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In this review, a general algorithm for constructing coherent states of dynamical groups for a given quan-

tum physical system is presented. The result is that, for a given dynamical group, the coherent states are
isomorphic to a coset space of group geometrical space. Thus the topological and algebraic structure of
the coherent states as well as the associated dynamical system can be extensively discussed. In addition, a
quantum-mechanical phase-space representation is constructed via the coherent-state theory. Several use-

ful methods for employing the coherent states to study the physical phenomena of quantum-dynamic sys-

tems, such as the path integral, variational principle, classical limit, and thermodynamic limit of quantum
mechanics, are described.
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I ~ INTRODUCTION

In the past two and a half decades, developments in
the field of coherent states and their applications have
been breathtaking. Yet, the idea of creating a coherent
state for a quantum system was conceived well before
that. In fact, back in 1926, Schrodinger first proposed
the concept of what is now called "coherent states"
(Schrodinger, 1926) in connection with the classical states
of the quantum harmonic oscillator. Thus the coherent
states were invented immediately after the birth of quan-
tum mechanics. However, between 1926 and 1963, ac-
tivities in this field remained dormant. It was not until
some thirty-five years after Schrodinger s pioneering pa-
per that the first modern and specific application was
made by Glauber and Sudarshan (Glauber, 1963a, 1963b,
1963c; Sudarshan, 1963) and launched this fruitful and
important field of study. In his two seminal papers, in
which the term coherent states was first coined, Glauber
constructed the eigenstates of the annihilation operator

of the harmonic oscillator in order to study the elec-
tromagnetic correlation functions, a subject of great im-
portance in quantum optics.

Roughly at the same time as Glauber and Sudarshan,
Klauder (1963a, 1963b) developed a set of continuous
states in which the basic ideas of coherent states for arbi-
trary Lie groups were contained. Some ten years after
the work of Glauber, Sudarshan, and Klauder, the com-
plete construction of coherent states of Lie groups, with
various properties similar to the harmonic-oscillator
coherent states, was achieved (Perelomov, 1972; Gilmore,
1972, 1974). The basic theme of this development was to
connect the coherent states intimately with the dynami-
cal group for each physical problem. For example, when
one includes only creation, annihilation, identity and
number-conserving operators as generators, the
harmonic-oscillator system is known to possess the
Heisenberg-Weyl H4 dynamical group. ' Then, as we
shall show in this review, it is very natural to construct
the Glauber coherent states via a one-to-one correspon-
dence with the geometrical coset space H(4)/U(1)U(l).
Since all physical problems formulated in the quantum-
mechanical language have a dynamical group (although
at times the group may be too large to be useful), an im-
portant outcome of this recognition is that the coherent
states need not be restricted to the harmonic oscillator
but can be generalized to all types of physical problems.
Furthermore, the fact that coset spaces are known to
have natural geometrical properties means that the
coherent states must also be endowed with natural
geometry.

A large body of work on the coherent states has by
now appeared. This vast literature was recently exhaus-
tively col1ected, catalogued, and classified by Klauder
and Skagerstam (1985). It is of course not our intention
to repeat here the excellent work of these two editors.
Nor will we discuss at length the mathematical usefulness
of the coherent states as a tool for the study of the uni-
tary representations of Lie groups, since an excellent ex-
pository book now exists on the subject by Perelomov
(1986). The primary motivation of this review is to give a
comprehensive, yet didactic, algorithm for the construc-
tion of coherent states for a given physical system. It is
our intention to show that such states can provide a fun-
damental framework in which global dynamical proper-
ties of quantum systems can be interpreted. Throughout
the review we shall "sprinkle" discussions of the geome-
trical properties of the coherent states and their physical
interpretations, a subject which we believe has not yet re-
ceived sufticient attention in the literature but which is
clearly taking on increasing importance in the attempt to
understand and address the fundamental aspects of quan-
tum mechanics.

'The technical details of the harmonic-oscillator group H4 and
its algebra h4 are discussed in Sec. II 8 1 of this review.
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In Sec. II, a full account of the field (i.e., harmonic-
oscillator) coherent states is given. However, our discus-
sion will have a slightly di6'erent emphasis since it centers
on how the field coherent states can be constructed from
the dynamical group of the system: the 04 Heisenberg-
Weyl group. As emphasized by Glauber, there are three
equivalent ways to construct the coherent states for such
a dynamical group. The first is to define them as eigen-
states of the annihilation operator. The second is to
define them by the application of a "displacement"
operator on the vacuum state. The third is to consider
the coherent states as quantum states with a minimum
uncertainty relationship. We shall show that such
coherent states are in one-to-one correspondence with
the coset space H~/U(l)U(l), the fiat complex plane.
We shall also discuss many of the well-known properties
of coherent states via this path. In Sec. III, a general
theory of coherent states is presented. This section
presents the rationale for generalizing the field coherent
states to other dynamical systems via the "displacement"
concept. This generalization was proposed simultaneous-
ly but separately by Perelomov and Gilmore, as was also
indicated by Klauder (1963). We shall discuss the techni-
cal details and di6'erences between the methods proposed
by these two authors. Throughout this review, we have
adopted the method of Gilmore and provide extensive
discussions on the geometrical properties of coherent
states. The coherent-state representations of quantum
mechanics and quantum-statistical mechanics are
presented in Sec. IV. In particular, we shall show how
variational and path-integral methods can be naturally
carried out within the coherent-state theory. The impor-
tant concepts of classical limit and thermodynamics will
also be discussed. In Sec. V, we treat the properties of
the so-called "squeezed states" in the same vein. This is
applied to quantum optics, and to the calculation of the S
matrix in molecular dynamics. The technique presented
in this section is also applicable to all bosonic systems.
Section VI discusses the fermion coherent states for
atomic and nuclear systems. In fact, basic ideas of fer-
mion coherent states in terms of the c-number represen-
tation were presented as early as 1960 by Klauder (1960).
The dynamical groups of these states are U(n) and
SO(2n ) compact Lie groups. Applications of the
coherent-state method to the time-independent and
time-dependent mean-field theories of atomic and nuclear
systems are also discussed in this section. In Sec. VII the
concept of vector coherent states is reviewed. Primary
applications of such states are to compute various matrix
elements. Readers who are interested in these applica-
tions should consult the recently published book of
Hecht (1987). Finally, conclusions are given in Sec. VIII.

II. FIELD COHERENT STATES

A. Motivation

Since the now well-known "Glauber" coherent states
for the electromagnetic field have been the source of in-

spiration for the development of coherent states in the
past two and a half decades, it is worthwhile emphasizing
here their historical as well as pedagogical importance.

Glauber (1963b, 1963c) showed that such states are
enormously useful for describing the physics of quantum
optics. Physically, they turn out to be eigenstates of the
coherence (correlation) function of the electromagnetic
field. Consequently, he named these states JQld coherent
states.

1. Glauber's definitions of field coherent states

According to Glauber (1963c), the field coherent states
can be constructed starting from any one of three
mathematical definitions.

Definition 1: The coherent states la ) are eigenstates of
the harmonic-oscillator annihilation operator a,

aa =au (2.1)

where n is a complex number.

Dej7nition 2: The coherent states la) can be obtained
by applying a displacement operator D(a) on the vacu-
um state of the harmonic oscillator,

(2.2a)

where the displacement operator D (a) is defined as

D(a)=exp(aa —a*a) . (2.2b)

Definition 3: The coherent states la) are quantum
states with a minimum-uncertainty relationship,

—(a+a ),1

v'2

1p= —(a —a
i v'2

(2.3b)

(2.3c)

(2.3d)

(2.3e)

It is worth pointing out that Definition 3 is by no means
unique because Eq. (2.3a) does not provide a unique solu-
tion for (bp, hq). Such non-uniqueness is graphically de-
picted in Fig. 1, where (a) represents the uncertainty cir-
cle for the usual field coherent state and (b) represents the
uncertainty ellipse for the so-called squeezed states,
which will be discussed in Sec. V. For the Geld coherent
states, Ap =Aq =

—,'.
Glauber's original approach was entirely motivated by

the physical consideration of factorizing to all orders the

(2.3a)

where the coordinate and momentum operators (q,p) are
defined as

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



870 Zhang, Feng, and Gilmore: Coherent states

p JI(

HF= y Acokaktak+ y (EoO( . '&

k, a

(~(a)) ( (a))+
v'Xak + —ak

= y flcokaka, k+ y [ /(k(t)a k+A k(t)a k]+ const ant

= QHk+constant,
k

(2.5)

FIG. 1. The uncertainty picture in the coherent states.
where

Hk ~~k+k+k+~k(r)+k+~k(r)+k

electromagnetic field correlation functions. To this end,
he constructed the field coherent states by using the
harmonic-oscillator algebra. Glauber concluded that the
same field coherent states are obtained from the three
mathematical definitions. Of course, not all physical sys-
tems are describable by the harmonic oscillators. There-
fore, ever since the appearance of Glauber's papers there
has been a real need to generalize these field coherent
states to other systems which may possess diA'erent

dynamical properties. We shall specifically discuss this
point later on. Suffice it to mention at this point that the
generalization of each of the mathematical definitions,
unlike the case of the field coherent states, will not result
in equivalent coherent states.

+0 + inter (2.6)

In Eq. (2.6), the operator Ho mimics the free electromag-
netic field (or free harmonic oscillator) and H;„„„de-
scribes the interaction between the electromagnetic field
and the external time-dependent source. Thus the optical
system is modeled as a harmonic-oscillator system in an
external field. Starting from the semiclassical Hamiltoni-
an (2.6), we can construct the field coherent states in a
more compact and elegant manner: the group-theoretical
method. This method, as we shaH see in the next section,
usefully generalizes the concept of coherent states to ar-
bitrary Lie groups. At the same time, the physical inter-
pretations of the coherent states become transparent.

2. Hamiltonian structure of the field system
B. Group-theoretic construction
of the field coherent states

In order to discuss the dynamical properties of a quan-
tum system, the starting point is the Hamiltonian of the
system. This is because the Hamiltonian and its Hilbert
space completely determine the dynamics of the
quantum-mechanical system. In quantum optics, the
Hamiltonian of the system with interaction between an
atomic system and the electromagnetic field can be taken
as follows:

In this section, we shall discuss the field coherent states
in the group-theoretical language. The most transparent
way to discuss this is within the context of the Hamil-
tonian (2.6). We illustrate here an algorithm to produce
the coherent states from a knowledge of the algebraic
structure of the Hamiltonian, the Hilbert space on which
the Hamiltonian acts, and an extremal state of the opera-
tor algebra.

H = g f1cok Qk Qk + g EcT()
k a

~(a) ~(G:)++ g Xk —/ik+ (2.4)

where 4~k is the energy of the field mode k, and yk~ are
the coupling coefficients between the atomic system and
the electromagnetic field. One of the crucial assumptions
made in the construction of the Hamiltonian given by
Eq. (2.4) is that each of the N atoms, labeled by the index
a, is a two-level system and therefore its dynamical vari-
ables are just the usual "spin" operators [(ro( ', o'+), rr( 'I.
Normally, one considers the coupling strength yk as a
constant, i.e., yk =y. If we regard the atomic system as
a classical source (i.e. , treat the spin operators o' ' as c
numbers), Eq. (2.4) can be reduced to

1. inputs from the Hamiltonian

[n, at] =+a t, [n, I]=0,
[n, a] = —a, [a,I]=0,
[a,at]=+I, [a,I]=0 .

(2.7)

Based on the Hamiltonian of the system given by Eq.
(2.6), one finds immediately the following three obvious
properties:

(a) Algebraic structure (commutation relations). The
Hamiltonian (2.6) is a linear combination of harmonic-
oscillator operators a, a and 8'=a~a. In this case, we
have considered a single-mode field because the total
Hamiltonian, Eq. (2.5), is the algebraic summation of
single-mode Hamiltonians. These operators [ &,a, a I

and the unit operator I obey the following familiar com-
mutation relations:

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990
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The set of operators I6,a', a, II spans a Lie algebra,
denoted as h4. The corresponding Lie group is the well-
known Heisenberg-Weyl group H4 (Weyl, 1928).

(b) Hilbert space. The Hilbert space (Fock space) for
H4 is spanned by the number eigenstates

I IO&, Il&, I2&, . . . , In &, . . . I:

pf),

a+P

nn =nn (2.8a)

FIG. 2. The geometry of the displacement operator.

(n ~)1/2
(2.8b)

(c) Extremal state. Since Ho is proportional to the par-
ticle number operator &, the energy eigenstates of Ho are
In):

H, In & =AconIn & . (2.9)

Therefore the ground state of Ho is the field vacuum
state IO). This state is called an extremal state in this al-
gorithm.

From these three results, we shall extract the coherent
states with the help of a subgroup and its coset space.

2. Three steps to the coherent states

We obtain the coherent states in three steps as follows:
(a) Stability subgroup. This is the subgroup which

leaves the extremal state invariant. For H4, this is
U(1)U{1) with an algebra spanned by IR,II. The st'a-

bility subgroup consists of all operations h of the form

IO) can be factorized as follows:

gI0& =D (a)hIO&

= D( a)I 0)e'~ =—Ia)e'+, g EH&, h EU(1)CSIU(1),

D (a) HH4/U(1)U(1) (2.13)

Here Ia) is the coherent state. It is identical to one of
the definitions of the coherent states given by Glauber.
However, since the construction has been carried out in a
manifestly group-theoretical formulation, generalization
to systems governed by Hamiltonians with other dynami-
cal groups now becomes straightforward.

C. Properties of the field coherent states

The field coherent states have a number of useful prop-
erties, which we summarize below. Each of these proper-
ties has a group-theoretical interpretation that can be
generalized. We shall point out the group interpretation
of each of these properties.

y
i (6&+pl)

Thus

(2.10a)
1. Geometric structure

hIO) =Io&e'+. {2.10b)

(b) Coset space. The coset space with respect to the
stability subgroup will provide the operators to construct
the coherent states. In the H4 example with the stability
subgroup U(1)U(1), the coset H /U4(1)U(1) is the set
of elements Q providing a unique decomposition for any
element g EH4,

There are three aspects of the geometric structure to
be considered:

(a) Complex structure. From the above group-
theoretical definition of the field coherent states one sees
that the displacement operator [coset representative of
H4/U(1) U(1) in the language of group theory] is a finite
transformation operator in the complex a plane, that is,
one to one corresp-on-dence between the coherent states Ia )
and points in the complex a plane:

g=Dh . (2.11)

A typical coset representative in the coset space
H ~ /U(1) U(1) is

complex a plane

D (a) =exp(aa —a*a), (2.12) This mapping is continuous, i.e., for any given E, there
exists a 6 such that

and the complex parameter a is arbitrary. The argument
in the exponential operator (2.12) is anti-Hermitian and
corresponds to a finite transformation in the complex
plane (c~c +a) (see Fig. 2).

(c) Coherent states. These are defined by the actions of
the coset elements on the extremal state. Using Eqs.
(2.10)—(2.12), it is obvious that any group transformation
element g of H4 acting on the unperturbed ground state

if Ia —a'I (e .

(2.14a)

(2.14b)

Distances are determined with respect to in the intrinsic
metrics. That is, the metric on the left side of Eq. (2.14b)
is determined from the Hilbert-space inner product,

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990
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while the one on the right is determined from the metric
in the complex plane. Furthermore, the action of any
group transformation g =exp[i()/a +pa +iln +5I)]
( EH4) on a point n in the plane H~/U(1)U(1) is given

by

ga~a'=e' ia+(y/il)(e'" 1)—. (2.15)

D(p)ln&=la+P&e'~,

Q=lm(gn*) .

(2.16a)

(2.16b)

This shows that H4/U(1)I8U(1) is a Aat space, and the
metric of the coset space H /4V(1)U(1) is diagonal.
The measure of this space is d p =d o; dew*.

(c) Symplectic structure. The above results show that
H /4U(1)sU(1) is a complex space with explicit metric
and therefore mathematically it must have a symplectic
structure (Arnold, 1978). This structure is H~ invariant
and can clearly be presented by making the standard
transformation from complex to phase-space coordinates:

This equation is derived in the Appendix.
(b) Metric and measure. In order to understand the

geometry of the field coherent state, we should calculate
the explicit forms of the metric and measure of
H4/U(1)U(l). This can be carried out as follows: any
group transformation of H4/U( 1 ) U(1) on the a plane is
given by

(ala') =exp[a*a' —
—,'(a*a+a'"a')],

l(nln' & I'=exp( —ln —n'I') .

(2.20a)

(2.20b)

This shows that the coherent states
I
a ) are not orthogo-

nal, but normalized.
(b) Over-completeness. For the field coherent states,

Glauber showed that the resolution of the identity in
terms of coherent states is not unique. A common and
useful resolution (see Secs. II.C.4 and II.C.5 below) is

f ln&" (2.21)

Since the coherent states are labeled by a continuous in-
dex in a Hilbert space that has a countable basis, they are
over-complete.

4. Hilbert-space expansions

I
)=D( )Io)

Expansions in a Hilbert space may be performed in a
number of ways.

(a) Coherent state in terms of diagonal states. The field
coherent states can be expanded in terms of the eigen-
states of the particle number operator In ), known as
Fock states:

1 ~ 1a = —(q +ip), n* = (q —ip) .
2

'
2

(2.17)
=exp( —

—,'a*a) g (aa )"(n!) 'IO)
0

Then the standard two-form of H4/U(1)SU(1) is
co =dp 5 dq, whose Poisson bracket is

=exp( —
—,
'a' n) g (n)"(n!) '

In ) .
0

(2.22)

r)f Bg Bg df
aqep aqep ' (2.18)

(b) Arbitrary state expanded in terms of coherent
states. Any arbitrary state I%') can be expressed in terms
of the states

I
n ) in the form

where the functions f,g are entire functions defined on
the complex o. plane. The physical interpretation of the
parameter space H /4U(1)sU(1) is that it provides a
phase-space structure for the field system.

2. The Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff (BCH) formula (or
disentangling theorem) allows for rearrangements in the
ordering of the exponential operator products [for a
derivation using the so-called faithful matrix representa-
tion method (Gilmore, 1974b)],

exp(aa —a'a ) =exp( —,
' na')exp( —n'a )exp(aa ")

=exp( —
—,
' aa' )exp( aa )exp( —n'a ) .

I% &
= g c„ln &

= g c„„,Io&," (n! )
1/2 (2.23)

l~&= f ln&f(n*). -' " (2.24)

where the analytical function f (a*), the coherent-state
representation of I 4 ), is

f (a*)=(al%')e' ' / = pc„
t )1/2

(2.25)

where g„ lc„l =l. Using the over-completeness of the
field coherent states, we can also expand I%') in the
coherent state:

(2.19)
This is extremely useful in dealing with practical prob-
lerns, as we shall see later.

and e ~ ~ d u/~ is the measure in the entire function
space L (j) (Bargmann, 1961):

3. Hilbert-space properties (V, l+ ) = ff, (a)f (a*)e I I ( (2.26)

There are two properties to be noted:
(a) Non-orthogonality. By direct calculation, we have

As an example, suppose I
4 ) =

I
n ); the corresponding

coherent-state representation is

Rev. Mod. Phys. , VoI. 62, No. 4, October 1990
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(alll )II

1/2(n!)
(2.27)

5. Phase-space distributions

B= y ln&B. &ml .
n, m

(2.28)

The coherent-state representation of this operator can
easily be found as follows:

The entire functions If„(a"), n =0, 1, . . . , 0II I span
L '(g).

(c) General operators in terms of coherent states. A
general quantum-mechanical operator B in the domain of
coherent states (Klauder and Skagerstam, 1985) may be
expressed in terms of its matrix elements connecting
states with fixed number of quanta:

d CXB= a Bz ma* a (2.34)

The phase-space distribution functions have been wide-
ly used to discuss the quantum-classical correspondence
(Hillery et nl , .1984) and for the calculation of the quan-
tum average values of mechanical quantities in the classi-
cal phase space. In the coherent-state representation,
there are three convenient distribution functions: the P
distribution, the Q distribution, and the Wigner distribu-
tion.

(a) P representation. Under suitable conditions, the
coherent-state representation of the operator, Eq. (2.29),
can be reduced to the diagonal matrix form

CX d CXa B o,*,n' a' exp —
—,
' a —

—,
' o."

By the same token, it may be possible to reduce the den-
sity operator p to a diagonal matrix within the coherent-
state representation,

(2.29) p= a P o. a (2.35)

where

B(a*,a') =
& a IBla' &exp(-,' la I'+-,' la'I')

= y B„(n!m I) 1/2(ae)"(a )~
n, m

(2.30)

It is obvious that the function B (a*,a) completely deter-
mines the operator B and is an analytic function of the
complex variables n* and a. Hence the density operator
p may be represented by means of a function of two com-
plex variables in the coherent-state representation,
R (a*,a*):

R (a*,a') =
& a

I p I

a' &exp( —,
'

I a I'+ —,
'

I

a'I')

where P(a) is called the P representation of the density
matrix (or the distribution function representing the den-
sity matrix). Let y„(g) be the normally ordered charac-
teristic function (Hillery et al. , 1984)

y„(2))=Tr(pe"' e " ') . (2.36)

Then P (a ) is just the Fourier transform of y„(rl ),

(2.37)

The statistical average of an operator B can be obtained
easily:

= g &n plm)(n!m!) '/(a*)"(a')
n, m

Conversely,

(2.31)
d CXTr(Bp)=Tr f Ia)P(a)&alB

d o.Pa +BE (2.38)

p — 0! R cx, cx A exp —cx —tx

(2.32)

The normalization condition of the density operator,
Trp=l, requires that R(a*,a') satisfy the following
equation:

d CXd Aa, cz' exp u'*a —a —a'

(2.33a)

From Eq. (2.31), we see that R (a*,a') is an entire func-
tion of a*, and therefore Eq. (2.33a) can be reduced to a
simpler form:

B~B&(a*,a) =
& a IBIa )

=e ! ~ g B„(n!m!) '/ (a*)"(a)
n, m

(2.39)

where B„has been given by Eq. (2.28). The Q represen-
tation of the density operator is de6ned as

Q(a) = &alpla&, (2.40)

It should be pointed out that the P distribution always
exists for suitable bounded operators.

(b) Q representation. There is a corresponding Q rep-
resentation B&(a*,a) for bounded operators, which can
be determined uniquely by its diagonal matrix element in
the coherent states:

R(a*,a)e !! =1.2d 0!
(2.33b)

and the statistical average of any operator is

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



874 Zhang, Feng, and Gilmore: Coherent states

Tr(Bp) =Tr f la &Bp(a a*)& alp
d CX

Bp CX, CX CX P CX

(2.49)

Therefore it is not difficult to prove the relationships
among the Q, P, and W distributions:

BI, CX, CX CX

d'CX
(2.41)

W'(a) =2fP (a')e( )2d CX

(2.50a)

where the function Bp(a, a*) is the P representation of
the operator B. Likewise, Q(a) is easily expressed by a
characteristic function, the antinor mal characteristic
function g, (rI ),

Q(a)=2f W(a')e ~i2d

2dQ(a)= fP(a')e

(2.50b)

(2.50c)

a'y, (g) =Tr(pe " 'e"' ),
and Q (a) is the Fourier transform of y, (71 ),

d'CX
( A, B)=Tr( A B)= f At*(a, a*)Bg(a*,a)

'gQ(a)= f e" "y, (rl) CX

3& CX, CX* 8& CX*,CX

8'(p, q)= f dy(q —y p q+y)e '~~. (2.44)

(c) Wigner representation ( W representation) of the
coherent states. Wigner was the first to propose the con-
struction of a phase-space distribution function from
quantum-mechamcal wave functions (i.e., a Wigner dis-
tribution). The Wigner distribution function of the den-
sity operator in ordinary phase space is defined as
(Wigner, 1932)

CX8

(2.50d)

This inner product can also be expressed in terms of the
Q and P distributions using a nonlocal inner product,

(A,B)=f Ag(a, a*)eI I B (a' a'*)a —a' 2 I Ie d CXd CX

In the coherent-state representation the Wigner distribu-
tion function is (Hillery et al. , 1984; Fan, 1984)

g* CX ~* e
—Ia —a'I ~i 2, I d CXd CX'

I

w(a)= f &a —a'lpla+a )exp(aa'* —a*a')
6. Generating functions

(2.50e)

(2.45)

y, (g) =Tr(pe " '+"'
) (2.46)

8'(a)= f e" "y, (g)
'TT'

(2.47)

The statistical average value of 8 is

CX

Tr(Bp) = fB~(a,a*)8'(a) (2.48)

where B~(a,a ) is the Wigner distribution of B in the
coherent-state representation.

According to the BCH formula (2.19), we have

where the relation between (a, a*) and (p, q) is given by
Eq. (2.17). As in the case of the P and Q representations,
the Wigner distribution 8'(a) can be found from the
symmetrized characteristic function y, (a),

In quantum optics, it is often necessary to calculate
correlation functions with matrix elements of the follow-
ing forms:

normal form: ( a l(a ') (a)"la &,

antinormal form: (a (a)"(at) la),
symmetric form: (alS(a, at) a) .

(2.51a)

(2.51b)

(2.51c)

Using definition (2.1), one can easily derive the matrix
element (2.51a), whereas the general forms of (2.51b) and
(2.51c) are more complicated. One way to calculate
(2.51b) and (2.51c) is to rewrite the functions (a)"(a )

and S(a, a ) in the normal form by using the normal
product technique and then use (2.1) again; another way
is to find the generating function, which will be given
next.

Using the BCH formulas, we find the generating func-
tion for an antinormally ordered product,

(alexp(ya)exp(6a )la) =exp( —lal )(Olexp(a*a)exp(ya)exp(6a )exp(aa )l0)

=exp( —la )(Olexp[(a+6)a ]exp[(a*+y)(a+6)]exp[(a*+y)a]lo)

=exp( —lal )exp[(a*+y)(a+6)] . (2.52)
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Similarly, the generating function for the symmetric
operator products is constructed by replacing
exp(ya)exp(5a ) with exp(ya +5a ) in the above expres-
sion.

The normal, antinormal, and symmetric forms of (2.51)
will give the corresponding P, Q, and W distribution
functions (Hillery et al. , 1984).

[D "(2 ),D "(B)]=D "([A, B]),
[D~(A), D (B)]=—D ([A,B]) .

D. Physical interpretation
of the field coherent states

(2.60c)

(2.60d)

?. Oalgebra

Bla & =—D "(B)l~ &,

&~lB=D (B)&. .

(2.53)

(2.54)

It is obvious that D "(B)and D "(B)satisfy the adjoint re-
lation

A very beautiful application of field coherent states in
quantum optics is the reformulation of the entire laser
theory in terms of c-number differential equations (Hak-
en, 1970). This procedure is carried out by means of the
so-called D algebra (Gilmore et al. , 1975).

The D algebra is a mapping of quantum observables
into a differential form, so that they act as differential
operators on the continuous parametrizing coset space of
the coherent states. The D algebra of an operator B is
defined as (Gilmore et al. , 1975)

The Geld coherent states are widely used in quantum
optics. In fact, the fundamental theory of quantum op-
tics was constructed with such states. We shall not re-
peat discussions of the theory here, since they can be
found in standard textbooks on quantum optics (e.g.,
Klauder and Sudarshan, 1968). Moreover, there are
many applications in field theory, for example, in elim-
inating the infrared divergence of quantum electro-
dynamics in all orders of perturbation theory (Chung,
1965) and in nontopological soliton calculations (Wilets,
1989).

