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For many years the effects of a static or dynamic electric field upon electronic motion in a molecule have
been studied. These effects have been described in terms of multipol'ar electronic polarizabilities and
higher-order hyperpolarizabilities. Much less attention, however, has been paid to the effects of an elec-
tric field upon vibrational and rotational motion. It is the aim of this review to consider, in some detail,
these effects. As in the electronic work, they too will be described in terms of polarizabilities and hyper-
polarizabilities (the latter being particularly important for the study of nonlinear optics). The theory will
be developed so as to bring together the different methods that have been used in various calculations. Ex-
amples drawn from the recent literature will be discussed and it will be seen that in many cases vibrational
and rotational changes with an electric field are as important as electronic ones, if not more so. Examples
of experimental work relevant to this review include research on the Kerr effect, electric-field-induced
second-harmonic generation, and third-harmonic generation.
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A. Objective

The study of molecular electronic polarizabilities has
had a long and honorable history. In particular, the sirn-
plest polarizability o.'has long been a useful property„
since it characterizes the ability of an electric field to dis-
tort the electronic distribution of a molecule. It and oth-
er polarizabilities are not, however, properties that can
be experimentally measured directly because, when an
electric field is applied, the molecule as a whole (nuclei in-
cluded) is perturbed. This means that in addition to elec-
tronic distortion there will be a change to the equilibrium
nuclear geometry and (as a result of there being a
different potential-energy curve or surface in the presence
of the field) a change to the vibrational motion. Similar-
ly, the rotational motion will be altered —in cIassical
terms, it will show an orientational effect. This is the
subject that will be discussed in this review.

The question of vibration involves much more than the
usual requirement of averaging an electronic property
over the vibrational motion, e.g., the zero-point vibra-
tional correction, which usually changes polarizability
values by roughly a few percent. The distortion of the vi-
brational motion contributes its own vibrational polariza-
bilities, which are quite distinct from the averaged elec-
tronic ones and often quite dramatic. For example, for
SF6 (Shelton and Ulivi, 1988) this independent contribu-
tion to the second hyperpolarizability y is twenty times
the electronic y; in Hz (Bishop et al. , 1986) it is ten
times as great; and in certain H-bonded systems (Eckert
and Zundel, 1987, 1988) the vibrational polarizability is
two orders of magnitude larger than its electronic coun-
terpart.

The converse is also true, namely, that we cannot ig-
nore the effect of an electric field on electronic and vibra-
tional motions when studying its effect on rotational
motion, as, for example, in rotational Stark spectroscopy.
Brieger (Brieger et a/. , 1983; Brieger, 1984) has stressed
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this point eloquently in two enlightening articles con-
cerned with the theory and measurement of the dipole
moment (p) of LiH. He maintains that omitting con-
sideration of electronic and vibrational eItects in deduc-
ing p from the rotational-state shifts and split tings
caused by an electric field may lead to erroneous and
questionable values and that what is thus measured "ac-
tually has nothing to do with dipole moments. " The role
of rotation or orientation in the theory of polarizabilities
is as old as the classical formula of Debye (Debye, 1912,
1929; Smyth, 1955), a=ao+p /3kT, which was derived
for use in dielectric measurements.

When the electric field is oscillating, as in a light or
laser beam, the corresponding properties are the dynamic
polarizabilities, and the higher-order ones are fundamen-
tal to the understanding of nonlinear optics. This is an
area of immense importance, with applications ranging
from communications to medicine. The need for Inateri-
als with specific optical properties that can alter the
characteristics of transmitted electromagnetic radiation
leads to pressure on theorists to predict likely candidates.
This can only be done through the calculation of the
higher-order polarizabilities. Again, the roles of vibra-
tion and rotation must be considered; for example, Kang
et al. (1976) found that in the third-harmonic generation
of SF6 with the CO2 transversely excited atmospheric
(TEA) laser, the enhancement from vibrational-rotational
transitions completely dominated the electronic non-
linear polarizability.

This review will be concerned with the eA'ects of uni-
form and, to a lesser extent, nonuniform static and oscil-
lating electric fields on molecular vibrational and rota-
tional motions. The interaction between electric fields
and electronic motion has already been well covered.
Here we shall largely limit ourselves, with the exception
of a brief mention of H-bonding, to single molecules, and
the results will therefore be most directly related to ex-
periments on dilute gases. Intermolecular interactions,
which we ignore, are nonetheless intimately connected to
these single-molecule properties. The only context in
which more than one molecule will be considered is the
averaging of a property over a Boltzmann distribution of
molecules among the rotational states and when neces-
sary, as in one case, to account for the change in this dis-

tribution due to the presence of the electric field. Our
emphasis will be on theory, and an attempt will be made
to synthesize several methods of calculation that have
often been thought to be more difterent than they really
are. Results will be given merely as examples, and little
discussion of their quality, in terms of basis-set size, etc. ,
will be made. Naturally, most previous work in this area
has been concerned with diatomics and small polyatom-
ics, and this will also be our focus.

The subject is still, in many respects, in its infancy and
it is hoped that this review will stimulate further
interest —there is much to be done.

B. l3efinitions and units

Our definitions of the static polarizabilities will follow
those of Buckingham (1967) and are most conveniently
introduced by considering a molecule in weak interaction
with fixed external charges. The Hamiltonian describing
such a situation is

H=H —» F ——'8 FI a a 3 ap ap

where H is that for the free molecule and p =g, q, r, . .

and

0 p=Op =
—,
' g q, (3r, rp r; 5 p)—

are the dipole- and quadrupole-moment operators; q; is
the ith element of charge at the point r, relative to an
origin fixed at some point in the molecule. The Greek
subscripts denote vector or tensor components and can
be equal to x, y, or z; a repeated Greek subscript denotes
summation over all three Cartesian components (Einstein
summation), so that

l O-nF-n =
I X O-~F-o

a, p=x, y, z

which equals a scalar quantity (the quadrupolar interac-
tion with the field gradient). F and F

&
are the electric

field and field gradient at the origin due to the external
charges. If the molecule is in the internal quantum state
%', its energy for a fixed position and orientation is

& = F-' p.F- l -oF-F—~ l P—-~.F-Fp". —

3 ~y apFyFap 6~ap y6FaFpFyg 6cap, y5 ap y6

whe«v. =(+'IP.I+'& and e.p=(+'lo. I+'&
dipole- and quadrupole-moment functions, 0 being the
unperturbed wave function; a P, p &, y & & and g
B py&, C py& are molecular polarizabilities describing
distortion by the external electric field and field gradient.
a, p, and y are symmetric in all suffixes, A & in

Py, B @rs in aP and y5, and C & &s in aP and y5, and in

the pairs (aP), (y5).
a is often referred to as the dipole polarizability and p

and y as the first and second dipole hyperpolarizabilities
(a name first coined by Coulson et al. , 1952). The terms
in Eq. (2) up to y denote the energy of a molecule in a
uniform external field. A, B, and C are field-gradient po-
larizabilities as opposed to dipole polarizabilities. The
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definitions implicit in Eq. (2) will be used irrespective of
whether we are considering simply the electronic energy
or the total molecular energy. The reader is cautioned
that Ward and co-workers (e.g., Orr and Ward, 1971)
define P and y in such a way that they are —,

' and 6, re-

spectively, of the above definitions.
Recently, Logan (1982) and Applequist (1983,1984)

have introduced into the subject the notation of Carte-
sian polytensors and with it the use of traced
quadrupole-moment operators as contrasted to the trace-
less ones above. This has the e6'ect of changing the
definitions of A, B, and C, and the traced properties will
be distinguished by a tilde: A, B, and C. Apart from the
work of Dykstra and co-workers, this convention has not
yet been widely used, though it has its convenience for
high-order polarizabilities, and, consequently, we will
stay with the definitions implied by Eq. (2). The relations
between A, B, C and A, B, C will be given in Sec. VI,
where we discuss nonuniform fields and field-gradient po-
larizabilities. There is also a simple connection between
C and the so-called quadrupole polarizability o,' as
defined by Sternheimer (1954) and others (e.g. , Dalgarno,
1962); this will also be given in Sec. VI.

When it comes to the dynamic polarizabilities, the no-
tation is necessarily somewhat more complex, since it
must indicate the process of interest by stating the fre-
quencies involved and the dependence of the polarization
on the perturbation (Orr and Ward, 1971; Bogaard and
Orr, 1975). For a third-order process, for example, the
perturbation Hamiltonian will involve three terms of the

CO. N.
form H'(co~ ) = PEo' (j =—1,2, 3), where Eo' is the elec-
tric field oscillating with a frequency co . The induced
dipole moment may be resolved into Fourier
components and the one of interest identified with
the frequency ~ =co&+co2+co3. In this way we have

Ctap( CO~; CO
~ ) aiiCl CO~ —

CO
~ , Pap&( 'CO~; CO~, CO2 )

aiicl co —co i +co2, alld 'Y p&s( co;co i, co~, co3 )

and co =co&+coz+co3. When all the frequencies are zero,
these terms are identical to the static polarizability and

hyper polarizabilities a, P, and y given before; i.e.,
a(0;0)=cc, 13(0;0,0)=p, and Y(0;0,0,0)=Y. The two
nonlinear optical eA'ects to which we shall refer the most
are (a) the Kerr eft'ect, which introduces p pr(

—co;co, 0)

where

aiid

Y
~~

'Yzzzz ( (4)

'Yi ='Yxxzz( coi~&0~0)K (5)

The last term would be interpreted as the second hyper-
polarizability in an experiment in which a static electric
field lies along the Z axis and a dynamic one (a light
beam) of frequency co lies along X, which is the axis along
which polarization of frequency co is being measured.

We have employed both the atomic unit system and
the Systeme Internationale d'Unites (SI units). The
equivalences are given in T&'able I and are based on the
1986 adjustment of the fundamental physical constants
(Cohen and Taylor, 1987). In this regard it should be
noted that the older literature often gives a in units of
cm or a0 —this is not correct, though 4mc0 cm and

4nsoao would be (so=permittivity of vacuum); see Mills,
1988. For high-precision calculations on atoms, the
atomic units may be modified by using the reduced nu-
clear mass in place of the infinite nuclear mass. Finally,
co will be understood to be a circular frequency, so that
conversion to energy is by way of E =%co.

C. Outline

The review begins in Sec. II with a general discussion
of some of the concepts and techniques that repeatedly
occur in calculations of both the static (nonoscillating

and Y p s( —co; co, 0,0), and (b) electric-field-induced
second-harmonic generation (ESHG), which involves

Pap&(
—
2CO; CO, CO) and Yap&&(

2—CO; CO, CO, O) .The Greek
subscripts identify the axes of the induced-dipole-
moment component and the perturbing fields. When
lower-case letters (x,y, z) are used, this will mean molecu-
lar axes (with z being the one of highest symmetry), and
when upper-case letters (X, Y,Z) are used, this will imply
laboratory- or space-fixed axes. We might note here that
in the Kerr experiment the actual quantity measured is

(3)

TABLE I. Units.

Property Symbol Atomic unit SI equivalent

Length
Energy
Dipole moment
Quadrupole moment
Dipole-dipole polarizability
First hyperpolarizability
Second hyperpolarizability
Dipole-quadrupole polarizability
Dipole-dipole-quadrupole polarizability
Quadrupole-quadrupole polarizability

'Also 2.541 75 Debye.
bNote that e ag'I, ' =4rraoao.

ao

eao
eao2

e2a ~2

—1 b

e aoE
e4a 4~ —3

e a EI,
e3a4~ —2

e'a04E

5.291 77 X 10
4.359 75 X 10
8.478 36 X 10
4.486 55 x 10-"
1.648 78 X 10
3.206 36x 10-"
6.235 38 X 10
8.724 96X 10
1.696 73 X 10
4.617 05 X 10

m
J
Cm'
Cm
CmJ
CmJ
C'm4 J-'
CmJ
CmJ
CrnJ
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electric field) and dynamic (oscillating field) vibrational
and rotational polarizabilities. This is followed in Sec.
III by a brief look at the effects of vibration and rotation
with respect to standard averaging of the electronic po-
larizabilities over these motions. This usually makes
changes of only a few percent. We then consider, in de-
tail, the pure vibrational and rotational contributions to
the static and dynamic a polarizability (Sec. IV) and to
the static and dynamic hyperpolarizabilities P and y (Sec.
V). The effects of vibration and rotation when a nonuni-
form field is present, which are therefore relevant to
field-gradient polarizabilities, are looked at in Sec. VI.
Up to this point, the Born-Qppenheimer approximation
is used, but in the penultimate section a brief description
is given of the only extant non-Born-Qppenheimer calcu-
lation (Bishop and Solunac, 1985)—that of the second
hyperpolarizability of H2+. We end with our conclusions
and some indications of where future work in this subject
lies.

D. Previous reviews

Previously there have been no reviews specifically de-
voted to vibrational and rotational polarizabilities, al-
though an article by Bishop et al. (1986) contains some
material of a review nature. There are, however, several
that deal with polarizabilities in general, including re-
views by Buckingham on permanent and induced molec-
ular moments (1967), on electric moments of molecules
(1970), and on the Stark eft'ect (1972); by Bogaard and
Orr (1975) on electric dipole polarizabilities (especially
useful for its discussion of dynamic hyperpolarizabilities)
and by Orr and Ward (1971; similarly very useful). A re-
cent review by Dykstra et al. (1990), deals in part with
the role of vibration.

For nonlinear optical properties, from both experimen-
tal and theoretical points of view, the books by Hanna
et al. (1979), Levenson (1982), Shen (1984), and Chemin
and Zyss (1987) serve as a good introduction. For very
early work on polarizabilities, the books by Debye (1929),
Smyth (1955), and Van Vleck (1932) are extremely valu-
able and of great historic interest. In this review, only ar-
ticles that were available prior to January 1989 have been
considered.

II. GENERAL CONCEPTS

A. Techniques

There are, in principle, two basic ways in which we can
calculate total polarizabilities for a molecule and whereby
vibration and rotation are acknowledged as well as elec-
tronic motion (Bishop et al. , 1980). In both we assume
the Born-Qppenheimer approximation, that is to say, the
total molecular rovibronic wave function is written as a
product of separate electronic, vibrational, and rotational
wave functions.

In the first, we consider the molecule as a whole to be
perturbed by an electric field and consider a single per-
turbed Hamiltonian and its concomitant Schrodinger
equation. From perturbation theory (Hirschfelder et al. ,
1964) we can then extract energy terms to various orders
in the field and with Eq. (2) these can be associated with
polarizabilities of different orders, e.g., the second-order
energy correction is related to a. Dissection of these per-
turbation energies into electronic, vibrational, and rota-
tional components can then be carried out. This is the
approach of Brieger (Brieger et a/. , 1983; Brieger, 1984)
and of an earlier, less rigorous treatment by Bishop and
Cheung (1980, 1982a)—we shall call it the sum-over-
states method. A more precise name would be the sum-
over-rovibronic-states method.

The second method follows more closely the stan-
dard Born-Qppenheimer methodology by solving the
Schrodinger equation in two steps. We think of the mole-
cule first in terms of its electronic motion perturbed by
the electric field and solve the appropriate Schrodinger
equation to obtain the perturbed potential-energy curve
or surface. If we stopped here, we could extract from the
energy the well-known electronic polarizabilities —they
would, in fact, be only slightly different from those ob-
tained in the first method (Bishop et al. , 1980). Howev-
er, since our interest is in vibration and rotation, we go
on to the second step, which is to solve the rovibrational
Schrodinger equation and obtain rovibronic energies for
the molecule in the presence of the electric field. From
these energies we can extract the total polarizabilities
(electronic+ vibrational+ rotational); we call this the
clamped-nucleus method. There are several ways in
which this procedure can be carried out, though they
really differ only in technique and not in principle, and in
the limit they will give the same results. Qne way is to
choose a variety of field strengths, run the problem
through for each, and then numerically differentiate the
final total energies to obtain the total polarizabilities; this
may also be done just after the first (electronic) step to
obtain the electronic polarizabilities and is known as the
finite jield metho-d (Cohen and Roothaan, 1965). Alter-
natively, one may determine a set of perturbation-theory
expressions at each step, which wi11 have components
(electronic from the first step and vibrational and rota-
tional from the second) that can be evaluated from a
knowledge (ab initio or experimental) of the electronic-
transition dipole-moment functions and energies, etc. Fi-
nally, an alternative second step can be carried out semi-
analytically by using a derivative Numero v-Cooley
(DNC) technique (Dykstra and Malik, 1987).

