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In narrow-band systems electrons can interact with each other via a short-range nonretarded attractive
potential. The origin of such an effective local attraction can be polaronic or it can be due to a coupling
between electrons and excitons or plasmons. It can also result from purely chemical (electronic) mecha-
nisms, especially in compounds with elements favoring disproportionation of valent states. These mecha-
nisms are discussed and an exhaustive list of materials in which such local electron pairing occurs is given.
The authors review the thermodynamic and electromagnetic properties of such systems in several limiting
scenarios: (i) Systems with on-site pairing which can be described by the extended negative-U Hubbard
model. The strong-attraction limit of this model, at which it reduces to a system of tightly bound electron
pairs (bipolarons) on a lattice, is extensively discussed. These electron pairs behaving as hard-core
charged bosons can exhibit a superconducting state analogous to that of superfluid He II. The change-
over from weak-attraction BCS-like superconductivity to the superfluidity of charged hard-core bosons is
examined. (ii) Systems with intersite pairing described by an extended Hubbard model with U &0 and
nearest-neighbor attraction and/or nearest-neighbor spin exchange as well as correlated hopping. (iii) A
mixture of local pairs and itinerant electrons interacting via a charge-exchange mechanism giving rise to a
mutually induced superconductivity in both subsystems. The authors discuss to what extent the picture of
local pairing, and in particular superfluidity of hard-core charged bosons on a lattice, can be an explana-
tion for the superconducting and normal-state properties of the high-T, oxides: doped BaBiO3 and the
cuprates.
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I. INTRODUCTION

Since the discovery of high-T, superconductivity in
La-Ba-Cu-0 compounds by Bednorz and Miiller (1986), a
great variety of different pairing mechanisms has been
proposed. Many of these proposals contain the concept
of pairing in real space.

In this paper we shall review the thermodynamic and
electrodynamic properties of superconductivity in
narrow-band systems due to local, short-range attractive
interaction. This subject is sometimes referred to as local
pair superconductivity or pairing in real space or "bipo-
laronic superconductivity. "

A. Mechanisms for local electron pairing

We shall start with a discussion of the possible physical
mechanisms that under certain conditions, can lead to
the formation of local electron pairs in solids, solutions,
and chemical complexes. The microscopic mechanisms
leading to an effective short-range attraction of electrons
(holes) can be of various origins.

(i) The most obvious is strong electron-lattice coupling
which gives rise to the formation of small polarons (elec-
trons surrounded by their local deformation). Two pola-
rons attract each other via the induced lattice deforma-
tion, and they can form small bipolarons provided that
attraction overcomes the Coulomb repulsion. In particu-
lar, such an effective attraction can be realized in the case
of coupling between narrow-band electrons and local
phonon modes, like high-frequency intramolecular vibra-
tions or cation-ligand vibrations. The derivation of such
a local attractive interaction, initially developed by An-
derson (1975,1979) for amorphous materials, was subse-

quently examined by many authors (Alexandrov and
Ranninger, 1981a; Cohen et al. , 1984a, 1984b; Fradkin
and Hirsch, 1983; Klinger, 1985; Nasu, 1985, 1987; Alex-
androv et al. , 1986b; Micnas, Ranninger, and
Robaszkiewicz, 1987a; Robaszkiewicz, Micnas, and Ran-
ninger, 1987 and references therein; see also Sec. V.B.3).

(ii) Short-range attraction in a definite electronic sub-
system can result from coupling between electrons and
quasibosonic excitations of electronic origin such as exci-
tons or plasmons (Ginzburg, 1964, 1976; Little, 1964,
1981; Beni et al. , 1974; Hirsch and Scalapino, 1985a).
The approaches developed for the problem of strong
electron-phonon coupling can be extended to this case;
however, the energy scale for the characteristic frequen-
cies will be much larger, and the coupling constants will
be different.

(iii) Yet another possibility is a purely electronic mech-
anism resulting from coupling between electrons and oth-
er electronic subsystems in solid or chemical complexes
(this coupling cannot in general be reduced to electron-
quasiboson coupling). Several electronic mechanisms
leading to nonretarded, static attraction due to the strong
polarizability of anions have been considered by the Rus-
sian school (Ionova et al. , 1977; Ionov et al. , 1981, 1985;

Moizhes and Drabkin, 1983). Some of these proposed
mechanisms can also be referred to as chemical mecha-
nisms (Khomskii and Zvezdin, 1988; Wilson, 1987, 1988;
Micnas, Rannin ger, and Robaszkiewicz, 1988b; Ran-
ninger et a/. , 1988, 1989). It has been shown (Hirsch and
Scalapino, 1985b) that under specific conditions concern-
ing the electronic levels on the cations and the surround-
ing ligand anions, as well as the various Hubbard repul-
sion terms, the Coulomb repulsion acting in a particular
electronic subsystem can be overscreened. This would
give rise to an effective attraction of the electrons in this
subsystem. Other possible mechanisms for local attrac-
tion of "chemical or electronic" origin are discussed in
Secs. V.B.3 and V.C.

(iv) Finally, the existence of "internal coordinates, "
such as dangling bonds or abnormal bond configurations,
has also been proposed as a factor favoring local pairing
in certain classes of systems referred to as nonsimple met-
als (Ting et al. , 1980).

These mechanisms giving rise to an attraction between
charged carriers have to compete with the Coulomb
repulsion. If the induced attractive potential partially
overcomes the Coulomb repulsion (at some distance) and
the attraction is strong enough, local pair formation can
take place. Two carriers will form a real bound state ei-
ther on a given site (on-site local pairs or Anderson bipo-
larons; Anderson, 1975, 1979; Robaszkiewicz et al. ,
1981a, 1981b, 1981c, 1981d, 1982) or an adjacent site (in-
tersite local pairs or Heitler-London bipolarons;
Chakraverty, 1979; Alexandrov and Ranninger, 1981a,
1981b; Chao et al. , 1983; Chakraverty and Ranninger,
1985). The local pairs can be of singlet type with paired
electron spins or of triplet type with parallel electron
spins (Kulik, 1984; Alexandrov, Ranninger, and
Robaszkiewicz, 1986a).

The concept of local electron pairing is interesting
from various points of view and covers several areas of
solid-state physics. It can be of importance for the fol-
lowing.

(i) Superconductivity, i.e., the search for high-T, ma-
terials and for an explanation of "non-BCS" (Bardeen-
Cooper-Schrie6'er) properties of certain superconducting
materials (Alexandrov and Ranninger, 1981b; Ionov
et al. , 1981; Moizhes and Drabkin, 1983; Kulik, 1984;
Alexandrov, Ranninger, and Robaszkiewicz, 1986a,
1986b; Micnas, Ranninger, and Robaszkiewicz, 1987a,
1988b; Robaszkiewicz et a/. , 1987 and references
therein).

(ii) Charge-density wave (CDW) formation in narrow-
band systems (Ionov et al. , 197S, 1981; Robaszkiewicz,
1979, 1984; Rice and Sneddon, 1981; Micnas et al. ,
1984). The static attractive interaction may favor elec-
tronic charge ordering, as indeed has been found in
several inorganic compounds (Ionov et al. , 1975; Keller,
1981).

(iii) Amorphous semiconductors like chalcogenide
glasses, with so-called U(0 centers (Anderson, 1975,
1979; Watkins, 1984; Klinger, 198S).
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(iv) Conducting polymers (Scott et a/. , 1983; Chung
et a/. , 1984; Brazovskii et a/. , 1985).

(v) Heavy-fermion systems (Miyake et a/. , 1984;
Ohkawa, 1984; Ohkawa and Fukuyama, 1984; Ranninger
et a/ , 1.987; Bastide and Lacroix, 1988a, 1988b).

B. Materials with local electron pairing

In a great number of experimental systems, real-space
pairing plays a dominant role. These systems comprise
several distinct groups of materials:

The alternating-valence group is made up of com-
pounds that contain ions in two valence states diA'ering

by 2e (on-site pairs) and can exhibit charge ordering
(Ionov et a/. , 1975, 1981, 1985; Miller and Epstein, 1976;
Robaszkiewicz, 1979, 1984; Day, 1980; Keller, 1981).
Examples of such systems are (a) diamagnetic compounds
of Sb like M2SbX6 (M =Cs, Rb; X=Cl, Br), which ex-
hibit alternate ordering of s-electron pairs s -s (Sb +,
Sb +), e.g., Cs2SbC16, (b) T1F2 with s -s (Tl'+, Tl +); (c)
divalent compounds of Ag +, Au +, and trivalent com-
pounds of Pd and Pt; for example, CsAgC13

These systems can exhibit phase transitions with in-
creasing temperature or pressure from a charge-ordered
to a nonordered state, like Cs2SbC16 (Tco =70—75 K) or
BaBi03 (Bi +-Bi +) with Tco =760 K.

For a detailed discussion of the experiments support-
ing electron-density disproportionation in the above ma-
terials, as well as in many others, we refer the reader to
the review articles of Ionov et a/. (1975, 1981, 1985); Ro-
bin and Day (1967); Miller and Epstein (1976); and Day,
(1980) and to the references cited therein. The evidence
for alternating valence states in these materials comes
from several supplementary types of measurements, both
direct ones like ESR, NMR, Mossbauer and optical spec-
troscopy, and indirect ones such as x-ray absorption,
magnetic measurements, etc. For example, the presence
of alternating valence states in Cs2SbC16 (Sb +, Sb +),
suggested, among other indicators, by the absence of
Sb + in solutions, was first supported by x-ray
difFraction, electronic reflectance studies (Robin and Day,
1967), and magnetic and ESR measurements showing
diamagnetism (Atkinson and Day, 1969). Later on it was
confirmed by more direct microscopic probes, i.e., on the
basis of x-ray electron spectra (Tricker et a/. , 1972) and
the study of the Mossbauer effect on Sb' ' nuclei (Alexan-
drov et a/. , 1971; Ionov et a/. , 1975). By the latter
method the existence of a smooth transition from the
charge-ordered state with periodically alternating
valences to the disordered state has also been established.
The transition begins at about 70 K, and more than 30%
of the Sb ions are in the Sb"+ oxidation state at 130 K.
The disordered state is characterized by a two-electron
exchange between (SbC16) and (SbC16) complexes,
while the compound remains diamagnetic (Ionov et a/. ,
1975).

The second group of materials are transition-metal ox-
ides showing intersite bipolarons, sometimes called
Grenob/e bipo/arons (Lakkis et a/. , 1977; Schirmer and
Salje, 1980; Onoda and Nagasawa, 1983; Salje and
Giittler, 1984; Schlenker, 1985). The most famous of
these are Ti407 and Ti4 „V 07, showing bound pairs of
electrons on neighboring sites (Ti +-Ti +), (Ti -Ti +)
[see Fig. 1(a)-(c)], as well as Na V20~ with (V +-V +)-
(V5+ V5+)

A great deal of insight into Ti407 and its vanadium al-

loys has been obtained from detailed structural studies,
optical transmission, EPR, specific heat, and magnetic
susceptibility measurements, as well as from transport
data. These studies show very clearly that bond forma-
tion between neighboring Ti + (d'-d') ions occurs along
the chain concomitant with shortened Ti-Ti distances in
the low-temperature phase, and that these intersite elec-
tron pairs remain unbroken and active in the intermedi-
ate phase until they break up at around 150 K. Around
150 K the material shows a semiconductor-to-metal tran-
sition. Thus there is a sequence of phase transitions in
Ti407 and its vanadium alloys, first from the commensu-
rate CDW ordering of two-electron pairs to a phase of
nonordered pairs and finally to a metallic phase (Fig. 1;
Lakkis et al. , 1976; Schlenker et al. , 1979; Schlenker and
Marezio, 1980; Schlenker, 1985).

Convincing experimental evidence for the formation of
bipolarons is also found in sodium vanadium oxide
Na V20, -/3 (V +-V +), from studies of NMR, EPR,
specific-heat data, x-ray di8'usive scattering, and trans-
port properties (Chakraverty et a/. , 1978; Kanai et a/. ,
1980; Onoda et al. , 1982, Erata and Nagasawa, 1983;
Onoda and Nagasawa, 1984; Schlenker, 1985). This com-
pound at low temperatures also exhibits commensurate
CDW ordering of two-electron pairs. With increasing
temperature at around 200 K there is a transition to a
phase of nonordered pairs, which remains semiconduct-
ing up to SOO K. We notice that WO3 and other Mag-
nelli phases of Ti and V probably also belong to this
group (Schlenker, 1985 and references therein).

The third group consists of superconducting materials
for which the concept of local pairing has been envisaged
for some time. Representative examples of such materi-
als are BaPb, „Bi 03 (Sleight et a/. , 1975; Groznov
et al. , 1984; Kitazawa et al. , 198Sa, 1985b; Tajima et al. ,
1987; Uchida, Kitazawa, and Tanaka, 1987), PbTe(Tl)
(Chernik et a/ , 1982), SrTi0. 3.Zr (Eagles, 1969a, 1969b;
1985), PdH„(Moizhes and Drabkin, 1983), and
Li, + Ti2 ~04 (Harrison et a/. , 1985; Ng et a/. , 1985).
These materials have superconducting properties that are
quite different from those of BCS superconductors and
for which there is considerable experimental evidence for
local pairing. Among them is BaPb& Bi„03, which
shows charge ordering in the insulating composition for
x )0.35 and superconductivity for x (0.35 (see Fig. 2).
For a discussion of experimental findings suggesting
charge disproportionation of Bi, i.e., the existence ofBi,Bi in BaBiO3 and doped BaBi03, see Sec. V.C.1.
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FIG. 1. (a) A cross section of the bidimensional slabs that con-
stitute Ti407.. The solid circles correspond to Ti'+ ions; and the
open circles to Ti + ions. Notice the strong binding between
pairs of Ti + ions forming the local pairs. Below 130 K the
pairs are well ordered in a charge-ordered state. Between 130
K and 150 K the pairs are dynamically disordered. (b) Specific
heat of Ti407 (after Lakkis et al. , 1976). Below the first transi-
tion the system is in a charge-ordered state, as depicted in {a)
for T&130 K. Between the two phase transitions the system
keeps its local pair character —the pairs being dynamically
disordered as shown in {a}for 130 K & T&150 K. Above the
second phase transition the pairs have broken up, and the sys-
tem is an electron metal. The inset shows the details of specific
heat c~ near the two phase transitions. (c) Experimental phase
diagram for (Ti& V )4O7, obtained by electrical resistivity
measurements and corroborated by calorimetric, magnetic sus-
ceptibility, and EPR studies (after Schlenker et a/. , 1979),
which shows the increase in the stability region of the disor-
dered local pair state upon doping.
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FIG. 2. {a)The crystal structure of BaBi03 showing the Bi ions
in two valence states, Bi + and Bi + (after Uchida et a/. , 1985).
(b) Temperature dependence of the electrical resistivity of
BaPb&, Bi 03 for various values of x (after Thanh et a/. ,
1980}. Notice the changeover in the normal-state resistivity
from superconducting samples (x ~0.35) to samples exhibiting
charge order (x)0.3). (c) Superconducting critical temperature
T, (solid line) and the number of carriers (deduced from the
Hall coefficient) as a function of doping (after Thanh et al. ,
1980); dot-dashed curve, carrier concentration calculated by as-
suming that one electron is introduced by one Bi atom (n„~);
dashed curve, observed carrier concentration n
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Both Bapb, Bi 03 and Li, +„Ti2 „04 exhibit super-
conductivity that does not follow the BCS characteris-
tics. In our opinion they belong to the same group as the
newly discovered high-T, oxides, as they have several
features in common: structure, low density of carriers,
closeness to the metal-nonmetal transition, and relatively
high T, (see also Robaszkiewicz et al. , 1982; Alexandrov,
Ranninger, and Robaszkiewicz, 1986b; Micnas et al. ,
1988b).

Initially, superconducting properties and charge-
density waves in BaBi, Pb 03 were interpreted in
terms of on-site electron pairs caused by strong electron-
lattice coupling (Robaszkiewicz et al. , 1982; Alexandrov,
Ranninger, and Robaszkiewicz, 1986b). With the
discovery of the new superconducting material
Ba, „K„Bi03(Cava et al. , 1988; Mattheiss et al. , 1988),
with a T, -30 K, it appeared unlikely that electron-
lattice interaction alone was the main cause for this pair
formation. We believe that the origin of pairing lies in a
purely electronic mechanism [mechanism (iii) discussed
at the beginning of this section], which leads to stable
ionic valence states diFering by 2e (as Sb +-Sb, Tl'+-
Tl +, etc.). The properties of these materials can be de-
scribed in terms of the negative-U Hubbard model with
intersite repulsion (Micnas, Ranninger, and
Robaszkiewicz, 1988b; Ranninger et al. , 1989), as will be
discussed in this review.

Let us also mention that SrTi03.Zr is another example
of a semiconductor with very low density of carriers. Its
superconductivity ( T, —1 K) has been interpreted by Ea-
gles (1969a, 1969b, 1985) in terms of Bose condensation
of tightly bound pairs. In Table I we summarize the data
concerning the superconducting oxides, including the
newly discovered ones.

Superconductivity due to local pairing rather than
Cooper pairing has been envisaged for many other so-
called exotic superconductors, i.e., those that do not fit
the pattern of BCS superconductivity (Moizhes and
Drabkin, 1983; Anderson and Yu, 1985), such as 215,
C1S, Chevrel phases, the carbides, nitrides, and
transition-metal dichalcogenides (Ting et al. , 1980; Ku-
lik, 1984; Alexandrov, Ranninger, and Robaszkiewicz,
1986b; Robaszkiewicz et al. , 1987). As specific examples
we mention V3Si, Nb3Ge and Nb3A1, PbMo6S8 and
Eu Mo6S8, NbC and TaC, and 2HTaS2. All of these ma-
terials have narrow electron bands, and large electron-
phonon coupling values, which result in poor metallic
properties in the normal state but rather high values of
the superconducting critical temperature.

Finally, we should mention heauy fermi-on supercon-
ductors and low-dimensional organic superconductors.
Local (intersite) attractive interaction between heavy
quasiparticles as the origin for exotic heavy-fermion su-
perconductivity is at present one of the bases for theoreti-
cal investigations of these materials (Miyake et al. , 1984;
Ohkawa, 1984; Ohkawa, and Fukuyama, 1984), although
it has not yet been determined whether the source of this
attraction is electron-phonon coupling (Miyake et al. ,
1983; Ohkawa, 1984) or a purely electronic mechanism
(Bastide and Lacroix, 1988a, 1988b). The anisotropic su-
perconductivity of organic materials like those of the
(TMTSF)2X family has also been considered in the same
spirit (Hasegawa and Fukuyama, 1986; Mazumdar,
1988).

The fourth group consists of numerous amorphous
semiconductors (Anderson, 1979; Watkins, 1984; Klinger,
1985), such as chalcogenide glasses (e.g. , As2Se3 and
As2S3), GeSez films, silicon inversion layers, and amor-

TABLE I. Properties of superconducting oxides. Listed are superconducting transition temperature T„the carrier density and type,
the Debye temperature eD, and the coefficient of the specific-heat linear term y.

Compound

BaPb1 Bi 03

Bai K„Bi03
BaPb03
SrTi03

Na„WO3
Li 1+„Tiq 04

T, (K)

13
(11)

25-34
04
0.4

(0.2)
6
12

(9.6)

Carrier
density
(cm )

4X10"
(2.5 X10")

1021

2X10"
1.4X 10"

(4X10' )
—10"

1.3 X 10
(8 X10")

Carrier
type ea (K)

195
(173)

-200
166
453

660
(600)

y
(mJ/molK )

1.6
(1.0)

1.5-2.6
0.6
1.6

(1.0)

Lattice
type

Perovskite
(Bi3+ B'5+

)

Perovskite
Perovskite
Perovskite

Perovskite
Spinel

La2 „Sr Cu04

YBa2Cu306 7

YBa2Cu307

40

60
90

1.5X 10"

1.5X10 '

3X10 '

400-500

300-400

1.7—10

3—10

Oxygen-deficient
perovskites (CuO& layers)

layers+ chains

Bi2SrzCa„1Cu„Oy
T12Ba2Can —1Cun Oy

n= 1,2,3

10, 85, 100
20, 108, 125

1021
—102

230-290 —10 layers
layers

Rev. Mod. Phys. , VOI. 62, No. 1, January 1990



118 Micnas, Ranninger, and Robaszkiewicz: Superconductivity with local attractive interaction

phous silicon, in which the localization of electron pairs
on impurity centers (negative-U centers) was initially in-
voked in order to explain their electrical, magnetic, and
optical properties, and in particular the absence of
paramagnetism and the stabilization (pinning) of the elec-
tronic Fermi level near the center of the gap. Recently,
pressure-induced superconductivity discovered in As2Te3
and n Ge33As&2Se55 has been interpreted on the basis of
local pair theory (Savransky, 1986).

The idea of negative-U centers was also introduced to
explain the increase in T, upon doping certain supercon-
ductors with impurities such as Fe and Ti (acting as im-

purity electron pairs; see Ganguli et al. , 1966), supercon-
ductivity at interfaces such as Al-Ge and Al-Si (Simanek,
1979), and the superconducting properties of nonsimple
metals like carbides and nitrides, e.g., NbC (Ting et al. ,
1980).

A quite separate group consists of several conjugated
polymers with nondegenerate ground states, in which the
stable defect states formed upon doping are bipolarons:
doubly charged, spinless bound states of two holes with
associated deformation of the molecule. Evidence for
such bipolaron formation (from ESR, transport, photo-
electron spectroscopy, and optical absorption data) has
been found in, among others, cis-polyacetylene, polypyr-
role, polythiophene, and polyparaphenylene (Scott et ai. ,
1983; Chung et al. , 1984). Recently, the possibility of bi-
polaronic superconductivity in such systems was pointed
out by Brazovskii et ai. (1985).

C. Theoretical models for systems
with local electron pairing

The theoretical models of local pairing either start
with a microscopic derivation of a local attractive in-
teraction or postulate some eA'ective Hamiltonian. In the
following we consider the properties of the extended
Hubbard model with on-site or intersite attraction, which
can be thought of as a useful parametrization of the prob-
lem. The Hamiltonian is given by

H= g t; c; cj +Up n;tn;&

+ —,'g 8";,n;n) —g(p E; )n;, —

n,; =n;&+n, &, n; =c; c;

where t, denotes the transfer integral, U is the on-site in-
teraction and 8," the intersite interaction between tight-
binding electrons, p is the chemical potential, and E,- is a
(random) site energy. The model (1.1) can be considered
as generally resulting from a system of narrow-band elec-
trons strongly coupled to a bosonic field, which they po-
larize and which in turn acts upon the electrons, thereby
forming entirely new entities. These new entities are de-
scribed by the correlated motion of the electrons and
their surrounding polarization field and by an induced
short-range attraction which competes with the Coulomb

repulsion. The bo'sonic modes can be phonons, excitons,
acoustic plasmons, etc. The parameters of Eq. (1.1), r;~. ,
U, and W;, are effective ones (renormalized from their
bare values). An efFective Hamiltonian such as this can
also describe models introducing purely electronic
("chemical" ) mechanism of local attraction.

In the next two sections we shall present results for the
following two cases.

(i) Udr (0, W,tr) 0, when the induced local attraction
outweighs the on-site repulsion. This is the case of on-
site attraction (or the negatiue UH-ubbard model) and
the problem of formation of on-site electronic pairs in the
strong U &0 limit. In Sec. II.A the general properties of
this model are discussed. In Sec. II.B an extensive
analysis of the thermodynamic and electromagnetic
properties of a superconductor with preformed local on-
site pairs is presented. The properties of the negative-U
extended Hubbard model in the weak-attraction limit
and the transition between BCS-like superconductivity
and superAuidity of charge bosons are examined in Sec.
II.C.

(ii) 8;tr (0 but U,fr) 0. This is the case of intersite at
traction, when the induced attraction is strong enough to
dominate over the intersite Coulomb repulsion (Sec. III).
We study the various superconducting solutions of the
model within a mean-field-type treatment, for the cases of
both weak and strong on-site correlations (Secs. III.A
and III.C, respectively); we also examine the conditions
for real-space pair formation (Sec. III.B).

We should point out that, in certain cases, it is possible
to introduce e8'ective sites, and the intersite attraction
can still be mapped onto a negative-U extended Hubbard
model. This is, for example, the case with a model of bi-
polaronic superconductivity proposed by Alexandrov
and Ranninger (1981b); the model begins with intersite
attraction, but is mapped onto a U &0 problem in the
strong-attraction limit.

Of course, such simple one-band models [Hamiltonian
(1.1)] are highly simplified as regards real materials.
There are several possible realistic extensions. Recently a
model involving a mixture of narrow-band electrons
strongly coupled to bosonic-field and wide-band electrons
has been proposed by us (Micnas, Ranninger, and
Robaszkiewicz, 1987a; Robaszkiewicz et al. , 1987). It
will be discussed in Sec. IV.

In Sec. V.A, we summarize the major theoretical re-
sults given in this review and conclude with a list of the
main physical features that distinguish systems with local
pairing from standard BCS superconductors.

Most of the results regarding the model systems
presented in this review are derived on the basis of self-
consistent mean-field or random-phase-approximation
approaches, which in many cases give a correct physical
picture of the properties discussed here. Whenever possi-
ble, we also present the results of more rigorous treat-
ments.

Finally, in Sec. V.C, we discuss at some length the pos-
sible relevance of local pairing concepts for high-T, su-
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perconducting oxides, including both doped BaBiO3 and
the Cu-0 based perovskites.

The attraction-repulsion canonical transformation for
the negative-U extended Hubbard model is summarized
in the Appendix.

