

XI. Numerical 8 esults
A. Magnitude of Co [Eq. (8.43) in the absence of a

bound state and Eq. (9.53) in the presence of one]
B. Critical amplitudes for x-ray photoemission and ab-

sorption [Eqs. (9.49)—(9.52)]
C. Integrated intensities [Eq. (9.22) for x-ray photo-

emission and Eq. (9.31) for x-ray absorption spec-
tra]

D. Exact line shape at T =0 [Eqs. {4.12), (4.24), (4.25),
and (7.30) for photoemission and Eqs. (4.28), {4.42),
and {7.31) for XAS]

E. Pairwise series expansion [Eqs. (10.8) and (10.9)]
F. Single-particle formulas for XAS [Eqs.

(10.14)—(10.20) and Eq. (10.23)]
G. Temporal development of A(t) and Io(t) [Eqs.

(7.30) and (7.31)]
H. Generalized power-law formula [Eq. (10.27) for

photoemission and Eq. (10.28) for XAS and XES]
I. Thermal broadening and comparison with experi-

ments on quantum wells [Eqs. (7.38) and (7.39)]
XII. Application of thE MND Model to Real Systems

XIII. Summary
Acknowledgments
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I „„(~)
I „„(r)

I„,(r)
Io(co)

I,(r)
Ir(co)
I;(co)
I,r(co )

P(t)
P „„(co)
P „„(r)
P„,(co)

P„,(r)
T
V

Ml.

W j&c

the excited configuration
integrated intensity of XAS
integrated intensity of XES
x-ray-absorption spectrum or emission spec-
trum
absorption spectrum of the main band
response function yielding I „„(co)
absorption spectrum of the secondary band
response function yielding I„,(co)
spectrum of photoexcited electron or open-
line Green's function
response function for Io(co)
final-state rule absorption intensity
initial-state rule absorption intensity
orthogonal final-state rule absorption inten-
sity
index for the band state in the ground
con6guration
number of band states above the Fermi lev-
el
index for the band state below the Fermi
level in the ground configuration
number of band states below the Fermi lev-
el
total number of band states ( =N +M)
effective total number of band states
[ =X(0)Wb ]
density of states of the conduction band in
the ground configuration
density of states of the conduction band at
the Fermi level

X(ek)
x-ray photoemission spectrum or inverse
photoemission spectrum
response function yielding P(co)
spectrum of the main photoemission band
response function yielding P „„(co)
spectrum of the secondary photoemission
band
response function yielding P„,(co)
temperature or thermal energy kT (k = l)
minus the contact-type core-hole potential
(kk') matrix element of the core-hole po-
tential
total bandwidth of the conduction band
( =D D)—
dipole-moment operator for the total elec-
trons in the system
wk, with k dependence neglected
dipole-moment operator for the ith electron
matrix element of dipole-moment operator
(=&qklu;Iq, &)

matrix element of dipole-moment operator
(=&&.ltU;Iq, &)

partition function of conduction electron
25(0) /~
critical exponent for XAS and XES

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem 931

&(0)

aE0

q)0

q)0
C

index for the band state above the Fermi
level in the excited configuration
phase shift at energy c of s-like conduction
band
phase shift at the Fermi level of s-like con-
duction band
&(e„)
phase shift of angular momentum l at ener-

gy &

overlap integral between two ground states
and %' of X conduction electrons

level spacing at the Fermi level of the con-
duction band in the ground configuration
[=X(0) ']
shift of the ground-state energy of X con-
duction electrons (=E+ E)—
energy of a core electron relative to the
Fermi level
position of the Fermi level [taken as the
origin of single-particle energies (EF=0) ex-
cept in Sec. XI]
energy of the state ~ of the conduction
band in the excited configuration relative to
the Fermi level

energy of the state k of the conduction
band in the ground configuration relative to
the Fermi level

energy of the bound state below the con-
duction band relative to the Fermi level
small positive number of adiabatic switch-
ing of the core-hole potential
index for the band state in the excited
configuration
index for the bound state in the excited
configuration
index for the band state below the Fermi
level in the excited configuration
critical exponent of XPS or the orthogonal-
ity theorem
wave function of the core level
orbital for the band state k in the ground
configuration
many-body wave function of conduction
electrons in the ground configuration
many-body wave function of a state includ-
ing the core electron in the ground
configuration
Inany-body wave function for the ground
state of conduction electrons in the ground
configuration
many-body wave function for the ground
state of the ground configuration including
core electron
orbital for the band state ~ in the excited
configuration
many-body wave function of conduction
electrons in the excited configuration

qy0

0
COtI,

many-body wave function for the ground
state of conduction electrons in the excited
configuration
many-body wave function for the excited
state of conduction electrons in the excited
configuration
photon frequency
photon frequency or energy (Pi=1) mea-
sured from the renormalized (unrenormal-
ized in Sec. XI) absorption threshold

absorption threshold renormalized by AE
(=DE e, )—

I. 1NTRODUCTION

The study of x-ray-absorption spectra (XAS) and emis-
sion spectra (XES) has a long history beginning with the
discovery of the x ray by Rontgen in 1895. It has con-
tributed much to the founding of quantum mechanics
and to the establishment of many basic concepts in atom-
ic and solid-state physics (Compton and Allison, 1935).
As early as the 1930s, it was already recognized that
XAS and XES could provide us with valuable informa-
tion about the structure of atoms and solids. Surprisingly
enough, the importance of many-body effects in x-ray
spectra was already appreciated at that time (Wentzel,
1925a, 1925b; Richtmeyer, 1936). For example, to inter-
pret some satellite peaks occurring in the lower-energy
side of the characteristic K, L, or M emission line,
creation of two or more holes in the atomic core levels
accompanying the emission was suggested. This implies
that, in addition to simple optical processes involving
single-particle excitation, complicated processes occur
(e.g. , Auger and shakeup processes) that can be explained
only through the calculation of the transition matrix ele-
ment by the use of many-electron wave functions. How-
ever, the 1930s and 1940s had not yet arrived at a quanti-
tative understanding of the features of the satellite struc-
tures, because this entailed the dificult task of handling
many-body problems; a full treatment had to wait until
the development of sophisticated techniques to include
higher-order perturbation effects. Experimentally, the
situation was nearly the same: x-ray and soft-x-ray spec-
troscopy required a good light source, intense as well as
tunable and monochromatic, in order to yield data
deserving of a detailed theoretical study.

It was not until high-speed computers and field-
theoretic techniques were developed on the theoretical
side and synchrotron orbital radiation (SOR) came into
use on the experimental side that x-ray spectroscopy was
revived as an active subject of modern solid-state physics
(Tomboulian and Hartman, 1956; Tomboulian, 1957). In
his review paper, Paratt (1959) introduced important
concepts in the interpretation of XAS and XES data—
ejected electron and valence electron configurations, both
modified due to the presence of a core hole left behind
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after core-electron ejection. Clearly, he had in mind the
importance of many-body effects. Indeed, he was consid-
ering precisely the final-state interaction in the optical
processes, in our terminology, and the concepts he intro-
duced have played central roles in clarifying the Fermi
edge anomalies in XAS and XES, investigated so actively
ever since.

Although Paratt's paper was written just after the in-
troduction of the BCS theory of superconductivity, the
possibility of observing in x-ray spectra the infrared or
logarithmic divergence, that is, the edge anomaly due to
the presence of long-wavelength excitations across the
sharp Fermi level, had not yet been realized. Thus it was
only when SOR began to be employed extensively as a
light source in the soft-x-ray region (Madden, 1974) and
provided us with spectra displaying unambiguous edge
anomalies that a consensus developed concerning the
edge singularity of XAS and XES, that it was indeed an
intrinsic effect connected closely with infrared diver-
gence.

It was Mahan (1967a, 1967b) who showed that the
essence of the edge problem was indeed logarithmic
divergences in each term of the perturbation series, as a
result of the final-state interaction between the core hole
and conduction electrons. He predicted a power-law fre-
quency dependence at the threshold of the x-ray photo-
emission spectra. Independently of Mahan, Mizuno and
Ishikawa (1968) also correctly analyzed the XAS and
XES data by a perturbation treatment with respect to the
strength of the core-hole potential. The analysis of these
authors was then extended and refined by Nozieres and
his collaborators. In particular, Nozieres and DeDomin-
icis (1969) succeeded in deriving an exact analytical ex-
pression for the exponent of the power-law edge behav-
ior. The edge spectrum of XAS and XES can be written
in the form

I(co)=bee~,

where 5&(0) is the phase shift of the partial wave l at the
Fermi level and l0 defines the channel excited optically.
Equations (1.1) and (1.2) have been important not only
for an understanding of the x-ray problem in simple met-
als, but also for their ability to clarify other fundamental
problems in the theory of condensed-matter physics such
as the Kondo effect [see, for example, the review by Yosi-
da and Yoshimori (1973)].

Later, Doniach and Sunjic (1970) showed that the
theory of Nozieres and DeDominicis led to the formula
for x-ray photoemission intensity

P (co) —ccrc) (1.3)

where co is the frequency measured from the edge or
threshold, as defined below in Eq. (2.10). We call p the
critical exponent and b the critical amplitude. Nozieres
and DeDominicis derived an exact expression for p,

P= —2[5i (0)/m]+ g 2(21+ 1)[5i(0)/~]
1

where the critical exponent o. is

cr = g 2(2l +1)[5,(0)/vr]
1

(1 4)

Since the derivation of Nozieres and DeDominicis, the
edge problem has been studied with the aim of determin-
ing the energy range in which their results have practical
and quantitative validity. To put it another way, at-
tempts have been made to obtain expressions for the crit-
ical amplitudes b and c in the above formulas or, further,
an exact solution of the "MND problem" —so called
after Mahan, Nozieres, and DeDominicis.

One way to achieve this purpose is to use numerical
techniques. This has turned out to be fruitful. For exam-
ple, Dow and Flynn (1980) and Feldkamp and Davis
(1980) were able to determine the amplitude e of the x-
ray photoemission formula [Eq. (1.3)] through their at-
tempts to simulate the final-state interaction numerically.
Moreover, Oliveira and Wilkins (1981, 1985) and Cox
et al. (198S) obtained for the first time reliable numerical
values for the critical exponents and amplitudes of the
edge spectra by using the renormalization-group formal-
ism. Another way is to take a purely theoretical ap-
proach to an exact solution. It was Pardee and Mahan
(1973) who first showed that the absorption and emission
cross sections to and from an electronic state with energy
~ above the threshold can be expressed in terms of the
"dispersion integrals" defined by (z =co+i 0),

1 D 5(E)X(z) =exp —— d E
7T 0 Z E

1 0 5(E)X(z) =exp —— dE
77 D Z E

The expressions here are given for the case of an s-wave
conduction band [5(e)=5& o(E) in Eq. (1.2)] with the
Fermi level taken as the origin of energy, where D and D
are the upper and lower edges of the conduction band, re-
spectively. The dispersion integrals are the key quanti-
ties of the MND problem. Indeed, it can be shown that,
in the approximation of putting 5(E) equal to 5(0), X(z)
and X(z) exhibit a power-law singularity in the limit
co~O and this eventually leads to the power-law edge be-
havior.

The soft-x-ray absorption and emission problem ini-
tiated by Mahan finds its most complete solution to date
in the work of the present authors. This work is com-
plete in the sense that the edge behavior is expressed in
an exact analytical form including the prefactor b of Eq.
(1.1), an integral equation is derived that yields exact
spectra over the whole range of frequency, and, finally, a
formulation is also given for the case of finite tempera-
tures. In the view of the present authors, the solution
thus obtained seems to have covered almost every aspect
of the MND problem and this is the reason we present in
Secs. IV—XI an overview of our results.
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This review covers a series of papers by the present au-
thors published in The Physica/ Review (Ohtaka and
Tanabe, 1983, 1984, 1986, 1989; Tanabe and Ohtaka,
1984, 1985, 1986; Tanabe, 1986) and Journal of the Physi
cal Society of Japan (Kita, Ohtaka, and Tanabe, 1987a,
1987b) on the treatments of XAS, XES, and x-ray photo-
emission spectroscopy in simple metals. We intend to
reproduce the main results given therein, together with
their brief derivation. However, before presenting them,
we shall review, essentially in historical order, important
papers by other authors who introduced, developed, and
refined the edge problem.

The field of x-ray spectroscopy in the 1960s and early
1970s is reviewed in the book edited by Azaroff (1974).
In particular, the article by Hedin (1974) on the many-
body problem brieAy describes the conclusions of
Nozieres and DeDominicis. With the rapid increase in
the use of synchrotron orbital radiation, there have been
several review articles on SOR physics in which the
MND problem is briefiy treated (for example, Brown,
1980; Brown and Doniach, 1980; Bassani and Altarelli,
1983). Among works concentrating especially on the
edge problem, we may cite a number of sources. One is
Mahan's study (1975) of the earlier treatments, including
those of Mahan, Nozieres, and DeDominicis. Mahan s
textbook on the many-body problem (Mahan, 1981)
presents a fairly complete description of the theories of
Mahan, Nozieres, and DeDominicis as well as those of
Combescott and Nozieres (1971). In the review of Ko-
tani and Toyozawa (1979) on the final-state interaction,
there is a section treating the MND problem as well as
their own treatments of incomplete inner shells. The ar-
ticle by Almbladh and Hedin (1983) is quite comprehen-
sive, concentrating on many-body aspects of the theory,
including the effects of electron correlation on the edge
anomaly. The brief review by Wilkins (1982) is also use-
ful on topics related to the exact theory. Very recently,
Mahan (1988) reviewed developments in the field since
Combescott and Nozieres. His review is, however, rather
short. On the experimental side, see Brown (1975) and
Wertheim and Citrin (1978). The review paper by Citrin
et al (1979) compares experiments carried out in the
1970s with the MND theories. For more recent experi-
ments, however, no extensive review article seems to be
available as far as the authors are aware. We cite here
only articles found in the books listed above on synchro-
tron orbital radiation.

The present article is organized as follows. In Sec. II,
the basic outline of the edge problem is presented. Sec-
tion III is devoted to a review of the important papers
prior to our work. At the end of Sec. III, we give a pre-
view of the subsequent sections. Results obtained by the
present authors will be given in Secs. IV—X. In Sec. XI,
we present some numerical results based on our theories,
including an analysis related to the recent optical experi-
ments in n-type semiconducting quantum wells. In Sec.
XII, we discuss the MND model in relation to experi-
mental results in real systems. Section XIII offers a final

summary.
Readers who are interested only in the recent develop-

ments introduced by the present authors may skip Sec.
III, except for its subsection G.3, in which we outline our
formulation and briefIy summarize our results. Those
who are not very interested in the mathematical details of
the derivation may skip further and go directly to Sec.
XI, after reading Secs. II and III.G.3. For a rough
sketch of the approach of the present authors, it will
sufFice to read only Secs. IV, VII, VIII, and XI. Section
XII, where the applicability of the MND model is dis-
cussed, will be useful to those interested in the experi-
mental side of the soft-x-ray edge problem.

II. THE MAHAN-NOZIERES-DEDOMINICIS
(MND) PROBLEM

We briefly recapitulate the soft-x-ray problem, taking
the case of XAS as an example. This section also intro-
duces some of the notation used repeatedly in why. t fol-
lows.

Suppose we have a system of N+1 spinless electrons.
The freedom of spin may easily be taken into account in
the present spin-diagonal final-state interaction. (For the
exchange-type final-state interaction, see Sec. XII.) Be-
fore the absorption of an x-ray quantum, we have one
electron at a core level and N electrons in the conduction
band. We call this electron configuration the ground
configuration. The Hamiltonian for the conduction elec-
trons of this configuration is given by

&—g Ekoioi
k

(2.1)

Here the subscript k specifies the one-particle state of a
band electron with energy EI, and creation (annihilation)
operator ak (ak ). When we are considering (N+1) elec-
trons, including the core electron, we shall use the sub-
script c. For example, in

aEla k+kbEb
k

(2.2)

the en«gy of the core level is E, and its creation (annihi-
lation) operator b (b). Equations (2.1) and (2.2)
represent the initia1-state Hamiltonians in the case of ab-
sorption. The single-particle wave function, or the orbit-
als, specified by the index k in the ground configuration,
is denoted by yk, while that for the core state is denoted
by y, . For the many-body wave function in the ground
configuration, we use the symbol 4' for & and 4, for &, .
N, is the Slater determinant, with its dimension larger by
one than +. When there is a need to emphasize the num-
ber of electrons, we sometimes use a notation such as
&(N), @,(N+ 1), etc.

The core electron is excited to the conduction band by
x-ray absorption. The system is now composed of N + 1

conduction electrons with an unoccupied core level. The
Hamiltonian for this configuration —the excited
configuration —is given by
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= X ek~kau+ X &~k ~kak+=
k k, k'

(2.3)

This is the final-state Hamiltonian in the case of absorp-
tion (in the case of emission, it will be the initial-state
Hamiltonian). Very often, a contact-type core-hole po-
tential is assumed for Vkk ..

(2.4)

The parameter —V defines the strength of the attractive
core-hole potential (V)0). The excited-configuration
many-body wave function of Eq. (2.3) will be expressed
by the symbol%', and the single-particle eigenstates in the
excited configuration will be specified by ~ with the orbit-
al function g, . They are obtained by diagonalizing the
Hamiltonian equation (2.3). Notations like &+(N+1)
or %(N+ 1) will be used to stress the number of electrons
involved.

Since the scattering of electrons due to a spherical po-
tential is conveniently dealt with by means of a partial-
wave expansion, it is practical to express the band orbital
function as a superposition of partial waves. We regard
the Hamiltonians & and &+ as standing for the partial
wave of s (l =0), p (l =1), . . . symmetry with a value of
Vkk. appropriate for that channel. The scalar quantum
number k then specifies their eigenstates. When a core
electron in the E shell is excited, its final state has

p (I =1) symmetry, while that in the I. shell jumps to the
final state with s(l =0) or d(l =2). Of course, after a
core hole is introduced, electrons in the conduction band
are all influenced, irrespective of their angular momenta,
as in ordinary potential scattering.

In adopting the model Hamiltonians A, &„and &+,
we have made many simplifying assumptions. Although
a similar analysis for, say, a separable potential is not im-
possible, we treat the core-hole potential in this article
mostly in the simplest form, given by Eq. (2.4). We are
also considering an immobile core hole and neglect com-
pletely its recoil during the final-state interaction with
conduction electrons. Another simplification is our
neglect of the finite lifetime of the core hole and Coulomb
correlation among conduction electrons. All these
neglected effects must be taken into account in any seri-
ous attempt to obtain good agreement between theory
and experiment. The Coulomb correlations are especial-
ly important in the sense that the actual magnitude of
Vkk is determined by screening due to electronic correla-
tion. Although we shall regard the parameter Vkk or
—V as a given quantity, standing effectively for the core-
hole potential established self-consistently, and neglect
the Coulomb eA'ect altogether, its magnitude has to be
chosen appropriately in a quantitative treatment.

We emphasize that the idealized form of the MNI3
Hamiltonians, Eqs. (2.1) through (2.3), constitutes the
essence of the soft-x-ray problem, especially the edge
anomalies due to infrared divergence. We shall return in
Sec. XI to these points neglected in the MND model, and
attempt to compare the theory with experiment. More-

over, we discuss in some detail in Sec. XII the applicabili-
ty of the MND model to real systems.

Now let us return to Eqs. (2.2) and (2.3). Consider the
ground state 4&, [=4&, (N + 1 ) ] of the ground
configuration for X conduction electrons plus a core elec-
tron in their ground state. The state +, is expressed by a
(N + 1)X (N + 1) Slater determinant. Let the state of the
system after photoexcitation be denoted by
[=%~(N+ I)], with F running over all possible eigen-
states of &+ [=&+(N+ 1)]. The cross section of the
photoexcitation is given by the sum over F of the proba-
bilities of a transition from @ to 'PF, i.e.,

X 6(E~(N + 1) E, (N—+ 1)—0), (2.5)

where II is the photon energy (A'=1 throughout the pa-
per). See Eq. (2.12) for the relation between co and A. In
Eq. (2.5), E, (N+1) and EF(N+ I) are (N+1)-particle
energies of @, and 0 F, respectively, and 8
[ = 8'(N + 1)] is the dipole-moment operator expressed

8'= gw;, (2.6)

=c,+E (2.7)

where the subscript I is used for the one-particle state k
below the Fermi level and E thus defines the ground-
state energy for N electrons in the conduction band in the
ground configuration. In the case of finite temperatures,
we shall have to consider one-electron states thermally
excited above the Fermi level. The symbol {b,I will be
employed for them. See Fig. 1 for the notation used for
single-particle states of the ground configuration and ex-
cited configuration.

The energy EF(N +1) of Eq. (2.5) is also given by the
sum of (N+1) single-particle energies e, for &+; these
are slightly lowered from those of the initial states be-
cause of the core attraction, as shown in Fig. 1. As in the
case of k, we discriminate K according to whether the
corresponding state is above or below the Fermi level.
For states above the Fermi level, we use I), I, and for
those below, {p,j. Since the position of the Fermi level

EF is not aft'ected even to 0 (1/N) by the core-hole attrac-
tion, it is convenient to measure all the single-particle en-
ergies relative to it, so that cF =O.

The N-electron ground state 4 (N) in the excited
configuration is given by a Slater determinant for the N
lowest states below the Fermi level. Its energy is

E+0—y
p

(2.&)

using the dipole-moment operator m, for the ith electron.
By definition, we may write

E, (N+1)=E, + g E
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over s =1,2, . . . , n —1 for c„,as shown in the last equa-
S

tion. Here

co —AE c (2.1 1)

defines the renormalized threshold energy and

(2.12)

core
GC

Ec —O-
EC

showing that the X-particle ground-state energy has been
changed from E to E + by the core-hole attraction. Let
us call it the relaxation energy AE, where

gEO E+0 EO (2.9)

The ground state for %+1 electrons in the excited
configuration, i.e., the configuration after photoexcita-
tion, is thus given by adding one extra electron to the lev-
el just above the occupied Fermi sea of X electrons.
Similarly, the excited states in the excited configuration
are obtained by adding the extra electron to a higher lev-

el and/or exciting several electrons in the states [p, j to
the states [y, I above the Fermi level, that is, creating
shakeup (electron-hole) pairs. One way of distributing
shakeup pairs will yield one excited state of the excited-
configuration Hamiltonian &+. Suppose in the state O' F
of Eq. (2.5) that there are n electrons excited above the
Fermi level, leaving n —1 holes below it. We then obtain

EF(%+1)—E, (%+1)—II= g E —g E„+E+o

FIG. 1. Level scheme and notation for the single-particle states
in the ground configuration (GC) and excited configuration
(EC) ~ The Roman and Greek letters are employed for orbitals
in the ground and excited configurations, respectively.
Diferent notations are introduced to further distinguish the lo-
cations of levels relative to the Fermi level shown by the dashed
line. Each level of the ground configuration is shifted down-
ward in the excited configuration by the core-hole attraction. D
and D are the upper and lower edges of the conduction band,
respectively, relative to the Fermi level chosen as the origin of
energy.

is the photon energy measured from t'he renormalized
threshold.

Since the shift of individual level is of the order of
O(1/K), bE should be of the order of minus the Fermi
energy EF„;measured from the bottom of the conduc-
tion band. The transition from the ground state of the
ground configuration, 4, (%+ I), to that of the excited
configuration 4 (X+1), defines the edge of the absorp-
tion band. This is the case of n =. 1 and yi located just
above the Fermi level in Eq. (2.10). In the continuum
limit %—+ ~, Ez& tends to 0 [remember that the Fermi
level is the origin of energies (EF=0)], so that co,z given
by Eq. (2.11) defines precisely the absorption threshold,
the relaxation energy being just equal to the shift of the
threshold frequency.

The ground state of the excited configuration is shown
in Fig. 2 for the case in which V&& and the density of
states of the conduction band are such that a localized
state appears below the band with bound-state energy c&

( (D). Here we use the index A, to denote the bound
state. It is important to note that %+1 electrons are in-
distinguishable, so that it is meaningless to specify a par-
ticular single-particle level as a final state of the photoex-
cited core electron. Therefore the electron filling the lo-
calized level X may be one that was excited from the core
state or may equally be one that was deexcited from the
band continuum in the ground configuration. We can
only specify a state of the excited configuration, a set of
X + 1 states as a whole, with the energy of the absorbed
photon Q equal to the difference between the many-

—(c,, +E +0)

g E~
—g E„+co,„—0

(c) (d)

n —1

(2.10)

where the sum is taken over s =1,2, . . . , n for c.
&

and
S

FIG. 2. Examples of the N+1 particle states of the excited
configuration when a bound state (denoted by A. ) is present.
The dashed line indicates the position of the Fermi level for N
electrons. State (a) is the ground state, (b) is the lowest among
the excited states, and the next lowest states (c) and (d) are de-
generate in energy.
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particle energies, and not any particular single-particle
energies. This is what energy conservation implies in Eq.
(2.5).

In Eq. (2.5), the dipole-moment operator W' will be
used to express a one-electron transition from the core
state through the matrix element (ij'j ~iU~y, ). The wave
functions for the remaining X electrons will then appear
in the form of an overlap integral between many-body
wave functions. One then wonders how the transition
probability (2.5) of the %+1 electron system is related to
the vanishing of the overlap 6 between the ground-
configuration ground state 4& [= 4& (X)] and the
excited-configuration ground state 4 [=4' (X)] of X
conduction electrons [the orthogonality catastrophe of
Anderson (1967a, 1967b)], which is expressed for spinless
s electrons in the limit X—+ co as

(2.13)

Here

o =[6(0)/~]

JV, =X(0)W

(2.14)

(2.15)

with N (0) the density of states of the conduction band at
the Fermi level, 8'& (=D D) the tota—l bandwidth of
the conduction band in question, and 5(0) the phase shift
at the Fermi level. The quantity JV,z is the eA'ective total
number of states of the conduction band. It is in general
equal neither to JV, the true total number of states, nor to
X, the number of states below the Fermi level, nor to M,
the number of states above the Fermi level (IV=X+M).
The theorem is given in a form slightly diferent from
that originally given by Anderson. As will be seen below
(Sec. VIII.E), the form (2.13) will prove to be best suited
to the MND problem. Note that the phase shift enters in
the exponent in the same way as in the critical exponent
(cf. the second term of P [Eq. (1.2)] or of o. [Eq. (1.4)] for
spinless s electrons). This is why we used the same nota-
tion o as appeared in the x-ray photoemission intensity
P(co). As concerns the orthogonality theorem, we are
naturally interested in an exact analytical expression for
the prefactor Co. We also hope to discover what kind of
correction will be needed in applying the theorem to the
case in which a bound state exists in the excited
configuration.

The lowest excited state of (%+ I) electrons is shown
in Fig. 2(b); here the state y, is occupied together with all
the states p, below the Fermi level. The next excited
state, shown in Fig. 2(c), has two electrons excited above
the Fermi level, leaving a hole just below it. This state is
degenerate in energy with the state shown in Fig. 2(d).
As can be easily imagined, a degeneracy of this type of
state increases exponentially with increasing excitation
energy because of the combinatorics associated with
particle-hole excitations across the Fermi level. Will it

then be possible to calculate the transition probabilities
corresponding to each excitation to a respective final
state? How are these probabilities related to the overlap
6? Does the orthogonality theorem still hold even in the
case of low-lying excited final states? If so, how is it pos-
sible to obtain a finite intensity for XAS in the limit
X—+~? How is the intensity expressed analytically?
The exact solution to the MND problem should be able
to answer all of these questions.

Another class of excited states is shown in Fig. 3,
namely, those with an empty bound state. This class also
has a continuous spectral density due to the presence of
particle-hole excitations, which define an additional ab-
sorption band. Let us call this band the secondary band,
referring to the spectrum with an occupied localized state
as the main band. In Fig. 3(b), we show the lowest-
energy state with a hole in the bound state k, the excita-
tion to which defines the threshold for the secondary
band. It lies ~Ei„~ higher than co,i, . The same questions
asked before must be answered here. For example, we
are interested in expressions for the critical exponents
and amplitudes of the secondary band as well as those for
the main band.

We have listed some basic questions concerning the
soft-x-ray problem, all to be answered in Secs. IV—X. Of
course, the answers must be given in the limit X~~.
Since the critical exponents of XAS [Eq. (1.2)] and x-ray
photoemission [Eq. (1.4)] involve the exponent o of the

FIG. 3. (X+1)-particle excited states of the excited
configuration giving rise to a secondary absorption band. State
(a) is a general state with the bound state A, unoccupied. The
final state (b) defines the threshold of the secondary absorption
band. The dashed line indicates the position of the Fermi level
for X electrons.
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orthogonality theorem written for a finite N [finite N (0)
in the form of Eq. (2.13)], one might doubt whether or
not the amplitude C0 of the theorem determines the in-
tensity of optical spectra. The temperature effect is also
an important open question when we try to compare
theory with experiment, as we do in Sec. XI.

The next section is devoted to a historical survey of the
work on this problem prior to the publication of the
series of papers by the present authors. Although this re-
view is not intended to be comprehensive, we try to cover
all those investigations that have made leading contribu-
tions to the field.