Both of these basic methods are capable of giving the
same values of the vibrational and rotational polarizabili-
ties, and only approximations made along the way may
make this not so. It is simply that in the first method one
obtains the property directly from a second-, third-, etc.,
order energy from a single perturbation step, and in the
second method one is obliged to find the perturbation to
the electronic energy and afterwards the effect of this
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perturbation on the vibrational-rotational motion. If, in
the first step of the second method, the electric field is
aligned with a molecular axis, then the effects of rotation
will have to be handled by classical averaging. If, howev-
er, the field is initially defined with respect to space-fixed
axes, then rotation will necessarily be taken into account
automatically.

One technique that does not directly fit into the above
schemes is the one that is sometimes used to evaluate the
Kerr constant. Here consideration is made, by way of
perturbation theory, of the change that occurs to the po-
larizability itself, rather than the energy, by the presence
of an electric field; the resulting expressions (Bucking-
ham, 1962a) are, nonetheless, completely equivalent to
those obtained via the energy.

B. Coordinate frames

Obviously an extremely important aspect of the subject
under review is the relation between polarizabilities cal-
culated with respect to space-fixed axes and those calcu-
lated with respect to molecule-fixed axes. For example,
what is the connection between azz (Z space-fixed), a
quantity we may call "macroscopic" and which is cap-
able of experimental observation, and a„(z molecule-
fixed), which is a theoretical quantity incapable of being
directly observed and "m.icroscopic" in nature~ %'hether
we use the sum-over-states or the clamped-nucleus
method, the question requires consideration of both rota-
tion (or, classically, orientation) and thermal averaging
over the populated rotational states; we assume, for the
present, that all molecules are in the ground electronic
state and a single vibrational state U.

The classical answer (Debye, 1929; Smyth, 1955) is
that

f "f a &k k&exp( bE/kT)sin8—d8dg

f f exp( b.E!kT)sin8d8d—g
0 0

where Einstein summation and the Boltzmann law are as-
sumed, 8 and P are the usual spherical coordinates that
define the molecule's orientation with respect to X, Fand
Z, AE is the angle-dependent part of the energy of the
molecule in the presence of the electric field, k is the
cosine of the angle between the molecular axis a and the
laboratory axis Z, and the bar indicates an average over a
statistical distribution of molecular orientations. Expan-
sion of exp( b,E/kT) gives—

azz = ~ a & zz+ terms in T .

The first term,

(a& =(4m) ' f f a pk kpsin8d8dg,
0 0

is the isotropic average, and the terms in T are identified
with purely orientational effects.

The quantum-mechanical answer (Van Vleck, 1932) is
that

azz(total) =azz(el)+azz(vib)+azz(rot),

where, for example, for a diatomic,

azz(el)=y g p(v, J,M)& uJMlazzluJM &, (10)

and the superscript e in Eq. (10) implies the electronic po-
larizability and

gz exp [—(E„z—E„o) /k T]
p(v, J,M)= g g gJexp[ (E,q——E„o)/kT]

In this equation
l
vJM & is the rovibrational wave function

(with the usual quantum numbers u, J, and M) and E,J
the corresponding energy, p(vJM) is the distribution
function for populations of the rotational states associat-
ed with the vibrational state v, and gJ is the nuclear-spin
degeneracy factor and is required only for homonuclear
diatomics. Summing over the rotational quantum num-
ber M and integrating over the rotational coordinates
gives

azz(el ) =g p(u, J)( u (J) l (a' &zz l
v (J) &, (12)

where

p(u, J)=g p(v, J,M)

(2J+ 1)g~exp[ —(E„J E„o)/kT—]

g (2J + 1)gzexp[ —(E,J E„o)/kT]—
J

(13)

(a'&zz is the isotropic average given in Eq. (8), and

lv (J) & is the vibrational wave function depending on J
through centrifugal distortion. With certain approxima-
tions, to be discussed later,

azz(vib)=y p(v, J)(a'&zz,
J

(14)

where the superscript U indicates pure vibrational polari-
zability. Finally, azz(rot) in Eq. (9) is the dominant T
dependent part of azz(total), but not the only one, for as
we shall see in the next section, both azz(el) and azz(vib)
also change slightly with T because of p(u, J). Similar
conclusions hold for the other polarizabilities, though for
some the rotational contribution can be split into two
parts: one that arises from the change to p(v, J,M)
caused by the field (called the distribution component),
and one that does not. The distribution component is
zero in the present example.

Under certain conditions, to be explored in Sec. IV,
the classical orientation term (nonisotropic part) is
equivalent to the quantum-mechanical rotational term-
the correspondence principle, of course, demands that
this be so.
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C. Frequently used approximations Am, »Ace )&fin, )&%co„,

In order to simplify the calculations and to bring out
the relations that exist between di6'erent methods of cal-
culation, certain approximations will frequently be in-
voked. These often have a common thread and this is the
reason we give a general synopsis at this point.

It is very common to assume that

where ~„co„,and ~, refer to electronic, vibrational, and
rotational transition frequencies and co is a typical laser
frequency. This is a useful approximation because it
often allows us to use the closure rule when summing
over various quantum states. For example, if n U, and J
are quantum numbers specifying electronic, vibrational,
and rotational states, respectively, and 4„,J is the total
wave function and equals ltj„p„J, then

n'Wn O' J' n'Wn
(16)

where IM„„.= &/„(PI/„. &. This approximation is based on
the use of

coordinates replacing R. In the rigid-rotor approxima-
tion, the rotational energies are given by

I IJl Q J E I A'co~ =J(J +1)A'Bo, (21)

(18)

where Bo is the rotational constant and RcoJ is the rota-
tional energy of the Jth state. Moreover, at high temper-
atures ABO &&kT, and we will be able to use

A similar spirit is also involved in Elliott and Ward s
(1984) treatment of vibrational polarizabilities, where, in
certain cases, they make the approximation

100m)„=—10'-=m, .

(2J+1) p(J+1)
(2J+3) p(J)
(2J+1) p(J+2)
(2J+5) p(J)

(22)

(23)

&olplu&=— 2' CO

1/2
dp
dR

where m is the nuclear reduced mass, Rco, is the vibra-
tional energy, and R is the intern. uclear distance. A simi-
lar approximation holds for polyatomics, with normal

In the same article they also used the concept of
"enhanced terms. " For example, the perturbation-theory
expression for the dynamic second vibrational hyperpo-
larizability y'( —co~; co„co2,co3) introduces terms that
have diferent types of energy denominator, such as

(a) A' (co +co)(co„s—co)(co g
—co),

(b) R (co g+co)(co„g —co)(co~s),

(c) A' (co s)(co„)(co g+co),

where co, etc., are vibrational transition frequencies
and co is a laser frequency; (a), (b), and (c) are called
nonenhanced, singly enhanced, and doubly enhanced
terms, respectively. Elliott and Ward then hypothesize
that, because co)&co„ the most important contributions
come from the most enhanced terms. As we shall see
later, this is, in fact, not entirely justified.

For diatomics, frequent use is made of the harmonic-
oscillator and rigid-rotor approximations. This means,
for example, that we can write the vibrational transition
matrix elements between the states U =0 and U = U of the
dipole-moment function as

At room temperature, for diatomics not containing hy-
drogen, the most populated rotational level is J=-10, and
we can take J )&0 and make approximations of the type

(J+1) (J+2) 1

(2J+1) (2J+3) 4
(24)

Note that Eq. (22) is used only for polar molecules, for
which gJ can be ignored (as was done in deriving it),
whereas Eq. (23) is quite general.

Further approximations will be (a) to ignore centrifu-
gal distortion and thus the J dependence in the vibration-
al wave functions and (b) to assume that only the vibra-
tional ground state is significantly populated and that
only transitions to the fundamental vibrational levels
occur in sums over the vibrational quantum number.

Ilf. STANDARD VIBRATIONAL
AND ROTAT) ONAL AVERAGING

It is standard procedure in quantum-mechanical calcu-
lations to follow the evaluation of molecular electronic
properties at several nuclear configurations, by an
averaging over the vibrational motion. If this is done for
the vibrational ground state, the change in property from
its equilibrium value is called the zero-point vibrational
correction. For a diatomic Inolecule, if we allow for cen-
trifugal distortion, the vibrational wave function will
have a J dependence, and the average or expectation
value of the property P(R), where R is the internuclear
distance, will be &u(J)IP(R)lu(J) &:.if we freeze the rota-



David M. Bishop: Molecular motion in electric fields 349

tion, it will be ( u (0)
~
P (R ) ~

u (0) ) . Evaluation of such in-
tegrals is routinely carried out for electronic polarizabili-
ties, but it should be recalled that this correction is quite
different from the pure vibrational polarizabilities, which
we shall be discussing later and which are a major part of
this review.

Usually, for diatomics the potential-energy curve is
available from ab initio calculations, and it is simple
enough to use the Numerov-Cooley (Cooley, 1963; see
also Cashion, 1963; Zare, 1963; LeRoy, 1986) method to
obtain the vibrational wave functions

~
v (J) ) and obtain

the expectation values by numerical integration. If this is
not so, or if one wishes to incorporate empirical data into
the description of the vibrational motion, then approxi-
mate formulas are available, for example (Schlier, 1961;
Buckingham, 1962b; Buckingham and Vrland, 1975),

dP dP(u (J)iP(R) ~u (J) ) = P, +(u+ —,') —3a
dg

2

+4J(J+1) dP
dg

(25)

where

C=(R —R, )/R, (26)

p(u, J)J(J+1)=kTIAB, , —
J

and with Eq. (25),

g p(v, J)(v(J)lP(R)lv(J))

(27)

kB,—= (u(0)iP(R)iu(0))+4 2
%co~

dP
dg

(28)

so that there is a linear T dependence for the thermally
averaged electronic polarizabilities; the correction will,
however, be small and quite different from the major T

and B„co„and a are the rotational constant, harmonic
vibrational frequency, and anharmonic constant, respec-
tively. This equation is obtained by a Taylor-series ex-
pansion of P(R) about the equilibrium e and the use of
perturbation theory.

For polyatomics, necessarily, the perturbation-theory
expressions are more complex, and the reader is referred
to Buckingham and Urland (1975) and to an impressive
series of papers by Kern and co-workers on the effect of
vibrational motion on the properties of H20 (Kern and
Matcha, 1968; Ermler and Kern, 1971; Sprandel and
Kern, 1972; Krohn et al. , 1974). Further examples will
be given in the following two sections.

We have seen in Eq. (12) that, to relate calculation to
experiment, it is necessary to make a thermal average of
the expectation values over the rotational states; this is
particularly simple for diatomics if we use Eq. (25). In
the high-temperature approximation,

dependence that comes from the rotational polarizabili-
ties and is of the form (kT)

In the next two sections we shall look at some recent
examples of polarizability averaging.

A. Vibrational averaging

Werner and Meyer (1976) were one of the earliest
groups of investigators to consider zero-point vibrational
corrections for electronic polarizabilities. They did this
following their calculation of the a polarizability for HF,
H20, NH3, CH4, and CO. They used the approximate
formulas mentioned above, based on the techniques of
Schlier (1961) and Kern and Matcha (1968). They es-
timated the corrections to u to be only a few percent
(e.g., 5% for CH4 and 2% for HF).

More recently, Malik and Dykstra (1985) calculated
for LiH, using Numerov-Cooley vibrational wave func-
tions, the eFect of vibrational averaging on a, P, A, B,
and P„„(the last three being traced tensors). The
electronic polarizabilities were calculated by the analyti-
cal derivative Hartree-Fock method (Dykstra and Jasien,
1984). Since the properties have a strong R dependence,
with sharp changes near R„ there are important changes
in the averaged values when the vibrational state is
changed; for example, the axial component of P increases
by 40% [421 to 599 atomic units (a.u.)] between the u =0
and v =2 states. In general, we expect large vibrational
averaging effects when the properties have a strong non-
linear dependence on R coupled with a high degree of
anharmonicity in the potential-energy curve; this is ap-
parent from Eq. (25). Pure vibrational polarizabilities
were not considered by Malik and Dykstra (1985).

A recent article by Gu et al. (1986) investigates the a
polarizability of CO2 and, in particular, changes with vi-
brational state. Formulas are given for averaging over
the vibrational functions.

B. Vibrational-rotational averaging

Here we look at a few examples of calculations of
(u(J)~P~u(J)) rather than (u(0)~P~v(0)). Maroulis and
Bishop (1986) have used Eq. (25) for the evaluation of the
a polarizability of H2, D2, and T2 for the u =O,J =1 ro-
vibronic state. Raynes et al. (1988) have investigated the
vibrational-rotational effects on the o; polarizabilities of
CH4 and CD4, and their article is typical of the "state of
the art" for polyatomics. They compute o, at 77 nuclear
geometries and these are then expanded in a power series
in the reduced normal coordinates (q„). Expectation
values of q„, q„etc., are then determined from formulas
developed by Fowler (1981,1984) and lead to the result
that, for CH~, for vibration (in atomic units),

(a) = 14.945+0. 189(ui+ —')+0. 124(uq+ ~ )

+0.333(v3+ —', )+0.080(uz+ —', ),
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IV. POLARIZABILITY (a)

The a polarizability is the most important electrical
property of a molecule after the multiple moments, and
both the static property a [u(0) or a(0;0)] and the dy-
namic one [a(co) or a( —rv;ro)] are related to primary
physicochemical properties, the scalar dielectric constant
(e, ) and the refractive index (n):

E —1 +poet /Eo, (29)

where po is the number density and c0 is the permittivity
of vacuum, and

n 1 po~—(rv)

n +2 3&0
(30)

and for rotation,

&a&z —&a &o=0.002467J(J+1) .

They find the zero-point correction to be 5.6% of the
equilibrium value and, after thermal averaging, the total
nuclear-motion correction (at 300 K) to be 5.71%%uo. We
might note that a semi-empirical calculation [Elliott and
Ward (1984)] of the pure vibrational polarizability for
CH4 is 0.04X10 C m J ' [not 0.04 A, as Raynes
et al. (1988) quote] and 1.6% of the total polarizability.
Raynes et al. do not themselves calculate this term.

Mention should also be made of the "transitional"
averaging requirement in the calculation of the relative
intensities of the fundamental band of the vibrational-
rotational Raman spectrum of H2 and 02. Cheung
et al. (1981) have evaluated the needed integrals:
&0(J)~ha(co)~v'(J')& with v'=0, 1 and J'=J+2 and
where b,a(co) is the frequency-dependent a polarizability
anisotropy. They were found by ab initio calculation
of ha(co ) followed by numerical integration using
Numerov-Cooley vibrational wave functions. Hamagu-
chi et al. (1981) have tackled the same problem by ex-
panding the vibrational wave functions as linear com-
binations of harmonic-oscillator eigenfunctions and Aa
as a Taylor series in g, thereby being left with simple in-
tegrals over powers of g, to be evaluated in a final expres-
sion involving just (ha)„d (b,a)/dg, etc. , and the usual
diatomic spectroscopic constants. A very complete list
(many different rovibrational states) of similar integrals,
calculated very precisely, for the isotopes of H2 has been
compiled by Schwartz and I.eRoy (1987).

The static vibrational polarizability has quite a long
history, going back to 1924, when it used to be called, un-
fortunately, the atomic polarizability (Ebert, 1924). It
should be noted that this contribution, cx', is nonzero
only, as we shall see, if the molecule is infrared active and
thus, for a diatomic, only if it is polar. [A recent paper
(Adamowicz, 1988a) indicates that it is only "negligible"
for H2+, whereas it is, in fact, exactly zero. ] In general,
we shall consider the molecules to be in the ground
electronic-vibrational state and we shall concentrate on
the theory for diatomics. Many of the ideas introduced
in this part will be valuable later on when we discuss hy-
perpolarizabilities; consequently we shall develop some of
the equations to a degree higher than is strictly necessary
for dealing with o.'.

