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This is a study of simple kinetic models of open systems, in the sense of systems that can exchange con-
served particles with their environment. The system is assumed to be one dimensional and situated be-
tween two particle reservoirs. Such a system is readily driven far from equilibrium if the chemical poten-
tials of the reservoirs differ appreciably. The openness of the system modifies the spatial boundary condi-
tions on the single-particle Liouville —von Neumann equation, leading to a non-Hermitian Liouville opera-
tor. If the open-system boundary conditions are time reversible, exponentially growing (unphysical) solu-
tions are introduced into the time dependence of the density matrix. This problem is avoided by applying
time-irreversible boundary conditions to the %'igner distribution function. These boundary conditions
model the external environment as ideal particle reservoirs with properties analogous to those of a black-
body. This time-irreversible model may be numerically evaluated in a discrete approximation and has
been applied to the study of a resonant-tunneling semiconductor diode. The physical and mathematical
properties of the irreversible kinetic model, in both its discrete and its continuum formulations, are exam-
ined in detail. The model demonstrates the distinction in kinetic theory between commutator super-
operators, which may become non-Hermitian to describe irreversible behavior, and anticommutator su-

peroperators, which remain Herrnitian and are used to evaluate physical observables.
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I ~ INTRODUCTION

The more active, and thus the more interesting, prod-
ucts of technology are systems that operate far from
thermal equilibrium. An examination of a few examples
of such systems shows that they are generally open, in
the sense that they exchange matter with their environ-
ment. The present work examines some schemes by
which open quantum systems (which are beginning to be-
come technologically important in the context of mi-
croelectronics) may be effectively described at a kinetic
level.

In the context of the present work, an "open system"
is one that can exchange locally conserved particles with
its environment. Moreover, we wish to focus upon the
far-from-equilibrium behavior of such a system, and thus
the definition of open system will be further restricted to
mean one that is coupled to at least two separate particle
reservoirs, so that a nonequilibrium state may be created
and maintained. To specify such a system we must re-
gard it as occupying a finite region of space, and thus the
exchange of particles must consist of a current flowing
through that surface which is taken to be the boundary
of the system. It does not appear that the statistical
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physics of such a situation has been the subject of a close
examination. [The traditional use of the grand canonical
ensemble to define the equilibrium state (Tolman, 1938,
Sec. 140) contemplates a system coupled to a single parti-
cle reservoir. ] There is a large body of work on quantum
systems that are coupled to a reservoir so as to permit an
exchange of energy (see, for example, Chester, 1963;
Louisell, 1973; Haken, 1975; Davies, 1976; Qppenheim,
Shuler, and Weiss, 1977; and references therein), or are in

purely thermal contact with two or more reservoirs (Le-
bowitz, 1959). Most of these analyses are directed more
to the problem of damping (as seen in ohmic conduction)
than to openness in the present sense. Much of the work
in this area has been motivated by the development of
optical technology (Louisell, 1973; Haken, 1975), in
which the present distinction between openness and
damping is unnecessary because the particles of interest
are massless bosons. In a laser, for example, the degrees
of freedom of greatest interest are the norma1 modes of
the radiation field. A single theoretical model, the
damped harmonic oscillator, is used to describe both the
loss of energy (photons) to the gain medium within the
cavity and the loss of photons to the output beam (Gor-
don, 1967; Scully and Lamb, 1967). The analogous pro-
cesses in an electronic resistor (an open system in the
present sense) are the scattering of an electron by a pho-
non within the resistive material and the escape of an
electron from the resistive material into a more highly
conductive contact. The present work will concentrate
upon the consequences of the latter process. The
difFerence between the system of massive fermions and
the system of massless bosons is that the fermion system
is constrained by a local continuity equation, whereas the
boson system (within the usual models) is not so con-
strained.

A. Significance of open systems

To document the importance of open systems, let us
consider some examples. Most practical engines (in the
sense of machines that convert some form of energy into
mechanical work) exchange matter with two or more
reservoirs. To cite examples from an earlier technology
(avoiding the complications of internal phase transitions
or chemical reactions) we might consider the overshot
water wheel (Reynolds, 1983), which operates between
reservoirs of water at difFerent gravitational potential, or
the high-pressure steam engine (Dickinson, 1938), which
operates between its boiler and the atmosphere, reser-
voirs which dift'er greatly in their pressure and tempera-
ture. Conspicuously absent from a list of economically
significant engines are systems that operate upon the Car-
not model of a closed system in purely thermal contact
with its reservoirs.

A technology of more current interest is electronics,
whose systems are usually arranged so that a "power sup-
ply" maintains constant voltages (i.e., chemical potentials
for electrons) on two or more "buses" (see, for example,

Horowitz and Hill, 1980). The "circuits" (such as logical
gates or analog amplifiers) that perform the intended
functions of the system are connected to, and conduct
current between, the buses. Each bus is an electron
reservoir, and the performance of the system's power
supply is judged by how nearly these reservoirs approach
the ideal behavior of no change in chemical potential
(voltage) as particles are exchanged (current is drawn).

The example of electronics points out that the distinc-
tion between a closed and an open system depends upon
how one chooses to partition the universe into the system
of interest and "everything else." (Such a partitioning is
implicit in the analysis of every physical problem. ) To
demonstrate this point, let us examine the etymology of
the term circuit. As used in the preceding paragraph, cir-
cui t means "an assemblage of electronic elements"
(Woolf, 1981), which is most often open with respect to
electron Aow. This usage of the term is now much more
common among electrical engineers than the original
meaning, "the complete path of an electric current in-
cluding usually the source of electric energy" (Woolf,
1981), which implies a closed system with respect to elec-
tron Aow. It is no accident that the usage of the word
circuit has evolved in this manner. Early in the develop-
ment of electrical technology, a useful system [such as
the electromagnetic telegraph (Marland, 1964)] was com-
posed of at most a few topologically closed "circuits, "
and the closure of the current path was a central con-
cern. As the complexity of electrical systems increased,
the convention of organizing a system in terms of a
power supply and its buses was developed. This provided
a common segment for all the current paths, and the at-
tention of the engineer focused on the remaining, "in-
teresting" segment, that which contained the active de-
vices (and the term circuit came to be applied to such a
segment). However, by focusing on only a segment of the
current path, one had to deal with an open system, rather
than a closed one.

The physics of closed systems is certainly simpler than
that of open systems, because closed systems obey global
conservation laws, while open systems, in general, do not.
In the we11-established techniques of physical theory one
often encounters artifices, usually in the form of periodic
boundary conditions, which assure the closure of the
theoretical model, if not of the system itself. The point of
the present discussion is that it is frequently necessary to
partition a complex system (which might reasonably be
regarded as closed) into smaller components which,
viewed individually, must be regarded as open. Thus, the
more applied disciplines of the physical sciences must
often deal at some level with the concept of an open sys-
tem.

There are many established techniques for dealing with
open systems in fields such as ftuid dynamics, neutron
transport, and electronics. All these fields are concerned
with the transport of (usually) conserved particles. The
transport phenomena are described by transport equa-
tions at a kinetic or hydrodynamic level which are either
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difFerential or integro-differential equations. Such equa-
tions require boundary conditions, and it is in these
boundary conditions that the openness of a system is de-
scribed. In the computation of the flow around an airfoil,
one must supply "upstream" and "downstream" bound-
ary conditions (Roache, 1976, Chap. III, Sec. C). In elec-
tronics the connection to the external circuit is accom-
plished by some sort of contact. In solid-state electronics
the most frequently used type of contact is the ohmic
contact, an interface between a metallic conductor and
(usually) a semiconductor which permits electrons to pass
freely. Because the ohmic contact is a critical component
of solid-state technology, most work on such interfaces
has been directed toward their fabrication and character-
ization (Milnes and Feucht, 1972). The theoretical repre-
sentation of such contacts by boundary conditions has
been a part of the analysis of semiconductor device prob-
lems since the beginning of semiconductor technology
(Bardeen, 1949; Shockley, 1949). The current practice of
using boundary conditions to model contacts is discussed
in detail by Selberherr (1984, Sec. 5.1).

B. Theoretical approaches to open quantum systems

Since the existing theoretical work on open systems
consists primarily of the definition of boundary condi-
tions on transport equations, it is appropriate to examine
various approaches to transport theory to see how they
have dealt with this issue. This examination will center
upon electron-transport theory, because we wish to in-
clude quantum-coherence eA'ects in the theory, and these
are much more prominent in systems of electrons than in
systems of more massive particles.

By far the most common approach to defining the
boundary conditions on a transport problem is to circum-
vent the issue entirely. This is most easily done by re-
stricting one's attention to the special case of spatially
uniform systems, so that (at the kinetic level) all spatial
derivatives disappear, and with them the need to specify
the boundary conditions. Applications of the Boltzmann
equation (as expressed in terms of the usual Euler vari-
ables) have most often been restricted to the case of uni-
form driving fields (Dresden, 1961; Conwell, 1967).
When the 8oltzmann equation has been applied to
nonuniform systems (see, for example, Castagne, 1985;
Constant, 1985; Reggiani, 1985; Baranger and Wilkins,
1987), techniques requiring that the equation be recast in
terms of the Lagrange variables have generally been em-

ployed. Boundary conditions for such formulations are
discussed in Appendix C. Much of the work on quantum
transport has also assumed uniform fields (see, for exam-
ple, Levinson, 1969; Mahan, 1987).

The other popular approach is to assume periodic
boundary conditions (Kohn and Luttinger, 1967), which
assure the Hermiticity of all relevant operators (Yennie,
1987). This in effect closes the system, forestalling the
possibility of studying any open-system aspects of the
problem. It also prevents one from studying any situa-

tion in which the change in chemical potential across the
system is of finite magnitude (because the potential must
also be periodic). Periodic boundary conditions are thus
adapted to the requirements of linear-response theory
(Kubo, 1957), but not to those of far-from-equilibrium
problems.

A fundamental approach that does take cognizance of
the open nature of transporting systems is that advocated
by Landauer (1957, 1970; also Biittiker et al. , 1985).
This approach envisions a system within which dissipa-
tive processes do not occur, but which is coupled to two
or more ideal particle reservoirs. The conductance of
such a structure is then expressed in terms of the
quantum-mechanical transmission coefBcients of the sys-
tem. The ideal reservoirs have properties analogous to
those of a blackbody: They absorb without reAection any
electrons leaving the system and emit an equilibrium
thermal distribution into the system. We shall see that
such a picture is indeed the key to constructing a useful
open-system model. However, let us note that this ap-
proach does not specify the boundary conditions on a
boundary-value problem. The boundary conditions are
actually applied to Schrodinger's equation and are the
asymptotic conditions upon which the formal theory of
scattering is based (see Appendix D). The concept of
thermal reservoirs is invoked to specify how the various
wave functions are to be incorporated into a density
operator for the system, from which observables may be
evaluated.

The Landauer approach has successfully described a
number of quantum conductance phenomena (Stone and
Szafer, 1988): Aharonov-Bohm oscillations, universal
conductance fluctuations, and quantized conductance
through constrictions (Szafer and Stone, 1989). (Many
recent results in this area can be found in Heinrich,
Bauer, and Kuchar, 1988, and in Reed and Kirk, 1989.)
However, it is important to recognize that these phenom-
ena occur only under a very restricted range of cir-
cumstances (Webb, 1989): cryogenic temperatures (typi-
cally 1 K) and low voltages (typically 1 meV). The
reason for this is not so much the fragility of quantum-
interference eA'ects in themselves, but rather the con-
straints placed upon the phenomena by the requirement
that they be observable in the linear-response regime
(which is to say, very near to thermal equilibrium). Near
equilibrium, only the states near the Fermi level contrib-
ute to the conductance, but a/I such states participate.
As the temperature or bias voltage is raised, more states
participate in the conduction, with s1ightly di6'erent ener-
gies or wave vectors, and the observable eAects are
"washed out. "

In a far-from-equilibrium situation one has the oppor-
tunity to populate selectively a narrow set of quantum
states, leaving nearby states unpopulated. This can lead
to quantum-interference phenomena which are quantita-
tively dominant at or above room temperature. The pro-
totypical example of such a situation is provided by the
quantum-well resonant-tunneling diode (Chang, Esaki,
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and Tsu, 1974; Sollner et al. , 1983), which is discussed
more extensively in Sec. V. Such devices have demon-
strated peak-to-valley current ratios as high as 30 at 300
K (Broekaert, Lee, and Fonstad, 1988; for a tabulation of
device results see Mehdi and Haddad, 1989).

Given that far-from-equilibrium quantum-interference
e6'ects can be large and are thus important to study, one
must ask whether such eAects can be adequately de-
scribed by e1ementary quantum theory. For the case of
tunneling structures the standard elementary theory as-
sumes that the electron states are stationary scattering-
state solutions of Schrodinger's equation (Duke, 1969;
Tsu and Esaki, 1973; Wolf, 1985). Does this provide an
adequate description of nonequilibrium phenomenal The
answer is, in general, no, and we shall explore this issue
below. The elementary tunneling theory does seem to
give good results for the current density, but for other
physical observables, such as the charge distribution, a
more sophisticated approach is required.

To demonstrate the problems one encounters with ele-
mentary quantum-mechanical models in a far-from-
equilibrium situation, let us consider the apparently sim-
ple problem of finding the self-consistent electrostatic po-
tential in a single-barrier tunneling structure. A semi-
conductor heterostructure is assumed, and the details of
the structure and analysis are given in Appendix A. The
approach that we shall use is first to approximate the
self-consistent potential using the Thomas-Fermi screen-
ing theory. The resulting potential and electron distribu-
tion are shown in Fig. 1. The Thomas-Fermi potential
shows the smooth bending that one would expect in a
system in which the charge densities are several orders of
magnitude less than those in metallic systems. Now we
use the Thomas-Fermi potential in Schrodinger s equa-
tion and start an iterative procedure to find the "true"
self-consistent potential. The results of the first iteration
are also shown in Fig. 1, and it is quite clear that we will
not obtain a physically credible result. The charge densi-
ty obtained from Schrodinger's equation diA'ers markedly
from the Thomas-Fermi solution on the left-hand
(upstream) side of the barrier. Where Thomas-Fermi in-
dicates an accumulation of electrons, Schrodinger s equa-
tion gives a depletion of electrons. The reason for this is
that the tunneling theory assumes that the electron states
in the potential "notch" on the left-hand side of the bar-
rier are in equilibrium with the right-hand reservoir, be-
cause that is the side from which these wave functions
are incident. The depletion of electron density may be
traced to the requirement of current continuity in the
propagating states: As an electron propagates into a re-
gion of decreasing potential, its velocity increases; but to
maintain a constant current density, its amplitude must
then decrease. Because the tunneling-theory charge den-
sity does not produce overall charge neutrality in the
structure, the solution of Poisson's equation has large
electric fields at the boundaries, which in turn exacer-
bates the problem of charge neutrality. (The final self-
consistent result would show the energy barrier lying
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FIG. 1. Potential (upper) and charge density (lower) of a semi-
conductor tunneling heterostructure biased far from equilibri-
um: solid lines, results of a Thomas-Fermi screening model;
dashed lines, charge density and first iteration of the potential
obtained by solving Schrodinger's equation in a conventional
tunneling calculation. The tunneling result fails to display an
accumulation of electrons on the upstream side of the barrier
because inelastic processes are not included, and as a result the
self-consistent potential is quite unphysical. The dotted line
shows the distribution of positive charges, and the dot-dashed
line shows the chemical potentials.

near the bottom of a parabolic potential well consider-
ably deeper than that of the first iteration. )

The physical processes that work to enforce charge
neutrality are those which work to restore thermal equi-
librium, which is to say, inelastic processes. In the
present case, these are the inelastic scattering events (pri-
marily phonon scattering) which dissipate the electrons'
energy and cause electrons in the propagating states
entering from the left-hand reservoir to fall into the
lower-energy notch states. The resulting population in
the notch states produces the accumulation of negative
charge required to screen the electric field. Thus the true
self-consistent potential will depend upon the number of
electrons in the notch states, which in turn will depend
upon the relative rates at which electrons are scattered
into the notch states and subsequently tunnel out
(Wingreen and Wilkins, 1987). Therefore a physically
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reasonable self-consistent potential will not be obtained
unless the inelastic processes are included in the analysis.

The usual way to incorporate inelastic processes, to the
first order, is to use the Fermi golden rule to evaluate the
transition rates between states. In a more complete
description these transition rates actually appear as terms
in a Pauli master equation (see Kreuzer, 1981, Chap. 10).
The Pauli master equation assumes that the electrons oc-
cupy only eigenstates of the Hamiltonian, not superposi-
tions of those eigenstates. In other words, the density
operator of the system is and remains diagonal in the
eigenbasis of the Hamiltonian. In the present case, this
assumption violates continuity. An example of this is
shown in Fig. 2, which shows two eigenstates of
Schrodinger s equation, one incoming from the left and
one confined in the notch (though it is coupled by tunnel-
ing to a propagating state on the right-hand side of the
barrier). An inelastic process described by the Pauli mas-
ter equation will cause probability density to disappear
from one state and reappear in the other. Because the
spatial distributions of the two states are different, this
means that the probability distribution must change with
time. But because the states are both eigenstates, their
current densities are uniform. Thus the Pauli master
equation violates the continuity equation. This is ex-
plored more formally in Appendix B. Presumably, in-
elastic transitions are more localized processes, involving
superpositions of eigenstates which describe such locali-
zation. However, this implies that the off-diagonal ele-
ments of the density operator are non-negligible, and
theories that comprehend off-diagonal density operators
are kinetic theories.
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used, and inelastic processes (phonon scattering) were in-
cluded using the Boltzmann collision operator described
in Appendix F. When the phonon scattering processes
are included [Fig. 3(a)], an accumulation layer is formed
in the potential notch. However, the accumulation is not
sufficient to screen the electric field effectively as it ap-
proaches the boundary. Evidently there are other effects
that need to be included. One such effect is the resistivity
of the contacting layers (outside of the calculation
domain). If these layers are ohmic conductors, the distri-
bution of electrons in them must shift away from its equi-
librium value when a current is conducted. When this
effect is incorporated into the boundary conditions on the
kinetic model, the self-consistent potential shown in Fig.
3(b) is obtained. This is a much more credible result, as
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FIG. 2. Typical eigenstates in a tunneling structure: solid line,
a propagating state; dashed line, a state that is confined in the
potential "notch. " The spatial distributions of these states are
quite difFerent, as shown in the lower plot of ~t(j(x) ~

. Thus the
Pauli master-equation description of an inelastic process that
couples these states must violate the continuity equation.

FIG. 3. Calculations of the self-consistent potential of the tun-
neling heterostructure using a kinetic theory that includes in-
elastic processes. In (a) the longitudinal-optic and acoustic-
phonon scattering processes are included, but the incoming dis-
tribution of electrons is fixed. An accumulation layer is formed
on the upstream side of the barrier, but the screening of the
electric field is far from complete. In (b) the incoming distribu-
tion of electrons is allowed to shift in response to the electric
field at the boundary, to simulate an Ohmic conductor outside
the boundary. The screening is more complete, and the result-
ing potential is more physically credible.
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the potential varies smoothly through the structure and
the electric field approaches a small value at the boun-
daries. The screening length from the kinetic model is
significantly longer than the value indicated by the
Thomas-Fermi calculation of Fig. 1. This might have
been expected from the effects of size quantization in the
notch (Ando, Fowler, and Stern, 1982) and also from the
finite rate of inelastic transitions that fi11 the notch.

Thus the problem of calculating the self-consistent po-
tential in a tunneling structure is about as complicated as
it could possibly be, in the sense that the qualitative re-
sult depends upon all the processes occurring within the
system. It thus provides a vivid example of the problems
one encounters in attempting to apply elementary
quantum-mechanical concepts to a far-from-equilibrium
situation. A satisfactory treatment of far-from-
equilibrium phenomena requires an approach at a level of
sophistication at least equal to that of kinetic theory.

procedure will be to construct small, spatially discretized
models and to explore their properties numerically. The
significance of the results must then be argued inductive-
ly.

B. Fundamentals of kinetic models

In the kinetic level of description of a complex system,
the effects of those degrees of freedom that are of less in-
terest in a given problem are included implicitly in ob-
jects such as collision operators or effective interaction
potentials. In the example of electronic devices such de-
grees of freedom should include electron coordinates out-
side the device, but within the external circuit. They also
include all excitations of the device material apart from
the single-electron states (e.g., the phonons). Thus, at
this level, the state of the system is described by a one-
body density operator or distribution function. In gen-
eral, this can be written as

II. QUANTUM KINETIC THEORY p(x, x') = g tu, (x ~i ) ( i~x'), (2.1)

A. Levels of approximation in statistical theory

A generally accepted approach to the problems of sta-
tistical physics is to begin with the general theory of
Inany-body dynamics and to proceed by deductive
reasoning to a formulation that provides an answer for
the problem of interest (see, for example, Reichl, 1980).
The steps in this deductive chain necessarily involve the
introduction of extra assumptions in the form of suitable
approximations. One may loosely categorize the levels of
approximation in terms of the independent variables re-
quired to specify the state of a system. The most detailed
level is the fundamental many-body theory, which in
principle requires a complete set of dynamical variables
for each particle. This can be reduced to the kinetic level
by restricting one's attention to one- or two-body proper-
ties [by truncating the BBGKY hierarchy of equations,
for example (Reichl, 1980, Sec. 7C)j. It may also be
necessary to remove from explicit consideration other
dynamical variables of the complete system, such as pho-
ton or phonon coordinates, when electrons are the parti-
cles of interest. The kinetic theory is expressed in terms
of distribution functions defined on a single-particle
phase space, requiring one position and one momentum
variable for each spatial dimension. (In the quantum
case, this goes over to two arguments of the density
operator. ) The hydrodynamic level of approximation is
obtained by making some assumption about the form of
the distribution function with respect to momentum, and
integrating over all momenta. Thus the hydrodynamic
theory is expressed in terms of densities that are func-
tions of position only.