I

I

I

I

III. HISTORICAL SURVEY
OF THE MND PROBLEM

A. Mahan's treatment of exciton effects
in a degenerate semiconductor

I

—k„ —k 2

The pioneering work on the final-state interaction was
done by Mahan (1967a), who examined the exciton effect
in a degenerate n-type semiconductor. Here, the attrac-
tive potential is due to a mobile hole in the valence band.
We assume parabolic conduction and valence bands with
electron mass m, and hole mass mI, . The eigenstates of
both are specified by the momentum k. Since an optical-
ly created particle-hole pair has zero momentum initially
[at the time r=r& in the Feynman diagram shown in Fig.
4(a)], it continues to keep zero momentum thereafter. If
we could neglect scattering processes involving more
than three lines at, say, r=r2 and ~=r3 in Fig. 4(a), the
final-state interaction would be reduced to a one-body po-
tential for a particle with the reduced mass
p, =m, mz/(m, +ml, ). This is the ladder approximation.
We may then show that each step of the ladder brings in
a logarithmic factor, yielding the series

y [—VN(0)»l~/D, I]"=1/[1+VN(0)lnl~/D, I]
k=0

(3.1)

in the absorption cross section. Here, —Vis the scatter-
ing matrix element as in Eq. (2.4), N(0) is the density of
states for an electron with mass p and momentum kF, D,
is the cutoff energy of the order of the Fermi energy
FF„; ( =kF/2p), and co is the photon energy measured
from the absorption edge defined by E +E„„;,where
E is the energy gap. The logarithmic divergence comes
in because the energy denominator vanishes linearly with
decreasing energy of the particle-hole pair excitation.
This consideration shows that a process containing a zig-
zag line, like that at the time w=r2 [enlarged in Fig. 4(b)
to show the momentum assigned to each line], has only a
minor contribution as compared to the ladder. Figure
4(c) shows the reason for that: for the excitation energy
[k~ —( —k2+q) ]/2p to be small with k&, k2=kF, the
momentum of the valence hole —k, —q need not neces-
sarily lie near kF, resulting in a nonvanishing energy

k2

—k„—q
{c)

FIG. 4. Interaction between a conduction electron and a
valence hole: (a) the general process; (b) enlargement of the
portion at t =r, . (c) With ~k, ~, ~kz~, and

~

—kz+q~ all close to
kF, the magnitude of the momentum —

k&
—q will generally de-

viate from kF as shown, using a circle with radius kF.

denominator even at co=0. Then in place of In~co/D,
~

in
the ladder, we would have a quantity of the order of
1n~E„„;/D, ~. This reasoning in favor of the ladder ap-
proximation shows at the same time a difhculty en-
countered in the core-electron excitation by the x ray in
which mz = oo. With (k, +q) /2m& =0, the "wrong"
direction of the vector —

k&
—q for the hole momentum

does not justify the neglect of multiple particle-hole pair
excitations.

Mahan has shown that a peak arises near the absorp-
tion edge in the ladder approximation. The same approx-
imation has been applied extensively, with some success,
in recent treatments of the optical processes in a quasi-
two-dimensional system (Bauer and Ando, 1985; Chang
and Sanders, 1985; Kleinman and Miller, 1985; Miller
and Kleinman, 1985; Schmitt-Rink et aI., 1986; Rorison,
1987). It is worth pointing out here that the peak arises
mathematically from the pole of Eq. (3.1), in contrast to
the infrared peak in the x-ray problem, which comes
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from the essential singularity of the response function.
The difference shows that, in the case of x rays, a pileup
of an infinite number of poles occurs from the contribu-
tions neglected in the ladder approximation. Note also
that for ~co~

—D„ i.e., for a pole of Eq. (3.1) located deep
inside the Fermi sea, the ladder approximation fails be-
cause of the neglected nonladder terms, which should
contribute equally. An estimate of the nonladder contri-
bution as a function of the ratio I, /II, and of co for a
hole in the valence band remains to be attempted. This
will be a problem of practical interest, because we are
able to prepare a system with various values of I, /II,
fairly easily.

B. Perturbational treatment vrith respect to V

3. Mahan's treatment of core-level
x-ray photoemission spectra

X-ray photoemission spectroscopy measures the inten-
sity of the photoelectrons ejected from a metal by absorb-
ing photons of fixed frequency. If the existence of con-
duction electrons is neglected, only a sharp line, charac-
terized by a delta-function-like peak, will be observed.
Actually, we must take account of the conduction elec-
trons, which change abruptly from their ground
configuration to a state in the excited configuration.
When the photon energy is high enough for the photo-
electron to leave the metal instantly, without being
affected by a final-state interaction, the sharp line
broadens, with a long tail on its low-energy side. At a
frequency co ()0) lower than the main peak, the proba-
bility P (a)) of finding an ejected electron, namely, . the in-
tensity of the x-ray photoemission, is a direct measure of
the probability that the conduction electrons will be ex-
cited with an excitation energy co. This shows that P (co)
is obtained from the overlap integrals ( O'F ~C& ) between
the two X-electron wave functions of excited- and
ground-configuration Hamiltonians. For the ground
state %~=4 of the excited configuration, this is precise-
ly 6 of the orthogonality theorem, Eq. (2.13). In the
sense that the modification due to the ejected photoelec-
tron may be neglected, the treatment of x-ray photoelec-
tron spectra is simpler than that of XAS or XES, in
which an excited photoelectron near the Fermi level
greatly modifies the spectra. Nevertheless, because of the
deep core hole involved, the ladder approximation fails,
and we must take into account excitations with many
shakeup electron-hole pairs.

Mahan (1967) examined a system whose Hamiltonian
&+ is given by Eq. (2.3), treating V as a perturbation pa-
rameter. By analyzing the logarithmic divergence ap-
pearing in a few lower-order terms, he succeeded in
deriving the essence of the MND problem: the series of
the most divergent terms may be summed up into a
closed form leading to the edge behavior described by

P(co)cc(co/D )
'+( ' '+ (co)0) (3.2)

to the order of 0 ( V ), where N (0) is the density of states
at the Fermi level of the conduction band. The logarith-
mic divergence of the series becomes apparent when we
rewrite Eq. (3.2) in the form

P(co) ~exp(I —1+[N(0)V] Iln~co /D, ) . (3.3)

2. XAS and XES as dealt with

by Mizuno, Ishikawa, and Ohmura

Independently of Mahan, Mizuno and Ishikawa (1968)
developed a perturbation theory for a contact-type core-
hole potential. They calculated a few lower-order terms
of the perturbation series exactly and showed that the
sum of the most divergent terms may be written as

I ( ) ~ (
~ ~

/D )
—2N(0)v+[N(0)Q (3.4)

for XAS (co )0) and XES (co & 0). This expression has, in
fact, as an exponent the first term of the correct critical
exponent P given by Eq. (1.2), when the phase shift is ex-
panded with respect to V for a spinless s electron.

Moreover, Mizuno and Ishikawa showed that in the
case of K emission, the first term of the exponent of Eq.
(3.4) vanished; they claimed that the absence of the peak-
ing effect in the observed emission spectrum of Li could
be explained by this fact. When 2[N(0) V] is replaced by
the phase shift 25(0)/vr, the result becomes natural, since
the photoexcited K electron does not see the contact-type
core-hole potential because of the lack of an s-wave part
in the final state. To summarize, Mizuno and Ishikawa
identified the essential physics of the problem before the
analysis of Nozieres and DeDominicis.

Ohmura, Ishikawa, and Mizuno extended their treat-
ment further and showed that

(a) XAS is a mirror image of XES only in the immedi-
ate vicinity of the edge co=0 [as expressed by Eq. (3.4)]
(Ohmura and Ishikawa, 1973, 1980b; Ohmura et al. ,
1974), and

(b) away from the edge, both XAS and XES are ex-

The result (3.2) was the first demonstration of the power-
law divergence [note that usually N (0) V & 1], which
triggered a vast number of subsequent theoretical investi-
gations. We note that the exponent [N(0) V] of Eq. (3.2)
is precisely the first-order term of the critical exponent
o. =[6(0)/~] of the orthogonality theorem (2.13) [see
Eq. (7.15) for the connection of N(0)V with 5(0)/m].
The relationship between the critical exponent of x-ray
photoemission spectroscopy and the exponent o. of the
theorem was clarified by Nozieres and De Dominicis
(1969). The relation between the critical x-ray photo-
emission amplitude and the prefactor C0 of the theorem
was examined by Feldkamp and Davis (1980), as well as
by the present authors (Tanabe and Ohtaka, 1985;
Tanabe, 1986).
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pressed better by a generalized power law with an in-

dependent exponent P(co) (Ishikawa et al. , 1973; Ohmura
and Ishikawa, 1980a, 1980b):

C. Exact analytical treatment
in terms of phase shift

I(co) ~ Ico/D, @ (3.5)

1. Field-theoretical approach
of Roulet, Gavoret, and Nozihres

Assuming the frequency range co &0 for XAS and co &0
for XES, we see that the exponent P(co) has as its first
term the exponent —2%(0)V. Ohmura and co-workers
gave explicit expressions for a few higher-order terms as
a series with respect to V.

Remark (a) above follows from the fact that I3(co) is a
regular function of co instead of

I
co I, leading to a

difference between XAS and XES away from the edge
co=0, unless /3(co) is an even function of co. By deriving
the term linear in co, Ohmura et al. showed that XES had
to be sharper in general than XAS. They also did some
numerical calculation of the edge spectrum and pointed
out the difficulty of deducting the precise value of the
critical exponent from the experimental data due to the
presence of additional terms in the generalized expression
I3(co) (Ohmura and Ishikawa, 1980a).

3. The finite-temperature effect
treated by Ferret

Ferrel attempted a perturbational treatment of x-ray
photoemission at a finite temperature T to take into ac-
count the effect of a smeared Fermi surface, which leads
to blurring of the edge anomalies (Ferrel, 1969). The
efFect will be appreciable in the frequency range co-T,
which implies that it is one of the causes behind the
disappearance of the divergence at ~=0. This efFect is,
however, rather hard to detect in ordinary metals be-
cause T/D —10 even at room temperatures, and usual-
ly other effects neglected in the MND Hamiltonians
[Eqs. (2.1)—(2.3)], such as a finite lifetime of the core hole,
become dominant when the divergence is suppressed. As
a result, the temperature efFect in x-ray photoemission
spectra will be important only when the Fermi energy is
comparable to T. As we shall discuss later, such a system
is now available, and the examination of the temperature
effect on the infrared divergence has become a matter of
practical interest.

The result obtained by Ferrel was the leading term
with respect to V of the exact expression obtained by An-
derson and Yuval (1969). However, the perturbational
treatment necessary to extract the most divergent terms
was so delicate at finite T that it appeared difficult to ex-
tend his calculation to an infinite series and arrive at the
result of Anderson and Yuval, who made full use of the
Hilbert transform in solving the Dyson equation.

The treatment at finite T is crucial when the theory is
applied to the Kondo problem, in which temperature is
the main factor affecting the duration time of the final-
state interaction (Sec. III.C.3).

The power-law edge behavior concluded by Mahan
and by Mizuno, Ishikawa, and Ohmura was obtained by
means of an extrapolation from the results of a few
lowest-order terms of the perturbational series. One
characteristic of the series with respect to the quantity
O=X(0) Vl nice /D, I

is that even if X(0)V is small
enough for the series to converge rapidly, the factor
lnlco/D, I

causes the series to diverge when
I
0 I

) 1,
namely, just in the neighborhood of the edge ~=0.
Thus, although the conclusions of Mahan and Mizuno,
Ishikawa, and Ohmura were a correct analytical con-
tinuation to the parameter space where

I
0

I
) 1, a strict

mathematical proof was still needed.
Roulet, Gavoret, and Nozieres successfully accom-

plished this (Nozieres et al. , 1969; Roulet et al. , 1969).
They noticed that the occurrence of a logarithmic factor
in both the particle-hole and hole-hole channels shown in
Fig. 5 may be incorporated into a coupled integral equa-
tion for a "parquet" diagram. In Fig. 5, the interaction
line standing for V, shown by a dashed line in Fig. 4, is
replaced by a dot. Therefore Figs. 5(a) and 5(b) show the
ladder and zigzag processes, respectively, of Fig. 4. Fig-
ure 5(c) shows an example of a complicated parquet dia-
gram constructed from (a) or (b) by inserting internal
structures, which themselves are composed of parts yield-
ing logarithms. The repetition of internal structures re-
sponsible for the logarithmic divergence characterizes
the parquet diagram.

The resulting coupled equation may be solved only to
logarithmic accuracy, i.e., in the approximation of put-
ting lnla (co/D, ) I

-lnlco/D, I, where a is any constant in-

dependent of co. This amounts to taking account of only
the most divergent term in the expression

(3.6)

by discarding the term lnla I, as did Mahan (1967b) and
Mizuno and Ishikawa (1968).

2. Asymptotic formulas of Nozihres
and DeDominicis

Nozieres and DeDominicis made use of the fact that
the Hamiltonian &+ describes uncorrelated electrons

(c)

FIG. 5. Particle-hole interaction. The dots here stand for the
particle-hole interaction shown by the dashed lines in Fig. 4: (a)

Ladder process; (b) zigzag process; (c) a complicated parquet
diagram.
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moving in a static potential (Nozieres and DeDominicis,
1969). If we know the eigenvalues and eigenfunctions of
the one-particle Hamiltonian, then the ground state of
the many-body Hamiltonian &+ is constructed simply
by making electrons occupy the X lowest one-particle
levels. In a one-particle treatment, the effect of the po-
tential Vkk can be taken into account simply through the
phase shift. In particular, we need not worry about the
breakdown of the Pauli exclusion principle. That an
electron in a state above the Fermi level is able to be scat-
tered into a state below the Fermi leve1 with the matrix
element Vkk with ~k + 0 and Ek &0, is guaranteed by the
presence of the process represented by the zigzag line of
Fig. 4.

One important complication, which constitutes the ori-
gin of the difficulty of the MND problem, is that we are
not considering a truly static system described by &+,
but a system that changes abruptly at t =0 from & to

Thus the scattering potential is not static but dy-
namic.

Nozieres and DeDominicis solved the Dyson equation
for the Green's function in the time domain, assuming
that a core hole existed in the period between 0 and t [for
the case of XAS with a contact-type potential (2.4)],

(p(r, r', t, O)=60(r, r') —Vf dr"G0(r, r)(p( rr', t, O),
0

(3.7)

where the symbol (t, O) in &p indicates the time interval
over which the core-hole potential operates. The unper-
turbed Green's function G ( 0'') is given by

denote it as I0(t):

(3.10)

Another factor that a6'ects the absorption spectrum is
the contribution of multiple shakeup excitations, as dis-
cussed in Sec. II. It is described by the linked-cluster
theorem as

P(t)=e'~+ '((I) ~e'~'e '~ '~(I) )

=e' 'exp[X(t)] (3.1 1)

X(t)=f dg f dr V(ps(r, r+;t, O), (3.12)

where g is a coupling constant for the core-hole potential
and (p is the solution of Eq. (3.7) with V replaced by gV.
This contribution is ca11ed the closed-loop contribution.
Since it takes account only of the background contribu-
tion of N electrons, the quantity P(t) determines the x-
ray photoemission spectrum. XAS is determined by the
product of the two factors, i.e.,

I(0))=2Re f dt I(t)e'"',
0

where

(3.13)

(3.14)

and where co+ is co+i0 with the frequency co measured
from (o,h [Eq. (2.11)]. The long-time behavior of I0(t)
and P(t), derived by Nozieres and DeDominicis, is writ-
ten as

i g e—xp[ —iE(, (r—r')] (r & r')
b

G (r, r') = ' .
i g exp[ i E (r —r')] (r&—r') . (t) ~ ( D t)2[5(0)/vr] —1

(3.15)

All the characteristics of the conduction band are incor-
porated into the time dependence of 60. Nozieres and
DeDominicis used the long-time form for it in Eq. (3.7): I( ) ~( /D )

—2[s(0)/vr]+[5(0)/~] (3.16)

Putting these into Eqs. (3.13) and (3.14), we find the
famous Nozieries and DeDominicis result

G0(r, r') = —N (0)
I'

, +~r tan05(r —r')
7 —7.'

(3.9)
the critical exponent f3 for XAS defined by Eq. (1.1) is
given by

Here tan85(r —r') takes account of the short-time contri-
bution in an approximate way through the quantity 0.
The singularity at 7.=~' of the unperturbed Green's func-
tion reduces the Dyson equation (3.7) to a singular in-
tegral equation. The singular edge behavior is traced
back to this singularity of the kernel of the Dyson equa-
tion. The technique for solving Eq. (3.7) by making use
of knowledge of the Hilbert problem is described in the
famous book on the topic by Muskhelishvili (1953) and
the textbook by Smirnov (1965).

The Green's function (p(t, 0; t, 0) describes the evolution
of a conduction electron, the core electron photoexcited
above the Fermi level, for example, and is sometimes
called the open-line contribution, in reference to the form
of the Feynman diagram expressing p( (r';rt, O). Let us

P = —2[5(0)/~]+ [5(0)/~] (3.17)

which shows that the spectrum of Mizuno and Ishikawa
(1968) is, in fact, obtained if we substitute N(0) V for
5(0)/~. Further, the exponent [5(0)/~] shows that
Mahan's result (Mahan, 1967b) was indeed a first approx-
imation to it. The more realistic form, taking into ac-
count the various partial waves and degrees of freedom of
spin, was given by Eq. (1.2). For a comparison of the
theoretical formula with experiment and an attempt to
determine the critical exponent using the Friedel sum
rule (Friedel, 1952, 1954), the reader is referred to the re-
view of Citrin et al. (1979) and the article of Wilkins
(1982). Also, see Sec. XII.

There were several people who questioned the validity
of the results obtained by Nozieres and DeDominicis.

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem 941

+2 3

(b)

FICx. 6. Scattering process involved in y(~, ~', t, O). The symbol
inserted between ~& and ~2, for example, in (a) indicates a long
time interval between them. A closed-loop contribution is ob-
tained by putting ~=~' in (b).

3. Extension to the finite-temperature case
by Anderson and Yuval

To apply the idea of Nozieres and DeDominicis to the
Kondo problem, we need to extend their result to the
case of finite temperatures, because, in the Kondo prob-
lem, the infrared divergence is cut off by the temperature
T, not by m or t.

Anderson and Yuval solved the Dyson equation (3.7)
in the asymptotic region for a finite-temperature case, in
which the singular term I/(w —r') at T =0 [Eq. (3.9)]

One point that is not easy to understand in their results is
that the critical exponent is expressed as a function of
5(0) itself, not in terms of some periodic function of it
such as sin5(0). When we consider that the phase shift is
determined only with modulus ~ and that the wave func-
tions at the Fermi level with phase shifts 5(0) and
5(0)+~ are identical, apart from a phase factor, it is
rather hard to believe in the correctness of Eq. (3.16).
The use of Eq. (3.9), a Green's function that is only
asymptotically correct, in the two successive scatterings
at r2 and w3 within a very short time interval [as shown in
Fig. 6(a)], or the process of calculating the contribution
of the closed-loop diagram by setting ~ equal to ~' in
p(r, ~', t, 0) [Fig. 6(b)], looks dubious and tends to under-
mine one's confidence in the final result. However, these
objections later turned out not to be relevant, and the
correctness of the edge behavior expressed by Eqs. (3.16)
and (3.17) [or Eqs. (1.1) and (1.2) in the general case] has
been confirmed and established via several different ap-
proaches (for example, Schotte and Schotte, 1969;
Hansch and Ekardt, 1981;Hansch and Minnhagen, 1982,
and of course the one presented in this article).

Moreover, it was not obvious how to apply the
Nozieres-DeDomincis approach to the case in which a
bound state A, with energy c.& lies in the excited
configuration below the band bottom. This problem was
examined by Combescott and Nozieres (1971) by a
different approach (Sec. III.G.1).

Since the short-time behavior was not correctly treated
in the Nozieres-DeDominicis approach, it was impossi-
ble to derive the critical amplitudes for Io(t) and P (t) by
this method, and they remained to be obtained by anoth-
er approach.

was replaced by AT/sinhrrT(r w—') (Anderson and Yu-
val, 1969; Yuval and Anderson, 1970). The key to their
success was the idea of generalizing the Hilbert trans-
form originally based on the integral kernel of I /(~ ~'—)
to the finite-temperature case. Considering the complexi-
ty encountered in Ferrel's treatment to obtain the leading
term, their result was surprisingly simple. It may be
summarized as follows: To derive expressions valid for a
temperature T, replace the time t in the expressions ob-
tained for T =0 by sinhmTt/~T everywhere. Corre-
sponding to the long-time behavior at T =0 given by Eq.
(3.15), we thus find at a finite T that

[Io(t)]T~occ (iD, sinhvrTt/AT) ( ' '

(3.18)
[P(t)]T~occ (iD, sinhvrTt/m T)

The application of Eq. (3.18) to the Kondo problem by
Anderson, Yuval, and Hamann (1970) and by Schotte
and Schotte (1971) is beyond the scope of the present re-
view (see, for example, the review of Yosida and Yoshi-
mori, 1973).

D. Comments on the results of Nozihres
and DeDominicis

1. Friedel's comment

Since the bilinear final-state Hamiltonian Eq. (2.3) can
be diagonalized and each many-body final-state +F can
be uniquely determined by assigning the distributions of
X + 1 electrons in the one-electron orbitals, it is il-
luminating to consider the optical transition in terms of
the Fermi golden rule. The key quantity for this purpose
is the overlap integral between the initial orbital cpk of
the conduction band in the ground configuration and the
orbital g of the excited configuration, using the suffixes
k and ~ introduced in Sec. II. Let us denote the overlap
as

(3.19)

By analyzing the determinantal form of the many-body
transition matrix element expressed in terms of a„k,
Friedel (1969) showed that the expression for the optical
transition probability is made up of terms corresponding
to three processes —direct (excitation), replacement, and
shakeup. They are shown schematically in Fig. 7. In the
direct process [Fig. 7(a)], the core electron is excited to
the state y above the Fermi level with the transition mo-
ment m „while the state of the X background electrons
is changed from @ [=N (N)] to ql+ [=4+ (N)] be-
cause of the switching of the Hamiltonian from & to
&+. The background effect may be described by the
overlap b, defined by Eq. (2.13) of the orthogonality
theorem. Thus, the cross section for the direct process is
given by

~

b,
~ ~

w,
~

. The replacement process shown
in Fig. 7(b) is a two-step process in which the final level y
is occupied by an electron present originally in the state
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core ~
(a) (c) (cI j

duced suddenly, up to t = oc, when the system will have
been brought finally to the ground state, will be related to
the Fourier transform P(t) of the spectral density. The
power-law dependence on co near the edge then implies
nonadiabatic readjustment of electrons to the created
core hole with a power-law-in-time approach to the new
ground state. To summarize, while the screened poten-
tial is set up quite quickly with the time constant of the
inverse of plasma frequency, the charge fluctuation fol-
lows the potential slowly, with a very long power-law
tail.

FIG. 7. Several processess that accompany the transition of the
core electron to a level above the Fermi level: (a) direct process;
(b) replacement process; (c) shakeup process; (d) a general com-
plex process. The dashed line indicates the position of the Fer-
mi level for N electrons.

p of the conduction band, while the core electron jumps
into the hole just created, with the matrix element u, „,.
It can easily be seen that this process involves the energy
denominator for the excitation from p to y, and arbitrar-
iness in the position of p up to the Fermi level causes the
appearance of infrared divergence in the replacement
process. It is also interesting to note that the matrix ele-
ment w„, with c.„&0, apparently violating the Pauli ex-
clusion principle, takes part in the optical transition to
the state 0'z. In the shakeup process, shown in Fig. 7(c),
a particle-hole pair excitation occurs across the Fermi
level in addition to the core-electron jump to y. Actual-
ly, there are processes much more complex than those
described above. An example is given in Fig. 7(d).

Friedel (1969) showed that, to the order of the square
of the phase shift, the direct process vanishes by the
orthogonality theorem, the replacement process is related
to the exponent 26(0)/~, causing the divergent edge
peak, and the shakeup processes lead to a powerlaw with
the exponent [5(0)/m] . By taking account of the mul-
tipair excitations discarded in his analysis, he claimed
that the critical exponent of Nozieres and Deoominicis
would be the lowest-order term with respect to 5(0) /~ of
an expression that is to be given ultimately as a periodic
function of the phase shift. Except for this comment, his
interpretation of the edge singularity outlined above was
qualitatively correct, as we shall see in Secs. IV —VIII.
The exact treatment of the present authors described
there was indeed stimulated by the work of Friedel.

Friedel also associated the power-law behavior of the
spectra with a nonadiabatic screening readjustment of
conduction electrons. In the presence of an impurity
atom in an otherwise homogeneous system, the scattering
potential and the state of each electron are determined in
such a way that they satisfy the Friedel sum rule (Friedel,
1952, 1954). This will indeed be the situation in the
ground state of the excited configuration described by the
Hamiltonian &+ given by Eq. (2.3). The temporal evolu-
tion of the system from t =0, when the impurity is intro-

2. Hopfield's interpretation
of the critical exponents

Hopfield (1969) proposed the following interpretation
for the exponent of the singular power law. Just after the
final-state potential has been switched on, the number of
electrons around the potential center is wrong in that it
violates the Friedel sum rule (Friedel, 1952, 1954). The
rule of thumb that Hopfield proposed, without proof, is
that the exponent of the time dependence of the response
function is given by ( —1) times the squared number of
conduction electrons for each angular momentum (l, m),
which gather to screen the impurity potential. The time
dependence of P(t) given by Eq. (3.15) indeed satisfies
this rule, because the excess number of conduction elec-
trons associated with the set of quantum numbers (l, m, s)
is 5)(0)/~. In the case of the product I0(t)P(t) for XAS
or XES, the number of displaced conduction electrons in
the readjustment is [ [6& (0)/m] —1 I for the channel

(10,m, s) and 5)(0)/vr for other (l, m, s) with l&l0. The
term —1 in the former takes care of subtracting the con-
tribution from an optically excited core electron. The re-
sult (3.15) is thus reproduced properly according to the
rule of thumb. In particular, when there is a bound state
in the Anal state, we find for the time dependence of the
photoemission spectrum (for an s-Iike conduction band)

(3.20)

(3.21)

and for XAS and XES

(t) ().D t)
—[s(0)/vr —1]

I (t) ( D t) —[s(0)/ —2]

(3.22)

(3.23)

To derive Eq. (3.21), for example, we argue as follows:
According to the Friedel sum rule, the number of excess
electrons to be accumulated is 5(0)/rt, including the one
occupying the bound state, which leads to Eq. (3.20).
Since the secondary band corresponds to the excited
states having the bound level unoccupied, the number of
conduction electrons to be displaced to form the secon-
dary band becomes 5(0)/vr 1, leading to—Eq. (3.21). In
the case of XAS, out of the total 6(0)/vr —1 electrons to
be displaced in the secondary band, one electron is pro-
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E. Anderson's orthogonality theorem

1. Anderson's treatment

The crucial role played by the orthogonality theorem
in x-ray absorption, emission, and photoemission was
first pointed out by Friedel (1969) and Hopfield (1969).
The orthogonality of the two ground-state wave func-
tions may be seen already in the lowest-order perturba-
tion theory, in which the ground-state wave function is
modified from N to

O'=S 4'+g C
b, Eb —Cm

(3.24)

where +
b

stands for the Slater determinant obtained by

replacing the state I by b and S is the normalization
constant to be determined from

(3.25)

vided by the core electron, so that the number of dis-
placed conduction electrons amounts to 5(0) /m. —2.
Thus we have Eq. (3.23).

Hopfield also pointed out that when the overlap in-
tegral between ground states with different strengths of
impurity potential is involved, it is the difference between
the two phase shifts that determines the exponent of the
overlap integral. Hopfield's rule of thumb was employed
to check the validity of the assumptions made by Com-
bescott and Nozieres (1971) in their derivation of the
edge behavior in the presence of a bound state in the final
state.

g [exp[ —i(Eb —8 )t]—1I /(Ei, —Em )
b, m

(3.27)

2. Treatments of Rivier and Simanek
and of Hamann

The calculation of the overlap integral 6 by a time-
dependent method was attempted by Rivier and Simanek
(1971). Their formalism is based on the fact that if we
switch on the core potential at t= —co and make the
strength V grow adiabatically to its full value at t =0, the
many-body ground state 4 of the Hamiltonian & given
by Eq. (2.1) will eventually, at t =0, evolve into the
ground state of &+ given by Eq. (2.3). Thus we may
write

In the continuous limit (N~ ~ ), the sum is turned into
an integral. Then a cutoff at an energy of the order of
1/t is brought into the energy integral, yielding a loga-
rithmic power-law behavior as a function of t, which, as
we have seen, is the origin of the edge singularity.

Attempts to prove orthogonality by means of time-
dependent perturbation theory will be reviewed in the
next subsection. As we now know, the prefactor C0 of
Eq. (2.13) is an important factor in determining the am-
plitudes of x-ray spectra near the threshold. Further-
more, the orthogonality theorem puts forward such a
fundamental concept that it seems worthwhile to general-
ize it with respect to the form of the potential and extend
it to the case of electrons with correlation. An expres-
sion for Co was obtained by the present authors (Tanabe
and Ohtaka, 1985), and the generalization of the theorem
was carried out in a series of papers by Yamada and Yo-
sida (1978a, 1978b, 1979, 1982), as discussed in Sec.
III.E.3.