A. Static poiarizability a(0;0)

1. Clamped-nucleus method

a. E!ectronic equation

y P P P P (32)

Since the subject of this review is nuclear motion, we
shall take it for granted that the perturbed eigenvalues
and/or electronic polarizabilities are known. They may
be determined by finite-field (Cohen and Roothan, 1965),
derivative Hartree-Fock (Dykstra and Jasien, 1984;
Malik and Dykstra, 1985), or charge-perturbation
(McLean and Yoshimine, 1967a, 1967b; Bishop and
Maroulis, 1985) methods; or from perturbation-theory
expressions such as

&n/P /n'&&n'[Pp/n&

(E„. E„)—
where ~n & and ~n'& are ground and excited electronic
state wave functions and E„and E„are the correspond-
ing energies. There is a vast literature on the evaluation
of a & and, to a lesser extent, on the electronic hyperpo-
larizabilities.

From Eq. (2) it is apparent that when a molecule is
placed in a static uniform electric field or fields, its elec-
tronic eigenvalues become E =E +E', where

Pa+a 2 ap+a+p 61 apy+a p y

OI

n-=1+poa(co) /2, so, (31)
b Rovibrational equation

where co is the frequency of the light. This section is con-
cerned with contributions to a from nuclear motion that
are over and beyond those discussed in the previous sec-
tion; it is divided into two parts: (a) the static a and (b)
the dynamic o, . Furthermore, the static o. is considered
from (1) the clamped-nucleus point of view and (2) the
sum-over-states point of view (see Sec. II.A).

(i) Electric fieldinitially defined by
molecuie-fixed axes

Having assumed the electronic equation to be solved,
we now turn to the rovibrational equation. We shall first
consider the field as being defined with respect to the
molecular axes —this is equivalent to freezing out rota-
tion. Though this model does not represent any real
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TABLE II. cx„polarizabilities for OH, OH, and OH for
v=0 (in a.u.). From Adamowicz (1988b).

OH OH+ OH

a,', (R, )

(O~a,', (Jt) ~O)
total
zz

7.541
7.809
7.859

4.497
4.679
5.440

18.34
18.85
18.95

physical situation, except perhaps in intermolecular in-
teractions, we can approximate the real situation by mak-
ing a classical isotropic and thermal average of the re-
sults and thereby go from the microscopic to the macro-
scopic. In the next section, the more realistic model of
fields defined by laboratory-fixed axes is developed.
There have been several methods used to solve the more
limited problem but, save for certain approximations,
they are all really equivalent, in spite of contrary asser-
tions in the literature (Malik, 1988). We shall classify
them as finite-field, derivative Numero v-Cooley,
perturbation-theory, and force-constant methods.

Finite field. In this method, introduced by
Adamowicz and Bartlett (1986), the vibrational equation
is solved numerically by standard procedures (Cooley,
1963; see also Cashion, 1963; Zare, 1963; LeRoy, 1986;
and Kirby-Docken and Hinze, unpublished) for different
potential-energy curves (it has been applied only to dia-
tomics). These curves have been obtained from electron-
ic eigenvalues that incorporate the effects of different
finite perturbing fields. Numerical differencing of the
final eigenvalues (corresponding to the different field
strengths) gives by analogy with Eq. (32) the total (elec-
tronic plus vibrational) polarizabilities. To date, in appli-
cations of this technique, only parallel polarizabilities
have been determined, since it has been limited to cases
in which the electronic equation has been solved by ei-
ther numerical Hartree-Fock [FH, Hz+ (Adamowicz and
Bartlett, 1986)] or numerical multiconfiguration self-
consistent-field (MCSCF) [Hz, HD, D2 (Adamowicz,
1988a) and OH, OH+, OH (Adamowicz, 1988b)]
methods. These methods are based on partial-wave ex-
pansions in elliptical coordinates for the molecular orbit-
als and have been restricted to systems that are essential-
ly two dimensional. The total (electronic and vibrational)
a polarizability for FH in the v =0 state is 5.93 a.u. ,
compared with the equilibrium electronic value of 5.S5
a.u.—the difference, however, is not solely the pure vi-
brational polarizability a, since to determine this quanti-
ty knowledge of the vibrationally averaged electronic po-
larizability is required. The total value for FH (U =0)
agrees well with that obtained from perturbation-theory
expressions [6.002 a.u. (Bishop and Lam, 1987a)]. For
OH, OH+, and OH, several vibrational states were in-
vestigated; results for v =0 are given in Table II. Here,
averaged electronic polarizabilities have also been found,
so a" can be deduced; it is clearly quite significant for
OH+ but less so for OH and OH

Quite similar in spirit is the work of Zundel and co-
workers, which has been reported in a series of papers

from 1970 (Weidemann and Zundel, 1970) to the present
(Eckert and Zundel, 1987, 1988). Zundel's interest has
been in the vibrational polarizability of H-bonded sys-
tems, which he calls the "proton polarizability. " In such
systems, the potential-energy surface has a double
minimum, with a symmetric ground state and a very
close-lying asymmetric excited state. The perturbation
( @I'—; he omits —

—,
' aE, etc. ) is, under these cir-

cumstances, very effective. The situation is comparable,
and for similar reasons, to that which leads to large
values of the electronic a for H2+ when R is large
(Bishop and Cheung, 1979a) and the phenomenon of sud-
den polarization in organic chemistry (Salem, 1979; see
also Brooks and Schaefer, 1979). Zundel calculates vi-
brational wave functions for various values of the electric
field and from these he determines the dipole moment of
the H-bond (p~). He then differentiates pH, presumably
numerically, to obtain his "proton polarizability. " Since
he does not do so under the limit F~O, his values, in
fact, are not the pure a polarizability but include hyper-
polarizability contributions; for this reason he lists them
for various values of F. He has studied a great number of
H-bonded systems and recently has shown that the "pro-
ton polarizability" for the B+H. . .B+~B. . .H+8 bond
within the H502+ group is about two orders of magni-
tude larger than the usual electronic polarizability.

Derivative Numerov-Cooley (DNC). This technique
has been formulated and implemented by Dykstra and
co-workers (Dykstra and Malik, 1987; Augspurger and
Dykstra, 1988; Malik, 1988). It differs from the previous
method by its clever adaptation of the Numerov-Cooley
method (which normally determines only the vibrational
wave functions and eigenvalues) to compute directly the
derivatives of the vibronic energies, and these are precise-
ly the polarizabilities that we want. The perturbed
potential-energy curve, in analytic form, is the input to
the DNC program, and the output is a set of derivative
values —the whole method being, therefore, semianalyt-
ic. The important fact is that this method avoids the
need to choose finite fields; numerical inaccuracies occur
if this choice is not judicious. It has been applied to FH
(Dykstra and Malik, 1987; Malik, 1988), where the elec-
tronic problem was solved by using the derivative
Hartree-Fock method (Dykstra and Jasien, 1984). In ad-
dition to the total vibronic polarizabilities for several vi-
brational states, the averaged values of 0.' were obtained;
thus the pure vibrational polarizability could be extract-
ed, and some values are given in Table III. So far, this
procedure (as with the previous one) has not been
developed to take into account rotation. It has been stat-
ed (Malik, 1988) that the rotational corrections will be
additive, but it is not clear that this will be the case, since
rotation appears, through centrifugal distortion, in the
vibrational wave functions and, as will be shown later, in-
tegrals of the form ( v (J)

~ p ~

U'( 2+1)) are involved. The
problem is exemplified in Table III, where a comparison
with the results of Bishop et al (1988), who too.k rotation
into account, is given: the later values decrease quickly
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TABLE III. Comparison of results for (a') for I'H (in a.u. ). From Malik (1988) and Bishop et aI.
(1988).

Malik (1988)'
Bishop et al. (1988)

0.056
0.048

0.062
0.044

0.067
0.038

0.069
0.029

0.064
0.017

'( ct') = (ct;, +2cc'„ i/3 =a,",/3, where z is the nuclear axis; in Malik (1988) it is labeled x.

with U, whereas the former do not. The method has also
been applied to H3+ (Augspurger and Dykstra, 1988) but
considering only the pure stretch vibration; since aver-
aged electronic va1ues are not given, we cannot extract
A

Perturbation-theory expressions. Equation (32) is the
perturbation to the Hamiltonian in the Schrodinger vi-
brational equation (we exclude rotation in this treat-
ment). First-order perturbation theory simply averages

p, etc. , over the unperturbed vibrational wave functions
; second and higher orders (Hirschfelder et ctl. , 1964)

lead to the vibrational polarizabilities of interest to us:

E"'=—X' Vok /&~k
k

Vok Vkl Vlo/~ ~k~1
k I

X'X'X' Vok Vkl Vl V o/&'~k~1~
k I m

+&' Vo'k /m~k X' V'oI /r'~i
k I

(36)

where Acok indicates the energy di6'erence between the
kth vibrational level and the ground-state level (Po), the
prime indicates omission of the vibrational ground state,
vok =

& yol~'leak ) and

v„,=&y,
l

E'ly, ) —v„s„, ;

E' is defined in Eq. (32).
By collecting terms in I, I', and I, we obtain the

following expressions for the vibrational polarizabilities:

~."p=& X'~ '~k '(P. )ok(Pp)ok
P k

~ p X X ~k (P )ok( p )ok+2 X X ~ ~k ~l (P )ok(Pp)ol(P )kl
P k k I

yapy5 X X & cok ~ 3(Pa)ok(&py5)ok+ ~(ctap)ok(cty5)ok]
P k

+g g g ~ ~k ~1 f. (P )ok (Pp)ol (+ 5 )kl + (P )ok ( p )01(P5 )kl ]
P k I

+r X rf X ~ ~k ~l ~ (P' )ok(Pp)o (P )kl(P5)l
P k I m

~k ~l (Plx)ok(Pp)ok(Py)ol(P5)ol
P k I

(37)

(39)

ct,",=2(p, )o, /iyico, ,

P;„=6(P,)o,(a„)o,/fico, +6(P, )o,(P, )„/A' col,

y,'„,= 24[(a„)ol/4+ (p, )oi()33„,)oi/3]/iytcol

(40)

(41)

+24(P. )oil:(P. )oi(~, )» /2+(~, )oi(P. )»]/&'~i

+24(P )oil(P )11 (P )01]/+ ~1 (42)

where +1, indicates summation over all permutations of
the indices ct, 13, y, and 5; (P~)ok=&ctiolP lctik); and P
and a & are the dipole-moment function and electronic
polarizability, respectively.

Equations (37)—(39) can be further simplified by mak-
ing the summations only over the fundamental vibration-
al states, and for a diatomic molecule, for example, we
then obtain

Though our main interest in this section is Eqs. (37) and
(40), we might note that if we invoke the harmonic-
oscillator approximation for the vibrational transition
matrix elements and ignore terms in co, and co&, then
Eqs. (40) and (41) are the same as those of Pandey and
Santry (1980), whose treatment only went as far as
second-order perturbation theory. For a homonuclear
diatomic, the dipole-moment matrix elements are zero
and

y,'„,=6(a„)o,/%co, , (43)

which is in accord with the formula of Mizrahi and Shel-
ton (1985a). It has been pointed out by Kirtman (1990)
that if the v =2 level is included in Eq. (42), then, at the
harmonic-oscillator-level of approximation, the last term,
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and since the absolute integrated absorption intensities
are

3„=%/co„g„(p)0„/6EOAC

we find

(a'&=(4soc /N„) g'(A„/co„)

(45)

( 3„/km mol ')
=5.28566+', 10' C m J

(co„ /rad s ')

(46)

—24(p, )O7/fi co„ is exactly annulled by the additional
term 24(p, )iz(p, )oi/fi coico2 which appears; this is also
true for a polyatomic molecule.

Equations (40)—(42), together with ab initio calcula-
tions of the transition matrix elements, have been used to
calculate the polarizabilities of FH (Bishop and Lam,
1987a); it was found that a,', =0.243 a.u. and
(O~a'~0&=S. 759 a.u. , giving a total polarizability of
6.002 a.u. , which is in good agreement with the finite-
field value of S.93 a.u. (Adamowicz and Bartlett, 1986).

The oldest and most common method of evaluating o,'
from Eq. (40) is to use the experimental infrared-intensity
data to find the needed dipole-moment transition matrix
elements; the method is therefore semiempirical in na-
ture (LeFevre and Rao, 1955; see also Altshuller, 1955;
Whiten, 19S8; Illinger and Smyth, 1960, 1961; Illinger,
1961; Bishop and Cheung, 1982b). For a polyatomic
molecule, if g„ is the degeneracy of the nth fundamental
vibrational mode, the isotropic vibrational polarizability,
Eq. (52), is given by

(~"&
=—', g'g„(p)o„/&co„,

approximation to obtain g„(p)0„[see Eq. (20)]:

( )i fi ~ Pg
gn Pan=2

n g=xyz n 0

(49)

eu e U&ap=O'ap+ &ap ~ (50)

where Q„ is the nth normal coordinate. They applied the
modified neglect of diatomic overlap (MNDO) method to
obtain the derivatives and investigated solvent eItects on
(a"& for a series of sniall molecules; however, compared
with experiment, the results are rather poor.

Force-constant method. In this treatment, published
by Duran et al. (1989), a specific value of the electric
field is included in the electronic Harniltonian, and the
mass-weighted second derivatives (force constants) of the
potential-energy surface at the equilibrium nuclear
geometry (which has been optimized in the presence of
the field) are found analytically. Vibrational frequencies
are then obtained by diagonalization of the derivative
matrix. Values were determined for CH4 for several field
strengths and orientations. The authors' intention is to
predict infrared spectra in the presence of specific fields,
and they do not find a", 13", etc. , per se. Nonetheless,
these quantities are embedded in their results and could
be extracted by fits to a power series in the field strength.
Their method would then be equivalent to the applica-
tion of the harmonic-oscillator approximation to the pre-
vious methods.

Classical isotropic and ther-:~al averaging. To an ex-
tent, the polarizabilities calculated in the above manner
(which neglected consideration of rotation) can be related
to experiment (with space-fixed axes X, Y, and Z) by clas-
sical methods, if not by quantum-mechanical methods.
Writing

where we have taken the units of A„and co„ that are
commonly used by experimentalists. Further relations
involve the molar vibrational polarization:

we find that the isotropic polarizability [see Eq. (8)j is

(a&zz=(4') ' f f a'"pk kpslnededy,
0 0

(51)

(~'&
A

4me0
(47)

where k is the cosine of the angle between the Z and a
axes. This gives

(a'& =3soP "/N„ &u&zz =(a„"„+a,',"+a,",)/3=a„/3 . (52)

=4.4108(P'/cm mol ')10 (48) Further, in dielectric-constant experiments, the measured
quantity is

Values of (a"& for some 100 or more molecules have
been found in this way (Bishop and Cheung, 1982b), us-

ing known experimental data.
Rinaldi et al. (1986) have used the harmonic-oscillator

I

where

(Pz /+)F 0 (53)

f f (p k +a"pk~k~F+ . . )e ~"rsinOdgdg

f"f' """
0 0

(54)
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and AE is the angular-dependent part of the energy of
the molecule in the presence of the field. If only (kT)
terms are retained in the expansion of the exponential,
then

exp( —BE/kT) = 1+ij,,k,F/kT+bak, F2/2kT

2l & v (J)lulu'(J+1) ) I'

O'AU EU', J+ I EU,J

2I & v(J) Iplu'(J —1) ) I'
EU', J—1 Ev, J

(65)

(66)

+(3P, k, +bPk, )F /6kT+ .
a"(u, J,M) = CqMR +DBMS, (67)

a= &a)zz+p'/3kT . (56)

with ha=a,",—a'", b p= p;,",—3p;„', and z is the molec-
ular axis of symmetry. Combining Eqs. (52) —(55), we get R =2I&u{J)lulu(J+1)&l'l(E„, E, —),

S =2I & v {J) Iplv(J —1)& I'l(E.,

(68)

(69)

This is the same as the quantum-mechanical high-
temperature result in the next section. It will generally
be true that, classically, temperature dependence is cou-
pled with a lower-order electrical property.