II. THERMODYNAMIC AND ELECTRODYNAMIC
PROPERTIES OF SYSTEMS
WITH ON-SITE ATTRACTION

A. Extended HUbbard model with V &0

The extended Hubbard model with on-site attraction
has been intensively studied in the last few years, and
many of its properties have been established. Thermo-
dynamic properties of Eq. (1.1) for U &0 depend crucial-
ly on the lattice dimensionality d and the number of elec-
trons n per lattice site:

n= —y &n, }, nC[0, 2] .
1

I

(2.1)

Exact results are known for the ground state for n = 1

(E; =ED) in one dimension (Shiba, 1972). For arbitrary
electron density the one-dimensional attractive Hubbard
model has been solved by the Bethe ansatz method (Kriv-
nov and Ovchinnikov, 1974; Haldane, 1980; Bahder and
Woynarovich, 1986; Gusmao, 1987). Krivnov and
Ovchinnikov have shown that the single-electron excita-
tion spectrum has a gap for arbitrary n, in contrast to the
case of U&0, where such a gap exists only for n =1
(Lieb and Wu, 1968). It has been concluded that for
n = 1, the magnetic susceptibility is strongly suppressed
by the attractive interaction, and g —+0 as T~O
(Takahashi, 1969; Shiba, 1972; Pincus et al. , 1973).

An extended Hubbard model (for both U)0 and
U & 0) has also been analyzed for the case of weakly cou-
pled chains (Efetov and Larkin, 1975; Emery, 1976,
1977). In the limit of strong attraction it has been shown
by degenerate perturbation theory that the model is
equivalent to a weakly coupled interacting array of aniso-
tropic Heisenberg chains (Emery, 1976). Based on this
equivalence, the electronic correlation functions for the
half-filled extended Hubbard model have been deter-
mined from the known functions for the one-dimensional
pseudospin system, and the phase transitions leading to a
singlet-superconducting state and charge-density waves
in coupled chains have been studied (Emery, 1976, 1977).

In the strong-coupling limit kz T, t, 8' «
~
U~, in

d=2, 3, and for arbitrary n, the properties of Eq. (1.1)
have been studied by perturbation theory (Robaszkiewicz
et al. , 1981a, 1981b), and the possible phase diagrams
have been determined in the mean-field-approximation
(MFA) and random-phase approximation (RPA) (Kulik
and Pedan, 1980; Robaszkiewicz et al. , 1981a, 1981b;
Alexandrov and Ranninger, 1981b; Kubo and Takada,
1983; Alexandrov, Ranninger, and Robaszkiewicz,
1986b; Micnas and Robaszkiewicz, 1988a, 1988b).

The case of weak attraction has been studied by the
broken-symmetry Hartreee approach (Robaszkiewicz
et al. , 1981c, 1981d, 1982; A. R. Bishop et al. , 1988,

Micnas et al. , 1988d) and the RPA method (Kostyrko,
1987). The Gutzwiller method has been applied to the
30 half-filled negative-U Hubbard model by Chao et al.
(1979), while Oles et dl. (1984) have studied the ground-
state phase diagram of the ext'ended Hubbard model with
negative U for n = 1, using modification of the Gutzwiller
approach for weak and intermediate electron correlations
(so-called local approach). The problem of transition
from weak-coupling to strong-coupling superconductivi-
ty within a U (0 Hubbard model has been dealt with too
(Robaszkiewicz et al. , 1981d, 1982; Nozieres and
Schmitt-Rink, 1985). Other studies include the zero-
bandwidth limit (t, =0; "Micnas et al. , 1984), the high-
temperature limit k~ T ) t (Micnas et al. , 1983), and the
eft'ects of diagonal disorder (Kulik and Pedan, 1980;
Pedan and Kulik, 1982; Micnas et al. , 1985a, 1985b;
Nagaosa, 1989). Quantum Monte Carlo studies of d =2
and d =3 U & 0 Hubbard models (Hirsch, 1985a, 1987a;
Hirsch and Scalapino, 1985a, 1985b, 1986; Scalettar,
Loh, et al. , 1989; Scalettar, Scalapino, ei al. , 1989a) have
also been reported, as well as the quasi-one-dimensional
extended Hubbard model in the limit of strong on-site at-
traction (Imada and Scalapino, 1986; Nagasawa and
Hida, 1988).

There exists a canonical transformation (attraction-
repulsion transformation; see the Appendix),

c, g =exp(iQ R;)b;t, c;t =b;t,

with the reciprocal vector Q satisfying the condition
exp(iQ. R) = —1 for any translation R that transforms
one sublattice into another, which maps the Hubbard
model with intrasite attraction and intersite Coulomb in-
teraction and arbitrary electron density (0& n &2) onto
the half-filled Hubbard model with intrasite Coulomb
repulsion and intersite exchange interaction (Robasz-
kiewicz et al. , 1981a, 1981b). The number condition
(2.1) is transformed to the requirement that the magneti-
zation have a fixed value along the z direction and be
equal to —,'(n —1). Consequently, the magnetic long-
range orderings (along the z axis and in the XY plane) in
the model with U) 0 are equivalent to electronic diago-
nal (charge density wave —CDW) and off-diagonal (sing-
let superconducting —SS) orderings in the U & 0 case.

For n = 1 and in the absence of an intersite Coulomb
interaction, the COW and SS states are strictly degen-
erate. Moreover, the physical quantities determined by
one-particle correlation functions like the specific heat
and the entropy are independent of the sign of U. How-
ever, the two-particle correlation functions may be
different. For example, magnetic susceptibility is evi-
dently suppressed by an attractive interaction. The de-
generacy will be removed by the intersite interaction 8'
(or by deviation from half-filling, which will stabilize the
SS phase). W') 0 stabilizes the CDW ordering, while
8' & 0 will stabilize the SS state.

The canonical transformation can also be used to map
the phase diagram for n =1 of the ordinary Hubbard
model onto that of the attractive Hubbard model. In
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there was (i) a vanishing transition temperature at half-
filling but with a ground state having both SS and CDW
long-range orderings, and (ii) a Kosterlitz-Thouless phase
transition at finite temperature into a SS state with
power-law decay of the pairing correlations away from
half-filling.
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FIG. 3. Phase diagram of the half-filled Hubbard model with
intra-atomic attraction (I UI && W), for a simple cubic lattice
(after Robaszkiewicz et al. , 1981a). T, and T~ denote the criti-
cal temperatures for the onset of long-range ordering and for
the breaking of electronic pairs, respectively. SRO is short-
range ordering in the region of uncorrelated pairs, which is
semiconducting and diamagnetic. 2zt is the bandwidth.

Fig. 3 we show the phase diagram of the half-filled attrac-
tive Hubbard model for a simple cubic lattice, obtained
via this mapping by the use of the earlier results of
Economou and co-workers (De Marco et al. , 1978;
Economou et al. , 1978; White and Economou, 1978) for
the repulsive Hubbard model for n =1. There are two
characteristic temperatures on the diagram, T, and T,
denoting the critical temperatures for the onset of long-
range ordering (LRO) and for the breaking of electronic
pairs, respectively. In the region with LRO the two-
electron excitations from the SS state will be gapless,
whereas the excitations from the CDW state have a gap.
In the region of uncorrelated pairs, there is short-range
order (SRO), and this phase is diamagnetic with a gap of
order —

I UI in a one-electron excitation spectrum.
For weak attraction the superconducting critical tem-

perature T, follows the BCS theory, increasing with

I UI /t (although the form of this increase depends on the
density of states used), while in the strong-attraction lim-
it it decreases as t /I UI. Let us also note that, in the
strong-attraction limit, the pairs exist above T, and they
condense below it, in contrast to the BCS-dominated re-
gime, in which electronic pairs are created and con-
densed at the same temperature. The determination of a
possible maximal T, is a challenging problem (Hirsch,
1985a, 1987a; Hirsch and Scalapino, 1985b, 1986;
Nozieres and Schmitt-Rink, 1985; Scalettar, Scalapino,
et al. , 1989). It is also clear that this problem is at least
as dificult to solve as that of determining the Neel tem-
perature for the ordinary half-filled band, d =3 Hubbard
model for arbitrary U.

Recently Scalettar, Loh, et al. (1989) have studied the
phase diagram of the negative-U Hubbard model ( W =0)
on a two-dimensional square lattice by the quantum
Monte Carlo simulation technique. They concluded that

B. Limit of strong attraction and properties
of systems with preformed on-site local pairs

The phase diagram of the extended Hubbard model for
arbitrary band filling, lattice dimensionality, and WAO
poses a problem of considerable complexity. In the
strong-attraction limit

I UI » t, W»arge gap of order
I UI exists in the singe-particle excitation spectrum for
any n, which is equivalent to the statement that the Fer-
mi level is pinned for U(0, close to its value at n =1
(p= —

I
UI/2+ Wo+Eo). Due to that fact, standard de-

generate perturbation theory can be applied for the mod-
el (1.1) to derive an effective pseudospin Hamiltonian val-
id for any band filling In th.e case without site disorder
one can put E; =Eo=0, and to second order in t;, /I UI

one obtains (Robaszkiewicz et al. , 198la, 198lb)

H= —g J; p,+p ++K; p'pj

—Pg(2p';+ 1)——(Jo+2Wo),
l

(2.2)

n =—g (2p', +1) .
1

(2.3)

Here,

J,, =2t,', /I UI, E,, =J,, +2W,,
P =p+ —,

'
I UI —Wo,

and

Wo=g W, , Jo=g J,
j j

The charge operators are

pi iy i)~ pi ~i) i$
+

p';= —,'(n;t+n;t —1)

(2.4)

p,+=b;, p, =b,~, p'. =
—,
' —b;~b;, (2.5)

where b;, b, are commuting (B. ose-like) operators for
different sites but b; =b; =0, [b;,b; ]=1 2n;, n; =b; b, —

and, in the subspace excluding single occupancy of sites,
they satisfy the commutation rules of s =

—,
' operators.

This effective pseudospin Hamiltonian (2.2) with the aux-
iliary condition (2.3) has the form of an anisotropic
Heisenberg model (s =1/2), with an effective external
field p in the z direction, such that the average magneti-
zation has a fixed value equal to —,'(n —1).

On the other hand, due to the well-known properties of
s =

—,
' operators, one has
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TABLE II. Correspondence between electronic orderings and types of pseudospin orderings.

Long-range order (LRO)
Diagonal Off-diagonal
(DLRO) (ODLRO)

Type of ordered state
in extended Hubbard

model with U(0
Ordering of pseudospins

Ip; I, a=+, —,z
No No Nonordered phase (NO)

Phase of uncorrelated local pairs, diamagnetic
short-range order

n =—g ( n; ) =—g (2p,'+ 1).1 1

i, cr l

Ferromagnetic or
paramagnetic

Yes No Charge order (CO)
1 ig R.

a@=—g &n, &e '=&p'„—pe&&O
i, o'

Antiferromagnetic

or more complicated
orderings along z axis

No Yes Singlet (on-site) superconductivity (SS)

xo= —g &c,ttc,tt &=—g &p";&
1 t t 1

j= &p~ )+ &p", &&0

Spin Bopped

Yes Yes Mixed phase (M) of CO and SS
kg%0, x0%0,

1 ig R.
xq =—g (c;ttc;tt &e '= &p"„&—(pe )&0

t

Intermediate state

Yes No Condensed phase of electron droplets
{phase separation)

Droplets of ferromagnetic
order ~ ~ ~

y y t $ $ $ 0 ~ ~

for the same site, which rejects their fermionic nature.
Thus the system can be equally well considered as a
hard-core Bose gas on a lattice.

In Table II we give the correspondence between or-
dered states in the extended Hubbard model with U(0
and the orderings of the pseudospins t p; J, a = +, —,z.
One notices a remarkable similarity as far as the LRO's
are concerned between the present situation and the
quantum lattice gas model of liquid He II, for which
such an equivalence was derived many years ago (Matsu-
bara and Matsuda, 1956, 1957; %'hitlock and Zilsel,
1963; Matsuda and Tsuneto, 1970; Mullin, 1971a, 1971b
Liu and Fisher, 1973).' The thermodynamic and elec-
tromagnetic properties of Eqs. (2.3) and (2.4) have been
analyzed in mean-field approximation and in the self-
consistent random-phase approximation (Kulik and
Pedan, 1980; Alexandrov and Rannin ger, 198lb;
Robaszkiewicz et al. , 1981a; Alexandrov et al. , 1986b;
Micnas and Robaszkiewicz, 1988a, 1988b).

1. The phase diagrams

The ground-state phase diagram for the case of
nearest-neighbor interaction as determined in the MFA
and RPA is shown in Fig. 4 (Robaszkiewicz et al. , 1981a;

~For the quantum lattice gas model, the particular types of
LRO's correspond to the following phases: ODLRO, superfluid
phase; DLRO, crystalline ordering; ODLRO+ DLRO, super-
solid; NO, liquid phase.

Alexandrov et al. , 1986b). It consists of the mixed
charge-ordered/singlet-superconducting (CO-SS) phase
M, the superconducting phase SS, and the droplet phase.
For n =1 the CO state is favored if 8') 0 (K (J). The
phase transition between the M and the SS states is con-

2
&.865

~ ~ '
~ ~ ~ ~

~ ~

PA

~4HINI ~
~ ~ ~ ~ ~ + ~ ~ ~ ~ ~

I I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f ~

5 10
)

FIG. 4. Ground-state phase diagram of a local pair system:
solid curves, random-phase approximation; dotted curve,
mean-field approximation; SS, singlet (on-site) superconducting
state; CO, charge-ordered state; M, mixed (SS-CO) state. The
ground state at n= 1 is CO without ODLRO. The dashed lines
indicate critical concentrations n, and 2—n, separating the SS
from the M phase for K/J = &x) obtained in the random-phase
approximation. J =2t /~ U~, K =j+2~.
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tinuous.
The mean-field phase boundary is given by

' 1/2KQ+ Jo
KQ+ JQ

(2.6)

0.S

0

SS

where n, is the critical concentration separating the SS
phase from the M phase. Jo, JQ, and KQ are the Fourier
transforms of J;~ and IC;~ fo.r k =0 and Q.
Jk=g J; exp[ik (R; —R )],

0.5

I&i,=+Kjexp[ik. (R; —R) )], Kk =Jk+2Wk .
J

For finite temperatures the resulting phase diagrams
determined within the MFA are given in Figs. 5(a) —5(c)
for diFerent 8 ~0. For 8'=0, the SS, the CO, and the
M, states are degenerate at n =1. For 8')0 all the
phases can occur, and transitions among them are second
order. The transition temperature between the NO and
the CO phases is

0

0.5

Tco n (2—n )Ko /2kii,

while the transition temperature between the NO and the
SS phases is given by

O.S

Tss =(n —1)JO!kiiln[n /(2 —n)] . (2.8)

The equation determining the boundaries between the M
and SS phases, as well as those between the M and CO
phases, can be derived by the use of the Landau expan-
sion; these boundaries are given in Robaszkiewicz et al.
(198la).

The four critical lines meet at a multicritical point MP
corresponding to a tetracritical point in the B-T phase
diagram of an anisotropic antiferromagnet (Liu and Fish-
er, 1973; Bruce and Aharony, 1975; Kosterlitz et al. ,
1976). We should stress the nonmonotonic dependence
of the superconducting transition temperature on elec-
tron concentration and the fact that Tss attains its max-
imum at the border with the CO phase. For n%1 and
8'& 0 there are also possible successive phase transitions
with varying T, such as SS~M —+CO —+NO and
M —+CO —+NO.

We should like to emphasize the important difference
in thermodynamic behavior between an ordinary aniso-
tropic antiferromagnet in an external field with nearest-
neighbor interactions and our pseudospin model in the
effective field. For the former there are only three phases
[see (Fig. (5d)], namely, the paramagnetic (P), the antifer-
romagnetic (AF), and the spin-flopped (SF) phases.
While the transitions AF —+P and SF~P are second or-
der, the transition AF~SF is first order (Fisher and Nel-
son, 1974; Bruce and Aharony, 1975; Kosterlitz et al. ,
1976). For the pseudospin Hamiltonian (2.2), due to the
constraint of Eq. (2.3) on the magnetization, the first-
order boundary for SF-AF splits into two second-order
boundaries together with the emergence of an intermedi-
ate (M) phase and the tetracritical point.

Let us also mention that, in general, if J, - and K," are

0

FIG. 5. MFA phase diagrams of a local pair system as a func-
tion of temperature and electron concentration: (a) K/J= 1; (b)
K/J=1. 1; (c) K/J=2. MP is the multicritical point at which
four phases meet. n, is the critical electron concentration
beyond which the M phase is stable at T=O K. X is the posi-
tion of the MP. (d) Schematic phase diagram of an ordinary an-
isotropic Heisenberg model with nearest-neighbor interactions
in a magnetic field B along the z axis, for a fixed value EC/J& l.
The model could describe a local pair system if the chemical po-
tential p. were taken as an independent variable, with the fol-
lowing correspondences between the phases: spin-Hop —singlet-
superconducting (SS); antiferromagnetic —charge-order (CO);
paramagnetic —nonordered (NO).
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not restricted to nearest neighbors, the mixed CO-SS
state can have a periodicity characterized by a vector Q
different from half the smallest reciprocal lattice vector.
Moreover, Q can be commensurate or incommensurate
with the lattice periodicity depending on the range of the
repulsive interaction K,", its strength, and the concentra-
tion of local pairs n/2. A preliminary discussion of this
problem has been given by Kubo and Takada (1983).

2. The excitation spectra

The four different phases making up the phase diagram
of a local pair system have quite distinct excitation spec-
tra. They arise from single-particle excitations (the local
pair transfer) and collective oscillations (the density fluc-
tuations of local pairs). These two excitations couple
with each other in the phases with ODLRO, i.e., the
mixed phase M and the pure superconducting phase SS.
All these excitations can be considered as pseudospin
waves in the various MFS states. The average direction
of the pseudospins changes due to thermal and quantum
Auctuations.

In order to take these effects into account, two
methods have been used.

(i) RPA-MFA using the standard basis operators
(Robaszkiewicz et al. , 1981a), spin-wave approximation
(Alexandrov and Ranninger, 1981b), and a memory-
function approach (Kubo and Takada, 1983);

(ii) the self-consistent RPA (Alexandrov et a/. , 1986b;
Micnas and Robaszkiewicz, 1988a, 1988b). Here we shall
simply give the results and discuss their physical implica-
tions.

a. Pure superconducting phase

A@I, '=2M
I [(Jo—Jz)+ Vj,sin 6](JO—Jz) I

'~

where

V„=J,+~„, M =«-&'+&& &',

(p & =M sin6, (p'& =
—,'(n —1)=M cos6 .

(2.9)

(2.10)

For the pure superconducting phase the excitation
spectrum corresponds to fluctuations of the phase y; of
the local pair wave function, which, as in He II, is cou-
pled to the density fluctuations. The spectrum is given
by

Notice that in the long-wave limit the spectrum (2.9) is
sound-wave like:

~„'ss'=s~k~+O(k') (k-o), (2.13)

where

s =2(p &6JO+1+Ko/Jo, (2.14)

2
/m/=a

2
ik.m[

(2.15)

The sound velocity s is proportional to (p &, which mea-
sures the fraction of local pairs in the condensate (being
equal to no=(p & ).

As n approaches the critical density n, separating the
SS phase from the M phase, the spectrum (2.9) becomes
soft at the zone boundary (co& ' —+0), thus indicating the
instability of the homogeneous SS phase to the
symmetry-broken M phase, which doubles the lattice
periodicity. As T~ Tss, (p & ~0, and hence the spec-
trum (2.9) becomes

co„' '=
~n

—l~(J —J„), (2.16)

co' '= A~Tin
2 n

(n —I )Jo +(n——1)(Jo —Jg ) .

which has a free-particle-like dispersion -k refIecting
the non, ordered local paE'r state.

We should mention that the sound velocity (2.14) be-
comes imaginary for Ko/Jo (—1, which indicates that
at Kp /Jp = —1 the system becomes unstable toward a
phase of local pair droplets, which corresponds to the
creation of two domains of ferromagnetic order along the
z direction, in pseudospin language, or to a liquid-gas
phase separation, in quantum lattice gas language.

The linear, sound-wave-like dispersion for excitations
in the SS phase is the complete equivalent of the situation
in He II and satisfies the Landau criterion for
superfluidity, i.e., V„;,=A' '(Bcol, /Bk );„)0.

It is interesting that hard-core bosons on a lattice rath-
er than in continuum have a temperature-dependent
sound velocity, which goes to zero upon approaching
Tss. The disappearance of sound-wave-like behavior
when the temperature is increased above Tss gives rise to
the appearance of a quadratic dispersion law with a
temperature-dependent gap

In Eq. (2.10) Jz and Ez are the Fourier transforms of J~
and K;., respectively. The length of the pseudospin M
within the mean-field approximation satisfies the equa-
tion

(2.17)

The first k-independent term of &ok
' represents simply

M =
—,
' tanh(pJOM ), p= 1/k~ T, (2.11)

1

2M
Jp Jk+ —Vksln e

(ss)
k

p~(ss)
COk

coth

(2.12)

whereas within the framework of the self-consistent RPA
However, such a phase of droplets (of suKciently large or

even macroscopic volume) would not necessarily be stable if one
takes into account the long-range Coulomb repulsion between
charged local pairs, which gives rise to a droplet energy contri-
bution proportional to the square of the droplet volume. See
also the discussion of the condensation —phase-separation tran-
sition in Sec. III.A.
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the T-dependent chemical potential of quasifree bosons
(local pairs) which have quadratic dispersion in the long-
wave limit.

Along the phase boundary between the CO and NO
phases (i)—&0) Eqs. (2.18) and (2.19) become (within the
RPA-MFA)

b. Mixed charge-ordered/singlet-superconducting phase aik =n(1 —,'n—)Koln +(n —1)Jk, (2.22)

co
+' '=2B— Ko(n——1)+3k, (2.18)

Let us turn next to the mixed CQ-SS phase. In this
case the excitation spectrum has two branches —one cor-
responding to local pairs oscillating in phase and one re-
sulting from local pairs oscillating with opposite phases.
At n =n, and n =2—n, (where n, is the critical concen-
tration separating the SS and the M phases for n ( 1),
these two branches are degenerate, while for
2 —n,,) n & n, they split into two separate branches hav-

ing a gap at the Brillouin zone, which is now reduced due
to the doubling of lattice periodicity. The lower branch
of the spectrum is gapless and sound-wave-like in the
long-wave limit. As in the pure superconducting phase,
this behavior is due to the Goldstone mode arising from
the rotational invariance of the pseudospin Hamiltonian
in the basal plane. General expressions determining the
spectrum in the M phase are rather involved, and for
these we refer the reader to Robaszkiewicz et al. (1981a)
and Kubo and Takada (1983). In contrast, when the tem-
perature is increased beyond T, (M~CO), the dispersion
in the CDW state again becomes rather simple,

and, upon approaching the multicritical point MP
de~ned by &ss = &co we obtain

cok =(n —1)(Jo+Jt, ) . (2.23)

Thus the two branches, one gapless and one with a gap
existing in the M phase, evolve into two branches that
both have a gap when the temperature is increased upon
entering the CO phase.

In Fig. 6 we present collective excitation spectra for
the four phases discussed above (Robaszkiewicz et al. ,
1981a).

c. Effects of long-range Coulombinteractions

So far we have considered the short-range density-
density interaction K; corresponding to a screened
Coulomb interaction 6; . Such screening can be due to
the presence of a separate electronic subsystem of wide-
band electrons (Alexandrov and Khmelinin, 1986;
Beloborod'ko and Kulik, 1986; Micnas et QI. , 1987a;
Robaszkiewicz et al. , 1987). It is interesting to examine

A =IK g +[(n —1) —rt ]J
Within the RPA-MFA (Robaszkiewicz et al. , 1981a;
Kubo and Takada, 1983) the efFective field (chemical
potential) B=P and the charge-order parameter
il=(p'„& —(p~ ) are given by

r) =—,'tanhIP[B —
—,'(n —rj —1)Ko] I

—
—,
' tanh I P[B—

—,
'

( n + r) —1 )Ko ]I,
n —1 =

—,
' tanh I P[B—

—,
'

( n rl 1)Ko ]I——

+ —,
' tanh I P[B—

—,
'

( n —g+ I )Ko ]I,

(2.20)

whereas the self-consistent RPA provides the following
equations (Micnas and Robaszkiewicz, 1988a, 1988b):

i) = [q —(n —1) ]—g Ak
coth

2

pcs k—coth
2

0
0 Tt'/2

+
n —1=[i) (n —1) ]—g—coth

1

N „2
pcog

+coth
2

(2.21) FIG. 6. Collective excitation spectrum of a local pair system at
T=0 K: solid curves, excitations from the SS state for K/J=2,
and for n=1.8 and 2; dotted curves, the two collective modes
from the M state, for K/J= 1.1 and n = 1.1; solid curve Q, the
mode at the boundary between the M and the SS phases, for
E/J=1. 1 and n=1.218; dashed curve, the spectrum from the
CO state for K/J= 1.5 and n = 1.
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the effect of long-range Coulomb forces. In such a case,
Wi, o =4me /eok for a 3D lattice, and Wi,
=2me /epk for a 2D lattice, where ep denotes the dielec-
tric constant and where we set the lattice constant a =1.
In the superconducting phases the sound-wave-like mode
(in the case of a screened Coulomb interaction) is turned
into a plasma-like mode if the Coulomb interaction is
long ranged. For the 3D case in the long-wave limit one
obtains (Micnas and Robaszkiewicz, 1988a, 1988b)

~„=[(XQO )'+ Ak'+Bk']'"

value of kAO (min cot„=b. & Jo & A'Qo ). In contrast to the
3D case, the collective excitation spectrum for a two-
dimensional local pair system with long-range Coulomb
forces is gapless. In the long-wave limit, RPA calcula-
tions yield (Micnas and Robaszkiewicz, 1988a, 1988b)

' 1/2

& p &'~k~+ A ~k~'+B ~k~'
2m%

Epm

2m'' q &p" &
2 2 x 2 1/2

rom *

where

=fiQO+ (Ak +Bk )
1

2AQp
(2.24) , . „,(A~k~'"+B~k~'")

2m@'q'(p")'
E'pm

4 2( x)2
q=2e .

mom

g2J ( x)2
A=

g48= (4M' —8& p" &');
(2m *)

(2.25)

(2.26)

and where m *=6' /2J denotes the effective mass of the
local pair. Taking into account the fact that (p") deter-
mines the number of condensed local pairs
((p ) T 0= —,'n, n «1), Qo(T=0) can be called the plas-
ma frequency of local pairs. The spectrum (2.24) can be
compared with that derived by Foldy (1961, 1962) and
Fetter (1970) for a standard 3D charged Bose gas at
T=O K, which for the case of doubly charged bosons
(q =2e) has the form

(BG) [(gQ )2+( 0)2]1/2 gQ + ( 0)21
k 0 k 0 2g~ k

(2.27)

where

q2np
Qp=

E'pm

fi k~0
2m

and np is the density of condensed bosons.
An extra term Ak appearing in Eq. (2.24) and absent

from Eq. (2.27) follows from the short-range part of the
density-density interaction, for both kinematic (hard-core
effects) and dynamic interactions, resulting from J;.
[Vi, =Ji, +Xi,=2J&+2Wi„compare Eqs. (2.9) and (2.5)].
Notice that the k term in Eq. (2.24) tends to (si, ) in the
low-density limit only [Bk =(Et) (1 4n )]. T—he form of
cubi, for larger k is inffuenced by hard-core eff'ects (except
for n «1) and by the effects of a discrete lattice and
moreover depends on the local pair density (n/2). In
particular, for A'Qo «Jo(n «1) with increasing k, coi,

steadily increases and merges with the spectrum for the
short-range Coulomb forces in the region near the zone
boundary (co„~si,=Jo —Ji, ). For iriQo )Jo the spectrum
is more complicated, having a minimum for some definite

(2.28)

with A and B given by Eq. (2.26).
The spectrum (2.28) can again be compared with the

RPA energy spectrum at T =0 K, for a standard 2D
charged Bose gas derived by Hines and Frankel (1975) in
the low-density limit, which for q =2e takes the form

|,'2D) 1/2
2rfq n iIi Ikl[k[+

m 4m'
(2.29)

The diff'erences between Eqs. (2.28) and (2.29) have the
same origin as in the 3D case [see comments below Eq.
(2.27)].