In this section, we discuss only the original physical in-
terpretation of the field coherent states as proposed by
Schrodinger (1926). In the absence of external fields [i.e.,
A,(t) =0 for Eq. (2.6)], the time evolution of a field
coherent state is

la(t)&=e
' ' la&

D"(B)=[D (B)]* . (2.55)
~ ~gp~ (ae '

)

&ni

Bl~&&~l =—D'(B)la&&al,

l~& &~IB =D "(B)l~&& ~l,
(2.56a)

(2.56b)

On the other hand, the coherent-state projector la & & al
provides a basis in which most physically reasonable
operators may be expanded. The D algebras on projec-
tors are

(2.61)

& q &
=

& ala +atlct &
= (a+a*),1 1

v'2 v'2 (2.62)

By calculating the expectation values of the position and
momentum operators of the harmonic oscillator, one ob-
tains

D "(B)= [D'(B)]* . (2.57)
&P&=

'
&ala —a"la&= '(a —a*) .

&2 &2
(2.63)

A theorem for D algebras can be found as follows:

WBla & =D "( ~)D "(B)l~&,

~BI~& &~l =D'(~)D'(B)l~&&~l

(2.58a)

(2.58b)

Therefore the coherent states la(t) &

(a(t) =( I/& )2[ (qt)+ip (t)]) are minimum-uncertainty
quantum states [q(t),p(t)], which follow the classical
motion of a harmonic oscillator:

Thus the differential form of an arbitrary operator can be
obtained from the fundamental differential form of the
operators a and a:

q(t) Re Re=v'2
I a(t)= I [q(0)+ip(0)]e' '

(2.64)

D'(a) =ct, D'(a t) =a'+ (2.59b)

This is the original motiuation for Schrodinger's proposing
such states.

In the presence of an interaction [A,(t)%0], the equa-
tion of motion is

One can prove that the D-algebra representation
preserves the commutation relation of the respective
operators:

lq(t) & =II(t)lq(t) &

8
Bt

=[ficoa a +A(t) +aA, *(t)a]lp(t) & . (2.65)
[D (a),D "(at)]=1, [D'(a), D'(a )]=1, etc. , (2.60a)

[D "(a),D (a )]=0,
Suppose at t =0 the system is in the vacuum state l0&.
Then
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~y(t) ) = T exp ——Idr (Ac@a a +A(t)a +A,*(t)a) ~0)

=exp[a(t)a —a*(t)a]~0 )e '"'"

(r) )~iq(t) (2.66)

where T is the time-ordering operator and

a(t) = —ie '"'
A, '(r)e'"'dr,

0
(2.67a)

rl(t) = 2cot ——f—Re[A(r)u(r)]dr . (2.67b)

III. GENERAL THEORY OF COHERENT STATES

A. Generalizing the concept
of the coherent state

In Sec. II, two versions of the field coherent states were
discussed: one version is Glauber's original description
and the other is the more "modern" group-theoretic
description. It must be emphasized that, for the field
coherent states, the latter description contains all the in-

This shows that the system will remain at all times in a
coherent state. Furthermore, the following selection rule
exists: if the initial state is a coherent state (including the
extremal state) and the Hamiltonian is linear in the
operators of H4, then the state will evolve into a coherent
state, i.e., "once a coherent state, ahoays a coherent
state. " Therefore, under the condition of Eq. (2.6), if the
system is initially in a coherent state, this quantum state
will evolve according to a classical trajectory. Moreover,
like a true classical particle, this state will never spread,
since Ax =Ap =constant. From this point of view, the
field coherent states provide a natural framework in
which to discuss the relation between quantum and clas-
sical mechanics. The classical limit of quantum correla-
tion functions for systems with many degrees of freedom
has been extensively discussed by Hepp (1974).

It is worth noting that the study of the manifestation
of classical chaos in quantum systems has attracted much
attention lately. A major concern of this study is to seek
the correspondence between classical and quantum
mechanics. Obviously, the coherent states seem to be a
natural bridge for studying the quantum-classical
correspondence. For example, using the Q representa-
tion [also known as the Husimi representation (Husimi,
1940)], one finds that there are precise patterns of classi-
cal trajectories in the wave functions. The Q distribution
follows the classical periodic orbits (Chang and Shi, 1986;
Davis, 1988; Raden and Prange, 1988). Furthermore, for
the classical unstable periodic orbits, there are "scars"
(Heller, 1984) in the Q distribution (Waterland et al. ,

1988). The subject is still in its infancy, but we envision
that these coherent states will play a vital role in such
studies (Zhang, Feng, and Yuan, 1990; Zhang, Feng,
Yuan, and Wang, 1989).

formation given by Glauber's three definitions of field
coherent states. We also noticed that by exploring the
geometrical (coset) structure of the displacement opera-
tor D (z) of Definition 2 [see Eq. (2.2a)], we were able to
explore further the topological structure of these states.
Of course, for the field coherent states, the topological
structure is rather trivial. Thus there is no obvious ad-
vantage in the group-theoretic description. However, as
we shall now see, the advantage will become manifest
once we generalize the concept of coherent states to sys-
tems described by dynamical groups diferent from H4.

Although the harmonic oscillator is important and
useful, one often encounters other dynamical systems
that cannot be so described. For example, it is usually
not a good approximation for an interacting many-
fermion system. Therefore it is quite natural to inquire
whether there are states that can preserve most of the
useful properties of the field coherent states and be uti-
lized to describe and simplify other quantum systems.
How does one generalize the concept of field coherent
states in order to describe quantum systems with other
dynamical groups?

In order to generalize the field coherent states, one
should begin by generalizing, if possible, the three
definitions, as we have pointed out in the last section. In
doing so, one finds that (a) the diFerent generalizations
will lead to diff'erent results; (b) some of the definitions in
fact cannot be generalized. We illustrate the possible
generalization procedure here.

1. Generalization of Definition 1

(eigenstates of the lowering operator)

At first glance it would seem attractive to use the
eigenstates of the lowering operator as a basis for
defining coherent states for arbitrary dynamical systems
because eigenvalue equations play a prominent, role in
quantum theory. However, in this case, the eigenvalue
equations are non-Hermitian and the eigenvalues are
complex. This approach was adopted by Barut and
Girardello (1971) in their discussions about the "new
coherent states" associated with the spectrum generating
algebra su(1, 1). As has been emphasized (Gilmore,
1974a), the adoption of this definition to generalize the
concept of the coherent state has two major drawbacks,
the first mathematical and the second physical: (a)
Coherent states cannot be defined in Hilbert spaces of
finite dimensionality in this way. In particular, this
would preclude the construction of coherent states for
compact Lie groups (Perelomov, 1972). Furthermore,
states defined in this way have few useful properties and
in particular they are not computationally useful. (b) The
states so defined do not correspond to physically realiz-
able states, except under the special circumstance that
the commutator of the annihilation operator (or lowering
step operator) and its Hermitian adjoint is a multiple of
the identity operator. Therefore, under these conditions
one restricts oneself to the electromagnetic field. The
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generalization of Glauber's Definition 1 to general dy-
namic systems appears not to be widely applicable. One
limiting case in which they appear to be useful is in the
construction of wave packets that follow a classical ellip-
tical trajectory in very highly excited states of the hydro-
gen atom, in a description using the dynamical group
SO(4,2) (McAnally and Bracken, 1989).

B. General definition of coherent states:
An algorithm

Consider an arbitrary quantum-dynamic system. In
general, the Hamiltonian and transition operators [ A I of
the system can be expressed in terms of a complete set of
operators [ T; ]:—g,

H=H(T;), A =A(T;), (3.1)

2. Generalization of Definition 3
(states of minimum uncertainty}

According to Glauber's third definition, coherent
states are also minimum-uncertainty states. This is
essentially the original motivation of Schrodinger in his
construction of wave packets which follow the motion of
a classical particle while retaining their shapes.
Minimum-uncertainty states are those which saturate the
inequality b,X b, Y ~

—,'([X,Y])~, where X and Y are
operators in a Lie algebra. The generalization along this
direction was carried out and named "intelligent" states
by Aragone and collaborators (Aragone et al. , 1974,
1976). Nieto and co-workers (Nieto and Simmons, 1978;
1979; Nieto, Simmons, and Gutschick, 1981; Nieto, 1983)
have extensively discussed such states for various dynam-
ical systems. However, this generalization has several
limitations. First of all, these coherent states can only be
constructed for the classically integrable systems in
which there exists a set of canonical coordinates and mo-
menta such that the respective Hamiltonians can be re-
duced to quadrature. This condition requires a Aatness
condition on the Lie algebra, which reduces the commu-
tation relations to those of the standard photon creation
and annihilation operators. Secondly, the wave packets
with minimum uncertainty are not unique (see Fig. 1).
Diff'erent ones may have different properties. Such states
may also be incomplete, or even if they are complete it is
not certain that a resolution of unity of the standard
form exists (Klauder and Skagerstam, 198S). Thus
minimum-uncertainty states appear to have few, if any,
useful properties. For example, minimum-uncertainty
states do not evolve into minimum-uncertainty states
when they are driven by a Hamiltonian linear in the gen-
erators in the Lie group.

where the completeness of an operator set means that
[T, l=g .spans a closed algebra, i.e., the commutator of
any two operators T;, T Eg still belongs to g:
[T, , T ]Kg.

In most applications of quantum mechanics, the Ham-
iltonian of the system can be simplified into the following
generic form of linear and quadratic functions of opera-
tors [ T; l under a mean-field approximation:

H= gd, T, (3.2)

or

H=pc, T, +pc, T, T, . (3.3)

For example, in the case of Eq. (2.4), the Hamiltonian has
the form of Eq. (3.3), in which the quadratic operator
terms are constructed from the set [a a, a, a, I] and
[cro, rr+, oj. On th. e other hand, when the atomic sys-
tem is treated classically, the Hamiltonian of Eq. (2.4)
can be reduced to Eq. (2.5), in which there are only linear
operator terms constructed from [a a, a, a, I]. Another
example is the many-body fermion (boson) system in
which the Hamiltonian under a mean-field approxirna-
tion can generally be expressed as (Fetter and Walecka,
1971)

where a;, a; are the creation and annihilation fermion
(boson) operators. The Hamiltonian given by Eq. (3.4) is
of the generic type of Eq. (3.3) with the operator set
[a,fa, a, af, a, a I spanning a closed algebra
so(2n)[sp(2n)] for fermions (bosons) (Gilmore, 1974b;
Wybourne, 1974)].

H= gk; aa + g VJ& aa a a& (i jhm =1, . . . n),
ij ijlm

(3.4)

3. Generalization of Definition 2 (displacement
operator acting on a reference state)

The discussion above shows that in attempting to gen-
eralize the concept of the coherent state, it may be more
useful to adopt the definition in terms of a displaced
reference state as a point of departure (Gilmore, 1972,
1974a; Perelomov, 1972, 1977). We shall now present the
group-theoretic construction algorithm, paralleling the
treatment of II4 in Sec. II.B.

1. Three inputs

[T„T]= g C,,"T„.
k

(3.5)

We now proceed to define the general coherent states.
Just as in Sec. II, three inputs are required in the con-
struction.

(a) Dynamical group 6 with its algebra g. The algebra
I is determined by the operator algebraic properties of a
quantum system. According to Eq. (3.1), the algebra g is
spanned by operators [ T; I closed under commutation:
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In Eq. (3.5), C,". are the structure constants of g. If g is a
semisimple Lie algebra, then it is more convenient to
transform I T, ] into the standard Cartan basis

IH;,E,E j:
[H;,H, ]=0,
[H;,E ]=ct,E

[E,E ]=a'H, ,

[E,Ep]=X gE +.t3,

and Eq. (3.2) can be rewritten as

(3.6a)

(3.6b)

(3.6c)

(3.6d)

H= gE, H, + g(A, E +A, *E ) . (3.7)

2. Three outputs

The group-theoretic algorithm generates the coherent
states in three steps, utilizing the stability subgroup and
its coset.

(a) Maximum stability subgroup. A subgroup of 6
that consists of all the group elements h that will leave
the reference state invariant up to a phase factor is the
maximum-stability subgroup H. Formally,

h~g, &=~C, &e'~'" hCH . (3.8)

The phase factor is unimportant here because we shall
generally take the expectation value of any operators in
the coherent state.

(b) Quotient or coset space 6/H. For every element

g E G, there is a unique decomposition of g into a product
of two group elements, one in 0 and the other in the quo-
tient 6/H:

(b) Hilbert space V . For a given Hamiltonian of Eq.
(3.1), the physical state (Hilbert) space V carries a uni-

tary irreducible representation I of the group G.
(c) Reference state. This is a state ~No& = ~ref& within

the Hilbert space V, which can be normalized to unity:
& e, ie, & =1.

It must be emphasized that the choice of ihe reference
state is in principle arbitrary. However, for a given dy-
namic system, construction of a useful set of coherent
states depends strongly on the choice of the reference
state ~4o&. The state ~C&o& will determine not only the
structure of the coherent states but also the structure of
the phase space of the dynamic system, as we shall dis-
cuss in Sec. III.B.3.b.

g=Qh, geG, heH, Q+G/H . (3.9)

In other words, we can obtain a unique coset space for a
given ~C&o&.

(c) Coherent states ~A, Q&. Based on Sec. II.B.2, one
sees that the action of an arbitrary group element g E.G
on ~+o& is given by

g~e, & =Ah~Co& =A~Co&e'~' '

The combination II
~ 4o &, rewritten as

iA, n&= n—ie, &,

(3.10)

(3.1 1)

is the general group definition of the coherent states.
Equation (3.11) guarantees that this definition of the
coherent states is in one-to-one correspondence with the
coset space 6/H(0&6/H). Therefore the coherent
states preserve all the algebraic and topological proper-
ties of the coset space G/H.

3. Remarks

a. Oifference between Gilmore's
and Perelomov's constructions

The above constructions of the coherent states for any
arbitrary dynamic systems are carried out almost entirely
from purely mathematical considerations by Perelomov
and Gilmore independently (Gilmore, 1972, 1974a;
Perelomov, 1972). The idea behind this definition was
first proposed by Klauder (1963) a decade earlier. The
coherent states constructed in this algorithm depend on
the choice of 6, V, and ~bio� &. Gilmore has presented a
detailed discussion of the various possible constructions
of the coherent states using the above algorithm and
their diiT'erent properties (Gilmore, 1974a).

First, the group G may be an arbitrary dynamic sym-
metry group in general (Gilmore, 1974a). We may also
impose sufhcient additional structure on G to Inake it a
finite-dimensional Lie group (Perelomov, 1972), or we
may impose further additional structure and demand
that 6 be compact.

Second, the unitary irreducible representation I may
be arbitrary (Perelomov, 1972). But we may also demand
that I be a square integrable by requiring G to be finite
dimensional and choose only its square-integrable repre-
sentations (Gilmore, 1974a). By requiring that 6 be com-
pact we And only finite-dimensional unitary irreducible
representations.

TABLE I. Possibilities available for I 6, V,
~
C&o & I in constructing coherent states.

Level of
structure Refers to

Severity of constraints
2

A

8
C

G
yA

dynamical symmetry group
arbitrary unitary irreducible rep.
arbitrary, normalized to unity

Lie group
square-integrable space
eigenstate of unperturbed Ho

compact
finite-dimensional
highest (lowest) state of V
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TABLE II. DifT'erences between Gilmore's and Perelomov's
definitions.

Gilmore Perelomov

A1
B2
C3

A2
81
C1

Finally, the reference state ~%0) may be an arbitrary
state in V (Perelomov, 1972), but by imposing addition-
al constraints, we could demand that it be the eigenstate
of some unperturbed Hamiltonian. Moreover, we can
impose yet more structure and demand that it be an ex-
tremal state annihilated by a maximal subset of the alge-
bra g of G (Gilmore, 1974a). If G is semisimple, then
~No) will be the highest (lowest)-weight state of I ~ (Gil-
more, 1974a).

All possibilities listed above are summarized in Table

This discussion shows that there are several choices for
constructing coherent states. The definitions of the gen-
eral coherent states, estab1ished by Gilmore and Perelo-
mov, are summarized in Table II.

b. Physical choice of the reference state
and physicalinterpretation of the coherent states

In the algorithm for constructing coherent states, the
choice of the maximum stability subgroup G is often well
defined for a given physical system because it, or the cor-
responding algebra g, is completely determined by the
algebraic properties of the Hamiltonian and transitional
operators. In practice, 6 is often a Lie group. The
second input of the algorithm is also well determined
since physics requires the carrier space of the unitary ir-
reducible representation V of G to be the physical state
space of interest. The third input of the algorithm, how-
ever, is more arbitrary but is of vital importance for con-
structing physically sensible coherent states. It will ulti-
mately decide, on the one hand, the structure of the
coherent states, and, on the other hand, the topological
structure of the dynamical system, as will become clear
later. It is usually most useful to choose the reference
state ~4o) to be an unperturbed physical ground state.
After all, in the absence of interaction, when the Hamil-
tonian of Eq. (3.1) consists only of linear terms [see Eq.
(3.7)], the physical ground state is mathematically an "ex-
tremal state. " An "extremal state, "at least for a discrete
spectrum, is defined to be the highest-weight state

~ A, A ) of the irrep of the Lie group G,

With this choice, the coset space as well as the
coherent states (3.11) are constructed by the exponential
map of those shift-down (shift-up) operators which, when
acting on the extremal state, produce a nonzero result
(E

~
A, A )WO), and their conjugate operators.

Summarizing the above discussions, in practical appli-
cations, the three important inputs in the construction of
the coherent states are the Lie group 6, its square-
integrable irrep I, and the extremal state ~ext) of its
carrier space.

Up to now, we have not been specific in our discussions
of the coherent state ~A, Q). Since the dynamical groups
in practice are often Lie groups, we shall confine our dis-
cussions to such groups.

In any l-rank I-dimensional semisimple Lie algebra I,
there are two types of basic operators in the Cartan basis,
H, and E [see Eqs. (3.6)]. The operators H; may be tak-
en as diagonal in any unitary irreducible representation
I A, while E are the "shift operators. " If I (g) is Her-
mitian, then H; =H, , and E =E . Every group ele-
ment g EG can be written as the exponential of an anti-
Hermitian complex linear combination of H,. and E . If
A is the highest weight in the representation space V,
the highest-weight state

~
A, A ) which is often the ground

state of the unperturbed Hamiltonian, is
(i) annihilated by all the shift-up operators E with

n&0,

E.~A, A & =0, a &0; (3.13)

(ii) mapped into itself by all diagonal operators H, ,

H, ~A, A) =A, ~A, A); (3.14)

(iii) annihilated by some shift-down operators E with
a (0, not by other E& with /3 (0:
E ~A, A) =0, some n(0,
Et3~A, A) = ~A, A+/3) Xfactor, some /3(0 .

(3.158)

(3.15b)

The coherent states ~A, Q) are explicitly written as Eq.
(3.11), with a generalized "displacement operator" in one
to one correspon-dence to the coset representatives 0 of
G/H,

Q =exp g' rtpE& H. c. — (3.16)
ig

acting on
~
ext ) =

~
A, A ) . In Eq. (3.16), the parameters g&

are complex numbers, and H.c. means Hermitian conju-
gation, g& is restricted to those shift operators which
obey Eq. (3.15b) and excludes those which obey (3.15a).

Based on the above general definition and analysis of
the coherent states, we can now discuss their properties
in detail.

E ~A, A) =0, a&positive root set of G . (3.12) C. Properties of the coherent states

%'e could just as well choose the lowest-weight state. For
clarity, we assume the highest-weight state in the following for-
mulas.

1. Geometrical structure of ~A, Q)

The coherent states
~
A, 0 ) are in one-to-one

correspondence with the coset representatives Q H 6/H,

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



880 Zhang, Feng, and Gilmore: Coherent states

l A, II )«~6 /H, (3.17)

i.e., lA, Q) and 6/H are topologically equiualent T. his
crucial development is discussed throughout this review.
This topological interpretation of the coherent states pro-
vides a vivid description of the properties of a physical
system. An important property is that the geometry of
the coherent states depends sensitively on G and V . As
an example, consider the SU(3) group. For this group,
the generators in the Cartan standard basis are
IH&, H2, E,E&,E +&,E,E t3, E &I, where cz, P are
the two fundamental positive roots and the root space di-

agram is shown in Fig. 3.
The two fundamental representations of SU(3) are

shown in Fig. 4, where
l f, ) (i =1,2) are the highest-

weight states of these two representations. Each of these
requires two variable quantum numbers to label the bases
of its carrier space. Correspondingly, because

p l f &
) =0 the maximum-stability subgroup which

leaves lf &
) invariant is U(2) with IH&, H~, E&,E &I as

generators. Thus the geometry of coherent states for the
two fundamental representations of SU(3) is SU(3)/U(2).
On the other hand, for any arbitrary irrep of SU(3), the
highest-weight A can always be expressed as
A= g; & p; f, . If p& (or p2)=0, the coherent states are
isomorphic to SU(3)/U(2). However, when p, &%0 and

p2&0, the maximum-stability subgroup is U(1)U(1)
with generators IH&, HzI. Therefore it is obvious that
the corresponding geometry of the coherent states is not
SU(3)/U(2) but SU(3)/U(1)U(l). A physical interpreta-
tion of these cases will be given in Sec. VI.C.5.

The above discussions can be extended to a general I-

rank I-dimensional semisimple Lie group. The reason is
that the highest-weight A can always be expressed in
terms of the highest weights f; of the l fundamental irre-
ducible representations of g,

I
A= gp;f;, (3.18)

where p, are non-negative integers. Therefore it is not
difficult to find the negative roots /3 for which Eplf; )&0
for each fundamental representation. From this one can
easily determine the dimensionality of the geometric
space G/H which parametrizes

l f;,II ). If A is the sum

I fz&

FIG. 4. The weight diagram of the two fundamental represen-
tations of su(3).

of two or more distinct fundamental weights, then the
sum over shift-down operators in (3.16) includes all
operators that do not annihilate any weight f; that
occurs in (3.18) with p;WO. Since the parameter space of
the coherent states (6/H) depends sensitively on the
space V, it can be defined as a geometric space of the
quantum-dynamic system. Furthermore, we can obtain
an explicit structure of this geometric space for any Lie
group. For non-semisimple Lie groups, the above pro-
cedure still holds; an application related to squeezed
states will be given in Table V.

l
A, II ) = exp g '

( ritiEti
—

riti E (3 )
l
ext ),

/3

(3.19)

which is in one-to-one correspondence with the coset
space G/H. Let g=kEpp, where k is the Lie algebra of H
and p =p&E&

—p&E &
is its orthogonal complement.

We shall explicitly consider only those cases in which the
decomposition of semisimple Lie algebra g =k p
satisfies the Cartan decomposition:

[k,k]C:k, [k, p]&p, [p, p]Ck . (3.20)

When G is compact, its defining matrix representation
has the following form:

a Q Q
R(k) = R(p) =

Q b 0 (3.21)

The matrices R(k) and R(p) are skew symmetric and
real: a'= —a, b'= —b. For noncompact G, we have

a. Complex structure

For G, the coherent states of Eq. (3.11) can be explicit-
ly expressed [see Eq. (3.16)] as

Ea

a Q Q
R(k) = 0 b 0R(p) = (3.22)

E,p

where R(k) is a skew-symmetric matrix and R(p) is a
symmetric matrix. Thus G/H is a symmetric space. It
can be expressed in a matrix form as follows (Hua, 1963;
Helgason, 1978). For compact 6,

FICs. 3. Root space diagram of the su(3) algebra.

compact (3.23a)
& I —z~z
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with

(3.23b)

For a noncornpact Lie group 6 the representation is

noncompact (3.24a)~ I+z z

(3.30b)

la & =e I~I' exp(aat)l() & =e I~I' ~lla & . (3.31)

When 6/H is a symmetric space, the normalization con-
stant X(r, r ) can easily be calculated. For example, the
field coherent states (2.2a) and (2.2b) can be rewritten in
terms of the unnormalized form by using the BCH for-
mulas (2.19):

with

(3.24b)

Then the function F(a, a*) is

F(a, a*)= —aa* (3.32)

~=z(1+z z) (3.25)

where the + ( —) sign corresponds to the noncompact
(compact) case, then any group transformation g acting
on G/H must be a holomorphic transformation,

The results given by Eqs. (3.23b) (a sine function) and
(3.24b) (a sine hyperbolic function) are clear in manifest-
ing the compactness and noncompactness of the respec-
tive geometry. In Eqs. (3.23) and (3.24), z is an m Xn
complex matrix with m and n the dimensions of k and p.
If we explicitly introduce a complex projective represen-
tation r of G/H,

glJ EJ
(3.33)

which is identical to the transformation of Eq. (2.16).
Other examples will be presented in subsequent sections.

Similarly, the measure of the coset space is (Hua, 1963)

dz~dz ~dp=constXdet(g p) g 'j7
(3.34)

c. Symplectic structure

and the metric of the coset space H„ /U(1)U(1) is ob-
tained directly from Eq. (3.29),

~'=gr=( A~+B)(Cr+D)

where

B
g Q D E 6 e

(3.26)

(3.27)

From the definition of Eq. (3.19), the coherent states
have a natural sympletic structure when the reference
state is chosen as an extremal state (Onofri, 1975; Simon,
1980). First of all, the dimension of the coset space G/H
is even. Furthermore, the nondegenerate closed 2-form
(Helgason, 1978) of G/H can be written explicitly as

b. Riemannian structure of the coset space

The standard metric of G/H can be found (Hua, 1963)
from Eq. (3.26) by restricting the group transformation
on 6/H. Here, we shall express it in the form

co = l g g ~pd 7r~ A d'rp
a, p

Therefore the Poisson bracket on 6/H is

ap ~f ~g ~g ~f
p O'r 81 p d'r r)'rp

(3.35)

(3.36)

ds = g g~pdr ~d'rp
a, p

(3.28)

where u and /3 are summed over all the matrix elements
of r given by Eq. (3.25). In terms of coherent states
(Zhang, Feng, and Yuan, 1989),g p is given by

"r} F ( r, r' ) (3.29)
+n~+p

The function I'(r, r*) is obtained from the unnormalized
form of the coherent states:

yg df Bg Bg df
p BzpBZ p BzpBZ p

(3.37)

Performing the transformation

Izp= —(qp+ipp), zp = —(qp ipp), —
v'2 V2

(3.38)

where the prime in the sum is defined immediately after
Eq. (3.16). By transforming i to the z parameters of Eqs.
(3.23b) and (3.24b), one obtains the so-called diagonal
form of the Poisson bracket:

lA, Q&=e px'g'i)pap —H. c.
'

lext&
p

=N '"(r,&*)exp g'~pEp'lext&
p

(3.30a)
[fgI=&' df i)g ~g df

BgpOP p Bg

ping

p
(3.39)

we obtain as in classical mechanics (Goldstein, 1980) the
standard form of the symplectic structure:
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2. The Baker-Campbell-Hausdorff formUla

There are some additional group-theoretic formulas
that are useful for coherent-state calculations. They are
the famous BCH formulas, which are defined as the ana-
lytic isomorphism connecting simple exponentials of the
algebra elements and products of exponentials (Helgason,
1978). We already had an example with Eq. (2.19) for the
H4 coherent states. We shall shortly discuss SU(2),
which has the BCH formula Eq. (3.96). In general, the
exponentiated element given formally by Eq. (3.16) can
be reexpressed as the following product:

exp g'(pe(3 rlpE —p)
p

exp g r E exp g y, H, 'exp g rf3E—
a l 8

but normalized to unity,

(A, niA, n&=&+, in-'nia, &

=&+,ie, &=1. (3.44)

0 =j iA, n)dp(G/H)(A, ni, (3.45)

where dp(G/H)=dp(n) is the group-invariant measure
of G. One can prove that the operator 0 is invariant un-
der the transformation of G,

(b) Over-completeness. From definition (3.10), the
coherent states I iA, n ) I span an invariant subspace of
V under QHG/II. On the other hand, V is an invari-
ant space under 6; therefore

i A, n ) must span the entire
space V, which means that iA, n) is complete. Furth-
ermore, consider the operator

exp g r(3E (—3 exp g 7'; H;—
p

X expgr E (3.40)

go= JgiA, n)dp(n)(A, nig 'g

A, O,
' e'~'"'dp A e '~'"' A, Q, g =Og . 3.46

The "breaking up" of the exponentials of operators is
crucial to the technical development of coherent states.
The relation between q and ~ can be derived from the
matrix representation of G. For example, if G/II is an
appropriate symmetric space, the useful representative of
(3.40) is

%'e have made use of the group-measure-invariance
property dp(n) =dp(n') in deriving the results given by
Eq. (3.46). Then, according to Schurr's lemma, 0 must
be proportional to the identity operator, since the space
is invariant under G. Hence, with an appropriately nor-
malized measure dp, we can get

AO, dp 0 AQ =I . (3.47)

&I+zz'
&I+z'z

We then have

r =z (I+z tz)

expyl =(I+zz )

exp@2=(I+z z)'

1 w exp@&

0 1 0
0

exp/ p +~ ]

(3.41)

(3.42)

Equations (3.43) and (3.47) indicate that iA, n) are over-
complete. Such over-completeness of iA, n) is particu-
larly transparent for any compact Lie groups in which
I" is a unitary irreducible representation and V finite
dimensional. Since iA, n) are also continuous (with con-
tinuous variable n) they must be over-complete. As we
have seen in the case for the field coherent states, many
of the most useful properties of the coherent states are in
fact derived from their over-completeness property.
However, it is worth noting that care must be exercised
about the uniqueness when using over-completeness
properties.

