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Since the appearance of our paper on heat waves [Rev.
Mod. Phys. 61, 41 (1989)], certain papers that should
have been cited have come to our attention. It appears
that our effort to write a relatively complete chronology
of thought about heat waves fell somewhat short of the
mark. We thought it would be useful to correct the more
serious omissions in that chronology in this addendum,
and not to try to list all the papers that bear on one or
another aspect of the subject. The literature on heat
waves is still a manageable one; the subject is still active,
but not explosively so. It seems to us that nearly the
whole of the literature is covered in our review, in the
various summaries of results on propagation of waves in
liquid helium, and in the recent review of Jou, Casas-
Vazquez, and Lebon (1988), which gives some references
missed by us and thoroughly reviews the literature com-
ing from the special school of thought about thermo-
dynamics called extended thermodynamics. We did not
think it useful to try to add something to the already
complete review of the literature on liquid helium, and
we confined our remarks to signal events in the develop-
ment of equations leading to wave propagation of heat.
The fascinating story of the nonlinear evolution of shock
waves in helium II can be found in Chap. 16 of Fluid
Mechanics by Landau and Lifshitz (1959) and especially
in the book by Khalatnikov (1965). These topics and
others that arise in the study of liquid helium are
thoroughly reported in the works of Donnelly (1967),
Putterman (1974), Roberts and Donnelly (1974), Tilley
and Tilley (1986), and Wilks and Betts (1987).

Our paper and the references cited in the above para-
graph do not quite cover all the lines of thought about
heat waves that we now think ought to be listed in our
chronology. In particular it is important to draw atten-
tion to the notion of the nonlocal theory of transport of
heat, which emerges from nonequilibrium statistical
mechanics and thermodynamics. Another problem that
needs to be addressed is the question of how to regard the
heat flux and what types of invariance ought to be im-
posed. The origin of the relation between the heat flux
and the temperature can be regarded either as a constitu-
tive problem, whose solution is independent of the frame
of the observer, or as a manifestation of dynamics
governing the random motions of small particles satisfy-
ing the weaker conditions of invariance associated with
the equations of motion. There is a small number of in-
teresting approaches to nonlinear problems of heat
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transmission. The theory of “‘thermal waves” is generat-
ed out of the nonlinear dependence of conductivity on
temperature arising, say, in the diffusion theory of
thermal radiation (see the review of Zel’dovich and Ra-
zier, 1966). Parabolic waves are possible when the con-
ductivity vanishes with temperature. The whole theory is
based on similarity solutions and is fully nonlinear. An
interesting generalization of thermal waves to a hyperbol-
ic problem was achieved by Wilhelm and Choi (1975),
who used a Cattaneo law with temperature-dependent
conductivity and relaxation time. This theory also can be
treated by similarity solutions. The mathematical and
physical relationship between these two solutions is far
from fully resolved. Other nonlinear approaches based
on thermodynamics have been developed for application
to the problem of second sound in dielectric crystals. Re-
cent experiments on ultrafast thermal excitation of met-
als using femtosecond, high-intensity laser pulses may be
good for testing ideas about heat wave propagation at
high temperatures. At present, the theory is based on the
two-temperature diffusion model of Anisimov et al.
(1974), even though the relaxation times involved are well
within the range where wave propagation could be dom-
inant. The times of transit across thin gold films of heat
pulses measured by Brorson, Fujimoto, and Ippen (1987)
are linear in the sample thickness, consistent with wave
propagation.

This addendum follows the strictly chronological se-
quence of our annotated bibliography. At various points,
however, we felt obliged to give some further explana-
tions so that the text is composed of an annotated bi-
bliography interspersed with clearly identified commen-
taries.

1948, Carlo Cattaneo, Atti Semin. Mat. Fis. Univ.
Modena 3, 3.

We wrote a summary of this important paper in “Heat
waves,” but we missed an important point that has been
made forcefully by I. Miiller (1987), who notes that Cat-
taneo first proposed that the heat flux depends on the his-
tory of the temperature gradient, writing
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The heat flux at a point (x,¢) is not only proportional to
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the temperature gradient there, but also remembers faint-
ly the temperature gradient that the particle at x had at
an earlier time. When this is combined with the energy
equation

dT | dq
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we get a parabolic equation
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predicting the spreading of pulses with infinite speed.
Miiller notes that Cattaneo must have noticed this, be-
cause he proceeded to the equation
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Miiller notes that this sequence is difficult to justify. Be-
fore the sequence we get diffusion, after the sequence we
get hyperbolicity and waves.

If a term dq /dt were added on the right-hand side of
Eq. (1), we would arrive at a heat conductor of the
Jeffreys type (see “Heat waves,” p. 44), which has a
diffusive response, singularly perturbing waves when o is
small.

1956, Harry Jones, “Theory of electrical and thermal
conductivity in metals,” in Handbuch der Physik XIX:
Electrical Conductivity I (Springer, Berlin), p. 227.

It is argued that conduction in metals can be modeled
by an electron gas satisfying Fermi statistics in which
collisions between electrons can be neglected. An elec-
tron in a space periodic field behaves like a free particle,
justifying the use of the kinetic theory of gases to study
conduction, except that quantum statistics are used and
that the steady state arises from lattice irregularities or
motions and not from collisions. This is to say that elec-
tron interactions with phonons and singularities are what
is important. Jones shows that, when scattering alone is
considered, an arbitrary initial probability distribution
will relax to the equilibrium with a 7(k) time of relaxa-
tion, which depends on the wave vector k. He concludes
that there is a time of relaxation in pure metals at high
temperatures, and in sufficiently impure metals at all
temperatures. The analysis is for weak temperature gra-
dients in the sense that the heat current is proportional to
the temperature gradient at equilibrium. This gives rise
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to a Cattaneo type of equation (cf. Wilhelm and Choi,
1975). The Wiedemann-Franz relation can be used to re-
late a relaxation time to the thermal conductivity.
Empirical formulas for the temperature dependence of
the thermal conductivity of metals lead then to nonlinear
laws of heat propagation in metals.

1960, J. M. Richardson, J. Math. Anal. Appl. 1, 12.

Richardson derives general hydrodynamic equations
for a system of identical structureless particles under the
action of central forces and conservative external forces,
using methods of nonequilibrium statistical mechanics.
He extends the work of Irving and Kirkwood (1950) by
advancing arguments about the nature of the underlying
ensemble to obtain a closed set of equations with a par-
tially implicit prescription for calculating irreversible
terms. He does not use Boltzmann’s transport equation
and gives criticisms of approaches that do. The irreversi-
ble terms in Richardson’s theory are nonlocal in space
and time [Eqs. (18) and (19) under Piccirelli, 1968]. He
says that he expects the nonlocal dependence to have a
spatial extension of the order of the range of interaction
forces. He remarks that the time sequence of mean ob-
servables almost never can be the solution of a set of
first-order differential equations, but it can be the solu-
tion of sets of equations in which the present rates of
change of mean observables depend not only upon the
present values but also on their past values.

Richardson’s work appears to be the first in which the
transport of heat is expressed by an integral whose kernel
is influenced by values far from the point of observation.

It may be useful at this point to make precise what is
meant by a spatially nonlocal material; it may have many
different forms. A spatially nonlocal theory in continu-
um mechanics is not a simple material. The reader
should not confuse simple materials in statistical
mechanics with simple materials in continuum mechan-
ics; they have nothing to do with one another. A simple
liquid in statistical mechanics would be a liquid of
featureless molecules acted on by potential forces whose
action need not be short range. A simple material in iso-
thermal continuum mechanics is one whose stress is
determined by the history of the first spatial gradient of
the deformation, short range. A simple heat conductor is
one in which the heat flux is determined by the history of
the first gradient of the temperature, as in the theories of
Cattaneo, Gurtin and Pipkin, and Nunziato. But the
equations of Richardson are obviously not simple in this
sense.

1964, R. J. von Gutfeld and A. H. Nethercot, Jr.,
Phys. Rev. Lett. 12, 641.

von Gutfeld and Nethercot were the first to observe
the ballistic propagation of heat in cold crystal of quartz
(8iO,) and sapphire (Al,05). Ballistic propagation takes
place when the temperature of the crystal is colder than
that at which heat waves (second sound) propagate. The
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speed of the ballistic phonons induced by heat pulsing is
the first, rather than the second, sound speed.

1966, Y. B. Zel’dovich and Y. P. Razier, Physics of
Shock Waves and High-Temperature Hydrodynamic Phe-
nomena, Vol. II, Chap. X, “Thermal Waves” (Academic,
New York/London).