If we replace the sum by an integral,

g~ f N(0)dE, g ~f N(0)ds,
0 m

(3.26)

then a logarithmic term [N(0)V] lnN appears in the
second sum, which makes the normalization constant S
tend to zero as X—+~. Since the value of the overlap
(4&

~

4 ) is equal to S from Eq. (3.24), it certainly con-
tains the gist of the orthogonality theorem. Note that
the quantity in% reAects level spacings of the order of
1/X near the Fermi energy.

The original approach of Anderson was a straightfor-
ward evaluation of the overlap in its determinantal form
in the case of a contact-type impurity potential (Ander-
son, 1967a, 1967b). The result is given by Eq. (2.13).

The considerations leading to Eq. (3.25) show that the
power-law behavior originates from the presence of the
Fermi level, which introduces a sharp cutoff in integra-
tion procedures, and from the existence . of the
infinitesimally small excitation energies across the Fermi
level. This is the origin of the infrared divergence. In
the time-dependent theory there appears a term of the
form

4 = Texp —i dt' V t' (3.28)

apart from a phase factor, where T is the time-ordering
operator. The quantity V(t) stands for the interaction
representation of the adiabatic core-hole potential in the
form

V(t)= —Ve"' g ak(t)ak (t),
k, k'

(3.29)

with an infinitesimal positive parameter g to be put to
zero, in the final stage of calculation. It then turns out
according to the linked-cluster theorem that the overlap
b. is given (apart from a phase factor) by

b. =&@'~ e')*
1 0

=exp f dgV f dre"'pg(r, r+;0, —~ )* (3.30)

where g is the Careen's function for the potential
strength gV. The Dyson equation (3.7) for ys(r, v') is

then Fourier transformed. It is solved by making use of
the analytical properties of the Hilbert transform, as
shown by Rivier and Simanek (1971). Unfortunately,
they failed to reproduce Anderson's resu'lt for o. because
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of their incorrect treatment of the parameter g involved
in Eq. (3.29).

It was Hamann who obtained the correct result by ex-
panding the solution with respect to the parameter g
(Hamann, 1971). He showed that the series for the ex-
ponent of Eq. (3.30) reads

a, g +a0+a, g+ . .—1 (3.31)

Since the coeKcient a
&

proves to be purely imaginary,
we have

~

5
~

=exp(ao) in the limit g —+0. Strictly
speaking, Hamann's g expansion was not correct either,
since it violates the Gell-Mann and Low theorem' (Gell-
Mann and Low, 1951). But the well behaved real part of
the series (3.31), which starts at vP, seems to be valid, and
the error lies only in the singular imaginary part. In fact,
it can be shown that the correct expression for

~

6 in-
cluding the prefactor C0 can be reproduced by using
Hamann's expression of ao (Tanabe and Ohtaka, 1985).

terms of the same S matrix as appears in the Friedel sum
rule (Langer and Ambegaokar, 1961). Procedure (c) was
refined by Yamada and collaborators and was used suc-
cessfully to analyze the temperature dependence of the
diffusion constant of positive muons in metal matrices
(Yamada et al. , 1983, 1985; Kondo, 1984a, 1984b; Ya-
mada, 1984, 1986; Oguchi and Yosida, 1986). See the re-
view by Kondo (1988) on this topic.

F. Numerical treatments

There were several reasons for attempting numerical
calculations during the development of the analytical ap-
proach: to check the correctness of the theories, which
inevitably involved subtlety due to the mathematical
complexity of the problem; to determine the magnitudes
of quantities so far unattainable by analytical means; to
see how far the asymptotic formulas retained their validi-

ty, in the frequency range near the threshold, etc.

3. Extension of Yamada and Yosida

Working from Eq. (3.30) and using the series expansion
in powers of g, Yamada and Yosida generalized the
orthogonality theorem (Yamada and Yosida, 1978a,
1978b, 1979, 1982). Their extensions were made along
the following lines:

(a) Relaxing the restriction on the form of the core-
hole potential. Their results apply to non-contact-type
potentials, and the results, although expressed formally
in terms of the scattering matrix, are given even for a
nonspherical potential.

(b) Generalizing the theorem to a system with electron
correlation.

(c) Extending the theorem so that we may apply it in
calculating the rate for a charged impurity interacting
with conduction electrons in a metal to hop from one site
to another.

Generalization (a) is by no means trivial, because use-
ful identities associated with the Hilbert transforms of
scalar quantities are no longer available once we general-
ize the Dyson equation in matrix form in trying to in-
corporate, say, a nonspherical potential. Yamada and
Yosida examined the iterative series for the solution of
the matrix Dyson equation and proved that the parame-
ter —V of a contact-type core-hole potential is generally
replaced by the matrix form of the self-energy part. In
the case of (b), the same conclusion is valid if we employ
the self-energy part including the electronic correlation.
Yamada and Yoshida thereby proved that the exponent
o. of the overlap integral could be expressed generally in

The result of Hamann for a, is a
&

——ihE, while the value
in accord with the Gell-Mann and Low theorem should be

1a
&
——i dghE {g)/g, where hE (g) is the ground-state ener-

gy shift for the coupling constant g V.

1. Treatment of Kotani and Toyozawa

Kotani and Toyozawa examined the effect of a core-
hole attraction that gives rise to a virtual bound state
within a band, mixed by tunneling with (s-like) band
states (Kotani and Toyozawa, 1973a). The model system
was intended to explain the optical response of a metal
involving an incomplete d or f shell. The final-state in-
teraction here is sd mixing triggered by the sudden ap-
pearance of a virtual bound state. If intra-atomic
Coulomb repulsion Un&&nz& of the Hubbard type [not in-
cluded in the Kotani-Toyozawa (KT) model] is added,
the Anal-state Hamiltonian will be the Anderson Hamil-
tonian. The Coulomb repulsion was later taken into ac-
count by Schonhammer and Gunnarsson (see Sec.
III.F.3). Roughly speaking, the model treated by Kotani
and Toyozawa is an analog of that introduced by Com-
bescott and Nozieres in their treatment of a bound state
in the excited configuration, although a marked
difference exists, in that a new effect such as the finite
width of the virtual state is included.

Kotani and Toyozawa showed that the main XAS
band has a power-law edge behavior in general because of
the existence of replacement and shakeup excitations
across the Fermi level. The exponent of the divergence is
still given by Eq. (1.2), where the phase shift of s elec-
trons is now caused by sd mixing. Kotani and Toyozawa
found that the exponent derived satisfies Hopfield's rule
of thumb (Sec. III.D.2) in all cases investigated of x-ray
absorption, emission, and photoemission (Kotani and
Toyozawa, 1973a, 1973b, 1974). The secondary band, on
the other hand, does not exhibit a power-law edge behav-
ior, in contrast to the Combescott-Nozieres (CN) model.
It is formed by optical transitions to many-body final
states with an empty virtual bound state. Since the hole
in the virtual bound state has a finite lifetime due to sd
mixing, the band has a blurred step rise expressed by an
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arctangent function, which results from convoluting the
Lorentzian distribution of the hole with the distribution
of an optically excited electron above the Fermi level.
When a bound state exists above the Fermi level, it gives
rise to a Lorentzian peak in the spectrum. Kotani and
Toyozawa examined how these secondary bands are
affected by the Fano effect. For more about the KT mod-
el, see the review article by Kotani and Toyozawa (1979)
and the recent monograph by Kotani (1987). The KT
model was subsequently examined using the renormaliza-
tion group (Oliveira and Wilkins, 1985) and also by the
exact analytical approach of Kita and the present au-
thors (1987b).

The numerical treatment of Kotani and Toyozawa
(1973b) was intended to check all these theoretical pre-
dictions. Their algorithm discretized the whole conduc-
tion band into a finite number of states (they used a mod-
el with X =50). The final-state Hamiltonian was then di-
agonalized to obtain eigenvalues and eigenfunctions.
This was possible because the Hamiltonian was bilinear.
Finally, the many-body transition matrix element was
calculated, expressing the many-body states involved by
Slater determinants. A complication arose because of the
multiplicity of ways to excite a number of particle-hole
pairs. Kotani and Toyozawa took account of only one-
pair excitations, checking that the corresponding in-
tegrated intensities of XAS and XES totaled more than
90% of the theoretical value.

In this way they sucessfully reproduced their predic-
tion. Some of their results are given in Fig. 8. It shows
how the spectra vary with the position cd of the virtual
bound state. It can be seen that the simulation with
N =50 reproduces very well the theoretical line shape
shown in (a) by the solid curves. This rather surprising
phenomenon will be seen again in Sec. III.F.4. The KT
model was applied to x-ray photoemission in their third
paper (Kotani and Toyozawa, 1974). Most of the subse-
quent simulations by other authors that were based on a
finite number X of conduction electrons employed this
KT method.

2. Analysis of Grebennikov, Babanov,
and Sokolov

Grebennikov et al. (1977a, 1977b) carried out a nu-

merical analysis of the original MND model. Their
method was to solve the Dyson equation (3.7) numerical-

ly. Since the whole range of t is now in question, a
simplified form such as Eq. (3.9) for the Green's function
cannot be employed. To take account of every feature of
the conduction band, e.g. , fine structures in the density-
of-state profile, band filling, the position of the Fermi lev-
el, etc., it is more advantageous to use Go(co) than
Go(r, r'). They therefore transformed the Dyson equa-
tion into a form like that employed by Hamann (1971;
Sec. III.E.2) and solved it numerically. To obtain a pre-
cise value for the critical exponent, one requires the
Green's function for t = ~, and to obtain a reliable in-

6

Q

LL

4-'

2-.

pA
0 05 10 15 20

(a)

p V'=0.05

Md/~pM =—1.0 h

l
O2

I

—0.5
I I . , ~; I I 0—3.0 —2.5 —2.0 —1.5 —1.0 —0.5 0

FIG. 8. Typical line shapes obtained by Kotani and Toyozawa
(1973b): (a) absorption and (b) emission. The Fermi level,
chosen as the origin co=0, is at the center of the band with a
constant density of states p. The thresholds are shifted by the
relaxation energy. Photon frequency co is scaled by half the
bandwidth, cd is the position of the d state with an sd mixing
parameter V, and Md/(p' M, ) is a parameter characterizing
the Fano resonance.

tegral kernel one must discretize the conduction band
with energy intervals less than 1/t. Thus the reproduc-
tion of the correct value for the critical exponent was a
very difFicult task in this method.

Grebennikov et al. examined over a wide frequency
range the behavior of x-ray absorption, emission, and
photoemission spectra as a function of the band filling.
Some examples are shown in Fig. 9. Their results showed
that the usefulness of the approximate formula for spec-
tral intensity obtained from the single-particle cross sec-
tion depends upon the band filling. We shall discuss the
validity of the final-state-rule formula expressed by the
final-state single-particle wave furiction and the initial-
state-rule formula involving the initial-state wave func-
tion in Sec. III.F.6.
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FICx. 9. Variation of a spectrum as a function of the band filling
(Grebennikov et al. , 1977b). The solid line shows XAS for
~&0 and XES for co&0. The parameter u characterizes the
strength of the core-hole potential, p is the position of the
threshold within a band assumed to have a semielliptic density
of states with width 2, and co is measured from the threshold.
The dashed curves show the initital-state density of states for
the ground configuration; the dot-dashed curves show the spec-
tral density calculated in the presence of a core hole. The
dashed curve is seen to be a better approximation for XES for
any value of IM. From Grebennikov et al. (1977b); reprinted in
Wilkins (1982).

3. Approaches of Schonhammer and Gunnarsson

In a series of papers, Schonhammer and Gunnarsson
calculated numerically the exact x-ray photoemission
spectrum for the model proposed by Kotani and Toyo-
zawa and generalized the KT model in several ways.
Their aim was to apply the model to the photoemission
spectrum from an atom adsorbed on a metal surface. For
that purpose they assumed the Anderson Hamiltonian
for the sd mixing, including the intra-atomic Coulomb
repulsion.

Another conclusion to be drawn from the analysis of
Grebennikov et al. concerns the strength of the XAS
and XES secondary absorption band in the presence of a
bound state below the conduction band. They showed
that the secondary band is so small that it can hardly be
observed except for the case of a nearly empty band. One
of the reasons for that is the lack of an edge peak at the
secondary edge of the absorption and emission spectra, as
shown by Eq. (3.23) [I„,(t) is integrable]. In the case of
x-ray photoemission, the secondary band is easier to ob-
serve because it shows a divergent edge behavior, as
given by Eq. (3.21).

Actually, these characteristics of the secondary band
can be deduced by analytical means as will be done in
Sec. IX.

One of the approaches employed by Schonhammer and
Gunnarsson was to discretize the time variable of the
Dyson equation, r'educing the integral equation to a set of
linear coupled equations. This method is thus a more
direct way of solving the Dyson equation than that used

by Grebennikov et al. discussed in Sec. III.F.2. The
asymptotic regime of t = ao was eliminated, by including
the finite lifetime of a core hole. Their method therefore
provides us with a practical means of obtaining a realistic
spectrum by including information on the finite-time re-
gion. The second method applied by Schonhammer and
Gunnarsson was to solve the Dyson equation by itera-
tion. They showed that the divergence of the resulting
Neumann series could be remedied by the Pade approxi-
mation, leading to a spectrum in good agreement with
that calculated by the first method.

In the absence of the Coulomb correlation
(Schonhammer and Gunnarsson, 1977), their results for
x-ray photoemission spectra agree essentially with those
of Kotani and Toyozawa (1974), if we take account of the
differences in the magnitudes of the sd interaction and
the finite lifetime of the core hole.

Schonhammer and Gunnarsson (1978a—1978d) extend-
ed the KT model to cover coupling with plasmons and
the Coulomb repulsion within the adsorbate level. The
plasmon coupling model demonstrated how screening
charges gather around the core hole as a function of time
after the core-hole potential is switched on. The model
of Schonhammer and Gunnarsson thus provides us with
a rough idea of the time development of a self-consistent
core-hole potential that satisfies the Friedel sum rule.
The method for treating a model with intra-atomic
Coulomb repulsion has been improved and applied re-
cently to explain the optical response observed in some
heavy-fermion systems (Gunnarsson and Schonhammer,
1983).

4. Approach of Swarts, Oow, and Flynn

X-ray photoemission spectra from a Fermi sea com-
posed of a finite number of s-wave states were also calcu-
lated by Swarts, Dow, and Flynn (1979) and Dow and
Flynn (1980). Their method was identical to that em-

ployed by Kotani and Toyozawa (1973b) discussed in Sec.
III.F.l. These authors were interested in the absolute in-
tensity of the x-ray photoemission especially in the rela-
tionship between the prefactor Co of the Anderson
theorem (2.13) and the critical amplitude c [Eq. (1.3)]. By
a simple argument relating the Anderson theorem for a
finite system to the x-ray photoemission spectrum of an
infinitely large system, they concluded that a definite re-
lationship should exist between CD and c (although, un-

fortunately, the relation they found was not correct).
They also examined how the spectra changed with in-

creasing number % of conduction-band states. As for the
integrated photoemission intensity, they found that a
larger system improved the numerical result over that of
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5. X-ray photoemission spectra as treated
by Feldkamp and Davis

3
0.5—

)

N=5

0—0.6
M/KF
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FIG. 10. Integrated x-ray photoemission intensity with increas-
ing N, the number of states below the Fermi level (Dow and
Flynn, 1980). The origin E =0 is chosen at the unperturbed
Fermi level. The threshold is shifted by the relaxation energy.

X-ray photoemission intensity P(co) near the edge was
examined analytically by Feldkamp and Davis (1980).
For a finite system with a core-hole potential of the con-
tact type and level spacing near the Fermi level AE [note
that N(0)=1/As], they tried to calculate 2m times the
square of the s-wave overlap integral, 2n.

~
(O'F

~

W ) (

where %'~ is an excited state with excitation energy
nb, e( =co„) relative to the ground state 4 . As stated in
Sec. II, the calculation grows difficult quickly with in-
creasing n because of the degeneracy. For a conduction
band with a uniform level spacing b.s = Wb /JV and

IV=A;tr, the calculation was successfully carried out for
n & 16. The result indicated

P(co„)b,E =2m C„A' (3.32)

a smaller one simply by smoothing out the response func-
tion found for the latter. This situation is shown in Fig.
10. Since Anderson's theorem appears to imply, in the
limit of a large N, a vanishing photoemission probability
for transitions to low-lying excited states, it was often ar-
gued that a very large number of excited states, not 50 or
100 but, say, on the order of 10', would be required in
order to compensate for the vanishing transition matrix
elements due to orthogonality. Figure 10 shows that the
actual situation favors numerical calculations, in that
even the line shape calculated with N as small as 10 has
some resemblance to the exact spectrum. We have al-
ready seen that this was also the case in the treatment by
Kotani and Toyozawa where N =50 seemed sufficient to
produce an edge anomaly. Figure 10 obviously shows
that the integrated photoemission intensity in the fre-
quency range less than nkvd, with Ac the level spacing at
the Fermi level, is scaled by (n/X) . One implication of
this is that not only the overlap integral between the
ground states of two Fermi seas, as treated by the Ander-
son theorem but also that between the initial ground state
and low-lying excited states should be scaled by the same
orthogonality factor N . That this is indeed so with
the scaling factor (n/N) was first shown by Feldkamp
and Davis (1980).

Another subject examined by Dow and Flynn is the
range of validity of the asymptotic power-law formula.
They found that the line shape deviated from
the Nozieres-DeDominicis power-law behavior at co

-0.03E„„; and that precise reproduction of the
Nozieres-DeDominicis values of the exponent was rather
difficult if one discretized the Fermi sea into a finite num-
ber of states, say, into 50. They also compared the two
line shapes with co&0 and co&0 and showed that the
mirror-image relationship of XAS and XES holds only in
the immediate vicinity of the threshold. This is exactly
the feature predicted by Ohmura, Ishikawa, and Mizuno
(1974).

with
n

C„ /C = + [1+( o.—1 ) /k ]
k=1

=n '/I (cr), (3.33)

where C0 is the prefactor appearing in the Anderson
theorem (2.13). The second line shows the extrapolation
of the first line for a large n using the gamma function.
On the other hand, if the edge spectrum of the x-ray pho-
toemission is assumed to have the form (1.3)

P ( co ) =cco (3.34)

its discrete version should be obtained by replacing co by
co„. Equating it with Eq. (3.32) and using the second line
of Eq. (3.33), we then find

(3.35)

6. Treatments of Mahan and of von Barth
and Grossmann

In addition to the two numerical approaches —solving
the Dyson equation by some means or calculating the

The conclusion is that the prefactor C0 of the ortho-
gonality theorem does determine the intensity of the pho-
toemission. In Sec. VIII.E, we shall give a somewhat de-
tailed derivation of Eq. (3.33) and refine the result of
Feldkamp and Davis by showing that if C0 is defined us-

ing JV,s in the orthogonality .theorem, as in Eq. (2.13),
then Eq. (3.35) holds for any conduction band with arbi-
trary level spacing.

The proof of Eq. (3.34) and Eq. (3.35) for a general n

along the lines adopted by Feldkamp and Davis looks
difficult because the calculation up to n = 16 was already
sufficiently cumbersome. However, their result is con-
vincing and strongly suggests the correct form for the
critical amplitude of x-ray photoemission. A rigorous
proof given by the present authors (Tanabe and Ohtaka,
1985) will be sketched in Sec. IX.D.
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transition probabilities for a finite system by the golden-
rule formula —a third approach was developed by Com-
bescott and Nozieres (1971), which will be described in
the next subsection. By applying the method of Com-
bescott and Nozieres, Mahan (1980) calculated the x-ray
emission spectrum for a square-well core-hole potential.
His main interest lay in examining which of the two
rules, the final-state or the initial-state rule, provided a
better approximation to the true emission spectrum. In
the case of emission, the final-state formula requires the
wave functions of the ground-configuration band states
to calculate the transition matrix element. For a conduc-
tion band with a square-root density of states, Mahan
calculated an exact numerical emission spectrum that
showed the final-state spectrum to be nearer to the actual
XES. His result showed the correctness of the predic-
tions of von Barth and Grossmann (1979) and is in agree-
ment with the analysis of Grebennikov et al. (1977a,
1977b), which indicated, as we saw in Fig. 9, that the
final-state rule is better in XAS, except in the case of
large band filling, and is to be preferred for any extent of
band filling in XES.

One interesting remark of Mahan (1980) concerns the
integrated intensity I~ and IF for XAS and XES, respec-
tively. As will be shown later (Sec. VI), there are exact
sum rules for XAS and XES at absolute zero tempera-
ture:

Ig =2'rrg
~

LUi, ~, IE =217+
~

LU

b p
(3.36)

Therefore, in the initial-state rule, the sum rule is au-
tomatically satisfied. This means, however, that in apply-
ing the final-state rule, we need to multiply the overall
spectrum by an appropriate factor y in order for the re-
sult to satisfy the sum rule. In Mahan's calculation the
factor y, in fact, leads to much better agreement of the
final-state result with the exact (calculated) XES profile.
This is shown in Fig. 11 (the lack of divergence in this
figure may imply the existence of a rather large numeri-
cal error in the near-edge spectrum [see the comment
after Eq. (3.41) below].

2.0—
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V=1.5
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V=0.O

(r =1.91)
&& o o

i

0

0.8 1.0 ~~a
FIG. 11. Comparison of exact spectrum with x-ray emission
spectrum according to the final-state rule (Mahan, 1980). The
solid curve gives the exact XES, the dashed curve is the exact
XES with the orthogonality factor I'(~) put to unity, while the
curve marked by diamonds represents the spectrum obtained by
the initial-state rule. The triangles show the final-state rule in-
tensity corrected by multiplying by the factor r = 1.91 (see text).

von Barth and Grossmann (1979, 1982) calculated the
exact XES spectra both by solving the Dyson equation
numerically and by directly calculating the transition
matrix element for. a system of finite X. In the latter ap-
proach, they took account of only the single electron-
hole pair excitation, in the same spirit as Kotani and
Toyozawa. They used a separable core-hole potential of
the form Vukuk with uk. determined from the overlap in-

tegral between the core electron and conduction state k.
For sodium, they showed that the two methods yielded
identical spectra and that the final-state rule gave a better
fit to the exact XES than did the initial-state rule (von
Barth and Grossmann, 1979). This was indeed the first
demonstration of the usefulness of the final-state formula.
They also proposed a modified final-state formula that
covered, approximately, both the edge anomaly near the
threshold and the range far away from the edge (von
Barth and Grossmann, 1982).

We shall discuss th.ese approximate formulas in the
single-particle picture later in Sec. X.B.

7. Numerical renormalization-group approach
of Oliveira and Wilkins and Cox et al.

All the numerical treatments discussed above were
concerned with the reproduction of overall spectra in a
wide frequency range not restricted to the edge region.
Unfortunately, they are not able to examine the edge be-
haviors with sufFicient precision.

The renormalization-group (RG) formalism is ideally
suited to meeting this need (Oliveira, 1981). It consists of
the following steps:

(a) Dividing the conduction band into a finite number
of sections with the section points lying at A, A
A, . . . , in units of the Fermi energy EF„;(A& 1), so
that the interval becomes infinitesimally small near the
Fermi level.

(b) Converting the Hamiltonian of the k representation
into that of the new set of orthonormal functions, each
being a superposition of the wave functions within each
section of the conduction band.

(c) Numerically diagonalizing the Hamiltonian matrix
to obtain the eigenvalues and eigenfunctions.

(d) Calculating the optical transition probability using
the initial and final Slater determinants for the states ob-
tained in step (c).

Step (a) takes account of the logarithmic singularity in
the perturbation series in which a region of the conduc-
tion band [A ' ', A '] in units of the Fermi energy con-
tributes equally, independent of the value of I. For exam-
ple, a very narrow region, say, [2 ', 2 ] near the Fermi
level, matches the broad region [2,2 '] in its contribu-
tion to the perturbation series (for the choice A=2). The
new set of basis functions is arranged so that the core
hole may interact only with the most localized state in
the set. This is step (b). But the delocalized wave func-
tions couple to the most localized one through the
kinetic-energy term, so we need step (c).
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Oliveira and Wilkins (1985) successfully applied this
method to the KT model. They generalized the KT
model by adding to it the potential scattering term, as in
the original Nozieres-DeDominicis model, and demon-
strated the capability of the method by producing many
reliable quantitative data, including some related to the
Fano resonance.
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G. Approaches to an exact solution
of the MND problem

FEG. 12. XAS intensity obtained by the renormalization-group
technique (Oliveira and Wilkins, 1981). The solid line corre-
sponds to the theoretical tangent given by Eqs. (1.1) and (1.2).
The Fermi level is at the center of the band having a width 2D
and a constant density of states. The core-hole potential is of a
contact type with 6, the phase shift at the Fermi level, chosen to
be 0.2~.

Figure 12 shows the result obtained by Oliveira and
Wilkins (1981) for a contact potential, in which p(co) is
equal to I(co) in our notation. The straight line shows
the theoretical prediction of Nozieres and DeDominicis,
and l is a parameter used in the process of smoothing the
numerical line spectra. Note that the Nozieres-
DeDominicis for the critical exponent is reproduced very
well near the edge. In this way, a reliable value for criti-
cal exponents was obtained numerically for the first time
by use of a renormalization-group formalism.

Cox et al. (1985) presented data obtained for x-ray
photoemission by the RG formula. As in the case of
XAS, the theoretical exponent was reproduced precisely
in the range less than 0.01EF„; from the edge, which
grew wider with decreasing potential strength. Their RG
value for the critical amplitude will be tested in Sec. X.B.

1. Determinantal formulation of Combescott
and Nozihres

with

P(r)=e' 'det
l

A, (r)
l

—i(h+ —E~, )t
~kk'(r)= &v k l

~ "
l
uk'~

(3.37)

(3.38)

For the response function I(t) of XAS, or the Fourier
transform I(co) given by Eq. (3.13), it is possible to show
that

I(&)=P (&)I,(&) (3.39)

with

To treat the effect of a strong final-state attraction giv-
ing rise to a bound state, Combescott and Nozieres (1971)
reproduced the original result of Nozieres and DeDomin-
icis by a different method.

The response function P(t) for photoemission spectra
has already been given in Eq. (3.11). Combescott and
Nozieres noticed that &+ [=&+(X)] is a sum of one-
body Hamiltonians h,+(i = 1,2, . . . , N). It is not difficult
to see that P(t) may be put in the form

lo(r)= ~
l y p "

ggg, (r) y gg (i)[g (r)],g,$(r) (3.40)
b, b' m, m'

~kk'(i)=& &.k+ k'exP[ i(E Ek')&l (3.41)

where a k is the overlap defined by Eq. (3.19) and one of
the states in the set sc is the bound state A, . With Eq.
(3.41), the set of equations (3.37) and (3.40) now provides
a practical means of numerical calculation. In fact, as we

where [A, '(r)] is the (mm') element of the inverse of
the XXX matrix (A, .). Note that the orbitals yk are
for the ground-configuration Hamiltonian. Since h+ is
the Hamiltonian for the excited configuration, the calcu-
lation of kkk given by Eq. (3.38) is by no means trivial.
For that purpose, Combescott and Nozieres made use of
the closure property g l g ) ( g, l

= 1 for the excited-
configuration band states g of h+:

saw in Sec. III.F.6, Mahan (1980) showed by this method
the validity of the final-state rule in XES. Although
reproduction of the correct 1ong-time behavior was very
dificult in the treatment of Combescott and Nozieres be-
cause of the presence of time-dependent phase factors in
Eqs. (3.40) and (3.41), this simple method seems worth re-
trying with a modern computer, with respect to the edge
anomalies.

The original interest of Combescott and Nozieres lay
in applying Eqs. (3.37) and (3.40) to an analytical treat-
ment. Although they had to make an assumption con-
cerning the value of the phase shift (which is determined
only up to mod vr), they succeeded in rederiving the criti-
cal exponent of Nozieres and DeDominicis and correctly
obtaining for the first time the exponents for the main
and secondary bands in the presence of a bound state.
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These are summarized in Sec. III.D.2 of this review in re-
lation to Hopfield's rule of thumb.

2. Dispersion-integral approach of Mahan
and co-workers

The theory that first introduced the dispersion integral
Eq. (1.5) into the soft-x-ray problem was olfered by Par-
dee and Mahan (1973). They showed that the critical ex-
ponent 26(0)/ir is derived quite naturally if we apply the
general Fermi-Watson-Aidzu theorem (Watson, 1954) for
a phenomenon taking place near the threshold for the
opening of a new scattering channel. They argued that
the amplitude T(co) for a photon to create a particle-hole
pair above the threshold m=o may be obtained by solv-
ing the Hilbert problem (assuming an s-like channel):

T(~+i()) exp[2i5(ai)] (co) 0)
T (e~ —io)

(3.42)

In other words, T(z) is just equal to X(z) as defined by
Eq. (1.3). Considering the fact that the exponent
25(0)/~ in the divergence of XAS and XES originates
from the replacement process involving band states p
below the Fermi level (Sec. III.D. l), the form of Eq.
(3.42), which has nothing to do with band states below
the Fermi level (i.e., co & 0), looks rather queer.