4. Hilbert-space expansions

3. Hilbert-space properties

Just as in the field coherent states, two important alge-
braic properties are maintained by the generalized
coherent states:

(a) Non-orthogonality. The coherent states
i A, n )

defined by Eq. (3.10) are generally non-orthogonal (ex-
cept for a set of measure zero),

& A, niA, n'& =(e,in-'n'ie, &

=&C,in" ie, &e'~+0, (all nWn eG/H)

(3.43)

We consider two types of expansions.
(a) Expansion of the coherent states in terms of diago-

nal states. Suppose a complete set of orthonormal states
of V are denoted by iA, A, ), where

y iA, X) & A, 7.
i

=I (3.48)

iA, n ) = y f,'(n) iA, x &x-'"(n) (3.49)

and k is the usual Gel'fand- Tsetlein pattern which
indexes all the basic states in V, including weight and
multiplicity. In this case the coherent states can be ex-
pressed in terms of this basis of V:
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where X(n) is given by Eq. (3.30a) and

fi„(n)=(A, AlA, Q)x' =(A, AllA, r) (3.50)

is an analytical (entire) function on G /H.
(b) Expansion of arbitrary state lV). Any arbitrary

state
l
4 ) H V can be expanded in the coherent-state

representation by using the over-complete relationship

taking integrals over the phase space. The coherent
states provide a natural phase-space structure for a given
quantum system and three useful phase-space distribu-
tions based on the coherent-state representation, which
we now discuss.

A general operator 8 (see Sec. II.C.4) that acts on the
invariant space V can be expanded in terms of coherent
states:

l+&= f lA, Q&f (n)x (n)dp(n), (3.51) 8 = f IA, Q&&A, QIBIA, Q'&&A, n'ldp(n)dp(n') .
where fz(n) is the expansion coefficient (continuous in
n) defined on the coset space G/H. Since lA, Q) is
over-complete, the expansion of Eq. (3.51) is obviously
not unique. This means that fA(n) and f~(n)+fz(n)
will both satisfy Eq. (3.51) if the following condition is
obeyed:

f &A, nlA, Q'&f', (n'W'"(QW-'"(n')dp(n')=0

(3.52a)

or

f &A, rllA, r'&f,'(r'W '(r')dp(r')=0 (3.52b)

where dp(r)—:dp(n). Hence the unique expansion of
l'P ) places a requirement on f~(n), namely, that it satis-
fy

w, n, w, n', n' x'" n,

(3.56)

8 = f lA, Q)8 (A, n)(A, nldp(n) . (3.57)

This is known as the P representation of the operator B.
However, this expansion is of course generally unphysi-
cal.

The P representation of the density operator is defined

p
——f lA, n&P(A, n)(A, nldp(n) . (3.58)

Equation (3.56) may be reduced to the three special rep-
resentations that are widely used in discussions of the
analogous classical phase-space distributions and calcula-
tions of the statistical average of the original operators.
These are the P, Q, and W representations.

(a) P representation. The operator 8 can be expressed
in a diagonal form,

or

XN '~ (n')dp(n') =fA(n) (3.53a)
(3.59)

Then the statistical average of an operator is given by

Tr(pB)= fP(A, Q)(A, nlBlA, Q&dp(n) .

f ( A, le A, r)fA(r')% '(r')dp(r')= f~(r) . (3.53b)

It follows from Eq. (3.51) that the Hilbert space V is
spanned by the eigenstates f~(n) which satisfy an (in-
tegral) eigenvalue equation with the coherent-state over-
lap (A, nlA, Q') serving as the kernel (Klauder, 1963).
Using Eqs. (3.51) and (3.53), we get

8 8&(A, Q)=&A, nlBlA, Q& . (3.60)

The Q representation of 8 in V is obviously unique.
The Q representation of the density operator is

(b) Q representation. The operator 8 that maps an in-
variant space V into itself has a Q representation in
terms of the coherent states

l A, n ):

fA(n)=f~(r)=(A, rll+) . (3.54) Q(A, Q)=(A, nlqlA, Q) . (3.61)

(f„f2)=ff', ( )nf~( )nX '(n)dp(n), (3.55)

i.e., X '(n)dp(n) is the measure on the function space
L (G/H).

Moreover, the eigensolution of the integral equation
(3.53) is given by Eq. (3.50), which constructs the basis
vectors of the function space L (G/H). The scalar prod-
uct on L (G/H) is

Correspondingly, the statistical average of an operator is
given by

Tr(pB)= fQ(A, Q)Bp(A, Q)dp(n) . (3.62)

(i) B~Bii,(A, n), (3.63a)

(c) W representation. The Wigner distribution on the
phase-space structure of coherent states is required to
satisfy the following two conditions:

5. Phase-space distributions

There are two useful properties of the phase-space dis-
tribution: one is the association of a function on the
phase space with an operator on the Hilbert space and
the other is the computation of Hilbert-space averages by

(ii) (A, B)=Tr~(A "8)=f dp(n)Aii, (A, Q)Bii, (A, Q) .

(3.63b)

Here 2 and 8 are operators acting on the Hilbert space
V . The statistical average of 8 is

Tr(pB)= fdp(Q)8'(A, n) B(i',Q), (3.64)
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where W(A, Q) is the Wigner function of the density
operator p.

The functions Bt, (A, Q), 8&(A, Q), and B~(A, Q) are
defined over the geometric space 6/0, and as such can
be expanded in terms of the irreducible harmonic func-
tions on 6/H. This expansion is especially simple when
8 is some component of an irreducible tensor operator,
and then its I', Q, and 8'representations are proportional
to the corresponding irreducible harmonic functions.
The relationship among these three distribution functions
of an operator can be found as follows:

It is obvious that D "(8),D (8) and D'(8), D "(8) satisfy
the adjoint relationships

D b(8) [Dk(8) ]e

D "(8)= [D'(8)]* .

(3.70a)

(3.70b)

D. An example: Atomic coherent states

Some detailed calculations can be found in Gilmore
et al. (1975) and Zhang (1987).

Bii,(A, Q)= f dp(n')KA(n, n')Bt, (A, Q'),

Bg(A, Q)= f dp(n')KA(n, n')8)i, (A, Q'),

where K (n, n') satisfies

KeK—= f dp(n, )K~(n, n, )KA(n„n')

=l&A, nlA, n &l'.

6. Generating functions

(3.65)

(3.66)

(3.67)

1. Construction of the SU(2) coherent states

Starting from Eq. (2.1), if the electromagnetic field can
be approximated as a classical field, i.e., if [a,a I are
considered as c numbers, then Eq. (2.1) is reduced to a
many-atomic system:

H"=&H)F
= g Rroka„a„+ DE g (ro '

k A

+ —y&., ) "+&.,'& ")
By using the BCH formula, one can easily derive the

generating functions, which are powerful and widely used
to calculate expectation values of various complicated
operators in the coherent states. A general form of the
generating function is

f (A, n;P, a) =
& A, nl exp(P H +a E)lA, Q &, (3.68)

where I(rj, a I are parameters. Then the expectation
values of a complex operator can be obtained by
diff'erentiating with respect to IP, al.

7. Oalgebra

= y [bE(T' )+y(t)(r( '+y'(t)(T' '] . (3.71)

The coherent states for this system can now be construct-
ed with the general algorithm described above. To begin
with, we define three inputs for the construction of the
coherent states from the Hamiltonian of Eq. (3.71):

(a) Group structure (commutation relationship). Since
the Hamiltonian (3.71) is constructed by single-atomic
operators Io'+, (r' ', a o 'I, these operators are kinemati-
cally independent and obey the usual SU(2) commutation
relations:

[oo,o+ ]=0+ 5aa, etc (3.72)
Extensive applications of the over-completeness of the

coherent states, Eq. (3.47), lead to the final results that
appeared in the integral forms over the coset representa-
tive of 6/H. However, it is commonly preferable to use
the differential evaluations in practical calculations.
Thus the coherent-states integral form can be easily
transformed into a differential form by utilizing the
coherent-state D algebra in the same manner as the field
coherent-states D algebra in Sec. II.

The D algebra for generalized coherent states is similar
to that for the Geld coherent states: the mapping of
quantum observables 8 onto a differential form which
acts on the parameter space of the coherent states. The
usual definitions have the following four forms:

Therefore one can always define the two-level many-atom
operators J+,J, and J as

y ~(a) J y ~(a) (3.73}

which are closed under the su(3) commutation relations
(the usual angular momentum algebra):

[Jo J+ ]=+J+ [J+ J—]=2Jo . (3.74)

The corresponding covering Lie group is SU(2). In terms
of J+, J, and Jo, the Hamiltonian (3.71) can be rewrit-
ten as

H = b EJo+y(t)J+ +y*(t)J =Ho+H( . (3.7&)

BlA, n & =D "(8)lA, n &,

«, QIB =&A, QID "(8),
BlA, n) «, nl =D'(8) lA, Q & «, nl,

l A, n & & A, nlB = lA, n & & A, nlD'(8) .

(3.69a)

(3.69b)

(3.69c)

(3.69d)

It then follows that the dynamical group of the two-level
many-atomic system is SU(2).

(b) Hilbert space. The Hilbert space of SU(2} is the
space l l jm ), m = —j, —j+1, . . . ,j—l,j;j =integer or
half-integer l . Here l jm ) are the simultaneous eigen-
states (also known as Dicke states in the literature) of the
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SU(2) Casimir operators J and Jo. .

J'ljm ) =j(j+1)ljm &,

Joljm &=mljm & .

(3.76a)

(3.76b)

Moreover, the states
I jm ) can be obtained by applying

the shift-up operator J+ to the lowest-weight state
IJ —J & (j+m) times:

1/2 )j+m
(3.77)j+m!

2jljm)=, +
(c) Extremal state. Since the energy eigenstates of Ho

are ljm ),

H, Ijm &
=~Em

l jm &, (3.78)

hlj —j)=lj —j)e'", h EU(1) (3.79)

therefore the extremal state (i.e., the ground state of Ho)
is the lowest-weight state of SU(2): lj m = —j) with
E;„=—EEj.

Applying the algorithm, we obtain the following.
(i) Maximal stability subgroup. By the extremal state

Ij —j ), we can find the suitable subgroup of the two-
level atomic system as U(1):IJO I, which leaves

Ij —j ) in-

variant, i.e.,

0
Q(g) ~Q =exp

coslgl

sin I&I coslgl

Thus the parameter g can be rewritten as

g= —e '~ (0(8~~, 0~/~2'') .8
2

(3.84)

(3.85)

(iii) Coherent states. Following the general procedure,
we see that any group transformation g of SU(2) acting
on the extremal state

I j —j ) can be expressed as follows:

gl j —j ) =Q(g)hl j —
z )

=Q(g)l j j&e"=—lj 0) e'—"
g ~ SU(2), h E U(1),Q(g) e SU(2)/U(1) (3.86a)

It is easy to prove that the geometry of SU(2)/U(1) is a
two-dimensional sphere S (usually called a Bloch sphere;
see Fig. 5):

0 1 0 0 0J+0 0'J1 0'JO0 ——''(
2

then

and the general form of the subgroup element h can be
expressed as

so that

li, k & =Q(0) I J —j &
=exp(P+ —0*J- ) I j j&—(3.86b)

h =exp(iaJQ), y= aj— (3.80)

(ii) Coset space. We can obtain a unique coset decom-
position from group theory with respect to the stability
subgroup U(1),

is the group definition of the atomic coherent states
(Arecchi et al. , 1972). It is also often referred to as the
spin coherent state (Radcliff'e, 1971).

g =Ah, (3.81) 2. Properties of the atomic coherent states

where g&SU(2), . and Q is the coset representative of
SU(2)/U(1): a. Geometrical structure

SU(2)/U(1) Q(g) =exp(gJ+ —g*J ) .

z

(3.82)
By the definition of

I j,g), parameters g and g' are the
geometrical conjugate variables of J+,J . On the other
hand, there is a one-to-one correspondence between

I j,g )
and SU(2)/U(1),

s'. (3.87)

Therefore the geometrical structure of the atomic
coherent states is SU(2)/U(l) or 5 . The metric of this
space can be found from the unnormalized form of Eq.
(3.86b),

Ij,g)= . exp(rJ+)Ij —j),1

(1+Ir I')'
(3.88)

which can be calculated using the BCH formulas of SU(2)
[see Eq. (3.96) below] and

8~= tan —e
2

X

FIG. 5. Geometry of SU{2) coherent states. The SU{2)
coherent states map the two-dimensional sphere S onto the
complex plane. This is compact when one includes the point at
infinity.

Then the function F(r, r*) is

F(r, r")=ln(1+ lrl )

and

(3.90)
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2J' + 1 d'rd v

4~
(3.91) the coherent states under Poisson brackets on its geome-

trical space,

It is not dificult to find the canonical form of the param-
eters on
SU(2)/U(1), i.e., Eq. (3.84):

z =r(1+ran") '~ =g =sin —e
sin

l Dl . O

{&j, &, &J, &]=.„„(j„). (3.95)

Unlike the harmonic-oscillator case, the geometrical
space of the atomic coherent states is compact.

0z*=sin —e'~ .
2

By taking the transformation

(3.92) b. BCH formulas

A large number of BCH formulas can be derived for
the Lie group SU(2) (Gilmore, 1974b). Some particularly
useful BCH formulas are

1
z = —(q +/p) and z — —(q /p)&4j v'4j (3.93) exp( gj —g j )

we can show easily that the symplectic structure of the
geometrical space is

=exp(rj+ )exp[in( I+r*r)jo]exp( —r*j )

=exp( r*j )—exp[ —In(1+v*v)Jo]exp(rj+ ),
/jf Bg /3f /3g

g
/)q /3p Bp /)q

(3.94) (3.96)

It also can be shown (Zhang, Martens, et al. , 1988) that
the algebraic structure of SU(2) generators, Eq. (3.74), is
preserved for the expectation values of the generators in

where r is given by Eq. (3.89). As a concrete example, we
give a detailed derivation of Eq. (3.84) by the method of
matrix representations of the group. Using the matrix
representation of I+,J, and Jo, we have

1 r exp(P/2)
exp(rj+)exp(PJO)exp( —r J )~ 0 1 0

0
exp( —/3/2)

exp(P/2) —lrl exp( —P/2) r exp( —/3/2)
—r*exp( —P/2) exp( —/O/2)

(3.97)

By requiring the right side of Eq. (3.84) to be equal to Eq.
(3.97), one obtains

(j,g'jI, g) =[cos—,'(O —O')cos —,'(p —p')

—
/ cos—'(O+ O')sm —,'(/// ///') ] e '/'~—

I gl cos
I gl

"
2

/3= —21n coslgl =ln(1+r*r) . (3.99)

I+n(Q'). n(A)
2

2J

(3.100a)

=cos J—. (3.100b)4 6
2

Thus we prove the BCH formula of Eq. (3.96) by using
the general procedure of Eqs. (3.41)—(3.43). We have
often emphasized that these BCH formulas are exceed-
ingly useful in coherent-state calculations. For example,
the unnormalized coherent states of SU(2), Eq. (3.30), can
be directly obtained by using Eq. (3.96).

c. Hi/bert-space properties

%on-orthogonality. The atomic coherent states are in
general not orthogonal, except for antipodal points:

Here n(Q) is the unit vector from the center to the point
(Op) on the surface of the Bloch sphere, and 6 is the an-
gle between the (O$) and (O'P'),

cose =cosO cosO'+ sinO sinO'cos(P —P') . (3.100c)

Ouer comp/eteness W-ithin any S.U(2)-invariant sub-
space the identity operator may be resolved with respect
to either the diagonal or the coherent states. It should be
pointed out that the resolution of the identity operator in
terms of coherent states is certainly not unique because
of the over-completeness properties. One can easily show
that
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fdnjl, g)&j, pl= J fde g
m, m'

1/2
2J

J +Pl

1/2

(cos—,'0) ' (sin —,'0) '+ + e' ~ jm')(jml

2j+1 2Jf sinOdOQ .+ (cos —,'0) ~ (sin —,'0) 1+ ljm )(jml
m

= & ljm &&jml=l, (3.101)

where d 0=sinO d 0 d P is the solid-angle volume element
at (0$) on S, while dp =( I/4ir)d 0 is the invariant mea-
sure of SU(2)/U(l), and 2j+1 is the dimension of the
Hilbert space in which the coherent states live.

d. Hiibert-space expansions

where (2j+1)dQ/4~(1+ lrl ] ' is the measure on the
Hilbert space 1.2(S ) of square-integrable functions

f (r* ) defined by Eq. (3.103b).

+j 2J
ljm )

m — j
(cos—,

' 0)'

&C [exp( —iP)sin —,'0]~+ (3.102)

(ii) Expansion of an arbitrary Dicke state in terms of
the atomic coherent states. Since the atomic coherent
states form a complete basis, Eq. (3.101), any arbitrary
Dicke space can be expanded in terms of

l jm ) as follows:

(i) Expansion of coherent states. The coherent state
can be expanded in terms of the Dicke states (3.77), since
they form a complete set of orthonormal states. This ex-
pansion is further facilitated by the BCH formula (3.96):

l j,g& =exp(gJ+ —g*J )Ij —j &

=(1+r*r) 'exp(rJ+ )lj —j )

( J )8
=(I+r*r) ' P, jl—j &n!

1/2

e. Phase-space distributions

By use of Eq. (3.101), one can expand any operator B
acting on Dicke space in the atomic coherent-state repre-
sentation as

B= g ljm &B &jm'l
mm'

2

(3.105)

where B = ( jmlBl jm'). In particular, there are three
useful representations that can be used to express an
operator in terms of a phase-space distribution function.

(i) P representation. The integral kernel in Eq. (3.105)
can always be written in the diagonal form

(3.106)

lc&= gc ljm &

dO c j, j, jm
m

2j+1 fd~ f(r ) l.~)4~ [1+lrl']J

where

(3.103a)

where B (g) is a c-number function defined on S~. Gen-
erally speaking, the function B (g) is not unique. On the
other hand, since any operator in SU(2) space can always
be expanded in terms of symmetrized spherical tensor
operators Y' (J), a suitable B (g) can easily be expressed
in terms of tensorial function (Gilmore, 1976),

2j LB= g g CLMFM(J)
L=O M= —L

2jf(r*)= gc„
m

1/2

(r')'+-=(I+ lrl'y(j, pic)

(3.103b)

is the coherent-state representation of lc) and is ex-
pressed as a polynomial of degree 2j. It is worth pointing
out that, although lj, g) is over-complete, the function
f (r*) of lc ) defined by (3.103b) is nevertheless unique.
Furthermore, the scalar product of the two states in the
coherent-state representation is

I. =o M= I. (2J +I)!2—

f dnlg&P(g)&gl, (3.108a)

with the normalization

f dQP(g)=1 (3.108b)

(3.107)
where 1' (0$) are spherical harmonics. Likewise, the
density operator p can be expressed in the I' representa-
tion
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where P (g) is the distribution function in the P represen-
tation.

(ii) Q representation. Since the Q representation is
defined as the expectation value of the operator in the
coherent states and therefore may easily be taken as sym-
metrized tensor operators, then (Gilmore, 1976)

2j L
8 = g g cL~ Y~(J)

L=O M= —L

2j L (2j)!
J&PIJjlj &&= X X cLM

L. =o M= —L, (2J

(3.109)

(iii) W representation. Following the general discus-
sion, the 8' distribution function can be found as fo11ows
(Gilmore, 1986):

2j L
8 = g g CLM YM(J)

J+ jI, g& &j, gl =&& (g)l j,g& &j,pl
r

j sinO+cos O

r

+—' «t — Ij, g) &j,gl,2 2 Bc@

(3.112a)

(g) I j, g & &j, gl

Oj sinO —sin
2 BO

——tan — jl, g) (j,(I,2 2 Btp

(3.112b)
L=O M= —L

(2j)!(2j+I +1)!
L.:—o iv = —I, (2j —I-)'2"(2j + 1)'

1/2
J.lj k&&J PI=D.,(0)lj P&&J Pl

1—j cosO+ —sinO
2 BO

X Y~(0$) . (3.110)

(3.112c)

f. Generating functions

The useful generating functions in the atomic coherent
states are

( klexp(a J )exp(aoJo )exp(a+ J+ ) I g &

=(1+lrl ) '[exp( —
—,'ao)

and

(3.113)

+exp( —,'ao)(r" +a )(r+a+ )] J

(3.11 la)

This D-algebra calculus gives a remarkable simplification
in deriving the Fokker-Planck equation encountered in
quantum optics (Narducci et al. , 1974).

( Pl exp(a+ J+ )exp(aoJo )exp(a —J—) I g )

=(1+
I
rl') "[exp(-,'ao)r*r

+exp( —
—,'ao)(a+r*+ 1)(a ~+ 1)] 1 .

(3.111b)

The matrix element of any complicated operator in the
atomic coherent states can easily be obtained by simple
derivative computations of these generating functions.

IV. QUANTUM-MECHANICS AND QUANTUM-
STATISTICAL-MECHANICS REPRESENTATIONS
OF THE COHERENT STATES

In this section, the quantum and quantum-statistical-
mechanics representations of the coherent states will be
discussed. We shall present some general coherent-state
methods for the study of quantum dynamics. The appli-
cations to various dynamical systems will be discussed in
Secs. V and VI.

g. D algebra

A. Coherent-state representation
of quantum theory

The D algebra of the atomic coherent states has been
studied in detail with extensive applications in quantum
optics (Narducci et al. , 1974, 1975). In this section, we
shall present only some of the results. For example,

1. Stationary Schrodinger equation

For an isolated (i.e., conservative) quantum system,
the quantum-dynamical equation is the stationary
Schrodinger equation
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Hl~&=zlq & . (4.1)

Using the coherent-state representation of the wave func-
tion l%& of Eq. (3.51) and the over-completeness proper-
ty of the coherent states of Eq. (3.47), it is not difficult to
show that the coherent-state representation of Eq. (4.1) is

f &W, AlHlA, A'&f (A')N'~ (A)N ' (A')dp(A')

where

+ [D"(J+ )D "(J )+D "(J )D "(J+)], (4.7)
2

(4.8a)

D (H)=ED (Jo)+ —[D (J+)D (J+)+D (J )D "(J )]
V
2

OI

=EfA(A) (4.2a)
D "(J+)=2j r d

(4.8b)

(4.2b)

where llA, r& represents the unnormalized form of
lA, A&. The unique solution of Eq. (4.2) must satisfy Eq.
(3.53).

On the other hand, if we regard l% & as a trial function,
then Eq. (4.2) can also be obtained by the variational
principle:

&&q'IHI+& =fi f &&,AIHI&, A'&f A(A)fg(A')

(4.8c)

According to Eqs. (4.7) and (4.8), the Schrodinger equa-
tion of Eq. (4.4) now becomes a differential equation
defined on S . An interesting result is that the above an-
gular momentum D algebra (4.8) is precisely the boson
expansion of the angular momentum. In fact, the D alge-
bra of (4.5) is the most general form of the so-called
Dyson boson expansion (Garbaczewski, 1978; Dobac-
zewski, 1982; Zhang, 1987; Klein and Marshalek, 1990).

XN ' (A)N ' (A')dp(A')dp(A)
2. The coherent-states mean-field
variational approach

=0, (4.3)

where the variation is carried out with respect to the
function fA(A). Thus Eq. (4.2) is a generalization of the
generating coordinate method of Hill and Wheeler
(1953). Since the trial function

l
4 & is an arbitrary state

in the Hilbert space, the variational procedure shows that
it is an exact quantum-mechanical approach.

Furthermore, Eq. (4.2) can be expressed in terms of the
differential equation

D (H)fA(A)=Ef~(A), (4.4)

where D (H) is the bra D algebra of the Hamiltonian,

D'(H) & A, A
l

=
& W, AlH . (4.5)

H= J e+o—(J+J~+J J )+ (J+J +J J+) .V 8'
2 + + 2

(4.6)

Hence Eqs. (4.2) and (4.4) are equivalent descriptions of
the stationary Schrodinger equation in terms of integral
and differential equations defined on the geometrical
coset space. For illustration, let us again consider the
SU(2) symmetry, with a Hamiltonian of the form of Eq.
(3.3) (Lipkin, Meshkov, and Glick, 1965),

Coherent states form a continuous complete subset of
the Hilbert space. Thus, if we take them as trial wave
functions, the following variation can be carried out:

S&~,AIHIW, A & =~H&(Q, &)=o,
where

Q —Re(z) and I' —Im(z)

(4.9)

(4.10)

3. Time-dependent Schrodinger equation

and z is given by Eqs. (3.23) and (3.24). Equation (4.9)
constitutes the static mean-field approach of the problem.
When the coherent states span the entire Hilbert space of
the problem, Eq. (4.9) will give rise to the exact quantum
solution.

In general, using Eq. (4.9), one obtains not only the
best approximation for the solution of the ground state
by a coherent state, but also an elegant way to study the
ground-state phase transitions. The procedure is as fol-
lows: (i) Calculate the potential of Eq. (4.10), i.e., the Q
representation of H in the reduced real parameter space;
(ii) minimize the potential function over the entire pa-
rameter space. This simple procedure is widely utilized
to study the geometrical structure and critical properties
of dynamical systems (Gilmore and Feng, 1978a, 1978b,
1978c; Feng and Cxilmore, 1980, 1982; Feng, Gilmore,
and Narducci, 1980; Feng et al. , 1981; Dieperink, 1983;
Zhang et al. , 1987; Zhang, Wu, et al. , 1988; Zhang,
1988d). An example will be given in Sec. IV.C.