3. Thermodynamic properties,
especially transition temperature

The existence of sound-wave-like collective excitations
for sufficiently screened Coulomb interactions changes
qualitatively the thermodynamic and electromagnetic
properties of the local pair system from those predicted
by the mean-field approximation. (Alexandrov and Ran-
ninger, 1981b; Robaszkiewicz et al. , 1981a; Kubo and
Takada, 1983; Alexandrov et al. , 1986b; Micnas and
Robaszkiewicz, 1988a, 1988b). The ground-state phase
boundary between the M and SS phases is modified (Fig.
4), and the concentration dependence of the supercon-
ducting order parameter (p ) is changed (Fig. 7) (Alex-
androv et al. , 1986b). The zero-point ffuctuations extend
the region of stability of the homogeneous SS phase and
suppress charge order. Thus the SS phase exists even in
the IC/J = ao limit if n & n, AO, in contrast to the MFA,
which yields n, =0 in this limit. For K/J = co and for
various lattices, n, is calculated within the RPA and the
spin-wave approximation and is given in Table III (Mic-
nas and Robaszkiewicz, 1988a). Due to the gapless na-
ture of the spectrum, the order parameter, the internal
energy, and the specific heat acquire power-law charac-
teristics in the SS and M phases at low temperatures. In
particular, at low enough temperatures, where the
linear-in-k term dominates, the specific heat varies as T"
and (p"(0))—(p (T))—T ', where d is the lattice
dimensionality. It is also important to note that in the
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FIG. 7. Concentration dependence of the order parameter at
T=0 K for a local pair superconductor, for different values of
K/J determined within the random-phase approximation. For
n )n, the M phase exists.

low-density limit the k term in the spectrum (2.9)
becomes dominant at higher temperatures, and for
the SS phase this gives rise to c, —T" and

(p (0)) —(p (T)) —T" characteristics that are valid
for T, )T ) T* [T* bring the crossover temperature,
T*—(Jo+Ko)no, no=(p (0)) ].

The critical temperature for the superconducting tran-
sition within the RPA is given by (Alexandrov et al. ,
1986b)

1 (n —1)(JO —J„)
(n —1) '= —g coth . (2.30)

Tc

If Jk=0, Eq. (2.30) reduces to Eq. (2.8), yielding the
MFA transition temperature. In the low-density limit
n &(1, T, becomes

0

FIG. 8. Critical temperature of a local pair superconductor vs
concentration n for K/J=1 (8'=0): solid curve, RPA for a
simple cubic lattice; dotted curve, MFA; dot-dashed curve, re-
sult of the cluster variation method; dashed curve, the T, for an
ideal Bose gas.

should be noted. First, the MFA overestimates T, and
yields incorrect concentration dependences of T, for low
densities. Secondly, for n &0.1, T, is practically the
same as for an ideal Bose gas on a lattice, with the densi-
ty being equal to the density of electron pairs in the sys-
tem.

As has already been mentioned, superconductivity in a
local pair system can also be considered as a condensa-
tion of charged bosons. Using Eq. (2.5), we can rewrite
the Hamiltonian (2.2) as

3 31 na /2
Ul

H= —g J; b; b + QK~n;n —Pgn;+const, (2.33)

where m*=(2Ja )
' is the efFective mass of the local

pair for the simple cubic lattice (A'—= 1).
In the high-density limit ~n

—
1~ ((1,Eq. (2.30) yields

k~T, =
—,'Jo[C ' —

—,'(n —1) ], (2.32)

where C is the Watson integral=1. 5164, 1.393, and 1.345
for simple cubic, body-centered-cubic, and face-
centered-cubic lattices, respectively. The superconduct-
ing T, for the local pair system versus electron concen-
tration is given in Fig. 8. Two facts concerning T,

Lattice types

TABLE III. Critical electron concentration (n, ) separating the
SS phase from the M phase, calculated in the spin-wave approx-
imation (SWA) and in the random-phase approximation (RPA)
for various lattices and K/J = ~.

where p is the chemical potential for bosons. The first
term in Eq. (2.33) describes the boson hopping, whereas
the second term describes the boson interaction. These
lattice bosons have a hard-core interaction that prevents
two bosons from occupying the same site. This hard-core
condition can be modeled by adding the term U'g;n, n,
to Eq. (2.33) and by taking the limit U'~ cc excluding
double occupancy; i.e., Eq. (2.33) is a kind of Hubbard
model for the lattice bosons.

In the very dilute limit, the hard-core interaction is not
relevant and [b;,b; ]=1 2n; =1 (n—((1). Thus, in that
limit, one can consider Eq. (2.33) as a weakly nonideal
Bose gas. The Bose-Einstein condensation temperature is
readily determined in d = 3 to be ki, To = (3.31/
m *a )(n/2), which is just the first term in the expan-
sion (2.31). In the dilute limit, the boson interaction (in-
cluding the hard-core effects) changes T, as (Micnas,
1988a)

sc
bcc
Quadratic

layer

0.156
0.1186
0.394

0.135
0.106
0.283

( T, To )/To = —(1+K/J)n, (2.34)

where To is the Bose-Einstein condensation temperature.
An important, experimentally measured quantity is the
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jump of the specific heat at T, : Ac. Within the MFA
one obtains hc/k~n -(Jo/k~ T, ) ) 1, where T, is given
by Eq. (2.8). In the low-concentration limit, where the
MFA is not realistic, 6, can be estimated by means of
the standard formulas of the Landau quasiparticle
theory, with the quasiparticle spectrum given by Eq.
(2.9), which in a dilute limit reduces to that of a weakly
nonideal Bose gas. In this way one gets Ac/kBn -0—1,
depending on the strength of the interparticle potential
and the particle (local pair) density (Micnas and
Robaszkiewicz, 1988a, 1988b; Sobyanin, 1988).

Let us now consider the quasi-two-dimensional case for
the superconductivity of local pair systems (Micnas and
Robaszkiewicz, 1988a). In order to obtain T, we use the
self-consistent RPA equation (2.30) for a simple tetrago-
nal lattice with

Jk=2Jii( o k„+ o k )+2Jj o k, d .

The quantities a and d denote the intralayer and inter-
layer lattice spacings, respectively. In the high-density
limit, T, versus n is again given by Eq. (2.32), with C now
being the Watson integral for anisotropic lattices and

o 4JII +2J
c T exp

Qo

kBT
(2.36a)

crossover of T, -versus-n behavior from that of a Bose gas
with anisotropic mass (T, -n ) to that of a quasi-two-
dimensional (or d =2+E) Bose gas (T, -n ) takes place
at o', -10 . In Fig. 9 we give full numerical solutions of
T, versus n for several different ratios o.'. We also ob-
serve that the range of electron concentration for which
T, exhibits linear-in-n dependence strongly extends with
decreasing a.

To close this subsection, let us discuss brieAy the
effects of long rang-e Coulomb forces on the thermo-
dynamic properties of the SS phase. As was pointed out
in Sec. II.B.2, if the long-range Coulomb interaction be-
tween local pairs is not screened by other carriers, pseu-
domagnon collective excitations in the SS phase will ac-
quire a plasmalike gap in three dimensions [cf. Eq.
(2.24)]. Due to this fact the leading thermodynamic
characteristics at low temperatures will be exponential
rather than power-law like. In particular, for AQO « Jo,
the specific heat and the order parameter for T—+0 calcu-
lated in the RPA are given by (Micnas and
Robaszkiewicz, 1988b)

C = g (2+a —cosk a —cosk a —a cosk, d)
2+0. —1

k

o.'=Jj /JII .

&p"(0) &
—

&p (T)& —T' 'e p

whereas for AQO & Jo one gets

AQ0

kBT
(2.36b)

The region of density for which Eq. (2.32) is valid dimin-
ishes with decreasing a.

On the other hand, in the low-density hmit (n «1),
the concentration dependence of T, changes with the ra-
tio a. For a & 1, T, is well described by

3.31(n *)
k~T, =4. 17J~~a' 'n' '= '

(2 35a)

c„-T ' exp-iy2
kBT

& p"(0) ) —
& p"(T) ) —T' 'exp

kBT

where

A=mincok &fiQo .

(2.37)

(2.38)

2~(1—In —1I)
B c II k TB c

2&n

miiln(2knT, mid )

(2.35b)

which shows linear-in-n behavior and reduces to the for-
mula for a noninteracting Bose gas with a quasi-two-
dimenslonal spectrum,

Ek = (p +p~ )+ (1—cosk, d ),1 2 2 1

meed
(2.35c)

where the bandwidth in the k, direction
m~ 'd &&kBT„and where the density is n*. The

which is just the formula for the d =3 (anisotropic) free
Bose gas with an effective mass m*=(mjm~~)'
m~~ =(2J~~a ) ', mj =(2J~d ) ', and with a density
equal to the density of electron pairs in the system
n *= ,'n (a d) '. —However, for a « 1, T, is governed by
the expression

c, —T exp
AQO

kBT
(2.39)

n 0(0)—no(T)-T' exp
fiQO

kBT
(2.40)

where Ilo is given by Eq. (2.27). The differences between
the preexponential factors in Eqs. (2.35), (2.36) and (2.39),
(2.40) result from a difference between the excitation
spectra of the two models [compare Eqs. (2.24) and
(2.27)] and in particular from the fact that the Ak term
in Eq. (2.24) is generated by the short-range interaction

In both cases the power-law temperature dependences
, & p"(0) &

—
& p"( T) &

—T can be recovered at
higher T, i.e., if k~ T, )k~ T)A'Qo (or b. ). In the case of
a standard d=3 charged Bose gas, the calculation of
c,(T) and the density of condensed bosons no(T) per-
formed within the Bogoliubov approximation yields at
T~0 (Fetter, 1970)
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J, At higher temperatures a crossover to power-law
characteristics, c„—T"~, (p"(0)—p"( T) ) —T", can
take place for AGO (Jo.

The effects of unscreened long-range Coulomb interac-
tions on the critical temperature T„as well as the nature
of the phase transition and critical behavior in such a
case (see Sec. II.B.5), have not been fully explored to
date. Estimates of T, for a model based on a semimicro-

scopic approach analogous to the Landau theory of
He II yield T, ~ To (Micnas and Robaszkiewicz, 1988b;

Sobyamn, 1988). A similar result has been obtained for a
standard d-dimensional dense charged Bose gas by means
of a self-consistent Hartree-Fock theory with a static
screened interparticle potential; this theory estimates the
shift in the transition temperature as (Fetter, 1971; R. F.
Bishop, 1974)

0 & ~ s ~
l

I I e ~2. ~ I I
[ 1 I I i

l
I l 1 I (T, —T )/T -r,' ' for d )2, (2.41)

where r, =(q m/fi )(4nn/3) ' is the ratio of the inter-
particle spacing to the Bohr radius.

1.2

4. Electrodynamic properties: the penetration
depth, H„H, and H,

0.2 Ot+ Q6 0.8 q 1.0

0.4

keTc
3»

03

0.2

0.1

s

0
I

0.1
a . i

0.3

FIG. 9. (a) Critical temperature of a local pair superconductor
vs concentration n, for a quasi-two-dimensional lattice, deter-
mined within the self-consistent RPA method. K

~~

/J
~~

=K&/J& =1. For a ~ 10 and low n, there is a crossover of T,
from that of a Bose gas with anisotropic mass to that of a Bose
gas in d =2+E, showing linear-in-n behavior. (b) As in (a).
Notice the expansion of the concentration region with a linear-
in-n behavior of T, with decreasing a =J& /J~~.

The electrodynamic properties of local pair supercon-
ductors have been analyzed within the mean-field ap-
proach for the Ginzburg-Landau functional, and we refer
the reader to the work by Bulaevskii et al. (1984) for de-
tails. Their analysis shows that the superconductivity of
local pairs is of extreme type II with very short coher-
ence length, substantial penetration depth, small H, , and

extremely large H, . However, mean-field-type analysis

may be insufFicient to describe the electrodynamics, due
to the equivalence of this problem to that of a hard-core
charged Bose gas on a lattice. In particular, in the low-
density limit, one clearly is dealing with the problem of
an interacting charged Bose gas in an electromagnetic
field. We should point out that, while the electromagnet-
ic properties of a charged Fermi gas are well understood,
this is not the case for a charged Bose gas. The dielectric
properties and the excitation spectrum of a charged Bose
gas, both with and without magnetic field, have been in-
vestigated repeatedly (Foldy, 1961, 1962; Hore and
Frankel, 197S, 1976). On the other hand, not much is
known about various critical fields H, (lower), H,

'

1 '2
(upper), H, (thermodynamic) and the vortex structure of
the charged Bose superAuid. Before the Bardeen-
Cooper-Schrieffer (19S7) theory (BCS), Schafroth showed
that an ideal charged Bose gas exhibits the Meissner
effect and has an upper critical Geld H, identically zero,

2

i.e., there is no condensation at any temperature in the
noninteracting charged Bose gas for arbitrarily small ap-
plied magnetic field (Schafroth, 1955; Schafroth et al. ,
1957; Blat t, 1964).

The problem to which we address ourselves is essen-
tially that of a charged interacting hard-core Bose gas on
a lattice. For arbitrary density of bosons, the electro-
dynamics of this gas is at present only accessible within
the mean-field theory (Bulaevskii et al. , 1984), but a
rather complete picture begins to emerge for the low-
density limit (Alexandrov et al , 1986b; Alexa. ndrov,
Samarchenko, and Traven, 1987).
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a. Interacting charged hard-core Bose gas
in the dilute limit

ik (r —r')
V y e Jk+(2e/gg) A ~

k
(2.46)

b,'t'=v'. V/N f d re(r)' '5(r —R;),
P(r)'t'=&V/N +5(r —R;)b,' ', (2.42)

where V is the volume of the system and X is the number
of sites. The Hamiltonian (2.33) then becomes

For the following discussion of the penetration depth
H, and H, we shall closely follow the description given

1

by Alexandrov et al. (1986b) and Alexandrov, Samar-
chenko, and Traven (1987). We shall start from our mi-
croscopic Hamiltonian (2.1) for on-site pairs and derive
phenomenological equations of the Ginzburg-Pitaevskii
type for a weakly interacting Bose gas. This is possible in
the low-density limit, where the s =

—,
' Pauli operators p,—.

ean be replaced by the boson operators b;, b,~, since

[p,+,p, j= 1 2n; =—1 in this limit. In order to make the
link with the well-known derivation of the Ginzburg-
Pitaevskii equations for a neutral Bose gas, let us intro-
duce the field operators g"(r), g(r) defined by

J(r —r') = Jo+ V — A(r)
g2 2le

2m A'c

2

5(r —r'),

(2.47)

where the effective mass is given by

8 Jkm*= —A
Bk

g2

k=o 2J

Therefore the Hamiltonian (2.43) reads
2

f d r P (r) V — A(r) g(r)2m* Ac

+ f d r f d r'K(r —r')P (r)Pt(r')g(r)g(r')

p f—d r g (r)g(r), (2.48)

In order to get the continuum limit we expand
Jk+ ~2, &z, ~ A near k =0, yielding the expression for a free
Bose gas in the continuum

&=—f d r f d r'J(r r')g (—r)g(r')

+ f d r f r'K(r r')g (r—)gt(r')g(r)g(r')

—p d r r r (2.43)

where p, =p+ Jo.
The Ginzburg-Landau-Pitaevskii equation can now be

derived in standard fashion. The time evolution of the
field operator P(r, t) in the Heisenberg representation is
given by

where

J(r —r')= —gJ; 5(r —R, )5(r' —R ),V

l, J
2

K(r —r') = — g K; 5(r —R; )5(r' —RJ ) .V

11J

(2.44)

. „Bg(r,t) +ln ' = —P+
Bt

fi V — A(r)
Ac

+2f d 3r'g (r', t)K(r r')g(r', t)—P(r, t) .

(2.49)

An external magnetic field can now be easily incorporat-
ed in this Hamiltonian. There are in general two contri-
butions. One couples the magnetic field H to the spin de-
grees of freedom, i.e.,

gllliH g (C;tC;t C;tC;t )

where g is the gyromagnetic factor and p~ is the Bohr
magneton. This contribution is negligible for the case of
singlet on-site pairs. The second contribution of an
external magnetic field is due to its coupling to the orbit-
al motion of the local pairs. This coupling can be taken
into account in the same fashion as for fermions by mak-
ing use of the replacement

We approximate K(r —r') by a weak, short-range (con-
tact) interaction K(r —r') =K 05(r —r'), KO=Koa and
assume the conditions for the dilute gas limit

P(r, r) =g,(r, r)+ p(r, r ),
where we take

(2.50)

$0(r, t ) = lim ( N
~ g( r, t )

~
N + I ), N / V =const,

mn'~'l«i, l= d r K(r)= Ko
4mB' 4vrA'

to be satisfied, where l denotes the scattering length in
the Born approximation. Let us now decompose the field
operator g(r, t) in the form

J; ~JJexp — A(r)dr2el
A'c R;

(2.45)
j ~oo

(2.51)

where A(r) denotes the vector potential. Notice that the
charge 2e enters because of the bosons' being made up of
two electrons. Considering only slow variations of A(r)
on the scale of a few lattice constants, we can write

which is a c number giving the macroscopic wave func-
tion of the condensate. X denotes the total number of
particles. The average density of particles in the con-
densed phase is given by
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n, = f—d'r
~ q, (r, t) ~' .

f(r, t) describes the part of g(r, t) that is not in the con-
densed phase. Provided we are at low temperatures (well
below the Bose condensation temperature), we can
neglect the contribution from noncondensed bosons and
obtain the following equation for $0..

where we inserted the low-temperature relation for the
chemical potential p=2noK0, with no being the density
of condensed bosons. The Ginzburg-Landau parameter
v= A,H /go then becomes

1/2
m*c &0&'

K— (2.60)
4~e

~fort A' 2ie
A( )

at "2 ' ~c

+2K0 $0(r, t)~ Po(r, t) .

go(r, t)

(2.53)

where a is the intersite distance. Taking the efFective ra-
dius of the interaction K; to be of order of a few lattice
constants and m *)m„we find that we are dealing with
an extreme type-II superconductor. The thermodynamic
critical field is given by

This is a direct generalization of the Ginzburg-Pitaevskii
equation for a neutral Bose gas.

Within the same approximation one gets for the super-
current

j,(r, t)= [%0(r,t)Vqo(r, t) —%0(r, t)Vq0(r, t)]
m l

4 2

%0~ A(r),
m c

which is related to the vector potential by the Maxwell
equation

H, /8m =F,(H =0) F, (H—, )

=F,(H =0) Ftv(H,—),

H,
H, = — ln~=

&z~
4~aeno m *c

ln
m c

Ko

4me

which near T =0 becomes

H, = no(SHAKO)'

The lower critical field H, is given by
1

1/2

(2.61)

(2.62)

4~.rot rotA(r, t)= j,(r, t) .
c

(2.55)
The upper critical field is formally given by

H, =&2aH, . (2.63)

x, (q ~)=—
2

COq

m g (Q) Q) )

4e &0

where co =[(E ) +2noE K ]'~, E =A' q /2m is the ex-
citation spectrum of the weakly nonideal Bose gas, with
Kq being the Fourier transform of E;-.

Equations (2.53), (2.54), and (2.55) are obviously
equivalent to the Ginzburg-Landau equations, and the
penetration depth is given by

1/2
m c

16mnoe

The coherence length determined from the spatial varia-
tion of $0(r) is given by

1/2

0 4m*no% 0
(2.59)

Therefore the London equation follows,

4noe
rotJ= — H .

m c

It should be pointed out that the existence of the Lon-
don equation for the weakly nonideal charged Bose gas
has also been demonstrated by Ranninger and Thirring
(1963) on the basis of a gauge-invariant formulat'ion of
linear-response-function theory. Moreover, the (q, co)-
dependent magnetic susceptibility was calculated by Ran-
ninger and Thirring (1963), yielding the following contri-
bution from condensed bosons:

We notice that in the dilute limit, inclusion of hard core
efFects in a first approximation amounts to a change
Ko ~So+Ko in Eqs. (2.59)—(2.63) (Micnas and
Robaszkiewicz, 1988a).

b. Upper critical field and dimensionality

Let us now consider the question of the upper critical
field H, in more detail. Schafroth (1955) has already

2

demonstrated that this critical field for an ideal charged
Bose gas is zero. This is due to the fact that in the pres-
ence of a magnetic field an ideal charged 3D Bose gas has
the dispersion co& =g„co„+k, /2m, where co„=coo(n
+ —,

' ), with

2eH
0 mc

being the cyclotron frequency. As a result the particle
motion is effectively one dimensional, and no Bose con-
densation can occur at any temperature. The three-
dimensional character of the system can be reestablished
either by introducing boson-impurity scattering (Alexan-
drov et al. , 1986b) or by an interaction between the bo-
sons (Alexandrov, Samarchenko, and Traven, 1987). The
effect is to round off the one-dimensional singularities in
the density of states at the bottom of the boson band,
which leads to an effective three-dimensional problem.
H, is-determined as that value of the external magnetic

2

field H at which, at a given temperature T ~ T„ the Bose
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condensation is suppressed. This happens when the
chemical potential p(H, T) coincides with the lowest ei-
genvalue of the charged Bose gas in a magnetic field: Tc

3/2; 3/2

eH,
p(H, , T)= +EH (k=0,co=0) .'2' mc

(2.64)

Xrr (k, co) denotes the self-energy of bosons with wave
c2

vector k and frequency co evaluated in the normal state in
the presence of a magnetic field. This self-energy has
been evaluated for boson-impurity scattering (Alexan-
drov et al. , 1986b) and for a weakly interacting Bose gas
(Alexandrov, Samarchenko, and Traven, 1987). For the
latter case it yields a renormalized boson energy disper-
sion for the lowest Landau level of the form (Alexandrov,
Samarchenko, and Traven, 1987)

k, EC0
eo{k,)= +

2m 4m

1/4

{m "co )' T ~~k, ~
. {2.65)

H, as a function of T and the boson density n is then
2

determined by the expression

eH,
2

dk
1

n
2A —oo P[c,„(k)—p(H, T) ]

(2.66)

eH

To m. h — PFo(k, )
(2.67)

together with Eq. (2.64).
s„(k, ) is the renormalized eigenfrequency of the nth

Landau level for H =H, in the normal state. Since the

dominant contribution to the sum in Eq. (2.66) comes
from the lowest Landau level, i.e., n =0, all the other
Landau orbitals can be neglected and, for n ~ 1, s„(k)
can be replaced by the boson dispersion in the absence of
magnetic field. This finally yields (Alexandrov, Sarnar-
chenko, and Traven, 1987)

near T, with a positive curvature for H, . This is a
2

characteristic feature of charged bosons. With decreasing
temperature, H, as given by Eqs. (2.68) and (2.69) for-

mally diverges. This divergency results from the assump-
tion in the derivation of H, that T )co. In any case, for

2

charged bosons we expect very high values of H, and

saturation towards H, (T =0)=go/2vrgo as T~O, with

go given by Eq. (2.59). In Fig. 10 the temperature depen-
dence of H, is shown.

2

Finally we should mention the interesting case of the
quasi-two-dimensional charged Bose gas; the electromag-
netic properties of this system have been analyzed by
Wen and Kan (1988).

5. Critical behavior

As has been shown above, the U (0 Hubbard model
in the ~U~))t limit can be described by an effective
pseudospin Hamiltonian [Eq. (2.2)], and the supercon-
ducting state corresponds to an ordering of "spins" in the
XY plane. In view of this equivalence one expects the
critical behavior to be very different from that of the BCS
model. The symmetry of a superconducting local pair
system is equivalent to that of the XY model, and hence
its universality class should be the same as that of the
quantum S =

—,
' XY model. Moreover, according to the

universality, its critical behavior should also be
equivalent to that of He II, i.e., the critical properties
are of the same nature as those near the 2, transition in
helium.

Such a system with short coherence length will exhibit

from which H, has been determined to be
2

1/2

H, =3.74
4o n To

'2 2m Tp

3/2 ' 3/2

(2.68)

H, (T)=0.64 2' I.

for weakly interacting bosons. Here go=bc/2e is the
Aux quantum, T0 is the Bose-Einstein condensation tem-
perature, and l denotes the scattering length.

A similar result is obtained for a system with boson-
impurity scattering (Alexandrov et al. , 1986b),

' 3/2 3/2
TO T
T '

T.