Penn, Girvin, and Mahan expanded Io(t) into a pair-
wise series and showed that Eq. (3.42) holds for the first
term of the series and that higher-order terms of mul-
tipair excitations involve the quantity X+ (co)
[=X(co+iO)] times X+(co) defined by Eq. (1.5) for each
electron-hole pair (Penn et al. , 1981). Judging from the
form of the exponents in Eq. (1.5), it is natural that each
particle-hole pair in the final state carries one pair of
X+(ai) and X+(ai). The reason why the information
about the hole below the Fermi level does not appear in
Eq. (3.42) is that the product

~

X+(co)X+(co)
~

is related
to the phase shift at energy co in a simple way [see Eq.
(9.35) for co=0] and hence

~

X+(co)
~

of the T matrix can
be rewritten solely in terms of X+(co)

~

and the phase
shift 5(0).

Using a series expansion written in term of X+ (co) and

X+(co), Penn et al. (1981) succeeded in obtaining the
critical amplitude of Io(co) numerically. In Sec. IV, it
will be shown that a closed form for the pairwise series of
Io(t) for both an arbitrary and a contact-type potential
can be obtained; an analytical expression of the critical
amplitude will be given for a contact-type core-hole po-
tential. -The convergence of the pairwise series for Io(t)
is also an interesting subject, which will be discussed in
Sec. X.

With regard to the quantity P(t), the pairwise series
expansion is naturally much more complicated than that
for Io(t), with the physical quantity of interest appearing
in the exponent. Mahan gave the first two terms of the
series for ihe exponent, expressing them explicitly in
terms of X+(co) and X+(co) (Mahan, 1982). The series

can be given an explicit expression to infinite order and
be summed up eventually (Ohtaka and Tanabe, 1983), as
will be seen in Sec. IV. However, the extraction of the
critical amplitude of P (t) from the resulting expression is
much more dificult than that for To(t) (Sec. IX.D).

In essence, the treatment of Pardee and Mahan paved
the way for an exact solution of the soft-x-ray problem,
and with their pairwise series Mahan and collaborators
succeeded in obtaining exact results in several respects.

3. Fermi-golden-rule approach of Ohtaka
and Tanabe

We are now in a position to describe our own approach
towards the exact solution of the MND problem. Before
making a start, we give here a brief summary of the fol-
lowing sections, hoping that it will help the reader to
have an outline of what follows, in which the mathemat-
ics is rather involved. See also the prescription suggested
for the reader at the end of Sec. I.

First of all, we calculate the overlap integral between
two Slater determinants of the ground- and excited-
configuration many-body wave functions. If they are
both for the ground states, the overlap integral between
them is just b, of the orthogonality theorem (2.13). Our
concern lies in seeing how the overlap changes its form
for excited states of the excited configuration and how it
is expressed in a unified way for complex excited states
having a large number of excited electron-hole pairs. We
show that the overlap integral is proportional to the
orthogonality factor 6 and that the overlap integral asso-
ciated with multipair excitation can be expressed using
that for the single-pair excitation, as shown, for example,
in Eq. (4.11) for two-pair excitation. We give a general
expression for the overlap integral valid for any core-hole
potential.

These overlap integrals of many-body states determine
the photoemission cross section. The problem we are in-
terested in next is whether we can sum the terms in the
cross section over the number of excited pairs to obtain
the x-ray photoemission spectrum. This will be accom-
plished by identifying the pairwise series for the cross
section with that of a Fredholm determinant. The deter-
minant given by Eqs. (4.19) and (4.20) is nothing but the
closed form of the photoemission response function. It is
given in t space because energy conservation is taken into
account by the Fourier transform. The factor 6 to which
each term of the series is proportional is eventually elim-
inated by the same factor appearing in the denominator
of the total sum of overlap integrals, leading finally to a
spectrum that is finite even in the limit X~~. It is
given by Eqs. (4.24) and (4.25) in a form valid for any
core-hole potential. Sections IV.A and IV.B, which are
devoted to x-ray photoemission spectroscopy, constitute
the basis of our development.

The technique for treating XAS and XES in the
remaining part of Sec. IV is similar to that for photo-
emission, although there is an additional complexity due
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to the presence of an extra electron moving to and from
the core level. Equation (4.42) with Eq. (4.43) and Eq.
(4.47) with Eqs. (4.48) —(4.55) summarize the XAS and
XES results, respectively. The response function is com-
posed of two factors, the one P(t) for the shakeup effect
and the other Io(t) for the propagation of the photoelec-
tron. These equations thus provide us with the core-hole
propagator and open-line contributions in the formalism
of Nazieres and DeDominicis, now expressed in a general
form valid for any time t and for any core-hole potential.

The response functions at finite temperature are ob-
tained in Sec. V. The need to consider thermal excitation
in the ground configuration is the only diA'erence from
the treatment of T =0. The closed form for the XAS
response function is given by Eqs. (5.22) —(5.25). In Sec.
VI, the first few moments of the spectrum will be given,
including the integrated intensities of the spectrum. The
general treatment applicable to any core-hole potential
ends there.

The response functions are then analyzed for the case
of a contact-type core-hole potential. The reason why
further analyses are possible in this case lies in the simpli-
city of the eigenvalue equation (7.2) for the single-particle
energy E„and in the fact that the normalization constant
v of the overlap integral (7.3) between the states z and k
depends only on the index ~ of the excited-configuration
states. These facts enable us to express X(z), X(z), and
hence all the quantities necessary in the general formulas
in terms of the product of the differences between the ei-
genvalues E and E&. See, for example, Eqs. (7.12) and
(7.13) with Eq. (7.8). Explicit results are thus given for a
discrete energy scheme. It is shown that in the continu-
um limit the products turn into the dispersion integrals
[Eqs. (7.21) and (7.22)].

To obtain an expression for a particular spectrum, one
must calculate an inverse matrix in t space, the quantity
F in Eqs. (7.30) and (7.31), for example. For an arbitrary
time t, it can only be carried out numerically. In the
asymptotic region, i.e., near the edge in frequency space,
however, an analytical treatment is possible. This is the
theme of Sec. VIII, where we show that solving a
Wiener-Hopf integral equation leads to an expression for
the critical amplitude, in addition to the Nozieres-
DeDominicis form for the critical exponent, including
the case of T&0 [the result, together with those of the
secondary bands, is summarized in Eqs. (9.49)—(9.52)].
However, to show that the coefficient C0 of the ortho-
gonality theorem determines the absolute intensity of the
spectrum requires a rather long mathematical treatment,
a brief description of which is given in Sec. VIII.E.

In Sec. IX, we treat the case in which there is a bound
state in the excited configuration. We may analyze the
problem in terms of the basic formulas obtained in Sec.
IV by regarding one of the states p of the excited
configuration in, say, Eq. (4.25) as a localized state. The
exact edge spectra, including the critical amplitudes for
both main and secondary bands, are given by Eqs.
(9.49) —(9.52). In Sec. IX.E, the coefficient Co of the

orthogonality theorem is examined in the presence of a
bound state, and a modification due to the bound state is
obtained. In Sec. X, several topics are treated based on
the general formulas derived so far. We examine the con-
vergence of the pairwise series of the edge spectrum de-
duced iteratively from the integral equation (7.32). It will
be shown that for a strong core-hole potential an exact
edge spectrum cannot be reached iteratively. Moreover,
the validity of the generalized power law and the approx-
imate formulas known as final- and initial-state rules will
be examined. Their usefulness will be confirmed by com-
paring them with the exact intensity curve of the MND
model.

The theoretical results obtained in Secs. IV—X are
studied numerically in Sec. XI. In Figs. 15 and 16, we
compare the existing numerical values available for the
critical amplitude with our exact analytical expression.
In Figs. 28 —30, we compare the recent optical experi-
ments in semiconducting quantum wells with the exact
solution of the MND model at T&0.

To summarize, the basic sections for the formulation
are Secs. IV, VII, and VIII. Other sections are devoted
to their extension, applications, and numerical demon-
stration. The main results obtained through our ap-
proach are summarized as follows:

(a) Expressions for the pairwise cross sections are
given. They include a complete solution for the case of a
contact-type core-hole potential, investigated and solved
in part by Mahan and collaborators (Mahan, 1980; Penn
et al. , 1981). The present result is quite general in that it
applies at an arbitrary temperature to any core-hole po-
tential, including one inducing the secondary band due to
the presence of a bound state in the excited configuration.

(b) For a contact-type core-hole potential, the edge
spectra are given their analytical expressions. Mahan's
numerical value for the critical amplitude for Io( r )

(Mahan, 1980) is rigorously reproduced by the obtained
analytical formula (Ohtaka and Tanabe, 1983), meaning
that Mahan almost solved the edge problem for ID(t) at
T =0. The present results include those at T&0 and for
the secondary band. The suggestion of Dow and Flynn
(1980) for the relation between Co and the intensity of
I'(t) and the proposed analytical form of the relation by
Feldkamp and Davis (1980) are rigorously proved.

(c) Rigorous treatments are given for such topics as the
integrated intensities of the secondary band, the expres-
sion for the coefficient C0 of the orthogonality theorem,
its modification when a bound state exists in the excited
configuration, the radius of convergence of the pairwise
series for the edge spectrum with respect to the strength
of the core-hole potential, and the validity of the general-
ized power-law formula and the initial- or final-state for-
mulas for absorption and emission intensities. Except for
the last topic, examined already by several authors, these
subjects have not yet been investigated in the literature.

Although specific analyses are restricted to the case of
a contact-type core-hole potential, a similar development
is possible for a separable-type core-hole potential, as will
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be seen in Sec. XI.I. This means that we have a rigorous
proof for expressions of the critical indices only in these
two cases. It is still an open question whether the edge
spectra for channels other than s can be described by
some version of Eqs. (9.49)—(9.52) in which the s phase
shift is replaced by an appropriate one. If we adopt a
contact-type core-hole potential with a magnitude deter-
mined so as to reproduce the phase shift of the channel in
question (the phase-equivalent model potential of Lloyd,
1967), the answer is trivially positive. The result is be-
lieved to be meaningful practically, but the error in-
volved is not yet clear mathematically.

We give the various formulas in the discrete energy
scheme before considering them in the continuum limit.
These formulas are directly applicable to the treatment of
the infrared divergence in a finite system (a fine metallic
particle, for example) or in a two-dimensional system
having a Landau level scheme in a magnetic field. These
problems will be treated in the near future.

lV. FORMULATION FOR T=O

The. overlap integral a k. already introduced in Eq.
(3.19), between the single-particle states in the excited
and ground configurations plays a fundamental role in
what follows. In the lowest-energy state 4 =4 (N), or
the ground state of the excited configuration, N orbitals
g„below the Fermi energy sF are occupied. Recall Fig.
1 for the symbols for the single-particle states. Because
of the nonorthogonality mentioned above, transitions
from W now become possible, not only to 0' but also to
other excited states of the excited configuration, that is,
to the states 4& [=V&(N)], where v electrons in the lev-
els p„p2, . . . , p below the Fermi level are excited to the
levels y, , y2, . . . , y above it. As implied here, we use
the indices y to indicate the states or levels above the
Fermi level according to Fig. 1. The subscript f stands
for the set (p„. . . , p„;y„.. . , y ). The bar over p indi-
cates that a hole has been created at the level p in the
state 0 . To avoid ambiguity, p's and y's are supposed
to be arranged in ascending order. Our problem now is
to calculate quantitatively the transition probabilities for
excitations from N to 4&.

A. Wave functions before and after the transition

4 X +k~Vk
k

=~4 l%'k ~ .

(4.1)

(4.2)

To make the problem clear, we first consider the case
of x-ray photoemission and outline how we are going to
describe the spectrum. For simplicity, we deal with spin-
less electrons. For definitions of the notation and sym-
bols not explained here, see Sec. II and the List of Sym-
bols. Readers unfamiliar with x-ray photoemission may
find a few paragraphs at the beginning of Sec. III.B.1
helpful.

Before the transition, the system is in the ground
configuration of &, given by Eq. (2.2), with N electrons
in the conduction band and one in the core leve1. The or-
bital for the band state k in the ground configuration
with its energy Ek is denoted as yk. At absolute zero, the
system of N conduction electrons is in the many-electron
ground state 4 [=4 (N) in the notation of Sec. II] with
its energy E [=E (N)], where N lowest levels below the
Fermi level are all occupied.

After the transition, that is, after the photoelectron has
left the system, N electrons in the conduction band
remain in the excited configuration with a hole in the
core level. The band orbitals are now greatly modified
because of the potential Vkk. introduced by the core hole.
We denote them as jb with its orbital energy E . These
are eigenfunctions of a one-electron Hamiltonian h + in
Eq. (3.38) derived from the many-body Hamiltonian [Eq.
(2.3)] for the excited configuration so that there is no
guarantee that g and yk will be orthogonal even when
s AEk. We may assume, however, that the former func-
tions can be expanded in terms of the latter as

B. Response function for the photoemission
spectrum

We are assuming that the wave function of the photo-
electron is hardly aA'ected by the core-hole potential and
that the transition matrix element is independent of its
energy. Then the intensity of the x-ray photoemission
spectrum for the excitation frequency co measured from
the threshold, renormalized by the relaxation energy
AE, will be proportional to

(4.3)

[Ef Ef(N), E =E (N)], where we have put

E~+ E= g e ——g E„+DE (4.4)
s =1 s =1

(4.&)

(4.6)

the overlap integral in question turns out to be

A=(% l@ ) =detA,

with the N X N matrix defined by.

(4.7)

for the excitation energy co(A= I). The relaxation energy
AE, or the shift of the ground-state energy E in the
ground configuration to E+ in the excited configuration,
is given by Eq. (2.9).

In order to evaluate P(co), we must first calculate the
overlap integrals between %' and W . Let us begin with
the case v =0. Since the wave functions N and W are
given, respectively, by the Slater determinants as
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( A)„=a„ (4.8)

0)) ' Q)~

in terms of the coe%cients a„. The overlap 6 is the key
quantity of the whole MND problem. The overlap be-
tween

waif
with f=(p; Y) and 4& is then given by the

determinant
P(co)=2Re I dt e P(t)

0

with ~+ =m+iO and

(4.12)

p(t)= ye ' f l(+fly')l'

work with the Fourier transform of P (co). Making use of
the expression for the delta function, Eq. (4.3) can be
rewritten as

b(PYl )=det ari '
aviv (P (4.9)

p(v)(t) (4.13)

l

aivi axN

which is obtained by replacing the pth row in the deter-
minant 6 by the row vector (a~„a~2, . . . , a iv). Note
that we have

6(pyl)/b, = pa ( A ') (4.10)

Thanks to Jacobi's identity in the theory of determinants
(see, for example, Aitken, 1964), all the overlap integrals
that appear for v~ 2 can be expressed in terms of an
overlap of the same type as Eq. (4.9). For example, the
overlap ('Iifl@ ) with f=(p„p2„Y„Y2) can be ex-

pressed as

~(PiYil)/~ ~(riYzl)«
P1P2Y i'Y2 l

=
g(—

p(t) eihE t( @Ol vfte —i& tl @0) (4.14)

where & and gf'+ are Hamiltonians for the ground
configuration [Eq. (2.1)] and excited configuration [Eq.
(2.3)], respectively.

The expressions for P' '( t) and P" '(t) are simple,

(4.15)

P'"(t) = lb l g K(Y, Ylt )e
r

where K(Y iY l2t ) is defined by

«Yi, Y2lt ) = & [~(pYil)~(pY, I)*/I&l']e""'.

(4.16)

(4.17)

where Ff =Ef(X). The response function P(t) may also
be put in form

(4.11)

using b and A(igyl). Equation (4.11) may obviously be
generalized to the case of an arbitrary value of v.

For an analytical treatment, it is more convenient to

The expression for I" ' is a little complicated. Perhaps it
would be more sensible to give the result here and let in-

terested readers surmise its derivation than to go into the
details. We find

&(Yi 'Yilt) K(Y Yilt2)
P' '(t)= b,

l g det ~( l ) ~(
l )

exp( —iE t is t—) .
T2~'7 i t T2~ T2 t

~1 ]2
(4.18)

This may be proved by noting that the determinant on
the right-hand side has the form of Gram's determinant,
with the definition of K(Y„Y lt2) given in Eq. (4.17).
The determinant can therefore be decomposed into a
linear combination of products of two determinants, that
is, the determinant given by Eq. (4.10) and its complex
conjugate (times appropriate exponential functions),
reproducing the expression we started with.

The result (4.18) can also be extended to cases with any
value of v. We then observe that the resulting series
(4.13) is a Fredholm series with its kernel given by Eq.
(4.17). (See, for example, Courant and Hilbert, 1966). If
we denote the number of vacant states in @ by M, P(t)
is expressed as

Since P(0) is unity by definition, we have

D(0)= b,
l

(4.21)

(4.22)

and P (t) may be expressed in the following form (Ohtaka
and Tanabe, 1983):

P(t)=exp[Tr In[1+K(r)e '"]l;:z] (4.23)

or

P(t)=exp I dr A(z)
0

(4.24)

I

where K is a matrix whose (Y,Y2) element is given by Eq.
(4.17) and E is a diagonal matrix defined by

P(t) = lal'D(t) (4.19)

in terms of an M X M Fredholm determinant D (t):

D (t) =detl 1+K(t)e (4.20)
A (t)=Tr K( )

'" [1+K( ) '"]
dt

(4.25)
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In order to calculate A (t), we need to know the inverse
of the matrix appearing in Eq. (4.25). To obtain it is
equivalent to solving a Fredholm integral equation
analytically. This is impossible, except for a very large
value of t, as we shall see later. As regards the x-ray pho-
toemission problem, let us stop here for the moment and
discuss another related subject, the x-ray absorption
spectrum.

using Eqs. (4.26) and (4.27) with

w., =&1(.lwlip, & (~=y, )t2) . (4.33)

&vfil wle', & =ap(y),
where

(4.34)

The right-hand side of Eq. (4.32) may be expanded with
respect to the last column, and we have

C. X-ray absorption spectrum p (2-) = ul „—g [&(py I ) /&]ul~, , (4.35)

In the case of x-ray absorption, the electron in the or-
bital cp, jumps into the conduction band. The state of
N+1 electrons changes from @, [=4&,(N+1)] in the
ground configuration to 4f [=%f(N + 1)] in the excited
configuration, with v —1 holes below the Fermi level and
v electrons above it, so that f=(p„.. . , py„. . . , y„). We therefore put

so that

I"'(r)=l~l2g lp(y)12e '" (4.36)

The case v=2 is a little more involved. However, all the
procedures necessary to obtain Ii '(t) for v) 2 are embo-
died there, so that it will be worthwhile to sketch the
derivation brieAy. Within f=(p;yl, y2), we obtain

and put, for example, for v= 1

64, l
(4.27)

&(pyll )/& p(y, )

&nfl wle') =sdet (4.37)

I(co)=2Re f dt e' 'I(t) .
0

(4.28)

If we denote by 8' the dipole-moment operator of the
system [Eq. (2.6)], the function I(t) turns out to be
defined by

with f=(;y).
In the same way as in Eq. (4.12), the absorption spec-

trum I(co) may be shown to be given by the Fourier
transform of the function I (t):

after some manipulation. This then leads to

I"'(r)=I&l' g Ilp(yl)l'&(y„y2lr)

—ic t —ic t—p*(r i)p(r2)I~(l l Y2lt)e

(4.38)

in terms of the matrix elements of K given in Eq. (4.17).
The next matrix element for v= 3 with
f (pl p2 Y ly2 Y3) may be written as

with

"" I( I I

')I'
v=1 f

(4.29)
~(pl, yll)/~ ~(p2yll)/~ p(ri)

&'pflwl@'&=&d«&(p, y2I)/& &(P2y2I)/b. p(y2)

~(ply 31 )/~ ~(p2y3 I ) /~ p (y3)

(4.30)

The right-hand side of Eq. (4.29) may also be put in the
form

I(r) — th (q Ol
' c w —i& twlg0) (4.31)

with &,=&,(N+1) and &+=&+(N+1) operating on
the (N+1)-electron state @,. For the matrix element of
8'for v= 1, we find

11 1% ~ lc

Ef E0=Ef(N+1—) E, (N+1)= —g e~ —g E„+0i,h .
s=l s=l

(4.39)

This then enables one to write down the matrix elements
of W and, accordingly, an expression for I' '(t) for any
value of v larger than 3. In deriving these results,
Jacobi's identity has again played a key role.

In this way, we can show that the series expansion of
I (t) may be put in the form

y lp(y) l2e

r

—g p*( )py( )y(D, yly) re
& Y

(~,'I Wle') =det

ay]
' '

Oy~ lay

(4.32) (4.40)

with D (t) as given previously [Eq. (4.20)] and D(y, y'It)
defined by
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D(y, y it)=K(y, y it)

K(y, y'it) K(y, y, it)

K(y„y'it) K(y„y, it)
~1

+ 0 ~ ~ (4.41)

I(t) =P(t) Io(t),
where Io(t) is given by

(4.42)

I (t)= g p*(y)e [(1+K(t)e '") '] p(y') .

The expression for D(y, y'it) is well known in the
Fredholm theory of integral equations (Courant and Hil-
bert, 1966), so that we finally have (Ohtaka and Tanabe,
1983)

It is not dii%cult to see that an equation similar to Eq.
(4.31) holds:

(4.46)

with &+=&+(N) and &,=&,(N). From here on, the
derivation of I (t) parallels that for the case of XAS. We
shall therefore give only the final results here. As in Eq.
(4.42), we obtain

I(t)=P(t)IO(t) . (4.47)

Note that P(t) and Io(t) are different from those given
before, although we are using the same notation for both
absorption and emission, simply to avoid having too
many superscripts and subscripts. The response function
for the inverse photoemission is given as

(4.43) P(t)=exp f d~A(r)
0

(4.48)

The expression for P(t) has already been given in Eqs
(4.24) and (4.25). We note that Eq. (4.42), is just Eq.
(3.14), first obtained by Nozieres and De Dominicis. The
expressions for P(t) and Io(t) given above show that the
pairwise series for the cross section may be collected
quite generally into an exact closed form.

For an explicit calculation of Io(t), the same remark as
given at the end of the previous subsection applies here.
We need to know the inverse of the same matrix as ap-
peared in Eq. (4.25).

but with A (t) defined by

A (t)=Tr KO( )
lEt [1+KO( )

—rat] —1

dt

K (m, m2it)= g [b(i mb)b(im b2)*/ib,
i ]e ' (4.50)

(4.49)
Here, K (t) is an N XN matrix labeled by the indices for
the ground configuration, whose (m, m2 ) element is
given by

D. X-ray emission spectrum and

(a) =e 5 (4.51)
In the case of the x-ray emission spectrum, the system

is, in the beginning, in the excited configuration, where
we have X conduction electrons in the field of a core
hole. Suppose the initial state is the ground state

[=ql (N)] of the excited configuration, with energy
E+ [=E+ (N)] where N levels below the Fermi level
are occupied by a core hole. After the transition, the sys-
tem will be in a state 4&,"& [=N,"&(N)], with energy
[E,f E f(N)] in the ground configuration, with N —1

conduction electrons, n holes below the Fermi level,
n —1 electrons above it, and one electron occupying the
core orbital y, . If we use the index I to denote levels
below the Fermi level and b for levels above, according to
Fig. 1, the subscript f, for example, stands for
(mi, . . . , m„;b„.. . , b„,).

The response function for x-ray emission spectra
whose Fourier transforms defined by Eq. (4.28) give the
spectrum I (co ) can be expressed as

(4.44)

where

The determinant b, ( imb ) is defined as the one obtained
from 6 by replacing its mth column by the column vec-
tor (a,b, a2b, . . . , aM, )", that is,

b, (im)/b, = g(A ') „a„b . (4.52)

We find for n = 1 and f=(m; ) that

('p
i
8'i4') = —g b(pim)iU„,

—:bp(m), (4.53)

if we define b, (pim ) as the negative of the cofactor 6„
of 6, so that

b(pim )/b, = —
( A ') (4.54)

Io(t) = g p (m )'e I [1+K (t)e '"] '
I p(m ') .

m, m'

(4.55)

The quantity p(m ) plays the role of p(y) in the case of
absorption. The expression for Io(t) can be written in
terins ofp ( m ) as

E" E+ =E" (N) E+ (N)— —
cf cf

0
~b ~m ~th

S S$=1
(4.45)

Again, the practicability of this method depends upon
whether we are able to invert the 1V XX matrix as shown
on the right-hand side of Eqs. (4.49) and (4.55).

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem

V. FORMULATION AND RESULTS FOR T&0

A. Description of the method

function qjf with f= (P„.. . , P, , ; y, , . . . , y ). The
energies of the states @,", [=@,",.(Xl)] and
[ =%f(X + 1 )] are given, respectively, by

We begin with the case of x-ray absorption at finite
temperatures. As in the preceding section, we consider X
conduction electrons in the initial (ground) configuration,
with the core orbital occupied. At finite T, our initial
N+1 electron states are specified by the number of
electron-hole pairs and the way they are distributed in
the conduction band. Let us denote by I

n & the
state N,"; of the ground configuration with
i =(mi, . . . , m„;bi, . . . , b„), where we have n excited
electrons at the levels bl, b2, . . . , b„above the Fermi lev-
el c~=O and n holes left behind at I„m2, . . . , I, . In
the excited configuration after the absorption, we have
N +1 band electrons in the field of a core hole. The final
state can be specified by giving the v occupied levels
above the Fermi level as well as the v —1 vacant ones
below it, so that lv& will be used in place of the wave

E,";=E+QEb—gE +e, (5.1)
s=1 s=l

v v —1

Ef+ =E++ ge, —gs
s=l s=l

I(t)= g g I' "'(t)
v=1 n =0

(5.3)

with

Taking into account the probability of the occurrence of
the state

I
n & by the Boltzmann factor exp( PE„—)

(P= 1/T and E„=E,", —c., ), we find that the response
function I(t), whose Fourier transform is the absorption
intensity I (co) as defined in Eq. (4.28), is now given by

B,(t)B (t*) B„(t)Bb(t*)
. . . I&vlwln&l'.

Z
( ]~ )

v.n.
( ) Ib~

(v ).n.
(5.4)

Note that the factorials have been introduced to compen-
sate for double counting. The factors B(t) are defined by

Br(t) = + e

B (t*)= + e
m =1

(5.5)

I

The sign of the right-hand side of Eq. (5.8) depends, of
course, upon the way orbitals are arranged in the Slater
determinants involved. We are, however, taking the
square of the right-hand side anyway so that what
matters here is to see how this result may be generalized
to cases with arbitrary values of v and n, and this is not
difficult. On the right-hand side of Eq. (5.8), we see a
new type of determinant, defined by

B„(t)= + e
p=l

Bb(t*)= g e
b=l

A(ylb)/h=ayb —g a~ ( A ') a„b .
m, p

(5.9)

The temperature T is introduced into I(t) through the
complex time variable t' defined by

t =t+tp (5.6)

and through the partition function Z for the initial
(ground) configuration:

The determinant b, (ylb) is obtained from b, by adding a
new row y and a new column b, so that it is an
(%+1)X(%+1)determinant. If we take the square of
the matrix elements of W like Eq. (5.8) and first sum over
the indices p and b, we find that the result can be ex-
pressed in terms of the following type of matrix elements
besides p(y ) and p(m ):

—PEe ~ Z= g exp[ —P(E„+E„+ +E„)], (5.7)

I~(yi y~lt)= &~(py)I)e""~(py21)*/l~l',
where the sum is to be taken over all possible choices of
N states out of the total number of band states A'.

Let us see what the matrix elements of 8 look like in
the simple case of v=2 and n =1 so that f=(p;y, , yz)
and i =(m;b) The result is given as

&(pyil)/& p(y, ) &(y, lb)/&

&2l~li&=~det b(pypl)/~ p(yp) ~(yplb)/~

b(plm )/b, p(m ) 6(lmb)/b,

(5.8)

&(y mlt)= & ~(pyl)e"'~(1 Im,)*/l~l',

&(m ylt)= g~(plm)e""&(pyl)*/I&l',

K(m, m~ t)= gh(plm, )e "b(plm2)*/Ihl

(5.10)
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K'(y, y, lt)= g a(y, lb)e'" a(y, lb)*y al',
b

K'(y m lt) = g ~(y lb)e'"

and this makes summation over v and n in Eq. (5.3) seem-

ingly rather difficult. There is, however, a mathematical
trick for overcoming this difhculty. Let us introduce a
complex variable z and put

(5.11)
K (m ylt)= gb(lmb)e ' b(y b)*/lbl

b

K, =K(t)+zK'(t *) . (5.13)

K (m, m2lt)= g b(lm, b)e ' 6(lm2b)*Ilk
b

Then the right-hand side of Eq. (5.12) may be written as

Of these, the first and the last have already been defined

[Eq. (4.17) and Eq. (4.50)]. The trouble here is that K and
K appear in a correlated way in the result. For exam-
ple, the coellicient of lp(ri ) l

turns out to be given by

m
y(i)K

m

K, (y2y2) K, (y2m)

c z& K, (my2) K, (mm)2
det

(5.14)

y2 m K(Y2Y2 t) K (Y2m~'"K:—det
y& m K(my, lt) K'(mm lt")

K (y2yz t*) K(yzm lt)
+det K (my@it*) K(mm lt)

(5.12)

where C is a contour enclosing the origin z=0 in the
complex z plane.