If we denote lE; & as the eigenstate of H with eigenvalue
E;, then the coherent-state representation of lE, & is given
by Eq. (3.86b) and satisfies Eq. (4.2) or (4.4). The D alge-
bra of H is then

The time-dependent Schrodinger equation is

dt
(4.1 1)
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The solution of Eq. (4.11) can formally be expressed as

~%(t)) =T exp J —iH(r)dr ~%(to))
0

(4.12)

where T is the time-ordering operator.
If the Hamiltonian is a linear function of the genera-

tors of the dynamical (Lie) group G and its initial state is
either the extremal state ~@0) (which is also a coherent
state) of Ho or an arbitrary coherent state
~'P(t, ) ) =Q(t, ) ~C, ), then Eq. (4.12) can exactly be
solved:

(4.13)

where

q)(t) =i f ('Il(to)~A(r) i H fl—(r) ~%'(to) )dr
80

(4.14)

and Q(t) is determined by the Hamilton equations

drj dHg(r, r*)

d r* dHti(r, r* )

(4.15)

dp.

dt
BHt, (q,p)

c3q;

(4.16)

where the canonical coordinates (q,p) are given by Eq.
(3.38).

The above results show that in this special case the
quantum and classical dynamics can be described in the
same equation. The time evolution of the quantum wave
function follows the classical trajectory of Eq. (4.16). It
is worth pointing out that the phase in Eq. (4.14) contains
two parts, the second part being the normal dynamical
phase while the first is a geometrical phase related to the
so-called Berry phase (Berry, 1984; Kuratsuji, 1988).

However, when the Hamiltonian is a nonlinear func-
tion of the generators of the dynamical group, it is in
general difficult to obtain the exact solution of Eq. (4.12).
In this case, some approximate methods must be
developed in order to proceed. It turns out that one such
approximation is the path-integral method, which also
happens to be very convenient to use within the
coherent-state formalism. In the next section we shall
discuss this case.

In Eq. (4.15), the metric g," and the coordinates r, are
given by Eqs. (3.29) and (3.30) and H&(r, r*) is the expec-
tation value of H in the coherent state of Eq. (3.13).
Equations (4.14) and (4.15) are obtained by directly sub-
stituting Eq. (4.13) into Eq. (4.11). If 6/H satisfies the
Cartan decomposition of Eq. (3.20), then Eq. (4.15) can
be rewritten in canonical form:

dq, BH&(q, p)
dt Bp;

4. Path-integral formalism of quantum theory
in terms of coherent states

a. Coherent-state formalism of the pathintegral

The standard path integral (Feynman, 1948; Feynman
and Hibbs, 1965) is derived by expressing the time propa-
gator exp( iHt—) as a product of the form
[exp( iHt—/X)] and then inserting the resolution of
identity in between terms in the product. A key input in
the path integral is that the resolution of identity is usu-
ally expressed in terms of the coordinate ~x) or the
momentum ~p ) state. Hence the path-integral formalism
when the system has an explicit phase-space structure.

The fact that the coherent states provide an elegant
and nontrivial continuous basis and always possess a
resolution of identity means that the path-integral for-
malism can always be applied to group-theoretic Hamil-
tonians. This important point was first recognized by
Klauder (1960, 1979) and is now widely used in many sit-
uations (see the many papers collected in Klauder and
Skagerstam, 1985). In particular, it has been used in the
study of the interacting many-body problem (Blaizot and
Orland, 1981; Koonin, 1982; Kuratsuji and Suzuki,
1983). Here we shall briefiy outline the use of coherent
states in this formalism.

The basic theory is as follows: One begins by evaluat-
ing the time propagation operator exp[iH (tz t, )] be-—
tween an initial (~A) A, ) ) and a final ((A, Af ~) coherent
state,

(4.17)

One then sets e=(tz —ti )/(X+ I), followed by inserting
X times the resolution of identity of Eq. (3.47) between t2
and t ] . Finally, one lets X~ ~ . With this procedure,
one can show that

K(Af, t~;Q, , t, )=- J2)[dp(O(t))]e' ( (4.18)

where 2)[dp(Q(t) )] is the functional measure of the path
integral and S [Q(t)] the action functional, which can be
explicitly expressed as

Z[dp(O(t))]= Q dp(A(t)), (4.19)

(4.20)

The initial and final boundary conditions for Eq. (4.18)
are

A(t, )=Q;, Q(t~)=Iaaf . (4.21)

In principle, Eq. (4.18) can describe the system's time
evolution, the energy spectra of the bound states, and the
S matrix (Gutzwiller, 1971; Schulman, 1981). The action
functional of Eq. (4.20) can be explicitly expressed in

S[()(tl]=f dt A, ()(t) i A, ()(()) &( lH(t))(—
dt
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terms of the Lagrangian functional (Kan et al. , 1979a,
1979b),

S[Q(r)]=f X r(r), dt,
Bt

Br(t) i
r( t), = —Trg," Hg—(r, r*),

where the Lagrangian functional in the coherent-state
phase space is defined as

approximate solution to the original problem. In the spe-
cial case where the Hamiltonian is a linear function of
generators of the dynamical group, the solutions of Eq.
(4.26) are in fact exact quantum solutions, as shown in
the last subsection.

The above stationary phase approximation has been
applied by many authors to some solvable models, such
as the Lipkin-Meshkov-Cslick (1965) model (for example,
Krieger, 1977; Hoodboy and Negele, 1978; Kan et aI. ,
1979b; Levit et al. , 1980a; Feng and Gilmore, 1980).

and

Hz(r(r), r*(r))=Hz(Q(r))

(4.23)

(4.24)

B. Coherent-states representation
of thermodynamics

3. Coherent-state representation
of the partition function

is the Hamiltonian functional of the system.

b. Stationary phase approxima/ton

As is well known, the integration of Eq. (4.18) is
mathematically ill defined. This difIiculty can be circum-
vented by making certain approximations in which the
integration can be avoided. One such approximation is
the stationary phase approximation.

The stationary phase approximation expands the ac-
tion S in Eq. (4.18) around stationary paths. Such paths
are determined by the variation of the action functional,

6S[A(r)]=5f A, Q(t) ~' A, &(&)
. d
dt

(4.25)

It is interesting to note that Eq. (4.25) is a time-
dependent mean-field equation for the many-body sys-
tem. In other words, the coherent-state path-integral for-
malism includes naturally the time-dependent mean-field
theory as a classical limit. Furthermore, from the canon-
ical complex structure of the Lagrangian functional of
Eq, (4.23), we see that Eq. (4.25) leads immediately to the
classical-like equations of motion

(4.26)

which formally are the same as Eq. (4.15). If we used the
standard canonical form of Eq. (3.39), Eq. (4.26) would be
reduced to the same form as Eq. (4.16).

When the system is a many-body system, then Eq.
(4.26) provides the most general time-dependent
Hartree-Fock or time-dependent Hartree-Fock-
Bogoliubov dynamical equations (see Sec. VI.C.). Furth-
ermore, if the semiclassical motion of Eq. (4.26) is quasi-
periodic, then requantization will generally give a good

Another important application of the coherent-state
theory is thermodynamics. The thermodynamic proper-
ties associated with the Hamiltonian of a system can be
determined from the partition function Z(P) (/3=1/kT)
or from the free energy F(P):

e ~ '~~=Z(/3)=T (4.27)

Here Tr~ means that the trace is restricted to any invari-
ant subspace with A. In the coherent-state representa-
tion, according to Eq. (3.47), this trace is expressed in
terms of a coherent-state integral (Lieb, 1973; Rasetti,
1975):

Tr~e ~ = f dp(Q, )&A, Qlexp( PH)IA, && . — (4.29)

In principle, most of the thermodynamic properties of
the system are contained in Eq. (4.29). However, except
for some special cases, this trace cannot be computed in
closed form. When that happens, only approximate re-
sults can be obtained. One of the usual approximate
methods is again via path integrals. One begins with the
formal expression

Tr~e ~ =fX)[dp(Q)]

p d
Xexp —f dh Afl(t) A()(t))

0 dt

—Hg(A(t) ) (4.30)

In Eq. (4.27) the trace is carried out over the entire Hil-
bert space. Since H [Eqs. (3.1) or (3.2)] is constructed
from the generators of the Lie algebra g, the trace opera-
tion is simplified considerably. First, the entire Hilbert
space is decomposed into g-invariant subspaces V .
Each subspace is represented by A with degeneracy Y~.
Since the operators T; have nonzero matrix elements
only within an irreducible subspace, and the matrix ele-
ments are identical in all equivalent (same A) representa-
tions, the trace in Eq. (4.27) becomes

(4.28)
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Another very useful approximation is that the upper and
lower bounds on this trace can be computed and simply
expressed in terms of the coherent-state representation.
This will be discussed next.

finds that the upper and lower bounds of the partition
function and the free-energy functions are

g I'~ f dp(A)e ~ &Z(/3)

2. The Lieb-Berezin inequalities =e '~'& g I'~ f dp(Q)e (4.35)

In 1973, using atomic coherent states, Lich (1973; Lieb
and Loss, 1990) and Berezin (1975a, 1975b) derived an in-
genious thermodynamic inequality of the partition func-
tion for quantum spin systems. These inequalities (now
known as Lich-Berezin inequalities) give both the upper
and lower bounds to the quantum free energy (or
ground-state energy) in terms of two classical free ener-
gies (or ground-state energies). Furthermore, it has been
shown that such inequalities are also avai1able to
coherent states for all compact Lie groups (Simon, 1980).

For the lower bound of the quantum partition func-
tion, according to the Peierls-Bogoliubov inequality,
(4 le l@)~ exp(@lXl &) for any normalized (Nl E V
and self-adjoint X, we have

TrAe ~ =fdp(A)(A, Ale ~ lA, II)
&

fdic(Q)exp(

—P(A, AlHlA, n))

3. Thermodynamic functions in terms
of coherent states

p
——g f g IA, Q &&(A, Q)(A, f) id@(n), (4.36)

where a = 1,2, . . . , Yz indexes the number of distinct in-

variant subspaces A that occur in the decomposition of
the entire Hilbert space.

Applying the Lieb-Berezin inequalities, we can show
that the free energy is

At finite temperature a quantum-mechanical system is
in a statistical mixture of states and may conveniently be
represented by a density operator, which is defined to be
p=[l/Z(P)]e ~ . Then using the results of the previ-
ous section we have

= fdp(Q)e (4.31) F(P) & min@(A, Q,P), (4.37)

where H&(A) is the Q representation of H.
For the upper bound of the quantum partition func-

tion, let lc;), i =1, . . . n, . . . , be a complete set of
eigenstates of H. We then have

(c; lexp( /3H)lc; ) =e—xp( —/3(c; lHlc; ) )

=exp /3 fH~ l (A,—Qlc; ) )l dp(Q)

exp —Hz A, Q c, dp 0

N(A, A, /3)=Hg(A, Q) —
/3 'ln YA .

4. Zero-temperature limit

(4.38)

(4.32)

where Hp(A) is the P representation of H. By taking the
trace of Eq. (4.32), one obtains

In the zero-temperature limit, the free energy may be
identified as the ground-state energy. Therefore the in-

equality (3.46) can be used to construct the upper and
lower bounds of the ground-state energy in the limit

P—+ ~. Explicitly,

TrAe ~ & f dp(Q)e

The above derivation was given by Lieb in his unpub-
lished work, as quoted in a paper of Simon (1980). Com-
bining Eqs. (4.31) and (4.33), we have the Lieb-Berezin
(thermodynamic) inequalities

fdp(Q)e ~ &TrAe ~ & f dp(A)e

E = lim F(/3) .
P~ oo

Using the formula (Gilmore and Feng, 1978b)

lim ——ln e ~ ' '"~' ' = min f (0)1

P~ co Q, A

we have

(4.39)

(4.40)

(4.34)

Using these inequalities, one can construct a number of
approximate descriptions of a quantum-dynamic system
in the coherent-state representation. This is obviously
extremely useful because the upper and lower bounds to
the quantum free energy have been widely used to study
qualitative statistical behavior as we11 as thermodynamic
phase transitions of the systems. By using Eq. (4.34), one

min H&(Q) ~ F. + min H„(Q) .
A, A Q, A

(4.41)

Equation (4.41) shows that the upper and lower bounds
of the ground-state energy are determined by minimizing
the g and P representations of the Hamiltonian. The
upper bound of the ground-state energy is easy to under-
stand from the variational principle in which the
coherent states are taken as trial wave functions. A de-
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tailed study of Eq. (4.41) for the Lipkin-Meshkov-Glick
model was made by Gilmore and Feng (1978a). The
lower bound for a Coulomb Hamiltonian was studied by
Lieb (1981)and Thirring (1981).

C. Classical limits

1. N~~ limit

As discussed in Sec. III, for a general system with
dynamical symmetry group G, if the Hamiltonian is a
linear superposition of the generators of G and the initial
state is a coherent state, the state will forever remain a
coherent state. In this case, the time evolution of a quan-
tum system resembles that of a classical particle. Unfor-
tunately, without additional constraints there exist very
few realistic systems that behave in this manner.

On the other hand, one normally assumes that the clas-
sical limit of the quantum theory is achieved by letting
A~O. This limit of A demands that the uncertainties of
the coordinate and momentum vanish in a physical state.
In addition, expectation values of the operators satisfy
& AB &

= A, ,B,~+O(A').
For a quantum system with dynamical symmetry

group G, A'~0 is in fact equivalent to the N~ao limit
(where N is the "particle" number). This equivalence can
be shown to be within the framework of the coherent
states (Simon, 1980; Yaffe, 1982). For example, the clas-
sical limit of a quantum spin system [with dynamical
symmetry group SU(2)] has become a powerful tool for
the rigorous study of the ground-state and thermo-
dynamic critical properties. In this example, since
N =2j, the classical limit of spin is known to be j—+ oo

(Lich, 1973). In this section, we shall review the classical
limit descriptions of coherent states.

For spin systems, the Hamiltonian can be written as a
linear superposition of spherical tensor operators. Then
the Q and P representations are obtained by replacing
spherical tensor operators with spherical harmonics. For
example, when the Hamiltonian is linear in the spin
operators, Eq. (4.34) becomes

Z'(P, j) ~Z(P) ~Z"(P,j+1) . (4.42)

H ( T; ) =NH ( T; /N), (4.43)

where T; are the generators of a Lie group defined in Eq.
(3.1), we have

When N =2j~ co, the quantum partition function per
particle as well as the Q and P representations of the
Hamiltonian H/N are exactly reduced to the classical
form by suitable weight functions [see Eqs. (3.107) and
(3.109)]. This conclusion can be extended to any com-
pact dynamical group and to a noncompact group with
square-integrable Hilbert space (Gilmore, 1979; Simon,
1980; Yaffe, 1982). For a Hamiltonian of the form

lim Hp(A, n)/N= lim Hg(A, n)/N
&~ oo Q~ oo

=H(& T, /N &,)=H„(A,n) . (4.44)

Equation (4.44) tells us that the limit on the left side is
obtained by replacing the generators that appear in H
with their classical limit. The classical limit of the gen-
erators is given by (Gilmore, 1979)

(4.45)

Here
~ f, , n & are the coherent states for the ith funda-

mental representation of g, and p; are determined from
Eq. (3.18). The classical limit of the free energy is given
by Eq. (4.37). Consequently the classical limit of any ar-
bitrary operator is determined by its Q representation.

2. Ground-state-energy phase transitions

H /N =H ( T; /N ) .

(ii) Construct the classical limit by

H, (n)=H, (&A, n~T, /N~A, n&) .

(4.46)

(4.47)

(iii) Study how the minima of H, change as a function
of changing interaction parameters.

Step (i) of this algorithm depends on the dynamic
structure of the physical system. Step (ii) depends on Lie
group theory. Step (iii) depends on catastrophe theory
(see Gilmore, 1981). The importance of this algorithm is
that the problem of determining the co1lective coopera-

Ground-state-energy phase transitions can occur if the
interaction parameters c," in Eq. (3.2) are sufficiently
strong in the thermodynamic limit N~ oo. Such phase
transitions can be studied easily as follows: the bounds
on the ground-state energy are determined from Eq.
(4.41) when the interaction parameters c; are zero. The
00 that minimizes the bounds is usually a point of high
symmetry in 6/H under minimal assumptions about the
symmetry of the Hamiltonian H. As the parameters c,"
increase slowly, the minima of the bounds remain un-
changed at A0. At some critical value of c;, the
minimum value changes and the point 0 in G/H which
minimizes the bound(s) is no longer no. A ground-state-
energy phase transition is said to occur when the interac-
tion parameters cross their critical values. The phase
transition is second order if the point 0 that minimizes
the bounds departs from 0,0 continuously as a function of
increasing interaction parameters. Otherwise, it is first
order.

In the thermodynamic limit, the determination of the
ground-state critical properties of Eq. (3.2) may also be
reduced to a simple algorithm. It is not necessary to cal-
culate Hz(A, n), since only the equality of Eq. (4.41) is
satisfied in this limit. The algorithm is as follows:

(i) Write down the Hamiltonian of the physical system
Has
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tive phenomena of the ground state for a complicated
system under a mean-field assumption is reduced to a
very simple procedure.

The ground-state phase transition for finite N can also
be studied in this framework. In this case, the critical
values of the interaction parameters are not precisely
defined, as the P and Q representations of H difFer slight-
ly and the critical values of the c; for these two represen-
tations also di6'er slightly. Moreover, N as an internal
parameter of the system is also a control parameter for
the structural phase transition of the system. A practical
difficulty is that the P representation of H can be calcu-
lated precisely only for a pseudospin Hamiltonian; we do
not yet know how to do this for an arbitrary group.
However, the minimum of the Q representation is a
much better approximation to the ground-state energy
than is the minimum of the P representation of H from
the point of view of the mean-field theory. Therefore, for
finite N it is sufficient to study the ground-state critical
properties by studying how the minimum value of
H&(A, A), and the 0 which minimizes it, depends on the
interaction parameters or the internal parameters. This
procedure is identical with that discussed for the poten-
tial function of systems derived from the coherent-state
path integral.

%'e use this extended algorithm here to study the
ground-state critical properties for a system of N identi-
cal nucleons, each of which has an internal dynamical
group SU(r) We assu. me that the single-particle energies
are c.

&
&82& -. (c.„. We have chosen the following

Hamiltonian to study the phase-transition problem:

H;H/N= g E;
i =1

H, 0 0,. 0
2 =2 0 2

E, ~E,cos —+ g E,.
' sin—

2 '2
j1

N

2

(4.49a)

0 0 2iy. —2iy.
sin —cos— (e '+e '),

2 0 2 2
(4.49b)

2
1 lj

X

2

+

0) 0j . 0 0 2i (p. —p) —2i(p. —p)
sin —cos— (e ' '+e ' ' ),0 2 2

'2
1 02. 0 0+—y sin —cos — (e '+e ') .
2 0 2 2

(4.49d)

By inspection, the minimum occurs for O3=0, P3 arbi-
2i P~trary, e '= —1, and 02 determined by minimizing

(4.49c)
ip.

where (O/2)e ' is the order parameter for the level pair
(lj) and (O/2) = g," 2(O, /2) +m . The ground-state
energy per nucleon is determined by minimizing the clas-
sical limits of Eq. (4.49).

For concreteness, we consider three-level systems with
quadrupole interactions between the ground and first ex-
cited state. Then from Eqs. (4.48) and (4.49) the function
to be determined is

2
02 . 0 03 . 0F —E, =(E2—s, ) sin — +(s3—E, ) sin—

2 2

1
2X

L

E;.
2 N

N
2

jl

N

2

(4.48a)

1&i &j~r .

(4.48b)

The parameter y ()0) measures the strength of the quad-
rupole interaction between the appropriate levels. Since
the physics depends on whether the quadrupole interac-
tion is between the ground state and an excited state
(448a) or between two excited states (4.48b), we treat
these two interactions separately. The notations H;, E;.
for the su(r) operators are standard. The Hamiltonian
(4.48) may be regarded as the multilevel extension of the
Lipkin-Meshkov-Glick two-level pseudospin Hamiltoni-
an.

The ground state of the SU(r) Hamiltonian above lies
in the fully symmetric representation. In this representa-
tion the classical limits of the su(r) operators are known
as

F —E, —+(Ez —E, )sin (O/2) —y( —,
' sinO) (4.50)

3. Thermodynamic phase transitions

Finite-temperature thermodynamic phase transitions
can occur in physical systems modeled by Hamiltonians
of the form (3.3) if the interaction parameters are
sufficiently large. Such thermodynamic phase transitions
may be studied by essentially the same methods described
in the previous section, both for finite N and in the ther-

A standard bifurcation analysis shows that, when

g & 42= c2 —c.&, the minimum occurs for 0=0 and
I' —c., =0. For y & A2, the minimum occurs for
cosO=b, z/y, and F —Et= —(y —b, 2) /4y . A second-
order ground-state-energy phase transition occurs at
y=r. 2

—c&. For a general discussion see Gilmore and
Feng (1979; Gilmore, 1981).

Recently, the coherent-state method in the large-N
limit has been extensively used to study the nonperturba-
tive behaviors of quantum chromodynamics (Brown and
Yait'e, 1986; Dickens et al. , 1988).
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modynamic limit.
In the case of finite X, the upper and lower bounds on

the free energy F(p) may be obtained from the bounds
(4.35) on the partition function Z(p). If Qo minimizes
these bounds in the absence of interactions, then A0 will

also minimize these bounds in the presence of an interac-
tion at sufficiently high temperature. Assume that at
T=0, AWQO minimizes these bounds; then as T de-
creases below some critical temperature T, the point
BEG/H which minimizes the bound(s) is no longer Qo.
A thermodynamic phase transition is said to occur at
T = T, . The phase transition is second order if the 0
that minimizes the bound(s) is continuously connected to
A0 as a function of temperature. Otherwise it is first or-
der.

In the thermodynamic limit, the thermodynamic criti-
cal properties associated with the Hamiltonian H (3.2)
reduce to a simple algorithm:

(i) Write down the Hamiltonian per particle as a func-
t'.'un of the generators of the dynamical group T,. Hg,

H /N =H ( T; /N) . (4.51)

V. SQUEEZED STATES

(ii) Replace the generators by their classical limits, the
Q representation of T, in each of the fundamental repre-
sentation of g. This converts H/N into a classical Ham-
iltonian H„. The free energy is N(p) =H„—(1/p)lnFA.

(iii) Study how the minima of 4&(p) change as a func-
tion of changing temperature.

The three steps of this algorithm depend on physical
intuition, Lie group theory„and catastrophe theory, re-
spectively. The importance of this algorithm is that it
reduces to a very simple procedure the problem of deter-
mining the cooperative finite-temperature properties of
the dynamic system.

discussed systematically by Yuen (1976). This procedure
involved applying a classical source to drive two-photon
emission and absorption processes in much the same way
that single-photon processes can be used to generate a
coherent state of the electromagnetic field. The states
produced by this process were originally called "two-
photon coherent states" since they were so closely analo-
gous to the usual (one-photon) field coherent states. The
mathematical properties had been discussed earlier by
Stoler (1970, 1971), who called them "minimum-
uncertainty packets" and by Lu (1971, 1972), who called
them "new coherent states. " A method of optical com-
munication using two-photon coherent states was pro-
posed by Yuen and Shapiro (1978, 1980) and by Shapiro,
Yuen, and Mata (1979). The term "squeezed states" was
introduced by Hollenhorst (1979). Squeezed states of the
electromagnetic field have been detected (Slusher et al. ,
1985; Kimble and Hall, 1986; Shelby et a/. , 1986; Wu
et a/. , 1986). At present, the principal potential applica-
tions of squeezed states are in the field of optical com-
munications and "quantum nondemolition experiments"
designed for the detection of gravity waves (Walls, 1983).
Squeezed states of molecular systems have also been dis-
cussed (Gazdy and Micha, 1985; Gilmore and Yuan,
1987, 1989).

In this section we describe these two-photon coherent
states and summarize their applications in optical com-
munications and in molecular dynamics.

B. Single-mode two-photon systems

1. Two-photon algebra

Squeezed states are obtained by driving two-photon
processes with a classical source. The basic field mode
Hamiltonian describing two-photon processes in a single
mode is

A. Introduction H = h co( a a + —,
'

) + A ( t )a +A, *(t )a (5.1)

The uncertainty principle places a damper on the
enthusiasm with which quantum engineers approach the
problem of coding and transmitting information by opti-
cal means. Specifically, the quantum noise inherent in a
beam of light places a limit on the information capacity
of an optical beam.

It is therefore useful to see if there is any way to "beat"
the uncertainty principle. In fact, the uncertainty princi-
ple is a statement about areas in phase space, and noise
levels in different quadratures are statements about inter-
sections of uncertainty ellipses with these axes. Any pro-
cedure that can deform, or squeeze, the uncertainty circle
to an ellipse can in principle be used for noise reduction
in one of the quadratures. Such squeezing does not
violate the uncertainty principle; rather, it places the
larger uncertainty in a quadrature not involved in the in-
formation transmission process.

A procedure for squeezing the error ellipse was first

+f2 (t)a +fi(t)at+ f*, (t)a . (5.2)

The sequence in which the processes of coherent-state
formation and squeezing occur is governed by the time
dependence of the functions fz(t), f, (t). They can be
constructed by following the general procedure given in
Sec. III.

The two-photon (non-semisimple) algebra h6 of Eq.
(5.2) (single-mode) is spanned by the six operators

h6: In =ata + —,', a",a, at, a,I I (5.3)

with commutation relations

The operators in the Hamiltonian span the Lie algebra
su(1, 1) and generate a restricted class of squeezed states.
More generally, it is desirable to squeeze a field coherent
state. The Hamiltonian for such processes is

H =hco(a a+ —,')+f~(t)a
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[n, a ]=2a, [n, a ]=—2a2, etc . (5.4) faithful representation consists of 4X4 matrices. This
matrix representation is given explicitly by

These commutation relations are summarized by a root
space diagram (Fig. 6). It should be recalled that root
space diagrams exist for non-semisimple algebras as well
as semisimple algebras. The two-photon algebra is not
semisimple (but see below).

The root space diagram is interpreted as follows. Each
of the six operators is plotted in the two-dimensional
space ( r, d ), where r is defined by

n + —,
' E22 —E

a —+2E23 p 0 ~E~) E43
T2

a ~—2E3z, a ~—E3$

(5.6)

[n + ,', Op]—=rOp, (5.5)
r)(n + —,')+BI+Ra +La +ra +la

I =2, 1,0, —1, —2 for a~, a~, I, a, a, and d is the degree
of the operator: d =(2,2, 2), (1,1), (0) for (a, n + —,', a ),
(a, a ), (I). The two subalgebras h ~

= ( n + —,', a t, a, I ) and

su(1, 1)=(a, n + —,', a ) are indicated in Fig. 6. It can be
seen that the root space diagram for the two-photon alge-
bra is a subset of the root space diagram C2 for the sym-
plectic algebra sp(4) =sp(2+2) (cf. Fig. 6 with Fig. 8.3 in
Gilmore, 1974b). That is, the two-photon algebra is a
subalgebra of sp(4).

2. Representation of the two-photon algebra

In physical processes, the two-photon algebra acts on
the harmonic-oscillator Pock space. Matrix elements of
the operators (5.3) are easily computed with respect to
the standard number states ~n ) which form a basis for
this space.