Throughout these equations p is the dipole-moment func-
tion and is dependent on the internuclear separation.

Assuming a Maxwell-Boltzmann distribution over the
J rotational states, and summing over J and M, gives

(ii) Electric fieldinitially defined by space fixed axe-s a= gp(u, J)(2J+1) 'ga(v, J,M), (70)

E'= —pF cosO —
—,'o.

~LF cos 0—
—,'a~F sin {9— (57)

where 0 is the angle between the vector separation of the
nuclei and the field vector, and a~~ and nz are electronic
polarizability components parallel (a~~=a„) and perpen-
dicular (a~=a „)to the nuclear axis. Second-order per-
turbation theory, the introduction of the rovibrational
wave functions C&,JM=lu(J)) I"I (8,$), and integration
over 0 and P leads to the following second-order energy:

In this derivation we consider the perturbation to the
Hamiltonian of the Schrodinger rovibrational equation to
emanate from a uniform static electric field along a
space-fixed axis oriented arbitrarily with respect to the
molecule. The derivation, for a diatomic molecule, fol-
lows that given ln Bishop et Ql. (1988). Equation {32) is
now replaced by

a '(u) =
—,
' g p(u, J)& u (J)laii+2aj Iu (J)),

J
a "(u)= —,

' g p(u, J)(2J +1) '[(J+1)X+JI'], (72)
J

a "(u) =—,
' g p(u, J)(2J+1) '[(J+ l)R +JS], (73)

J
with p( v, J) as defined in Eq. (13).

It is of interest, for the purposes of this review, to con-
sider how Eqs. (72) and (73) might be approximated. We
could (a) assume

lu'(J+1) &
-=Iv'(J —1) &

=- lu'(J) &,

(b) assume

Ev', J+1 Ev', J—1 Ev', J

E' '= —
—,'a(v, J,M)F

with

a(u, J,M) =a'(v, J,M)+a'(v, J,M)+a"(u, J,M),
where

a'(u, J,M)= & v(J)laglv(J))

(59)

(c) ignore entirely the J dependence of the wave functions
and energies, or (d) assume the rigid-rotor energies of Eq.
(21).

Approximations (a) and (b) lead to

a "(u)'= —,'gp(u, J) g 2I&u(J)lulu'(J)) I l(E„J E,J);—
+(C +D )&u(J)lbalu(J)), (60)

(J+1) —M
(2J + l)(2J+ 3)

J —M
(2J —1)(2J+1)

2J +2J —1 —2M
JM JM (2J +3)(2J 1 )

alternatively, approximation (c) gives

a "(v)"=-,' g 2l&u(0)lulu'(0) &I'/(E, ,o E,,o), (75)

which is equivalent to Eq. (37). Approximations (a) and
(d) and the high-temperature approximation for p(v, J)
lead to

a "(u) =-,'l&u(0)ll lu(0) &I'/kT, (76)

with

a (u, J,M) —CJMX+DqM 1',
which is the same as the classical result of Eq. (56). If, on
the other hand, we do not approximate p(v, J), we met
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~ "(U)"=-,'I&U(O)lplU(O) & I'p(U, O)/&&,

=-,'1&U(O)lpl~(O) & I'(kT) '[1—,'(&&o—/kT)+,', (+&—o/kT)' ] .

This equation can be obtained by using the Euler-
Maclaurin approximation or the formulas of Mulholland
(1928). It necessarily applies only to polar diatomics for
which nuclear spin degeneracy in p(U, O) can be ignored.

The question now arises, how good are these approxi-
mations? This has been partially answered by Bishop
et al. (1988), who investigated LiH and FH. For LiH,
a "(U) and a '(U) and their approximants were calculated
from an ab initio potential-energy curve and dipole-
moment function of Partridge and Langhoff (1981) for
several values of U; some sample results are given in Table
IV. The approximations for a "(u) appear to deteriorate
with increasing U; however, the a "(U)' approximation ap-
pears to be quite accurate. For FH, the same conclusions
hold, and we have already seen in Table III some results
for a "(U) compared with those of Malik (1988).

Finally, Wharton and Klemperer (1963), in an early
progenitor of the work of Brieger (Brieger et a/. , 1983;
Brieger, 1984), which will be discussed in the next sec-
tion, investigated electronic and vibrational effects on
Stark rotational spectroscopy. They derived a formula
for the vibrational contribution to a rotational-state po-
larizability as

a"(U,J,M)=(C~M+D~M) g 2I&UIpIU'&I'/(E„E, ) . —
U Av

This equation is in accord with Eq. (64) when approxima-
tion (c) is invoked.

2. Sum-over-states method

The most detailed and comprehensive analysis of the o.
polarizability of a diatomic molecule has been formulated

by Brieger (Brieger et al. , 1983; Brieger, 1984). His par-
ticular interest was the Stark splitting of the
A ' X+,U'=5, J'=1 level of LiH, but his treatment is of
quite general utility. He uses the sum-over-states method
[see Sec. II.A], and the field is held along an arbitrary
space-fixed axis; this introduces 3j symbols from the
necessary Eulerian transformation. Since the field is con-
sidered to perturb the molecule as a whole, the
Schrodinger equation is in principle not separated into
electronic and rovibrational parts. Use of perturbation
theory leads to an expression for the second-order pertur-
bation energy or o., which involves the complete unper-
turbed rovibronic excited-state wave functions In'u'J'&
and energies E„,.J,' unprimed labels will specify the state
for which a is being calculated. This expression is then
partitioned into four terms: (a) an "electronic" term,
where the intermediate states involve electronic states of
X symmetry different from that of interest: nAn'; (b) a
second "electronic" term, where the intermediate states
involve electronic states of II symmetry: n An', (c) a "vi-
brational" term, where n =n', but the intermediate vi-
brational states are different from that of the state of in-
terest: n =n', UAu', (d) a "rotational" term, where the
intermediate states are different from the state of interest
only in their rotational motion: n =n', U =O'. Another
way of expressing this is that (a) and (b) account for in-
teraction with adjacent rovibrational levels of other X-
and II-symmetry electronic states, (c) accounts for the in-
teraction with rovibrational levels of the same X electron-
ic state, and (d) accounts for the interaction with adjacent
rotational states.

The following equation results:

J' J 1 J' J
E' '= ——

2i F g (2J'+ 1)(2J+ 1)
1

O [a~((J,J')+ a(~(J,J') +a~((J,J') ]

J 1
2ai( J,J') (79)

with the electronic, vibrational, and rotational branch
polarizabilities (Brieger, 1984)

TABLE IV. Calculations of vibrational and rotational polariza-
bilities for LiH at T=22 C (in a.u.). From Bishop et al. (1988).

v=5

zl & ~U (J) I
poMI~'~'(J') & I'

a()(J,J')=-
n'An V' nVJ n'V'J'

(n'=X),

(80)

a '(v)
a '(v)'
a "(v)"
a "(v)
a "(v)'

0.923
0.941
0.930

1898
1914

0.726
1.099
1.089

2040
2056

0.148
1.158
1.154

2248
2264
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l & nu (J)lpM, ln'u'(J') & l'
a)(J,J')=-

n'An u' nuJ n'u'J'
~(2) "y2 (J ())

—(p)„'
rot =

u

(90)

2l&nu(J)lp, lnu'(J')&l'
ati( J,J') = —g

u Wv nuJ nu'J'

l&nu(J)lp, lnu(J')&l'
a("i(J,J') = —2

nuJ nuJ'

(81)

(82)

(83)

where pg is the spherical vector component of the
dipole-moment operator, e.g. , p0 =p, .

It is instructive to see how certain approximations will
bring these expressions into line with those of the
clamped-nucleus method in Sec. IV.A. l.b.(ii). If we ig-
nore the negligible "electronic-branch-polarizability"
differences with respect to different J', then the electronic
contribution is

E' '/F =2.436(rot) —20. 654(vib)

+ 16.918(el—ll ) —0. 139(el—l)
= —l.439 kHz/(kV/cm) (91)

and Eq. (89) is the same as that in Wharton and
Klemperer (1963). However, Brieger cautions against the
second approximation.

His example, the A'X+ state of LiH, though not
necessarily typical (the dipole-moment function changes

0
sign at 5.8 A), does emphasize the importance of consid-
ering all terms in rotational Stark spectroscopy and not
just Eqs. (83) or (89). Using the limited theoretical data
of Vidal and Stwalley (1982) and Partridge et al. (1981),
he finds the field-reduced level shift for v'=5, J=1,
M=Otobe

(2J —1)(2J+3)
(84)

with

a(J)=
—,
' [ai(J)+2a) (J)],

(J)= ~i(J)
— (J),

a (J)=—[aii(J J I)+a(i(J J+1)]

a~(J)= —,'[a~(J,J —1)+a)(J,J)+a)(J,J+1)] .

(86)

(87)

gives

p v(J) J(J+1)—3M
2B,J (J + 1) (2J —1)(2J+ 3 )

(89)

If we equate the polarizabilities aii(J) and a)(J) with the
vibrationally averaged values in Eq. (60), the latter equa-
tion can be shown to be equivalent to Eq. (84). However,
this is an approximation, and it has been noted before
(Bishop et al. , 1980) that the ai(J,J) etc. given above are
intrinsically difFerent from those of Eq. (60). Among oth-
er things, the former have denominators that are
differences of total energies of rovibronic states, while the
latter, vibrationally averaged standard electronic polari-
zabilities, have embedded energy differences between
electronic states at fixed internuclear separations. Even if
one neglects the vibrational-rotational energy in the
denominator of Eq. (80) and uses closure over u', this
problem remains. Fortunately, it appears (Bishop et al. ,
1980) that the quantitative consequencies are very small.

For the vibrational and rotational components, the two
methods are equivalent: combining Eqs. (79) and (82)
will lead to Eq. (64), and combining Eqs. (79) and (83)
will lead to Eq. (67). In the latter case, the rigid-rotor ap-
proximation coupled with

lu(J+1) &—= lu(J —1)-=lu(J) &

Hence there is almost complete cancellation of the first
three terms. His estimate of the M =0~M =+1 split-
ting is only one-half of the experimental value, but
whether this is due to inadequate theoretical data or
inaccurate experimentation is not really known. Howev-
er, the smallness of this splitting puts great demands on
both theory and experiment.

B. Dynamic polarizability a{—to, co}

The dynamic a po1arizability is directly related to a
material's refractive index [see Eq. (30)]. To be con-
sistent with the notation used later for the dynamic hy-
perpolarizabilities, we should write it as a p(

—cu;cu, ) or
a p(

—co;co), though a t)(ro) is more frequently employed
in the literature. Using time-dependent perturbation
theory (Langholf et al. , 1972) and the formalism of Orr
and Ward (1971),we have

a~p( co~; co) )

t3& n»IP. I

n'u'J
& & n'u'J'IP In» &

P n'u'J' E„,J —E„,J—%co
(92)

where gp indicates permutation of the pairs (p / —co )
and (pt)/co, ) and the prime on the second summation
means exclusion of the state of interest, whose energy is
E„,J and whose rovibronic wave function is lnuJ&. This
expression has been partitioned into electronic, vibration-
al, and rotational components, using the usual energy ap-
proximations and closure techniques of Sec. II.C, by
Bishop and Cheung (1980, 1982a). The results were ap-
plied to H2 and HeH+. In that work the dipole-moment
operators p were defined with respect to molecular axes,
and classical isotropic and thermal averaging was carried
out.

A more rigorous and realistic treatment is to use
space-fixed axes for the electric field and to follow the
methodology in Sec. IV.A. l.b.(ii). We then obtain, for a
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diatomic molecule,

a( —co; co ) =a '+a "+a ", (93)

Alternatively, using the rigid-rotor approximation,
defining AJ J as the energy separation between the J and
J' rotational levels, and approximating

where the electronic component is given by

a '=
—,
' g p(v, J)& u (J) la~~+2aglu (J) & (94)

R =-2
Q

2 2QJ+ j J (Aco)
(105)

I& ~lpo l~'&I'

„,&„Z„E„—Rc—o
(95)

5 =-2p
QJ i J (Pleo)

(106)

where p is a mean vibrational value of the dipole mo-
ment, then

or the more familiar

2(E„E„)—
(& E )2 "(& )2

I &Ipp I (96)

where In'& is the electronic wave function of an excited
state and E„. is the corresponding energy (both depend
on the internuclear separation).

For the vibrational component

a "=
—,
' g p(u, J)(2J+1) '[(J+1)X+JY], (97)

where

I & u(J) I &.Ipo~in & I'(J+1)& I'
X=X X E, J+I —E, J —Ae)

I & v(J)l& ~lpo l~ &lu'(J —1)&I'
&=X XP, ~, E, J ], E J A~

(98)

(99)

P V'WV

I & v(0) I & ttlpo ln & lu'(0) & I'

E, 0
—EVP —Au

(100)

For the rotational component

and E, z and
I
v (J) & are rovibrational energies and vibra-

tional wave functions for the nth electronic state. Or, ap-
proximately,

p(U, J) 1+1,JQ

J (2J+1)B„~~2+,

(2J+1)p(u, J+1)
(2J +3)p(u, J) (107)

and with the approximation of Eq. (22), appropriate for a
heteronuclear (polar) diatomic molecule, this leads to

2 01 p ~ ( J) (2J +2) I+i J
(108)

3 kT J
' (2J+1) flj+, J —(irtco)2

2
p, (2J +2) +z+ i,J

3 kr (2J + ( ) Q~J ~, I —(((~p ) '

where & & indicates an average over the thermally popu-
lated rotational states. Equation (109) is equivalent to
Eq. (177) in Debye's (1929) book.

For common laser frequencies a '( —co;co) is negligible,
and if the temperature-dependent a "( —co;co) component
has been extracted from the experimental values of
a( —co;co), then an extrapolation to co=0 of these values
for these frequencies will give a (0;0); if, as well, the
temperature-independent part of a(0, 0) is known from
static-field experiments, we will have an experimental
means of determining a '(0;0); that is, in these cir-
cumstances:

a "=
—,
' g p(u, J)(2J +1) '[(J+1)R +JS],

J

where

(101)
a '(0;0)=a(0;0)—lim a( —co;co) . (110)

I & u(J) I & ttlp, ln & lu(J+1) & I'

P Ev, J+ 1 Ev, J ~~a.

I&u(J)I&~ip, I~ &Iu(J —1)&I'

E, J )
—E„J—A'cg

(102)

(103)

—r ~ v 2
B

A = Pp3 (irico)
(104)

Finally, we can get the classical result (7 =pp/3kT by
setting A~ =0.

If we assume, as is often the case, A'cu))0 for all m, then
K'=0; that is, in classical terms, there is no orienting
effect for an oscillating electric field. On the other hand,
if oo )fico) 0 (where 0 is a mean rotational-energy-level
separation), then

This is a simple example of how, from different processes,
here dynamic and static, we can extract the different con-
tributions to the total polarizability. Elliott and Ward
(1984) have used this method and compared experimental
a '(0;0) values with those found by semiempirical means
by way of Eq. (46). Typical of the kind of agreement they
find is for CF4, a'(expt. )=1.13X10 C m J ' and
a "(semiempirical) =1.02X 10 C m J '. Recently, it
has been noted by Lu and Shelton (1987) that for CF~
a '(0;0) must be of the same order as a '(0;0), i.e.,
3.14X10 C m J '. The, simple reason is that with
mean values ( 2) for the transition energies and transi-
tion matrix elements, both electronic (e) and vibrational
(u), 0, —= 1000„and lp, I

—= 10lp„ I
and hence

IP, I'/&, —= IP. I'&&.; see Eqs (33»nd (4o).
Cai et al. (1987) have used Eq. (110) for studies on

three vibrational states of CO2. They compared their re-
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suits from this equation, using their own experimental
Rayleigh scattering data for a( —co;co), with those ob-
tained by using Eq. (46) and infrared intensities. The
difference between the two methods for Ao. ' was about
20%. It is likely that this discrepancy can be explained
by the lack of quality in some of the infrared-intensity
data.