The trick described above works well for general
values of v and n and allows us to carry out the summa-
tion in Eq. (5.3) (Ohtaka and Tanabe, 1984):

1I(t)= . J dzz 'detH(t)[p*(y)e ~,p*(m)z 'e ][H(t)] '[p(y), p(m)]",
Z 277l c

(5.15)

—ic t.
where p*(y)e ~ is understood to be a row vector of di-

—ic t
mension M( =JV—N) and p*(m )e is one of dimen-
sion N. They are row vectors whose components are
specified by the indices y and m, respectively. The nota-
tion [ . . ]"' stands for a transposed row vector, i.e., a
column vector of dimension JV. The JVX JV matrix H(t)
is now given by

I

B. Results

We are now ready to evaluate the contour integrals in
Eqs. (5.15) and (5.18). When N ~ ~, this can be done by
the method of steepest descent (or, the saddle-point
method). It then turns out that the saddle point in the
complex z plane is the same for both integrals and is
determined from the relation

1+K,e
H(t) =

L
Z

t
,z e

)fc ~

1+K z 'e ™(5.16) g (1+ ' ") '=N
k

(5.20)

Note that, in the upper left block, rows and columns are
specified by y, while in the lower right block they are la-
beled by m. The diagonal matrices c& and e, are defined

by

if we take the equality (5.19) into consideration. Equa-
tion (5.20) implies that z is related to the chemical poten-
tial p through the relation

(5.17)
z —e PP (5.21)

(5.18)

It is well known that the partition function Z can also
be expressed as a contour integral:

e ~ Z= dzz 'g(l+ze ") .EO 1 —N —1

2&l C

I(t) =P(t)IO(t) (5.22)

with

Taking the values at the saddle point, we finally obtain
(Ohtaka and Tanabe, 1984)

Note that, in the case of x-ray photoemission, we should
have for the expression of P(t) only the first factor
detH(t) in the integrand of Eq. (5.15). Since P(0) has to
be unity, Eq. (5.18) then suggests the equality

P(t)=exp I dr A(r)
0

where

(5.23)

detH(0) =
l
b

l
e~ + (1+ze "),

k

which also can be proved directly.

(5.19)

and

A (t)=Tr H(t) [H(t)] (5.24)
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Io(t)=[p(y)*e ~, p(m )*z 'e ]

X [H(t)] '[p(y), p(m )]" . (5 25) and

Io(t =0)= g w&, l (1 f—k )
k

XAS (6.2)

The value of z given by Eq. (5.21) is to be substituted in
these formulas. At T=O, these results reduce to those
derived in the previous section, because we have p =E~,
and all the terms involving z 'exp( —i E t *

) vanish ac-
cordingly.

In retrospect, we realize that the trick in Eq. (5.14) was
nothing but the technique used by Fowler (1936) to shift
from a treatment in the canonical ensemble (fixed number
X of electrons) to one in a grand canonical ensemble.
This will be confirmed in the next section, where the tem-
perature dependence of the spectral moments is shown to
follow from the Fermi distribution function.

In the case of emission, we can proceed in the same
way as above (assuming thermal equilibrium in the excit-
ed configuration), and the results may be summarized as
follows. For the response function for inverse photo-
emission P(t), we obtain the same equations (5.23) and
(5.24), but with a new definition of an JVX JV matrix H(t):

Io(t =0)= glw„l f, XES, (6.3)

where f& is the Fermi distribution function

fk =f (Ek ) =1/(1+e "
) .p( &

—p)
(6.4)

(ai) = f dto'I(co')co' f de'I(co') . (6.5)

The right-hand side can be written as

( co ) =i A ( t =0) +iI 0(t =
0) /I (ot =0) . (6.6)

As can be seen from Eqs. (5.24) and (5.25), we need quan-
tities like 1+K(0) in the derivation of results given in
this section. See Eqs. (9.23) through (9.25) for details.

The first moment, or the average frequency, is defined

H(t)=
1+K e

1+K ze
(5.26)

The first term represents the average frequency in photo-
emission or inverse photoemission. For photoemission
the expression for A (t =0) is

where

K, =K'(t)+z 'K(t*) (5.27)

A (t =o)= —
& g E.la.k l'fk —g Ekfk —~&'

K, k

and for inverse photoemission it is

A (t =0)= i pe—,f,—gekla „l f„bE—
(6.7)

(6.8)
with K K, k

t*=t—i

The expression for Io(t) is given by

Io(t) = [p(m )*e,p(y)*ze i' ]

(5.28) i times of which yield ( co) for photoemission and inverse
photoemission, respectively. In the cases of XAS and
XES we have contributions from the second term on the
right-hand side of Eq. (6.6), and the expressions for
Io(t =0) are

X [H(t)] '[p(m ), p(y ) ]", (5.29) Io(t =0)=—i g 8, pa, z(1 fk)wk, —
k

where H(t) is, as a matter of course, defined by Eq. (5.26).

VI. EXPRESSIONS FOR MOMENTS

—i X ek lwg, I'fk(1 —fk)
k

Io(t =0)= —
& g Ek g a»k f»w»,

k K

XAS, (6.9)

Let us give in this section expressions for the first few
moments of the spectrum. The derivation is not dificult
but somewhat tedious, so we give here only the relevant
results. As mentioned in Sec. V, we can describe the
thermal eAect solely in terms of the Fermi distribution
function.

The zeroth moment, or the integrated intensity, of the
spectra (for both XAS and XES) is given by

i g E,lw„—
l f (1 f,)—XES . (6.10)

»'=f d '&( ')( '—( )') f" d '&( ')

= —A(t =0) . (6.11)

For the second moment, or the mean-square deviation,
we give only the result for photoemission and inverse
photoemission, that is,

f dc''I (ai') =2~IO(t =0) .

The expressions for Io(t =0) turn out to be

(6.1)
The expressions for A ( t =0) are somewhat involved.
For photoemission it is

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem 959

~ (t =0)= —ge'. Ia.k I'fk —g Ekfk( I f—
/, )+2 g Eke. la./,

I'f/:(I —fk )

K, k K, k

+ X X X e aKka~'kf/ Xs~a~k a~k fk
k

and for inverse photoemission

A(t =0)= —g 8/, la kl f —pe f (1 f )+—2g e„E/, la.kl'f. (l —f )

(6.12)

k, K k, K

+ g g g ska ka /&'f.
* g Ek a. /t. a '/&'f. (6.13)

k k' K

Vll. REDUCTION OF FORMULAS
IN THE CASE OF A
CONTACT POTENTIAL

with

Resxo(E, ) = lim [(z —E,)XO(z)] .
Z —+E,

K

(7.7)

A. Dispersion integrals

Let us assume that the core-hole potential is of the
contact type, that is, the matrix elements Vkk. are given

by Eq. (2.4):

It is convenient to factorize Xo(z) and introduce

X(z)= +(z —e, ) +(z —E,),
b r

(7.8)

to represent the contribution from levels above the Fermi
level and

(7.1) X(z)= +(z —E ) +(z —E ), (7.9)

where V is a positive constant for an attractive potential.
This amounts to considering only s waves in the scatter-
ing of conduction electrons due to the core-hole poten-
tial. However, this assumption allows us to proceed fur-
ther and leads to expressions for P(t) and Io(t) that are
easy to deal with.

We begin with the (perturbed) eigenvalues E„ in the ex-
cited configuration. It is easy to show that they are
determined by the following equation:

1+Vg =0, (7.2)

where ck are eigenvalues in the ground configuration and
summation is to be taken over a11 the band states. For
one of the values c so determined, the coefficient a k of
the expansion Eq. (4.1) is given by

to represent the contribution from below the Fermi level,
so that

Xo(z) =X(z)X(z) . (7.10)

(A ') ResX(e„)" Res (E„—E ).
X(E )

(7.11)

With this result, we are able to derive the following ex-
pressions for A(Prl ) etc. (Tanabe and Ohtaka, 1985):

With these preliminaries, we can calculate the inverse
of the matrix A. When the expression for a„ in Eq.
(7.3) is used, we note that ( A ') „ is, as in Eq. (4.54),
essentially a ratio of two determinants that are called
Cauchy determinants. The algorithm for this type of
determinant is well known, and we obtain

a,k
= —v, /(E, —

e/, ), (7.3)

where vk is the normalization constant.
Replacing E, in Eq. (7.2) by a complex variable z, we

define the inverse of the left-hand side as Xo(z), namely,
—].

Xo(z) = 1+ V g 1

Z Ck
(7.4)

X (z) = + (z —e„) Q(z —E„) . (7.5)

Note that the normalization constant v, can be expressed
in terms of the residue of Xo(z) at z =e:

Taking into account the zeros and poles of the rational
function Xo(z), we find

s(pal)/a=vlx„, l lx, /(E„—s, ),
~(plm )/~= VIX,+ I

IX + I/«„—E

&(1mb)/~= Vlx
I IX I/(s —e ),

&(@lb)/&= vlx

where

IX„+ I

= [—ResX(e ) / VX( e„)]'

IX + I

= [—Resx(sr)/VX(E~)]'

Ix, l=x(e, ),
Ix I=x(..) .

(7.12)

(7.13)

v = —VResxo(e ) (7.6)
So far we have assumed that the energy levels of the

conduction band are discrete. However, it is sometimes
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more convenient to work with a continuous spectrum.
We thus give below expressions for quantities defined
above in the continuum version (Ohtaka and Tanabe,
1983). The key relation connecting the two versions is

the density of states X —Xk is given by the derivative of
the phase shift d5(s)/dc. divided by rr, according to Eq.
(7.14). Partial integration then leads to Eq. (7.20). From
Eqs. (7.15) and (7.19), we obtain a useful identity,

(7.14)
»n5(e)/lX, (s+ ) I =~VN(E), (7.23)

which shows that the energy gain of the conduction elec-
tron in the change from the ground to the excited
configuration is proportional to the level spacing Ark,
and the proportionality constant is given by the phase
shift 5,=5(s, ) at that energy divided by ~. If we put E„
given by Eq. (7.14) into Eq. (7.2), we obtain an equation
for determining the phase shift 5 as a function of energy

where c+ stands for c+i0, that is, c. with a small imagi-
nary part.

%"e can derive the inverse of the matrix A either by
taking the continuum limit of Eq. (7.11) or by directly in-
verting A=(a„) using Eq. (7.17), the latter procedure
being nothing but solving an integral equation. The re-
sult is given by (Ohtaka and Tanabe, 1983)

1+V f deN(E)
D

—~VX„cot5 =0, (7.15)

where we have assumed that the conduction band ex-
tends from D to D and have put

N, =N(e ),
which is the inverse of AE,. In deriving Eq. (7.15), we
divide the sum on the left-hand side of Eq. (7.2) into two
parts —the sum over k with ck -c and the rest. In the
first sum we make use of the partial-fraction expansion
for cot5, and in the second the sum is replaced by the
principal value of the integral, as indicated by P in Eq.
(7.15). In a similar way, we can derive the expression for
a,k of the continuum version:

sin5+ P
'lT Em E

where

[X., )
=X(..) .

( A ') „= " cos5 5(E —c,„)X „N
(7.24)

(7.25)

with

sin5„
a k =6,k cos6 — P

mX c, —ck

5,„=5(e —s„)/N, .

(7.17)

(7.18)

Equations (7.12) for the ratio of the b, 's are also valid
with some modifications in the continuum limit with
these "dispersion integrals" in place of Eq. (7.13). The
modification required is to replace the inverse of the en-
ergy difference in the second equation of Eq. (7.12) as in

In the continuum limit, Xo(z) is defined by 1/(E„—& )~ P —
m cot5„5(s„—s ) . (7.26)

Xo(z)= 1+V f deN(E)
D 1

D Z F

The expression corresponding to Eq. (7.5) is

1 D 5(e)
Xo(z) =exp —— d E

7T D Z

so that

1 & 5(E)X(z)=exp —— de
0 Z

(7.19)

(7.20)

(7.21)

This is precisely what we have done in deriving Eqs.
(7.15) and (7.17) from their corresponding expressions in
the discrete scheme. Similar replacement is necessary for
1/(E~ —s, ) in the fourth equation. [By writing e for e„
and c.b for c.~ in the above, we obtain the expression for
1/(E~ —si, ).]

Finally, we note that p(y ) and p(m ), which appeared
in Secs. IV.C and IV.D, take a very simple form,

1 O 5(E)X(z)=exp —— d E
D Z C

(7.22)

p(y)= iX&+ iiU,

p(m)=iX +iw, (7.27)

where we have put the Fermi level at cF=0. Equations
(7.21) and (7.22) are just Eq. (1.5). To prove Eq. (7.20),
we take the logarithm of the right-hand side of Eq. (7.5),
replace the sums by integrals, and note that the change in

if we neglect the k dependence of wk, and put w =wk, .
They are valid both in the discrete and in the continuum
version. Equation (7.27) for p(y) and p(m ) will be as-
sumed throughout the subsequent sections.
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B. Expressions for A (t) and io(t) at T =0
E+ 0

(7.28)

The result derived in Secs. IV and V are quite general
in the sense that they are valid for any type of core-hole
potential. However, we must admit that, in terms of
practicality, it is not easy to calculate A (t) and Io(t).
More particularly, we have to work simultaneously in
frequency and time space to calculate the inverse of the
matrix involving K. Fortunately, in the case of a contact
potential, it is possible to work solely in the time space.

We note that energy denominators appear in the ex-
pression for K(y, y'ft) when Eq. (7.12) is substituted.
Let us replace them by the time integral

and define two functions P( t) and P(t) for XAS at T =0
by

N(0)y(t) = glx, + I'e
y

N(0)y(t)= y fX„,f'e", (7.29)

where N(0) is the density of states at the Fermi level.
Then we can show, after some manipulation, that A (t)
and Io(t) may be put in the following form (Ohtaka and
Tanabe, 1983):

A(t)=[N(0) V]'f dofd~. ct(t+o)F(t+cr, t+r)P(t+r),
I o(t)= N( 0) fw f f do P(t+o )F(t+cr, t+0),

0

I

where F(t +o., t +r) is the solution of the integral equation, C. Expressions for A (t) and io(t) at T &0

(7.30)

(7.31)

F(t+o, t+r) —f dpA(t+o, t+p)F(t+p, t+r)
0

with the kernel A de6ned by

A(t+o, t+p)
=[N(0)V] f dg(t+o+g)P(t+p+g) .

0

(7.32)

(7.33)

It turns out that the functions A (t) and Io(t) for XAS
as well as for XES are also given by Eqs. (7.30)—(7.33) if
we define P(t) and P(t) by

y(t) = y fx, l'e '" + y fx.
(7.36)

y(t)=y fx„ f"'"+y fx, f'. '"'e '" "
P b

In the second argument of F in Eq. (7.31), +0 stands for
a small positive number.

In the case of XES, we define P(t) and P(t) as

N(0)y(t)= y fX f'e '",
N(0)y(t)= g fX„f'e'" .

b

Equations (7.30)—(7.33) are also valid for the emission
spectrum.

When the energy spectrum is regarded as a continuum,
the sums are to be replaced by integrals as in Eq. (3.25),
and

g~ f dEN(E),

g~ f dEN(E) .
D

(7.35)

The expressions to be employed for IX&+ l
etc. are of

course given by Eq. (7.25).

for XAS (Ohtaka and Tanabe, 1984), and

P(t)= g fX +f'e + g fX + f'e 'e
(7.37)

b p

for XES (Ohtake and Tanabe, 1989). These functions of
course reduce to Eqs. (7.29) and (7.34) at T =0. Howev-
er, they are not so convenient to deal with. First of all, it
is not clear at all in this form that the temperature eAect
should show up eventually in the Fermi distribution
functions. Furthermore, it is by no means evident how
we should convert the right-hand sides of Eqs. (7.36) and
(7.37) into expressions to be employed in the continuum
scheme for the energy levels.

If we start from exact expressions for the 6's in the
continuum scheme, as indicated in the paragraph ex-
plaining Eq. (7.26), we can arrive at the correct expres-
sions for A (t) and Io(t) in that scheme, after consider-
able manipulation. The final result reads (Ohtaka and
Tanabe, 1984)

A(t)=iii +[N(0)V] f dcr f dr%(t+cr)F(t+o, t+r)%(t. +r),
Io(t)=N(0) fw f f dcr 'P(t +o')F(t +o, t +0),

0

(7.38)

(7.39)
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where F(t +o, t +r) is the solution of the integral equa-
tion (7.32), with the kernel A defined by

A(t +cr, t +p) = [N(0) V] f dg%'(t +o.+g)'P(t +p+g) .

(7.40)

The time-independent quantity g is given by

small values of Ez and Is I
that we have

Ix„ I'= IE„I Ix(o) I'

approximately, with

a=25(0)/~,

(8.1)

(8.2)

rt =bF. f—dEln[1+f(E)(e ' "—1)],
277 D

(7.41)
where 5(0) is the phase shift at the Fermi level, and

where f (E) is the Fermi distribution function [Eq. (6.4)].
Note that b,E given by Eq. (2.9) may be expressed as
(Fumi, 1955)

Ix(o)I'=D p f—d
0 E,

(8.3)

co,h
=cu,h

—Reg

whereas Imp plays the role of a damping constant.
The functions %(t) and %(t) are defined by

D
N (0)4(t)= d E N(E)f(s)e '"e@',

D
D

N(0)'P(t) = d E N(E)f (E)e'"e "
D

(7.43)

(7.44)

bE = —f dE5(E)/ir, (7.42)
D

according to Eq. (7.14), so that g vanishes at T=0. We
also find that the real part of g makes the threshold ~ h

shift to co,h given by

Ix(0)I =IDI —f d
7T D E

Note that we are working in the continuum
scheme for the band states. These results may be
obtained by rewriting the integrands in the exponent
of Eq. (7.25), for example, as 5( s ) /( E„—E )

=5(0)/(E„—E)+ [5(s)—5(0)]/(E„—s) and putting
E„=O in the second term. The asymptotic forms of P(t)
and P(t) are determined by the two equations (8.1) for
small values of s and IE„I, respectively. Putting D,
ID ~oo in the definitions of P(t) and P(t) [Eq. (7.29)
with Eqs. (7.35)], we obtain

for XAS, where we have put

f(E)=1—f (E)

and

y(t)=(it)-'+ r(1 —a)Ix(o)I',

P(t)=(it) ' I (1+a)IX(0)I
(8.4)

1 D, in[1+f(E')(e ' ' ' —1)]OE = . dE'I'
7Tl D E, E

1 D, in[1+f (E')(e ' ' ' —1)]
7Tl D E, E

(7.46)
A( + + )

tan5(0)
2m

t+p
t +o.

—1 , (8.5)

where I (x) is the gamma function. This then enables us
to write down the asymptotic expression for A:

'a

For XES, we simply replace the second factor f(F.) and

f (c)in the integra. nds of Eq. (7.44) by f (8) and f(E), re-
spectively.

where we have made use of the identity

Ix(o) 'Ix(o) '=Ix, (z=o+)I' (8.6)

VIII. EDGE BEHAVIORS

together with Eq. (7.23).
It is convenient to introduce new variables x and y,

defined as follows, in place of t+o. and t+~ to deter-
mine the asymptotic form of I:

A. Asymptotic solution of the integral equation
x =tl(t+o ), y =tl(t+r) . (8.7)

As will be seen below, with a contact potential, an ex-
act analytic treatment becomes possible near threshold,
that is, in the region co=0. This applies not only to the
exponent of the power law, but also to its amplitude.

Let us begin with the case of XAS at T=0 (Ohtaka
and Tanabe, 1983). To study the behaviors of the spectra
near threshold, we only need to know asymptotic forms
of A (t) and Io(t) From the ex. pressions given in the pre-
vious section, we realize that they can be obtained, once
we know the asymptotic forms for P(t) and P(t) and
succeed in solving the integral equation for
F (t +o, t +r) for large t.

The first problem is not dificult. We first note for

If we put

F(t+a, t+r)=t 'x'+ y' F(x,y), (8.8)

The asymptotic expressions of A (t) and Io(t) may also
be given by

it turns out that F(x,y) is independent of t and satisfies
the integral equation that follows from Eq. (7.32) with
Eq. (8.5):

F( )+ tan5(0) f d
1 —(z/x) F(

27T 0 x z

(8.9)
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3 (t)= — J dx f dy F(x y)/t,5(0) tan5(0)
0 0

(8.10)

Io(t)=Norw~ P(t) f dx F(x, 1 —),
0

(8.11)

in terms of definite integrals involving F(x,y) In. Eq.
(8.11), the first equation of Eq. (8.4) for P(t) is to be em-

ployed. We observe at this stage that a power law should
be valid for both P(co) and Io(co). Our next problem is

thus to solve Eq. (8.9) for F(x,y) to determine the ex-
ponent (critical exponent) of the power law for P(co) and
amplitude (critical amplitude) for Io(co).

It can be shown that the integral equation (8.9) is solv-
able by means of the Wiener-Hopf technique (see, for ex-
ample, Smirnov, 1965). Referring the reader to the origi-
nal paper (Ohtaka and Tanabe, 1983) for the details, we
simply give the final expression for the solution F(x,y).
In terms of the variables x and y, the solution is ex-
pressed in the form of a double Mellin transform,

F(x,y)=
2

f S) s2 —1

dsi U(si )x ds2 V(sp)y (si $2)
I 12

(8.12)

with

U(s) = [I (s —a/2)]'/I (s)1 (s —a),
(8.13)

V(s)=[I (1—s+a/2)] /I (1 —s)l (1—s+a),
where the straight lines I, and l2 in the complex s plane
are drawn parallel to an imaginary axis crossing the real
axis at s, =o

&
and s2 =o.2, respectively, with

I

x-ray photoemission spectra. The well-known power law
is derived in the following way. We assume Eq. (8.15) to
be valid for t greater than a su%ciently large characteris-
tic time t0, and put

P(t)=exp f dr A (r) —f dr
0

Max(a, 0) & cr2 & o. , & Min(1+ a, 1), (8.14) =Cii(iW„t) (8.18)

assuming ~a~ & 1. Note that U(s, ) [ V(s2)] is regular and
free from zeros on the right- (left-)hand side of i, (l2).
Once the solution F(x,y) as given in Eq. (8.12) is ob-
tained, it is not dificult to evaluate the values of' the in-
tegrals appearing on the right-hand sides of Eqs. (8.10)
and (8.11). The resulting asymptotic expressions for
3 (t) and Io(t) are given by

2 (t) = —[5(0)/~]'t (8.15)

Io(t)=N(0)~w~ [I (1—a/2)] ~X(0)~ (it) '+, (8.16)

P(t) =( —it) '+ I (1—a) ~X(0)~',

P(t) =( —it) ' I (1+a)~X(0) ' .
(8.17)

This result implies that A (t) for inverse photoemission is
also given by Eq. (8.15), while Io(t) for XES is given by
the complex conjugate of Eq. (8.16), that is, the expres-
sion obtained by replacing (it) by ( —it) on the right-hand
side of Eq. (8.16).

B. Behaviors at T=O

Having obtained asymptotic expressions for 2 (t) and
Io(t) (for both XAS and XES), we are now able to discuss
the edge behaviors of the spectra. Let us begin with the

where we have taken Eq. (8.4) into account.
In the case of XES, the edge behavior at T =0 can also

be examined by first studying the asymptotic forms of
P(t) and P(t) relevant to the emission problem [Eq.
(7.34)]. They are given by

Here W&=D+~D is the total bandwidth, the critical
exponent o. is given by

o = [5(0)/ir] (8.19)

and C0, which we call the critical amplitude of the pho-
toemission, is defined by

to
lnCO= lim f 2 (r)dr+erin(iWbto)

to - 0
(8.20)

P(co)=2 irC(co/W ) 'l[W I (o. )], (co)0)

because we have

dt(it) e' '=co '1 (1—a)ie~ ~

0

(8.21)

(8.22)

for ~)O.

The x-ray absorption spectrum I(co) near threshold
can be calculated either as the convolution of Io(co) with
P (co) or directly as the Fourier transform of
I(t) =P(t)IO(t) by means of Eq. (4.28):

That we can use the same notation C0 as in the ortho-
gonality theorem (2.13) will be shown in Secs. VIII.E and
IX.D. Practically, the limiting value of the right-hand
side will be attained for a t0 which is a few times as large
as 1/D, as will be seen in Sec. XI.G, where we examine
the validity of the asymptotic form (8.15).

The Fourier transform P(m) of P(t) given by Eq.
(8.18) describes the photoemission spectrum near thresh-
old co )0. In fact, Eq. (4.12) leads to the Nozieres-
DeDominicis power law (Ohtaka and Tanabe, 1983;
Tanabe and Ohtaka, 1985):
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I,(co)=2~N (0)
I w

I':-(co/D) P(co)=2~C Ico/W I '/[W„I (o. )] (co&0) . (8.27)

I(co) =2mN(0) wI Co:-[I (1—a)/I (1—a+o )]

X(co/Wb) (co/D)

where = is a quantity called the critical amplitude of x-
ray absorption by Mahan (1982) and is given by

The expression for Io(co) near threshold for XES is also
obtained by replacing co in Eq. (8.23) by le@I for negative
m, so that the edge spectrum for emission is the mirror
image of that for absorption.

:-=D IX(0)I [I (1—a/2)] /I (1—a) .

For inverse photoemission, we define P (t) as

(8.25)
C. Behaviors at finite T

P(t)=C, ( iW—, t) (8.26)

with the same value of Co as in Eq. (8.20). This, together
with Eq. (8.22), leads to

At finite temperatures, we need asymptotic expressions
for %(t) and +(t) in order to study the absorption spectra
near threshold (Ohtaka and Tanabe, 1984). They are
given by

%(t)=(i sinhnTt/AT) '+ [I (1 —a/2)] F(a/2, a/2, 1Ie ')IX(0)I

'k(t)=(i sinhvrTt/~T) '+ [I"(1+a/2)] F( —a/2, —a/2, 1Ie ')IX(0)I
(8.28)

where F (a, b, cIz) is the hypergeometric function. As we let T +0, 0'(t)—and ql(t) tend correctly to p( t) and p(t), respec-
tively, as given by Eq. (8.4). However, with Eq. (8.28), it is unlikely that we shall be able to evaluate A(t +cr, t +p) in a
closed form as before. It will be even more unlikely with F(t +o, t +7.). At best, we can try a power-series expansion
of F (t +cr, t +r) with respect to exp[ 2' T(t +c—r )] and exp[ 2'

T�(t
+ r—)]. In fact, this primitive method works, and

we eventually obtain the following closed (asymptotic) expressions for 2 (t) and Io(t):

A (t) =i Rerj rcTo2r—rToe. —'/(1 —. e ')

=i Reg —~Tt coth~Tt,

Io(t)=N(O)Iwl'[I (1 —a/2)]'IX(0)I'(i »nhrcTt/~T) '+- (8.29)

(8.30)

Note that —Imp in Eq. (7.38) gives rise to the second
term on the right-hand side of Eq. (8.29), whereas the
double integral thereof leads to the third term.

The response function P(t) for photoemission then
takes the asymptotic form

with Eq. (8.30)].
The Fourier transform P (co) is given by

P(co) = m2Cco' 'p [co'/T, o]/W I (o), . .

with co'=co+Reef, where p [co/T, cr] is defined by

(8.32)

iRe O~P(t)=e' '" 'Co(iWbsinh~Tt/~T)
f dt (isinhnTt /rT) e' '

0

=co 'p [co/T, o ]I (1—cr)i (e ' —e ~
) (8.33)

and given explicitly by
2co/2 T

p [~/T, o]= ' (2~T/~). 'r —+i-
27T 2 27TT

(8.34)

As T tends to zero, p [co/T, o ] approaches Heaviside's
unit function.

Corresponding to Eqs. (8.23) and (8.24), we have

Here the critical amplitude C0 is temperature indepen-
dent with its value given by Eq. (8.20), as shown by
Tanabe (1986). Equations (8.30) and (8.31) correspond to
Eqs. (3.18) obtained by Anderson and Yuval (1967). We
now have their exact forms, including their prefactors.
Naturally, Eq. (8.31) tends to Eq. (8.18) as T +0. Com-—
paring Eq. (8.18) with Eq. (8.31), we find that, apart from
the factor e' '" ', P(t) at a finite temperature T may be
obtained by replacing t in the result obtained at absolute
zero temperature [see Eq. (8.18)] with i hs~nTt/~T, the
result first obtained by Anderson and Yuval (Sec.
III.C.3). This is also true with Io(t) [compare Eq. (8.16)

Io(co) =2~N (0) I wI:-(co/D) p [co/T, 1 —a],
I(co)=2vrN(0)IwI Co=[I (1 —a)/I (1 —a+o. )]p [co'/T, 1 —a+a'](co'/Wb) '(co'/D)

(8.35)

(8.36)
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We note that temperature e6'ects enter only through the
factors p [co/T, 1 —a] and p [co'/T, 1 —a+a ], where the
frequency cu' is the modified photon frequency, as in Eq.
(8.32).

In the case of XES, we have only to replace
i sinh~Tt/AT in Eqs. (8.30) and (8.31) by its complex
conjugate —i sinh~Tt/~T. This means that the emission
edge spectra are the mirror image of the absorption spec-
tra with respect to the line at co =co,h =~th —Reg .