Ho

0.5 T 0%1
(2.69)

where i; = (4n.n; f )
' is the mean free path of the

bosons, n; the impurity concentration, and f the
boson-impurity scattering amplitude. The expressions
for H, show a temperature behavior

FICx. 10. Temperature dependence of the upper critical field
H, for a local pair superconductor: dotted curve, the MFA re-

sult of Bulaevskii et al. (1984); solid curve (BS), upper critical
field for a charged Bose gas (with impurity scattering); dot-
dashed line, H, for a BCS type-II superconductor.'2
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a wide critical regime, and its true critical behavior
should be observable. This is in contrast to the weak-
coupling BCS model, in which the width of the critical
regime can be as narrow as 10 ' T, and is usually experi-
mentally inaccessible, so that the Ginzburg-Landau criti-
cal exponents apply. One therefore expects that the
specific heat of a local pair system in d =3 will exhibit a
A, anomaly (Fig. 11), the correlation length will vary as

with v = —,', and the order parameter as
n ()

—
) r

~

~ with f3= —,
' [~= ( T —T, ) /T, ].

In Table IV we summarize critical exponents for local
pair superconductors and compare them with the
Ginzburg-Landau critical exponents. They follow from
general considerations based on the Ginzburg-Landau
functional and dimensional analysis (Bulaevskii et al. ,
1984; Lobb, 1987; Kapitulnik et al. , 1988). The penetra-
tion depth A, H

—( n o )
'~ has an exponent ( —

—,
'

) that is

different from that of the correlation length (-—,'), and

consequently the Ginzburg-Landau ratio a. =A,H/g will

be temperature dependent (x.—~r~' ). One therefore ex-
pects a crossover near T, from type-II to type-I super-
conductivity. Such behavior also allows for the possibili-
ty of a weakly first-order phase transition due to intrinsic
fiuctuations of the vector potential A (Halperin et al. ,
1974; Chen et al. , 1978; Dasgupta and Halperin, 1981;
Doniach, 1984).

The critical exponents for H„H, , H, are also
1 2

different from those of the BCS model, and H, will have
2

an exponent 2v- —'„since FE, =$0/2vrg Furth. ermore,

as was pointed out by Bulaevskii et al. (1984) and Lobb
(1987), the dynamical phenomena for T )T, should
display behavior different from that of the BCS theory, in
particular, as concerns the fluctuation component of the
conductivity and the diamagnetism.

Some of these predictions seem to have been observed
in the new high-T, materials of the Y-Ba-Cu-O family,
namely, the positive curvature of H, and the critical be-

2

havior of H, with an exponent v-0. 65 (Oh et al. ,

1988), the fiuctuation excess of the conductivity for .

T )T, (Vidal et al. , 1988), and a logarithmic singularity

CV

T
Tc

cv

{b)

T
c

in the specific heat (Butera, 1988; Ishikawa et al. , 1988;
Voronel et al. , 1988).

Although many of these predictions are universally
correct, a full description of critical phenomena in
charged superAuids is at present not completely worked
out. For example, for a charged Bose gas with Coulomb
forces, Ma (1972) has argued that the critical exponents v
and g should be the same as for a neutral Bose gas, but
that there will be differences in the correlation functions.
It should also be stressed that in the presence of a long-

FIG. 11. Specific heat for (a) BCS and (b) local pair supercon-
ductors. AC, /y T, =1.43 in the BCS theory, with y being the
Sommerfeld constant.

TABLE IV. Critical exponents for Bardeen-Cooper-Schrieffer (BCS) and local pair (LP) superconductors in d= 3. no is the density of superconduct-

ing electrons, o., is the fluctuation component of the conductivity, and ~=(T —T, )/T, .

C
U

~o-I~I'e ~H —I~I
' «-I~I &,-(—~)' " H, -( ~)'P H, —( 1) —0'—

superconductor

0inzburg-Landau
critical
exponent

a=O
discontinuity

p=—1

2
m=O 1S=—

2

Local pair
Superconductor

critical
exponent

/a[ & )O-'
or

)n[~/

2
3

p=—1

3
I=—1

3
1m=—
3

=2
3

4
3

1$
3
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range unscreened Coulomb interaction, Wigner crystalli-
zation may compete with the superconducting state for
the low-density limit of the hard-core charged Bose gas.

6. Disorder effects

To close this subsection we shall discuss the effects of
disorder on the properties of a local pair system. In fact,
the very first ideas about U (0 centers dealt with amor-
phous semiconductors, disordered interfaces, and the
possibility of "superconducting glasses, " i.e., supercon-
ducting systems sensitive to structural disorder (Ander-
son, 1979; Simanek, 1979; Kulik and Pedan, 1980; Pedan
and Kulik, 1982; Kulik, 1984; Micnas et al. , 1985a).

Within the framework of the attractive Hubbard mod-
el the effects of structural disorder can be modeled by
adding the random site energy term g;E;n; with random
E;. For

~ U~ ))t, perturbation theory yields (Micnas
et al. , 1985a)

H = —g J;Jp,+. p + g E,)p', p'

The Hubbard model with large negative U, the special
case of Eq. (2.70) with K =J ( 8'=0), has also been pro-
posed by Kulik and Pedan (1980) as a model of a super-
conducting glass. Both our results {Micnas et aI , .1985a)
and those of Kulik and Pedan (1980) reach the same con-
clusion that the SS phase in local pair superconductors is
rather sensitive to diagonal disorder effects, contrary to
the standard BCS theory. It is reasonable to assume that
the general qualitative features of the model derived from
mean-field-type calculations and the renormalization
group are correct. However, the mean-field and standard
RG analyses are not sufBcient to resolve the thermo-
dynamics below dimensionality 4, in view of strong Auc-
tuation effects caused by the randomness. One of the
questions to be answered concerning the superconduc-
tivity of a local pair system is whether the system will
prefer electron pairs localized by disorder or superAuidity
of charged pairs. The problem is that of a hard-core
charged Bose gas on a lattice in a random potential. In
the dilute limit, the simplest model approximating the
original one [Eq. (2.70)j is that of a free (or weakly in-
teracting) Bose gas in a random chemical potential,

—g (P—E; )(2p';+ 1)+const, (2.70) &= g t jb;tb —g (p —E;)b; b; . (2.72)

and the electron concentration n is given (we assume
quenched disorder) by

{2.71)

where ( ),„denotes a configurational average over the
probability distribution of E;. Equation (2.70) is an s =

—,
'

anisotropic antiferromagnet in a random longitudinal
magnetic field with the constraint (2.71) on the magneti-
zation. The random E; is coupled with the CO parame-
ter in the same way as the longitudinal magnetic field is
coupled with the antiferromagnetic order parameter.
Thus we are dealing with a form of the random-field
problem, and it is well known that random E; will drasti-
cally change the critical behavior. On the other hand, SS
is a transverse ordering that is not directly coupled to ran-
dom E;.

Mean-field and renormalization-group (RG) studies
have been performed for this problem in the half-filled
band case (Micnas et al. , 1985a, 1985b). It was found
that the CDW ordering is strongly suppressed by diago-
nal disorder. Tss is reduced with increasing degree of
disorder (so the Anderson theorem may not be satisfied).
Moreover, a stronger suppression of the diagonal correla-
tions than of the transverse ones by random E; makes
possible disorder-induced superconductivity. In particu-
lar, for 8' & 0, increasing disorder can induce a transition
from the CO to the SS phase. There is also a rich mul-
ticritical behavior depending on the probability distribu-
tion of E; (for details, see Micnas et al. , 1985a, 1985b).

There are several important points to be resolved.
(i) Can free bosons condense in a random potential?

(Kac and Luttinger, 1973, 1974.)
(ii) Does an interacting Bose gas undergo a phase tran-

sition below d =4 or does it form a Bose glass'? (Hertz
et al. , 1979; Bray and Moore, 1982.)

(iii) How is superfluidity destroyed with increasing dis-
orders

These questions are of general relevance for strongly
disordered superconductors and superfluids (Kapitulnik
and Kotliar, 1985; Ma and Lee, 1985; Kotliar and Kapi-
tulnik, 1986) and remain to a large extent unresolved. In
the dilute limit the considered local pair system will be
much similar to that of "He II in a porous medium (like
vycor), which is known to preserve superfluidity (Crooker
et al. , 1983; Weichmann et al. , 1986; Weichmann and
Fisher, 1986). The superfluidity (superconductivity) can
be destroyed by an interplay ef disorder, interaction, and
quantum effects. One of the challenging problems is to
identify the universality class of this onset transition (Ma
et al. , 1986; Micnas, 1988b; Fisher and Fisher, 1989). In
one dimension, the system (2.70) for K =0 reduces to one
of free spinless fermions, so that all states will be local-
ized by disorder and no transition is allowed at the
ground state (Schneider and Politi, 1986). Recently,
Fisher and Fisher (1988) have argued that d-dimensional,
repulsively interacting bosons in a random potential un-
dergo a T=O K onset transition from the superAuid to
the Bose glass state. The associated quantum critical be-
havior is characterized by the exponents v&2/d, g, and
a dynamic exponent z; z =d in neutral cases and z =1
(for all d) in charged cases.
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C. Weak-attraction limit and transition
from Bardeen-Cooper-Schrieffer superconductivity
to charged-boson superfluidity

The U &0 extended Hubbard model has also been ana-
lyzed in the weak-attraction limit (~ U~ (2zt) within the
broken-symmetry Hartree approach (BCS-like for super-
conductivity) for arbitrary electron density in d =3 [with
the use of square density of states (DOS)] and in d =2
(Robaszkiewicz et al. , 1981c, 1981d, 1982; Micnas et al. ,
1988a; Micnas, Ranninger, Robaszkiewicz, and Tabor,
1988), as well as within the local approach for electron
correlation (Oles et al. , 1984).

1. The broken-symmetry Hartree approach

In Fig. 12 we give the finite-temperature phase dia-
gram of the extended Hubbard model for arbitrary n, ob-
tained within the Hartree approximation for two values
of zW/D and several values of —U/D (D is the half-
bandwidth). All the phase transitions are continuous,
and the phase boundaries intersect at a multicritical
point between SS, M, CO, and NO phases in a way analo-
gous to the strong-attraction limit [cf. Figs. 5(a)—5(c)].
The essential di6'erence between the strong- and weak-
attraction regimes emerges in the form of the heat charge
order in the Hartree theory. This reentrance behavior,
characterized by a sequence of phase transitions SS~NO
—+CO~NO with increasing temperature, occurs near
the multicritical point when z8'/D is comparable to or
greater than —U/D (Robaszkiewicz et al. , 1982).

Within the broken-symmetry Hartree approach the
ground-state phase diagram of the negative-U extended
Hubbard model shows for n =1 the CQ phase if 8'&0
and the SS phase if 8' &0. For a non-half-filled band the
ground state is always ordered exhibiting either the SS or
the M (mixed CO-SS) state, and the phase boundary be-
tween them is continuous, being dependent on the pa-
rameters of the model and the electron concentration
(Robaszkiewicz et a/. , 1981c, 1981d).

At finite temperatures the same type of analysis indi-
cates the four main phases, CQ, SS, M, and the nonor-
dered phase (NO), which is, however, metallic, i.e.,
without preformed pairs. For a half-filled band, if the
CO phase is stable, the system remains nonmetallic, and
at TCQ the insulator-to-metal phase transition occurs.
For the SS state there is a single continuous phase transi-
tion at Tss to the normal metallic phase. For a non-
half-filled band the CQ phase is still characterized by an
energy gap, but at the Fermi level one finds a Anite num-
ber of carriers that can support the current. This is due
to the fact that for n& 1 the wave vector Q of the two-
sublattice charge order is different from 2k~. This CO
phase is stabilized by intersite repulsion W, i.e., with in-
creasing W both the energy gap and TcQ increase and
the CO phase expands toward higher values of ~n

—1 ~.

For the SS phase and n&1, the energy gap and Tss were
found to be functions of electron density (Robaszkiewicz
et a/. 1981d, 1982; Micnas, Ranninger, Robaszkiewicz
and Tabor, 1988), and it was established that the SS
phase could be stable even for arbitrarily small n. How-
ever, Tss signals only a BCS-type transition to the metal-
lic phase, and if it is continued to very large values of

~
U~

it goes over to —'~ U~, i.e., to the pair-breaking tempera-
ture.

The competition between the CO and the SS states re-
sults in the M phase, as in the strong-attraction limit dis-
cussed previously. It was concluded that the weight of
the SS component in the M phase increases as the tem-
perature gets lower, and that one expects the appearance
of superconducting features while going from the metal-
lic CO phase (n&1) to the M phase with decreasing tem-
perature (Robaszkiewicz et al. , 1982).

2. Transition from Bardeen-Cooper-Schrieffer
superconductivity to charged-boson superfluidity

From the Hartree analysis (which reduces to the BCS
theory as far as the SS phase is concerned), it has been
found that ground-state characteristics, such as order pa-
rameter, energy gap, and chemical potential, change con-
tinuously with increasing

~
U~ for n H [0,2] and that the

zg 0

0

\

Q2 OA 0.6

0.2

02 0.t i
n-1

) 0.6

FIG. 12. Finite-temperature phase diagrams of the extended
Hubbard model with U(0 and 8') 0 for the square density of
states. D is the half-bandwidth. The upper and lower figures
are for z8'/D=0. 55 and 0.77, respectively, each for several
values of U/D: dotted curves, U/D = —0.4; dashed curve,—0.8; solid curves, —1.2; dot-dashed curve, —1.6. Relative po-
sitions of the four phases (CO,M, SS,NO) are illustrated by the
inset in the panel for z8'/D=0. 77. For any given set of z8'/D
and U/D, four lines intersect at a multicritical point in a way
analogous to that in Fig. 5(b),(c).
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BCS wave function can give reasonable results not only
for

l Ul & 2zt but also for
l Ul ))t. Moreover, the finite-T

phase diagrams determined in the weak-attraction limit
(although different) preserve many similarities to those of
strong coupling (compare Figs. 12 and 5) (Robaszkiewicz
et al. , 198la, 1981b, 1981d, 1982).

Analogous results were obtained by Nozieres and
Schmitt-Rink (1985) in their analysis of the continuum
model of a Fermi gas with attractive potential and the at-
tractive Hubbard model. That paper offered an il-
luminating physical discussion of the problem of transi-
tion from weak-coupling to strong-coupling supercon-
ductivity, a problem first addressed by Leggett (1980a,
1980b), and concluded that at the ground state this tran-
sition is smooth (i.e., there is no sharp distinction be-
tween superconductivity and pair Bose condensation),
though the properties of these two limiting cases are in
many aspects quite different.

a. Zero temperature

Let us consider the Hartree equations describing the
SS state at T=O for the negative-U Hubbard model
(Robaszkiewicz et al. , 198ld; Nozieres and Schmitt-
Rink, 1985):

b. = g (1—2nk),x k 2rk

where

(2.76)

1nk= — I—
(
—2+ g2)1/2

is the ground-state fermion distribution function„
n =(2/X)gunk, and Ek=Ek —P. Upon introducing the
function pk=b. /(Ek+b, )', we find that Eq. (2.76) takes
the form

(2Ek 2p)4k (1 2+k) y 0k'k

which is the binding energy of the pair. Let us notice
that calculation of p to the t /l Ul order yields

p= (n —1)+— (n —1),l Ul 2zt'
2 lUl

which exactly reproduces the strong-attraction-limit re-
sult (Robaszkiewicz et al. , 1981a).

In the dilute limit p~ —
—,'lUI, b, = IUIV'riz,

n =@/2 is the number of pairs per site. In this limit one
can also readily show that the BCS equation reduces to a
Schrodinger equation for a single bound pair. The super-
conducting gap parameter 6 can be written as

l. (
—)2+ g2]1/2

(2.73a)
nk= —,'[1—sgn(sk)(1 —

lPkl )' ] .
(2.77)

1 ek P
+ k I:(sk—P)'+~']'" (2.73b)

In the dilute limit pk«1, hence Eq. (2.77) reduces in
leading order to

where p =p, +n
l Ul /2 and b, is the superconducting order

parameter 6=
l Ul(c;ic;&).

In the very-weak-coupling limit, l Ul «zt, b, is ex-
ponentially small and we recover the usual BCS picture:
the fact that the fermions are confined to a lattice is not
essential, since the radius of the Cooper pair is much
larger than the lattice spacing (5 «zt). In the opposite
strong-coupling limit, however, the physics is different.
The fermions form local singlet pairs on a given lattice
site, being composite bosons, with binding energy —

l Ul.
As was extensively discussed in Sec. II.B, these bosons
can move via virtual ionization, with the effective hop-
ping amplitude 2t /l Ul and w—ith near-neighbor repul-
sion 2t /l Ul. Superfluidity then corresponds to conden-
sation of these hard-core bosons. At low density, one has
essentially a weakly interacting Bose gas, whereas for
higher densities the hard-core correlations are important,
and overlap of the bound pairs severely restricts their
motion.

In the large-l Ul limit it readily follows from Eqs.
(2.73a) and (2.73b) that

(2Ek —2p)4k= X 4k (2.78)

which is just the Schrodinger equation for a single bound
pair, with 2p playing the role of the eigenvalue. In that
order p((0) is essentially given by half of a binding ener-

gy of the pair and n~ =(1/4X)gklpkl, as expected for an
ideal Bose gas.

Thus the BCS wave function contains the right physics
in both the weak- and the strong-coupling limits, and it
may be used to describe progressive building of pairing
correlations in the ground state. The evolution of the
particle distribution function nk is smooth. In the weak-

coupling limit it is close to the normal-state step func-
tion, while in the strong-coupling limit it remains practi-
cally constant, reAecting the Fourier transform of a point
internal wave function. Similarly one finds that
b, (n, l Ul ), p(n, l Ul ), and E (n, l Ul ) evolve smoothly with

increasing
l Ul from weak- to strong-coupling regimes,

for a given n. For example, c. goes continuously from
twice the small cooperative BCS gap in weak coupling to

p = —,
'

I Ul(~ —1), ~ =-,'
I Ul i/n (2—Ii),

and the minimum energy to break a pair is

=2V p,

(2.74)

(2.75)

3This procedure applies generally in the dilute limit to any
form of the attractive potential Vk k (Nozieres and Schmitt-
Rink, 1985). For solutions of the Schrodinger equation for on-
site and intersite pairs versus dimensionality, see Sec. III.B.
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the atomic binding
~

U~ in strong coupling.
In conclusion, there is no sharp distinction between su-

perconductivity and pair Bose condensation at T =0 K.

b. Finite temperature

The question is now whether we can have similar con-
tinuous evolution from BCS-like superconductivity to
charged-boson superAuidity at finite temperatures. In
weak coupling, T, is controlled by pair breaking and in-
creases exponentially with the coupling constant. In the
opposite limit of strong coupling, the pairs are strongly
bound, and T, is determined by their center-of-mass
motion, decreasing with increasing coupling constant as
2t /~ U~. However, the Hartree approximation is valid
only for ~U~ &2zt, where T, results from single-particle
excitations. If

~
U~ ))t, T, is determined by the thermal

excitation of collective modes; these cannot be treated by
the Hartree-Fock method, which only includes pairing
via the average static order parameters.

Let us point out that the negative-U Hubbard model,
even in the weak-coupling limit, retains some essential
differences from the standard BCS model. As electron
pairing takes place in the whole Brillouin zone, the
effective half-bandwidth (instead of coD ) will play the role
of the energy scale. In consequence, for example

k~ T, =1.14D+n (2 n)ex—p( —2D/~ U~ ),

6( T =0)=D&n (2 —n)/sinh(2D/l Ul )

for the square DOS (Robaszkiewicz et al. , 1982). Other
differences will appear if the true DQS for a given lattice
is used, including the ratio A(T =0)/k~T„which will

deviate from the BCS value 1.76.
The problem of continuation from BCS-like supercon-

ductivity to the superAuidity of charged bosons at finite T
for the U (0 Hubbard model is at present unresolved.
We should stress that an analogous question arises in
itinerant magnetism: is T, determined by a rearange-
ment of single-particle distributions or by thermally ex-
cited spin fluctuations? Available computer simulations
for the U )0 d =3 half-filled Hubbard model (Hirsch,
1985a; Scalettar, Scalapino, et al. , 1989), which by the
repulsion-attraction transformation can be used for the
U (0 case, indicate that the evolution of T, with increas-
ing ~ U~ is smooth, despite the fact that the mechanism of
T, changes [compare Figs. 3 and 13(a)]. In the numeri-
cal simulations for lattices ranging from 4 to 10 sites,
maximum T, is reached around U/t —10 with

T, -0.55t.

c. Two-dimensi onal case

Let us now conclude with the two-dimensional case.
For the 2D continuum model of a dilute gas of fermions
at T =0, interacting via a given two-body potential, Ran-
deira et al. (1989) have recently shown that the many-
body ground state is unstable to s-wave pairing if and
only if a two-body bound state exists. This result notice-
ably differs from the 3D case, where the sharpness of the
Fermi surface is sufhcient to induce the Cooper instabili-
ty of the normal metallic state for every attraction (and
thus in the absence of a true bound state). Moreover,
Randeira et al. (see also Miyake, 1983), using the stan-
dard BCS route, found very simple expressions for the
ground-state energy gap 6 and the chemical potential p,
varying continuously as

6=+2eyE, p=EF E—(2.79)

Nozieres and Schmitt-Rink (1985) have analyzed these
intriguing questions for a continuum model of a Fermi
gas with fictitious separable attractive potential Vkk.
They asked whether the onset of BCS-type superconduc-
tivity and that of Bose condensation were manifestations
of a common instability mechanism, which a priori is not
clear. For weak coupling the onset of a BCS state is con-
trolled by a divergence of the t matrix —the Thouless cri-
terion (Thouless, 1960). For strong coupling, on the con-
trary, it is controlled by a Bose condensation. Nozieres
and Schmitt-Rink (1985) could show that indeed the
thermodynamic potential evaluated in the BCS approxi-
mation but including pair Auctuations could lead to criti-
cal temperatures as one would expect in both of the two
extreme limits, i.e., T, —EFexp[ —1/N(0) Vk i, ] for

weak coupling and T, saturating towards a constant in
the strong-coupling (ideal Bose gas) limit. Vk k denotes

the strength of the attractive potential at k~ and N(0) is
the density of states at the Fermi level. T, as a function
of coupling strength evaluated numerically for a given
density interpolates smoothly between weak- and strong-
coupling regimes (Nozieres and Schmitt-Rink, 1985).

We note that the saturation of T, towards its ideal
Bose gas value in the strong-coupling limit is a charac-
teristic feature of the continuums model such as the at-
tractive Fermi gas. For a discrete model like the attrac-
tive Hubbard model, T, decreases with increasing cou-
pling constant in the strong-coupling limit.

In Fig. 13(a) we plot schematically the expected phase
diagram of the 3D attractive Hubbard model for a simple
cubic lattice, illustrating the transition from BCS-type
superconductivity to superAuidity of charged hard-core
bosons. This changeover is realized by increasing

~
U~ for

any fixed density.

4However, the possibility has been suggested that the transi-
tion is weakly first order at small-to-intermediate values of U
and that it changes to a second-order transition at some critical
value of Ult (De Marco et al. , 1978; Hirsch, 1985a; Scallettar,
Scalapino, et al. , 1989).

upon going from weak to strong coupling. E, denotes
the binding energy in the two-body problem, and
eF=(mh' /m)n. The BCS results follow if E, «eF; then
p=e~ and b, /e~-(/ok~) '«I, i.e., the pair size is
much larger than the interparticle spacing kF '. In the
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FIG. 13. (a) Schematic phase diagram for the d=3 attractive Hubbard model for a simple cubic lattice, illustrating the transition
from BCS type superconductivity to superfluidity of charged bosons: solid curve, the T, vs

~ U~ curve for n= 1, plotted using the
Monte Carlo results of Scalettar, Scalapino, et al. (1989) for U&0 and the repulsion-attraction transformation (Appendix); dotted
curve, the weak-coupling (Hartree theory) prediction. (b) Schematic T, /4t vs ~U~/4t and ~n

—l~ for the d=2 attractive Hubbard
model on a square lattice (after Scalettar, Loh, et ah. , 1989): dotted curve, the weak-coupling (Hartree theory) prediction for T, away
from half-filling [-exp( —St/~ U~)]; dashed curve, the strong-coupling energy t /~ U~ divided by 4t The sections d.epict the slices of a
superconducting phase that has a Kosterlitz-Thouless power-law decay of the pairing correlations.
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TABLE V. Comparison of local pair and BCS superconductors.

Local pair (on-site) superconductor BCS (weak-coupling) superconductor

1. All electrons are paired via short-range static attraction
(real-space pairing). Radius of local pair -radius of an effective
site. Pairs move via virtual ionization with amplitude -r /~U~.

Only a small number of electrons near
cF participate in the Cooper pairing.

2. Non-ordered pairs can exist above T„and at T, they
undergo a Bose condensation, T, —(r /~ U~)f (n);
f(n)-n ~ in d=3 and f(n) n-in d=2+e, for n &&1.
T, decreases with increasing

~
U~.

The Cooper pairs are formed and condensed
at T„' T, -e xp[

—I/N(0) Vscs] increases
with increasing VBcs.

3. Energy gap in the single-particle spectrum Es —~U~

(binding energy of local pair). Eg exists above T, ; at T„
SS~nonmetal or local pair metal,
1.76k@ Tc/Eg(0) 2t /U «1

Eg (0 ) decreases monotonically with
increasing T; at T, SS~metal transition.
1 76k~ T /Eg (0) 1

4. Critical behavior can deviate from the Ginzburg-Landau type.
Universality class of s =—' quantum XY model (A,-type

anomaly in the specific heat). Similarly with He II.
Large critical regime and breakdown of mean-field
behavior (Table IV).

Classical Ginzburg-Landau type critical
behavior.
Critical region very narrow
and usually inaccessible.

5. Low-temperature thermodynamics and collective excitations.
(a) Without long-range Coulomb interactions:

SS, gapless branch cok-k. SS-CDW: two branches
{cok-k and cubi, =a+bk ). CDW: two branches with a gap.
Power-law behavior of C, —T" in SS and SS-CDW phases
at low T. Low-T behavior similar to the quantum lattice
gas model of He II.

(b) With long-range Coulomb interaction:
SS: cok=AQp(T) for k~O,

1/2
16me2 $2

( x)2
Cp 711 Q 2Ja

(plasma gap).
C, -exp( —6/T), 5-mincok &AAp.