The approach taken in the present work is quite
different from the conventional deductive approach. The
objective is to identify the mathematical properties re-
quired of simple kinetic models of open systems. The

where i labels a complete set of states and the m; are
real-valued probabilities for the system to be in state ~i ).
Because we shall be considering open systems in which
the number of particles is not fixed, the usual convention
for the normalization of p((i~i ) =1 and Trp= 1) is not
useful ~ Instead, we shall adopt a normalization conven-
tion such that p(x, x) gives the actual particle density (in
units of particles per cm, for example). More formally,

p is the one-body reduced density operator which is
defined on a single-particle Hilbert space (Reichl, 1980,
Chap. 7). The complete density matrix defined on the
many-particle Fock space (second quantization) may still
be normalized to unity. The focus upon a single-particle
description requires that one exercise some care concern-
ing the quantum statistics. For example, if the equilibri-
um density operator is obtained by solving the Bloch
equation, Bp/BP= Hp, the resu—lt will satisfy Maxwell-
Boltzmann statistics. A similar calculation in the Fock
space will, of course, satisfy Fermi-Dirac statistics.

For a system described by a simple single-particle
Hamiltonian,

g2 Q2
+u(x),

2m

the time evolution of the density matrix is given by the
Liouville-von Neumann equation:

82
p+ [u (x)—u (x') jp,

(2.3)

where L is the Liouville superoperator. The simplest ap-
proach to modeling the behavior of open systems is to ap-
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ply the Liouville equation to a finite spatial domain
representing the system of interest and to apply boundary
conditions that model the openness of the system. The
difficulties and ultimate success of this approach involve
the effect that such boundary conditions have upon the
properties (particularly the eigenvalue spectrum) of the
Liouville superoperator.

C(+)A =
&
[CA + AC] (2.8)

If C is Hermitian (C =C), the Hermiticity of C( ) and
C (+ )

follow immediately:

(C( )A ~~8) =Tr[(CA —AC) 8]=Tr(A C 8 —C A 8)
=Tr( A tCB —CA tB)=Tr( A tCB —A tBC)

=Tr[ At(CB —BC)]=( A ~~C( )8 ),
C. Linear algebra of superoperators

(2.4)

where 3 and 8 are operators and the notation (
~~

) is in-
troduced to indicate expressions in the linear space of
operators. It 1s caslly shown that th1s satisfies thc axioms
(Apostol, 1969) defining an inner product on a complex
vector space. Then a Hermitian superoperator JV
satisfies

( ~ [[uB ) = (m ~ ])8 ),
and a unitary superoperator 'M satisfies

( MA f/O'8 ) = ( A //8 ) .

(2.5)

(2.6)

Superoperators are usually derived from ordinary
quantum observable operators by forming the commuta-
tor or anticommutator with the operator being acted
upon. For an operator C let us denote these superopera-
tors

C'( )2 =CA —AC, (2.7)

A central issue in the development of a kinetic model
for open systems is the stability of the resulting time-
dependent solutions, which depends upon the eigenvalue
spectrum of the Liouville superoperator. Zwanzig (1964)
has presented an excellent discussion of the properties of
superoperators (or tetradics). However, the present
analysis requires a somewhat different group of expres-
sions, so the subject will be developed here. The density
operators that represent the state of a statistically mixed
system themselves form a linear vector space analogous
to the space of pure quantum states represented by wave
functions. A linear combination of density operators
might be used to describe the results of superposing two
partially polarized beams of particles, for example (using
the present normahzation of p ). Anything that generates
linear transformations on a density operator [such as the
right-hand side of the Liouville equation (2.3)] is a su-
peroperator. In a finite, discrete system with Ã states, a
wave function will be a vector (a singly-indexed object)
with X elements, the density operator will be a matrix (a
doubly-indexed object) with X elements, and a super-
operator will be a tetradic (a quadruply-indexed object)
with X elements. The linear algebra of superoperators
is isomorphic to that of ordinary operators, but to define
concepts such as Hermiticity or unitarity of superopera-
tors, we must have a definition for the inner product of
two ordinary operators. The simplest definition is

and similarly for C(+). The Hermiticity (or lack thereofl
of the Liouville superoperator is the critical issue in for-
mulating a kinetic model of open systems.

Of particular importance are the superoperators gen-
erated by the position operator x and the momentum
operator p„=(A'/i)B/Bx:

X'(+)=—,'(X +X'),

X( )=X X

(2.9)

(2.10)

( —) ~

l

Bxc)x

8
ax

+
Bx

(2.11)

(2.12)

These superoperators obey the following commutation
relations:

(2.13)

(2.14)

Thus y(+) is in some sense conjugate to P( ), and g(
bears a similar relationship to P(+). Of course C (+) com-
mutes with C( ) for any operator C.

D. Irreversibility

Kinetic theory appears to be the simplest level at
which one may consistently describe both quantum in-
terference and irreversible phenomena (Prigogine, 1980).
The only available levels that are simpler, in that they re-
quire fewer independent variables, are hydrodynamics
and elementary (single-particle, pure-state) quantum
mechanics. Hydrodynamics (as embodied in Ohm's law
and the drift-diA'usion equation in solid-state physics)
provides no means to describe quantum effects such as
resonance phenomena because it retains no information
on the distribution of particles with respect to energy or
momentum. On the other hand, if one attempts to in-
clude irreversible processes within the framework of ele-
mentary quantum mechanics, the continuity equation is
most often violated. Irreversible processes will generally
result in the time dependence of some physical observ-
able showing an exponential decay. The only time depen-
dence provided by elementary quantum theory is the
e ' ' " dependence of the wave function. Exponential
decay implies that E must have a negative imaginary
part, which means that the electron (for example) ex-
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752 William R. Frensley: Boundary conditions for open quantum systems

ponentially disappears, violating charge conservation.
As we have seen, violations of continuity still occur when
the irreversible processes are described by the Fermi
golden rule or Pauli master equation (see Appendix 8).
To maintain consistency with the continuity equation, we
must allow off-diagonal elements of the density matrix (in
the eigenbasis of the Hamiltonian) to develop as the sys-
tem evolves (see Peierls, 1974). Because we do not know
a priori which off-diagonal elements are required, we
must admit all off-diagonal elements. A theory that de-
scribes the evolution of the complete (single-particle) den-
sity operator, including the off™diagonal elements, is by
definition a kinetic theory.

To express this point in another way, me cannot, in
general, assume that the particles in an irreversible system
occupy the eigenstates of the Hamiltonian. The proper
basis states for a one-particle description are the eigen-
states of the density operator, and thus the specification
of the basis set should be a result obtained from a proper
theory, rather than an a priori assumption in the theory.
The exception to this situation is the particular case of
thermal equilibrium. In this case we know that the den-
sity operator is a function of the Hamiltonian (via the
Bloch equation, p ~ e ~ ), and if an efFective one-particle
Hamiltonian is an adequate description, the particles in
the system will be found in eigenstates of this Hamiltoni-
an, if they are in equilibnum.

The usual way to describe the effects of irreversible or
dissipative processes at the kinetic level is to add a col-
lision term (of one form or another) to the Liouville equa-
tion (2.3) to obtain a Boltzmann equation. This is a valid
procedure so long as the dissipative processes are
suKciently weak that the motion of the particles can be
viewed as periods of free Qight interrupted by collision
events. Such a term takes its simplest form for interac-
tions between the particles of interest (i.e., electrons) with
particles that either are spatially fixed (such as impurities
in solids) or can be modeled as components of a thermal
reservoir (such as the phonons). In this case (and within
the Markov assumption) the collision term is a simple
linear superoperator expression, and we can write the
Boltzmann equation as

Bp/Bt = (X/i fi)p+ C p,
where C is the collision superoperator. (We shall see
later what condition C' must satisfy to preserve the con-
tinuity equation. ) For two-body collisions the operator is
a more complex object, operating on a two-body density
matrix or (if the Stosszahlansatz is invoked) a product of
one-body density matrices which introduces nonlinearity.

A characteristic feature of irreversible systems is the
existence of stable stationary states, which can be either
the equilibrium state or a nonequilibrium steady state if
the system is driven by an external agency. Perturbations
upon such a steady state will, in general, decay. To de-
scribe this decay the Boltzmann superoperator X/i%+ C
must have eigenvalues with negative real parts. In the
usually studied case the LiouviHe superoperator is Her-

mitian, so X/ih by itself would produce purely imagi-
nary eigenvalues. The collision operator C introduces
the negative real parts of the eigenvalues. Physically, we
expect that there should be no eigenvalues with positive
real parts, because these would correspond to exponen-
tially growing modes, and the system would not be stable.
The presence of eigenvalues with negative real parts to-
gether with the absence of eigenvalues with positive real
parts implies that the system is time irreversible.

The study of the fundamental origins of irreversibility
in physical theory remains an area of active discussion
and debate, more than a century after the question was
first raised. However, if one's objective is to develop use-
ful models of physical systems with many dynamical
variables, rather than to construct a rigorously deductive
mathematical system, it is clearly most profitable to
adopt the view that irreversibility is a fundamental law of
nature. For the present purposes a Inore precise state-
ment of this law is that "simple" systems will always
stably approach a steady state. In this context simple
systems are those which can be regarded as being com-
posed of a single type of particle or single chemical
species and such that all other types of particle or excita-
tion can be represented by thermal reservoirs. [Mul-
ticomponent systems can display exponential growth or
stable oscillation (Prigogine, 1980).] The stability of the
physical system implies that the kinetic superoperator
that generates the time evolution of the density matrix
(whether it be of the Liouville, Boltzmann, or some other
form) cannot possess eigenvalues that would lead to
growing exponential solutions. That is, there can be no
eigenvalues with a positive real part. This condition will
determine the sort of boundary conditions that can be
used to model open systems.

Throughout most of the present analysis the collision
terms will be neglected, because we shaH see that irrever-
sibility enters through the open-system boundary condi-
tions. The irreversible open-system model permits a wide
variety of phenomena to be described at least qualitative-
ly without invoking a collision term. This is not to say
that irreversible collisions or dissipative interactions
within a system are not significant effects. Indeed, a cen-
tral thrust of traditional transport theory is the deriva-
tion of kinetic descriptions of such phenomena. The
present neglect of the collision term is merely for the sake
of simplicity, and it should be borne in mind that such a
term may be readily added to any of the calculations to
be discussed (see Appendix F).

III. TIME-REVERSIBLE OPEN-SYSTEM MODEL

To describe the behavior of an open system, we shall
consider an approach in which the spatial domain is con-
sidered to be finite, corresponding to the extent of the
system, and boundary conditions are applied which per-
mit particles to pass into and out of the system. The first
model we shall consider employs time-reversible bound-
ary conditions which are plausible, but which we shall ul-
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timately see to be unphysical (Frensley, 1985). This mod-
el helps to define the conditions that a physically reason-
able open-system model must display.

particular case p obeys the homogeneous boundary con-
dition

A. Continuum formulation
aX

+
aX

=0.
boundary

(3.4)

ap„/aP= —Hp„.
The solution pt, (for free particles in equilibrium) is

(3.1)

To provide the motivation for the first model, let us
consider a spatially uniform particle gas of infinite extent,
—~ & x & ~, and take the open system to be the finite
region 0+x ~ l. The thermal equilibrium density matrix
for a uniform gas may be obtained by integrating the
Bloch equation (Feynman, 1972)

In other words, the directional derivative of p in a direc-
tion parallel to the principal diagonal is set to zero at the
boundaries.

Is Eq. (3.4) the appropriate boundary condition for a
general open system? Let us explore some of its conse-
quences. Suppose at time t=0 we apply a uniform force
field F to the particle gas. The solution to the Liouville
equation (2.3) over the infinite domain and with initial
condition (3.2) describes an accelerating gas and is given
by

1
pt q(x x ) exp[ (x x ) /2AT+Pp]

2~AT
(3.2) p„,(x,x', t) =pt, „(x,x')exp iFt

(x —x') . (3.5)

where the normalization is such that pt, q(x, x) gives the
number of particles per unit length, p is the chemical po-
tential, and kT is a thermal coherence length given by

AT=Pi p/m . (3.3)

Now if we arbitrarily impose boundaries along the lines
x=0, x =l, x'=0, and x'=l, what boundary conditions
would pf eq satisfy? Note that the dependence is only
upon (x —x'), so that Bp/Bx = —Bp/Bx'. Thus in this

I

Now p„, also obeys Eq. (3.4), so it is also the solution to
Eq. (2.3) over the finite domain subject to boundary con-
dition (3.4).

A more general consequence of boundary condition
(3.4) is that the particle densities at the boundaries, p(0,0)
and p(l, l), remain constant as the density matrix evolves
with time. To demonstrate this, note that we can factor
the hyperbolic operator in the Liouville equation (2.3) de-
rived from the kinetic energy terms as

2m

82

BX

fz

2m c)x

1
~(+)@(—)

(3.6)

The boundary condition assures that the second factor in
Eq. (3.6) is zero along the boundaries, and along the diag-
onal the potential term is zero. Thus Bp(0, 0)/Bt=O and
Bp(l, /)/Bt=O This migh. t be interpreted as the behavior
of a large reservoir with a fixed particle density (or fixed
pressure if the temperature is also fixed). Thus the
boundary condition (3.4) provides a plausible model for
an open system.

In fact, the Liouville equation (2.3) subject to the
boundary condition (3.4) generates an unphysical solu-
tion in the form of exponentially growing particle densi-
ties when it is applied to more general potentials that do
not have the symmetry of the uniform field (Frensley,
1985). The nature of the time-dependent solutions
(whether they be growing, decaying, or oscillating) de-
pends upon the eigenvalue spectrum of the Liouville su-
peroperator (the definition of which requires both the
differential operator and the boundary conditions). The
problem with the growing densities (and ultimately the
identification of the correct model) is a consequence of
opening the system, which violates the Hermiticity of the
Hamiltonian operator and of the Liouville superoperator.
Recall the proof (Messiah, 1962) of the Hermiticity of the
Hamiltonian (2.2). It proceeds by invoking Green s iden-

tity to transpose the Laplace operator, which leaves a
surface term. The precise expression is

f (H H)dx= —f jd—s
0 S

(3.7)

where B refers to the volume of the domain, S is its sur-
face, and j is the current-density operator. One main-
tains the Hermiticity of the Hamiltonian by choosing
basis functions for which the surface integral is identical-
ly zero: states well localized within the domain and sta-
tionary scattering states (or periodic boundary condi-
tions) for which the incoming and outgoing currents can-
cel. Because the total number of particles in an open sys-
tem can change in response to externally imposed condi-
tions, such a basis set is too restrictive.

The violation of the Hermiticity of the Liouville su-
peroperator follows directly from the violation of Hermi-
ticity of the Hamiltonian. This leads to eigenvalues of
the Liouville superoperator that have nonzero imaginary
parts, leading to real exponential behavior in the time
dependence of p. As mentioned previously, the inclusion
of dissipative interactions will introduce decaying ex-
ponential behavior. It is thus quite enlightening to ob-
serve both the separate and combined effects of dissipa-
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tion and open-system boundary conditions on the eigen-
value spectrum of the Liouville superoperator (though
technically it is no longer the Liouville operator when
dissipation is included). For this purpose let us consider
an extremely simple model of dissipation. This model is
simple Brownian motion as described by the Fokker-
Planck or Kramers equation (Kubo, Toda, and
Hashitsume, 1985). It is classically valid in the limit that
the particles of interest are weakly coupled to an ideal
reservoir. Caldeira and Leggett (1983) have studied the
quantum-mechanical derivation of this equation and
have shown it to be valid at higher temperatures (AP
smaller than or comparable to the response time of the
reservoir to which the particles are coupled). In terms of
p the Fokker-Planck equation may be written in the form
of Eq. (2.15) with the collision operator given by

(x —x')
Fpp— p+ (x —x') p

m

Bx '
fi2P

B. Discrete numerical model

To explore the eigenvalue spectrum of the present
open-system model and those which will be investigated
later, let us consider a finite-difterence approximation to
the Liouville equation (2.3) which reduces X to a finite
matrix whose eigenvalues may be readily computed. Let
me emphasize that only the spatial coordinates will be
discretized; time remains continuous, so that the partial
differential (and eventually integro-differential) Liouville
equation will be reduced to a set of coupled ordinary
differential equations with respect to time.

This particular situation requires some discussion.
Throughout the computational physics literature, discus-
sions of stability always involve a discretization with
respect to time. Because one is accustomed to dealing
with continuum equations whose behavior is known to be
stable (or at least physical), the common assumption that
any instability must be a result of the diseretization
scheme is generally correct. However, a difterent situa-
tion is being studied here. The validity of the equations
themselves (or more precisely the boundary conditions) is
the issue. If a discrete-space, continuous-time model is
unstable, there will be no time discretization that will
correct this instability. On the other hand, we wish to as-
sume that the stability of the discrete-space, continuous-
time model will be indicative of the stability of a
continuous-space, continuous-time model. As mentioned

——y(iX'( )P(+)/A'+X( )/A, T)p,

where y is the damping rate. The first term in Eq. (3.8)
describes dissipation and corresponds to a frictional force
equal to yp, where p is the linear momentum. The
second term describes the thermal fluctuations. An im-
portant property of Cpp is tllat (Cppp)(x, x) =0, which is
required for consistency with the continuity equation.
CFP will be used below to add dissipative interactions to
our open-system models.

before, this connection requires a logical induction.
The position coordinates x will be taken to be elements

of a uniformly spaced mesh: Ixj ~xj =j b. for
j =1,2, . . . , XI. The dependent quantities such as the
wave function and density matrix then take on discrete
values also, which will be denoted by g =P(x ) and

p,"=p(x, ,x ). Using the simple finite-difference approxi-
mation (8 P/Bx ), =(itj, ,

—2$;+g;+, )/b, „, we find
that the Hamiltonian (2.2) becomes

H; = (25 j —5;, , —5;+, j)+U, 5,2m' (3.9)

i%(dP/Bt);~ =X) k,Pki, .

where the tetradic nature of X is made explicit. The
discrete representation of X may be derived from Eq.
(3.9) and is

(3.10)

f2

, (
—5;- i, k5ji —5;+ i, k5ji+5,v, 5j —i, i

2m a'.

+5'k5j+1, l )+(U; Uj )5'k5J! (3.11)

Again, the elements adjacent to a boundary require spe-
cial attention.

To evaluate the eigenvalues of X and other super-
operators, we must map the tetradic onto an ordinary
matrix, so that conventional eigenvalue algorithms may
be applied. To do so for the finite, discrete case, we may
map the density matrix p onto a singly subscripted vector
of dimension X by p,"—+p with I =(i —1)N+j. Note
that with this mapping the inner product between two
operators (2.4) becomes the ordinary inner product be-
tween two vectors. The mapping of the tetradic X onto
an X XX matrix follows immediately. The matrix
representing X was actually constructed for X= 8 (result-
ing in a 64 X 64 matrix for X ) using the potential illus-
trated in Fig. 4. Let us first consider a closed system
with no damping. This model is obtained by simply ap-
plying the particle-in-a-box (homogeneous Dirichlet)
boundary conditions to the Liouville operator (3.11).
The resulting eigenvalue spectrum is shown in Fig. 5(a).
All the eigenvalues are purely real, as expected from a
Hermitian superoperator.

In the second case the model system is taken to be
closed, but damped. The Fokker-Planck damping opera-
tor (3.8) may be written in discretized form as

for i,j not on one of the boundaries. To incorporate the
boundary conditions, it is best to think of adding an addi-
tional mesh point at each end of the domain (points xo
and xiv+ i ), and specifying the value of the wave function
on those points. For example, to apply the homogeneous
Dirichlet conditions for a particle in a box, we would set
go=0 and P&+i=0. Inserting these conditions into Eq.
(3.9) completely defines the matrix II, for 1 ~i",j ~~.
Similarly, if we wanted to apply Neumann conditions,
BP/Bx=0, we would set fo=g, .

Writing the Liouville equation (2.3) on the finite-
difterence basis gives
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A+2

T

(I i—)( 5;k5jl 5 1—, /5jk 5 k5'j+I I) ««& j
X '

(j —I)(25;k5,/
—5;+l, i5,k

—5;k5, 1, /) ««&j . (3.12)

This form preserves the important properties of C'Fp To
illustrate the eff'ect of dissipation on the spectrum of
(X+i%'CFP), the zero-temperature limit (P~ oo ) was
taken (so that the first term, describing fiuctuations, van-
ishes) and the damping constant y =0.01/oo (where
coo=Pi/2mb. „)was used. The resulting eigenvalue spec-
trum is shown in Fig. 5(b). Negative imaginary parts
have been introduced into all the eigenvalues (except pos-
sibly one eigenvalue which is equal to zero within the nu-
merical roundoA' error, which presumably represents the
ground state). These negative imaginary parts lead to
damped motion, as expected.

Now with this background we can consider the case of
the open-system boundary conditions (3.4) (zero diagonal
gradient). The simplest finite-difference approximation
for the condition (3.4) is

~P P 1 1

Z (P;+1,, P;, )+—
~ (P;, —P;,, -1)

1
(Pl +1j Pl j 1) (3.13)

for i or j equal to 1 or X. Thus the open-system Liouville
superoperator X'"' (for open system, reversible) is ob-
tained by inserting boundary values p;0=p;+» and

PN+, j =PN j, (and the expressions obtained by tran-
sposing the indices) into Eq. (3.11). For the sake of com-
pleteness, let us write down the elements of X'"' that are
affected by the boundary conditions:

(„)+i 1;kl 2 ( 5i —1,k51, l+5ik52, l )+(Ui Ul 5ik51, /

+(Ui VN)5ik5NI

(-)
+Nj;kl 2

( 5N —1,k5jl+5Nk5j +l, l )
2m'„2

+(UN —
U, » N5kj /.

The non-Hermiticity of X'"' follows from these expres-
sions. For example, X';7.'; » = —A' /(2m 6, ), but

XI '». ;,=0. The boundary conditions have caused ele-
ments of X to be canceled in a way that breaks the Her-
mitian symmetry. The resulting eigenvalue spectrum is
plotted in Fig. 6(a). The non-Hermiticity of X'"1 leads to
some eigenvalues with nonzero imaginary parts. It is ap-
parent that these eigenvalues occur in complex-conjugate
pairs, with both positive and negative imaginary parts
present. This is a consequence of the time-reversal sym-
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g2
+iN;kl 2 ( 5i+1,k5NI+5ik5N —1,k )
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FICi. 4. Potential used in evaluating eigenvalue spectra of Liou-
ville superoperators in the discrete model. This potential was
chosen to have both a driving field and a barrier.
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FIG. 5. Eigenvalue spectra of the Liouville operator for a small
model closed system with the potential shown in Fig. 4. If the
system is taken to be conservative, the resulting eigenvalue
spectrum is shown in (a}. All eigenvalues are purely real, as ex-
pected. In (b) a damping term has been added, leading to nega-
tive imaginary parts for most eigenvalues.
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metry of both the Liouville equation and the open-system
boundary conditions (3.4). The eigenvalues with positive
imaginary parts produce growing exponential solutions
to the Liouville equation, which would prevent any ap-
proach to steady state. This open-system model is thus
physically unacceptable.