D. Critical amplitude and the orthogonality
theorem

With the discrete scheme for the band energies and a„k
given by Eq. (7.3), it is possible to evaluate the overlap in-
tegral b, [Eq. (4.7)] or its square in the following form
(Tanabe and Ohtaka, 1985):

lsl'= ~x(.„)

= gX(E )

+X(e )

+X(Eb),
b

(8.37)

=gin 1—
b, m

—gin 1—
b, m

&p ~m

&m
(8.38)

In taking the summation over b and I on the right-hand
side, the excited-configuration energies c& and c,„are to
be correlated with the ground-configuration energies cb
and e by means of Eq. (7.14) (put k =b and k =m for
ir=y and a.=p, respectively). Now, if the energy depen-
dence of the phase shift is neglected, so that 5k is put
equal to 5(0), the phase shift at the Fermi level, the sum
on the right-hand side can be evaluated in the limit
Ask —+0, and the result turns out to be

Fo = —ln(1 —o')+o y(o ) —o ln( WI, b, E/DID
I ) (8.39)

with b.c, [= I/X(0)] the level spacing at the Fermi level
and y(o ) given by

g(2k —1)—1y(o)=y+ g 0 (8.40)

where y is the Euler constant 0.5772. . . and g(s) is the
Riemann zeta function. The energy dependence of the
phase shift introduces the correction

1 D 0, 5(s)5(E') —5(0)F —Fo 2
dc. dc'

(s —c, ')'

(8.41)

where X and X are defined by Eqs. (7.8) and (7.9) and Eq.
(7.6) has been used to eliminate the normalization con-
stants. It then follows from Eq. (8.37) that

F= —Inlel'

which reproduces the orthogonality theorem of Ander-
son [Eq. (2.13)]. The result given leads to the following
expression for the proportionality constant C0.

8'
C, =(1—o) '

e &" e
DISCI

(8.43)

Since we have used the same notation C0 for the propor-
tionality constant in Eq. (8.41) and for the critical ampli-
tude in Eq. (8.21), readers may wonder if they are one
and the same quantity. That this is really the case can be
proved rigorously (Tanabe and Ohtaka, 1985; Tanabe,
1986; Sec. IX.D). However, we shall not go into the de-
tails of the general proof here. Instead, we shall see how
they are related to each other through the simple deriva-
tion of the power law by Feldkamp and Davis (1980).

E. Derivation of power law
following Feldkamp and Davis

In Sec. IV.B, we introduced P (co) as the Fourier trans-
form of the response function P(t) for x-ray photoemis-
sion. In the edge region of a conduction band with
discrete energy levels, the intensity of the spectrum for
the excitation energy co„=n b,s (n =0, 1,2, . . . ) mea-
sured from the threshold will be given by P(co„)he,
where b, E [=X(0) '] is the level spacing at the Fermi
level assumed to be constant in this region. Now, from
Eq. (4.14) or Eq. (4.20), we find that P(co„)EE for small n

may be evaluated easily. For example, we have (Tanabe
and Ohtaka, 1985)

P(0)a.=2~IxI' (8.44)

for n =0 and

P(~„)b8=2~ g I ~(P y I
)I' (8.45)

The second summation on the right-hand side of Eq.
(8.46) is to be carried out over p's (p, &p2) and y's
(y, & y2) such that g, E~

—g, s„=nb,e. As n becomes
S S

larger and larger, we have to take more and more multi-
electron-hole pair excitations into account.

If we put

for 1 & n &4. The summation in the latter equation is to
be carried out over pairs of p and y such that
E —s„=nb.c,. For E and E„, we make use of Eq. (7.14),
putting 5k =5(0) and AEk =b.E For 4&n &9. , we have
to include the contribution from the two electron-hole
pair excitations so that

P(~„)&E=2~ & &(pyl ) I'+2~ g g l~(rip2yiy21)l' .
) r I@I IxI

(8.46)

lsl'=c, (sE/w, ), (8.42)

Putting Eqs. (8.38), (8.39), and (8.41) together, we obtain E&=(b+ —,')Ae (b =0, 1,2, . . . ),
= —(m + —,')bs (m =0, 1,2, . . . )

(8.47)
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for the unperturbed energies near the Fermi level E~ =0,
we can derive the expression of A(py I ) from Eqs. (7.12),
(7.13), and (7.23) as follows:

P(t) =D(t)/D(0),
D (t) was given by

(9.1)

&(Pyl )/&= —(~/2) 1 D (t) =detl 1+K(t)e (9.2)

The definition (4.17) of the MXM matrix K=[Kyr (t)]
ic&t

shows that a term with e is included in every matrix
element of K. Since this is not very convenient, we trans-
form D (t) into a determinant of another matrix involving
a new XXX matrix K(t) as follows:

D (t) =detl 1+e'"K(t)I, (9.3)
where the third and fourth factors should be put to unity
for b =0 and m =0, respectively. Equation (8.48) then
enables us to evaluate the right-hand sides of Eqs. (8.45)
and (8.46) [for the second term of Eq. (8.46), use Eq.
(4.11)],and we find

n

P(~„)«=2rrlb I' Q I+
k=1 k

(8.49)

for n (9. Actually, Feldkamp and Davis (1980)
confirmed this equality up to n =15, which corresponds
to the excitation of three pairs. Now, if we assume that
Eq. (8.49) holds up to n = ~, we obtain

P(co„)EE=2vrCO(hs/Wb) n 'I (o. ) (8.50)

for very large n by making use of Eq. (8.42) and the prop-
erty of the gamma function. This equation is nothing but
Eq. (3.32) with JV replaced by A,z as defined by Eq.
(2.15). Dividing both sides by EE and putting
co=co„=nb,E, we arrive at Eq. (8.21) or Eq. (3.34) with
Eq. (3.35).

Note that the procedure employed here is free from
any restriction on the level spacing of the conduction
band (see Sec. III.F.5) and that in this regard the ortho-
gonality theorem is expressed most conveniently in terms
of ( Wb/b, E), not of X as in the original form of An-
derson.

where the new matrix K(t), whose rows and columns are
labeled by p and p', is defined by

I „„(t)=g &(pyl)*e '&(p'yl)/I&l'.
r

(9.4)

iE~tThe right-hand side no longer contains the factor e
In the transformation leading to Eq. (9.3), we have used
the identity

«t
I
1+ AB

I
=«tl 1+BAI, (9.5)

D(t)=D'(t)[1+e 'X(t)], (9.6)

where

D'(t) =detl 1+e'"K '(t)
I

=detl 1+K'(t)e

X(t) =I7~,-(t) —g I7,„(t)[1+ 'eK '(t)]„„,e ~ K„,~(t) .

valid for any two rectangular matrices A and B. En the
ic&t

determinant (9.3), the factor e now appears only in the
row p=k. Thus by expanding it with respect to row k

iE&t
and column A, , we can single out the factor e as re-
quired:

IX. MODIFICATION DUE TO THE
PRESENCE OF A BOUND STATE
IN THE EXCITED CONFIGURATION

A. Separation into main and secondary bands

In order to resolve a spectrum into the main and
secondary bands in the presence of a bound state k with
energy c&, the best strategy is to separate all terms con-

ic+t
taining the factor e from the rest and then regroup
them (Tanabe and Qhtaka, 1984). The factor gives rise to
a secondary band that appears I Ez I

higher than the main
band. We restrict ourselves here to photoemission and
absorption at T =0 (remember that we need never con-
sider the secondary XES band). We may start from Eq.
(4.42) with Eqs. (4.24), (4.25), and (4.43) by regarding one
of the states p to be the bound state A, .

In the expression of P (t) reproduced here as

(9.8)

&~~ (t)= g &(peal)e "&(py'I)*/I&l' .
p (WA)

From Eqs. (9.1) and (9.6), we obtain

P(t)=P „„(t)+P„,(t)e '
with

P „„(t)=D*(t)/D(0),

P„.( t) =D '( t)X( t) /D (0),

(9.9)

(9.10)

(9.1 1)

(9.12)

the first giving rise to the main photoemission band and
the second the secondary band.

Here K '(t) stands for a matrix obtained from K(t) with
its column A, and row A, deleted. D'(t) is thus the A, A.

cofactor of D (t). In the second line of Eq. (9.7), we have
used Eq. (9.5) with the definition
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I,(t) =I,'(t) —e ' Q(t)Q(t)/[1+e ' X(t)] (9.13)

with

Io(t)= g p(y)*{e '"[1+K'(t)e '"] 'I&~p(y'),

Similarly, Io(t) of Eq. (4.43) is decomposed as follows:

5„~.= g g a ( A ') „[a,( A '),„,]*
tt. ( () rn, m'

(9.24)

with the sum over v below the Fermi level (including A, ),
we can make use of the closure relation

the sum over ~ being taken over the states above the Fer-
mi level, i.e., over y. Using the identity

Q(t)= g p*(y)[e '"[1+K'(t)e '"]

(9.14)

b, (xy'l )

a~~ a ~m' 5m~
t~.( all)

in Eq. (9.23). It then follows that

(9.25)

)le

b, (xy l )

(9.15)

Ie '"[1+K'(t)e '"] 'I p(y') .

Combining Eqs. (9.10) and (9.13), we find

[1+K(0)]„„=g ( A ') „(A ')'„.
Then, for p=p'=A, in particular, we obtain

1 —n=[I+K(0)]~~= g la~ l'

(9.26)

(9.27)

with

I(t)=I „,„(t)+I„,(t)e ' (9.16) or again by the closure relation

n= X la.~l' (9.28)
I „„(t)= [D'(t)/D (0)]IO(t),

I„,(t) = [D'(t)/D (0)]&(t)Ii(t),

where I, (t) is given by

(9.17)

(9.18)
The transformation of Io(0) and Ii(0) [or Q(0) and

Q(0)] in Eqs. (9.17) and (9.18) proceeds analogously by
substituting Eq. (4.35) for p(y). It will suffice here to
write down the final results,

I, (t)=I,'(t) —Q(t)Q(t)/&(t) . (9.19)

Here the energy shift of the ground state in co,h is given
by

Io(0)= g w„, l
+(1—il) Q(0)

b

Q(0)=Q(0)*

(9.29)

AF. = g' E„—g' E +(E~ —D) . (9.20) = —g az&w&, /(I —il) .
b

(9.30)

The prime on the second sum indicates that the lowest
E of the band states (equal to D) is to be removed in ac-
cordance with the restriction @WE, in the first sum.

The expressions for I „„(t)and I„,(t) given by Eqs.
(9.17) and (9.18) then lead to

I „.„(0)=(1—il) g lwz, l
+ gaz&w&,

b b

B. Integrated intensities
I„,(0)=il g w&, l

— g azzw&,
b b

(9.31)

The integrated intensities of the main and secondary
photoemission bands are given by 2' times P „„(0)and

P„,(0). From Eq. (9.6), which shows that

Naturally, the sum conforms to the sum rule Eq. (6.2) at
T =0.

D'(0) /D (0)= 1/[1+X(0)]—:71,

we obtain

(9.21)
C. Critical exponents

P „„(0)=1—il,
P„,(0)=il .

(9.22)

The relation between g and the overlap integral a & is
found as follows. Substituting Eq. (4.10) into Eq. (9.4),
we obtain

[1+K(0)]„„=5„„+g g a ( A ')
tt () ) m, m'

X[a (A ') .„]*,
(9.23)

First we note that

P „„(t)=(l il)D'(t)!D(0)—

=(1—rt)exp J dry'(r)
0

(9.32)

where A'(r) is defined by Eq. (4.25) with K(t) replaced
by K'(t) as defined by Eq. (9.9). Procedures to express
A'(r) in terms of lX + l

and lX„+ l may be carried out
in the same way as before, keeping the similarity of K'(t)
to K(t) in mind. We thus obtain Eqs. (7.30) and (7.32)
for 2'(r), in which the asymptotic forms given by Eq.
(8.4) for P(t) and P(t) are still valid:
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P(t)=(it) ' I (1—a)IX(0)I

P(t) =(it) ' I (1+a)IX(0)I' .
(9.33)

Here IX(0)I is defined by Eq. (8.3), but IX(0)I is given
by

[Eq. (8.6) with Eq. (7.23)] is now established for the re-
vised IX(0)I. The conclusion is thus that P „„(t)and
I „„(t)have exactly the same forms as Eqs. (8.18) and
(8.23), respectively:

exp —f «[&«) &—(0)]/E
7T D

(9.34)

P „„(t)=.CO(i8'bt)

Io(t)=N(0) wI I (1 a)D—:-(iDt)

(9.36)

(9.37)

The extra factor ID/Ei„~ appears because of the need to
extract the factor (z —D)/(z —ei) from Eq. (7.9). The
revised expression for IX(0)I does not, however, affect
the remaining calculation, since IX(0) I

is always coupled
with IX(0) I

and the relation

Ix(0) I'Ix(o) I'= Ix,(0) I'

= [sin6(0) /~ VN (0)]

where a is defined by Eq. (8.2) and:- by Eq. (8.25). The
critical exponents thus reproduce the values given in Eqs.
(3.20) and (3.22), obtained by the rule of thumb (Sec.
II.D.2).

For the secondary band, we need to evaluate the
asymptotic form of X(t), Q(t)Q(t) in Eqs. (9.12), (9.18),
and (9.19). In terms of P(t) and F(t+~, t+o. ), we find
that

g(t)=N(0)( i VX—~)2f dp f dp' f dre ' e ' p(t+r+p)F(t+r, t+p ),
0 0 0

Q(t) =Q( —t)*

=N(0)w( iVX—i„)f dpf dre "P(t+&+p)F(t+& t+)
0 0

(9.38)

(9.39)

where tor Xz comes into 2( t) and Q ( t) because of the relation

exp —— d F
D Cg

(9.40) A(pyI)/b, =X~IX + I V/(ei —E ) . (9.42)

with

D —1/2
vz= f dE N(e)/(ei E)—

D
(9.41)

the normalization constant for the state g&. The real fac-

The asymptotic forms of X(t) and Q(t) may be derived
by considering the limit IEiIt~~ in Eqs. (9.38) and
(9.39). Through integration by parts, we obtain them in
the form of a series in powers of the small expansion pa-
rameter ( I 8~I t) '. The leading terms of the series are

~(t) =N(0)D'- ( VX,«, )'IX(0)I'[1(1—a/2)]'(iDt) -',
I, (t)= N( 0)( D/e) iIwI D' IX(0)I [I (2 —a/2)] (iDt)

(9.43)

(9.44)

With these results inserted into Eqs. (9.12) and (9.18), we
see at once that the exponents of the secondary threshold
given by Eqs. (3.21) and (3.23) are correctly reproduced
(Tanabe and Ohtaka, 1984).

Since the process of expanding X(t) and Q(t)Q(t) into
a power series of (Ie&It) ' is obviously well defined, the
present calculation (Tanabe and Ohtaka, 1984) is com-
pletely free from the ambiguity arising from the modulus
m. of the phase shift as encountered in the treatment by
Combescott and Nozieres (1971;see Sec. III.G.1).

D. Critical amplitudes

Now that the exact asymptotic forms for Io(t), X(t),
and I&(t) are available in Eqs. (9.17) and (9.18), the criti-

and

D'(t) =expITr in[1+K'(t)e '"]J (9.45)

=exp[ —lnCO+oln( W'b/AE)], (9.46)

where we have used Eq. (8.42) for IXI. Note that Eq.
(8.42) still holds. However, whether Eq. (8.43) is valid or
not in the presence of a bound state is an open question,

I

cal amplitudes may be obtained from a knowledge only of
P „.„(t) or D'(t)/D(0). We have already given the
correct answer in Eq. (9.36). Our remaining task here is
to show that C0 therein really coincides with the C0 of
the orthogonality theorem (2.13) or (8.42). This was car-
ried out by Tanabe and Ohtaka (1985). We first note that
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D'(t) =exp[ cr —ln(1 —e l™R)].

This, together with Eq. (9.46), leads to

(9.47)

to be answered in Sec. IX.E. Our aim is to relate
D'(t)/D(0) to the factor Co in the continuum limit
b, e~O. The difficulty here is to transform D'(r) into an
expression such that precise cancellation of (b.e) in the
ratio D (t)/D (0) in the limit DE~0 is readily seen. Ac-
cording to the definition of K'(r) [Eq. (9.9)], our first task
is to evaluate b (Py I )/6 in the discrete scheme. Because
of Eq. (9.35), the presence of a bound state does not
modify its form given by Eq. (8.48). The next task, to
calculate the exponent of Eq. (9.45) for D'(r) with the use
of Eq. (8.48), is by no means straightforward. However,
we can take advantage of our experience in the derivation
of Eqs. (8.29) and (8.30), after expanding
in[1+K'(t)e '"] into a power series of e ' ". We refer
the interested reader to the original lengthy proof (Ghta-
ka and Tanabe, 1984) for details and cite here only the
final result, which is quite simple:

P „„(t)=CO(iWbt) (9.48)

I „„(co)=2mN (0)
I wl p

(m)=2'(0)IwI p Q (a/2 —2) —i
(9.50)

where

in the limit Ag —+0.
In summary, the critical amplitude of the main photo-

emission spectrum is given by C0 of the orthogonality
theorem.

We now have analytical expressions for all the critical
amplitudes of photoemission and absorption from Eq.
(9.48) and Eqs. (9.43) and (9.44). From Eqs. (9.11), (9.12),
(9.17), and (9.18), the results of the Fourier transforma-
tion are written down here using the reduced frequency.
defined by co=co/( Wb/2) (Tanabe and Ohtaka, 1985):

P „„(co)=2rrp co

(9.49)
P„,(cu) =2', co '

p =Co/[2 I (cr)(Wb/2)],

p, =Co[D/( Wb/2)] 'N(o)D' IX(0)I'(&Xi./IEil)'[l ll —a/2)]'/[2 I [(1—a/2)']( Wb/2) I,
p =( Wb/2)[D/( Wb/2)] p = B(o, 1 —a),
p, =( Wb/2)[D/(W'b/2)] p, =,B [(a/2 —1),3 —a],

(9.51)

with

=D IX(0)I [I (1 —a/2)] /I (1—a),
(9.52)

X(si) 1 D
=exp f——d.

X(D)

(9.54)

:-,=D IX(0)I (D/Ei) [I (2 —a/2)] I (3 —a)

and with B(x,y) [=I (x)I (y)/I (x +y)] the beta func-
tion. These results are, of course, for T=O. At a finite
T, co on the right-hand side should be replaced by cu'

(=co+Rerj ) and a factor p [co'/T, . . . ] should be in-
cluded in Eqs. (9.49) and (9.50) in accordance with the
change from Eq. (8.24) to Eq. (8.36).

E. Expression for Co

We have seen that the coefBcient C0 plays a key role in
the analytical expressions for the edge spectra. In the ab-
sence of a bound state, it is given its analytical form by
Eq. (8.43). We must confirm whether a modification is
required in the presence of a bound state. The answer is
that there is indeed a correction, and its correct form is
given by (Tanabe and Ohtaka, 1985)

where X(z) is defined by Eq. (7.21). To see this, we
have to return to the first equality of Eqs. (8.37), in which
one of p corresponds to A. in the present case, and the
factor X(Ei) and its counterpart X(D) must be treated
separately. The remaining factors, involving solely the
band states, may be transformed just as in Sec. VI.D.
The extracted factor X(Ei)/X(D) can be reduced to the
dispersion integral equation (9.54) because of Eqs. (7.21)
and (7.22).

Although the critical amplitudes of the main bands are
formally identical with Eqs. (8.21) and (8.24), given for
the case without a bound state, there are modifications in
the expression for Co and in the value of 60(E) when a
bound state is present. For a quantitative estimate of C0,
therefore, it is important to check beforehand whether or
not a bound state exists in the excited configuration.

X. OTHER TOPICS

Wb, X(Ei )
Co=(l —o) e r' ' e

X(D) * (9.53)
A. Pairwise expansion of the response
functions

where y(o ) and g are defined by Eqs. (8.40) and (8.41),
respectively, and

In obtaining the spectra at T=0 through Eqs. (7.30)
and (7.31), a major task is to find a solution for the in-
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tegral equation (7.32). One simple way is to carry out an
iteration, which gives I'" in the form of a series in powers
of A. This procedure is simply the reverse of the process
carried out in Sec. IV for a series expansion with respect
to the number of excited electron-hole pairs. Since evalu-
ations of lower-order terms of the pairwise series have
very often been performed to simulate an exact spectrum,
it will be of practical interest to see the validity of the
iterative procedure.

%'e restrict ourselves to the asymptotic region and ex-
amine Eq. (8.9), with g supplemented as an expansion pa-

rameter:

—
( ) ( tan5(0) I d

1 (z/x)
( ) 5( )

277 0 x z

(10.1)

Later we shall take the limit /=1. Due to the presence
of g, the solution of Eq. (10.1) will be slightly modified
from that derived previously. We find (Tanabe and Ohta-
ka, 1986)

I'(x,y)=(1/2~i)' I dsi Ug(si)x ' I ds2Vg(sz)y /(si s2)
I) 12

(10.2)

with

U&(s) =1 (s —p')I (s —p)/[I (s —a)1 (s)],
(10.3)

tA (t)= —[(a/2) —(q/vr) ]t (10.6)

Io(t) =X(0)
l
wl'P(t)[I (1—p')I (1—p)/I (1—a)]&

(10.7)

P
P

=o./2+q /2 (10.4)

V&(s) =I (1—s +p')1 (1—s +p)/[1 (1—s +a)1 (1 —s)],
where p and p' are defined by

These results are still valid for A'(t) and Io(t) of the
main band in the presence of a bound state.

Equations (10.6) and (10.7) provide us with a pairwise
series, if we expand q, p, and p' as a power series of g by
using Eqs. (10.4) and (10.5). After a bit of calculation, we
find that at g= 1 (Ohtaka and Tanabe, 1986)

tanq =&1—
g tan5(0) /[1+ g tan 5(0)]' ~ . (10.5)

When g=1, the angle q vanishes, and hence U&(s) and

V&(s) reduce to U(s) and V(s) respectively, given by Eq.
(8.13), as they should.

The functions A (t) and Io(t) are obtained by inserting
Eq. (10.2) into Eqs. (8.10) and (8.11):

Io(t)=X(0)lwl p(t) g b'"',
k=0

where

(10.8)

(10.9)

a ' ' = —5(0) tan5(0) /vr

a'"=
—,'[tan5(0)/vr] I 1 —25(0) cot[25(0)]I,

a' '= ——'[5(0) tan5(0)/~ ] [ir /25(0)] —— +2cot [25(0)]z 2 cot 25(0)
4 3 5(0)

(10.10)

[q(1—a)+) ],2'

b' '= [1—tan 5(0)][/(1—a)+y]+ — [g'(1 —a)+g(1 —a) +2/(1 a)y+m—/6+@ ], .
8~ 2 2w

(10.11)
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and where g is the digamma function, g its derivative,
and y the Euler constant.

It is rather hard to obtain the correct value for
t A (t) = —[5(0)/vr] deductively from the series Eq.
(10.9). This is one of the features characterizing the

difhculty of the MND problem. However, when all the
trigonometric functions are expanded into Taylor series,
we find that =2~ wl'+5(eb —co) .

b

(10.15)

As candidates for the single-particle absorption formu-
las, let us examine the following three rules (at T =0, and
for co) 0):

(a) Initial-state rule,

I;(co)=2m g ~wb, ~ 5(Eb —co)
b

n

g a'"'= —[5(0)/rr] [I+O(5(0) "+ )],
k=1

(10.12) (b) Final-state rule,

as verified directly for small values of n.
Now let us examine the radius of convergence of the

series (10.3) with respect to the phase shift. The form Eq.
(10.5) for tanq as a function of g suggests that for the
pairwise series for A (t) and Io(t) to converge at g= 1, it
will be necessary that tan5(0) & 1, i.e.,

It(co ) =2' g ~ w, ~
5( e —co )

r
=2m ~w~ g g ark 5(Er —co) .

r k

(c) Orthogonalized final-state rule,

I„(co)=2' w~ g pa b 25(e —co) .

(10.16)

(10.17)
5(0) &m/4 . (10.13)

This criterion is indeed confirmed by examining the in-
tegral representation (not shown here) of the quantities
U&(s) and V~(s), which leads to Eq. (10.3). Since we are
already too deep in mathematics, however, we stop here
without reproducing further analysis. The series given
by Eqs. (10.8) and (10.9) will be examined in Sec. XI.E,
and the correctness of Eq. (10.13) will be demonstrated
there.

B. Approximate formulas based
on the single-particle picture

We are interested here in the frequency region away
from the edge, say, the region co) 0.2D, in which the
effects of the edge singularities are no longer appreciable.
Generally speaking, inAuences of shakeup pairs can be
neglected in a region far away from the edge. This may
be seen if we recall Eq. (4.17) for K (y, y'~t) together with
Eq. (5.10), which indicates that K(y, y'~t)~0 as sr. ,
c,r —+ oo. However, a quantitative estimate of the shake-
up effects is dificult because it depends on the potential
strength. Here we make use of the numerical studies of
Kotani and Toyozawa (1973b; see Sec. III.F.1) and von
Barth and Grossmann (1979, 1982; see Sec. III.F.6), in
which neglect of multipair excitations has been shown to
be generally good away from the edge, and we set
(1+Ke'") '=1 in Io(t) and A (r)=0 in P(t). The
latter will be confirmed to be good in Sec. XI.G for the
short-time region of t satisfying t & 10/D, which just cor-
responds to the frequency range of interest.

Suppose we are thus in the frequency range where

Here we have set mk, =m for simplicity. We see that
I;(co) is just proportional to the density of states of the
conduction band. In the second line of It(co), gr is ex-
panded in terms of q&k [Eq. (4.1)]. The orthogonalized
final-state rule was introduced first by Davis and Feld-
kamp (1981); in it g is approximated so as to be orthog-
onal to the unperturbed states y below the Fermi level.
Since the index b labels the states above the Fermi level,
I,t(co) shows a logarithmic divergence when we let co

(=E )~0.r
Using Eq. (7.17) for a contact-type core-hole potential,

we obtain

I;(co)=2vr~w~ N~,

It(co)=2vr~w N (sin5 /~VN~)

sin5 pI,t(co) =2m. iwi N cos5r ~N c —cr b r b

(10.18)

(10.19)

p (y ) =w~, —g w„,&(Py ~
)/& . (10.21)

The second is given by substituting Eq. (4.1) into w, and

w„, of Eq. (10.21). It then follows that

p(y)=wy 'a,
b
—ya„ba(Py~)/a' .

b p
(10.22)

(10.20)

with N =N(E ) 5r=5(E ) and Er=co.
Now let us express p (y) in several apparently different

forms, though all are equivalent (Ohtaka and Tanabe,
1986). The first is its definition, Eq. (4.30):

I(co)=2rrg ip(y)i 5(E —co)
r

=I(0)(~) (10.14)

The third is Eq. (7.27), expressed in terms of the disper-
sion integrals (7.21) and (7.22):

p(y)=wiX&+ i

Note that the formula still incorporates an important
many-body effect through the replacement process (Sec.
III.D. 1).

P D
=wexp —— de5(E)/(c, —E)

0 r (10.23)
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I'"(co)=2~r y ~p (m ) ~'5(E —co), (10.24)

The form Eq. (10.21) shows that, provided we can
neglect its second term, I(co) reduces to It(co). This will
actually be the case if the band filling is small (D =0),
since the index p is used for states with D & E„&0. The
form Eq. (10.22) reveals the general usefulness of the for-
mula I„(co),because away from the edge with Er, Eb +D—,
the second term becomes small. Equation (10.23), on the
other hand, shows that I;(co) becomes good in the case of
large band filling (D =0) where, because of 5r —+0 for
c.&-—D, the dispersion integral becomes practically y in-
dependent and X~ determines the line shape.

To sum up, we may say that preference for the initial-
state or final-state rule in x-ray absorption is to be decid-
ed by the position of the Fermi level. This was demon-
strated in the numerical studies of Grebennikov et al.
(1977a, 1977b; see Sec. III.F.2) and pointed out first by
Wilkins (1982). This feature will be shown also in our
numerical study in Sec. XI.F (Ohtaka and Tanabe, 1986).

The case of emission is a little difFerent. Here we have
in place of Eq. (10.14)

= 2vrp exp[a, (co)in
~
co

~
+o ~(co)], (10.27)

I(co)=2~%(0)~w~ p co~I1+co[ilo+il, ( —2»~co~+B~ )]I

=2irX(0)~w('p [P,(co)»~col+P, (co)] . (10.28)

Here the second lines are obtained from the first in the
form of a generalized power law, with

In our derivation of Eqs. (9.49)—(9.52), the. key relation
was Eq. (8.48). We noted there that only the phase shift
at the Fermi level comes into play [et=25(0)/ir]. By
making use of Eq. (10.26), we can improve Eq. (8.48) so
that it may contain 5{v, ) and 5{E&) instead of 5(0) and
so that it has wider applicability with respect to the
states p and y. The intensities of the spectra may then be
obtained by following the approach of Feldkamp and
Davis (1980). Higher-order terms in the co dependence of
the critical exponent may be examined in this way. The
result turns out to be given by [co=co/8'&, Kita et al. ,
1987a]

P „„(co)=2vrp co 'I I+co[rto+rti( —21nlcol+Bp)]j

with [see Eqs. (7.25) and (7.27)j

p(m )=wiX

o. , (co) = —1+cr —2', co,

o'~(co ) = ('go + 'g iBp )co (10.29)

=w exp ——f d E5(E)/(E —co) . (10.25)
D

7T 0

C. Generalized power law

The results summarized in Eqs. (9.49)—(9.52) are the
leading terms of the singular edge behavior. The applica-
bility of these formulas is gradually lost as we move far-
ther and farther from the edge region.