Neutral Fermi liquid
SS: )uk- k.

Plasmon gap; exponential behavior
determined by the single-particle
excitations.

6. Coherence length g'/a ) 1

(except for T-T, ) ~

g/a —t / Vscs )) l.

7. Penetration depth for magnetic field
A,~ ~ (1—100)A.B~s.

8. s.=A,H/g)) 1 (extreme type-II superconductor).

9. Upper critical magnetic field:
(a) Paramagnetic effect. {T«T,),

ksT, «ysH, & ~U~.

(b) T5 T„orbital effect.
Very large values of H, and possible positive curvature,'2
d H, H,

)0, »1.
dT He

(Usually) p&H, ~k&T,
(Clogston limit).

10. Effect of structural disorder (nonmagnetic
impurities) is strong.
A possibility of disorder-induced superconductivity
and superconducting glass behavior.

Effect of structural disorder is weak.

11. Effect of magnetic impurities is weak
(large binding energy of local pairs).

Effect of magnetic impurities is strong.
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opposite limit of very strong attraction (or of very low
density), there is a deep two-particle bound state,
E, »sF, p= E—, /2, indicating Bose condensation of
tightly bound pairs of fermions, and the pair size is much
smaller than the interparticle distance (/ok~ )

' && 1.
Since there is no singularity in Eq. (2.79) as a function of
E, /cF, there is a smooth crossover from the BCS limit to
Bose condensation. Nevertheless, there is a weak singu-
larity in the excitation spectrum at p=0, at which point
the energy gap in the excitation spectrum changes from
6 to t/6 +p as p goes from positive to negative values.
The point p=O can mark the transition between the
BCS-type regime (p & 0) and the Bose condensed regime
(p & 0) for a continuum model at T =0 K.

The problem of evolution from weak- to strong-
coupling superconductivity at finite temperatures is more
involved than in the 3D case, due to the absence of Bose
condensation in 2D systems for TWO K (Hohenberg,
1967; but superAuidity is possible even in two dimensions
and is related to the excitation spectrum).

For the d =2 negative-U Hubbard model, computer
simulation studies have recently become available (Scalet-
tar, Loh, et a/. , 1989). They also indicate a smooth tran-
sition between weak- and strong-coupling regimes, but
the superconducting phase has a Kosterlitz-Thouless
power-law decay of the pairing correlations away from
half-filling, and T, =0 for n =1. In Fig. 13(b).we give a
schematic plot of T, as a function of electron concentra-
tion and strength of the Hubbard

~
U~.

In Table V we compare the main properties of local
pair superconductivity with those of the BCS model.
This comparison is made in order to contrast these two
physically different cases.

In our opinion the question whether there is a clear-cut
transition between BCS-like superconductivity and
charged-boson superAuidity, and whether this can have
detectable effects on the excitation spectrum, is at present
unresolved.

We should also like to point out that the U &0 Hub-
bard model is the simplest model of local pairing, and
that the fundamental questions regarding the transition
from BCS behavior to superAuidity of charged bosons
have to deal explicitly with the microscopic pairing
mechanism, i.e., in electron-phonon (exciton) systems,
with the electron-boson coupling constant, the Coulomb
interactions, and the problem of interpolation between
the adiabatic limit and the inverse-adiabatic limit (Frad-
kin and Hirsch, 1983; Guinea, 1983; Hirsch and Fradkin,
1983; Hirsch and Scalapino, 1985a; Nasu, 1985, 1987,

An extension of the Nozieres and Schmitt-Rink analysis sug-

gests that a dilute continuum 2D Fermi gas with an attractive
s-wave interaction becomes unstable at all temperatures to a
state of coexisting bound and ionized fermion pairs and that
such a state is inaccessible by an adiabatic continuation of the
V =0 limit, unlike the conventional Fermi-liquid theory
(Schmitt-Rink et al. , 1989).

1988; Yu and Anderson, 1985)
Another question, crucial for real materials, concerns

the coexistence of bound pairs and itinerant electrons
and the effects resulting from interactions between these
two species. We have analyzed this subject in a sequence
of recent papers (Ranninger et al. , 1985; Micnas et al. ,
1987a,' Robaszkiewicz et al. , 1987; Ranninger et al. ,
1988), and the results are summarized in Sec. IV.

II I. THERMOOYNAMICS OF SYSTEMS WITH
INTERSITE ELECTRON PAIRING

A. Weak-correlation limit (U & 2zt)

In the weak (intermediate)-correlation limit U & 2zt,
upon using the broken-symmetry Hartree-Fock scheme
for the Hamiltonian (1.1), one obtains the following

gap equation for singlet pairing 6„=(1/iV)
xg V„(c )c t):

N~ "'2E '"
2k T

q q B

where E =(s +~6,
~

)'~ is the quasiparticle energy,

(3.1)

In this section we shall summarize the recent studies of
superconductivity and magnetism in the extended Hub-
bard model (1.1) with on-site repulsion and intersite at-
tractive interaction, i.e., U,fr&0, Wdr &0 (Micnas, Ran-
ninger, and Robaszkiewicz, 1988a, 1989; Micnas, Ran-
ninger, Robaszkiewicz, and Tabor, 1988; and references
therein). This is a simple model incorporating magnetic
correlations due to U,z and intersite pairing due to 8' ff.
An important problem in superconductivity due to inter-
site attraction is the formation of intersite pairs and their
eventual Bose condensation. These studies have been
carried out for the d =2 square lattice with nearest- and
next-nearest-neighbor hopping, bearing in mind that the
two-dimensional aspect is relevant for the newly
discovered high-T, superconducting oxides. We shall

present a mean-field analysis of anisotropic superconduc-
tivity (within a BCS-type weak-coupling approximation)
and the spin-density wave (SDW) state for weak and
strong on-site correlations U,~ and arbitrary electron
density. In contrast to the original BCS treatment of
phonon-mediated attraction, the present problem does
not contain any intrinsic cutoff in either momentum or
frequency. The effective short-range attraction in the
considered model can be treated as essentially instantane-
ous on the time scale of the inverse bandwidth. Such an
unretarded interaction can result either from the cou-
pling of electrons with high-frequency bosonic modes or
from purely electronic (or chemical) mechanisms, as dis-
cussed in Sec. I. The effects of exchange interaction and
correlated hopping are analyzed in Sec. III.A.2. The
problem of local pair formation as a function of dimen-
sionality in the low-density limit is also discussed (Mic-
nas, 1988c); Sec. III.B.
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and

e =eq+p ~
W~ yq/yo —P, p =p n—( U/2 —W~ yo),

q= —tyq, Vk q
= —U —Wk q

yq
=2(cosq +cosq~ ) .

x =[—,'(e —e +o) + U mq]'~

and Q=(vr, m) for a 2D square lattice.
The Pock parameter satisfies the equation

gyq[tanh(PE+ /2) + tanh(PE /2) ]
q

(3.8b)

p = ——QKqyqFq, n —1 = ——QZqFq,
1 2

q q

(3.2)

The Fock parameter p =(I/N)gqyq(cq cq ) and the
chemical potential satisfy the equations

yq(Eq
—E,+g)

q Xq

—tanh(PEq /2)] .

with

Fq = (2Eq ) 'tanh
B

The free energy is given by

(3.3)

The free energy is given by

F/N = ,' ( U —2 —~ W
~ y 0)n +p, ( n —1 ) —

~
W

~p ly 0+ Um o
1

Q I in[2 cosh(PE+ /2)]
q

F/N= ,'(U —2i—Whyo)n +p(n —1)—
i Wip yo

+in[2 cosh(PEq /2)]I . (3.10)

+—g tanh(PEk/2)
N k 2Ei,

gin[2 cosh(PEk/2)] .
2

For a d =2 square lattice, the pairing potential Vi,
takes on a separable form, and Eq. (3.1) can be solved by
an ansatz: 6i,=50+h&yk+ h„qk where particular terms
refer to on-site s-, extended s- and d-wave pairings.
[hali,

=2( cosk„—coskz )].
Similarly, the gap equation for trip/et (equal spin) pair-

ing is given by

gsinq„fVqFq, a =x,y,2 W

q

(3.5)

1
mq — g o'(ci ck+q~ )

k, o.

is determined by

mo = g [tanh(PE+ /2) —tanh(PEq /2)] .
Umq 1

4N x

(3.6)

The chemical potential satisfies the equation

n —1=— g[tanh(PE+ /2)+tanh(PE /2)] . (3.7)
q

where the quasiparticle energies are given by

E—=
—,
' (Fq+ E +o)+x (3.8a)

where LVq=h sinq +LE&sinq has a p-like character. The
equations for p and p are the same as for the singlet pair-
ing; moreover, the free energy has the form of Eq. (3.4) if
b,k is replaced by b f,.

For the spin density u-blaue (SD-W) state, the order pa-
rameter

In Eqs. (3.6)—(3.10), summation over q is not restricted to
the inner half of the Brillouin zone. The transition tem-
perature T& is obtained upon the assumption of a con-
tinuous transition, i.e., m&~0. For a 4 =2 lattice such
a transition can have only a formal meaning within the
mean-field theory, at least for finite-range hopping, since
the fiuctuations destroy the SDW ordering for any TAO,
and no phase transition is allowed even in the
Kosterlitz-Thouless sense. However, the interplanar cou-
plings can easily stabilize the SDW state at finite temper-
atures. Another view is that the range of nonzero solu-
tions for I& indicates the role of the spin Auctuations.

The self-consistent equations for the superconducting
critical temperatures determining the onset of pure pair-
ings, as well as for T&, have been solved numerically.
The lattice sums were performed using exact DOS in
d =2 or by direct numerical integration, thus taking into
account the Van Hove singularity (Micnas et al. , 1988a;
Micnas, Ranninger, Robaszkiewicz and Tabor, 1988).

In the half-filled band case (n = 1,P =0), one finds that
for U~O, 8'&0, d-wave pairing yields the highest T„
while an extended s-wave pairing can occur only for

~
W~ /D ~ m /8, where D =4t is the half-bandwidth. For

U &0, on-site s-wave pairing can exist for any value of
~
W~/D (Fig. 14).

1. Relative stability of pure phases

In Fig. 15 we give a preliminary ground-state phase di-
agram for n =1, based on a comparison of critical tem-
peratures for pure phases. For U )0 and 8') 0 there are
only two phases possible: the CDW and the SDW, which
are separated by the line U =4' For U &0, the CDW
and the singlet-superconducting (SS) state meet at W =0.
For W & 0 and U & 0 one has the SS (on-site) pairing and
the d-wave pairing, whereas the SDW and the d-wave
pairing are possible for 8' &0 and U) 0. We should like
to point out that Fig. 15 indicates only the main pure
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FICx. 14. T, for d-, p-, and extended s-wave pairings on a square
lattice with n = 1 (nearest-neighbor hopping). The dashed curve
indicates T, for both on-site (s) pairing vs —U/D and spin-
density waves vs U/D (repulsion-attraction symmetry).

phases; it does not contain a possible mixed supercon-
ducting state (d-s), neither a mixed super-
conducting —SDW state, nor a condensation transition.

For the non-half-filled band the nature of the pairing
state strongly depends on band filling. The numerical
solutions for T, versus electron density are given in Figs.
16(a) and 16(b). These plots are symmetric with respect
to n —+2 —n, due to electron-hole symmetry. While d-
wave pairing yields the highest T, close to n =1, the
competing p-wave and extended s-wave pairings can be
stabilized for lower electron densities. T, for s-wave
pairing shows nonmonotonic behavior with rapid in-
crease for small n, going through a maximum upon in-
creasing n, and then vanishing above some value of n.

Note that, in the present model, electron pairing can
I

FIG. 15. A preliminary phase diagram of the extended Hub-
bard model in two dimensions and a square lattice and for the
half-filled band: CDW, charge-density waves; SDW, spin-
density waves; SS, singlet pairing (on-site); d-s wave, a possible
mixed superconducting state.

take place throughout the whole Brillouin zone, and
there is no cutoff vector (except for a reciprocal one), in
contrast to the BCS model. This is due to the fact that
the pairing caused by the negative 8 is instantaneous
and hence mediated by a frequency-independent interac-
tion. Thus T, and 6k are functions of a half-bandwidth
and of the electron concentration instead of co& as in the
BCS theory. This can be seen from the analytical expres-
sion for T, derived for the s-wave pairing, upon making
use of a square DOS and taking the weak-coupling limit,

k~ T, = 1.14D&n (2 —n ) exp
1+A[3(n —1) —1]+ah(n —1)

2i, t (n —1) —a/4A, +(a/4)[1+(n —1) ] I

(3.11)

where a=U/D and A, =~&~i/D. To derive (3.11) we
have used p -=D(n —1) at low T (see also Alexandrov
and Elesin, 1982, 1985). Equation (3.11) indicates that
for U&0 and given density n there exists some limiting
value for

~

8'~ in order for s-wave pairing to exist.
For other types of pairing, the above approximation

based on a square DOS is no longer useful. In general,
one can perform a high-T, expansion for arbitrary values
of n to determine T, for s-, p-, and d-wave pairing in the
strong-coupling regime. The weak-coupling formulas for
the different pairings, with the use of exact DOS or loga-
rithmic approximations and exploring the idea of averag-
ing the pairing potential over the Fermi surface, are not
accurate, since the model contains pairing in the entire
Brillouin zone. For this reasons we are obliged to solve
the equations for T, numerically.

For U) 0 (or small U &0) one can have the following
sequence of transitions upon decreasing n: d~p —+s.

I

For larger values of negative U it is possible to have a
d —+s transition or only an s-wave state stable for any n.
Figure 17 shows the relative stability of s-, p-, and d-wave
pa111ngs.

The repulsive on-site interaction U gives rise to the
SDW phase and reduces the stability of s-wave pairing.
The d- and p-wave pairings are independent of U. In Fig.
16 we indicate the Neel temperatures for several U/D
values. Note that for n =1 the SDW is always most
stable for suKciently large U, but is rather quickly de-
stroyed upon deviating from n =1 (even for U/D as
large as 1) due to the spoiling of the Fermi-surface nest-
1ng.

We have also studied the effects of next-nearest-
neighbor hopping on superconducting T„ taking
c.k

= —t y k
—4tz cosk cosk~, where tz is the next-

nearest-neighbor hopping integral (for details, see Mic-
nas, Ranninger, and Robaszkiewicz, 1988a, 1989; Mic-
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().15 &n, &0.46, for 0&J/D & —', and n, decreases with

increasing J. Increasing U & 0 shifts n, towards lower
values, whereas U (0 can extend the stability region of s
pairing up to n = 1 (cf. the case of J =0, 8' & 0; Fig. 17).

The off-diagonal E term (correlated hopping) describes
the interaction between site charge density and bond
charge density. This term is repulsive (E &0) if it results
from the Coulomb potential V(r). An efFective attractive
interaction of this form (E &0) is also possible, and in
narrow-band systems it can be due to phonons, e.g. ,
simultaneous modulation of the near-neighbor hopping
and the site energy by lattice vibrations (Miyake et al. ,
1984), or due to the coupling of electrons with other elec-
tronic subsystems (Bastide and Lacroix, 1988b). This in-
teraction can also arise when one includes coupling to a
degree of freedom describing the deformation of the
outer electron cloud of the ion by the presence of the
conduction hole (Hirsch, 1989b). Hirsch (1989b) has sug-
gested that this hopping, modulated by the presence of
other particles, can be particularly effective in the case of
holes in unstable anions with filled shells, i.e., just in the
case of high-T, oxides.

The E term affects mostly s-wave pairing and can
modify the relative stability of superconducting states
and the variation of T, with electron density. When
E/D is increased (E &0), T, is enhanced in the regime
1(n &2, and the s-wave pairing extends over a wider
range of densities. For 0 (n & l, T,' is reduced, and the 5-

(p-) d- phase boundary is shifted towards smaller densi-
ties (see Figs. 7 and 8 in Micnas et al. , 1989). We stress
that the E term breaks the electron-hole symmetry, and
as in the case of next-nearest-neighbor hopping,
T,' for E & 0 and K & 0 is linked by the relation
T,'(n, E, . . . ) = T;(2—n, E, . . . ). A—s we have pointed
out (Micnas et al. , 1989), there is a possibility of having
s-wave pairing due to the E term only, even if all the oth-
er pairing mechanisms ( 8'&0, J & 0, or U & 0) are ab-
sent.

The s-wave pairing generated by the modulated hop-
ping interaction sho~s some characteristic features
which are different not only from the usual BCS behavior
but also from the extended s-wave pairing driven by the
W & 0 and (or) J & 0 terms.

These characteristic features are direct consequences
of the form of the interaction which has the same
momentum dependence as the kinetic energy and which
breaks the electron-hole symmetry.

(i) For E &0 this interaction stabilizes the s-wave su-
perconductivity of holes in the more than half-filled band
case (i.e., nh =2 n& 1), whereas —for E &0 it yields the
s-wave superconductivity of electrons in the less than
half-filled band case.

(ii) With increasing carrier concentration (nh =2 n-
for E & 0) or n for E & 0, T, increases first, goes through
a maximum, and then drops to zero. For most of the pa-
rameter space ( U & 0, W & 0) T, is restricted to low den-
sities and increasing U shifts the maximum of T, towards
lower concentrations.

(iii) T, increases with the bandwidth (for fixed E/t and
U) and hence with applied pressure.

(iv) The energy gap persists over the entire Fermi sur-
face but it has strong energy dependence.

(v) The gap ratio 2b, /k~ T, varies with concentration
being higher than 3.52 at low densities and reaching the
BCS value for higher n.

(vi) The tunneling DOS shows the same square root
singularity as the usual BCS case. However, an inherent
asymmetry in the tunneling characteristics arises due to
the energy dependence of the gap (Hirsch and Marsiglio,
1989; Marsiglio and Hirsch, 1989). As the pairing in-
duced by the E term always consists of on-site s-wave
and extended s-wave components (60&0, br%0), it will
be reduced by both the on-site repulsion U & 0 and the
intersite repulsion 8' & 0. However, in the low-
concentration limit superconductivity can exist even with
repulsive interactions substantially larger than E (up to
U/E = 10—30, if 8' =0) (Micnas et al. , 1989; Hirsch and
Marsiglio, 1989). Beyond this limit (except for very spe-
cial cases) the E term alone cannot serve as the driving
mechanism of superconducting pairing. Nevertheless, in
the presence of other terms favoring superconductivity,
its efFects can be important for any concentration, and
they can substantially modify the mutual stability of su-
perconducting states and the variation of T, with the
electron concentration.

It should be noted that the effective exchange interac-
tions and correlated hopping terms have been treated
here as independent interactions (which can arise from
several mechanisms discussed above), and we have not
imposed any constraints on the site occupancy. This has
to be contrasted with the limit of strong correlations for
the single-band repulsive Hubbard model, for which anti-
ferromagnetic (kinetic) spin exchange and certain corre-
lated hopping terms can be derived if one eliminates from
the Hilbert space (via a strong-coupling transformation)
all states with either doubly occupied or unoccupied
sites. This case of strong on-site correlations (U» t, ) is
discussed in Sec. III.C.

In the presence of an attractive density-density interac-
tion, the electronic system can undergo (under specific
conditions) a condensation phase separati—on tra-nsition,
similar to liquid-gas condensation. This problem has re-
cently been analyzed for the extended Hubbard model
with intersite attraction [Eq. (1.1)], within the framework
of the RPA, including explicitly the long-range part of
the Coulomb interaction, 8'L~ (Micnas et al. , 1989).
The stability conditions for such an electron droplet
phase with respect to other types of orderings were deter-
mined as a function of the band filling. For a d=2
square lattice, the most favorable condition for condensa-
tion was found to be the half-filled band case, where the
Van Hove singularity coincides with the Fermi level.
However, any deviation from n = I makes condensation
less likely and leads to a sharp increase in the minimal
value of the intersite attraction needed to stabilize the
electron droplet phase. A comparison of condensation
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transition temperatures and superconducting transition
temperatures versus electron density yields the mutual
stability phase diagram given in Fig. 17. This diagram
includes an extreme case U =0, 8'Lz =0, and also shows
a rapid shift of the phase separation line towards higher
values of

~
W~/D upon increasing repulsive short-range

and long-range Coulomb interactions.
To close this subsection we should mention that the in-

teresting problems to be solved are the coexistence of su-
perconductivity and the SOW state as well as whether
the presence of spin fluctuations can enhance anisotropic
pairing, especially close to n =1 (see, for example, Mi-
yake et al. , 1986; Scalapino et al. , 1986, 1987). The
mean-field treatment presented here is justified for not
too strong on-site repulsion and for not too low electron
concentrations. One limitation is the Hartree-Fock ap-
proximation for the on-site repulsion term, which
neglects all mass renormalization effects. (For strong
on-site correlations, see Sec. III.C.). For low enough
concentrations, the formation of real-space pairs can take
place (Sec. III.B); such a situation is beyond the applica-
bility of the Hartree-Fock theory at finite temperatures,
either for the superconducting or for the normal state.
One should also stress that for strong intersite attraction,
unlike the case of on-site attraction, an exact mapping
onto the pseudospin model is (apart from a very dilute
limit) unknown. It is therefore important to go beyond
this simple mean-field approximation scheme for both su-
perconductivity and the SDW state, as well as to include
the effects of long-range Coulomb interaction. Finally,
for a square lattice, the possibility of electron pairing in
the antiferromagnetic background via a spin-bag mecha-
nism (Schrieffer et al. , 1988) should also be considered.

B. Low-density limit and local pair formation

In the low-density limit the formation of real bound in-
tersite pairs is expected. For this purpose let us consider
the Schrodinger equation for a single bound pair for the
system described by the Hamiltonian (1.1)

[Wf, 2D
2t U

+(C+1) (3.14)

where

C =—g(1 —yk/z)
k

is the Watson integral. If U =0 there will be no critical
value of ~W~/2t to bind an s-wave pair in d =1,2,
whereas in d =3 such a value always exists (for example,
in a simple cubic lattice this critical value is 1.9365). If
U &0 and 8'=0, th on-site pair is formed for any nega-
tive U in d =1,2; but in d =3 the critical value is given
by ~

U~/2D =C '(0.659, 0.718, and 0.743 for simple cu-
bic, body-centered-cubic, and face-centered-cubic lat-
tices, respectively; (see Fig. 21).

In Fig. 22 we show local pair formation for 8'& 0. In
d = 1, the bound states are s or p type, and if U )0 there
exists a critical value. Notice that for U = Oo the binding
energies of s and p bound states coincide (Fig. 23). Fig-
ure 24 shows the binding energies of s-, p-, and d-wave
pairs for U =0 and U = ~ and different dimensionalities.
As regards the p- and d-wave pairs, there are always criti-
cal values of

~ W~ in order to bind in d 2, with binding
energies independent of U. These critical values in the
0 =2 square lattice are

~
W~/2t =sr/(4 ~)=3.66 —for d-

wave and -2.75 for p-wave pairs, respectively. For a
simple cubic lattice, the critical binding values for

~
W~ /2t are as follows: for extended s-wave pairs, 1.9365

for U =0 and 2.9365 for U = ~, respectively; for p pairs,
4.766; and for d pairs, 5.398. We note that these binding

where

=1 cE

G (a)=—g, yj, =2 g cosk, ,a+ 1 —y„/z

o.=6/2D, D =-zt, and z =2d is the coordination number.
For p- and d-wave pairs an essentially exact analysis

can also be carried out. The critical values of U and
~ W~

to bind an s-wave pair are given by

1
(2&k —E)4~ =—g V~, ,4t, (3.12) 1.5

20
where Vk = —U+

~ W~yk ~, ok= —tyt, . Equation
(3.12) can be considered as the low-density limit of the
BCS equations (3.1)—(3.3) for singlet pairing (Leggett,
1980a, 1980b; Nozieres and Schmitt-Rink, 1985). Letting
E=2c0—5 where 5)0 is the binding energy, one can
analyze the local pair formation for di8'erent dimen-
sionalities (Micnas, 1988c).

For s-wave pairs an exact analysis of Eq. (3.12) can be
performed in terms of the lattice Green's function. The
binding energy for an s-wave pair is given by

1.0

0.5

lul
ZO

2t
[(a+ 1)G (a) —1]—G (a)

1 — (a+ 1)[(a+1)G (a) —1]2t

(3.13)
FIG. 21. Binding energies of the on-site pairs in the U&0 Hub-
bard model for diff'erent dirnensionalities: dashed line, asymp-
totics for

~ U~ ~ ~ (b =
~ U~). A square lattice is assumed for

the 2D results and a simple cubic lattice, for the 3D results.
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BELOW SOUD UNES NO S9PJO
STATES EXIST W

2t

portant question whether superconductivity can be estab-
lished for strong correlations away from the half-filling.
Assuming U ))t, 8' the canonical transformation
method (Harris and Lange, 1967; Chao et al. , 1977;
Hirsch, 1985b) applied to the Hamiltonian (1.1) yields an
effective Hamiltonian acting in a subspace of singly occu-
pied states of the form (neglecting pair hopping terms)

H, rr= g t,jh, h . +g.J; (S; S ,'N, —N —)

+ —,'g WJN;N (3.15)

-2

where J;~ =2t, IU, h,."=c, (1 n, ),— .

N; =N~t+N~t. If n = 1 (the Mott insulator) Hamiltonian
(3.15) reduces to Anderson's kinetic exchange Hamiltoni-
an,

FIG. 22. Local pair formation for 8'(0 for d=1, 2, and 3.
Below the solid curves there are no bound states. The dashed
lines indicate the U = Oc limit. A square lattice is assumed for
the 20 results and a simple cubic lattice for the 30 results.

energies are in qualitative agreement with the stability of
difFerent pairings (in the low-density limit), analyzed in
Sec. III.A on the basis of the Hartree-Pock theory for T,
in the case of nearest-neighbor hopping.

The superconducting state requires Bose condensation
of such electron pairs. For low electron density the sys-
tern can be characterized as a dilute gas of two-electron
molecules. Correspondingly, the coherence length
should be very much smaller than it is in weak-coupling
superconductors. We should stress, however, that the
quantitative description of a possible superfluid state of
intersite pairs is not well understood, nor is its relation to
a charged hard-core Bose gas on a lattice (in contrast to
the case of on-site pairs).