V. HYPERPOLARIZABILITIES (P, y)

Much of the theory and many of the techniques for
calculating the effects of vibration and rotation on the
polarizability o. may be extended to the hyperpolarizabili-
ties P and y. We shall therefore organize this section in
the same way as we did in Sec. IV for o..

A. Static hyperpoiarizabiiities p(0;0, 0) and y(0;0, 0, 0)

Commonly written simply as f3, y or P(0),y(0), the no-
tation P(0;0,0), y(0;0, 0,0) is consistent with that re-
quif'cd for delineating thc dynamic hypclpolarizabilltlcs.
The static hyperpolarizabilities are usually determined
experimentally from the dynamic quantities (which medi-
ate nonlinear optical processes) by extrapolation of the
values to zero optical frequency. Again, our focus is on
the effect of vibrational and rotational motion.

1. Clamped-nucleus method

a. Electric fieldinitially defined by molecule-fixed axes

Fimte 6eld. This technique, which we have already
discussed in connection with a, is readily extended to p
and y by using higher-order numerical differencing on
the field-perturbed vibronic energies. Adamowicz
(1988b) has used it for OH, OH+, and OH and for a
variety of vibrational states. The results for OH were
not as numerically stable as those for OH and QH+. In
Table V we give his values for OH and OH+ for U =0. It
is apparent that the vibrational polarizability is very
significant for these species. Since the numerical MCSCF
method, which was used in determining the electronic
wave functions, is limited to systems with axial syrnme-
try, only the molecular axial (z) components were deter-
mined. Adamowicz (1988a) has also carried out the same
procedure for H2, HD, and D2 for the three lowest vibra-

tional states, and his value for the vibronic y„„com-
ponent of H2 for U =0 is 1088 a.u. , which is in line with
other methods in this section (see Table VI) [e.g., Bishop
and Lam (1987b)], although greater than the thermal
value based on spaced-fixed axes (Bishop and Lam,
1988a; Bishop et al. , 1990), which is discussed in Sec.
V.B.3.b. Since the value of y„„(R,) is on the order of
600 a.u. , the vibrational contribution is of about equal
size. The p hyperpolarizability is exactly zero for
homonuclear diatomics.

The H2+ ion was one of the first cases in which it was
discovered that vibrational effects could enormously
inhuence the hyperpolarizabilities (Bishop and Solunac,
1985; Adamowicz and Bartlett, 1986). Adamowicz and
Bartlett found the vibronic y„„component to be
2. 3X10 a.u. , two orders of magnitude greater than the
electronic value at R„and in agreement with the results
of perturbation theory (Bishop et al. , 1986; Bishop and
Lam, 1987b); see Table VII. Adamowicz (1988a) showed
that this value increases with vibrational quantum num-
ber and for U =4 becomes 41.6X10 a.u. The method
has been applied to FH by Adamowicz and Bartlett
(1986) and Bishop and Lam (1987a), and results are given
in Table VIII. There is a radical change to P„, when vi-
bration is taken into account and y„„ is increased by
about 50 jo. These two sets of calculation are in good
agreement with each other if one bears in mind that
difterent procedures were used to determine the electron-
ic wave functions.

Derivative Numerov-Cooley (DNC). This method
determines directly, from an adaptation of the Numerov-
Cooley method, and without the need for fitting or
differencing procedures, the polarizabilities from the
field-perturbed potential-energy curve. K)ykstra and
Malik (1987) and Malik (1988) have applied it to FH, and
the results for the axial p component (U =0) are given in
Table VIII; the value of P" (10.041 a.u. ) agrees reasonably
well with other treatments, e.g., Bishop and Lam (1987a);
the total (vibronic) value is, however, somewhat smaller.
P' increases to 32.52 a.u. for U =4. In Dykstra and Malik

Method Reference' Property Value

TABLE VI. Values of the total (electronic and vibrational)
second hyperpolarizability calculated by diferent methods for
H2 ( v=O) (in a.u.).

TABLE V. Values of P„,(0;0,0) and y„„(0;0,0,0) for OH and
OH+ for v=0 (in a.u.). From Adamowicz (1988b).

Finite field
Derivative
Perturbation theory
Exact'

A
AD
BL
BPR

yzzzz

yzzzz

yzzzz

yzzzz

1088
1086
1099
854.5

OH

OH+

p,.
yzzzz

p,,
yzzzz

—11.83
582

—7.51
128

Vibrational average

—13.43
630

—8.61
139

—6.72
905

16.88
597

'A =Adamowicz {1988a); AD =Augspurger and Dykstra
(1988); BL=Bishop and Lam (1987b); BPR=Bishop et QI.

(1990).
The calculated value of y,'„, is 416, to which has been added
y„„(atR, ) [taken from Maroulis and Bishop (1986)].
'This value is a thermal average and with respect to space-fixed
axes [see Sec. V.B.3.b and Bishop et al. (1990)j.
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TABLE VII. Values of the axial component of the second hy-

perpolarizability of H2+ for v=0 (in a.u.).

Finite field
AB'

Perturbation theory
Eq. (111) Eq. (114)'

y(R, )
yed

y'
Total 2.3 X 10'

—40.9
—193
2390
2197

—193
1695
1502

'Adamowicz and Bartlett (1986).
"From Bishop and Lam (1987b).
'From Bishop et al. (1986).
Averaged over the vibrational ground state.

=6 g (a )ok ~&cok
k

Y 2 y (+ )ok(~ )ok ~~~k
k

(112)

(113)

(1987) the observation is made that P" will be small if
p(R ) and a(R ) change slowly with internuclear distance
(R ); this is transparent if one considers Eqs. (41) and (20).
Augspurger and Dykstra (1988) have also looked at Hz
and H3+ (one of the few cases of a polyatomic, although
limited to the pure symmetric-stretch vibrational mode).
Their value for Hi for the axial vibronic y (U =0) agrees
well with the other values in Table VI. For the vibration-
al ground state of H3, they find the axial vibronic p to
be 241.63 a.u. , once again a value very different from the
value at R, (

—58.744 a.u. ).
Perturbation-theory expressions. Bishop and Lam

(1987b), following the theory in Bishop (1987a), have cal-
culated the independent components of y' for H2+, H2,
and N2 for U =0. For homonuclear diatomics the equa-
tions they used, which follow from Eq. (39), are

y,"„,=6 g' ( a„)o„/ficok,
k

where (a)ok indicates a vibrational transition matrix ele-
ment for the ground vibrational state to the kth excited
vibrational state of the electronic polarizability. The
values for H2 and H2 for the axial component are given
in Tables VI and VII and have already been referred to.
The same authors (1987a) have also used Eqs. (41) and
(42) to obtain p,"„and y,"„,for FH; the results are to be
found in Table VIII.

Equation (41), but with the second term missing and
the harmonic-oscillator approximation assumed, i.e., the
formula given in Pandey and Santry (1980), has been used
by Lazzeretti et al. (1981) to find p,"„for FH (10.5 a.u. )

and HC1 (21.6 a.u. ). Finally, Eq. (42) in the harmonic-
oscillator approximation [see Eq. (20)] becomes

2
Ba„

7ZZZZ 2 ggPl CO e

(114)

(y)zzzz=(4ir) ' I I y p sk krak kssinOdOdg
0 0

(115)=
—,'y@„„(0;0,0,0) .

A similar PrescriPtion for P leads to (P)zzz =0; howev-
er, a mean value is defined in the literature that is
relevant to nonlinear optical processes. It comes from
classical thermal averaging. Using Eq. (55) and the
equivalent of Eqs. (53) and (54) but with p,z replaced by

for a homonuclear diatomic; here m is the reduced nu-
clear mass and co is the fundamental vibrational frequen-
cy. For H2+ this gives 1695 a.u. , which, when compared
with the other values in Table VII, shows that the ap-
proximation is rather severe.

Classical isotropic averaging. The previous methods
for calculating p' and y' may be used in conjunction with
isotropic averaging (Bishop, 1987b). If k is the cosine of
the angle between space-fixed axis Z and molecular axis
a, then

TABLE VIII. Values of the axial hyperpolarizabilities of FH
for v=0 (in a.u. ).

Pzzz=P 13
k kpk +y p sk krak ksF+

we obtain

(116)

Finite field
Reference' AB BL

DNC
M

Perturbation theory
BL LRZ'

y=(p, iF), .=&y& „+,„p3kT ' (117)

P(R, )
ed

Total

y(R, )
yed

y'
Total

1.6 2.35

230 229

362 382

—7.6 —8.02 —9.139
—10.505

10.041
—0.464

—8.02
—8.47
10.99
2.5

229
235.3
139.3
374

—8.42

10.5

where

P= —', P,g(0;0,0) . (118)

P= ', (P,.+2P,.)- (119)

For a diatomic molecule, the symmetry allows for
simplification and

'AB=Adamowicz and Bartlett (1986); BL=Bishop and Lam
(1987a); M=Malik (1988); LRZ=Lazzeretti et aI. (1981).
Equations (41) and (42).

'Equation (41), but only the first term and the harmonic-
oscillator approximation.
Averaged over the vibrational ground state.

(y ~zzzz =—'(3y--+12y „+8y (120)

Xxxxx
= 3'Vxxyy (121)

where z is the bond axis; here use has been made of the
relation
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which is found by isotropic averaging over the equivalent
x and y axes. Expressions for &y& for the other com-
binations of space-fixed axes will be given in Sec. V.B.2,
where they relate to the dynamic hyperpolarizabilities.

b. Electric fieldinitially defined by space-fixed axes

The theory in Sec. IV.A. l.b. (ii) for determining a for a
diatomic molecule when the electric field is placed arbi-
trarily in space can be extended to the hyperpolarizabili-
ties. The perturbation to the Hamiltonian in the rovibra-

I

tional Schrodinger equation now includes higher terms:

E'= —[lMP, (cos8) ]F—
—,
' [a+—,

' ha/2(cos8) ]F
—

—,
' [PP, (cos8) + ', b P—P3 (cos8) ]F3 (122)

where a=(a„+2a )/3, pa=(a —a )

/3=3(P„, +2P,„„)/5, AP=(P„, —3P,„„),8 is the angle
between the space-fixed axis Z and the bond axis z, and
I'k are the usual Legendre polynomials.

Using standard perturbation theory, the second-,
third-, and fourth-order perturbation energies are

E"'=—g'
I &OII I'1 lk & I'F'/&~k &' &—Ola+ —', ~aF2lk & & kl pI'1 lo&F'/&~g,

k k

—
—,
' &' &Olv&1 lk & &kIP&1+ ', ~p&310&F'/&~k —

—,
' g' &Ola+-', «& Ik & &kla+ ,'~a-& IO&F'/m~„,

k k
(123)

&"'=—g' g' &OlpF1 Ik & & kll F 1 lh& & Ilp&1 IO&F'/&'~k~l —g' g' &oI@F1lk & & kl pI'1 II & & lla+-', «I'2IO&F'/&'~k~l
k I k I

—y' y'&olp, r, lk&&kla+2aaI', Il&&rip.F, IO&F'/g'~„~, , (124)

E"'=—g' g' g'&OipFllk&&klpFlll &&lip&ll~ &&mlpF1IO&F'/lr'~k~l~
k I m

+ y' g'1&OIPF, lk & I'I &OIPF, II & I'F"/X'~„~1,
k

(125)

where, for the sake of brevity, we have used a very simplified notation for the rovibrational wave functions and energies
of the unperturbed system: I

k & and fivok, the bar indicates & kl A
I
l &

—
& Ol A IO &5kl,

' and the prime on the sums indicates
omission of the rovibrational ground state IO & or the state for which the polarizability is being determined,

I
vJM &.

Collecting terms in F, integrating over the rotational angles 8 and P, summing over the rotational quantum number

M, and taking a Maxwell-Boltzmann distribution for the population of the rotational states [p(v, J) in Eq. (13)] gives,
after some tedious algebra,

8 (J+1) (J+1)
XZZZZ 2 2 2 3 (2J + I) P(V& J)PvJ u J+lPu J'+1 vJ ~'~u'J+1 vJ+ (2J +3)P( & )PuJ+1 v'JPv'J uJ+1/ ~u JuJ+1'

u J u'Au

2 (J+1)(J+2)+6 p(U, J)a'.J, 'J/~~ 'J, J+ Ig 2J+1 2J+3 P(v J)~a J, 'J+2/"~ 'J+2, J

4 J(J+1)
)( J 1 )

P & uJ~ vlJ u J~ vvJ

2 (J+2)(J+1)
J +3)(2J + )

p v» J +2 ~auJ+2, v'J/~~v'J, vJ+2 (126)

These are the leading terms other exist, with denominators of co and co, which we shall not give (they are very curnber-
some and, in perturbation terms, of less significance) —they will be zero for a nonpolar diatomic. » Eq (126) p,J, J+1
is & v (J) lplv'(J + 1) & etc. , and 1llro, .J+, ,J is the transition energy between the two states (v', / +1) and (U, J). If only
the U =0 vibrational state is populated, then the frst summation is dropped, and we can write p(v J) as p(0 J)=p(J).

yzzzz emanates from the same Procedure and is comPosed of those terms with v'=U [w»ch a«excluded ln Eq.
(126)] and for which the denominator is nonzero. Thus

g (J+1) — (2J +1)
YZZZZ g 3 (2J+ 1) PvJ, uJ+lpvJ vJ+I P ' (2J'+3) P

J
~~uJ+ l, uJ

4 (J+1)(J+2) 2 (2J+1)
(2J+1)(2J+3) ' ' ' (2J+~) ~~uJ+2, uJ (127)
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where A'co„J+&,J is a rotational-energy separation in the
vibrational state u.

We can, if we wish, approximate Eq. (126) by dropping
the J dependence in the vibrational wave functions and
assuming the high-temperature approximation (J))0).
This leads to

U 8 8 2
zzzz X 3PvU ~U v UU i5 vU

V WV

azz(J, M) =a„+', B—ba„„,

8= J +J—3M
(2J —1)(2J+3)

B=0.

(130)

(131)

We now express azz pertrubed by the field as
(128)

which is identical to the molecule-fixed-axis result, which
follows after isotropic averaging.

pp«»matio» for yzzzz and using Eqs.
(22) and (23) give

azz(J M)=azz(J M)+ 'yzzzz(J M)F

and the field-perturbed distributions as

exp( EAx /—k T)
p (J,M)=

g gg exp( EJ~/—kT)

(132)

(133)

yzzzz=(k» '( ;p..l3..-+-,'~a'..) . (129)

Equations (128) and (129), as well as (126) and (127), are
only the leading terms, though complete for a homonu-
clear diatomic, where of course the pP contributions are
zero.

So far, we have not taken into account the fact that the
distribution function p(v, J) or p(J) will also be affected
by the field and thus may contribute terms to certain
electric-field-related properties. The only important ex-
ample is the Kerr effect (Bishop and Shelton, 1988). Here
what is being measured is the field-perturbed a polariza-
bility. We start with Eq. (84) and reexpress it as

Assuming the diatomic is nonpolar,

Eq~ =EJ ,'azz( J—, M—)F (134)

gjexp( EJ/kT—)[1+,'Bb,aF2/—kT+ ]
p (J;M)=

g gz(2J + 1)exp( EJ /kT)—
J

(135)

where we have made use of Eq. (131). The property to be
measured is of the form

(azz/F )p p y y p (J M)azz( J M)/F
J M

=
—,'yzzzz+ g g ( —2Bb.a„„)(,'Bha„, )—(2J+1) '(kT) 'p(J) .

J M
(136)

We therefore define the distribution component as

yzz~zz= g 49p(J)ha. (kT) '(2J+1) '+B2
J M

4 J(J+1)
45 (2J —1)(2J+3)

or, with the high-temperature approximation,

yzzzz = ,', (kT) 'b,a„—. (138)

Adding this to yz»z, we find that the total rotational y
for this experiment in the limiting static case is

yzzzz=(k» '( ;I ..&..+-,'~-a'. , ) . (139)

The same approximate result can be found by classical

thermal averaging. In reality, in the Kerr experiment
both a dynamic and a static field are present, and Eq.
(139) is modified; this will be discussed in Sec. V.B.5.