One might speculate that the problem of growing solu-
tions could be due to the absence of damping in the mod-
el. To test this, let us add in the Fokker-Planck damping
term (3.12), as we did for the closed-system model. With
the same damping constant (y=0.Olcoo) as before, the
resulting eigenvalue spectrum for (L'"'+iACFp) is that
shown in Fig. 6(b). The addition of damping clearly does
not solve the stability problem because it does not re-
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FIG. 6. Eigenvalue spectra for open systems using the bound-

ary conditions of Eq. (3.4). If the boundary conditions are
changed so as to open the system, nonzero imaginary parts are
generated, as in (a). Because the boundary conditions are time
reversible, these imaginary parts occur in conjugate pairs. If a
damping term is added as in (b), most, but not all, imaginary
parts are negative. The few eigenvalues with positive imaginary
parts are sufhcient to render the model unstable. Stability can
be achieved by increasing the damping rate, leading to the spec-
trum (c).

move the positive imaginary parts. In fact, a larger
damping constant does lead to a stable model, as shown
in Fig. 6(c), where @=0.03coo was used. All the eigenval-
ues now have negative imaginary parts, except for a dou-
bly degenerate eigenvalue at zero (which must be present
because of the invariance of p» and p» ).

Thus modeling an open system by applying the bound-
ary conditions (3.4) will work only if the rate of damping
within the system is sufficiently large (or, for the case of
electron transport, if the mobility is sufficiently low).
The minimum acceptable damping rate depends upon the
magnitude of the imaginary parts of the eigenvalues of
X'"' for the undamped system, which in turn depends
upon the form of the potential. In fact, the potential of
Fig. 4 was chosen because it produces larger imaginary
parts than potentials with greater symmetry. All this
adds up to a very unsatisfactory formulation for an
open-system model. The problems may be traced to the
time-reversal symmetry of the boundary conditions. To
obtain a proper formulation, this symmetry must be bro-
ken.

IV. IRREVERSIBLE OPEN-SYSTEM MODEL

To provide a physical motivation for the ideas that
openness necessarily involves time irreversibility, let us
consider another example system drawn from electronic
technology, the vacuum thermionic device ("vacuum
tube" or "valve" ) (Langmuir and Compton, 1931; East-
man, 1949). These devices were made by introducing two
or more metallic electrodes into a vacuum through which
electrons could be transported without dissipation.
When a voltage was applied between anode and cathode
(and the cathode heated to therma, lly excite electrons into
the vacuum), a nonequilibrium steady state would be es-
tablished with a nonzero current Aowing. Such a non-
equilibrium steady state cannot be established in a rever-
sible (or Hamiltonian) system. Consider what would hap-
pen if a population of electrons were introduced into
some sort of trapping potential in ultrahigh vacuum.
The system would eff'ectively be closed, and the motion of
the electrons would consist of periodic (thus, reversible)
orbits. Of course what happened in the case of the ther-
mionic vacuum tube is that electrons were accelerated by
the electrostatic field until they impacted the anode,
where they lost their kinetic energy to collisions with the
electrons in the metal. Their energy was thus dissipated
as heat. However, we can infer a much broader principle
from this device: Making contact to a system in such a
way as to permit particles to enter and leave (opening the
system) in itself introduces irreversibility into the behav-
ior of the system, so long as the contacts have a sufFicient
number of degrees of freedom and enough indistinguish-
able particles to behave as reservoirs.

Now, if the openness of the system is to be modeled by
boundary conditions applied to the system, these bound-
ary conditions must themselves be time irreversible. A
physically appealing way to achieve such irreversibility is
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A. Continuum formulation

To implement boundary conditions that distinguish be-
tween particles fiowing into and those Aowing out of a
system, we must reexpress the Liouville equation (2.3) in
terms of the classical phase space (q,p), where q in this
case corresponds to the position x and p is the momen-
tum. This is naturally done by the Wigner-Weyl trans-
formation, which transforms the density operator p(x, x')
into the Wigner distribution function f (q,p) (Wigner,
1932; Heller, 1976; Berry, 1977; Carruthers and Za-
chariasen, 1983). For the present purposes, the Wigner-
Weyl transformation consists of a change of independent
coordinates to the diagonal and cross-diagonal coordi-
nates':

q =
—,'(x +x'), r =x —x', (4.1)

followed by a Fourier transformation with respect to r.
The variables x and x' may be expressed in terms of q
and r by

x =q+ —,'r, x'=q —
—,'r . (4.2)

Thus the Wigner distribution can be expressed as

f (q,p)= J dr p(q+ ,'r, q
—

—,'r)e—
The Liouville equation becomes

(4.3)

af p af 1 ~ dp'
Bt I Bq A —~2~8 V(q, p p')f(q,p'), —

(4, 4)

where the kernel of the potential operator is given by

V(q,p)=2 f dr sin(pr/A')[u(q+ —,'r) —u(q —
—,'r)] .

to distinguish between particles moving into the system
and those moving out of the system. It is then reasonable
to expect that the distribution of particles Aowing into
the system depends only upon the properties of the reser-
voirs to which the system is connected, and that the dis-
tribution of particles fiowing out of the system depends
only upon the state of the system. The behavior of the
reservoirs is thus analogous to that of an optical black-
body. This picture leads to a fully acceptable model of
an open system. af„p af„af„

Bt Bq Bp
(4.6)

The correspondence between the classical and quantum
drift terms will be exploited in defining the open-system
boundary conditions.

Quantum-interference effects enter the Wigner-Weyl
representation via the nonlocal potential term of Eq.
(4.4). The kernel of this operator, V(q, p —p'), in effect
redistributes the Wigner function among different p's at
each position q. The extent to which it does so depends
upon the potential at positions remote from q [Eq. (4.5)].
This is the way that interference between alternative
paths is incorporated into the equation. Thus a rough in-
tuitive image of the action of V(q, p —p ) is that it
represents particles that have scattered off the potential
at some point q+ 2r and, upon returning, interfere with
the particles propagating over other paths. This image
will be invoked to interpret the effects of cutting off the
integral in Eq. (4.5) at some finite value, which is required
in practical computations.

Let us now consider a model in which the domain is
bounded by q =0 and q =I. To address the question of
boundary conditions, first note that in the Wigner-Weyl
representation, the Liouville equation (4.4) is of first or-
der with respect to q and does not contain derivatives
with respect to p. The characteristics of the derivative
term are lines of constant p, and we must supply one and
only one boundary value at some point on each charac-
teristic, because the equation is of first order on q. The
kinds of boundary conditions that are appropriate are il-
lustrated in Fig. 7. To implement the picture described
above, that the particles entering the device depend only
upon the state of the reservoirs and that the particles
leaving the device depend only upon the state of the de-
vice, we should apply the boundary conditions illustrated
in Fig. 7(c). That is, we set

These expressions are derived under the assumption that
the domain is unbounded.

Let us consider the interpretation of the terms of the
Liouville equation (4.4). The first term on the right-hand
side is derived from the kinetic-energy operator and is of
the form known as a drift, streaming, or advection term
(in various nomenclatures). This term is exactly the same
as the corresponding term of the classical Liouville equa-
tion with force I:

(4.5)

(4.7)

'These are often referred to as "center of mass" and "relative"
coordinates, respectively. I feel that this is a misleading termi-
nology, because it gives the incorrect impression that one is
dealing with a two-body problem. We shall see below that the
significance of these coordinates follows from their relationship
to the superoperators K~+~ and X'~

~
[Eqs. (2.9), (2.10)] generat-

ed by the position operator.

where fb(';„'„'z„„ is the distribution function of the reser-
voir to the left of the system and fb",s„"~'„„is the distribu-
tion function of the reservoir to the right. These bound-
ary conditions are not invariant under time reversal, be-
cause time reversal would change the problem of Fig. 7(c)
into that of Fig. 7(d).

Conceptually, the boundary conditions (4.7) are identi-
cal to those employed in the conventional tunneling
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FIG. 7. Possible boundary conditions for the Liouville equation (4.4) in phase space. The points at which the boundary values are
specified (indicated by a heavy line) can be at q =0 as in (a), at q = I as in (b), or divided between the two boundaries, depending upon
the sign of p, as shown in (c) and (d). The boundary conditions (c) are, in fact, the appropriate ones for an open system.

L'"'=i% 7+ifzV, (4.8)

where T is the superoperator derived from the kinetic-
energy term of the Hamiltonian,

p r)f
nfl Bq

(4.9)

and where V is the superoperator derived from the po-
tential term,

theory (see Appendices A and D), in the Landauer ap-
proach (Landauer, 1957, 1970; Biittiker et al. , 1985,
Stone and Szafer, 1988), and in solutions of the
Boltzmann equation for nonuniform systems (see Appen-
dix C and Duderstadt and Martin, 1979). However,
some care must be taken in this identification. It is true
that the variable p goes over into the classical momentum
appearing in the Boltzmann equation, by the correspon-
dence principle. However, it is not true that p is the same
quantity as the operator p =(fi/i)r)/r)x or its eigenvalue.
In particular, as will be discussed in Sec. VI.A, the
traveling-wave boundary conditions actually depend
upon the energy of the state, rather than p. Thus the
boundary conditions (4.7) are conceptually identical to,
but mathematically diAerent from, those employed in the
tunneling and Landauer approaches.

Let us call the Liouville superoperator which results
from the boundary conditions (4.7) X'"' (for open system,
irreversible). For purpose of the present discussion, it
will be separated into two terms:

Let us note in passing that V can be written in two other
forms. One is Groenewold's expression (Groenewold,
1946):

&f(q,p) = iA
U q+

2 Bp

iA 8
V q 2 Bp

f(q, p) .

z. ma a= ——sin — U(q)f(q, p),
2 Bqhp

(4.12)

where in the last expression it is understood that 0/0q
acts only upon U (q). The utility of both of these expres-
sions depends upon the existence of a rapidly converging
series expansion for U (q). Such an expansion is not avail-
able for the abrupt energy-barrier structures that origi-
nally motivated the present study, so the integral form of
V (4.10) is preferred for practical computations.

B. Discrete model

(4.1 1)

The other is the Wigner-Moyal expansion (Moyal, 1949):

2 + (
)„(fi/2) " ' 8 "+'U(q)

(2n+1)' g ~" +'

x 'd'"+'f(q, p)
2n +1

I

(&f)(q,p)= ——f v(q, p —p')f(q, p') . (4.10)
To investigate the eigenvalue spectrum of the Liouville

operator subject to the boundary conditions (4.7) we
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j'= —N /2
q

—2iPkj '6 /A
Pj+'I ' Ie (4.13)

where j indexes position q, and k indexes momentum p.
The discrete version of the potential term is readily

defined. Using Eq. (4.13), we find that the discrete po-
tential kernel becomes

N /2

Vji = g Sill
2k' j'5

('j+j' (4.14)

[Notice that Eq. (4.14) invokes values of v that are out-
side the domain Iq, ~

j= 1, . . . , X~ I. This expresses the
nonlocality of quantum phenomena and is one way in
which the environment of an open system influences the
system's behavior. The values that one assumes for U,
where j (0 or j)N, depend upon the nature of the en-
vironment. If ideal reservoirs are assumed, then setting
these values equal to the potential at the appropriate
boundary appears to be an adequate procedure. ] The ele-
ments of V are then

again construct a small, discrete model. The position
variable q will take the same set of discrete values that x
did in the previous section: Iq ~q

=jA for
j= 1,2, . . . , X I . The values of p are also restricted to a
discrete, bounded set: Ip„~pk =(~A/4~)[(k —,

' )/—X~——,']
for k =1,2, . . . , X I. The mesh spacing in the p direc-
tion is thus b, =(mh')/(K 6 ). The choice of discrete
values for p follows from a desire to avoid the point p =0
and the need to satisfy a Fourier completeness relation,
which will be discussed later. The discrete Vhgner distri-
bution is then related to the discrete density matrix of
Sec. III.B by

when used to approximate a drift term. ) The boundary
conditions determine which of the above difference forms
must be used simply because one or the other will not
couple the boundary value into the domain. Again, let us
imagine that the boundary conditions (4.7) are imple-
mented by fixing the value of f on mesh points just out-
side the domain:

fok =fb",„'„'d„i~ for pk )0,
(right)fN +i, k fboundary& for pk +

(4.18)

This scheme is illustrated in Fig. 8. Consider pk )0. The
boundary conditions are specified for q0, and if this value
is to be coupled into the domain, we must use the left-
hand difference formula (4.16) for the gradient at qi.
Consistency then requires that we use the left-hand
difference for all qj (for p& )0). Similarly, we must use
the right-hand difference (4.17) for p& (0. In the context
of hydrodynamic calculations such a difference scheme is
called an "upwind" or upstream" difference and is
known to enormously enhance the stability of a computa-
tion (Roache, 1976, pp. 4—5). It has also been used in
neutron transport calculations at the kinetic (phase
space) level (Duderstadt and Martin, 1979). The ele-
ments of T are thus

+jk;j 'k'

r

6j+, ' —6 ' for pk (0
kk Q —$ for p )0

(4.19)

The terms 7, k.o & and T~ k. ~ +, i, couple to the fixed

boundary values of f and are thus the coefficients of in-

+jk;j'k' ~jj '~j, (k —k')modN ~ ~jj '~j;k, k'

(4.15)

where the notation Vj.k k Vj(k k )mpdN is introduced

to shorten the expressions to be derived from the discrete
Liouville equation. Note that the elements of V are real
and that )jjk;j 'k'

'hajj'k';jk

so (iiII"V) is an ' ag' ary
Hermitian superoperator.

The boundary conditions (4.7) affect the form of the
drift term T because they determine the proper finite-
difference form for the gradient. On a discrete mesh, a
first derivative (Bf /Bq)(q ) can be approximated by ei-
ther a left-hand difference,

(4.16)
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I

I
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I
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I
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I

I+ 0m
I

I

Woc—

O~O~O~O~
I

I

omomomo&
I

I

OWOWOWOW
~ I. . . ~

IOWOWOWO+0
I

I

o&—omomo+ a
I

I

o~o&—o~oWe
RESERVOIR DEVICE RESERVOIR

o Variable internal node
Fixed boundary node

or a right-hand difference,

c)q right

(4.17)

(There is also a centered-difference form, [f(q + i )

f(q I ) ] /2b, , which ha—s poor stability properties

FICx. 8. Discretization scheme for the kinetic-energy super-
operator (drift term) 'T in the Wigner representation. The flow
of probability between mesh points is indicated by the arrows,
which also define the sense of the finite-diA'erence approxima-
tion for the gradient. A flow toward the right requires a left-
hand difl'erence and vice versa. This is the "upwind" diA'erence

scheme and is uniquely determined by the form of the boundary
conditions (4.7).
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homogeneous terms and are not strictly elements of Y.
(In particular, these terms are not included in the eigen-
value calculation because eigenvalues are properties of
homogeneous linear operators. ) It is convenient to group
these terms into a boundary contribution b k

..

(left )b 1k g fboundaryk o Pk + 0 rmh
(4.20)

q mh

The discrete form of the Liouville equation then becomes

(4.21)

(Note in particular that there is no eigenvalue equal to
zero, and thus X'"' is nonsingular). Because the eigen-
values have negative imaginary parts, the time depen-
dence of f contains only decaying exponentials, so the
model is stable. The stability of this model follows from
the boundary conditions (4.7) and does not depend upon
discretization (Frensley, 1986). To demonstrate this, let
us consider the expectation value of (X'"'/iA') with
respect to an arbitrary distribution f: &f ll(X'"'/iR)llf &.

If we demonstra, te that this is nonpositive for any f, we
will have shown that no eigenvalue of (X'"'/i') has a
positive real part, because the operator itself is purely
real. In the Wigner-Weyl representation the operator
inner product (2.4) becomes simply (Wigner, 1971; Hil-
lery, O' Connell, Scully, and Wigner, 1984)

with the inhomogeneous terms explicitly displayed. Ex-
panding the definitions of the operators, the Liouville
equation can be written as

g f4 f dp &(9 P)g(QP)

The expectation value can be rewritten

(4.23)

f, +),k f,, k «r p—k «
X '

fj,k ~j —1, k for Pk + 0

1

~ X Ij;k,kf, , k .
k'

(4.22)

This provides a more convenient starting point for many
of the manipulations that will be described below.

The eigenvalue spectrum for L'"' constructed from
Eqs. (4.8), (4.15), and (4.19) is shown in Fig. 9. The po-
tential of Fig. 4 was used, with X =8 and X =8. All
the eigenvalues of L' ' have negative imaginary parts.

&&II(&'"'/j&)llf &
= &&II&Il& &+ &/II&III &

=&fll&llf & (4.24)

&fll Tlf &=
4 z f pf'(0 p)dp —f pf'(I p)dp

because &f II Vll f &
=0 from the antisymmetry of V. For

the mathematically homogeneous problem (source terms
set to zero) the boundary conditions are f (O,p)=0 for

p )0 and f (l,p) =0 for p (0. With this we can integrate
the expectation value for T and simplify it to obtain

f pf'(o, p)dp f pf'(l, p—)dp

2e0 ~ I I I i I I I I
(

I i i I i I I I i i I I I i I I I I
i

I I I I i I I (4.25)
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FIG. 9. Eigenvalue spectrum for a model open system with ir-
reversible boundary conditions. All eigenvalues have negative
imaginary parts, verifying that the model is stable, despite the
fact that no damping is yet included.

Thus the stability of the solutions to the Liouville equa-
tion using X'"' follows from the boundary conditions
alone. The physical significance of this argument is that
the particles in an open system will eventually escape and
the density will approach zero if there is no inward
current Aow from the environment. However, if the po-
tential has a local minimum within the system deep
enough to create one or more bound states, any particles
in those states will not escape. Their contributions to f
will be zero at the boundaries, and this is the significance
of the case in which Eq. (4.25) is equal to zero. Such
states should correspond to eigenvalues of X'"' that are
equal to zero, although I have not observed such a situa-
tion in the models that I have examined. In an open sys-
tem of finite extent and with potentials of finite depth, the
tunneling tail of bound-state wave function will be
nonzero at the system boundaries, perhaps leading to a
finite rate of escape from that state within the present
model,

Let us examine how this open-system model can be
used. The methods of calculation are more readily visu-
alized if we write Eq. (4.21) in a block-matrix notation:

Rev. Mod. Phys. , VoI. 62, No. 3, JUIy 1990



William R. Frensley: Boundary conditions for open quantum systems 761

[f])
[fl2

Bt

[fl)v

I: &]»
[ T+ V]~2

[bl)
0

+

[b4,

(4.26)

Here [f] and [b] represent column vectors, and [ T]
and [V] represent matrices, whose internal indices
range over the allowed values of k. The [T]are diagonal
matrices, whereas the [5'] are dense. The block-
tridiagonal form of X(") greatly reduces the computa-
tional labor required to solve the Liouville equation as
compared to that required to work with superoperators
of a more general form.

Now suppose that we wish to find the nonequilibrium
steady state (r)f kl()t =0). .Can we simply move the [b]~
column vector over to the other side of the equation and
solve for the f t,

'? The an.swer is yes, provided that the
operator X'") is nonsingular. If there are no bound
states, all the eigenvalues ofX("' are nonzero (see Fig. 9),
so X(") is a nonsingular operator and its inverse exists.
This steady-state solution for the Wigner function may
be written

(4.27)

where f ' ' refers to the "direct-current" case. Equation
(4.26) is also used to solve time-dependent problems, as
will be described in the following section.

Let us compare this approach to the most commonly
studied problem in transport theory, transport in a spa-
tially homogeneous system with a uniform driving field
(as is done to evaluate transport coeff)cients such as
mobilities) (Dresden, 1961; Conwell, 1967). This gen-
erates a mathematically homogeneous problem, and the
solution corresponds to the null space of that superopera-
tor which appears in the transport equation (Aubert,
Vaissiere, and Nougier, 1984). Thus the superoperator
must be singular and, if the transport equation is linear,
the solution is not unique (the total density is not deter-
mined). What the present model demonstrates is that
this formulation of transport through a spatially inhomo-
geneous system leads to a mathematically inhomogene-
ous problem, which is in many respects a good deal
simpler than a similar homogeneous problem. For exam-
ple, because L'"' is nonsingular, there is no problem of
compatibility relations for the boundary conditions
(Lanczos, 1961). Any choice of distribution function on
the boundary will generate a unique steady-state solution.
The same considerations apply to the evaluation of the
transient response of an open system by integrating Eq.
(4.4) with respect to t. The solution in unique and, as we
have seen, stable.

These considerations clarify a point discussed by
Kluksdahl et al. (1989), concerning the role of the initial-
ly assumed Wigner function in a calculation in which the
steady state is found by simulating the time evolution.
Kluksdahl et al. assert that the initial state must be

quantum-mechanically correct. The only components of
the initial state that remain through the time-evolution
calculation are those lying in the null space of the Liou-
ville operator. All other components will approach
steady-state values that are. independent of the initial
condition. Thus, if there is no null space (the operator is
nonsingular), the initial condition makes no difference
whatsoever. A concern about the correctness of the ini-
tial state is warranted only if there are bound states
within the system, and possibly in the continuum limit
where the smallest eigenvalue approaches zero.

V. APPLICATION OF THE IRREVERSIBLE MODEL
TO TUNNELING DIODES

To illustrate the application of this irreversible open-
system model to a specific physical system, let us consid-
er the semiconductor heterostructure resonant-tunneling
diode (RTD; Chang, Esaki, and Tsu, 1974; Sollner et al. ,
1983). The study of this device provided the original
motivation for the present investigation. The RTD ex-
ploits the ability of modern heteroepitaxial technologies
to grow extremely thin layers of chemically different
semiconductors (such as gallium arsenide, GaAs, and
aluminum arsenide, A1As) on top of one another in a sin-
gle crystal structure. To a surprising degree of accuracy,
the effects of such a structure on the motion of free elec-
trons (or holes) may be modeled by an effective potential
that is related to the local energy-band gap and is thus a
function of the local chemical composition (Dingle,
Wiegmann, and Henry, 1974). Therefore a structure con-
sisting of a layer of GaAs a few nanometers thick placed
between layers of A1As (or more commonly a solid solu-
tion Al Ga, As with x =0.3) forms a rectangular po-
tential well of finite depth for electrons. The shift in en-
ergy due to size quantization of the states in the well is
enormously enhanced by the low effective mass of elec-
trons in GaAs (0.067 of the free-electron mass), so the
same shift is obtained in quantum wells tens of atomic
layers thick in GaAs as would be obtained in structures
of atomic dimensions in free space.