C. Limit of strong correlations (U»t, W)

For a half-filled band and U)) t, clearly no supercon-
ducting state exists (the Mott insulator limit). It is an im-

1.5

H,fr=+J,&(S; S ——')+const .
I7 J

(3.16)

Otherwise Eq. (3.15) is a generalization of the kinetic ex-
change Hamiltonian for the non-half-filled-band case.
Such a model is similar to the resonating-valence-bond
(RUB) proposals (Anderson, 1987, 1988; Baskaran et al. ,
1987; Ruckenstein et al. , 1987; Wheatley et al. , 1988).

Anderson (1987, 1988) has suggested from the very be-
ginning that the Cu-0-based high-T, superconducting
oxides are materials with strong electron correlations and
that they can be understood within a two-dimensional,
large-U, single-band Hubbard model. The model (3.15)
for 8'=0, as recently proposed, can also be derived by
an effective mapping of a two-band copper-oxygen 20
network model to a one-band model (the so-called tJ-
model, in which t and J are effectively independent pa-
rameters; Zhang and Rice, 1987; Zhang, 1989; Zhang
and Rice, 1989).

The nature of the ground state and excitations of the
two-dimensional Heisenberg model are the objects of
current interest. The numerical work shows that the
quantum Neel state is the stable ground state of Eq.
(3.16) for a square lattice (see, for example, Reger and
Young, 1988, and references therein). The dynamics and
quantum effects of 20 Heisenberg antiferromagnets have
been analyzed intensively in this connection (e.g., Arovas
and Auerbach, 1988; Chakravarty et al. , 1988) as well as
with neutron scattering experiments on undoped
La2Cu04, which demonstrated the existence of long-
range Neel ordering and the exchange energy 1=0. 1 eV
(Shirane et al. , 1987; Auerbach and Arovas, 1988; Bir-
genau and Shirane, 1989).

Away from the half-filling, the central questions are
the nature of mobile quasiparticles (holes in a nearly

FIG. 23 Binding energies of s and p local pairs in one dimen-
sion for different values of U/4t. The dashed line is an asymp-
totic line b, = ~8'~.

6The relation of the t™Jmodel to a more general Hamiltonian
of the CuO-based high-T, oxides containing Cu and 0 bands
and intra- and interatomic Coulomb interactions is still under
debate (Emery and Reiter, 1988a, 1988b; Stechel and Jennison,
1988; Zaanen and Oles, 1988.)
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ta)
BINDING ENERGY

1.0-

0

411

BINDING ENERGY 6-lh/I y

10-

FIG. 24. Binding energies of intersite local pairs vs
I
WI/2t for dimensionalities d= l, 2, 3; solid curves, s-wave pairs; dotted curve,

d-wave pairs for d=2; dot-dashed curve, p-wave pairs for d=2. A square lattice is assumed for the 2D results and a simple cubic lat-
tice for the 3D results. (a} U=O, (b} U = ~.
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++58", n, n) —pgn, +const, (3.17)

where 8"=—
—,'7+8' n; =n, &+n;~. Notice that we also

scaled the charge couplings by 5 in order to get a con-
sistent limit at 5=0. p is the chemical potential. With
the use of Gorkov's-type factorization, the gap equation
for the singlet pairing is

15„=—g V„qhqFq,
q

where

(3.18)

Vk q
=[—,

' J+5(—,
' J—W)]yi, (3.19a)

F =(2E )-'tanh ' Z =(g'+~g ~')' '
q q q q q

B

half-filled Hubbard model) and the possibility of their at-
tractive interaction leading to superconducting ordering
(e.g. , Loh et a/. , 1988; Schmitt-Rink et a/. , 1988; Shrai-
man and Siggia, 1988; Bonca et al. , 1989; Kane et al. ,
1989).

It is under intensive study whether superconductivity
can result from the purely repulsive Coulomb interac-
tions for the one-band Hubbard model (Hirsch and Lin,
1988; Lin et a/. , 1988; Hirsch, 1989b). The subsequent
work of the Santa Barbara group (Bickers et a/. , 1989;
White et a/. , 1989) with the use of conserving approxi-
mations and the Bethe-Salpeter equation, as well as the
quantum Monte Carlo resuIts, strongly suggests that the
2D Hubbard model has a d-wave superconducting
ground state for a small range of fillings around n =1,
but the predicted Td is low (of order 0.01t for U/4t = 1).

However, an additional attractive interaction (in our
case 8'(0) can stabilize the superconducting state.

There are in principle two sources of pairing in Eq.
(3.15), one arising from superexchange and the other
from charge terms, in particular from S' & 0. The
difficulty in constructing a mean-field description of su-
perconductivity and magnetic states is that the Hamil-
tonian Eq. (3.15) is defined only in the subspace of singly
occupied states. A rather simplified picture of supercon-
ductivity is obtained upon relaxing the double occupancy
condition by linearization t; h; h ~5t,"c; c, where
5=1—n means a deviation from the half-filled-band oc-
cupancy. Such a procedure requires a supplementary
projection operation to exclude the doubly occupied
states. Consequently one simplifies Eq. (3.15) to (Micnas,
Ranninger, Robaszkiewicz, and Tabor, 1988)

A'—= g 5t; c; c +QJ;~S;.S.J.

equations for T, are solved together with an equation
determining the chemical potential,

5=—g2g'qF
1

q

(3.20)

Two facts should be noted. First, had we not scaled
charge couplings [by putting 5=1 in Eq. (3.19a)] we
would have obtained T, dependent on 8", even in the
case of n = 1, where such coupling terms reduce to a con-
stant. With our scaling, for 5=0, one has k&T, =—', J for
both types of pairing. The fact of finite T, at 5=0 is an
artifact of the mean-field approach. The local constraint
that every site for 5=0 be singly occupied is not satisfied,
and exact SU(2) symmetry is broken. A separate ques-
tion concerns the neglect of the mixed superconducting-
antiferromagnetic solutions.

Secondly, it is easy to demonstrate that the d-wave
pairing is the most stable one for n = 1 by making use of
the strong-coupling (high-T, ) expansion (Micnas, Ran-
ninger, Robaszkiewicz, and Tabor, 1988). In Figs. 25
and 26 we give the numerical solutions for T,' and T,"
versus 5. The results are presented for both the approach
neglecting scaling of charge couplings [like that of Ruck-
enstein et a/. , 1987; Figs. 25(a), 26(a)] and the approach
performing such a scaling [like that of Micnas, Ran-
ninger, Robaszkiewicz, and Tabor, 1988; Figs. 25(b),
26(b)]. Notice the enlarged temperature scale in Fig.
26(b). For a nearly half-filled band, T,' decreases with 5
and is very small for 5 around 0.1 (Fig. 25). W) 0
reduces T,' and T,", whereas 8'&0 indeed stabilizes both
the pairings.

We should like to point out that 8'&0 can be a lead-
ing mechanism for pairing even at Jjt =0 ( U = ~ limit).
Moreover, s-wave pairing is favored in the low-
concentration regime (5—1) and is strongly enhanced by
the nearest-neighbor antiferromagnetic exchange (Fig.
26). As concerns p-wave pairing, it also can be realized,
but only due to 8'&0, since an equal spin pairing contri-
bution from the J; term precisely cancels.

We should like to comment critically on the above
simplified mean-field approach, which can be only quali-
tatively correct for large doping concentrations (5t ))J)
(Ohkawa, 1988). For 5t ((J, such a Fermi-liquid
description is problematic, and the pairing described by
Eqs. (3.18) and (3.19) does not necessarily correspond to
the original charge excitations; it can be merely the pair-
ing of the spin excitations. This is due to relaxing of the
double occupancy constraint. Despite intensive efforts in
the last two years (e.g. , Fukuyama et a/. , 1988; Ohkawa,
1988; Suzumura et al. , 1988a, 1988b; and references

gq= —t5yq —P .

(3.19b)

(3.19c)

For a d =2 square lattice the decomposition 4k=A~yk
+A„gk can be used to determine the critical tempera-
tures for the extended s-wave and d-wave pairings. These

7For n = 1 the bosonic representation of the strong-correlation
limit is appropriate (Arovas and Auerbach, 1988; Kane et al. ,
1989), since the mean-field version of that model, which treats
the occupancy constraint in an average way, gets the physics at
half-filling correct.
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oxygen holes in high-T, materials, and the on-site repul-
sion is large compared to the hopping integral.

To close this section we stress that combined superex-
change and polaronic effects, which could lead to band
narrowing and 8'&0, might be relevant to our under-
standing of the high-T, superconducting oxides
(Kuramoto and Watanabe, 1987; Micnas et al. , 1988a;
Micnas, Ranninger, Robaszkiewicz, and Tabor, 1988).

IV. MIXTURE OF LOCAL PAIRS ANI3 ITINERANT
ELECTRONS

The coexistence of bound pairs and itinerant electrons
and the effects resulting from interactions between these
two species constitute a crucial problem for real materi-
als concerns. Such a model of a mixture of local pairs
and electrons was introduced by us a few years ago (Ran-
ninger and Robaszkiewicz, 1985), and its extended ver-
sion has been extensively analyzed in a sequence of more

recent papers (Micnas et al. , 1987a; Ranninger et al. ,
1987, 1988; Robaszkiewicz et al. , 1987). It has been
shown that in this type of system a new mechanism of su-
perconductivity can develop. It results from intersubsys-
tem charge-exchange coupling, which can be hybridiza-
tion induced and/or direct, and leads to a superconduct-
ing state involving both types of particles.

In this section we outline the main results concerning
this model. As we shall see, the physical properties of
such a mixture of interacting charged bosons (bound
electron pairs) and electrons can show features that are
intermediate between those of pure local pair supercon-
ductors and those of classical BCS systems.

Starting from a generalized periodic Anderson model
with on-site attraction and eliminating the hybridization
between narrow- and wide-band electrons to lowest order
by means of a generalized Schrieffer-%'olff transforma-
tion (Schriefter and Wolft; 1966), we were able
(Robaszkiewicz et al. , 1987) to derive an eff'ective Hamil-
tonian that, in its simplest form, can be written as

X Ekctacka + X tij di~djo
k, o. E,J, O

p g ck~ck~+ gd;~d;~ +Ep g d;~d;~ g(Ipd;td;tc, gc;t+H. c. )
k, cr l, O l, O

—
—,
' g [Ijd;tdI (c;tc &+c.~c, &)+H.c.]+6+5 .

lWJ
(4.1)

Here ck[ ', c ~' denote the electron operators of the wide-
band subsystem, k and i refers to either their momentum
or their site, and o. denotes the electron spin. d;, d; are
the creation and annihilation operators of narrow-band
electrons, which sense an effective on-site attractive in-
teraction

l U~. p is the chemical potential, which ensures
that the total number of particles in the system is con-
stant, i.e.,

n= —g &ckt ck )+g&dtd, )

Eo denotes the relative position of the d band with
respect to the c band. Ek refers to the dispersion of the
"c" (wide-band) electrons and t; denotes the eft'ective

hopping integral (direct and hybridization-induced) of
the "d" (narrow-band) electrons. The terms proportional
to Ip and I;, (Ip=I;;) represent the transverse com-
ponents of the charge-charge coupling between the two
subsystems (which is crucial for the superconducting
mechanism that we want to discuss). In general, this
transverse component has two contributions.

(i) A direct on-site charge-exchange interaction, i.e., a
term proportional to the off-diagonal matrix element of
the Coulomb interaction

d 1d1 —cpc 1'
1

in Hubbard's notation (Hubbard, 1963, 1964), which in

general has the same order of magnitude (0.1 —1.0 eV) as
the direct on-site magnetic exchange

decl —c Td(Il.

r

Ik= V
1

E.
—E —U E —ck 0 0 k

and where V denotes the coupling constant of the hybrid-
ization term g; V(c; d; +H.c. ).

In Eq. (4.1), C denotes all the density-density interac-
tion terms (except those of

~ U~ ), both direct and
hybridization-induced, which in the present discussion
we shall neglect, since we shall focus on the supercon-
ducting properties of the Hamiltonian (4.1) rather than
on possible CDW or SDW orderings. S in Eq. (4.1) de-
scribes the magnetic exchange interactions between the
two subsystems. For explicit expressions of the various
coupling constants in terms of the parameters of the
starting Hamiltonian, we refer the reader to

(ii) An indirect charge-exchange coupling, induced by
hybridization (i.e., a Kondo-like coupling):

I, = ——QIk exp[ik. (R,. —Rj )],1

k

where
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Robaszkiewicz et al. (1987).
Assuming the strong-attraction limit

~ U~ ))t, I;~, one
can eliminate (as for the negative-U Hubbard model, see
Sec. II.B) any singly occupied d-electron states in H [Eq.

(4.1)]. This procedure obviously eliminates all the inter-
subsystem magnetic interactions. The resulting effective
Hamiltonian defined in a subspace where d electrons
occur only in the form of pairs is given by

&=+ Ekc) ~ck~ +6 og( 2p; +1) g 2
JJ [(p; pj +H. c. ) p;pj~]

k, o. 1 1,J

1+ g (Ik ), exp[i(k+k') R;]ck &c ), ) p; +H. c. ) —p g(2p';+1)+gck c),
i, k, k' i ko

(4.2)

where

+ —dt dt

2p';+ 1 =gd, t d;

I~, —~ =Ii +I-k
(4.3)

I„= gI, exp[ ——ik (R —R )),

ps pi pi+ 2

b,o=EO —
—,
'

~ U~ measures the relative position of the local
pair level with respect to the bottom of the wide band of
electrons (see Fig. 27), Jz =2t j /~ U~.

The charge operators Ip;] in Eq. (4.2) obey the Pauli
spin- —,

' commutation rules, i.e.,

[p,' p, ]=2pl&;,

[p+( —) p+( —)]—()

In the absence of wide-band "c"electrons, the present
problem reduces to one of purely on-site pairs and the su-
perconductivity of a charged Bose gas on a lattice, which
we discussed at length in Sec. II. Similarly, if J, %0,
I;.=0, the "d" electrons forming local pairs will con-
dense to a superAuid state, while the "c"electrons remain
in the normal state. Contrary to the case of only "d"
electrons, now the superconducting critical temperature
T, u)ill only implicitly depend on the number of "d" elec
trons at T = T, . Moreover, the wide-band electrons can
effectively screen the long-range Coulomb interaction be-
tween charged pairs of d electrons, favoring local pair su-
perconductivity over a possible dielectric phase.

The case that will interest us here in particular is
J;.=0, I; WO. Neither of the two subsystems by itself
will be able to become superconducting. Superconduc-
tivity is mutually induced in the two subsystems of "c"
and "d" electrons via the charge-exchange term -I. We
shall consequently define two order parameters

(4.4)

FICx. 27. The relative position of the local pair (Lp) level 50 with respect to the bottom of the wide band of electrons in the absence
of any interaction eFects. p denotes the chemical potential. (a) 6o &0. In the ground state only local pair states are occupied. (b)
0 & 60=p. In the ground state, both the single-particle states of wide-band electrons and the local pair states are occupied. (c) p =Ao.

In the ground state only the single-particle states of wide-band electrons are occupied.
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which have to be determined in conjunction with the
average number of "c"and "d" electrons,

po = [(Jopo+ Ixo )/2b. ]tanh(ph),

n'= —g&ckt Ck ), n"= g—(d,t d, ),1

k, o. l, O

(4.5)
1 Ipo 13~k

xo = g tanh
2X k mk 2

(4.9)

as a function of temperature and the total density of car-
riers n =n'+n". For this purpose let us consider the
Hamiltonian [Eq. (4.2)] in its corresponding supercon-
ducting mean-field approximation, in the absence of any
density-density coupling terms. Upon neglecting terms
proportional to I;J (i' ) that are much smaller than Io
(Robaszkiewicz et al. , 1987), which corresponds to the
assumption Ik. k= —I (=Io) in Eq. (4.2), we get

II MF C +~c +Hd

C/X= Jo(po) +2Ixopo (P (4.6)

Ho g (Ek P, )ckercko PQX(ckt c kL + —ki kt ) ~

c — f x

k, cr k

Ho" = 2y[Jo—po+Ixo)p;'+2(ao i )Xpi—

where

JO= g J;
l

(iw j)

Upon diagonalization of this Hamilionian we obtain
the following dispersion for single-particle excitations
concerning the "c"electron subsystem:

~k =+[(Ek—v)'+(IpO)']'" (4.7)

For the local pair subsystem of the "d" electrons we ob-
tain (as in the strong-attraction limit of the negative-U
Hubbard problem) the two mean-field levels

&+=+[(p—b.o) +(Jopo+Ixo) ]'i (4.8)

where 6+ —6 corresponds to the excitation energy of
Aopping a pseudospin p at any given site. We know that
in the case of a purely "d" subsystem (uncoupled to the
"c" electrons) these two mean-field levels give the lower
and upper bounds of a continuous spectrum of collective
excitations, corresponding to the phase fluctuations of
the order parameter po, this spectrum is linked to the
charge fluctuations of the hard-core charged bosons
b; =d; gd; g. Although at present we do not know the ex-
act form of this spectrum in the presence of the "c"sub-
system, it is clear that the two levels 6+ and 6 ought to
be replaced by a continuous spectrum bounded between
6+ and 6

In order to determine the width of a single-particle gap
in the spectrum of the "c"electrons and the width of the
bosonic excitations of the "d" subsystem, we must solve
the self-consistent equations linking the two order pa-
rameters xo and pz with those for the number of "c"and
"d" electrons. These equations are

(Ek —V)n' —1=——g tanh
2

o
n "—1 = tanh(PE ),

where cok=mk and A=A+.
Depending on the relative concentration of "c" and

"d" electrons, we distinguish three essentially di6'erent

physical situations (0~ n ~ 2; see Fig. 27): (i) b.o (0 such

that all the available electrons form local pairs of "d"
electrons; (ii) Ao) 0 such that the "c" electron band is

filled up to the Fermi level p= ho and the remaining elec-

trons are in the form of local pairs of "d" electrons; (iii)

Ao & 0 such that the Fermi level p (Ao and consequently
all the available electrons occupy "c"electron states.

Our mean-field analysis can be expected to hold best
for case (ii), in which the concentrations of "c"and "d"
electrons are both finite. In this case superconductivity
comes about by a perpetual interchange between local
pairs of "d" electrons and pairs of "c"electrons. In this
process "c" electrons become "polarized" into Cooper
pairs, and "d" electron pairs increase their mobility by
decaying into "c"electron pairs.

In case (i), local pairs of "d" electrons move via virtual
excitations into pairs of "c" electrons having opposite
mornenta and spins. As we shall see below, such a mech-
anism gives rise to long-range hopping of pairs of "d"
electrons with a spatial dependence similar to the
Rudermann-Kittel-Kasuya- Yosida (RKKY) interaction
for s-d mechanisms in the magnetic equivalent. In case
(iii), on the contrary, we find a situation similar to the
BCS case: pairs of "c"electrons with opposite momenta
and spins are exchanged via virtual transitions into local
pair states.

The results for n', n", pz, and xo for T=O and Jo =0
as a function of b, o are plotted in Fig. 28. In Fig. 29(a)
and 29(b) we present kz T, /2D as a function of Ao/D for
di6'erent total concentrations of carriers, n =n'+n =2,
1.5, 1, and 0.5, as a function of ho/D. D denotes the
half-bandwidth of the square DOS for the "c"electrons.
The ratio of the single-particle energy gap for wide-band
electrons at T=O divided by 2k' T„E (0)/2k~ T„ is
given in Fig. 30 for two diFerent values of the charge-
exchange coupling, I/2D =0.5, 0.1.

Notice that the maximum value of T, is achieved in
case (ii), when n '-n", in which case it is of order I /D.
T, drops to zero when we approach the regions corre-
sponding to cases (i) and (iii). In region (i) the single-
particle energy gap is of order Ao and T, -I /Ao. In re-
gion (iii) we recover the BCS value for Es(0)/kiiT,
=3.52. Notice also that the maximum in T, shifts to-
wards EO=O as the total carrier concentration is de-
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H =Hp+Hi,

Ho =g ( st —p)c t ct + (b o
—p) g(2p';+ 1),

k, o.

1 i( k+ k' ) .R,. —i(k —k') -R,.
H, = g (It, te 'ct tc t~p; +H. c. )+ g Vtte 'ct, ct (2p', +1)2X.„k, i, k, k', o.

Eliminating the interaction 0, to 'first order by unitary transformation U = exp(iS), where

(4.10)

i(k+ k').R .

2N. , s +E —2b, "" " ' 2X.j kk' k' k j,k, k'o.

—i(k —k')-R .

ct. ct (2p', +1), (4.1 1)

gives rise to the following Hamiltonian H= UHU ' (after averaging over the wide-band electron states):

H=Hp+Hi, (4.12)

H~ = —
—,'g A (R i )(p,+p~ +H. c. )+QB(R~ )(2p', + 1)(2p~+ 1)+const

~,J &rj

= —
—,
' g A (R;.)(p,+. p. +H. c.)+g 8 (R; )(2p';+ 1)(2p'. + 1)—A (0)g(2p';+ 1)+8(0)g(2p';+1) +const, (4.13)

with

1 .
2

nk+nk. —1
A (R;.)= ——g ~It.

k, k' ck Ck. —2 p

—i(k+k'} ~ (R.—R. )Xe

Evaluating At o and A (0) with the use of the square
DOS for the wide-band electrons, we obtain

A (0)= —— ln(1+x) —(1+2/x)ln(1+x/2)1 x+1
D x

(4.16)
1

4D
ln(x +1), x =2D/b p

—i{k—k') {R.—R. )Xe

k~T, = —Jp
(n —1)

ln
n

2 —n

(4.14)

Jo=(Io) [At oA (0)]— (4.15)

where n k is the Fermi-Dirac distribution function.
Clearly H, [Eq. (4.13)] describes an indirect transfer of
local pairs via wide-band electron states. A (R; ) is the
particle-particle analog of the RKKY-type interaction,
whereas 8 (R;. ) is of the RKKY form of the s-d mecha-
nism for the particle-hole channel. Both interactions, the
pair hopping A (R;. ) and the pair interaction B(R; ),
can be long ranged, and 8 (R;J ) is an oscillating function
of the type c so(2 +kR)/(kF&) .

%'e should stress that, in contrast to the previous treat-
ment, the Hamiltonian (4.12), (4.13) allowed us to treat
properly the self-energy corrections of the bosonic
translational motion [i.e., the subtraction of A (0) and
8 (0) terms], which is always a formidable task for other
approaches. Let us now apply these results to the case (i)
(Do&0) by putting It, t= Io and Vt. t=0.—Carrying
out the mean-field analysis on the transformed Hamil-
tonian (4.12), (4.13), we obtain for T, (Robaszkiewicz
et al. , 1987)

A simple numerical analysis of Jp as a function of
Ap/D shows a sharp drop of Jp as Ap/D is lowered below
zero, giving values for T, well below those predicted by
the mean-field treatment of the contact interaction. In
Fig. 29(b) we plot this result for T, by a dashed line,
which finally leads to a picture for n (2 that is, in fact,
very similar to that obtained for n =2 [compare Fig.
29(a)], i.e., a sharp dropoff of T, as one approaches values
of Ap/D where the concentration either of local pairs or
of wide-band electrons becomes very small.

To conclude, we notice that the indirect long-range
character of charge exchange between local pairs is an
essential feature of the mixed model. This should be con-
trasted with previously considered models of local pair
superconductivity in which the pair hopping term result-
ing from the kinetic exchange mechanism ( —t, /~ U~) is"
obviously short ranged. Thus an indirect charge ex-
change can be effective even if the local pair centers are
well separated in space. The case in which a small num-
ber of local pairs are coupled by a long-range interaction
resembles an RKKY "spin glass, " and it might well
exhibit a "superconducting glass" state or a "charge-
density-wave glass" state.

Let us summarize the main physical features of the
mixture of wide-band electrons and local pairs, discussed
in this section. %'e shall restrict ourselves mainly to case
(ii), where both wide-band electrons and local electron
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pairs coexist with finite concentrations. As we go from
predominantly local pairs to predominantly wide-band
electrons, we observe the nonmonotonic behavior of T„
which passes through a maximum when the two constitu-
ents have roughly equal concentrations. The ratio
Es (0) /k~ T,—the energy gap over T,—varies around
the BCS value 3.52 as the relative proportion of local
pairs to wide-band electrons is changed. Where T, is
maximal, E (0)lk~T, has a shallow minimum; it ap-
proaches the BCS value for predominantly wide-band
electrons and surpasses it as the concentration of local
pairs increases above that of wide-band electrons. The
specific heat of the system will be determined by a super-
position arising from two contributions: single-particle
excitations, which will give it a shape like that expected
for a BCS superconductor, and collective excitations (ly-
ing in the superconducting gap), which will give it a con-
tribution like that in the local pair system: i.e., c —T" for
T~0 plus a A,-like singularity at T, .

The coherence length H, , the penetration depth, and'2'
the Ginzburg-Landau parameter will continuously vary
from those characteristic of local pair superconductors
(Sec. II) for a predominantly local pair limit to those
characteristic of BCS systems.

As far as the normal state above T, is concerned, we
conjecture a depleted density of states near the Fermi en-
ergy of the wide-band electron subsystem. This is due to
the absorption of electrons into the virtual bound state.
As a consequence we also expect rather high values of
resistivity. It has been claimed that such a system of lo-
cal pairs and wide-band electrons could exhibit linear-in-
T resistivity in the normal state, where the Fermi level
decreases linearly with T (Eliashberg, 1987; Kulik, 1987).
The model could possibly apply to the new high-T, su-
perconductors (Eliashberg, 1987; Kulik, 1987, 1988;
Robaszkiewicz et al. , 1987; Khomskii and Zvezdin,
1988; Ranninger et al. , 1988), as well as to the doped
BaBi03 perovskites (Robaszkiewicz et aI , 1987; S.ugai,
1989; Sugai, Enomoto, and Murakami, 1989; Micnas
et aj., 1987a).

V. FiNAl REMARKS

A. Summary

the original papers quoted therein (see in particular
Ionov et al. , 1981; Kulik, 1984; Alexandrov and Elesin,
1985; Eagles, 1985; Alexandrov et al. , 1986b;
Robaszkiewicz et al. , 1987; de Jongh, 1988b; Micnas
et al. , 1988b).