Equations (126) and (127) have been used (Bishop and
Lam, 1988b) to calculate the y vibrational and rotational
contributions to the states U =0 and J =0, 1, . . . , 10 for
Hz+ (i.e., the sums over v and J are not made). These in-
termediate results are useful for analysis of high-
angular-momentum states of H2. For yzzzz (u =0), if
the sum over the eleven rotational states is made, one ob-
tains 585 a.u. , and the equivalent electronic property is

yzzzz (u =0)=28 a.u. As we have seen before, the vi-
brational contribution by far outweighs the electronic
contribution for y„„;we now have the same situation for
the space-fixed-field quantities. These ab initio calcula-
tions used essentially exact electronic and vibrational
wave functions and energies, something possible only for
a system as simple as H2+. In Bishop and Lam (1988c) a
comparison has been made for H2+ and for H2 of the ex-
act expressions, Eqs. (126) and (127), and the approxi-
mate ones, Eqs. (128) and (129). To Eqs. (127) and (129),
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a distribution term was added which for a measurement
based on the induced dipole moment, is three times' the
term for the Kerr experiment given in Eqs. (137) and
(138). Consequently,

15 (2J —l)(2J+3)

level was considered, and both expressions gave the same
yzzzz value: —183 a.u. The approximations for rota-
tion for both Hz+ and H& were seen to be acceptable only
at high temperature; at 295 K for U =0, the error is 10%
for H2+ and 30%%uo for H2, this dift'erence rejecting the
larger rotational constant for H2.

was added to Eq. (127) and —,', (kT) 'Aa to Eq. (129).
Results were given for the U =0 to U =5 vibrational
states for H2+. At 295 K for U =0, yzzzz is 584 a.u. and
unchanged by the approximations, but for U =5 the exact
and approximate values are 18704 and 21179, respec-
tively. So, once again, the approximation deteriorates
with the higher vibrational levels. For H2, only the U =0

2. Sum-over-states method

A complete and rigorous derivation using the sum-
over-states approach, such as Brieger (1984) gave for a,
has not yet been accomplished for P and y. What follows
is a sketch of how this could be done. We start with the
perturbation expressions for the electronic static hyper-
polarizabilities

&glp. l~ &&~lpyln &&nlpplg &

~-Oy=~ 'X X X
p mug nag ~mgng

glp. lm ~lpsln &&nlpylp && IPglg &

Yagys
I' mug nag pWg pig ng pg

&glp. lm &&mlpslg &&glp, ln &&nlpplg &

mug nag

(140)

(141)

where Ig ) and lm ) are ground- and excited-state elec-
tronic wave functions and Ace g is the energy di6'erence
between the two, gz indicates the summation over all
permutations of p, , p&, pz, and p&, and the bar means

& mlpsln &
=

& mlpsln ) —(glpslg )5 „. These expres-
sions can then be generalized so that the wave functions
and energies are the total rovibronic ones and the sums
are carried out over all electronic, vibrational, and rota-
tional quantum numbers; the dipole-moment operators
are understood to be defined with respect to laboratory
axes.

The resulting expressions can be partitioned into three
types of terms: (a) rotational (those involving a pure ro-
tational state of the electronic ground state as an inter-

mediate), (b) vibrational (those involving a rovibrational
state of the electronic ground state), and (c) electronic (all
the rest). Use of the approximation co, & co, & co, for the
electronic, vibrational, and rotational transition frequen-
cies, followed by closure and summing over the free-rotor
states with thermal averaging, wiH give results equivalent
to those in the previous section.

Let us, as an example, consider y' for a homonuclear
diatomic molecule. Since (glp Im ) =0 for transitions to
states within the rovibrational manifold of the ground
electronic state, we need take only contributions where
I
n ), the middle intermediate state, belongs to the ground

electronic state manifold:

=~'XX~' X
(glp Im)(mlp, ln &

I' nag m Wg PPlg pWg

&nlpylp &&plpplg &

pg

(142)

with Ig ) = Ie, u, J,M ), lm ) or lp ) = Ie",u",J",M") and
e "We, In ) = Ie, u', J',M') and u'Wu. This can be rewrit-
ten as

y'pys= g g ,'(a s)g„(aye)„g IRc—o„g,
I' nag

I

where

(a, ),„= g 2(glP Im)&mIP, In &/A'co, (144)

'The factor of three is really a question of defining y with
respect to a particular experiment. Here the assumption is
made that the experiment involves measurement of the induced
dipole moment, and y is extracted from the coe%cient of I' in
the expansion of this moment.

(~yp)„, = & 2&nip, lp) &plpqlg &l&~,s .
p&g

(145)

The expression in Eq. (143) can then be evaluated by
taking a statistical distribution over rotational states and
summing over the rotational quantum numbers. This we
shall leave until the next section, in which we shall con-
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sider dynamic hyperpolarizabilities and use the pro-
cedure of Shelton (1987a). Closure and the usual approx-
imations concerning rotation allow us to write Eq. (143)
as

y'p, = g y ,'(—ula,lu'&&u'larplu)/Aro„
P v'Av

(146)

where the integrals and energies are for vibrational tran-
sitions and o. & is the electronic polarizability.

B. Dynamic hyperpolarizabilities p( —ro; gaol, ro2)
and y( —co;rol ro2 ro3)

1. Introduction

As was stated in Sec. I, the importance of the dynamic
hyperpolarizabilities lies in their relation to the science of
nonlinear optics. Again, we are concerned with the
effects of vibration and rotation, and here much less pro-
gress has been made than was the case for the static
quantities; most of the investigations have been carried
out by just three groups, those of V/ard, Shelton, and

Bishop and their co-workers. Except for H2+ and H2,
the numerical results achieved have been based on the
use of empirical data for the required matrix elements
and energies, and these have been taken from infrared,
Raman, and hyper-Raman intensities and frequencies.
Because these data are often approximate and usually the
signs of the matrix elements are unknown, the final re-
sults are more qualitative than quantitative. The experi-
mental quantities obtained from nonlinear optical pro-
cesses, and with which we want to make a comparison,
are usually decomposed into a temperature-dependent
and a temperature-independent part, so that, if we ignore
the small temperature dependence that comes from stan-
dard vibrational averaging (see Sec. III), the
temperature-independent part can approximately be as-
sumed to encompass the pure vibrational contributions,
and this is where most of the theoretical effort has been
placed. We shall, for the sake of clarity, concentrate on
just two processes: the Kerr effect and electric-field-
induced second-harmonic generation (ESHCx).

The formulas for the dynamic hyperpolarizabilities,
which are the counterparts to Eqs. (140) and (141), have
been given by Orr and Ward (1971), they are

&glp. lrl2 & & mls, l~ & &nl @pig &

P Pr(
—ro;ro, , ro2) =A'

P m, nag COmg CO~ M ng CO )
(147)

&glp. lrrl &&mllusln &&llllM, lp &&plpplg &

y prs( o3;ro„co2,co3)=fi-
t I n ~ (~mg ~cr )(~ng ~1 ~2)(~pg ~l )

m, nag

&glP. lm & & rnlPslg & &glPrlI3 & & llllMplg &

(ro g
—a) )(ro„g —co, )(co„g+co2)

where g~ now means the sum over all permutations of
the pairs: (p / co~), (pp/ro—l), (pr/co2), (ps/~3).
reader is reminded that our definitions of p and y give
values that are twice and six times as great, respectively,
as those of Ward and co-workers. Equations (147) and
(148) will be the basis for our discussion. For the Kerr
effect we shall also give an alternative formulation. The
generalization of Eqs. (147) and (148) and subsequent
decomposition into electronic, vibrational, and rotational
contributions will follow as in the preceding section.

2. Classical isotropic averaging

(151)

1
)ZXXZ 30( ygtffg 1 g7fg yg'ggg) (152)

Xxxxx
=

'Yxxyy +~xyxy +~xyyx

For the Kerr eFect (K), we have

(153)

where the laboratory axes X, Z, etc. , follow the sequence
of the frequencies ~, coI, co~, and co3. Also, for a diatom-
ic molecule, isotropic averaging over the equivalent x and

y axes gives

Our initial discussion will assume that rotation is
frozen and that connection to experiment is to be made
through classical isotropic averaging. To this end the
following relations are employed (Bogaard and Orr, 1975;
Shelton, 1986c):

pK (p)K

=
—,
'
[P~~, ( —ro; ~o, 0)+2P(,g(

—co, ro, 0)],
(154)

1=—„(y«„„+y&„&„+y&„„&)

& y )zZxx —,'0 (4'Ygg„„—yegg„—yg„gg)

(149)

(150)

p, =&p&

=
—,[2P~@(—ro; co, 0)—P~,~(

—co; ro, 0)],
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pIC 3 (pK pK)

=
—,0 [3pg, g( co—;Co, 0) p—~~, ( —co;co,0)], (155)

yi =
& y & xxzz

=
—,', [2y~~„„(—co; c0,0,0) —

y&„&„(
—co; co,0,0)], (157)

=
—,', [y~~„„(

—co; co, 0,0)+2y ~q~„(
—co; co, 0,0)], (156)

=
—,', [3y~„~„(—co;co, 0,0)—y+„„(—co;co,0,0)] .

For the ESHG process (E),

(158)

P~~
= &P&zzz =—[2Pg ( —2co;co, co)+P g( 2cc);co,co)],

&P&zxx —[2P qq( 2~'~ ~) P@,( 2~ ~ ~)],
& y &zzzz —[2ygg„„( 2co'co c0,0)+yg„„C(—2co;co, co, O)],

yJ. & y &zxxz ig [2ygggg( 2coico~co~O) yg&&( 2co;co, c0, 0)]

In the above equations z denotes the molecule-fixed electric dipole axis.

(159)

(160)

(161)

(162)

3. Vibrational component

a. Cfassicai averaging

For the present we ignore (or freeze) rotation and use Eqs. (147) and (148) and the procedure of Sec. V.A.2. This
leads (Bishop, 1987a) to the following molecular-axis-defined vibrational polarizabilities (only terms up to second order
are given explicitly):

PaPy ~a~~1~~2) ~ g [(I a)ok(~Py)ok[(~k ~a ) +(~k+~a) l+(1MP)ok(~ay)ok[(cok Col) +(COk+C01) l

+(Py)ok(~ p)ok[(~k ~2) +(~k+~2) ']I +™n (1M. )(11cp)(11cy)

y py5( Co Coi C0»~3) ~ X [(Ccap)ok(1zys)ok[(cok C02 C03) +(Cok+C02+C03)
k

+(cc )ok(~p5)ok [(cok coi c03) '+(cok+coi+co3)

+(~.5)Ok(~P, )Ok[(~k —~1—~2) '+(~k+~1+~2) ']

+(V.)Ok(PP, 5)Ok[(~k —~.) '+(~k+~. ) ']
+ (Pp)ok (p 5)ok I. (Cok C01) '+ (Cok +Col ) ']

+(P )Ok(P P5)ok[(~k ~2) '+(~k+~2) ']
+ (P5)ok (PaPy )Ok [(~k ~3) + (~k +~3)

+ terms in (II, )(Pp)(cc 5) and (P )(Pp)(P )(P5),

(163)

where cok are the vibrational frequencies and, for example, (a p)ok is a vibrational transition matrix element of the a p
electronic polarizability component; the prime indicates omission of the vibrational ground state (0) in the summation.
For the Kerr e8'ect the axial components are

P,"„(—co;co, O) =111 ' g'2(p, )ok(n„)ok[(cok+co) '+cok '+(cok —co) ']+
k

y,',zz(
—co;co, 0,0)=A' ' g' I2(1z„)ok[(cok+co) '+cok '+(cok —co) ']

k

+2(V. )ok(P,.)ok[(~k+~) '+2~k '+(~k —~) 'l]+
and for ESHG they are

(165)

(166)
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P~»( 2toq co~ co) A Q (pg )ok(a» )ok [(cok + 2ol ) +2(cok +to) +2(cok to) +(&ok 2'�) ]+
k

y,'„,( 2—to;to, to, O)=Pi g' I(a»)ok[(alk+2to) +2(tpk+pz) +2(cok —co) +(cok —2al) ']
k

+ (p~ )pk(P»~ )pk [(cok +2co) +2(cok +co) +2cgk +2(cok —co) + (cok —2') ]]+

(167)

(168)
After classical isotropic averaging, we obtain for an axially symmetric molecule the following leading terms for y:

Y(~(+ ) y (~~k ) $(p)ok(p)ok 1+
z

+ (~tr)pk 1+ z +2(iT)ok 1+
1 —x2 1 —x 1 x

(169)

7'D+)= g ('Iitpk ) 9(p)ok(P)ok 1+
z

+ ~~(Atz)ok z
—1 +2(a)ok

k 1 —x 1 —x
(170)

X (~~k ) (P) ko(p) k01+ +
1 —x

+ —,', (ba)ok 2+
1 —4x 1 —4x 1 —x

+2(a)ok . +—2 1 2
1 —4x 1 —x

(171)

Xl~(E) g (~~k ) 9 (P)ok(p)ok 1+ + + 45 (~~)ok
—1 2 2 1 4 2 3

1 —x 1 —4x 1 —x
1 —2 1

+2(~)M
1 —4x 1 —4x

(172)

where x =to/cok.
Equations (169) and (171) have been used by Bishop

and Lam (1987c) to obtain the vibrational polarizabilities
for these processes for H2+. Values were reported for the
laser wavelengths A, =4880, 6328, and 6943 A.

Elliott and Ward (1984) investigated vibrational hyper-
polarizabilities for CH4, SF6, and the

fluorinated

methanes. Their strategy was based on retaining only the
enhanced terms [see Sec. EI.C] in the generalization of
Eqs. (147) and (148). For example, in third-harmonic
generation their y'( —3';co,co, co) would be zero, since
there are no enhanced terms, as all the denominators
contain the laser frequency m. They did not explicitly
carry out isotropic averaging, since their formulas were
directly related to empirical data. Because of the lack of
such information (particularly with respect to the signs of
the matrix elements), their results, overall, were not con-
clusive. Nonetheless, they did show that vibrational con-
tributions to second hyperpolarizabilities are significant
in certain cases, as for example in the Kerr effect for the
fluorinated molecules, where they are comparable with
the experimental y values. However, this conclusion was
based on an equation (17' in their paper) that, because of
the "enhanced term" procedure, ignores the 1owest-order
terms (in a perturbation sense), which are precisely those
given explicitly in Eq. (166). They retain only terms of
the type (a)(p) /tok —the doubly enhanced ones. This
would seem to be a doubtful procedure. In other respects
their working equations for p'(K) and y'(E) are con-
sistent with those we have given. It should be stressed
that their formulas necessarily will not be correct in the
limit ~~0.

Mizrahi and Shelton (1958a, 1958b) have used Eq.
(171), without the (p)(P) term (which is zero for a
homonuclear diatomic), to evaluate y~~(E) for Hz and Dz.
Taking ab initio theoretical values for (ba)p, and (a)p,
and summing only over the fundamental vibration, they
found (Mizrahi and Shelton, 1985b) that at pl =0,
y~~(E)=184 and 178 a.u. for Hz and Dz, respectively.
These values agree with those of Bishop et al. (1990) and
may be compared with y~~(E)=671 and 652 a.u. They
also subtracted vibrational polarizabilities, calculated at
nonzero frequencies, from their experimental data for H2
and extrapolated the results to co=0. They did this in or-
der to be able to make a comparison with theoretical esti-
mates of the static y~~(E); their resulting value is 2.7%
higher than it would have been by extrapolation of the
raw experimental data, thus showing the importance of
the vibrational polarizability correction. Similarly, the
Hz. Dz ratio for y~~(E) was changed by 1.2% at to=0,
when the vibrational corrections were made to the exper-
imental results, and is thereby closer to the theoretically
estimated ratio. They showed (Mizrahi and Shelton,
1985a) that for Hz aild A, =5145 A, y(~(E)—=y~((E)/100,
again in line with Bishop et al. (1990): Equation (171)
shows that as co —+ ~, so does x, and hence the vibration-
al y polarizability for ESHG experiments drops to zero.