The behavior of the resonant-tunneling diode is sum-
marized in Fig. 10. The device consists of a quantum
well bounded by barrier layers thin enough to permit tun-
neling. Outside the barrier layers are thick layers of
lower effective potential, which are doped so as to have a
significant density of free electrons and to which electri-
cal contact is made. The confined states in the quantum
well thus become resonances in this structure, and elec-
trons may readily tunnel through these resonances only if
they have the correct energy. The energy of the reso-
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William R. Frensley: Boundary conditions for open quantum systems

amined in Sec. VI.C.
The Wigner distribution functions that underlie the

J( V) curve of Fig. 11 are illustrated in Figs. 12—14. The
equilibrium (zero-bias) case is shown in Fig. 12. The
large electron density in the electrode regions, and much
smaller density in the vicinity of the quantum well, is evi-
dent. Figure 13 shows the Wigner function for a bias
voltage of 0.13 V, which corresponds to the peak of the
resonant-tunneling current. The negative peak indicates
that strong quantum-interference effects are present. In
contrast, the Wigner function for 0.24 V, at the minimum
valley current, is quite similar to the equilibrium case.

B. Large-signal transient response

n42,5x1Q i i i i
l

i i i i

2 .0x 10

1.5x10

1.0x10

0.5x 1Q

I & i & i l i i i i l i i i i l i i i i l i & i iQ Q
0 50 100 150 200 250 300

Tim. e (fs)

As discussed in Sec. II.D, a principal reason for adopt-
ing a kinetic-level model is the desire to evaluate the time
evolution of an irreversible system. Again, this has been
demonstrated using open-system Wigner-function models
(Ravaioli et al, 1985; Frensley, 1986, 1987a; Kluksdahl
et al. , 1988). As an example, let us consider abruptly
changing the bias voltage on the model RTD. Then the
Wigner function f will initially equal the steady-state
value at the first bias voltage. After the voltage is
changed, f will evolve and approach the steady-state
value at the new bias voltage. This time evolution may
be evaluated by integrating Eq. (4.22), now regarding the
potential as a time-dependent quantity. The integration
with respect to t is readily done by discretizing t in units

For purely numerical considerations of stability (see
Frensley, 1987a), an effective way to implement the time
integration is using the "fully implicit" or "backward
Euler" approach, which involves repeatedly solving

to advance the solution for f (t) forward in time. This is
equivalent to expanding the exponential of the Liouville
operator in a product expansion,

FIG. 15. Results of a calculation of the transient response of
the resonant-tunneling diode. For t (0 the device was in steady
state at V=0. 13 V, the peak of the J( V) curve of Fig. 11. At
t =0 the voltage was switched to V =0.24 V, the bottom of the
valley. The conduction current density averaged over the de-
vice (which equals the current induced in the external circuit) is
plotted as a function of t. The current initially increases and
then declines with some superimposed oscillations toward the
new steady state. Parasitic effects are neglected.

plotted in Fig. 15. The current initially rises in response
to the increased field and then decreases toward its
steady-state value with some superimposed oscillations.
More insight can be gained into the transient process by
plotting the current density as a function of both time
and position within the device as in Fig. 16. There is an
initial peak within the quantum well, which reQects the
shifting electron distribution in response to the increased
field. The current density in the downstream part of the

exp( iX'"'t lf—i) =(1+iX'"~t In iri) (5.3)

Note that, because X "' is not Hermitian, exp( iX'"'i)—
is not unitary. It is thus not necessary to use the
unitarity-preserving Cayley (or Crank-Nicholson) form,

1 —iHt /2n
1+re /2n

which is preferred for the integration of Schrodinger's
equation. The fully implicit scheme is a bit simpler to
implement (and to explain) than the Cayley scheme, but
the latter will generally be more accurate (see Jensen and
Buot, 1989a) and probably should be preferred.

The transient-response calculation was carried out (us-
ing the fully implicit scheme) for the particularly interest-
ing case in which the RTD is suddenly switched across
the negative-resistance region. The spatially averaged
current density (which would equal the current induced
in the external circuit, apart from parasitic effects) is

0

0

tj'

0

FIG. 16. The same transient-response calculation as that shown
in Fig. 15, but here the current density is shown as a function of
position q within the device.
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William R. Frensley: Boundary conditions for open quantum systems 765

device then declines fairly monotonically, presumably
reAecting a simple single-barrier tunneling process which
empties the quantum well. On the upstream side of the
structure the current transient is much more oscillatory.
The reason for this is presumably the change in reAection
coefficient caused by the shift in the potential and the re-
sulting transient changes in the standing-wave patterns in
this region. The most significant result of the calcula-
tion, however, is the demonstration of a stable approach
to steady state.

C. Small-signal ac response

Another aspect of the behavior of electronic devices
which is of much interest to circuit designers is the
small-signal ac response of the device. This is the
response of the device to a small sinusoidal voltage im-
posed upon a generally much larger dc bias voltage.
That is, one seeks to evaluate the effect of a small pertur-
bation on a far-from-equilibrium steady state. This is a
rather different problem from that treated by the linear-
response theory of statistical physics (Kubo, 1957), which
seeks to evaluate the effect of small perturbations on an
equilibrium state. A perturbation expansion of the
present kinetic theory may be readily obtained to evalu-
ate the small-signal ac response of our model RTD
(Frensley, 1987b, 1988a; Mains and Haddad, 1988b). Let
us assume that the potential of the system varies as

u(x, t)=u()(x)+ (A[u (x)e'"'+c.c.], (5.4)

where c.c. denotes the complex conjugate, uo(x) is the dc
potential including the heterostructure and the large bias
voltage, u (x) is the potential due to the small ac voltage,
and A, is a perturbation parameter introduced solely to
keep track of the order of the perturbation (and is ulti-
mately set equal to unity). We should expect that the
current induced in the external circuit can be expanded
as

I ( t ) =I() ( V() ) + —,
'

A, [y ( co ) V„e ' '+ c.c. ]

+ —,
'

A, a „„(cu ) V + (
A, [a2„(tu ) V e '"'+c.c. ]

+ 0 ~ ~ (5.5)

where Vo = [uo(l) —uo(0)]/e and V = [u„(l)—u„(0)]/e
are the total voltages applied, e being the charge of the
electron. The coefficients of Eq. (5.5) describe different
aspects of the ac response: y is the linear admittance, the
amount of rectification of the sinusoidal wave form is
given by a„„,and the amount of second-harmonic gen-
eration is given by a z . Note that at co =0 these
coefficients are just the derivatives of the I( V) curve:
y (0)=dI/dV and a„„(0)=a2„(0)=d I/d V2. The
coefficients of Eq. (5.5) at an arbitrary frequency may be
obtained from the corresponding components of the
Wigner function. To do this we write the Liouville
operator as

X'"'(t)=X'"'+ '—(AA(,V e'"'+c.c. ) .0 CO
(5.6)

The Wigner function can be expanded (to second order in
A) as

f (t) f(dc)+ ( g(f (re)eirct+C C )+g2f (rect)
2

+ t g2(f (2et) 2iett+ C )+ (5.7)

Inserting Eqs. (5.6) and (5.7) into the Liouville equation
and collecting terms of equal frequency and order in k
leads to these equations:

f (ce) t ay~(dc) (5.8)
0(")+A~

f (rect)
. Re(V~(") ),(oi)

0
(5.9)

(Jf (I) )(q) —f I I f(i)(q p)—~2~6 m
(5.11)

The current induced in the external circuit by this con-
duction current within the device is obtained by invoking
the Shockley-Ramo theorem (Shockley, 1938; Ramo,
1939). We shall approximate the properties of the doped
contacting layers as ideally metallic conductors bounded
by interfaces to the higher-potential barrier layers at q&

and q, . The Shockley-Ramo theorem then takes the
form

(5.12)

where 3 is the area of the device. The coefficients of the
expansion of I (t) (5.5) are thus given by

I (V )=I[f"']
y (to) =I[f'"']/V„,

(~)—t I[f(rect)]/V2

t I[f(2re)] / V2

(5.13)

(5.14)

(5.15)

(5.16)

f (2re) — cled+(rc) (5.10)
2 Z""+2))i~

where f' ' is obtained from Eq. (4.27). (The denomina-
tors of this perturbation series look a bit unfamiliar, with
expressions of the form X+ifiro rather than X ihco-
The reason for this is that we have mixed the quantum-
mechanical convention for the time dependence, e
with the convention used in electronics, e'"'. While a
consistently quantum-mechanical notation would pro-
duce more conventional expressions, it would also pro-
duce a great deal of confusion when we examine the
imaginary parts of the response to determine whether
they resemble capacitances or inductances. ) The super-
operator resolvent expressions in Eqs. (5.8)—(5.10) are
readily evaluated with the same algorithms used to solve
the steady-state and transient problems.

Evaluating the expectation value of the current density
J for any of the terms of f(t) gives the conduction
current as a function of position q:
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766 William R. Frensley: Boundary conditions for open quantum systems

It should be emphasized that these expressions represent
only the conduction current component; the displace-
ment current must be added to them to obtain a complete
description of the behavior of the device.

The linear admittance y of the present RTD model was
evaluated using Eqs. (5.8) and (5.14) at a bias of 0.17 V (in
the middle of the negative-resistance region), as a func-
tion of frequency over the G-Hz and THz regions. The
results are plotted in Fig. 17. The conductance Re(y) is

negative at lower frequencies, as we would expect from
the dc results. This negative conductance "rolls oA"' and
becomes positive at about 6 THz, which is therefore the
maximum frequency of oscillation of the intrinsic device
(not including parasitic etfects). The susceptance Im(y) is
positive and proportional to co at lower frequencies,
which is the behavior of a capacitance. Recall, however,
that the displacement current that Aows through the
geometrical device capacitance is not included in this cal-
culation. The result that Im(y)) 0 is somewhat surpris-
ing, since the most obvious reactive effect in electron
transport at high frequencies is the electron inertia,
which leads to Im[y (co)] resembling that of an inductor
with Im(y) negative (Champlin, Armstrong, and Gunder-
son, 1964). The initial calculations of the admittance by
the present author (Frensley, 1987b, 1988a) gave negative
Im(y) due to a programming error, and the electron-

I I I ll I I I I l I I I ll I I I ll I I I I

2xg
I

Re(y)
----Im(y)

inertia explanation was proposed in those papers. Dur-
ing the preparation of the present work the error was
discovered, and correcting it brings the results into agree-
ment with those obtained by Mains and Haddad (1988b),
who obtained positive Im(y). Thus the electron inertia
does not explain the behavior of Im[y (ci)], and an alter-
native explanation must be sought. A key piece of evi-
dence is provided by evaluating the admittance of struc-
tures with either one energy barrier or none, in addition
to the double-barrier structure. These structures do
indeed show negative (inductive) Im(y), presumably due
to electron inertia. The capacitive Im(y) is thus uniquely
associated with the double-barrier structure and there-
fore must reAect the confinement of electrons in the
quantum well. The idea that electron storage in a quan-
tum well could be represented as a capacitance was pro-
posed by Luryi (1985), but he identified this capacitance
with the geometrical capacitance of the device, through
which the displacement current Aows. The storage ca-
pacitance inferred from the present calculation is 1 —2 or-
ders of magnitude smaller than the geometrical capaci-
tance.

The rectification and second-harmonic generation
coefficients a„„,and az„were evaluated using Eqs. (5.9),
(5.10), (5.15), and (5.16) at a bias of 0.13 V (the top of the
current peak). The moduli of these quantities are shown
in Fig. 18. While a2„decreases at higher frequencies,
a„„shows a resonant enhancement over the frequency
range of 1 to 8 THz. This is quite interesting, because
a„„,was measured by Sollner et al. (1983) at a frequency
of 2.5 THz. The experimental data show that for most
bias voltages ~a„„,(2. 5 THz)~ exceeds the dc Id Iid V ~,

indicating that the magnitude of a„„must increase in
this frequency range. On the other hand, the rectification
process in the RTD has been recently analyzed by
Wingreen (1990), using a transmission-coefficient ap-

I ll I 1 I ll I I I II I I I Il I

1010 1011 1018 1013

Frequency (Hz)

I I I

1014

FIG. 17. Small-signal ac response of the resonant-tunneling
diode for a dc bias of 0.17 V, which places the device in the
middle of the negative-resistance region. The device conduc-
tance (the real part of the admittance, solid line) is negative at
lower frequencies, with a value equal to that expected from the
derivative of the dc J( V) curve. The negative conductance de-
creases in magnitude and becomes positive at a few THz. The
complex behavior at higher frequencies is an indication that op-
tical transitions are becoming important. The susceptance
(imaginary part of the admittance, dashed curve) has the same
sign as a capacitance and is due to the eAects of electron storage
in the quantum well. These quantities refIect only the conduc-
tion current and do not include the displacement current
through the parasitic capacitance of a real device. This dis-
placement current would prevent observation of the higher-
frequency eA'ects in a realistic experimental situation.
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FIG-. 18. Nonlinear response of the resonant-tunneling diode at
a dc bias of 0.13 V, at the peak of the J(V) curve. The
rectification coe%cient (solid line) shows a resonant enhance-
ment near 6 THz.
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proach. He found no evidence of enhancement, only a
decrease in a„„as the frequency is raised. C)ne

difference between Wingreen's calculation and that based
upon Eq. (5.9) is that the former includes the effects of
only one resonant level, whereas the latter includes all
such levels. This suggests that the enhancement of a„„
might involve transitions between resonant levels, though
the frequency of the transition between the lowest two
levels in the present example is 60 THz, which argues
against this notion. This illustrates one of the problems
with a kinetic approach that incorporates all physical
processes: Such an approach provides little guidance
when one desires to identify that process which is the
cause of some particular effect.

It is particularly interesting to look at (Jf'"') as a
function of both frequency and position q. This is plotted
in Fig. 19. At frequencies below a few THz the current is
independent of position, as one would expect in an elec-
tron device. As the frequency increases above this value,
the ac current density becomes strongly nonuniform, in-
dicating that the response of the current to the applied
potential is strongly nonlocal. A particularly prominent
peak occurs in Re[y(q)] at a frequency of 50 THz and
centered within the quantum well. The positive value of
the conductance in this peak indicates that the in-phase
current density is locally large, so this part of the device
is absorbing power from the ac electric field. The obvi-

W(g

O, 8
o.o
O.8

0

FIG. 19. Linear component of the ac current density (divided
by the applied ac voltage and thus expressed as an admittance)
as a function of frequency and position. At lower frequencies
the current density is spatially uniform, but strong nonlocal
effects develop as the frequency is increased. This is a charac-
teristic of the transition from electronic to optical behavior.
The prominent peak in Re(y) centered in the quantum well at
50 THz is due to quantum transitions between the two lowest
resonant levels.

ous explanation for this absorption is that the peak
reAects quantum transitions between the two lowest reso-
nances in the well. A transmission-coefticient calculation
indicates that, for the present example, these states are
separated in energy by 0.248 eV, for which the corre-
sponding photon frequency is 60 THz. The small
discrepancy in predicted frequencies is presumably attri-
butable to the effect of the Markov assumption in the ki-
netic theory, as in the case of the J( V) curves. Figure 19
is interesting because it gives us a view of the transition
of a single system from the domain of electronics to that
of optics.

In addition to these effects, the irreversible open-
system models have been applied to investigations of the
effects of phonon scattering, as described in Appendix F,
and the self-consistent potential in the RTD, as described
in Appendix A. The various applications of open-system
kinetic theory to RTD's clearly demonstrate the value of
this approach, in spite of the existence of several un-
resolved mathematical issues which will be explored in
the next section.

VI. PROPERTIES OF THE IRREVERSIBLE MODEL

A. Mathematical properties

Having demonstrated the computational utility of the
time-irreversible open-system model defined by Eqs. (4.4)
and (4.7), let us examine its properties in more detail.
First, note that the Wigner function derived from a
steady-state (4.27) or transient solution of Eq. (4.4) is
purely real valued, because both the Liouville equation
(4.4) and the boundary conditions (4.7) are purely real.
This implies that the corresponding density matrix is
Hermitian, as required.

Now consider the domain upon which the model is
defined, as contrasted to the domain of a spatially closed
system. This is illustrated in Fig. 20. For a closed sys-
tem of length / (bounded by an infinite potential well), the
state of the system would be described by a density ma-
trix defined within the square formed by the long-dashed
lines. The coordinate rotation from the Wigner-Weyl
transformation (4.1) implies that the domain of the
Wigner function maps onto the rotated square
("diamond-shaped domain") shown by the short-dashed
lines in the x,x plane. The density operator is, in effect,
a spatial correlation function. The partitioning of a one-
dimensional "universe" into a finite system bounded by
two semi-infinite reservoirs partitions the domain of the
density operator into regions corresponding to various
system-system, system-reservoir, and reservoir-reservoir
correlations. The domain of the Wigner function does
not coincide with that of the system-system density
operator, and the Wigner function domain extends into
regions that describe system-reservoir correlations. This
may well be a necessary characteristic of any useful
open-system model.
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FIG. 20. Domain of the density matrix and the Wigner distri-
bution function. The arguments of the density matrix are x and
x'. The Wigner function is obtained by transforming to the
coordinates q and r, followed by a Fourier transform with
respect to r. The long-dashed lines indicate the system-
reservoir boundaries, and they partition the domain into regions
corresponding to the various system-system, system-reservoir,
and reservoir-reservoir correlations. The short-dashed lines
represent the boundaries of the domain of the Wigner-
distribution-function model. Note that the Wigner function in-
cludes contributions from regions that represent correlations
with the reservoirs.

It must be admitted that the shape of the Wigner-
function domain as shown in Fig. 20 introduces certain
mathematical difticulties. These arise when one requires
the density operator given the Wigner function and vice
versa. First let us note that the Wigner-Weyl transfor-
mation of the density operator into the Wigner function
is a unitary superoperator in the sense of Eq. (2.6) if the
domain [in (x,x') and (q,p)] is unbounded. This follows
from the equivalence of the inner products (2.4) and
(4.23). If the domains in (x,x') and (q, r) are bounded and
do not coincide, the Wigner-Weyl transformation cannot
be unitary (and is in fact noninvertible), because some of
the information contained in either the Wigner function
or the density operator wiH be lost. This is precisely the
situation illustrated in Fig. 20. An additional problem
arises in the discrete model which involves the form of
the discrete mesh in the two coordinate systems. This is
illustrated in Fig. 21, which shows a discrete mesh in
(x,x') and superimposed upon it the rectangular mesh in

(q, r) employed in Eq. (4.13). In addition to the loss of in-
formation from the corner triangles described above,
there is also a loss of information because the (q, r) mesh
points are only half as dense as the (x,x') mesh points.
The relation between these two meshes can be summa-
rized as b, =h„and b., =25 . [This mesh is implicitly
used in Eq. (4.14).] If the (q, r) mesh were set up with

= b,„and 6„=b, , half of the (q, r) mesh points would
not coincide with the (x,x ) points. A way to incorpo-
rate all the (x,x') points might be to use a staggered

FIG. 21. Illustration of the inconsistency between discretiza-
tions for the density operator and the Wigner function. The
squares represent the elements of a bounded, discrete density
operator. To transform this into a Wigner function only the
filled squares may be employed because they form a discrete,
rectangular mesh in the (q, r) space. This not only leaves the
elements in the corner triangles of the density operator unused,
but employs only one-half of the remaining elements. As a re-
sult, the transformation from discrete density operator to
discrete Wigner function is not unitary.

X(+) g

aX )=r =le{—

(6.1)

(6.2)

P'+'
E or' (6.3)

+( —)
Bg

(6.4)

The Wigner function is thus expressed in terms of the ei-
genvalues of X'~+~ and P~+~, and the fact that these su-
peroperators commute [Eq. (2.13)] is what allows us to
define the Wigner function in the first place (because its

mesh in (q, r) with b, =
—,'5 and b.„=28, . Mains and

Haddad (1989) have investigated such a scheme.
In summary, one cannot rigorously derive a Wigner

function from a density operator and vice versa on a
finite, and particularly on a discrete, domain. As a result,
any discussions that rely upon the equivalence between
the Wigner function and the density operator in such a
case must be regarded as plausibility arguments rather
than derivations. A more practical consequence is that
we have no adequate way to evaluate the operator prop-
erties, such as the eigenvalue spectrum or the inverse, of
a Wigner function defined upon a bounded domain.

The shape of the natural domain for the Wigner func-
tion is a consequence of its relationship with the super-
operators generated by x and p„=(fi/f )B/Bx. In terms
of the variables q, p, and r, these superoperators have
particularly simple forms:

Rev. Mod. Phys. , Vol. 62, No. 3, July 1990



William R. Frensley: Boundary conditions for open quantum systems 769

arguments are the eigenvalues of these superoperators).
This observation is the point from which to begin to ad-
dress one of the obvious concerns connected with any
phase-space formulation of a quantum problem: the pos-
sibility of a violation of the uncertainty principle. Be-
cause q and p are eigenvalues of commuting superopera-
tors, specifying boundary values localized in the (q,p)
plane does not necessarily lead to a violation of the un-
certainty principle.

How, then, does the uncertainty principle affect the
Wigner function? The usual characteristic of a distribu-
tion functon that violates the uncertainty principle is that
it contains some states which have negative occupation
probabilities. That is, the corresponding density matrix
will have at least some negative eigenvalues. Consider,
for example, a distribution function f (q,p)=~5(q)5(p),
which clearly violates the uncertainty principle. The cor-
responding density matrix is p(x, x') =6(x +x'). If we
operate on any antisymmetric state g, (x)= f, ( —x—)

with this density matrix, we get —g, (x), so —1 is cer-
tainly an eigenvalue of p, which is thus not a valid densi-
ty matrix. [Note, however, that examples of distribution
functions that satisfy the uncertainty principle and are
still not valid Wigner functions have been found (Nar-
cowich and O' Connell, 1986)].