Let us now summarize the major theoretical results
given in this paper. In order to approach the physics of
systems with real-space pairing we considered three mod-
els, each of which presented particular aspects of thi. s
problem.

The first model, which has been studied in greatest
detail —the extended Hubbard model with negative U
(Sec. II)—permitted us to examine the changeover from
weak to strong local attraction, interpolating between
two extreme limits: a weak-coupling BCS-like supercon-
ductivity and a strong-coupling local pair superconduc-
tivity, which is that of a hard-core charged Bose gas on a
lattice. The questions of charge ordering and mixed solu-
tions where charge order coexists with superconductivity
were also analyzed.

The second model, studied in Sec. III, was an extended
Hubbard model with on-site repulsion and intersite at-
traction. The study of this model (for a square lattice)
permitted us to examine the stability of the various aniso-
tropic superconducting states, as well as the spin-density
wave state as a function of band filling. In Sec. III we
also studied the conditions for pair formation versus
dimensionality and the limit of strong correlations
( U ))r), as well as the ett'ects of exchange interaction and
correlated hopping.

The third model, discussed in Sec. IV, was a mixture of
two types of electrons: narrow-band electrons, which ex-
ist exclusively in the form of local pairs, and wide-band
electrons, which interact with the first type of particles
via charge fluctuations. Apart from describing a two-
band system, this model may have some relevance to the
problem of a single-band systexn with short-range attrac-
tion in the intermediate coupling regime, where pairs are
no longer real bound states but rather virtual ones. A
mutual exchange between local pairs of narrow-band
electrons and pairs of wide-band electrons transforms the
latter into Cooper pairs, and thus leads to superconduc-
tivity involving condensation of Cooper pairs and local
pairs.

In this paper we have reviewed the concept of local
pairing and discussed the main differences between local
pair superconductivity and standard, weak-coupling BCS
superconductivity. We have discussed the thermo-
dynamic and electromagnetic properties of relatively sim-
ple models of local pairing, treating the parameters of lo-
cal interactions as effective ones. An advantage of such
simple models is that they permit the exploration of gen-
eral features of local pairing without resorting to specific
microscopic origins of attractive Interactions.

The theory presented here is applicable to a variety of
materials, which we listed in the Introduction, and as far
as particular systems are concerned we refer the reader to

B. Superconductors with local pairing
versus Bardeen-Cooper-Schrieffer superconductors

1. Tightly bound local pairs

Let us now conclude by listing the main physical
features that distinguish a system of tightly bound local
pairs (for example, the strong-coupling negative-U Hub-
bard model) from a standard BCS superconductor. This
can serve as a guide for discriminating between supercon-
ducting materials that have classical BCS behavior and
those which clearly cannot be interpreted on the basis of
BCS theory.
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(1) Nature ofpairs. Upon approaching T, from below
in a BCS-like system, the Cooper pairs break up as the
coherent quantum state of superconductivity disappears.
Above T, we have a metallic phase of electrons. T, is
controlled by pair breaking (single-electron excitations)
and thus increases with the coupling constant and with
the density of states at Fermi energy.

In a local pair system, the electron pairs exist above
the transition temperature. T, is determined by the
center-of-mass motion of pairs; it increases when the lo-
cal attraction is decreased and when the bandwidth
( T, —t /~ U~ in the case of on-site pairing). Thus the
enhancement of T, with the application of pressure is
quite natural for a local pair system. At some tempera-
ture T ) T, the local pairs finally break up into elec-
trons. Hence there will be in general three temperature
Iegions.

(a) A low-temperature region where the pairs are in the
superconducting state with properties analogous to the
superAuidity of charged bosons on a lattice. In the high-
density limit this phase can simultaneously exhibit CDW
ordering (short- or long-range order).

(b) An intermediate tem-perature regime with a state of
dynamically disordered local pairs.

(c) A high-temperature regime above T, around which

a dissociation of pairs takes place.

Regions (a) and (b) are separated either by a single A,-type
transition (SS~NO) or by a sequence of two (SS-
CDW~CDW~NO) or three (SS~SS-CDW~CDW
~NO) phase transitions. The type of changeover (show-
ing a phase transition or not) between the region of disor-
dered local pairs and that of quasifree electrons is at
present unknown.

It should be pointed out that, since the gap in the
single-electron excitation spectrum persists across the SS
transition, the single-electron conductivity of the normal
phase (but below T ) will be nonmetallic and have an ac-
tivated character similar to that of a Mott-Hubbard insu-
lator. There could however be a metallic conductivity of
the local pairs themselves.

(2) Energy gap. A second point, which may be decisive
in distinguishing local pair superconductivity from that
of the BCS type, concerns the energy gap in the single-
particle excitation spectrum 6, and in particular its tem-
perature variation as T approaches T, . In the BCS
theory, close to T, we have 6-(I—T/T, )'~ . In can-
trast, in a local pair superconductor, 6 is expected to
remain almost T independent well into the regime above
T„where local pairs exist in a nonordered state. The ra-
tio 2A/k&T, will in general be different from the BCS
value 3.52. For the negative-U Hubbard model in the

~ U~ ))t limit, it behaves as (U/r), being much bigger
than unity. This ratio, however, can be reduced for
lower values of local attraction, particularly in the case of
low-dimensional systems (quasi-one-dimensional and
two-dimensional), where the minimal energy necessary to

bind a pair is diminished.
(3) Density dependence of T, . Usually, the BCS theory

applies to materials with sizable band filling, in which the
density of states is structureless on the energy scale of T, .
In this case T, is not related in any obvious way to elec-
tron concentration. In local pair systems, which are
equivalent to a hard-core Bose gas on a lattice, T, strong-
ly depends on n for any density. In particular, for the
low-density limit, T, n-~ (n) for d =3 (d =2+a), and
such a dependence of T, on n can be displayed over a
wide range of electron densities.

At this point it should be mentioned that for BCS sys-
tems with a nearly empty band (such that Ez (coD ), one
can get a similar variation of T, with n, but such a
dependence will be restricted to a very narrow range of
concentration. In such a limit of parameters, Bose con-
densation of preexisting pairs should be considered as a
real possibility, even in the case of BCS superconductors
(Eagles, 1969a, 1969b, 1985).

At higher densities local pair superconductors can
display nonmonotonic behavior of T, versus n, and sys-
tems with on-site local pairs invariably show a maximum
of T, near the phase boundary between the SS and CO
phases.

(4) Electromagnetic properties. The electromagnetic
properties of local pair superconductors are qualitatively
diff'erent from those of BCS systems. The major effect of
a magnetic field in a local pair system occurs via its cou-
pling to the orbital motion of the charged local pair.
This leads to greatly enhanced values of H, , proportion-'2'
ally reduced values for H, , no Clogston limit for H, as

1 2

T~0 [H, (0)=Eb;„d;„s))kz T, ], and strongly enhanced

penetration depth A,~. Moreover, one obtains an up-
wards curvature of H, near T„with H, —[1

2 2—(T!T,)
~ ] ~ in the dilute limit. The temperature

dependences of A, H and H, can also be nonstandard (see
1

Secs. II.B.3 and II.B.5; Micnas and Robaszkiewicz,
1988a, 1988b; Wen and Kan, 1988). In particular, for the
screened Coulomb interaction, one gets for T « T,

(T)/A, (0)—1=(T/T, )
+'

1 H, (T)/H, (0)=(T/—T, )

With increasing temperature (beyond the critical region)
in the dilute limit, these dependences can change to

A~(T)/XH(0)=[1 —(T/T, ) ]

(5) Short coherence length. Local pair superconductors
are expected to have very short coherence length due to
the short-range coupling between pairs and the small ra-
dius of a pair. This leads to a relatively weak sensitivity
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of the SS phase in the low-concentration limit to the pres-
ence of nonmagnetic impurities (except of SS coupled to
CDW), in analogy to the relative stability of the
superQuid phase of He II in the presence of disorder. A
more spectacular effect of this small coherence length is
the enlarged width of the critical regime, which should
be experimentally accessible, making the true critical be-
havior of the XF, s =

—,
' model observable. For d =2, a

Kosterlitz-Thouless-type phase transition is to be expect-
ed.

Several other points distinguishing local pair supercon-
ductivity from the BCS model were discussed in Sec. II;
we list here only the most essential.

(i) The collective excitation spectrum (Sec. II.B.2)—a
sound-wave-like excitation branch in the case of a
screened Coulomb interaction; a reduced plasma frequen-
cy and an energy gap in the two-electron spectrum of the
order of the bosonic bandwidth, in the case of an un-
screened Coulomb interaction.

(ii) The behavior of the specific heat in the supercon-
ducting and normal phases (Sec. II.B.3)—the possibility
of power-law T dependence, i.e., c, —T (T ), and a
changeover to c, —T (T) with increasing temperature
in d =3 (d =2+E).

(iii) The effects of structural disorder (Sec. II.B.6)—the
possibility of disorder-induced local pair superconduc-
tivity and superconducting glass behavior of a local pair
superconductor.

(iv) The weak effect of magnetic impurities for singlet
s-type local pairs.

2. Beyond the limit of real-space pair formation

Let us turn now to the properties of models with static,
short-range attractive potential in the weak-attraction
case, i.e., beyond the limit of real-space pair formation.
For high electron concentration this will be the range of

~
U~ &2zt or ~8'~ &2zt The p.hysics now becomes much

more similar to that for a BCS superconductor than in
the previously discussed case. However, even now, there
remain some essential differences. The fact that the at-
traction is static (without a cutoff in the frequency depen-
dence of the interaction) implies that all the electrons in-
side the Fermi surface contribute to the pairing. Thus
the effective half-bandwidth D (instead of aiD ) will deter-
mine the energy scale. The consequences of this are
threefold. First, T, and 6 in the BCS expressions are
enhanced, since coa is replaced by D. Second, both these
quantities are explicitly dependent on the electron densi-
ty (see below). Third, the ratio 2b, /k&T, can deviate
from the BCS value, being a function of lattice structure
(DOS), electron concentration, and the strength of the at-
tractive interaction.

It is worthwhile to compare the behavior of T, versus
n in the weak-attraction limit for on-site ( U &0) and in-
tersite ( 8' & 0) pairing, respectively.

For on site pairing (which i-s of the isotropic s-wave
type), if 8'=0, T, shows a monotonic variation versus n

with a maximum at half-filling, for nearest-neighbor hop-
ping. T, can be strongly enhanced by the presence of the
Van Hove singularity for a square lattice. For alternat-
ing lattices this pairing can exist for any U (0 and arbi-
trary n. If 8') 0, T, for on-site pairing becomes non-
monotonic, with a maximum near the border with the
CDW state, and above some critical density the super-
conductivity can coexist with charge-density waves.

Intersite pairing can be of the anisotropic s-, d-, or p-
wave type, depending on the symmetry and strength of
the pairing potential, the band filling, and the form of the
DOS. All these pairings can be driven by the intersite
density-density attraction ( W & 0). Antiferromagnetic
exchange enhances extended s- and d-wave pairing but
suppresses p-wave pairing.

With increasing n (for U )0) the system can exhibit ei-
ther an s —+d wave transition or a sequence of transitions
s ~p ~d. The correlated hopping term ~ K affects
predominantly the s-wave pairing and the repulsive K
term (K )0) stabilizes the superconductivity of holes in
the more than half-filled band case (i.e., for
ni, =2 n& 1) w—hereas K &0 can yield the superconduc-
tivity of electrons in the less than half-filled band case
(i.e., n &1).

At very low densities one can obtain analytic expres-
sions for T, if the pairing potential is restricted either to
on-site or to nearest-neighbor attraction: T,'- n '

(n '~
) for a d =3 (d =2) lattice. However, if the attrac-

tive couplings fall off gradually with distance, T,'-n
(n) for a d =3 (d =2) lattice, i.e., one gets the same n

dependence of T, as for local pair superconductors. It
should also be mentioned that the adequacy of the weak-
coupling approximation for the case of low densities is
far from clear.

3. Comments on mass renormalization
and the (bi)poiaronic mechanism

We conclude this subsection with some comments re-
garding the effective parameters t;, U, and 8'. of the ex-
tended Hubbard model and the transfer-matrix element
I; of the model of coexisting local pairs and itinerant
electrons, in particular in the context of the polaronic
mechanism for pair formation.

If an effective attraction results from electron-boson
coupling, these effective model parameters are renormal-
ized from their bare values and dependent on the
electron-boson coupling strength and characteristic bo-
sonic frequency co. The bosonic modes can be phonons
or of electronic origin, such as excitons or plasmons.

As is well known from early work on the small-polaron
problem by Yamashita and Kurosawa (1958) and Hol-
stein (1959), and on small bipolarons by Alexandrov and
Ranninger (1981a), strong-coupling renormalization is
rather severe for an effective polaron transfer integral.
For example, in strongly coupled electron-phonon (EP)
systems, in the inverse adiabatic limit, t," is renormalized
exponentially with the EP coupling strength g, i.e.,
t, -t, exp( —g ), where t, is "a typical electronic transfer
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integral while the phonon-mediated attraction increases
typically like —U-2g co. At the coupling strengths re-
quired to obtain well-defined self-trapped small bipola-
rons one might therefore expect to And an enormously
enhanced efFective bipolaron mass, which in turn would
suppress the Bose condensation temperature. Such a pic-
ture, which in our opinion is oversimplified (Alexandrov
et a/. , 1986; Nasu, 1987, 1988), leading to an excessive
reduction of the bare electronic transfer integral, has
caused some authors to believe that either small bipola-
rons readily localize or their condensation temperature is
vanishingly small (Chakraverty, 1979; Rice and Sneddon,
1982; Rice, 1987; Emin, 1989; Emin and Hillery, 1989).

The description of the small-polaron problem is based
mainly on the Holstein molecular crystal model, which
was initially introduced to describe small-polaron forma-
tion showing very strong, local lattice deformation rang-
ing typically over a few lattice constants (Holstein, 1959).
What is generally known about this model is its solution
in the form of a variational wave function, according to
which the electron is surrounded by a local lattice
deformation —the so-called Holstein small polaron. The
mobility of such a polaron is described by the motion of
the electrolux, which rigidly takes with it the surrounding
lattice deformation, and in consequence gives rise to a
strong reduction in bare electron hopping. The varia-
tional picture of a small polaron serves as a useful guide-
line but cannot be taken too literally. For instance, Fein-
berg and Ranninger (1984, 1986) have demonstrated that
the mobility of a small polaron consists of a highly non-
linear process between the motion of the charged carrier
and the lattice deformation. The vanishingly small pola-
ronic transfer integral is rather a consequence of the Hol-
stein small-polaron variational approximation. More-
over, for the EP coupling constant around a critical
value, the electron is dressed by a local lattice deforma-
tion showing large zero-point motion between two quite
specific configurations. Below this critical value the elec-
tron is unable to deform the lattice, whereas above it the
formation of a small Holstein polaron can take place.
The efFective deformation of the lattice, together with its
fluctuations, was studied by means of the Feyman path-
integral method (de Raedt and Lagendijk, 1983, 1986).
The distinction between self-trapping and localization
has recently been very clearly discussed by Lowen (1988),
who showed that for small polarons in a regular lattice a
phonon-induced localization does not occur. Moreover,
it has also been demonstrated that an improved treat-
ment of the EP system in strong coupling by means of
"squeezed phonon vacuum states" gives an efFective

small-bipolaron mass of the order of only —10m„which
is suflicient to yield the condensation temperature —100
K, for a 3D lattice (Chakraverty et al. , 1987; Zheng,
1988).

A related question concerns the limits of applicability
of the Eliashberg-Migdal theory to superconductivity in
EP systems with very large values of the EP coupling
constant. It seems that the strong-coupling regime may

well have to be reconsidered from a theoretical point of
view, since Migdal's theorem is expected to be violated
(Anderson and Yu, 1985), and hence the Eliashberg for-
malism might have to be modified to take into account
polaronic effects (Alexandrov, Ranninger, and
Robaszkiewicz, 1986b; Alexandrov, Cxrebenev, and
Mazur, 1987). The problem is certainly connected with

the interpolation between the adiabatic (t, ))co) and in-

verse adiabatic limits (r, ((co) and a transition between

BCS-type behavior and charged-boson superAuidity with
increasing coupling strength (Nasu, 1985, 1987, 1988).

For systems in which the bosonic degrees of freedom
are not vibronic but of electronic origin, like excitons, or
plasmons, a characteristic frequency could be much

higher, on the order of 1 eV, and renormalization of the
efFective transfer integral is not particularly severe. In
fact, when co is of the order of the electronic bandwidth,
the situation is almost inverse adiabatic, and the boson
can follow the electron without retardation; hence it can
cause no mass enhancement. It was shown by Hirsch
and Scalapino (1985b) (see also Bari, 1973) that, for exci-
tonic systems, only an algebraic reduction of t;. with cou-

pling strength can be expected.
Strong-coupling renormalization efFects are also corn-

mon for the pair-transfer-matrix element I; of the mixed

model discussed in Sec. IV (Robaszkiewicz et al. , 1987;
Schiittler and Pedro; 1988; Schiittler et al. , 1989).
Again, if one considers a coupling of narrow-band elec-
trons to the bosonic modes like excitons, the suppression
of I, will be only algebraic.

Finally, for theories based on the electronic mecha-
nisms of local pairing, such as pairing due to strongly po-
larizable ions (like oxygens), the effective mass of the car-
riers is not necessarily dramatically enhanced. In this
case the polarizability of the electron cloud gives rise to
pair formation of holes on neighboring ions. This was

demonstrated by Hiiller (1989) for SrTiO, . In such a pic-
ture the nuclei of the oxygens do not move, and the relax-
ation of the polarization is fast compared to the electron
hopping rate. This leads to a pairing of charge carriers
which does not involve phonons and to an efFective mass
on the order of two electron masses.

Another local attraction mechanism that is of purely
electronic origin has recently been proposed by Hirsch
(1989a); it arises from the interaction of a hole with the
outer electrons in anions with nearly filled shells. In the
simplest version of this model the system is mapped onto
the negative-U Hubbard model with the hopping integral
of holes renormalized to t;.=t; cos 8/2, and 8 is given

by the overlap of the outer cloud wave function with and
without a hole. Such a system of "small electronic pola-
rons" can give rise to high T, with an efFective mass of
carriers m * on the order of several m, (Hirsch and Tang,
1989).
C. Local pairing and high-T superconductivity

Systems with an efFective local attractive electron-
electron interaction do exist, and an extensive list of
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presently known materials is given in the Introduction.
They can exhibit several electronic orderings, mostly
charge ordering, but also superconductivity. A large
group of these materials does not show superconductivi-
ty. The reasons for that are known. Some materials
form half-filled bands and hence show a charge-ordered
ground state (e.g., Cs2SbC16, CsAgC13, Ti407, Na„VzOs,
etc.) or the SDW ordering, as predicted by the theory.
Other reasons for nonoccurrence of superconductivity in
local pair systems are their one-dimensional characteris-
tics (for example, KCP), their structural disorder or non-
stoichiometry, as in W03 „,or simply the localization of
their electronic pairs on impurity centers, as in chal-
cogenide glasses.

1. The doped BaBi03 perovskites

Concerning superconductivity with local pairing, the
most interesting systems are BaPb& Bi 03 perovskites
(for a review of experimental work on BaPb, „Bi 03 see
Uchida, Kitazawa, and Tanaka, 1987) and their recent
high- T, versions, Ba& K„Bi03 and Ba, Rb Bi03.
The exceptional status of these compounds is due to a
very small electronic density of states N(0) at the Fermi
level and T, /N(0)))1. The critical temperatures of
—13 K in BaPb& Bi 03 or of -34 K in Ba& K Bi03
are truly remarkable for the transition-metal-free com-
pounds and are at least 3—5 times higher than in all other
superconductors with comparable N (0). Moreover,
these high-T, superconductors based on Bi0 reveal many
features in common with Cu-0 based superconductors
(discussed below), despite their being non-transition-
metal compounds and having truly three-dimensional
structure.

In these materials Bi ions can exist in two valence
states, Bi +(6s ) and Bi (6s ), i.e., one has on-site pair-
ing of electrons in 6s states (Sleight, 1989). The extended
Hubbard model with on-site attraction and intersite
Coulomb repulsion is the simplest model able to describe
both the two-sublattice charge order in the diamagnetic
and semiconducting (with an energy gap of -0.8 eV) cu-
bic phase of BaBi03 with Tco —800 K and the exotic (s-
type) superconductivity occurring upon doping
(Robaszkiewicz et al. , 198la, 1981b, 1982), discussed ex-
tensively in Sec. II. A more detailed description of the
evolution from BCS-type to local pair superconductivity
and then to the CDW phase with increasing x in
BaPb, ,Bi„03has been presented (Robaszkiewicz et al. ,
1987) within the framework of the model of coexisting lo-
cal pairs and wide-band electrons.

The existence of local pairs in BaPb& Bi 03 and
Ba, K Bi03 is now established in the regime of x,
where we have a charge-ordered state (Cox and Sleight,
1979; Tajima et aI. , 1985, 1987; Uchida et ai. , 1985;
Chaillout et al. , 1988). Moreover, there is evidence that
local pairs also exist above T, in the superconducting
compositions, as indicated by Mossbauer and positron
annihilation studies (Groznov et al. , 1984) as well as by
optical experiments (Tajima et al. , 1985, 1987) and EX-

AFS spectra (Balzarotti et al. , 1984; Menushenkov,
1986).

Let us now enumerate some major experimental
findings concerning the BiO-based perovskites, which can
be explained by the local pair theory.

(1) The negative magnetic susceptibility observed in
the normal state of the superconducting samples and in
the CDW phase (Batlogg, Cava, and Stavola, 1988;
Batlogg, Cava, Rupp et al. , 1988; Cava et al. , 1988;
Mattheiss et al. , 1988).

(2) The persistence of the energy gap in the single-
electron excitation spectrum observed in the CDW insu-
lating phase of BaPb, Bi 03 (x &0.35); this gap per-
sists as a pseudogap in the normal state of the supercon-
ducting samples (0. 15(x (0.3). The energy gap is a
smooth function of x even in the marginal region of
x -0.3 (Tajima et al. , 1985, 1987).

(3) Semimetallic, or even semiconducting, resistivity
behavior above T„with very high va1ues of the normal-
state resistivity (p-0. 1 0 cm) and with a negative slope.
There is a smooth change in the temperature behavior of
the resistivity with x (Thanh et al. , 1980; Tajima et al. ,
1987; Uchida et at'. , 1987; Dybrowski et al. , 1988; Welp
et a/ , 1988)..

(4) A concave upward curvature of H, with decreasing
2

T, which can persist over a large temperature range
(Welp et al. , 1988).

(5) A large penetration depth ( —10 A; Moiseev et al. ,
1981; Batlogg, 1984), a rather short coherence length
(-40—60 A; Welp et al. , 1988; Batlogg, Cava, Rupp,
et al. , 1988), and strong type-II superconductivity (Kita-
zawa et a/. , 1985a, 1985b).

(6) A low density of carriers ( —10 ' cm ) but high
C'

(7) The strong nonmonotonic dependence of T, on car-
rier concentration (Thanh et al. , 1980; Sakudo et al. ,
1986; Hinks et al. , 1988a). T, n~ -displayed over a
wide range of n in BaPb& Bi O3 (de Jongh, 1988b).

(8) The observation of the highest values of T, for x
close to the boundary with the CDW phase, i e.,
near x =0.25 in Ba& „K„Bi03 and x =0.27 in
BaPb

&
Bl 03.

(9) The enhancement of T, with the application of
pressure in Ba, K,Bi03 with dT, /dp-0. 1 K/kbar;
this is very similar to the pressure derivatives in the Cu-
0 perovskites (Schirber et al. , 1989).

(10) Noticeable effects of electron-lattice coupling and
tendencies toward lattice instabilities. A sizable isotope
eAect with e-0.2 —0.25 present in both BaPb& „Bi„03
and Ba, „K Bi03 (Batlogg, Cava, and Stavola, 1988;
Batlogg, Cava, Rupp et al. , 1988; Hinks et al. , 1988b).

Calculations of electron-phonon interactions in BiO-
based perovskites lead to a T, of less than 5 K (Weber,
1988b), which is consistent with the isotope shift mea-
surements (Batlogg, Cava, and Stavola, 1988), but cannot
explain the high-T, superconductivity. The source of the
local attractive interaction (U &0) is most likely to be a
predominantly atomic mechanism associated with

Rev. Mod. Phys. , Vol. 62, No. 1, January 1990



160 Micnas, Ranninger, and Robaszkiewicz: Superconductivity with local attractive interaction

Bi +-Bi + charge disproportionation together with non-
linear screening of the 6s configuration by charge
transfer from the oxygen octahedra to the 6p shell, which
could be called a chemical mechanism (see Varma,
1988b; Ranninger et a/. , 1989). Other possibilities to be
mentioned are (i) formation of bipolaron states upon dop-
ing electrons (holes) to the commensurate CDW insulator
and superconductivity arising from the Bose condensa-
tion of these bipolarons (Prelovsek et a/. , 1987); (ii) exci-
tonic local pairing of the oxygen holes added to a dispro-
portion ated semiconducting background (Nunc z Re-
gueiro and Aligia, 1988), which in fact is consistent with
the concept of coexisting local pairs (on Bi ions) and
itinerant holes (on oxygen ions) discussed by us in Sec.
IV.

(11) The recent Raman spectroscopy data (Sugai, 1989;
Sugai, Enomoto, and Murakami, 1989) indicating the ex-
istence of interacting itinerant carriers and small bipola-
rons in doped BaBi03.

2. The Cu-0-based perovskites

Let us now concentrate on the new high-T, supercon-
ducting oxides, the cuprate perovskites. They belong to
the same family of oxides as BaBi03:Pb,K,Rb, (see Table
I), for which the ideas of local pairing were initially in-
voked, well before Bednorz and Miiller's (1986)
discovery.

Before discussing the possible relevance of local pair-
ing concepts for La-Ba-Cu-0 and Y-Ba-Cu-0 systems, let
us list several unusual experimental facts concerning
these 3d transition-metal oxides.

(1) They belong to compounds that usually display nar-
row bands and for which electron correlations are impor-
tant. Moreover, these new materials are close to the
metal-nonmetal transition.