In some recent papers by Shelton and co-workers on
the vibrational hyperpolarizabilities y' for different non-
linear optical processes for COz (Shelton, 1986a), CH„
(Shelton, 1986b), CF4 (Lu and Shelton, 1987), and SF6
(Shelton and Ulivi, 1988), Shelton follows much more the
spirit of Elliott and Ward (1984). This is necessitated by
the fact that for polyatomic molecules, the expressions
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for y' are very complex —one need only look at Eqs.
(5)—(8) in Shelton and Ulivi (1988). Shelton uses the
"enhancement" approximation and takes the needed in-
tegrals from experiment as well as using, as with all the
results in this section, the classical isotropic averaging
procedure . For CO2 he concludes that y "(E) is

insignificant, and for y'(K), where he only seriously ac-
counts for the doubly enhanced terms, he finds
0+2X10 C m J . Singly enhanced terms such as
(a) /A'cok contribute 0.4X10 C m J, and those
such as (p)(P)/A'cok contribute 2X10 C m I
The doubly enhanced ones contribute —l. l X l0
C"m" J (assuming all matrix elements are positive).
The electronic contribution to y(K) is on the order of
73X10-63 C4m4J-3 at 6328 A. For CH4 he makes no
specific calculations but uses the principle that difFerent
processes will have difFerent preponderances of the vibra-
tional contribution, this is made limpid by comparing,
for example, Eqs. (169) and (171). If values of y for
different processes plotted against mz = =m +m]
+ cc)p +Q)3 fall on the same line, then one can assume that
the vibrationa1 contribution is negligible, since it can be
shown (Bishop, 1989) that y' is approximately linear in
coL. This is true for CH4, and the obvious conclusion is
drawn. Previously, Elliott and Ward (1984) had estimat-
ed y'(K) for CH~ to be about 3% of the electronic hyper-
polarizability and y'(E) to be about a tenth of this. For
CF4, considering only doubly and singly enhanced terms
for the Kerr and ESHG processes, respectively, Lu and
Shelton (1987) have found significant vibrational contri-
butions: 30—40% for the Kerr process and 5% for
ESHG. For SF6, Shelton and Ulivi (1988) do not make
the "enhancement assumption, " and all terms are re-
tained. Though the empirical data that are incorporated
are often sketchy, they And the dramatic result that for
co=0, y'=-20y'. At optical frequencies for the three
processes, Kerr, ESHG, and third-harmonic generation,
the two components are still comparable in magnitude,
though y' is now smaller.

b. Quantum-mechanical averaging

For simplicity and clarity, we shall confine our discus-
sion of quantum-mechanical averaging to a homonuclear
diatomic molecule and to the second vibrational hyper-
polarizability. Following Shelton (1987a), we start with
Eq. (148), make the same energy approximations that led
to Eq. (143) in the static case, and, to simplify the isotro-
pic averaging, express the result in terms of irreducible
spherical tensors. We can then multiply by the popula-
tion distribution p( J ) and sum over the free-rotor states
after rotational-angle integration has been achieved. The
vibrational component is then given by

y"= g g [Ao(0(J)~cx~u(J) }

+ A, (0(J)~aalu(J+2) &'

+ A2(0(J)iso, iu(J) )
+A, (0(J+2)~Aalu(J)) ] .

We have assumed that all the molecules are in the lowest
vibrational state i0) and the constants A; are

Ao =p(J)f(E, ~ E—o~),

A i =[(/+1)(J+2)/(2J+ l)(2J+3)]

Xp(J)f'(E„~+2 Eo—J ),

A2=[2J(J+1)/3(2J+3)(2J —1)]

Xp( J)f '(E, J —Eo q ),

A, =[(J+1)(J+2)/(2J+3)(2J+5)]

(174)

(175)

(176)

XP(J)f'(E, J Eo,z+—2 ) (177)

4. Rotational component

The rotational dynamic hyperpolarizabilities may, in
the manner used before, be found from Eq. (173) by tak-
ing the u=0 term (excluded from that equation) and
dropping the terms in A0 and A2. This was first done by
Shelton (1987b). Here we give an extension of that result
by including the leading (p)(P) term, which arises for a
heteronuclear diatomic molecule:

the frequency factors f(E„z Eo J), —etc. , are given in
Table IX.

Bishop and Lam (1988a) and Bishop et al. (1990) have
used these equations in a study on H2 and 02 for the
Kerr and ESHG processes. Some sample results are
given in Table X for H2, the static value was previously
referred to in Table VI. As expected (see Table IX), the
vibrational component compared with the electronic
component is less significant at optical frequencies and
only —l% for ESHG, as was the case with classical
averaging.

For co=0, Eq. (173) is, of course, compatible with Eq.
(126), and we may consider the same approximations as
we did for that equation, i.e., neglecting the J dependence
of the vibrational wave functions, ignoring the rotational
contribution to the energies, and taking the sums only
over the fundamental vibrational levels. The resulting
expressions are equivalent to the classically averaged
ones of Eqs. (169)—(172). Shelton (1987a) has investigat-
ed these approximations and found them to be important

0

only for the Kerr efFect, for which at 6328 A the vibra-
tional y [see Eq. (158)] changed after the approxima-
tions from —0.041 to —0.032 for H2 (in units of
10 C m J ) and from 0.001 to 0.007 for D2. For
the other molecules he considered (Nz and Oz), there was
no change. The approximate (classical) formula was used
for the same four molecules for evaluating y" for several
other nonlinear optical processes.
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TABLE IX. Frequency factors for Eqs. (174)—(177) with
z =Aco/X.

TABLE XI. Frequency factors for Eq. (178). For f(x):
x coJ+i J and y =co/coJ+, z', for f (x): x =coj+2 J and

7 =/~z+z, j ~

f(x)

f'(x)

Kerr-
ff

Kerr-l
ESHG-

ff

ESHG-l

Kerr-
ff

Kerr-J
ESHG-

ff

ESHG-I

2[1+2(1—z2) ']/x
2/x
2[(1—4z~} '+2(1 —z~} ']/x
2(1—4z ) '/x

4[1+2(1—z ) ']/15x
2[3(1—z )

' —1]/15x
4[(1—4z')-'+2(1 —z')-']/15x
2[3(1—z )

' —(1—4z') ']/15x

f(x)

Kerr-ff
Kerr-l
ESHG-

f f

ESHG-I

Kerr-]/
Kerr-l.
ESHG-

f f

ESHG-l

(12/x)[1+(1—y') 'j
(4/x)[1+(1 —y') ']
(6/x)[1+2(1 —y') '+(1—4y') 'j
(2/x)[1+2(1 —y~} '+(1—4y2) ']

(8/x}[1+2(1—y') ']
(4/x}[3(1—y') ' —1]
(8/x)[2(1 —y') '+(1—4y'} ']
(4/x)[3(1 —y') ' —(1—4y') ']

(J+1) (2J+1) p(J+1)
y 9 gf J+lyJ 9 1+lyJ J+lyJp (2J + 1 ) (2J +3) (J)J P

(J+1)(J+2)
1

(2J+1) p(J+1)
(2J+1)(2J+3} (2J+5) (J)

(178)

The frequency factors f and f ' for the Kerr and ESHG
processes are given in Table XI. As we have noted previ-
ously, to this expression a distribution term y '", neglect-
ed by Shelton (1987b), must be added for the Kerr experi-
ment (Bishop and Shelton, 1988). This is to account for
the fact that the electric field changes the distribution of
populated rotational states and contributes an additional
factor for this particular nonlinear optical process.

We now make the high-temperature approximation
(iriB& ((kT) and use Eqs. (22) and (23) for the terms in
square brackets in Eq. (178). This gives

kTy "=—(b,a) /90 (182)

kTy1(E) =
—,'(p)(P)(1+2a+c )+ —,', (ha) (2b+d ),

(183)

kTy"(E)= —'(p)(P)(1+2a+c)+ —,
' (ba) (3b —d) .

(184)

In these equations

kTy~~(& ) = 3 (p )(P)( 1 +a ) + —,', (b )'( 1 +2b ) +kTy
~~

"'

(179)

where

~=[1 (~/~J+i, &)—'] '

b =[1—(~/~~+. ,J)'] '

4(ro/roe+ i ~)']

d =[1—4(co/~oJ+z, j) ]

(185)

(186)

(187)

(188)

kTy "'=(ha) /45
ll

(180)

[see Eq. (138)],

kTyz(K) = ~(p)(p)(1+a )+ —,
' (ba) (3b —1)+kTyi"',

(181)

where the bar indicates a mean rotational-energy separa-
tion. These expressions wi11 be used in the next section,
where we give an analysis of two earlier theoretical treat-
ments of the Kerr effect.

5. More on the Kerr effect

4880-Kerr
4880-ESHG

670.8
753.4
969.1

183.7
63.5

—6.8

223.6
247.8
337.8

61.2
64.2

—09

TABLE X. Electronic and vibrational hyperpolarizabilities (y)
for H2 {in a.u.). From Bishop et al. (1990).

A, /A ~lI Vl

The original treatment (Buckingham and Pople, 1955;
Buckingham, 1962a; Buckingham and Orr, 1968), for ob-
taining useful expressions for y was inspired directly by
the experiment itself, namely, to consider the effect of a
uniform static electric field I' on the optical polarizability
a(ro) in directions parallel (Z) and perpendicular (X) to
the field. The standard formula for a(co) was then adapt-
ed by changing all the wave functions and energies
therein to 6eld-perturbed values:
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2~'.
g I

& g'IP I
~ '& I'

nag COng CO

(189)

The I' term in azz —ex&, which leads to y, was then
extracted by employing perturbation-theory expressions
for the wave functions and energies. The results of this
treatment are exactly equivalent to those we have previ-
ously derived, although this is not always obvious. One
apparent difhculty in making the equivalence is that the
perturbation expansions introduce energy differences be-
tween tioo excited states (say, A'co „),and such differences
do not appear in Eqs. (140) and (141), for example„where
all energies are with respect to the ground state. The
trick for conversion is best demonstrated by considering
the following steps, starting with a term in the original
method and ending with a term in Eq. (141); A„k is an in-

tegral product symmetric in n and k, and the prime
denotes ground-state omission:

Ankoing ~kn
n kWn

iX X Ak(~g~k +~kg~k)
n kAn

g ' A„k(co„cok )cok„—'
n kAn

kTy„= —', (p)(P )+—,'(&~)' . (194)

(P ) is the value of P, as defined in Eq. (155), after
averaging over the vibrational ground state and ignoring
centrifugal distortion; similarly for (p) and (b,a).

From Eqs. (169) and (170),

y, =g'(fico„) 'g„—', (p)o„(P )o„ 1+
1 —x2

+ —,', (b,a)0„3+
1 —x

+6(a)0„
1 —x

(195)

where x signifies (colco„) and ~n ) signifies the fundamen-
tal vibrational-mode wave functions of degeneracy g„of
the symmetric top. The previous formulas have been
simply adapted to the symmetric-top case by interpreting
(p)0 (P )o, etc. , as the appropriate moment or polari-
zability component(s) with x, y, or z symmetry to go
with the same-symmetry normal-mode vibration In ); for
example, Eq. (155) specifies the z symmetry P . Only
fundamental levels are included in the vibrational sum.
FOr co &&0 fOr all co,

X nk( kg ~ng )(~kg ~ng ) &~,g~kg y, = g' (fico„) 'g„[—,(P )O„(P )o„+—', (Aa)0„]
n kAn

(196)

r~X X Ank(~ng o kg +oing ~kg) ~

n kWn

kTy„= —,'(p)(P)(1+a )+ —,', (&~)'(3+b)+kTy f;„,
(191)

with

Hence, for co=0 (a =b =1),
kTy„= —', (p)(P )+ —,'(ba)

and for co))0 (a =b =0),

(192)

which is a term in Eq. (141).
The original approach was used in 1981 to estimate vi-

brational eFects in Kerr measurements of the symmetric
tops CHC13 and CHF3 (Bishop, 1981). It is instructive to
rederive these results with the methods detailed in this
review and make a comparison. A number of approxi-
mations were originally made: (a) classical thermal
averaging, (b) truncation of the perturbation expressions
so that no terms of order higher than co„' appeared (co„
is the vibrational energy), and (c) the assumption that the
optical frequency ro))0 for all co. We shall also use (a);
we shall use (b) insofar as we shall consider only what we
have been calling "leading terms, "but we shall not intro-
duce (c). We shall give results up to (kT) ', though
(kT) terms were included in the original work.

From Eqs. (154)—(158) and (179)—(182), we obtain

We now assume that the vibrational component of Au
is included in b,a in Eq. (194), but that the vibrational
component of p is not. There is therefore an additional
term:

kTy„~„=—', (p)(P„), (197)

with

p„= g'(A~„) 'g„(p)O„6(~)0„

+—', (ha)O„3+ 1

1 —x

(198)

This result has been derived from Eqs. (163) and (155).
Alternatively, we could have collected vibrational-
rotational terms from the partitioning of the generalized
version of Eq. (148).

If we look at Eqs. (37) and (38) of Bishop (1981)for y
we see that Eq. (194) is present but Eq. (195) is represent-
ed only by the first term —the second was not present be-
cause Eq. (9) of that work was not sufficiently complete
for a full delineation of y . Equation (198) is present in

Eqs. (39), (41), and (42) of Bishop (1981). To obtain the
terms eliminated in Eq. (191) by the restriction co))0
would require adding to the original field-perturbed opti-
cal polarizability the terms nzz, ez&, which are field-

perturbed versions of the rotational dynamic polarizabili-
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ty of Eq. (109).
Use of empirical data for the matrix elements and en-

ergies showed P„/P -=25% for CHC13 and 37% for
CHF3.

This method had been used earlier by Buckingham and
Orr (1968) for diatomics in general and Hz in particular.
They ignored the inliuence of vibration (except for zero-
point motion} and handled rotation by quantum-
mechanical methods —a necessity when dealing with H2,
for which the classical approximation ABO &&kT is espe-
cially inappropriate. They found

kTy„= —,'(p)(P )(1—
—,'oo+ —,', oo+ . )

+ —,'(ha) (1—oo+ —,', cro+ . ), (199)

which can be compared with Eq. (194), or, for a nonpolar
dlatomlc,

kTy„= —,'(ba) (1—cro+ —,', oo+ . ), (200)

where cr0=ABp/kT The bracketed expression in Eq.
(200) is 0.76 for H2 at 300 K and, except for a few hy-
drides, is normally not significantly difFerent from unity.
Equation (199) can also be derived from Eqs. (137) and
(178).

Again, it was implicitly assumed that the optical fre-
quency co is much greater than zero. If this were not so,
terms such as

(azz/F )~ p= g 2(flcog g ) ( 1 z ) (2J+ 1 )

X g I& JMla, lJ ~&l' (201)

would have to be incorporated, and this would lead to

kTy„= —,', (ha) 4+ (1—oo+ —,', cro+ )
1

1 —z

(202)

for H2, where z —co/Q)g g+~.