Therefore, to represent an acceptable mixed state, the
density operator p must be a positive operator. (Recall
that we have modified the normalization condition so
that Trp= 1 is no longer a requirement. ) The positivity
of p and thus of f as an operator does not imply that
f(q,p)~0. It is well known that the Wigner function
can take negative values (Wigner, 1971), and that such

negative values are related to quantum interferenee, as
we have seen. One can test the positivity of p using two
different conditions (Narcowich and O' Connell, 1986).
The most commonly invoked approach is to demand that

&ql) lq) &0, (6.5)

Then the condition (6.5) can be transformed into the
Wigner-Weyl representation using Eq. (4.23) to obtain
the condition

f dq f dp f(q, p)f~(q, p) 0, (6.7)

(where f&
is the Wigner function for the pure state g) for

all g. The application of this condition to the distribu-
tion functions obtained from the open-system model is
hindered by the problems of incompatibility of the finite
domains discussed above. In the second test for positivi-
ty of the density operator one demands that it be possible
to factor p into

p=A (6.8)

where 2 is some operator (Narcowich and O' Connell,
1986). Applying this condition to the corresponding dis-
tribution function requires the expression for the opera-
tor product in terms of Wigner functions (Hillery,
O' Connell, Scully, and Wigner, 1984). Condition (6.8)
then becomes (Narcowich and O' Connell, 1986)

for all states itj. The expectation value can be rewritten
as an operator inner product [Eq. (2.4)] by defining the
projection operator P

&
=

1 g ) & g 1:

(6.6)

f (q,p)= fdq'f dp'f dq" f dp "a*(q+q',p+p')a(q+q", p+q")e ''t't''
(sruti)

(6.9)

where a (q,p) is the Wigner-Weyl transform of A. It ap-
pears that the obvious ways to restrict the limits of in-
tegration in Eq. (6.9) to a finite domain lead to expres-
sions that violate at least one of the semi-group axioms
which define operator multiplication. If an expression
that did satisfy those axioms could be derived from Eq.
(6.9), we would obtain a useful definition of positivity in
the open-system ease.

Now, does the procedure of directly solving for the
%'igner function under inhomogeneous boundary condi-
tions lead to a positive f ' ' operator? In the absence of a
rigorous definition of positivity for a Wigner function on
a finite domain, there is, of course, no mathematical
demonstration that guarantees such positivity. It may
well be possible to define a case of the present open-
system model which does violate the uncertainty princi-
ple. However, let us qualitatively explore some of the
considerations that bear upon this question. First, note
that the positivity of f ' ' necessarily involves the posi-
tivity of the boundary values, because f' ' is a linear
function of the boundary values as shown by Eqs. (4.27).

We can speculate that at least in a semiclassical situation
f ' " should be a positive operator if fb,'„'„'„,„„and
fb",g„"d„~ are positive. To establish the plausibility of the
idea, let us consider the classical case. The properties of
the classical Liouville equation (4.6) employing the open-
system boundary conditions (4.7) are essentially the same
as those of the quantum case with respect to the eigenval-
ue spectrum of the Liouville operator and the stability of
the resulting solutions. If we assume that there is no
damping within the system, then the classical Liouville
theorem holds within the system, and the distribution
function f„ is constant along the classical trajectories
(which are the characteristic curves of the Liouville equa-
tion). Any trajectory passing through a boundary must
in fact pass through a boundary twice, once as an incom-
ing particle and once as an outgoing particle (otherwise a
density would have to build up in violation of the Liou-
ville theorem). Such trajectories cover the phase space,
except for those regions which correspond to any bound
orbits. Because f,i is constant along a trajectory and its
value is fixed by the boundary condition, f„must be
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non-negative if, and only if, the boundary values are
non-negative. The values of f,~

in regions corresponding
to bound states will be non-negative if and only if the ini-
tial values off„(with respect to time) are non-negative.

How might these considerations be modified in a
quantum-Inechanical system? Or, in other words, how
can one get into trouble applying the open-system bound-
ary conditions to a quantum system? The only obvious
case would be an attempt to apply the boundary condi-
tions (4.7) in a region where there were strong interfer-
ence effects, such as standing waves. We can easily im-
agine that, for example, forcing f to have a large density
at a boundary point where a node in the density should
occur would introduce spurious states with negative oc-
cupation. To avoid such situations, one should apply Eq.
(4.7) only in reasonably classical regions of a system. In
practice, this means at a distance of at least a few times
the thermal coherence length kT [Eq. (3.3)] away from
any abrupt feature of the potential (where the standing
waves are smeared out by thermal incoherence). At
lower temperatures, one would use the reciprocal of the
Fermi wave vector, rather than A, T.

Now let us examine in more detail the mathematical
structure of the model that results from the time-
irreversible boundary conditions. The discrete expres-
sion for the drift term V' of the Liouville equation (4.19)
has the form of a master operator (Bedeaux, Lakatos-
Lindenberg, and Shuler, 1971). Such an operator, when
applied to a distribution function, has the effect of re-
moving some fraction of the density in each possible state
and redistributing that fraction among the other possible
states. For a finite, discrete model the properties of the
matrix M representing a master operator are

for some i. Thus Rekk «0 for all k. The fact that the
column sums in T for the outAow boundaries are less
than zero makes V' nonsingular. (In a master operator
describing a closed system, all the column sums would be
zero, which implies that the determinant would be zero,
so there must be an eigenvalue equal to zero. )

The fact that the upwind discretization generates a
master operator is the fundamental reason for its success,
both in the present context and in the more traditional
applications of transport theory (Roache, 1976, pp. 4—5;
Duderstadt and Martin, 1979). Now, in the quantum
case, the complete Liouville operator X (in the Wigner-
Weyl representation) cannot be a master operator, be-
cause we know that the signer distribution can have
negative values, which a master operator would not per-
mit. As we have noted, the quantum-interference phe-
nomena enter the Wigner distribution via the potential
superoperator V. The fundamental result of the present
work is the demonstration in Fig. 9 and Eqs. (4.24) and
(4.25) that the Markovian model which follows from the
irreversible boundary conditions (4.7) introduces the
necessary stability properties in the quantum case as well
as in the much more obvious classical case.

It is interesting to consider the form that T assumes
upon transformation back to a real-space density-matrix
representation. For this purpose let us assume that we
have defined the signer function on a discrete basis with
respect to q and on a continuum basis with respect to p.
Then T is given by

f (q+A, p) —f(q, p) for p (0
(7f )(q,p) = — x '

ma f(q,p) f(q —~„p)—for p&0

(6.12)
m,-; «0,
m,"&0 for iWj, (6.10)

To transform this back to the density-matrix representa-
tion, we must evaluate

m 0. ('Tp)(q, r)= I e'~'~"(&f )(q,p),
2~%

(6.13)

a;; —g a," (Rek, ~ (a,, + pa,"=ga,"(0,
JAl

(6.11)

In the last condition the column sum is actually equal to
zero except for those states j which can lose density to an
external reservoir, as is the case for the open-system
model on the outAowing boundaries. All the eigenvalues
of a matrix satisfying the conditions (6.10) will have non-
positive real parts (Oppenheim, Shuler, and Weiss, 1977,
Chap. 3). This may be readily demonstrated by appeal-
ing to Gerschgorin s theorem (Wilkinson, 1965), which
states that every eigenvalue of a matrix 3 lies in at least
one of the circular discs (in the complex plane) with
centers at a, , and radii g, ~a,"~. To apply this theorem
to the master operator M, let us take the matrix 3 to be
the transpose of M, 3 =M, to change the column sum
condition into a row sum. The eigenvalues of M and 2
are identical. Then because a," is negative for i =j and
positive for i Wj and is real for all i and j, we find that the
real part of each eigenvalue A, & must satisfy

dp ~ ~/R 8 1 1 l
pe EPP'

p ———6(r)
o 2~5 BI" 27T f' 2

(6.14)

and its complex conjugate. Letting 5 approach zero we
find

( &p )(q, r)

fi B . dp(qr) ~q dr' d p(qr')
l + Pm c)p' ()q 2w —co I I" Qq

(6.15)

The second term in Eq. (6.15) contributes an anti-
Hermitian component to &. The appearance of 0 /Bq
in this term is reminiscent of the "numerical viscosity"

with Eq. (4.3) substituted for f. [To simplify the result-
ing expressions, we shall express the arguments of p in
terms of q and r of Eq. (4.1) and Fig. 20.] Evaluation of
Eq. (6.13) requires the formula
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that is a property of some finite-difference formulations
of transport equations (Press, Flannery, Teukolsky, and
Vetterling, 1986). The principal-value integral in Eq.
(6.15) has the desired effect of distinguishing the sign of
the momentum of the states present in p. To see this,
suppose that there is a term

~
k ) ( k

~

=e '"' contained in p.
One could evaluate its contribution to the integral in
(6.15) by contour integration, closing the contour in the
upper or lower half-plane if k were positive or negative,
respectively. But then the sign of the contribution of the
pole on the real axis would change as the sign of k
changes. The anti-Hermitian term would vanish, except
possibly for a surface contribution, in the limit 5 ~0.

This description of open systems in terms of p(x, x')
has not yet been developed into a workable model. How-
ever, there is a strong motivation for doing so in the con-
text of semiconductor heterostructures. In such a struc-
ture the electron energy-momentum relation can be con-
siderably more complex than a simple parabola, and it
changes from one material to another in ways that can-
not be represented by a shift in the local potential. The
simplest example of such an effect is the change in
effective mass as an electron crosses a heterojunction. As
described in Appendix E, this leads to a highly nonlocal
form for the kinetic-energy superoperator in the Wigner-
Weyl representation. More complex features of the
energy-band structure can be modeled by any of a num-
ber of localized-basis-function schemes which may re-
quires more than one basis function- per lattice site. Such
schemes could easily fit into an approach expressed in
terms of p(x, x'), but it is not at all obvious how to in-
corporate such effects into the Wigner function in view of
the incompatible discretization requirements illustrated
in Fig. 21.

Of more general interest is the appearance of Eq. (6.14)
in the deductive chain leading to (6.15). Such a relation,
more often expressed in the form

(6.16)

is usually encountered in the analysis of irreversible
quantum phenomena. It is the mathematical expression
of the fact that a continuum of states (and therefore of
frequencies) provides enough degrees of freedom that a
Poincare recurrence can be postponed indefinitely. It ap-
pears in the analysis of behavior in the time and frequen-
cy domains, and is used to express the initial conditions
that lead to irreversible behavior: no advanced waves in
electrodynamics (Bjorken and Drell, 1964), or adiabatic
switching-on in many-body theory (Kohn and Luttinger,
1957; Fetter and Walecka, 1971). In the present model
such a relation appears in the position and momentum
domains and expresses the effects of the spatial boundary
conditions.

B. Superoperator symmetry and physical observables

One of the benefits of the time-irreversible open-system
boundary conditions is that they provide an alternative

to the use of periodic boundary conditions in the analysis
of quantum-transport phenomena. The great disadvan-
tage of periodic boundary conditions is that they do not
address the case in which the potential varies
significantly across a system. That is, their use restricts
one to the study of low-field phenomena. It has been
pointed out (Yennie, 1987, footnote 11 acknowledging
private discussion with M. Weinstein) that quasiperiodic
boundary conditions (i.e., periodic within a phase factor
which can be removed by a gauge transformation) are
necessary if the momentum operator is to be Hermitian
on a finite domain. The present work demonstrates that
far-from-equilibrium phenomena can be modeled by em-
ploying a non-Hermitian momentum superoperator.

The connection between symmetries and conservation
laws is undoubtedly one of the most fundamental results
of the quantum theory. However, if one is faced with the
task of describing the behavior of a nonconservative sys-
tem, the inability to modify or violate the conservation
laws becomes an obstacle to defining a realistic model,
rather than a benefit. The problem is that one wants a
model whose solutions stably approach a steady state,
which requires complex-valued eigenvalues, but the ex-
pectation values of physical observables should be real.
The present analysis of operi-system models demonstrates
that these conAicting requirements can be accommodated
at the kinetic level, because the roles of generating the
dynamical evolution and evaluating observables are filled
by different superoperators. If we reexamine the models
described above, we find that the dynamic effects such as
generating time evolution or moving density by current
How are described by commutator superoperators, and
these are the superoperators that become non-Hermitian
when one incorporates interactions with the outside
world. The measurement of the expectation values of ob-
servables is done by anticommutator superoperators, and
these, with proper attention to the definition of the
domain and boundary conditions, remain Hermitian.
This separation of function has been noted by Prigogine
(1980) in the superoperators generated by the Hamiltoni-
an. In the open-system model the momentum super-
operators appear in similar roles, and this demonstrates
the existence of a more general underlying structure in
the kinetic theory.

Let us consider the superoperators P~+~ and P~ ~

de-
rived from the momentum operator. We have already
observed that the kinetic-energy term of the Liouville
equation (2.3) can be written as P~+~P~ ~/I (3.6). P~+~
will be Hermitian if we restrict our attention to density
matrices whose off-diagonal elements approach zero for
large x —x' (so that integration by parts may be per-
formed without a surface contribution in an integral over
r =x —x'). Such density matrices describe normal sys-
tems (as opposed to superconducting ones, or systems
with some other long-range coherent efFect) at nonzero
temperature. In such normal cases P~+~ produces the
real-valued factor p in the drift term (4.9). P~ ~

generates
the gradient in T and is thus the superoperator that is
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(6.17)

where

)
A' ~„r)f BQ*

~2ml Bx Bx
(6.18)

rendered non-Hermitian by the boundary conditions
(4.7).

We can also see the dichotomy of function between

P~+~ and Pt
~

by examining the elementary quantum
continuity equation, which is conventionally written

order moment equation of the Liouville equation. The
higher-order moments of the I.iouville equation may be
obtained by operating on the equation with P~+~ (or d)
and evaluating the resulting expression along the diago-
nal. Let us denote the evaluation of an operator kernel
for x =x'=q by angular brackets, & p &q =p(q, q). This is
equivalent to the phase-space procedure of multiplying
by some power of p and then integrating over all p, so
that the corresponding expression for the Wigner func-
tion is

(6.20)

P(+ )/m (6.19)

and we see P~+~ in the role of measuring an observable.
At the kinetic level the continuity equation is linear in
terms of the density matrix p and is simply the Liouville
equation evaluated along the diagonal x =x'.

The continuity equation is of course just the zeroth-

By now we should readily recognize the presence of P~+ ~

in the current-density operator J. In fact, the current
density is much more naturally regarded as a superopera-
tor,

The moment equations we shall derive are a special case
of those that have been discussed by a number of authors
(Frolich, 1967; Putterman, 1974; Iafrate, Grubin, and
Ferry, 1981; Kreuzer, 1981),because we shall not consid-
er two-body or dissipative interactions. The objective is
to demonstrate the role of the anticommutator super-
operators in this procedure, a point that has not been
previously articulated.

As a starting point from which to derive the moment
equations, let us re~rite the Liouville equation in super-
operator notation, making use of the factorization (3.6):

Bp 1 1 1 1

Bt ifz m
P( —)P(+)++(—) p g

P(+)p+ q +(—)p .I Bg
(6.21)

The manipulations required to generate the moment
equations may be considerably simplified by using some
superoperator relations to evaluate the eA'ect of P~+~ on
the potential and its derivatives. To derive the necessary
expressions, let us consider an operator G =g(x)5(x
—x ), which is diagonal in position space. The commu-
tators of the derived superoperators Q~ ~

and Q~+ ~
with

P~+ ~
are then

[P(+) ~( —)]= '~~(+)

[P(+)~ ~( —)] 4'~~( —
) ~

(6.22)

where 0' indicates the superoperator derived from the
spatial derivative Bg/c)x. Note that & Q~ ~p & =0 for any
such operator, and &Q~+~p& =g(q)&p& for any opera-
tor p. Now we may readily derive the moment equations.
The zeroth moment is thus

with Jc(p&,p2, q)dp& =0, for the Wigner function (see

Appendix F).
The first moment equation is readily found to be

a& dp&,
Bt

m f &dp q
&dq= —f &p& dq+&Hp&o —&Hp&,

I & Hp &
—

& p &, (6.24)
Bq ~ Bq

where H=P~+~/m is the momentum fiux density. [For
two- or three-dimensional models, the direct product of
the two vectors P~+~ is taken, and II will be a tensor
(Landau and Lifshitz, 1959).] Equation (6.24) is identical
to its classical counterpart. If we integrate it with
respect to q [assuming that the domain is rectangular in
the (q, r) coordinates and extends over 0&q & I], we ob-
tain a generalization of Ehrenfest's theorem to the case of
an open system:

8&p&, B&dp&,
Bt Bq

(6.23) (6.25)

which is a familiar form of the continuity equation. If a
collision term is included in the kinetic equation, it must
have a form such that & Cp & =0 if the theory is to satis-
fy the continuity equation. This means that
C(x, ,x„x2,x2)=0 in the density-matrix representation
[a condition satisfied by the Fokker-Planck operator
(3.8)] or

C(qlqp1qq2~p2) 6(ql q2)c(pl~p2qql )

The last two terms represent the e6'ect of opening the sys-
tem: A Aux of momentum density through the boun-
daries of the system will aftect the current Aow within the
system. To make contact with hydrodynamics, we would
follow the standard kinetic-theory manipulations
(Kreuzer, 1981, Chap. 8) and define a kinetic pressure
tensor

P = ( P(+ ) & P( ~ )p & ) /m
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and separate II into p„~, ,=S(x —x ) . (6.31)

(IIp) = (Pp) + (P(+)p) /m .

Continuing with the above procedure, we may derive a
second moment equation by operating on Eq. (6.21) with
P(+)/2m to obtain

When this equation is integrated, the resulting densities
in regions of constant potential are found to be equal to
the semiclassically expected value

(&2miLT ) 'exp[P((M —U)] .

(6.26)

2
(+)

2tPl

Q2 Q2 Q2 Q2—2, +
8m Q~ BxBx

(6.27)

g2 Q2 Q2

2+4m BX2 BX'2
(6.28)

Quantum corrections in the form of terms containing
A' 0 U/Bq will begin to appear in the third and higher
moment equations, as one would expect from the
Wigner-Moyal expansion (4.12). However, the second
moment equation presents something of an ambiguity.
We might also derive it by operating on Eq. (6.21) with
the V'(+) derived from the kinetic-energy operator T.
These are not at all the same superoperators:

An example of an equilibrium density matrix obtained
from such a calculation is shown in Fig. 22.

Here we see that again the anticommutator super-
operator appears in the process of evaluating an observ-
able, in this case for the purpose of evaluating the energy
and thus the occupation probability of the possible states.
We would expect that, for this purpose, &(+) ought to be
Hermitian. Its Hermiticity in fact depends upon the
shape of the domain when the boundary conditions (3.4)
are applied. Because &(+) is an elliptic operator, it is
easy to show that it will be Hermitian when the domain
is rectangular in the (q, r) coordinates, so that the gra-
dient in (3.4) is normal to the system boundary. It is not
Hermitian when applied to a domain that is square in the
(x,x') coordinates, as in the calculation illustrated in Fig.
22. However, the departure from Hermiticity is small,

Bp,„/BI3= ,' (Hp, „+p,„H)—=——&(+ )p,„. (6.29)

If the time-reversible open-system boundary conditions
(3.4) are applied to the Bloch equation, one obtains a
quite useful method for evaluating the equilibrium densi-

ty matrix (in contrast to the disastrous eFect these
boundary conditions have upon the time evolution).
Taking into account our particle-density normalization
of p, we find that the correct Bloch equation is

p q @ (~(+) p)p q (6.30)

with the initial condition

Putterman (1974) displays both of these forms and
notes that both lead to the same bulk properties, thus any
physical difI'erence must appear in a surface contribution.
It is not the purpose of the present discussion to investi-
gate these issues in detail, but only to demonstrate that
anticommutator superoperators appear natura11y in any
attempt to evaluate expectation values in kinetic theory.

The same dichotomy between commutator and an-
ticommutator superoperators can be seen in the case of
the superoperators generated by the Hamiltonian H. Of
course &( )

is just the Liouville superoperator X, and we
have examined at length the need for a departure from
Hermiticity in the case of X. We have not yet encoun-
tered a need for the anticommutator &(+). One place it
does occur is in a generalization of the Bloch equation
(3.1) to the case of an open system. If one attempts to
compute an equilibrium density matrix as a finite seg-
ment of a much larger system by modifying the boundary
conditions on p in the Bloch equation, one quickly dis-
covers that product Hp must be symmetrized to obtain
sensible answers. Thus the Bloch equation becomes

I s I i I i I i I ~ I i I i I i I

& 0.1-
8

0.0 .
I I

'
I

'
I

'
I

'
I

'
I

'
I

O$P qW
~L

bP

FIG. 22. Equilibrium density matrix obtained by numerically
integrating the generalized Bloch equation {6.30) subject to the
reversible open-system boundary conditions {3.4). The poten-
tial, displayed above, represents the sort of features that are
now realizable using semiconductor heterostructure technology.
The chemical potential p is indicated by the dashed line. The
calculation employed parameters appropriate for the
Al„Ga& „As system at 77 K. The three energy barriers create
two identical "quantum wells, " bounded by contacting layers.
The lowest energy states in these wells are pushed toward
higher energy by size quantization, which reduces the electron
density in the wells via the Boltzmann factor. The shallow
peaks off the diagonal measure the correlation between the
phase of the electron at different positions, and indicate in the
present case that the symmetric combination of the well states
has a greater occupation factor than the antisymmetric com-
bination.
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and the results are physically quite reasonable. I have
not yet implemented a program to perform such a calcu-
lation on a rectangular domain in (q, r), but this would be
the proper way to proceed to evaluate the equilibrium
density matrix using open-system boundary conditions.

Having noted that JV~+i appears in the evaluation of
the equilibrium density matrix, we can address a point
raised by Dahl (1981). It is that X, by itself, does not
define a unique eigenvalue problem in the moue func-tion
space of a quantum system; but together with &~+i, it
does define such a problem. This consideration enters
the present problem only for bound states localized
within the open system (Carruthers and Zachariasen,
1983). As noted earlier, such states would lead to a non-
trivial null space of X. The occupation of such states
would have to be determined as an initial condition, such
as an equilibrium distribution evaluated using &~+ i.