One way we can attempt to obtain a formula having a
wider range of validity is to assume the following form
for the energy dependence of the phase shift:

5(e)=5(0)+5'(0)E . (10.26)

Whether the approximation is good or not, of course, de-
pends on the profile of the density of states. We shall see
in Sec. XI.H that for a semielliptic density of states Eq.
(10.26) holds over a wide frequency range.

When D —+0 (large band filling), ~X + is practically m

independent, since 5(E)=0 for 0 & E & D, making Eq.
(10.36) tend to the final-state rule (corresponding to the
band states in the ground configuration). For a smaller
band filling, on the other hand, ~X + ~

is m dependent in
general. One is tempted by this to conclude in favor of
the initial-state rule. But in the case of emission we have
no counterpart for Eqs. (10.21) and (10.22), and we must
calculate the co dependence of Eq. (10.25) actually. This
was indeed what Mahan (1980) and von Barth and
Cxrossman (1979, 1982) did to conclude that the final-
state rule describes XES much better than the initial-
state rule (Sec. III.F.6).

P, (co) =P—2il, co,
P~(co) =(r!0+rl,B„)co .

(10.30)

In Eqs. (10.27)—(10.30), halo and il, are constants related
linearly to 5'(0), and Bp and Bz are written solely in
terms of 5(0) (their expressions are, unfortunately, too
lengthy to be given here). It is also shown that Eq.
(10.28) may be used in the case of XES without any
modification, if we use it only in the range cu &0, in ac-
cordance with the remark made in Sec. III.B.2 on the
analyticity of the co-dependent exponent (Ohmura et al. ,
1974).

The validity of expressing the cu series by an exponen-
tial function that simply puts it on the shoulders of the
exponential was examined by Kata (1987), who derived
the next terms of the order of ~ . His con-
clusion is that the new terms to be included in the first
line of P (co) in Eq. (10.27) contain the term
co [rlo+ili( —in~co +Bp)] /2!. The same thing holds for
I(co). This feature of the co series strongly suggests the
validity of the exponential form. Kita also demonstrated
that the relation between photoemission and absorption
expressed by the rule of thumb (Sec. III.D.2) hold pre-
cisely for the expression of the co-dependent exponents
used in the generalized power law.

The results Eqs. (10.27) and (10.28) may be regarded as
an extension, applicable for a wide class of V, of the
treatments of Ohmura et al. (1974; see Sec. III.B.2),
which were based on perturbation theory with respect to
V. In Sec. XI.H, we shall compare Eqs. (10.27) and
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(10.28) with the exact numerical results and see that they
reproduce the true spectra surprisingly well.

XI. NUMERICAL RESULTS

Some numerical results obtained by means of the
theoretical formulas presented in Secs. IV—X will be
given in this section. First, however, we have one remark
to make in relation to the existing numerical results in
the literature.

For most of the topics listed in our table of contents,
that is, for topics other than those covered in Sec. III.B,
D, F, and H, there have been no attempts comparable to
ours in the literature, and our results are thus the first
ones. On the other hand, for the topics covered in Secs.
III.B, D, and F, all related to the exact intensity curves
of the MND model, there are a number of references in
which the curves presented are claimed to be exact. For
example, some of the XAS and XES spectra given by
Grebennikov et al. (1977a, 1977b) and von Barth and
Grossmann (1979, 1982), as well as the photoemission
curve obtained by Feldkamp and Davis (1980), all quoted
in Sec. III.F, would seem comparable with our results.
We are not claiming in Sec. XI.B or D that our approach
is the only one capable of yielding an exact spectrum for
the MND model. Those spectra cited above are
sui5ciently correct that a detailed comparison would
yield information on the quality of the numerical
methods those authors adopted. However, in the in-
teresting near-edge range of co &0.05, best suited for this
purpose simply because it is the most diScult frequency
range, we need numerical values with a precision of, say,
two or three decimal places to test them against our
analytical intensity formula. [See Table I of Ohtaka and
Tanabe (1986) in which our data in the range
0.01 &co &0.1 were tested along these lines. See also the
discussion in Sec. XII of Figs. 31 and 32, which shows
the need for a very careful treatment of divergent spectra
in extracting a reliable critical exponent. ] Unfortunately,
the divergent curves in that frequency range have very
often been given in arbitrary units, with figures too small
for a close scrutiny; there have been none, indeed, except
those using the renormalization-group formalism, in
which the numerical values are available. This is one of
the reasons for not trying to make a comparison. Anoth-
er reason is that the existing data are obtained for a mod-
el often more realistic than the original MND model,
whereas all our numerical results are based on the latter.
For example, the calculation of von Barth and
Grossmann (1982) used the conduction band of Na and
made use of a realistic core-hole potential. If we
remember that the critical amplitude is determined by in-
formation concerning the band as a whole, not solely by
the phase shift at the Fermi level, a direct comparison be-
tween their figures and ours looks rather meaningless.
The same comment applies to the curves of the general-
ized power law discussed in Sec. XI.H, for which the

(11.2)

Here we take the center of the conduction band as the
origin c.=0 of energy and assume the band to spread in
the energy range —1 + c ~ 1. We thus take 8'& =2,
choosing half the bandwidth 8'b/2 as a unit of energy.
The position of the Fermi energy is varied in the range—1 ~ sF ~ 1. The profiles Eqs. (11.1) and (11.2) are nor-
malized by A; the total number of states of the conduc-
tion band, so that

J N(e)dE=1 . (1 1.3)

The phase shift 6(c, ) is then obtained from Eq. (7.15)
with the prescription for the continuum version as in
Eqs. (3.26) and (7.35):

Band A: tan5(e) =(m V/2) 1+ Vl +1
2 E 1

Band B: tan5(e)=2V(l —s )'~ /(1+2Vc, ) .

(1 1.4)

(1 1.5)

In the following, a dimensionless quantity, VIV/( Wb/2)
in actual units, will be denoted simply as V.

The position of the bound state is obtained from the
continuum version of the eigenvalue equation (7.2):

Band A: ei = —coth( 1/V),

Band B: ei = —1/2V .

(11.6)

(11.7)

For Band B, the bound state is present only when V & V„
while it is always present for any value of V in Band A.
The critical value of the potential strength is calculated
tobe V, =0.5.

curves given by the perturbative treatment of Ohmura
and Ishikawa (1980b) will be sufficiently correct.

The only exception is the numerical data obtained by
means of the renormalization-group formalism by
Oliveira and Wilkins (1981, 1985) and Cox et al. (1985).
We shall carry out a detailed comparison with their re-
sults for the critical amplitude and try to evaluate the
e6'ectiveness of the renormalization-group formalism.

Now let us begin by specifying the model for numerical
analysis. Our formulation presented so far shows that
once the profile N(E), the parameter V, i0, and the posi-
tion c.F of the Fermi level are specified, we may obtain
everything else we need for the soft-x-ray problem. Since
the XAS and XES intensities are simply proportional to

~
w ~, we put ~

w
l

= 1 hereafter.
For N(E), we consider the following two conduction

bands: Band A with a constant density of states

Band A: N(E)=0. 5 (
—1~E 1),

and Band B with a semielliptical density of states

Band B: N(e)= —(1—s )' ( —l~e~l) .=2
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Pm

ps
0.15—

Cp

'1.5

0.10

0.05 0.5

0.2
0

0.4 ~(0)]~

Pm-
ps

from Eq. (8.37) and finally A~ JP&. Figure 14 shows
the value of lb, ~

JV,s calculated in this way. Comparing
it with the theoretical values shown in the ordinate, we
see that the extrapolation from the data obtained with
A'(1000 yields a good value of Cp with an accuracy of
three decimal places. Note that once the phase shift is
known as a function of energy, [E I may be related to
[ El, I through Eq. (7.14). Equation (8.37), which
expresses ~b,

~
solely in terms of the energy eigenvalues

I E~ J and I E I, is thus useful in obtaining an approximate
value for Cp, even, perhaps, in the case of a non-contact-
type core-hole potential.

B. Critical amplitudes for x-ray photoemission
and absorption [Eqs. (9.49)—(9.52)]

The critical amplitudes for photoemission, p and p„
are given in Fig. 13 as a function of c.F, the position of
the Fermi level, and in Fig. 15 as a function of the phase
shift with the Fermi level kept fixed just at the band
center, EF =0 (in Fig. 15, Co is also given for compar-
ison). From the figures, we conclude that the amplitudes
p and p, have comparable magnitudes. This will be one
of the reasons for the secondary photoemission bands
having a strength comparable to that of the main band,
as will be shown in Sec. IX.C, in marked contrast to the
XAS case summarized below. It is also shown that the
6(0) and Ez dependences of the amplitudes p and p,
have not much to do with those of Cp. We have given
several values for p and p, in Table I.

The critical XAS amplitudes p and p, are plotted in
Fig. 16 for Band A. We see at once that p, is negligibly
small. The secondary XAS band is hardly observable. It
is interesting to note that p reAects the 5(0) dependence
of Cp more closely than p and p, .

Numerical values for p and p, to be compared with
ours have been given by Oliveira (1981), Oliveira and
Wilkins (1981), and Cox et al. (1985) through the
renormalization-group (RG) formalism. The values for
p are plotted in Fig. 15 by dots (Cox et al. , 1985).
There are several points corresponding to the choices of
parame'ter A and l, explained in Sec. III.F.7. We see that
for small 5(0) the RG formalism yields very good values
for the critical amplitude of the main photoemission
band. For 5(0)-~/2, the agreement becomes worse be-
cause the correct expression of p involves integrals over
a wide energy range through the dispersion integrals in
Eq. (9.52) with Eq. (9.54) for X(E&)/X(D): Information
from throughout the whole band is required to determine
p . In view of the coarse graining employed in the RG
formalism away from the Fermi level, the disagreement is
understandable. One should rather say that the disagree-

0.10— 1.0
&m

Ps
1.0

Band A
~F=O

0.05— 0.5

0.6-

0.2
0

04 a(0)i~
0.2—

FIR. 15. The photoemission amplitudes p, p, and the
coe%cient Co of the orthogonality theorem as functions of the
phase shift at the Fermi level: (a) Band A; (b) Band B. The dots
in (a) are the values obtained numerically for p by Cox et ah.
(1985). The Fermi level is at the band center. In Band A, a
bound state exists irrespective of the value of V, while a bound
state appears in Band B when V exceeds 0.5, which corresponds
to 6(0)/m =0.25.

0.4

FIG. 16. The amplitudes of XAS, p for the main band and p,
for the secondary, as functions of the phase shift at the Fermi
level chosen at the band center. The point OW shows the value
obtained by Oliveira and Wilkins (1981).
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0)—. 0.5
03
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(t3) V=I.Q ~g =—1.25

ment in Fig. 15 is unexpectedly small. Use of a smooth
density of states will obviously be one of the reasons for
such a small discrepancy.

The RG result for p is given in Fig. 16. There is only
one set of data in the literature provided by Oliveira and
Wilkins (1981). The agreement is again satisfactory. We
may thus conclude that the RG formalism is powerful
with respect to determining the photoemission and ab-
sorption critical amplitudes, as in the case of critical ex-
ponents demonstrated in Fig. 12.

Mahan (1982) calculated:- numerically. His value is
0.910D ~X(0)~, while the analytical expression (9.52)
yields 0.9102D ~X(0)~ for his parameter [Band A with
5(0)=sr/5], indicating the high precision of Mahan s
calculation.

C. Integrated intensities [Eq. (9.22) for x-ray
photoemission and Eq. (9.31)
for x-ray absorption spectra]

Figure 17 shows the integrated XAS intensities, with
I „„and I„,given by Eq. (9.31), for Band A with several
values of V. It is found that I„, is always small except
when the band filling is very small (EF—-—1.0). The
quantity g defined by Eq. (9.28) is also shown by a dotted
line. When rI=0. 5, Eq. (9.22) shows that the main and
secondary photoemission bands are comparable in mag-
nitude. Thus it is found that a strong secondary band,
comparable with the main one, will be observable more
often in photoemission than in XAS.

As V increases, the wave function for the bound state
shrinks, yielding a smaller b dependence of the overlap
a&I, . Since the positiveness of I„, is guaranteed by the
Schwarz inequality in Eq. (9.31), we conclude that a
larger V leads to a smaller I„,. Conversely, in the case
V=0. 5 ( = V, ) for Band B, a shallow bound state exists
(Ei ———1.0), leading to a strongly b-dependent aib, espe-
cially for the states b near the band bottom. Therefore,
in the case of cF ———1.0, the probability g for the bound
state to be empty is expected to depend strongly on the
position of the Fermi level. The rapid change of I„,with

EF ( = —1.0) in Fig. 17 corresponds to this situation.
The comment made concerning Fig. 13 for the case of

a small band filling with c.F ———1.0 will be equally applic-
able here, and the result shown in Fig. 13 for the extreme
case of cF = —1.0 should be modified in an actual case.
Indeed, we shall encounter a situation in Sec. XI.I in
which the secondary XAS band is negligible in spite of
very small band filling.

(c) V=1 4 &p =—1.5

D. Exact line shape at T =0 [Eqs. (4.12), (4.24), (4.25),
and (7.30) for photoemission and Eqs. (4.28), (4.42),
and (7.31) for XAS]

0—1.0
I

1.0

1.0 =.

0.5

0—1.0
l

1.0

FIG. 17. Integrated intensities I „„and I„,of optical absorp-
tion l ~w~ is put to unity) and the probability r) for the bound
state to be empty, as functions of the position of the Fermi ener-
gy. The results are given for Band B for V=0.6—2.0 in the
presence of a bound state at energy cz.

We restrict ourselves to the case in which the Fermi
level is positioned just at the band center (E~=O). The
procedure for obtaining spectra for all ranges of frequen-
cy is as follows: We first calculate the phase shift by way
of Eqs. (11.4) and (11.5), put it into the dispersion in-
tegral Eq. (7.25), substitute the resulting ~Xr+ ~, ~X&+ ~

into Eq. (7.29) to obtain P(t) and P(t), and then obtain
A(t +o, t +p) through Eq. (7.33). Each step so far may
be carried out in a straightforward manner. To check
the accuracy of P(t) and P(t), we examine their values for
t = co and compare them with the analytical asymptotes
given by Eq. (8.4). We actually calculated P(t) and P(t)
in the range 0(t (200 and checked their values for
t =200.

In obtaining A(t +cr, t +p) from Eq. (7.33), we use the
asymptotic-in-time form of Eq. (8.4) for the large-g re-
gion. After constructing it, we must solve the integral
equation (7.32). If we could truncate the integral at a
finite time region, the solution would be obtained by in-
verting the finite-dimensional matrix (1—A). However,
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we find that the numerical data obtained in this way con-
tain rather a large error. For an accurate numerical pro-
cedure, the p integration in Eq. (7.32) must be carried out
systematically to p = ~. To put it another way, we must
treat F(t +cr, t +w) as an infinite-dimensional matrix.
We refer the reader to the original paper for the pro-
cedure necessary to take account of this feature.

The result for photoemission is given in Fig. 18(a) and
that for absorption is shown in Fig. 18(b). For compar-
ison, the asymptotic spectra P»»„(co) and I»»„(co) given
by Eqs. (9.49) and (9.50), respectively, are superimposed
with the label ND (Nozieres and DeDominicis). Also
shown is I' '(co), the spectrum due to the first term of the
pairwise series for Io(t) given by Eq. (10.9), which, when
Fourier transformed, is given by Eq. (10.14).

Our numerical treatment reproduces both the critical
exponent and the amplitudes quite accurately with an er-
ror less than 1%. For P „„(co),Fig. 18(a) shows that the
asymptotic formula Eq. (9.49) is fairly good over a wide
range of co, not restricted to the edge region. The situa-
tion is worse in the case of XAS: only in the range
co &0.05 does the asymptotic curve agree with the exact
one to within an error of 10%. Except in this near-edge
region, the ND formula grossly overestimates the actual
x-ray absorption spectrum.

We see that I' '(co) agrees fairly well with the true
spectrum. We note that the case with V=1.0 corre-
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sponds to et=0. 70(m. /2) and that the pairwise iteration
series diverges, according to the criterion of Eq, .0..13 .
Fi ure 18(b) thus implies that, in spite of the divergence,igure
the term I' '(co) of the series has a practical meaning as a
erst approximation to the absorption spectra.

In Figs. 19(a) and 19(b), the case with a smaller V is

FIG. 19. Photoemission and absorption intensities for the case
of V=0.2. For the symbols, see Fig. 18.

3

3
L:
CU

E

0,50-

, l (~)

~main(~)

-1,0

I

0.2 0.4 0.6 0.8 1 .0 1 .2
0,25 0.5

FICx. 18. Photoemission and absorption intensities for the case
V=1.0 as a function of the frequency co measured from the
threshold: (a) for Pmajn(67) of photoemissionj (b) for I~»„(co) of
absorption. The dashed curve marked ND (Nozieres and
DeDominicis) shows the asymptotic formulas (9.49) and (9.50)
for photoemission and absorption, respectively. The thin solid
curves in (b) represent approximate absorption intensities ob-
tained by various formulas defined by Eqs. (10.18)—(10.20).

0—
0.95

1 i i 0
1.0 'j.05

FIG. 20. Intensities of photoemission and absorption near the
band edge co=1.0 of Band B for the two cases of V=0.2 and
V=1.0. I;(m)shows 2~ times the semielliptic density of states
[Eq. (10.15) with Eq. 111.2)].
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shown. We observe that for co) 0. 1, I' '(co) practically
coincides with I( co ).

Figure 20 shows the spectra near the upper band edge
~=1.0. If we include the excitation of many shakeup
pairs, the excitation energy of the conduction band in-
creases indefinitely. Since any single-particle excitation
from a core level terminates at ~=a =1.0, the nonzero
value of I(co) at co=1.0 is a measure of the contribution
from shakeup excitations. It is remarkable that the
square-root behavior of X(E) is rather hard to recognize
in the true spectrum for a large V.

E. Pairwise series expansion [Eqs. (10.8) and (10.9)]

Figure 21 shows

(k) (k)

k=0
(11.8)

b(k) b(k)
k=0

(11.9)

of Eqs. (10.8) and (10.9), which take account of asymptot-
ic photoemission and absorption up to the nth term of
the pairwise series. We have plotted two curves for the
values of a [=25(0)/vr], a=0.49 and a=0.51, because
the radius of convergence of the series is a, =0.5, as
shown by Eq. (10.13). Unfortunately, it is hard to see a
meaningful difference between these two cases. However,

for a=0.40 the series converges very quickly at n =2,
while in the case of o.=0.6 it oscillates badly with n.
This feature convinces us of the correctness of the
present value for a, .

F. Single-particle formulas for XAS
[Eqs. (10.14)—(10.20) and Eq. (10.23)]

In Figs. 18 and 19, we have plotted I;(co), Ir(ro), and

I,r(co), the initial-state rule, final-state rule, and orthogo-
nalized final-state rule formulas. We see that I r(co) coin-
cides with the true spectrum very well. Its agreement for
a smaller value of Vis especially impressive. In contrast,
it is hard to determine whether I;(co) or Ir(r/i) provides a
better approximation to the true spectrum. This is be-
cause the Fermi level lies at the center of the band. For a
larger or smaller band filling, the difference between
I;(co) and Ir(a/) shows up clearly, as the analysis of Sec.
X.B shows. Figure 22 shows the situation for Ave posi-
tions of the Fermi level. In considering the case of
V =0.3, we have plotted I' '(co) as given by Eq. (10.14) in
place of the exact I(ro), for simplicity. We see that Ir(ro)
works at a small band filling, while I;(co) is good at a
large band filling, as discussed in Sec. X.B.

G. Temporal development of A(t) and Io(t)
[Eqs. (7.30) and (7.31)]

Figures 23(a) and 23(b) show the function A(t) defined

by

A(t)= I A (r)dr,
0

(11.10)
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with A (r) given by Eq. (7.30) and Io(t) defined by Eq.
(7.31). Results are shown for the case of EF=0 for Band

l &n the case of V = 1.0, a bound state exists in the ex-
cited configuration, and A'(r) [Eq. (9.32)] and Io(t) [Eq.
(9.14)] are used. J The asymptotic r dependences are

FIG. 21. Convergence of the pairwise series. In (a) the sum of
a'"' [Eq. (10.8)] and in (b) that of b'"' [Eq. (10.9)] are plotted as
functions of n. The parameter a is defined by ca=25(0)/m, and
the critical value of convergence is u=0. 5. As a guide to the
eyes, the values for a=0.55 are shown by large solid circles.

FIG. 22. Change of XAS intensities with band filling for the
case of V=0.3. The absorption intensities are plotted for five
positions of the Fermi level. The spectra Iq(co), I;(co), and
I,&(co} are defined by Eqs. (10.18)—(10.20). The phase shift is
also plotted as a function of energy E.
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H. Generalized power-law formula [Eq. (10.27}for
photoemission and Eq. (10.28) for XAS and XES

The a r
la with co-de enden

pp oximate spectra given by th e intensity formu-
wi co- ependent exponents are given in Fig. 24 for

FIG. 24. Generalized ower-p wer-law formulas compared with th

y p ot i io : ( ) f
an for V=1.0. The curves labeled ND

and DeDominicis) show the as m
Nozieres

s ow t e asymptotic formula given by E .
e curves labeled GPL are the se

E . (10.27)
are the second expressions of

ex ression
q, and the curves labeled LIN (liinearized) are the first
pressions. The curves marked NUM she s ow the exact numeri-

photoemission and Fig. 25 fo b
wit E =0. T

or a sorption, for Band B
The curves are drawn with th -d p

exponent calculated to 0
e co- ependent

are for the first of th
o O(co). The curves marked LIN

(10.28). In Fi . 26 w
st of the two expressions E s (10 2 )s. . 7 and

XAS and XES. Th
n ig. 26, we show the result of Kita (1987) fia or

. The label GPL-n indicates that the c
was obtained with the

a e curve
wi the generalized power law (GPL) cal-

culated to O(co") (n =0 1 2). Th e GPL-0 is thus the
~»„co) given by Eq. (9.50). Theasymptotic expression I (co

PL-1 is given by Eq. (10.28), and the GPL-2 is the re-
sult of generalization to higher order (although its ex li-
cit form is not shown here).

er a t oug its expli-

the exact s ectra
From the figures we see that GPL formulas reproduce
e exact spectra quite well except near the band ed e

a ers t e ine shape strongly.
t is natural that a Taylor expansion at the Fermi level

Rev. Mod. Ph. Phys. , Vol. 62, No. 4, October 1990



S80 K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem

2.0-
01—1.0 1.0

i

0.8 't. 0
10

main XAS

7.0

5.0—

0—1.0
-GPL-Z

1.0

2.0— FIG. 26. Generalized power-law formulas compared with the
exact XAS and XES intensities: (a) V=0.2; (b) V=4.0 (Kita,
1987). For the curve labeled GPL-n, see the text.
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FIG. 25. Generalized power-law formulas compared with the
exact and asymptotic curves for x-ray absorption. The curves
LIN and GPL are the first and second expressions of Eq.
(10.28), respectively. The curves NUM are the exact line
shapes.

upon which the GPL expressions are based, fails to cover
the square-root termination of X(s) at E=1.0. With in-

creasing V, many-body eftects become dominant and the
band-edge e6'ect is less appreciable. This means that the
GPL formula is more accurate for a 1arger V, as is, in
fact, revealed by the two curves with difFerent V in Figs.
24 and 25.

With a small value for V, the diff''erence between LIN
and GPL formulas is not appreciable in Fig. 25. For a
larger V, it seems that GPL is better than LIN. This is
indeed the trend shown analytically by Kita, as discussed
in Sec. X.C.

In Fig. 26, we observe that XES and XAS intensities
are not symmetrical with respect to the edge co=0. The
intensities expressed by the curve CxPL-0 have a mirror-
image relationship. The improvement in the XES curve
obtained by APL-1 is striking. This is because the pres-
ence of an m-linear term in the genera1ized power law is
indeed the principal origin of the breakdown of the

mirror-image relation between XAS and XES (Sec.
III.B.2).

In summary, the Taylor expansion at the Fermi level
and a few terms of the order of cu and co in the co-

dependent power yield strikingly good intensity curves
both for photoemission and for absorption over a very
wide frequency range. Of course, the agreement with ex-
act curves depends upon the smoothness of the band
profile X(e), so we must admit that the present calcula-
tion based on the model of Band B with the Fermi level
chosen at the band center is likely to favor the GPL for-
mula. The phase shift 6(e) calculated for Band B is
shown in Fig. 13 by dotted curves, which indicate that
the approximation (10.26), upon which the GPL formu-
las were based, holds well except for c. near the band
edge.

I. Thermal broadening and comparison with experiments
on quantum wells [Eqs. (7.38) and {7.39}]

Edge anomalies have been observed recently in the
emission and absorption spectra to and from the top of
the valence band in n-type quantum wells, such as
Inx &ai — As-GaP and GaAs-Al~ Ga) „As. The elec-
trons in conduction bands are doped by a modulation-
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FIG. 27. Experimental absorption (a) and emission (b) intensities as functions of photon energy, obtained by Lee et al. (1987a, 1987b)
for a GaAs-Al„Ga& As quantum well. AE in (b) is the Fermi energy. In (c) the emission spectrum obtained by Skolnick et al.
(1987a, 1987b) for In„Ga, „As-GaP is shown.

doping technique and considered to be free from the ran-
dom potentials due to dopants. The conduction band
may thus be regarded as a free quasi-two-dimensional
band having constant density of states. The Fermi ener-

gy is usually of the order of 100—200 K for a carrier con-
centration of n =10" cm . Thus it is easy to observe

the temperature effect experimentally.
Typical absorption and emission spectra observed by

Lee, Iwasa, and Miura (1987a, 1987b, 1988) are shown in

Fig. 27. In the case of absorption, a prominent peak near
the threshold characterizes the spectrum, which is asym-
metric with a very sharp rise in the lower-energy side as
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compared with gradual decay in the higher-energy side.
The striking thermal smearing of the peak profile also at-
tracts our attention. Indeed, it is very easily blurred by
temperature eAects, in marked contrast to the exciton
peak in an undoped system, which is independent of tem-
perature even at room temperature. The emission band
is strongly temperature dependent as well, with a width
roughly equal to EI:„;.The data for In„Ga& As-GaP
of Skolnick et al. (1987a, 1987b, 1988), who observed an
emission band that rejects more clearly the two-
dimensional density of states, are given in Fig. 27(c).

These peculiarities shown in Fig. 27 are all to be ex-
pected naturally if the peak is really due to infrared
divergence. The system thus serves as a good test for our
treatment of the infrared divergence at T&0.

In applying our theory to this system, we note that an
important eA'ect wiH result from possible motion of the
hole created optically in the valence band. We assume
here that the hole in the valence band is at rest
throughout the optical process. One justification for this
assumption is the heavy hole mass relative to that of elec-
trons (ml, —7m, in GaAs). Several other considerations
lend support to this assumption, as well (Qhtaka and
Tanabe, 1989). Another factor to be taken into account
in attempting the fitting is the finite lifetime of the hole.
We also need to know a reasonable value for the strength
of the hole potential. The line shape will depend critica1-
ly on both.

In the two-dimensional density of states X(E), the final
state always has a bound state, as in Band A treated pre-
viously, which leads to a slight adjustment in the treat-
ment of Sec. VII.C. We use here a separable form for the
matrix elements of the hole potential and optical matrix
element. Taking the Fermi level as the origin of energies
and using the Fermi energy EF„; as the scale of energy
(i.e., ~D

~

= 1), we set

(11.11)

(11.12)

where the following form is assumed for uk.

20-
V=0.15

I
lr

0 —1.0

(c)

20L

rr'
0F. i—2.0

9=0.37

—0.5

4.2I& 4.2I&

—1.0

uk =exp[ —(Ek+ 1)/I ] (11.13)

with I =10. The parameter I serves as a cutoIt energy
of the final-state interaction, and the value I =10 is
chosen so that the result for —2 (~(2 will not depend
much on the value of I . We can show that the separable
form of Eqs. (11.11) and (11.12) simply introduces the
shape function u„ into the summands of Eqs. (7.36) and
(7.37), so that no serious modification is necessary.

Photon energy ~ is measured from the threshold in the
absence of a final-state interaction. We put ~to~ =1 as
before. Since the conduction band is assumed to extend
to infinity, the constant density of states is normalized by
%, the total number of electrons, so that the parameter V
used in what follows is VX(0) in an unnormalized unit.
Figure 28 shows the results for three values of V,
V=0. 15, V=0.37, and V=0.5. Various quantities cal-

FIG. 28. Calculated absorption (solid curves) and emission
(dashed) spectra for (a) V=0. 15, (b) V=0.37, and (c) V=0.50,
as functions of m in units of ~D ~, the Fermi energy, for several
values of temperature.

culated for these values of V are listed in Table II. The
quantity AE therein, the relaxation shift at T =0, is cal-
culated from Eq. (9.20) with the existence of a bound
state taken into account. Figure 28 shows that the
threshold actually shifts downwards by nearly AE rela-
tive to the unperturbed threshold. The values of 5(0)
listed show that the magnitudes chosen for Vare not bad.
Note that we are adopting a V that yields 5(0) near ir/2,
though the band filling is very small.