VI. FIELD-GRADIENT POLARIZABILITIES ( A ~ 8,C)

A. Definitions

So far, we have dealt only with uniform electric fields;
however, it is also of interest to consider the nonuniform
ones, which arise, for example, when a molecule is in the
presence of a set of external charges. The perturbed
Hamiltonian, Eq. (1), then contains ,'0 pFap, where——
I'

I3 is a field-gradient tensor. The energy is changed by
[see Eq. (2)]

y

—6C PygF PI'y~ —.. .

where A, B, and C are field-gradient polarizabilities
(dipole-quadrupole, dipole-dipole-quadrupole, and

quadrupole-quadrupole, respectively).
We shall consider 0 & to be the traceless operators

Oap g 7(( 2 ~la~i p 2 i 5ap) (203)

where q; is the charge on the ith particle at r . However,
recently, definitions of A, B, and C have been used that
are based on the traced operators (Applequist, 1983,
1984; Liu and Dykstra, 1987; Augspurger and Dykstra,
1988}

Qap X ~l Ia !p (204)

We shall distinguish these by a tilde: 3, B, and C. Rela-
tions exist between the traced and traceless properties
and have been given in Jameson and Fowler (1986), Liu
and Dykstra (1987; see their footnote 50), Augspurger
and Dykstra (1988) (though the footnote to Table EI is in
error), and Maroulis and Thakkar (1988):

A p
=

—,'(3A
p~

—5p~A p„),

+ap, ys Y~(3~ap, ys 5rs~apii } '

C p s= —,'(3C p s 5pC„—„ys

(205)

(206)

5rsC—ap„~+ 3'5ap5ysCp„~, ) . (207)

where gi, is the sum over the permutation of the pairs

( —co /iM ) and (co, /Op~),

& p, ~s(

=~'XX X
&glp. lm &&mIPpl~ &&~ IOrslg &

(co g co )(co„g co2)

(209}

and gi, is the sum over the permutations of the pairs
( —co /iMa), (co&/ipp), and (co@/Ozs), and

(glo plm &&mlOy, lg)
C pcs( —co;co, )=—,'A

P mug comg

(210)

where gi, is the sum over the permutation of the pairs

More recently, Dykstra and co-workers (Liu and Dyk-
stra, 1987; Augspurger and Dykstra, 1988) have used a
factor of —,

' in Eq. (204). When this is done, the factors of
—,
' and —,

' do not appear in Eqs. (205)—(207); moreover, the

properties they calculate are frequently given the oppo-
site sign to the usual convention.

Following the formalism of Orr and Ward (1971), the
perturbation-theory expressions for the dynamic field-
gradient polarizabilities are

(gfp Im)(mfOp Ig)
A p (

—co;co()=Pi
P m&g comg

(208)
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( —co /0 ti) and (rui/Ors). These expressions are such
that, in the static liniit (all frequencies zero), we retrieve
Eqs. (13) and (14) of Buckingham (1967). Equivalent, but
not identical expressions have been given by Buckingham
and Longuet-Higgins (1968) for 8 tt rs( —co;ro, 0) and
8 ti rs( —co;O, co). Identical expressions for A ti (

—a~;ru)

and C tirs( —co;ro) are to be found in Eqs. (20c) and
(20g), respectively, of Buckingham (1967).

For atoms, the static field-gradient polarizability C re-
quires some further discussion, since slightly different
definitions (by a numerical factor) are often used. For ex-
ample, for C„„Eq.(210) leads to

c„„=-',e-' y l&glo„lm ) I'/~, , (211)IWg

Electronic'
Vibrational

—54.24
136.13

+xx, zz

8.28
18.08

C„„
2.18
7.86

Electro nicb

Vibrational

—90.3
10.67

34.4
S.01

5.98
0.27

'Vibrationally averaged.
bAt R, =1.4ao [from Bishop et al. {1990)].

B;,„=2k' ' g (a„)ok(8 )ok/ruk
k&0

(217)

TABLE XII. Comparison of electronic and vibrational field-
gradient polarizabilities for H2 and H2 (in a.u.). From Bishop
and Lam (1987b).

a, =M ' g I(glO„lm &I'/co, =3C„„. (212)

whereas Sternheimer (1954), Dalgarno (1962), and recent-
ly Thakkar (1981) define a quadrupole polarizability, in
analogy with the a (dipole) polarizability, as

",-= & ' X (tz )ok«-)ok/ruk
k&0

C.".
,-=3& ' & «, )ok/~k

k%0

(218)

(219)

—1 =3
g CaP, aP p Czz, zz

For diatomic molecules the isotropic average static po-
larizabilities, using

&P &»» = '(P~~~~+ P—~.~.+P~-~) (214)

Buckingham (1967), in Eqs. (7d) and (sa), uses an aver-
age, for an atom, which he defines as

where z is the bond axis. The other components are ei-
ther zero or simply related by definition, e.g. ,

XX~XX 2 XX~ ZZ ~ XX~XX 4 Zz~ ZZ

Bishop and Lam (1987b) have evaluated these com-
ponents for H2+, H2, and Nz. As can be seen in Table
XII, where a comparison is made with the corresponding
electronic components, vibrational field-gradient polari-
zabilities are apparently quite significant.

Later, the same authors (1988b, c) made more realistic
calculations for H2+ and H2 by using space-fixed axes, in
the manner of Sec. V. A. l.b. The perturbation to the ro-
vibrational Schrodinger equation was taken as

(8 )zzzz =
—,', (8„„+48,„,+8 „+48 „„), (2.1S) E'= —

—,'~zz+z —
—,'ezz+zz (220)

&c&„,= —,', (c„„+sc„,„,+sc„.„„). (216) with

B. Results and

ozz =u+ —,
' b,aPz(cos8) (221)

Until recently, only static values of A, 8, and C have
been determined. If rotation is ignored, then
perturbation-theory expressions for the vibrational field-
gradient polarizabilities of a homonuclear diatomic mole-
cule are readily found in the manner used for o.' in Sec.
IV. A. l.b or y' in Sec. V. A. l.a:

Ozz =OP2(cos8),

where 0=0„and 0 is the angle between the laboratory
(Z) and bond (z) axes. This led, after introducing a dis-
tribution over populated rotational states, to the follow-
ing polarizabilities for the vibrational state U:

szzzz= —,', y y [& i & u(J)lolu'(J+2) & & u(J) l~~lu'(J+2) &+ ~2& u(J) lolu'(J) & & u(J)l~~lu'(J) &

+ A3 (u(J+2) lolu'(J) ) (u(J+2)lbalu'(J) ) ] (223)

and

g [ 2, I ( u (J ) I
0 I

u '(J+2 ) & I
'+ a, I & u (J ) I o I

u '(J ) & I

'+ ~ 3 I & u (J+2 ) I
o I u '(» & I

'&, (224)
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TABLE XIII. Comparison of exact and approximate field-gradient polarizabilities for H2 and H2 (in
a.u.};U=O and T=295 K. From Bishop and Lam (1988c).

H2+ &zzzz
t-zzzz

Exact

13.84
1.33

Vibration
Approximate

15.74
1.57

Exact

841
170

Rotation
Approximate

936
191

H2 &zzzz
&zzzz

1.21
0.17

1.51
0.22

213
51

279
67

where

Hi=3 (J+1)(J+2)
(2J+ 1)(2J+3)p(u, J)(E„~~+z EUq) —', (225)

J(J+1)
(2J+1)(2J—1)
(J+1)(J+2)

(2J+3)(2J+5)
(227)

«u(J)lolu(J) &(u(J) fx~fu(J) &, (228)

J(J+1) p(u, J)
(2J —1)(2J+3) kT

x f(u(J) lefu(J) & f'. (229)

Approximations to these equations were made by ig-
noring centrifugal distortion and the rotational energy
when u'Wu, and, assuming kT ))fiBo, this gave

&u(o) fo fu (0) &&u(0) faalu (o) &

ZZZZ 7

v Av v', 0 V, O

I & u(o) lelu'(o) & l'
ZZZZ E —Eu'Au v', 0 VO

(231)

+zzzz 2( u(0) lal u(o) & & u(o) leal u(o) & /15kT, (232)

Czzzz ——
f & u(O) le f

u(O) & f'xi SkT . (233)

Classical averaging of the molecule-Axed axis com-
ponents would lead to the same approximate expressions.
Some sample results, shown in Table XIII, indicate that
these approximations are more acute than they were for
yZZZZ.

Malik (1988), using the derivative Numerov-Cooley
method, has calculated the vibrational components of the
A, B, and C tensors of FH. Rotation was ignored and
no classical averaging was carried out. However, several
vibrational states were investigated and some of his re-
sults for the ground state are given in Table XIV for the
bond-axial components. In this table we compare the vi-

The rotational polarizabilities were found by letting v'= v

in Eqs. (223) and (224) (having excluded terms in A2 ) and
adding the following distribution terms:

J(J+1) p(u, J)
(2J —1)(2J+3) kT

brationally averaged electronic component with the total
vibronic component, i.e., vibrational polarizability in-
cluded. It is clear that the vibrational polarizability
makes an important contribution to the 8 and C tensors.

Augspurger and Dykstra (1988) have used the same
method (frozen rotation) and numerical technique (DNC)
to compute the vibronic 3 and C tensors for H3+. Only
the dominant symmetric-stretch vibration was con-
sidered. Their values for v =0, 1,2 were compared with
the equilibrium electronic ones (not the vibrationally
averaged ones), so that one cannot extract the pure vibra-
tional polarizability. This is the first time that vibration-
al efFects on these properties have been calculated for a
polyatomic molecule. It was found that, in general, they
increased with vibrational excitation. Similar calcula-
tions were made for H2, but they may not be very accu-
rate, since the basis set used gave, using Eq. (207),
C; „(R,)=5.355 a.u. (x is the bond axis), compared
with a richer basis set, which gave C'„(R, ) =5.936 a.u.
This latter result is close to the very accurate value of
5.97 a.u. (Bishop and Cheung, 1979b).

VII. NON-BORN-OPPENHEIMER METHOD

TABLE XIV. Comparison of vibrationally averaged axial-
electronic polarizabilities with the total values for FH, U=O (in
a.u. ). From Malik (1988).

Averaged
electronic Total

—2.269
36.54
4.612

—2.646
22.50

5.448

Only one polarizability calculation (Bishop and
Solunac, 1985) has been attempted that does not incorpo-
rate the separation of the wave function into electronic
and nonelectronic parts, and even then it was only for the
simplest molecule H2+ (and its isotopes) and with the
electric field aligned with the bond axis. To that extent,
it is only a model calculation, since we cannot reproduce
such a condition in the laboratory. To the complete
Hamiltonian, the perturbation —pF =zF was added. In
fact, if one takes the total dipole-moment operator and
excludes the center-of-mass component, the proper per-
turbation for this study would be (Wu, 1952; see also

Rev. Mod. Phys. , Vol. 62, No. 2, April 1990



372 David M. Bishop: Molecular motion in electric fields

Bishop, 1974) z(1+m, /M)F, where M is the total molec-
ular mass; the results in Bishop and Solunac (1985) were
later corrected (Bishop et al. , 1986) to account for this:
notably, the y values must be multiplied by (1+m, /M ) .

A variational calculation was made for a series of small
finite fields using the following wave function:

9 14 15
'p= X X X Ckkjk

i =0 j=O k=O
(234)

X exp( x /2—)Kk (x ), (235)

where g' and g are the usual elliptical coordinates of the
electron, R is the internuclear separation, x =y(R —5),
Kk(x) are the Hermite polynomials, and a, P, y, and 5
are optimized nonlinear parameters.

The most interesting final result was for y„„,which
was extracted from a polynomial fit of the perturbed en-
ergies, and which necessarily includes the full effects of
vibrational motion. The value for the lowest quantum
state of H2+ was 2. 19X10 a.u. A more precise value,
which avoids the fitting procedure but uses the same vari-
ational wave function and integrals, can be found from
the perturbational-variational Rayleigh-Ritz method
(Silverman et aL, 1986). This value is 2.19309X 10 a.u.
The fact that, using the results in Bishop and Lam
(1987b), the addition of a vibrationally averaged Born-
Oppenheimer y,'„, and a perturbation-theory-calculated

y,"„, gives 2.202X10 a.u. (if an adiabatic potential
curve is employed for finding the vibrational wave func-
tions) or 2. 197X 10 a.u. (with a Born-Oppenheimer
curve) shows that the errors incurred by the Born-
Oppenheimer approximation must be extremely small.

VIII. CONCLUSIONS AND PROSPECTS

The study of the effect of an electric field on electronic
motion is "old hat, " as is to a certain extent, its effect on
rotational motion ("orientation") and vibrational motion
("atomic polarizabilities"). In the past, however, these
studies have been compartmentalized —the electronicists,
vibrationalists, and rotationalists have kept to their
respective lasts. But a molecule is a whole, and all its
motions are going on at the same time. Consequently, it
behooves us to consider the "grey" areas of vibration in
electronic calculations o- vibration and electronic
motions in rotation experiments. Sometimes these
"grey" areas become "black, " as witness the dramatic ex-
amples given in the Introduction. Even if we feel safe in
ignoring one kind of motion, it is obvious that accurate

with basis functions p; k excluded if i +j+k ) 17 and j is
even, or if i+j+k & 15 and j is odd. This gave an 888-
term function with 888 linear coefficients. The P;Jk were
defined by

P, „(g, ri, R ) =exp( —ag)cosh(Pi? )g'g'R

results will be achieved only if we consider everything.
Even when we suspect these effects are small, we cannot
be sure until they are calculated. Differences between
theory and experixnent are left in limbo until we have
asked, is the experiment in error or is neglect of vibration
(for example) in the theory the problem? This sort of
question was recently raised (Dudley and Ward, 1985;
Sekino and Bartlett, 1986) by the discrepancy between
theory and experiment for the hyperpolarizabilities (p
and y) for hydrogen fluoride. In fact, it appears that vi-
brational effects are not the cause of the problem, though
this was not known a priori, and it is more likely that the
experimental results are in error from contamination by
hydrogen fluoride dimers. An earlier example of this sort
of dispute was the difference between the p hyperpolari-
zabilities of halogenated methanes extracted from
difFerent nonlinear optical experiments (Bishop, 1981).

To resolve these questions, there have been, broadly
speaking, three types of theoretical investigation: (a) ab
initio calculations that ignore rotation and are largely re-
stricted to diatomic molecules and static polarizabilities;
(b) ab initio calculations that do not ignore rotation (e.g. ,
sum-over-states method) but that so far have been re-
stricted to the smallest of diatomics, though both static
and dynamic properties have been studied; (c) semiempir-
ical calculations, which again ignore rotation but have
been applied to much larger molecules for both static and
dynamic properties.

Under (a), the methods used have been extensions of
those developed for electronic motion alone: the elec-
tronic finite field becomes a vibronic finite field, deriva-
tive Hartree-Fock becomes derivative Numerov-Cooley,
perturbation-theory expressions for a', p', y' become
similar expressions for a", P", y'. Probably the most
progress will be made here (with rotation ignored) by
methods that were successful in pure vibrational
spectroscopy —where, slowly, numerical methods have
been superseded by analytical ones. Certainly, the study
of large molecules, where unperturbed potential surfaces
are now becoming available, will be most easily accom-
plished by straightforward production of perturbed sur-
faces for various field strengths, followed by vibrational
analysis as before. The work of Duran et al. (1989) is a
step in this direction, but it needs to be extended so that
the a, p, y, with which we are familiar, are extracted. In
this way, we can build on the knowledge so painstakingly
acquired about pure unperturbed vibrational motion.

Under (b), it is likely that for some time we shall be
limited to very simple species; but work in this area is im-
portant both for benchmark calculations and for identify-
ing the inAuence of rotation on vibrational polarizabili-
ties. Getting from the Inolecule to the laboratory, other
than by classical averaging, is largely an unresolved prob-
lem for lack of any simple technique. The type of theory
in (b) that comes from extension of the electronic formu-
las of Orr and Ward (1971)can be applied to dynamic po-
larizabilities, whereas type (a) calculations cannot, and
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this is of great use.
Under (c), semiempirical calculations for polyatomics

will probably be with us for a while, particularly for the
dynamic polarizabilities, though, for these, the extraction
of rotation from the experimental data by T-dependent
studies, the use of "enhancement" techniques, and the
comparison of different nonlinear optical processes may
make life easier. The basic perturbation-theory expres-
sions for polyatomics are very unwieldy, and further ap-
proximations need to be explored.

An ultimate goal would be to carry out polariza-
bility calculations for the whole molecule for arbitrarily
oriented space-fixed fields without using the Born-
Oppenheimer approximation.

As was said at the beginning, the subject is in its
infancy, and we are a long way from routine "black box"
calculations —there is still much to be done and much
room for innovation.
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