The theory of parabolic wave propagation arises in the
theory of thermal waves, which was developed in the pa-
per by Zel’dovich and Kompaneets (1959). Chapter X of
the book by Zel’dovich and Razier (1966) contains a
thorough, detailed, and clear account of the whole sub-
ject. Here we shall define thermal waves in a formal way,
then go a little deeper into the physical underpinning.
The diffusive propagation of heat is governed by a
diffusion equation

oT
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where p, ¢, and k are density, specific heat, and thermal
conductivity. Now suppose that the conductivity
k(T)=aT" depends on temperature, n =0, and it is pos-
sible to support a plane propagating wave

T=0(x —ut) . ©
Any such wave necessarily satisfies
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This can be integrated once if pcv is independent of ®.
We can find a solution for this problem with ®=0 at
pd =Xf
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This solution is locally valid near the front coordinate
x =x; the front velocity v =dx, /dt and position may be
determined from the spatial solution as functions of the
time. Some similarity solutions for different problems are
given in the book. The wave velocity v is not a constant
in time. For example, in the problem of heat release
from an instantaneous plane source, the heat release pa-
rameter

0=[" Tax (12)
is a constant and

xf~(aQn)l/(n+1)t1/(n+2) , (13)
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When n =1, the front moves as 7”3 and the front veloci-
ty decreases to zero as 1/¢%/3. Similar results hold for in-
stantaneous release of heat from a point source, as in ex-
plosions.

Now we consider some properties of the thermal con-
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ductivity k =aT", the gradient T'=dT /dx at the front,
and the flux k7",

n >0, k vanishes at the front ,
k=aT"{n=0, k=a forall T,
n<0, k—ow as x—x; .

The conductivity does not go to zero with T"when n <0,
and there are no solutions with 7 =0 at any finite x.
This case, n =0, corresponds to the instantaneous propa-
gation of heat to infinity, “infinite wave speeds.”

We also have T'~|x,—x|'/"~!, which is infinite at
x =x; when n>1. The solution here violates the small
gradient hypothesis of the diffusion theory of radiation.
Thus when n >1 we have a sharp discontinuity, rather
too sharp. When O<n <1, T’ tends to zero at the fronts.
The flux g ~T"T"~|x,—x|"/" vanishes at the front for
all n >0.

The propagation just described of a heat pulse into a
region of zero temperature is what we understood by par-
abolic propagation of heat.

The theory of thermal waves can never be achieved in
nature if 7T is the absolute temperature, because 7' =0 is
then impossible to attain. In fact, T is the absolute tem-
perature because the theory of thermal waves arises out
of the theory of radiation for optically dense materials in
local equilibrium (see Sec. 12 in Zel’dovich and Razier,
Vol. 1). Photons arriving at any point in space are born
in the vicinity of that point at distances of not more than
several mean free paths; photons born farther away are
absorbed in transit. Consequently, only the immediate
vicinity of the point ‘“participates” in establishing the
equilibrium intensity. The necessary condition for local
equilibrium—small gradients in an extended, optically
thick medium—serves simultaneously as a justification
for the use of the diffusion approximation when consider-
ing radiative heat transfer. The heat flux transported by
radiation can be written

_ 1607’1
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3

(15)

where T3 arises from differentiation of the T'* radiation
law, o is the Stefan-Boltzmann constant, and / is the ra-
diation mean free path, which also depends on tempera-
ture.

Suppose we have a real explosion in which hot gas is
radiating into the ambient air with, say, T;=300 K. Can
we use the similarity solution for the instantaneous
release of energy from a point source, which assumes that
T(,=0 K, to model the real problem? At early times the
interior temperature will be enormously larger than the
300 K ambient. One may then expect that the real prob-
lem could be modeled by the self-similar problem, but
nonuniformly and certainly not near x,. As Zel’dovich
and Razier state, ‘“‘self-similar solutions are of interest
not so much as particular solutions of a specific narrow
class of problem, but mainly as limits which are asymp-
totically approached by solutions of more general prob-
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lems that are not self similar.”

The following citation from Israel and Stewart (1979),
p- 341, motivates a brief discussion of heat waves and ex-
tended thermodynamics:

One of the most annoying paradoxes which have
plagued thermodynamical theory has been the parabolic
character of the differential equations of heat flow. Even
in classical theory, instantaneous propagation of heat is
an offense to intuition, which expects propagation at
about the mean molecular speed; in a consistent relativis-
tic theory it ought to be completely prohibited.

Although it was recognized that the origin of this
problem must reside in some deficiency of conventional
thermodynamics when applied to the description of tran-
sient effects, the nature of this deficiency was not pin-
pointed for a long time. In 1949, Grad showed how
transient effects could be effectively treated within the
framework of classical kinetic theory by employing a
method of moments instead of the Chapman-Enskog
normal solution. Suitable truncation of the moment
equations gave a closed system of differential equations
which turned out to be hyperbolic, with propagation
speeds of the order of the speed of sound. . . .

In the context of phenomenological theory, instan-
taneous propagation remained for many years a puzzle
that makeshift devices, like the addition of ad hoc relaxa-
tion terms to Fourier’s law (Cattaneo, 1948), could not
resolve in a logically satisfying way. However ...
Miiller (1967a) showed that the difficulty lies in the con-
ventional theory’s neglect of terms of second order in
heat flow and viscosity in the expression for the entropy.
Restoring these terms, Miiller derived a modified system
of phenomenological equations which was consistent
with the linearized form of Grad’s kinetic equations.

1967, 1. Miiller, Z. Phys. 198, 329.

Miiller’s paper is the first to use irreversible thermo-
dynamics to replace the parabolic, diffusive propagation
heat with hyperbolic wave propagation. To do this,
Miiller had to extend the idea of local equilibrium, intro-
ducing a new state variable. From the author’s sum-
mary,

It is shown that the paradox of Fourier’s heat conduc-
tion theory (propagation of temperature disturbances
with infinite velocity) is a consequence of an insufficient
description of the thermodynamical state in nonequili-
brium. Taking heat flow and flow of momentum as addi-
tional state variables and thoroughly investigating the
equation of entropy balance, we derive an extended
theory of thermodynamics of irreversible processes,
which can be shown to remove the paradox of heat con-
duction theory for materials with appropriate equations
of state. The velocity of temperature propagation is cal-
culated explicitly for a one atomic ideal gas using an ap-
proximate solution of the Boltzmann equation.

Some observations and modifications of Miiller’s theory
are presented by Ruggeri (1983).

Extended thermodynamics is one of a few thermo-
dynamic theories far from equilibrium. The classical
theory of irreversible processes rests on the assumption
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that although globally the system is in a state of non-
equilibrium, each small element of the system remains in
a state of local equilibrium, and the equations of thermo-
statics are valid in such elements. In particular, the local
entropy has the same functional dependence on the local
macroscopic variables as at equilibrium. This enables
one to calculate the entropy production in systems,
which in such cases is a bilinear expression of thermo-
dynamical forces and fluxes. In fast irreversible process-
es or when inertial and relaxation phenomena in the con-
tinuum are strong, the system no longer remains in the
state of local equilibrium. To define the nonequilibrium
state of the system, new variables that vanish at equilibri-
um must be introduced. The entropy flux is treated as a
constitutive quantity different from the quotient of the
heat flux and absolute temperature. The history of the
generalizations of Gibb’s equation for entropy produc-
tion is given by Jou et al. (1988).

Other papers that confront the problem of infinite
speed of propagation with extensions of irreversible ther-
modynamics are those of Lambermont and Lebon (1973),
Gyarmati (1977), and Lebon (1978).

Recent theories of extended thermodynamics are
represented in the proceedings volume edited by Miiller
and Ruggier (1987). Most of the papers there and else-
where deal with the thermodynamics of gases and are in-
spired by the kinetic theory of gases. Miiller (1987) and
Ruggeri (1987) offer thirteen quasilinear equations of evo-
lution type to determine the density, internal energy, ve-
locity, heat flux, and stress fields, with a fourteenth equa-
tion showing that the stress is traceless. Five of the equa-
tions come from balance laws for mass, momentum, and
energy; the other nine are called balance laws for fluxes.
We could regard the other nine equations as constitutive
equations of the rate type, in that the form of these nine
rate equations is not known without making constitutive
assumptions. The thirteen equations just mentioned can
also be regarded as arising as moments of the Boltzmann
equations, following Grad (1949). The number thirteen
of moment equations is then the simplest possible trunca-
tion number, with the same number of equations and un-
knowns. As is usual in mathematical physics, the closure
leaves some unknown terms, which can be determined by
constitutive modeling, by some kind of guessing about
how these terms should look, or else by higher-order mo-
ments, postponing the guessing to yet higher-order terms.