However, many computational simplifications can be
eA'ected by reordering these operators before computa-
tions are actually carried out. The required disentangling
relations are most easily determined in a faithful matrix
representation of h6, which is smaller than the Fock-
space representation. In the present case the smallest

0 0 0 0
2R 0

—2I. —q 0 (5.7)

—l —r 0

This representation can be obtained from the 4 X 4 matrix
representation of sp(4)Dh6. It should be observed that
this finite-dimensional representation is not Hermitian,
and its exponential is not unitary. The validity of group
multiplication within representations is independent of
the metric properties of these representations (e.g., Her-
miticity, unitarity) acting within specific spaces. That is,
this representation is useful for carrying out exponential
operator products, such as occur when integrating equa-
tions of motion, but it is not directly useful for comput-
ing Hilbert-space matrix elements.

3. Realization of the two-photon group

To illustrate the usefulness of this small matrix repre-
sentation, we set up the machinery to carry out a number
of disentangling theorems that will subsequently be use-
ful. The general unitary evolution operator U(t) can be
written in a number of ways. One is as the exponential of
a linear superposition of the elements in the Lie algebra
h6:

2 n+1/2

U(t) =exp[q" (t)(n + —,
' )+R "(t)at + r "(t)a

+L "(t)a'+l "(t)a +6"(t)I] . (5.8)

FIG. 6. Root space diagram of the two-photon algebra, in
which there are three useful subalgebras. These are the sue,'l, l)
algebra (with generators n + 2, a', and a ); the single-photon
algebra h4 (with generators n + 2, a, a, and I); and the
Heisenberg-%'eyl algebra h3 (with generators a, a~, and I).
These three algebras are simple, solvable, and nilpotent, respec-
tively. All are noncompact.

In the 4X4 matrix representation the exponential of Eq.
(5.7) can be computed explicitly. The resulting matrix is
given in Table III.

A diferent realization is more convenient for computa-
tions of squeezed states in optical communications. This
involves products of three separate exponential opera-
tors. These exponentials involve the two-photon opera-
tors a,a, the single-photon operators a, a, and the di-
agonal operators n + —,', I. For example, a useful parame-
trization of the unitary evolution operator U(t) is
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U(t) =exp(ra +la)exp(Ra +La )exp[g(n +—,
' )+M] .

(5.9)

Xexp[g'(n + —,') +5'I] exp(L' a +l'a) . (5.10)

The 4 X4 matrix representation of this realization is also
obtained by simple matrix multiplication. It is also
presented in Table III.

Analytic Baker-Campbell-Hausdorff relations or disen-

Other realizations of the unitary operator are obtained by
changing the order of the exponential operators in Eq.
(5.9). The 4X4 matrix representation of this operator
product is obtained by straightforward matrix multiplica-
tion and is given in Table III.

Yet a third realization of the unitary evolution opera-
tor is particularly convenient for molecular dynamics cal-
culations. This realization involves products of three ex-
ponential operators. In this normal-order realization,
however, all annihilation operators are placed on the
right, all creation operators on the left, and the diagonal
operators in the middle:

U(t)=exp(R'a +r'a )

tangling theorems for the parameters (R,L, r, l, rl, 6),
(R,L, r, l, rl, o)', and (R,L, r, l, rl, 6)" are simply obtained
by equating the matrix representations of these three
operator realizations.

C. Applications of single-mode squeezed states

1. Integrating the equations of motion

The Hamiltonian equations of motion can be convert-
ed to equations of motion for the group parameters
(R,L, r, l, rl, 5)' ' ' in any of the realizations of JI6, in par-
ticular, the three described in the previous section. Such
a set of equations has been derived for squeezed states of
a single field mode by Yuen (1976) and for one- and two-
mode squeezed states of molecular systems by Gazdy and
Micha (1985). These equations of motion are complex
and not easy to generalize to systems with a multiplicity
of modes. Further, although the equations for the
coeIII1cients of the one- and two-photon creation and an-
nihilation operators as well as the identity operator
(R,L, r, l, 5) can be integrated in terms of the remaining

TABLE III. The faithful matrix representations of three realizations of H6.

U(E)

0 0

e q"(n+1/2)+R "a +r'a +L"a +I"a+5"I

r

r
2/II + ( lit It

)
M

(
—l", r" ) 1—e

M

ra +lac Ra +La eq(n +1/2)+5I

0

sinhO e""O

0

2R
smhO

O

cosh Oe

0

0

0

—26 —le "coshO —21.r sinhO

O

sinhO—re ~coshO —2R l 1
O

eR'a +r'a eg'(n+1/2)+O'IeL'a +I'a
—2R 'l'e

—l'e
—25'+ r 'l'e

0 0
e ~ —41.'R 'e ~ 2R 'e " 0

—21 'e

2r'L'e

—2L, "

e =coshOI2+M sinhO
O2 tt2 4L tiR rt

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



898 Zhang, Feng, and Gilrnore: Coherent states

parameter g, the equation for g cannot be integrated in
closed form, as it is reducible to a Riccati equation. Thus
one is ultimately forced to a numerical integration of the
equations of motion.

We prefer numerical integration of the equations of
motion from the outset followed by extraction of the pa-
rameter values (R,L, r, l, Ti, o) using the results of the
disentangling theorems presented in the last section.
This approach is made possible by the mathematical
theorems which underly the disentangling theorems.

The equations of motion for the unitary evolution
operator

i U(t—, t, )=H(t)U(t, t, ) (5.1 1)

with initial conditions

U(tp, tp)=I (5.12)

with the initial condition

M [U(tp tp)]=I4 (5.14)

The matrix integration can be carried out numerically.
The resulting 4X4 matrix, after any time interval, has

I

are in fact equations of motion for an element, U(t, tp), in
the group H6, since the Hamiltonian H (t) of Eq. (5.2) is
an element of the Lie algebra h 6. As a result, these equa-
tions can be integrated in the group itself (Yuen, 1976;
Gazdy and Micha, 1985), in the unitary representation
acting on the Hilbert space, which is the normal
quantum-mechanical procedure, or in any other faithful
representation. In the latter case the greatest economy of
eAort comes about by choosing the smallest faithful
finite-dimensional representation, given in Eq. (5.7). The
equations of motion are then

i—M [U(t, t, )]=M [H(t)]M [U(t, t, )],8

M21
M[U(t, tp)]=

31

M41

0 0 0

M22 M23 0

M32 M 33 0

M42 M43 j.

(5.15)

This matrix contains nine (complex) pieces of informa-
tion. Since there are only six independent Lie group pa-
rameters, the 4 X 4 matrix contains three redundant
pieces of information, which can be, and have been, used
as a check on the accuracy of the numerical integration.

Once the integration has been completed, the group
parameters can be extracted by comparison of Eq. (5.15)
with the 4 X 4 matrix representation of any of the realiza-
tions of the group given in Table III. In the limit
t0 —+ —co, t~+ oo, the group parameters for the S ma-
trix are obtained.

2. Operator expectation values

The computation of matrix elements and expectation
values of operators is greatly facilitated by the disentan-
gling theorems. These can be used to construct generat-
ing functions for operator expectation values. The expec-
tation value of an operator X (e.g., a ) in the state
l%(t))=U(t, t, )~0) is

&x &
= &0~ U'(t, t, )xU(t, t, )lo &

&0~ Ut(t, t, )ei' U(t, t, )~0) ~,=,

(5.16a)

(5.16b)

The matrix element in Eq. (5.16a) depends on the choice
of representation (i.e., Fock space), while the product of
exponential operators in Eq. (5.16b) is representation in-
dependent. This product can therefore be carried out ex-
plicitly in any faithful representation, for example, in the
representation Eq. (5.9),

Ut(t, tp)er~U(t, tp)
I

I

M '[U(t, t, )]M[ei'~]M[U(t, tp)]

Ra + ra 7l(n + 1/2)+6I La + la

The computation follows the solid arrows, and it results
in an expression valid in any representation, in particu-
lar, on Fock space. The matrix element of the disentan-
gling operator product is

& 0 Ra + ra g(n + i /2)+SI La + la
~0 ) e g(y)/2+5(i')

(5.17)

Since il(0) =5(0)=0, the lowest moments are

&x) =
—,'z'(0)+6'(0),

&x') =(,'&+a)"~, ,+(&x))',
& ax'& = &x'& —(&x) )'=(-,'~+a)" ~, ,

(5.19)

&Xn)
Bp

7l(y)/2+ 6(y)

This is the generating function for the moments of the
operator X:

In Table IV we summarize the generating functions for
moments of the creation and annihilation operators a, a

ya~+y~a
( & e ~ ~ ) ) in three diFerent parametrizations of the
coherent states for H /U6( 1 ) U(1). These are:
lclP) =D (cx)S(P)~0), lan & =S (f3)D (a) ~0), and
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TABLE IV. Generating functions for moments of the creation and annihilation operators
F(y*,y)=(exp(ya +y*a) & in three different parametrizations of the coherent states for

H. /U(1)U(1).

logF (y, y*)

D(a)S(p)lo&
S (P)D (a) Io &

e Ra +ra —R a —r a
O

)fc

y "a+ —'y* PsinhfPI/IPI+H. c. + —'y*y(sinh IPI+cosh IPI)

y*(a coshIPI+a*PsinhlPI /IPI )+ —,
' y*'PsinhIPI/IPI+H. c.

I'+2T R + 1 g2 2R +H.c.
1 —4R R 2 1 —4R'R

IRr & =exp(Ra +ra —R*a —r "a)IO&,

where D (a) =exp(aa —a*a) and S(P)=exp —,'(/3a
pea 2)

Computation of 5-matrix elements between Fock states
is even simpler. The 4 X 4 matrix (5.15) is related by
disentangling theorems to the normally ordered product

(5.20)

The matrix element of particular interest for molecular
dynamics calculations is the excitation amplitude be-
tween the initial ground state IO& and a final state with n

quanta, In &. This matrix element is

(nIexp(Ra +ra )e xp[ rl(n + —,')+M]exp(la +la)IO& = (nIexp(Ra +ra )I0&exp(ri/2+5) . (5.21)

The remaining matrix element is a finite sum:

n/'2] n —2n2 g n

(nIexp(Ra +ra )I0&= g v'n! .
o (n —2n2)! n2!"2

(5.22)

I

tromagnetic field operator

1 BA
c Bt

1/2

3. Squeezed states in quantum optics

)
4~An)

2V
(ae Eatt+at I a)tt (5.24)

It is useful to express the creation and annihilation opera-
tors in terms of two Hermitian operators X and F ( =I')
as

X+i Y
v'2 X =(a +a )/v'2,

F =(a a)/&2i— (5.25)X—iY
v'2

The Hermitian operators then have the properties

(5.26)[X,Y]=i

AXAY~
4

coherent (5.27)

where Eq. (5.27) follows from (5.26) by the Schwartz in-

equality. The Hermitian operators X, Y describe the two
quadrature phases of the electromagnetic field. They can
in principle be separately measured using a phase-
sensitive detection technique, such as homodyne detec-
tion (Slusher et al. , 1985). For an electromagnetic field
in a pure (one-photon) coherent state, the zero-point Auc-

tuations in the two quadratures are equal. However, in a
squeezed state, the zero-point fluctuation in one of the
quadratures is amplified, while the fluctuation in the oth-
er quadrature is deamplified. As a result, there is a
reduction in the quantum noise level associated with

(5.23)

Since position dependence is not important in the discus-
sion to follow, it will be suppressed below. The elec-

In this section we show how squeezed states can be
used to reduce uncertainty in measurements of the elec-
tromagnetic field. This is done by expressing the elec-
tromagnetic field in terms of the single-mode creation
and annihilation operators. The expectation values of
these operators then determine the time-dependent mean
value of the electromagnetic field. Measurement uncer-
tainties are determined by computing the variance of
these operators. These expectation values are computed
for

(i) a pure (single-photon) state
Ia& =D(a)I0&,

(ii) a pure squeezed state Ip& =S(p) 0&,
(iii) a general squeezed state Iaf3&=D(a)S(p)IO&.
The 2 vector potential for a single mode of the elec-

tromagnetic field can be constructed in terms of the
single-mode creation and annihilation operators as

1/2
((kx att) t —t'(kx tat)—)—~ae —a e

i 2 Veal,
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measurements in the second quadrature.
The electric field operator is

E =2k,(X cosset + Ysinn~t) . (5.28)

b.X b I XY I

b I YXI bY
cosh'IP I+»nh'IPI

I24

A pure coherent state la & can be formed by applying a
classical current to the vacuum. This is represented by a
Hamiltonian of the form (5.2) with fz(t)=0, fi(t)%0.
Once a coherent state

I
a & has been created and f, (t) =0,

the coherent state evolves in time with simple statistical
properties. The electric field and variance are

& E ( t ) &
=2A ( & X & co stot + & Y & sincot ),

& bE (t) & =(2A, ) (cosset, sincot)

where

bX b IXYI
bI YXI bY

cosh) t
Sln&t (5.29b)

b, IXYI =
& —,'(XY+ YX) &

—&X&& Y& . (5.30)

cosset
&E(t) & r'u, =(Rea, lma) (5.31)

& b E (t) &
= (2A. ) (cosset, singlet)

In a pure coherent state Ia& =D(a)IO&, the electric
field and variance are

sinhlPlcoshlPI ReP ™P
2lpl ImP ReP

(5.35)

The uncertainty ellipse described by this covariance ma-
trix is shown in Fig. 8. The sem. imajor and semiminor
axes have lengths —,'e — . The semimajor axis makes an

angle g with the X axis, where g is defined by p= lple'~.
The variance in electric-field measurements is given by
the quadratic form Eq. (5.35). This has a particularly
convenient interpretation as the projection onto the X
axis of the error ellipse, which is rotating about its center
in the clockwise direction with an angular velocity m.
This interpretation is illustrated in Fig. 8(b).

Homodyne detection in phase with the quadrature of
the minor axis leads to reduction of the quantum zero-
point Auctuation below the level of a standard coherent
state, for example, the ground state of the electromagnet-
ic field.

The average value of the electric-field operator and its
variance can be computed in the same way when the field
is in a generalized squeezed state,

bX b, IXYI
b I YXI hY

where the covariance matrix is

cosset

sinco t (5.32)

bX b, IXYI
b I YXI bY

1 0
0 1

(5.33)

&plElp&=o.

The covariance matrix is

(5.34)

These results are presented graphically in Fig. 7. The
electric field oscillates sinusoidally. It may be visualized
as the projection onto the X axis of a point moving on a
circle of radius

I
a I, moving clockwise with angular veloc-

ity m. The initial condition is the point with coordinate
a=(&X&, & Y&)=(Rea, Ima). This is shown in Fig. 7(a).
The covariance matrix is a multiple of the identity, indi-
cating that the error ellipse is a circle. This is shown in
Fig. 7(b). The results of Figs. 7(a) and 7(b) are combined
in Fig. 7(c), which shows the time dependence of the elec-
tric field together with its uncertainty (shaded region).
The uncertainty in the measurement is constant, indepen-
dent of the value of the electric field and independent of
the quadrature that is measured.

A pure squeezed state lp& can be found by applying a
Hamiltonian of the form (5.2) with f, (t)=0, f2(t)%0 to
the vacuum. Once the squeezed state I p & has been found
and f2(t)=0, it evolves in time with simple statistical
properties. The electric field is

(b)

(c)

FIG. 7. Time-dependent field-coherent states: (a) Evolution of
states with the initial condition a=((X), ( Y&)=(Rea, ltna);
(b) the time dependence of the uncertainty (described by covari-
ance matrix) in the coherent states; (c) the combination of (a)
and (b).
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r/ae-& f/ae&
P=lPI6~

&apl«'lap& =(Opl«'lOp)

=(2A, ) (cosset singlet)

bX b IXY]
b I YXI b Y

cosset

sin~t 5.38

(b)

I ap &
=D (a)s(p) lo & . (5.36)

In this case the field expectation value and its variance
are given by previously described results. We find

coscut
(aPlElaP) = (aOlElaO) =2k(Rea Ima)

FIG. 8. Uncertainty ellipse of squeezed states: (a) Uncertainty
ellipse described by the covariance matrix of Eq. (5.35); (b) the
time dependence of the uncertainty ellipse.

That is, the electric-field expectation value in the general-
ized squeezed state lap) is the same as for the pure
coherent state

l
a ), and can therefore be represented

graphically as in Fig. 9(a). The variance in field measure-
ments is precisely that determined for a pure squeezed
state and is therefore as illustrated in Fig. 9(b). The first
two moments of the electric-field operator are illustrated
graphically in Fig. 9(b). In the figure the most likely
values of the electric-field measurements are those which
occur within the error ellipse. This is centered at the po-
sition ((X),( Y) )=(Rea, Ima) associated with the mean
value of the electric field for a pure coherent state la, O).
The error ellipse itself is that associated with the pure
squeezed state lOp). The time evolution of (E ) and its
uncertainty is obtained by projecting the error ellipse and
its center onto the X axis as the ellipse rotates rigidly
around the circle lal =constant. The ellipse rotates uni-

formally around its center with angular frequency co as
its center rotates uniformly about the origin with the
same angular velocity (Walls, 1983).

(a)

(b)

(5.37)
4. Squeezed states in molecular dynamics

Squeezed states occur naturally in the description of
molecular processes. They occur when the Hamiltonian
describing the collision is expanded in a power series of
the local position operators and the expansion is truncat-
ed at quadratic terms. The Hamiltonian that remains is
then a linear superposition of operators which close un-

der commutation. If the collision is collinear and only
one internal vibrational mode is present, the algebra
describing the collision is the two-photon algebra h6 of
Eq. (5.3). As a result, the disentangling theorems of
Table III are immediately applicable to the description of
this molecular collision problem. These methods have
been used to describe excitation of vibrational states, but
not rotational or electronic states, in molecular collisions
(Gilmore and Yuan, 1987, 1989).

To make this discussion explicit, we assume that a dia-
tomic molecule, such as 02, NO, or N2 is bombarded
with an inert atom such as He. The Hamiltonian
describing this collision is

H =H, +H +H;„, , (5.39)

where H, (Hz) is the Hamiltonian describing the target
(projectile) and H;„, is the interaction Hamiltonian

H;„,(R,q)= V(A, q) —V(~, q) . (5.40)
FICx. 9. Field expectation values in squeezed states: (a) The
electric-field expectation value and variance in field measure-
ments (uncertainty) in genera1ized squeezed states; (b) the time
dependence of field measurements and corresponding variance.

Here R is a coordinate describing the target-projectile
separation and q are internal coordinates describing dis-
placement from equilibrium of the atoms within the mol-
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+higher-order terms . (5.41)

ecule. In the limit of large R, H;„,(R, q) is zero, but as
the projectile approaches the target the interaction in-
creases.

To describe the collision, we make a semiclassical an-
satz. That is, we assume the coordinate R is classical and
follows a classical trajectory R (t) T.he interaction Ham-
iltonian is then expanded up to second order in the dis-
placement operators,

H;„,= Uo(t)+ g U, (t)(q, —
q, )+—,

'
U,, (q —

q ), (q —
q ),

The matrix element of S between the initial ground state
l0) and the final excited state ( n

l
is

n/2] n —2n2

(nlSl0& = g, ,
&n!exp(g/2+5) .

0 (n —2nz)! nz!"2

(5.45)

Matrix elements between an initial excited state ln, ) and
a final excited state ( nf l

are also easily computed:

The higher-order terms are neglected. The resulting
Hamiltonian then has the form of Eq. (5.2). This can be
reexpressed in terms of creation and annihilation opera-
tors using the relation q, =V fi/mao(a, +a;")/&2. In the
case of a collision of an atom with a diatomic molecule,
only one vibrational mode is present, and the total Ham-
iltonian reduces to

(nflsln, ) =

where

min(nf, n,. )

k=0
C(n k 'rR)c(n k'11.)e"'"+' '+s

(5.46)

i
n. —k —2m

H = A'co+ 8(t) (a a+ ,')+&Pi/2m—coA (t)(a+a )Ice
C(n, , k;/I. )=

m=0
Qn, !/k! .

m! (n; —k —2m)!

+(fi/2m')8(t)(a +at ) . (5.42)
(5.47)

We are particularly interested in computing the probabil-
ity that a target molecule, initially in its ground vibra-
tional state, is excited into its nth vibrational state during
the collision.

This probability is evaluated by computing the S ma-
trix for the collision. The S matrix is computed as previ-
ously described. That is, both the Hamiltonian and the
time-dependent unitary evolution operator are mapped
onto the faithful but nonunitary 4 X 4 matrix representa-
tion (5.6). The equations of motion are then integrated
over the course of the collision. This integration is car-
ried out numerically, resulting in a 4 X4 matrix with the
structure of Eq. (5.15). The group-theoretic parameters
for the S matrix are then extracted from the 4 X 4 matrix
M(S) in the realization (5.10), which is particularly con-
venient for computing transition probabilities.

Since the description is semiclassical, we balance the
initial and final kinetic energies to enforce energy conser-
vation. That is, to compute the excitation probabilities
of the nth state from the ground state, the time depen-
dence of the coordinate R is chosen so that

2
[R ( m ) R~( —ca )]+b, P—' =0 . (5.43)

(5.44)

The coordinate R (t) is computed classically, with the
loss of energy spread smoothly over the collision. Once
R (t) is chosen numerical integration of Eq. (5.13) is
straightforward.

After the S-matrix parameters have been extracted
from the numerical integration, the S matrix can be con-
structed explicitly,

S =exp(Rat +ra t)e xp[ i()n + —,')+BI]exp(l.a +la) .

We mention explicitly that a different classical trajectory
is integrated for each different excitation, in keeping with
the energy conservation requirement.

In Fig. 10 we show the probability of excitation from
the ground state to the nth excited state in the collision

He+ H2 He+ H2 (5.48)

for n =0 to n =6. These results are compared with cal-
culations by Gazdy and Micha (1985) made using
different computational procedures.

l3. Multimode two-photon squeezed states

1. Multimode two-photon algebra

The procedure described in the previous sections can
be extended from the single-mode case to the multimode
case. On the mathematical side, this involves extending
the analysis from a subgroup of sp(2+ 2) to a subgroup of
sp(2n +2), where n is the number of modes present. On
the physical side, the interpretation for quantum optics
differs slightly from that of molecular dynamics. In
quantum optics, this extension allows the description of
coherent two-photon processes in which the photon can
occur in any of n modes. In molecular dynamics, it al-
lows description of collinear molecular scattering pro-
cesses which involve vibrational excitation into n normal
modes distributed in an arbitrary fashion between the in-
cident and target molecules.
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0 0 0 0

R,2

0 0
2R 11 0

n =2 D21 D22 2R22 R21 0
D; (a; a + —,'6; )+R; (a, a )+L, (a, a")+r,a, +l, .a, +M —L 21

2L

—2L22
—L 12

—l 2

—D 22

—D 21

r2

(5.52)

It should be obvious that L, =L", and R,"=R, , but D,"WD, in general. In the general n-mode case the
(2n +2) X (2n +2) matrix representation of this algebra is

0 0
D

0 0
2R 0

—2L —D 0 (5.53)

where the square matrices D, R, L are analogs of those in (5.52), "tilde" indicates reflection in the minor diagonal, and
R =R, L=L.

Disentangling theorems of the type discussed in Sec. V.B.3 (cf. Eqs. (5.8) and (5.10)] can be constructed without
difficulty with the aid of the representation (5.53). For example, the analog of Eq. (5.10) is

exp(R,"a;a +r, a, )exp[D; (a, a + —,'5,")+i)I]exp(L,"a,a, +l, a, )
r —2Re Dl

—e l
—26+re l

e —4Re L
—e D2L

—l+2re DL

—De 0
—re

0 0

2Re D 0

(5.54)

The analogs of Eqs. (5.8) and (5.9) are similarly con-
structed. In fact, they can be constructed by inspection
of the corresponding matrix results given in Table I.
That is, appropriate indices are given to the scalars (l, r in
Table I~l, , r, , while ri, R,L in Table I~D,",R,",L,"),
and contractions are carried out on the appropriate in-
dices.

The point of constructing these realizations of the n-
mode two-photon algebra is again to simplify computa-
tion. That is, the equation of the motion for this algebra
can be integrated following the procedure described in
Sec V.C.1. The only change is that the 4X4 matrix rep-
resentation used in Eqs. (5.13)—(5.15) is replaced by the
(2n +2) X(2n +2) matrix representation (5.53). The
output of a numerical integration code is a
(2n +2) X (2n +2) matrix with the block structure given
by the matrix on the right-hand side of (5.15), where M,,
(i,j =2, 3) are n Xn matrices and M„, (r or s =1 or 4) are
n X 1 or 1 X n matrices. Again, the parameters
(D~, R,J,L~, r, , l, , 5) for the S matrix are extracted from
the numerical integration [right-hand side of Eq. (5.15)]
by a matrix comparison.

2. Multimode squeezed states

The Hamiltonian describing the preparation of the
electromagnetic field in a quantum state through one-

and two-photon processes driven by classical sources is

H(t)= gA'co;(a;a;+ —,')+ g [f; (t)a;"a +H c]..

+ g g,, (t)(a, a~+ —,'5,~)+ g [h, (t)a,"+H.c. ] .

D (cx) =exp(a, a,t —cx,*a, ),
S(P)=exp ,'(P, a,ta" P,

*a, a )—. "—"

In fact, the most useful parametrization is

aP):D(a)S(P)
~

)0. —

(5.56a)

(5.56b)

(5.57)

The statistical properties of the electric-field operator

(5.55)

The dynamic group for this Hamiltonian is the two-
photon group. As a consequence of the general theorem
on coherent states, under this Hamiltonian a two-photon
coherent state, in particular, the ground state of the elec-
tromagnetic field, will evolve into a two-photon coherent
state.

The most general n-mode two-photon coherent state is
of the form exp(R; a; a +r, a,t H. c. )~0). As befor—e,
there are a number of ways to parametrize these coherent
states. The simplest involve successive applications of
the n-mode squeezing operator S(P) and the generalized
displacement operator D (cz),
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E(t) can be computed when the electromagnetic field is
in the squeezed state laP). The squeezed state is
prepared from a Hamiltonian of the form (5.2) with

fi(t) =0, f2(t)%0. We analyze the properties of the field
after the state has been prepared and the driving terms
f, (t),f2(t) have returned to zero. The electric field in
the many-mode case is

& aPlSE'laP& = &OPlwE'lOP)

=(2A, ) (coscot sincot)

hX b, I XY I

b{YXI hY
coscot

singlet

(5.66)
E(t)=2k. Q +a~;(a;e ' +a;e ' ),

1

(5.S8)

3. Vibrational excitation in molecular collisions

(5.59)

Expressing this in terms of in-phase and out-of-phase
quadrature a; = (x;+iy; ) as before, we find

& aplElap) =2k, g +co;(x;cost@;t+y;since;t) .
I

(5.60)

That is, the centroid of the distribution, or expectation
value of the electric-field operator, evolves in time as it
would for n uncoupled modes.

The variance of this operator is given by

&apl(E —E)'lap& = &oplE'lop& . (5.61)

This is computed by computing the e6'ect of the squeez-
ing operator on the one-photon creation and annihilation
operators,

a a
g —

1(p) g (p) —e
—rid(l3)

Q a
8 a

C D a

(5.62)

where

where we have assumed a small frequency dispersion.
The expectation value of the electric-field operator is

&aplElap) = &aOlElaO) =2K, g +co;(a;e ' +a,*e '
) .