C. Relation to many-body theory

I have remarked that the Markovian kinetic models
considered here are not equivalent to the usual elementa-
ry quantum-mechanical models of systems such as tun-
neling diodes. Let us now explore the difIerences be-
tween these two types of models by examining how they
may be viewed as difterent approximations to a single
many-body theory. In the approach to many-body trans-
port theory developed by Kadanoff and Baym (1962) and
by Keldysh (1964) and elaborated by Langreth (1976) and
by Mahan (1987), the description of a quantum system is
contained in a Green's function,

6 (x, t;x', t')=i ('0 (x', t')0'(x, t)), (6.32)

where %' is the field operator. The density operator p can
be obtained from

G (x,x', t, co)= f dt e'"'6 (x,x', T, r) . (6.34)

In the absence of interactions, the equations of motion
for 6 then become (Mahan, 1987), in the present nota-
tion,

p(x, x', t) = iG (x, t;—x', t) .

Note, however, that the Green's function has, in general,
a second time argument t', and this supplies the addition-
al degree of freedom required to describe non-Markovian
behavior. The demonstration of the correspondence be-
tween the Green's-function formalism and more classical
transport equations proceeds applying a signer-%'eyl-
like transformation to the time variables: Define new
variables T= —,'(t+t') and w=t —t', and then Fourier
transform 6 with respect to ~:

6 (x,x', T, r) =ip(x, x'; T)'5(r) . (6.37)

This makes explicit the Markov assumption that the evo-
lution of the system does not depend upon its past histo-
ry.

To establish the plausibility of the Markov assumption
[Eq. (6.37)], let us again consider the picture of an open
system as a finite segment of length I of a much larger
"universe" of length L which is occupied by a free-
electron gas. The Green's function for this noninteract-
ing system is

—iEk ~/A'6 (k, r)=wI, e (6.38)

where m& is the probability that state k is occupied and
Ek is the energy of that state. Now, by examining G
within the system itself (that is, over 0&x &1 and
0 & x' & i) we cannot resolve the wave vectors of any exci-
tations to an accuracy better than +~/l. On the other
hand, because the "universe" is of a much larger length
I., there will actually be many wave-vector states within
any such interval. Thus the G that one would observe
within the system would be an average over these states
of the form

[If interactions are present, collision terms involving the
self-energy appear on the right-hand side of Eqs. (6.35)
and (6.36).] Without interactions, Eq. (6.35) is just the
Liouville equation and (6.36) is a symmetrized
Schrodinger equation. On an unbounded domain, these
equations simply reproduce pure-state quantum mechan-
ics, as noted above, and the usual tunneling theory fol-
lows. However, if we restrict the domain so as to obtain
the open-system case, and we wish to reproduce the tun-
neling theory, we have to apply traveling-wave boundary
conditions such as those discussed in Appendix D. Such
boundary conditions necessarily introduce a dependence
upon co into Eq. (6.35). Even though we are still consid-
ering a "noninteracting" system (in the usual sense of no
dissipation), we see that additional co-dependent bound-
ary terms must appear in Eqs. (6.35) and (6.36).

The Markovian models neglect this co dependence.
They are thus not equivalent to the tunneling or scatter-
ing theory. One can view such models either as an ap-
proximation to the tunneling theory, or alternatively, as
simply a difIerent approximation to the underlying
many-body theory. In the latter view, the steady-state
tunneling theory is obtained by neglecting the T depen-
dence of 6, whereas the Markovian model is obtained
by neglecting the ~ dependence of 6 . Thus we may re-
gard the Markov approximation as an a priori assump-
tion that 6 is independent of ~. Inverting the Fourier
transform (6.34) shows that this is equivalent to assuming

i' —L 6 =0, (6.35)
6 (k, r) = J dk'ick, e

2% k —m. /l
(6.39)

(A'co &(+i)6 =0
Using dE/dk =Ask, where sk is the velocity of state k,
we can change the integration variable to an energy, and
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perform the integral to obtain

sin( ask r /1)
G (k, r)=wi, e

ask ~/I. (6.40)

Vll. DESIGN AND ANALYSIS
OF DISCRETE NUMERICAL MODELS

The present work employs numerical computation and
modeling for a purpose for which it is not often em-

ployed: as the primary mode of investigating the struc-
ture and consequences of a physical theory. The more
traditional mode of investigation is, of course, to maxim-
ize the use of analytical mathematics and resort to nu-
merical techniques only when the opportunities for
analysis are exhausted, or when it is necessary to evaluate
those complicated expressions which express an analyti-
cal solution. Any particular approach to describing
physical phenomena will be successful only for some sub-
set of these phenomena and will be otherwise ines'ective.
Because analytical mathematics is such a widely used
tool, its domain of success has been extensively explored;
this domain consists of those problems with sufficient
symmetry to admit analytic solutions and those problems
which can be regarded as small perturbations on analyti-
cally soluble problems. For statistical phenomena this
generally means thermal equilibrium of analytically tract-
able systems and very small departures from equilibrium.
Numerical simulation techniques that are inherently non-
perturbative are better able to address more complex
structures and/or far-from-equilibrium states. Because
the study of discrete numerical models is not widely prac-
ticed, it is worth examining the principles by which such
models may be constructed, using the present open-
system model as an example.

A common point of view is to regard discrete numeri-
cal models, such as finite-difference models for partial

The bracketed factor approaches 5(r) as l —+0. Now, l is
fixed, of course, and thus the width of the "6 function" is
fixed. Moreover, the width is just the transit time across
the system at the given k. This suggests the interpreta-
tion of Eq. (6.40): Any excitation within the system will

propagate away (out of the system), and thus its temporal
correlation function will decay after a time of the order
of the transit time across the system. This demonstrates
the motivation for the Markov assumption [Eq. (6.37)]
and also its limitation. The generalization of the present
open-system model beyond the Markov approximation
has not yet been attempted and would be an obvious task
for the further development of this approach. [The ini-
tial steps in this direction might be found in the work of
Ringhofer, Ferry, and Kluksdahl (1989), who study the
formulation of nonreflecting boundary conditions for the
Wigner function. This work, however, is concerned pri-
marily with obtaining local (in space and time) approxi-
mations to the rigorously nonlocal problem. ]

di6'erential equations, as approximations to the "truth"
embodied in the continuum formulation of the problem
(for example, Lapidus and Pinder, 1982). Such a discrete
model can represent the continuum solution only to
within an accuracy proportional to some power of the
mesh spacing (or other appropriate measure of the
coarseness of the discrete model). This tends to lead one
to believe that the physics of the situation can be
represented only to a given order of accuracy, so that
such expressions as conservation laws (or balance equa-
tions) will be satisfied only to that order (see, for example,
Aubert, Vaissiere, and Nougier, 1984). A corollary to
this view is that higher-order approximations produce
better models. Such is often not the case (Press et al. ,
1986), because higher-order approximations usually ad-
mit spurious short-wavelength modes which adversely
aAect both the stability and accuracy of such models.

In fact, a better guiding principle is to seek discrete
models that are constructed so as to satisfy exactly the
physical laws that govern the behavior of the real system.
In practice, one often finds that it is possible to satisfy
only some, but not all of these laws. 8'hich laws are ex-
actly satisfied and the order of the error terms in the
remaining laws depend upon the details of the particular
discretization scheme. This situation has led to the con-
ventional wisdom that the discretization of partial
dNerential equations is "an art as much as a science"
(Press et al. , 1986). The science that is often lacking is a
consistent analysis of the degree to which all reasonable
discretization schemes satisfy the appropriate laws, or
preferably the identification of one scheme that exactly
satisfies the relevant laws. A particularly attractive ex-
ample of the latter situation has been given by Visscher
(1988, 1989). It is a discretization of Maxwell s equations
in three dimensions, which exactly satisfies the integral
forms of the equations. This is accomplished by assign-
ing the various field quantities (charge and current densi-

ty, electric and magnetic field) appropriately to the
centers, faces, and edges of cubic finite-difference cells.
Unfortunately, we shall see that this ideal situation is not
likely to apply to kinetic open-system models, and some
trade-offs must be made between the diFerent laws that
we wish to satisfy.

A systematic way to determine the advantages and
limitations of a discrete model is first to identify the
physical laws that the model ought to satisfy and then to
evaluate the order of the errors by which the discrete
model fails to satisfy those laws. For the present open-
system model, I assert that there are four such laws: (i)

charge continuity, (ii) momentum balance, (iii) detailed
balance of the equilibrium state, and (iv) stability of non-
equilibrium states. Energy balance is not included in this
list because it adds no physics that is not already de-
scribed by momentum balance so long as we neglect
energy-redistributing processes such as electron-electron
or electron-phonon scattering. Condition (iv) is just the
criterion that we have examined extensively, that none of
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the eigenvalues of the Liouville operator should have a
positive imaginary part.

denote the current on the interval between q. and q +1 by
J +1/2. Then if J is to satisfy a discrete continuity equa-
tion exactly we must define J +1/2 to be

A. Continuity equation

n,:n(q, —)= '„yf,,
k

(7.1)

To begin the analysis of the irreversible open-system
model defined by Eq. (4.22), let us consider the continuity
equation (6.23). First define the discrete approximation
to tile local pai'tlcle deilslty n (q) = (p ) iii the obvious
way, converting the integral in (6.20) to a sum:

Pk
Jj+i/2=

& X fj+i, i + g fj, k

k~p~ &0 I
k~pk )0 I

Thc moment of thc Llouvlllc cquat1on becomes

0fl~ ]
(Jj+ i/2 ~& —i/2)

q

(7.2)

In a discrete model the current density is most naturally
regarded as a quantity that is defined. on each interval be-
tween adjacent mesh points, rather than on the mesh
points themselves. Thus the divergence of the current
density is a difference taken between adjacent intervals
and is associated with their common mesh point. Let us

Jj

, X XV, ;iaaf, , k.
k =1k'=1

(7.3)

To show that the contribution from the potential opera-
tor V vanishes, let us consider the sum over k first. The
sum can be reordered and then V. k can be expanded us-

ing Eq. (4.14):

N N

X Vj;k, k
= X V, ,

k=
k=1 " ' k=l ' Xp

N/2 N
q

g sin
j'=1 k =1

2k' j'6
('j+j' (7.4)

Now, this sum will vanish if
N

sin
k=1

2k' j'6 =0, (7.5)

which happens if (2N 6 b, )IA'=2~, and 5 was defined
so as to satisfy this relation. This is the Fourier com-
pleteness relation mentioned earlier. Thus the discrete
model exactly satisfies the continuity equation

Bn
j+i/2 Jj —i/2)

q

(7.6)

The only limit on the precision of this relationship is the
arithmetic roundoff error, which is generally several or-
ders of magnitude smaller than typical discretization er-
rors.

Satisfying the continuity equation via the Fourier com-
pleteness relation (7.5) relies upon the special properties
of the (artificial) Brillouin zone created by the q discreti-
zation. To see this, consider k and k ' such that

~
k —k'

~

)X~. The term Vj. i, „should describe the effect
of a short-wavelength component, but because of the am-
biguity introduced by the discretization the term is really
derived from the much-longer-wavelength component in-
dexed by (k —k')mod% . Such an effect is called "alias-
ing" in the context of signal processing and sampling

theory (Oppenheim and Schafer, 1975, Sec. 1.7), where it
is generally regarded as undesirable, and it is mathemati-
cally the same as an "umklapp process" in the context of
solid-state physics. The derivation of the continuity
equation in the continuum case relies on no such proper-
ty; it follows directly from the antisymmetry of the po-
tential kernel V. In a finite model, however, we must cut
off the sequence of k's at some value, and this will remove
some terms that would need to be present in the summa-
tions of the second term of Eq. (7.3) in order to make this
term exactly vanish by antisymmetry. Thus, if we do not
rely upon the Fourier completeness property, the best we
can hope for is to satisfy the continuity equation to
0 (b, ). The error can be made numerically very small by
proper choice of the limiting values of p, but, formally,
the continuity equation would not be exactly satisfied.

B. Momentum balance

One begins to encounter the limits of a simple discrete
model when the momentum balance (first moment) equa-
tion (6.24) is considered. To evaluate the rate of change
of current density, insert the discrete Liouville equation
(4.22) into the definition of J.+ i/2 (7.2). One then obtains

~Jj+1/2
at (II,—II, )

— g j2„+V, , „„f, „.+ g p„g V, „„f,„.
k~pk &0 k' k~pk )0

(7.7)

where
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2 2
Pk Pk

&+i k+ & f, -l k2~ k~, 0 m k~, 0 I (7.8)

Note that the requirements of consistency in the discretization scheme imply that II, which one might expect to de-

pend only upon the values of f at qJ, actually depends upon the values of f at qJ, and qJ+i. This sort of spreading
over the domain becomes worse as higher moments are considered. It is probably more correct to regard II as a local
function of q and attribute an error of 0 (6 ) to Eq. (7.7) (because f, + i k =f~ k+bqdf /dq). Now consider the poten-
tial terms in Eq. (7.7). For simplicity, let us neglect the different j indices required by the form of J and simply evaluate

N N

'„, g pk & I;;k,kf,;k =
k =1 k'=1

N /2

2X Aq

&j
N (UJ+J —UJ-J )

N

(7.9)

sin[2m(k —k')/X ]
j;k, k'

2 (k ki)/~ j;k, k' (7.10)

If we now evaluate the first moment of the potential term
we find

where Eq. (4.14) is again used and the sums reordered as
before. Now, in the continuum case [Eq. (6.24)] this ex-
pression reduces to (Bv/Bq)n. The discrete expression
(7.9) shows a functional of v (the first bracketed factor)
times n. If we consider only the first term of the sum
over j ' and take cotcx = 1/a for small a, we get
(v, +, —v~, )/2b, q, which is just the centered-difference
approximation to Bv/Bq. However, the other terms of
the sum are not negligible. While m.j'/N is small, the
higher terms just add in more remote approximations to
BU/Bq. Of course, cote approaches zero much more rap-
idly than I/a as a approaches vr/2 Thus .there is a natu-
ral cutoff'of these higher terms so long as j' ~X~/2. This
helps to explain the significance of the limit of the j sum-
mation of Eq. (4.14). The value of Xq/2 was originally
chosen for the upper limit of this sum on the purely
empirical basis that the results were most credible with
this value, and multiples of X were investigated because
the summation is carried out in position space. However,
most calculations have taken X =X, so these condi-
tions are approximately equivalent. The significant result
is that the momentum balance equation (6.24) is not
satisfied exactly by the discrete model.

The conformance of the discrete model to the momen-
tum balance equation can be significantly improved by
modifying the form of the discrete potential operator
(4.14). However, this must be approached with some
care. One could, for example, simply discretize the clas-
sical form EB/Bp, and if this is done properly, momen-
tum balance will be exactly satisfied. The problem with
this approach, of course, is that it discards any
quantum-interference effects. Mains and Haddad (1988a,
1988c) have suggested a better approach. They recom-
mend an alternative expression for Vj.k k which leads to
a model that exactly satisfies a discrete momentum bal-
ance expression. The idea is to weight the expression for
Vj.k k as

MH
N

, XPkX
k =1 k'=1

'j+j'
2A

N

2vrA „
(7.11)

exactly. The use of a weighting function in momentum
space corresponds to a convolution in position space. If
we reinterpret Eq. (7.10) as a continuum expression, a bit
of manipulation will show that (7.10) can be derived from
a "smoothed" potential v (x)= Jdx'iv(x —x')v(x'),
where the convolution function w is just a rectangular
pulse on the interval [ —b, , b, ]. It can be written as
iv(x)=9(6~+x)0(bz x)/2hz, where 8 —denotes the
Heaviside step function. Qualitatively, the effect of this
scheme is to smooth out any abrupt change in the poten-
tial so that any such change is distributed over at least
two mesh intervals. However, the convolution theorem
does not hold exactly in the finite, discrete domain of the
present problem. One consequence of this is that the
discretization based upon Eq. (7.10) does not exactly
satisfy the continuity equation via the Fourier complete-
ness relation (7.5), but does so only to O(b~), as dis-
cussed above.

A related idea is to use some form of "data window-
ing" (Oppenheim and Schafer, 1975, Sec. 11.4) in the
evaluation of the discrete potential superoperator. This
technique is used in the Fourier analysis of finite sets of
sampled data, and in the present context would involve
multiplying the (v + —v ') factor in Eq. (4.14) by
some function of j' which decreases to zero for 1arge j'
(the window function). That is, the weighting would be
done in real space rather than in k space. The objective
of data windowing is to maximize the fidelity of the
Fourier spectra derived from a finite set of data to those
of a hypothetical infinite data set by minimizing the
spurious efFects associated with cutting ofF the data at
some finite value. Qualitatively, this would seem to suit
the requirements of discrete models of quantum systems.
Invoking the idea that V(q, p) encodes the quantum-
interference efFects, we might also interpret a data win-
dowing procedure as an approximate description of the
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continuous loss of coherence as one examines points
separated farther apart in a dissipative system. This pro-
cedure might provide a way to interpolate between the
quantum and classical regimes, whereas the obvious
schemes for doing so with the Wigner function, expand-
ing in powers of fi, are known to fail (Heller, 1976).
These are intriguing possibilities, but the eAects of data
windowing on the present sort of open-system models
have not been extensively investigated.

C. Detailed balance

The principle of detailed balance is important in
describing the properties of the equilibrium state. In the
particular case of electron devices it assures us that the
current density is zero when the applied voltage (as mea-
sured by the difference in chemical potentials) is zero.
The reader may have noticed that the concept of equilib-
rium has played no part in the development of the
present open-system model, and indeed the only place
where the chemical potential can appear is in the
boundary-condition distribution function. In this context
it may not be surprising that the discrete model does not
exactly satisfy the detailed-balance condition. This was
discovered by Jensen and Buot (1989a), who noticed that
if the steady-state J(V) curves were computed for a
structure lacking inversion symmetry (having unequal
barrier widths), a non-negligible current density was ob-
tained at zero bias. Because it is precisely detailed bal-
ance which leads us to expect zero current in equilibri-
um, the spurious equilibrium current is a measure of the
violation of this condition.

Given the observation that the discrete model does not
exactly satisfy detailed balance, we should determine
whether this is a consequence of the discretization or of
the open-system boundary conditions themselves. A sim-
ple way to do this is to compute the zero-bias current
density for an asymmetric RTD structure using varying
mesh spacings 5 and 6 . This was done for a structure
identical to that described in Sec. V, except that the
widths of the barriers were 3.4 and 2.3 nm. It was found
that J (0) was essentially independent of b,~ and
J(0)=O(bq), as illustrated in Fig. 23. Thus the viola-
tion of detailed balance is entirely a result of the discreti-
zation, and the continuum formulation will apparently
satisfy the detailed-balance principle.

Let us examine this issue in more detail. To begin, let
us see what detailed balance implies about the equilibri-
um density operator or signer function. Because the
processes occurring in equilibrium must be reversible, the
density operator must equal its time-reversed value

p,q=p,*q, or p,q(x, x') must be purely real. This implies
that the equilibrium Wigner distribution must be a sym-
metric function of p. Thus an alternative measure
of the departure from detailed balance is
( [f,q(q, p) f, (q, —p)] ) ' . —Evaluating this measure
for computed f,„with various mesh spacings leads to the
same conclusion: the irreversible model violates detailed

5000—

I I I I I I I I I I I I I

/
/

4000—

3000—

-" 2000—

i000— /
/

0/ I I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 23. Violation of the principle of detailed balance in the
discrete open-system model. The current density calculated for
an asymmetric structure in equilibrium is plotted versus the
mesh spacing used in the calculation. The results show that the
current density (which measures the departure from detailed
balance) is of O(hq) and is thus a result of the discretization,
not of the open-system boundary conditions.

balance to 0 (b, ), and the error is independent of b, .
The procedure of solving for the steady-state %signer

function and then examining the scaling properties of
various features of those solutions is, in the absence of a
well-developed and thoroughly checked mathematical
analysis, the most reliable way to address such questions
as the departure from detailed balance. However, if one
is to compare alternative discretization schemes for a
particular problem, as is attempted below, it is much
more desirable to be able to determine the order of the
errors from a knowledge only of the equations (as was
done with the moment equations), rather than the solu-
tions. In particular, we want to be able to examine a
discretization of the Liouville superoperator and deter-
mine the order of error in detailed balance. At present,
no simple criterion has been identified that would permit
such an analysis, However, we may again examine the
factors that bear upon this problem.

Let us again consider the purely classical example of
an open system with no internal dissipation. Then the
particles will follow their classical trajectories
[q(t),p(t)], and along those trajectories the distribution
function f will be constant. Detailed balance follows
from the presence of a time-reversed trajectory
[q( —r), —p( —t)] for any given trajectory. Because the
energy is constant along a trajectory, the density f (1,p)
at an outAowing boundary will be equal to the corre-
sponding intlo wing density f ( 1, —p ) if, and only if, the
distribution functions in the two reservoirs are identical
functions of energy (i.e., in equilibrium). If we focus
upon a difFerential element of the trajectory, the condi-
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tion that there exists a time-reversed trajectory can be ex-
pressed as

(& j'1&)(ei ui;e2 j 2) =«~'i&)(e2 P2 91 $1)
(7.12)

which becomes X=X when transformed back to the
density-matrix representation, leading to the unsurpris-
ing conclusion that time reversibility is equivalent to the
Hermiticity of X. In fact, the irreversible model (4.19)
satisfies condition (7.12) if we include the boundary terms
(4.20). It would appear appropriate to include these
terms in the detailed-balance test, whereas we neglect
them in the stability analysis. However, this argument
leads to the conclusion that the model ought to satisfy
detailed balance exactly.

A further consideration of the classical case suggests
that the departure from detailed balance might be trace-
able to discretization errors in the classical trajectories.
That is, when we restrict the distribution function to a
discrete mesh of points, a particle cannot exactly follow
the proper trajectory, and the time-reversed trajectory
might not exactly balance it. The way to correct such a
situation is to adopt the Lagrangian coordinates dis-
cussed in Appendix C. Then the upwind difference
would be applied to the directional derivative along a tra-
jectory and would exactly satisfy time reversibility.
However, this does not help in cases such as quantum-
mechanical tunneling, in which trajectories cannot be
defined. Discretization errors in the trajectories would
presumably lead to the conclusion that both 6 and 6
contribute to the error, contrary to what has been ob-
served. If the error were of the form O(A~)+O(b~) and
the terms had coefficients of different magnitudes, the nu-
merical experiments might easily have overlooked the
weaker dependence.