Since the thirteen equations are quasilinear, it is possi-
ble to consider the possibility of arranging the modeling
to give rise to a strictly hyperbolic system, avoiding
diffusion and infinite wave speeds. This procedure has
been elevated to a principle in extended thermodynamics.
Grad’s method of dealing with Boltzmann’s equation
leads to strict hyperbolicity and finite wave speeds, but
Enskog’s procedure leads to Burnett’s equations, which
are diffusive. [Another example of this appears in the
work of Carrassi (1978).] What you get depends on what
you assume, with different physical problems requiring
different assumptions.

A problem of extended thermodynamics is that each
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rate equation gives rise to only one time of relaxation [see
Eq. (44)], though different times of relaxation may be
needed to describe responses to different frequencies. We
have discussed this problem in “Heat waves,” Sec. V1.

1968, R. A. Piccirelli, Phys. Rev. 175, 77.

Piccirelli uses methods of statistical mechanics (that is,
an application of probability theory to mechanics) to
derive expressions adding to the results of Richardson
(1960). The two papers of Richardson and Piccirelli treat
simple liquids and obtain expressions for the stress heat
flux that are nonlocal in time and space. Piccirelli adds
explicit molecular expressions to the general dynamical
theory given by Richardson. Though these expressions
are explicit, they are very idealized and depend on a
number of unverifiable assumptions. Piccirelli himself re-
marks that his . . . present results are not directly useful
as they stand.” The value of his results is to give an ex-
ample of how a nonlocal theory might look. His results
are perhaps also of interest in that his effort is to derive
constitutive equations from dynamics, using statistical
mechanics rather than, say, kinetic theory or molecular

modeling.
Let
T=Py+7 (16)

be the stress tensor, Py is the reversible part and 7 is the
irreversible part. Piccirelli finds that P, is a functional
determined by the present values of the temperature
[rather, by the inverse temperature S=(kT) " !] and the
Helmbholtz free energy f. Though P, depends on present
values and not on the history of B and f, it is not local in
space; a distant point x’ affects the value of P at the ob-
servation point x. The tensor P, reduces to the thermo-
dynamic pressure times the unit tensor in the classical
case. In Piccirelli’s theory, Py is not diagonal, but it is re-
versible in the sense that it does not appear in the equa-
tion governing the evolution of the entropy. (The reader
may recall that the balance equation governing the evolu-
tion of the specific internal energy contains a dilatational
work term, pressure times the divergence of the velocity,
but no such term appears in the equation for the entro-
py.) The caloric equation is also generalized into a non-
local (in space) law.
The heat-flux vector

q=q,+q 17)

is determined in a decomposed form in which qq, the re-
versible heat flux, does not appear in the evolution equa-
tion expressing the balance of entropy. There is no coun-
terpart for q, in classical theory; it reduces to zero in the
classical limit. Like Py, q, depends on the present values
of B and f and, in addition, on v, the velocity, but the
dependence is nonlocal in space. Piccirelli’s equation (57)
for qo depends explicitly on local and distant values of
Vv, and not on v itself.

The irreversible parts of the stress and heat flux are
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given by Piccirelli as
t
I dt’ ' (4) .3 l,tI: I, ’
7(x,1) fo fﬂdx[x (x,2;x',¢'):Vv(x’,t’)
+x®Ux,t;x',¢')-VInB(x',1")] ,
(18)
~ —_— t, ’ (3) AN o4
q(x,1) fodt fndx[x (x,2;x',t")-Vv(x',t')
+K(2)(x,t;x',t')-V1n/3(x',t')] .
(19)

Here «%, the viscosity kernel, is a fourth-order tensor,
«'?), the thermal conductivity kernel, is a second-order
tensor, and the cross-effects tensor k> is of third order
and is not present in classical theory. These kernels are
actually worse than they look; they are functionals of the
spatially nonlocal history of B, f, and v in Q and [0,¢].
“Somewhat less sweeping generalizations have also been
suggested in which the transport kernels. . . depend only
on the local values of 3, f, and v, and are functions only
of space and time differences.” The forms given in Egs.
(18) and (19) are actually special cases of the forms de-
rived by Piccirelli, which have additional terms that de-
pend on initial values. He notes that there are no indica-
tions that the initial-value terms relax faster than the ker-
nels. To get rid of these terms it is necessary that one
select initial values so that the extra terms vanish. The
assumption necessary for this is called “constrained equi-
librium,” and Egs. (18) and (19) are supposed to hold
only for constrained equilibrium. Actually, it seems to us
that initial values are a somewhat ambiguous concept for
problems that depend on history. Surely the materials
remember things that happen when ¢ <0.

1969, T. André-Talamon, C. R. Acad. Sci. Paris 269B,
101.

André-Talamon studied Cattaneo’s equation in a solid
when the thermal conductivity depends on the tempera-
ture. He also let the density and specific heat in the ener-
gy equation depend on the temperature. He found a gen-
eral solution in three dimensions without taking special
cases for the dependence of material parameters on the
temperature. He noted that because of the possibly
strong variation of the temperature-dependent coefficient
at early times, linearization might not be valid. He treat-
ed only early times under the condition that the first
derivative in the nonlinear telegraph equation arising
from combining the heat law and entropy equation be
much smaller than the second derivative. Under these
conditions he was able to solve the equation generally
with a functional equation of the D’Alembert type.

We turn next to engineering applications, thinking of
ordinary materials at temperatures above super cool.
For such materials heat waves could be important when
the imposed change of temperature takes place in a time,
the process time, not too much longer than the relaxation
times for thermal waves. The relaxation times for these
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materials of engineering interest are much smaller than
the process time. This is why heat waves are not impor-
tant in most engineering applications. For engineering
applications, Fourier’s law and diffusion give an easier
and better description. We have already argued in “Heat
waves” that even in cases where the relaxation and pro-
cess times were comparable it would be desirable to allow
for both diffusion and relaxation by adopting constitutive
models like Jeffreys’, which have both a thermal conduc-
tivity and a relaxation time or relaxation spectra.

The engineering literature on heat waves suffers from a
lack of observational data that could establish the appli-
cations in which they are important and the theoretical
approximations appropriate to these applications. There
are a few good discussions of areas of application in
which heat waves may be important in the engineering
literature, but the discussions are usually perfunctory and
shallow, and the literature is more or less dedicated to
comparing results from numerical calculations of tradi-
tional theories and those based on the telegraph equation.
For applications to common materials it is necessary to
do experiments with process times in the window
107 13-107% sec, where hyperbolic phenomena and relax-
ation effects can be important. The recent literature on
laser pulse experiments in metal, reviewed later, is of in-
terest here.

The problem of sintering of catalysts is interesting be-
cause the process time has been estimated by Luss (1970)
as 10713 sec, a domain in which relaxation effects and
heat waves ought to be important. The problem has been
studied by Chan, Low, and Mueller (1971) and Rucken-
stein and Petty (1972). Some numerical calculations for
this problem when the thermal conductivity grows
linearly have been performed by Glass, Ozisik, and
McRae (1986), who also mention possible applications to
pulsed lasers, and by Glass, Ozisik, and Vick (1987).
Some numerical calculations that include the effects of
surface radiation are given in the paper last mentioned
and by the same authors in 1985. Frankel, Vick, and
Ozisik (1987) have analyzed the formulation of hyperbol-
ic conduction for composite materials.

The engineering literature on ‘“hyperbolic conduction™
is collected each year in “Reviews of the Heat Transfer
Literature” in the International Journal of Heat and
Mass Transfer.

1971, S. H. Chan, M. J. Low, and W. K. Mueller, Am.
Inst. Chem. Eng. J. 17, 1499.

In excthermic reactions the maximum temperature
may occur in times of the order 107 !? sec, and the hyper-
bolic transport of heat should be important. Chan et al.
imagine periodic pulses of heat entering the sample from
one face. If the waves travel at the speed of sound and
the relaxation time is 10~ !* sec, then the rise in tempera-
ture of the platinum sample is 1600°C according to
Fourier’s law and 1800°C according to Cattaneo’s law.
Experiments exhibit temperature rises between 2000 and
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3000°C. Chan et al. note that the higher temperatures
would be generated from the Cattaneo law with lower
wave speeds and the same time of relaxation.

1972, E. Ruckenstein and C. A. Petty, Chem. Eng. Sci.
27, 937.