(2) They are oxygen-deficient perovskites exhibiting
low-dimensional characteristics such as we11-defined

Cu02 planes and Cu-0 chains in Y-Ba-Cu-0 (Bednorz
and Miiller, 1988; Rao, 1988; Sleight, 1988). They have
generally very low carrier density ( —10 ' cm ) and show
a strong polarization of the structure. There is a
tetragonal-to-orthorhombic transition at high tempera-
tures, but this structural transition seems to be unrelated
to the occurrence of superconductivity, which usually ex-
ists in the orthorhombic phase at zero pressure (Capponi
et a/. , 1987; Cava et al. , 1987; Junod et a/. , 1987; Wu
et a/. , 1987).

(3) The values of T, exceed the upper limit for conven-
tional BCS superconductors (usually estimated as 30—40
K). They exhibit (anisotropic) superconductivity with a
very short coherence length (see, for example, Dinger
et al. , 1987; Worthington et a/. , 1987.

(4) The materials are extreme type-II superconductors
with the Ginzburg-Landau parameter a-)&1, with H,

2

very large while H, «H, H, shows a positive slope
1 2 2

near T, (Cava et a/ , 1987; Dinger .et a/. , 1987; Panson
et a/. , 1987; Worthington et a/. , 1987; Crabtree et a/. ,
1988; Oh et a/. , 1988).
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FIG. 31. Phase diagram of La2 Sr Cu04 q. , the supercon-
ducting transition; 0, the SDW transition; ~ and E3, the
orthorhombic-tetragonal phase transition. The dashed lines are
guides for the eye. The superconductivity at x ~0 is not indi-
cated on this diagram, as it concerns only a small fraction of the
sample volume in which the carrier concentration does not cor-
respond to "pure" La2Cu04 (after Jerome et al. , 1988).

(5) There are anomalous changes of the sound velocity
at T„which could indicate that states far from the Fermi
surface are involved in the pairing (D. J. Bishop, Gam-
mel et a/. , 1987; D. J. Bishop, Ramirez et a/. , 1987).
Anomalously large anisotropic amplitude oscillations of
0 ions have been observed by neutron scattering (Cap-
poni et a/. , 1987).

(6) The pairs are presumably strongly coupled, accord-
ing to di6'erent measurements of the superconducting en-
ergy gap. (For example, 25/k~ T, =8.3 and 2.4 for Cu(1)
and Cu(2), respectively, in YBa2Cu0i s (see Warren
et a/. , 1987; Schlesinger et a/. , 1987), and
2b, /k~T, =—8+1.4 in Bi-Sr-Ca-Cu-0 (see Imer et a/. ,
1989). The energy gap shows practically T-independent
behavior all the way up to T, (Geork et a/. , 1988).

(7) There is a small isotope effect in La-Ba-Cu-0 com-
pounds (Batlogg, Kourkoulis et a/. , 1987; Faltens et a/. ,
1987) and almost none in Y-Ba-Cu-0 (Bourne et a/. ,
1987).

(8) The phase diagrams clearly show the appearance of
antiferromagnetism in both La-Ba-Cu-O and Y-Ba-Cu-0
compounds that are not superconducting (see, for exam-
ple, Fig. 3 1), with T& —250 K in La-Ba-Cu-0 and
T~-450 —600 K in Y-Ba-Cu-0 (Beille et a/. , 1987; Frel-
toft et a/. , 1987; Johnston et al. , 1987; Mitsuda et a/. ,
1987; Uemura et al. , 1987; Vaknin et a/. , 1987; Brewer
et a/. , 1988; Rossat-Mignod et a/. , 1988; Tranquada
et a/. , 1988). The anitferromagnetism seems to be driven
by weak interlayer coupling and quickly disappears upon
doping or changing the oxygen stoichiometry. The
paramagnetic phase displays a large degree of magnetic
correlation and an atypical magnetic form factor (Shirane
et a/. , 1987; Birgenau et a/. , 1989; Birgenau and
Shirane, 1989). It is not clear at present how the super-
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conductivity in these materials is connected with the ex-
istence of antiferromagnetism observed in the insulating
compositions.

(9) Spectroscopic and other measurements indicate
mixed valent states of Cu and 0 ions, practically an ab-
sence of Cu + states, and very low density of states at the
Fermi level (Bianconi et al. , 1987; Fujimori et a/. , 1987;
Niicker et al. , 1987; Steiner et al. , 1988; Tournier et al. ,
1988). Doping seems to create holes preferentially on ox-
ygen sites, with Cu + unchanged, in agreement with
spectroscopic measurements and recent NMR work
(Horvatic et al. , 1988; Kitaoka et al. , 1989).

(10) The normal-state properties of these new super-
conductors are also unusual. The resistivity exhibits
linear-in-T behavior in the a-b plane much below the De-
bye temperature, and resistivity saturation does not
occur at very high temperatures. On the other hand, this
almost perfect metallic behavior is in contrast with the
values of p being close to the Mott-Ioffe-Regel limit (Gur-
vitch and Fiory, 1987; Kastner et al. , 1987; Tozer et al. ,
1987; Martin et a/. , 1988).

(11) Superconductivity, antiferromagnetism, and trans-
port properties crucially depend on the oxygen
stoichiometry.

The above experimental features and detailed calcula-
tions of band structure, together with those based on the
conventional Eliashberg-Migdal formalism, indicate that
these new materials do not fit in any obvious sense the
pattern of ordinary electron-phonon superconductors
(Weber and Mattheiss, 1987, 1988). Moreover, the exper-
imentally observed b,c/kzn —1 (where bc is the jump of
the specific heat at T, ) would give T, —TF/7 if we ap-
plied the BCS relation hc/kzn -7T, /TF. It is known
that only if T, « TF will the BCS theory hold.

The small number of carriers, together with short
coherence length, leads one therefore naturally to consid-
er the picture of local nonretarded electron pairing in
these materials.

3. Observations favoring local pairing

Let us now enumerate several general observations
that point to local pairing and local pair formation (virtu-
al or real) as a possibility in the high-T, superconductors.

(1) The high-T, superconductors belong to the oxides
family (Table I), for which the existence of local pairing
has been well established (for instance, Bi +-Bi + on-site
pairs in BaBi03 and intersite pairs Ti +-Ti +

forming bi-
polaronic charge-density waves in Ti407).

(2) Their low-dimensional structure certainly favors
the bound states. Moreover, simple geometry arguments
yield that there can be higher density of only weakly
overlapping intersite pairs in one or two dimensions than
in three dimensions.

(3) Copper as well as oxygen exist in mixed-valence
states (Cu'+, Cu +, Cu -?; 0, O', O -?) (Bianconi
et al. , 1987; Fujimori et al. , 1987; Nucker et a/. , 1987,
1988; Steiner et a/. , 1987; Tranquada et al. , 1987).

(4) The low density of carriers —10 ' cm and strong

polarizability of structure favor local pairing over Cooper
pairing.

(5) Changing the oxygen content or dopant concentra-
tion causes a transition to the dielectric state.

(6) Strong two-dimensional antiferromagnetic correla-
tions with J~F-500—1500 K and J~ Jlt 10 '—10
may contribute to the binding energy of intersite pairs.

(7) Their superconductivity is of extreme type II with
very short coherence length ( —16 A in the Cu02 planes
and -3 A orthogonal to those planes in a YBaCuO sin-
gle crystal; see Welp et al. , 1989).

(8) The small value of the Fermi energy (Kresin et al. ,
1988) and gokF —5 —10 (for YBa2Cu307) indicate that all
carriers can be involved in pairing and that the size of a
pair is on the order of the interparticle distance, in con-
trast to the BCS regime, where /ok~ ))1.

In the context of high-T, superconductors, the con-
cepts of local pairing have been adopted by many au-
thors. Their propositions cover practically all the possi-
ble mechanisms of attraction summarized in the Intro-
duction; namely, (i) the polaronic (bipolaronic) mecha-
nism (Chakraverty et al. , 1987; Li, 1987; Alexandrov,
1988; de Jongh, 1988a, 1988b; Zheng, 1988; Bussmann-
Holder et al. , 1989); (ii) the excitonic mechanism
(Schiittler et al. , 1987; Yu et al. , 1987); (iii) the electron-
ic mechanism (Callaway et al. , 1987; de Groot et al. ,
1987; Fedro et al. , 1987; G-agliano et al. , 1987; Imada,
1987; Balseiro et a/. , 1988; Hirsch et a/. , 1988; %'eber,
1988a); as well as (iv) "chemical mechanisms" (Wilson,
1987, 1988; Khomskii and Zvezdin, 1988; Micnas et al. ,
1988b; Ranninger et al. , 1988, 1989; Hirsch, 1989a,
1989b; Hirsch and Tang, 1989).

One can consider several types of pairings in these new
high-T, superconductors. (a) on-site pairings, for which
we assume that the centers of formation of two holes
(electrons) are cation ions (Cu), via reactions
2Cu +~Cu'++Cu + (2d ~d +d' ); or ligand ions
(0), via disproportionation 20' ~0 +0 (2p'~p4
+p ); or more probably cation-ligand clusters (Cu02),
i.e., 2K "—+X" '+K " '. (b) intersite pairings of
different types: a pairing of d holes in the antiferromag-
netic background or a pairing of p holes on the neighbor-
ing oxygen ions (i.e., p -p ).

4. Relation of models to high-T, superconductors

There is at present no clear consensus about the mech-
anism of pairing nor about the type of pairing nor even
about the sites on which local pairing occurs. Neverthe-
less, we can analyze and test various hypotheses regard-
ing pairing in the high-T, superconductors listed above
by making use of the models studied in Secs. II—IV.

For this purpose let us first consider the model of inter-
site pairing on Cu sites and assume that only d states are
partially occupied. Thus a d (Cu +

) configuration cor-
responds just to the half-filled band case of the model
considered in Sec. III (see also Micnas, Ranninger,
and Robaszkiewicz, 1988a; Micnas, Ranninger,
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Robaszkiewicz, and Tabor, 1988). Such a simplified
model can already account for several experimental
findings. First, T, may be high due to the fact that elec-
tron (hole) pairing takes place throughout the whole Bril-
louin zone, in contrast to the BCS model. The short
coherence length observed in these materials is consistent
with a model assuming local short-range attractive in-
teraction. The phase diagram of the model containing
the SOW and superconductivity is reminiscent of that
observed in (Lai „M„)2Cu04 &, M =Sr,Ba (compare
Fig. 16 and Fig. 31 of Jerome et al. , 1988; or Fujita
et a/. , 1987). The rapid disappearance of antifer-
romagnetism in La2CuO4 & when the oxygen vacancies
are changed (Freltoft et a/. , 1987; Johnston et a/. , 1987;
Mitsuda et al. , 1987; Uemura et al. , 1987; Vaknin
et a/. , 1987) can be interpreted within our model as a
spoiling the Fermi surface nesting. The possibility of an-
isotropic pairing predicted by the model is supported by
recent experimental results, like those concerning the
magnetic field penetration depth (Cooper et a/. , 1988)
and the observed anisotropic behavior of H, and its pos-

2

itive curvature near T, (Horn et a/. , 1987; Worthington
et a/. , 1987). The observed isotope effect in
(La, „Sr )2CuO4 & (Batlogg, Kourkoulis et a/. , 1987;
Faltens et a/. , 1987) indicates that superconductivity is
somehow related to electron-lattice coupling and tends to
support short-range pairing due to a polaronic mecha-
nism, or at least suggests a contribution from such a
mechanism. The linear-in-T behavior of the resistivity in
the a -b plane in the normal state can be accounted for by
quasi-two-dimensional transport and low carrier (hole)
concentration (Micnas et a/. , 1987b).

All these qualitative conclusions can be derived in the
weak-correlation limit (U (2D). Recent spectroscopic
measurements show that the real situation in these new
materials is perhaps the intermediate correlation regime
(U-2D) (Fujimori et a/. , 1987; Niicker et a/. , 1987;
Steiner et a/. , 1987). Within the present model one can
approach such a case from the insulating side (n = 1), as-
suming U))t (see Sec. III.C). Superconductivity would
then result from the combined action of "polaronic" in-
tersite attraction and a magnetic superexchange mecha-
nism (kinetic exchange). In this large-U limit, the mecha-
nism of superconductivity is very similar to the
resonating-valence-bond approach of Anderson (1987,
1988 and the efFective Hamiltonian (3.15) has the form of
a generalized t-J model including additionally the inter-
site attraction term. It should be pointed out that, al-
though everything now happens close to n = 1, this case
corresponds to that of a small number of holes in the
nearly half-filled band of the d =2 extended Hubbard
model. Therefore one expects the formation of charge
bosons as pairs of holes and their condensation.

Another quite di6'erent concept, which seems to be
very well substantiated at present, is the idea that, upon
doping, the extra holes go to oxygen ions and that pair-
ing occurs primarily on (neighboring) oxygen ions, i.e.,
we are dealing with the case of intersite pairing of holes

on oxygens (p -p ) (Emery, 1987). Such a picture is
strongly supported by spectroscopic data which identify
the charge carriers in the normal state as the holes in the
oxygen p band, and perhaps peroxide (or superoxide) for-
mation (Rao et a/. , 1987; Sarma et a/. , 1987; Sarma and
Rao, 1987a, 1987b; Tranquada et al. , 1987; Chakraverty
et al. , 1988; Manthiram et al. , 1988; Niicker et al. ,
1988; Rogers et a/. , 1988). Recent theoretical studies
support the existence of an efFective (short-range) attrac-
tion just between the p holes on oxygens, induced by (i)
coupling to a local magnetic configuration of Cu + (Em-
ery, 1987, 1988; Emery and Reiter, 1988a); or (ii) the po-
larization mechanism (Fedro et a/. , 1987; Varma et a/. ,
1987a, 1987b; Varma, 1988a; Wilson, 1987, 1988); or (iii)
electronic correlations (Gagliano et a/. , 1987; Balseiro
et al. , 1988; Chakraverty et al. , 1988; Emery and Reiter,
1988a; Hirsch et al. , 1988; Nunez Regueiro and Aligia,
1988)—particularly due to Cu-0 interaction (Gagliano
et a/. , 1987; Balseiro et a/. , 1988; Hirsch et a/. , 1988) or
due to the interaction of a hole with outer electrons in
oxygen ions with nearly filled shells (Hirsch, 1989a,
1989b; Hirsch and Tang, 1989).

The simplest model of such real-space pairing of oxy-
gen holes could be either the model with on-site attrac-
tive interaction defined on effective sites (Sec. II) or the
model with intersite attractive interaction (Sec. III), both
in the small-density limit. In contrast to the hypothesis
of pairing of d holes on Cu sites, which would correspond
to the nearly-half-filled band case, we now approach
model (1.1) from the opposite limit for electron densities,
namely, from the limit of small concentration of holes in
a p-like band (i.e., for example, LazCuO4, with Cu + ions,
will correspond to n =0 in the p-hole representation). In
such a case, theory predicts s-wave pairing that is isotro-
pic for U (0, and anisotropic-extended s, for W (0 (or
1 )0). T, versus n is nonmonotonic and has a maximum
at some n. As a matter of fact the n (or x) dependence of
T, recently observed in La& „Sr Cu04 (Torrance et a/. ,
1988), is very similar to the plots of T,' versus n given in

Figs. 16 and 18 of Sec. III. (See also Figs. 3—6 in Micnas,
Ranninger, Robaszkiewicz, and Tabor, 1988; and Figs. 1

and 4—8 in Micnas et a/. , 1989). Such a model gives a
high T, and energy gap 6, which are n dependent, since
the pairing takes place over the whole Brillouin zone, as
well as a short coherence length due to local attractive
interactions. The linear-in-T behavior of the resistivity in
the a -b plane can again be accounted for by the low car-
rier (p-hole) concentration, reinforced by the quasi-2D
transport (Micnas et a/. , 1987b; Xing et a/. , 1988). As
we have shown in Sec. III, in the case of intersite pairing
there can be a transition from the extended s-wave to the
d-wave (or p-wave) state when n is increased.

We should point out that the nature of the many-body
state in the presence of a local attractive interaction will
depend on the density of carriers; in the small-density
limit the formation of real bound pairs is likely to occur.
An additional factor in favor of pairing is the low-
dimensional lattice structure of these new materials. As
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we demonstrated in Sec. III.B, in two dimensions even
weak attraction can produce a real bound state. There-
fore, in the low-density limit, superconductivity can re-
sult from Bose condensation of pairs of oxygen holes
(p'-p ), leading to superfiuid behavior. In such a dilute
limit we expect the thermodynamic and electromagnetic
properties of the superconducting state to be well de-
scribed by the model of a hard-core Bose gas on a lattice,
studied in Sec. II. Increasing carrier concentration may
well lead to a changeover to the weak-coupling behavior.

In summary, regardless of the specific microscopic
pairing mechanism responsible for superconductivity in
the 3d transition-metal oxides as well as other oxides list-
ed in Table I, the possible unifying phenomenological
concept is superjfuidity of charged bosons (Micnas et al. ,
1988b; Ranninger et al. , 1989). For the Cu-0 based
high-T, superconductors this would be due to the con-
densation of on-site pairs or intersite pairs of oxygen
holes, or pairs of holes in the nearly half-filled Hubbard
model in the strong repulsive limit. Such a phenomeno-
logical unification clearly covers the BiO-based
perovskites discussed in the first part of this subsection
and for the Cu-0-based high-T, superconductors it can
be justified by the following findings (compare Sec. II.B
and V.B).

(1) The strong dependence of T, on carrier concentra-
tion for both La2 ~Sr Cu04 & and YBa2Cu07 &, with
the T, n(n -~ ) observed over a wide range of n (Shafer
et al. , 1987; de Jongh, 1988a, 1988b; Uemura et al. ,
1988, 1989).

(2) The anomalous pressure dependence of T„with
dT, /dp positive and of the order of 0.1—0.3 K/kbar for
all the Cu-0-based perovskites (Griessen, 1987; Schirber
et al. , 1989).

(3) The electromagnetic properties that point towards a
charged superfluidity rather than to the BCS model;
these properties include (see Secs. II.B.4, II.B.5, and V.B)
(i) the extreme type-II superconductivity of these materi-
als, with practically all particles involved in pairing, (ii)
the positive curvature of H, near T, (Crabtree et al. ,

2

1988; Oh et al. , 1988; Welp et al. , 1989), and (iii) the
linear temperature dependence of H, from 5 K to

1

T, -40 K in LaSrCuO, with the slopes being indepen-
dent of doping concentration (Batlogg, Ramirez et aI. ,
1987), which agrees with the theoretical prediction for
H, in a weakly interacting 2+8 charged Bose gas (Wen

1

and Kan, 1988).
(4) The experimentally measured ratio bc/kJin ~0.5,

e.g. , for YBazCu307 taking b,c =40—50 mJ/Kcm (In-
derhees et al. , 1987; Nevitt et a/. , 1987; Butera, 1988;
Junod et al. , 1988; Millis and Rabe, 1988) and
n =6X10 ' cm, one gets Ac/k~n =0.5 —0.6; this ratio
is in agreement with the theoretical prediction for an in-
teracting Bose gas (Micnas and Robaszkiewicz, 1988a,
1988b; Sobyanin, 1988; Wen and Kan, 1988) and has the
same order of magnitude as in superAuid He, where
Ac/k~n =2.6.

(5) The occurrence of superconductivity even in very
poor quality samples (in analogy with superfiuid helium
in porous media).

(6) Small coherence length and other estimated param-
eters such as the large width of the critical regime, which
point to a breakdown of the mean-field behavior and mi-
croscopic BCS formulation (Kapitulnik et al. , 1988;
Lobb, 1987).

(7) Presumably observed critical behavior in H, and g
(Uchida, Takagi et al. , 1987; Oh et al. , 1988).

(8) Fluctuation contributions to the specific heat near
T, (Inderhees et al. , 1988; Salamon, 1989), which cannot
be described within a Gaussian approximation (Salamon,
1989), and a A, -type anomaly in the heat capacity (Butera,
1988; Ishikawa et al. , 1988; Voronel et al. , 1988).

(9) The experimentally observed thermopower with a
temperature behavior that does not resemble that of a
fermionic system and moreover is independent on an
external field up to 30 T (Yu et a/. , 1988); this behavior
suggests spinless particles in the normal state, which
could be diamagnetic local pairs.

(10) A superconducting precursor effect seen in the nu-
clear spin-lattice relaxation time measurements by NQR
and %MR techniques in YBa2Cu3067, suggesting pair
formation well above T, (Warren et al , 1989)..

(11) Finally, the existence of local pairs may be
reflected in the anomalous dependence of the elastic
properties of high-T, materials. It is known that when
the temperature is lowered the lattice becomes stiffer in
the superconducting phase, showing a change in slope of
the orthorhombic lattice constants (a b)/(a+—b) as
well as in the sound velocity measurements (Horn et al. ,
1988; Saint-Paul et al. , 1989). Alexandrov and Ran-
ninger (1989) have recently shown that these phenomena
can be explained by assuming that bosons (pairs of elec-
trons) rather than electrons have been coupled to the lat-
tice. Recent photoinduced infrared absorption measure-
ments on LazCu04, YBa~Cu307 s (5 =0.75) and
T1Ba2Ca ) Gd Cu208 demonstrate the formation of
self-localized polarons (or bipolarons) with a unique local
distortion around the photogenerated carriers (Kim
et al. , 1989; Foster et al. , 1989; see also Taliani et al. ,
1988).

Some of the enumerated points and other arguments
quoted before, if taken separately, could have different
explanations. For instance, the strong pressure depen-
dence of T, could also be explicable by magnetic mecha-
nisms, whereas the dependence of T, upon carrier con-
centration could also extend beyond the limit of local
pair formation (Sec. V.B.2). However, in judging the
relevance of the preformed pair concept, one should con-
sider all the evidence together.

In contrast to the conventional BCS theory, the con-
cept of charged-boson superAuidity is able to explain
many experimental findings for the whole class of high-
T, superconducting oxides listed in Table I (see Micnas
et al. , 1988b; Ranninger et al. , 1989; and, in particular,
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de Jongh, 1988b, for a detailed comparison of the local
pair picture and experiments on superconducting oxides).

To close this section let us point out that in compar-
ison to the BiO-based oxides, the cuprate high-T, super-
conductors exhibit special features of quasi-two-
dimensionality which can be crucial for superAuid behav-
ior and which constitute a challenging problem for the
theory. At present, one cannot exclude the possibility
that most of the unusual properties of high-T, supercon-
ductors are just manifestations of the intermediate cross-
over regime between BCS superconductivity and
superAuidity (Fig. 13), as was extensively discussed in
Secs. II.C and IV.

It is also clear that a realistic model of Cu-O-based
high-T, superconductors should include d and p orbitals
from the outset, i.e., it has to be at least a two-band ex-
tended Hubbard model (Emery, 1987; Varma et al. ,
1987a, 1987b; Zaanen and Dies, 1988). An important
problem to be solved is to identify the nature of the
quasiparticles in such a system and the source of the at-
tractive interaction.
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i.e., in particular, we have the non-ferromagnetic and
non-antiferromagnetic conditions

—g(o. , )=0,
1

—g exp(iQ R )(cr; ) =0,1

1

(A 1)

(A2)

where o.; is the a= +, —,z component of the spin opera-
tor o., for an electron at the lattice site R;. We restrict
ourselves to the case of alternate ( AB) lattices, and Q
satisfies the condition exp(iQ. R)= —1 for any transla-
tion R that transforms one sublattice into the other. For
such systems with sublattices, the band energies satisfy
the perfect nesting condition (for nearest-neighbor hop-
ping) Ei, = —ok+~, where

c;~ =exp(iQ R, )b, &, c, t =b,t.
c;~=exp( —iQ R, )b, &, c, t=b, &,

Then the spin operators o.; are transformed to

cr+;=(o.; ) =c;tc;t=exp( —iQ R, )P+;

o', =
—,
'

( n, t n, ) ) =p ';,—

(A3)

(A4a)

(A4b)

where

—+

p', =
—,'(n;&+ n; &

—1),

On the other hand, the charge operators are transformed
to

p+;=(p; ) =c;tc;t =exp(iQ R;)o +;

p';= —2(n;&+n;& —1)=o ', ,

where

(A5b)

o +;=b;tb;t, cr ', = ,'(n, t n, t), —-

Ek= —g t;, e xp[ik (R; —R, )] .
J

In order to obtain relations between the cases U (0 and
U )0 let us perform the canonical transformation (Shiba,
1972; Robaszkiewicz et a/. , 1981a)

APPENDIX: "ATTRACTION-REPULSION"
TRANSFORMATION FOR THE NEGATIVE-U
EXTENDED HUBBARD MODEL

and

n;&n;&=n, &

—n, &n, &
. (A6)

Let us assume that the intrasite electron interaction in
the Hamiltonian (1.1) is attractive (U (0). Since such a
term favors the formation of pairs of antiparallel spin
electrons on the various sites, and since a11 other terms in
(1.1) are spin independent, the model cannot exhibit any
magnetic ordering (for a rigorous proof see Lieb, 1989),

Therefore, within a phase factor exp(+iQ R; ), the spin
operators o; in the new representation (the I b;, b;
representation) play the roles of the charge operators p;
in the old representation (the Ic;,c; I representation),
and vice versa. The operators p, , o, , and p, all obey the
same commutation rules as the spin operators o.;.

The Hamiltonian (1.1) is thus transformed into
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H = g t,,b,t b, + ,' I
—UIg n; n;—

——'
I UI y n, —.(p ——'

I UI+ —,'zw)x,

where

p=p+ —,
'

I UI —zW .

(A7)

(AS)

LRO (ODRLO) in the transformed Hamiltonian, corre-
sponds to the singlet-superconducting order in the origi-
nal Hamiltonian. From Eq. (A13) we see that the nonun-
iform magnetic order along the z axis, i.e., the diagonal
LRO (DLRO) in the transformed Hamiltonian corre-
sponds to the charge order in the original Hamiltonian
(see Table II).

The consequences of this attraction-repulsion canoni-
cal transformation are discussed in Sec. EI.

After the canonical transformation, the electron num-
ber condition (2.1) and Eqs. (Al) and (A2) provide the
following auxiliary conditions:
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