Another way to view the problem of detailed balance
in a completely quantum-mechanical context is to note
that the equilibrium distribution should satisfy the Bloch
equation (6.30). The stationarity of such a distribution
under time evolution by the Liouville operator would fol-
low from [X,&(+)]=0. We have noted that this is
necessarily true in a closed system, but it is not true for
an open-system model. In the present case the commuta-

tor has nonzero elements adjacent to the boundaries of
the system. These might be removed by including the in-
homogeneous terms, but the meaning of an inhomogene-
ous term in a commutator is far from clear.

The connection between detailed balance and reversi-
bility or Hermiticity suggests the following conjecture:
that it is impossible to satisfy exactly both detailed bal-
ance and the stability condition (irreversibility) in a mod-
el with a finite number of degrees of freedom (such as a
bounded, discrete model). That this is possible in a mod-
el with an infinite number of degrees of freedom, as in un-
bounded or continuous models, is the thrust of the con-
ventional theories of irreversibility. If this conjecture is
correct, this is a significant limit on the accuracy achiev-
able with discrete open-system models.

D. Comparison of discrete models

Table I summarizes the results of this analysis of the
discrete open-system model. It also contains results for
other discretization schemes that have been used for
similar calculations. The schemes included in the table
are, first, the present upwind-difference approximation to
the 9 operator, denoted "Upwind. " Second is the
centered-difference approximation studied by Jensen and
Buot (1989a) to resolve the problem of detailed balance.
In this approximation the kinetic-energy superoperator
V "' (for centered difFerence) becomes

~.t.)
~ jk;j 'k'

2 g ~ k'k(~j i+,j ' ~j —I j')2m' (7.13)

The third column presents an analysis of' a centered-
difference approximation with upwind differencing ap-
plied only at the outAowing boundaries. This is the
b, , —+0 limit of the Lax-WendrofF discretization (with
upwind differencing at the boundaries) used by
Kluksdahl, Kriman, Ferry, and Ringhofer (1989). The
continuous time limit is invoked in the present analysis to
remove any artifacts of time discretization and thus
evaluate this scheme on the same basis as the others.
This yields the superoperator 7 '" ' (for centered,
upwind boundary):

TABLE I. Order of errors in discrete open-system models.

'T discretization

Upwind
Centered

Centered upwind boundaries
Density matrix

'Frensley, 1987a.
"Jensen and Buot, 1989a.
'Kluksdahl et al. , 1989.
Frensley, 1985.

Definition

Eq. (4.19)
Eq. (7.13)
Eq. (7.14)

Eqs. (3.10),(3.14)

Reference Continuity

Eo[V]
so[V]

O(b )+E [V]
0

Momentum
balance

0 (b,, )+E1[V]
Ei[V]

0 (hq )+F1[V]
0

Detailed
balance

O(hq)

Stability:
max Imk,

—O(hp}
+O(h, ')
—O(4 4p)
+O(h, ')
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+cubigk; J'k'

—,'5+, —
—,'5 ]

' for pk&0and j)1
Pk 5-+, ' —5 ' for pk (0 and j =1

5kk' +
m5 for pk )0 and j

5. ' —5. ) ' for pk)0 and j =X
(7.14)

TABLE II. Error terms due to discretization of the potential:
e;[V].

V discretization Reference

Eq. {4.14}
Eq. {7.10}

Continuity
(eo[V])

0
0{5 }

Momentum
balance (e)[V])

'Frensley, 1987a; Kluksdahl et ah. , 1989.
"Mains and Haddad, 1988c.

The last column of Table I summarizes the time-
reversible model based upon the density matrix that we
explored in Sec. III.

The errors in the continuity and momentum balance
relations were determined by analysis of the discrete
equations in the manner described above. These errors
include contributions from the potential superoperator V
as well as from the kinetic-energy superoperator T. Be-
cause the difFerent discretization schemes that can be
used for V are independent of those for T, the error con-
tributions from V (denoted as E;[4']) discussed in Sec.
VII.B are tabulated separately in Table II. The density-
matrix model of Sec. III is set up so as to exactly satisfy
the continuity and momentum balance equations. This is
possible because the V[ ] superoperator can be evaluated
in closed form when applied to the density matrix in real
space, but must be approximated by Eq. (4.14), (7.10), or
some similar expression when applied to a Wigner func-
tion.

The centered-difference form (7.13) also exactly
satisfies the continuity and momentum balance equations,
if we associate the current density J with the mesh points
rather than with the intervals as in Eq. (7.2). In the case
of the centered, upwind boundary scheme (7.14), the
change in the discretization of the gradient necessarily
introduces errors of O(b, ) into all the moment equa-
tions. It can be argued that such errors are in some way
less significant because the occur only adjacent to the
boundaries, but a central lesson of the present analysis is
that the boundary terms aA'ect the entire solution, and
their inhuence is not localized to the regions near the
boundaries.

The considerations that bear upon departures from de-
tailed balance have been discussed above. The approach
described, studying the scaling properties of the equilibri-
um solutions to the Liouville equation as illustrated in
Fig. 23, does not work for the centered-difference (7.13)
or centered-upwind boundary (7.14) discretizations be-
cause one cannot directly solve for the steady-state distri-

[

butions with these schemes. Both of them possess at
least one spurious mode whose eigenvalue is very close to
zero, which in regions of constant potential is of the form
cos~j 6, so that its sign alternates between adjacent
mesh points. If one attempts to solve for the steady-state
distribution, a relatively arbitrary fraction of this mode is
incorporated into the solution, rendering the results
meaningless. Nevertheless, the considerations previously
discussed strongly suggest that the discretization [Eq.
(7.14)], at least, probably violates detailed balance to the
same order as the upwind-difterence scheme. The status
of the centered-difference scheme (7.13) is more prob-
lematical. Jensen and Buot (1989a) obtained improved
results in the sense of a small equilibrium current with
this scheme, but it does not seem to be particularly dis-
tinguishable from the others on the basis of the symmetry
property (7.12) or its commutator with &~+ ~. The
density-matrix approach is presumed to satisfy detailed
balance exactly because it is time reversible.

The stability condition is, of course, absolutely essen-
tial for a useful model. It is expressed in Table I by the
scaling order of the greatest imaginary part of an eigen-
value. The scaling properties of the difFerent discretiza-
tions were investigated by a procedure similar to that il-
lustrated in Fig. 23. Both the upwind-difFerence and
centered-upwind boundary schemes are stable, as we ex-
pect (all imaginary parts are negative), but the scaling is
diA'erent. This is illustrated in Fig. 24, which shows the
eigenvalue spectrum for the centered-upwind boundary
scheme for the same structure used previously. While all
the eigenvalues lie in the lower half-plane, they are
clustered much nearer the real axis than those of the
upwind scheme illustrated in Fig. 9. The centered-
difterence and the density-matrix schemes are not stable,
as they possess eigenvalues with positive imaginary parts.
(It should be noted that the specific results obtained for
the centered-diA'erence scheme are somewhat suspect.
The 6 dependence is suspiciously close to that of the
total number of arithmetic operations required to diago-
nalize the operator, 6, so there is a strong possibility
that what was observed here is just the cumulative effect
of roundoff errors. )

In summary, no model exactly satisfies all the condi-
tions one would desire. One must, therefore decide which
model to use on the basis of what is most important for a
given application. The information in Tables I and II
provides the basis for making such a decision. The anal-
yses that are summarized in the tables, while somewhat
tedious, will be useful at two diferent levels. The first is
as a summary of the properties of the difFerent discretiza-
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FIG. 24. Eigenvalue spectrum resulting from the discretization
(7.14). This discretization results in a stable model.

tion schemes studied here. At a more general level the
present analyses provide an example of the sort of study
required to make sense of the multitude of discretization
schemes for a given physical problem.

helps to clarify the roles of superoperators generated by
the commutator and anticommutator of a physical ob-
servable. Et was demonstrated that, at the kinetic level,
only the commutator superoperators should acquire
non-Hermitian parts to model irreversible phenomena.
Anticommutator superoperators remain Hermitian and
are used to evaluate expectation values.

Some of the more mathematical issues concerning the
properties of the present open-system models remain un-
resolved, particularly the question of positivity of the re-
sulting Wigner distribution functions. Ho~ever, the re-
sults obtained by applying these models to the resonant-
tunneling diode demonstrate the usefulness and credibili-
ty of this approach.

This wol k ls eel tainly not aIi exhaustive examination
of the theory of open systems. Undoubtedly, many more
approaches to the subject can be formulated. However,
one should note that the significant behaviors of an open
system involve a strong coupling between the system and
its environment and large deviations from equilibrium
within the system. It thus appears unlikely that pertur-
bative approaches will contribute much to the theory of
such systems. Other analytic approaches wi11 be effective
only in cases displaying some exceptional symmetry (and
of course the present definition of open system rules out
translational symmetry). It thus appears that numerical
models such as those examined here will probably be the
mainstay of such investigations.

VIII. CONCLUSIONS

The central conclusion of the present work is that an
open system, in the sense of one that exchanges particles
with its environment through spatially localizable inter-
faces, is necessarily irreversible. The reasoning behind
this conclusion is a reductio ad absurdum argument. 'We

have seen that a particular reversible model of an open
system possesses unphysical instabilities. The mathemat-
ical properties underlying these instabilities, namely the
existence of complex eigenvalues of non-Hermitian su-
peroperators and the requirement that these occur i.n
conjugate pairs due to time-reversal symmetry, are
sufficiently general that we should expect such instabili-
ties in any reversible model. Thus physically acceptable
models of open systems must be inherently time irreversi-
ble.

A particular class of irreversible open-system models
was presented, and the stability of the resulting solutions
was demonstrated. The irreversibility of these models
follows from making a distinction between particles
entering and leaving the system. Similar ideas, genera11y
applied in the time domain, are the basis for the estab-
lished theories of irreversibility and dissipation. The
present work demonstrates that spatia1 boundary condi-
tions can be used to introduce irreversibility in a way
very similar to that by which temporal initial conditions
do so.

The present study of the kinetic theory of open systems

Note added in proof: Three recent results in this field
have come to the author's attention: Jensen and Buot [J.
Appl. Phys. 67, 2153 (1990)] have studied a second-order
differencing scheme for evaluation of the Wigner func-
tion, and they find that this improves the results for the
resonant-tunneling diode in several respects. Govindan,
Cherubin, and de Jong have reported an open-system
boundary condition for the density matrix (in real space)
which appears to avoid the instabi1ities discussed in Sec.
III. The boundary condition involves the specification of
both the density and the current. Register, Ravaioli, and
Hess have developed an improved traveling-wave
boundary-condition scheme for the time-dependent
Schrodinger equation. The latter two works will appear
in the Proceedings of the Workshop on Computational
Electronics, University of Illinois —Urbana, May 21—22,
1990, edited by K. Hess, J.-P. Leburton, and U. Ravaioli
(Cluyer, Norwell, MA, in press).
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APPENDIX A: SELF-CONSISTENT POTENTIAL
OF A TUNNELI N 6 STRUCTURE

The semiconductor heterostructure used in the
analysis in Sec. I.B consisted of an undoped 3.39 nm (12
unit cells) layer of AlQ 3GaQ IAs embedded in GaAs crys-
tal doped such that the mobile-electron density was
6X10' cm, and the temperature was 300 K. (This
particular structure was chosen to provide a clear
demonstration of the failure of the standard tunneling
theory. ) The calculations were done for a bias of 0.2 V
(=8kT) applied to the structure.

The initial approximation for the self-consistent poten-
tial was obtained from a generalized (to finite tempera-
ture) Thomas-Fermi screening approximation. At its
most fundamental level, the Thomas-Fermi approxima-
tion can be viewed as an expression for the Wigner distri-
bution function:

1

e P[ T(x,k)+ U (x) —p]f (x,k)=

u{x)=uH(x)=v, (x) . (A3)

The Hartree potential satisfies Poisson's equation,

VeVvH=e [n (x)——Xd(x)],

where Xd is the background positive charge density (ion-
ized donor density). Inserting Eqs. (A2) and (A3) into
(A4) produces a Poisson equation with a nonlinear source
term, which is readily solved in a finite-diA'erence approx-
imation by a multidimensional Newton iteration tech-
nique (Selberherr, 1984, Chap. 7). The boundary condi-
tions for Eq. (A4) are obtained from the requirement that
the system asymptotically approach charge neutrality,

uH =p vs

with all quantities evaluated in the appropriate asymptot-
ic region. In practice, these boundary conditions are ap-
plied at fixed locations suKciently distant that charge
neutrality is well satisfied (see Fig. 1). Note that the
reference energy for v, may be chosen arbitrarily; this

where T(x,k) is obtained by taking the kinetic-energy
term of the Hamiltonian in the neighborhood of x, ex-
tending this form over all space, and taking the expecta-
tion value of the resulting operator on the plane-wave
state ~k). This typically gives T(x,k)=III' k /2m*(x),
where the efII'ective mass I* can vary with position, as
discussed in Appendix E. Integrating over all momenta
gives tllc liiolc falIllllal cxplcssloII (BlakcIIlolc, 1982)

n (x)=X,VI&II/3[@, v(x)]I, —

where X, =2(m*/2Irfi/3) ~ is the "CA'ective density of
states, " and V, zz is the Fermi-Dirac integral of order —,'.
The potential u can be separated into a Hartree potential
vH and a "heterostructure" potential u, which describes
the heterostructure band oA'sets:

X g„*(E,x'), (A6)

where u&, are the asymptotic potentials to the left and
right, and s& „(E)is the velocity of an electron of energy E
at the respective boundary. Here fi is the Fermi-Dirac
distribution function integrated over the transverse mo-
menta:

fi(E)=(m*/Irk /3)ln(l+e ~ ) .

The I/& „are the solutions of Schrodinger s equation in an
eftective-mass approximation,

1 0+vI=Et
2 Bx m*(x) I)x

{A8)

with unit incident amplitude from the left or right, re-
spectively. Using Eq. (A6) we can evaluate any physical
observable of the tunneling system, although, in the
literature, the content of (A6) is usually expressed only in
an equation for the current density. However, to evalu-
ate the self-consistent potential we need to evaluate the
electron density, which is simply n (x)=p(x, x). Insert-
ing this into Poisson's equation (A4) and again applying
the condition (A5) at each boundary, we obtain the po-
tential shown by the dashed line in Fig. 1. This potential
is clearly unphysical, as discussed in the text, because in-
elastic processes are neglected. A proper description of
such processes requires a kinetic theory.

The quantum-kinetic calculations shown in Fig. 3 were
performed by solving the steady-state kinetic equation
(4.27) and Poisson's equation (A4) self-consistently, again
by a multidimensional Newton iteration scheme. The
electron density n in Poisson's equation was obtained
from the Wigner function using Eq. (7.1). Phonon

reference and the externally imposed p then uniquely
determine v~. Strictly speaking the Thomas-Fermi ap-
proximation is only an equilibrium approximation. How-
ever, in some structures, such as the present single-
barrier device, one can identify regions in which a local
quasiequilibriurn ought to hold. In such cases one can
obtain useful results for the nonequilibrium case by as-
suming that the chemical potentials difFer from one re-
gion to another, as illustrated in Fig. 1.

To evaluate the self-consistent potential within the
conventional independent-electron tunneling theory, we
need to define precisely the (mixed) quantum state of the
system. The fundamental assumption of tunneling theory
is that the electrons will be found in the eigenstates of the
Hamiltonian (generally un-normalizable scattering
states), and the probability of occupation of the left- and
right-incident states is given by the diferent Fermi distri-
butions of the respective contacts. We may summarize
these assumptions by writing a density operator for the
system

dEp(, ') = fi(E /II )pi—(E,x)QI*(E, ')
2Irh's, E

dE+ j E —p„, EX
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scattering was included by adding the Boltzmann col-
lision operator described in Appendix F, for both
longitudinal-optic and acoustic phonons, to the Liouville
operator used in Eq. (4.27). The calculation of Fig. 3(a)
assumed fixed boundary distributions [Eq. (5.1)]. The
calculation of Fig. 3(b) assumed displaced equilibrium
boundary distributions, to take into account the trans-
port processes in the contacting layers (Mains and Had-
dad, 1988c). These distributions were just Eq. (5.1) with
argument pI,

—p0, where p0 = —p, m Bv /Bx, p, is the
electron mobility (taken to be 5000 cm V 's '), and the
electric field was evaluated at the respective boundary.
This shifts the distribution function so that a greater den-
sity of electrons enters on the upstream side and a lesser
density enters on the downstream side, which makes the
screening of the electric field more effective.

Other self-consistent calculations of far-from-
equilibrium tunneling structures have focused upon the
double-barrier resonant-tunneling diode because of its
greater technological significance. Cahay et al. (1987)
performed a self-consistent Schrodinger calculation, as
described above. However, they assumed a device struc-
ture with undoped spacer layers on either side of the dou-
ble barrier. The contact potentials of the doped-undoped
junctions created an additional energy barrier which, by
confining the electrons, helped to enforce charge neutrali-
ty, and thus the unphysical effects described above were
avoided. If the undoped spacer layers had not been
present, an unphysical potential would have been ob-
tained.

Potz (1989) also performed a self-consistent
Schrodinger calculation. In this case the unphysical re-
sults were avoided by modifying the definition of the elec-
tron ensemble from (A6) to one in which the notch states
were weighted with the Fermi distribution of the
upstream electrode, in effect assuming a high rate of in-
elastic processes to fill these states. A displaced distribu-
tion function as described above was also used in this cal-
culation, but the drift momentum was chosen so as to
satisfy charge neutrality, rather than to approximate
ohmic conduction.

Kluksdahl et al. (1989) performed a self-consistent ki-
netic (Wigner-function) calculation of the type described
above, with a relaxation-time approximation for the col-
lision operator. The results showed an unphysically large
electric field at the upstream boundary. Similar results
were obtained by the present author (Frensley, 1989a,
1989b) from a kinetic model lacking the collision term.
As in the single-barrier case, the inclusion of phonon col-
lisions and displaced boundary distributions led to more
credible results (that is, more complete screening of the
field) for the self-consistent potential (Mains and Haddad,
1988c; Frensley 1989a, 1989b).

APPENDIX 8: VIOLATION OF CONTINUITY
IN THE PAULI MASTER EQUATION

The Pauli master equation (see Kreuzer, 1981, Chap.
10) is derived under the assumption that the density ma-

where P;(r) is the probability of the system to be in state
i. The master equation is then

dP, /dr = g [W, P(.r) W—,P, (r)], (B2)

where the 8'," are the golden-rule transition rates. Con-
sider transitions from a state I, to a state j which have
difFerent spatial distributions: ~itt;(x)~ %~Pi(x)~ . Then
the rate of change of the density is

BP; BP.
p(x, x;t)= [1/J;(x)( + (YPJ(x))

Bt

=[W,;P;(t)—W&&, (t)]

X[/@,(x))'—(@,(x)['] . (B3)

However, i' and j are eigenstates of the Hamiltonian,
which means that &i

~
J~i ) and &j ~ J~j ) are constant (for

scattering states) or even zero (for bound states). In ei-
ther case,

~ &ilJli &=~ &jlJlj&=o. (B4)

Now, the rate of change of the density will be zero if ei-
ther of the two bracketed terms in Eq. (B3) is zero. In
thermal equilibrium the first term is zero by the principle
of detailed balance, but away from equilibrium it is, in
general, nonzero. The second term will be zero if the
probability distributions of the eigenstates i and j are
identical. This happens in only a very few cases, most
notably for the plane-wave states of a free particle.

Thus the assumption that the density matrix has the
form (81) for far-from-equilibrium systems will lead, in
general, to a violation of the continuity equation.

APPENDIX C: BOUNDARY CONDITIONS
FOR LAGRANGIAN-VARIABLE APPROACHES

Broadly speaking, there are two ways to set up a trans-
port problem: the Eulerian approach, in which the coor-
dinates are fixed in the reference frame of the observer;
and the Lagrangian approach, in which the coordinates
are fixed in the reference frame of the transported Auid.
The present work focuses upon the Eulerian approach.
However, a number of formulations of quantum-
transport theory are expressed in terms of Lagrangian
variables. These include the center-of-mass approach of
Lei and Ting (1985) and the quantum Langevin-equation
approach of Hu and O' Connell (1987). The accelerated
basis states studied by Krieger and Iafrate (1986) adapt
the Lagrangian variables to pure-state quantum mechan-
ics. It appears that none of these approaches has yet
been applied to an open-system problem in the present
sense, so there has been no analysis of the effects of

trix is and remains diagonal in the basis of eigenstates of
the Hamiltonian,

p(x, x';t)= g P, (t)g, (x)g,*(x'). ,
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boundary conditions within the Lagrangian approaches.
Moreover, it is not at all clear that such approaches are
well adapted to the description of tunneling, where there
is no classical trajectory (although in this connection one
should note the work of Jensen and Buot, 1989b, in
which the trajectories in a resonant-tunneling diode were
inferred from a solution for the Wigner function).

In the classical case, however, much of the work deal-
ing with open systems (and most of the work treating
electron transport in nonuniform systems) has been cast
in terms of the Lagrangian variables. This includes both
deterministic approaches, such as that of Baranger and
Wilkins (1987), and stochastic approaches, such as the
widely used Monte Carlo technique (Jacoboni and Reggi-
ani, 1983; Castagne, 1985; Constant, 1985; Reggiani,
1985). If we consider the boundary conditions in such
approaches, it becomes apparent that the "inflowing"
boundary conditions [Eq. (4.7)] will occur quite naturally.
In the approach of Baranger and Wilkins the Lagrangian
variables define the mean trajectories of the particles, so
one must specify the initial conditions on the trajectory,
which is the value of the distribution function at the
point where the trajectory enters the domain. Thus the
boundary conditions are completely equivalent to Eq.
(4.7).