This paper contains a good physical description of the
possible effects of finite propagation speeds on the aging
of platinum (metal) catalysts supported on aluminica or
silica. Sintering and agglomeration of crystallites is by
hot spots generated by exothermic reactions on the cata-
lyst. The magnitude of the heat rise depends on how fast
the heat is carried to the support. The finite propagation
speed, in addition to being responsible for high tempera-
tures close to the surface of platinum clusters, also possi-
bly conducts heat to the support. The generation (pro-
cess) time is 10713 sec and is smaller or of the same order
as the relaxation time for the heat flux. The finite speed
of propagation could be important. For example, an esti-
mate of the time taken to cool a crystallite on a platinum
slab 10 A thick with a prescribed temperature at the sup-
port is less than the process time ¢z for Fourier’s law, but
it will take 5¢; for heat to travel 10 A with a speed ¢ =2
As tgr. The conclusion is reached that the temperature
achieved near the reaction surface is much higher than
that resulting from Fourier’s law and that the cooling of
the hot spot after the completion of a reaction is so hin-
dered that the high temperature lasts sufficiently long for
detachments of clusters of atoms to take place.

We shall next consider a group of papers on the theory
of constitutive equations for the heat flux. Some of these
are reviewed below. It is generally thought that constitu-
tive equations characterize materials, and the description
of material response should be independent of the ob-
server; two observers on different planets, or on different
turntables on the same planet, should come up with, say,
the same equation relating stress and deformation or the
heat flux and temperature gradient, and their equation
should not depend on the frame. There are two require-
ments stated here: the first is that constitutive equations
be form invariant, and the second is that their form be in-
dependent of the frame. The first requirement means
that different observers agree about the form of the
governing equations. This need not imply that the equa-
tions are independent of the frame. In fact the equations
of motion, which depend on the frame, are form invari-
ant. Form invariance means that equations should trans-
form like tensors under a change of frame. They are then
said to be “indifferent” or “objective” tensors. Vector-
valued equations should transform like vectors a* =Qa
under the change of frame x—x*,

x*=Q(t)x+b(z) ,

where Q(¢) is an arbitrary time-dependent orthogonal
matrix QQ7=1, and b(z) is a time-dependent spatially
constant vector. Similarly second-order tensor-valued
equations A =0 transform like tensors,
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under a change of frame. The velocity u—b and velocity
gradient L=Vu=09u/dx are not indifferent,

u*—b=Q(nNu(x,n)+OQ(1)x ,

. 0)
du* /ox* =L*(x*,1)=Q(#)L(x,1)Q7+QQ7 .

The second requirement for constitutive equations is
that form-invariant expressions describing material
response depend on the material and not on the frame in
which the material is observed. This is obvious on the
one hand and deeply mysterious on the other. There is of
course no more mystery in the “principle” of material
frame indifferences than in the idea of an inertial frame,
which seems to work well. Certainly the requirement
that constitutive equations not depend on the frame does
not follow from first principles, and frame-dependent ex-
pressions often arise for the stress tensor and heat-flux
vector when they are derived from statistical mechanics,
as in the work of Richardson (1960) and Piccirelli (1968),
from studies in the kinetic theory of gases, which were
analyzed in the papers of I. Miiller (1972) and Edelen and
McLennan (1973), or from molecular dynamic simula-
tions, as in the work of Hoover, Moran, More, and Ladd
(1981).

A different interpretation of the second requirement of
invariance has been presented by Murdoch (1983), who
would let constitutive equations depend on the frame, but
only through the intrinsic spin, an indifferent tensor ex-
pressing the spin of the body relative to an inertial frame.
When interpreted this way, the constitutive equations
coming from the kinetic theory also satisfy the revised
second requirement of invariance. There are two
separate questions answered in the two requirements of
invariance. The first is whether a material knows if the
observer is rotating. The answer is obviously no. The
second is whether a material knows about its own rota-
tion, and the answer may depend on the material. It
seems to us that the exact circumstances under which dy-
namics gives rise to constitutive equations that are in-
dependent of frame is largely an unexplored topic at the
foundation of continuum mechanics.

1972, 1. Miiller, Arch. Ration. Mech. Anal. 45, 241.

From the author’s summary, ... However, a careful
study of the kinetic theory shows that the constitutive
equations for stress and heat flux should be dependent on
the frame of the observer, although such a dependence is
normally excluded in thermodynamics. The purpose of
this paper is to substantiate the remark above and to il-
lustrate it. The results imply that the field equation for
the temperature in a gas at rest in the observer frame de-
pends on that frame and, in particular, on whether or not
the frame is an inertial one.” In the paper, Miiller con-
siders the Boltzmann equation for Maxwellian molecules
using expressions for the second, third, and fourth mo-
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ments derived by Ikenberry and Truesdell (1956). Trues-
dell has influenced people to believe that constitutive
equations ought to be independent of the frame, and at
the time of this article Miiller worked as an assistant pro-
fessor in a department and milieu strongly controlled by
Truesdell. Miiller derives expressions for the stress devi-
ator and the heat flux from these moment equations
whose right-hand sides contain terms, some of which de-
pend on the frame, that are separately not objective, but
when these terms are added, the added expression is ob-
jective and form invariant, but still depends on the frame.
There is a second paper by Miiller (1987), in which this
problem is treated. There he cites an equation of Grad
(1949) for the heat flux q,

Ky |dg; Qv _ T
qi"‘;’l‘ a aquj_ZWijqj Ko (21)

in which he notes that the bracketed term depends on the
frame through the angular velocity tensor W,; of the
frame, but is objective; nonobjective contributions of the
separate terms sum to zero. Miiller shows that the same
feature, a frame-dependent objective sum of nonobjective
terms, arises in Burnett’s (1935) equation for the heat flux
and arises also in the equations for the stress derived by
Burnett and Grad.

To illustrate Miiller’s point and to make one of our
own, recall that invariant rates were discussed in our
summary of the paper by Fox (1969a) in “Heat waves,”
where we showed that the derivative s,

4=4—Lq, L=Vu, §=dq/dt 22)

and

a=4+L7q, (23)

are objective. Linear combinations of these are also ob-
jective, and any one of these combinations may be used
to form nonlinear equations of the Cattaneo type, which
do not depend on the frame.

Miiller showed that §+Lq is not objective because

4*=Qq=Qq+Qq and
L*q*=(QLQ"+QQ"(Qq)=QLq+Qq

do not transform as tensors. He also observed that
g+Lq—2Wq (24)

is objective. Here

Wik = —g;0; (25)
is the angular velocity tensor in x corresponding to the
angular velocity vector w, relative to an inertial frame
with position vector x/, so that W=PP7 where
x=Px/+b, x* =P*x/+b* relate x, x* to x’ in the inertial
frame and

W*=QWQT+QQT. (26)
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The orthogonal matrices are related to Q=P*P7. All the
linear algebra is nicely set out in the beginning of
Miiller’s paper. Now we compute

d*'q* _ |8 . 9
gt e Y e |
9 G dq
=19 4u3 |Qq= . 27
ar Vax [T, +Qq @7)

This, together with the transformation formulas for L*q*

and W*, gives
§*+L*q*—W*q*=Q(§+Lq—2Wq) , (28)

proving the objectivity of this frame-dependent quantity.

It follows now that Egs. (22) and (23) are independent,
objective, frame-independent rates and that Eq. (24) is
another objective, but frame-dependent rate. Any linear
combination of these three is again objective.

Miiller reports a calculation in his paper that is very
important, though Miiller and subsequent authors make
no reference to it. He notes (p. 242) that “. .. By a long
but straightforward calculation it can be proved . . . that

B;—b; —2Wy (v, — by )+ Wh(x, —b, ) — Wy (x, —b,)
[291]

is an objective tensor; the dot derivative of a function (of
x) denotes the material time derivative . . .”” Miiller’s ex-
pression (29) is the acceleration relative to an inertial
frame seen by an observer in x, and there is the same ex-
pression with * seen in x*. Together with the usual as-
sumptions about body forces and the stress tensors,
Miiller’s equation (29) shows that the equations of motion
are objective, though of course they are frame dependent.
People working in continuum mechanics frequently note
that ““. . . the laws of motion themselves do not enjoy in-
variance with respect to the observer” (Truesdell and
Toupin, 1960), proving that ¥ does not transform like a
tensor, taking no notice of the invariance of the accelera-
tion relative to an inertial frame embodied in Eq. 29.

1973, J. Lambermont and G. Lebon, Phys. Lett. 42A,
499,

These authors derive a generalized Fourier law
q+7q=LVT™!, L>0 (30)

by extending the local equilibrium hypothesis for isotro-
pic solids. Their result is a special case of the theory of
Miiller (1967a) if the choice L =AT?, corresponding to
Cattaneo’s law, is made. A further generalization of
these ideas for elastic bodies is given by Lebon and Lam-
bermont (1976).