Figure 29 shows how the ideal line shapes given above
are modified by taking account of the spins and the life-

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem 983

40' V=0.37

G=0.12

30- V=0.37
T=4.2I(

G=Q

G=O
Spinless

4.2IC

2O I-

10-
EXP
L,=1

n=6.1

c tTl
—2.0

I'
—2.0 —1.0

FIG. 29. Modification of theoretical absorption curve for the
case of V=0.37 and T=4.2 K. The curve marked "G =0,
spinless" is reproduced from Fig. 28(b). The group of solid
curves on the left-hand side show the curves with spin taken
into account together with the lifetime of the hole, expressed by
the parameter G. The dotted curves are the experimental ones
reproduced from Fig. 27(a), drawn so that the top of the peak
coincides with the theoretical curve.

Lz=129A
n=6.1x10""cm '

time of the hole, which is parametrized by the factor G.
The elan'ect of spins appears in two ways, producing a re-
laxation shift twice as large as that of Fig. 28 and chang-
ing the critical exponent from 25(0)/vr —[5(0)/m] to
25(0)/rr —2[5(0)/~], thus suppressing the edge
anomalies. The hole lifetime is incorporated by the fac-
tor exp( —Gt) in the Fourier transform. The experimen-
tal (dotted) curves are reproduced so that their peak
height coincides with the theoretical curve. We find that
6 =O. 12 gives a good fit to the observed peak breadth.

Figure 30 shows the absorption and emission curves,
the theoretical curve for V=0.37 and 6 =0.12, in (a)
and experimental ones in (b) and (c). Note that the unit
of energy in (a) is 200 K, that is, 0.02 eV. We find
reasonable agreement in view of the idealized model
adopted for the system, which neglects the finite thick-
ness of the well, electron correlation, etc.

As for the emission spectrum, the curves shown in Fig.
30(a) do not agree at all with those observed in Fig. 27(b).
They are, however, similar, to Fig. 27(c) of In„Gai As-
GaP. Since the integrated intensity of Fig. 27(b) depends
critically upon T, we shall have to introduce some un-
known relaxation mechanism to obtain good agreement

A part of G certainly takes account of the broadening due to
the finite hole mass, nonparabolicity of bands, etc.

1

1.55
~ (eV)

(c) L,=100A

n=5.2x10"cm '

I

1.56 ~ (eV)

FIG. 30. Absorption and emission for a quantum well: (a)
theoretical absorption (solid curves) and emission (dashed
curves) for V=0.37 and G =0.12 in a quantum well with
L, =129 A, n =6.1X10"cm (L, ) is the well thickness and n

the density of electrons); (b) experimental absorption curves for
the same quantum well; (c) experimental absorption for a quan-
tum well with L, = 100 A, n =5.2X 10" cm . In (a), cg is mea-
sured in units of ~D~ =200 K.
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TABLE II. Three calculated values of the potential V. c& and
AE are given in units of the Fermi energy EF,„;.

V =0.15 V =0.37 V =0.50

6(O)

aEO

—1.004
0.258 (~/2)—0.241

—0.180

—1.221
0.575 (m/2)

—0.492
—0.624

—1.509
0.697 (~/2)

—0.575
—0.970

with the emission curve observed by Lee et ai.
Finally, we should like to comment on the correlation

effect. Electron correlation manifests itself in several
ways, as discussed in Sec. II. The most important is that
it causes electron screening, which in turn determines the
parameter V. For x-ray photoemission, we have an ap-
proximate formula due to Langreth (1970) by which to
obtain the spectrum, taking into account the screening
due to correlation. A calculation of spectra using the
random-phase approximation (RPA) dielectric function
(Nishimura and Ohtaka, 1989) shows that the phase shift
obtained by our choice, V=0.37, is quite reasonable;
here we, quote only the values of 2[5(0)/vr] . From
Table II, we have 0.165 for V=0.37, while the RPA
treatment (no fitting parameter) of the Langreth formula
yields 0.150. In addition, the Debye-Wailer factor due to
plasmon excitation is not so large because the value of
the effective r, is less than unity. The RPA result shows
that there will be approximately a 40% suppression due
to plasmon excitation. For more about the effect of the
correlation, see Sec. XII.

Altogether, we may conclude that the theoretical
curves obtained based on the solution of the soft-x-ray
problem describe the real situation fairly well.

XII. APPLICATION OF THE MND MODEL
TO REAL SYSTEMS

Before ending this review, we should like to discuss the
applicability of the MND model. This section is intend-
ed mainly to show that the model has indeed been a
powerful tool in explaining the experimental data. Refer-
ences are cited in this section only for this purpose, not
with any intent of providing a comprehensive survey of
the experiments and related theories.

In the early 1970s there were some doubts about the
usefulness of the MND model in explaining the edge
anomalies of actual simple metals. However, this was
due to a number of complexities involved in real systems,
which obscured the ideal aspects of the physics, essential-
ly well described by the MND model. We have at
present sufhcient evidence to support the validity of the
model, and its usefulness is well established not only
theoretically, in the Kondo problem, for example, but
also experimentally in explaining optical properties of
simple metals.

The MND model predicts a sharp or rounded edge de-

pending upon the sign of the critical exponent P in Eq.
(1.2). Since usually P(lo =0) (0 and P(lo = 1))0, a sharp
edge peak is predicted in the case of L absorption (p hole
left behind) and a rounded edge in K absorption (s hole).
All the alkali metals, Li, Na, K, Rb, Cs, and other simple
metals such as Mg and Al that have been examined ex-
tensively to date follow this rule without exception. To
support this statement we cite here only a number of ex-
periments: XAS and XES measurements obtained by
Neddermeyer (1976) and Callcott et al. (1978) for light
alkali metals, and the absorption spectra taken by Ishii
et al. (1977) and Miyahara et al. (1980) for heavy alkali
metals. In particular, in the case of L, absorption,
power-law behavior was demonstrated unambiguously in
these data. For example, the log-log plot of Ishii et al.
(1977), attempted for Rb, after eliminating the eFects of
instrumental resolution, clearly shows the reliability of
the value of the critical exponent of Rb obtained experi-
mentally. Thus the applicability of the MND model is
not merely qualitative.

The observed magnitudes of the critical exponents in
absorption and photoemission spectra are generally in
agreement with those obtained from the calculation of
phase shifts. It is interesting here to note that the
theoretical values of the phase shifts, reliable enough to
be adopted as confirmation of the exactness of the
Nozieres and DeDominicis (ND) formula for the critical
exponent, are not obtained from such a simplified core-
hole —conduction-electron interaction as was assumed in
the MND model. We must actually incorporate the s or
p character of the spatial extent of the hole, the Bloch
character of the conduction electrons, the realistic
screening of the hole potential by electron correlation,
and so on. Strictly speaking, the spin of the core hole
brings about an exchange interaction with the conduc-
tion electrons, which causes a difference in the phase
shifts of up- and down-spin conduction electrons. More-
over, the core-hole potential obtained with all these fac-
tors taken into account is required to be such that leads
to phase shifts satisfying the Friedel sum rule.

If reliable phase shifts are employed, the ND form of
the critical exponent is correct. This fact shows the
power of the simple MND model, which neglects all
these complexities as irrelevant, and justifies the effort of
seeking an exact MND solution. For elaborate pro-
cedures to obtain the phase shifts, a few pioneering pa™
pers are cited here: Ausman and Glick (1969), Almbladh
and von Barth (1976), Ohmura and Sano (1977), Bryant
and Mahan (1978), and Bryant (1979).

We have at present reliable theoretical values for the
phase shifts at the Fermi level and thus for the critical
exponent, in the sense that those obtained by different au-
thors and different schemes agree well. This situation
will easily be seen in Table III, where we give some ex-
perimental and theoretical data from the literature. We
mention here only one convincing example to illustrate
the present status of the phase-shift calculations. Since
the magnitude of 13(lo=0) (hereafter denoted simply as
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TABLE III(a}. Some of the experimental and theoretical critical exponents in the literature for L absorption of XAS, with values for
—f3(lo=0) of Eq. (1.2). The notation "ex" shows that the value is obtained by taking account of the exchange eff'ect; "em" indicates
data from emission; "vb" means that it takes account of the presence of a virtual bound state.

Rb Cs Al Mg

0.26+0.04'
o.z4"
O.37',ex

O.Z3b

0.28+0.02'
O. 19b

0.26+0.02'

XAS (experiment)
0.06"
0.07+0.02'

0.2+0.06',em
0.15+0.04'
0.12g

O. 18'

0.3+0.07',em
0.18+0.04'
0.21g

O.Z3'

o.4o"
0.38"
034
0.38

0.27'
O.Z8'

0.25'
0.29'

XAS (theory)
0.05',vb
0.Z3'

0.24'
o.o6'
0.13"
0.23
0.25'

0.25'
0 27m

0.19"
0.28'

'Dow and Sonntag, 1973; Dow et al. , 1974.
Ishii et al. , 1977.' Neddermeyer, 1976.
Callcott et al. , 1978.

'Miyahara et al. , 1980.
'Citrin et al. , 1979.
g Citrin et al. , 1975.
"Ausman and Cxlick, 1969.

'Ohmura and Ogiwara, 1989.
' Mahan, 1977.
"Almbladh and von Barth, 1976.
' Bryant, 1979.

Ohmura and Sano, 1977.
"Bryant and Mahan, 1978.' Minnhagen, 1976, 1977.

P) is dominated by the s-wave phase shift, one would ex-
pect p(=lpl) —to become large as the screening be-
comes less dominant. This is indeed the trend observed
in light metals, where a metal with a smaller carrier den-
sity (i.e., with a larger r, ) has a larger p; the emp—irical
relation —P=0.068 r, has been found for light metals
such as Na, Mg, and Al (Dow, 1975). In contrast, for
heavier alkali metals, such as K, Rb, and Ce, the ob-
served data do not follow this rule (Ishii et al. , 1977; Mi-

0 20'
Photoemission (experiment)

0.16
0.12'

0.13
0.13'

0.19'
0.20
0.14'
0.19g

Photoemission (theory}
O. 13"
0.08'
O. 1O'

0.11g

0 10'
O. 1Z'

0.13g

'Citrin et al. , 1975.
Ley et al. , 1975.

'Ausman and Glick, 1969.
d Almbladh and von Barth, 1976.
'Ohmura and Sano, 1977.
Bryant and Mahan, 1978~

g Minnhagen, 1976, 1977.

TABLE III(b). Some of the experimental and theoretical criti-
cal exponents in the literature for I absorption of XPS, with
values for o. of Eq. (1.4).

Al

yahara et al. , 1980). In Cs, in particular, a very small
value of the critical exponent is observed. As shown in
Table III, however, the recent theory is successful in
reproducing the observed critical exponents of heavier al-
kali metals, in which the anomaly of Cs is attributed to
the presence of a virtual bound state (Ohmura and
Ogiwara, 1989).

In a strictly quantitative sense, there are still some
unexplained disagreements between theory and experi-
ment. Gne is the lack of mirror-image symmetry be-
tween the XAS and XES spectra. For example, Callcott
et al. (1978) obtained —p=0. 24 for Na from the XAS
data and —p=0. 15 from the XES. In XES the spin-
orbit doublet is not observed, and the peak looks much
less prominent than that in XAS. The situation is more
or less the same in other metals (Citrin et al. , 1979). The
asymptotic behavior predicted by the ND theory has a
strict mirror-image relationship, while the exact solution
of the MND model shows that mirror symmetry no
longer exists. In the calculated emission spectra we have
an edge peak slightly larger in magnitude than that in ab-
sorption, as demonstrated in our .numerical results of
Figs. 26, 28, and 30 and in the spectra of Fig. 19 obtained
by Grebennikov et aI. The theory thus predicts an edge
peak slightly larger in XES than in XAS. The actual sit-
uation is the converse of this. Therefore, the experimen-
tal asymmetry with respect to the position of the thresh-
old is not to be ascribed to the frequency dependence of
the critical exponent, which was shown to be responsible
for the asymmetric edge properties of the exact solution,
as discussed in Sec. III.B.2. One possible reason for the
lack of mirror symmetry is incomplete relaxation of the
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system before photon emission, as analyzed by Almbladh
(1977a, 1977b) and Mahan (1977, 1988). Another possi-
bility is the presence of a nonradiative decay channel in
the emission case, as discussed in Sec. XI.I for the rela-
tive magnitude of the observed absorption and emission
spectra in a 2-D quantum well.

Another aspect that still remains to be clarified is the
rather poor agreement between theory and experiment on
the values of the critical exponent in Na, the most typical
simple metal yielding an edge peak. When we look at
Table III, we at once become aware of this unhappy situ-
ation in Na as compared with other heavier alkali metals.
There are two conceivable reasons for this. Since the ob-
served relative intensities of L, z and L, 3 peaks do not
agree with the prediction based on a simple spin-orbit in-
teraction, a spin-dependent coupling between the conduc-
tion electrons and core hole must be complicating the sit-
uation, as analyzed first by Onodera (1975) for exchange
mixing of the L z and L 3 spectra and later by Kaga (1977)
and Yoshimori and Okiji (1977) for electron scattering of
the Kondo type. The presence of an exchange coupling
is the first possible reason. Citrin et al. (1979), in fact,
found a better fit for Na using the Onodera theory (see
Table III). With regard to the eft'ect of core-hole spin, we
refer the reader to the original papers and to the review
by Almbladh and Hedin (1983). We discuss here the
second possibility of a generalized power-law, which
seems to dominate the first eA'ect.

We note that the range of frequency in which the sim-
ple MND power-law formula is valid is rather limited.
Let us return to Figs. 25 and 26, which demonstrate how
the MND result is improved by using an ~-dependent
critical exponent. For co (the frequency scaled by half the

Pl P2bandwidth) less than unity, co
' &co ' for the two ex-

ponents 0 & —
/3, & —

/3z (i.e., a smaller —
/3 follows from a

smaller intensity). Figure 26 thus implies that the curve
GPL-1, which has a smaller magnitude than the ND
value (curve GPL-0) in the absorption case, has a critical
exponent smaller than that predicted by the ND theory.
Therefore, if the experiments are assumed to be described
by the exact solution of the MND model, the fitting pro-
cedure for the XAS intensity using only an
independent exponent will necessarily give a critical ex-
ponent —

/3 smaller than the true one. The trend shown
in Table III appears to be in accord with this situation.
To see the generality of this tendency, the calculation of
Ohmura and Ishikawa (1980b) will be helpful, where a
perturbational treatment of the core-hole potential leads
to the result that the G-PL-1 generally gives rise to a
smaller absorption intensity and a greater emission inten-
sity than the ND prediction (this contrast between XAS
and XES is well demonstrated in Fig. 26). According to
Ohrnura and Ishikawa, the correction due to co depen-
dence is larger for a larger ratio of the core-hole potential
to the bandwidth. The better fit shown in Table III for
heavy alkali metals is expected to be explained within
this context, though the size of the correction due to the
generalized power law has not yet been determined.

Figures 31 and 32 show how the exact XAS and photo-
emission intensities deviate from the predictions of the
asymptotic theory as frequency deviates from the edge.
The results are reproduced from Fig. 18 (for a square-
root band with total bandwidth 2 and the position of the
Fermi level at the band center). Figures 31(a) and 31(b)
show the log-log plot of the intensities for XAS and XPS,
respectively, in the frequency range 0.01 (co (0.4. The
dashed straight line shows the intensity of the asymptotic
formula (9.50) expressed in terms of the ND exponent—P and the critical amplitude p, given by Eq. (9.51), and
the solid curve shows the exact intensity. For the two
cases of V =1.0 [5(0)=0.705(vr/2)] and V =4.0
[6(0)=0.921(vr/2)], we find —/3=0. 581, p, =1.880, and
—/3=0. 709, p, =1.274, respectively. Figure 32(a) shows
the XAS critical exponent defined by the tangent at cu to
the log-log plot of the exact intensity curve of Fig. 31(a)
(called the curvature exponent)and the generalized power

2Q
3

6$

E
10

10

2 Q3

~ ~
(g

~E10—

FIG. 31. Comparison of the Nozieres-DeDominicis and MND
models: (a} Log-log plot of the XAS intensity reproduced from
Fig. 18; (b} plot of the photoemission intensity. The dashed
straight line shows the ND prediction, and the solid curve is the
exact curve of the MND model. The frequency co is scaled by
half the bandwidth (see the caption of Fig. 18}.
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FIG. 32. Curvature and generalized power-law exponents: (a)
for —P of XAS; (h) for (1—o ) of x-ray photoemission. The ex-
ponents normalized by the ND value are shown for the two
cases of V=1 and V=4. The curves larger than unity are the
curvature exponents because the exact intensity varies more
rapdily with co than does the ND prediction, as seen in Fig. 31.
Curves smaller than unity show the generalized power-law ex-
ponent. They are less than unity because the exact intensity is
smaller than that of the ND prediction. See the text for the
definitions of the two exponents.

—P(co) obtained by fitting the intensity at co to pc@~

(called the GPL exponent). They are both normalized by—P, the ND value of the critical exponent. The curves
for V =4 are drawn using a log-log plot (not shown here).
As mentioned above, the values for the GPL exponent
are smaller than those for the ND. Figure 32(b) shows
the case of photoemission for the curvature and GPL ex-
ponents for the quantity (1 —o. ), normalized by its ND
value (0.886 for V = 1 and 0.781 for V =4).

We see from Fig. 32 that the asymptotic formula in
photoemission has a wider range of applicability than in
the XAS case. This trend, already pointed out in relation

to Fig. 18, is rejected in Table III in that the experimen-
tal photoemission values agree with the ND value better
than do those for absorption. We see also that over rath-
er a wide frequency range of 0.01 & co (0.04 it is possible
to At the exact curve of absorption or photoemission to a
straight line; from this we might conclude that the
asymptotic formula has a frequency range of applicability
of, say, one-third of the total bandwidth. In reality, how-
ever, what applies in a strict sense is the GPL formula,
not the ND formula. At ~=0.2, for example, both the
curvature and the GPL exponents are seen to deviate
from the ND value by more than 30%. Therefore, if we
aim at a precision of 10%, it is important to employ in-
tensity data for ~ less than co=0.05. In the photoemis-
sion case the situation is better, as can be seen in Fig. 32.
Judging from the values of 5(0), the phase shift at the
Fermi level, the case of V = 1.0 does not differ very much
from that of actual simple metals. The above considera-
tion therefore shows an obvious difficulty with the experi-
mental determination of the critical exponent. More-
over, the fitting for Na made by Citrin et a/. (1979) over
a wide 1-eV frequency range with an ~-independent ex-
ponent (but with the exchange effect taken into account)
seems to the present authors rather audacious.

The raw experimental data involve the lifetime effect of
the core hole (Doniach and Sunjic, 1970; Almbladh and
Minnhagen, 1978a), phonon effect (Flynn, 1976; Hedin
and Rosengren, 1977), and temperature effect (Almbladh
and Minnhagen, 1978b, for the quasiboson approxima-
tion and Ohtaka and Tanabe, 1984, for the exact treat-
ment discussed in Secs. V and VII.C), all of which mani-
fest themselves in an otherwise divergent edge region.
We thus need to convolute the theoretical curve with
Gaussian and Lorentzian spectra in order to incorporate
these effects (Callcott et a/. , 1978), or, conversely, we
need to deconvolute the observed data to eliminate them
(Ishii et a/. , 1977). These processes inevitably introduce
additional errors to the derived critical exponent. Furth-
ermore, the cu dependence of the transition matrix ele-
ment and density of states near the Fermi level and the
d-character (/O=2) feature of the excited configuration
state in the I. absorption spectrum can certainly affect
the edge property. These factors more or less mask the
ideal features of the MND model in the observed spectra.

The failure to observe a power law in the electron
energy-loss spectrum from E electron excitation of Li
(Ritsko et a/. , 1974) may be partly attributed to ambigui-
ty of this sort, in addition to the presence of an exchange
coupling. It does not imply the breakdown of the MND
model in Li. It is true that the experiment of Ritsko
et a/. for Li and that of Slusky et a/. (1976) for Mg test-
ed negatively the prediction of Doniach et a/. (1971) that
an edge peak would be observed, even in the E excitation
spectrum, if the momentum transfer q of an incident elec-
tron were large enough to relax the selection rule. But
Slusky et a/. (1979) showed later that in the case of Na,
K, and Mg, the q dependence of the loss spectrum was
not contradictory to the MND theory. Theoretically,
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Ohmura (1981) shows that the observed spectra, includ-
ing those of Li, could be understood naturally within the
context of the MND model when one took account of in-
strumental resolution and the deviation of the spectral
shape due to the generalized power law.

Overall, the predicted critical exponents agree in gen-
eral with the theory; there are some discrepancies that
may presumably be attributed to the co dependence of the
generalized critical exponent. Although experimental
confirmation poses a challenge, the improved techniques
of today will certainly shed some light on the problems
listed above as unsettled. The data available are becom-
ing obsolete, all obtained about 10 or more years ago.
Since an optical apparatus with AQ/0=2. 5 X 10 is
now available (Ishii, 1990), where b, Q is the energy reso-
lution and Q the photon energy used —as compared to
bA/Q=SX10 at best in those days —we do hope that
renewed experiments will be carried out to collect better
data through present-day techniques.

Next we turn to the correlation effect. This topic, ex-
tensively examined by Minnhagen (1976, 1977), making
use of the lowest-order cumulant approximation of
Langreth (1970), has been reviewed by Almbladh and
Hedin (1983), and we actually have little to add to their
review. The correlation effect is evident in the spectrum
in the ranges cu =0 and co= 1.0. In the region co = 1.0 the
effect manifests itself most prominently in the form of
sidebands due to plasmon excitation. In the near-edge
region, on the other hand, the correlation c;Sect appears
in two ways. One is the screening of the core-hole poten-
tial through correlation, as mentioned at the end of Sec.
X. As discussed above, a core-hole potential cannot lead
to a reliable value of the phase shift unless properly
screened. An interesting question concerning the dynam-
ical nature of the screening is whether or not an addition-
al co dependence of the critical exponent arises from the
correlation. Minnhagen (1976) showed that in the case of
photoemission the co dependence was practically negligi-
ble over a very wide range of the order of the plasma fre-
quency and that the values of the critical exponent calcu-
lated taking dynamic screening into account were in
good agreement with those obtained from, say, an or-
thogonalized plane-wave pseudopotential (see Table III).
This suggests that the ND prediction of the critical ex-
ponent and the co dependence of the generalized power
law in the threshold region will persist even if the corre-
lation effects are fully taken into account somehow.

Evidently this reAects the success of the Fermi-liquid
theory in describing the dynamics near the Fermi level.
We saw that the exact solution could be given solely in
terms of the product of the differences between the un-
perturbed energy E and perturbed energy E [see Eqs.
(7.12) and (7.13) or Eq. (8.37) with Eqs. (7.8) and (7.9); see
also Sec. VIII.E]. The point is that the critical exponent
is determined by the factor 1/(E —E ), with both E„and
c. near the Fermi energy. The important quantity here
is how much E.„ is shifted from e by the core-hole at-
traction. We know that in normal Fermi liquids the en-

ergy shift near the Fermi level is properly expressed by
the phase shift, or the eigenphase shift of the S matrix,
which fully incorporates the correlation eff'ect (Langer
and Ambegaokar, 1961). Thus, even if the correlation is
taken into account, the key role of the factor 1/(E„—E )

with c, , c, =0 and the expression of the critical ex-
ponent in terms of phase shifts will remain valid, only if
we regard the phase shifts to be those of quasiparticles.
Here we note that the conclusion is drawn from the
Fermi-liquid picture not only in the ground but also in
the excited configuration with the help of the expressions
involved in the exact solution. In the context of, for ex-
ample, a perturbation treatment of the core-hole poten-
tial in terms of initial-state bases, it is rather hard to
derive this conclusion because the role of the states of the
excited configuration is unclear in building up the in-
frared peak, and it is impossible in this treatment to con-
struct a state near the Fermi level in the excited
configuration without having the ground-configuration
states far away from the Fermi level, where the Fermi-
liquid picture breaks down.

As the second effect of correlation on the edge spec-
trum, let us consider the critical amplitude. The factors
(E„—E ) with a large energy separation are equally im-
portant in the critical amplitude, as is obvious in Eq.
(9.52) with Eq. (8.3), which involves the integral of the
phase shift over the entire conduction band. This means
that the critical amplitude will necessarily be affected by
the breakdown of the Fermi-liquid picture away from the
edge. In fact, we know that in the simple case of core-
hole —boson interaction the intensity of a zero-boson line
(i.e., the intensity near the edge) is governed by the sum
rule for the intensity over the entire absorption band
(Mahan, 1975). Therefore, if the intensity of multiboson
satellites increases, the intensity of the zero line decreases
accordingly. The effect is usually described by the
Debye-Wailer factor. The vanishing overlap between
many-body ground states described by the orthogonality
theorem is, in other words, an indirect indication of the
strength of the excitation away from the edge (Kotani,
1987). By the reasoning given above we are sure that the
exponent of the orthogonality theorem remains valid,
while the amplitude, whose exact form of the MND mod-
el is given in Sec. IX, will be affected by the correlation.
The Debye Wailer factor estimated in the cumulant ex-
pansion approximation will provide a good estimate of
the change due to the correlation. According to Hedin
et al. (1971), the intensity of the zero line of photoemis-
sion in simple metals is reduced by 30% to 50%%uo depend-
ing upon the value of the parameter r, . In the two-
dimensional case of the GaAs heterojunction analyzed in
Sec. X, we have seen that the reduction is estimated to be
40%.

The validity of the ND expression for the critical ex-
ponent even in the presence of the correlation effect was
indicated in the paper by Vendrinskii and Richter (1972)
and shown by Yamada and Yosida in the case of the
orthogonality theorem discussed in Sec. V. If we have no

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



K. Ohtaka and Y. Tanabe: The soft-x-ray edge problem 989

recourse to the quasi-boson approximation or to a
lowest-order cumulant approximation, it is interesting to
consider how the critical amplitude is modified by the
correlation. Experimentally, there seem to be no data
that indicate unambiguously the effect of correlation
upon the critical amplitude. Obviously this is due only to
the difficulty of measuring the absolute intensity of the
spectrum.

XIII. SUMMARY

This article deals with soft-x-ray absorption and emis-
sion problems, concentrating on the theoretical develop-
ments after Mahan's paper, which related for the first
time the observed edge anomolies to the final-state in-
teraction. In reviewing the topic, we have restricted our-
selves to problems related to infrared divergence in sim-
ple metals. Subjects such as the effect of electronic corre-
lation on the x-ray spectra and the final-state interaction
involving a d or f level in the excited configuration were
mostly omitted. One justification for these omissions is
that extensive review articles are available by Almbladh
and Hedin (1983) on the correlation elfect and by Kotani
and Toyozawa (1979) and Kotani (1987) on the problem
of an incomplete d or f shell. Another reason is the fact
that treatments of the latter topic which take into ac-
count the electronic correlation are now under develop-
ment (Miiller et a/. , 1982; Gunnarsson and
Schonhammer, 1983; Fujimori and Minami, 1984; Jo and
Kotani, 1988; Bianconi et al. , 1989). In any case, neither
of these topics seems to have much to do with the in-
frared divergence in the x-ray problem.

In the first half of this article (Secs. II and III) a histor-
ical survey is given, and in the second half (Secs. IV—XI)
recent work of the present authors is outlined.

The theory of the soft-x-ray problem was first ad-
dressed twenty years ago by the pioneering work of
Mahan. Through the use of the MND Hamiltonian, the
nature of the infrared divergence has since been clarified.
Before the papers of the present authors, several exact re-
sults had already been derived separately by the applica-
tion of several different techniques. We can cite as exam-
ples the critical exponents found by Nozieres and
DeDominicis and by Combescott and Nozieres, the
orthogonality theorem as given by Anderson, the critical
amplitude for photoemission proposed by Feldkamp and
Davis, several generalizations accomplished by Yamada
and Yosida of the orthogonality theorem, the pairwise
series expansion obtained by Mahan, and so on. We have
completed or generalized some of these topics here from
a unified point of view. For example, we have given
analytical expressions for the prefactor of the orthogonal-
ity theorem and for the critical amplitudes of XAS and
XES; we have provided a rigorous proof of the proposed
form for the critical amplitude for photoemission; we
have analyzed the convergence of the pairwise series, etc.
As to other topics, we have added new information on

the separate contributions of the main and secondary
bands with respect to the critical amplitudes and in-
tegrated intensities. We have also treated fully the effect
of temperature on the infrared divergence and obtained
frequency-dependent exponents of the generalized power
law, which reproduce almost exactly the true spectra
over a very wide frequency range.

As many authors have pointed out with regard to the
value of the critical exponents, comparison of the
theoretical predictions with experiment has been a
dificult task, because a number of factors neglected in
the MND model inevitably affect the spectra in actual
situations. Recent discovery of an edge peak in
artificially fabricated materials appears to have aroused a
renewed interest in the edge problem. According to the
analysis made in the literature, these materials offer a
near-ideal medium in which to explore the problem.
Since the theoretical aspects of the edge problem are not
simple, we hope the present review will be of some help
to those interested in undertaking new optical experi-
Inents.
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