When the molecules involved in the collinear scatter-
ing described in Sec. V.C.4 are more complex than a dia-
tomic and a single atom, then typically more than one
internal vibrational degree of freedom can be excited. In
this case, the Hamiltonian (5.42) has the more complicat-
ed structure

FI(t)= g A, (t)(a, a,. + —,')+ g D; (t)(a; +a; .)(a +a )
t i (j

+ gB;(t)(a; +a;)+ g C;;(t)(a; +a; ) . (5.67)

Once again, this operator is a linear superposition of gen-
erators in the k-mode two-photon algebra; here k is the
number of excitable internal vibrational modes. The time
dependence of the parameters in the Hamiltonian is con-
structed using the semiclassical ansatz, and the operator
structure describing the internal degrees of freedom is
obtained by truncating the momentum-independent po-
tential, typically a sum of Morse potentials, beyond quad-
ratic displacements from equilibrium.

We are particularly interested in determining the exci-
tation probabilities during the collision. The initial state
is assumed to be the ground vibrational state LO). The
final state will be a coherent state, since H (t) is linear in
the generators of the two-photon algebra,

A =D=c soh+PP*, B =/3 ' =C* .
e

(5.63)
final ) = g l

n ) A (n ), (5.68)

Then the covariance matrix is (co; =to)

hX 6 I XYI
b, I YXI hY

=—,'(cosh +PP*+sinh+PP*)I2

—.(MP —/3'M)1

1 I+—
1

—.(MP —P*M) —(MP+P*M)
(5.64)

where

sinhV PP*cosh+PP*
(5.65)

Thus the variance of a multimode electromagnetic field is
(A. =4mkco/2V)

where ln ) = ln„n2, . . . , nk ) and in particular the
ground state is l0) = lOi, 02, . . . , Ok ).

The probability amplitudes are S-matrix elements,

A(n)=&nlSlO) . (5.69)

The S matrix is constructed numerically as described pre-
viously in Secs. V.C.1 and V.D.1. Specifically, the equa-
tions of motion (5.13) are integrated numerically in the
faithful (2k+2)X(2k+2) matrix representation. The
output of the numerical integration is then compared
with the (2k+2)X(2k+2) matrix representation of
some convenient realization of the S matrix. The most
convenient realization is the "normally ordered" repre-
sentation (5.10), whose faithful representation is given ex-
plicitly in Table III. The redundancy in the information
content in these matrices is used to verify the accuracy of
the numerical integration.

Once the S-matrix parameters have been computed,
the transition probability amplitudes are easily found:
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3 (n) = ~ n lexp(R, "a; at+rat)exp[D, "(a, a + —,'6,")]exp(L; a, a +l a;) lO~

=(n lexp(R; a, a. +r, at)l0)(Olexp[D, "(a, a + —,'5,")]l0)(Olexp(L, "a,a,. +l, a;)l0) . (5.70)

The last matrix element is 1. The middle matrix element
is e" ' 'D+~. The first matrix element is

The operator a, occurs to the power

2m;;+m;+ g m,
JAl

(5.72)

The matrix element is nonzero only when this sum is n,
for each i. As a result,

(R,, )A(n)= g Q
m. . ij

V

n,
—2m, .,

—g m,(r;) '

Qn, !
(n; —2m;; —g m;, )!

(1/2)TrD +6

by a power-series expansion of the exponential and
resummation of all nonzero matrix elements. The disen-
tangling theorem, as represented by the computation of
the 5 matrix in normally ordered form, reduces this
infinite summation to a sum (5.73) over a finite and typi-
cally small number of terms.

These methods have been used to compute excitation
probabilities in the collision Nz+Oz, which involves two
vibrational modes, and the collisions N2+ O2 and
NO+CO&, which involve five modes, only three of which
are excitable in the collinear collisions (Gilmore and
Yuan, 1989).

In summary, squeezed states are coherent states of the
two-photon algebra. They have already been useful in
describing electromagnetic processes and scattering of
molecular species. However, we expect these states to
find even wider applications in the future for several
reasons. First, the two-photon algebra is a subalgebra of
the symplectic algebra. This algebra, in turn, plays a
basic role in the formulation of classical mechanics. Any
attempt to demonstrate a close relation between classical
and quantum mechanics is likely to do so through use of
unitary representations of the symplectic group and
specifically through the coherent states associated with
the group. Squeezed states will evolve in another useful,
important, and related direction as well. The dynamic

Although this sum may appear complicated, in practice
it involves relatively few terms, particularly for the low-
lying excitations that are generally of interest. It should
also be recalled that use of the disentangling theorem al-
lows us to calculate exactly all intermediate processes in-
volving excitation and deexcitation which are represent-
ed by the sum implicit in the computation of

( n
l exp( R,

'
a,ta + r,'a,"—H. c. )

l
0 )

I

group for the n-dimensional harmonic oscillator, as
u(n + 1), is readily enlarged to sp(2n +2) by inclusion of
double-photon creation and annihilation operators. This
enlarged algebra can be used to relate harmonic oscilla-
tors with frequency co to harmonic oscillators with a
different frequency. Algebraic techniques employing
sp(4, R) have already been used to compute overlaps and
matrix elements of important operators (dipole moment,
kinetic energy, potential energy) between arbitrary excit-
ed states of oscillators with two different frequencies
separated by a distance d in one dimension (Katriel,
1970). The two-photon algebra generated by the creation
operators a, the angular momentum operators
L, =a ak —aka (i,j,k =1,2, 3 cycle), and the scalar
creation operator a a, plus their adjoints and commu-
tators has been used to compute overlaps and operator
matrix elements between three-dimensional oscillator
states with different frequencies at different centers (Ka-
triel et al. , 1990). Such multicenter Gaussian overlap in-
tegrals have multiple uses in molecular and nuclear phys-
ics (Rowe, 1985).

Vl. FERMIQN COHERENT STATES

There are two fundamental types of particles in nature:
bosons and fermions. These two types of particles have
different commutation relationships for their basic opera-
tors and different statistical properties for the corre-
sponding states. Bosons satisfy the standard canonical
commutation relations and Bose-Einstein statistics, while
fermions obey the anticommutation relations and Fermi-
Dirac statistics. These differences are explicitly
represented by different group structures and the associ-
ated Hilbert spaces. Generally speaking, realistic quan-
tum systems usually couple these two types of particles.
However, since the bosonic and fermionic algebras corn-
mute, their coherent states can be separately constructed.
In Sec. V, we constructed the boson coherent states. In
this section, we shall discuss fermions only.

The archetypical fermion systems are of course the
atomic and nuclear systems. However, except f'or the hy-
drogen atom and the deuteron, such systems usually con-
sist of a large number of interacting particles (of the or-
der of 10 ), which would render exact many-body solu-
tions an impossibility. Thus much of our understanding
of the quantum dynamics of fermions has been obtained
via some (time-honored) approximation schemes. One
such scheme is the variational principle, whose cardinal
input is of course the choice of the trial wave function.
The two criteria of a "good" trial wave function are that
it maximize the number of quantum correlations and that
it be simple to use. The coherent states constructed from
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the system's group structure are, as we have argued, the
best candidates to satisfy such requirements.

In this section we shall construct various ferrnion
coherent states for different fermion algebraic structures.
The corresponding geometrical space will include explic-
itly the Pauli principle and Fermi-Dirac statistics. Gen-
eral many-body methods are also discussed via the
coherent-state theory.

A. Single-fermion system

1. Algebraic structure of the single fermion

First let us consider a single-fermion system. Suppose
the system's Hamiltonian can be expressed as a function
of the creation and annihilation operators a and a of a
single fermion which satisfies the standard anticommuta-
tion relations

[a,at]+=I, [a,a]+=[a,a ]+=0 . (6.1)

Then such a system possesses an SU(2) dynamic group
(Klauder, 1960). Generators of this SU(2) are

{a, a, a a —
—,
'

I with the following algebraic structure:

[at, a]=2(a a —
—,'),

one correspondence with the angular momentum opera-
tors {J+,J,JOI with spin —,'. Thus the coherent states
of the single-mode fermion can be constructed by follow-
ing the general algorithm of Sec. III.

2. Single-fermion coherent states

=sin(9/2)e '~l —,', —,
' ) +cos(0/2)

l —,', —
—,
' ), (6.3)

where g= (8/2)e '~. Equation (6.3) shows that the
group definition of the fermion coherent states possesses
a natural topological space, SU(2)/U(1), and thus all the
results of Sec. III.D are also applicable to the fermion
coherent states with j =

—,'. For instance, the complete-
ness of the fermion coherent states is

Since the Hilbert space of the single fermion contains
only two states, it can be realized by the space of the sim-
plest irrep I (j =

—,') of SU(2), where j is the angular
momentum quantum number, i.e., spin. The basis vec-
tors of I (j =

—,
'

) are { l
0) =

l —,', —
—,
' ) and

The fermion coherent states are then constructed as fol-
lows:

l —,', g) =exp(ga t.—(*a)l —,', —
—,
' )

[a ta —
—,', a] = —a, (6.2) (6.4)

[ata —
—,', a ]=a

Obviously, the operators {a,a, a a —
—,
'

I are in one-to-
I

where d A =sinO d 0 dy, and one of the useful BCH for-
mulas can be expressed as

exp(ga —/*a) =exp(ra )exp[in(1+r*r)(a a —
—,
' )]exp( —w*a)

=exp( —r*a)exp[ —ln(1+x*v)(a a —
—,')]exp(ra ) . (6.5)

B. Finite many-fermion system

Now let us consider a system of r single-fermion states.
The creation (a,t) and annihilation (a ) operators of these
states (e.g. , the electrons in the atomic system or the nu-
cleon in a nucleus) satisfy the following anticommutation
relations:

[a;,a~]+=5, , [a;,a ]+=[a;,a, ]+=0, (6.6)

where 1 ~i, j ~r. Several algebras can be constructed
from these operators. This means that different coherent
states related to the corresponding algebra can be estab-
lished and have different properties.

The relationship of w and (0@) is given by Eq. (3.89).
The coherent states of a spin- —,

' fermion field in terms
of c numbers and the associated path-integral formalism
were discussed by Klauder (1960).

1. Fermion u(r) algebra

It is well known that the r operators {a,a l
1 ~i,j ~ r I

span Lie algebra u(r). Their commutation relations are

[a; a, ah, a&]=5 ka; a~ 5,Iaka— (6.7)

If we let H; =a; a;, then the set {H; li = 1, . . . , r I spans
the maximum Abelian (Cartan) subgroup of u(r). The
commutation relations in the Cartan standard bases are

[H;, a ak]=(5; —5;k)ajak .

It is obvious that the roots e; —e (1 ~i,j+ r) of this r
level fermion u(r) algebra span the root space A„

For the fermion u(r) algebra, the Hilbert space of in-
terest carries a fully antisymmetric representation

A={A,„R~, . . . , X„I={1,. . . , 1,0, . . . , 0]
—

{ik Or —
kI

of u(r). The basic states in this Hilbert space are the set
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where E," is an r Xr matrix with + I in the ith row and
jth column and zeros otherwise. For the fermion U(r)
with fully antisymmetric representation I 1",0'
the extremal state may be taken as
~ext)=~1, 1, . . . 1,0, . . . 0) [which in fact is the unper-
turbed ground state of the many-body Hamiltonian, Eq.
(3.3), in the Hilbert space of [1",0" "J ]. Thus

a, a. ~ext) =0 (1 &i' &k or k+1&i j &r) . (6.10)

These operators Ia, a ~1 &i & k, 0 +1&j r I span a
subalgebra u(k)i!in(r —k) of u(r). The corresponding Lie
group U( k)U(r —k) is just the stability subgroup of
U(r) which leaves the extremal states ~ext) invariant.
Hence the coherent states of the fermion U(r) group can
be defined as

(il, a; a~
—H. c. )~ext) . (6.11)~A, Q) =exp

k+1 &i &r
1&j&k

These coherent states have a natural topological coset
space U(r)/U(k)U(r —k). By comparing these states
with the boson (photon) coherent states of the U(r)
group, we can see clearly the difference between the topo-
logical spaces of the boson and fermion systems. [Note,
for the boson system, the topological space is

U(r)/U(1)U(r —1), since the extremal state is the bo-
son ground state in which all particles are in the lowest
state. The physical reason for this difference is that they
satisfy difFerent statistical properties. ]

Since the fermion U(r) coherent states are defined ac-
cording to the general algorithm given in Sec. III, all the
properties listed there are preserved for Eq. (6.11). Here
we shall discuss the details only of the symplectic struc-
ture, the BCH formula, and the completeness relation.
These properties are useful in practical applications.

The symp/ectic structure: The topological space
U(r)/U(k)SU(r —k) of the fermion U(r) coherent states
is a symmetric space [a (r —k) Xk dimensional complex
manifold (Helgason, 1978)]. Its symplectic structure is

found as follows: In the faithful matrix representation of
the U(r), the coset representative of
U(r)/U(k)U(r —k) is

[ ln, , ni, . . . , n„) I, with n, =0, 1 and g n, =k. There are
Ck =r!/k!(r —k)! states in this space.

Although not directly related to the fermion irrep of
u(r), the faithful matrix representation of the u(r) ele-
ment is also useful, as we shall see in the subsequent dis-
cussions and calculations. In the faithful matrix repre-
sentation, every generator of u(r) corresponds to an r X r
matrix. Explicitly, we have

(6.9)

with

(6.13)

by using Eq. (6.9).
If we introduce the projected coset representative as

'T =
QI„—z'z

'

then a group transformation

(6.14)

8
g =

C D HU(r)

acting on the coset space U(r)/U(k) XU(r —k) can be
explicitly expressed as (Hua, 1963)

r'=( A r+B)(Cr+D) (6.15)

By confining the transformation g onto G/H: g H G/H,
we can find the metrics gij of such a space from Eq.
(6.15). The result is

ds = g g~pd7 ~dip
= g d'r dr p

p p Bj 87p

where ~ =—~,", and

F =ln det(Ii+rtr) .

The measure of this space is (Hua, 1963)

(6.16)

(6.17)

dpA(r, r*)= dim V

Vol[U(r)/U(r —k)]
X[det(I„+ r)r] "Q dr dr* . (6.18)

Equations (6.15) and (6.17) show further that
U(r)/U(k) XU(r —k) is a Kaehlerian manifold (Hel-
gason, 1978) which possesses explicit symplectic struc-
ture with a nondegenerate closed two-form:

l
co = g g~pd'r~/i dip

a, p

(6.19)

where z and il are the (r —k)Xk complex matrix. The
explicit form of g can be obtained from the faithful ma-
trix representation of the operator

(il,"a; a )
k+1&i ~r

1&j&k

exp
k+1 &i ~r

1&j&k

(il;.a, a.—H. c. )

gr„„—zz'
(6.12)

The function F defined by Eq. (6.17) is called the Kaehler
potential of this Kaehlerian manifold.

It is worth pointing out here that although the above
discussion of the geometrical structure seems only to de-
pend on the properties of U(r)/U(k)g U(r —k) and to be
independent of the fermion representation space, it will

be seen in the next section that the Kaehler potential [Eq.
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(6.18)] which determines this geometrical structure is
easily obtained from the coherent states of Eq. (6.11) and
thereby intimately relates to the fermion representation.

The BCH formula: The BCH formula of U(r) can easi-
l

ly be obtained by using the matrix representation of its
group element. For example, the following BCH formula
of U(r) is often used in the application of the fermion
U(r) coherent states:

exp
k+1&i &r

1&j&k

(rj,,a, a, —H. c. )=exp
k+1&i&r

1&j&k

(r; a, a/)exp
1&ij &k

k+1&i j ~r

(A,; a; a )exp
1&i &k

k+1&j&r

(6.20)

Th«elation b«ween (rj, A, ;j ) and (g;,. ) can be found explicitly in the corresponding matrix representation of the above
identity relation,

exp
k+1&i &r

1&j&k

(r,ja, a )exp
1&i,j&k

k+1&i j &r

(k,/a, aj. )exp
1&i &k

k+1&j&r

(
—r,*ja, aj)~

expel

0 expk2

0 I, k 0

Ik

exp'. l
—~ expk2~ ~ expk2

exp~2~ exp~2
(6.21)

where the matrices ~, k„and A, 2 are the nonzero matrix
block in the faithful matrix representation of the opera-
tors

I

Eq. (6.11)]satisfy the completeness relation

I ~n&dj (r, r*)&n~=I, (6.26)

and

k+1&i &r
1&j&k

(rja, a ),
k+ 1 &i j ~ r

( A, , a; aj ),

r=z(I„—z'z)-'", (6.22a)

exp', , =(I„„—zz ) '~, exp/(, 2=(I/, —z z)' . (6.22b)

(A,,a,ta, ),
1&ij &k

respectively. Comparing the matrices in Eqs. (6.9) and
(6.21), one obtains the following relations:

If;(r)f2(r)dp'(r, r*) & ~ . (6.28)

where the measure d/M(r, r*) is given by Eq. (6.18).
Therefore any

~
4 ) in the Hilbert space of the irrep

[1",0" "]can be expanded in terms of the coherent states
given by Eqs. (6.11) or (6.23):

)e) =1 l~~r&f(r)N '(, r*)dj -(r, ~*) (6.27)

where f (r) EL [ U(r) /U( k) 13UI(r —k),p'] is an analyti-
cal function of r and L [ U(r) U/( k) U(r —k),p'] is the
square-integrable functional Hilbert space with measure
dp, '=N '(r)d p(r),

Using this BCH formula, we can rewrite the coherent
states (6.11) as 2. Fermion so(2r) algebra

~Q)=, exp
I

N(r, r*) k+
1&j&k

(r;,a;a )~ext&
The r(2r —1) operators Ia; a —

—,'5; (1&i,j &r), a, a,
a, a (I & i&j & r) I span the Lie algebra so(2r). The
commutation relations are

N(r, r*)'~ (6.23) [a; a, —
—,'5;j, aka/ —,'5/, /]=5, k(a; a/

———,'5;/)

where N(r, r*) is the normalization

N(r, r*)=det(I +kr)r (6.24)

F(r, r")=InN(r, r*)=in(& r~~r) ) . (6.25)

The comp/eteness relation: According to the general
theorem of completeness, coherent states [see Sec. III and

and ~~r) is the unnormalized form of Eq. (6.17). It is in-
teresting to note that (as we have pointed out in the gen-
eral theory of the coherent states in Sec. III) the Kaehler
potential of the Kaehlerian manifold
U(r)/U(k)XU(r —k) can be obtained from the unnor-
malized coherent states ~~r ):

[a/ aj 5 j a/a/ ] 5jga a/ 5j/a

[a,.a. , aka/]=5, /, (a/a —
—,'5/ )+5/ (a/, a, —

—,'5k;).

In the Cartan standard basis, we have

[H;,a ak]= —(5;.+5;/, )a,a„',

[H;,a, ak]=(5, +5,/, )a a/t,

[H;, ajta/, ]=(5,J 5;/, )(aj~a/, —
—,'5J/, )—,

(6.29a)

(6.29b)

(6.29c)

(6.30a)

(6.30b)

(6.30c)
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where H; =a,- a; —
—,'. It is obvious that the roots +e;+ej

span the root space D„.
The Hilbert space of interest for fermion so(2r) algebra

comprises the carrier spaces of the two spinor representa-
tions [—,', —,', . . . , +—,'], where the + (

—) sign corresponds
to the even (odd) n = g,",n; .The basis states in this
Hilbert space are n „n2, . . . , n„) with n

&

=0, 1. There
are 2' ' states in both cases of [—,', —,'-, . . . , +—,

' ].
Similar to the fermion u(r) case, the faithful matrix

representation so(2r) is more useful in practical calcula-
tions. The faithful matrix representations of generators
of SO(2r) are 2r X2r matrices. Explicitly, they are

aa ——'" ~Ei j 2 ij ij r+jr+i

a, a.~E;„+ —E,+, ,

a; a~ ~Er + ij Er +ji

(6.31a)

(6.31b)

(6.31c)

lext&=lo) =lo, o, . . . , o) for [-,', —,', . . . , ,']

where 1 i,j r, and E," is a 2r X 2r matrix with + 1 in
the ith column and jth row and zeros otherwise. Thus
the set of all diagonal matrices H, , =E,i

—E,+ir+, is the
Cartan subalgebra of so(2r).

For the two spinor representations [—,', —,', . . . , +—,'] of
the fermion Spin(2r) group, where Spin(2r) is the cover-
ing group of algebra so(2r), the extremal states may be
taken as

lA& =exp g (il; a, a —H. c. )lext&,
1~i&j ~r

(6.34)

exp g (il,"a, a —H. c. )~1i' ~ r

Ql„—zz'

Ql„z'z—
with

(6.35)

where A=exp+, ;~J. „(il,~.a, a, —H. c. ) is the general
form of the coset representative of Spin(2r)/U(r). Thus
the coherent states of Eq. (6.34) have the natural topolog-
ical structure of Spin(2r)/U(r) from which most proper-
ties can be deduced.

Just as in the fermion U(r) coherent states, the generic
properties of coherent states are also available for the fer-
mion Spin(2r) coherent states. Here we shall discuss in
detail only three main properties: the symplectic struc-
ture, the BCH formula, and the completeness relation.

The symplectic structure: The topological space
Spin(2r)/U(r) of the fermion Spin(2r) coherent states
with irrep [ —,', —,', . . . , —,'] is also a symmetric space —an
r X r dimensional complex manifold. Since the coset
space Spin(2r)/U(r) is isomorphic to SO(2r)/U(r) (Hel-
gason, 1978), the symplectic structure of Spin(2r)/U(r)
can be found from SO(2r) /U(r) simply by following the
general procedure discussed in Sec. III. In the faithful
matrix representation of the SO(2r), the coset representa-
tive of SO( 2r ) /U( r ) is

lext&=ll) = l, o, . . . , 0) for [—,', —,', . . . ,
—

—,'], (6.32b) sining'g
71 ~ t 7

7l 7l
(6.36)

a;a lo)=0 (1~i,j~r) (6.33a)

or

respectively. In fact, these are the unperturbed ground
states of the many-body Hamiltonian of Eq. (3.3), for the
even and odd systems in the Hilbert space of
[—,', —,', . . . , —,

' ] and [—,', —,', . . . , —
—,
' ]. Thus one finds that

where z and g are the r X r antisymmetric complex ma-
trix. The explicit form of g is the matrix representation
of the operator g&;~ „(71,"a, a~ ), which can be found
by using Eq. (6.31).

Again, by introducing the projected coset representa-
tion

~ ', ~, ll ) = ll ), a,"a, ll ) =o (2 ~ i,j ~ r),
ata, l

1 ) =0, a, a& l
1 ) =0 ( 2i~~ r) .

(6.33b)

'T =
Ql, —z'z

we can explicitly express a group transformation

(6.37)

Clearly, both sets of operators, I a; a~
—

—,'6,, l
1 ~ i,j ~ r ]

(2%i ~ r)], span a subalgebra u(r) of so(2r). The corre-
sponding Lie groups U(r) are the stability subgroup of
Spin(2r), which leaves the extremal states lo) of irreps
[—,', —,', . . . , —,'] (l l ) for [ —,', —,', . . . ,

—
—,']) invariant. Again,

following the general algorithm, the coherent states of
the fermion so(2r) algebra can easily be constructed. For
simplicity, we shall discuss here only the coherent states
of the irrep [—,', —,', . . . , —,']. The same procedure is also

applicable for the irrep [—,', —,', . . . , —
—,'].

Since the stability subgroup of Spin(2r) in

[—,', —,', . . . , —,
' ] is U(r) (generated by operators

Ia; a ll ~i,j ~r] ), the coherent states are isomorphic to
the coset space Spin( 2r ) /U( r ),

B
g =

C D ESO(2r)

on the coset space SO(2r)/U(r) as

~'= ( A ~+8)(Cr+D) (6.38)

=X ' (r, r*)exp

=X-'"(r,~*)ll~ &

1~i&j &r
(q, a,ta,t)lo)

(6.39)

Thus the Riemannian metrics g; of this space may be
found from the non-normalized form llew) of coherent
states, Eq. (6.34):

lQ) =exp g (il; a;a —H. c. )lo)
1+iWj +r
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where

N ( ~, ~" ) =det( I„+~ r )
'

The result is

(6.40)

Equations (6.38) and (6.41) also show that Spin(2r)/U(r)
is a Kaehlerian manifold (Helgason, 1978) possessing ex-
plicit symplectic structure with a closed nondegenerate
2-form

with

$2F
ds = g g~pd'r~d1p = g d1~d'rp

~ p ~ p ~&~~~p
(6.41)

I
ci) — g g pd'r A drp

2 p

(6.44)

F =lnN(~, r*)=—,'lndet(I„+r r) .

The measure of this space is

dim t/
dPJ, (7, 'r*) =

Vol[Spin(2r) /U(r)]

X[det(I, +w w)] "P dw dr~ .

(6.42)

(6.43)

and the function F, Eq. (6.42), is the Kaehler potential of
this Kaehlerian manifold.

The BCH formula: The BCH formula of Spin(2r) is
obtained via the faithful matrix representation of SO(2r).
For instance, the following BCH formula of SO(2r) is
very useful:

1 lWJ f'1&ij &r1&i' &rl&iWj&r
exp g (g; atat —H. c. ) =exp g (r; a; a. )exp g (XJa, a, —

—,'5J, )exp g ( ~Ja;a—J) . (6.45)

The right side of Eq. (6.45) can be rewritten in the faith-
ful matrix representation of SO(2r) as

Ir w exp'
0 I„O

I„O
IT

exp' —~exp' ~ ~exp'
—exp' ~ exp', " (6.46)

1&ij ~r
(~Ja;a, ) and

1&ij ~r
(A.; a; a —

—,'5; ),

respectively. Thus, comparing Eqs. (6.35) and (6.46), one
obtains the following relations:

where the matrices ~ and A, are the nonzero matrix blocks
in the so(2r) faithful matrix representation of the opera-
tors

I

the completeness relation

f Q)de, (~, r*)(Q~ =I, (6.48)

I+&=f l~~~f(r)dp'(~ r*), (6.49)

where f (r) HL [Spin(2r)/U(r), p'] is an analytical func-
tion of r and L [Spin(2r)/U(r), p'] the Hilbert space
of square-integrable functions with measure d p'
=N '(r)dp(~):

f f*, (r)f2(r)de, '(r, r*)( ao . (6.50)

where the measure dp(r, r") is given by Eq. (6.43). Thus
any state ~%') in the Hilbert space of the irrep
[—,', —,', . . . , —,'] can be expanded in terms of the coherent
states (6.34) or (6.39),

(6.47a) 3. Fermion so(2r+1) algebra

exp', =(I„—zz )

However, Eq. (6.47a) gives only the SO(2r) BCH formu-
la. In order to obtain the Spin(2r) BCH formula from
those of SO(2r), one notes that the subgroup U(r) of
Spin(2r) is double-valued in the SO(2r) representation.
Therefore, for the Spin(2r) case, A, must be replaced by
A, /2, and the correct relationship between z; and A, ; with

for the Spin(2r) case is

r =z(I„z'z)—
(6.47b)

exp(A, /2) =(I„—zz )

The unnormalized coherent states of Eq. (3.39) can easily
be obtained by the above relationship.