1973, D. G. B. Edelen and J. A. McLennan, Int. J.
Eng. Sci. 11, 813.

This apparently independent work carries the same
message as Miiller (1972) (the submission dates are Janu-
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ary 1972 for Miiller and October 1972 for Edelen and
McLennan), but the conclusion is expressed more force-
fully. “If there is one instance above all others in which
extreme care has to be exercised it is in the elevation of a
known convenience to the peerage of a Fundamental
Principle. A case in point is the principle of material
frame indifference ...” From the authors’ summary,
“Constitutive relations for stress and energy flux, derived
from the Boltzmann equation by the Chapman-Enskog
procedure, are shown to violate the principle of material
indifference while exhibiting invariance under Galilei
transformations.”

Other references on frame indifference are by Wang
(1975) and Truesdell (1976), who argue for frame
indifference, and Soderholm (1976, 1981), Hoover,
Moran, More, and Ladd (1981), and Ryskin (1985), who
argue against it. Hoover et al. did a molecular dynamics
simulation for a fluid in two-dimensional rotating disks
and found an azimuthal component of the heat flux,
violating frame indifference.

Some recent points of view on whether or not the heat
flux and stress tensor should satisfy objective constitutive
equations that are frame indifferent develop on an idea of
Bressan (1982), who notes that in the various extensions
of thermodynamics beyond local equilibrium, rate equa-
tions are introduced for the heat flux and the other sys-
tem variables. He then suggests that these rate equations
ought to be regarded as balance laws, on the same footing
as the balance of mass, momentum, and energy. The
inertial part of these balance laws then need not be in-
dependent of frame, any more than the inertial terms in
the momentum balance. In this case the angular velocity
matrix W;; of the frame that appears in Eq. (29) is in the
inertial term, and the remaining relations that need con-
stitutive modeling can be made frame different. The
problem is resolved by declaring that it is not a problem.
This is the point of view presently advocated by Miiller
(1987) and Ruggeri (1987), and it seems closely related to
the extended notion of frame independence advanced by
Murdoch (1983).

1974, P. H. Roberts and R. J. Donnelly, Ann. Rev.
Fluid Mech. 6, 179.

In this review of superfluid mechanics many topics are
discussed. Of interest for discussions of invariance of
constitutive equations is a discussion in Sec. 3 of a phe-
nomenological theory of rapidly rotating helium II,
where it is shown that the force terms in the superfluid,
which depend on the superfluid vorticity (the body spin),
are not indifferent. Invariance questions for superfluids
are considered in greater detail by Hills and Roberts
(1977).

1975, H. E. Wilhelm and S. H. Choi, J. Chem. Phys.
63(5), 2119.

Wilhelm and Choi develop a quasilinear hyperbolic
theory of heat transmission in metals using a generaliza-
tion of Cattaneo’s law,
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1 k
q=—_a-_VT, (31

with a temperature-dependent conductivity k (T') propor-
tional to 7" and relaxation time 7(7) proportional to 7T™.
They justify using this law with the relaxation results for
metals based on Boltzmann’s equation that are given by
Jones (1956). Values for m and n for different ranges of
temperature given by Jones are used in this paper.
Wilhelm and Choi give an explicit similarity solution for
cylindrical thermal waves in metals, showing that the
heat released from a line source propagates a discontinu-
ous wave front radially outward with a finite, time-
dependent wave speed determined by m and n. For con-

stant k, n =0, and m = — 1, they get
k. 172
dR_m:\/—i -0 172 , (32)
dt pc

the speed of the radially spreading wave decreasing with
time. Unique nonlinear hyperbolic thermal wave solu-
tions exist up to a critical amount of driving energy. For
larger energy releases, the flow becomes multivalued, in-
dicating the development of shock waves.

Wilhelm and Choi also calculate and compare the par-
abolic theory to their hyperbolic theory. They say that
‘... the parabolic thermal wave theory gives in general a
misleading picture of the profile and propagation of
thermal waves, and leads to physical (infinite speed of
heat propagation) and mathematical (divergent energy in-
tegrals) difficulties. Attention is drawn to the importance
of temporal heat-flux relaxation for the physical under-
standing of fast, transient processes, such as thermal
waves, and more general explosions and implosions.”

This paper of Wilhelm and Choi is very interesting be-
cause it generalizes nonlinear heat conduction to the hy-
perbolic case in such a way that similarity solutions may
be used in both cases. There are many interesting ques-
tions left open; for example, we expect that when the re-
laxation times of the hyperbolic theory are much shorter
than any characteristic time for the parabolic theory,
then the parabolic theory will dominate at later times,
with the already relaxed hyperbolic modes perturbing the
conductivity (see Sec. VI of “Heat waves”).

1975, C. C. Wang, Arch. Ration. Mech. Anal. 58, 381.

Wang seems to have been encouraged by Truesdell to
have a critical look at the papers of Miiller (1972) and
Edelen and McLennan (1973), which raise doubts about
the principle of frame indifference. He is only slightly
critical, remarking that . .. it seems to me that there is
no rigorous proof to substantiate the claims of . .. I be-
lieve that there are four major gaps in their arguments:

(a) There is no proof that the formal expansions of the
iterative procedures are convergent so as to justify the
leading terms as approximations of the limits.

(b) There is no proof that the limits of the expansions
share the same properties as the leading terms, especially
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with regard to frame indifference.

(c) There is no proof that the approximate constitutive
relations given by the leading terms of the expansions can
be applied to macroscopic processes which do not satisfy
the [macroscopic energy balance].

(d) There is no proof that the iterative procedures are
valid for any ‘real materials.”

1976, G. Lebon and J. Casas-Vazquez, Phys. Lett. A
55, 393.

Lebon and Casas-Vazquez extend an earlier analysis of
Glansdorff and Prigogine (1971, Chap. VII) for Fourier’s
law to the generalized Cattaneo law. They study the sta-
bility of heat conduction with prescribed temperatures of
heat flux in rigid bodies in the context of linearized
theory, using Liapunov’s theory, and find that *“. .. con-
trary to what happens in the classical situation investi-
gated by Glansdorff and Prigogine, it cannot be conclud-
ed that heat conduction is always stable.”

1976, C. Truesdell, Meccanica 11, 196.

Truesdell states strongly that the criticism of material
frame indifference coming from the kinetic theory is
wrong.

SUMMARY: Certain results of formal processes of
“approximation” in the kinetic theory are similar in
form to constitutive relations of continuum mechanics.
It is wrong to regard them as such. Continuum mechan-
ics takes the variables entering constitutive functions as
being independent. Thus it is possible to ask whether or
not those functions be frame indifferent. In the kinetic
theory, on the contrary, all solutions automatically satis-
fy the principle of linear momentum. In order even to
ask whether gross relations satisfied by solutions be
frame indifferent, it would be necessary to show first that
those relations pertain to a class of solutions that corre-
spond to velocity fields which differ from one another by
arbitrary time-dependent orthogonal transformations of
the motion. It is not presently known whether any such
classes of solutions exist in the kinetic theory. Indeed, as
the constraint imposed by the principle of linear momen-
tum is frame dependent, the existence of any such class is
implausible. Be that as it may, to claim that the kinetic
theory can bear in any way whatever upon the principle
of material frame indifference is presently ridiculous.

One can assume that materials satisfy constitutive
equations as is done in continuum mechanics, but it is
also valid to enquire if constitutive equations can be de-
rived from the laws of dynamics at a microscopic level.
The second line of inquiry should not be suppressed. Ac-
tually it is not hard to enter into a frame of mind in
which it is the concept of a constitutive equation that ap-
pears ridiculous. For example, the idea that a certain
material must satisfy Fourier’s law under all conditions is
not just astonishing, it is also incorrect. The best that
can be expected is that a constitutive equation is some
form of “approximation” in a restricted class of condi-
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tions, and the determination of the conditions is the main
point at issue.

1976, Lars H. Soderholm, Int. J. Eng. Sci. 14, 523.

From the author’s summary, “It is shown from simple
physical arguments that the material equations of a gas
should have frame-dependent terms of the kind appear-
ing in the Burnett equations. This indicates severe limi-
tations of the range of validity of the Principle of Materi-
al Frame Indifference.”

1976, S. H. Choi and H. E. Wilhelm, Phys. Rev. A 14,
1825.