In the case of the Monte Carlo technique the boundary
conditions are determined implicitly by the details of the
algorithm used in the calculation, and such details are
often omitted from the published reports. To understand
the relationship between the algorithm and the boundary
conditions, let us consider the algorithms described by
Lebwohl and Price (1971) and Hockney and Eastwood
(1981) (which is also described by Castagne, 1985). Any
electron leaving the domain of the Lebwohl and Price
calculation is immediately replaced by another electron
entering randomly from either contact, with an initial
momentum chosen from a thermal distribution. Thus
the number of electrons in the system is fixed (and the
fact that this leads to simpler and more CKcient pro-
grams is the motivation for the Lebwohl and Price ap-
proach). A distribution function evaluated with this al-
gorithm will satisfy boundary conditions of the form
(4.7), but the values of the boundary distributions will not
necessarily remain fixed, as they depend upon the rate at
which electrons impinge upon the contact. To view the
problem another way, the same algorithm would be ob-
tained from a model in which the system was assumed to
be periodic, but which had a very strong scattering pro-
cess located at that plane where the system closed upon
itself. Thus this approach really describes a closed sys-
tem, and the fixed number of particles within the system
is an indication that the system is actually closed. A tru-
ly open system results if the particles entering the domain
are chosen by an independent stochastic process, and the
resulting distribution function would then satisfy Eq.
(4.7) with fixed boundary distributions. The algorithm
described by Hockney and Eastwood (1981) is almost of
this form, though the rate of particle injection is adjusted

in response to the nearby density.
The discussion of Monte Carlo algorithms and bound-

ary conditions brings out an important point: The num-
ber of particles in an open system necessarily fluctuates.
While I have not addressed fluctuation phenomena in the
present work, a more complete description should deal
with such eA'ects.

APPENDIX D: BOUNDARY CONDITIONS
FOR SCHRODINGER'S EQUATION

The application of Schrodinger's equation to an open
system in the present sense is a large part of the formal
theory of scattering. The traditional approach is to ex-
pand the wave function in a set of traveling waves, at
least in the asymptotic region. This implicitly sets the
boundary conditions employed in the analysis. With the
present interest in the quantum-transport properties of
(often complex) fabricated structures, purely numerical
techniques for solving Schrodinger s equation have be-
come more important. In these techniques one has a
direct representation of the wave function as a complex-
valued function of position, typically on a discrete basis
(using finite-diff'erence or finite-element techniques, for
example). In this situation, the appropriate boundary
conditions must be explicitly specified, and the proper
choice of boundary conditions is a prerequisite to obtain-
ing any meaningful results.

Let us first consider the steady-state case in a one-
dimensional system extending over the interval O~x ~ l.
In general, we seek wave functions corresponding to trav-
eling waves incident from either the left or the right.
These states will include a reflected component, which
appcaI S Rt thc same boUIldary Rs thc incidcQt wave, and R

transmitted component, which appears at the opposite
boundary. For example, for an eigenstate incident from
the left, we have

g(x)=Ae +Be for x ~0,
P(x)=Ce ' for x ~l .

We know the value of A (typically A =1), but we do not
know the value of B or C. A straightforward way to
evaluate itj is temporarily to assume C =1, from which
we obtain the initial conditions g( l) = 1 and
Bg(l) /Bx =ikI The steady. -state Schrodinger equation
may then be integrated from x = l to x =0, and the solu-
tion may then be normalized so that 2 =1.

A more elegant approach is the quantum transmitting
boundary method (QTBM) of Lent and Kirkner (1990).
The essence of this approach is to apply mixed boundary
conditions at each boundary. The mixed boundary con-
ditions involve fixing the value of a linear combination of
the wave function and its gradient. At the left-hand
boundary,

$(0)= A +B,
lt'(0) =ay/ax l, =i7, ( A —B) .
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Solving for 3 we obtain

A =
—,'[g(0) —ig'(0)/ko j . (D5)

A similar expression for the incident amplitude at the
right-hand boundary (let us call it D) may be readily de-
rived:

D = ,'[g—(l)+i/'(l)/k, ] . (D6)

and all we know about the reffected wave P(x, t) is that it
is a solution of Schrodinger s equation and all of its mo-
menta should be negative. (However, a momentum-space
expansion of P is not feasible because we wish to deal
only with P over a small range in x.) Mains and Haddad
(1988a) have reported calculations of the transient
response of a resonant-tunneling diode using

P(x t)=8(x t)e' (D8)

with 8 (x, t) assumed to be slowly varying in space and
time. Inserting Eq. (D8) into Schrodinger s equation
gives

BB Ak 08 ih 08
Bt Jtl Bx 20'

(D9)

Mains and Haddad used the first-derivative term of Eq.
(D9) to update the value of B(O, t) (Dirichlet bo'undary
condition) in a time-integration procedure. This amounts
to looking a short distance into the domain to determine
what is coming out.

Let us consider another scheme for determining the

Equations (D5) and (D6) are the QTBM boundary condi-
tions. They define an implicit relationship between lid and
g' and thus they must be solved along with Schrodinger's
equation itself. This is readily done in a numerical ap-
proach in which the Schrodinger equation is approximat-
ed by a set of algebraic equations: One simply adds (D5)
and (D6) to the set and solves them simultaneously. The
QTBM is readily extended to two-dimensional problems
(Lent and Kirkner, 1990) and to problems involving com-
plex energy-band structures that require more than one
basis function per unit cell (Frensley and Luscombe,
1990). Note that the QTBM boundary conditions are en-

ergy dependent, this dependence being implicit in the
dependence of Eqs. (D5) and (D6) on ko and ki.

If the problem is time dependent (typically because the
potential varies with time), the problem of boundary con-
ditions is much more complex. If we start with the
knowledge that the electron in question is in a particular
eigenstate of the Hamiltonian H(0) at t =0, at some later
time t when the potential has changed perceptibly the
electron will not in general be in an eigenstate of H(t),
but will be in a superposition of such eigenstates. Let us
focus our attention on the boundary at x =0 and assume
that the potential does not vary in its immediate neigh-
borhood. The wave function with unit incident ampli-
tude will be of the general form

(D7)

boundary condition, which I have not tested in a practi-
cal computation, but which has the pedagogical advan-
tage of explicitly displaying the non-Markovian nature of
the problem. Suppose that we are implementing a
discrete time-integration scheme with step size 6, and
that we wish to apply a Neumann spatial boundary con-
dition at x =0. Then we need a way to determine the
value of c)P/c)x at the next time step. We Fourier trans-
form Schrodinger's equation and solve for k to obtain

ik =+i &2m (fico U) /—h . (D10)

Inverting the Fourier transform, we obtain an expression
for the gradient of P:

N any N

(O, t, )= g a„(O,t, )= g b P(O, t, —mb, ),

(D 1 1)
where the latter expression is a finite-difference approxi-
mation to the differential operator, and we approximate
this operator using only the values of P at times prior to
to because those are the only known values. (Thus the
time-reversal symmetry is broken. ) Note that Eq. (Dl 1)
explicitly demonstrates the dependence of the boundary
condition on the prior history of the system and thus
shows its non-Markovian character. The finite-difference
coefIicients b may be obtained from the a„by expand-
ing P(O, to —mb, , ) in a Taylor series. One thus obtains
the set of equations

( —mb, , )"
b

0 n. (D12)

which must be solved to find the b
The essence of this scheme is that we use the previous-

ly calculated values of the wave function at the boundary
to attempt to predict the next value of the gradient. This
is a particular example of linear prediction (Makhoul,
1975). It also illustrates a general property of derivations
of irreversible phenomena in quantum mechanics: When
one attempts to remove (or at least ignore) the effects of
some of the degrees of freedom in a system (in this case
the spatial locations outside the boundary), they reassert
themselves in the time domain, in the form of non-
Markovian terms (Zwanzig, 1964).

APPENDIX E: POSITION-DEPENDENT
EFFECTIVE MASS

In the semiconductor structures that originally
motivated this work the charge carriers whose motion we

In the case of the refIected waves propagating out of the
x =0 boundary we would choose the negative sign on the
square root. Now suppose that we approximate the
right-hand side of Eq. (D10), over an appropriate range
of energies, by a polynomial in —i co:

N
ik= g a„( ico)" . —

n=0
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seek to describe are really quasiparticles, whose proper-
ties are determined by the energy-band structure (or
energy-momentum dispersion relation) of the semicon-
ductor material. These carriers usually occupy states
near an extremum of a band, and thus for the simpler
cases of interest the band structure can be approximated
as

E(k) =u, +(A' /2m *)(k —ko) (El)

where v, is the energy at the edge of the band and is just
the heterostructure potential used in Appendix A, ko is
the wave vector at which this extremum occurs, and I '
is the "ejective mass" that characterizes the curvature of
the dispersion relation. This dispersion relation may be
modeled by the eft'ective-mass Schrodinger equation

ifiBV/Bt = —(A' /2m*)V 0'+(U, +UJI )'0,
f2

H;;=-
4A„ Pl; ) PlI Pl) + )

+V

tion when the magnitude of the change in I ' is small, as
is typically true of equivalent energy bands in closely re-
lated materials. When the discontinuity is of a larger
magnitude, as when inequivalent bands are involved, one
probably needs to solve the multiband problem explicitly
and infer the form of the e6'ective-mass equation from the
results (see, for example, Grinberg and Luryi, 1989).

We can obtain diferent discrete approximations to
(E3) depending upon where we assume the heterojunction
to be actually located with respect to the mesh points.
The most consistent scheme is to assume that the junc-
tion is located midway between two adjacent mesh
points. The discrete Hamiltonian (3.9) then becomes
(Mains, Mehdi, and Haddad, 1989)

1

2 Bx m *(x) Bx
(E3)

although other, more complicated expressions have been
suggested (see Morrow and Brownstein, 1984). In gen-
eral, it appears that Eq. (E3), which might be termed the
"minimal Hermitian form, " is an adequate approxima-

where VH is the Hartree potential, which is assumed to be
slowly varying. The wave function ql in Eq. (E2) is strict-
ly an envelope function for the true wave function. In
the Wannier-Slater approach to eftective-mass theory
(Slater, 1949), 4 is a discrete function (defined on the lat-
tice points) giving the amplitude of the Wannier function
at each point [though '0 is approximated by a continuous
function to derive the di(ferential equation (E2)]. In the
approach of Luttinger and Kohn (1955), + is a continu-
um but band-limited function, which is multiplied by a
perfectly periodic Bloch function to obtain the complete
wave function.

A semiconductor heterostructure is a single crystal
that includes (deliberately introduced) local changes in
the chemical composition. These introduce changes in
the "local band structure" which must be incorporated
into the eff'ective-mass equation (E2) to obtain an accu-
rate model of the quasiparticle dynamics in a hetero-
structure. For the sake of concreteness let us consider an
abrupt heterojunction. The local band-edge energy v,
will be shifted across the heterojunction, and this effect is
easily incorporated into Eq. (E2) by making U, a function
of position. In general, the value of the effective mass
wi11 also change across a heterojunction, and this requires
a more careful treatment of the kinetic-energy term.
(Another way to view this problem is to state the condi-
tions for matching + across an interface with discontinu-
ous I*. Because the matching condition follows unique-
ly from the form of the Hamiltonian, we shall focus upon
the latter. ) The problem is that many of the expressions
one might write down [such as that in (E2)] become non-
Hermitian when I * is taken to be a function of position.
The simplest manifestly Hermitian form is

P( )m *(g) P(+) (E5)

(This is the expression that was actually used in the cal-
culations presented here. ) Unfortunately, Eq. (E5) holds
only if

m*(q) '=
—,'[m*(x) '+m*(x') '],

which holds only if the band structure varies slowly as a
function of position. In general, a position-dependent
eff'ective mass will produce a nonlocal form for the
kinetic-energy superoperator in the Wigner-Weyl repre-
sentation (Barker, Lowe, and Murray, 1984). A more
complete treatment, expressing the Wigner-Weyl trans-
formation in terms of the Wannier and Bloch representa-
tions (rather than the position and momentum represen-
tations) has been developed by Miller and Neikirk (1990).
This analysis a1so demonstrates a nonlocal kinetic-energy
term.

APPENDIX F: THE BOLTZMANN COLLISION
SUPERQPERATGR FOR PHONQN SCATTERING
IN SEMICONDUCTORS

To investigate the full range of phenomena that occur
in open systems, one needs a model of the dissipative pro-
cesses (such as scattering of electrons by phonons in
semiconductors) that occur within the system. However,
the question of the correct description of such processes
is at present far from resolved (see Jauho, 1989). There-
fore, in the inductive spirit of the present work, we shall
assume a priori that the classical Boltzmag. n collision

which was used in all of the tunneling calculations
presented here.

If we use Eq. (E3) to construct the kinetic-energy su-

peroperator T~ ~, how is the form of this superoperator
(in the Wigner-Weyl representation) affected? We might
hope that a simple expression would result, such as
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operator acting upon the signer distribution is an ade-
quate approximation at some level. The form that the
Boltzmann operator takes within the present one-
dimensional model is developed below.

In solid-state physics the name "Boltzmann equation"
is applied to any transport equation that combines the
Liouville description of ballistic motion with a local Mar-
kovian model of the stochastic processes. This can in-
clude such processes as the scattering of electrons by
phonons or impurities. These will be considered to be
one-body processes because the phonon and impurity de-
grees of freedom are not explicitly included in the model,
and thus (neglecting Fermi degeneracy) such processes
lead to terms linear in the distribution function. The
Boltzmann equation can also include a master-operator
description of two-body interactions such as electron-
electron scattering (and in statistical physics the name
"Boltzmann equation" usually refers more specifically to
this kinetic equation), and such a term will be nonlinear
in the single-particle distribution function (assuming the
Stosszahlansatz). For the present purposes we shall con-
sider only one-body interactions so that the collision
operator is linear.

The Boltzmann collision term is usually written in the
form (Ferry, 1980)

(Csf)(q, k)= f [W&& f(q, k') W«f (q—, k)], (Fl)
dk'
2&

where 8'k& is the rate of scattering from plane-wave state
k to state k. (To maintain consistency with the litera-
ture, we shall use the wave vector to label these states,
rather than the momentum. ) Equation (Fl) can be
rewritten to emphasize the linear, homogeneous nature of
the collision term:

fi (ki ) =2 irk, Texp( —XTki /2 ) (FS)

with A, T defined in Eq. (3.3). The resulting scattering
rates are then integrated over the transverse momenta of
the final states:

Qk
W„,, = ', f d'k f d'k&l« II„lk'&I'

(2~) fi

X 5(Ei, Ei; + A'co)—

X exp( —
A, Tki /2),

where 0 is the volume of the crystal. Henceforth we
shall drop the subscript from the k~l.

For polar optical-phonon scattering the absolute
square of the matrix element is (in SI notation and from
Fawcett, Boardman, and Swain, 1970)

1 0 '

&~o+1
~dc

tion rates depend upon the full three-dimensional k of
each state, whereas the numerical calculations at present
consider only the longitudinal momentum kl~. Thus the
scattering rates must be "projected" onto the one-
dimensional model. To do so, we first assume that the
distribution of electrons with respect to the transverse
momenta of the initial state kj is a normalized Maxwelli-
an distribution at a fixed temperature:

f (q, k') =fi(q, kI~ )fi(q, ki),
where

(Calif)(q, k)= f [Wii, —5(k —k') f dk" Wi, .i, ]

Xf (q, k')

—= f Cs(k, k')f(q, k') .

The collision term is local, so that in the complete kernel
of Cs there is a 5 function in q, which is suppressed from
the above definition. Note that the potential superopera-
tor V has a similar dependence on q [Eq. (4.10)], and as a
result Cii and V have the same sparsity structure in the
discrete approximation [see Eq. (4.26)]. Thus the addi-
tion of Cs to the calculation requires no modification to
the superoperator data structures or solution procedures.

The scattering rates 8'kk. are taken to be the Fermi
golden-rule rates. For electron-phonon scattering,

where co], is the longitudinal-optical phonon frequency,
and ed, and e are the low- and high-frequency permit-
tivities of the semiconductor, respectively. The phonon
occupation number X], is given by the Bose-Einstein dis-
tribution, and again the upper term (0) refers to absorp-
tion and the lower term (1) accounts for spontaneous
emission. The one-dimensional scattering rates are ob-
tained by inserting Eq. (F7) into (F6). After some manip-
ulation, one can write an expression for the scattering
rate. First, define dimensionless quantities a and b as

gk'(k —k') +PA'co„

&2A, T(k —k')

A, Tk(k —k') +/3Acoi,

2k'(k k )

l(klH, lk')
l 5(Ei, —Ei, +A'co), (F3)

Then the scattering rate is

where H, is the Hamiltonian for the electron-phonon in-
teraction and co is the phonon frequency. In Eq. (F3) and
the following, the upper sign refers to phonon absorption
and the lower sign refers to phonon emission. The transi-

eW"", =2~13~kk' && 4ATE'0

a2e'
X, lk —kl 2

0X,.+1
1/2

erfc[sup(a, b)] .
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The collision operator for polar optical-phonon scatter-
ing in the one-dimensional model is then obtained by in-
serting Eq. (F8), for both phonon emission and absorp-
tion, into a discretized version of (F2).

The collision operator for acoustic deformation-
potential scattering may be similarly constructed. As-
suming equipartition of energy in the acoustic modes, the
matrix element is (Fawcett, Boardman, and Swain, 1970)

2.QX 1Q4

1 .5x10

1.Qx1Q

0.5x1Q

l I I I
l

I I I I
l

I I I I

No pbonons

where =, is the acoustic deformation potential, p is the
mass density of the material, and s is the velocity of
sound. The second expression is obtained by expanding
the Bose distribution for low energies using co=s~k —k'~.
Inserting Eq. (F9) into (F6) and multiplying by 2 to in-
clude the equal emission and absorption rates, we obtain

Q. Q—
0.0 0.1 0.2

Voltage (V)

0.3 0.4

Wkj~' = infI l, exp[ —
A, T(k —k' )/2] I .

fiPA Tp s

(F10)

Given the expressions such as (F8) and (F10) we can
readily construct the collision operator using Eq. (F2).
For the purposes of numerical evaluation, it is most con-
venient to accumulate the values of Cs(k, k') (in the
discrete approximation) by performing the assignments

FIG. 25. EAect of phonon scattering processes on the J( V)
characteristic of the resonant-tunneling diode, using the
Boltzmann collision operator. Scattering by longitudinal-optic
phonons significantly reduces the peak current and increases
the valley current. The e6'ect of acoustic phonons is nearly
negligible. The temperature vvas 300 K.

C~(k, k')~C (sk, k')+ (A~ /2~A') W„„

Cs(k, k)~Cs(k, k) —(b, /2~%) Wkk
(Fl 1)

APPENDIX G: DEVELOPMENT OF THE DISCRETE
WIGNER DISTRIBUTION FUNCTION FOR
SIG NAL ANALYSIS

for all values of k and O'. One can implement this pro-
cedure in a single subprogram to which a function that
evaluates 8'kk. is passed as an argument, and then invoke
this subprogram for each of the processes of interest. A
convenient test of the resulting C~ is provided by the
principle of detailed balance. It is Csf,q

=0, where f,
is an equilibrium (Maxwellian) distribution. The collision
operators obtained from Eqs. (F8) and (F10) pass this
test.

The effects of the Boltzmann collision operators for
these phonon scattering processes on the steady-state
characteristics of the RTD are illustrated in Fig. 25. In
this calculation the matrix elements for GaAs using the
parameters of Fawcett, Boardmann, and Swain (1970)
were assumed to hold throughout the structure. The
acoustic-phonon scattering has a very small effect on the
J ( V) curve. The longitudinal-optic phonon scattering
processes significantly decrease the peak current and in-

crease the valley current. The initial report of this calcu-
lation (Frensley, 1988b) employed a scattering operator
for the longitudinal-optic phonons which was one-half of
the correct value, due to an algebraic error. Similar cal-
culations have been done by Mains and Haddad (1988b).
Kluksdahl et aj. (1989) and Jensen and Buot (1990) have
used a relaxation term to model the inelastic processes.

The Wigner distribution function has been found to be
useful in the field of signal analysis, where it provides a
way to define a time-dependent frequency spectrum
(Claasen and Mecklenbrauker, 1980). The notion that a
frequency distribution can vary with time is quite intui-
tive: Consider our usual concept of musie as a temporal
sequence of notes. But it encounters precisely the same
problem with respect to the Fourier uncertainty principle
that the notion of a position-dependent momentum dis-
tribution does with respect to the quantum-mechanical
uncertainty principle. Thus the Wigner distribution may
be employed for the same purpose as in quantum
mechanics: as a rigorous description that has a simple
interpretation in the "classical" regime (in this case, for
signals whose frequency spectrum changes slowly).

The relevance of this body of work to the present dis-
cussion is that digital signal analysis employs discretely
sampled signals that are fully analogous to the discrete
models discussed in Sec. VI.A. Many of the mathemati-
cal properties (and difficulties) of the discrete Wigner dis-
tribution discussed there have already been explored in
the context of signal analysis. The purpose of this Ap-
pendix is to delineate the parallels between the signal-
analysis work and the work reviewed in the body of the
present paper.

In the signal-analysis problem, one has a function x(t)
that has been sampled with an interval T so that only the
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values x(n)=x(nT) are known for integral n. The sam-

pled signal corresponds to a Schrodinger wave function
defined on a spatially discrete basis. The autocorrelation
sequence, tb, (m, n)=x*x„(or a statistical average of
this quantity, Oppenheim and Schafer, 1975, Chap. 8),
corresponds to the density matrix. The Wigner distribu-
tion function f (n, 8), where n represents the time (and
corresponds to j) and 9 represents the frequency (and
corresponds to p), is obtained from the autocorrelation
sequence by a transformation similar to Eq. (4.13).

The initial work on the discrete Wigner distribution by
Claasen and Mecklenbrauker (1980) used precisely the
definition (4.13) (but regarded 0 as a continuous variable).
They observed that only one-half of the autocorrelation
information is employed in this definition, as illustrated
in Fig. 21, and noted that, as a consequence, 0 is periodic
with a period of m rather than 2m. (The corresponding
expression in the present work is X~b,~=~Pi/b~. ) In a
later work, Claasen and Mecklenbrauker (1983) investi-
gated the consequences of modifying the definition of the
discrete Wigner distribution by modifying the kernel of
the transformation (4.13) to be something more elaborate
than just an exponential function. In particular, they
weighted the exponential by a factor very similar to that
which appears in Eq. (7.10), used by Mains and Haddad
(1988a, 1988c) to weight the potential kernel. Poletti
(1988) has further developed this analysis.

If the details of the physical system that produced the
signal x (n) are unknown, as is usually the case in signal
analysis, the analog of the Liouville equation is also un-
known. Thus, in this context, it is natural to try to
resolve the problems of the discrete Wigner function by
modifying the expression by which it is defined. This ap-
proach is complementary (and quite possibly equivalent)
to that explored in Sec. VII for modifying the Liouville
equation.
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