The completeness relation: From the general theorem
of completeness, the coherent states of Eq. (6.34) satisfy

When we add "single" operators ta;, a ~1 ~i, '~rI to
the generators of so(2r): Ia; a,. ——,'5;J, a;aJ, a; aJ I, they
span the maximum dynamical Lie algebra of the r-mode
fermion system, i.e. , so(2r +1). The commutation rela-
tions are given by Eqs. (6.29) plus

[a;,a,. ]=2(a; a —
—,'6;, ),

[a; a —
—,'5;, ak ]= —5;ka1

1[a aJ 2~ J a~]=&,~a;

(6.51a)

(6.51b)

(6.51c)

[H ak]= —&kak (6.52a)

Moreover, the operators (H, =a; a —
—,'; i = 1, . . . , r)

span the maximum Abelian (Cartan) subalgebra of
so(2r + 1), and the commutation relations in the Cartan
standard bases are (6.30) plus the following:
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912 Zhang, Feng, and Gilmore: Coherent states

[Hi ak ] '89ika' (6.52b)

(6.52c)

The root space is spanned by +e, , and +e, +e, and cor-
responds to the Lie algebra 8„.

We shall now give the matrix representation of the fer-
mion so(2r + 1) algebra. The Hilbert space of interest for
the fermion so(2r +1) algebra comprises the carrier
spaces of the single spinor representation [—,', —,', . . . , —,']
with basic states lni, n2, . . . , n„), where n; =0, 1. There
are 2' states in total.

The matrix representation of the generators of
SO(2r + 1) in the faithful matrix representation of
so(2r + 1) is a (2r + 1)X (2r + 1) matrix. The explicit
form is

C. Applications of the fermion coherent states

We shall now briefly discuss the usage of coherent
states in the study of many-body fern1ion systems. For
most finite fermion systems (e.g. , nuclei, atoms, and mol-
ecules), under suitable mean-field approximations the
shell structure will always emerge. Suppose the respec-
tive shell structure is denoted by r single-particle (s.p. )

levels, each with s.p. annihilation and creation operators
a and a (j = 1, . . . , r) respectively. Then, when we re-
strict the Hamiltonian to having only one- and two-body
interaction terms, it can take on the form of Eq. (3.3),
1.e.,

r

Ej aj aj +
g y I /jk/a; aj a/ak Ho+H, „pe~

j =1 ijkl

&i ~E;o Eor+;

a, Eo —E.+ 0

aa~~-i j~~ir+j jr+i 9

a;a + E„+ij—E,+.;,

(6.53a)

(6.53b)

(6.53c)

(6.S3d)

(6.53e)

where 1(ij (r, E, is a (2r +. 1) X(2r +1) matrix with
+ 1 in the ith rom and jth column and zeros otherwise.
Again, the set of all diagonal matrices H; =E;; —E,+,,+,
is the Cartan subalgebra of so(2r + 1). Let
H = g,",A,; H;; we then have

[H Eo—Eo.+;]=~;«;o—Eo.+;»
[H Eo' E + o]: k (Eo E + o)

[H, E; E„+ „+;]=—(A, ,
—X )(E; E„+ „+;), —

[H, E;,+ E„+,]=(A.,—+Aj)(E,„~ E,„+,), —

(6.54a)

(6.54b)

(6.54c)

(6.54d)

+A, , +A, , +A,, (i (j, 1(ij (r) (6.55)

For the spinor representation [—,', —,', . . . , —,
' ]

so(2r +1) algebra, the extremal state may be taken as

[H, E„+, E„+,]=—(A, +A—,, )(E„+,j E„+,, ) . (6.S4—e)

Thus the roots of so(2r +1) are

1. Finite many-fermion Hartree-Fock-Bogoliubov
theory

Let us first consider the even fermion spinor irrep
of SO(2r ), which is [—,', . . . , —,

' ]. The corresponding
coherent states are defined as

lq') =Tl0) =exp g (nj*kaj ak gjkaka, )l0),
j (k

(6.58)

where l0) is the vacuum state of Eq. (6.57) and T is a
coset representative of SO(2r)/U(r),

(6.57)

It is well known that the maximum dynamical-group for
such a system is SO(2r+1), as was discussed in Sec.
VI.B.2. If we do not include in this discussion the
transfer of a single particle, then the dynamical symme-
try group can be reduced to SO(2r). Furthermore, if the
pairing correlation is neglected, then the dynamical
group of the system is further reduced to U(r). However,
the pairing correlation is usually important in any collec-
tive cooperative phenomena of the many-body system,
and therefore we shall consider here the SO(2r) dynami-
cal group of Eq. (6.S7). The same procedure can be ap-
plied directly to the U(r) dynamic group. The algebraic
structure and coherent states of SO(2r) have been dis-
cussed in detail in the last section. In this section, we
shall present their applications in many-body mean-field

dynamics.

lext) = lo) = lo, o, . . . , 0), (6.56)
exp y ( 7jk j k ljk kaj)

j (k
(6.59)

which is the unperturbed ground state of the many-body
Hamiltonian, Eq. (3.3), in a Hilbert space of
[—,', —,', . . . , —,']. Thus the maximum suitable subgroup of
so(2r +1) that will leave the extremal states l0) invari-
ant is U(r), whose generators are
Ia;aj —

—,'6;J l
1 (i,j (r I. Following the same procedure

as in the u(r) and so(2r) cases, we can easily construct
the coherent states of the fermion so(2r+1) algebra,
which is isomorphic to the coset space
Spin(2r + 1)/U(r).

aJ—T t T
aJ

(6.60)

It is not dificult to show that Eq. (6.60) is the most gen-

Since U(r) is the maximum stability subgroup of SO(2r)
for l0), Eq. (6.S8) is the most general transformation of
the vacuum state under the SO(2r) group space. The
corresponding transformation for the single-particle
operators is
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eral form of the well-known Hartree-Fock-Bogoliubov
(HFB) quasiparticle transformation,

VT UT (6.61)

where

U —V

V U

is the faithful matrix representative of T, and

Ut=cos+q q= U, V*=g ~ = —Vt .sin&
(6.62}

Hence it is obvious that the vacuum state of the Bogo-
liubov quasiparticles is the coherent state of Eq. (6.58).
Finally, the quasiparticles can be obtained by solving the
variational equation

s(elH'le) =s(q lH —xNle) =0, (6.63)

where N and A, are the particle number and the chemical
potential, respectively. Under the HFB approximation,
Eq. (6.63) will immediately lead to the well-known HFB
equations

U;
Ei (6.64)

where the Hartree-Fock potential v and the pair poten-
tial 6 are defined by

UIJ =EIJ- A, 5,J. +I gJ.

5;.=—,
' g V;.; '~,".

/ J

(6.65a)

(6.65b)

The matrix I' is known in the literature as the "de-
formed" potential and is defined as

~ij = X Vii'jj "Pi'j' (6.66)

The density matrix p; and the pair tensor ~; in Eqs.
(6.65b} and (6.66) are the matrix elements ('Iila, ajlqi)
and ( qi

l a;a l
4 ), respectively.

If pairing correlation is neglected, then the dynamic
group of the system is U(r). In this case, the quasiparti-
cle transformation of Eqs. (6.58) and (6.60) is restricted to
the coset U(r)/U(r —k)U(k) [i.e., Eq. (6.12)]. There-
fore the above procedure is equivalent to the mean-field
Hartree-Fock theory.

2. Symmetry-constrained HF8 theory

In nuclear physics, it is well known that the basic con-
cept of the quasiparticle is to represent the ground state
as a quasiparticle vacuum (Bogoliubov, 1953). The start-
ing point of the HFB theory is a linear unitary transfor-
mation of the single basic states. On the other hand, the
coherent-states description of the HFB theory given

le) =g 0) =Thl»=TI0)e'"'"', (6.67)

where h HH is the maximum stability subgroup of G that
keeps the bare vacuum state l0) invariant up a phase fac-
tor cp and TEG/H. According to the coherent-state
theory (i.e., Sec. IV), the quaisparticle vacuum state
(6.67) is precisely the coherent state of G/H. Thus the
Bogoliubov quasiparticle transformation

r

aJ

aJ
(6.68)

is uniquely restricted on the coset G/H. Using elementa-
ry group theory, we can easily determine the correspond-
ing matrix form of Eq. (6.68) (the Bogoliubov quasiparti-
cle transformation matrix) from the matrix representa-
tion of G. Then the HFB solutions can be found by use
of the variational equation

5Hg(T) =0,
where

(6.69)

H~(T)=(q lH —xNle) =(olT-'(H —XN)halo)

is the Q representative of H A,N in the coher—ent states
of the dynamical group G. Computation of H& is
straightforward using group theory. The final result is
that H&(T) is an analytical function defined over G/H.
Thus, under the dynamical symmetry constraint, the
coherent-state variational method will completely deter-
mine the HFB theory. Further, Eq. (6.69) corresponds to
finding the stable solutions of the function H&(T). These
can be carried out by means of the standard stability
theory (Huseyin, 1986) or catastrophe theory (Gilmore,
1981).

above is based entirely on the dynamical group of the
Hamiltonian, which means that it begins with the
dynamical properties, i.e., the Hamiltonian, of the system
and attempts to find the most general unitary transforma-
tion under the dynamical symmetry constraint. %'e refer
to this procedure as the symmetry-constrained Hartree-
Fock-Bogoliubov approach (Zhang, Feng, Wu, Wu, and
Ginocchio, 1989). Since the symmetry-constrained HFB
approach is based entirely on the dynamic symmetry
group structure of the system, it is always valid for any
system that has a dynamic group constraint. The general
algorithm of the symmetry-constrained HFB theory can
be expressed as follows:

When the Hamiltonian of the system is constrained by
the dynamical group, its corresponding Hilbert space is
sharply reduced to an irrep of the group, and therefore
the general Bogoliubov quasiparticle transformation
must be restricted to a unitary transformation within the
group. To be more concrete, suppose G is the dynamical
symmetry group of some system, and g is a unitary gen-
eral transformation operator of 6; then, within the con-
straint of the dynamical symmetry, the Bogoliubov trans-
formation of the bare vacuum state l0) to a quasiparticle
vacuum state le ) must be given simply as
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The symmetry-constrained HFB approach originates
from the dynamics of the system, i.e., the Hamiltonian.
Therefore, if 6 is smaller than SO(2r) under the dynami-
cal constraint of the Hamiltonian (or the dynamical trun-
cation of the Hilbert space —that is, if the number of
sing, e-particle bases of the Hilbert space is invariant un-
der this truncation), then even though the final results of
the HFB and symmetry-constrained HFB theories are
equivalent, the symmetry-constrained approach possesses
some advantages over the original HFB theory. These
advantages are as follows: (1) The HFB theory may be
extended to any system whose Hamiltonian is con-
strained by some dynamical group 6; (2) for a given
Hamiltonian, it is very easy and natural to find the HFB
state of the most general transformation, i.e., the
coherent states of 6; (3) since the symmetry-constrained
transformation is restricted to lie within the dynamical
group 6, the HFB transformation matrix can be found
directly to be the matrix representation of the coset space
6/II, which is obviously much simpler than the original
one; (4) the symmetry-constrained approach provides a
natural dynamic, geometric (topological) structure of the
system, which is the coset space 6/H; (5) calculations
are greatly simplified via the matrix representation of
group theory.

3. Applications to nuclear collective states

The first study of geometry and phase transitions in
nuclear physics, although it was made via a toy model
(Lipkin, Meshkov, and Glick, 1965), was in 1978 (Gil-
more and Feng, 1978). In this study, the SU(2) coherent
states were utilized. An extension of this type of study
was soon after applied to nuclear structure physics to
study the geometrical and phase-transitional problems.
In that eAort, the focus was on an investigation of the
structural behavior of the phenomenological interacting-
boson Inodel, which was proposed by Arima and Iachello
in the mid 1970s (Arima and Iachello, 1975, 1976). The
coherent state used in this study was the U(6)/U(5) ten-
dimensional coset space (Dieperink et al. , 1980; Ginoc-
chio and Kirson, 1980a, 1980b; Feng et al. , 1981). In the
past five years, a realistic algebraic model for collective
states in nuclei has been proposed (C. L. Wu et al. , 1986,
1987). It is called the fermion dynamical symmetry mod-
el. The symmetry-constrained HFB theory described in
Sec. VI.C.2 has been extensively applied to this model by
Zhang et al. (Zhang et al. , 1987; Zhang, Feng, and
Ginocchio, 1988; Zhang, Wu, et a/. , 1988). Since the
techniques discussed above are explicitly employed in
these studies, we shall only briefly discuss them here.

D„=+&k3/3/2[bk3/zbk3/2 ]O„'

S,„=Qn„„,/2[b„'„,b„„,]',„', i =0, 1,2, 3;
(b) Sp(6) case,

(6.70a)

D„'= y Qn„/2[b'„b'„]„"„D„=(D„')", (6.70b)

Pi„= g QA„/2[b„b„]„o, l =0, 1,2,

while the generators of 4'M(2) are the pairing quasispin
operators in single abnormal level j:

' 1/22j+1
2

[& t &t ]0 g (gt)t (6.70c)

(6.71)

2(2k+1) for SO(8),
Q =,' g —,

' (2i + I ) for Sp(6) .
I

(6.72)

the model is a symmetry-dictated truncation scheme of
the spherical shell model. The central idea is that for
low-lying states of nuclei, once the valence levels are
specified, the fermion dynamical symmetry model
uniquely links normal-parity levels in a major shell with
symmetry SO(8) or Sp(6) (Ginocchio, 1980). For the in-
truder or abnormal-parity level, the model prescribes a
quasispin symmetry [SA'(2)]. For any nucleus, there are
two valence major shells, one for neutrons and one for
protons. Therefore, in reality, the symmetry for realistic
nuclei must be of the type SO"(8)SO (8)SSVl (2)
e SVl (2), SO (8)e Sp'(6)eSVP(2)eSVP(2), or
Sp (6)Sp'(6)C83$Vl (2)SIP(2), where rr and v denote
protons and neutrons, respectively.

Thus in essence the fermion dynamic symmetry model
is based on SO(8)sSVl(2) and Sp(6)RSVP(2) dynamic
group structures. These symmetries are constructed
from the truncation of the shell-model space via the
so-called k —i decomposition of the single nucleon
level (a" ) for each major shell. The generators of
SO(8) and Sp(6) are the monopole and the quadrupole
pairing operators together with the multipole
[I =0, 1,2, (3)][SO(8)] operators within the normal levels:

(a) SO(8) case,

V k3/2/ [ k3/2 k3/2 ]0~0
00

a. The algebraic structure

The fermion dynamical symmetry model is discussed
extensively in the literature (C. L. Wu et al. , 1986, 1987),
to which the interested reader is referred. The basis of

According to the model, the Hamiltonian is now a
function of these generators, constrained by the funda-
mental symmetries of the nucleus: rotational invariance
and particle number conservation. For even-even nuclei,
the eAective interactions between nucleons are monopole
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and quadrupole pairing and multipole (l =0, 1,2, 3) in-
teractions. For illustrative purposes, we shall confine our
discussion to particles in the normal-parity levels.

A possible Hamiltonian of the system is as follows:
&I z'—z

(6.78)

H =H"+H +Hcoll 6 6 (6.73)
with

GO CsU(2) +b 2 Cso(6) for 6 =SO( 8)
Hg= '

CJ 0' (o =sr, v)
GQCsU(2) +b2CsU(3) for 6 =Sp(6)

sining'gZ=Yj

and

H v& b v&P v P'll
2 2 2

(6.74a)

(6.74b)

0
—3/2z22

—3/2z„

&ZZ22

ZOO Z20

3/2z„

Z20 ZOO

0

Z20+ZOO

3/2z2

&2z2 2

where GO and b are the strengths of pairing-pairing and
quadrupole-quadrupole interactions between neutron-
neutron or proton-proton, and Cz represents the
second-order Casimir operator of subgroup G in the fer-
mion dynamic symmetry model:

zoo z2o &2z

for the SO(8) case, and

—3/2z2 2 0

CsU(2) —S S
3

Cso(6)= g
/=1

2

CsU(3) g P P
l=l

(6.75a)

(6.75b)

(6.75c)

The term H represents the quadrupole-quadrupole
neutron-proton interaction.

b. Energy surface

~Cghll I I ~ I I ~: I ~~
M I+ H ~ '

I I I

(a) (b)

The geometry of even-even nuclei can be realized natu-
rally via the coherent-state theory [i.e., SO (8)SSO (8),
SO (8)Sp (6), or Sp (6)g Sp'(6) coherent states as

(6.76a)

where

T (g) =exp g qooS' + g riz„D„—H. c.
(c) ~gs~- (d)

= T(g )T(g ) (6.76b)

is the coset representative of 6/M, G =SO (8)@SO'(8),
SO (8)I8ISp (6), or Sp (6)Sp (6), and H =U (4)
U'(4), U (4)U (3), or U (3)U'(3) while 0) the
doubly-closed shell state. Since the coherent states are
the direct products of neutron and proton coherent
states, we can discuss separately the SO(8) and Sp(6)
geometries whose coherent states are isomorphic to
SO(8)/U(4) and Sp(6)/U(3), respectively:

~21) =T (2))~0) =exp go@ + g g2„D„—H. c. ~0)

( o' = rr, v ) . (6.77)

Following the procedure given in Sec. VI.B.2, we find
that the faithful matrix representation of T ( g ) has the
general form of Eqs. (6.35) and (6.36):

(e)

FIG. 11. A three-dimensional plot of the Sp(6) energy surface
of the fermion dynamic symmetry model as functions of defor-
mation parameters P and y for several values of the control pa-
rameter Gp/b2: (a) Gp/b2= ao (br=0. 0 MeV)' (b) Gp/b2=2. 0
(b2 =0.04 MeV); (c) Go/b2 = 1 0 (b2 =0.06 MeV); (d)
Gp/b&=0. 5 (b&=0.08 MeV); (e) Gp/'b~=0. 0 (b~=0.06 MeV).
The origin of the coordinate system is in the center of each plot.
For all cases, A& =21 and n

&
=12. The energy surfaces have the

same behavior for fixed ratio Gp/b2 ( 1 while changing the par-
ticle number n

&
from 0 to 2Q&/3 (Zhang, Wu, et a/. , 1988).
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&3z„
&3/2z„

zoo+ &1/Zzzo

&3/2z„
2z20 zoo

&3/2z, ,

zoo+ v 1/2zqo

&3/2z, ,

V'3z, ,
(6.79b)

for the Sp(6) case. Using these representations, we can
compute the Q representation, i.e., the expectation value
of the Hamiltonian of Eq. (6.73) evaluated in the
coherent states of Eq. (6.76). The result will give us the
energy surface. Minimizing the energy surface is
equivalent to solving the Hartree-Fock-Bogoliubov
(HFB) mean-field dynamics. Generally speaking, this en-

ergy surface [SO(8) or Sp(6)] exists in a twelve-

dimensional parameter space. However, since we are
only interested in the ground-state intrinsic properties of
nuclei, for which time-reversal and triaxial symmetries
are good symmetries, this will reduce the twelve parame-
ters in T(rl) to three. Furthermore, by requiring that the
expectation of the number of nucleons within the normal
levels have the desired value

(6.80)

we ensure that the energy surface is merely a function of
two parameters. These two parameters can be related to
the usual geometric parameters {/3,y] (Bohr and Mottel-
son, 1975) via the intrinsic quadrupole moment,

2Q ) BLOOP cosy

+20 ) goo/3 silly

p=0
p=+1 . for SO(8)

p —+2.
(6.81)

~v ' ) i &p. i& ' —2Q, (goo/1 cosy — —P cos2y ), p, =0

0, p=+1 ~for Sp(6)
CT t7—&2Q, (goo+ —P cosy )P siny, @=+2

2

where

yoo=+Qn, /2Q, —
/3 (6.82)

The sign —(+) corresponds to the case of n& (() )0&, where 0& is given by Eq. (6.72). The energy surface is now
finally a function of the control parameter {n J and the deformed parameters I/3, y ]:
&G(n, ,P, y )= gg, &G, (n, ,P, y ),

(6.83a)
(n, ,P",y";c,n, ,P, y )

gooyoocos(y —y ) for SO (8)IISO (8),

yoo[yoocos(y' —y")— —/3 cos(2y +y )] for SO (8)Sp (6),1

=40",0;b~ /3 P
'

1
(6.83b)

yooyoocos(y' —y )+ —,'/3 /3 cos(2y —2y ) — —[goo/3 cos(2y +y )+go+ cos(y"+2y )]

for Sp (6)Sp"(6) .

TABLE V. The stiftness coefficients of the energy surface for various subgroups of SO(8) and Sp(6).

SO(8) SU(2)

SO(6)

2Q, (Q, —2)

40, , (Q& +3)

—n, {Ai —2)

2n l (Al +3)

n n n1 ~~ 1 + 1

4 2 Q, ,
Sn l (2Q& —n i )/

Sp(6) SU(2)

SU(3)

Q, l

2 ' 3

——Q (20 —1)I

0
2n

1

1

—I

n, (2A, —I)

Al2v'2n
1

&20& (2Q& & )

n 1 3n 1

2 2Q,

5n l (2Ql n
&

)/40)

fa
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0.0
SO(7 f2 =(0, /3) g 2s; s, Q(1 —s, )(1—s ), (6.85b)

-2.0
s; =goo+&2P cos[y +(i —2)m. /3], i =1,2, 3 .

(6.85c)

-4.0

-6.0
-0.8 -0.4 0.0 0.4 0.8

FICr. 12. The p-softness behavior in the SO(7) dynamical sym-
metry of the fermion dynamic symmetry model. The energy
curves are y soft (Zhang et a/. , 1987).

+C P y ci,cso3y+D +b. (6.84)

where the coe%cients A, 8, C, D, and 6 are listed
in Table V for each subgroup of SO(8) and Sp(6).

In Table V, the functions f, and f2 are given as

f, = —,'(II, ) (n, /20, —2P )

XQ(l n, /2Qi ) —4P—(n, /2Q, —P ),
(6.85a)

FICx. 13. Contour plot of the Sp(6) energy surface on the p-y
plane (p~ 0 and 0& y ~ 60'), with Go =004 MeV and b2 =006
MeV; 0& =21 and n, =20. The contours range from —7.00 to
—3.00 MeV. The contour interval of energy is 0.20 MeV. The
empty region in the P-y plane is forbidden by the Pauli princi-
ple (Zhang, Feng, Wu, and Guidry, 1989).

The coefficients g, in Eq. (6.83a) are the interaction
strengths of Eqs. (6.74), the subscript s denotes the possi-
ble subgroup, and

~cr (n a Pv y~) —g Po.4+B Po2

An example of a three-dimensional plot of the energy
surface in the fermion dynamic symmetry model is
shown in Fig. I 1. By minimizing the energy surface, we
can get the exact HFB solution for the ground state.

In these investigations, several interesting properties of
nuclear collective motions are revealed. One of them is
the discovery of the existence of a p soft mode (Zhang,
Feng, and Ginocchio, 1987) (see Fig. 12); another is the
efTect of the Pauli principle on the geometric shape of nu-
clei (see Fig. 13) (Zhang, Feng, Wu, and Guidry, 1989).
Finally, the existence of a narrow window of oblate shape
in rare-earth nuclei is naturally explained (Wu et al, ,
1989).

4. Time-dependent mean-field theory

The time-dependent mean-field theory has been widely
used to study the so-called large-amplitude collective
motions in many-body systems, especially in nuclear
physics (Kerman and Koonin, 1976). However, the
framework of the mean-field theory is essentially classi-
cal. Hence it does not extract quantum-mechanical in-
formatio~, such as the energy spectra of bound states
(Kuratsuji and Suzuki, 1983). Furthermore, the time-
dependent mean-field theory is a perturbation theory.
There is no obvious systematic expansion beyond the
mean-field level. However, it has been noted by Blaizot
and Orland (1981) that many of the difficulties of this
theory can be overcome by the path-integral formalism
(Negele and Orland, 1987).

As we have already discussed in Sec. IV, for a quantum
system with dynamic group 6, the coherent-state theory
provides a natural framework in which to use the path-
integral formalism. Furthermore, we see that under the
stationary phase approximation, the time-dependent
mean-field theory provides a natural semiclassical limit of
the path-integral formalism. Therefore„using fermion
coherent states [of the U(r) or SO(2r) group], one can
immediately derive the time-dependent Hartree-Fock
equation (Blaizot and Orland, 1981; Kuratsuji and
Suzuki, 1983) or the time-dependent Hartree-Fock-
Bogoliubov equations. We shall brieAy discuss the con-
struction of these equations here.

When we substitute the coherent states of U(r) [or
SO(2r)] from Eq. (6.11) [or Eq. (6.34)] into the action
functional of Eq. (4.20), then the variation of the action
will give rise to the time-dependent Hartree-Fock (or
Hartree-Fock-Bogoliubov) equations. Since the coherent
states of Eq. (6.11) [or Eq. (6.34)] have a natural symplec-
tic structure given by Eq. (6.19) [or (6.44)], the time-
dependent Hartree-Pock (or HFB) are identical to the
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Hamiltonians

dH, (p, q)

BPlJ.

r)H, (p, q)

0gi J.

where the local canonical coordinates (q,p) are

—(q,, +ip;, )=z;, .
1

lJ

(6.86)

(6.87)

5. Application to the three-level Lipkin model

A three-level Lipkin model may be the "next best
thing" to the full-blown many-body problem. Its Hamil-
tonian is given (see Li et al. , 1971;Meredith et al. , 1988;
Zhang, Feng, and Yuan, 1989) by

The matrix z is given by Eq. (6.13) [or (6.36)] for U(r) [or
SO(2r)]. The Hamiltonian H, (q,p) is the expectation
value of the many-fermion Hamiltonian operator II of
Eq. (6.S7), evaluated in the coherent states of Eq. (6.11)
[or Eq. (6.34)]. In principle, solving Eq. (6.86) one may
obtain the bound-state spectra as well as quantum Auc-
tuations (Blaizot and Qrland, 1981; Kuratsuji and
Suzuki, 1983). Of course, Eq. (6.86) is generally non-
linear in nature. The nonlinearity arises because of the
mean-field approximation. The study of the behavior of
such nonlinearities for many-fermion systems has recent-
ly attracted much attention. A favorite model for the
study of this problem is the three-level extension of the
two-level Lipkin model, which will be discussed in the
next section (Gilmore and Feng, 1979; Williams and
Koonin, 1982; Meredith et al. , 1988; Zhang, Feng, and
Yuan, 1989).

a~=0.3 ez=0.6 V=0.8 E0=1.0

~ +a

~ S

~0 ~ ~

«

ej
0 «Ig

«, ',
1" 'g)

g$ 0

p 'g i ~

tf ~

~ ~

~ C

~ ~'e

t I I \

The operator a,k(a k ) is the single-fermion creation (an-
nihilation) operator in the model.

For simplicity, we shall first consider the situation in
which the total particle number X is JV. For the more
general cases, according to the given procedure, we find
that the mean-field dynamics phase space is SU(3)/U(2).
Such a space is determined by the SU(3) and its irrep in
the extremal state,

FIG. 14. The Poincare surfaces of section for a three-level
nonintegrable system in the classical dynamics (X—+ ~ ) with
the parameters cl =0.3 Fp =0.6 Ep = 1.0 and V =0.8. The
calculation is performed under the scaling of the phase space of
two units.

2
H= g e, E,, + —,'g V(E;, )'. (6.88)

k =1
(6.90)

JV

E, = g a, i, a,k, i,j=0, 1,2.
k=1

(6.89)

For each of the three levels, there is an imposed A"-fold

degeneracy. Such an imposition is strictly for mathemat-
ical convenience. The operator E, is defined as 1 . Sing —i p,.