This paper is about explosions in a fully ionized
electron-ion plasma governed by a generalization of
Cattaneo’s law based on the application of the moment
method to Boltzmann’s equation. Let q, v, m, p, T, and 7
be the heat flux, the mass-averaged velocity, the mass,
partial pressure, temperature, and relaxation time. Then
the heat equation reduces to

q+(q-V)v+qdivv+2[(q-V)v+qdivv+(Vv)-q]

+%%pVT=—q/'r . (33
when inhomogeneous terms of the third order in the
Boltzmann equation are neglected. One and the same
equation applies to the electrons and the ions; m,, p,, .,
etc. are for electrons, m;, p;, etc. for ions. Equation (33)
reduces to Cattaneo’s law under linearization. Equation
(33) may be written as

q+Lq+qtrL+§(Lq+qtrL+LTq)+%Ti—pVT=:;—~ ,

(34)

where L=Vv. Assuming now that the velocity and
mass-averaged velocity have the same form under a
change of frame, we may use Eq. (20) to show that Eq.
(34) is not objective.

From the authors’ summary,

The nonlinear partial differential equations describing
plane, cylindrical, and spherical explosions in a fully ion-
ized electron-ion plasma with heat-flux relaxation and
thermal relaxation are reduced to ordinary differential
equations by means of novel similarity transformations.
The resulting ordinary boundary-value problem for the
plasma explosion, with the strong shock conditions as
boundary values at the moving shock front, is formulat-
ed mathematically. The scaling laws for the plasma
fields are presented, which show how the plasma proper-
ties change with time during the course of the explosion.
The importance of electron and ion heat-flux relaxation,
which enhances the concentration of thermal energy
behind the shock front, is stressed for the understanding
of the shock-heating mechanism in fast processes. It is
concluded that heat-flux relaxation is an important pro-
cess for short-time plasma explosions, which determines
the discontinuity of the electron and ion temperature
fields at the shock front.
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1977, S. Sienuitycz, Int. J. Heat Mass Transfer 20,
1221.

Sienuitycz derives a functional with a stationary point
corresponding to a hyperbolic equation for heat trans-
port. There is no claim made that the stationary point is
extremalizing, so that the variational results given in the
paper may not be very useful.

1977, L. Gyarmati, J. Non-Equil. Thermodyn. 2, 233.

When the imposed changes in state variables are
sufficiently rapid, the kinetic energy of the currents con-
tributes to the entropy. The entropy is decomposed into
an equilibrium and a kinetic part § =S, +Sy;,, where

n
Seq= 2 ;T , (35)
i=1
a; are generalized coordinates, I'; are generalized conju-
gated thermostatic forces,

n
Sin=7 2 muJ I, (36)
Lk=1

Jy are fluxes, and m;, is a positive-definite matrix of in-
ductivities. The generalized Gibbs equation for solids is

s, &L . _ Al
5, T2 dvlI)=3 3+ \VI,+ 3 my —~
o = k=1 ot
=3 1,E,;=0>0. (37)

Here E;=VI'; +3 m; dJ, /0t is the new thermodynamic
force incorporating both dissipative and inertial effects.
If a linear relation between E; and J; is valid, then

Ji=3 LyE, ,
k=1
3
o . 3, (38)
Ji=3 Ly VI — 3 Tik 5y
k=1 k=1
where

n
[T]=— 3 Lism sy
=1

is a matrix of relaxation times from nonlocal to local
equilibrium. Equation (38) generalizes Cattaneo’s equa-
tions, and it leads to hyperbolic transfer equations
(j=1,2,...,n),

T, ar,

- _— 2 —

+5;, EY k;;V°T,|=0.

With appropriate choices of I',, this equation can ac-
count for thermal waves in solids, waves in
thermodiffusion systems.

1978, M. Carrassi, Nuovo Cimento 46, 363.

This paper shows that the kind of heat propagation
you get from the kinetic theory of gases depends strongly
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on the approximation scheme used to derive the equa-
tion. Probably the different types of approximation cor-
respond to physical processes arising in different situa-
tions.

SUMMARY: Various forms of the linear heat equa-
tion which can be deduced from the kinetic theory of
gases are analyzed. It is shown that, if one uses a pertur-
bative procedure based on a power-series expansion in
the viscosity coefficient p (or in the mean free path 1),
the resulting equations are of the “parabolic” type,
which means that the propagation velocity of the
thermal disturbance is always infinite. Conversely, both
the equations derived by using the Cattaneo procedure
and those which are directly derived from the thirteen-
moment approximation introduced by Grad to solve the
Boltzmann equation are all of the “hyperbolic” type with
well-defined propagation velocity. The theoretical in-
terest of the direct measurement of the propagation ve-
locity of a thermal disturbance is also pointed out.

1981, W. G. Hoover, B. Moran, R. M. More, and A. J.
C. Ladd, Phys. Rev. A 24, 2109.

Hoover et al. present a molecular dynamics simulation
of the problem of heat conduction in a two-dimensional
rotating disk of dense fluid. The calculation addresses
the issue of whether or not the heat flux should be frame
indifferent with a purely radial component of flux, corre-
sponding to an axially symmetric prescription of the
prescribed temperature difference. In molecular dynamic
simulations the equations of motion of N particles with a
given interaction potential are solved numerically. The
calculation is of interest because it is an independent
method for seeing if the flux remains radial in a rotating
system, as is required by frame indifference. They find an
angular part of the heat flux that contains nearly equal
potential and kinetic parts. It fluctuates wildly with time
and is considerably smaller than the radial flux. Accord-
ing to an approximate theory using Boltzmann’s equa-
tion, worked in the paper, the angular flux equals
—2g,w7, where g, is the radial flux, o the angular fre-
quency, and 7 the relaxation time. The molecular dy-
namic simulation confirms this order of magnitude esti-
mate.

“We conclude that the approximate kinetic theory and
Enskog’s dense-fluid modification of Boltzmann’s equa-
tion correctly predicts a violation of Fourier’s law. In
dense media a radial temperature gradient induces an an-
gular heat flux in a comoving frame.”

1981, S. Sienuitycz, J. Non-Equil. Thermodyn. 6, 79.

Sienuitycz generalizes the analysis of Lebon and
Casas-Vazquez (1976) using another approach. *. .. The
unsteady-state coupled heat and mass transfer, occurring
in an isobaric unreacting fluid, is considered. .Using the
second (direct) method of Liapunov the stability of the
stationary state, approached by the wave solution, is
proven, providing that the well-known thermostatic ma-
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trix ¢, characterizing the stable equilibrium of every mac-
roscopic system is negative.”

1983, A. I. Murdoch, Arch. Ration. Mech. Anal. 83,
186.

Murdoch enunciates a different principle of frame
indifference under which Miiller’s (1972) relations are
frame indifferent. He notes also that there are two kinds
of invariance. The first is that physical quantities that
characterize the behavior of a given material are intrin-
sic. He defines this to mean that the constitutive equa-
tions for the heat flux and stress tensor should be
indifferent. The second assumption is that all observers
should agree upon the nature of any given material.

Various interpretations of the second assumption are
possible. The usual interpretation is that the constitutive
equation should be independent of frame. Murdoch sug-
gests a new interpretation of the second assumption; con-
stitutive equations may depend on the frame, but only
through an indifferent tensor called the intrinsic spin and
defined as 2 —W, where Q is the skew-symmetric part of
the velocity gradient, the spin of the body, and W=PP”
[defined under Eq. (25)] is the spin of the frame of the ob-
server relative to an inertial frame (Murdoch’s intrinsic
spin is W+S, where his W is our Q, and his S is our
—W). The spin of the body relative to an inertial frame
is the intrinsic spin. Murdoch shows that the intrinsic
spin is indifferent and that it is just this spin which exhib-
its the dependence of frame found in the various works of
Muiiller (1972), Edelen and McLennan (1973), Roberts
and Donnelly (1974) and Séderholm (1976).

The intrinsic spin enters into the formula for the ac-
celeration in a frame rotating relative to an inertial
frame,

‘Q'ij - I’V,-j :8j,~1(—;-§1 —wy ),

where o is the angular velocity of the frame relative to an
inertial frame and § is the vorticity of a material element.
Since this acceleration is indifferent, it splits into two
indifferent parts.

We already remarked in “Heat waves” (p. 67) that
molecular dynamic simulations of heat propagation sug-
gest a kind of time-temperature equivalence in which
slowly propagating pulses at ultralow temperatures are in
some sense equivalent to fast pulses at high temperatures.
The advent of high-intensity fentosecond (10~ sec) laser
pulsing and high-resolution detection methods have
made it possible to probe thermal response in metals at
high temperatures. One of the main goals in this effort
has been to detect nonequilibrium electron and lattice
temperatures suggested by the physics of rapid pulsed
heating and by the two-temperature diffusive theory of
heat transport [see Eq. (39) below] of Anisimov, Kapelio-
vich, and Perel’man (1974). There has been some success
in this effort. At the same time, it might be argued that
no diffusive theory could be correct in the femtosecond
range where waves following hyperbolic models rather
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than diffusion should dominate. In fact, the experiments
of Brorson, Fujimoto, and Ippen (1987) do appear to give
rise to a heat wave with a speed ~10% cm/sec together
with pulse spreading of a type seen in the literature on
second sound in cold dielectric crystals.

1984, J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N.
Bloembergen, Phys. Rev. Lett. 53, 1837.

This paper is the first to probe nonequilibrium between
electrons and phonons at time scales shorter than or
comparable to, the relaxation time of electron to phonon
temperatures. From the authors’ summary,

High-intensity, 75-fs optical pulses have been applied
to observe multiphoton and thermally enhanced photo-
emission from a tungsten metal surface. Experimental
results suggest the presence of anomalous heating, a
transient nonequilibrium temperature difference between
the electrons and lattice. Pump-probe measurements in-
dicate an electron-phonon energy relaxation time of
several hundred femtoseconds.

The application of intense optical pulses of short dura-
tion may heat electrons more than phonons because of
the smaller heat capacity of the electron gas. The energy
of a short pulse is first absorbed by the electrons, which
thermalize rapidly through electron-electron scattering.
The electrons then transfer energy to the crystal lattice
through electron-phonon coupling. If the laser pulse
duration is comparable to, or shorter than, the electron-
phonon energy-transfer time, then the electrons and lat-
tice temperatures 7, and 7; are universally assumed to
satisfy the two-temperature diffusive model of Anisimov
et al. (1974):

e

a
at

C,(T,) =kVT,—g(T,—T;)+ A(r1),

aT;
Cp?:g(Te—T,) )

where A4 (r,t) represents internal heating due to the laser
pulse and g is a coupling constant whose values could be
determined from pulse experiments. In fact, the experi-
mental determination of g seems still to be controversial
(see Corkum et al., 1988). The two-temperature theory
itself may be flawed. The physical phenomena involved
depend essentially at least on the time of relaxation of
nonequilibrium temperatures, but the existence and re-
laxation of thermal inertia is not acknowledged in the
theory; all the relaxation effects are subsumed in the cou-
pling constant g. Moreover, thermal relaxation can be
expected to give rise to wave propagation rather than
diffusion at the time scale of hundreds of femtoseconds
reported in this paper or the 2—3 picoseconds (107 !2 sec)
reported by Schoenlein et al. (1987).

In general, diffusion theories will generate smaller rises
of temperature than hyperbolic theories for which the
wave speed is finite. Some possibly relevant comparisons
have been calculated by Vick and Ozisik (1983; see “Heat
waves’’) and by Glass, Ozisik, and Vick (1987).
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1985, G. Ryskin, Phys. Rev. A 32, 1239.

Ryskin’s short essay gives some criticisms of the prin-
ciple of material frame indifference. He adopts a point of
view close to that expressed in this review concerning
two different kinds of invariance under a change of frame
(see discussion under Ruckenstein and Petty, 1972):

The confusion over the nature of the useful restriction
on the allowable forms of constitutive relations (“materi-
al frame indifference,” or ‘“objectivity”) is due to the
vague language of its formulation. In the final analysis,
the confusion arises because the concept of general co-
variance of physical laws is applied in the inappropriate
setting of the three-dimensional space instead of the
four-dimensional space-time.

He notes further that the only ways to check material
frame indifference (MFI) are * by experiments or
derivation of a constitutive equation from macroscopic
physics. The latter approach shows that the MFI cannot
be exactly true (because the microscopic physics obeys
Newton’s laws . . .), but is a very good approximation for
ordinary materials and circumstances (because the abso-
lute acceleration due to the rigid body motion are usually
much smaller than the accelerations at the molecular
scale).”

Truesdell and Muncaster (1980) and Spezialle (1987)
have argued that constitutive equations can represent
only special solutions of the microscopic dynamics and,
as such, can have a larger invariance group than the
Galilean group. This possibility seems not to be realized
in the special cases so far considered, e.g., Piccirelli
(1968), Hoover et al. (1981), and other references men-
tioned in Ryskin’s paper.

1987, S. D. Brorson, J. G. Fujimoto, and E. P. Ippen,
Phys. Rev. Lett. 59, 1962.

This paper reports an experiment that lends itself to in-
terpretation in terms of wave propagation, though the
authors do not so interpret their results. From the au-
thors’ summary,

We have observed ultrafast heat transport in thin gold
films under fentosecond laser irradiation. Time-of-flight
(front-pump back-probe) measurements indicate that the
heat transit time scales linearly with the sample thick-
ness, and that heat transport is very rapid, occurring at a
velocity close to the Fermi velocity of electrons in Au.

Their Fig. 3 shows that there is a linear relation be-
tween the transit time and the distance traveled by a heat
pulse. This is characteristic of wave propagation and not
of diffusion. Brorson et al. note that ... the measured
delays are much shorter than would be expected if the
heat were carried by the diffusion of electrons in equilib-
rium with the lattice (tens of picoseconds). This suggests
that heat is transported via the electron gas alone, and
that electrons are out of equilibrium with the lattice on
this time scale. Second, since the delay increases approx-
imately linearly with sample thickness (see Fig. 3), we
may extract a heat-transport velocity = 10% cm/s.”
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They note further that “the rise time of the signal in-
creases slightly with increasing thickness. This indicates
spreading in the front edge of the electron-velocity distri-
bution, which propagates through the sample. At
present, the origin of this phenomenon is unknown, al-
though it may be related to small-angle scattering.” The
hyperbolic spreading could be due to dispersion, say, the
first derivative term in a telegrapher’s equation. This is
the type of spreading induced by umklapp processes in
cold dielectric crystals (also due in part to scattering).
The broadening of pulses could also occur as a diffusive
effect associated with an effective thermal conductivity
arising from the relaxation of the electronic mode of heat
transport. This is an effect of the third derivative of the
diffusion equation [Eq. (4.3) in ‘“Heat waves”] of the
Jeffreys type. This type of pulse broadening is due to the
viscosity of the phonon gas in dielectric crystals, associat-
ed with normal processes.

1987, D. E. Glass, M. N. ézisik, and B. Vick, Int. J.
Heat Mass Transfer 30, 1623.

From the authors’ summary,

The transient temperatures resulting from a periodic
on-off heat flux boundary condition have many applica-
tions, including, among others, the sintering of catalysts
frequently found during coke burn-off and the use of
laser pulses for annealing of semiconductors. In such sit-
uations, the duration of the pulses is so small (.e.,
picosecond—nanosecond) that the classical heat diffusion
phenomenon breaks down and the wave nature of energy
propagation characterized by the hyperbolic heat con-
duction equation governs the temperature distribution in
the medium. In this work, an explicit analytic solution is
presented for a linear transient heat conduction problem
in a semi-infinite medium subjected to a periodic on-off
type heat flux at the boundary x =0 by solving the hy-
perbolic heat conduction equation. The nonlinear case
allowing for the added effect of surface radiation into an
external ambient is studied numerically.

1988, D. K. Bhattacharya, Acta Mechanica 47, 87.

Bhattacharya studies the stability of stationary states
in the context of the hyperbolic transfer equations pro-
posed by Gyarmati (1977). He finds that a monotonic
transition from nonequilibrium states to stationary states
is insured only when dissipative processes are dominant
over relaxation phenomena. The possibility of oscillating
transitions to stationary states is left open. These results
differ from those of Sienuitycz, who shows that in the
linear case the generalized excess entropy source would
decrease along trajectories of the governing generalized
telegraph equation. Some conjectures about the reasons
for the discrepancy are given in Bhattacharya’s paper.

1988, A. Morro and T. Ruggeri, J. Phys. C: Solid
State Phys. 21, 1743

Morro and Ruggeri have proposed a general nonlinear
model for heat conduction in solids which they believe
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corrects certain defects in the model based on a generali-
zation of Cattaneo’s law by Coleman, Fabrizio, and
Owen (1982). They note that in the theory of Coleman
et al. the internal energy is given by e =¢,(0)+a(6)q?,
where 0 is the temperature and g is the heat flux. Com-
parison of this theory with second-sound propagation in
dielectric crystals shows that a’ <0, and this implies that
the specific heat will go negative when g2>c /|a’|; more-
over, the entropy is a minimum instead of a maximum at
equilibrium. Presumably the Cattaneo-based theory ei-
ther breaks down for large g or is not a valid theory.
Adopting this second view, Morro and Ruggeri propose
to replace the Cattaneo law with

(dq)+V-(y1+Bq®q)=—vq,

where a, v, B, and v are scalars and ® is a dyadic prod-
uct. This gives back the Cattaneo law when B=0,
a=const, and ¥ and v are functions of 6. In their theory
they assume that the internal energy e, entropy «a, ¥, B,
and v depend on 0 and g; finally they put S=0. They
make their theory consistent with thermodynamics using
an entropy inequality and derive the governing equations

eeé+ewq~?1+v'q=0 ,
ayqf+ayg+¥YyVo+vq=0,

—1,2
where w =1¢°.