(q, +ip, )=9, e
&2X

(6.91)

where 0 is given in Eq. (4.49), we have

where ~0) denotes the vacuum of the unperturbed Ham-
iltonian. By choosing the canonical variables

-(q p)=
2

(p"i+q'»+
2

(p"~+q~)+-4 1 —
~ [(pi+p~)' —(qi+q~)'+(qi —pi)(q2 —p2)

+4q iq~p ip2+2iil (q 1 + q 2 p i p 2.) ] (6.92)

By taking the limiting case of X (=g)~ ~, we can
reduce Eq. (6.92) to the "classical limit, " as was discussed
in Sec. IV.C.

This mean-field dynamical equation is in general non-
linear and nonintegrable, and its numerical solutions ex-
hibit chaotic behavior, as is shown in Fig. 14. Prom the

study of this schematic many-body system, we see that
mean-field dynamics could provide a route towards the
exploration of chaotic motions in realistic systems.

Furthermore, when 2') X &A" the extremal state,
which is a key to determining the quantum phase space,
is not Eq. (6.90) but
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Vll. VECTOR COHERENT STATES

k=1 1=1

Correspondingly, the elementary excitation operators are
(E;,i )j), and the quantum phase space for such a case
is given by the coset space SU(3)/U(1)SU(1), which is a
six-dimensional manifold. This conclusion can also be
obtained directly from the irrep space of U(3), which we
have discussed in Sec. III.C.1. For the case 2JV) % ) JV,
the irrep space is the nondegener ate irrep space
(JV, X —JV, 0). However, in the case of X ~ JV, the irrep
space corresponds to the degenerate irrep of U(3):
(X,O, O), whose geometric spaces are different. Physical-
ly, this di6'erence is a manifestation of the Pauli principle
in the geometry. When 3JV) N )2JV the structure of the
quantum phase space is the same as for % ~ A'.

D. A short comment on Grassmann variables

In field theory, fermion coherent states were also con-
structed by using the language of Grassmann variables
(Berezin, 1966). These fermion coherent states greatly fa-
cilitated computations in the fermion path-integral for-
malism in quantum field theory (see, Negele and Orland,
1987). On the other hand, if one is interested in the
geometrical properties of fermion coherent states, then
the Grassmannian approach will oAer less transparancy.
In fact, the discussions presented in Sec. VI.C shows that
fermion systems do possess ordinary but nontrivial
geometrical spaces and can indeed be parametrized by c-
numbers. All the properties of fermions can be realized
or resolved from such continuous parameters. For exam-

ple, the path integral of a spin system is based on the
SU(2) coherent states, which has the kinematical action

As described in Sec. III, the ingredients for construct-
ing coherent states include a group 6, a Hilbert space V
on which 6 acts through a unitary irreducible represen-
tation I ( G), and an extremal state

~
A, ext & in V

These structures are sufhcient to define uniquely the sub-

group H, required for the explicit construction of nor-
malized states on the coset space G/H.

The question can be raised: what happens if one at-
tempts to construct coherent states using a subgroup K (a
subgroup of G) that is difFerent from the natural sub-

group H determined by G, V, and lA, ext &? Two partic-
ular cases will be discussed, depending on the relation be-
tween K and H. The first case, H DK, is essentially trivi-
al. The second, K DH, is nontrivial. This case gives rise
to mathematical structures called vector coherent states,
proposed some time ago (Castanos, Chacon, and Moshin-
sky, 1984; Deenen and Quesne, 1984; Rowe, 1984, 1985;
Rowe, Rosensteel, and Gilmore, 1985; Quesne, 1986).
Both cases will be illustrated in the context of G =SU(3)
and its degenerate and nondegenerate representations.
Many detailed discussions of the matrix elements of vari-
ous algebras using vector-coherent-state techniques are
summarized in a book recently published by Hecht
(1987). We shall not discuss the material contained in
Hecht's book. Rather, we shall emphasize the relation-
ship of the vector coherent states viewed from the con-
text of the algorithm proposed in this review. A third
possibility, K 9H and H 9K, will not be discussed.

A. The case GDHDK

In this case, both 6 and H have coset decompositions,
and we can write

S =jA J (1—cosO)d(}t» . (6.93)
g =Ah, Ae6/H, h eH,
h =cok, e)HH/K, k EK .

(7. la)

(7. lb)

q =P,p =cos9, (6.94)

is in fact an inappropriate choice, since such a local coor-
dinate system cannot describe the half-integer spin case
(Nielson and Rohrlich, 1988). In any case, it appears
that introduction of Grassmann variables may not be an
absolute necessity for the meaningful portrayal of the
geometry of a fermion system.

The integration is the exact form of the Dirac monopole
potential and its gauge invariance can naturally be car-
ried out for the various integer and half-integer spin
values. However, the reader is cautioned that when us-

ing c-number fermion coherent states to describe fermion
dynamics, care must be exercised to choose the local
coordinate system properly. Otherwise, some physical
properties of fermions may be lost. For the spin system,
for example, the commonly used local canonical variables
for two spheres S,

The prescription for constructing coherent states then
becomes

gi~„, & =n.coke~„, &

l

A
&

i(((ki

~A & ~lA &
iP(cu)

(7.2a)

(7.2b)

In short, the coherent states defined on G/K are simply
those defined on G/H up to a phase factor. The phase
factor is a function of co&H/K. That is, the coset space
G /K =Slee consists of a subspace (H/K) with
"ineffective" variables and a subspace of variables ( G /H)
whose action is transitive. Furthermore, the group mul-
tiplication property h =cok and representation property
h ~,„,& =,„,&e'~'"' (h HH) ensure the composition proper-

i/(m) i P(k) ig(h =-cok)

In addition to the sequential coset representation of
group operations g =O,cok there is a sequential decompo-
sition of measure in G into a product of measures of the
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quotients 6/H, H/K, and K,

dp(g) =dp(Q)dp(h) =dp(A)d((i(m)dp(k) .

The properties of coherent states that depend on mea-
sure, and in particular depend on the group properties of
G when the subgroup H is integrated out (e.g. , resolution
of the identity), hold for the coherent states associated
with 6/K. For example, the resolution of the identity in
any space, V, is a group-theoretical property,

(7.4)

Under the decomposition g =Ah and after integration
over d(M(h), this reduces to the completeness relation for
coherent states [Eq. (3.47)]. Under the decomposition
g =Berk and after integration over d p(k) this reduces to
a similar expression, but for a subgroup E,

fQco,„,)&,„, (Qco) 'dp(Q)dp(co) .
Vol G/K

(7.5)

The standard expression (3.47) is obtained from Eq. (7.4)
by integrating out the K dependence using (7.3).

Example: As we have Inentioned in Sec. III, the group
SU(3) has two classes of representations: the degenerate
representations (A, „O) and (A, k, ), and generic or nonde-
generate representation (A, A2), A, (&i(z)0. The degen-
erate representations have a maximal-stability subgroup
H =U(2), while the nondegenerate representations have
H =U(l)SU(l). For the degenerate representations we
may choose K =U(1)(8(U(1)(:H=U(2). The coherent
states for (2,0) of SU(3) exist in one-to-one correspon-
dence with the four-dimensional space SU(3)/U(2). How-
ever, the coherent states for (2,0) for the decomposition
E =U(1)U(1) are defined on the six-dimensional quo-
tient space SU(3)/U(1)C8 U(1). In this space two of the di-
mensions are essentially trivial, or dummy, directions, in
that elements [coEU(2)/U(1) U(1)] produce only a
phase change when applied to l„,). We should like to
make two remarks concerning this example.

First, the Lie groups of rank greater than 1 have many
classes of (non)degenerate representations. For the uni-
tary groups A„—SU(n + 1) the unitary irreducible repre-
sentations (A, „A,2, . . . , i(.„) obey (A, , & kz & )2„&0).
All representations with strict inequality are nondegen-
erate. One-or more equalities among the A., produces a
degenerate class of representations. Each degenerate
class of representations has a uniquely defined maximal-
stability subgroup. The number of subgroups H for
SU( +n1) is equal to the number of partitions of n (num-
ber of representations of the permutation group I', and
number of its classes). More than one inequivalent class
of degenerate representations may have the same sub-
group H. For example, the degenerate classes
(i(, (=A,2& A, 3) and (A, , ) A,~=A, 3) of SU(4) have distinct
subgroups U(2)U(1).

Second, for some purposes it may be useful to con-

B. The case G DKDH

Coset decompositions of the type described in Eq. (7.1)
also hold in the case

(7.6a)

(7.6b)

The prescription for constructing coherent states then
becomes

(7.7)

At this stage there is a new development which takes us
out of the framework of the usual coherent states. Since
H is the maximal-stability subgroup of l,„,) and K &H,
the group operation 8 maps the extremal state l,„,) onto
a state that differs from, „,) by more than a phase factor:

More generally, the set of states Hl, „,), OHK/H forms
a closed subspace in V if K is a closed subgroup of 6.
The most useful cases occur when (a) the subspace kl,„,)
is a proper subspace of V and (b) the state l,„,) is an ex-
tremal state of some irreducible representation of K.

In this typical case, we have

(7.8)

where I is a discrete-state label that indexes states in the
subspace V C V, which is invariant under K. With this
decomposition, the canonical coherent-state construction
assumes the form

g
A ) —egglA ) —eg (A i )) ip(h)

el(AA) )DiL (g) ip(h)

l(A i
) )Dk (g) ip(h) (7.9)

As for the usual coherent states, since II is the maximal-
stability subgroup of 6, e'~'"' is a phase factor, or a one-
dimensional representation of the subgroup H.

The vector coherent states are the states

(7.10)

struct coherent states for all classes of representations of
6 on the same quotient space. This must be done by
choosing the "smallest" maximal subgroup H, that is, the
intersection of the stability subgroup for all classes of
representations. This is exactly the Cartan subgroup
e'~ +', which has dimension $ for a rank I simple group:
H=U(1)U(1) . (NU(1). If this is chosen as K, then
HWK for any class of representation that is partially de-
generate. The quotient space 6/K then has two comple-
mentary directions. These are the subspace H/K of
"ineffective" directions producing a phase change on
l,„,), and the space G /H which acts transitively on

l „,)
and whose points parametrize the standard coherent
states l,„,).
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dim(G/K)+2 dim(m) =dim(G/H) . (7.11)

The two familiar limits in the tradeoff are the following:
(i) K =H, which recovers the usual coherent states that

have no discrete index. Thus

dim(m) =0 and dim(G/K) =dim(G/H) . (7.12)

(ii) K =G, which recovers the standard unitary irre-
ducible representation D (K) =D (G) In th. is case there
is no continuous index, thus dim(m ) = —,

' dim( G /H ),
which reduces to the well-known condition that the num-
ber of discrete-state labels required to identify states in a
carrier space for representations of G is equal to half the
dimensionality of the coset G/H, where H is the usual
subgroup. This is the Peter-Weyl completeness theorem.

It can be seen from Eq. (7.11) that the vector coherent
states conveniently interpolate between the generalized
coherent states of 6 and the representations of G in a
discrete basis.

The sequential coset and invariant measure decomposi-
tions (7.1) and (7.3) for G DH DK also hold for the case
G DEC DH. This allows us to convert all the standard in-
tegral expressions for generalized coherent states to cor-
responding expressions for vector coherent states. For
example, the resolution of the identity is given by

They are vectors because their components are indexed by
a discrete-state label m. This identifies a basis vector on
the Hilbert space V, which carries the unitary represen-
tation D (K). They are coherent because they are in-
dexed by a continuous index e, which labels a point in
the coset space 6/K.

The larger K is, the larger the dimension of the weight
label m and the smaller the dimension of the coset space
B=G/K. The tradeoff in dimension is given by the rela-
tion

Vol K

This result, together with the general overlap expression

ext ext~g g'~ext ext &
=

ext ext(R' g')

provides a simple expression for the derived overlap

2
dim(~)

&e m ~e m'&

(7.16)

U(2) D

o 3, 1

X f fD',„,(k)D,'„„„,(k-'6-'6k )

XD,„t .(k' ')dtM(k ')dtM(k') .

(7.17)

For K =H, dim(A, )=1 and D' ',„,(6'k')
=D,„ (t6')e'~'" ', so this reduces to the standard ex-
pression [Eq. (3.43)] for the overlap of generalized
coherent states. For K =6, 8=identity, and the result
reduces to D"

~ (g 'g').
Example: We consider again the case G =SU(3), but

this time consider the nondegenerate representations
(A, „A2) with A, , &kz&0. Then H =U(1)U(1), and we
take K =U(2). This situation is shown in Fig. 15. The
extremal state of the representation (3,1) has been
identified in Fig. 15(a). This is also an extremal state of
the representation D' [U(2)]. We therefore have vector

f 6k~,„,&&,„,~(6k) 'dp, (6k)

f6~:,'„,&D,'„,.(k)D,'„*, , (k)
Vol G/H

x &', ,'„,~6-'dp(6)dp(k) . (7.13)

(a)

The integral over the subgroup K is evaluated using the
orthogonality relations, leading to oo

U(2) D

3f 2

y ~» &&« ~d (6)
Vol( G /K) em em I

m

(7.14)
(b)

This is, of course, what one would expect for the resolu-
tion of the identity in terms of vector coherent states.

The vector coherent states are also nonorthogonal, ex-
cept in the degenerate case G =K, when continuous in-
dices are not present in their definitions, and the vector
coherent states (7.10) reduce to the orthogonal basis in
V . Computation of the overlaps of the vector coherent
state is facilitated by the relation

FICx. 15. Root space diagram of SU(3) representations: (a) The
representation of (3,1) of SU(3) with the extremal state
identified, showing the action of the subgroup K =U(2) on the
highest state, leading to the D' representation of SU(2); (b) the
representation (3,2) of SU(3), showing the action of the same
u(2) subgroup as in (a). The representation of U(2) is now D' of
dimension 3.
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coherent states of SU(3) with respect to the subgroup
U(2} based on the spin- —,

' representation. The vector
coherent states are

—1/2
eg~(31) 1/2) — y ~(31) 1/2)D I/2 [g]

m =1/2
(7.18)

where

9+U(2)/U(1)eU(i) . (7.19)

For the representation (3,2), which is conjugate to (3,1),
the highest-weight state is also the highest-weight state
m = 1 of the j= I representation of U(2). The vector
coherent states are

eg~(32) 1)—~(32) 1 )D 1 [g] (7.20)

VIII. CONCLUSIONS AND DISCUSSION

We have presented a genera1 algorithm for construct'-
ing the coherent states for an arbitrary quantum system.
This algorithm depends on the system's algebraic struc-
ture (dynamic group) and its Hilbert space (one of the
algebra's unitary irreps). The algebra comes from the
system s dynamic properties, i.e., the Hamiltonian and all
possible transition operators. Thus the coherent states
constructed via this path provide a fundamental frame-
work for a quantum system.

However, for a given dynamic group and a particular
associated irrep, one can in principle construct many ine-
quivalent sets of coherent states (Klauder, 1963; Perelo-
mov, 1972), depending on the choice of reference state.

In both cases the continuous index 8 is defined by a
point in the coset space SU(3)/U(2), and the discrete in-
dex labels basis vectors in the irreducible representations
of the subgroup K =U(2). In the vector coherent state
(7.20), two of the six continuous indices in the usual coset
space SU(3)/U(1)(8I U(1) have been combined into a single
discrete index (m). This index, together with the four
continuous indices, uniquely describes vector coherent
states in the smaller coset space SU(3)/U(2).

Concerning this example, we note that vector coherent
states have been particularly useful when the subgroup E
is maximal in the sense of the reductive decomposition of
Eq. (3.20). Two cases that have been studied in detail are
Sp(2n, R)DU(n) and SO(2n)DU(n). In the first case 6
is noncompact, whereas in the second 6 is compact.
Vector coherent states have been useful for computing
matrix elements of shift operators in Sp(2n, R ) and
SO(2n), which connect distinct representations of the
subgroup U(n). These matrix elements are analytically
available when the representation I [of Sp(2n, R) or
SO(2n)] is simply reducible under restriction to U(n)
This occurs, for example, in degenerate tower representa-
tions of Sp(2n, R) and in some of the spinor representa-
tions of SO(2n). These are precisely the representations
required in describing the relation between Lie theory
and parastatistics commutation relations.

When one selects the extremal state (i.e., the lowest- or
highest-weight state of the irrep) for compact Lie groups
as the reference state (Gilmore, 1974a), the resultant set
of coherent states has the most useful geometry. This
choice of the extremal state is also applicable to any non-
compact Lie group with a discrete irrep. In this case the
extremal state is the ground state. Since any realistic
quantum system with a noncompact dynamic group usu-
ally includes a subset of bound states in its Hilbert space,
the Hilbert space must carry a discrete irrep. From this
viewpoint, the algorithm presented in this review is gen-
eric for providing a geometry for a given quantum sys-
tem.

The geometry of the coherent states is a coset space.
The explicit structure of this geometric space is based
upon the topological structure of the dynamic group.
One of its very useful and important features is the ex-
istence of a symplectic structure. The symplectic struc-
ture is a consequence of the choice of extremal state in
the Hilbert space as a reference state ~ref), which is built
into Gilmore's definition of a coherent state. The ex-
istence theorem of symplectic structure can be traced
back to the pioneering works of Cartan (1935), Bergmann
(1947), and Hua (1958). An explicit proof of such sym-
plectic structures for coherent states was made by Onofri
(1975). Similar discussions, although not cast explicitly
in the language of coherent states, can also be found in
Berezin (1975b). When the coset space is symmetric
(Helgason, 1978), a general explicit canonical form of the
symplectic structure can be constructed in terms of a
suitable local coordinate system (Zhang, Feng, and Yuan,
1990). However, when the coset space is not symmetric,
this general explicit canonical form is lacking. Indeed,
the symplectic structure of the coherent states provides a
phase space (Arnold, 1978) of an arbitrary quantum sys-
tem. The physical significance of this phase space could
be the correspondence principle, expounded by Dirac as
far back as 1925, linking quantum and classical mechan-
ics (Dirac, 1925). As a result, constructing phase space
from the quantum system could be regarded as an inverse
procedure of geometric quantization (Kostant, 1970;
Kirillov, 1976}. Furthermore, for certain coset spaces
(i.e., for symmetric ones), the geometry of the coherent
states also has a complex structure. In such cases, the
coset space is a Kaehler manifold (Helgason, 1978) from
which Berezin s quantization (Berezin, 1974; 1975a;
Perelomov, 1986) can be realized.

By using the geometric structure and the over-
completeness of the coherent states, this review provides
a representation of the dynamic group on the coset space
(see Sec. III). There are two parts in the construction of
this representation: (i) The irrep space (i.e., the system s

physical state space) is a Hilbert space of entire functions
with the coset space as its domain. Pioneering works on
this subject were by Cartan (1935) and Bergmann (1947).
Application of coherent state theory was discussed by
Bargmann (1961), Klauder (1963), and Perelomov (1986).
(ii) The operators and density function were expressed in

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



Zhang, Feng, and Gilrnore: Coherent states 923

terms of three phase-space distributions, i.e. , the P, Q,
and Wigner distributions (Wigner, 1932; Glauber, 1963c;
Gilmore, 1976). The first two distributions are also
known as contravariant and covariant symbols (Berezin,
1972), or upper and lower symbols (Lieb, 1973; Simon,
1980), respectively. All these representations are in in-
tegral form. Conversion of these integral representations
into diIterential representations gives rise to the D alge-
bra (Glauber, 1963c; Narducci et al. , 1974; Gilmore
et al. , 197S), a useful tool for practical calculations.

The above-discussed geometric and algebraic proper-
ties of the coherent states have played a vital role in pro-
viding an interpretation of many phenomena. In fact, as
we have seen throughout this review, quantum-
mechanical and quantum-statistical mechanics can be re-
cast in terms of the coherent states, with two important
consequences. First of all, it provides naturally a general
form of the two commonly utilized quantum-mechanical
methods: the variational principle and the path-integral
formalism. The variational principle gives the various
static mean-field dynamics, such as the Hartree-Fock and
the Hartree-Fock-Bogoliubov theories (Zhang, Feng,
Wu, Wu, and Ginocchio, 1989), boson expansion theory
(Dobaczewski, 1982; Rowe, 1984; Moshinsky, 198S;
Klein and Marshalek, 1990), and the Hill-Wheeler gen-
erating coordinate method (Hill and Wheeler, 19S3; see
also Klauder, 1963). This is useful to discuss the critical
and collective phenomena. The path integral, on the oth-
er hand, naturally derives the time-dependent mean-field
dynamics, which is in fact a classical limit of the path in-
tegral via the stationary phase approximation (Klauder,
1979; Blaizot and Orland, 1981; Kuratsuji and Suzuki,
1983; Negele and Orland, 1987). It is useful to discuss
the detailed dynamical processes. Second, the coherent-
state formalism of quantum statistics has been most use-
ful in the study of thermodynamic phenomena. In par-
ticular, the thermodynamic inequalities derived by Lich
(1973) for spin systems and their extension to arbitrary
compact Lie groups by Gilmore (1979) and Simon (1980)
provide an elegant description of thermodynamic phase
transitions, structural phase transitions and classical lim-
its (Gilmore and Feng, 1978a; 1978b; Ya6'e, 1982).

For illustrations, we constructed in detail the coherent
states of the two main classes of quantum systems, bo-
sons and fermions. Examples considered in this review
for the boson case are the single and multiple two-photon
algebras. The coherent states constructed are known in
the literature as "squeezed states" (Yuen, 1976; Hol-
lenhorst, 1979; Walls, 1983). Applications of these states
to quantum optics and molecular dynamics have been
demonstrated (Gilmore and Yuan, 1987, 1989). Howev-
er, the results presented here can also be extended to oth-
er bosonic systems. For the fermion case, the coherent
states come from the fermion u(r) and so(2r) algebras
(Gilmore and Feng, 1983; Suzuki, 1983). In fact, for a,

single fermion, the coherent states are indeed the SU(2)
coherent states with spin —,

' (Klauder, 1960). The detailed
structure of the phase space for these fermion systems

was discussed in this review and application was made to
nuclear collective motions (Zhang et al. , 1987; Zhang,
Feng, and Ginocchio, 1988; Zhang, Wu, et ah. , 1988;
Zhang, Feng, Wu, and Guidry, 1989).

Finally, the concept of vector coherent states is men-
tioned in Sec. VII. These states, as we have emphasized,
have been useful in the computation of various matrix
elements (Hecht, 1988). Unfortunately, the relationship
between the geometry of these states and the dynamic
system is unclear at this point.

It is our regret that other important applications of the
coherent states to condensed matter and field-theoretical
problems are not included in this review. We note that
many of the early applications of coherent states were in
fact in condensed-matter studies. Their primary role was
to explain the dynamic mechanisms of superconductivity
and superfluidity (see Anderson, 19S8; Cummings and
Johnston, 1966; Langer, 1968, 1969; Srinivasan, 1976).
There is also a large body of work using the coherent
states to study the various collective phenomena in con-
densed matter (Carruthers and Dy, 1966; Nieto, 1968,
1969; Feldman and Kahn, 1970; Kano, 1974; Ghosh
et al. , 1977; Haldane, 1983; Klauder, 1984; Fradkin and
Stone, 1987). Coherent states have also been widely used
in field theory and particle physics. A collection of these
works can be found in Klauder and Skagerstam (198S).

More recently, the study of nonlinearity and chaotic
motions in quantum systems has attracted a great deal of
interest. It is not - surprising that the coherent-state
theory is also a useful tool for such studies. In particular,
it has already played a role in the search for manifesta-
tions of classical chaos in quantum mechanics (Eckhardt,
1988). These investigations (i) reveal the patterns of clas-
sical trajectories in the quantum wave functions (Chang
and Shi, 1986; Davis, 1988; Raden and Prange, 1988) and
(ii) manifest the "scar" phenomenon (Heller, 1984) in
wave packets (Waterland et al. , 1988). Furthermore,
since the geometry of the coherent states provides a fun-
damental framework for connecting classical and quan-
tum mechanics (Zhang, Feng, Yuan, and Wang, 1989;
Zhang, Feng, and Yuan, 1990), it is a powerful tool for
the quantitative analysis of semiclassical chaotic motion
(Williams and Koonin, 1982; Meredith et al. , 1988. The
geometry of the coherent states preserves most of the
quantum properties, such as the Paul. i principle, the
internal quantum degrees of freedom, and the statistical
properties of microscopic particles (Zhang, Feng, Wu,
and Guidry, 1989). It could conceivably be the tool to re-
veal many of the fundamental effects of pure quantum
properties in semiclassical chaotic motion.

It needs to be mentioned that there have been recent
attempts to construct coherent states for supergroups
(Bars and Gunaydin, 1983; Aragone and Zypman, 1986;
Balantekin et al. , 1988). These rather mathematical con-
structions still await physical applications and will not be
discussed here.

Throughout this review, we have focused on the con-
struction of the coherent states and on connecting their
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geometric structures to quantum systems. However, a
physical reahzation of the coherent states in a realistic
dynamic system is certainly important and meaningful.
Realizations to date are the squeezed states in quantum
optics (Slusher et al. , 1985; Kimble and Hall, 1986; Shel-
by et al. , 1986; L. A. Wu et a/. , 1986). Many discus-
sions have centered on the realization of coherent states
in anharmonic oscillating systems and other general po-
tential systems (Nieto and Simmons, 1979; Nieto, 1983).
Unfortunately there are no measurements at hand for
such studies. Perhaps the most exciting experimental de-
velopment to date is the observation of Keplerian-like
wave-packet motion in hydrogen atom systems (Parker
and Stroud, 1986, 1987). Whether such a wave packet is
in fact a coherent state is still unanswered and therefore
is an exciting challenge for the future.

APPENDIX

'0 1

a~00
0 0

0 0
n~ 0 1

0 0

0 0 0 0
0, a ~ 0 0 1

0 0 0 0

0 0 0 1

0, I~ 0 0 0
0 0 0 0

(A 1)

The coset representative has the following form:

In this appendix we outline the derivation of the group
transformations of H4 in the coherent-state representa-
tion. We begin with the following matrix representation
of h4:
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D(a) —+ 0
0

2

(A2)

where o. can take on any value of the one-dimensional
complex C' and hence Hz/U(l)SU(1) is isomorphic
with C'. A group unitary transformation
g =expi(ya +Pa +gn+6I), where the unitarity ofg re-
quires that P=y* and g and 5 be real, on a point x in
H4/U(1)s U(1) can be obtained as follows:

0

0 iy t6 0 —a 0

gD (a) =D(a')h [h HU(1)C8 U(1)]~exp 0 i g iy exp 0 0 a
,0 0 0 0 0

1 —a*+ (e'"—1)
Tl

0

0

ae'"+ ~(e'"—1)
I

1

0 —o.'* 0 0 0 i6' '

—a'*e'"' iS' ——,
' ~a'~'

=exp 0 0
(0 0

o, " exp 0 iq' 0 — 0

0, 0 0 0 i0 0
(A3)

where

8 =i 5+ (e'"—i q 1)+ (e'"—1)——,
' ~—a

~
. (A4)

rl

Hence

which gives Eq. (2.16a).
The above technique is very useful in applications of

coherent states and the procedure can be directly extend-
ed to general cases of a dynamical group 6, as we have
shown in the text.

a'=ae'"+ —(e'"—1),
7l

which is Eq. (2.15). When we restrict g =D (P)
EH&/U(1)U(1), then Eq. (5a) becomes

(A5b)
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