The first equation is for the balance of
energy. This is a hyperbolic system. They claim that this
model fits data on sound speeds and bears evidence of the
need for a thermal inertiaa. The essential difference be-
tween Eq. (40) and Cattaneo’s equation is in the non-
linear term ayqf, which is not zero only if a,=0, a can-

not be constant.

1988, D. Jou, J. Casas-Vazquez, and G. Lebon, Rep.
Prog. Phys. 51, 1105.

This is a review paper that deals with the formulation
of nonequilibrium thermodynamics known as extended
irreversible thermodynamics. In Sec. 4 of this paper the
equations of hydrodynamic transport of phonons, the
equations of Guyer and Krumhansl, are derived from the
equations of extended thermodynamics. Jou et al. work
with a generalized Gibbs equation

ps +divl,=o , (41)

where s is the entropy, the overdot is the substantial
derivative, p=1/v is the density, J; is the entropy flux,
and o is the entropy production. They take the specific
volume v, the internal energy u, the heat flux q, the mean
normal stress ® = 1trF, and the stress deviator {=P—©1
as the canonical variables of s. The temperature T and
pressure p are obtained as derivatives of s in the usual
way. They assume that the entropy flux depends on all
dissipative fluxes,

J, =By +B7q+B,77q , (42)
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where the ’s depend on u, v, and ®, and algebraic in-
variants of functions arising from derivatives of s. This
determines the left-hand side of Eq. (41). For the entropy
production on the right-hand side they write

o0=q'x;+0Ox,+1Xx,, (43)

where the x;’s are taken as functions of the fluxes and
their first gradients. The coefficients of q, 7, and ® in Eq.
(41) are now put to zero, giving rise to evolution equa-
tions for q, ®, and 7.

The above sketch of the theory shows that it is for a
simple material, one that depends on the system variables
and their first derivatives locally; the system variables are
related as point functions; their derivatives at x,¢ are
determined by the values of these variables at x,¢.

The identification of the coefficients of q, 7, and ®
leads, after many simplifications, to evolution equations,
a first-order quasilinear system:

7q= —(q+AVT)+BAT divr+BATVO
To0=—(0+£divu) +p'¢T divq , (44)
7,7=—(#+29D[u])+2pnTsLq ,

where u is the velocity, D[u] is the rate of strain, and
sLq is the symmetric part of

Lq=Veq—itr(Veq)l, 45)

the deviatoric part of the dyadic gradient of q. It seems
desirable to choose the coefficients of the quasilinear sys-
tem so that catastrophic short-wave instabilities do not
occur. These instabilities are associated with ill-
posedness of the Cauchy problems. Evidently this system
gives rise to real roots if the coefficients are well chosen,
and it can be made hyperbolic. Complex roots can be
avoided. The idea that the system should be hyperbolic
has been elevated to a principle in extended thermo-
dynamics, but it depends on assumptions already made at
the beginning. We could get a well-posed evolutionary
system with other assumptions that do not lead to hyper-
bolic system, for examples with assumptions, like the one
leading to conductors of the Jeffreys type.

Another point to be made about the evolution equa-
tions is that they have only one time of relaxation for
each flux. This is certainly an incorrect physical ap-
proimation, though it may work well for problems that

J

?'(O(x,t))—l-—e—(xz’T)zfowa'(S)F(gﬁc(x,S))ds 0,(x,1)

2
0(x,1)
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can be defined over a limited range of frequencies.

To get the equations of Guyer and Krumhansl, Jou
et al. put u=0 for a rigid conductor and they also set 7,
and 7, to zero. Then, there is still a stress that is induced
by the heat-flux gradient

O=p'¢T divq , (46)
7=28nTsLq , 47)
and

sLq=1H(Vq+Vq”)—ldivq .

We now substitute Egs. (46) and (47) into (44). Then,
after linearizing around q, we get

714=—(q+AVT)+BAqT V?q
+(1BPANT3+ B T3E)V divq . (48)

This may be compared with the Guyer-Krumhansl equa-
tion (4.2a) in “Heat waves.” The coefficients of the two
equations can be identified [the identification (4.10) of Jou
et al. is incorrect; several minor errors appear in their
derivation]. In this way, the unknown coefficients in the
thermodynamic theory may be expressed in terms of the
known coefficients of the Guyer-Krumhansl theory.

The derivation just given is interesting because it
shows how the hydrodynamic theory, which contains
second derivatives, arises by elimination from a locally
determined system of partial differential equations.
Therefore these second derivatives should not be regard-
ed as arising from a nonlocal theory.

1988, D. Brandon and W. J. Hrusa, J. Integral Egs.
Appl. 1, 175-201.

Brandon and Hrusa construct nonlinear models of heat
conductors of the integral type introduced by Gurtin and
Pipkin (1968; see “Heat waves”). They let the internal
energy and the heat flux depend on history and make this
dependence consistent with the Clausius-Duhem inequal-
ity. They derive constitutive equations for the heat flux
and the internal energy e (0), where 8> 0 is the absolute
temperature. When these expressions are substituted
into the equation expressing the balance of energy in a
one-dimensional homogeneous rigid heat conductor of
unit density, Brandon (1989) finds that

f0°°a'(s)F'(eg(x,sn[ex(x,z)—e.x(x,z—s)]ds+fO”a'(s)F"(é;(x,s))ei;x(x,s)ds=r<x,t), x€I, t>0,

(49)
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where the coefficient of 0,(x,?) is the specific heat,
2(6(x,t)) is the present value of the heat capacity, 7 (x,t)
is the external heat supply, F(0.) and a(s) are scalar
functions required by thermodynamics to satisfy

F(0)=F'(0)=0, F"(0)>0, F(y)>0 Vy€R,

a’'(s)=0Vs 20, a(s) positive definite ,

and
Y t
0(x,9)= [ 0,(x,2)dz Vs>0
t—s

is the summed history up to time ¢ of 0,(x,-). Equation

(49) was analyzed by Brandon (1989).

1989, D. Brandon, CMS Technical Summary Report
No. 89-37, University of Wisconsin.

Nonlinear models of heat conductors should lead to
well-posed initial-value problems for the propagation of
heat. Ill-posed problems are catastrophically unstable to
short waves, with growth rates that tend to infinity as the
wavelength tends to zero. This stability problem is tied
to the classification of type of the equation governing the
flow of heat. Hyperbolic and parabolic equations are
well posed in this sense and elliptic problems are ill
posed. Ill-posed problems cannot be integrated numeri-
cally; the finer the mesh the worse the instability. The
classification of quasilinear equations depends on the
solutions because the coefficients of the highest deriva-
tives are not constants but are defined on the unknown
system variables. There are ‘““forbidden” values of the
solutions for which the equation becomes elliptic and
loses stability. Ill-posedness, catastrophic instability to
short waves, may be studied by freezing coefficients and
discarding lower-order terms (Joseph and Saut, 1990).
Brandon’s paper deals with this problem of change of
type for the integral models derived by Brandon and
Hrusa (1988). Differentiation of Eq. (49) leads to

A (x,t)0,(x,t)+B(x,t)0,,(x,t)
+c(x,8)0,,(x,t)=R (x,t) , (50)

where

A(x,t):’é(@(x,t))+-e(—xz’;)?fowa’(s)F(g;(x,s))ds ,

(51)
—_ 2 ® ., 1 Nt
Bx,0)=— 5o J @' F 8 (x,5)ds (52)
Cx,0)= [ “a"(s)F"(FL(x,s))ds , (53)
0

and R consists of lower order terms in addition to the
forcing term r,.

It is now easy to see that, near equilibrium (i.e., near a
state where 6 is a constant and 6, =0), Eq. (49) is of hy-
perbolic type (since for |0, | sufficiently small 4 >0 and
C <0. However, we observe that the second term on the
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right-hand side of Eq. (51) is negative and hence, far
enough from equilibrium, Eq. (49) may become elliptic.
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